diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..3764945 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,2 @@ +pretrained_models/VQGAN/2024_01_07_090227/epoch=284-step=114000.ckpt filter=lfs diff=lfs merge=lfs -text +*.ckpt filter=lfs diff=lfs merge=lfs -text diff --git a/Medical_Diffusion.egg-info/PKG-INFO b/Medical_Diffusion.egg-info/PKG-INFO new file mode 100644 index 0000000..28fc82e --- /dev/null +++ b/Medical_Diffusion.egg-info/PKG-INFO @@ -0,0 +1,73 @@ +Metadata-Version: 2.1 +Name: Medical-Diffusion +Version: 1.0 +Summary: Diffusion model for medical images +Home-page: UNKNOWN +Author: +License: UNKNOWN +Platform: UNKNOWN +Description-Content-Type: text/markdown +License-File: LICENSE + +Medfusion - Medical Denoising Diffusion Probabilistic Model +============= + +Paper +======= +Please see: [**Diffusion Probabilistic Models beat GANs on Medical 2D Images**](https://arxiv.org/abs/2212.07501) + +![](media/Medfusion.png) +*Figure: Medfusion* + +![](media/animation_eye.gif) ![](media/animation_histo.gif) ![](media/animation_chest.gif)\ +*Figure: Eye fundus, chest X-ray and colon histology images generated with Medfusion (Warning color quality limited by .gif)* + +Demo +============= +[Link](https://huggingface.co/spaces/mueller-franzes/medfusion-app) to streamlit app. + +Install +============= + +Create virtual environment and install packages: \ +`python -m venv venv` \ +`source venv/bin/activate`\ +`pip install -e .` + + +Get Started +============= + +1 Prepare Data +------------- + +* Go to [medical_diffusion/data/datasets/dataset_simple_2d.py](medical_diffusion/data/datasets/dataset_simple_2d.py) and create a new `SimpleDataset2D` or write your own Dataset. + + +2 Train Autoencoder +---------------- +* Go to [scripts/train_latent_embedder_2d.py](scripts/train_latent_embedder_2d.py) and import your Dataset. +* Load your dataset with eg. `SimpleDataModule` +* Customize `VAE` to your needs +* (Optional): Train a `VAEGAN` instead or load a pre-trained `VAE` and set `start_gan_train_step=-1` to start training of GAN immediately. + +2.1 Evaluate Autoencoder +---------------- +* Use [scripts/evaluate_latent_embedder.py](scripts/evaluate_latent_embedder.py) to evaluate the performance of the Autoencoder. + +3 Train Diffusion +---------------- +* Go to [scripts/train_diffusion.py](scripts/train_diffusion.py) and import/load your Dataset as before. +* Load your pre-trained VAE or VAEGAN with `latent_embedder_checkpoint=...` +* Use `cond_embedder = LabelEmbedder` for conditional training, otherwise `cond_embedder = None` + +3.1 Evaluate Diffusion +---------------- +* Go to [scripts/sample.py](scripts/sample.py) to sample a test image. +* Go to [scripts/helpers/sample_dataset.py](scripts/helpers/sample_dataset.py) to sample a more reprensative sample size. +* Use [scripts/evaluate_images.py](scripts/evaluate_images.py) to evaluate performance of sample (FID, Precision, Recall) + +Acknowledgment +============= +* Code builds upon https://github.com/lucidrains/denoising-diffusion-pytorch + diff --git a/Medical_Diffusion.egg-info/SOURCES.txt b/Medical_Diffusion.egg-info/SOURCES.txt new file mode 100644 index 0000000..df98321 --- /dev/null +++ b/Medical_Diffusion.egg-info/SOURCES.txt @@ -0,0 +1,8 @@ +LICENSE +README.md +setup.py +Medical_Diffusion.egg-info/PKG-INFO +Medical_Diffusion.egg-info/SOURCES.txt +Medical_Diffusion.egg-info/dependency_links.txt +Medical_Diffusion.egg-info/requires.txt +Medical_Diffusion.egg-info/top_level.txt \ No newline at end of file diff --git a/Medical_Diffusion.egg-info/dependency_links.txt b/Medical_Diffusion.egg-info/dependency_links.txt new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Medical_Diffusion.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/Medical_Diffusion.egg-info/requires.txt b/Medical_Diffusion.egg-info/requires.txt new file mode 100644 index 0000000..9c63dda --- /dev/null +++ b/Medical_Diffusion.egg-info/requires.txt @@ -0,0 +1,14 @@ +torch +pytorch-lightning +pytorch_msssim +monai +torchmetrics +torch-fidelity +torchio +pillow +einops +torchvision +matplotlib +pandas +lpips +streamlit diff --git a/Medical_Diffusion.egg-info/top_level.txt b/Medical_Diffusion.egg-info/top_level.txt new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Medical_Diffusion.egg-info/top_level.txt @@ -0,0 +1 @@ + diff --git a/README.md b/README.md new file mode 100644 index 0000000..75e6dba --- /dev/null +++ b/README.md @@ -0,0 +1,20 @@ +# Mask2PET +This repository is a PyTorch implementation for PET tumor generation from benign PET and tumor mask. We build this code upon [medfusion](https://github.com/mueller-franzes/medfusion). You can completely follow the instruction in medfusion. + +## Dataset +We use the HECKTOR 2021 dataset, please download from this link (https://www.aicrowd.com/challenges/miccai-2021-hecktor). Please check the path of data in ./launch/train.sh and ./launch/test.sh + +## Data preprocessing +In this work, we use the VQ-GAN as encoder to encode the PET. If you want to custom this model on your dataset, please train VQ-GAN on your dataset first. https://github.com/CompVis/taming-transformers. + +We provide the pre-trained VQ-GAN model in ./pretrained_models + +## Training +``` +sh ./launch/train.sh +``` +## inference +``` +sh ./launch/test.sh +``` + diff --git a/lanuch/env.sh b/lanuch/env.sh new file mode 100644 index 0000000..ee1c337 --- /dev/null +++ b/lanuch/env.sh @@ -0,0 +1,12 @@ + + +pip3 install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 + + +pip install torchio +pip install monai + +pip install torch-fidelity +pip install pytorch_msssim +pip install lpips + diff --git a/lanuch/mask2pet_train.sh b/lanuch/mask2pet_train.sh new file mode 100644 index 0000000..a44a49e --- /dev/null +++ b/lanuch/mask2pet_train.sh @@ -0,0 +1 @@ +CUDA_VISIBLE_DEVICES=0 python3 ./scripts/train_diffusion.py \ No newline at end of file diff --git a/lanuch/test.sh b/lanuch/test.sh new file mode 100644 index 0000000..bb55f62 --- /dev/null +++ b/lanuch/test.sh @@ -0,0 +1,5 @@ +python3 ./scripts/sample2.py \ +-i data/Task107_hecktor2021/labelsTrain/ \ +-t data/Task107_hecktor2021/imagesTrain/ \ +-i_val data/Task107_hecktor2021/labelsTest/ \ +-t_val data/Task107_hecktor2021/imagesTest/ \ No newline at end of file diff --git a/lanuch/train.sh b/lanuch/train.sh new file mode 100644 index 0000000..62aed57 --- /dev/null +++ b/lanuch/train.sh @@ -0,0 +1,8 @@ +python3 ./scripts/train_diffusion.py --masked_condition True \ +-i data/Task107_hecktor2021/labelsTrain/ \ +-t data/Task107_hecktor2021/imagesTrain/ \ +-i_val data/Task107_hecktor2021/labelsTest/ \ +-t_val data/Task107_hecktor2021/imagesTest/ + +# continue to train +#--resume_from_checkpoint ./runs/LDM_VQGAN/2024_06_07_115628/epoch=199-step=9999.ckpt \ No newline at end of file diff --git a/medical_diffusion/__init__.py b/medical_diffusion/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/medical_diffusion/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..b0ec5b2 Binary files /dev/null and b/medical_diffusion/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..59a0a1f Binary files /dev/null and b/medical_diffusion/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/data/augmentation/__init__.py b/medical_diffusion/data/augmentation/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/medical_diffusion/data/augmentation/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/data/augmentation/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..b88adb4 Binary files /dev/null and b/medical_diffusion/data/augmentation/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/data/augmentation/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/data/augmentation/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..40aea1a Binary files /dev/null and b/medical_diffusion/data/augmentation/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/data/augmentation/__pycache__/augmentations_2d.cpython-36.pyc b/medical_diffusion/data/augmentation/__pycache__/augmentations_2d.cpython-36.pyc new file mode 100644 index 0000000..7f79cd8 Binary files /dev/null and b/medical_diffusion/data/augmentation/__pycache__/augmentations_2d.cpython-36.pyc differ diff --git a/medical_diffusion/data/augmentation/__pycache__/augmentations_2d.cpython-38.pyc b/medical_diffusion/data/augmentation/__pycache__/augmentations_2d.cpython-38.pyc new file mode 100644 index 0000000..606a9f7 Binary files /dev/null and b/medical_diffusion/data/augmentation/__pycache__/augmentations_2d.cpython-38.pyc differ diff --git a/medical_diffusion/data/augmentation/__pycache__/augmentations_3d.cpython-36.pyc b/medical_diffusion/data/augmentation/__pycache__/augmentations_3d.cpython-36.pyc new file mode 100644 index 0000000..c60367a Binary files /dev/null and b/medical_diffusion/data/augmentation/__pycache__/augmentations_3d.cpython-36.pyc differ diff --git a/medical_diffusion/data/augmentation/__pycache__/augmentations_3d.cpython-38.pyc b/medical_diffusion/data/augmentation/__pycache__/augmentations_3d.cpython-38.pyc new file mode 100644 index 0000000..f315300 Binary files /dev/null and b/medical_diffusion/data/augmentation/__pycache__/augmentations_3d.cpython-38.pyc differ diff --git a/medical_diffusion/data/augmentation/augmentations_2d.py b/medical_diffusion/data/augmentation/augmentations_2d.py new file mode 100644 index 0000000..2154a48 --- /dev/null +++ b/medical_diffusion/data/augmentation/augmentations_2d.py @@ -0,0 +1,27 @@ + +import torch +import numpy as np + +class ToTensor16bit(object): + """PyTorch can not handle uint16 only int16. First transform to int32. Note, this function also adds a channel-dim""" + def __call__(self, image): + # return torch.as_tensor(np.array(image, dtype=np.int32)[None]) + # return torch.from_numpy(np.array(image, np.int32, copy=True)[None]) + image = np.array(image, np.int32, copy=True) # [H,W,C] or [H,W] + image = np.expand_dims(image, axis=-1) if image.ndim ==2 else image + return torch.from_numpy(np.moveaxis(image, -1, 0)) #[C, H, W] + +class Normalize(object): + """Rescale the image to [0,1] and ensure float32 dtype """ + + def __call__(self, image): + image = image.type(torch.FloatTensor) + return (image-image.min())/(image.max()-image.min()) + + +class RandomBackground(object): + """Fill Background (intensity ==0) with random values""" + + def __call__(self, image): + image[image==0] = torch.rand(*image[image==0].shape) #(image.max()-image.min()) + return image \ No newline at end of file diff --git a/medical_diffusion/data/augmentation/augmentations_3d.py b/medical_diffusion/data/augmentation/augmentations_3d.py new file mode 100644 index 0000000..d6b6012 --- /dev/null +++ b/medical_diffusion/data/augmentation/augmentations_3d.py @@ -0,0 +1,38 @@ +import torchio as tio +from typing import Union, Optional, Sequence +from torchio.typing import TypeTripletInt +from torchio import Subject, Image +from torchio.utils import to_tuple + +class CropOrPad_None(tio.CropOrPad): + def __init__( + self, + target_shape: Union[int, TypeTripletInt, None] = None, + padding_mode: Union[str, float] = 0, + mask_name: Optional[str] = None, + labels: Optional[Sequence[int]] = None, + **kwargs + ): + + # WARNING: Ugly workaround to allow None values + if target_shape is not None: + self.original_target_shape = to_tuple(target_shape, length=3) + target_shape = [1 if t_s is None else t_s for t_s in target_shape] + super().__init__(target_shape, padding_mode, mask_name, labels, **kwargs) + + def apply_transform(self, subject: Subject): + # WARNING: This makes the transformation subject dependent - reverse transformation must be adapted + if self.target_shape is not None: + self.target_shape = [s_s if t_s is None else t_s for t_s, s_s in zip(self.original_target_shape, subject.spatial_shape)] + return super().apply_transform(subject=subject) + + +class SubjectToTensor(object): + """Transforms TorchIO Subjects into a Python dict and changes axes order from TorchIO to Torch""" + def __call__(self, subject: Subject): + return {key: val.data.swapaxes(1,-1) if isinstance(val, Image) else val for key,val in subject.items()} + +class ImageToTensor(object): + """Transforms TorchIO Image into a Numpy/Torch Tensor and changes axes order from TorchIO [B, C, W, H, D] to Torch [B, C, D, H, W]""" + def __call__(self, image: Image): + return image.data.swapaxes(1,-1) \ No newline at end of file diff --git a/medical_diffusion/data/datamodules/__init__.py b/medical_diffusion/data/datamodules/__init__.py new file mode 100644 index 0000000..673fee1 --- /dev/null +++ b/medical_diffusion/data/datamodules/__init__.py @@ -0,0 +1 @@ +from .datamodule_simple import SimpleDataModule \ No newline at end of file diff --git a/medical_diffusion/data/datamodules/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/data/datamodules/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..3b0c036 Binary files /dev/null and b/medical_diffusion/data/datamodules/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/data/datamodules/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/data/datamodules/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..b6d39c4 Binary files /dev/null and b/medical_diffusion/data/datamodules/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/data/datamodules/__pycache__/datamodule_simple.cpython-36.pyc b/medical_diffusion/data/datamodules/__pycache__/datamodule_simple.cpython-36.pyc new file mode 100644 index 0000000..3488c36 Binary files /dev/null and b/medical_diffusion/data/datamodules/__pycache__/datamodule_simple.cpython-36.pyc differ diff --git a/medical_diffusion/data/datamodules/__pycache__/datamodule_simple.cpython-38.pyc b/medical_diffusion/data/datamodules/__pycache__/datamodule_simple.cpython-38.pyc new file mode 100644 index 0000000..5c39c50 Binary files /dev/null and b/medical_diffusion/data/datamodules/__pycache__/datamodule_simple.cpython-38.pyc differ diff --git a/medical_diffusion/data/datamodules/datamodule_simple.py b/medical_diffusion/data/datamodules/datamodule_simple.py new file mode 100644 index 0000000..7d8eda7 --- /dev/null +++ b/medical_diffusion/data/datamodules/datamodule_simple.py @@ -0,0 +1,79 @@ + +import pytorch_lightning as pl +import torch +from torch.utils.data.dataloader import DataLoader +import torch.multiprocessing as mp +from torch.utils.data.sampler import WeightedRandomSampler, RandomSampler + + + +class SimpleDataModule(pl.LightningDataModule): + + def __init__(self, + ds_train: object, + ds_val:object =None, + ds_test:object =None, + batch_size: int = 1, + num_workers: int = mp.cpu_count(), + seed: int = 0, + pin_memory: bool = False, + weights: list = None + ): + super().__init__() + self.hyperparameters = {**locals()} + self.hyperparameters.pop('__class__') + self.hyperparameters.pop('self') + + self.ds_train = ds_train + self.ds_val = ds_val + self.ds_test = ds_test + + self.batch_size = batch_size + self.num_workers = num_workers + self.seed = seed + self.pin_memory = pin_memory + self.weights = weights + + + + def train_dataloader(self): + generator = torch.Generator() + generator.manual_seed(self.seed) + + if self.weights is not None: + sampler = WeightedRandomSampler(self.weights, len(self.weights), generator=generator) + else: + sampler = RandomSampler(self.ds_train, replacement=False, generator=generator) + return DataLoader(self.ds_train, batch_size=self.batch_size, num_workers=self.num_workers, + sampler=sampler, generator=generator, drop_last=True, pin_memory=self.pin_memory) + + + def val_dataloader(self): + generator = torch.Generator() + generator.manual_seed(self.seed) + if self.ds_val is not None: + return DataLoader(self.ds_val, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, + generator=generator, drop_last=False, pin_memory=self.pin_memory) + else: + raise AssertionError("A validation set was not initialized.") + + + def test_dataloader(self): + generator = torch.Generator() + generator.manual_seed(self.seed) + if self.ds_test is not None: + return DataLoader(self.ds_test, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, + generator = generator, drop_last=False, pin_memory=self.pin_memory) + else: + raise AssertionError("A test test set was not initialized.") + + + + + + + + + + + \ No newline at end of file diff --git a/medical_diffusion/data/datasets/__init__.py b/medical_diffusion/data/datasets/__init__.py new file mode 100644 index 0000000..cca9ef4 --- /dev/null +++ b/medical_diffusion/data/datasets/__init__.py @@ -0,0 +1,2 @@ +from .dataset_simple_2d import * +from .dataset_simple_3d import * \ No newline at end of file diff --git a/medical_diffusion/data/datasets/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/data/datasets/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..0d60ddf Binary files /dev/null and b/medical_diffusion/data/datasets/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/data/datasets/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/data/datasets/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..7e26e66 Binary files /dev/null and b/medical_diffusion/data/datasets/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/data/datasets/__pycache__/dataset_simple_2d.cpython-36.pyc b/medical_diffusion/data/datasets/__pycache__/dataset_simple_2d.cpython-36.pyc new file mode 100644 index 0000000..10f8b3d Binary files /dev/null and b/medical_diffusion/data/datasets/__pycache__/dataset_simple_2d.cpython-36.pyc differ diff --git a/medical_diffusion/data/datasets/__pycache__/dataset_simple_2d.cpython-38.pyc b/medical_diffusion/data/datasets/__pycache__/dataset_simple_2d.cpython-38.pyc new file mode 100644 index 0000000..03d60a1 Binary files /dev/null and b/medical_diffusion/data/datasets/__pycache__/dataset_simple_2d.cpython-38.pyc differ diff --git a/medical_diffusion/data/datasets/__pycache__/dataset_simple_3d.cpython-36.pyc b/medical_diffusion/data/datasets/__pycache__/dataset_simple_3d.cpython-36.pyc new file mode 100644 index 0000000..c3fde2e Binary files /dev/null and b/medical_diffusion/data/datasets/__pycache__/dataset_simple_3d.cpython-36.pyc differ diff --git a/medical_diffusion/data/datasets/__pycache__/dataset_simple_3d.cpython-38.pyc b/medical_diffusion/data/datasets/__pycache__/dataset_simple_3d.cpython-38.pyc new file mode 100644 index 0000000..e2774d4 Binary files /dev/null and b/medical_diffusion/data/datasets/__pycache__/dataset_simple_3d.cpython-38.pyc differ diff --git a/medical_diffusion/data/datasets/dataset_simple_2d.py b/medical_diffusion/data/datasets/dataset_simple_2d.py new file mode 100644 index 0000000..d8d953c --- /dev/null +++ b/medical_diffusion/data/datasets/dataset_simple_2d.py @@ -0,0 +1,198 @@ + +import torch.utils.data as data +import torch +from torch import nn +from pathlib import Path +from torchvision import transforms as T +import pandas as pd + +from PIL import Image + +from medical_diffusion.data.augmentation.augmentations_2d import Normalize, ToTensor16bit + +class SimpleDataset2D(data.Dataset): + def __init__( + self, + path_root, + item_pointers =[], + crawler_ext = 'tif', # other options are ['jpg', 'jpeg', 'png', 'tiff'], + transform = None, + image_resize = None, + augment_horizontal_flip = False, + augment_vertical_flip = False, + image_crop = None, + ): + super().__init__() + self.path_root = Path(path_root) + self.crawler_ext = crawler_ext + if len(item_pointers): + self.item_pointers = item_pointers + else: + self.item_pointers = self.run_item_crawler(self.path_root, self.crawler_ext) + + if transform is None: + self.transform = T.Compose([ + T.Resize(image_resize) if image_resize is not None else nn.Identity(), + T.RandomHorizontalFlip() if augment_horizontal_flip else nn.Identity(), + T.RandomVerticalFlip() if augment_vertical_flip else nn.Identity(), + T.CenterCrop(image_crop) if image_crop is not None else nn.Identity(), + T.ToTensor(), + # T.Lambda(lambda x: torch.cat([x]*3) if x.shape[0]==1 else x), + # ToTensor16bit(), + # Normalize(), # [0, 1.0] + # T.ConvertImageDtype(torch.float), + T.Normalize(mean=0.5, std=0.5) # WARNING: mean and std are not the target values but rather the values to subtract and divide by: [0, 1] -> [0-0.5, 1-0.5]/0.5 -> [-1, 1] + ]) + else: + self.transform = transform + + def __len__(self): + return len(self.item_pointers) + + def __getitem__(self, index): + rel_path_item = self.item_pointers[index] + path_item = self.path_root/rel_path_item + # img = Image.open(path_item) + img = self.load_item(path_item) + return {'uid':rel_path_item.stem, 'source': self.transform(img)} + + def load_item(self, path_item): + return Image.open(path_item).convert('RGB') + # return cv2.imread(str(path_item), cv2.IMREAD_UNCHANGED) # NOTE: Only CV2 supports 16bit RGB images + + @classmethod + def run_item_crawler(cls, path_root, extension, **kwargs): + return [path.relative_to(path_root) for path in Path(path_root).rglob(f'*.{extension}')] + + def get_weights(self): + """Return list of class-weights for WeightedSampling""" + return None + + +class AIROGSDataset(SimpleDataset2D): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.labels = pd.read_csv(self.path_root.parent/'train_labels.csv', index_col='challenge_id') + + def __len__(self): + return len(self.labels) + + def __getitem__(self, index): + uid = self.labels.index[index] + path_item = self.path_root/f'{uid}.jpg' + img = self.load_item(path_item) + str_2_int = {'NRG':0, 'RG':1} # RG = 3270, NRG = 98172 + target = str_2_int[self.labels.loc[uid, 'class']] + # return {'uid':uid, 'source': self.transform(img), 'target':target} + return {'source': self.transform(img), 'target':target} + + def get_weights(self): + n_samples = len(self) + weight_per_class = 1/self.labels['class'].value_counts(normalize=True) # {'NRG': 1.03, 'RG': 31.02} + weights = [0] * n_samples + for index in range(n_samples): + target = self.labels.iloc[index]['class'] + weights[index] = weight_per_class[target] + return weights + + @classmethod + def run_item_crawler(cls, path_root, extension, **kwargs): + """Overwrite to speed up as paths are determined by .csv file anyway""" + return [] + +class MSIvsMSS_Dataset(SimpleDataset2D): + # https://doi.org/10.5281/zenodo.2530835 + def __getitem__(self, index): + rel_path_item = self.item_pointers[index] + path_item = self.path_root/rel_path_item + img = self.load_item(path_item) + uid = rel_path_item.stem + str_2_int = {'MSIMUT':0, 'MSS':1} + target = str_2_int[path_item.parent.name] # + return {'uid':uid, 'source': self.transform(img), 'target':target} + + +class MSIvsMSS_2_Dataset(SimpleDataset2D): + # https://doi.org/10.5281/zenodo.3832231 + def __getitem__(self, index): + rel_path_item = self.item_pointers[index] + path_item = self.path_root/rel_path_item + img = self.load_item(path_item) + uid = rel_path_item.stem + str_2_int = {'MSIH':0, 'nonMSIH':1} # patients with MSI-H = MSIH; patients with MSI-L and MSS = NonMSIH) + target = str_2_int[path_item.parent.name] + # return {'uid':uid, 'source': self.transform(img), 'target':target} + return {'source': self.transform(img), 'target':target} + + +class CheXpert_Dataset(SimpleDataset2D): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + mode = self.path_root.name + labels = pd.read_csv(self.path_root.parent/f'{mode}.csv', index_col='Path') + self.labels = labels.loc[labels['Frontal/Lateral'] == 'Frontal'].copy() + self.labels.index = self.labels.index.str[20:] + self.labels.loc[self.labels['Sex'] == 'Unknown', 'Sex'] = 'Female' # Affects 1 case, must be "female" to match stats in publication + self.labels.fillna(2, inplace=True) # TODO: Find better solution, + str_2_int = {'Sex': {'Male':0, 'Female':1}, 'Frontal/Lateral':{'Frontal':0, 'Lateral':1}, 'AP/PA':{'AP':0, 'PA':1}} + self.labels.replace(str_2_int, inplace=True) + + def __len__(self): + return len(self.labels) + + def __getitem__(self, index): + rel_path_item = self.labels.index[index] + path_item = self.path_root/rel_path_item + img = self.load_item(path_item) + uid = str(rel_path_item) + target = torch.tensor(self.labels.loc[uid, 'Cardiomegaly']+1, dtype=torch.long) # Note Labels are -1=uncertain, 0=negative, 1=positive, NA=not reported -> Map to [0, 2], NA=3 + return {'uid':uid, 'source': self.transform(img), 'target':target} + + + @classmethod + def run_item_crawler(cls, path_root, extension, **kwargs): + """Overwrite to speed up as paths are determined by .csv file anyway""" + return [] + +class CheXpert_2_Dataset(SimpleDataset2D): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + labels = pd.read_csv(self.path_root/'labels/cheXPert_label.csv', index_col=['Path', 'Image Index']) # Note: 1 and -1 (uncertain) cases count as positives (1), 0 and NA count as negatives (0) + labels = labels.loc[labels['fold']=='train'].copy() + labels = labels.drop(labels='fold', axis=1) + + labels2 = pd.read_csv(self.path_root/'labels/train.csv', index_col='Path') + labels2 = labels2.loc[labels2['Frontal/Lateral'] == 'Frontal'].copy() + labels2 = labels2[['Cardiomegaly',]].copy() + labels2[ (labels2 <0) | labels2.isna()] = 2 # 0 = Negative, 1 = Positive, 2 = Uncertain + labels = labels.join(labels2['Cardiomegaly'], on=["Path",], rsuffix='_true') + # labels = labels[labels['Cardiomegaly_true']!=2] + + self.labels = labels + + def __len__(self): + return len(self.labels) + + def __getitem__(self, index): + path_index, image_index = self.labels.index[index] + path_item = self.path_root/'data'/f'{image_index:06}.png' + img = self.load_item(path_item) + uid = image_index + target = int(self.labels.loc[(path_index, image_index), 'Cardiomegaly']) + # return {'uid':uid, 'source': self.transform(img), 'target':target} + return {'source': self.transform(img), 'target':target} + + @classmethod + def run_item_crawler(cls, path_root, extension, **kwargs): + """Overwrite to speed up as paths are determined by .csv file anyway""" + return [] + + def get_weights(self): + n_samples = len(self) + weight_per_class = 1/self.labels['Cardiomegaly'].value_counts(normalize=True) + # weight_per_class = {2.0: 1.2, 1.0: 8.2, 0.0: 24.3} + weights = [0] * n_samples + for index in range(n_samples): + target = self.labels.loc[self.labels.index[index], 'Cardiomegaly'] + weights[index] = weight_per_class[target] + return weights \ No newline at end of file diff --git a/medical_diffusion/data/datasets/dataset_simple_3d.py b/medical_diffusion/data/datasets/dataset_simple_3d.py new file mode 100644 index 0000000..7555377 --- /dev/null +++ b/medical_diffusion/data/datasets/dataset_simple_3d.py @@ -0,0 +1,179 @@ + +import torch.utils.data as data +from pathlib import Path +from torchvision import transforms as T + +from sklearn.preprocessing import MinMaxScaler +from torch.utils.data import Dataset +from glob import glob +import matplotlib.pyplot as plt +import nibabel as nib +import torchio as tio +import numpy as np +import torch +import re +import os +import scipy.ndimage as snd +import torchio as tio + +from medical_diffusion.data.augmentation.augmentations_3d import ImageToTensor + + +class SimpleDataset3D(data.Dataset): + def __init__( + self, + path_root, + item_pointers =[], + crawler_ext = ['nii'], # other options are ['nii.gz'], + transform = None, + image_resize = None, + flip = False, + image_crop = None, + use_znorm=True, # Use z-Norm for MRI as scale is arbitrary, otherwise scale intensity to [-1, 1] + ): + super().__init__() + self.path_root = path_root + self.crawler_ext = crawler_ext + + if transform is None: + self.transform = T.Compose([ + tio.Resize(image_resize) if image_resize is not None else tio.Lambda(lambda x: x), + tio.RandomFlip((0,1,2)) if flip else tio.Lambda(lambda x: x), + tio.CropOrPad(image_crop) if image_crop is not None else tio.Lambda(lambda x: x), + tio.ZNormalization() if use_znorm else tio.RescaleIntensity((-1,1)), + ImageToTensor() # [C, W, H, D] -> [C, D, H, W] + ]) + else: + self.transform = transform + + if len(item_pointers): + self.item_pointers = item_pointers + else: + self.item_pointers = self.run_item_crawler(self.path_root, self.crawler_ext) + + def __len__(self): + return len(self.item_pointers) + + def __getitem__(self, index): + rel_path_item = self.item_pointers[index] + path_item = self.path_root/rel_path_item + img = self.load_item(path_item) + return {'uid':rel_path_item.stem, 'source': self.transform(img)} + + def load_item(self, path_item): + return tio.ScalarImage(path_item) # Consider to use this or tio.ScalarLabel over SimpleITK (sitk.ReadImage(str(path_item))) + + @classmethod + def run_item_crawler(cls, path_root, extension, **kwargs): + return [path.relative_to(path_root) for path in Path(path_root).rglob(f'*.{extension}')] + + +class NiftiPairImageGenerator(Dataset): + def __init__(self, + input_folder: str, + target_folder: str, + input_size: int, + depth_size: int, + input_channel: int = 2, + transform=None, + target_transform=None, + full_channel_mask=False, + combine_output=False + ): + self.input_folder = input_folder + self.target_folder = target_folder + self.pair_files = self.pair_file() + self.input_size = input_size + self.depth_size = depth_size + self.input_channel = input_channel + self.scaler = MinMaxScaler() + self.transform = transform + self.target_transform = target_transform + self.full_channel_mask = full_channel_mask + self.combine_output = combine_output + + def pair_file(self): + input_files = sorted(glob(os.path.join(self.input_folder, '*'))) + target_files = sorted(glob(os.path.join(self.target_folder, '*_0000.nii.gz'))) + pairs = [] + for input_file, target_file in zip(input_files, target_files): + assert int("".join(re.findall("\d", input_file))) == int("".join(re.findall("\d", target_file))[:-4]) + pairs.append((input_file, target_file)) + return pairs + + def read_image(self, file_path, pass_scaler=False): + img = nib.load(file_path).get_fdata() + img = img.clip(min = 0) + img = np.expand_dims(img,0) + return img + + def plot(self, index, n_slice=30): + data = self[index] + input_img = data['input'] + target_img = data['target'] + plt.subplot(1, 2, 1) + plt.imshow(input_img[:, :, n_slice]) + plt.subplot(1, 2, 2) + plt.imshow(target_img[:, :, n_slice]) + plt.show() + + def resize_img(self, img): + h, w, d = img.shape + if h != self.input_size or w != self.input_size or d != self.depth_size: + img = tio.ScalarImage(tensor=img[np.newaxis, ...]) + cop = tio.Resize((self.input_size, self.input_size, self.depth_size)) + img = np.asarray(cop(img))[0] + return img + + def resize_img_4d(self, input_img): + c, h, w, d = input_img.shape + scaled_img = snd.zoom(input_img, [c, self.input_size / h, self.input_size / w, self.depth_size / d]) + return scaled_img.clip(min = 0) + + def resize_img_4d_pad(self, input_img): + c, h, w, d = input_img.shape + pad_one_side = (self.input_size - h) // 2 + padding = [(0,0), (pad_one_side,pad_one_side), (pad_one_side,pad_one_side), (pad_one_side,pad_one_side)] + scaled_img = np.pad(input_img, padding, mode='constant', constant_values=0) + return scaled_img.clip(min = 0) + + def resize_img_4d_01(self, input_img): + c, h, w, d = input_img.shape + scaled_img = snd.zoom(input_img, [c, self.input_size / h, self.input_size / w, self.depth_size / d], order=0) + scaled_img = np.where(scaled_img > 0.5, 1, 0) + return scaled_img + + def sample_conditions(self, batch_size: int): + indexes = np.random.randint(0, len(self), batch_size) + input_files = [self.pair_files[index][0] for index in indexes] + input_tensors = [] + for input_file in input_files: + input_img = self.read_image(input_file, pass_scaler=self.full_channel_mask) + input_img = np.expand_dims(input_img,0) + # input_img = self.resize_img_4d(input_img) + if self.transform is not None: + input_img = self.transform(input_img).unsqueeze(0) + input_tensors.append(input_img) + return torch.cat(input_tensors, 0).cuda() + + def __len__(self): + return len(self.pair_files) + + def __getitem__(self, index): + input_file, target_file = self.pair_files[index] + input_img = self.read_image(input_file, pass_scaler=self.full_channel_mask) + # input_img = self.resize_img_4d(input_img) # if not self.full_channel_mask else self.resize_img_4d(input_img) + input_img = self.resize_img_4d_01(input_img) + target_img = self.read_image(target_file) + target_img = self.resize_img_4d(target_img) + target_img = target_img / target_img.max() + + if self.transform is not None: + input_img = self.transform(input_img) + if self.target_transform is not None: + target_img = self.target_transform(target_img) + + if self.combine_output: + return torch.cat([target_img, input_img], 0) + + return {'input':input_img, 'target':target_img} diff --git a/medical_diffusion/external/diffusers/attention.py b/medical_diffusion/external/diffusers/attention.py new file mode 100644 index 0000000..25e1ea2 --- /dev/null +++ b/medical_diffusion/external/diffusers/attention.py @@ -0,0 +1,347 @@ +import math +from typing import Optional + +import torch +import torch.nn.functional as F +from torch import nn + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted + to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + Uses three q, k, v linear layers to compute attention. + + Parameters: + channels (:obj:`int`): The number of channels in the input and output. + num_head_channels (:obj:`int`, *optional*): + The number of channels in each head. If None, then `num_heads` = 1. + num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm. + rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by. + eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. + """ + + def __init__( + self, + channels: int, + num_head_channels: Optional[int] = None, + num_groups: int = 32, + rescale_output_factor: float = 1.0, + eps: float = 1e-5, + ): + super().__init__() + self.channels = channels + + self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 + self.num_head_size = num_head_channels + self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) + + # define q,k,v as linear layers + self.query = nn.Linear(channels, channels) + self.key = nn.Linear(channels, channels) + self.value = nn.Linear(channels, channels) + + self.rescale_output_factor = rescale_output_factor + self.proj_attn = nn.Linear(channels, channels, 1) + + def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: + new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) + # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) + new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) + return new_projection + + def forward(self, hidden_states): + residual = hidden_states + batch, channel, height, width = hidden_states.shape + + # norm + hidden_states = self.group_norm(hidden_states) + + hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) + + # proj to q, k, v + query_proj = self.query(hidden_states) + key_proj = self.key(hidden_states) + value_proj = self.value(hidden_states) + + # transpose + query_states = self.transpose_for_scores(query_proj) + key_states = self.transpose_for_scores(key_proj) + value_states = self.transpose_for_scores(value_proj) + + # get scores + scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) + + attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) + attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) + + # compute attention output + hidden_states = torch.matmul(attention_probs, value_states) + + hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() + new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) + hidden_states = hidden_states.view(new_hidden_states_shape) + + # compute next hidden_states + hidden_states = self.proj_attn(hidden_states) + hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) + + # res connect and rescale + hidden_states = (hidden_states + residual) / self.rescale_output_factor + return hidden_states + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply + standard transformer action. Finally, reshape to image. + + Parameters: + in_channels (:obj:`int`): The number of channels in the input and output. + n_heads (:obj:`int`): The number of heads to use for multi-head attention. + d_head (:obj:`int`): The number of channels in each head. + depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. + dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. + context_dim (:obj:`int`, *optional*): The number of context dimensions to use. + """ + + def __init__( + self, + in_channels: int, + n_heads: int, + d_head: int, + depth: int = 1, + dropout: float = 0.0, + num_groups: int = 32, + context_dim: Optional[int] = None, + ): + super().__init__() + self.n_heads = n_heads + self.d_head = d_head + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + + self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) + for d in range(depth) + ] + ) + + self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + + def _set_attention_slice(self, slice_size): + for block in self.transformer_blocks: + block._set_attention_slice(slice_size) + + def forward(self, hidden_states, context=None): + # note: if no context is given, cross-attention defaults to self-attention + batch, channel, height, weight = hidden_states.shape + residual = hidden_states + hidden_states = self.norm(hidden_states) + hidden_states = self.proj_in(hidden_states) + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel) + for block in self.transformer_blocks: + hidden_states = block(hidden_states, context=context) + hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2) + hidden_states = self.proj_out(hidden_states) + return hidden_states + residual + + +class BasicTransformerBlock(nn.Module): + r""" + A basic Transformer block. + + Parameters: + dim (:obj:`int`): The number of channels in the input and output. + n_heads (:obj:`int`): The number of heads to use for multi-head attention. + d_head (:obj:`int`): The number of channels in each head. + dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. + context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. + gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. + checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. + """ + + def __init__( + self, + dim: int, + n_heads: int, + d_head: int, + dropout=0.0, + context_dim: Optional[int] = None, + gated_ff: bool = True, + checkpoint: bool = True, + ): + super().__init__() + self.attn1 = CrossAttention( + query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout + ) # is a self-attention + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = CrossAttention( + query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout + ) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def _set_attention_slice(self, slice_size): + self.attn1._slice_size = slice_size + self.attn2._slice_size = slice_size + + def forward(self, hidden_states, context=None): + hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states + hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states + hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states + hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states + return hidden_states + + +class CrossAttention(nn.Module): + r""" + A cross attention layer. + + Parameters: + query_dim (:obj:`int`): The number of channels in the query. + context_dim (:obj:`int`, *optional*): + The number of channels in the context. If not given, defaults to `query_dim`. + heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. + dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. + dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. + """ + + def __init__( + self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 + ): + super().__init__() + inner_dim = dim_head * heads + context_dim = context_dim if context_dim is not None else query_dim + + self.scale = dim_head**-0.5 + self.heads = heads + # for slice_size > 0 the attention score computation + # is split across the batch axis to save memory + # You can set slice_size with `set_attention_slice` + self._slice_size = None + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) + + def reshape_heads_to_batch_dim(self, tensor): + batch_size, seq_len, dim = tensor.shape + head_size = self.heads + tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) + return tensor + + def reshape_batch_dim_to_heads(self, tensor): + batch_size, seq_len, dim = tensor.shape + head_size = self.heads + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) + return tensor + + def forward(self, hidden_states, context=None, mask=None): + batch_size, sequence_length, _ = hidden_states.shape + + query = self.to_q(hidden_states) + context = context if context is not None else hidden_states + key = self.to_k(context) + value = self.to_v(context) + + dim = query.shape[-1] + + query = self.reshape_heads_to_batch_dim(query) + key = self.reshape_heads_to_batch_dim(key) + value = self.reshape_heads_to_batch_dim(value) + + # TODO(PVP) - mask is currently never used. Remember to re-implement when used + + # attention, what we cannot get enough of + + if self._slice_size is None or query.shape[0] // self._slice_size == 1: + hidden_states = self._attention(query, key, value) + else: + hidden_states = self._sliced_attention(query, key, value, sequence_length, dim) + + return self.to_out(hidden_states) + + def _attention(self, query, key, value): + attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale + attention_probs = attention_scores.softmax(dim=-1) + # compute attention output + hidden_states = torch.matmul(attention_probs, value) + # reshape hidden_states + hidden_states = self.reshape_batch_dim_to_heads(hidden_states) + return hidden_states + + def _sliced_attention(self, query, key, value, sequence_length, dim): + batch_size_attention = query.shape[0] + hidden_states = torch.zeros( + (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype + ) + slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] + for i in range(hidden_states.shape[0] // slice_size): + start_idx = i * slice_size + end_idx = (i + 1) * slice_size + attn_slice = torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale + attn_slice = attn_slice.softmax(dim=-1) + attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx]) + + hidden_states[start_idx:end_idx] = attn_slice + + # reshape hidden_states + hidden_states = self.reshape_batch_dim_to_heads(hidden_states) + return hidden_states + + +class FeedForward(nn.Module): + r""" + A feed-forward layer. + + Parameters: + dim (:obj:`int`): The number of channels in the input. + dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. + mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. + glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. + dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. + """ + + def __init__( + self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0 + ): + super().__init__() + inner_dim = int(dim * mult) + dim_out = dim_out if dim_out is not None else dim + project_in = GEGLU(dim, inner_dim) + + self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) + + def forward(self, hidden_states): + return self.net(hidden_states) + + +# feedforward +class GEGLU(nn.Module): + r""" + A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. + + Parameters: + dim_in (:obj:`int`): The number of channels in the input. + dim_out (:obj:`int`): The number of channels in the output. + """ + + def __init__(self, dim_in: int, dim_out: int): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, hidden_states): + hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) + return hidden_states * F.gelu(gate) diff --git a/medical_diffusion/external/diffusers/embeddings.py b/medical_diffusion/external/diffusers/embeddings.py new file mode 100644 index 0000000..d721bc4 --- /dev/null +++ b/medical_diffusion/external/diffusers/embeddings.py @@ -0,0 +1,89 @@ +import math +from pydoc import describe + +import numpy as np +import torch +from torch import nn + + +def get_timestep_embedding( + timesteps: torch.Tensor, + embedding_dim: int, + flip_sin_to_cos: bool = False, + downscale_freq_shift: float = 1, + scale: float = 1, + max_period: int = 10000, +): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the + embeddings. :return: an [N x dim] Tensor of positional embeddings. + """ + assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" + + half_dim = embedding_dim // 2 + exponent = -math.log(max_period) * torch.arange( + start=0, end=half_dim, dtype=torch.float32, device=timesteps.device + ) + exponent = exponent / (half_dim - downscale_freq_shift) + + emb = torch.exp(exponent) + emb = timesteps[:, None].float() * emb[None, :] + + # scale embeddings + emb = scale * emb + + # concat sine and cosine embeddings + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) + + # flip sine and cosine embeddings + if flip_sin_to_cos: + emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) + + # zero pad + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + +class Timesteps(nn.Module): + def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): + super().__init__() + self.num_channels = num_channels + self.flip_sin_to_cos = flip_sin_to_cos + self.downscale_freq_shift = downscale_freq_shift + + def forward(self, timesteps): + t_emb = get_timestep_embedding( + timesteps, + self.num_channels, + flip_sin_to_cos=self.flip_sin_to_cos, + downscale_freq_shift=self.downscale_freq_shift, + ) + return t_emb + +class TimeEmbbeding(nn.Module): + def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"): + super().__init__() + + self.temb = Timesteps(channel, flip_sin_to_cos=True, downscale_freq_shift=0) + + self.linear_1 = nn.Linear(channel, time_embed_dim) + self.act = None + if act_fn == "silu": + self.act = nn.SiLU() + self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim) + + def forward(self, sample): + sample = self.temb(sample) + sample = self.linear_1(sample) + + if self.act is not None: + sample = self.act(sample) + + sample = self.linear_2(sample) + return sample + + + diff --git a/medical_diffusion/external/diffusers/resnet.py b/medical_diffusion/external/diffusers/resnet.py new file mode 100644 index 0000000..97f3c02 --- /dev/null +++ b/medical_diffusion/external/diffusers/resnet.py @@ -0,0 +1,479 @@ +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class Upsample2D(nn.Module): + """ + An upsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is + applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_conv_transpose = use_conv_transpose + self.name = name + + conv = None + if use_conv_transpose: + conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) + elif use_conv: + conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) + + # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed + if name == "conv": + self.conv = conv + else: + self.Conv2d_0 = conv + + def forward(self, x): + assert x.shape[1] == self.channels + if self.use_conv_transpose: + return self.conv(x) + + x = F.interpolate(x, scale_factor=2.0, mode="nearest") + + # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed + if self.use_conv: + if self.name == "conv": + x = self.conv(x) + else: + x = self.Conv2d_0(x) + + return x + + +class Downsample2D(nn.Module): + """ + A downsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is + applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.padding = padding + stride = 2 + self.name = name + + if use_conv: + conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) + else: + assert self.channels == self.out_channels + conv = nn.AvgPool2d(kernel_size=stride, stride=stride) + + # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed + if name == "conv": + self.Conv2d_0 = conv + self.conv = conv + elif name == "Conv2d_0": + self.conv = conv + else: + self.conv = conv + + def forward(self, x): + assert x.shape[1] == self.channels + if self.use_conv and self.padding == 0: + pad = (0, 1, 0, 1) + x = F.pad(x, pad, mode="constant", value=0) + + assert x.shape[1] == self.channels + x = self.conv(x) + + return x + + +class FirUpsample2D(nn.Module): + def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): + super().__init__() + out_channels = out_channels if out_channels else channels + if use_conv: + self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) + self.use_conv = use_conv + self.fir_kernel = fir_kernel + self.out_channels = out_channels + + def _upsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1): + """Fused `upsample_2d()` followed by `Conv2d()`. + + Args: + Padding is performed only once at the beginning, not between the operations. The fused op is considerably more + efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary: + order. + x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, + C]`. + weight: Weight tensor of the shape `[filterH, filterW, inChannels, + outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. + kernel: FIR filter of the shape `[firH, firW]` or `[firN]` + (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. + factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). + + Returns: + Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as + `x`. + """ + + assert isinstance(factor, int) and factor >= 1 + + # Setup filter kernel. + if kernel is None: + kernel = [1] * factor + + # setup kernel + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + + kernel = kernel * (gain * (factor**2)) + + if self.use_conv: + convH = weight.shape[2] + convW = weight.shape[3] + inC = weight.shape[1] + + p = (kernel.shape[0] - factor) - (convW - 1) + + stride = (factor, factor) + # Determine data dimensions. + output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW) + output_padding = ( + output_shape[0] - (x.shape[2] - 1) * stride[0] - convH, + output_shape[1] - (x.shape[3] - 1) * stride[1] - convW, + ) + assert output_padding[0] >= 0 and output_padding[1] >= 0 + inC = weight.shape[1] + num_groups = x.shape[1] // inC + + # Transpose weights. + weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) + weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) + weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) + + x = F.conv_transpose2d(x, weight, stride=stride, output_padding=output_padding, padding=0) + + x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1)) + else: + p = kernel.shape[0] - factor + x = upfirdn2d_native( + x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2) + ) + + return x + + def forward(self, x): + if self.use_conv: + height = self._upsample_2d(x, self.Conv2d_0.weight, kernel=self.fir_kernel) + height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) + else: + height = self._upsample_2d(x, kernel=self.fir_kernel, factor=2) + + return height + + +class FirDownsample2D(nn.Module): + def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): + super().__init__() + out_channels = out_channels if out_channels else channels + if use_conv: + self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) + self.fir_kernel = fir_kernel + self.use_conv = use_conv + self.out_channels = out_channels + + def _downsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1): + """Fused `Conv2d()` followed by `downsample_2d()`. + + Args: + Padding is performed only once at the beginning, not between the operations. The fused op is considerably more + efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary: + order. + x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, + filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // + numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * + factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: + Scaling factor for signal magnitude (default: 1.0). + + Returns: + Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same + datatype as `x`. + """ + + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + + # setup kernel + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + + kernel = kernel * gain + + if self.use_conv: + _, _, convH, convW = weight.shape + p = (kernel.shape[0] - factor) + (convW - 1) + s = [factor, factor] + x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2, p // 2)) + x = F.conv2d(x, weight, stride=s, padding=0) + else: + p = kernel.shape[0] - factor + x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) + + return x + + def forward(self, x): + if self.use_conv: + x = self._downsample_2d(x, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) + x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1) + else: + x = self._downsample_2d(x, kernel=self.fir_kernel, factor=2) + + return x + + +class ResnetBlock2D(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout=0.0, + temb_channels=512, + groups=32, + groups_out=None, + pre_norm=True, + eps=1e-6, + non_linearity="swish", + time_embedding_norm="default", + kernel=None, + output_scale_factor=1.0, + use_in_shortcut=None, + up=False, + down=False, + ): + super().__init__() + self.pre_norm = pre_norm + self.pre_norm = True + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.time_embedding_norm = time_embedding_norm + self.up = up + self.down = down + self.output_scale_factor = output_scale_factor + + if groups_out is None: + groups_out = groups + + self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) + + self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + + if temb_channels is not None: + self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) + else: + self.time_emb_proj = None + + self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + if non_linearity == "swish": + self.nonlinearity = lambda x: F.silu(x) + elif non_linearity == "mish": + self.nonlinearity = Mish() + elif non_linearity == "silu": + self.nonlinearity = nn.SiLU() + + self.upsample = self.downsample = None + if self.up: + if kernel == "fir": + fir_kernel = (1, 3, 3, 1) + self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) + elif kernel == "sde_vp": + self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") + else: + self.upsample = Upsample2D(in_channels, use_conv=False) + elif self.down: + if kernel == "fir": + fir_kernel = (1, 3, 3, 1) + self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) + elif kernel == "sde_vp": + self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) + else: + self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") + + self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut + + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x, temb): + hidden_states = x + + # make sure hidden states is in float32 + # when running in half-precision + hidden_states = self.norm1(hidden_states).type(hidden_states.dtype) + hidden_states = self.nonlinearity(hidden_states) + + if self.upsample is not None: + x = self.upsample(x) + hidden_states = self.upsample(hidden_states) + elif self.downsample is not None: + x = self.downsample(x) + hidden_states = self.downsample(hidden_states) + + hidden_states = self.conv1(hidden_states) + + if temb is not None: + temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] + hidden_states = hidden_states + temb + + # make sure hidden states is in float32 + # when running in half-precision + hidden_states = self.norm2(hidden_states).type(hidden_states.dtype) + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.conv_shortcut is not None: + x = self.conv_shortcut(x) + + out = (x + hidden_states) / self.output_scale_factor + + return out + + +class Mish(torch.nn.Module): + def forward(self, x): + return x * torch.tanh(torch.nn.functional.softplus(x)) + + +def upsample_2d(x, kernel=None, factor=2, gain=1): + r"""Upsample2D a batch of 2D images with the given filter. + + Args: + Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given + filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified + `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: + multiple of the upsampling factor. + x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, + C]`. + k: FIR filter of the shape `[firH, firW]` or `[firN]` + (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. + factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). + + Returns: + Tensor of the shape `[N, C, H * factor, W * factor]` + """ + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + + kernel = kernel * (gain * (factor**2)) + p = kernel.shape[0] - factor + return upfirdn2d_native(x, kernel.to(device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) + + +def downsample_2d(x, kernel=None, factor=2, gain=1): + r"""Downsample2D a batch of 2D images with the given filter. + + Args: + Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the + given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the + specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its + shape is a multiple of the downsampling factor. + x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, + C]`. + kernel: FIR filter of the shape `[firH, firW]` or `[firN]` + (separable). The default is `[1] * factor`, which corresponds to average pooling. + factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). + + Returns: + Tensor of the shape `[N, C, H // factor, W // factor]` + """ + + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + + kernel = kernel * gain + p = kernel.shape[0] - factor + return upfirdn2d_native(x, kernel.to(device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) + + +def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)): + up_x = up_y = up + down_x = down_y = down + pad_x0 = pad_y0 = pad[0] + pad_x1 = pad_y1 = pad[1] + + _, channel, in_h, in_w = input.shape + input = input.reshape(-1, in_h, in_w, 1) + + _, in_h, in_w, minor = input.shape + kernel_h, kernel_w = kernel.shape + + out = input.view(-1, in_h, 1, in_w, 1, minor) + + # Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535 + if input.device.type == "mps": + out = out.to("cpu") + out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) + out = out.view(-1, in_h * up_y, in_w * up_x, minor) + + out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) + out = out.to(input.device) # Move back to mps if necessary + out = out[ + :, + max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), + max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), + :, + ] + + out = out.permute(0, 3, 1, 2) + out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) + w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) + out = F.conv2d(out, w) + out = out.reshape( + -1, + minor, + in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, + in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, + ) + out = out.permute(0, 2, 3, 1) + out = out[:, ::down_y, ::down_x, :] + + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 + + return out.view(-1, channel, out_h, out_w) diff --git a/medical_diffusion/external/diffusers/taming_discriminator.py b/medical_diffusion/external/diffusers/taming_discriminator.py new file mode 100644 index 0000000..c0e2ba3 --- /dev/null +++ b/medical_diffusion/external/diffusers/taming_discriminator.py @@ -0,0 +1,57 @@ +import functools +import torch.nn as nn + + + + +class NLayerDiscriminator(nn.Module): + """Defines a PatchGAN discriminator as in Pix2Pix + --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py + """ + def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): + """Construct a PatchGAN discriminator + Parameters: + input_nc (int) -- the number of channels in input images + ndf (int) -- the number of filters in the last conv layer + n_layers (int) -- the number of conv layers in the discriminator + norm_layer -- normalization layer + """ + super(NLayerDiscriminator, self).__init__() + if not use_actnorm: + norm_layer = nn.BatchNorm2d + else: + raise NotImplementedError + if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters + use_bias = norm_layer.func != nn.BatchNorm2d + else: + use_bias = norm_layer != nn.BatchNorm2d + + kw = 4 + padw = 1 + sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] + nf_mult = 1 + nf_mult_prev = 1 + for n in range(1, n_layers): # gradually increase the number of filters + nf_mult_prev = nf_mult + nf_mult = min(2 ** n, 8) + sequence += [ + nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), + norm_layer(ndf * nf_mult), + nn.LeakyReLU(0.2, True) + ] + + nf_mult_prev = nf_mult + nf_mult = min(2 ** n_layers, 8) + sequence += [ + nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), + norm_layer(ndf * nf_mult), + nn.LeakyReLU(0.2, True) + ] + + sequence += [ + nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map + self.main = nn.Sequential(*sequence) + + def forward(self, input): + """Standard forward.""" + return self.main(input) \ No newline at end of file diff --git a/medical_diffusion/external/diffusers/unet.py b/medical_diffusion/external/diffusers/unet.py new file mode 100644 index 0000000..122b50a --- /dev/null +++ b/medical_diffusion/external/diffusers/unet.py @@ -0,0 +1,257 @@ + + +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.utils.checkpoint + + +from .embeddings import TimeEmbbeding + +from .unet_blocks import ( + CrossAttnDownBlock2D, + CrossAttnUpBlock2D, + DownBlock2D, + UNetMidBlock2DCrossAttn, + UpBlock2D, + get_down_block, + get_up_block, +) + +class TimestepEmbedding(nn.Module): + def __init__(self, channel, time_embed_dim, act_fn="silu"): + super().__init__() + + self.linear_1 = nn.Linear(channel, time_embed_dim) + self.act = None + if act_fn == "silu": + self.act = nn.SiLU() + self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim) + + def forward(self, sample): + sample = self.linear_1(sample) + + if self.act is not None: + sample = self.act(sample) + + sample = self.linear_2(sample) + return sample + + +class UNet2DConditionModel(nn.Module): + r""" + UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep + and returns sample shaped output. + + + Parameters: + sample_size (`int`, *optional*): The size of the input sample. + in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. + out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. + center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. + flip_sin_to_cos (`bool`, *optional*, defaults to `False`): + Whether to flip the sin to cos in the time embedding. + freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. + down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): + The tuple of downsample blocks to use. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): + The tuple of upsample blocks to use. + block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): + The tuple of output channels for each block. + layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. + downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. + mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. + norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. + cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. + attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. + """ + + _supports_gradient_checkpointing = True + + + def __init__( + self, + sample_size: Optional[int] = None, + in_channels: int = 4, + out_channels: int = 4, + center_input_sample: bool = False, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: int = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: int = 32, + norm_eps: float = 1e-5, + cross_attention_dim: int = 768, + attention_head_dim: int = 8, + ): + super().__init__() + + self.sample_size = sample_size + time_embed_dim = block_out_channels[0] * 4 + + self.emb = nn.Embedding(2, cross_attention_dim) + + # input + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) + + # time + self.time_embedding = TimeEmbbeding(block_out_channels[0], time_embed_dim) + + self.down_blocks = nn.ModuleList([]) + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block, + in_channels=input_channel, + out_channels=output_channel, + temb_channels=time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attention_head_dim, + downsample_padding=downsample_padding, + ) + self.down_blocks.append(down_block) + + # mid + self.mid_block = UNetMidBlock2DCrossAttn( + in_channels=block_out_channels[-1], + temb_channels=time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift="default", + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attention_head_dim, + resnet_groups=norm_num_groups, + ) + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + is_final_block = i == len(block_out_channels) - 1 + + up_block = get_up_block( + up_block_type, + num_layers=layers_per_block + 1, + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=time_embed_dim, + add_upsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attention_head_dim, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = nn.SiLU() + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) + + + + def forward( + self, + sample: torch.FloatTensor, + t: torch.Tensor, + encoder_hidden_states: torch.Tensor = None, + self_cond: torch.Tensor = None + ): + encoder_hidden_states = self.emb(encoder_hidden_states) + # encoder_hidden_states = None # ------------------------ WARNING Disabled --------------------- + """r + Args: + sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor + timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps + encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When + returning a tuple, the first element is the sample tensor. + """ + # 0. center input if necessary + # if self.config.center_input_sample: + # sample = 2 * sample - 1.0 + + # 1. time + t_emb = self.time_embedding(t) + + # 2. pre-process + sample = self.conv_in(sample) + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=t_emb, + encoder_hidden_states=encoder_hidden_states, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=t_emb) + + down_block_res_samples += res_samples + + # 4. mid + sample = self.mid_block(sample, t_emb, encoder_hidden_states=encoder_hidden_states) + + # 5. up + for upsample_block in self.up_blocks: + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: + sample = upsample_block( + hidden_states=sample, + temb=t_emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + ) + else: + sample = upsample_block(hidden_states=sample, temb=t_emb, res_hidden_states_tuple=res_samples) + + # 6. post-process + # make sure hidden states is in float32 + # when running in half-precision + sample = self.conv_norm_out(sample.float()).type(sample.dtype) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + + return sample, [] diff --git a/medical_diffusion/external/diffusers/unet_blocks.py b/medical_diffusion/external/diffusers/unet_blocks.py new file mode 100644 index 0000000..a895d52 --- /dev/null +++ b/medical_diffusion/external/diffusers/unet_blocks.py @@ -0,0 +1,1557 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and + +import numpy as np + +# limitations under the License. +import torch +from torch import nn + +from .attention import AttentionBlock, SpatialTransformer +from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D + + +def get_down_block( + down_block_type, + num_layers, + in_channels, + out_channels, + temb_channels, + add_downsample, + resnet_eps, + resnet_act_fn, + attn_num_head_channels, + resnet_groups=None, + cross_attention_dim=None, + downsample_padding=None, +): + down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type + if down_block_type == "DownBlock2D": + return DownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + ) + elif down_block_type == "AttnDownBlock2D": + return AttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + attn_num_head_channels=attn_num_head_channels, + ) + elif down_block_type == "CrossAttnDownBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") + return CrossAttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attn_num_head_channels, + ) + elif down_block_type == "SkipDownBlock2D": + return SkipDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + downsample_padding=downsample_padding, + ) + elif down_block_type == "AttnSkipDownBlock2D": + return AttnSkipDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + downsample_padding=downsample_padding, + attn_num_head_channels=attn_num_head_channels, + ) + elif down_block_type == "DownEncoderBlock2D": + return DownEncoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + ) + + +def get_up_block( + up_block_type, + num_layers, + in_channels, + out_channels, + prev_output_channel, + temb_channels, + add_upsample, + resnet_eps, + resnet_act_fn, + attn_num_head_channels, + resnet_groups=None, + cross_attention_dim=None, +): + up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type + if up_block_type == "UpBlock2D": + return UpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + ) + elif up_block_type == "CrossAttnUpBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") + return CrossAttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attn_num_head_channels, + ) + elif up_block_type == "AttnUpBlock2D": + return AttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + attn_num_head_channels=attn_num_head_channels, + ) + elif up_block_type == "SkipUpBlock2D": + return SkipUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + ) + elif up_block_type == "AttnSkipUpBlock2D": + return AttnSkipUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + attn_num_head_channels=attn_num_head_channels, + ) + elif up_block_type == "UpDecoderBlock2D": + return UpDecoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + ) + raise ValueError(f"{up_block_type} does not exist.") + + +class UNetMidBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + attention_type="default", + output_scale_factor=1.0, + **kwargs, + ): + super().__init__() + + self.attention_type = attention_type + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + for _ in range(num_layers): + attentions.append( + AttentionBlock( + in_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + num_groups=resnet_groups, + ) + ) + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states, temb=None, encoder_states=None): + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + if self.attention_type == "default": + hidden_states = attn(hidden_states) + else: + hidden_states = attn(hidden_states, encoder_states) + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class UNetMidBlock2DCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + attention_type="default", + output_scale_factor=1.0, + cross_attention_dim=1280, + **kwargs, + ): + super().__init__() + + self.attention_type = attention_type + self.attn_num_head_channels = attn_num_head_channels + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + for _ in range(num_layers): + attentions.append( + SpatialTransformer( + in_channels, + attn_num_head_channels, + in_channels // attn_num_head_channels, + depth=1, + context_dim=cross_attention_dim, + num_groups=resnet_groups, + ) + ) + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def set_attention_slice(self, slice_size): + if slice_size is not None and self.attn_num_head_channels % slice_size != 0: + raise ValueError( + f"Make sure slice_size {slice_size} is a divisor of " + f"the number of heads used in cross_attention {self.attn_num_head_channels}" + ) + if slice_size is not None and slice_size > self.attn_num_head_channels: + raise ValueError( + f"Chunk_size {slice_size} has to be smaller or equal to " + f"the number of heads used in cross_attention {self.attn_num_head_channels}" + ) + + for attn in self.attentions: + attn._set_attention_slice(slice_size) + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None): + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states) + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class AttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + attention_type="default", + output_scale_factor=1.0, + downsample_padding=1, + add_downsample=True, + ): + super().__init__() + resnets = [] + attentions = [] + + self.attention_type = attention_type + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + AttentionBlock( + out_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + num_groups=resnet_groups, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states, temb=None): + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class CrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + cross_attention_dim=1280, + attention_type="default", + output_scale_factor=1.0, + downsample_padding=1, + add_downsample=True, + ): + super().__init__() + resnets = [] + attentions = [] + + self.attention_type = attention_type + self.attn_num_head_channels = attn_num_head_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + SpatialTransformer( + out_channels, + attn_num_head_channels, + out_channels // attn_num_head_channels, + depth=1, + context_dim=cross_attention_dim, + num_groups=resnet_groups, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def set_attention_slice(self, slice_size): + if slice_size is not None and self.attn_num_head_channels % slice_size != 0: + raise ValueError( + f"Make sure slice_size {slice_size} is a divisor of " + f"the number of heads used in cross_attention {self.attn_num_head_channels}" + ) + if slice_size is not None and slice_size > self.attn_num_head_channels: + raise ValueError( + f"Chunk_size {slice_size} has to be smaller or equal to " + f"the number of heads used in cross_attention {self.attn_num_head_channels}" + ) + + for attn in self.attentions: + attn._set_attention_slice(slice_size) + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None): + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn), hidden_states, encoder_hidden_states + ) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, context=encoder_hidden_states) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class DownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_downsample=True, + downsample_padding=1, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None): + output_states = () + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class DownEncoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_downsample=True, + downsample_padding=1, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels if len(resnets)>0 else in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states): + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=None) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states + + +class AttnDownEncoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + output_scale_factor=1.0, + add_downsample=True, + downsample_padding=1, + ): + super().__init__() + resnets = [] + attentions = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + AttentionBlock( + out_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + num_groups=resnet_groups, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states): + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=None) + hidden_states = attn(hidden_states) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states + + +class AttnSkipDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + attention_type="default", + output_scale_factor=np.sqrt(2.0), + downsample_padding=1, + add_downsample=True, + ): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + + self.attention_type = attention_type + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(in_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + self.attentions.append( + AttentionBlock( + out_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + ) + ) + + if add_downsample: + self.resnet_down = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + down=True, + kernel="fir", + ) + self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward(self, hidden_states, temb=None, skip_sample=None): + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + output_states += (hidden_states,) + + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + + hidden_states = self.skip_conv(skip_sample) + hidden_states + + output_states += (hidden_states,) + + return hidden_states, output_states, skip_sample + + +class SkipDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + output_scale_factor=np.sqrt(2.0), + add_downsample=True, + downsample_padding=1, + ): + super().__init__() + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(in_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + if add_downsample: + self.resnet_down = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + down=True, + kernel="fir", + ) + self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward(self, hidden_states, temb=None, skip_sample=None): + output_states = () + + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb) + output_states += (hidden_states,) + + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + + hidden_states = self.skip_conv(skip_sample) + hidden_states + + output_states += (hidden_states,) + + return hidden_states, output_states, skip_sample + + +class AttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_type="default", + attn_num_head_channels=1, + output_scale_factor=1.0, + add_upsample=True, + ): + super().__init__() + resnets = [] + attentions = [] + + self.attention_type = attention_type + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + AttentionBlock( + out_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + num_groups=resnet_groups, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None): + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class CrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + cross_attention_dim=1280, + attention_type="default", + output_scale_factor=1.0, + downsample_padding=1, + add_upsample=True, + ): + super().__init__() + resnets = [] + attentions = [] + + self.attention_type = attention_type + self.attn_num_head_channels = attn_num_head_channels + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + SpatialTransformer( + out_channels, + attn_num_head_channels, + out_channels // attn_num_head_channels, + depth=1, + context_dim=cross_attention_dim, + num_groups=resnet_groups, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def set_attention_slice(self, slice_size): + if slice_size is not None and self.attn_num_head_channels % slice_size != 0: + raise ValueError( + f"Make sure slice_size {slice_size} is a divisor of " + f"the number of heads used in cross_attention {self.attn_num_head_channels}" + ) + if slice_size is not None and slice_size > self.attn_num_head_channels: + raise ValueError( + f"Chunk_size {slice_size} has to be smaller or equal to " + f"the number of heads used in cross_attention {self.attn_num_head_channels}" + ) + + for attn in self.attentions: + attn._set_attention_slice(slice_size) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + res_hidden_states_tuple, + temb=None, + encoder_hidden_states=None, + ): + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn), hidden_states, encoder_hidden_states + ) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, context=encoder_hidden_states) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class UpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_upsample=True, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None): + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class UpDecoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_upsample=True, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + def forward(self, hidden_states): + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=None) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class AttnUpDecoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + output_scale_factor=1.0, + add_upsample=True, + ): + super().__init__() + resnets = [] + attentions = [] + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + AttentionBlock( + out_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + num_groups=resnet_groups, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + def forward(self, hidden_states): + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=None) + hidden_states = attn(hidden_states) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class AttnSkipUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + attention_type="default", + output_scale_factor=np.sqrt(2.0), + upsample_padding=1, + add_upsample=True, + ): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + + self.attention_type = attention_type + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + self.resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(resnet_in_channels + res_skip_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions.append( + AttentionBlock( + out_channels, + num_head_channels=attn_num_head_channels, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + ) + ) + + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + up=True, + kernel="fir", + ) + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm( + num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True + ) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb) + + hidden_states = self.attentions[0](hidden_states) + + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + + skip_sample = skip_sample + skip_sample_states + + hidden_states = self.resnet_up(hidden_states, temb) + + return hidden_states, skip_sample + + +class SkipUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + output_scale_factor=np.sqrt(2.0), + add_upsample=True, + upsample_padding=1, + ): + super().__init__() + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + self.resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min((resnet_in_channels + res_skip_channels) // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + up=True, + kernel="fir", + ) + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm( + num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True + ) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb) + + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + + skip_sample = skip_sample + skip_sample_states + + hidden_states = self.resnet_up(hidden_states, temb) + + return hidden_states, skip_sample diff --git a/medical_diffusion/external/diffusers/vae.py b/medical_diffusion/external/diffusers/vae.py new file mode 100644 index 0000000..f83b71b --- /dev/null +++ b/medical_diffusion/external/diffusers/vae.py @@ -0,0 +1,857 @@ + + +from typing import Optional, Tuple, Union +from pathlib import Path + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from itertools import chain + +from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block +from .taming_discriminator import NLayerDiscriminator +from medical_diffusion.models import BasicModel +from torchvision.utils import save_image + +from torch.distributions.normal import Normal +from torch.distributions import kl_divergence + +class Encoder(nn.Module): + def __init__( + self, + in_channels=3, + out_channels=3, + down_block_types=("DownEncoderBlock2D",), + block_out_channels=(64), + layers_per_block=2, + norm_num_groups=32, + act_fn="silu", + double_z=True, + ): + super().__init__() + self.layers_per_block = layers_per_block + + self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) + + self.mid_block = None + self.down_blocks = nn.ModuleList([]) + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i+1] + is_final_block = False #i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=self.layers_per_block, + in_channels=input_channel, + out_channels=output_channel, + add_downsample=not is_final_block, + resnet_eps=1e-6, + downsample_padding=0, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + attn_num_head_channels=None, + temb_channels=None, + ) + self.down_blocks.append(down_block) + + # mid + self.mid_block = UNetMidBlock2D( + in_channels=block_out_channels[-1], + resnet_eps=1e-6, + resnet_act_fn=act_fn, + output_scale_factor=1, + resnet_time_scale_shift="default", + attn_num_head_channels=None, + resnet_groups=norm_num_groups, + temb_channels=None, + ) + + # out + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) + self.conv_act = nn.SiLU() + + conv_out_channels = 2 * out_channels if double_z else out_channels + self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) + + def forward(self, x): + sample = x + sample = self.conv_in(sample) + + # down + for down_block in self.down_blocks: + sample = down_block(sample) + + # middle + sample = self.mid_block(sample) + + # post-process + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + return sample + + +class Decoder(nn.Module): + def __init__( + self, + in_channels=3, + out_channels=3, + up_block_types=("UpDecoderBlock2D",), + block_out_channels=(64,), + layers_per_block=2, + norm_num_groups=32, + act_fn="silu", + ): + super().__init__() + self.layers_per_block = layers_per_block + + self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) + + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + + # mid + self.mid_block = UNetMidBlock2D( + in_channels=block_out_channels[-1], + resnet_eps=1e-6, + resnet_act_fn=act_fn, + output_scale_factor=1, + resnet_time_scale_shift="default", + attn_num_head_channels=None, + resnet_groups=norm_num_groups, + temb_channels=None, + ) + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i+1] + + is_final_block = False # i == len(block_out_channels) - 1 + + up_block = get_up_block( + up_block_type, + num_layers=self.layers_per_block + 1, + in_channels=prev_output_channel, + out_channels=output_channel, + prev_output_channel=None, + add_upsample=not is_final_block, + resnet_eps=1e-6, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + attn_num_head_channels=None, + temb_channels=None, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) + self.conv_act = nn.SiLU() + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) + + def forward(self, z): + sample = z + sample = self.conv_in(sample) + + # middle + sample = self.mid_block(sample) + + # up + for up_block in self.up_blocks: + sample = up_block(sample) + + # post-process + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + return sample + + +class VectorQuantizer(nn.Module): + """ + Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix + multiplications and allows for post-hoc remapping of indices. + """ + + # NOTE: due to a bug the beta term was applied to the wrong term. for + # backwards compatibility we use the buggy version by default, but you can + # specify legacy=False to fix it. + def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=False): + super().__init__() + self.n_e = n_e + self.e_dim = e_dim + self.beta = beta + self.legacy = legacy + + self.embedding = nn.Embedding(self.n_e, self.e_dim) + self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) + + self.remap = remap + if self.remap is not None: + self.register_buffer("used", torch.tensor(np.load(self.remap))) + self.re_embed = self.used.shape[0] + self.unknown_index = unknown_index # "random" or "extra" or integer + if self.unknown_index == "extra": + self.unknown_index = self.re_embed + self.re_embed = self.re_embed + 1 + print( + f"Remapping {self.n_e} indices to {self.re_embed} indices. " + f"Using {self.unknown_index} for unknown indices." + ) + else: + self.re_embed = n_e + + self.sane_index_shape = sane_index_shape + + def remap_to_used(self, inds): + ishape = inds.shape + assert len(ishape) > 1 + inds = inds.reshape(ishape[0], -1) + used = self.used.to(inds) + match = (inds[:, :, None] == used[None, None, ...]).long() + new = match.argmax(-1) + unknown = match.sum(2) < 1 + if self.unknown_index == "random": + new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) + else: + new[unknown] = self.unknown_index + return new.reshape(ishape) + + def unmap_to_all(self, inds): + ishape = inds.shape + assert len(ishape) > 1 + inds = inds.reshape(ishape[0], -1) + used = self.used.to(inds) + if self.re_embed > self.used.shape[0]: # extra token + inds[inds >= self.used.shape[0]] = 0 # simply set to zero + back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) + return back.reshape(ishape) + + def forward(self, z): + # reshape z -> (batch, height, width, channel) and flatten + z = z.permute(0, 2, 3, 1).contiguous() + z_flattened = z.view(-1, self.e_dim) + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + + d = ( + torch.sum(z_flattened**2, dim=1, keepdim=True) + + torch.sum(self.embedding.weight**2, dim=1) + - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) + ) + + min_encoding_indices = torch.argmin(d, dim=1) + z_q = self.embedding(min_encoding_indices).view(z.shape) + perplexity = None + min_encodings = None + + # compute loss for embedding + if not self.legacy: + loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) + else: + loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) + + # preserve gradients + z_q = z + (z_q - z).detach() + + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + if self.remap is not None: + min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis + min_encoding_indices = self.remap_to_used(min_encoding_indices) + min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten + + if self.sane_index_shape: + min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) + + return z_q, loss, (perplexity, min_encodings, min_encoding_indices) + + def get_codebook_entry(self, indices, shape): + # shape specifying (batch, height, width, channel) + if self.remap is not None: + indices = indices.reshape(shape[0], -1) # add batch axis + indices = self.unmap_to_all(indices) + indices = indices.reshape(-1) # flatten again + + # get quantized latent vectors + z_q = self.embedding(indices) + + if shape is not None: + z_q = z_q.view(shape) + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + return z_q + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.batch_size = parameters.shape[0] + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + # self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) + + def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: + device = self.parameters.device + sample_device = "cpu" if device.type == "mps" else device + sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device) + x = self.mean + self.std * sample + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.0]) + else: + if other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar)/self.batch_size + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var + - 1.0 + - self.logvar + + other.logvar, + )/self.batch_size + + # q_z_x = Normal(self.mean, self.logvar.mul(.5).exp()) + # p_z = Normal(torch.zeros_like(self.mean), torch.ones_like(self.logvar)) + # kl_div = kl_divergence(q_z_x, p_z).sum(1).mean() + # return kl_div + + def nll(self, sample, dims=[1, 2, 3]): + if self.deterministic: + return torch.Tensor([0.0]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) + + def mode(self): + return self.mean + + +class VQModel(nn.Module): + r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray + Kavukcuoglu. + + This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library + implements for all the model (such as downloading or saving, etc.) + + Parameters: + in_channels (int, *optional*, defaults to 3): Number of channels in the input image. + out_channels (int, *optional*, defaults to 3): Number of channels in the output. + down_block_types (`Tuple[str]`, *optional*, defaults to : + obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. + up_block_types (`Tuple[str]`, *optional*, defaults to : + obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. + block_out_channels (`Tuple[int]`, *optional*, defaults to : + obj:`(64,)`): Tuple of block output channels. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. + sample_size (`int`, *optional*, defaults to `32`): TODO + num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. + """ + + + def __init__( + self, + in_channels: int = 3, + out_channels: int = 3, + down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), + up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"), + block_out_channels: Tuple[int] = (32, 64, 128, 256), + layers_per_block: int = 1, + act_fn: str = "silu", + latent_channels: int = 3, + sample_size: int = 32, + num_vq_embeddings: int = 256, + norm_num_groups: int = 32, + ): + super().__init__() + + # pass init params to Encoder + self.encoder = Encoder( + in_channels=in_channels, + out_channels=latent_channels, + down_block_types=down_block_types, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + act_fn=act_fn, + norm_num_groups=norm_num_groups, + double_z=False, + ) + + self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) + self.quantize = VectorQuantizer( + num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False + ) + self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) + + # pass init params to Decoder + self.decoder = Decoder( + in_channels=latent_channels, + out_channels=out_channels, + up_block_types=up_block_types, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + act_fn=act_fn, + norm_num_groups=norm_num_groups, + ) + + # def encode(self, x: torch.FloatTensor): + # z = self.encoder(x) + # z = self.quant_conv(z) + # return z + + def encode(self, x, return_loss=True, force_quantize= True): + z = self.encoder(x) + z = self.quant_conv(z) + + if force_quantize: + z_q, emb_loss, _ = self.quantize(z) + else: + z_q, emb_loss = z, None + + if return_loss: + return z_q, emb_loss + else: + return z_q + + def decode(self, z_q) -> torch.FloatTensor: + z_q = self.post_quant_conv(z_q) + x = self.decoder(z_q) + return x + + # def decode(self, z: torch.FloatTensor, return_loss=True, force_quantize: bool = True) -> torch.FloatTensor: + # if force_quantize: + # z_q, emb_loss, _ = self.quantize(z) + # else: + # z_q, emb_loss = z, None + + # z_q = self.post_quant_conv(z_q) + # x = self.decoder(z_q) + + # if return_loss: + # return x, emb_loss + # else: + # return x + + def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: + r""" + Args: + sample (`torch.FloatTensor`): Input sample. + """ + # h = self.encode(sample) + h, emb_loss = self.encode(sample) + dec = self.decode(h) + # dec, emb_loss = self.decode(h) + + return dec, emb_loss + + +class AutoencoderKL(nn.Module): + r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma + and Max Welling. + + This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library + implements for all the model (such as downloading or saving, etc.) + + Parameters: + in_channels (int, *optional*, defaults to 3): Number of channels in the input image. + out_channels (int, *optional*, defaults to 3): Number of channels in the output. + down_block_types (`Tuple[str]`, *optional*, defaults to : + obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. + up_block_types (`Tuple[str]`, *optional*, defaults to : + obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. + block_out_channels (`Tuple[int]`, *optional*, defaults to : + obj:`(64,)`): Tuple of block output channels. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. + sample_size (`int`, *optional*, defaults to `32`): TODO + """ + + + def __init__( + self, + in_channels: int = 3, + out_channels: int = 3, + down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D","DownEncoderBlock2D",), + up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D",), + block_out_channels: Tuple[int] = (32, 64, 128, 128), + layers_per_block: int = 1, + act_fn: str = "silu", + latent_channels: int = 3, + norm_num_groups: int = 32, + sample_size: int = 32, + ): + super().__init__() + + # pass init params to Encoder + self.encoder = Encoder( + in_channels=in_channels, + out_channels=latent_channels, + down_block_types=down_block_types, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + act_fn=act_fn, + norm_num_groups=norm_num_groups, + double_z=True, + ) + + # pass init params to Decoder + self.decoder = Decoder( + in_channels=latent_channels, + out_channels=out_channels, + up_block_types=up_block_types, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + norm_num_groups=norm_num_groups, + act_fn=act_fn, + ) + + self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) + self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) + + def encode(self, x: torch.FloatTensor): + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return posterior + + def decode(self, z: torch.FloatTensor) -> torch.FloatTensor: + z = self.post_quant_conv(z) + dec = self.decoder(z) + return dec + + def forward( + self, + sample: torch.FloatTensor, + sample_posterior: bool = True, + generator: Optional[torch.Generator] = None, + ) -> torch.FloatTensor: + r""" + Args: + sample (`torch.FloatTensor`): Input sample. + sample_posterior (`bool`, *optional*, defaults to `False`): + Whether to sample from the posterior. + """ + x = sample + posterior = self.encode(x) + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + kl_loss = posterior.kl() + dec = self.decode(z) + return dec, kl_loss + + + +class VQVAEWrapper(BasicModel): + def __init__( + self, + in_ch: int = 3, + out_ch: int = 3, + down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",), + up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",), + block_out_channels: Tuple[int] = (32, 64, 128, 256, ), + layers_per_block: int = 1, + act_fn: str = "silu", + latent_channels: int = 3, + sample_size: int = 32, + num_vq_embeddings: int = 64, + norm_num_groups: int = 32, + + optimizer=torch.optim.AdamW, + optimizer_kwargs={}, + lr_scheduler=None, + lr_scheduler_kwargs={}, + loss=torch.nn.MSELoss, + loss_kwargs={} + ): + super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs) + self.model = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, + layers_per_block, act_fn, latent_channels, sample_size, num_vq_embeddings, norm_num_groups) + + def forward(self, sample): + return self.model(sample) + + def encode(self, x): + z = self.model.encode(x, return_loss=False) + return z + + def decode(self, z): + x = self.model.decode(z) + return x + + def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): + # ------------------------- Get Source/Target --------------------------- + x = batch['source'] + target = x + + # ------------------------- Run Model --------------------------- + pred, vq_loss = self(x) + + # ------------------------- Compute Loss --------------------------- + loss = self.loss_fct(pred, target) + loss += vq_loss + + # --------------------- Compute Metrics ------------------------------- + results = {'loss':loss} + with torch.no_grad(): + results['L2'] = torch.nn.functional.mse_loss(pred, target) + results['L1'] = torch.nn.functional.l1_loss(pred, target) + + # ----------------- Log Scalars ---------------------- + for metric_name, metric_val in results.items(): + self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) + + # ----------------- Save Image ------------------------------ + if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: + def norm(x): + return (x-x.min())/(x.max()-x.min()) + + images = [x, pred] + log_step = self.global_step // self.trainer.log_every_n_steps + path_out = Path(self.logger.log_dir)/'images' + path_out.mkdir(parents=True, exist_ok=True) + images = torch.cat([norm(img) for img in images]) + save_image(images, path_out/f'sample_{log_step}.png') + + return loss + +def hinge_d_loss(logits_real, logits_fake): + loss_real = torch.mean(F.relu(1. - logits_real)) + loss_fake = torch.mean(F.relu(1. + logits_fake)) + d_loss = 0.5 * (loss_real + loss_fake) + return d_loss + +def vanilla_d_loss(logits_real, logits_fake): + d_loss = 0.5 * ( + torch.mean(F.softplus(-logits_real)) + + torch.mean(F.softplus(logits_fake))) + return d_loss + +class VQGAN(BasicModel): + def __init__( + self, + in_ch: int = 3, + out_ch: int = 3, + down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",), + up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",), + block_out_channels: Tuple[int] = (32, 64, 128, 256, ), + layers_per_block: int = 1, + act_fn: str = "silu", + latent_channels: int = 3, + sample_size: int = 32, + num_vq_embeddings: int = 64, + norm_num_groups: int = 32, + + start_gan_train_step = 50000, # NOTE step increase with each optimizer + gan_loss_weight: float = 1.0, # alias discriminator + perceptual_loss_weight: float = 1.0, + embedding_loss_weight: float = 1.0, + + optimizer=torch.optim.AdamW, + optimizer_kwargs={}, + lr_scheduler=None, + lr_scheduler_kwargs={}, + loss=torch.nn.MSELoss, + loss_kwargs={} + ): + super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs) + self.vqvae = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, + latent_channels, sample_size, num_vq_embeddings, norm_num_groups) + self.discriminator = NLayerDiscriminator(in_ch) + # self.perceiver = ... # Currently not supported, would require another trained NN + + self.start_gan_train_step = start_gan_train_step + self.perceptual_loss_weight = perceptual_loss_weight + self.gan_loss_weight = gan_loss_weight + self.embedding_loss_weight = embedding_loss_weight + + def forward(self, x, condition=None): + return self.vqvae(x) + + def encode(self, x): + z = self.vqvae.encode(x, return_loss=False) + return z + + def decode(self, z): + x = self.vqvae.decode(z) + return x + + + def compute_lambda(self, rec_loss, gan_loss, eps=1e-4): + """Computes adaptive weight as proposed in eq. 7 of https://arxiv.org/abs/2012.09841""" + last_layer = self.vqvae.decoder.conv_out.weight + rec_grads = torch.autograd.grad(rec_loss, last_layer, retain_graph=True)[0] + gan_grads = torch.autograd.grad(gan_loss, last_layer, retain_graph=True)[0] + d_weight = torch.norm(rec_grads) / (torch.norm(gan_grads) + eps) + d_weight = torch.clamp(d_weight, 0.0, 1e4) + return d_weight.detach() + + + + def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): + x = batch['source'] + # condition = batch.get('target', None) + + pred, vq_emb_loss = self.vqvae(x) + + if optimizer_idx == 0: + # ------ VAE ------- + vq_img_loss = F.mse_loss(pred, x) + vq_per_loss = 0.0 #self.perceiver(pred, x) + rec_loss = vq_img_loss+self.perceptual_loss_weight*vq_per_loss + + # ------- GAN ----- + if step > self.start_gan_train_step: + gan_loss = -torch.mean(self.discriminator(pred)) + lambda_weight = self.compute_lambda(rec_loss, gan_loss) + gan_loss = gan_loss*lambda_weight + else: + gan_loss = torch.tensor([0.0], requires_grad=True, device=x.device) + + loss = self.gan_loss_weight*gan_loss+rec_loss+self.embedding_loss_weight*vq_emb_loss + + elif optimizer_idx == 1: + if step > self.start_gan_train_step//2: + logits_real = self.discriminator(x.detach()) + logits_fake = self.discriminator(pred.detach()) + loss = hinge_d_loss(logits_real, logits_fake) + else: + loss = torch.tensor([0.0], requires_grad=True, device=x.device) + + # --------------------- Compute Metrics ------------------------------- + results = {'loss':loss.detach(), f'loss_{optimizer_idx}':loss.detach()} + with torch.no_grad(): + results[f'L2'] = torch.nn.functional.mse_loss(pred, x) + results[f'L1'] = torch.nn.functional.l1_loss(pred, x) + + # ----------------- Log Scalars ---------------------- + for metric_name, metric_val in results.items(): + self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) + + # ----------------- Save Image ------------------------------ + if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: # NOTE: step 1 (opt1) , step=2 (opt2), step=3 (opt1), ... + def norm(x): + return (x-x.min())/(x.max()-x.min()) + + images = torch.cat([x, pred]) + log_step = self.global_step // self.trainer.log_every_n_steps + path_out = Path(self.logger.log_dir)/'images' + path_out.mkdir(parents=True, exist_ok=True) + images = torch.stack([norm(img) for img in images]) + save_image(images, path_out/f'sample_{log_step}.png') + + return loss + + def configure_optimizers(self): + opt_vae = self.optimizer(self.vqvae.parameters(), **self.optimizer_kwargs) + opt_disc = self.optimizer(self.discriminator.parameters(), **self.optimizer_kwargs) + if self.lr_scheduler is not None: + scheduler = [ + { + 'scheduler': self.lr_scheduler(opt_vae, **self.lr_scheduler_kwargs), + 'interval': 'step', + 'frequency': 1 + }, + { + 'scheduler': self.lr_scheduler(opt_disc, **self.lr_scheduler_kwargs), + 'interval': 'step', + 'frequency': 1 + }, + ] + else: + scheduler = [] + + return [opt_vae, opt_disc], scheduler + +class VAEWrapper(BasicModel): + def __init__( + self, + in_ch: int = 3, + out_ch: int = 3, + down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), # "DownEncoderBlock2D", "DownEncoderBlock2D", + up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D","UpDecoderBlock2D" ), # "UpDecoderBlock2D", "UpDecoderBlock2D", + block_out_channels: Tuple[int] = (32, 64, 128, 256), # 128, 256 + layers_per_block: int = 1, + act_fn: str = "silu", + latent_channels: int = 3, + norm_num_groups: int = 32, + sample_size: int = 32, + + optimizer=torch.optim.AdamW, + optimizer_kwargs={'lr':1e-4, 'weight_decay':1e-3, 'amsgrad':True}, + lr_scheduler=None, + lr_scheduler_kwargs={}, + # loss=torch.nn.MSELoss, # WARNING: No Effect + # loss_kwargs={'reduction': 'mean'} + ): + super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs ) # loss, loss_kwargs + self.model = AutoencoderKL(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, + layers_per_block, act_fn, latent_channels, norm_num_groups, sample_size) + + self.logvar = nn.Parameter(torch.zeros(size=())) # Better weighting between KL and MSE, see (https://arxiv.org/abs/1903.05789), also used by Taming-Transfomer/Stable Diffusion + + def forward(self, sample): + return self.model(sample) + + def encode(self, x): + z = self.model.encode(x) # Latent space but not yet mapped to discrete embedding vectors + return z.sample(generator=None) + + def decode(self, z): + x = self.model.decode(z) + return x + + def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): + # ------------------------- Get Source/Target --------------------------- + x = batch['source'] + target = x + HALF_LOG_TWO_PI = 0.91893 # log(2pi)/2 + + # ------------------------- Run Model --------------------------- + pred, kl_loss = self(x) + + # ------------------------- Compute Loss --------------------------- + loss = torch.sum( torch.square(pred-target))/x.shape[0] #torch.sum( torch.square((pred-target)/torch.exp(self.logvar))/2 + self.logvar + HALF_LOG_TWO_PI )/x.shape[0] + loss += kl_loss + + # --------------------- Compute Metrics ------------------------------- + results = {'loss':loss.detach()} + with torch.no_grad(): + results['L2'] = torch.nn.functional.mse_loss(pred, target) + results['L1'] = torch.nn.functional.l1_loss(pred, target) + + # ----------------- Log Scalars ---------------------- + for metric_name, metric_val in results.items(): + self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) + + # ----------------- Save Image ------------------------------ + if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: + def norm(x): + return (x-x.min())/(x.max()-x.min()) + + images = torch.cat([x, pred]) + log_step = self.global_step // self.trainer.log_every_n_steps + path_out = Path(self.logger.log_dir)/'images' + path_out.mkdir(parents=True, exist_ok=True) + images = torch.stack([norm(img) for img in images]) + save_image(images, path_out/f'sample_{log_step}.png') + + return loss \ No newline at end of file diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/attention.cpython-36.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/attention.cpython-36.pyc new file mode 100644 index 0000000..9b09cf6 Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/attention.cpython-36.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/attention.cpython-38.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/attention.cpython-38.pyc new file mode 100644 index 0000000..371bdd9 Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/attention.cpython-38.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/unet_openai.cpython-36.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/unet_openai.cpython-36.pyc new file mode 100644 index 0000000..f868a3b Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/unet_openai.cpython-36.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/unet_openai.cpython-38.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/unet_openai.cpython-38.pyc new file mode 100644 index 0000000..757a02c Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/unet_openai.cpython-38.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/util.cpython-36.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/util.cpython-36.pyc new file mode 100644 index 0000000..785eb66 Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/util.cpython-36.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/util.cpython-38.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/util.cpython-38.pyc new file mode 100644 index 0000000..703c112 Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/util.cpython-38.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/util_attention.cpython-36.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/util_attention.cpython-36.pyc new file mode 100644 index 0000000..e6ed082 Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/util_attention.cpython-36.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/__pycache__/util_attention.cpython-38.pyc b/medical_diffusion/external/stable_diffusion/__pycache__/util_attention.cpython-38.pyc new file mode 100644 index 0000000..c56acf6 Binary files /dev/null and b/medical_diffusion/external/stable_diffusion/__pycache__/util_attention.cpython-38.pyc differ diff --git a/medical_diffusion/external/stable_diffusion/attention.py b/medical_diffusion/external/stable_diffusion/attention.py new file mode 100644 index 0000000..844d73c --- /dev/null +++ b/medical_diffusion/external/stable_diffusion/attention.py @@ -0,0 +1,261 @@ +from inspect import isfunction +import math +import torch +import torch.nn.functional as F +from torch import nn, einsum +from einops import rearrange, repeat + +from .util_attention import checkpoint + + +def exists(val): + return val is not None + + +def uniq(arr): + return{el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) + k = k.softmax(dim=-1) + context = torch.einsum('bhdn,bhen->bhde', k, v) + out = torch.einsum('bhde,bhdn->bhen', context, q) + out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b,c,h,w = q.shape + q = rearrange(q, 'b c h w -> b (h w) c') + k = rearrange(k, 'b c h w -> b c (h w)') + w_ = torch.einsum('bij,bjk->bik', q, k) + + w_ = w_ * (int(c)**(-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, 'b c h w -> b c (h w)') + w_ = rearrange(w_, 'b i j -> b j i') + h_ = torch.einsum('bij,bjk->bik', v, w_) + h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) + h_ = self.proj_out(h_) + + return x+h_ + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head ** -0.5 + self.heads = heads + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), + nn.Dropout(dropout) + ) + + def forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + + if exists(mask): + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): + super().__init__() + self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, + heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) + + def _forward(self, x, context=None): + x = self.attn1(self.norm1(x)) + x + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + def __init__(self, in_channels, n_heads, d_head, + depth=1, dropout=0., context_dim=None): + super().__init__() + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + + self.proj_in = nn.Conv2d(in_channels, + inner_dim, + kernel_size=1, + stride=1, + padding=0) + + self.transformer_blocks = nn.ModuleList( + [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) + for d in range(depth)] + ) + + self.proj_out = zero_module(nn.Conv2d(inner_dim, + in_channels, + kernel_size=1, + stride=1, + padding=0)) + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + x = self.proj_in(x) + x = rearrange(x, 'b c h w -> b (h w) c') + for block in self.transformer_blocks: + x = block(x, context=context) + x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) + x = self.proj_out(x) + return x + x_in \ No newline at end of file diff --git a/medical_diffusion/external/stable_diffusion/lr_schedulers.py b/medical_diffusion/external/stable_diffusion/lr_schedulers.py new file mode 100644 index 0000000..32ef2e4 --- /dev/null +++ b/medical_diffusion/external/stable_diffusion/lr_schedulers.py @@ -0,0 +1,33 @@ +import torch + +class LambdaLinearScheduler: + def __init__(self, warm_up_steps=[10000,], f_min=[1.0,], f_max=[1.0,], f_start=[1.e-6], cycle_lengths=[10000000000000], verbosity_interval=0): + assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths) + self.lr_warm_up_steps = warm_up_steps + self.f_start = f_start + self.f_min = f_min + self.f_max = f_max + self.cycle_lengths = cycle_lengths + self.cum_cycles = torch.cumsum(torch.tensor([0] + list(self.cycle_lengths)), 0) + self.last_f = 0. + self.verbosity_interval = verbosity_interval + + def find_in_interval(self, n): + interval = 0 + for cl in self.cum_cycles[1:]: + if n <= cl: + return interval + interval += 1 + + def schedule(self, n, **kwargs): + cycle = self.find_in_interval(n) + n = n - self.cum_cycles[cycle] + + if n < self.lr_warm_up_steps[cycle]: + f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] + self.last_f = f + return f + else: + f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle]) + self.last_f = f + return f \ No newline at end of file diff --git a/medical_diffusion/external/stable_diffusion/unet_openai.py b/medical_diffusion/external/stable_diffusion/unet_openai.py new file mode 100644 index 0000000..2cd4ee7 --- /dev/null +++ b/medical_diffusion/external/stable_diffusion/unet_openai.py @@ -0,0 +1,962 @@ +from abc import abstractmethod +from functools import partial +import math +from typing import Iterable + +import numpy as np +import torch as th +import torch.nn as nn +import torch.nn.functional as F + +from .util import ( + checkpoint, + conv_nd, + linear, + avg_pool_nd, + zero_module, + normalization, + timestep_embedding, +) +from .attention import SpatialTransformer + + +# dummy replace +def convert_module_to_f16(x): + pass + +def convert_module_to_f32(x): + pass + + +## go +class AttentionPool2d(nn.Module): + """ + Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py + """ + + def __init__( + self, + spacial_dim: int, + embed_dim: int, + num_heads_channels: int, + output_dim: int = None, + ): + super().__init__() + self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) + self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) + self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) + self.num_heads = embed_dim // num_heads_channels + self.attention = QKVAttention(self.num_heads) + + def forward(self, x): + b, c, *_spatial = x.shape + x = x.reshape(b, c, -1) # NC(HW) + x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) + x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) + x = self.qkv_proj(x) + x = self.attention(x) + x = self.c_proj(x) + return x[:, :, 0] + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context) + else: + x = layer(x) + return x + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate( + x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + ) + else: + x = F.interpolate(x, scale_factor=2, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + +class TransposedUpsample(nn.Module): + 'Learned 2x upsampling without padding' + def __init__(self, channels, out_channels=None, ks=5): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + + self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) + + def forward(self,x): + return self.up(x) + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, 3, padding=1 + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, (x, emb), self.parameters(), self.use_checkpoint + ) + + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = th.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + use_checkpoint=False, + use_new_attention_order=False, + ): + super().__init__() + self.channels = channels + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.use_checkpoint = use_checkpoint + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, channels * 3, 1) + if use_new_attention_order: + # split qkv before split heads + self.attention = QKVAttention(self.num_heads) + else: + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) + + def forward(self, x): + return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! + #return pt_checkpoint(self._forward, x) # pytorch + + def _forward(self, x): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1) + qkv = self.qkv(self.norm(x)) + h = self.attention(qkv) + h = self.proj_out(h) + return (x + h).reshape(b, c, *spatial) + + +def count_flops_attn(model, _x, y): + """ + A counter for the `thop` package to count the operations in an + attention operation. + Meant to be used like: + macs, params = thop.profile( + model, + inputs=(inputs, timestamps), + custom_ops={QKVAttention: QKVAttention.count_flops}, + ) + """ + b, c, *spatial = y[0].shape + num_spatial = int(np.prod(spatial)) + # We perform two matmuls with the same number of ops. + # The first computes the weight matrix, the second computes + # the combination of the value vectors. + matmul_ops = 2 * b * (num_spatial ** 2) * c + model.total_ops += th.DoubleTensor([matmul_ops]) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", q * scale, k * scale + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class QKVAttention(nn.Module): + """ + A module which performs QKV attention and splits in a different order. + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.chunk(3, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", + (q * scale).view(bs * self.n_heads, ch, length), + (k * scale).view(bs * self.n_heads, ch, length), + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size=32, + in_channels=4, + model_channels=256, + out_channels=4, + num_res_blocks=2, + attention_resolutions=[4,2,1], + dropout=0, + channel_mult=(1, 2, 4), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + use_fp16=False, + num_heads=8, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + **kwargs + ): + super().__init__() + if use_spatial_transformer: + assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + # from omegaconf.listconfig import ListConfig + # if type(context_dim) == ListConfig: + # context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + if self.num_classes is not None: + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(num_res_blocks + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim, + dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads_upsample, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim + ) + ) + if level and i == num_res_blocks: + out_ch = ch + layers.append( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + normalization(ch), + conv_nd(dims, model_channels, n_embed, 1), + #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + self.output_blocks.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + self.output_blocks.apply(convert_module_to_f32) + + def forward(self, x, t=None, condition=None, context=None, **kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + condition = None # --------------------- WANRING ONLY for Testing --------------------- + assert (condition is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + hs = [] + t_emb = timestep_embedding(t, self.model_channels, repeat_only=False) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert condition.shape == (x.shape[0],) + emb = emb + self.label_emb(condition) + + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + for module in self.output_blocks: + h = th.cat([h, hs.pop()], dim=1) + h = module(h, emb, context) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h), [] + + +class EncoderUNetModel(nn.Module): + """ + The half UNet model with attention and timestep embedding. + For usage, see UNet. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + use_checkpoint=False, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + pool="adaptive", + *args, + **kwargs + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + self.pool = pool + if pool == "adaptive": + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + nn.AdaptiveAvgPool2d((1, 1)), + zero_module(conv_nd(dims, ch, out_channels, 1)), + nn.Flatten(), + ) + elif pool == "attention": + assert num_head_channels != -1 + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + AttentionPool2d( + (image_size // ds), ch, num_head_channels, out_channels + ), + ) + elif pool == "spatial": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + nn.ReLU(), + nn.Linear(2048, self.out_channels), + ) + elif pool == "spatial_v2": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + normalization(2048), + nn.SiLU(), + nn.Linear(2048, self.out_channels), + ) + else: + raise NotImplementedError(f"Unexpected {pool} pooling") + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + + def forward(self, x, timesteps): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :return: an [N x K] Tensor of outputs. + """ + emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + results = [] + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = self.middle_block(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = th.cat(results, axis=-1) + return self.out(h) + else: + h = h.type(x.dtype) + return self.out(h) \ No newline at end of file diff --git a/medical_diffusion/external/stable_diffusion/util.py b/medical_diffusion/external/stable_diffusion/util.py new file mode 100644 index 0000000..bf545e7 --- /dev/null +++ b/medical_diffusion/external/stable_diffusion/util.py @@ -0,0 +1,284 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import os +import math +import torch +import torch.nn as nn +import numpy as np +from einops import repeat + +#--------------- Added ---------------- +import importlib +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + +#-------------------------------- + +def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if schedule == "linear": + betas = ( + torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = np.clip(betas, a_min=0, a_max=0.999) + + elif schedule == "sqrt_linear": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + elif schedule == "sqrt": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas.numpy() + + +def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): + if ddim_discr_method == 'uniform': + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == 'quad': + ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) + else: + raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f'Selected timesteps for ddim sampler: {steps_out}') + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) + if verbose: + print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') + print(f'For the chosen value of eta, which is {eta}, ' + f'this results in the following sigma_t schedule for ddim sampler {sigmas}') + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + else: + embedding = repeat(timesteps, 'b -> b d', d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def normalization(channels): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNorm32(32, channels) + + +# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. +class SiLU(nn.Module): + def forward(self, x): + return x * torch.sigmoid(x) + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() \ No newline at end of file diff --git a/medical_diffusion/external/stable_diffusion/util_attention.py b/medical_diffusion/external/stable_diffusion/util_attention.py new file mode 100644 index 0000000..dada3a3 --- /dev/null +++ b/medical_diffusion/external/stable_diffusion/util_attention.py @@ -0,0 +1,56 @@ + +import os +import math +import torch +import torch.nn as nn +import numpy as np +from einops import repeat + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + diff --git a/medical_diffusion/external/unet_lucidrains.py b/medical_diffusion/external/unet_lucidrains.py new file mode 100644 index 0000000..7b80507 --- /dev/null +++ b/medical_diffusion/external/unet_lucidrains.py @@ -0,0 +1,332 @@ +from torch import nn, einsum +from einops import rearrange, reduce +import torch +import torch.nn.functional as F +from functools import partial +import math + +# -------------------------------- Embeddings ------------------------------------------------------ +class SinusoidalPosEmb(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, x): + device = x.device + half_dim = self.dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, device=device) * -emb) + emb = x[:, None] * emb[None, :] + emb = torch.cat((emb.sin(), emb.cos()), dim=-1) + return emb + +class LearnedSinusoidalPosEmb(nn.Module): + """ following @crowsonkb 's lead with learned sinusoidal pos emb """ + """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """ + + def __init__(self, dim): + super().__init__() + assert (dim % 2) == 0 + half_dim = dim // 2 + self.weights = nn.Parameter(torch.randn(half_dim)) + + def forward(self, x): + x = rearrange(x, 'b -> b 1') + freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi + fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) + fouriered = torch.cat((x, fouriered), dim = -1) + return fouriered + +# ------------------------------------------------------------------- + +def exists(x): + return x is not None + +def default(val, d): + if exists(val): + return val + return d() if callable(d) else d + +def l2norm(t): + return F.normalize(t, dim = -1) + +class Residual(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + + def forward(self, x, *args, **kwargs): + return self.fn(x, *args, **kwargs) + x + +def Upsample(dim, dim_out = None): + return nn.Sequential( + nn.Upsample(scale_factor = 2, mode = 'nearest'), + nn.Conv2d(dim, default(dim_out, dim), 3, padding = 1) + ) + +def Downsample(dim, dim_out = None): + return nn.Conv2d(dim, default(dim_out, dim), 4, 2, 1) + +class WeightStandardizedConv2d(nn.Conv2d): + """ + https://arxiv.org/abs/1903.10520 + weight standardization purportedly works synergistically with group normalization + """ + def forward(self, x): + eps = 1e-5 if x.dtype == torch.float32 else 1e-3 + + weight = self.weight + mean = reduce(weight, 'o ... -> o 1 1 1', 'mean') + var = reduce(weight, 'o ... -> o 1 1 1', partial(torch.var, unbiased = False)) + normalized_weight = (weight - mean) * (var + eps).rsqrt() + + return F.conv2d(x, normalized_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + + +class LayerNorm(nn.Module): + def __init__(self, dim): + super().__init__() + self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) + + def forward(self, x): + eps = 1e-5 if x.dtype == torch.float32 else 1e-3 + var = torch.var(x, dim = 1, unbiased = False, keepdim = True) + mean = torch.mean(x, dim = 1, keepdim = True) + return (x - mean) * (var + eps).rsqrt() * self.g + +class PreNorm(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.fn = fn + self.norm = LayerNorm(dim) + + def forward(self, x): + x = self.norm(x) + return self.fn(x) + +class Block(nn.Module): + def __init__(self, dim, dim_out, groups = 8): + super().__init__() + self.proj = WeightStandardizedConv2d(dim, dim_out, 3, padding = 1) + self.norm = nn.GroupNorm(groups, dim_out) + self.act = nn.SiLU() + + def forward(self, x, scale_shift = None): + x = self.proj(x) + x = self.norm(x) + + if exists(scale_shift): + scale, shift = scale_shift + x = x * (scale + 1) + shift + + x = self.act(x) + return x + +class ResnetBlock(nn.Module): + def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8): + super().__init__() + self.mlp = nn.Sequential( + nn.SiLU(), + nn.Linear(time_emb_dim, dim_out * 2) + ) if exists(time_emb_dim) else None + + self.block1 = Block(dim, dim_out, groups = groups) + self.block2 = Block(dim_out, dim_out, groups = groups) + self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() + + def forward(self, x, time_emb = None): + + scale_shift = None + if exists(self.mlp) and exists(time_emb): + time_emb = self.mlp(time_emb) + time_emb = rearrange(time_emb, 'b c -> b c 1 1') + scale_shift = time_emb.chunk(2, dim = 1) + + h = self.block1(x, scale_shift = scale_shift) + + h = self.block2(h) + + return h + self.res_conv(x) + +class LinearAttention(nn.Module): + def __init__(self, dim, heads = 4, dim_head = 32): + super().__init__() + self.scale = dim_head ** -0.5 + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) + + self.to_out = nn.Sequential( + nn.Conv2d(hidden_dim, dim, 1), + LayerNorm(dim) + ) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x).chunk(3, dim = 1) + q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) + + q = q.softmax(dim = -2) + k = k.softmax(dim = -1) + + q = q * self.scale + v = v / (h * w) + + context = torch.einsum('b h d n, b h e n -> b h d e', k, v) + + out = torch.einsum('b h d e, b h d n -> b h e n', context, q) + out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w) + return self.to_out(out) + +class Attention(nn.Module): + def __init__(self, dim, heads = 4, dim_head = 32, scale = 10): + super().__init__() + self.scale = scale + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x).chunk(3, dim = 1) + q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) + + q, k = map(l2norm, (q, k)) + + sim = einsum('b h d i, b h d j -> b h i j', q, k) * self.scale + attn = sim.softmax(dim = -1) + out = einsum('b h i j, b h d j -> b h i d', attn, v) + out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) + return self.to_out(out) + + + +class UNet(nn.Module): + def __init__( + self, + dim=32, + init_dim = None, + out_dim = None, + dim_mults=(1, 2, 4, 8), + channels = 3, + self_condition = False, + resnet_block_groups = 8, + learned_variance = False, + learned_sinusoidal_cond = False, + learned_sinusoidal_dim = 16, + **kwargs + ): + super().__init__() + + # determine dimensions + + self.channels = channels + self.self_condition = self_condition + input_channels = channels * (2 if self_condition else 1) + + init_dim = default(init_dim, dim) + self.init_conv = nn.Conv2d(input_channels, init_dim, 7, padding = 3) + + dims = [init_dim, *map(lambda m: dim * m, dim_mults)] + in_out = list(zip(dims[:-1], dims[1:])) + + block_klass = partial(ResnetBlock, groups = resnet_block_groups) + + # time embeddings + + time_dim = dim * 4 + + self.learned_sinusoidal_cond = learned_sinusoidal_cond + + if learned_sinusoidal_cond: + sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinusoidal_dim) + fourier_dim = learned_sinusoidal_dim + 1 + else: + sinu_pos_emb = SinusoidalPosEmb(dim) + fourier_dim = dim + + self.time_mlp = nn.Sequential( + sinu_pos_emb, + nn.Linear(fourier_dim, time_dim), + nn.GELU(), + nn.Linear(time_dim, time_dim) + ) + + # layers + + self.downs = nn.ModuleList([]) + self.ups = nn.ModuleList([]) + num_resolutions = len(in_out) + + for ind, (dim_in, dim_out) in enumerate(in_out): + is_last = ind >= (num_resolutions - 1) + + self.downs.append(nn.ModuleList([ + block_klass(dim_in, dim_in, time_emb_dim = time_dim), + block_klass(dim_in, dim_in, time_emb_dim = time_dim), + Residual(PreNorm(dim_in, LinearAttention(dim_in))), + Downsample(dim_in, dim_out) if not is_last else nn.Conv2d(dim_in, dim_out, 3, padding = 1) + ])) + + mid_dim = dims[-1] + self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) + self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim))) + self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) + + for ind, (dim_in, dim_out) in enumerate(reversed(in_out)): + is_last = ind == (len(in_out) - 1) + + self.ups.append(nn.ModuleList([ + block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), + block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), + Residual(PreNorm(dim_out, LinearAttention(dim_out))), + Upsample(dim_out, dim_in) if not is_last else nn.Conv2d(dim_out, dim_in, 3, padding = 1) + ])) + + default_out_dim = channels * (1 if not learned_variance else 2) + self.out_dim = default(out_dim, default_out_dim) + + self.final_res_block = block_klass(dim * 2, dim, time_emb_dim = time_dim) + self.final_conv = nn.Conv2d(dim, self.out_dim, 1) + + def forward(self, x, time, condition=None, self_cond=None): + if self.self_condition: + x_self_cond = default(self_cond, lambda: torch.zeros_like(x)) + x = torch.cat((x_self_cond, x), dim = 1) + + x = self.init_conv(x) + r = x.clone() + + t = self.time_mlp(time) + + h = [] + + for block1, block2, attn, downsample in self.downs: + x = block1(x, t) + h.append(x) + + x = block2(x, t) + x = attn(x) + h.append(x) + + x = downsample(x) + + x = self.mid_block1(x, t) + x = self.mid_attn(x) + x = self.mid_block2(x, t) + + for block1, block2, attn, upsample in self.ups: + x = torch.cat((x, h.pop()), dim = 1) + x = block1(x, t) + + x = torch.cat((x, h.pop()), dim = 1) + x = block2(x, t) + x = attn(x) + + x = upsample(x) + + x = torch.cat((x, r), dim = 1) + + x = self.final_res_block(x, t) + return self.final_conv(x), [] \ No newline at end of file diff --git a/medical_diffusion/loss/__pycache__/gan_losses.cpython-36.pyc b/medical_diffusion/loss/__pycache__/gan_losses.cpython-36.pyc new file mode 100644 index 0000000..4628919 Binary files /dev/null and b/medical_diffusion/loss/__pycache__/gan_losses.cpython-36.pyc differ diff --git a/medical_diffusion/loss/__pycache__/gan_losses.cpython-38.pyc b/medical_diffusion/loss/__pycache__/gan_losses.cpython-38.pyc new file mode 100644 index 0000000..f0dc711 Binary files /dev/null and b/medical_diffusion/loss/__pycache__/gan_losses.cpython-38.pyc differ diff --git a/medical_diffusion/loss/__pycache__/perceivers.cpython-36.pyc b/medical_diffusion/loss/__pycache__/perceivers.cpython-36.pyc new file mode 100644 index 0000000..512134f Binary files /dev/null and b/medical_diffusion/loss/__pycache__/perceivers.cpython-36.pyc differ diff --git a/medical_diffusion/loss/__pycache__/perceivers.cpython-38.pyc b/medical_diffusion/loss/__pycache__/perceivers.cpython-38.pyc new file mode 100644 index 0000000..5779b58 Binary files /dev/null and b/medical_diffusion/loss/__pycache__/perceivers.cpython-38.pyc differ diff --git a/medical_diffusion/loss/gan_losses.py b/medical_diffusion/loss/gan_losses.py new file mode 100644 index 0000000..3b7ecb1 --- /dev/null +++ b/medical_diffusion/loss/gan_losses.py @@ -0,0 +1,22 @@ + + +import torch +import torch.nn.functional as F + +def exp_d_loss(logits_real, logits_fake): + loss_real = torch.mean(torch.exp(-logits_real)) + loss_fake = torch.mean(torch.exp(logits_fake)) + d_loss = 0.5 * (loss_real + loss_fake) + return d_loss + +def hinge_d_loss(logits_real, logits_fake): + loss_real = torch.mean(F.relu(1. - logits_real)) + loss_fake = torch.mean(F.relu(1. + logits_fake)) + d_loss = 0.5 * (loss_real + loss_fake) + return d_loss + +def vanilla_d_loss(logits_real, logits_fake): + d_loss = 0.5 * ( + torch.mean(F.softplus(-logits_real)) + + torch.mean(F.softplus(logits_fake))) + return d_loss \ No newline at end of file diff --git a/medical_diffusion/loss/perceivers.py b/medical_diffusion/loss/perceivers.py new file mode 100644 index 0000000..0b789b4 --- /dev/null +++ b/medical_diffusion/loss/perceivers.py @@ -0,0 +1,27 @@ + + +import lpips +import torch + +class LPIPS(torch.nn.Module): + """Learned Perceptual Image Patch Similarity (LPIPS)""" + def __init__(self, linear_calibration=False, normalize=False): + super().__init__() + self.loss_fn = lpips.LPIPS(net='vgg', lpips=linear_calibration) # Note: only 'vgg' valid as loss + self.normalize = normalize # If true, normalize [0, 1] to [-1, 1] + + + def forward(self, pred, target): + # No need to do that because ScalingLayer was introduced in version 0.1 which does this indirectly + # if pred.shape[1] == 1: # convert 1-channel gray images to 3-channel RGB + # pred = torch.concat([pred, pred, pred], dim=1) + # if target.shape[1] == 1: # convert 1-channel gray images to 3-channel RGB + # target = torch.concat([target, target, target], dim=1) + + if pred.ndim == 5: # 3D Image: Just use 2D model and compute average over slices + depth = pred.shape[2] + losses = torch.stack([self.loss_fn(pred[:,:,d], target[:,:,d], normalize=self.normalize) for d in range(depth)], dim=2) + return torch.mean(losses, dim=2, keepdim=True) + else: + return self.loss_fn(pred, target, normalize=self.normalize) + \ No newline at end of file diff --git a/medical_diffusion/metrics/__init__.py b/medical_diffusion/metrics/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/medical_diffusion/metrics/torchmetrics_pr_recall.py b/medical_diffusion/metrics/torchmetrics_pr_recall.py new file mode 100644 index 0000000..1b47664 --- /dev/null +++ b/medical_diffusion/metrics/torchmetrics_pr_recall.py @@ -0,0 +1,170 @@ +from typing import Optional, List + +import torch +from torch import Tensor +from torchmetrics import Metric +import torchvision.models as models +from torchvision import transforms + + + +from torchmetrics.utilities.imports import _TORCH_FIDELITY_AVAILABLE + +if _TORCH_FIDELITY_AVAILABLE: + from torch_fidelity.feature_extractor_inceptionv3 import FeatureExtractorInceptionV3 +else: + class FeatureExtractorInceptionV3(Module): # type: ignore + pass + __doctest_skip__ = ["ImprovedPrecessionRecall", "IPR"] + +class NoTrainInceptionV3(FeatureExtractorInceptionV3): + def __init__( + self, + name: str, + features_list: List[str], + feature_extractor_weights_path: Optional[str] = None, + ) -> None: + super().__init__(name, features_list, feature_extractor_weights_path) + # put into evaluation mode + self.eval() + + def train(self, mode: bool) -> "NoTrainInceptionV3": + """the inception network should not be able to be switched away from evaluation mode.""" + return super().train(False) + + def forward(self, x: Tensor) -> Tensor: + out = super().forward(x) + return out[0].reshape(x.shape[0], -1) + + +# -------------------------- VGG Trans --------------------------- +# class Normalize(object): +# """Rescale the image from 0-255 (uint8) to [0,1] (float32). +# Note, this doesn't ensure that min=0 and max=1 as a min-max scale would do!""" + +# def __call__(self, image): +# return image/255 + +# # see https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html +# VGG_Trans = transforms.Compose([ +# transforms.Resize([224, 224], interpolation=transforms.InterpolationMode.BILINEAR, antialias=True), +# # transforms.Resize([256, 256], interpolation=InterpolationMode.BILINEAR), +# # transforms.CenterCrop(224), +# Normalize(), # scale to [0, 1] +# transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) +# ]) + + + +class ImprovedPrecessionRecall(Metric): + is_differentiable: bool = False + higher_is_better: bool = True + full_state_update: bool = False + + + def __init__(self, feature=2048, knn=3, splits_real=1, splits_fake=5): + super().__init__() + + + # ------------------------- Init Feature Extractor (VGG or Inception) ------------------------------ + # Original VGG: https://github.com/kynkaat/improved-precision-and-recall-metric/blob/b0247eafdead494a5d243bd2efb1b0b124379ae9/utils.py#L40 + # Compare Inception: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/evaluations/evaluator.py#L574 + # TODO: Add option to switch between Inception and VGG feature extractor + # self.vgg_model = models.vgg16(weights='IMAGENET1K_V1').eval() + # self.feature_extractor = transforms.Compose([ + # VGG_Trans, + # self.vgg_model.features, + # transforms.Lambda(lambda x: torch.flatten(x, 1)), + # self.vgg_model.classifier[:4] # [:4] corresponds to 4096 features + # ]) + + if isinstance(feature, int): + if not _TORCH_FIDELITY_AVAILABLE: + raise ModuleNotFoundError( + "FrechetInceptionDistance metric requires that `Torch-fidelity` is installed." + " Either install as `pip install torchmetrics[image]` or `pip install torch-fidelity`." + ) + valid_int_input = [64, 192, 768, 2048] + if feature not in valid_int_input: + raise ValueError( + f"Integer input to argument `feature` must be one of {valid_int_input}, but got {feature}." + ) + + self.feature_extractor = NoTrainInceptionV3(name="inception-v3-compat", features_list=[str(feature)]) + elif isinstance(feature, torch.nn.Module): + self.feature_extractor = feature + else: + raise TypeError("Got unknown input to argument `feature`") + + # --------------------------- End Feature Extractor --------------------------------------------------------------- + + self.knn = knn + self.splits_real = splits_real + self.splits_fake = splits_fake + self.add_state("real_features", [], dist_reduce_fx=None) + self.add_state("fake_features", [], dist_reduce_fx=None) + + + + def update(self, imgs: Tensor, real: bool) -> None: # type: ignore + """Update the state with extracted features. + + Args: + imgs: tensor with images feed to the feature extractor + real: bool indicating if ``imgs`` belong to the real or the fake distribution + """ + assert torch.is_tensor(imgs) and imgs.dtype == torch.uint8, 'Expecting image as torch.Tensor with dtype=torch.uint8' + + features = self.feature_extractor(imgs).view(imgs.shape[0], -1) + + if real: + self.real_features.append(features) + else: + self.fake_features.append(features) + + def compute(self): + real_features = torch.concat(self.real_features) + fake_features = torch.concat(self.fake_features) + + real_distances = _compute_pairwise_distances(real_features, self.splits_real) + real_radii = _distances2radii(real_distances, self.knn) + + fake_distances = _compute_pairwise_distances(fake_features, self.splits_fake) + fake_radii = _distances2radii(fake_distances, self.knn) + + precision = _compute_metric(real_features, real_radii, self.splits_real, fake_features, self.splits_fake) + recall = _compute_metric(fake_features, fake_radii, self.splits_fake, real_features, self.splits_real) + + return precision, recall + +def _compute_metric(ref_features, ref_radii, ref_splits, pred_features, pred_splits): + dist = _compute_pairwise_distances(ref_features, ref_splits, pred_features, pred_splits) + num_feat = pred_features.shape[0] + count = 0 + for i in range(num_feat): + count += (dist[:, i] < ref_radii).any() + return count / num_feat + +def _distances2radii(distances, knn): + return torch.topk(distances, knn+1, dim=1, largest=False)[0].max(dim=1)[0] + +def _compute_pairwise_distances(X, splits_x, Y=None, splits_y=None): + # X = [B, features] + # Y = [B', features] + Y = X if Y is None else Y + # X = X.double() + # Y = Y.double() + splits_y = splits_x if splits_y is None else splits_y + dist = torch.concat([ + torch.concat([ + (torch.sum(X_batch**2, dim=1, keepdim=True) + + torch.sum(Y_batch**2, dim=1, keepdim=True).t() - + 2 * torch.einsum("bd,dn->bn", X_batch, Y_batch.t())) + for Y_batch in Y.chunk(splits_y, dim=0)], dim=1) + for X_batch in X.chunk(splits_x, dim=0)]) + + # dist = torch.maximum(dist, torch.zeros_like(dist)) + dist[dist<0] = 0 + return torch.sqrt(dist) + + \ No newline at end of file diff --git a/medical_diffusion/models/__init__.py b/medical_diffusion/models/__init__.py new file mode 100644 index 0000000..ae49315 --- /dev/null +++ b/medical_diffusion/models/__init__.py @@ -0,0 +1 @@ +from .model_base import BasicModel diff --git a/medical_diffusion/models/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/models/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..98079c4 Binary files /dev/null and b/medical_diffusion/models/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/models/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/models/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..a3a8240 Binary files /dev/null and b/medical_diffusion/models/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/models/__pycache__/model_base.cpython-36.pyc b/medical_diffusion/models/__pycache__/model_base.cpython-36.pyc new file mode 100644 index 0000000..b3a3a91 Binary files /dev/null and b/medical_diffusion/models/__pycache__/model_base.cpython-36.pyc differ diff --git a/medical_diffusion/models/__pycache__/model_base.cpython-38.pyc b/medical_diffusion/models/__pycache__/model_base.cpython-38.pyc new file mode 100644 index 0000000..3383d94 Binary files /dev/null and b/medical_diffusion/models/__pycache__/model_base.cpython-38.pyc differ diff --git a/medical_diffusion/models/embedders/__init__.py b/medical_diffusion/models/embedders/__init__.py new file mode 100644 index 0000000..8727492 --- /dev/null +++ b/medical_diffusion/models/embedders/__init__.py @@ -0,0 +1,2 @@ +from .time_embedder import TimeEmbbeding, LearnedSinusoidalPosEmb, SinusoidalPosEmb +from .latent_embedders import Latent_Embedder \ No newline at end of file diff --git a/medical_diffusion/models/embedders/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/models/embedders/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..709b43c Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/models/embedders/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/models/embedders/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..15fc663 Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/models/embedders/__pycache__/cond_embedders.cpython-38.pyc b/medical_diffusion/models/embedders/__pycache__/cond_embedders.cpython-38.pyc new file mode 100644 index 0000000..cc4edb1 Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/cond_embedders.cpython-38.pyc differ diff --git a/medical_diffusion/models/embedders/__pycache__/latent_embedders.cpython-36.pyc b/medical_diffusion/models/embedders/__pycache__/latent_embedders.cpython-36.pyc new file mode 100644 index 0000000..71bacb9 Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/latent_embedders.cpython-36.pyc differ diff --git a/medical_diffusion/models/embedders/__pycache__/latent_embedders.cpython-38.pyc b/medical_diffusion/models/embedders/__pycache__/latent_embedders.cpython-38.pyc new file mode 100644 index 0000000..79d60ef Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/latent_embedders.cpython-38.pyc differ diff --git a/medical_diffusion/models/embedders/__pycache__/time_embedder.cpython-36.pyc b/medical_diffusion/models/embedders/__pycache__/time_embedder.cpython-36.pyc new file mode 100644 index 0000000..4a3bd8e Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/time_embedder.cpython-36.pyc differ diff --git a/medical_diffusion/models/embedders/__pycache__/time_embedder.cpython-38.pyc b/medical_diffusion/models/embedders/__pycache__/time_embedder.cpython-38.pyc new file mode 100644 index 0000000..f40245b Binary files /dev/null and b/medical_diffusion/models/embedders/__pycache__/time_embedder.cpython-38.pyc differ diff --git a/medical_diffusion/models/embedders/cond_embedders.py b/medical_diffusion/models/embedders/cond_embedders.py new file mode 100644 index 0000000..10a8a44 --- /dev/null +++ b/medical_diffusion/models/embedders/cond_embedders.py @@ -0,0 +1,27 @@ + +import torch.nn as nn +import torch +from monai.networks.layers.utils import get_act_layer + +class LabelEmbedder(nn.Module): + def __init__(self, emb_dim=32, num_classes=2, act_name=("SWISH", {})): + super().__init__() + self.emb_dim = emb_dim + self.embedding = nn.Embedding(num_classes, emb_dim) + + # self.embedding = nn.Embedding(num_classes, emb_dim//4) + # self.emb_net = nn.Sequential( + # nn.Linear(1, emb_dim), + # get_act_layer(act_name), + # nn.Linear(emb_dim, emb_dim) + # ) + + def forward(self, condition): + c = self.embedding(condition) #[B,] -> [B, C] + # c = self.emb_net(c) + # c = self.emb_net(condition[:,None].float()) + # c = (2*condition-1)[:, None].expand(-1, self.emb_dim).type(torch.float32) + return c + + + diff --git a/medical_diffusion/models/embedders/latent_embedders.py b/medical_diffusion/models/embedders/latent_embedders.py new file mode 100644 index 0000000..9f1909c --- /dev/null +++ b/medical_diffusion/models/embedders/latent_embedders.py @@ -0,0 +1,1181 @@ + +from pathlib import Path + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision.utils import save_image +from monai.networks.blocks import UnetOutBlock + + +from medical_diffusion.models.utils.conv_blocks import DownBlock, UpBlock, BasicBlock, BasicResBlock, UnetResBlock, UnetBasicBlock +from medical_diffusion.loss.gan_losses import hinge_d_loss +from medical_diffusion.loss.perceivers import LPIPS +from medical_diffusion.models.model_base import BasicModel, VeryBasicModel + + +from pytorch_msssim import SSIM, ssim + + +class DiagonalGaussianDistribution(nn.Module): + + def forward(self, x): + mean, logvar = torch.chunk(x, 2, dim=1) + logvar = torch.clamp(logvar, -30.0, 20.0) + std = torch.exp(0.5 * logvar) + sample = torch.randn(mean.shape, generator=None, device=x.device) + z = mean + std * sample + + batch_size = x.shape[0] + var = torch.exp(logvar) + kl = 0.5 * torch.sum(torch.pow(mean, 2) + var - 1.0 - logvar)/batch_size + + return z, kl + + + + + + +class VectorQuantizer(nn.Module): + def __init__(self, num_embeddings, emb_channels, beta=0.25): + super().__init__() + self.num_embeddings = num_embeddings + self.emb_channels = emb_channels + self.beta = beta + + self.embedder = nn.Embedding(num_embeddings, emb_channels) + self.embedder.weight.data.uniform_(-1.0 / self.num_embeddings, 1.0 / self.num_embeddings) + + def forward(self, z): + assert z.shape[1] == self.emb_channels, "Channels of z and codebook don't match" + z_ch = torch.moveaxis(z, 1, -1) # [B, C, *] -> [B, *, C] + z_flattened = z_ch.reshape(-1, self.emb_channels) # [B, *, C] -> [Bx*, C], Note: or use contiguous() and view() + + # distances from z to embeddings e: (z - e)^2 = z^2 + e^2 - 2 e * z + dist = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + + torch.sum(self.embedder.weight**2, dim=1) + -2* torch.einsum("bd,dn->bn", z_flattened, self.embedder.weight.t()) + ) # [Bx*, num_embeddings] + + min_encoding_indices = torch.argmin(dist, dim=1) # [Bx*] + z_q = self.embedder(min_encoding_indices) # [Bx*, C] + z_q = z_q.view(z_ch.shape) # [Bx*, C] -> [B, *, C] + z_q = torch.moveaxis(z_q, -1, 1) # [B, *, C] -> [B, C, *] + + # Compute Embedding Loss + loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) + + # preserve gradients + z_q = z + (z_q - z).detach() + + return z_q, loss + + + +class Discriminator(nn.Module): + def __init__(self, + in_channels=1, + spatial_dims = 3, + hid_chs = [32, 64, 128, 256, 512], + kernel_sizes=[(1,3,3), (1,3,3), (1,3,3), 3, 3], + strides = [ 1, (1,2,2), (1,2,2), 2, 2], + act_name=("Swish", {}), + norm_name = ("GROUP", {'num_groups':32, "affine": True}), + dropout=None + ): + super().__init__() + + self.inc = BasicBlock( + spatial_dims=spatial_dims, + in_channels=in_channels, + out_channels=hid_chs[0], + kernel_size=kernel_sizes[0], # 2*pad = kernel-stride -> kernel = 2*pad + stride => 1 = 2*0+1, 3, =2*1+1, 2 = 2*0+2, 4 = 2*1+2 + stride=strides[0], + norm_name=norm_name, + act_name=act_name, + dropout=dropout, + ) + + self.encoder = nn.Sequential(*[ + BasicBlock( + spatial_dims=spatial_dims, + in_channels=hid_chs[i-1], + out_channels=hid_chs[i], + kernel_size=kernel_sizes[i], + stride=strides[i], + act_name=act_name, + norm_name=norm_name, + dropout=dropout) + for i in range(1, len(hid_chs)) + ]) + + + self.outc = BasicBlock( + spatial_dims=spatial_dims, + in_channels=hid_chs[-1], + out_channels=1, + kernel_size=3, + stride=1, + act_name=None, + norm_name=None, + dropout=None, + zero_conv=True + ) + + + + def forward(self, x): + x = self.inc(x) + x = self.encoder(x) + return self.outc(x) + + +class NLayerDiscriminator(nn.Module): + def __init__(self, + in_channels=1, + spatial_dims = 3, + hid_chs = [64, 128, 256, 512, 512], + kernel_sizes=[4, 4, 4, 4, 4], + strides = [2, 2, 2, 1, 1], + act_name=("LeakyReLU", {'negative_slope': 0.2}), + norm_name = ("BATCH", {}), + dropout=None + ): + super().__init__() + + self.inc = BasicBlock( + spatial_dims=spatial_dims, + in_channels=in_channels, + out_channels=hid_chs[0], + kernel_size=kernel_sizes[0], + stride=strides[0], + norm_name=None, + act_name=act_name, + dropout=dropout, + ) + + self.encoder = nn.Sequential(*[ + BasicBlock( + spatial_dims=spatial_dims, + in_channels=hid_chs[i-1], + out_channels=hid_chs[i], + kernel_size=kernel_sizes[i], + stride=strides[i], + act_name=act_name, + norm_name=norm_name, + dropout=dropout) + for i in range(1, len(strides)) + ]) + + + self.outc = BasicBlock( + spatial_dims=spatial_dims, + in_channels=hid_chs[-1], + out_channels=1, + kernel_size=4, + stride=1, + norm_name=None, + act_name=None, + dropout=False, + ) + + def forward(self, x): + x = self.inc(x) + x = self.encoder(x) + return self.outc(x) + + + + +class VQVAE(BasicModel): + def __init__( + self, + in_channels=3, + out_channels=3, + spatial_dims = 2, + emb_channels = 4, + num_embeddings = 8192, + hid_chs = [32, 64, 128, 256], + kernel_sizes=[ 3, 3, 3, 3], + strides = [ 1, 2, 2, 2], + norm_name = ("GROUP", {'num_groups':32, "affine": True}), + act_name=("Swish", {}), + dropout=0.0, + use_res_block=True, + deep_supervision=False, + learnable_interpolation=True, + use_attention='none', + beta = 0.25, + embedding_loss_weight=1.0, + perceiver = LPIPS, + perceiver_kwargs = {}, + perceptual_loss_weight = 1.0, + + + optimizer=torch.optim.Adam, + optimizer_kwargs={'lr':1e-4}, + lr_scheduler= None, + lr_scheduler_kwargs={}, + loss = torch.nn.L1Loss, + loss_kwargs={'reduction': 'none'}, + + sample_every_n_steps = 1000 + + ): + super().__init__( + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + lr_scheduler=lr_scheduler, + lr_scheduler_kwargs=lr_scheduler_kwargs + ) + self.sample_every_n_steps=sample_every_n_steps + self.loss_fct = loss(**loss_kwargs) + self.embedding_loss_weight = embedding_loss_weight + self.perceiver = perceiver(**perceiver_kwargs).eval() if perceiver is not None else None + self.perceptual_loss_weight = perceptual_loss_weight + use_attention = use_attention if isinstance(use_attention, list) else [use_attention]*len(strides) + self.depth = len(strides) + self.deep_supervision = deep_supervision + + # ----------- In-Convolution ------------ + ConvBlock = UnetResBlock if use_res_block else UnetBasicBlock + self.inc = ConvBlock(spatial_dims, in_channels, hid_chs[0], kernel_size=kernel_sizes[0], stride=strides[0], + act_name=act_name, norm_name=norm_name) + + # ----------- Encoder ---------------- + self.encoders = nn.ModuleList([ + DownBlock( + spatial_dims, + hid_chs[i-1], + hid_chs[i], + kernel_sizes[i], + strides[i], + kernel_sizes[i], + norm_name, + act_name, + dropout, + use_res_block, + learnable_interpolation, + use_attention[i]) + for i in range(1, self.depth) + ]) + + # ----------- Out-Encoder ------------ + self.out_enc = BasicBlock(spatial_dims, hid_chs[-1], emb_channels, 1) + + + # ----------- Quantizer -------------- + self.quantizer = VectorQuantizer( + num_embeddings=num_embeddings, + emb_channels=emb_channels, + beta=beta + ) + + # ----------- In-Decoder ------------ + self.inc_dec = ConvBlock(spatial_dims, emb_channels, hid_chs[-1], 3, act_name=act_name, norm_name=norm_name) + + # ------------ Decoder ---------- + self.decoders = nn.ModuleList([ + UpBlock( + spatial_dims, + hid_chs[i+1], + hid_chs[i], + kernel_size=kernel_sizes[i+1], + stride=strides[i+1], + upsample_kernel_size=strides[i+1], + norm_name=norm_name, + act_name=act_name, + dropout=dropout, + use_res_block=use_res_block, + learnable_interpolation=learnable_interpolation, + use_attention=use_attention[i], + skip_channels=0) + for i in range(self.depth-1) + ]) + + # --------------- Out-Convolution ---------------- + self.outc = BasicBlock(spatial_dims, hid_chs[0], out_channels, 1, zero_conv=True) + if isinstance(deep_supervision, bool): + deep_supervision = self.depth-1 if deep_supervision else 0 + self.outc_ver = nn.ModuleList([ + BasicBlock(spatial_dims, hid_chs[i], out_channels, 1, zero_conv=True) + for i in range(1, deep_supervision+1) + ]) + + + def encode(self, x): + h = self.inc(x) + for i in range(len(self.encoders)): + h = self.encoders[i](h) + z = self.out_enc(h) + return z + + def decode(self, z): + z, _ = self.quantizer(z) + h = self.inc_dec(z) + for i in range(len(self.decoders), 0, -1): + h = self.decoders[i-1](h) + x = self.outc(h) + return x + + def forward(self, x_in): + # --------- Encoder -------------- + h = self.inc(x_in) + for i in range(len(self.encoders)): + h = self.encoders[i](h) + z = self.out_enc(h) + + # --------- Quantizer -------------- + z_q, emb_loss = self.quantizer(z) + + # -------- Decoder ----------- + out_hor = [] + h = self.inc_dec(z_q) + for i in range(len(self.decoders)-1, -1, -1): + out_hor.append(self.outc_ver[i](h)) if i < len(self.outc_ver) else None + h = self.decoders[i](h) + out = self.outc(h) + + return out, out_hor[::-1], emb_loss + + def perception_loss(self, pred, target, depth=0): + if (self.perceiver is not None) and (depth<2): + self.perceiver.eval() + return self.perceiver(pred, target)*self.perceptual_loss_weight + else: + return 0 + + def ssim_loss(self, pred, target): + return 1-ssim(((pred+1)/2).clamp(0,1), (target.type(pred.dtype)+1)/2, data_range=1, size_average=False, + nonnegative_ssim=True).reshape(-1, *[1]*(pred.ndim-1)) + + + def rec_loss(self, pred, pred_vertical, target): + interpolation_mode = 'nearest-exact' + weights = [1/2**i for i in range(1+len(pred_vertical))] # horizontal (equal) + vertical (reducing with every step down) + tot_weight = sum(weights) + weights = [w/tot_weight for w in weights] + + # Loss + loss = 0 + loss += torch.mean(self.loss_fct(pred, target)+self.perception_loss(pred, target)+self.ssim_loss(pred, target))*weights[0] + + for i, pred_i in enumerate(pred_vertical): + target_i = F.interpolate(target, size=pred_i.shape[2:], mode=interpolation_mode, align_corners=None) + loss += torch.mean(self.loss_fct(pred_i, target_i)+self.perception_loss(pred_i, target_i)+self.ssim_loss(pred_i, target_i))*weights[i+1] + + return loss + + def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): + # ------------------------- Get Source/Target --------------------------- + x = batch['target'] + target = x + + # ------------------------- Run Model --------------------------- + pred, pred_vertical, emb_loss = self(x) + + # ------------------------- Compute Loss --------------------------- + loss = self.rec_loss(pred, pred_vertical, target) + loss += emb_loss*self.embedding_loss_weight + + # --------------------- Compute Metrics ------------------------------- + with torch.no_grad(): + logging_dict = {'loss':loss, 'emb_loss': emb_loss} + logging_dict['L2'] = torch.nn.functional.mse_loss(pred, target) + logging_dict['L1'] = torch.nn.functional.l1_loss(pred, target) + logging_dict['ssim'] = ssim((pred+1)/2, (target.type(pred.dtype)+1)/2, data_range=1) + + # ----------------- Log Scalars ---------------------- + for metric_name, metric_val in logging_dict.items(): + self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) + + # ----------------- Save Image ------------------------------ + if self.global_step != 0 and self.global_step % self.sample_every_n_steps == 0: + log_step = self.global_step // self.sample_every_n_steps + path_out = Path(self.logger.log_dir)/'images' + path_out.mkdir(parents=True, exist_ok=True) + # for 3D images use depth as batch :[D, C, H, W], never show more than 16+16 =32 images + def depth2batch(image): + return (image if image.ndim<5 else torch.swapaxes(image[0], 0, 1)) + images = torch.cat([depth2batch(img)[:16] for img in (x, pred)]) + save_image(images, path_out/f'sample_{log_step}.png', nrow=x.shape[0], normalize=True) + + return loss + + + +class VQGAN(VeryBasicModel): + def __init__( + self, + in_channels=3, + out_channels=3, + spatial_dims = 2, + emb_channels = 4, + num_embeddings = 8192, + hid_chs = [ 64, 128, 256, 512], + kernel_sizes=[ 3, 3, 3, 3], + strides = [ 1, 2, 2, 2], + norm_name = ("GROUP", {'num_groups':32, "affine": True}), + act_name=("Swish", {}), + dropout=0.0, + use_res_block=True, + deep_supervision=False, + learnable_interpolation=True, + use_attention='none', + beta = 0.25, + embedding_loss_weight=1.0, + perceiver = LPIPS, + perceiver_kwargs = {}, + perceptual_loss_weight: float = 1.0, + + + start_gan_train_step = 50000, # NOTE step increase with each optimizer + gan_loss_weight: float = 1.0, # = discriminator + + optimizer_vqvae=torch.optim.Adam, + optimizer_gan=torch.optim.Adam, + optimizer_vqvae_kwargs={'lr':1e-6}, + optimizer_gan_kwargs={'lr':1e-6}, + lr_scheduler_vqvae= None, + lr_scheduler_vqvae_kwargs={}, + lr_scheduler_gan= None, + lr_scheduler_gan_kwargs={}, + + pixel_loss = torch.nn.L1Loss, + pixel_loss_kwargs={'reduction':'none'}, + gan_loss_fct = hinge_d_loss, + + sample_every_n_steps = 1000 + + ): + super().__init__() + self.sample_every_n_steps=sample_every_n_steps + self.start_gan_train_step = start_gan_train_step + self.gan_loss_weight = gan_loss_weight + self.embedding_loss_weight = embedding_loss_weight + + self.optimizer_vqvae = optimizer_vqvae + self.optimizer_gan = optimizer_gan + self.optimizer_vqvae_kwargs = optimizer_vqvae_kwargs + self.optimizer_gan_kwargs = optimizer_gan_kwargs + self.lr_scheduler_vqvae = lr_scheduler_vqvae + self.lr_scheduler_vqvae_kwargs = lr_scheduler_vqvae_kwargs + self.lr_scheduler_gan = lr_scheduler_gan + self.lr_scheduler_gan_kwargs = lr_scheduler_gan_kwargs + + self.pixel_loss_fct = pixel_loss(**pixel_loss_kwargs) + self.gan_loss_fct = gan_loss_fct + + self.vqvae = VQVAE(in_channels, out_channels, spatial_dims, emb_channels, num_embeddings, hid_chs, kernel_sizes, + strides, norm_name, act_name, dropout, use_res_block, deep_supervision, learnable_interpolation, use_attention, + beta, embedding_loss_weight, perceiver, perceiver_kwargs, perceptual_loss_weight) + + self.discriminator = nn.ModuleList([Discriminator(in_channels, spatial_dims, hid_chs, kernel_sizes, strides, + act_name, norm_name, dropout) for i in range(len(self.vqvae.outc_ver)+1)]) + + + # self.discriminator = nn.ModuleList([NLayerDiscriminator(in_channels, spatial_dims) + # for _ in range(len(self.vqvae.decoder.outc_ver)+1)]) + + + + def encode(self, x): + return self.vqvae.encode(x) + + def decode(self, z): + return self.vqvae.decode(z) + + def forward(self, x): + return self.vqvae.forward(x) + + + def vae_img_loss(self, pred, target, dec_out_layer, step, discriminator, depth=0): + # ------ VQVAE ------- + rec_loss = self.vqvae.rec_loss(pred, [], target) + + # ------- GAN ----- + if step > self.start_gan_train_step: + gan_loss = -torch.mean(discriminator[depth](pred)) + lambda_weight = self.compute_lambda(rec_loss, gan_loss, dec_out_layer) + gan_loss = gan_loss*lambda_weight + + with torch.no_grad(): + self.log(f"train/gan_loss_{depth}", gan_loss, on_step=True, on_epoch=True) + self.log(f"train/lambda_{depth}", lambda_weight, on_step=True, on_epoch=True) + else: + gan_loss = 0 #torch.tensor([0.0], requires_grad=True, device=target.device) + + return self.gan_loss_weight*gan_loss+rec_loss + + + def gan_img_loss(self, pred, target, step, discriminators, depth): + if (step > self.start_gan_train_step) and (depth self.start_gan_train_step) and (depth<2): + gan_loss = -torch.sum(discriminator[depth](pred)) # clamp(..., None, 0) => only punish areas that were rated as fake (<0) by discriminator => ensures loss >0 and +- don't cannel out in sum + lambda_weight = self.compute_lambda(rec_loss, gan_loss, dec_out_layer) + gan_loss = gan_loss*lambda_weight + + with torch.no_grad(): + self.log(f"train/gan_loss_{depth}", gan_loss, on_step=True, on_epoch=True) + self.log(f"train/lambda_{depth}", lambda_weight, on_step=True, on_epoch=True) + else: + gan_loss = 0 #torch.tensor([0.0], requires_grad=True, device=target.device) + + + + return self.gan_loss_weight*gan_loss+rec_loss + + def gan_img_loss(self, pred, target, step, discriminators, depth): + if (step > self.start_gan_train_step) and (depth1) and k==0: + seq_list.append( + BasicUp( + spatial_dims=spatial_dims, + in_channels=out_channels, + out_channels=out_channels, + kernel_size=strides[i], + stride=strides[i], + learnable_interpolation=learnable_interpolation + ) + ) + + out_blocks.append(SequentialEmb(*seq_list)) + self.out_blocks = nn.ModuleList(out_blocks) + + + # --------------- Out-Convolution ---------------- + out_ch_hor = out_ch*2 if estimate_variance else out_ch + self.outc = zero_module(UnetOutBlock(spatial_dims, hid_chs[0], out_ch_hor, dropout=None)) + if isinstance(deep_supervision, bool): + deep_supervision = self.depth-2 if deep_supervision else 0 + self.outc_ver = nn.ModuleList([ + zero_module(UnetOutBlock(spatial_dims, hid_chs[i]+hid_chs[i-1], out_ch, dropout=None) ) + for i in range(2, deep_supervision+2) + ]) + + + def forward(self, x_t, t=None, condition=None, self_cond=None): + # x_t [B, C, *] + # t [B,] + # condition [B,] + # self_cond [B, C, *] + + + # -------- Time Embedding (Gloabl) ----------- + if t is None: + time_emb = None + else: + time_emb = self.time_embedder(t) # [B, C] + + # -------- Condition Embedding (Gloabl) ----------- + if (condition is None) or (self.cond_embedder is None): + cond_emb = None + else: + cond_emb = self.cond_embedder(condition) # [B, C] + + # emb = save_add(time_emb, cond_emb) + emb = time_emb + + # ---------- Self-conditioning----------- + if self.use_self_conditioning: + self_cond = torch.zeros_like(x_t) if self_cond is None else x_t + x_t = torch.cat([x_t, cond_emb], dim=1) # cond_with_tumor_mask + + # --------- Condition with tumor mask + # print("x_t:",x_t.shape,"cond_emb:",cond_emb.shape) + x_t = torch.cat([x_t, cond_emb], dim=1) # cond_with_tumor_mask + + # --------- Encoder -------------- + x = [self.in_conv(x_t)] + for i in range(len(self.in_blocks)): + x.append(self.in_blocks[i](x[i], emb)) + + # ---------- Middle -------------- + h = self.middle_block(x[-1], emb) + + # -------- Decoder ----------- + y_ver = [] + for i in range(len(self.out_blocks), 0, -1): + h = torch.cat([h, x.pop()], dim=1) + + depth, j = i//(self.num_res_blocks+1), i%(self.num_res_blocks+1)-1 + y_ver.append(self.outc_ver[depth-1](h)) if (len(self.outc_ver)>=depth>0) and (j==0) else None + + h = self.out_blocks[i-1](h, emb) + + # ---------Out-Convolution ------------ + y = self.outc(h) + + return y, y_ver[::-1] + + + + +if __name__=='__main__': + model = UNet(in_ch=1, use_res_block=False, learnable_interpolation=False) + input = torch.randn((1,3,16,32,32)) + time = torch.randn((1,)) + out_hor, out_ver = model(input, time) + print(out_hor[0].shape) \ No newline at end of file diff --git a/medical_diffusion/models/model_base.py b/medical_diffusion/models/model_base.py new file mode 100644 index 0000000..1c3dd87 --- /dev/null +++ b/medical_diffusion/models/model_base.py @@ -0,0 +1,114 @@ + +from pathlib import Path +import json + +import torch +import torch.nn as nn +import torch.nn.functional as F +import pytorch_lightning as pl +from pytorch_lightning.utilities.cloud_io import load as pl_load +from pytorch_lightning.utilities.migration import pl_legacy_patch + +class VeryBasicModel(pl.LightningModule): + def __init__(self): + super().__init__() + self.save_hyperparameters() + self._step_train = 0 + self._step_val = 0 + self._step_test = 0 + + + def forward(self, x_in): + raise NotImplementedError + + def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): + raise NotImplementedError + + def training_step(self, batch: dict, batch_idx: int, optimizer_idx:int = 0 ): + self._step_train += 1 # =self.global_step + return self._step(batch, batch_idx, "train", self._step_train, optimizer_idx) + + def validation_step(self, batch: dict, batch_idx: int, optimizer_idx:int = 0): + self._step_val += 1 + return self._step(batch, batch_idx, "val", self._step_val, optimizer_idx ) + + def test_step(self, batch: dict, batch_idx: int, optimizer_idx:int = 0): + self._step_test += 1 + return self._step(batch, batch_idx, "test", self._step_test, optimizer_idx) + + def _epoch_end(self, outputs: list, state: str): + return + + def training_epoch_end(self, outputs): + self._epoch_end(outputs, "train") + + def validation_epoch_end(self, outputs): + self._epoch_end(outputs, "val") + + def test_epoch_end(self, outputs): + self._epoch_end(outputs, "test") + + @classmethod + def save_best_checkpoint(cls, path_checkpoint_dir, best_model_path): + with open(Path(path_checkpoint_dir) / 'best_checkpoint.json', 'w') as f: + json.dump({'best_model_epoch': Path(best_model_path).name}, f) + + @classmethod + def _get_best_checkpoint_path(cls, path_checkpoint_dir, version=0, **kwargs): + path_version = 'lightning_logs/version_'+str(version) + with open(Path(path_checkpoint_dir) / path_version/ 'best_checkpoint.json', 'r') as f: + path_rel_best_checkpoint = Path(json.load(f)['best_model_epoch']) + return Path(path_checkpoint_dir)/path_rel_best_checkpoint + + @classmethod + def load_best_checkpoint(cls, path_checkpoint_dir, version=0, **kwargs): + path_best_checkpoint = cls._get_best_checkpoint_path(path_checkpoint_dir, version) + return cls.load_from_checkpoint(path_best_checkpoint, **kwargs) + + def load_pretrained(self, checkpoint_path, map_location=None, **kwargs): + if checkpoint_path.is_dir(): + checkpoint_path = self._get_best_checkpoint_path(checkpoint_path, **kwargs) + + with pl_legacy_patch(): + if map_location is not None: + checkpoint = pl_load(checkpoint_path, map_location=map_location) + else: + checkpoint = pl_load(checkpoint_path, map_location=lambda storage, loc: storage) + return self.load_weights(checkpoint["state_dict"], **kwargs) + + def load_weights(self, pretrained_weights, strict=True, **kwargs): + filter = kwargs.get('filter', lambda key:key in pretrained_weights) + init_weights = self.state_dict() + pretrained_weights = {key: value for key, value in pretrained_weights.items() if filter(key)} + init_weights.update(pretrained_weights) + self.load_state_dict(init_weights, strict=strict) + return self + + + + +class BasicModel(VeryBasicModel): + def __init__(self, + optimizer=torch.optim.AdamW, + optimizer_kwargs={'lr':1e-3, 'weight_decay':1e-2}, + lr_scheduler= None, + lr_scheduler_kwargs={}, + ): + super().__init__() + self.save_hyperparameters() + self.optimizer = optimizer + self.optimizer_kwargs = optimizer_kwargs + self.lr_scheduler = lr_scheduler + self.lr_scheduler_kwargs = lr_scheduler_kwargs + + def configure_optimizers(self): + optimizer = self.optimizer(self.parameters(), **self.optimizer_kwargs) + if self.lr_scheduler is not None: + lr_scheduler = self.lr_scheduler(optimizer, **self.lr_scheduler_kwargs) + return [optimizer], [lr_scheduler] + else: + return [optimizer] + + + + \ No newline at end of file diff --git a/medical_diffusion/models/noise_schedulers/__init__.py b/medical_diffusion/models/noise_schedulers/__init__.py new file mode 100644 index 0000000..8642182 --- /dev/null +++ b/medical_diffusion/models/noise_schedulers/__init__.py @@ -0,0 +1,2 @@ +from .scheduler_base import BasicNoiseScheduler +from .gaussian_scheduler import GaussianNoiseScheduler \ No newline at end of file diff --git a/medical_diffusion/models/noise_schedulers/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/models/noise_schedulers/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..a0fc80c Binary files /dev/null and b/medical_diffusion/models/noise_schedulers/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/models/noise_schedulers/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/models/noise_schedulers/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..37d13ed Binary files /dev/null and b/medical_diffusion/models/noise_schedulers/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/models/noise_schedulers/__pycache__/gaussian_scheduler.cpython-36.pyc b/medical_diffusion/models/noise_schedulers/__pycache__/gaussian_scheduler.cpython-36.pyc new file mode 100644 index 0000000..3a5a085 Binary files /dev/null and b/medical_diffusion/models/noise_schedulers/__pycache__/gaussian_scheduler.cpython-36.pyc differ diff --git a/medical_diffusion/models/noise_schedulers/__pycache__/gaussian_scheduler.cpython-38.pyc b/medical_diffusion/models/noise_schedulers/__pycache__/gaussian_scheduler.cpython-38.pyc new file mode 100644 index 0000000..419a52d Binary files /dev/null and b/medical_diffusion/models/noise_schedulers/__pycache__/gaussian_scheduler.cpython-38.pyc differ diff --git a/medical_diffusion/models/noise_schedulers/__pycache__/scheduler_base.cpython-36.pyc b/medical_diffusion/models/noise_schedulers/__pycache__/scheduler_base.cpython-36.pyc new file mode 100644 index 0000000..42ee497 Binary files /dev/null and b/medical_diffusion/models/noise_schedulers/__pycache__/scheduler_base.cpython-36.pyc differ diff --git a/medical_diffusion/models/noise_schedulers/__pycache__/scheduler_base.cpython-38.pyc b/medical_diffusion/models/noise_schedulers/__pycache__/scheduler_base.cpython-38.pyc new file mode 100644 index 0000000..190180c Binary files /dev/null and b/medical_diffusion/models/noise_schedulers/__pycache__/scheduler_base.cpython-38.pyc differ diff --git a/medical_diffusion/models/noise_schedulers/gaussian_scheduler.py b/medical_diffusion/models/noise_schedulers/gaussian_scheduler.py new file mode 100644 index 0000000..fa8b316 --- /dev/null +++ b/medical_diffusion/models/noise_schedulers/gaussian_scheduler.py @@ -0,0 +1,154 @@ + +import torch +import torch.nn.functional as F + + +from medical_diffusion.models.noise_schedulers import BasicNoiseScheduler + +class GaussianNoiseScheduler(BasicNoiseScheduler): + def __init__( + self, + timesteps=1000, + T = None, + schedule_strategy='cosine', + beta_start = 0.0001, # default 1e-4, stable-diffusion ~ 1e-3 + beta_end = 0.02, + betas = None, + ): + super().__init__(timesteps, T) + + self.schedule_strategy = schedule_strategy + + if betas is not None: + betas = torch.as_tensor(betas, dtype = torch.float64) + elif schedule_strategy == "linear": + betas = torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64) + elif schedule_strategy == "scaled_linear": # proposed as "quadratic" in https://arxiv.org/abs/2006.11239, used in stable-diffusion + betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype = torch.float64)**2 + elif schedule_strategy == "cosine": + s = 0.008 + x = torch.linspace(0, timesteps, timesteps + 1, dtype = torch.float64) # [0, T] + alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2 + alphas_cumprod = alphas_cumprod / alphas_cumprod[0] + betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) + betas = torch.clip(betas, 0, 0.999) + else: + raise NotImplementedError(f"{schedule_strategy} does is not implemented for {self.__class__}") + + + alphas = 1-betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.) + + + register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32)) + + register_buffer('betas', betas) # (0 , 1) + + register_buffer('alphas', alphas) # (1 , 0) + register_buffer('alphas_cumprod', alphas_cumprod) + register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) + register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod)) + register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod)) + register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod)) + register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1)) + + register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) + register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) + register_buffer('posterior_variance', betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)) + + + def estimate_x_t(self, x_0, t, x_T=None): + # NOTE: t == 0 means diffused for 1 step (https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils.py#L108) + # NOTE: t == 0 means not diffused for cold-diffusion (in contradiction to the above comment) https://github.com/arpitbansal297/Cold-Diffusion-Models/blob/c828140b7047ca22f995b99fbcda360bc30fc25d/denoising-diffusion-pytorch/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py#L361 + x_T = self.x_final(x_0) if x_T is None else x_T + # ndim = x_0.ndim + # x_t = (self.extract(self.sqrt_alphas_cumprod, t, ndim)*x_0 + + # self.extract(self.sqrt_one_minus_alphas_cumprod, t, ndim)*x_T) + def clipper(b): + tb = t[b] + if tb<0: + return x_0[b] + elif tb>=self.T: + return x_T[b] + else: + return self.sqrt_alphas_cumprod[tb]*x_0[b]+self.sqrt_one_minus_alphas_cumprod[tb]*x_T[b] + x_t = torch.stack([clipper(b) for b in range(t.shape[0])]) + return x_t + + + def estimate_x_t_prior_from_x_T(self, x_t, t, x_T, use_log=True, clip_x0=True, var_scale=0, cold_diffusion=False): + x_0 = self.estimate_x_0(x_t, x_T, t, clip_x0) + return self.estimate_x_t_prior_from_x_0(x_t, t, x_0, use_log, clip_x0, var_scale, cold_diffusion) + + + def estimate_x_t_prior_from_x_0(self, x_t, t, x_0, use_log=True, clip_x0=True, var_scale=0, cold_diffusion=False): + x_0 = self._clip_x_0(x_0) if clip_x0 else x_0 + + if cold_diffusion: # see https://arxiv.org/abs/2208.09392 + x_T_est = self.estimate_x_T(x_t, x_0, t) # or use x_T estimated by UNet if available? + x_t_est = self.estimate_x_t(x_0, t, x_T=x_T_est) + x_t_prior = self.estimate_x_t(x_0, t-1, x_T=x_T_est) + noise_t = x_t_est-x_t_prior + x_t_prior = x_t-noise_t + else: + mean = self.estimate_mean_t(x_t, x_0, t) + variance = self.estimate_variance_t(t, x_t.ndim, use_log, var_scale) + std = torch.exp(0.5*variance) if use_log else torch.sqrt(variance) + std[t==0] = 0.0 + x_T = self.x_final(x_t) + x_t_prior = mean+std*x_T + return x_t_prior, x_0 + + + def estimate_mean_t(self, x_t, x_0, t): + ndim = x_t.ndim + return (self.extract(self.posterior_mean_coef1, t, ndim)*x_0+ + self.extract(self.posterior_mean_coef2, t, ndim)*x_t) + + + def estimate_variance_t(self, t, ndim, log=True, var_scale=0, eps=1e-20): + min_variance = self.extract(self.posterior_variance, t, ndim) + max_variance = self.extract(self.betas, t, ndim) + if log: + min_variance = torch.log(min_variance.clamp(min=eps)) + max_variance = torch.log(max_variance.clamp(min=eps)) + return var_scale * max_variance + (1 - var_scale) * min_variance + + + def estimate_x_0(self, x_t, x_T, t, clip_x0=True): + ndim = x_t.ndim + x_0 = (self.extract(self.sqrt_recip_alphas_cumprod, t, ndim)*x_t - + self.extract(self.sqrt_recipm1_alphas_cumprod, t, ndim)*x_T) + x_0 = self._clip_x_0(x_0) if clip_x0 else x_0 + return x_0 + + + def estimate_x_T(self, x_t, x_0, t, clip_x0=True): + ndim = x_t.ndim + x_0 = self._clip_x_0(x_0) if clip_x0 else x_0 + return ((self.extract(self.sqrt_recip_alphas_cumprod, t, ndim)*x_t - x_0)/ + self.extract(self.sqrt_recipm1_alphas_cumprod, t, ndim)) + + + @classmethod + def x_final(cls, x): + return torch.randn_like(x) + + @classmethod + def _clip_x_0(cls, x_0): + # See "static/dynamic thresholding" in Imagen https://arxiv.org/abs/2205.11487 + + # "static thresholding" + m = 1 # Set this to about 4*sigma = 4 if latent diffusion is used + x_0 = x_0.clamp(-m, m) + + # "dynamic thresholding" + # r = torch.stack([torch.quantile(torch.abs(x_0_b), 0.997) for x_0_b in x_0]) + # r = torch.maximum(r, torch.full_like(r,m)) + # x_0 = torch.stack([x_0_b.clamp(-r_b, r_b)/r_b*m for x_0_b, r_b in zip(x_0, r) ] ) + + return x_0 + + + diff --git a/medical_diffusion/models/noise_schedulers/scheduler_base.py b/medical_diffusion/models/noise_schedulers/scheduler_base.py new file mode 100644 index 0000000..1fbd790 --- /dev/null +++ b/medical_diffusion/models/noise_schedulers/scheduler_base.py @@ -0,0 +1,49 @@ + + +import torch +import torch.nn as nn + + +class BasicNoiseScheduler(nn.Module): + def __init__( + self, + timesteps=1000, + T=None, + ): + super().__init__() + self.timesteps = timesteps + self.T = timesteps if T is None else T + + self.register_buffer('timesteps_array', torch.linspace(0, self.T-1, self.timesteps, dtype=torch.long)) # NOTE: End is inclusive therefore use -1 to get [0, T-1] + + def __len__(self): + return len(self.timesteps) + + def sample(self, x_0): + """Randomly sample t from [0,T] and return x_t and x_T based on x_0""" + t = torch.randint(0, self.T, (x_0.shape[0],), dtype=torch.long, device=x_0.device) # NOTE: High is exclusive, therefore [0, T-1] + x_T = self.x_final(x_0) + return self.estimate_x_t(x_0, t, x_T), x_T, t + + def estimate_x_t_prior_from_x_T(self, x_T, t, **kwargs): + raise NotImplemented + + def estimate_x_t_prior_from_x_0(self, x_0, t, **kwargs): + raise NotImplemented + + def estimate_x_t(self, x_0, t, x_T=None, **kwargs): + """Get x_t at time t""" + raise NotImplemented + + @classmethod + def x_final(cls, x): + """Get noise that should be obtained for t->T """ + raise NotImplemented + + @staticmethod + def extract(x, t, ndim): + """Extract values from x at t and reshape them to n-dim tensor""" + return x.gather(0, t).reshape(-1, *((1,)*(ndim-1))) + + + diff --git a/medical_diffusion/models/pipelines/__init__.py b/medical_diffusion/models/pipelines/__init__.py new file mode 100644 index 0000000..9dcccb7 --- /dev/null +++ b/medical_diffusion/models/pipelines/__init__.py @@ -0,0 +1 @@ +from .diffusion_pipeline import DiffusionPipeline diff --git a/medical_diffusion/models/pipelines/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/models/pipelines/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..8862fee Binary files /dev/null and b/medical_diffusion/models/pipelines/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/models/pipelines/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/models/pipelines/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..c2c8a5b Binary files /dev/null and b/medical_diffusion/models/pipelines/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/models/pipelines/__pycache__/diffusion_pipeline.cpython-36.pyc b/medical_diffusion/models/pipelines/__pycache__/diffusion_pipeline.cpython-36.pyc new file mode 100644 index 0000000..2614f68 Binary files /dev/null and b/medical_diffusion/models/pipelines/__pycache__/diffusion_pipeline.cpython-36.pyc differ diff --git a/medical_diffusion/models/pipelines/__pycache__/diffusion_pipeline.cpython-38.pyc b/medical_diffusion/models/pipelines/__pycache__/diffusion_pipeline.cpython-38.pyc new file mode 100644 index 0000000..daa4fdc Binary files /dev/null and b/medical_diffusion/models/pipelines/__pycache__/diffusion_pipeline.cpython-38.pyc differ diff --git a/medical_diffusion/models/pipelines/diffusion_pipeline.py b/medical_diffusion/models/pipelines/diffusion_pipeline.py new file mode 100644 index 0000000..707fbb2 --- /dev/null +++ b/medical_diffusion/models/pipelines/diffusion_pipeline.py @@ -0,0 +1,371 @@ + + +from pathlib import Path +from tqdm import tqdm + +import torch +import torch.nn.functional as F +from torchvision.utils import save_image +import streamlit as st + +from medical_diffusion.models import BasicModel +from medical_diffusion.utils.train_utils import EMAModel +from medical_diffusion.utils.math_utils import kl_gaussians +import nibabel as nib +import numpy as np + + + + + +class DiffusionPipeline(BasicModel): + def __init__(self, + noise_scheduler, + noise_estimator, + latent_embedder=None, + noise_scheduler_kwargs={}, + noise_estimator_kwargs={}, + latent_embedder_checkpoint='', + estimator_objective = 'x_T', # 'x_T' or 'x_0' + estimate_variance=False, + use_self_conditioning=False, + classifier_free_guidance_dropout=0.5, # Probability to drop condition during training, has only an effect for label-conditioned training + num_samples = 4, + do_input_centering = True, # Only for training + clip_x0=True, # Has only an effect during traing if use_self_conditioning=True, import for inference/sampling + use_ema = False, + ema_kwargs = {}, + optimizer=torch.optim.AdamW, + optimizer_kwargs={'lr':1e-4}, # stable-diffusion ~ 1e-4 + lr_scheduler= None, # stable-diffusion - LambdaLR + lr_scheduler_kwargs={}, + loss=torch.nn.L1Loss, + loss_kwargs={}, + sample_every_n_steps = 1000, + masked_condition = False + ): + # self.save_hyperparameters(ignore=['noise_estimator', 'noise_scheduler']) + super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs) + self.loss_fct = loss(**loss_kwargs) + self.sample_every_n_steps=sample_every_n_steps + + noise_estimator_kwargs['estimate_variance'] = estimate_variance + noise_estimator_kwargs['use_self_conditioning'] = use_self_conditioning + + self.noise_scheduler = noise_scheduler(**noise_scheduler_kwargs) + self.noise_estimator = noise_estimator(**noise_estimator_kwargs) + + with torch.no_grad(): + if latent_embedder is not None: + self.latent_embedder = latent_embedder.load_from_checkpoint(latent_embedder_checkpoint) + for param in self.latent_embedder.parameters(): + param.requires_grad = False + else: + self.latent_embedder = None + + self.estimator_objective = estimator_objective + self.use_self_conditioning = use_self_conditioning + self.num_samples = num_samples + self.classifier_free_guidance_dropout = classifier_free_guidance_dropout + self.do_input_centering = do_input_centering + self.estimate_variance = estimate_variance + self.clip_x0 = clip_x0 + + self.use_ema = use_ema + if use_ema: + self.ema_model = EMAModel(self.noise_estimator, **ema_kwargs) + self.masked_condition = masked_condition + + + + def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): + results = {} + x_0 = batch['target'] + condition = batch['input'] + # print("0- condition:",condition.shape,condition.max(),condition.min()) + # print("x_0:",x_0.shape,x_0.max(),x_0.min()) + # origin_x_0 = x_0 + if self.masked_condition: + masked_x_0 = x_0 * condition + # print("0- masked_x_0:",masked_x_0.shape) + + # Embed into latent space or normalize + if self.latent_embedder is not None: + self.latent_embedder.eval() + with torch.no_grad(): + x_0 = self.latent_embedder.encode(x_0) + if self.masked_condition: + masked_x_0 = self.latent_embedder.encode(masked_x_0) + + + if self.do_input_centering: + x_0 = (x_0 - x_0.min())/(x_0.max() - x_0.min()) + x_0 = 2*x_0-1 # [0, 1] -> [-1, 1] + + # if self.clip_x0: + # x_0 = torch.clamp(x_0, -1, 1) + + + # Sample Noise + with torch.no_grad(): + # Randomly selecting t [0,T-1] and compute x_t (noisy version of x_0 at t) + x_t, x_T, t = self.noise_scheduler.sample(x_0) + + # Use EMA Model + if self.use_ema and (state != 'train'): + noise_estimator = self.ema_model.averaged_model + else: + noise_estimator = self.noise_estimator + + # Re-estimate x_T or x_0, self-conditioned on previous estimate + self_cond = None + if self.use_self_conditioning: + with torch.no_grad(): + pred, pred_vertical = noise_estimator(x_t, t, condition, None) + if self.estimate_variance: + pred, _ = pred.chunk(2, dim = 1) # Seperate actual prediction and variance estimation + if self.estimator_objective == "x_T": # self condition on x_0 + self_cond = self.noise_scheduler.estimate_x_0(x_t, pred, t=t, clip_x0=self.clip_x0) + elif self.estimator_objective == "x_0": # self condition on x_T + self_cond = self.noise_scheduler.estimate_x_T(x_t, pred, t=t, clip_x0=self.clip_x0) + else: + raise NotImplementedError(f"Option estimator_target={self.estimator_objective} not supported.") + + # Classifier free guidance + # if torch.rand(1) [0, 1] + pred_logvar = self.noise_scheduler.estimate_variance_t(t, x_t.ndim, log=True, var_scale=var_scale) + # pred_logvar = pred_var # If variance is estimated directly + + if self.estimator_objective == 'x_T': + pred_x_0 = self.noise_scheduler.estimate_x_0(x_t, x_T, t, clip_x0=self.clip_x0) + elif self.estimator_objective == "x_0": + pred_x_0 = pred + else: + raise NotImplementedError() + + with torch.no_grad(): + pred_mean = self.noise_scheduler.estimate_mean_t(x_t, pred_x_0, t) + true_mean = self.noise_scheduler.estimate_mean_t(x_t, x_0, t) + true_logvar = self.noise_scheduler.estimate_variance_t(t, x_t.ndim, log=True, var_scale=0) + + kl_loss = torch.mean(kl_gaussians(true_mean, true_logvar, pred_mean, pred_logvar), dim=list(range(1, x_0.ndim))) + nnl_loss = torch.mean(F.gaussian_nll_loss(pred_x_0, x_0, torch.exp(pred_logvar), reduction='none'), dim=list(range(1, x_0.ndim))) + var_loss = torch.mean(torch.where(t == 0, nnl_loss, kl_loss)) + loss += var_loss + + results['variance_scale'] = torch.mean(var_scale) + results['variance_loss'] = var_loss + + + # ----------------------------- Deep Supervision ------------------------- + for i, pred_i in enumerate(pred_vertical): + target_i = F.interpolate(target, size=pred_i.shape[2:], mode=interpolation_mode, align_corners=None) + loss += self.loss_fct(pred_i, target_i)*weights[i+1] + results['loss'] = loss + + + + # --------------------- Compute Metrics ------------------------------- + with torch.no_grad(): + results['L2'] = F.mse_loss(pred, target) + results['L1'] = F.l1_loss(pred, target) + # results['SSIM'] = SSIMMetric(data_range=pred.max()-pred.min(), spatial_dims=source.ndim-2)(pred, target) + + # for i, pred_i in enumerate(pred_vertical): + # target_i = F.interpolate(target, size=pred_i.shape[2:], mode=interpolation_mode, align_corners=None) + # results[f'L1_{i}'] = F.l1_loss(pred_i, target_i).detach() + + + + # ----------------- Log Scalars ---------------------- + for metric_name, metric_val in results.items(): + self.log(f"{state}/{metric_name}", metric_val, batch_size=x_0.shape[0], on_step=True, on_epoch=True) + + + #------------------ Log Image ----------------------- + if self.global_step != 0 and self.global_step % self.sample_every_n_steps == 0: + dataformats = 'NHWC' if x_0.ndim == 5 else 'HWC' + def norm(x): + return (x-x.min())/(x.max()-x.min()) + + sample_cond = condition[0:self.num_samples] if condition is not None else None + sample_img = self.sample(num_samples=self.num_samples, img_size=x_0.shape[1:], condition=sample_cond).detach() + + sample_img = (sample_img + 1)/2 + log_step = self.global_step // self.sample_every_n_steps + + path_out = Path(self.logger.log_dir)/'images' + path_out.mkdir(parents=True, exist_ok=True) + # for 3D images use depth as batch :[D, C, H, W], never show more than 32 images + def depth2batch(image): + return (image if image.ndim<5 else torch.swapaxes(image[0], 0, 1)) + images = depth2batch(sample_img)[:32] + save_image(images, path_out/f'sample_{log_step}.png', normalize=True) + sample_img1 = sample_img.squeeze(0).squeeze(0).detach().cpu().numpy() + nifti_img = nib.Nifti1Image(sample_img1, affine = np.eye(4)) + nib.save(nifti_img, path_out/f'sample_{log_step}.nii.gz') + + return loss + + + def forward(self, x_t, t, condition=None, self_cond=None, guidance_scale=1.0, cold_diffusion=False, un_cond=None): + # Note: x_t expected to be in range ~ [-1, 1] + if self.use_ema: + noise_estimator = self.ema_model.averaged_model + else: + noise_estimator = self.noise_estimator + + # Concatenate inputs for guided and unguided diffusion as proposed by classifier-free-guidance + if (condition is not None) and (guidance_scale != 1.0): + # Model prediction + pred_uncond, _ = noise_estimator(x_t, t, condition=un_cond, self_cond=self_cond) + pred_cond, _ = noise_estimator(x_t, t, condition=condition, self_cond=self_cond) + pred = pred_uncond + guidance_scale * (pred_cond - pred_uncond) + + if self.estimate_variance: + pred_uncond, pred_var_uncond = pred_uncond.chunk(2, dim = 1) + pred_cond, pred_var_cond = pred_cond.chunk(2, dim = 1) + pred_var = pred_var_uncond + guidance_scale * (pred_var_cond - pred_var_uncond) + else: + pred, _ = noise_estimator(x_t, t, condition=condition, self_cond=self_cond) + if self.estimate_variance: + pred, pred_var = pred.chunk(2, dim = 1) + + if self.estimate_variance: + pred_var_scale = pred_var/2+0.5 # [-1, 1] -> [0, 1] + pred_var_value = pred_var + else: + pred_var_scale = 0 + pred_var_value = None + + # pred_var_scale = pred_var_scale.clamp(0, 1) + + if self.estimator_objective == 'x_0': + x_t_prior, x_0 = self.noise_scheduler.estimate_x_t_prior_from_x_0(x_t, t, pred, clip_x0=self.clip_x0, var_scale=pred_var_scale, cold_diffusion=cold_diffusion) + x_T = self.noise_scheduler.estimate_x_T(x_t, x_0=pred, t=t, clip_x0=self.clip_x0) + self_cond = x_T + elif self.estimator_objective == 'x_T': + x_t_prior, x_0 = self.noise_scheduler.estimate_x_t_prior_from_x_T(x_t, t, pred, clip_x0=self.clip_x0, var_scale=pred_var_scale, cold_diffusion=cold_diffusion) + x_T = pred + self_cond = x_0 + else: + raise ValueError("Unknown Objective") + + return x_t_prior, x_0, x_T, self_cond + + + @torch.no_grad() + def denoise(self, x_t, steps=None, condition=None, use_ddim=True, **kwargs): + self_cond = None + + # ---------- run denoise loop --------------- + if use_ddim: + steps = self.noise_scheduler.timesteps if steps is None else steps + timesteps_array = torch.linspace(0, self.noise_scheduler.T-1, steps, dtype=torch.long, device=x_t.device) # [0, 1, 2, ..., T-1] if steps = T + else: + timesteps_array = self.noise_scheduler.timesteps_array[slice(0, steps)] # [0, ...,T-1] (target time not time of x_t) + + st_prog_bar = st.progress(0) + for i, t in tqdm(enumerate(reversed(timesteps_array))): + st_prog_bar.progress((i+1)/len(timesteps_array)) + + # UNet prediction + x_t, x_0, x_T, self_cond = self(x_t, t.expand(x_t.shape[0]), condition, self_cond=self_cond, **kwargs) + self_cond = self_cond if self.use_self_conditioning else None + + if use_ddim and (steps-i-1>0): + t_next = timesteps_array[steps-i-2] + alpha = self.noise_scheduler.alphas_cumprod[t] + alpha_next = self.noise_scheduler.alphas_cumprod[t_next] + sigma = kwargs.get('eta', 1) * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt() + c = (1 - alpha_next - sigma ** 2).sqrt() + noise = torch.randn_like(x_t) + x_t = x_0 * alpha_next.sqrt() + c * x_T + sigma * noise + + # ------ Eventually decode from latent space into image space-------- + if self.latent_embedder is not None: + x_t = self.latent_embedder.decode(x_t) + + return x_t # Should be x_0 in final step (t=0) + + @torch.no_grad() + def sample(self, num_samples, img_size, condition=None, **kwargs): + template = torch.zeros((num_samples, *img_size), device=self.device) + x_T = self.noise_scheduler.x_final(template) + x_0 = self.denoise(x_T, condition=condition, **kwargs) + return x_0 + + + @torch.no_grad() + def interpolate(self, img1, img2, i = None, condition=None, lam = 0.5, **kwargs): + assert img1.shape == img2.shape, "Image 1 and 2 must have equal shape" + + t = self.noise_scheduler.T-1 if i is None else i + t = torch.full(img1.shape[:1], i, device=img1.device) + + img1_t = self.noise_scheduler.estimate_x_t(img1, t=t, clip_x0=self.clip_x0) + img2_t = self.noise_scheduler.estimate_x_t(img2, t=t, clip_x0=self.clip_x0) + + img = (1 - lam) * img1_t + lam * img2_t + img = self.denoise(img, i, condition, **kwargs) + return img + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.ema_model.step(self.noise_estimator) + + def configure_optimizers(self): + optimizer = self.optimizer(self.noise_estimator.parameters(), **self.optimizer_kwargs) + if self.lr_scheduler is not None: + lr_scheduler = { + 'scheduler': self.lr_scheduler(optimizer, **self.lr_scheduler_kwargs), + 'interval': 'step', + 'frequency': 1 + } + return [optimizer], [lr_scheduler] + else: + return [optimizer] \ No newline at end of file diff --git a/medical_diffusion/models/utils/__init__.py b/medical_diffusion/models/utils/__init__.py new file mode 100644 index 0000000..10ea9d8 --- /dev/null +++ b/medical_diffusion/models/utils/__init__.py @@ -0,0 +1,2 @@ +from .attention_blocks import * +from .conv_blocks import * \ No newline at end of file diff --git a/medical_diffusion/models/utils/__pycache__/__init__.cpython-36.pyc b/medical_diffusion/models/utils/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..e2a87c2 Binary files /dev/null and b/medical_diffusion/models/utils/__pycache__/__init__.cpython-36.pyc differ diff --git a/medical_diffusion/models/utils/__pycache__/__init__.cpython-38.pyc b/medical_diffusion/models/utils/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000..60c06cc Binary files /dev/null and b/medical_diffusion/models/utils/__pycache__/__init__.cpython-38.pyc differ diff --git a/medical_diffusion/models/utils/__pycache__/attention_blocks.cpython-36.pyc b/medical_diffusion/models/utils/__pycache__/attention_blocks.cpython-36.pyc new file mode 100644 index 0000000..1a3dbfd Binary files /dev/null and b/medical_diffusion/models/utils/__pycache__/attention_blocks.cpython-36.pyc differ diff --git a/medical_diffusion/models/utils/__pycache__/attention_blocks.cpython-38.pyc b/medical_diffusion/models/utils/__pycache__/attention_blocks.cpython-38.pyc new file mode 100644 index 0000000..3d3d7de Binary files /dev/null and b/medical_diffusion/models/utils/__pycache__/attention_blocks.cpython-38.pyc differ diff --git a/medical_diffusion/models/utils/__pycache__/conv_blocks.cpython-36.pyc b/medical_diffusion/models/utils/__pycache__/conv_blocks.cpython-36.pyc new file mode 100644 index 0000000..531e0f9 Binary files /dev/null and b/medical_diffusion/models/utils/__pycache__/conv_blocks.cpython-36.pyc differ diff --git a/medical_diffusion/models/utils/__pycache__/conv_blocks.cpython-38.pyc b/medical_diffusion/models/utils/__pycache__/conv_blocks.cpython-38.pyc new file mode 100644 index 0000000..ef822fc Binary files /dev/null and b/medical_diffusion/models/utils/__pycache__/conv_blocks.cpython-38.pyc differ diff --git a/medical_diffusion/models/utils/attention_blocks.py b/medical_diffusion/models/utils/attention_blocks.py new file mode 100644 index 0000000..b609017 --- /dev/null +++ b/medical_diffusion/models/utils/attention_blocks.py @@ -0,0 +1,335 @@ +import torch.nn.functional as F +import torch.nn as nn +import torch + +from monai.networks.blocks import TransformerBlock +from monai.networks.layers.utils import get_norm_layer, get_dropout_layer +from monai.networks.layers.factories import Conv +from einops import rearrange + + +class GEGLU(nn.Module): + def __init__(self, in_channels, out_channels): + super().__init__() + self.norm = nn.LayerNorm(in_channels) + self.proj = nn.Linear(in_channels, out_channels*2, bias=True) + + def forward(self, x): + # x expected to be [B, C, *] + # Workaround as layer norm can't currently be applied on arbitrary dimension: https://github.com/pytorch/pytorch/issues/71465 + b, c, *spatial = x.shape + x = x.reshape(b, c, -1).transpose(1, 2) # -> [B, C, N] -> [B, N, C] + x = self.norm(x) + x, gate = self.proj(x).chunk(2, dim=-1) + x = x * F.gelu(gate) + return x.transpose(1, 2).reshape(b, -1, *spatial) # -> [B, C, N] -> [B, C, *] + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + +def compute_attention(q,k,v , num_heads, scale): + q, k, v = map(lambda t: rearrange(t, 'b (h d) n -> (b h) d n', h=num_heads), (q, k, v)) # [(BxHeads), Dim_per_head, N] + + attn = (torch.einsum('b d i, b d j -> b i j', q*scale, k*scale)).softmax(dim=-1) # Matrix product = [(BxHeads), Dim_per_head, N] * [(BxHeads), Dim_per_head, N'] =[(BxHeads), N, N'] + + out = torch.einsum('b i j, b d j-> b d i', attn, v) # Matrix product: [(BxHeads), N, N'] * [(BxHeads), Dim_per_head, N'] = [(BxHeads), Dim_per_head, N] + out = rearrange(out, '(b h) d n-> b (h d) n', h=num_heads) # -> [B, (Heads x Dim_per_head), N] + + return out + + +class LinearTransformerNd(nn.Module): + """ Combines multi-head self-attention and multi-head cross-attention. + + Multi-Head Self-Attention: + Similar to multi-head self-attention (https://arxiv.org/abs/1706.03762) without Norm+MLP (compare Monai TransformerBlock) + Proposed here: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + Similar to: https://github.com/CompVis/stable-diffusion/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/ldm/modules/diffusionmodules/openaimodel.py#L278 + Similar to: https://github.com/CompVis/stable-diffusion/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/ldm/modules/attention.py#L80 + Similar to: https://github.com/lucidrains/denoising-diffusion-pytorch/blob/dfbafee555bdae80b55d63a989073836bbfc257e/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py#L209 + Similar to: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py#L150 + + CrossAttention: + Proposed here: https://github.com/CompVis/stable-diffusion/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/ldm/modules/attention.py#L152 + + """ + def __init__( + self, + spatial_dims, + in_channels, + out_channels, # WARNING: if out_channels != in_channels, skip connection is disabled + num_heads=8, + ch_per_head=32, # rule of thumb: 32 or 64 channels per head (see stable-diffusion / diffusion models beat GANs) + norm_name=("GROUP", {'num_groups':32, "affine": True}), # Or use LayerNorm but be aware of https://github.com/pytorch/pytorch/issues/71465 (=> GroupNorm with num_groups=1) + dropout=None, + emb_dim=None, + ): + super().__init__() + hid_channels = num_heads*ch_per_head + self.num_heads = num_heads + self.scale = ch_per_head**-0.25 # Should be 1/sqrt("queries and keys of dimension"), Note: additional sqrt needed as it follows OpenAI: (q * scale) * (k * scale) instead of (q *k) * scale + + self.norm_x = get_norm_layer(norm_name, spatial_dims=spatial_dims, channels=in_channels) + emb_dim = in_channels if emb_dim is None else emb_dim + + Convolution = Conv["conv", spatial_dims] + self.to_q = Convolution(in_channels, hid_channels, 1) + self.to_k = Convolution(emb_dim, hid_channels, 1) + self.to_v = Convolution(emb_dim, hid_channels, 1) + + self.to_out = nn.Sequential( + zero_module(Convolution(hid_channels, out_channels, 1)), + nn.Identity() if dropout is None else get_dropout_layer(name=dropout, dropout_dim=spatial_dims) + ) + + def forward(self, x, embedding=None): + # x expected to be [B, C, *] and embedding is None or [B, C*] or [B, C*, *] + # if no embedding is given, cross-attention defaults to self-attention + + # Normalize + b, c, *spatial = x.shape + x_n = self.norm_x(x) + + # Attention: embedding (cross-attention) or x (self-attention) + if embedding is None: + embedding = x_n # WARNING: This assumes that emb_dim==in_channels + else: + if embedding.ndim == 2: + embedding = embedding.reshape(*embedding.shape[:2], *[1]*(x.ndim-2)) # [B, C*] -> [B, C*, *] + # Why no normalization for embedding here? + + # Convolution + q = self.to_q(x_n) # -> [B, (Heads x Dim_per_head), *] + k = self.to_k(embedding) # -> [B, (Heads x Dim_per_head), *] + v = self.to_v(embedding) # -> [B, (Heads x Dim_per_head), *] + + # Flatten + q = q.reshape(b, c, -1) # -> [B, (Heads x Dim_per_head), N] + k = k.reshape(*embedding.shape[:2], -1) # -> [B, (Heads x Dim_per_head), N'] + v = v.reshape(*embedding.shape[:2], -1) # -> [B, (Heads x Dim_per_head), N'] + + # Apply attention + out = compute_attention(q, k, v, self.num_heads, self.scale) + + out = out.reshape(*out.shape[:2], *spatial) # -> [B, (Heads x Dim_per_head), *] + out = self.to_out(out) # -> [B, C', *] + + + if x.shape == out.shape: + out = x + out + return out # [B, C', *] + + +class LinearTransformer(nn.Module): + """ See LinearTransformer, however this implementation is fixed to Conv1d/Linear""" + def __init__( + self, + spatial_dims, + in_channels, + out_channels, # WARNING: if out_channels != in_channels, skip connection is disabled + num_heads, + ch_per_head=32, # rule of thumb: 32 or 64 channels per head (see stable-diffusion / diffusion models beat GANs) + norm_name=("GROUP", {'num_groups':32, "affine": True}), + dropout=None, + emb_dim=None + ): + super().__init__() + hid_channels = num_heads*ch_per_head + self.num_heads = num_heads + self.scale = ch_per_head**-0.25 # Should be 1/sqrt("queries and keys of dimension"), Note: additional sqrt needed as it follows OpenAI: (q * scale) * (k * scale) instead of (q *k) * scale + + self.norm_x = get_norm_layer(norm_name, spatial_dims=spatial_dims, channels=in_channels) + emb_dim = in_channels if emb_dim is None else emb_dim + + # Note: Conv1d and Linear are interchangeable but order of input changes [B, C, N] <-> [B, N, C] + self.to_q = nn.Conv1d(in_channels, hid_channels, 1) + self.to_k = nn.Conv1d(emb_dim, hid_channels, 1) + self.to_v = nn.Conv1d(emb_dim, hid_channels, 1) + # self.to_qkv = nn.Conv1d(emb_dim, hid_channels*3, 1) + + self.to_out = nn.Sequential( + zero_module(nn.Conv1d(hid_channels, out_channels, 1)), + nn.Identity() if dropout is None else get_dropout_layer(name=dropout, dropout_dim=spatial_dims) + ) + + def forward(self, x, embedding=None): + # x expected to be [B, C, *] and embedding is None or [B, C*] or [B, C*, *] + # if no embedding is given, cross-attention defaults to self-attention + + # Normalize + b, c, *spatial = x.shape + x_n = self.norm_x(x) + + # Attention: embedding (cross-attention) or x (self-attention) + if embedding is None: + embedding = x_n # WARNING: This assumes that emb_dim==in_channels + else: + if embedding.ndim == 2: + embedding = embedding.reshape(*embedding.shape[:2], *[1]*(x.ndim-2)) # [B, C*] -> [B, C*, *] + # Why no normalization for embedding here? + + # Flatten + x_n = x_n.reshape(b, c, -1) # [B, C, *] -> [B, C, N] + embedding = embedding.reshape(*embedding.shape[:2], -1) # [B, C*, *] -> [B, C*, N'] + + # Convolution + q = self.to_q(x_n) # -> [B, (Heads x Dim_per_head), N] + k = self.to_k(embedding) # -> [B, (Heads x Dim_per_head), N'] + v = self.to_v(embedding) # -> [B, (Heads x Dim_per_head), N'] + # qkv = self.to_qkv(x_n) + # q,k,v = qkv.split(qkv.shape[1]//3, dim=1) + + # Apply attention + out = compute_attention(q, k, v, self.num_heads, self.scale) + + out = self.to_out(out) # -> [B, C', N] + out = out.reshape(*out.shape[:2], *spatial) # -> [B, C', *] + + if x.shape == out.shape: + out = x + out + return out # [B, C', *] + + + + +class BasicTransformerBlock(nn.Module): + def __init__( + self, + spatial_dims, + in_channels, + out_channels, # WARNING: if out_channels != in_channels, skip connection is disabled + num_heads, + ch_per_head=32, + norm_name=("GROUP", {'num_groups':32, "affine": True}), + dropout=None, + emb_dim=None + ): + super().__init__() + self.self_atn = LinearTransformer(spatial_dims, in_channels, in_channels, num_heads, ch_per_head, norm_name, dropout, None) + if emb_dim is not None: + self.cros_atn = LinearTransformer(spatial_dims, in_channels, in_channels, num_heads, ch_per_head, norm_name, dropout, emb_dim) + self.proj_out = nn.Sequential( + GEGLU(in_channels, in_channels*4), + nn.Identity() if dropout is None else get_dropout_layer(name=dropout, dropout_dim=spatial_dims), + Conv["conv", spatial_dims](in_channels*4, out_channels, 1, bias=True) + ) + + + def forward(self, x, embedding=None): + # x expected to be [B, C, *] and embedding is None or [B, C*] or [B, C*, *] + x = self.self_atn(x) + if embedding is not None: + x = self.cros_atn(x, embedding=embedding) + out = self.proj_out(x) + if out.shape[1] == x.shape[1]: + return out + x + return x + +class SpatialTransformer(nn.Module): + """ Proposed here: https://github.com/CompVis/stable-diffusion/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/ldm/modules/attention.py#L218 + Unrelated to: https://arxiv.org/abs/1506.02025 + """ + def __init__( + self, + spatial_dims, + in_channels, + out_channels, # WARNING: if out_channels != in_channels, skip connection is disabled + num_heads, + ch_per_head=32, # rule of thumb: 32 or 64 channels per head (see stable-diffusion / diffusion models beat GANs) + norm_name = ("GROUP", {'num_groups':32, "affine": True}), + dropout=None, + emb_dim=None, + depth=1 + ): + super().__init__() + self.in_channels = in_channels + self.norm = get_norm_layer(norm_name, spatial_dims=spatial_dims, channels=in_channels) + conv_class = Conv["conv", spatial_dims] + hid_channels = num_heads*ch_per_head + + self.proj_in = conv_class( + in_channels, + hid_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + self.transformer_blocks = nn.ModuleList([ + BasicTransformerBlock(spatial_dims, hid_channels, hid_channels, num_heads, ch_per_head, norm_name, dropout=dropout, emb_dim=emb_dim) + for _ in range(depth)] + ) + + self.proj_out = conv_class( # Note: zero_module is used in original code + hid_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, x, embedding=None): + # x expected to be [B, C, *] and embedding is None or [B, C*] or [B, C*, *] + # Note: if no embedding is given, cross-attention is disabled + h = self.norm(x) + h = self.proj_in(h) + + for block in self.transformer_blocks: + h = block(h, embedding=embedding) + + h = self.proj_out(h) # -> [B, C'', *] + if h.shape == x.shape: + return h + x + return h + + +class Attention(nn.Module): + def __init__( + self, + spatial_dims, + in_channels, + out_channels, + num_heads=8, + ch_per_head=32, # rule of thumb: 32 or 64 channels per head (see stable-diffusion / diffusion models beat GANs) + norm_name = ("GROUP", {'num_groups':32, "affine": True}), + dropout=0, + emb_dim=None, + depth=1, + attention_type='linear' + ) -> None: + super().__init__() + if attention_type == 'spatial': + self.attention = SpatialTransformer( + spatial_dims=spatial_dims, + in_channels=in_channels, + out_channels=out_channels, + num_heads=num_heads, + ch_per_head=ch_per_head, + depth=depth, + norm_name=norm_name, + dropout=dropout, + emb_dim=emb_dim + ) + elif attention_type == 'linear': + self.attention = LinearTransformer( + spatial_dims=spatial_dims, + in_channels=in_channels, + out_channels=out_channels, + num_heads=num_heads, + ch_per_head=ch_per_head, + norm_name=norm_name, + dropout=dropout, + emb_dim=emb_dim + ) + + + def forward(self, x, emb=None): + if hasattr(self, 'attention'): + return self.attention(x, emb) + else: + return x \ No newline at end of file diff --git a/medical_diffusion/models/utils/conv_blocks.py b/medical_diffusion/models/utils/conv_blocks.py new file mode 100644 index 0000000..ad87d49 --- /dev/null +++ b/medical_diffusion/models/utils/conv_blocks.py @@ -0,0 +1,528 @@ +from typing import Optional, Sequence, Tuple, Union, Type + +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np + + +from monai.networks.blocks.dynunet_block import get_padding, get_output_padding +from monai.networks.layers import Pool, Conv +from monai.networks.layers.utils import get_act_layer, get_norm_layer, get_dropout_layer +from monai.utils.misc import ensure_tuple_rep + +from medical_diffusion.models.utils.attention_blocks import Attention, zero_module + +def save_add(*args): + args = [arg for arg in args if arg is not None] + return sum(args) if len(args)>0 else None + + +class SequentialEmb(nn.Sequential): + def forward(self, input, emb): + for module in self: + input = module(input, emb) + return input + + +class BasicDown(nn.Module): + def __init__( + self, + spatial_dims, + in_channels, + out_channels, + kernel_size=3, + stride=2, + learnable_interpolation=True, + use_res=False + ) -> None: + super().__init__() + + if learnable_interpolation: + Convolution = Conv[Conv.CONV, spatial_dims] + self.down_op = Convolution( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=get_padding(kernel_size, stride), + dilation=1, + groups=1, + bias=True, + ) + + if use_res: + self.down_skip = nn.PixelUnshuffle(2) # WARNING: Only supports 2D, , out_channels == 4*in_channels + + else: + Pooling = Pool['avg', spatial_dims] + self.down_op = Pooling( + kernel_size=kernel_size, + stride=stride, + padding=get_padding(kernel_size, stride) + ) + + + def forward(self, x, emb=None): + y = self.down_op(x) + if hasattr(self, 'down_skip'): + y = y+self.down_skip(x) + return y + +class BasicUp(nn.Module): + def __init__( + self, + spatial_dims, + in_channels, + out_channels, + kernel_size=2, + stride=2, + learnable_interpolation=True, + use_res=False, + ) -> None: + super().__init__() + self.learnable_interpolation = learnable_interpolation + if learnable_interpolation: + # TransConvolution = Conv[Conv.CONVTRANS, spatial_dims] + # padding = get_padding(kernel_size, stride) + # output_padding = get_output_padding(kernel_size, stride, padding) + # self.up_op = TransConvolution( + # in_channels, + # out_channels, + # kernel_size=kernel_size, + # stride=stride, + # padding=padding, + # output_padding=output_padding, + # groups=1, + # bias=True, + # dilation=1 + # ) + + self.calc_shape = lambda x: tuple((np.asarray(x)-1)*np.atleast_1d(stride)+np.atleast_1d(kernel_size) + -2*np.atleast_1d(get_padding(kernel_size, stride))) + Convolution = Conv[Conv.CONV, spatial_dims] + self.up_op = Convolution( + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + dilation=1, + groups=1, + bias=True, + ) + + if use_res: + self.up_skip = nn.PixelShuffle(2) # WARNING: Only supports 2D, out_channels == in_channels/4 + else: + self.calc_shape = lambda x: tuple((np.asarray(x)-1)*np.atleast_1d(stride)+np.atleast_1d(kernel_size) + -2*np.atleast_1d(get_padding(kernel_size, stride))) + + def forward(self, x, emb=None): + if self.learnable_interpolation: + new_size = self.calc_shape(x.shape[2:]) + x_res = F.interpolate(x, size=new_size, mode='nearest-exact') + y = self.up_op(x_res) + if hasattr(self, 'up_skip'): + y = y+self.up_skip(x) + return y + else: + new_size = self.calc_shape(x.shape[2:]) + return F.interpolate(x, size=new_size, mode='nearest-exact') + + +class BasicBlock(nn.Module): + """ + A block that consists of Conv-Norm-Drop-Act, similar to blocks.Convolution. + + Args: + spatial_dims: number of spatial dimensions. + in_channels: number of input channels. + out_channels: number of output channels. + kernel_size: convolution kernel size. + stride: convolution stride. + norm_name: feature normalization type and arguments. + act_name: activation layer type and arguments. + dropout: dropout probability. + zero_conv: zero out the parameters of the convolution. + """ + + def __init__( + self, + spatial_dims: int, + in_channels: int, + out_channels: int, + kernel_size: Union[Sequence[int], int], + stride: Union[Sequence[int], int]=1, + norm_name: Union[Tuple, str, None]=None, + act_name: Union[Tuple, str, None] = None, + dropout: Optional[Union[Tuple, str, float]] = None, + zero_conv: bool = False, + ): + super().__init__() + Convolution = Conv[Conv.CONV, spatial_dims] + conv = Convolution( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=get_padding(kernel_size, stride), + dilation=1, + groups=1, + bias=True, + ) + self.conv = zero_module(conv) if zero_conv else conv + + if norm_name is not None: + self.norm = get_norm_layer(name=norm_name, spatial_dims=spatial_dims, channels=out_channels) + if dropout is not None: + self.drop = get_dropout_layer(name=dropout, dropout_dim=spatial_dims) + if act_name is not None: + self.act = get_act_layer(name=act_name) + + + def forward(self, inp): + out = self.conv(inp) + if hasattr(self, "norm"): + out = self.norm(out) + if hasattr(self, 'drop'): + out = self.drop(out) + if hasattr(self, "act"): + out = self.act(out) + return out + +class BasicResBlock(nn.Module): + """ + A block that consists of Conv-Act-Norm + skip. + + Args: + spatial_dims: number of spatial dimensions. + in_channels: number of input channels. + out_channels: number of output channels. + kernel_size: convolution kernel size. + stride: convolution stride. + norm_name: feature normalization type and arguments. + act_name: activation layer type and arguments. + dropout: dropout probability. + zero_conv: zero out the parameters of the convolution. + """ + def __init__( + self, + spatial_dims: int, + in_channels: int, + out_channels: int, + kernel_size: Union[Sequence[int], int], + stride: Union[Sequence[int], int]=1, + norm_name: Union[Tuple, str, None]=None, + act_name: Union[Tuple, str, None] = None, + dropout: Optional[Union[Tuple, str, float]] = None, + zero_conv: bool = False + ): + super().__init__() + self.basic_block = BasicBlock(spatial_dims, in_channels, out_channels, kernel_size, stride, norm_name, act_name, dropout, zero_conv) + Convolution = Conv[Conv.CONV, spatial_dims] + self.conv_res = Convolution( + in_channels, + out_channels, + kernel_size=1, + stride=stride, + padding=get_padding(1, stride), + dilation=1, + groups=1, + bias=True, + ) if in_channels != out_channels else nn.Identity() + + + def forward(self, inp): + out = self.basic_block(inp) + residual = self.conv_res(inp) + out = out+residual + return out + + + +class UnetBasicBlock(nn.Module): + """ + A modified version of monai.networks.blocks.UnetBasicBlock with additional embedding + + Args: + spatial_dims: number of spatial dimensions. + in_channels: number of input channels. + out_channels: number of output channels. + kernel_size: convolution kernel size. + stride: convolution stride. + norm_name: feature normalization type and arguments. + act_name: activation layer type and arguments. + dropout: dropout probability. + emb_channels: Number of embedding channels + """ + + def __init__( + self, + spatial_dims: int, + in_channels: int, + out_channels: int, + kernel_size: Union[Sequence[int], int], + stride: Union[Sequence[int], int]=1, + norm_name: Union[Tuple, str]=None, + act_name: Union[Tuple, str]=None, + dropout: Optional[Union[Tuple, str, float]] = None, + emb_channels: int = None, + blocks = 2 + ): + super().__init__() + self.block_seq = nn.ModuleList([ + BasicBlock(spatial_dims, in_channels if i==0 else out_channels, out_channels, kernel_size, stride, norm_name, act_name, dropout, i==blocks-1) + for i in range(blocks) + ]) + + if emb_channels is not None: + self.local_embedder = nn.Sequential( + get_act_layer(name=act_name), + nn.Linear(emb_channels, out_channels), + ) + + def forward(self, x, emb=None): + # ------------ Embedding ---------- + if emb is not None: + emb = self.local_embedder(emb) + b,c, *_ = emb.shape + sp_dim = x.ndim-2 + emb = emb.reshape(b, c, *((1,)*sp_dim) ) + # scale, shift = emb.chunk(2, dim = 1) + # x = x * (scale + 1) + shift + # x = x+emb + + # ----------- Convolution --------- + n_blocks = len(self.block_seq) + for i, block in enumerate(self.block_seq): + x = block(x) + if (emb is not None) and i" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABr/ElEQVR4nO1daXMjuY6kbLntvt7si439/z9wN3anZ/rwrf0wAXUqnQmAJdlSzwgRiipV8QBJEEiArKrVZrPZjDOd6UxnOtOZzvSPpYtjM3CmM53pTGc605mOS2cwcKYznelMZzrTP5zOYOBMZzrTmc50pn84ncHAmc50pjOd6Uz/cDqDgTOd6UxnOtOZ/uF0BgNnOtOZznSmM/3D6QwGznSmM53pTGf6h9MZDJzpTGc605nO9A+ndTfharV6FQZWq9WL38XFxc5/5oHfk1S9N0mVgWXzcUlZ7pi1Lc4vLi7kb4yx8x95jvtIz8/P299msxlPT0/bY1x/fHwcm81mm4Z/iuL6arXaSePOOV1ce35+Hv/93/9d9vGh6fr6estP9x1bKl13vNW5OmK5HblSvLl24Xi6sc14jXM3xuq/4lWV2Zl3Wb2uLm5v/FDW4xzTcV7mNX63t7eSj9eky8vL8fz8/CZ1KXnA6yod6ibWX2qsKx1T8ZTJKY9z/MdzNeaunY5HV04ls5nueY13/6GteHx8LNO3wcBbEAthlq4yPniPzzOFVSmzLL0yBg4MhDG/vLwcq9Vqe1yv1y8AA6cdYxcMhLJAXp6fn8fFxcV4enrauXdxcTGen5+nwB1OZKe4MU3XSLwl7TPZuorRgQFO5/K6a9wOlPcMKGTpME2laLlsBw5VPVl/qaNr49Lx6+bL+P47vaRVzeUZ0IrnqMsuLy9fgIJMn2fGUunUGTAQui8DA12gzPyhbPJ/bkMH0Hbq7RDrZrYFHToqGHCDG8TCse+kxIHDo7o3S1Vb8Loy6AgQoiw0/gwEsI7Ly8udSYD9FuUewrvoKGWlRHHyHIMyoNj1OrEsZbiytJVccJ1KCXNfMu9Krh2vbAicEum0k+dmJftZOx1l3iTXr8AJ91NWpir7mHToqEBnDjrA6eQpA8uzHrIrV/GGfKkxxnSVfelEvRyAULrNAYFO25EyvrPram5U9OZgIFMKDgFyOtXxmaLK6suOrhzFs7ueIdr4jyAA0XUGBDKlywCAwQciZ9WmTLCVklDp1P1ToM7YdvOrscb/6pzLUmlV+gqIdYyXKzebB6pcB/gq6gICB2yqsp0Ry3iryp4FLqdOXZ3YKYf1FUc9mZZ4xx0dqvLF/9BzmUM0K2N8rv5n+aLOqq59adb5ehUwMKuUnHFTQuC8oqAsXFIBkdm2OeXOvM8AA77XBQIh+LEsEH2hqFoq6EwMrMOV48boVGgpT86Y8v/M0OL9DhhwXn9lyKr5wtdUe/B6Bvg6MlPNHy5nKQhSCjhL/0+gri7M8mNatVeAZXgM72VXwIQjpU73KT45SspeffwCIHT1WJSfOUjKK6/mYFcuXzO6elJ7BpicUFVhFxX+x7SZMp1BeDOKhdvi0HPci0nmyuB7jHrxf1dJu3CqM0p/Z5rxeA+RrwKKWHZ15PSqnK5SddeU4Xb8ZuVU/GIIVt1HWcz6oyqnomMBiNeYa10g4IArAwDe46R4VzqbQ/gKFDsg4PolrgcQUKAAQQCCXGdXWBdmcq3SOEDg+noJZeCrW/beYKDjdcwwNENdRbQkxBjXVT0qfUdI8F4IKaJYtRFwjJ9PFMwamplQVAaOqrIyJXtq4MEBRU6jzjsAqdNfUVYHdGId+4IAlcaBZue1VeXN8JCVxcrblZldqwzRDJ+nIr+zVHnfWVq8ngEBBgWOsj7MAICLCCjvmq8rUID6FvUqlpMZ16jDgYPX0nldIDHrqAbtDQYqJaCUY6aAOgrVKWtVr7uWGUKuP+vUDD2rSRTp+fFBrjfC+AEW4nh5efmi7uATd8zif3ycKvLxUkGn7zMhd2MS/AT/xyDkQd3rGvCKKk+hM0l5PPh6x9C5cjPQzh6a89iqumbnTMWv0xVd6gKIjA88/mqE49EBdE4uHBDApwhc+Q7QKXljXYn6kuUP9YnS5yFDaPSZD9ZJmY5TAADrruRqX4Cc3evMzYoOukywdMKwokRDWAlxZpwqhdLlN1Pos+UEzyovl//09LSzZ8CVdyhiQJQZD0eZkTg176pC70vQNZa9JL1SNuwlK6XW7dtKltz9rD0VMFEenANOWZlYXsdRUFQp7l/V6GekDHw3HxtnFw3IwCrLrOKFAQA6Sh0gk7UBIwJRJsuaclScLsSyK9CAZe1jsCtdpcrtAHOkg4KBDrNK0WHnIaJTYICFrovKZtLNdmJWFvOeKWOMAEQU4Onpaec9Aw7RYhQgXjK02Wy2GwqdwKs288R1itmlU/n2mdCHpgz9YxqXj8kZNmXgnXy59Hg/AwN83uUT7ykAruZgBoqXzJ1K1jL5U/+zo+u7jI4pu/sC6Bm+nb6aBQJdXvjJKa4LZVBR9cg0yyNGB5BXXqadAZpdoNA15vtS5tBVdJIbCDtKt4t2l3g6nftZPqU88L96Oxei4UjDeRVSH8OHvCKde3Kg8/4BZxSxjkMBsdekTHaq9IfmQcmG4u8tFMgMQFhCnehK1s6s/UvlqgJmrp5fjZxMuTR8vftj6kQBHdDA86C4njk0WZ08n3jzYHe+de4HL69BDMiZOnMtoykwoJjpIJFZBjm98kSytIpcmMbxpiIPioeOwuSJiGnVEwMZ73w+xsvXEIfA87XIM+sRL7l+StQxqvtMLuX5K1nJ5NiVF/+zcXuNMciUvjKmjqfKyGZgs4p+cJ4qqqDuO6djSYTj1KkLiJ3z4aICHflzAFgBAXacMA86MOjJd8BA1j433lxmR/arPjnEfFXAw8lylxZ/qKhbyZLJlE1gFerLhKEyhJniWUpKiSrjr8JjnMYRT4gg7AsGB64MzIvHrH1L6BQUqwJyfF2lZeqCi458da916h1jGfh2MjvrIar+7KR31AUCfM56YWZ+/woAV1HljMzkVePl3iWQOUKqnuyxxMxRQj3WBcqqPdyGzKHr6AfX/mw8usCsok7fd8ufAgOdiVkhq265DhBkxt0pgC7vS9IidYVCCYISkM4gzgCHzqRB2lcpnoLxd+TGqeMxIR3KuDhjNavo9gEwXF51jun5Gqfv1LmEKt2hjpy/8uJm582vShkgVAY0qAJbqoxq/0H2mKICBcwH1121dSm42Yfeqp4uLf5qYYZsMqWZDXDcV6GPCM1ked29Thkd4rIUj/i/IiX4M5MCJwQuC/CX2eIY5y4iwOndvezctfFXIpbBoI787CNjkTfzdLO8s4R17eNdVLLCdWVlVP9n0mX8qPn7d6Cqn2fLUgAw6nBGNruXeeLOkeQXqOGm6G5UrSvfPCfUnFTtza53yjk0LZHpN9tA2PG43DFoX8O+76SvQjvOu1f51AZBBwQCSTvKwqczz/Zz33a9ro6SP6bCna17FlyyYeHrzugeAqhmypfb01GI+3pHMwp6pkxVhvMKO3UpUK/q7fTvqZNqB553xjyTWzxm+RgEqHcHxH/1BtXQZxitYRnYZw5V95aAA87Tkbt9aamsHv2rhe5aBQyUgV2C9md4iHM3eVgYkR/eIeva5IAA/roUeXFiZY/POIXamfAZKDhlRZqNWZZnDD3RKwPS9Wz5Widdh+9M3p2yUsqPwSAr5y5/HZCZlZmlz/hQaZQcvJUndwhSBj5L49Jn3nvkc2UqYn2pyozH+xS/rL94rJV8ZnNPyWol7zNevQMNzkGYLX+WuuW+KhioEJT7XwGBMfSyQgfVZvVUdSthVkhXIWBMqz5NjCiZP07EQAAnTfVFLkcZiFHXK0SMZZ6yAs3kjv+rdlTAJgOzlWzhsaPcOiDLKSXFW7YuzGUqHru8VZ6Tk7tZ+eqAApW+0hGnSo7Xjl7k60oGZiIurixXdug0rCPbLDg7ti5t5cRUeq8bUYi07jrnOQTNymwbDFQej8vTodkJlylT919dr8pxStOBgTF6oSrlWSpCAKCAwmaz2XnHNoIF1ffZx4uWTKglyuFUifmckXOVf4aUMsi8YFVfBiJUW5TsO8UX76lgBey8q32MdRdoOGdAAQtupyu/q0P+TsT6ToFXpJl+c7pSkXsDYOXFc52ZYzNDbi4qYN3V+R1wsQ+pOTpT16LIQIZs9qGu98md3wEH6tprgAE3uRzhWwfR8KtIQbwHnPsC/+NbCpkwgjAD6ByCdUpZ/T9lymQlk8kKcColmAHfqr86xqoLapScdnnreEMz1PH0nK6pogiuzEPrrl+VuqC3MohxnNGVWT0VCKgMspMBFVng8pA6eoD5wP8MKpjXSo++Je21TKAGIGjp5MpQviKnZLvAIFOws+DCtYXbw4Yf03OdAQoCCPCbB3GZgCdg1IGe3cwrPDv/q7Z3jMgpU2YgVZoOAOiUiVQp7Mx476NcMgU4o1Bd2SrPDCBy/Cnl6sBBZZh+dZCwpH0uj+tv7kvWQ2pOuPLj6CJFThaVvWB+FcDotDnud+S7K2dOPhU4cO3u0Ey+g3+1MLvuDJ/qMDewijIFzOfqWhcsZMi2A4z4S4T4mk0lvIo4MrBa/fygES4X4FIBgoXXNsi/ovHfR+kvBQIdntT/DLzy9RlFls1jp8jUWGf1uDZ1geOM/GaAoDPP/q4061QFVcBLGbBOvVg+HtW17pxQaeK8I6dMFeCs8kZ9M3NyiT7aV56nwMC+lTkPU6GfDOlhGjyfAQN4fWaCdJV7BhyQwrsPgBDt5N21WXvC8FcGaYYcIs2MhkPtVd7XpgpMdskZlEp+1P8OoJwhBUSZ1w6PKn13XGdkxeXtRgY6Br1joP4OgGCJ/KnrXYMdaTOvdwYQqIgA51My2QUBkX+m/Ko9nfmfzcMZcH4IvdWhoz1auFTxOaPHv6CZCeAEWKVZOkAoIBgdCO8+XqgxxhiPj49jvV5v015eXkpeFRCKc9xgiJ/wZMpea+zaUBmBU1K0HWAW6RzfHTlQ9ahrSv67MpUBPhdxc0rQUZa+AngdADgTVcgMedWGTIlj2crzc/yeEs3KDP/v6MGsH+PcOXKdcpw+yeTCybQCKOqpBFdeZdhnqJIzrLOSv7egk/hqYSfcg+QMofOGM5RaGfdOui7f7h0BKuKxWr18JLH6fvjFxcUOoMClAsd/3O8+nlh5ZqwYTiEygPXPeD9d6npGLv2MTHXlW+VT3kYGalwZ6p6K4mE5nX5V+RwvSv4UCML0jo4tl29BXedr1ggpAzvjDHTAwBJeHV+dSJKSGyVr3egUl4NlczlVeR2qnABHRwEDXUPdzavAQJX/kGAA0zqgotJkLxBygIApBBxfRRyUGXcUEvXtgq53h+lPXakeGm1nY+3GKzO6mfHK5J7TOXBd8VMBgy7oOZRSy4gVd9buGaV76jKMlAE2l7brSPH/ipQB6oKBblrkpQvuFD8ZMMoAppufriw1h5cACuYjo33k9+iRgS5iZVJGelZ4lULp1OPSIB+z4ETx5zw5pcDVN8AjSqCWCoLcaz/xuJQOXd4+fCyVs4qWeFJd5aHqUHKuvI0OzYCVztxyHsnMuHcADJaZgSbmxxmGDp0aSGCZqPSYyuN+Lk9WZqbrqshvR1YyvmaBQVWWApOOp06koUszoMDxtw8IPzgY6DBbkRsQh+6XICsnGMzjEjAQRzTU6shpVqufjxCuVruPFWIafGQwaCYqoFCm8/ArpTnjaR1boWZytQ9VCnQf48z3HBicratbH9fNabIxn5mfs/x10ndBVyaj+yjXt6AZAKDSM7isHJmOXATN9FtlpNX/peFwV57iCdPN1pHpzsyGddtzaAdnCgx0kNCSfIqU574POYSoJkOcY/qOZ+Tu4zVe849rbsmAwQI+jpjRxcXFdu+A452XB/AXlCnO7DqWc0rKlOWpY+A6HsU+RrlKr+Qvk8eM1+582lfpZzKa9W+HvxkdpBSsA8OZI3MqMrxUF2Z6yRn+Tj5FLhKwFGgpWcTx2ifyxLwsMcrIzwzQVHVjWSpPVx8vob0jAx3hrCZdRwFkaDWrD3nMFI5DxdWEcXWxEcfz6n+n7bNKwT1VwMsEDAaytjpyE+BYChXb1DXsFWhw+bDOChhmlBljB1hdHbPgp6o3iNs4CwqyOvm8ijo5nmYV+q9OCvTgvTgqPZfp2KwsR9mcw/x4j8crk3Hl4GV94HR13JuVVSZnqLuAx/Hv2tkpa4YWv2egQljuWqaosutucGcbnvGxWvU/1pKRAwK8pu+AQKz383IC/jabzY73H22L9qGRV/3P/caCu48AM52ikkW+lxjtLihVqL/K75RmBxS48iqjXyngbC5glA2vuTqc7FVtyNI5z2ofOkW5RaoMNI+jM/xdWe/o7g4IVuUpg9fhy80xBRwyIKzSZB56ZaQPIdNvTQffM9BF8HgvEzIWnFmUxKQEBoEA/tRECYPrPvrTUUIKCETe6hPFWFcV5p/lawkQ4P7MAMExIwNL8lRAtWuMu/mV3Mf5LBBwcyibn1nkLKsre8OlkqkZT53nfVdGFR9qjnTznwplRq9rQNW1mXyZbFQgV9WldOw+YG5Gdp2xr8rtOEGdctVYzujVDq9dWgwGZgaso7CqtHFPCdQ+HaWAAH9WmOt6enraDlD2JUAsGw0/AwHFQ/zHDYVZ/6g+iDJCUcd5PGVQjd/spGQgkoGTY1DHKw/qAIEMtHYMfJW+ytPh1YFpBQCqtqp6lGfF/ayuzwLVjkJcIq+da6dGM2BNjSGPp5ITR0r2Yo6zDGS6aomxWjo2WV3dMmcM8hI+3dxy8+rQc2GMA28gPAR1GlGFIF16p6gU8SeBg9CYxr3n5+eDhSa5DU4RK6MbTxTgvc6LhBSxscjus6c144Edg2ZlrJIpTjcLBLp8IDFAzXjMrldzJyNnGKq5NSMTKqJQAZeZ+maMwa9MCrw6gDdTpgNUnTlT2ZOuTs3K6LTRAeIOuDm0flN6nvmYqXPGZi+KDLzlxFADxYowrnUUp7qHXvl6vR6Xl5cvPheMpJ7Z5/o5b9QxI5wqv2rPUoOf1Y/HKk3H+B8TGCw1dpina/Sjvso74rL2TZPlU/MFz2c8yk6dS5Sq4q9LFQBRMqr6oarjGLSvXsN0nciAyo+k+tqNrQPMDiTvE6lxOlMR85/JZTWHOL8DFh2+sB3cz7ORgSXUBgNO8amODcoQ1yxVAztblvpxiF59LlgpfjwG4XcH1H1OF+eHMB6vRdwGVqyuL049OuCUmKJM4SiF0vEsMnCrgHBHiXHdfJ3/dwBTZcgdP1kfOMXq0ryGLHGfZvydEnU95zH20xvOeCtenDHrlJMZuRnA5uZ1Vl9mX5Qx7vI2a7i76WcAR3fs891qBTOdwe0y5rwPhWBd3R0eMhCA0YHqqQKn2PEYFJ67eu1vXMe83dcIB6koxAwtAWvOu1IRA8f3W1MnclEBnpm6OtT1yJAXVcep9K86z6hSrPu2N0vHIMvpj2xMTp2c45O1y+lWNVaVDmDq6INMn3N0J3Qn/xSPqs6qb5Qd6PTjEmPs8nfKPYR8Tu8ZWHq/ErolaWfyx3UWbt44iP85Lz6rzy/0yepFcgKplhyWCnjFT9dAY35n7PG8MpzHMlgdRO+QtvNyO/8zb6mSZ+7vTLaYh848PdRYKNDnzmf5cXk7fZOB00N6cqdIygGKY+ZM8XmXMmdCeeczEQ1VTwYKcfzUfFJU8YKbsGd4ZT3A9zuEZeA1bCO31/2v6CAvHVLKrmJiicHPBDlTsq5MBQ66A+4U0BKBUf3G6HeMl0sK0b8uktD1pBQPWb4MCFR8HIOcXHZlFanqI6eMOmVVXiwbqhlZV2WpOjv9oPI6mZgpE9uYgYOKVJsUoM54+dXIeaYOEGR5MJ3SiW7cK1DH9SidU4GxDBCwHsv0cWZDlP5FZ3CG3FxTPFb96GgfJx1pbzCgEHhFmRCq6yyYlWA7UIE/3h+gysQ2hlDg0bWh2/koWByJwK8QXl5e7mxazN5FgALrBJj57xovZfgrz/CUCCfejMJXcrekTnWvW14GWrN54OZCpbQZfGw2m63cKWPgAKGShdn+4/wZ3yqfAyfc/x0jcmrEDkXmUGVtcqCBy1SgdCnPfM78zNbBvCnwrPrLARIEApFGvbW1ozejXMUv1svpnaOR0VLZffWvFqoGqvvumko/i3IxLa8BKcPKyg7X+p+ennaOmbJSbXNfD1T1qjLxcUd+rXCFXBkEKFCDvFde46wHeEwFy0ogA3PZtSjLpXFeSlZGRktAZgZsXd3KQLo+Ux4UluOAAaZR3lImbzPGIZNH51l2nIljUNXuLkCdBQJLyMm7ul7JQBf8dWVEyXNGaPyD0MkKuri4eDFnuG0zztG+QEC1o5tvGgwsRc0z3g+es2JTCqkDMPg+AwLcJ6DC8QEKnJJjIeNXD3eJPX+s13n4yqjj+w+iHHVUlAEB5wl2+uRY1AEpS/nM2l2RUoYZXxWP7Omob12gQsSxY54r8MTjj++4cCCB26XuYdlZ3yyl2bE+tuwizciV8+yrPK4MJCUTrKc79fM4zADkDOhV6RU/Skej8Q87EfpZ6WMuvwI0Swx8NiddPV16k08Yd9J0gACfu7IYMMyg5uho3vmP/xkguDIVz/hZ4oxPVqpPT09bIeRycYNL1VYXDciQc6as+X7Hizk2cb/zOf5XssHlcL5qAmbGaFb2qx9+5TLbBKU8kszTy/67dlVG2PVnNy1eV+C14q8ak2NRpe8OyZ+TNU6zxAkLct5vVheW74CAmptVftcGzMNzUOXtGOnsXpYH26d09FJgwbQIDCzxojpCnAECV0ZGzrg51Brr85ifgQDzq94R0I0EqDa6FwshP44/lR43H2JelScTaJ5UHW9W9fsxSYEApgqULqkj60t13U12de74Dtnk716gzCDoVeVjWXyu2t1Rdh3FvpQ6CjX+V54i3zu27CqqjLECh7PldvJV9Qapsa/kmtOr/1h+Nu8qvvkeO1mOX1cuA9HuHMn0r9LRLKMdPadoGgwEE11k2EXbXaPhJmcmQDOdwuWo0HyUj4OCISScBNmXCpl4Q6OaTAoMHJKUkDnDVYXJOvJxSuSMfybD2cRWgIjvcfnK8HYUcjYfMTowxk/git+nyJQM8lD1heoT58ntQ5lsdurnsTllo+/IjTnLTkbZGGdj7mRf1ZsZK9ZnHV6dfpoBqizn1cZs7ocZOXGGvALI2ZziNhyCDrZM0FGcnetLO5wpCxN18/K1yhvmjw7FvUypq3T89kPHA+8JwPvZB5Q6xP3mFGzljVXXjkEdVJ8Bmo4Bqiayq7eKpmR9qNrF0YEg/sZGyJ+LDLBhyDy5fWlJeUoelcJF6vTtKYOErqHvgAPVF/yUVWVUuc6svu4YZ2PSie4oI6xACAIC5N19e4bPs77J6mZeVVszcHBIQHCQbxPMoOuZCZil6ZJT/Gg8N5tNucs/0sR/Lp8FiA0/f7kw0vK16jPKzPMYu48hqk2DmFdd35c6YMt5GMemGWCgIjN45HKX1qv4cEqtS25zLD+Kirxn8zkDRQxMsUxV3lJ5zPLNepynKp+zYDLOZ9rEoIF1mAMEzjipchV1HInZaIGrZwacu4gLEi65qTmpjLVy3Dpvm2UAzvW4eTtLe0UGMhAwK4TuHlOmFJV3VhEDAaWostcIB/EjKMobQ14ZCOAkVG9BRD6x7ufn5+1jjpiW29Al52G5e4qcQjhVZcvnHU+qKiu7luVlRa54cbxlBoAjRfwkijLgWdlLZMrRrFxkSnKWTlEmmWaM45Iy8X8mf3HfecFVHUGVzu54/Jy2Gv+MZyzDLRdkDoPSj2rMGAyoJxOUQe8A/33mQNDUh4pUZZmycuVk/zv5loZdcBAiX6Spns+v0qg8CAh4cyK3zQGBy8vLnT5mYILvPXh8fNxGBx4fH7fps0cQsW/4HPsnE7LKG1hiWA9JTkacUcF8nLbjzTjlqdLz/Kn6qNuXapnJUaYoM6MQcu0MxmvRbPmH4Oc12zNDLE9qTPC8AyYdAODogDNqeI15DXIOytJ+5X7IAIYjxUMFCNhuqL5QdXBa3MCLTmhnzlb6bCkt/jaBEiSVriqnkz6jKjTC1zOAwALgogBI7qVFMdCRJr5ngG8TzAzEGC+BgOKbz90ywewE2YcyQHAKlBniygNYAohVmZUidvwpQr5QnpHw5SixT6DjVc2MGypLB7CyshU4U7RErv9OpPRGJUMd3V3JJBt3p4Mcz9l4qjHHPJUe78iby6vKyhw/7AsFClx9qKP5SQWeN1wf6x4GZwp4zYKj6chAhkTxOpIb0ExJqvwzvCre8R4rzouLi6033ak/yqlAAqK/2LAVgCDuPz09jfV6vc0XqNwRG37mgUEMK0/1uGEHQGQCi2niyDIx8/Kl1yRlrKp2qX5ySrQipXR5f4hT1HzOaRUPKrLFESP3Qi0VLXB1u3SuDFZgrLyUAWH5dJ4Xp+204VcjxXcFDPDI+VR+3Ms0xssX8XSipRXorOxAZiDx/kx0YJanTHd13t/BekO90jibD6yjFABwPHRluw0G2JOtFEDGzAwoyNBSdq07SdSEqpBjxccYYycqsNlsdiID8QKhuB8D7SIUipdOmEqBArcJ0inQ7J6jGdk4FrFcKdnOJrhTspU8dQBEpsiZ1HWlNBQQiPv8Q8XDclLNc6Vcu/NXtQOPfK7SZrz9ncjJawcM4DkbfjznTc1x7salig4gdSNRXbtSGcoZPjCv2uzNpL7Zgf8RLIQO7tgh1ZaMZp1mpqnIABqpSkkhzRgRd21fUJB1PCs+53FgmS5sw3WjEl6tVi8iA5hXkRMQ3gfQeSsil8ETeAYEKd5/BRDAtITHbp7KgDtFHPd5E6oCGdk8VK+2jusoK7yJ0JG6x3mWKrVsDqj6Z2V2RqkeMu8hyfVRx8npAAIua4yfS5VjvPyUL4I/3IeFpEDla1AGBPAep1ek9Dj2gZJxngdqHwA7e1EPv1nW8c7nTi6X9vX0MgH+x2PGyKyx4+uq0d3/eHQv80G+lXFEY4f8OEFTbcF9AggIcDJlfaB4XUpVW2cVn+r7TPkcgyp5UeQMTUepOKOolEz1c/V0+xZBQPxXTxFUEaBqX40inieZTCuQzfU4kJ6B95lxc/TaxmwJOSPuDHs1J/m+emEav6GV39DHegz14wxQWKKDlD7uGtCq7DFeAiMun58uU86Z2ivg2qt457bO2tuM9gYDXHnFSCWIfI5lzihENQEUIMB2ZUAAz9VgKCFk5aNebYlokR816RgURdXXC127XJt5ImfAThm7Lt9vRR1goDyMTrksY648rHcGEMxOcrWfJIsEVMqyig6wzHeVcKXgKh7cvW6k4NBe1muR0wcKBByyPlUm/nf6inVZtTEvI2fgOb8b2xkgwGkZGDEoZjsyxkiBUgbSurpmiY7KaGrPgPpQDlJnIi5BZqqu7L4CAPyq3ypK4JAm3496srZjPfjBoefn57Fer7f58YcCxJNOrftjXUuEogPgOmCI23uKYGAMr0CVbHPfuLYqGZvlRf3QC6lAGfc5bvxio51FBpQcOYXq5l7Wb0yZ0a5AenY9o6W66Bik+jwDATNzsLrfkWceb9xoiF7yGC9lrysXat7xvS6g7NaDpHQDv1+G0+Erv7uE/Hfb4ezYDLXBQIRIlPJ3RqIzKE4QOx2ohMkpUxRo97rf1Uoj167AuvbifQRU/FQB//jdBIgu+bxDSqEq7xBJjblD2k4xnTpVE8kZNSVjLGdKgajynRKvlLmaj0i8a1lFBtT8Vbx0SM0px6MDGxWpselEE1wbZgzSqZEDotXYMWiLo2qrextq3EO5wutj7Mpc5A8DqeSPqesl4zk7cXjuADTX2ZF3tiGhq7G9GKXF6C++BtxRBfyRf+W4zoKi6acJMg84Q+8Z8ncKhAGHShdHp8D4RT4BalwoV/Hn2jTT/qiHN5B0nh7I+FIUdalX0Aa5x2Fcv88o6cwAHIuc/LDC7CoGljEna9WGI1aijq8xXnohcb/j1WRAcOnYqrY4quZZh9i7VOVlZat+ygyHOh6LOvqvApJZuartTCHjWDcbPszP9zabzXa/1Bij7TXPOJRKf+F5ppszHaCWePnFcl0Z4QhCnCu9mdlNR0qeO7R4z8AsUlGCmQ2CU9zqvgMFDiU7BY0CrUI+qt1KaSgwo/qIqQoru6iAe8+A4rXzPPm+gGcGQBybOjzzBFVKmEFA/NbrtVxjDMWIR470cN+i8kGPg2UpA34IFGfWbztKBeVeHTldpzxFSrc48Mn1ZGNcjf8pEuu8WRCA5VT1cH34H/uIo51oTPHjWJeXl9t8zinKnuHP+OT/GZh1IIAJQUCkVy/3UhFbrBcjA3ivsi18nWnpPAtaDAYUY11E0hW8zv0KHbO3NobeJcudxvsj3IDw89r8kp8Zch58ReqRH1b22B/uMSBMG22K/9lkCjq1aACSkhN1v8rLZaCMIQBYr9fj6upqrNfr7XVUjk9PT+P5+a/vSjw8PGz3gjhFMsZLI98x6JkxVEpQ3esoSyx3xtArmXHKkckB7woAdOWzE/F4K1IGWAEBRa6POV82zugojaGjVFFXGHm8jk4W3488itT1jp5RY8a6Gtvm5AOfAlPhfpW+Q0r/dIx3BQR4Hszo4un3DHCoZanHgPfUeVaWytf9hXC5Z7jZ41IbRLBNbFx5QFV72WgzWHGkvHKODAQ/+yiwWSH6VanrEXAeBAFxxGgAAoJ3796Ni4uL7f+gzWYzHh8fx+Pj41bR4LclOkpl5omRmfYdktTczwyzU4hKeau0XQDh6s/yHYuccc7uL62jKgvlHnXgGC+9eHZSuC53v8vrbJrgN+PJkYpG8Z6uKr/iZ6btSta7AL1De0cGsFKF2DIvZHZAmIcOKs7KdhMAB5iFGw2x22zYpQrZdoVeefsMODAsNcvXUkV4aoBCyUmXRwcCEAxEFCAMP0YIrq6udqIDYfwDDMQxIgZuOScoAwL4qGoQe7mu7G50Z1bRYJkzfR7zTEVBZiNXM3QK0YAxtNeq9J6as13HhMtjWcf0jocMFCAxAMAoQdxX9TnqRqPUs/2cpwvA1T6BfXUm8qZkeRb0ZoDZ0eINhJlxXbJ04Mpy1/Y1NE7Q+D/vGGVk6RSVq1MZJPQGcTKoyes8pGqpIEPKrv1YfvDTaePM9bcgNcZOqY7hNxcxAMDlAQcE8BcbCmNc4v8Y+lsWHCHIFB/PS5VP/XceC/fbzNzjvuzqDcyDYIVBuPOQukov00VV3xyTMsMd12bKUQBX6Se1rIrXeZkAdVFXN7pI7Ri7L/sJYqesK5MIPFhOeb9Y0EwEQPGG5Si+lH5Sejlb2sioKxfTXy3sMI4MdIxNt251jnW4DoufU/iqzDH8qycVYT0dtIrCrzaXqf0DUZ5a+1JLBbPExr+6rxS9us+8nhJlIMkBRVSg7pfJzGr18k1uY+x+UCgiB8ELRn7U+DvvEe/xGOD1bMwz4IwyoOqs+tL9d7w4ymSruqfK7eiHt6IMzCoD7gAY61CWYwQF/NQV60KU8dgU2HEasj0xeM57vLBuNrYMFrO6Ud8qQKFAQbV8y4TtQV2s9nHFsQJ2CvBmc2jWiRtjEgyMkaN0ZQQwXXdCOS+iyq/qRUCA11iIuPzsiQMWfsdLNnAd2lcBsWBhezMl7cBWxZMT5FMhp0AdIOAjKk61P0D9UNEqxYugcLVajYeHh/H09DQeHx+3yzsha7jUkwHPTBFwPm6/arfro7jOPGReTVUXz1nm14FcBiVcXxaZ4DynGh3guekMRpxz3riP/a2AAB47vGA0ICj+K+Pv+hTBBQMQBB9ovLmeTPco0IDLB6zTq/ar8w65OVDpJKZMNt2cy2g6MqAq7Bi+TJkwVdGETjo36Igm3SNXARbG0CGqSIeAwgEH/o8TUBkJ7oeO8cXJiO3gJQysC1/8oXh1bWBiHjMFdSrEY+UiS3EN8/DygAIEGP6P8tUYjPHXOF1dXe2MW3xKGz+pHef4GKJStKodnfmYecgOOFZlKt44rVKGPB68oVctgTAQ6PSBuueM1rFAgZNJ7regGSCGP34nRug9NMwdkBCEm5grIMe6V9XLdbLsRxlubxTmZz252fx8/wHKG5av+K1IjZ1L1wEDDugyr24OVDS9gbCj/KtzRZ0IQzYIGH3AozOIvM4Ughd5QwA7xrKamJWhZUGoSO0FUOjc5Yl8S0JJzLu7rsbtWKBAjY/qc9UHCPTQkLunB3CTIK+pspJB5bper3fqj7TxhAEqr2ozaBdEZteVYsKjMzosU1yXK5frRgdDeXToHaq2qyhhpw9OkZTMYp91gRob15DjOKr7bgnM1YfGtGsIx9BAII74FA47YWzE1do+84rLBJgv5hU6VixLDEqwbAVYok+7T3g52XXgQLVvKU0vE2Dl2UTE+zNGJwMAqoO4PAYVqFQYnHA7+JnSOLKAoWDgehB72yqPAiCqTVG3Wn+u9gNkhrgDcFyZGAVy3rQzIKcSbu2ALpYNZSSVUsa8oVhCfngPCD/iGmWHYgsFyJ6K4pV5xvJU+9XYVXMuG1cHLNV/BwSUcUNlzXkQpGU6IOsL1wdZpOgUyI1VlZ77miNcXRCgQvYZddJw2bh3Qe1XQOAZUTKcd0hKhyJfkc+t77s+5kiJAp8zMjQDBFx+Rd36pyID7ugUPiqqmdCGqxPzdDqZ0/GyAKO6SItIET22TCjYg+Q2sTCzALmy1UZCFQHYR3FV+VTZCuipfOr8FGifiaPaxQoPFcwYYwcQoJFDRafAxawicMcZ6pTFMj5GvWbdAQJ8n5f0FAjIDHpFM9HLYxP3oRoXB+4yEBAGF/e4qEgBG2yU4djjEqSWYJFcBCdru+sLrBO/D4D5Mt3N+8cqftT9Q+oT5Vyp/qp0/qzTNx0ZUF5TZrQzhLREEFT0oQIHLiKAZajnRxkcME88UCFQjFwxvQIBag2u6htGrplQ8P6BqDNCVx0g4QBZnLu+ORXKjNEYXolyGRnxckAAAAemMiCgAKNqU5CKdHGbuwZT5V/CR2asXZuRWGaVMeQ2u3mjFKy6x/wem5QBUACKiftBLQ/wK7NxmavaM4C6MfoK97iM8XP82Ot24NG1B8df9U8cu948lonlcBlu2VXxWunrCnSqObKUZqIJSNNgYFYomWYnmVLI+3jAmfJ3nejCQWqA1fpw5OGys/UnJBUdiPzqURUu8zUUmwJkb83DElLyWwEiNXZLJhsqnFC0GMJE0NZ9SZQyFtw+vheEYF21raNQOU+Ui9ccWGQgwGUoIMDtY6CrqFKOGTjg/j0GVSCvyos/BgP41Au/OhuBAC4jcJ3xCGycI/HcQj2pdFoQzoP1er0FFBWQyyirbylhRJAjI3y/2jeQzZe3oMVPEyggoBrDSrZSutX1TllqoqiIApaH/zH8Fedh4PHpAqfMnFLCSabW6FS5UXaHVF8gemcBjbY6o4D90qk3Q7zHBgP7KnRWpgwO0ciPsQsgnRJGMID9E2ug8eN7ijfkg8+zNVNVJu9jcAYR54zbzMflZJSNkQIDDAQw1MtAvZI/F7buRs5em2aBAIMAlEH14w2wIatjjO3bM1lvhdw8PDxsZSaWDHDPDPOf9SWCP44MZWAP9VtF6mmB7vgiiOGIcWdvj7qW2TC+r+agK3tWbqfBgJsszHinkx0SwntYL19nz1QBEzx3xtZdj2tOsY+xG25Su/URNWIZqKjVutwSQmPvxoEf+VFgoONtuDFTBuGYXtUYHhRmQDXjGZUPgh1WZFwGAgL0yMbQn3ONMrsehTIUmUxhmowqDy7Kz969wfyrflbnuJwV1ysHQHlWXUCaycQxCGW1AwRYFhgEZG/LRGcFowEBBuK12iG3wdv9/f24u7sb6/V63N/fbwFB0Gaz2VkqyGQE+zt7MgpJ6T3uIwYTOGedw8R8YX0M4jOwzdTZTJnZM1d2ZZsrWryB0BlnHhC+lnUy18XnFX9V2XiN+ec6Q+A4MqAUPIIBNAboreCkxEdmGG27Nnc8GzxXHmVXqVUemivn2N5ThzqTRSlUBQZ57RWvjzFepGMgyaAweMoAGnvDzCtHmCJPZkS6HooCUciHWraqlFac856duIeeJbYB5xV7hgoId+XWOTfHArRO/hzwxjxKTtHw88e0+PXYCB4uLi7Gu3fvxvX19Xj37t32+hhj3N3djdvb23F3d7f9RbTg/v7+Rb+7kH8QP9Wl7ndAQ7QD+wbLiOszDqziJXtVMS4RuDqU8UfCtjp5dM7NTHsWPVqYMcPXXFp1XZXFEzWOCnRk/KlrnTTMk1Lgz8/PY71ev1gvi8FB4Q5SIWbngVUIMxvsDgjAvmQljW1xdXWE9ZhUeVMuLY93kPIyFdgbY7wAAdxXqNAcaA7CMDgb/rjP/PJLs7J1164nFoTgl4FnZnyVXCm+FMCI6xVwYcoAQaZYZxXqoUnJI14PyvoalwI4IvDu3btxdXW1AwZivANAvHv3bqzX63Fzc7P9Rb4xxri/vx/fv38ft7e328jB3d3djpOEe2DUODAY5DHP+r8bDeD06DSpc86T2Qaue1+Q4QAC912nzK4uXvw0gZooytvuDuIhiPlSSkcd3bk6cn1j/Hw3dyDEQIsRNsUy1KYcfvHHGDoUnQm24muM/ncKMqCkvMOMBzc5T426chppHEBgQMdgcYyfigeVIirAWGfFvQJRRvxCtvElK2rZCf+jTCnPO/jAfuANUQoQxf3NZiOXB3itWOmGyqHIxmSpXHWNO4OHY8tx1m+cDn+8BIkRgjDoGKHEl2bF/5ubmy0Y+Pjx47i5udlGCFar1bi7u9suI+ASQsjx/f399skaZzgjPc4Z9qpnCIEzk1suUDRjo6oIFNft6lD2lWVxlq8OLX6aACuqhFOln0HqWdlKyXAZztA51K32CMTR8YpGF8EBKkqckBxyXq/X1ui6dTbuO+SBQcDFhd+hzuPgAFA2bpVXe0xlqtqXgR9M44yWm2DKeGOeh4eHnSWkMf6SFwQDUU7k56gRgkxn9FGhMzgc46VMIeh0IMBFFUKRc7kzxpSX1KpoBZKbG0qpqjxZtKsLHl6LMj2m0inQihErtWQQewLwPQNjjO396+vrcXV1NT58+DDev3+/PV5fX2+XAvAz3UEh0xE15SUu16fOOMY93jSK6aIfKrnh8uI8AwYdUuW6dJkeQarAAde9lNpgQA0QHvk8y9upawYQZHU4/hwgcGuunJ8VIypl3CyDRpnr4sd1cCJhVIDbV4WJmC82TM7LyPqH63JATgnoMYEAkjLsfL8inuxKqbm+wzAkrpsGCFDKiMck5ERFBtgLVGAgCL16JaN4rqIPY7z8dG3cU3salngyatc3k1OUeM6AxI2X4iFL8xbkgHknH8oDOyIBCNCI83c14npEBt69e7cDBm5ubsbl5eV4eHjY2TcTsnl/f79zL5ZRFVhU0YHMsPKGvzFevvwNSelMFSFYQmoZeF9SDszSyECX9n7PgLrnKGuAmrAdxT0TxnNlqnbgztox/NMAmMcZfgQTaq8Al1v1U3YflTCeoyJnZB1lOsWDChdRdKboT8GrQnLykbWZxxnRPP4YELDRROIlAJYb/BARjzXXweu7q9Vqx7vDn1oDxegVygqOHYMNliVUrLyngftzBhgqIOA8RqcoFVBQvDlP67WU7msRyqySXwcIAgjgI4Sr1Wob9g8wEADg5uZmvH//frx//35cXV1tNwuGLD49PY2Hh4edPQRRbsgd8sx9XHnUeFT5eN5lUaasPORP9aMqS7WH68Bjx7GrbOOhZHQRGMgUKFM2WTNPs2O0VV0ureq8LvDAtHxUXpILyXdDQkHZuleVDxE2Ll8wKQOAxGVkEY8qKnAsxVopdSXPfK6UKxKXr/Z/KM8/FIsDTzyuY+yuxzsFH0tPwYeKaKxWq234drPRX76MNuNeF+QzZAH3y0Q5vEym+hzpUMq6S6/taR2CZtungBtGBnh5EgFBRApw42AY/qurq21U4MOHD+Pjx4/j/fv32yWA4O/p6Wnc399vgQBHP6NujG7Njl2lZ1QadU9FHFyfBlURAAYeTn4ZBGRyvlQ+Z/NMf7UQ/+MxyxfHCnkroJEpSFagro6MGKWxcayOUYcLj46hDSnWh3lQiNDjVJ6ia496ygAVNPPs+pf7UfGL6WfA1amRa4sy6GiMw7tGjz/uYR84j1/1Y1znZQinKND446NjoYxj7OIXa7kIBDrzJOSTZSj4HUM/8aCWINT/rG48r7ypKFvNVcxzyiAAqdK1eB9/CgSgMVaRAXyXQBj/jx8/bsHAp0+fxsePH8eHDx/G9fX19t0CY4zt0kBc5yhVAIAl+qFy9FAWnVPK/2f2Brh9NDOkAAL+MsrsnHPGZoHk9EuHMg+JFYPK7yaym7iYl/NheRnoUGmzCcSTCZcMVquXodgwChcXF3KjDIdp2bBEGnwiIRMO3jjDpDw8zssApQvq1NIDK17Ol8nMWxDy7sYd02G+TrpZQlCAHzNS3o0CGCzLDASurq52doojkAtjjt5clINAGK+r5QjOx4peAcYKcKp+UkCI28/nGQBQvPB1Vq6nAhoyQ4DnTm4RGOAeAdxMGE8JvHv3bnz+/Hl8/vx5/Otf/9puIPz48eP2iYJ4tPDHjx/j6elp3N3d7SwLqD0LqFtRbirDXMmLW77lNByVU/Wybs3mPaZVcsJtc8Zf2TKu3+lYV8Ys6GqDARzQ+I+MYqUc3lZeEN9T5ajBrRqY3c+UfZYWQQIKOT6GE3Wz4UXF7wQv7vE37VFo3NIDpsV6Mb/bx4B7C5SAcZlubFjhsBE4lBF9TVJ8Or5ZxtCLxx8uAUQ6NMrxnzdWMalxd4qJPbyrq6utwX5+/vloY/CHewqc8VSREDaYzJeTNUVuTwOfV1EBBRxmjbgytseMdHWMBJ47fcbLA/iLfKHTrq6uxs3Nzfjw4cP47bffxr///e/tY4WfPn0aHz582D5WGE/H/PjxY4wxXug71f9K31SOpCK1h0X1kwPVoa95Dw/3aVY/14Nt6MhhFfHo8IFldYGDojYYQC8jKNtIMYbuFCXcmcfO+TJkrCat8wDUD418nKtXdsb1EIYQNlS0obj4yQI1wGggMnTLBqhDagyqsitC5R59zkK4T/mvQQrIKE9Kpc3yo0KI8Y57GIXBSACCgVg+cPUGKWOq5mLwhM+RIxjIjDIvUXFdCIrxegBVBoQMOLsy68KoXSPPOkbpG9Yns4rzLcmNO881pdOCsr7nd59EZCmWBf7jP/5jJyrw/v377dLY9+/fxxh/AVb+OYPv2uLI5cP5l+nNKAP3sWDduJfKAamKOOKKjhjOJwVs3fzvgIEqYjajd9tgIIwhKgRneKPx2DlsPBRlYMA1UAGD7JoDAWPsRj8YCETojHfcRlsx7MqKORAoG03cJxBlYdg4+g3bWiksHoNuvk6ZyFMWqlJ5jklO0VdgQN3ntCjn/Pw/vmiF939E+lBMbJjG2PWW1LxBzy745DfMRSgX63XzNiIUarmA07Mcd8a7s7SFdTi5nZGtyiPrgIpjAlnmIZPNLvG+ldBT6AxhdODTp0/bvQIfP34c7969G2P89YGiMf6Sm4eHh/Hw8LB9nPDx8VHKRQUQHWhUhhHlP7NJqAt5aSIz/tz3SlaQ1wrsdiNXzg6qOcm2UAHeLk1HBtQbzXgS87PL7CUw7YOIFDDIQIECAhxC42jA9fX1uL6+3r55C/vh+fl5OwmiP+LZ2hBE1R7lleBmNG5rJmhKuNxSwayR5rJnvLNTI2XM9wECjtR4oWce/xkccAQpwAUvOyAQUQABN4RFBAvlQEX04n+AWlyawHGO/NxOjH4oI8BeC5Y7q7T2oQocBD9x7S15U6R0R9eZykgBrdCBHB3gvQLhXYfui28T4PcJAhDgOzRQ/mf7lEEAAm52wridai5GfpwTXBcb4a4scFRgBnAqW+jGknlS5zN6uA0GMOTInY7eTTCAA8CPtDnPwylkpgqtcXl8DdvA62foWUU0IB6vicdq4l3d0Za7u7vx48ePcXt7u207ezaoXN3yStYOt2eAhU15VypC0EGxFQj5VahSng6Fq3SclpcJAtSNoUEyXucQIh/HGBJUM1+RLhR4gNfYDMY8Pjw87LxD/urqatze3o71er1V4ghQO4YF2xPXKtl5S8CI+sYdXZ5jA9sKEFSAFomXglSEADehsiyh3ru/vx8/fvwY379/3/5CDzIgyPY7Mbl1fAbD/PpkTo+GHpdxEQREOapfuS87gEDpXNYDTJUDwvVjPhUN4PMuTYEBVixYKaI+1TDcNILnymOoGrEUrXMnMxDAaEBEAQIIfPr0aXz+/Hm7gSaA0ePj47i9vR1fv34d375929lXgXWxx89LCcpbmmm3W06ogIBTiN3yHPI9BSWKxGPvFKjKl5URhEAg5Bvvc1QAfxxBQkIDG/OMwWQA1+vr6/H+/fudtd2YsxhSxWfB0au7vb3dhnnjt16vX0QJMiCuogNL5momWy69Op/RFfvw+1rkjACeK5CKxhEjOWNo+Qs9xI8Z4hMHaEQVEGAwcH9/P+7v77f7B5yDoeRebQ7k5Vy1EVKBgTF+RrzQVq1WKwtSqg2NKnrLdVZRVDWPKv3UiQao9B1qg4FAhkhVKAQRHho+DtM4Qee6OtcUqckT5xUQiBBZ7Kr97bffdsJlz89/7aT9448/xpcvX7af94yJFQgZnzPH/snarNqpDFDXcGcCjOnVfQcC3NizcjomKYOgZC47dsYI+4jHSaVR98d4GRlQfKMXh55cvCGO3x+PSwZj/KUc8dOz3759G3/++acEBRjqZZ5Dobr9ANimzkYsbieWo/RFpvyUkvwVSQHWzJvkNEEcrg9vmQEn6ubn57/2Q93f34/VarWVh+/fv48//vhj/Pnnn+Pr169bIBBggGXIRQjc8jGCAHaaUG/zY9+YL9oc/3HZLXhZr9fpHgUsx8lRR+cq2VX1ZQ4HyziX+eaRgWAgGhrCxIOMjGCIOwZyDP1uczdpscM5zQwoiB+/qQ2XBRgIfP78efz73/8e//Vf/zX+8z//c/zrX//abqTZbDbj9vZ2fPnyZfzP//zP9vlbfPrg9vZ220eqDago1QDyNTeBnPev+jKObg3PgQcHALIIgWvXW5JD2wp9d8DpGC/7T/V5tYs+i8iodcy4js+Hx9puPPoVgPXjx4/bPS4RJQhwsNlstq+M/fbt2/jy5cv4/fffxx9//DG+ffs2fvz4sbP+y7vDIwoSSufx8XG7T4Y/5c1tmSFWwMrQ8/+OzGXyu1S/vCZlbanAK+qXMIC465+jujG28e6A79+/b/XcGH/tifr+/fv4v//7v/H777+PP//8c3z79q0EBOg4ZnNCPSHAewPUXi9Mh2kZ6HCUoKJs/Lk9mW7tOk4KCMyS0mUVTb1noEKeY9QNd5Qhpwz97EMoSG7fAK6dYYTg8+fP4+bmZqxWq3F/fz8+ffq0s57GP3wZEU+GfQcewYHrE+f1MykwwWM6O7YdgHIq1B0HJasOULkNSphGEV/HEGjIrgKw+LrYeK98XMelg6enp+0SVwB95Av5H2N3b1BGrIgOMU+5nEzW+V5HmWdg4NRJAVombB9+kwI99ngq4P7+fhsturq6GpvNZlxfX2/BXoCBL1++jP/93/8dX7582UYIAkjiUkFn3wDLdpB6Dbb6j2WwrULAGhT6OMjNQSy7u8+qKi+T2w4t0cEdmnodsSNWHPhfGb7Iozq4MlKzxCiRQ0q8ZyDWyljB4p6Bf/3rX+Pz58/bvQOPj4/j/fv3W69IPV4T3lVMjJhY2Lboq2q9ah9SyNwJseJP/bgMHiuMJp0KubBkdQ0plIwaJzZGylud8ZYRqOK746+url4AgQADHz582Eaq8PGwDx8+bMOjd3d348uXL1tlGT/0GEOuw8vCNVdUsDzXnPwqOVB7W5yXr6ICM4q0c/+UZDUj5Zw5h4p1Mr8XIMDA3d3dVhcGaAyZi3S4NPr777+Pr1+/7iwXRFQA5YlJOZhqrwAflU7nPuF+ibkTfYH6N8roOC0d+e7sycLyQn47jm62LL8vtcEAGzC17lSFTOPekoZkkYMoV+XBcwQC/CZB3CjDO2kjDBubCflRw1CM379/H9++fRtfv37dhlljMmB4iiMEwefz88/3vo+hBS5Dlhnx0kIH6WK/zgKBU1KmKDud6BZeV6E79jqQuE/YYCEfS8Ae1o9PEOATL2HwP336tP0WfSwb/Pbbb1swsNn8FfrdbDZbTy9kOp4uQLDMYDXz9LohYUfO4CuFqeZENa6qroqXY5LSfV0gEIT6Gr+nwREBNLixt4Qfpf7x48f4+vXr+PPPP18sEwQQwKgAR3XiiPoIwbF6ckC1L4skq83uKJOoix1In9GZStYzmcX/iv8sEsZ21Nm/GaDcBgPY0M3m53ohexCIPpFJZrarIBT6d55DJnC8xqSu4bIARwb48ZoAE5g38ke6UMTv3r3bMf7YJ0oo8LxrtDt9+BpUKcqOknorUvKhjMzSMjNwpOpwCqIitXEQnwkPIBCRgVgmiMhAfG0u6g2Zdp8/Rq9qtfr5/gOcQ9zuILcnxfWlAleZYZ/tOxdhOAWD36VuVAvlC0Fc/MdIUKzr393dbfsjDL8CA7GMED8GAhEZfXx8tJGxILXmH+RAwJI9KAykA+DyMisDAwcI0KmL8jsOnPuvZJP/dyLpHWdHURsM4LPHaPRxPchtRkEjOOspZIi4CwTwPxrwIPV9b44M4AuHcEd2DH5skEEesD5HKAiHXB44BIgYY7miXCqQb0XKa2eqogJYVhwdENiX2IOKCBZGsRDAYhQrnpC5ubnZAocI+aKXzy+JiXr5PSGVcnf9EueZTKl5HOfdqEDGF86LXwkEdAGAuzfGLijAqAAuD4wxdq7f3t5u95hEf8X129vbnU2DseE0IgIhR+odK7xkO4bfHxD5KkKDzgBI9ZGay5lMKHlU/Z0BgkrmqntKv2R5Xg0MIENjjBdggNM4UKAoU6DV4DjAwEjQTRb2xMPgx9sHAwjEq4jH+Et5xj6AeNSGUTG/hx77KgvrZP3S8cQjDQulQ7mMxDGM5voJ+xH7vzuZ3pJeU+Hz5FTe7UxZSDwHwjPDeyHbAQ7ctzRQKYaCjv0tocDxdbIhu4ovbjMCfdYP6nq3f1QkpePN8zyvnAVMo8o9JpitjIdqK1IYRPT2Y6lgtVptZSAogAG+iCr0YZQRTxnEuyrip15HXL1szQEBBgFqDBhgxjl77nF9ydxU3r7Sm8hjRBui//E+1q/AsiMHrCve8VjRFBhAYx9HRJEcFWDmOxut+LwySK4jOb8Kk+GmFN4rwI8WRog1PK1AyJvNZvv4DW6iwXUznCT39/cveMMJED9G1NjW7n6MmcgAe1wuTWcyKe/tlElFkLL7ipTRU/W4vBn4DRCACoYjcgpkonLFteGg+/v77bpv7AR3gJajf+gA8L4hB5BmwADOA9Vf6lhFelw9CmB05sOxSLUvazPrAfXoZ4wlg4DYT8XyicsKGA3ADYOsv3BPFDsgHCVgENDxqEPO8VXwLu8ScOrKQsDAclt9ornSGU7Wuzy/SmTg4eFhJwQThABA7aIMhjIF2RnkpcQCEcKCQEA9TaA2ZOGLhlAJxuNZ+GgNeluhhFG5YrgseHLeiRMmHotOuApJoV4GJIyAldHqALZToq7hVz+kfRQMjrVLr+YQeuJolCMNr/VH+eHNjTG2YPbu7m4HCKDMstyG7MZyWBgP9Qsgy+BgBki6/x1amseBgn110D6UASJn5BQYV4AA5We9Xm83C+JSVOhFlP8Y35ANfnxQgUK1mY+Xn4JcNMC116VRtopf/sbnTOoa620lN9zf1dM1WbuUTsn0Pl87eGSAPz4kC4NNSWzAWJiCeOOGGlxFbsBVPvSQUEFy2CoEH/cLvH//fvts9mq1evEoTryWk9/E5d7PjcApNrCg4cW+w2OMAbdZrU1FmmgvpsuWBnhMFGXhuoqOBQrQ8HcmRjXRMI0ydB0goI6OB7yGIACNcrxN8Pv379tNg/jVxPgGwfX19VaO7+7uxtevX8eXL1/G9+/ft/LKQACVPRsRXAYLGePXz3ZBkjK86r8rD5WyM+IKYGXjcAqkFLsC5agTcO6j1xx6BzfshXOD19UGUq4TZQIjwyinURaPRdbXaq2/2y9IqFsDwATfKMNdoNrhQUUy2A4Gb4pfPl8aEVhCi58mGOPluiUbEbchjtMwIMA6sP4uZcq/mvjRFnxHdzzPHQgZlXCEytRrN9VzvBGi48dosuUVl67y+lVeDmPxGvRms7u7lsNcSsEq5V0BtFMh5w3ifQZYh6Qq2oDXQu4uLi5e7ALHtf+Qx1gLDi8M9/WEkY+lAf7kLNaJ8s5AgJcPIjKgogJdINABY07GsM8qj6kztseMCoyx35xx/YOgINKhruR1e9wzwNEBBAVxnR3BaIcz8DzuHMng/S5cLpYR7eMnXNi5YllXurSyX6gnkUe0g8gvb15V7WFA0AUDlax3aPo9Axkj+FIH7BD2fJnchowuLemIjpeIqDg8rTFeKuenp6ft/gB+0QYr08yjVwLcoSya4oCXyueIQaDzzjKkfqyoAFKMufplpABDXOc+4XyVgVEGsCorZOX+/n68e/duu24bkYF4VHC1Wm3D+vyIYIR5I5IVH5RhA8/LASoqwN5V1S+HIOVFqb7KqAKAxwYCY/SWk4IyAK50RIwfe/1s+NGJiPtxPUCBWipmHuK8esKKwSBHNZFPlS/yIJ/Iq4poKQDa1b+YJxufqryObsnAEP5fQm0wEJ2rQjisUNH7ROPjHrlQ9zLk/1qGhT0aPjIICO/q9vZ2+wWveOYWd9nicgFO7AjR8WTct42V947UeQSRozcVqXQdo/tatKTejnfaye/K6QIMVS4uE2B0KmQQn3qJ72dEXRGyjbwhu7HPBTcQcpQBPX/1nhFeHuB5U8lOZYCV0T8k2HDRiWOS0q2KZvnFfg6vHp0RrAvX8JWeyl4+hZRFecbQywMqWhC8Y3pVNgIUnDeo51lGO/weWjaUDsDzSh9EGfvSFBhg9IePmzjjox5nU2XjvSqUwvXMInjkgRU0hv9DCca+AHwmO5RvvHQj3sQVr+hU+wfCs+LwHPPkno2t+qCbvqIwGgoAKGWglNUhwlavSRk44TZVkz/zUl266loGhHmZKgx6vEMg0j0+Pm7BwGazeRF5iohWRBRiyQA/NINzgEHAGOOFUlVKtvJqsG0uklL1qYsO8DhXEQsVLTgmMHD8I3UBFEc8+BiPGzJlYCDKVTrClZXdzxwTXi5AQJCBOJTLMcYOIEDgyjzOAlPkn8t1MpTx7EAB53c0axfbYAAZCqGIgeAQ0xi7oSUVJWBSywp83U1SJaQscHjkUBWWxwry69ev4/r6eowxtl/tihBrpAkQEJ/05FcS447saFMI8OXl5faLb8GLmxCqf/gej0PU58pS5SgDH+BgVsC4jGMQj72KYmE6pswwK+PSNfruviqHxxw9+9VqNf7888/tHAv5/fjx47i6utrm4f5/fn7egt4AthHV4n0wHGpl7z/zsLhNmeypPGwMFcioAEPmfTFxfceMFPCcz6IXFY9ZnmwOzHqf2dMAijI5R3lhPaY2R6ty1ZIA7nHgctGuOdnBPMrod4AAttnNiUq2mSoZyWhqA6Ej9G7jnL9j4BAur+1gebNKVQk0CiYjXNwli28WDEUb3v/Xr1/HGGP7KeJQohFejR3Zf/zxxxYEYIhVvWQolge4/dnjNt1wXGZ01bKAWqIZY2w3nSmw5RRxhoBPKTLQpcrjiOOssajKU2kQVKv3euC9AATx9rgxdl/7GjzzUlf2xTlWcF1ll7U983qVHugYQB4zPO94W7NG9jWJQTQax070qpJdTKfO8ZqqVzkPKtyf8Yj32MNmQh0eafBVya5stT9AAYGKN55vDITVfW6Pi4h1+ie7jvNlCYCd2kAYgomTDA29MuxISoj4tagMCDjSwISCyN4+/49XDQcIwE8Vsycdxj48ru/fv295jbBpKFBcKsANWbihMFNaKNTRFzzRUYjVphfuYxQMtfGGAZoDEAFOWOCV8PN4ZIj/lIiVmbuvZNoZbpWfveMOIOAyMNI2xu4LZDBa8PXr1+0XC0Oe8P0akT4MfewXwCUt3jAYfChQENezn+uboMwJ4PtYpiqfjb4ynJU8op47FmVAnM+raIEDYXiPQRSncSCLy1UOIKZhOWQdxWOENmaMXVCgdCYSLwt09ki5NuN1LBMdNacbVT/E0elNpmoMGRDM0HRkgFEfn6NXyfmYohP4EY3ZPQNRN3pA6P3HOUcB8EuFGBaKqEAI348fP7bf9Y574fmHN4XrrPhubn6WFQUg2szrXtw2/s9C5NJzmsr44/gpo68MgULDSAwcT42ySdiZoB3D4pTJzGRF+cFxxHLxyZbYQ4Df28A5guunvD8GPy7D4X/n+cy0g2kGKHbABhsr18+nDFCDsohaZvhdWS4ty1MGVpVeQqOZGSnUeRgFzXRKEOpytEP8H8uLMnmvSya7qI8jreOP98d0dZzSy52+5/8dUNelRRsIg9iAZZtD3KTEvIwmo3MZSTLxozAVGOAIASrIUI5j/HwWO8BDRAzwvdz4n98zwIhR9UccnfAHXyzQTpg7SBz7Cp9kWK9/igPyrtaL3aTKokPH9LC6faXyZYCg62V2yqs8OyYXHYrHgB8eHnZAgFpTxacSMBqQKTenENX+AZSPLmBShgnrxfIUGOj0XUZs3JCHtyYGA502OQchy9sFTV0jg+lCh2eAIXhgw4uEUQEHCFRbs0dfXftVxNOBArSNTtY78uP62YFdV4ZqT4emNhDyugeHnhkYIHPBoLuGhPf57XgqnaoT7yEoUCH4GNQwcGHMLy8vx+3t7c6LdzD8z5/qZJTYIUTK2KcYIcHyePMWE+5DUMAs+gB/+NpRfjaXn8nF15fOIOHNxr9+9C2pOylV2lmlzGmrupUiYcWu6lX7Bi4uLrYbU2NMVbTOgcxqSUTJJqfpgIGlyqtr/B2w6NKxowdOBjNdOqNfI41rpzNQyrgz0EU9FP8dvwpg4tFFAfh+ULW2z2lcX3FaB4QrWWeb5OrLeKnSVpGwitpgIIxINN51PqK2oGoXedfYO+LIgLqmjupRq+hMfswGvSd+sRCHVR11jYFaJkEvkJVxVi63F/dL4MuU4m2LCHzQ+EfEBD1J5DmrP/rmmJGBIFZYzhipc9fW7sTNlK4qi5W7y6+8lpirAXDjqRUs1xl1J8OobNQaLytE1y5XNs9hZbQqysDTUk//2HLbjSTx/8q4u3SZgVey2AEkGB1QEeZqmWBmWQD5UDKeAV0ml5cBBkfpMptWpeuUg/erMelSGwygZ50xxaCAgQHeQ8qMqIoycH7nCVfLBHEvBhRBAA44v4lNRQJcpIIRcdZ3KgTGISgVksrKx3bGhsl4vXJ8mCleu4wbBvkNdLG2zK+jVfWpyXpsparIGQen5PA88wRm6stAglL2bBxYwaFXFmMQ757vRHJ4jrNnV4GiDBR0qJorPBazAEQZUXevw9NrEuqnChRGekwTVAFR9i6xPKVfKqAQ5KID6PCoZSml2+Ie6qigKjIQR7eU4OYF52XQrK5z2RlleWZkmoHAEtDbBgP8lrxuJV2UogyIM65cPxv/uIb5GBDgDmsUNhRKBQLQSLIAYDgWeeLwbBALJk8svM9rU0p4uU+4vRcXFzvGHz/ZfH19vQUIwQNGBPBNdxwl6Ah+dznhrYgnCytDBQQyI+TKc9ccP/u0BRVsyA9724rXIHxEiwG7igaoMrsGWNXv8qlyFQBQPCgvd9ZQnhrN8toFrMqIOCCAR6zHAQKUx1iCDTljEMBGewz99ADWF05JByg7EKAMs1tu4LLckSnTLa68DGhU8j0jJ1NgQO14R4bH8J0bjHMaJlREyphzlEBFCFSdCjAoNOlAAEYCVIgc62FhV3xuNpsX9WP7OS3yxgLOIAkjH7EMEOfx3vo43tzcjOvr6y0owHV9/DhNLI1cX19vz3HDJPLKfaPAzTFJTRbn4ThDqianQ/L7GhkHLDLgEmlRmbj5GPMq5JYjU11PXdVV9Y0r212f7U+nKLFu139czqnQEiDg7mXeJI9PJ4LiQHXIFh7RnihDizzgo+34v9t+BTC69zNg0AGlnYgMzyG8xmn5WgZsZ4BjGwxcXV3JgrGj2MAh8nOhC2W8K4+e081S8MXI1EUCGAxEGdwGDGMhIMC3C2I7Y+C5HcozY2IvLfoo9gTEcsDl5eX2WfOIBMRXGOMYkYEAAzFOCAZiQ1pEGOKLeDEmbPBxrPnd529NzghWeaqJNAMIHKhgnlR+ZazctQyQKKCAZeHjVMpQ4jXFB89JB1i6pOZL5fFU/e+OeM6GaCn/hyAHrrp5qzyZ4VJtxjHuGBoFDlA3Ol6UYcY8mWOKpOrANC5q0ImAZcbancd/7rsMVLvxz3RA5tA4mgID6pGxzWazRWkxiMGYe8SM77GHwg1FwghBFxCg0UXjFfUH3wgEVGQgymJ+2ItioceXYqAQsNJRfDOPqg+xbtwTgL8ACAEGAghcXV1towPxkpogBEixXyC+kMePU0Yf49MH3MZjgQEmpeR5YmaeKR+zie+ujdHzSGeIlYxTNpiW+UDwyvfG2H0rZQDSkGuW764Bx7pe0+iqucu8OgV/iPFZQgrI7cPP0nw8LtU4qXpwGQtfNIe2I/JWfHb1vzPwPK5KX3E5yoBzWne/mgsd0HcoGXDUBgPX19cynBPK4PHxcWsYVeiJKUN+CBTQq+ZNguENB4WRVwPtjG0YsDii8cf/aOCCUAGyElXUQdHBp0PNXHdQGPtYDsA9AbEkEFEABgQRFXj//v3O62txA2EAARRm7Gv0/rmv3CuNj0E8MZ0XlHlHM0AgKy+rI0gp4cobd/VX9xgEOb5ijB3/7JWwN8P5uko9u1d5TxnA26fu16bKQ8x4y4ChShv3qmhIFk1R/COxZ498ssPDcoIR05klR2f48b6TnwzIVyBA1a36lfWJGm/XJjdWfL9D05EBt8kujCl6Dh3jF8RoEdeG1uv1i81RSBy6YgFVvKBgBO+4ORBD5GpgVJnIv2pTtGsJsSeG5QUowj0CGAWIzYHo/SMgiF+AAZx8AYoQiOHYhyDGxkOUieA3QMopRAbYG0ZAh9f5/BB1KoMb17NIhFK4yshyPiT2fFQeZ8Q7/cD9mKXjc44suDHoKDU3z1UUANOgQcqU8DEoAwOdfPif7zs97YwMzxOWkQ4ocMbcAR2sk5dnWT7UPMiWI+LYAVr76AM3jzM+8H4HoOC92fk7xgQYWK/XW6MTyh6NRtxjQDDGy/Vth5wwsoAIsloncpQpAFSO6pOWDBYqBcF9wSjWefxB7kkJ7B+Xlyco7q9AYBARAAUE4n6AAQRiEfXBiA0+XsgeyNPT04vlhpCPUyKn6NS916gPaUauZ9M75aaM4Bj+lbHRhkzJdIEDnisg1i2ra3xmjOcpgYElXusYHkRlhigrA/9nkYGsr1nX8z1ljFneHDDoEBtddW0GbAWpfuL+YHDVMfiKh6pvHaDv0PRLh/A/GtTwCHFjngvPVwwrYIBhJUwT4APLVfWhogtC7xYfk1OCoQSUjaCrK3ZquycdOO0MsXelIgS8ZIDRAl4yCC8ewR2/7COiJvzmumjH1dXVzlpylIEf1XlLUh5GUOaJdmgGgbuJ2TWCS/hcolDi3HmHji8VreiWw2MzGx3oGvCOoarSviVVHqvzXmfycH7Wey6aU5WV1ZcZQ8crRo4UX07GVHn7gAHXHx0D7PpC2RrHO+ddqneYpl5HzJ4+Dk4YjKiYHwHh1wo7oBD3ogwEBsEDRw54gx4SdjJvUAkw4H5MmaBEe/h9Ccg3G3wcSFZ4ykBwmdFmXipAEIBPCuAjhPGCIXz0kF/GFKF9RuOxfBB8BJDCvsU2hIcZ33w4NcoMUZAzcoes/1DECqnjcahIHALyqtxKGWcAhwFtnLv0XHdGGT+ZkToVUKAMxYyxcTqra+xU+TMRG6ePFX+VIUZ74DxtrrcyrFnfKjnptsfVM5O3IgW0sf1dJyVoERjI/qNB5HNsBD9NoIQMDfgYLzcIKkPrCAFA5MWoQBxxY1Q2gBnPGM2Iuti7xvZgWZiWeXDrZQEEVqvVi5cJ8WOE4f3HI4fx9EFEBPDDNtFn8Z/fThh83N/fvwBdOOY43sckB772pdcw5kgzHkHHU6m8F67DpVURlkhfGS1V1kw/qnYGz8ybosqgHhMAKMI+neFtxhgh4Tjy9aycjoFjuXJe8Qy/iveKHwW0qvZwGyo+OxEDZcArUu1yDmW3zKlPGPMjYxhWx0rZQ45GovEOch2QKQdcy8w8eDx3ywPYLgYHuEFO8YPXszTMG3rMY+jXM2O98Z83IqKRVlEA3B+AIADzKt4jQoBjFuf4DoP1er3zZUMGBAyGjgUIHABQXinLZlClXFRaTucm5yHABLdFeQ18j/NyHyiPnRWd2tOjeFN5XR2z7eZoxj4KNY6nAgYYBCBvnbZ2DJvLtzRC0AEebkc/p8/kZJ/6FXUMd7e+rHx3fYncdsFvh9pgAMPCY+zuwkfjicRRATYG2VKBQ6A8WIwCeaOiE8LgHa9x/bFmHryruvGnnhqIPCoagKCAIweVYo2y8KNDYfB5Y2C8ZyDq4qcDgsLQY/mspKPf8EmLWKrBPmfjh5GFUyNnBDlNHJVRy0jJzSx/jhcHYBy4VEo8A7QsJyy3rl+Qh6rdDoB1SLU3U+aVoTgVEJARG49DeNNRblZGBUS6Rlj1d6ctqpxKXrL6s7o683xp2VkdXXDnnBA3Hzo0BQb4qYAx/CNLDAAwPB/kwuFI6K0q7wG9e/TqFTiJ9DiZHHhQgq8MOStQpTxVf3FZbilB9VUAFYwKhOG/ubnZiQTwZ4n5tZ7xi6dEGCxEWvy+AgLA1Wo1Hh4eZD+i0eDXFr8l8SRxhi/u41GR8nSX8FTVU4FBvl6BGeX14BhjGTzf1B6YODLoV6DAKdYOEFMKk9PzEmJFqi9mAMRbEyt9dc7/KxnO0jowWdVb9ecMEHBy7PTrvuPUBYUdENKlJQBgpuwZmgIDahNgHKs1+5iszjt0hgINpHquNOpHIMBeKhPm42tBqGTc0xFKIalJhGnimlr/d8sGCBaUYeMIAW4ExPoY4LAH+Pj4uLN3gJU0bk6MCAT2JQo2/g+ej7VMkE3ySum5tMqYzNAsCOjw5+51+VTgiCnbD8SGumNsFLDmvJh+aZSla6SWKt7XoooP7IuOp473lFxUMsD93jWgFVXOYAbc+f9Sb7vipaKsDexYVmm4TNfPChhX/eSoDQacsVeGjZmINBlT+LW8OHa8NOSDjy464PJWtEQJYR1qQBUIUJsmERAwT3HEvQBYD3tz/CGlAAq4bwIVvuqHABzr9VpGWNTYnwIY4D5UfcrEhsjdw2uHUCiZ0shATAYK1LUOCNiXOt5UZdQyIDcTadlnfN6auO3O2cjyZ7LgvOxuXd1rWOYhAMRs1MPVcygQmBlrl66Tf5YqYJBRGwzg42Nj7Bp99N4VA6FseIBQebG3zmWgt+yUN3foLBCo8mQTh3f3q7LHeAmq3F6B6B82VlVUgMO9CgxEHWH8I+LDgIXbi2ADNy9iHRgJwE2Fx6buBFWArwMCqv/uWofffUh56zyuLLdqfnXm0gxPeESqlGrmfXWNvPKKTxkgdECh8/TxXocYYDm5OVYERckrUjb/ON2hgICqX5U3C5yW0lJAMAUG8OU+/Mw8DpIKl6tPTrKHFtfU4LD3opQvK3K1x8GRm3DIp4puKBDA+bEOx1Pm/WN70CtXywLYT+jl42TGCACWjwYfnzoI/vCpAIwKRJlYJ/apAhrHpNnoTuWFYLkzoMDx5fJ1KQMuDqizku1Ecpx3mc0ldXRKXZWFRhDb4653++9UowYIroP2bWuk7cp/BjRmy2JSkYJOWS7Na4zf0rYFLYlKzMqjs49ufimaerQQd9Y75REKhA19GA40KsikAgaqEaruyMNlZJ2wZPmAH5cMch4V1oFgxRl7R06BYp+jQmCDjAKFUQc27LjpkPcd4JhcXFzsjGeAmKibo0iR7lgbCIMHd80BMFa4DDad4lqijDpeQ6YAO9cVKGAgoID8DM0YjAoUZUoy8neMhxqzSkF3r782IYhWOifS4LUO8OyOBdYx02/OQarKUWmWyuNreeIdfpbKURb5cvdZLhS479D0BsJgiD2HmcfG1CNrUW7cZ0IjvC9S45C22kjoBsVFAnipxIWIuD71CCHe51cCoxFGYoCQCQK2W5WDywDY3wFkcGkA8+MmRXyqI9IeMtR8CGLe+fFR1Xed8eX7yrvr8qa8wjgqQO68dSzT8cFLcdVcC1mJpSaM/nU9G66D+78CRMpouDncMURMx44SqAgen0ebDsWrAxqq/zpynRkyJFeuA4NZ2Vmeqm51T8mookx2FU9KT7j/qg68tg8QGGNymcB5D+hFOiXCu45VA5WgcRloPCN9GBr0TiP9jAGqJhS3Sy2RuPawgcd0SLw/wCl3NPq8jo/3q7ay5xH5eDzVfoHV6ueSxdPT07i/v99GBqLN/DsFqhSKAgRdQ5sZIqfUO8puZlI7DzKLSHFUj2VIRd4iPz9xg+WqtjmD7BRhpcwdAOkqcEfOIL0lVcDfAaZu37k6nRMR5eN/V7/SiZ26FS/KwHYNblVHdZ3rz5wFpQecbugClgwUOxDQKZdp6nXE0QHqETs0Tk7RcTlImbHAMtTegwAAMwqkqodJAYFKUStFknll2X3kkfcCKGOLwsFKnH/Rb6jI3XgyYNhsNjvH+MIh8os8HpuU7HWVmVIE2WSv+KioAiROCTB/M3LI9QQpIFC1jcEm3svAgsubtfE16VhAYIyfkQGcj0jqf2ZAHak5rsofY87rzgxnRZXhr/J0+MvKUXPI/efjDCiY4dM5ndmYdcue2jPAExm9BYdMIh0zxR2KHoZqSNZxWD6Dgqw9HaqEoBJy9LzUdaV01VMbaoC77eWxwxcPxdsE8YefJuZysD7+4dcLMf2pRAY6ytEBgG4ZDvxy2e5cpcX/6qgA21Lip4RUWbhcGHLCfDkl6NqhqHMvS5MZk2ycj2n8mWK+RURUtWFWJ7n2ZTKm6snKqurq5KucSpW+CwaUfKp7Y2jZUfZoKSio2qf46873GVme/jZBtjdATSh+5a96CsEZM+y0ypCwl4t1YVmqTXw/M8bRRm4HplFt4DQuyjDGrrJV5XJbVT9lHkTkDyAQHj1+mpg3izqa8TqPBQa6XkVGSjFkxsNd64JHPM+AgZO5TJEq7zEI57jaLMvlBHhdrX6+vhv3ueD8ynjtKNfXJNRDPKeOCQ6YJ3TAOkahI3OYNwOZWCbyltXp9B+3T5WftaEy4C5dlb9DVd0VOJjllcmNp5tL3XKnlgm4QhxwNvacZyl1kSdHB/i+UubZRsJDE0+2mWWGIF6nx/X8mLju+hgvAU+E9OPpgHi18f39/Q7oywwCCzjXc4q0j+fsynNeRBDPG6UwZ/nqAhTnBSMP6OErflx5IXPoLDAgUDJStal7PwMZTgl36uE0x5Jp1k24P0P1qRu/DqkIT6ecjAfeK+b6dAmoULKQGdhO5Keau1hWtfE8A7WvBXSXAoExJt9AiF4AVxjeZrWrXm26q1BkV0HgpOGOYE++Y/hViD7z6BWp+/GqXwcIVHvjPr5XAB8HjM8Tu3cORBkMhLDc1Wq1LYsjQGpcVYRCvWdAPbVwDMqiJYqc4VbnWSgRj5lXfgiaKZNlWZF77BLzq8dPsY38ZIkra1ZJ4/WOt7ZEAc8q1EMTGxzWw8rwOy+6kjmlLyqHxdXx2lTJQ3Wvy6Obq0qeHJDYl4dZPpmnbj3TkQFWDCGgITiZka12t1dh/SXE/FQgIHveXFFmuFVe3p3v6uSlCvT88QuFAQoQICAgCCPvvAisL5YJHh4edj5whOkZ/GG+WF7A9wycAggIchNmDA88WdlmCtUpB+57DsUiuf8KdLjIggIleHReDi8P4L0gfPwS83NbIk3ohsfHxxf9xDw7w10ZfCbngTlFXAGVY1LwxU9sqCc3grL/Koql5LGSO+eBLgWj1fWszK5cZPkzI10Z+QpkVqCh4tc5HJif9Rr/OjT9NEEoDfYYMsQfhGuQYRDVI0qKOh49d0Y37I/ecdWGqoxsIqrH9JRBiLRI6LnjZ4qvrq7Gzc3N9hfXrq6uXkQeHJoNg66MemwyDJ4QAET6+/v77TEeL4zNiE5hHYtQWSnF1THG6qjqieNSZaUMeVfZsnJWQFB5O9l/zItRgZBpVTZuHK2eGEIZrZyDjvJ2Bkvl4fynAg6YFwYCY7wEY9m48f9MrlWkoDJ8eA/BZzfK4KId+J/nsKp3hpy8uHTuWqdPOmkzygABnuMcehUwgAxx2JiViGLcGT0FCFgIMT021Ck6LrvTJkX8SBUi86oMtSQSRp2XCrIJgksDYegDDLx7925cX1+P6+vr7XlEBxAMoCJG4ecnADCaEPki4hB9HYb/4eFhPDw87Bh+XDrAPolyj0Edxa7ktHNUiph/akJ2FCPyxoCgSqfa5uQzzjtAlkEAy3LQ8/Nfbx2NKFHsIXBjwY+44jnLbqW8O2BA9c8pEvYDv/MBdWAFCFB+Ko88A7xRDtcfdXLdS/q2AqCcbmZuV/XOGu1ZADLDSye/ArmZI5LRFBhQIICZ7ITh46cmsNrJj6QeeWPqdoIy9JlCREXo6lXKcozdfQKRH42u4g2VLUcEMDKASwZKMWCfKK8r2o+PFz48PGyvX11dbfs90t3d3W0BAT+aiAodPyfdMXyvQSgPzvNQytMdnVfMni0qS/bk1LkjBxxUXudNozHg3ejBZ4C17l4YBAIsy1EHAoIAA05HcBQhok8MChTgYkXOSrrSCacMCIJYhpVhcLIV41U5ZxVQULx0jCgCEQa3M/VmdeC1rseelZuV0QEBrs9meOhej3ss7zN6d1FkQBErIeeNqLXwoFAqKh/mwUYqLzTOq87HTYXuPQAzpDx9BQKUl8X8xP3IF1EBjAYoMIBKGQUjjHjUw8Yp/j88PIz7+3vp5UVUBJcR8KfAQBCDv7ckntTOe2JyEQAeGxUqj/bjUZWd8Yk8zng/laJiZYxym0UAxni5+ZX3puCcjnYHmGSP321Kjf7DZauIPMURy2FgkPWNAoPcx53+PgVScq288q68I2EEwEUIVB2KPzXn3JF5UEeuQ43dIcfQgYIMjGVAi/NVuqDLwywAZmqDgSwioDxQhf7RIIQnwuWh8KkQuipfbaxhL6gT2u94Q24glXHga7xhEPPGxIv/kRefGri+vt7uC4hjRAwuLi7k8gAvlSjkGP95L4Dy9jabzc4GQTaYammmQv+vTR2vwxl81T4eH+cdY18h0FM8oUwrzzeu45HP1f+qzXiuZBSPLMchdyF7PG+xXdwW3j+EvIQcYrQq9qXgvhX+sV6olG5HUXY8wNemLt/OCGIfO8DDYJbTKEONYLLDG/OZUTVn3dh2PWoHQNxc6wICvF45Gt0+qXiqAEGXph8tdB3YUfRqVzKSEjjlcbHiQIPvDI+KQihySwBYvhIkVpYcEUBDwZEA5oeBAC8P3Nzc7EQGlEGK9jKf+OVAVNCr1c8oC4Z1g3/8UBXv8Viv19vy4nqUh207JW9LAQE8V2CAvWd8gmO1Wm2NI/c39rGSS15SyYyc8oBdv1aelmqXiwSMsWv8Ua5RvlXfOa890mDeoJC/WIa6u7sbDw8P4+7ubgsSMCqF8pZtUox6KxCl0hyDKj46xghlj68h8f6DMcaOHql4ZFCgDJ5rkzPOeJ/lNgM/1dihsXR8qv9dmVC8dnjJrivHwOWfjQqMsfBpgtXqr1fartfrrYfPHma3LLdOzwoK7/FHk6Jujg5EeqeIg5y3ptKxgYvr6EHxh5tYWUb7cckDgQznC0AQSwL44+UBVsrRN7h2H/VFSH+Mn4ogygovTHkMyqNAGcDXHUeazl6P1ySnbBQoUEAAgSn2E441Rmmwz9i74v5EMBBhcIzQxD2OFnQ3x7q24Q+X53je4ZMs/B4LBEDYPyzr3N9YB/ZZ3I/2xibVu7u7cXd3N66url7sbcHXaGOfct3cH90oyqlEBZwOY8OP17NyOwaTdROXnRlxZ6wznvDI564NXb3SjRpk17mfFbhS/GM/LAEHCghUUQvmoaIpMBBvFkNP8uLiYucTu7hW7Bhjb36MZa+9zdKqcLUiFbJnqupEQxplsLJDRcmenuIfDbsCF4pPNl5MaGAeHh52XjuMSw2RBqMCAV6wzei58k5x9jBxaeGtCScfT+KZMnhc4xyjN7hUg6FzNpBBIQu8Ps7GLuYNgjqmzPCxfKtrCoDzUoACBAwAHBjAsrnMd+/e7dQbchV9cHt7O+7u7rbH+/v7cXd3Ny4vL8fd3d1OXc7bmzHqDLyORdh3Sw0u5sP0lU5Fhy0jVT+XPWO0mYeZfF2Qs899VU8HCGSATUUF8BrrTjf/3Th0aOrbBGP8ROyo7EJRIUNO8eNk73iOLMhMWG9lbNQygtrIpCjKV4MXHj4upUR5rDC5TMW3y4cefQhYeOFKSY/xEwCEh4VPAOC7BDgyEFGf+PGyDo8FLiEpzzd4OBbxRAkZZrmL65V3G32FERt+wiPuYzSBxzLGMLzf+BR09BUbpZgrfF0pAqVII03IXIB79AAVuEW5cm+5VEAAo3UcUeC+42WW5+fnLWi9ubkZt7e327S3t7dbIBDE/RJ8sMF0yjj7LTFkh6CQj6DM6DigmwE1lW6MXSdJzQesL85ZDp1cOplR7XL3q7Hko+JNlVeV3ZUDbkcmZ6ou1xZFlV6uwNyWz80xYe+ZznSmM53pTGc6OvUgw5nOdKYznelMZ/rb0hkMnOlMZzrTmc70D6czGDjTmc50pjOd6R9OZzBwpjOd6UxnOtM/nM5g4ExnOtOZznSmfzidwcCZznSmM53pTP9wOoOBM53pTGc605n+4XQGA2c605nOdKYz/cPpDAbOdKYznelMZ/qH0/8DVcyq8NWTAfgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrjElEQVR4nO1d23bbSJJM3WW73T37sv//cbvPO7Nu27prH2aDDoYisgoUZVES4hwegiBQ16zMyKxC4ejx8fGxVqxYsWLFihUfFsevXYAVK1asWLFixetiJQMrVqxYsWLFB8dKBlasWLFixYoPjpUMrFixYsWKFR8cKxlYsWLFihUrPjhWMrBixYoVK1Z8cKxkYMWKFStWrPjgWMnAihUrVqxY8cFxOnvh0dHRS5bjt4LrcnR0tPmtx+mepXnM/q/l0mNXVvc5Pj621zk8Pj4W9p3CsZ6brWv3jc9//dd/DdPbN/7zP//Tntd6dxj11yy6/uPz3XFVPeljrsvDw8PW8cPDw+ZY+3i2v1mu+BvH+O3aJeXnypPaSfPWfLp6cbpd/VLeOP7v//5ve+9L4j3o3U4fsPykMZGuYbA8qczz7yTv733vvZn6TZOB94THx8cnigS/9b+q/RMB5KPX8jlXjpl8E9HRsmn+rjyjss9e/9pw/a3fTinsu27arzpAExnkcuM8DL5DMoRduTh9V65EYlz5RnnOlGvUZy69XZT9TJt396/o0ZFfJpMjUuDIA8ORgfv7+617O/LJ6XxUfEgyULWtuBwR2NUY71IOvVfLpmXpWPRsfqnsLi/1rHb1kg9hoGkZZrzHZCA7QqfX4r8Z+XKkcLbtuuu6/EZkeNaLS+kvISddXVI/7RLp6H53966YQyICTABOTk6eRJhmyQD3WSIC9/f3W2XCNXpul7H23vBhyYBixsj9DnLwHHSKOdUvGbldSdGMwTkEzHgFSwz7KK9E9vZR7hGcF6X/dfKfFPkMCej+67wz17ZoM9eesySA66zHS8q/Yhk0GsCfRAj4PidzPGUEo98Rgaqn0UAlBx+ZEHxoMpA8b4d9GMSXhDM2OMb/I+XMaTmvd+a+dM1bGmCuLZ4bPUrRHkdAlqSf2p+VqeaVZEWhCjmFdDVNLVfy2vV/vm826uKUu7vWlXOGHL8VmT00pKiAGveTk5NpMpAIAa5LJJdlSdfTIA0X/fxoff+hyYBixrCNMIoupPx2SdNFAvYlyEkJO5Ixg0MbWKmNknF+jpHu8tN8lpCOjkggT86787b1mhllnIhAB0cMOm++6w+Xpt631PN3aaRrV8zBkcru42SwanshoZICRAJOTk42+T4+Pm79ZqA/XVSAjz9Sv394MjCKDrjzTqny+dG5XdNxxr+ri2O7S+CUfVKyM4r8LUEjKp2MpHtnziWiMUM8UvumKID7X8/zcYoMzEQFkMfsp6uPS9e1Q9fGo3T1/pUI7I4uKqBPojgioDpOCYKbojo6OqqTk5MtQjCKRgEgBDpuPhoh+PBkwKGLEDjPK6G7l/NZQgoSOiKg+Y3S7rz/2bIemjLdtQwdGdwlKpJIGpMAPl4agdAyjoxh6kenyN0n5d3J3y5kYFauXV26azXvVJZDkOG3gC6ilB5NdVEBhP85rYTj4+N6eHjYpPnw8LAJ/TsicHR09GQRIe4HPmJ/r2SgniqapR70CLNKc1/5jhSZU6pLyzijaPmcG5S/C6N+nQkNLomsdN6EK8tsBCcRrq5dO0/aXeu8/hkiACWc4AgAVoCP6jAzLvWaEWFzxETPr5iHiyolQtA9Uli1HQnQtNOaAb2W81T9lZ4mcDL8kaIDKxn4f6gSHoVRR3DKyKW/D0EbCWxnDFwUoPOGR8YqGdLXHEyzebswIe7XvpuJCu1KLp8TIZpNu+uTZPiThwaFPCIEnO+sR85lGvVjIjD8n+adohRc3hU9HAFTAsCLBHnhIF9T9XRKgNE9wZKiA1W5D5kEVD2NDuh1710WVjJg0Cn7WUPgvvWapHhmDO8sRko25ZnyTiRB7+3y+t1YEkbuogRL+2em/Vz5ZomGIyyJxI7C8V0EYNbbXoJklLvrXZndsdanyz9FKFZSMIZrfyYB+AYR0G83NbCECIyeJOB0MT6UqFRtr9NRQqv68D3LwUoGBPswwFV9ZGAkUPsqg0v3OXmqEXQK+BAHS2cg07kZUqOkaZYYLCFQXTqzcIQmpf0cIpCiAjOGviMqTtHjfDJIWi9NJ0UEUlsdoly/FhLxqnq64j8RALd+YCkRmNFXGiVQPD4+bv2n0QFHNJbKwqzef22sZGDPmFVOI0/O3Ydz+4oW7IrZ/A9F+JPRT4PeHbuISRdFSb87Q+XKuaSvXTlmSZ4z+rNEYLRWwB13/3deedfWrk9de3REYI0IeKS+74iAmyJIUYElSIZ9pg5ddIDTRcRIySfS4d+jPN3xIcrVSgb2iFlFqkQgGRROSxXbDOnQ/HA885+Wb5TuIWPkDevvFB2Y7TfXH04mXLozUSM+nole6H1aTi5fkrOlBDCVrYvGjK4dRVFcu3ZlGxGBLq2PhI4I8LEjAqOdBqvmvPwOMNw4dqSSx2oiE0xqdf2B5sdpJnR12iXC8NJYycBCjAaGKn3nfXYeJl/rjExnYJZ6kVwmrZsjCaP0D024gc4Qaph/NNAdIXBInnYih4kQjPrE1a8jaSMPL5GC2b7tDC7y6dpwRAy6kK3LT9Po3ty4Yh5OrjtCACLA/3ey3ekafnQQv3GfEgM25Jym2zPDyb2LDszoiRldfGiEYCUDe8ASTzApQxfi5HQSC+/y0jwd3MBLA3PGq1PFmgzbayAN2pHH6dJZogQSEVASMuNxqFGcLXNHYDqi0pWhO9/JAefb5THqEyXWbAzcSnL+vyMDbrx+VCR5xveIBKQ1Ag7JQeH+xL3OW9e+ddECHXMdEWB07y94jowcknytZGCATlBmjHcSsBETdmkkYuDu4XMzwtYZiu4eZc1LjdTvwJKyqGfr0nDkzaH7vyMELt8UpUhpj+TVlQPK2pVraXlSO7o0Ux2csXd58n/w5FjRc3mUCLi6zPTtR0XSSWlagN89kHSYGnYXxuf3CDjnhQ0/XlCUZE91FqYC8IIjrqcrg+adrn9rWMmAYIYlJiXrDHWXRqd0OjKgZeiUfJe3Ktvu+o7UpHO7erH7RmdE8OkM3q7GwkVV1KNgjDymDjMyyOVx13TylYznEpLiypvQyabrj3S/uy5FBLqyrOgjoB0p6JwZh0QOjo6ebhgEpKgP/hvpzqTbWE8qidCx/daxkoFJJKHpBoi7znk7yZgnBa+YMeZ8vER4Zw0WyqHHswr3JaFhwlFUBufdsSoEd57TnTWMThZGYcik1Dpi0OU/o6hn0BGgJWm4fuqUsCr/RBIcsVGC9h6V/VJ0RjORgEQInrNIkKMCWi6O+OA7EVfNXzcb4i2M9beWhdPeRb4PESsZGCAxyvR7Rvniv84ouXxdOTrv05VPvcMZozVjJJzx70KxvxPdJiJV815quh/nGY7wdQbd3Z/SdmVOJGBUt0QcWFFqObkuMwq+I6upbqN8tE9G0Rtn/PcR4fiIcERAScHSdQIzWLrdtRIBlgnd7AiEwJGCEVl+L3KykoEGnSelvzsSkDxzVbAj498pXqc8ZxTtjDJfUg4ujx6/1qBJhmLWe3ftOuvljIiAM3Z6vcsreW2uj0aklL9VcbutWhPRZHC9Hx8frUfF93VkyqWZZH3WwCcysKRvPxpSnysRcERhF4wIHl/jSID270ifO0LdkQFHNp5bx9fESgb+H6o8ZwU4Kd2RAlZBSsrdfS8xbjOGIA2y5yrFQ4kMJKOw1MNVAzXyeN11KZKT8kv5JHmdJWzuOrfTG+qs3tOSsmM1uEYZUhukc7t4ZYkczJKHFV7WHBFQUqDeN5Ce23dwus79Vl3jDDV7+25XwkTYHRkYRQZncGjytpIBwhISgOv5W4/d79F1M0rdkYLnCJZLb1S+JXhtQpDydYa5ap7IOe91Jo1UvllZ4XOdvIyMaUcENCKgJCDN46qX/vDwUCcnJ1tzuo4YdKRAr0ukbGT4+bgbO4empF8Ds+RYowBddGBJu450RtenGuXRKBUTAk7DkQhXT/5vFB14S7K0koHazcDpvU5QltzbpeEUZAo/j0Jrs4Zu5vq3ghnPY8ZwJqO9hBB07enSH6UxGxGYJQIa1j05OdmUjacKlDi7l8ao4Qf4/JIx45R7Rwhw3n13xyvGcB5zRwxwz0w7z/bZ7PUqM0xwcY1+uno6+Utle0v48GQgsT9Vduk+PV6ap+bt/k9QBfjWhfGl8JLtov3Wyc8SmdnFqO+b1Crc+oE0tYD/lOA4j8qRhjSd4pS7ovMUNe8lIeqPjCRnHSEYQQ1v8vZn+mgJyXDXO0KQ0uzkT8/NEqBDwIcnAyMkRfec9DRdN4hm85kNo80al5SOemDumpmB9BpYWhaNAqRjvUe96xm52ZUUzNzLmOnH7gUwfB9f5yIK6nEdHf0Kyd7f329NGwAuWtD1QRcF4ONkVN5yOPc10RFf994B9Zx5cyA+n87Nlofv68YFy6Tm5/SXixQsiUy9JXxoMjCKCnRsWM8lsMDMEIEZVp1C2+7YeWL8n7t2lGfnjY3OvQZS3d01yfjrfap01CimV7KO2mQJ8XQGfpTfSFkyXIi/6ul6AYZrE77v5ORks9NbIsEjWesw8i53MTiHIseHhhldCSTDy/+NdMgu5Jfv66IQjgCMyjjjNLjfh4oPSwacop4lASPMeuIzJKRLd0lozBkxl96sAUrn34LQV2Uls5QU8LGLDHB/Jo9kBp1CWap4kmcDYw24BVb6Zjf36JiuHAepABHQV8WijbRcuyrU5NnNGp0VHp1edKSu6ul00KyhTXkngr3U4KbI0YhAjrAP+X0tfEgy0HnqfE0iDO5bMSIEIyLgPFc1UF2+nUeYjrs0Z/DcgfRa6DxqZzRxbqS8HLkb9U+SG3f9rtB8lAQsAcL6KQ0QAf7mttWPk/NRpEANTBcFeEtyeahwerPTXVVP3yyofTXKL+lqlomUZvo9IgKaliur09NvFR+ODCQikJT3DCEAOk97RABGg0nrkIQuMdPZ9liCfRqol8RMxAPXVfVehyMHM/UeGabkGXfKZklUQdNIxLJrKzff68rrnuHuvMrZ8o9IgdZRy7oSgXnMjpmkLwGNJC0hA8lB6wiBnlNZX0oElpAWzfutRQc+HBmomiMCyfjPeNFLBtFziEDyIDsPc1QfFdg0mPTYndvFcL0UZli9XuuiAXzN6OPy7rxXLldH6Lp21X53CsldNyu3Ll+ODkCmuq1jZ+vSlX0JniuTuxDl94qks9RAO/lKY8T1e8qTSaZORzEBGI0RLpOWcaYNFOogvEVC8KHIgCrJkUGe8WacgkqKdTSIRsZJ03L5zAjbKH9n+Nx3KtvsNa+NjlTp/zPKjY0i7tN7+F7Na1djvESBLclHFxCmBYWcLp4WcG1V9cs75HK79hgR2ufK1JL7D1V+fzdG+lOvUcI4QwRwzukkHHc7ZXa7G44IuvvP1b/Tx3o88/tQ8GHIwCgakIhAGgAu/Y7hdiyaz1fNK3o3GJJAzrQDIxmsjhg4vCVSUDWOtvB1SgQAzIu7jXhmvaGl5e76XQ1rZ2T1PD/u1yk0jgroIkH8P0MCurJwXZ0X1uFQZe9Q0TkMIx3KSNEA/JfyTvnh8cUqHxnAMdJPjk2XfyrTyHngdDvioOkdCj4MGaiaE+SRAU+GE9epot1lII0ExSlm918iA0sYPZ9TwvEeFfCSAY9vNpYcFUhGNxnrdG6URjp23sqI/DowIdDogJOboyM/TbDE+3LQ9pglAiuej11IAL6dU4E0Z/LSVyNX1ZPoE0goyyjL/BJC4MberpG7VIZDxIcgA844P4cIdMI/EvClaSYhmhFMvWYJuWHD1g2oQxfwXaGD37F9Jkf87D0voJtVIkkGND++fhQFGuWBY1a2QLeHgG4OxGkkoI1cKNeVzd2v7a/3J6OTfq/wcHpCf4+cCacvkrw6YuoIgdvUiNOAXHI+M4SgawOHEclPbeHqfUgy+e7JgAoYH+9KBEZGIuXh8unIAKc/q+zxnQbbTJ5831thtb8LXbidFZ6uqHdt3cneDFI59JpOhtWIp3T0rYVdforZ6QBMrzjF7cjPjHyucrsMSU7VMOux3juaCkoEQPOrqq2IgJ4HuvdcLNFfSc5G6OzAkijva+Jdk4HO+Lvr9B4+B8Hn/5ySGpWF00u/FUsEmcs1Qzzc3K4bEEvgBsV7BhSeKg+nSDrS6a7p7ktl0bQ5D0cEVKm7fB4fH7emCJaQloQZQpqMvSMCSVY/ihzuE4lAasi+06vdlGInl04+q7anBlheXdpurYuWcTRVNRMd1HtcG+D/kSy/Nt4tGeiM+si7GV2fGOMoMrCEBKTBhe8lxEPLo6TGlX9XuLxnyNJHgJMDJ6futzuv8pjSSQo9Kd2OGJycnDyRk9nHCDW9LtzaKU+XxqEo1LeMTmey8XdEoNNlIyLA8uYiDTPyCbg1LXxvRyr1f0cKRlMEu+IQ5PfdkoGqPgQ1e78TWGWLem7pbxbyqjnl2s1PabqdIZjNR9Ep83Tte4Crr2tzHKcP/8/Xz4TTXf915IGvd95Vp4hTmlxOJggzsuvWHCg6L6q7JrXhkvniFZlEOlKgcrRk/Yq+y0N1YSIGKU3Wi27ha3o7ZtKnLt1u2mNmPUuXxmvK5rskA51Cdte40KozpOyBqECmkPASYwAkZTlScq5ss0RAQ3pJeSpDdv+58r22oD8XqU31nP7vFGpKA+fdfDmXQfMalXlJJGCWJKbrRoQ2jUFgiYy49t53dOujIMmYIwL6mSG1nV4CQe30U4pmjuqBe92W2I+P/b4Es0Zc858lQx2pcOV5abw7MjCjkGcG++h+nicGEqmYUebumXRXJjfI3H+ujrN1T/N8riwzg/Mtk4AOydjPnEuy2PW9IxwMtwVwIgB8Dte6NBJUibI8pPUFTHL57YVcd/zG+JqZ190XPiIJcFAZS9GAtGZAnYoU3eE0EiEYRYYcnJzxOzGYCPB5xuxc/6iMLq0lmJXJfYyDd0UGdiUCOkcJJMF3XrOmm1iwG0AuJKbRgV1Cn5oe1wvodpTr0p2dIkhte+joyNTMx4U/HSngvEbEzsmNpgGMDL27b2YKCeXScKu2EwhB1fZKbxe67RQu56npuzbR/1fMY6Q/lRQkIjBD4iAbx8fHdXp6uqVncd1o6mmmn0EIYPxPTk42jx/ift4dEXUYpb0PGdunnM6QpBHeFRmoGofmGV04Ng0CdCB/+NlWV5aUZtX4+eyEZKy7tHgQA51Sxz2J8IzKxve/ZQWdiAG+n/PRNEdEoKr38pcad1zn8lC4vQXcy4u0zZTYdoTgOZiVT5fXLmPwvUCJFL6Xyq/q00QKcO/JyUmdnJxs9KvbSIi/R+SA71Mi6sYWdPfR0VG7XbLTgfuaPngJvejKOIN3QwY6o8/XACPWp2ExFlSdbxrlOSIC3aDq4MiMm6rQb80PCnnE5jWvVJZdhfGtYN9EQOfZO1LQzf/Prrp2hrAjGlzOh4eHaePNabB3xv//Lhlx7fle5XOf6GRXdY4a/1kHiaMDKnusa/k+lSVOn/WTRkGRH9Ll692mWI5AODsyIpPdVMFLyeJSPfwuyIB2xAyLTemo0QZ7VTKgL6VRD8kJ/azSXQplsc7Yg4m7tloiiIkEdIKnA/QtopMj/a8jYKlvcFxVlmSOFgHynGsXdUpKVEmFiwxwX/P7B9z6gdHvtEg2ycpMdGk17vvBDIEFXDRAz2uaqlc5OsAyy3qWCQCPAd35E3lxvgDklQkGyyHLnkYJuqjBEiQ5dgRjX5gt45snA8ngLhFgFR4WWBZcDT1pp3XbrOpgmF2o1c2/dXB58jfSHj3iNZNP8rjS8XtAarORPPI1aqyVFGi6IyKgilXlX6e1lLjqGhkuC8+zQmbu7u626uSUo44ZXTioxIDTmPHknfHZRc5Giv09ya6DI6tL2yORASdfOMcyy4S26tcuns54OxKQdGqyAezI8YcjpW7McH6JXKf2mtGDnWP1knizZCB5X53yrcpKwxlrhK9OT0+3yMDj42Pd399bJppe4qJGucrv/of0d93IxQ1mzVvZ8tK8lhh2FuznkI7XhouAzAxaJ59Vyx7n0/5yRAAyqor15ORkc+/9/f1GdlFujiZxWvy76pfCvL+/r7u7u00ad3d30ctXWR89853kl9uYZS95obvivRt8h05f6DHQkTI9Vp2KY+hV1rPqJKm+hfHFfzxlpU+mMLrpMiYBPDaYcChZACFmgpIiCGojDpkUvEkysIQAzBABTpfXCOADwdWBA0UKAdK0U/mUFPA9LuzmQlRaBj7H6cM4MOPuFm2N8kxtN/rvrRGBRF6UFPB5Nq6MpURgpNQ0HfQx5BSKledhoZju7u62lCCnncK2VbVFBLgM3N+antZRSUMi9JyGEuMki0lWV+wXSoJHRFiJAJNW1q8sdyr/7ikAnGcDndCtzVLjf3Z29iQaAMcP3ymK4KIJifjOOhNox6U6dxd9++bIwIgIJCWbvAi+PhGBs7OzjcBW/dvD4nCnIwnscamBHq0X4AiBU3KdwXX5oE5VtflO3py2VQr9jX6/NePfwRn4EWECHBFYCtzjIgSsZE9PT+v8/LzOzs7q5ORk881e1P39/ebDi0ZBHlg5s2IGkbi+vn5CBrT+aZqDj1VJdvLIijSRZsZKDObgdGU6rvLz3R2ZVf2jMsZRVxBXRKNUxtTgqjevnjgw0rWnp6eb+qix5nw4IgZCzeRAy+TWlLko7JII4ygik87P6uI3RQbUcCcioBiFE9VgQyhZYPGp+rcA8buzNS0X+lRDPeqg1PFOCXYEiQ2JW0DIYOOwlAhwOd4LlATMRlGWGKGZdoQicdcpEbi4uKjz8/MNKYCSraoNCbi7u9soNpYhJhBQ0lBC9/f3dXt7W0dHR3V1dbVReEyI3Xyuq6tT2qnuuB7lYKXoZHVJFGvFL6gj1UWuGDxG9H7WpRwVcNEBJgqQRdZd3L9q/FO0S5GmZfGf1oPzw5jhD84zYdCpBM1P9QnLc6drnoPZtN4UGajqiUCKBugxp6WCyyEtF37Vctzd3W2lyeyQowNaZg7f4r7EHEeGedRGiAYkRavtlEjHUgF9b+RAoX3DUy/uwwqCFZMqJUfyIB9O8UJGz87O6uLioi4vLzekAMa9qqxSg6xCaXMUjMuI6QENkWr0gJEUc0cK9kGmVoyRjL2LDCT92jkhrHvU2Os0lIsUuKmqqqceO0e7cDxDDKp+RUndXgdMCDBubm9v6/b2dnN8d3dXNzc3m7F0fHy8VQ5n+EdrtHTs/075fjNkoBO4jgioEXUGynnTzGaVtbqwEoeD2OPi9Gf24K7qn/ufiW44ApK8NJ3nSl7urFC+VwKQwnmj9krtlubBVYmwd4S5U/6PFwyenZ1togOfPn3aEAKQ2IeHh41CgzJjw85kgCMKDw8PdXNzs5Ht29tbK8NJbtXTcgSgI8Gczi7hzxXbcEZ9NjIw0sGQGfeEixIDnSZIHyWmbOxdtMuF7x3JZCfQRcRYnkEAbm5u6ubmZnN8enq6+Q3CzGvIkC+PpSS3GilAGZkgjBzc5+BNkIGOgep8amosJQQzH03bEQ8IExQuBEI7SgcJ182FiRQzHe8GtJtv1jQdIViSdyJYu9Th0KAE0v1WEpDOubT1WOUBRpKJqPaxLnQFIUCEAItf7+/v6+zsbIsMIMQK4osIA5MOVoga5kX+zhMbydGu8oB681jurn2Lcvc7MOMY6Tn9zesC2ItXZ8qRAV1ACNnDB5EtyCP3Oxwu9tIh1yCskEmeRqja9tKPjo628mFSgP9BohEJuL6+ruvr661pOI38Ih+NDDLJYDARcLbsd+BNkIGquScHHJx3MUpzlC6nx4I+ytd5fGCKCDF1cMLhjD9PCySjrGx5pMgdZknAe4Fj7jjfkYCOYKXzjjA62cVxUqZQdKzUoIQTGWDvCMoUj3a5EC9CpCzTKQrH4PLrIsEuAqaEntuj86RWzHn63X/O+I8+iRgwQWAiCrkFmQWh1ejA/f39lpeOY8g45Lvq1yOwLBtcJkyxOQKC+29vb+v6+rouLi7q6uqqrq6unuh9lI0/0PHOtqjxd/L7u+T44MlAZ7A7YzdSKE6JaHpIA08PwDOqqi3DzR6alqPDkg7u2KITNH2k0NVLCQEfd0r1o5GAWbh2dEZ/aaiva1udX3WPbUHhqVLC9Qhjqtdf9WtvAiaZqtCxIlvlRQkmznNZ8FRO157cBupBJVLA9ycC99Gghj79P9K3aujdNABHjfjbySmTUF73cnl5WZ8/f67Ly8uNFw5wVOD6+rp+/vxZZ2dndX19bacVOJrAMsJTFjzNhuk1Hge3t7d1fn5eNzc3W0/qMFin8roajg5o+yfiPBOR3accHzQZeA4JSJ7XKG1OC3NS7P1wurrw6+HhYUtgXdnS4pHRYhdXfnzr4NT5XFcvRwg6wUoGyXkajPegdB175+PUdiPvv4v0JKC/q/IWwskLYQKA34kMsKLhJwZU8eO5bM4XipfHC9cXSpKJNoC8unGLunNUTUmGa+/f5WEdIhwRSIY+fetH5/uZHPJ1KrP8gZFnQwwy8OXLl/r8+XN9/vy5Li4u6uzs7Mk8PojAyclJXV1dbTk+GJe8UybA45h1J5eDpwEQIbu4uKjr6+ut+kKP6uOOOnWQdDKXJ0UHuO9eSoYPkgyMGKpeVzWeq51hvZoWzznB0IMUOHBYia9RAdH5VS1vWvCide4GMjNxzodX22p+qS9mjVZnyEZk461BBy+f7+7Ra1Q+u2M+x0pPPWF9NlpD+ACnoZ7d0dGv9QpaJ5YxKFA10lhH4OrNi22RT/KcuoiUyr56fa7sK/6N5xICXeQHT5qNpHNKcKwLX3l6AAtgP336VH/88Ud9/vy5Pn36tCEDVb8WteKcEgCWf40+OU+c6w651qdx7u7u7NM2vJBRFzSiHZgAc/szOiLwO4jswZGBGaPtFMVMVMB5SilddDDAyobBAs+DQK+BAlShxDnOU+viDGkaxGl6gNPh1baj/GYFMAm35v1e4RReR46qnhKBTta5P7XPq54SgJubm829uk+B9ofzUiAnujKb5Yw3bMF55M9lcnXmrZH1mlF0gNvcEQL2HldiMCaaTrZGEQF84EGzJ61vIEz6C5EBtwCWScGXL182ZACRrPv7+62FsfrIrNs4q+qpU9I5Qygjb8+txBrrFvDRPRR0am6kGzTyiGt/h+weFBmYUYpV/YrukREbEQFOD0pJ91/na3lODILFA6p71lrDSrzqVYU0eUhaHv2t+elzuHrsDLcbyK4PnOLdhVi8BSTjv4TAun5z96hC43u53zCHqsrK7fvO6bDHwtErpMkLDdn75jUHWoeOACLKxlNwOM8elCpB13aOEOg4fU9ytw90baeh/Y4IwHPmx1jZuAMcQmd96Na6uPT5w1NhkFX9JL3OYL3nPHucY5lkmUckA9EJtz9CRwISSVWZHxGBfRKFgyEDMwqVkaIC+t9sHvw/0jg62t5FSg0ez4NxulByHCbVsLxGA5gUjIhAilAksOBXld1jW8vYKWFV1Enpuj56T5gx5uohJVKg1wM6HeD6WSMCSB/neB0Ap6kKn/c4YNnE0wQ6xcCKnOvDJJjrzGlz+bTOvJGXjoE0JpyO2KeifA9QecX3SG7ZCHJUCBEB3ehK103po37okzSnrvlzOav80zudh69gGWLDjycRQEZubm6eECOURUkMt0/SxUkPJGLQ9eMSwjCLgyADs0QgEYLOi+V0Z/LgdCBg+M3KFOcwP1r1S4nxHBV7WboWgEmAGubOs1pCCPj+LhqQ8h2xVm0bzberx1uEMzhJmamyq8prBPQ6VYb6m4F1Lfw4IM5BuXHIVFd2c1k1XXhKeH5btzDm+jL4N9JlbxEyh6gDP0d+fPxrZ89OybvoAZeJy5miW+8dTl7cf84QO29byQDvaXF5eVnn5+cbAwlji22smVR2be8MPC/IY9nmPTPctFane1gP81w/Hk3ktuAnZngKCh9duK1jStu6k0133ejafeBVyYBjfTNEwBn/GYMzQwIYHB1g5aahLl4HwM9tI9zJAqSRAA1HjaICu4DT0/wSAUnKF+WYjQqM0nwLSO0+QzCdoazyUy8jIgAwGWX5ur293ZxHKJ6fo1bvRUPCKAfLinpP2o9KkF0baX4ARx5AWPRFSFW1NUWhbeeIiX5mle1HgNOrMx/1fnWOH2RAN7li3ajTBOoEMVnQhXi3t7dbcolHCq+vr7f2GHA7EXZODk8TgAQ4Ig+nD8eclpKAznZxP6AcSYcu7dfnyvJvJwPKkPA9QwIY2qndgF/ycfkoIWBWCMbqwEpcvXEVqJFXruVxdXTQqYGU32z+EDonzFzGlMd7QKdM0xwmMNsGro+d986P/QFQXFCImLLCnG9HBFBG7kModEcgq7Yf82PvX+eaVdEyicFGLph/ZVLgvLylssRyOyLY70VOGckgOflVOdb/eH4fi/1ACBAZgEzAiKue5L5kQqjb/t7c3NTV1dVWBJbJwM+fP+vq6sqSAnWyOG8ug4sMqE6HrMLBc9GNkXOJa5K3n/ToTDrp3BL8FjKQCAC+Z4mAGpRRY3Xp70oIqrZfJlP1dJ95XkughmAmNN/VbSRsfA1PceC3RimWEAFuCxcl0OveIxFQsJypInXy1A1YlftuaqBquy80rM4ez9nZ2SZSAIWWyuhINssPn2M5cm2hHqRbbQ5lfHNzUz9//qwfP35sPsfHx5s3JN7c3EyTVfdxRCBhH57aIaDTFYkA8Df/X/Xr8VOc0+kCTBlwZKCqtqaBqp4STKSNOXqQx58/f250LQw0E0jIjCMEeIGQiw4gX47c6js3XDvqJkRq1LU9R/0y0qEj7JsQ7IUMzFScjzvPyhEBrVz3e5ZszHReYmwswLiOmWOXLgYB38NlV087lcG1Fw/c1D4pIrErUmRgCcF5K0hKQmXJhcXhOY/awCnkqqfvtOA0dYdMJQJVv/rEbUoFOCKQ4AgC2kKJAC80c7u7VdVGsf/999/17du3DXEACecPt2PyshQzBLa75z3AOTxLCAEfu+kCrPjHAkKWTc7X6T4F6zE8EcO/+T0BIAIgCLqeQKMD6rwxgeYNipiU41roeI2M6ZMEiVQ4W8U6dNeI1z6wiAwkZTj6j8+NCIHeO8PoZwiHU9JubqgjNgonzGm+1w2EpNBS3bgubmAqi3dCr7+T4u/a3BGWpKBd3m8ZiUwmb5vlICk/TUcX+OF+vhZA23MYlhUp1hHgWl3/gvMjWXDffG0i4XgM6+LiYrObnL5R8ejo34vLfvz4Uf/7v/9b//M//7N5rEwVMcqZnIVE+PfpQb0FdLoZ55JT5GQ4pdfd//j4GB0it1ZKAeOMiEHV9sJTRABABPgxWH4Khl/VnaKYKE9HlPh6/o+JEB435EckOV1HwB0p4P9x32x0a1fZniYDTsElw9ulMfO9pEwpfUc0OsU9WwfAeVFHR0cbzwV5uQ7m+7jsKojpGq0HCyULrjNAI8PM+SahcsKbCMB7VbiqKFKfuPbRfmZCx48Bph0ttRwqexwxwDfApEHD/q6/3DgCuEz6H295jHqBEHz9+nWz1SzCyvf39/Xjx4/65z//uSEL/CZQfiOdTtOlvnEf7ouXVKyviVnj37WR9icjRRY1SsR5pzl4hOhTPpgSYJnlhYX8ciJHMnjxKXvy2lbspEHG8Ngrb9ONsabevy561I2Q3CPj2ldKOLR8CfuS0cVkIBnZjj3OVN5h5KmooR2Vz83pdvOyqQ74nbwppMfl45AorldDPWoPNTqsaN17uGEYXB06T2mGECS8NwLQyYXrjxGpdPLKoVYlBI5QdOFV9h6UnHIUAddCGassuzpq/ZA2ruPoBRZ8sQI+Ozvb7Dn/559/1p9//llfvnyp8/Pzqqr6/v37Zqc5lJf3n8cCM12r4NrY6aR0rbbfe4LWbwkhYLC+0zUp+oGsjOSU01UwUeD3A+AcP2WAY5YL5K0RAWd/VJ4xRpCnPgXBjldVPdkmmYmIkgFES3i6i6eddf0NtxWXe3RuF4KwExlICiIpwdlCdcaKy4H/k2fijl00wIV1Z8uo3lQiA0hfV9MmFo37XURB29rteAXSgdXk6kUlAsP5pvLg2LWHa6eUz1vELBnG/9zXjgyzDPLiOt7BzUUDWDGxctY8mQweHx/HiACHafFbpySgpHgawrUD1xFzxSw32O/98vKy/vjjj/rzzz/r69ev9enTpzo+Pq4vX75snucGCfjx40d9+/ZtM6UAWWcisqSvRqHWXZToISER0BnZTfczCWV9xwSAjTLLTEfcXFRB8+Q1B2xk8c0RAadTkyPq2oHv0UXWuJ6fomDSqlNaGr1QssJ6Gce8HoHtXEcM9onFZECN6Syr5G89n653ZeiOZwTezcvOEAFnUN0qVc5blWgK2bs0Ut1TP3CdRuWfgWOaM+giJm8NM8Ymyb56xi5dftEP5hv5Xeo89woFA28Mv9nIpTIzIah6umhKPR/2kFBOlj9HPpAu7lWvSiMEIAVfvnzZkIDz8/N6eHioq6urDQn49OnT5hW2KQIz0z/831uWySUYEYNZQqCGiokAwvgcIofR5MgB0nFt784jD+d1u42wVLcyoU3fHQFCGfCN609OTrY2WcJUFt5kqIQAj0AyGUBdFEwEHClgvIQcLyIDLrQ+Co86Jt6Rgk55dudd/o4EpI+CBcGtYE4fNQjqmXfppPrjvLaDlhv1RN5al0Re9LqE2f/fAxFgjBToiAQrmLwhGqDbuTrFwgqXZVIXPjmoscd9/M315XLyGO7y4etYcWv0AWnz4kI89QCCwJvY6COJ3CcOXR8xaXov8tnB6UL9PZJjBcsSyxA/QjhymAA+z6F0TA+wQXRTEwjBA0yg1dkb1bNbl3N0dLQhsHh5Eta8HB8f1/X19dZjlYhu8QJHXS/QOYOJFOC+VM7nyPTOkYHZqEAqoBrEUd7uOP3XCbwu1nKEwIVhIaBap86z50HhfidhcOm4uldVW34cdyG0lOfod3eNS3NGyRwSXJvPKFBuU+et4HpebQwFg0fv+LE6pMNhRzxGqN6+zmsC7NXhWlbiLB/qUeG4W2fDx50XqQur+BlwpMvTJe6VuCijEvTZfuJyvjdCkPRk0oujSMsM+WMDjY2DQCA1gqA6kvWeTl0xCeXrOToGUsxyr0/iIEKnxMAZftcOKpeXl5ebRbBfv36tz58/1+npad3e3tanT5+2Hoe9vb2tq6urzT4IGh3oyACga35QppeQ353WDKS1Ag7OYDgj5AyHUzaJcHTnVPhBBFjZ6KYYrMggcEdHR1vPoS5FxwpVSLjs6HhVgBrmVYXv8neCt5QIuHKO+nOkWA4JM6SyIwKdl82yx8/ff/78ebOD28XFxcYAQgaxYjqNNzeHntpblZGSFh4rqkj5mXGnODUfnuflLWSvrq42ivLi4qKqamtVOOSFCTzyV28PebGczfbXeyMEDqP2cMQuyRn6Atfq2hheeIff3eY/VU/XsFRtrxXgtOFxOyKLdVK6C6azXSi/ayvcxzJ/cnKyIe1//PFH/fXXX/XXX3/V169f6/z8fEMGsI4AG2n9+PGjvn//Xj9//txaSIg6jcgArlMi+xJ41gJCN/gdRkYoEQEnpHzNbJlxzKFZnp91m6CoN8bbVPJb1XDtEmPnSIBjzloP9oh4LQKnC+Wmg08H4iga4c4lg9+Rg7dKBPj3rHGp8pEu9J2+npX3dAcZQKiRPQx9i5/rz6p+34s0Nlmhoz5QwvDy3EJVTj+1IfLFWAIZgILksOrl5WXd3d1tvCgsSOOoAZcDZR15S66/OmU6IsJvAUlnMslzBtJ9nPPEUzv85AvyYuPO7wlg4+30Ee5BednxYmKZ1rqonlHd79rE3Zvqj3pjmuDPP/+sv/76qy4vL+v+/r7Oz8835ebFr//617/q/Px8s65ASThkMulgjZK8FIl91qOFXOAOo/9TBybmujQf7VwoY14IAuHmOXdWYPBkdPC416125U0GmYXDGRNVsJoWh3mZYLgw3YgIOKPOxzNkgO95CcF9CTg5xPGICCSFBuMKRcq78LH88UY8ur/A4+Pj5ln8keLW8ut4wvoCZ8Q5GuBey6qGpGtHzR+kBosDuZ4PDw91cXFRDw8P9f37940nhXlWlI2n9bA4k4mQKlRXDtdv7wGpPzoDn6Z7WG55XYtuO8xvKuR3EgA6v89rSBypddNcSgb0Or7e1ambGujIo7ahW+cDYvD58+dNva6vrzeLYrH4VYmTe7JH80L5mAg4wrtP3fqsTYcYs4SAK5Ty4fzSgJ7Nl8EsD17Z58+fN513eXm5NdfEzzj/+PFjo4yurq620uV5W66HIwJ83H04HRaKjkhAsWpkQPMfGft0/ZKIgJa/Mx6HBmc4OiLQ1Y0VCBNPKFE+x69/RbvphiwjwqtlYqWjipXLWFWWBOgc7IgIcFk0zMtTBRhPVf/eVAhPElxfX9fff/+9iQ6g3FCk5+fnm7lXKNVRGzki7fAeogJAMv5qNBO5dE+6gARAbiHHvPCV5Y0dEjdVoGubGLqGReUVkVHuWzbYSV6dbuX/Rs6m8+CRjz4V5Kaiee0LG3guE9eHiYC7Xsv3HCx+N0FHBGYL0xmIxOATEZllSWhcfe3mly9f6uvXr/XXX39tvDMYVbwxC4prpAQdy+tIgfPwu3CR8z55vYCybTcFMStIneGfJRPvBSqHiRToPUo+oTzhMUCRsufAYX3uT/040gi4RWF41EvLx0qXCYAqVJ0eUGhZVBFzpO3nz59bUYHb29vN0wT4H49jPT4+bsjUxcVF3dzcbIgD7mXCkeTR9VmnN96qLCedmUiBk2ecd++V4MgWRwZYdnUNAC8yZPnFNTNtzVOkyYiCxGj9ACUY3P/4TrpXF0rymxERHVbny7U18lESq4TF9YvTOfuU02e9m4Ax6lRnxLvrkvGf9TLTQNDHuT5//ryZ+/nzzz83gg1Fg3kfGNs078Xl6+rolM7IW3EMturXKnGc0/kzFuLZQcfpd0TgvShPwMknD7wRAUjyDbnjZ+s/ffq0FULUECvaWcOrI9lTBa9hUY564Zs3qWIi0HlXKCO+0+JFNrogAti3/efPn1VVm4VWvMsctphFOXl6BSRB22NGJ6Q+e+uyq3By20UHtH95SobfSqjTqpBnTK8yia16+g4CdXhcuL+rE+/boX3O6xZGUaw0zYB8VNfyAlh+ORIixrj36upq874ER3x4TKbxpGVweqdzep+DRdMEDp0x5HvZiI8GbjKiM4PXeXHs3fACQqzi/uOPP+of//hH/eMf/9g8HoKQ5efPnzdeS3pHNpdnVsCfY0w7kgFmPjNFoGkmVozvpRGglNZbg1MqaZCqh8XRKI4M4KMv5IHyRHvzAtYkfyzf7hhA2jrfjvJyOFNX7TNUoXOEQa/j60Gw8Vpi9rKw0VJVbQw9ysQkCopWt7/F9Un/6GdEwN8SOscqyWSaJgBYbhH+dpEBftlU1dMp0xF5hVF3MqThdK4rE10l3iMP2jlsGl110QBMGX///n1DiLAGoKo2b93EIlh+jfKMM6b/q17BsTqI+yIHe3mFcZUnBWy8Z5l7Ykxa4ZlIAwsFKzhmu7xX+n/8x3/Uly9f6uzsrB4f//0O9e/fv29CrPxSDKeckWdaCMiC5sqazqdvjQrw62txzglYx0K7SESHXTyzQ8KMjDrlyv/pNS4axQuPWJmiDPpSE3gljhCox5Hm+oGHh4cN0WU51HKyZ8jGk5UkPyLliABIB5Q9IgBIS0OuSoqYCHz69GnrpTT8lA/eV+CMSXIeZgjBW4RzhFJUQIkA7tH/3dNXOi8OEqfRok4XJQOvofxEVFI6iQh0zoySEXaoIGs8ZcyvaUb0+OjoqK6ururvv/+uf/3rX/Xt27f68ePHk90HnW3Qsjk758isyvdzZXovawYYzoh0pCAZf73GGTAVJv6fBwJ7O04p87qBr1+/biIBmJ+s+jWXye/O5hdkQGlrPVIna/skY6R1cQLvlJ7mOxOxcURAsYuwvWWi4AiAU7p6LStefpoAC7F4MRY8dd66lTfq0TlKNeaquFnm1Zizkgb4et3oh+vKCpLnPB8ff718hcukC/uOjo7q+vr6iaLlkD9PmejGS9wWPOXAO9V1pFr/f6+EQI27IwRJh3T3JvlmgsfTAuooOTKgJE7fZ8FlTOVOdoDB8l+1vX5AyQjShMzd3Nw8WfzH618uLy/r6Oho4zx++/at/vnPf9a3b9/q58+fW+8m0HaYcbo6HbRP+d3b0wQOXTjDEYRUMb1Hy5W+Wclx2Ms94/3ly5f6448/NptIVNXmPdp3d3f1/fv3zbvYLy8v6+rqasMQsSuc88RR/pFxToTAEQFmzer5IQ/HyFO+3A+JlMwQF3c9p33IcLLtjL5TQvr/iBC4+Xkoz6pf/eTezKZ7sbNcIF1+t4HKh4Zsca9b+Zw2fcGY4Po7T8cRApZL1IUjFJz/2dnZJvyPKQZsWnR9fb3Z7MV5uCn61Z17T0hyqFEBxYyh4v5jgw7jqbtNuqgAvnl6bKZPnEHkeii5UJKidXFTE1w/zhP3giD8/PlzM9VXVZtHZ//+++8NKeDoADuOSS+nqAXGHUPXTTxXnneeJlCjkLzekfFx16T89FuP9TcLP8/b6iMy/MF5pIPoAM7rNqn4TjsTdiGgUZtq3XQwc3tonlXbe30noqLty/fPXKv5jwjdW0CSrZEicqTVLWZybaZKKz2frV69ltvtD+CULCsS9QA5wsBTUeo53d7ebk1xVNUTQsPnXJ2RPx4bZJLDiyrx+CGPwTQ//JGQHKSZD651ssGRGxBS3pQN1/HjhJBX3Umyi9RU+ccHq55GEjiMn/RfRwTYEcMaATa2Gj1w7czRAn7SDPXH4kLsl4FHZHnqL9XR5Yd6MxFgEr9PUvusHQi1cPw7ofPyNT/3e4YEqPFkw43pASYAOv8FoVelqvOyrGxdPZeGg1IbpMHs8nbRAPYEZwiJpsf/zfafu/+tYVahVm1HVhKhY+UETxtRJZ0W0J3btO80jxTGdeNGy4z/kY6Sg6pfb2HUNGDoNSqF444QIA8X8WCF//j4aJ/XToscl8jcPpXpayKR1FkiW/Wr746OjrZk8fr6essYQnZ18SB71Gmxq3MkUjTVRb9YtjoyyIZd1+AAvGiQIxNqtFWX8quJefMst0kdP1mQHGbtRz7merry7JMQLH60UD/sMXABueBOMWq6KT93XyfoVdueTlorgPUC+pw3FAw3NOfl5tESnALn/2bg6qqepmPWavwTGdA2TZEc/s8NaPzPgvlWlOxIcY5IwOiY25ZJAJ6R14WCGhWYiexoXjhOstHdr/LtFA7n8/DwUGdnZ1veIxt/JQQstzrPrHkkgqNjoMNbkcN9YVaeGdxGCP8fHR1t5BTg/sJTIKwHOXrF5I6hoXxXHjXafC/n5fQw6qILGJ18caQL9+r9kGkep5i2wlQy6gSSgMWuOj2gba195s47OwK7q4TgOcRg5xcVKdAYXEDneSSjnvLU/NNxUhwc9gQR4B208JvfT6DC6sKoLlIwIgb41uNR5yXj2+XnogEuL+2rZOiW5q95vDV0CjTV27WxhvfYc+IIFJQLf9Rbrpp7dNWNT1dWrS8/gaDEUyMerg1Y8fI9ro24PVRWFSqXTg+43w5OcT5HgR4alhDZqjxfjX5hIlC1vbD17Oxs67XFDGd8Z+F0Jf+n/aZhdOSPbybTI2fHyQIiC0wKHh8ft97SiPv56QNeNOjyTPKaxhaXU8fjPrDzK4yVSalAdYYkDe4u73R/RwS6xwndVAG/M529YKSpIUomAd0cPqCeY/d71A7Ib5aEuHPuvlmC8lEwQwi4PRMRAJgMsFLjBXL8+JwLtWr+ThFjVbaG7DkMj2+dBlP55npyeV29HKFkosmfjrA60qz9wu2sUyLaVo70vhdC4GRS+3VEZlVvu/5k8sakAFMFMJZMBJ0Rnp03d9cCPIXFj7Bympq/OnjaflomlgtOC/XH+0J0+3BuGx63qg8cGZhxODiaof36HBmeJgNujpwbillKV6AkuMCSezv2i3JyVICfJNDdtHi6AOnri1G6Dwsnly15Ri46kBTYTBugj9zcLLerEpClylD7eZ/M9DUwkin+j/9XjAiUiwpwm3NkgEOMOl3QlZ/TG5FNvo8XwronHlQh6nhl3cBpq2xrO2pUQMkB8uq8TEdkNC/+rSSIoxhvjRA4HTrSh0ucFUfudAoAx2yQlzgnnfOYZPno6GiTv+tvvl9JAIOdKvx27cDXYuxy2XhM8DSCpstg2XM6PrUh6qzjcB+y+6xpAm28Wc82/U7RhaTERh/3SCFvrYlv3VkL0GeveUcut1sbf9gD6wx/8sSVlXI7sPGfMVTavjPnRp6a1s3hrSlZ13aOHDC0LdSY6bU4jz0p8I05WF6NjflafV4bSItYOW+n4Fh+dE0NyzmnzWV3U2isG3S9gJbbEQF82KvCtfq4Gi8sS2Sgqp60Ae5RhapE6q3Iq8IZf7fOQpGII9qB5dXdi03amBiqPPK35jlq62TQOyKg9wOJ/LsonisvTwngWx/BdXVip5LlM9WBbSynmeR3H9gpMpCEyjX0EnRGyHVoB+5kHgxqxPE8Mz78qJSSAChM9qQ0KsBkYGQMk5Hdpe0UKmTOc+R8HBsewZU33bsvgf0d6Ix/Vd9WKqu6gIkNHTbv0QWE/OEFWQwXpeMysCFUUsn3azQA40CnCVAP9oDSOFfioPdyuXgXQRAB7FQIUoEV7SBJGiVQRavtj7HQGSAu31sisMAoGsDyrGuiErgf0YaOGDg5mJ02dW2s9+hUF9/v8kyY0UFubHP9tRyqRzWNjnwwMUjX8zH3xYgI7CK7z1ozwIVRb5V/AyMBZOFz3yPPVjvEeTIuTVUsUAT8BILuLaBzccou2RiPyq3trL+TgMww4hnWveu9M+m8RaWafs/In8owvF1+VhueMW/jyvOwOjWQFCYrFScLbmEVK2keo44o6ytpeVGWtoGrt55T7xvl50e1+GkEKEuQATyzzRECLru2F3tS2gbOqLwlWVXjov+pM8TOCr41lK2GbRdnTp2gfYFlicGEuLMvI6KgY8WticG3eveQMyXOWkY3lTXbRo7s7dpPCTvvM6DRAY0c4JzzGgCnVNhbYqFy84YqcNxBKPPp6ekmXV7piblZfgwECgbKNa0NcB2C/Lo20wE3YoXP6fBunmzk+exCIFzdu+jDIcENrjRQR1EB/a1Rgdvb2w3R5HA6/oesslHTcijhZkWzRE5cfZUYdGQoGX2tN59z5QOhub6+rqraLM7ibZqvr683u7lhrHI93FSBelKu/rhXy/fWogPJWCSd7Uis0zusz53Ts7SMLt/umhEc4UU6M+B+TwsbdRzCRj0+Pj4h9OwQKJHn9mNSkaZAuI7JDuyTcO30CmMVFvxmI+oIgxprN/+iRgQND3DIiL/5fg1p8bOfvCEEXkPJ7xzQHdWS4cc1nXFY2q76e2ScHBly5Vnq5Xfl7AhEZzhw/yFhhrxxu88afzWGTATQhlBinDYbVPXaoDhUuXMonz0Q/p3aPcmH5oFrtB24jjql4YiBtjWeqOCNbZAWExFMHWCM6itiWf/otEDV021bR/391ogAwxn/mXHH12jfs5xxWzNRWFI+fO8rejBaSDgTrR6NET5WGVEnGNe6KT4uA8676YKEzh7pdUvld6cXFTkigGMlBK6AGmbh65g1IVTITEznbvgb4A7mzTGYCPz48WOzZSQ+nz592lK6GolgOE9otv1U8XbtzO3trmWhdGHlrlwjgVFiNhsxODSjP0JHAmaUhEuHr4OBQ0jckQGXrva9IwPsyeuankQgFc6ApzqzceetkuHBJyKgBB9lw/gE8Jun63BOo3gaHeA2UQPhZDn176ETgSUkVmVIjbDTRypbej6ND9ZFncfPkV/cx+dTnaH/3VQBt4uzTwqWhZn1EwqWT9grJqaQ22Sj3LhWZ9mVV9HZhqV41iuMneAwo1QoW09pJkKABud7HTFI7JD3GsCTBfx++YuLi41woAz6Pmr1dHTP+BklogPInU8D2rWttutSguLKN3NvKvshK1JAB1Gn7JJBTdEjvQd9wi/dgeIYeW86v438eMyxl+aicqy0uNwog65XQPmUeDMJYCKQ3qGQiGlSwGgjjZg8PDxsPV2BY05bpwmY1Lt8HJQ0cNsdIpyhZ9lgOWC9keqo+qfKRwXU+FY9JYqaloss6RhMBlOnjdO0AOfZRQO0zFoXB20vjGWkjfrpuoHOLmi9cN8of63vPohA1QIyMGtg2Ovha7vwvoI9exch4GtSmjrvirdM6fw/7zuAKQKscMZ92E0Kio5Dotrh6g2N2ssNQBx3BobbGe3Bi1yWRCq07Wag188MqkNRqk6BJmXK7d6xe0eM9ZEj3o6XvQiXX1LM+M158CO07M2xUeW1OCyXUGq8Fz0rf1ZS+my5PvngiIDmN/J+WMniPl7v497ZoG3CSlbTcp+3DpU/PeZrujT4u+rpYlNHXB1ZPD4+3uhshvaVetIj4zZz3sl/Km9Vv6lR9z9fx0RbpyB43HTy5sh6Zz8dnktcdyIDjnFrg3AjckX4OoYLmQIgAvrecjaAKpRcps446srpx8fHurq6qvPz801YF2sKEKJMnpRuDjMiPq6+OiBGrI/rr/VMwueExrF2l5ZT7Hr/vpjq74Az4upV8bWonzNC7gVWapxACHSuO+WdIhW4D/fqa4v5OpSZ36zp5vDVC+TziQC4VyunMae/ldA7vYC0QMC7yMMIjqC4NNR4PFfJ7hM6thwRUFkeTUcpRlEAToOjAIjmsveeIl+JEHAZmDwn4zwiLC7KBCB91//O2XS/R04QjwcdE6q7+fqUVueQPBfTZEBDh2DsCN0nKAHQwadKJ3UkrzNQtusamvNxHaJeBYTx9va2/vjjj7q8vNzUDa+k5DdRcbgSH65r8oi43k6Q3LEbTMnoan5qwJxBS+Xq0EUGElk8JHCbOkM7Ct/zfWxEdZMqTgPKR5UgxhXILiIKaWzotIASWjYAjqTzuFAFyfXlsmBs8Idln3/rWgL1GllWktJlHfP4+PgkGufK7YwgK/xEBGa8rUMjuElmEzFNmBmXiRDgXvQRt5UuinOExBEC/Q1HkG2Clk1tBuelJIIJOTutzsAzUiTLtQv/xzKnsqjHasdGZBpwNmMXfbuYDHCFRkI2w8Q7VsuC5TwdnZvifLUMrnE0z6p/Twt8/fq1Li8vN1MFt7e39f379/r777+3CAFWNfMCKre+YEknpt/pHNdbr1VF5jwel04iKq4e2peH5kkpkmfFx9perj1U+WjIPnlkVU/f3odwKqan3DawrBwdGdBNsPRe9UjYWHOd9A11uu+6Gn4mAC5CoEabp7aWjGPc64hA6s9dkEj3IcvzSAY1dK2Y8W5ZH3N/VD3d4Iwft8P/SCPpuWRLkp7S6BfydWOYbRCQtm13deeyaN1defnY3e8i5clOqv4d2ZPnyOliMsDMAwpC2cgMEeCKOiLAnpYqrKSwoVi0o7gsWNV9dXX1ZAAdHf07lHp1dbX1ngK8QObbt2/1/fv3zbSBhkgTCdG6L1FWafDMnFfFyF6Ztk/K2xn7dJ8jJG8FM8RIr2eZdSSgM3CsHFkxgRDgfzaebvpBx4qSkNRHTOxx3t3LxoS3TFbjz+eVDGi7cZ1wThWfO2ZPjo87qL5I12iePFYPjQhwnVQOHSnY9zhUcpAW00GOefMqXKN6yckEzuvaAx4D+NZ01U6pvFdtr6NRaJ+nKWlna/Q4pc/2EfbDRZSXyu6uWLRmwIXc9JqZDyMJ8+Pjrw0d1Huvqo2QdfMrqWy8+RCmABDSvb+/3yIDuPfm5mbzCCJPFfCbqWbrrHgJo+kUrIOLBIyMYEcC9P5DJATPGUCOlDovLBEB9ZKraisUyp4yvpMMaRk6AuKIOZehqjbjAmnd3NxsxgX/z0ZfnyTgp2+c94W0R54iwAuItd00BMz1dehIAcuqHrtyvQZcWyU51P+qfpG7kVfLcseGf0TEmAgcHx9vbTWNKKuLErDhZx3PNoCvq/oVBeAxp9EFnodX4ou20Gtde3Dd1dlMY6lzmtK1MzaDrwWSbC4lsosiA1wgDe0lA5jOcSVYEMBqtUJ6T7dRQyf0KDvIgEYGQAbw6CHyu7293RCHnz9/Ptm1cNT5SZmn8jvFtBSdQee0R8a/K5sru8v/0JRpOq4at39SvuqpcHpVfkUwZI6JrZIC9mBc+g6qyBIh0OucBwWoweffONZFhLhPSQC3B9eNjVenzGa8NG7jUYRgNN6WKNXfDZU9jhKxoXVIHqgSAfzPMqpQkla1HekClhACXD9TRy0HZFDXc6ksIA1HhriNONql8pZIQYduTDrnTLFvnbqYDLBgMDoioMcMNUaqKKFk0HlpMyMnVJ2xhZDAyCN/TBPwC1twPSIJiAywF8RtNGJkXSemwdnBES095nw7Iz5Sei6KwGm4PA6BCCR0MoL/ZwkBn2eMPFdVsqpwQQhUeSF/VUycv85H8rerMxsBXtvAY0ajAhg3vJCWx0XVr0cY2Xt0G7UoedR6pqku19aqF2bIQDdGDgkaEUjk1HnLzpDxN5M29CW3TzJ2LnJb9evNnHotEwLkreOI68dTH7o2Qo05k1PUjWUNeSgRdY6kjp0uQj6jR7WsnJbeqw4bp7FvLCIDzA4TGcCx+9ZjrqRWVD0iJRpAmkfkNNXzZS8IW8Ti2ru7u80UAc91QeG5dxk4BapwxkTbL0EJlTPCKrCzyqwjD66szuBr2zovawm5eUk4OZshZ3yvepqstNy9TvYA9pLV6PNrfHHu9PR0a5HfTPnZY0910mNWnprOaKMhRAu0Dap+hXd13xBGinyoEnehX7Sl3sd9pNMvXE91Tg4dSkqVBMzKtp5no6+evc7hA0rEEBXgtB4eth8/dNEErQ+/JI731ODfKDdPUUEGlQRoPkx2k17mdJUEpLE9C7Ztjpj9LiwiA53ynPFM0z2cR9VTjwgD3yldDdHjvkQ6OG8oMihXkAO8o4Bf1oLrdSU1lGAKdWpdVfnOkACnuFToVJA6AXP5zDBaV/5UTvffa2JEAlKfJRKnabj72bvCbwWHRd2juuxVIR1drY02x/3s5eA8G+vZNkGZuKzpyQGdNmAPCuC5XbQtGxaWcbeeQNsN3x0JdvKq0YXkIR4qIehIqUaNHGZ0TlVZXQOd7MBTQVVlHzuHLkdf6T263gHR2fPz861HdvkpGrQHRwNYp7vIhLYnPq5uSghU3lxkQI+Rj4PT3a6ML43FZKBqWxhdwZPCSXBeLgSEP7syrwRmdlBmmDpAVECnJXgeynkg+HaEJF2rhlgN6Ig1slB280+alvsvwfXjjPE8JHRKdKbc6f5up7Wl8upknL1sVUT8Ww0a38NRLCeX7GElYuOmGvDhsjsPiqczdGoFZdcXDXVl4HZmsuWIF/dVInjJoTg0QjBLBNTx4W9Gd46NIzx6zofLg2uqfj31wrqc00mygPGi0wKYsuVXyYMk6KOvHGlTw97JP87pFIEafCf3fN2oXZOTmEjAc7A0vUVPE/DxSw0SNVToVA0LOmHX4y4PgBXIzc3N1nzT0dHR1ipYXI9vF5VgdG00cz4ZcfYm8Z8qySXGfokg8uDpmO4hwXmHSYGqt49vDcE6L2wXIsRpAB0hYGh/6x7yfJ0+ujQC968jkM4j0nT5Gg0Hw7iwQUCeTBQ0jOvqonXqjF8y/PrpiPwhQeWvmyIYRVF0TKued9M6mlciwBoVUlLA8/+q37iOvMkWPigrZIPLrw4lkwQmPdpGOHYfJQdO3mZ14Mw9qr9cv+1D5+5EBjoj5xSv+39UeCcwHI53UwVLvDDNH/eyF3ZycrL5reHMNKBSHk4B8fkkVHw/PsqgOc3nCoUbIC79jggcovJM0YCOCDjPy31wfVW/rTaQPHB3L3tXHJ1L4PZnw6vGU6/Fb3yrPHbGV9vLlQnXIG94izy+UR6NEGhbuLHCCtxBjfyhefxLMCO/Vdttwn3epav34n51hpCXkjz8pzKrMqdEgPPE9XjKRuWPbQOTTV7Lortj8lQZ8mKy4+S908Pu2LXdjN1M6TjHxBEBd7wLdnprYVL4iQiMrnXpc+OoECT2yfePzneKQT0fRCV0QDgFO5u/nktEQNk5CzHXxYWIR+VhuDZYkk4yAodADDoDz//z9YkEJFIwU09HApxnBaiiZDIwKn8KdyZ54/91rM0qmREhYCKLujMBwJoHJglOBjnk7KYNuDxaLlaqo7odEmFIOnRECIBRVCDBOR9MDpCXkje0HUgfrx9g4sBTRVom6F18jo+Pn6yhYZ0Mo39zc1PX19eb9V1uIyzNT3W52wRIo1x8rzt2bcltluR2FiNisRTPeoVxwogIzCKxtX0YGWdQ3TEjGfyOHWq53f1dOjyonLJTz5INhhuYKpCatxKPVEYuA86rZ7EvOdgHOkLQfWaiAWzYk4HW8H13LQPtrXOvXBf2ktjr0nRYoen/bPhVaScFo1N3M3VgI4980ptJuQxcTq0Ll58jh+rFKhmYwSERgqq5qADaoapaspTGtyNMeo6JKuAitigX6xfuFxhoXWwIWccmWJou7mEygkgAnvZy75CB3DhnEkST5XV2Wo3LnZxOzkePOyOeyDUf70NGp8nASLE7xbYvA6DGNHnAu0CNBCt6VthdVABwIcxEBlI90zn9ViXpypm8oBlS0J1z1yjh6GTkNbCUBIxIAZ+frZcSgSRbDPbIVK54HKgiVgXOSOSVH2vUMjsZXjIt57wqtCUTAd17wHlhjtQoEca3IxhMfJKx78bIa0F1a5JNBevNThexXLg669Rkus7pGSaY3K/4jb7Xx2nVwXh8fNzq00QGECFAtGAJEdA9MpZCx53WIbWXS8PVf8am7FL+RZGBpCjS70ODDnAlAhhY+vyqU8YMxx4TKRghed7pP11ghYHGXhLunfFA3bkZZpvKfAjQgZX6fkQAHBFwylehpDIRCQ3tA2pA1eOFt80fR/I6b8J508kQ49hBSbsjzZq+mxJwdXBz35wuys/vM3HTivhvRARGSvy10cltR/JnHZMRoZ8Z5zql4KIHVdvRId2jAt9YQ+DewcE7YSop4NfOu3RRDm4Xt5kcoOO0kyPAEaSRHnXnO0LwXBldFBmY9faeaww6RV01t0grNUwiALpStWPaVT4KgG/XybNkYAYdkYEy5N3junTUs3Ll5m/9/y2gM/hOvjrl2hnyJeXR7yQz+F/DqXi+WonADLo+VeLBXo6bd9ZjnWt1m7Rw2mysdRGaKzOOE2nmHUMh0/jAA+V0VK8lInAoBLcjrXp+1gudRTd9k/LRvk19rdNE6snjf96BkOvJ1+lCQpZLZ+BVPtNUmoLHxqx84Npd+iERgX3ZlmkyoPOk+0by3pLCVoyMrt7nvD8nbM5b47xYQeo1swxwSZty++hzv5o2L8RyHqN6cDhO5ezOL63H78aMXHVelmtvrq9bHIX83Pxq1bZicIZVoaF05MdzmxwC53zUQx+RPW03Nvb6rW/u5P/wW+us0x9KrJws6RQdX89lRR/hHhca1jHBhsXpikOCIwLQWaO1KJ3xmKmnjqOq/vXDuLYjBGhzfbqECR3XTyNtbMT1040rPafjJEW0nqsDlxpu1s2ufvsiBYvIQBKyWa9xlml1Cjnln+bru/R1EPFvVigQOCcsXK+ufo4csKJ19Urtw785eqHGid+G1/UJz7dioHKZudy7stpDwFISALnTY+03Tj8ZKTaC2s6ADnCXlipeGFrMvau3wmQD0HLz1IDmrWSAP7xCW99ZwJEB3K9yhLZwfcR15et03CnZSlMvagQQQXCEQHEoZEB1oOpG1Qc69QNoP3R5aT5VT6e9RljiOevUEZOC29vbrYhAqlMy8Hwtn9PpJ6fbtW3csfvN511as6TMGf1EAHbVz9NkIHUCZz7rCet/jgQ4IWcDnfKfIQHKqI+Pj7fmopzHxwqQlZzzOjhfrqNTyt0gGRkqrpu2C/YTnzHePOhYwTtmjetTOkt+/y5o+6Xzqa1xLZCMKV+r3g9f4zZv6Ywn0nIRBuTFRIDnzLnM7uOUJBtZhns3gT625bwq9bBU5jVsrPVLBk3HlnMWlFzggzy1PVxeh0aAk6HW6YKqrGMSIRjpYhe1SeRY0+dokLufoZEv5M+v2HZwZUhEIB3ztYkU6Poa/c+VoZOjjoS6MesctediJzLglIw71m9uDCeEyehpvkkxu3Jw+urdoU78DoKOCOie6zNEAGmq4nLXa93cwHSDNL3JsWp7H/aOeHAdZ8JRjNQHjgAdAmYIQIoGAKo0qmrLIPOcOB8j/6SgkkyhPLriX0kLyubkuRsfriyaJhNG3thFycDS3Q7d1EpS+Em/uCgDEzGNBKhyZdLhxlI3dl4aLv+kC5KeXJJHSlevm4kKVI0jEB10LHRGeCY9TjONOSUGqt+UNGj53LhzssXtMqOj+Tqnj5+rZxdNE+h8jStURw7YQKhR7AR7JOCsdJy3oEqe35zmvrVuSgQSi+S6aB2ZFCTDnQjByGipMUhKzQkqtyFW684QAq13EtJEIH4nRsZf5U49LZ0uAlQOQLyYBFRtPwqrUQQXnlRCpfcpqUDfAVwOzovhlBkbTS43lyvJA59LfeDGo8ryEnCbcDlVxtW7dP3O+skp7NckA4xkmLU+LCO7kILnGP+qp0/AqOFzfeTuVXnSfS2SjnP/qT1ysuzy74y/yzvpdz529qGDs6WOCDxHzy6KDLgwetXTjUC6gjtCwJ2XiMCsQCdDinTxAiJHChiJCOj8kt7jyqP1dAKgdXSDPBkoLj/Ocx84hatz36gnr77VN9B1wue8Lff92pglVq6dGU5JqHHisL72+UjhKOFi2VAjrWRADVtSONoffK1e4/rSEb1khNUAqNJ2OoUJk7aHa3ek6wg3/tNPIgldmxwinFHkdkn6s9O13EdLQ/NLwNNrj49Pp2qckdb7E9lmHcey2+0wyHny+a6eSgSU3DiSNgM3HhMReC4WkwENPybvwH3U61EikLyGUcOpJ6yDmQc/Twm41fgaQnJEQDtDPQk+51iwkgOuP/927cLto49Cclto36G+uM+RATyT617RrG/Oq+rn4pCeho9fA6kNneFPUQE1Ck5JzA5wRiKQ7lgBgwn51P6cDR2zLCqhAVh58nVcTlzPC1edMXVtz+c6OIUNI8DGAMecXicHWj4l0rv07WuhK6vq7nRvZ/wBbV8+765Tguzy5fwT4Uv5ucguH+t4hc5K+w+4PPEfl88RgUSKnX5+DvZJVBeRAfaqq/xjHY4U4BiDzHkUSG80UBWOibFy4ygAjGCqB+5Rw687WDm2loQwKeFk+PncyIi5OjnFz+/+dqTu8fFxY/hvbm62XvDhpgxcPZV1a4TBLZr7XZghAm5vCVYuWlc+Ztl2SqGbnuH7UqjUKReXv3qCOg5mCAErbRcN4TKogoOSdy+Y0bqwbDIx57I5sqnlwHmQIo1EJMXrSBKPB+731yYDTEy0HVKbqP7DJ0VxtI6uzirnVct2odT7nUOkdenSSvex/KphVzulbdkRAAU7CmmcqcOrZR7V0cnjq0cG1PjgXNX2SmgmA/igc1LEoMqHstXApgbsGL5GBHQfAb6WH4lCfbpQuZYxKXu0levARBI648WGC+/31mkcRxrOz8837wTnfuS6pj292bN3wufIgPu8BmaJgJs20lA34JQGG1P85vy78vE38nVwxILHGBtAFz5N6bNyZ0LQlRltg7bj/1i5cl7aPjNRAZYtd6zl4igJt9UuSlP7/VCQdKkSNiYznZ5kdN5+kpsRVK4S4ZxB6g9Oz8mvOniqs0b5uAgXf6exD7Kq5Fntm8IRptm22AWL9xlQ7wn/MRN3jLIqK9B03LEg7gCXJnse7D07ha8eL3u0LCwuKpDyTuzX1XX0nxoxlB/RgJOTkzo7O3tCCJgInJ2d1dnZ2RYhYMFEdODm5mbz1i+ODrj6u35O0w23t7d1fX3dtt1LwREBPcdPlrgIi9u3X9PHcdVTj7fDEoWoXojCeUc4z2VUb31UNlZk7I2DBHBkAHKv3pmSHdcfDqw/WA/omEU/4bFa5KP3jz4Os0bvJeHKylNw2qY8ZaJyo1Ek1/5Odzm5cW3jDKf2iZ6bbQMtnyun86a5//m8ppkwIlGj8/x/mi6YaUt3bh+kYKe3FioTUg+AlQAzaz3mSqgy5XvVC9CwqQoyDwpW8jo9oPXpBhsTBhU+LbseJ2Fd0tY8yDkSACMPA68eLkgDrrm4uNiKDiB9GHycPz09rZubm83TBYiOpP7ievGudIgwIK3XgPOKnLfExkz78vh4+w19jt2ntSi4HkiGOLVp1fPXJcwSVCXSfB6EiOvOpBMGiceptpEafvfbtZMqbJ3/dUTAtQMbzxkSgLQPJTrg9BIcF+xMqYYe0H7qZEp1t0LJZiqruyel1dVVnUEtJ5Cmt1heeJoA97i0XTkdOlL0Euja4jnYi3Zmj6Hq6W5oem2VV27JYDoDrYrcKRV0EgwczvO3zh+lzVQcgxwRAmWn+H800HBdIhluigAGn8P/+t/FxUWdn5/X+fn5VptUVZ2dnW1t6MFrC3iqAGV3Cr3q10Izniq4ubnZEJDXgiMEDs6As4fljJ3zchMRUPD9yCOV/yXB5Xd1UFnVRWCqhF0bcT74T9uN4bwnNgxKFqCDdLqEZTNNN3Sk4BCIgOoPjsLxJ+kNds7czqQdAU1gQpB0t0YDmCByNIeJJ+533ryb7tI6pPUCKTowqquTy+7/pfLS2ZXficXaGQ25jwJ3BtGFeThv5+U448RKyykr5y0wAWAGzmXtiEDXNrsoFva++JinCJgY6Hw4yIAjDtzGSq7w4c1l+Do2HJwO701/e3u7ld9rIJGq56ThvGcmoIl0OA8oKdQOnTeyNJ300Too0WVF2nmas0RgVG5W7snYqF5A2/J4duNc67PEWPxOaGRAX8qjZEDbnsmZm9J1xNXJLKebIgQ6jcP38ouJXLSC72Ev3uXhpsL0eiV6s1O+rr78/4xcuGs0GrGrTR1FtZZgmgw4z1ynBtw9I8wazhQdSMLA96mAsOF6eHjYMnb6OJxTFrNEYFZYOqjCVIOO37owUMlAeqKgaztOAyHIERlAO6MtMT1xc3MzPS/4EhgRATYuGrpXBcqeFaCRAM3DKScui3rPHfQ6N9Xgrkuk2RFA3Kv7JDiwx6ffCWq0tC5sqJSE4FuNDWSUvU6OEKj+cFEBRwQODY4QKBGoqk17MLTvR3WcMcKOEHT3IX+NkM7YEOeQzZBpFxVIeaYx1BFvtVUMjWDtKl/7NPwOiyIDbIT17Wn4nxu9Q+q45F130QEWsKqnG5Yw2DtVMuCer1cFkcrMH04/wQmP1lmVJBt0JgH6lAArdyUHGgZ2IWqdKmCixGVjg5HIwN3d3ZOnF343RkoiyZXzsKr+XT9+dM55vIykDPCbjVYKl7v6qDFNhMSNKScDjhCMSBTqd3Jy8qReiRBo5K4zUIhMJWgEMY0/jgrMEH5HDl4bqT5K6vgaF41LUQGXn/Yh6ypHCGag0zhcLqf31Yvm/2bIdDLOjli48jjSrWlBbkfERuujMjcTHXgpudxpEheF0GfHn0MC9P8RKegEj1knfis54G8lBBhkbnpAy9opy8QaO2aoxEKnBEAETk9PNyQARODs7OyJQUgGX/PgcxpV4McrWRmoAQJ4muD09LRub2+3+uC14TxB9LXKTvJecb0zsE7GR3ILo8geraLz7HclAtrnej6VRYE3yjF0rGn7uIWWro25/WbATgKPex7LXXRA8zskQlC1LUtwzLhdHcEdOV9dXum8IwRdOo6osWyoU8f/d+VJxp8NtEYFuv50JMC1oZIlN75V3pbUA9f9LmK6ODLAlXKRAReKqVo+X9spM9fAfJw6k9NRIwBC4IiAGkFXn1QnFwHQ41R/HmRqoPkpAkQHjo+PN4v0RoLsyq6GAUQAbcLl7urLoUu3mc+hwCkG9RZYdjhyMAqDaz6dhwOFDuOoRFb7LxlVHCNN7SNn5B05xG9NZ9f+0/tYFp4rFyO9ovqBx3xSss5oHAoZYBmsqidjUz8g5LtAidls2Wb+d9FbyFrnVQNKHBwxcQS8M9xIL42tUd1TeR0JSMY92TlHTmfJzSympUS9XCgwVZZ8PTof3pYr8IghJWXF96pgOIOVQjwYMEoMZqcIOjgF4zpQhY3r6nYZ5Dl/jhTgfwUb5ATtR4R9Zxk1Kx/IBUK8M4Ppd0OVKoMJEXvMrEBGXqsqGiUCHanqPP/0n0ZouqmF5PWr8uRwst7fkQ5W6hpZc0pWPUFW5K4tkY56k46oc92QVpLnRAoOhQgAzijivDo5mM5SYstwpJENNJ9LhIvHyFJCwAQgOW6uvpwGrndTxtw2mp6DcyK7aAXSVNnqogSalx7zPdqvTk73gcVkgAugbEznT5gEpI6Y6ZjksbiyKLhsqvxVsbPn0LE21xas3DsG5+rNAyR5bOpJpY+GapPid+3E16T+cv+z8tH3jeM/t5jpEKEGljchcmTAeR+Q/a6+yWt3oXoOp6scqJJPfdwZSBB7nOO6ajSB0+LV4AyQwW6jKhfx4HZLZEpJgD6S1hHeke5xxudQofpDd9Dj8Yl+TFFCPY/rEyFwYDsAqKFLRIEJJxtzJexd3loPR5LSeNV2cOV3hp3THEUcUrukc44EdNNa+8Ci+FFSNE4QXGc6NpO+kyeTypEaJXXMDONySKSo8zTUcO6Cjtk7L5bvU+Oi/ztj49Lg9te24+ecq7Z3rFsSUn8JzLY5Eyr9dGSAn9lm70k9V/6PFWMidlXbO2iy8XekoWqbjM7UH33IhIDLqmVBHvh2hIDTUhI4IqWdp875OplKxi4paGes0v+HShDY2CPCifM8PnV9Bn+YWPH4ZSjZcu2JcrBOTMbV3cPXJA8fdVOgHo4MzhABBy0Tn3c2w5FYLWP3m/NMREBJwT6x111gXISAv6u88efjZIQSGXAEg6Edmrz2jm11yivl6/IYXa95sheIc0mZqpEAXERBr8Vv3spYB7+mjTrB+2PvmacJdD7zUKBy5Yyr/lf1dJMTfk4a1zMpcoQA9+KcyjW+lQjo+gtXPoAVlCOrjrwib/bUlJygXNyGSggwNYT68jfXj6GvYB71HdrOnVekunIdnNfqiMghgcus3jOXnds/yTfGaiJUANoqEXz10lM0QO/hcYV8OD2uU5IPJjZqi5YSAc2Tf7s0Ne1EJEbgOjgSM2OvdsXet4SDcnBICspd41hUMoKdMVbjxf/tQgI6NufO7dJxzpi7+qsnz8pZDUs3rcDecApXOzLAHklVWYXD7XFIZABwZLNq+1FOJmbsRemGKc7ocz74z+WvWxlrtIb7Ce3ryJvKHcYHh+udPHJ5lWggXxgBfopICcHx8fFmS2A2tB0R4HS5nM4D0ghLBzUAnUeleqQjBocEVy43ZeVIJPpXZUVJ8XPKNnu/GvGUntYP4IgEG1Tcl4x1VT8F3pVFDbRL25XTQUkcp6+fl9Kli58mcGxPB3rHKvHdMamlnrkrpzvm37s0pqsft0mX10wH8uDTAatl4HPc/mogNB0XAncbETkiwGwfEQAgzS/jv11Y+UtBy+iIwOj+JKP8X0de+fpEwHgLbSVs+gGS1wKwLKaojUYGQAS4PM7Tx282KPjN57UsyDMdL+kHl662S5cep5H+O0RoeZ0XqWNUIwYwqGxYtY9n9WYK2c/cVzW3EyKPM7fWgK9xxlb7VCOcjiS49Fi3pfYZkWH9zcZfX5q31LmcxaIdCLsBkTxX/Ic0lNV3nv1s3riGv7tr+HfyEhwSg0wKqfvu8nJGig0BbyykRsx58XyenzrQpxFGZED70THu1A4Q5teEk1HX/o6BO08Dx+475a9EYPTtvHSWAZYFlkeejuB+Y0XDxw5QrA8PD1uPp8Fg4BpXT5Y9nRrRdlLSXFVP5r/xnby7RB6chzVSpDMK+5Cgegi/td9hNFmeVK4c8X8NIpRk0o0zru+MN69pVW1PSyiJTWUa6b+kaxKxUjlNn32TAGARGQBGwpFC2/itbz9z+TgvQvOfaZDOUCt2EXrXoXo8yi958eoROi9dowf8n+5GyGnpZkX6bgNNS4kA1zGRLP24d4b/DiQ5TMyfywsFwzvsKRHSQapeQypTVTamLtqmSpyJG65xysmVFR5HUmg8LYI3VwJMDrpxOgNub1V0+s55592hPJq/6wdOpyPnOKcyc8hIjglPyaqOwX8dGVBHQL9n4TzjROBS/bp7XPR05l4QXr5vVJ4Z4q9l64iwEnN9+VR6Yd6+CcHOrzBWr9OxoH0MoFlj3jVQMtjdPbORiFF6Ttnob1X0HApmzz29f8ARBF2BjnMaDeCNi/Bf6lM1lom1AjpXe4iRgaptw+E8quPjp1viMrlh73rGi+3Kl0KrM2NJPV5VLNhFEt9cfs0LdcJ21EwI0B46JeUIYConf7spAr4GZXXEpWvv7qOy6tp7iQN0CGCjxu3CMu0cD54qSORA70Fa/M3HGtFKNgLjq6p/N8GIOHTTEt29S6czVCZQfhf96vLgsjiSnojAzHTXrlj8aOFzB4UO3k55sNfRVT4Z30QC0m/ACfeM8e9IAaeTIgFKAni7Yf5wqN8N1NE5jTowKVBv0ynQTmATe+2Mw0vDKUOA63Z0dLQxeKgjzyPyPWnOEOfcMZdHf48UkjNoMObcV/wKae4nfr8EX6NlVGWORZIgBC7q0LXpDNg74zSqtonCTLs7fdKRAv7fYUb/HBrQJyqHGiGo+iV7aEu3jsDpk/RhsK6p8h4yRy40UpyIHv/HeeGamfUGXbt16AiNlp2vdc4Cy7CSAfft7Mo+sXjTIY0KdNAGcczGVcwx3JS++90Z/RkC4M65wYXvGaXilKYzzu69A3zMC/6YECj7Tgpa20BJgb5QyM2zOiOTvP9D8KicskpyCa8X7cKs3g34kccCuKmzLvzaRTD4fn0kTxUK+oe32h5ND7C3yAaE83b1c+PVhW95fKPtOF20f9Wvxxg5pJ08yNkPX8/lcQbmLZEAhurQRA6qtheM8rVMEJyToQ4G4KIHuuOk5snjbzZMv2/M6CrVjXxfpx/4t35chJWJgJPfl8AiMuCIQGrAJID4TkynY7OdUe/SGjUg5zFThxERcPk5EuAiA25aQN9BkBb8OeOvJIQFTsvqPFRW4GxMNHSlYdcUoXhNaDm4v5wC5E+CMyCAIwA4z8ZOCSGuZwXK/ckKQr0P9vqZACgZwPX4VhKA80wC2HPk9tL7UOfT01Pb/xoWhvzwy8Jub283x5BzF9HQqRpHcpyuGBEBxWvL7q5QHZZIgX64b7WP+RomtOr5Iz8lE1W1td05X7tPY8djZ4ZkMNyY17ql6Y2OfLJ86rdGV1O09aWwmAzoOUCZZpVnUTqYZxmP+78z/COi4eqiwu/ud52r//F9SYloVEDn80EELi4u6vz8fPPhaQKODHBeUNa8+U3V9mM3Ll/eLAh1cKxVSYHrP+dBLJmb2yc6QqLlZkP38PBrG+VR2dXYJe+Jr3M7P/KiT02Ly8uEjuuS5h35tdyODOI36guPXAmHEieWJ9fn+hSMI1dMWEAEmAzoNEfyqHQKhOupZNX130sr29eC02euvkoMVB+6YxhaQK/DOf6PwdE3jRClPkl2B+m5fLmcPG6cI+WiWfrbOYpq4BMBSGTAfc/ax31gp+2Iu4Ua6qkwXMg5GeuUphNgfM8QAlcnHSBJCJPxd3l3UOPUTRG4BX5MAlTBovxuRzcoZ1Xkyto55OuMi/YhwxEOlPO1vCvn+ahy5G8mLpgzVwWCdPHtDHraQAhppPArp+3kXccEznNkgBcJzkwRoDzOAGhbapvit+6WyE+t6BMrfC+Tgdvb27q5ubERApY/982RBSURqS11/Lv/3b1vDVrHXUhBIgPJyYI8OScLUJKWjp1jyfmNjDqTfH4yyJETdz6dQ1n0ZXezxr87/l0kANj5RUWdgeZrWMkmxjQy1imfGcM8a5y7waF5pbxT2Z0CVSIARcrTAhwN0CkCnt9X46btzAMOc+I816/elQtPKxng58C5bsz02djBMLwGVEkk78MpK4YL+6OtmKDpsT79gbQcCQC479y8oZND7sOOCMw84qlER0kNl1vXsbAMX1xc1MXFRV1eXtbFxcXmPLcFyoeIAD43Nzeb80oIdM0Krr++vt66H8dMPGbCxZ1T8JYxcq7ctY4YsKF3ODr6taAP9/Jvzlt1lEuLwVErTr+qn5rjvt/FMVGiolEnJqdKDNzvziYij99JCBY/WqhRgWSg+ZhDks6rdJUddZa7NzXmKN0ZDyAxVqTpmGZHApQQuPUCGiHoNghyZICNA76ZcKjCvLu72xAOnf9TwqBt7TxFGAr2El8DLiLA7aV9poaOv6u2PX+3cROiOLrgk73nGRLAhk6fBHDz46xQlygQXR+hkSe3BbJuY436Y1oLBODTp0/1+fPn+vLlS33+/LkuLy83MsZKHcZe5VG/mQBw9OD6+rp+/vxZP3/+rKurq/rx40ddX1/X1dVVXV1d1fX1dVXV5mmRpGhHTsF7gNNVrh00EuBIAdpQDTQDUSrID/JmYuqmrrScnUOqelD1FztDM4Sw63ud8lY96+b+3Zh1Rj85nb8DR4/vVeJXrFixYsWKFVN4nRVdK1asWLFixYqDwUoGVqxYsWLFig+OlQysWLFixYoVHxwrGVixYsWKFSs+OFYysGLFihUrVnxwrGRgxYoVK1as+OBYycCKFStWrFjxwbGSgRUrVqxYseKDYyUDK1asWLFixQfH/wFwpnKB/HnzhAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABsUklEQVR4nO19a3fjuK4snXdPpx/zPP///505a09Pp/NwEt8P+5ZSrhRAUHZip2Os5SVZokiQBIECSFGL1Wq1agc60IEOdKADHejd0tGuGTjQgQ50oAMd6EC7pQMYONCBDnSgAx3ondMBDBzoQAc60IEO9M7pAAYOdKADHehAB3rndAADBzrQgQ50oAO9czqAgQMd6EAHOtCB3jkdwMCBDnSgAx3oQO+cDmDgQAc60IEOdKB3TifVhIvF4iX52CtaLBbTj//jfJvlVP9r+RFvPd6jeqxWq+mH/3zUtO4/Px/V9T//+Y+9/5L0xx9/tIeHh9ba83op71EdVqvVRn2/WCzCtmE+Kn2u5+5/VFavf7LrmSxU+cnaIJLjOeOvJ7fazy49+myxWLSjo6P2999/l8reJh0fH3fH1UvvG1dp8xFZ1efwOzo66va7yysaw/g9Pj7a8Z21K+ebkeqFfdjDT/k5Ojqa9F9GZTBwoP0hpzT1f5aGj44g4NXBwEc957J2NVCc4nf/q4ZK8+4RP1sxxnMUa7VtVVFUeeL/nJ5lq1fuiFwxj1p2ZhCi/+4a89IbD7tU8psarCpV2qNyvSevTjcdHR09AwP83+XF/GYgAOkUGDBt0o77AAAyenx8LKU7gIEOVRHuJvn2ypnjGUbXMn5YEURKgZUxDzQ+Otq1Qs0UiUs7alwrRmX0/qiXpdSrQw8gRka3Ip/Rcyo/EU8jfDqKgEuvTXQMbHPM7zvN8YR7aTR9DwjoMXJmXJkKBPg68zIqE1F5+0pzeTuAASIVVL6+bVBQUbzKE/PieM0iA1FeoJ6S1us9L3qfBgsUQgYIqv3h8s7SVwxkRFUQOBr671GFp22UFRlsd6yWM9I+ahzmysB7o00AgQMHGShwOo2f5fI0GsDXGRREDk4WOVLaNx23DTqAAaFRELCpwhj13iN+Krw5T75CFQ+zNzWwy8GjngHTaP+N1muOYXVp+KhKbZtGqwdesvSZ1+ZkkZ8bkcUMtFZC6hGo/dmU+yaUGfxN5E2NOwCA/nCvtfZsukD5YGMPWdJ1Ao+Pj+3o6Gg68j3857q7MlxdfiaZOYCBDr10qLCXv1N+I16rCqzLg9Moiu55nT2lvu2Iyqa0yaB2dRnpn8wgZukqz2yDIkC5CaBTOeoZ354xj3iojKNK+dE9GKb3TpsCAT5nIx8BAr6fla/Gv7W2BgI0bYUqgLUXTX1LdAADQll4q7V8Dj2iHrrchHreWCXkrwib72u9MwW+zwNC+0l5dXVwxl/z2FaEZQ7o3EZ0opK+1/dRCLjSxhk4G23brA0V7FbzBFUNyM9M24iMusjA8fHx2tGBgdaeIgTaf+zto58YQDjitHqdeY30QS8S2muDatrXpAMY+P/Eyt4p/ixMFeVVvd5Lo7zpIOmFi3tCV1HScwR3bih42+SmCSLAlwGAEcU38kxUrssvKy8yhmpcM/kcBbbVMaG0SbRB86jQaITjMH3gHYE5zosDANkPoKC151MECPVr/g8PD1PeGg3AVAATTxtwXZGfA43bkoN9lacDGGi54t4GCBjhoXd/pIw5wtybO5tTbrXslySnyJy3qAbDGQ6+NreNHA/bULrR/56MR9d6QDHiNYowqZLV/z1DPeJ5Rc9VDP1LGYK3Rj2Q2ntOHZnI+GtUAD8QQEFrT3sv9Dx7lAujr9ECXNO6RTqgEhWMZG+XzlCVDmAgoBGDv43wWYWPLHoRGbrov17fRuiq53nuiiphaT7XNon6IAqL9yJKIyH9Xv9WFNJoRMq1h2uXXn4VMKUU1Wuk7B5A4fMqQN43md4HqjgwLL/ZYkEFC5y3evUMBByQV/4YBER6MTPic+oe8eHK3hc6gIGEekr9JUEA59UTyIi3Ee9mxECN3B9R4rukyNiNeEYVT3xuO2Tt2CtjLhhwZY4CGRfxqHhT0b3s2R5AZh7c+VulCHj1/m9K2bQUHzODj/+qwzIwp0DALR50/HCEgMvmCEFWz6jt5rbrvkUL3j0YmKOc5yjkfaGe8G27HvvaDqAoKrCNPCuAYKTMTFlWIwouT1XqWRRCKXu2AgR61PPKK8DCgZIojzlRkJek0fbqtXGlDyqOhUvH19jgalSAAQAfNSrQWwDogEA0HcX8Rb+onEx+uL5zAYHmuSt6t2CgMsir4cGqkp4731nhLwpZ4zwaHM5zqICdKJ99Q7utrSuGXhQla4ORcLEqxYy3SttGaSLZG+nDiMeeV85pMiPM5w4s9ORlTtSqCoZciBnyAt72TZ4z6k2JjQKB3vUobQQEMkDAz/KrhMwzRwUcEOiBgYg/zlvJAcRoLLwlWVF6F2DgJTspGyQ9hK2o8CW8kKjeI8BkBBDtY+hVwUClvTVN1XCpQc7aMANwUZ7VcrfxrOPJtUEvMjACFEemELgMR64uDhg7w9G7/1o00mYvAaqqFEUEMlDAQCDzzEEKBHA+GhmAzOj4dPIS6bJt2pR90ZPvAgxkCHnEmG+DKh5YBBJGQlkZZQCB83HHCu+RN7groXcKgvmsAKYqeHJtFfVNBA4jHqrkyspkI4uEZNSTtZ7sVMqq1n+1ev76mMpe9HPl6L2X0AX7QHMjAQ4AVgCA22HQEYy989orspSBOwUEuKavLToHJyt/X4z6XHoXYCAjVRg9bz0zzBWPrKf8NU2VRozuKKodiRBEz+6aqoCm5yFq+ihttd7KU1Z+xHN0vSKPvUhA5RlXzlxPalT2o3y1v9n491aiv3Wlvg0adTCYMkCgHjnKQjkPDw9r6XQfAPRfBu5c9EfrxrzykQEBNjLaZhRgn+ndg4GIHMrle71nHfUUfWR0teyRwekG9MgAr0QD3gK5tp8bsegBRVfmXC+6Ej3QMl29Kn1W8X5cvj2l65RzdG9OX4BvXimudWIgEPGifDEdtiPOiQ1/FBHg+0oMCLKoANKiH/nZqH+RJvqvMuN2M+TnegB+hPYJZBzAANFcI78N49gzLBVvTP/3PFlQD5RUIwNc3lzl/pKk7THHk9f8IpAVhRazvlLgVu0/l1/23JyIwUi5WRonI9umzLhH4MNFEsCn5vleqBolcpEABwicY8XlqHyowdcj92O2mLDH/2r19LEiBhXRa4fbjCLtU9ThAAYGqaL0nOeddXjk+VdCvhVQwDzNMTajIcMICOxK6DNPsLV4Tp/v4Xxu+RWQoAZpRFFk/ct1icrUNC6dSzNCUV0cIJqbb9S+zkhEx014+VmoBxKdznLXMhDAlOkKN36jfs3AQKY3ub8VCPT05VwZ2TfZetdgIFL+2S96LruOe67ze1541fC3lof/I2PDz0Z1iXh6DS9vW7QN5e6MegYieuf8PzLmVY87yh/XnDHPZE2fw/kccBLxwWm3IT+Rd89lRGAgAhHvjSq6rSfPUaQgiwxkbe/6jK/3wEA2nlx93eZEPZA9R172Td7eNRhg6indTGFuq0wHOHoAZJPyWusDiJH8HODYB2JFMgJkesZsNGKiPDAfUflZPr0026CqQa/0+WvIRORhRoZC+zPLaxf00v2blVUBuT3j3wMCnKeTs170phIV0LHec7SiukW0jzpvDr1rMDDqefU8sGo+TiBV6FQAK4ZB8874UGOiBmq0fg4I7NMAcYo+4jVTTlG7RJ6w3ovSOB4zyrx4x1vER1X+s8jFXHBQBadzZCjy/p2xyMp4TWO875Q5RDD8ul5AAQHSV4DjXDCg+WRj1tWH6zTCcxQ5eCv0rsGAUoR0Nc02ytGjKzOLClS8tQoPLt+eR8D/R8rdl0GiisUZOVBm+EajApyP+z9i4B05I5r1ZQY+tfyMl57npDQKIqqAyXmDDgxU89oHMPta5ff0XKSTcIy+P6B7CvSAnjP27jrfj/o1A8GOl4iq+iG79hboXYOByCvn+xVQsKlHl4EQV44bIEyZMq3wVxk0zouueKe7JsdHhTdn+Od62iM0ImdOYWWgMeN1JGLgeMt4zfjoydGoLFYNeiQX7zEyMAIEHKDMno+AcGbse/c1XdaXI4BA9bF7pgKWI9oXnQh6t2Ag88YiTyd7prXxzs2AQFSWo02MP9I75YzrvVBb1Fb7IuysIDZV7iNGzt1HHhVDHCnOiBe+Hymvnlw5hV+JQlXTOZ4r0ZaKYc+8wx5l7bEvcvzaVNGBPR02ojNdVKAKMlXee9GlinyqDPVkf1RW5jqUL0XvFgwwVYS5RyOejJYZ8eCer3o5cwCBK2MEjPQGyj54WXMHXVQH9W4qRqyqrHr8VyI3jo9eWSP95ICGlq/l9vqgB5QyJd7zIPk/p6uAs/dMEaDctu6sjs9NZKiXl4s4ZGVsqlP2hd4dGFChrqLannD3FLxeG0XUkRLvGSOmiL9Rr7kixPuAdEG96MYmgK/X9s6T6lGUz2iIk41fz0PLZLwKVDI+sKmLy0/5nVOOljf6zMj1n4XmOAwqL3xe0V8K2hxAy4ywjgMnz73oUSTP1fJ7efUiCS6vfaB3BQYiL4avqUKsKsgoT/dMr+wRVK08jCjCngFz+Uf/3zL1PPEKwKoCqyg/vZ4BgpHr7n+ksLOy5/R3RTFHchvxFIVjR0HAHNDwM9OIU1FxqDQd8tVz54H3dJkDBNVoWk+2K+PL6X7Hl3t2n+ldgQFQD9FG6JePml81bOXyj97FVQNTyT9Lnxmq3gCu1HFfhb5icKph+1GPtZretX8GOPV/1j8ZyKh4dBEvUVmZgnZKtTJ2VA4dOMg8Ty1/X2VVaR/4rDovkTPT64MqGFA5HhlbmTyM6tlIj0ay+FYAwbsDAxEQcO/CRkAgE4KRMl35Ln8ux+UdDZoKwo7qGuX/1pRpRhk4csbXnUfG1ZFLmx01bc/D6ZHr7x6fkXz1FHWWdwY0ejz1xhrTzySr26LMEZibVwUQtJYb/zmRx7l8cxnZ2HdlVSKFDhC8BXo3YECV1baAAK6NdH5UdoaoXTgtquNouLRafkQuVOb42nTwzqUR49yrZwQEK2krPEVpe0omAwpO9vnc9f8c4+vKds9zPZR3l1cWouW8K6BlLu1KdrdJVSAQXcucmCogcFQBAtsAMc5jj8rLZDLKJyqnQpHefU366cFABgKcsEbXonut1To/G0gKRjRv5qEyUHqDhOvjgBCny6IC2SDaJ1RcNfBRfUaMOtffffEsA5rRtQr1AI87zlXeo3y5SEpUTgWAzgnnVuVyn+S2SrswJCNyVHFqsr6OZMjx49JxHiMRCNVzyoemc3WuAt99oJ8aDERAIEKz7hn3vCsnUzYRAHCf9nSGloXYCb2SE0QdJKODWNujJ9SOv20bmhHKBnHP4+8ZEu3/KE9H3O8VkOB47EViRvs9qluvHhGfLh1/Mpa/V5+1MdcZ51FUqqeMs3q9RUDwmhTJ5xwwWYl2rlaraQdDPON4qIy5UeDUS9PTl3OiBLuinxYMbAsI9NIpZQLZU8aZwsd5VD/3HO45IJDxw+VWjL7W0fEQ8fma1BusWl/ty17fjlBFBqPnonbNAEVF7ljhghDdiABmhVeuE74IBxppY6YoihN5fj2jM6e8fSfX/tsag06fONJ25/8jgJmPej275sa3a5dMpt2Yc+ld2SO0axn7acEAaA4QyPJwwt8LPemzbt/uCGEqEOgNgGpY29WJjUGkSDJvqvd/18KuVB340bNOGfQiRJvSiELM+hrXVfZUlo6Pj9vDw8OaJ1/hLVO8DAg43029qMXiv1Mzrk90HLm69vJ+S+T02mgd3Pjv6VN9HkcFBI7XHh/RWHNljlI2Xquy0dMnUTmj5b0U/ZRgwClBZ3h7QEAFPBJ6plGFVjHuuFYN12aDDecZMJpTbo8n5WOfKZOHXhpN79rWyVBmkLP7m4CBbK0KPw9AEIHOKGyrgCCqr6ZnqoZe54y5zKt7r+RkSwGkkysm14eRodQyo3xcnq7cDJBEeTnalt6bk4fK5zZ4qdBPBQYyhem8ohEFkCHg1uJ5+gq/kSHm/PRc66hlV8t07TKCuCs87ZpYGTkDFnmwLp9efXpt3wOXkRxkoCC7FsmtAoFoigB5wJuvyJZeywxBRplyd2kzue2BjOgZBxz2karjfpQiEBsdlZ9KNCkDoyPtXumrzHuPxt4cXqIyRvJ6bd3504CBDNFGRq+SZ/brKY1IySuPI3Xr3esZtV6dlHgwV6cIojT7oFCrPERTBT3gEF2vgLARcvn17vFnZPlaVDbSAwQwINikP137ZfmNKGaecojC03ptHwDrJrSN8dmjCMRmxjwDAlXdo3o2oswhySJILIvRmHe89GiO8d81vVkwkBk7HKHA9JzTRkgxEn6dZlitVmtzoBkoqCr+njBn6SseAtdF68sDbzS0xun2ScGORGj0Wi9fbbdqvStAwCkux7PLyxl8fr43RcDl8zQB15cXAipFcpSVU5VjF+XJytxFiHjX5CJfcykDsj1DHuUX6VPNo7X1CNVov4xG+3pA04EHffYtAoHW3jAYALnOdgoyEtgesdDyoj/O4/HxMQ2jVhQ/p3UCOodc/bOBHCnVtyLMGTmjmnkMmrZHPcMa8dMzeKpUMllXGYO84jwCBFn5UMTHx8fPAIC7NiIrTt4cZYq3l38UDXBpe0ZjF7QrY9KTs8hhai0HghlA4KOLwM0FNdkYispj3efAyM8GBFp7o2Ag8pBw7KFWpZ6S1b0BnHByp+vrWK48NbQ9D42fzagKjNwcMdelEppTwa/y9NqkdXA89zzRXh2QpiJHkYz2wpfMs8uztfYsEoZ+Pj4+fgYEXBswAeTiHhQjn6Ms58Xxc6pkuY7cfq6tI8Ogadx1R67OUTu8JWWeUUWGe7pDr2U61oHZKG8ni9zPWdTV8d7TWdH1bLxlUTBXZg/Ajuj015LBNwcGXGdmQECFNTPQmgdHA46Pjy0YWK1Wz6ICkSA4Pl2deoqvQllbOI9QPbxK/pGC0etzEf1Lk/MGXLtwWianvPi/9jefZ+3hjFHGIwMBNf7Hx8fT+agxUCDQWnsGBlar1TSFwGPB5amK0LV/j79tKcbI4O+jnM6h0XpksoxrFUCMowNrkU7I9IMr142DSF+q09UjroPqw57tyCiS85FnX5reHBhQqgCBTJAdCNA8GRQ4jzry6CJ+nWE+Pj6e8tLpBqc8R9tI67IJ9RS4gpxdK9htl595qqOgbxPAp8SggGWLy+FFgSwH/N5/Rg4A4MjrChg8RAArk6OXVoBRma9R9ktRVc4r0TzOs6dHK3ppBEj3no3yc8AT55X+VDDjxjgD4V5eET8RCJrr9M21C0pvHgy0VosIOOoJLytUBwY4fKUGIIoMqFEGEHDP61xVteNdOdGaB7QDjMPDw0PaPo4X16a7BgBzaU44Fdey63NlVNtZDbxGArINrfSc6xIt5IKnzyBCAQCun5yctMfHx7VpsmwtTWSMK2DBUdULfIuGPqNREFDJK5PPXl9G5ThwHMkcUzVime2gWSGWHWf4OSqmfKmcqsw60O/SVAFVppvn0psCAz006AQ4MlZZGREIYDDQM5SVvBkIaHhV86xe1zR83osKuLabE4XohQhfm7I6bAJoev3s5LAKAlw5Tv5bW1eCfK260RbaANfc+gIHBqBo7+/vn8kvK+HKHgXgw9V9BBD00lVkwaX52QBEa/G4dLISyWy1XaogWEEqAGWWrzvn/EamCFSGnS7jtTJctgMCDuDq/xGQ5srbFr0pMMDkQIDeV6EeFVxdM8Ce2OPj4/TKVTU/9ehUWTtAMBLeioyPWwAJYeKogC7UcfWozpu99QjBHHIyF3k/jqrRnkjedcrJvToa5Q3SCAPyQd8rGID8K++QJwYBCggyD3JEgbtoQMVTjfKrXPsZKdIfSqPgLAIcmZ6Jyo74BSkwjgBma8/XGeiCWceP6ucsesv5zAUBSg7AbUvHvlkwoJQpyrnoFQrx5ORkbQEhlBoUYcXT4zwzg+Gop6AiYMRlMv9uqsOFbKM5rVFvbV/IhfL0nkufkZO5ijJThcHhSX3WAQEHWBnsnZycPHuzABSFXRlMQF5UZh8eHibe7+/vp2cfHh4mEMJtrCCTtzWO2sfJljP2vWvuf5XeE5it6K/W4kV6UZ7VsvDfvf6a8eWmPCuG0kXSWluPDHBdIedRdMtFCrYBdCN6qcjrmwADroPV4DkwUAUF+ox7iwDKFWnw8RZe+BcJeqTAVdHyMxkAyITBGQmuF4eAEYLD80gfKUJFvhEgUeHcB4Uatd1oHlVvxclnxtdc3pzcArzqGzAc4tSQKMv7ycnJWh64j3UBbNDv7+/XomRs/N16AwbTo3Ixpw8d+HPAV8t4KzTShlz/SEdm+pOpF8XS5yOdDXJAwBntSn11WkGfjdbHgBDRgqxjLdXDw8MzR5B1aDTVW6GejGpdkGZT/cH0JsAAU9Vj4rTVRmIDenJy0k5PT9vZ2Vk7PT1tp6en0yYrUIZQhCgrm5+KeHPCqAg1CoW6vBlkwPBzZCMbTJUd5dz/nyW0Wo0OVJG4U778PwNNTk7U03fTWDDk6PPF4mldCmQXRwV+eO709HQ68quJeO7+/r7d39+34+Pjdn9/35bL5TQmoEi5DJ1+YgPNsu3kL5M79z/qhwxIVGR7X+U5k8XIqYiAe08WkT4qK7ru9FN0rTVvrB1YwPWeAebprtbW18S4NVs6Th4fH9v9/f0ECLBGBjzxAkM87/S2yjzOR+3US9HegIER5ZqBgIrHEXnSqmQ5KnBy8tRUkQGPOjMakCz0QJ9Rnr1ByLzDAID/7D3zaCBBkWTos1JfNnq7FvYeRXLDBjMy5Px8dD1L1/PQ0L+tNQsEVFY11M/1wBGGu7Wn3QRByBeAQL18GG+OEmgejlR5O+AeTQFoO+k4rqy5qcjhW5BVUEVvZumqz4MqEQH+r3opkmWcu/utrRttzptlpTf9pXpRx46OC8j3crmcADCDYZ4+0DbqgVsHsFjunAPi2nubYHVvwEDP23LKMUKbmq8endcFQWEB0ZBpay1cMKjls3LTAaFhrNbWX1sBKmWhZKGP+Od6OHCQtQ0PhF4kIqMRQPQWKTLkUf87UnAUgQsnqzr144AAe/U63390dNSWy2UqQyz3Z2dnk+zwa4RQlHidsLU2RQtQFoMD1JHDrPwqYtRm8LygrHmFtzPaem3EsGf5jRrNbdGm5ToD3YsmZI5VT/5be77PRQQGVF+19nwBq0a3+Dk2ug7oghfm0el2jBUQ6+GHh4d2d3c3AYK7u7spGoa8ee0YIgnMTyXiNYe2rVN3CgYqgt4zfKNAwOWv+emPy66GJVGeCmOk8FVoolATP6NlqvF3ddC2aa3+Hq+r51v3+velLFZwkaxz3upFKRDg6ID2k87vOwPoyMlk9LxbO4B8scaAjbpuWMQ/BdZqiJRnPtexMiqv2/S8dk0RUHV6KbsfgTanR915BgjUY2dnTKcK2GgzqERfseOmkTQAgPPz87XxwnkrGLi7u2unp6fTOXhBhAD/+S2aaIG2Iyer3L4vLYN7ExlwFAlt9GPKgEBkTKP8WDEp8mttXdnpPKzm7erFxt4pXAUD2WDmQRYRK3IIK9erV35GLLSvaYAzmsPHJnWIDFCURts2S+8MYmvrYX0oOlZwPK+p8gvj7BYdcvkZAACpHCoI4MWE4JsXFrpxwG00N1ql4z9KN7eMfaOq3GZGPgMBEWDNAEAWAeA0WKx9cnLSzs/P29nZ2TNj3dqTLGPtFq9VwX12sjBGkBfWg52fn7fz8/NnU2ur1ard39+329vbdnt725bL5XR+c3PTjo+P283NTVsul621/0bGGAwwwFVemLJI12vSTsBARVBV8DJvSWlEgWSgoLX27F1qRoyZgdbrPFgcrywsoxGB6L/jSYEAD6KIh6heaqAq7fGWqFoHbQdc4zxc20Rpsme0TL7PyhUeFcsbK15d+JqBapZRXSTF6ZiQjwJlPdf02o4u7yo5+XU8/wyyui3K9GqU1q23cpGB1uLvZzAQ4MXb5+fn7cOHDxPAVTCAefzlcvlsrp8jBpApjjhgnKAs/HjcPDw8TMb/7u6u3dzctB8/fthvfrDhBxDg6ASD3tb8eHfO1GsBhBcFA3MHmVNyERiIhDdSVi6t89idJ6RAoOcdRXlXQIzzijjdaNtyXgoEILxaV322R06Rv1Wa074OEPWiAlm5Lrrg3nXWqSwdL5VyHCCAPPCiQZWNyoI9N2UQgQfHs6tPxZvSe5Xx9DNEBRxlem80nwwEsGft5vkVFCAde+0wyhcXF+2XX35pHz9+nAy2yiYW8mWL/Nhx43IQRQPowA/XIasAAzc3NxNYUKCNtjk6OpoiBCCMmQzwclon068hly8KBqKKtTYeHcB/BwBcw7mBHylMvqYLVDgqwMZT69hD1IqOmVwIN4tqjHqsikgZOaOOOGo4axt87CtVAFqPIqPE/ysDuWK0eTyxkQbpAlgoNPbs2Tjz4j+eYuA5Wl5Y5Xg7Pj5eyxeEa1GbKGXXK1GqzLvqAQcnBxWw8VaoJ+dOdzmHy833MwBwbzA5INDaOhiAHEEGz8/P28XFRfvw4UP79OlT+/z5c7u4uFgDA609RQYQvsc5fre3t9OCP8zrIxrg3ioAQPjw4cM0bbBardbAgluYy3pdAYHKD8aFcxDQ7lmktTqe5tCLgAEnWKPPqeF2nkvUoJni6BFHA9w1NqiqjFvzH8vQwaDoFvmp4su8J+bNASPkjbJ5Ps1FBtybC73IRy/MtU/U48u14xy5zajXLpHH4DwqXSCqSo3fgOF8OR3vGuheQ4S8ADxEawVGgJSOA85f1xNkQDv6r20YRQf1euZcvBXaFjhXHavGX+WN5+HZ2Co/qhud3AIIfPz4sV1eXrYvX760r1+/to8fP05vtoBWq6c5/Zubm8n4w4sHP8vl8hlo1f5W+UY90AbZAkaWXwY2HFFz5KbJWIeOyKTTb6O6+EXAwLZCxQ6dOiCgHlimsCLEqx2tq0HVWOKa5s1lgDRvx3dmkB1CzIgFE8pW63B/f/+sXPx3CtSVHYECV8ddk+Mj4ztqZzU06nnqs6PjIJJ3x4eb6sGPlR5HfxgUOtnSMrl+UVr1+lpra4pQI008n6rKXb91EHlC3NY8daKAogKgM9oX+XXk9Emvvj1ZdXpSw/kaBeDQOYfQ3fw4tyeDAXjlWCPwyy+/tMvLy/bp06f266+/tsvLy/bhw4e1bbZb+++ivevr6/bjx492fX3dbm5upv/w4jHfz7qN9TzWHCiY1mju6enp2hjjVwpZ3vjVXa2zUianvWeVHMgdoVeJDIyki4x29BwrtEoY0SmxqBxnrCOP2QEBRsfsDbHXznWIfhlVFAIPyGjFtpYVGc9NDOfPQE55Rr9KNMv9jwCBizqhT/GOP++QxsaWlfhqtXr2jr96S67ernwmjiAwfxoBwxhgJcrkvl+A6Q4cXfQA//FcBgB/Btq20xWds8OkkQDdpVWjUjC2qjsxTdVaW9vTgqcIPn782D5//ty+fPnSPn36NK0dYECwXC7bjx8/2vfv39uPHz/ajx8/2snJyRoIhtHGWwcsAzx2HBhg0MDRNfCL/LGA0fVRth4LeatN4zHijtp/fD5XxrcKBiqC2TMmkdHueUpZeZU8Xf7cuTqX3tpzRcSk82P8jDvH/yoI0DxY6UIpK2+6RmAUhKigvRXvahvljwLcCmhycon/apwzYw2Z1BXU/GqT5uPm90EsS2xwMpACILJYLJ55+yiDw6kuqqELwDRixcoUssjAWsemto+jXcvmJtQDlnPzc6DWTQ3wKnxeeAcwgL7BdtXcl9HUFoMCjhJ8+vSpXV5ePnvN8P7+vp2enq7JI4zz3d3dFHFAP/P3BUDM5/Hx8bTeAHXnscBGX9sCvEAuEZXlNmT9mtm1qlxynzmQMCLfr/Zq4QgIwFEFEtddJCAyXhUgoB6c6xiH7NgbcYq8501paL4S5aiQIsjMS9I2HCl3DjDYJSnCju7PoYqs4d4IsdxHPPORDSuDQs2TlVEmoz0vBIa/JzdYzKjrEnjaQhd84aeg3PHjdAG3/Vs1+q/FdwYA3H99BRA/gAE2zArM1FnhMnQqQg0uL+JbLBZrmwGdnZ2129vbtegELxbM9BuPI95sSNfL8BQBy5lrL4wPHcM9J9TxpX0V3es9m9GLg4EeenUgAEcVFn6mV1FNr4pPO83N60fKNCLtdLdQpbUnEMDXnDLrIb0qX728XYSCjwp6nNGM8uhdey3aBsiKKJK13mB3YyECqRkBAMA7h0fCK6iRTsP4Ou4qUSLwBjnAeVYX3vUNxoLLxNwvLwTDL/pmhxoZ5oWNjbbhWwUGL0EKVDUK4KIC6D99RY9/6oyoV8wAlPUy95OLHrlFrL1oJteTx0I27aYbBqFcgFN9ZTGyMVy/KhiI5POlQe1WwYAaiZFz7TScs0F1xrAiAE65OiCgx9ba2tatczoiQnEKDCpeubavGuves1l5mTHXCMOIUL6kER6hCMRomsr1ivHne1n+Tkb511r8hkpr63PwOi0AxQbvBEquKmscEVPlrfWLwDZ7dRcXF9NR39W+v79v379/n+Z+r6+v2/X19RS2RRlu/pn5cgtgwVsFsL5VqjoG+ozTjVVAwJv36O6X0JtYG8AALSM2xvymwM3NzdqrssgLkQG8TshfF1QZqQBr5I1XA/FfF1/zVFYmR5kucACFnwE/mZ3bJJqp9GJrBtTI984zUKDX5zRMDyAo6OB8dC93zbdiRBQURM+MhH4qdVXCwrKovAyVVqkXadgFOQMx8mw0mPW/kyvcV3IgQhVvT4EhjRpvGNDW1r0gBwS1DAYYrKAyeeP8W2trhgIA4JdffpkWhvF725DJb9++tf/85z/tn3/+af/+++9aBAEKGOW56JVGKlz7/iwAoAcylVjmIwCbGf9o2mCxWKyF5bHNL/cDVtf3dDj4xJw/gMD379+n6aiHh4cJTB4dHU0LCK+vr6ctgxFN4ihYFE3SiAVH2ZbL5RoY4PvRx+Sids9+3CfcnxXHS+VgE/neGhjIjHkPEPSe7Qm7AoGe0EcdUqmjS4uyGSgAQOAc6fRVGyjCiJeecdb2jLxJXZ8QlREJlCrdjLLnd0VsMMGPG3SZLET3M+WaybF7Rrdozaaa+MiKCfKEVdJQ2D0552kxt+CPgYcu6GO5Av9HR0eT0b+8vGyfP3+efpeXlxMoOD09bY+Pj+2ff/5p//u//9v+/vvv9vfff7f/+7//m3jmBYXOw0ToWacHNKKXKVqWgV3L62uSk1k1+Kpbovv8Sh7LAcsxR6xaW99sDR43b/0LcPH4+Nju7u7axcXFlC+/WgjwwFEC9epVVrlc6OLj4+Np7LCsg3fOQ0EG63i0LZ+zPKLdGHDzuO5NU2e2YY78bgwGega8Bwiyez3jWPU4lS8VZl6oogKP/NFRbFScgUQaBgLqiSuijOoV1SUDNBFYcdciA++MT4W3Xpp9iQzwtUwu9Xpk8FWeVElG48EpYAcGmKCEOErFhppXOkMZsqfMpKF/9qyjNtDomBoKnB8fH6+9Jvb58+f266+/tt9//719/fq1ff78uX369Kn98ssv7fz8vK1Wq/bPP/9M75PzdrCr1WptYaFG51yUI/pl4+wtAoAM4HF9VZdGwNXJqz7LcuembHSKSwEtSL8qiB0E3XhZLpft5uamffjwYdp8CPLB3w64u7trP378WPuPaQQ14txGLPNIp0AS5QHEADDohkQcSeY24CgE2o/HjgJZF5EEf9q/26AyGHAFZ0LjBKtShpJ6cHyMnuMys3UCUejLedeMIHFUPnGMgECl7qq0FJBwGlcnZ8gxePXDHS50tinto4LNeHDy1VoOWPlaDyhEoK01rzQZoKphZqCJfDRCkBHvSBjVg8tRb0inJHCPy1aAsVgsnr1DjlfFvnz5Mhn/1WrVzs/P16Yb7u/v1/aEv7u7m7w1rrMqWW43F6Zl6kXFWCnvmnrKP5JR9z8Cs1lb8XTTw8PDtBbAzZ1ncg9iXakgAPdBiBZcX19PCxR5Xw1MEfBXBiE7DAY0X5zzeNPoGMoCfzyVgM3b9HVYtOvJycn0Zg9H2BiAqK7XNlf9pHLg9NccGooMREok+vEzTpDd/17FR3jMjKcCAbe9KxN7V3xUxcTEm75kSqjXJln9tJ3Ba5RvL8y1CVUjNW+BegYg6ocsvQOorIQcGGB+NGxfKbN3LfLa1HvBuaaJxjB79TyWsZaAP0Tzyy+/TPeXy+UU9v327Vu7uLhY++Z8r07O+OuvYty1f38GmQZlANYZZPxU50Vz57rgVPPRdKvVqh0fH7e7u7spLafBa37X19fPPjUMQ4wdBhFBQkTg5uZmiihlQE+nahkM4IfFka2tv8LLmxzhHk9J8AJK3oNDo8I6nrLIQCTHen1EbociA/p/FAhkDHIF+dls4GaKwfESgQIWLt1Xm0M4Whe3cEQRG5CvM9DqefXqyHz3wI3yUzH8ERDZliL8WRRqRZlGcqjGfwQMaJSJgYEjHTsqm2zodSxpmDSap+f82NhmbcWeKC80vL+/X/t6nL67jvTwtJw8VfvmrchiD7SM5FP9VYjbjw2f02kKBPSINHyu31BZLpfTPgI8lYbnkB6LD/ktA/caIIh36FTiaQHeU0GjV7zpkephpGmthVFiBwZc5EDPt01DYMABgl4olI1nzwg55TUH6Tge3H1VTLq3tvLCIdkoIqB1YZSZ1X2UnNHhvtC8I68u8u7m0s8UHXC0iXJmJcbgM7rHQBTGGIrFta+GN/k6gwae33cKEgRvKUsDYn5VNnksZaBcwTlvb8tjEkag5wzwtWq/OTCza1kGDz0+Mo/R5dkDsJzWPa95tfZcttSQcbSIjSM+JARSgAHvHlNFOgcPIADjq582zvSvi3osFuvfdcFbEng9FrL48PAwrWFgwMo6GPXElIFGCCIwoJEBtYMV2RyR31lgIBrQuMdHparhiYBBj8cKz/yfvRP9MUHYWmtru7uxknVIWMvk44iSidocyjFC9gxcFACo8G1Kvbx2rVQdZTI1olx7xH3FioMjUfrlNyg7eEbs3bi5x4xQBwWMrq74r4BXxzjOGYBERouNvnMiXFoGBPxuO94B56kI5kX/c74V0nbYBxoFJSyzmd7OQIE+y3m09vxLl/oGjOtb7TPwqhtlqY7SkDzK4n7iSAKMLqYPOLKr7YQ8dG8CyCDqdnZ21j58+LAGCB4fH6f/kNWrq6tnkQGssQDBhoAH5YXrHk0LRvKgdrNKw2AgMkgjIEAHbKQ83P8o/5FBr0LK85i8g5bzzFAXDaPqHKkKuzMqrvOzOnGbKxDQBWe8UpW/BJdFApTn6FpGkRLd1Ji+BG3CU6Q4K7LnolC8YQsDBChCnlMFQXGq16NGmw0w7vE1Jfa2+H8UIeDFUeAnChlr2ciLQ7083qCQuU7sFTI/DL6jfun10b4Yf6URp6m1XH9mACC7z6CMgSuDWxcp1tA5l+d0kot+QR4BBHUaTefpeU6fZbG159+KwTM8t490iEIdHR1NYOCXX35pFxcX0yuP19fX7cOHDxNQwBoXBgPg3dWXbQvkmtuO/zu92rOlVRoCA9yZGfoDbTqw5ihrJ9SqDPHT/bXx2gp/N5uFCnkDxfKcEtI6QWcgoMYyMtBKPOgzz0sVg1soGEUH+Dl3dGU7ReT426WS3QYQiYCcto32c7bgT4EBg1HdNZCNJvqUIwOswHgM6BoEjiIhPZMqzSi8qs8sFuuv3mJxmX5ngDeT+fHjx+Tp39/ft6urq/af//ynffv2bdpEht/MgefFXhXKdXxGukmv7SsAYKo4TVFdez9N6/JgOWIgy5Eb3VOgaie079CnfB96VvPUNK2tRwnY22f9zeOJ31Dh+gKcAghcXFxMX1K8vLyc9ju4vb1t//777xpIwLQHFjfiLQcezzr2OBLA+iXqLzyzKQgADUcGsjUCVSPS8xoV6btnomeZV0W8fB9KmFc14zUnrFht7ekLWFBgziDwStXIEEZAgPOJDLRrH66XWwTTe62xAkAcqeBVogzuudemOeVXvKVMxpyybW39c8KsXLFTH77MtlgsJoPK3xzgnwvhs0woMFAgoMClQgqMcA0gAIqUV3VfX1+3q6ur9u+//65tK4uPzNze3rarq6u1XQivrq6mr8QBDJydnU18wuNC3QCSnNLk/qgA75+NVE71p3LF9/hzxSyj+M8LPnnFPefrym7N6w8Yc8j/YrGYdGxkd/Tn1ndxW7A3rXoS13jxN68ZACD4+PHj9Mor6s91BcjF640AsohAgD+O5mokwP0iUOiAQQTAHM2ODEQdgnM+RteickZ40mOmhFnwAQT485hfv36ddkUDWgQQwPut6DhevarlRV6jq1sGBDSqMIc4nOqo2i8jtK/KtAcslbTdo3MH9nRAs+HXr7zhHEqWI1OLxZPH7ZQ2QJ+TE40UzWkrjQ5o/nxddQF7RgAD5+fna+shsBp7uVy2q6ur9v379+mDRfDqYJDQNgpadGqhSk5n7StF/EUOU6b/HBBQ+WK5BVDlzwozGIAMAzQw6RsrWf8A9Gl0it8eYbnk57Sd+Kj5aZvB+PM5b3CFOjAgBSg4Pz+f1gPwWHl4eFjbQZGnVnjNi25QpJEBXFN9ksnEXBp+tTBiyBkyUOQ9uvx715QX5aki+IzyAAJ+++239vXr1yn8A+/m9vZ2bUtMDkHxeYUyLzqLDHD6CFCoMWDkmQmNMyKbgIfs+j4q3AxwRcafn+P/nBf/WCZ5zh4AgdcJsAGHseTIgMoyhzkhh7p+BGU45c91Y/nm/72xqeAVc75IB2Ouu7WhrLOzs3Z/fz/tMQ9P6vb2di3qpgZKIwScJuLV1cud76OsOsr6pqIPHQhQuWEggO9L8MemkIanonixq0ZrGMzC+OkbMCCdLmAvmsn1l9PLGklj/lp7mkLgMD/re6RFnT98+LAWvcBrjdfX12tRPge4NKql/YHy+Bz3nf4Z1eVKw9sRK/pko4P7I2g7U7i9tO7H6ZywoxOB7L58+dL++OOP9scff7TffvutXV5etvPz86lz8aGM09PTqW6snIFaITwjXie3VwYGnIHhztfFjLimgCwDGspXj+fR+72+fU1yMpcBz0juHDlApoqQDaMaSTzHc578JgHn2Zr/BgaUFa4xz7pmwBk+fe2pB3YjJYS3IBaLRbu5uVlbDIi0WI39+Pg4gQA17rquAu0ARY12ra5x6NFbAQKOHPAZ+UEGeUEgRwawgO7Dhw/PFg1ma5ZA3Eds2PiZxWI9Gsbp5/SvA7Ru0S1kitfquNcUGeig/q219uHDh3Zzc/Nso6weyMnsVvZTALCp3M7+NkFkzPSeox6azajSYHofHQaBBhBAROCPP/5of/31V/v999+n0E9rT/thI7SJOikY0AWGUVupkciAgLad5q2o2yFl3h1slKI+HI0IVO/vOzkAUAU4atA07KpvEmBg81SUfoWttScgoOtD+FVF/e/GioJLJTfVxGl5QRbyYYV5d3e3FhHR9kSd8LU53HdrKngBIY/vlwYBb1F+5+hKtDsDgZOTk0lv4lsTeJ1OQSX/orermDecs1y05jcBai12RqO6Z7aIQQJH1XjM6doXAAIFrDydwosqI4BUoai/+F42LkdpCAz0vFVOMwIEKvf4vmsUXaSCIws1Tw18/vy5ff36tf3xxx/tzz//bH/++ecEBjAlgHAPFDbqxWAAwsFzQVGHuDbSwaNt51Cta2P3JkNUlstrlOaAgrekUCNZdIo0y4OVmyoM7NfPYADpYRQ1TAni0Cq/FoXndWU3e3F4Hjwi30hJMVhw15lfzocjHPiPMt3X7VAGe6NYoMVvWKihcEDYKUnnUXEbbMO72heK5NOBAPcs+sGBMV7XwmF77u8IDDjgwWCytfXtuvF/Tt1Brk/dOgImXQSLBeT47gGDA40KO7DtxrDT9/w8zt00wkvI6azIgBorPe8BATXm0b0oDxVmnetiIeKpAbw+eHl52b58+dJ+++23KTKAaQIGA/g8JlAwOhVCwF/FghejC5kyD9uhaE3LHe9AFwsJ38sGpFOWWb9FZUfPv3WF6jwmvh6ld9edBwRjx/KpawWi+UpXBiuL1vzrhapcFUCDMjlVmVaZ1YVczsACCGA84iNEMC64j/yWy2U7Pz9vd3d3awsrQb3vykfGztVn36mnG6P0LHfOy1RSo6ZlO1mE8Yx0mQMBrbW11fXKk8ptVsdIn0WeuDPKStjb4+bmZu1tGN14CLYBn1HWbZARRcB4ruhS1B9p3KJCjojxWOM2GZGZMhiIDBTujRiCzNvNSNG83uMfL1I5OTmZXh/8+PFju7y8nL6a9vXr12m6AGsGGAxgmgCrWvGJzB8/frSrq6tn4SCU3TO4CgYqdc8G52KxsMq4UlYULajyVqV9VbqVAZN5UHzOcsfyF72H7QwZlAYrlGg9inpP6mExbwoMGEBnoXaVAzb06tVxWp7P5x3m2NO6vr5uZ2dnrbU2HXWeGu9oc3SgQq5vVH/0gO2+RAtGgQA/l/W/UjT2eaoK8+er1WotmhU5NKp7eOEgv2YX1TdaNJiRymAGDLgcXnuiUWVE8HAfkWNEjWET/vnnn/bPP/+079+/tx8/fqyBg2zaz4FYtSf4qQOgz+PZEUCw0QLC6J5jalsURRU0QqBhWX4/FMb/119/nY74vjq+pQ4woB3//fv3aS8CfWUEUwXMk7aPApqqcqrcU8HIPEpt0wgQ6P99UIyjtKn8uUhBpkx7/QR50l0Gce4AgvanKhENezqwrIu9FMRqfTlvVe64dnR0NNUF9/jY2vrGS7wYi0Ot8K6Yl7Ozs8mzuri4aDc3N+FUgQO7nJ8D027MONqm/hqlqGzXv3ye/TSSCsoMOfqO13/glTr0SU/2HR8jdefNgdSos/7UeuiYyfh8fHx6vVHtCcYp7MA///zTLi8vJ4CAKMKPHz/av//+2759+9aurq6m6QVefBgBExflA18KDFieN4kIgGYvIMyoEtZxHu7IsxEA0IUvCEF++vSpff36tf3+++/tzz//bH/99Vf7n//5n/bXX39N6wUuLy/X9o9mlHh3dzetotV53iyc5bzybNBV2jVqI86XjYkzLBXjnvGb8RfltS9KteL1VZRpZGQ0rYsE8GdXedqAKVoAyorUKVVcc1MRCgaYVwcAue+5HFZaUJ6aj4s2uLbjSAAvoOSdBjFdwGOOAbgbf2zwuaxofY0++1Yoc5BURzp5bW3dUWF9ATC2XC7XQNhqtZoWFvK+EQpmeSEp88XedwTIWJa0j6JIVpRXNUKwWCymRbm6HwAIkSo4hpBDeP94Hf3ff/+dIgNoB/7sM/Pp5I37Sd/w0bpxW6k8VB242R8qGiEVUM2jZ9x6qLcHBDA9wNMCX79+bV++fJmiAfzGgOOfowy8YQyvHG3tCUBEBicCApuSCkcEAqJFK71rzlBU5GDb9dwGVb0tvjYq+66u6Ivlcrl2jd8K0Dx43pGVbGvxwqrIOEDxsjGNlDErGDcOtX6uTAAIB5o4Hy2Dw8gMYDQ6omDFyWjUPg4AOZA8okxfiyLdGQHSrP2Z1JgjyulkBF/rw9F92A1y6sAsAwKUEaV1fPIz7jmX3gEBF8Fq7WlBLPi8ubmZ0uMts+/fv6+BIf4GAaaTr6+v7SuJjjeQG9daB44OgM9N5XTWpkN8BIOZkGVCmpFTOFke7CUBFOCVGACCT58+TTsO8l7SrgNYaN1KcF0vwIMm6ryKt+08HFd/RxkIqAKRnlBxPr0+3Adl2pNN194KXKP/GcDtAQn0jds/vbX1j/cgvRIb75G59Khu4MOt8o76kscJZE3r6tZMaB3Y+OO6m/LQsvnI+UXpR+VxH2QY1AOyrm/5PANlrT0ZVdzn1zg5rS7WdNEWnRNHvhyt0Tpl6wOcR+wiBKrfePxEYwk8KSBYLBbPwDvAgEaHuQzehhggoapXua20Xdz6AW7TXj4ZDU0TOONbeYafjTyFiqGKFJgSKxXeOhI/3kWLtxhWZcwCzXM2vHMcL6DJqAcEMi8mqjuDn9aeh8Iy72lT5VZR0HOF8rVIlXzF2GcAQdPwdUeQLyg0NegK6MCvGn32wKAskJYVr46/3vQWjmoonIfO9eW5XeSt03naBqyotV/UsGQh3h6NyP2+yWtEFR3hdGYECABQQW4Plcgwt7Zu0J2+cUbO8aFlqVePMvQZllc+j/jh5xQQ8G6ara1/q8ZtGIa6cToGAw509RxCntpiMMAAzOUzCmKHwYA7ugpoOlYELKCgzHt2fGQImaMC2EITUYHLy8sJEOinJpV4wRMLUw9luzrxtaxuWftFaDrr9IyHjHreVXZ9U6F8CeoNukyms5+mac0bUkduULPidcpPy3DK0S3mcn0S8c35ujEZgc6IdOxr/fSIvuKNX3T1tWsbLq+nYHu0j0CgwlNPXjPgx+dOJrI2xXQXe+row55XrP3l5CuLjvF1lgmNkmbPKzEg4CkTGPnF4mmvDABg1IXlF5GBXoTPlcvtgyOPbV1suKme3XiawAmYGipWBm41MHd45Mnif0V5AwzovgJfvnxpnz9/nr44hQ9uYNESE3sjGh1AGS4qwPXQ6w4I9DpvVClp20X/s2ddXj1yfLJC2RdAEF13Mlv1rnqg2JEas0xRR2HQbO4THo6et/Y81Mh56DUHLDS9G7euPaJ2wXQINu9CHroLnLZDdVpEedm1HM6hHgCfCwIiIKjh90jf8/PwkrUM9G/PkDvQ6dY79UjlUo0wG9zIgUE6Pkd7QRdg+sBNfYF4vYDmGRH44/x4wSWDAQYEm8r1rGkC5xXhPDoyGODFdq21Z0oLlUUFq5VUIIDtM3WKAIs+UB7emWVjz3NDWAiCDSV4B0IdRKqgMw9txNi+NM2JFrCwsmJ5y5SBXJduU6ooB/WYQZHCxrnOY6qizQA1h/o5jY5T5MfjVUEg14OVPBZa4ZVBlMkb0uDVQwUc0RRHZjSrwHsfxiMokkNnkDm9m47lvCJwp/fR5pg/x0JXBnAsG2zI8CwWvzrAqDLJ5XGePaDJdXAgWceNa9tIdvirgkxssHHUdWOQ8yi6EQEdFyFgPitgT9ugR8NvE2SMROsBOJTCX1SDwKDBVFijX6/SyB9fJwQw4I9sYIoASEv3mmYwgC0o+YMxqI92GCtgx5v+z4Sc6+MGUzawNzFWcyMBvbT7DhYiLyuSa3fseWI8+JG3U5L8vH5vnWVO5xOZDz13/HDdtT7MCyvkSAHr+FWlCGPC27xqtBDvri8Wi+kLcJw3f9yJvw/P/DI40bpGfaVtsU+AIKOoPiq76mm6PuQjX9drAAKcN9I6I6YeOpfjnCfIO4OIKMTu6qEOWjS22D71QLk6eiCuq7Y52zYdw45X5ZHL07Gtb9pUwF6PNgYDjpkIleqnVJmwepkXQFXDQq35kKX+V+WAlbKYz+EGh8K6vb1d+6yq+6Ka7tHNZUS8uqOmcYp1hFjR9RRcVJbz+KJnXV77TE45qmz22p2f00VyGg3Tc6R1YUwmKEiWMcdX5k2wwtbxoR5OdA4Z4HA+nteFi8w7n6Mu/P46tvNGW/Aub24ltipBDfmyzommMDIHIxqP+0AOtDhZyMBr5p1n8u5kB/3JcqH5aB84+XZ58tF5z635qSJN52SYn2UZ0uejtsF5b+oKz/M41zbW8a99jDQM/NXeRmBD88toNhhQxBldQ0M4AKD56+tM6Dw16lEFcS369CQv5GCFykKhQqthKgYAvPugroPg/JS/anvr+agBUD7mGOkKmFDE7ZSKU7r7Qs6IRIqUqVLv1taVIYdSNR+kxTVVnmy4XTnZPS5TpxwYwHA+XDceB1A+Tmk54nrwhi4YN7e3t2u72LFTwJ9w1ikRBgUIXfOaA/DqpkRcH+O5HnDeJWW8RfIb1XMuRQAPThR40TTOmEeOm7vn+K5Os2n/R2OFZYavZWOW82aDz3yPrHeI8ue8Vf6jtQMj/Tx7zQAzGQmeInauUEQ8mLVyLBx6nZ/Rz07yF6d4j2hVLlGejFCRtgoIOH/Od5QyZduab1eukyr/TKGAz02U5L4q09b8HOsoEOBno7zYuCqhPbnfel6QK9Pdg3FkYO72w3BRCyfDbMwj4+J4ixQh7+x2dPT0vQJekMsK0K3PyXRPlKYq//ssu0pRX+i9nv6oRgcc8cI2tB+fj0R4o/zBW+QERvXnowvp8/9Ix2UGHfV26Zm/CmUOUzTWeDyP9pvS7O2IHSDgY2vrQtJavVFUmXKIRNO5joACwZz/9fX12seF+LsCup0wCzNHBhCy5NWh0edlXV1UkbHgbaqAeoONy2ktHjxO2brnehGCfadM4WXGRfPQZ9x/9SY4MqDjA9eidmRj6QBGBAQikOqUD4/jiofBRoCf06hGa+ufZUZ0Ad810D07wC+AvQIClJn1o6tHVhd9fl/kuepIjILZrCw+j45RuD/SR5Gs6bVqu7O3rmNa887WTGRetdouzRd1VTDEfebGQsSnlqXl6hqhaEqe86nS8KuFfO6ETTslWkEZlREpux7y4QaA4cZK5aurq/bt27d2eXk5LRzEO6KqiDSsiKgA1g/c3NxMP17pHCnxEQCUpXXhM663XteyKwbdCVEEJN5ahCCLdIwqTQcmtI1ACij557yK1uIPDfG9SJGqcnD1YqUE4Kx5qLwx8OV3x0dCuwq0GRRgGo/riXRYSOj2GnBtlFEk972xtyuKvNeeLnRe44iRqI4J56gpf6Ptp3XOFvhF4wQUbQrHi/yUWL5UvqOyGBSAGASMtEGvzXXtAK9PqgIORxvtQAiqhEkcynJ5c6U4zOqQGz/LDQ8P/vb2th0dHU2fQr24uFj7UlxrbQr1n5+frw0a/kgM58eAgN8wUCWZtc/o4HCGJvNuM3LG3aXJ7o2CnjkeymvRpjyNPK8RJwfWFIyCRkKBbDBcyH+xWExl6DxkZtg5GsbfS9AomdavB47wRgDWE/A40r0G3KdfuW5MDrAp6XjI0u6K1EPk85Gfyy8ydFp+ti4J8gF5ihaTIi9+TstQT9s9i+tuGhrX1bGMxo22hXulEfWLwLsDBa6NcNQ8MrATlRUtJuRxPAL+WpsRGXBCyRQhLQUEmjejWPXWtILOA9b/8ORbWxca3iYShvzh4aF9+vRpLX/+3jqmF75//z79rq6upr0HEB3QttJ2GVEwmbHXgeaUeJUyr8gpyjlCtg/U8yAyqii0Xn5QNJBlvMlSiUyw/I56XJFBaO1p7/XWnrZddfLAhlnn8FVhqhLlCAHXRXnkNxL4c84oC3t8IBqXRQmc0t4UkO8ayPKYc7xoP7sQMp6vkJajIXkFk9yvPeDqjLgaOVzTxd18j3l0ZVa2indGmsvh857BVicWz/D0X8VpqpCzjw4QjOQ7a80ACwN3QISuWTFwg/BzEfLkbR6ZnNLSMjj8iNcC2cDf3NxMiwnBw9nZ2bO82BOCUmLlpB+jGEHd26CeMe891+MxGjD6bAZg9okqA0kVVfaMm7eLymzNe1KZdxN5OGh7KCldJOg+r61GgV8TBCDIlKiOCwYH/F44PCw3BlBv97waIEwTKBiIFgJXacQ49sbRS1LUD5FMRiCgSiMGRIHe4+PTFzidPCNfBhBurEVGlfPh9DoGuUwHoHXc8DGKDnDbaPkgXhOj5WlbaRs6Z3lbunTrkQHOmAdH5jXhfmRMIgXFeSF0GCFHPKcNqp4KPBmsI8CCQoCDm5ub9vvvv7eLi4t2dHQ0KaAfP360b9++te/fv7d///23XV1dtaurq2maAN+kVzQZASA1nu58mxS1bcbPHDQ9msdrkgOrTplW8+ld43vqMbX2JPscFue0kHHd2pUpUi6axsmV6zPd6EW9N/WaXKifxxmDAd6gxk2PYN0A76WAcgDmMUUHMMCvDle8rmrbMO0SBCgfrfn1Og4IRAvL5rQPfnhegSwbd8h0a8+9fw3/MxDmdCBn9J3Mu/q68lEnnm5m0KHv6atNqQLOnvOlNquXl+t715dzwR9TGQw45FIVrp4hbC1+YwCdminGrCwNXereA7gO4by8vJwUNN5G4AWDrIwwPQBF1mun1zD+WZQguz/KWwQEtBwW4F2SA6k60EbzU3ChhAHPi+FYiUJ58lszICgo7K7nPPzMMDhe3DmXq+3BkQgn1wrAs41iOHrBAEGf128TYJxFaxJ4nLv+cUDQ1dWRKuBdUBWkul8Uro8cFeTl9BWIjWlrbW17YufJgxgMgvQ5bWu9HuWLKFhmDJ2uYidO66zgV9sOfGn+c6JUrh8ictMOrg8ZvFVtzRAYcPNzI8+7ayp8TmmqougtuHCKj7/LzSia9wl4fHxsV1dX7fT0dApP3t3dTesDvn379mytAMDFKILcNlU73aFKbv9sMI0CCUWyLwWA5pAz5BUDnyld9czww3NqXHFdw6b8X0FypnC5b52i4nMH1jBGmA+3Ohp0dHQ0yT7u848VFisoBUgA1NiMCPXlaT5e36PRPq3zroHnSxH3VQR2nHxui1g/cOSKAUFrz183RXrcYyDsAAHXN4pocH35TTDHM+wHyp+roys63o21HvCMjHYUAdAItCt7Dg2BgezeXKFTY8HKT70o5iHrVOf5rFaraU7y+Pi4XV9fT2AAAvrw8NA+fvzYTk5OpvT8fQIsIuTtifG96ig6kKHsbVFFIJxA9oxElH9UnnpSCvb2kZwByQBBDwg45ZytxGbi9QMuBKueFVNUNh/VaOOcFbwDzHw/eq1Qr+k9jn6gHm7NAMsMX2fjr1MNoDljzXnNfG8T3bYt6o2hDAi4sQ6qtpNzHhR48lSQrhkAOFBQq1MGbn2Y5uNkWz9819rz1wNbe/6ND65btY+jef9MlyL/qKyK3OrzOoYzvV/t51lgoCJYTolWytDwBldUPRUFBJHxRb4Q0tvb2zWFhzTL5bJ9/PhxbUoCgECnDPgLhlBq1bbZlHptmSHMqnD00kT3I8VRyXNXVAEEUUSAwYADCOqdsfJjWWaD29r6injnVXFejlc15I6QP3tNnKfyCF40TK/XnCLmvDQigCkRBTscHdDXd3sbfs2VtX0Frw5cc99HIDUC9dk1d9+Na/XodZpLZZr5dOF+1hVuzQPXh8vVBa8sl24xY4WcTogMvrZRFQyMOEsA0VrHDAhoXXo0DAZGB4pjJAIKDjHxT+8rEOjxykoIbxj8+PFjuo4pAXwoBc9A8fDbAw4IoA4j6DwiHejuGp+7umZ5j/bjKDjYB48qokiB8j2+r2l10RJPB/QMMJMaSFWeqhxdm+pammi8Zf3BoJrHGkfowBePoUwRKSjg+vJiRfCn3mFrT9sz814DGn1w6whcGLWqMHtOzz5QBgAVCOhYrxiPiDiqE00lcVqQm/5ygEDrxmOL1wToGGMwwEAA/yPg6sCks01RFNoZ5Mz2OOPfc57cmFUgEoGCUT0/vIBQGYq8Kf7vDFiUXtM4YgXJ0wh8P0LBEAjMTd7d3U33sWr59PTUfp5YtyPubYIS0QiS67XhXIrycP3aI+f97xMQqPISGX+9H4E9feulNz3gIgOgSHFqGQpQnLyAnBLhslSB69jidD2vxHlOWgb+8/Qagw8HPOY6I9qvkbLWZ/cJECg/mTw6xyr6XzE6eo1lw+k+FxngL13ivwIMjXoACOCz1vy6LKdj/qLIlE5hOZ55mroCAhQU98BkRZ4y4M6AIhsTPQfAURkM9ObnWVAz74TvR40VoTFepKLPaAfxdZTpFCTqxiFJ/fgQ86vbD3N5Wt+svarpI+L6OMQ5p4yeUtDzn40i+e0pXcgriGWmsl4g8q6cN6Uh/cfHx3ZycrK2XwCv0mdlq3VTUB21B45qtN3Og+6bHW4MwuNHupOTE9sOWhZPE/SiA05RjgCKfZD1SJdGoDVztpQy/cv/0Z5sJCGLbjqitXV7wQsNOcLFr9a6BYhaX+hkgAIed6qLVT+zHGV6G+Vz+0Q6MYsMuPZ1bet0jXtW80EdFSizLajkxbSVBYRzUAie47xdBVyDR+XwgNCOVsW4WCymMCU3KsAAogP6ygq/2wzFlPGxbQ/Z5cntP0eB9bwIBR2aLvK0onuvTapY+MjXs/7qgQAcM889U5hZZIkVqIZnte8VBHB9dQxl/cKKWSMHbITVIGd5cZvAMGAMssFx6xR44aIq3l5ULurzilfllPwuSY29yqKT48hwaZ5V8MDAUtte3wpgAKvOHAMB3Z3TgWzkp1N04E2dQHbw+FftU+QP/jMHL8qz50hlDrIz6r1xu4m+3RgM6MCJmFFDoun0HB3Bgsedzw2UDWjlQYUXygiKCWUsl8spbwgfphcwPdAbYKqIlRdNn1GUXud1IxQbATbXDxmi1PQZENwXBZpR5Hnh2Pu11p4BAkfq9WbtlfXh42O8GVGmrKL/OiaUBw6psjFQsM7Pszemz7Ji5RXlUNy8rwJIPX/3VkE0/lg+3TWt8z7LrNaFr2f6IxvPWXomfZbD+ly+Aj++r5EEBgKs63ENebhpIgfWVEb4yE5cZUo3a88qmHD2repoZQAWR2d/qrrZ0RAYqBga7aQeSMjKcUpmzmDl8llZQSghNJif0gVOUMDYiIhDllBMyu8cHkERStRrbIRcGNj1QdQ2vesZoOjRqDLaNjnl6Y76jDtv7bkscsQp2xxLw6DRQNdyIwWLciPDrHm6c/am9KiAW8dPtT8jvhSIRGFipIMyb219ykKpomvm6LJdkpNZAKoIpIJ6ejSqt7vPFMmzyq2+ccD/WQ7dq3+6WJfz5igcTyVpJECnsrT+lam8iFzbOh3cI9dvFQexIudVHoa2I3ZC0TMQkSBFz0SDlH89FOwq3wMEilJBDAhU0HR+MuKHvZEKOU8l6ngHvKrkPCP8j/KaCwj2jar8q/LtPcttqYoPpEpSowYOUDPpFED2PPdh5BFFsuW8kB5FXmpUNjYaau0pOufmoRHeZc+OlXvER/SLgJeT/V2CgcxIqGxGQEB/fL1HCg5duylYVT51HPB/jgYoOER+XC+k4fULuKZgQPepiKazKuOa20LPs3RzKePJ9an27RxeZn2bQBme83wFRERlRPd0QERekgMEq9X6HuogVTxVENCjiuF2KNMNYngIPF0QCcQ2FZv2oTt3HsOuqFK+iwhUnkM9I8WnfalK1Hn/SBe1sRLLslOsyq87d3Vy5eC+iyzwuRsj/J93HsScsvsWiY5ZVzanZ8+Z69Lznl17Z220K9J6OLBaMRZVihwU5SOaDssAAZyxnnO4Wj2t6eKIAcsDAwDexpoBgdowdQC5vpw+mvqa26YRVYHAtsue9dXCCKlG5Iy3Q5rOG4oQrEPHOGZAQ3ngc6dodLUqp+F0mwCDCvXyZkCA//p8ppT1fxVMvAUgoMq/x4tTrFE9GATgOaf4QL11A63l+7q7aQgX5ozGlUuT3cO5U0D4ryu03X4AnN4tItN1F/r2hAKLTCfAy9Q6qvGKxlQWOdglRfosArC9ftXrI3rc6W/cYwDMPClQ4HS6UFXXk/BULjttHFFg+XPTBCyXrT2fclNyur0KqCrOXo96fbIpwFOaBQaYMmRaMcajihlGTz0HTRMJasSnPsfzwEwKCHCttdr715xPdC0yOFH7MLnwWa9czseBMQfSes9XeN0FuT7Xe3xfr3P9WEZ0npsVDuejIFPzd8RAQ4GWKjdeoNczDFynSLlnMq4he367Rr8b4GQR6SIwo+3OZXJUwPUT6s/fNOF6cNu6+qrMvyTQ3yap/uH/7hooAvVMvXbg9mfDz3lmQJnvKwhggIBXvhkwsE7mt734dVSVQQcKlBcXfcqcI9cmGXDqPRuR9qWea5oKlcFAZODVkGp6Zsw9G5Xj8tZyVKFGwpsh6ug9WfAc8dna+vevK53jeIvqzv+j+jtApIAGfEb1iox9D9BUvYjetdegCgCM2rcyIFt7HubnsirPI30FIPPzOjUEA8ivHWr+Stl0AntsXK57z18BgjPenEc05tRg8PUemAXPUZ15bHL/unydgdwVZbrVyWkEBiJnJQJBfK/Hnz6XTRlk17i99VXa1tqzvQaYWN70mxeR/ETyz8+4KYJMZrhNItsZPZOR8hBdn6NrhyID2rGRYnUV4OccRc+5yqOBVYBcI0TggleoRjyox8fGX+egGH1qnV3+FQXj2jci9X7YSLBC73kOkcLQtu8RBsLocy9JI4DArdJmckaFgZUqMwWwWXs4MMEbtvC8Or/9wkBAx4ZrB62Pq6Mz4s5b4v8OIETpuUyMNx7bvNAM4wzP9sb6arUefo50Vg/09tK8BnFbRQZG5bQypjcZkxFPfJ5Fwty0AYj7HXINmcf6Eiw2RZ5O/pzcKF8R+InWCPR0+zbI9a/T4ZGenkNDkYEMAGToJ0MqDuW6/KO8M365fFXyHGbiHQed4o7qopGBCJD0eI+UWmao3E5cWmcYDQUpDkSp8lYkzUZuVPB3DQQc4ItAoqtfBAQq5UZhUZ1WYL7cmoHW1pVnNs+eefqbEssLy74DADpWlNgooN35PHouI52WQfnunXjmwxl8vrYr+UUbRuVXDEHVi0VaNYruHq5HujkDehHw5HzcGHCAw+loPMsbWvHRTRU4cuCzMvZHdD0/k7Ul89sDeXNpGAyo4smUKCqSoZcqGKi8C6poX8tRQABjysraIVUWJg09OSBQ6aCeosnaBUfskMjABqS8OU/RKXUIP0dFVCFFvCGNa/t9AAROthgcKqgaDfezseG81DtaLJ5WT0cy4F4VZIXIAAEb9fC9uQCmV19n6FlGIuXqZIDbOQPgXEZr63O5TAC+vX5T3RLpo20o2Jekl+SvB0BcP7p0fD+aNqjkoVEDJ+ush5zz02svtVGZJz7iEHDeTr4qelHL1jGoaRwPPSqDATY4zqi6gaXGoWcc9RiBDIdYOZ+e0mEggHpEr5bg3E0HqLHd1uB0bcD/OR2iBO7DSicnJ88WcvGzrl76ji7SZIarKmy7BAPMgwOa7nqvnk7W3X1Whq093/vc8RhFBxgEcFrnKWnaKkUGmZUjg0aen23t+dsFXFcGTFxflBuNd+QVLeoCwNI97pl0LCmp/updfy1yvEa6VeVw1JOtjNEeWMyeUUBQJfWOW2vPZJ3bJAIAbixw22maKpDIHCS97645uYz0iR63RUNgQEPSfGRiT1KFNEOcVSDgQIA+r0onUv78cRclFSreycoBgdFOckomagMFMfrjd29bexLik5OTiUf2mFiRAAQ8Pv73M81HR09bMzMQqIC5yMtyBu61KJKnnrHPDAeubzognWJzYFbbjr1gnWtHPTPFp+dZWfq8AgEGwj1Fqn2gOqVqpJ1XBECAcZBFKbL/lWf2kUaMRdTO2X1NG/WX46mSJ9KzLnF1QBoFxK09H0fu3OXn1sZUno10eGTrMvuleXCaKDrRc7RHdFQZDPBHe1yUQFGqespzFGdV4JCWn2FSI8hG0825OxDgjjp/U63TSDsozw4YYM0DPvOpIKy19Tk7bSOAG2zocXt7uwYqdB64UgceDFFEYVfkwIEDYfxfKap/Rfk5I+WuaUiVDb32K8rO2lvlNCszehbPZOsDOC/wzPXAPZZhHYNcruah95nUSGQyFynlkfH8GhSNOTUUnLa1WnQVlAHeHvXy1jGBtUwRcR0iQOfW0fSAbGTwHWjtAatsnKlNdPXSaxkQi/o5orlOyjAY4GiALrjDwGWPRSsUMdrzwpi0E5zx13s6vaHGVeno6Mh+otV5Q1WvGWlVkJwn6AwStzuMP9cFfRSRRnLU4PPuXuhr/tJXFgFhtK59HKHk16KoLfW//lwkxdHI9Uxx6j1et4H7DtypVxSFYp0HpDxk87qaD8sCAwNHnI+banRjsefN9eTQ6YGsv1WvVL24XVJFxqL7zphVwBP/nzumtZ/cfQcqGCREgCAqT88rxn/UcdNjJFfuuShPbYssCoD77rxHw2CAF6yxwmzteYiwVxHHtF5zijAy3iycug4gAgMqiGzo8XOgIAIAbmBFhjECNZFhYqMPMHB2dtZOT0+fgQM1eOhDbhuk4WkC5HV3d9fu7u7acrlc+zgTz9k6cJD1+a6mCcCPAyl61F9r695yFdS6/05uqyjePYsxxp4NZCVTAtF4rCoNlOGify4deG3NTwvot+m1fovFU/gf5bnyuT7cLq7fs77PgPouiHmsyEoUHXD3o3L0epaflp39r4CNHghEWo4wOFDBoNWtXeFrGRgYMeK99nH1yPKLnmP7lFFVZlrbAAzgWoYymarMj5IaSjWercXTBBqW5P2xdWEUG0InKFVEPaL4HSBA++v0AIAAjmrMoHRdW3Fdkffp6Wk7PT1ty+Wy3d3dPdvVCyBJvUPU0QntrryryqB1be0GdjS4egq4Kh9MzmNyIMWRG48V8BqNGyhPjvhx+B7X+dv03CbquTkg4Bb88ZjkZ9x+CpEiZsXv+iQCiQ5A7ooqejUbYxVDkwHZiCJjGfFRBanRveh5N8XknmVZwDUXwc7qsilIHNEFrpxe1GKuzA4vIGQg4NIwmtffHHIV50HMEQr19nWHKhee1HKiT2DyWwQjwtFTNFnduI74wfCfnp5OUQF485Gxx+/09NSm4Xqfnp4+iwrgox93d3drUwpu2kQ393DofBeUyaIDBu46p8+8hBG574HoinJo7XnYtLV4m9UKueiSGl8YZfbOYKxdfyOvaCEyyuW8uEwdyxV5isLQEQjcN8pApYIAjhT1DE4mF7gfpXGRzui+8qzpnD6MytMj18P1s1vT4iIEynPFyKquyOobGefINvSe5XpnYGEUFAy/WohzRc0uDBcNtIzBOQOSDbwDBJov7rFHC0MWAYHoFT3lu6e8XUe5dszQLwy/Rgd0XQc/c3R0NIEGBnY8GHkR4dnZ2RoQ4K+A8Q6MLmrCg47Bwz5FBnppVW51Osz1X6Q4dfByWc7AaSSL71c9ByhI5V3r2as/jyWVTY0UsDPA//mZbB4/I24bNz2QPae8ZfopU9y7JB6nSgoIkD4DsqOGIpPj6rNMLsSveUYePNsf7tPKehi+Vo1YRmDM/dfrLv8ILGX6Q+XT6ZIIIFRld/jbBKxYMsMIRcLkEH70LJ/zf12rkCkUTePWN6Cz9FvYCgRcVMA1uOsI10k9AXQDqDdNgLcJOCLCfYGIAvLQtw9Wq/9+5OP8/HyKCgAIIFKANnp4eGjL5XICBLyWgBUT7mNjnH2hSFm6e2qE1ehV0XmmFFSZRUAgUxjR4j9VklCmrFyzunBeavyRP/JUAOA8+AwgZyFclMXenuar/GbUSzPX+L0EZWBTQQCuKYhTcvXKDJPy0osQ9NqX6xRFcBz/LG8KyvW5CABovllkwtWx0k7uuSgCMRcQ6H/npFdldxgMVEJzrARUOWVIKQMB/NNpADfXqKTznyi3CgTcYqnMy4+Mg/IZCbLWWd/kwE8jBG4tBAMBXmzIeXL/ciTg9vZ2mj64vb1dAwGnp6dThABbf3K7YjAir10p1Aryd7/Wni9EBamRi8rIFKYaxEixZEBAyXlZ+pwzsK097V2wWKxv4KNjEWnxLJ+7urq5fcezu5fRXCMdgXiXbzSe94F4nDlQwH3XAwQVx2bEmRmpQ2ZbonJ0WizS77jPzlwFnINU7qOj5hEZ5l7eGRB3+W5TLstgIEMYUQVUKWlkoGcI+VyNXLTnQcRbhLjYs3Xz4CpIyEsHRgVVcp31XOuu4AdHt9+DLu5031jQdQY8rcBlrVarKQKwXC6nRYQ456gAjqyEGInzFMHt7W3aPq9FbsBFYECnxlpbXzSHZ5kyJZnd475ickAg8qA2JVZa0VjCdSzgOzk5mT4Yw2sI0P+QKZ2uc1NZrl8USOh0QaY7OF+OWmTgj/NxYH+XlAFOBwYiOclAaCbbykPULq4tHQFIVvSnAwqQAwAfZ284itQDAxm5dqkY4qhMtW8qg5njoPm78zk0FLvNvFsnfDrw0FmuAlrxTDmrkeS8uBF5YGBhG9LxingGAW7+e5S4Y5Un13b8X49qJHBNvXoFBpoXTzEAGGh0AJ4gjD7AA08XAAzoUVF4a22KrCyXy51OE4zIE7cjyxi3I+TGGb3MqDi+omdc2bxoV59xfDqlxeNNjaxTSroGh8vHLpWttbXIEN4AQP3cNEXP6DCvGfE4y/KKntNrCgKqfOyKFAgoWKoAAr4WgVuV4wwEZMY9a9us7xiM6zVHOj2A8zlAAOkrslUBjhEQUF2vznNVtufSUGQgGhzOeLW2rjgZCPSMbCSorgyQho2YB82TvVaOCERTAzxFgHYYHTSuzhEQigCERkH4PxsxNXKLxWKaIri4uLDRAd6wSCMlbvoEoX/dg4DblsFAthnSS5PrDzVGkVxpWpDOnbspA9eH2T016BEoQNrWnuSeIxiR8nBAgEEc8gDQYaPu6OjoaALZPIerXjuDJgdamD/WMTr2mLQc1zYZ7xX9UzVUL0loBwfoQLpegNdv4Lo7unMtR+/3Il/ueT3yvcq0FtdRr7HcubUplekBJQfOe2mUXHnOhkCOW3v+9ttiseiOQZe/a4cKzY4MuA52tFgs1hQLe1HIJ/OOcN7jCQ3XSw9iY9/bUCgyHBGycwMo8mCyuuOnrwPqVIG2lxIrXjwPIMALCpHnyclJe3x8nI5s3Ftra2AAIEGnDTjiAiCwaw/LGVf9MZDqfR4axoiVkpMbvhatuXFRAOaHrzFFG025KB0bWKfYtX2QRzRG8QwrZC5bw/jZVIG2l4socBrOw62BUAMT5ZeR679dUQZouU/d9An61Rn37Oh4qOj8Sl34+cqaEdfP2bPO+crATLU+VRAQAQHkofrGRd+yNUmuHOdo9xxvpuEFhMyYIp2ewlAhjaINkfGNiCtcGfDqdUQLTKJ683lViKLO7BHnzwLDStutIdA5WV1oCCDAxgTPwYDDo1MP7eHhod3d3a2tJzg+Pm7L5XJ6HtEgno4ZVcbbIlYCowoQ9yLlyvlHRnYOsffQWj7H3gMM4FE31eKyHKE+PG5RP6fcUD76XvOp1FnHsQIDx2sPELi8IiCkfG5q+DYlB8QyHeoipD1Dy/cq4yF7PsqjCiSi+5nu4LUHnI87n0PMO1NVpvUZBwJ03DqDHv2yckfqPjyR6xTBCPpQgYg8Yxwzbwekii0CBg7EVBtX+eKjkjP8yhuejxAjG3sYfGfssykDVtAMBHghIUcFdEfJqL3wquD9/f2zLaoBAJh3hJ1PT0/Dtn1J6nkD7qhAqzW/1wAbWQYFEUXTJc7Quz52soF83XXUX0P/UTux8ee+4+kA1F/bl/ueAUA2b63OANqQ8+D/qJ+OcY4EVHWRS1dxVnZBmRFV3jhKoABBKTPiTj9FhrHCs2tPBqfat0hXdfA07+i5nhF3fa5gpmeE+bxnU3jsOptVsVPR/RHbPBwZcEzMQZEVQBB5RiDnDagXwDw7tBWlZT6iOjhyDd/jJcpf667TBBAi3XuAkSbu6yuFuo1xBga4vmxYEAlQz0PBSHVAvxSN9FVEKn9srNTIRiHNqFweD6wUXR0UKLe2Hg2AnFRJ+4ZBAPjg815EgRVlT3mqjEWKkK9H51F99LpTlo53V5ddkCu3Kre6poVlo1qfCKy556t5Zrp/jj3hZ0Gb6JsIBGa8saz0HMsI0HM5urDdTWM7GxYBhQoNRwYypOwW8yBtJSw5l1RpVBBSDygoVRRDpPh6ZTHwUS+fDb0eI+MOA9/ak2HW+/q8hqqcgQC/amy07Rnh85TBiJF6CYoiAY7c4iQ20ozkHarPAIFTqCMKkNvRbe3LaRx/LIfKI4Ae1xn5aNkRadvouIjahcdoNdrHadxz/HzPu9I6bFtPvSRpG2Mcar+59RSt1bxlBQS957J77vmItxHqRYNdv/YAV2YP1B5mYFOfd84tgADbtGhBu7MrkZ2r0EZrBpgyD0DTuTyccHBjZ6EuVmoOEPB/V4eM557CyNJn4EPziIBAZMQ59K9TAPyxotaajQzgGUwVcLjKKRK0PStd/E5OTtYEmPuMX+nctXeloEujTyAGAPycox4gaM0bsCy/XjSKIz4cGWJPQ6MUGCORso28IZYBRAlGvdVqhCBT5NVQsebJ5xVlmXmsuyIXJYrakYkXubb2XB45SqDGMvL8VU+PRk9c3lU9n9FIJCBzBjLQwPc5TeYgu7Jd/fkcgCB7s60CBkb17Sww4NCQduYI0tT8o2uRMnMeTwQEIhBS4dO1QaVjs7JUOJyhYq9PNxjiaIGbW9Y88V9Bh25UpKt0GQy4ekFoOQrABmkfiA2SelGtrStPgAEYQK5Drz4V4OzS4n8vgsF97NZ8qLfFR60v/1cQpGskcM2NBwZ9EbFRZxliHqMQf5Sf1i2aJsx+WegVtGsgm5EDLk5H85jugcMKD5lRHa1DRr1pN0cRyBsl1XUj5faew30eO9ChvCNu9P0XzadibzIa+lARe0oO6bMy0Tnj7MjnEcpiI+XIGSmXj1JFSLI0EWqPOit6lg00e/pnZ2fTT7cT1o8T6VoBx58qQC0byoFX5zIY4IVhyA8CjE1oHh8fn+1JoFGC1yTUeUSx8kDFZkyttTVjqflXwvDIg4lBVw9AKUDjvssiGM5w6kI/V44CKFcf5nVUeSp/7np0L4skRA5BZPB1LI7qkZeiyJN0upefifjn/uaokU6BZYa+11YjhlflCzxmUbWovB7w7vHoQBTSzgUE/J9tQ2THOCKgP9XbvTqO0tCaARYeZUIbjwEBFNacUI7L31E2+CvPu7J7wGQuD5E3yECAjf/Z2Vk7Pz9fu6abBkVhYuaNEabjj/nQ/lRvEwZSoxaRQdqVMuWyGRTooIyUH2+xm82b6xoLlNmT+wgIuKhQpJh78ugUCPPs5NKFayNApfnwNeaztfUNiLQ8lT0HYPi6roPQ+mbj0AEDzX9fSY1TBRhonaIpMBdFzCJU7jxKM+c+U0WXV/ou0u8RsIkASWajMhvJa2lAvF6A1wlEH4Hrlcm8VSOzQ9ME3GgVJZcZhejI6RQxunRRHiNAYBshQMd/hQcHBNyPPXdXNs/ht/ZcALB/PG8YxHly3s7AaJiclYkaL+VzH5WrkykepCx3vJCwF1bNDGLEhw7cnmfG+WdjA/LA3gU+Jc1bSKvxUP4r0yKqpNxcNeevhp6fr6wdYMPP0wwRANBrVZncteyyLGS89Dx4Z+ScrEZgwOli5OvASZV6AJPT9UBbVc8rz1k+kb3J2sMBT+bBPcNrAng3Vz7P2qECzHq00YbxkYdbparBrt6rAg3wykc95+eiwRiVnSkbN8jYgC4WT/PA0aJB9cBZMSIUr7wtFos1g4BFf/jh2wER4NCwMeddBTy7IhjwzNA6Q+qiBL0weeW6lq98ZaDMrWOIFIR+f4OvsWF1fDtQMFo/3aNBox3gMytDgQDPm+qGVvjBm4u8KcdvNtZ3DQhAzpNVyu5xGrRTZvyr/6MyK4BW04Kcs+k8d65zNe+MLwUKGchSoKT3IxlyAJXBgK4NyHSsluvkuKp7d/L1GIfYcVQFXUHFrqFGgEBFaB0CdmW5jtMO0kHIg4u3BIbi1NcKXfgWguRWtDNf7C06oXOEMtlAslJnEON+ADW7WjPg2rk1L2/6HNqFDbDKi3rAFXlCWj4qf5W1BNynTKxUsIYDhhPPOQUGQ8o8OYXigEAGaKI3H3rEYGG1Wq3VAwusMJXDH0tydcyUa5RO+dglVXhQHZXpUNxzejACAJnu4vJHwH+Uds7CQa5X9H+EL6cT+BiV7364x+laW98aPzqqjdHy3VgepaEPFVXTKCqJvJDeoIuMr+OnOnB7QMAhqgwIaF2ieugRRlRX9bPCdK8Quj0BHB9sqHQe1oEXF/ZnnnlBj/L8+Lj+HQOe70JZ+7Id8Qg5L4HXSbhBqQYx8kr4fpS+N6i1b3ENvDvPWftbeXHkeHb8Oe9f5Vn3tcBzWha3OwMeXpiKrbCXy2W7u7ubynOgwFEEgntgYVdUleNIL/ScmREwwNG2qPyeER4FDG48Zs6eK6NaZja+9bwqGxkw1bHZAxOuLeaCANBQZMCF3aLOYO/CLfKJKpl5ahFFRniuAcj+6/VqepAu8tNf9J0BN1UQrSLPBmHEt5v3V2XQ2lOo3CkH8Hl6evrM4ESL2PadnGfAgEDvcTspkHJG1PXfCE94718NZ2vPowMaQXAgR/lj0qiUq5cCRcgpFrzqGzH6HQ0ny/gxALi/v293d3ft9va23d7ettPT03Z7ezt9JwNRAwd+qh7bPlDP43MOmEvb0wfOsLLB4XHe2vNFcM5THQG2TNn6pMhJc/mPXnM8cz03NbagDAg4wJDlo3XQ+ozQRtsRR4aFjYVb8OM8U85zTsV6xrknQK6zI+/AKZKs/MzjcoZA0bZ6WexpsRcWGRZue/2p14jydEEh8tEws7YFeMR3CLIoxmtSJD869VEhBbtoc9fXOh3A59xX2uduARWXq/dQP40M4JqGG3Uqictw/92aEW0D1InBK38US9+K4U9pR/Krsnt3dzd9KOvm5qZdX1+36+vrdnNzs5YHt0EELiKPS8mtH3ktQr+hD3q6prXYM87qkIECly76r2Vt6rH21pJkZcwp143fSIdXZCd7Tp91chnlG+WN9KxXqu1QBgM83xsxxxVzg7qyKEKFcQTlVIS4h2BdXSLjn4GFiG8Hdpw37njlsltrz1BrJAT8apwq+KOjoyn0qgaCFyqywdOP3vB0wePj0xfEWJFHi81eg7gvWDZZRlV5aQQH9zSkrQa0teeGXfuE+7UCAtw4cZ6uXnOLBVV+eC0I+NItjnlRnoseMFBlMHh8fDwZfICAi4uLdn5+Pv04UqDtyHVGfW5vb6fjzc1NOz8/nwAH84BnUG+V70z5av0yQP/SxMDdLRjVyFBr88AA33fgWMeMGyPOKXG2QEl5d9GrinHs1SF6Nut73Oc21jHJY8vxyuONxyODXDdGdUxndWaZz3RWms+qYmUPdKADHehABzrQT0v7sU/sgQ50oAMd6EAH2hkdwMCBDnSgAx3oQO+cDmDgQAc60IEOdKB3TgcwcKADHehABzrQO6cDGDjQgQ50oAMd6J3TAQwc6EAHOtCBDvTO6QAGDnSgAx3oQAd653QAAwc60IEOdKADvXM6gIEDHehABzrQgd45/T9mhV2VijUNLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACD4UlEQVR4nO2d6ZIbx5KsA83eSUqUzhmbef/HG7O5RxLJ3gncHzKv/uDtkVWgSDa6iTCDAShU5RoZ4eG5YLXZbDZ1kIMc5CAHOchBflo5eu4CHOQgBznIQQ5ykOeVAxg4yEEOcpCDHOQnlwMYOMhBDnKQgxzkJ5cDGDjIQQ5ykIMc5CeXAxg4yEEOcpCDHOQnlwMYOMhBDnKQgxzkJ5cDGDjIQQ5ykIMc5CeXAxg4yEEOcpCDHOQnl+OlN65Wq+9Zjm8mKudqtXryOjo6at/1evPmzdZ31nuz2Wy9KPqu91F+/sx6vY510f16RmXSZz632Wzqy5cvT8ri93g7MY83b95sXZcoDeXB9/V6Xev1+km7dO30v//7v7Gu31P+53/+Z6ucfFdZq2pLT1wH1C6uA6meTOPNmzd1cnJS5+fndXp6Wufn53V2dlYnJyd1fHxcb968qaqqL1++1JcvX56UTcKyqG/W63Xd39/X3d1d3d3d1cPDw1RP1kufvR9ZH9Xx+Pi4jo+P6/T0tE5PT+vs7KwuLi7q4uJiqsPJyUm9efNmGivU6fV6XQ8PD3V7e1vX19f1+fPn+vTpU93c3NTDw8OU93q9nuo8OvfMx4i3udJRu6XnRzrZ5Z3syP/93/+15fxe8lLs7veQVHe/9k/ap7Phc9deoiypx2Iw8NLEK79arSaj5++8J72+RmhMPH0vkxyCP1tVW85f7/r9zZs3W8by+Pj4CSjRbzSelPV6/SR/ggLlKSN+dHRUDw8PUx5zSrYPxmzOeSfp9EB9VlXRcScnontVli9fvtSbN2+2HKF+Z9+m8jhAoUMkqPHyKA+9VqvV1ueqbQCY2uPNmzcTQBCYUVlYDgHV+/v7Oj4+rpOTk0lnHh4eprqt1+vp3g4Qe9ulPkzjNDn91OcJnKex+1qcwr7LrgCg+5yk8wmjexkEvHZ5dWDAHbxf/15AIKU5J8n4JkPk0WnKl8DARcZW0WBXFkWGKT/V7eHh4QkrkcpDZ/XcIkeZHDf7rGOQOmOkdkgGqdNBAYG7u7s6Pj6e0kl5uDNLLNdms6mjo6MWCDrDk3TAgQjzZHmUr5gDMQSr1WqKzu/u7qY8+MybN28mwCodIijodEVlG7FPXvYEAv4JcN0HHX7tMgcC5sbYErvbAb/EEDgI2Bdb9j3l1YGBbyFLgMAcYhwp04gtkPHuypDo+5ED4nVGYkzPo84UfSZjOgIoSZ5rMCVHIun6Yq5NuzS6ZwkE5AxldHz6h7qSHBtBgaYhVEc5ZomcNRkI5c0yOgPleXoU7qCEZXXA5dMbzgyQJUkgk0AutQvrkQy7A4gl+vkzGP99kCUgoBuTu4xRijt7DxL9vp8FELx6MOAd6e+dcelkzsl3RkfGjM6ektYHzMmSe5wGHoEXX0PB3+i4lBbTTmDH6//cYMBlZESW6MVchMr79Pry5csQ/FFHVHaW1+vCdQlMpyuPGKSvMaAqv6h+79+Hh4et+XuWQcwA8x7pY8p7NF79nk7fRuzHz2L090HmAhe+OyBIAGEXSQDby5D0q/vttcirBgNzCNAduxuSFPElJ58+d9do7PVZRl4RU1pomBaUqUxz5fGIx591x58GGBdqpXJ4Hl6PLur7EZJo8OQUnAXxKYAkri+uV0xLQCBF1am8TEMRvztQOVpdI7PgC0q97kdHR+3UEel5OXEBgbu7u8n5Cziqjvf39xMoSGyC5/E1hrXT8dFrlE73/jWO5iC9zLVnBwQYKPmL98/ZYv/NHfwcE/DaAcGrBANd5JMG/RLDQWq9c7wuowjEAYHy4LOdguu6wEMCLF3ZnHXwKYKUj5yAR3teZqbvA1jlHa1Z+J6SHHUSLqwbAUJP26PgXSJvOfMuXQIDRdd6+ZSOFnfSyXf0u08XpYWk7GsCgYeHh2ltCfMn6NHOBtWx0+k0pZB+8zZL0d3cWE5jdzTud+nHg/QyasME0N3hd7uykk6xL5eAwG7szoHI1wgIXiUYoHQUkEeB3vnJcY4i2/Ssf+a9DggU+XEhGO91paXRTBF4UtbVavVk0RrL5wCF79oGxsVhqY7dlrznYgWq5iM91wGV253B6HneQyPmUy4SbyeKbw8kM6B0ySpxG6PWJGj1fipfV3YX34r55cuXuru7m8rPvFku3Zu2DXZt2C3G9OdTBDdXj6XS2YpRuQ/SS9dmHQDQexpDPp4Se7qUEeru53WCW3/OfchrkVcLBkbsQNeZrnxcfNUZpQQiXMFHn71cPq+q39JzPoD42aMvRp9yGu6s6YAY2TEaHdWBjs+BhgOYHykjQJjuJSDQ/XxPkgwYz6zQ/n2dLeDtk8rhND8XH1Y9rheQrm42m+l7olaV5hywZZ5khuTcHZiIJSB48HMTvK0kWjzY6Yf07uHhoQXwSr9bfNh97gIAlwMQ2F06W8XPHQBIYLoDA9QJXyg8F92PwIA+89oIGLwGebVgYM7QukNwZaPzZIePjFFS7iTdYkEqXDefTEPP+nj+fj/LJaekdGS0NdfrW/G6wbBUliD17ynKOy2K9Hv4PaXj4qBhFyBAFkdpeJvTAW82m2lrnvpNeVVtnw/ROVbl0ekmGSv2OcFg0m0aZekT1xskERAgW+VlcVBE3Ux65brqhp33efkP8s9kDkwtcf7+uQMDDnLTFF/X5xxPnV33+7kLx/XttQCCVwsGRuLOslNKp82rMm3fpeVOn0aYDr0bRG60GcVLMTUAqradQee4xAp4BHl/f19V9cSQdwsGvV28zL4+gEb9R0s3YFO/LAUBep4sgoNAGjA+k6aHOO+u39gXVdsHESkdRtZ0vIzaJWJ73ChX1ROd9/prW6SEICSBAxrWBAjEJDANloMOXeXS1Afr6+1Bx8A+Upm8jAf55zICUl2ANOfwky3u7Krnw2vO/KSx3rEDbl+7gOi1AIKfCgx0CuS/y2l6B3fRjiu5o9iuHIzYu/J2kpy0K7orrxtGKXqaG3aKOpUlLUJTOVI5n2uwjBx9d+/S+9zIuVHhYj9eq3pcza+FgaTaCQoceHqeSpdlcB11PXRdT/Vi2oml0H1p/UJilQRGvC6JKXNd4mFXajc32myHzjiPdKAD0HPP/cyyKxBIAZMzaa4TCbx2LF6y6QkQ+L2JbfJxxzHqMhdQvAR5tWCgi6r1eRTN+feqp4upXKGSgo8Wj7nxG4k71IRQEwvBd0WgfGe9tOiMc70u3iabzSYCgrmyPqeMDP5SIDD3jEe1nPeuetwVoN8JCEY0JfOmrt3d3T0BHOm5JMm4JZDqawY8wuP0h+qi7wlwej6dA3BGgnXqaN1dpHMqvLaLXvxMsgsQ4OcOCDgg6MaWA9LU/yOn343dxGa5TswBAs/7JcmrBQOdLEGrnbhzc6Xy5+ns/d6RwqcyM183hvrM9JNwaxoXohEA+J/d8Fm2gyRF/j6YlpTte4oPTmdHdinbXJ8nHSEAIysg8aOkXb94nc6VAGMkHShwFqdbp6K83MCq/RSpMw3Vif9j4WmOqF+9axokrSdwlqGL6Lr+9++dAX+Jhv17Szde5q53ARP/+CqtiWIf/ZP+SOPX85Fed+tdOA3l8pIBwU8FBpICOFJdmo53dHLsiZ0YsQIJSNC5yKmMovGUpkd4vrjK2YBE5ep7h4hTxDZaPPYjZWnkuAQYdCAg5cN+k8NktFz16JAZ2bN/9XsXrfvCvlTWJJxWGv2vRWJ3aKxlvLWo0Z172rmy61hLU08d67SUKeiiyjSuD7ItqU26a3MvBwUOBroAg78tCeJYxhQQ6r7ENpENo+52rNtLBQQ/BRhITnakkFXbc+p8dsQsUOgIfKFUYgy8nL5QTw5itVptrSZXenPghAsGvZydpGg1RWi8NwGB52YGUjTR0b+MeP36UhahS7tbnEcgQN3QzoGq7fZP0ZRHOF6Ppc7X9dbr7gv//FRF3SMgsF6v6+Tk5MmOAEnXlm5wk9NOhpu/dfXrDH53/wEQPMqStljKDszZYEmyLbw+Z4f5uRvfTIf6wLEpIcCfAwQvSV49GFiCWDlfRZSYFtEpihpRzFQg/l0tV3anqQNeT8BA87YqExV3bg2BU7K7OAciY2+TZFCXRuI/Sjpjz3o5m7LE0Hhaup/C9mbEzPx87pzpcCshr71582Z6l+5WLT/cKS0s1TXpK+915sLrznUPPrb0N8ZkMZb8g6Y+E1wmFqQDBfyN1x0QzOnpvujxvkoX0CxhBfg+GmNLbUsC/bvWQd+XrOWaAwQviR14tWCgi+xGiJQyF9kmpd01Ak6OWpLKw2sCFzTUKf/RvGwnorTnoqddKNbnjK46g8+BOvp9CQjg91FkxMV2VfXEIDId6aAMjjMCeunMCNbVoxs60xRt+9qPzqizHs5S8J453WGdmIdTxZq+SgcueZ29Tqk9OiDwUgz2c8ouY3iJvd3FJnVl6AKyqmXAYQ7sj+pRNV4/wDxegn69SjBABVmCTP17VZ4rZZpu4JIToNL49AOdQVo0w3T52Skqn05Qmj5I0vn3naQdAV3U5WX1fPm+bwOC5R2VbZffuujVnbgzA7yXzjtF0DSqfmaEL9zk93SGxCgy5pjgSYcOAnioku4Xi/Xw8FD39/fTHxj5boI0Fng4E40uf9c/J1LmpqyWsAAu+6az+yYJ8CcgSX3p1ge4fWLfpTxGz3VOmLrBse/TdKn8KR1JWkj90uRVggGXOUDgRikBgS7qpYHpBkbn5F2hPTJkGUZRjFgBP8BFvyWFTul6+XaJojj45ur+o2VucHagRu+kvqvGEVKKSCXsh3RaoEfvjOLT9AL1OJ1syD7mHxY5EBhNLdCAO4hRfpoGUBlYj/v7+7q7u5vAgK53jBWBhb6rbVSGpLNkQZzxcKeSnnfH0aV/kLGkQMzXtzgQoN5KEqBNaTPPBAL1e2ez0mem6XUi2HX75uVk2vsYDLm8ejAwQqlJIZMkZJqu6fMc9StlkhNPAyEZ65Ez9rI7wEnMwBwD0IGBuTZIbbKvA6FjB/x6MlqjOnaRqEdIlNXqcU3GaKcAKfIloNOdowvnPRPj4DqcwKaffilWQMwAD7JieX0sClj4/x1wWoz/ZcAxtcSx6PtS2Ve9/dEyB+pHdtantRIjkAIhB3FdQNc9J/1YGsSw/OlepicbznTFMPj1uXT3RV4tGEhRdzI+3ZqBJel319JvaVGhqE5GSh0QSJKciX9m3cQcMIrS9+T0U/1Yx4Ss5wbrPsoSEOCAgDJnKF1cF5U+58Sr+nUrjLZ87tzffb1AKktVXlvibURDqGf4rO4jEBhNDaR1Bz7loGfv7u62GIrkJFySPu/yeV/1dV/E7V1nZ32xqwcm7MfE6qS0k646i5AWnY7sm5cn1dXLqfsJBGgvUh27PJ5bXi0YcEkKyh0EXxPJ+nOJkqcS+GptMgO6dwQAUlm7cvC6gx1nJiSjeeTOUXSGc5+AwCjvpayA7nVAkCKiDjR4vnToyuf+/n4LIPqagZS+60uaCpCxSlNFLE/q57RuhsZPr9VqtQUC+BfGq1X+++wueiQYWK/XkzPhs50DnzP4HQhI3w+SpbNBbmf5B13sQ0oCsZ1DTgFcAtA8j4WgMjEFc2O1qzdtPIEy00tAh+nsk779FGDADWg3TUCKZ5doby6qqtpWCiqqlGSJE5aycW7WB5YDBpaHe8MJBFzBPfqjkrtDWWp8lwKsHy1dmXwQ0wFKOh1xsMD+9X5m3242mwkIcP8+y5QMSlX+M630F8Isf2LDEuCUnvKUQV1n/ytPz9fHhOum69ZorCZH4uVYomcHQLBc5kBt6i8Hdnqn/ap6ZJKSuHNdwuoy4EqLZecWzTLvubZw20yQ4cHCXHr7oHOvHgx0UR070lclV+VIg44hKQVXUzMdp+PlyHmP799n2g4E5MwFKFL5JfzdWQB3LP6HNa7cHj06pde1n2TXqZhvJUsG9pJnWWfqgr4nRiDRiZ3zcp10mtOnj/wIYJZT6fg/H+p3Z48kCQw4gKCxd+CTDHXHdvm8rgMLtp+iTOXLY45Tu7rRT+19AAHzksZIp/NkunxqIAEBpcF/3qRQR6WX3NXiNtcBhr8ntmyOlZjTCa8/A4a5KQNP57n179WBgRSBdNc6g9dFciPDT1rM0+Ke/dEUgJTHhWsKeE67HL2DA6WntJwJ4Mpyp3IFCHyaY659HeE6w7I0YvuRwj5ditzn9CtJmrNn9E8qk2mnSDgZzarHVf/+m+sL03dwp3T4G+9lPm/evKmTk5M6PT2djL5+d9aNbeDtSD1Zr9dbTj7d4+NWkgBF99L9fHYk+6a3P0p2BQLdlI/0YBQMJFaW+ucggGl36xCkT2SsOnvcgUmXzmZ0wYB+64KK0X0/Wl4dGKh6StNSuk7we6QQc4u4UlTEkwar/j4xbqSIrkQewfNdRtOBgNedoIDPSwgCWH7Nz3bRk4sPYCm059sZ8eeW7zH4yCL52owUAdMQenn4rH73I4A7x+2MjgPOdPhRiu4d8ErHufJfkV/VIwCRHpL1oh56BEUgwDTUVow8Wa5dQIC38aj/f1YQ0EkXXI30hn3k05rJ+XkeHmTR+afPzg5I/7SGJU0duG12gKDPSUZBRLJ59CH7BgheFRhIiMw7pYsqKIzkEp3O59zQpAFBlCoH7n84RCNNhfZ7mA/f/bpHfV4WUcisS2It5trLI9o5BuQ1CZ1++o2ypD0645DYCN3vwMIBpYwkt+ZRRtE/jbB+dyNMI820VOfj4+O6v7/fagO1m09haYx0zMIcQ7ALG9C19+j6zyTJlvp7BwISWOsoc7cfFE4F+C4TThslPVWe3NniYEB2mNMUzt45GP8W7bqvgODVgIGkpKN7XBwBJmPiHcl0fVB4tLTZbLZWWlPxGEmzLBQvR+e4ZWA7hN6xD/reDczkkNzpC13z+z7JXHk64OMOmEatG9g+H65nvX29bxxoyVixfOlwKeXj7S8Hfnp6+oSqT31N3aEBTicQSufTAUque4ki7nRe7eSRHqM3th9l5Py7a0t++5lkFyCQbJ8zAhwj/ur+tErpSP80HaXDrdICRQIQ5e27Wzg16ltgyU5JCECdUUq2NLXlnPPfF3kVYGCkpOnFe/VZhqlbyMe8RuhYisuDU2TUHx4e6u7ubkrL/5GO0RyRtH6jwdQCM5aLtDDLlIyqAyanzrxtVa7kMJUuD8zpBs5zyNIBmICerruR8XTTeg9njTw9d5QpDTpZ9hkBQVpzwLrIoHq5GCFJPOrXugDq8who+3eW2acp/DnpkE9NqG14guFclO/657KUJTjItnRAIOlz1dMxwN9TkOI2WTb15ORk6+VnUvjx1VWP63Lu7++frBtYr9fTMdn39/dbz2mdga7RZia96fwK66x79X0f2YEXDwbm0CqVyj+7Yo7ePQ86Winr+fn59Do9PZ1+q6onQEDigEDihnPOQaV2Id3L5/SeaGbSsSyLnI6+u4wYlX0ytHMonvckALA0Lf4+agd3lilSIgXvoEDSMUV07tQFp1FlJPnM6elpnZ2dTTp9cnKy5Zy5jZBTWZ0D0DsXxLL8SoO7FDxdGvMRQ7CL7JN+Prd07ZgcXLKx3VoBPkfb1dnrBAbOzs4mYCpwqvdk56Sbp6enT9atCCTc3t7Wzc3NpGtkpdJiXZZfjK7sNKcUVKelNmIf5EWDAVcoV6YEBNI1pzl1/nnVdpSbWIDj4+M6Ozuri4uL+uWXX+rt27d1eXlZp6enW2zD7e3t9NnnRalUrBsVzZmCDiS4o06RV3olxCul5/GvNNBdPikdfX4uWZJ3xwA4SJDQCLjwGYKt5MiUr68JcarcjV3HCkg4n3p+fl5nZ2dP/kNARvHu7m6KiJSXgMC7d+/q3bt3dXZ2NuWl+29vb6f/HqCj9pMHHaizHon+F/Ole3mc8dfo0T4Z3Zcqc8FWAqoeGHRsAMFhsrFiqM7OziY9JmuV2E9OCXiwomOyr6+vtwAuQYSXsYvmCbA5NbgUEOyLvFgwkIBAUkqPkNO8PhXJDVBCe1zYcnp6Wufn5/XLL7/U77//Xr/99lu9fft2ixEQ8ry/v39iEL2cLjSUbgzpJDzC5PM0uPrDGEWDaR+6P8drXZ5qF7YZncG+AwHem1iYqp66S6AgMS9MiwuXmGZaU9D9luhWXfcI/+Liot6/f1+Xl5d1dnY26aeA6tXVVd3c3NTd3d1Un9PT07q8vKxff/21fvvtt7q8vJzYi9vb27q+vq7Pnz/Xp0+fthgG6ZRofZWFf7md2CgCX9XLx0THrnSSpgsOYOKpzDECDgTctna7PCTJjnCsJSaJ0wAOBggKFHjRqSeWk3lJhwUkdN0BRHcgkksCAXx9jf78aCDxIsFABwRcId1x+Xyor1Ct2t4Wpc5wMMATtU5OTuri4qLevn1bv/32W/373/+ud+/eTYb+5uamqmpiBkivKk0/7EdC5araXicwoki5eI0AQlMVPDN+bpV7xxBwTi0BArYXy/USJAECXu8GaAcknBXQS30gcMl7v0acESNYffv2bX348KF++eWXLebq4eGhrq+v6+PHj/Xx48f6/Pnz1H+np6f19u3b+vXXX+v333+vX375Zfr74Jubm/r06dN0ANDt7e1WVOURmQNeBwRcuCVmLk1LdZFlxzp8C3mNQGAEoLp7u8BrxAx4ZJ2AgKdN+ywAcHp6uvUSGNBn2X4HAu6cJev1epr+0kJv6S/PJlCa3dh3EO4BgOe9z7r04sDASDGTUejQrIMBHprCdOkwCQY4RSCDK6N7eXlZb968qbu7u61Imc6Yxi5F9FWPESeVkExFchy+it3RsD7TQfE+XvOIVuVwatoP/PB5tLTga9/F2Rde74yCt6WLb2Oq2t5alUCAO3gHubrGBVQyqJpnZXT/4cOHevfuXZ2cnNRq9Tdb9enTp2lB1ZcvXyZ2gGDi/fv39eHDhzo9Pa3NZlPX19fTDoXr6+v69OnTlg4RDDhwXeKIpGdkCjh1IBCSHBD7r2Nm/L6fSZYCgc52uu3131Maozw8kGOgxRdZAmcK3KGT6nfGouoxONKz+i7mlAtrfYp2pDNshzRdsEu0/6N180WBgZGDT+gvPe8Kpy0ruq792DI0ctzs1AQkmJYUk3T56O9cfb6s6m9F6CIkByd07B5huvNgHsqHTshBQhftchGYH3zE8u27se2c/tLfed/oHqUjI0PHORI/djUBAH9RH8VavX//vn799df68OFDvX37tk5OTmqz2dTNzU09PDxsjQMa/aOjowlUCOhWVZ2fn9fR0VHd3NzUX3/9tbWNlnUeLSh01sv1iEI2SkCA4IBjYYnj30UvX4Ief2tJUXsHAtKUIZ9lcJCYIrK1WgOgdzIAfCWgIOCoNAkcOxv78PAw2fu7u7u6vb2t29vbrTUwZDslIz3ztnJAsESeQ99eDBjYFQh0NJSUw7dOUZnouH1eV4bZT77yAUGEqrS4xcUHhRvSTnGIvrm+oTOi3m4JELDNEiuQxMFGWnOwr5LK5s5q17ToiLq0+DsBHgEdRX3FbYFpZwDFjwo+Pz+vi4uLevfuXb1//75++eWXuri4mAygGADXQZ9rlWG+uLiY0v/y5Uu9e/du2mnA6S62Taob20bOggwTy+Jsncaw9oZzzKW8D2zAbpJs7S5TA54WdTz9xmkBRv3aleXTAg4IpPNMk+OLQNr1S2zd3d1dXV9f19XVVZ2fnz9Z/0KZY5t28VH7JC8GDLjsAgR0f5qPktJp3kl0qVZI6+VbrzqUrPy5dUUrrrmFa7PZPFFQj67TAOJ3Im6mwbqm+5SPTzl0kVwnPoXQOT53gM8huwy8xAZQp8jA+LUl+ZFZ4Xd/znXA18b4Cmq/R9NYl5eXdXl5WW/fvq2Li4tpIeDd3V3d3d1Nz3jZfTcA2a/ValUXFxeTwaZR9oOP3ElTz5Q2I3+Cdh/f1N8uj9QH+2Z491VS8JBsbaLeU1rU3+Q0aY/p8GWTNf2q3/TZdc7zlI5wesGngqse/+vj5uamLi4u6uLiYlpIy4OK0mLfESBQPrLzHTuwC1vwveVFgYGvZQSIYklHyVDKSGq1M/efpq1TySA5ENCiKqWj9QO8l58T1UY6uYscGenTgHYHxHCwLI3m6fxGvzkgUpnFhjwXGPhWg60DBFU9M6DfXLzffH1KEuo72SiWi+thPMqSMT09Pa2q7cWykrTan3VSWWVcfXuXg4pkPLv24boHryfFp7U6Niv1z9fIvhjr7y2JEehYAbe9XXRclVlL/ZaCsvQSw0V2wLcUSsge+VSCA19NAwvYXlxc1PX19WT3yaBROp3zQMKBwFJ24DlAwosAA+48dwECVGhODUjB3r9/X+/fv5/2Ua/X6y3K6Pr6uq6vr+vm5ibO97vIgIpduLm5mcAAgQSjoES16ToXsSh9/a40+EqUWIdmU54jQOB94ajYjQNX9T4nGPiW0rEBzrAkx8TPjIr0mzti118vh/eJ6zr1ndGR1qJ0hlzX2HfcOqjnfUwRgI6i9dGOmOR0NF7Yrty10K1LmKvjSH4WAOAyBwLmpgiSM0z3yYkTCPBwK04HyEkTDDDSZ75Vj/+JIf3kVLDrqGy6psBUBrIDYow7JjXVm22p51LApPv2Qd9eBBioWjYP03WEO0strPrll1/qw4cP0yrri4uLWq/XdXNzM+2f/vTp04RAr6+v6+7u7kk0X/Vo5Hx6QItRnBb1+VGCgsQCVG2f0uYIlxGhp5V2EVBobKmYydl7O/Me9kUCAi8BDKQo3sVBp3/XNQcFrrOc++c9vtsgpctpBpadjEF6lmtW6OC7HR9aQ8PFVUxLZVRd5tovAV5fn8C2ovCQrBEQ+BrZB2P8nOJtvQQUpD5yRsDXt6QzWujoeaKgHLkctO7h2TAEhh5s8eXMFh002WJfnKi8tD4lCR2920FOBTpgmQOqPxok7D0YSI6/i6RH9xMMaGW0tlv993//d/3+++91eXlZm81m2nf9119/Tfuxafx4djWdsrZlcdEgdyMkZyilHhnS9DyVqRPSvB6dJ+PvQIAvBwJUZL/PWQEfkPssqU26+zj4u3ZzQCVJ00L8jX2daFaWgc+n9HjKoM4D2Gw2U/Tj02Ceh84VuL6+rrOzsynfRJ/yOe4qYZ38hE/+pusqi9ixBCwTA0PZl4hr32Wp7UxTBCkA43NytJxaEpOkXS5ahOpOvupv3eeuAq3tWq1WW3rgjJoDRb58saszaQIFPOaYW4ITCEptyWvOKiQgnHT1R+rwXoOBEVodMQOdskpBueXq999/r3/961/1X//1X/X27duqqrq6uqqLi4s6OTmpqkcnL4NZ9WjEqLxiBHjGgO6lQ+cUgcqVom1Gca5ISRgxMk8OjDSAUjqj373NkyN0EPAtorfnkET/LX1GnztAkJ7pQGN3b6cPZKk0XXV9fT3NgW42m631LNxf7WXR+perq6tpXc1qtWoXxo7qTN2h4da7xAF4AgIEG92YXyo/O3CYC7pG7TsXfKVzAgQEPnz4UO/fv5+2qlbVNM2q/vX/H6Bjdb3g2En/Vnh2dlZfvnyZAAFBhx9Gx3JrC2IH9tkO+ixRefmuslPvnlsH9xYMjNAqr3fPddeITLV4kCesbTab+vz58zRPxGNXr6+vp/3ZXKSiTpbRPDo62jrvnZF5ir68zB5JJxo1AQjSy56WDxoab0Zlc8qe2nYuMn4NRnYEwtJ97hC7NvBImH3ROXlGFGQn9Lv6V/S+gID0Wqf9pUWynNJSWkpDz0vP7u7u6vPnz9NZBT7lsEv/u66n+qdpgZF9eA16971lNKaXgCwHAFW1FWX7HwwxENM07a+//lqnp6dTtC+91eFXaTqWQQ5tq2/blr7zN9cxX1vA7Yy3t7cTG6ZnJEnHExio6ncWJHCc/MOP0OW9BAMd1eLX2XiOsCipcf1gFh3KUlVT9HN7e1ufPn3amqeS4pAZ0CAQGOBn36JChRRVJeNMxKhye510D6ljDQyVm4Z0xAbwu983iuhSP6VFXgkgvGRZCgj8mbnfuveqvD6DQMCjaemYnLXWumj/9Js3b6b/yBCT5cwAGS3ujLm6uqrVajUdsX13d1efPn2qz58/1+3t7RNA4LrFevA6dY/rENgGKQJTfRmJMm03tF16c/302mXk+Ef67kCAU55cyS8bq0XbCsIEBN6+fVtnZ2dV9cjCqo80V0+95poAggCuJ2HE7wBB1zk9wBMNtUbBt5Wz3hRnUN0/dW28b7KXYIDSNVwHBPTbyAHxmhRBaFW/39zcPFm5yoVZPhCkuDJs3FrI/wPgGexy4r5ewOeS1A68T8aSz9GQ0nG48SUg6Qxyh3QTIFB5k6K/ZiProGuOlfK+q3qM9Ltn+N1ZgarHk/tYBneIx8fH9fnz563/IxCQcDCgl/pR37XDhue1393d1dXVVX38+HFr+6wbZQe3LG9iqEZtwesce/osPWQE5v30M0vSR/99F8fFyFo2klS7Fv5dXl5OCwX1L5jv37+fTrXkkcC0i9IjAVj1b1W1gEA21n0D2VyeLlhVW4sZOSXs/+QpEM224lqskb9JtjTZy+diB/YWDIxYATe8bOy5KJQOkfP3b968mdDp7e3tkzkqKr2MnK8ZYGQkmotzslzFTWPlZ6z7FIBHSd4+Lh6FpZO0PGqfYwVSnqmMS9mZlyrJ6SenQ1GfVm0vHKRRS+J6oLz0jIyjoh8yS+xvrZMhGJDj9DUD0pUODGiLLNciaAsuI6kREHBWwMGM2sxtQFrMxm2Ozg6wnZcwND+7JJvbAQJeTwsFuS1Qh169e/eu3r59OwEA/YMmp1p9kWLV446WqtrSTeqUBzLOnmm64Pj4eGt7uMqrtP0fXXm2jADOzc1NHR8fTzvFuumxqnqihx1T4D7sRzh/l70DAyMQ0BnGueiMQjTJaIgdKOVjBxP1Stl8OxUjK4EBvahcVTW9s7y+s4AnsFG61eWpfVwxRwxKBwTmIoSlxvZnMrpuKGks2a+JBWIaTGtOnA5VVLNaPe7n1nWBWjl0GjXvL42Xu7u7qqrpXq454BbatJhLwukkv0Yg7KCY0R1f6bk5ff2Z9HBO5pzUEiBANkAL7rQlUE5fLICAwMXFxdZOLQZKPLadNpPrB9yJOk3v4NzZUd335s3ff/EthiBNqQoI8Fhk/f1xsvF8Vp/dr3Xt74GF1+t76u5egYE5hewi1IS+EqUvkcLxPAAtslqv19M86NXVVd3e3k5o9PT0dPpMo6vIjLsO/ChjRmm+kEXXq+rJ0Zr6rVMmFzoXsgICPN7eDixGzIq38+iZn8XgzrEBXEjlJ/XxeFRnbtLaEKUrI8Yoyhke3avyKW+BARnh+/v7JydkMh8J1xJIzwUAut0IqdxVtcWuJeDAxWgubDf2AaepDpJlrm06G5peDnK58l7AU9MDZAR4VsBqtXriQHmmBRlVMqlu0zllylMsdc2neelHVF6mU7W91mq1+vu/OWTP5fy5uFyHy2nMOShI7cty+HoXyo8CBHsFBqp2o6rSs04h+iK/qkc6iJ358ePHOj09rYeHh/rjjz/qjz/+qD///LOurq7q/v5+a1qgKkfZVJZkHBnJeIf63DHBwRIDR8BA5+KUrYMY5qtypQWMnbhB75zBkrRei3RAgFQ99ajbBeJOT33M/diiydn+pDbFaknXV6u/5zy5zkVOPUXfLCOnIVhO1zO1AbdupQiIUwRpERbvFdWre1nGlO4S1usgWeaCKtrX9E+DiqC1RkBsgA4Vkt3R3DtZAAZpPKdF7APXQ9Hp005KT1Re/2M5iXRC6SjYEyBR/lU1gQGyyhpTp6en9fHjxzo+Pt5aMO7rFxhMcSx17KAzG+yf76HLewMG5kDAHBhwBfZFLR5t6FCgm5ub+vTpU/35558TUv3zzz/rr7/+2mIHqJRpTr4zimkhIMXningtiRu11C4+958cNIGDHI+e0YDr1hCwjA4EfO3Bz2SAHYw6EJAxTKenVeWFo06NOsD16N3bXkyAIhmtGVB/y2ARQPh401hRX3JhVQKBBJpsmwQICEi76RJvG0aJkgTOl4ynn0XcRqTvHRvggIDRt+/L5x8NaZpA16RzdJAEAtJDAQJNuSof9r+EwRXLR6Do79J7OXSBBU5J+C6Do6O/Dz9SGfS8zqM5OTmZGAIBGYEd6nlqW+m/s8V6Vv3zvQHB3oCBqh4E0Oh1jeBAIDEEjHQ2m800X/rx48f6448/JqOmY4j1nwScE2W07xFZR6MnI8fom/VyeipFZK4UVdvIeOTIqYB81sELI0sHEzSyIxDQAZDXJNRLZwQIBgQEePrZqI35O/PqALIbF04VMJrhttiqp2da+DjTczJoTJ+7ZOYi+xGg9IjO7/E5V6bprFenqwfpZS74cruqaNtf6X8GyIZVPU4xEQg4INB0AYGydI4spoT6pbGXjsdWntqZQLBLoML1L8qLrIKe+/Lly/RfCgJCnz59mqac3R6T1ZC4bo9AwfdiBCR7AQY6lOpOtQMEbhCdHSAtI5Hi6TCV//znP1P0f3V1NbEC/KMhHYJBh0lGwMs/Ep8yoDPm/JGuKT/mw7T4LukYAUeqbEPmrXvlUNzJJxo2AYIfocjPKSmC8tPMOK+qtiboG7ECzIfvXoYkNLpiCNT/vCc9R8ZLUwsEL4ze0jSB67bS3aX86XcHn2nRVirHzyodKzDHAHQvHissJ8mFg/w/AR0zrKlLOVxfJOi2lNNdVRkoSjSG3HkTdNNuM5/7+/u6urqa/IVPE7hdd7+yXq+3FhaenZ3Vx48fn0wDcheNrjuA7/qs091vrdd7AQaqxosrknNNEVOXli/YEvK8v7+v6+vr+vPPP6f5nqqa5oK0ZUqAgFSphMaoql/8REUdvTPdbh5J76qfDwbe55+VFwGBhNGi0tZcbQIEnePvIsHXyAxQCAScsuSUFSMGF6fDeV156Fnv484w0PiRBu3GmEfY/JMWOnjSupw26MrAuvgYT8Ix5SCYIKdjViijNv+ZZSkgcJaVbGs6cVCH92iKQO2fFlfT1pHh4fY/2SHaUXeGuk87viTUfTK4Nzc3U9k5HuQfnPXS79w1sVqtnvyjotLyrYrr9eN0bJrq8H6pymeZfC8dfnYw0Dn1JdG1pzMHCiTqbLEC2md6fX1dVY+nBzogSNsBq7IhToCAv1Ex/BkOjpSXX6eDUdrOKvj8rSQhboICDiwpeGIHUnu8RsPb6WQyqmlls2SkMxwDvu5Fzzpt6tEy79N8qJw62Zqq2oqiJHS0CXgoLxpMtsUcOOH2ysQiuDH3vGncvc676N1r1NGRJPtKZ8+pAL/ercFynffpAq3W54I8Oso0teN9TlY0MaEsCxmsqu3/KHAGS886QKWOa6ywHQR6xPTd399PLIjql9Y+EAiM2IHv6fQ7eVYwkCKTBAJGUWbHGoyiDdFAdKIPDw/TcavcOsWz22XEqDyeNpGtrtGZUml5X3IYKWpn/dLgZVmSYfX2S+1D5oD3e3pLlJX3vHRmoEPvIxBLo5Kcd7elUJ8JKhi58LPe/Qx2lYd58TkadH12Z6tFUKoLaU9nG5TOHJBPa3lo7BPD5IwU244M1Uh+NsdfNR5zzgSMXn7CYDc1qft49LDO9tcUlfRKNoWnsiYh+9rpmq97kvOtenqYUGKwnAlhGyn9BAa0ZmCz2dTZ2dnk1Llt3Q+dc1CgMif2ag4UfEvQ8GxgYAQE5gCBGqBjATqRMiVjfXd3N9FZaXsJz8hWtOwGmnOYNFjJedKhp3L6vTLeDgQ0MIk2VR53GEulKyeBDtc7dGmkdF6ajJgAvY+AQHJidNA0TP58Wu/ijI8DUHfOzjCRLeDaBqZHipTnUzAPzvn6XK1TzVXb0x8eZVG3GLklcOAMSGK8lurZzwYOOpvbOX/qBw/NcmbAmUx3lufn51X1uFBZztKPZ6dQX0bTTwQpstu+hZD/ueFgwPVUebNtNB3A+9UeqqPqvV6vI6usczwcuNKP0J7ye/f+reVZwMAuQMArnYAAfxuBAhli/38AAgLd52iSVJFQnefBFbF8zo3+kvZJnU1AQOHATHk4BcW6p2tpzlrl4iBhP8yxDy8RDOxSXgcFlBTpSvzks6qnxkiSFo8yfYJP3uvRNFdbE0xI71yHmQ5/4znypGZlLCXOdnj7ODBiWzgImJPOniQj+r2M6j6K66YDgQ4ccD0AwcDI1ibHWVVbCwx1pksXradpAr7Yr5vN5sm2RT7LKS3PqzuMSOUV7U/mgTqpsvCEQi6e1LoJ7bxR3lxgqPcOFMwBgG+lxz8cDIzQ6RKH0Q1qfnZ0S+FCFHf6krS9hcojdsFpHikjUWha6ZzK3bWTi1PKVEynfEnBsv08uuyEaSbH7orr5XeU+5LAwJKyjsDsCBxQ3wlQva+qnkb2o88SBwQ8k10sgN5lmBiF02jR+BIMMHp3xo2O3IEomRHeS4MtGRk/tqPSnHu5gfXPr006HU5Ofw4U8H8HHKz6AjzZI5+O5UJTPcv/ClBfOBB0u5kofQcTTId2Xu/sfwcEuiYdT/7i9vZ269mTk5OttTOqG88Z8cWSrBuDqzn78b3YgR8KBjogsNQpzlU+AQs6bTai0/gejXiUorw115XK5kbYO51TBv68JEVOXn8aVNFjpHrZFl5GV0Yvi19THk4Fql2pwKk/urK8JlkKCPzl+6C5wI+SAGACYjSaDmIdkPoY4D0JuPrvabuU8j06ejzYSGCDbcGysNy8NieJtera2e/xPF4zIKgat00CAXyGQZWzA6TLedR21d96cHt7uwU0tRZL66+U38nJyVRWt8ceUCTg0tk12l3uevGpNN8hwRMMPaDjGOU4OT09naYIBDZWq9VW2zgTwmAuAQH2xY/Qzx8GBkYKOYeEPI3utyVKXrUdjbjj1/X0cqVzSVG3K40vgPG26aLxkWF2yp5lcWfR1SOtXWCZXHwRjCvzSxdvz05crzvK0Z9J44FRriRF1olBSCwUjWmaYpD+qI+Tbjj7xeccbNCBqIwyrDSwXgcHH3PtnsZ4akvXSQe6rxkAuDgoWgKa2L5+bsboYC21vXZspR0EPNRH4mDT7RPLyX5PQJfXyQrws/RDbLH0VfqjfKq2F/yqLlwDcHZ2Vuv1uq6vr+Px3jrO+Pj4eGIBGWR1QI2/qU7SXerwt9DnHwIG0mDlb0uMp8SN9By46CJtVzqPVPy39FI6VflvhjtxwMDnHRDsKonVSPVI7UGhsfb2lpJ2QICKq2deIkjYBRB0euxRCq/xOq8lQJFAKK95XyfnT92QQUoOfuSUPYpP5aKh22w2W/OunqazWelzMnJz4/4l6tu3lGRPd2kzfla/kQVQtKu99f7/BAQEZEz54pRqZ69SvRw0d7tK9N3zZV4aa27vCDY53dyxqqqLdqBpjQABAYEVpx46hsD7zAHAt5bvDgZSpTrHP/ed6aQ06fy9Q5NBpWHkudO++I8LpXw+leXyubSRMfJnXRxkOCpOayKoUP4aAYFk/EeAxPNMyvxaJNVnpH/8Xc8zgpARY78wCqJxogFyQ0Cj5HrpfezlIgCQYVU6Dkwc1Hjec2CA7eRGTIZxxLaNZGQfDoDgUUbOPrUT73EHJgCgfyS8uLiYttdxxwH1hnaWkbq/OJ/vesjxo2ko5kEdcrvnUbzGEsea3rlgkt+TnRXg1lTtly9fpgPquKWQY5L+SJ8Z/TsT9yP1+LuCgZHidSjUn/V0eM3Rm5/25gtbkjGkknGuPy04SQor5fTFNiwnV4xTaCzX66eHEPEZpZHmzJiW02U+qEb9NCeMJAlMEjPwmijYrwEEes6dNsGdz4+6UWKavqqfafrK/lROP2FNwjGQwIDf7+3idXQgo/L77gKf8yWg9DzndPng8Ldl1B5zICAFUgQEZ2dndXl5We/fv59eFxcXW/8/QAfshwoJFPg/vNJZJ6GdpnR2kHS+ytNF3rLZ9Bmc66c+s331zpM4r6+vt06t1RoJn/YgCCbTyjEkoZ/4nnb1u4GBpag9OfouvZGypnPgHdW5ESTNzdWsCbFKiRMzoE7lYRwqMzuaSNAVW+iS31Nbdu1Fg+wRIp/xwzlcPN8lhnYUiTGifW1G2/UwGaWqR+OoxVRsk0QjeloSOnuPthIQkCSGx52tL36lbvv9XZkkBL/peY4FijsEj+xS/RL44vsS4/magCuls7fOnqbfGVjxzICLi4t69+5d/frrr/Xhw4f68OFDvXv3buuMFjlA//c+6pacp+5x20f9d3BB28ngj2OPACCxuCmQ9L865u8S6pQ++xQBwYCOsfedBsmHKU0Fh/z+IpmBznGNXkvT9cZzJkBojttguJ+TCMsXiqhTOzDgwMCpdTnZREN5VO+G1SNDKgOnOHwwuzH16IlIUwcl+UDaxUk7DeefO3npQGAUPXW67FQlDZRYIE8vAQoZTo9ufDpAetYtFOzAZQcEOhDgjprXdxnLPs3FurG+BD3M38XbpZvKe62Of066QCrZVNpS/c/AxcVFvX37tt69e1e//PJLffjwof7973/X77//Xu/fv6/T09PabDZTdPz58+cnTo7MmK65+O8eiHGhrOolO+9ggGyvs1a6NwFTf572N4F2+Qz9C66mCLhYkkEkgzKyA5LEium57ynfFAyMgMAIjUo8GukQazodS38c4eiOaY+iaimqRyIOBAgGWDanMqVERJVJOrYiKTepV7aP7ulQMCkpljf1X6LiKJ6Pg4Iu3ZcMBiQJFCRWID3DdlV/dCBA93cRbqJKdT2BPj4jAOjX3fknHUjpsp4e8XR9nvRXzBjHT7c+R/d3YHgEBF47IBjpYAqoUnDl++MvLy8nIPD+/fv65Zdf6tdff53ef/3112k1/e3t7daJfcxftlUr6mW3q2pLbx0UJiDAPuRCvaqn2xMl0n2yuK7TnAKuegQkqhODMJ8Wub+/n6YGCAASgOmAmb4ThBAIdPr7LXT6m4EBd7Qc6EsYAQcCnjaBABd4pP/V9lXLrhiM3tXQPteeJKVDBVutVlMnVo0P9WF+jgSlDFpxWrXNPFT11K9HohSBnQQIdnHW3lb+3dP1QfSSpNPrkfP337t602kygkrATvfIkNG5u6OXDkofJYz+Kc44JOnGhQMZMm4EQlWPf1DUGTOCAK6DWMI6uP51upgAwWsHCFV9UOaAwO2qTtHTP/O9fft2WjhIkHB+fl6bzWY6W4D6cHNzs6UPZG5UDmd0CEo7cMd3Tp/RTqfpKR64pTRow5nfZrOZ7ncQoPyUP/+YKE1RyLYrLdp3XffxMRdsfEv5x2AgRUv8vBQE+OfEBpAJ6NYIpGjBkaIrSKpLkmRg3Hh7Os5O+LNUPH9OgMCZh1F5HVTNRXOpfp6WA6tU9+QsEgJ+ybJEn93opoGcIrWujd3oERT6+gG9RqcLJtqf1+ccbzKufLG8BDgOfn26LG1/ZR29jRyUd+LtSsf/2kBAp2O81ukvgQFtLM8Q0D8Q6qXf9YdER0dHdXZ2trUSn9sPla6zOr5OZc4Od3bPnbjbegmdPt+VdvccAzXmQQbDDzZKzJ73DxlfpcnpbYIm9tm31t1/BAZGUZN/X4Jq3BmuVqstEEAl9akBMgJu3Kq2qSNed+NGA5Hmk5K4Q+T8Jp8fMQUpHZalU1CXDmEvlcSeJAfhiuiAgFFxcngvQbryzum01z0Bos6JEsQlg6HfpGfUN93LuVk6Xu9bZ6T42Z2o358iSl13Ud4Ct56efqcRJbUqA616dCDU7U7qF9btNQGBJAkc6PPITvsUbDpwyMGDDhzSu0DE+fl5XV9fT4BANlt9qfMuSKOnOrjDlHROe2T/qEsOSpmX8uvYO+k0pzH8b4t9F0GqW+oHjWG3ESOb80/1+avBQKdIrmSj9y5Nn8dKp16Npgb0nugl7/wULVHxRoNoVBfPww2QKN1RdJnKlEQRFAcAAUkylimNxCbM5TtiE2hYlgLCfZekAwn5+xwgn6Vx8fZhH6j9ExjQnKv62Vcre7TDZ7tdB34vxccIx6qivRFgdFDrwIQLdf1wGKVNtsABA8ul9vK29DZ+TTIaWyNbne51QJD+GZVsz2q1mgDBarWaQIEWHn7+/HnrYCIBQs2xV23bareRWmPAvHkP+3auLVySLig9gk8H9g5kBQT8T+q8bckuJOFUoMa4gAHr9z10+B8zAzRucxFTej6l5UAgMQCknPygC87bqzF9EZ2DAFL8IyTn7IGXmfco3TQVQQfh81dkRagAaS2E6ktA0O05n4vOaaCp7Cwv22bOqPg2nZdkhLs6+XeCPBpItpvrqEdV1OWuLA5wBQRSP8/R5ykacsDhztqf57vu97HhZXDnzOvpEJoESlXfbpuvR3B6dzD+M8pcwEYQ0LEBVU/PYeFUju5P0wK0Iff393V1dfVkt1fqR4lvK2S52a++a0H648C1s10Oegg8fJuhT4WlKQK2s8qnZ1K+Gp/Ki23ogOBbAoOdwUBSno7G4GDU+wilssMIBBIY8AZivgQAWgnqzm00v0Sl9ajDnZoPomQovf38ABYadA4adx6uwHQ+3PmQGJGk9N4//pnSUcqevkeMdIK7TlnsiyTQmgxJoh0TwNW7dNtPcOtAhu9uqXr6nwOpTyUsW2K/+PtqtYrRS6eHo/71bbecq9XzDgRch31Blm8/pMH29mD5XiM7sCT44vjsbDavc52AqP8EBnSegBYOKh3m1Y0fXwemtKu2QahH6mRVWTcCRWdKffwR4HiQRZub2tF1n8Fnuj/t8OF4SHaaY8b9HRmZb6nHi8GAo8kuIpYko+SO39+5UPDNmzcTreRgwFESxekjX53pho+O2AGDg4QEBlJ7dIDIlVdKUrX9Ry4sY0qfZazaPqyFBtNRKQeSp6EyJoUdSRdlUDdYj5ci7K+qfjosGQeK2sLnXzmnenl5WZeXl9MCLa594SEufFVtRzxzdfEysW7eR842EMC6Hs6xTcqfdCrLLl11IMCI0xkFpjcHfFUfRXGvFRAskRR4uQ2X3T07O5t2ClxcXEwLA6seHaAODfr8+fNEa+vEvvX68RCejx8/1ufPn+vq6mp61z8XHh39veiQAQ11JQFMggmWXc+INdPzfn8KJiU+lpQu9YwgQuOiWzCYFvwSdDs7nQBaCny/h/4uBgNeEDrxzgFKRiDCoybfIcDFKV0HJgfmztHLRZS1Wq2mSKuLgI+O+nmeTpzSoqIlB8p25jWKTzt0zkf1Ss/ruaRMVFIHdKNyeRn0PtKLlySdIe3ArZ6h8eECKu7h5r7ti4uLiR2QQf38+XN9+vSpPn/+XFWPkZm3b9X2IlgZMIJBF95fte1wVQeJR1Jzukodk8NXOVyHfTtW2k8+iqrIALiedQEJAdxrBwfUU6fu2ZfcAaAthZeXl0/ObhEYuLq6quPj4/ry5ctE+4uRfXh4mA4g+vz589apfDc3NxNrq7UGaZoo6bfePcKXw2Vd6JQdCCRdqMq7quTsmafSq9pes6P0nBE4Ojqq+/v7rbzJEqc+0/bDxMil+/+JDu8MBpICdVGRCqh3N6SulAQDNJo+b5UaQ87ao4aq7ZX4CQky2vZnOxk5Ur/PadSO5vL2XCJqU+bPa142B0hJCKQ6YKfPI+Cn/Eb68RLEdTgBgwQK+DwBACnYt2/f1q+//lr/9V//Vb/99tvW0a4ypn/++efW3KoMrdOxvi6m6m+d4qEsKYImU5T0owPvI31lJEQjLUDg1Cydv+sJGRBGeinv9Dzr432XAoWXLt4mDk6THa/anpvmCYT83wHZri9fvtTt7W19+vSpNpu/zxdQwCZb9/DwsHU8rw7j0UI7sTVkSL1Pnfkh8+t6yGf0LvuTwEASB5hKR2BAZWVaVbUV9eu6M2Kyl67nDEYTI5lYAb2+JZBdDAY8Ku/oQafsvELeIURpnCLQb6kBlGbVU0PmDp2DXUrqq2NZdp8ySJIankaYnc60SGdJaND5nsQHrtdf6XUGzg20p+3XO3Dn9yYjnliZOYC1jzICAu5YUuRFpyx2QAe5vH37tt6/f1+///57/etf/6p//etf9f79+61ISZFX1WObcr62M2pV2+CW9KvK47rYAUXWYcSKULhmxxe4Egyz/J1+8B4HBOybji3QZ9aHz9IovzRQsDRwGAEB2V63067TbGc5+vX678WA3DJY9Whr+B8FtNEqkwMV9S11Xr979N3Vk1NavNZNDyS/wWiev7M8PGmR40rsCqcOuP2Xdde/LyqYJftMW+7txWvfSmcXgwFVPNEVHeXsRsQXjDhdk+hHiZRrRKvQmHWrkbnIhdGJOiOBDM+Dn3m/gwB/3g1hF1Gl62ROEpvBPJJRn+sjfu8YgcQEddFcAh4vzdBKOjCaAAF1N7WtAIH++e3Dhw/122+/1W+//VYfPnzYAgPr9bouLi6erLgWGLi9vd1y6upzOt5k5AgC3JHOgWAZ6/X6cbUzaUy/P/U9x6MDY4KEUdTeBQnMoysD66zvL1U352QJgO30twNQAgACpLLldMRV9WQxX4puJewnt9UUd6p6rrOZeh+BAY4dB82qe4rm6UNYdq2f4HbZ1J6y5/wPA47NBAT8lez01+ryzmAgdaIXxr+rgbqtgRI3KDJquqa5KRoNGkB2Jp1R1eO57SwL83eD1jnPUV2ZTifp925QsK1J35Ey1W/eZqn8rlx8lm2ZjKtHgglo0Og6I/PSDO7I6Y+iEjcSEo8ozs/P6927d9M/v/3yyy/17t27ury8rLOzs4lmJEWrdDRfe319vZVPisJ9ZbXSkNFxXez0Sukr2udvmtekcFx2ANrz1DudwByzlIzjiLFKz9GWvCTp9NB/X6q/yRZIp7xPHFxS93mf2t/tLts+7QCoepxK8mlL2vUU9KR2INhJ4zP9j0CyW6yr74TQNf01sz6zzQga6Ke0KJhtN+rXub7/GlkMBvSHEpRu8FAJGdFyLQAdG8WpmaptNEggwGcIAvSdqJHIsNvb7fM6MkyOFL2uBBBuZD3C8ajKnbLqo2upDclusG06JJqMr5ed9/lWmRQ1SBIj4O35vZT3e0kyos6KVD0FjB1Ylj7K4KxWfx/McnFxMf0nPFdta52M7uM4keG4vr6ujx8/blGVvrWUn12HHQSz3j4FxXFEIOBMl9JlZOOUq7ctaWoHG4lh66J8b/8EUJf2/UsDBUnYJnz3e2hf3EnyIB06em5xpeNM+ei3k5OTJ3ZbaWgdgfTF+1M64elWPdXBuSBuBIo6ptPBhKYB9CJwoI7f3d3Fs164RkLtwOkV5k8g1AUm3wrM7rRmQDJC23pn43UnBqboyQc9aUmdyOSO2Q1eR8u4cecgkKGjY6djTVFOcqQs0wgQUHE6ak5Cg8nFKVww6XuzO4opOTUad0fDjqiTjFiIJRHJvkuaR6WMxoKAgAweF0/JqFxcXEz7uXlKm8aO+lurtz9+/Li13SsBap828Pr4/SM2K4kDX45XvXsUp3ahPuu7ALLud5DNtB2ksL35e/fdJUV/rwEQSObGndsh1927u7sthyN7QzAwCgzdZsuXcEHh/f19nE6oegQfvn3P7Rrr6mViJM6yjew59ZTBLF/662b3G7SpvmVSbUCGV+9+kJOe975yEPwt9Hen3QSp4RJSp6N1EED0maYFktOtenRUbly6yMfRamfAOZ9Ew8pojoPDo6s5QMD8HBmzrbytPT3lRRDAP8boTmNj/R10sF5eTm+3ZGw7BXwthjRFTh2ocZ11WlN9pQNa9J/n0metJSAroHSOjo4mw8NzNxjNaXwlwCq9SKxaVZ6ec+PtztuddYpkEqPGAIHBgI/tUXt21/Wd7yNhHRJgX5rOPsso+q162h++CFBb4UR3V23/lwRtziia1m+cctB4cDDgDt7/AMhtt+uvykSm1x2vtwP1IKWfgIDazFkvjXkPAlQ/6b2fm6M1GJxaYDnZLl3glj4vlcVgIAGBFPExgk1TA6MIkRVNtDwHOiOPzkmzg/WcR0sqr6ZBOEWhznRD6VHRHPLuFI+/J1DBtlTnkqkQauegTP3i9GxnMN0JeHt6P3h5/bfXxgr4YqH07iBAfShAQFBwc3MzGcOq2pqDVF/rJSPhUYZHMDQaDpQTyO5AgOtqWnyltuCYShGYMw8Eu741KwnL1AGC9O51TMbRxx0jYF57KTIKTtJ9BLu+sLuqtmwOAZ7AAG2whPqotNMZE2QXZGs9qFytVk+O+GUefKeOM7rWCbQOVKm/I/+WFh8qDdlerRPgS4Cfuyl8vGpN0Hq93tqaqbZy5iWxAh7gfa2+LgYDydEk+lSIJ7ECCb1JiMyTc5Fx43Uphy/4SPOgnh6FCLCq6vT0dOponn7okYve3Zkn4+R183+a61gGR5tUej+r25/pwBcHwUg6RescC+vs5XkpYCAB3TlQ49cYifMejhMaExkU6ouMo0DD58+fp5PctGebz7CvFcmQ1VqttqfBXFK0nX5j21TVVmREAMR2UTsQ2Pr49JXjaay7oeucfqpjcvLp95TuPsrS8TRyHu7o3OlVbS9IJuXNNQN00gQALAN3FpF9TVO+7CuOFdY7TV2mMipvAWUfZ56vB0Ruz2R3Nf6UPo9l5sFKZD7UPkyPzHRiOVKAtjTA2hUYfBUYSIbHz3omveKnRHkn8F3Kp2sdLT9XSRpjdZrKz3eP/Pi8DPLp6enWyVFLG9ijJjdIPGXLtznSYHq9OEAJgtzIujFmGkujJW/LNJA8SmQaLNu+G1mPltL8XHpmdA9p2HSsNqMssQaiDG9uburq6qqurq7qr7/+qv/3//5f/fnnn/X58+e6vb3dOqktCQF2+u7irADnMrkYVMY1OXKBA3/Xb95O1F9OIwrISG+Yv4vr4lw9/ZkkL0FfR5ICAL5ooxnxjpgfsltyiH5aoHS76lH3GYl3gR7tEW0MbZgHpB5Fq4w+Xcp0WRYvB5mP7jn5BN6jtri7u6ubm5uJJRA4EKPnNj3ZGC+XMxddsJIA1K7yVWBAFVGHpHUB7mTppAgAEjggIOiUQzIyxDRCiX7iin4ats1mUycnJ1vMACOaTsnYUapHomj1mXO4BAWdjBwxFW3OwXPOydNO97Mt52RJ5LaPkgYZB6uka/sRWODqYy4SVPrcISC9EBj4/Plz/fXXX/Wf//yn/vOf/9Sff/5Znz59moxOMmCj+tEY7dKnpIWlr9JVj/Y5vl33vZ2o9xoPBAJVf08hiOlIkZqPbR9nI/vRGc19BgIjXeveqc8ezHEKLDkjOlrOg3MBYNX2fDt3YbFfPIDRfaN+YVlT8KT7HQh4H+qaA0uvJ30drwkMOXjwtQ8CSem0RZe5wCzVI/X/twCvi8GAbxNz5OU7Beh0R07AqZvECnAQuxIIjXYUT9dIKfqWkyR1Q3AjxR0pWjeY/BkODCm5DKLK4IPahW2boqFk/PQcAQHbaZeoqkP6+2xIR+JAINWvA6M0stKpjkEjvfnly5fp/weOjo6mUwV5/a+//qo//vij/vjjj/r48WNdXV3V7e1tPD8gya6RMnVBwjyc6lQerLfu7fTfwanap+pxOkFpkKZWWRwEONhgRDoHRF6qvi4R6jB10acDKOw3HXudAIHAgB8xrTUyvoXOy1VVT8aNdN/H3lwg4SAg9TnBiXTJg7uuHbizjNOzCRhxizenUKRrDpaZ5qgcHnzwlcZC+j6SnRYQpuj3y5cv017Lqm3GIDkzIriExvQ789Tn1WqbovRpAzcWft2NtqPDbm7GrxHljtpKn/mu8iUDrTZ1gMLfO2E7OjWstvMo18usdNJ1H1zJALPuc4N3nyUNNomPgRRxMdKSkPGSEbm7u5u2Ch4dHdXt7e3WgUM6WOjjx4/16dOnurq6quvr62mKQE6SrNuSqbEEZFMb8F1p+jaxUVuxfTpwzwiRTN16vZ4WfokV8PnhNGaTjPpviRF9DYAhgdw0Rjlt5ZGzb/Hjehe2EW27O2eWRUL22MvYAdkU+PG9C6Sogz41zGkNPkswwHVb6/V6AgEERjzAiAGfl58AQ206GosdIPB79H1Xnd15NwEjeBXm/v5+Gsxc6JOchC9GcUTHznIHxTn7ZOjcACYnmBpQ+dFgcw7XqSOnIlM7+eeRcxyhZzqa9JyDAF/ZqzaR0o/SSWUaRXSdQWEaL9GIuq4knemirDS1ID26ubl5slBI+nZ9fT2dHaA0FYFpjYCMjesjd8NwFbX0X/cuWbHPOlblRaisnxwH80vP0LDzHrbbqC841efllXQAfOTkR/ZgX2VXsM16ehQuoZP3HVRksWhrvB09OJNuq++8Tb0vfPo2BS+dTUllkRMmQJatcyDAsdwBAgFSbu3mtmGCAQa1TIftwt0T3HrofebtlQDBt9DXr9pamAZihzKpCFQkUi3ecKOK6Zklg4FKzwHvSFRlZdm0IESoj0aWnZQMzhwSTg6FL6fwdL+jZAcCBAM+yDabzUTDenv6564uCeSlNndmJDEI+ySjvul+83t87lV9J0ep40alX9xieHV1VZeXl3V+fj6dJ6B0xCJcX19Pc5F+8MrR0d/nEKxWqyfR22r1+I9oVbUFFCiuW8lZdyBYhlFG1iM7z8eBlE8rsH7JyEtkB5IT7wCA97czKSPg8JLEnQX7kNu8qzIbUPXYH2nxt3RD39mXBLpKxx0xgz7aK98e2wn9gPdnov6doWB0z+kpLzd1jpG7sx/Mx++lr2Bb836fUpiTXQDBUt1dDAYoHkmuVqvJ2MmACZXReaQpga7wzgroMw1HmvcZAQmncbUmgGWTodYeUVI+XVn5PgcCOkfiwCWh7cSapPJ0aJqok78lus3zSUbSXy4arAKF+25QU4Q4urdra9XZAQEBG1dk39zcTCcQaqEhgQV1kgcW+W6Uqv60RDpr9Te3W+lZiTsPP5CL9XH9ciNKcWAuIXuhNkrGsQNkDiiWijueBCxesjhQdaaRTs37kzaY/01DJsrZHp8uoyS7zzGRot6q7R0qEreVLLNf63yO7L8CJQenbEOK20Svu6YSCAgIhATSGdTO6doo2Fzy/BJZDAZSoYnkZeD4hwtdJJrQjxua9Jx+TxGy3qnMbpQJBLjVq+rRWPKAF9KyXXm9XdzhJgDAzxxgPlCZtqNLLwtpr4QSdY3t4bJEMd3ou2L6QEkR1z7JKNpfAgq8nnSsCRC4iC68ubmZGAEeR8xo3xcr+bau0RSQ06JOR/r0ngMB/ieGys0ofm7cdm2Z9Em2xMezp9fVN0Wk/pu+e/TfjZt9E9oEly7g6BjRqqf/c+LPO+vDZ6iDes4BAf0E65BsiEe7TMfr5Gml9Wbpmr4zzcRupLJ6ICz77YDKAUnVox3o6uHi7ZP877fSz53AQFJAdoKUwyvXnTGghqDDcEfPPCRdtJAMhw9mBwSKjsQudHS7FITAwxWU5eeAcaVLyNevJ0Vn3VkuvmvgjugmBwSsVwf6vD2p5EsUdp8l9UmKFHmvRyVVT0Ebjag+0xjoPl2/vb19cl5H1WO0zENeZIDTmEp1Yj1o6JQ/1/vQcfDlRll67ocbeR7efhLXF3feXaTKtKjHrptJX5nOEgCYbMg+S1cnj9hdbz2gko4x0qXOn5ycbO386py561myHXqG6Xtabueqtv2K73ZzO+Z1ZYQuXadN9XU9BL4S6pKeUduxDm6zNV7kG5JudTo7AgAjG7xE/hEzwAIQFUmJUsFSusmBuoIxv6ple6STYfeBMVJaV9Zk3FJ+Tll2A0X3evkoqZ7J+JMV8DKwXqMyJ0XvgFWnrJ3sozHtHP0IGLhBnXN6Pq0lJ+pnvT88PDz5N0+yZbrHjarSZlpuvDpHKlHfU4eSYaawbAISut49l2jjUVTE+5K406Bx7V4e1UmvOyeyr5J0t7sv6S+fcfAlh6Z+JRio2p5ulRMkq+BgS9fcTzCCZtqp7R2IpvGpYIz3pbQS89oBGgaJrEfnpDvh8x6Ise1THiN261vKzmBABdJ7Qt7+jBp2iUHifZ3SSnR/NzA6RNnVLxn35KhVb5/H4v2pPnqua4ORLFEAN+oc5KkPkjF19P41CPOf1OFHSRdBjSKT9CIY431VOTr2tSca7NqXncAA7/Mojr/TeKS5987I+mefrhKw8DHE9Fjnzhh3IMHHOalrZ+TSsz7WRkCAxt0dSgpMVM+l43TfpAOCqmdyTBICA9dHpp30Svrs9zsY0HUXjkVv/5F9VnR+cnIy7YpIwLkDgJzvT+ysjynfYdEFb9Q/jhWeZkiA5IDpR9jOnacJXJLj4CBesnAsOVBdT4PT82caDjC6+R81NCMZv5/vKV8qKhGeK3I3rdGl6+l00bmLU/26lwvF5trR0Wgy5iPAlgys5/Hc0jmk0Yu0ufTCj5B2xqkTbq+lwVU0Jr3kqm/XN58HdYOUwICDBx8rXfukscJ00rjX9xGD5+xc1fahYn4SIZ/zCL/7zPHnQIBjtvvMeu6LLA0ofEw7eEvt6g7QgQD1QL87g+o0/KiMzIvgIAVmvNdt0NHR0bTwVuNDeuIgmvV30Ks6KQ1d4zHMXPnv45dtQT31ctDOc92as3l8fU3guIveftVugi5DGUwZMq6MJs35LYWDl4bZHTwHPxGerquxE2J0oEDj4srO3zuQ4+LKnZAwr9EZcCFXkuSYfWA4AEiItHP6bmC8nJ7HPonXJQEZAgGuOPbjW91R0qgmJ6xrnPuXYVBkU1VbLMFm87gmhSyOxpZ0mvucqRve/qmvvD7sN+p1ciT6zcdfSsOBQNrWxbwcALjDTmCcdXQjzD7wtumYtJckbO9u7DmrmRgh2kkHVu7oKD6eUuCT7APtsEfSfr+PTy8zDwpKYyDperLdm81m66+IaR+5jZfXvS/4m+rG62rHBDY8vaWgYFfZiRnwweENKxBwdnb2ZJsUjV/V00UVKRp1tEjpkFIXmREUEPFSOjrVHUOiRGmcWcY0CKncqQ40qCyz2s0NKxFsSjdFOiyvAwFXRDfsXq6E4LsB8dyyJKpKQIAgN52A6Wl1dU3t5AuOXEi3en95Woxu3Eh3ebjBTvd19VEbONh1YKVyOQMhIMB0mDaFaxN4D/PuqGzdw3eWgXqu514DIHBWQDrMLdXc21/V66hs5misd3acztoDjGTnpRcS71eOT/3Xh7Y/0o7RiY+my7y9uDhyvV5vnTfDMwLo0BMD4TrFtTVkFaSTPMHQy5p081vKzsxANzhkNPmHLGdnZ5PS0WFRSVx5EtpMTtUN7+gPflyUD/9jWh2hDk8dkf5zgU6RzEdCy2qnuY4ksEqo1RVVdWL9HPVWbe8rTyDMEa7Tdh41Ewwxekh57LPQ+aeX6pmOTJV00S/T17X0XaJ2X61W0wllCfgmI0+n50yClye1QRLl7ZEXy1v1qFu+qjul3wF5b0PmIyDgZyN4vVR3lk0GV/d45O82bcTi7aN4e7p9pYMly6XffEthAkZsS0kHHnSf2/WRjlVtH9TDICuVSzp5enpa5+fndX5+Pm3Nle7zHA+dz8Hps6699Jnsq7bzdjsK3H+xjdTuPm68TRMz4Ol07f0tZDEY8DkjDigqGP+ZTYitquJWKDkfNvwIFLAs7qh9vpUN5wolZfB8uj+Y4GDyf2VUPn7QhKPjZLA42Phbane/14UGrYvQ9N0HpqNbH8g0nI7cHRB1e4m/B5LdVTrnxGsJ9PhnlxTZuBP3UyWdVaKB4/M8LKirE41NOra3e9bFDZbS52/KzyN0shuMnFIk2QEB1juVy1kAlkfi6zg8LY1TB6pK3x3OS5MOaFU9ZRy9Latqy4Z6ul1wk/SL4Eu2we+jT0nO1KfanFWSzyEg0BkdKoO266reOp9DdrADKfRVPNODhyOxbEmohwwoOHa4Fd/BAG2I+7TvoZs7g4GqpwrH0/z4EktQtU0VEgzIgSrdZFhdEjjgQKYkp5c6VI7MO8JBBzuWbeLt44pNI0Pj75GJ17lD/V6mpNRUICpcoltZ5gTAUr7MI72SYd8n8fL6bxSPcGicUlvxd08rMUx+tgDzTIbYjYOueSTvUW93jel2eTEqTzrE5x4eHrZOjuvKkdptpGvKJ0Vbru/OkqgOTtUmwKz3lwIKku1LNqx7VkL2hWl2Dk+SbBRpcF1nH7l9ZDrJ3ySQov6Vvzk9PZ2mC9S3vrgvtUv6rLL7AXR00Ol5fWcg6P6CY4cBpC8iVB2ZX9fX/1R2AgNdhKh5VEY/fliJnuO8yvHx8dZ+a+aVnNsScMBn3BhzbiZFLKTISVl5x49kzpm7dIBAL65tcCftxsyBC++jYXNj6HkmEOSGkQOGjicZTzcszyFu7OdeEu8L0avSoy6vbo4zXRN45nMcJ6kvEtggsOgoddXJ+1GS6sSy05B31KdAwGbzOFfsUV2nCx7NJ1YgARblz/ZR/ThNwrQ6Z8AyprH1nLJ0DHUOw6lptzmyD3RAnZ6THXUQO2dXqH/u9JQvnZ8DAk/PbbWeTX7J1+h4Ogwa9R8id3d3Txy0P8/fCQSqamuNBnVUz6QpWg8gfervW9vTxWBAq5x9IEkR6PTd+UhRTk5Otpyto3IqSBr87jAlLAujMpZF93F+jOXU7x2SdiPlTngOObu4c3Jl9J0OrKcrGsuTlNXbOCF/5p3KmRSPxmNJFPJcBtXbgp/nwEDVU2ORoklPvwOl1Et/Tn82xHaterrwU+LTAp4uxwINlvJwfU7i7BeNUMeMpMW5nla65jpa9bi9UNcZUSVn5XahAzeUZFNoy54byO4qHRBg9ElHS+BZ9ThVoFeaCuBY8bVNst+6j3qoa563Oz3aVu8X2j85bL1UlgSkE4tZtb0oW7aXlH36ozpv2zTVwfyc1VqtVlsLBRMQ8LbmOP4eshgM0JEzQk0GLlWGlKEQmlPujnZGgKBzwsnQqkxJHBB4WlL2FJVXZeOzlKlI+amsVGi2hT/vUYt/Z1v4eQNLHCHbwUFTigr9GQ6yfTGoqc7ddIfuH0mi7F2o73Nlc+BBcVaLhlRlkXiklwD0CMQmY+bRte7xrVuuCw6IuvR1nfvbyehVPR5o4/qX6kPj6ePHgTDL67qxL8zA1wptk5yP2tQdJ3+jE3f7RQbYddJ9wKhMAg98uaNOdvDo6GgrcldASpDs678SYHa7zW2JWjjI36mXDI7T9m4CWz6j8egnN3qbpTZxO/2tdHMxGDg9PZ2UiAv/PLpg56VBW/X0wAevXAcIaNDStaptpfdn9bsrF1/K37fbJAfIPL0tOuPCTnW06HV3B+oDwQ2gR0i6hwvXVAayAx1A8LL7YGcZO2ZgXwBAVQ8Ckj76NadEHUBUjYFltx2RY0VpdI6NQt2ggSM4SCummadfd11LQKkDpIl+TU6+A17ucLg7gXvFaUhZDrcNqa4Utw1e7tSm+yyp/BR3emSdfBuqnCxBUBovtCUOBvQs9drLQj/iAJP3MOp2cCbdoy3VroKqerKtUMK1I2oDMifr9XrrD8GYP8cAy0ZRO3kQQP2Vbe7+vIgMiF6dPn8LWQwGzs/PJ9pEnc5ogEpG2oaro7uDFHzwsbGTw0/Up0dTbpg4p5UiWp/b1PdkNNkhPrBYDtaP9WE+/plIUvemBVjO0vDlyqf7mU4yxqQH3dF0YID9w/p3TvE5JAGtJaCAkQ8PHRqBgBT9dyCBY0b6mrbIdu2Y2loGin1V9XQ7agLFet7L659ZL+qB1lMwnaOj7bMZ/LAmb7cUYcqW6HjZji1wYDAymp6/2x+ChX1nBkbjrAMF1Asfu6q3Ozp3/Pzs+k3nmZguAj2Bh7u7uzo5Odl6zn2G+iOxrxpLSkeAuNsWyOcIirRokEDEQQ0ZE6XFsev676yK0tRzXi5vd7cpS8X9xkh2YgYkVJ5R5E1HWbV93CKRKAtete24E9pnhyj/NL/KAc95TFcmSYoUaOBYFtJD/I2dOIookhGmIXbjSWEbc96JA40Ax+vBdkxTB67k7lhYB1fShG4Tcn4u8f5NoGAOIDjKVzodpef3cnywLxWR+fa4BCI4BtzwcnzS4JLNc5CrNOUE3HhJvB8duCYwkKZIki55mxFosk4eIbqDcNDX6YGep56OdGMfxcvV1T056qpHSpz2g6xhF7g5EFC6Se8daCTdZD87MKPuJjCgvOXEtaNA9/EgH93r4sCcY9TvSwGW6sp2ciAs4XowMQO0M15Opp92gbnsAgAoO+0mEOVPSlAd1EVNCRxwUBP9JAfNhvDoXL9r5XS31YnoS+XzP9FwcVSrdFypfdvKXFpEmCo7nZAUxIEAUTLntJwVkNDJk15Kjr4zgEvah5IirH2RZBj9nb9/rfFnO3N8JAe+a7kp1O37+/snhwKRpUs6kgAa03SwmspF8J7KSZ1m+uk+OmQHTl4nHweJBdD44a4Kr6fu62SfQcAu4rpPkNX1r9pXdpPz43TcVeP1FvwtMckMRKSrPkVL4f1kg3RdOiGwkmwjbSn9kAPlquyAXTwA4DUfA5vNZst/EjQnJop+zgPO1P5JlurwzucMkPpQQeRcdeIgV5dW1RMDlIwhG2ykBF4mRumdEqnzVWZ2AMulzywzB4uuJRDQ1cnLwDxpTNm2CayojAQCzJf5S3GkXET8Pig6ZNn1gdfNowE3LikKfS4ZgZ4EgpIekUFxcOUOX+LAz9udRsE/u3gbKqpwPZCT9HfXb5YxldvBzcjgdW3t7ZfyVh24LoB6TNrWx18HMgQIXAe7wOMlSOck5yTpuj6PzqRQZO1lSEDCmTN/hs+6zXL9VBlp08kOePmo9wQDuqerV5q6pj/RvWlqgo7egzf/Xel4n3j7uSR77S+2L9Pe1d7u9N8Eilq94AIHOg1K1EhC+KP002eKU4HsvKptqrEzpgQCjN6IIEk/egeScu2MEtFdBzJYRncM3nZE1ClNb1c6LUfSaU7aByCNxQh98rcOEPCe5zLAXq85p+/GUqJ6sr0cNHr/8rmubLrXpx+6Z9gXbFe+++cU9YzSdbDDz2kMdREmxyzHC4VrVdzAMuLzf43zHQzdeGc5vP/0PtL9lyhJf9M9ZE18nZXa3sEAWQPmo/tpv5Le0W47QGV6/A8FMhMUps1V//RVrtesV9pp4DrgrDR1iiwun+U9Xt6RT0i2yf2Tj+lOdgUEO4MBfZbIIGiBlf4wwucJkxEi+nNFTPcqP3YelTkhVUZaXf6pjkmIPp2m9PwTaKnadgxEnyyPl+P4+HiKANOA8AHpyJllIDvBMqZ8R0BAz9PI+iCgs9wHw7oEFHhbJJ1wx8hrbH86PabH576mDsm4evS7FHwlYzUCLqn86f7UZhozyof10T1+jeONxnsEBOamJTrw5zrxtX30IyX1VwdkfQymwM53oJBd5J/MiT5nm2mhrcSdKK+7zeB4Ulpim1erx1MEuylZHw8sX2qzZL+7vpfukkHxg4wcGCdQ5U7dgXzno1LZR6zA18pOhw5V5cjHTyD0Q4gkHgVtNo/zJ2nO3yWhfF1PDemUVYq4fJB0Rs47gQrpBikZo6SUbCMOCo+6OqPmg9OZEUqisL3uzhokh0PxQeTIWIZqVIcfIe7YO1CQ+mAX5zCqI4EC+4ZgQt8ZIetZgoBkqKq2+6gDjIkZSvcpX6d+3dAlQOn5s1xJTxMQdWaDICCNq2SAR6Jy8J3Ceu2TdM5tVM7OIcupVdVW9E+nJUcsYVDCdKSfsuleXgZtHgSxjAIB/PdbjR2xQ64Lzj7SyXb9SkDA8aZ6UJ+ceeOY6ICAnu2AAPNm+g7QunFAQEEhkE7fR7IYDHjn0WhyD3UyIDQGaeBX9TSQxI1IKo/f745f15mnS3Kmc9SqAyQqF9FpigxTOUfggPlW1TRflpwMFdLr4e3vAzgpK9Nyao/Ozo2DO4ofLd6WycF3QGC0q6OqN8Q+heJgjA5ewsWkVU/nYGmcfKz4gE9GcJf2d73zxawemSRDyHtluOiAOJZT2bg4sIsIu3HO/H2c+1hLgQT7dd8AwS7ijpIvOjBfb5UYI0bIdIzJ1ui7rx9jWryPuqH/GNAfEOn/bRTJ82+JuV4g1dsZJOqul4N6SNDAtT66d7XaPnnRdSTZSU513d3dbe1yUP1pLyTORPvix28lO00T0Ok7IkoN4iiMf/HrRlifHanzd9JOKR03zHOGItWxqp4YPpapM/5zICaVxQcJJXUyDZenM2IhWHb9niJHrsBVvRO1ldCoO1LVQc8ng/ujhPqZXoktSGh/V0kGgWxPly77Im2z7erId3+mAw+JFfOoRnrgoJJjwR1Exz4pfR9rCUBU1ZbhS1GfnvXdFEvFnZ/Xnfrw0mQEBBJQp/2VJP1nf7IveHhOYg8SGNa5NbI3Wneml/4BV/olR3p7ezuVgVR/YqQ6ACBJAZeXKTFgafwm3WNU//DwULe3t9O5GR5sqdwEJYkVSQCIffY1IGExGBCVLxqHcybKnErGAqf35Fg6p7IkSk8RgIMKT8vT66L0rnzsYK+LlzNRYylCVJpefrVZymtJBJMGAIXto990AEhnTDw9Akb2RwJqzykdICAAcEnlH9XJoyU3pt5nbD8ZIH1WW3IMMZ+Ro/L7R6DOy6324OFhfq8zVszTbYKnvVo9nv/hY5zl5A4atl83prxuHEN6fmRI3THuElD8SKF+dZLGrmyM9C0BPabv/ea/6zn1iduI1Wo1/RGX0mA+ZBc5TdDNyW82m0kn0y4EOvwEIjvbST0kk9YFDN7OSa90TforNkO7Yzjtxe3vbBufGkj292sBAGUxGKDjEhA4OTnZigJJY4wOOkniTAD/xc3RuoTIl9MMND5Oh7nhmkP8rmiJHZByJkXgc127UoHp8D2PtINB4hFkaicfvC5Kgydm8X5/KW2P8hIwe05j2g3iDggsLavftyR6ZPpsNwcBCQiksTRXXjnctOi1i5KS8U8gIYH1qopldX0my0gGQuVhWanrrne+3sh1z9snpcO6e7s6K7JPsgRge0Scdj/RtlT1u7KoG12ANnJYLFPVUycr/XefQjDqJwM6CHCnmECpxMGOXp1D5zNqDwLWFOXree6C8XE4aiMvw666uMu9OzEDNAxcKEgEXfWoHOpIDjB/T8pGNOgO0Slo5cfvNHKJVu9QLp9zNKl0Ka4IqaPc+HuUwrT0kpGj0Mj5YEoK2F13oUHxiNXLm5Q+DRLvs3TPj5TEAjgIcEDgupecI9/9vlFd3QDSEHJMSWjMukW2yTnTINMZjNgB76sEBnzFuNfXmQhGR2QElJbsSccoMB1n8qqe7pBJTESqY1duBwH7Cgaqlhv7BAgULFU9gi+2sfdzB5g7XXcgInGg4NMIukfHT4sBklPlugFPaykQmCuvysCXT3uw7Tj3n+yub4lNZXFwt6SN9VsCQrvKTswAG8sNGCPwhNbVoUmhNpvN1oFAIzomNQKf0+c5Z+hGX8+SjkxKNDKic/klg8221Hffw8s02M6MqPSsAyGCtF3EgQF3fehat3XHB+gSB/k9ZeT0SUWqbmz7NH0wV48USaUy6Tffo+ygdG47ncpLNk3PEphzXHTMgMomSaCaQGYJG8J0mB5ZtrTl1cs0mgbswFK3ONHFDa8zA0uA9Y+QJWwA79W76qCXj121nUfaErcF1OsUEXs+Xhamy3Q8EBIAoH0WGOh2lnj9Ux0k6TycxMBSB9z5UveSbyBYcD/a6ZXbn84n/lMAQNkJDHhlpBha7UknyoHKgqtypAn1jKSLVkbCxkvINt3vToGIkNSsl+VrDAPBE9PqouaEEh09J+TrA8pBkX/vnLlLooK9Dk47ev2eGwykbUAEAg7WvsbpUejs5wABjVGKhjvDpjQEyhPNWvUIcpnfaFxR/zrgkiI6lo3gYylTldqPoEHjlOCCDttZgc55OvOjNhLoJTPwnLr7teL1dgckB9WBQ9plHxMEyB4oMS8CAS9L1TYDw0CSZdH4lLijlnRbFVVu1ssda7KpKR/qtY/XEXOXWNU0pl3S+POXg7d/Ag52BgOiO/wfyny+WAfliDWg8+cCESqJ0zJO21Q9XQXtFfeoput8fpcBdUffLU5R2hRXEF5zp+IDIxlJR4b6zDwckXLdxGr19P/ImbbXgw5Ez7HvGGF6lOGGJPUb6/SjxYGAv/w39qWDVh9s3ndu+Ag22acUj46Ydsf0uIOWHmtcsSwat1oVzSjc83QGILUVwQfbhuWjU6UkfUz9xXrqOaWZxlrH2HVAwD8z/QQIvgYM7ou4/fSgIQGprp90jdPDKQ+yWAQdnlZi5Fy3CSrIlFHXqrYXVNJxV9XEmrm+ui4RBJDWZz5VT9d6sU4e2DK4JAgYtbmXP9kmr/Oo35fIYjBAqkaO/v7+fmvFOQuYoioZq5OTkycLEB2FefSaHLIrsSvvCNG6cXMHmZw9313YSckZeLuk51L6yWlJ1GbHx8eTEXNAlYAGB6uje/1etR0pcdWxb3HRMyMQ8JyRlbdfAmauq84MpPJ3kS6NEQFpAoMso6dLQ0Dn6A6bgJbl1phITIiXjeIRCduQQIBTLGxHjUuybUyni9a9PWgcFXwQmDoIdZtBIMbrKpODGBpl9qXafl8ktR+vdb87O+C/8RrHu49nB8/yDbIV7J+RvayqrV0DamfqqnTA/YTefYqNaUtcd5mexNlgn+N3RtfblPk6e8U8HLSm55mO7nFWz32Wl+1rZDEYuLu7iw6SSJEOndQKFwmp809PTydDQidMZfBB6I2Y2AN1+Egh/L2qthSA6M3RZIoEZeAc1bkQYc4BAEew3R9AcVAkIJAGM6N9/p6QO8uhOnC3SGJu2EcjA/WjxJ3kknLwPjqlDgCkvme/KDJ3Q+rPJCPRgW1+ZjvTGJNV8DHAqKuri+upAysBe40B7qohgHG2ivm4bhDIuDNgO6l+GrM+5+3TJqovFzImwOWn8aX891V8zPm7MwO67jbPwYPbQ7f96ns6Qqbpuug668CbrEGy+wQdaYogldm3LBK4sl2cFWAbVuWzDCTu0Dt74c+7/vtum7Te7lsDgsVg4ObmZotmZIeLIajaRm5E4KogByinFvzlTkhpy6C4AWWUkxy+X3ejzRWqfiqUO2+Wyzu/czQ0XF26bCulReOrtuMgosPxBZsdM0ADmmh+idN2ifb1tnTD4u/PIaM+4WeCUZe56YAuH40VjR06N2cKujZaEmmpD92Reb/SwEgHu8hE4vquNPQ/JP4Pm/x/9s5QunNgPZlfB0w8L0VO3KXgYCD1rzMj+syTPZcCyB8pu4Lr5NiTExqJ29FkCzT29Z5Wzjsj5WAl6Q3ZH1+RL3smXWbAUvV0EWnqUwKBtBAwtQ3tbPpNQhvugZfbet0v8KLvzoB8D31cDAZ0alL657CHh4d45oAbIXa+7jk6OtpiE3wBiUtS6HQfFVZGzylUlUGnWgkI0KCqAz0SkwNmJ45QoJeT85Jd1OEDj0qhNBXRrNfr9pAgCelQRlNp0UsCTYzslJbuVf0JBhPd+lzSOdyErHdJr5NkdKXrcsZKh2XwNp3TL49sPB3ew/TYh0uAbgLVbqTSCvVOCHD4XGIrfHy47rEO3Vjyermh51hy2UcwUJUXCVLPu0CLYL1qWyeq8uLKrg1cTwkG1C+09dR7TjUlsKLr7F/aFgJgpuG7AJx5YLl4v/sf6j3bWEIb50FPYlnpLzR22FcMENU2BKcjMJD84q6yExh48+bNk8MT9Do7O3sSITi6YuOzY9yBuCFLFU6VTchfCItRrqNMrX/QedFkBZLR0GfR91WPaypoeF1xmA4jel2Ts3V2QMpBiovppnbmoJRwsKrefp9Hq8xHyuuDWiLd0LYfInpvjx8tXd7pOuvfGQNv17m8fSon0fM00lwo5/l75MVnE5jo6uiSjAwNkEfbTGMJSPcIkEyWxhM/q0wd6ORnspW6lw4pRWIsi7d/Kvc+igMCXnNwkOynAz4HqUsiUbU1HbvakjQ3bRWBpE8tsB5uT72/pZcEBD5VTWfr406sgnyaAwGP1lm2UTm7dlIZHZB3ba62SVMrzNv7/2tkZzAg5O6IS8pHNJMclAYnT5XyaYVUWf+enKDnmSIYCRVA0wMCAxwQzD9FKJzT8gWQPuBU97RimShUSsJ8HEl7RNmBpuS0yAikAeBtRQZIixVpaKTQ9/f305nhZBG6vnoOcf1w8YiUxoARSnKyXf3Y/wQCzMupTz3n4Mwdn4MClj0ZD0YkSRIj1OmfxKNBd/R6pz5wsZbE50k92icAUJqeLvOqqq1pOe9LySjgSONr38SdPoFAqg/tEh2U13EUhboj4zNVteXENpunOwoYTBGEpHz0Wd/JOhP0VT3dkSaRzU1HWrudoiNWHmRjVQ62OW1cYpdUtqXCcd+BsaS3/0QWgwH+qYIjMq64pGJ6hK5CS5ESPc3o3QEA75+rPB2br1itelQagYDb29spok1ou2pbKfRdiJjlYzuxLKMIkwaQKJp5kSFI0TvTpWIyyqrKe3WVN1eKy5g4e0IGRvet1+u6ubmZBhCnk2QMUn//CKERTFF2MoJ859anzhBQOqaAjotMUtXjAtYEBtx5q/+4iDOVQX3kFLlfow7S8HTfvT7UE3fKbtD5uy/4I3vC8eBrYVLauuZl8z6ZY3GYdqcf+yhzgEDXHZjTprkOpYV5Dmi7KQW+0/E6+CMY0TPsO3fUbluVPsvvII7+xv2O9NbHXdqKKCGY9TKyPN52qf1H0tn3EcDr8l4iOx1HLCEVxGsJxVApnVbU73xeFSPiS0bAFYD5Kb10EIueIaXNtQKurFw/kIR7XB09JoVNIEADRd+Vnm9pUV20cCtRtV3+ZBLccDNvbfl0hkfrKsSeODD58uXLBAaOjo6me9frdd3d3UXF/pHifeGR74iN8bITrCa0733JfGlIycr4XGjV0/l9PuORddK3FGWncUidGwEBr4sb1RSRcdw6o+GSAEqXZzfuXeaisaV6+dz6+7VCQNCBGwIltxkEBOy71eqR3XXn736A44i2rruHZU5AgH1KsEP2LgWkVdvnA5BtY5n0TpaUgOn+/v6JDZljBjjGyQIuZQvYd2yTOSCwiywGA8yUFI/+cpIUItEin0mvqj7iIAIbRQQUoTqWTShPacnx397eTq+7u7sttEcj6saNAID5elt556jcXJSYopeqxwUjUiC1+cnJyfQf3wnkeF+xbD7AfJGN+lRt5uwA24r3Kpq7urqa9EALMu/u7urk5GTrL0d/tHRAgIaB4oDW06JxGrW1AwzlJzBAR+x0ZdU26PadNxKnal2fVF8abYLWpMMjZoNzrh27l+hjgp7UXg5sU75sJy9/Am2eRnJCLANp4c6Z7LOwPWh33YmkACDpltpJ7UIQoDxchzjVozTcSRN0eKBI3SHgdQeotCksq6fPdiGzp3oxbZZT7UObnYC3A3P+RpaDQMADbH5OIMZZks4GUXYBCIvBABtIEaGiVP3vdJpP5PPpXfenecju3/sSHSNF8BcN35cvX6aI9fb2tm5uburm5ma65sBlLnpx49UZDr/uiqp73JD795OTkzo7O6vz8/M6OzubdnDQufkAdeClduD0jpRSDl75cLpAzMDNzc30ByJnZ2fT/40LDEgfbm5uJuBwe3v7ZHHpj5QEymikRoOJz7tB9QEtSUCSkf3R0dEE9tJcpIRgoptSY98rHxofH1e+vSk5bqXNtmJaTJ8RXwJVPqfr7cR6JLqazzpzwnQ6IKNnPOr1bbNVT/+MzcfQS5BkL6u2+7prR6/niB1KOkb95vNdJO9Bk+fvINDHiE9j0Nb52E7Bmj67o/W+J+h1J+wO3sew38/72E4Mrv103sSMdGOKsitTsNhCEyFxVTELn9D53HcqKQ1Q90rRr0cXjGY5GLTA7fr6+gkQ6FgBGmwCDM5tMl838F2dPZ9Rm5+cnExO9vz8vC4uLp6AAW8P9hfvId2v6F3tr7zk4Hm0LRVUv11cXNTl5WWdnZ3VarWqq6urCaxcXV1NgOD6+rpOTk720qCmCFC6o0Wefr0qn1Ip6RwfDRWjrlG7OJjwsuo7xxAdH/PzvGhMCTyWRMWd0+FY5Jh2FiFF5olN8Hr6sz7+9Jyn5cDa1yeM5CWBgZGQEfTtdwRjVXnKSNeVln5LDJhETs9teLLjzrh6hO5jIQWYbg+T46RPYHCktlFZpCecDlG7aWqZbZgAg7e9t+8ICBC8eZ8R6KRg52tkMRjwKYBkCJJ0RoOfO0qRjdApkMQNAs8LEMsg2lrRrb77bgantLrIh9EujZKDgaqnkZbySfQQ0xEVLyCglxwylV9CAMHphPV6PTnnz58/T+1LUMN+diMgdkJTFW/fvq23b9/WxcVFHR0d1cXFxQRACAhUhn0xqIwgkqFXW3o0nga5y+ge6oY+09CMHL47M79Hzt7rqfvdeHI3C9P08jId101PM9kBgpPu3iU2Qc9pkTKBewICqR/c2flunkRFe1u+BOkiYbep/J8Z1b8DrVVZRzr77iv+JW7DydowWpYQbHjULlvjeeu3xCC7g/Zzc/S78vFTQ+mc/YA6r5fnLWH5HQTQRnTl63T0a0GAZGcw4NG7GkaO140rB34X+XcNR2TXVdQVt+op4vNzBPQ9nbHvactgdJSmRymkYf2d9UrGhc6JaFHOV9MDitwTRbtarbambsggrNfrur6+rqraOg+AhtV3X9AQcE5VDMXbt2/r8vJyKi9pWbZbVaa6f4QknUyRaVWOKl0SyNN1d0b+HA0kQSMj9znGyMuXjHYX2bEcjMS8Tq7XHsl0ZUtj2tvD2yZFbSqHhHPBZBz8vkTH6p7Ubvxdz/HVjeF9lw4Q0JnRFm42mydrJvTq2CsPbEbSAYKqbTvrC5dp+wkMqKOsFyNq+qfksOnQ/URWpe3/w6HnfHpAwjHnesp1B2pXBwJqH5aPB+K5Xn9L/VwMBvyPGqRMWkymwUSFonQG12mcxDq4onWGgPezo7kK3k9P7Aw309dvrJs7SyFRggE5vy5qmhM6Zzr409PTJ9E2kTXXFugZ0mxUMFdOpu2om+yB7hFToPorP2/vh4eHOj8/37kNfoRwQDFaXvqsG6XRvR6FemSegICXh0ZUaXH7I8GxM09O79IJUmhwaagSU0YDlSJzN+reTimK97xYX7Y326nbacH0HJApXZaL0Z6X/SWJ62YK4DRNSPvhi01djyRJ11Pk6jad5fN7RsBD5enylD0ncOT6KB/nm81mKygiM6AyaYz6sdZp+sEBD8EmQSwDJQ/oqIMqm9ZepSPkv6XsxAx4Y2ohmWSz2UxOxAs6QqlEdWwsPXd0dLS1itnT070y5K7scnxEV44WXTSQNEAICJzOdwZBZfB96cyLToHK6wNBA8SpfzIDPqiIZunY1S501lU1zedz22L6UyQyQFwj4v3mLyLg5xC2Db9XbRuSqqfRIoXOdE4SqE1lctrSnXmKaFkeljPppRtzrgznePF20jOjXULSbY1PH9Ns3/RbAgfeN4mFIDhwh522XDI9tp23K9NgWV8iEJAksCp7JftIcKoxKrtT9RSUKS1fjKoXnZbEWUKl4SCQ943W09DmVz3+l4R0UWVylod66dMl7mDVTjw/h3rTAQF+93Hi9VT9qLfOZhMMdMzAt5CdmAHOwWtlvgu3GUq6aD8ZYncwjFzlmCWJXtRA9qi0m3uhdIqn39R5nOeRJAfokQkBgbeHBqSDBhp6d6xpxSnLqbSJqgUQTk9Pn2wTY5TvKH29Xk+ASoaAjJBHhF5vGpfnEjeMevdFgu5cO71IxiM960bPQaF00efx58pAIOnguAMFEvUfx5/rkC8UdgPH5/h8iqrdGI+AgDtw2oE0/kdAwNvan/XPbpu+RwT2o4WBTdU2ELy/v5/u8fpSR5I993SVtvqA4yqBAd1PW9wFFkpD99B2Jd3wstB3daAvgW6uPaBNp4N38O5tn3Tc7RBBgAexnCZwhu1byk5gwAccB7/fq0FcVU+MEQecr/j3yCgNxoToJSwbkVTqeI+o/d0VUw7NpwnobMkMCKUSTY4cy4hK68rMAZCcDBeoKX1NB1Q9sgJv3ryZ/l+CtDDbWIsvVTefc+ZL4g7puYVtl3RXgNONIA1ScnbU2bQgcC4yJrskGbUXjY+zaBLXZZ+PZTtwDLoh5hhgXdQWnU4n8MNnPNrqGABPM7XLCAikoMG/e3++FiAgSQyBDg/TNTk+3Us9rnqM1BmgScSouR2VsA849uhTqJPK3xfvpWCJf+Ljde6AotvTBAQSk5F8Gl/JJrLcPibIUiv65+J2XyuQxtS3ksVg4OTk5AmiUqFoQKUUHLRu4Jx6YzTF7y5Umq5RqOhEWQIeVAC9PGKnkXUw0L1Ufm+HpXVzo161TWFr7cP19fXWoPRV+lR4ls2Nt54Tk8P1CE7PKX9NIQhg8ACkqnoSSZ6cnEzKfnp6OkUhP1o6A+WS9CI5QkbUyWG440150/mNBnZy5BIHBG6gXbcdcNLIM8phGTmevZ3cwHOBFN/VXnopTRpKXfP2YJ2UJsf+3CK/VG4K+9sdRAoWXrKw7mp30eMCvh0Ycqq8c4JV/RQZ3xMQUF9xCkD97YzQaIzSjo7yUnk61sLHl9/jbeHjx+2v8k5rW3xhu5+KmwKtby07gYHUmHS+OnZ2vV5vHZfLxU0eIadIxik838aRIiw3Yr5S1BcFeZ4OAjqqVfklB8DO9898T+IDTCJlUVTOnQFy4HLsXi5N4+gaBywXIHK3wvn5+da6D65olZPX4NSWR96rKQi2t/TjudYMdBHnCNyxv2kIqJvO+HT6oucc8NEZKr0UeaSjp1kGLy/zZH27CEjG3I2OnAWdONPifcxb+sA/tRrZDqXH9ySu36OAoEsngSWllRyFA6rXIKqLB3RuW2VHNa45Nenv/vnoaHt3kbctmTc5fQ8a3abr3e2/xgansvi+Wm3/ORx/T4482enR+oXUtvzuQZ0cvMaWX+M6hx8FBKp2XEDIOU1HeaqIMwNClJJEa7NTnTVg2mzApBDqLE4T+ErRDul3zoCAxg2HFKxzNqxTiupG4g4oOWUNNg0utmmKdjhI9Z0R/sXFxbQDgehcQEQ6oL7VGoOjo8dDXEiVix3gXubnkJRv18/+8r2/NCwpvURXJgAsnfBIoqqeGFU9w3fPV/lQDzyKZp4pcvPyVj0u0FL/pfpJHCwoHRpiB/xp2sDLlQCMfqeD8bq6pHHqRjZ9fm1AIPURHTSdlz6LGXTqnk7YAzxngGQzq7Zp+m4spbInURlYNg88XP/4rI9vzyuBhARmfY2Y1zutXXO/xjb/USBAsjMYkDNw9CyQoD+nIe0kZ+GL3nyw0bkzXb0Tqep3PstoSwpM5U7RPD+PnIMrqPLjmoC5zvNIhNIZ+VQuDkZf3EXHr2fkmLVtkEadv+lkQx1FrPrpOeUrxsHZDI8u9sWIjhyft6tHPVwjoucVMdOIeRojsKe0u/Ikp+vOncJ+cOZCaTr44DM+vtywHR0dbQH9paCuM24jithlzhh6Wm6QvZ30jAsN/r7o7fcUD7gS48OxrMBKtkZ67k7YI2wHtWKLlG/X7+6cVTYCFdWBdpAsGm2S7DQDIY79uTby9qF9S/rNe7lrwdkBvghqRyD1e8nO/03Azxw4Uhg2CB0Rr6XGTwirMyJLjMecc+6YgUTXJ+PuQMRfiS7iMwlcVG2f58ByMNLW9ID/RwGNYtX2HD6dPSN45ckzA/SZ7IBARGJn5GwI1vyozuc0sBzInbEnyKJDd1aI9wrgShwIpLxGLFLnaJOTc0fv16rGB8H4otLOcXfi5UzsAh1JF0n5OEp1T/kKgOuelF4CP+lZTz9FgK9JunHAgMrBgB+Ok4CATw3rHge2nC7mu1P3VeP5f6anfNL/tcgeMV+lnZguB0S6N7UPI/o0FUaQ6tMAIybAA+UfITuDAUb7NF4+0HUPG4qKkYxecqojp99dc2fM/NzgusNP0XiHIhOL4eiOvyc2wMuSjJMGnA4T0n8C8D8K5BSkbEqfIEJTAf5vh47eWT7lq37XfzpQiQkG/LUPgCAxA0k/2N8dHU594RRY58SXRD4+djoGgM9Rj1XWRIN2koAHI64uep4bj3zWjSQNOMc20xwBGAc7yal3QK+zOXyGfeu/vVZxG8Ugj46N08CyCzqwSDbGgYGAstt9ja/N5unxwx6IpWlY9wsJkKg+1DmxA8yrm9ryMZB02tejUdfd/vFz8hP0F8/BClTtAAaqntLCCUV79E5Q4OewV207wA4IJIPbUTvsQHdwXcTesQRMo3MQXtcOIbJdlL7aZs6AK+/j4+OJERAY0IK/qpq2CjFtTicITDDqJyr1XQiky4+OjrZoQiJmGmcOTDq6kZHfF1nqSNUfAkJVT/VxSX2TLjFCYjojEODRThIvj8ru7JQDN+pSGjue/pLx4Pd5WqO24jh0QKf6s+wJCHRG18GABzuvSUZ1I3PgQR2DIgKDBATESIpZkG76VILek62dA3EEDR7pq/wp+PN0aKcT+5DYgO5EWwKA9Oqc/3OwAZSdwIB3lq4lJOODXijQjZ1LokyYP50dZYQwfXC7sfPnmKZHzfzsho9KwbYYdTLLl+aJvawOCAQG1uv11nqNRDlVbVNquk766ujoaFJm1ZWDnYuIWH4uROSiTbbVPopHQLzOvqYu+G8OaPV8EvUvxwEdJw0YgUDKM0kHeFk2iTvK1A4JcCRxZiAZvAQEfGyk6Jzl0G/JUSTnlgDXnCRQ8BrFAYEDLAcFyVknUCB7Irvkc/kcU3Tg/n1kF6ueLnR15y+HniJ2CQMbTWc5k+X66jsBlgCBpdH/CHB/b/kqMMAjK+lc3fG5EUnGJok3lF/3yL3q0bhyUReRbZdvAgVuaOjw/F4qiJSEeVHZvMw+N80oPhk7/ca/MhYYkOJqLz8VT4dYUGlZfim1npWis+4czGIZNpvNBC6oC0zz9vZ2FuF/bxmBMJZZbZOmhkhXOtUocVZM4tGKPidKMYFfGdkummI9OyfbjbkUpVFcV7z+3b3JuTuboutsE3cAHTjn8/5Php3NSX2zJOp8Lr39EZIYAoIC2lv2VQIHAv/39/eTXRCb6DsQaEs4peCApCr/wZmD+E6/ObbnGCraLYKB5NA5ZuecfxeYdZ/T9x8hq81rhb0HOchBDnKQgxxkkTz/+bAHOchBDnKQgxzkWeUABg5ykIMc5CAH+cnlAAYOcpCDHOQgB/nJ5QAGDnKQgxzkIAf5yeUABg5ykIMc5CAH+cnlAAYOcpCDHOQgB/nJ5QAGDnKQgxzkIAf5yeUABg5ykIMc5CAH+cnlAAYOcpCDHOQgB/nJ5f8D68d0UkX0yJQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6eElEQVR4nO2d6XIjObKsQZXWWnqZM2fe/wHvnzPdVZKo7f5oc+qjywNAUhtVxTCjZTITCQSAQIRHAIlcPTw8PLQDHehABzrQgQ70y9LRezNwoAMd6EAHOtCB3pcOYOBABzrQgQ50oF+cDmDgQAc60IEOdKBfnA5g4EAHOtCBDnSgX5wOYOBABzrQgQ50oF+cDmDgQAc60IEOdKBfnA5g4EAHOtCBDnSgX5wOYOBABzrQgQ50oF+cjmcTrlar1+TjzWi1Wm1+R0dH5U/19XrP7tGkMrzM1tom/3T/6OgRnzkfusdnE2863t/fl/yN6vjw8LB5nv91Xv34jLfXw8ND+3//7/+NG++F6du3b0/4cvI2qOS9SteTqU+fPm1+R0dH7fj4eHOP5yK1ZWtP+9BlR3R/f9/u7+/b7e3t5nh3d9fu7u4299R/VTu4rK1Wqw3fx8fH7eTkpJ2dnW1+5+fnm9/Z2Vn79OlTu7+/b3d3d+3m5qZdXV21q6urdnl52S4vL9vV1VW7vr5ut7e37fb2tj08PDzhz2WO/DrPPTlMz+yyvxrH7OXl5eLnn0s/i951ct1T6SKX9fTfn6t0dpKNkazMyk+vn15jX7/VarUo35m002DgZyc32LqmoxpT10bK1I+jX2ttYxCSwqfBoCEnuQFhGvLvoMTrdXd3t/l/f38f61+V7UKaeNg3GimmXp2TAU2Ak0BAxlXXPn369KSd7u7utsr2slp7lBcHOgkEVgBylM6VpYy3rhMoHB//o05ub2+3jnru7u6uVMg9kKa698Zerz56ZgbYp3RLy3wr2qU93pqq9p8da3SAeulS3kknJf1UpSNVcpHSzjxX8TOTZ+K94n+JbPyyYKBnqJMxnm3cWUNSPZeIRrvyDJXHrOdb3VP9BQLS9SX574OiGhnCCrzxGskHnKev5EnG34HC7MDX0WXg6OhoY3hF/l9KKXlEvTIrMOf1Oj4+3oCBh4eHzb2e7Oq+iMBz1F+pPpRN3uczqU0r8Nq79lbUG9P7MLZ6lPSnn4tSn4+M72xf9bz7ChCO0rwE7QIuSD2+duH5lwIDVND+3xW3I9JdvJFeOc6LqAIinlcyIlKINOZU/EzfAxXOD4FBBQhGkYN9oZ4CSSBgVuG4kaaxZ94EBa09ej6fPn1qrT324adPn7YiNF6W8qGxuL293aqD+k1pFG3ohdWrOiZZSePJr1NufOrk7u5uU3/3/keUAEGq2wgQuBFKcryvYGCU1nVX0hee1umtAEcPCFRylp6r8hgBzJRmpu6jPCv74XWY4W9pGUvppwcDPfSVAEDyaFprUbmMykxGvMdLIl9DkMqoiB7T0dHRtMAtTcN8XfHug1IdRUt6IID33MNIdasApoMCTh2kfiUgIDlY1TP0ynVfxjYZzrT+I9XF60Qg422s9QJar6D/3uYClOLRy+i1r7f/CMBUY3YGvO47sBUlw1Ldn7me0uziDM2m6+nLSocu7ZtKby8BW63NAahdaJe8KnnflX5aMDAa5G6AExDQL3kgvUEyAgOV8e+FjOkxVuVWi7Fae5xHnglLz4TOZui5wvnW1FNOvF6BqqTAeJ2ecco/lcNja9vrATwEf3x8vOGNUQGPFAkkuJxQ1plvRQQANzc3G/m7ublp19fXbb1eb8BBbzHriGYNwAxg8LQvaTjfmkZ1e+myXjKfEQDw/zNAYMbZYZsl3d6Tmed677vqwiXPPqecnxYMVMg//U+K24UvCUJPOCqvpif8VZ68dnd3V4aQ6fGNlK88syoPP9f/j0yO6nuegiuNlEcChin0rr6SkZY3rBX19LaVXm3voK61xykFlU3DTcCYyhQo8DypCF1GPYIhGbu9vd0Y/pubm035Nzc3bb1et/V63W5ubrbKcl6r/kn90vu/C+3qEb4l0SGp7n8ESvpwxvD31m+JfByO9KnSVNNIyflL5Y3q2QOas9Fl/9+Tg8M0QUE9j4sek3ttlXfn+YxQ4ozAi2bm7ymwHnr1dL37Psiqctzo6b+/+tWjfQEPyeP1+8nzSH2VlIen9bzSa4OcuqEXz3StPRre1P/qC73Sp6kHKjPOzeucESStMyC49HHBo3jRc+JD9xUJ0E8RA/EvPnTO9SipbVOf7GoYK5CX+nNfKIWll/L4HI/2tSg5SKPfLPmYrMqmrktRgQScl7Ql89qlzxKvo/RV+TP004GBngFfKmgpZFQZ0J6RSeW39hQE+KJFL8M71v/33qWnUEnAPQScogI9IJD4ceHfB0VURYlSGr9WzY+Tqj6uAJeUzO3t7ZaXL+PItld5VEgy6lonoGfT+oAUWSBx/t7r4q9F8m0I1oVvLui/1g3omMCx8k8RidS2fo2y5XKW5DAdST3F+d4gYVcg8J7UA3Q6cpz4eQLooqVGNslWcnhcb6X/S2XH+d+lD2eA7lKenH4qMNADAjomj4e/ngBWiqdKxzJby/sIVHsKtPb0ffHKMPP+TLtUgEB5JgNSRQQqz8UVQeLjLWlGNhItDeeN0njbMDLg6wEY8mdeq9V26N7lubXtvSZUB3/dsCLKJDdL0roE7iugTZO8zCTPx8fHW3W8vb3dAiECDUnhjoyhQIW3n57xNn+ucn4vSvzvI43GVdLDCQykPJKTxusjPipnS0f/USZ935VeVKmnj2dkbqaPX1IWfhowMKvsdwECFbIdGd+eN5TO03MUQNFLoEDRaN7WvVLy5ed+fx8V1uwAS/+TonGvNnk1rdVRHwIyGlU9nwyYXimUUU5euysvXedGQKm+FRA4Pj5up6en7eTkZOvH9Q6MCigfRTEeHh7XQnjbcMohgYHUBqOo3Uj+PhIAeC691jisnKMqnevDBAQSGNAzSWYTD15Oysv5S2CA0TkuwK7078gupDZJ6Zf0Vw90/ZKRgdnGo2DMhKbSs6ncXmfyOSnxXmTAPXUaBQonKRlsUW81eMqHeVUh5sRDUsSuqPcRHIwogZ5KDl6aKBNcHyAg4NsbcydDGV89oyiD+pjz9TLaLNdBgcoQADk9Pd3iwWXw4eFhK0/JhKZGxIPy9CmTUci2117JOFWAlc/N5P3WtA+gpQL86Tz91zUaruSQ8T+fGXnfFS9JvzJNZUCraF2lY2ecoV4/7otefHUwkDpw9jmnkRGq7lVeWw+J9vKcQYAucAQCEnYqb15nHgydOrnxJk/KN80HJ0po2O+no/Ld10jALM0YGP3fpa5pjUZK4zyxf30qgPIrWUqKTun8dUOCjJl68TsFAgUqm7KjcgQSUviefHBPBd98iW3R0yVpKmBEu+qmt6aeMXxNSoB+lL76P9K/FRjgcdagut5PUdeUv8qo3rhprUVdO8PjDDB4bx36oSIDzxkMFSDwH9O31u+gCrBU6SmUKUqQ8vcV11S6VJjJixoZf+aZ8uotSEy8pjCup3kPqkJ4M/xU4Ui/PsorAb10vUdu4Hk9ybAvzvPrXDzoU1FV+VTYAgd6jhsNac8D5kvwQXJAwLJcFkmVc7AEEMzSPoCGt+JhZDA97Wis9/StR0mTc7a03uS5tyAx8T6KPrXWl8WR/L12H87wX9HegoGZUN8MVWg0/fjMLuW6QaYSTAKapguYF71JenA6Lo2UMO+RsM4q30S7DuLXpCUovkc9oDXT9skLqhb/zfLD8xke/C0RERUaF0pRrv058u3pWU719UTWYbXajjJQYROw7Cr3FfXk4DnK9aXptcfV0jasgIJfr0BAb61AT5Y5/hIw9zLTerB03lp7Ao4r3menDJbQc52larpill4dDDyncWae3VUxV2jRlV1lMBNgqMpk2ElHekOzdHR0FPcQqEL3s5SiAqQkVNU15lEN1LemNKWxhHrejwO43n8+1wOkKo/rBNJzHl1K9fZXFZOhTn1PHpSWXx1knuKR1yXbafGrP8vnOcXAtSvefl7PVHeWl677s5Vc7AMQEL0mL6NoomjJWO4BAl5fkm+VLoEQd7yYluO6ateK72qdjJ5Z2k8voSepf3fJZ28jA7O0xOj3ogIJabqgVB3WUyIz6La19gQYUCH6wOEOhAmlUmArdOw08ry8bdJ/b4sZRfsWlF6z0/8Z8r7qeUI9hcc5d/98MRfiVQZT+XF9QJJh8cxzN+apjn7OyJRC/3pjQAsK0zoGpfOdMhN4rAAQowGUzbSoNRkBB3A9WdwXOR1R4vulQfauefaAcs/D9rHivFRleXRgptwqb49++R4fnhcp6d8eKBjpzES7AoWlsvzhwUDlsfkxhaRckbqAJGCg84qXxMeSulTkipFCmOZ801wcr6s8f45AgkJeKdcZFJy8sPegCshUht4VTu9XeefMl6BARpPv8AsMcN68+lCR86p7rW2/heJrEvx1KbYJ5alqMxG3xfYoFwEBP5bUMxj6zzqoHr5pEY89z64nmzMRgtF4f296aSAg8rE9KqdnlCvDX83lV3ww3xkg4DykfNPRf17PFBGo2qeyGS6Xr9WPS+nDg4HWakCw5KdnZgbCbOelvORhUZm29vT9VQciDPcmSgvUZHgcEHg9HFQwz97agV1Cse9B4q8y9KIZYDOikWwQlDkoUPkEfLrmCpAL91yOe3OaLmciBwUJ3Mi4y8Df3NyURlgyxwgIv9GgaQG2ifOi8ZK+3ujeXHXdf2nB7Qy4f28Zbu1l5HNJWTz69dGzIxA9m3cC6j1QOcrTDX0lL/rfq6OoN95G+cxQ0gFLnpulnwIM9CgJShLMavFWpThnB4WI3ho9HpXteTo/KZTVK5Po2yMDzpOEeRePaAkQeC+FmkJ+I37c86zu70LsE72mJ+PucuIeiMuwz4m6UZcBJ5jktwKqV0kTMT/38vh9BNZP97ixUFKeLpd81ZDjhKCg58mlez0QW0UY9sVreyt6yfr2AEEVGUjGv8ffLBCo5EFjwp2vXl0SuKzazR3CXanK3+voZS0p96cHA6JeVMAV6dKOmw35UAG39hjy5fy/e+t6hh+nSQDB6+oL0liep/U8XNDJxwhF74PxTzTq26r//Tw9V5VXGRiSjCXXARCIpCkgT8v0NPg86hsBvhiQbdOrh4MJyquAgNeLU3AVEHC5Z5o0FeZ8JcXeU/w9mU2gcZ9k+LVpBAR6hjoB1REAqNYMuIHz+15m7z7z6IFFXeOReVRtw3U+zNv5eGk5WlrfGfrpwMAIWc7c8zRs3KUN3SvH52g9RM9rUuA6d2Pthl/Haj+DkQFIirc6r4zKvijS5wIUlwPPO6Hz1tqWx+Gr+pk3gRvD51SaDiDdU6HxpAevnxvLxCuJC/Zk/H3uXnwnIMAoQRoDlBsuVEzplCYZ+vS2xAwgYN77KretZaP7Hvw9Bwj0QEBvrY2P22SYHQz08qIO9zIqB6HXBtSTSUe4rXiOw9njq5duSRk/HRgQzYKC2bySdzgaFKLeoq/Wtj9FqzRujHtAwPnx0PHoTQLykRRjT4mOUPG+UOo/v+9AKXkoftS9qt5uVLWwLkV3UhRAeTivNJJKXxlGJ8oJryUQqOv63oC+bcApAJH+J8PAuvj6F65joMJ2o87nPR8HCz1AoLol2lf5HdFzQcKuOnImIjCKBsw4KInPUWSA6Sq9NiqjKpdjNsnojNP4XsCuop8CDLhQufeShNKJyqnyft2j05F5zhpelqu0aQ8Bkc8fuxBVi76qMpNyTaDD24FlVx6VX38uGHsu7QJWfKAmIDCD8r0dNQ/uc/leti/0Y39VockKiOqa8r2/v9/sEMg5ecqB10H3CRoqb11p/ZrKd0qgwAFDZQR6IG8kp+lele4j0Fsal+QUVQCgtadTlCMjPnLmZspo7VGvp/Gs+0vqWl0jkO/ZmEqv7AP9FGCAVHVGD5lWVHkUSairOdJR3r1VqEzr5yNPN93js+5Fevh45E2NgMFHIjfyfk3E/z2Dkowy07l3yz35ezyK3EDy6MZ3tXpcuU9vhvkKnPiP5XH6ItVZ16r1LBwnrCunCNJ0gS8aHL0NUclsAvQ/E70HCOD/UUTA08zkPVtOelOK1DPUPRDp90f8pTqnflkKAN7KmfrpwIAoCUsFBGYWJrkilPDJaLAchkpJBAAuED0FRwWbwrgqiyHp1Wq1eQXMjRyNv39e1hW687bEy54dSK9NuyjKXiTA83Qj5sCx8px9Xp/58T77hXInD9956xlkGvWkILnugHVxRcfPGzNaQF5vb2/bzc3Nk5C+b03swIOyWoHlBLRmxm7qP893Vw/yPem5HqY7OZ53+j8CAP5mSTKWzoPnn8rhNa6JSkQZ53Np7cySKEHlFCY+mX5XcNDrn5eiDw0GRo2ztPHcUFbKxL1IXXPhTEpa6XwHwaVKp0rnBiwZEJ37jnRVFID1mBFuphtd2zdKACAZCK8326cauN7HLmcOEnlUv9E4SnaqNwMYQSAQ8LC8rvniRU8rAMCdFE9OTja7Ear8ZMRpILyc1toT79+fZURB7VRFCbxPfjbqGedendP9Sl57Zeg4+yM5UE73Zspp7XFxdOV8tbYt49KHyoPXEoAftUUPELheTzqFde7pGr//WvRhwUBPeKtzUjL0Pa8iDSIqKX7aVR4T85RRlifk7/azDBoL5y3xkgw1hT4tQOPagAr8UPjYjj2h7CmWfQED3l66loBOz4MRVQN9hocEBNxzprFXeR4F6pXvQMCNrctDOnc5FwigrLM+lCsvy2Xe5bNa9Kh6paic9+WB+sbfry3N1/9XBjsBAieXbf9xLQAjDA4G/I2q1toTWfYjdWRlE3ptIBn0qQjWpdItSpP0EctPDoLz8RL0ocDAqOKV4FXPJUTtStoFIxk2CaR7SsqXSp159XjrrSWYHdAJJLiXWa26TnX2smYNoKPg96BUtiuhhNKVLrU58+kZ4p6yrPhxI1kpdY8UVPc5XeSy+/DwsNkVs7W2dc7NhAR2T05OtsBvWgdQ1atnHHpjgsaA6Txtbxz/yiChNz6T3CZd53KT2n9WzntG0IEAASfBgMCof6uDlKaufAfY3rTViLweCRhUbTsrj710CVTsSh8GDMwYG/5PCHV07Cn7qlwK6/HxcTs9PW0nJydb72A/PDxs5k9Xq1W7vb3dig7wXe3kKSVF5gMz3UttlsqpogJsF8/TDeAI3IzuvSY9Z5DMAh6/nzyERA6UkjddlSXZ8Wd7ZfEew6sPD4/rYBje1CuFkm+PghEQ6FnferhaSS7e014FiQho0hTB6H/v+mxEZ9/pJYzCKH//P/ql50ge4VH/Uu74v7W2kUXJnxwy8uURqru7u3Z7e7t1fnt7u9khM0UKUl29DK+rA4HX7pOXog8DBmYH62sMaFfYfk6Fd3x83M7OzjaAQIK3Xq83aWc9lVnl5jy0ll+zYT5uQCqeqnZ3IFB5aJ5+32lGflJEIdV/pr5a5Mn+0rM0kglweR9XoUQ+Q2NKT8ojIclAf/r0aRP5cmWs/BSCTXXxVd89kJSo54ke6JF6jkK6trT9ZgBA8oqrsZKAc5p+5bWjo6N2enq6kUldZ32ke1vb/q7Gzc3NBgjopzJ1LkDAMVDJmo+t6pccrBQleAlduQu4/TBgoKLK++oZpyR4vFetxnZlTNQpZHpyctLOzs7a2dnZZp725uamtdY24ahZtDxbf683lW7y9pJg9urJvKvrM/z+DErbB9lLepRUJvSaW2tbu/+11p4ACD2fztN/RRUqBeevG6ZogIDBycnJlmxoTCiPStH7Fw+rRYR6Xul9IWEyPEupB5x/RZox2P5zgFmBNz/68y5rZ2dnWwD006dP7fT0dBOJPT09Ld/i8rU3itDqt16v2/X19RZP2lhL48/1YWX8WR+flmOaGcOf0vaoN/Zn6UOAgZGxcWPYM7bJ0OmciolKbRRuVJrVarUR0PPz83Z8/E/zXl9ft/v7+w0iTWHTqk49wfHn6H15GT4VwTp4Pfg/CX5qg4r/faFdjHZC7VU6LuTbZTB6dKYXrUlRH0/rXr0raF9slSIFykfXGRUQ6NU520EyfnNzs2XA6XVxjKbpMq/bS9GSqYNflSp96vd4Lb22XY23ZDipswgCTk5O2vn5eTs7O9sY/pOTk3ZyctJOT08317lugCSZ5Kuu6/V6AwIuLy83UQeBgtbaZjoh6czUNl42p/AqsDoCBW8tkx8CDLQ2Dnf1OkbkRs/zoWLiM5XX7PNaEs6Li4t2cXGxAQOr1ard3NxsrSNwfnTsCV9PIF25V21wdHS0tfNdAgCjqYJdveH3Vrhu3GfBoj/v6Zhv1Z69uj88PGwWNvGZtKiJhpN88hknV9Qeau2BSJUh+U5rBsSTFGhr24tTFZ5VSNblLy3cqhZGVu0386ue5Zh5bxl9bxoZft5LIMCjTQ4uU0SAn7lWdFUg4OLion358qWdn5+38/PzDQgVGOAarZ7RJRi4vr5uV1dX7erqaiP/5C1Fint6oXo2UVoP9ppytyTvDwEGet68h2GqzkrKmY3EcLp7Ku4dq1wCAQmphFZek4TQvXTmoXCU7jlIcK9z1Lm99QK9hVozAGTGoO4zLQm7pUiM17sazEsiBMqD/SwFlF4/dWBG/lwZ8Voy5JpvpSLns1LWUs5czMUNj25ubrbAiIMmHV3ROrheAgKYj7enlzvz7Gsr5n2nyuFKnrwf/Vp61vN0HaqfjPyXL1/aly9f2m+//bZxsKRXOU3ANStuByRTAtwCA5eXl+3q6urJFJfX08GrqNKVlGfmwwhBek7PjKIFI3qO7H4IMNBaX1BHv+p5EufZBQT8WwEpXOubsPgKV1c2lQdUvVutcmZfd3muce4p0ZmIgBsB0pJXdt6Cknfv91MkIN0jWFvKw8irTyubOefPOohc7n2PAIX86RmlsgUEpIylPAUgpGTTq7OsF4GtjonfGQCQxkVPyS6hAxDo61o3+pUj1nPOCAL4Jtbx8fHGkVJE4Nu3b+33339vX79+bRcXF5tIgC8cdCfNDbHk8+bmZpOHInEy+K2N193MjHHqk6qN3lLOZm3ChwADXpn0fwYQeHoKIcOl8ub12gnDnVW5FG6WxxBoJQDuFaXOS9MXIyK4IXmUxPPrAYFeHUb57KuirermnusoSsD8dBzVmSDAQ6ophN6L+iSF3FrbKFxGsbgwi0DGV09rrYAUNCMJrT1u6qJFss531QYVyCH51EiPUuQv3aueS9efC6w/IlUGPTlW6Xqlb/0+HSnqYEVXLy4u2ufPn9u3b9/ab7/91n777bdNZIoLCdPaKOpj6kBNxSmNgOyXL1+29htIwLu1px+Sk5z1dEeq+75GoPYeDMwI1hIA4MIopaj5KEUEtNBEoCB5MhQ6XXOlmuZISZySSMgxKeikqEbIvkeVshyFrFywE+9Vfh+Bkvevc0+Xfr37HiFiP/NZ91i4gl5U9TcVI5Wnz/+rHMqoezdcsEVlqm8PsG1SRIA8cSpstVo9eZNA9UznnqYCtOSF92ZkkGl/dkCQ5GiJjvVnmBd1pF9LkSpND5yfn7fPnz+3r1+/bqIDigww4lo5TfzxzRPqakYLNH1Qbc8uIFE5Y5Vs+RhKgID0XP3YA7YztPdggLSrkCa0S6V4cXHRvn792s7PzzdggItMBApae7qwiXlLoWpzISFPCVo1FeBrE1hXlZPWMHibMMRKhZ3IjdaMB5uEl9eSAeT19wIDL1lu1Q49EOD/9ZqgZKLy9h0I9rwg9jVlnhEB7hPAKBb54quyrW175wzNrlaP72GzfI9ksP4uxwQBnJZLSpf5Vx5+rx+WENvyowHYJbQLEBhNE4x+NNIepTo9PW2fP3/e/L58+dK+fv3avn792r59+9bOzs6e6BvvawcDPu308PCwKff29nZr0Td3IqQsM3/ZAdetydGrgAB1vtKxH95L5vYaDCQFOQsCUlq/rjmqr1+/bualtFXl5eVl+/79e/v+/Xv78ePH5vVAKqWETm9vb9v19fUGZeq/AEGaamitPfmELT3BXnu09hhe5kKehNiZ5wgIzAhkxU8FNN5zzcCuXl6KDlQeQGWMWtueLpJnTEPIMhJ5BCnNrRMAUO65OItTBiqPvJEn5ckFhh4JY9341oCHXakEub+Ajr5gMilWnrv35umWgt2qrJ+NesZmFgjsYvz5rO8hwNcHtVZAIEC/z58/b6ICLq98u0ZEr17/adgJSBSRODs728iuyxWf5SuySVZTu7I9lF9PR78ULclvb8GAK+5k1FM6T8sfQ1Oal/r27Vv7888/27///e/2+++/t+Pj43Z7e9u+f//e/u///m9jpGXYhQxdmXKl6sPDw2bDIe545YqOnv5zwkYOdHzaotdWI3Tbe3aGdlXIr0HJiM8+10ubIiQJGCRPpbX6dSMRwR6v0VAnRc5XtrjoigpJMnp9fb2RUcqQxkP61LLGw/X19VYk7erqamt3N4+K+aZBXnePiHhbcRwx/VI5e295fGtKxkf/XwoI+OI9BwSMyGpKQEDg7OxsExH4/Pnz5u0BrlFx4ElvvrXaMUoAQuk0Lk5PT7fk1SMEIslcGvNqQ3ccCB7clnl6f075z/Tvc2R6L8GAGzcdk9D6ecqLAsnXpAQE/vOf/7T//Oc/7V//+lc7Pj5uNzc37a+//toIYmuPRn+9Xj9RigIK6/W6rVb/7CnAuVhtR0zlyHeye23gHpQvpnJPsRrwCSlX3tVsX/TKqZD5vlLP4M+AhioikPLqTQuwnZSORpOrp6uNVpK8M7wveRWIJWAV/wzhHx8fb97J1r3W/gEDV1dX7cePH5vf5eXlBlgkpUri1EBrT9+sSdGBnjGogILn8atQMip+X0cfzzOAgAY3hea1Wp9O2NHR0ZO1ARcXFxEQcOM2Rpk8ApX4be1pxI3ywS+BcmHt6enpVlkED0m23Fj3ACkBAfvHgYIDgl1p6fN7CQZGlDqe16v0vmhQkYE//vij/etf/9qAgfV6vdkjYL1et6urq81OVfzIkPIW6e2D1rYVm4eeep2Uwkg98nQSYBfSynNKgKASZK9vjxLY2EdFPPL6R2mqe17fpEj1nE8diXw+Xvn2iIqQr7sqSkAF55sBCQw4EHXlK36YB3d2W6/Xm2kx57ky0Lrm6wZS1GQGVFZKdYmn9TNQAorV/ypCUMluAgGr1WprLwoBUN9DQJFZTQEIDHC/FkWxtA6rtfZEdt3zTlNuAtQeRRKg5p4bDgQcAJB690Q9J8uNf5X+rWR1r8FAhVKXPO9Cy+2CuUhFG1ycnJxsNlC5vr5u379/39pEiK8aurHjnKuv0uY9kqNED0d5BGKkCCVYlceV0G0CB6N25ZHPfhQQkGjG6LuB8WtVfStFmxRMKpv3Km/XFYunoZxKHqu3Xar0/EaCnkt7vvvqbE5xuFJOXlUl57PgdUQv4XntAy2JZlVAwHXrTHQgRQT4topHA3xuXkDg27dvm+iANhDiNy/oXFEGfQ2OeHFHiOdpfAqonJ6ePokwud4k+KCMeuTLdYTLmY/TFMF5iajAElvZ2h6CgSSwsxGAXp5CgfyYkIenFE5drVZP9sL2d1qTApNAMPwpg+6Cw/QiV5g8H80raxAond/zyMAsCEjodRf6KKAgeZG8V7VFr308MkU5ohJLdH9/v1GIab2B8+rekXijokqhdcplqoenU14JLPhaASpsjh9GASrjPvLGlsrUrjK477K71Ij0gMDsjyAgGX/f6VJ6VhtYffv2rX379m1rSoALXDlN5sDT5UXj0sdWpa91399s8IWvPl5ae2r8fRtulpOiFA5SEp/eV0vkb1dZfXcwMFKg6VrlmaZ0qcMllAQBVNL+jM/N+oIShqE0LcBwvyvSag41rQmoPCcdU7iJ0xheZvIqn+NhVbTvyvO1qJJZnnNedRTpSW+HJA+OR/W/+l3PUJlR6fmcKNOKKgPcAwb8drzXg8/MtEMqi9cO9A+NIgXJqaqAQLqWogFpi2uec48Kj8gqMqDXulvb7lPO8XMRNmVVPHldNQYSgGcalXl3d7fhmbLM9TU92aNBdx1eRSvc0HuU4C3l+93BgFNScJWQ8pjycfRKIODfECAC5QYTiigI8ZLYmRImGuOkfNNiFPLsyJKCP6Kk+JlXBQh2JTcKvZ+n3weqBnNFI5lL6SmH1XMeHdJ/f42P4dD0uVYqkRQhIliQHNKD59SS8qCsuoeksGmKdnFMUDn22sH59Ho5VV7Ua9Br5bsrudEYpfV0M45Wkt8UEaDx968K+mZCigoICGiKlgbYdWT6wFVrj/pXRt/ljGNAUQM3wMn5UzlaN6aIwfn5eWvt6eveGqO+Fw0jbR4B8H5J15Oz95r0bmAgCfAMEOg9l66rszxcpfkpPas5Twmd3hqg0FSvhhEIOC+OLlO4lfwyfxeqNBCUTmUnz9/LSh4e71Vt6sAlXf8oQGBE7kmMaKRIfaV11b7JaDJ06hEsPZfyaG17caKUoUcE0poBro0haOC2wxwzfEvGIw+sU9XWTmn+d0Rs/7dSoG9BVT12AShudEaO1pKIAPcM8E8Py/nihkL6KSqQppdcL9PA9uqfIk1Jf6U8uL5M0QKtKej1g+qQ9Dxlks+xLh4R4LWk12dB8yy9Cxh4KSBQCbYLrdCpkOn5+fkGrerVlfv7xxWrek1QrwNKCJU/9xDwV/sYDdCxAgOJksJ0UJDQLdP25paZnuh5ifGrgERvKuIj0C58VnJaKdkKRIkIFiRrvlsbo1RUFi4b3qcukyNASkMsICBA0do2GKjkmbJGcMN77mkRWAuMVOBJ9wkeKuW6hJaCwbegXepRGb1Kr1KHJp1KMEonixFXfl+AUVhtKERAcH5+viUPigQwSutrXJSWYyDJiY8NH1sss9osi2UdHx9vtb/aQXZD/5UX+XBd7YBGZVSRDdYn9Sfrsiu9ORh4iQHmwsvzJLz8Mb2QqF4fVEMqMsDXozy/u7u7J0qttaeG2+dmPYzq9aqU6kgQliivBCQScl1CvejAR6GRofa01YBMPyouGrlReSkfB58V+JL8eYTG5bLyeMSjNtOSfF5fX2/K1tjhWBGlccIxWEXZCGak4F3Z98CWG8BdgAB52QfycbrkmZRHSpvaz6Na/o0LRlz5poDvIaAPD/GanLLVarWZj/c1J2k9C/lNkTLqVzfqCeyk8lwG5FQyH0YQBAoUHdCR48/lN/Vn6t+Z/q7SLJH9NwMDvUGVPKcKuVbPV8/xxzkoef5XV1dbiwiF7FxBEhXr3F/fc2NCZU+vzI2lP+f1rYzqLoqqMvqcd6uoJ6Qzxn/fgUEKzc3KXu/H/CUnSQ48nE5Pxr/SVsmITwukKQWV5UBBZene0dHRk2kB3w1O4+j6+noztUZPXVE0r1cy2spTzyYgIHAh/uTxjSIDqvuu9N6y+1bApCfH3JZa0arVavXk0+1cS+C7DHLqgPsI0Dv3qadqPwHqYrYTQYUDiQQGuFcGpyQYzVXZiiS3tu0gsh20+Rzl0KeRk71KkaxZ2V0CEit6MzBQCfMu15IBTc8lpcm5T26Qouu+YIs7uFHYhf4oaO4Z0TMjn6ltyPNMp1ZekK+qdUBThVyZvjL6s8rI6/veinSWHK2/pPKlcfO9I1xuZERbyx9ece9avHqkga+0kqgs9Z/1T/+lzFg2x5JPF2j8UN6cb+Yv/gnCCQrULil8SkqOxUj+9lk+X0IWR45Y0iXJ4KZIK+WU5VQLDlkOjXW1T0WSYc/XwaTkO3n6/txqtdrILcsWINY56yUQpDwIkpwqG5D0vF9bYuCryN4S2pu3CSpDPjMIPF16lvP2RJ+OBlO+PggkAK58R7y+xICuvPrUfq/Bh8jDuR4Z2GcFW5GHIUnVdV2bldUKaLkSSGVX/Ph9j2q5EVV5SqP7rD89LH6zQB9pYXQh7Qgn3ui1UWEmIKvzBG68vY6OHvfyWNL+S2mfpgpekiqdyWmo3lSrG/vWsmyn6BdfvW6tbYyuokvunZMYaXLyqFeSS+ed5bstEEBgxKm1p1vAU8ZdZh3sM8rlP49MLqFdnyPtDRhobbmRGkUCXDgcCEjw9FVBfXqYSoroj4u5GBl4Tj17ir83NeCDt7W517ZSmRUlDzHxNxLElxDUj0apjTkVQHLPl8bWDXuKunholOUoHTfBGskswUEVPVA6ggUCjOTRuhKuFsumtnOF7EcHoxW5LM7I5UeU3WqM95yuKiLAnzxjn7YSEWC67pVxV7/T8+fULddreYhfPFNG0xjwdQAuvxxnjBSrXK1h0JFtonwEjDjuWH9FmgVgEgjo9d9by92rg4HnomqiJc+r58m5gKiD9d0Bfmnt9PS0rdfrdnp6urWHuwYG58Q4MHyqIJXv1AvVp4FaCURC5xSwUQgqldlT5Kn9HSQk7zYZkX2lqk9mwsw9j98NVfK+RVxT4IsEdY2L8pLx9wVUrbVFwJXlipfkuTAE6vsJzACBFCVI0wAe2WBUYAYAkD6iYSct5b+KvoxAQJqW4nRBMmiUOckEPXw5WzKy6lMZY375tefRKzrlQDVFBHyqQTzTW5cjKDBA40651l4IjAooT+1JkMpWXdMYTKCgihK8NkDYq8iAkwMBD2N6QyZD6KGpo6OjzcJBGvbT09OtRU+tPXpTHCh6rUvI8DnGzp+hEq7S+PM9IFAZhhEocKqAQU8wk5L+CIDAKYGgXtqKElhdykdv3YGDgtaehiwrQOAeOj2YytgymuFGwEEIwU0FKFOomXlUYGtEI1D83H75SNSLFiRQwAXTHg3glEEFCNwJkxxwIaruCwjwP2VPsiM+ROJPad0IV+sOqGt9ulhTEwlMJxD18PCwFTH2aIqAgrd16oPkkI0AQXLoqrQ9elUwMFKijlqrY/Us07kwpwYiQl2v11s7C0o4b29vN6+Q6BVDR6js+CXKxBVfVVfer4xq8rB4359JQIBlU/AcTFUCWQkh894H5TrDQ09RjvJe2g4O1hKlEHpVflU/KTDm1cvX68EQbVWug4C0GDItFnQimKEx6d3jzyMwVZuk6/sgo29FVVTAIwNpoSCnCdLaApFPCeiNFEUEGF2QMabhTq8TiieR+piR3NbaFghI8kkedU8RAb4N49E45U3ZZXSObehTKGxTyicj0A4SKgc49edL0YuDgVnm3Ai6d1vl0/PUEuKi4m1tW1AlAFdXV+379+/t4eGhXV5eboEBfbP98vKyXV1dbS1woYD5UWU5L8nDqYCAe2jedumd7RQuTu+aVwq+ohmUmYQ2RW72kUZtMjJmIgeovLakfM6J6j/nHtnfNJq9oyhFApx8PPK6Rx/oBbo3xXQurw56GfrnPDPnlVP418cVx4x7WyyP6dP1j0hpvPm1ERBwUMAPCDFaQBnxNQIEA+v1eiMjfL61bX3shpjAklO1miaj4W2tbZXPYwKKTCud7usUPK3I1wAI5FDO1KZcX9YDYuyfJTKYZHtpHps2XvwECiRDSxR9LxKwRIEmQU4IN90TUSDSfOzNzU27urra/K6vr+OCKSca5ZQmKUxvHxc6UW+tgPJ2w+we04zxq5TpDCjoKeJ9olm+KoSenq/kOSH/3hqSlL/nQdCna721AVXUzKkCEAlcu9ee8litVpsFVTIevhbAgQ0Nvh+rqEBVp10V5M9Cyei4/qxAQaVrPI/kiAnEifi+fQJ9yWhT3gUoJEsJVHq5vQhTApeUK+WpCAcjEqp3kju2JYGLyyvbz8GE61DmXelVPudpR7QTGHiOYq8AQAIClfHpCWQKc61Wq605L36aWJ3Ad0opqIweKDKgbYopOK3VkYA0lypKc6v6n/JM7Zi8gUQ98JLS8pjKHhlFf2YfAcESIDsTFUj9QqXKtImolCseHODpnApM15y/Sp5GstHzrtPiQZJHMlhPPutjJN1L+afIQO//r0rJI60iAilC4CFw6lZ67tqXRelaeyqf6jO+08/IENO09s+eFpqe8B/rRvKIqL9RwwhGBTDJD9cmeATWAURqZwf/ye758zoXubP2kvSsaYJdIwL8nxokpevl543NhRu+8EUfndB3CdLcVWtPF5bozQOl4edZZymBBfFPhdlT2kspRTB6Br66n6j3jCNUT7+P5F7IDMDhefpxkRU9Kyoofxdfx9l1A1VdeKz47kUUZsGexkECFKqrPDpRAghV2SlNKofl8Vr6XynTjwwcUh+NnK8EDCqQQL3qoED6VPqVX4PlB+FoTLlYMBlhGldGAxxk67xyOBxccEqLx8SD5+NevUcZeN/bnbwKEFTrBiijLtOjqMCutBMYSIZlCTDoCeSS5z2vNNeVfkSu/Hyxfy+br7soGpCEt0eVovM2JAAgKPB6k5YaiwoU9IRoZASqdEuB4mvSrvXr5TcCAj5H6HOlfJbRpdbaEwCRnkvesROVamv1twCqKa3RWgOmS5EvKjryo/8CBJwqoPekabtEleHrKc0lIPejAILkPY7SJNny6YBq+lK6lfpTHyriuV7TduCpX1oHkqZ9JFN03Jin79RJoCCeaVB9SmpWlycblUCLR0DEC9v24eGhjBB4OZVMvwa96ALCngGYEdpevp6PzisgQBSr1wYloNxemA3PsNHDw+N3tPnKSe/rgz6AqGSl1DyUmsJKCUBQ0L0NWHZS4HwbQmUmoZ7pGw4uPlul4/99AQei1I7V/+r5ERBorT0Jq7a2vdLf5UjPpDajV1J5MKRqDp/56diLRlX3GeFIZfcAawJG/p/tNQsMZpXmRzL6z6XkPLm8+tEXC/qbBYqw8ifdKp3LMLpHj3jd9SqBgPSnT7WlKEEC4q6vPO8k164bfDrCQTPXHSQww7wqcOY/15+vDQpe/G2CGY9whISqZ/xIpOqCW0UE+N/nsxi24rkDgWqDlVEUoDpnHpWwEEV6G0v4lR89LbZVDxDoWtXuFVX3U/77BgaW0pKBTCXFtA4I6CWQXKEt4XGGkqJygJqecfLnU/k98OrgaCmlfuBYSnz/SiCAlBwplzM3erqmdNKj8v71EaLz8/MtIKA3sjTN2lq9xsWNP/Wr7iW5SePM6+NjjeRlp/aifKXonIBKtdFRzyEa2b0EDCjfLy3Dr7LPQOVp9gzHDLmAzkwFcNFJEhJ1ZooCeBirmttSPknpVfXtKV4ZCObjRiWF91imvDKPPHh7prJ77a/jqM9+FoWbwNdoAFdEj4vyV3knCoFSIbin70rT369mGSkP99QSjSJHSZaZNoGEUdRgRLNyOnrG+dw3SkDmOVQB1xRiZ3m+ZkCAgJ8mZnRAG+3o09fr9XorQsr6pV9alOfRIW8LThl4XVKdKkDieSfZ1fOc3qgWJDqpLb3+KbLMa+IzAYKX0LevAgbSYHQU1ENFPcNKIODCWUUA9NZAtWNW2oHKowPe8RW5l+5K2etZRQe4wIT8egja6yPh4WKtXpm8rvxmvPrK66oogZG3pKpeo2fS0a+5PLmB9akkeVg0ziOvuDLms4ueEgAYLcrza1Vfu7zPgE6X6wqYsh1THVmeg3xXmuleVY+PAGZnQWkFAJITkQABo66aHjg/P2+fP39u3759a9++fWtfv37dWjj46dOnzdbvLkOUv2rhH3VmpT+d+NqitwF1f7I3HuVlu3lalsdoBqeYCQqS3HoZ1UJCpvGxVemzBBZm6EXBQKVoK8FMVHnMaWWrDD1XsqY3CFLeDPH4nA87llMDvRXTPHonjUKg9NyqtpTAaAqE77lyukPI2QUp7d7l7ZLaf2Q8ewK3iwF+TXoOHyNvqjJmTpzCkgJgvyUwoWPyprkepFKgvsBJaXuKIoGFVBe2T9XXvet6Nl338l2xVkdSz+h/BIPfo13G1gwgaC1HbnzBoMDAH3/80X7//ffNVIF009XVVVf3aWGgg1uNLZdb9tWMQ6b6Ml/lzXsu62ktSxoPvggxyaFPc7BcThMmIOA63B2wGfldIuPPBgMjAJAq1FOgVR7sSH+flatZ0/uwooQyZehTyHWJ4kxhKD9PA8MVYhICzocRCBAQiE9ODfgiNa5gZfkzQrZE8biH9TNSz3to7akH5M9KRpWGyq/n6Sf58ekABxC6l573+pD47Y0RmE3nq9XTDy611gfHHl5N+8o7z9QPPWDq/FXpvA4zz70H7QIE0lHnvuqd05Cuaz9//ty+fv3afv/99/bnn3+2P//8s52fn2+txdKurjKWTvSq/VPFHAPV1ILOHYim/kubBFXyQjmtABPHKacJ3J44GKfs94BZDwyQhySvuzpgzwIDyXv180ppLgECHg1gRIB7BiSP2ZGhK+dqBypfBMLO7XkaM22WOk+U8pHh9z3CKaw94+ttmQDBTF1mwlJM5/nuEzBYCm4qsJbyrX7ufSQjqf9KT6/B83cvyvnwcwcGlSedyMtI8/2sh3tHXtdUDt+4ISh3UOPjsJLfXqRglK7XFm9JSzy7UT7+vzIyns7fzNJaga9fv7bffvut/fHHH+2PP/5oFxcXW7u3Cghoz3+nu7u7rY/7EBRrfYDrqQpgi3y8sCz3wEftVK1rcaeR5z514JENjhFf/7AEDLwGOF0EBnqGJv2vEOhsOUSrBAJapHJ2drZZ1Xp8/E9VHASQqGArI++Kxu/73FIyniND4wh2BAgoDNw8SfUVn9UCGzcYjk69jXYhByRVHfaFRjI5kt1eXVxepCT0CVTmQVDgefi0VFIy1et2LttuTFvL+w9UQNfT9SiBGM4PV4qcvHqErhqnPZpVni9lcPeNKqOyy/MEA1ovIDDw+++/t99++61dXFxsZIQLsq+urraAHjf64bbCPf5mgICnZz1UNqdUXQ+39vQtlwqQu/2opjQYpeu1s7f3qN8S7+n/EnqRbxNUjKbjjEJlY3Ce3KMBAgNaIOjk3giBgGj0MQtXRK3leXUJCwWOHeYeeQUg/MfVsOmrYUmRVcaNPOg552kJVQAogaF9AwM9GgG5kcLya1QYbuClaFvbXuSkNGmR0mr1+E33VFYypOQvzX1WAJrt0QO5kvEejQBUigxUc7FV/pW33zP4DsQ/Oo3GXpJhOkpO0jtywLh4kGDg7Oxs086KCKzX63Z+fr4FitWvyeN1nrxvekbV1wp4FMBlvNLj3na9CMEu9iJRBQISqHktYLsYDCRjvisYqPKkIfTwlASSRy7GSvOlpKQIe54K+fIO9oZPBr4ibwcCCCJlN/783gLzIshxpOsDjyBgtVo9+XjIiOeUlug5Cf9HAQOVfFcKNdWJ7av25wJUKsOjo6OtaS6PFOhLajzqvW0BAldCVLzix0GB1zmB2F7beH1b2x5bI2Dg8so8qp8bh2T8K53k134Go58oyWwyNKQKvLfWthwQ6dzPnz+3L1++tC9fvrSvX79uvU3Q2uPXXi8uLja7t0r+GDGgl+5guTft5eRz+6wDnalUb/9PUEv5SjTbvt6mzl+yPw5mqHNnge1SmgYDjlh49POUpuqsVAYNIoGApgQIAvg9ayqUhCqdJ/e8qjonj7rXFlX90nz96Bkn1csVmytMGoOUvwthaq/EU5IDT/8zUaVcqzSzeQnkctMWLYKlktTrrtfX1xtPS9/IWK/XrbW2+dhLoh4Q6BkBvzbjjXC+V9cpbySXvSrsWkUGvM1dnr0eFWgYKdd9pZ6+6QGBGVCuNHI8pGs1RaC9BS4uLtrFxcWW/Lb2CAYEYPUJY51fX18/mZpK7T/jPHCReHp1vKpzshdVW9Ixc1lP+VXrFnQvjVVvD9ezPO/J7HNkeRoMcAMUFpyoMpSVQPp1RgS4uYUEjl/EUuUZgiKlTmbZXDHd2vYrjD3E5vn7IqmeQKS24n9GASgko3m1GXJgow/lKDrgIbNeH1Mok3L9aEp2JM867ynY6hoVq+T5999/3/KsLi4utqa87u/vNyDgx48f7erqql1eXrYfP360y8vLLRDsxt43H+pFwHwu38OtvbZh//r8KEFBNRXhkYx09NArfxW57PXqkaINH41S/UZ61sl1DRdupy2H+QEiPSMZp7zJKbm9vW1XV1fxw0U6J6X+49jwXWcZVfMoV09v04Z4O1X5Sx4/ffrUbm5uttpUb0+oPahjvZ1FHr2tdErSuantdqFpMMAKuID1UJWOIyVKQ+fvswqNXlxcbPa8dhp5ECojzRuxI3g9KRwa+lRnp8oocjDwWhq8EqoK4fqeCL4DlivlHo2ULNM5/+leFW3YF5oBAH5tJMtM78D2/Py8ffnyZbMKW69l/fHHH+3Lly9PNiOS8f/+/Xu7vLxsf//9d1TE6mtNIbT21OOeoQQERjTKX2NAaTgeqqkLf17HEQBg+jRW0rhLZe07jYB6ktXqebYX1yYpMstpyoeHh02k6vLysv3111+b6YH7+/t2dna29WljRROur6/jFvCp/2UDdN3fKmitbeTfv57oDlOqt47UzbQfeoavcLMcgofb29t2dHQU1/BIDzsgSPxRTzvA9r7UebJzFViYocVgYLaAJIw+t+PhFyJRRgW437V77RIovstaIUo3qupQdabyS3NQSbh6iiN1bqUw0+Cl4PUiAgQtCsWpPXSf5frmQxUvPjBGBmIWROwbzSjVXX4u0wS2nz9/br/99lv7888/27///e/2v//7v+1f//pX+/r16yZSpb4UEDg7O2uXl5db+79rmkz1oPfMV7xaG2985XI9M85H/e0Lryow6kbBvcUEKpdEBUbXPY3K2GeqDEQvzUyfMirpG7mp/9brdbu8vGz//e9/N22qtQGfP3/e6GzpIMoA1w3469xVPTkmWAd+dTbtv+Jt4rqSIHW1Wm1Nqzqw4OuVlJGjo6MnBj7JMMsRwEkbLvH5CtS5bq5kPZ33aPGagQppjZ5JCtJ/uudbCafPYba2DQSqzUnc01EZ+q989L4rQYOUGedCE4KsKPEz014UwhQFYbkMsRIMUOiZ30z5LoheLoFUT1HvC0CYMQIzefjR2yjJOxdf8bWsL1++bFZj//HHH+1//ud/2rdv3zZRJylKbeQihcdyFAm4urraKCv3UKSsKkqhe9EMKOhFBXp583mn1F9J3nYBBLPEcbAPMjxL1Zj1/5Xc0mFyb7u1tlnE+uPHj40+vLm5adfX1+3q6moz3XV2drbRR5eXl+3q6qpdXV1tpr20FqaKDiSeHVgyAlHtvyJK8kNw4WW7PdL0h8rRMxpzIkZkxZ/KkX0hKEiUgETqR9qhdL6UFkUG0sCmYfDrOtLA+jkFT5VW4/snhhmaoffEn/ObQpO67yQAoM6iQHi4RvwkqpRoZRxTWzkq5XwV82tte5Oa6ljVueLF+epRpaiXeHP7RElR8jwNzJTGwa0iA5z2IjD49u3blhd0e3u72dtd8+d6m2C9Xm8top1B/6PoQGtP17uko8iBgINkXyfg4yIZ/BE5EJgBBLsqyFmPat/IZdDltgIIHpn1j7xxEeDl5WVr7XE/AS5uFRhorW2muv7v//6v/fXXX5u1L+v1+sne/aM+dUeFgKCqq7cJ7YHrdco9wZDaQ4CAMp3e6EkOoztwHpkg+RhMuuU1dOmiyEBljHSfDZDQZvrR42ltO0zFcnzxhRrTPyus8j00rk7nkfVR43tkgILC6EBqg14HuaCPBqRPaSSBVX4URIbdOMBY96TkvF4JFPTqQ15m6rsv5IPVBx7PK4Pfy1f9qPA+p7z4X0BBY0F9uVqtNiuwHQA4QB+1cRWiT5EyEdfHEHySEvBz5cspMwcEs+sZKtl6LUAwExl5S+rVYZbPCugSUHqklsZObwlcXl5uogKKDOi6wICeub6+bv/973/bf//73/b333+3y8vLTfrex3xm61mNAdoK3vd+TWDVx7rbMF83xoiAh/6VVjaF+poLC8mTHF6l6+mal6JnRQaS56DrRG70jnwuih6vgwt2JjckUdrKAxa/yidFDJKX5AJCUJAENRm8SkHNDuIUriJReXPV9dIpiYpmhc77fgYU7VtkoAJkPc9qKRBwT8sNuefD8SC511s0erXWAUEVNZo1tO6JsB6j571PfQw6KND1lJ5UgbJqXD3HmKS6zACNt6YlwNrlalaeffGgTxFwbZUWEl5fX7fv37+3q6urTeTr5ORkU/Z6vW7fv3/fWgjLyIA7MKwr+U/OZmqjBGqrNqIdcDvmgMij2nzGI98ck8yXUwzS3WpTB8kavzMRvZegZ0UGWqsHCxuOnpEvSpEnJNSZvsdOoSFS5f3KIBH1EVB4KH6Euiuj3SuzRwlEpTRU1Ixq8L6XT+GeIQq/C50LtGg070V+9lGxtrbM83OPoUpTAQo+y3Aip7paa1tKWO3FT2trbtbHEJU2lRxDoTMeefLwR/Xued4al8ynp9hSHfzcefPzWWJUjdf2mWblb+Yafz5l6waN+lMGTMZNMigwoFcQW9sGDQIBmibQ/hgeUdy1DyjTPZ3KMqhL+WPbuNefgIryEHHMObggWFF0gP1CfjhtPXJCnkvP2oHQ//tA5nyL5kwJCCR8EjRW3g2rh85JqZOS8eZiD4ZplL+e782t99Ary5q5Jj49suBTGQQFS2gENlJ6luGGICn8BKZGIGFfKBm6ymOq0ouSYfF73IxF8/7ckU3ff09ROObhn932T6h6qNLrq/wI/ioDTfCd6u3XPM8U9UvP8Zobfic3HLuCTW+PCvC/J6VIyGg8V23rxj+t3+JiPBotyalPKbX2uPKeH407PT3dMmyUe/4o024Aq75NTg+NuJzGqi0IGlgmy/P6iUedsyxGNnzsuU5lu6ru1JfiJX2zITkbbvOSzM7q/2kwQGYr5ZjCKfzUsEKcFL7koRCFipSnh3GoeKppAhpZpa0amh4Vn6/ag+c9ZdIDKj1SW2i6gnWjAPcU46wC8XRsZ5U3Y/QTH89B/G9BVfvMAAM/T2CVe0FwTwi2pRsnKdGrq6v2/fv39vfff29CrQq7ajdCRg+oTHtheAcEFdHzHwEC9nEFXpm+l0Zy7/n2wGYCCsnznBk3+0qzAL8yIK7vHBy4jAsMrFar+AaAnvfob4os8JVCGn6lccPc6xeCAq9j+mCbP6dndfQ6KZ2H8Rmh1tsVfEPC26i17bVgbOMEltlWM0Rw4deXyPOiyEAPdficCaMCCQjQ4/X3Tv3dU6al8FF4Wtv2bjw0yvdkXQFVA6bniRONVu1TAQYXtgpszAz4JZ2dPE5SukfPcOSxLRW+t6SlyrMHAnoK1gf8avV0J0mRKz+fP9Q+Az9+/Gh///13++uvvzaAQKFWKSGuG1li2NI0E9uDY7ACBC7PqV3TuYdNmYZeWJrqSOCgUopV/ZyfmTz2gdxY99LonG09mgMX0Vj71CRlVs/52hiXfT7LV6AZFUg60yMB1P3K03VTD7SOdLaDDN/Dht49o316q0L1Uz5sW7a3gxJ3Un18zMrkrnp4UWQgRQdUuI5pesBXPlMACAYECBwRqZGkJCrFmjwcAo9E5H3WAKu8Xe73lOkoPYWebbCLZ0Nvv3ef7cMP31S8+v9RFOEtaGSoKo9+JAuVwnVA7AqWHhI/83p6etoeHh42rxPe3t6279+/b63EZkSA865paiAB2pk5VbZZr01chjTO+CZQeoZtnQCBRyIYnlZ5jGjsKlcJkO+DvPZoFxl14DrzXGvbxpv/6axRV3OlPSMD3FXTAXBr2xFO1zEOBPxcMu67FCaHL50nHvTzNtIHl1gWPyLGDd/ouKbIhRv55EwzsjJDFVCepZ3AQLrHwjm37wOdgsXGo4J0I8LnqARSp/Z49zokL+85NPKQUtr0n2i3Sp/CwL2QcEUzoVyVr2Na39H7eR77TJVMzEYHHNWTqAgJgvVqll7X0vTZer1uf//99yYaoG8ScOMWtrF7IBU4TtdTX1WGx+sm45+2jWW5DgLEbwJMCYxooXBr26FhPue8Vnl5ej6Xog77TFU/uQHsAV8Rx7kMv9rAI1gCrKKbm5uNETs5OWmr1WprMzcvx+XNAUB1VH1cBliv3jSBA0uWn/hiXvraIttEgMCBkoOBZEOpNwgCeuBhBGxSnWfoVcCAV1DEcD6FyvfSd0+jQnIzvNCL8EUi5LcXAu/VvSrXr82QhCvNkzKN85i8wkQjr2IWxOjoKL8HBPaRqgHTM/bVtQQAPDwqmdfGLZprFBDwsLhe2frrr7+2XslSSJKhVvEkIKH/afdBAgIHB74uxduq562w7NSeet71QwqH0gj35GmkBwgElsoj+3qfZTnpBFFPTtPUAHUwDT09dxk9vgVDw0e9LX3G/nf+9HwFUinjPFK+HfCxz9yI9sCwl6P6sJ4pUuJRAY9etPa4300CzWlMcEfRSv+Q1woYzNJiMOCCN1KQfJ5Gg8a5te3wJQXGBTVRL+RNgWfnSXFVYMM7PQkKKQ3GJJBO1X03LMnY7EoecSBxMPt19uHSqMBHoOQxVfJdPSuD7IpWikIAQF8i/P79e7u4uGjHx8ft7u5us8PZ/f39Jo1v1MIFWFU9lIdv3sW5d/eeev3VAzuqX9U2bAvmo7byazQk5D2NwyrSkYBuVcd9N/Y96gGBREmnMK/WtuevffMbRQMIDNj+BIsEw/SmnQ+vjzsavJ7q46+ce38m5y+1h+fr+l7jzqeoPFKia2oDgSq+IZAcT+oZn3LkdHeyW15Pr8MM7bxmgMzr3NGfoxeiq7Rhjne4G+lUOSqN9LwjNL7BQDDi9aBQVwKUeKrQWk9xV0LR2vZuYKnzR509QuQkRm4ScXpgBAISb++pcEcKswIB7lX4PTdk/qNH5a8RKiLw48ePzSYtCq8+PDxsdnQTCHAg4DKc+HVZTVEBKqfk9VfXKmDgbUoZJI/pwzIOYsgXFakUYxXN4/3EC+mjAIEKhM4815PZ1p5G/AReGe3x6K0cK8qf+sOju0kXJBkdORIV8KsiWl5W+u9gP6VhG3mUwB0lvy/+/HVBz9fr3NMrDpx79mVWvhdtOjS6zzkP7iOQkBQ7PIVUZg2fI8AkLFQs6hBugSyiokkhTPJWCRT/s5NHncJBKl58QQnv9zyxEfVCq9Ug8IhAigxUeabzt6SlCLkHDCqlmub8vH+kYLW3uxbYPjw8tMvLy3Z+fv5kpbLWDWi9gD72ogWEAtMuN4x+qWyRAwLy5/X2saBnErisgLyXk/5XPFTPss6tPTUkklX3wqrx0huj+w4W0nhdqhcIWnttxI3bqBNaq99WYl+Jtwpke3l+L8ndTP1dF+tZ8lOVwXowP8qZ2x7qRLUpIxgqR0Ch0qEcg653Un2fo28Xf7XQO5OUPHNWnvc58Hrz9cyrR1XFq46tohDJ8Ht+PV5ZrxFiq66niISOlUDOUG+Q69hD2FWZ7lVUCnUflarLcnWeFEzyKEhJWSgyIKPd2j/K4vLysp2enm4N/Pv7+80X4vgqoX7X19dbrz0R9AoQOF+U3REI59h1BVa1pZNPl1TtVN3rlUPF2JsqmPGiZsftR6Ml0TpGXHz7d3fo0rSug2N+e8ZBNMkdHOXFfqMsJxvjz6Q6upy5ce1FYJW+cjhTe7bWtvaI0fhX/tx0z6MtFSWHZCSrrxIZcOOUvCR6SPRy+EGGavCSkjHqPUNl5Ui1QqsM4+g5DhgKtpfjCob3U9hnZEz8WtUWqe3SM5VSd6oiNBUoSANOCsRDs/ukUCtFktKM7vl1yn86F6ltBAaurq7aw8PjK4TpK52KDsjwc2MT/ya8yMP/uiZ+XbkJeLBc8p3C+TOUwEQiGiFXjowksh3Z/iqrigp49CONocq78jb7GYh6z6MnBJbc9InTUal92M9uB9xgk0bTS65jq7IrIKBn3BFl2dwET/977bVarcoICnl3oKW29kWXknGNaZf/lHdqg+c6YYs+VJQodQKvVbsMKl2vLBcAH8TO08irFeqiR+ahGqKztKZgqafP+5VHMsqfUwIJne+qqKg4U/lUFmle2T0Onyf0/nsvheoGsEqjYwK8KX2liBwAtLb92h29hOvr6yffSRepPWn4KZs0lklW2VfV+OuFJlnP3opw53cmGlCRR1J6Xq3zTPIvlXoZLIvPVwp1X2kmqlK1IYGgr8Gg3HK8O1Em3CnU/WoMpTycqHOSHuHUlY9FOjmVDSIQSFN8bBPylHQgDT2JfNDYqyyCAd94z/lOumnWRo1oJzBAAaw8Ime++k+vchQtcD56yMwbhB3oKDcpIN7z/MlrxUNv4CRDmYRN5Ts6Jo34G4X7CShGYMXn/dKcoStY8r3EKLwVVca/ujZSbt7eBJhccay1A1xbkzyS1tqW8adXwfu8lgBjdZ/twPJZP1/xn6ingHoyzv9M74skE9ghry5n0ik94+5esY+xfQYBiSodMZOOBornrT3tq9bqiGGaMkg6xPvbdYTn5yDG0yRQwPHh4JI8Ohiovh/g7eV1Z54OINzbJwDStRTtW+JEJ/6WyPA0GOBiJO8MNmrPQLOR0necXRn68y7ECVj0wn9+PSFldhiVhlPP4xrRCMVLkIlKk3D1qAIBejYBgSpPolj2IRUogUFKs4/ksjQCANUzo8HpkabVarVZqc2NWnrP94BbiuwkYNsDBmkssY7VFEHq22pqwhVoNXbIW3q1zT2lBARSmeSPslx5nftACUj1jP4IELg8uPy6zuE0QWtPt6XW0Y2h8yzyPifQ8Dx69aBNoUfvz6k+Pp3GduLHmdJuuRqv1JOuK6r6ztgkAQ7yyV0MK6d0Vv/M0iIwIMbJGOeH2IhEa/ovtN7a4yIn925EPS+1AgGjTnHqRQAqIEAh8XyTce0plx6/ys/nUmc9M1fICVlXvPbKYb8SNVO5U8nsAxjo8VAZ/hkQQEpeUGuPbaFwK9vW+8jn2Kux0drTRU265jLYAwoVeV183tfrxueYr3uaXkbPQ6VMcs2AA4qUB8doT/aSzqgcj32gpeMojXOdux5zHcNja3nqyykZcDeefk96I4X5aUt6QJ3fvPFnZWD942CsV9pCWc/zrRzXa1XkiXWl3HuEgfqytfZk871qP5HUli8hq4sjA46OKFT0RFShnnJNFZ1F6FWDpxCN0rvhVoO74PDXMyIJMHgbVR3ZAwJs357S9jYnjaZTEnDxvFKf0UNUm1b9nAzbe1E1gPyXprxcyVBh8Fh5J6IqwuSy4OHZJdEnN/gVUOCRbVHxlzwuhjhT/j35Hcm171Gf5DwZKhKNWiWXBGoJHLhR3CdyI1v1oT+Trnm0hdEB9n2aMhiV1YsAiWcvR0QgStCsn17P1dcSKauqlxbdcudOAmwCAYIKgnG3dT3dqzwdGCsvXuOYSWuBZpxKkcvCUpndCQywESpjRqbUMHqnWmlWq9XWV9qqOZKkBJKRrRTSSHj1nCMyX8jBfF9CObhS4nUfdCmk16uLyNGrCyjr7oJH5fnw8PgBGgcEqQ7iRcdZgX4LSgq0BwpGYEHtUrVFr969PdQrxe28t9bfL4DXloLtnowSEFTUK6cHhJfwSBpFL/wey6Ss+/G9yQ3/KHLhY6/Kz/WMjBDfJujpnooH6RXl3du/gPmwHxxo+7z+p0+fNp9NPj8/30QImNf9/T/bel9fX7fj4+MtQMB+FyCo7IXScv1Ba/VW8AmIsy9ob9juBMKuk2f0qMvwEtpp0yE2tt/z/5XRTukJHPhsmnOpytP9pPB9SoPpBQK805gHeVM9XCH2Os4VbEVUQhyIriRpzF1IRRWST4bahY+GRtcECn3QeJ0rQX4P8sHhBi5NdfWiAg4E0rG1p6vqRS4Tyfj1vCnmKT5G0YM0rqp8k8xxVbnz6Aa8MuZJ/ivj7eD++Ph4K9rouqGKxvi3GjiOmZ/zlZyK96BdlHpr/WgJj+71czp4tfonakInLtkB55dt6o6JnvM+YZrkkPBLuDo/PT1tZ2dn7fz8vJ2fn7fT09ONhy855h4e2qvj+vq63d/fb+3RkcA0HULtGqpzD+O7R6+2SHqR7eSOGHW66/mks19Spy4CAz2UqTQJGFSGtLV/OsEXEvLcy0s89AZMMoTqAPdq3LDOeiaVcn8uuYeSQFE1n0rqGZaRwLJcgh//KE0S5Cri8B7U82x2/XmI39fIuOJNbdBbD+DniXdSJevpGSoaXyPgitEXkTmvDv4qeasMthsDN/iVszGrB6h/0jyvZJrHVM+fgUb14Jh3UEYj67Lm/12GBSwqmaXscJ2JjynpnpOTky0wcHFx0c7OzrbezpGxTmP/5uamtfZo8MmDzvm6n449IMB6V/qwMvpVNGDUVyktx8cSILnTh4pmGKX3TSWTFIWDhaVEoelVPgkbeeitEZjlM3lI6b57q72OS2G6hBQd2OziUVTAggo6KWk3/vsWGajOd/0xr9H6DG/TXqSrSkNyxUtgUhlOzouLGOrk+PH/lVGeJeblHmnlPPBZH6eU9VHb87o7JAR19EjTWHuvyADLJx8jD72inny6LkrltrYN6lzvev49R4WyxravnBQ3eOo7rRs4PT3drB1o7dHQ+9QvPXKfyhDpGX5PhN8G0bN8xh0p5ePtUU3ZVfqRbZuMfkWp73o0DQZGhSZhobc06zHT4LrApcjCLH/JK1EZleJN5RMtk6ddFnolIOAInOVxsHi4KQnUSBCSMk558NwVKu+lsNd7AwGSK6wlRt9/yQglcOA0AwRm6+LRB+er8rDdOI7W1Hgaym1STik/tqdPpSQDcn9/v5kaIPmC36UKkryMfg7c940SMN2VGBFwfVeVnaJfrdVRgtSm1HPu3MhjlpyO9AgjB+xHLTDka7ycElRd6VQlMJAARRq/iceU1q+lNvb/STdVQMv5GtHiNQOJwXSu/zPoRUeCAAcElXfSa4gkrCNB9fyoMGmIdU5BTVRFAkZEw99aNiIUqDRYvCwf5OTN+9HBh8inV1zoeoh+nxRqqnMFFpjG80g0Y2B7ciu5Ul4kN56VUnbgxrTsuyqi1osWpPqmevh/dxK8fdP4T/lx/ULPYFU8pEhb0lWue/ad3FDMkDsz7Gvquwr8ViAgtd1I5qnTdI/ly0BrDYOnp55x8JnWBbENHAToKBBwf//PWwkPDw9P9r6YoZ6dSNdTH/b61+1LZS97tPjbBCrIBSINeN2vBjmZHpWtvGeiA0Sc1UZGjoSrzkjAJM1ret7JECbDsgQgeP4JAFT5cQD4fL+eo4L1fBwQqI8JGD6K0iRVRqGS7x712qy1vHo9gTfm4X1VgZbW8oYwul+F25131iEBApVD6hlu8pVAAKcTmTfBjOTN3zxSesre0qnGBAAo21W6faWlRoBt7FGlEaBlH47KrGTHyQ2aG31FC9ImPfrmR2v57TfXUTTCvtU389WRQMC/L+DtonzTuNPx6OjoSeSj145LZLCnhyra+auFVcEc9ERkq9Uqbizk4RlSCs8TLboSdH5G4VrlV4X6+T9tPMGQ5a7K4iU6Pj3XA2ieXv1FRO3GJD3j5X00MJAMfpIjT0tK3lBSjimK5O86V0DO0X4y3CxnxL+D21SWiGCZIGGWkuwlIOBj1fmrgL2nS/nsQi7j7y3b3ue9san0ySlxYvs4+EsOkvrTP+ozMj5pGrUnu4xS8Ced++nTp60tvZXX3d3d5hVD/derhfrap14vvL+/3/rol8rQeQIE5JOg3qkC7N4Wvb6coVH/Lsl30bcJel6nFnD4JhAa8ER1rT0u0HCUNRIkle/GWc/PUDWgGI6qwAdBQG+dwKwCcSSczke0q8KbmTOuog6VkPciJe/lXSWeR9eSourxn7wqV27Kh//TM6ltq/I1fjS/7gazispV03CJ3KsjaKzaoTL+S9tV946PjzdbOOu6zyWn+lTTLb3yHARUdf1Zicaupx/Y1663Ur+m/ThEDmKoP8WHg4L1er3JV9dkg/gGzM3NTbu6utr89JogvwBaLTbkB8KS09oz8tSvvYh25YC47C6Vw6UgdhoMCH0lD16Nr2iA7xrlSo0/BwRO7jn0wvPekPR6e4048nqERFV3LmxSZ1f896inCHuGKdW/QohC124kXAC9PBozB03uoST+9lWhpnpXg5H3mc7n6Hv3W8vz97ynfGh0vY2VlkqTc7sVmCCg1TVfhJf4Se3hhsH7Pq1dWEpsw2pqUelcLnvTFVUeLu+qkyvyfZBd0mg89eRY/dSbFmCbej5VP7u+4P0K5LKMxKM/Q+99tVq19Xrdjo6Othb6yRapP/V1UEUHuCOhwAINPkGH61TKRpL9BJz0vDZySu3gz/kYHm3aVNESQLATGCCzOldEQFEBRgZa236lwqlitgoxuqfu3lYvLO68838vVOlKYkSVh+zlVmHdZGQdEPXyqspmfTzcpftV+/D/SOm7QpVB3BfqgYJ0nuQw1ccVZYpCLUHrCfSRf4ZTCQqSYiffPQOXeE1pfdx4GyUFV4ELjz54JCVRAnG9aYLKU6t+Dkg+ClHu/HpqszQ2qVMrvegecgUkU5ki6uqZcafyNXev1wiPjo42awbkjIofvhrIaACj1fT6/X9q1zS+qjGyWj1+mM9lsLInlOcqYl2VuStNg4GTk5MnYcKtjBAdEPnArwykD3wXiCSMMjBCTBToUQPtErKuDPcsOEg8MJ9UHg0LPXuV6QLmPI4UudcnKREqDE/rA7WKTlTX34uS0e/d43mKCqTIkwMCkct7kil6/ClP5sU+620fW4EAl98kP8xjNK3EfEf8p3KcF7WXe53edpWsp2mCZOilP5hvAisfkZIsp+hVSk9KIfyqXXrTykyTeKWXzZ/z64v4bm9vY558K0DRAPf+ee7tIb7SMfEvUgRZvFGH9yJwbJ8EjnrPPIcWgYHqe+fsOEUHehXXM46amGf6QIWIQMDXDlQCOCuYzgOV94wA8Nqs8auiA+QtCUHiS+UuATweGUjE+lTKgs9T6fSmdt6KeoapQttez1HEaXR/RBUQG5FHybyvPD/2SzKo7k3PlF+lG9WhWo+g8ypC0Is0jii1D+VV48G9sX2h0VjVvQQCkk6dqRuBWQKFrnsrmaj0kht/foeAP/IrGyCe/ONWlGcuCkwAswI3BMs+1Zr6wYGteJaNU/oRqKDO33UaeilNg4HT09MnA9crxHUDrEwKuSgffhCDJJDAo4jGTohOwuDKW3kl8OIouRJSCXpvDrOipHhc4c0YVtXH6+nRATcGKqMK9/X45vPpWs/As53ee5qAiiopSE/rx2RQq3nTHg86zoQG1VZVm6W5fo0HKuvUjyPwmcriNymYB8ePKEUFnFcvPwEQBwKuxFN+M9SLfpAvysxHJ/ZT8rR7xsaBgPQN5YFjvQIEPf1KAMCf25Mkw5IT/z4LI5Ie/vf6iVI4vppW4xhIcsTXG1nHUVs72OpF7mZkeZYWRQaSQm0tz/vo50rLw3Uy9t5AFFwKnPJwpZ4ABcvR8xwICSU7iKEQjIQiXfPOSsq0ItafgIgLGDkwvX28zJkQrz/nYKWK8qQ6trb9Hvi+RQbc4CcgIBoZuFHZ7mlWfPGag2AR8/Lr7DOPGFBJpsVRreW3HJi3rlUh3up/8tYkG0zrOmMUjt6VRkCY7Ub+PgKlCJPrO+q9+/vHRdGpXdyR01RUa9sRHeXF6wKS5IXnrov1MSJGmKX/yAt1Cg2+jjL+eibpoCUgPo03r0vS76znUjuRpsz83PN5Du30aqHvH6D7Tj7glY7z3TpqIQgpRQYeHh6/nJfy6fHvKDXx74aAUxg9VKrrPaM3MgLVMw6MOPDSR2R87pMKLRkQlkXAt4vAsf08IvRekQFRArI9A0aqPO0l/ZjGgRsbl3mXW7Ypx1aSSYHk9Gx1TqoAwEydK9lhGcnwpDYWj1Tuad1FktmUrlKqlUPjMvNeNCNvPSBAedLi7gTKEgBKkQHXJ7QRHC8V39S9/CohvzOgawS0/PnWwL55kEeX0jj2/nXQTs/eqdKnLu+9aQn/n6ZDKvD+krTo2wSr1WrrE5L6iZxpNSobwiulRk4hpaoDEiXlkzz4kSfuR3agI08qUYagKlAwazxYbx/E5I8AyEFWZdB79SafTj1UzXr5ABJvrynEI0oRACqAdPRrokquWhsbTMq689ba9joZ9+JcMahN0xc/nS83nmlutQq/Exw6+JwBRwkEeDlLDG0CLVW+KcrhbZGOu/L21uTtPaPfPDIgedXiu2TcKNfcCrq1bScqRQUqflzGCQT0Npp+ycZoIaDK4RQB9wdIwEZy7PqJgIN1SPqrGisJlPMa0znI9ec4LTyyLR6R2EVuF321UIymuSciR6Z1xEbyeaaqApXnQr5oQF0I07SAX/NBpSP5d+TJjSoSSKiMZ3XNBZYefgWWWtte2EJAoHSsj7dLai9vcw6Uqv35v/K830uxVoZ9dK+1WsFSbpOR7OWpe5yHpxxyrlT/Odgpa+oXHx8pYuVecvXfqapP9d8VaPLO3aMk4GCZ+l9tUDaaPqgMfg8ApOc/MqV+cn1J3ZKMmMs7+7q1p5tutfZ00ZwD28QPnUx9pphRY8n9p0+ftr4VQMeTkQHVgTJMeXPHIMlnRVVUoHqWkQp/JtmLNIbTsy9F02BAAsBOE5KTQhIiY2fIYFKBJfIoQDJOSeDobYkP7ufOjq6AgNKNkJ2vRGXnO/rr0axRdCDgg1Z1Ylt4m1TEQelTNCyX7cI69xBohVr3BQy4AkhpZ4lAafQs5ZDjifc5vlar1dZeHa3V62WYL3kbgQAde7JCsMN+dweB9aiUntIvpZE894hjtuLJlbLL9z5HCFrLoNUNHPuZ9UrfKhmV4+X1IkVuJDkOyGsaC36d2wyzfh4dSPqqioqw/mlcKp+0nT7v9yJWSf5TtMzbTGPJ6/QaIHURGCDaJyAQw6lxCAqS8qgG+a7KIw1edrzPwbKMSklKEHh0QMB6O//kLRkmPu+evHjSe6oEBhVVHnzP+FWhaG+X5OVVdZ259hbkIKC1/qLXpIiSR8O8l/LiXpn/CARcaSaASA+tGk9V/43GVzVVV0VEUtl8JrWJj9ceL7uCAleybnx09KjEvgOBHlWg1++p3jKaKVpIsFpNFThASNEepaVho0evxYxyLn0qgsaUz9JoM+8KZDjvSe+n/JmGVBnoJK8VEHB7wnZi5KMHCnaV12kwIGPE1yVUcAoj3t8/fbfTG1AVTQM8NTQr7hX2AZzm3JMQ8JmeJ+WAYAlaqxB7MlLihyt2lYabyog/1r8yDKmtUrt4m7BvVO9qX4cKGLCOr4FmZ2mJ4a8oAaoRyKp4EXEKgLLJvnAF4WOj8l6TUtN1z6c3tnrkHoz4F+1quEWuG1JbLXUW0rhwWXZd8dx6fBSqxqlPDeuanuGRRIPseknevRs5bQ5UAXACBX47IDl0Pqao8/ithOTIugH2xbh+ThlxQLvEm/d0rx0REE2DAS3YUCNyTsaVKRnn3LruSQC8wWY8mh75nJSOvjDL8+d5Up4uqC4sqZMqVJ2AQHqGRoYDitcTsBGNAIHz5aEzrztRPqNEPSPv9X0vMOCga8mvtXrOfFSeqJreIlFGSb3Qo5fR6/MREKhAzYgSiErRq54H44o76Qb2YfqCqPKpIg9+nkBGNTZngOI+U/I4l4zFKnI145B5X1KP0LFU33Hxs9YEUJaZjlsLExSQfBwTCHjEwceA2zG228gejZzbHvXAgBP1qo+npTQNBq6vr7f2geZCD2eCBqQKafQGV2p0P1aolKjVDV0qh+cJXVaRAX9+CflA6rUFowRp8LlC9GdnifPUVJQeCdEHQvi6pY7JoCQl+9aUjHySjxQ9qtq2F8r2dHw+Pec8iXqDnIavZ+BSxChR1TdVFKm1pwCmAnwVWF4CQBIIYJ0SMNB18arrTOvGhuc/CxgQsU3cwSB5n/oYSWPFnRT9d3nvTSVRv4ioj/nftxhWpICy5gBSfHP6zWUwgWhGDXoANzlqTJfGgduaFHHg9Z4tfa6ztSgyoMZO3lMSql440zdUUcdwcD48PGytSHWh0HMJEBAUVEDAAQCFyTu99zqWd1aPKuM4o2wqQ6b2WK1WcTCNDAEHPgGf59va4wrh9AWuHuB7T4WawEBqy6VAIPWlz6UmBZn4c2K/zQIP5ufRgWqcutwuNdKeN6knd6MyenJL2RzNc7u3mkCAwK2/lfMRwAD1sajHrztsPXIg4ItaE/jSOdubwMD1lojRR4bjGZ6nl85PDHtUgLz49EbayIjEMTfaKTC112za9Owo3a7Gfva5RWBAHUgDqN/JyclWwUTsVcNROHrC6QN+RK7QW3vqGYg3j2BU+1v7s14P5SdeEz/J+CdjkrwvbsnJgUneCJrUpuk9dIIxLQLV0acKPF+RFvp4FGcflWZl+NM8YooOMB/P19OM+KiIeUh5ejRspo5UKj6Vk+65Z0x+vB2qqFtqBw8Vu17gOCHg8XGQPHryyDq4fvLy2L6uBwR43UD0Im/vQRWISqAgpaETc3t7uwH/lW5rbTsSTM86AcxeXyTwTN5pzBkBIODQNR19zYAoOYTVNAGJi7Sr9VlL9dxo3KfXwCvaBRDM8joNBvjdaPeoW9teWdza9paV8irFmNClDBINFw1Z6gj+Vzp1sCs+pfHwK4lC59MAXqbzkcKyzqPX2z1QV27JcPlA1M95UFpfUON7dvvg4Naf7BO1ha6rH3nfvQDWfck0xWuTt31q62qaQM+PiIqQskkeRjzOljUiesr+/QreSyC7Msw8J5hK0Tf38AjomWZkvHwcO1Uhf/1P3l9yWCrgNWNk94F6PNJpo+PjRpxHOiMcH/w6retV5c9X9ahPKVf+PPVID+C5XktAQGOPssMyyb+DY5VJIOEbLZHnyoBXus/BtYM71pfp+XzVZ6QebxVNgwE1ujZ7IMmAnJ6ebjFNgRJ5h/juUk4ebtI5qRoEPeXqmwX5QKnIw5GuYJ1Xbw8HA8qj8sK4Tad25OKA9MHEOnDqwyMeXlYa5DQUHAy8z4HiCnXkfb41jbyqikZ8u/dJOXAj25PdagD3lHw6T/y74hOfuu5GszL+FRBIGyNRKTMMTHLZ79VxhnwcVu2htMw/vSbJunw0ogPj7UgwqP+tPdVdySHx6IAbKC/XQRzBhY8J16UJIDggIBjw/JLj5XqYOtGdJPLF78C4E9QzzLxeOUripYrO9MaIyk82cgkgWAQGvFHV0RQMNSCFyJGV5zHyiEb3k+Jx1JUaRUbTgUD6aJLS94h1StcT9bxRjwgIDGhXrjSQKGyqiw8eJwIz50fPEdWLL3/VMR33JcyaPCEfRClcrbQ9Ylu5rLA9U/4eIq3KT/zMRmAS/1J8bhSSl9LzsCQPOibgp/8egXD+/BnykCjlNWoLz48RTYaHxVcC7/tEFbikzNBAV7I8A6J0j3JBkKiyPKKb+pDtyvvu5YsSGOilT2V4WUznAMgBAYGDb/LlYyjxTaezR7RbuzhQ3v9LgOziHQhZYGv/TB9wT2mlrQYqEXdCQsyfCiR54KRR5asBQXSpjk6gYSmlQeqKpQICVLAEW75vt78ew3bQOUNpej2UP5U5Cv0pcqAFOwzTOVJmO84OgtekhNpp/Jd6fl4XPu8gwP8TVIsYCRoZQQcAlYL3MmZl2NvCZZOeE4Eho0VUjByzvchf6odKP3hbVO9/OzkgS3V8Tzl9CeqBAI+EJlms8mR6yjbf1dcxGddEnJIk79Qlup6it56O5VOPuXPjoXjnswI50mmUZ6X1RY9sNwcvPobdpnEcVSBjRLuA10XfJmBHSRgUir69vd28F+rGgKRn08K2nkddAYQe+fNuDHygJMNGJfXS3kEFBNxAc+tnfc2L0YEKVLBeegVHr+Fw9a2HfEk0pMfHx0++yZDajf3PxT7vTfRAWS/9kgEl2BoZM4KrnlF3RUWPLCkt8p8UTY8q8JzAak/puIwQpBKUUjfouRll5jw6OKjycC+0SksFuwu43yeaAa/uXVIfaDxqAXAvLz6j/DiW3UFMDiOnoNzgJsfDy0+AJtkW//hQcm5ae/pmicrRc+SVTrCioNoVkVOv/E++k/GvALxHZ2aAAPPqyf0MLfpqoTInI70QdMUEX02rwjZsmKTQKnSvZ5mO95Yqpl74dkRufPhs4jF5XlK2jAicn59vwEAK8ScwcHt729br9ZNXccRXL4xGYfPIQooOMHLASMJ7UjIsaqMZmUigNv33aEPyXGZkaom8uSFMQIPKjjy5AkrASLxwasBlj8qdHmRlbNxz9HRsx0SpXau0M4bzI1MyrK1tO3DJkBK8VqQ8uAi8tafv34vcmLpDxmup3J7T5q8YUgYY2XT9WdmsZBs4FpSPAyE6s0lue+3tfLsDV+2H4XVwmX0JGZ4GA8lLJyNqYF8syPRUDjSACUW6x9kTBOXN/EZCzrx8mkD3qvr69QRWXEgcrIhP3x1R1xgNODs7a2dnZ+38/Lx9/vy5nZ6etvPz8603MpSWyrm1tvU+7s3NTbu+vt4Y6FRHBwPVoHEvwzcm0r4Uikas1+u9AAT+P3kNaQX6Ehp5ua1tv22TgOEuILRXPyrZNCVBJUg+XCa5hqWaIpDxcEAvD0pKbjTGZqYIqmu9yIT3hb9tswTw7xsl3czxyh3+6Pn26qw0XIzM14op3wTarbUn0wgVn4mcb/HiRP2UAIHy8v6lM+qOgq75z/nSNQdHBOHkv/LeU/s4QPHnqwgJ8+BxRIsjA2SCxkAGprX8FTw+11peP1BR5YX5NXZ+L8zqxovXUwP7tMSsYKfIgMqqDE6KEnz69Kmdnp62s7OzDRBgdIDRAypotYP6Zr1et7Ozs41hZj2rqADvcYAxCsCpA05HrNfrtl6v2/X19bMN7HNoxrukMpGSqELszDcZIOWjfP06PQspUo8oMI+q3J6SqLwu0qh+fI4ySSCgfk0RB59HdSU5y3PP66nav7pW1Tl5uR+BkvHXdepaGn/qPUaCKG8p0tXaowGlM6F8qR9ozNzZ8eiB+Had5P/9yIiVAGs1PaA6s50cQJCnFMGovHTKtrcty3XZSqCc/LIP2Vf+S3mTZmV6JzBAYkPIG0ibd7T2FKm4wa6Ulb8nzVXLSueetq+2l7FnhzFkzv0TOEBa21605ZEP8cAd+ZLno/rNRi1UF75BIBDw+fPndn5+3k5OTjZ5aT0BQQHrLSN9dXW1BXxYHoXTQQIXLHqbrtfrTSRAUxGKQlxdXW2Mx3sr2sqb9B8NeBr8fp6UTBW5cplN8sN7KZQ7244OKlwmlbc2n3GvrrW2tSGV70fhUQHlmZQi2ykBAbYdacbAp7xSO7SWFxvS8CW+HXjtC/U8P/fUGepmFJSRSY9Qsc7U1d4WyegrrWSEYEFp3dtOx1Rf/ndHJYEBH5/sW4J/jhdvE287j4oyuuTyrbzc+VC7ua30Mer6KcnoS9CiaQJHfcmbTB6O5yNKnvaMR9MbnDKiOk8oLgGD1JEcUBRaBzMaaFUIlOXrOQoD8xIR1AgQaKrg4uKinZ2dbQw0wQAVtgSYYICbElH5sy8JFBiZ8I2JuBZBgIBRgevr63Z6etouLy+3vOF9pJ5BSkZS1PMye/k4KEj7NbS2PZ2QynGD1ovu+HigMqrecuiRe/ocV64k3cNJYIltRJqpfy9dqksyEEkPvLTCfQlKctUDBDpnHxFwEoQmIlhqLb9qTZ1GO8Hrvq5JebkeJL8uKw6AeiDA82Hf6h75YJvIhrmD4JFQB1czRGDgdiUBgSqa43LZ01MztNOaARXsCsAHU/JmyHB6o6CngBy5VcZMZXuY0iMB7NDUwJUCJa8EAWmQVIqEAkYvnp4gX9nkugEdGRmQwaYXpzxl0Bn6Vrk+kCTUHPgOBnwKYr1et6urq3Z9fb0BBUwnmViv12Xfvjb1FGYF/twrH3mgrc3PhTqg1LkoTSdU4ILPOB/0bhx8U9F6JILpXP6TNye5cTBA8F0BgVT3ESUg5NfJew+0UWcl8MLjPpLrKJIbF6XVN0wUxVUbuAzJYHr7MarUWv2atKLFBATu0ass8pxkxccf5TOd05CKZ+p6jm8HEtSNrLNez+bXEiXf5H2XSFICpZXD6s/5fweBM7QIDPSEjoiztbxwpFKmYp4e0yxPqSGS4PbAQPUapJeVQkn8OdDRtcrb0XMM16UyHRQIEBBpCwT4NIEGszxADXwOABp5ggEO4LS3gQbHer3eTGVcX19v1giw/u8NBpwcRbsX4Gl3RdsijwSwfI+mcRwwwtMzkiMgUMnXKBrgnlNrTwGU6pc8a1deSbk7D6O6elrm5+N/JrqRru1jRGBXctDTWtvSOx4VIiAWeTsyjXRGcpRcFgU+PILQA+qpHxIoTecO8lzXu56jLvdoiWycAIG/ok2ijmQbeFSYkRClpw5OgCCNv9R2bMMZ2jkywIKI/pmOcyEJxZOkDFUWFaaOjr6cPLyjtAnJ6RobuapvFZrSucqmF1KFXr39lG/VuTTYviUx10XIg2coX/kpf15X5IFzv7pHAScYUJmskyIDnKYgEOAA4nbV70kJOVdeR0U9rykRlYqXT+OfPDOdzxhJ95KUp4NZlc3IVKozlSSfYXoHAA4CkmxXQMDbYJYqhedAK6WtIoM/G7GO0k3y3EnJ4RmNidEY8qmDBDKrqZyebua1KoJRedgkyggjvQ4cGAlIupp2gPmqTOpF2gsdCVgqEFDJKa8lR3lEO79NIFKl/D1UMjUzuHsK1RFdD4l5Q6khGRGo0Jb4dSBARereFtP4vC8BQVJ+HiL2hSQqy1815Dn5St8sIJ8yXlLw/Cmv1rZftVLeigr4wkyChOvr6636CAQIxPhbJm9FSww9wVPypFM+Sb6XRBKYl0cQfKqiBwgou74wzD01kWTUF+WKvOwq2sWx6Yup0njtRSRG0YrkbYmH3hREBdwcwCS98LOQAzbpRBJljzouyR3bcyQ7In+ttgIDKU/mrfqwbj6tR0c12ZEKCDHP5PRSNjjGEs/+fBpHeiYBgV5koKIZh8ZpZ+3snjd/FC73OjzskvLkf6ImH6BUlMm79w5Mbw0wz2S0K1TqYVcZWC7GEX/s/Jk2ZZ6u0P3HV7v8xzz5X7ymTYtaa5uV5Rywvo8B8+NOiHy10Fega7vq96LkkYvcm06AkDQ70BxA9Hhjejdg5MEBAp+j0U/yMApfJoXMsgR4k3fNY0XJIFdAxeumdpqNxsyQOxgpevFRqGo/6moPT6eIERclt9aeyI6XyXUtDg5c77TWttIrHf/Pjpn7+/sna6O8Lm5cvb+TLGos+JsnHkX2qJlPjSr/BAb4aiajNbRXPLq9GrXNLrQIDLgH3dq2EpDX7R4gBc5DKG7svSwO0rRxQwrFpw73xYIJZRFZ8ud18EHhypT14LVZA0KDS6XufBEQeBuTbwktB7UvBvRQMNuPUwk+2FhPygQ3HlK7vvdeAw7I/NxB4S4Gn1R58LsYshRZ8v/s/yoy4Ly5d5SUo8pXu6TX8/gslZeP2aT43VFwQOaOByNxFXhK5PqFefq1jwQKfLy3Vi8q83q588a0zJ+6w8uQM5acHh9LSVczD6fKGdO5XoutKNmR3vhjNMTlwR1O1810dtzOyAbpno50Ut1Opf+9qECls2bld9GaAQqUKwHNPWkwqpM0l0xjkIyOd5rfZ6V6jcG0HhmQcqLiT4JLHmeoJ1w9A6QBUBlYKlD+KBwcqD4Ydc+jAO7pO0jzfnGA4Wl8IaYLb2ttM9XwHlTJTZJnAoIejbzTFH5kW7yEZ+vG3YEd5SrVx8dV4olGNilS94J0La3v8WcpUwSjPh74vPjgviNLKOkuHV0v9BTvvpCDfl5PvPd0KMdzNWUpw8vFdkzjTh15ZDq/nsZma0/fMtHY9Kiw7qWxmwy45+tgp5eH8pE+ZWSU96WPZejdJvGbPvpmjOt6pq/aiG1J3b/Uli3eZ8ALImOuXIg4j4+Pt1A9n2OFW8ubkyRU71SBAYKAFA5Unehx85gE38ttbXuBI1FgVWZFjib59oMLiITNFweuVqut9QU+58/IQ/LAHh4e30JIbUwBVQSAi2o0LeDhsPciHyQEAZQVKpXWnq7l4IBPHrUrBBLbeQZMVAoqgUcfU1JGXBSa2qQae7OUgG4ag143/+91S2Otms7w9vTwc0VpXPr5voOB1mpA4OPZr7tOlRxouo8GTPrk4eFxkxzagzQuZkC181FFBxg5SP2bjCHveXQ2jVN/7VE6gsCDzhHXXOl52hzpby5edwDAbdsdACRQ2nNsUpstkd+d3iaoPCpXtPQmFClIBsgr31q9CENUCU0PEKRG9br5wHJgUPHkyM/PmZ51J4LkcxIibuurn+8GuFptL16koAoI6GuHXCNQgTL2Lfmn58+FmFonwC9Xko+Zr6O9NfUGSdVPJG+7NCVQlTFjcJe2VeUFeF10jcZ/NPYqkoJNoKgCAkpTTaF4fUY888jndo28VI7OvoGC5G33IipVhDLpKAJRjXcauru7u623hliuh9iln1zfJuOWQHLS15QfP/eIhoOE1I708lUHBzfuMDDq6vLvDhyNPreGd4BAQObtkvpuZOyXyuw0GKCX2Bsc1WBkyLkntH6tBw56zybj7884CKgQdq+erFuKDIw6k9eIfpVH2hMhhY18fYEDAe5YWAEyVxCak2V5Em7fYIaRCwcBCqVVb5y8BY3Cpp7WwWBreZ67RynvGSPlynVUfs+bZrSD5VO5eWjXZTXlS1nd1fCSR5dHV+K96JqP42RUPG0lC/tm9HtEOU3/K+NPcrCofqUjRwPHDc0eHrajBD396Uba+2YJz3xeEWeVsWSMO0BhPZJ+rO6TH+pHfQOG27UzUsBro3UBqS14rdJHS5ywxZsOVUz6eWv1fE8vPF09n9JVAMDTpsZNQGBWyWuwJAXq0wJV+VWees7z8LCd14ULxbgngYCAPmzkCwmrNlQ0x1898mmKFE7kmwPHx8dbQOa9qAcEl1BlGHvjYgmluX9dX8IzlUAVZXPvWvdG0xee/3MiPq6semWTb5Lkn2Fg8joDVj4SCHC94kaN/ZKMQU/fUmb4W61WG8Pr0RhRktEKwIq3pEsTr25LlAenDpif6u18prbyKYMEsnoglI6Sf7H19vZ260uxrle5cDBFsFn+LtHCJXL9Yi9+V4W6oWBHLc236tg0MPxeyisNEr/GAVIpWFesXu/UPr3QmefrQkID4fsFpIgAv2eQFrt4WzH0f3Nz046Ojtp6vd6aN0sCy7ChNkdS+EsD4D3I203Xlg4uhggTqOiNgRlKc+d+7mVW4fYK9DgQGO3f4fkkpZzKqXjyfJSHprkSIKesOUhm+QQEL2ncnwN2XpuSjnF+RzLK8eFp3cBSz52ennaNP8v36NaSqbKHh/EaG/HkACEBx55D4FFBPd+TAUZOpDMJADQlQKfIF11XQEB1GzmqVWRliZ570V1glnjVRG4zgzd5sDrnteoej+LVy+a5X3O+yUtSrBUvXvaorkrv3r828eHx06dPm88c+09bGVdvEbiRkBBzO9ybm5vIs4cIPT8Nkvf+NoHIeewpSEZsXNFU+be2PHTO/ugtHpwhnxoQ75JR1k/nKepUeWOVQSctARc+/5vGmPMzMi5JOe5KLwksXoM49pKszOjXymFSn3DeXLRer59EdaQvqDfSVIIMLacPXJ44ffTw8Dgl4UCDU6Skagz2wJITeXaZVntwm3ut6+KXW30a1SMBPSAw4p3Xk8O5RG/svANhQiA6FyOtPTYm0c0uXpmX0Tt33njsUVJAEuge4nTj35smSPXvoWvfFCgZDUUEuBsgIwUEEf46TGpjesC6rvCWIgVUPKyPeOZzrT3dR+I9yGWB3o6u68c+YP1UdxnVXSJcpEqxzZKHSfVstRW2g74UGUi8ppCweB55bClPH1+tbX/GuUe9tlQe+i9ee2Ho0W8fZNeJ4XvyyAiL9zXD/pWj4sSx7juhnpyctPv7+ycbkhEM8HluYkS9wCnEJItu6FL0gjqRaUZAaLV6fBtLsugLA10Pkj8BgOpNAa6vqnYXZL7sD68z+XDni23h12dp9bDvsPdABzrQgQ50oAO9Ki3/IsiBDnSgAx3oQAf6qegABg50oAMd6EAH+sXpAAYOdKADHehAB/rF6QAGDnSgAx3oQAf6xekABg50oAMd6EAH+sXpAAYOdKADHehAB/rF6QAGDnSgAx3oQAf6xekABg50oAMd6EAH+sXpAAYOdKADHehAB/rF6f8DE17AsfKiKesAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu9UlEQVR4nO1d2XbruK6EMzrD3n3O/3/hfbvdO6PtxPehbymlcgGknMlJhLW8JEsUJ4FAAQSpxXa73cZMM80000wzzfRj6eizKzDTTDPNNNNMM30uzWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44nfQmXCwW71mPL0OLxWL4HR0d7RyRhkn3dcLzmp/mm53jGBFxfHwci8Vi56j0/Pxsf0zZs2jD09NTbLfb2G638fz8PJxzG7mt7vx//ud/Gj389nTovJvVr+IRva7pI/J3UZXN/93zrffM1LOfmfKQy783r/emz6jDofNuL7l2ZPx9dHQUR0dHcXx8HCcnJ6Pf8fHxcJ+J5RJfc2mQ7vn5OZ6enmKz2YxkIss3lnP8+2rUU+duMDDTLtPiGh9BPcK3Z6Bvt1tbXkSMQEEGFlp1AcMfHR0N6VxbWEjrQOEyWmBgpo8jvN/etNk18KAj3HPlKChxIGVqPWf6epQBzswQAhBQMID/CgZYwet1PQdYgOJHuU9PTyNAcHR0NNxneefy/i40g4FX0FQg0EtO+FYCWVGy1k/TqHB2KFv/Zwi515r7joPnPSnjrYhdXsj+T+nzir8UFFRHzbP6n5W1T/1n+hrkgAAbMQoG+AdAwF7YiBiUNgwa5hsocJZ1mdHD9WGgAEAQ8SILQd+JR2cw0EmVq3afvNz5a5/J0ug5phOenp52rDVWCoqmK1dZpfi/04A5NNL3lVnfPc8rOcu+Fwj00qz0vzc52dMCAhkYQFqeztxut3F8fDwoaZbNuIfziBfgAPmH+1w/9sZyfngeYOG7gdYZDHRQ5kKdCgR6lHUrHSPcKeUz4sWxAgQRsYOAs/ndXvoug+ZQKAMCEbki76Usr8oDoWXsM02RgYzvJHR/ClVAIAMBGRjgtFoGeAX31BvAxGlYHnId1Sug9F0BwQwGOilDilOe56M717ydSy27r+QsPk3PAIFJ/ztvQKVsKotypvenKYq89by7Xnkj9gEhTunPgOBrUybbFARwQCDfU28AgwAn15j3FBRoGpVTWr8Ib7jo9MN3AwQzGGhQ5RVoKeksr5ZXoPpFxAghOw+BBtI4i43nxTiNmw/LvACVcndK4qsPlveifYFSBSYzgdmTjzvXulZ13ufdt/KaAcHXIceXVVyAAgH9qXzNDB3lC2foZPVV+VoFI4K+GyCYwUBBmWXeCwIqIOHOs2WEPCh4vixbNbBYLEbM3FLkbtBUgYEVMp+F9ttTxVdO8Op5RJ8Fn5VX1UXvOaHYA3Yqz8V3ELQ/hTKACtnF3oAMDLCF3gM4M8oMG46B4qPzGrjgbG6TxlNxfl+NZjCQUAYEWGFP9Qxwfi5vHQwMBhgIOLQc8YJUMVA4HsCRgoAe61QtTx0AfMyUw0zTyfFYBiozD4ETVi2gp+TAA/633nnFAw6o6LMzPx0uOX5gmcaKX1cHsIwDqWEEUotdqYp34usKCrJpUNTFtYvJGVNfjWYwUFBLUVeCtzfPDGhoWS0gAFKm1OCYCM+oGlzorLIeBYNBlXkLZuon118ZKKh+Sir4egRXFQ/CdXmNsq4U/gwAvg6pTMuCAnWpoONXp/jV6InwIADXHRBQeVWNCQdK+B7XS8v+SjSDAUMtlJt5B0AtpuoFANV1JWf1qXcgW4GgAl0BQatvUG41RTAL837qBZX6P+MrTp+BNyXn5s8sp6qOLUFbPefq7dLM9LmUgVMXG6BAANcjcpd8L01RxjpVwM84EKr7E2TG1VcGBDMYSMgJVze3lYGBbJ4+U/AOFESMgwUzQnlZsAzyw/0sP542cAGGPVQJ6dkz4Knql8rC13fDxwysVtM6fGRFXln8DpRU3gEXGzDT96DM2NGVA7pKIDNypoLPbNqTFTpvUITzDBjrWMBzGc86T0UGZg+RZjDQICdgM+9ARL2kygGBDFxEhA0WzAaFC4pBWtxDfm7ezdW3NxqX+ym79xUGwyFQBb7c+6/+O/7MQKsqfiY3VdSqQ+t9V+Nk6hTGTJ9HGRDVFQEKBPS8yluJjSVV+LyJEBOMJbXw4TlV3m+BXg7O5jZ/RRAAmsGAkApTHLOfut7ZouL/OM9WCag3gAV4a3pABbqLGzg6Ohp23GIvQdUHjKY5L0eKslXpzF6B6bRvn7UAQcSu69/xEVM1VZDVE+md63QKQPxKAvUnUcsjpYBAf8qTkC2VbKqeq+oWMZaPDAA2m01ExAgYMLH80rEFAMBg2pX7FQyiGQwYUksq8wo4az5zs3Je1aCYAgSUWPByPdj175Q1p9d+ACBw99xzfL2yJmf6lzLw6e5X15iqPldLSgFcJbA0X+VrTZfxmkvD1/mo12c6TOoFAQ6YMvUCgUxOoi64xrJru3358urJyUlsNpsh7Waz2QGurenOzDh08VZfARDMYICosqh6fnjOeQaqwRKRI94ewe8+t8n3AQhw5AHC9XUDsSXUGTBkO37N9Dqa0oc6b9kDDHA+VVAp32d5OeDYU94hC86fTpVCrABBxcstIKCAwq1E0GtqyGy329hsNsNvvV7vyMOnp6chLT+XGUBZPzh+P2RAMIMBIRVwU8FAlieOU9xlTtCCwFAuVkDBCAjTBD27a7VAQEUzAHg9aR/29KkKLHfem5fmm9Wp4lEtT70HfD+LE+g5n+ljKTMK9vEI9MzNs6LX7Ytd/EFWPuTi09PTAAQeHh5GAKKaMsjOM33BBpJ6Sg+Rf2cw8P/kXmSl8FsCNRswOmj4WvZc5jLVb3MzEGBwwO3hZ6vI2J42cv6Zd2CmadSjVHGeAQZ+J84z4MBBDx+451qKvspfLa0qj5kOj3qNpAoMZCucWE66pYkMAE5OTlIQ4IIUn5+fY71ex2azidPT07i/v0+nYyFbuV69ngFcBx06IJjBQPQFCmYvWv9nL7p6nlcNKOkcqttZy00TOACBNGB89RDogJnSd5xH77MzTScHSp0QU3qLKRsVcD1eAZTt8lIQ0Eo30+dTZeQ45Z8pWX33DAr4d3JyMuxJwHsTMAA4OTkZleUAAe9ngPJWq9VoF0SuG8tS5sGWXFevgMrDQwYEMxj4f2oBAnfPPa/XWAjzswAA7KJicgrV7aClcQIOCPB1gADUg8EBkwsa7FXyGSBwec40pl6lXQGAzBPQmvaphJPj5SqvVr1623lIwnKmF+rxBjjvqlI2hcVA4OzsLE5PT4f/uKcylMuArEG609PTARRE/CvLkC/S6lbFOPYo7cor0BqPh0I/Hgw4RqyUfw8wcPm7fJSZQexyB9MoEKi23cxIkW5PvfFcxGz1HyJlwLVF2ft3VnoGBLJ8q/9Znq18Zvp8cu+/8gq0+FFlEZ6F5X9ychLn5+dxdnY2AgT6eeOM1EOB56H8N5vN4FVAfSL+BQVYdVB9kTDTCeoVcHKzFZD4GfTjwUCEn/tsId8pwlfTMyNr9Cuj0Yix+8wpYgcCelGnE8bVsxkQOBRm/k70lm793rQuKKqqi7N4cMzAacs6rKYO1Lsx893HkZMTzhOQBQ1WspKteQYCy+Vy+J2ensbZ2dlOfEDEiyUPJQ6CHGUZyx4FgAOkfXp6GoILAQZwzLytXH+nRxgQqBF3aLw8gwEi91L5P89JOQbPrO4MRCgg4LTMHC4ojz0HWVt6FQpPFXC5Lk5B7+l55TmYvQrvR1NAass7tA8IyeZUe/PLQIDzUHG+hyBEfxK1AEDvKgIljgU4PT2N5XIZFxcXw+/8/HzHso94UeKbzWaQL1Dg4A/ISlxDORExeAYUUDA44CkD1x9swDnln52DDoWHfzQYUIXtrlWKnNNXApafcd/0ZkAANKp5uC8KOkCg9cna1qIsYJGPet89r/0wU5syF2LLsmrluU8+4MnK/a98UU0x9NazV9G/NyCYebb2lmYR/g4UgFiZcx4KBC4vL+Py8jKur68HMKAe1PV6PfAnQAGAAdcTcQOstHklAvIDAGAvATYkiqg9VRUQ4OerqYPPpB8NBiL6pwgyxMvUAgIa7epiBvCfAQEfHSCIiNJLoJTNtWVKXhk5o8o6rK7P9C/tMzWQ8VtPPhkAZmCr86W9MQEur1adsrlZl2fr2lvQDATqeXH9JLEaOE5OKhDANczpn5+fD0Dg+vo6fv36FVdXV0PMABtM6/V65M7fbDbx+Pg4AISIGAIGkf/p6Wk8PT0NAYUoG0AASw4xVQBgsVqtIiL3iLaAgI6fQwQEPx4MKLVAAM9VOSuc8+H8GADw86yYWwF66vZC3ttt/oEOrktFFXNm0wWZYnADZhas+1Gm3PVaT5oqf72WgQAHEHBdlX4FAHoUf1Xn9wYEM7/ukpNluuRPV0fpCiLlWbbQsXIAgODq6iqurq7i+vo6zs7O4vj4OLbb7bCNMCz2zWYTq9UqHh8f4/HxMVar1QgMPD8/j+oJDwSmCLjc5XI5bEi0Wq3i9PR0NAWBKQNHLD8VCGhAIfJSD+B7e7oq+rFgoLKoKhDQ4xXQ+26LTChvTqcrBjR4JWMSrYtD3440v32BQOUyzsqaaXqAnwKDXi+A83S5vFzdMjDA5/xrCbPXCD1+5r2F5j5emu9Gjs9YfrES190BMxnp8nZgAIGDFxcXsVwu4+zsLBaLxSAT4RWA0n58fIyHh4d4fHwcrPqIl5gAKPbT09PhGa0vykcdzs/PY7VaDd4CNwa0fRnP6MoC7k8HoD9DXv5YMBDRDuzrBQLIS885PaNpTc/EuwlG7G6A0Vq/X7nltBxn+YF6mTEDArPyr6nioczibwGCXnBQ1UW9Q1yOTh/05NsCja+hz7SivjspLzoe42kB3bxHg/w4LxAHUPMqAqwcgELGKgKWhQACDALwg+JGeev1emTpoxzes4A9FAANvKQReXIdsj7r6VM3Xj+bl38kGKi8AvsCAUWFPJ2gebgBw4ymPzB/T5scEMnS98YA9KwCmD0C/dSjrHsUfgUC3LuvnmFerAAk8nFegWoKwZE+p2mnWk1vDQ7mKa5/yfGhykmVmUqZDGE5xYBApx8Wi8VoXp+9AfhhisCtJmBAgGBCBgS8DJEBAad7enoapW3xGvONTqPp7xC8Az8SDES0Vwr0AgHOD6RxAFnMAYiVbgYIOJ2Wh3sMMnTQ4hnkwQGKupdBiwlbil8txxkQ/Eu9IMD9z/i08hS0/mdlZYQ524ixZ0k9CZXyryiztqr4gI8Qmj+NfzODp5KTuooApEvuXJ4cf+DyQz5PT0+j2AAGAvjx/D7acXx8vAMEsBUxr1DguigYQP3g6q+MM2fps8LX6wwIqrTvTT8ODFTWUgYAnAXVspbVUtcjK+mIXUWqngEWughOQb04ctWV5+rOgh3XHOP1RLuq4p+9BGOaCgIqoJoBAfe+W3mAMk9AphQAPFnQq4XPlF1znoFWH/1UHvoMUlmC815w2ZN/Jn/ZUMFaf/YG3N/fx/39/QACVqvVaFlhxIuM5c8VMxA4OzuL9Xptg7o5yBBHxCK02tnjuVIAwP38WTz+o8BAr5B0LjD8n1IO5+OOTOwV0Lkptb74HHm5KFUV+FyvbF4Yxx6lr8f3nB/+zlQpcj7v+WXPOi9CxH7fi1BrprXXhPLTPvyg1tIMDD6GHE/pPZ0iArFHs7VKynlf2RuAFQO3t7dxd3cXNzc3cXd3F3d3d4OnYL1ej4walAnPwMnJySh2AOeYBoh4+SaCThdwXAHXcwqY5fYqKHDA4KP5/EeBgQg/7+VQaXYe8eKS791Rj5WwY3pVrFUAoebLKBhHJzi5HkgHD8HT09Nw7GlXZfFnnoFZcHvKrC8c9/nxsy6fiP4VJyC2nHSqAOcZ9b77TKhOEYgzSHgdTbHu1bMDflDDRac5VQ7pVCaeAxBAnACUPwDB3d3d4BlAxL8aSs/Pz7HZbAZAAGUPLwNAgY6XLHZgs9mMxoLrD25r1c+ZZ0Cf/yie/jFgQIWtgoDMgnKDAy/HKU4nZMFcGlToBOiUeVWdKnD1ZI8Bp+c0qIvO9VX11HKqes/C2ZPzyLxGyfeki4hUmLm6Ib3mhyMAZERYZaDlZ9ZOr2v1tWBhpj5y4JRJvZd495hLZ7nhpjnVI6WKELsLIviPpwdub29HKwjgvmfgAYJb//j4OFarVRwdHY3iBR4fH4cVXrxXC2IHeJqAV0xgmrXi5YxXcc+N2wwEuPtvTT8GDETsL0j1GlMWGIMjf5QITASCNQ7qCd6L8Ja51k0Fr4sT4HlfrTe3SyNolaGrKYVZSHty72sfXqye07RV+dl1BQKq+Hm3TOWnCC/0HN9UQGEqzeDgY0g9AhEv/MJf/UPaiF0DBdfAP0jLKwcQLwAAAPc+7nFcActiLhMWPaYb3GoF5T/wtwICxCBkY8uRGxM6NlSOZ+OE2/aW9CPAgKLcnl9PnnhZzhvgAlL0U8VIp5GprTk2pMGRGYSDCVWBO9DAdeRpA9TNAQIuV8vvqfNPI+33ltVVpauUeC8Q6Ck7wgMBBwoynkEZKswyvskAwj40A4LplAFURzqNqXKB03E8ATyqldXM+cL1z0sD4QlQAKAGiBo+8DKw1Q8wEBFxfn6eegfcTosoO+O1Cvjyfe3rliesdW9f+hFgICIPznL3p+SZWTNQsBqLAGbLFL5Dtkw6L8VlqyfAuW81eFGjwpHGBRjy9QxJzwJ4OmWWPv5PzUufyxT6a+vsvEzKC5lXwIFKbcNrgcHMj29HzlDSeAGkY3LTmi5fF5gHgMnfDOCPCFXyEWXxUkB4B1Ce7msAkMIrs5Ce07ip5B5AoPXMnu0FBW/N398eDDihmAleR07htcpTZgEDIWIV6RRRt1zrOrDcNR4IXP+srq5dDAzYDewATy8zzkJ5l5xgbFH1PjWf13gFeoj5hPnITT85QMBtUSWTXdunjjPvTaMpfNkCA0iDe07xOaMJpF8RhFJnWZeVhyPkF5flpgtgPLF3AEAA8pu9BDpVkPFrj+x0noHs2Sqf19C3BwMR0+ZYI/waaLa0K+WalcuMzvltNpudMrPlhZquKntfcl4B5z2Y6fXUo9hdWmd9Z2C1BXYrUp7X/5l3i8tWRaCAQNvWanPV7o90qX43yvhG5aYj9K0CwEpRs3XORzamWJnzlAH4rmcFC+cRMZ4ugFJHEKGuasCzWk/+LoOT21X7lSrPgPbXe/PwjwADETVzt4Slupz0niuLkS4zWib0dIMhBQLOc5BZ9Sif68LHXnIWnvNE6LlrX9ZXP4V6vTWt5/QeH1serIoHM9INXPZZWdKyglqWJ57Raz1l99yb6YXcu8iMKVCl9F2+bCDB8maXPfMpBwg64wj5uLozYMymC1wgIeeJfFmOqxfDGZcKVpFPy8rP+u4jePdbgwH3olQptgSRujSrJXctZZsJYl2XmzE96pTlqQPWLQnLGM7Vlc8rj0ALBPSUN1NOGeB04PC1HqLsPSko0Gc0iKuXsvpmngcHqqYI3Jl2qfIKOLlZGTVV3pxPtrEPW97Ik40lBgZZma5OyINXvmCZIeqBpYcREaenpyO5qR9TOjk52THgQDwWnO7QerXex0d5B74tGOhh5hZzg5yQzYL/WIhNdaf3upX0XK1/blflFVAh3nL7cpnqsch+3K6fLqQz78DU967PsNCpPAOuHppfxQMcWJXl64BB5TUCZVadWqA9AjFLMwOFmnpBQS8gYEXI8oiD9/BFQv2SIOfH8QJumkCnNbN6cSA1PATYphg7FPLn5rkeHPfFSwyxqoDjEpzX5L0Mo7fM69uBAbWCVemrcqwYvMd7EDFGbswUjEYxv8TpQVUsgg4o5xrGT91YCg60zhUQyAS481S0gIBem2k6tdzfaoWoUI54iQHQ+zhvrWRh7wDn6/KYAgq5Pk7583mmbGbe2o8qAKD/1ajgdNX742fZwnZfBuT8t9vtoLA5eJCXFLpVT8oXKtchk4+Pj4f8sRERwMBi8e/0BZ5TbwZ7B5AXt7nHW+XGaEXvzePfBgyo4p6i/CtQoP95uR4ThJ4uv8NGP7wTlqt3T5u4LE2j8Qk45zbw84yqnYu3h/FU4HMAzQwGPoYyhZkpVRf3UoFAdVHCsmrVqQUSNX0vzYr/fegtvAIRuYJzgIB/vPc/iKcFGBQwIFCecvyf1Y8BBZfDW7Nr7JXWmeMPtN+4zK/At18eDGQgwP0yYODm1jkvkLqNnFCEUoRLlZEjQIEKY9RB/3P++oxrO6NabqurI9cV58qsrWjdSuG7e/MqhBfqsQQi+uZh3Xn1XBX74cBAy+OQ5THFU5R5DVz+M70NVbJT/08BBK4c/NhYYUtbZTDLTgYDWFEAMODiBxQcu7axTOIyTk5Ohv+ZnGZjS72x6omo+DUDCNU4fk9Q8S5gwDFJ1cCpjXMCcCoTOyDggIGWUdVZUSeegWIHKHDCmBkN93n/6wyUaNvdLodaRyBqLLfpUdYV0q6Evqb5yZT1Ya9QzdJWvM/UspiycVk959K7PCuvQAYgXT2y+s00jZwnQP9PVf4OKKpHYLFYjKYE2IBhRZcBAZ0myORWL79CDnL+HMAYsRsrwysPKiBVee0UuLT68SN4/E3AQGad8H8nmHDkzmkhpay8jHHdf5e+WiaSURVhr8GE/LWrbKogqyfKcnVSj4I+x14K/I/YFby9Vnv1Hl2+OOcphJl2KeO3jB9bIFdJhVFWh8rNW9VTn8+UeY9n4LVAMks789+/lMnrHrlX8VfrmcXCxzWxnETeDgSoV8BNS6I8p3SzerOM5i8YIj1iA7bb7SBv1TuADYi0fO1nPWb9lo3F9/QUvAoMZAIiazinyQZ8JZD0f6bY9VqWPps2UHKCtEJ3nJ6XsuDcfSpYgYlOETCQ6AEpXA83J6wbG+1DLQGu9+Zpgn8pA8i41gIFGhyarXmeWqcWUFBgys9FjKedeoWUAoIpP33e/Z+pTU7GTjGM9F0wLzHPaqQ+Gyys5CNewABvQ6zxA9nSPtc21w4ul+MFWN6enp4OeXP9NE8GCW4c9ehE7dNeANACFr20FxjIlHDV4EzJuo11MmHoytd6aHlVWgcIXHlaZ84LitsBAvUOcBBhyyWPfLle2aYYoFY0OAvrloLOAiWr/PV6ZQn+NKqEQwZcM+WvQEBdrVPqwe9Zx4qORcd/zN8s3HUMVkCj4qUZCLwtZTIuk+HZsxF1wHEGKNQryla5GlH8cSL+QJEzaFwdsnojLcpSo43r9fz8PAAEBg6uvS5mAMTyPBtrWl8FV3qetXPfcdANBioAwJ1YKWWtLHeOKipXtvtfAYKeerNgzYgtbDdfj7n9SnEq6MkEIzwIPZS9/N5o74r2teIds85C+oVagDPjTbdaRK0tpeod6vJAXhqV1Qnp3HjMpsx4zGSeJB7/fGReegswWQnSn0qZTOR7Siq/KuXEYFZ5FUoYW7JzDBPAAD5VrCsJGBS4OrRAMdcdQADESh/8yzKe6zEFgDAQyEABt8WB8l5QsA+fTwIDTlCpxcKNqJDmdrsddYgO/qoe2bUWEFDBqi5WJVbcCgjcQFFQkKVzpMGDetTlLq917XPeU57rZUBl5FkIv1Bmkem4Yp51y7EgXNnaYv5Dv7tVKRlfViBV68fkoq+Rn8at6JEDWrmu+8iGmc9yagHRVlpVUnyN0zrdwEAAz8PyVq8AK1x4BPBzAKDnnWt7wVt8BChBnqgL9htA/RgosOFW6TtOw3qvSt+j+Kv2Tn1mEhio3JWM+BwjOQbiDuGBz2k0HyZnYWdAoOen9avKqsqtQJESM4cj1IWFLVtbOlC1br0ImfPo6QttQ2YtzALaj4EMEGTTAPq5VQgotdR17XREHmTqxmvLM5B50fjrlpw33KwVoa4aV8N1coDA8ZYbD3r/p/MjqJJJ1f2IXD4rL1cGERRrxNgrAMX89PS04xlQa3yfd+m8ThgrABzsHVCgy+BVvVwRu596b/VTBnYzXp0CkKdQNxjIrGlnXWcdEDF+EWwtABAgjaPWwHflul+LSTNy80HcbrW6tU+qsrLBonmylZXll3k6UE6l4N1A4/eSgZZW26b083eiaiwocOwBAvxTt6taN7jmys/4v3pPCjxU6OE/PGRIo6RjBsIV1p/WwU0ROFeqtmMGBG3KjKKpBg2nUZ2gMjfi5b2rcuegPg4g1KWEmcxvEctNnqZ26SBn3fSwggHtjyxfBwbUmHKANwPsb8nLrwIDPa52kFqKTqi4uUWmFurXdPxfLS83AFqk6VSgaps4jbPCXP760tXFy6CJy+E6KBBx5ajSV8Wv5Jg+a4/WcQYC7akB5k/dRRLKX/dxx/2IsXCK8AGBEW13v5tGcsCB+dsBgogYgQI874IQAWLceGTLyymBChRU8qJXlnwXynjRpXMKqyd/BQI6ReBkG8sK8K9bOcA7Dva0A2XwecUzOj2FIG/Ux8XK8HPM3y4GQevsxn7F2x/Bp5OnCVRYtebc3VHPkT8DhdegoarDnfJ2jJIBEVbulVB1ddFrvYT6qdvXAQNXjqJaDWLh61oun+tKBKWqP6eAru9AGUhy11RwaowAgADv4c7TBBEvy574nWsgKrv4s5UpGYhzQID/a9nqJuUNZ9xUA380JmJ3JYHOsWaC0smGSl58lKA9dMpAQCYz9TkFtE5OqvJdLBaj6QHePwDeAJ0eyNzvGWWAAMTTWJw3Tw2wJ7YaK84zpmlbvMh1Vnma8flb8fBkz4ADAs6FonMpqkCyAfsWCsMxdTaVoR3d63WoLB33DDNS1s5swHG9HChw7VHwwvfBtM4KdIqemb56p67uPw0ERPRNDTgBmgUJAggwGHCrCNilyTzCniLnwtW6srB25NymmgcDVi5X6w9iIMDEbXLjpmXxabuy+v5kQDDVeMrycB4BXbfP70bjQtgj4M6d19J5XNXLWemVio+1vNbusciPp3MVYFR92/IMaBvfmm/fZJpAK+9ce1PczHq9BRJailWFXoW4tCx+nqO3+ZgJ1oxU0Lasseqlu/pm3ouqLORVLWtUIDDTLmVAoLKgnCcAChMAQL0CrEyVBzJvjysX15wFru5Tpip2hOvjgADaw7JDXbFOflRlZ6Bg5tM+Uj51Fn2VPuNnzitiF9xF7K4mYc+ABsOCnGwDOQXsjBaV25kcVz3B6blMtImNLXjo4GlwuozHjAJYVz4/85Y0GQzwS3dMokCAgz5wPyJX1r0KNSs7yztjbNehbF3r4HBAoEKXTGytqdJVgccWnYIHRcMtBcRCFgOElyqyq67ql+xeiylngbxLTohqoCADAI4X0LGnYy7iRcByec47oPXBs69tm/7n9qFdzJduxUHmrVosFjvtAznBPfPfLjnZkcnLlkx2vMXv3PGrvlsAAAUFLSBQAQ7mBQYh3FYHADSNlpn95/ZBpmYBvVmfVkBE+xDp38pLMHmfAQcC2Fpk5a/n+kymxPR/D0DI8suARuVtcECAmdwBAWd5OzTqmIH7TduOMhTogDLmdnVF/RgIZK5XrX8PsznPUDWl8N2oBcrcTy0pBQIaK4C0IA260jGopECS+eKt3k/Gq9o3zJ8KRLk+zjuAdNn1GQS0qSVfe8CAM5gyEBARI7nDgID5uMXDKI8BZbbEFrLOyWIGoplc1bQ93gTlP3g5OL9eqpT9W/P4Xp4BJh3E1Y/JdYgyZ5VG6/AahnblOyAAJlfmUyDA7W2tBuA2aLS0C0TpGcA4KlrHdXgGuH4MOFAfrR+XkQlmPq/e/3ejFrDVexUgcEsJAQjUNYnjdrtNo665zFb9WPHu6yGYIuycRcc/91EalOG8jpxXr7D87rzZQxlYrdK755xVrfkoCMA1ni7AfSWWvww63NhAXrDOM2Or1daWp8B5PliJ45pOj1TEvKt5cTkZ7cPTr9qBUAt3FqW77gSnYy6+36qb1oWvvyUQ4ICYLF8VUCC3GqBKn/UBP++EvjK45gO0jLwwFTGFuO7adlYmGV/8FMp43f2U17J9BSJ2vXG6AYqCUC5bvVlTSHmXqQUgMlCIeqHNaM/Z2dmOt0Of10AtFaB67uo0U5syw0zljQKCzIDUd9ojK5zngT1mJydjdQY+Ojk5GZXjlHsvqWx1gbwog79U22uU7gNme9O1aJJnoAUEqsHeAgJOiWn6nhfnEFQvKKiAAIQxf+taPQKYf8+sq8ozgLq7OunzU/uE0azWt5rDcqBKmVQZUfngp3gGmJTfsnGjvIZz5TX8d8qbrWkEKrn6aBlqkWv67fYlECoTnioAkTe/+ymGA4MgtOn09HTUNsdHCgg4315QMNM0yoAsK2ukY1Llz14AlZcKLFQuO6+ZTqExUHZjw3nauK585HpEjIEAjyfw4snJyfAlRN1MqxeIOJnL97R+r6G9tiPmRmSWLAsCVdCZwnVCc0qH9aTPEK6e84tl160ulYkYu7i4/cpcLFhd3SvLys1Vcb6tNmpZSpk3B/8dINDyfqqgrfjVAYLs5zxRvC4fPNASohHeG6BCWnld40k0XcWDeN7VSZ/LjAet58nJyQACIFgzcKlBtqCvzpMfCWD0vTjDCnVq8fBiMY5XYv5UIOBiyrSsiPHydo2vYUDAfMbTTNlKKedR4/o5/eKANRtbami9xhuR9UsG4velV3kGlFm4w1QIcoWdgKo8D5o/8mGqOrjX1aIvmuel1F2LlwumQZBIhoRZ4KIMrd++c7TOKlJEiaMGZrm6OiGtfeX+M/jT+281CL4KOWWbCU8+uvRqeTj3qpbNR/Y0LBaLwZ3qgCm7VTW/nqW0DIwdIABlSgfjDsAEgABjL/M89fDXVwUGbwEIKlldKf4M+ONcgar+B/jkqUmmDAg4AMr6ggNs8XMeNPYM6FQEK36NUQHP4XrFWzp+2aNWTav1kPNOvBft5RlopYOL0Vmb/GJ1tzUd0G7AZ2VmxM/1digLJnZJKQJFnuv1evSfBXTmauJgkmwFgoIIZiz+7zwQSMMCPgtw5J8K2x7QBeZ3Sp/ByHcEA05QOjDc+3PggEm9SMo/eBc8nnTawa0w4XfoyAVucR5cJxaoKuwZlPJP+4/lAoNxpMfYcYCiGueqWN9C0X4EfVQ9XZ+qLMj4VmOqGHSq18ktrWbeY0XKvMe8cHZ2Fufn53F+fj6sutFVDDpOnPeDP0iEIFytY+W54D7h+rdAxKHRJDDgzl0aZ10yQ+lAB+MoolPrJxsMagm5wa6MzZQpvojxNMHp6ekIgeLZ4+PjWK1WO+iSy2fljbpklrljPO4bMLsGTbHS5b0EIESdZVn9sn52faWCQT0gX21gTKUWEMgsJwVQGQBgnmDhpZHXLER1bpXHm4IB5OHePdJzHpoXnmeBylsMZ+Pu+fnf9eUY/5xOFQwrGgdAGXhqOehbJwcOGRC8d90URLm+a411tthxTQNeIZPwjjMjQ6fKXPwMDDN4BAAGeFqNx5QzzNQbsF6vh99qtRrVr9djy21l3uTx2CIngyud9ZbUDQYivMs/e7HqCWBhlS2hYmKrAULPDQwnPCtQANJ7uObaxACGA1bw0nmZnoIXjtrXMphY4DuBzICi8pKgLE7nQIcGZbWAANfdkQIB9nr0DIKvSKrAnWJXN6cDCK5PmZfUc4QpqWzZnROo4Fu3GqYC3CzwNR+O5EadofwhVFerVUTECCAzMET7M++Y9mPmMdG+z8Y3X2ul+UmkY1u9LRG7QNcBXAWM/H4Xi8XAuyyj2OOpSt9twMWeAZ4iYMCo/OD4BrJvs9nEarWKx8fHeHx8jKOjo4FvUb/KM6Dlsd7jdPu+F34f7t5b0SQwUJEKRlQUTIAOYobRrVZBrKh4BycFBFM6uEJaajk4YvTLH4qJGH8DGwCAy1PrTcvIAq9wjdvp9jcA4XrLpZV9NrSHKgZ01q1acN+FKmvJ/VSZ6Q+kfINn2GWpLk1+f8ynEIywms7Ozobxp4rTTTlofhin5+fno7HLXrL1ej0IVd5QiMuAlQjlAMqAYwX4q/eTebdUfnwVL8FnkgO8CgSch0CVMO+doq50NhAxJXt6errDb26LbgYeOtZ4PLClHvHvWAJo1S2y2SBVQOCMRQeWMvDKpAq/8gxUvPlavn01GFBLmo9AVeoVUHTHYADKlDvxNTs4KaJyHayeAZ2fV7crI1/OjyOf8Z/nylgwRuzuIZ+5a7lP2dPgLHWeQtCjDoKMeV6rtJ2i/M7egZalmgGDCiAxD/AnUfUDLmxxK39qtDXHu+iUnMaMcBuOjo4Gt+zp6Wksl0trlT09PcXj4+MIIMAFq4CHeRI8ygK38lDhfvUf9XfPOa/ATwcEPWM+AwQOFOgybBC/a6SDnmAgwPEAy+VyxH9Q/rqc0ClonuJ1AeDPz8+xXq/j4eFhZ2zw+OP0rA8cqGde1jGfkeO3bAz0goOpNBkMOAWkTMLX1X2pIIBRXsRLZ+PZXovV1VPRVUvAcD0zUubn8lj4gonQJqTReX697ty1LMBY2XNdUa/KCncxBgzUsmmATHH1CmAFil+d9lX+bsrA5ZcBAfY68QoWHSPIn8cZC1IGZ+zNclMOi8VLrACAAH4Q1rCoNpvNcB4RQx1Xq9VIwFZTR+ifTOBNFagufwcIsnTfhbJ+q667ce8UXzUeVEZC+bP7fbFYjIAAAMByuYyLi4uB13Rbbp3qcvKd80YeDIrhzTo/Px/FG/AUNcYZ6qz9pmOaedyNeyblc9eO7Npb0yQwkCmLiN35JL4e8WK1KAjAS2BLIiJKpVYJh8zlwtey+rv6ZsR1w8vmpVAsVNEWCHb9dCenq0ALCyiUzfPznMYdW+0Gs7oBpeQ8LO6/1umrk+NtnO/7Y9Ioe7aWVXFD6KBvmQfZI8DClKeZIl4ABvMlgwueC2aLjQU1ph8QCIh8ETfAwpvbwvE2rk96xutrSMfTd1L+LXK8l8lbvqcgt/IIaH7OWga/AGwyb11cXMTV1VVcXl4OeoIVNvjDxc+g3KenpwGgQt8g4BDAeLPZxP39/Y7HYLvdDkGwyF/HPOsI5V8NcOVnMr2l1CNf34pv9w4gdIyk1xlF6VyQggJ+jl1JSurGdJ3VAgSu3toG92LVlapCmN2zGv2tFj2ugZEzVOj6ukX6LlpAAPXg6YyKsj6vvDCfKWxZubxH3g4U8LlaB5VgVVJvkq6ZdnXhlS/L5TIuLy8Hl75aahzPosKOiUEB8oXAPj8/H8AAeGmz2QxTBhpZzvXWJWYAB5oOddD2TiEFyF+B3rqers8yHn4NsFXZg2kknPO7ZEUNvrq6uhr9zs/Pd/Z3AZ9poLnqD4yZxWIxlHNxcTHE0jw/P8dyuRwZpXiOwQCusdWPNrr4AI6fwP+WbK70gNJb88bkpYUtMKCklgUHhKigUJenizBWpVN1ZvY/q7MT2pq3Wm3KEAACDBSwFSUEJlM1DeL6nOulLquWcHTzszp3rKs60G5uPwOknv7uYeyvQE7Y8f+eXwUKIvqXH2nZPOfKIAA/zLtCEUKorVYrCwTc2FOgASvr4uIijo6OhiWE8AjoHC+PFwhXBqBQGCyQ3TvIhKpT8tym78CD+1AlFzIgq2kqRV/xuuYDzyPf4z0DAAaur6/j169f8evXr7i6utqZfkLgH/5jOorjy9TIiYghkJZB8mKxiIeHh1H8C5ezXq9HMVZVu7ldKFfjJyog0EM96fYBvJM3HVJEB3JRyPyMAgFeF6oD1ilvd10b3FJInKYS5plAZrdUNlfLbWIhfXy8uz81BgWjZq2P1o371rWjFajCgADPc0CMA03qNs4ATMsL85UpE4b6nvS6AwLqWtX7LvDK1UWf4Tl9WFQQphcXF6MlsBCeGEPgzcybxuNGgQdHYT89PcX5+Xk8Pj4O3ggF/dyX+iEZ1CFTSty/ysu4x887cKDlfCc+VerlWwcKsusR9QereurBMoe9ApeXlwMI+Ouvv+L3799xdXU1GClQzo+Pj4PihxdqtVrFer0ejBRY/UdHR7FcLkfxCefn58O4ODk5idVqNQBmHicAtvAOVB5m7RuW77jn9MCh0ORPGOucI4gHFZQFOoijPwEKOBoUz2RLplT5VMpGrdDsHP8zNMzMqs+4ID8wGZcD4Qj3KQso9ixkyBvlMyO9homYWd20gIIEtIOF7qG4/j+LHAjLAAHfYwWmP7WcHXiIGH87gKeiFovFAARgVcGy+v37d1xfXw/WOxQ/1lMzEAApIKg8dihf54x1FQMHf3E7dNqCzxWEan+7nyr4KdbXofPzW9TPGUHZPU3neDlid18LTR+xa4Qxr7OHiUHs79+/46+//orLy8tBscMbsF6vI2IMDh4fH3fAwHa7jdPT050gQIyX6+vrODs7G0AsL4eF9+Hh4WEEPpQ3uX08ZtkLywZh5X1+Db1WPneDAVbezmrh+fTMfc6ggIEABBLP+fC5CqOskb0gANf2QbX8PFszPEDAUFC0LKjAZGBuVSQ8aPierpFV4V3VNWuzY9pq2sL1o7PADl2oTqVMgGYgLgMCDhDo7nq6gxqPJbwfWNIsjJ0whWX1+/fvWC6XwzTVarUaBewCGIAcGFBQoIGO3GZezqXxQdi6G4DA8QlPX+l9p2z0x5RNG/wE70Cm6LWvWoAgkynMnw4kuLSspCNixCfq1QKoBZDFFCsUKmQpvAI4sgcgIuL8/HzHsldPWkQMHl0GzLe3t3F5eRn39/fDqhgHnHv7h/tzKu9yvr38O4W3J3sGWImz8oB1wZYmz5VkFhALG43c5DXUriMi+qItK8pepkZyO2KhpS+YXe4oB22CdcSgwLnvHRDIBpqW5RiGyYEAzUM9PRU5cHJIQvYt6pEJ1Gyg67MsHNh9yMAgIkb3NE+H/tXNen19PbKuAAYi/rWoIIw3m008PDyMyuJgRRcfwkBd93JHfRj8O88AL49UAq9qPErGgy2B6vLHcy2eOCT+fW+qgINLlyk0dy/CT89CYYN/MZcPYMu/iBgAAfgVUwQAuJgmAF9BV6leAYFPl8vliM9Xq1Xc39/H5eXlEGjIu3dye8CnTpa7PuQx73i3x7Cb6t1qjQnQZDCADsQ15z5Ua1l3f1ImQWfi5eo2uT0Ndp6AKQNZBU81Z+vKcGUqWna/FjOowojwn451fYLrfNRns75UAVwJ5RbTZsDto+gtgYBTOC1F5ARnxEu0sSpSfsblxfegYDn4igEBAgjPz88jIgaBBVDAwo0FHI9lnS5gQKAeA9RPwQDHDkA4s/xg3mJ+4WWUyn+VQmqRgoIeK+urUgZQs2stUu+M5sd8rNc1jW5Ch7gy3tQK+7aoxwhglL8rgGkCEHiN9You/YaOOjs7G/Yc4I8f6c6EKB/eOTXmmKe13zKe5T7JpiC0P9+aTyctLcSLU5c1uw4Xi5cPUgA4MChwQIAFjFofbwUIKoCwDxBgq4nTZ4zAaZkhHINwen3erRN3c/oQbECsjFy1LVn7uG+4bVqnykXF9/cRPJ9NlcXkBJy7VuWTkXq/MutC12frZi28FwDGmQYo6hjUccfWD3vsVLAqEOD943X10MnJyTDvizK0rahTy0DoBQOOD787AHDXlSd7eXTq+HUyjJWnizMBf6hXWeURe6YYEPBqAsg/Tas/XU7NY0uN14iXVQYR+V4CAAUKOpyBx17klmcBNNU70EOTYgag0KHg4W5UMAClwy9Z1xk7a4MFDkjd162GsrDIwIKzoJE38s/yYaGpyk6fYVcolLYyhBuQWfsUnXKduR3aXwoIWgJTB556CNz5VIb9CpQJRPdzaTJSRQ8BwCBT3ZnIV4GA7jLIuwKqezPjY7awOE5H0ypo0LHLBgC8Fev1egcQYBWDjh+MKf7PFiAL9spI6OlzTpt5CfjaV6fMuNgnHzYEI8Ze4+wZ7k8nB3VqLGI8tcpTAvoDCACfsCGk3gPEFjw8PMT9/X3c398PfInpBs5PY2OY92D0AtQqYOdnmDB2GRTp2GRAUBldjme1z3tpsmcAyp7nONEpvJEOKsRTBPqiWbhkg7uHWHm3PAGqzFhIoI4QSrreWcvJVgloWdxWFUQ6sPheRqwc1Evh6ot34yK4I3a/tohrzjvg6LsIzIwyAKACDWn5OZADjOhfHjM6FQRQzSCb92TnNdrq2tQd1VgwOveqKt2IGIIV1UpXUID2YswgQlvdvnAF80Yuynv8X70Q+lEwfUeO1LOi7wTPf0ce7rX2WzLH3VcAoF7VKV4XVvxYIYBIftxDVD9+iBNQK5/rx3yP/O7v7+P29nbYaGi73Q5xXA8PD3FzcxN3d3dxf38/WrLIgEOnGthTAHmL/9z+KlZI+wPPV+/oLXl20j4DDAR4j3N2/TgU6KYHXEOcYmTUxHm3vAOaJjsHodOVuVnw4IioVq6bghFXpt5Xiw/9mAkvptYgdi79aqqAmY/b2mOBfWchqsI0AwLq5anAmYLGzWYz8qapGzXihVcgvFC2zs3rSh1W2GwZ4cfLphgQoAy1jFi48u5vXCf2VEEIL5fLuL+/j7Ozs+GLhlxHlMlCVAGBeigyMODkSou+AtjtrUPV3haP9jyrhPei3i2V18z7nJZBKhQ2gGNExGq1GlYN3N7exu3t7Y6yVn7EOGIgABDA23I/PT0N3oHn5+ehjL///jv+/vvv+Oeff+Lu7i4eHh5GoABlsUEGQKG8qEYgx925PlbPIPo448O38g5M/lARD3gGBGqdcuPZO4BrmicLV+4o/v51psQqpVWR8xqol8JZ94vFYhDgyvBaxyxvJ8haCJBdyAq8mBwjIb1GfisIcG12wtWBnte+j0OhjD/53AGBLB1IgYB6jHhQa6Apb4TCqw40AIuBNxQpr82GAM2EWxYvgLzcXC0v2WIAc3Z2FpvNZohZYA8BpgpYKbAwZyCg9cj4kY/7kObxVflXyfEzn1dyOcuPAZ8G9akyZIXJ6ViWAgQoSMS3LaCo7+/v4+bmJv78+RM3NzcDHyswRT3g9Xp8fIy7u7uRzMZ4uLy8HPhwvV7H3d1d3NzcxP/+7//GP//8M5SDfQzA+0xom4IBbi/3qfMIQD4zof+cPOE0b0F7f8LYWUQgHrAs0NRy4LyyNccgDgyplE6Wh3osnNDIUCyO+KEd7sWpQmViZsV/rh8DK34GAIDrXYEOR8yk7lkwrLO6WmU4MKR98ZXBQUR7qmCKdyBijPQhiBjo6Q95qpXBG/xkXgGUw+uxnfuTFa4KeecV0L1BUCce409PT0Mg493d3c6nZDl/zkvrkvEcvx8+TiGVC472BRhvRe8xdhyvOr6tFBHqhvfPnke8P/SrguHj4+Ph89bOowRlzRsOPTw8xN3dXdze3sb9/f0I1PL0Fs/Z4xPFnD/nhc2GOO3d3V38+fMn/v7777i5uRn2GeCNh9A2eFwxbZzFToDA99qfCjC0DxVk6Tt6LYjtBgOuAK6cuteZsjlV3GM0yZZQZWn31m9qpzmFznsD6ByOs/wcIHDAopcculbGyNZsI63WR6/ty0AOmGmeXwkIqNWUHXvAAKeN2OUHtuDVSnZgQN2wGCe6dE839IKQxBwrhKcGDGbviIW4i8rWFQVc581mM9p3nrcvVgXgYgIy3skAfTbmM/rOXgDnAej9qfGGn5vfjhivJMN/yEw2cFQ+qPxkPnh8fNxR1Bz8B/c9ryJg4wl6RT+hzZ6Im5ubOD8/H3gAUxWYUri9vbUeCAU17HFlT6y+B+g1Nsr4PvifQQAbCy1D9jU0CQywUODBz412cQOVQFSliDxU4KGDOeioR8loXXjwZx0bMd5hjctz1jyXkR2zuc4eYgZnYubjOnO5Sir8uH7Vcy4fHHsAwZS8D4neCgiAMkCQgQLeFQ28gzHGQAABhPoRsIg8eFCtekfM9xxA5bwDaBsLQl7t4OIaqrGnPJSBM31frs8zQKB5OfnwHUl5lJW+AgH17roYMO4rtpShKHEd5AwVKHz+0BU8SBxYCMXM013sOY4Yx2Mh2h/AGKAC01aYmsA44bwBPAA63GoblaEsq7keVZ9zPpyv8wxk6R3fTuHhbjDAczGnp6ejynLjVBloA1Tw7KsgswGbWQZVx3E9s3Yz0gQCZjdnZX2wou2xeBxVDKdAZapCbz1XMSuffycw4CysTPG7//ockw5UHey4d3T0sgXrYrEYlDsEMn+hELsP8r4CABLqkXLWdwUIdC5WYwbc7m6oP5Q/gwGNIUIZbkw4IFCNNaekKqoMhJ7nP4Lectwwn6n3KQMAeo0BgXp3oPx49RK3w/Hadvuy+yw2pcLnr8ErvLwQYIE/WKQ6B2Ww6x3l4Ln7+/udr+ZywCEH3OoqmowYBCBPjvFh4M/AHvXjfnIBmU6+cPteQ5M8AxiwHP3Mg4YbysSV1garoNIlGy6v1yAgfaaqIwjTBCD2Uqg7iM8zZYl2ZoBA6wGmUk9Alr4CGdrmqnztE5c+8wpo274SEAD1Kn1Or+eZ8qrePd61U0YQwLykkD9OdHV1FcvlchCi2+12CNZDuVw+W/OuHuA9ntPnn5vr53rqXiO8kUu1M2nWt26MsfBX+VARy60WEPgK/Ovam/VbBQoUAPBSct4ISHlbeUiXMWfGC/gMYABBg8wfDERd3IrKdC4XYAF6S9vDYCabCuuZ2q14jqe/eSw6sKQ/NrKrMcL57EOTwABeFvYXRwNRSX4BKnycdczzS3ihfHSID8e3RkWar7NwmYG1DhUQAHBQ68dZQ64dLPAyJZFZd07I67MatOjSaFnufwYGvoIgjcjbrMJzHytVx0MLiLl+RH7qFeDvEFxfX8f5+fkAXmEZ4QNBmcLQtoHgDWMBmQlkx+OcvwMBrlyeJnRjX488HjS/ysrn6xWAOBQPwb7k5JSCNVaQ6gnAu+IP1TkwoHKMQRqusZxyMpX3bgGvMBjAkadxdXpAy+Upbc0fz+hUq/6Un7U8va79DwDPbUJ5uiMornNf65hysRha5lS5O2maAEder85AQAc4CA3R+f6I2NnARF+4c82gPKf8MkWV/a9IOz97trJa2MXD+VSAoKIedMp1YjcVX9f/3J98vo915IDAVwEEEXlcgN7n/+48u6/vKCPXZxAOcL0jUv/q6moAA/AMPD8/D19xw5cJ3ft3IIdps9kMQowtJz3yD/XPPAkOMKBt4FnmnZ4+zgQ2AwLXdn0fX135Z6RAADLbbQHMHhsHCDIZX3l11RugiswBSCWnR6AY2WBCGcjLBVi7vLkNamDp+HH9oP3NCl37GHXUKTMHmJyOgG5BWdoWrkcPTQ4gZLc+F8buQNdJzv3CDWfFr25HfSGqYLXx7lqllPYZ+M4SqRSBAxatulTWClOrbZqHQ6EMHlhIOlCgZWUo9CsBgh4eqNK0lJWmdYM1ey6zsjHe9CNFAAMcTc0WX1Yn947ZwnNjkxU+xjU2iYmIYX6WVzG4DY5YIfMY7+nPVv/qPe1TfUbTfAdgUAEBAEuATN7xkmU7K7aIlyVybMCx4tVx76zYHhDB5OINwJ/ZSgc1vnrvu/fPxlMm893UMfc5f/iI+435zoEB1241PpmqceBo0g6E2XVuJAMCN4fE259y4wEO1BugwCMidoSFQ/6ZIqo6x1krXCa3lQdLhQ57rP6sfVqHLP+qnB7hr33HfZt5YJzAdML7KwABJmc5Z//1vVc80JvvFFAREalgh/DGPCnGIr8P5TEHBjg+RsemWv0AAtvtyzznarWKu7u7YRkYb96CL8zpnC+eb3nBMpoyxrlMd96T53vSvuVmfKRgEnKbPyLlZBzLdDyvMmKxeNmMjfe3iNgFAurGx73KW8BtaBlJ7p5T9KpftNysrAoIuHTa524TPjaMuZ8wJc/AQGMxMjA/BRC8yaZDTiCpOyTiJcKUmQ6VzpY4OeXsXlRmmbbAQEtZMuMz8+ugyKwqdTuB1NsBNN1Swo5cO5EXC3Rtm/YB0gDdu8HuytDzHgv3kEjrrQDPvd8MFFQDsuI1V74jx889/ar8qJYHCLzIQhLvnj0BbpoAcQmYl8UyLYAB3kKW14c7wI+69IyBrP1T+a0SnD3A7JBJ5ZnKawaR6gXgWAL1DkSM5Rf4Q+fhmVrvhfnUEesNtdQVpKDtPQCzpSM0X61PiyodErEbwMjAjMcvfvxOOW8HbHtobzCQuXW0saz0wWjqFWABw7EInB9Tpnj5vPIS6LOcpwpiDWbhZSItIOCEbiVslFl7mdf913a5ch26xDmje1dXR6ivq/ehA4Ge/y3rvWXVVx6CHiDFPKXWOQfysYJlhe3m7zUWJrPMXNmIsublXhEvfPX09DRsA8sffwEQ4GWJKDsDzBlloKiX35zAnCpED4GycepAqwICnh7IvAPOWxCxO/2JvJ3Mzfp0qheIYwQyIK1TYvpOGaCzsdMD3qdQZagxEEBQPgM0yGHE7Oj7c4CA613pUEd7gQEU4lyHrAyYKfjl6ABmoaWDGh2EdNVAdcoxY0pnBXJHu2VQfE/RGJeXCe4qVmAqZeDHgYCKGTLrX8GJ3ufnszowun+N2/e9qLLuM89Adq2lzKvye59x40U/y4o9QADm4JbnXQd5wyHl2Yhddyp7BXR6gNdjw0IET2C9OLaPxRayHEOQrd3uBQL7goCfRE6+sTHDUe4MDljeqXeAlU9EDJb3VAOG86iAcHXfeQU4f+ShVrgafQoIppIacigX40a9bepdUW8B6x7Wqw4QoK0OCPSOib3AAKwBoJajo5dvOnMHsELUORIgIE7jkBMEUeZyUupRthkQUEbHNR4Y/JwrVxU/W1HMFHhG68PHypMxBXn39EPEy4Bgr0AFCHQgc53w3vBfmf+QKAMCGSio0nCerTI1XQUOVBFjfp6V7dnZWUT8G7QHAfLw8DB85Y13a8u8BCDlU7xPLp8/AoOxjD0NkAabu/z582cUO8BfmtMliT1jvOeaE4QK3nvpq4OMyuiJiJGi15UEml6VqsrMiF1Xf8srCoKMqd6b1snJMR2TOqYcKFBAAFJvAbcZeSix8uZx46aEuQzUA/XTvq1+zqsxhW8ngQFVdrw7Gt/nmAGek+JGApFut9s4PT0dmAVAAQKNBQZ3NMpz1oEjJ6z5x4Edrs7qKuM+UYst8wooUKj6WQeSO2bXplCmlBThuwGD605pMEjoBXIfSVm7s1/PoJxaZiWsmBRcKhD48+dPLJfLWCz+3Xp1uVwOVgO76WGZ63fg1bvnPDsMyhkM4HPEES8gBHVGOewZQBChgpLtdvf7Gi2lX40LB1RVyPN1BxyqehwyOZ7mc72mFjV7iJxS0piBVr/1gDwFASyDMiDAbco2r8r6Bu+bvc5Z/VnpK+DRcrgvkCf0JHuUOT2PLX6Oy+b/vYBgKk3egRDCQJEHrrNSZZeTKlh+KbBo8FJPTk5GLk0IjsViMepYXpKhzJG5Sdwg0LmzrL7uxSsQYBQIAaeuIu5P7kOmCvC8hXByVrobgHgn/M55DbgDBmBuBgKHTK8FAZXw6X1XiubdOfiKP6bCUeD4/Cr2W99ut8Ne7vAO6HfgeXyxp0AFpG4+pO1+enoalkyBz/WjL9jn3YGRDPhW/ajKJnu3zmLS+zif8s4OhRzvOZnI55ksY/DHsgAeQ5ef5qNGT2uNv76D1lQDyyEFMz2gXPPh/1o2AyKuZ3ad+5CnyZ+fn0fec6Rl6hkHWu8KEGTPZzQZDKg3gO/jxesuVovFYidiVZeqnJ2djebqVSFDcB0dvezXrh3ELp6sM1XIs+WvgECBjbZVgYDbH4F/rk8j8qAtdp1mbVLGyK5pH/BRXX44d9MFml8WhMhxI9rez6asnzIQ4ACBe4YpU14OvevAdciexxcsch4/z8//biyE7xLwGnAoZFjlHEfAsQS6/zrzHANxrRc8FfpRJfZg8CoCt81rNWZbIFjHSA8w4GuZAqrex6FSS1FkytsFCz89PY2mSDGeVf44GYM02QZTrq7OG8nyg8tS+Y1rmq8jJ7O0bFbqTi66tiqAZmDlDFf0C/qUx4MD5EwtWaSypYe6wQDmOyB4GBQwM2FgK5OwwtXPrUIJ86dNwYh8383no0xm1Epx8rP6U0DA60H1BTKjQIDqtqxT5kGzqQQFBBk5lFsxgg4qnOvgcNc0H9Qrm0LYB7V/FLkBlQGBlpcgog14WvcdWGCh4gY/QMLDw0Msl8vhs68QQojqx4+j+RHE53iX64v2c5CvThmgfxgMZJsO8Z7yFX/ztR7vgI57ZwwoTyqvuzIOkXeVlDf4PAMDMN5YpkNB4X2jj7R/XZ+ozMs8A5Xi5neigAHP6vM61ZHRvnFL4A/mH73GxONGx69T3Cz33aZNLZDrrk0FsJM9AygIzMGKGIyVzf0tFovhq1TYOY0/b4r7yIvd99lcEQdpqGvdDWy3uxaOupbWLaXhMlCms3R4EyWth5ujc8pfAYUDNpmlw/9VobnruMZt5HQVCKiI63jIAtUN0ineAc4nEwz7EvODWufsLbi8vBxWFPCSXp5ayLwBzkrXd87LflEunmUBjTTI05WXgQ7X9qofVWDqNUdqpDDoYrm2j0D9bKpAgMocBXURMXqX2Q99owBYLWS2cLWO6mbHsWV8qPEyVaaot9LdZ97PLGyWuwraszK1zwG03HvIxmIGCloyqIcmfZtAB4sqYu1kCAxGh5jbPDs7GwkDWOOVsuLGsgLm/FuWeAUGUCbqoF4Bng91QICDsfilat0z60NBgAIBZsyWGyhTvgoI+L+6w7i9IOdOA7W8H4dEmdBU92MmVHvATY9HR+uUKTzmaQYEPD212WwGcK2benH0PytmBgEOUGftAvDHqiInLBlk8Dfnsz0Oqn7M/jtFtK8FhbHZAhOHRFmbcKz4FX3F/AQ3OLvD2XuQySQ86xQpX2PZUylmNxYcOOfrveTkVC8vIq1OFTBV+TCQZlmqBqFeb+UbMTYQ8X8KD08CAw4E9LhdIBQiYucrZ0BY+kJxDV9f4wYCUMDLgPo5QcYv3k0LqOBHOpTFpMytngAHBlAXtb4r74D+HDM4b0A2+N2RlZ6CHQe+lCoQ4ATyoXgGtN9wVEDQAgP6XERuuWbXKyCnlof2MbvrIVxWq9UQL+D2PwcgqIBrBvSc8EYdYU0iD86Ly1DvQwYedVy4c/6vXoEey4mPaAeOGAOZV+4QqUcecDpWOmygOHnOXl9+JmJswSJfXOcyuG8jXgwt8FTLcOF2uTYztd5/T/peYn3YIu4bZ1QxUG7V6z34cfKHihgQtEhfAAMCbjS/dBZiES+xBqxUARLc3LwDASxYdQMNZbhWu/W6ujyzoCi0E7+Wd8BZPNq3PVartjFTaCAMfH5/meJ3Av3QhaZSBQSy6Sl3BFXvMCtflVGW3lkR7BkAOHZbgaul7pb0ZeMHpF4jB2h4rCBvHJ3HK+uPqq+4TxUsuOuZonF58vhkQPAVvF5uXCugZdJ2sVcA8QLIC9O/urKIFX724/GAeiAvBzK1Tcpn+3gF2JjUa61xqvlrXVu80WtcOrCrBm6vfO2RJ0qT9xlQBO4UngoN7jy15NkagZByHzpaLBY7ka0qVJx7iimbA+OXxFYSo7Ws7eqmrVygDulq/1b/8YwqLz3n9rJw0LKdV4DvtZYEKWV9lLX3oymz6B0QcCtiXF4RtUdA+yRTTAoIsnyhpLR8AFE37YXnIl48Ctm0WgU+2RuYtYXzVi9A5WLWfphCWZ5OGGaxH5xeAftXAri9RoIzcFg+8H4RKueQD8tAlpPuPbtpAlbQTqEqP1R8kfGiu6bXnaxWL+lU0NGbLlP4VT494GUfnt17O+Lqx0hPBxsLCzARKg6FyqsIlPEACrKXqvUEqbB3ChRAxLlrdL8A9ggwCOA2OUXoBKC7rn3H/1VJqfXqYgJwrkGSKhwxl9U7CLmvFQgcEmVtqIBABhgj8rlqNxbc4NUB65B8xRsRMbLQeA4/i7VBXgzyHJjOCPlmLmWdIuA+0DGRCeoWIOixeBwgcPk4BemUp1t2dwjUArcZEOD2Ok8fW/8cyA35pvmox0k9T+p9YD6qjCN3zXnqKl5Bu/jY4nMnR3HMQEE2xjNCv3AaDracIj/1HWc6pkXdYMAJGJ0XZMHKCp4FgboLuQOgWPVzmg7Fq8Lja5li5ZfplgzqSgitJ5jeBQ221mjjmClZPdc5JceQ2jeOefXIis9Zj2wRoE/Veuh1mR4aIIhoW04OECjvsTJSxZNZRpyG65L9d6BAnwdh7Ln0LGyz9+YEUAZkme8c+Ob267HqC25zCxC8liolyp4XJ88OnVr87XjJeQSh/CNeVpFwoOF2O14fr6tSWooX77c1RcCkY5EDVyvA7ix/lw75OO+beln1WQU9znvGAABHDSRkQPVaz5QDBhV1gwFVPiBG/mAWpMM9DRhk11NEDDszOc+As2BZkWeubiXkwSBFBSXqxPVlJtcArCoiO0NnblBqGrQD9XUeDgUAGbMy+IGS0x0itVwAo4jxVpp4XzpgeCAcotCsLAcV+g4YROzuZe5AgPtxGq0LCwt3n8mBBM4je37KVE9llXCfMFDU8rLphpZXQOtRtalFmRB8Dbh4L2DylqR1zEBAxG4fs+IEIOD3DY8TG3DIk+Wkgr8eclMIXEfc43Y4gyjzVPF5C4xGvEyR6PWMVP4xUGbFzwAA8jQznJGXypLePp0KBCImegZYOPILA4NExAgQ8Dyl22Qk4sUbwPmB8XTTHw3+Y4bI0CXqysorAzXq9lcwwFuo9ngEnLDnOqkwZeSIOisTZCCoBTD4GQUEXEenPHSDKQYq7BFyzx4SOOD+ceAss6IY3GaAs8croOmd0HOWsbOSM96qysv6wt13noEI7+Z19eA29NQva1Mm1LJ8tO966JB4tJec4sdR+VfvOcoApk73sEGAscDGoIuZyt6HXme5Ur0/ncLLQLt6dCoPgSuv0inaL07uQyZiWjsiLBBA2eyFdoCqxaf83vfh6b3AgGMqXVevYIBdhkzKZFAwmUeAgUC1IZEylFOcLHgYDHCwjJsacFHZ2QvU8itAwkgcLntFtFz3CgRwW3mgMKDSQE0oOy2H3wsDBmXkxWIxALuWa+6zyAlJPe+lzBPQg+Z7hGOrbi3F2qr71Px0Gs4pJOc1wr0ewKF5Z6BEy+U8tVx3zNrbAnGHRj1GAB/1foQHcQoAtBwoWwYC6hntnU5kctMGTr7jWE158hHnrfHVkqnKGwoKtN5qPLCH1X30jr0rlaeZ6+1AN6fp5eW9wEA1f4KKqcuIG+SEMCsZtjhwnzc4cQFezmXp2pANDn4RquizTYUciqs63lmeapk74emAjWNaHUTcVjdNwFMxIAAxeGcYyQKc8KendYkn3h/okKcPWoR+ZwHF7cl+SvsAjVad9FqVvifPFlUWt15TQKDPun7qAQEtYdcDFpRUkFag7tApAwCVYnO8xF4BnqqE0ncWvcaCvWV7+FynB1imsXzHcnTdYrmaNqtiEMADmVfQKWyVgzrV6vpfwVVLtrwlTQYDisAc8siildVyUCtU5/C5bBbMvEbVfbkqo5ZQYMsXRwcM2IvAjFApA2fRa92RF59rX2ie6B9tnzI1o+jqK5JoFxiX26xeAe0n3keC+7VCrodCTgGwQOwFAT2AUM97PBW9AOCtPQJVfXSqKmK89FFdoVOBSQYCMkDC5bj6VooP/zPheyi8O1XGMW9lBpy+G+4PnvuOeLGEnUULOcF5ZHWu3hWTmw5FnqyTFBCwLOXvZmRluRgE7ccMwFYeYfbytoAA8mRDmqfWcf+9eHESGFCrHKSCMiOn9CN23SVKPPXAyhfgoHrJGbkXy8qX52/UC6DxAT1WoYIB3RgGCoddb5wHKyYmBVR6T6cE+OuR/BVJFuZu/o9BACtKBgz6ZUldKfKWFvJU6ilb24bnHK84EDgVBPB5JrQzJVb9d+Wo9eyEdkvpan1wzuOXedXNjXI9pgIXrrv2YUup9JTRAnqfSfuAgIx/WqRgYLF4+WKlU2TOkNqX3JRANl5YnvKH5UDsaea4NCYGGhp7wPzmDDKNi3BpkA8byBUwYdlSyZcpfdz7/ietJuCOVwTGjVBkFuFd2A7xMWkHszJ0ARgVqZDHNT4qqNF5G50PU8RW9ZmCAHbbcz9k6JL70A0Q/u/iLAAI8FEofCgKYAD1wIDO3H7cV0iDwMqTk5N4fHzcEULOtXho5IAA6pwpY+YDR5WVll3LBKFT7HpelZuBGlyv2pAJYAYCziKDBw9lMQ+0AE0mDypA0KIqTQYAqvH9UZTVuwUAKj7DefUeeCzw1KEbE1OmB1SeZW1UnaHXta06VYCywJ8ZqWe1ZZw6Sz2bDlUPN9cpK0P1TOZ5dvXg+z2Am2kSGECDGEGho92csc4dKiljabBFdg3Uw1T6ojTQUfN2gl5filMAzjpxwtOBqmx6xLWV2+j6j8tlEKDeAHz3nvd0QD4a7+H6drsdf5VutVrF3d3dpGmbQyE3sLfb7Y6QcM9lgxD3W4qf77WAgbOqqwGflZeBgOxdq9DVOB31DDAQ4HXUGnfBZSpIyECOA2i9fOb6XctSXsjq8lHUapuTrRkocHnpmGZ+YmMO46Jl1fKxRc7TOeW53nKc1a687nhZybnvnS5QfmK5ivKY3LhogYHetk+RwZO+TaDE1oCSgoDKckZeOGaAIGMcvtdjfWgHZwq4shQy5a9tY+Hp1vizUOX68eY/1WBWQj/oR5hOT0/j7Owszs/Ph09HwzMAsKADX/N1rjNMDzw8POzsDVEpv8+gSoE4pa7zpY6qQdmj7FtHV2cV2q7MShGwlZ7xvuajYDZizBNq9egUAXvx3BhXUMDXXN9k11wevXznvAGfCQSmkAMADhAoOUtSeYtlOfdnpcineAlaoFvry0BWp3S5HbzSC89OfZ/IB/pCzzMwrXm4/2ivehXUKMmMjuw65/0ungFVpI4RlElUkVUV4/nyihzDZJ4Bro/LV70G7n5P+S6NggE3OHWaAEe3wY+2wXkF9Jy9AicnJ3F2djYCBOfn56O4AXbpMjGYYcGPWIHHx8fhA1OuH1arVXffvQdlStmRQ/VOUWXPZGU7BT/1mJXtlGGlDDKlVwF25WXwitaRvYE6jcdyoRqT2ndZnfQ8S1uR6wutxyGCAtcu964dv/UqrSwN8uxV+FUZyAd8pYYQxwBwOgYCAJ0KZnijO41h6q0rx0Lo0nOkqYzJqX2iCr4VN9DizSkyd/KHinB0Lnr8Z2Gg7m2HkhQh4ToDECZuYAUEMrRUtStL5/Ku0rHwdF4B/RAO2qkKnuukbc0sIhba8ArAA8CAAOe69TMT15/TgQfW6/UAKlz9tE6HRD1KdqoSaPFEdq3nWHml+H8LDLBSgABW75fjYz1X/nXtdyBB+duV2wIm7r+WX727Cvx/Nc9ABjDddaZM7mUy2oHKFhhzlAEC5KV8rvWH7GH+YeMp4sXNrpvdVTE+2ifsAdCVZJyfPrdvP+Ba9WuVNfVdMHWDAZ7D4EJZaFYoSSkTbNrQKegzEyY9HeQsQid0MyDg0LgTpJmAzkhBlSvbeQUWi8WgoKHIESMAENACA4vFOAARaRkMwDPAyJ55BPV/fHzc2ebzIynra/ceHBDIBNNr6rEPIND68dEpAp5+U2GLd8jj1wlq/HTqiacJKiWubdi3/6oxpvfdfwUdPYDgsykzOhxVIInzc0c9d/zueGOKnM0UGniK9zJRLxLyZ2+BAgG9B/nkvALarxgHOm/PefCUhPMoZ+e91AICLv9WORmfO5rkGUAnsDXhBlwLFPR0oHvezS+5ue0WZUyrYCKzOpxScAJJFTMvf3FWVaueFcrPntVpAvYILJfLwWOgQaGoPwIdASLQhoiXJTu6uoSfZa8Ipgs+m5ygdO8yo30F9FtRBWxwZN7S6R0QW1fs9sSR8+N9PZRXeFw4y2pK/TMF7RTdFHCtAMBZv72C+CuSytmWdekMKwcKFJRyOi2/Khe82AMIuDydOuXAcPC1Bn67d79YvOyLoc/rXjPah1k/TyHtm9fwIPf/FFk1+RPGLDh6hGZ2LQsSrPIACKnckj2ehKpTs85TJa/kAuYYDOhSwqzejGAr0JHVhS03Bh88TbBcLmO5XI6WFropAn729PR0lB71Axhgqx/t5aWMZ2dn8fDwsNNvH0kO3GWWZcXbU4BDRVMGqpalCpLTcJvUmmfKgm5ZyCoP854UVeR1y0Pgrvc8w+1zQY0Zaf5OOTqr9RBAQA+fOF6oFFarbS3lXtXRgYdM2SEd15+Vsosl0HIZAIA0yK+KF2BPptsO2G21PJUvesd5BQiytFqG8su7eAa4IH5hEf0WeqasNV6Aj0zsyuE5deRRAYV9B3amgFUIZYBAXapM7G5SxlXUW9VPBSaXCWXNXgEOIMRKAhUAeBZ7EuB53ZOAvQtQFuxNABA4Ozub3PfvRRkQyMCBe35KWRWxpeOOU/KsgIC69FE2lwe+Y35zStcBAba+WBjjXtYGbbNampreTbvhekY8HaJ1bllhhwAIesnJzsoroIq7BwT0AMDMC+P6mN83+HSKx5f5Tf/reVZf9zx7AxgI6LNZnziFnHlNXN+0wICW5QBZVqajSTsQasZOgeP+PpGmnA+OmUJkUMDP4qMaru5T4hkyYawC1f1H/RwgcC9LhacToj2KSYO8WDnzHgNZvICWh+c5PQAEv2f2DuAZ9gicn5/H/f19nJ+fd/X/W1NmWbaUy1uBAUc9Cn9q2RUwVd5g4uh+DcxyeThQy+PWbaGa1TMDQZml6X4OhGudOICxEqxTBPBHkrP2MutPlRr3Y/VeQNl4mVpf/Z/9nCJzXiw3VnBN5/EdQMjqqXrMbUvP6Spgy+c6fvRa1l+tOmt5LT7t5ePJ2xGr0nut0s/utWIGMhTE/8HEWR0rBlfrxFmOTsDqy2dBxRGzbuVEFZzSqrPOz6NcXgWg3yTgZYVO8DpXP478/jHPx/PKHLTIz30WZUpe32uv8JsiHN9bqWSAVc9du5FG52izPgI5oVZZZ1Wdlfec1chps3fk/us4ZppqfX02tYCjtoWBHe5zOqV9AG5vn7WsXpWRTOoBdnmrh5XLbOkoBQ8ckKjTA67Nqif03IHfnj7ia1qeK78FdFvUDQY4SIwHL74ONTXqv7pe5TWlHOfN6EVRPVabCiQnNDX4RadXkMYxcVWWeknU+mMQoOfZ5kcuPwYCvFERxw0ADLDlyFMFDCg+myrlr0ome/e9QlOB5NS89hHOrfq4PPHOHAhw1ptOI0SM94HPxpiLb9H6OUvWPePAzlvQVwUEGRBQb0iPcmldd9Z8q849aZAfTxMwvzm+c3nweQ8QcMqfjbMWYORrzJ9qsGZgXOvt8u2hVt1aNPmrhTiPGCtmgIKMWsGBWboeBJul0SCoqi6uboq0Wi848yYwQud6ZVZUNV+WTUMAAEAJawAhu/A1joGnCVghwt2v0wTYYAht5U0/uK/0uwgnJ5NDVN6FpgCBt1DWvVZYT5nIr7dsXv3Dq0AcINW66jmPJ3euAVzaLj1XsK4Wno6FKe3O6v6VPAG95OSQUzCZZQvK3lNVZtWH+4DmTKGrlyOizceVnHfeAP7v5HGr/3CvpSda/VCV0fNesvffoslggCujXoEKsfJ/PmYvrBqsPSCCrWR1gWb10nwzBOxetIttYCZ3sQxatjJd5nVQEMCKF9Y84gHcksbsxx6BLF4ALn8FA9wfXE/1THwm9Qonp5TfwnqaOsA1DxWafK5glxUt7vOnvzNwniljHT8MdHUsO0sJpEYF87OWqZZZBpKdYlKlwfm7cd9SaocEHDJ+UAXA05JZ37RAaWZ4OaMnq+e+7creFbcrwm/n6+qs1xwQcGAgq8u+5PjpNflVenIK6J0EBhxzuGtcwZbQcc+0gIIjZXD1CmRz9Pqs5qMMqsCCLX5lzimUvTS1pKCsWdni6LYe5o8R6eZC/OO8dUkhliJiOSLvNqjonAXE0dFRrFarHe/DVyPH81UaBx5b+bQASGZpKM8wDzLv4z3zNJXmr0qYicdTJeQzwcMAk/mWeZHHJWJROIirAlVO+et9J9x7QcAUpfbRxDLKKcQeZVB5xCr57hSb4/MWMND6KsBh3qi8rDivAILGF/QAgaquLWqN1aovkK5S+Djqr7d+oMmfMM7uuWvb7UsUL1e450Xp9QzNZo1mrwDITW/onFAPOU9DD2XK0OXh0rJHQAMGGQwAAGjQH3+dMAMEms/5+Xksl8u4uLgYwAAvLdT3xXtQaP0+2zPQSyyMehS4klPa+K9p9B1U+Vb3sjrjP0/ltLxxWbCUgmytD6fVaSeOI3GeKuYnbPuKnePwLfoMFGTGhaZpCcwMjL/Gansvyt7zFCWQ8XbGh608M77XPFW5V/VyQMBNQSnf8rNu6pnTa6zAFJDY2zdaV+et6dFBGRBu/Xro1ZO4Llq5etGV2w/UGqTuf4a6WNBCUelz+w72FkBR6t2sifNUN74KU1jwcOkDBPCyPuchaIEBnhqAV+Di4mLYZwD9ttlshvqenJyM3MhfCQzou2SBhvNeqykjJyAdMHtt/UGZFdXyDFTjE3WtlvBq2xgEMI8yH7OyBwDYbDaxXq9jvV7bLWG5nhk43ddy+mpeAZzz9YymeKgc8GqRyl7Nx3kxKjnM75jlSzb9m833Z//1GdeerJ+z+vaAds57H2oB3Q8HAyBlKMc8fC3zAFTXsjSuwdzZlZB19XQDgvPoWaXwGiGT7QGvSwL1h82B+Fw3GYIwrmII+FsEeA6A4OzsbGgDAwG8U+xBwMsNXbzJIVDvYMk8X9X96nkFYPqL2AXZyqcq8DIFroFXDhRMIZ0WqgAOeEk/n628CJ4BT+Gz2KvVKtbrdTw+PsZqtRrtM8+gwG0Mw2BFLb5eINAD8A+BeuVn5bGqeLhlnCHvLJ8MFGTKjNNpPQAK+PPYDC7cWOBpLy1rijdA+6oHFLhnXR4tMOTK6wEDPfUETf6EMYgHmgYr4TqOzh3TqmQPczpXS/VMlWcGAPhaFjcxhTJrSstSQKCxAO6DQ7yRkE4VaAwBW2aseLg8jR3ADwpFXXR4TsETzveJpXgv0gGpgzN7x44vqrT6nPYzAyb22jgAxcJLP6fKX1RD2h4hwPmzlcV1zcY+kwtmZZ5dLpdxeXkZl5eXcXFxEZeXlwO4xL4V2+021ut1rFareHx8HP0eHh4GLwHavF6vh2kFBgoAojg/Ojqy29Fm71ytt6zNn00VYGFFgPeSyU0HDCrF465rPnxNjaiI2JEfLYWsQADfL0C+mcXvFH6lOKu2ZNSrx1oGKde/pdQdQOtpV0WTvloY4T8ZrNYHAwEcKybS/KrrGbNm+boBUFl6Tmi7//qcvpwqDsABCjfHCsEKRcHKHPP3anGpstdPF7NS12BCtRT5mlNQ2+129FGRk5OTHXTPaQ9pO2KQ8pPjrV5rpxr4LW+Pm8bRbaIh2NiNzlb0ZrMZKUF+zvGb8iHzOJdXCUbHHwwEwJdXV1dxfX0dv379iuvr67i6uhqAAaaenp///ST2w8PD6AcwAE8BgwJMIQBEsAcBsQatgLAK9EwRpp9FTq5l9WbLlI+ufzJjq6f/Mn4D8VJ08JkrM7Oq3coY5lnOdwoIyOrPlOmuKYAi69d9wIB73v1v0SQwwAhMo+izaH1WjvyilBx6dHVgwesUfwvRZ/8rENACBCib66euWSYXZ6FlRrwoEJ0aABDgI394SJcV6vPsEVC0rkzo3GsVMYDYbreDclD38qGSU5wg5hHlF+Vf5h03BcMAT+M7XGwH3oWCAChJKExWgtvt7vbcFV9zH6A8fmcVgFcgwG26vLyMq6ur+PXrV/znP/+J379/x/X1dVxfXw8eAoyX1WoV9/f38fj4GPf39yNA8Pj4OIohgOJnTwLOdaoBBE+BCypzyvTQAQHXu1dJuXtO6SgQdEqpZWRxumpcuXeixPII3h6VKc4jraAga6+2wY2LHut+CvUAAa2ngoJWm94FDETsunwZFHDBrbkYRnnIh/N3xGU4i4UVsHuu55gJy2w+l+vDSjBDia32ujKdha9z+Tynzwpf3f1u10FmILU69T+eQ1rdhz5rc/VeP4J6ym4BARwdGOD+1G2ZNd7DfbsBYA4//vgTK3ZWclCYd3d3cXd3F8fHx4NCPDo6GlnGIK1jBmwj2uu3uW/QXl3eisDT6+vr+P37d/z111/x119/xe/fv+PXr19xdXUVy+VysBSh1B0QYM8AewP0GQAjnmLg98c7zlXt+krUAgU9z7PBx6Ce02h5mQFWjSUmBgFZfto+DSLUdKr8nS6aAgSqek0h92wPAGgpeXfsNd6YusEAXJAqQCo05zwB+vJxTQWrIwUkDAoyNxOoBQRQrhOWVXCXtlOP2vZK+btrzrJXQMBTBG5fAf1x/6GuyjxsxULIc/vxHH/vuzcY5zOpev9OeLn7DARalj+/O52mYUAHlznPo7vPRSOg7uHhIe7v7+P29nbwBHE9VqtVLBaLUZBnxO50j45n5gkHbjO+dp4BtBExApgmACBgMICVKJgmuLy8HMAAlD6vKlAw8PDwMICi+/v74Xd3dzf6sBYAEvqF4yMOlWen0FSltd2OP+IU4afAWmVkHgRN2wLbLn+XR+ZpZFlcKVlXrl7LAIGWp2ncvYxaHoGWVyA77gMIJoEBdAYUSoRXZq5wBgGwApy1nFmQYNqIsfsK+bJXIAMDzpOg91oWnqsjK0JXH6foXbv5mk4RsFLRAMFsZQEUUvYNAgwcBKNB4ajA5/byXJ0+rxHdrbnaj6IpHgln9atQUCCgAXP6dUgFa/jBmwM3+uXl5QAOGAxA+EH5AQjc3NzEP//8M4r/YJ7m+oKYfxnwMrnpgQoMRMSoD9TjsVwuRzED/MM0AcDAZrOJ8/PzkYsfIACeKA4gBHiA4r+9vR1+Nzc3sVwu48+fP0M7Hx4ehjpDpvG7/YqAwFnpPW1BOgVE7I2q5HE1rvA8W+dOeavi5vy1PC6XDUCd6uT8phgoPYaBAxOZoq7eQaW4pwABd39fY2wyGOC14hrRGVEHk/R4BTgvkGNWvqZWrnuR1TSE80xk1h4DIdB2O/7cJYCAgoFeUADBpQJWNxJy67VZKVRAAEoblj0U+WKxSJX68/PzzieMkZdT/uibQ/EWZF4BVf7Zsw4IsNtfAzxZEeJc7yHCHmCAA0N5kyhYw3CH39zcjKxqFWT8rnncZWBAxxATC5mpYAAxA/q7uLgYPCGYJoiI4XPYZ2dnIwCgbl/wLjwl8JLc3NzEzc1N/PnzJ/78+RN///23DZZFe5BfJrg/m2enUo8ScsBBZSnzeYSPtaoAARtEylds1KFOTpE5QODq4fjVxT9V1AICU6iHj3rAgKbrySvLu4cmg4Hn5+edrWUdKACp4m5ZzE7RwpOgHoGI3WVQjlm4DL5Wlc+Wubp+szpqBLdSVkfnsmWXK8//MwDQumX56zUFAhwfADCga7kBdNbr9fBtAjff7Mp97eB6T6r4pUrP0wBs6UPBQcHDImZAoBs5OSDACiwiBs/A4+Nj3N7eDukx9lRx4hgRwxI81DsDAxG78QJ8rfIOaGyLbonNbeclsPBgAQygPicnJ4MrPxNmaDe8JewR+Oeff4Y+509uc5vYYmWZ9NUAQMRuzIAzyrJnHCBQYBAxll8tzwDyZ+PPgQAcW0qwZ1xWClTbrM/2kJPr1X+uh74PB4Cqfqja48rL6ltRNxhYr9eDVY4jBnG21anOMTvKFHNEbuVXXgQ8x9czz0NWduYVUAsjYuxq5wHkrCitq/MMIG8O/nMgQHdv4zZUzKV11h/6T/uO25ZtKKQAgQdB9aGmz6CsLpWQYyWq6+ih1KHY4Qb//ft3/P79ezQN4FaCuOBP9Cf6nKcNImIAZ3CT39/fx3K5HNzn6t0B8fSXjlGdykOf4KixBNw36hngpYXqxUIbtH4s/LFUFf+Zz7g+T09PsVqtRt4G/tQ2AK7uRaCglxWKWs9fjVSJ9noKsh/npd4VfidMHJDIRqHKol5ruAd8cJ7uvIeqvtI6Z22onu3NowU89FrWf73t7gYDUBQQEiwsVKC0kJd7qe5Z9gggjU4zVHnptV5QwGCALRVWgC5vjt7O5sgyUouNBTaX7bwBbn4XCkRddZomY0KOITg+Ph4sMNyHoOa+YUAAYr7hKaaPpopfQIrgOS17bnQdPYAAz4Vz5Pxff/0V19fXI0Wlm0fxTnwM8NTi4XJXq9WOlwFBd2dnZ7Fer4f3pN+MYNDJ0wQYc8wPCvAV7DJw5v7RKSwuB8/Duq+EogPrPJafn58HxY9ymd+en5+HQEPdh4D3ZOB3/VUBgPK368OqbRUocOOD3wGPEZACAVe/TEFmbVJyXoFWO6dQpcgro6snD83PpW21pwIEU2jyNAEERlYgK1hWiC2l7YQ1o85svsnlleVZudKzaQJWzOo1QB1hKaNeSFu9TBWwisC5bCfkFLDwIHWMVll0mQXA9WYLind1U2uKAQqmlAAaDskzANK+4LaoYOQ+h0cAyhjTAQwC/vOf/ww/gAG1kt0ukKiXgjN2/Ssw0ZiSh4eHIX88Ax5gxa3gzQkoBQCqGLh/slUsDAR4igrjhr8bokKVxwPu65jkaTz1nmw2m2G1AZYc6uoE9ewxfSVwkClPV/9er4EDBC1Qnf3X+lUGyb7klHKrDq389NgDBrI69ACBrF5TAEFP25gm7TOQoU6lqQAgS+s8CmzBVM9yecy81RSBpmeB4xQwiKdKQNkUh0Pq3DYuX6crdNpCwUALeWt/cZ9wf+I/16cnT7Y2URcW8ocIBpgqK8QpX91mF2Dg9+/fAwj473//O3gGMBWQbfoE0IVzVsC4x8s4Ua8stoR5JLP4smkCtuC5PqzQdQxwm1zgKrcHbUHddOwof3Ge7J3U8clAAGVhI6Obm5thQyOsVlitVkN8Ahsd3AdfjSo+1nSgnrZyvsxPaoipV5TjMlw5+4ABZzROARK97zWz1vcFA25Mufx76lgBniltBE3edEjJWZV4+U7RIo3mUREEnhNClbWvabLn9FkFBNpOzUsHVWYFI10VvaygwLl03TSGO+f8tJ08WDG9gWssdLMvHbo6u/ZmA+UjqVcwqqDDs84jwAGDmCIAEMCmOvhhPT223XWrMdTzwvP9DBJ4C17eb5+BCr+79Xo9UnIKOPEsznWcZXyq3rrsp33M31KA4lavFYMGLo8tf3hBImIAPhpDs91uhxUYd3d3cXNzk3oHOAC4ZTF/BcqMjp70mUXqxkfErvLn/DhNJRMzMMDeiCr/Kr/qPU6xtHuAQAZIXgMCpoKbffn21WAgYqwon56e4uTkZKgUXMXIw7nz9WUrqtQyMms+qxunycpxClMD5Li+7tyVq+doa/YJWAc62NpWpe+8B/pfFYACBbWINEDOBS26KQoWFmwB8qqEz6SpoED7362h56129Yftdnl6QJUeB7JpcBt7BbhP9ZO+LDjVKucYlymeGQUQ3D+cRvvJ8QWe0xUs7I1wvMPt5radnp6OpkwgXzSmB/EIWIFxfX0dt7e3I0DA0ynsqXgL4XoINMXC7kmfeR0yb0Dr+QwMtMrLAAuft95hz7V9PQMZmKjya9Wt5/5reHXSVwtd8B4rNghNHaQZA3BeGTmG4rKRpsonAwRV3nyf80Z8AL9EteI0H1c3DY6s6pEdVfGzZegAgiru7XY7Uk7I0wUtslWmykYFOQMA/iY9Txl8JIH/KsHi7isQqOIE1BPAywl5aRsUIqxWtvTd8kAVMtyvsGw1liBiF1iycs94TqcKuH8qC0u9WepRQH1550A3/4//upyV64dgVvTN0dG/q3xwzjyJPmbPAIOBh4eHuLi4GPgT3oHPBq0fSZks5jHhxgfOlb9wHjEOKnR8oXVQBZrpDNQ1U/Y9CrfXEp8KBnqenwoAehT8WwDWxfYrw96ZZppppplmmunVdPifkZtppplmmmmmmd6VZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+c/g8VqZPjcxQLUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvRklEQVR4nO192XIjOc8s5H3pZeabufjf/wlncbdteTsXc7KcSiVAsiS35e5ChEK1cgWBBAiyVi8vLy+x0EILLbTQQgv9snT03gVYaKGFFlpooYXelxYwsNBCCy200EK/OC1gYKGFFlpooYV+cVrAwEILLbTQQgv94rSAgYUWWmihhRb6xWkBAwsttNBCCy30i9MCBhZaaKGFFlroF6cFDCy00EILLbTQL04nvQ+uVqu3LMeHIrRF61+f12dGfkdHR/YYP04ThP2k+N9dc8/wT9OrzjU9pb///ttef0s6OjpKy3No1MNTbiy27oOqPmyNcdeGjj8qnsmuHTqtVqt4fn5+l3zfM8+Xl5e0DOhH3M94SY+zc3d8fHw8ybujo6ONYycDtXzMk8/Pz1v/7lhlXyXTDpXXV6tVs2xK3WBgoU3KGHjknZFfz3taBh2kTsEzuYGvTJURCwZOh4/fQ5hy2T4a9QKCXiCgpP09R/E4/qh4pke5HCIdctnekiqeqIye7NzxdGUA8c8BglYZWfaBL4+OjuL5+XnKh+USy0i97gytQ6U55VvAwCDtIpArQVjl11L2rXxb5VFFzu/xM9l9l59aDQu1qerjDHC27jO5/p5TPpdm61r1rEv/0IXtj6JeMH5I1MOjGRhQD+jR0dGWd0CfdeS8FmhLBgJaXgYAzqOYycqqLT5K/y1goJNaDM3/Pe+7+6MegVaePfVpAQE9HxkESH/Xsu5K7z0ge+ud8VOPh2DfbZwp8+y5DDQ68LELAPgogvVno14A2TKQMrmmyl69AuwRcHLQlcPxmfLparWKp6enjfLwdEHmzRwBBR8F5C5goEEVQ88VxBVynqP4RxSAE8it590UwMj7+H8vMNBDcwfsPurUo9xHgMC+y8TX5vBNz71sail7ppcOWfgeIvWCwNa7FW/qcTYFMBcIVHVhhV+9rzED2fRq5TnNynSoPLmAgYJayFavj6bnGLoFBEYGg6NqLvet6JBBwBw6pPpUwJJJhRZfd8/35pelXSl0TifzIFReCH6vokMVuj8jjQABll0uKLAXAGQ8rYTYgoiYQADiBnBPvQjwDuAeTy9kQPajA4IFDBRUMZljfj4e7eweUFBZh1zmjFpIl8/52eyapufy7xmsh0K9fVY9NxegqRJt/XM5RvJUQbQvL0Ir/sSR462snNl7PddH6FAF9VtTxQetMdwCAs4bwF6BarWAxgU4hTuHnzn/l5eXDcCgsgxTBdWqpBbYdvnvk8/2kd4CBgpqKWi+xs+3Bk7rlwXJuPPMMswsq564gIoyQJDl+dGBwFuU3aXZY1lV9zKe3LVcPYK2J16geofTzuZ5R8r/KyrzXamn3TPwmY3xCgQoGHCAIDOGOE8nh0Z5X8ujaSKfVixBj8x9K9pHHgsY6KBK+Y8q5J60e38ZZUrZXWsp8xFyjP8RgMAhUw8g0OdHwGlv/qP3R0FmK4+R9Jyy6kmf223Ew/GzUu94zoBpy9DJwEAFAJh6AIBOEWRpaV4ABauVnzLQ9DJynjwt8y5e5H3y5gIGEsqEcAUMeojXxrY2EsoQ+Kj7NSubMuOI4FNLsKr/aBu9FznL4y3Szq5nx+75SgDzOY7nKueWMtAy76JEK8FZlalFPcLz0HnzR1Cl6Fvt1gNQnbzbJUBQ83MK3ZWfrXscV3yu0wMKKhQUZGNtX8DyrcDpAgYMOYFXodZKcCtjZEg5+6+EvaPM/eqOlUkd8ubBtIvA/AgW1lvVfwQIZMKtejYTolnfV3XpAZKujD1gw00nuPZtgYJdeKm3D7OxcojUA3b42Tl1qUBg9U4l80YUf49Rg3+VnSAEDSI9TruVbsaHCCrknQxb6bp0eg29t6QFDAj1CNqMiZX5lIFbAyNzlWVlVMrm81XIjgw8BQxzlWNPvodAmRIaLXvr+bn3M6E8ClIzYt6phCDnqXzB7zqQWZHjMVcWV4e3FKQfgXcjaktU+aLXszeSN/4zvqwCBJ381PK6fBwI4GP2BESEXRWQ8SmXiaccAAA4PTwDYDCi5F0bZO/2XhulBQwQOUGbKXC+X71feQaqXbWcUO9V5PyP4xaoGHVtOVDQQu+HKlBHANfc9JT24Wmp8usBqrvkm4GOXgDgPFjZtZGyHbIF/yNotL34f/Q9d56BgJ6f1sGBAJe+27Uw4hUcAAi4MdDrSWFgocsSQQAHFZjdB49mXrddaQEDnZQp5h6hrOcVQs5cXL0ggI8dknZpjaJXl3YPHSoYcLSLst6XpdWiHvDqnsuutfigxfsMBPjXCrSqAEF1faFX+lHtksm7DBDwtQoAKFXyRYGAxhwcHx9vyFLw4OPjYxwfH0dEbG1JrPlm53iev2/AwYZa5pYh1aIfye8LGPj/1MO4LYZWZnCMpEycAYFqoACRusCVCu3uU0kpw2cA4yNQ5n7eFRAwVcqXj0ddt5XC77lflQnv6fRSxv8ZGNB7DBw4Dy3DKABYgMLbUg+PjcpMUNV3Wfr87QKAAHzHQKcJsOWwxgxkPObGn56zHObj0fodCi1goEHKfD1goDrPomgzj4CjCgQ4rwCO1a2lZVQQo0ppjgvSpXvINKJ4RoBC9nxvOq0pGHdNFbg+21vXlrDXcrJHgPlRBXEPXziPl56PAIa59BF4V2lfZc74y/275xwvZryD/5Zxxor/5ORkAgR8jP/n5+d4enqK4+PjeHx83ACj1bbE2ZhrlS3j6x/Bp7vQLwUGRiwtPs4AQZZuJZyzD3BEbC47jHhlJlX+HBXrnnf16LEQnfJnBs4USW/aI8rzR9KPKlfm+my5xB1I0/dbba/vVcI7y9+NA1dH9gBwtDX+Mw+WA55ajorHOZ1906HybsTbAdiMehV/Czwqnzng53gPCv/4+DhOTk7i5ORkAgX44TkGAw8PD/H4+BgPDw9WlvOKAKe4M2+B+1Xe0h4Q+x6g4ZcCA72UodgM5WZpuDQZACiCdWm8vLzE8fHxFnMoIOA8M4FZ1bdKF1S503voEAXqLmXqEa6VAhvNp5fXsmeUZ1uWSo8FlAl3BQQRr+5U9hK4unKeLevqkC2tQ6TM69dLDoD1ggDHM1ouTpvlpPMAZD9+nhX94+Nj3N/fT8+s1+uNPJ+enuLp6cluO5ydu3JzHVv8mY3B1tjc9XlHCxggcgo8ey5T3tXzCgR0fgvEHgFnqYEyD0GWf+/A731uxN17qDTXWhpto9HyVJbFSL4tnu7NowcEuHcYyDCfvIew4/JW+Yy+81FpH+C8l1da8tIBT8hGVvR8fnZ2Nil23FP5ChnLAYQPDw/T9Yjt6VPdM6AFDLjczO+Zl7WHl0cMrH3x5k8NBkaY3aFcPXc7ZfWmrekoONDnX15el7D0dDg/4wS+XnNAwuXRIzizfHFvH0Lno9I+B+tovpXlptQSUm5c8D38u/leVx5NY+786j6AqMvrZ+fbXq9Wde7uVTzXkpv8Liv109PTOD093fIA8LWI7WlWHDMwYO8BAETE5uqCp6enDW+Wthv/t+qPZxUIqLw+BLD504KBfaFex8CZUARlbp8KHWcrBDLKnptb71632Jw051iC+6T3VMj8P2dud65S6o0j6M2jxfNIJ8tHraVKIGp/tSyqkXZtXdfjnxkQVNQCAhngw7+TnY6HuI3VYDo+Po6zs7M4PT2N8/PzOD09jbOzsw2AANDAU1Ow6tnIgvJ/eXmZ0lmv1xvP6LQBaGRXwaquXN99ycTWtNoI/bRg4C0GsgMF2XOjgn9XEDCabzVny0p8VPhmFtYhIN/3plF+zHi4FYOgbd56vrdcIwo546EWIHBpZXlUz44+8xbvHjr1ysgeD0HLE5AZVfo+vKZsxZ+fn8fFxUWcnZ1NUwPsEYiIKUjw+fl5Y/MfpBURk3cAzz88PGwtD0QZ1uv1Fj86/q/GH3t23f0KGMyRmbvy6k8LBiLGmb2y/t09N0hGhBMQbOY1GKHeOaiMeR0IyFxiI/nh+JABQQ+fzAGX+s6+AGqVhmtr9TQgDeXpOf1UWdXZcyO0D74Z9cz86tTLo5nlPwcERMTGtClPBZyfn8fZ2dkECODePz4+nub3Efz3+Pi4Mef/8vIyBR3ytMJqtYrHx0e7VwDOHx8fNzwNEX1jOquf8/i1AAGe/RH0U4KBEYHrOjLbHlhjBrL3tfNGFY0yIKPdXRijp10UAKhlN6IwMrfvodG+PUhZmpUnqXXs3hkpdwUGWWC3AEsFDKt+nsMDmbWk3oQRT9VCu1El9/A/Aib4HQUCmCIAELi4uNhYURDxX/8+Pj5OSwYfHh4mD8HJyUk8PT1N6cPwYqCB69V+A2ywqZHk3uEVM5WuODTe/OnAwFzBXqFcFziozzoA4KwwhyqV2Zjmuka1LJxf69nMuhzN/9CZv6Ks3VsKel/k+FDPK37Mrmna2T1HbvpB+ZnLn42JrBwuv13oI/HbRyAHAByv8T1HygMZEAAI4GkCPMd7Bzw8PMR6vY71ej2BAYAETCXAQwBPA6YhImLafwDeBaSNdCpDrAWyNUCx0hO97a5574t+OjDQms9hyhQ/Mycv/wMizZi/yp/TzoAB/pn5sI0mu+6rOlbWnV7L5rRcXRb68dQjfHsBgeNvfp5dpC1LRnnUeZGq6Yo5fJWBVKWFZ/upR0Zk72VAsgUCOI8WELi6uoqLi4vpXy15gIH1eh339/cbYABuf55K4CWHq9Vq2r8FwABeiIeHhzg9PZ3AAG9lzLyvdcvkqIIC1yZzSXXMLun9VGBgjmWWAQLdKth5Bvh9ZfSM8fVaxOvXtSpyQIDzcc9zHkq6xtYtM3TvttJtletnptHpIX2mJWB3AQM95XHP6Twqp82uUPZyZW2jCt3xWQZ0R6cHFhqnHnDg+JWPWzIjk4u89I+nBS4vL6eYAZZViA9gIHB3dzfFDIAPOcgQngHEDJyenm7dww9eBUw3PD4+Tnm3wI5rE/Bv1j69YNelvy/6qcCAEyxZg1VCuLKkVHH3pq/pIapVP6jBZW95BbL8WuTAB7wEmbB1grsa+B+dnFW878HXo5yrXwVQ+TyLgeH7DA4dWI3YXmIFMMB8CT7JPFjZvwOZI0LxVwcJb1HvSra1QGel9HCs6bkVBJgegOJmNz48AZgiQNwALHrli/v7+wkMQN7xfiu8r8HDw8MEBhBoWCn0VjtWyj6TtT+aPjQY6LV0suu9wjZzrWb5uHP+6Sc2FUFG5AF8fI/Td8zfoswScIq/1+p1oCZL4yPRvoFAlr7yV8arWQxLJajdM6z8M9AAAihgIABhykCBvQXOe+CEolMSVVvtMuXws9JbtkcmK/Q/GyfV1KVuOYxpAvxOT0+3Vg5gjh/z/QAGuA5iRa87GcLqd2WBdwBAgMEDp1vVjdPVccnv8nOj/Tci71v0IcHAPiquApeFoE4RZBZVq0w6SNgCy75HoKRegco7UJUFVAEaRskZgs3OD1koH2LZMoXP15xSr6x8J3CydyNy5V/xqQMCyAf7ukdsb6XNIHNOGx1iHx4KvTVQ5Xx6AGhFyg/Mexzlr7sOgnd4CSGUP34cAAh+4eBs/ZDR09PTtIkRnne7FWKzIuTv5GfLC+3aqGVw9dK++v9DgoFdXLaVwFXh2poiaOXBQlfjDnTrzCwwBffYJdvK26FFh95RHrbeNA1Xr+wcZc3oVxPou6B2B1AzvuwFAxUoUOXv8uM6KS8+Pz/H8fHxBAgYHGisgfLoLt6ACrT+avy2T3Kywz3TAwgqrwD4i7cIVmWMNBQEMBiAOx9TCMxf+GHHQUzR4jnkiecdIHCyt3ejuGpsom787IjXa59A8EOCgYh5gKASkJXAVCTomD3Li4GA26fAva9zsW5uNsvPlQ/n1fQEC29G76rQKsFQTWf8yoK5xasjsS0Vfzo+bQn1HoCrvPLy8vrdDA0wBCBAGd2y2Uw4Zu3ggEOvsFyoj3p5oKX4lVrTl1mwNn9IiK1yKH/ECLBXgHch5PzAjwAQ9/f3EfGqzC8uLjae59UNT09PUwAh8zyPAa2rq78bQ64N3dSZXq9ol3HxYcFARD8gyAQqC9ZWkFUmcLP8OA39opa+r3NcGi/gpgh0cKEtmFGrduoFUpmgboEZLWfP9MYh0y7eqBZlCnwEvFagla9XcQHMM0xcdwanfL+njg4UaBwB55cpfnfuyuIE80L/UcXLLQDpns9AnPatvsM8qvzIfMZxAfjHz00TaPlXq9X07QFcY9DKqxUiYvIGPD09bexJgLKwtwtl7W2jbJzqGND3R/l39J0PBQbmCOOKsV2n9ORRNbB2OK8aYHesS0uPVYGqguXrTpBm6H0ECFQgQJ9TcoDgI9J7lNsBAvz3ggF+b5R4r3aeQmIBvYuV7oCAAwnIxyl8l28lnHsF989M2fitjls8lBkmveVRrwCTBg0yAIDi5+WEbnUL0uE0IiLOz8/j/v5+a5k1l42nC9QoA5hoKXFuEzbaFFBkwGnO2OLj3vc/FBgYZTJ37hBpDwioUK6SizVwZdL0QW5jihYQqKytSphqHuqZ6GGmajrgo3oE3tIT4Mgp9AwIZO9U70VsB4+O8D17r3Bd+QXE0wNZOSsebXkGsmu/Ks3xkLbe7wGhuxLzJU8LYDqTeUynBPgcz+jUKtLgTYpYHnO9kK+uFsDzx8fH8fj4mOqPHs9Ar9HWK3f3TQcPBkaZrkK+cxha0WDWSVVayoCafkRsIVrnGdB3kHbLiupF9nNIy8vXHTA4RHoLxb9replV1irrrvmyAuaYAAcmd6EeQdgDDhRQ9NavVa6PRplM2ldf9V5vGU0qf5m/oHS539mi5x8rfwUBasxEvHq6GBREvK4eWK1W0xJGJsQOYBkiA5Sjo6MtkNxqx1Hvl773lnTwYGBXyoQqrmWgoEcxt5QuGDzLRy0rZWpXJnfNDT5n/YM08MtZeBnzZWVwg5Gf/6gC9kd6B1zemVLUds6EyghxcBTShIXEQnLEStcgq+y9ER5+KyDQ+8xHol34l9/tNZx6wSvLZZ0eAG/zNwayJYR4puo3lq9Q4JDHmDbg8eOCcwFUkCfvPcDv9oBNbRfHw9k4eEv+/KnBQMvVlVEmiFU4jQhedolF+N3c3PUeyhRuZVnx8/x1xOzdKk/nAVAw9ZHpLb0GI94pVX4V4JtLDAiQ12q1PU2gpGMNgtLxZGbl91Cvh+KjWvi70K51rgyn7LrjSy6L43W9xgoX9xC4V4EBbBFcGVBczohND8Hj4+PkGdDgQZ7i1eWN8BRU3t5ew5GPe3j7Lfn63cHAvgSZs8r1v/VjarlwRkAAz4VVlCnPHis9s6yyslbMrOXP6q9tNFL2Q6cf6RHI8mq1uwKDfXgHIrZjVnQFjBsrlfDCP5fZAdVegJ6Rs656+C/zPHw0mlvuqt1VNvbwI9+r0uUpAuWJiFc+5GkCHLspghaxjIJFj/Q4iJA9FbwvgXpx1ZOW5efq7tqoNWbfmi/fHQy0GqyHRoBAT3mcNyCzxHoHADM+XFH8NSx2d+kvUwCt+uh9rAPHu84L4fpDBykLWS1rlsZHIlUoPyK/ChDwvwogJ+Acob9bgNQRb+nqysvtBT7QFQcogxubSLvaxMUpduXL7LmFcur1AlR9p1Txsyo/N0UAeQjSnQZxvzVFkHky+McxCRH1vjD8jm5TPEdOZODV8XX13r7oXcHAaAO2kKY7d8g28wqo9ZLl4waDez4DI9lgqmIGKoU8Qs7CUoTdi7TxbgYI+PhHWtr7pDnAoJdPMx7tLVcvj7LCBfV4hZQUFDg+ZsGIYzdloMCWr/XQvrwAPWn/SpTJyhb1eAJcuvjpLpds+eNDRLqnAD/Xyk/Linc1oJA3PcK7KBu/xxsR7ULOsHTjIZP/GSifQ+8CBvYtVN31yjuQAQGXtrOAXZ7cMTrv+vLyMs2Bcae2Os8xsSsnrrt6cV6wDt1a3h5yIILTd23kwMHPTnPAT2URtACqS4vfw/FIWZQcL2r5WsR86Txcro5Z+d8KCGjaH4XmWqatY72WGTKgHpDqwKrKK3gG8DEi/RCRW31V1cXJQ7Xyea8ClonqvcA7DAiq9nDt6O5Xfdga0/vg2R8OBlpKfB9pOKuoBwyMWGjVoMjQokPH7plKKfSUpQIGEbny58HVw5jZ+26AfiRySmrk3Tn3KlLFWSnQlnJ1Y6PK19XBrUZxz+G/B0DrM3M9BHqtFyh8ZJrLV71pVkDA8V6P3FqtXmMGVJmyoueth3kL4hYgyPLlMgIMrFabWxYjQFC9Dphi5akFBB+iPlmgbWY49Sp0B6L1/ofyDGSCac67I2lXQGBEOEa0g/YiNr/YxoEmLERdxzlmGrEKdxEKzpqv0tQB+JEFbmUJZffnUNaPLQWu5aj4tkrHfSeA38F7uKfWET/POxRmlG0+pPf5XqbEez1pFfBAOhl4+tXJydAMCIzIysqr6nZkZf5Tr4B6B9SKd/n3gF54I2Dt47sEHBuwWm1/xIhXI+gyQ9cOFfUYYGoU7JPeHAxkyixjql63SUtguuMWGMjK1SsstMN4ukC3ntS6VtRSIPpsVc+szHPc+A4QfERw8KMUwijP4twp/4x/W3mBnDLnPlMB6+IFqhUpWicGwxxc6OpV8c4uHgMtlzv/SHy7L+qVdb0AoGXAuD4HMW+4LxTyHgNqvY+43FFGNthWq9XG0kHsJ8Cf5kY8AYCA7jab8V1Wxn3y267pvSkYGFGwvQw0kh+OK1CQPaPXMwbOyqWCDwyjn3XN6tFyB/UogR5EzP9ZHqP0MwjUufWvQFrvecafbjOUCtDOoUqQKQDoAQTZVwy5nKMuz8yLtQ/at4B+a5rb17385wyJHrnSMlSyzdjYSndfJdRfr/GRKWEHDHS5oe5FwOXney25XlFvPyrY2ud0wd7AwIjVUymyXaxlTbuHiSuG71X8TCo4I2LDO6CWEaiHkZgJWgi+Yhgt61yPQOvaR6ZdFOpI2i2ArD92WbJAdQrZ1cEJ6lFrxXkVcIx5VTzHICAi7LGOsR43qPNkvSVI+Fmpl8/3ATR7ia113mlQ4wQqY6aVPh8DfEBmIxYAgAD/JycnG2kjINwZigwwXL5a3t57rfNdaGcw0BJm+u+e31dlHMM6Zd+yrFxdUE4uc0twQdBhDavLhwWnXnOMNHdQ9rqu9L5D7a10f2XaVVg6nmQQkIEBVaZVedCvatXj3WwXTOVBV3b9d1NnLh+k72IMduWxkfcXfs5pF952gFZ3/mPFzLsMVl8l7OmvynhCWgwEjo6ONrYoxjjjfVpUFlZLDHtlZg941/G0T9oJDFRKNENM+nymTKuKqpBplcnd5/ORZ0dJAYRu/MIMx1Z/higVhLTyde1apc9UgZ3e/vkI9NbWTgYyM4uCFb3bBMVtiKL5ZYCg2nioV7Dyf8s7gTzZDcuWGKfFgtm1y1yX6Ag/7ttAeUvaN99mxprLp2qnSm5m/I202AvgvkXAPNTbR6or9D311MJ443vPz89xeno6lRUAxdXdGZpuPPYYlD18vy952w0GKobIFL9rFDfwHcprMXqrPKNpVKAiE7hVXhmic2kwEOA8s/d66la924OqnWBouas4fXf/rZXuXGoBq12oBTTd2HFAgOclM+8AC64sX914yD2HZ7J01JugQl2fUWGLIC12zWo+PH2QjcFKSL6VwPwZaITXKznbek/Brf4UlMIyxz9PETgg0OpPJ5uzsc7eAd4ZlnmXp8d4W2SQ7i3T4tmRcrk09s3TQ54BpxBHfiBWFqqY3hKZvwWS5n9nPetywgwJjpat5bLN0nVAYMTi6hmIXMdfiar6OuCp15zwZBCgx3hO04JQivB9mwFbPN8jZKo0GGRwGVWI4Rl2z6pM0HYZsZLmjLG3dMN+FOoxfvh61sYtQMD9D6XqPkrEIKBVbndclR/EfKdfNWT+ZZDL30jQPJRnM0WftWOLVI/sg19neQYqS0av8fMtBcTXKzQ0Ut4e9OXqmOVVWSotRnP7DfAzFY12NLdnVo+W58ClNZL/rypMQZVV5QQHn6sF5YAA72gZsbkpivJ9Vr6KhzUYkJdX4b6O9ZYMiIgNrwACtFar7W9lVB4zfs7JjkWp91MvSBoBu8oDmcxE2hFhVwwADPSUNwMDOr6qOuIZDnLlvV8YGMA7gHJz+toGzlDs1WW9xtquwGCWZyBDfFXnK9p3leQKZXm3yuaeHXlXr1WAILvvkKIjFn49ZazasGeAjJJjYOfNycqpxz8r9fJXBQTceGIQwACAgQHzAYOAjLdYaTPpOQu3l5eXjb3a3fMV6MTzDqByObHhiwIB/FqKf6E2vcU4zICA0w8Rr7wAWQJlyx8hUhd9DyDoAQN8z+mniO09NsCTGm+jQIV5MgM/PQq7Uv7uvX2NgZ3BgAtmyuYiQb1u5lY5VABlHc5lds9WKK2yTHoUsH7wIiI2/tWKc9dQjux8rtLNGDObsqk8OwttUgUA8J8JTTe3ulqtpu+s8zXNjy14jtx35VPhrHzI/c6WkgO51djjeAL2jMHqwnNQCgwGNHYA950Q/9WAwa5TcT2yLLufyU/VAY7H8Q6AAHhCgwddoGAm+6v6ZPza0lGtpd5Z2bQdeBxm/JrV0T3bQy6NFg1PE2jHug7nQnAjtH6g3gq4TnbXeweMCpkKTbKg4/vagRU4cvsN8Lu97aBt3QNSWmll5WoBuV+Jetu5hx9b4EC3PtWAPeaBbJMfUDWt54BhtbGQs/hcHrjG5dbtW2FpHR8fb+wKx21UeQ0Z2I4Kz1+Vp50Ca8lVl0amHzJPsVr+7A1gSzxTyC0gkyn+EQCEcjIwzd7T6V+dEu5V7O/Jh0NgwAEB7fCIbYXi3MstV8hccojVKflKAbcYyQk/lz8TWzkZg1dMo22btV9v2blc+McvQ6xV/lreQ6IWSt6F33ryddec8ufxpHugOzDA9VLh4zb5wXkFcl25NQ1cU+Joa+Z1VQgMoDkvWIWZEhl1q/YAg0Pk17eiET53fOHu6TUFgS5gEKQ7CKL/GRjiXlb+HiWvQESvV6tvMuoZNypb3b4aKpsyXu2Vt9m1HpoNBlwDV5VQMOAq0BLa/Hx1nl134KDKIxPWEbE1h8p5jJBrCxa+rpxZ+TPAVhHao8WMrqwunYwOUejOAQHVOy2BxMcVsHZAAGBgtdoOHFSA6UBrhP9apfKS83RVngF+P/MMoE78rxbUarXaUAC6yYybLsjK4YCA48+Pxq/7pF2UX/avgFb73gFYEPc1+CAzGt1Y0jplzyjxtIV7V8eDk63gLx2DALY8hjJZW/Gu3td33XnruqPhmAFuiAoIqOKvLMq5SKYqZ4tG8mQGj4gtYcxpKpNzIBQLVD7WNbStwELt4MwjkPWVKy8DkMqCzlC6uz4Cvt6S3lOwVwAB1zIgkIEBFlBOWXN/shBRhc6KuAKYvKoA77k6sTfCkVqNANSoK/M/toSF+1iFfo9F1KLqnV1B/qFRL4h11zPF765lQMDlw4qRwZ/ec+8qoM7qUck/3M+WLeId/TaBrqIBzzKfsmdM9yrg+nNevSBWy6gAYc5YiJjpGVBSxdQ6dmnvQnMYXUmVmTIbfgwE1OLizmYm52eRtnMZ8X9Vn6rDq0GqilpdyaoURhiqeuc9gQCoAqFvXb4MqCloYwHKIEDBgEvb8W8WM6D8GxEbwgvk3PkO9Csv4Rx7uStYWa1WG/VBYKRuLhMRW+vMnbDUco0I1sqg+Vko63+9VinYDAgovykvM6/hWOfWI7zszPLXvJ3CR/o65eR0kgtU1Lw03oUBgYttwXJZrm81HTEXALjzubTzNIGjHkCQMWglmHtRfEYjz7GQVqGlwlHnVB1j6Ryq1itDpyhPJQi5bg64MBPr862IWcd4jrQ8uyDUj0ZzhW02PXB09F/A4OnpaZydnU1gwPENfioIHQh1fZ0JoIxXWQAy9UwjaPrgUdw7PT2dAMHp6enkIXAuVgdes7xbgva9PVdvRfuukwMCGaBlJZx5UkGVIta8IjaVvxpn/Fw2raYAFgGLarkjTQU2mi57f7EiAuliXPNGRq7+XNddLP0KJLdob2DAdShTj2dA09SG6/U0VHn0PKfMjY7PlKpDmE6BMsM4Ia3MqO+BtLMr9KzonPN0SswxXkvocrk+Er21AsgGf8Zj7BVw3gGe32Reyeqh17NvEiBNte6ZV1t5VJ4XzcONDwZDAAXYtpjfy5YaIh31kPRaWh+N5pZ5znva3j3Alo0oJ39cmdR6VoCrAEDz4WcUYDM/8JTE8/PzxnSUA8zOI8DLfBmQwyOA/BjM6rSdtm+Pte/Awr5oL2Cgp0CZQsmYDOeguZZmZkFnZdRy9ATBVGlmwsnNHfUso3F1c+2qblktN1/nHbZ6vC89oGDfjPpRqKX8M4HqgKfbijhiMwpb3fpu6qeHWKCpVwECk+vjPlXMxO9qmhwshjxRR3gETk9PNwBK5srVcdQCCBVv/mo82+INB2YzPeCAALvqs7yUTzU+xclh8B8AM19HGuppA4Gn9GNI4FHlMwU77hshXH5snKVtEeG9WS1+a/FsD/XKgL1PE2jBHVrn44q5XNosQFruvsqV7urnyhURW4yo76igc8zMZeJ3Wx6VDEk6IODargVUsoCWqiwVOOHyZe+/J40A2H3ko9daglRdkOwp4DRZALGFwsKJLfyMXl42vyDYUyf1MKmw1efBZxxPoAFXSBeAAOMCFhu7cpWy+JtRwbuQp4pvFQSohyCT5Zo29w3LU9zXpbVZPA3nze8gXQcE1ut1HB0dbX0qGeQ8DlpfHkPIj8ECzhkQzOmHyljbFeDuBAb4HlPmxm6lx4zEiidzw1fueFcuzZ/L4a4pEnRzTyAIut5855IKuBZlUxO75K992+u2OhRhPFKOVjv3CDrlsUqY6jQBC7keMOuuo9/dM09PTxvfNGiR+x4B0onwK2ogAPFpWKcg8J6bLlAPAZ7HfwWYf1V6C+DteNhNCyh4Vf5z3h0urwIJ8IILquXrzJc8fpi/ASwZCLCMB+hkbynKxPXldsB9ng7gdsH9ffIj64F9pbsXMKBKcBQIuPkmfY8RlZvbcaCgqos+p2UBQ/HcLRhehR3e4/knLUMLJbtIWkcsBLPnefpCl7vwM2B4XdfrLLAMADrgd8hCeN8D0p2PgN/Wj5V51eeaLkgFknOrZ94BnDurTKfN9HOzAO4qVCM2l5FhLTaXVd2rXG7mNwhupJkJyFHwl3nh3oMyBfrWebZ42/ExgAAr5B7gqkpV0z05OYmzs7M4PT2dfgACCgb4vdPT0w3PAPPo4+NjPDw8xP39/ZTG3d3dBBJ4F0ytb8TrVATfU9DDfOw8uMyrhyAzh8FAZWX0pKFp6RyTU5osrFxUphusvY3LAjabY0VZwegaEOKsIAdO1L06Ssw0LTAQ8Wr1QeAyE7r3K4+Lm974iLQPod6ThlP+TniyJazWBPJR8MvBdKx4K6XqgAC7TJmP2a3Jrnu2xCCcIYTZ9bper+Pp6SkeHh4mS4y/Ec/1AGnZIUARQ3BycrIRqa08Wk0HOIBagVZN51AA7q6868B8BvL53AGAjI/VS8Ayr9XmbICxlwxKHytrlBdxzOXQKYSITZ4HGLi7u4tv375Nz63X63h4eJhAAY8957lmPcDnlQdBY7RYFldy/a2pGwxkilrJKQ6+1wIC3Igg/tY5p1EpqBZYcINBB4VjLrRFVkcwQ2Zd97jRMwWvTOPS1/qy5cTl1jK2yjUiILUcPdMnH50y4eruOWEasb2ZFUAw9xmus3eKxwVvWHR2djZZSKywGUhAaWu6PNZZIJ+fn0+/s7OzOD8/n6yop6enuL+/n37r9TrW6/VUJ1bkOF6v1xGxLV+4Phh7yIPL7wBs73RBazxWSvJHUy8A3SX9jG/52PEw8xyfZ2k6ecxeAChmBgHgM1j77K3S7bpxfn5+vuHVBY9gHAAMMNC4vb2dAAF+4FUGAgoKXD1RHx5XPFaZ5nqy9kmzdiDsVbTZu+xGUjAQ4bdP1eUgmcJl2rVRWWCjjGBmnhLgSGu2rnotEhfE55ijEnpMLNA5VkDzYQbNhGrW1y5vrduhWFQRbyvMKzDZ+1MAHPHKQzpvrmAgIjYEMgtQWE9Ij7+//vDwsOWtYn5h3gcguLi4iMvLy7i8vIyrq6u4uLiI8/PziIhJuH7//j1ub2+nH/MB8xdPU8H612k6lIfHH7eZTtc5ntW+0euH5gGYQ/vm7x6edtavTm0pX3NwK+sSVuIMAsDHAAOqO5AH86p6FAAKkBdk3uPjY9zd3U35QHnf3d3F/f39VL6Hh4cNvtI66dQwe2MdwFXKPAOVfnsLD8IQGHCUIT19Ri0hFl44x7MRfm68p+KtxnPWc1Zm/KsrTFEe/iuwotMC7F5ioaYCyTFHixEUCKibC++6qQoVjvugjyJklffm1H8UBLgfUwYCnBcM/Hl2dhYXFxeTsj47O4uImFyjcIHC8sH7UMogBgIQyJeXl3F9fR2fP3+OT58+xadPn+Li4mISmt+/f49///03bm5uNgSwxqdw/Xgscju8vLxYb6QqE77fC8A/Ck/ui7T9qucUCGQggEEbAzZW2kos59UbzAAAPAz+vbi4sGmqyx3GGctn9jhwGs/Pz3F5eTkBB5QBv+Pj47i7u9vKJ2IztgF8ytMFHCeg035MPXquBQz2RcOfMNZzdQXrs8xE6kbioDyQKilnte7SKJW1q8QggINUImJiOB4wznvBipiFOTMkAwJnpYzUXwEKp9daUeDe62lPl4ZL+5BpRFi6c6fIVbCOgAAl5w1QJcpA4Pr6Oj59+hSXl5dxcXERx8fH8fj4uOG+hzsf72OOH8TxAufn51O6X758mX5fv36Nq6ur6f1v375txBNExOSF4HIz+O1ta5RJ27cCAi7Nimc/IkiYO7Z6eDC7p+3ORh4r+iw2iqcFOCYFAAAeqKurq7i8vJwAbcTr1y3ZY8a7/WFq6vHxcXLTr1arrQ28jo7+Wz0AoItYmPPz8/j+/fuGJ5i3ymZe4XbR4HIFUBk5I+9HAQCmYc+AQ+lOoTo0iU7I9ltn5ckBRyMN0jOYe70CEduuUnQqOgpzmXANcVAWmIifd9MHCgLwvJa5hzl2EQwZEOhVVNnz7y1c31rAZ+C3R/k7XlOFp94dXiESEdNYgiC7uLiIT58+xZcvXyYL/uTkZHLj4wd3PpebeRFjFdMDV1dXE8j48uVL/PHHH/Hbb7/Fp0+fYrVaxXq9jqurq0mwI1gKXgiQRv4zOaHI7dPqA6e4OJ8KLHNa782z+6ReoJu9w9eUd13gNyvbrC01Fgs8Bt5l79Pl5eUUSPr09BTr9Tpub28nLxfvRcHz9CgPLP2I2PBy4TkAZly/ubmZpg1QfsQRZIpa+Y+X7GJTI+XfHq+AkvMa6/FcGl5NkN1zaIkRIs/juEhPdCaOXd4OpSqzjVq21eBQN5bGNnA5EXkK4XdycjJtp8pL99Rj0HJJO6arvDD6bjaonWtLGToTlD8jtQCio14QkM0d6jyn4zXX9jwFBOHHbvzPnz/Hly9f4rfffovff/89vnz5Mq3Zxzz+zc3NFFPA3iks18M5vAIAApw20v/06dNkkWHKAGXFlMT9/f3ETxqlDV7LVk0ov2feAQewuH85rwqM8HO/GrXaUZ9jPtYlp2opOyMDXgEGAvA4/f7775PnScHs8fFx3NzcxP39/eR5Ah8DIDAYwBjBuXrM2IuGqQnwGacFQ89N67KhyHV00xsOCOC/+rl21HLMpdn7DIAqxcRudrYy1F2jVo+SKiWnEHsQU4u5uZ4cnKJLVbT+UKwIGuE1qgwIeGkU3mXLj5VzBhIyL0xWD76mCkkBgbZvLwhgq4uvOQF8qNRTtp52doopAwHaH5pXq0yssM/OzuLq6iqurq7i8+fP8dtvv8Uff/wRf/75Z/z+++9xcXERT09P8f3797i5uYm///57WmWAiGkde+xx4KDB6+vruL6+nvK7vr6O4+PjOD8/n8YBW3Hr9Tru7u42hCYEto5VBgQwEAAK+J/f4fbIBCU/r4BAn2156X5Wqvjb/UAOxGKKiGWNBrwCPOgU1G+//RZ//vnnxLuYhrq9vY1v377FP//8Ew8PD3F7exvPz8/TlBdkK9LmZbMAAefn5/Hy8rKRb0RseLTYqwUvBEAte3sjvG7K2pKpUvK9XmBNb1eatc8ADxIV9Jnl49YoY4oA1vSIQOY5eEfuuhvk2mlafhwzIMA9Z824cmIaAcIN6FXnTRUYOJdpr7BzoIaPIzZ3/tKgw568NM/s2qEDgR7KBCVfq/iHx0MGDHSJFviOV6yA53Q+nxUzLHgAgj/++COurq7i6elpcoFGxMbSKuTLChtjledw4YEAAOFgKyj5y8vLCQRAgF9cXGzwvCp2CFmWKTzl5lZUZP20C685kJCBjI9Mjnf1XtaWzLsaIwCe5ZgBNjbUgwy5immoz58/x//+97/4888/4//+7//izz//jMvLy3h+fo5///13UvKY04dMXa/Xk7IG74LHIO/Ay/AiABAgfx178Gjd3t5OAHe9Xm8EiEdsGoR8DsJxFj/Bz8zls33waDcYcGtHVVmpUmOPAG+xyoIvYnP9MVvUahGMukcyD4F7Vwc/C3N2f/FOVxHbG8JwfkjfKVn+waPAHhKkrdbJSIczIEGa6EOgY94BrmLWVj5VuRQwHhqNlMtZABUIyLwAmQCO2FT4EZseMwXZ7F7FHKsG+MHVir5+enqKu7u7aZ4Uip0tHl2iqIpfg35RToB+CF54FCCEIYhfXl6mPQbUGwBiMIDjljxojY+fTdHP4V0+r0CBXuf7ehyxvXsgGyMR29/TcMGpX79+ncDAn3/+GX/88UdcXFxMShhTBKvV6+eCeWUMxg3HEqCM4Ed4wiADOaaAN85C8OLFxUXc399P72Ec9Vj2I3L7vflwCAywUIvYtlYzi0d3LFNXO1vZSDeiDh4csTqzZyp3oJsH47WtWZl4kKBefMzMARcWP8dlUSXA/1zOiFyRc3/pXGvE9hpZ1xb6Tk97/0yU1bcSjE7xVz99l8ePAu2IV2XNQADKH/P5v/32W3z58iWur68nZX97e7u1uZEDMrpeWzd2Yb7if97rgNeLcxoQ1JX3C2MfwpnPGQwor/Xy5kcHAaCW/MuUe+tab5oqW9RDwP3MnifdFwOeASxX5aWrmM5iD1TE5qoC5pPV6nVvDgaovLsge6EwHnhPA4BsAOGzs7PJ+8Df2GC9xaRG7XtSL2CcBQaUdCkFnmc3EHsDWNDhfUaRnIYSCwF0hnPtZeSmNEBOkLtzJhaiSJvn4V3ZI2KKJeDyu/dcG3DePLgcY8IdpnXkvDRmQV382jZZGTSPn0HYMrk26FH+/GzFS1UeCp6xjJDX/rMgvb6+jouLi0mARrx6HNjaVo8DgLru/c6ewYjX+XxdKRARG15A3UqWI80dv7N3kGMGNN7GtVvGi9m1EUDQK1B/NI0CgZE0e3mVz5Vv2aDhd3QKWae6cHx2dmaXnjP/6g/PrVarjV0Ewa/6/QxXHuVf3RALHjZn3DGg5XJXbYdrlYHqntsnDW9HrFaFusG5sVxgiSpZRmf6PLuwFQFrwyk4cKChh1wnqQXiQAzyWa02l2dxmuwKxZxWBTJcHyi1UGflychAi6PKAlF+cO9m9z4Cubo7QNn6b+Xh3ItK7F7VSH8AAQYDutYfP/5ewNHR0fTZYIw5CELeftjt8w4By7IBQIWXOnKcECLDue4oo/4YHChlgKvVdyoTKvnwVoL3vSnj3xEAoe1S8a0bPyzrdcdBgEf2HjH4hJXuQAHLffUeaBwKrmX97HQZ15dXijFf6VRWZUgykM2MMNfmvbzZy79DYEDRUYTfwhT3ObgkU7KoVIZGM0btmR5w+bUaUF2WqKMyOuqnnca7XzFAQDpIm4PAOJ5Aib0lGUBgJKpIvKJR91XF2KCfUXhmyqYCBBmpsle3uFrGOh7YeuENhni5H1ysAAMQpPzNAP7iHywzBvUMBliZYyyztc4W0tHR0TQlcXl5Gff399O8K8cbOJmgyp/jBLitsj4aVWQseJVvM8Pjo1OLl0eJZSQI3siqzTRvVrpob0TzPz8/x+3t7bQvBubvnZXPBpcDCjqtoJ4DTdfpKNcG6rVy15xHTH9Z+3JbvRUvzgogZLcNu5YjtoNJ1DJ1jTQVhiJAQepqGW2IHuWvHgXnpmShpPXiPJw7E22hm2NgjasKew4kZCWj0ygKVhwhLd4xEcLctdWulHkBDlWYturslLwbxC0LtZcYWDOgjNh2ZeomQ4gX+Pr16+QZQL/jc6348QdYYMkzMOVAQNxTIIBAq4eHh42phIjYWIUAly/O8YlYXoILyjbuyuIEWkBsxHrScfUzUQvA83ELWGVymA1DlqUV4RkO3MMKFHw4CKtg/vrrr/jnn3/i5uYm7u7uJlCrxprKdI43YaWPlQIRr8tdsQ8HQLNuNMRgwwF7rpe2Fbctx8nxNZ2m1fS4n/bpFYiYsbQQbkd1lXNDsRLDfVgi/K1odbmgEdhCcQ2s55l7R++pK4bT4cZFXRgIsEtJpwU0XwhEHVgvLy827kKFmQvOcpYUl7nHIgUg0bR0l0TH5D3CQfujGiyHQL1AgM97f45U4TDwRN9ExBSgBMK0UsT2kr+rq6uNTVoQNAivwGq1mpYQwrr6/v37hjBlHgLvspXGQBTl5jlY/Dg+geeC+SuHuqoI9dP03JSBWmutvuTx7ng7kydO0O4DKP9IyjxY1b0W32qbufZUr5YqQ/yzjGX+xNLXl5eXaeXA4+NjfPv2Lf7+++/466+/4u+//45v377F/f39xvr/rL4sb8FnAAI8ZQUPxM3NTXz79m36gqEGHvasblFPheubDBhoYC2/85YydDhmIGLzU6ssxNQ1hGNWNrAsoJScYoT1E7G5HEUHaYWOqsHOx5lwRmeqK4mVqVP2DGp6rcVM8DjEHrENxFjJg5QJce68AoqgM8Welf9ntahaICiiPx5AeSTi1Z3KfYMfW1ksNNgrwNY3bxP8+fPnabc1dpW6uVLkC8sfeaoXqqor807Ea9Arexc0iJA9DQ5c8BhUsIpjbjMWoDoOVck7BVb1+yHydWss9rzvQEJ2nUllJW/sw/I9YlMOKU/BGr+7u5u+aRHx3/4XNzc3cXl5OfHw3d1d/Pvvv/Ht27e4ubmJm5ubaUviTOmC2JN1f38f379/n3YYfHp62viQF8pyc3MT//zzzwQKAJ51eSx7r1yeaC/tH55WZyOY2yyTq5Xe24VmfbUQBWfkze4TJbVK0Xkaf4BnK7c3nnHKqqfcXB6+lil3Jp0OQfl53au2AXcwDyAte1V+VvJVQGAL2atXg++7Nq+AlrtWWV1VeodKGW84odnyDKjVwOOAr/OyJfAKf9MD0wL8ERf88w/rpiG8NDiXLXS1ciJewb8CRa0vp1uBX5425PHFIIXBAAtYBgbVWNG8FRD0vOf66yNQLzjIzqvn1HDia3zOStcBLRf/dHR0FHd3dxM/Pj8/x/39ffz777+TkuadAPFD/AA+N8w84sALgg6h7AF81+v1xh4D+GbHzc1N/PvvvxMAYW8a8yoDAm0LN3ZQZ5zzMYOqqm96DeJR6gYDbKmgEE7wOdc/Ez+v6TmExWlWwrZFKhz0ngq4bPWDHutmTCx8+HkWskyZ1chlY+DUmoPL6g7S6ZnWe04Q6L0eZjwk4TpiVfUAAjdYdZAyP2RBnupa5bbnCH1W+rwWmpdAwUvHAABR27zNMO/jrhY4eEW9ZShTFQ9UufzVKtd/fS7jee2bXh4btbTeyhLbF/XwszvOlE1FKqOUT9jjlBkXDAQeHh7i+Pg4vn//HhExbTOM1TLgKQACjnvhbYgzA5K9F/f39xsrFOApYDCA6QMAAkyrcawNewcyPq14l3UHP6uGmv5nQIfT3cUIm+UZQMbOYlUFwYzhmI6VZA+actaHQ//agM4adkJd3bLMuFp/XGeXD9edy5dFUFeChuuirmRuZ3VZZYORgUkGCFqMo4rOeQR6vATvQZXQawEB/GdAoAcQ8L2ITXcg9xsLiojXFQTwCiAgT6P0kSa7abncvEKAwQN7JLTfeEpP5+6Zz1T4ZcBWp9jwbJauy8P1kxvffM/1p6aRUSa73ovmlqUFCDK+zvic+xxA9unpaZrn12ljB5zxHtJA/ACAK5Q2/qHAdddBNvTAZzx9zd4r8DvyQmwNPAX8VU8HBDRWgEE0KAuS56k49hA6vcmrDtB+Tq70gNkemg0GOBPtdFeBlkWLxuOGdfNOmnel7Dl/96/pKSioXKAR27v76VxPD6li0LqyV0SBE6ehc1cjCnjU26CWwaEDgTnCsxKGFShgyvjOAVa2sCJep5XAf7rFL8AAFDvSenp6mgKiwDNIByBDNwNyShhl4PbA3h/Owtcxrl4BTlfr7ARnxmN6j8unApL7gN/LgJs+444/IikIyBR8C+BWYAqyR3cdzMrBdHd3N/EVVqZg2kCVrk4n6YZXEbGVt+4YyHsVII4FdeDpBP4hkFBjbhz4bRljKKO2n74DPartnum6XakbDGRIvzpGR7I1q0qMn4vYnh9UF2PmDppDPQK9EvQ9hHpwBCqus2s0S1OnF4C++Xl9X/vKgRhch6JQKzV719VNFUKP8P4I1AMAMv4AuYHrBrL2nfL+arXaiM5H4CB7BsBnCKpiK4j7V+MGYMlpHyqYUHes9iuXGcJal3/xGHbrwJ1XQPPo6TdnDFT94wCaAoSPRL0AuMcjUAEEJQckHSF4UEHher3e4E2kxXJUf9q/HJQbEdN4iHhdTYClhQAeKDsDBZ2W4KmB1hRB1d5ufxrnVdb0KgCwD8C6k2cgIg9oy0CAs2or4aBCMQMkTpg6oeWOHZDJ0LJTfEpOQYLJGFUqEzFzaR0BAJxVo+1YMYVOVVSC0wn77NwBA/fOR6CMHyogMGcwqiLCGEC6UNLM+wAFursff4AKghXKnPkUYIA9Xsibf+xiXa3+WxqMgC6kw/vL63c7WFArX2ZjOwMFytPZ8RxyHpvsuY9ClVGT/dz0TQ8QYFc3zkEq63W1E8cZgNc5vkW3IQZf6j8TT9kCbKBvGSzrtzZwHzE0WEoI0IBzzpvldyV3eTxzO2mMQAagkI8C1X3L1mHPQO+AcXvlq+BzQEBdMGpNcP4V2s/KWqF97jQIXf0mA1s+PIhwj4Uxlx1oU5cpoizcDhWpMmfm6qk33tlVuPWAL/4/VGGq5VJBqNeyZ9191Nul6Z7n93hMsMsdbaofA2IrSj/sg3lWRF5DsPG6aXa9cnQ0QAWXmYW1freAy8vbxvIubxgf2T7x3A6uXbL7SiOKnp9TGfEWgndflPFkds7XW7/Wc0xOubEsc3IJ70Bx86Z2Ci45DWeRa4C16gk8q7IdMhzvsceB+RjnGQjIFLkup3SeAAUDbPxxXZgf+V/rO5eGVxOo0Ffkp4IDDY25JG18DvSAkOB/5xXIlIsbtJUicgMHPxZybHVxWZkRsO0rI1ZGkipoXQc7ZeL6wZFTyq6OWTtwsEqvEOxhQAUNh0xukLWEoj6XtX2PkGaFhLECRQ6XJQPJ1Wo1zfsjmJA38+F5WHZ3AhTwZioMDDgiXC0t3rJV34uIjcAuTVvfcZ4AtI1alZmgr871v4eU/0ffP0RSHuZlni4uKgOw+j6Owbcqm7JVM3ofPAZAwMBAySlfBg28oR3kGWIGeMqL863AAINr57FCulw+1+4om4IBvI+xon2goEDrluU5B8gOTxOoexvzLbiXISGtkEN5auWOggGXnz5fAQD8OPKfBwpbbPouyg3mgavJXdMtNDO02UvOMq9AgAMerg0zq0qts8w7cMhCNFPOlfLn6wx8M6Xv+K5qe+YDtmbwz9NLR0fbOxFeXl5OwplBK+buscsbgqJ0mRZbQWyl8CZC7D7VaS/OT59TAKH5aDvodafgnbKfAwBQz+ydHkB9CFQBTuVlBgFsIfOznEYPEFZy3h5+R/sYihv3qhVPalGjTKxDFKjA8HTghQ05ltnq5c1AANLAv7YJeyTY08zpuHbn+nK+WV87ENDLvzsFEHLmnKkyC3+hTxU8dyivu+Q8OT1VUDqIK6tYn9UGdB4PZg4tZ8Tmkkh2f6oFpLECqAeDDUV8Wdkcaf+4dqpIrTEGP+5ZvZ4pwaxv3otcOzjBV73bIwizdB24yIh5iq0Vtdx5dQB74LQfNPDKKWz8dOypp4DzRvoQtoi+ZqDBIDizFlUhMTBigT7CU3MB6ohF9ZEoAwQV+NX3Ivz26EyZQcLXqoh6BwgdsaHmxhRb0rjnysZKP4tLaAEBJ3+53jzljOWMSIt5X9vB6QWtS6+crmhomuDp6WlS7G6OyJGuq+QO405CjAEzKiOiltCtgEqmFDNAwffVWlMlCWaBIHRggNfJslBWpJnlz2XN6rgP0j4ZfbfVnu9F+7TsMiDgwE+rDK1ycT9UQJPTcn2I8apggD1WDAp0v3dWzEhPBR/LBo7ExjGXd4Q3evmx1zuQKQO91pI5H41U0bMBwv/O6lfe0mcy6pHdINfHmWeAy8NGJv+romQwibLhHzypyp890r3ghEEz3mGAy54YjrNBvvzVWw4mdkANae5L1g6BAVgdGhzoYgX4ugICtqbxnFrcmOfhNFk5uwFfKXQV1jrwucOVAdSa5/cZKbLl5iw5BgMsnF2dsnpmlj7XPRvMOpDVVcXXHRLlvBxKrZ53Zf4o1Cq3G5xuPLjBXF2P2I5N0cAmVuLYSU2VPCt/ngt16ek8P+rCoNaBAURoI032DGBqwqWfgYMKXOnY0HvZe9pHrWsfjXqscadYdGVJ9s/ubZYdChZ72rHlWYjoW57IBqn+MzEgcPmwLGZPgM7ZO2MSxwrAdbUOSEEVT9dgRYX2i+sTravTcyM0NE2g7nAUiBV5pnj4XiUA0AgnJycbgIAZzilKbgRNmxW5Y0BVvqywOU/tCG6XiEgDpVT4VsFTWiZ3PIfcwOa2UACQAYJK4Mz1KvxImgtMMr7pEb74d9d7iT1KrLh53h9uSPAkz+mr8mXe4/tYAYBjULY0Fmmt1+tpyoD3GMBObvyxF/7aHAcfZuSCW7ldMsDMbc2KwvVBZcF+ZJDg+C+zNjMQEJF/qI6p6idNj89fXjb3OnF97N7NvAL6Xta36g1QmZzpEi17xHhgt2sbyFA+1/vumMukxyMgd8gzgEbT75Ajkr4l4LRBWlaBxhDw1AQLIn4G7zuBkKErNyCYGNggAISfYwHLlg8CCNUyc24oZSbUQdFnL1WDXNsAfafKvOUh0Dbi/nFzaqMK8D3J8YPjmxHqQfHZfVbaanFjL/XVanMbYxZwDgAwsOClgGq9R8S0LpvHHZcL27oiX4AJ3toVQYsKLLQNdiVnvWXKIHvH9cN7Ua9Az8rZCwL0WRDLOw02jNj8poYjbcPMk6zvcPrOE+H+uTz8rx4EPFcBgQykatxKBgRgJOt4wb9OWTjKQBy3m5Mj2k49NOwZYCDAjR2x2UhOGbDyzxqApwwAPDht16Da0NrpLRAAFw27a1jp8zVFxazYeR8B9RIwczGQ6rH6W6iyRVr/1oqPjLncPR3kzqNxSN6CXoHJ1yuwOEdRtCwWfRZ8hC+34dvuvHva8/Pz9IEXFjIPDw+TZc4/3W4VSw7d99tRzpOTkw33P95FvrzHO0ACAMG3b9+mZ7NljSyIUX4dJ8pbvVaXtrvru5aF9R7UsvBaZctknx5nxIZQtv6fDZde7yDLItYf+q5zvasiZsWfja3MUNEVBOqtdQpWDSYmZ5SynmKvOpdZjcKWvEefZPWdoy+GwYBrMC6Yojh+nyvLlqi+v1q9fvCC/xXlRfgPOmTkBLsusWFQoMtudFcs7jgNzqrAQGbttxRNZeXoO6q8eK4vEwLaJ3ie+ywrA/efe69V7veiTDhWVlQGDBy1lJTed2B6tXrdb+D29nbro1fgrdvb22lHQihm5kGdwtLlfuol0CBFXANgABj49u3bxsZHKP/z8+ayRgYQmOJAvg4IzKHW2KisflYWmfI9NKrAbcbL1XsOXEAuqLzE85BrmbzSdJ1MygAB65IsoJAVonoDoD9UiWdGiwOg3A4OZLjy6H1MeTMoUOWt8WMO5DpjZV98OmsHQodwUDDdFxrk0BYzWURMUfmK8vicPQF8rJ4B10AakIHywupBrAKWavGxegQUFPF+1ixcIRB7rOTK6nEehEoQ9JK6+3DeCwgya6sCOYdCOqiyH/NNbzR1puSRV9Y+LGyY76Ggv3//PvERFO39/X18+/Ytvnz5EldXV9P3CvAu3oPixtfY+DvtbiMideUfHf238RDieRhAqMWIMiIt/uqbjhMdu6i7tp8DCjrWW3zXI0idS/kQgEGPEeCOW0Agq5umw8qb5QSMNU1T+xBl4Klmdf8jfVXcjjLgzCtb2FvJsgnvsC6L2PxQnquDelW1PBlvQo9xrB3SU/7XaQtXf6SxT74cAgP8r9dBUOhMWceyQo543T2KURKsInRyxDaSZI9EhqpY8bNwV2+A7lnNwp87jTsM7lC1tEaAgGvvDAhklo0b9Aq4lBHVMqoAgV5zVoSW5VCEaCXwMks/8wS0hKpTTgqSMkXjwBYr//v7++kdXMM34G9ubuL6+nr6miHmK/Ee3PRuyoA3HtLgPvA5A30tl4IBjAsdGzqFxpYlv+vaVY+VqrZWclbeoVPLCOB7GWB1PKvjucpHlTesb04vk3XOiMg8ya68I7IEZWBj1YEM543qNdy0bK13oMO4b9hzwF6496BZngFWvuzy4H9tYFdJKGdGnZwellnwZzEzNzQLzgxJ6fpO3g1K96xmUMAuMQg5FnYs8Nbr9cY9FnbVIFN0mP16FWyPsHPKjz0zOngcqNMBxNe4HFm9D416vQI91lUGCkbbQz1x/C7SgnK9u7uLy8vLjY8XQQmzm17jBfQTraqwI2IC5ZwvywK1vNgzoCBZpxozYerasBrn2taOHN+3xtuhgNo572Q8C3JKGtdVWbeUd9V/zCeQMaysuY69sQeuLlwPrk/Ga06W7aqUtd6oJ8AzyHm31UvWw3/7MLyGtiPmAjOqY4WnDJcpE95kKGJz/gjpMepkDwGXoQIbTJnSZ1AA5mRAoAMBnanzr/pTEJABlJ72nqNodRDwfC639yjybllp1WB8T9LB0vICqOLXc203VZJMzvoauR8RW4JkvV5v3cf6fgT08Vwp3P8cKMifZlWL3QmuiO1Pz/JYVSXC3jGAZE6T+TqzJJ2g5vvuOCNuVzYgcJ4BgkMnx8vuuiMFPDxm0adqAKoxmMko137q0a3K76aMNb1qvDDo0HcYCGSu+LnkeNUFDcKjhjKot7mX//YBBCJ28AzgGhrVWe8R24M8myeK2HRbo4J4FgKEPQcsSDK0ykLcBQoiGpv3SdBvE3D9M+XPFpBaPVm5uG1dOys5IJB5GXSA99CI0h4VxIdALaGpip+DpTRWoPIM9AqtyiIDqQcuYnMssCCBskcAIcoNC53n6zU2QCP6nfUesTmVh7w1ngYAAeVyKwa0nkqVYsnAMVNPX+tzPPbe013bQ26sKtjBvzuO2J4W4GsRrwoVikzn35X/uO0yOcYKUT1Krj4KCHraQcdaBkgyXTaH3Hh3z6DOHBiPMmmbOU/xnLL00vCHinRAMsMws6BhM6XIQgUdxxY6gwv+DnTEq/BklAlSi5dRJv/cByM0LdQT9Yt4dceq+1MDopzAYqvStUnmHmoxQu+AUKWTCRRG/I60PJUlcAhUIefMI5ABASdQq7wyQevKkRELXxBb1zxNdXd3N3kF2LJj0MqeAJ7SYhel82rxOMc9FtYgnh5j74BzgWZt0MtfI1ZRr2JUBXGIPK3UCw6UqjGOvoX8dUCJ+5TbKpNb7F3AufbFHKrqWnmdqmmNXuK6KDHgQX78HE+P89RyxvMZyGCa6ykYBgNMrmO5gIoWmVTIgDTIL+L1gyjs2nMNoGmpp4GFOscPoDzoqMy7AQtL10jrfGhVvn113ChlFpEiczcvHbGNpqsyt6y2QyBnOVY/5aWMqv6t8myRG0OszBHhj1gXJxDZSlfh4/bA0PogTY4Ed4CaPQqcFysObQfklXlPMvDAbTuH37hPncGxD0W1C43WS3kqA7FMzqplOYsfywZ+Rj1FzojheuA5VpIOCDLPZzLVjamI2ACsjqc07TmUKeZMHzrdAuJxUU29vCUNgwFlhsy1wg2uiBHv6dp8zNOzsmZBFeG3zWWmYM+AAwYs0LLBofNhKDe7YhUEsHWlg8D9XBmV4R0TKwJ2g771rguI0/bN/jXN6txZXodArTbL+oufiZgXY+HaoNU2aiXw1Jzyc/UdeFb8CgD439WNeYfL6/LTPBgcVEAyU1gqEHcVkC0FqeDtRwH2Xsr4cQRsZmPXGS2cjlq13Le8gU9lNLAOyHSI8qIDw1ncUzVeM4DRO0XAU9LMF/q+GpNqdKLe/ByvJqgAwVvx4k6egYjtNZ4RYRlCURgjTyhSWDeZUGPFpBZbJQjxrhP6qIMKbQ2cgpWjUwIcfe2AAFsXPSi9ol4hwFQNDm7D6n1XBrYM3PPOOnhParV3Cwi8J5BhAcRtydH9WHnjwIoKPzcdpe8oZeDaAXXNR4HAHNCofKf3drHuVOlzXVVJvidlZXBjulfGVKBAxzDLce7rkakUJz8yQIDnHBCI8IHR2fv8Titdrp8jbYOesmp9XbvzWME1rcNoO4+8MwQGKuZS67FH8OAeIpRZ6Kliz6wglEsD/lx53QDRcrpNJ3CcAQF2gzpB55Ruz8BWdK7HmVWr+Vb5ad4a5avlRv+2GPuQiMuq11s/PKeUWTyVJVRdz97jpVi9lAkp92uR8hPKxAKRrUYHBPQal0vz0Hy5nXpAS0a78OQuYGNf1AtmR97rqZMCgYwXR3ipJ0/8Z658J0+zYF+XliptlbXK545aHgYHJKs21K2RXZn1uId6270bDPQolda8clYJrjivHmBLB8sw0FEOEXIjqzuTy8ACWIEAAwJ2gbFngIGAzoVmClzz1nIr6bN6XgGBOcQKEIgbUzdKaqn2Dt73pLn5t95zvN6rbB1/KEF4jAh1x4sjQKDKixVj9lw2b5yVV5V9BTB3VcqOLzn/UUH7I6hS9D1egcwI6jE8cI/bX5XZXF5yZenpZwWouoW8q28FDFR+8jUOXs9AUHXf1VPHD6ehWxJrW1SAeI43gKkbDHBDa+AQozSez28heWUwbShOyw1a595m96VjRJ3vcUCAlT9f481Y3DKslpBUJm4tq+G2ydLQ/CqAoP3F//ycLhPVdua2U4bOmDADQu9FvV4BJR2gPdaq9lkPwMiuVUKzUqAty6ICnvzM3H6s2s3loWXqoWzMtMrUsvwPDRw4yvprjmfA8RQbTq10nVLq4fneNCN83JMGnYOqaYxKhir1Tgu0+MVN++n0gAPTI3yo+rKHhsGAojDNnBtMC9IDDrLOwbkua4p4jZTGngEZOuS6gDIwoFMA7ti5QlsCs0fpaDquXXrAALeZPp89hzap4gj4GR0QOlV0aJQJzYwqq9Up1946V2DDjZsMBLTydYCgF2w4/nL1qIBDVhaXf9bOWb5VHXpBtiuja6f34uWsHaox3wNoR4AWtwcMLfYYjvYTkwbXKTlXvS77rYLD5/abM26z8oOyMYvn2BhzAYcutqYH9M8ZK46GwIACAbZsFSFlBeRrVSVUAOJZ5KP7FODDFDoIlJmcZyBie0rAKX6NDXBBUZVVlQ1WXYfq1m5rWppudl/PWclz//HgzoCApqPWAu81wW18KOTaLROk7p0Ir4R7EHyWdgUG+bilWFuK1gGXilSYOp7K+KQ116p1QHojSso9O6LgOA0naCvgdOjUw2eVHM54UgGB63/tx1a6/EyP8Ya6qJc6W01T1RvnagxxPqontD04zWyMcjmy8eliayogUIFn7oMR/u0GAwACVaMzauQPMrSsFrW2MkbCcxwPAEXkoqk5nYwptaOdxe+mAzILQpWKQ7EoJ7dhtoRP82HlpeSAEK65jzSph8ehYV4+FBGT94Xbh7eMZnClAntUWL8VVZaU3ovIBWevwpijtNzA1ntZXs5ywHutvF1ZM8WigBZ8UwlFJ+RUePUIMW2XkTbNZAyXrxrj70lZ/1S/7F1QVTeWO2ys8Fh3ZawUvI4n9iq26ornVMaqjNPy8qqXynM50mbOGMzaomovlEl1ziiIrwBHDw0FEOKne/mjAAwEMuu2xSiZ4HLAIWLTTZNZKlUntISBdo4razZAHdO2gl00TsKVMSM3WCI2V18gX/0yIwMpDJyTk5MNsMSMyUCAv2bHq0LwPE8bHQpVZanuZVYA3lOllqU5ty16eEHHGMpS8VNWvhb/qqdJxzbAO3vtnNIfaQ8dHy3hnRkdjg4ZDFQ8lIHZXfkMbcaKdU6fIc2MBzNQoHkwz7Hyd5vVVfVyxHyOcwcoVCZm/KFAIONN1TW9vOfGmmuzXhoCA/wFP4egqgh0LqwrdGUJuTRwrIrUDXZt0OzYlTGzAhXd4l8VMgtNKF9GsUx4ni3tXktJ28OVA//8ISaUib8gqXV1YIoDKvFjwuoP18Y/mlpKOQN1Ed6azixbPm7lU+Xp8nLnFR9nVAHY7HmnaPi/Z341K+scwaWAK2tvflbfy8p3aGCgxxp0ACDrM5dmC/wqiNKYop4+rMaMpuNiljIDhw3TFhBQ4nKrV6HHIOjxDOB5V9+Mxyoe1LwcoHbjo4d2XlqowXgZIOCKtJinl7kypO+UdvacXsvO+VnHLG4QOguKGS7CBzMq0msJ0qpNOR/+YdtaBQQcoJkpUd5oife714HIHoEqovdHUabMsmvuHNeU/zLlk+VTUdXHvYClqkPLHav3lJcVXDKPqRXF7arlzKypUerp15awxn8mnA+duO49Co3J9UvWT3PaJAMCFSBgyoAAy9Ts3R5ysQJKLL9aU8VcR6VdAEFFzmAZAQIRMz9UxBmr1YhOmuNSqgZuC+E7MDACCPS8AghOUSoIYAGK67xJUkQ+rVF14Igi47k0BwROT0+nfwYEWqeIzQBD/lgTvtXAYOLh4WEChbw3/SEJ1R4F3SpvS5llSqpS6rjfI0haZcyATXY9qw+XV3kX9xTAgP8ZxFQKJ6NKWbgx6O5peq59W3LgvXm3V37qT8nVx/VfxguVkuHrIzLXpcOrDHAtop5CyBRtyxBhflWayxfOSMhAVXVc3efyZwbECA1/wpgjx6vtf7VgI2CgFzHq/V70r9d67rfKrOduUKolpQGDaN+KeDBmbeLKpCDg7Owszs7O4vT0dAIF8BLwwHNzw/yVvPV6Pb2n1iKu6SqD96RMgVTIuteqdenwtSo/TXeulePyrK65d/TceQNwvbcsvXKgZ9xrei59JxArYwLXKyPiPagl1/BM1g6gTNZx+to+Sq7dKmDllJhLz9Wnuq/va9wS39fvJbSC+Jin8Ty/m20K1MsjVdtUabbycLKppSeUusEAR5RHeEHAc4ejlAkikBvU7roT2r2MneWXlbUSSA4EaNpAwHp9FJAwZQIaYAAg4Pz8PM7PzydAcHZ2lip1XAdhW+b7+/utz+Vy/bF3Pn5z+GIflPWXO3bUUgot5dr6R9otsNGjFEbybxH3nfZvLykYceOxF3C5+mXgzuXphGSrTQ8BwI5SBYgyoOPax6U7R+mNKMuITSMJcoNlCGQRBxzyagEth+4sm5XVyShdYq51GuWfrP2z9LJrjqpx1UOzwACv8wep5cdoLKsED/4Ri4jfc+/r/UrhV8jWUaVQWgi9x/LX5YutcmTnuMYR4AAD5+fncXFxERcXFxMgABhAQI4GPuJrki8vL5NH4Pz8PO7u7jZARNVW7wUGXFn4mtIIms7y0Tzdvx47bwSu95bNKcdWvqP1UQKvuiVbPC4dMMjSruqZgW/3nAMaFbhTQT9Hme2bsrrNJa4/t4k7du+N5NMybLK8eJpZgQo8jexVdSBS95DRMug7mpfbd4b1mlryVZ9kVn7mFXDXWiBgVx4dmibghgfKygLOcC1DQvxMdV6VB2Xh/1FqoWFHmfLPAEFvORyjjQoiteRYmZ+enk5A4PLycgMQ8HQB7ymBdwESXl5eNjwDd3d3cXt7uzHFcHR0FOv1OtbrdRwdHU0rC95LoDqrsxJ2lWXUysf9u3xGlFf1XgY+MrA6h0YitLndHPhzgGCkXFUdNX3No+I/J3gPAQj0UItXM1DJ/62+cGBK86uMK1eGlhKDPIQhoQGDyM9ND/D7XAa3EsLx6cvL9ie/3T4zLl8tXw8gcmWv3nFU9V0PDccM8GZCEZsR47imEfJzC+feGUHJLQbH/d4BzwKIAwMdANBzDajENa2jGzijQtMFCkLxX19fx9XVVVxeXk7/AANQ/Pz+8fHxBBLQr/AM3N/fTx4FvMNlRjsBEByCdZUp00phMp/oe1na1bXsHJRZEXrPkcuD12W7Z9jCcuXg57MlsXyM9ziQ2C0X03zUytK6jgKBHuq1vt6LMhCj8qDHyMraWY9bfNlrAbeoAgG6MgWeaJ2KdnsCaB2d6x/vOpCjHgUFAdmmRQ7c9AAxHLv+qfps3zTbM8CkyrDFqE64VvnqeaXc3bXK2qry0nRVwTlQkKXZQrDVv0u7NXBZoSMmAF4AAAMAAQYD+sP7uL9araaVBIg34DZgHuEVBq3vjv9I6rGcexV3BU57AEjE9vRAlp67r2V2P7e81QEC5KFCEfcrHu8F0074stzg9Ko2zwBBla+W2ZXr0MBAi7Q9uS/U2MnkC57layq/naJzNKIQq3ZXEKk8CX7UmCtV/o432UBT4jTcvzMeq7Zz6Vfn70nDSwsjxiugjeiYYx/5Zwi6OnYDSAnXdMkggwLcbyn83nJV1BKArAR0egA/eAUuLi42lDqsfAUDHGCI+bP1eh23t7fT+zwVwO10fHw8bRd9SNQCAXMQeI+1Wlm+mbXm7ms+qhx1WavysZZNhWm1AqRnWSzKwBadE6J6noGLCrxVNCJnKkD/XqS84hRppqh6gIDm5UgBhitfC3S1SGUwl1WnCTJPqwMEjtSLye9wm+kqBNfGri1G6pq1Z5b+W9HwNEFW0JcX/0lh3NNj16CVNdAqmxNs1fNVGSpSgQTSZVcZKHB5tMCAq1+rndgyh5ufgwX1d3p6uqE0eJdC9g7wtwkYILBnALwAcIFliIfkHdiVHB/0eAS4L9X6Gsk3y9uRAlZ+T6f02ErnHQWd5cbpt4Rv5fng+9W5O1bKxk9rjLWE+HsDAqbW2M/kS68R1mrfOR6UTAfwf6VbMkCQPefS5vpVXgEHBkYAleaX1b+VBtKp2nyUFyoa/jaBK0CP9aONmTVoDyDIGGbOOxUwyCizzPA/V6j05u8YXMuna/11C2LnNtZ3GAzgd35+PqFqjSWI+C+egDcYAhh5eHiYgMR70T5QdUsptTwC/N+6lynDrBwubwdYFQiMCHfHe70WWQ+AnaNsegRtj5B3zx06cXtVZe4FAqBdPCTVuFD5PirLXSAh3tF+5bQUcGResSytls7itCuqQJHSHNDl8upNY9aHijSDlmvJIa5K6GWAoIdx5giRnndalpc+y+tkecDuA8lVLlIW9LoqQM/doHRTIOodgIXPKwwwdXB3dxfr9Xr6VgGCB9mr8J6kfDzynh67/xGr3wnGiidbyt6dt4jTZJ6NqC3+1rir+FjHC+fR4uvqGZc3jrNVOi1j4BAAQY+CYW+Otm+P9enGRCXXK0tV+ZqfbemK7B6/j6XtLXk60p8Zb/TqLL72Vl6mnnbcJY9u6cyWZE9hegs1UmjXyO68cjH2psv3MmGfDR6UQYVrpiB6EKBTNGr18QoCWOT849UCmRJCufEspgIQN3B+fj4BCf4GBXYlvLi4iPV6Pa06QbzA4+Pju4GBVv/yf3W9hw9a6UXknp2KZzOgkT3fuqY80KKqrKAMODhLTnlX02YlXq1GqKYytPyV8hp97z0ps2zdcXXNkQKDrP5chkwp9/BXr3Kr8nf5Vu2R6ZFeINBTtjnPqrLPjkfSHClLt3TWXeZGCjBauB7ryqU56hZplUmFVyWM9T22tCP8NxzcOz2ghPuBrwEMQGkjcJB/bpdBzQdAQlce4BgbED0/P8d6vZ6CDyNimiI4OjqKs7OzadoAexMcElXgqnrWCcwsTb3ujtHn2V4MmeVW0VsEa1bjuLWTJsrvpip0nLtNtzKgwRYxt6X7HxX0zso9FFJlrPf2QT2AgJ/T9zQN924VpKrP94xPNcAqIKP83MML7tyBjR56C5C5CxAc8gw45QFSV9+I8ub3MuKBWQ34uTTCkMw4UIrcLmzVjFLLmmP3vQpXnteHAr+6uoqrq6uN3Qb5WwQ6LaBeAE7n8vIyLi8vN4II7+/vpwGIFQaYIjg+Pp68BE9PT+86TVDxFvdrZe04pdw6b+WdgUXnhVMBV/GZW5PN6WkAID8H3nZrtjl9Rw4ARMTGNJUCAp2ycrtwZuu8MyDA77pjJ/ydsH9vz0Arb+XTXoW2T4Cj7ebSb+WXlZnlbKvsGcjWPJzh5XhCj11+uyhfPLsvHsv4v5eGYgZ0eRJTJki4kL354N91esU02f1MsI9S5rFQ4erK6vJjq6jVRqq0de04lDt/ewCWPAMAXQ6JvLWsvCQRIACA4PT0NCJimiZ4eflvi+L7+/u4uLiIh4eHeHn5zztweno6TSG8d8xAZtX3AIXetCK23eIt/nOBnNXKHLaeMR2DexH5B1e4LJwn0uAx5CK1W8tmWYEqgNVPZoPHOLaFQQlvARsRW1+/5PrjHyCUo8ldm2m0uYJA/j8E0vbl606RABw5PtR3dylLi9zYaIGsSr73lle9A5pur+Gn1JLVFQirnst4zin0rB0yIDMCCoakcwUIHHLPNilCYfnYuZb4uGoEPDeKyOaSY2bHeFkd1aLn9zMm1OVhamkxGIBlzx8RqiJwlWnYC6R5cf+rQsV93tYY6eHee1DGGy1PVFZP94vYVuqclrvnAjXx7wI8ofRUAWJ3R56i4feQLwKvIrZ3cGMgoe8qmOC2dB4GPuepK/eFTEwn4RrKyYr/5eVl8jihrlz/5+fneHx83GgPfFiGd0wF8IGyqBSMgrVDAgcZaX1YTmX1VOXugF31Hr/ryoD7Lau95557NmIz0LXKZxdLPtNPPWn06KgMILjzVl6jwAc0NE0Q4RUZrvNXoRQJ6nWlytKag2AzUiZvoTktF9c9AwDOYtJ0q/Ip6VQAbwjErn0GARwnwPsB8AeFIFAh7LQt1GrjNoOCYCtLQcnLy8uGRffw8FDW/a1oDpLXvnP8gHZsub35mk7JaJsBTGmMDhQjKz3s33B/fz8pQQYGrp46Fqv11hHb4MC1WebZwA/eKvVU8XQU74LJvIUfvnWxXq+n+6z8EZOCNsE1HK/X68la5GkFBjqHTpkiyyxgkONnfpf7VY2vlmLRa1le7rynfnxdgS34zfUfewd6xn/G21WZW16MVt/0KPzKslcd5rwCIzTkGXDzmNzox8fHW5+JzFwXTE7pOyGcMRnS5nu9jOWosgT5upbF1a8qs1qUVXnQvjhXj4ADAix0WbFrWRgQuPlari9boLC++DkGJ7BS2UI7FHIDUQVhxDbfVc9FbCp9VY5sEetmUOg/ntJhK54BFZQcvg9xe3s7HWP1BlvY3O6YQsgsvwoIONJgVq4r11HjVwAKzs7ONq65qYKXl/9iU6DsGRix0sf9u7u7uL+/n364tl6vJ6MFvKvBZiOW6SFRr2xsgYWRPDL+qWRdxneah6aleqSVTpV2BXB69EKPrqkMwizfUTCg/aq/1vtKQ2BAtxVVVFZVpoVWWoqWzysEl3WUY+BWx2fWYOYZcCjQ1UFd/kirGlzqumf3PS8fhJBVQMArCdQ7wMpGhbD2I8/LwjLjb33zkkTUD+8dChhwfZUJuBGBhz7SXRxXq9UGMFMvDn8zQuM7ALrQzrB8+auRJycncXd3F0dHR3F3d7cFqvULo8q7Gan7NVOWzMsaHwAevL6+juvr6/j8+fPGVtjn5+dxdXUV19fXcX5+viX88YMHhKcO1EOCNvn+/Xt8//49vn37tvFVzbu7uy1QwMRTB4cMCFpKsFfhz61npUz5mpazAgScDpcr0ykRmztm9pS1KrvKOiWtR0tBV9Sj9EeVudOvo33bDQYgFPA5WlZQUCh4Duc9ICBifBqgxzOAaxWzVNcVALAyxj9Ta+c1By6qgExO1wEBnZ/XDxEBEOiWw26fAbSVggJYUPgBCOBZdtOinMfHxxtAAO861/l70Kg1AXJCTc8ZoLHHBkpRp27QX1CMl5eX01QB2gtAit3d+EHRQQGDR+7u7qZy6cZXIBdcxsIV44kBQVZ/PJcBgaurq/j06VN8/vw5vnz5Ep8+fZq8BPAYXF9fx8XFxZaVA2LQifyZB9lL8u+//8bNzU38888/8e3bt/j27dtWAK0uc80AYWVxvydlZayuM2UKjWVmD2jUdBQ0ZuPNvcdlcMe65wSnoSDSTW+psq+Axlw5kVEGSnYFA5lXYA7I6wYD+NAMd4YqFSDtkYI461uvg1qWCT/nrmfX9H4GBjSATt9jgaoDQT0BrPzV1cr10IA9VjZshev8KysdtkrhFVCGQV01EJRBAZQ+32MwAL7AqgEGA62pkLcmJzRATqhU72dCDOfgFfbUXF9fT6syWPm7j0bxFs8uPgA/fCQKeWm/RcSGJyfCf6SIx7QTpj3E9Xafzr68vIxPnz7Fly9f4vPnz9OntBkYwDPgpql4PLHsAVgCOPr+/Xv8/fff8ddff8XV1VX89ddf0xba2djVccv9rceHRJXCagGaCgi0yMlkTVeVWc/4ailt7R/0mwbMumDX3n89btGo4q3y7ylL1d4tgNGibjDw8PCwFf2MYyZVJhVacUDAKUV+3jFsLxO3GsaBAK6nekQ4TbVYWuXhyG7OPzvXzwpr0KCCAAcE+DPE2TIrbSueq0aZnecA91Vgc3rvBQhaAyqiz3We9c9q9brHgy7thML79OnT5CoHMIA1jB+mcjTAE54AAADux4jXZXeYH9eoe62fmy5QMMvnvBmSggSWCeyl4vpfX1/Hly9f4uvXr/H169f48uXLBAaurq7i7OxsWrKqPKmxF8zLvPrg4eEhbm9v4+bmZgIbyOPvv//eiM04PT2Nm5ubyauyWq22liZWvHJIpEo/s/iz6yPpO6o8DPifY6lWQEDBIXsM+P1K//SAgRbY0vOeeo6AgRGAUr3bS7PAgKJzFaSV4nfXHBBoodgqXaUWKuW0KiDAc+2s2BwzOkDgYgXUUlOFiXsOBPAyLY4H4E8P8z+7nqFo2PWKdzVIDcoA9depBPxzW2t7qjfkR5IOqhHh7viQ68T9AmXDFj9c41+/ft0ABewN0M9IcxAdgBa8Aaenp3F/f78VHHpycjLVDWU+Pj6O+/v7SWBynZQP1TpmUMD7EPCe8JwP85l+EZOBKUAPryDgHSy1jDolBpCBd/Ee2ggeBv5h10xspe1APfbGADEgOSSqFK9TmHqcpelkrhuvLi3ngWiBgR5w4pQhG4QKCDQ/NUqzNCsFmgGsOWAnAwAVIGi1i17vTcNRNxjgzT5UiTnXoyu4Wv3uX69lnTHiOdByVKRAR4EACxIQx0tkAXhZ/djyYqbmNmVhmwWfOeHr9htAW+iabAh6bgN+dr1eb1itrp4OEHLA13taWL2CsWUFOcDI1jDPgcMi/v333+O3336bgIADAQo2WRm7WBHk+fT0tNHvHHHP9eapA/XwMS86z54Ke20r9Yrw1ACs/+vr6w0gpHV/eXmZvBlcTp6+WK1WcXp6urWCJeIVkCAgUUEu9732MbcR182N4feiXmWT1S2jzOhSpesUvntHrzEvqdHXYwlnSpgNMKTplKxT1q58VVs52QZiEFKl4erlypHVd5TmvDccQBixGZikHaKgQJWfXnMKEscZEFBS4NBLGVBRIexAQcS2sNJ0dGc3ZSic89I+B6oUEPAKAQ0Q5P9smRoHXcELgHrwckGOFYBVhd0HlXk5qAfEAFLr/6Mp47OR9yNiiycwxw9XN6YFMDf++++/T2AAkfQc4Mmb7SAftBkHbILvTk5Opj5kflCweHp6Onl3Tk5OJs8e14F/Ly+vy0B5yR3vMgnivgYY4rJkW1nrKgL9BDYvWeU+A/+jHThmhkHZ8fFxnJ+fb00zsDdLNyliwMorXtyujIdITlE5r0DG8y1lzmm4Zyr5zNZ79mxmLeu1nnwzANACHT19XJU7AxpVWg64VPmNlovPe+VdNxhwlUaHuKC4CM9EvUBAyYGDTNE6FFchWT7PLLHKO+CWX2kgIQe6uPppIAye03w1bkCnB1hQarmRDwQgAwIIYLaGeEkbPkPMAlP7wcUJVO39o2hf+TKvcruyVYxYAACCL1++TEDgy5cvcXl5uaEIkU7EpocJPMP/3N7uF7E9x879odd5F0DkqwpSBbq2B8AAg1INjuQAQQ2QVH7UvBnAAByBXl5etnbZhHdAN13iFQf8j8BDBk3arocEBFxZMsu1MqjcmHCyVNN38rQFNNhgcGnruVOu+hwbo/qcU7AthburUnfvZd6EqqyjZcjSn8OzQ2AgW6bEnVx5B/i8x1JTZta8+dhZ1Jp2NWg4DQcEcF0tEm4D9pKwy7Unmt4BAS6TAwG6fE0tQ40V4DZF0BWEJLuV2TrkmAB267p2R3vpAHVA8SMR8yt7BjSOg61hrKn/+vXr9P/p06eNFQPZLoPsUXHTBQpGWnyv5+BjBpMRm5sbHR8fbwSMZqCbPVb6lUsO4gMI4rgV3p+CrXYNRI2IqTxKz8/PW9NgJycncXFxERGv/Lxer+P79+/Tao7b29u4uLiIu7u7ODs7m/ZpyOTIe9EcC1Hlo1PYThZmyivzDGTPj9ShsrB7LHYeH/yes76rfDWvLM8qnRbQqerbk48zaKv3MnCX0RAY0ELxObvMe6gCAD3vaTlangWuQ/a+Cl21/vBji8vNoSN9ta5cOVz9WOCzgtWpgixIS2MFeAUBgwG4SwEKWECzYsDz/PVBHoAMjl5eXrbc3plA+pHk8q8EvwO0zB/MDzpXznPk8Ah8/vx5AgMuRkDbGG59LgcrZbQz9y+I39P6uSBT5g8uA855GkzbCFNH+lErAAL8AICQDzxMfM5TVOgv5IFrPB7U08b9g+msiP9WW3z//n2jTBzIiPECUKwBwe/tHcgUsxLuOYOpkpfufLR87v0eZY77vdZsj+XtqKcPKwBSKfYq/x4F3lPeuemM0PA0QcZETukpVVa5HvMzrbSch8GBEmdZMOn0AO8dz/88VaADTdtDpwu0HD1MrJYgW3RumaF+iwBlUmGve7uz8ue8WblAafE1nLNwZquV54Tfi7hOyqtuoKnFwfXXPkOf8FbQbCHrv9sJUl30Os2DdsazChS1n7jMrEwV8HIa3LccP4B7XHdOmzcYYq8Afzr79PQ0VqvVlvte41O4bVE27iPdgpinxXQccv14vOi3Oy4uLqYVGugHBlPvDQS431S5t5S8o0yGO97poQwIzFFgGejk45FyuXZq6ap9AIKq7lkdXRn1nazuWZojIG/oE8Yu4xF0lqXZKnCFMDMg4BqCLRxNi4XbarXaEtgu0l4HDit/nS7QaG4McgdQND5AYwacgOMyQrhGbG4E9fj4uLFvO+ZMsaGNxjUgv9PT03h4eJg+R8xASAWItkfE67zw/f192c9vSS1BUAFdvcaKRj8XzdYwLGLdVZDLkvG0AlM8D68B7z3A+/ZzYJwqR+bdiNgCBMgDLnlY7HzO/Mr8wd4pXs3CQIOnBXQKiqcHeDqEwS5b6wxOMI7YIwV+57ZhS5/rzVNquKYf8GoZEm9F6ilB3dx/Rm589tzXcazvZs9naWRAg8djZp0rCEXbVAqvSkfz4XZ247IFHDLSsmXgIStjKx8FPD1yLS3ry3vC3oUWWmihhRZa6N3p40Z1LbTQQgsttNBCe6EFDCy00EILLbTQL04LGFhooYUWWmihX5wWMLDQQgsttNBCvzgtYGChhRZaaKGFfnFawMBCCy200EIL/eK0gIGFFlpooYUW+sVpAQMLLbTQQgst9IvTAgYWWmihhRZa6Ben/wfahaL/u2FzwgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu50lEQVR4nO19a5Mct44sezQzetha7///gftlY8P32MfSvKS5HxzZys7JBMGaR7eOGxEdVV3FIkESBBIgi7V7fHx8HGc605nOdKYznekfSxfHZuBMZzrTmc50pjMdl85g4ExnOtOZznSmfzidwcCZznSmM53pTP9wOoOBM53pTGc605n+4XQGA2c605nOdKYz/cPpDAbOdKYznelMZ/qH0xkMnOlMZzrTmc70D6czGDjTmc50pjOd6R9Ol92Eu91uOXN+BufuWN2r0qafe5Yp7bNU7b+0sjdTVe/EU7fMxEfVLhcXF/ao52OMcXHh8eH379/35T8+Pk7/6w/3/ud//qdV95ekT58+xXvMGx/1vKJZf3I+qZ8uLi7KfqrKcHXg8+/fv8f+cPXukGun1Tw6Y7mjJ5gP/aHu3AYdXjXv3W43vn79ulS/l6AtevdnoJltWB0fSjP5r3TU7Jzz/1mow28bDDyXHh8fx263s0emdI//u+c6eTAvnWtb0qzwuYVcu/C5U2IVff/+fQ8Adrvd3qg7enx8HN++fdufVyBAr+H/MaijUFlmxhhPzl+7fC6zGhsrpApM7+n5Sj1nivG5vHM+2ifV2E48dMt36f5TDfIxKOmnBAQBAhgAJDDAMqE6iAFBBQ74Gb0O6srfz0avCgZ4IPN/14id63qOPLfy1rm2Nd8VYVlVNjOF1fEmHWl/4RqOW6MBxwYDoNRuTqacAWJ6Tl06/fJSct4pw+XfLW8GCp5jSDtAQNsnKXDmx8l5xesZDDyfZiBgjPEkEsZAwIECHDV/JwsXFxd7EMDn3Z86SS/pLJwKvXpkIAECPlcD6o7uWTyj5a3w1rnWJSeQuJ5AQgWCVsutnqnuITqQjB4PhO/fvz8BAXyeogGVgn5t6oAnUMcAPUcRzPo1GbnKiHG6VX62gIDOuHmuAU3j3t3TY5K1WRuewcDLUwUCcFQAoMd3795ZQFA5Pc8FBBpJuLi4sHKVnIWfkd5kmmDF8+oCgaSMV8KIyt9zKSnEmZei6au8XB56dL8qj1QmgwBFyM7o62A5BSCglECAXktAAJTA3dayncHr5qXk+sEBNS3L9d0qdQ3nDNSsjvtuHaoxl/g6g4E1qtrQHXUNk04JKBjgZ1J5Sf4ZBEAWHCjY7Xb762MMO3060xE/G73ZmoExsmdfeWPuuY5yeA6PiVaVQgIq7pzTJ+GeKa6Ekju8Q9gxWFw9XEQg/Z+dH5OcUa48T63DS8sc513RTPE4A5ny7PYZ/98aeeqSA0TJaUjPKyhIgGB2rQMSznRIVZtVTouLBlS/KiKQylZDzwafDb9zckDsDCn9JwCCNwUDY3ijVt2bAYHkSXQUmJazmmbVK0xAYAUUcH587v67QZPeFgBVwt65VtGxFCpkIimnpMQqQ4p0W6ICM16fk9/WqID+n/X3lr5c8bpnDkLFcwcQJB7OkYF1moEAN9YUDLiIQIoGzIAAE5wbPKOggAGBRgnGOJQdnS5IYPtnBQRvDgbGmA/0LiiYobGt91bq0bnXKasCNi6tHt0gS4BgZTDNIiWzCA+fH3uQaHtq2zivdOYNvBRfzFO3zfHf8TLz/N295A1pWbj+Wt7zlrG+FQhUdAYBc5p5/zhWv9kbA1tAwBg/HB92gNjws+7iKYEEBvheNW3gnvsZ6ChgYIx+6D8Zma6SADlw8dL16dxLBrSKmDCtDjSkm82xrVKnHls86NegbqRFFRueq6ZOtgz+xEdl6FihJbl3UQBVbEnRdYzoDJx26dSMbGfsnRrPx6YZCOg4KC4SoNcTCHDymfqIr797925vzHEdHr9bKKi624GGGUD4WehoYMDRChBI5BSlnr8UryvXZ3zOAIEbXHyuA0xBAOdbTRWoQLv27gA0pOM2OUWF6oBTSuf+dwCPU5xKSbbT9ZW2VBDAfDvFl3jQc6Ut/VsZFVePThmzCIcro9I3Z/pBXRDQ/b0ECEDZ3WgVygAgUCDA66dmgHmWfouzcCw6KhhIg63j9ev1Tjr3zCq/nXsdgX1JAKCDa4ynIIAjAxX/zgtGmdW9CoC5/29Jq4bU9YvWXf+ngV8BgaToUP4sz5mxUgCg1ypF586TYnV1SdTJowOenktVe55BwFNKsrti9Gf3qlcGO7pjKxh1Y12N/BhPIwi4PytX8z9VYHAykYHZQKy8z8pz1XTaKV0B6kQCZp38XCCwOuiq7TorHtXQddq4MvbHBAKOKpkAuXuaLk0fVAbP5TPjL13TttdfhzqRgVVaBQYVGNha/pZxyedd2f4n0CoQSDpoFSgodSJvW+uXHEk+VyDggEFFPG75/6nQ0cFA1/jrtTHqueqXRvhOYCqFk7zRDgDQAdEZRGP8PR/mrruoACNfrt9WxdeNmhyDZn0xAwT6nMurQ10QwGUn2U88dukl+6RjxKu2c88nhdntq+69Kt9zhGANCDgQkDYJ0nx4J8EKCHQju9VUqOq+WV7Ijw1/F8BWoPLUQMHRwQBThcqdMe0AgedEA55Tj+fQCooeY9h3cDtRAV5Mg3Id711Dr+enIuRKCUzqNfyvqOsVMKk8Jh4dX9Xzz2nv1ajAquFP99QwuPRdQKDpO/LsdMMxdMYp0gwI8HkCAW4KIOXhyhyjlk0HMNwWxZyX20wt6atkV7pgQMt2AGAroH9pOgkwUA22GSBYpc5zCbE5ZFeFb12Zet75uQHViQqkQaEDomPQulERHVQvFXp+DUq8OYOw1fjNqGO8wGPHk+iAsEohzRRTJcvV/SqPmSFYBQQr9E819BUlUKb3+JrbRdDtFeDycqCjK8MOCGi+PM4TEOBrjo/kJDhdodS1EcfWkScBBpg63v4KdZV4NQCUN5wjzcx70/xYePW+AwIp5NY5T7Q6zzXG4Q6EOOp5uqd5HYMS8u8onpk3+hx+ZnKj6fm/k1GXlvPeEqqcgQA+n3lLCRArKRDQNpqNtdUoV0XHlt23og4QqJwW/vE2wtrPszGjuj/x09F5CUyu6qsEDrrjv4r2JT7fkk4GDDzH+Hc9lAqJuvMZf9V5xedsUFVAoAsIxni6VgDIuFKUjJ4Toua0fH7qQMAZPv6Es0vbBQud8t1zs6hAMvYrZVXG0xnYrhHn8wR0q7HmnmW+Zga9A2Seq2D/SZGD5wCBGSiYgb4Vnvg6ysC5UtfhSfoqRQ0cL6uy4mT8mIDgZMBAogoYdD2UdG2WtkOrnecUZ3VNjXs3MlDVtSL3/QEXWuP/TJ3Bc0xyA5C3K11B+qCkDFY98I4R1jxWFFCVrpNPZRj4v0ub+KjSMW8qdwqkXpNOUY5fkmZyVwG9DjBgnTTG4at6Vfma3vE0i4Ludrvx7du3Z8mIyh7n7cb4LC+2Z6cECE4KDKx42aCZEa/y6Coql+Y5IWccV8BNGhDVQFVKaNftx52AgDtP5ZwKrQ44Dv+5fup4CO7/Ks0MJNLMIgGcLgHrWRmad2UYNN2sfilNUsLKW1WfreD0pfrw1GkFCPC9mfOigGCMp5HKd+/ejTFqOQO5tQDuDQSNZu52u/Hu3bs9INC3AZDWjaMqKpX4XAHnpwYITgoMKK0qL6YVQz8TfBwrz2QW7q3Kckq0QxV4cv/Z6wcAcNcqINAZIKdIaZrApZn1wUxpdAd2Z1ogXdM8tK8dbZUtfjbJrytni0x3+HJ5dqYVqjw7YOI/iVacpJnhn6Udo/bgneHnPMb4ARwcEGBiEAB50D0BxhhPXg9M+pujUuoszYBBh04JEJwcGNhi+Fepq+Rcmg4geE1iQR/DAwLdOQvPIU1nTUCKCHToGKi2Q9WAT4rK3evUbdYGHSDw3HFQ1Wd1nFVjBuezNF1yYEuVr6tHFQVw9zre4X8idYGAOikJCFT/K9Co5NY8QYdh3QGnU2LD//j4+GR6YLf7e8oAz+N+d2zPnDw3pnBd9W6SvWMCgpMDA2Nkjzd5BbM8upQE1513QUCl9LvK2qHdMcYTpKtoebboL70dMJsaqKIE1fVjkRt8nfQKul6Cjw5VoGBrHrPrK3mmsfESNPO+0jOujWZRAtUnVdThP4FmfVXpPGfME0DQZ9l4p82AWLYYFAAEpA3VxjjUW4gAfP/+fb+PCoiv4RzgoPrIkIsKzNoP/zktl1MZ/GOB0pMEA46ScXfAoQITLo8KDev9rTyvABl+3oEOCNS7d+9sFGCGnCtQ0J0acHlvufdWlEBZN0LQofRc5aWu5rmi0PW6UziVh1Ll3QUEHVCeIgHpf5W3A6wViO0q4lOQ4a20KjPJ49drnR/nl/SSS7Pb7cbl5eU+OoDzND4BANBPDAq4DI4WKGBw3nun350MpnqmLcyRT0dPvRadLBiYGXGH6lmRpfspPyUnzHq/UlCODyimGU9OOFhQgZI55MVoWDcUGuNp2N+BAm3byohVzyU6NYXa5WcmL53owQqw0nzT/5Vn+ZqTr07eFT+VQkwKzlEHBHSe6+a1Jf+fgbqyMgMCfH3l53YgrLYIHuNwWuDy8nK8e/duv1cB/jswAH2GH/Sh1ufbt2/j8vLyyY6r+O++N4Dyto5b1vvp7YljAgCmkwUDY9Th3a5H01V2DtHyc44PZ/SrulT1Sp6aK9PNe/F/RuDutUAGAulcy694qryvLUbwNWkVALAyqAyYUwBaZgJOq55b536lcJS/zv/ZubtWjb0ZcNoqLykycGpy+JK0AhLTM87w87kaemf03QZDaRfCxBPvTcBA4Orq6iAfEPr24eHhIBrgwAHkGukeHx8PpgkcmGBKXyl19agAsNP9fJ7A+mvL7kmDAabU+B0vf0v6mdLTPN3/mVGdGZlUBgurev6KvlNkoAIClTKujJw+dyqAoIriVPdTes63k26l/k5hdMrsAIYuUHNAwPHVHXerY3SFqn59Tj/8DPQSIICvuaiAGv8ECipwwBsPjeEXNus6gXfv3o3Ly8t9RIAjAwwqoLsuLi7Gt2/fDqYB9IiFheylI5IKYIAjgIEuQpzpSC4z6Ytk/Gf02oDg5MHAiiLpGO2VAaSdhvN0VA9kteNWQAF7/rxwUENR3759e/I8h8V0k6Ek6B2le8rRgWogzUBBB4hWafioPLnzlKZzfxa9cP3a7R9nLCra0t/pmVXAtnUc/ixAYRUIzOSrigSsRgZ0agDG3cmN7kGw2/1YKwAAcHV1dZCHRgYuLi7Gw8PDnv+Hh4eDaAC/RsjyoHrw8vJyfPv2bQ8QEG0AIABImDlMsz6oAPYqQHhJOnkwAOoqy6qhV6kLAnBMitV5Wvx/RbnOvNEU4tK0Cgq6/Lsy+fzUgcAMFHC0RuvXAQQpX+WnynOrzCZwkerT6WOX70xeFbCukGv/BGK20NZ8XiuysYXeGgikCEAFBnjO332jQEnBAEcDcO62HobugrGG86OvYCO963/Wg8iD3zYAuIBu1elUzsuVgWsq25WsJz30mkDh5MFAR/BVwLZ6WY6SIsVxZjwTEKh41N/sGY4OJEXMfFbRgG5UoKrrKQKCMdYG0ksh9K6Rdf+Zj/TfPevyrYCK9k/KX2WSj10glHhOabtAbqXMl4xYvDW9BBBwstKJAFRggA0+znXefwy/kyCuayRBAYHygOd0AyEAA05TOWQYAzxN8PDwcBAdQPSB1xZUUSjVp8lJZaPPec369DXk8eTBANPMI0nKdQs4WI0K8HFWRjUA+brLI6FqxzPz49YMJOFNdUnXZ4Dg2GBgZaClgbllAFbGbUWpq5FWHqs83b1OH84AAfOj5y6fShk7XjvRgUTJm0r5Kn+nSisys6LzZiAggYJZRECv8fPKTwIQCgR4SnSMH9MEPD3KIMABAedosZEHGGAgwIAAgAHl44ifrsXiBYtOFqux81JOSYd+KjAASh2Ke3x0z3apUpozAFABgwoM6EDpKl7H82zToQQIqvpX5VVtc0rKdjbInDFM/FcDVa/PgEAyVJpfF1Co96HXE9hJ8pnyTnVw4GVGTlkqr6v5zHjjemg5pyS3Heo6S6mP1eOvAIGLCrjQPoOBMQ6nBHCN07gpBgcEQDC6u91ub8z1DYEU2WDiaYJv376N+/v7cX9/vwcG+OlUga494B+uO10+s1WVjnoNgPBTggGlhK40zewcNDMGlWHolj8DBEl4tAx9ewCUNg+qAMCKBz9Lc0qRgYrUWLhzTce0UqetEQHlI3kYyfg5/qu0mr4DWlP9OgbdgZUZWOvQKhh5Dvh4berw33WAnO5xawB2u8Od/1LEQDcH4vA+7ukCQgcoGDwo0HD6cIxDnYY5fiwA1E2H1MtnPjBFwJGBq6urPSBgUJAMPkcWsO5AF3DrlIarD1+rImMvDQhOGgzMkFNFLgSzCghWeFy5noCAXuN8KiCQDBr+z8CAO2oez6VTUa6VoakMQRccpGdm6TvhwMpourzc8yv8d0FqJ8+ZQe4ovw6/6Xo3AsTXO33yFrTi6MzuJSDQ/SH9GKMM6Sfv3pUL44+3BhQMOAAKQt/AU0/eOfh1QAf5sAF/eHgY9/f3B/UAGEBajgwwCHh4eNinT33jNjga4/D1R63nawOCkwYDTDNFgzQdj8cZ2JliqxT7ClhJRj4BgJR/CpklmkUF8N89181f059ayFUV/HO8QEXw6T6n2QJqqzK1DpXi1zRQOunNkySfri4rMvhaVLVxJzJwagAAtGLoq/tJ76ix57l7nQIYYzyJFHQAQQUEeD+Bq6urJ3ngmOqruozfJuBQvqsv86NTBPpNBBh33oNAAYgDAlUf6U6HM0o666Xk9WTBwMyzAc0QU+UtpAEy46fLW6Kq3A4gqAZHVzBmhno1/N2h5xrD55C2C/+v7s2o44Xz/5mXUwGUCuR2KIFKBYhdIJDGhAPkSNOVs5UIieNBAVB15DwruTgF6vT5DBQ6w6gG2IEBNqBsJFM0QD3xMZ5ODygQuLq6OthXYBYZGCMv4tNXALnezAvSw4gzv7x/wcXFxZO9BnjDIgYRzK9zwsADgABHByqqdBbf30InCwZAlfB3BrjmpUI1U3IVPzOAwHxWz6yUn551Zc1oiyJeSXuKivWleVrtKydvTBU/Lqox40nLqsBLiqIpz1vGgKvbTP46sjUDYk4vuHx+BnouEOBzt0aAgQAb+AoMJE+er43xdNGglsVAgCME4KFTdwUFLjqgbYL0eI3w3bt3B3lw9Aw8uwWEWK+ggEPTgDQtogRVtE7r6WTXgfAunSQYSALNNEP8nCblmZRcErxKyep5Qm0ritSVoYtp0jMu/NQx/i8BEBxPWzzZl6IKMGqa1Xy7aZIRfak2qcZMJWeodwLSK8DZAVOWfS4v0awPHI+JH86v6u9TBwRbQABfU13HQACGXX9uMV83MuDWGVQ/BhCIFAAcIP8t5PYEYMI13poYY4HBEcuJrkVAercNMkcNsM+Clo10quMdKJhFDpVW0o5xomAANBvsFeLXtHxNf3w9Ped4qNJrR3SBQDXwHRAAAh3jh1ArIOC8q3B413PrUMcAnwI5vlYGWidNMqgz6gDKGeDV/ylqVj3j6jA7qhHuKKZZJABptrTfz0qzPp09l4AAwEBaM8DGXY0/P5uiApzG6Vm9pzwwKOA1CyCnV7kc9sh5sZ+G7FVnaluBnzHGwToAnl5zRhvbGwMMuLKVNK9Kf6/o1a7MnBwY6BhaJtc4er9SygkQdHnTPF9KAWlZOqh4XgsEFMtIkwXKGZJEL1EPBwiOTcpTJyStz28tt6vYkxeTZLsy8Gk8rfTLDBBUYMS94roKwKqxrVTluyrTpwQmVkEAztNPowNp/cBut3sSHeDFhF0gUOn1BAiYF9VbHM1CHqojNYTPiwtZT2ItAJcBY88hfH110Y075FuBAU6Lo04VIB/W384JeElH6+TAgKMOMFgxNmnAzMqowAAfFbXOOixFDRKan4EWN0Wgg0Tr9RylWeV1KkCgW8eOd/qaNANolfGHUumADpemU3cHnhPQYSXHeXTD8wpcZpT6twMaZtePSR3dlNLPgIAz8pzOhf2raILm62SDy+FzPboFiB0A7+oPgtHnPNK3BvAsryNAHpBryCaDB55uAChIUxXMg0YCGCC4Nw4coH+O/J4UGJihx+fk6cpwymxWjlOGIO00FboVXhMQ4AU5nI7DXkgPwefFLa6OM97cIOnUYyVE/NpU9cNq3zyHB4fuKx6qZyrqyLUDoR0Fq/k7pdsBhC5NVXYiFw1YAbcvGU14aZrpQm1DPq9+aS5fQ/J6Pa0HqNYJjDFsnqmujjfUNe0jAAMMw61laD7ISzcbUtlJeaS+4rbAdIduToS20GhBFRlAvm5KwrXhFrk9KTDAtIqGXyLvrpHDeRLeMX4IbsfwdvKdoW0oUxYeBgGKZLvC0g1ZO1op5zVJgUACBiu8dvo1efIzEJD4SkbA8ePuJVDheOzkpYZF02ko1nlHK2UzpahbFY6typjJwrHkeKYHkw5bBQFMbLAqfjQ/d93pq8RLqicbR90PQFf6ayQDz6d9AR4fHw9eF+SjI6dDVL5QN0wnYLoA52OM/SuM+ryLDPD4SWO4GlddOlkwcKqkwsvzWRA+7UD8727wgrw4CpCAgAvD8rUUrXBCdCrG+zWoCwgcqSJLaboeaAIIM+oYNb7vlOxWIKzpkrFRXnVMOBA1azsFUemZTkTgZ5TvFceo6p8OEGBS73QGELRcN/3AR9Vrac5/jB9vBmDjHxyxDgDP6/bHLH9s+HknQQADBgn8DLeHA53MJ5fJ6RgIuGdTfygQcGMB6Z4LCE4ODKx4B8cuJwmxIr7dbrefZ1KFhfv8rAMb1RSBKtxZHZ0xGiMbq+dEB06BdBDzkdM46rTnrGwHwCoQ0OGlAgbuf6rHap0cqEhKTMtPxscZd5cuAQEHAhwoeI68HkvWq74D6VicAYEUXWTDxCBAQ9upLZxe0mkHXS+g6wJUxtWAY5tgfEhI5+3d5kmQF9SPDb+CAl4/wOn5v4s+cdtzW3F0gKMOvM9A6l+N3jlwr2mfA3ZPBgw8d7Al5YFjBwkzVWFYHlCcP67hWQwsrEDlweZIowwQKgYEVR1cRIDPdaog1fNn9J4qqjzGjkf6EuVXiH7Gh+azFYg5ReKM+0p+CmKZV5Y/VtguQtat03+ifFbU6ZcKoHV/TBxKVy+3y69bTMi8IY1uTqQ8gBgI8BFGHPm6PRO0DhwBYFAwxnhi7HV7Y+ShgIDLcO2GtxpQLs61vxIgZhvjFhuiHJdHd7ycDBhgWlVMldGvQEK6PwMCXJa+f6tpsOEETxfMIgPV9IAOGgcu1Nik+jgFvBIdWKFjKvBO+FgpyUWSya3GPD0385K7vKXxoHKs511SUKzlQply9KoCBC9FDnBtef4UwMeKPnSG3kUwU1+7CEvlCVc8pEWFYzyNqnIaLhteOQDA/f39uLu7e/IVQa6TfjlRoxNu7YCCAI0CaNSg6h+Wnd1udxAZABDAmgEGBVUfOyDQBQRdOgkw0BH2StnhmBBvdc2VO1OqKsjquYNfFgLkoe+zgmaRAH3XlvniiINbaOLaauaJOQ921UCdCq0oMn5mpixnBn01/7cyOtW4SPO7iT++rwoXcsuKEcoR+akHyLQVtG3J51Sp0lNjPJ0CmQEBBQRu8We1PmCVbwUFrmzM8zsgMMbYrxG4vb0dDw8P4+7ubtzd3R2AAS6Tt0jWNQRcR/5xecyDmypgfZJsDp7Dp5AfH3+8dug+ZoRf0rEJCHQAQVdXnwQYGGMertwCBBIa1mspfy1Dka4ufuEBpJ0LIKDbUoLU+9fB48AAC6sDGg4YuGtJya8KlcvT5fPWhHJT+aleM/Cz4il1+Ovm4+RW216BihtPDghUwAB56Ypn5QnXk7FnUODyrKZQZiHQCjArVfLw3CmZlyJtV3dfj07fVdEBlacEBGY6OD2TIgRuCmGM8cR5+v79+z4aACCAKMH9/f1ezlhX8i6GFxc/vm+ggIMBAV/XNE6WeZzoei7UA2kuLy/3Cx4vLy/j1w2rvsaYAm8oI0XaOF2Hjg4GuPKuQTpGegYEkjDqQEjlVMpXj04YVKkkBZbAxhjjCRgAkuUBxEKxYnyfY+hSHsc0/kozPjoKf+YVJ5rJ8oy3pOxn5WudZnVUhebGhZNxzYNJV0Cz/DMgYB5nwM1Rkr0ZCFB+quOxaKafXDqn82ZTBZWO02s6NdTJg71zx4/b2Ie9awCB29vbAzCAyAD6CnmzB66vHILU2I/hQWk1VVJNhXBeiBKDJwUEaCsH3nHdjQ8eQwl8d+X3qGCgK4iz5xwAcEKXwECnnDHGk/UBbr9uTc+ee1IszMesjDF+AAGegmAUenFx8STktYW6CrECbKegUDveY+d5fW4WOUhAwA10RwkIpP+J78SfK8uBApcnLw5kXpg4OgClhaMq3QoouTaq2rtr1FP0yh2PRVX/qhypHmTD6MCAkupOLV/L4M/1Vvyz3mVetKwxxhPDhrcGEBHQyADAAJwh5KcgIH3jgMvCOV/X+669tY21fzBFoICI1w5grKid4PzYlvCY0vscQViho4EBZ/Q7QCDlxYJeRQRmUwSuE1y4nvNz9eL/SFO9SaCDxfGuZXBkgAEAAwQVihRO2kodI9OdZjgVSgOpMq5qNDrnfC3lPQMAqqBX6jQDMHqN66jeoV5DeifzLA86PhLvaphVplTOOkCgAx60vLcm7dfUPxUQ6IIBUIpQVnrUAQkFFMkRYwPGYOD79+97g5+AAK8ZYKeLFwdikZ7z3lGWkosUcPtUbQ/StxwSOFNbUoFjyKUummRg4KIDHToKGHAGcxUIJKWYogHdwaDXVcj5mJ5J15zS0wHDitXxzYLgIgCKcHXOa4VeUgE6hXxqtMJfF+B05dqNCRyTrKf7js+qLEdpKsDxN8bTaSzmTbfChuw6heb4d0a9A1ocEEjTJ1Uk4JjRAY02Mrk2xdG9Xpd0H+sG1UGVIU8y2SFNq6v5YcgRGYDh530GAARYB7JuhkeOPJP+npECdbwm2Km7A0oKCvR+pYdY/yeDr1PGP800wcyoruSjCM0ZVIdax8hKU40zX2ehUrSo+TDpN7JxVIToykltpB1fRQV0Dkx/SrMw9n8CdaIBY2yr8+ozydDPwIDeS+QMn1PO7KlUfKpyZUXEhr9b7xnfnXxmCjU90wEUb0muf/TaDAjoFwWZ2PiCVN8k0MH/Hbn59+o/8wIjz4af1weog+PC5po/dLiCUK1nxWeXnJfugBYDA24HJpZJrmc11jki19U/bw4GKoS7Nb/OT4FAAiJO4ajRTwI0q0cqYwYemCqPn1+TSWk6EYKXVHwaqfiZKAGjbj93+jUN/CTHfK86XyEFyBV/ri4KBHBUxayRLOZ5JvMvATwVgKdoQyda8FaUdIwCAedxYjV92thnjB86gz1S5O32+XfyqNeZVD85YMVAQD8cpK//pSinK9ctTkVfKqBJ+bgyXGTBgZE0dtCWOnUwxoivnqN8BQQzqqamlY6+ZmDrc5UwakTAIbKqwZlcqAzXt9Zrte7spfE7sTpoIHx8bww/h/QzGuettEWZv1T7zND5KjieAYPZ8y6vREnZOMPRoUp5reTj+pMNuaadpVED5QDAscaLmyZQILDb7Q68fwUDAATOgKEMXtSZ5va36jzkjXZ1rzazoXcAgMtCvVUvapshb/dqq2vbzlhMIAJluXrrPe43B7Y60wSVnDPgWaGjv1q4hRwI4PP0c0CgajAnJE4JJ4Chi0lWyaFAGH8AAl5Ny1/x0ugA58f5p3o75biFf3c8ddrCpzPIlZGeedyVHHPaBI61vM71LrESRl2Qp5uv1GjVS/HT9ehSuS6vFCU4FiXPVR0fnhJgEDDbhY91i4K8zvTkjJweYr3pVsMnzx88wYtGPdTwOUMJHab88CePwdPMWVSbksqEjnZ14r7DVw1x3cmqTjVgYaQDuBqJ6fbdm4KBrR6MPu/+J7RWNUZnIaBLy4LXBRhO8FNddJByhzNqZiDA54yqKyXIgucMVbrfoVMz/KzUU53StIBL26Uk6xXAmpVVyfjMu+mCFSVtB+eV6X+OYHG0agUQOCWe6lPx3gW0W4Hva1HqJwUCGgnQny6sY68VebLBroDASvskzxwGjfPjUD6nZeOv0yGq71KZjnSdxcoCQ6f31SCnyKz2HTt9HCXR8vgev1aextMKEBjjDcFAh6nZPBCuVR5R8qK28ObCSG7aYAYExni6eA/XqugBAwI8q9/g5u9686+q51Zv55SU5BZaCf0m78Llo1SBVr2+NeJSGf1q3PA5y7ALR3N5fES6FKYF6ZQWK39niFL5Fa2ArJ+REnirgMD19fW4vLwcV1dXB9vxjnG4Gn2Mp5EcNrwsF0pswJQ/TaM6rKObtWx2xPiDPwxsNLLA50nmZ29drMhjin6hLEQilD9Op22mAIeBlEYlniv3bwIGVpH8LI90f5Y3BN/xk9CgGvpVIKAgwIXFQBByVrSMGFm5MhDgexVa5HZyQqjpVoUr5YnzLQDkpanDx9ZB5eTK3Z/lPwMtzwEiq32gikY99AoQqEePowMOCWjNQMIsItClKip0bErODoeZFQTgx+sFWAfh072zqUzVqd3oCuep+svp3GQj1JA6w8/TpO4/yxCDABx5y+K0kZySyraLBGgEGfqcAYH2qwMyCt7AH38Gmad4OL8VQPOqYCApx5nS7OSH/1phJ1yqUFThzOaJOmm6QCBFBoD20Mn6NSvko8ZfPa6KN/XGcNQQlQ6grqJUhaHtfSrKVQeNu/5WVLWLa0f3fMpX/ycvc0Ysr0xpmgDE61w601bgxwG2ChSkPnyOzCUQdAzS9mAgoGsEGAhcXV3tPV60BX9Fko0MG13c5+uOVJ6Sk+SMIwPJSnfjefaC2fAyINBPEvPXYkEuKqDfMGBAoE6iAgDe6E0BTzcKwnVGnryoE7aBxxv3Fx9RHkcRjg4GEtJz97vPp7xmefJA5kUjHUrz/1Ujq/fPaFUVqs7RQYB0gQjXI0UZmJxSTYClaxBYuc48V6eUV73St6CXUPLdenXKUkVSRVs4PV+rxtlKH+i4UVIwmyID6uW4/Ll+zohXBv+5pGWdEhBQUgdIDZqCAXygZ4xD5yQZCu5PJ1cuPQOBldX2M8CaSPWgRgMwp85TqMqvRgb0s8futUotUz9Pz04cA5SOLUT7IT2Pc3YSGQQgD7d4ksdStUie6VXAQKp8pZhWBpxDpBUQ0MadGSbXeDOl45SlIsfkHTGSY0SX2iQpVLfmQP9rnvr9hIqcou5GDf6TaAsgTVS1VQIEfM/xlPhy1zWfZBgT6XSWPtcFAom4vnrtpYjb+NQAgII9NrrOoKlhQ1rtp5nsOkPD99xPwYA+n8CA0+OzeXvVe/zDB4AYDCgASq9gKhjofO2Qv0ao0xhsuLkesAvME3/BEPxizHC0gNsP9eSoAU9D6DMVvTgYcIhHz2fPde7PFGEKc7Ph46O+rsKkys6FvJhcKCspReTPAsCC0FnZukIpLwYFWpdEM1Dws1AFvDjN1vurURFOP3s2jbHV8tTLx/UxMvjU8eCAqcq8M7aJ106/aD2q/1vyPxVw4IyvAwEcIVBj1tnQhu+7NVK64FSBCQMC5JvK43pxvlpuh9gTh4EEKHCRgd1ud2D4K0Cgr/BxWbx+i8HBGOOJR+/GqoIpGHbenEvtDewV8uUdbXkc6rie0atOE1RgwA3EzuCdIVGlVIbOz6MTXF5uHo2vaRnVWoEuSquIhUUHb8o/CYSLCDhwo+dOSXYV6ylQVecqnKlKrnvP0Wp7VMDA8dEpm5XFTDYrflNkTIFAN5Lk9ANfS7xwGFefc3KtIPwUSXWeLnrTaIBGBpAHH1M5oCr870LtfO4cGO0P5kfzU+DhdLKOV8gZv2mAqYJqzQCOWF+R9miowEB6owtRCtcHHAVQIODsGj5zzN6+RnUVCIzht6VP9KJgwKEe/Z8AgXpDnB+nd0KS8neNwMovLdjTzsO5zu8jPyVFZh0gsKKIuB04FOXyqJTB4+PjE4FixFlFV7aEVU9B2TplqPXrGFz+r7Lu0q727+x6Jf8dMMdURbq29FmS/5TfDLyoXqiAwMp1BwQSKOgArNckNmApIsALBtmwOt1aUQICun2ulsWL7xzAVL3OhpanNJJBTLyiHMgZjCq/fYByuU746XoBrLXgCEEFBtweLxylgOG/u7sbY/zYcpjbFfloZIXLRD3Z9lTt4yJ7Fb0YGHCKkf87A+tIEbwqOQ0nzUJTqggx2Dk9K0I3/4nrDgA4jzstIEx1rNpF68TevzNAyo/2h4abOA2HlSBoLrKiyt21sdKpAYFu+6c8KuCb8qzaoAtAXBkVEOiWP5PpDq9aVppySjKSnIGK70o+UySC82VAoLytGtHXINZ1aoBTaLtyjGaAagYEdDqADSobdDb4ri+cMXaL9qppUq4j9DZ0u25IBNLNhVJ7apRF9SYbfAcG2LizHr27u3tiz9iz1+ec/FVRaaWZE8r0bDCQPCKnoJLX5PLTaw4AqMDOBgDOGRC4ENMYT9+B1aiBXld6jieU0rNQcVSA55dUufFgccBAwYoKvSub67g1SnBMmslh5UnqsQID6fkOb65MLWdFjpznCznRX6U8GCw7o67ylGSkqreTtapOfL4agZkBgmMTAwE1vM6IMnHbs+esfaI6bQYEFJTMpgkSGNjtduUcvdPlTDomUIY6Tiz7qKuLcjggkKYK1PvXdQOIBowxDmzL1dXVuL+/PwACus7h4uJi3N/fP2k/lQu9npywVwcDzgNyymqmLCtjo3k5ROqAgCoJ12gKCBSJKvpSRZkiCExvZRRZsJhX8Mnth/TMH0cBIMxVv+DZrqLnZ45FFWhlqvq0AgP8P1E3MuDGyHNBQIcH3E+AfIz8Kmw3b85Lz7W8rrw4MJqiApp/AgQu/TEoed8wWBjXTo4ZkLHxqvQsl5mAgHPIFEA4p0L7Xxfw6ZoBPOP0S7ItXEZaqK38uqhEqh+Xj+d0ESHP78Nhw+/x8XFcXl7uFzfiegr5c99xvXEv9SW316uBgQQC9FgplO6A4/QrQICFwhksfoaBAN93oIB5WgmrIo3rlCoM5qgDqjRvbr/0DCsPt7CS2y2BAz46OnbEYAYE0rWURzLSbkDP8p6BAZemKzfJMCY+Ux5cZlqlXEUFUvl6XIkKzMDOawCDtyQ2Omw42ZBpnzw+/pg3x3U2KOotqs6YAQHVx6wv9fzx8XBdEpfhogycJ3gHz6l9VC9x+FwBQuJfx5OzGVweO5GIznKUFvXVkD9+3CYaedjt/l5fAB4YwDmQlEink2fUBgNdEOCOnTzddUaq6ACHHlUYKk8W504AUNYYfkMVRYagLjDogAbmVwXZkQ5kvecEX8vRNwogoPxuq7ZVAgWuHqdEXRmdeU/JMG8BGC5dGm8zEODAsNap6rv0LBtI/GYLYjtRo9SelVF3kQBN26FZO6zk9VqkY3e2at/NJ2OM66fOoRug29RYqdFGGv7wUUfHq4Pl9BKX454HOcOs/9kjd6DH8cyyxW3IrwVCL3JZnB/0LwOBahyP8eNbENwn9/f34+rq6iAvUFownhzNDmgALUUGVox/avjVZ53g8IpVFgBWUE4JOqFyg74LCFz99JlElZFnodNnXMe6qAMLKP/0GVYIIA5jadmKul2dZnV+a5rJ4Moz+vzMgG/lszOWmJyh1+gYp+2AIPeMU8bueXfc2lYKBCqgk/7P0nDd9HrK7y0ohbK5zTQaw8adr7koCQw/yhrDz6c7R4yJoxIpaqSOi/PSmQ+3zkHzA//oNwUCrv8UJCl/uH9/f39QNtrJtRfsAztXOj60HtqGyPfy8nJff9gCPINrClwUVHA5Lz5N4FCYq9AqIHDITu8lFInrXGEWgi4g4OdAPE3ARpGF3tVJgUDHKHTSdECA5sMDTJGoA0L8PEcGxjistw60il8uY4uBfCnqym/1vJ4/J49uGdW5M15Kajzd8+k5d+zUvYpGPBcEJMPgyp7l3X3umNEBjYIqKRBAOh2fbDzceGcdCwPrQIgz2soL66WZ85RkQA2eGlHwy29QIM1ud7jBkhpIdiAZwOAeIgL62jnWNYzx4y0J7Rv9j7x5vYYDBHxEvfAMwAHaxQE7/s/2Dzx2qA0GdE5jRbGl+9WP06iAugGCys+M1BhPFRQPKL6myhb5zhYRdozEVsPo8kbbKOJnAMAI2uWFAcTGH4LP6JTr3K1Dx2i9JSnvW2R5pf+6oGHGk8tn1qbJQ9djesZ54l2Frnl2n6uUXAUEurTy/LFllo2MGuPHx8PtzlU+XAQBaTV/jrZyFCBFJNjAcH5qcB1fMHSss9WTZSPK6x0YiIA/LKRU/c8yx29ccduwF687BfJaBhjmq6urqGfd+GQggCPz4sAE9OzFxcUBEECdFAygbRjQKCjo0KbIgDMEswIrw69zSSmNmyYAuTC5/hQEKO/J+0jrBdziwhTi1wjGKrGAs2cO9Mp15L7RKZVKQXAdOTKgZXCfzOpz7IjAGFl2Xxq0dYDhKvDoAtuVNC5CgLJmY0EVYUUJeCY+HN9VVECf5zEy48uNfz5P949B6tlpdBKr18fwoXi9rnmzfoVOcVMEnH6Mp/2jaw+Yd9XD0EvQK7pXv4IBrp8CAQUD8MBVHnTu3dkx1ybQf1dXV0/m6jkPHTsMBB4eHsbDw8OTHRGZTxedVpvHQAnP6+LQVOcZLUcGUgMyAzPaAgocEEiDv8pDPQtVUk7poBNSyEvXCTglt9IpVRRGBxV77YyKXeTE8Z6uzQxkqucYXskfGxR0AcGKsVstO+W71ePutPMWLzg9o2MnpeO21Hqnum7l0Sn9RFp+xznQa8egagFZJbca0le5nwEBNy3A5SWd5spSnjjczfnhWTV4yq/uBYBnOFLC+lp1uiOVTfbOnd1QoMXghXcn1F8y+Alwo704ssuAg9uXd49Nuj/RUmRAvUpQGlS4lpRw5+cEloUteWOaB/hcCZ1wyIUBgaujhtVniNyRpq3Ccnw9zc9xPlxGUtBMW5WfGiJuv2Mp1ASmtC00rdIq/zPAtZUqg7/Szh3FuPp80gGc/jmgoAKh1TMovwMC+PzYUQEQjAx0jSNtU4S3efwnQ81AwHnzFV/qOKmXzzypV49n8cW/ZGNYl3PUgsEAgwc3d69RJfCv7adtyHVD+fzK4P39/bi4uHjyrQJEAgAC7u7uDkAQ58ftDl4UNHBfoi6pjizbXRneFBlgqgqaGekOCHACpXkyDxxCZ1TFR2ectG4JpblFhk7JpKmFRC4tDyAGP1xHrjPznspTheHQsnoiOogSwta2OAUgwLxVP6ZkILbUQ4GIkitLjWd61tHWCIzzMreAhaoOuN4FBamfOv0wk0+k6QCCqr5vRTzuFAxU4ICnLJND48By5fjxHLUL5TvSuX42nngeBn6Mw4XODE54gyK3BTP44nJYfrjeDB5UrznA9O7du4PvB3A0BfW4v7/f/x4eHvZHAAO8ocDtzftGoI007M/twPbNrcngOq3Q8pqBlfT8XGXoV8BBAiUoy3WmAgFGT7M6Ji9njB9Cp0KIdG5qweXD17SeKdyvAEDrz6TrGFTJ6aAYYxzMbemClS1AYIuBeilyxqQCA6AOkElyVP3nZ2fXEzBwbdttbyfjXaDTBXiJBwc6Kp55/PMzWrbK9KwdqjqcKghwQIDT8D0YqDF+jH8YLo4wsHNUlY/0IBjwh4eHfdkzA8R9CT74Od5QiT1n1nn8PAMCBQOsm1mHusiutrO7jnx5ISC2FWY9eXd3ZwEBfrzXA/Ojb0W4vq/a1FGnT5g2bToESkaBzytj3gUGLnSlxN6yRgNwH0KrDe54nwl1lzoDTtcIaBnd8tSD5+dZoNNzLOz4z+eaf/L60vFY1AGboC1GYgvY6Rgc5aMy+jMAlgxtRQquldeqX6u8XZ4uLwW+CNkmIMCGqwIHmsbVLY2ltyYem2maIIXqoTN1R1EOz7NnqeVxu3Cbqa7gFfKV8eLxxp8XBv+YKuBV/OCfvXDdsVAdHa4v8nx8fNwvtGRjzO2aeFVCnS8uLsbd3d1eLgEQ7u7u9j+ODODH7QP+0ab6xlcFAvk+zp2e1jcpEm3+NkFlFMaYRwS60YE0b55IFYh60DpNMFOIW5TdFnKAyYXqVDj0fAy/IyKDIhU2CBAPznTO6blMrofSFmP5ktQFAx0gkECAM77JGDsgkMpMRrwq26VXHtz96vkEAiojPst75kzwf311VvPgcdEx3tp+Mx6PBQhQJ45qjvF0rtu9OsfEQADPwhg6o4cwvjoyCgY01O/0EYj7EsZa6wSggvTsBHJ4Pr3u+Pj446uFHD3AfdZ1qBc7kEoMSrgNEBXB+gGADUQAbm9vLSDQXSC5X9EeTufzkcecA60MyFbkdhMYqFAzK57KwHWAgl6rQu74sTAmQOC8A60fjiveT5pnq56bRQWUD0V/eq6kIMAtmGHPgwc3zvl+N/TkDNaxyBn+hPqVTx1U7j7yS2Wn/N0g7tQlAYEK5M4AQZdmxj+VmdobfLu8Z33Fz7O35zwkTjuTyVmfH4N4jLuFZlpXbUcYX91ZtCrLRTRxTxfLdZwF9CNABoy0M1wMHPR5F10e43CtAIw4tvWFDVB9yTpO9T6eY/ABgh5lXckLBe/u7sbNzc0eCKAc3tUQ+ljBkDooM4dB127oryu/S2DAoRGm5HUxgptFBFw63VcgKXFGufxePO+x73jWQeQ6Qp/p/q+iGRUAUn7QscyXAwKOZ24PJX5e5wF5kOtA6raLM0xvTU7OxngK9hKyng3ITv0SiOgaHeazAgJV3Tu8vpThS0AgAQNnNFgh6/8xDheAsaeXomYdYJrA4LGIy9a5flyrnAGQThXgWS4DAEB/yg/aGgZQo4dI53jitQupz3FfV/K7Iz/P0yIg1MEBgaTblHTBIOrHelLXB7ipAnasnBMBsIYyQSnSwu2sTtyK4wZqg4GOQnwuEHDIz+2e5wwsh9I4HMaRga5RSp6K1pePbmEj8zlL73hLnn4acB2l4OrKAuoAQDcEeAqG31ECQQkI4OjAAKdB3rPBlgxfylPlz7VtBwg4PlTeKiCceJuBQWf4XdkdnnX8q0LW+V8mHfNdENAFgW9F4IPlIDkGIKTlNtEtxhHixmI+t+2w6jQ2pBodgP5gvsbIO7aiP3Xr3QqMa5uAH9a1qnd1OoLbi41nVZ4bw/oGwd3d3T46wAsIk1PF+aLMFMFNsqiAWAHAij1YAgPKCGhm0GdAgPPgc1UEFSDgRnCKAWlQh4535ZRsZeyVt+pZJjdVoDQz/A4IJAWmg7RCyy78t6oYj6lIx3gaZq5kWQfSzCDMDPGsD5ySew4lmU0GWZ/rgADHuwKWCuxr+ZqPjn+8S66Lq8b4sZhrt9vtvVQ2Ogr4XB3cubbNsWUY5ACOiw6oftztfkwVaOREgYbbcAj3YXQeHx/37e28a9VD0MnQdTNjjzK1rmzAeR8FniIAsIHdUflyeeGINq5kRUP7uqeATg0oUKsMtAIbXOPyOR++rlO6qzK7DAaY3MBfBQGaj0YRKkDAxFEBx3dSQqwseEBUQEB510Usjj8HIirDnwZB9z8fneC5Z3gwuMFdDdxU31NRoqCZcebzZBhXylFZmpWTKI2Z6rybF/PjAEFS3KmOrqwO4OVnkJ53mVNAAJnVT8ViYVeqE9dN6+jqfAoEEKB1SQaYpxQYCOiiQI4SJFDgeGHDw6v0U+QwyQcT60XnJCIfri9+vMiPt05mcKS2R/NQD14Nq6uf5uHC9K49mDiawn2m9WV5TM5uAocdWgIDqnScEXcgwAECzsN5DBymcqFCN5flGlyRIxpa0aI+q8o7AQHleUXh6bkuDOLz7lRAEhgVXnetOiZjwO3UMUTHomSQq/9pIFd1VXmpjFEiN86ccnTjZiUvXKvaRuuWgFIqZ+YIqAHi8Q0A8P79+3F1dXWw2xyehTHC3CzPpetrXFoPV59TMf4g11YuhFxFPVEnjQxwW+m6LBwBHjgf6ATdiyQBAa0H/lf2QqcpKuPI/ejGRMqT204XQ7q3qRh0qv5N8uTq78YqtzPSOP2c8q9kokub3iZIA3wGCPhZnHOeHBXg+3zPzR2iAVD53W63R6u8RbATSNdpChT06MrXPI5JydiDnAJRxF0dOW9H3IYdI/NWlAyZS9P9r/cciHwJIOAAtD7jQEK3zBmPVZs5/p0eUEMzxjgYs7inQAC/6+vr/aY04BlztFdXV+P29nZf5v39/YHcOjmcKfBTJCePbrwraHDGHcaO+4PXD+iUC/JOusERyyH61q1N0E2ENF0CkgoCkh3SvQkUUHKoP/12u91B9BQL/tx4c2OS+YRjyv1ZRXA7+jc936VlMFCBgM4UAfLQ/LQMEAMDLkcVixr7y8vLgzlEDpFpdKBCcXpNj67uFbmwmyOnoKuOdQrBGXxN69Cnmx5IyDR5yacIAtz/xN8q384j43ySXKRyEgBIcsjPzfia9VmHNwXMs19akMZzurgOIHB9fb0HAr/88sv48OHDuLq6OtipDSu5b25u9obk5ubmwBjC6KlB43qegpwmYuPenU8eY+yf0Wc1dM6hdl1gmGQFbY9zLZeJ9bVuFnR5eXkQ9dEpIQYHKj9O9pEvy5wCDbexj35HQNcAaNloL/3x9AAWLvLRtVflpDhd7PJ4Cdr8CWM3DdCZGkBemq9ed//1OiM8tykJGl8XFq3U2fG5Mh2whap6g3+eDwOp8U9zR2rUq6iAnifF6cDLa7TNFkrGf8uAWqnTCijQ/FXWMKZwr8onGfUZEEj9p8/o/w4Y4HTqmXE+UPwAAR8/fhyfPn0av/766/j06dO4vr4e19fXB2uE7u7uxpcvX/ZGRfOG56fUAQFVm70lOW+f7yUDw/2q0wPIE/3hFhhqf3HefK7z8yhbbQEbd/QlIj5XV1dPfgwMNKLgDL5GAHBP8+I6YQqAf1gEiDw0AsB60i0S1PZS3apOqfYRntN1XNzmlU7ZIq/LYKACASlCkJQXX9PwPwY7G3EXttJ8oFDG+LFegF8tQd6z+RRVyg4IVFMFM6oUdIXGndC4dAoKuMwKDCRw4PJRckbo2EoUfPBRz5lW+Z2ld33Lz1XjoguuNe90PYG4WX14/DnQgOec5+Z0BXu3XFf2FgEGAAT+67/+a3z+/Hl8/PhxbzzG+Bvo397ejr/++mu/toCNHbw79to6dApyO8YcsDqZVt5dJADE0wFjPF1XwOfIQ9sQMqE79bmpgIuLi310B0AA/cZrQxggwJirdw/jjmeQxkUfNALB4BoGHa8D8rMzgKtAjGVcxyl0KcYT7/nA/cRyypGGSgcneV2xUZs+YewG9wwMJJqFfsYYB4qI5xghxPwshBWdOcbhStxOdKDipbreIUXPzB/XRw2/8/DHqL0bpygUCKTnKlDA5IyDAzjHVK4zMFAZa5fG0Ur9qrQOhK5ORWk90R88DtyYc/3GxEaW88azKw6Ai3Lo9MCnT5/GL7/8Mj5//jx+++238dtvv41ff/11fPjwYQ8Gvn37Nm5ubsaff/558F17XeTGC8AqQOMopX9L6ozxdB/1UmeK64WwN+fJ9zUPXevBbZciAWzY8UNfX19fP4kGpCkDNu6cT4oiJMDAdWLZcOPMjRkdm+ANgIJ5cH3l2pl1PAMB3iWxA2g1+tOh5U8YJ29lBgTcXLlTeI5xfi2G7wO1JsXGYAW/FB3YEnJ5LihghVh5/BUq7AqHo5mSUyPqwlNO2E4JCIxRe8Z8fdb3r1mPpHgqI6tKJPVnx5A5QMCgdAYmE8CYlalAAGDgw4cP4+PHj+Pjx497QPBf//Vf47fffhufPn0aV1dXY7f7e6Hw169fx9XV1UG4F5vAXF1d7ed8Z06Kk9tKNt6KngtEFBCM8fRNAk7H15R4PQHnx/f557xyNvyIAOG/Gn2OAmh+AAH4oQwHBvTHTtds4Z7z/BU8aLRCpyN0bQc7rFjsjvs4VkBgFu1jW+lsr6NlMOCAwExppVCF3ndpIKAavuJrOmA5OsCKTa/zM4m3ijqGsCINxblOUwFIoGHmtTvFprxWhiR518c29B1KEYEx+kZLz1c8y1maCgh0roO0r1eNiDPkCgj4/5ax4wyOW1AGj/HDhw97MPDf//3f47fffhu//PLLuL6+HmP87Sh8+fJl7Ha7gz3hP3z4MG5ubsbt7e24ubl5EvLlulU8V/39VrQK5lIeW+4xOT2u+pd1sPYnAwA24Dw9AOPN0wousoAjRxbY89fpiRQVAN+QabYz/NM6sqPJQAAg1K1NGGM8MezqzCZydqAbIejK7uYFhMlT4bRgphJUBwQ0xKGhThAEkRXLTIEyQODnk1c1I1ZujDar9Mofr+BNz2jdXcjJCUcyHPhfeXdVWckInSLN+iOBIyfbfO+lKQGFGYDQPkzhyG65SU4YYHA5rv81HU+FuTrhGnuP19fX49OnT0+mC3755Zfx/v37McbYrwd4eHgYX758GX/99df+rQM2LlDeCgS0708Z4K4A0MqxGmOU3r/LqzNFhXtu8R6DAH1dFIY8LRDkdQBIx+BCf2yE3bMMBtCmzC/rcv6xjWGQ8fDwsAcb9/f34+rqav9pY41AOM9fx5X2mf6vbIHmsxI13hwZSEAgUXeAqVHkinLFuIHTgiQOiekaAp52cECDy3bGz9UneffKu9YXSlLXQGgUoIoMMG8qQG6OD8SKnuumvwQIKmOqdKpKVikZKqXngMdVPqpxloCBK3t2fTaek7xo5EBlWEE9H1nZcqgVxgJTBb/++uv4/Pnz+Pz587i+vh673d/RgN1uN25vbw88RAAB1Q1Jrn8mIOB00Rbe0zNOn6K9VL8B3PGzaizZi//w4cP48OHDASBQb57z4+iAC8XrlIFOE7BccdSBjeXj4+MT+6btrICA9fD19fWTbxIwGEU6fptAf2gztzhz1ofJJsDxffFpggQCEoMvPai4wjMgwPxxgyA9PmLESkzz5fwSAVQo4q74d3mAT4ACfWYWFZiRG8TKAytvVtIpv0TJS3SA4q0pKVR3bQZ4Z3WqQFL1vwOyO2NLjTGXVfG6mp/LK11XMO+m7DSsC+OBtwo+f/48fv31131k4O7ubnz79m1vWKD0O3VZqdcxQULVhx0gsGUcoy/cUduP+WGDDiPM0QD0J34M3pKss1zoz60HYCCooXzmT20Kt6/z3J0NZL2PNxIwXaVrE9JPgYK+ZdAhZ3dW15ItRwbGeBo+TV7TlgGkBl5fa5kBARh9NoA8N69pteMRLXCRAkcJmWsItYoMcD5VOSlK4tA6yPGm5fDAUEF14C8ZFM57ZnhPlZyy4yNffy4gcPkmnhIPiZzBcPdZUXUBgeavsu7K41Xou93u4At1WgYMCQAB7zeAKYPr6+s9yL+5uRnX19d7Zc8KlrfM/dnJtdVWIJCcqHTkKIvqZy1D5/u5HwEIPn78eBAZcMZYQaIz8Grs9dVCyBKnd6Bfy1b5AS+cD09twHZg34vb29t9xAPtpEYfR/3aIIBAFdFN5GSkK/9LYICZqjwXptnclK6qx7WUtiqPhZWVDzoO84uqpLlzMMAYFDBVHnMCAGrIOS9d9ZmA1axdKnKDFdcdrzyvy2sscF/bRe93+XhrWlGaM8C7JdrhAFKlzFf51f+qVBNPK4BA6+GuVeBojHHwifExxkHoVZ/F2OWFaPixJ4V5YFaw+vnYrZGp1X5+DaoiOk5H8XELuWhANzKAtC6cr1ECjuY4Q4kydCy6/+6n0YDKeYXcuB+AJ+rGiyL5lVZMFQAMoF76BUP+BgJfx5FBxMXFxR4gvKYsvigY0I7g5yrSUHkiHuwpXy5XgQgrIA27sxFUBemMrbYH57Wy6pPz0TUDyEP55euOh4p0QKOeHEXhiIneSx7xsZXlFnKyXCmMKp/V+nc9ukqxbwUA6fkOXzNgwflW0Qge82yslX9WkO6+glhV4pjL1TK6dercf0tKTkWXWN+wgdcjp1dAoGWrLnLfF3ChfF7wB5ngyFEaVywD7HHr22Wz9nN5JEDAbaGRDkSlYOTv7u72a1oYIGBXw4eHh3F9fb2Xz8vLy305vKgdZWJMatSbnWP9v0VmXxwM8NEhSdBKOMMZXqccnDF1Asx5cl4cTcC8jRp3rWuqkwIBVUJoFwYsOhWj/Lr2eQ4QcHkoEGCPkZ+deYenRB3vadYuKc8KCKx49szDyq/iLRnQGR9q1PV6ujZrP24vBZ0almVjjnnY29vbcXt7u3+tcIxhFS0/q4reAY9Ut1OglTE30wXJgUnlcqSV12KwnmJQ5kL57J0zoNBwPxNHJl19VV4Q8YUHncay9nUFBNwUE3jXBZHv37/fRwdg6BkcQGZ5r4U0tcHGXnW+s68OEHT7WGnTAkLHmNLMy2dig6NljnH4ZTP2TtHxigad0e3wBOMPIXBei6NZ+F6jAytGQg31czq7IgigGn53nY3Fqpd1TEpt6+T6uXmv3NPynwMGXP9UgOA59Z6BoeoZnGMMI2qHa/gs8e3t7fj69ev48uXL+Pe//z0+fPgwLi4uxv39/djtduPr16/7383NzX7x1v39/RPvrjOWE8+nRk5fVsCgO82rcqjP8X4NXKYaexeenxHraZWtFAkAEOiU9/h4uLLeRQHS3L7Wjac98CrrGOPAuwcwSNskVwCJAZGzAXwPfKp+riLojja9WqjXmfh+RwA03Mf5slJDJdWzwLO6RkB50vAL886CrmCDj/o8+OcOcugzeR9pICry1ryfQzOvzykDHgycRgFY1d/HVqgrQCApkuRtpL6Zyf+q4XdAIJVR8TSTQ1dnBygqYDiTBW67McbBN+N53hVA4I8//hgfP37cr/15//792O12+62I//zzz/HXX3+NL1++jNvb2z0ocOsGEkCqZPRY8qsKnnlR2eM257ZNQID1pBocJrd+wMkfrjvDzPyzoeWpAeY5lcNAADzxB4Vmcqd8zMAAytZIBk8XABTsdj8+cfzt2ze7I6Kzn9qubpyzI6jTtnyf27u7jwRoOTKAgmfKqEPOuIKc0UZlOcSoYR4XTmceuYESuNGpAjQuI0UGMSyoro6VJ+Lm7Nxg1Lkil09qP702Q4spQuAGttZ1q2F8S0qKbGteMyCUynCKbxUMrPJUReBcugQcVvvYRZB4PMOT4ojAzc3N+Ouvvw42pvn27dt+++Exxri/vx9//vnn+L//+7/x//7f/9uDgpubm4PpgwoQpPok3k+JFLCNcdhHHaDL5Iy7/k8yyNMCrNOYV/QBT+ewzlOeWRdpPogMsN5U3lxkAaQRBhc5YgeTdbT7YBLK5WhFAgGpTbkdXb+osXdRAbZJK7T5Q0VMbKy3Ule5QDB06gA/8OOedcpf64RIAAsBIgZAoFwW6r3a+Do4GXnO2kAprYlYAVp6vWOI1MOrQMIpkOv/mQHT+s3kaoUPHeAOGOq4mwEBLqMbAejWYRUcVPlqlA+gG2Agzafe3NzsIwRj/A0G/v3vf4/ff/99/O///u/4/fffxx9//LEHBBodYIOwAgSOGRnAsctDR041RI2je8YZJtZbfI29ZzVQvAYEW/cqgEBeGslV0MP63wEPpGOjrmkYmPAaAY1wcaRDdzFUve3sJANPBRsM4PCsLljUiDfbGwcCtgCBMRbAABcMRreCgpnR0HzhpeMcAECBAFZmOkWfUKwTJCgenZ9SHnkb4ZW5fOVLw3jJQDvSZ5lHJg0tgvTjT26guZ8DABV4OzZVQMApEQU8VX5beZkBrgqIzaiKRlX8VPdn4WhOk/LTMC2ff//+fdzd3T1JDyPy9evX8a9//etggdb9/f34+vXr+OOPP8bvv/8+fv/99/Gvf/1r/Pvf/x5//fXXuL29ja8YztrnlECsG2/dMag0iwxWcuBsgAMVbqqTp4B0zhyeLuf1+Pjjc78ciWW54QWDaXxo3rimfPFUAeqLtlIvX+2G8sdTEHquP9e+Lhqsul6j0ywLWxzzJTAAShECMFh5pZxOEXpVnj6riBP8IE/dYEjzS94X86b5j/Gj4REK0n0CZjtHcYfzWwSJDzyDNu20r1Ma1ZQMeED9uGzmGedaRlchHdu74vOZ0nRGbgUUVO3xHDAw41nPFRSwYanItVNV106+yaAx2FZlijcJbm5uxh9//LF/Lx35YG3BX3/9Nf788889CPj69eu4vb09WEiYpgVOGRQ4AM48JTmd9YUb00ydqUTVn2McfpeAQ/+8KNQR+obD7cib9RfLD8sO1g5oXZwO53v61opbL5DshK5feHz88RohFrHqmy4MPNKUlY55RFoUSDtd3J0KdrQJDDyH3MBywuvQp+bDwoGOZVRZAQHOlz9kgryTECGkBCCQDHNSpipcDhBUgxn3uLO1rAQEnCLEM1xPFU5Xzsx77hrdt6QVYz7GHABUdVSw5MqbGfqV6Iv2bWXsOnWapZtRx4BCLgGi2ROEx8YLCXkPex6fWF+AHxYQAgio0q14dGPo2NQFg7M8xniqT50eWeVLgYDymoxxlSfzOsZTB1BJDTNfd1EIthluESHuq84G4T5kFPILeU3y6KIQOjXBbZGixM5W8XWmriwvgQE0jgtZMD1n7QDnmQRXy0SDcgMpchpj2HkeFhRGoshvt/sRBeA1BLwjFPONfBQoJAOiHc4068SZ4ub2QX5qLBy65LTJm1I+nME6JSDA1OWral+uY8pvZkzTc1u81o7Xm8DbDNyofGpY0hnZWRurcmdvC0paowPsbXI6eF/8BkHyvly7aDvg/FQAgQMDFW+pf6v8Z/dV9ypPGuJHGgZ2TLP1SW4RIkdrk1wrIIDB5jUJyEvD+bpmQOuj0WIAAaTFNNft7e3+C5pfvnzZAwKNVFXy6cAaQDCIowEKVJheHAzoPPJqQY6cseR73Bld4WZEx2l1Povf9+TQFufBAvv4+Hjw6iHy5MUePEVQ8Vst2EFZ1f+Vga7GIilu9fSrZ7TcnyUy8FxS2ef/K/V0adM44nlDlesKCLj+6vRTGjdMbiET16NrSDUt8uP1OfzaGMrGuOS1QvyDsk6yOwMCfO3YgMDNHYO3ROmec65ecnw6x22MwzUDrk/UOeNvVmjfO93M5Wmkif8raKiAAPKEzmcZRV1458Qxxn73wZubm/Hly5f93hcAA26agKMD4I0BEZxKlUW1Q5WMd53z5WkCjQ48FxhomN0JbDKa3XkRFraLix+fscQ5AwLUgxcHjnEYfcA9Vc6stHEt1Q/3lWaduHXwzoyFXnOGxtGKV/yz0AxsqReT0q0St3kqwxnbWQRHgUD3mELIyI8NldZDgWVVZwU2/GxqV6fQ2dtLctsFAnr/WKAggQC+pvKCdOpIKZitSL3NilhnO1ngo9YNbxbgh0XgXF/26hUMsK4FLxw9cHPrDE74yI4kysV/XlQO/Y+oAE8R3N3d7ffGYDCQ9r1IbaSAQMdTihJoH3LbzKgNBpw3uSIwIOeFOgNZRQZSGKcqU40/75/Nc5Fj/N2IeKcZ5bIQ6MeOdLDyAJ5FABStujTpHijNK7m8+KjXXToXHegI188ABpKXrP/VMKvSW1GyTDNglhR8FcXR5xM5A1EBn/R8BQiQrgMIqv96neWRAUAKH6/yc0qk7czGznmE/AyT6qAqKqCy02kvdeD4eZ2mZFmFTsYGPmyYkS+cNeYn6SZNw/xrRAmhfl5gyvob2w6zA8g/toGYrsJ6AYABLGTV6au0wRG3J/qcFw/q9EpFHEnp0HJkAMw9hyrPSyMDOtfjnqm8U40IMBjgn0YGvn//vt/ydIzDL62lEI2CAkXvSsiHF3+4QdgBAqzknMJTQ9IBBtVgc56iu5fyPiWqjF3yePReBwxU9df+4L5yvKR+TIDA8ZqAAMsUyzmTjoEkoyt9nkCRKnb9uUiAgqYt/JwKuXZ2be76U/vazf2DKgDJ4KPSty5PnW5VQ39/f78HAvp6H+tqN/XAgFBlwr2hotEknloC6XSF2hHnvD48POyNPgMBjQpoZEB5d04xy34CgK7duY06tLTpEJjjRnNUKYeUHmU4EODKUQOqebg1AixYiAbwl7N0mgCCivIAhHj/adzjqAIvMHTEg4HnhDpefVLaOKqn5jxYNiRqUJxxqYBAdU353+I9vwStlp08ZTWoycBq2cpDFYlRnqEA0KcKCDr1cPzzf5BOCyRPD9c0IqA8Vfw50Kv/KwBQAdXEz+w683UqkQRdnwGdgXuuD1j3weDy/2osaNQh9WdqkypKq4Z7jL/1vJtLR12gs6+vr23EQefdeb3IGOOJ988gwIEBtBNshIIBbj/cg+OIqABPE2DhoEYF3BoFbkPu7wrwg2c+Ig34m73uDloGAypMTrCgwEBpsYfmi3tOEekgVcFQQMAozgEB7ButX5ICv7xWAVEBTB24hYT8HIeOwI8iZK7D7LUbHWDJGCuy5DAT78XgFGmKCOg912eOfhYPbFaXyvCnPFRZ8DEBr+QVQ9nMQEhVrwQAVH5dW7ixygpSvT5XN30+8eqMzQoI6AK+BA6PBVYr0sifjucxnk6bqv7rAgFHDhAkvdDJhw3Ubrcr379H/VlPq11RA6+RWKwJSO/7KwDhKLJeV2PLkQf+qBavFUBkgLfFZvCi+1+McWjL3JqHpH/02mo/LYGBLsJUIdUNExyYcHlW81pOcSmC09CObm+qiwdVKQLU6HuqzDPvjKi7JDqFydQBSZqOeeSIBLcvAxJnjNwcXpq7coLq2p3T49opA4IK0HYUZmVkOU0XbCVAoIZfgWE36uFAwBj1BmL8LJeHo1sAteKxz/juRgFmsrbFyGuexwYKLAMameQxN8bTN6dYt1VRViZua40UoO8ZoOA+6x3OW+UdOko9dbcLIH8lUPPGs7iO3Q3ZUPNrp7wRkG5IhfZBeeCDxwfqiD4Y4/Atgmp/Ad38qmOsGRRwH+v4cdPFK9H5MTZ8tZCVRxUScouKmJL3oeS8KpeXImJn+NWwu7JwdIaTy1Mjz//TPgSct2uH1Hk8kBkAKCBgZa8ImkGD1gtTFTyAktLF0RkW/HeA4lTAgYKAChQwVbLXpZmH22kfFyWY8ZIAywwIOOCBI8sPz3nq3G2iBAhmzz2H1MOqiGX2mLILg8MGmPWL00MOqOo95InrSuwgsKFnXaxAgPsztZfKUPLuWQepXkd5WhbnqYABgADv+nOkAGVxOVdXV08MMJehkRmAAUwLJCCg0xicb6UHtJ/dmE3y3QUFS2CAhckt7AM9Pj4eINcZMEg0q0RCuwoOcNT9qVkY8dwYP14V0aPrLDfg3N4DSUlWnrSia+SZAAEE2il9N20DXiCoaCds66kDS9uWeeT6qBI9NhDoes6JKi9WlZIqjpXfS5EDCMp/isSlOjIpkMQ1yDjLuuOJr1VGo9smLl0aS/o/PXtqsstRAXVGWBcgPXRdFc3t6uQkr9ANbDTVQUnEzzIg0DUAKkPaHukHvmdgAOUiT9gJlj/NE9PGHBng6ANHIRQIzIA/A+1VUgCwqlc2faioWtzn5jiqUDmegTFbIQ7Ngxf3U+DCgoyNMHTuE3NNaetINdAsUJXhSB1UGRzky15hAgTcL7jvdvNipc0LaRByS4tckpfJ9dDjMZWpo2QYHFUGQQ2KpnsuGFgxROppJ3nqRgGUdPwqEGADkeo0k3Gkqf6vPOtoBgpOAQAkYhDg5pRBOt4VCKhjMJMZTqfRAQYn6P+Zvkc5GhWAcXYL/tgxmckqyyJHHGCc+dsBPCWBtqsMqQMDmIrgiACX56Idie+tQMCNz06ZTJunCRzS5IgAo8UOM6uNwPPhjj89V2THITBdwKeCxOEkh+5WeO8o/mpwpgHLhh7KwG2uxCABdWEgoK/BqHJ3nibzriDgtbzfVVoBAEodI+ae0f8zIKCgq1tuR26eUxcFyjy+VwHOjBfXFq5d9HxGq/29mv9rkZszhrF1hlG9Z77O+el/FwEEaT/x6vSk7914c33KuhZGFXPwOr+v66Mc+GT5xE/1m0YGOMKieSgBWECfAtQADGh0oForkKjjeLh7/DzX/1WmCXBMc438P6HDqiFmHhqnqaYeFADgeUayWp4aNAYN+gqKhkNn9XMGUvldUdKV18cLIvXtCfxYiaB+CKHhyB/g4G1EqxAg93capP9JpP2QlF0FDNyzmnfqbx0Ts7R8XSNJndCuAwKpn51Rd/ykNpzJymuAgqo/VwHUSxEbbdZ5/F/lwDlELk/V13w/yRD3m4IAGEaXp8trjPFEv7LzxaH3y8vLfXqNcGoUoXqFkKMEKAvECzOTblcwgOsAGhod0K8hziLkTjfM7IOOGQVYLw4Gxjj8LDAbFBbIykhzJZXBlWmCZAgdCOByGdE6Za2Nyefp/VA98r2ZogTf3NHu6AY5P6+LJhUEvH//flxfX48PHz6M9+/fH6zKBarl92T5oxp3d3d7dN0RaG5nTrsSrnppcspvZmydoU1UGbwZIOq0SQV6u2kTcd0dIEh9reNmVjc9Z7mvALQjHTNdUODkgPlJ5Z5ChGCMGhDg/xh5YSwb0XTU8pRUz6vORNkMHPg5BRFjjL1OVQBwc3Oz11dIh28CcGQYeia9OshGmRcpwkjrWH98fDww9CgD+fCr6LBbHFXVNxfYfjBx21ftw23aAQSsp1HfDrXBwGxBCpjViIAqgaRcOuhFV5F2GgbGiRWPevZq4JxS4/l1NLLLi8vleqmydJ6RtqcidwUGGq3hV3Curq72AODDhw/j06dP4+PHj+OXX345iBCgTthTG+/IcsiLV97qqzipnhqmWkGox6DKoFfGuPImn2NAukY9RegSKOY0bPwTIOjM/87qmYz9SxlZBXWreZ6Ksa9I9av2sfa19qvmxWlSeZr39++Ha7R04bVGBrQM5wjqfgMAAzc3NwevE8IYY78B/vQ7T3fqQj6dDlAdxnqJpwlYr/OzHBVgcOWmIeBIMRBQ4KrT1Fo2+ErRGm5bdcTcmq+K2mDg8vLSggCdc3IFd8PpTEm4eVEc/nNDKpLjBgcvKgj6tkDigctwdXARAfzXNGr0U2TDoX1dH8DrAgACAAQAAH755Zfx+fPn8euvv44PHz6M6+tr+56sAgKAgpubmycrcFVoUT/3Ngb641hUAcdVb9opysoLTt7mjIckG05WEgBwPDM5QKA0AwSVMe1EC2btn9pGjX8n2qDpHY+nSmxAqjTu3E0XIE3V/lqWAkqOCPCUAQwc2wXVnTjHomXsEcBTndBRMPS8cyx75tAzCQzoNC+H0NULx5G/mIloAcpQMAAPPH2DIOmABNp1ytWtDeH+4Olr1rmoa4eWwcAY/n1VDVkBOKAiqUFUuPgISosCedoCxJVngYNguobihtT8EirbqkCSotK6p5Cf1h9tgrAVAMH79+8PwMDnz5/Hb7/9Nj5//jw+ffq0D7+Bn/v7+/1mGbqDFqYPcM5RAh5MCsbcmotj0MzYpL5MHncnr0o+ZgZpBhQ7YCCByy7wUbDCgIDPKyDAz8/uJ0PVeb5DVR5qoE4ZHCQdmUiBXtLh6RnnmDAxEHC6H3mox80ggvUFG1pEOpE/vPLr6+sn3jn0EM/dOyCgi6Kd0VUAo2F36F6dqtBdDXmtVeq7qj9ZDh0g4DSsgzVq3aVNYGAMvwpVjT8oCYmjyhC7KQr9mhU3CtKCNBKg6FC9JC0roesuzZC5DtSqPXDOkQGeJgAY0OjAr7/+On799dfx8ePH/X7fY+RdtAAMEDHAftsKCFSh6pwVBumxaWv/dZ5zQECvsfeK6w504LgCBPj5lFbrogomzSsrIEhldSMEyosDQ51IXYe07RNP1b1jkcqH0wddSnKGvPiapk0RAjWaLg99e0kNFYMB1he3t7dP9NP79+/3nz1GBAHl8Ntf6V1/BSRcF/DIbcvRJEyTsJ3j5xgEcFmuHdUmqveuoBSAh/nSvtA21brNaDMYYCa10s4Iq2eB6wmZsgLj+XEHCBgdMkrU6QEceQqBpwjcHI3zxBOle7zWwQ3uhNA7ZfHzGByYV+M1AwoKPn78ON6/f7/vV0QHMDWggODLly/7n4sQMHF78lzg7e1trM/PTlsG4QwQrwKBJEed8ipDof8Z1FfU8bJdNC6BABeiXqEuL89RqK9BDjB25pETKYjQ/x0gwO2vnrTuueIih5yXcx7wKiHrdp6zx3SBfnqew/UuMjADA+BbbQG3C946UG+cAU2aftByKv2vbc2AgMmBrNnYdLS8gFBRFFcEyImNAzOuwMENaAUBbJRZODQN6Nu3bwfCwbyy8ecj7s/AADpkBgq0HtzhAAbpmS3EefNXvq6vr8f79+/tD2AAgwptAVSNCMDXr1/3awyur68PXlHU7TyZeIBgYGJV8KlQCk8rVWmqKICea35VVADnlcLYIi9bZQzPusie8ugUPh8dLy4yUN1zeaniXI1SdPvvLckZpSpaqWHjVZoBgURsjKDj1D5wOteuHCHALqhsgAES+NPz0Hnob40OsJfOewo4UMB8MJBxU+D6ZlqaduYxXjl86Mv0xhun175VZ3YrLYEBZZDfyWRF4T7zy0CAB7SrQDLGHCGokLELlyh60h8LhQoxC5vueOiIO1XnVx25ejgFqGEih+719ULdZ4C/AIbFhhwdwIC7vr4et7e3exDAc3SIPuhgY17ZS8DAPDUw8FxKCi3dU6q8saRAVLGqLHQBTpcUWPM4n035MaW2cs+uAihO4wABAwOn+Gfnp0A89sf40Q+qO1DXFLmZTS105cdFB5C/OnysJ2eAEM8CDOC6vt/PR9aJrHP4dULd9IflQftdZQ110a/V8jPOpjggN6NZOu2fqj6rMry0z8AYXhm5NQIKFBQ18n9m3KHfMfz0gCNFSciXFxVqNICvKR9cT+TNK0wT2uNB4CImiXcWPm4bRqqMWLlMjp4wINAvMyq4wv0xxpNndF6O+/fq6souDOR6Y2Bjvu9nJFUQVTp3PkZt1JUcSKjkvfKCO+V1SBdWJT75/0sa1C7gmQGCBAy2KtDXJm5rN/ZZX6rTUU3lJOdDwaULSyeqPNMK7KquxSI91rkAAhcXF08AgUZvda2SLhhXUMAGlOuv8o2os/LLoXkXptdpFH2+arMZiHW2bistgwEUqp40SL0Ft6oUz3DIXBWMAwUrQMCBAncPwqfpNV8FAwmc6OISBgJOoTrh4IHIlKICaC817mlqhcvSZ7XNeYAx2mUwoJEBLgdg4FTXDKx4QmPURq47GJMRXQEMiR/3P1FXyXN6DZfqUcd5RasApQLfq3lUQOCUAAFPezpAM8bha9fdUHGlZ5AXOyBaFvJQ4rTQlWxEk37X+9AbMODQa6zf3OfnUS70ui7oY745XVV/bn/XVgwA1KnEcwl06HVHyVZqW7vrbgo30RIYUNSTGFCmHSBw4Uem1QUybMw19J/4ZUFQoKB5Oz4QNuLpEBBHNHhAo+xk1LndND8OzXJ+avQdCKg8KTyjO0yCF959EYMKCF0HmiJnRunX19eWh5+F1IB0ogVj1J5+Os7K12vJY095q2eZ+NW8+XmdKkjlOgNWAZ8k/1V9tCyl1E6nDARAGimEl+qMtXtOqaN3NMTtgANHLh244Ogp6yzVS6yvtHyWLQYNM4eHjaybx1dvmuug/LoorHrmbrpZ+wL5sh1ku6OGm/lMTqqm43sOmFTUBgNsDFBA8qQrckpFKSlGRUh8HXm7BYGOV5fWCYkaNlxTvlXRsqJMdXJKtuo4p3B5MMBAd4BUGowsqPyqInb/ur6+3gv0u3fvxv39/RNloIodYIDXW/xsVHmUiSoAhqM7d2VX+aV89TdG/QqZArmkAB3wSOVxu83aI/3XaxVwSgBEgdts7HWjK69NHInB+bdvf381D2PLfZU1AVc3NYtzF4nEs7peAXlpWuZb81JKuofzcP2gOi9FF1J76HX9KcjitQJsxJlHBgJaHnhz0wwJqDhbpOfazg4csB2cURsM6LuaM9SxOoBW56WSICtvDgRo+qojuT6d+TNXbwgC/18FUUxuly7+rwoZ9WQeefAoMneDjYEBI//Ly8t9+6myYGQOkPIzkgMCiToALJ3PxkxnrFXGuQKJs77RsrkcNhpcFhuyWT4r19I5l5HAS4dWAPprk0YF9LW2FHkcI0eynB5jw8tH7V8FiIlPXFMPGFHUJKdMyeHUZ6rXzVkXVTqX9T7LcprmQDp2KJP9UDlU/YjoqYsudJxuBwJeNTKAOZzENFPyOvQa/3fClBo1hUzUsM/mVFz0QAcEP5+UKCNWLnOmtHBdDbVTmCrgGARu/ozfva3ak9MyGMAgVsTN+xiM8UMRVcgbCuCYWxEzVR4q01ZvUPN3Sq4CAqlcVSLKpzP+apzVAFTRLS3bkU4RsLFgGeIxNgNLFS+pjVy7VPwncLAKGt6C0GZq/JkYHPBzGH/OgFdhZSYGAlxOkh0uj4EA2hVgRp9NoC7pczdlgmu6WDrpwA6Q1KlZft5581wGtxUDY+cs6f4E/FO+XV1cFLwDJJiWIwP69boUDtKKuzATPwOBSN53Cofo/W40wP1PQKBDOuA4GqBgYaackrJjpZ6iArpnNtfPUULmzDOvDwAQwCBMHoWi3q3G9TVIjZIz4ExbeE8AwAEFNegrvLpyFQBo1KfiV729WfpUNgMBBclVdGClH6p2WPHuFUycEijAOEKbwpi6MeWiA3xeefXOeCgQgIfM/cp8JqCB+3gWZShYcDpLPVw1tDxmlDd+SwrPd0gBgQIy5XFmeJ2N1Mg0gwF9FbJrzNkez4CEo6UFhIpkErMMCBQMcIfjGgufa3QtfyXEXnmsnKf+wL+rVyL1hJKy0nRVWhCHwljQdT8BBgM6WLV+M1KjgikBVg4OSPGcFwZm1a+vTa4/Ux8zPRcEOADA1ztlQSnxkevggIQDGWOsb187xvwrhvifwtUJEKS68lGvV9cckFdZfw7YPxZpWzMgwDoc9loV2DCQUCPPZajRHWNYj5t1m+tP5oP1gwNYrF8ceFPjXzlsnNdut9uvqeA24Hz1OR1n2gc6ZtXhcUDB8Yn8uE4MAtTRTvrayb/rx1eJDCBz7uAUInYhkQQGnMfilJYiworY2GrnOmXRMZJcD71WkQMHnNesPtxuDABgnHU/Afd5TdRVBWxWbx5gPEUAvlNevK6E59SOvYBQlQCusSLQPlo1npVBm0UC3LMKALgezvg77zzVKQHlbp1Vjh0g4HHrlL7LT88dJd5xVMPxMwKBMYY1vqozFQg4YjlQncNjWacKqqklp9MVvEDv8LluRoc9BNgoj5HXc6kzh3zG+DFFwPf4mlIai6CO7VBe0pGf42d4a3wHBpDO6QeNMnTX9DlqgwGHJHE9hSOYeUVXKij8jAtrddFNaigmN4Xg6sl5Ku9dPlRh6vxRlReXqWsDOBrgzhUQoK31NUEWQDUcbEwUCOi2mSzkvCUolz/bdOm1aGaAkiJ9DiCoDLVLU+WFOqR0CQjw8zp9h/MtxlHHJcrjXUfVG0UdOgB0lZzyTWCA06X/VRlvTS4cjuv8anOlT7QfnF5NnijG9OXloalIepqJZZaBg5aBKUinrxIQcLIEntx0LNuZFLZnsFoZdOYP59VzLi3Xg3Uwf+lQ66Btibpw+jTl06FNmw45cg1SRQe0c/gaV5TRbwpLcTncCAkJV6TK0hnILrl1A8iT+ZvxoVMEPDWg3yIAINCPeIyRAQELERsNLg/XoOzT4OCNPi4u/v5G+RhjWt/XJAdS3SBz/1cBgfPCKyPdpQQKEnjDeapjlxREpLYCX1BuHD1Koc8EvB11jHkFAmYAoPIAj0kuqqhGFv+TXlGg4Iy9M1rsiPCrwVweQKAj5YO3dWdZANjgSDHKcfw548dlOECjWwk7+eN7msbZEAdI9KhTAhqBURAwWytQOY/dKYZES5EBRoKqTF2hKQ0babeyFKSh7llakJseUGSsg0zJecZO0bqBx8iU/3O5HUDAbcARAY4MuA8Iue8JjPHDO+fvbvOXwMA/h3t5I6LZtMbj4+M+PwfqjgUGlFgOk0KornVA3AwMVPmowU9ld8tIsoprCRilqT1NB92g4WpWdMybGh0+zmjmuSUw4MqontX0xwIFzBsDAXZ80MeqX5mqqQRnPHjM8qJF5N+Jjqbyk7EDGFCD7TxrNa4gOCPQZ5x+VQdp/k4eFAykSBiDAAUD7pV9BhHOIU4OsP5WaOnVQian9NAAyYvhdKgcG1w9Vh3HSsmVwWiVkTF3rgMoTsGqZ+48vMqIpGMKW2n7MD/gQacKAAA4OgAwgGchIAjh894R2i66G6GCAWd4gPDx+dExfgAQnjJ4a6oUufJUKdQOCMB5MtRVPjp2XNouGNgCviogUAGDMQ7f5lEwgOtYkMZgnQ3azKFIBr+6lvJw56msY5K2jwKCMfxUV5p65fvOcPE1nAMI6JqQmYFlGea3H1CWRgF4MaTy4ECeW8CMusHT5msJMGsb4FwBRwKTDtgqgFGPf/ZjUp3LbcTlvFlkAMQIlNEie7pOkamRh1FjAOAMvCJQZ1CTl6LeuObhzjl/5tdtfcmIrWovxw8PjMrjVhSO/7p2AHP6+mVC/dAQwAA8Nt47gr0MlAVeMaB1GkHbngc9hLJawPOW5OSyMv7u+RlIcPLUAQKJHy6zAqwzw+34T4pCn9c5aZc3KyenA1i+GZjO2sFdXwUFnfOZ93cscvwpAHcyUIWYMZY5XzVoIKR1QMDtbzAjlhNeK4BrTj/qUftYpyk04szAw4ECllfnwSdZdby5CAbydXk7oOD6gMtx4C4BgRVAsGkBIXuJGvp2BTMAQDr1sivFw/mA1GtWPmdKj4VOkXUCLfzjMhghzxqe2047WflzCtfx5KYPdO9uLiutGeC24/pzeJBRauIR5QBwuPULb02q5LXPO/3G6TrgIeXRIeVtKxDQNl81bCla50CB82KdEmWj4hSW84Rd++j5awKBYwECZxgUGCTAqccO+Er6m3c+hLFlR7Ar28wDpiexdw3q47ZX5iMbWNf34JdlS/Wuk2nnuSPCwGWm9nPAig282/4+AYFVJ8VFMRLAS7QJDDCTLtStFXCN785ZqJKxr+65wdxFrjP+1Kg6w8YdAOqUz4KayE0ZYOAAEHDEgH8s7CyECghYAGdTGGlAsVDy98cZRL01JWPSVWAKhPmagopZPi5dUsApfRcIuLI7oEc9K76XQAHKgLJ1O82Ncbj3wIzPGb/JyM/SzJ47FSDgqKrnDAzMZLSqJ/oU/c3nrCM6YxzG8PLycm8gAQp0u+LEZzK0zAffZ5nlqVMFMpwfR1FnkSzmK0UHEiBwdmOMpxFyN7YdAFZQ0KWlNQOqFF3oyHkzYxx6/Or9q6e9hVQ4uPOAvrQOGn5X/hwg0Oe4fRwv+J+oq6Adzwqi2Oi6aQ3wgrbpRAYUNSfDpe3H0Qr+HYOqNn6Oou/03db0ahRdXk5mmVxUYAY4mU/OT4GoKxP3sICLV6C76KEDVrO6qw5aac/qmt4/JUBQgVGcc1t0wEDStdrmWm/uRxDryQoYAAg+Pv4dttctynGPnZFEGn5XXlXe2N5wdECdJdWPOM7GjosMaJ7p/1YgwHVVAOBAwoyW1gyoVwwPQr0kV6nKo+A8mZKQO8WiwqHzJ/pevONxjKev8fE1EAt1GixclnY48p9dczwyb2oQXFs7g85AAIv7HChQvpCXDjrlAX2TpldOmWYDhxVLZahTPl3A6xS56+8x6jBtNdepdUBanQtmwzzz2lheVJ5V2bPXxnxpea5dtB6pzWd5VbrrFCkZa1ePChQ4gOHIgQ82+jjnvmV5coCA8wEgAEBQMFCBlmRgmVwUmfWjLmzU8H21ZoDbJZWvY02BgpID9AoEnJ1gPiqQW9Hu8WcYAWc605nOdKYznenV6PRdtTOd6UxnOtOZzvSqdAYDZzrTmc50pjP9w+kMBs50pjOd6Uxn+ofTGQyc6UxnOtOZzvQPpzMYONOZznSmM53pH05nMHCmM53pTGc60z+czmDgTGc605nOdKZ/OJ3BwJnOdKYznelM/3A6g4EznelMZzrTmf7h9P8BnC4HTW3xbegAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABz+0lEQVR4nO19bXdbN5I0KEuynXgys/v//+E+M5tJYluWZOn5MKfoYqmq0SApkdmwz+HhfcEFGkCju7qBi7t5fn5+Hhe60IUudKELXegvS1enZuBCF7rQhS50oQudli5g4EIXutCFLnShvzhdwMCFLnShC13oQn9xuoCBC13oQhe60IX+4nQBAxe60IUudKEL/cXpAgYudKELXehCF/qL0wUMXOhCF7rQhS70F6cLGLjQhS50oQtd6C9O192Em83mNfmwZXGZ7niz2bw4ds+OMca+eyu55zp5vWZ7pbbAv2sT/K6urux1PIO6PT8/7xzzf3U/tQ3y/9e//nWEFlijX375ZTw9Pe1ce35+HpvNpqyDq3dFqc9nbZL6w/WP5ql8p3q4eqXjdL+qm6t7Z/zO7qc20vsV/91+ZHlw7f/rr7+Wz78G/fLLL+Ph4WE8Pj6Op6enF3J8CCXZ0jRjjHF19cNv1Hbk/nBtfHV1tR1vqn+cPkIZ7v67d+92rjE//K/thLb7/v379hg/HR9cL1zj/MBbksOqTfGs8uZklsvuyDHyvb6+Hu/evdvycXNz05LdNhh4C5opiW6a16Yk9MfIdzWdAwP4T0DADUimZFhW682Cv9lsjqrIXpNQz7cAdPsAAeWR+6Tqo/RMSsd8Mml57tjVM6XvgoJOuyifq32oSn7ffI5F379/H/f393uPncpIJWM2xss+ho5QQ6jPz2TVGX++hmMQjBrKBxhIBF2lhl7rpXpJ02k9UpmVzDveFMB0nr26uhpPT08v9FICTldXV9vj5+fncXd3Z8tSOgswkARp5dwJ5KEDWJXAitJdpVUgMAMEHSDAA88JqdaxEyVJhqSKGrwVOeXeNfyn5N3xy8cV7+4+A4JVgOdophBnRr/KszOWE2DROs6AzTnSIUBgjJdRkqRDZ3oAxsg9xwChMqjKkzNsKEf1OadFe7x7926bj3ruDAY0EuAiAi5ymKiqYwWq9Dw5W8kZc3m5dnl6etoBA9+/f491YToZGNjHQ3DpnQGsnplRZQy7wr5Kq0CAjyukn9qEr1VlpQHRCbeeMznZcAZ2ta9XwWHVX5WBdX2elMcs/JnqnEBwpz4dftP9WfpKrjt1TDyn+p9alo8JVirQ1CkvjZEZUKuAnQPoq7TZbLbes15fyQN8OKqu76tLZ+2n/cL5uAgNpwGoWplaWlozsFqhmXLsNMKqwkh5dQdVlde+3kXXsHSEyv3z/WRgdJ7N0Wo90rXOc+dC3F6q7DjNa/E/AwDpGXdtFn1JRr1S7CtKemb0+biTlq+ldtLjVBcXoj1H4690dXXV9uxWxuc+47bqR/efrvE9nRaoIpgc/nb8qDxzZMCF+ZMHzvc7VMmv44vzdrKqY7mK5Lk21ohBlw6ODDDDK8/MQIRTSmPUSD4p8yrfVJ9uPfZJlwZY4i8JfRqcFShwA7IDcFz7VsrX1eGcFO2s7jNDoukr6kYYtBxt19TWHcWuykV5q2T0EDoUCCSenCHvPJd4cYqWnz2V7Fbz40xqDDoy0c236q9Kn/D15+fn6eJlNf7uGO2Bf+TN0xjM49PT03j37t34/v37TlsCLIzxMlyvY6KSn9k15nFmryqgkIC8nnPaVdl9k2mCqpFWqWqorlI8J5p12AwIVAOwAgSOh+5xqsO5ta3SKn/VYNy3zq6/u4A2gS9VYqnMdNwBAinvCjR1wYx7Pt1LgMDxmgDQrB4r916bOmDAjeku8KpAsdMfiT82zu4ZZ9xX0nBEwJWl0wQuTwAGvN0wxkuZZZlx+TmqZDql7ZBzIhIo0PrOeHb0JmCg6xlpGod2Os/PwMGxBnfqoJVn3XkatAkMzAABDwhXhlOees9dU2U7a+tTgQWeN1PDBErHjirPq2M0V/J13kKijqKpQEYnTaX4ZgZF01RjIKWt6r8iX6vK+5SAYEYYe9xvHRDEzzHNzt11lQ38ax+yHkpgIAEB5aOq22az2UYENB+OJDAAcOezslwdXR8oCK9AeUqf7JrqYei6blQJ1AYDx1Dk3QGVOiIJacq344HMBnrH21qhWRt0jFICArNB5drLGaCZcPI9PT5ncm37/Pz8Yt4S5BTsDAAl5O5kumNgZzxWZXepC+LSeOsA2S4fro1Smn1A2Yw4v1X+X4OqOnbIGeNO2sRDAndJ/6jhryIDY4wXhl9faRxjTBfEqf5y9UZ0QEEBHzPxlALLX1V2V0emMl2adM3pIXWAZnTSVwurwe8AwGsZndV8jwkEuoq0MuxdhK2DIimaykilPup4T6dUqmP0eE8oX68lENCtY1KqqU+SF6flM2Cp+OzI8KxPO+C8ulblUeU7M9LdOvJ9p+A7Mv3axBvSJCPkZJaNaWUUXR6a1ukXva5RR1zDPgG4rgsAK1CB+s/aZ4W4nOQAOWDA7ch5JUDgHAcufx9KQDW12Waz2ZGfGb0pGEhIf4zag8L9lcHZFfp9KAlBl5d9FB4PsBXDz0rBURcIrPTDnyVS0KWkhPleuq9pVgxlhyflr+JVn9c+TWV0Qd5KPVfPZ6BEDXtHcadxeI7yi7Hs6sA7/OG/Mrg4dmBIz9XQVICAdU0HDCCto3S9Mv6VA8ntl3Ra9eMIAuet/ZLksCuPjicd3w7EVHr5LMHAvpQUgQ6AWZgFz6T7q2DjWEpjBlwcEJgZf3etQ0mYHYhLAG61nm9JHQWo15zRdPI068d906UBnmR6H7nsgoj0nDvvgJ1uH1R57kOrz58KIHTHbyVTs8hCGr/79hV0Ff/4nj7nogrKn6adgYIZAHV13mw2O0ZfFxCqnTmWLDq+9bgb5eoA3kRnAwYSAkpIaIzao+kaNc13JZzTAQSzfDrKzxl5N8BS2hmlkNaMbxfFqco7FRg4ZIAg/ao8VXmlc6fEKkOa+KwAcgI3h5LKWlWPlCblewhPSaZd9CulO5SPQ6lrCBJo7JZxaD84EKBgYIyXXr/KDht8t5nQ8/PzzvWOM+LGHfJBHjh37Qkeq8iC0oo+1WeYJ1cX1UdJ1s8aDKTB5xq6UlZJqVVIeEWJ79ugHdrHqwYfzugnYADiwafbdu7jVSajo8r9VN5URTMwmO5XBuPQcl/D0DhDp+V1Imr7ll2dp2uze7O+W6VKWc+86beiQ6I+XSCpDkSVj8u3+ukrgVX+Chqw3XAVDUjGkknBBRMDCv4hrTpJabzMAEG6zv/4zeS/igo6Xrr65SSRgUqgEzjoppuBgn0UbzIUnYGZvNLEs7vnBqMOuDF2jb4CBOT17t27rbA7gaqEnetUeZ/nCAK6tI+XcahBTwa6C1jVK0g/96x6IvtQMjr7gIJuO3ZkdhYVmOXL56eKDHT7p3Ka0jWnf/heksNk9N2PAUHVhmlnQZy7aEDaW4Dz1OdT24C/tAJ/BuY7TmuXZmPf2TaXBum65Z/NNMG+pJ0xM6KHlnVMmnW687YT8lZ0zWk1T40O4H+f+v2ZDf8Y9RTCChCdofUOH/uC1m55zhtZzSPlO/NmZsq04iO1a9XeVV3TMxWdSs47q+X36UeWWf7N8k/AwF1TndXlq3Od9Z1OJ7hNiRKxc9TlZYxdfcnRBAXgFRjQfnPn+47VJPcVHfxtgio9kxvIroKHCo3zlrr5zTziY9PM8KixZ8TNn/LkFbsJ/Wo0gBHwIYZsH+T71pRkbeV5/dfBXvVl1xC5fkhRA+bDPdOtlwPRXUoA1d3n/1WagYDEe0cJV/cP5fsYNCs7yTUb+pTPzIFiY+Rkuup/lYUKMHYiB5xWtxF2kdFUpuv7BAT4ebd2AfnNfjNKYHYF5PNYVvB2lpEBh+4q1FnRDK3qsRsUq5GDVaWQBkDiwQ0uPWeAMMbu975nA0q35ASS7dTLCdifAQiM8WNg6YBxSpDTjlGH5PYxwlW7qSw42Z3JeuKhAhTMe0d5Jj71fteYdoB959mOPK7cT2DvLalTrhuPTn41v67+c/3opgL0Q0JV3sm4rlCqIxMb1dkbCJURh5xXbZn4qORnNl5n6ar7qwD/1XYgnKEy13Bu8K8OxErY96VqkFTt0hkUel0Nf/XTgTjGS3S8z6YcXcFLoaykmE5FiS+up37ohD2r1I/JQ9eyu2nTs9U1zddR1Rcz79oBplRGAjCH0j6KzslklV/n3ilopi/4eAWUJTlMad15Gh/dPnfrmtI0ZzLqzoa4tw/SM05OkldejcWZrkiEe45nBhh67Ori6rQy/t782wRMFdKqrrn8V5VOEuCkDLvnK7x18kogQe+N8XLBjBKH19LOVB3Pcl86B0WbvHgeaM5778rmMeqofa7HjlLkJqWtQEEnGsDHHdlM9BpAcZ8+mOmQc5BdR06HzOTW5dEBF5y2Mn4OfHM6jR6w/nKLoJn4jQCVWeg1fgvATY1qfVbaS9Nqngk8pzI6DrC2t9NhXdBe0UkWECbFote6lZop6hlCnuW1wkv3uer6jCcnaCyYGoJTVO3uJTSceFwJWyUD/FbU5beTDvnps+dEM35cPflaVT+npKrzThnJoOwDQI8BVveJ4rwWuXY6lrypcVGDotdnwI95S8bePeMWQSegoa/7cR3YyWEggI8VKT+ztnHtnPY36ICyKhKTHJFVW6i0otdfFQzsK7TJM+uEKtO1DhDo5Fsh4WNSGgxaLkAAp3fGHoNE36tdoSqUpveq509NyncXBKzkuy9Vg38lRHgsfhIvFQhYyU+Pk2ECVXXSe53I1yy/UwOCrg6Y3e/WIaV3QKDz4zo4g8/5OxCQogOcnnmHnvv+/fuO4cY5nmeaGXIl/sgRyp3l07Fdzt45gKpUyfTZgIFE+wyuFcXWQVP7IMXXomPk7dr0WMagMjAqsCkKcCyDuw85j2rVaKJ9O4r12Ea4MobHbNNuHznl7u67c3e8D0B/LfB2LoC1ok6bM3UNEudTAQFeqzQrGzTbc8C9EZXqyQABz6nTU8ky33P7CjgA6vJT0KIRpY6j4fTlzLjzvwKOKt8Z/en3GXCKqRJofU6Px8jrBpJSXjF0aeB0r7PQj/EfYX737t02/O92G3QhNPXuk/Ck++6/EsB9IhGnJFYIM75XvPVZPkmGO5ECLSt52quUjLt6epq2C8Ydv45mY07rWOU3awf1kE8lu07BV3pNKaWtvHaXpwMC7hn9OX5YZlwkoJJ5vc/nHTCANLjvogVOjhI/ypvqOc5j5pQ4XvFs5Vwpf/vappOvGdjnvqZZ9SwSWKhCMUkhrijbymPC+ezniI2C23Jzxo8LDaogpn/N75wNPiN2HTBj1CFplQ9tK5apfdplJrfJEFTeSscTrPKv+HRjrguq9Vr1fKXUV87Ttdn1c5TpBAIrwJjagw0Y+kLz4uc5v2SsOvozbZY2Azecl3uLSsEA8nt8fBybzWY7XaBOVaW/Z2ODy+H2cLpG71d6Q8t3+pnz6YyBis5ymqBqfGe4XFq9pwqnUmqJnKGYgYIZX8qjGxTOaPO5CvT37993+Ez7bzOfh/7rsaNTKlUnMy5Nh7QfVgdiKof7uyuXDqRVPCcekzLqGP+OAufyOn2xSpVBSv20AjKOyesxqdJtes3pm0ov4sd7mVSRgWqDNN4kTY248jZbQKhlcDrsKIhoqcoBrisY0HUE/Cz0qYIIlSu3uFHBQNILDny5MdkFx1XaRGc9TbDq2cwQqRN+l65Sinq+j9Lv5t09HiNHBBIQSMbcCa5Lu0oOIZ+CKj7SwEv/msblwddmIICPO96f49fxr8cpTcWXXtOxlIDGzGN0+e4DKldkawbcHM/nILtMM5lz6ceonZcKEKgRdo6LOjRpUyLcc3nrPSYtFwADaVnmnp6etlEAABIYdX6jCsc8rtnY83W8lcDtnfYvcMZdj7Wt3ZteCigqYHEowD7LaYJ98tg3zxmA6DzvUNxMkbprCbg4coZgtl1mOnd5diIBzH9CslzmKWm1fNf2FRDoAAw3WDsAYZa2ohXvoCOzrPTd/TF64fUK2LpnZzKU2kaN5qpxP6fIgGunqh35WkrrQJ0z7rrDYAUGxvhhqDky4EBF2lKdPX5+Rq/hy4YqfzDe379/3wIBGFt2kBgg4J8BgQML/GYCP9PpvwrQK6hRqhw3bYN96KwjA2O8VKArICAJuT6XFH+nHPUY3bPKS/pPv1Qu552QpzPmCQzoeTcysHr9z0bJIFQgsJIBl9dMHhNPyoujJB8VmOmAAMezGw+abzJEWq8VIHMsOjeZ3QfEdgFMckDYWDsD7sAA/lMYH4ZbQYADGgl4qNwoYACxYX98fNy+YsiGXSMAKWoAQKFyrXsNON3gjnF+bAcpjZWVMfTmYGDFqB6jjAotV/x0eXAKNRmIfYFABQrGyB7PChBIoKADGqpr50DO0M2MaZLDhOwrEKC0L7g9hNRY8/GK4XYGfIXnWZ7Kl+N/hapx+Wcj1x5VmgQA+X7V7woIHDjg5/n69fX19pnr6+sX6wbcOgQXTUDaao2Cqwd78NfX11tgwDpQvf8xxtbw497j4+PO+gP8Pz4+vmjvQ761kMB4NQacPHN7rMr7m4OBmbGvlGPHqFb5Hqp4K+PgAIF7NgGBGU8V4NAB4cJJikRn3n6iWRTg2Ij32FQNkJlspj7oDDpNewxZTMZhllcCBImfGVhN9WOZcPVN+eAZ5Vnlt9tmTolyPpr2nOVXaRYRcsd6zfWreuzJe+fnx/hh5PmfgYADAQwcGAjwdQYEWmYCA+zZw+CrsdeIAdKM8R/jfn19PR4fH7drspDfGGMbdeB2Qx7MQ7cPK+essi3pmj43o5O/TZDCLGMcFwjM8kl8ujxS3ul5RbTpPx2nclw6HHcFICnGWR5/psiA0qrhTaSAqgskEqhMeawY/XR/NeJWGYrKiHfyrfhOit2dO3nrjNNK0VYA5pwoeYcJ+Dw//3inXmnWxwoOkCfnp0aejfj19fU2OuCiAHyPgQDAgEYVlPh7BNw+zrgDDLDx5zQADogsfP/+fTw+Po7v37+P+/v7nakH/JBus/kROXC8pL5Lhj45eNp36VrHxjGdzQLCzuDrGsh0byWNu7+qHNzzCZg4JesUmDPSia8UCUjKdOb1r9K5ggMXveh49imvNGA74MBdnz0747Ejtx2PcgYIcC8pty6AnQHZTr6oU6rPPvc6yvi16ViRu0o2tP07wICfUSCAcxj5m5ubHWPPBl4NP47xDE8xcF+wxz3bFlgjAQ4M4IepBACEp6en8fDwMB4eHrYLER8fH8f9/f22vphK4KgBLzrUtQoOLKQ+q0DCPg5fRa8GBhIS38fArhptvr6vR5MEqypr1kkJCLg0nX9XH+Zd69ERwBmlejqwoTydKzhYoSoiso8BrxQYrrtImtJMXlz6WeSLZcvNE6ssqlzM2qUy8B3l1wFwVRoHZM6NZjzNZGOme52RV6POx2kRIPLQKQE+17A/jP3Nzc0OCLi+vh63t7c7QOD6+nrbR/DaUT9e8Mf10fbQ9QF8DWsAAABg2L9//74FA9fX19tj1JWjA1yuUnrTa0bat+4/EdKcHAysDqx9FCmX1QEMM6+kyi95MUiP8xVP0Rn2qswOEOA6uJ/em9U9KeDKKKZrh/TxIVSBoM5g0uOVcpNRS7LSKWOWtpJz7vuZ4U7yVo0FPq/kTJ+ZyV1qg04alzYp0nMFBR2qQKK77n5s4BgEMBCoXhNUY6/naTrg5uZm3N7ejpubm3FzczPev3+/AxKur/9jqthrd8BA66xgQOUR1xAR4PUFj4+P4/Hx8cU0hlsEiR0OebEhyz/eaMC/jr2kq12/JfukOn7mECid7auFXQ/nkLyr+zPBSqBAr3cUt7uWAAAfOzAw8w4qEOCOOU9Vrp18/y/RDBDsAxg6ZfJ/ZUBVHg4ZOxUQSPnuC2QqwDlTiin/quxuXnjmVCD22OR0iFvNr4BAf2Ps7gug0QIXAUhgAOkBAm5ubsaHDx+2kYHb29staBjjhyfPRhs8OdnSVw6drCkIwI+jAPrMGGM8PDzYnQt5gSHaBc/wzoYJEHA5TjY79smdz+gswUBViaQMkxE8ZCCvPjsrXzu2m3+lkEEOcaZylTr3ZoZePVy9fmqqwM5rlFPJpaavDPwsvaMEENKzydPg57tAwEU9tJwZcEwypzKWZG4lT83/3ADtzImY6cokC+49fvdz0wIaIeBr1SuF7m0EfeuAowEABPrmwhi+H2GYdUqLn0n9y2sF2KAjX/fmAe4x4EAUgNsdUxDMB/S19mHS35y/5uXGHlNXps8SDFRUKc+ZF75CFcqq0NhqvrO0FRDQ1bUVIFA6ROmdo9KsyAGBLv+d8HUysOlep8xZ3h1A4DxB5ssda7kOfM4Ariol9YBSXVP6Y4DbVQWZAM25UAXM9Jr2JR9XEQD3GqFOEbDhhfHnY32lEM8wb9hPIJWt468KpTuAw23Az7lrmPtHXdmQM4ABILi5uRljjHF7e7uzdkCJ9yVgvnmdA+6v2ojq2oqeflMwcMjAWvWI0vnMs0FZszyrfColW/HeVfBj+E/GOqW8SgldaprOtXOiQxT7oSCzKvu18nTgke/PPGTNy/E6GwMdEDCTswrI7RvtWQUCpwS/VZvPwIAzvLzobzbHD0OtoIHzViDgFg8yEABp37nXBjW9ThHoVsJV/dnYskeufCSwkUApgAHzgfqgHfjZpDs5UlCB69eUxVcFA6+FqleUa8ezmeXB19xgrPKsFNisnKTUeRAqufCTCyUpL12aCXVFryUPM0p90DWIFa3WKUUa1ADpfVfeKkhJ8pbkwxmbmQFy9UnAIBnzSrY6QKArm125OBegm8Z8BQb0nH/uVT8Y9rQ+wBlZ/j4A31fwUOlOBhe6wdAYP4wxQAB72uxdPz09vQAfnDfvB4A8ecthXjyoGxYxL5wv1gS4CAf40e8ZoGzkAUAwi3wwVRGzmY1z9KpgoFJks+cq47Xi2RzqlSXFWCnMVLaeV8DFDdwxdgem49W1S0LAOK7q6+qTAEUCGacCAUyVhznj7zX4T6Cg4sG1awKMfN/lM5PXpLz5v1I8fC+9VuXy6Bpy1Q+zCEM6T8+tAq3XIja6lXFXYgPIeSXPnsPyeB7PuGNOo8Zftw9WHh34gtEdY9h5e1xXI43nVU9qW4D42efn5+3ugrzpEK4/Pj6Oh4eHF9sYax8ABGhZSIs9Cvi66mAHBCqw6qIHTJXdS/Sm0wRdBmcGc4W6QKBSRpomKcdEnXpX93kwVtTxYFI5x4gSVIr11ErV0azPkKaK5nTrlrz+bn7cxpWsOmWUZL2qmwMDHVnXcqv2SRGD6jjdW4kOrICDU8tuMvaaprrm+rECEl2+9iUuF964ev18nz12NuYw3GO8/Fwy7muUgPcPeH5+3r4RwMAC+TPwYAOM/FhWeL2WtlECDQDK+NcNkWZgQHWCAyordPIFhJW33K2MG7DJK3IIW9MoucEzAwROefN1TZ8GrFuoM4b/ShcLhJaZDExleGbXmHcXzTkX70qRNK4pHYtPVWSVwU/3O/x0jPdM6asSmUUHnMw6GUeevFUsFB2XmxSaO9Z/vVe13WwM7AOG34I4XM+k+kHv4dlKl7hFejM9of2Aa/yaH861j5G/RgSur6935CN9Ipi3B+a1A1xXjk4gX64Xnnt4eNjmCc+f64IyHh4etmDAgRBuI+0zXTcAcMLPPD/vrpdw3n8aJzOwvUonBwMdmlW6ozRn6Hn2bKVg9Z87qhoMCQy4QcwLf5RvXSfA5916JjpXJblCDgykdGPUQKpjvJN3mUBAAoidgT4Dty698lqNjSTrLq2ec715e1YeF/rTujtwcCglw/aaivYQSm2egJ6CARy7lfbV+iMGb7xQDsfQSQ4Y6MJFLoOnIphHGEzOl0ECQve8QRDLB9cNHxjSOmp0gQ3/GLvAA5EBrE9gIOA2MNIxw+sGsIMiti5GfgwOUGfc0+tObitK+ijRnwIMHEIrinKWTwcMzECLdozypz+325cjBQCpvjODV3kBq8o4KalzoKqf1Duu7ne80s6zfJ/z0DSJr0o2UppKTvUZB0Ar0kVd7DHO6BC5SwpQ5R3XXN7nBASYOv2Fc/0lMIDjMcYLD5XbgUPubLAUGCT+cB+LE5kPlIefvuM/xtiZw2cPXTfxYTCgiyBRjr6RwKCCeeB0HP1wQADl82JK8AH+cc5jANe5vtwmfC2Ng+RMrMrxq4OBVXSiz1VKOaXrXlulDhhIBr+qvz7vgAALjDP8mtesrCpascr/ny16wAN/jHXQom3oogcu7QxYdK4rHx0QUNUh1d3dV2+v4hVp0zxqokMBKJdTAVtc07SpvHMDBiDXT2wU9X82ddABsuzRzpwfzpNfXRzjZZQTUQE3ZrCQD2AA3jzrQa4DPHEFPLpIkb199D8DBo0CaBRLAQ3+EZlgmeK1EC4d8nOvGGqUpOojbfuTRQa66NVdXzXUlRJ3hrujPNVAOMOf8lKExx3hkKTyijwSEEiAwHV4FzB0wrAqlO6/em5fQHgscm0/89DH6IXEOT93vwrvJWA2o0MNk8ptGncu1NvlB/XkhVU6FlS5HQoAKr60jp3+PwdKQCrpocrQp7cJEmm7cLQHkQKN+ujbCEjvdiFkPrhM9sRB2BoYnxHW8D6XdXX141sBOiXBsubKQT2RBvdd2/M58tYxkzYVwjcPdK8E3Fc9oXsZ6KuOzhbObJ3Sm0wTrCq7fdLqc/uCgSqf2WBSYMBGSAVM24T5qj4IAoKiRd4q7MpT8og4PwigU8jMcwUazlWpMiWP3qVzxn1fWgUK2iczY9AxENU4YMVZ3auI5Z3LwfvdbrrArcTmvJw8urZK7ex4rJ53dEq5djrGRWkSEEhGmPPS+nH/6OeDUZbqNhitZBgTL+q9O/COaQIs/mPPXhcRznQzyPGv5TPIUZlmHezGKnjjduYoANYicJurTua8tY+5bgkMpLo7OggMrBjVbpr075SBnidFqGk6PHE6FWI355WEjQV1FubROS4uW/NVj0oRpoIPV79OJKC6dypP/5ikBn+mQFYpyeFqHpVhr/KsnlOQyQo0gYGKVPGN8UP+cJ0VpBsPLhw7izCpIk5t0KUZMH5L0v7ha6oftH/ddwEciND21b5OIE0Nv3N0tB7OmIGch468EBnQNQMcylew43h31HFiXOiey+A8NBoBfh4eHrbn6ijyGwc6pYFnFGBx1EJ5wfGK/J7VAsKqA6trTtAUcSYhqUCGpk+AYIyXA4i9dQ03ubL5ejVFMFuA5TrfDfquV1Tdc8/OogfnTE7pHQIIVp5dAcxMiUcX/cG5jgk1FCuKlHlwcs0yrzLHyp7TV+VU5Oqa0qUIjF6r8nkrckDS6TMFAuhTLGJLG5bxNQWE8H5Vv7FecjsGct7JS3eAVJ0Y3hcA6wbc54b5WTa4SddyPdR4qiw4Sv3A15Ju1AWIqAv6TSMCCqidXVKAwff+VGCgi972yWc2oGfXNYSlHZIW3nAnMHLFeTLYDhBUxFEBPtY0K1SBhQo8JIB1qFE9lJx3ycdd8Dkjl3c3X22jTputtqtTWNUi1YpfJngzGm5FPgyGkQ4gQTeG2Wx2t4p1v6ToXXs4gPdnouRwOP3D/ei+DcBp0Q7QFzNjDqqiSUjP5EBftw+gz9Twuzw5KsX6UIEN88hTVo5vACHmOYEAp6dZ5sGLblnMTiOAgOOHATSPE/5342RFP7TBQFL0+9KqsnVGKf0n1JzKToNABxz+k+fO5aiH7BalKCkq14Gmwq/luAHn7s8GZnU/lTMjB4BOQY73fQy/k0U1UC5fZ8RmzzAlOXbercvTybH7JO0YPtrlyH2IhuvnogO4jn3b3bhN5NqZFbeSllvJIQONc5BXdURmwECBAD4HjGfUYLInirxAzhFSEKDlumlUN1XBzyUA4V7p0wWD7Py4KFPqRzai3M4MXl2eCjDYoLsyuK+en5+3UQ0svgQ4wGJIPKPOIwMKnVZL5MZcRcuRgX0U5yyPylCDZpXGf/rp/YqnZJBVkPV64gmdqQtQKh4SuOBjHjAMMBwQ0GffQtEdYmyPSdrer8VXkuNUDqP57jMuncq4S+vSOGAwRv4QVgVMOTKg9WOPB/njPiID6UMuDoA4BbcCopC/5uPOta5vTV0AwIZXgQCDgTFezlHPyk4gAOfOwLvpVP4pEOC2ViDA7/o7SsbbrbwHuYiKezvLyRnLjubNfYRxgbzRP3yPr6M/GAQwaHEOFesOBktdXcJ08DTBDHmkAabH7nyVjxUgMAMk+pwLm7q8VBj4Pg/GVFeHwjW/2cDg/0RVv62gyZW0/5eIlYK7Vz3nzjsIfwZsV2Sd5awKAydeHXB1nrl7a4CPAQQUEKiCdyHQVQ9+Xzk9JZjt9LEaYQUCDAZgfOChpvZzhrqaImBgmeTP6VitH/exTgk4w+xAaHKO+Dm3GM+NxXRd+8ORM/ZIzxEZRAV47wYmTpvWnaEftT3SWHZ0lDUDLFAd5bgyuBKQwPm+v1SHSom6OqR5Vu2YjtJ3A7BqDxb2bugo1aOi5IX9WUAAGxC9PmvnZAD5XkUV+F15Vq8nxTrLT0FtR9Y7fFXg1kUMlCd9fWuWrwMECaCpcleQoenOCeDOdEIFCHSaAPmx4VHDgTScnvngNLin00QdQFn1KwMArSeO2UByXgwgWJ4qx0fz0PQVGJsRh/e5j3CNowW87bHmzXbERQ80He6hrA4tgYFOI3XyWEnPlABHZfATCEh56DNjvHzvf7ZFMKM4vTZG7zUtRaSzSIBLV907lKq8zkWRKunAWQVCM4WyysuMv33zrmR5hbeusnOhSTcGKn6htFjJpekHLkMBgFPqzhiwBzrj7ZTyzEaX61bN2V9fX+9MF3Ae2i8rxgLE++nrtKl62x1ScKY7/6lsMPGuheyAsdF0xrWaCtPxo9MznAeuKR8uT64HAzLUnc81coF8eYpns9lY8Mw8rMjv3pGBfZTUMctIACAZ/zFqZZv+nbA7g1IZeFY61RxT5dHoNf53yjKFtKpIy4z2Dc+emiqANGsDBmTpHh8no5T4mVGKyrjjGQDGPV4n4Phzz6U1MWMMG96ETCL870gVNZerc6rdtQMVVWmP4ei8FlVgQEPz+kohgIHKcWpXV5aSA1/JEWNyurIaG6gfr7h3fDld6IwuG0i3ZsA5eJvNZieyojwjTwVbSlwXjgYgPbZPdmUwEEAeCgIU3HI04uhgIHVw97lZXjNvZMVb0fQzD8ApIx5A1dsDjniA6QpYFfYKHKQ8Z9QJcXNarn/VVk5hagSDy9VnT6lUV+VHn0v3tI2rcDVo1o4r5JSvKhJdzFXVoyPTY7ycEtM0HO7lMcDXlVTx82tZeHZlHDAvq2n27Y9jk/YvK3ntW7dw8ObmZsfjBDCDJ6uAQD3SiifIk34HoALQnfqyEYc84FjlBzqUDSavi3CRDwZOWhd9zZWvKXH0wulyELcnvkWg9/X7BIgU8Pjhsaa6hnnifKr1ZUptMLDv4Og+N0szQ6IOlSbl7AwDP8tKM83ZdYybUzCJqgGY1gYkmgEql3bfvq3ynvFzCnJG2B0zddN1yuzcd3JWyZuT++o5BTDpfkX6ZoDWhxVlAgIV6ETebhFuFxA4sKbHfH6OMlz1DRsyfX2PowLqieMzuvyJXxeWduU7Sjq+ApbcF9z+Tsfp1APLLRt81zZ4G4HBqwPIOgWsgEs9eV7MjU2R0hQJeLu6utq+Rsvbc/O0BgMLbieNCOB55oXTurab0dI0wT4h5irdCsBIYEDDPY5XLS+hvIqXWQNXK1rZ29bV1ajLTMFpCGgF8SUUmdKm8lO+56hEO1QZC5Brs6pOTk5T2S6/9FxnrDjD4fJ2xhD3VanNynNRryT3CgIcqNKpAzfnW4F6vV7JbXXdlXcKUqCHf7dmIP1cZACGb4wc5XRGdowf8uOiCNxvTpZXxkXih3kYw7+x8vz8vBP94Lqg7tw2Nzc3L0CVtq+Tb3xBUafDFNRwvRkIuE8Ya1r97DG/hZPWS3DaLr35DoTdQTa75wZJIkWf6Agtywn+qlJw3o8DAu65Q5QOyln1WvchVaYdkPHaPO1Dx1T4q89XnlSlRFfyU1lQwAPFwUq9A0xBbn5ZlaBGB5S3lG8FAKq6urQpEuDIyfYpKYEBNlJ6PkbtEWq/rURbqnxYLyvfDA447K7Ppjorj9xHbKzZUHOYXRc96gLLm5ubsdlsdtZYaNuyjgUQABjA8Rj+uzC8GBLGnb/8yDaJpwSSbuWFhLqmouskKh30NsEsbeda91lc119aSDNGHYZU74EVREfxzhQSzp0idM91lJALr1YrrVdJFad6cJ1nq/vnQsnIqsE4JN/ZvVlkYN8yk2wy6aIqBwh0fFR5doCsKnOXLx+79QOuvii/IpVnJ6tVnU8pu5WRZN3HHi17/ExqQMf4sfhTQWIXTLjwOvPq8kl1Qt64pmOkMoycB0eleLtl/OOH9RTv3r3bHuOfeVcwAICBzZAeHx+3X1JkQKCRhKenpy0Q4OkFXuOw2bx8CyLpeNxHu/BunpymS0fdgbAy4oeSKg0HBJynMsauUVOBqsJgiar7GiJ1HhGe5XnXmUJTwdJrGq6feT+JOoDP3d8Xjb41HQJSV8s4xLB38nDelcuLDT4rj0qG9bgzJhxhnrTiH8eq/B0gmAH9fYjb7y0iayukzg+u6TcHdA6cjV8a0w5kaTnwZnEd4IGN/2yfAeWf66YAVMPkmr6a3lG5Bu8wlNxWvLjy+vp63N7e7iy85LbkMgAwHBhAlEBtwBhjByTwjzccQhsBFPBCQ11My23HoEE3KNLtpitaepugYyj0mZV7M+OVBoa7DlIA4EKGakiPRWmhFPOg0xXd6QIFBc6L36evHK+df32G8+OBdM6UwCLIyf8+gKvryfL5TM5n40nrpl669hffW/W8uUxeaNUh5aMTUUgy2ylH02tdTg0KuL81bL3ZbHYWCnLYG9RpfzYqKLMqP4XRFZBw3lwW56lAQnWZGnrn8Kgz5dJxOWiz29vbcXNzswMGcK6vY0IO+YNJMOaPj4/j+vp6ByQwIICh1qgCRwbu7+932hRtzx9dQh8xMAZvY4ydyADz3JXho2xHPDvuPp+eUyXoIgKqJCuF4BQ8fug4Bj96jQdNp7xUJufFlCIcrpxqEDiEnVC3K6cLADuA4FzItU+6vw85eZ4BCO0T97/y42f24b9Th25eUEjVF9k4vZbJeaToAPNXgeEZAHDP6P23JoT9tX/TYjcmtLuba1fDg2tJT6mu5QV4uljRpdENkDg8r/KuUVAGA+wAIb0uOOX6g7Tsm5ubcXt7O96/fz+ur6/Hhw8fdqIFugEQdDUb8Kenp3Fzc7MTGWDjrYu8oZ8RDcBnmXmhI/czIgQcHXN8cTswIFiV272mCZz34I5n+cyuOWXowmGd6QE2lJwXh18YEGg+PFDQQYpIWVA1LMTkFi8y8fSBXpvVLfGtfTTrp0oxOCWbyuc6ngMomMlq1S7d9A5wdY1MAgQunRqIKl+NCKjHBqNRAVElTq+Kmq9BPtUodcrQ5zo0A8xMSXa1704FCNRTVPl1Rhg6Z7PZ7HiKY7yMVlbjwekM1cFaPkcs0vQFAwGAAa4ny42+bud0s+opN+7AE8oGEPj48eO4ubkZ79+/34kKcLSEoyv60SRdRMiynqZzOf3j4+O4v7+3IEqjLGzkNX+OBOj0T1d294oMVAprZdDMlKsqvAQEOE0yjK4MVVquPgw2FIE7o+6UolJaK5AUuwv5zIyFplG++Z62g8u3E2lJSjWBiLekDvjpXp+BVk2zCpBTfs74J0PhyAFXPOteKVQwqkABSknz1zHgDPqqcXWeVlU/x1N1P+UHPlcBybFI9c8YY2sw2PN2egmGR/tJvWu3dgDEhhoGvooGVMZMn+FNkpCO+0uBDHjBff5n3t04xDoBjQzoD1MIyEMNvMohe/p8H8+hvfk5TC0gMqD2CMccSeCIAMsGt5Xqdc1zRge/TTBTeitKlq874+XmqFhAVoGIQ5HqTfMgYSPOqHtGPNiYZhEDVsCO/9l115Y8F6Z5MwJeQZQVsUI9Rn77kMptF1C9Bb/7tI0CA5XlLpBj+VPZc/KnUQVW0s7gJyCwL/E4cgBTzxNIdcAgnZ9LNIv1HoMBnt/m+2PsLjpzfdCNeDgdm+TPTT3wdQcE3By9bqqjkVj+dzwxcZlavvKgNkYjynDM+BzrBcAPrylg/gEQUM7Dw8MOeAAwYN6enn68gcB8JJ2GfQsSuKvooO2IZ0Cgysc9k5BdJyLgqAqhazpOv6IEQc5oz5SgDkYtlxUyd64LByW+HBDQV2e4fAgmtwfzqcddOrVS7cha9axTnAlUuLFSgegZX5Xxr4CAM2hsRFV+MOfIYNEpXX47gGVBQ9FcZicsPaNZxE3L1P9KF7ByPbWsKrFxSr8x/OZBTj9wnjiu9J3qXH2e83R5u35mGdOFj5DNh4eHHaDDAKEaT7p9cIpIqF2peAVPTo5h4Ln9GAzwWwcOIGjEh7185Z3bVaN7AA68tXF6k8fR3pEBp3w0bbqWnnWKzTWKdiCoCglW5yxgbqGSM4SgWZQgKZaEbN1ATKCia5xYYfBcHpczxg8B5XbV0LIi0lS3VUX/muTkFscdMKDPVdervPbJIxl9Tjcbi072IVd4hhcfsVJe7UdXlotAJIB1SFkr97n8czP+SuCT+1mNWtI9Dqwp6bO690A1fbQvJd0+6xfVR8wPgyYFI/wqZnrzgmUVNkDXKeg4xPMKqhkMwD7Au3dAyYESXsfDfaJjF20CXng3xFd9tZDP+b96LuXjGpmPKxDgpgZSONAh/koJsEFU/p03D3KDshOixbPMW7WYq3uu83juX3ngd1u17ZzynoGuxOMpyBnPBAYONRCr9Z31aQKvM/DBinUm7wACCfQiLZ9X44/T87l71kW7VD8wSO8Y8gQCnVdZRQVOCW6dnnAAUQ2D/quHyLrKyRbS4FrSbfrjcL7KnUaouDyth+p4Z3/SD3YCvDjbwXXnaCgML3vwrs3VeOuUzPPz83bPAQYZfIx0uMZgQadVNArg+hyAARGC5+fn9lT2GAdME3QLYKFIz6gAdsCACocqB3ff8eXuzeqgdcFxNceP+9U9RcYVIFDlqffZ2CsinkVWAAgcGMCxKuxjhIHPiTq8OwWVnq2MfWdMJYV4CCXj7cKhakxWlEyXOFrF8qU7q6nRwH8XwDkw4caBM15vTezZqU50uweu8OpAkRrgMXYjiwk4a1RV88U/ACcMHLbk5W8mOJDBPwUMrMt4MSLXAzqQjS14Bx/gn78XgIiZtjmH7R340WkCLg9Gmt9EAA/86iJI299Fb3Fd+2RFbpenCapzMLHybBrYDoG5eSsukweNDuTE1wz1JyCQlEl3sZQbiC7KwCDBkbvOgETRsGt3zksFnsEGfquK8RxAQSVjyt9K/bogt7qnx13Avar8O8RAD5QArjOkoMS7yrIaGciXC786SrpAQXsy+l2H4NTkvGQ2RGPs9l3SS3ru2p9BQAd8asgahhBAxvHOxhV95fLRDXyYF86D/9XzZ+PPPI8xtqv6U+RgjLH9WBCDL+d0KpDBs3h98OHhYfv/8PAwvn37tr0PPjhCoHWt+mCM3deD0ZYrUzptMDATjH0Gk1PIbLT0OJXN1x0fDhzg39VDeXIdfqiBq4y4GqgEpNDpznvAff5pPVPe+jzy17ZlL9Ih0Y4ieQuqjK0DA/vkq9dWDKTeV6AJUtlkg1kN+qqvXf5KXYA7RgYOVdkJmDLf6nFWRjyNdz6ePXcOUYFE7H2m69rn2rdumlCnEJOOctdRns6LszFOTtn379+3Xw1UsMZggMvXMazAoNN+zItzOPEDCFB5TAaa84exh/EHELi/v9+CAAYCqj9RNn/TYLPZ7KTltkd78hREl5amCRiFukaonuVjh265DO3ghNi0DPXaVaFUnswY9aB3IEHzXWkTJRfxcKF89Zhm0wSpzdQz4OsqXKluzmA5sHRKIMCUQJ4algQqlZzC5edXgMHMMDsFm/itjKGmqUBHetb1eeJ7jHpHzVRGIpZ318Z6PdWxw8drRF5WScc/e95uPUYCCmPkjwBxOWxM2WtH2Tp+HFXGCfe5HlgBzwYW//y+PoygyhO/YqkLKrUtGCzpWhluIzcFgLJg5J1cI+QPAHB/fz++ffs27u7utmAA9/if9yrg/gA/aB9uN/6gkbYb2+ruGwXLCwhnA6sy1pqPGv90rcr3WFRFCVafq8ih1mTw+boKHntK6jVxGTp4VIj5NRTUxykax3OSA9eOp6RkDGfAbjV/Z6ArwOTOtS9SmmTsV+uwIr9qHB3PzjhDlnghFE+D4RzkPF7OnxVgAsXn7NmvEsYkt1EVHWBQMOsH3FPPXSOxFQBlI63etvYDe/swrNjbX50/PIO8WGZU5lAHFwVl0jA8PHedluWIBsqH/kR5HNYHr+ztAwh8/fp13N/fj7u7u53dBxElcJ9BdpEclQMdaxzB4CiC27DI0d5vEzDN0HcCAu7nwEHHuCQUr56C47sCMIn3lGaF3HMpQqD15MHsPAQWGHdekaLnlEaR/jlTZfRWDOihUaBjg0vmqZL1FX4qg6p97YBIZTwSb52piJnx7zor5y6rTDr2seCOj/l+ihqwXuU58tm4UHCaZMPpFTWs4Bkr3Vk3MRjQUD/sAtdVDVzSz1Vfc8hd68t1ZXCFttOtgZEO4X+eDgAo+Pbt285iRf2wURpLyhPLAPOHazzNA4DSoeW3CZhRpn2AgBp+ng7QMrmcStlpw1VAZR9lnp7dVwE7IJDAAej5+dkqxhklQ6Zto1/KgqCuGMyZvLwlqYfk2r8yZJ183blSZXg1X73XkeMuEFCwOQOzMyCQeHL8rLaZ8szHLPepf5VXR38WMMvGAHqSI30MBLhObLA0IoNrHGlYWXSmTgH/Qwa4bA51s9fNi5TxsSDmjxfvVesPnHPGRpONpAMPnXrymw8MGL5//75dIIjIAAOB+/v7nRA//jXC4NqQeeQoAZ9rO63q3YO3I+6AAGbOAYF0rM/NeGN+tBET31wnp7g6ZSq5wTQbZFpvFyHgcpXnGSBI0whaR0a5LjpQeYYVdQfda5AzFHrsgEAFmPj6vsZsRomXVXLjdgYEnIJPSr/LA8YAH7t0FWlEQKcMVM5m+qqrz04FFrguasx0qgTX2LCP8XIDMxcS5/xwzG1Z9bnKhjodbDDBr0YNcI5r+r0C5MP1czypveDQuY5B1DHpWq0TtzPng4gBvzXAUQGNDHB+DAZc2yVZ4Dry65qrdoHpKF8t5MJdozsjp4bfnWulk6JwxlH5qNCky7vrJbqyU+OrAkydWwEB8NZRTinNyjRBerWn05anMv5KleFb9XQ7ZalB6noeKW0aT7OxUQFdd41lPYGBmVFQ5Q2PxRlst17A8ad8JkDAbeLq3TX850bOqWGDzekwZsfYDYNrtFX7WkPmSm4RGkckmIeUB8/pszzwP9YzsKfrdsbkujiCPVH5RR0ZjFxfZzOI9mRQwYYc+XFUIIGBh4eHF2AGeTkwwDxU4Fzrjd/K7oNj7DlNoNcTElSD7gy/AwCuYhUP7p4iIh1QCdQwddOpIXfEiHwGjLQeKAPtnOZNtbxEbuqBy8DAZyDgfmogNC93fArSBZkJHHTAH2hWZ5evS9MlJxt6PdVtNj6VXwcA9MfpHFhxTgH+ee91Z4CqCJozNk7BVuTSVcr2lKCBeeD+cW3GgJ3T8PvnY4yd66k9lVTPVMAB5SsohN7gch1fkBEGK+pEsRxXfQWjyHxxxJP5SM9zGdzG4AGL/3QvAQABfq0wgSUHBhSwKW8cxWVeq/pXdPA0gd7nY+20WSQggQfNe0au4XRlq8tzpsQSoJkBAa27O1dlr3ntY5wSpRAtCyoPjuQd6rMzYHVq0jZO9eBjNZCcF99PgNbl6cgp/dSeVVn8nMvHjamkgPhaMrYKNFIdlFfnrfI9JeeF8j0YGYxLp/CT/up4XaeSX20/NZ58nevL/Oqrc5zfGONF2nfv3m0XnfHra/o82lN1a2pHLZPP0xRCIjbOCLU7fc562vGpjo0eK6h2ek7fDuAFhO71waRLkm51upiv69SuK6NDbTAw8woqY57AQEpXAQEX7gKxwDK/nTmT5OW4a1XdOvlyPi46UPHHz6eBps+5tKlNnp+f2xEBN3WwAtreinhuUvmr2jUh7ST7SW6dceXjVI6jJEdV3Wb5qxGvDH8ynC6/Ljk+03oCDX3qPDpf6xiTdOzqeQpiXrRdZxE+RwBNY+wuhMM994YB2rzSG+AV+SRSYFEZQa5P94f0mGLAMa9BwM8BKF7Mx3P5DpywbLB+BDgBCHBvDSgYdtMwmr/aM5VN5oHz6Mru8poBpsp4r3bgrAxFpHofxxxe4vCJCvisgY5h1JwBUBDDgzN57LineSfvPZVd8cflqPClX6rbOVJlLDvtc4gxOKYhSWMnAVd9dpa34zX1N/d7BZgxT6zG3vE8xsuv5ml6xx/klRUviAFDqlsl1ysK9TUo8Z7qlca1giY+1o9UXV3t7tHP+lP7Im1q44B2peO4rio7/AMPCiacXF5dXY3b29vtpkScp+o4NuT8zQAGlzMZUaep2mpYp0K0vVimOW/cc+2t4HFFbvcCA6kABQMpDMhp0n1HLAhpYKMBEO5KIZaqLh0vp1JsM48Eg8KtdO0g78R3514ibqcKECBNpwxnIE5ByofW5TX5OgSEdoBzGkcJCGg+abUxg9ZqrCU+XcTLAXo3F6xTaLxNbqofFCVv+gLnYJ8+ngHFt6SZruNrjrT+OtWgUzD69gFfxzWcsx7TMjt1qeQG57rvAAMUNcA6TQLDr58t1jyQD2/+A/mBLDmvHO1WOUwOJCjhOtpHAQBHFfjHAI/roW9idGjvyEBS9Kq4qnuaT6c8RYdMPO+kCFgNnA4kp2xVyVbK2RmcChhU6JjpEO9UB/cKVYKtlIzUudAMdL6Wwu8YlI4h5+tVu64aPR1HPEfa4SUBAo4E4Md74VeLZTU9/q+vr7ervhVcgHeEZrFY6+rqatzf3+8oTrTTn4VcOyVjrmkqqiKS+iynG+MlKFBPNK3rSHVjg80RAN6ICLKQdJk6KCxH7969Gzc3NztbFuv3BiA/eHMBAIA37HHTouoguZ+bXlXi6ApHKRREaDrUlfsHxwymO7T3pkN83Plp2hXiwa+KRtM9P/94lQkNgnCXhsqccqgAgavTbN6uAgRMTpFXHrgORBUwFQymNPC7xp9JQdc+QO+tyHnpqY9YNqp6ODlU2dIyXTl63gWe3bpW/IN4jOi16lnlk8eoC/EiX80D12EYoLyvr6/Hzc3NNtyrxoMjAtj+9e7uLm7PimszkMaycSpZTuU6j34MX68OCFbHIb1KyCAAQG3V6UiAUY2+yoD73kolg8jr+vp63N7ebjczwj+Pe8gQ5vl1Fz/18jvOUgIFrm05AgOjz9MWyKOa/tKx6xyNig76hDGudYDAPjRTlO7LW2PsLqTQd25Bs0EzAzxj+DcEUBaXw9d4QKXwnNYlkdZBhWVGTokwCk3TBGgTRaYJ9Gm6U5AO1lSvMV5O9VRAYVZeJ91MsVXA2vGVjmcgFkp0jJebVCXFx3kzAODxycbb8Ycy1Cu8vb0d79+/H7e3t+Pjx4/j06dP4/379zte3hhju9nL3d3d+Pr16/j8+fP4448/xpcvX7Z1YV3gZJN5OvfIAdrdRQWS51nlBWLDzteUOATNaVK5bsoIxxy6Z6MPg61AgI206l3mebPZbIEjA0rIzvX19U7dnp6exsPDww6PbICdV5/0h7Yr8ue06szB+OMewIlOEWiEgccx634ee6/2oaJ0faa4+D8dq2IZY1dJsDAoSuwanplHcGyCUFXrJxLNBnUaqB1loGkcsJiRGs3Ek0v3luT6nOXEyUynn7r1qvJyhlrHWgUGOoBbox9sSBwg6IA3BQJ6rJEBB9x1vQD+NRrw8ePH8be//W384x//GJ8+fRq3t7fj9vZ2m+fDw8O4u7sbX758GZ8/f95+DneMsX3/mz9G4+jUMtollmWtS8X/zNEA4EO+bAxTPm69gOof1ns6fw+jzGF8vsY/GG/OB3nr1wrVXnAeKOf29nanztDRCgY4XM/GmNuMx6HWUfPU/lIAwNMB/OEiAALeKh7POzCA8Y1PH3do78hAUkrc+Q4EpHuVIpzxxOXiGqNnpAHS4l2uEjhwPCSEy1QtxlJSZK+v+szIebsuKqF5JiCgkYGO55wAQdXnb02qQBPoWTUGWqf0PBvOlI8qeFZOrrwEuJWXlPcMEPDGMFrHJBP4JcDeCSMjDyjsDx8+jJ9//nn8/e9/H//93/89/v73v4+PHz9uIwSbzX8WeQEI/P777+Pjx49bZT/GbmSAP4k7m/5APc8JKGhkZoyeA+CiCE53uSlE9IlbS6B7GFT6Tw0mjDODAUwFsVfPsqTGHvecEdbIAvJl4IF2ZL65vvpaIKfjtRTPz8/bMjiiwB4+AwoFWww0tCyOHmiEgPvQvf3B0w8zaoMBZ/w6iqky7AkQOOI0KUrAaXkLSQg5f+1rBVV3eXTPzPLlAchKqENOqaUB2fH2VqhTNzUipwYDydthcjweg+/V9k9jBcczMFDxwPkwIEgAjuWMy+N21XIcIO8uLGMlzoDgl19+Gf/1X/81fv755/Hhw4dtdODx8XF8+fJl/Pbbb+P9+/c7i8Du7+/Hly9fXsxPp3bWOpyaHOBXeV6ZFkjEHmo3iqmgsooSMiB0kQAFAoju6By/87Q5cqBTDinKwGtPuP7MO383APVNU8BPT09bIADC8ww6kDcWuHKkgdPwuRp05kfBKk85rzqXS9MEGkrie+6XGJkZfdxXr8XNj7n78P65YbEqVBs+DSYHdJgvR8krV1KPfTaYXejNeffMwz5eLv47SsA9O6NTeldukDGlOqwahFmUyY0fleMZcOiMM/U6OE821JClaqyxgtHwpBuDK23Gi9G4frxu4Keffhp/+9vfxt///vfxj3/8Y/zyyy9b75/BABaJPT4+btcP8KLDpKNSBA3np5Zb/Wnbp/ZmfcgeI0j7Lekhlh1dtDaLMuE5/NiB48gAL/CDAefIAD8L+QDfKFcNv0YQmD/kx+2gQKMCyNy+kFUdc7e3tzuePiLSsE/8+qJ6/BzN4nOn3xOAcP1c0fKaAYeqK+U0U7IujzF2lcpMwTgUz/kyAoTQozNmPGqd3TRIVT+n6FnBdDwQHaTH8ASUVx7QXMaKInRycA6k3pUes2JN/XVo+St5VO2Xxsuh/DiDrmOUDRHaqpJFTsvh5FRHKH8O8WLdwIcPH8bHjx/Hzz//PD59+jR++umn8f79+3F1dbVd+IVIwMePH3cWGUK22aByWzBPCsTOIUKgYADX+F4yws5jTFRFBLhdFADgehVVgPGF4WSjzQv7NMxfGWTodvb2+cdgILWlW2fA+eo9BcncrgxyOFoNR1QNvL4myH3K0wpcnhLanNNqn7/KNEE3MsD3Owazo9hYEVX/TtjRiTxdwO+U6kKSitdZndxzDrmpQtJ0nfI0DzXgs7AdE4f6MEh0vtiVW10/tRJlYoU5AzjHNABJSc/S7FtGJWsV2OHrFegf4+U7zCq36jm59lQ9ojqElTAr/Pfv32+BAaYE8AGY+/v7bTSAFximtnHtpzy68fuW1FHkKZLk+E46ssrbrSXgftb+VTugHrdOA/E8PvqMoznOqCcgoG8MpCkwFynjc5U//iEdDDB05fX19XZqgIHM4+Pj1vizkUekgNfnrPYL+kPrxYDg6GAgKQg9ducuL/2vDFVFTpmxIVMQMMbuNAI6VedhVstM6fR4pcNn7eDynIEa5Ou8Mm0zPuY8ue6uHHfvlAp1lYd9ZDsBudVrjseOrGnaxOOKcWPF5zzoanqtogq0z/iBJwlQAGPw9PQ0vn37tgUBLOMJpLr7auCSoX1LOtXY2We88Ll62ogKOOONnxpe9IPaCo4i6UJEBgScruPAOjunAIEdT7Yf7PkzEMGni3l3Q6RlXZt0BPqBdbEDNzwmeXx1+/EoYIDvO0Pv8nJ56pwOX0v5uesKAsb4Mbg5MoD8QckTTpSQ8QwEdDoHQqY8JgXH96uwoTsGqbCp0e94HqvpT0UaKdinvVLafXmZRYg4JKxKcsYXg0TXP5WBdt6TAwcJ3OC6LoKqwtJcX+WFPUIYgYeHhxeLwjQkrGHX1EbnRtx3KarI6bi9XZ+667NpBDhQiT82lMiHQUBaxAdgx8Z7jJcbGqlBxg/TSPw2As55ESLIGfpkZF17K0Bx0wZPT//ZswDl3t/f73y4SKcdeBxwlPrq6mpnAaOS45uvcR06dPCrhXy+j0J0ykIbWD0UVkYc7kfYRQUavHFkAAs+ME2gr2W48Fiqv1MmKRKQPPeqbdMCoCQklUfDodMKCOn6AZ2XcmXNogXnQsovX68M074Gv8oT9zsgqgNeXNpEM6/XOQApaqR5OGDP9/DPHqMu/FLjwoaFjQgULRsFlnOdT62A9KzN3ppWeVHnKukIHu+HAFkt2xlbXeGvoXwYdI0kJH2igBDTRwos8IaBAkTlj/PT7xC4tVNavtYbe1vg1deHh4ed/S74LQMXwVYAhPI1es320q0r48hFhw7ejhhUKZbqWkeJcMVUEWp6Pue5GF4fgE7gxneKLSHKRKqsVYgrRTTzVLsdmrxKjbBoGFUFSvlXLysp16oe56RkQfsa+WSwV8tQWWcFpcpKryVeZpRkZIyXK6pxbQxvQCqDo6RjleeH1Vt04V7li+uD8Cz+ddMWB2RnoPWc5FXH3kzPzsLESZfO8tL7zrHQhXccqtcIgb49kEiNpuoqBh1cDkctOC2DTR1Pqt+4PKTj1yEZzI4xtq+13t3dbR1Nlk8+ZgCibZ52Dqx0iXMW8WrjjA6eJnADLBlCfs7lP8bLd+ZxTzsfDanzLRrOYgHSMJcTaIe6lFYW9fAzVVRAB6dT2KvKqev5cn+p96f9rvk7IODCySvhqteijsGuwsjHIs2P29gZ/AS+E79Vmdw3Vd8ypTUp6q1wXjp+tDwoYn69K20Qw28TfPjwYbtFMe8bcn9/P759+za+ffs27u/vd7ywWSRA24Xp1DLr+OkAljQtqZ6mTtU4mUiG34E7DYGzwWdgp/2siz2Vb2cXxhgvAIVuZww+dA+D9+/f70wrqW5mEMDz/AxI+W0XANcxfoAB2Ke7u7utbL5//37nGwhYdAj78Pz8vOPEgr/05gG3TRqPR48MJEqGP3mEziA5hZSM8Gaz2ZkaUNTjPAcIOG9EhHONDKjAOwFN821aHydg2ibJeO7j7WlfMMBwYCrlw4LpogDuemWw/gxUKcBDvHCQ9vHMs+uUV0WZ3P0EBNRz0nKd96+RgTSGnXHRMaoeqXpsqvDZi8T8LJTt169ftx8quru724ZoZ+2W9JW7f2pi52FGlQNSkZtqxfXUnzq9oxv8cDSAZY4dJdSL9RDrI6TR6A973VxfLlf546kDGHCe28c/g0oeJwxyAFDBG7/hohEujl5wVKDTrzOniscq0r3KNEHl1VeKqePZaJoUIUj5qTJjQcN190phqsesAbm+WtYsPfOJ447Rqdp51saMEiug06UEdGYG6pTkvOOUZp+8Z3VUQ+uiAe6c6a3aUT0PVrQaplUFpR4JlK9uXYs2A5jg8CkUsAuvYj8BKPHPnz+P3377bfz73/8ev/322/j999/HH3/8Me7u7sb9/b0FMqsRlXOhpDcSn91IAueZ1nskgADdijQcJWAw53hlx8JdZ5lTQHB1dbU12AwINJ3uRMiRCAUfLhqgbahT0TD0WLAI8IlFhLqJEv5RBz7GPyLZqw6V9ttKRHZ5zYAal1l4rfJWNX2qNK8ZSLxB6Pif77HAIYSjebDwpcgEg4uZAXQ0AwUzqga98qX3k5JepeRxMn8uUnEOgOAQcgoS5Oq7ku8MGLjyEi983/FfEYNh9pxYKTogkBa5wsgnwMz5sYK/vr7efomQPX7sNDjGf+ZCHx4exu+//z5+/fXX8b//+7/j119/Hf/+97/H58+fx5cvX8a3b9+2c7ZOTqt227c/34qchw5yeqqbH8tcihixoU/6V4+VoE810qh14giBgpOrq6vtlABHAQAC2OCy4dY1CgkMMNBAPTSSwdMe2j66NkHv8fNq5zpgr9OnRwcDnLEasFlYQxGfMxgJJGheTBpe5AauvLAxdg1iUnRKKryz6EEKtzvSwZfymz1fkVPSVdoZ79W1Tn/+X6Q0HmbyiOMEDlfbsQJlXaq8f6UktyifPR2d18QiK+adFf1vv/223XkQodUvX77sgIH/+Z//Gf/v//2/8c9//nP87//+7xYQIDrAgMBFMmZg+pQ0kye0F86fn18uCHZ5cr84A+X6lCM7KE+PKwOGtscUL+TBfS8GxjHpIf7ksP7YqwYQ0A2O4MXrnDtHoPDP8/fKi9ZXbYRbvMr96H5uAaGbAnD2dV/aKzLQpX0851Rut+yEap0h1GjAGHnLxzHGdn6HUSKO1QPueMQKYNwiGs6DhaEa7B2PnIVIy5z1V0dhdgHeKUj5ce2gRnQGWpNBcXVPyF+VijvnPFK7VmA78TQjB347oJgNCu/twW2IhVZMGqLFGLm7uxv//ve/x8ePH7eLr37//ffxz3/+cwsG/vnPf45ff/11Z6rARQdSPd3xqciBMLRdAo8MCKpv2ad8OK8xvNPF1x0I0DzV0PJufXitGxFbllW3EFL1MaJIHJLH/L3bywD/6hi6KQL90mWly7meWGvA011VHmnco40BblK5x6C9IgMVQ51QXAUskvHgUGNFGDww+FA8bt7QKVvHP5AsL5bCNaw/2LdTeGBVeShv3fUJTpHMKKFe/DS682ckJ2cVcJkZVm2Hqi9TOUkm3T/npWXOFJaWNeMX9xWAdkChW/ujQID3+lBl+vDwsLOQ648//hh/+9vftt8fwCtc//rXv8avv/46/vWvf41///vf4/fffx9fv37dAQKJqjrMIiJvQZ3yuS9nsrgC0LtTiRWYYJ44MrDZ/JiyZdDCU7isc9Uz5p8z3ODDTRO4RYQsdxwZAEjgsaKbJ/EmSRxZ4PwU4LqIhxuXbGN0w7yOc9ilo0QGKgDQHUgJZKjhUQOPNOhIvF2ABnUNpKjLkc6/saDg2hijfCNB68Hnet+Vy+VU/Gl69Qw1tARSg8Z88iBzQuuuuTofE7kekzp8dfnvyrgif77u7nXG3CHty+Mg8cZpNTo1Rl9e9R4/x+MZhmKM/xgFrBv4+vXr+OOPP8anT5+23yVAmPnbt2/jjz/+2C4c/Pz58/j69ev49u3bFkjwvHOiUxv9ROpsub5SY8JpK/DZueauK0hw+gH/zvOG3MFoOh3ERpyfR304kpreLGCQobLOawQeHh62r6QyAOX1Alx3Xiegi2FRp2/fvm0jU3irRUGB9hk7hxxBQ1skB1T5Y3vUleu9dyCsrneR7Ox6EmIFAixcPNj5NUIVIB1QCg54QKFzlYfKi+x6Z8cg5lXbQI03X1vhXxFrKiedp2vnQvt68rNnq/QOFMx44L47ZJyl/JV44Z97C0V5gALTe2qEVXZYQaMMzAm/e/dufPv2bXz58mX89ttv27lfPPP4+LiNAnz58mWrzKGAGdAm7zlRt51fi5IxX/HWK4A3xu54Tzu6zp6HPsY/62N2LNigs3FMr4hDhz8/P+/sDog0vEbALVbU/mNnCa8AAgTg9VT8WIbYlrhFgfwGAfLC87z3Be9/wWADuvv5+XnnzQys6QDvfA2OqHM007RCRXvtQOjO3T1VYHzN5TNDqi5U6+b+0UnJ6OliEwgdh6dYeMdY/24Bk+MjGZIU9uEBkPpCvTen+FxfuH7StKlOCjL2MVinotQH1XnHgCeDM5MfHdSp32bUGZud8cyyxkp5jPFirDGffI/lNq3HcavgNXT67du3cX19PT5//ryzchzl6XSCeogputVxZE4tx+q86PjS9p/JnXqRlVMwRu7r9LyLLuJ5jQ6ol8zlsIEHcV68b4EaZ3biIBu4rmAAb6rAaGtEiY2w1k9ff0UkCz8FAgpUIa+cR3ImGZjjnPV8ikx3pw+O9m2CKr0O7EPzRZ6oOC/owzmHWFghMS9QKJvNZrsxBAMLdBBHH5xXxIChQx2PMk1vVOd8jYVXjVNSgjOvSZUSymGvqwJ75wwMQBXQWn0+PdPJ0/WHXtsXnFbl8TiFB+I8LQbO1arnmSF14Wb8s/LdbDbbhWbseY4xtlN4PGYVBLipssqIueunJh5fTuErqOqssXIyhDLYK2WarSPgqVzoTpTF0QEFacyPet/obx47WAPArwsyMBhj9zsBkA3IJ/arwCZVAAXswfM6FrQN/lW2GHjwj9cOJLDKEQIFBCzrY4ydaQI3vlTvuz50tNcOhIos9XoKy8zyqqizkAWNgHc23V4CaFhdAMILSxx65fdSnTJXL46NedezSApekeI+RuAQr9/9EiVAcC4KtaJ9QOm+6cfoAbBVmgEyRykUrPP67rkxdqMGHCYeY+zMba4scmLlq6AgpWcD4zysWRtz26Vo2anIRQaU127bgvStDhD3obuvxln1IMu0OmxVP7HxUxDgQClvV81fsEQ6GPxv377Z9QcAA3d3d9t1Jm6On+uixNEBgAGNALiIFQMB1waoI0/ZaP05cs3XGSTr4syKjrYDIf8zpdCFS1flnfLnAcGIVBEmH/M2kixQ2Fv6+Xl3foq3ssQ8mua/MhCdh8e8o64aeXBttWqEkvej11gwOyCAqYpYnCvtAwT2qSdHUXCO5xxgW+UlPZMU+hgvgTaPZygk9U7G2DXYY4ydiBzGI38UzHkyaUzjvwNGO+kquXfAVaMkpwIF2lYrMpL0hkYNtG3YAdK1IrwKvwKLMEQs79o3CgrYuCkwwGJRllno7g8fPrzYXXCMH9MA8LhZ/hgoYK3J58+ft5tUubcImB+up4sMKCBIEQEFRa4cXhDI910/q6O+Ypf2XjNQecmu8Wbe5Eq53FBJ8WmIaYwfH7XgiAB/ZOL9+/c7aHaMH0Kt81IMAmaejyJ5voYyVpA9zxmlNpgRD05F9vo/iwpo+efiTYFcPdXg6XWmStZcOj5Wg5LycJ5ode7a/BAQo/d4FzddX8NljvEyLOnmWTUd8+vGhNYteZH8nAJYfT5RalPm9VSkXjJfx3/FfyI2Luz1sk7pRkc60xEgBwjcttO8YI+PUR50+O3t7Xj//v0OYAUg5VdKec0AvHn25O/u7raLT3kjIpSnbcAyq4sHeREhgwLdv0CjAugX5pPtDexE2k6fgfc+tAQGEjJRNMKUogJdwdUy1Zthw68fpNB9oBk5QpAQYsKrSmP8CG2io53iVWSHuiZj6ZS1DrauQmel60J9PLgdD2qgZhEBPVY+FOSkOuwDWo5BCYzNFGkXGFSKWp918lEZQWd8K6NVgY30rEuHFd5q6PlYvRMHhlMbdAFWh1c9dnSIQ9K5/5rEQKyKjoAcr/w8k1trUM0xa78xeNBxoLw4vlS/aIQAept1Pe8oiB+XD52IjwUBCKAcGGNdyIeFgxxW52gw86lgBmsT3GJBfXPATWFpm6R73Icu6s79rNN4M1oGA5VScZ6qW9leDSyHMl36mdA63hlR8g/TBVB+3JAcUnIbUSggAG94Vg0vrus1kLZvMsAJEHS8GB2gs8iF48cZn2S80vlbUicy0PGYq+sJKDAPylPiFc+qPFR97PqiAqGuTF4/ANnfbDY7oNi9sjuLiiVy+oTze37efTtGlbErYwUkHOO51yR1elSXKjndy9dhXNFvqkOdw+ecLj7nNC4fEBtQli3cgy7lKQrkxY4e9DV/lpjLwHPs/bt9CB4eHra6Hee8ToDbShcA4iNEvBiR3yLAj99OULvBPLt2qmSQpw50oyXuu5WpguUFhB0QUAlrIhXCmSfDgsiGngVGP17Bu0WpIPOOWEB5+ooIPomqgGDWcU7JcBjItdUMPHEIKXW2U5yOWKk7o6m8Vs9zXSqg8Na04rV0vURVhBWoqPq6ExlI7Zd40eNuHVmZOj7SorMxXi7i4zdx+L6jtB7BUZIrB6S7Tgieq/I4BbE3rA5ZZ2EYv2/eqRNHCvT9fwZkTu7G6E3jQsZgyPDTzYfYK4fORgSXtxhGGuTBxw8PD+Pu7s5uD6xvoPA56sIh+c1m8+KLh0iHyALsBICA21dAxwe3L+ru2i9F3pJeg6x0p3H2epsABTkGZtcScQeo8azycWEqnSrApyV13l+VCASBv2eNDkbYh7+C5ha98OrTZIzdsQ7UKg3TzEjzceVJufsJHChfSem6/M6BKj5mBrcyvolSu6d0FV+z8dBta87HGV4eJ7x3vC7IZdLxoGC5mkZLxl/HQlWfdHyI3O3j2ByT1CMHLzCQDry5PJBPmrZ1i9S6UdpZuQ40aySAgQBAAuQFdedpAYABOHqYCkB+0MX8nr+G7PHaINK6MtHvsAf41/H4/fv37auJeCsBP444cL2ZksPI5bgp6crZ6+gmpjYYYCVQeVgVuUoqzRQT86ILmxwQ4OgAFkNVe1Mz6uZwFnemhrq0fp36u3tJ8TjjyoZ6ZgA0rfOkVpSd6/8kjFzuykKjY1JHPh0I29fD7FC3vVPEhvlzylaf7/DuAALGiU6b4R6Xz+OCjxUgp3JnIG1VuakHm2TUpU9j8BTEOgvGHAaoAnRd71LBXdXO6FfIRHIUuL9Yz2pe0KvK42az2X7MCLqD13kBDHDU5P7+fme9F3iFE8dRXd7sB+2naxUgD6z/MT3AoAaAWXcx5L0KeErCATgGa8emruzuvYCQqZovnHmhVXkgnsfkewwO2Ni7twZ48SCDBOYLZaXFIorCWMlVxM9UKG7Fg54Zd23HpOSULxbUyhBpnk7xaP6nAgMof1Whr/RHqn/Kk8+7RkrrkEAhnq/GWpIdzUMjdkjPc7pal06kzLVVJWcJuFb1TOAuUTUGV8DyMUm/c88bzqg37wwMSD3+CiCyLKcxyx4xgwhey8X6WQEGAwkYWwYOHB0A8SvheB0c6VnOYPD51T5EB1CWblWt073c3goGMBaenp620yg8TaDRCN12WGUyOVfaXq9Ne4EBN6hmISs1iDNyBsYJLvPE3r7+a6SABxAjWF4LwHw7Raf1Yt7TsUt/qNcxM9YgXhjGik9DTri2WrYzMG8t0IlH0DE9vKREj0GHRiBmAKJTDhtGNjrOCDhZYq/Lyb7rFweqDjHEXcdDQcCpjL+SRj4BqqG33HEnvJ88eiXNT/UDlzkDFqoXICN4HtNQuh6LwRDqqVsV4z9tAMRz92zYIZMMJlgeAGzYbnD+2P/g6elpu16AtzaegYGKEshl25OccKajrxmA143MddAo0gO58GKiythrdGCMl0LM82hVGcyrKgJeSOKMtht8nLfmyfdmgKgalE65p2P1CHgQuXqjTfhjTLhfKXDtLx7wTql23/54C6qMj0uXzt+CGKx2fkqVwe8Abs0L6atooJvTTPKvsqsypc84MJPGh+bRqb+Wofy+JaXF2ax79FjHf1onwPk5QlvqtNAYPyJD7B2nftQ+ZZsBr5sNLS8o1Hl2yBDy1O/JIC1PBcAgc2RA1wiwvmc5AmBg8HJ9fb0FAryjIUcGsOjcLTjnhZ/qgFX6ls/VnqqT2u1jpjYYcB+N4IJgSHlQOcaryinjLIi885++Aw1UykKjjc71UF6ZYBTxRgGHkzhslRqdB59TVO6ZimYekjPIuObWVgBVax5oU0bnTpFXRmNmWM/F23KUjGDysEFqhDueZQUIV3hjHrrkeK3yUkXI5KYHEwBIHlHVBg4IOIBeja9Ury6teHKvRRivGs1kPQNy9VTPEHrAGR1n+Lk8lMEr7PHp+FWwz/oaupoXq7LRVhniBeEMDsAvgAB75/o2QXrnP8kSO0061cxrE/gDRQoGeNFicri0TKYqUqDnsAFd+V0CA/zZUI0OwCtnAYXBheAk4a2QENLg3VO3GQo8WhUIRZTOO+ZyIfA8r8RRAl1ggx8PJL2m9xx10HlKp+gbaFmN/2az2Vk/oR4G+osHjfPy3DSJq8e5eFZj9A1Bkj01NskDTXnuU3fXlip36nHp8yo3ml69SPCbAKgafo2KJePvzjX/DrB0z3WUpdbPlZOe6fTxa9Pz8/N2zDIfGgVN0UyQRgmZ1LFyPLh00Desj7VczQPHCjTZmVJPmh07lWeXL/SZvj1QvQmWZFHzYiDCC9B5ESHWDOirk1pWIm2f6rnKSVmhpbcJdCcoBQMO4al37lBMp3FUKTvvW0PdWMHJoahEmIZQw4gIgS5m0ZW9GLDOg+I6oM4zpcXpcTxT/Nw3urkSXs3B4hvuPx6AvJe2DpqVQeQG6b7e2bEoGZxZ+o4HDeoYIpXbGUis+t4Z75lySKHnql78nIsG8HGlsLpyoJ5TSpPKnRn3ij/N45RAYIwf4XQXmQVpX+qiPX6Wj9nTVoOuQEMXCjowqeAD5AA18lVDjx979/C4eTH4/f39Nm/WW1VEgW0V67Fq7p2nnzkiomvPoD/da4zOaZrpl8pGMKADf/omxauBAQ6JcCPonBSEhOdSgCJdWHE24B34YHLeClAaXk3hztPnEjhhYWFEqR4y88n5Mcp1ylw7a0VBJgJK51W3+irO+/fvx+3t7c4WzegDDp/p5h0cYuPIgS6KcfOYuN7ZJOUt6JigpGPUkc4dV/xVEYGUt5NDx1sFMNw4SfXoRABmxjyB48pDrfKq7qf2qEBABfBPRTy+XMQ0vT2ggEKNN9dT24rzBiDgtLqYUAGE/rPOUJ4wVYDN3/irsmooN5vNdq6ejTGDG9ffDAa4fpvNZkdXsfevThSPN9aNuo+ByiXzpIYdbevqqTwxv87erOi65bcJ1MNgIcA1rvhszmIWFagMphoglId/RAl49y71aNOcJ6fTNwwqUhCAaxXKS/VVvjQPN4BQFgMCAIAPHz6MDx8+7GzWoWtBFAwx2uWVuYx8eSpGvQn8a2TlFFQZbjdYZ4a+CwQ4Pxzz8yk9/p0y6w7yDm8aMXNKx03xIX/8J8WnadO9Y3jglYev/FY8ar3OgdiLB6G+WNWuU5nc/6yvcU8NprafG7Ns5PnY6VQGB1oXpGXji+PNZrPVNV+/ft2Z3sRziD6PMbY7DWJTOOeRM0+dCCdsiIsEqIOKsnRdAk9Xa5+lcwewuU/c87xeowLwFe0VGRhjFxXN5qqcV5NQoSONRDhSAcQ8Fs9toVx0Dgw9kxPoBBxwj5Uk572iKDm/MXoLRZCOSacIAAJub2/HTz/9tD3GNp74122awSt28fr27dvOzlq61abbc4HbDYtuTkVquDv90DHw+kyVn3u+6tMKGM7y0LxYrlzIF6SKW8cVy3b6OV4dj87wVrQCgGbHs2fd2D0lYRw5Y+T6yy0axL86dPys0ydMSQdqG+F8FoFBGl60DLq/v9/yy5Fm3h0WIAh6yjkrOl4UXKNtocO4XRXEc/txPuw86ZsKXblO8q3TNyAF6trGDhhXtLQdsXZuGmgqaDznohWD8kkMu0hEp9EQNnE8gw9VbmnqIF1z9zmPrjAci1hYr66udrbvRFQAxwwWAA4wfcCvCmGQff36dXz+/Hl8+fJl3NzcbEN3bvMO9Tyen5+3O3f9GUkH/0robYxadlxeVTSM81TPz43BCtQ4TyNFb1SeKyCwYoz1uQogufql+66eiYeKH712auKpASePyVlyupOjB0iTDI+mYWDC91nXoz81qpSmilEvvs4LoaGPeB0BwADf458aea63sz1sBzjiwXwmIAUeOkAggTCNKmu/aLt1qBuRbYMBHvDqTXADgtjDwJwWjvk5MDvzkipEm0gjA6zQeK67AgSpwd1AmNFMQa8YmRR5ubq62lk0iAWD/NOvNfI0Aq6Bnp6etoPOTUPw+gHlB3VFHqcEAzP0fYz8kgJNADrxMwsjpmszPruRBnd/H6/deVYKXla8/W6bJ13SBQsODJyanBFij3nWh7ju1oM4MFGBAjVOrMfZwHJb6rv1+s8ywfLiPG+Agfv7+y0YYP3O0QNdCK3toXVDWWrjAHKYL2cDZ8DTTfE4XhSYOWcadeaF77i3D5BtgwFtzM5iPKWk5BhtKimawzWn3BySS2sEdN5I7zvicqt0s/UF+xp9vcaRAH1zgLft5IWD+OwnjnHv/fv324iBrpJFfRnc3dzcjA8fPuwsrNT+QXt+//59G0k4BakRwrWV56vowCrAmD1bgYF0vGJYx6g/fV3lM4tUdCjVb6bAuu3u8kmGfQYE3DOnIAcEeKo26UL2chMgVAPDz2t7KEhgY80LB90bAiAFC8lL57TQqZgewBcL4bi4/HUhn7YPyua6OFuGa7yuwQEJOJmsKzmCokAAebgvS2q+nTF5qKOzFBng8IVDemPshiTQyW4VuYIJN/+FPDgvHM8qzoLlAAFHB9wGO1w+A4CE7JTnKuTGPFbX1KvSf/z4Y0z8r8f4cUTg48eP4+PHj+PDhw/jp59+Gre3ty/Wg9zf3+8Ahw8fPuzsrqVhQ1buUAxfv349WWRgJi+VzHX6bjZYk1fr+JxdUy+qenaFkjfdzV9llUGGk+O3pNk4q8BDev6tKcmQ05tq4PQZTuc8fU3Dad3r0yyPuAe9z3qkAgTMPxtvjQjA4eHXDKFvFfAwKEBe2teso3QaTNsOdUrlOFIgoLrFjRmeKlDwWznhastWQUIbDPA7jCA1tkxqbDvUMfLcAZo28QH+mS+kT4uiUBYGC5fBxnIMH1qbKb99PCkWBjbu8NTdGgEYcP64x83Nzfj48eP46aeftv8fPnwYnz592q4bQJthsyf2/gEo9E0CrheDLiwePIUhYHIeqfYv36t+h5TL+WuaCmDOKHnTuOdkVnlQz3CM3Xlqdgp0vCSlqACmUxcFPB0Dx8rd8aDHFQg4JzDABpb7go1BJT9swDg/zh/PVv3D192278onVuO7j8JxmepY6voj3vGPX53mj9OpM6TAY4wfbzVpfzPg0HpwXZ23r+3J+lDXHmg7OkDEzyVwyvc5Cq22Tus/o6VpAg23pIHH97Xxx9gNx6yQhrxSJVPDsaBxQ/J1pN3Hq+lEA0AzT2z2LP757QE29vD+eYDgh3SIBgAQfPr0afvaIfoOA1GVx2az2flIh2sH3ONXgE5NDhBU544qo+uuOzlKhu0QwFSBFgeck5KagV23yCkZ28oIV8+m4y6Q6I4tB2gcj6ckdQIcqRFXmeP+PsYUpmsfN9fO68V46iE5kgp6WE/DYG82P9YsMRiATmLPnSMUzvBr3swf2lBBEurIfDq7wvwz7TPFnvqA66j5v2pkoDu3zsSNdSyDUCkyHCfUmkBB8mpUuaqgOaUL4XNK04WGmEe9pmElHKNsXjDoAAEfAyAg5I/owU8//bT9AQxgcPAnO1EeylRFqt4Hb8Op3sGpqOv5uDQqH075VvmmvtRrxyAns2nOEpTmlZlH9prc+FFF6gB2h1bT67PpesfYV2DlrUn1knqbrIed9833WRczaZ4pkqXnDqBpmZAnOIUsQ4ncPTbq0EG8PTAcHj7HD/pHvW4GAk6GXZ1Zp+v0csoHY0XbDXyM8WOfAgcqtD20TDyv6XVh4YyWwIAys+Ldc/pK6LqUBMbd107SaIAaNeVb6zCb+2aBUUDAQuYUnlNEbuABHavnrzsPKlDAlAGmDz5+/LizdgBbFcOYI7oAPlDe7e3tiykC95lPBhTHNHaHUGW4XRodyHqd7/G5klMuncjAijHSPCvDzuT6R8GbiwxUHnsFbo9hYN1YYWOfxnZKo3mkct6Skk5iQFYZWDVsrPdctAjEYEPloGoPjg7AYLJO0Dx4TPE11d8MVKFXuR3GGDu6kM/Z69d2qQABylK+dU2VsyUaaea6KXhKNkmj6mgjBTWcF5e7Gn1ffrXQhd2ZkgLBPQ6xqFB1jEVCbFqW8lg1elVOpezcdef564KQmXJJ99VzZUDAIEDfHuA3BzgS8PPPP4+PHz+OT58+bacLsAkRBhDWDIzxY53CZrPZ2V+AjQT4eX5+3qbhDUNOQc7orjyj5GRiBjBm0YEk06nsKm9XTvL6U5lukRQrdJ4XHqO3eRjXYR9g2OmT2Zh26aprpybWV3yNxyiH38fYNbAaPnZ6z8mziyi4hYaqx51xh45Iix2TPLBh48WIY/x4RZ31C6+N4CiBGnBXBv94WsPJgcr9DAxUdRzjZdRa1y5UIC9NM3AfdGV5OTLgDKwiulRpMK5z0EqzcHKquN7nhlL++TgpWP7hGodc3TyeCgoLI66tKkJV6Lp4hqcEOPyvv48fP46ff/55/Pzzz+PTp0/j559/Hr/88st2AeFPP/20jSLwzoL8fi36frPZvFhAyOsSUGes5P3+/fu4vb1dqvexaQbcXBpcm4GJZIjT8xUYSMCgAzhURivAMcbL1c4KAlS2VQa4/aCwWQmlseUMAh+7f9ce+Ffjpj8mZwjdtXT+1gTQzRFJ3ote21IJ7ach8rSGwBl4PF+VpTq4msJAegWVyrfLCzxDx/D0wRjjxXQByld9jnx4ClwNsZJGPqD/3HoD8M8RHG0zBXt8rsBNAZZrK3eta2+WdiBEAZV3XSlNdAgbGJf2WB6kQ08dBcHXnBLnf7fYynlM6EhG1w5Fc96OeIqF1wvw+gC354B70wBTBIgi4Bkga1b67PVjvwAMRAiugiRW2o+PjyfbZ4B50bbuPtdNMwMA7t4MaHDeiXcHXJ2M6roB/q/WwwDs6etieA4yz2M3GSa9p2OgMjJ6z4EARzPAkJ4/NRBgntjgYIyO4fsR564+aoC03XU6FzykPnLl6Ct4bOxA/JYS60w1fm56AXKo+eEaRzFxD3k60AKD7uyDgiluGzXezKOLgGvZ7lmNZCfifuFyXT07tLwdsQKA1HDOi2GDkcJbXJlV3hK/zGelTPU4KWwXckoejBp/BgYuSpCAAT/bWSvAmwlhnYC77t4+0HKfn5+30QK8UpiUpgM64Jl3NjwVVYqfKcmfk2tF/ZVhTjLelXeXTsthQKafrp3lnfjgPHjsquFwClzzOdTAah+y4kwGPp3Pyjg1AWyzrlRPWp0RNRBwQvg8he05P9eHnE+Sazb8la7XscT10jHkAIGLFrC+wVhAOyrAhYF3+80wuIWD5OrIC/9SJEHbjOvhZFenR1z7u/qDHPDv0DIY4GOHrhU9dryeZACZUkgr5TGrhzNmPIBYWBUZs9ClEJfy7jwmBQqJnLfG5w4U6BsEWAvAHyNCXbGZBxt51JOnC3AP5bk2rJTuKsA7FnWU/xg5qlUZ7Qo46nkFOF3euObk0eXDcjHGLhDoKAYHZvVZhKtZuepuc3gmTYm5OjhFyTLK/5yma9w5fbrnjqtrb0HgWSMyzI+G4FkGkn5RcKHXklzOQv8gnsbg/NWpcrKqQECjrB2vmfUy9JVeQzq0r3rokGt9NZrL1Si5azNuH5Z9FwFw55xnN2qOtk1rJRwtgYGZp8PpUlqXnge7Uwycrxoh1zgpIuC8BE7D5TAPlceU6qJ5ubqM4TdyqbxHFmYXktc6Q8Ddp4a53jzvBeJXA6sPcMAbYZAEweXzcwcDHflL93C/AgVVWV1PdRUIqALW/FIbpLqztwSFeX19bRU15MIpbq0Pt4FrEwc0nSzPxng19k9l8CtKYCcZBvS3M3z8rOsTNtoOeLkxrG2nxlTBhsoif5bYAQTlPYE2Lp+jAciHpw5YLvGDI6RtrdNfHcPNbZTaUiMdaYzwWFLiMaJlMpDqRgjaYEDnBWeKEQwmtKekAsN5645SeqzGlGlVWSQvxV2bKVfmR6MDXeJyWDBg2NnY4+McNzc39lOafA1p8TVBF/7l9ExA2qijCrYaBf5+wblQ1Z9d0FLJJB93850BwSp/BgPuuFMuh45dPXk88nOqkNQrBA+ssDlPVeoVSHLj9xAgoPXsgrO3on10hstD+5WBo+pe1jdOdjkiqc4I62NtQwUbm82P9WPOmCuvCcRwuSm6MSOnnzk/nCdvnv+5XETSujzgGeQzcyr4mhp+fgusQ0tggAvHgHdoSgUoCRRIwy6KbFQJjbGLBHE/DRynKDiPShm5vHSwqACn8L/WWe/ptco4OL5SaIn/GUCo1+9AD+fD0wMOQXO7AHzwXgMPDw+R/9ek5JVXaVweri+SYXb3Kr4qflK5PEbwn6YIqrFR1b0KM4IHjg5A+bFiVLCuyj/lnwzyDBDwsytG/VwAgJLWDTpHQdkYu/PmMFwK2Md4aSCS56lUGRY2ki7kruH+MV4CS7wJoItVmSeWZyfbHJVi3vhY803jQx0d91Ya19ONT7fGxj1fUQWOUR6TTiF3aC8wwAPehY2ZOcdkh5w3kpSiGqVjUKUAlRQdA1Gm+bp0332mkstgNK5zbJxGn3PolqMG3GbsVUJx397ebl8RVC9U1xPwYBnjB/hAWaci9WDdIEqG3Rn4Ki1f07SurOp6VR5f12kBPWbZVAPsgLeTLcefKimNCCgQYNlmYKBg0pHTM4cYcAb9DuQfq5xDyRnzmWPA9cIxP8PGlPt2Boq1bO1/nUN334TRPDiEz8TR6GTsOB3XawZ+ZyBX5XmMH4sF3QZ8/Kw6h9p/GllgvhI/rg6O0jjt0F5gYIzxwoCAnOBVVBkINoCuA51iQ57saTtE1aWqHpUhAf/aTtyRDinzdVeWMwSpbi4fnlLAT0EB7+AFQ47XDu/v77foHV8tdHNwPJhmfL4FqdJKRhb/lQGfAYOURydPl7ZKg3Hhrul1UAKqCiL0X+V2jJdjjduX9x3QPQjwrPL0mrLSMfpK5xAt2Gw21hlSAKgGBun4f4y8oHlGTqY4/25bOVDO91K0KI0Dlied38d1rYdOjaj8MZCa1cNFszVSrMCYr2ubaJ0Z0Gm0BMf6qj6P2W6/LIEBlykaMYXlnKFm0vAXUFRCWA4haie6/1Sm/qtCU4XRUSDKH9fdKSIFBbMOZGQJpKrevova8NQAwvYMCPSNgTHG9g0FgIh3795tAYHWRacgGGCsAMTXom5fp4E5Q+8dw17xVsmsK1+fccY/yd++a1iYYJAUACDE66YO3HSB0wl8XP3cc2l8KxBw5PTY6pg/JmG9Db+aC950hfwYeXMfJTcv7+470MDep0vHY78yqOh71ENl2xEbVmdg8c8RAtguLkuNtyO+77Yz5ms8baPAS4E063kti59DvpwWC3eVeCM/LtO99ZVo6W0CN/BTBzoG0jXOUztbrzNVA5QNIP+cInEARgUuCbUDLUoVANI0ScGxEtP6cJ4MFNQ4Awjc39+/+GYBFh6yQOlqXoAIAAKUCwNwdXW1BRYMOO7v78fd3d24u7uLbfTapO1bIXH8V79ZWr3vKCmD2TGX47well31llB3BwTQjwkkwONhGRnDe/huDYwrD/zoO94swyrTM4CQwISjmc7C9VOBgYeHh+24cZ758/PzjrFLEZ8UXUW+lWFicq+rsuHlSCO3vcuf17polEO/SujqjzL1XX92kvgZNZL4d5uhscxAZ7LjpfqE83TTtS5fbo+kj3gxrgMl3JYsD/gBkHdo89yFDRe60IUudKELXej/JK1tUXShC13oQhe60IX+z9EFDFzoQhe60IUu9BenCxi40IUudKELXegvThcwcKELXehCF7rQX5wuYOBCF7rQhS50ob84XcDAhS50oQtd6EJ/cbqAgQtd6EIXutCF/uJ0AQMXutCFLnShC/3F6QIGLnShC13oQhf6i9P/B37G++RT5pNHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+M0lEQVR4nO1daXMjOa6EbFm++pzptxvv//+6tzvTly/5kt6HiSyn0gmQJR+Su4UIhaQqFk8QSIAga7JcLpexox3taEc72tGOflva23QFdrSjHe1oRzva0WZpBwZ2tKMd7WhHO/rNaQcGdrSjHe1oRzv6zWkHBna0ox3taEc7+s1pBwZ2tKMd7WhHO/rNaQcGdrSjHe1oRzv6zWkHBna0ox3taEc7+s1pBwZ2tKMd7WhHO/rNadqbcDKZvGQ9toImk0lMJpPY29tbaS/OZcJ9vo4Pntvf30/7Cvf39/djOp3G/v7+o7L0/2KxiMViEff390M9+HuxWKzUb29vb8h7Op3G3t7eo3z4GW4D56Pfrm+QD55D23Dv7u4u7u7u4v7+fij37Oxs5Kg8nVAnJj5ri38/hc+rZ7kPkc6Np+bF6fU5LVPHksdTn8n4HLycjbnmHfHAs65drj6ub1rjgTRZfq7vXXlcluv3ihaLRVe656TfQe6uQ9ov1f+sD5VP+dqvRj3t6gYDvzqpwHXEgtI9XzGdCrPFYmEFvf6GMsczrICdUITC5+e5bK0r14efYQGvdeO6oD6qQDLhvu2kgGidZ5WckswAAefF/ah9WuWv1x1vZsAkU6rueb7ugLKrp7vueEXLW4eHXHlviRd39ECZzMV3S446cqDVgcXfhX5rMNBClxFegFfpW88rIIh4UNhQ/HyNFe3d3d0jJewsPi4bip3rokoAwEQ9HPws0mr9HRjY29t75K1AXd4CPbc1Vin0lxQ4FRjg8nuBsMvfAcaeOjlrrFd4a1695bm8fjeB/9bIeSn1vuPDDJg6b1LLe/W78MhvCQbGuJD095jnqvTOSxDx4AmoGBzPqLUP4vyQXhWD9gErcv6wix0eBwcK+HmAnJYb97WopWzUyn3pevTQ2Lq0vAJjFH0LHDjeWZecAO6pa+Up6SlzR9tPPTwMmZOBAlXymcFXeVs53a9Mvx0YGOtO6mEAdS05aytjaAUdsKDZU8AufMe0LQZ3bXcAQ0GBxj/s7e3F/f19CYQWi8XgCdBJuOnJVCn8Xqt0HcVXeZz4fosPK89UZgHjngpI/XY8UYHRqj2OnKWW8ajra8dHvTyVAfsx/Lhp3v3dSHmQjSRNx0aMylj2wFZlZYDAeYZ/VV74rcBAy+Wk15wrsXLLu/ucTq3uTDhHPKzbqwWeKfisnJYbjRWBm0xZu7hubvL1IO1NUKbIegHhGA9CBZoqxd5K38O/lYdKhR8T82VmaTnwm5WFb8fjrp2aXuvs0vfSOkBgW/j2d6FMnmXGVAUGKgCvMovnRER0ybBfjTd+eTCQMY+710MqsJzA03TO2q7Wz5Whl8vlEJGv+fIz7FHIggDdc9oO/L6/v3/kneC2OOFdWX3bSA75Pwc5Hsusdvfbpc88Tlne+pwTlFqX6sP5uR0prl4tYFmBM/2uAEEFvFplZp6JHb0eORAwFgw4WadLplqWm1P4nRk2/NyvxCu/LBjIhGymFNexXHqUhwMFmfXthLXbDqhAgtvEgKAqT5lZQQ0mEe9M0DIw2fBxbX9OBbsubUs9QJVwctdblve6Hhgd/+rDQagKAnTss/mhzzrKgIDmnXnHNC8tq2Xd/UrC/S1QBQJ65Fj2XMTj5S8tL8snIobYJ8g45yXo0RlviX5JMNCyTjKmyqwUdy1jSkcQmGAwZjRV5EgPJczeAAYBleWV1VuVS8bMYHSdRG55w4EBVhKc5leZNOtSryUxBmTidw8YGGNVZ2kzQdgqN/tk1n4LcOt9B+w1Ladr/d/Ry5MaZgoCeDdTNncyo47v624qR26Jgeuj8ozL+1U8BL8UGMhAQGuCr2NVqWWilrXLn6PsmflUyTrFOplMhu1+rr0VclWEzfVvuUxd+5AfAxu1DrnN8Gxs4tAWrk8G4FxfVDzz3J4Gl5+zqrWOmYLWPFRYOt5loaf3M4FcWfdZ/bK+7p172Rj1elGQRsvcgYDXowoEgN90a3Nrh1IFFNSrpbIxM3S4TuwlwH3ekv0r0C8DBjLFVaXNhOm6gqEFCIAssd7OSprroq75iFhZo3f1ZPTKbeLfGRhw+fC33kfcg7rUtL3YeTCZPF5u2ASNUeKtCd7Kq9e6rfLUsXDpKq9ABij4Nws8l7Zqh7veA1aeMs9aSt/Vr1XWryLM3wI5IOAMI7ebyXkXM95z5bAM5nRVUDenYxkHIJBtpX6L9EuAARVomQXIpIJK7/XkkdUF35nVzUoSaTk6P2tbphw4LfLRdS7OS9vv+s5dz2IVIlaXMDBR9vf3n92Kfio954Rdp23rpO+ps7PoewAJp1eAwXmDHCh1wCHzCjAvVvUa27eZp8F5DxR87+jlScfBWeQaAM0yT/Nxsj4DmxUfqXytZJoL+mbvqNbjrdGbBwPVYIJ6hWmrnN566DOct0bl4zcsZ8fATlG7Ojsvg7PI3LMZoOplbEbejpz3YEfP4552Y9Sy7Cuw6wAng0HHh87qyoBAVkbWBlXiGWjR9mWAuSprRy9LDghUx5/r+KrF79I5+Tdm3B1w4WVRJT1bpcp7m+nNggHnBsoYpPIKjCnL5dVzzVlLXBc+yEf3ebt8M3dvRKxY4y0g4PqHr7lzDnDwkHvJjbrLHFj51ahlwY691+PW1nuVUq0UZpany9+BRV5HVQupF4BnfaC85az61nPqIXDGwlsT2G+RKlntAgVBui2wMvpYRilYVHCglF3nMrUdKsvUEOoBu9tGbw4MuIEZ4xkYOziZpV4xJVswPQyhjKRWmLPitS36DCZYFeRSCcYsbw2k0QCfTQcKvjb1WvaVEs7Gt5WuReodaKV1cyvi8YurQLxkELEqvLm+GShVZd2qc8vj9Vz9tqPnI2fNV16BCM8veMbJXpafbAThd3aCa2UwaRv4m+Wq7lRQo+gt8d+bAQPrgABWyg79tQYqQ4X8zdQrfMFAui7GClYZablcPvIawAvAdWXlzKcY9jKlegKQN7+XgCemBtUwGHgrk2BdyqzQKl3rWb2ulFkxDiDqcz35ZtZb1Qa1knjbbAXEeZ606q0WX5anI677uoBqR/1UyWp3DgpTBhr1eX3Ozb8MnHJZCihah8Hxc8z/zKdvNahw68FApYwzlKjPO+HhlHpmYWgZ2XdWtgr4qt5aV67Tcrkcttw44cxAgIV7r3seE4Kfz156xO3ict/ymQItxaTpqt/VM620fD9TZJU3occT1eL/lsWm5NymGVDvnY/6jBPmoFZ/anpX9lM8iDt6LJv5twsO5GcqkFsZfGy8OM9Rj7XPQMCd/8JGTzbv+Ju9pFrXbaatBgMZc/G1HiGIAe+x3Ho8BRkIyARalacTUFpX/M6ibfk5VsislDPwoXVeLBZxd3c3MDX3ndsaqcyvbrm3Qk6pVxb4mOsZeAT18EcGEnvL5jxaAtY9r3zp2uKEqCtDAXqWH1NrXlbPVvm5uri8tl2Qb5IqEMBgQJcFnKzLDCeQzgdV/D1AwJWlnlCNY1Cg4Iyi/f39dFcBp99W2lowUCn9zFLNBIwbFE5TCVYn/DJLu7KCMqXP5PJVxnaHDuE33l/gDvnJEDnfQ3nIy0WHRzwO7AEp+ODvbQYJlTJdZ/JWAq1XyTjlnwm5ykvAaZy1pgeyZPlmL8mqQAWXo5ab1qtH8DvKQEnruSyfHoNhRw+UKX/3cWAg8yJmPMzf+L0OAGClrvm32gTSOC9Humy6zYBg68CAs6IqQVoBgZbbz+WbAQdnVTllzvdYeWq9s/oqU7cQL4Q5ji2+v7+Pu7u7FSZUEMCIFp/pdPoI/SJP56nIELrrV/Ys/IrkeFa/XZ9kxH2aWVDVc1ovVxcHBrJAK/dfy9HxR3m6IyV7PgPZTxGcleDlceB02yyst4kywItxzAw4nQsqjzTvCD8f9LoDChVQdPnrNSdnM12B63wgG7f1LQCCVwUDvei6BwiAMiZwitzl02IOVXD6rArAbO3UMTDfz9rWEqR64iCEOr/TQPuE6wmFwGCAn2FA0FO3TOn96rsMHK9WvNYSCBm/VGmzctxvl74HQLvrjofd/wwQOqurVW5Pu7jcHlK54crdURv09oynk52OMrnD9yqA6eqpeTv5xderNvH5MFwOtmArUEa+2wgIXg0M9Ex2Tuu+8bslsFqd3cOwjglbxMxT5emUuwKGloDV6GoXuMeKmJEto9f9/f1H7zzgXQhO4bt2ZMheAcqvRE4I8nVNx1T163PVKStb68BlV6A3s4qqdHzd5ZHVl+dwT39qu8YAryzPnbcgJ+X37FMpczyL6xV/OYXqQHAvMGG55MjJNj1907XFKX8+FZbzV4Np0/QqYKAX+SMtfyu1rJWqgzNGwbXWdhDHAJmC1DL1+d4yFD1zfrzdLwsWdAADngCAAnw7JJyBgmwi6vneDFR+Bc+AUzT47uXdSqBoWpdfxuNZHVqCsGXBOcGeAaHspEkH0Cslz0CAedJRZRBo3r2gYFutt02TG7Psw9TDcwoO3XzhvHrq4AKtI2JlCVW3IPI3yy++zsZTBgjwrVsPtX0un03Qi4OBHibR9Pp7TCe1LBxXJzynlogbrJYA5dMEx1BmbWvdXRoFAo75mPb2/nkJCAMC5FMJaK6nS+MC0hCIiO9tJGd9grTfM76qgEALPFbptVwWIsqvPYAE+fFOkUqYap7KmxqYyu2q1kkrsMKkMsPNA/7dM158v6rDpoXztlEmPzN5qsQyqQJ2jocrIMC7rLR+2e4FLqOKVYEMWy6X9gVtXCfHT+xlxXUn47cBfL4IGNDJqygN1GMtVFR1XMZUKlzGdj4L0mwCuPb01FXRMz+vdeZtfLzlj8FAS8llisOBNpRbeQVcHQEEthkMRLQVQ3Udz2fAqfXdkz/fV0DA9/V/r/XRWzaXqwKXecMdC6ttyNrk2qt11LmS8fpzCNcdKMg9tr1AgOVbJl9cOS3ZqgpfAUu2e8GlRf7MW5z+7u5uyA9Lq9hO6I5ix3N6mizXowWaX5OeFQxUyjeLMO3pgDFCTcvV+uBZzdOhtUy4a1udkMryyCybbJuK/mYh6078c4iXryP93d1dRDzeG8sEF5r7ZP3PDK7bHH8loZoBSu7rXjDA6cFPvYCyAgOuftkzTqhXeYBYOKqwzcrUEziRfwUyM2HdK0NapOPmLLfflZyCdnxSGR+arpKxGrnPc4K/9eN2TVUgRfWSKuqIeCS7EGPl+iEzlrgMzVv7wMmP16JnAwNO+VYDw9TTaCcgKyvHlZdNbEVzLr+qHHfyH+dZ1YX/gxF53dWBJ8d0DoRkEwJAgOsHBo94WEZAm5COzx5wCF8nkNub/haoV6hxevd8CwQoORDIfV2ldcC3BbAdUO99nvNQV6gezuLKzASp5l8droX/lSxwoIr/jzUyfjdSGc7XmNw4VOn5OU2fjanLz/GrAxiVfHSBgSy/nCGjz1bpePv3ZDJZeYV9Jms2AQqe3TOQDVgLpa1bHvKqEKMqUVd+S0Ar87BF5JCdCjfOJ1Meri64xyAhO45YFQczq0OvEKj7+/srkf4OtDmGZxQP0gmUTdC3TC3FWymnnrwcuX5sgezs+QykqwJX0Mf3XB74rydUZmW2+iUDA7pM10sVyKvm5+9KFRBwvK+yJ8tPyfV3lmcmP3XHFN9zxpPjH2fEqL4A7+n2bXf6KusK166sTxQMvRZPPgsYcAIF1/U+U2YNaJrsHu63gEBvG3osQh5gfk+As5R7hG6PRcPXsmccyMomLqx81AOvJNa07PrlZ9lrgUnoJkVLOLxFqgST8uLYvJh6Jr8qzOrZCkS4PHqWdbTOLs/svgIOzq81j6t57SwqJ1QdX2Zj9zuCgwwIuP7KnnXz3/Uty0L9jWcqRQ9Sg0nnpmub5qXLAo7/VCbyNQXQnIdeb+k2TfPS9GQwoMLEDVpLMFYTlO9zeXzdoUdnPbtBcPddvZAn78vn6FJFhE54qZVetdnVg8FA76TM7oEABLitADtAwdnaLjwD3Ha3NOB44i2TTvSIttWZgd5M2FTjpgrXgYHMU1Hxm5sfyMtFautcdMKbn1U+0lgVl6/rH/U8aJsrgK1tdMqqBaZ+dcqAUg8IqxSc4xn+zn6r3NRyHHjQunH5ru6Z9wDla93cMpXzJmiePQawq19Ljj8HPQkM6OR1QYKcFlQ1qtUx1YD21qGa8K26sUegsnz4ntYr237olALX21lTWfkZWFBmBZDhsqbTx2yR1U23CTmPQDUmb4mcoop4DARaQM0pukyAZfXgpSq3tc894+pW/Xa84vpBrXu3dBTxAAacpc7PVv0DEOHOM9D5wvm6dvD9HoH8O5ADRzouIO0TB7Y4X5WNlTuen2P+UdL0HFTK7XDtdMDDzROWk65sxxvgU263etsyHeBAxGvQ2mAgAwGVss7yya4rInL5O4vW3WdGckzohA6X7baUIF0mDHlyKDjgNrq2ZOT26DoPhusDLYvjBNQC5IBCpkogOGTd4ou3SpkizdK08sKH+S6znDVmRS2XFm874rFXoc4Cij2AWb4OEHB/ZMo+2x7G95hve0BQRb8SPz4Hab/jtwPzY61bTqd80KP8OE025pX8UX5UmejmigLQ7Gj2qs5sHOl/LVefdYDkJQHCs3kGqohk1+ER9aENOqjoDM1ff7NQzawOPgQnQ2pcJj/PywMog7f3ZUynebslA37GCVnuJ12zQnqOY+BnWLEwao1Y3T7DIEfRLI+1xhHomOl4vGUwoMLL3XtK3vphAOqApgKBzNKqrPmIthDOxsyBzmxuVsqa657xiAIepM3mCKfhdrbGKfMY8P1fmTIQxoq0GksnkzPw58jxIY8zy6xKbmr92HDTsrhePOfcfOSdABnY5rwhH1XuumerPnxNvlsLDFSMk00oVbxVRLy77sCGpnWue6RRphgjLFvtVGGtjFGBHGbElmegp36IaUA6F/Hq6sTMqxapHr6h9da6t/pp26lHsD1HGZnirNIrCGBg2ppPmSWt81k9BJnwV3CiFiRAN4Qo85V6GLhODvxg6Uo9FD0gRNtQKSROo/LhV6RKjmdLA87Q4jz0OR0PzYvz0N8ZVfzOeWp9K6tc65AFLeqOKm6zylLl6ZbxpL8VEGXz8TnoWWMGWgItywPkOskxZyb8tDOzznb1dWuvzEwV2GEr320jwW9XH1jZrQFWZcCMB+GIe9PpdKWPnFdA6+iEc0Q88qLoBHKWqyoX7Yttpx5Lcp20FU+2nnOKtzc+JuNbzZu9Qu7bCUsOqMWbLzEf8DptlAFgiv8cgAu+ZI9VJU8yueOAQYv3KsXWAuhvmVpAwAV8ZspM+bMHALiga6cPKv7G72we9uiXLD3/Zy+d8hO3W+8pIKjAgJbLc+U15OezbS2s/uOadoo2Mms0M1qWv5btrH53TSOdFZG5fLVeOnBcPtqqbv1Wf2Vtc9YgwIC6jZ1g1NdqqjJQl3MWX1EpCGXgHuZ/a9QLAipAmqV1/e0ErRtfB8QyL5yOfQYGNBBK59B0Oo2Dg4OYTqcDEMVzd3d3cXNzE7e3t3F3d7cCPplX+SAsrV/WR6q4dA5yX1b9rdecnPkVwUBEbtDxh/nReQUciFCDpbKSHc9quqr/WxZ2xkNufFVu8z3XL44HXbu0ng5UZHXSPF4KHDxLACH/5/sgHkxncTtyitspdU2ndeT8+BsDqP81vcuXB1rro89q2T35ZqRKQcGAKgxMRD4+E9/s9merjkkPIkKZGrHL95UnsqWJt0jPrRyySe76SoVOpuBdPSswwECAT53MhKGCEQDIg4ODmM1mcXBwsJLP3d1dHBwcxPX1ddze3q54B5hPNQ5F66uuV1VAOBOD6+vAq7bfyQXub/DwrwYGHLjTe0wZEHD5MX9ma+ZZXfC/JSt6DDXNOxvjLB5F+ZBloAPqlb7ivLO+zOrPc0Pb+Zz07C8qqpCNNrhSmpyHCjTXwT2kaE2VnwMYWh83iC7AhvfvO0bUcnosTc7DgREXVwFGmk6nQzqNAVAwcHd3t3KwEAQ+2hXxeFeDq1NlUbwlqkBmNWZjBFp1TeeAE+TKG/qc5q+CW89cdxaOghHUB8/OZrM4PDyMg4ODoQ739/dxe3sb19fXMZ/P4+bm5lFMim61dXPPBcwyCFABrVZlNf+ycXIK4a2T8gZfd/yUzWEHECuQWilBVzd+zoE2zVufi/BxZnpfjadW3irvdV6qjuFnK3mgAET5TgFBK791aDQYyJio5zn+HtMQxySgVge7Ce+Ynn9XjFEJSeTp0DCUcFamlp8Rr6s6Ie3ayszLb9nio42RjgMOIx62GOLI4vv7+7i5ubGomft0uVx1D74lMOD4zQHbiirhVaXX304Bq5BzCkv5osqXPQNIA+HDy2hw/WaAYDqdxmw2i6Ojo5jNZgOAvL29jcvLyzg8PIyrq6thyYC9BFwvN2e1H5E3gwEVllV+uJeNgXv+VyEHGB0A4+/q3H2Vf5kcaO3e6qXWnFK5qIHjSMN8rwCYx1yVssr81jJcVueKx3V82PhaxxDuoScHEPLvXkEJch3hLJxe0o7JkKxjfqesejpbkWFErETz82Cyi6mKIcB1rSMmlO6zVsvPRW0r0/ISAPcBv2kQz2A9GEBAt2X+SkAApOOn1/ibqWXtcz/pb5cu8waoAMqETTaPFCzoaZoKIuE5Un7XNEdHR/H+/fs4Pj6Og4ODiPjH03R1dRU/f/6Mg4ODuLy8jJubm7i5uVmJFXB1Vd7RuebS9ACxDAioInBp3yppv2WykBUjrjkDSHnIKb+WHOhRcG48s7F1QIDlMZeDWBf2ZLH8ymR11pZeGcdtdGAhM7Qc2HpOQPCkmAF8Z0KnUq7VhNWO4LTKcLivddDOVWCATwsIuPxUIOOj+1knk4eAPQ7I4/XPjPkzRQMlDqsIwti9ipiXKTjSG/8VtUPJw2JTN/Bk8vBO74w5efK7LTjbTj2TsJcqEJTllc0rB05cWa35BMqse7W2mbcZECBffv7g4CBOTk7iw4cP8f79+zg6Oho8DOfn5zGbzR4FGPJyFPJziojbyUAJfMreD/CeU35V37s+fQs8O5YqmR2RL4tqXyr/OICqn6wslYPZ+Gv9srYBCMCQUTmOpdGjo6M4OjqK6XS6EkALowhxLgh+ZfnrQIObv9mcrNrhdI/qJE73HIBgFBioBFUPY2nnuHvuedcJeMahVa1v1lGOWXUQnWsLjMYuKH17IdzqSKfbpqp6adsd0GG0yi5/jV/ga/yby0CgF2IFuD8wESJWt8mw4Oa+VEtAx+ItUA9fR/jTIHvzxf/sOyvfKcdM6Cpfc97Mw1kAFEABfrtliogHwXp4eBjv3r2Ljx8/xufPn+P09HTwKJ2cnMTe3t7AZ/jc3t4ObcE8YRmRWWXar+BrBRfV+HEfumuox3NZXttCWb+4fnWKx33c0pUrt5LF+j8bawfqlK8BBPBR/gC/Hh8fx7t37+Lk5CRms9nA87e3t3FzcxPz+Tyur68HLxZAAmQlfzLqAZWub3qB/XMBgrViBvh3NelUGbhK93RUxhT6rQqKhYsqU83bgQGHzHidid2rrp8ACHRCscVe1a3VJ+zO10nJfYIDW5wrD3mwAtf6YiIo42udXV8i3VsQqJXi4LZqe5UXs0nsxkfzV2Gn5arVm4Ew7nPlNV4acEAAyl3jSpjfme+xi+Do6GjwDHz69Cnev38fs9ks7u/vYzqdxs3NTVxdXcV8Ph+ELHu3UAaDLA6ccoCA56Y+3xqXCmBwv/0K1AJGyiv8nMsny9vNeebVqnzl2cygyAAJ8yi2ucIzwF7byWQSs9ksjo+P4/379wOvHh8fD+lubm7i8vIyLi4u4vLycgh+xTbZvb29uLm5sf3s2tVD2kcVOMjKeYqcffZXGHPlXLpWZStU6a6x8ldmUUHtlGHGdLoOv1wuVxAnGCwDQBBIDAi0j7JJ1Go3l6MgxoEBBkcODECZqNLg60jvAoFafan12EaqBKAj186sfaqEM4HKaV09nNJyY1IJSgcElI+Z/3kZip/jZSe4W4+Pj+Pk5CROTk7i9PQ03r17F4eHh0P9Li4u4uzsbAgwhMWGj55SmI1HpTAcH7IsqABASxH+6lQBAmfAVfO5kuG9Mo7llPKx8rN+2GDT9Bzb8scff8Qff/wRHz9+jOPj4wEEz+fzOD8/H+T8dDqN+Xy+srNqsVgMni2U4XhRDbas3xTg8m83Htm8WJdGg4EM6YxBP65DehVihW71+UzxantcPZCO1yIZabLrKWLVPQnrnwOxWge3MKgZQ2A2LtvVHy5avobnleG4LpUrrIVcW0Bn26iqX2tsVPFonmPAAH9XCouBgAsaVcGo3iz2GIGYT/k6W1v48JbC09PTYf0Vn+Pj4zg6OhrWXk9OToZr2ILIcQgtjwv3gX40Yt15D/RaBQy2nVfXpUwO9hIDAf0oz6psyeSy5q9luTnEHgCn+NUwiohHQODTp0/x5cuX+PLlS3z69CmOjo5iMvknLury8jImk8nK3EK+vKyq80R3kmVxBJymBQ6YOK91De6MRoGBDBG2Jqsjp7iydO7j8mo9p3XUdO45ZnKOPoUQU0UcsbqWnDFDr7KsLG4n8BR0oH5g3MVisfKKYm0DAguz3QZV/bhubhzeAlV8wv8zyiaoWi5ZuSoossmdKTJn/TuhydsEIx7iQdSdynli6yDPARw2dHp6GicnJ4PVz/eWy3+WmhggcDquA29tdfPSKXgFrBrU5eaQs8KyMdHfb41ac7DiL/c/kzXKixkozurS0isKbpkPnafWzY3ZbBYnJyeDV+DLly/xr3/9Kz5+/DjwKpavYPnzuSu4hqUCrSfzsnolnL5r9T3LANdnvXKph9ZeJnATq5eqxmk6fKsg5Tyyeqg1xmkYtVUThe9DcHF0PcpXpc91AWPwdwUGuK7qpndtbCkLJg4KY6Wk6BbLG8rElbWl/ehA2zZSBRgrpN3bHs5fwUDWd1oHl8ZZ0iiDvQFq1TtAMplMVgCgc7tC+EKRQ5kfHR0NywJ6D5HcEMJYSri4uIjDw8M4PDyM+Xy+Mo8YnOqcd+3W3TDOau0xULQ/+PtXoV5FrNeyPoNMUxmockH50/Eyf5xBwcAWQBM8xNsDIx4OTkPAH545PDyM09PT+Pjx4wAG/ud//ic+fPgwBLvCK4CjtDmwGtd4jqnhFLG6k0u9xOg3tE37S/uc+0PlgTNWKplV0VrLBFx5rXClrFyDOJ0jtx7k8nZCU91GXEdFrU4R8/VWwKAK12rtEwpZ3U+uH1QJu7rpEoP2iVpKmMBAv/AUsNLCTgiuh54vkFnBWvcW4NomcgKqF7z25J31Q4/F4MjxsYIBde+r+xR8wR4jXkoAEIDghZsfQhgC9v3793F6ehrHx8fDPZw1gOcQT4DArMvLyxU+cwGqOj/4v/K1WybgdraAXTU+b5Fa7WqBo9a9yqhSqxzfDAg4rcpMleMMAnRJCnwW8XAMNnYEYO4eHx/Hhw8f4uPHj/Hp06f4/Pnz8Hn//v2g2AFkofx5B8Ht7e3A11gqiIiVLYdMrLfQRgYEqh8z2eqAlaN1gUDEEwMIlRm4MhX6bE02VnYq4HgN3wGBCP+qVvUIVEgUaRXNRTwcnerayEABaDCLwGcvgfaBE2YMCrjO3B/IV/sGzzsPBQQxR9xOJqvbypbL5QAO+FAijfIGw7esjG0kJyz1v45HCww9d/20Lj1gLAPSzC8Rq8GlDAQggDkOAK5+eACwTPDx48f48OHDsFXr8PBwcL0ievvdu3dxcXExfPh9Bqrkq3Zm/FRZ/5p3RdvOr2NIeQLfzsBgUnmdzQ8FBK7MSnnxby4zAwHgIyxNHR4eDkAW3gB+QRY8A0dHR/Hu3bv4448/4vPnz/Hx48cBwJ6ensbBwUEsl8uBb1m2Ir/r6+vBI8HGEctEjeFRHZJ5hnuseuc1ycZsLA8/eZmA3UQZ0/SQdgiuQTi5k6Q0qj3rYBUsqjD5WU6HQeTncPgEDt/hDwtSLS8iHqFC7jvtV1X6DkXzui+UPb4dKACDMBhQ9K59j/pl2yR5vLiuTphvo4DVvh1jneuEc/yfja2jXnChebp2uPwUvOmzAIQQwBDCsOY5LgACE0L6+Pg4Pn78OAACBBQCVCIN5wVAoQFg6jHL2pX1V2YkuDTaxxlgeKueAVCmqCujqud5JzPZWKrKza7h+t7e3srS1PHx8eCBYuB5eHi4Ilf1HAvISniweOsrvFj4TCaTga8jYjh1lbfDXl9fD2AA95EWMS/cryxHddnVyXY842R3pieVeoCF0rN6BtT1gzSgngnFDXRLBIoe9TvrYK6rAxGube5ZVqaMXHldU5U0nsE2FKzF63KBDlw2YZgR2GOCvNzZAapAUCbcW5PJw+mCWZS5eje0ThVtIxBoUTaZKj52SB+/ud9dH/bMDwcEqjqxpTKZrMYFoEy2ynlZAOv8Hz58GFypOGYYabCbAEFZ7969GzwHWMfFEgQAAQQwBxDqpxKY3PYMDDnA4MaFKQMCVf9uM1XysWc+Vsq/ArxuvJxyY0PIGT8ctAogADf/58+fB4UO0Il8OFYA6/2TyWTlLAzwKZazIEMxB3AoEXvDTk5O4vr6elg6uLm5sacWZnPU/de+rJ7LdF/Gz2Nl7pM8A6hIhaIV6fRWOgMDWb6OWpaSpm1ZBc7K5bUwDbbC74hYAQIQwGzdR6y+hKilHHjCwLJCvfhYYQd+tE3s8cBaGMcROMZkYOXAlZsQ2wYInJDrTb9OHgqeNR8VpMqPLbDoLDF2dWaBTiAGAhCc79+/jz///DP+/e9/x6dPnx5tqd3be4jQVmufy2eAwQGGPK95/qhS0MAr1x96fQy/VXLJKbe3Qo7P9Nspc302s/D5uRZVMlv1CGQkL1Hx+RXv3r2L9+/fD14ofnV2RAxKmRU0FD34lZcYAEyg6PENEAEggKUH3nHA5THg53Y546zVZ9XY6LUKZPTOg2fxDHDDdOIomtEGZY1QQaABepq+us6gxVluDjFnk4gHWoNiuL687WW5/Mc9xPv8kRaWE3sHWsCEy2JAgGfApNX6PpOWjbUzXU5Q1O3AQDbRt5UqIZfxQpZPiyoBoPMim0NcLy3f8QZIdwpwGay0wUt8QtuXL1/if//3f+Pz58/DchHcr5PJw2luOOPdeQg5Cpy35upc0GUzKIWePsj6lds69jl+9i2Rk18ZyKyezxR/y9CqPDu455SmGjlqpeuHQSjHniBPVuwob39/f+XgK4AIDjrEssDt7e0Kj+NV3BcXFwNPQq47fegMJ7eM6/q/MrKrMdMx6eXftcBAptDHNCy7rwDA7QhQ8MH10OtsUbD7sULA3MZKMfMzzMRgYDAb6qX7vFEv7Vc3ebRN7pANjgaHtb+393Cym44T9yUjXI5/4AAZBwKqgEWlbQIFmeJ9al4R9Xoz91MFmvV6Dw+6+eKeYe+UCl+2xhAU+Oeff8a//vWv+Pz5c0wmk0EgwtsFQQlrP+IhSIrnnR4Ry+5ZBgN4Xtvh+jADRmMAaWv8XJq3QE4ZO77P5HOmxN1vJpeXgisnh/m+LsPyewb0fAHeXcCAAHIL5wLc3t6uGDwMSCEvwdtXV1dxdXUV19fXA+8CkMxms5X82bPqPr1AwMmJjFRWZH3ZkxfoWY4jduQqWU1cZVynFCO8AGCQwOn4vpsUmWDWZ7Qc1wZW0Cr0GAhwWpCLLtWyWGiz4FaPiQpjfNQ74BiWLX8lPK+gQMEZ938PkNokKT+MqWuluHue7Zm8ToBrGq67CtEIv8WVlawG7yHQCjEAnz59Go5s/fTpUywWi2E74Hw+H5YJOKKbt1nhGnsGspMMMVdQR9fm6sPUkjstysbmLZDyZCVLx/YP82YLBDjjRp/rkf0q8zJDiYEDlppw2BrLOZ4nEQ+yDe5/DhbEoUMR8UjmwuugQAD1Yrnaw69Vf7t+VXqqrH22dxOAnMXDEcJIo8/rRy2cHjDBeXOnt5R6NjhVh3M98R9WldvPzSgXFjusHzBuq395QrAAV8HJTK5nBWQMy32BCcPvmmcUrEDA5f0UhPrS5MbQCUr+3YPax1qUquyzOugc0CUfBphOYEY8PuREwSsvD2ALFoDA58+fh7VZ5gn0G84aAI/ALYt8+RtWHeIG8BvzhkGp1j9bd1UBy22s5nlL2W8Lv44h5W3mb8fDOn97lZKTuS6d5p09F5GfQaDLlOAzVt68E4bzx5ZAHB4UESteWQ7sxjZEfn0xn0CoPKhLEJmXNONRx4ssR90psK7vVD6sCwqeBAac8MomHFeQK10xLwMCpHEuFmU2h9K0DAcesvq4PFzdWNhpYOByuVzxGoA42tV9tFxYUFy2BqRBkPKyCMAH55kpc9RXBUjrDYecRwvEbZqycQYpX2RUgZ916oM8edy4jhzHwc8qT6rV4/gXLlbmWz2h7Y8//ogPHz4Mr3gFSJzNZhERgydhf39/ZW83ysYJhOB5d2AM3LsAytoX/DIt55VybczGqYe2kV97SNvt5JRaq+75ai5wWgcCMrCVzbEKmMP9jrV8fK6vr+Pq6mpFxnIa9lIhLQ4fYvmJvCCbNRAaYAKAANsK+XXGKjOdDnRA1clOHSMnPzN5pLrLga8WrQUGtBFcUW2INkCt2AwMqGuI07cUjDKels2C1QlJp8hUYfMkA4PBsoKAxfNcDoRwxTSqUF1f8zMRD+vA3E5tX+Y6dp4b17+820EFh6snj79uudkUVf2p4GsMZYLVpdNyqn5xOw8y68sJVJeGA7N4DRaKmvdi42AWKHx4m8Df4Hl28XP0NqwbzI/7+/thrziiwhFvoLJBrTD2So1dg231G5fJabcVzCo5xeKAbqawNB8H8lt90eLLjCdZ1oN3Mea3t7cxn89XtgBGPAAFWP1w6d/e3g78FPEPGLi8vIybm5sBlOIeaLFYDNtgwdMc3M1BhQwGVI5mferIyZ5qDB0gUKPLyf8x/Lu2Z6AHPapgZYWkKAa/kcYF27lDb1y9HKjg+4wCFbUpknaWMHc6u2bZ3YkyszIU4Gj9mXhQAS6U9vYev5VQBRv3Pa/rOsHnhIa2Qa0AF7zG/efqvQlyYCai383fg9Z1wmYTsge5M8DOAKNrj7YXwlA/Cgb4VcTYfgW+xhzkoEAOBIx4OAVuMpk82ucd8Y+ABhDg/JEn3K/Ii63/CghoH/cYDNx3Lr2Ta9tGDpg7OeLmcitfnR/Mgz2KpgID6gF2HgxY5ldXV0N5sNKvrq5iPp8P3ihdCoMyVxnkZBvmBn47DwUvGyyXqwHhe3t79kjizEOgfeTStPhT573TIyqnKxoNBrRA/lZmyyrnGskKS4EAK1+HxvjbAQEGIbw3FM+p5a5ojN3mIG2HBg+yYNMBU6XJDJURAwFWMnwfgMDl0wrI4j7UfuHJj7yyCaVnHvCE2jQ5NA7qBQIKcDPhqkCgF6G7Oj3FAuHYFOZPXmPFPONzBtwLjTIAgjryOi6/IObm5maoA6Ky8dE3F7p2ZoBAeXCMVaafbVb2FTlloDzklgdbeVaAggEBX6/yyGQSy3jHaxExWPUR//DZ9fV1HB0dDdH+AI7MW7xtEMtP7Npnmc4yS8GOAlxeguVjkpE30joQoH2WgTWdZ6z3WnKKZTTS98retZcJKkvEAQIFAzzwuv6pTOLSIf/MamWFy2vsbgB0L766Wbi+2STBc0jLQYE415+ZDgMMcKLI2PUnfjvXsU52BS78rV4BZ1GpIOZy+FvvqYCtmH8TlAnM3rqp4sgUiQMCrgzHj65+2YRWQeCexzxyQICf5TmHsYMQvbm5GQL8WBHjJLb7+/s4Pz8fPnxwFbYe8smWyuuZglKDIQOv1bOTSR1roX2nNAZobIKcPNa+7e0zl2/rmWrsnOGHe7o0AGKZw0ox4p/YgIODg5jP53F0dDTEmEyn0zg+Ph54MeJBHs9ms5VlJn4LIeskVrhVDArqjRgbLB3Ag8Bt4HY4PsrGSe9nsqMycDhOrIdGgQGHqCsUGVErC9zXBrh8MkvAMQ0DAhZ+QIGK+CDwNBAJdWah6UAFWy2unapYMUhs8bhtgpx3S4G7PnRj0rKoqj7mcloCcqy19pq0DihhwdAjIPFMBgR0fLI6tQSt/nbpIiJ9ayHzJa/Psyv28vJysLrYMud019fX8ePHj/j27VucnZ0N67D8khjMQ30THK+/Yo5GrC43rAMEnGCEV2uMcN0GEOso4yEH1EFj52Mrj8xSbekFrqtbUnVyCbIafAx3PfgLZ1+wUTeZTAYedJH/nLduSWSe5DkDbwPiww4PD1d22aBeXHdt0xjjA99jDCuWOy8CBrgg7qBs0LOG9wpI5MFHS2YuQp347Pp0HwYDcG1iPQjlsQBRkAFyAUxAqhA87OGYTCYryBTPuyhq5O8ODVIBycySMQCYO1s3Q96KjN2YZoCMkWgrwOstkNZ5HWGqE5N5KWJ1vLL8q7mk/x0wZM8UL+PoGPGLWS4vL+Pi4mI4+x2Kmd8Kd3d3F/P5PM7Pz+Pr16/x/fv3uLi4iMViMQhJWG2ITQB40IAszDmOp9E+1HlWKSMFPai7yzvrz20lHecMVLb4l9tfPdsDLBSc9hqJfC2TF2wUgafAL7xkAM8A2qVxXXo6K2IB8PIhPZo4YlWf8Ps4EGPDOoPr615apG2vlHVl8HEapwOQPgO+jtaOGVDlmLn9HMNmFdeO4TWYDAiwa8et4+vJURzpjzLgAkWQChR2xOO19syq4oHX2IHFYrGyBqsIFUIWfcLXtTz0Vaa0eT0fxAiXQYZj1J6gLAcI8KyWwZ/flVTgOiANcnNIqUfYRjz2EDkgErE6v1g4Xl1dDa8ZBhiA5YQ0l5eX8fPnz/j27Vv89ddf8ePHj7i6uoqIiOPj48Gti62Jh4eHw+luOOltPp+vuHZZ+HIAYg+pXOJ5hT5l/s4AhRuPbSEd98oQqygDUnq/BQq0Di3jkOeDynLnnWUZz/Jmb29vJcqfDTq16qELuAwEBEbEYOnzrgXUkeU5lgawhRHl6ZksLNf5uusD7jMnj3sNENevY2g0GGALh9d81NUT4YNbMqqsWV7nyRhDO5KBAF6ZitddshsSzMTr/be3t4PwQ0BeC9yA0CdgLJR1e3s7uEkR/Ypzr7P2VoyEtLq2xf3Dk5IZRb0SnCf3a2ZFVGBAx2JbPAOVhdJC5gpa9f6Y8h0QUEFaWXMt/sN1d1KbmzNIywGvbDFBYc9ms2E5C2AAQODvv/+O//73v/H333/Hz58/4/b2Nvb29uL09DQmk0mcnJzEx48f4/T0NJbL5WDB8X5t9sax1Rfx4L1rCTqnjNDXajxo3zrreJP8mlHGM0xjgEAmo3vma6b89b9TfFwGG33Oy5rVn72qfAYAvAO8/AqrHs+C73jb4eHh4fCODQQhukBBAAF+VTKDadYbld7j+aiyWj3BVX/oWDm51UNPPnTIBR3hHqepOqVCkOzSydwuyIMF6WQyGdaSTk9P488//4xPnz7F8fHxoOgh7C4vL1esEd6zure3N5QNYmHOzAam4e1ZOKjl5uZmiNK+vLyM+XweETGcl4326jIErjulqwJuMlndMujGifvV9WXGWEqqXJwCcyh/01RZ4j3Uq6h7ysbzbIHwd1W+Whj4zrx07H0C3/IZAbp7gJ9fLP6J4IaFjv/n5+fx7du3+M9//hP/93//F1+/fo2Li4tYLv95++VisRhcuNgCpmu3GW+gntjOqB6yCtwwEGAw0AICfF37dyyfvAQ5S/I58nLXVREp8GCeRV9X+bo8Ih5vmwbxXOCx1OVfHl/e/ocdLUgDIBDx8P4VGIPn5+cREStLDHgGZaGuDJRvb29XDpkDcADwyJZJnbyteLHqV03XI7sz6gYDjhF50rnCdUJWlow2gFGjuptdI9V6x8DMZrN49+7d8MKV09PTAQzAzcmvG2aG0zprgKADAXiL1vv37x+d2pa9mIVjFRwQyP4rI2XWD/dPNgZ8LROOrHQccdk6CbZFoILG1MVZ6xH9k63VdhWUmtYJ6KwMFpoRq8tBvO0Uwg5uUXiy2FXK66c4qhX5zOfzODs7i+/fv8e3b9/i27dv8ePHjwHkYv1VT2xj3uS69hgMqkQqIar92RqrbHyr+fKalPHHc9Qv409V0FoHHT99TgFVRNi0Kq9cjJau+7PLng9447MAbm9vV5aFUS68TLwshrpCZ8Co4uO9FQwA3Gr/M9hmUMBtdcZdpkd1rBw5g6xK72it3QSuIm4yuomuAo0ZTJUawED2UhxWMs4S5nWgk5OTePfuXXz48GFYO+KTrZhBdcmDD1phy4rL4ZPbcGobgqYiYnD7K7LFehevmzpBp2DHTVQdH8cgCja0/ypLjfNVUsAAxh9jOb82aZscH2mf6/OtCVhNbJ03WV5uXoCYn5xXifNhAApBheOAAQRwIiDPC7jpUQdePkBcweXl5XDsK8pQNyosLpStrzN2vMseQb3n+NvNAX6mRRnA3gZSI+yl5lNLGamy1p1QmPu8DKlpwdc6tsyjrFQ1GBx8wwe9sYcAS7HwDsArynVFPaFfXDwXngEY4GUJPQ1RYxWgZ+DdUr7ib36Or7sxzrwHmXzq5ZNRnoGMEZ3w18HPJrDmyWlaUe/8raiVLXAwEAIJDw8PYzKZDIIQa5S8fslrQAhkQhl8KBKf2oYz3T9+/PgoPgERsPqiFkRsL5fLYa+qtpdRrQIhBkTZ2ESsAgyXlvs8ox6hmC0/bBsQcNRSxhkgGPM/m5zK287ic0BAwWUmPBSIAiQDxGKtVN8PDyHI/KGnsfFSHoSq8h3qgfnALyrSHT7YWeC2gWmfOVni+jUDDi4/nXs6Dq9NPQrB3RtTZwXDmYxWIODktz7jdIIaNChfwYB6X3lLH3tkWeErj/I9bTPLe14SZiALjy621mLJl70LCnpB7NVggOv62MmGXrmZgdYX8QxkCocViCob5xVgJY/rbNFoGhUmmaB0deXywYBgnv39/cECmkwmwzoTB/fx80B5PLjqefjw4cPwOT09XbGslsvlynYUfkFLxIPrihmUFTPag/5Bvuz+d2BAgRieycaxsoBbqNWBNy5jGwCBttsJQDchK6TeQ9wfmaLhPq7qF+GBgDtDA3mwQGU+RGwLjgYGKABvgn/Y0tOXtKAMgGrMM64Xnw53f3//6BRCtr4YmLPl1ur/DGSpYVEBLSdUM0H7mpTN74haDvbUW/kS11RZObnhyuRvrT8biBhTROI70MHyF3zLb7uEVxb8CqWLmDCAAR1f8IR6nvnFSFD6DFphtAFc8LKBAwQ8TyF7nZx1xp0bp56xXJfW2lroLE8VDDqwVdAb5833NaKS07SEsubBW5ew1hQRg5LH4SoI7lNBBgXMngYwIqwp7FiAqxXokduArYxXV1dxeHg4uKYuLi4GYcgCUPuJ+4iFp04g19dujFhxOAXkgEAlCDKBWgmQl6ZMgGX1ydqo11ugtIcUCGgZjv8zi4ldtbwOqWnhEWCPFoMBjhlgngRfcl34JDZ4vwC0+f0GKOv4+Dju7+8fRW3rdl+3g8jJEx2LrG/VCu0dvx5Zsy1UAdYWmHUACFQZgirLVXbofGF+1KUFVw7kLXtUObYF3+AnAEsodihuBh4az8RHFEfEyrHaODgLfD6ZTFZiBcCn+o02Qa7yOR1uDFrXKhDbGsteetJugnUKdghcFY8ieaYMFbPyZ2GCgVW0xuuUUOgsBCHU+KAKPAukCKGqQg8WD1trHIx1c3MznOq2WCzi/Px8YGAGAs5NqsreCUudsCzQuR/Za5NZoEoubx1PFQAta+K1aB3rSu855F4plQpYqMDtARsQLLp2yuuwOs4cHwCFjA+ALPMv+Fvd9m79F/liG+Fy+c9OguPj4+E1yJ8/f45Pnz7Fhw8f4t27d8OLZzBXOHYApAHDrEjcGDojhfkzkyet8eP8NkGZItZ6jeXfihSgaj04nfIap3G/eRxxnZeVcC1iNR6GPUsc58JeVgACjXWB+38ymQz6oPI4q0E2mUxWjtS+ubkZth2yzAYAcbJW5a3rsx5AkI1TNY691A0GFJnwZGNyaXQiOjDALu9WI1lxcToeGLiI+EAKPZSClT27T52Lc+gwWhrgwES2qHgJgdPzazUPDw9juVyueAjc+pPuwdYAHAUE6h3ANV6nUoGajVVm3euY6/jqGi+XtwmqBGqmIJTcRKzaM3aCquDV+uMbvMrWEsflMKmLFRaUggAIU3XDssDGh4Ex8sOWrOPj40FwIn7my5cv8e9//zu+fPkyLJ/hRTO8VADPgFvb5TGDhaXegQoI8LWKVK5o32+atC49QCDLA78rj4AjlbuqC1oKj4kDzNXTw15YVv4ArQpqlYd5yQDGYMRDPAHKw9xAoB/PL46pgYzHOQYMPNjoQxm8FT2TP+vwViU/ngpYR4GBDABEPEaBET5Ccgz6zianm+goT4+YnM/ncXFxsfLhd7NzvrD28WGljTbw2hUjUmwjZIDBAhhCd7lcxnw+j+VyOXgHJpPVQBQGAXzGAQtEHgO1oJTp3KTVe5wHLytw/0SsvmSG81Or0T27SYHq6uCAZ2Z54bdaEY56gQOX32MZAGRyzIq6W5mn2cWqQEDd9Lw2ygIuIoZoaAamOJgL/IL5tL+/PwCNjx8/xufPn+PPP/8chCnOGXC7CiDA9SAz7gf1DvD9SklWHgE3TmOV5EtRZVVGrFcv7TfOi+Wq9qmudatljXmvIJLLYX6JeAjGVi8DL2uBX8FXx8fH8f79+wHMIuCVQSzLVY4LYI/x/v7+IJMBBiDP3717F58+fYo//vgjvnz5Ep8/f47ZbDbElb1//z7ev38fHz58iJ8/f8bFxUVcX18/WqJF29VAGis/1EBjQ86NSTbeFT15mYArxgOPCup6tWM0VTBI70jvK/LnAcfpgldXV3F2dhY/fvyIo6OjAYkeHx8PVjNiCcAM/N5qLkNPtNLXZaItuAcke3p6OiBQMGLE6rYU/lRuTe4zTD5F1tkYcT+qJe+Uo1r4HA2MZzVQzQnh50CuTyWdPK5OqrgdIHX58vP6m8vLnm1NWJ5jGpjrytb4Fg3YY4XP3jFVxjrm4FcEV4EgfMHzHD8Dlyq2J8JDB75xoAAAmI95dRZnBtaUVBBnSr96bhPkwH1E7TVt5VWlawHXqt8YLDivEufDgcwaVAc5wvJYY7KgjNm7xXJ4MpmsnKKJVx0zoJ1Op3FychIHBwdDncG/nz59ij///DO+fPkyeLUwn+bz+VCHd+/exenpaZydnQ2H12mf4bcuTeiYVXzr5HsFXDNvTEXPAgZQMVe4WyLQ9Iz0WbFUyN6hpQwQXF1dxfn5eXz//n1wycO6QSAh0Cosfj4IiJkIxMJWXUV8j5cIptPpcMAFR6ziw0sYvcoTE4f7m/uIvQoKtpBWUWtPeZlQyTwS6jp7TeL6OGXRi9hblnsFCjKPQiZ4ndXrhDkHfmq+GnylVj/nBdAA7xYLaghaxLjc398PR3jjPwADBDdicLA0hnnIAB1zgZfVZrPZClBAf+juhazPMiCq/ajPVrRJQODGfiwQUJ5x1rqmzWRvNle0TqzsM0NEwatb9gEogLX+4cOHAQgg6BXeAo75ioghMBt8pttfARyOjo4GuabnxaA8xMRExMqyBMe9cGC5GlhOprcMXu0v7hv+uABxphfzDKgSdta+Wl78ySwc9hKwAsvQUkswMCDASYMXFxfx48ePgQmQljuU4wf0UBRdB9JYA94/y4RrHKXKh7bgqFYO1KomHSNr138RDxa79qcqav3NgkKFKefhIoFRvpYBQT4GpT4nZQpA+6AlTFtCOBt3zl/niubB9csAAfdxtkTA1IrZUJc9AwH2LMxmswHIRsRwiieW0uDSZSAwmUwG8BDxz/zit8vhGsfhYI2XI8C1b9x31pd6rxpnHp8ewf3S1LLueudUDxCoyM2PCuRq2RkgUNCH+sB7isC/w8PDAQwg9oSBp+6EiYjhCO3Ly8uVssHf0AFsuPFW2+Pj40fHdTtQzYGO7FXT+eh0po5Bpu+4v51hUPH0i4CBHoHeyxTsglQAwf/Hklq++hY2vIuAtzNh62C14wDEgXoAAkCKfHgRvxYTp7JFxPC617Ozszg7O4vz8/PhZRlsPbeAzmQyGbZyqXIACMh2GagS1PHBtSx2QBkRnhZVVOjTMQz5ktRTB6es1+V7fm4dga7PO9c9r1G6dkQ8fjGVi9JnD4Lyk/IPymYByFYR/oOXcGDXcrkclgvA7zyPOPiL92srqOV+Ux7NlFMv0BurJF+anCLle44yQyLjxaqt6/B+1v/aDo26d7/hWZrNZnFycrLiEdCdBAAEAAPT6XQ4KVAVJ/Myxwpwvlg+YG8Ctzczopxec/3K+q5FDvC2ZMtYmfssngGurAowxxROwPQ0rGeCsrIDs2G5QN+hfnNzMyhNbEPROAFFsywMAQTw4UMpgEaRPwABvBPfv3+PHz9+DGtNEI7a167/+cwEnJCI//jm3Rk8FtyPilDV2o947IZ2TKlgwKWtPDkvTS1hWlk9nM7d4/vrKHwlJ8h57AAA2FoBT7DC5FgUngO8HKBnb8A6R57cTni18JsPamHKYoRwDyAW8wzziJfTDg4OhsNi+O1vmbzQeZONR/XfCe51DZLnJJ5PEY9Bj6Ne5dBqW4/XrFWOKl71UrF3wHkL4BWCC5+VPsfB8LZZgAF4q9xyBctxeL7UuwBZfnV1NYBlt6zLu71crITrd/309m+lKzMg3EtrxQxUQEBJJ1nFGFrGGNJ8UD8+cwCDiG2G8/l8EE5Q2LBaWGAxaYAgv5SIBR3HBMzn8wHhXlxcxN9//x1//fVX/P333/H9+/c4Pz8fXFpVP+jE4SDC5XK5sgUy658MrSrjVoo88yYwGOA1sjExCS9BTqDqxKnqx2lbYJef4W/9rfVppeE5w1Y4AzF+AQvyxTIZA0UIwKOjo0FBc0As0vI5F5gbmFM8T9jTwHOO+4fBA8ffAJhwABgHMmKXgioVFYqVYuwdYydDNg0IeH65Obiu4MezL9W2DAQ4MMCGh+oW8BfzKJ/zwru6eGu382o64IF6sMcN5cK7ywGz19fX8f3798GIm8/n9n0GzgirwFjPeFbPq7ypDLiM1gIDWYGZd0DTshsyYwzXiIx5sw5ki38+nw9LBBA8sKTwza56CD6Up65RPnkQEdMoB25RfhEM3l51eXkZX79+jf/85z/x3//+N75+/RpnZ2fDc9wPrj/B0CwglJGgIJzFlDGm69MWY7HiRxoNSty0ZRVRr+kzKaquvAM95VXPjs2PhapG+4NUmEIh4+AVzg+R08qv2PMPIAGFj1fC8rntALrMt/wNAY666Y4Z3sXjduRkAIDb7vg8GwelFm8qCNwEOU+bysiWIshkpuN3/m7NjyytGyfmWx5PBgK6tZnHlwO54VGaTqcrrn2cEMiB4zCyMB/YAws+R2D31dXVkDcbMXz64PX1dZydncXXr1/j+/fvQxn8rg4XBN4je3uBQGaM94xNRWsfR+xcL67xWYMqGjPxmKldXaDYJ5NJnJ2drSiw29vbIZKUrRVeOphMHiKtITB53yuCpabT6cqRxgiA4Qjt+/v7uLi4iO/fv8fXr1+H177yUgEzUk8fgbHZEuNJ5s6Q5z7gvtLJnoEJvabeAJ3UzDObpgpMOgGZPcPP6bVqDrgyW2XwfMvuIw8GY/h20dQQcoeHh3F5eTnMEfAr+gHeMfaoQfBVB3gBWAAMwCs3n89XAgSXy+WK8udvvh4RjxQL2s95tQRqplBVaW4DEEA9IvrX9XWe8XzM8s7ycuVWBpoaeDqeChKQNouGR34Ao5CviNECv2KpYH9/f3i99sXFRfz8+XPwusKTpbtY+JyBm5ubuLi4WJFnACIAs6jH+fl5/Pz5M378+DHEovGhdnywkfaJk9MKpqpxyQBwNm7P7hlwSE8nKyuUTEFnAncMZSDDoS8MomNqbC2EQImIFRcstweoltemWNgBWZ6dncXPnz+H9VUIyIh/mPry8nJgJBxWAXdTz9bClrUTESvrxpmHwLnzXXmOWZ1AAOhwa8kob1NCVQX6GIvfCTrNu5W24tesvtkH5fC48dzEOnvEgzBjj5cqzoODg/jw4cOjuBUuD7sGLi4uBsHHR3xDqLKVr28EXS7/OW0TVpseuc1KWpVJRDwCCbwbiJ9146zjrem3FQiA1qmDgginZPk/93slB9x1le/IUwFBBrqr+QA5fXl5GWdnZyvLSUdHRytBpcynP378GMAAb2m9uLgYXhePo4XxHBt9qCO8CeB7fAAKEASOHWGYF7yDShW9zmc3btn1ajydnh1Do99a6EAAKFMoWmkFDfw8p8uQPKfR+inz6aCyIOHXU7JwhBCbTCYre57xLG9NvLu7i6urq7i/vx+Q4vfv3+P6+npFUKMOvM2RX4yENSp2l7l2V4oMSgJt1ryUAXm92Vny3LdOgMIiBLFw1zFhwb5JUqUDGgNSVTHzt8ubn+PvrNxMWKAMtx4a8fh4V56P4H32FEF54xS1nz9/Dq9p5aUzWELwYGHJAOkYPAM4s+t/uVyu7HxBGwDUXUAi8wz2bTtwxDEz3E8KBNyYODDQEsavTRVQz+Sj6wvNk/PQb82zpVS071p6gD2weAZ8oc9iWyosfd7SB1l9cnIyyCEsBV9cXMTZ2dkgZ7GNGzIXgamw5vksDd4iDk/D+fn5ACwABnjpmT27PMeY/6qx5L7MeK0ajwwQjKFuMODW8VQoZoJWG5MJuYxJM1TL9xSoZGCFA6oWi8UQOxDxcO75crlcOc4SaI/Pa4fFBca6ubmJ79+/D7sEgD65zsxcfCoWhKIGYlVAgPtALUb+rYLOPe/Gh/tf88SHYy5wnwFJVs5rU69Qa9UxQ/WO77kvMwDneDybN87bovXgsdElGyh/zgPLBD9//oxv377Fu3fvBgGJGJf5fB4/f/6M79+/x8+fPwfgykB3sVgM664c7IUI7Ih/QDOfI8CeCo3MRvt4Dze+Ed+AftF+1n7j/lJAq2kyWsfKei6qlvKUBxksKh8qOSBZAYKqf3tAgKs/G1kYb+ZZjvfiY+SZH7ALBfW4uroajp2HkuYPrmNZDDKY35eB/CGX4ZU4Pz8fvGP8vhsAA13+Un5zc9j11xhAUOlDvt5Do8GAggKuGBeeWTcZKbNgMNjK4fz5Nz9T1VHRHn6zixVl6dnWEKb4DyAA63g+nw8xABCaEHpqsblgE+2D1uR3fRGRB/A55sjABa/pKbJF+/GcvuNB6z2GB16S1FrqUfzuWbZIIx6f3pgJzwwc6fg4hO+AHdeF8+H+d8CA67u/vx+Xl5fx48eP+Ouvv4bthh8+fBiWzxA9/fXr15XlL3bXY77w0gHqxscU40UvbvcOLDRuIwMAfO/t7a1s/9U+cX1UjXnmNWh5FV6LMuCSyd8KEGXXuG0878ecGKpA2H10DZ2/WeawBwuGFp8NA8sdAGJ/f3/YNosAP1jyDAKgyLFsEBErgbGQbfzqeZTNecCbq9sMKyCgvKr8VfWnjlkLmCooeHEwkFWCK9ALGByiZECglio/5/JrARZWZgj0U6UGCwQCFH0Adz6AwOXlZSyXy8GC+vHjx7AuxRHTvB7F0dQOMWb9xd/uXjX5nDs1ywt9iPazxeHAhXoGWsy67VT1td53vBjxeL3agbpqjB0YgNCCsNLyOA1vddL4AvAFwMDZ2Vn89ddfg/I/Pz+Pk5OT2Nv754CgHz9+xN9//x3n5+cD+OXjVxkMcMwLywvEEXAg4XL5sB6sa64KClQwVstpjv8yoVulawns1yAXKMbkFMaY9rfkgUvn7rlnmXcdv7oyWeYwsMRef15yZVA4n88HHkRcFpa1sDygJ76Cb5mfsHQ8mUxWjD7kBV7FB/pAz6dxfVDFgvX0+5jn1gGva4EBZUBndWaIhBUNKxyHwCtlxeVX5BAWBp3/q0tfAQOAANZQ7+/vh60ocDMxaoT7CX0Ht2vEwxKDegYU9LCFpe1215jZMosV9cny1bxZKY2NYOX66/1NUsW/Ls0YcooE/11fq1B0aZy3R+MG3NKA8wpomfxB/MvZ2Vmcnp4OLwzCVqqrq6uIiJVDgpA/77XmgF1Yb5PJJI6OjuL6+nrYXcNHhau1xcsGXHddRnNWGH73jqHjf85jTF7PTRlgdMQKP7MM3X38d/M3U169c5nBQMbb7D1FGzgID/v9AQbAY+CRm5ub+Pnz56DYEdzHQX8ABBz1z4ADdb25uRniDzhmBmAC+bFnV8+kcXIzA689AGwMD+jzY4DsWmBAK+aEi1aK00NAsLvHAQFYF1qey5sZt1JaYKaIWEFz6k3QA3x4/QrgAEJQXZ2IytY1MdQBz7AVpP3D6bMYCJ3kFQpFf/KrQ7Py3Lg5wVABs8pKeQukEylTOK3nI7yCd8I3m+QMWGER8a4BTcNLW44n+DcrWyjmnz9/Dq/khtV1cXExnKLJQX/YRaDlM8jlmBwVtFiHxTcCFFnIIj9dHuB+7OEzBaXZf06/aT52xgxTr7zN8nb/M7A1FlypLHa7z9gIY1nPPDyZTAYlDYXN73Y5Pz8fznqJeDgtE6ASJ87y6bO84wZtxGu5GZDwWw956yAvoSjYZkPX9SWPaTbve/iO5cs6zyuN3k1QWetOOTjGdGv7GfpBZ2nkuxPKQKDV+ioUIu7zoGJNEksGun4G5Y/nlenUvcntYE8Dn2ylAhNtZdcaM5freyYwJn+j39QDwSCFQRK3QYGFWyrgcRnrvn0NeqqVr/2BPBW88nPOI6DA1/WHWhX8ARDY398fAqAi4tFro6v2MAhAflC2AAPn5+fDIS4IqgV/Y+lAD4BhEMAnfXKALgQ8B4XxNlveBsaAA88qb2Xj1SIFAe7eNlEGXkAZIKg8HvyfrymAZPmRKS4n/x0gUJ7HeDIg4PxZniPOCyASUfzgH+wA4yBEBtDubAwQlhdYDrJ859M2uW+0v1mWZ8DK9Z2jzFDIxrQX8FX0pBMI9ZqiPq4QM4sCAfU4MFMwQ3B+3Nktptb66RoWMw9/QGyZgDgISu/xizH4OFUwk7pAUQdd19eB1smkCkYnsiplMLq2342BumOZkD+DnwwMuDHbFFVKQNOAXB+g/5Rnkb41QR0gaCkh7nPEs6jXzHnEmKcYJHLb+Hnkf3V1tfI6WKTnOYT8cCInu2P5LZ6oL2/74kNbcPDW+fn5I6ChQL8ySrSPXR+639WzzNebJjen2Ijg74pc/BDn3zNXtY+qsVH+Y9nOgC9rAy89AQwjDgtLTDj4TYG0esB4+QFlqecWvK3eKZXNnK/2S6aHVH4rad+79M4IcTJlrLztBgOZ8kVFKkZQIABi61sHRK0JroNrMNcrY+qKyZl5eK0/YvXFLMpcrNTRPldPtnA4cJAFswMiipS1z9VjwH3lgAWXxdd1N4Vjfg0UdJ4QBQI6OTdBTlHjv6ZpkY6t8nxm8WvZGaDWeuE/8yeCXuHJcnOS83N1RV5Q7GrZcznKYwC4GGvExOBcAZ43Nzc3cXx8HBH/nHUA5Y9dNwwEeNuijg14E94JBcLap9VYt65VQve1KRtbFvzZ2DvZ6Hh1nbnpDJVWWjZCVFlrHXVesRHDWxGxXIYAQs2b+8vJNS6PiYGDyjmtF64zMNN51gMme3RV1e+Z7OmlUWCgR6DpdVaOznOgCg7WBLvKM2TOna9CWgeuQq+LxWLl3dlKzBgKCFpWg3MnaZyAY1JFeZoPt11f5uImuAIHVgYK1LJdDip8NY2CjE0J0IwUPTtQC8qQvfJvlQfn5ZSWm9AKah2fsIuf91wz6dzoBfHgT/wHIFD+YHeq7pbhZYeLi4s4Pj6Ovb29uLm5ibOzs/j27dtwHge2gCF4UK1HLdvN0xaftQSk9lGLNzZFOhcrvsrAkKZplcPPKCnvKEhzS5vqcXQyD3mrvGLDajKZrMhkAGNXhrbNGQEqO3mZoTIaWLdVIJ7T6ryvQEAL5Gf5uPQtGg0G8LtVgJuszDisiPieIj8MvJucCgC0rlzn1tZItra4fsoYGpjF9XGTj3+rexbPZOuhzKDaXu03t98f3xoboPVD//DYZJNJAYH2N4MBdWFuklw/9qR3lPF/Nv76DP92vKhzjT+sbLEfm4/m1bpUghzfWm8AgojVg2F4jLG7Rq21xWL1oJjj4+OYzWYxmUyGA1zwkhd+8xviDJj4VEPXxzo/cC0Twm+RKkFfzSsF7Xytes71mXveAUnwgS4D65g4QwPPZ2DCzQP+z0uzKouqfs34RpdBuS4ZqHb1zOrdo7OyMnpoHZ4fHTPQYiZljgqZcToezOxZvgdyyo2ZjYUVn17lJhm72B2idS4jh4a1Hvyf8+ey2VXL/egYUFFoxqSahoEQMx7yyxSTUjb+KkhaCHeTVIGrnonkAFo2JgqgnCJ2yisDAgDI8AxExIqLlMvg+qqgcYI7YtULBaWP+ckuT95FgDIYCPA58qgvDoX59u1bnJ2dDS+O4TgB9Au3T/uISfnfKZyW3OIytp2cItb7IJWLGX+P4XlXlspAyFtca7nK9Xl+e2XE6vZa1EXnjM4z5U3tM/VcMAhQ44zBSdbvDKSVB53s75WJT5WdvTy91lsLtaCMIVXhZhOUn2eGces7WRlcN14LBTEYcCiO6+O8ERhkZmrcVyCjbXHK0fVRFi/gQAFbaj2D7ZA2t03zyQQK18cpMt1ys43Uo/Bdfzhgm93LhEYLIDlhp/zDPMrgLhNQ7mQ0FdxogxPYKA/14znMAWBYu728vBzeXMgnxi0Wi2HfNoII+T0HOrd0KQLludgZbTPql8WwuPGorm+Kl1lx6Bg7EOTu4x5/Z9f0etVulU8MLNnw0jpWc0Xz4JgyXh6IWH1jK3hEFTzvkuLy9FXZqsCZz3RJNgMDGt/mvB+4pzIj6xf32+XjQFqvbgCN3lrormdplRkdYtc8IDT0nOoMBbrymPGYmRwSdABF68Ugg4MFGYm6AdG4B0e9SpknC9ebGbAVpMLPK4JuMa/mkYE4RePajk2Q8kuFynuFn8uf0+nH8a8r2334GVWEODwFB7I4Hse3Pus8AiiDvzVGgAUlr6nCK6Dnx6MPwKtIx4dzOR5kQOB2MWRjgnyqMdG+0fmg47JJUoGvwL7nWVD2W6+NabMqc36ddTYuTnk5QMBAFekiVrdqax4apI6ytX6IdeF+yvrU1Y/bpbLUzWGmHlDm6uDyqfTLGFp7a2HFiE7B6bq4G1wQozlGaqpcdIAydJTVsQIbnAfIgQZmbj3IB22BAEV6Lr9iGNenil6ZidkCVMoEo7anqhfa6JZaVPg6gbpJQACq2s3tcTyq+XB+lXDjtFoOyM2PSpAgboD/87hkwiqrM+7f398PgYAazKtLZXge9YBnIMLvDkLbsCTA+77VNct9z0GMPGddn+tY8nhn46H9o3NBx+o1qeI9Jq2f64ueNnBfuTzdR+9ldeR0bNS4/ByxIcP87ZYVuO0ZUMH/5XL5CIBw21vAC/JdPVxVfzv5U/VXBmI5HX+7slo0emvhmPS8bl+tGbEgwsCoonEudMdY7hkWIiCum2P6lkDQ+uEa6q4nGE4mD1acQ5KuXa6PGAyA2FXcspoqaoE2TB5YociX+1iXL7J2boIyYZMBop5nW/daY8Hj6fo9AwP4qFuSLRcWjirkVLgAWIJvYTWxwuR1fSWuf7bWyu3Ebgg+XMgBUv6vYC3ra9dvLYXD7XR12BRlQDID3hm41fwyUiDgjAgNDszkFfcf87UDEVoWG00aF+YUvHs9NstJBwQ45oVlOIw6BQVqoKKfeAuiAwIOWLm+UspAbPZML3DM6Nk9A8oAmWLJGscdzdedkFHmVAXlYg6cZc7t4t9ukrl6q1scTMlrpVl6rYdOMCcQFRAo4HHgQseG26t9r+PG/YwtZDpBlWm5PZView2qxs4pGr5fIfNMGGbtzXhHgWlPf+mYRTz2UrFlz1aQ1r3ic6zV8qEtEY8DZ1G+nhyoHgK0l9NlHhGWI8ir6l+dK9zv2RgoCGj1+6aoF8i28tD/reccP+hvTc+8rCDQyTqtG7dJ5Rk/z0BAD8fSOmjdIx4ACntUkY7v64fnmfOYaX9nfex4XSnTSfqt6dahtQMIdfC04apYVOhyHtnk5YmqwjITZqosVUBUAsW1zd1TAeKEvkOpvUImAwQOTWs9WsyVtU/BgMuDXdAa5at1cde2UciC3BjiuxLEFShWyoBA1t88xtl842uOT/gaAwLHY/yBax6/GXRoHVlp8xkIIPUMIE9nST1VKOrvTEhWirVK89rkZGYGgvQZ1x6Vcb1zk3nFAUHOj61sXFP5rXlm9dQ6uuc1EFCfy+Yv86ubg8pnLj+ex720rhxsjXt2vZePn3QcsRNI+NbBdxXPBpnLUXChoEKjVRX1Oas8YzQVkFoXJzyVCVjoIV93BCaXzx+n8F09tB97lG4GpLhfM1evU47Z2LhxHwOGnptUUaiQcuPi/mtenEd2jfub86zmRzZ5q0mt/QyrxQneCuhAQPL8wjVdpuN2RMRg7SMgENc5tgVlcJ46Pq4/IPR7eKpX+GVyAPd07DZNDuRlVPGT8gCDhyxv7YcWSGZAwGPqeKglb1VG9shJ126uH+Qx8yvf12+W55lc5vby85ovfle6sSIn67Ve68jatcBARO5yjagPrWFqKXqXXhlCUWgmbHEtU6baLrcmhuvaD9ofjBRZ8Dml06v0WTg7QTyWqVzeLQZVRKzPuLW6bQADIBZ2TnlG1IDAKQz+r2ncRNW+dss6Sj3Cn9ulApTTcBBWNs/gxue82OJicn2J9No2TdPymHE9+eMABNrHbdW8sn5z6XGtuv8a5NqG/73zaYwCaz3nAKU+k/G7ynhuWwtoKD9zHrqsHLG6pKRzDrysxw279meGjfYfl1fJ0AwoaB+7PnW/q7wrXepobTCQkRMMoApFqquwdzKzYImIR4OSLS1kQIYHlhUvAwQmFq4RD0e1Rjw+SEj7wYEQBzx00mRBelpGhd4VdXM/jBEyrp8dU24L9YKTnkmUTXbXbhWS7vnM2snSZeP+FGJFzke8qnDn7YYMGDSi2gEClMMfB0i5L1QBVXzdw28VGBqT5qXJKU5cXycfUNY2lUnV2FXP6/hVYMyBC5Z/6t3ldLjmZKwGAIJHGUS4vLmNKifcXFRZ7ZanK7lYGSBabktGP0XmPjsYcOSUvDZOgz30+QpUuPUaVVRcpjKgQ1hOUDG5a+wNyNrl2o/8OBCS92e7eiPvCrk7QTpWgbQAVAuUbAO1ANG6Ar9S2Dr5MWbOonIgQO87ocTXM+uK6+b4OuNvEL8YyEVX89xjAFBFVmd95ijjr0zY9+adCeJto5bgd8Lf9bEDFEy9IMMBt0ymuTJU2bszS8bMSQUCWTuzfuR4FlXkVZlcXlanMQaSm/cuX1d2NnY9eTKNOnTIVc6lUzTbUkDaYdwIvaduclX47jlXvgrB3o7TtvF1jqLOJh73CS9x6HYwniSuXziiNZtk6tnQOuC6Tkw+56GatDpmGWjYtMB19cJv9b6AXL17lKeSEwI6JlX99BlVeKrceTwZNEasKmvOl9MrcZt1ScotBfEyURV7ov1T9V+2zuzOUnBCuCqjkmE99XsN6ukjp/Q1jcpNpNdrrb5jLyzLoUrRMY+5jwO6juczedYzXtpu3nGzXC7T8y4ykOD0jwPC7jlH1fzIFH1GPDeeHQwgU1dZrai6D5HOUcZwrpxMYVeDlDGm/neCVAVk1RYdfFWyrfrp0oQqeK5vpsyXy4czGnhbmXtGCfnwwUmqYBhkaTvwjLrLtIxNUNXeiLZLsOr/rDynPF1dMhDF5Ws7OD+eZ26snAJ31roDfK7fMoWr/aj3qz6sZEPEw/kjzN+8fKFt5Xq6/tP8MznRU8eXpjFAQNMreK0Ag86BloLVZVlHzIt8yI9a464crasCBMfr1dxUhY56HBwcPHohHi8laP86AMzxNAqCs3mf9ZPTN5yuRTp3e+QVaPRxxJkQ5TSZYMIz+M4UW4b6qoZngovTOktZQUBr24wjMFq2XzWinjSc92KxeGSZu3Zzn2MLGAMLBTWtcvEc14Ovcx+45RDUBeWhHdX4vRYprzkeyNYO3X93TfkFisstYfHz2QTvESQOEHD5uOcsZc1fAV02t9ycduT6W8FGpoydcsDc4sNiGGi3FFnWHvcMt0HrsUkaW48WyHLXK97PAAQoU9TueOreOmb6wQHWChgpGHAyNPO2ZoGPWiZ+O48Ag7Iepa6UPev6z+nRHnoSGEBlGCW20Js2wClOTtMzATTIydVd1+F7wADKb6Fk9AHvGnB1ynYiOGbKBjOrf4SPnVBBrPXGN/cBnlNB6pg9Q8BZ3TdFmaDn/lFA0OK9DBAov2eAgPPIhFoP/zOPZsBbvzOw4YJnlRgwVDsCkM7xV1YX1zcqwDMFrvxYATYuu7WroQV8XpoyBQbqURDunlPKFThydeGxVbnE8U9qUER4Y0LLcnKF5XRrDPm+xm/xeRjL5erbBp181XutHVPZePVQL//ydwZ4e2ktMJBV2jGHRts75NZqpEvD1zVNxUD61imtqw4+1ylbN4p4vB6bKQDXjxCqlTLX51vr+KoguH0M4DRvnWTaVueKzRh3W8gJQO4Xd68nL76WCeeMn/g/+rsF1piqeajPVkLS1StTfm6NmAGB8hR7hpS3sjmfkYIdFvIun5a80X5RxaN5boqfVXa6366uPeBF+2ZdwKNgAB939K9T3hmI1jo6WR2x+up5bYNz26vsB9/qdli3m6ziG6Rbp/+4rU7Jq97olUNjxvVJAYSuMlwhCA99F3o2wMiDvzVNJkQcQ6kgygL0uH0VENAtI3pfO965+qulCn6GKVMu2h97e3uPzqp35XBZjpGViZxicZ+szttAPfXLhGvrN/dXBt6qulRgIhP6rXpzndgiUmIwi+egYDUeAW56ED+T5d8DjJzwc+T4sJrD/NxYgKf5rKson4tYyTteGTPfqrkwRnkob6uiZgMMpMupeE69tk7WVvzRAr1OievL41ygKn4DCGTgU/tlXRrT/9qm1rxp0ZO2FuqEdkJRt//wczyZs8AzzqcSqk4wZGBA32XNeSh61Y8OlqZ3bVShqW2r2uWQsip3vcZ11PVktu6UXH6uT/hb6+vydO3aNGUKJSIfDx0Lvc//ewVCBQT4v1P0/N8FvTphWgl+xxcOsOr9nusVCGiBCCZ+noO+uO2qUHScXRudgoRMqpZ5XoMyIAByvFH1n2uvk2uOsv7T366vnRyJeOxByurl1vQzmZTJWs3XAeUKdKv85HKYx939lvzL0jkZ2gK3qgd6aLRnwHWc62gdMDdJdRJrY5lZuByH9LgObruYMpEGs6hFzeexZ0FYWX21LzJLi+s9Fk1mddGP9rkKNsd4bgJz3TNgVE2iTQMBNzkyAaS8qLw/RqA6YJcpnwrMttqmHq9MIHHd3G/1Fi2Xy8GyQ5CVbkF1/KfzTe9XfNNqr/K8zmsOMOR0rEyqIEk1FMbOzU2Tq29L0Y8ZGze2nA+PN8sblRmq5LP66M4FnRcsjzJDUstUntG2OgXs+kDb6yhT5hVgYL52eWfjpfJlDCBYK2ZAhaRa/w4d6kTkPNiVxIoTDdOoYSewXNmu/kxYwtBr2bupneLV8rk8bmM2ATkvJ+S0r1sASpczuP950mVv2HL95uqUxU+4fDYNBFCHbEJV8R2cthKynJfzhnGemlfW55mw1bTqFeDnWlatKnCuj1MMvPVU6+uEMcsM98n6oGqvXs8Anc4L7VOWKzxmLhZnU4CA55zWp6pTi1fxrYqypdAcCFBZxYF1yhMK3jSNyhiVvZhffNIr3+M2gF+dB1jlaDbPlFedDqt0QSvvbAwzcOTy0Wss518EDGiHVqimVWE8x0CAwQDv22QwsFyuRnzqAOmAZ8IG+bjgRnQmn1ndEmSubdVAK/Mr+NC+U+HlYh7wrIuIzSalAw1O2PI1N5G13VmbNwUKXNSvaxOTm9Q6Hpo2E9z6TIX2M3ICxymHDLC7uqpCjciXCgAo+fwK3MOxxVV0NfOgix1yMqSlmFxZyuNZHyvfcixEpji2lTI5V409SBWHIwcEnLxlUm9o1X88bk626LfzsOJZvsY6Ro0nvadLQg6MuBirjO9d/2V9pWm1DS7vXvD8ImBAJwxfdyhEG6X3OE/2DKgVwYOliJPLdwPeUoq85sjrVhongGcjVt2omdDPrru+YODBilz7ids4nU4fBXJxYA5P8Bby5XFoTSztV9cfGW0KCKBsV74KoB5B6iahm/yZgK3KyPLjNmRluTb0UqaI3fIWeEK3oDqhrwI9i71pARRH2bzLQEYGxljGqCLiem4LGOhRNBkYdGA9+5/Jr1Y/ONmYyZ9svDPF53hd5xnOXHHlqkxUIMA6hmVoBgg4P43NcoArk0OunVxnHVPtX73W4pGMnryboKcgBQj4zUqOJyIrZ72vZbtBZUZTNKnKPWLVXehetMLtcEysArAS8ioEHQLVCQWBxXVlJKv5aLv00A/uE+5HPKN9rL/xPMCUlqv96/6/JlWTkHkuE3bZJNRv56bn591kz8pBOuWVCihmIMQJCFeOa2fG8xGxctjV/f39AOidAtV8sjHh+o9VwBmo4Xyr51x93XLYtlNLGSiwW7d9Wd862Vgp/YqYp5nPHXhryWWe55mXVZewuY+qJVie9z0AR2WPqzNfy+aDk7NV+opG7yZwQqYl/Pi3drYjfU4ZQoGEnjGtHgSe2Iz2QFiHiohHLnsdWF3bcnV2dec6cH6ZUOQ0GQhixspcWPv7+zGdTmM6ncbBwcHwnGujKhTnLeAJdHd39+hVt1xv93sT5IRESzm6PPhZN/bcPwp8e/uA83ZC05XF/J9ZBlUcQzUfM0GrApRBZounM3JgKROi/JvLy2SPpuM8tH0s+LcdDDj5oAqhJV8i+q1HfU5/u7zcePK9FkhWwOu8wG55C/d4bLPlIP3NRxRzGWxAaf2cvB9DWX3GjGcr34q6wUCG5jJLZExlMoshU4JOEPJZBqzwcY0HUSc+0uAZBgSuzdlgKFOrcGbmcv1W9Z+CIrVcVFCjT6bTaezv78fBwUEcHBysuLS4rVwWexKYptPpEGvhPDHanjEWwEtShp71d28+FRBQpZwJqTH1VXJAmK3yrL4qYLR+Dtj31I3BAPhKgYETltombhvXAflpX1YANGu3a4uCdPUMbpp/M8qAgH738N+YdNmzqqxUiWfGTwX+OB8FAtkc5t9u6bWnb5x8HSPPVE5rvSplr3XTvq0Agcu3l0aBgYwRuBI9heuAjI1+5PVKVni4hvzd1qKqXZlFUAkcLjMTaM4qUYHnBKUqGgUQzLDcN6ok4BVAP6FvcBQn8kJ/cloVyovFP++5v729XamDAybZ5N8E6cTQiQdqKQ5HKqQy6yN7trc85Qcea142cuuaTmlg3vFaaUU8luxNc+1XIYr+xpzkGB3koUKf280vj+ntL863Ss+8i/98MM628PAYckrjKW3gMXT3HFCLWF3WrABBS9nqODo54wwmrp/Liw0aXOMYLI7l0jwzGgv+mRxoYb2gurMqc2w9RnsG3PVeBO6Eryq0DHC4AVcLNeJhGUKVMSa21lUZVD+tPlAAwL95ELmNiphdXppPFhOhQAAKna1U3ifu+o4nMsDD4eHhCiBAWVgaUKAQsXqcpwrvbRSmLeScWR58L3umlWeWnxMGmk7HzwlJFRSahq9r+5wCdXNWn1PXqi6psUWXKdoKKCtl81TnH/eva0uWpwO420xjFNY6+fLvrD9B3O/qaXTGDL5dkLiOs74mHqSeTJc/nmc+xLNcB7y34Pb2dsVLzPPSLfm69rcAmZvrrMN6nufvdcf9SWDAoZcMvfF/ve46mp/RTnflsACqEFMFCFgpVorMKWu+xwI6G0x9xglEFfhunUz7X9eQeYLAxa99xGDh4OAgDg8P4/DwMGazWUyn0yGfxWIRt7e3MZ/PrWXHSBr/MSabpgqoZqjaKRIH9DgvDibS/nHfWT3VCnD14nJZkKkCUz7VerbqpEIZwYLMT5zOPcuglPPJgmc1AtvNoQosubnJZWeUyaBNUg+Ptp53lAHOnrIrBeXkmVtCU55VBe28S8wfDEjZS+VkpAMgrDPYswYggI/zEld86YB+puz1Wk8eGQBu/W7R2gGEalE4ZcXPZIMKYmbgRmTpOW9d31cA4eoOUqG+XP7jwnRuSQcCKuGj6d2zjiA42QWsk8ghUd05gPy5LQqi1KuCYEMAg9lsthJrcHNzszKJuL53d3crE4knd0sIvxZVQFEJ9zXoVcdOlaHyLufXUrxaV+ZBx08s8BQMcF1dUKNra1UXLkutM31ZjCp5Jx8wz9y2Wgfw9b72sbZVeV1lUjZ3e4T5JkjlrbaPv/X6WAWhsiIrzz2H9Mozi8UiptOprQ/kFtI5vuA2shcB13hMe+rJ80RPnIUcY93i2unKcDqsqktWv+xaC8yuS096NwEoQyotQJCRCjs34VnR8XOuLFffFtLOBEALAGg5+qxrA6fT9X4Xne6EohOEUMRQ5G5Zgv+rGw9psHTA/cJpFBRwrIIT9NtMTqD0Phfx+NAeFlKgjPfcNQcm+MPAlwUcP1NtO6wsDG0DC3deDkAaBQQKBNgy1Dgh9QS4+VfNSdfWSim4eTBWYW6KtJ6V4uA+ds9lAFGVa2aQZIT77JKfTqfDEiOnQdm8JAkXvfI3f/NvB4A1f11WUwNSgawDtNVYKFjTumbPZeNRjSuX58ZvHRoNBrRA7cRs3aZS0JnAw39lTBUiqhAdInUKzK1hrUutwec0bmsM7vN2wGy7mLvG1zNBmE1qdssBEXM9eF1tOp3GbDZbSQugAFosFnFwcDC42Bh1b4KyvuLv6tmI3OJq8XMP8HW/s7ROsWd1UUHeqlerfJ1vrMAzd38GnBmg4uPqjnK1PPedlcX3szLGCu9NUcUvlbKswKabC66v2BXfms8KHHFtOp0OZTIvaXxTRKzIjpZsznSE1l/jVlwZqj8U2Lr8e/uxIpc2e5brmgGSsbS2Z0AroMFC+O0Y09G6jQD6RJ00qlqDR5gyK66H+UAZY/B9/a3oleudufpd3sjLCV4lVu683s9AAN8AA7e3tyvLBgAD6PPZbDakYRcgiN19PE6bpGw8lDJ+7J2suNcDNHsENa5l/FYp4Fa9nCBz7eRndD4pINB66E4LAAEnYDNh7hS8q3vVdk6n9XcAelspa9u6MjYDmdUzLUWX8Ql7AJC/viOGlbdbDujRKww8OT9+jreRO7Cc6QLtK32e+0dltMtPdcY6/NcrszJ60gmEDhC0hA+eq5Rw78RsPZMJKB10HdTeto8RNq7umhaTwm3H0bqCuTUQLBOkvMUQeWISaPsBCODWw28ACQYVupTBuww4P13je21ylg5/Z9Sr0Ft5uGst/qksN61fS3A74dYSSlqnSlE44ZzVJZtjDA74eRfsiHLGGBAMwB05eVG147WpNf4VqVLSfHnuTiaTR3NW5XsGip0CzNb2uXz2HqB83HNBz1U7tV0MRpmnUBcHBjgvBbduuaHFIw7EZuX0kDMItIyxea7lGdCBRKG9E8ih/CwAUDvKdaZjvAyttQaD26Edmilb5OksFH5ey+P6855xnpRZfvgNRJ1tNeN8sTsA/bRcrp434NqFpQBeJ2bhoRYfQAJP4G3ZVTBGqFfKtWWJVNcqC4F5Myu3AtGaxs0l5e+e9ilvOT5UMKp149gVPOuUrgM+FfDWNE42VM86+dKrYDdJY4Bc6z4rOZYnOm9bfOnkmvImH07FH5xkqqf+VTzlxsjJTLcFnfmy0hWalwIMbb8DOhlVoNS1ift0TJ69fPykAMLMWnDonp9xyIqFljKETlRlTkWPLYbJmDcDM2MEtDIM0rgobxauejZA1m+MQjOk6p7DQUKHh4exWCyGQ4NYQaNseAGY4d16sJaxt7cXs9ls5TRILB/wuG2SegBBBjhxrzfPFt/ob1WG7jmNy9E5p2DBLc04wKvX8c1gz51KyW1lV68CAfADC1CeF1oX109Vm1WBuLFTsNACApk8eG1aR6H0pFU5zXJEZbKOUQZy+R5f43gP3SqN8ngHEsszV1Y2Pj2yWIFADwB0gIDv6Xx2gEDBEfdRxWvZ/2o81wGyo5YJHOLmilZrhvpflZcyXUbuSN8ei2MMaq4mnxPS2t4qyEvLQv01ToDbBuK+4cmL5xQsIS9+N4EG6CC9puX0HP3L1gIrDF6GODg4iIjVlz61+vWlKZu8Tinies8krPghIh4pbv3OgFVFzi2pc8IpuExgajrtE/VYcXuWy+UK/+E5F42tbcjKrJSz8jieyeaaa6vrH/fbPbeNNFbwt0DQU8tSYKryEfzrtoBGPH5Ve6awW8BZ68S842IFHB+4eaV8ol5sR04H9fJVpW8cIBibP2itQ4cyAdpLlVDSslw9mNkY7WdAIGtDVj6nRd5jGM+lA/OzAtU1d3VnMQOqcEX+7FHgYzNBLhDRCWmO7ObdDPruB60P2jKZTGI2m8XR0dFKkCFiDlCXTdIYfnUWRgbolAfds3jGCR4lx7+cvgLZWheeE27euTK1Hxzwz8CSgs2IeMSXaiFpfZ3AdZ9sTrp5zvO4VZ62KeuzbaHK2GH+4T7QPoJlzvc1zqenD9wccfysYEDlk8rCLJZDn88UtbZJ5amrv7ZBl9u4vm7uZ/3i5k2L/zgfTd8CGb28uxYYcIgP37pFKMur6lylTNk74afP8X038G6yuw7X/LRPMsHC1pUKL7eWxfc1b0aymfWoYEHre3t7uzIJVFHw5HcBgrolbH9/f3gGpxfifAEVOi2L9zWpR4BmilDT9twHteaGq4cSCx4WqG6pKONXzS9rE+fZAi7MGzqHeLnCzQXkpSA1m2Ourpxe559SNf6cpjftpqi3bo4Htd8jVt35Lm0vL7R4TcGZglutl8pUByYqeYy2KY9Ves3Vm5e8XD9xPhVlgCCjrG+druHfY0DsqJgBRZXagKpgRW4uMrVVcQURlXJWJnOIWNNqWdxGl2bMRMyAQI+igFtLo3vRFwj2ybwiqCcO/EBAoC7JMGOrQuDgIuSJa0iPJQJ9gyQDom0nnUQ6di3QCtI+dGmYMh5z6Vw+mcvV8X9m/Tg+5fxUAOI+C8iqzs617+ZwVUd+PqOnKG4dhzHC9LVpnXZmck6NAk2f8fHYOmQyxgFPldnOeMtABOfBvxVgjCV+Rvl9HV5xz/TUK5snbk710pMCCCuh4ihT3E6JV+Vk5VWCjAWiq1MGTFrCIcvX5Z0BAWXSiFhRqHyfBTJ+41wA9ZqoAoeFxkdscrwF15vz0Dag/jhfAPdxbLFrN8raBPVOCsdHfG8sEHCUrYFmQkGByDptYUDAeWv6StCyxc/k4hdc/rjGANaV7/hR+4GfdcGUrsye+jl6CrB4CRprgVYKvsq7IjcvesCaU+6aT6XQW/XXvPB85W1y/zUP/Nc53msIuvyyue2M1gzUVGVmuraiUWDAIbCWkNQKMmmjWkCABYYDAlyXSjlnIMK1Ta9rGs7XfSplyoJW4wGY3PIGC0xFu7oNjCO4mVS4OxDAxGkBNGaz2bAkoG84dAGPmyLHu+56BvrGTP5s4jvBoKDAlV2Vo2VonTm9Usa//IxaVNoGdS/rM1l7FUQw/zBg0j5S5cNlumBFFbB6PxOu2p/bAAoq0Oj+Z7IM93rkt/ZdJm81b/7O8tXvrG2uPS2l6Hi3Z365PquU65g8tT1Z/7u+0XZn5ajM1/pW9KRDh7SgLI0TNPosp9NrbMXiOTdYWf1QDq9lZnWpgIJrl2ujBgNmYEDL1Qj9CtkpAHAgJNuhoH3Be4vdoUcR8WgMJpPJcKYAzi7gYB9dtqjG6KWpBfqqdGPL0Xx7wK5TZNlc0O9MSGX1q+4pWGNhxda8KnddDnIKm0lBBfMrp9F+cYI9u6dCPROsVR9tAwCoKFOgrv9VXnK/VHzf6qcKELR4s7qmbdD0CiqV/1ptcPzBbeFrTn9lvNHiKZeuAhkKAJxc4TzGygSmbjDgBEVVKb2WKYMK5eA+ByZlgqYStK4ze9qCfLNnnLB2HxaiWk9uj0ONmlateZ4QrMR5lwGfHsiEPuWAQD56mMfACVoGElof9WYg/SbICYlqMuHbKXYVLDzGqlA1fSZYHHjSOmR1rdpUKWRO4wSptpn5xOXh8skANgPZiHj0ciuk4XdaMA+6aHAHEpw8cG3L+mVbKFP6oKyd+rwqPM2DPyqLWnXI8tM6ZvzoxsLxD7ch40fkDVnJS6tOZjtgxPnoHKv0hbvey3fufg8Q4PpmMqOHngQGnOBqCSgndFx0pwoWXWvVPFuo0H3cfa1na9B60XRP/+h1Faiujcz4/OGzAvDN67EQ8PwsnzGgXgGnLJGGlwf4lMKs316bnjJBQI5HFHyxVwXUsyUK/ctb8Lh/uXzOQ9vIdc3uZcpAn9XyGDgqUGqBgSxv/EefYScK85IqesS84PWymdJnAK593kOtfnpt4nZyv1Vjq7+zMWFAq97XbOmyUkjVfa5nq75ZHyhf8tjquLPHqVXn7D+X74Ant9m1n8FINif4dwUEsvq7+T9W5j0ZDODjXMuVouV0fOStggHOt8pPJ4UKpcyacHlmKNIRM6h+dNcDK1+NaFVGzgSXc/lzelboCgi43Pv7+5Xy9vf3V3YDuJ0OuiwBSw7jz+POQY2bpsyr5SgTfBUQ4D5m6xbEuzdU+AIMYEeIKsgMNHM7FDQyVTzcEr6alj1QrTJa85QBBNp7cHAQs9lsmOt8Xn3Eg5y4vb1dAaoOiHD/unnlFEsFxreFHH9ym5CmSu/apACVx9sZIZxPprgryoAA19eV69rGY+z0B/5nwLyqI8jpDW2v6g3l8YyqXV3aZtQr698xc1pprQBCd10VNyqjnahp+boqUB5IXo/WwDR8a+N5WQH1YXKD6tqoaC9Dvxm44GewFY/bwm3memt9FFA4oaBHCWeCWtvDFq4KBibd3ojnVUmwIH7KVp6XojGoWceT2wYgMJvNVpSZurtx+JLyELvfXcwI8zD63r0SOhNSmdXghJb2TSWEOe8MPLl6cKwKrgNI4fXY6IuDg4OV+i4WD8doZ/V2dXMggeWOA6xj+GOT5MYgUxZOXiG9yysDAS4vRxno0LIrpVcBEX5WlzxdPgx0HOhw9WQFz3XvBdn6vwJmGTgaS1X5FT3p0CGmTDDws8p0+N2y/lWItJTzclmvcTrKJkA2ybQurh58XRUEhFt2OhsLrslkNdK66gM+P36xeDhVjLeGQTHxq58jHr/qk/PEb1ZYqD/KQ368dRGUAZPXpEyh9YBEB3zgBZjNZnF4eBiz2Wx4GRSDYnZtK5hF3vCwKC9g7JGOx477mS05/HcKkXkhU4LumYynmVeYrx2Acu82gEcASwQc28JtU/Dj6pu5tF1/sKzRNJr/tlClhNZRGhmIywBjbx2rsqp8WMFnXlI3XiyPVH7q/K7G2429ykYuo9Wenv5Y51k8nwG+7F6LusGAuoxcJbSDeiwVXGMwoO71bGA5HxUYYChG/y5iW+uh5fJ1niyV0MiADgs51JWVAwtK1L8KAOS+5vJQPpTP3t7ecOBQxKpyAuEkQc2PBXg2DiykARD0LINNggHHh0wVgNXfSI++Yc/A0dHRAAbQb7wsw+BM18PxPgflY45FABi4vr4eXurCXgIeG1V8PGYti8gtRak7ngGRbillxYw8+YhrFbJ4gRZecgV+gxeN5wh4mAEy11FlgnqyHNjhew7kbyupLMvkrfutaZjvXqLtmcx181LlMMs9rmuWl46h9g0/nwEs7Tfm1wz0ZrqJ69SjrDOjpaqjK8PlV9FoMNCytJmZdI0mm2QsXB0qdem1w9zEZ6bgwdNydVJVAkMHvmoPMzMLZJ18uuyhyyO8Jq3PurqjrnwELAAF32NEnS1ZOGCkfcIKybmxszcxvha1xqt6TknHNPMMsFLj8eLXQWscAdIyUEAZUIJYL5/P50P9NGjTgVFtg+sLx6/cD9yHvKyEb+U5TsuglpU4wAQCXJGWx0AFs26ZxXUFRAy+3LzPAIHrq22lluVZKVullsHH+fX0i1N6vaBc+TBToKovHK9mfeHS8j0Fhyx7WXZW9XLluPa65zWPdWXXs4OBrEFVGp2AzuJAOkWBvQhdB4WVmYKBSnFmwqIVxIX0TJmwyX5zG4A8uc/gSuXANKfAGXBAoWgQFoS2Cu67u7vhRMGMwSGItc+Wy+Wg5HhdnNu5aTDAv3UcegWW8gUrOFZ0+jpq5Hl/fz+8UIpBAQieBLzbAXUFGGQ+4WWFDEBXv50VkS0TVWAAYEWXHRSQwPpX7wDn4YJXtX64xvnwePEcgPdE+8iNazbe1f1NUa9wj8jdyVmePXLX9Uum6HrL12ecDFV+1d9j2smkywuc1slwBZ6tNup9N/eq+inQeSl+HP1uAu0Eve8Ea6Vc+TsbfOe6UhTIitqVjTSO0fCsrklqnfE8l+MEcNU/Lg3y5PxY2FbKhV39SKNrycul32oFgpJiQKB9y+1DGdwXbO1qO8cIr5egMZO1AgL45nHhsWElyt+cL2Is2N3NZUCpMr+xsuX9+Lxjg3lVlXImPHScNAbAtZ/Taxp154Lca7FZwbP3w8UVZHNJDQfOb7lcDl4UBr+ZoaL5uH7aVsoAzti5l8lOzZe/+XqmyKr/mp8Do+5ZJ9dd3q16qhzXMvC/N/asl6pxceBVgQ/XsWeO99Ba7ybIrOJqorkBVoWjyhqkrmuti7NmeXAdk7D7VNM4Ba/r5i5YiRmay0b91K3JVrpaXQoAUB6vRUMgsmdAg/2gtCFwNVANz0KxILbAWWc6NrBqeWlA+xH5jwnmfG5yfNNC146HFdSyd4ABowOVUEYaNJrVzfFbxGp8hnqKsvq7eaZzgtujc7QlZLXNXH/On3mb82CPoesPt9TB85t5i4ETltW07c6Dob+1D7eRepRflra670BRNYdavDwGaDs+qPRKVocsD33GGTtZOscfvTwyBiy1+qsqw+XbXcfltnP8jna0ox3taEc7elHa/nfK7mhHO9rRjna0oxelHRjY0Y52tKMd7eg3px0Y2NGOdrSjHe3oN6cdGNjRjna0ox3t6DenHRjY0Y52tKMd7eg3px0Y2NGOdrSjHe3oN6cdGNjRjna0ox3t6DenHRjY0Y52tKMd7eg3px0Y2NGOdrSjHe3oN6f/B0qHnIn8KrePAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABy7ElEQVR4nO1daXMjuY6kfPc1Pe/t//+Du3N1t09ZtvfDRJZT6QQIlmRL7hYiFJKqeIAsEEiARy2enp6e2oEOdKADHehAB/pl6WjXDBzoQAc60IEOdKDd0gEMHOhABzrQgQ70i9MBDBzoQAc60IEO9IvTAQwc6EAHOtCBDvSL0wEMHOhABzrQgQ70i9MBDBzoQAc60IEO9IvTAQwc6EAHOtCBDvSL0wEMHOhABzrQgQ70i9NJNeFisXhNPnZCaJO2Decw8XVOyx+9n9WBz9HRUfqtZTtSHrUc/nB5R0fP+O/x8XGtvKenp/b4+Lj2u1c/0vJvzYv7j4+P7X//93/Tdr0GHR0dtV/lbK2eHEa/NV9P/vg+9637rd8V6qV1Y3RbZTtaLBbpeHgt+hn1bo8yWXR6FzqO00Y63X07/eXSvmeqtKEMBn4lypSlGutI+HplK6hQsMBpnYJdLBaT4HI6/H58fJwUGJfnAABIld3R0VGoAN0AUjChZe1qUP0MgzmjiuyxbET5K+W4NO4a6tNvvp/xOnK9Spvk/9llaFeUyVOke/n3iD6ODL1+9Drn3yZVx8Nb0S8HBjJvHkoru+/+K1p1ZfQEWaMGmhflMo+RktV0MOjHx8dr/EXAANc5sqD1ACgoEIgQ+ePj4048q9ZePtdfkXpGvBoZyABDBABUHlFO9EwcCO7V3aNf/fm/F8rkLtKf7OxkkQGWuQwMOFlxMrwpbRLdeg36ZcBAJChzDH70OyqD02nonv/jd1ZGz8Nz/IAiEODuKShxZXLkwAm2ouqDQh6nnqKYcz/zuLIyozQOnG4KCKI65lKvrkzZ74uy/pmooncrzlMWHdDyMpl0H46uKr0GKNg1/fRgIDPilbxROSPlZUKt5bt7PWHJeOBIARtuCHuPAFLAk0YQjo6O2mq1mqYB9h0AsNfJyj/q7214A85L6aXpXa/ed+nmgGH+HaXRdlWmCt7K0GZ18T2VjwNtn0ZkbAQI9HTxKCBo7V85gG4DOHiNKME+0E8NBiJj6+5XyCm1yONxvLg8meem/7N5V1cOwviuHI0IcBqOTuhCRM7D5a9Wq71VntHA7Q1qp1xGFcAmfdIz1CPkZHak/kzZKqB6DSVZAVSvWd++yvZ7o6hfM1nLPrpA2tWR8aHTqvyBA8XRUtabPxsg+KnBQEZV5ZIJVubxcN7IaPfASkaRF6b32fCrZ6+8ZnXzLgQeqA8PD+3o6KgdHx9P6Dmaf9vVwMl4iEBRdG1u3T3F0Zv+6ZVfSR+B2Mx7r5BTpLukOYBN+2bTMg/0L404OyMgwAGBKgiIIn9RdAD3NJL62oDgrcHGTwkGnECxZ7utcvlalM7lc+sEFAzA+EahfFVgFa+vYpyZp+Pj47ZYLNrJycnaegZFx7xw8GdBzq/hCc7xxvW3i+TMqb8noy7dJmC1x89omRmY75XbA1Ast+9Zht8DVQCA6kf3QX6lET0URQeg41p7qY9/Jtn4qcCADuJIaHqknr3WUf3tPP8q6fy+C+2zsKIOp8Qy75fL4bkxDMDj4+M1cKDlIIzGxorn1xwfu6JMWbxF3Vn7I1mK7vW815G2VkBuRX57UYEMpFYo60Mue6S8KE8EDg6UUyYjPZA5CgQ0/xyeXNpelIt1HF97DXpL2Xv3YMAZ3B6CVFL0GCnMqtJ0fOnvaJ5Kt+c5njJjodd7gKAXQmdwwOCD2+kON1osFm21Wq2VCzCxC8r66K3qq9SVPWeXzoU8e22t8OGiTr307neFsvIrY1Pr7KWZ88zfAjD+rJQ5Sj2jH13nvFpHxoObDsrGquq8xWKxtlbqNQHBWwPQdwcGKp5NJERMzvD1lK8TZMeXq0+vRYPCpasAguhkQbRNlbXOky0W61EA5snt4+XzBwAWdBoBeR4eHl7w+Jb0luh61Gj0gF1Pbqv1zwG4VaXrxk50bZS43l7UodI3lcgC6BANqNMIAHXGPdLbbgrVyWWFr+qUgdOtDhCA3iJC8Bb0rsBAz/iy8Dghirzi6H5Wbw8QuP+u7oqAunKcgdZ7KJ9DWs6D4/ZzdAJ5uHysI2DesHiwtdZOTk7a4+PjtLCQ27krMPDatCkA0GtOjiJZHVVuFbmt8jVK1fzZOKyMk03TzEn7K9KI3ESGvGf8K+edZBRFrEam7Nh5cg5ba9tfS6Ag5i3oXYCByCtxguUW5KkSmQsKRnjsKWCuW+enkI4P9XEnE4J0caTO6aMPHh4eUsOC30iDvKvVqp2cnExlHB8ft8fHxzVgwDzz7oL3AgYqRnVOWs2XXcvAZAYCMn5GgWxPVvV6b53AHNqFIjzQGEVGuSdT7qOHsLk0WZ2gSFYqU6QqcxHvlShYNQIRUeYMvCbtPRioKMgKomwtX4ynvzfhteJ9qSLncD0TDKh+c7lRHz09PbXj4+MJBPBvFTD0mfII44/5f6RBWdF0jD4Ld1TxW9G+zuVl8oF6qgDVgby5PFTzb2PsjBr+rD+qPGw73a9G2wYCFd09l1TP9wBD1AbW05ovuv5WRnxbtLdgIHso7poTLNzvCYD+dnwoPxEf+juqF3zx4jwHCrgcDdG39hIccLgKaRkEIIzvtgNy2fyCI8z5A1zAuLv+Rlrmb5dAoEojUYGRPBXFOXIvq7tSZkWeI5DSa4uTIwU0FR4VpFb6eUTpVsusArFfiXoy0JMrddyiSG5F7hwP+qxwTe+NjHf+RNEFnY51afad9hIMRIqrBwZae+54PjoS13uRgYyfqL7edZDWwwZSBcgNBgCBCBDw/L4TSk3DhwRFylFfcPTw8DCF+/Usgqid7524b7TfR412FRj0+nDU8EXXXHt6ILZS1za9otEIQAQoevkOlFNFdnt6UT8REFAaiXj15C4CB1yXa1PUHnXsUAbvONjGWNjWeMpoL8BApGQzwxuliwyTHs0b1Z3drwCBCJzwb40AqKFm4pDZ8fHxZHxxjQ8nQljfkYsYoG6NRiiY4DIZBGiEAQL78PDQVqvVVM7Dw8NO31pYIWeQI6NZLWNumoxGFUKvHZHcunSZUnZKVsOnVQ+/B0gyg6//oyjDCEDY9Jn9DOSeS6QHo98MAty3lrXNKVwuxzmCarhZN2p7WlufLuU8XBaDgqrDpGW8peztFAxkDXUKyiksZ5xbe/mgq9GAqsLMhJ3LUSUZzU1F7dA6XGi+tfVwPF4cNGp8ozAX7i0Wi7VIAv5rXavVajL++tlHip75pmVU7/cMINLM5acKoiugoUdRmLZCc9pYjVbMqa/yXH4VqgKBTC+y4Y/+ax2RwWYafU6Z3FRBj9oSt7W7cmaM3tM635J2CgYiw+iop7CcgPDvTZRGL19VoUbzTSo0XMbDw0M7OTl5MSelLxPiMvge8kQLEMEH84Lv6Cxuni7Q+7inICCLWrwFZVGhuSg8k9VNy2DaBAjotUxRZ7I7Ug9Hmtx31DZ9Hu5a73+FZ/e8M75+VeLnptfx3QOWbhqAdVEEBJhc5NLxM9ImLnukbtXTmV7VMvh/hd4ajO5NZKCnpCLvRn/ztSyMOMofX+t9emVGikcNPht6rpuJhdAZYi5fByjX77x25pUXEbb2Eixw9IUBAF/bBwWbeQXV/NXrbzmQeyCa02RyOgIIMk8ukvOKMXfAXuU1+6/lRXz3QMc+yOsuKNOtkZ5219zHRTWrlBnHankR8M+ed8UORE4WO2ojoIBtwlvJ4k7AQFXAIiDQml+l7Dos8whHea7y6ep3304hwnAuFosXBhrb+zBfz+8SQH6en+e6cC6AvmeA+Xx8fJzqWCzWzyVQYY7aw4Zf0++Dct0WEIhkeE6Zmdczl6rgIJNhHV9RHT3eI+O9KVh39TjeI1KecK0SOfhZKXsOI0a/l47vO6rKUg+ER5GNDKhGNofTueiEAwisp7N2OrCgaTLaBmB4UzDQUyg9xJh5E281WCOky/edoGXGkK/zHLzLh4V5i8XzzgJeRKheuS4cBBAAMGAe2PtHHRwB0H5n/vSTnXi4L6TGww1wRz1lVLlXTZcph0r5kVIb4SfzjLQOJ7Pct5l3N4ei8kYNuoKAfZPVXdMIEOgBAi4PlOnGnscelRnJbeQg8vN3tkiBQFQO2wZug0ZSewD5relNwEDFq6gixtbme/s9QcwMQoZqM3SrH76O387IuoV5TPziIPzXuflIITMo4LqRhuf2tfwIiEXt1PvviXqGqwoKtk2Z0st4imS2AsSjOqN8ETAA9aIhrh2Z/KgyreSJ6nxvcroNqjx7Z9j1WPRIT7LjkenhKnhzPGZ2huXDgVflh8uL5DeSb86rp8hmepJ52gW9KhhwAzpTXJG30Ruk0QPV/Bl/7r/jDYLN347HCq9RWt2u59oCodaXA6l3z2VwWS46wINltVpNhxXxlEIECLhORcF8/2ekTAk52mY/VLyiHpB1YKBnHFz+DFRXomJZe7hcV1dUp7veezbOIL0l2HtrqujHCAhEspD9V+pFD0cMpAMY7npPXh2PCmCzD9fDICDbUbUJkK22I6NXAQMRCMjAQQ8s8P/q4I7ARcZvRBVhwXcm0JGwsuLi3yxISMfTA65MXdynUxkMZvDOAVzn/kAZOHaYy2cDoChYQc4u0S4o42ETRV+Vqyr613uVvqsAAr0WeeZVgMz3dYyrLGcRoozHzHBoOVmkIQMMrm7H367l97Vo20CgR9lzyiJxmU2JxlmvHPzPZCO6DsPeixAoaXQgc5qqsrctoLpVMOAMrxMqTR9RZQBHiiUDHvjtEGkkEJUytbwM8TrhccbTKVKdQmBjnwkY58dCwdbaiwgBSNcegBeeMlDhRl2jRuW1aY4M8b0MzFUA5hwj7yjq1971av9nCtmlc55XNLb0tyMH4PV+DwRkCr4nl9r+yLP8mcnJTnRk8Gi/ZAAPv3uAoAJAMj0elTeqj/EdgQFXD+8scFPBPZunsrlNudwKGOihyLkPD9cjRax1Kw/ut35XFFXW6Q4AqGFkvqqoL+pH7UO3VYdfKYwogYaqGBBERg75uS3uJENtm/Peti24r0U9rxVpqjLJz3lbAKCavgK2N6mr4gnhOtqfrazO9ETWd25MKSDInle1nl+BIr3Z00OZoXV2oLUxj9eVH+ksvRYBlwhEcj6+Hzl7kb7XulT+8LsHCHrgKKJqP4M2BgMREOjNJzFp4zdVUhGfXH/mxVfK4bzgvYcSs3bxg8/6SvNl17k+HAvM/3GYER9KlJ0R4A4h4jr1eXM5OlXxs1EWDekpiox6SiEy/HP6umfce/w7Bar3q5GBqK1ZHU4pb2rYf1Zw4NrlZKkHAiIacd4qvPbyR3IRjcuoTJXRyJnrpc3awsA4OoZe2zaHRvNtbZogAgJutalSVUm4fFWeHDrNPFmtc+6gUH4y4arkd4IcIUy9BoMOUMBTBRyy4vRO4Ua8ZXy+l8gAqALEqkqqcj2Tg56HFNU/qrQjue7xyt6XSxd57o5fXbcS8Yw0VdDtwEHvGf+MIKC1msxE+jzKW/FineyORokyOxABQJXxrCxXbo/XUTlxAD+LDmQAe5u0ERhwgpMJUU/RcON7whXld/xkq/653jlty0JTvZCRq2+EsiMwuZ0KCHCYUGvP5xZgxwD46oGCjCIl857AAFOmPEHOwG1j8DpF5hRatW+jUKWSGyejXlCULhrfLprYq28TJV0FqD8zMAA5MB+9UbDaZ1H6CgjgMiJ54HIijx35q6C3B+odoNX2aDlZRLh3LeOtN7ZGaQgM9CqKDGcFibYWG3aXlvM4xRIZb76fHfPL13n1vXtRkKI3FT7Hc4T6lBdnCHSgukgM+gWhej4Nq7U2bR3kswmwS4HXCURTAxFFz+O9kXumei/7bq1mzHrkFKmT86wdI3VVlW/l2VaMtBsn2X8et1nbMi+Ry3JK/menLDKTAYGePnOkeouvjzhgfD+qD7qnZ3xdeyp6m8m9Nj4CJxFpPdG5Mj3nMit/JE8ZDEQoyD2wSHAqAy8TUnc/e/jRR/nogQEGAjpQVAD1LGptF6fn/JHSdzzop7X1V2miHl25Gg0qNXxOICsK2N13ffDeqGesmFi2KgOxB675txsHTq657Aofbsz2QEalDEc9QxSdXc9jxeV1hkXH2By+uLyfhXq6ZhQIRHVUbEEECHo8Iy87PPycnT6e26YIJOgYdGNfr0Wy32t/NpazMT4CCGZNE2gnRO+n7gmCKzOrxxmznlA5Ief0nE9XyqsRxhY8PrkP+Vgwo/3/vX5w/ZL1Fb653/UlR/D6I4XZq+vo6OjFiYY68Fw5+mwqCnmXpHKRDXx3XykCgnN5c0pMrzmZ7oGNXtlV/lp7eZ4F6ldZcXKo+kMJ44nXtkQgKOIP5eg1TbvPcroJZSDMfXrrN6IITySf2rfOqcRvliW+53SKfqJ0WV9ksp4BAZStU7GurRU5dVu1uYze702oDAZ6qKaHvCoeUA95aZmqAJ0CzpRda20tdK4PUMEAAwJefc8vDMreUtUjp4jUa+dIgvKGDwOT1tYNuvaNmz6JKBJulQ03OPedsn5/K6rKfybPrIgyI5gBC/7PFClFNSCquN36E+bH5Y8MAMqLzsVQXiMvT+mtn/U+kQNjTrZa89MsToZ6DqFSJK/6X+UnOvgnchIrfaF1Ov4d+IkAQc9wM1CqgJJItqM8VRqODFQRYE8AnFKpKhvlJ2qw5nOey2KxsIrK5WVAwG2HoeV5+cwTcpQJTRTm0oHJxwbj1EAoYjX40ZoD7hPuCz0JUfl013tofB8pkj++N9qOHhDOPI8eEMiM9qblcno14FyGTqEpL9jBgt+jYEDrby0eE1k/zDUM7wXQjhAbsAgIVOR8xAY4g+1kSil6VTruRQ6hyxM5MLiGb5XTzEtX3cppWO4iIKC2IgMfPbCvZY7QEBhwHTAKArisTFE5cgpK00cKS8vQNG7PpwMD7k2BOMM/473ycFQwNL9+EP53/RYtRmElwG3Rfrq/v1/7nw3IDCDMNaC7oEge+Xf2fOfKfs9g8+9svDnjVZU7lnWtG/+dAddomU6hQU7v7+8neXVHVld4bM3voGHwXm2v++3a+jNSBuZYH4B6fdHT/yqPzij3HI3I4Otapsgp4U8UWXLlZ+TsoYvMRoDAGfXI0Peeh8osP+Nqe7Z2AmGmpCLm3XeUJrsfoUEWssxA8YOM1g2oAmSlyV642y+aUeY9u/5kQYNi1WkKbZvyxGsfnAJv7fmQoqxvHCBwg/E9AIGIIrCVGV53b9RQuXqzMYb6KkY2AxaVcaxG4+TkZO3DhgUnXd7d3U2AANtZ8cl0BRv5DBAgL/e9U5CRR+f6SD22n4ky3VbNn5UL6gEBJtffUZ4IHETEOpN/q5zzfW5ntM1a5Ynzux0HFWJ5V5l+TRreWohvJ0QZOtTB5b61nh4PVUPrgACXxQ9NQ/yuTfob4XkGBooOmQ9tz+hD1sgA6uTpCgUB+M1vKzw6+vdFRe7dBMr7arWyLyhyg13bt2uq9PGIDPYoAqfV+lU59UBAhY8I0CjArawkx3/I0unpaTs9PW1nZ2ft9PR0AgTg4f7+vp2cnLTb29u2XC4nmR2JELDcQfYg07rA1e3m4XKqAPVnAgEVYKn3MifOlZvJjDOmETDrAQiXP9M7GhVo7RlQst6D7KsjGfEV9QnKcotcFehE8uh0rKbZtmxufOiQKg9nVOYOqkjQ5lBUPwMCRox63xG3lR8e5un1nQBqYMGXCm5kGHCfhRSnCGZK3qFgKHIAAX57ofYZ1wn+IkAQURXB7wNFhpNpm22pAoGMMsXo6mPA6KbBovHMvB0fH7eTk5N2fn7ezs7O2ocPH9rFxUU7Pz+f5Gm1WrXlcrkWMWByU1naF5wHZ2OgnXwP4MKNGdcGV8bPTD0g4OSsGs1imVKKjLlLx3xy+mpUAfmjCILTY621ySliEMBg9eHh4QWAdf2Ab7erbFM7uLeRAbeK3a0k5t9OuTpElKFYl0fri8ihuaon6wSptfXX/uL6arVaK18RqVtxGhlzxz+DFl4kGAkgXlzEkQEFArx+gL06Xkjj1ij0BvY+0Agvkey5NKNlV+vmenuAIIrMRHKthl6BAGQiU/CsQE9OTtrFxUX79OlT+/z5c/v06VO7uLhop6en7fj4uK1Wq3Zzc7MGNp0ij6IpXDd44dMyuUwG3nw9U6ZOJznD8rMABvf8eyCgIkuRfnZAoKdzI1nI7kdlZeVwH5ydnU1jAISIE6a6ENXCNdXfKqtOX4+Sk+OoTXPBBmjo0KFICCKhcl4v8rtvrQf/OaQTdUhUbySsOsizTmQhVoMIvkBq6KNjfd02xKifuX0sWIpi+QNPjJ8NFKaCAVX8i8WinZ6eroVguW2Y8+U1BdyHziBtKqhvQZlcMlWMgwPAWs9InVkd+F3xWPg5R4BeP5wXBPkBEPjtt9/a77//3r58+dI+fPjQPnz4MAHjq6ur6flDsbKsKu8afQK/GDO6LiZ7HjxGKv35sxh9pghYOpCZedxaJpeturk63h0Q4OdajSpEgNWlA6A8Pj5uZ2dnU3RLowMso8vlsh0dHU0Lq/nsFpZX1clsv1qLD2/r9ZXaCKVtAIKtrRnQzmAmM4/Flc//I8Dg8rqBnwk+85jxpMCHr7PS5AV8DAZ4TtOl4X6qtDXyrPjFQ621F4u5uCyOJKxWq7UFha09o2JEFWD8laDMdcGMe977CgYyA5ABgoicYcvKjuQ+ArKuvt4YqwCCDCBoPqwV+PDhQ/vtt9/af/7zn/bf//63ff36tX369Kmdn5+34+Pjdnd31y4uLtpqtWr39/dtuVy25XL5AgxkfargvjUPwLXvIuVZMXBa977KrlKmGyu6sLX+3Lhz6lx5Ub9lel7rxP8eEKgCD3aGzs/Ppw+iWScnJ2t1QkYR3Voul+3+/r6tVqu17bLKS2ace4BA+1n7KSvbyWsV4G4lMqCVVirXtD2AEdWnQuLm/F3eTAFlwq6AgOdZOTQEAwuesP3Qtbs3YLKBgmssBE6IeJEjE2+JVKACYee2armo07VjRB52Sdv0CCt9kP0e5WPESDk5ZhDIC0t7n5OTkwkMfPz4sX369GltqgBg4Pz8vLXW2s3NTbu9vW13d3dTZAlKEeDAgc2IkBf5GJS6SEOlrzIwsivaBhBxz111Yuap8vjedJw4QxXpiWgsOf1cqRd68OTkZFrsiijWx48fp2usRwEGLi4uJvmFDOMD+WNQoE4S+Eb/R4DAXVPj32uvpqnKz9YiA5wmYliva3lR2SrEWp77Vr4dvyMhMPWQ2ItmY8tlwlMHEGChwHdkxHsPXNvgEKojDoOpsV+tVmvIGPczVK48saDrvX0FBXMBba+snoce1VOtu6JIUF7PIOg0H74Z7GKNACvUi4uLadEg5l010nB6etrOz8/bhw8f2ufPn6fFWOBVp9KUb9c+VtTZlAPKqSjICjB/T+T0mNPZoG0AAqeftcwIDFfK1Osqr+7ZQ4Z5+ytk99OnTxOYvbi4aGdnZy/k4PHxsd3e3k6AlkEtIl08der0Oz8DdVjnRE+rMj1Cs15UpAIVAYLsd7UOFWAnSGyw3Bz8SBs5n2ujU6IMUhaLxRQJaK29CN0vFi+3H/ZASXY9MiqqLDlSgfsKBnCdwQmUNNCv1tFTntv0ujehquxtQpHHUv2OrmkdWVsy2XegwI0pngrAbyhRbCPEVkJ4VjrnyoS52U+fPrX7+/sXXpSOX8cvSPNpZEAV8ShVjOR7ouyZOwMa/Wbj43RGlZeRez3QkIFFTqPbXwEEPn78OAGBz58/T3KsUdSnp6d2d3fXbm5upg8AwfX1dTs5OZnAwWKxWNP5zi5q37vxHEVF9No2ZXM4MhAZZKZeeIevZQrLAYFIiEG6ml7LjXh0fDmDr2137edIAK9Oba1NrwrWBSjVg4ocAMuMC4dfdasjK9BoHYPykwGYDBDq/X2hUbDYWt8jj+QP3xUll1FPAVQVq8qQLszDNXhSCKNCqcLbh0eFHQQAxCiHowOfPn16sU2Lw63cvqwfGOyqPI54/RXattJ9C1J9mTlVrXkQoE4cf+O+Xo/Af+9eFShE8ho9H+jg8/PzSQaxRuDjx48TmP3w4cMUHXCHsS2Xy3Z9fd1ub2/b9fX19Pv4+LhdX1+/mCJw/Rr1pfY3f/cAV9Rvc+R19jkDzmBUFGtkTCMlGQEBTcMRgV5HOCMX8eYWT+mKZv0Pg6+EVf6r1Wptu58OLv0d9WE0ACOAwfNX4IcXEkZAyvHjDDz3v1Po+wgGmCr8VQZZ1GYH4Kq/e/xkshIZ/0zGOaSKKQAoUgCD8/Pzybv68OFDOz09XZMvjjxBIfP8Kn5jYSGD1iogwHc0Xt6bEd+EMkMb6dBKVKBn6DVdjycuPwICPVugU1GRLocsYzqL5ZjPxWCAAFDLO7Lu7+/bx48f2/X19VTW9fX1iwXXALdHR0cv1sBkQED7xY1r1ydunMyV+aG3FipScUaJKROE6F6kMHs019D0vHJWMjDcuqef8+siO+aNdxywoPS8GheW435SYMJ9odsatT1OkaqHGPHFz5wHqqtLy9sX6nnxShFSz9JGIDbK1yvX1Z/lzTwvBqQKGI+OjibleXFxMXlQLtQKzwsgWKeUsFVVZaS1f70uXljo8kfRKZXhSPZ6Y6zal++BVH7ViIKc4+FAgJJGDBwQi8ZDBPKyMRjtfGFjzaRru05PTyf51QjBx48fJ+POaTAlhm+sD7i5uWnX19ft8vKyXV5eTs4fpr8wVZCBHO5Xp0+i/sx0ldOzo3I+/KIiZdoZQu2MDO2ANI/zXKqUCbC2JUNgypPOpaqQ6sFCHB3QSIGmzaICyiMPKhfa1Towh6Xl8rPDwkGAnWj3QaZ0I1Co/bpPNOLpzDUiDuCOgoAIJPZAuPOmdI0LE+8wwPQAFv5hsRWiAwwGLi4upoOFtP6zs7O2Wq2mLYZ8KNFisZgiA/f391MenneteD8MMrJ+i/5HyjbKt2+UGVMng9tsTxSVifjs6QflWRex8o4WXafidr3AyGPHAOQPIAEyzvLNYODi4mI6awBRMIyBp6d/j9vmBYWI/nJbXDt7+lL7uAcIOG12P6LhyAAfpKDecWTMtYxIeNT4V4EAl1lVoqhP63YfPqAnOttfUTcQI28vbG09OuAWS2XejPalKnQO83NEgENYUb/zzge3CCzqR1dmBPr2EQy05qNRm/CqcqW/K2VXFUXUxzoOs/U3zvPSHQBfvnxZO2GQwQCUK/OkY+zk5GSaFoB8AgQgVAsPjMdH5LFye7kdPW+2d+29kTMMEfhzholptD+yaEsPSGcRApVJ3gnAv9lzB0hAGixaPT09XZvKghHX9JBnRL5QJiJjAK23t7cT6H16emq3t7ftx48f7ezsLHzHS8/Ld7q/ChK0LAUNI89042kCZ4QjQKCRBC67h3ZcHpfOefiuHZx2E0+W288D7+npaTpHHW3mVx3zfD2McVWJgTfu28iAu+2BWiYPPAfgwDPP90ZTDD2lsE+0Db6y9uk4cHVuwoMbd27saRTLGQuNCPD2K3hNnz9/bp8/f16bY+UV2Lo9UAEybym8v79fW4OAbz2DwAGCKDqlchiNnWqUhf/vI3CIQGf0P5K1zEnIvrWMyrUsjeM52haouwMAJvk/QCtHr5COp8Jaa2vgAYZdwQCipQ8PD225XE6ggo/a5vMFIh3JbXVOHV+PHELNh//uWlV2hxcQRsw5T0SNi/OIMyTPDcmEPUKgkdF325paeznfXzFkaCsEAogT5fLRq1hYwgtenNA4Bff09Lzin0GYIkHmnU/IygSS/yt4QxkZEMjAgPbnPlOm7Hp53poiIBABcVzTewoKWAGyweeDhXjRFRZcsSfvIl6ttQnwsveGOV32/GAAIm9SZTozZNG9niyqUt03ivRfTwaYMsDkyuO6XLmj/ZSBaCejGhVgo4/wPmSVAQCiAkjPO15aez4gDuVDLnnxLMvk/f39JLO8/db1g9O5zntXeY2MudpDBgFZeRUaXjOQ/Y+8Eb5fZdQJoFuc19r6K0sdmnceBbchMqjaLvauGKkCpbIwgS+8v/3o6Gg6nMIJDgQzQocR2AIvupAGedjDivoZqJcVdWstjAhE4IKv7cpIRvRWCn1bQGJOOQ4QaETARQGg0HhxFZQoAABHBjD3CsULMKA7BUAACjjXnRWuU8JRhIrHSuR9RUA6+644I/tAkW7i3+6jVAEBvXpQjv6e018VUOFADuthgNYvX75MH8gqr2mBYW+tre1mAf+6PgGgA2Pm4eFhbZohGqeqz7lvtJ/UmEd94PqI820CBFrb8BXGSpkwRh3Ry+tAhZLu2+f6HBDoebJuIEUIFQqU55ggbPCo7+/v18JRKAsLppg//Ob1GI4vXbPAirW15/MMAD6i12+y4nUCDr56QCCjCGTtI70Wn9U+cEoX+bP0Lp8bS3oNcoMQKa+q5v3X+OBFRLq7AGOPzxDQvde3t7ft6elpzeDzOhzezoVpB8gw94OLDERRgh4QyJ7NPgGBjCIZcHqsGsXjMlxdjqqAwIEJ/Z85GrxltbU2yQ1OFPz69Wv7+vVr+/333ycwwKF/OEnYAYBvbjPGBqYdILOr1WptjUIEuLS92fh13r6jntPq+nZE986ODGSMz/WOIiAQRQQcXyhHjavjswoE3H1GpUCP8KpwvjU8pPv7+0mYAAyWy+VaeSB3nCU+6t2pZwUBba2tAQF8MB/LwgcQwB6im8qJFHCV5ngjb0G9510tI2ub86D0dwQCqnW49BFA0IWwDGx1akAPZsF1gAZEBlA+psN0rQoOFtIFuAz2mR9E09w5HAxK9bsSGXB9tc80qk+j9E4fRuPS6eWIIpl295mPLI/yBl0K+WUZY8MN+fz69Wv7z3/+M0UHsFsKMsVnvqi+A2+s2+HEYb2AThEw/3qeC5cZgVVNF913gMkZfb5W1RvDYKCHXkaJQxwOzeKbF+a5B6erj3tozP2OIhDO+Cko4L3XEJ7WnoUYZ1pjTzV+48Nl6nkG3E+qQN10AZ+AyICA28IHDfEOAvbu+CUczttTIYz6fF9BQO9aVdadMovkSD2BKsrPeI3GT29csfwiuqVnCvD8K4AB1gzwIS6IYj08PExKlqeooFx53YuOZ2fE1ZPVCFVvHUsUCcieU/Ys9pWi59xarredYdF7FerpXVe+a4NLoyAQuon1U2ttkmWAVOyC+fTp09q7Y+Cgcbkglk+dAm6tTY4dA1qkZ1uVtdUBsFG7WvH4e/pFaavTBGCAv/m63mNm2WNxq5xbe0Z1WrZ7G2Br66/f7SEyHkQO1bEww3C6eU8oVF07ALAAMHB6ejq9AQtKkl/vyi++0PoZCGgbeL4LfcZ9yDsYuCzUoafAVT0H7dPIC9kHUoPoZNOlr3r/ThHrd8RPxAOuO0CafdhzcZE2rlMXD8Lg4zefI8CKj8P6DDS5bL7G4JMBARS9RhWySEA1WqUg7GcgNfrZPQeOKuOy11cqj9XoSwRcojr0dcGLxWJ6lTBfY+eMz8HA1lYAAXfaJfMWrXnTSADrXNfeSvuyfuI+GM3/qpEBZipSTMoI52EBVMXnAIACASfceJhqNB1flYeiRtYpUihO5YkVIxaZQFAuLi6mg1UAAvAmLJxqdXNzM4X3OcyPdlaNBvg/OTlpT09Pa96fhnC1LB54SMvpXV2cd5+Nf8UL19/Ih+s9YKTp+X9Ub89TrSj8Hihg3jiMibohtwiL8toB3ZbFBlxf1a3vHcD1KKoG0kWHrj/V6LtPte8iz+y9kMprz7hGkZGozMp1V0dVx+I74pX1Hr55+yqinvjAwDM4hKHmA65aa2vbVzmvgmiOGCDairSqQyMAgfbguyKzPRrp55Hyt/YKYyecEVMRaIjQlSMNLeK35mewURkoep9D8HxQBSszDl2xQEIYeW0BTmBbLpft9vZ2WmvA/AEw4L/bCcAgCcQCze05OTlZ88yAklUYuR9ZqWd9yx/11KIdDLuiTIHq/ayM1wA50ThqrR/WdnmcrHM5LtwO4i1//MFUgK494ekjnlLK+FVwreCA+VTeM+WakYJCTV9VsvtGVSCgfViNCLh+icCUpq3+duWzfB0dHU1Tn1j0d3JyMkUHcPqfvl0QQJZ1kkac+CVZKosKDjgawWDALc6NnoWT2YpOUZnt6YVRGo4MZB6US8tpeLBr4100gImVjYsGaNRB0ZoqH+VfH4qbR+K0LExuLosRLHtT4BunWQG1Ii9WtjIKdkgVAwTXeCEMe2v6jFAX78Dgfm2tTbxoG/m5MinoYu8zAhO7pAgU8D0daNH/bAyoYmQjFOVzebJ29IA5l8NeDEDmarWawCKvC9H28podXuTq5MwBfOZLFbF6dswLK/DeuoCsn5Q39wz2EQg40JIBPr7fmu+bTcdiVGbWn47nntwqeGVdpbKyWq2miOvNzU27urpqV1dXa+taFovFi50IXD7zyrLFugzRXRdhjZ4HyulFBqqRghE5HUk7Cwy4B+rIGeesXDbUGsZkZaBzitqJavzZ0+EjIzVMiW+es2feuF0OaSog4XUEPN8K74oPwGB0y2iVTy10gABKHff0GvcJBoMCAn1mTsk6gxjJAgOqEfD4FpQpJZeOn2dVCVZ4qOSpKu1RUIBvBmrZ3DuPI4A9B4YZfIMvllkF+g5o8m+nKHtRgB5QUyCwTyA1o0g+o2fe08m9dmdAdoTfaPxX7EZ0zzmG+A0wcH193a6urqaFsJBfECK8bA+4b1AmgAZ0Kpy4u7u76dwYt+7AtUfLnxMV6Dkfm9DwNEHvE+VRcovfGAiwYVEg4BSXUwBskLHKlA2zU0y8BYoBgYtYqHHU0CovxkJ0AHXj8ApepXp3d9eur6+n7Ye8UDASOB6krFgRWXBzWMo/DzAGWlqnA3dVQ1hFva9FmVJyv3sgoErZAJ4Ljka8rGhM6rduk9JyebGsmwJQ74jBuIJUBrs9ZdoDAToGXZs3MWr7QD35qY7HnvFxsloFTplMchmVZ+N4jv7r4mhEXbEmC0Yb579ANvk9ByzXCk61/ff39+36+noqW9cquD51/6Nvl6cir67vKgCCaRYY4E7Vga9zgGrgUQ7ILdbTOt10gAMEOiA4IsCLojRC0NrzuemYd0IZUViJQQLq4JPbeH8218mCBzAARHt5ebl2zCUoMsq4hz6CsuW+dQhfw8F85LCCgJ4n5vpEn4ubl94HcgpM6S2MxgioivJWgIAzHnzYD59kqZE1RLg4MqCAWoEzj3kO7fLUgJtWc21UqsikAr33CAQyqjhjrY3JcBZV0bozfjiNk0M2sA6EZ/WAdOdZa8/nXCCczyF9TL+yzsbaA57ehGzBJoAvgFdsE+foQKYno0hAD9yi/ZFjEgG3ufJdBgNs3CuAQK8zZYv5eG6SjZKGJPmhKT09PZ/jDxSIAyn4ndZcF4QHBhUPHm1X/nhhIb/m9evXr+23336bXoepr2vl/fxYFAOesH3LKdjszYN8pkBr61EBfhYcPdB+VIAQGW43cFkIGQD0ntMuKfO2dFBVec8UV8+7q0YiIrRfBQPsGfE+an6nO85jdxEuBqkMCCLDBFmAxwawjW20bmuYi4pxnRWgqkBA+zbq50zZ7gtFANAZh21HtSLZYr40XcU7zdI4A8lbU/kMAawdUGPNTh3Sw4GDbLb2DFoZECiQ5aiAlt0b55X2RfmjPoqiN6PPvgwGeG+wzsXzh++pomDS6/qfHwQDAuftglCfO1mNj1X98OHD2gppzAVdXV1NBpq3j8DYqtIDuuRjMP/nf/5n7eQrrkNXYaPdfAyrTl0wKEG/OEMN3tBHCj6Y1EjzQpwo6hIZfiaXR+el3yNtgrYjoxQp2R71FHQGCFhu+aAsPl0QC67cS1gig8MnwTEIRb8htHp5edkuLy/b1dXVFGoFCFfZyLzFjLJ+zcrs1bErMOu8Qf64qR1NP4f3zDhHMs38ubQZOaCmBlDbrhFURHb1YDfeDujOX4Ht0gisTrGybuQpLm2ri25ljoUbU3OpB3Az2joYYAPExs1NB6jx41BP1EFqxCJExp47v5ud32AFsNBaa8vlclJcp6enbblcTgKCsvVgIezD/vz5c/vtt9/a169f23//+9/23//+dzrDHQcfYSshb2PhhStqlBUIqXHla4vF8zSB9gEPJl57oEafF+VEpIBAr2kUIPq9S1JDWVVcTilvkxelEW+hUj7LsJs+49MG+UyBCOSzxw+wCrngKTiA4KurqwkM4HNzc7M2JlT2nFKt9F0vKuD60N2Prr81OUAXfSo8j7YJZUZ8MI+9cVEFaxEAgHyxXKI9Og3FcuUinjpN6nQUt5HlnR1G1XsjTo97Fg4M9Z7rJiAAVAYDrAz0t3q2CgLcwGWPVb3hrCGKihkMMC+8RkDXCriyVOk5wILDhFAe3uT25cuX6eUYv/322zRNgEUrbh8r2q3vBWAjGwmVAiO+hihGBsa4nzUv/veMtxp5BjN6v9eetyAFME5p6XUFPCNKtOI9qUJVPriuLBrmFLMrm+WCpwn4Na8cIcDUAL8vno08Imp3d3eTYnRTU4gM4MPHcuu8LrwtVbZRtMoBVPcMNjHo+wAIlKJnXOF1076I5DcaU9Uy3XVNw7rZLXplvef0Ke8MQPTALQZUp0yvMeDQ82W07Vk0wDlWo1TR0xUaXjPggIDzHFqLgQA/pCikEqGsCAU7YWAvnl9F2dr663lba9NcE4eVwAOXh4gAv9YV6wN04eDp6emUn0NU4Pnp6WltRStfZwOtRjZThq7vFov1yIHzgNzzdmlU2BUM7GM0QCnzXlw7WcG6Pux5Q1p3pEgz0NFTuPg4EMLjkMEnTxXwugD+z0AA40enlTDnivMtdMzzfVaYujYgalMUaeK+coBL+8E9s32Uz4gi8Mg00p5qH0QAAM8sAwFRtIXLjfjSutnG6G4ABgbq0KFejgBA3+Nwotvb22m6ivUnR73Y4eG1BPpxcur6XMGq3tsUHIzopdYGwUD2USSWhfiY1Njjobl7jqceMWhhEAFEhzIQxudzq6E8UQa/AOPjx49TROC3335rv//+e/v999+n/wAD8Ixae1aKEDjeScALGittBrpFn/E3pjZUUTJpNEancfibhTNDv9H9UaHcNjnlM8qTKs5ssDpDFIEATZMBNX2eDmwpKHCelE53YYqAX1XMwBaLCfmsDA6xwrvHAlxtD8v90dHR2qLEi4uLdnd3N60Axy4Dlm/th7ekfQELKq/OkGaeaK8sLaPKT8aH+5+Nu4gvtjG8+0WnC/Q3jxM27FhbwCcVIjLAQLW1fMqawcHoDiznzG5D1pxurtJWwACnAbGBUaTCHqsy3pvH1nodwopWsUcPsbW2FrbENSg/PqcAipMjAgAH+kY3RAJwuA8EEugRIGG5XK7tJOD26Wpq7jdMk0BgXV+4fNqn7r/mY2Hlfs2EWKMWu6RITkGuPa5ten+0Hk2b8VKlKDIQ1aeKlXcN4Bsf3d3CdXK4FBE11zdICyCAFdww/IjI6VQZty3rlwz0ZvneGzmdq6R9FUW4sjoybx5pmB9XP3736ouemwMC6vm7aV3lidcQoD7sCMDhRJgmwAJvHhvgQdfIqQ1yu7S0T6sGv5duFDhU0w6DAfzmaz2jr6QL25Rh9jCdcLtrTijd8aqRwPACJkwJ4De8Ig6lcriVPSD+sLK9uLh4wReU583NzVoEoreC2z0T7YcRo+TyV+uL+hTXI57ekpgP7deeVxMBApfeldUrn/Ntguor+aJ7vLiKAaue+c47VnjVNn9zVEoVNabNWnuOkt3d3U2gA2WzIxB5WdpnFXmvAAvtq30Asa7tGeiPgEBUnqtzDkWecdUA6rcbozot7aalUDdHrfCa+KenpzXZ5W2uPJXKdeCFb7wYnM+qQZ+6CEHUThcVGHk2zmnZFPSWwUBmmBEFiLa8uVXCmZHjcvk3KwqnJKCI+ARBfi3wYvHs5aMcGGbwhEWCmCpgow+vCdcWi8UUcrq6uprSsCeFd71jjzaQKVAoFKDbQaALGZU4wqLKqzegM8PTAwSRkgHIUzkZRbKvQapYIuOReZ9KIxEPBSN6r/fbgcMM0PC4aW39HQIYI2zsb29v2/X19dpY43lReFOQYV0UyGBApyKgUDG+ICcoU6MPDsQrZbpD+y66FynQbYCybVJkGJkiQBCVV0nn0nMedcYiMBARvPBItjkSoB55NSIAo39xcTHZIl4EyPP8j4+Paw4cnD5M9wIsQG41csYghPtgBBS5vu/JaKWMCg2dQKgN5IbCACtxR7f2HBVQJqMdBc746zWUxeXd399PCgnK7vPnz/82mh4ghIN3Q8Bjh/LieSicGgggAKXIxpwF7enpqV1cXKztuACAgPAxisW8qTumtRLKRx/wQGFh1CmaSIlERssJuDNajrdd7iZgqnjr1XIqCi/zYnvl6/8RsMd1AwwzoEaY/vb2tl1dXbXFYjGNFV5MC1nEttvWmj1A6O7ubpJpjBMAAShOrNNZrVZrwJrHo4J/J2MZ0Iz+jwCFfaGep7wpcMlk2HmxTJGDqN+RzCog14+uY2J9rOsEGCgw3wx6Ee119bMDxo4fPpBZfN/c3EwLbPUgLv7OrjuZ7sn2a1IZDPAgZcXODw7zgr1yQOytuNXurkN5FbML//N8DRQRKzYoKxho1A3FyMdLsofD7YSwqJeDdwsgPSs1CA5HGh4eHib0qcCIIxigyEDz+gzufwVYDA7cwk3ciwAW88GgIwKJ+qkuKt02ZZ50NuBYkXE5GWlZvUjAyD0uMzMMvOgJbdDIgIJFeDvwpnjabLFYTFNlrT1H+1zkTmURwIDfGscLZ7FOwa0X0DazjGr7+HfFQPX6uzfu3ooy2a0aimgc94xO1reteeckAxYRsIlAL667ReCsh/V9MPjgGi82RJnQr3gNso4JlV3Yt9b+BcIfP35s19fXL9Z6cRui/q96+hEAdv+3QcORAXy7j/P+MgMAxZENPLcQMPMG2Njx0ZSnp6ft+vr6xQlrEAhMDfAhKrqQRAGQ1gWvig9d4TahHEQDWEARHVBDzYiYlT0TL3TB/wiF84FHDhDwd4UU9bM8uIjOLkiVEF9TUu/d8Zwpzyo/I8AiM5BcnlOw7jevyIacYqwgoqUeEsA0DDlHv/CcWYnqWR8MBlr7V6Gy0mZQwIo56tuK91+JCGRlZH3/VuSeo1Iko/yt13uGPiu7ck/r4/9ZW5Rvnipg2WUgABmD4dZj5zV60FqbQAIDAtTHawUgx6j74eHhBdBAmeyIZiAzk+VNAMCmAGH4FcYVpe4AgBofTRMpas4XoUstQ+cf4fVj9aiCAbxRkD0cjgyw94Q+cPXy4OKXsSyXy6keAAU9ohUnsulBLAjRRiF2HTQQ2sgTAGCDUuZ7qgx7A1d54EGB/w7M7YqqRri1/noAyERvALpyFLhm4NaVwc8lmjvVDwMA9qTcuzAATFkGIZMAnnxf5UXriLwr7M5xBx3pYS4VRddTtC5971pPDl6bdLG1gtSRSBL/57zVvtX/Dli4upkHlV29x3nURigg4B1eX758Wdsqi2Pn9T00KJMdQXb4ou2LsEMYLwouFAhkEZIeUK0a/Oj3XBoGAz1yHjEYdSBBhSja38kCBKPtogpucSLPjd7c3EzzPFBaQHos3OzptNamaQz12vGtZfGbsHhfK5Th7e1t+/79e/vnn3/aP//80759+7Z2RCu8tAiARGBKPSsVVo5yQMBVELOoi9an/QDeuJ/wvHalVF+r3lHk3lrdI9OBjm8FAbqqWtO15g8dgoxqKNUpa15fwONBXzSE/DwW2IsCn6vVau0+g4KLi4u1tQq8mFD7KlO6eq8S4VEjydd2Rc6Ib7O8EQOi8tqT30h/KyhQvvi/Al7ntWN7NyIEkCOAAV6/wnxwxMCBAQYCDoRlpxFGEVH3O5Nh9EEPXGT/qzTrFcYR2nNzfpnw6T3OD4OC66wMlAe+pjy29vzgEArF6tLlcjlt+VOkxzxBGQIMqKCyksWxx7xVCse1wrN6eHhot7e37du3b+2PP/5of/31V/v27Vu7vr5eOw2LFSGjaP7N34yco/6E8ddFL07Y+Zv7WevW+rk+nnveh+iAUgWRRwPqtdrTC/tmgIBJZUbn8hkQ8EIoDqHyuhher8MrsVEm+NITDXmaAAqTIwf86u9Pnz69AALqSUUe/Yi3rP3K+UaN5GuSAwOViJTmzdJE/ZkZGnWcsnpVdtVLzwBPZGN4KgqRAX1tPObz3bosLQs6M4oKsPxzpIy3J/KibwcCKhHEaqSnmm6EtnYCYYUyJcd1sFeu4XEWCkWoGdLk0Keu2kfUggWGBRZRAQcCGKli/ooXW7k3siFK8OPHj/bHH3+0v//+e22aQBFma23Nq3dtZGFWQID8IPQrhyBZwLLQlT4j8MD1cn9z/lHhfEvKFGJrfmBtYjTm5IsAgT5rl96NI5ZbTJ219vxqV/aqUIYengVij4pPF+RXIoN0ik5PQnSvndVvjmhVvK1tK9q3prljp5evZ6D0vzoN7p7W78Crk9eId87f2rrTAzDw6dOn9uXLl+kgOEwPtLa+hkpBrTpQDABwj20Hds3wMcY3NzdrMpttic36OJLdSuRwGzI7DAb0gaqRjIRPDQ6n05C2Q6QcHWhtveOcwtZ1Awhrnp6eTntEoYDghWuolD3dx8fHNeFi9MihVyw24RC8vvsawnR1dTVFBLAtC6TocrF4XonNbdbQl3oPKJNXe1dCq1q3e5YsD621dOuO+79P5JScynMm28gbKcuIRkFSBE5cVE7rcAtT+X0bAMMODCAawPu0WaHyNkKeAtAyWmvWezo6OprANMYkT0FodCnypBio9jxW7p+on3dN+rxHPEhHWRSQ02T5mZ+MVE84J4rLVQfD6TnkYzCJd8X89ttvU4Tg/Py8tfbyTYP4ZsOu76KBnuTF5FiIfnl52X78+LH2fXV19SKay/LtIgRRJKsSqcz6exOna9aaAQUFra2/jpfTubxMDh2io9Cp+q4Cp7AzQABFtlwu1zwpzvf4+Li2sJDbyINPQQDPi0IZgmeelgCS5EWFNzc37fLycg0I6KIaB3r4GSCd8w5Vkeq2Sy6LF4K5xYXat9p/POe2L7sIQCPKMxtIvYEWgd1eOXP6R/Nw5ChKw/Oaeg47TxWwMUeZLB+6sA/rbSCH0foZ3T6ssgE+AE4YvOjirIohm6MUdy2rSg5QuzZmIFZptI1Rfb1IgH7UoFfBmTo8rMN1uoBfEgdHbLVatevr67W1KPwuDI5yYWcBdDTKuLu7a5eXl+3bt2/tn3/+aX///Xf79u1b+/79++TM6XoB7pNen28LEGxCG73CmEMsjkZQJOcBEOAy9D4TC79GGXRrIDxzDge19ry6mVf8c3uh9EAcosLLXCCg2LONw1iurq7ajx8/2tXV1VqUAIsa+eQ2AArwqoCApyx4dSv3sSrOLBrAA0wjE5yG07IXqItvMhQc7Yh4C+opyCgPfyuNeFSVCEOUr/JR0AriPj8+Pn4Rfsf4hXeliwohZzy1xmdxIC8iCzhpk6cKsJMAXhbK0DMGIFPn5+cTWGEgq/KMqARvbaz0P6iqdHcZJehFOjIduykgcGm4vl7dasBVZrlMp9d5rRQTytMzBvBhAIvpWERg+a20erDbYrGYwABkFFtpr6+v248fP9o///zT/vrrr/bXX3+1P//8s3379q1dXV29WDMQkfbba4OAEUdoGAxoVEAfFodakI8Z0zJVMNioR8ZJ/3OISRfbsZfLZw9oiAqL+vCaVt2bCo8J4afj4+NJySFUBSPOHjYMPoQJB7swOgUCZWClShDtgcFl5adAgJWmTg1w/+p/Llu9L2d83PNzdetCwrcmNyCc8ZjzvxfqqxoSp+iZT37WGhVq7eXzdPxgKkzPCDg6OpqALZ/DAXmAAsWCKYREW3s+zRPjhj17BspHR0fT+hlsteX1LDznCtAA5cwfjEmOcuE5uIhBz5Pl/q4aul0RA4PWxqaYMsM+aoR6wEN/u09rfR2Pa6y/3BStOnbQuzc3N+3bt2/tr7/+an///Xe7urqaorO8+BXjCUAYMo4p34eHh3Z5eTnt/vr777+nXWDfv3+fHDreBl4x8lFfjzyPTCf1nBmlYTCgHzzcyPtz4W/8r3hr3CDXMRVEzMbp4eGhnZ6ers0J3d3drS0exIp/CBuUIn/Dg8EK6I8fP7bT09O2Wq0mxef2oer+bTaSuvcVOxh40DoErW2F58chK34OOrXDUQmkZY+Ly648J+W1wvdr06ihd1Tl3xlkV04vnSuXgRjLJy/cdN405NbJBIAt3sTJq69xOtvt7e3aeheAAUwHsGF25xlAjnmHAq7pPK4CRwYFzstUo6j/o2c74jXtI83lf5sREWf49XeU3gEBjoKozmBnlGUfTiB0OYDr5eVl+/PPP9sff/zR/vzzz/bjx4+1N9NCVwNM8GJWRK1a+zdqfHV11b5//96+ffs2TQ/8+PFjeuuhvk/DAS3Xpz1d3qNtyu9WthaCKbfIB+kQ3uaHF00vjKBxjkSAH5ygptECTgtkeH9/P72/APXyCWwABTDsUHwomxEl1g1gbQL4A+jgOSsOVelCLJ7/10GS9QGeAUK4jKq5LzSC4tZ9KMjDfZ6S0H7tKaddRwaqytMZkjmDrueJZuVmEQEGjWxcW2sTgIQMa2QM8qj793XeFWtfIM8oG5EsPsJVgYBbke2MA48NzMvyexF4OoJlkAFRpnhHaZNn/VoU8VKRaY0iVMvelFwUwPHE19xz1Aib+0CGsAYL8oLpgf/7v/+btm9fXl5OkVmWfd1mi50IWBC9Wq2mhYI/fvyYpnwBBPQ8DG3DCNivRAtGQVqVtnLokCJN91DVgCiidwvfoGhY4TjEyIpTFRQbL/Ue2FuHUmJDDIUKBQzlCG8I26CARKGEYewVAOg7EABGWDmDTyhT3kHBxIaY+0inBjRawwBHozb6rc/TKXauX8GHysiulKyGzqreUMW7rHj5WTlRPpeHwYAep8oyjzA784jy3SEpESBl2cO6ARhtHEDkIkhqBJy3x5E5XlCL7VoAAjx2uK8VKLnoQI8yD3mOMn1N6smsMxajXufo+HR6tRcN0HpYJlwb3Nox1t1Yn3V5ebkGgDFF8Mcff0zbt7FmQA23W3+ga8Dwds6rq6tpukGnBngcVPRf1C/6PF1ZI/1dpVnvJtD/anCitJEi1AVwOpfEZTjBQVmsdCpeGZfJ+6c1LZQwh5g4PwQSUYPr6+spjMSCw9MDrOg4UsCAQBf2cWRD1w4oEHDCCbDCgAB5tV8cqtdn4aIwKgtOYeyCtG1qxN+ahwofUWQA0Sg9z1/fbeEAIWQc3ji2uF5eXrbPnz9PhwMhMoD1LthPzbti+Fx3VrAMsCEfqJvvQ+7xgi/srsGaBN7KqFNqUZ9WaTSasEv57emz1mrz+BWvcy6prEYUGcnIgcC3RnOxLRC69uHhYTrLAke9f//+vf3999/tzz//nOb2ob+h88EvxpGCgtb+lVsdB3zQkJ44WOnT6HmMOC5az6YyOisywAomMtzOKLMyUwCgDeGogHoEEcLSbw4pMu+8QKm152kDTBlESBUKGKEiLCb5/Plz+/jxYzs7O2tPT0+TkCKUBCHiqQEoYz37nbdwcV+pkXVePxS9AwPIA+SMdvYEiPuCPQ6NCHA5ERjZVWTAUc976nk7lYhAr+4ovwMN/NHV9zwHD1nOFtlBufGuECx+vbm5aZ8+fZrm+ZfLZbu8vGx///13+/79+3Q4FmRosVhMETKOkvGH5VdPcMPLvaBs+QROVrQKNtSIZEZlE9o1iB01KnPk8TXIRWl6QCC6D3lmXYloACK2l5eX7ejoaO3+jx8/2vfv3ye5hUyhbJ5C44WJ7kh5nsaKjst2YCAz7pFe0WdYAQURjcjvrBcVMbkwTuSdswHB/4hZ9Yj4d6YsHbHR4q15atwwTcCKCw8Zaxz4kBY9+hJ7W3UhC3tJrAT50AsXumVj6kKj3Kf8LCLBZFDUIx6gvEZCv3mtRm86Z1drBlrzymk0n17vIXvOH8lzxouTaQWBDLBh3KE4ebEoyzFHvxiYfv/+vX39+nVaRMiKELthsD2WxwuH9/GB8kQ5rMx1yow9PeRHOFfl2+3j7tGoIt1E+b4GZbxExsXJe88wvWabWe+DJ3UUIjDAIPLu7m7NwUMUgLcTQrcCYOJQIHa0WK9Bl7HDx2fHoB6Uy2DAgVPmX9vjyI1xvvcWQKC1mbsJeiEp9x8dzgKB/5qWj91VpMRhaVdfVC/nxUPkNQK8cM95I9wH+rIX3W/PHgza47a+qFJURanlaLsAUPS6fvPvTEC4vRHi1efGu0Rc5EDL2wVFAyq6lvURtzEDBPrfgVotL+KJeVMlxqAAcowQPt/n/DwlBuN7eXnZ/vrrr2lnDLYYQr7gbSE8yrLHK7BZmeIUQ/DljH70Yfln/qN1MZmHmQFBVd49z21XVHGc+H9meBQQVMFpb2xwOh4fHEFWPcHplUeWV7UBMPpXV1fTFkDIDIAkr9nC9ICuTWOAADDA4IMXEeqbZHUsRoAmI30e0b2RMuemnfVuAvxv7eX2tCj0AeXBngwvSGNyRkNXLTv+UBd+azm8aI4VCwAClJtuv9KHFfHPfcF18oIvPtqVQ6m8GAVRBFc/97+eOhgNbDVCitAzJRAhaC3X5XFKe5/ItdvJEV+P/oN6higrMxv4UKSsqCCzCrABBBAd0LpVycLjur6+bt++fVs7ipgBAUAsnifkD1EDeFP8XgJs48UYw1QAXifOq7L5RDhVuNwfkSfW68vsfqTI9x0QRP8jOVY5qACAHg+VvO535kUzIOCIEC/2xhQUyyeMOwAvL85WW8Ppnp6et46zzKG9LlIcAYFt6LkschM9W6VRPmYfR6z/eU99JT2+2ZA6BM9oDoAiayQrDvZalbh85IHyjBYpaRt5+iHyelVIME/FUQD2wqM5f66XgYjbLaFbypQXNixsLCqKVgUeZXG0RgfMvoIBR5nydMTelVOuCtD0E5UX9T1v0UXIVMEoyulNC7FSgUcFGby7u3txQmBr6+MFXpOeKcBHEWNr4vHx8eTJ8V5tPdvdyT+PA1W+VbnKDB+PsX2T0YifDFTimhp+TpvJ7CYUyTU7E3pd87v7LAMw+M7TZ0fKGXVeg6XTULgGG4OxBieSgUk0PeDGfqZDXL9X82wbqM56UZEz4O6aGgz3oLfZIKcAHd9cvz4wXmHK7dGydZ6eBUI9GRYeVqp68FCGNpkn5od5AkpWYOKEhxGvpssQrj5b7Q/8VmDBg/mtKeJ5k7Ky8hyKz8qLlLYqFvWUEHqHjEKJ9QykawPKZUXLOwYc2Efeu7u7dnV1tZaWF1/hiGJe5Y3dNvy2zlEw0OtX5lF/u2fgfu8TRUY/uh95ky7NCDDIAK5e0zyV58H3WafCyeGpx9bW34fC3rvWoZFbJ1u4z3VzlEH1fdSGii6t9oPSa4HWYTAAyoAAX396epq2siENk1OEIDa4VeVWuR6RghM2tvwbbVKw49rASFMXKGZ7VFU56aDjleAglBeh86xvwBMLu2tPpDD0Obq27Jqqg8gh+lHgqkq6mjerTwEBDhjSyIyeW+GiVjp2UT4rVZ4+w84BXs+Dcm9vb0NH4eHhoV1cXExrGbA+AVEBnSJQz0sV86hcjfR7BMTeA2U6MPM+t81D1t9z6uM8rNsgq5wu0mHgjX87J0XBBzuLEQioyGE0lnu/lW++/xrPb9YJhA4IcBr334UsgfbQ2W7OvYKsKsSCxHUpcHGkc/Pgj/PyIpeMVACjiAAT97uePufOIoBCrT6LSLgz1Jv1V6R8duVpKa89MKP/M8D6GvxF11A/P198MJfPik6fpY5ZB3hUAUK2eLsiA1IF/0yPj4/TC8CwMGu5XLbr6+sJCOhuGgcERqNXlf7W8qI07wEYvPW4cnol+mTUM3ycjp8DO0f4z0BAjWvES2TI+RovWHefHmVymjlcoEiHv4ZOmh0Z2FQAWeGwkdY0iuCqAsR1qDBxXQAjTmkqMYBQxMqLWDhqwAND53S5TEeuvxeLxdpuBkQInp6e1nYrnJycrK2U5XKywdGjTHlmIGDUs35NygZhppBai0Psm7RtZDDzeNApLX35TzZe+NsZPnzrvCrSuV0kzovht4GCL95+qCfCRQo3Ay2V/qt4zm/pRY9SpAuqFBmcqlHL+MH/KhCI+ljL0jxOT6tTpe1xYEDlKNKFsE28Nby3BqrneLjfWf87YODs2TbkcysLCLOFeq09d6ySGkJdvOeAgJYTGWguAxRFBJzw6QK9ymIsGORIcUbt7BHK0DlZPnAGxgHpdJA45c3E3li2dqEHCh1yrXoKu6QqCMiU6jap51E4j1kXVPHY4WtO8WoaNcSYMmjteVcOT5vpYS7YeXB7e/tim+JqtZrWCfDuAa3b8cF8u/aM0gigeG+0LdlUw+PGdfRRHjJnjvVtT2ewfsP3HGDjQDFkGPxjHLlF3z0HNZKvSK6jcjahap9svICwwkiEQoG8oFhUIfGDjjreeWxK0ZZHzo/fSMch0giRcfmcjvf+LxbrWwB1ikH3snK9SIe8/MrObFum40/L4jb1gIkaQtdnDrnzdwVQvSVVBoh6o6Nlad5IKejvnqLQZwbvpbWXu2+UjwjI8TN0fPFYba3ZcwygMLG3G+sDsEURssvTBTgvvjdVFo09x2/knUX5K7KwL0BWowKRV5uRA1VRvqge1SVRZCB7Fq6ODAg43dJrq5ajoAa8qD5cLBZra7oY5GZAwFEPEHE6BySq5VevRzRrzUBr3sC6zlGDrulYqPBfy4wWEfUGctaxjCzVm+K8MMK6cj9qr/LPhxq5vBUDoAYcaXgagPeAQ2CRl9vCCyJZwfPCsAjZO8PFbXZGx3l4b02Z8lAwE+WdW28GJiKZjMoCRWsDeA2Ojg0dcyD3uwcKeGsW+OE82E54c3OzduY7jyOABpw3wNMF+rwqyl+NjzNeUb9GYInz7kp2W8sdnkzGev+ja1l7I4PvHI2oLQ7QOHDheKzqe/dMe7wrKGjteTEugwHo2EyvcR9mYFTbFYFaN55H+qZCQ5EBfEdAwHmYrKicwdMBOBL2zwYCPwAYOxU0BgSOF9xjJcs8ulWrTDrVwG1WpQee+Vt/M098Xndr62+jYyQLPjiky+1A3yh4cDy7/nc8ZqBm1+TkKkPsVWNdRfAVucb/THHgGbl1NpFnVaWecQRvDEiUj4eHh+l8AYBhlTt+UZE75931Q9R30TOsKsjoObsx+ZbUk4EoXbUfIoMTyYAznlloPwNbriyU5/jOwHz0nHpGvzU/za0RL91eyDJfBVnbpAgcbEJDxxGr9+gYUYOH39EH5fGuAi3fKQc16NF/8M6HtTBF4IS9L45qaF4gRG1za+tzq3rQhaJN7Q+Q4xnEBwtFypTJoXfd9snTHcpL1G9OMPm6hqt3Qdsy5KP3ndIe8RAi5dfa+lQWqLKwz5Xn0jjFrdejKSaOGiAPtwVyChDrwq8O+I/KUAb+9D47EPtKjr/MKFSMhDPWkS7SfJmMubL4d/RxeauGr8JvJEeRUXfrqBwQ6DkZowY7k8U5ILdHZTCgCJ+9Y2cMHBDIFqWpR8MPLFMOUYOdMIMHNa7RokTevsVHu2peN/3BPPJBQNFCPeWBvSgAsWi6gsvQ8nQbaBQdcQsfKwOc28p94MDNPinZOYo/AliVfD1vKQLUrpwoLZ57Fcxxee4ZOeXM0109QNOaX+CVjQWnI3qKr6fYM/D1Hsk9N1zXdI4iMOGAkebJjGnPEKuc9QCBa3dksJ2sZmAgKt/9j+QxM/KjAOA1ZHRU3w6BAX6ZD5h3OwDYOEaDWztWPRr+qBA4oasod5QRefkgnhZwhprLeHpafxWmPlDlixWi8+K5P2H42YBHc3LMJ4M15OMzCbgepNWB2jPk2YBSxb+PYKC1+gDcxiCNjBP/nuNJaHRAgWLPUKphcaAcpKcQRmND60I6986Pnl6IKAKlWVt7//cdMIyA1yoQ4GsOpGZlIW9mYB3oHQECbow6Has8u/tqN/TZu3E3CgQyYBDdn0M93TVH1w5PE7BByRQBD/hopbD+ztAnK0+9lwkMgwknLLr3PzJc3B7+j37QsBHXz1EFBU6qUN0csEYzIoHntyZyen6rIl/nHRwMDFyUIts+6gAbAwFM0+ySnFLi66AR49LzzjLA5BRt9jtTzAoIGDhqpCAipHHPWcEo1xspxUjOo+hgpnD5dxUERPmrefeFnH6s5umRym1PJqtlOgdN9Tf/Vp0eAWSnY6L2RG11diOySe6/A86ZvG5LBjNwl4GgEbkZigzwoSaoDHvbnRFTQMDX9bejUe+gIsyaVuf4W3vpXbFxhVF7elpfTc2AwIGkaCsg8zUiIBkg40OPeEsiAwbUqVEIZyTVI4ymSziNApys7a9NDghWwIECSr3P/0ejHxmIcNecQnJp+XrU75ligaw/PT1NMoFFpigTZehal6h8BgIOQFQAgbY/62f33LK2V6/titRQzx1HTv4j2eh5niN1Op4dL44f5ikCnpGhd6TjXe/1wEbUJ5lMR2l75ICL6qKsPVpGj8pgAEAAe+LZGDIx8h8ht/aAiR84RydGvB73nz0edGzkBbEBRjsZEOhiQiZepFd9QKyEo3YxT2y0WWA4KsDvRgDx1AHazgNY1x3o883WO4C0zn0hVSQ9BD6n7KoC0ev833kkrgwGAGo0e21wRpblgflh+c+Mubse8aBTZgoAMooMf0U5ax7+vS2juCn1nptL5wCkeuDuPufttZ+fqatDy9d6UUYPuFXsQsbjpqT2RyPBUTQD3xkAmcMDl7stGtpaGBkmNSx8elOEaJicMnH1O28+6wwn2I4PNl4wqAA9+O8UE/MbvS0rGpBalrsW7XxAH7i5Yi1PgQC8v8fHx+klNCCcH4803OcKjBwo4D7REHXPm3sL2rZS7ymiOR6AK2NU4UXyjd+REuHtp/px64I46sdgxMl+BfD0wIJSBvKzut4TZQYkAgFRvihvRE5WIn4UEHAdmd7LyozuOWfOyboDdlE7s+vgn3WuWyvn+M/auCm5vh55vkplMACDp96xrgtw0wVRee6aQ/Mg9VwjRemQU6Q4IqWIvLo4kLcERiuhlXflJwIDuB9FD/gan2HAc/OcFqCGpwlaa2vHyvIzBY/830Ub8JsNgRoMTlMxZq9JGcDk70xhRPfmtCnjpeINaT6nAJ03rwBO5VBBnno2XJY++8i4M0+aRtuc6QrXzxFfEbCYo5D3AUhERlavV8rg/1xWLy8o0wU63kfa5Orish1FurSXT9NG5eEat4udJdSjEa2sPbgWOcS9dFE7ojE9Ir9lMMAv4OEOQHjcAQHHUOSZsEKIHqQrh+9FD1KVvvtmr0gX4LGhY6+awUGv/Zt4LdE5A9p+jhIsFs/TA6enp2vvl2eQgzKi8LITLgAQrp8Ng3sObl3Jrkl5jWR10zocZd5Ir84KKOG26dhS3hSIclpelKjlO6ObGeTIADnDohQBqBFjX+3bfQAAIAfI3HOrlsV5KoY4K8fxqM9vhDekrzzTSEdF5UZlaFkR3woIQNl6qEyOty1jO4kMMFLqLZpTY+uMBQuPW/msjXOekEOrquSd8GQCpWsE2PDrkZRunUTk/eNTHTC4x+cNROCACes7Tk9P18AA7i2XyyktAwPU54wA2qoDIlIG2xDQbZFTgM7bihRur9xN+KkCg8gL0jz6u6d4FNRFO0oicOHAQFYHX3NGpZquZ5R+FlLZ7TkWzqhHOjICAJX+c6BkpO8rcuL4qYwD5OmBcbUN0Vo0BsZ8LdLpXM+2HYyMIoe4QkORAWcwXYhE03Eo2z1s7SznZUboq0c9pQmgwt/cPvDI0Q/3KstoHYMCDgc+egYF+fTYT+YRxGcTIDLArztu7Tn0f39/P5WLg5HwreUyAnbTRdwPVSP0VqQKpeotbDqIewawUp6TC6fIMgUZ8R61T42qRspc3jntmaO4FAi4/tzE+5rbrteiCPjwtQogjfKD3PPX31GdKieV8RXxkV2LysnKjGyTGnI9LltJnZ9o3Lk+jRyMqry/lRNVBgNQ+twAXVHPxAqLlUkPDLBAuYFQUXxavvuNtGrAHG8OBDgglIGiDM0r8OH+dYJZKVcBwfHxcTs7O2uLxb/nHvAguL+/n9rJb+oC8TPBdBFfx6LRffbIMoUzMjizsitGV9M7yrzlnmLIlFOk7J3SYi/PyRvfd+N0ZCz0DERUZtaPc+XwtT23OaTPSNutzyTrL2eY8D/TZVE5mp71qW5V7gGXSC5BlXx8LQME7GC5A9mYommBDKhH9fbGvuar9kFG1TzDYADkFH+EqHitQQQG+OFo2F3BgPtWysBDpDw0+oFrEHB3dnomaI4HLb/yoLhv+IVLDo1HAILrg+Cfnp5O5fObDh3IwTVEDsA3DlRyc2eZUL8l9UDKiIfVq6d6X5W7M5YZPypnkYLSepzCdTxmbYkAQTS+o7wZsbyMGKmM5tzfN2CwKW3aR730/N85WZFB7IFWJzc9x885WsoLO0x82ivK0C2EWj7KifRbT+9FgD2iUedghIbWDChCcqQPjb18l0cfGAwOp1dD45ReVYgjQWSjygKA/xoOj9AazznxQj5VoFx+T2Ci/lP0zenxAhi8dx7pwQ94PTo6mgw6HzLDeRhoIHrg+s7xtw/KtGfgWL4ixTGnHdVBHhnIuf1X8bRdO3nMsvyyktTDsxgoMkCNVlhHvGVenxqQHuCYS86j3rUMR30YOTVR/siIRG2bC4ydPut5t6oPHZ/8O5KhCAxwfnas8Dk5OZl2WzEYUOdI7UEEgJnHrD0Vueo5Klm/jlIZDDCxQeFrkUcKI8En4/ECNTQ2m0qIFBfuq0BVvAoud7FYvHjAKgDZwHS/uf2qQLUdrgz3lkjwwqF6bTMiHCcnJy/OPwAx8OEpAF37oEiZFxtyu3pTJtGgeSuqIm438FzekbZECkGV+iaDOYsOOH6iNI43VaA61hm0K3ju7SCJFHhk/HvAbhu0awDAVOUlk9dMfjMDE8lJT2Y5X1SPGvkM7FXq68lFJM/8Aj6eKtD1U9FasYo8RuAne7au77Nn5vKMyvHQoUO8NU2JkRaIDb6uK2BDp4O9qhQVWDhlEhkhRbBcVgQIMsoGVfbwcN95QK3lRyPjfrSyH6H/+/v7qUwgYLcGoueFcB9FRscNjk0R67bJeS09haT5mHqDLlKEPTAQgSsd8Fn/VuW3xzvz6o6nZjl062pYvpgnyKK2EXVWvaeM91HaFyAAygyhe/7ab71+VPl395SXiB/O59LrZxS4uN+Z4xc5WwoKGOw+PT1N66BGo8TbIAVjmXPidMZcuR96UZEeasMVw9AwAQSgo3UOKdrGwYbQdYIav97b0JQyAVTD6MpxgzMypNG9TNH3Hqa2X5UuBBnIFr/1ACVFvI535Uk9xOPj42k6gsveN4UaUYTARwZUta2qkPA7OmRKjWYkJ1xGT0FnMslpKmCY61QngMelW2vj1gVl/Op1pqohi/oxo4y/XdC2gXWvfc74K4it8OUMMK5DHhxf7r9zIKN8yjfz4ohtjB4170BANE6UJ2fUR2hu3pE8w5EBV1EWOuwdNqMPiiMMurpTPQ/8hnfB11rzg1+Rpd5zaPO1jFumlDIDwaAqEn4HpDgfK+xoJ4B73hmijp41nsO2Fdk2KAICbvCN8t8DkCMKNZKVihJ25Tj55+tIq9N5APg8Nnns81g9PT2dgKIqU/awMH4dP5F8j47HyOipB5nl3RdyxpjvRSAIvzetu3LN3VedAeI1R9nzyXjvgRn9VhnXxePgZbVahbvIqrahBzwqlJWxLb06BAaY8PAi7x6kBlrv8cp4NSwIR+qedi27ynsPTVaBgBoMBzqq1PNWdFAjvXr5SIs+c0ZAwU7k7fFv53HygOa5Ng6zcfnOEO4DVbzCUU8yKz+KDDjl7oz0a5PWqetHQDqvint67PXT01M7OTmZ3oHBypS3tzoQ36PR55L1La5FwOlXpUgPzRkD6kS46U83Bhi0zgU0TofCEYpAFUcDsqiAlhvx95oRph4gqD6vWQsIW1s38roKHwxyyEWvgUmOIFQNKupSD0N5cOQiBREY0DqRX69XgUF0PXuYOiDYU+P+5TKcAa8IixopNfSoX73AxeLfA4x4ASjzWvG+3oocCOS+VM9qjiep5LwTVY5OEbo+HKlzJE/mObsQ7tPT87wqr//RhVg8RcVHeLfWJkDAxF6i40fbWGnTXEA3F+DvijSqM7eMkfxRX6oucTtTNG1kmEGjPEXlsTEHMMV19CEAACIDFUAwwuMobTMCENFsMMCkEQLuaP52hxNBMIAMkV6VMtel3q1GDPRhOQPg0uk1/u/yc3v1f+SZ9wj5dKGgUgZ8NMIC0jUbnB4f3mIDTw+/W/tXgd/f37eTk5N2f38/HVrEBo3nisEr6n/vNDoge0BgzgCvgkf87ymtDAjA6PNvjtzB42fDq1tp+VuNvI7bDDD3FG8UicHvaPztE1jdhHr909M/vUjAnOiAiwhARsATnjs+ETCP2lSJCmkZbNQh37xlurW2BgbmLBqsOJcRv9quTfVOhYYOHeIHp5VGC0DUILhyea88Hg7CM7rdQw/H4UVwTgGqd+XAAPPnHqAKqLY98qyjTyRMnJ89LJ4u0Vcqcxt5ioAHIL/CWFeCc904spjT4q2H7DHc39+3+/v7tlwu293dXbu/v293d3fTBwNIPUEHBt+anLLB703K7F3PBqcDjvxdrU8pkmH+z881KjeK/oHg+WMxKcrneWA2/sxHNBWh/PHY0TFUMQjaVqaKMXktj69CziCOyusIEKhcr6SN9F8vCqwymYFVl8/pYC0X35Bpd+AcdFe0VkDLQh0jYCaiOc93UzA7BAZYmXNIOFJmbsGfpmnteV88ryFgoWHAwQ9Epwq4XKd8IiPc8+yzjs4egAIPRb5qiHqCEgEcXTCJMp33GYE5AA9EAvA+AxzIAXAABM1g4O7ubi0dwAIbicfHx3Z2dpa277VI+13vVa71KEPyPbDo0keGmmUmyut+V2TNKTT+7xauLhaLtXA/rwfgchXAg3jtERwBpOMy2GFQnl2bI0OhBsb1jebbNRDg79Y8T5HMjoCATO6z8iMQUKGqt+2eV8ZnpPu43iivpot4zMDMHJmp6qdKGpbz6rMYOoEQn8VifQFb1SAy9bwQ/HY8MMhgUODQmoKBCn9VBKr31HNxKLGi0JCeARFPp3BfqXLNFIX2hzNIMOonJyft/Px8AgT4bu1f8LZcLtvt7e3a8cgKLBaLxQQI3PbFtyb3XByNomznofZ+ZwPfPb/MYGXXo3Iq7YnSM9BmXQCg6KJPlTEVGZEMHDly5cwZ5++JqoY0olEg0AOOWb5Ir/cMbgaMFNQ4sKxOYWQXtM4KEMjG9Mj1OdTTDdV6hl9hnFE0x90zAsqseg563QmPPtzseibcjh+XVoXQed+R4ldhVp55QVbGg1s0yf3FZ26z0c7KBG9szPEa5NPT00n5cz0KyHh6A9MFOh+3a3LGIgN5UTolpyTd754MVnh2Sq9iBKvkAK1L4zx95ZmBIgNd3IvGHy8wdmley3PfJ2CgQAiUKf8R/p1cVcFy9hxUB/OOAXXoovoqY2duREPtArcnSqf3ojoqjsC2ZdfZpREaAgP8rdf1d6SUKuiF0/YWBrKgRWn4On7PBQTuwTqFWQECWiZ+s6J0CwG5LTynBYPv2sxlat1R5ICJDTyvFOcPCJEEgAB88GKkt6ZRT7E3kDKvYJPIwFyKjIVLV5HHqGy95safLnxleXbXkQdjnRcrIk3PUGQKMALpvTbvI2WAtbUcVDnK+qs6BnrRLAUCvPOJ7zl97crrPT8XYeI8OgbUdmjd1f6sgplKnk1oE/0ya5pAr4FYkHgwM5NZ+e6aE34HBCoAwNXXE+aIokGTtVN5UYFVr0kX7zG57ZTaH+qhOTCg50Q4cAWesKBQgQjyACjwKlwAAawj2BVFhqMidz2qDrwIQCqfWuYcpc55RwFApQ4HCJCOfzve+L0mkHlEm1jeVH8oP+559rzE9woEKlTRe69Vpz4nfLspAQZ5GQhQmepFBkYiJZGtmNNvI+MzasdcI56Ni1GaDQZcB3PaOcwgL0gRneMl48H9ZlJjrPmzcJQTQL7W81I4HX/0AB8YYfRFNFXj2qjggncbZGg1AgKYKmitvZh+ODo6asvlsp2dnVkwgF0HuyCnTCpAb7T8bVAEENygdx8txxlTff69vlC51mtcpxpmljf2/JUvBQKaLhuf0fPStr1nQ89UBZEZVfTTJjy5tV8qH5q3Z08qY7dnP9R2uM9rUAQA3P0R58JdU1moPtdZJxD2DLA2SBWIzl1jN4F2RjSQKw/UPVxVIFlnVY25Xo8UZtQWKD4HBHh1P3tPDhBA2T48PEzeuy4WZHAQIWKkQ1j/6elp4uP8/LxdXFy0xWIx3cdiQ54W4O2eiApg18EuiQdJb4BkQLGXvpJnxDPQ51MtU/PytUobcC0Ct1lZzI+OE3cCHYBubw6Z+XJelnsOFW/vvQOFEdDT023ufkXnZ3l4x1gmTxFfGZiNyNkMvh7ZigyQz3EUXFsye1qpKxrTro6qbA8dOhQ1oOLNKBBgRnmeO5qzzh5mjxwgmPNge3kizyzil9PrGgHd449+g7FVz4nza7lYSIgP86dTLJr29PR0AgEXFxftw4cPEx/8LHENCwX5KE+cT6+vvX4rUuVTQd9V+eih8AgwMl8V4OHSaP9n+TPwMdeT4DzZNTXc2Grq8rkxorxHAMAZGR57TjmqXhnVCftGbwlqnA1wY6sK2qq61f3PeMN/Z/Sja1xPBWhlACUbd5ETsMkYnCvHs99NAHJ73COPICt3roFGfVW+nQLh+nsUKXV3L7vPaWD4T05O2tnZ2dr2Pj3NTYEAjD3/b20dBHDZ/IwAxHh7ItLB+H/8+LF9/Pixff78uX358qV9+PChtdbacrmc+kwXEKJNiFIgupGdqPhWVJWzyEBHxiYzwlH9GTCtKKCKp9vzeqpeVlRHpiz5N0e/OISsilLXwvB35HTgOzMoFS9pxBi9Nb02UOmBwqp+jIxbZPwiByobD3Pakhl8zuccTiX3HJzDWckX2YZqe7cFBFqbeRxxpGAydFghJxh6P2ss7mdoL/PUtI1ZnT3FoR/XJr7vjnnlF78sFv+e/695GHhxRIHBBBtkAAcFcbh+enrazs7O2vn5efvw4cMUDcDn/Px8UtgahdDBzCBll4cOjcpiBcSpTIwAjAwAb6JwXbrsf4XmeiiqcBEexnU+VAjy4sZupc4qjxWvTsubq8tek94CmPTq6AFR7be5/dgzrBn4qH6rvEVAIQOUI2M/cwYikBT1X9avo8BgFhjIGOc0GVKv1oF6RoSpgsoiRR+V58CD+44+/GD4W0GALvTjuqM92gi/w6uHMYd3f3FxMR0gpPvA1etCXnyQF0Dg9PR0bW0CwAYWDD49Pa0dkMRgY5eRgapS0etOhvlaD6C6ujKw4TyEOePLeTY8hly7K+NL257VqwaWxwLLbwaGejyNjN/oWWkf6e+3ML49imQwAqqbUk+mR+txjuJoGT3Q7GQnMvJufPS87EhO3L2K01q5NxdAOR57NAwGRpWI88qj+1FZkQA5dOhQvev8SMFm9fBvZyzUgOv6CC2LdwvouwN6xhMGnevCgj4AAhj2s7OzyeN35xXwx4EIBgKnp6fTi4ncoUbsAWrf7sM0QUQVAJldc+2teO5zlXekfEaMp+ap8pLV1fO41CirUXNgwv0fATCVSMO2jOhr0raMszNyDlTMpZ7RrlAWoYkMcWbsI1nN7vf4c5QBzk36tAdqsnzVemevGZjrWeBwnKyeSkePIDHHvyNtS+a59cCAW9yl4IAXB/JWwszjA3EIfrF4Pkb44uJiMvwMAvCJjorFx0UVsI4BkQXtVy2PdxMgOoDIwXsgfaZ8Xa/1yql4MFHeKkVgOIsKvIbCcvW6/5X8+unVoddHdJLTK9voh9egDKCOgNLMy43ybwMwbZo/ekYREBg19pnsuvoqYygbl5vQtsHrrN0Ei8XzyYAwDg7J4VsNRtSRvQGoSi9Sdlp/dYBHUYyqYdC24jcfL8wGX8EAe9qOsMVPryEvG3149YgMwMjzqn63DxjggacW+GRDGHd+34Be1/s4d2CXhw45qoBITguqelIKLkdAwFxvLavDyW/FeOr4jUBR5hiwUtaIgEarsvzZ/6y/onbpvaz/3wttarSdwxP1nwMfTD3HLroe6XmuIwM5PSCQRRMiHkdAVSRTWVlRvaPkxmqFhqcJ1FDpUY4RU5y/x2A2SEFO8WQKedOBnQECx5NL5yIBuiWwV6ZGVWCoeb8/v2VQpyDg5XPdGDiPj49rZfCzenh4aPf39+3p6Wk6M2C5XLblctnu7++n+7q1kLcX7sP7CSIPogIUW4tl08mZpo0UkJadAemsPT0a8ZZdPdXoQsWzZ9I3FDKPkVKPFP2IInT89SIOb00V0OOoFxGI+ruimzMDX6Vo/ETfGa/Zs+mByNF0GfV4dvpg23KluoOv9agMBnhhG/4/PT1vTQNlgzObQ+f5ZpTjkL4qI+QdoQipZZ7EqPeI/2rsHRBgkKDlcP9gaoD7AOXAg+eQPh8KpJ4YjD3aCjDAkYnHx8d2f3/fbm9v115FfHd3125ubiYwwIAAUwH6HnDdfrgLyp430yhwdN4uy3lkIJ0RcmU4AL2p51AxpnrdtS0C4K68rJ8iIOz6qwIOVFdomVnf7BONeolZ+kjenO7T61G5c4CqM+Y9AKC8Vcqv8KL3RoAF00g/RGOvQg5Eaf1zZXh4mgCKCUzoi0mUYWVQDR6MkCrPjNzLi0ZJ0VnUse5/powicsozEn42vK2tgx0GERwB4OiAevd8gJGuTXDtgPFGJODh4WFafIjrAACr1WoChairtTadMwBAgf/7QJHhqAwi95x1ISgvqESZvIbC7aWPwICuJwEPkWGcq8xGKeqvzMOq9K/TJfpx591HfGRGJcq3T4CgCmCZegZey3fpUE6l3B4fUbpN5LHXF3MBVAR6euU5QNMrQ8fxHNDQc2hGZHkoMqAeLYAARweiQeaQP1/XI4kd4T48ZPDgjHUELKIHkAEYNZwq5M64KOGevpAFpFMIDJDg2avRd0aeDREIc/b87Ngws4FC+SgbEQYGfQj5q3FjXlkeOAKxa4qAXNUzYWL54L7n58Nt5zc8KjiIwIBuN0VZahz5v7ZP26h94dK7dmpZlbRRGgY3/D+aRkQ7+e13vVejV/ipemm7BgiREY7kdTSiwPmySM1IuZksoq7RsiOAkencimHOIklVqgCCiK8MnPZ4cVGBOaB2aDeBm+d2kQLHeIbQ4Qk71B/NpSMv54mELjr61P1mft2g0IetD9EpOq3Hech6vK/O67utfDwNgDRuRwJ4xNw9DDv6BYv+YLj5vQRoD+rQN84hggEjx3WhjzD9sGuFWqERpYRvfR7YxcHPhvsfz0ABFZftAEZrz9NpLPsKKhhcONCjv1Fn1HYHivV3hZzx54+7xmXrLhVuczQWmTLl/B5kc5TmAgIto7WxPqp61vqsojoU+DgeM0CUyXQkLxHYqoDmzNbp7x5g6NXp6s94yGh4ayG+3TY5Piq3Nd/R2uHoaEb9mkdBCAgKlJWp1s08sYHStikqzBCy89D4nq4FYIrAi7YV/cJG+OHhYdrepycNuvUGStwWNhxqjDjygv/Hx8ft/Px8AgO6W4C93oeHh7ZcLtvT09O0aNABvbekSDEomse1Xln8m58HgAB2YuDZwPjjm6MrvCsDZeKj0R/mG/m4HB5Po4ZAx6gDDJomkje+z+Vkhl+jA6pjIGeYruKX30TKlUE7952S8wrd/V1QZohHgcxcgKA6smeg55KOUWegI740vaZzZWTXo/Yqv1m9kYMayWOUvlqfq7+adtYJhCAFBurdKxNuoZ96RPpg2UNyc91q0DRagDLZG84EGN4x18+8q/Dosb7cVs2r6TVCAP4ABgCwoASZZwUEnJfvc59FC9HcYHLGDQaOwRuDCmwfXC6XrbXnHQjo712vGXBAgClSQA6gOtnkHRvYognwBmDExpsBgcotjyle+wHCCZAAW2wwmXd9vtymHvgZBQKQCwVeDmArGODxzf2J/5AzRK6Qz0UHlBSAsxxk+Vwb95V6Sn/UaEdOUNUgj3riPaoY40r7sjY4/kYcg1GqGv5NqVpOGQyw9wgjpQITVeqMK4j/a2RA1ylwqJSNvK5WZwWhL9Dh36qwKgNKPR4GGNrWjBxCdAAm86bVGKnhZwOlUQoXFUBeNx3BZxigzdrPqOPx8dFuX9w1GGDF76IDPcq8W30OvL6DI0XoG8grv/KZ+UE9XAav1UEZyjeuscesH2ekVdnq/woYwHjIxlXk/Wv/uXavVqtJNjGtpq89ds82A0VKKgtunO4DZXrUpc10XAT69J57rlpHVm+Fz0p7lB/97XjIrvXKGPGuX5uiPnK/R2V2CAxgALb2HLaOXkdapaiT1ZhBMWCBGog9LvAIwwMjDb45OhApLP2Al4h3KDInXAwMsgcDRaUgh5W/pgUAgpfE/GgfgrgcnXtFel0T4ACfWwCHqQGcP4Cthg6svTVlnh+niZSC8257BFDFHi4/O8ipLiDENwNvlKVlQPa4ToAADaE7QOB4zn47QNDrT+07LocBLBt+3SXD795ANIXLyAAB9xU+PW9y1Dt8TVJg2DOYDsxlRpzzRaAgKmOkb6qAgO9nhlnHS2bQK4DA1RcBw4xnx6/+ruqjjHrAfKQs0KwTCDOFopSF3Ftbn9PXtPoKXlYQ6iVBSUA5AAS09rzoTackQJFg4zobZvDvhITL1/ldNcRuSkPrUaWmIED7QD0r5OPoBYMNNtbob/QXvC/1XnndBRszXi+A6YL7+/vpTILr6+t2d3fnROTNKPIQ+X5rfa9LFaUDTK4uNmAnJyfWi9X8Oti53xEy1/UGMJa6iDPzkNUQaF84IBCNoQh0cPsVKOkYZ/DPcs7rLXS9hBtXEbCrGDY1rLsgnt5gh4H50mgMSA2mfoMiJ0jBk5aRlZvxoeRkjb+VV0cRUGWZjOrNyq3wDhuhdUZ1RWVWnpPqhOwZ4XcZsD3tUtIPdKADHehABzrQzml/XyN3oAMd6EAHOtCB3oQOYOBABzrQgQ50oF+cDmDgQAc60IEOdKBfnA5g4EAHOtCBDnSgX5wOYOBABzrQgQ50oF+cDmDgQAc60IEOdKBfnA5g4EAHOtCBDnSgX5wOYOBABzrQgQ50oF+cDmDgQAc60IEOdKBfnP4fac9OUZpjQjcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ9ElEQVR4nO2d63Ibya6lQcoiJdn7Nr/m/d9uImbOObu7LZG6cX50rNJXiwtJ0m1L9DYRweCtKhOJRAILyEstdrvdri50oQtd6EIXutAvS8uPZuBCF7rQhS50oQt9LF3AwIUudKELXehCvzhdwMCFLnShC13oQr84XcDAhS50oQtd6EK/OF3AwIUudKELXehCvzhdwMCFLnShC13oQr84XcDAhS50oQtd6EK/OF3AwIUudKELXehCvzh9OvbCxWLxI/k4qn6++NtyuazlcllXV1d1dXVVnz59mr4vFova7Xb1+vpaLy8vpTOW/N7lcrnXRl67XC7r06dPdX19XdfX11PZvPbl5aVeX1/r9fV1j//dble73a4Wi8XEo17itarq5eWlnp+f6/n5OZbBOsSz+ND/ouVyOfEvGVTVHo9qf+JVbVcd5E/Xvb6+Tp/16tr/f/7P/8kd/APpf//v/13X19eTvMWP9OHq6qpWq1Wt1+vYt1W1J+tPnz7V1dVV1Af15/X1da1Wq7q+vq7FYlGvr6/1/PxcT09P9fT0VM/Pz1M/SP4u39VqVf/85z/rH//4R11fX9fj42N9/fq17u/va7PZ1Ovr66RP3s8qly/JYLVa1Wq1qqurq3p9fa3tdlvb7bZeXl4mHV2tVnVzc1Pr9bpWq1Utl8t6fX2tp6enenx8nF5qC3VG5LokXtUfPkZ1re59enqqzWZT9/f3td1u6/X1daaLT09PdX9/Xw8PD7XZbGq73e6N28ViUS8vL7XZbGqz2dTT09PMFqgu8uu/V1VtNptv1sFvpY+2u99Kzjdtt+uk7LZe/n9VRXtLuy7d8brYr4mv1O/+mfe5naN+cPxL1zXm9F308vIyjfXHx8dpzNNPuV39K3TM/UeDgY+kNCBonJPy8B5dU1UzQ3looDnwqPpTqDR8IjqXZBRFdNYiAQJ3JrqWvC+Xy9rtdjPnTR5Iul7lJBDQ8Sle5QDcYHudrrTnZMTUDu8vtkWDUAOYfVE17385dr1LzryOn3Xd09NTbbfbyYE+PT1N5UkHBBioY9vttjabzQwouKGQE086oPrVZpWx3W73gCT1mu9y4lVV6/V6MmKPj4+Tg9W90lHVpbodBCcDT8AqMCCZPT4+Tv9Tpmwzx43K0Ttl5kTZeR9eDmk9jTogoHEl+0YwwIDMg74UqPG79M3JHbWX6zYgAQUPPPlfByBFHHtXV1etHqUg9yN07uzBgHeGI0xXruTc9F3XjBTHDYF3lIwLDZ9+dwVxPnSNUCGdMx2Cl93JxNEr2+L80himjIhHlOR5VJcrbnKG5OsjSI6y6m2Asq/khJ1ShoDE6ISZmqqa6SXrlkNnZoB9Tv0Q6JPDlc7wP77o8F2HHFA+PT3N+l9jQ/wqmmE7l8tlXV9fT/wKUHz69Km22+3Ubhk+AQY5bGYmPCsgeXgblRkQIHIgSlnRLjh5EJD6NY1Z/nehw9TJj5khBwBdZrIrk7os8Ef9Vxmpfu/75Hjd6dNejgBBqp+AXWOPNt/9mOyTXu+pd2cPBpxSJsBfjrI6VJecqO5hfeywqpoZfn12h+KRJZ2qIhd3SEojOcjgvSMky/pp2FJE747KZawXsx2MgJNSp3JG39+L5Fyq5lEGHbC+M23v/ZCoizI9uub1biAoR08PyuFeXV1NU0fkkXqj/1K2gmVKFmqfpjJWq9UEArpojBkCZrR4H6cTOP3BMUH9I2AlSFIGg9MRaRpOcqFT4djSPZ1D6PqR7b7QYTpkS3xaIGUDTiHpGcF0VY7Uu/Go63mdg0L3Oel+z8DxP72o6y6fri3k50cDg7MGA8kYuWIlIODvIzBwCEmm76neqprN9aQsBdEr614sFvX8/DwZV7Z9pOAuIyJLttWvd1m5gibkrciOdTqSTURl7jIdP5ooE0aQog4cVs0jB/YXnS3/c/J+5roW/ab3zlA9Pz9PmQHqtfSFDjD1aRe9ENit1+u6u7ubrW9wsCdZSBfEw3q9nvEiECk+fE6XfEq/VCezJsyi6DdNn7iMXIe739wepEiO/XKh46gD/g7AaDMFBkfAmTqna33sfQuQYB2pLXTItJVu1wWuOQb57va782kqm7ZouVy2038/gs4WDBwSGhXqEAhIykIlS4YzKVdCtoyuFdE4GEhlMkrTIi4BAl0rZdD1jjqprCTPUEixmMUYRUaOVnnNCP13NELl70FE7u6QXA8YrVP+dI5p4KpMGgelsEVKk+uzon0aN8pbIIwZAaXXXQd3u92kR6TOGKl/r6+v6+bmpr58+VJ/+9vf6vr6eqpTkTjbq+idfakFiZyGk9NmdkDylWy48JJTBlxcJVCQFq6qHeKlWx9waL1ACg4ov+6+C/1JIyCgdw9A3FY7+Zh0x+x2yceg83MqYEhgJrXX7bQDiWPrUjnJplAGP1IPzxIMHEKZadVpp2QpSu6AgUeQyXgqpUpDJmWQcfeUtOp9fn5uAcHz8/NkNJn2paFzhJzaKEpzpH4fy/VBJ/5JroicA5Mi8zo32B8dbbkT4cDjeg6Cs3QvKQGx5fLPOXmRdEXOl0CAOwqqahZlkCcHgx0o41ST8+wGlUDgH//4R/3973+v6+vren19neboubagqiaAIF0RELi+vq71ej3pg3YmcJeD5Km6q2qWKSGwphP3rIIyDWoL+0DXEzSwrKQPXodfw/cLvVGng/6ebM8h+1U1z+gRuPNejosEAqryAsRDAG8EBjpnn8Zb8j9OtJ1dmWz7j9LFswMDKYp0ZeqmBtJvIo8MvY7kyPRZxnu9XtfNzU3d3NxMBl7Xyvh35Y8AioMBEnlg2pZy8XaO0HZqt5yNHKGULmUYWI/TIYX9yMyAZwS8n9l+OWhG8WyvZPzp06c9IFFVs7S3XtQXpkdZtqJm3SsH6hkLr4/tpD5Q5x2YCdBKp29vb+vu7q5Wq9VMF2lQGaELtGjbobZmyrCpDXLylLVPQVTVbFGh+qAz4Mmxe1/qu4Ndfx3KGrDsC40pBVkpte6ffbrN+4/3OChwMJ8CEL/P6/HfR0AgTQ8mMOm2X9eSWFdn+30a9kcCgrMCA52y6H0EBPTOjIGTGyCvtxOwIq71el1fvnypu7u7yVG8vr5Oi5ucVB53DiSFYNQkBXD+6ThGiDrNpSXD59uv/Hd3fh3vyZD6gHZ5fARRrtQDtY3z8XJidPq8j05ZuuGZlqq3bW7qf64JIQgTLyxDkTNBGYGC9sozzc52st0u9wSgea3avFqtqupNf6WnBChcya/zA8Q3pwI0Llm/2ioetP4g6aMbdZEbS12r9zTVlRzIBQycRiNg3zlit0d+rQcb7Bf3CWnaL9VPXUtgMN3bEe15KjOV4e3t6kmAqJuO/FF0VmCgKg/6lBXw6zqgQIVh2snrY6qGvymFuVqt6vb2tj5//lyfP3+enIX2QMtwMRIRydl4pM3/9c5oio6GPDmlcn0gOCAhjwkcUNl9ikKUULb/x88pmnsP8kjDowv1z3L55zY+AoHVajVdJ+fOPuY6gKq5nFWO6la0mwwi+0oOjJkEnzrgCnpfK+B91Rk46oZW7HPcSfdVH4ENZapsAcGRAA0P1eLUgMYbAZF2NDgY0NRFqju1SX1CwEYdp04fmh7o6vmVKelTCt6SLU9O0cGc25WRbfH60zSE3+v2uWvDqL5TwIRf29nozqe5zfpRdDZgoENzqZNHgIFCZNlVNUuBu3KywwgCmEq9u7uru7u7urm5qeVyOS2yYjlOXVTt6WF1ODMEnlZO5JGP2puyI6qHc9D8z+WQEPSxYKAbFB9BDgZddzwKVZqcL+8DXy1PhyO5Pj8/762WJz9Vb31FB+nZFv3PukeGktkjzyI5WNY94l3ZhlQmV/JTdo+Pj/Xw8DCBouvr6715fWUHqmqWVXt6epoAx2KxmKYLVIaceoomCSQSuNLnLpI7pI8XELBPo8jZrzkERlOZXfSu/w7V1wEBlpeCm5ET7/hPNt35TS8HP2zHyK/p+4/Sy7MAAyMh6LMbML+X3xMRYXVggYrEI1tvbm7q8+fPdXNzMy2WqsqnCZJfz0SofJ5GRUflETSNnjsj8u9zxCJGvnJajO5Y/7Gf+Vs3aI+JCN6bDhmSlA1h+tq3+EgXdW0CfZ3D1Xf9p0V26hMds8vyRiCY7WOWiQ7Rd934VsBujDHyZ2SutvtCvefn5ymbou2QkoXrvQNgAiMBgtT+Tp7H6kEHBEaG9qP19xzoGCDg13ZRL/9LwUcCuV39dP6jKdTOZh0KXBJo6Oro7u/sZBdgsQ6+fqQefjgYSM4yvVJmwO87VA9X/zMF43OZSmlycZXAAPdhe3StMuhYmO4V0RD6lhTdw7ki/ncM8PEymGLliW0OSMhfkh//I8p2pO2A6xQj8iMotc/nyT1q0P9c3Ml+ZNskV9bFaDgdrsPrPLug9QB+SiX1lOTli9y5EhToty4DwrUjBAPUR8mLRyw/Pj5OzzHQ9IN49myY2pyAv+TmUwvqkwTARtNQnYPx35LBvQCBb88IjOx41XyNSxdJe/3+OWW7GCB1Zet3b4PbONajskcAYqQvx9yXeHoP+nAwUJWzAEmBvBM6waZFRZx7p4FWNFP1tjBEC5nW6/W0ylrTA4pulDb1dKj4cmNP4jymIqNDbSGoSOhXDszXKsjoMqqj0+uifu+bhGATGHA5dKj3I8jRut7ZFrZXMpXsCBYpD0aoIhoOLu5jnVX726dUlwABwQAduj57/zhwdEDgjt9PgqN8fJ7e9UV6peOGdWywDiEiQFEdhyLzBASoR5KNA9xRn6co7VT6aED7s5ADAn12O+5gnJ+TvnVAw8FsZ2+OzQqMdEX2gIGlyO1glwlIn50/l1vKDiTQ+lfpQ8GAC6RDkKNUZhKqG0Q/oIUdqXnJqjeD5WsFbm9vZwZOBpAnpREUeMfxN0Y0NPJ8ME2a63eDn9rtTtkj0RHyTo6yU97unuRgU7nvTceg/9R3VfMo3kGryLMCvqCPusAMgPeTPvvTy1iG66qvJSAfBGW83j9LL6XX0nHuGkhtlmPWdIC2BD49Pe2dSiiZUM56Z9QvGfj1apem79KU14hSHx5zvbf7V6RD7e/+d3vuTpvjYGQ/PBjh/WmnCvUhBWPH0Ai0qn4+AbVq/zh4Bx0jAHIIQLgt/hGA4CwyA1V5JeUhUNBFqiICAO2r9kfYKsqjouo6Hi7kT5Xzx7hyNXVCr5wfTShXPPG7k4MZRubii+XoMw2wR2fu2P1etoH/pUVdhxzsR4EBkvNAPr29ND5MoVe9LeLju0iObLmc70aQ8XJeWA4jjBSp09H7w36oRwSWLvukR0rn8wFF5EN8E6TwuQE8TlvjxZ/GyTbImHKMSXaSL4GT67B2GKhdmsrpDP8oyko6caE/6VuAkNs/BwMue/aj25BUpt490+CZ2dGam0Sp3ztb3YEP8p500WVzqP5Ut//3vfT1bMAAOy0pTve77mEZvnhKRkdpfkYccs48uU33UNlUrh4co2ejbzab2TkDKisZYhpZN+CMJrvOZTSn8ggE3CmRxI8fAONOvKu/U3gqaMpopCmb9yaXv4Ma/eZ6xfYwopZ+MYL36aLd7s/dII+PjxMoEA8OCGi4WEYXTXiqX/Wpj5lRSOlYlacyXl5e6uHhYXqkMR25yqB+ch0Bp8o8kmfkRl2V/DQuuSiXeuyf9Z0A3wGUy6oDAUk/kt58pN7+TOSypc1Op8WKUjTs/Xio/3itPh8q49j2pLZV7T8anMTx3Olk4t0d+yHd/d6g9WzAQNfBXWaA3/1+n7OW4VEkJefJ/2XE6GzVqTJGVTU9TlYvLZ7iegPx4J2o7Wj6Xw6jav/oWa7CdoDB6Mnn3/ielI5OgODJo6T03qFQR/oiv/ajDWvKYlTNj1XmgEsDnffo5XP7VW87AgQGquY6oYWoKovHWKc66QBT5M0+cH1wI+J6mZw0nzfgbU27C1zOI6PG6Ti1iRk7Tl9IPv6IY44FXe/9yHHdgYARAP7V6VvHa+rrY0CA18uMWrL/38J7cqidnewAjvSLgVfS95H9cB47h594+VG6ejZgYESuCPpNL6Y7eX3V+Hx9OlLWpbIYdes3zwrwkat8yFCnsD4oSJq2YHrU2+tlMY2bBpgrlu4hGODgS6k7kWcHEhAjKEjp6o+g5KySY/D/3An6QkBS0tHX1z9X2uuzHDkduozG1dXVtGgwGZaqt2cc6FHDvkvF5zJ9ysGNs7ffo2z1t3YF8MmBAgWql+8E0A52qRMusy6ly3HYpX4T6fd0KNOFxvQtYzU5rpTJHdmppPsJUBziLwUzHfjo2uB8kwgEOJb8fs8Q8DqOAy8nrTlK+v49dfnDwYA7+PR/Ml76L82hV81T6rrX94oTNDipLM1FKloXGHh4eJgWEfJQk2OIOxtY32Lxtuda/Op65y2BIjohyaCTKf/3aJ6ZgmPRbRrM3bUfQR1fHd+eFfKDiKrmOwU8ApXO+DoO3SswwDUr6n9mGZgZ0nSD7lMdvJbZAmYcOFY6QJD0yNfIMBvg7ffpNE2daX5fYEJ1OdiSnFQ2p0LIj4NNytXbI3DdRaaH6AIcxuQ604EABwL6rHv03W1EBwb4nxPtFnUsrU1gvSmb64EMxxszq4kngllvt7e1AwSdnf8RevlhYCB1+ujaEfqnAB2luQKx42jU02IPGSkZwZeXlwgE2LGdctLgJ4DDNDyjfW8jlVHfO0rz9YyWEojhwEjzYin1nPpnNF3w3tQZH/7mxFSgHNty+bZwrepNb9iPvuVIgECOmqBBjs4j8q7P3Mj4/9IZ7nrhdbzf7+WiRweC3c6CFNVXvZ3NoN8FIDSOJBem+XU/z93gAsPr6+tZVkJ95OM5RWBq28iOiCeXz4WOp+REXUdSRiAFJKkct9ddpoC6xGm8ZJMSiKGepIx0Ve0BAh9nXYCWAM8hOXQy/t529UPAQEI7/l+6tqqisUzld2jSnT4jNZVP56E91DJEWiPw+Pg4m2f1uph2VT3i2/d2Mwrt2tY5MB4g5E5bDiGdXqjUdJfylqy6OfE0QFI/dsr/3jQyBP47dYxb2BRhcnGdtoXSUKlcOj6XX+IroX/qo/TDdVa/cV2Mg2SCPNYnnvlO/uXMRQns8jkA4ldnATw9PU3AkxmWtCaGvKo92uLraypG87V+DgTX1hwTYX00eP1ZyMd7ct4jW93pO+0Jy/JgSkQQ6MCaWYGO98RLAgVV+xkwBw0itoPj+JDfIi+dvPj9e+rqu4OB5Dj0PYGE5HSc1NF0vLzeV1yLOgRHB0tA8PT0NIEBpvNT2tWRqNYU8OAYVxb/nMhTU1zU5YpPQJCUm8rsEZ/K1jVp22KntF0K7KOMrDv50TX+G6cK1H8uKzofym+x2D90h+Uq2q7KixUdRHAOUnz4iYKKtHV/2gvthtQdPA2p7uMYItGIy9lr1T+30WpBperXlkvxdn19vWfstcNA17jB52/Jfoh8+/ChYMLpAg56Sk60myJINj8FUCzXwUDVfvZXRL1I0wPOT9cWjRmCbV4jHn3cuP0nT8foXApYumCNfHwvUPDhhw6lQTxCli7QFA07CnTBenl0zOpQj4Zl5DTvqbpkfBmRsV7dz8WFHrH53OmoY+k86FDS8bUkOgmCJCqrSHJnBCeZ+IBNxGmXU4zuj6QECJLzrZpnRlL/8PQ/Xa/P3E3CfqB+KGJmSpzOWo5UETCfUEieVG86RdANFcEroxTfRsh1BrqumzMVsa16J98qU7qqTAH7Qr9zPUSql+Um55GyXZJV56gcaCS6AII5dQAgRfK6nu/67H3s5R9K24vc+fsaAfKZ+j21xQM2Zm5T1tkBdAJKnvngvSzDM22jflCZf1VHP3SawH/rFKtDVZ3T038SpJykO30iPNUtw+Gd4vOVMjzaFqXz2KvmiuOOn85e/NGp09gmw+73cMGZZwVSasoXI476xyNdlcvy+Zvz7Ir80ZmB0f8jJ0BdYN+6LAW4CLyq5vpV9XagDvsnRefq4wQUuObDQZ2fRSF9phMVENCx2wIxPF0zrYkh4BRQoL7Sufu4cWCpurigVpkDRnLcSumAm9ew3kNGVPd6X6fPF5pTcuhyng7kRq+qvI6F31O0LXIQegwQcP3pnDfX3lTND7VSWQ6iGZRV1d74TuCDoKTLaJzSL39Fb98VDHRRoncCX2mOsmqe9nQUSaOr96urq8mIUjmcLy42cSfg4EEGar1ez/aNM0PhoMTnOokm04FBKY2WwEMCAp41OdQPlIH3TwdIfIC6gp+q0D+CPOI/xugnxK+pAjnfJCcBRJ6sJ13g/nz2n+SbIhGVS2PruqZ0fAK46guP0rRFkcdtLxaLacGsds0wS6CxwakAgg/va7aZUx0pqqKcKRfPevn4JBBYLBYRVCfnMBoDH62v50wpUKBuJjDAe/2/dF03bZV+r5r7AjpW1su6fCt6CipV7qHr3IfwGn7u9C0FhikzkHTye2QDSB+SGfBotWq8WET3dGX5tYxiCAT8uelVbycQVu2ju+TQdC2jFRl+ZhRUtsplZOaO2+UgcuV3XmgcU0bAo3ca5GSIk8KSvw6l03gzwlN7zsW4so0jnhx88SVAmdKgjBhWq1Wt1+spY6Sje6v2jzKuGmdspGeMjln/KJogkBBpUZ6evXF3dzd70iAj9e12u3fSIDNSHs2P0rUES76+gfJWuZIVDzpy4Ms2Vu0b7FGUdQgUX2hOCQg4UE1gL8mda13ooEkExF1gk76rjhH46xws60wZMRKn3pzHqvm6rMSz26Pk/N/Tdp7NOQPdfF7VOI3LKFTkn3e73QQIqmq2CKxq/wETinrc8SY+HOWykxkteXSVUl6usDSy5NP5cN4SMvZyv4XII6MxH3iOqPnbR5MPQB+oSZ8IEKVHNGDed/rv06dP02OvtS3V04JuUBwAsiydMZDO/CcQFb+MWjiV5RkBglmPxqWvbvg946W6fSErr6Oz6HbUcCy5/NN0A685ZDjd1hB0XGhOh8ZrstvdWo90r0BzN/2jPud3D7acX3e+LI9jrtuJwrJH13GqgDrrAN9llexzB2ySHf3R9OFgoGo/dZiAwAj9uVFMjlYdyHtd+QgAaOA8EmfdnRFyw+xAgKCBL86Dqc5UbgJArmBsI6dFeA2v5Tv/0++vr/N1F1xF7+WdSzbgEB3ik/pHJysZKMNUtQ/K+EwMOUPvb9XBMSDSNQIDOsefUwV0uvqeUvir1WqWrVBZq9UqGn3XSRl7PyuB44VZA6b1XY8IKtyQ6hoHWBxLLIv9pGsEoClLpoh9d80FEGRKgIDycjDQTQ/wPi64lh46GJAuEDir35y/RMn5Vu0fDJbKcBDg5Va9rYfqMq3pfuepq5vlJLDR8eUg4lvobHYTjKYGDkW6NNbpfwcCLIcdS0VIkTa/09DRGPPaBC5S+319RHL2ndHqZEQ5UFmZreA9Xr4rLRWSYIDGl3LxMs7J4I6iHoIb78cU8bpuMZqu+lNGmo/XgiR3RNwH73rqERQdufjkHL4cMvtFTv/z5891d3dX6/V65oir5rsAkl7Ieet3fed2Qp4l4FNtidzZu9GTLNQ2/q5X2lKbnLzkKEDroO49I7D/BBrZ7pQZIJgkEJU+czssbSkzXFVvZ0YckwlSeQy8CBKTTXUb7zrHYNO/p3JOIfKSgEP6/3vq7YftJnDFSdGSiB3kQuD1nJsUMQ2ZSB3php51M21Kx+8Lm9yZenSUAItvp5IR9zmqBGZG8u3kTHJ+0hoFvktOHBh+Dr7P5Y4c73tR6v9vAQQODBwIMnplel0GkKuTSZoqkA74oGc0pUyDHPrLy8v0/ANuR2RqX/20Xq9n6wOY1leb2TbVTyCpKQqmhVUXAYnrvcruxrXe3VBTJi6LBNJ0r58HIT44v82tYrzuAgz2KdkUl133X1XtAVplqTRNJeBKu0f7xAfLcVdMyhZ4oKPfRT49lAIhjm/qjwdYKXBVHSM5Jr6cFw/C/Pv3pg89jrhzVBzEfg+v6TqCCur3MxPA7SIppUmg0HUyFYc8uXOlYlfVzKDyMKJDz2UfRVk+MFnXCAUf+93b4tvnHOhQBh9pXEftGAECj5A9HcprqTsO5pTWZ/RDvdGhVl2alY5QYOD29raurq5mJ2Q6uPN+oGMVz+KTY8PbmsAJ+1bjh4txE5CkvDTeqEP8TH6Wy+UEpjQ9Qr1yh+BTLdyKqexANyYu9Ead/e1sjQMB6pAvthagFaglqNR209fX171puKq5w6Xd8XGVQMGpbU9BGG03x5L7CK97ZGtcfvyPIN3HogNe/3wKfcgJhK4sCQj4PR1RWLxfdchp+Tw856nYmV22Qf97yl3lpY6X4fSIKAEB8iIlTweodLIRLylF58S5qBQB+n0dCmaqtUO4dArnGG0lQJDAJadyGB1Xvc0R6vunT5/iXDmjUhlFTqlIlskA8T7tApDObLfbPeDCjJP6Qcdpc4W2PnPaQG1UmToPwPvQdVjtphNI2TqVyV0+nNP3KQyCoOVyOXsstNpFZ+JAWCBDbfJs5K9OadwnMJqcvcvRbTszWpzm4tZbnTQpPZXdow2ko3XeRLwutaVrB+/365NN5zgmgE4He3WyPkS0n+53Uvu/R0brw6cJvFOSU2F6xMkRYDLAUjDvLCpWmudmpOURV1rR7fPHVB7+lwZSp7DOT6JDc2AexTtvLivWlSJEypkLfRKgYv912Y5zpJQVoOMjGPApA4JDzzr5PCRT3qpL/4k4NcPoyhdVERD645KVgZDDpaGhnklPVBczaDwvQDISeSTI7/yfMuHJir4mglMq+n+9Xk/yYCaCOu9j0HlT+9O02a9I7lgcuCVQ4NNEXTaL+p3OIBAxMHGwUVV7YykFK1wjQ3uTou7OTnqZx8pO/oBtcV/Dz53PSsAk+UO9jxz/twCDs5gm6FCaK4fuc3LBUQicg6/aP5bV070EAP696u1YWVcWR6wJGXZtcETrSkID5+DEyz90Hf8nPzTaDnw80hOfnp5NGZLU/vemrh+Ovdcjbjkn0WhKR4vqJDsdZ+2O1XnyVfM0vt08uvSZ2SamYMULAYA+a7rA9/4zClIdBD88DtsNtXhTOWojMxLSt6urq7q5uambm5vZyW58dLQ7kATCJFN3UJIhHyzVZbx+ZUpAwB30SBdd3uk/ZpwcgKQ+4DocX6A7Ag4Mblg/s5kJXPi14kHfyT+nzATqmXnzDOwoeO0AAPV61G9/NTvw4ccRJyVyAek/Tx9W7T8a0pGt/tO1Mj5KT3bleYRXNY/AGfU4gND9fm/qUJ9n5yJF32fr7XFKQKYj8s72pOkWDXrJiinwY5HuOVPSmXSNiODIdYtp7t3uLTXP9QECBL5YSu8e0fDhVr7uQLzLgTJlT0PsxpJGk4CA0yA0iKqbuilwoWOLeTCQeHcnzjoJxq+urqZFZYyyaFzJM+vmjoYEBmiwHRD8LDr6UZQCNgcEKdImcbyoTIJJ1tPZLemBr81JdSfb3Tl46b3q4HXc7kgQIF6kaxqfyqQR9LoOsz3u/JPv8/HyIwHrhz610CPlLjPA736dC3CUOVBHSaG7MtkBKQ3rRCToW2R4r9epaxiNUwHI+6hdqtuzHCkrQMcgotFkeVXzFe6ejnN+XVF/5kgr6aLrmeTB6JcGRM5qs9lMRiwdR+zOOekcs1E0RtIfGiStzia488hc74zqdR0zC6rPIzutI/CXRzFpXPF3N6pcaOkLEukQHFARoKgd6g8HvKP09oX+pC5goy1w2bnN5v0EYp7pSTbRgxH2pa7p+s8BZGpTVU1TX5xuIxBIY875le65XPgfpw5oewnEU5aAbU329XvTu4EBR5f8ne8pynQnKvLvI4fZRbIy5h0a9Y53peW1nVFh+Uwb6TduS6ShTw4oKY0oTSc4OTrWZw5QPxVP13TtGyHb9PncqGtXZ+z4H1epV80Pd3p9fa3tdjsZHYE+32rKAc+BT0NI+XOuXLrjmQEubkqgWvV4VK0yuC5BbaFDFtDhi87Z9TaBa/GVzjZI/cL6+X1kRNlX6i+1M6Wxz1lP35s8YEsvkds39bfk64ulCcp0n6+r4RjgUfKjAEm8cNF4AgQqn4doOcjgdKDrr65zh68XpwwI8AlcKSeXI3lMvq/rL8roVH1+9wcVOcIUJWfN//x/v9YVNzlw3qPOYJTrvNBQ8zt58DRXVe0ZmKr5AT1pDoh18jefq+r4Eo0ASjew6cBY1whodIibg43yPlah35uSQfG+IwhzlC5DJ8MnGb28/PnAH90rx0o5s25G6NRnP4dCUTGNrjs3RjUpsmYU7U8oVJ06GIbz909PT/X4+BgzAjxoaDTmHFAvl8vpfr0zsnIwX7U/Xaf2pq2NAjw+ZUKZ/sqZgRTEpO+0EwmksSwCKzlGbi30qFv37nZvmbOqtzNYqt5AdrI9Dv48gCOP/Ex7LFAqnshz1fypheJHZXl2gNlB6qV45cFJfN6G8zf6/CPoXcBAcj4dunRn7/+70BwMeBqGCkSlkcOj8VWZiXhvmv+pmm8tU0Tl804jxz2iDjz4e3LG/M0dt/jTOw0q66bjodxUTupLXk9UfS50yAl00Q/BpK9j0bvAgAa8jgHWgT90ZJ4VIBBgSpvRk/PuUzxumF5fX/ccvzICj4+P9fj4OC0ulBHm6XAEItvtdrrHgUAX2XjWQyQ+9JREZVoIqhwICKx0+ui/q/2aSlEbL1MFPR2y2Z299MidICItbJUT1pjiA7DU1+v1ul5eXqY+dx9B3XKeEkhwh84xJ3IwwHJTMOeAQPdprHKsawuuAklfs0C9dXkmP3HMNcfQu04TcPCleaN0D8k70+9zVErUx3ulgF09VfvON0VY/J6iGd8z7Q7bOy5NDXSyOXSP7iPfrvTdGgjyq3LZ3rSH3stUXZTROWYGSJSXv+t/OWQaCREdr0CAomnpI+dMKSMnN07MHPg1zosbIPUlHTlT+o+Pj7XZbCaQUFUTCBAgEHgmeCCw8JQ8+U4ggONFZT48PExjk46bxptAwNssGj3QiCCrWwlPo/yfTsdmBRzwcjzz987OMygicUz5o7E1Vrj9liBP96Vsa7KhtJUECOTx9fXt+Su+boZtTSCIUyHi3W0u/Ydv9/YA7pA+ngoUDtG7ZwbSPB0pGYxjkHun1DJiFMoole68MLpK4KUDFT6IyI8UzhVU5ZFPd6IJdDhSdh6TMlAuaVELv5Nvr8/LZArXeTpn4+qySu/sLw5mptJZnnTj06dPUwTtTqxqPtXg9yuNrsjcdYyZBW57ZD8ul38e1KPoW9MMrjd8roBOgXt8fJy1j4v3uGhwt9vtLTz0qJ26pnZwsaDWV6gsgis6CDeAdCT+ICWOBxl8/ef2hdefs65+L+psZrJdnb3m9QRZOivC0+k8KZMgVaCSwRVtD8vhFlny4M7V28hAhu8Oqn09Cf1ACgLIJ6dDqubndjgAcT0b2XBe86N09YeDgaRgo/ScG7v03l3vaPUYQJBQGMumopBnd4iHUo4JReu+5IDJHx1IN8fZKYQDCyquy4iRmJfnq3NTfUTBqd/PhUYAkNd0L0WunG4a3cvtdymdqTHhmQWf3vKtsL6ASfczZS/Qol0NygrofoEQZhDEM7cLMuPDRYe6jqDZ28E2OmDU78ykcAqP8qUzFy8+9y+DrOkuGnLV6e9ucy5A4DQwoPsYxSdgyAWC1DUBTN8NUrVvN/nZAW3XJto2+gLppsYI1594kJTsHgGOyA8l86CR46Gqpt0MDDboiwiO0qvT1W/R4w9ZM0AjQEqOnNd+i2PRvR4FVe0fvOP3Vb0ZIBoxkn7z1BjbRMVPkSGvJW9pbor8n0KOOj3KdJBBXqmUI146pKv/zgkQVPUZC++z1G4ZEHd2Pkg5Z60IiE7NAUGa3+TnbvGVHyZE8KfMgBy3jCL54HHCnjljZO7TAWlM02G7UUxg0evig2iol3QQHGesm/PTXP9CQJDG7CHj+p9Ena1L17lcTwEFnBpgNC6SXnERXbKXjN6lHwSqIo6JDvTJ9jETR53xRyr79Ibzxaydy831tmq+s0wAX2Xp2m6MdXRIb4+1uz8UDHTGIjUwGWQ615ERYX2M+hjNMC3P+kbI81ghcsA4qnTF7pyLt118u0P1evXe8Z+ccyozRcu8ngi1+z/RsW3+KOr4GgEBEQ2VL0pinzCNLePhDrcDq7rfx48iMIII376ksnxOlcZP+iojyOjJ28H2KSrn9Ee3W4JldLpEWai94oVZOd6XpiEoD+4fJ//KhNDJcX73XHX1e9AhpzJ6pcwn+9PlxusESn2tFXegSD9pq7kmgBkkboflf24Hkz52xF003FrLbboEAdotxEPFkkw90GIgwYyEnz1yDHX6+i06/EPAQEJj6aVrksPyMrr0+AjlOhqkIWNd+nwIgSVlJ/DgYPF5Ls6XJb5HdfEeKb6IAyW1gYZTZdGgenTM37t2J15VRooqu4HykdQ5I79GlIygp/w6w8MU+Ha7rcViMXPENIzdwGYUo3P6uUjJ52NJjEYY8fiWRT38qNux4MT1Azzil3zrtwRU6IRdxq5H+o+AyadSSB6tkXyM/ipbDEf2M9nRTkbU2ao5IOAUGn93neTaG7cRBNh+GJCu9wOnUtZWei7gmgCpiO28vr6uu7u7urm5me0A2u12EwjYbDYTj4+Pj7N6vWyX8WLxdgBR0r1OZimYc/ordva7g4EOCKQ0UxJAKo8R9yi6Zb0pZc+6vAyv0/lzheP/Mqo+T0bDRuUXuRIcA0boeMgTUXFSrqr54kQ6f8qhm8ZIAIM8ebmM2Lrpjo+mYxxeVU7X0bAoVcn5d9ZBg+ZOzedGOQ58sRuBwO3t7bRIidsYfS8/x5wvkOIuARFX6icdogx8q2Ga4pBeSl/diagsjR8HCLxO/NMZpTUYVftZNf/fsyP/6WDgW/TcbXfntPyzAIFntEgEvwnQcbqI00ZpAWBHAoQCBA5UCTZE2sp4e3tbX758qc+fP89Asna9aKw/PT3F6TXV4f6Q9YinxFcaK+n9e9J3BQMJCBD9pLmnqtywpIisY+TIvS6RBO3RdLrXo/uq+apREYEA58l8TpgLaFSX0kRsl7f9kLKnz4eoAwJJ+dwB+ncfxDTSh6K3c6Iuakq63KH5bn0H5+m1Sr8bC0nGi8Vi9ujiz58/193d3eS49XhhX2dC2XMcErhyLLgTZmqeqXiRoiLpHgFJAr4dICQ/Ajgqn9f4+gb2A407MyQCIy4bgQvVqfUc6rNz1tXvRV3glmx3ArKJCAjk8LRILjlLX5isz50u05b4Z5L7AB9vrtO07Z8+faqbm5v629/+Vv/85z/r8+fPk8PfbDb1xx9/TPrMaTIH/d4ula/6k3/qXiP6Xrr6zWCgQ5pUGl+h6YpV1c/Z0xnTyXad7zw4GFCns2wK2jMK4p/RtvOXjGta3MUozY0t266yRNyKpmmOxE8HBFS3z9OliPgY5XNHpd/8Po8WjlXqjyaXSQcEPMWfUpwiGjHpDLcoUed0vfPBbMCXL1/qy5cvMzDw8PAwO/yH8lbddHx6KXXK/wkMuCvA9+0rI6LoSDrInQweiV9fX+/pIPnSEwvdmUsmPACJfGmnhHjS/b6oy8GAeCIw+k+kDujq/RDodSfqOu/liHxRnP8vki4wcKKdpB4kAJCAgN7ZzrRF3LMWum69XteXL1/qn//8Z/3jH/+o1WpVLy8vdX9/X6vVaqZ/u91u2rHjdtCzdF6nf06y6exmsrl/hb57ZsAdsQOB0YCjo0toLikVFcgRrMpMSsv6+LsDgtRRvCa1U5QGTQIV6T92tD/gIgECJ8kpOWbWMRrgJFfUrp3JmfG6cyTvW72n/vVMl0cvNFJ+1Kgcpe+nZnbIDR4jlbu7u/r8+XN9/vy5bm9vJ8f58vJSq9Vq70mIqlMpTTm/9Xo9AQLVKYDCOgkG6GRpBAm2CRoSyCax7Vq0xdMZ5dhJy+VyMsqsV+cTcA6Zukyg5WDc1050uvuz0rcAgfSqylk/jo+URWUQdoxdpb1Sf6ZFhp3Nol0WMfhJIIdnBwigrlaruru7q3/+85/1v/7X/6qbm5t6fX2t+/v7Wq/Xs2BSeqmDuDjOHYBSHhpf7k/cdh+i7wUIvhsYOAYIjKJRUQcEUn2dkyUJnXZGyst08qkBR5QOVvQ5LQYboWK/TsoiZSO6dHTr5fEzDbfLOgGBkXwS3wQmBAKpr8+ZUluTHvNUNJIGvUfPXQbLnZaXKVnKWPFcd05JVdVkvLhAlYcB6eAglkmDSCNVNU/bCwxwC5UfnuQAnLrWZbPoSNxmECh4lsEzFtvtdvaUxgT2k2Ognvt9/8k0AgLdq2oedLleu+0XyaGnIE9EIEwbwR04h6YICKydD9dFgWPuxiEvGme3t7f1+fPn+vvf/17/+te/6u7urna7Xd3f388eXqQx9enTp9psNtOhXhp/lN0oKCXPsvedj/pRevrDwIAbG5E7qy7VlLIII+Hy/qqaRQ+uSH6t85ZS+eqc5IQPdZDXfQxRIeRoVZdTcjoeHaWsAD/7oPK2JaOQshVdmae2/z0pATKRnFKaBnLk75Gng1XeK0P59PQ0GRNGNCNdTVuxFF3TWBMIdtMI7HPpNtuqun2qwCNvT8FSpnpPOirnz0gz6QkXRhLQ+Fn3aQ2OZNQFJN7fp0Rl50w+jrtrfIwnQN/ZEZYxukc6RJuRArhks9j3CQT4WHF76NkE8i1wT8CttTl3d3f15cuX+sc//lFfvnypqqrb29tJZ/34ZLY7rfXqAg69U3+9TX4/9fR76et3AQMdEPAB2DmjrpzO8Xlnd4Ocq1WpRJ3iJpDBaYmU2hq1x//vokS1QfWJPPLu6nSw4c6J7U590DnrLkIQyubUDMscvc6NKJc02LosFRfJuby9r1LUqnv5RD1mBlymcsbaouhOT9kB8eBz555CTynXLhJxeYkXZs0ESPi79MTvpVyknz4NwYyJOwXvJ6Z79b8WrI3Av7fTX+eor8dSBwRo+7qX/h8BgFTGoXq77K3XMXL63X3Oq48fgZGq+RNgyRszA6vVagYKPn/+XMvlclqno+2FOtWTT+/0cTySiXTVM2M+HT7qN7bxr+jsDwEDyfiJYb77/V1Ddc8hh+oOy6Mkv9Yd40jpGKn7Na5YJHfYiV/9n8pj3Q5SnHc38vwvtbvrD6fUh26UEx/nDAI6SqDAo3oRp55Gjkbk84Jy2j7VpHr1Lplqj7MvbKUhkzHzfdhqWzK0bLveOW/p/ep7wxeLxazOrr/9HtUlIKCnFqYxSx4Wi8Xe9IGvefBMhvetG1e3Xd34/tloFFUea3f52cEV9TYtEBe5fEluI92OHTO2jrXH/r+3pZu60hRdVdXd3d30ur29nc4j4OFYTmmMS1e19ifpoOt94vt7AIGqbwQDnWJ5VsCRi95TZ7EzRg71WHLFckGNnFlykvrMAzGS0tJIuxH2rVZsv/OQeHae+FsX8YkkXwdVhwZOIgclui9FoD8TIEhAIBnJbtonTQWQ3DAn8KRyKFc5TK2ap8HVVjxFGNoCpSyB7pcxS+OVus2dJwQEfgSsH23MzIR4oZy8XGbCdrs/FwFqPpfy8gyIyqKu8VqOMWZsvJ/0zrUYAjSekv7ZKAEe/pecn18nGgUw1CHOwdOG8/oEBHynUxc00Z6SNw9uUn+RJw/6OrDLE0MV8dPxcmeOL6ZOdsGjfH3WDhsGFpwu04vBqIOA7wEEqr4BDByjWG50OnTJMtLWQzX2UHo9IVGv7xTkyGvc8TGqSx2fDH4yXJovTbx2kVySAweJFDkheMrUgZA7wU4GnTPTZ0ZjCYQdCzbem7x9Tod+l/46GGC/+DjoIgj+xz7XY345vpLRZSRTVbVarabfeWoh59ur5mcEpNMEecCQP2VO7eeT2rSAiosaJQePkpR21Ulu5I9TAJSL+GEmwsGN+pZ88uAlbif0I25HNuNnoA4I8HOX8RLRLiR74an1FBlTL0m0DwkQpHt0H3noHLvXT9vrNpXTb9vttu7v7+vr16/122+/1b///e/6/PlzLRaLCezycd8EEQTMyS/Qz9FmiD8/yVM+QmAgTZE5IPgrwOBoMNB1MBvYLRo8RA4iRJ0joZKkeqSoPAGL5bljJaDhb8lJqkOkRDIwLJtKmqYqjpGPAw7/rDJShJ+mRFQvr/N92CIHAYzkHOAx8mMKuQN950wJ9DjPPijlXJiml5wpN95Ph+jb2gik3dCQJ+orjQUjdT/LwI2/fldfCXCkw1PEg04b5GppzwaqfhlZP1hGPOq+3W43M67L5XLay02goa2QHrn5WFYd/mRFRlcOMgQu+HTJnzE7kOx0AoyM6FPU3NlVf18u37ar+up8EYMeOsqUzazK06SkBK51X5cd0P8EpBxbWgPw9evXWq1W9V//9V+1Xq8nMP3w8FA3Nze1WCzq6empvn79Wvf399O6gc1mMxsb6awNH4fSbbWJu350DQ9vSoEd5fBXgEDViZkBN5JUKEfyTonJzkg5yqNRSimtU5xMGuSco3FBJ3IHLTSoE8yq5ltjfO6W7eBnRvZMWXGxmngWEEnAwpXCET4/u3x5j78nZeTLpwfIj4Otc6Y0gLnVTobEF6ylqMgdPqMpf/mhOuxzOTfvg6q3VflVNYuCq2oW/atdfJqfIuHNZlMPDw+TQUuGVkaTW6cYGYp3PvRI44BAgQZZgPb19XUaP3L6mnqQUeYCRaZv03ZO36POszrUB/pM+XN3gvT43EGsUwcIOA6PtbupTH13fdYWTw9GqH+Lxdu5/B4ouX3UuEq+g/aIPoG2ZwQKvF7ptrYOEqhut9v67bff6u7ubgK52+22/vjjj/r3v/9df/zxxwwc+M6dJDcfD/SfDrY6Gz2ibwEGJ2UGXKGOAQJJGCyPijlqSJeySgLyyF+/uRKM0iqjAVX15oyF3LpztNPTtcjPiH8CAY/EKSeWkQY2y/T2ejs7EDGSjTsnv5b9fO7kcpZTcmOn/hFRL9hOOhee/OcnAnKLE8GADFxVTU7Qs28EA+RbDo1gU2VpykHlKzKis3f9EeBV9mC3+/PktdVqtbeISlkJ3ScedFIgZabPdABcza2yFcH7vK5HlQ5KUyTKiIsZO89wdlHouZOD/mRvR84lBQepTL9W46WzMQ7EqNush9nPjj9m2TxA6wIStsfvUabp4eFhKvvl5c/nEXz9+rW+fPky6bWyA7///nv99ttv9fXr11l2wEEq7XJ6T+S+Ksnze2UFqk4AAxLOISAgRkeN9Y7kZ3fiiQ6h9a4sR77+Wyp/5Oh0Hw82ouFlZJfmjz39LlnwrGtXWEfulCXbL/70rrqSDHgP23ZI1g4Ekqw6wHfuxEEm5ySH5Gl7kRs0GUa1nY4/7ZHnGKMcdQ31TI9P5TXiQfUr3U6+3FEyMpKjT+lyXevROLMjHqlRt19eXibwo3KpDwQuygLo3SOmBMbYB8kZdNf4de4sk8M7VxoBdx+HnJIdOZpDgRJtSnfNKDomEKO9EyDwdVVePnXM9TtNH+lz15/S8YeHh6p6W1QrQKBpAy3m/eOPP+r333+fsgI+TUAZSRbiS+PCs8cMBhOoTfQ9wOpJYMCVydcKdA6FRKNBI6j/iMYT0am5UlIhfBB3QMD/1z2jqF3ENQm73XxPNct0J+HOeUS8v+MlycvLdT5oBJOsDsmgyzCk6IE687MRnXpKgyawV/X2qGCm0Dk9wLGT9NbT2B79Cmgq5eoGRGW8vLxM9fMaGiEu9lO6NC2m0zW6X/UqdaoXdYeZlBGAZcqan4+xKW6bEh0am13f/2yUwGQahylw07Wn1CNi5tOBQAJtDh7ZD57pSvd2ZUjnExgYZQpYt6arOJ6en5/r4eFh9qRQLTb8448/pik27YrxKSbPKHq2j9MKnsFieYm+V9bqaDDgq6XTokExNkqFuDHgu/7vMgREjOKpar5lxe93h5YER8PghsozBnpnirV7Kleqo2oOaFTvsTsLunKT0Uz9cCgrQHAzAkOpb70Mj0Z+NuPq0T0Xm9HY+HtVTU7SwUCSB8EZt9dxrPE5AryHkb0cu1bwKxvhz2Tn6mk/T90X3Xl2yncHiDxap0x2u90euFAbKGu3I77C38e45KusAxdfej/yPneGI0Or+76XwX1vcnDgoKkLghLg78olMUskXUu2q5N5Z7dHPHD+ndE4I3CVyd86+yYHzezs6+ufU2n+2HAuINRY4lSx6x6zYpKBr3/htHLKDvwoXTwpM+ARTUqniZIDErlipsHrDp3vuobRhyt41TxiTh2flMSjddUzirSV7qGx6uokoFEbUzSTnHm6Jl3fDaIUDVGOHPz+eweovH9d+Uc6cs7k7aZjrnprtwZu0mEZKl8c5DpPA6BxpjL0XWX5HLlIhldb9ARQdWLabrebMhusl8CA8/Ed8BRfVbU35VE13wVDY5aiQy+XcuEKb04ZuEyVNZGx7nY0MUIbOYGf1ek7dSCA8knAPkXQqWzWQXnTBtOROXD0a0SHMsPePvLD7AB9g/6XjSZgST5APPpOGK321/++1Zagmu3hlKJAugMBgQFOER87TfC9wOpJmQHOc3o0XtVHoDQinhkYdboDAkbBfh/nwYjIGEGRV/LL646JilMdPkDEU1V+gqB+Z7Sm37p6O1Di/7miE9BQsTrQkgZZBwgSTykK+Vmiq86Ids6+6m2+s2o/ovEyEmiWE1cZij4IwBUBM7rwcSfHLjCg31QWI2KOFyduexKYUN3+ZEPO68sI+9Y/bhnsZMHvcuziRQsU+aCm9Xo906fX19fpyXG+fVI0mk7oIq8RsD9XcluUxqPsjtumVE4qK5XnNtezSXS4bo8cECTQnPpC7VCARV4FonlfBzToI5L9l07SpqdMmgMf1zWCFE4RMKvgUwMdEPAA7q/SyWCARoSdfwgIsAGpsxmZixIQUBlersriVhRGJ46GRSO01YGV5GyToaETTAiZbeQ0QQI8SaaHsgfHGrCUMWA7OzDgYIrEPk6Zj3MmOks3SJQVDdloQOpaGgH2t3RUW/rkOOWIOeaWy+VklFKGxvXMH2vM6E2L+TTPzzHousuohzwxaq96e6AQpyHkDNL6ojRuOLWgeqtqL+rXeNd9zIyoLqZsKRv1B9vEjAh1P42Nc6UEBNxhU/7JjicHzO/J3rFfJUfqHX/r7I3z44CbUX+63u0UQa30j3PzHAvSN96nqF76vN1uZ77Hp+koQ/HGcSgioJeOE1RwmiBlBZKMvgcoOHk3QcoGOIJJUagznqItRsj8jcZ2hNSpDDS+XKk8Mt6uVKPshQ8IziuniIupHwcr3l7nR787711E7vJ1+Sf5+ZRKN+h1LflPICLVcc6ZAQKwFPF46o4oPg1abjklGFJk631C46mohnPs/I0r8j0bxuhd9blx9/Up3Kmg+zmtwejFjyFWe9iGZOzdOdBQ67sDYr4LeHANhj9dUf3CF4293hmtqq98bptAoIvMzo2OAQLHBAjHAALavbQzwRfWSseYRev4r9p/jkfKLnp72Ea3yxqjnGpjO8kTpxG67Bllxff0PwGBZwa4TsCnVVIA7OCo80269hS9PfmcAW/gITDg9/tLlBqv8kfRuyu6Bj9XT3fgQ2XQEfiAoiH3AeVggEaUhs3nxZhSVtspB7afEWCSsfdNAjEylDSMKarXexpUHBQcXCzTU9cpk3HuxHazzXI0VfvPWncSENB1BKfSNekHZSzyyJpz5eST/SSwoK1P0n83iOoPZvlWq9We05XjXSwW08pp7aHmvCj1TIuuklNVu1wONLieTvWok88/8MyTIjtlBpR21XSD7lEWRHWovwgIDtmqc6Rktyi7FBy4oxmVy7LZbyxXY4E6wD7lOOCuEx9DDmA6W55snd9PcMwMMaNvyYL2mCDd5dMFpiPA5VMHboO74Njlot/Jo+uoA6Zj7e7JmQEXSsoCuAPoFNUjTY8kEiXH50Yx1cUyU8eyfBKRXIoY9Z+fYJYGHq93VJfaLqXpHKyXzYHnbXGlcVl4eUlR2V/eDldG1fGzRFUkGhkfgLvdboqQPa2u7EFVzZxl1fwYazlu3Utnp8N+5Niur6+nMwXEA+vxLYoynoxCBCIEaHa73aSnAg8OBnSAkHjWVEB3ZC+Nqs95dkauA+eSeXJmDopol5TK9ewAswCSg/OTxt/PAgSckp11Z3PMmBz1D6d8qmrm5OkTUhBBG0RQQN7TZ+qF+xC98x7ymPTQs7WegXZ7muTmPoZtVR0j+XJsEqwQNHu7VD59iq5xf3EKfdOzCdxxjIAAmXelTMqWGuDKQVTqK4u9PufZee1I/3sHMPJnxzM74FHeofZ1/6WB0aFUfU6oVve7PMhfAnlOHcpMRtOB4ikI9aNoBCSr3lKfygpIvuxzRh0+MPXZ5/DllFUm51m1gpnZGEZdql/OXdMSWnBI8pMw5fQVeYlHZQaUjmckrro8rckIvNsb7eA0RVL8ziOgJUPPKLBcbq307IAcTyLK3AHxzwRmHfCPwEC6t2psf1MgpHscDIpSoKJ7qefOW8oW8V4GXd01stPePrWRO3iSz3Jb6qBRMuG7PusejVvnj0CKOxR8qqCz/ykzwCBM9yQQ1NHJYMCV5Zgo26NoN7LH1t8Zk4RSE6XIuotaeD3LlKH1uSSeW+/brFSWz6Mdgx51XReBk1dGn7rPgZcvsFT9yVkf+i7q+KKMfzaDmqKPqvlc6Ovr6+yEQcqTUY+T0pZ0bNwmV/WmL4puebyv3yvHToDw9PQ0c/IEGovFW5pWGS3+5wcjCSCwTo07znu6wWWfc12C5OxEkEOg77sUPELksxDk/Debzewkw5FNSICY//9MlABBmvemwzi2TI4Hz35Sjj7Vyc+yZT7llaaUE4Bx/dR1noYnSEj2k0CBWT7aqg5AJed+yFZSbp5F3u12s/Ht6wYoE6+X/6U+PsX2flNmIDU2IaukREm4MqTqtFRG1+BRuWkO61S0nzqDRlL/ESSkFE5ClO6gu0hK5TtqZbTI34lk3YC7fDigqTge2XPAHSO/BLp+BsNKffUttKJR9MRrOLCfn5/3HLpIdWn3AKcC+PKFfz6+VLan791Icx82F+6JJ98t5M5f1/lqceo/jbFHVi4/tY36yGyfnIXWbBAkyKhKR5+fn2uz2dR6vd57DgRlkPrBx0iyaedK3l/HThEciiY7cEy7QfuaHGVK07t+OKWsUdV8Rwl1l/bR73OwxyBM5dDGEbiIj9EuiEOBLYNWAQE9fEvBhHbjpMya+xLKzPvJ6RTdPemphV75aLAkBRqlqqh0LLdTFL0nB3cI7R9Lo7pd+K68/u5lpM6V0omo3F6vrtXnlNHw7IdHCJ65SABPg0OH2JCvUWr1mIjjnChFDRq8Ljd3dopak6FgWt7v9/pp5LwvaARTZsnHYtLP7j8CWPLihj7xS6fw9PQ0m+7wFdo+LmX4qMsc25Q9t14yC3dzc1N3d3eTQdUDZPgURX+RtxSBdY7oXCnZkS4I64CABwX+8kwNdT8BAqbK+VvVW6TOa9yG0SFX1ex6B+v63/Vd1AEUPleDNo1AmXw4kNT1DnDJK+uTPfGHcEl3BXh9e2HnwxJgSzweq8cnP8KYgyRFfhReWvzjAhO5cnXRJMt3Xpie7QwY30mjKKFDwXSyfp+ja83nJvROmVTNn3xI+eieNPfpUT4Nr+p3hyJjrPs9ciMYIKVIOSmtG5Rzi7A6h8yo1NPlVXNHVvX2SGCPPPRZr7TIlM7RDZ3uZxQsZ8brd7vdbM7e+1blqB9Yv8ri/xyDnmXgf5KZom4dDqTyuOuAqViV43qkstzo637eKzne3d3Vv/71r8nAbrfb+ve//z0DA5SjAxLXXdbt9u5nIAcCKfPTBW98T2V1MnEgkGwPy/e+py8Y2fuq2gN4DtQd7KgMLc7T76qTuq/MEom2MmVuCUZUJvXWxz/tiQCB2rDdbqdjjblImdvRvY0elIgXyu5Yu3vy1kKPatJcnCPJQ2kUR180SCNeXHGPbUcHNEblV83PX/drOOA8yhAQ0MIr55lgwiOnxJcrMgdX4ptIWOkogSbJQakyl6XzQVTPa5KTcFn+DEaVA1dpPF8gSBS+2+2iAUlGQKlBLdqr2gdhHNxVtWdIZVzZJ3S6DgR1H+dXZZB0vcYcpzE4PdFNtzlQlH5xRwWNmesMjVzKTIgIbDh+V6tVff78uf71r3/V7e1trdfrur+/r//5n/+p//7v/57k7GV5FJiCgJ9FX6v2o/kuih+l86vGQIDfST5FSf1wUNzZbNcLb1vih+NwlKlg/QS1tLkawykid7tG3skDKfm+BGL0rq29yhRst9spw3Yo000fwgDUMx7H0DedM+CfGW1SMbs5V28IFcRTHRz8Xr9HcRSCorUEYKqy0o0EJ4VxdMwjLxO6pQHmvFSKipKDdVklw+WG1MtVX2iFOOVEUKBXcuojuXSUeDkXSrzQONGRe1TJfvZT66TzzCzwyF5GBlXzLJBHU+JFkf9isZgiXupLyiSxLWncJP2jjtFwJnKD+/o6f6wzpzp8HtaBi2dFyAd1k4BMCwM/f/5cf//73+tvf/tbXV9f1++//17/9V//VV++fKnb29vZkyb9gKikC6Po+WegQ4FYB9w78J6CP+lkJ7cUVPC72/s0Fj3K5bWu02yrR/EM/FKEn/yYHy/sh8U5OEr8yy85z349wQFtBnftSN4dEHDfwHafAgj+0jSBI+409zYCA8fUl1Cv6u7AAKcJPGo75PQT8XoaJ/HRRUpOnSwSMOnmig4NZn3Xu0cJkhO31ThqH6Wk1A7/rfue+DsHojHjZ4InTg9wUHE6ig5TwJAA4ObmZvrsC/O8L1W+ZwM0Xy7d5vG/IvLROQTXpy765qFK6bwEGkjKgFsuu+hb+pYAs0exDgRoUxRRaTHWzc1Nvby81N3dXX358qW+fPkyPc9AfcfzBhi5SsbskySvcye3uV1WYBTt+nd3+Aq0uOhO5R+iUX0j4ND1A+0RF656ffQj6b+q+SFdaYy6PNIOjY5HBwLuR/1aZg0URMreuEwoJ/kfL/9Y23vybgKPnkREZSKPYKoOb/vrUuOsM6VcFEm5UDzSGLXPheYOo2r/MBkqoYzKoTpdwZkxcPJIdJTeS+g+yUt8O4IftX9ExyrguQGCRNQZ6a+nFKve9MDT+wKmAgIEA5KPr9XgfKPLkilMz0LoneBRBq0DiiSmIP14ZX4mL9zumI5jTvOVfgKnZCq5eQTLKC7tovC+YMDgOwj8XpcLx53anRzAz6K7BAQEcAkIjMZ3sgXUU5GvpRF1GQV91jXp2uQvmJVjWa43if8U6Ixkous8sGVZ3m5/SVb0E7rfg4xEvsZrdDiTt1P8MityDB0NBoia6FhcyO4MuFCpan8aQPfSkHhZdGKJBxpRzQd1qSqnkdK4IJOxS4rcodDuXXxTiY4h59XR56EoYVRPGhRet/qSdaUyyd+5koMnOhQaVfYP+8+nBfTyPdEiOXmWl+YymemSQXBD4UZIlLJLrtc8qIfRvZ8gKN51TDLvSUCGPOge8cYphGRYBahdHvxfj4/158lz4ZVnWjon5mPuZwQCos4+pxT5sZTsFseAy9aznx7s0CE777KFtPcOnl2/XGdSmanNGjM+HeDg1X0PdZYRe9V+5ni3eztDwO2KP1LcwYyDEG+Xt8UDiVP19yQwIIHIYB6K/jgIO8PkUY2Xkxw+HZuDj84hJaKgOsG5ARe/3fSD76Comi+kouHx9K0rIa8RL3TALk/vG/+eIrjk7Bk1pEiCMiM/Hmn9LOTtYYTvsvPTBfU/twwJCBDEOkB08Oe654ZKjtHPHiARVFS9Pb/dATtBRtXbMwV0Yh+fMVD1ZgTp2HmN5KU1KZKLAwzXEwf24pmgnnJRBmO5XNbDw0N9/fq1fv/99/rtt99qsVjUZrOp33//vb5+/VoPDw/T0cvij04jZSJ0jgH1wo3yudIhJ9BFwCTqaBcMkVJ03jmvzmbpd9pEj/69fo4b9Wmyaan9fr+DAH/eiPd/ApZVb4eRqU2+jme1Wk3jgucMaLykNrpMOx/pMiXPXV8nOhkMMDJxNE9iqpVEI0Mg4MaHDXNAwMVVzl/KCHSDZISk/H7Wk1JMUqoUCdKJ0JEw8umi7/TZQQTlxLpdcRWNqr/88bYJFIh/L8cNgCNTzyycGo28N5F3Rt4eAXhbdN3NzU2t1+u9w0TkZOjcqDMeWaex4SBsBCISyFD7RBzL6v/NZlP39/d7kbX3uz+bYLlcTlMivqK56i3zQMes9RPu7GVD6GQ47j26XS6Xk0FVluD//t//W//93/9df/zxx3QuwdXV1cQfAZLkLYCRbIB0+2cAuM53AvOH7iclIOC/udPqUvh+L+vj79Ir3zFDckfu9ojkfor3EgikKS/aULbRx6KPMfHNNSrKMHKNi9a0VFVtt9tZ27ho8ZDu0W643qYAt6OTwACNJRHcIUfmka+n5JKT9PS7l8vO90ibfGo1Jl8sy+9JYIGfaaDl5NNg46Bw9Fk1nz5hPYzmiTZTxxL5qS1KRdEguLFlxMm2OHpmW+Q4knMhAPOBkvrnXInAk6uBnSRvnh6mbIAcXdX+ljieE0ADxIGcBj5BMNeoJMPM8qT/KsPrYWbg/v6+fv/999psNjOAyP5klK97P336VDc3NzO7IN3VdfrMujmHqrJpOL0P5LSli/z8+vpav/32W2232/p//+//1f/8z//U169f6+npqRaLRa3X66qq6Vhi6qXkoPr07v19zrrb2Sx+55jsIky/N9kC/+7OitM7Ht277fCslfsFjTHqLftOOtCBj5Rh8KmAtBCWPB67UNAzop5dECj99OlT3d7e1t3dXd3d3U3PENlsNhN/3OZIQMB+S/1EXjxQPYZO3lqowclO6gCBGldVcaWxGpKcUNcAGg91JgcvlZFOT4PckZwPJP/dowj9z2jaFxWq4/mdCifHqgGjOSWtHGW0mACB2kk5+er3Lj1M2XEwEJCliIDpW/HPa1wH2K8JQJwzdcCQaW39prQfdwtQ7xjtEkxRJ+Rs9M6+Y5ZHwMMPQpL8meYkqCYA4bjSuHl8fJxS65vNZjYF4EbH1wkotU6wrPr0BEGOFfHZAUY6ZLaVRlLjS+3Zbre1Xq/r6elpmjYQX0rDrlarvXSwshbcaeO7NMTjOYMB0SnjzPs2fe6cj+uEOx3ZBz6Dg/cyKGNASVuqPmYwJ73m2NHOBo5Lr4tHWqcpW/HtoIZjMTlVl08HCHgvjyNWZkDPHlE9BAPM0iW7nICf/mN24Bg6CQw4AhtVklI/yWnw2tTYQ7xUzaNwN9baq6l3H9hdGxwYqKP9CEsaMxo5OXsqL5VCxoxAQOV4epj3eTqTCutyGSmwojxPmyUU7oBAfLA8R68JDJyzQXUAIFkyyiegrHo7MldOy4GA67sDNPYPnS+dver0V4qqPGqXA6ROEhCoP/SUv+12W9vtdsY/KfVxVU1pdn2mzFgXxwrHIvVDMqUMvH0Oth4eHqbxpHZo/K3X69l6Aa15cHAvuft0p+o+Z911SoGUg9uq+boAfub/qQwnyYj/MSul+3xXk2csWB5BsgJQOlv9z6g7EdsmfWH51GlmEhy0eHmexUi2turNLxCsa5pNfon3E+QccyRxBwrY7h8CBkapiaq8/5wGwI1Ip3jJCarMLm07GrRMOYqXVIbzzjpdGVM5MlhVb86+48ffBRyEdHl0cSJXVk9nOZpMyuvGPdXBvkqD3h0/yQHBsemq96YEALjyt+oN3KlfuHCQYEDXSlaelh6R1+H6nsCeDI0v/lsul7OoqqpmOwBUnuplBD8yPozQZDRVv+7lAt+q/dM5U+RJuRMgyDn7tNZut5vaoxSrfudUnJyJ0sr6n1MvjGJ1L7MfPu7Plahzvng0gV23xa4XohEIcAAh8OlBAMuWznCqyIMu8iOn2TlmOu/kd6jXng1gG6vmWwC9LpfxyI9QJvILm82mHh4epixiGr8EASxH7Ut2dtQ3p9DRYCBF4p5WSShFxBR950CouKTOMPk1PphZfof0/H7yQmft7SevDkbc6FHJfQD4IioqdOLF7/OUG9ueFrzpf7Y59UECah0CHvWP9/m5kmTKbT9aB0BUz0HM6JVAk1MCHr3rc9ffvD/xyPKY/ueLRpIAldMIKq+q9tYupLHdGRyW49kxOlwaeS/Xsx8q26ei3Fmk+VQ6BcorjSlN06n/mPkTT4wUz508wnS+R2DAnbV/1nfWpfc0vtUPfmqrZ0ZpV93Guj1P7SR4JAgloGDEnfjsdMTrciDQ2TQf58pYMbMoAH57e1uLxaLu7+9n02o+VlLkT3Lb0PXbiE4+dIiCEVOjFJoGGA2pAwKWn5SRjZHzS1GEo0BPi9JQOHJLAnMnTB6SsZZ8vIyEkJPBEi+UKSMx1p+AAOWa5sTcCLjSJSVL7esGQaeko3s+mhiRSK80p6edAXKiTG8KCGi9gP6jXqjfCATYlw4EaWA7/dL/bjh9akJ6w0jNF0mJuObFgaXzyt+oQ+Tf76P+UdcIbLlYUE4jyZKAQL8zq0Hb4NeqrR4gXF9f1263m2xUAgI/wzRBygwwfZ7sje5Ldth14Jho07MNVfPpRZLALO2jiDrlNoz3i0+NR/JMIOHrojownrIPrt8OVLr2S3/Ejy8SfHx8rNvb27q6uprW6/jWRt2b7GgaS37PKSD25EcY09iIRgPFI2JmEFhmVV7Ap+80xHSkdIh0fj636JEFDZM7XC9/tKK0c/4ycl5nGmypHMpVvI4QrMqgQyAaToAkoU8OfHfg/C2hT/3m0Yc7xHMj9rNS/toZwJMDpWuaEtD1eldZcmaMHmigPYIVudFJc/fsn5Q29DJpiD26SjLg8acss0vF0tB69ooRW6ffdN406OSZqXpvM8Ev28V+4HUkjmtlhGSr2F8/Q2aA45J28BCQSY6lat9ucxzz3pEt4uJZ10muA3B7q2u54DzZjuQXHGCIFw+MdI2DTAfmCeg6wKQMR2NYL60beHx8rM1mU8vlsh4fH+uPP/6IgMDtbAcWOjBwrO6etLXQER4d8aG5Fn5OzsI7xBvinc6ULg2HgAA7341bItabUvDkP5XHCIeRieTChVBsj8rnrguPXLrMBRXZMyIeLabrulSXG1r/zyOJUX/SgJxjZqBqf+GazgmQo6dT4CIonjboGRo3PARqSQ7u6CjfFA2Qd12ntKyu028d4BOxTSmjpvuYjSPfNF50sAQIbsBYJ8caV/Vznph6y/aqrYzSOGbI62Lx9mRGZXEIIvRMef3eZe/OmdzxuV1O7fDxLv114OUOltT950CNIJY6xe3QiS/aOrc9DNh0raa+uKBW9xxjh/y6btywbQ7+Ra6nGltPT0/18PAwgQGdpOmHfrl8nY/OBlf1We9ER4MBph7VQFVCx0cHpvskCN1Hh+FG1F8ePTCNx1XHBAKql53i35OgWaZnHPyAHjducg40YgmRJ9DU8eiGiAon8lSVZwREowg/vRzNkufO6Xu7qJSdE/xoIgBk/3k2SLqoKQG/3gdf6isSDTbT9P5O3Wc6NEXRNDRe9273th3PI3XXRS5GdCerd99lQX3zcTYyqh6RKcuiQ5xU9na7bTNLHsV1gYRAHrcVqk3c1pumhUbR9blQN5ZFxzqF5IT5u5P3Ke2/6wIXyepd44d6rzHJ+10X3TZyp4AvxKMtd4c5ynCwPm+f6ueaG89QqU7KSgGf1hHIv/hWQt6j9xGv9JkEXt8dDHBBlAtGiJurr6tqr0Oc8VSO/tNvBAMOEKQwowHL9KIjRBKNu7Yjqd1a5VnVZwUcoIgnGqrUKT5Q9Fm8+zUeBZESCmdbTwUAyaB0RsYNPPsjAbBzIgdyBAKUIZ0w1wq4UWGEzUHJNKYct1a4634H29RLfwhP4pWLBD0zRkOoNnEMVdW0k2G3ezutUvcTBFDnGfk4oE2y1lgkaGKGcb1e193d3XRqoLYKSlYeTPi4ct2XfWIWTlsgtQtC1+p/2S6285yJOnRojKZIMo1N2oWUfie5w3KemKFUeQICVftTs17fCAgSUPMI7G4tjLdLlL57Gx1Ie2B2KOjRfxxb/iwQ1teB0C47wEwhMxfH0EnTBBI6HWzVn6iax7BWzQXLhnfzHd5oDnKmZTmH5e/JSXMQKG3mxkSDXSvI+QAJGSApGdvOVKSnmsnDSJFpOCmfhETTvaIuY+HkwMKBQAIEiW9/T86Tipn6/hyIDtdf1B86Pk4l0LnrWo+m2McpKqYc+Z11c5cDQYmvoBY5GFCky4jGsw6qV9GbIrdObt6OBERpBxw00SCnKQkecOaZQwdYXJPELKIDJ7XPQQRBnA6C0f3HRI4fReSrA/Z01HSG7rh5T6JkX7vvrIcv2mIBAl1Ph131lulKh9V55pX2j+vFOB2VgIC3qbNRDhTUXvddIxDmIJlZKF/Y6gHWiNwHsR2nBGAnLSCUIZHhowNcrVbT8YpVNSHuzph4Y6pqD30zavGOUGeLLyqNlzVyVjS0q9VqNn9FB6kDSTyD4cBC5Gkp8qL3lBWgrEfk9x+K1lPavwMEXo5/9vYQ8CRk6+DhXCjpgB9440CP7579SaS+FRBl5C2ZM+Lo+pJg2FfdU1c6MCZAyzK5ALJqP/un/92Zqx469DQ1UTWfFnMjx0iKMpHMuHWwan/xse5ZrVbT/8zQKZuiNhJ0aEx7Jubl5WW6h6c5HmPHzoG6ccwgJulYSuvrewIVXqc7ssQX31kntx86YPCpL7VFL/3OAGwUeHhwmGyzy5KZr9H1XX2dHNKYoRyPLd+n6ZN9P4a+eTeBKlgulxMQEBhghLPdbvecZEpdpHSfRwO8RorCd198VzVfuEdj4JGDL1hyo6prq2oWZemaY5CcR4n8jd9PiUJ84B8aiEk5EoJXWV5uUu6RM3LgdC7k0VKKIvW7jI0/54IOzMv2aICL1Vi3PhM8dsCKlMAgiWl3rnVJ0VUCbB5tC8yw3cw6+IJDAgi2052+R2kqT8cJdyeHsizaHM/0MJOSZORBA0EE6z33aYKq/czAoUxsGo8+lXQMJZvTOUH/7mCLZw/QpruNlM50jjq1qaMRUBEw7dqZxn7Hg99HkOVAiADZA1n+L53vFtsmgN7RN50zoO+KHNbr9fTwhevr6ynC4LnRjH7ccSaj6HUn5eKUBaN4gghOK7BDmEqkwWDZnn5hGmvkfKsOR/aqx/kalUfH7212WXXofaQYnWPryvZBlKKDlC05F6JhZHYgLVb1ufKRcaHuecTlOkhH49klNxSu4+ovbuFSeSqL2TyVqfcO9FEe/N/7frfbzR5GRAPNMejkusisiByAFgzSGXA8ky/JlTo3sgE+tyuZ7Xa7CQTosCn9/zNlBkb24dSy+J6yO91vTtRXLz8tUtX/3lccs/ruIDTZKNbBdo1kw7GV2lM1P6lSwDsFUSyzs8NpnDm/eqccuHYoBX4/DAzQ4BAIfP78eQID2hqR5vocibP8hPxH36vmC/qE4j216xEc28AXsw6O2lj/IbTlaC5dO4rmPKp0pM8BQl5Gikfj0Ml1FOnqPQECV9Zj5tbOhZgZoB5Ib6krohEYIGB0GXVzshxbQvn6XS+m8Kvmu3votBgVy1A+Pj7u9ZkcLdccqAxmRLzPGIkxM8dtx+xr3u9glhEXf1dWQHO+Di5p9Mir+CIxaPCnwfkCT8lutVrNxhQXGf4M5LqRHDDp2N84LtwmJuA3AswJlCbA6fwT5DKbpPtcZ7ssrIOANKY5DZ2u97Zq7Kbrk3M+xlG7bfU6PQBw0PPDwAANJ5+8dHd3N2UGZFz0JCYaWXYEVzoe6yQ8KuuQa1p8RHLAwOirc6xenxth/Z7Qb0KfbIMPME/3cO7UF2MStDivCQh0PPB+Glv/3xGrt7kDFF1a8iPIQY2DAW4VFPm0kJdH8KD/3ZE5IKADE9hIuwSYhtf9zGLRGDLNLePQGUjpk8YMtwumZ2OwbdxKxTpooNK44LRe6hMHGczYpGxDF40SOItfP/vdgbTqSnr6rdH1exL59uCh6i2K9oxBB1bdCbNvR46edAgQ0CeM7FhXVhcgpjLS2OPUEnWWZXGKj8QxSiCg715n9xKPznOSAXnustZO3x0MsFIuzNEuAq6u7hAkDS/nhkREtGxc6iQnGkMaVPLEttDxcnBI8L5vWvzxMAuWp/875y8eSamTuBBG0QyNdwICqXy2ZwQaKDsa5GMpgYGOziEz4I6EESEXmom6qMmdkA9QAgIeBLTb7ab9+26ceI/Gl/p+s9nM0uEJwIoPrX+pmhtG8UanTPJ5cc8mecQpI+nlOCiq2n94E/mR3LmrYbd724et+vkfnV035vi7+GV2gDrLnSJ+P7MV506SFfvY57xPcVK6jxGo9y3tY0fpen7vbFNXDrOoiR+20c8A8DGhQJURtq4jeE0gQ7qTAjkPHo+Vtd4dLIhHjgf2CXnsAsARHQ0G1GAutuNKYzpILQASEqfhcwaJpGRw9DtPpWKq1pWP6VXnL229SsiWg8cHkhsezmPSQDGq8blN/+wGzAGKlEEpUDqAjlxxOoWgced9Xn7nCFkHXw78vM3HRhM/mhwErFarurm5mV7Sa/a3L8JTHzs6T2Cg6s/HCTNF7eNhuXw7uGe5XE5bXKlvitall9I9Gbmrq6tpSxwd6uPj414WjgZPCyPFj/jUGFbfUnep69JPj2ZSf1NGGqOr1arW6/WUzaABlyNmcMD6HZAwy0HjnvR9FH155HUuutsR5e32qMvAJifllLJn+u7jQZ/5zrqcN7+my7yRj64f3PHq1WVSVeZoYajrOIGxxqEHtskZJz1Lcu9sbwcY+NkDC+f5GDoaDPCwFe6lf3n583QwRkCPj491f38/Ha3oi4x8vk6CpaGiA/HFfVQ8OlDyp0yFlNc7SfeIPNLhVkXy7kCEg44DR+TKlgYFwYPzxoHoytUNwKRwKsuv4X2MvjoDzwg23dsZznMwpjQockYCAprmurm5mUCo64Mi47Sg0BcDErhKPzhtllKWzEaJP4KOJEMOfvEjI7Xb7aYz0PlseUYSul/rCpRO19jloUisf5SZSgCRY0JZD8leQEA8pdPY/BHLjPZUDxcEU9aSreTiUZvzzQxgshXnSl1buJ7DbaxsY3LO+t/XVlEWo0CvAwT+WXYmRcMdAGCWyutwP9M5XtbH+1hWByTYfsnVfUKiQ+U5iB6NscSnr4n5IWCAIICHCwkM7Ha76alMz8/P01OYZIjSvKd3ZIrc/bOvitbvTI/qBEHO/brRVH1JIRK/jFRI+o2GjFuyus4lIJIcZYy9/Kq5s2WmwK9z5N2l7jolo6w7kMHr9LlD7nQK57A9i0CADun29nZyTNxCypRyipIIgJjBorGpepuz1nkVNDweYVHOrIu7XnjgkcqQ4356eprq5klsaZeBdFbkc+t0tg4mfbyOXuJV7VAW5vb2djp2WG1IsiA4YLTHPuWaD5eRxqjrAceH+kQ2S3JwAPyzEG0e28Bx2tkH9luXIWH/jBxP+s3lmQIPvrutWyzedquxb6UfKehM4GIkB7elI8ftux5YlztwLzP9n+TnMtJ/krt8F/XWfd6ITsoM8EluMkyvr6/TcaE0QEpPsmO6VI2TOtfRJhul+2gotYYhPeSEAktOkOSAQGV0aNZ50//sZBlejzR1H1dEHzI8alenoK68rqCHgECiNCA8g5PuORcjyoHJNQKcHhAQEOiUHsiQSs80Djybo3o8giJQTKltleGRiOoV0PXsl5w7pw80/qrmhoLZBY+wachTu/nqDCMdMnlzAHh1dTVbeKxpmeRIGLmKJ/Im2fpaJaazJQPen4IRyZvPLdD0yrHG9L2pG1s+ztU2BiepX1P5Cdzznbp6CAzQViTHrGvdXvF3BnAeuLCtycaOZJcCnmRDnS9e1wEBD0g7+3wMdYDOgUB3xPGITgIDBAKa36t6S8Fx4D09PU0ggYOPHePzlyQ2QECDOxK4TsCfP8+1DK4cPriJgNlpSZnSfSJGd/ouJyBHz05zWTB6SakqtpuDy6O1jpKCd7IfZRxcBg5MaIhSfR9BHEC+VoDz1QlASq8dPKxWq8kRb7fb2ep7Om99p05pwHZ6T+MqvWRWwBfrMtvAzBn1xEE4U4pMx7PNnglRuZwS03XMiviOCI7zq6urSeYEVRwbdPbiSQGGZKd6lf1br9czACY+Ve7j42Ntt9tp8aY7I7dduo7TJOdExwKBDsTrPTnFFDn72K+aL2g+VJfz1kXNvNZ/94woQQDbnOb5eY2DB6+3C6RIIzDgxDE3urbrI//d/ZWPHc9qH0vfBAb4yFYaOZ9vZ5qRSsNGJWLZKdVBwyN+aNQZsfGV0BLn451oGP2e7nq1zdE4ja+jaFcsj1j0e3LGJEfMJFfCFB10hmE0MNjGpOjd7+9NDgSoN3JKHv16H2kKSlmExWJRDw8P0wE50hXpJwFDAqTMFDDVXvUGsMW3pi64QLaqJqCS0uviO4E2H6c+xhwIEAwsl/NHJVO+I0Dg2RWm8QWqFI1T18WvR+sqm31XtZ9lUWBCMOCpb/Hg2Ztz0N1vpUOAwAER7/PgSPqbApjRGKc98vdT2sF3B6KHABDfmS1SWSn4Sp9JCQz4f6ksj9RHekXQw3anhaBc8JvWShxDJ+0mYEqOC3Oq3iKNx8fHmfNN6NHRnSg5OimhOk2RAI2KDDQNDB0uQYCDAdWp/cWexeC0QnLe7BD9R2Vk+pXzz95BQr1c5MSyO4Tng9mR9giNOsr0ex2VHksOFqp6APUe1Dkqptv1fzJwfj+3/UkvqaM0pnTmiuo9IhfRcfq+Zzl/P7vA31NWwed7adyll0m3OQeven3aLGUiqvYX9NL5cqdPVU12Qw7b9e9Q2pcOnQ6LIEJAQ6BJ8qG9IEjyqPKjdPdbqXOQVfNxz2h7BOIJdFXGyAnyt2QvRzbU/+/4d1Dg1zpQ8DrUr97+9N611eWdfnebkqjzLe4raYfUFykAd/09hk46dCilXcQYo4tu8YIjJTZ8NNikjJwmUKTGFcnKWLAOOnVPHakcLqDya2nwSCPnpntoqA91DtvIOsRTV1+K6lOmQYZcPNAg0On4PY5G9Xuqy9vDPqY83pvcIRMI+CKzZOSq3vRC6FvXcbeMZKxBqbold/Ggo24lH+m1UuicitMUAMfUYrGYndLnUaxn0TiHXrVvECkn3eMgYmS86XQdNLFNvhVT44Jg4PHxcSYX1qNyxYvq4DQMjT/tkU+HOPjz3QOq71vA8LlQF40mIDAqg+CquycBikO8jb6rTL0fut6dPnW5C4RYzqh+Hy8OQHRtssUEsx11vHmZDurVL9Rxn7I/RX9PfoSxtvj44GZq3ucuO0DwLeSGgesFmK1I0USH9In8/JQyGlkfAO6gPUqjgeK77qXjkbOQ0/WV33Iuy+Xbjgo33v6biI4szQd7ujQBAYK/pLwps0DZkrf3Js8GeEaADoFE+b+8/LlrRg7s+vq6qmq2cpdjhM6M0XTV2yO/dY2e56GpBWW6bm5uarlczg4pcj4JUNzoeDaExpL6pja680967Nk1An6Pyrizh+cI6FoCAe46krOm4V0u5+swGIhwqkFls47O5nTZN/WLZEB79jMQ5eYv9q0ykMeMX13nKWoPFpwPlpH6IQHT5Fg9kNR1TilQcT7StamcFMyl//23rt5DdjBlFViu2+mqt8XuHsCOMsIdnQQGjhkQNBxdBOzIiXTIYVAwbtzTAHAB+ct58xWZ3u5D0xp0zLyvk5+MjcrrDJIPZkf2HsExwyBHo3JZhytZivypfGlQsv1sryv/R4GBbq2AnAsjVMqRzly6oTS2HL6n5AkICL68/XJu+iy5Cwww08WMRZpPJzjgtlZOaXB8iG+ejUBd835yEJ2musQHwTof9uPPS+BiSmZXWA9thfqDfLKvEijhZ7dJaexzLDAjwzHzs5EDtqr5wl8/d8EBkkfBacwnAOl1J6efgiwPQlKZvNd5Il/dfekev591j9rvdbm9TJT+O8QzdbPqbUymcwW+BQhUnfgIYzHKtDWNFAc0I+BURvddJEViypJGmoeK8BrPSDhKSoDADV1aVEUj2hFTmN6WEZCio/YyEqLntZShz1NTkbUn1wf4aMAklE2eDimcl/dR0RWBABfBKqvkKXQOvKurq73IkOl6lU+nqnKYkSH59I/WqywWb7sG2DcesbscVR4zVb7nXjwyTU5+nS+2QeQgpGqePaFs1G5uB1S79L8veiK5o6C+sr9G03Uc476oivLvIi8BpqrayxqdO7nzTY6ZQVU3nt1ZO7kT9GCJ/ZPqcMCXyksA1UFOCjzcfh3roF0fyGvKDnQgOtnRU4PfVFfVfCusA+lTQYDopGcTkHmPUvxwoVGjVF5KezhRoAQBREkUEJ0/76eQJMQEDDqE5Qixk89Ifl004opP+dKAp7LSYEmy8cM5XN40kCP0Sxm6fFN5LPdYxf/elKYJ9LRNHj8sfh2F+0FSrn9cXJu2J3pqPwE76bejfwJQ9bUAiu51EKLfxasbVX6nsWP/dNkzdybiK5WjDMl2u63VajXJSmNM0wNadMx7E4CkveBY4Voi1SvyHRM0lOxnBhcMcAheflbimJXsk7769YcoRbPpO8scAYLOPiwWb0/ypD30xawsq6tfn48hAl3qt4+JZLtHTv8QKEny1Mt9WPJXXs+x7T0pM+BRKx0oDxhKxkXf2fHJaY3QlBsfkZSbhjMhXL274+d0QEqzkO9vQXYjJadBY7QvciPp2QD/TKX0ejoEK7mkger3SX4uCwcQLNPb8t7ExYKav+a8vOayHRDQkXI1NbMG1GWuute1ajcXp1GeHbB1Y0eiTJkZ03/UWx9XnUFzB0ojk4xR0g+RDKfAwGazmR2tvNvtZtMDdLbUq5G+OE+k5XI5K5cZCi+DfUznSOBMMHgudChid3J7x8yQ2qsXgw23MyMbonpom1OQkKJX6paXzTFHMEDdph4k59fV6fWT6G/UNh8HSSap/kPBpLejs9kEAynjldp5LJ38oCIR0/HdXuWq+fwUf/MIJRmAZORosGUwubguRTQJCDBVSaHqmqQYnZIJhNCg87PK9N0QHrH5IS2Uw+vrn9sqme5PxtL58PekWJRPMvQ+f8Z2J7kkZfwW5fxexKkBTg8IDHBbaSLvT89quWHlFBplTSOme0TUI0WkkpkfJpIWkKazNfSd5WvMsK89g+HjgaBFZbl8kpHT4kDKhMeYu5M+pCNdPR61eQqVWUtRmmJU5sjtEZ/Fck50CiBgNMnpL63jEFhTYNU5Tf6WHCADMv1+TCTszt3tkPqnav+Y90MOcOQkkw3rQMVI1pTFKBhLQWVXLm0N+eH4PLRO4BS7+80aTqPSHVrSpZ+6qLOqT7f7FAAVWwpIg+hOPQEVlt1NDaSO6pSKhpNtUTluxFMKl9f7fCb5pbF3mSZAwGjW70uggPWSD48Udc1HOvtDRBDABXo6G3+5XO4d2iOjmKIcXeNZAr9e5DqeDIfGE4lggA8cklOTceT2OvLnEZSnWJlCp2PWzgTpmBxnio5Vr+uweNBWQX3XQUy73W5qj2+NTMCMetjJlkZS8lIdPMyIxphTPT7dIofZ9es5EMf9oesYAMm5EpzyRRvo1Dk9d3DH8uZldNd7P7CvjomI/f/Otlftn3bYtWXUxg5MHAJxKVjW9Q4EPCswqv8QnbSbQO90RHSkXeWMTpwSaNDvfr1H9ERMLy8ve1vFXEgjpfF7nBdel8oRv4yCaMA4/88pgZFSpPSYUqBcuc3IivLsMgzuvEcDiQrpZaZsgcubdZ9iFL4n8XRKzw5oi99isZgch9rAnQA0jupnydJBYxqcBE26hw/S0hhStMb7tQd/s9lMfc/sA+tTap6GQsR0J0E8T+jjoWEEt1yr42Wp/bpGRMBBgK57fT7f7QRB6SHHo98EQNQWvTglIR651oOZAvF2zgDXaeR4REz9CwAr66H/HAx4HQ5ovZ7ERwpmkhPl+Er9K11MU3EJRCbgmNrB+tPL5ZHKOeTgj+HJf6ft1zVpemAECE6ho8GAttiQqarxo0zZSFeAFE25sKkY7GylysUTDapvB3Nj3kUh+i9lN3wejOV5+arbwQyNqB/T6qldKpaul4NQVCgloHxl6OgkPLugqQaCAufVI38OZtWRImZXUrZFA/kjiFsKtX4gnTXg6WrqQopUq+aLm3RdkkMCZqqL0wCKRjkWWJ4vGlou3/bfyxEq0u8AOoEOI2kBAj+RUNvseJKgy8AdK/mWvhE0VPWL+5Iuim+Vk6J12QatRxAQUJt4+uBisZitFWGGUXLRPW4XfgZKzknyY9uWy+XMXvlY7wI52oZjgEBylEk/ne9Uvk8ZsG3qQ92rd9q7zs+oHLepyUfxftfZBHRcLv6/Z6v4Ylbg2MzAt4CCo8HA4+PjxKgPzo4RDiwHAg4GONi8IZ7y9msoSEZ2rJvO3gWapglYrs9ROS8kDjh9VxtlTNORzl30RDAg8ukG3sOMQzf9oHKVrUhRZIrIaMhdWSVfGV5fTMr2vjf5av906iCdqvTF+zg5LAdFHpnTsXpZjNCVxqZx9ixPGitygPrs5xuwDzk2fGw6OKaOEawmQ+zG3tO3ao/0gvz4GQO6j8Q2+DZO9hXHtE9/CCSpfJ3xwLKlC5yW4ULHn5Vcnupf2XTajqr9YMBt8zGOxu195yA7kDUCMjyau+oN7HP9mBPHNXnpMgRsa2cPeJ10h7+PKNlXl5n3wY8EAlUnggFPW6hiMkqDwmuIOpmS80VUjKTcCJC8LDok54ERkEdXfnpTAgNy6N6BCRk7QNK9BALcSy5yBO58EDio3VJ8AoAUvaXoXs6aaWcHbamtBDZ8FkTVn8b9+vp6ls5mf37kimwCUI9c3dGwL9iHVfMpGZKu49PuOFjd6Ol3Xs8ohJG/+pcOjPUzyvdIlqvjq2pvVT3Hpve5rvNzDzhFJ370zqyRG0iXK6PUDgz4uJCO6/Xy8jKBODeOLF9ggGlwlSd50tgyo0A9/pnIHRjlK71XtsR3pfg9+szoO0XGndOn/eG1rsvJQRMci1eWz7Hd2U/2eccjx4I7er/ey3LgPXLICXQ5Xy4v97P0Vd/q/J1OAgO+Yrqq9phKxpKC8tQHqRtwut4dHKM9IXoCAvInPlImwNvQGfqqfmUt6+Nvu91uSvHrd7aFv3Xl83cOWk0JSFG4CMpTTRosdIIeNam8JHuXt54JofR71Z86ov+5f9wjj/cmyUQgzFfGy7CliFSUognNpbtR9AxUVT7Qx4EAIwKW53WRV4+I9chdAhiVlRyveBo5O44LZq3ULtfdFKW4zqtej76cD5ennP7z8/Okd1U1zXu70WR2hkA9BSuUoa9jcN5/NiIwYHupT930H+/neKnaz4z5Z46h5OSq9rdP87PqZQbM6+D9aey48+1k4wFTqss/61oCDtr+jhIg6MaKA9UEBBKwOpVOWjMgBhjlcRB5ytGNBCNcb2gyRm4c+Z3AoivTEVUyCH5tR46y/T9/pc7lwjAZNtbph8l4HQQBKkuZAsqCWQh955G0r6+vsxTocjlflJjayjYICOjQHh2b+/z8XOv1uh4eHmqz2UyRlWdc3pvYfgICgqOq/eOlPapl5C5wwWN+E7Akqe8YmdPZqL/4RD/XD13LMcPMAI08nR6dnE9d+PgVr2l6TkSdIyBn2zhVwSCAYMqjPhpBnw4hnzxvQ+VT9q5vbjj5u8on8BDf1JOfkRwEiKgXDno9UHG5OZg6lE1IgICf6US77AQzWyLZvs5/sG+9XNezBFa9LS4DkuR0ikN2ANIFiNRLz36NQMqpdBIYSINCHdGdM5CcN9EXjRgR2qFI2aNe/ZYcvhvpQ6mWhCRTlKjP/tLvul/GS4YsRYmqgwY4oVwZX8qM9XEqwvfX02nzkbGfPn3aWzjmbVXmQWBAJ/gJEGhQ6kz99Xo9PT+eB1J9BHGxoE9RiW86SToBDsSqtzP3JVvpXBqoTnR4dJoOLjyLQxJPyuJID7gd0Otn+wQI/H/y7vzSSFOG3GXg5xxwPKSpKn32e71+OiuVTbmwDO+Hqmwg+Z8HIwkI0Mb8J5A7deqiKNlA2gKSZ7PSu9dNO9+BBb+fgIABlV/HfmVbRtlJ8qLrkrN1pz/KNiSH7e3u5MByumx2J+NvpaPBgAahFIcDqlt8pxdBBDuEA5CD2w0HqRMeO98BQTd323WY10OeHP2xnmRIyQtPMvN0K+UmOZAcDHjUJL7k9OWUdbCOIvjF4s/pFG1VW61W07tSzC5Ttk3gQiDg7u5umi6o+nOq4ObmZirft3l9BPmcd9W+kdNqespRnzUQOd3Aw4rkYNM6AY9OEi2Xy9luB44P6o9Pl4l3AQKmx6vmD6giEKAxFY3S4sw4pZev2enWnrixY5aFmTL2i0dabKPu8S2NJM9KpHIkJ9XF8c77f1ZKMtVn6UHXN7zWHZDu66JTD1SSve2yTynCJgiUrpHHFDWzvbpPAYATsxTJL7A9LNf9A69PPqFrb5pGc33/kVnWkx9hTEpCdQeqSCcZg4TMVQa/e/rE53u5StidfUrderbAHd4htOago4sE/Z7d7m1roJxLQsEJENAopQGt8uSo5az57mBgvV7XZrOpm5ub2R57H1wymFVvj9+9u7ubgMDd3d3sCXvc2iVAsNls6v7+fiijH0V0rj7v5uBot9vNFiKpTewbZQWurq6mtm42m9l2Pjee7sD5u0/vUP/pWBUlM7OkNvHkQNdn6V134l8XvVS9ASkHAMy26FpukVR53LqZojnaC7cBBN9qL7fFVtWkZ5Ih61UgQofj4JwLaNMunC4o+ZnJwZVTCoQ49aQyuuiZ5biOpXGRAjuvx4GcE8epZ4F1j9tPDwjIt/Pv8uvGi7e1u9ZfDjjJf7d74HsDgpNOIKRwffCm+UAHA16OlIzRDBtLAXGg0mDyiWdpJ4Erhi/ucgG7AfL2JwPqIIKfWQ5TnqN6FClJRjJq3GLo27eUvr67u6vb29v6/PnzDAjwefIvLy/T70rl+3Y08evRpACHZxyUHWDmQ/dtt9t6eHior1+/HlayH0AEiw64rq+vp/ZLBpKxHH/VPJXPKPL5+bk2m019/fo1Zlbc6fsUGZ0ewZgbT3eU+k8y5uJAz064vrMcvTPKFvmaAM8GcCwyO0EwIN3kYj4aYM9q6HoSx65nNZ6enmbTBOrTqjd7oHUxLE9TZWwLpz3c+aRU+s9Erveup9QvZpSon+obt4Eps5Dqcl1m0JPAMm2yg2CCCukf60jOmN/pk0a8p2u8XM8KdA7bARZtQgqUExD4UVmBqhOfWpgcYUqVVM2ReRI2wQQNlgyTjLKcCxdPMVJglK53j9yTIRmlXRwRdo7bf2dH63uHaj3CZ9vcIXGu3s/n5iBer9f15cuX+vLlywwMaMqAc9ySBx2hy0HXcM6faxJ4kp8AgUAHQcHj42M9PDzU77//vqcH70HdiXxVtedI3TEJAHFhn4wSZahpkFGUxPHgUQnl6/+5vjpIIP/Sce6sqZrrXYpkdI2uI5gnEE3z6OInzdUn4M0ok8bbozhvv6+TEfAQIOD6AZVPx8byBKIeHx8nHWYGRONE4+Kjprh+NCVnLhtMfezS53TYulfv7rS6sSGir/CgTkT98iCuKzeBAQZafo/LYgQaXCYJCLh8HAikKSyCgDT2fwQgOOlBRY7oRCmCF3ln6Tc6HkeMHOwsM219SZGTG0oayW9NtTg6Zf2OEFOGgHzpM4EUfyPw8chMUY/kQ5R7c3NTnz9/nl4EAzJ4fgTuy8vbo2T9ufKUoYyiiJEUFyqyTrXj+fm57u/v6/b29ihZf28S30oHK1Jk5C+nz7apvz017mlkAQXql6fqqQdpDtozQT4Xyv3uDmLZT3p33fY1AK6X7gDoWD0LIFL5nMoYyV9yYGYlAaBkdHm/l0MSr5KZj1cS+4YglwtLlX3Ufvyfndxxum1iMObZLJ/uof1LARABnygFR+xLfyAUD9Ty4FF8Jzuexl3Ssc4HOJ8EDYcAQAcuDgEBD1yZ9Us25XvTSZkBZgeqMiggMTLh9RSiGzhHainS9ojEO8MjJs6n6j7yNBIu6+Yef5UzSt0kw1k1j3w0+ERcCEWDzMjM65CD0loBOmS+6zO3wyk6enh4qIeHh1mq2/lnJCwDkNLIWlPA3Qv6/BGUUvRMV/v/7vwJeJhWXiwWtV6vp0jXp1yYlqfeehTDAZ4cnBsH1zsHBV15KQul8mnw1adc6S8+UzTWyZk8cJqFByGNIjrxLNlxKkDj0cEK7ZSPU4IPgtm09ZT1/6eTZEVAwMV5PN9CpP5j4JYcrcp1x6r/E2hNQDmNFepCZ3+7qHw0Bv1al5XexRfBd9dWr7sDAszwvScQqDoBDPgeeRIRpaevKaDkXBjRpAhbAqMBTk6WAuOCKhpRzyAcE4nofxpJdqCvdUj3khiFudGk8joIoBPytsuAaf7ez9/XNkBlCxi1a/Gbythut7OFaky7av5fTk+8+rY91S3g8fr69syEjyBH4eo39Q0XBPrWQ39RB/lZbeYDf9RHBE5uABK49sjJMwFd2tAdtcpJANLrSY6b6XKfYkmRDdso3ik76SMXm3LfuEeSBFLixwGc72hIjibZLd6v/pe+ug37FSgBAgFmyb9qf36cwR7LcKfoTjkFcSRuoa3a34adwCj/FyXd7HxIup/ZOl5D8J0y0/RhXn/igb6K036jYPN700mZAZ9noQA0z81OowFxpOXRjK6joGiUXXgk3c8MgEdTLtSEYg9R6mACoFF0kz4fqivt5SYY4FHAy+Vy5tAoQy36u7u7qy9fvtTt7e1sK+DDw8PMyMpREojIODB9Ln1Q+XSWMv46JU73fxQ5AidRdlwg6PP77mgkh/V6PXOKnnkgD34deWBf8n939k5uWEmuM6eSytZ48nI5baKxWvU2JeNTDjyfgdFkaotkprLp9L1slykXU/rCSQcCfJKl0tSM9ugM/9PIMyhV+9M6IspZfXAINHWRclVeN+UBZWcvGTix3JQ5oE/xscyyyHNqBz+77+pAPfU3BSVqs08LHNo90IGhv0JHgwENCO98MemD2+cvNWjTvS5IGhlPy1KIAhzu+JkVGAk1lad3Kru/fPCMQEBSvqr+AIyEYGlMxZMTgRNJslfko/UEAgNafMX5YoEBX12th+lwusXTrT7YmWr+yBXZnkGqelsH4+thCFrduLDt7BPX06qaoXtPcVfNjaFnfjh23NGSRgaT1AGClOVj1C590LhK9xMMUIailDlyGYuPp6enCWTrv6r5WREOqnQdT0nVuRHcSinyMeVbJRnIsP5fgTpA0L30fwKqzBQkYOxla6zxPBaWmWwfy/EMkEfoKSpneWk6ItnuEThPsklAQOWkjACz5QlsHAIu30onbS1MlFJwVfMVkSIO4tQId34CBIya3DBzRXyHrrpUlOr0tniUIX5TxNeV7cpOY5wGBtvdgQAubKIsksxdoRaLxewMAj5PgKCK2R0OHLXd07UJhPjK/aurq1qv1x+Wdu2iFw0yTaWwL3m9ZCjglMASo2fqo+Qrp5miFM5bMy1Po/Hy8nYuBY0Ex1cCWwQvBCEj8vMmfCyrvV6OR+0OZNh+OV21zbOKjLzEs48H8kagIl3l8zE8Sqzaj9xUrtuPqtpb2PafTA4IPPrupmxTqvxYICDSWoUUdCXg0PFAkOxAINlilpWyALzOX1X7hyclEOJAQPrF8z/StGBy/scEAKfSSYcOpe8atK4wKZr2DIBH4B5lpkVzEqLeFQEQDHTbMZIAHQnyWk9XufKxvPTZo5hRB9KQejpOxtNBkYMS9kdajVpVM6MnR6RtgS8vL9OqeJe3gADnfnU/U8PqE+1OkJNVduIjiAvkPDW/WCz29CX1L52TdIr6utvtpoOL9JJe6n4HeuxvTvF4Xyrz4IaC03Y8zIr36j8aJTpyvXv2huVwt0Cn83TyzrtnTHi//hcA0X3dAkzf+sfDlHxxpTJZXdqb16ou6QOBCNv1n0CdLfRr1OeSS+dc/T7/PAr8OBZ0rQcj+uwZNupxCjA7O+z1aSwfE3E7CEht8Damewli006hQ0HmiMdvpZOOI3ZyhhOi6q6tmivEaNEWHTOBgITIlGBKsbA+vXcgIKFAts0BQZq+cBl1Skuk7SCoM6AuOw0OR6YuI0ZKPHZX8uS8vzsjRcX6jQ6F0SojYg6Q3W73YUCg6g1oqZ0JwDqKpz7KUbvzkXGSo+CuDIEhyjKt2idAoH5Tj8mj7hWxH0RdtoB1Si4ENN0ZBapfZSSAK1lQpg5wff2CxhczWZKvZ5c8o6L73ZmzTDfa7gS4k0YHciljRhBGB3WONHLIx9AIHDC4YH2e+tbvKXVO0OoAkvePiBE9dSJR+j1NEbDsRIcAsL7TVo/8oWTjYLebyk5gwHn7nvRNua80OFwI7vR5n3cWDWRaI1C1/ywEDWYa5y4jIGVn5xJdpnSMriPvVGiP4j197wrRKTDLYtTjYCAprCNnLn5jvzCDcn9/X4vFYnYqm3jjwi7yvtvtZgvFOMcukMbDWTxqrarZDob3puSEqmrKbDBNr4VkBGjqYwKrzWYzGUiVrd0WAgKqQ3ITYOJuDfW1HhHujl7vo6iFOiRiNO/9yfHGaR+NKRl/ZoQ45SO5dZGPjxHu1nCjTuedslkcu3RMLk833D5G3V6pPi6gfXl5mZ2kyUzNdrs9rGhnQl1gQnIAkBwf/+OUVMoMsF/d/rH/PEg4tV1V++s36I888yU6lJ0dReK8z/n2KQACVOeNwNWDVup3AhPO64+gb5om6JhNv7vwPCrTNVVjpJiyAkyHsxNSmqXj36MHvbvy+H902DSujKgcjMiAidyZp6iLyJP/V80P7HAA4QOdzwpQBDQa0GnOjf3FyEvy9oVmHg3y+fPvSQRYVftggCc0cosZgam3U/JUpqSqJuciZ6b/CGjTGhrPRLiB0bWuw25wfdw4GFA5jOJ9x4inL/nwJd3vUb944zqHpNsenS2Xy71MSMrqsd009LxHxHSyrkmyqXo7btuDFZ3TwV00vwqlLAH1SGPfz+momu8wOBTV0nZ0oMQBHOtJ9/h1oi6gks76YtFj/AHLZru9ffzegYAUjB4CBD+CTgYDjnJciF0Kpuu8UeRbNX9+NdOXPiXwrWmWpADppf8SEEjzpKNsQyKfoySA4BQCr3eg4fL0umT8VE5aoDlCz8peaAAT6Xo79bucJrdBvjcpOmVKXr9/+vRp9pwFndXgq/vptNxxqTw6UPalz+PTyHmqntkh9ovqcVDsYJaL4LTYUXV3howZELVVfadnN7CtNI4iRkD6rvapLgezCfjqXjoLgjE6CZclQTkjRWYGkj2QLJWd8cXLBPj/SZR0YnQtwQD7y4MQRsi838ujk/TrEtDowGaawkntoq33lL37MpaTgGwq28vl2PSsQOerugD2PeikaQJPZ7gAU7Svzx3adIVkudraxIiM74dAQEJazgMdqnjtInQawhS9pToY0XVKpLZWvTlopmXlzPTUQW/3iJLR7oyteE1AiYPbnRTv4Xw0efUI7j3J0/3ugHk6I/ebS3YJ0Vftgz+PbKtqpsMETrrPU/XkMT34yY0sdcBBndrukW2aMtHv4uX19bWur68nUMGMj+uU+pWZD/It4tih03Dw4+OEwIp8u4OnE/KAQ30g2dLhM+1M26P7/pOOI3ZKgIC/JftMgCtyQFc1P76Y17GezibQ0Xugk6Z9OOZoz1iXrnP/lTLJKavl01xe3mg3wDF1fiQQqPqGNQPemITKRB04qBo7ZyFAN3oc/D4nOnKMXV0dzx0QSOiQzn5UHmXgEXKKcLRwabFYzE5ucwdLA+ypfF+UmUAM534TaEmAS7JwYEEHxjrUXx8FBjiY+ZJMHQQwK6B+6VaYe/+nCKFq7mR0neSoxWu73duuC/GlLA7nyRkhMWLziF1yV4YgLchVecw66fNut5vAjKLmzshyNwDBCUEidcKzLpR9yjSxraw3/Z8CFfGgd9XVgT+tfeH3c6Xk0P/q/d1vVfMDmar2F7em4G8UTTtgYJm0nbRTdMoJGIg8aHHfRR3xoJA2nyDd7SPHEW1lAgPp92MC1/egkx9h7AMuIfAEArromd9p6GQYPSolddFxMlbOQ3Lio6jfQYG3x42+DyYHGORP9zK97Fv8ODUhI6U5V+4A4HWe5aAhpgFMclos3uZK5cQUzbqM9V07EtQGnubmj5F9T2IE6Ol4HjbD/tW1juLZVupq1f7T9rp1Fc6bnKHXLf5Eup8AsOsH8fH8/DzLOvA/lcNto0y1qzzxJR0QL7QFKi/JiQDL65H8uvUJlKFHUJ3DYhaFQFn9QyDA9SEqS/3KjMe5rxv4qw4kBQK0k27v0qJN/e+6k/xB8iPJGaf7pY8ODNP9aYouReWpTvcDDgQoi3TSbef0OyDwUSBA9E1gwBsq6qJLR3TeeL5r4DnqY0d7mtMRagcgDoEEOk5PCSUQoEhN36l4Xi+RJXnwCJLRH+egtWPCU92M4ggIujkuGWMeC0snQx4VEclYMw1HeUs2iZfX19cJ5HyUQZVT9R0a4o8LyRg98omGdGY8IIcZDwEzZXV8nYFHLNS1BDDT+OK00W63m/qnu1aLNtP4IZBWP+o3jgGeKUFHyywHyxF/mn7RMzGU2fKXZE0gKfAh+XKM+HfJzrNYdOa6TnrKY4i5eJI2iDTKgP4nkdvvFDjR9nmWym2Pv7MM2giCgQTwSLS7/j/vJ1/J+VbtT3klMMByCOZpOwgGUn0OotPnj6aTzhnoEHrVfNFbotRY7wSPoFxQ6qDOWDItTYVNCt6BhTRH5EY0GW2XD+9hSt7nm1zG/MwdAA8PD1VV0ypnRo5Mb8oYOopl+/w8A8pKDkTIe7vd7g0+tk2OT78royAw0/X9e5JvV+XA9PTe1dXV9KwBybZq/1RFziXrs2RB/aJT8e14rmfSe+1KqJovHFQ/EaQIZIg3OWqVTcDnvKU+1e8Oflar1cSfpg10PXdOqJ03Nzd1d3dXf//73+tvf/tb3dzcTHx49CYQoHI0VqhHMrqUCYlAuHMUkjUzQjzASDwkgParEfspBU76zSNvyo5ZLhGBKB3vIRvB/91uJjDQAQ9e484+lcH/0q416uexmQDn+aPto+jkNQPHdFrKAozIO86zDirLU5jewQ4GnGcqcjIoDgRoqE+VBY2jZxi8Tg2iZOAICJheZZpTKWaeuUD508CmeXE6D82fCyTonVFZJ6+rq6vpQCNdl05BfG/ioKcR84hdqX86fC6mW6/X0+9aZc9TBqvmuqaol6nqZIDcKDJT4bqv65n18ShYoIZGebfbzYxZ0jWVQ2AuuXQg1o0bQcjNzU3d3t7W3d3dBGDo8GmUmRW4urqanR0ive7qd6PtUxDkrRvXBFSuO25PfhVyu8nfSL4olutTeL0v/HOH7PUlp574Szx19t8DPr28PNZNoJjeffpB9/wsIEB00tbCY5nXdUx9kzyNQ0royu/xzkppa5+/5b28h87SlcUNKtvEd0ZVHem6tIhOgEDOw6dBfE5K9wgQKJLXIjPd40BgvV5PW+fciaitAhgcyIyK5VBIq9VqFs2SZ90jUPORRAcnSoCVg7/qre8U2WuV/fPzc11fX9f9/f3e+hXpksBEipJoQKh3zgeNqEcmyk7wkdK+3oTjhGsNOBXGTICDDwIIytDlxno4XtV23xpGMHp9fT3Tbe1g4IOLVAazg7qedZFv2iLx5X2gd2ZN+L+A1LnTscHXqZR0ib+PHCBlyj6gfjCjxvKS30jtO5S98UjfMz9p2ox64NnDQ7sGKJ/UrnMDAaK/BAZSGunQ9SMg0ClVR6ksKQxTkqmDpJgOOFJ2gOl9zqnSQIo86qJxkiFzvhnp+aprR8cq01Oeul7rLXzFr9Lfmmaomj+QRhkDLqhTuljrCzj/TL7VbgEIpnRlSD26e0+iYydR/gR+4lkr6DX4JXelzOWoNEUgZ8cFi5IvI9Kq+V5+B4JJR6rma2qYBSIYoL7pHtXpYEX1cDElwQBBLtdFsBzKko5X16RpBJGDHwYP1HsCe95DY06gwiOEfdyqP/Sbn8dAOdMZ/Axg4D2cjAMD9jkzMex/6QD1m3rugVnnO5I95/8sg7ymQC/pDtuY+HcgwOsSEBi9nyN905qBqjEaS0LRPSnl+S3UOcruWvHiStWlrfRiSr1qnl5OZVTlo4cZTVEGDpBYpx+LmjIgBAY+fydHIEPMyFQGTk7cj0F2mXDhnEdwitzkIP3AHtb3EaR2eoSgF2WsPlWWRW1Tm6kLVTW7jwBA1/B3ykpgw/XPX1XzTBszNP6kTpGuc1CRxiLXBfiuCpbnzp2OW8BYvAoQ+vHC1HtP0RJs+SJbAVwCZF3jOuvpWpHAF9expGwdx7TaoQzMheZEYJUCIgZNClA8kPGtzYcAAevm7+SD2Tb+71kJlpX0m7beFwM7EHCeus/H0CjI/pF08gmEI+ebhOxoXL8fW076zA51ZOeReceTPjPlmIyjVhvTEXPLXVJYXkuSwVTUTaOnulkv1wQkB6s2sF1u9PSdCq42KJrc7XZTapkvAoauD3ygudEmOe/vRYrgU1TiTo3O2tPhzr8bBV2TgIbqZGpRqXBRMoYOOtmfyWCqLSO953V+vRtW8qHf2G7XA/Lpzw3xI7AZoTvI3O12E/j0+X0CCi6GZVkaC+LZnZN45zgk+ONY0hHTF9qnBAj0G/XBx59H7SOibnqdXgb9QPqffFfNz0yg4+8yAZ758HanOk6hbw2Ovwd98yOMnWmPQDrBjKJ0luW/8XcRIwuv30FB4tsdqYyLnC8dcYp+qECegmV9h5RCbeDKbR6PKz581bk7eqaNabyenp5qs9nU/f39VBaNrwwgQYQiJt/amBZZMXqmbLgjZLn8uEcYc/El36V7aQ7QnbTaSfD59PRUDw8P00OLaPQ4B+9p7GSIOsfu2RWm7Ak41BbW6WsUqIt08IzaEzhJoDeNVzfa1CnnT2W4jvk4SsCS7faHS0mmvviwk6+IY0u8O38XyjQCBFVzkJXAgGxvogRSvd7kL5LdTVF8Z8vdJvgYTWWxnm+lv3LvX6WTdxO44P3zoXtJh4xfV7cTjQujC3daHmEkJEsQ4GfU0+DTUNCxqu5kHBmBiBemmLVi/fb2dlqFzWNyGbkyVay6tAVxs9nMtmHd39/Xb7/9Ni3007oBpmSZdeDKbwGJzWYzS2snx6JFgnxQj675yGcTCMhwMR8HuSJ0Hh2cpngcLGiXhw7LqXp78iOnXiQrbpHzhZjurCRTT5lX7Y8RpWCr/uwXn15yAOnGj4bOxwf7uxt/0l+CagcEzIrpWkXdenHaKgFq8uuAgE/F5EJa1ZOOFFYZzFZ4RoER4oV6ckfsvzHocwdMwKz7CQS5psDfqQv8rXP8vMYze917GpveviSHRMcEhx9Fi925cnahC13oQhe60IXehT4mVLvQhS50oQtd6EJnQxcwcKELXehCF7rQL04XMHChC13oQhe60C9OFzBwoQtd6EIXutAvThcwcKELXehCF7rQL04XMHChC13oQhe60C9OFzBwoQtd6EIXutAvThcwcKELXehCF7rQL04XMHChC13oQhe60C9O/x8QyVbaMmGygQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGMElEQVR4nO292XYjObK0C2qgpMys6rra7/98e+zqrsyUSA3noo4xPxrNAQSlFFV/0dfiIhkD4AB8MHcgEKuXl5eXdqYznelMZzrTmf62dHFqBs50pjOd6UxnOtNp6QwGznSmM53pTGf6m9MZDJzpTGc605nO9DenMxg405nOdKYznelvTmcwcKYznelMZzrT35zOYOBMZzrTmc50pr85ncHAmc50pjOd6Ux/czqDgTOd6UxnOtOZ/uZ0NXvharX6mXxM83BxcbH7vry8bBcXF3u/eY0+rbX28vLStL8S91niMbZR97JM/m6t7f6zvOfn511dLy8ve/+9bJarj+ji4qI9Pz/v8fn09LT3P7XJ95BKx9VOfnt/9crgt/Mhnqu9rP7zP/8zHv+Z9B//8R/t/v5+919tvLy83H2urq52cnR5edlWq9Xum/Ik0ljp+NXVVbu8vGzX19e78tbrdbu6umpXV3+qmcbw8fGxPT09taenp7bdbne/Wc/V1dVeWZQ/lUWZoKzxP2VIfLNdFxcXu7pcHtUHXq+IZavfVB5lWfdst9v2/PzcNpvNrs2Pj49ts9m0x8fHXV+Ib/1+fHzcffM+XaOPy2HqCy+b59ifaq/66+bmpv3+++9LRe/V9BHsbo+cv4rfytbQhif77bqXbGdr+/roRB1JdjPJTFUWdcH56vEiOWOdksPtdtseHx938k2fkfzHaJ9At1Wr1ao9Pj5272ltARj4CFQJlAtIOk4hcAfeKz8JKQVC16fyqjoSyHBj39qfBpZCJCF7fn4+EDTxQF56AIHXs+2J/wpE9YCHn1utVgeO6b1IzocOqrUf/SjeKCfsn+fn566xERFY+Ifl0bFeXl4elCtnnUCaA00CRJZDOfPzDnJU7sXFxa5cnqNsUmYomwRWahPLEJ/b7XYHjjQGvFb3qvzWWru6umqPj497ANnBMtvH8fMPgYCDATfu4mG73VZD/mHprUCEB0lV+bMgQL9TUOf21q/jva390JPWDsG5eNd17mB5XsdVho5X7a4CpxTQOVFmBXDdZxEQiB8HKiMib7N29y8DBpKj5n8/5x3ci2ZHVGUN/PwS9MZ76GzYVpEMnw/wiIeqPB5LQs1rEmCgsjiSXtq370HkO7VFYyC5ofJUSs/jjIoZaRMMtPbnmMkw0cjpvx9X+eLHZTkZG7VJVDlM8u/tIQ/KTlxfX+/AAvmSkWJWxcFM1d8EEgJGCURSrthXbCv7he3g2HofeVbAI8YeUP7o1NNRnp8tK/Wf2x+WX1ECuTO2yEGojzdBYpJ/BwK9ts62qeoX52lUz+iapbaUMr/k3g8PBlxoqhRSDwg4WkyAoDJCXh7RKK9N9/OYO3svk3VWfHjUNiPcXlYqu6o73eNRVzrXu+8URAVNkQedGLM07tg8g0MwcH19vft4VuD6+rq11vbGTh9FnQIKre1H4kmW1Radr9qcjGLKFFTARlMf6/V6998dgJwppweqqYWeI1K9KZ3/8vLSNpvNgT6qTEb6PuaeEWAk5nV4v7kN+CtSAutLaVZvk31J1yTbOpL5VFYKokb2kEByxm4vaa/b5t61usaDAG/rsUFVAoAj+rBgwI2eC5B3XpXKdyCQKCHAXp2ezn96eioFv8oqVHy3tm+wKbg6x0iH/3uC01PUkbAkfmbIjeqppgkcpPSMUXL4BIHVPGW6l2sINE76Td6q8fNImG1gWpPEa1K5NKDqF7aR0xwXFxdtvV7vAA5T+CpLzpP3pymv1Wq1c8SJpEN00Dqe5MZli2V7ejXx7G1JAQJtx6nAwLEO3O932amunSlv5nhl8/i/0jkHe+l+Ui8bOtN37KNRhrXXR65X/J18DIEAP5TD1I7XykRFHxYMzFJy/AlZzkQnaRB5DweM5KlllleRg4SEcokcnQ+f40zOIvVVj5eZVF/V1o9MjrS9r6l8o+kXjoXPX3Nej4CAC+ro5B4fH/eAElOaaUrBDUkPxLJd1Xi5jHCKQ46dGQ/XnYuLi10bvL/diXIKQO0SAHDddf5Wq9VuzQcBmDsVH5uUInaHn4jjPbr2I1LPMaf/x5Q5c21y6Mk297K9XrfzkWTbpwp6187QbFbTgTaPVfczsKAcqy9m/FaPb947og8LBtIA9BpVCZrKYrk+NZAUXgbBEZobOXfCVRnJQdNQEyVSqCoBduPnGYKlIMh57gGVRKlfnY4xQm9BHil6X8t5sM/8OPvAF+05EBAIENGJ+XiqrsfHxz3+XM48YtK9ydCkyJi8CWi4rvDjUyc9Y+bpea4jEFjgUwD+RIUvlhKfqZ+8ruq4ytRxn34gMKiIevRXAMA/Q7+qMpOd4PU9QEAAlzICPXmboaVjNbJbfl2Pt1S3T9ElcFNlB1IwOArekp+ZoZOBgVEk6kLUS+em+d5UphtJjxZYX2st1uHzpnQoj4+P7fLycu9Rlp5yOCVgkPqF/NEgpjQpy2W9vczBjCImcDO6/lRgwMn7xdE4QVWaHlAZKkdRqzsnV2LV5UbP+93BIMv28jyC8DbyP6N0yrRnAG5ubvYelaSB8vIpiw5AXd+Srule9TWNn/Tn8fGxXV1dHTwOKF1T1oHjqnO96KoCIK63s5HhqWlJhm9JmaOyRv0zY8s9gBvxQ768/tl2VwFgVW66d4bfpNfsE8q/+yaXw1GdqU2z/fEuYMAdx8jpVGhy9JkFAksyA26MewJycXEx/Uwr2+fOXOd6CHcGzarsXpYhGXjdS0oRbWpTamM6/p7kUbv/phPnYjKR0uf6rXtFLq+tHaamdYzPE+u3Pq39yDoolX55ebk7xwWGlMu0Cv/l5eXgmeXEfwLQTOGrP9LcPZ1vMnTe7ufn57bdbvc+Kpd6k8gNIfn3NTvqHwGCnu77WHp9olNlBpaCbtfFWTBT2eilvPr/KhNQAQHXIW+LH091zbTXZaKyg0mvEo/HgCUP9ghyZbd1bzU92wM0vboTvTkYqAZsFjn691Iw4Au0RDJoutbTp1W638unEdJ9jMh1na7x9GWvr2RU03PgiS99yyGoLM8ESNjFzwig9JB2UqKkUIlOFV3RIft4sL0eEYocmFWG052vxoL3kpceiRdugkOHmSJe8kXnz6kHZtGYDWC2gHIpIOLtINGwiw+XGZUlEKQNiKp9EvjfszKV83C7wcxAJcO9ceW1p5Ld1wDoyq5WDmIGMFTlVzbT/zs4SHauF1zM+JUEDBNVfTsCYG8BmpIv6QGkHq+9tozOkX5aZiAhlHRN7353rD2ESSOXHv+jwScocKTnwsrpAdYhcmGT40jGs0JxFAoHHi7Y7Lfk4NiuNNeU/lc8jozHEvK2vCdVgMdBWGttz/kmQMRUu8pR5oA7BVLZR8rYmyN1OfApsd6cPgEJ7/XHHjUVUD0amBbjuX6KeK/LYbXYSyAlgQiBkZT1836hjvtUSwIPKoO/E3jw6z4aLeXtLdsy6qcKBPSmBqoMDs+nMfRy6DtaqzOjqS7aSsqV11PZxlnA4PY9TSGOyh/Ru4EBd2h+zq/z4zxfIchKmJJQuXERefRHh02j5uXIaBIQ0ACm6Izf1Vxra4cbB/UoRV3+7VkON8bkIUX0KYKadWgfmdz5t7ZvBHieDtTn6kVJ5ki63xfHtdYOjlfO0hcwis8EVh0wpMhXOkHALCCgfQSYIaDsqDxP6ZOH1Kf8dvIUKNvkIPT5+Xmnh9x2WGPEdTpJ76pU9IzDp936K9NrAMDItvuxJK8+zmm8W+tnBUgJELhj1fEKUFQZzWSvexmjXrA00+8EoQ4IHMhW/L0FvWlmoNcp3oARIKgQUm+OSb/TnvI9MEBQoLLSM9cCAxwolqdvttENPYUzpbB4H1ekJ5ChcpMSch6VvLKeBAZGRP6XoN/XGKO3oBkFkoNJQOrp6aldXV3Fex04yGFyXQCnklrbl3U6M5Er/0z/JudGsOJyrPcn8B0K3DpZWTTKcAIy7C/VK91jFi4ZtzR90dq+bqgeXaMyHQTxu4ruq75yeots2FvQRwQjM+CgBwRSINdro0fmrI9lt3aYSWMZ6fcSchl3ufNr028R1wakvhplBlLZr5WTV4MBdwyzDI3QVAUIEqrsAQJmCLgoi4810anrOu7Cxo/qbW1/oZW/CMKjfncWlVPxzVB0L8viNb54TPXSaPaQrx9bMn4z9BEMaqKqTzwr0Fo7+N/a4RQK71cZeqxOUXcyaBorzy6QHACm8w56E5jg0wPcTCi9VIl6QSDj8/zUqcSXR+2un3oCh1k3yTtBCKf/qIMOeL3P/H8y4lU0+rMisL8yLXV8Izvesw9VZsCd52x5vTa5XnqGK9XN8xUA7VElUwm0vocdPemjhfrufRKKrFAmP9X6ARk5Pq5E4v3MDBAgMGpqre0ZTJYjI+nzrR5Z0fgQkLjh6wl8z1hVguTKxvpn0nMVEPQyPSo+FTlAcweua/SdHk3jmPgUE+vR/b7BjgNQXT/qm0ovmK1y0jVMP1brBjwyd4DJj1L1ctj6TVlN465+Jk/+tkg+MaH+4lTEyOCnbJvuq/6n3x8FCJxaZ0gjp8/fVZA2ing9W5nqSL6hsr/HtE3/exns3veIvFwC2tF0gZfzlnQSMJA6bwQK0qcqWx1IJ67rZciurq72FkYxovaMACMWXevTAWwTHw0hyXDycS0ZPPZHigB7QGDkwHW/o12fPqiUsxLCGTDQO/6elIyM9ydlK/HsEamiXs1psx6Czs1ms7tf375fhe7lnLjKqcjvp9zQwUoffCMhZQd8Ws0jbAIJAmFmrNhmf9V2AkDVmIj3noHtOWpfNOvTaf5hZse//1+ipVFra8dNUbzGdntdya6lchIYmOFzyTWzYHJEynJRz1JZVb+Ngr4qwzFDb7aAkP+d0vmq0Y4ce5+UOuQb49br9d5GQYzEkoEiGPCsgO73aC45mNbaQSRDo+TvYlf0mJy195OOqyz2McGGjiWHwjESSEhrF0a/Z65jv53KwFZ10/CnSLi1H/2eImldS0PLcVK/KhX+8vKyByzdecvBcp7e9YIpdab5fTqMoNazAt4mTWGQn9RfPl+v67guQH3CTYJc3yhr1DWCJIJ3rnHQ9cy6eeZGPHHqwjOMomTkq/H8qHSMo5+lJU6zZ6dTRsDtBQMsL79XtvOZbJRnZ9N1vfYe279eVwIBDp5n7WUFlo6laTDwFmh5BAR4XYUmE1JyQaDDJlhIQsa0f2uHEVV6eoBGjU5Y5Kl9ghYhQ+5Lzy1bWYY7gtE86WvI+7ACdSNhS2NyamPK8XUgVE1Dpcf3PHWn6+XEvS6CAaYA6bjl/AQCCA4pVwmg+tMB5I1gQcf5u7W2J9uKnF2+JV9yrHwDI7Ni7mSpFz4VJtK94sNf6qR6+V6C5NQ9jSp+VEYCAU6V0z+17M7SEkBwjPNI+lzZc8rhaFrA+anqdZ2T3EiuZ9raa1Nqzyyl4Ixl9sCJ7qfuObhNPm/UNm/TDE2DgRmUUl3TcwyenuvV12uYOpJzjDRsFEZ/ptkduRtaGRaVrxXi2jglLUJUWcmACRBwYRQdSq+t1XGfgkhIuxIi9kPVL+znGX4+EiWULZmrzvl/AgNfdU8goOt9+kl9y9ccM9pnXVx86A6NHwcHPJemuZjhol4oaqc8E5hK3hnhc92Al+lTCJwycWBG8MLo32VZj0BuNptdXZrqE9iigXUA4nqasmYMDH5mtP3WdAwIOLb8ymFWwVoCBRXPM2DNgQDXmLS2/0iuKGUFZto6Y49JvN7rdABG+UpySxlMH9JbZVwXZQa84gohJqqcvtcx80l1EQwwnVndP0JXctREawkIpC1fE0LkQkKRymeb3irl0yMfB+chXcdv0Qj8pWj8FJTqT2i9B1p1jAaO/cEnN9wgcZxTJokGjnVzeoGyq4yX359++7y+7ncDlbJdukdAoAcOeX+KxBPgUpsJBJitUB/ymuvr650ucirE21U9xdCjnkycWobfmkaOd0k5Sf5SEOTfur4C6uSlAgJJF0mzUTTbQOCyFBQyk8dsVcWD2+HqOvdhyU9U/TjL/9FrBpYqRzJWfrx3/QgZMRJjZMJymJ6VQal4TZGGFoNtt9sdKGA57Hh/5Gq73e6VRfBSCYHKk4GtKN1fzb+xjfxdgRI/lgBET8iXpLR+Jo3krEfsC04B9UCGnBKzSq3tj33loGhQ03oPlwVGEQ5K6KApE16uTw04uPVMRzJy3q6kr96XyXH4o7NpekRrElJkSNmkUWbfjQDCTPDyEehYO3zM+Zl7HTAzw1rJRernZH+oe54Z8PFO5Laoak8PUFdlUsZ6gIB1eDkOwmd9INuT+m2WfurTBM7wWwluL5qXg63u9fkdR1h+nFkBvVyFL5uhoWQdNCYEJ55p4HeKJJeQG/GlabH0388lwSOlzMFHAgQJiCbyfhyRO1uRz8VTNh1QeWqxisZZNq8neBQwkLwzSvayCUoJBnS9y6U7f5c3N2K9FHG6hmCHWYE0fae1Fk69fusZyhmdeU+q9Oxn1TVzzM85AKg+yZFV8+107qwjAYIl5PbJ76fsed1VHwj0qx3evgoQkA//sHzy4H3oQRfvWUpHg4HKKVSI5WegaxohDkb6pGgoOSsaYs82bDabgycBHAy4I09RCutn3/Wi/0RJkKtsR4WWq7JG49UDKyOQ8N5UGfgEnF4TOYlcHqgjBARVdqXnkCSbSVbccKg+1s0yPPIXMPUyHdzouvRbbXLH4Mf8OkV5fDKCUwH89t9p2sPHIgG7kWPwfv+r02uCsdFvjmMPDIg8u0b7XTlhOn/KfwKnnolL4/5WPokZAdr4ZFNdzqhfCRS43FWZAZY9Ctgq+qkvKuod7wlU9SF5w5mmSZmBlOrxjqIAybEy26A1AzqmXQc5wD1gUNWbgIq318slr+KFWYZU5ltQBfYqY/oRjOhMdiQpmUj9qzl8lpuyPb2yU5SU+NO1HEO/n/xp3jw9+eB9wCyF7q/4p4EXDzpeASgHHyyHxp5GkOWmBb7iV3JOvfRgRDqq8nyaQN8JIPyVaCaSn23bbDBQ1VnJecr4VD7g5eXlwOGna719CexW36Mxp3xShno8eF/0pirS+Iw+vJcg2stZ6vydjgIDycDw+AwlhMTf6cN7U/06JqMm40N0yM70cjm/q8GsMgFpOsHbsESYVLenVHVupJy83+utIkmdY9/16kjHU3Tdi2pPQQl8JSXrIXJSZawUyc5GHpRHd6w92VbZAiYEKCKP2ivnTx1xGeEUA0EPZZ97IpA3B/h8hJIZAO0Hcn193W5ubnZPWqg8OW1N01WPeabIs2eU2aekyg59RMAwE2gcQ7NOLzl/H58U0LneVGBY1MuY0v4yCGJgpOsqkODkukC7POoTlUkQSpuQQGqVGejV4f3mGQEen6XFYMCN1WuELwGChOCriM2jndb2MwSM3hXp+/sFRCnarjICVeRNp8+BoeFN1+s6T33p+p5Bo9CnKQK2qbqf3+JlRN7GyuF+hOjLU3fi11P4JEajul+ZATpGl5skFwQKkk8Hfh4lawx8/wB/VwbT6tXWxDJG0oHk1Fvb3/yEeqh0PJ2zPgTQ/n4ON6gOWrxNenxQmyDpHvXPdrtt19fXu6d5EghgfayDvwmc3fA6OHbA+1eiykEcU45/pwxAWs+h8W1tf4v1yqbPko9ZAgLHlqcyW+u/EM7P985V91IHK5uZAKv7k2SLl4LYxWDgNUqREMsIWVJ4VH9CRynSJ7nhdh4cCNAZEAjQiLI/vD29treWswVJYCqacbIOMETurNzYJcTp7fLrK2H+CGCARJ6kpHIKCamLqLSuwDovuREpKtB3FR3RkFWAUEY1LaJjPX4feU+y74ZK9/pUBsvyaQXPPBCMV+l4dx7+1IDu17e/TIm7EXJTJ3+Kh9GZZ+/cgZDHBN4/Gi0F7a8ph9dWWYH0Sfac91SUgos0DdADAiMH2wsEXIaTAxYl8O+662Ah2c/qf+XvZkDCEkCwCAx4R6TOqf4nhpJQJUNEg+Qdk5yp6qMxUdRCY1GhOEY6BAYe+bBON/SkFJXT8M86/14EMxKMJc7YBWgG3BBQqT4v51SAoAI7Li+V4jhQlAPkfha8xtOgjNhT5E5D5xkD3TNaVZ/AMstOqXw30LqPssztgRWdEyirLDdUCUwkB+FtqPSZ/5NNqMj3aag+vfFnv30USga/AoO9/hnZ7xEP1cfHPwEFH2+RO25Presc7Q1Bgc47EBhRdZ1n89R28pb6huQZBNa5hNc0xiPZnaVFYMBR1Vsh55Gi6hpeLz7caVWGlgbbd/xzY56yAxQ25ynNi3n7XLCdx9m+TFkJV4xUbxKWCjVX/PXAn59L9b6VvCylkZIlmWG0IQDp0049ouNnVO99JL58ysjBAKcEGBkrpV45Rnegnh0TEVB4Vk7HBBSULfM+W+pYejrjuibgcH193bbb7a5fKn1jW3UtXyndszN/hayAqGcf37qe5OyrqN/5qWylZ8JItN0+hZXAvWcKenqfdL7XdsnE0iCO13kdCcCMeEj/R3Z+lo6eJkgGvucoKkpovwICqXxPffo1FCaeY/qSRq8CAT7nrDJosJOxV5ms19PBsyiStHTAnZcZREol6BnIpFhJeE9FGsMZeUz9Qlng2gGfV2zth0wyfe8v2mE95I39TDnjnDp/Cwz0ZKk3zimLofZQrlmWwMDFxcXubYwuzzN9quNp2oFtp476boWVU6c+i78ECHpR3ZLo+q9Cozak88mps497ET+dPWVJwI6AOcmm6uYUr4/bUjtIufLflR0kKFkKCAhIKwCT2jEDVnoA4Rha9G6CXtThx9J1/J9QZnLmVd0iGtd0X2ttZ7w4t6h7nQcaKI+4xQMjPp8fo1ARQHhKteqrUcRJXtjmnnET9YDASBgdSHmZSQZcEWbb9tY0i7x5ffokQMnrNbZaMCUZUUSrl/wkg8Z5TvKjrIKvtl+v13uZAd27BJA78BBApj74WHMHzouLi91CPj7ylwAN+4kAgE/p8OVddAQEZGyX8zdjhxKAmKH/F8BAj3p2exYEeOrfx0jOn0DZF+SKqCO+rqXi95i26Xeyf8khO0Dp1aHrdK//drvrupKAGM+ne9iepeDgVY8W9n737q0+Tr0opsdTKkfGxwXWBZkD1Vul7/cSIEh4ZVy5Ir3i1ZFmGsTeOoEREEh94mVUzoQK6A7d20X+uYDstaj1Z5PzlrID/F2BL81ROxhkRMu+YNTR2iG4ErjgSvv1er0DA/ok/aBusQ1udJPxTusRnp+fd2n6zWZzkOpNgKYCv87P4+PjweuWvR2jaIxj6Lt6pnH08hN9RBBwjEOcKa9XxwwQoLy4XHHs3F7Seek3x0jZKCfXwapfRv3UCyR5r9s516OqD1leAv4VKKA9Zt/o/6w9nZWTo8BAFan3IvhEI2PhZXvU0iMfKDlk59EzBX6v80EhFs9EuiqnWrDlbU+U+jH1x7FU3TsD1HpAprV2AADcGJ+CRvz3EDX55kI8vinPp37kwNl/iuKZ1ndwoTrIA4GEp8hpVNnP7tQrJyzi+CkTwScXdD93BGR/+Ort9IiheHTdqBZ+cUrFd/qsAgg6DQdIqsd3LPRpEKceOD8FvQYAHGu3K5vQmx4YgQjqCAMo3eMBFa/Td4rmU1lVv/VAAP/TPqSMgANsUfJTLucu+96eSu5+hjwevc/A0uOeOkyCVTlIR2kzoMMjr9YOkV1rh2CgB0iqelxAHAg4ef1slwS5B0hoGJ2X1Fc9nqgsVDrnU7zyHi9DxpV9/lEyAxWwSceTwqaI0scg9YscMtcOyAGxXPYTx6QXgfmjeS7THmWrPqXmvS3sCy5U1PTG8/NzfC0yZZ9vWnR5rHSrioxULvvv+vp6l5Vg/6pN1OcE+rl4mI5jpPevccJvRRWondWtWdtdOdJkrz0bwOs8Wk73+26Trf2Qh5FjJyjlxj7SpVGfJBtKO5jq9PtSIKBvz9aNwEcCDokf1x0vpwIXI1r8aGFifkYwk8D1DHFVtwtJT8C9g9Kg0GnNpNqrqF1zplX5zmu12PBYWpo56BmAHgDwcylNx3Mch1OCAQdFogRWKGvp46l8j8r1m3XS8fPFVSmKIrEOX1zHt/apLQ4g+CQEI3c5T/FKPdCaBE1LcK0Et7vmeMpZi7xs9mlqKyN28cF+ZN/zOh1Xu6t1Hdw06erq6qC8ym59lIzAqchlszct0FreSM0zBw4UevaBjl9O33f61Dkfx5E9p0xTPivQlUhyTrnrBU1VMCZy/zoTSL1VsDUNBmZR5VKEWqFPlpcM9TE8eBk0tD1gQWLkru/W6vcQkKqIe1Z4RVV7R+VU7ffxqPhMbenxWCH7j0jJkVcgQFSBYxKzUoxIKdfu3FIZBANXV1cH0zEeKTvQUBu4oybXxCi1r/L1Lob1er37pkGX89dcv/ijwycQ6PUxr+WHbSfvvFZTCGxTeoFYshkejFTBQzW2H4Hegq9eJEyHTkfO7+T03PlLZriAkPV4AJWAA+0W5YMBooPw1FY/73aKfI36jf1H3nzNi+pJbfRxqJx75fBnwMIMveppghElIUmf3hSB102HNluvK7muqX736ud/IkkKFsuhIIzaKKIhc0fkEZkb01lKY9P775QM7QihfkSD6tGqUxXNuLHk+KepHzmpJO/c39/7VYZOZetbxtWPUyYdyDgY2G63rbW2c/zqBz2Cp2tub2/b09PT7skFPnLr/cS2JRCV7vF9HLhegOROqUfkj/qpujy6dV4/oqz+LKra2rPTCUylOfLK3uv6ETkQ4FqC1g43BGvt0GbqmL45xgmEJB5YfyL6iMpOSA7dlqRyk88jjQDAMXT0WwuXOGPvkIQ2k4LPOmtRmrevUL+TR1pOXj8HkPdxUGmsXaG8DPIxAgK9/4lGQI7negrq5ft/XzvRq+cUlPh3JJ6ig0o+SZUsEwzI4Tpg8MwAx5PzjnLe7sAIDphep96objl5RtDb7XYv4lYq9vHxcTdNoCkDyTTb4wBVlNZZ6Lh4Umpf5SnL4JGTdCftf8/9A3rj7banskEOWE5JHlQcc29P/yt59+9R3zlI82v9PRopa5Wctzt+Xw9AXeETB+k/wUSaTqr8jPcDy6muZxt9bYPXTVn3TFo1Tm8NBFp7wwWEo+srRJnQ5ExkOXJwaQ2AR008nq5Pjk0Dxm1OfUEJhaZCyk4eaXlE1wMBPDaTLkqCzvZ6P3sZvQyEZ0hS/e9No/ZUY+U0I5c+vnLAkgsZNKZLfYzTGgRmFdwRU94IQCnTTKdX6XVmD7QQUOBBUwXc81+RPNPySW5HfZlk2+9NjkgflsM+7MliGjvnyYHiqei1gGQGUMwEcNXH76ETrD49IJB4U3kuF5QbbgTm/wkwueaAAUwvM+D1UbfYD1XbdZ2vdyD1gpIZ+/RaetWagYo5j+h7glXd58crYRWlPd8lPHxjXJVycaoMiHgh6kzX8sUoAg8J+HjZlfNPQIDRJL+rsr0NTkTefky/R/W0tp+WZZ2nMqi9emeMXFWGR0P+IiEaBZWhj6JhRQppXFUHnRvn930hospLewQITMh5awpAvzebzZ7BFGDRpkKbzebg9cIOCPgtXtVWRkjqdye2kfpCZyC+2NcjvUpjyP5hZo9y+hGAgFPVztfwmcBsCtq8zyog4J9qjBjdJ5DOcvlN++UAgOW5PtEZ+wZW4t37IfWVZxhEI/DjMkZ5F98ESU4zdv41dPQ0QY+qyLMijwASMqoEtLXDV2OyXE/NuML7oKfo2Pl0QaXjYx0VopOBF8/JcfaAgF+bjs+iyNQW52lUv9MIJJ6SKrnqpTxpZJi2VxlM0/MxOL5Zz40iDY8/juljSofK+mTYdJwLDFPULJDmmQF+fG6dcsCnF2jQON3gZTJ74VkzlSmQkpxHkmud5yOOHJM09cZ+GMlGCjw+muxW/0f62AMT+k4AwKdoku6wnAQePGhi1E6qbJlPF3h7PQilw5ZNq769b9wGqHzqIaN8bze3W/a9OliO8+5AtBojb+tb0JuBgZ7zqZx5Ur6qYcmIt5YzAokUOSXhYcd7yp9UpR0pCAnJ8n6iSQkst3JV1FdlAEbpVG+bEx1c1W+V8RyBAQdAPdD0njSSDzos/+3kaT8d0/9k9AgmdF3q/wRSCXjdQHGNAK+n7Dig0XcCNAmEUsbcsHFaobW296pvPrpIgOFREjcD8+wHs1T67ZFpChA8DUvwzT6lw/I1Cj/D2H5ESkChAgSV/RYloJscuNuwlGXl9alM54OyyzFTMDjbB/pfgQG3EQ6Yea/vOtra/ltzJXOSddXhGVpmrmbk8ViZfRMwUBk3v2YWEKT7Ujk0aBUoSMjPFX3kFGk8yEeP7xElR++/U/or0Wjwk2Hzts8Yv2ONojuiU1OFuPXbx5Z8MzuQiE5Y3+7gWYdnYar+d7486hdvdLJOTI9WIJLtJH9J9j0z4GDAIz+Wo3Ip5yLqNbdvdoPv/ThDPaeSqAcM34Mq3nr2krwmZ1/dx/oSGHBg0Fp+gkBUgWKRO1Id428CT+oKnWUKXpJcVTab/ykTvsW8gwFO3yUQz/7jOxiqbe6lP8kmVJ801sfK6qufJugpind+D1XO1Of3Ec2niLVKb6eUDM+lelzoXRn4P01fiNKKVwcG3o5Rv8xeX5VP/ntAoJcV8P/p3EcBAynbURkIN4w9ckfFx/UYsab0aQKANCpayc8piAqsJP4ZrRAIMs2unf18nJi6TyBEcsyFhAQDlUOtsgFccOnf19fXu8iKOySmuWDxToPuYMCnEFPwwe+/Ai3luZL1BADccZLovPWfUa5vFd3afuDT0y/P9hDU6ruabqiCkR4I8CdWmMWgM+c3banrDO2HB2LqK7XRs2U9MFDZbR6flYNXvaioJ3TVNa5oM4z2kJyjQ6aZdJ7O1iNwEjvO69Rg0emzDSmFmxw1B8n5II/+u+oXIlKnnvP3TEBPaEYggPykOkb3vQdVoLUnW6k/ksHi+K1W+2lQ3SOHx8hYhodjLT4pz7pOAMAfIeTHnaFvF8y2cdtgtZXg1NtNI8asgC8c5KfXb+w/OnM9yeCGlLrZi1iTTnrQoLKYsmXbCYp6Ac+paImRn6HUZ70pmR5f7D+XJQKBNOXp5ICSv3lPZSN1PmXEqJ/8+EJg8uyAl7sXqg6f0nP5ZNpfJN0hcOW4vAcoXbwd8ez5hDa9QUnZ0rWpQytK2YB0jL/dyOmeagB62YB0LoEXOnzPCiRD3AMELLdHrDvdVxmYyrnP1FX9/8iUDJ6PqZMbHR67uPix0p9zmCzPjaY/IsjntLkpD4EEoxaVz4iL2QDXMcmpv2TIwUIyvormeX1vfYjrCO/hOgS+R8AdNPsm2QjPAIhYjvpHBp7zuOqXn2l8X0uvBQQpMEv9OAIBLm8ExARdGkeOe09OUh3+O00R9O4fyaX0jJ/0iCL37dBTOewf91WcKhA//M2ndNi2JItpPHrBzqztXQQGZoWvAgJLlctTqRUQqJxcQp6j7EDVluq4P8mg3717Z4ylp9wcEIzQ+YhGiuPl8/oZAJLAwKkAwZK2VnIyKp9OV4CAekDHpuvo1HWNg1QZI276o4/qWq1WB/OQdOJeB7MFkitOQei4DIkbXBlEPnro4IAy7HykvnMAwKcZ1D7ewzYlw+uZO5HL7tXV1Q5EpVS4aNZpvTX9TJ1RPyZ7nbIB3i8p80OZIShI0bAHRiynWkswmgpwEt/Vefcx0gHpmz7kg0/iaGpts9ns+HCfxScLCMypY9JfXzhbgQAfk6pvl9CifQaSUo2ud2XtCVh1vgciekqaHP8SMEBD5sdby8+lelSSeKpIBtQdLyPMUYagV28PSPl/P57urYRv5vd7UwIz/tupJ4sebfKbDm2WJxpBjyZopBS9uIGTQZGREvFRQCfppHb9S07AI32+lVDXCwgRBNDIMkqkMaSsMzoiqaz1er3jRZsg+ZTEEpnVt8ZJ71lIfJ8SyKp+8twLynqOz8vx+5IT8+makR3u2b4eeWatFzC5jZrJQomcfw/itAZlvV63m5ubdnt7u7fZlvh6enpq2+223d/f74EezvEzUPT9RwjclWlw3fLMWPKH9FGvldGjFxC6QDqDVCp3kkmoEipN9yY+epkBV+QZJMnv1FbnOWUwSG70kvA6wFit8orwWVqSHUh9lBTIxziV91Gcf498LITEK9DoH0b+Gm+2lWsDVB6dIKnKfumjbMDNzU27vr7eizRogBhVu9yk8fS0pf7zvH6rDrVdUcx2u90ZMb7ciJEO9ZH8uG76NIOuUar2+fm5XV9f78rWRkncXrnSKxpgJ8+SeFaDPH0EGgUv/B6V4Xrt0wOjKYLES+WYCRArnlI2IJVH4OABkst6AjE8xoyejl9eXrbr6+t2e3vbPn361D5//ry3lbJkcLPZtH//+987XjebTbQNKk/667ZeAJcLEdk+tx8E4m8FBFp7o6cJ+O1Ii51SORMXSr+Hg9VafplL9XvWOSXU1UPgojS4bFMygjzei1iTUapA0TFzbyNK41IZBzfibymkb0m96Gh0H8GDp7KdHPwyDd1a23NuOqaIn/3u84zJMaV5U0/hpkyFyuf/1lqMBjWm2qlQ7wJwoyqZ9ZX9FTh3nlWWp+3ZL+xz9p8b/BTZsxwaf76BsdoQ5tSU+HDARZ1LbagCOLe3HpCxnJ5NdedMfuh4nSogkKYHEoisyAEvZTX1hWRBYODz58/tt99+O8gQPD4+tm/fvrX1er0Dp6vVam8hYNInPgXEaQLJHachUrawAmYVLZHdN9tnQN+9aHmmEekeR/aeeqwi/9dGqj1ULJLhU/kJBLR2uLAsGW2239cMHEveD70siYOfHhiaAUofJUsw248V6HEZ8HlsN4AEAXKATGUzylbkwOjeDYHKTxE/FzAxUueUBetgOzk1kPrCs1wvLz/2e3ed51SDg0K2l9kFJ95Hh8yMjPpCbeVuh+mpBm8b/1dRpwOXj5QZcKqCqt51fm0CXUkuEohLx+hwnUbTuvrW+KWnW3qAsmoveaEMp365uLjYTRXc3d21X3/9tX3+/Ll9+vSp3dzc7Jz+9+/f23q9bpvNpm2327ZardrDw0P5VArrICDgjpqcKmB/jWxSL/Cald1XvajIoxgKUYUsR2Ungewhf11H5JucGs+N6kydvWQubEbgq3L9Xnc0s/WkutK56ru15dHziE5lUFM7mG7jsWQc/BgBoP7zXjpFOhU6Ob2BMPFJmdYYp6cUPEKuHFcy/H4Pzys68kerfHEijZbrmPpIPMrIuaNPfNL5E7h4EOD2JtkaB9W+nsGzA77nwEcFASOqwHqy15Xt5vW9gMvLbu0QdM2sn6G8Ewzov9dZBRvk3fWS63menp721qm4/Gua4Ndff919bm9vd5m2P/74oz09PbV//etf7d///vceCHfAnPhkvVwf4GPBYFPt8U9PTmft+NGPFvpvRkPuyJNBHSG5GZR7TASdwIIjYQc5FTEt54CEbawEoMdjRb1FNa4oFXrufVcgqqozOZaq3R/RsDrfvTYn8Jmu5aN7PtcnI7da7WcW9J/Rt8p+edmfM2R6kdE279F3pXu6R//13ZujTUQDyrIFFJQ+pXNPKXx32D3dSTx4O3vTN16fT/UtCWDeg5Kxr5y9zlXl6NtB1Mw6AXe+P0ufCaJbOwS96Zu/K/nndJkDARGBoTIDv/zyS/vtt9/ab7/91u7u7trV1VXbbrdtvV63b9++tc+fP7fb29t2f3+/K3vG/oon/xBkVwDYP6P+nKFXTRP0kGU13zdirGqYI02WOYqQR8bbeRwBASki5zj1zbRQb2FLxZ8GX9/ku7feICnJjPNP5ThgSiAhAZ4UmVa/PzJVijzjIDwjlnSA8isQoN+UGU/1Cwj4yuYErFO9yXgIEHBNAaMyPcEg3gQ6vE46UAcZfFyqctKzssEAoLIx3n+UZ/Yp+6vnCH+m45uhpcFEj5K9TmtEUlBQ8eLlvoY/1tELMGZsl5+jfe7ZYqXs9USBsgO//fZb+/z5c7u4uNhNC3z69Knd3t7uLTD0tlBPq+CV45FkmXxXviqBRl4zoqN3IExClZRqNr0+QjiO5Ftre0aBqVn/TsLh5fbqTgNURdFLpghmBskXXVW/Wf4S5ZnlLSlQihRm+PuI5Pz7/Devk1OhQ/H+GTkr1sW0+eXl5d4e5eKltba3MUmSHeqgeNA3nxRIgIDpTa07kFGUTvMa7xdvJzMgisjEe+qDqh/9Hq/PdTP1Cx2B94vqS9Gx83kqqmzXkvP6Zr9VGQFRshlV+ZUvWAIKRiBxlh9do7rdB1TrGdQWX0R4d3fXPn361L58+dK+fPnSVqs/p/m22227u7vbPfHD/qMdob/ybZVZr751PcfGgcDIXx5Dr9qBMClkj9mkVEmJK4WuEFVrh6+BpYL0lKVCWaIKqak8Pv6ha1zQnJfUNn37ois/3kPLXpYfW0rkuSd4jn79QyU8Bbls9fojOafKGXDMXZn17c8XM92f5kMVodNga3GeR+oeDciQ+baoaZ0AU5nctZBZCqYtOTWhcnw9BBf6Cgwwm5DS/y4X4lNrKnwspOdcMMjyuUZBjzly/LnRE8ttbT+74X370aiyhz1KQKAHVhMYrsqsAEZlP70tyW55JtTHY4mNoy3yOp1f7ytt+qV9B3Tder1u6/V694RAL/D1NS/ur8QHfYhP+/F3NW6vkdmjNx3yTMBozqk3cO5MZ5Boaz9Sfb7JCiM7J49m0m9SiigcWXr6aeT0KmNUTQPwuBvUWeVIRri6VnQM8uwBlo8UXSVgq+8e6HSZkQ7QGbphkPNy2eCiITkuyhGdqztuPy9+3KAkvjkmXI3PFL7f589Iz9IITIlP8i8AlMBMaz/2VeCTE+Kfew6ofRwfRmvePwRc2llRWY2PBgp6AUx1vQPVKhPSWl9fHQDoXmaRWstvNOw5fcqf21DJOX1E5QR7+pvIp+aSXni7pX/cXbAiD5a8/TO80s5UgMD7gIBuhhaBAf72TwUCWqsdhIOLJJh83ErXeR1Mn1LZPRphJ+n6JESJPyJLGnXxw1RvSkeSeO8MESV6f5Lf1CYeT7+dRsjT25PGtuLvGHDxlsS2pcgq/XcD6rJe1UNjQceWdIMRracI/dE5PirIuXjva5+qc76pK3osUZ/02F8V6fEYnzwQL+Jb5dLAui1wo8ZzNLzsX6Zgva/8lbAqU5kWB07Mgqh/E7j7CFTZrop6YMBl2XWjGiOWyU+aO3feWztcU+XBEHmvnD+PLwUBlDHPKm02m/b9+/f29evX9scff7Q//vijff78eSd32n1wu912I3i2zZ258+D9I76oq9UYVMBo1AekRWAgpVB6qaBkcMncjLNROTrOuVpPf7Kjk/P036zPAQLJUSr7wUGAeGSEVylsb+6KvM9OEfTa1CNXthnhmQEBuu7UIMCNGUGdy2D6TtfIKDgApNNP93nGQEQ5lgy502bdvd0pCRDoNJO+yHkSDLgBEvkUBUGAjnGFNiMsH4PU1+w7fWvuNs3LPj8/7z0CmcaI/V45LhGBQLJLH4lmeUv9neSzsrm9MnvTAqqntfwGWdbjNk73zDg0tq1nC6vxdFuqnQXv7+/b169f2++//97+53/+Z7e/wNevX3eZvK9fv7Z//vOf7du3b7vdMBPPzEp5H/j0loOT3hik9r1GZqfBQDWfUk0NJOFKDncGWDiKp3Lrt8/JqB5dXwlKD5U5OdCgYScISNdUoCABAh/oir8EbFIbRkiRzlHnZxSoBwKquk5Bo/7wa1N/0fHRueo8nTPHlJG6R+asUx/KglLcnMdPO5yxHvEoR0l+uKEJgQDn3j1TwUWAul/16Lj4JABmX9DQjYC5+io5cA8CvP3JqYyIW0d7naxjtry3pkpWK/Be6WAP5CYaOWK3xb1pB7fLrMPHLNnvVCf1tMdfrw2tHW7lrSzWw8ND+/79e/vjjz/a//3f/7Xr6+v29PTU7u7uWmttt+nQf/3Xf7Xff/+93d/f7+0zkMije7WZGS3qYQJGPi7pM+P3Er06M5Acx8gB+P2j9GtCm+RJBpCdlyg5LRcsXVd1ZOXIGdGxn2ZAQcUv21xNEySANSJeOyssvbJnQMEpqTIWPWOYjrtzcnnnea8nGUmRZwHSOW27KofrPPqYKs3NjXS4uJBOmusFlBng3GlrbQeCxEOqt+pH8ZxADMmdQxUdVkawohHwq/jWh9OUH4Wqse9dv6TPSAwW+HF73bPhOu9AcAQEUkYpASHXnwoMuH6KND0gMHB/f7/LOumthdpxsLU/wcDDw0P75z//2X7//ff2/fv3vawayevztvvUVppOS2Da2+XjutQOL8oMzApERXS8FSBITr8qi0i0tR9OVds6yjH7zmkz0f/MNarTjbxH+wQFJL9mVK+TK9YSQFDREgOx1PG/lrdjaYmiuCFzZ87IuFef/04GUjwwq+CRqq5TvV4/ZUt1cCFcBRhTejJNR5FXZt8k8zMRJA2wL4AiMQvhqVXy33NA7iSXEvvSo92PTCmKHn10ne4/1omwTn2zv1LWVsdVXy8jwLL9d6q7x1siyv7j42O7v7/f3SNeHh8f2++//77Ltmk6QVMJnCogIHDg7O0kCNC9LEO63NPPBIx6fVnR4szACGG6AamYqgCFG0Je799U2NbaLpXZWtszJD0U7A60l3YaOTM3ttX8sMpTxJbqTMY4leHHZkGMl9FTthmg16vvtUbmtVSNXWpnct6e/hwtkNI9JEbGrbXohB28amyUxuTCN9bDhW46JvlSNkDggGORAIHKkf6MwMzISFd9LufgskEDmMBAxQvLd9viY+LguZeZ60W670XHAu7UFy7jvawJyzvGBlSgeAn1rq/sVI8cpNAO0x631vYc9ffv39vNzc1eluvp6Wk3nfDw8HAw75/4IiCQ4+d7Nvh0jP6nbFnPnzpAn5WfaTCQVvOSCVfaGQYqYa0ooXMal9b2swI8r9+9gZoxbF6fSIbFAcGIPNKqKIGvUVTm/FXXJSNfAb90z6jsYw3Bz6Aq6qiMZuI9tWN27/X0n3JJmfFtidMTKzQOniHz3QI9+pNx8YVPPvXFPvLpDmVLuAObg2CmQtkWEtudyvCsgY/jxcXF7nXHzIiw3N5UDcfjIwCApVQ5Xgey3i7aLd7fc+RePsdrZL+rLEHVlt4xL3tpeUnG+CptOXdlC/ypNY/sK55c79XfPj3Ax2L9iZuUrWNbRv5hho4CA2Sgikx7A7pa/VjhvHQFL+/V9R6pJcFMnerOu1enX+9rA6o2O7nSESW6QLvCOPpLDrnXhhlKxuEYpJlQ+ymNa5LLmbFfWn5r+xv3cF6eIKu1w+er3SHSYUrOqzZUUQmBAJ8G0DHxpAWHvkDQybMLo8VjyZAR4LjDZn+tVqvd45MCRuLV384o467XQrN88tra4doOZikq5/lXAgatzWUFRAkssozW8qLOHtB3e+yy7ZQAQnWdzjlY7VECCxx/0cvLy95LtSSL2n44OWQHtv6IrepgxkHfnBoYrROo7G4FBpbK7NFggIykqIfnR4yPmKfBowGhYKRoJTls56un8Akd/yxKfHoqNfGWHJpHgMcg7d5YVP9nUOspSErtjrDHDx2DbyZE40mHzmsUKVAmOc9OJ0zHJGIdTinDwJSnyOsTr16X6icvacySs9BxGbHr6+sDGfY2+GNWo/aJJ4KV5+fn3etjN5vNzj5tNpv28PDQrq+vD+Zw3YGovQlEqX2nlt2llEBA5cArqsa5stUOrlSGT9H4mhMu+vbrSa67PR5Sf/Tal9Y2MFgUMKCOODmooMyqz3ytgE8FzK7d8Xbxm7zr2JLswCIwwDSJaAbNVQLqQlqRo1MnT3GyXArd6N5R/SRXrFGWgE4jGXoK4oiXkbHt8ZGOV2ksB3oOMnoOy2lpyuq9Kcmoyybb3lpeAFVNFxAsJOOaym9tf72Cb22s8akWHfK/85naKf6rnf+83eSRBttl0gEtjS0zIm5E2V6t6r6+vt7LtHAfefUD7+VcLHl33dWCRU576L4E1t6LqsCqctb6djtbATzWUZXDslo7zBIkSvz1Mp8JeIpSRozyXtlg/82yJWsV/9Qpd678z/u5I6j7H97vfCRKoKNn5x3M097M0uKnCZw5NpAd4cz2wMASplNkKiPHTvf5VvIx43DT79SeJJQiIkkvc8Y5JqBFB+yGolJqXjMaw3Ssit4SIHDgkJzSKSnxzP5y5+u/k8OmYdSHuw/SkdOJkxcaH5XvBkXz4T6lJllPssEyky5KZ7h5Dz9y7HLc0jWPpuks3Kj72GtKgvOs5NcNqNp4fX29Ww/g7VKb+fjjxcXF7nGvzWazq5sAxB2UBxIp6j0VORh3u6Zv8l8B2wpk8JgDxtbyOFcOt1e2ypLddqBZ2YsKBDhQqe73LFkqm4HbEqKeKJOVbP2M7fescLLTyd840PkpYKAquGqYO7/qwzKWOoxRJ1eOfMR3UjQXPiqcjrEOBx8yninVpGs5rcFoqXLK5NW/eU3VDpbvaSzSaHySE0q8nJpSu0Zg1XfFE3HM+N9/s2yeS+Og45Q/8aGXohBgUH8YKdNRO6BIWbPVarUHBrgQj1E+gYADgmSsmIZ3oMP0q7ff+58viVmv1zs+tG3sZrPZla+5XToFZQd0n59XvwmQqZ+YHVjqGN6SZvUo2VcHAj297N0v4EgbuIR/lc8sEu0hx4H3OH/8TrwlYED7Jrmd8QXehsqx8zj9QC+LwGPku1o7NmtHKx87Q4sfLXTl71XKwePAJSeqMnlfxYeTd6A77opmgIwTjTDrcAFkHWmKwPngPW54fA5Jdc8oTFJur5tzeTye+sIdfwIqPb4+EiWDmVKrSV6loHIixxhJv95BKDMC19fXbb1e77blJU8CA3yPR1rUxPv0IQhYr9c74EEwQGDq+/+7HPBafqu/9Z1AhvjUeWUD1ut1u729bZ8/f243Nze7eggGmOGgvIu3BMKdL465phiOMao/iyoeEvivHLqu6dm+9HEgkOyJBzM9XfDyZzMDqX6CWv8mb+njdSVZqYKxdJ7AxoGA95WvmeB/8sJ72FcpAGQ9MyCHtGiaQJWRWR9QflcCSaU7FY2cl6gCOTQajkxJFKoZhOcGqwIPI14TEEtARdeMBN3HNfHhfboUfZ+CKtA0i7DdeFC2fTxotHSvywz1zKN07tHPV/HKSctB+rbDbjQJBK6urnYgQyBA9RAMCJDqmWi9Yjil+pkJo1FkGwlC1V71pfqO/Omd8p8+fWqt/dhGVgsG1Sb9Vj+LD/1XP9GxVesokpy8N1V2agT6l9rZJK/6ZhlJtsWb+nsECNTnLqOqb2SPHbylKTmCd8kvH9tjGwlEKrnwtvbIx4l8sg94TaqHmbWeDWKfSbeOAbHTYMAr17cvjOoBAY+eE6M94U/O1NM0boRmF2L02qnfHiESEFAAE0n4+UrVET89IDCjMG4Q3BGxf6o0WFWu/vNeR6kz7XkP6vVZclZsp8/Pp6yNU2o/o/x0XnPhPEcQoMidgICONL2tjylRB64EGpqCYPk3Nze71xarnSqb0bhvkqLrucUx+1qpd/HAbIOctvqKfCkz8OXLl51cay3Aw8NDu729bXd3d+3bt29tvV6379+/H9gdRfq+ZsDniLnJk6YdThm4jKgCAj19nS2X3z27Teqtx6j4JigYlU877LLsGTC1l+/5UN0+ZUA+VM+Mfqf+dNl3kEJ/wCkzHzNeN+oX979L6ahXGFfpYV7nIMAFVL976SGeT04mCT4HPLWBwpeI9aT0fbrf+aj6Ts9MszxvM/mowIzuSWmiVC8dgae5XQFT3yTkSoOsPl9qbN6L6DSr39V9q9WP+XRSimwdGHo0nx7P7ck40/l05Dzu+iaSrHF8fXqAYMNBwc3NzW7aQGBjs9nsGczqVcQ0SIzMnHStTzN4H5BPTpW01nb7yOu4IqPHx8d2fX2921pWZSed4tjKscgI63MqqmyRyFPErsuzTmEmk5fKcofHa93R8ptrA5i9SnbPy6UsEwzwt3Sltf19ADz1Ltn29hEA+Tn2DVP3rotcjyP9IkhhxmK73bbLy8u99S+ttYO9NHq23oHAUns8DQZ6qekqfVUhVb8uZQNSmSRPe9LIer29diTHlzrcDVwq3+eBEv8zypmidje6VURbtZ8KpP9VlmJmPNlHXBBUAZglhumtyRWZTig5SsqVHqftAYbKEHDOW6BgNm3bWjsAEHTErvzsdzrhJLNJthPvBByK3EcvVBEfvo1q6jfxwSkP8aDshECJ+vDu7q7d3d2129vbvX3iHx8f2z//+c/2v//7v+2///u/d+Oy3W4PnuVOgFc8iR8ZaRnyj0qV46+AQ/U/OTTKDe1cZR9d73lPlRWuQIDsqPuLFFC67hIIUBe8PvLG82n6IvW5gIVPLyTeJM9piu/5+bk9PDy0+/v79v379x2Q8iyFb5dc8ab2zay/IC1+hXGKjpOTT0JUCSidnmcKWBbrciPu9SeaRbvpPgoADYobZr+W356mSnWMUJz3e5XiptJ4NNnaD+Ci396vXp6Xy3aJUnqwN23wXuRtcBlNq+ilvFdXV7t3mTOdrPukoIy4uehPH0YFPm4pCho57l6/0ti5EWSdjEzk4N1Y6z/fyKa2810JNKDPzz8eHeR6AycaU387oqYG9ASBAICeKvj8+XO7vb3dk2E5bRnWb9++HQQJlH/nxR1Lsi8fhSrHX+kxybMxvDdlQ5kBZBm8xsntjO5PdkS65dM1zr/fT3vGtos/B8mV/We2wB171T7e6232a6QvsgNam8Pyv337ttNb6qODGa/X+yjZ7zfPDIzInTEVLykTo9IKBPgxChWv4eB5pxHppZSUt6FSItXDl7840cHyPhreHiL1e/S7ypa44iaA5KCMfaU2OMjrGZqqvxyRVsb/FJTAanWNHBudumSotbxg0MvtGWLyofHTegG/RvUp8uYxH2Pqkb/lrLW2O0bjx6cBJJ+bzaZdX1/vdvFTW15eXuLWqc6zgCe3XKWuUacpiwRTSqlqHYAiKt2nMgTUNM2ha+7v73dggOdUh9pPkM7+Y1v0qaYe34uq4MGvGQGBUfkue5TTyikmOyp5Ut/RBqe6evXPEiNn8iTZ5TqWZFNby7u+9gAk73H+nRIgoD5S/zRtMHqiJcmAvpfKwaunCZwhZ6KHqr1zExDQ75FxpWFMSNQdVlWOX98TUr4bvhfZu4E+lhwApP8OAIie03x1+u28U8EqA5QUwsfwlGCAfFTjyj7zTAHnH3UPs0KcrmLGwaOFKvOVriFfq9VqZxgcAFMWHQQwgvDUqZy23r6maQzOvxJIkm+W7zqeMkbUFV3jAEh1MTOj6QHKlC9O5BMHyh4wK+P9S4DjWTbXIfbVqalnZytHwbb2qGdjq3spy1WA5vaDdrm1fUdLEOl1CGDo3iqFn/SLwZin350qh18dHxEBg3RQ8iqQq2s2m80OyI6yUaPxPgYQLsoMeIeMUImnHCtKkXCKlFLKpxqUpMhMdyVhcuUagRgZYZaflEoGjP9FbmipJPxfpYV4vytZz1DwHneQ5JOGRP3v2Q8a0goMLRXM9yD2DyNtpvj12lI6Ujc0BKFcK8DHAAkgRG5oPALRf+qDIgbxoj6nc0xgwv8zEyTZ5Mr5JEsEBvrP9lUO07MPBCyUOxpMTq9w10WVoccbr6+vd9MbNLy+ONIzZBw79hl5rbI170kz9tNt1qwzqGysAyV39smRVlMF6mONG+WHmZrEW5VxcLlPcsfx9IwAgfOMs086W/WN808QIlJG6/b2dvdiraenp4P9PbztPUrZ3aWg4E2mCRJCXQIEREzVOWr3lKiiDaYP6aS8M3Suh/AdeY94rcrzY5Vh8WiK864qJ6WfUoSg673Pe4g98eORhLeZQucG1P+TTpkZqCJt/pZs+boB7frH7A7L9akwn2Lw3QJ1rYNROTuW6fyrD1P0RN4cOKpt3BPAZSXd6/cLKDn4Ec+M2qSf6WUs1AfV4QDHwZX6Rk81cHfEx8fHdnNzs4uqlL1hWvbm5iYGHMxa8D+dyCllV9QLXHj+GCCQzjk4SM6+F4i1llfap+t6vHoGTeDVp4w9GHFAU9moCgQ4SKiO8zensyU/epSWgICyeXt7256fn9t2u91bS+ABitrv/Dq4IsD+aWAgIf8UXXvkIOJg+T0pYnAwoLJdMVOKPjlLGhgdrzIQ3m62wdvjQjF6JnR0PLXZna+X44ad41SNw4wierupPFW/6FyF9k9BI5Cn4/7svSJ79ms1d5yinlQXwUOPv5St4TmfCpAD08fl3o/7o6C9rAKBQGttL0qXUaY+EQhst9udw67AgPpCURLLUdT/8PCwZzQ3m81uTYCM6sPDQ/v999/bH3/80R4eHnYgRYBAbaat0TFtoiSi0T8lGBgZ88rWLXEEVXBRUQX6k+z2ovdRHR5E0dkSENAmqS532qPpgVkQwHMj3qVnDohVlgKO1v5c9Cog0Js2rDIGDtzZJz8FDLjDZSSejJdT6lhH5Q4GKGD+ERGUJOREECDePXVT8TpzzqcNWHeKsDy1rzJULrMfyXgnwFXN23K8XFF67UwGkP1c1ZWyO73o4j3Ip4p4TLJBEKC5am68w7FRhM2FfUpH8+NPEDgl0JQi8wQgdK1Hs+70070uG9xaOK1tYZTOPROUoncjxnKqjZAc7HNuXxka11nuNMisi4zqdrtt3759a1+/fm3fv39vm82mvby87HjlQjYBDQICGlLKhtu6U9ESUFDRUlCTbLYfq6LyFJwsJcpispsiPb2SHu32LIBPqc06+tnsCIGAFgF6doByLKDNDcZ8fVdrdZDl/kV9P5udFy2aJugVXGUIWjvcU1mUBK0q0yMdChobLdRIAEAF9/KJBOmYe8ab370Iu4eI6dA9SqoyLh59+jUVSNH9dMhUEHfgveyMKzojQpXrWR7x8hFWZLsc8ePOnCvQ/RlfB5MJPLkRSs7cx8gNTjIMHjGlMumYWb6DOMoxxzL1FddAsH9YHlPrzBAQQKkO6SnBubIJDw8Pezwycq8A1vPzjx0Jt9tt22w2u8yE+NeTG8/Pz7sdBnXe+39JdP2zKYFvt0c837NN1F+WX11XBWHpd9VX6V7n3e0F9UPyIllRVsDlm8TxpNx5mc6nt60HApL/IBAQjwQEzBAk/Uyfyi/wPtdd8TILxo7aZ0D/SZXSSNE8ldja4criJHAq28v088n4+X9eJ15Se1xAWZY7PkburbWDtLI7HkYabuAlINw/nU6HUxyiZBTdyXg7PBuxJGJ3gDATaSyNRt6aXLF4jOOS9gfQSnYh7uQsWmsH96gc9pEDrtb2DaAbJoIQyi3JHS/L4rxqMj50wMwMeBvVPy8vP96KKIPsTx3wkUOWx4/q1jc39SEo0bRAa20X5SeHot/SQ2Yh1H+aj2V/+XsVCKQ84DhlZiABAf2eBSoO4mfLoB1K9Y+Ifcrgg77EnXqy4XwMWuOcdEJj6uW77Hl7Rs7fyfvTgSTby+yYAOrDw8NuaqC1tjue9M/bmHhx5y+Z7QUOTounCVLqoZeOoJIx9e0gwRtFh3MMOvdOpEFccn+KFsift1VG2Otn36W5Ie8fGiqCDRIBUAIwFbBK591Z9IBP1V9Job28U5DLlUc7PkYEBVJWl0fJBcEd72Ham0ahtcOFsm7sR/JOh0nevAzxJ/LnsBMYcDmoIkO2iXsxUI5Zppy58yD+uI8DeRLfPJech/SK/7nA0VO15EP9RJ1U/6d07Smo57Sr8aEsuY0QzTibSod7+pwCHf9IRt0OpXaxrNb2gzfaSgKPJOssw4F51faezWM/0FewTsmeHt/l1tnqh2/fvrWHh4f4umzfq4HtdCDAbDht1QwtBgMVCKiUhqhORECQ6iH53C6V3FdeUugZUfGJAxf+NMfkg+GZjdRGB0ueghbPSkf7HKu3XXNgaos/aSA+3eGQp6RgUhQenwUClfP5CMayR8m5emag2ptfC3xa+7HpVWuHj/Jwn4H0BAH7nP2dMjY0QHSSLKtnlEeGvdI73UdZ9+Pi2Y+nSEy6z6yF2wI3Vq5DBF4EChWglY3g/epHpmn5RkbpGsdPIIebvpyKKr3TMZczXpecvZfXAwk9fryMxCP5o11xp94L1JKz9gAtgQS/vgIBS4KUVL4HuCTVpUdhHx4edrsNtvbn47wXFxe74xUgGPHhGRN+ZunoRwtZUbUKsrUfHUX0xuMVebZAHxraNH/JQW/tx4sepOjcQbCqnwLqxoR8JSdOByPDxIVO+vZ6uNYhHauUxYWmAgHpeo8okqOoAIFfM2s8TkEeHSXZ4pjx0UCNoZyDZMJloZrHbm0/SkgpS/FQGTRGO/quxott7vUHZddT4ASMbJ/3XaqPsjcTeeleHwPfOTDJnmcJaBdoL/ioFx/3aq3trWmgfSC4SwHDqSnp3KxDr/Q4lZXKYMQ9c73O65NsrwcfFT/kwXWROkRZlQwmeZyRTVHKgEsnWS+/KXcCAwxOtcHQ4+Nj+/btW7u/v98DA7QpCXC5bjIz8NPAgBdKJ0nloTPTtyvtrBA7ENBxOVQCAp+3ZNkeOXik7YPLehwQJOPG6z0qYb8wS0ED7FMRFY2QrIOAyrE7Uve0dc9QVMZB33S4H8WAVpkBnvMUMceMckZDxnlMKi3livKSwEAPSLnxkrFLRo0RtChlJxzAuPxz3DiWlGmCf64ZIGBmqtZ5VF+IR4J6TrPw0U6uRUiRppNsBF/3TMfPKQi94fDh4eHAzrjt+Yi0VGd7GYGZc9V5v4a8ERDTaYuSzXL57gUicrpp/wFe68GQ11M5TwcCSY57Nlxyxjd/Pj097aYL+GpwrR3wDIoDDvYN9Zn2iDo3omkwwA6mgfRIiiiecyaM0BntJqPBBqoxNBi+qQtRPFGiUnx0vBRGtqm1PKXBQRhFOVWkKN743/vWBd1BjfNCnllORa4UNPgOCPyaqq0pSmRUWaHm96bEq0einMJxAEcwoDS17lMbUxTL1LY+ckjez67QHq0v7Ts3XuKjMgx+bSpL/eE6xx3TyKd0jQuZCKxVtusydx8UGOAK7DTtSCdGg+32iS9jenl5ObAnciga62pHuPci6qEDqxlyoO5lV//dNidbkIBj4p/leVTuck696VGvPtn3nu2eyVo5CPQoXMfocyq+5QepY9pNVPfxCZjNZrP3BERF1E2CcNqv2aDs6LcWsnJ30kQ+apAMZxIuj9IcCNBguxGiEdc9SQCSIfT/5C2hRvHo5zxNQ9DkICA9jpWcvEeAM6jWzzkASMcSAEj39aKLdJ7KUV3znpRS3yMiiPGV83RMTEu3tt/XnglIRDDgvMpgJtkUbzTaHskyO5BWxKc1CeSJ/cfMlutniqAp2zru+qi1GgkI+KZPvlbAMwXeJ36M9orjoz6VASZokF2bydz9DKoM+UgvSQkIu/OaifJ75GV7ObTLcqAK3mZoFhykabfW9heh9kCA5NJlv2qfbENv2ln1cdGq2k9g6nty+IvEku7zt4+zt2NEi8CAGk7Hxw1W9FsdwFXKnkJsbX9O3iMLIhtGI765i08TsFx9lBKs0rNuvH2DlAqR07h639AYEWULHKUojE6gSjv1gIq3xb9Hx0aGxEFazwD4OKtNp6Dr6+uDaMMdPBWzIt2j3zRuM4rnPEje0uJbd66sQ2UQYKusCgwkI1aBNHc0nn50veTjl+RB2S2CAk/Jcp/229vb9unTp71XF6uNnIrQYiylV2XoOSVAkKI2cfy0MFRG+vHxsd3e3u6u5ThxWuHURICdxrW1rMuUG16nbwdxrY3XdVWUynMH7FnmVAa/l9SbdCzxUAGqpeSyn/h+eXnZy46nzB2fduH/aiOwWd5mafGmQ2KExlSO2V81SmegqGIUJbEuzwqk6YjW9lOgNI5UCoKNJAQ0pkmZZoSSSsApEZ/HqlL9LrT874LS48F/p2N+T9Vvo3qSkdHx5NBOST2H64rp2ZgEJiijLkssi+NJxXYQ6gArAS6fhkntai1nvap7mM0jcUpN/5mp8PLohOVgFQVysx/We3Nz0z59+tTu7u7a3d1d+/z58w4QrNfrHZgXH/54Zmor2zcj025rBHC44PAjUQW+eS7pHMe4+vaykrwQkFT8OXkA0wPCvIc2MF3H6QD6Hi/H15H5+VS2t5ly5sEaAYH+u8zRlicA5/uEOIBhWWx3sgmpDSOalnIpye7G/98hU3kYodP5ySEq9cZGpPlkLgb06C3Ny6qO3hyRD6YrDAfKO5IZgioqr+ZuyOcoJab65fjdafC6Xhn+Oymify8BQJXAueA5ADtVqpXpbdFqtdoDl5Rfps5pjOh80rRTa4dyoXF3OWcZvgCXBp26oPp8DQzbVBl3RpM8zjqcdA/HkWV4Zo4On+1Q2j3pl0/9penA1erPdwdwfFSX240qK0DjykcMaYA98BAgSK9B/gg0MvRVxof/EwigDPUcfs8OVRFya3WmMAV4M/zQzrJub2MP+JCHiqqArgKaKdisyMGA2x7WPwOeeGyWjnpREUEA5/n0EeNcsSvFcsPqkUaaGkiLBxMgSJ0gg0Nyg0sB5LanOs4IpxflJsSuNur+SvnUlpQSYjkVAnRyRz9zrFfusQJWKel7ksYlRbHubGkMKhTf2v5qYp8S0r09ZK8yHJT6MZ8+c1lOUbobR/aB/+Y6CNbjdbi+iFfN7+u3gDP5ZvqU02QXFxe7fR2UCeDe7MwAzi7iSxkBZjb07YaWMqCFhJxCODVVtkXnnLxt+uaxFL16Gb16ZvWZkT0/DpBTRO+20GWAQNejZJZZleUAI4H8VIfzOaI0PeFBmk9jJz+QMu5uY2azyE6LMgOMTHytAB8F8gidyi0F8wiptUMj7dG2GzR2WkUEGcmgJT6S42PKtJpL66W8UlYgAQOfM9Kx1MaREi8FAT1AUEUZjn4rkJTKeC9iNkp8SK7odBhZtnaYYma2hrpAWfT04Sgacxnw7ACn5CpnSGOVznk2gH3Cfkh64ZkB7z/ZATlsBgGue04eyYt8SoXH1P/8uAyynxMQ0XFm4dSulIns6fV70NK6K/2lQ+7d5yDBg5bE0yygcFDAMtNUbnKGIskVx3gGUHhZLt+pL0QEMTPk93sg7Dw6cCWQYv1pMXAqq/JViRZnBjwr4Ok937GNqybdKBDFVdFRGig1Wt+jwemBinRM0ZY7YaZpEspMRrfHbwIDo2iS1/TOp3p7x0jJubgR6BkVL4f3nYJ8tb/4YSTILBSdoygZFZdRV/TUh27oPJJp7XDxbEp7p7FzIFKNUSrTwQF1IvHoZfM8Iy6fUknZRZIicW2+ojK2223bbrd72wq7w+/NC+s8jaQ2guEUnts5Zo7+CtQLjHr6SFnVb7cTPR1OTs+Ps9wUlFV2PNnJ1vYXimuaOGUFWEbyNymTxbJSZqIX9Djv3i9p+oNyyfucb/oft8kesHgZI1r8aKE7ajciNIxUIAcBbriWUm/OpkKvPSDA6xNAqOqqiILvAjADYHp1cfATJaV2Q5COscwZ5+1C3osWZgXyZxAdmkeOfp2u9Uhc7XNg4Y7Coy83kryutR8GLTnc1n6k8Vvb3wQrzSem1PfSfvJ+cB3wSIPRNdvqa1/EP9vCIOLl5WXPOetpAfW5v8hFn/SyoSqN6y9jIihg1kB1KgI75aOFx1LPdvg49wKPSoZc3yv9Ts6wAiKVveU17gT5aG/KCvC3n08AgP95jagnB5yy8+sru99z4Mmvpf5jWQQWkutZOzANBrj5BqcJODXAxjPN58w5CiIlYeUgjdApvx2keFkiH8CR49KgJLDjBtQF0gc9tdsRowwY+9IRY6JUd0KbPO/t9N+VwlZOL5X13pScmgNaX5syA1gJHEQ0Tvqfoizx5QbAU3sEC1VEoet6/e86lNqdAECSY88+6JEpgl9fH0Td42OC6jvZBu0CKHp5+fFY8tPTU9tsNrtHC30P92oxourntJvsEb/Zh+JX8nBKMDtLyYEkYOiOdxRcpHpG+k7ya3vAQXxVNsoDmYuLH5vYiZLOOqjw6wT+WtvP8qayHCBQ11Od+t0DBm6fK2Cf7DQDAmXWfvo0QWuH6UQ2lI1L6DtFZSOBUtmjNJ0be4/uObhVFObRlYwa90uongjgYqde51MgXNAYddKAimemxVSG90FCkqmvlih0UiSVMwIJaczfmySz5IFZrdlpAlFypiJFkRoz1kul1fh7Gtr7kNm2ZPAkk1VKlDLk6wJUX/VJdSVdVxv1ZkKS62+aMnx5eYnpf/HPR8YYxSeQRL1l/d73rtNuhAlWtPj5r0LuWNiXvXGeKbe1PrBP4z+ySx7xJllO9SiCJ9DjPT1e+E1+PMPAtLzOuyzM9qGDAPLpgNRtBn1tVbZnzH5aZsDJDaU6SIZBzBDBe9rQy6Gx87lFLiiUUWPnJufPKKjnREeoVcarmpNUdJS2ZaWBkdHx3bB0vSPc1vYdBwc8Aao06Kk96d4KhaZ7ErlCJ35OlR14eXnZUybJ0M3NTbu5udlb/MqsQMU/QYRPjbX24zFX9QlTzuRJZXJaYsZIUxZ8YxInjyjUdvUJowjK7ihDQCcsfqT73tdqn9YTOehSn2kHQF/YJ2JkT0Cg/vYxocOgraDhJRBQ2Rwj8X8qIEtK4N+PV0DAiePK9o2cb/rfc769Mr2syg6nunr39+p1ICBKWQEHBhX1AtXq/gQMRuNW2QXK9Uz2vaLFmQE2oLX9Z/Bba3sOT29p4nyfGy86WKYaUwQvZfcV3ER4Tm5gHZWlVI0DloTYeM5TyqMsxojYNmYGqs0q+Hupw3XnzTKSAvaOpft64OC9KAFDPqrKx9v06mItbFP06GXQgTsY8OmFBL482+Vlp6zETMTk1yVD76DTy09gIEXgIum0G1Ld11o7APO8Vml/2Qk+/++RnOpnBE++3T4xaKDtSZGY9x3LeK1OH0sJpLutS2CAdpnAiPcnm+lOOfHD6yqdPhY89YBLdX2y6xUgcL4JXlmO91nikT6v4rUCJInfCgD4t489gW36zNLizIArRuospimIUFKD07ws63DB9eePW9ufa3KqEGwyrOQzoSoHQfwtQUpokmXNomW1vXK6swh+hryOdP8s8nZePwJxWosypIyAMgRpG1yNJxequTJW/UDnLqPD7AAdKKctKOskjxoY1VdKT9BBPSHg9ojev93YuoNihoBG1KditB9BAjva8tfBAPuSestshrIurNf7QPWkbIqD+GSTPhL1nBQ/HA8GTSICUPZRcmjJiRJo8doZXkkjZ1/dk0BQ+s1rad+o3w6OHFD7sYoq2UvtqoBACvCon2pHqidlCGZp8T4D7pzZsXKkygIkBfeouyKPnEQSXj72k9CSK4WOq+zqOgICUgUkeH61+pGyTP3Culkm7/cIi+1O96X+0bcrgl/jCDfV5cerfhlRBTLeg2jwOA/MrIAAgf7rekadvX5xohFmdocGemZawMeKU04e5SZ+RpFKAuJeVqXn3i80rOoDZfIEtjwjwfeGyEbwDYXen7ye/aFrPLvINpN3rj1I7f7o5LrrztltmstYZcdZ9qjudHx0bxXhLiUHJj0wkHh2kEKgTNuZ5KLXxp4MVfylT4/Xihf6r58+TTBKVbT2Y1UwnwvmW5g8S9BzrPrtnSNj7lkCGgEaS3UUjWhSGhkbXUfemeWoyB36kmzASDFmnO6solUg4LW88HjPIZ2CFGkTTDI7oE/1Ol6WI6Kcenspt4w8e+lHXitgSSDjBr5a2JrS9T1QQMfKaJGRsu73OXaPrJwH6ap2F9Rx2QP11cx8Z9JXtxMCfFW/su8S4OC1pFPJsAcMzkuSpR4YSFNTtJ0sP7XZ+7zitbrHy+3ZqiqY6VHlTI8p1/skjUXFczruPDrAT7z3xkL36tt1h2M/Q4v3GeA8qT9CpYYSBOjjj8axXBrLFOE7H639eMkJ95TXPcxIqKPciPoiPp1PzyI7oEjCzUwG0aQ7SEYvVUQ5GrwkpAmspexAT5l7YE/t92MjxPpWkcBrSLJHEOCPx9JRiQgg07gzCk1Ex6dvfwyRZbW2H71eXl7G5+hdjsljkofEu4579MP7UuaCTlTH+PpwffQ4IHXYeUwGLIGBZDhT9oJEx5fAP/uZ91S0xCG9JSX5Gjkc9m9r7cDeVLaisgupbP12ftK9x+p9sl9LyqwcebqmV7dfNwruKtDG35Rpl8uKh2qM6K/S1PwsLZ4mqBZPtbaPThwM+BoCUhWJ0WDIwGjVPlEPn5NmJ/rqfz5u4UZB/Ota/99TSP1mCjgpCts7k74hb8nYsXy23adXyAMXlKUye4Ln84+JH7+X/08FBsQDp5eUwqYja+1Hn7vDpSxQSZ+eng4i0TTeAiPuxHrKSideObBUL/ubDt1T9G7U3PBUPDG9zuyBZz74xABthe5/fHxsm81m9/F1Auw32ggdo+ynrYO9f2mbOMYEDUl2qTPvTTMOJzln2g21i31WAYqqLrcFPWdZUQVgenz0AMGI5/Q71evXuv5U5Y/00NtGPUvgPwHTnu1kOSmr1uMx0aLMQBUVyUCImbQqOBkzlSeFdEPkkY2MRwVKtIjI61I6lfORvnhI9YgfTyuynYl8FywXoqptXrf/TuPg/c86EsqvEKcLqy/adH68vxK9ZWTwVsRH6fxNe77xjbJJkhXJMcvyRXA0IGm9CJ+Tr6aQfEwonw7CKpCajGbl9BPQINGJ8LxnBuiMBa4E/n33RPKvvvadBVP7vA3ss0rWZS9U3sPDQ3t+ft5bz+SPQ2tsk336iFQ5CP4mwKmyKXR6M219TVTuzn0GmPSuqUCC66bfP+q7BH7SdSPq6V76pDZ4eRxL6lMCAj8FDEh4kkOQ4nG9QMoIzDDWQ2JMhWi70rQ6uUJGdPbJ6DgAkDFhH/C9Bc6frlEZVZuWDFAiR/k8niKbSuhc2NxAuEK4IOqYn+e5Y5H9W5LaovUA3GVQfHI6qLUfSJup7cpgcV5Ozp8GWOOVMmAjQ0j+CQ4Y0eqa5CQTQOH1DpxT3QQOBMosWwtnn56edm/9k9NdrVZ7bwOl0ZJOcf2PMn8JnKdImHaA4+m/aaN8HE4NWHuUnBSPV06DYMCzUpWdTdHyjHy6XM0EPwkoLKmT5Th53/Si65n7e9fO8MkyU13eDyM7rG/ZrWrTriW06NFCd6b8zxd++PRAQiwekSZB8OehZXQcCPj91dRElRmowMDouop/P+eUFC6db23/pUnpBUruAGapMqoJUKgeHzsHAjw2UsL3JG0n61tqM6X8+Pi450z8OXRRL6L3aTM3wt5XLK+1fTkapfR5D/lgfzNjRiK/boSSbjMTUGUFPLIkoL6+vm7b7fbgKQ2dZ5TufTdjgNlvBA7874uZCf50v+v3zPqd96BZHirwTVBAStlLl69ZpzjjnB0o9OzfDKBwnj1QGdGMbFX9MWO7CeJ7ZVbHfQy936hHvYzALCiYBgOp46g8CQgwAq8Gyec0eyhX87MyIoy4BBTUSe701SGVgamyAr7QcImwpamPqj9nBoxGnpFSqo/lyhDQkFeKUDlvCjYdvgsd+/qjAAJG0g4CNMaMYl2m3fnxP8smaPO261rJL1PTre3v10+ZdkChMaRTZT1qL+fy+Z1S/yKOn+t2uk+8tfZjHYCOk5jG9OMpA6cykmGrwFMi1cvx5RMYBDjVEwjVeqb3pJHTcmCanIZPNaWgbFS+6ujxlOzPTHleZhUde120Q9QLHkt2KvFUgZQUOFU8p3alNlb39cjb0AMDx9A0GNAivtb2HbgbUzJFY6oG9ByFGzRex/SoMgZasbzZbNpqtdotBuOjjOLDBTAt4hsBgR71FKunNJWQ+bUUcvaPl5fK4b0eDSZnnsqp1iokAR0h//cmySvBANcMUMZE7hCTs9A5AgGlykWj1fKpHwlyxTuzQg4C9O2ghWUlIMl2eJupN25kknOWU/UPo29mX3x8/L0cBLBsn48pAZO3yW0TgQCBsexIiuIIhE5JIxDv17R26ITcSabx9PJUjtffc3wzep+cb2W7elTd03Pox/DB69NvLyvx6X1Y9VMCHBwr6og/kpt0eZamwcB2u91bCEXF9WyAM0fF5OD6bwcb7JgkFFRqzgO60a2cnI75Y48sL2UC3KDSIXgdqU3kPfHjZei/G8ok8D06Ngrgf08HJ/5HRua9SY7UHyXkY6lVRMN2VlksOk/VR/lxnfBPa/tgi0DY58Ld0ac+TrrjhkrlJH7Ek4MD9gd59giMOuft843C+FFWRH2gTA3bwrLYDo6b6uX7URwIOPBz4MHye0b+PSk5n9ZqvU6OwcEb7VYPFFQBjcujvntOc0ReLvXOeWK7KH9so18/4q/H78+Qg16wSKIOEgx4AH6s3Z0GAymVR8Y4ReBONTnX5Gha209xihjZpXUCCemOUJEDFT75wKkFN2YVUqURn2kTnbvun3XmngoTOZLvleE0QudJQUkac/GWgMGpwIHeMyAgoA1wBAbUJn/u34ERgYADVu8fkQNR/6QIl46T/5WhIL8jmZlNc1Pel0QVfh3LobESGBPPPVki756dSxkAfTvwkk3S2xSTXgsoennqs5lo8b2I/NBBj8CKgzq1P2WJ0r29ehIYcF51r//uBU/6zY3CKgdJUKOAkwC116bEXzrGPjiGRveNxjKB8mqK4Fhbu2iaQEyl9DqVj85/xBgHujfw/t9TkUR9Humn9InzXfHO+nqUAIzz7ou96NCpmJUBJ9+cM/Y2JT7SOoNKuVPds21mNPdRSG/Lu7u72717wHcclNy0tg/MUrrenTbJgS8zAr6oleQgw1+lrA+dqRvzNJ48787E6/cyk2wkvkeOiP2SgJHLMaM5/vb2kDiFqL7WokGBAd/Aie3xzKR4HKWp34OSs6wcaBUBe9+6s07Ou+e0XdYcFLB+H8OZ9lL2BeY9AGxtPyurJ1mSze/RLOj1PvDzvWg+kfdXr3xG/vrv/s11YykgWJwZ8Ao8M+BpxvRcvhtUDnxlZNOiKhdO/5ZxcETs/1NGwyM6fieqMgPc5MbPEcGm+51ceNJYVPcl4+//K+Onc5omShEd62YW6TVpq7ciOf0EBrhz5Wq12s1rs8+41oB9wfazvbo3zeex7xjpuuNnme6cJCv6n7J2dHbiiXIziiB0L6+jvPI68qy6GKGpXn+ZEJ0GgYH4p3N3gO6Rn/c5nx4g2E9ZF/LvY3pq2X0LoqPQmDgISsHSjCPTb5cDjm1rh0/hOH8V4PHsmE9TEghw7Qf5SvW4DB9LlW9I+piOj8in7Oj4q+mBY2V2ERjwuTYyyWeyCQB6TohO0AcqKWePRoPhx8Rnmn9xI5CifKdZPt2Bsp0EBD0AQt657avX4UpRpVhdcSu+dZ6paipn6l9OG5wqY6Btq/lWQm5B3FrbewEOnWdrbW/RIaMWjtkoGklgtXI2BIrMBOgcy6RR8Lr8d4qq9E1jk/jvRaLOD+WPcpLKcP5dH72feJ3K9eCDiwWZIRAY0PQDpwjSm1D1ncD0e1Gv7lGUmsamKn9WNz1A6vHEsmemJCrq2R23M/6d+Jlp36htvD5lYtJ1yTb0+t9tRVrbRiBQ6f0sLVpAWDncxNCIGaZDW8vGJi0cIQJlZqG1w4V8TiwnpTsr6hlGL4+LLInCq2kDpu08Kukpe2qbo2c+rsZv8eeGODkE72f/0HhK+WRsGa29vLzs0n3vTVokyCyU1g8QrMhBuOMlAPDfHunz4+m7FMlyzHrZrqT4HD+BmWRoesYm6SxBzSgFqbIZ/WuqaLPZ7K3JYDZD97ndcFDmzt8zjeSVAUnK8LGfPSvZy+Dx+xTUq3tkIzzASjI6Cjyq8r1vq3JoD6pyUzBIJ6i9Qnptrig56YoXL3umrtRHyTH3fGM65+NUTae9FS1aMzBCdxWDM4PoyF+Gwp0oDQq/3ckxvcg5RE5neBqxN0WwtJ/c0SfU6veRepmGESpX/Vo9zw+jWG87nUoVRah8leV8pidKGG2filJErUiRUah+00m7vNFxeFqbEYnK0DwmjZK263VyIy1D6ueYqfN1CO78ExioHHwCHDrHa3iM4Fx8K2vFdooPga7WDtciebbO6+/ZHxrLagdUB+cpuGBfOcA+BaXxO0aXKkCg8kYBnDtsfmZsUm/sPOhTHclepqmNCrRW/KQ2zd7DY8np+//RNSl7UQUW/juVeSwt2nQopYI9MtTvWQYZIXiEr9++sNARPQ0vI4lqwxEa09TpSyghzp4j5flkcAlqPN3vlMCF+ma9Xrerq6u2Xq936fGbm5tdmdwXnq+b1hw0px5oJLmwzRe5tZbBgMo6JRigs/EohYaETofRv8scI15dn8idiMaLjx96GS6TzHbRSfqahLQ+Z9QnyTgpGkvX9XSbQEBlCMzQsBPgeIYqfZLNSdmbFIFVOpbakECBZ3D+SlRF+u7Q9duvG1Hq51EWYxaoJiAgnaSuUVZdR0Z8VDz17kvt99/pmiX+0MvtfUa8LrG7izIDyYAdQxosOsYKEDhqSlkBGeYUxTB68r0QaFBnOnc2ZSRePCMgcuCSBMb7I9VNA8WpAaXABQI+ffrUPn/+3L58+bJL1W82m3Z/f98eHh7aw8NDu7+/b9+/f2+Xl5dts9ns+olt9w17+Jw+o1wHYRqDUxlUAgG+1rqKgOmA9ZtOwqcJCMSoHymrxewLowDKhxs7BwNsj//WNSqf9Sfj5RmbnjHifSrTnTLL9cwJ26vrPXtE4+7ZKtcFRvXeLvaBX09ym6J6POt1ajAw42h1Hf9XZXk/SQ5cZqr7db4HFGeAgZdbZQcEBJL/8QxSAgep/qrO11AFqnq+JfXfsQDAzy9p26LMQOU03SBUTFTIykFAa4fK549Y0Si7kZAApTQ4o6pkHCtjMQIDqU9oAOlYPepKKbAeyTGrTgIBOembm5t2d3fXPn361H755Zf266+/tn/84x/t5uamrVZ/zud+//69ff/+vX379q19+/atff36tX39+rVdXV21zWazx5faz417tBCP0xBqL7Mxmp65ubnptutnUVooqr5ywMVpHl8XILnjRkUcK5Wn6zT+TJPTqCV5ZBRUAVzqYspuUe5ES8AAo/EKDKTIvHoagvUk4EMQwPrYL+SBTpv1sSz2LcmNv4MGri2hLp4qq9VzZOn/Uj6TjMzYbt3LseI0Uepj1tHjh9dIH91upja4PnjdozYlQJXu75WZzo/KcFBV6fRsm44FBG+yZmCEmmcEgCAgGUGVkxSVSFBrA/gaZWYGKnBQKd0sEHABYnaAz79W9+teZkRo7Kr5ZedVUwM3Nzft5uZmlxn48uVL++WXX9qnT592c7n39/e7jMDXr1/bv//973Z3d9e+f//eHh4e9hal0bFpJf56vd4BAgKD1Wq1e3GVsgyPj4/t+/fvZR/+TPJVuFxV3lqOBN3A+ni4k3BHxDFlZM+ydF+PbwIVAoHWciaJBoPGzUE8+XTZTgY1AfeRo3S9cGNLHpit8/MJLLvj8iwEnRTBBtPMGgfVrf0o2A98HPIj0FLHP4ruSQ4Me0Sn7YDAr9Fvl8Eeb/QZPR3xtqR6nGaCLf6edf5Jx0b8Vse9XxMgcHC8hOdE02CASpsqroxkVZacpF9Hw/zy8rIXbeleRlNuWJOz52NGs49A8tiMQo0GgAZI96apgzSw/oy7A6I0n71er3eZgbu7u73Per1uz8/P7e7urj08PLRv377t1hjc3Ny0r1+/7sAUhZCRsYOA9XrdPn36tCtH8qJNX7bbbfv69WvZPz+b6EA5vcR26aPFkT1kzlS2vxTLI9fei5E0tSCn5P1Nx0eaMXpOM9dWelBNY7CdrR3Ou4s8UmSZ/p/H3CEk/aAuOBgiiNa91BN+vC2nnhporY7WRw7NHWoVqffqTcAjOTsfmyS3M87ZAaNHzEkH0v+qLgeRxzhMpyVAoAcCkqPvgYAe76N+qmgRGPDB0f/kyJIA876U8iFq5/1JEFPZ/klpQ5VBY+4GJNFMdOAKRGMi1DyDdmmM+I53fcvIEQz4hji+376PG1PXTOnrusvLy7Zer/f4VX3MDOj79va2ff78ebexD1N7m82mPTw8tD/++KPbfz+b2D7KlPqKCuiZI7022+9v7XBDLn4zkmUmQsfSI1cJ9atujYOvwu8ZzJ7cemRNg5n6ivfxGl9Y6o/pMXJXFqO1Qz1I4IvymkCw6vExuLq62nsfge7XeT6yRjlXH7CvR9Hpz6YZ+0Oi7XQnxbGjbKbye3W6H2htv//cHqbyKG8j8Mg6/Xd1XQpOl/Sjty/97wGWqj36dt1Kzj4BgtSm14KbVz347QjLmRwJsE87MC3a2o8XvjjCby0vUOLCNaaG/R3mPg+ZDLzaQWHy1G41AMxiECilyEfn2E7xwkjVX6zjIIFGTg5bUwXr9fogGmLmhQZB0wCbzeZgXYXq4Yt+BAaUdRAg4J4CelrhX//6VykLP5M8G6P0r46RfK/65HA4rp6BIuik0U27N3Kc9e3z5KIK1HobSW50UrRHGWSb/LpqirAi6lTqQ4Jxz9Y50CCvvkaoMvaUaQEDAgLPtlFGyHs1lfJe1DPwyV717JHba7fdnub3OipeljghzwJUsslyE0Bcys8SJ+3nK9BR8VVRL9D0796nV37idZYWLSBMhbvB8vnRiik6Ry9DxlpzfBJUR/LulN0wV2sDdG3V0VSeygm8hpJQu6Ck6Idb6OqbERn513z+7e3twXTBzc3N7vqnp6e4EFBz/eRVPGlHPwcDWqx4d3e34091bLfbtl6vX913x5IbeZ82eH5+3gEYGiyXqdYOgWiSNzpQd1qUP4HV9KQDy9cYeLaLeiA+Ukaqtf3FWCJ3Dq3tZwl03MEA5ZKZDl3vESfBD/U7ZR1I7jB8TNP48uN9pT5RWcpGOsAiOPpIRFuR7NWSCNEBK8sULQFByaYlwMZjVUbC21LxmHyN35dkc7ZtVb+Qpxl+SDMAoyp/htfe7x69GgxU11VpntE9FIJZVMaogo8P+u8eCHAenB/RTHTk93jfpTLSvKsMkjID/GaEz+mD1erHIkLN43/58qV9/vy5/fLLL+2XX37ZZQrUH3LU+tzc3OyBAZEyFwQknCbQI4yfPn3aZTBaa7txORWNFFPt0rfAFadfWvsBCGlAK/BJ5+dRUE/+Enh1Z1UBBY+uybN++zqb1Ffkl21xwNkzpkmWHRCJp54joi45KGHgUdkCz9joPpbP/pYMeNtPlRlY4txbW26fk23yRYC8flTmLK8zTtltTyp7NC6jrEgPYPpxl9sev716ek5/dC7VNzM2M7QIDIxQfDpHw6L/MzQSlDQH79MEHjmNkJY7jZHB47VVmeRzZp2AAwGm7vlYH9cOcNpAc/2au7+7u2tfvnxpX758ab/++mv78uXL3uZDMpr+BAL3GiCKF/DgY4z+KOPt7e0BGNDnFJTm7Wn0qwVlvo1xpdDuwFvL2+cmmaqiatbDrITKprFI619UVjJKis5Vv87zm7wIQDAT523xqQACK+87z7b52HhWwvupZ8h9PPwRTJVfzU+TfGw+Es0ClJ7drZx4FZwt4c2pJ4uzlIJFP9+rf+k4Vs63ctrVvSkw5P/eJ1EFMGbbUdGiNQOjCpcySaoGKg0iB0CGw+druakQjcSo/p5RbO1ww6DEdzJ8/ltl0OAkp8RH+JSep5Ny8KAnAgQEtNnQL7/8sgMFmiZo7QcY0D2qy8GA+HMjz/UM2uVQTxSoDgK1U5AyJW6A9F1lXdgG9a8bHB2v5IvH6SxZv/dTAge+AE9l94y85L5yoD73ntrHb66z8MWQlAlfRKhjBOWqh5k6n1JgP3nf8R6Vw/IdMCVyQMM+oH59NBoBgaUOtip/aSTe46vSvaX9W9nldN0IFPA7gaHe70S9rIL/T9H/iBxQzdASIDcNBqQYM4BgKfkAu9NR/a3tv1WOvHBagAsGfYGSTxOozpEgJ0NK41/d21tnQEdDA8rHA+Wk5WjlsDxqkfPi/L2c/z/+8Y/2+fPn9ttvv+0eLdT8uECTHv+7vb1t9/f3e9MEKeqjIsmRCgis1+sD433KqQIuHqOzUx86APB1Gb42Rffr29cUMAIl4HN5ppNOGTVfc+Bz+aMMl8tsiqRYtk+JqA1VhEh58PUDPK52exkaA4L6xCv7j/yxvDQesgkMEtiPnELwpxXYH6cGBFUEfGwZ7uASwF2SCejZz8p59SL8FBlXsjHSBefTx3MJIKiceo+SzPu9S7MDaZwqGVkyjtNgYFYAe4Lm0Y5fN4pg6GC4UMqzAf7pAYHKEM8AGwcEFfWuYcqUfcNthfl+ATly9iEXGN7c3Ozm7jV/r+yAUvgCFeJN0wSPj4+7+rRhk/pZhtFXe/u40Cm6AT/VWwuvr68PnMVI6dK0AO9rbX+Fv3ZZ7AFEglyOncqi/Prb+/hkh68n8N0LSQSjdL6ui1X0zd0Sk+4wwk/6Qnlmn5AvypP3sc4TaCTn721OjwO6vviUF6fkBARXq9Xe1tzvTe6k3gOY+Pi6w3Rn2gMCydH37ksOl3V53QnkOFDs3T8iynxyvhX/FbDwcqt7Kl5SnfSbiWZlZhEYoCL20JK+RwNdCToVP0UcKpsg4OXl5eBlRD5tUBn/1IlJ6FKE74CA14wMiM9lyzhxUx9mBvRuAX9Jjozt5eXl3vSAQADXDygzoPlyvW5W/Kosgi0aTfYZI2aBkY8UUYk8WnUHyMWT6nv2M2WKDkvEaJORroNQRpxJpv0JB/IvIKXyqswXiXJO40tZprPWhySZoCwnfXHw5P28Wq12GS2Vy02a2IdpOsH3zaD+k9fEG23AxcXFbnfM1De0O+KrKvcUVAVYyd7ORocp0qwcvMuRjiV979mA5Kz9d8VLrz6WWwGP5MhHwMXrSP1VtSO1vbpu1j+NqBq/Hi3ODPQG1xlxRFXdWwmdO18KACMJf1NeWkVcAYEZYl0jmo0gfK0Anahv4KJ1AJwmcAHV9coicO6eUws0+kqP0lH5rnw6l949wBQrDSj7mZmcU00TaLzJH/uM6wP4hAZBksgBQS/rpLoliyqTv5MTdSBAwKZrqginF6U5T5ybdxn36Tl3LK5Drqs0mAS7BPysV2Ph9kLlqM/Ip3h1AKHy3aE4AEqgSNf6/iYfBdhW4967bpaqvp/lp+Jv5DMqp5h4q+qd4WeGpxlKZRAwV31XtbcKRhMY8fvfUi4XP02QnKo3xp1/hfAcrblyev2awyYfCQz47xEQIA+98yJPb7Y2DwJ0f0LWrI8RpC8iXK/Xu7oZdSrFSScmJ7zZbNpms9mdd4V3g+08uTH3toholNmX2onwFMQNlFI/+2LNtHhQcqbfcupVpJBIfZPAgD4CXA4IKGe6X1Fuaz/WRfg0xUyEQd1jmyu9qHS/cgS+HoZ9KMfL6Qt35E4JfPXa5t+edeR4E9iSTjVNQJoJxHisBwp7fZvGm7bcbXjiLfV7qtfLHo1jqiu1oSrrmIi5qrPyZT2nXx1zUJ5+9yj5YH3PgLrWjlwzsIRJpxGqcUDAyPLq6mpvRboMSQ8IpMzAqP70f3Sc6c8llKYeWAezBYz6mY6WYVXKWyllObCHh4e2Wq32gIADMT5bLb5ktAVIfCEY0TDBmb6Z9tYLpE5FFchLToEbOknG2GaXO/9Wfe60yAeNroMwAsHW9rMRGjOu5WDbZtexsF/o+BPoY5k+XeDAvyL2sYAU5Ve/NUWV+ivJWAUIHMzqmL6pdx6IqJ3k81RPwsw4rlEk6r9HNHutBxUVAOiBkhk+q8i4KtflYTbIq45VVPGVjlU2IIEBL6vna48FN4kWgYGE6pbcm5TTo1D/rXroeFr7YZSqJweqRWIuIJVAJN587tlJhn20YDC1MRkvv49PGNDhq126RnP3Wtj28PDQWjucd9V1LN955yY1vZSxPlz4xrHRUx4fiRglpkc6laLXlMrFxcXehj5p7t5lrQKj3ocpcqLcJZmqnN9o3UqSOU4h+VirbfrNj/OR2s++Jth4eXnZAXxf9Ed7w3K8Dm8XMwupzVzP4gDMy+Z6iVOBgWMoyVQVxfo9oiqS5/klYNDLJR89MNCLbFlvskVVmen+xKMHTlUfjXidcfh+Pe/rXTtDs2Nz1A6ElTKy4srJuZOlg/Vne6WQTBu6YdDUQcoEpIU/zkviP31oIFs7NLgeSek4yY2PftMAs1z2sergGgI6JdbB59aVGXh52X+ZjJwd6xSgcMDiRl1TDx7B0SHqaQTuAHkqg0rZqWSR/aK1GeoLjoPkLE2ZeF10cDqmPvCovyIaJF7vbaITrOSadbPNXCfBrITrJcF2ciaUBWUu3JF6f+taTn1cXl6WwLEaS7WLfa/yvZ98OsAdlHjSPafcI0M8zRj05PT9nDuXypn3QICX1wOy1f+Kx17d3hby7/fPgJgU2Hm5LH9mDBK4qcCAn6/a4G3p9c9rQMPRYCCt+NXvat5/iYCwU10RmYplGk980cBWwGWECL3dcsbJATvv6bxPfSRQwLrpTLgwUk5dRtzrJXE9ge5Xun673e4eL6RB1D2cknHj6NGhjD5BGQHD09PTDhycgjx939oP50gHKjCg9Rm6LqXp2UY+hpnAgOp1p95a3gGQUTdBg4Pc3hSYKIFUEfnk/cwSsL165TLvpx1wmde00Gq12v3m0wqUf5chf4LD+9WJ5xyAOgDj4kDWJz2Uzuj3qbfSno3sWsspdLen6fqRw0v2cwak9Oxs4msECJKDTo7U25TAS4/PBDacx/TfZTWBAeex4rvXD0vozTMDnDOsUoTu1AgMKgb17XPU+p3IjVgy9PpPBe/xQZ5TVmCklMnQq138zUic6wE4R9xa23M09/f37du3b7tHBG9vb/ccOQ2q6ieAolFPUZCTp/hpTBl9iXf1jZ6114JFPcLF8k5B5DtlUQhi+V4HTRPwfk53uPNKYMCdrUfnLrOUM49amWnwjILLeIrWVIbK1vkqg0aZ8oxd+lb5bqAlE5xmYbuYGVPfsg9pb8gz20nSWPm0GLMB3E9AiwfFt9eXHtt8b6rGtyJ3msl5pjIqmfKxZ8bWp4IS773fKSvRy1TwvNuUnkNlW5J/cn4q/ioAkkDrDBhI5fjvWeqN2YgWg4EeaklgoHeMTjHVVf1nZ/XSrD0EyvM0vvrvRjBFWOSrAhxSGic6cPKpNimafnh4aFdXV+379+/t/v6+3d/f75xsa+0g5UlF8VXrrMOdlUf8NIoe3SbApPPcqIjt9jF+T3p4eNgzWOwrHvMdILlGQ/s+XF9ft4eHh/bw8LD7fXFx0Tabza6eXmbKZYz/JUMcE5HrEe/zqJbkkXzSxYoqUMJ2tba/FwEBD2WKgEl9zf5Xn+t63+uC9ocf7yOWqWxDylRSz/Q4bcqyqD2nAgOjYIbX+TXpniXtSLY+9SFl6uXl5cDmzMhcD9iO2jHjZJ33Su79eLLdLovJZiZwkManxy95SgCpRyPdTrR4mqD321PpbEQCAlJUKr3InxoYRZVeZ09AeveSPwctrghqA8tOfFaAILWPxl2ZATmah4eH3SOCm83mYFtiCiQjyNbarp9HqWXO2/JlSDrnAIZtfH5+3k0vKBLU+NP5vjcpY0GFYn8Q+D0//7noUpsz0WFrYWFyfmobp630m2lmB1TMFjHLo2v5nQyOp/h7htMBiurRAkktlmT9PhWVPuQnPW4pWaYsJYDu4MOzNlVQwPJEuj5tAa3f3t+VTPvbOz8aJSfjMrTUMYzqcruuOggIWmt7NoDXjOpwGarkurLzI1tPnUqByhIQ4J8eEJjhtwJ1ftz7MfnbJXTUPgOpAWImMeHKVimfAws/ntCRC6O+ZwFBxYsb69byKm0675HBIJKmYNFA0fDIIGqOX4Dg/v5+b1ti7xc6KEZnBApKd3NRobfbt8/1aQ4qlqYBttvt7l7VeUogIP586qS1H2Mo4PPw8HCweE6PY15cXOxNzWw2mz2d0BRDeryVuwe6cfCNphLgcr1LlOTAj6UyWAfHaWRYKz1PwJm/JYsOvJWFWa3+nG6S3BOgeeah6gOSZ4BGskw+uXbh1BtmtdY3/rx+FAFXNu9Y/sgjp7+c9xm+kuN0QOPl+j1LbE0CKWnqwH0Jnf4ICKT6Znnk9b3x6vXv7DgfvQMh546rSitHna4dRf4JELCMtFXujIN2oiGmQU7boaoepTRpDH1uloaPbeZ5ptwoaIzofUFh2qSmMvZulFkOicBA/c11Dd7/Ly8vuwViXjfn10/5rLb3a2s/1mVwfcZms9nLtnCMKfsCEJo60PHeUy1uLNwp+dQKyWWBIESylmRO9+q/yhH5bpe9TIWuT0ZPbRFvurf3OmhOEyrLdX19vbfAVS/Murj4c4Ml1cXME9vI355NcN1mfxOcU9f48rNTUxUM+f/XAO/ZoIbfHhBRd1iuH+PUZQrkKl6q473oOvHjbdExz+RWzt9lpZpmqniqji0Zw5E8LKFFb47pRR/8n6IGP6/fx9btBsp5ouGjgFVoswIuDgpYR2v76UjOraf5Mr931N7qvwthBST0kdFk2pMpYbYlgSE5Czm91CZukUxjK+dxyg2HSHSGnNvXf4Itf+SttbbXH3wUUY/D+ZoBlZuAQWvtwDkl2eCTMmm6R+Obdg9Um3Vc/2m0BfbULgcC5Iv94dc9PT3t3c8+0vsw9MimO2TxofKVGWD9dDoMRtwG0WjrP/sjtcsNvnSEQPFUlBwK23ysA6iizSXOyMcg2X8/xuxB8hW011WdS/mcKYPHHFjrvAN910WfNu6BgR7vFXjxa/jbr+HYzNAiMNBDejODstQhprqTYpOI9In0ZhB1coS81qN6HueiKfLbo8Q7FSc5CQcCSp+6oWcK3KM1N7CM0AgQeF7z5953rFeOkYpM53UqImrXd5I/d+KttYO28D72Ox/9dCPnIIAGpDKiSa+4UJCPRaaMS5WB8naOwK6u950O07UCI9xGm2CA2YEkY6nvuafBarXaZcPUfzru/eXzu8lxsr8JEJkV+AjTBJXTT4DAZXuJM+jZ5yqqdWeXwACnhch3Ciq8bbRnM+Cn116XuarPSEkuRlkB9teSCN+vHY3jyJ8u9bFHg4GZ/84UGzQa2IT0U1ZChi6VU5XhfCVend/WDtOwfjyVkyIS/10pRQImNFSbzWbPIak/6GhkjD1dqm9+KmVWpKRrvL3KjugdADTSAgNpOuK9iNkQOhHxvtlsDtLk/qinjqlPFYnrW+dbO8wesM/SvhG+Wt2jVK6sJzBxMEJeOY4EeDRipCqqkEyofPWljzPL0fSAb2jE/7rWwWiqn08g+Mp/Xss+4wJOZlAcNLucV0Dg2Aj0taSxqmzciJYCgcqOJsDlWQEeZ+ZG/UoZ7IEc8jQDAHit85TAX2X/KqLOSD4oK0keve/8eNWGVDd5re5JYMLLGNEiMJAiJ57zTm7th9GSQXCHQ8PQa0yFmqq5TZ8vrMplWTqWDGNy1Kn8xKvqUIRVtYPtoYPRnKvOMStAI50MtcDA7e1t22w27dOnT3ur6/lR9O+7szkYYd/pGMeVq9Ofnp52+yT88ccf3fH4WaT2clFfa3/2PRcOaqqDIMoNl5yRHN7T01O7u7vb2/Wxtbb3/Lpvy6xvzYdzd0YaF41zaz+iZBHHL2U7NG4+L+6yLtI5Pg1B/dT1dLSMmlSnl+26nnRf9sGNrd8vPSDPqkv6Rf7kxB0Iu/FmOZwWoPyeEgzou7JnlZNIgGf2fh5PgdSICIhbawfgoJqGEtGxetSdrnM+KxtcBWBJPlk/ZZOLhMlbz3+5f5vpy9H4VYHbMaCxtdZWL6eS8jOd6UxnOtOZzvQhqH74/UxnOtOZznSmM/0t6AwGznSmM53pTGf6m9MZDJzpTGc605nO9DenMxg405nOdKYznelvTmcwcKYznelMZzrT35zOYOBMZzrTmc50pr85ncHAmc50pjOd6Ux/czqDgTOd6UxnOtOZ/uZ0BgNnOtOZznSmM/3N6f8DdQLwosdkZfgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSUUlEQVR4nO296XIbybKl6yBFgpOkqr3P2YP1+79Tv0D3Mes9lUoiCYIicX/oruSHxeWRgEolsqrgZjAAmZExeHi4L/cYcrHZbDZ1oAMd6EAHOtCB/rB09NIVONCBDnSgAx3oQC9LBzBwoAMd6EAHOtAfnA5g4EAHOtCBDnSgPzgdwMCBDnSgAx3oQH9wOoCBAx3oQAc60IH+4HQAAwc60IEOdKAD/cHpAAYOdKADHehAB/qD0wEMHOhABzrQgQ70B6c3uyZcLBZfVYCe+y2ebbRYLGqxWNTR0dHWR9f9o3tVX9r7+Pg4fdT+4+PjOjk52fooX9Hj42NV1XRN+Stf5i968+bN9Dk6OqrHx8f6/Pnz9NlsNsM+WCwWdXJyUhcXF3V1dVWXl5d1eXlZZ2dndXJyUsvlsk5PT+vk5KQeHx9rvV7Xp0+f6ueff66ffvqpbm5u6u7ubipHdeP/zWZT//t//+9v1T07k8su/ztPvE9V/5SO9LXy7fKV6soPy/Iy9bzkhrwX/zebTS0Wizo+Pp7KZBrd02exWNTDw0N9/vx5677Kenx8nO4r71Rffrrx8vDwsMXrxGO1g+0hH35NPfMSOuxr9e7vjTo+aIwm+i3anF+LduHFzmDg16zEa6YEBnR9ZBDmDO/R0VEdHx9vGXApXwcGUsRUhImUn8qgouRvghTlpfas1+tar9d1enpa6/V6MgpKq7oo3f39/ZSvylYZDw8P0+c1ycGuddmnznNKO+WVDGeXtxtOBwQOXJmukwEq0g70KC0BrWTQZayre0qXAEPiQQJHCZiRD99C1g5G+HXQSCb8u6pm5fFAPf3qYOC3Sq5c5Q2RXIElJSUlzsgAgcDR0dHWtz6iz58/13q9rru7u8nAJqWq8qWkR+mq6plnxWjCarXa8hhl0O/v7+vNmzcTGBAQUFTh5ORkq96fP3+e6vXw8PDVffG96WuUych4iEfeH/ruvOku6sSoi9fB+zkBgVQ/fjP/BColY/w/yncEeDqezPWB0vDb6/y15EbmYFy+Pc3pTX3PgYEEBHaNFn2r6N7vhQ5goCEHAm/evGnDxh7WHEUNlBdBAUOzb968maYOpGRlVGWYSW4kdF9ggOmPj4+3QrWsl5T658+f6/7+vlar1eQRKgy8XC4nQCSAUFVTfdX2h4eH6b+eZ3teM3UGhsS+7X6n/DydgwAHm0xPmUrGqgMj3RTHXHqXE1IXVdBvluOAwMvyOs3l6e1w/qZr+1DyNr9VtOFAmZJcj8ZEBy5ddlNkjGlTvn/kfj6AgUAURPfWaWCTwiSIoDBLyJQn512ZF/PZhxjC13/WVUAgtdWvy/gfHR1N6wB0jYa/qiaQpHLoVRJMvWT4bmT4RtTxay5fT9+BRQecCXw4YHDFNjKeac3KXJ1HINfTdcaa10cAhmm8jfr42pOOdlXkc9GJRH9kA/FrkcuGjwdfn+Wy6OtrOuPvH4+IvqReem10AANGrqC14E9gwD3vqufhUC7AouGUgeQUga4rX3r5m81mMvCMLDjpeXreFHIa6zSw+AxJAEO/5eUvl8utNr5582ZrKqEDNq9t0HUGZORpj/JKlHhNxecRoqrtKZxkPF2xsS0+l8+8vPxdQrBzHn3XpylNF/lQeQ6I0pTXXLRgRF0fJTn4Ghk40P7k+pZ6N03N8pk0XlK/ERRzHRPXTPk4fW266nvQAQyAXEkzKnBycrIVfnTPRSTB9vUATOeCTi9eHw+z6zmSyk8LvNQefaf1DkxD4kpz1eHz58+1WCymSIDaxbUGnFLQYEu7JL43jQx1MgQjozGXhnl3z9PzoSwwxJ2MeOfhVNXE67SLQ2nn6uzy4kq386JGilMG3XfI8DmOuTT1kTy6rg4dWEjhf69DB8Dm2nig5zTnaLiudX3LhdXMQ/lKVqQ33fmhzuPi5/v7++mboGAUIfij9P0BDPz/lMK2FFAaYm7DcmPCsCe3Z1GoHQxoW5YM6efPn7eEnVu6OMg4XaF6UaH5lsUk1FooKB7QCPjuCYGbk5OTOj09naIlLJcDjWW8pJfl3m3qrxE42oXmFEYXBk1ggFM9ytuBAMGfKEWGRsbTow2qJ+tFGZ8zyKP8eS0Z5u5a+rAMAqivjRakqADr8kcxBt+K0hiiHqKeSU4Xv6V3PQrGbbH08tPOL6XRAuj7+/s6Pj6edK07VP75o8jBHxoMdKHb9EnpkudGL5qgID3vuwY4NfDw8LBl/B0I0INMoVUNNqJrXyXu192L1+DS4Ly4uKiLi4s6Pz+v09PTiQeaGhAQWK/XUz6MlLC935O6kLho15CwK4Y578fLZ8QlfWiY/JuKqvNkkic78qIdPFTVVlSMgNWVLp+hQe7KSjzhb88zgRn2Iz35VM6uAG8XPs3lcaBtSoAvTQW4rKUIgaJdmi5SXsxfeY3AgEe9Tk5OtuRZOpdnajBqwLYoz98b/eHAgCsU//Y5q6TwEyCgR+fpGS7n9AF3EjBK4GV5yIy7DDabzdbg4JQCFXpS5hyoHDBMc3x8XMvlss7PzycwkHYV+EBSvsqjqmq5XO7XWd+IEhjYZTB34eJ9PIUUDvXFUcnr9bomUMD67Kqc/DmSRyv0Ubmkh4eHaHC7NrCNjDaxPpL9xF8C3BQpSbzYFZzsEtU50NcTnQF5/Iy4unGnEVffciqAUVk6ML6OgDJLfZamW9fr9bSNW78FQDwK90siUa+Z/lBgwEPgDIGKkqBW5UUqyovC4kpT6bl+gMqQK+09PKxnTk9Pp7A8Q7YKfXE/vwaD6s9nSF5PKjwHA6enp3V2drYVEVC6+/v76cOpAUYs2JbfCn1LA6B+5sLRDpwkbz8pnZE37umcvCwHyJTtdN3L7+rn/5kn8/EQbcpjBJS8Ll8Djg70bcjlReBS55BIlwkUUIdWbcsm9QlPUZVzxYibO2dVz6fZWC86Y1VVp6en0/kqlNOjo6PZdQW/Fxn67WjnX0BUZO4xUxlVPXnUJycnW171yPt3Ujp+0lwxBZrGUsZddTk9Pa3z8/NpFX/VF6Ssw4h0IBGNA4EAQ23iBwdgIg/bcUshFwre3d3VarWq9Xq9tWOBaT1C8BKUQuhz6Tujso8RJvhkhGdkBOemAdwgz7Uj1asDBHNRin3IjbmDcJXP3wTbBN0E7m44vMxdAMHvRYF/TxpFxBIIoL4lEJBjQ+dAXrjyT+tffKqMcqRTUvlMt7CQp7SyDqenp1vOm9YV+KJo6tp9I4WvmX73YCABAaFUGlYhT48M6H5atJUUFYkC3IEAUdqLz/oul8u6uLio09PTWiwW00mBGkQSXA8/M4zm1AECDmRf7MjpAIXU7u7utiIUbJcj+Zegzqjua0h3pc7LZmQgeTAqcxQN8N+dN53a6M87qPF+82hVAha78iiBgQREdqURyEmA4LeuqF8DEZwluaLe4HQTda707sgxoMyliAG/VRcH+2mXlWSQU7F8purp3TH6ptNDHcepVgJY5uX8ee0y+LsFA26oGa5SmEoCyQ52A5gEsyvH5949nec9CqWmZwQKjo+P6/7+vqpqWhnrhj8tGtT15Fmx3kT2usZowP39/TQ4tGDw/v5+a3ojbX17qWmCDgx8LY2MFnnG/vSFgrpPwJjq54qEz+r6Ph5yV/cOCHRe+z5eUeKBnuGCVy+HPEzldIBnl8jArvSt8vm9EPtf5DqWIMB3ZKW+TBHXNC5UFr9FjEDqOX57Oi0aTGuxFFFVPdbr9VD+/P/cGHut8vS7BAOdEu72sDKk5Mpc9zsF5cKRBCIZfQ0cPeeHC9EgK40Aie9OEDF85YsEPV8qel+roLK41XG9Xk/lEwwoOsDpkNdG3xoMiBJvExBwBeggICm9VI6Xof/umXidOrDA9C5rHA/Mr3s+pXE+MDJWldetcKyN+o2GxAHAnAHfxcAnHh/oOTkQ8IWC7gAx2trld3x8HI8w5wLSqifDznHWySkBrha/LhaLKZrKtL7eSu9cSRGIXXUL6/Za5el3CwZ8RbSv5ha58mF4ifc9f/eiPSzlHg0PuKiqrTkzedXr9Xp6lqu4hUylpDWlcHd3N6189fouFotJ6FPdfVARQTsI0CIaDQ6Fy3zNQlVtDXiW95Ig4VsOvOSZ+DXy2BUVZaRbmNQByc4rckWjNtPr9vz9I1K9BCiT0Vceyne09sSBANfhOI98HCZQkHi1LxBwPnVpDjQm9V2aDuC6Kx//BJmMFBEk6lRTOjUup5QhPivdJz0kcEEwoHw5tSqHkTpY9eMpmAIR7sDpnuo3x7vXBgh+d2CACJXo1I0gDSAPnhBR0NzL1m9+iDj1LAW9qraMthCoogL0vrm/VoK7Xq/r9va2bm5uthYaykOnsDqaTt+dAhc/+F+7Fk5PTycgwoU1fEOh2kSed6j9JWgulLeLceiMsq65N0yjyT5K61BG5Y7ud1EBTtnoHpW4A5VkbH0dyqgeHXD2CAkBCmXDwYDzqQPnXfnOj1T3Dogd6AuN5DytCZDedcfAI1gepXUgW/V83UACn3xW+pJ1prPmWwZVhvJn27j76+zsbLp3dPTlnS1VXxw5508CpZ1eeQ06UfS7AQNUvi6YaS6JguBnVeuTPNoUFWDZjAz4HDHrUPUk3H5YjwaQFCZfHCRPnfNeWvyYvCwHBj7ICE5Yf+Xp6bS1MIW/la/y6aYzXormgADv7eMxdiBRytBBqPIfhQ0Tb78WNKQyCJqlHBMgoKwnMLCrF06vjGHZ1Fb39FOf7APqEphL0YUDPacOCHPqNe0S8PVB7uHzOZ5b0oHCpJ+rnh/GJseM932huHRtigLTqdO6LLXn7OwsrvlihMDl6LckV78LMEDFKyHjkbkSEAkVPYwUOqLS8jmpEUp24OBoV99+QA/PzJbgeuir6knoNADYHg0wF3w970LPbTxuwJwvqhejD75YiGsG2ObXAAKqeuPRGbfOQMxFBfRNeUmLRUdl654bSDfSDkw9TdcWX0OjPLpIhRvhXQAA6+ievoPo0XPJW2RdnAe7rr/o+vc1yexrIsqb+k0RgbOzs1oul88isdRPzId6+uzsbOs00yTDMs7Sfz61oDopqsoTYP2sFemyo6OjyZHyKQCRyuV4IS+kAzVV2+06+60Agt8VGCDa5DYW93A9MsD7HmJ1weuMShLQqu25W/4nmpQwMW8iWgmxfvsrlFUmEXmHWh0UsSyCD/dgfcC4QlDenCN0Hr3kOQNV80BA1/YZvMlzJn86EElj50Yu1Yv9zvJG619G9SSYo+LuAG8CGV3+3gbW3cvfbDZxXBEQMFrQGepUPiMM+9ABEGyTy7Tvbjo7O6uzs7MtZ8SjYMqHiwz9cDefCkqfXUh50UGUw0L9JM/fn3XZ5a4DTn/I1uisFTl0ftIreUB6bSDhNw0GXEB9zoqKjp6uH0ZBQMAOokBRQBzFqi6+WCbNy0tI1uv15G3rwB4aZ863bTabCfFykPkUgD+TIgFVT/NqXt7p6el031eTs+5srwabyvB1EkTVHjn5XkQjNvLQ3ZN2b9XzHAEB91hp3JiHjCH70tNTNh2Q8bcb7GSYHaT4NBflZ05ZdYAj/XejrjEkQODt8foKUHf958+MAEtKl/rmj04uX9ITMuIK8SsyQA/cX6mufLrt3R6qpwOSDv2R3Oq3629f58KpVepojr8E3Kk72XYBIbWjk80UzeL3a6LfJBgg40dAoGp7f3z3HusOgXIwJG9c5bvQKX3yqKuezjWQcVfd+DwjA/QeGdaikDKyoXK6eazETx6I46BJA9zLYD1ZLkERP6/V29pnYCZAkSICyVN1JURDnwway3Rll8BAaksCJiliwetVzxdVdTxK9xNwSp4i76dx5NSBBYKhER8ONE+JtwSKXDDI6Vg/xK1qu99TRMDXCUi/SEfrO4XzCSppcPU7efjJsWOb3ZFT/VWunB46N1qTxoizA1/WgXK6C2D9nqDhNwcGEtpzIRNDkzCl+XN9p3CUK7KRNyGiMNOgctGfnuPcvtJwfy7DZ1VPwu5rHwQYBCp8QLnHzkWHBFS+5oBRBL6QKPWJpijYLwIMHa++N6W++yWGwgGAfxJwVD0IrFKoPMmkK0MaUq+Xvh2cdOs6qCxZ9wQoHcwk45uiK54n5Zh16wz7CBCwbvydQNbcGP6jE8G+h9u5bZAr7qWDJBPqWz7vBxB5FID6mWur+G4CEadlVWd9C2DL2ap6bow9Ykm5V3247kprEbhl8ejoy7bD09PTKcLLNvxS4/495fM3BQaSt+lCxnAQV4+mBR67hmw6z0aCwXwYfVCZSsu9swQkEjgHAtznqvJ5SIbPIRNUEIiQVwmp+v5gPc/FMeKB5s+Yj3jg4TTuM2Y7XwPNGYO5QeiA1MFAKkvP+e8ESkaG1vOk0vFoQQcGlEfaDsv2EwSnOrgnxGcT4OI1KmyGexO4YT6s/wgIeLl+/Y8OCJIu0HWPBPDb1xhJjtyIKy/pGG73Vl/TwXD97NMEPg/PMee/ZaSrasswO/Cl/qZ+J1BhPdkmEkGS0hLgO3XRgRRN+F70mwEDMrzJUHIhVNX2+fkEAnNKtfOumM6VHleu0tv3QeHhLOZFo0xAoLZxLp7zdlX1DLlKqVKJczB6+YvFYmvB5cnJydaaBD1Dg0PQ0QGjxOfXqHBH0YHuWlI+bkiTESIPPHLEtB4RcBl1z9fv6TsZaeaf9mR3xrTj24g6r5x1YFiX15KRV5k+hdC1l/dTGw8g4Pk1AgF/jwt1rtI/Pj5uvbGURlz5+dZDGlqdZur6UkQwQIeDJN3vRwsnnUvwToBSVVtlyPun/uOarc+fP2+9wVXly1nyyG1aPzYCBC9BvzkwQOH08BBDTQwvpe0tCQQkBd4BAgkE781t06JwMPxe9SR0vmbA66JVrCROHTjPGC2RsfaFidris1wutzw1Kl9+qrZP7krGRkqii2T8FolehwOC5JG7N0xFySmc5H13xjx52l00wo2t6kwAyjz8Wf3mdf52+WY+SdH5/RRZcG8/KUuNgxGvUl90bWH63zs4GDk8HRBwfStyB4TXNU54loAba+33X61Wz6YBXFaqtvW71//4+HjaNsgok57nM2qffpPcuRGgUP7U23KWJDdcTM02cFq4A+9+7yXou4KBOSM7ek6M1n5Wzjn5nDZRJle1epgoeU2dAvMOc0Cg6zS03lYaWtbN5/NZN5YjwWFkoGr7ZEN6VcyXUw0iH/QSZPJys9k8AwIk1YlbOAl2PO1vgTqF6VMCHs6mrHTzmFXPF0p1ofjOYPm9BAZUjtfPQUD3POW8Ayk05Kn8NL48jy6vNOaqaov/HE+JXwmYJZ4mRf17ozkQQCCQFmRTpqvymwUdHNPR8IV2OnFVrz+nDquqLSemqo/MiiQ3Hp538MnfBBkpisB28KwVPaPyWA9u7fb6+7RuFxno+uzXls9fFQwk45+87w7R87+fdKX7vvDEPe+R95IUmOoz1w6l46I9IcnUiR0gSB388PAw7YHdbJ5OKExzZlxT4OXRyCRUzSgEvfzkqXl4MPUTB6TqreuvWdF2cpC872Rg/JorRQ54ehW7GFSvj6frjHCSU8mJ12kEeD2/5M2n8vnNPFzG/JluiiD1R/d7pGucl38EGskLxzbXBfj27AQEUh9KV+ub6wRofPXGUz8NUGV5tKGzJV29eN9lW7pJZaYpEOlFOnmKcuoZlqVvRUN8kWSakiM5MJjTBb8G/WpgYG6w8nrnFfCjLSya31anUInQ+Lvh9Lp1CmcOpXXKz5EnrydeeLn8z/Ozq7ZX9jOde5XkhajjA8Nk3hccVFzklUCBDzI969snX6Pi3WXAJQMv2myeb4nrQAE9g5G8zNWzM2IuZ4k649zdp2JKXtUuQMDzGI2jVLbnQTDBuksfeJuS8Zsr//dKCchLTrlIkAsFqRdEyWGo2j54Tf/d0ZAu02vPaZR3lf8k50nHqS5+EJvr1W7bo9JzCmKuXN9WLX3OMrsxtItD8GvSNwcDI8PfrbqmIU9p1VkCAuosGU33tDthpfJ2waUx+xqvwYWUAEf5635nQKqeUDNDV25I9E2+kffKx1fTVj2d1Z3m3ZIC1m8tqmEoUW1hyNDPJtCzHTB7KZobdJ1R77xMv99dGxF57kZ65DW4rI7q0KWdqxf7k/m4AktpUhtGbU1t09hNUx/69nniXccwgcrvFST8EiAw0qcOEqqevxJdfaY1XAIB7uCMxhrXPKU1Cl436lp9d06Sv9uF6whcB5DcAXKbpSgBdSLBjzteo377HvL5TcFA5xkxnO3hGBkLGgym0zdPfOJ8rBvFXT0W72B2auchpfby23/zeaJnhZnUwVycw22GqX0pby+bPPUtMeQx8/F1DP7RClmt1+CZBMqDC2VSfr8FSp6kZIXkfO/CkTSinUc9N8hdzpJxpkEb1YnPp/zn5D0BxjReklymOdlEHeAgWE95sJ+SvI0Albfj90KdPEvvcPsgdzGR352DleSvavsQNL3VL0UEqJcIPkaLpwkEWAfqf7ZxDvwqP9dRlCVfM0W+EMz4GR2LxWJ6wZF+a2pE/FAdOrDeXfs16JuAAfdEaPjdm0wCJ7QoxqYthIoMKOTjhsa3pXRMTYrKhYaItlPeym8XIOBKVvyQcWYdxI9uQV4XDqPS1wIdvnNbfE2LALlYkCtm08JEDR6uMlYeXAzEsl8bEOiMUOdRu7Fk+gQWXEnpWgJaI+OZ6ppkj3KmNL7IsZPjDghQyXt9Egjwts/x2tvgz3rePj7Z5sQjjxKwPCrrOefh90T7AIFubQvD+d7PjBbq7ap0QB4fH7f0QwIDaTrO6171FOp3p0NpGaZP0QtRty6BZfrUqHQjI9EO+h8eHrZOKdSZLScnJ7Ver2u9Xrd2hHX9nnL4i8BAp3z8oAoKWzqBSswRipTx95P40oKM7sUQJGdqp4C5wIoKJ4XU/bfzxdEpvRoJoO/L10JEeeGqa7dFknXgIOK2SnnrPti4AEZlHB0dPXuWkYGjo6NpIeNi8bSOQ9dVx/V6XXd3d3EP/WugNPjcMM5Rkv2qembkVR5lIHlWKd9RXRyYOJ+TYuUzCex0QNmBjrfJDXrXFr+f8ktp3Dj4OpYEWBy0UGGzTh1w4/3fKiVw61HabkogOSGdzFZtnwKoKU55vjTcPBZefPYFfKIE+qjvaIx9ulQ63O0CwQw9f98Wrnw9Sq31AyqTO65YDzmtPN+FPBGRnyPQwj79tWTyF0cGXLC4epRbUzg3xY6X4Civqnp24hWFwL3ebtdA1e7h+5RupAw6Y6JvDjr3DDlNoOuOthkK4wFKae7dlb945AOOAMuPbJaASVhZlvLQ7obT09MpiqNntFKYQM2ROvv3NVCHxr0fu/tMk0Af9yMnDzXlmwBJBwYcUHSGcVQOPR4aWKYjoEiGP42hER/dSHs+c/z2sr1NI5DT5U+gnnTIbx0QzE3XVj3pJ/12I+uy3OlJHw+aKvC8GNLnc6IUhneg4O3kGGTUoaqe6VsRo6XUxaqjePfmzZutKHTiURqTLEdt4BZuT8f6dbL3awHVrwYD7HQdhKPDJTS/n7anuFcsJMm1AGKYe1w0jJx7oSLcRaG4ovB5SKZluDHl2aFuF0x9i19OaaDxOoVQ17s+Eb/EZy1k4QJM5cFVrpyaYH6sg6I4q9Vq6xXRHgXwNr4WIDBn4LtnUv1dgSUFSqDXGTY3unP1IY0MnctKJ6tV26999fa5Ue3qsQsfPf3IA/JnOto3jzkl+lsHAFXPAZKvwXLnoQOsyWglOe0iDlUVPXgaXh9bCcS5bDKtdHRnYEV+Pa0Dkp5lvmqTTmc9Ozvbsk2M2jpI2Wyepn3pFMnZdR1B5/F7T6/+IjDARi2Xyzo/P6/z8/PpkAkZeApFIgmRv+iG6NJD1+4p7+sRiVxoCCwSEEieA3nhi0h8ECjElNooSvPMnbB39XG+Mkojoifgnp8bdA4UvX6ZRyLrnoCh8mAdX7OC7WSn8zRF7N/UR50CdTBJeeiMV2dwR7IxBwRcoadykmFQns4L8ij9TvmS154m/e9oDiB7XdPvBAR+S+AgyZUDAXeyXH75fNVz/iQ92skXn3XQwXLZx9I77oV3ur4Drcp3bs1A0r2qh7dRXj0NuU9HuP72viBAUz7uMAj8jMDNt5bLrwIDbJwW9i2Xy7q4uKiLi4s6OzvbOoe66qlxvoiqM+hkKLekcIW8M7FTNKxv530RBFRVCwRc0Dx/CRCFPnmJrlDZ4eRJp+A7UEBBo8BxgZALrdpbVc88B7WJadUXt7e3tdlsts59kEx4/bvoy/ekUfmpP9MnPeegz5Uq86QiTkCAc6+pzzuj6mWnelARJWWqvJivl5946m3teN0Z+y7d16Txcc/fSXmOQHWX12sll1Ua5QQ0CfB9mjXJ/dxYYBr+9/sJ1I7kzhfq+TgagXDpXW+32yXaINomPpemopkn68hv/faISdX2lsmq7ZMNOY6pT38t2hsM0OjJ49SRk2dnZ3V+fj6Fo13B0DumN9mFv7lIsHvzoOqkeiWkOVLqFDAqjMT00VwXw63qXAmyjCk7tlP2uk8vrUPTfp394/85N1z1/A2CTJOmMdQfos+fP9dqtdpqo8rzqAHr8JKUlFBHCUCmvDhQ3UNgPik/AoCRfDqY6pS6+p3ypY/LRNdelqnfXdpdDX6XnvKYDHUCKB0Y6qgDAbyfDFFX/msnBwFJhilT3ZqrNGaT3Ok6r3WyI/1MY0m96WsCfN1SqgPTJlDT8ciNvMui7A7bQXtEG9Y5Zspb/7mujmCG0XMBAdWB9RpFOL4F7QUGqMQ0h0IgoOkBzj2zQxniT6tKSTIyZDyZrzSqFwWN97zuLrjuBeu6AwIHDcnTdQTOEBAX6iXF70DBeTFCvwkU+FSI+kB80oeKQ0LKNR6MFDw8PEygbLN52oFQ9XSWOPmg34+Pj1ME6TWSgzv3qJyXyQuoer6TIHkxc/m7sUv97Irdn0uKP8kyr6VpqzlvcQSqWafULpXDUGjqD88n/fd7XT07AMP6dPdeO1HWfNx2suRRAZclzum7DI+AGw2p39fvFH6nUVRerJ8bcKbpIsVJHhOQrnrakeX1pxPLKWou7O70cucsuJ71PnTbqfz4/a1pZzDgQIAvodBH0wLJo6dHmvag+/YWBxFJaLs6dtc7pbJYLLbCN472Rh5VUpYUaM0xsf5cX6DyCDB80PlASwo+1SvNaek5bvdRnflSEg1QLjp8eHiom5ubur29rfV6XVVPYS3vQ4Kbo6MvCxgvLi7a+n4vSp4f/yeFymfTYBclpZrm5iknnFtNxp5ykUAz69EBCa8vFVRSRol03aM7KQrC/FIe/O/16dq4i0HmOHdD2OmAlP9ovL9motz6WS7+cb3glMBd1fNpzWR0Ja98s6ny9Pr6eFM6r5/3BfWLR5ddnkdjnu3gmNBzPFbdo9keWUl2g+OP0w+KFnOdmTtQmlYnz7t1d9+C9gIDFDStEzg/P6/Ly8taLpd1fHw8Meru7m7rXdUioixGBRjm9E5OqE+UBCx5Ul2410NqupYGyBzKZLqq2oqQcDsJUSHLY10IKCgAIyDggzKBGR+03Mbpbyg7OTmZXm18cnKyFRFg3zh/GQ1h2Vy8+JrIjYiiJOojN55Vz+c4O++K+Sdk70Cv6vkhUi7vnlfnvfOZru7OBxLr1PErtXPO8HpeVJZs46he/N2130E185rjRarnayWOvxRxok6dAwIEnQlE8r+IDqIbfzoLqa/4nc4jcAPtcp2icczTx+5obCwW26ccMpLq0WwHAAkIUJ7Ju+TUOoBOW+p9PO4qu7vSztqZRkor05fL5WQsZOy09YzvqXaP19GcBE8MoTFJIKAzdrrHQaBrHSDw9AnRJYDhxoH3XCgJpIimO/4y5M5QvPIbeU/eVl3n65/FWwk7DZ88iu4Vpp632ktDRt5x66KHDl8DOQgg4CUYqNo+7KbquTJyxUqlwOcYBiQYTnLjeXndu/YkAzpnpN2DcWPhz6WxxLJSGpbT5ZWAkLffDdMIAKffu5Dn+xrJZdf7mDLosto5WHqOvztdS3vge/aTkdRz1Il0dtzb9vQpb9bH2835d0/j8uY2inpX/HVbRl6NZM/TuoNM8Ka807Sd8+tbyuVekQFfNLhcLicDs1gsptdR6lja9Xq9dTiNG3s2yJFUFw730JfS654bKj7XRQdUJ9ZFbdZ3UlaeToIsweWA07VOEWpFPo2QjLULqw8K5eFtpHFTmH65XE6gjcaZbfPDojSoeK4DKQ06krYj3t7ePrv3UuT8dBDgc/keHq96/kIWJ8pxMuwEwJ3MeXr9T0Y4GWvPP/GAdVV75sAAFVYXZmYZDhR8/Kcxpm+mda/Kv9kWyW6qd3rW6/naKekF6qYREJhrn/M/eddyJPxocpZJp4/9zAVz0htdFDg5H8nw8juB8xHfaFecGL7nVLjXx3nH+07sB4/qeJulmyj7u/ThvrRXZEAoUC8M0vZBhlIYGeBagapxqC2hKx/0qdNSmMvnef2+C7qDEW836y4FQ8POdrkinUPgXGEqXhKBst0pgpHQswu58tYZEJvNl+OJuRiQvFZfqzwdQawjox3JE9n6AVOUjdVq1fb/SxE9lAQEKGsJENDYJGXingSBY5K5NEWQwoq7to3AdPQ8FUwnt25YWYbyIE86ReuAwPnWgZvOy0o8Z4Sq4+eIb12Zr4U6Y5bAUzIiSZ46vovcmHOdEac9ldYNvPJOoEVpaTMSmHX5TNG40W+2UXzrDLkDkjdv3ky7oxLocNBJHndRQ91znUmQwDpwG2In/19Le4EBAQFND+hQIXmG/opKnwbwcKka6cQOd/Tnxp7M8chAYpoUhSunpMg6pZAUIgWaUQZHxXxeRlo81Wp7Gc+qp2kCGmjyR+mVbwIDR0dPJxCenZ1t1Y/nbCfQwhMfBQZoNBj5oUFNg/bu7q6Vr5ckBwSUr2Q4CAzJezeWrox2AcN+TcYrGeZUp9Q2N75d+QmEj8rwNqc6ESBSZufqksbnqG7Ms+NPMlY+rh2Iv3ZKUwNV/fRA4mGSHeoqN3J0DP2EWepAX/Plulv1rMrRKJXt4C5NJbDOo7GhejAd+ee8UGiegMCjyF5nfdPmuTy5bWI7afTplOgap5u/pYzuBQa0ulwe5unp6RS+kLHoVv67EKYOS4O+C6WQ3Nj6dZbLwd61U/XZRbhIMuIUBCocghXx8vT0tC4vL6cQvsLxq9VqWnUq3rNNfnog69wBAoEPR7eqJw8XYjl68dB6vX6G9gUW/IUcftQmQdJLkys3KjiPwFCOk7LwfBMg2AcIkEdJcel3pwg6bzopH/dMWF8HhXNeo+eZvFbmz/olJeltSNGRDuj4NVf0i8XTXu7Et8Tb1wQM0jh3feWGKoGfLm8vR0RDxTVFjAD69IDrwA7MdXLg4NHBQNeeTl7T/+RkSmfR8KbpChrwBAhYd2+Ht9ttIIG07ntkurOnX0N7gQFuJby4uJgYxWhACjt7ozsm6HpCiUzrodSq5+FYDgaW6emUJ4UheXdJEXk6GjxH4px30hy++Pj27dt69+5dLZfLur+/r5ubm6qqrRWsEkjniQObpCRcIZNnzMMRvcCNwIBeOEIee3vVxsViMZ3lnfriNZGDJvI5gQF6LLsCRd7vFLhI+SYjJtql3A6Ip+dHoIH19mdGBpXGw8scKa9UV/LE2z1nEFgf5k8e+9ieq+NLUZKfbk49RVd1n/nxuyuDgFnAn4uL3TnwF555GaSOz3RI3FDOTXek8dPxMelGAQE5XVzj4Lpca7tU51E7OzBAACuAwUgAnWHZE0awRuNgV9oZDAgNXlxcTFsJq2oKHXONgCuSjhkpnQOBjrmO5BII6LxypfO8kgfjAjfq6O7wCRHfby0g8P79+/rhhx/q3bt3dXZ2Vuv1Op5NoLI9NO/KOg1epeEiQPWb+ky8ZHSjqqYXQvH94wRNDswILtRW9u1L04hfIgem3v80IKmfu/I4oN3Ie15UEElZpTISjRStvncBMF2bCFLn8klle35Mk8YSlfyofeleZ/D8/msEAaQEXqt6ud1VhyXDybL8HSfc9VSV3yjrU8XUzz5fn8idOX6ndConRU1c53t7KcOSaXrgHpXmWQHJMUgGfwQGHJwKCLDO3ifK51tMbe0FBjjvfHp6OkUBtGBQ88mqsFduNMB53+eCyIgk2JyTTPlTkJXO53l8K5mMrtehMwYcgG7Audjm7OysLi8v6/Lyst69e1fv37+vP/3pT/Xjjz/Wcrmsu7u7Z8cBq+O5Q4N1IlKlgqCiEADQgL29vZ28fT0r/nLXAPngA0HRItZFQIL3udbhNVFnfPi/qp7Jir6935OydXCW5ng7vnRgZS6NK72q51s+U5u97iOeeXn67XwSf3Sv45Xymwtpz9VvZDA8nzln5TVSB/SrnuvXkffseaYyWBaBAF9Cd3R09Cyi6GsFVDfPf7RFLv3vALkDhm76JI1LlzUvl0DI1xSxH3xqnHYsyX3SM/yf+tWdP9epvxQQ7B0Z0EI3ea+qBMPZqiwbw0aNkGtSTslzS8qkuy8go/ktechK64NLYSkKjA8O5e1KywVW3rEWXQoIvH37dpoeeP/+ff344491fn5e6/V62qbDA4HEZ5385wLCejk/qp7eJSCDzTMgKPACAxxkBBkceKqnyuICUsmMn5nwGigpCFcqIpfXREkGvAzysAvrev5Jtj1/5u35eVs5XjsQ44qIz3mdEihmepVBoNApdeafDIiXP6JOp1BZdvxJ/fBagIH3t+SIhmdOnyqfLu/0SVEB6gM/hGc0PcF+6Hif9CmNJB0dl+nUntR2H/epfD3vpwUyKqK1UV1fJJDgbUuUxqfrFZ/WngN9c/RV7yYgQ9l4VSjRSDhTh3g5SfH4wPa6VvWH+aQFKAk5dh4E01ER+3Ue23x5eTm95lnnNOjlTgIIVVUXFxfTIk0d6KS5+6rtM8NZV5H6gnO1AkCLxWJrfUdVbYX9BIZ8+sDfQMl2+v5iXaPCei1AgJQMshsMNyZK69TJfQcIkjzPgVzPkyAuGVwHDaqnxquud1E4bxvz9PQ+Zvms8y2Na+UhbyeBBH53fUC9kIxOpzhZh8Tv1wAIkqGu6sFPlwe/U96jch14qnyPBsxFy0SUjTmjmUAK+zjlv0u/jXjnbXWHK41ptm2XPhnVS/nofzfV6NN0XyOve4EBoj6ushRi4gp3VyBp8PH3aCB2/6mY+NuVTWKgDyQhXO9sPTdCjsxbhlFKWmBABl67Bhg+V5qrq6vpW8Dh9PR0eifAx48fpzqrDL7jgEY8KW1Hq1Xb5xzodEKCO6Je8nazeTq3m8pb0ReCC84lviSNjEvV9gDqPIYR2GXelH9eT4rDeZ7q7UaQYFMRJPfMqvJaGaZJO3/mDPouii3xNRnfzgB5Hl2aUT0cEDCfUV1eg+F3Su1PBjPpXs9jBDRH5ECSEWHpniRPKisZT+bbgQA+7wawA6jOB+WR0jrtyhfVRXrcDwbaF6D4dcoidQNtjMoSMPolsrszGKAgaKWlKsS5lNH8i65RGJnWPYwOpbpnxby4EE7XRTJsrtA6ZUz0OUKNjpbpsSkqICCg9RYKsVOQlstlXV1d1WKxqIuLi+nlQJ8+fap//vOfU10JwuTVV9Wzg54IdFyhs41cGSywwFWyHpKsejpm+PPnz1trInzvsRSGFpm+NCXD4DQHAL4W4bN8KkMaLB8PfMbHB8O3AudctFVVWxEalUVASCXeeUQpXDniScffpIxdSaZ8GAHzOiSQxP+Ue/IytSE5Cq+BkiFMxq4zpMqDeaV7HbnuJ7kMjUCt2wo9P5ri0HM+ZvRsB2IJBHVv5MSNeDMHXKWL2Q6V7fbI7dzIVrItysPBKtvgawj2ld+9wIAjODGB+9d9cZs3mpSUXfLMPV2aI02GLhl7Vw5+n/VK9fBB6EJFJc2zBDgt4Ec5U2HzdMfHx8e6vr6e3gjJNpH38uh5gBDTukAyKsBtQipTBoXlcD2F8uBKYUUEtJ6Eho7bjV6KfECnRUauaDuPRWmY977fCZR0iqFTWuw/j0gJGOu/ZEBAgKu+2VYvj4qIfCCwJk+6Njqv/LcbAH+2M4IOMJx3PtbdI3VnwkFXyvOlyHmZwFkCCSNw5uRgTdc0jsUfHYaWgEACddTb+nidOxBRte1wzY1N1jvJCEly7EDD5aEDAqqbt89PCux4na6NwNmItwks7EN7TROwA1QReoTr9Xpigj7s9GSEvVEjxUlkyYVr7unoWgIDfo9lOZokOSDo2kGBkKImKFCUQFsLz87Opu13aoOMKsGCD5jRXFXXd4vFIvYfFwc9PDxMwE7l6L76ULtG+PKhzWYzLaZhWe6pviQ5iuYATgpwVGdXMAm0zoGPVF7yYr2eHAsEAwJlonSfJ0re3d1Nh1s5iHd5d8Nd9XwrVhq/He+87cnLS7xyz6vLT9+qv/PV0+q6A4Kuzt+L5viZjD9/zwHTLk9PQ0BQVVsr6Lu1Ap1+J3/dsHubkhz4c6mu+xBBw5wN6sijxJvN07ZAt39zemX03+vM/FI99+HFV71TlspNHiU9y6RIfQ9+l2+nUKgAta2F3rIfh+wLUxTy5iB3oyBKCJVpqDQolPTOiBBpcM/OzqY1AVoXoCOCV6tV3d7ebq0B8Pk4z59omTxMQMG9fq5z4MtG7u/vpzqo7jwq2RG66sqpAKXhtAV5/L0pGVb/sD+r5ufHO8CqayPA4YaKnw4A67f6TGOAO094TVM2nEp6fHycXhq1WCymhalzHiUV8YgPPkY64E0+eLqR/Oq7AyrM13+PwP5rJteDfi/xcJTPHL+68mh8+a0x3kVeR+CXZY+M20j+RtedurYTEHT5MxqmdssjJygZfUY01wfkQcdjnw7ch776BfMCAlVVZ2dnzw6mSVGAUUcoz455NKoKRUvBVT1ta/Otd75fPk1DJGNAD9eVsw88F6ajo6MtkCQPX9cuLi7q3bt3dXV1VcvlcvL8b25uJuE6Ojqqm5ub6Q2QCucSdTI05Od/O1hIqJTepeonICDeqy3q6/v7+6ioN5vNdH6Bn8ilur+kd0W++E4H/h4Zi4S4mbf/7sAAy5CM+gEtPA+doIDG3hegSr44LcWtwFW1tRh1s9lMbxllm+aMyhyfnU8jRduNf5df5/su/eKUogmdcU3teC1EPu0KXDvaJ33y4NOcP/P1MZHqOjeu3PnwNCmv1L/sUwcX1Pud08KpEtaXiyZHUx1zlGTR6+4OBNtEPu0CoJx2BgPe6R6yl9KX4uecs3s7bCAFTB8KDkPumnNn+FzpVLYfCqG6J0pzPS7sIjLYmat7qqPC//rmOgCPFEhJC0ip7sfHx3Vzc1N3d3cTAuXBSeSlh+EdQRKk6D4NDI2Lg4bk2fF5zU+zH/hfsuDrSb43JaPtfU+eOh/Y790gTZ8u6iAiGNgl5ElAI5Amo8/xoQWr2sWidSXr9bo+fvw4HRW9Wq3q5uZmCvtyHHbTaqle3u5kpFwu+O0AKo21BMBpvL2fEnVggjwnyO6e+V60C4DetX67AHLvRy/DgYA7T8kxop1Ixp26ydeteDQ36aNOT/s4ZfsSbzjn3qXjWinpa9lFP28hgaMR30dp3LgnPvE/x8autDMYYBhYp+DRa3x4eJhOtGPYJDWKA57IyhWwjL08Hyo9PwpThkmL146OjiaPhy/m8Q7250bTGS7sYrgMqqYA3r17V2/fvq2rq6u6uLjY2rKnMjSdoTbooB/y5vb2dgICWm+gswKcEsLtdgVMnY/DM9gvNFDin+rq4MKRaepThRFfCgwkI121rVjcYKc0ymtOqab7yZC54U3lehoqAb2WWlNOem+IgOjV1dUkh5LBm5ubOj8/r8ViMb0H4/b2djp1MkX2urHsStjBDL2lBKqc95JF54nz0AF7B9BZl136iGWz7fsq1W9NCciKXEZ0Lclf145kKDuHIpWZPsrDHR+Os246lnVJbdXvEa/m8ktAj2N/xG/yoztwyadNEn+8f0bXEhhzENw5KbvS3mCAn4eHhyk8SY9dR+r6oiQhQzJaAqGFaArTaA7ew6DcukZGMZqwXC63DJorHdVH11JIvUN2rtgk7PLGLi8vpxMF379/X5eXl9M8vBZrPT4+PttqJzCgei8Wi7q7u6u7u7t6fHycwMbd3d0khGw/+axrnBrh28WmzsdJYn60qdqqvufqYfJT/ZXCuZIZzim+JkrKq7vvA43PzA04ylBaYOV5ESi78pAM83jrt2/f1vv377cWpuoQKwHT5XJZj49fdqdobc9qtapPnz7V9fX1dCJl1fNdJ14HN+xeV46Vbhw53+nhuKfFvnGlyfHcKdTk4Xoe/Hj4leW8BI2AbCdLohEwSHl3Y2A0Nro+ZVSXUU3pirTYO7W9A3pM0/GqAzouN6kOsitVz7e38jMCACP57yjd80hVAjGJBxpPu9DeYODu7q5ub2+n0DdD3TSOXFwhgXBPXo3kPI13GNcJKMzu3oUL4Egg3Gil+aHRwOBzCQjIG/vhhx/qxx9/rKurqylKcXR0NO24IE83m820LmC1Wk1RCnluimxI+VfVVkhfdda5BCl8p7Q+BZOUntpGryh5eXxGdVosnk4b5KLOlwQCSZGK1EY3fD6I96U0YJNxTPVL8qv+5XSRpqTevXtXP/74Y719+3ZraoARqrOzs9psNnV9fT0B9Zubm/rw4UN9+PChTk9Pp4WEoyNUvY0OCNjPIy/I0/kz5Bd5MuL3vpR0yC5lfU9y50WUnJOvyTPpTOdLBwY8jf67vqWzIRmm3k96meUkMJeAfMeruXspb+oK1s2BfQcEuulmb9sIyKUyR/mwPfsCgao91wzIuyUI0GE5PochQOCGwvMUaHADRGPL8iSsCVUqzNeFJ5UnmchOpwJMxoNGVG1kWFZHDWu+VsBAXhyjHTyUh+Fa5b9YfPH+V6tVrVar6Vlu8XMPTjz3KRcPZamM5PnR2PAaeeT81XZE8ielJ++/J7ly90EvACP58aOqvf/5e1cj5d4Ey3aFmJS1jwW+68LBp6anFCHQqZeLxZfDrARKP3z4MAEFTUE5UGLdR5QUVuJb5yVJTjQm+EmANQG7OeCSfnvf7Nre70lzXnmqbzLgyit9PGq6i6Eald/1edXzaadkqCk7DtS6cTkaix0/vB5JBjp5mZse+CUytM+zziO/tiuw3QsMfP78ue7u7qZV734QTdX2AicqPd/r/Pj4ZYvTKD1XRivMrboojOhlq56cA5UhdcaQYQQXPkdGIhDQPL6AABcKUmHT09fAU3s2my8LL7XCW2lUN75UqKqm6AjrK9Cluqs9bIP4ImJ0gvxcLBZboMPz8JPrxBMuckxKPk0lfC+iolN7aOh4XXXuAEFVHly7eJPJk5Hss46eJ0OtkjmeaqmpKb398u3bt1vvwNB6m+Pj4zo7O6uHh4f6+PHjtM5Aa3C09odt3Wedx4hXrpzcOFP+9HtkYBzM7lKv7r9HH5KBe0lw4E6LvufqyOeS4U8fz4v80P99SOPfjy7nvbn+6YA8yYF0Agz+uzOiXv/uOvtgBAYc7IwMd7o/Ryq/cyZ2pb1OIBQY8NDPZvN04IwbBHmNWk+geWfNhadpBK085YKos7OzCUjw9DQXps3mi2fnR/OSXJH4/Lvn6QOJ87V+vLAzn5726enpJISaP9Orn29vb+vDhw/TokcutBGwEUgSr6tqK9qgtsjT5XkCGpAq//Pnz9NrqLUGRGcJMILiJw566F/l06PzASJevmRkgJS8QPGNdU9AIXmoHHRp8HWek69XSWCA9zn3KqDJNQI//vhj/fnPf673799PC1clG9zJcnt7Ox12xXMLFH3wPuzakZSc86zjifNH8pmMcWesRl4ir6X/Xk/Jr5f/kiCA1Hmn+9SR8uQy66CNwEjX5/L23+pXvgWVZbuO6OQr1cvrxjZ0suHUtc3leV9ZTtcS8OhAQUq7S3lfC9hEe7+bQICAW5u43U2GX8RrZ2dnkxfpwsCFGr5P+uzsbJpC0E4GIs4EBrq5NCp6/k7zPAkEUCH7Gfw81U27LrgKX/xQPmpv1Zf3CmghV9UTIFJdVB9f6EhjrYVhPl3AtgqhKxIjYLJarSbDwbMZCALUPgItV55M71MTL7WbwA2tAwEHjHNKpOo5QEykvEdKNQ1cXeuiKQQHXDtweXk5vRJb77ZQPSgzOo+DsspxlMDJHBDwdvPb80gKzPk057GNyuEzDlD8WZF7gOwvB4EvQcnod23raFeZ9We6dF0kgdfodCl6mMBH18YEMrwNu4JFyoMDhyTPHSBNdUq86/jm7XNno5M3l83utz+/q+zuDQb8VDw3cgm1MbwpMCDhoEd2dHQU90xLqQlhckse66bfylN1ojGS0lFaGoQ01yOlq3b4jgZFIbQ7QNv5FKZV6FUgSvelcHm2AL0jlc0IQRJEtnOz2UynGboX72fRM3LAMLX4xdcc87dAziRA2JFQVc+eYcj9paYJXCarsmc1Mirddfd03Jvo2qw8CUR8cSf/SzY8KqO03MvNT9XTQs71el0//fRT/etf/6p//vOf9a9//av+85//1MePH6epqDQGuvn7UX/uAwh4z/noBp316QCK12H0m3VK6xOU766e2veiUXu+5hnql65/Os+b99xgK30CxT52Ul3dKfPIQKcXUz1H8qD6JBlMPEiGOfErld3Jl3+ncj3fxKuvldW9302QlJ2iBFRAnz9/now4w+RcN+BH1Z6cnExGVCFQRR1kuLQav/MUnOm+mE2/+QzvM50rbEekAh6cO398fKyTk5P68OFDLZfLOjo62gIxyoMnKOqEOBoAHgTkg0jl6ptrHDhdQx5xWsH3kqtNnOLR1IS8Rq7D4NQOP1VPhietSL+/v99V1H4VSoPNwcAIRXdKqQMbVfXMwMzJrQDZCAwIePLUT9/tU1XTug+tO/n48WP961//qv/zf/5P/c///E/9v//3/+qnn36aIlKUKR9LyUsiT5PyHClh5jUi8lHKOpXnynI01kflMI+v8a5eC3X1pWFO6bs+T/fS8xwPvjZhVL8E5NzOuGOUjPXI6PJ+kgUHLN4ub8+IVx0lPZCAwC5gI7XtlwCCvY8jdmRHbzktJJOR57x61RejIa9ZgEJH9QoM8KheRgPmBJ3UeW2dgnJhUZ5SuIoGSDlR6Ygnt7e3dX19XR8+fKjFYjEd8avIh6IkAkcCPsvlcjKY4itPVJRxpTFX/bppkdR3fE7GZ71eT1sTq2rLC+W5EupTrgMRkOHpk8pHPNmlfr8WuRFLA6YzUp2sdYbCZWwUyuTz7tF36wgYoVG/KOR/fX1dJycn9fnz52nsVH2JqH369Kl++umn+sc//lH/8z//U//3//7f+te//lXX19fTKZcuV87DOWM6UrRzRsWf9/J8Ci8Bf37rmV/q1bty/t6UZGbE513AVWeIUtrE49FYkcxSfjkGunLcyHbGnvxIOj2N726sex28HJa3LxBIaTqdkmRsTmZHeuxr5XXvyAC/CQb4ngAxTF4tDwwSulc0gWFzLhaUoVksnk4FpHf7tYqpEyAnFzh5Zlzb4HR8fDwp6tvb2/r48WMtFl8W62n1t0APox7ciaAtfVzQJaWu8L3qxSkbHtCiex5WZtvEQ3qavvBTzzJvAgGvc1XV3d3dMwXyUtMDIu/j0WDeJzKQjLXn56t8kyLgWhRGgzq+qb81ZbNarer6+rqWy2U9PDzUp0+ftvZz6wjif//73/WPf/xj+vz888/TtlXKeafcvH2jqMDo2TnjkwB5B6SYPxU1o3e7AoIOCP5SQPEtiPqoMxpzAFb3yEu2bVdnIvULx4Qvik3TAS5r3odVzw/a8fb7vZFc7dM+5xXb4+l3kfs50MY2db9H9K2A6i96ayGNFb1KNYJpOI2w2Wzq9PR0a5GZjCTfvlb1FNZmONS9f3q6San5gGEa1rdTODKuFFIqbH9OL+yR0VXdZfy5gltC5qu53VMUKFJ+bLMv1pORpzHXVIYja/KX6xXSIszF4ml6Q9EerelQPuSDR3JeSqFS4cx5eh2C7xRe5y114MIVMcGAwHI3DaZ81V+cFvj06VMtFovpPQOU1dVqVT///HP9+9//rn/+85/1008/1c8//zxtZeU4SMa9MzJzSrZT2um59HtXzyrx1a/NUQKMX5PPr02dwUttr3qu21y+Un+P+in9H4GAtHuB+pl6mgY3AZ7O0I/0y8gxTORyRv08V3/yw8tLY6frqxG4Gd1Pz+9De4EBHxz68MAZMoiKTt+KDHBPsxCgL6STceMcqc93kxGiXcLnPgBG3hvBg6/I9/l5GWK+J1511sEu+mw2m6ldyieFlZW/r/JPH/GNQIB7tpkv26X0zkPVnes/+FFUSP1EXri8vDQY2BUQkNxAUDnQU6A8dkZOeSTlrPwYYePzXlf1mc79+Pnnn7dePU3QIDDwn//8pz58+FDX19fTS7B8HcccmJ6rV2prChMn4NHJRwJYlK2R0h1RMjjp/ksCgc5JGbU5pU+yVvX8BXQj49n1A/P2aEACzlX1TI+7rtP4dOdvJIvkhbcnjUN+j8apr1dIMszn0tjonISuXzsg0N37FrQzGHDGuFBRgSSiUNCT3Gw2kzFU6FMGterp/et8QZJQpCghNAk40yfvgem7NQkjLy11Jr1xLfJaLBZb2yS1EFInwenYYTckapvqSICRBquMQJo+SGCOz63X62ehOwE67hTxcJkPGP33rYQO4F6Suj51peQk+XXZJ792Ld+BhYCy8iS/PFogORMY0PkBVU9yIhCtyMHHjx+nxYJ+KBfbzjGRFOmcN9a1z+ufwCzbn7xXGooRr0cAY66PfHzs06/fizpj0YGHpLvdk6zK89+pbObpEczu444CDTfHleqkSKNPgXZAKBlrl+F9+3LE01SPXcaGp0vOSQcE5urKOu9Le0cGCALYmQxVdwqkqp4pUT1Po6mTCau2t6opfwqhDKivJ6BR1H8KK5nnddQ9F/o55eaHF8lTk7BrmuD29rZOT0+ntmp9gZQ0IwGLxdPKaEUU/AwBLtAboWEOCI9AiIcCBOorTe+o7oxAiL98N0USQir7l6aRl6n/vvBJadn/XMtB2VcezM/LdbnSf26z9Sm3qtqKwOmeFgeqH/QsFxbe3t7Wzc3NdLQ1o0AOOJk3x/VIlrzNHa881Oqg1XfGsP3UFQ4IOmXaGY407j2P1w4GqvpwdAcGEsjxfEY8898JzJI6PcQpUe144dSpZI/nEqTp4cQHdwaTbPM5B0L+u/segQSl60BBAmEpXbq3rxzuk34vMJDmT6Qw1IlOLhASosfHL4fjKFyuqIA3gNvbhB5diFUHlumRAdWfgsz0qd4qw4WfAiAPjUpJ9a56OnWPx71qYSHbrTbyGbVNRpj7/bmwjyDJgQvzES0Wiy0DzrScBqmqaR5b6Xn//v5+6zXI4rGH1IjQX4J8wCYFpfse3mT6BAirtrcPjgYfwYJ7MAQC7glTHjj+Hh8f6+7urqpq+q7a3nEgAKApAclNBxaTxz6niJxP5Lnq6yd0ip8C9CND7mNr5O0zTedBdvQaDX4iNyQdyPFrDvwS4HO+69tBsn+UH/Pl85TlNM0o4jSnplBVZgdMWXbVtkPItjKtj9duLDAP5wfHpduffYy9p98FFHSU2rWrXP+iaQJWkJ3tiys6hUJhlKLyymuRFMP4rnxSiDEJuIMC96j1LOvn10Sc85KwaPojtVFzt4vFolar1XSdR3WqbgQy7kn5okDfKeDhZN6nx+8DWeXqPvnM9tKrZPksMymnl/SukufgBlfpfM6TzztoEiVg0SkCKkqCVech60MF6pEEbQtkOb4t1IEAFWSSVQfRc7ylsXbQmTxR/Zac0RscAcdOce8C7jvZS4qbesWB22sgBwJu3NwI8zmPoM5FdZPe9+iw61g+7/Lrb3m9vLycTqz1E1z1W9OpCRB0Y3pOp/N/N14J8skL/e6mqr0uoz7syk9p2Sdz9DW6du9pgoQ83MgSEDi6IkkQiQarasvz4Qp6rjmoqq3QYirPlUoXFeDAmPNgqSBYP93zw4P4HM9K0LMeuZBRFhBgegECX4/ARX5+IqAPfuXJrWyqp8rV3LUGPHnjCxQZlXFeu+wQQH5P6rxOr68DgTT4ySs93ynRRMnbcGVOOT86Oto6lIrbTGX4lS9lhCdNuqy4wRa5MU4Ans+xru7ZJAWaAA/TjPqpe86jNF7/EWjrjIUbgtcABjoeVI1lzf9TD3Bcpz73zygi4M8xIqQjs7UD6fz8fOtNmxcXF/X4+Didz6IFrppO1YvxGDnuDG83tp0fnWwn8OrykJzSufHe3eP4H/Xd6N6o/H1o78hAGrQUMAEBv888Uid6mKVq25DpNxcWSuFxALswJGTrYECIk2VTQbtxlwH33QL07hk6V924cpvel4MBAgHntZ8fwJcY0aMfCZMjdUZIxCNFYpQXoxFsLw2P1nV0hvalqVMYrvBcxtPUEL93CaV39aCBpJLlsdcO2tQfPj480uDAOG3NdVA/B2p8XPDbx05aW9TRCBDwfhov8lT1DB0EyW8y/KlfvIyXBgGkUV2cb3MAwWVjZLRGer9qWz8TBPANmzxs7erqqn744Yf6r//6r/rLX/5SV1dX9fnz5/r48WN9+PChPnz4UJ8+fapPnz7V6elpBHqdNz/HoxEI8LamMa/2qk4jB/l7yo73+dcAhK8CAyrMDaJ3UELnrKB7XXqmQ/PuidM7TQOYSpahrTTX42hQzzHM5V46lTDbpBcF6ewF9474nYTMBx4pAQKG9xVyFZ88rMaFOjQyAgSu1NleRjIYKRAg4eJG9YfyfmmlOvIeUt/rf6ckmK/TSOl4XsyD/KI3lRYq8rRHjzK5PDogcHDu/En1oxJOXiLHGsFAF6lKitz7YqSwVRbBEvMfARDXUXP1eUnZTZ7jyGjPpSElg5XkPeXNfiQQkOyenp7W5eVlXV1d1dXVVV1cXEzA4N27d/WnP/2p/va3v9Vf//rXevv2ba3X6/rPf/4zHcDG000Ffv2Y86SrEt8SuO3Gs+4lPZzkhs/sohsSJV3gOqTLK9nbBGp3oZ3BQMccKiR67a6UPC8aZp97qnoKBXnD6cF3W+wccKSzDlRPRgW8jlI2ek7kISryQnzwcK7uqc37ojZ61irDp1C4EMvDw5vNZgsIJCCWyqER8a2P7HOV3514uG97vyXNDQhXFqm+rpDJP4YQed+92u7DOkjmdKCTXistPjsQTKDPDbrq6JEz3vdrNPA+Lh0MUIaYZ9pB4Pl1oIz1coPEOvBAM/KJspoAyAgQpPJeChDMgZWqDDj9/i6e4hz4pb6nzCTZUATgxx9/rB9//LGurq6mNQJv376tP/3pT/X3v/+9/va3v9XV1VWtVqs6OzvbWhdDXaa1MXS+kpx7G0ZGu9NLo7ZvNpvo3PgzNMgjYLKLvknPeh877dLfTntFBpInQIMkr9Q7zfOpeu6tixIAYNTAF+4RDCSER6XEF+qkECvzYf34HBdrsQzWT4Zf8+9S4GmuPrV9F+Tv0RBNQ/hCP/WPytFuDHprytsPvHGjzjookkClq50R5KUbiZegTqHOUQK+bixH6Dsp12REXe78hEfKKBVj2lHieakcBwKpzl5H1Z1TGV06/k8LVDU2OCWV6kOe+G8vm+PTFzQz0uXGnenSb6bd1ZD+2tQZhF/ybAJa/J3aTB2VnDfx/s2bN3V+fl4//PBD/e1vf6s///nPW5GCH3/8sf7617/WX/7ylzo/P6/r6+vabDbTwkG+CXa1WtXl5eWkWxeLRd3d3dVisdjaySWdu1gstgAL20V5dZ2U7EgCrSmylsZyiliP+jABia4PdwECI92U6KvAQAq5a+D5nmuvZBrYuiejWfVkRFJeycvxuvLji+QY9nYl6s/vwhN2vPJjHuQZ6+1bCLv5di/L6+B8SvPD4gMjE96n3hc+z++GXeBB7ebWR6abm/p4KeLAc5l02dS3e0H6vWt5ndJl/3DblYwaozMeGRhND7hicOXkdesUZSIfz4ykpek4jmmvk+pA4+/KbwSsRsa/M+i7KsqXlttdDECnF/zZTt53zUe/ve/Ub9RDJycn9f79+/r73/9ef//73+v9+/fTi+g0VfDjjz9O7zbx6QFO0V5cXGwBjePj42mXDOXfz9DwtiSH1sdE4rePJdfx1HPkA8cu+Z/6z+VWZc45iSTW0cfQHO19zoAvDOFK5yQkXNxDb5kGyxUcFUIykGI6V74nxeYhzDSNkRSSmKoOd+83KS/eo1KmoqK3w873KAfrz3J87pXluPCxbW7UZXh8+kT85ny0iNM5BFiMBnm9/PXGL0VpQOiae+kOuqgY3CPwQZs8L/4eKRQqvqRUkuH38ZbkmG1N01tM4895vqpvF2WgfHdTf2ont82yDkpD2fb8E58djHc6wevMcent92dfgpJciVK9vP+8zbzv+tHLTb9Zp6Qzqc+rqi4vL+u///u/63/9r/9VP/zwQ52fn0/24+LiYjp0yOWMn+PjL++t0Xj1kw75nM4nYJ6SJY9c+bPeZo+IJb4kO8PnOb2aHGTvO+8/1sEN/a5GflfZ3UtLa5Wo3sCnVw0z9J6Yz1Ah57c5p61Dd9xoEjSoDmRIWkBIpUOD2x1a0Q121sWnB/isGww+l5RzKoNtpHC55y5eEmkSOboydGBEpad8Beiq6pnH6ZEF5eEr3BeLxXSUtMr1/fEvRd3ASZ7CyNAToDqY64wyv92opjpQvtM2ThE9MU1FdQDGjXJS9C6vnUyx7SqbdXYd4NEKHwdzxjgZdfKRO280jhIgUL7km/InoHe+8LmXJOcByfk6MhipXTSMTJMAxKh8l305jxcXF/X27dt6+/ZtLZfLraiRphV1+qpPfQn8esTs9PR0ax2NiFvQVS9Gmz1q5TI94msaQ7pP/Uy9kPSF98WuvE3fo7xSfiPaa5pAhkNbRfTGOg8RuVHzCnGfPBe4KQ9ffCcioztGuGfC1fU0bqNQEfNNAu6oNHnlet4VDeuXSPd4hKuDKtZPXpZv6Uy8GJXHsx2YlvwisFD+4i8XixE4uLF4LeSGPw18fbP/OcBTNCwZWubj/E39InnVPV+DQ+Mn/lNBdEqsAwT6n5RWApjkH8eFInXq/xQho/xQoSU+JiCQ+EmQz3Huz7ru0PhMDgKpcxZegjpj0cnR6PkO/Orbn09lu8PhjgwNI+f3deqqTmXVOzN8Mbf6lLbCnRRGHn3q6Pj4eGv7tdcrgSjnj4+bBDLJR/JAMpYAZ2fUuz7q0sz93xXI7gwG5OWdnp5OH1+ZT6Wha1QWVAL0+ClQ3Up7P7CmUxrs8FFe3CGw2Wzv2/bBkQy8309KqEPUNJLKw+tOz5vtYMcyLb0kLyeBAfYR60feCWWr/exr9mV6Pg22lyI3ymngOgCiEug8pM5opfI7Y6v/bswYiXIFSBnwKEMyeJ0yo9y5XKe6pza6UWbkyqNZkisHRRxfXQQvGS5vewIu7DcqdyprPp/oJcHASJckQzQCpNQhIxDh5aeyOt5KH6mMh4eHWq1WdX19Pd0TSQdvNpu6vb2dogPu1AgM3N3dTYsLfWeTdCmdJ04HMMLggNQjI+SVxiad3ASqKU8JCHS8Zrlz8uf85jMJ3O/ax6KdwYC/upa7AGgMXWk5GJAycAVDwdA9NZoKRA1NYWwaI3Y6lbDK0SKVxeJpqsGBCYUoed3umYw8DDc+ukZFqfokEEAif8Ub/abAOkL20BjPQhDvCVT07ggvV14feZKAFI2W+uwlqDPoPliSEp0z9J5/Bw46Bc3oApUO65m8IcpNag8NZgcEyJME3rr2JMDAeiu6t9k8nWLJ9SmSt3R6okfYKJNeN7VPdWI+qc6dAe2AQMeXl6Ykwylq6ICP6TvQp99duR3woN7waYBPnz7VTz/9NOkblc1dIHd3d1N0QMaeO9W0s0C7DHj4meosHqRpSR37nsb8nGx38sF7u8hdJ0MOCFxPebourwTwU5s62hkMaJ6mOw3N53pYCVcG3ilai1BVW53sBkbGOZEbWwqk7ktAOJedkFlSAq58dM0jAt756SPqIhju+ZESKFksFlN0wKMIXoa3RwNU31371a/qP13z/Fw5iUe7hqp+DZozDErTDfqvIUfyLEf3/TqjAkdHR1uLaauetnMmo9a1LSk9B9z7eByJlJeANacwmC+nvqq236ORptqSTHm9Urvm+tr53wHClPalqTMSCSh16ToQtG/bO7mjN35zc1MfPnyo5XJZ6/W6Tk9Pt3bNqE/1Ku5Pnz5Nb9j0N7RqbKQzNZKtkNPiC5gZCfCpLPIlRahGzgHrxLG1Cy+Z/678Hj3XAYoR7QwGTk9Pt7Z8VG0vGExnC9AQ+cpyHbeqOSMKkZRKMnzyLDgPQ6HgdASNog8WD03u6v1JIes5ggFX0B6lSJ0jIKSDUySEDIMlAUx1T2E48WxECulyR4C3vetXDUSvI5U607wE7arkOs8hzfftQsko87eXQ+9afenKhNGdDmwkTyN9nDe+noH5dfVmurSuQL85Nae0/uIlKtKujgm8jzypbtx1oCz118gAfE9KdU1t3MWAJz6KqE/4TAJZqS5VNS0Kv7m5qf/85z/T3L3Wm/FthQ8PD9Nr3D99+jR9X19fb71SndOXBJEi1/NcdE4d7BFSPauP5E/RCKV1PiXep6nyxK9EHLsjQMdvPfctaG8wQEYqhM5vkQa/n7FOb1xM055Rdqbmpb2zq7bnOCUYnWeqayIBF0U01BYPNybFRA9IeY08EQ/RE5EyL624PTk5qcfHL6+llTA6wCLvVQem4fGvaU2H84hzvI7AxSseXKQ+1JnhjpoZIWGZjCi8FHXGwQ0eARyNNNN3inROYafBzCiKTxUkQMd0zDcZ0STDo/qOFN4IQKXfaVzIWyM4oBLehcepbul/osQH9flrMfqkEdDR9y6GJj1blY9rTn0+MoZeX+mN29vb+vDhw9Ypmm/fvn0mj3d3d/Xzzz/XTz/9NL2X4ObmZpoSkI3QeQT6JLvDerCePsXtNkhpJIeaHuXidgfgHZ9YH48Yd33BsZrakPrO65DS7yPTe00TcL6HYRDOZ1Y9heEJBFhphqNlWJiOjGG+fF6ehZSKzyGJ1Lka7OpcKYCEetU+N7Sezr0LN7I0nmofBVHPiwdnZ2fT/FhVbRllj8akdQou9JyW4f5bV8JVTyvW09kPRM8nJyd1fn4+TeswMkKZIDJeLPrpne9FuyhL9h9D2FI6bmT9dyrLwcVoukT96krGPehut44rLb82x490zaNbnp+eYfsIgP0axx2vp+gd25CMlsqnMU9Kt+OPt6Hrk9cAEhxEdiCT91IeicfuSHn+3hfOb9aLuubTp09bO8N8G7jG1fX1dX348KH+/e9/108//VQfP36MEQHWj2sJOmAg+ZJ90bk4lE0vo+qLLtTOhru7uy1eOS/TGEz6gjxK/er/R896H3a0r+zuvYDQ1wu4wSQQUCeI6Xd3d1tegV5KcX9/X6vVanpVpTOEHq3uCxAkARelKQMKzJxn4cbWiQOCisinRvjSGXpArLd4orpxQSaFVvX3aRkqWAIseu8aQCT1IQEAjTv36PLMfC08THNjozUPL0EjBToyBHwu9dsuhsXzGC30Uv4EBEovmZKccZsWPWvKbOdZUF67NrPOXCxMb2qzeVq4yugXvX7pgRT98LqOPJs0ZaiPyuXz9MgSzQGAVM5LUDLy/BCoeTqGvLs8k5Ejzcm4T4NKP9GIuuMiPbNcLmuz2dTNzU19/Phx+tze3tb9/f2k58n/BDa9HPa7HFIekse1b27MVffNZlOr1epZmg4QiFyuXfd8DXX2Se0e0QhIO+0FBrhtgwYzbQ/08N/t7e20gERnFCyXyzo+Pp5eyEIUqUZqKiDNvVBAZEjdKKujUseTYfruPIs55M36ynBKEcrrPz09rcXi6chmF2QewqSPD8AEBHSf/eIKgQIrAWEIzA9+cqDRgQxf1EMPUn2ZAMNLkA/OBDzFG5cxH/TM0xVuh+J5rfPiPZ1kWv8JDCnjlG0a++T1ef39vhscX+jH52j0Oe49QsX5YcmarxrvwDd5zDHvPFBaPp8AgYP3rg93BY2/NnUg1vtcxCmPzpDw2/Ue5bMqR786gEDPmJFGPic9d35+XovFYtp6KBvhr2XXGjGPgkrOPJSv+x6V5To12Ry+GVFrBLSGynfOjcaI88RtmPOWfTvSi3NgYjSm96W9zhkQg9U472Q3whJKvkBH8+PKi+cVSHg8dOPKgvOlAhDudVFp+ABKApwUMduUjEhnMDS/9ebNm2nBjMBA1dMLfVQ/7aOtqq2tMxIqN1pJOfp9bd8iYOBUg/PUj4T2QcfdIA7afDqBSlbpHLx8T2Jdkpy6t+sgS98ceG7MXabmAIETeaVnGB3StExqG/tI13wOPBmNdC8pPAf/VHQeBeRKcY8WSC55gIwfs9x5qt5/3jYPW3fk95OR6/j7UrQLCHB5S/3v+TGtX6/qDT7v6TevEwSoXxldkgycn59Pxvz29nZ614B0iUdKk30YRUYYoaJzKnmUk6a1WtLFbkdS9GNEc/ddH/m9uWfnytolTaK9IgPyCDlAqeg771Ohl8fHxy3GE63p/3K5nIyR/jOMLWNJgWMnK2+GNwUcGEon4yj0PvA4FeGCwW+fGlDdFaLSb4Ejra4VCTBJUSaAwjbTYNE4ix8cDBz4GmAO5HydgOdNr488k2FIYVmm8TJfkpLxcxDgQMzb5UphzgvzPEaD3seV94kbSwIBGgGXISr9Lo/UTueR+ppjVlNHkjF+M4ok78tPkxsZHZFH05g28XrO4/J+7BSz9933pBEwI6X+TACzAxF+veOJ1ytFDzjuNYaur6+3dOrnz5/r4uJicpC0lVB6kHJBx4iRh8QP51OySSnqSSdKkQumSzLgY8zBNfvC+TXiqRN1yy4y7c/uSnstIEzrBdwwVdWWEqt6WpAhI8g50aqqs7OzrXC+BITe0OPj4/Q6Sx1MwddYMpRd9XybiYiKolPSnob3OF9FEMB1Afr28BT3vepZoWBFCtKBGlTALszKU/Vzg8sQrQ92emOukAmC6N1RsaseRO3iPQduF/59KfJB60ad34mSMXVZc8WbokksK/GHvPW1HgyNso/YjgRyU/27Vf2uNHlNYIBg18EE26E2cGrAF1p1Rjf1T/c/kbff8+sUOuv0UpGBZMBZP8lOAri75OWOUZLtDuh24IEyV1WTcV2tVpP3zamCo6OjLYCoUP1isYiHnolGcuP/Hx8fp3UIGi/r9XrSjaof7cvofTnkPcsbAZQOpHf2pqMkv97urwGvXwUGpOSp6IX4aBSU9v7+fmtRCFd+cu+p0h8fH9fZ2dnUaQIFWqF6fX1dNzc3U4euVqspksB92k5EzBwMncKmd6g2KvzJMKimAy4vL+vy8nLrnQ1VT1MsajsFQ/zi1AD5p3qkMBmJAiplqzd9iafcFurvhEhCpN80FlVP875eF9Zd/11YX4qS1zmiXdIlpej8SyvldY8ySiPr3jBBNY2yyMOYTJM8bq+L5FeKUTKUjoZlH2tscvz6VB5Bpy9SZb00Lqlsvdyu/lTKI1lzDyt9mHYOpHwPSsbXgWQHOh0cJkAxMlqMxKS6eJRQ5aQ+eHh4mPS0Tw+dnJxMxw3zlMEktylSx/p5PTh+NG1KIKpo9efPn6dDj2RjeBoi+ZcAQQeSEmhLPPJnWH/2Yfr2fJx21b97rxlgyJ6LzTjnr3RVT4hMnV319Ga8u7u7ur29nd6AyNOpNA+pNyPK8PvhR75diR4UlTAPPCHD6N0n70qKT89pjQMXSi2Xy7q4uKj379/X1dXVFrBx0CSFx7oJDKTwve53hzp5uoQuZZTEK56vQG+e6y7EU+czAV8HBhwte31fA3WGoDPseobXk8JNaTulTCPo9RJJmUlu0mBnVIzjgcZY6bxtkl/t7KmqaWyuVqtJ7mgoHAwI/Kr+nNpw+af8JB7RsUgKke11RZv453x3XrOc1wBanajbfPy43PpaArWXzozn7fKYrpP/I8fJowJ+n+e7MCq0XC4nsCC54zozEXW05M1lIzlzBNPHx1/OtNFbD+/u7rbWLcjR5DkHPi0hnlN2vJ+cP7SHDuRY99T/Stt9d2B/X3neGQywE/Xp9vYTAfl8scCBQuO3t7eTMuLbEDV1wK1t8kKojLRaX4KkzvMQp+YzBQhc+bsiZUdS2fK8AG4bvLy8rHfv3tXFxcW0HkAhJwkk1z3wpRt3d3dbC/CSl58W9blnSfRJg0zAo7YqSiOishGC9ueIWH2uV2U7YBkZ1+9FHLB+PXmhvO8GhDKh/1Sa7iW5Ie1AAhVNykNKnXVgHuwrhvvnwO/p6WldXFzU5eXlNOYE0k9OTur29nZLlsgLKj3JhECAPCo/Upb9kRSp+Eh+6hny28FAB+6SB+aG3/8nL++lZDe1typH3VL7dZ3ffp3luKzyv4hGz+8xP5L6UjJBMKBpYepFlxmdJSNHjA4o9Tz1Fm2Q9Od6va7F4ssOBtkO2RnJvdsSle+AtWr7VfLOdwdnBGYJEHTOxPeincGAH4TDznQhZUdV1ZYRrnqa/1fnKzyjvaDn5+d1cXGxNX8ub1vbPuTFcO+7VqRKEdED5voD1qObJvAIBef9uY2KntXFxcWEcsWb9Xpd19fXW0BKQkfBJ9HYejieHrwPRhoeKXxfs6A81EZXsqKEbpPhp4fHfF6Tl9WFnTmoOUB1PxkJfbOd5BGVA38zT+Xh/dghe5WRvCB+pzYnY0hge35+XpeXl/X+/fs6Pz+vqprmUpUvX/JS9fwcCck5F6AqGsg1AgmQpbqxrZ2hSdGBESiY85YcGCfA8VLkhnoOwDroomynsengkhHHVKbXh+kTIPapUeb3+Pg4nTfA6VKvsxZG654DXqVzh05l+EeAQI7dw8PDZJN8R5fneXR09Gz3i+vGVJ8EDlx+U7+nvnKdkp5nul1oZzCwXq+30L8KUoPVQd7ZqoyMEyvNEM7R0VGtVqs6OzvbmjtarVZ1e3u7heJE2oVARsvjcY/EF8F1DKMh5TkB2pfKCIJ+c0pDgiKkeXNzM4EBGU8uVFH7OafPtQP0wN3QJ2PgadL0h8rTwTXiv4hhxaS83SMlgFK/7jKH+1KUvMfOS/LnusHpylpp5Q14Od5PDu4S0O7y4CJSj0Q4sZ48WloyLrq/v5/k2ttOD6nqaTusPCmCgbT2wPnrvwnSGWX0Zx2ocirO+6ejTuG64n4p8rGt7zTmq7YdnWQoRuCKebn8JB514IH9kMCJ8lbUVIunvc7eTk5JdzrcQTaf5dQ2bZfqzEhWcnIIQNge/ncwlOTc9XbnLIz6g+1Ocv81endnMCAmptWVHpJRh5GcmWlO0wVI6wxWq9WzQyJSiFVb96qejB1DrD7XT+To80I8sEJlppOr2CH39/d1dHS05RXxs9lspp0VXKlKxFlVWwKXlIHIjYeASErbhdX8GoU7EQ0CAZaAXlIGHWp9CaIyYmSAyqczNvwe5a9vlpWeTQM8eQrsSyoc1o/jQdEzXXeglwCGvLLFYvEsEsW1NlT8Kkvfvj11bttg+u/XvDzed94mUJf45/c53tJzr0l+SR2gqnoeGXJZ64yV599FR8g7N1YOYlMfcVqTC9NFrhO97pRPr5OXzShrirRSH/gOl0QjQ53amkA965ccAD6zC6Blfl9LX71moGrbQ5AS0XUqWlZSxoPPV9VWh+lMAm5J0VoCGWSGvZW/kJ4WImpuSYby6OjoWch/sVg821/vB6YkoENhfnx8nMCCwAAP0PB1Fn6wj8rUohi1J82ZJprzlLiok6FrKkAfpKOy1HcyFJ8/f56OnRavfNsiAcdLU6e0yENGXzqPhe1172tOMXo/dQPen2UfKRLnilJ1Yhto8HyL6N3d3VZ0QXP+rjDdOLpH4muJ3GlwHndGnel28XZc8TIPDxd7nyRA4Xx/SXIDz/q6seiAVeIjn/EpFy+bfafnuzp2ZbJs8lt6Po2pkffPdCqf9kD8qqotEJCirakNDhAp813bncfdx9MnuZsDyanMX0o7g4Fua5uUpciBQKcIaUhkxJWPDImU0ps3b+ru7m4rOiBjnkLgnDJg3bgViiFQARCfaqABlWFX2VXboSdFJrS9USti9TzDp+6d+0uDpMQfHh6m/ByAEVWzL0QqQytoJfi+uDLNp7GcjsQn1ZE8Zr05pfRSNBpENO5Ky2gH0yek70Y9AYG5tvNZByedx5GmYVJETqCYgFYkuRYw0OIqAvOq2pJLRvMcJFXVsx0EakfyYr1fEljchR/OQ6XtwsVJ8dKZYb8kJf4SlJwC5ynvJwOdZNOnqNJzCSykvnc+eV7JWHJai+BtZHyZ1tvn4823s1Ju3W4xGqE8mFbrFnjd2+Y8ZDnMq5Opjmcje9rJaerPEe0VGfCOkVKQ0eyAQIc6ZQg9PwGBqi9zl1r97lsL+fH1AI5q9ZurqLmokIdbqC4EJDL4erHSYrHYmhvdbDZbQIGLp9g2GnYOxqrnytANvSs+KbBkuIm6NX0gUODldNM/Kc9ksBglqKpp325SQC9BI6XENFQyrgB9sPk0TlIwTiOv08dNGsg+6AngfAssFat75SRu6WIkjGkpn9wG61MCXBfDabd0GJF7dwQ3CaCNZGekCNWPCcCxDPI0yew+SvVb0sgb7+RE6b19/CZv0rSniDJEORDod5lMYNn7xvvLZYEy4e1LBluk9ByDLqM+dlJbO9CZAIC3g7x12e4AdOrPDmj8mrRXZEDkhoIehCsRAgUnKgoZKhlfehYeZicIIDBwoe46h0jv8fFxWpegcxA0QFgfnZ74+fPnrRcOCQwoH87DM1zqCNX5QwXqCsnn9nVPBj5FZqq2owPkf1KsnC8jCPFIBMEfF+RUPU2vbDZPIWxNh7ykZ0UlQxoZD5fjZCC8r0bKIQ3u9Dsh/0S653P9Arvqc0bekuHwqJCiZ9xCW/UUPfMXablsu0yQn27ok8L0UH4yJokX3pf8TuTeJQ2Pe1yvgTq5EqW27mI8HFB0BlZ9NHI8EmDR9xwfyXOO185Idn3D9TLUWbQnafx1INRthl9LfeLjzIFmancH7jq+dYDil9BekYGqehY6pafrWzBceDqBpZeu9QIMU4r5PLRCSkvG2Q2eylZ9NC0gZhNF6pCJ1WpVVdvrGghEhIYZemdI1YXM1wlIkZIX6lDfV+vTBmwXyReLpfTqH+cRy1B92Y+uJOh9uuIXn3kYCJVIGgjfkzoPSvdSSNm9BqX1No0G+8hD8jJcuc/VWX2ixamaEuDUjfrf18HQECsPjhlOw3EPth/TyrHKHQUChIkc9HQKlu30tIkX6VoC14m/c0r41/bK9iE3nKQEeF1G0/3khTN/9SedwjQGvC77GC0H2wmg83nng+SNddwX0DFC18nALkDA9Ug3NZDarO99ZJAOy9fq2b3AABuawqGO5qqeQkpVT43hmQMK2escAVe2aqjK9b3bU0NwmBCflVekw4GktGTwFCa9vr7een1lCm1yvpT3VRdfiEhD74sv1XbVl0bVV4KzHh3vk/Fg/cQThk27/mNZBHdVNUVBuMhMfcx3IBBkdIbye1JnWB0IUG7dUyDIrdrmVwcEOsUyUgKuADuQQL4+Pj5OC2Y1FtRPPqXGqTVGyBhN8AiUpr18JwynKRgJS4Yg8ciVmCuzzoh3kUbnL8cK+9TTOymd989LE+ulPvapUaalfDgfPaLYAWEChVEZ/lzq12RE+Zw/71NcyePmGPQxRzvA/kx18Kk/ByVO3pZONueMtPNmBJY6HZbG277AYGcwwIa6YRbJM6TXoWd5j3lyn7MaIKWiPBgm9w7loKdR5T5Refo6hlI7EpSX7y+VUvTP4+PjlI7rD1S+tg16lMAjBCL9JngRj7yODoy8b3SP/0VqI/tJSpgKIeXr84oEAqk9Ckv7QtPXRJ3hTWieg5zP+dRBl7/y4lhwhefPJBDm+ROU0/Az381mMy3SJbFtVdsHiVU9TQkImKYoANcI+IfjkzykMWa9VYeRJ5TAVPKePL0bz5TGr7nB+CXe1q9B1HmSgS4C685Rd5/3Rp6xjwOvVzJGCeB1z+t7Dqh5PqlOqfyuTp43044AkAMsr/9c+em6l8/8R2PE08yBEKe9wAArSRQlReoeh6NPeY8SXC7mk1cjD94bwBC9ynVUp4YTDHB+XudQcxFiQv96Tl4WwY0MvRSlDj56fHx6qyLBgJ6jsuPgpPIUP/TWQ3l4blh9C40oRRLIAxoFLtzUs4zg0OBw7lj5eRRE9dJCNJ/2cFl4CeIgZRt94ZwPIhrm5KXzP7+dlHeXLgGCDlA4OHbZpwHWN6NPLMN3mAjsbTabaU2K9x0jAp1X43oiKXHPbxc+Mv/0PUcpXWrja6PUTgKC5Dl7ejfoykPkgNj1WHre60gAMuqTDiD7GO14kMBAJws04OzrEVj0Mlku80ttGD2bplZSHbwt3sfe17yu//vI9M5ggAvY0j2edqcKSykxTZq7JECgARLjXEDTFqARMiQgkAHzFw5xvpvbBR1k0AByflbzrjpjICFK357pSlR84ZkFKcqRwlDuxROEUPC56JCgjIPC+4eREQcDbmz02wHMPgj11yC2z41uAlF8Th/32F1pJTl0w9ddF43qkPIRuTw5r0djN5UncEtwr/Q+BaT6MB0VGI0I77E8fSdj44pyF6/R+6NL5/UkH1nuSwGFEeBh3UfrM6q2QQDllenUzgQolEfKV9+sz66RwdRPqa6sI+vgz7uRZh0JBEYR0dR2H1cJ6KRIYpJ1B0vJAUnlO9+87gkQpAh+RzuDgUQ0UB1i9AFO4KD/Yg6NHhW1KAkqB64Mqsi3C+p5huerajK8XDld9bQQRWX6WQE6d0BhU+1I0Fx6EmZX2j6nlX6TaIxcSTE6Q95vNputaIUDC4IRRUMIlMQrBzI+qMjDBHheEgxU9YBgH2+HXlhHo7yYhnXyZ5Ji9mdplH0MSk6UXiCOMpjS67fAMMG7K7GkfFh3toXf3bUk/3PUyVfH11QvXffQL79fSnZTHRzwVD3pNneckl7pDGwH0vRsV3bS+a6bR+3r6jeyKQ4ged09dlGayvL6jspy6oB8J+8JCCR+pH5wsOTld+NoTleRvgoMsGApED/8p0OaqeOqtt9qRWPlngbJQ6JcwMb7qhc9QAcgVHjHx8dbrxRmOi2kUl25n14vHhJY6ASanetgRyAjLWB0j5SeuowwwQCVPoGVT+noOfGK9/0wqAQG1Dc+9aC6+dael6CRoiMlRen7k2mER+SDNimLpHxcmbmh9jIc0DGy49usfL81ZSMBCgJDB7MiRlWkgMi/jv+dAvNryQB15Hzz/qx6viPHjYiX9xqArGhkgKueRwm83h3Qcl3t/TDqgyTn+wC6VL85ufe2JVlK5P3Z8dHTpvHoa+M6YKp7Djh9/HfgwPnDenTPpWfmaGcwQAXljPTC6EWK+CyNq8/fdKjJlaS+6b3ziGHWg1sR9azn46FiRQFYJ04T6Dl/myNfkKR6uQCl+Wm1TSfCVT1t8fO5ItaJ0RStX0inEtJr4BkNXACp53mIk8pX212ReqiL5SQD9BLkg5WL/3xguiIjEHKAOxr8Vb1SZHk+lgiQdZ3ywLR+36frKM+SFT8HICk3XmPfVz2dMMjnGWEikU9st//uPMFfIi8jIO79lWTB2/DSQDYZr45PI29w1O4OvCZe+hhx50Y86/qclPqpAwSsr0eovH5sZ4rAqr4cJyPZ0POMmDFy6o4jnxtFSZOMpt/JEUjPfy3tHRnYBamkwSeiYU1H83YKOQ1G5s15cP/4eobNZnsdgQuCnx1A5UdvnAJJoOCAhgKkdvFFScxLkYaq2jLKvnWSoGSz2Tw7yVF1pYCqvTQUNCQqc7lcTmWrrTplUVEIR8bexyyf281eiqg0ElBLBjYBG+blAJVE5ZgGOsGT19Flh+tw6PXpHtvSKTf2hUcGHHAyH9VF5fr22G79hNfVlXfiUVq34aB9JEPOT/LJDVJSuB2w6/TPSxF57XXteKB7/n8XA5V0u8uJrvmaEg/Np3K8TJaR1kFRf1MWNR5cN3FaOAFPj/T5GPWxIl2ud+BUbW8rT/YhjeuOt11/7Upz4KujvQ8dSoJGYdCqf3WIRwc4HeCH8DAkqY6Q4fNQKM8bUBoenKLOoLKToaVwyeipHnqnAFdY861tqXNd4BMYoPLn1IrSLxbbL3oSD50ffC2srw7n4kbyhPvCk9L16QOd+6ByBdy0G2O1Wm21U23ktAzPVmC/vQS54vdB3hmBqnomL97/HRjQsxzsIyDQyQ7z2my2363uilJlOIDVf5+qSd4TZZU8ocJMuiDx0dvONnNsuhHx/DreOg9HRnDUv6xPBxJ2XYT1a1NnOKp2BwLdGEh5kSdupKuegD9BIeVR0SiOnbn2+YeRLskp65giaRyv0qcJ0KRQP8nL5HMq5/HxcfqmPM1FA9K3fu9ixFMa7+d9AMFXbS1koWo0FxrJMOkZGksZCp5WJqPM3Qb0SvWcmC4hYBjf0V/VNmrkDgE/xpgGTzsCWG5qf+LNKE3Hx8RPV8Lijww6wQABBiMTAg5qT7clk88rusCDoIh8V6vVNLDc2JPP+k5nPbwUJSVP48dB7wowzcGOQF/6JCDA8aE8OxBAZUQwx+26nMpJ0zkJCDhQIW9SWhqckeIjP1jvzrAk0NTltUt9HISM6kUed3XYVaH+WjTSv0yTACiBmIMe1wWpDP4f8Zh14FoVyWYH3DqZcMDLNJ4fxyN50Mn9qD8doKaIoEfIqA87EDDHa+qKrp67yOPXyu5XLyAcoZzuGYa3yTw3El0+DFt63vTk3cuo2l5sqLz4oiI/QW1XBKvyyQM3AF6PEYJ05e+DXvcY7iXqloCmKQIats1msxUt4PwXpybEo8ViMW2jFIBKSlwf8tBD7t+b5gYODQE9DbaP6wxSuNs/Hn1xA8R6jdK5AukAA9Ooz5m/13kXfrG94gfLdIXXKT62i3ycK3dfckXqeaZ6pTp+q/p8CxoZL9ZvVx28a7r0e+6ZEXDzPOZ0ZwI2cgS7PvapXQKHTqd7HxPM8KC1qop5c/qMp8x2Ebiu/G7Mp2uur7p8XQ/P0VeDAfdUkjfiSGq9Xm95lmKcBrGAAaMKNCjsdIZV9S3vOC20qnqKFAgsKG13+hmV38hT6pQFAQGVtP7T8Kc5SQoe0ahPSxAkpXpoEKX5ZO7GUJ04PdHxXeRzhq48fD7xNVECAkmJceCntLrXrXlRHn7NowpubBOoTAZLUzO+c4MyRjmj0tuXX6n85H11CigBoqTYdjVCSjsy9nP8m6vrvnz6Ncj14Vy9R33A/PSbeoz/96nfrkCqM3YdCGCe7iSl+3PylOqY6uK6TaCa6wEccLh+ZD3IY6Zz2U2gNlHXPyObNKKvWkCYjH7V9sIxD1fypDp6tnpeQGC9Xj8z5m70aVjZYIZ4NaWgTnUD6NMGKk8esXvajmC5LsE7t1M4Poc7GhRVtZWGUwTkvyt6z8u9W06/UGASQtd1TUtwCiUZMQ4ehvZUr9egVKuyt+1G3geTGwYHDpyn9AVJVU+84b3F4ulgLlc6aREgjTHlvKq2QGJSBMyjy4ttTTLs113huww5D5i3jwcq1sRjb0tql/etp011Zx5ez9H/70WpXiMlvw+46QyV8ybl43mkMTXK09uRjJ+PTV1LkbnOAHbAwtvn5XfAhLqWOqMrl/zu2pP4MtfPqR2Jz/uAgr1OIKyqLeNYtT2Hw1P7XDHRiKWwuAwU81H+jr7SnvXkdbrAKuogBcyFcFoZqnowPMSy0ry3CyYX17jC7OaYZUwYrk9886OOO8NFkCM++/kDvhKX7VPZXOPBb049KF8eW6w1Dr6O4SWoA12iBAhcntywKxIl3voqZj1DIMRdHOxTBwApnw6cpChZZxhTWxJfHES6MtVvRo1GRjcBCaXrvKm0VseVv/PY68fn5oxWl78r9JegVC//34GbkSy4nFOGUqTS60RZocxSt1D+RwAsGT9Pn/Sqt20ETDuwQV5x7RDBatLf0gE+VpzHzl8RndcEBOb05ag9X6Nr9wYDYoB7p2KegwEXipQv01HRdIOX1HWA6isDn7bmcaAwLK4DeBy8KBrg7We9fYAmBO1tYFje94c7IEhAQiQ+coBz4SXTOf8UEVH9uAKYA9r5ygWOPPBI00L8zCmY70GdgnAwkMKN5L3PJ7oRrXq+z75qe+eG7qcdAmmg8zdlOYEAl7fkqTBtakNa9+BKXzIgPvh6HR8LXdmsP0FWoqSknZLxmVOenQF9DUDAf3dtqao26si0CejRyHUgLIFClxWXT6ZNfB61WzbFgQunu5R/Bwz5LNOk8qkHPPKbnnNnIPHZ2z0qu7uXxk3id2cjd6GdwcDp6emWceS8CRtAL5CN6xro0wh+8l7nnROciMh8V6r0kvnq3c3m6T3wboglRETLCY0nb5BIVr+5S0J1FRDQ2xRd4JMB1XPOX54H4ILpUzJ6Vm1fLpe1XC6n9q7X64lvx8fHdX5+PvWX8tIhRScnJ1tvg9xsvuxkWK1WdXt7W7e3t7VYLOru7u5ZW74XucHjNRIHvwNU/fbplk4GmR/zpQwRXPk0ApVwUrZcG+AyRzDt8prAYJpO8ucJVgQGlZ/y9MgWy+vAwMhIO/87wz1SvHzW+9j55+lfEgioDqTk+DCNG9/EX3/ewUCXLv3vZJN2IZU/up/6qZMVrxtBtv4nUOtpO2DBKKrLFevkIDnxc64vR/z38tLYTmDA5WNEO4OBk5OTSTn6Nr4kABxgCbFVbUcb9O0RAUYZqp7e7Kf73bRFMupUZMpToW9tNWReTq5EvR1M4wZfJyBSYHTv5ORkelsj2+0H9ri3qmtUuuv1elp/0Sla1V+e/NnZWZ2fn9fZ2dkESAiitMXw9PR0qvP5+XkdHX151fLZ2dn07GLxZcvn3d1d3d7e1vX19RRxeOm92mkwiTioqEwSwEyDfi5UzWgUx4zydSNKmRdgZLnuGbF9KcJAb4dAUvlTqXfRCdaDZ2Tw3I9ULne9kDcEtfzsaoCTYt7lmaSbOo9qV0X6a1FX/gjI6ncCvclopz4YGRcHkC7/DuRouBKQG6WjTIwAActNQCXxQPf9GvPysci8OiA0Aqwpksf+Sv09am/V89MNd33eaS8wMIe858g7n4JYlcNbNIp+2lrVNrrzECXz6MI8vM8XFKU2dkJOJZ4Q9GKx2Io+EMzoP1+prDpJ0Lj4MhkwtotIVuWkb5W5XC7r4uKiLi8v6/z8fKsOAgt8w2NVTaDl7OysLi8v6+rqarq2Xq/r9vZ2igqcn59Pr2R+aUpgIA1A9wQ8bTKUVc/B4kgxeJ14nVNsm83m2bbPUZsILDyC5gB7lI+IyjStaena5MAi8cDHT4pYeJ1oeMS3ZPSU1hXuPjRS0N+LkpfndZrzBDuA5UCI/1N0l4YzTRd1xt1lnG1IU5AOeCkvHX+6cZXAg9sPBw0a/36WQAcqlJ688EgT6+n3d5GvpPeZ38gm7yq/O4MBeQI0TKyohMVDNN5oH7yMCug+DVmHpJQfPSR5LiICCe4gSChP96u2z19P0Q4969GH1DEcOKqfQEGHXMU7XuMLkbzuqp+/Vlj9tlgspjC+PH9FI2TQ3759W5eXl5N3n1Dtmzdv6uLiot6+fVsXFxf1/v37+uGHH+rt27d1enpa6/W6fv755/r48WNdX1/X3d3dFHGg9/jS1CkKbzP7mmHxNIj9GT1HSmA0GbKkiJIB1u+kpHkYkZ/YOWfkXPkuFttratQWGg6PElK5c2GuK8lkBLxs9hMV9sgAcLx66NzLmqOXBAOkXcFJMpqJPAI2Z1g6Y09Z6AC3Azo9R4CTIqwsa5e2uZFP5TIvgmaf1iVfEghIde2AVOLlLmMxtd3zTlNciSdztPcCQlEaiAkQ8B6VYVIAMsLa2ieSl6xnuYhPH0UN1Kn0rvyQo2RQqXj1jCvvbpB0CDTd99cDkzdqF3nDgzYYOXEvjWFg/Vc6hfPp/etAIYGB9+/f17t37ybD/fj4dCKjXstcVVP6P//5z/Xf//3f9V//9V/1/v37evPmTV1fX9c///nPKdqwWq3q8vKyzs7OqqqmPF6KHIi6ovBv8toHn3svfLaT/w4sijgd5CeZUWl6nd2gEhQQeFLGEiBhnqqP8tDx1FXb2xjTISvMn+B8sXg6NdTb79ED3nMj72CAxiSFrlN5bqS6cT1S6N+D3BDx+i/N17/9mvOmq0dyyjwPN8hVz0+k7Iy2UxpbCTD68+l+AgNqi/RgMtgd/9IY36WvUlu9nZ4mAY/07K6y8lXHEScB4n0P3btXwjx9YB8dHdX9/f0zBUfDz4iDKyFHlwr/p1e3sow0h9ghrmRUJNhse0qjevpCSdWBbeGzAjtS5vL8+G4Fn7/V8wIDFxcXdXFxMW2j1HqBt2/f1tXVVb17967evn07DYLValWfPn3aOjPi5OSk3r59W3/+85/rr3/9a/3lL3+pH374od68eVOfPn2aph+ur6/r5uambm9vp22GNzc3Wbh+ZUqDaITIfdCnAe9gYAQS9ayHZF3RuyGj/PnR011ZLJNyxuiUG15XNH6dx3ez7g5aqrZ3tCSPK0WHkh7oDNDIQLBMldWN45GxcT68FBBwmqvvnEGpytGFJL8eNk/9kcZF+j+qr+vI0XjsjGP33T1PfexywLEjearK8/Kd8WdeI4DL8d+BPh/TzHNU7uh/R3u/wpiKiuSG2RvDdG6QXcFSKbJzaKTnBIdAgEf3Ki99K3/38Lr5S28bpyZSXrzu9aQgdGVW1ZZAct0EvT8BAvKU9dOK/7Ozs+nVxYoMnJ2d1cXFRV1dXdXbt2+nxaJHR0fTIVBqz/Hx8bP07969m95lcHR0VMvlsn7++ee6vr6un3/+uR4fH+v29raurq6e8eF7kxvyNLjSM6mP3GhzwNJLFZj1/JiHfnveVdtjT4YuGX/Pn0aZkaJdgRCBqNaNcDotGW+CduXBMrs6d33E/JOy9/qqvazPrsqwMyL++3tSZ+C8/0ZAYNd2eR/57qc0reB5OCU9l8raxYA5gHaQm9Imee7KdftFMJ0O9ZoDmgQhSX49Qufk4KUb5x3fdpV70c5gwA2qKAGAVLlk+Drj2gmrvA6l82d1f7PZTG/sYwizQ4NJ0TNfGnm/7i+KYZ0pBC50fuQyFb+IBkWAw9dsaLqA6Vk/ggW2Xb/5DgKtKVgul9MuCz+oSM8w9CwjdXl5WcfHx7VcLuv8/Lz+85//TEBAAOIlyOWMkZuR0SElmXVgTGPk21QVIeN4GAHQVCdeYz+nevI/x4rkwRW5KzjKDj+dQWD9tOaH7RsZNa+/12eUB/nhBsb/z+U/V4/XSrsY0kRdmyjHPg05ArEjY9v1J3WRy+TIAPJZ6kDWLYHsrl4d/3ztAH8np6/LO6VjWZ2MdcB5Tmd9DSjYGQzwTX4keuxeOBcQUYn4XKjSkjGOfB2VyUt2IeCxvVwIqDLcKEp5eUd4fdyou7L0RVpVT3OrDig0DZLKk5HgfS4EYwSgI/E9LfrSmgwBjPRxcOGDQ4r3/v6+bm9v69OnT1VVdX5+vnUewWq1mhYsakripakbQG7UvN2dweiUE9eEVPWgmUCC5Y/q656FK1Jd0wmSGicetmcdPOpG0MfnGIJ3Y8+xqfd+8DTRjo+JqGyTARmBCNIuynQOkLxm6kAWadc2pDyYfzLsTOcggkY+gYER0FJeVc8jrZ4Xx0OK3LkdYbs6IOCOAgFGB1B3Bby78tTTprYnu/u1tDMYkKfonnbV807QNSoBegvO1OStdyFzCoArdBl1V1T0ohhaF/GYYjf6XgeuDXBwwekHKmo9L2OsdpBX9Lb1Wx67tnVuNl8WtWghHtcRiKdeD/Hy8fHLGQTy/hnuv7i4qPPz82dbCDmoVZbqI1Byc3NTm82Xg5wuLy+nqAKnZ9R+8vylaaTouwE+kgt+KBcelne5puxTxpPi4T0SvRdfa6A6qM8I9ny67/Fx+5XdPKtCQHu9Xj/rXwfpev7+/n5LFrn2pANlCQw56Eh94Upb17xPnWf+7JxMfG9KXp+uizqPtDPY+u35eP4eBWI+TpIXbp+WXXAZYRlejog61aeeXM58TZrS+sF4I3Ie+lh0Wfdn5ni/S5mJRxx/nmaUP+VmVzC4FxhI76+nAlQneHi0qqYQo0Kl7m36/JQDheSlUnklJZDQ5ePj4ySw8pDlvej0PlcyaUGeRyVUBsmVXNXTrgWfDqiqZyBAq7g1x6+6a06fAkKj62Bgs/nixeu9AkdHR9OugHfv3tW7d+/q6upq69ChBEiOj4+3gEPVl4jR4+PjdMjQyclJPT4+1s3NTX369Knu7u62Fr+9FO2qVPmt327oOcg6wODGtJu7dlBZtd2fyYvqprOoNDntJBDJNrD9I5Ci6Q31s3aXuHPg+fj6lWQYnMeJh3PGiM95O+g4pDll9o0DlOT5vSS5ct8HHCldIvGNBsd1aTKSTgS/Ap4CgFy4zfy8vqxT+q56rmMdGBAMUOfPAaQOlNO5TA5qiiA7gGXdyFNd9wgfv8mbfYAGn9tVdvcCA84UhpPdK6Uy5H02Xg3m/Co7U+RhJ5IPfn6zLmkAzZ36liIg+u/RgNRRruBYT7ZfpHTyzpfLZZ2enk6GeLPZTPf40iAaD04LiPSeABnqo6Mvi/x0vsC7d++mLYAehVB4/+rqqo6Pj6d0Ag0KCa9Wq1qtVls7EW5uburu7q49xOl7USq3G3jJKLGvvS/5P8mnqBsDkkOfn1W9k4FjGm+PK0IP1ZLoPaV77F+lubu7m4Cl6wMqQD3HvFj/rk+c9/zvhiSNK9XB2+x9lwxeqtdrAQOibgx525Kcpt/6n3jGSKkbS8/Ppwd8+jYZYZ+uZdoOIPIZtwlJx3MMuV2p2o7iOo/TeOrq4vq/swOu80d96mnmAE16hrydo53BgBhDAdH8s6epehp8MmKuKL1Dk7dCSp3P9CTmJXTqz3j0gvc9RMX60WBzeyBRJOvjdanaXuHsdWDUwudq6bHf3d1F1OqHLvGjuh0dPR0jfHl5WZeXl1tbDlV/LQa8vLysxWIxbSu8uLiYIhcaJJwSeHx8OqPAvYLXSEnpjIyOPzuXnpEaLjalonWl5P/JvwQIXPHxt/KRHHA3gPJxZahxo/8CnZomSCFNPl+1fVT4CCil5zuFtwsY8Aijnk+Ay4FXolH//9o0AiNJbh3gzoGAqmw0KBsErp0e9jpQF7jzQ/Dgh8uN5Ipl81nVl33tY6Uz0l43tt/rktqfgEyXZ+rPNK4TYO50qI+DlMeusrs3GOCAUyfSEGptgKOiqm2lk8L/rpS8wf47pVPeLJNzpHpexlFhUH9VMKMaUmYiFwY9000TONhx4tsSfaD5HJXSqB/u7u6mshWiU395NIcRnZOTkzo/P5/C/jpsqGp7T/tyuazNZlPn5+cTGFAEwUGSh+ZeO6WBOgcC0gDl853RU/8KQKUpLc+H20ipDFLkQGk8X/2WvGuaSIAkhdX1e7FYTNEnUXeKpxsUBywcQ97WTnEzTddHXVv5X/zn1B7XPrni9z55DWCA/6ng50Aq0yQjwzxFfp/ypfQdIOgAaBon0kPSHYxAJSOp5ziNqvvd9JPq78CZPJozpnyGwJ3PzAEZL1vPJb6Pnh+1QXLRTfHM0V7nDLASruzpeVbVVphI99kpFAgXRjZy5MF7+hTGVdnJGEsA9c03JwooMG9RCoWluozawQiKPPU0bbFYLKbIBkNxvkpb9VY+9M4JghaLp33jy+VyOmdguVxW1dNbJ/WMpimOjo6mcwl0Gp3K1/SD5pbX6/U0lcEpoJdSqE6pHuSPgz1XFG5s/Dmuwvf+Z15c8Kp8xXfKD40+FfPI+3GSjLOeut55hIlffoKnh//9WeZLwODykICAe2RVz19ANlLeyQCxvjRenSJ/aZndp/xkCF3mOiOX8vDrDpS6EDv5OVpjJnBMR4JRM5cJlcd3pkg/Ur683enUTaZJgMZBl6enAXag3o3BxOtdDH/3vLczjYd9aK/l3eooP9SDHa9KpRB12uaXFAIFhoq1Ix/onh/TOFokEKCBZWhsVwVBj8uRZFdfImSu9O4GEiMWqWwZ76ovhv309HRaGKky9IIibQWU1y9jLl7oGaVnNEDggHXW2gHV7eHhYSvNqA+/F+0CBDoQoN/uPVNWpaSktKpqS4kxtElv3bfCJgPFqIvfT94sSWVJhiijzouUr7ffPSNXnOSNjz1XqEqfFKkru9QvqU9S3dUHLMudFCdv1/emEWjitdRPX1Nvf8b7mPzySI/LKevBKJePMToOnFryKBdlnI6Ty6w7cdzR00Wfvc1z/HPZ2zUywOd3HbusV9JJc23ZVQ72fjcB0TQNlh8zqmtiklYjO3pT3hQufUu5EkF2aN89nTmUxikB/7AeqUxNhfiaieQBpsMwWGe+J4BRkgQGtAVSdXDvjQv+eEiRFhsuFostIKA3DmpNgKYcmF5AhdMIm81mii7orYR6XnX7/PnzZPwEKF7yzYVzA2wOBIg675F8Ev87MEDvVCB5vV5v7fjwFxV5+QTY3Za95F15lCh5Ou7x+FRV4qU7A/pOoJ/3CIz0PfLGun7oDKYbgcQfbx/zSc7A9yQCf+reBBQTSEpebFfOyCg5n3g9AUNR6vvOCVSZqVzWX7JPJ4SH4rlspXUJqS2dMU5y4yA2yVc3ThKIdcBLviS9lORyLr852uvdBDQGMhpHR0fPQuqqqAAAwUBqlEcLpsqF0884X+lz7Tx9MO3nd+HgPXoKPCnOeSBBk0EUovXBxDMDqmpLuQsQcNuewADboLTK8/7+fqqLVnOrPVVPZwAw9L9YfAmj3d7e1nq9ntYH6Djhq6ururi4mPpI/aayZNyTl6WyLi4uJgSu44tl9FQnTUu8JvIB40pN364kKBvqR7774eLiYuvFPkrnH8nMw8PD9DIordZnpCBNs+g5PuOLNanARwbVwRCBddX26aMpL89HPPLpNFdWDga4MJF9lOZnOyDgbeOH4eLOIKR8XpISWFO93PCm3/sYgwTCWBY9dfHPX7qmZykPlHXWX3qWoNiNmbdX4Jf5+WJl6V1Oq8rhZKTaI0ICNmyD87oDjd42fSc+ej5pbHoZtIupbizXn//mYMAZpQp2XkM3PeBp/JorTB2E4wxQeili5UdvKRHXA5BZCp0qHx9o7DC1W5EBR2odsuQAYp7+WmOBLNaHA4e8YxhehlkeP18dfHNzU6vVakojsKBDiHgyoUdyGPpmOJzrAcgnXfNpkJcCA1ROjtjTYEwD1qNF+mjHxfn5+fSuBvHXj6kW+VbCzWYzgYHVarW1fc+BMsElp2UkNx7xUpuplL2d+s16UYEzGuV8S7xOMsI6sT0i3yqbPJwunO9KLylHTgmqTV1EINFLgYLO03NjlJ5xY7SLcUjjIXnmXqbrAupKdyL9+W7KK/FCgKCqthwnOoCqq8r1tTsaD3N6m2W6TUg6fo46vcKpQ8/L+5D3OxBCYvvmaK8FhESnHnKpev7iH1+l33k3jiAZVk0CJsETUDg5OZmEomMKy+sUOxU3kTDLTgbDF/NR0OhdMfrQgQ2iWK+7eEk+0PPW7gABAnmnCtkvl8vJcHHXQdXTDgMNIIar6eGrLK0CVjRBz9CosG0ymi9JHSCoGocGvW8on4qO8K2PV1dXW5EBN2KSX4Kv09PT6ZyGN2/eTJ6OFJyXLcCm+VA/2IlAnV4a5Zf14hhNc7pJGfq45CFZkhHJSVVtyYrSq/06tEoHGqmOrGvyhrwu3tdMwzZwfYbn9ZqIesjBjiv6ZBQ8rcs/f3t/ihIAYd2oMzlWRun528FiAhwOTqr6E2eVxtvo/ErXWFevb+d5j0DFCDT41CFtCsdtVy9PO6rbLrT3bgJ6Mx3SU3pH3h4uYgiTRknGg4iSDZMikdKh8XVKawlUHwmi0JkLN8tm3kTKnFLgQOD0gfPQBT5FV9Qm1oMCwikBggD9V8TAwZPAwGKxmBYM3t/fT0BAfLi/v6+7u7vp2fPz89psNpOHL0MnJc620XCqzir/JSgNlqr9wmhE8VzNfHp6OgEBneR4eXm5dWaDKyuCCckhx4Du0Xt1MPL4+PS6aikUgVKmn1N0DK26okqelINUjkedWyE55Bsy5ZXTexPY17HWGtOc8hDv3JMfgZwEBKq2x183JeG/d/Wqfi1iX6U67QNeXN4TOHAeuF4a8VVywrwoM4wWU9ZplDsj52UzXRfhoX5VWYln/K986Oi67k28GOmXlMb1iU9fkad83j8pUua0qwzvHRlgJTVQ00KnzpPwQeueCZVkyouKlCFNelAygKlOW423xX/uFfGe00hgCS70X+WnBWRSTklIvcMJlnRWgIyRpgY4raJ+kxHXZ7H44tWvVqutUwdVJ91TOfLW5P3pec5Zc9Gc2qu+e0kwQKXWGYrRs+xXng4p4/f27dt6//79FBXgOQwaHwkYVz29zZBTTkojY6/+l+JQnY+Ojia+K0/3IkkO4JPiYT5UnrrmBknPCAxcXFxMsqjFpQQD3L6r/LXrRde1kNWn/HyqjP1D4EMD5zqH+aa1MN0YfCniGHbjswtgcR6MZD+BhXQ/1Y+AkXLT8Z5Gl2BA19wAe73cfrC/mTaNu9H8O/P38dHxNAERb78T6+ILx50fqV60OyNwuI/s7r2bQAW4l+sMccTm5B1KD8M9OXZImtP0KEQKs5Ok6PQs28Y28HsEZtxL4bNShOx0D6Gl9Q0cGPqvZ7g90NcJyOvnK5wZ6hdY2Gye3jqo/1rIpqOF7+7uJg+VSp9Ai9EF1pnb5Tab51MHr4FczkQ0Lhy06kOd3nh+fl5v376tH374od6/fz+d5sh1Lq4AO6Rf9fT+Dm7dZXrfZrvZbLYiOslwdeMkgQHVV/3nU18qN8mkgJLk8e3bt9PR1b6zRWXp2fV6XYvFYktOKT86K4PTVp2XNlJ+3u6kt14jdUA2panq2zIyTnPldsDA06RoFG1Ft4bMgc5cP7IvR22kjnaDy/ozX9ftqd2/hBy0uPFnvVxHeB2/JVDdCwzQw+2oE6AOyTjzOVA18D08yHBTVU3GjyFq1tPLpiBIAaZOH3V8Qtr+rBsRGnNX0qq/AxPyRs8pPC2jI2PAFfvij94NoHUVnJ+S979YLCbg8PPPP9enT5+m3QdU9j5tI++VHq0Wgul5GUEtcHwpGnl4jsg7hC8eCIhpweD79+8nMOAHMkmO1YeMpvHAK5ZF+SUQIzghMPPpNwem3s7R9JSnY9tJVMSUcU7fCTSdnZ1tASN3JBThuLy8rKqapgoEBLoIyy6GvFOivPfayY0bqWtDigB0Do1+p3udwSHv3dBKvwjUcrqQq/i9zBGIYZkObHWdQCRNs1Y9X7TeyUdnE+ZkJhn15FzyPqPuPj69HnN9wbZ5WXO0Mxjgymg12EPbIwTDiiUBczCgkGAK1VCZsFN9tbMohQO9njTII8Tlg8zRppQi55Y9IuDRAQIBBw5sZ1VNSpaHALmSVZ4y9vf399POAYZe1+v1BAqOjo5qvV7XP/7xj/rpp5/q06dPtdlstnY+PD4+Pnt98ps3b+ri4mLKb7Va1e3t7fTRFkUZ0Zcgl9uqHrQSxLEPCAQ4PfDDDz/Ujz/+OEVlFBGgXCg6pDpolwC9XtaJ9zR/znnFNOiT8qBcKt8k3w5c9SxD+kozcgRcF3AsCIxyPEtGGbWqqq3XYK/X67q9vd3ij/qD49r1zcgQsL7OB9JrAg0jT9bTdQ4K79P40Jh73qPobsq3ans6x2XKHT5/ds5gsm5ePwcCDmL5DMv1vNL4IPm46sjTpHx8BwTt3yh6xf4agah9wMBi8xok/UAHOtCBDnSgA70Y9W/POdCBDnSgAx3oQH8IOoCBAx3oQAc60IH+4HQAAwc60IEOdKAD/cHpAAYOdKADHehAB/qD0wEMHOhABzrQgQ70B6cDGDjQgQ50oAMd6A9OBzBwoAMd6EAHOtAfnA5g4EAHOtCBDnSgPzgdwMCBDnSgAx3oQH9w+v8Az2bai7atkGQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2UUlEQVR4nO296XIjOa80TNmWpXZvMz3PFnHu/7LOLbzPdI9XedH3Y74sp9IJEJRsS31aiFCoFhYJgiCQIFms2Xq9XrcjHelIRzrSkY70y9LJvhk40pGOdKQjHelI+6UjGDjSkY50pCMd6RenIxg40pGOdKQjHekXpyMYONKRjnSkIx3pF6cjGDjSkY50pCMd6RenIxg40pGOdKQjHekXpyMYONKRjnSkIx3pF6cjGDjSkY50pCMd6Rens2rC2Wz2lnz8NOTkEO3bNJvNpt/JycnGP/84X84/y7fHEz/P97X8k5OTjd9sNmunp6dT2pOTv/Hi6enpsA4o//f39+1///d/h/J4Ddqn7kZlR21YbdvWNuWrso7uVfcYG5UZ8997NuN15LnR53elfezP9jPZ3Sqvh7DPndreqP+t1+vph3O9/zNQhc8yGPjViZVkNpulwlUl6/04rcunWpamjRTc1Ul5ADBo7RkIABi4DvP09LRRPl9jsPGrk2sLbfttHECkk9sYq10d0Hq97gLUanmqzz+rMf6/RJEO83HFZqmeZLrRs2HbgNxeIOb40/J26Su76G6PD7TBSBlHMLAFvbYBypBp9Xk9dtGgdlJntDOnpE4Lzv3p6amdnJy09XrdHh8fX/D39PTUnp6efknDHTmz94743mpEYJR6jmKEfkV9OkRywYFSNqqTOeXsXrXsKt+ch44EZCMDlZEw1XuujwMZPeql26ZvHMFAQpFjdA0bNfTIT58F9Rp2JK17pnLOxFMNSIuRgNPT0+n45ORkY8Tg/4LxrjjLLE0PYI2MEFSmBqIIZ4T3avSG4x7f2wCOqG4ZX1keR+rTrrpefTbqA1UgMDIKFV2Prm0zxaY00h+2seWjaSM6goGAnIJmShcpcxT194aLR5xCNCSUGW6O5uG8GaU+Pj5O0wOufrPZbGNkANceHx9foFwuYx/0VhH5Nk4vAwMjbR8NYUZtzm2xi7Pu1akCBkbL1LqxTo5EUtsa2l+NXgsE9NY8ZQHRKBDIgrVelF9x+K+pLz0Qo+neS1ePYMBQBQiMGCKQDgdFylBVlqgM/Os8vovmHfpdr9ft5OSkPT4+bqwTiKYVeDTg9PR0AxAwL24K4b1om/aK8qmSlqcOLQOQWXkZEIj+o/y2HVaNAHCU3lEkC01Tcf6j7fta+vB/jUaBYERO9/mYf9mi6oqNjIIuDUbcuf4i/iMakcm2gUgFFLwG0D2CAaGqgYuceWasnAJHz/U6gT6n0Z87dnxnUbtzJBhNaK29mArgtQGPj4/t8fFxurbvNQMuCmCKOlzPeUb6EAEBLWcb49tzZA4QVPjvlZmdZ8DHPeNGsXYxaJVRsW3z/plpBPSMALoMvEVpIxCAEcjIqUfl4z6/CcULn0GwPe4fx2oHI7C9T6rwsAuPRzDw/5MbdsoU0zUMImrNg5FvhII536xT8n1WUqcEPSDgyo1+p6en9m0A7kwAAK219vDwsAEE8NsXVVF5L13FOEJmLiLXf9UX98+kTts5/QgI4Lmeweg5/oyfLC93DB4jebn6ZHqcUcSrk+mvSD25VmTu2sfZEzhw2BW3Dkl5U2IAcHp6OoEKfQ0ao5IanGiggulO/neB0j71I7MJu/J1BAMtn5fie24YKTJgUQdQ9Bo1LpfnjL2Wr6jXDX2NonzlSUcC9P7Dw0N7fHycgAGj732DgVHKHEfVYEZO1ekGX8+o58wjUJjdj/h357302b0InFT46pEDE5XRCsdn5Zn3otcoX4FVJV1VD1z7RXZQ9zSBA+eRAZdnZGuR59nZWTs7O2unp6ft7Oxsyhv5PDw8bPwADvifRwZ4dJPLxvVIt5CuKu9DoyMYEIoMNq5BaTJnHqHgDAxUOql2Mp0KyH4RX9wJuH4KRBgtK3HniVB3NHrxM1IFYLn7DgQ4HeMyouHvbZ1+ZtQjXY6o6lhGKHPi+l/JS3mtPLtvAPDapPaqN8JSabsKWHA2kAEAHDnbRuY5smOcN/IEIOCfgoH7+/tpTRMCFwQ3DgzAPrrRAuZzRC5voVdRwDpKvxQY6KHbKJLHzyllFGlEaNgNiXE+mRHnZ1wngcJm9e9FpZmDQhkVUrlldTsUyhxsr5P3oqoRIJDxp0Y8ioajYyUtOzLqo20XAVdnHJ28qoCgx1vUP0dGSLYFNu9FkcOJ2rRnI6JrVTk4O8oggMGAThOAf3XQWjfWG7ceCW9DRTJhR89BEZd5eno6lc2Ln93C7CpxHXtA4T2ABNNPAQYiYVeFUzXkmBOPovgIpbq8HBCI5sc0wudrzlk7XlixuXM4Yx85o2g0AR0LHcJNFXAncvn8DCMDkYON0ul5dt39+E2NzKCoU3eOPnOyUQToeIzq6YBrBWRE5yPXo/pXgIFr06zcqMxDpV2AShUUVPqAXmf754AAAwLVPZzD3kRtyOcY8kd7sY3ikQC2W07ndYRAFxQyANmFRmTK999yVOugwUBFOI560ZxT9MhY86K52Wz2AqW6qCcy/pq3Gjx17Mo7Ky/KheK6DsU86rOuEyovro6ttY31ANlzCmwOzahGTmQbpB9d77W/azcHCJ089Xhb6hmmt5DPCN+Rk48Agct/1Ehm9T90qraP2plMDyp5OtuZgQBd6Kf7lnCeTufVBj48PGwERciDpy85H7XBrDsMCLiPuhEC5imSX49GA9td9dvRQYOBbakHAiJQoD993gnbNYpzsq6jOFTKCsud1eXL4AEdCc/yGoCoftppNG9+PlpRGzmmQzeeI0bOPZc9W9WvTNdAOqLyVoAgKl/Bp/aF93KUvXaKRkw0jyqvERD7FWgUAPBxBgSwyG82e7nin+0Qonr8Zza1tWe7OZvN7F4m6/XLbdI1GHKjtZyv47M1P0XhZPPaFAUyu9DBgoFdBRkZYr6XOWxQZnSdEVcn614l7AEGNT7OeXNkjk6DYbJIQVUGTh5R3Zm47CxNdn+ftI1uVZ/JZOr00OkBSHUvkql7vucYOZ3TBc07iiKjKYqIL/d8lSqAIHrO8ZSV/SuAgAyERrYtykOBgAMDbBOV4Py1XExPst1Dm+gr261t9hO2UTzcz+U7UKB8MT8PDw9W33v2MJKf6mV0HtFr2tmDBQNMUVSSpce/OlK+X8krMyJqrKPGzgyLWzjD6bkuOm3BCBqjAz2HEQECraOrB+ftAMeIXN+TImcwQqPOhNO6YWx9nnlUWfMvKnsX8JzJJtLrar49narwsE257nxEJw9JfyN6y8iz13bOxkZAQEdC2WZxPjr6iHtuV1OQi+h5EzS1VWw/sUAQO6jiGSXc52CM5aRbuY/0zQgE8P2KLlbBf0Y/BRgAjRhDbrhoBT/yqQACNdz6H3UO9888oGMoKVpVQAMFZACAzqdoVo9dfTODqfd4kaBLp8ronNm+yLUjH+/KoxoEF3X3dFDlFck5q4crx1EGDjlN1H6RAXR8RvmO8Bo9X7le4e8QdLRKuwA10DbPa4CCf31DwC0QhHx1caAGOrjW2t/25uzspavSZ9brdfi6YNSuvDCa+dORgtlstvEaJI9E4HnXR6L+eIh69lOAgQqyR8dwowGsmK29NG7OWWkj9pwIjvmn91FGZc9/JgYM0dw9jxK4PB0fkQxVlkr8Kk5GUVS7D6oavV6HHTHAkW5E/GQ6mYEvLqMCkh1vEU+unIyyPJxsHTBy13p8aWRWAXeZvPatr/ugESCpgZYbCYheoe45TD1XIKDB0Ww2e7FBEJeH/6xO7NS5HLa9CnCQNxYu8qhEZn/dueNnF9pGjw8WDOwijAgQ6JsB3Hgj5UbGMxp54GPd8tL9tJyIVPkVWUeRVIaWK8CL6++iWvy7374oiiAz0g4VRc3RcQaoNKJ2Tj+SXeYcozploxPani5fx7PjJ+JtJKqv8K+OPwICLn1GvxIIyHSXj1n2zrbqAkHdURDk9BlpeP0TX+c8eNEhA4/WWjs7O5ucsjr1LOhT4jTME9fJgZPW2saWx67PZvYmsjWVPufONd8KHSwYGCFU2KFVRXOttRfKmBlAdnhQhvV6/UJpcawdx+XpInAFKkz6pgCOFchki2EY/GgHjOrOpIbW3TtUipzxts9n5z3jqTwoIIjAGKerOtIIrPYilgjcOb40Oh+h0fT6rAMAzNdr6eUh6zao52xa64NZPc+AGWwNA4H5fL4xMgC+1FZlowOYw+drcMRs33gLYg6ukAeXw/1R1zXgmuNP7SMDHSZd/4A8olGCjLK+XQXPDlBU6KcHAw6l8r8uXlFD59CqQ3TOCKpDV2ObNRQ3mCqrOnR1GA55okPo+gTlQxWfn+8pjfLqorLe8/ugCvirUGQ4HRio6kQPCEQRQqRbkcGPgEGURwaQs/OsjTPn4igzahE4ycoeBQgjRvwt6T36Vk+32cbimIGAfhsADjKK0iNSu6UBHn4ocz6fT/mqnjhQoNMauqCQ5/918zbsO4BnmfRtgsrbBRUaAQHRvapu/NRggA2t7nWtCLW1zdWl0Yd9QE652PFHr8JEUaDmo8/wsaJZ5h/P6zA/FN3JKJKdo5HIr5rHIZFzKNtGtNl/BAYifirGfltnpvoUgZMM+Lr+kZUZ8a9lVp/R9Nm10VGfQ9bXbcm1a3Q/ArV8HDlmBQSwv6x3Dw8PG3n1+Gktni5wIIQDHP4Akc75I18eEcCQP3h0gSHyw1sFDCzwvAvyWsv3IYgoAwCjus089einAQOR8roFLG5awH1ARyPsXuTDZfJ9NrDRWwu6mRCXgbT8ZgDOtdwIvFQiP9fhHIJV8MPHzpFUnOk+DW6vE41EgJnD1/ucjq+hTPe/bX0iZ1o5d3xlMsscrz6n+qNlZDw7cJKVnZ1n8nVARQHUzwwYMifv/t1xBgTcpkJsW5AWrwdGgdJstvlBoNns74WBZ2dnL/qos7nr9bqdnZ1NuxGy81b7xXyDR+VPgy/eywUfQuKAU3c51N0Lt+3jmf45YO2uV+hNwUDU6C5ddYhRlYAVURd6QAnY+fMCD3WE1eEYdZbOIEaGX5241i0q3wGaKMqN5rCiOioP2h5uZETryc8dIlU7VOS8nNOPAGAVJGVAVHmOwFpUt6gNKw454kF5j+rkyonSOn2rUM+OZKMc1bocOvXAXpa+B1ad43Wr+PkYaXk9QWsvV+W35gMOBgC8gv/h4WFj6oHL0dHZyhsMLpDiANKtC3CyZZ6enp7a+fn5C/3PXjus+LxtRhW2pTcFA1n04oQdNQDfi15p0eEpHt7h/2xaIKpD5qRHSctmo9mL9jWdM+gMcjR/Bj/u3drWXo5OREqsQ28g7HOgcj5Egxu1oTNU+hzroIJQzidz4sjLAY+IR3V2PdIIt1d35UMd9jbRSpV2iWq4bAcIKvy6dvlZqBJI8XEG6F06tbtRkPLw8DDZYhCG07F7H49w6gZBzIc6Z0T92i5u+tQFYKzL8Anz+XxjzcN6vW4PDw9ttVq129vbdnZ21u7v71/IVPsV6odRDKRhvhy47+m86uFbAoR3nSbIOqMKRRU0WkjCCwYdCOARAXWIjg+913MYvIqVy+eOpQqpyqrTAdoR1MFHzpXLZx7d807Wbn2F5qOyYQSfgZddDPx7UAWouohI5y7ZaaqhbM3rAq6DMmDaSxM9p46d66V1jgxWtfxteHPlO36ieyO8V/g9JCCQ8VIFAXzudKB3T3/gi4fOW3v55Vfkwwvu2B5zP3FBDp7FCAEAAafnSF5f73O2EGCAn18ul+38/HwKZlarVbu5uWk3Nzft7u5uY90DnsMUBup7enq6MT2BMpxdVafes5HOR742vToYGGFUDbBTRHX+jEz5mIXPowGssK3FjhT33DVnMKPnFQgoIMieZVnw4hTuaLxzV5afAw+aPnJyjGKd40Ke+qZDTz77BgSj5Uf66QBqNDLF+tMDhdvWybWro9cqQ/PvgYRKv9mWIgDK4Ef/tdzqtUOibXW5p9ORHdbrILWvrbXJafPzrT1v69vas31ix6xOnh08RoC13+Aez9tzIAgeOU9eYIhr8/m8XVxctMVi0dbrdbu/v2+LxWIC+gAEnAevi2DHD/vJ/gp8uIDTtZX2NwcgXPu6flrV31cBA2+lmO41EHZabEgrCwS1/KoRrZAizyjicsYmqrebJ9O6u/LVOKscGFwwn4yweXUtOziVFXduHeE4NOqhbyZtP21TBgIKDjgi0fK3AQMZzxUg5gx4ZFi2abceMM3k7vR4WzDTu9/jE2kqeR0i9do00uURUMD5tPZyNBKk0wUKJNiRcj5sr/heRLyeAITpiqwP6ojxyclJm8/nbbFYTOBA7ePt7e0LkKEBaDTdoX4hq9u+dG9nMOA6bu9apJzOyOqKVe6s3BjZugCHsl6zvuCnmn8PEPA5p1Nl4rIYPWpk79C2dkzIHOcY1sPzTokVAGkHzs7fm5zTVaMWtW3PUOJ5Z9Cc03ey0WPNu1o/fVbr5toqkkPFMVbujfSJHm0jn2qfd/1p5Pm3ol75kU2I0jp72wMCWg7I6T2e5bcJ9FnXfpHNdgDafduAgbiCCvUb7DPgN5APj/K11jZGmFerVWutbYAA5MfbEnM9AQY4cFIZVuktdfFVpwmiBq86ucq6AG5wbhC3FWTPAbED3aZeGbHR5QZUJY+QonMgbnGM5lkZ4nd1YSCAfDhN5vCjurk0PxNVgS7aRs97I1TVMiMaATYOEET3M94c+HT8RHxG+Y3SqHOP7kfXevLaBzk7lPHl+FYgkL0V4MrU/Ft76dzUruu6Kv7nvKI+4sALP8OOHOQWGnJZAAIPDw8bPx7un8/n7fHxsS0Wi3Z/fz/dxz+OmQ83CsuAQHnYht4KEOwEBrJIiv8j9Ik0rrHdOoHWXhpabSDnoDJnnkVMUb3UUOCeGucsTweOcM5DWCgjAjxaVgYuonLVOCgQiIyOOgK3WKcKzN6aMuDn9CE6Z2IjwN851+gjqnukO6O0K1hlHnoAWZ/R/KL8Ix5eUyey8nr9sZfvvihqj1GenJ3V9VfOFrVWG8pWnYcda61trLCP1gc4XWBeeR8DF7XjOOLPBTLsQ1ar1fQGAcBAa88jBXjrgEcRdKpBF0WiXLdAXKcaHG3TN5y+VHXlVdcMZA5eUWgFGPA9FR47R31zIOJR+XTC5oaL6unqHMmhl4/jD7yxcquiuc7DSuCUPzP03Ikjnnm4KwMJGX/7pKxT9ABjVlc2ELimgAjHr8Er8toWxOj9atoMvFQcf6/sXeWUge5I//etk+9Jzh7rq4KRLmh/7kX2XJY6PAXKzB8TeNPtjpUHBgSuzlGbMxC4ubmZ3lS4v79v5+fnky/g19cxmoC3G9yCRZWPAgKVG/65D2nAOQJitwWvQ2CgYkwZZboFgBEKjcphJMVozoEANzQURSvI10U5Wd0iHpmyqAv3Nb0bDcBzXD/U2ylNJlOQrsjljslvK3DdeIUsl1MpT/M6JOqBNxcpOdAW/WfG0+mlu9fjvRo1Ooc+QhVwgnTaz5yhq1KWVvtVBvJ7pMb2UAHDNqArCrJUn6M2cuA+0nsuT/fvB7GdzkYFGAzM5/M2n8837JEO0Ws+7GtYHlzu4+PjNCIwm80mZ39+fj59eImnIdxiRQcGtH+q32O/xkEWB1tRMPdWVAYDmePWyrLz149XaAOBogbl65njZxSqPKvC9+oVGe7MmTsE6o4zABIhZldvh0J7zhllOyDQWps211BZu/wjQKDKz+f7BANO5qorzrHiXqQnzsBo3lpulbbRzd7zlXo46kWFyLvnvHt5b0MO5FeeAU/OGXG+SLdPqoLFCNBmr2iD1C5E1zg928QITOkeA/jn9Bpw4Dn8MEyP+zpSHPmE9Xq94cC1vnDmd3d3G+sIzs/Pp1cLGRCoLdOpArUzzq4oKHBydsCA14NlfkTboNq/dh4ZUEXTj1boftUqJOfYHHKMFmRFCqjHI525Z0SzvLSDZOQiJtTNKYlTek3bMxSZQeZ8soVvmZNyaQ8BDDij70CMu6fXXF0cEOjlOdpZXR7Rs66srBx1qFF04p7LeI36Q6Sz1T6THUe8uLpm5WTn70UVkJY5gwwI6NA1258IFGR8cLkuENQIW98I0H/OwwUdOmKq9gpl8rbITq7r9XpjUyGMOmBTIZ4+cOsCVHaav7N/3C6cDwd7Ls+K7m5LQyMDGepkEIAhFqA5XvyHf0Y5uKZOiNPqvWxhluOxEmWNyCJDyXqeRaNOyTXfCJ2r88mUJAMB2gauHXr5aJ0PkarOV52+tlPmkCNAED2rfcDxUeG5QtsAgqx86EpWp14E4wBIVl7Ec0QjhnMU7BwKRaAzeivL2Rzu9xUw0AMg+MEnKF/ap9yoLnyLUm+amHnWEQGVE9ebp0iRF/OPUYNswZ+zyU5GXEe9h/bUURTtG69ta7deQKioE/M6GF45Pz9/AQR0bkUbMor8+dwpazWaiIxNz4G6jhYZrcjo632WYRZl8jnLgMvOIq8RcnLt5RmBourz+yDnICrGzaVzQIqvR2WpQVDdHJVVVc49ve097551/ceBAFemgmaVW8+ZV/pZlHfG889EkU1REBANT/fsK9Jl5XIaBgK86A956whxJne+zhuhRf6CbSPzh+BT665y0HoBdGCUIfJRDjSxDrs+r6ANfOr6Le0H1aCmmga09TQBKxwaHEBguVxuICoMu/DciovydU/pCgCIDIwTigMAmVGsGOUMKDgUqtddPsqzk4PWQ/PpoccMnUaknSdT0p4h2Sf1wB+Oe8DOAYGK8XSyz/Qj0sNtQIPyUr2+bRk9kOL626764oAA/48Cjp+F2MkwGKgAAWd31dZwOU73WM4KREC8bozn4pXU7um3AaJ9ZXDf5cGjDw6EcFouk3UEZWIaIZOV5s1l8ogF5IF/Dpg57wwEOB0etb/DIwOKZjAisFgsJiCwWCymeRpUbLVabWzWEDn8CHWpcFwlK516m06vDVExmBlI4OsRusZxBQRldWJ+o/JZSaN5r0jmzrAq7z0e90Wuns6gRs7EGR2+znnqsRrmjMfICPR0sueIt3GEVb3Lyu093+Np2/7oQOvPAgSqfKpj0akB5MO6mtnerJzo2EXCqou9gIl5w6t8IJ0miGwk27TZzO+I6PjVNQgOiAAM6FRqZp+1vysg0QXX6/V6AkwjQdu2NLxmgI0kVnkuFov24cOHjS8/tfY8x3J7e9vu7u7a/f19iOQcKuV7TshZpFE1QmpMnPPs5Zmlq/DBiqq8KCDKOik7ZOXBzR3y8GFr7cVrha6OynvUyZn/Q6ERXiKgloG3rMwRANnT8SjvDIRk5W1jZLj91dFW+XDgVOs+6pCyvqdy+hmAQOYsNZ3aZ10oyEAAP45uIzDQA7OuvCjIiGwC103/4QxxDfm57wFkQQvbWLaTrq/z1ACTLlrUtwiUh6yuXKZ77RDgQF89jGhXfR4CA4o4eZ0A1gi01ibUhA0d7u7uNr76lEVWvUZlfvg4MgI9xXOKUHXmFSPai1wi/vQ4c0QRMtdzBwgwr4e0+BypGg7HazVSGXGIb0mVzuKilhG+1UlG97XM6JpLv207VNNGz0fPOkPIZfaoajBdGnc+CsZdHj8LYHD9m8E+v9anQYWbb3e2mMvifxyrXZnNnvcY4HJ0o7jeUL8GSRoY9dY3MP8MKPCvIInLwDORj+I6OXn15AgnD8KxLrZXeb8lDYMBbnT9eJBuDXx/fz/9dLtgkGtIZ1wig1mNfpgiI5OBguw5Ttv7Z6WrlB8hzh5faiTQQXkPCH7tE88wMHAdIOIlkuehAIHWasDLgakonywCcM6sh+r1uKK7mT71yomoAkC2cda9dL0AIMu70p97+VWc33tTr62Zx+zVQXZglfVY+Gk7a3m6nwy/Ctjay0iaA8VeZB8FQGqTtP9F/UbtFxwyytE3Gpw8OK9MbtGz4M8FW1jX4HSbeXN2+DWoDAYcCOB9BAACuLH52L32gf+ekYyid41++R5IkWbWoaJzJlZQdnSZkXZOcQTcROW4PKOfe82IgYHjWw2IIueo7Ex2h0oOPOE6kwNiWZ6cLnPa3Jbavi7PEeefOfdKfs5J98ofdaDOLrj7vTIjEO7yqQK1QyOtkxvxc0Cg4khdGc6WsA/QYy4f8+38ISC3jXxFt9R/jIBGF9Bo/VxZERhg+fWmQNx1ABHww59SZlkrvz0fsQsNjwwoEABigePHxgyK/LKoskIOJYKvCAxEz2R5RddUWZ2hd8/1jBNf03eAWcnc/JXm6xwaz+Hp/CHK4Geenp6mD4tA0XlVLdc5Iif/QzC2FRDl0oNc1DBCTm9wrac/PRrR8147Ro54xPhGel4BHS6tA9RROcir18dH7MMouHkPciBfdYkBfeTAkE7bhttSp4h5mhh+gEca2eYDCKzX6xc+gfmo6KryO+pDWCYqR7WvPTDg0ijPLEe+Dxll9kDtqPat17apW00TKPpDg2I6wA0BZQao2vEytFp17r06bnvPGagKAGD+0ZFwD+g5MqIVIKDXcNyaHwXQvNHereWfBY1kofnti6rORDunPovrTqerdcycXBS58jm3W1Vns3z1fpZfL4rUc9dnI7DhwFrPVlR4yK5H9TkE8JqR9ncFBK1tRrCjrw4yZUAAPzfCCOfPo8MOBFR4yID4aHDJ/QdD85UV+7sGB6xXke3FdQfs2N6/RaC11TSBe39UF4lkDT5iOCOHuo2jr5SbRRoj6asAgOU6n883HDVGWmaz2bTSvzfMpWX0IgYcO0cUyV7btNI2h2xge0bA6a92ahy7vPVY2yEDBJper1dl2jMcEVjq8VcxnhE4iEDANpQBpKxM9/yhUaQTEfAHMRDIXsHLysU/gw2MCvPicfUFCAh1SkBX33M0HFEUhWfReI84PYAAz8s7HWI9BYjgqL3Xb1XH9FwBCfsJzg+8upGMrJ49KoMBXSDCYED3AIgUrQcI9JoTAtOugKBqdDOBRsbHRUR8rHP32KNhPp+31v6WKb6mxQsx3butkQJFRhiKjGNHivLxzwaG70cLX6qOYx8Uycw5DxeJbFsWX3NRchW4jtCujpYpc5pOF/lelI/qSa/PaTqWWQ+4RIa7ApT2SZGdiYAA+moVBET21dkrjAhg63mk1cWA7hVANw/ujh0Ad/xvG2hm+TAvKl/YO/16rC5A1DwjPXLX2EYzLwwEoqnjbXW1DAYYDfI2w2DcOacs2lHGew0YKYx7LnPq3KAVcLFNxJChS17ZD3kul8u2XC7b169fp30aHh4e2s3NTbu8vGxXV1cbrwjNZpsLSxzwiAAU6hOBgNY2N79Yr9cvlF7riWNeZKi0b4NaMYBqULM8dgUH/JzTsQxIjYIEl3+13zleMn6yyCbKT/uiqzenqchipH7Rs3x+CGAAxHJ16wXUcfZewUOeWkZrLxcn8qJxniZAfhow9MBIBBxxLQss9V6ko5EtdPk5Oeu6K9QP13jUVmXr9DoKApQYEKh83NsFu+roEBgAEuR30zEXBEGdnp5aRAfmM1DQM4ZRpMGdYAQIaINFjnMESWvjazksJwCBr1+/ti9fvrR//etf7dOnT202m7X7+/v248eP9ueff7bv37+3y8vLKW9e0BcpFSsKUGzm7JRHRcKVDo20ujDmUChzaHo9ikpcXk73IkDmdGyEMv1y6bjv9QB61mbVfqD6o3Jg/azUPXPqFR1z9e2Vu2/gypTJPFo4GDn+zHE6OWsbKijg15JbaxtTArpuTMvIbLXjMbI9KpNK27r6t/ZymB7peUREp3FPTk4me+yAmKtjdp3v8wgAringU95H+rTS0DQBzxfxogtUwDk9p5CRYkbOXufFtLJqdDOFcAbBGfKKsjrkmR1zJ8KujZ8/f26///57+8c//tH+53/+p3369Kmt1+t2c3PTzs/P23r998LM1WrVrq+vN1A38+hkgONoFEFl4uqSGdEems3KeU/qOR4HNHv5uTw0Pz3WdNE1Z4QzwBpFTlF5WlbkJEbAE/Pt6sDXKnrkeKw4DwVL0T3l/VCcv1IEMiPAxfZVFw3qfaas7dwCRdZJ2CMsHtdXCKPyXNlcb+VXfYmjyB5G8oyuuXzh/0C81XNrzb49x/oe6aaeqw1HvdUOuDwcUKjS0AJC3WhIV2Fmzp/PISg3hOSU0qEjvs9oLfpng8L/Spmwo3RZR2IgwENry+WyffjwoV1cXLSLi4v28ePH9uHDh7ZYLKZFgyqzDBk7UKR1Z5kw9cAA8+HK1/NoZGBfBjcz+JHRQPqKEaoaGNdGFZlEhjQyBlVygE/vb2NYIkflDCPzrHqo/bVCVRAU8aN8HCJVQUDWZ7O8o3IYBHC5CgT0jTK1/1nZGRh9LXL2boT4A3z41zVUDiBHupnZaCc7nTpQHdhWl4c/VKSMutfNGCjgnJ9lEOEWlagTZ5DBAlVh7Ju0IzGK5jUXGBX4+PHjBAYABM7Ozl7s5Jgt0NT/COxUO0CkPFFH1jIUmHF52TqF96DIObvOmUUekXPmY83XleX4ifTbpQWvWZlcJ9fHOI8eyHtNcjKOQKwCggqfVYCm5bp8emneizKdUNsQvQa8DShwzz8+Pm5MCWNqAK+X86hAlaJ27YEa1d0e75ym9xzLmd+ig11v7RkMQO4RwK4EABEwUJuvINv5yKhfR1QGA6xk+hEHt5eAoygK6y2AUGWIjG9WrkNMVWMU5ZP948d7MvC7uXh7AG8QoGM9Pj6229vb6YcPPOlHhJhXN31SQdiR7LJneyg/i7Te0rmMkjOsUScGZfrizrOyo+ezyCwrx0ULbpGvA5ZvGZE5/cl+EVX6tys7AxLbtt8+yemEAwGZTKvOSGWG/PFbrVaTH9DXCas+IeJBnVpWj23LAI30W+5XONYvQ7pnXJkVvrnuKM+9aRDpxQgNgQGgv9ba5Lyws1SmhIpkWnv56lpmiCM0yI2DZ3uOL6qbO69EIC4qc3sy4BUcfiMDe3iv1+t2d3fXrq6u2mw2a5eXl9OiwZubm6mTAVxoR4vm6B3vr2EAt3UWhwIGeg7XGdkq0NVjTRMBSPdcFaRoX4DOsfFgQ86OQyPIXQ2rXmfH4vqVk3GUbltddcFAxN+hAoLI4Le2GahltrjStg7Eaxmw+bC7DBDcHjOZzcnAIp87fqI8s2uOejqivGg6V86ozKOy+b6OtCswUVtRBRygMhjAN6UdWqygfXb4yqSu4swaOjN82glGFETr0xutcDzx8BGvuj05Odl4LxcgAB3r+vp6QtpPT0/t8vKyXV5etr/++qtdXl621WrVWvt7rur8/Hyjrsz/CBhyRmUbiuTM1w/RwDrjqnrpDFXmxLN6On1xabQMl1YNDdKwrvFeIAzk2XA/PDxsGBpdEDxqTJg/1QuXXxUIOPmNABhXtstvlzLeiiLbBwJf0Wt8mq5XhiuHbaLqB8p2YKRSH1c+85zpA+t/Vp+MKkCQ64+gjKcIeMGkW9vVs80VHvHP+wvovgbV4CGiMhiAMYGja629GKpghhzpakgc8zv00YYUWlG3whXPRw3cM644xnM6pOryURAwmz0vFtR3cjEqgEa8v79vT09P034CeE3l+vq63dzcTFMEqBM29zg/P5+uYV6OX+txnSiSI8tDO7+Tkdus6BCdfURRvfm4Z8i2qW9mbHpl9MrV976xKxzvDIdFXavVavrHK6eYgtJ+MxqJcTonxwwIjDreUdDiwEkvvZa1L6r01ZHRgAiIZvXUcvhVNhdAOdurZbu6jFLUN1xdKm0eyQ1OH/eQvy6YjAABeKqAXcengjFdkweeHCCo6m8ZDGCFOxwev2KhSIn/e8w4x8pCdPf5rQb9ZrdDro7PDBAoIHGr4yNgovt2LxaL6e0BjtjwLJRstVpNuwxivQCUr7Vngw+5c7SHCE8BUaT87rquO1DF1XvRvhE9J7EPcrqki4A4beSktqEqUuf7mcHkdkYd+A0VLE69uLiYdG82m016dXNzM+1seXt7O+kdy6m1eNvrrA6uz43ooNY5uqd62QMvEd+RsYyc5T6oAlgjh+zy4WfcPQcK2KbqArke+OjpsquP5lMF51k7cjtnZWn9IE8OshAU8wgbFk7qCA3yd8FZBcg6PQZfPDLgwAA/U6GhNQMYCsG8NUfCcGy80I0XOqhhdfOYYJ6JjbYDAQoGMlSmgnKNxdcVoOCeQ2AYnsWiwOVyOb0uiDcGeIgfThwGGtsOr1aryUBDljr8C2JUiufAZ2TMnbI4YxChU2csek4E+eoiyPeiKEqpbNZSQdeRQ1FZc3pH0SJABmp8Dt1fLpft/Px80rfPnz+3L1++tI8fP7bFYtFOTk4mAHB1ddWurq6maajb29t2fX0dgj/tl06Oru/2QEBkLKtAoHLdlZk902vjfZD2Uydjt1ZAn4/ydWW48iIHmoHmCNxmuoTnRpyY1kHzU5569o3l6hbKKziKPswX2QXXpzJ+Mv7wPAMFV1aFymBAF4nwvIWuJVBBOMVhhOM2plCldLttaf66OMoJFOSMUQQI+BqXD35074CPHz+2T58+bfw+fPjQ5vN5W6//nh64u7tr19fXU/SPjxJhGBfl82gDFiEiPY/GgB/n7J1MXd2UImTNHUQVNFPsfRlUJq27trkDBFEees3J14Gt3rMR2MQ/jxKdnZ1NTv/Lly/t06dP7bfffmu///57+/r1a7u4uGhnZ2fTWyrfv3+fdrb873//O01Pof4YZeI1BD1ZuH7rHLBzvj2gpflGfTnS1exalK/yvm+9zeSTTQ+ofHvAwOmhowoQ4HwjMM5OjPMd0QvHt9ZVZdEDjo4nNzrM/stND+yqP5GuM7Ht5+ec7enRVmCAfxzNcNSKa0jnCILPlBSLoPD6HaJkNyoBPqOOAaE5o19pMGekwdNisWifPn1qX758mX4AAl++fGnL5bKdnZ21p6enKRrDCAuien2HFfnzB0GQx2w2m4Z3uY2U30zGkeEYQZTacSJAtU8wkDlnUEUfHPDJyqwYVDWSzKtbF6NvpSwWi2m/iq9fv7bPnz+3b9++tT/++KP9/vvv7cuXL22xWLTWWlutVhMI+Pz5c1sul+3PP//cMNp3d3ettbYxitMzahEA6LV5xVhGTiQy7FmeEWgZMZiHQpm+RkEV/zNV0ri8e/3ZybZShqMRwDjybNbP3X1dF6H+8C2BZAZmsqnsKm21z4BbLar7VPNzUQUcAuRjnhpAFATA4crrdRBOH00nMA+RIdL1Aefn5+3i4qJ9+fKl/f7775MR/vz5c/v06VP7/PlzWywW7fT0tD0+Prabm5tpLvfh4aHd3d1N8066qhv589fBZrPZxqpWpMWCMHboFWWIDGpPHirfrCMcChjAfxQJunqMGMsIlffawYEC1bWTk5PpbZTFYjH9Pn782JbL5bSTJQAoRgguLi7a6elpu7+/n4AD9HE+n79Ye8I88Khd5gh651Gdsz7q5KOAgI/3pV/vTaqjGfhimUb6G/WLUV40Py0f5y6d5qn3K/0nqlfGe7W+zpYpGMh08LV0czRIGwnshtcMOCFwFJs9r4y6NQXqdHnnPqzEjzZTiebOnFAcGHDOzkUj4A1gAIb4y5cv7du3b+33339vv/3228Y0AVZ2Pzw8TF8mbK29WOENfrCPA09D8Gti7jWeaARG66Rt0ov4RqgXke2Lokg96uRZPu64V3Z0TcGDez2Vt7JmEIAFg9jB8uPHjxMY+Pz5c/v69Wv77bff2ufPn9t8Pm/39/fTokJeB3N3d9fu7u6mV1i1P+joXmbgX5Mqxj0bHdBrPSc1Yjjfi3r66o75WiVazsBAFOBVeOX0mVwjQMj2VsvIAMjo6INre5e/Cxoif+Oee00aaYOqHHbagZB/KFSnCti4qTNmB6uvqgFc8HAofzqZnaB+IEKdJBMP8+jKW+08qgDKH+oLQPDx48fJCGPIFgYaYOD+/n6qx3q93gAD/PYAFhACEPErYhhB0FdaVDF7KDUDA4os1XBmnaWSx3uSOlxnUJwsnD64Yy6DqRrp6igAdJ8/bKVbWZ+fn08LVT98+DD9HCD4/PlzOz8/bw8PDxsgFDtc/vjxo11cXLTlcrmxnSwb48gIq2FUWVYiwZ58t9WbDJiqvkb6e6gUOR8lbb/smP9HaJvo2t2L5J+BAdfHshEQp78V/tmOuV+ljq9BI/mPApGhbxMoGmJgwISIprVnp6/RBT+PCJhf69CoiF/JQ3re+9rN3TjDzukjBYz2T8A/86h15k8964+BDC8YxJ4C2HSotTZ9owB15efcR0Hc4pVKxMR14nq6uuszlcjE/b83RXXqOa9KHtk1kDM4fC0z2HzOO1rqxkI6gsCvti4Wi0n/eM0BnuefW6jLPFdl1nOsEciM5Brl7xy65h0BPc5/n2C1Qlq3KhDQc6dzWb2jgGiUXHtk1OMPMsjA9muAlN5zFSAw6pSr6atyrNLQyIC7ptEonOTT09NkXNy7r4jmeWc0jkSc0cN1flZXckYCUCfA4COK+p1COgVdr9fTHgG8XwBHWIjw9bnHx8cJCKxWq2nh1u3tbZvNZhsbXaCeupMc19s5adcRM0PBcory640CuGv7MrasU66OrfmI1+mGo54R2Lb+vFYA+q8AGcCTv3XBX8TEKALWDKzX62l0CTqHkSn3CVautzrOUQPv5LPN/REHGAExPY6iy0OhqC8qRY4kAwK71FX7e49cPSI+dTE151GJyh1AZ5/l+NJrrp6VsqN8HH89mfTyieo92ie3HhmAQLFgjRcfOSZ5wR9v2MA7ofHCOY12QFHUH3UAvh81qDP4qoRs/Ni5IA2DEwABOG0Y8fPz89Zam4w3plTwqiH2GoCxRtmoM08RQF4jbYf/LCrTuqpjzygyVrtEFK9B2UZTLspSWfE1JzsHGLUcRwCJzAdHfmhnpru7uxdTdJgCYGeugPnp6WnSMYBPgFZOA8KbLuh7akQjmfUo0rlIPvxMBtxekxww2JcOR1ExH1edksuvF3lneaq+94BY5vRcXrxuJrLdGgypznD9nJ0fsW9aN+VlV6ry8Fa6ODwyoE4UP17d7pwUFEHn/bGojt+tb23TGauQFBAoyu0ZKqcUeu6uu7cbeMh1vV5v7CKI6YHr6+uNaYTT09O2WCym9Ijglstlu76+nl6jhJzgEHh9AK8RcHxCTlH7OcVTRM7Xs/ZXihC5Tie9Fzn9yDqUM44qjyy9izIynngEQPUs2hgJbYv0mBbg/gVgent7256entpff/3Vfvz40f766692dXW1sdnVer2eygNIRd5YaxBNxSmIcfoS9atdKevLUfrI6DoQuE8ggPId7eKAXmtEQPlT++tsdwSwlS/tB0roA07XlB/3rPKf6UVU/6yemnaUevllAca2Ze40TeAoWnXMbwZg/hIgQiMUkL45wEjQvdMJ6qHRKBp0z2m+fA2Ger1eT68IYkdBnt7AYq+Tk5Np/na9XrflctlOT0+n7xH89ddf05CuvmXBawXcTn6ug6vCuukaTctRdMVg6ChCFKXs06hGIwO7UBaxaV3V4Gg+zhiCYPDQ5liAenZ21larVZvP5y+cM/oUb2z18PDQvn//3v78889p46HLy8t2fX09bUvMa3CYf138y/XdNnocNb4uT+dYMl4ycg7iUADBNjQCRlWGI2Bf9Zf/XRDG9kLz0E3TOPDSfPgVas7bOWl+ztXF8fUaVM0r0i9nRzI9jPiv8rHTNEGPMTCn7+TjXenW2jRVMJvNNiIQzZsdma6cx/UeL64OoG0iOVbEx8fHtlqt2vX19cZiwdlsNu1O+Pj42M7OztqHDx/abDabpg1ubm6m7Yo1Knd1qJAqt4vYXNqoo3IejMidQXaGmYHGvmhbxxNFLpwme17/VZd4usm1P7c9poowKsXD++gTPCIwn8+nKYEfP36079+/T1/DvLq62gADPL3lpqGUd6dbmTHK0lfaRtNWjKM7j5yUe/41ncM2lIHt1vJAKAL0qosZZflrGeyMXbCFf6TR12i1H3AAyfxgS3zHn7NfWm7kZJ0uur7oyuV83PWMMt5c2VkeLs8qDb9ayMcVUNDay5X2/AEV3mvAjRC4PQXAg/Ll+HV8Zvyq4dJ7DgnDAN/d3U2jAlzOfD5vFxcX7f7+/sXGMa21dn19Pe1QiOei4Vitn+ORUTKn5/sqK33e1dnlkcm1KvO3ptFOwc/xcQQGMsocSi9P8IwoCHP46rBZxk9PT9OowNXVVWvt7z60Wq0mIPDjx4/248ePCQzwFzJ5rYtbpKr8R459JEIZbRvVRc3HGdbIRkQGdN8gIKMRR6RpMvuGvCN7qe3LgBb/nEc2EsnOn3eWZSDAIwPQQQAB+AfXflxfx3dPflGaHhBTfty5I9ePqvba6XBWh4yGRgYiYkVw1xnl8Wt3eEajIl4819pm5d3GQm4FdKbUkZCijuJAACvYev28X8DNzc0GOl6v19MOhXd3d+3p6WkaHcB97CAHMKBvSbhV3iwDx6sqCYZ6eZFmRCoHrX8PkDnQ6OT6XqQdIwNS0bWq43bk6q95uVf5+A2b1trG/L2CAdbB29vbaVHu7e1ta61N+wl8//59miYAIMCXDPntl8p0XE92lXvbRDCcZwQKKpHWCKDbJ1XrENmt7BlHznbiemub024azevzrjy39go/7gcMCnikive50XJ6OpqlzUCDOx7R22ofyPS2p9O7gthhMBChxdlsNu2a19rzsL4O9/CrUIig+X1pECIh3qcAxAbLgQPwFzkr5p/rgGP3Y8XUdQyI3HgHN34FEJsSff/+ffqADL4mxx0CjawAIHJeXBZ/kz6qF/JR/vHvnJ1zfhXF1ehgG4P/FhR1cOUvi6CckWX5ankuLfcL1ikdCcM/tx3rPO4jor+5uWlPT0/t5uam/fjxY+qTt7e30zoBTBHwVAFG5PSVQhhi1Jnb0y1QjWSm6dhhYHSw93ZM1BaZYRwFG5FO7Et3q1Gqe46PM33mPKv5qk1kMMB2W8t0U8YcHGL4nwEwAkTelI37wjagrgIanM3rPTNKCmozcroZ1X0bYDAEBpxzZIOmGw21trkIUF/VQz4ACZgL5UZHfuxcGQi4fQaiyDSqE/87YsPLPEHgiNjAO7/HjVGO8/Pz9u3bt2m+FvLCwi3ec4HfGoiGabOhW/xHjilSquwXzfe7ocAMkBwCKVBUHXA8R6CoV06WJjKo7HB5UZ+2A28S1Nrz2wP6kSGAhB8/fkzTAvzp7Jubmxd6p3JintUhaHtznXsRjDpt90xPzlreSN49OhSdbe2lPXORd08/VSe3tZU6z+9se2vPvgDP8Lba2AsDe2RoQIR+gMXZWFvG/OpoRBaYcH312Mkuisz5WHUtk5seu3Qj+vnaurnVmgFmximAEkcwzsFxxM2N65xitvWwAwNKUXTBdch+yBeGmoffXZ5YwMUgAb/W2otoTHnkuuL1S42qqqDAoUlnyF2d+T4TD9VxRwbvem2f1DN4WrcIKDrZaDnuHMaLo2FuGwUEDAoiYj6gjzzNhKkDvK0CAIDpBIBWjuYwmoBzx49ztK6fqAz0nuZVqW+PqtHtPg3vCPX0tWfTovy0fTL7yQ5d5/vdaKmWz0HfcrmcvtmCj7nhw1mtPY90YXE5pr30TSekVRujACeqv+qvBjyZreCRCTxbtSvRvQjIctpKGduMCrS25cgAH+sUQGtt+n56a5sLRUBobB7y5N312JjxDoVVMACBVOsURdBoYJdGFS/qkIi8rq+vpyHa79+/t/V6PY2GYLQAG8LgK4a6kEvLZuIhM+ZXO3kElJz8IFvdgMbVk+vvhu8y57kPQrs6wKPHDvCORpisR1mHVoPEw/TRmyatbY7AoR/BkOKT2XiVkAEpgKrqhdMxBaLVSFLzeA+KynbguJLXe/EdURXg9K5FeWX20wUI2cgAA0nInEcDPn782L5+/Tp90A1fdeURLuyMeXt72/7666+NMnQ6loGsBh49fXWA1slQdUbPs8WSo/rm+EI+jp/Xoq3XDIARHfoBc7z7Hhs5HtoHIIDh4l3R3GtO7jcSdfYaHPVjgTuhZ84Yhri1NhlbvO99dXXV/vzzzzafz9vt7e20Rezl5WX7f//v/03DuIjYOOrnCA0OgtvCzd9GIwbRmoFIRlHkxkhdV/cyat63IY3IRbet9aeOIoCIe/iPQCafczptQ/QVNnogdvQYQuWNgTAKpVsPo9/piFvWVuDBrWPJ9EbrqXUeARbI20U9PcffM5iRgdXgZx8UgXmmijzwPO6PgosIAPAUl6Zt7Rmk4suunz59al+/fm1//PFH++OPP9rvv/8+gYHZ7O91KLxHxuXlZVuv1y/sIeoDXYcNQpvpPgRc/+jcBSxI42wm8+Ce2UbGmW1xNriSb5XKYMB1EL7Hu+u19hzRtLYpHMxrtvb8yhTmhDCEya85jXyRzxl0BS+aDucs5OjHC1wiEMIIlYdpgXD//PPPNpvN2tXV1QSELi8v23//+9/2119/tbu7u406q9yh6DoslS3A0npHnSL61wVeQOgVEBZFG+9N1Ui2AhiRnysju585Sp0SiPjUtSUMns/Pz6d24XTRjpWuTpleOyCg/cvplgMCTg49uUWg1KV1eVVBAY75ty/q6UMGVnrPgipOS+0g/zNQAOEeAkV80fW3335r3759a//85z/bP//5z/bt27fpE9uttRfTWicnJ9OeGRoA8egzfAnsLr+OmDnZHjDqBQnIl/OJAoFt5K7pR0YXRmkIDEQ/vs8jADz32NrmWwBovNae9xfA+87sEDMDpJFJzzhkBr6HtHpRIg9VMSploPPjx4+2XC7bw8PDNCx2f3/frq+v23//+992dXW18bEi5K/lQb58jSM755QyR8fyZDDjeOCOxcbA5VNxAu9BFUPa6/TVPFVuLC9Np32BwZYeK488FYA+wwaQv2jJ+3egzOjn6qZAXNu2J5PqvUymFYfsgEIv2nJ87BsAVKiio5oWNDpC0AuQeIpARwuw++rXr1/bb7/9No0I/Oc//5nAwMePH6edNHkr99batDvrYrHY0OHWnm0g7CxPqXEaddYVYp2s+BUHVKt2rzcKMHpvWxoCA9EcUWub8zeOOTYkaDxc59Wi+r6zcyguIqnwrzSKzLSuGtFh7pWfw6jA1dVV+/79ezs5OZmUG89g1ODq6mpaLxAhSQZHPbDk6pEpti5q47y4nmos3XyhOo59goEqZYApusaUOUi9xn0BAJLX0GTAFW2PfoNdL1trU4TF38jAgkHdZZAXtvaiml5b4lrkeLQuEcCs6ogDclXQ4Cgz+m8Zjb0GjQADpopDiRy/0099wwyvVF9cXEwjAn/88Uf797//3f71r3+1b9++td9++619+vRpcuSr1Wr6zgv2bcHbBpgq4KDz7OxsY40VgwLUkXXTAcaKTJx8OD9dX+b0O8vPAbReAJr5wG36QRkM8NCQ/lp7XvShEatzEnzOEY5+9rfn9HsCQTm9e1k67gw6N+byQp15keTt7e00hXJ/fz99kwBgAK9+XV1dTesF9DsNyNs5W11AmdXFRfPIx001ZFEbOqZGsRmfh0jVSHA0uo0cjAI3lgtvtcrt5aJW3ugKr7XyNt+Ye8XogS7M5bKzdna0rQMejVLV0UX/Lg8FGXq/UudDBgFM1TbI2ssFDW5KIOovSMc7zTIQ+Mc//vECCHz+/Hn6bgsCxIeHh439aPAK4nq9ngAG7CgAr36Om7+i68Crrj9Aum1kiHqrb+P7rHs9Z89849zp8S6jAI7KYEC/1Icv68HJwfmp0XdRI47d3CcvmsrICUSFyNeqpA2VKT8/wxE0p+f9BhDBzefzjemU9fp597jVamWdBOSlw7q6Cx3SKt8uktIhaJ66cTLpEbetgpRDAwIqG6dH7hmmXtTr0iOKYNkAVHOb9t7fBlBEv7u7u9v42iXrI/cz/bFORXVCPnp/1FFmkXf1+QgEgJ9opID7hxpmZzcOkSr8ZRFpJudoNKAHBFy/BiBYLBbt48eP7cuXLxvrBP74449pRIB3ouU1LuAbX3i9uLhoJyd/b+UOnYZdvbm5mdabMTBwfgfn6qAjWVaiepYZ0vIrxFFZvfxVj0eB+igNgQEGBLqfNBsUHOv8ESrDhkwjyAjxROi+QlFUwOVo2SNGCqRAQPOH0Y4crhpm5Z1l5UZZXP0UtYIY8bvRAP45qka8DAx0pGMftI3+gEYdRw8sIA2v09Bn0IbchyBXAGhMFegwro5kcTtEm1pVQHh0PQKgkWx0nUu1bSLg5qIvPXZBRAQSfnbaVpYMAKKRAc4fth7pGAh8/fq1ffv2rf373/9u//nPf9q///3v9u3bt/bp06c2n88nPdA1Y4jssfiwtbbxRgHsKZ7Da9vX19fTxloa+GDEFf5Kp6JVdhXwr3Jz6TVQ4/yrbRSNEkS86HMVKoMBjAjoXtIABDyP7ZSEDRP2IWAjiAWHeK41L0w97yFfZ3yVIiDgwIIrM+IT96G06Cit+W1nIb+sXs7h6shA9AwP50cycOsPVK6Z0kfrGdyw3D4p6sCRA9um8/aAA+TCgAwGlfPSzYhms+dXOdHfeFjUAQLdg8C1cwb+MsPDhsr9+B7So+4RQOQ8I9I25Daq2IJKHZnffZOrm9qpUUDl/jmIGJkmaO15AzksHPz06dPGegGMCnz48KG19jzVBb3EVPF6vZ7yOTk5mYADykAfuL+/b1dXV9O3Nn78+LHxVVwNhLSPsF1sLZ7ui67huKen6sQrgJnLiXS8109GAtoyGICAeVQAQABMamTLm9SoQWLHDwVyTo0r7dAVU+QM3bGm5TQRCo7m1ZWHzHDyR5hcdBI96xywK8vJzvHsjAgrbcRTL9pT3hRgHAKp3Ksdsne/BzodH9mP93FwpB+ycvnyuh5+u4d/1XaBbiiYZD3T182UBxADATbIEXh3wCPiT/Nwz2q7R0HCIZA6Ar72Gvk6IBCBgqxcpOP1Ap8+fWpfvnxpX758aV+/fm1fvnyZRgV4WoD3wsAIwMnJSVssFtPaAR5phr/Apm3wT7otPvzSbPb3ZkV4Hmtz3KJYtVdu1JWPnaMeAWR87oLJLK/XAAGgMhjAOgEeHdDhfzDBowH6ZarW2kYDgXCNGyBa3OSAAZNDTM6ZuuccsVPToU33y+Zfo3ngXn04rcqAn2NlZOTLgEARNl9z/yMKl8lln8a1EhFmUeUuZSHPUaOrbcMOXDcO4giby+E8o+m5jHdcc1GNyo7v48cGWgMHLBiDfnLf2YayPsRycYChmvc+yTkPddBZ3VzbZX07yx/HqkNs8zE68OHDh+nHTpt3ndXN5pAn9Mb5k/V63e7u7iZ94k22eHdN7FjY2vOXPyEjfesAgaoC5ShQZZm8huOOAOp76N9O0wQc6auh01dMzs/PNzbsUcE8PT1tgAXnJJ1jcZFDhp57Qo0icB1K0oZyfGp56pxVCSJjpobYRU8OALl6c1vhOR2WVp75uGIktEwns/emSGZMkXGMOis/kxnfngy5v7iFg6wXulDXzfmz/uMZByS1TbQ8rofqt97nKQwnMyxubO3lfvK8gDIyhg5MqZwrFNmTQ6eof1eiS6XMZrp0EQBs7XmEB7a7tfYigmeHjnx4YSu/CQAHzvnwiAODAeSBMhCsYpE2/NX5+fmG40fe7PhRL+gk/1gGPcDp5KekoLrqp0Z91ygNgQFdQMgN29rzMKRGBfzP6Vt7bgAeSuR3NnsORo+jSKcnqAhd4z8DIVqmGtUIKOGY5RiV06u3q4eTA5+jftEQs9aBeXfyc7xU5f/etA0/2nkdCMsMgAMAiHgUBDiwjDLxH+l6rw+4ZyMgoPlE913Z6hRwzuscnGwieVacfo9/TdMDOodEEQhwjrrSnrjv0lacH+w2jqPpQDhiOH+sn1IQgJ+CQh7ZnM02R7iiN2NYDuhTvI6ApxDAIwMB5lcBdQ8QOIDmrkXpozbJqBfEVGgIDDAQ4CkCgAD+oAqMgBoDJgiZt5V0nzBmBdNop6esGUXGRfPFsVM0/nfkDD8jZQYDur+C+0Vl9PjgOqMuLINI+Thvdlh8j2WVranYNyCInHVPftn1EeeRjQQALENHkAakcuV8QE7uke5oZJJFhw6c4rlMFg78cL7gWfnrGcJKWgdCe4A14mPflBl67bsV2UXpFVTAzrpRG5cO/zrsj30u8PofbCDvK4PnHeCGQ+bvnwBU8oZteIsAbyTwzputPfsX7icamPJruJFsIrky33qMADcD4lxWFERVg78ofUZbLSBUhwBF4aEiXSugawbcmwQKAnoV6hmo7FpG3PjsNDPDpegvim40HS+m1PxYedQRuPRaBz12/xFiZeXFuZblnAk6Kp7l+u7LuCovu0R/FWCg8uDn1EEyMFAgoPLloU1eDc0gXB2b0x+nj5Gh57z0WZeW0/MiLd5Ei/cWcdMd1f7sHIdL556PwMOhUtRPs76VAd+I+Bk3/etkzkEdty2+lnl1ddX++uuvdnFxsbFTpm4yp36FwQX4YeCAzdoABvh3eXk57T/AUw+ttY1X4jUY43UHIAYGEUXtw3XpBXUKBLQ9NP+Kzo7YuzIYWCwWU+TCDeZeDXJDnYzsWmsbi5+yCuvqZM5PBavGxOVbQf7OsfaMoTPyfJ0Xv6gSar6uTlGjRs625xQY3OBZjfhZ7uy0eK2IluemOnZ1wLtSr+1ai+XYy9fJuUIKBNybAxopaR9gB+q+O6D8ZPoTAQJ9NgK3WhfmlQ06jDi/RuZsQSZH7g/6nz2b9V3Ot1f+e1IEhpyubgO2e/WEDrmFrSCd/8f264vFov348aNdXFy0Dx8+TJutPT4+tg8fPrx4Ewb2kXUZDh97tGBHTYw44INGGHXgzYd4zwJew4b1B1gHh2AMGxnd3d1t1B2LHRlsR/JT2bhnIrtfaY8RGs1raNMhOLUeIV3kOCqvNqkTc4YXx1r2NgJ1hkANqRpYjdxwHDlQHSHRujIaZuJRlKh87qT65gADAaecKgNn7Hk4W+udLRwDZeW+NWU6UYmwHI3URQ1oBN5ms+dRNrSfRjAqU33DgCMggAR+LgKW0TkDDL3HeuGiHzb2eJ6jR361zC3WcnKM7mX3HbjPnnfP7JsieUT3mKogx4EqPOcWPYOgs7zwT0eG8ezT01NbrVbt06dPU2CEoXyer+dva+BrrthQCFu2w/lfXV21m5ubF68nQs+wOJ0XvZ+cnEyvLMJXscPH806XXECp/Ttqm8gWVUcARnR0FNgOf6gIpFGIW7Gs6wGgDIz6NA1+6vjZQDqnzcYoW4inzzH1OgrLAv8uKmIgBGCkuzaqseV8+a0LLU/BE/PAjpoX9rDDdqvPWYbux+3PslcdiL40WZHve1PmnJ2Tds9X9UXLcbJ35NYVaDvjeV6cxdE2ynW6w3y5iI+jQl3A6HSf18NoH2it2dELt3Ib5WgbqVOrAv9KW2yTx3tQVscMGGkevWPOMyIOKNx16Jh+QGu5XE77BbBdWi6X09cKOS/oMkYYsLMgrwuA0+cdB3kxoU5Ntfb8qWMdEeUF8Zi+4OlwZwsjGWdAdUTWGVV1981GBpQBNKADArgO4bfWNv6dI4HRwRCORj0aLasx5GM2fNkogj7jHCOnUeemvDjDCKMYvZIJ5dfhexDkEBlkR+wskP/JycmLqNFFAFwnBhnZSA/zrRGelrUPco6O70W0C8/qvCrRG2QIMOhGldxiXMgc71NrfbktXVv0opgsalHQy0Agqp+OIIxS1QlGpNFVFKkdyujAW/BRHU1QObnIlNuWQSmcOYbkea1La3/rLaYLYKf4a5y85uD6+rpdXl5OowCYLmBw4IIR2D4OWFgHnZ2L1u1U7EgWODgZqsyz/qA++DUBRmsDYECdFASNCmCxEFcYIME1EDPOeWMIHXNHPPTpIuVMAGxwnPPS82r0oZEzO3yO/qOtm5GnghyN2J3Me8riFsbwJz0x9OUi915+nCeDE5X1vp1/hZyz5OtuRMM5S04TddbIoLg2xqgR66IOuTIwY1AeEdJFe7FnhoyNpj7jwIAzpC5P/XeAPuqLo1G98uHadiS/9ySt82vlmZ07ioAA34cuc9DBOq9rSpAewBFrDgAEbm5upsgfoADX8EEi/jhRNMLkpqNZ55wt4C+H6j0nOyePnv47Xtz9yK5Egem2ejwEBvDPTl0j29ZeDnO31mxanRedzWYvImcol64IVd6YPxe9qvPSemXEDc5oUkcBdC8G/umXCkE8bcIGW+f8M2OvEahb6MeKqaMQbPAjA428VcEdKFDeDhEgRA6OjzV60Hv67Ej9kJbbRp/XdRY8F8tfJ+SoyoEL9CFOz/nqyIHyqXmqged+G0VPWp77j+RUiYCidFqnTL8z2tcoQRaNgnoAqRfNVsnJWMtWQAAdaW3zmyiss1g7gAV8OiKgXyXEwkCABkwZtOZBcQRcwCvvW5BNpbm8Ku3D5ToeqhQFH1EZo1QGA+xAWHhqhHhOSCNgVhI1tNhBCv8weOv1emMlKZevgMQZOabIYKuhz47VEPLQUgQE3NbNzCvL0dWjMrTK8sc/84qFZLwxlMvDHTOaxz9GgpwhUl4PDQhElBlVBQUMDCMkr8fIB+3DSJ9BLK65qTGNrhi04B1qXqCq0zasc4560Qzz0NrzlJSCeC5PpxGRh84/Q897IG1XinQxi3z3RdGohhsx4TR63qtPdp/tiKaN9Lu1Ns378zX4AN5/AIv4sHAQ6w3wNUIAANzTBYLsA5TcOjeUA5u9Xq83vnWABY0alEUyY9k4u5Gd45raycymaHvuGpiAhkYG1LGjAbAphItKW9v8UppurMNDMvP5vM1ms2nRCc6hVPP5fFIkHmHgeSEIg6Mg8KDGUxtAFT46ZyDA/xkIYDmy82dZVhqw0tCQPaNy8MAyQrSI65nRYKDBq28j+US875MiuTkH0JNz1mmzjszPa1rnoFm3+Nsdmhf3TxD3wWyzFZSj5AxOBAZ4NFAXbrl8GRD09EbrmgGWyHnyedR2WV6HBmYVSDpnFB1HYEv/OV9us6yvs73V8uFsEcljj4DlcjnpJ9Jw5M9ggIMmt1BQ+zLzpwEp7q1Wq+lbBxidYMCR2Wcnuwig8fEuQZK2tQOG2wCCMhjQ0QA0Lu8OxR+fYOPA6RRMcAR0f38/bUpxenralsvldI73TXmOCFMHp6en0zBRhrJYSBrFslBV2TWi4UVdPCKgH3HiaBqyU+fP19yclyMFNOrEuEyuF/OBOmRGgvlT46/y4me2VfJ9kxpYpgj5Rx1R83V54jq3l8oPgAt6xR9ZQVTDQ50Ap8hLh0CVsqH9SDa6LoAdO0/lOfCi9VSwGjnq6Nw5rh45g7ltNPUeFPEW8T7S/1xfjq5pMKR5KF9s4xDFw25jKuDHjx8TGMAzvAgRTplHEmD3eVRA5dFae2F/W2sv/BD8B2wh75eAsnTRofoTJ0+VR6ZfWXtlz0U2Sa9VdWF4ZICHst0/BK9GSCNhFi4MCQwcPi7x9PQ0vQu6Xv/9Ksrl5eWLVanY61qRLPPOhjMTbgQE2PC5VwV5bQDPn6J8Ha6FTNxQMHgFuQUxqvg8SsJ8c8SnddeOzaMGPeJoUK/zOoifARz0QIDTKaVKRMogTg0tO0Zc5xEvOFke4uT0OjLGOoR/Ts8OXReH4plopAI/rZu+tdIzcvxjmeixk290HoGCKthx16sg4y2oF3G2loMCzoOvO3lVgIDeUz61bO7/d3d3k83j1w/5XX+eTuBRAOg9AwEdaWY+3EJq3skQDp/7gY52614FbsogAq8j5Jy6ylb18C3s6dDIAASlUSwbOJ0PrToEfqVEIw6MOvBOUu61D5B2Cr2nEQH+VYFYsfjn1gbo6zNMPDLCm63o1+dYRmqIWfYOnfK0iK7NYGUbUaKqUWW5KFDh430aVSbtWGronKOJ+O9Flu6a69zRMc9xol1Z3uzQHTFfrCuz2WxDd/kNBe6vOqLA02JIg61b3QiXTgs68FvRjZFI1wG6XWlfuttboAtS0MAUgYKI1PbpNddeWfuoLuluhdjdlnlEfhxUqu1UJw3i/sC8Op3mtwbUfjIgiXwYT586P8Tl9sg5e2cr+PprUhkMOHII0S0I4ihYHR83ACsAGn61WrUPHz5szOlg/oiHfKL5VOWXh1CVf93URUcD2IDCiPKiR42WnPLzN7t1riuaZ2X5RCMbuMfGFQrvHAXXS+XBMlEQxB2NASATOgdGKRyifm9SBB8BFtxTw6eRM6eD3CMjrOkjMKILA/EM5IjIW9MzOHV90hGem8/nbbFYTPrLgM71WZQL4ik+3WaYh3HVCEcgSdtB771WBBYFBFG5+yQX3Dj71Xsu03kcR05fj6uk5fMPIBcfL2Kb4/qaC6o0GOX0DgQoKI0+ihcFvJGMezKpOu9eoBDpZqTTI/1lJzDQWttARbpOAMeVH1eEh5Jub2835pRa29wLG0qhFEWwOhTujKtbse3WB/A3s3lnQZ1K0fkvDHUpAGCFU0VWZXZKwW0RtVWPMkeFf55yQZvr98wxtw1HVkXHb0EREAA51I1//rkRH9XdCjkjqz8lNVpuNIZ1OKufAxHn5+cbw/8w1AxW1ZDqcGo0jKvy0vwcr5lx52s9igzpyHOHAAgicrxFoAcURZp67nRU01ZlqnaeR7zu7u5sANbaJjBgGxi9Sgtwrq+3q2NXXVQ+o5+rl8oa/OuxI07nwJpL78p/DRpeM6DCBzk0N0LIm40IFOXy8vLF1xLxjK4iZX5ae4n6nUN0q6P5mvvKVeQkGADwohmMZqixdGCI+UWeDtUyaYfgThc5GJZ7ZJj5Wd5UBj9eJ4K1E7zBEedbASNvQVlnxv3IGLIuaMeO0Le77wxpBAScUWT+0a4MPlt7lr8rB0AxaoOnp81XEvk6j9TpdR7pgm7r8CrLjM9V3yv2o+folNRI7wuQbkuqA/zPaUAq04qDqZTfsyHKB647R6t8a0Dm+pzmy0CA+5e2M4MHnDMoYP6Vx+hYeYkArMpf21H1smJbHI2kzWjrHQiZEX19jp9xziZCNygDDgzRJf/YGTnH3Jr/3K4DKwoQMvTLw0qqIDCyWN/ABpJfpbm9vd0YzdD5dS5blczJqkquTtVnIB8eGWGgwetDsNqdeVUZHSJV5aJyrBpY95y2twIPNoqtxXtNKNBYr9dhf2Ri0Mpl4BUv6LEO+yMdRu70p1MLmRzUHjieoz4QyT5rj8yg954b6Tv7JAcMRvU1IpVDposRQHb2ixc9R/0gKjdqO9U9N+TPo9cR4HKAJuJlxI5U20F9AZc7mlePttp0CKQM8vCxLqqIoioco8KK6kB8H8oSfRTFocle5FERNhs6jv55MZcaT5zjU5q86EUBklN6lRkv3NK6uQ7Fb14gb96e2M2HMfByMmZ5gUes6UCeTtYOTL4H9cDoSD4uXyXXQXEtA0Su3bJ6oJ8hb/7Kmr7pAdmr7iGCx8pq9GEsWNT5f3X2vKjLrQdCvdw/y9TJi9OovvH/LhFb1A4Ksg6BMr713ms5jwq4csFKlpfqMPMcAQKtUxYUOYftpggciInyj+pYlad73uUd2Q6lCHTtQlttOlRhVu+jcV1azVdRmwqNjQDPDeFc1xCwUXXzqW6hHSspX1enCqeJa9GXs3jRoDOYDsiwYqgSV9qA28x1KEcarbrXKFk+aFcAAC6HHY57DXFf5Jx6JpfI4bj8egbbUWYQWaYKjrlteaEeTxcwWOA84Mhns78/IYu2Rt4MeqO3X/h+NvTKdXegt+d0FRBHRjxzhkw9Hg8NCER9XtMoOQDF13vPR/ddZFzlqeJkOSiELlbbQ+uKa25kQNP0gsVMp7N6qu/UX1ZGr67Ki94b0d/hbxPwuTp518Hds3o/Ui4FBUibpceP07gRBiYYQTeUzWABxMYZowEgBwTW67UdFeB6wYg7IKDplL/M0LIM1CHjXF9DZBCgH1niaQE8o0ib56eRF68tOCSqGEHXSbWDO5A8UjZ0iUEVynYL76JRMwz1Y8Qq0geQrpdhvni+1UVVanDYiPcMm/ZDjcajtC5NRe69NJGz3DcYcLatB3pcXTI9zqJMB4w0r8zp9+rk0jrdUN3KSO2T66eqvz2wpFRJw2U7IKK+KtPtzJ9mQGXEJg29TeCGV3CdXzdTJtRh6bXWXu5M5hqRn8sWmmhDq9Azp9sbylZnCOJGd1FU9L4q85kt9nMGoAe+wJMqe2ttw0FHmwdFr/i46RLljxf2sNz3QVmHiIyOawdnxHqGObrnjLNOrzCgYnm7qR126CPrM3h0iwEEeOSRBOY9ck6RbLjOKgtnH/Q4cwLqJCqOKDs+JMpkjfutxc7C2ZqonCwPlJEBsYg3V1bGW2THM76zstWX9EBPpGvRNReg4l+BgPOhUdkjOpm1SxXQ7vxqIZh3kacSd1oVYCRMbkiki36Z4uOcXy/U4dfMgHI93bCtm0dlwx1ND2j+kSPiNJlhVHkxudfOWmuTM2AZ8VoBnr/m/KPRDteZWe6HSJWIlK/3jHSWL+fDxKNg0DMe5o9GIfh+FEE5/jSKjwBgr06Rvmr02DNykW5HdsJRxalVjexIuW9FGQBo7WUEuA2fTmYuiFLaVs6RLkbUa4esvKifZjqg5WU6GdlsB0Cc/R/pH1H5lb5doeEFhJy5OuiskfW+CjBDV65DuEhCn9Vj5sEBmCiiYrCA5zh/jvh1/lR5H0F7Sr06O6XlNgJfOjLCc/6tbW45q2l1DtntBMZrKFjehzoy4Dp29mxkXDIn1uPPRQfcVlF/yCIC3M/Aynq9ntYc8NQEyLUZl+36deZcIh4i6kV9Lr2W23smet6dvzdFwDMCAbuAAjyv+ubu87njl+9lgMJRFhBpuZF91zTR9SrwjNK5tV7aVm5kQHmJ5KDt0evv0fMVGhoZYKehm+W05t84wHkWDXBEEgGCSlSpTtpRr7Nk5egwPgOBaLtm5zjeg9howKk4J9Pa88gAjvXVNl4rsF4/r39wO81x/srLIY0MRCAgM0LOAGUAOKNIF3SxlE4dVPJV0OgcotNHflaBb5Qe+SuQ0fsqO00fgRhO68rm9Hq9GhW9Z78cpQgERoBLn4vOo3J64CuLOCOHWymf83fnPXCQlenAlD6X5e2CMLYVEWDOfsqzK9P1GZa943kU/DJtNU2gleGIkK/1HKEaZI0oOarVNQnKjzOaDkVzmZVIlXkHCNJpgux7DW6eysnjNSMQ11nZEeu8ssqEQQDzxnPW7hsLKE9fCToE6iHoCAxEBm9bcFcx0s7JKl9VwBFFEloPNjB8rLoe6TPzVXVEVcDeA/D/l2nXIEIBBMg5Fr2vz7hn3XU9Vn44f1yLHK2mjeoYnY8Cgaheel6xGSr7KhiIwHGPIgBd1Z8yGIgWk/E/f2UtY1RJd7XjMjUvdeQcrfP3CXqdAM/q9wT4nnsWjtTJwDW4i5j4Oh875VLF6XWQHhJnQKM86qpy5QnP8MgAvzLJDkSnGDKe3oNcR3HONotAevw71O6MbHbujiMeGbTptagOPSPNgECjE/71FkRlMot0uOpIon9XRkRVx3eo1HNYSpETdDrL6XsyifpLtS1fizLQPvJ8BHQiinS4wksVDLv0I3xW61IGA2o44ai1QhEQGEF+anBwjdOps3aGyhlTLj+KXKOh0UyoWj8FMjxM7/KNnJEaKpUHG2+UgzpEMnaKxKMAuiMYyuMPLvFHl3hkhN9O4OmIDAy+F1U7jpMVP1+pB7ePK2PEWEVAMupX7nktV/NxUVNUj8yIuXSR7lbqGwEnV1bV6PXIyeu18n4vqrTXrvk6mWQO7C0AgALR1yzX6VQlCIteIdR0I+W7PqH62bM1PRraZyADAZEhcc4Z9+As3KuJrjIVlOr+XRocKxqOpjfUYOKc98iOFoo4g+IiyIjP3nVXD/y7zumAB57hNwj0Wd5pLtpshuXIa0z2DQYyZzECwqK8o/vVCD06VsDHoA/lZgCgNf+BIMcL62nUl1zf4PJ6gDnSSU3nyBnWDPS7/HrGs1eH9yYna1AUVDGAG7GZPUenpGC/V49M5u4+znXNE/NUAQNZHTLeIn5Unzgd2/9ssaADu64Pqb66sqP6Rf0touG3CXge3xUYOauocSA4RKQ6R8mAokeRoXP88Ny4IixeHKmdxSk+z6WrEvT4YUOvvLm66Y/lz87XGQR1HihX1wbgOn+qubU2fSKXn+NRAJWT432f5DqGOrnMsLlOqtcrZerz2fXI0PUcoHs+0gMH7lUnKwa/QpU8Kk460ikH6Ph4Wx3ct+6CHEjbpl1UNmrPQT0w7GwK58O2O+sLFUAb+ZEImI6Q2tJqHs7GZiMD6mvegrbNdxgMMDnn45hiZasIWR0bl9VDfJGgo0inxwcfa7SsACDbljWLWiLA4UBHNA0TESuiTq2wnPXzzMvlcvrOPVA5wBpkoYsGXZ20Q++LeiCAf8qnOtHIIGn+amAi4vxVbvx8BBBd+oi3bAGgAhwGinq/Z3y172TOxMloxKCp3PTYGWBn9EecwHvRiFOKnovqFQEJ5+AiXjQwae3lxmw8iuX6TrXdXf9wde71tx6NAgE8EwEApN2Wt8xnOX/H10Z0evhtgqgyWTTFTGURjDrBaDHiKAqsoGh2jK7caDEcnId7m0Drhnx6PDKvESiIno/yixDver3eGOrDt+0Xi8UEBmaz2cYX7vijRNmOjJFzfW/qdQjlsxclVaiSNosQMgPJ/Dq9VYPJ6fm/widP82RgBHyyrqsT7gF5Rz1wk4GhDABWy9s3OQcKGgls3HNRPpmj7bWHs2Pc/yvyjZxepT9GwDarQ0QjehIBAc1jFID2/GWP1xFdHhoZqHSmKjlDFTmW6Fk+zpx8dp/Tcf3Uaevz+j3tDAwgz6hjKKJmnpkP3SCJ843q1HM4PF2CUYHz8/Ppx9+45+8VtNY2QAGXwSMk+trhoZDqUGWNQy8KqBqxiDLkHx1DD7jvRMaa9TVK6/hw/b7nUBxwyIxXBn5GDGgWrGj9qjq5TTR3qBTJOXM6eh6Bwqjts5GBbNQiI9cXs7QKZntBUpYPl8/3tF9V9etQAOhWIwO9664z46dRIowTv7IX7QLojFimhNr4rLTRczqS4coDL9Fug+455KfDrqxcDiiwIvOx1kHbwJ27euLVNHb08/l8OuY1AUizWCza+fm5zWe99psSARjsg3rOgx0ry9cZPX6mYih3dSIR76qPIDesH4EYvlYpP+ovyKd3n/8r5EBZdK79LOKvV34PfB0CjehUFBD0gqSqjrBce6BghLZ5dps2qvAa6Zbed3ZhG72vUgWkjgCNoX0GXCdzQ+pRhKH3URmNyPjtAi4/Gx53xtulifiJorJomsLNvUb15DKi6EQVSoGBdrgRJcsMcu95XWeAbxjMZrNpLwH+suFsNps+2Xx/fz+9gvj09NRWq1WX17eiEdBUuZ4ZS1cW6+A25UWkbalp3WuyDqji3IGhCBw5XhxI3ZYioxr9IoBc4T0rb580Wn7EdwYEeo6wAnxZr1nmUb9Q3iJ+nS95rbapAIDePbXrPRu9bXtGoC7Kb5v+t9U+A67Q3sIkjaCZsHofeenGPsgfeTljFvHHjlUjCF4Mh3PlPSrT1ccZUScrHGdlgG83UhGVq/XWDqXHPCKA6QGsFVgsFtN0wHq9ntKdn5+3+XzeTk9PN6YTlstlOz8/n2QIQLBardrd3V1brVbt5ubmRfu8B404KDVomgen0ePM2L1FlOSMetbmFUCgPGcjJSzXzPlwWi1T5Re1Uya/XvtmBngkctoXRQCHbZGm5/9qvvpsBTSr83OBnD7v2qvaN12fjOrg8nW2ObKdPSfeAwIV+en1CijiOmegaZSGwEBrL4fwWRGdINiJZaTPamPxV/U0DQwVL/JzIEDn2dfr52F7BQIAKOx8ca78RrLSBooMJOehb2eoEY7K7HUuvafTA4jy8VYENhNCefzVxZOTkzafz9tisWgXFxftw4cP7eLiYnoDAfxjgyKAgaurqxd8vwf1wKI71uczI6lp9XgkIqqQAk4FAXzO87V8HI2y6c9tS83UM3wROI4MeSXqiXjpta/jV3nvAb73ph5oy9LqdaZMzs6pqTxY33pO0FFkq5wzrPbRajnRP5fBPiICHA7gVuuftVHPDmV2YxdQMPyhIi5IC+ah/AqSB8E4KdqNnLvmr8rEkbMu6nMgBfPh+iaB5uUazIGkqFNmCDa6rh3P5ccK0ovSuAPw4kH+UmFrm68xshxRV4wmABQsl8v26dOntlwu7ejAarWa1hnsgzJjUY0sIqPac2oRjRq2kbx7aXWxqqZ3wEBpG6PH13rPZ07a6Tjrvmu3KhDIeN8nVYBSRbZVuTt5gQ9nRzMw8FayrABMlw7/Uf/v6Ya7FulrVa+iMpydB/+RrdqGtv5QkRt6j6YB3DV1cMizt3dB5uh0lMKt8HdKjGOenqggXnddGy7ilXlw9YoUMYqyXP7uHpSf9xXg/e1ZdlxHyJABIYMITDGcn59PozhPT08vNi7aN/U6XPSMMzpKvYijmn8P3auBqPQvl7YHZHoyqTiBalAQAV4tM0vT6zMun4qhPhRQUAGpPQfGz2ZyHK3ztmAgAnD6XKW/aTq27RkY0NFutnlVXvRZd+yerebp/IqzG9WRNUfDHypyBfReHXPPOaXl1/RcZBKNBrgvq0Ur/DM+GIREv55xc8c4jxAo89GTY/ZfeY7XSTAgAChw9WfiBYO8zgBTBMvlsp2dnW1sxIRyeGfH9ySth3OGzplWHMUIDyPn3A5KzLfqXBbt9Hhy96NIJNKRngPqldczlq6f9EBIZJz5WNv7UABARBVA5K5H7RnZdqbMvlV46FHPYSov6tT1GW1Xtt/aT1x9dJQ4kpHTm+q1KK9to/wIAFVoq5GBjFwEVREkd04HAvTLbCCOaPWNgxGHrg3F6LDqqCMEynVy5VaAiivP/Wfp3WuEWBTIYEDbSkcTeC8Cd8xgAK8TPj09tcVikfL43uSMRC+tIxfdRNG26+xVA5Pxli3cQhoHglxdWFc5Xeboe2/69MqNeFbelY+qUXX9W8vI8twXOOg56Ypu6PnIiEx2Pwtusmcr0WvUHq5fZdu383mkd6zzESgfCQ56/qJi16vnyG9b8MC0FRhwUwStxZ0fxgqUgQPc53Ts7B04UMoipCi9lstAIFIqrWc0D8s88bkaZwUfzFPGdw+AOCCAtwV4TwEsJFTEzJ0NUwH8w9sFWISo3yvIQNg+SI1RFVBV84wiFU6XGbgRILANfzh3PPUirgpPkT5m52wTNIBw7VWRy2vpmwPq70nOPkX3KhTJMJOX05cs74ynTPdxP7KB2l/Zvrk8sr4U2XJ3f1d6Df2p9sVt+R4GAxA870jIc8S6Rz0DAQcIcBxRFB3AuXF5yJ8/wev4x78DDVGUrjxnwCcrU69xeS5a4Y6Qle1IOy/aTqcHeE7fyYXXFeA1QmxVrK8jLhaLDTCA9sebCfuiagepGjxHqs+9dsmu9aILF1050JrxEu2y6fqIK0uPI541H6fLyrdzVrsAgAz87FMv90WuP/T0ttInRoFa1Beits90VNsVPirbEdaBT+axdz2rQ3RvxFFX01bsVo+GtiPm7XB1PgXXMgOoka9zhJxey+JrDw8P03vwiMh1nUBv8SDqpdecoVOess4URTMoh8vrRUp8PTOiCi6YdEMngAIGAjwiwEhb1xYADHz48KEtl8tpfwEeWeA1HJgquL+/P4joKqMefxWgl7UR8hgxqlmk4owg33O6zXxlzrEC1HE/6sPVPLTu+jyfR4Y7eiayNVGfPjTSem4DkFzbR886uY4App6NrOTXA8KcjwMDkRNHnqz32RtwDgBkpH2gB/q1L/f0P8srohFwMDQyoA50vV5vLArL3kdmJ6MdOtrlD6QLCkH4cA6uIfp0nxNWR838VCM4F91EkU2WV6ZY0R7z7KCjDp0pYjanzG8TOMfBsgIYWC6X7eLiYvotl8sJVPBeBdhj4Pb21pa9b8ocd+SMmKJ2zMDeqNNRnY347fHlno+AqitHHSuP/ESAQMvvHWfXojwdSNL7GbkgQe/tixxwy5zMLpFhj48MyDq5RW1S4bUqd2eDlWcNENVOuk+4V6kCXCIA4PiN6lC1G70AIqOtP2GsQCCj3pftcMzX9dihOAYVSJsZJgcCNLKKIofIYPYcf0YjjoL51rIUOEUIFZ8gxvcCMCqAVwCdfHg6htcFYI8BHQng7xDgd3t7225ubtIFbm9JERDrOSS9rrrmnnd6UTGgPSPPBkEdBJeR6U/Et+Yb/Wf590h51WjMySLqXw6w6rFeywKOCAQ4cLxPyhxDxeBHtirS8UjOPXm7/Hu6WtFf99M0avcUCGRvvmmeEaB+TX3Ytt1GeKnyOwwGdN6fGXMOi+dtEDXqBkNAZ+qAnUPHNawL4E6bRSqRMrk1Dq5+WT5MikaVtr0WlavKHtUh6gxcL3bsuKY86eub+LQxf7NgvV636+vrdnNz066urqZjnmZ6T3KAruc0+TyKZJxTzfQCvGiemVGM8lH9zcAp39fj7DyTl4KTSJ5Rf4rSRNczR5Sl0fxYh6NyHGA6REDQo0iHNL/e85V8I712/Gb8O52q1JX5UhDAtk+ntrU+zr5GMonuVXR+pF6aPmsXJ7dqOWUwoJ1IHTkKxdwzCNE83jPvGSzNWx0632/t5fC3NogzcjosXiU1ppXnq4oRIf0okkOdFQhonngeUygnJyeTA+fthZEnPkusbeg2JsJ0zP39/YZcHx8fp22IeQfCfW085Iz5aEd0efJx9OO0rM8VB8PAsuesnT5GYN3xr+U6gODAupYzSs4xRA6FeXUgasS2/GyUAcjKM9W0I/0ic9YREIjK7vHidNe1twMBDhxwOa3F06hZYJfRaPqKfmbAJEo/ogNDIwPZh3y0UXjoGIAA0T+/ghcxrICAySkDp+uhMWc83TCie44dpzO+rmzmKzJwkfN3PLNTns1mG0DAOQP+59EBXluBZ7VebpMhTBHM5/MJACA/3oIYXy7EdMGuDngXysqOEHQVWWu7RPrRmp+Kcq/qjgKYyFiClJ+orlF+rJfOEUfRYpV/R1G0uStFsn3NKO4tyMkicsTuGZdfdj5Ko2Aio0insj7pgkgHCDQ9P5Ppb8ajo56P1DpFeWaAucprhXZaMwDineuw41zkXLUxK8IcQWa7IDhnqMGr++niQ1Y+V44CAaccmUPSslvbXFyZ1Uv5hOPGSn/+BDHvF4BNhvg7BPomwXw+b7PZbMoL6wRWq9UEBB4fH6e3Pw6BelHHSB5oD11nwe3EoNMZK77XWqyLaEsHaLUufO7SR8YsS+eMkBuV6slNDb0DGEqZU8uAR1THLM9DIQWIWdAAGgU2uzhw57DdeZQuIwcCsrxxnP16vPSiabXh7vldKQIEWRmvAZSHpgkyg8BAAAvVQO4bAY6qUYuWzccQSmZMHbhw6LFqnCJ+9b5zyiPgSAnOxi3GiurOr/vxD3nwfgK8UJA3GeI9BfAtgtbaxrQBgw23qHFflHXkSsTo9EAXWeo/P8MjMZi60XU0UWTDdagQG64IPET1zurLpLJRnXZztJUNyFy+ET+4F41c4twBLU1/CDr6FlQJPDKq6EekW1F+oyAkCnqc3RuxOWqfnZ12xxGprmWy3wWIRXny+Uj+ZTDQ2zRmvV5vAAEWBi/sY0MQMV8VlDr/jFwEz+c6ZB7loZGfdgZWRn6Nksty9a02WtTZeCoGDkjL5nLYgenwNpw+b1fMIAD7DDAYgONvbfPbELr98T6o51iySDiSNz/D9eNjACp2UgwAHh4e2nq9nkZOWP8UQLvRA1c/JeVXRyoiAxgZsAqQ51/kcF2frdQjo+h5Lbf63CHQKG8RyI3Os+gYxxFQqkT/WQDkHGVWhkufAYHem2WOMh16TcC4DRgC9UYBRkEAaAgMaIH839pzBXuvIToDxAZEh98dSkNju+tatitTjVSvsd0rjcybDttrvplSOgCk/DnggXN8CwB8oA0cEOBhf92G2L1O2LsG56ftpu15KGAA1HOAmcFkWc5msxfTKPwP2YAPACaMmABEASSwXqPfIC2/upkB156hcfoWpefdRlkPGVhoPgqYlTcG31n/UCfO/bbn+JWvCrk+t2/qgdKqY8pArZZXAQIufVZO9sxIW0bgQnWoAgTUpkZBG59HPGXUA2hRG1Tl8lo0/DYBI34VpHPQzsC15uc2+VijGG5w5UMXN6rx0ny5bFV450Sj+rFSqWGOIi/noF0kxfXNkJ4aZH7lkp+HYcbnhvkDRbpXwGq12vja4Hw+n4w3yjw7O2v39/cvdn9EGWdnZ9Mz/KnkfZAz8qwbugCz50gVDMH5Yw0Ftmt2UyhYT8OjKQAUrTU7reAWZWIapgcK8D8S1Wj5/Bz3zfX6+U0UBgCog9aF+WJ94pEktRk63JtN51WMssokesYZ6H2TAygOIDn7pc9EOq7BjpbPeUZAIPqPgA3nr7xngMABxAhYKo96rKAio149Rp9Tm1/Jo1LWKH9DYID/XaPgvhpf/WXokZ0WrrvFcgoKeHqCjZM6b1XMyPBEoIWfceUpRUDAkUOqygfLBv+8gBNy0nYAbzyEzWsBEMGyocbCwvV6/cLB6y6PXA5vYawAYR/Ui6JY7u6fdZZHRyBLnjphIMCvUs5ms2nHTCXIRUdrUCa/qnl9fT29qon1Hvf39y/W46jh4bd6MmdQMXQqL8iCt63GNTc6gFFCnfrAdRyv1+uNURPWuwgsZE4M/Gp/jIKbQ6JR4+4cprZ7BNRwrweyeqCiV5aWq+Vkben+OSjpgT3Ns2KfI16qFPk9J6dtedqFv7J1zhhHwdGwPTfSKLExQZSF/HhOnhWejUQUyStvDDIcqXJxJNxb2c/lR2U4+eKcy1GwxF8ahLxcpMjp9WuFboSA681tF/GJsnnOHMZdV9bvi3oGKWsDBnwMePSVS/zzSIgCJ5Yn54eRBR5VwAjCarVq19fX7eLiot3c3LS7u7vpjQ3s58BOs2dII8fnIjH+55EAXGNwGU09OXJBQ2vPfQtAwC12xcgIfs4BqG3ga29t+N+LIqeIYxesVdvD3cv6f0QKrCP+I/2M0re2OQrsflXatX23LdMBUaZeIJPlO0pDYIAb1THpkGRPSJHz5IjXGWddnMfOmaOM3hAqD4NWXpHSumljsqHsNbDmGyFHPuZ/NrYchWnbIC2GtPXjQ7jm6sly0sgTMuP1FJwvy3ZXlPvWlI0M4J/BADtxjoo5Esc/nDmieCXOh1/dxBcgMXWzXC7b1dVVWywW7ebmpp2dnbWbm5uJP4wQABA7wxs5R06jcnH6zLJw+1CwTFBHlTXnrxEp1kcAEGA0BKCH96/gBZjO3vT0rho9HgI5O+HsbvVZlyaiCliObF8GTnEc1UOBawQqIjCQ1Unzc36t57AjfdtFZ7KgMQsmdyl/+NXCSHARA1mk4Y41LUckIHY+IN0O1/Hm1jPwUD+/BZHVBel7QEA7T89AqVydHFQWfO4WbeGYHT+AA4MCdmLu1a/T09Np3hqGntOcnJxsRMDsKFCv1Wr1os7vQZFclTLd5BEZlh3LG04K8pjNZht7OcBxgRhUsE6rg+VheAWBKJej6Uj/VR69f9ZjnopifdNpAV5MyTzzM9pH3Nog3sDq8fFx+uDV3d1de3h4mMAB56NTCK5eo9FbJMN9UlWflbaJFvVZB+R6VPENkUNV5+dARta+o0Avs8tRXtH1XQOgHgjRtOBFgUGVh6FJXB0Gr6AhNSx8PYuEGXxw+XrfESJlpOGFb3ot4s0pqjp5B47crycnBiWuLloWD42x83V10bcBcKxAAA6J88TznC/OHx4e2vn5ebu9vZ0cFj+rQ+Mw7PsgBx5xzjqhRpbrrPsH8HA4iJ0YiIe6Ebkz+MTzp6enL14xZH3ghYoqZ7fLIzvEnhFTY8ryUWCk/ZLBpgIlyEdHUlgfeWqK24f3qVitVhsjMAABWhcG/QrWqzLQY+S3L0JdGPxFttYFQhk5x1GlzEH1AsLseoXnKA3ru5uyzsrqlev0rfJs5NBZLytOP3L2Pf7eBAz00I+uOs7IvYKmBgNGQiMJdoaOFzcvrQrCxpYXLfECq6gumaJHYKDXUIhqGHAgP843ki2iTdRdFxY6WaHuuKfzsOxAdc3A4+PjtM6AtyXW0QLk+fDw0O7u7trd3Z3l/62JHbACJTUc0AHVOxcFc32hR/qKIH/FkYECdBvHcOgYfeHRGox66XQMAxJeo8DgptcvHSBAGQqOojzcGwXKmy4u5D6uC0vX6/XGFIAbFVTDzwA2Mr4qF70WUfXrrG9BXN8sEIkAQmsvR7r4WhQERbJxIwMONCo5sM33lHcHOBWMuusR3yOAIHLOGSDI8svKz2TW4ze6r/KsgtnZegQOHulIRzrSkY50pP9ztN/l3Uc60pGOdKQjHWnvdAQDRzrSkY50pCP94nQEA0c60pGOdKQj/eJ0BANHOtKRjnSkI/3idAQDRzrSkY50pCP94nQEA0c60pGOdKQj/eJ0BANHOtKRjnSkI/3idAQDRzrSkY50pCP94nQEA0c60pGOdKQj/eL0/wH2xV5IsfQtkgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0k0lEQVR4nO2963YbObI0Cupu2bLd7umZ/f4vt/c33W7fdJcsnh99ohwMRSRQlGxRNnMtLpJVKCCRSGRG4laL5XK5bFva0pa2tKUtbemXpZ2nZmBLW9rSlra0pS09LW3BwJa2tKUtbWlLvzhtwcCWtrSlLW1pS784bcHAlra0pS1taUu/OG3BwJa2tKUtbWlLvzhtwcCWtrSlLW1pS784bcHAlra0pS1taUu/OG3BwJa2tKUtbWlLvzjtjSZcLBbfk4/vRovFwn7c/Z2dnemj6ZbLZVsul+3u7m76jY8rD3loXpUcR/ja2dlpu7u7bWdnp+3t7bWDg4O2t7c3XUce/Bv8f/36td3d3bXr6+t2e3s7fe7u7qYP10nrxveUt8VisVImyuNy7+7u2v/+7/+ON94j0bq6m57TtlRd0WdT27t89F51JpjTadXN3pli3NZOl7kc1mnXR1iH8I28OQ/H+0gd0m8nF31e+enlM3rte9OPtrvOBqn9Sba0tfuyVRuY7Cp+Ky/Mw+7ubtvb25u+9/b2pnvQva9fv06f29vbFdujdXQ21vHm9KX69GTqCDrqPpWMRmnkuWEw8BzJGd9kyHugobVvyp0af6TjIg8umxVRDZfjn8v5+vVra61NRhZ5gfAbnQHfaiid4iVSvgFOGAzc3d21xWLRbm9vV/h5TpTalvWAHZhrf6dHmr/TiVSuo57eMYBL90fzToCV/6PtoU8VeEpOtzKyqT5ok6oe/KxrM73/q9KoXdQ+MOK0XBptUwdEGAQAFIy0uZaReILeOj9RPd8LDlVGib9RWX8vvfxpwYBz9g9J09o/jhXO11FlaPQ/ytvd3Z2UHAYUyFYVh1H27u7ulC/Qb2ttysfxj/SKoKtILJHrLHM6389EDhy0lvVK5TsCIpHOGU29p+Uon8rDnGimqiPzpqCT01a88DPrRlsjYDYBgV8ZBFRgdg5Irf6PyLYKNvDRKL61dm/UNtXJ8XB3d3cvaBl51vUj5wccPw44uMCJQfX31NGfEgw4J5/Q3lxAkBAbkzN0zgAp4lUjykNbyAPTA25I6/b2diXt3t7ePWVVANBauzcqUIGBXkQHctMpz9nIJnCXvkE9XXF5V1Q5wdF6VLxwvnPLgn5qGfhUTluNXC/a4t+VTjoenYF+zrr52NSLUBONjAak62qfExBQoMDTUmzHkHfSI9fmDAjUL6hDZt6TnjqbMAJs00iq+oPHpp8SDLRWK3QCC4lShO4aZzQvxwMMKSvEcrm0w2Q6/M+OnUEBp8MIAo8KpCmJkehK0/GoCZfHn+dMyWnPceb8TMpjJL8EaDnvUSenZTkw4Ph3Tp6N30h9RsGJi6xG+Uv5bUFATc5uJvuWAohRXUztC1vIv0E89dmba0/laX1ZV7musM0JtFb1ckGCS6OBoqZh8PM9dPenAwPq4N1CpwQGqgguOW1FnsmQOmXHdR4FSMCjAgOI+PHNaJlBhRsVqORYyZf5VyfPPDnE/rNQGi3QNK2NOebqfqW/VdqqjOrZOeAmRT4PjcJRv8qgO8M8Aio0H/f7V6LKJro+XwGC3nXXDpW+OZ3E/D4WCupiQdilamSAeUv155Eu2FKdKh7V6VGQ7wA1ylWA/Zj6+lOBgQQEdOjHpedrra0iXacobghKh7x6Dc9AAAvtHKjgeTKeN2ttdT4JOwOQx9evX+8habdOwMmk6qwqI0XhaejuuY8MtNafLsC11u7PD6boSfNXUmNYgYEeEKhAXipP9dqV4xxyAh49I+bqlJy8yrQHdB1Acc/9qqCgtfERU1AaDUh5V44sXUN6Xpza2rdRAR7pZHu0TiDigJAuLlRf4MDwuuWpnFQ2HDg+JiD4acBABQQqI5YUPymtNlZl/DQtkxsRSGsE8BtzZgAGPDqAsgAIAAS4Dsn5Mwp1jkwpGU2VhXbKX8HAOsPQMxaK9vW3pk26rPklvqq0Lm/9nbbezqGR/uUoAape+cn5uz7xK+gpkwt23IcpyawCVA7MjgAC/P/69Wvb3d2dInMEPBUYcIGa8lSBa+XdpXN2M5VXAXIti/Plejyk31X0U4CBESCQjJxT+FEBJ0Oq+eN3ipSSk66It9y01iaA0No35Mjlo8O4MngoLDmSCvg4hXXP/WrEMq1AgPvPelNNdfVoDmBIPOD3iKNI7Zzqz8atAgCqV73ytIwt1cS2U8+TYHLOzI3OVDTiEJGOg4nFYrFiw3AdUwUjQKAq29k1txWbnbLmqWUleVUADNdBLo36ksfQ8WcPBlSo7oALh0hHjFoyPg40VECgx6saey1br0PpteMib+4wfCAHjyA4vvR/6hxucY6T16hx+NnJAa3e70qHK/CYoqp1gETiw4FsLbsCt6nfaB3WBQFsoHtRf+rLv4rOarv2Dl7jb6aH9HWn83y9tXbPdrEtdGuTVIec006BjwumcN3po3P2SVd75eszCjzmAPC59KzBQM/JKzlE5hS/F9n2jFIPiGj5ruw5xOh9sfh2BkFr3zpRle9Imdz5+Jufr4z2HAf0M5AzQKAkC9WNlK+Wodfdf82/yjfxlsD2nHxGKfW90TKc8efr7vdj8v/cKIEB0AgQS9cr/XdAU8tHO/YOTKu2R/ecL6dJgY5eHwGNWq7Tvd7zTNrv5uZX0bMGA62NR/lIy8/0lL9ajVop/shHj2XVPBkN6ul+Wvbd3d10f29v796iGV40WHUc8OOMby9C68lnpDNuqR/Bj8i1itIUECRj4spOERzySc67x7+W38trHcM34ggeWsZzIxcQVcGR/h7JX78dgExAYETPRnSux9tDou1KT1I/ZKA6Aia4fsyrgt2H6uyzBQNJoao0Lg/etsfp9UhVXtynUV/VABxNuY7G5xU4Y5yiMUbGu7u7bbn8tg8V37ztJm2/qZxLD5XyM7g/Gh38KqQGcV2qDIsrM41IuGujEUql9z0j7cpITsbppRrqEb7nRIKc/mcHAa15Z5jsjNJIH9ffajvcfQUDOjqQ+FgXGFQ8unuc/0NW9DPfTq9TeuV9HfBS0bMEA6rIvaFLTus+uhgPjcLbV/jAB6YeEABV83GLxWLaQ9qLzrhcPMPAgo9MxpbFm5ubITCQOp6mSXyps9jSfVpHLpVD5Tw1SqjSVPn1eHFRCQzkqEHujSLxN/M+B4iDkj3gbbmOj5+VEhBQOwiqwJ3qlftWW+ecbRqdcDQSfGhdq/sJCLhrDARGpmCV53QvyQ/31QY/9qhAa88QDFQOPaHP5Px7SJBJV+L3hoYqp1g51BGCQqZTEJfL5eT4dWRg5HSuRAw6dLTkV6IRsNPTp5FnUwSeykhlpWiD8+6NEFUOOEXyCThUNAJ81jV6DlRoub8KVcER7vdsHH7PAQDJPlejp1rmuuDN8dTjT33LcrlcCbh6weDoiJiW2bMx2vfnAKREzwoM9ABA1cCqZG6NgDOiDhlWw5+qqBw1oaHSy46qCEmHp7A2AGXyi4147y3Kcy8kqsiNBqiMqiOZVcl/RUrGr7UxQ6ay640a9Ywu8uAovqJeG/b6AP9HuQ4c9AxYlSaBE+UlyWuUh5+FHEhVfWF6iMPtladp1uVhBPym+6nM5Dtaa/e2N4I/tYUORPfAN75dP6kA97oAienZgIHKsffQpr5i1xlZjra1zESjw0NqgFNn0QZP0fdisbgHBPj0wvTegQQCKqdTpWtt9cxuzr8yvj8DOYdWUXKQ/D858CoPNaQ638r6DH3ibVrrGI9qdEKBYGX0OM1DAQHSVPe1zqNl/yykulIBgSpgUL2v7OScfqI2mMuvzg947LZj/XBAhd8Yyzu3cG2Ux1F9Z/1MutvrdyP0bMBAa35uqYfseIEgH8zTWm6gHnpWh8fPjDg8pyBqqJAngwHnMDSdO40rkQKRihyAYYDDwEXlM0c2z4lGQEBreR6w59zSf83TAQE33KqLYOcYDBfVO/4eaphSGXOfx++fVffm0ggQGA0CEuBXezhiX125HOjgPtsafuaxgIDaXfChvPIi7eT0e9Oniee510HaZ9YFuM8CDCQFHlFSBQVucYymdeXrKX26mpTTunL5HdxJifgernG5UDS8ldCBFJ4eYNIhfQcE9BnX2Z3hdwcaufJ/doO8jhOr0vfu4X6aLmMd5CiO805ARevF3+lZZ4Qc6HD6VgFjrfcocHV2Yk6Eto5BfS40akNVBto2SUcrx9aTqYuG04E/mp/jx/Hq7K0+A5vJQDuN1LogbV1ygNqR8zucx1zaeDDQAwLrRB7VfwYLrAhQjtb6ioR8FITw2QJuJWqKrCvSDoLfDAgcEHAGem6UinqwXBygYKf0M1MCkuneQ/KunHlr39rCOWfOI0X6PSeuDtfl70DBnMiuZ+B6z6qu9kDKz0oVOOL7yQn1wFSPktxT/s4uVjtVRsGh40tBB9Kz418sFtNIK9vSdBLrY5BG+qkuDpDzvTn8bDQYUEfidgyMVNYpG4gdtJIiQ1DPseK6AgHkUUXRbqTCbbvh9AwioLSaF+fnKEV/ei1Fv7+KYWXqOfoKAFTIn43UCMBIz+M3X1eD6spxzydeezo1JxKfQ6N5JDno759dfx0gUDvqbFkPxCYwyfc1XdJr9yyPCqTt0A8JBhk0a500b50aqI5m57wrXtxzqrOV/9J6PQS4bSwYSKMBabjZRSsuanEC5nTqsBU5ujy1UR3Pjt/0n5/b3d1te3t707fbg6vK6Q5KUnk4hUs8JeClnTUh91+BKmObwOsoqFKHrWAhOVwdtRk9W70ysNzGDpSw3o0A9gQ6EvWisARimffq+Z+N1M7h24G4pA/rlof/SXeVJ+UlOV5N1+O3FwC5fNjWO94r2/dQPXO8cF30vvtd2fVEGwkGtHLpoB5nQJIBdo20WCymE/xaayunEKphU74cz6pA2uHc2dqu3goE+MM7IpAHbyHEd5Ipzx8rLw74JCCE67qA0CFtpP/ZzyVwoFV1oELu63TgxAe3D+vynDMmRp0515GHUnunayqNAAJN4wxl+j/y25X13MnZo1Egum55nGfPcTkeUoDDuqtOuuLDlVFdh+6oDnOZuqBRgfacwGgU5FTy5P8jfVdpI8FAaz7CqhahJQfc2v2hdM7PLa5Cfq21lQMmNM9kvKqoMEXRWs+dnZ2VEYH9/f0JEICwWLC1Nh0wlGSDuugUhSLdHiDguqcO4GgEwT8nckbVtbvqVXKKzjk5Z9YDpJoX/jvd69XPldcz7AoEesAm3Vedc7JKYIr/c/6s647mGO/nSKN66XQ09XenH86+cH9JNjqVlezNY9CIbqLv6GJuJ4+Up+O9Vw9nB9xvludov3O0cWDAOcU0NM7POEIjspLx3DtHqixEVQLOr1LKFBkinRvq0k6i9eV6Y3sk/uNEQa0z5506D++PxTkFbv+5Km/VOZPh/plAgNKPrh87OGdgk5GvDBXyGCVnzB2fI/nwd+XcXX4OqOp1d02dzii/z41GwGlrtW4kx5Lao/o9Wj7blWrxIPcBnZpal6rnnS3U/yN6tC4owG+nyykomUMbBQZ6QKBCO2oAGTHhOcyf6lB5a/84Vn1ZkSpkNTfOfCMfXehXgYBUdyY8D8eNFxQBte7u7sbTDZl00aSTB5endUCZlTH92UGAI4feU5qKUgfXNKwrrG9VO6Y2cSBCnW3lWJxuVNvBFNCABwcoHbnoyIFSBU0qD/f/Z6O5gEDlNgq45pJ7ngMn1aGkx3Mca6VXzians2ySLjlKPmNd+VWAQPvpnHI2Bgw4ZzgS7bjGdff1ZEFOi/TVdEBviJWBgCpQAg6ufroFkUkXBqq8FCBU1EPAI52q5/B+RUDQWt35ehEVX3OgQO/3jFZyvK785JirckHaP9Zd+V31Z5fuZ3fk69IIAABVYA154bvSp6otRtqLy69skHPMo3qQ+oHa4FHZKd+jPDym3ro+1rMfjjYCDDhEVhm41jKSTYKpGqCKbp2Bc3y7LYSaPz+XgID+1rzccZ0AIa01u25gzjn0FWk78FablM+vbqyr6MfRHCPUM/ipT/C3Xkt9Qftoqk8VwTn+R9IlctFrul+ROj73+7mS6kWS11zHOwosuLwRQNKri/udwEvi3+XrPm7RuuNX+8331pkeMFF+nw0YSEAgGUMWdi/KGlFad80hVI62VekqINCru0OjmjdGG3jbY5UPL+DSevIpiPge2RqoHUzT4/MzGNDvRQk0qaFUvVUDnnS6ctRqxCtDMRcIuDYfBQE9UlmM6JZzRBUvPVDxXGkUWK4zWsPPquzctZE2r4IKx09l65N+j4IBXaM2kk/F6xy9qvpwSpds9iggbm0DwEBrY3M0rfWNqRvWqlBdGuqqRgSc0qnyJKetdU31c42eDj1iwhSB5pfI1dVRiiwcaKpWss5xAptMlZFIaR2AHYnGKgPXM/LaDgl4g5c5IxZ4hvPsgRjVs6q8SjZzDKs6JgayKU+1Jc8NIGh/dXoyElD19LwCUaOjQ45GouwKzKb7PRDd608uD+dDuC9UYGgUQPfklxw+6jKqv08KBpxTTUYH35UxTfkxOUefDgXCfRdhV8qoOxBc3poXntHIvcqby3fbBpHedSr8740KVMbEGXlnbH92qnTXUaUTLL/KwaYytY0qYKbGwumBA9Z8XfNM9xzw1LKTY3HXUn90QUJ6LtXnOetuT1daq6dWXT7uWhWYzeVz3TyTvjnQnMqsqJJPxU+y3bjH6V0/S+ldWcqr5t2zRUxPBga48mmIPBmAXgRbGWU4ePzWxXoKFNJhF45f5aMiNoicDxw672vFy4n0dZkMBJh026Qru7UMFCqHw8/jN6dPgO05G1imHoBVqoyaixqq6FXLTTtuOO9k0Bx4476hdXb6XvUBdw35a39yYD+lGaFeO6RnfhYdbS3bwp6DS+2Y9NsFPpUck8Nc12ZUQKBnp6syXP/h7zk8jdxzjlx/P3aZSj8cDCRjmowZUzKs2uCuA7S2uhcVhkl3ADAI0O0tWjY7bzhudy6CAxr4zw4dTv3r169td3e33d7etuVyufKft0e29s/UQDLgzK+OgKTTEJPTSR1Xy9R0nPfPdAJhAgIj0QHn4SgZQ9Vx6AyfP5F0XfOvnK5z9lpv5cfVSUEiy6Y6xtV9lDflxzmXESOo7TXXCG8SpfbQNtM6Jofao54Dr2Q6qvujbZB8gAPKXJbTs6oeTpdHwA/nM5I26WX1zDr3mZ50ZCB9HM1Bnel5jYY0olYwoEYrlc9ggKN3B24cuGC+GZS09m27I4AA8mTjr/V227xwPcnE1cm1S3Iiri4u/XOmCnA63VOjwd8pb30+pVEQmRx0r+0SGOz1pTnpVNcTOKn0UeXXc2DJgCb91PTPVVdH7Wlrj1fHKh/XB0YBs+szLn3ql3ykOwdRHAglW8/6UAHSOTJ0upeAdJXO1bviZRQQ/FAwUBnTilIlXaOldM6hq8NUtFdFKFon53zdoUMuP7dFD5G8nn3AZwrs7OzYw5J4ZKMnjx4ydkbSGfMKdad1F8+RnO6yM64cWZXnHBpxngwUnfHithlpF86rcsRONzhNDwgkclFlZSB/NXJtkgBmT87umZFreD4BNn02AbB17IQbDeCj3NVGtvbtOHe86dWNVrl3ayQdT9eSfvcAbZWn6wM9UNCjJ5kmmAME8ExqAOdAXTrHQ8pvxFkm4nwcwFCFQ900b0awilj5DAIAAh3KB4hISumU3tVPZdoDSFr/nwUMJMfj1ruoLFKUCnJgistI+rpc/jOFxKMEjufR0QnNP/GJemtZqa+obEadvz7DAKd6hnmt6jNCz0lnna4kGbj2UUpOvXJqLPcRpzlq/6t7DggADOzv77eDg4OV0QHwAhCggIDtFuywBle9/pzSzZVBT9ertpkLjH8YGFCDmUBB1dlBKmw2tvx+gSqC0PycEe8hvl4nSr+dE3XkAAHzy45awUCPeoCHDa8zrM6gKzBTQPCcDGuP1OBWsh+td+oTKbqHbuBtleysNV/V8R6vCaQqXyNAUZ8bAQIjdmDUiFYOqsfDc6WkMwmoVVQBMZXTXBuUeE9tlgJJBQT8xleAAZ5ahU3C+10ACLBOi4MYHp3t6a6rX2UnKx/lbLHK6THph4CB5PyrqMdRQlmjhg68aB7uWW3IESXoOXinFKrwjG4Tj/pCJb7H9dN5slRPV0fOT6M0rUvKc+Qwo+dElZOugOFcR+TK0vxY9hyxzDn0qqenlTFGWXoi5hzgN1ceIwABabkM7R9Ob7X/uPSbSqNOonK+vbQs+wS0Rst0tirxpPlXPkRHBfjV74eHhytgAH2GwcDt7W3b29ubQACAAZfvRgeS/FR3HLCu5JD0VuXh+FlHZ78LGHDKyQ2mjZgcJJOrXDKyc5S+en7UoCUDs07ZnFYBAX8nAAV+FovF9K6C1tr0EqPKsatjGeXdff9sICDRCGLv1X8OUNYyXdupkamAbaW3Fd+8LkanwxJxX1kH8FfEes/kAPPPTCPgtHoOabidKmc1SnNAQXJ2fK0HCAAGDg4O2uHh4b2pAu4zAAL44Nre3l67vb29p1cAuw44VnVeRxdHQEBKP5ceDQxUzGlDOUNXRZqcpiq7iqJGhKRpes9ovm7hoOPPOUlu8MXi224BPAPEqvzx85qnlstvNXSGc8RBjKSfA6aeM6lBSM7bPeeoAgGp3XGP5zcrfVPw8BCwxuVWdasclAIVvdbL091Pji3lXbXHcwESCQi19nB9S4C3Ago96oHoHgBxfkUXDWK9wNHRUTs4OGgHBwd2TRnAwM3NzT1QcH193W5ubqxMemDJ1dnVo0cJEIw+M0qPAgZcI2qj8aI3F50yqYArQ9jjQ387JXdDqxXA0P/L5XLlgCCud5KNXk8dY7FYtL29PWu0ID8YdSyCYcVRkFEdSFTJaSRi6xntdQ3HU1LVadetj2uXpBtzOnQaGUA+rCv8jfu9+qT7vXbn/05f5oJKdUQ9w6pAeV2Q8dxoxImr7vX0YI7zU6CcbL2WnQAK5+s+OC+GQcCLFy/a8fFxe/HiRTs8PJxGB9h2AggADFxfX7evX7+2m5ubtr+/3y4vLydewW96w63KMn3mUs/+PIauPhgMJOfPvxkE8H1F5wn99P7rtZH0VVTOzy0WC7saXoXPowIjDaNySi854mus9CxDINvFYjEhWjb4DHh0tazmze3g6lwZbNfuzxEAJEpGiKkXeVYGt+rcvcigF2mlEYFR45TAveqx412vqR65//xMxV8FCJIR1jr38n9IBPxUxA5YbW4v+Oi1n/vPeXA+FSBw9/n5UUDAB28dHh62w8PDCQi8fPmyvXr1qr169aq9ePGiHRwctP39/SkfOH+MANzc3LTr6+vp+uXl5cQ3FuqCqhNcub6VHiZaFzCMtF2iB4GBBAScsdCGHUFLlSKk/xUoQLnumgMznN41rvLgGjvJQK/xyInmi2ewGEb3tX/9+vWes8dvdvLMoyqyGz5j9JyOHXVy0LokJX2OVAGCCihpHi5Pl1avJZ1KMuZ8KyBQtVECAnqUdyoz1WfEwThyjkP5cA5/DshAfpuutyMgxckn2Tt9zslqRG78fAUI+Do/z7rmysS9BASOj48nIPD69et2cnLSXr161Y6Ojtr+/v40Qnpzc9Ourq4mMIDvq6urdnl5OY3K6q4C8FCd56JyHAG+KkO+V4FSB7RcvhWtDQYcEGAA4MCAMjqSf3W9UvIqD8dD4rXKSw1pZdAdzywnfk0xL/rDvcViYcEAFBSAQB2D63i9uiMNlJ2fdesW9H8CP8/1OGKn65U+JCfIeYyStuNcB6U8oQ35Hn7P4c31vR4Pek1BagVoVMcSP87hJ0fm8h0p/znSiPNv7eHRqgOGzk6OOrjU1rCLulBQRwROTk7a69evJ0BwfHy8Agaur6/b1dVVu7q6mkYGLi8v2/X19XRYkTtnYLH4ZxQWVE29ukCykgmoF7j2aC4gmA0GEoJTNKeAQBnsUa/SSblHwECFRDm/ZEQqY18ZN76u8tJ3JMDp6+KYql4qD5WR+6/8OBnyqMNIe1aG/blSDxD00P6ILrt0CjQT9WStowKOPwdoR8qdC3C4vNHdCEk3mY/qOz2TdPln0V8nrwrI8u85zqQCaK6MKh9nizUNgAAWCh4dHa2sEXj58uUKEHj79u3KVIGCAZ4qODo6apeXl/fAgE4TKLGjrwCOAwUsr16Er/a10tXvMjKQlEoBQPo/h1FXWb2n5fd4TWX3lE+N52gDzDGQXJ+dnZ3pgAweLeBhfB6uSqf7Ye0C14n3heNeb42Dk3XlMJwh4Q7wnGgOAq9GBeaC2pFyqz7B15mnBARcfXrk+sFcnWdA0Fq7Bwp6IMnxW9Uv5ZEALdKsC3h+FI04Ygdmk6OpvkfKXpcqW8y/YQ+xa+Do6Ki9fPlyAgLHx8crowJv3rxpr1+/bi9fvmyHh4crIwMAExgVwBQBtiK21lZOJ2RKTp3vJxkpKOD0+tuRA+4Pta+zRgacQvWmBnqG0AmgcrTJ+PSUH/m7dPqporxkrBy5yCM9z3NfDAQwRaBrAniol4/TVJCDvHl+F1MKFZgZMaa45tqQDfvPQslZV052VEfdb02X8h4BEXMMjXOAyflWzyTeta6anx6QVdXvMZxWAquVHdo0GrG5zsHOAQSOkh2seEj6kz6ajkcFAAT0c3x8PIGAk5OTCSywkwcQRV68gwCjAq35d72w3dWdZElmCsQUECRbmsjJvgInPRoGA7pYyAEBXK8coJJTjpGK9AyW4yXlo4q3WNyfK3fPOAPnKIGckUZjOetZ2pxHyouBgI4M8DZDF91WEW9lMNAuVds8VxpxTIkqZ4nfyRCuEz2MOjNXp8rAJx6ruim/FQByzjnJOzm0EVK75PitbNem0zp9rtevNe9kc3vBkgZCOlWajlfXswSwWPD169fTroFXr16trBk4Pj5e2VbIAQvyBADA+oP9/f2pHhpo6UFFAApVf6tAsrPfo/r2mHo5Cww4Y+DWBSijlRNJz/QoRezMn7ueHHvFA4OdqsEcCKoMCisBnxXA+fBbCZGOz6JvzR+RiXJ5nr9awKdG1fHGUxIOLCgxKHiOxrS1DBbxrQZyXUCgfUnLVJmnqKCqR6+e6Zrr7yP93uXtnDzuwxGojuG5Xv9K5ev1noN3IGwTyenKnDZJQdgch5YA3Wh+0CWdFnX5IS2OF8YaATj9N2/eTLsGXr16tXK+QGttWiMAnni6FVOze3t793Zn8XZtPMdbErGtm+vNuptk1AuC54CL9OwcQDgMBnjxmjMOzFTlKJJhSJFtomQkkvF2keto1MRz7M4YV8anKgeOGtE6lJOPxMQCFpSVgICTJcpHPqPOCt96JkG1P92BMpXDc6Jk+BIwaG0ekE06m5ytgjIub9Rg8DXXJ1N6/fBCVwdWejw4fjli437GEZkDXtrHtc85Pa30cR0juok0Kvck06o/c3oHQEacHOu7TpE6n9La/VEB3kHACwYxLcDbCJfLZbu+vrbnrMC3YWoAtvLr16/t+vq6vXjxYuUZPoPg8vKy7e7urgCCBNhVTpAznwczpy9X7TLHx4FmjwwoytG95M4hpc7VY9QZKRetJHDinpsTUfQ6Qq9zcdqE2tnowdFzOn7bFqNVJZ7XctEX51vxre3GQKBajd6T13Om5PxHqOdYnD676IiHIUc7eZXGgZ302/Uv1seqTFf/yhG3tvq2zhEDmQBJ5ZRc/9D/6wC9H0WpjRwpyHIy1XsKGisbrPdHQGoCAnygmpanaRkUMDjAuwgYCMC+6vy/jkrwaa96rDHy5vz39vamurhTCZ3MtG3ULjugPuIrk+8ZpdkjAyigUkDnWBLx/Z7CufJ5vkl5SoJPfKROktL3riWQ4urPTpefx5u0GBAkEOOi9gSMUudV51+dX+/qk5zKphnTEXJIXu+nCJQpRQgjwBbPJ/6c4Xblu989HvHt+ph7ZqScBMT5uQps8rOVoRsBApXcRgHXU1OyjSDVj0r+lb1MAGBOH6+AL+uXO6yM0/N7W3ogyAGB5XK5soUb7y3AyMBy+e0gN961wB+AEQYwiR8nQ20PTV/5F+2nCcjO1d/ZWwuTc1Fj6FB61XldR0+OfQQI6DMjpFH5nGeqEQHlzxkqnffnhsc0Ap890Nq3RZ1pCF/rwQsRXT2qj9arAk0JrDwXSp1Z/zv5OFQ/t6yekavySrw4JzsC5qrDwzivOQFA6tdVeuRdOSf0I9cnU79zdX5ohPWj6DF5SgCP7yfbjOeYkn1Q2602UuvF5bhdVhy86NsH4diZGHDwYUVYYAj7qOBDX4nMUwocqMFWzzlgTftXD+CPBADr0KxpgtHIo2cMEjllSw5eESUPWfY6iQMvrjxn9F0ju8ZxRkt3ZOhzyaHzDgBeZMNGrxfFJzk4GgUEI/mNRIubRD0dTHUclbvT5bnOv+doWQfX5Ys/bnW3M/49++D6BH+P6Jjed/bBtVUPGIyUtylUOesk29H8UnrXH1y7VXJVx8+6hfs69aRAQIEDR/78wqGbm5tplwDK4hNd9dRCpNPpAwYA+DA44NED2GmWhQswFdRWwRb//t46O3tkQCP9USBQKRnn2yvfGVC3nsGROlnXCG6UwT3nHLdD1awMmqc2dMpPozo9f8AdOsTl49sBGUajCnp6awS0bSp6DkAAlAyfa9s5jlZ1d528RvnvAYbEX+pXTgZuVKDiIUWd+owaygqUujqgT1TgNMmg4mtTqWrPx8o39Yc5gUfVp/ANh+rqpKOjSIOt1ni3AB8lzMP57LgBBLDbAAu1ccQwr0dA/re3tytTBQAbmn9r9UiJyq2SR9XHHD1ET9d6N4ECAvzuIXunpA4BpTLd82oEqnLUoPBvNoA8B6Q86Hw6f3T0ROWT5KKy4HS4pmsJeKeBPqP5jwxZOeDDACJFd65OSYE32aC2NuYMWxurTwV+1zHSFR8j5TsArG2p9R3dRjgS0avM1PGDNDJUXeyBAh6qxfN6GFcCBBU91LH+KKoAp/ZRDUxG8us5rXX4c/aK9YCnBjQiZxCBdQGYJkC9+AwBHhV48eLFytZDAAqtD4MOnGAIoMAjBrwbTPU1ycL5H3dmgfNd2oceal9ngwGtnGO4Nd/ZncI5hUyGLPGj+SVl7YEBt7JUh6QYJeK3ngCoZehKcK2jyjQZXr7OfKkB1DwZxCTw5kYFVJl7HdnpxaYDAEfOEeK6AzgjzkXbNBnm3vMKBtZ1bi5fXcQ1AgR6eVc64ZxV0iuA0nSmBhODcj5nA2mrdnB5bqIOq5xUdiOg0zkSJxune5wH0ozog5aR+OHhenzzsL1G5Pwcgz+8zfDo6OjenD/eZ3B0dNRaa+3m5mbFpvJnuVy229vbdnFxsQIuFAxoEMUyQv0q+67y1uddsDkCxkdoGAykjqJpekwlR59QbKVALnrVOShXrjOgi8XinrJhlSmUjuel+C1X+KQzrMEbb5eq6usUBvzp4RwgHuJi2fBvbR8HABKoYT6cg0iRn6vjJlKSf+qU+J7rKJIMVK6VvjL4e6iMGQTouzDcWgGQgusKZKfoRQGwe2YkstIy+D4DndFFXa4emwIIkk3TNKN64NpAy3A66doxAYWHELcZr+zXbYTu7IvFYrFySqHO9yOP/f39lTK1zgACeHkR7ybgPHHeAMui0t8UBCTQlWw4P6f5zKHZYGAuIOgxlZBodZ+JHRcbj+S0WOH5Oo8KMGrkM62Xy38Orri4uGjn5+ft8vKyXVxcrIAPrETVeXx2ug7Fgwflm38zCmUgwMcTQxl1qCkBAx4FUCCg7ZQWbGr9uLyRiGFTqOpMPSBQOeXk5BwA0VXWrbUVEAnCSuk0euMoGXqOutK7MbC1WMvEb0RF0CMnE+UvyTeBj5H68W8H+F3a3v9N119nSxxVoAr3K92ckxd+KxCs+pjjnW0iz/fzWwqPjo4mQKBrAxg4YLeAA97QcegvLwjUEVeVSwK6lQ6xrJV6+lbdT8B4hIbBQDoJrMeY+12ldR03Pa+GmcEAoiaNbpJyIx2U5+joaOXNV8fHx22xWLSrq6t2dnbWTk9P2+npaTzZrwIETpFcdNZaWzHGPDTFefL8qPIBUOAMOP/X4TWVeeWs1JCnqPA5kLZNpXfpf6JKFlW5KlMmjXhdv+G21nwYBKfV0zxd5gCAbulqLb9NM8ml+q/14e9ekKKA32097AU4z52q+lW6lXRJ83XpHfAdAQWsZ7iewADeUIh5f4wScMTOZwTwSBrbPeYP/YGnVDlY4vfDJBvKrzquQIGztT1dHAEKI77T0SwwMMpUZfB6z/TAQE9IOmXAyqgOtrXVFzDB4fJK01evXrXffvutnZyctP39/XZ9fd3Ozs7a58+f2+Hh4cp8EisB89FrQFZCBgXcCfg6AxBEYc5JOCObziRAHiyXBAxce+i3GgO+t2nkdI6vORTfM7DV/156vq6GWjt7Ahg9Q45rOhfLL2rRF7fotJSbNtvZ2WnX19crhhR89qiSZbILqtMpLwciXFnsGDZVX+dQDyj19IvvaZ5V4FCR6q+7x98a6QMI8LHDrLO8yI/BLMCg+yjo0HUIum1RgYFbZ7XuaEB6vkcPAQKtrQkGnHL0HD07mhRtjYAI15krpM8Ij5VKh3/wn/ee8ujAu3fv2tHRUbu7u2vn5+ft+Pi47e/vt+Xyn6mDq6urlRdaMG9pxb9+lD8XmabOnRSHoyFWWH0G5S8Wi5X0Tnm1Tk55n4shdcZHo5TWfH2qyMjln8AG54ePGmrXBknGPQfK1xhk8noZGF1EW/weeJQPw3h5edn29vba5eXllC+vXxkdIVD+VHZqR5A3rvH0RM/R9WSH3+sa5qcmpy/8PQoEetf5ef2t5OwZ8tFRBKRn5wxHzy8nevXq1co0AfQX0wK6wNBF88yfWy/DYABbF6+vr9vNzc3KiJhbb5XaoZJvr2+P6O46NGvNQI+ZEYZch54TZfF1VcakbK2tOns4Wx5uZ0cMA4g5qZcvX04vwNjd3W2Xl5ft+Pi47e7utpubm2naAIrHpAu91NGo4rnFgciH32iI+kNRed2APod0qqTMC7cFOoBrG60Pfycl3tQoy6FoBmb8vxfhJoNYIXVnAHTnCf92sq4iEK1TAiPuvHdeac1DsfxqVyyq4umyBECqPu54SmCZdRa6yOsUqgW8FcCq+HaAfhPJOe1e8ODsaMpvLth3zl3z52lMfPNoLfSTR2uPj4/bq1evprcUvnjxYgKqALYY4eVj9HUkQHnFNUwTsD3HS4uurq7a5eVlu7q6aldXV9NbC3mkwIHfKphIfXgdEJr6+witdc4ACl33Ocdor9JOKStDy9c48tE5JY2QgCrZGAIQvH37th0dHbWbm5t2eHjYvn792s7OztqHDx/a4eFhu7i4mIZOteMwz2rgdB4e/OJZGCIYPHb6UD6U6RTMDV0lw+sifpU7QIkDBJq3u78JpI6xckS4vm4k7u67MhQQuLw4TQW+tG5pZwDf43Pa+W1weCUsH9DS2j9bsc7Pz9vBwcE98ApSMNojx69ea211xCsdr61tpuU7Z+V0d1P0NukEU+XY+RtpnJz0vv6v5KEAogK/IG4/1iMFA/zK4tevX7fXr1+3N2/eTDsFGERw4Nfa/WluBzJ5GlnBAEbAzs/Ppw9AAY8QVNMEFTk9TfkkAOf86hw/PesEwp4THynYoVf3vOugLp0TlBoPAAEMHeFbDSQvIOSXV8A4wiCiwc/OzqZrUDxVCETRKVpjRdQXXyAtLxJj46fzXipnncNy8qycDv9ODl/TVwZrXQD52JScM7cFt5EziPx8yjOV6dpfqRoN6G397AE+5ZunCBgIIAKD4cWQbAID7EDRD7DrwY0mJfkoQFagzL8VOC0Wi5WdDSy7VGZqv8pRPjWNAANNn0aQkk1O0WwKLNxzFZ9qFzlf1hc4dgRlAKeYJnj58uW0U4AJtlR54nNkYHP1OGLenYUdZLxw/OzsrJ2fn08jBNB3B9JH9ccFc06Wrr0UyDq/2aNZby3UAiqDVJFTAodw5lRGhVbNg2JhiQ7H8zAp7uu1w8PDdnd3tzJygLnV/f39lfMG2IknBwRjrAsH9bjh1u47fx6a4jyTQqnjcQ6/WhDjyHX25Ag31ag6B1TpXgV0khwqx5yctRvlASVjoX1J25jTaD/hUTE2vG/evGlv375tJycnK9HWzc3NNETb2j/6iXlVRExcDutY1RYOLOlvfgaGnfd4M2BOUXFqSyf7TdXdRBp8sONOOjFCCSBUcuzpJf676J1HrDBNgO2EuntA+5guuGZwidEGfRUx27ybm5t2cXHRPn/+3D5+/Ng+fvzYPn361D5//rwCBnhUIC0iTLqX+jX/HvGvzn58NzDAwgZzOqQ84hAcqYFyoGPkWfxn4+72pcLwQTkUNVZIF6RKCsW8vr5eWUgy4gjVGblXFmNEgKcD1LiysUyORNcHaD5zhrlGlW4TjemIM27tm5HSzjyi3xUY4PyT88P9UXIGFwYOZSPqYl4Qeek6AXwwOnBycnJvZODg4KAtFotplIDBNus16xj/dzJLsu3JnaNAXujI9XSLYkcj4OdCycGPOH0HFHQKKIHTUb7c9coB8vkvvCiwtW9z+fzKYT0nw52hATDA7zBo7dvarIuLi/bly5f24cOH9tdff7W//vqr/f333+3jx4/t8+fP7fz8fGURIQIz1RutjwIz7ucuOOtRCjL43ijNGhlQRkeioJFrej9FR+k5958VAUP9WHyCeU9EOEB1vBpZo2/eToL66xqDw8PDCSlyxK7KnhpJt3gxEHDTAFyGkjqFJD+VcZWuKsc5r+cQXbXmO1Jrnv/KMSX0PxJ9Jj4Y7PLKecdnZWjZsC+Xy6k/LxaLe9MDDJwBCDBK8OLFixUwsLOzM4ECNqzofzrlkpxUMmT4rqZTnP46cMVOMunkputsZfuqtK2t2h7n9F3ax5BBryzXNqkusHvYzgogulgs7o1wQU/h+PXEQF6bBbuOdQFfvnxpf//9d/vvf//b/vvf/7a//vqrffjwYQICl5eXExjQ4+hdnfm7ChxU71xfcf+fBAywY0qFpg496lycYiZj7MCARtm8JeX4+Hhy3Fgocnt7O60MZUCg0TIic9yHXBBV8VSBOxrYGSq9zoCAFYQdgTt9Dov6gJh1xWyKhBSksPFN6NZRpfybZFhVJj1Hrc8mveNnWJYVwMC3A2Gq5wCfqSz3bErHi/B40SADAox24YPRgpcvX65sqb27u2tnZ2crebv5fkcKDJJccY95ZxCchme5j+nuA1317aKyucD4R1EKgCoA6kCAEjtk9635jTqsVGYPrMDG6XkWOBa4tdaurq5WplZhi9HWWB/GR8vz9PByuZwcOnaGff78ub1//77997//bf/v//2/9ueff7a///67ffr0qZ2dna0sHKzeSeO+tZ5c37lyc9/u2qjdnTVN0NrqiXY9JDeKUhKzlXC1DC5H1wvwfNPLly/b8fHxtO3k7u5uOiSFDYgebcllgC/exsJvsVJlY8cN4qHaCglD5rxIkIEOOotb06H5KPBIMuXfcwBB1WabAgYSJSdU6Rs7ak6vnZN1gdP05FH1HTXWWofK+DNf+i4OPaxFD+Hi8zV2dnba5eXlvWFk7n94C9xIHZP8e7aDnUY1pQO7leTC+fUc3KZQsoH8nWjd/lgB6AQe1O5U6fjDe/wRte/t7U1glEdQsabrxYsX05HC2AIOUAs7CXuKNS4XFxcrUwN//vln+7//+7/2f//3f+3PP/9sHz9+bF++fGkXFxcrOwjcEe6V3UvAasR59wCgppurs8Ng4ODgoLXW7nW6NMecIiMmF03y74Q8NX/dEcDDRWrI+F0DDGqgHDCCvJr65cuX7eXLlxOA4K0wbFR5bkoBAcuJnexisVh59aauil0uV0ck3MmEWDzljDLv22VD6aIi7rDrkIuuHiPf70UVsu6lUWdbgWL95rZ3IFP7UQ9MVU6Af+vuGv7o4Sx4lrfkYoRgf3//HgjVOulOnXUJ/dO9sltBgEb7PTCVHBbus+HWvrUJlHSyqncFgkbayjkup7OJRtI5MHBxcbFis6+urlYWsy4W315K9OrVq3Z3d9f29/fbq1evWmvfpmAxUoQg8OLiop2enrYvX760T58+tY8fP7b379+3v/76axoZeP/+ffv06VO7uLhol5eXdmpgFFhVwUSyPQqeRnyrk3ePhsEAXvMI58SdMB22kBh2TqNSqISk9KOLBnV4k4+u5AOHMLyEfA4ODqZzBX7//ff2xx9/tHfv3rWTk5MpGoJSViBI66iGin9fX19PefOeWQUR7NxbWzXwSpAJ/0Z7KUBJstb8UrpqBGHTQACTAkp1zsmwOhCgEXqSgzPenAemfJwerbu7I+2M0b3YiMLY0PHaGDx7e3try9C1Asz7HKOpYBnXeu2g5agM3VbbRBVI3BRyjsEBA60vyy3VLeWrjqx6MVVFVXoGAtfX1+38/Lzt7OxMB13BjmtQdHR01K6uriYwcHJyMk3/ctCFd8xgJODvv/+ePu/fv2/v37+f/n/69GlaMIipMQWfI045+S0nW32u97yTZxVMO5oFBuBMOFp1xzEyqXFlRtPIghqZEaXUNQK8LxUnqLECcT1aaytrC46Pj9vr16/bu3fv2h9//NH+85//TMcRYzU/rz7lIXxX98pxcrrLy8uV3QzqSNxhSa01Cxz0HhAxAwEXSTkjooajMjTs2JwObAKpzox2UHU23O4KHDQfbgedV+cIV981UTnUEUCAsqE3PHcK5441KDCSGN6/ubmZInMePYAeATQAMOiIA0+1KW/Mv+sfCqYYJFVRugNMCrZYlmprRiPkH03KU8+xcBr8djspWuuvO3F2FroL/XcHPznenc66azwihIWCy+U/UwP8KmHmZ39/v7148WLS293d3SkQxFRBa9/OxwAQeP/+ffvzzz/b+/fv24cPH9qHDx/ap0+f2qdPn9qXL18mIMALyHsjUGwjXHu5aWK1r3w/AYIefZeRAT5lTMEAryp2IwSuI3KH1fSgCjWxUPkeD2vyAUI8RKQjGnDuDAR+++239vvvv7fff/+9vXv3rv32229tf39/2i3AUZVGQcwTL6Ryhhx8oLH10CKu1+3t7dQObgukyhZy4gWH6uQ1LTso1x7O6FQ0V3m/JyV90jUhnF4/GhUkMAXiRWs6SqND7AkUJwPu6qa88/oXPUyL382OunH/UGeKOdblcrlyHCvqpgd2YastFnm5Ojo5az21PyiIc0aUDXECTw7oJR2dG/V+T0qOOoEB1A82aLQfJnvLe/fZpiQ7rjwzsaPjazs7OysAQ8Gqrs+CfuN4YOSBhYanp6crr6HHQkEeCcC2wS9fvrTT09PppEHeLg5enPy5ni7Ydf4KcuNnuAwFAk6WveBgVHdnvaiIjZnbatham4YPNWpSRO46pkM+yWi76/zOAXbQvFgEZWlEz+W7RYOtfTuhUA+/4Ldm6WFFWIfAjZKUQ+WjHQQdgju1jgq40QHUUR1Y5VB6BiMp5Oj9H03JULKeOMOk5Dpsj7TdYUDZUOsIWZJ/D4j1+g6n02F9XgjLQKG1Nhli3mp7cXExgYHFYrFyZKy+xAVl6pAyeEr9gNf06DNOtj3ZqxxVbunZTSDnnCsgpc/gP75H68U6lEa2YJNay6Murlxn5xRkQA8QeOKlWLwFe29vbwIC6nsuLy/b+/fvp7UuGBkAGMBIAA4Sury8nBYKuhfQqc6yPJS4b7t+2Nq3gJBlpT7A6WK65/rHCM0CA7e3t/fmphnxg4DM2OlWlXCGGpQMm0bfvDKaGwWCxpy8KhnKgJHjbSy8lQVD+K21lVWr+hIXXZAFY8sdhGWhnQvXknPl6QgGBao4aaGVi/qSQVZEqh28irhcez8VJcOvhlL5VHDaWrNGodJfzU/bRcFA4s/1CebZGQImXvDnRoMAAHhroe64wUpuGFSOwvgFR3oQC7+rQxcBqs4puNX3x7MMWI49cMtp9X9ypC79JlEFBnp9UsndS8FBZZ8dkE3/XVvgW4EydAA+iD+w/YeHhyvpW/vHF52fn0/nYyyX36YaTk9P2+fPn9unT5/a6enpdHYAzg9gPVaAA73VXWc6YgsdBuk0MO5zP9CALQWHnEfVlqM6PAwGei+TUKdWMa/UM9YOCPAHAmYwoKdU3dzcrBxCkQwtO04YPAYDGHZCeTzcykDEAQEHBhyyVDCj5OapVc74rZ3JnY6YwICTTSojRWbM51Mb1mQ8R5C0q3tl9FK76PSYgoyeMXXt05Mrtw/rAvRI19ugH4EvjArwQV28voGNsW650nUQfIKmA6LMM+Z9Mdqo89JaJ9bB5Nwr0vLXjbAem0bsI9uMxwLiThdxnQGs9olUZgW4EkjDc+grmD7g6QoGuGzfEASenZ1No1y4f3V11c7Pz6f3DeDsAD5aWKdsuR5st3UXGfoIA9tEXNbOzs7KAXg82qtBBH/rbyffEZr1CmMesoMg0GE5nTN2fA/kjKcz1A4EKCrkYydh1HhVM5RDAQFPMXCejEoxUoDhTlYSbiTXMbk+yNs9o3V0hlGNX2v+ZDYGC25+WyNQ/HYjA8hH288BAkcVCPyR1Iuwq2eqTjfidBwYcn2j9/w6Do77o44MVP0R9wAEeGSMoyIGxHzgCwNqBh46jMv5acSEvsc7f9KhYKzfbm5X69cjB9o3ldKoADvUqo/qc5yvy5ODCf5f5TsClKuIVu0UQAGDAdZrPpsA6wvYD+ior755sLdtUO06+x09Tr61+4CAgQtGrfEBMGAgjTwqGSXZPzoYcE4Kla2cmw7LVwo3OiKgb5tSZKbRup5nzbzzgkN98RC/D5uRIkYMMEyKaMcBBBADJmdomB8omMpNX0wEvtA+TJWz7oEwBWRqCDT/50JaV73u0oLmRltsLLW92bk7wJHSgC+XtorOUuSlwFLB79XV1TR1wAtmoZs4fAgLW90rXPn/zs7OtO2Ly3XODEYQI2tsZ5hvjQZ7+tkDeO7+JgEBBbUK3lXfFMj36ur0xvV/Lm8EEPAz2tbKb5WPjhK4IXWe6lXb79LwbjjdJu/8ldprfOt6Gw5IQQw0AEqw3gEL8QEInJxc/08010bPfmuhAwSt3Z/7xlQBvp2DBLPJ+SsQ0K1LyeFzGhgxbhz+MBDg12NiSyKAARTv69evE5rkYyn13QUa+WAExSm9ypNX63KHw3PIj5/XYaTU+asIM4EBVkCnjHMU9CmoAplqXPU3Uy/60TIVECCd6+QuL9xLQ8AjfKX7zvnCALFcAK6xlgCHj/GiWBhBnjZQcAq95uO6dR0A8sPIoxpApGWDqiMCvUiO/yNt0l+1T5tCTl+4PgoERskBWAUCTp/XLc85N5eXAzCpvuxk0xw+p4XuM6hUfUp848N+B+tm+Chv3r4L3vBBUMm8su9LtnyU5jy31lsLmeCEdOiPHTmUSBVspIMhD3dkKgTNCAyCxDWH1BjN4XAi9+52vJgFr2ldLL4tNERD6kITNVQMDConrFMUnN4BJKYqClBZMyBJvDyW8XMO8ilppG4q+17EokZLnb46m54MXBncf5BHZSyZD2e0VI+gs/w+DRCDAd6myyAF/RPbXnXqgPsfXvuKUTXuK04Wut6FPwkIVHq3jhNzgO0pSXnX4CPVbQTMqr5y3hxda/9w+avMtP85IKj8uzIq8AZdcVOt/O144Y/qUy+I4uASgADBpb7PA7sUOKjc2fl2mN3l5eU9nnQULQUfD6G1X2GsSEoXO/QcDn8jTyZEB0iH06WwdYlfDKQ7CGCoeCRBzxtA4+GgiuPj43ZyctLevHnT3rx5005OTqaRAQABRsdOkZwcNPpJHUbzdMNxnE5HByo0mxSI+al41DIc6OC0PYP8o8kBKWeQkvFwxjXpN7eTOpEREKJ5jwAQrYPrXwoIOGJaLBaTruI/r6XBUbA45OXr168rL/rC2QNw+DgbnkfZePvt6enpNGWwWCwmEMJOnnci8HQcrzlQo826nxz4qHN8DsR1rhyVPjOSL/9m+bItcTbFAYU5fX8UyLA95jQuYNI+zDbUTSEkfXIL47WevJgWp9i+fft2WkuDhYv48DkfyEsDbB5td6CZZcI8zQUIs6YJIAzeaoH/ulI9gQJlMBlgblAI+OjoqJ2cnLRXr16tzO1jPl6jDF1joAsL9WjW9A4DXgSC4X7dUgK+GSQ5ZMfpuOPoUDB3Pr3OcuPRFp6mYIVHugpR6qiNzr1WHUXbb9OIDURvZCA52lEDNUrJUI6AAhfNcDq0uzN++q16hzUDWHmNRVgA0TgR7ujoaOU8j8Vice8QI6zmxsuN2ICzjWAwgvLdCad6qJl+VFaVQUxtt6k6nHTL6eWctCOUwH3q/6O8VG04lz+2Vw4Aqe3k/uHSqf9i+6j3Xf4caL569aodHx+35XLZLi4u7KiF03cdxWO+eyCvAmyJZr/CmEmH73od1UVLiWGNhhHdYzgfgEAjFAzdqyFk46cGUVd+OgPJCsD56sJKVkp3dKXKBOACCLA61hN54jdfVwXl+swl13ZV561+Mz316ID7MCXj4O4hz+p5vq6ds4qe1pFTyqcHfjQPfLB+gHUb1zHUydN0+I0zN/h8ApxNgOFRXmeDg8BQLo8IuNXd1bqAURlVNGeE5kfTXH1Tu+rk1qtX5VDm6BXnkWyKy9/pdeJfbTOn0fzd1C3bUf7dWn6lu05daTm83o13P+hOHJ3qZl+koCDtUEhyGaVhMADGeAhDSacMXEOrUmiDs6FUw83vDsDwIxb34QUWIBgPXcnJjcxD7dywMHYYwmRjCEOVDkFB3nDaCRwpWMFQqTpwlbMqaZor5Q6hkSR+VzTX+Wv5c43O96TkICtHuQ6/I8ZxjnF1+fVAQ1Uvjvr58BZtN6RT44j7enAVFu+ib2LUAADg7u6uXVxcrJzYye/hcEbVBRhOlo5G5Jhk5tJuAhBg0n4NciBT71f/EyWHzOVVz6ZRBHW8IAcC9H+ybfy/4s3pdmt5ulXtHA/hu+kt/OeFgsvlcmV9WWvf3rLLI80g9FNdlI+6VdMWo3JgmrW1EJknAbGQemsHklNKHZPn+Hk4/+joaHKmED4LG5G3OlEMTfLcPvZUX1xctNb+2RONeVKO/PmUqrSdCmmdfBQMgGCgKwel+6w5z170m8CIlpEcvQMTI6DClfOjScGRfip97NUxRZOJuKzkuCp5VR3dtb32SwDcvb29KVoBMIZxU8OmvPFaHCwyxBtCcdrb16//vHMDWxSxWFff6wECbzoqUDkKB8iTvCp5ulEQ/n4q6tUpjRYkB4zvCrjz9Uq3R/qGKxvPORlrQKg00j/0ee0LXA5PxVb2jnlOvo4Xl2ME7fLysp2fn0/pEWjq+RvcZwEQ4A/AI/ux1vK6MpXpKM0aGWCBoZPqEEnP+WleXBlHPCzCguL9z7u7u9MLLNhpczmM+FgR8M0HUcCQYf80Gy00Mt5tjYblfaqsKE4OzuGyPKpFMKibylSNmToERbzqpJNRSZ1D0ySa6yi/J6mjTCuOK6oMFcqontW0rszKIKqR43QVCOTRKtzn7Vf4Vv3g3UC8A4dfBoP1PMfHxytgAAaPh0N5V4IunuIpNu03XPcULc4FV/y8AsPUH56aEthnJ4v/SL+Ok9D8qjQoh3ns5ZmcbWv+zBSXf+q7DggkkOfsr7Otyo8CAp3awi6Bs7OztrOzsxJg6vk0qoewS+iP6ENaz9bun0b7EEAw690EKIAjBxaMbq1LTjCBAzViKM+NMPBcjCJ65svNm6McfZYPW1E+MOyJM9pPT0/b6enp9HILgAKuP9fBGTdWcp3D0jUaVcdMcuOyq/lWzbtqO5c/f3Md9PpTEctHO9yIwdPfapzUKY3SiMHVfHs6kBwF91+Qgk5nrPEf0T/rNkA5dvhg4S1G63Z2/nmTKRbpAgTw6ADvBnKrut0IYxU4uHROHlw37T/OqG6CHjNxkARyPI5e43sjgFblx3wpn8lBJeCm/7XM1J76rAP9lS+qfFIC2dBR3vmyv78/vfugtTb1gdaa9Q88ssvrCZS0X1R2v3fN0WwwwJGvLvbRrYbqfOaAAKR3yAvDiTi9CUZH9/wj79ZWwYM7PpLnZFAmnueoid+F/fHjx+m1l6enp9PZ1s6QqHPl+/ytBEXGfR7ZSMYO6dipq1FN8q54ZUeRaK5D/JGUOnYyWD295fTJsWiaKg9Ox/lVz6oOVHm6eqhRcuAZowPQCd6JgxGBly9fTjtw8MKY1toU/fPrjRkM8KuOr6+vV3ipwKi2nQNVFfBzc8Iqu1T2U5PqsGtn0By+e7ZI9VG/dXu3+61lpf5SOTluV9xzbaSL79S+VXVm/VI+FRDwWhzsvsE9+At17hyM8ugb+gr6ogMyuOdss/bzOe0/DAbg5NwWCN3/m4akWYBcieTMcJ+PjsQQ/fn5+co8J+b6eS4mKRmEru8j0A+fUIiGvrm5aWdnZ+3Tp0/t48eP7cOHD+3jx4/ty5cv7eLi4h4YQH2dYUmKxsNELg0WlXAeGllpuQpwNE/m1YE4lWEyzki/SaCgQvetZTTdMxR8T+vs5NHrmD1AoHmnyCwZrV75GI7k0y+5b+iWXJxKyOt3MK22XC4nA8mnhDIo4MWE7shw1tsURFSEvqRggGVWgfNNAgCgFACM6hhoJF0PADMfeo2/XX6qs5VNdM9quc62ug+nST7C1aEC+bwW5+rqarqO6QIONtn3oB/wOz/QdxaLxTQSjT6B4FungxP4m6u/w2AAlUxAQLfRjaDqyni29q2xWNBnZ2ft4OCgLRaLlbepYReAOziFlQbC5K1TbhRAV3diVODi4mJ609WXL1+m6YLz8/N7i0IcqYPRjqDRDDc8eMeUBcrR0YMKbI0oiEP9yLfKIxnsTTSqTGrMqjT6W9Mko9Ejh/IrHrRM1fWKB/RTLPBbLBbTFj8Gw+zAsXWQtxPqkeCshxwYMD/Mb+LLjSxW8ujppBrIBPISKNgkmsvXSP8b7dO9vFwQ0HsmOd05diuBeXw74KILVxOwrr7ZT3Ffwj0+FtkFmAAG/E6d1r5NvwGcY8RZwXKS8bpAdhgMsKPT6YFqkWCiCnGpAwIYwDzMYvHtQBOcNQBwwIudOFLm3QUQMo8goCF0aAnobLlcTiMS+GARIXYWuH2mqX787SI/NfDL5f31D2x4Xf6oD1MFVLhddBhqDhDYNAM6SpUTTk7WRTVzaRSE6HXWDwcIRvJkYACQ2drqEcMYATg+PrYvLEJ+6Kfob3xYkO6C0SksPbTsoZEr39cI0AGMkYBl06ji2UXhPbC+jtPVMtIzld1wfYttuGu71vK2bSbWZ+U3rbnoAX+1hU7WCDIxPaBrAXixLkABB6foD0inO2+UHyeD7zYywC/i4UUQDwUCoJ4S4uQzPm3w6upq2ruME86QHo4cUQ/28et7CRBtHx0d3WuY1r7NXV5fX68sGMROAqwMZSMH0lEHRY5V3VMHQL7gzXUMlTGvhXBljig/8zFqMDYRFDgZJaqihJTOlcffet3lk4wjvisQoEOIqTwHUJGGgQAfAc7DmrrdlgMEPq+D7Ub66FvjHKhOMuvJOrX1SLS8qdTrhz1go86sAguc56hMNO1cO6C6rVNHbMvcf8cPppMVLOt6glFiXWNfwyPPe3t7K1O6KM+NVgAowN9ga+FyuSyBgPJUAZQeDYMB7rhwzjqf5wxOMkKVcVWCscECI0QgWHSE09A4WqkIIwFY/Y9Ga211oSHqfXt72y4uLlamBHgHgRowXRSiH5aNAgT+8IKuFNFzZIXnuCM5co5p1CCkPHplPCWlkSf+nmsMXL5ahv6uHPJIv1D9SUBgDvDkofzWvh2CwmsC+OhvGCboJ9sB9JXW2tRfnaPX44bx260N4JExx39FnFanK5KMR9M8FSkw5+tJh1UPWPf5uqO59VegoXxrfgoaFPQ6MJBGQpMDVHCiNngkqh6RK9tt7VdclvLP/mZn59sptDr9y7xU19a1vbPAgFsY2DOko8pUDTMBfLDweQgS0wWYu0wOFuVA+EdHR6211o6OjuIUg64V4JGBy8vLlVGH1to9EKB15OF310G4rkjrnBkDMT0RDqToOSlQpXAjHQV16KHRTQIIKYKooi01okzJ4FblIZ06eb6XnGP10aHVxIOri1sgyK9hxXNVlN9aKx0/X2ejqcZzbjTvqBeoOHDOadzvpybXn13/TI439fkRcMDlOVChIDuR6nuyKazPsHtVYOXyd/1LfQTr4SiQVzkrEGAAOiIL9h2t5eP+mUZt8wjNPnSImXgMcgYpOT+MSnBEwmcDuDcYqrB4imC5/GcIBhGMG9LHIpDLy8sJEOh6Afcs14U/2mjqPKAMehqhLiRUObhOoki1AgUKSPT59Gyv7ap2/lHkHEtrefqjig569a2MG7e1GjrXdr2yXbk9UF0BNgbCvO2PVzyjz6Ff8HZePro7AQU+uVNBrNua5qKvqp6p7r17rt9uMq2rr63lqLmSrbMPVVnqUNUhj4I9lzYBYPccfrupNdzjcnVtS+JLZaL1YJuM53UUXfPnYJsDXXfSreOrAiwjNBsMVGisElpifKQDQkD8Hx8+OdBNE/CzvIgDEcz+/v409w+jBV7AN4Y8MRpwcXGx8rIVXf3Mz1fyczJDeSxfLCLRNDpVo6DDrcpO8k1oWD8VaTv3IpGnIgVgPXTtDBsvTnV9QZ8fiXy0LzA/PZBVydgZIFcvkNufrU4bU3T8fna8sx0g2k0P8PQegwg2nhohOR4fm1jGIzbtKUnbOumtRq/J6Y/06+q/8lZdc8BX61D1Fx15TVOhFfhQYKD9zAU/CShpGVwffKDb4F0jfqwr4H5zdXU1+Rsege6BeacDozQMBtQgcMNoutSJnWCXy6WNCFx+LFz85+0bvCJTHRFHPYeHh/9U/v/ftsEfjvJBjNTc4UZuCqVSKK5rpUQsGzXMWq7mVwEzFxn0nOKIUiUnmur/oygBswSA8ExKq+l6YGfU6Fbl6fXkOJ2xdcZV25vn/Pm1xa216XAvbOFtrU2jBxgtw0gbdhq01lYcPZ/VfnFxsfIBONDRglEg2nNAI8+kdkz6sCk0Agg07WMC8xHg5GSo+unkPgIMqnzdM855V/ah0r0e+NfpXvQD+KGrq6upDjhPQPsKPtfX1zbgdFskmY+KT6VZawZUMFzRqvHS/Z7jQhoFBK2tDqkoStRIixcFAn3pVIOeouh4dpE288ELLHVRn1vtnxSa06F+DICY9wqxJhTu2kbzYpk7Q1k5UndPfz8VObDK95i0/iqT6llH7hnV4ZSn6wOttZVnGfj22p3zwhYmGKHz8/PW2rcdOzg2GFMGi8Vieh/I+fn5NIVwc3MznS4Iu4ChTn5pC87pwO6cs7Ozdnl5aU8yHXXqo4AgybRK95jO8zFoVH9dXR9SlzmAaJ0yNCjR0SIu39lN99/pRy8wSM/hv4IYva/2mxfd41Ah9kEA26g/rmHUTc/yQR3SqIiOIo/SbDDgaDTySWCBV82n/KtGcVERlEeVBoYMkQ4OVsFHpxnSUDsbKtx3pzCyUqVpBN6vrfNKDgypkXSRIK67FakOWLFcVc76Xf3uAYJNoeRcW8vzlBXS7tXRlaVAoGdsFawl518BzWQsOSLBfxgkLCSEngBY8xbD5fKfRb04jhg6jZ04OKNDQQAW47p1BPxR+akcR3WscpiVo9y0kQHX3x19j743CqD4dyU/7Vtq6ziog17DZ/ScvAOU7r/aLxcAuTI4jdpCjKJxOvDNU2b6kj0OUnWNjdogd1ZCz1Ylmv1uAkdVZ0zOgu9VnXAk2nFgYLm8P8TOh6i8ePGivXr1qp2cnLS3b9+2N2/etNevX7fj4+Pptaxufocdva4c1WsqH9wHrzqqwnWo5KxyTM8kZ6bX2Hko2tUyK+efwMBTU9WBq3R6zY0KzHFEiVRmVbQzAkTmgHPIAcaH7+l6FF5LoPOueAajCTxVcHZ21j5//ty+fPkyAQCAAN1+WBlmVzfVuaoNE0AdAQGbBgYqcnXrBQSaXqknh1SGs829fsZ5uv6FgI7taUVJRyrfhHJUp5INaG11mB7+B99ab4BpAG7eBYd+xKPWbl0a+BgJJEZo1pqB6l768LNJASvkrw6rMoxVRMQvVnn58mU7OTlpb968ae/evWv/+te/2r/+9a/27t27dnJy0g4ODlpr3/ZKY4GhrhNwe6dZQefKzBm9qvMk46fpXNkuXVJ0VcJeO/cM6yZQBUQrPWMZOT1O5SSdT8CEy6vauTJWTneco+DRCRgg7ktYcMvbeRVo8wIoPosAL2r5+PFj+/TpU/vy5ct0RgfvxEk6pfVKcnLGvpJZJUMu8zGN7TqUeEv1HNFJl9dDeQSpLqZAzslU7V+SuTpVBwoqfUr91NWDRx96+qR9mhcNalvx4US63k3XxDEYcHVJfcbJq6JZuwmSos0BAo7RZLA0OnDfes0Za0wHHB4etuPj4/b69ev29u3b9u7du/bHH3+0//znP+3f//53e/v27bQQCgsKMcTJCzkcKEgOcQQQsCK7ztQjNQauk+l9p/z6SY5+bkfb5OgqOR1HzqBxx02A1jkq/t8Dy3PlNppe2w0LnjAatlgspmO7eXEh58/rcZbL5cqLVe7uvr3yG2/3PDs7m/oTG7k59ekBKH4m2RYnd5ce155ad7WtRoIBF1AlXWSaIxvX953TZ8BY5ZnAROKTy1V7xZ9egJbstePX1TnZUgAC5ZVlwiNtSjri7Pjm+yPrbBLNAgPOQSQAkITE33rdUQIV6vTVyCI9DNXe3t4EBN69e9d+//339scff7Q//vij/fvf/27v3r1rx8fH7e7ubjJWp6en7dOnT+3Tp0/t9PR02lKYVj4reushNifDnkwqFJ7u67frGKqcuK8rVLVNqk6U+NgEqjp9cj6anq8n59STkQMRet/9HwGAPd64zLu7u5Uoi6/zVBleaMR8QF/4nIHlcrmyIPHz588TGODFgi6i68nApXOUHDue7wHvTQABrXkQWTlrB9ArHXB60gMByp9Ll4CAfhLNkT3rbc9HOdmMlD1iBzV92ibLaRJQcvwrHw4IjPgRR8NgQBUlCRvXlJkkSE2niqsAxPFUdXAMcx4dHbVXr1613377bQIB//nPf9rvv//e3r59246Pj1tr/7yd8fPnz+3jx4/TB4AAQ5wwZrql0P1W4+qQJadL2yxHQAWnU2TOyJNX6boFOqNUtZl+P7VRTU7E6Yy733M+KUqpwEAvv2S0VNauH6S24PyUWA8xMoBdBjw14J7TvdK8AArAGoAaCwYTcK5sSTLeKiP3XA9IM43I60eT2hD+djqabE7KA9f1ef5fyUqdf3JwKY9UnrOP3M7O1jo9cou6Hf+Oek7a2WfwriMDLh3XqwId7p7uXGOdcLwnmgUGlLnEsHuup2yVs+/x5fJmpdzf32/Hx8ft5ORkmhr4n//5n/avf/2rvXnzph0dHbWvX7+2s7Oz9vHjx/b+/fv2999/t7///rt9+fJlZeET9kXDmClxw7h5dlcvvufml0bJKRoP43LEzwcsqZIxL27Bysj5EtouTwkGkuGvHAuTc8qj9dE2cXn1+EiARI0vL05tbRXcVQ4U37p2AHrCQ/+cFt/8mlZ+DtE/T7fpVind5tsDUJVNqIxoyquSjXvmqcgBnVHekhPp6R47Yi3b9SkHArSvjNgErleaQtX0+ukBTQcMq29nr3tgQNPjt9pO9LeeXFLeaqfX9R9rgQFmRBGmeyYpBvKokE/Fj+ap16CYvF7g+Pi4vXz5cnodK05TOz8/b+/fv58+Hz58mKYH+C2FOHnQna2uRjLJQ5F4MmIwzuzEK+o5C97u5c6H4Dwckua82GFoHq5uTwkGEo04YibV054TSeDP5en4GknHQCANSWrUUeUNR75YLFbeB4LpAaSB3rNesSF2x4XzFkJ3poCC555ce1QFG8nwp0Bnk0BBa7Xu9tq40tsqWHP3ks3l/qFgYgR8qU1aLu8fTpdsVfq4YXTmSeuUQBTz1AMC1TNcl6SPLh+91rO9o7r7KO8mGFGunmNwnbWHWnuAoLXVPdH4LJfL6eVDMEpfvnxp79+/b3/99Vf78OFD+/jx47TYCesEGAhwZOOcfw/4JEoN7hS0B74wGsBggoFGT7lUyfQURAcIHC/4fiqDqh2FyTmDXsTCjs852Ko8vj+XX2fEHBDQUQIH9BIfWDuA+/joi8L4GFU9BY0/+k4CXm/DowKjRnWOEZ4DqhTgbYrzT+QcGNNj1cPpjysP17S/Kx98PdmyXtsmnnpgYERnOK/KT/XyS7Z/lAcnm/SMXmfwP6f9Z4OBhGrgICqm51IP/VZggNOBMKR5fn4+vcIYIwNfvnxpHz58mEYEGAjwiyJ476c7jljRJdeDZQQ5VQ4Dxl7z1I7lZMJAgFd3V4tNqnbQegAIKCBwz/Tq+qMogaeUrmdg54AAZ7jXMQip/GRsdeqgV64aKwaP0P3lcjm9SEtXQqNMBgLYVeBGBNIbNyu+ku5qv1edczJ0z/L/TQIFrj6O78eyx6pLFS983ZWpdkCfrxxXz4nqfR6d5fuOT61nyrvqP84Oa51HgUAFApJMUyA8197O3lroKtQrvHJgPeH0IssEBtQ4YSX0xcVFOz09bXd3d+3s7Ky19s+50Ng5gPUBCgT00CEGBXxNea6MjJObU1rXcVxaBQLuNMVkfCuFVgV1gED1ojIUP5ocT06vRg2EgqJklNNzFY8jNNLJHSCYk58CAgWSi8XqmzUZcC6Xyyna57UD3FfcIV4jdWOeqnbl33NkPtKOm0BO95RX3bPuyEWwCVSNADYQ24VRp8/8OEfo/I6778Bsj2/nWCse1SZWbVEBAfURKcBwPGg56vvm0qxDhypkM8LEqOMfoWRs9Tqvar64uGhfvnxpy+Vy5UUsuIdjUnnFs54+6EYD0shAj1SJegi2Jw8YZQYCvF2sWseg15KjUz0AIBhBvD2n9KPIdXwnd67/SKQ4BwAkY1LlnQxJ+nBZ+u2MCK8jUefPI1TcjrzoEHljYSqcP59RkNYJjDjm6n5lf6q2S/11xPk9FTm7UQGih9aj0uEejyO8jPSbkWBDy3fBTa+PJT3q6ccIEKjyrIInVw/Hr37PAUStPQIY6FWIn08MjqCxdL8HQpbL5bSi+fT0dDr1Ceent/aP0cLb1M7Ozu69IEIjnNFV0MrbyGrppMAJAbMMVDHcyz2qzpT4Sp2SAUFS+LkA6XsRyyV1Gv7tjKzLT/PkZ5Ef/1cjXl0brQs78woQuPbVNLzuQNsZLzTiPAAMFCDorgIF0r1+o7+17iMnwyW59cCZpt8UGuHHOQa3+2fEbid5qd7qPWeTR0DJXAev/Izw7kAyX3d9p+fkK4fvKDlvVyfXL7S/pzzm0qx3E4zM7YFRpyTJkbV2/02DDyGNVPCylN3d3XZ3d9eurq7a4eHhdGwqzlN3749mMMBRDhs5jqQSUGIZ4LejkecrpAkl4ecXi8UEfFrrv2fCfbvynSFP7e5Wuf8oqjp6ogQEVLdTngkQPMQgpqig974AfCcw75y/bnWCDuEY1db8lACXxVMCOjWQ9EfJGUGWRQWmKzmOGu5Npx6ISS/1mUPJgSqArZ7XvuA+rgxXZlUO6yY/M9r3KmDN9dBdY2pTU1lOl/W5yp5yPbm+Wu46IGX2AsKkeCos7qyK9nF/RGCu3KQcTrlgkK6urtpi8e3sdbwcgs9Q5+2DvOBJDZ4Oofa22DE53p0sHBCoHAqn587vAEE6PIZ5UgVXJ5EoGemqzB9Bo0AAMl7HKVc66pxe1Ul7fSOV76IaXUiVnC4vCEUe+vIi1iM8g37S2rf+xver/tKru2uPESOaKOXXy3/TqQIFzpa46w8pd0SXNW1yvPyM5sHTUlo/fOsJqpW/SHKDnivIVqALnviMDS4r2XUHakfAsQMsTs7M56ODAXUs/K2/mRlOqw6t12mTgeMymDcWkjtoh1/RiiFPNCKmEvDu9QQGVMgVOlTZuM7g6qz15zqn51gmqXNCwbVDaJ7q+PX/3FXKySj9KNK6JaetxmEEOKToAU7VofwRpzXC3wilsvQ/GzRNwzsIdCuhAmWuqwMDSS9H6pWMupMx8uVvpHF9MDkYJ6tNJVd3/Z2eq4CEu9+TiXOKapdgq6F7zIvzEVWbOUCXHHP17YCKW4itPseVNdoeCgRSH9H/Cp700/NLSrPfTcCMKJPOCbFwdRFSJQB17IrMtCE1vX7AJ3YVsIIvl8vpYBQsdHKLB1Oj6f8KxDi5pGcqp5VIlYHrj2v6vJuiUeSrz+m7upVH9/+pRgd6hqySbfU/GaMExlBWcmqsj+lZdWQ9I5KuaxpOq4AAU2laTz1fwJWbPkojACc5/QpcOSOszq3XX6v23FTiOlZgyKVXck7cpXE8uG9n15xOc5okf9j8nq2twABIp8Z46kydruZb+YZkf1z/rXTY5aM2wwGBUd2d/QrjSmH0vnOOPHzNDieRPstOSRU0AQGNZDDXv1gspqgGIwNuG5SbCkBelaK7/66TJqfilDYpxhwZKrGMODrkuvPxxQ4R95zOHH6/J412jArJ49pD61TpTE+WKbrA7x6wYEPEaXWEQMEHf3QngdYrGUfHVwXYEugekZHrTy6d/k68bAL1ggGkSfZjBBA4J1aVO8KTe6biBd86wqZ5uKkDUJomcIBD9YABMKcDTyNTxZp3qmOiCuA4++uAwHcDA4kZ1xgJffM1N9finKUumNBIlbfS4Tf+83Ma0S6X31Y8YzQgAQF+pucEqyhkufx2tGYFBBxKdjJ17aO86FAXE8sIaXSfOJwEFpGlzlfx+lSkxqYyTpymakP9nYxZxc+IfFSeSV80bTKyvTJa8+/HcOXqQlXOKxlFVx7z69JV4HsdcnJJbZEM+VNQz6m01h9dQprKWVVg0uluxWv1vEuj16oRWc6zsqOVzXb91gWoao8dXw60jILLVC/329Uh8fJdwECFvlpbHWpWQ4LfDmkmo5iULTnT1lrb29tbAQW4ritMeRU0R726B9opEVOlnKlDOQRaOVZnEEeBl06TYMGkk7WOoOzv76+8kra1tgIKwJsCOtfGvTb93jTisNkAjfDp2iutKHZOO+l8z4iPOmMlV1cuzz2XIn8tU8sZ+bi8KhDgvhMvrn8lWaR6jch0U0n1eBQQOrs12vbJwY3y6q6NOFvwM9eOurITEGitrfiTnl736u0AEK67tEoKTJj3kf6WaPY5A8lwwUHrMPRop6o6MCqaHFlrbVoMOAIEsGAQgIAPR6kWXajxVGHPNTqVArsykkNJSsROY29vbwUsQTZaPq5hgaVuSeRpHjfloLKo6veUlICBOkoHstYxOBW41W/HmwMCPbnOdWIj6SsQWhnHuQZTn3U8Ov2veOuVl/LbNDCQnLTeGwGG+tvV18m0kslI3xrhBd+j+sP9pMcT8+PSOvvv7N0cm++eS3xVz+hzDjB9VzCgTKTv1lZfneqerxrURZJIhwbSbXNK2AsNp4Y8dP4bYCAdIMQ8zAU1KW2vQ1RyUXJ5a8SI/xji50/lVPb391f2lFd8IR9VvAqs/EgaMShzeHRgVcvS8vX5lJd7rgIk60awCnoqfpWH5HASGHLAQMubC6T5t5ODk8scw6jlbRogqGgEEPSeVd3Q9tHAKJWlQKBXZrqf2q4C5YnUxyT91wWFWl4PjFbpUE6VPlHqZ71F+T0aBgN6aIUrEMOKSYGcUU7OI3XmxWKxAgqQHo69WpCINOC1twjEPZ/4Z6fbcxaow2jE7OTijDCXDYePqQFec8GjBLy+wslKh6K1vVgGKvtqtfmPpB4YcNG5fruIXA1JMirJWM6JQHsOby641Gd617mNdYGh8lZFXEn+FbhPNkVBUdUWfM2lU11+agA7QpXMeo6guq+AYJSXKl+Vay99j9+RQKPqb+lZ5+PYdjld59/On1VljtQr9Rfl0/muOYBgFhjggpkcQklDyCNgID2HNDDIOn/t+ElOiBu64svV1QEB5Y3TJ0OVjJIaWGdwmRftYAwI0tAWgwI3ksNgAOm1rXgxJkjL0+mZp6A5i2lcFKBAgOUFPVTDyW3cc/Iufa+f8f8RA9Krs/ufAAYDAsjD5VmBXe1jPePuwKhL07NN/N3rpy6PTSHld67zHnGEPec2AsBGeB95PjlW1psRMOjk1AMUbLecfa8AkLOrPeDv+E91W8duJBoGAyNKxoy4yLdyuE7xKmOE+/qedVdOqgMDgpHtGFXDOyeSlM/xyunZwPaMKt93ZytwXmmHBKdhw65nNPAzt7e3bW9v7x4AUdLtiU9BVUcZkavKmOvKbTba6SpDXOle0qHUTyrnl/hwTrnX951xneMYEvWiKFevBBoSAOf0lTPZFECQHP4cIMCkeqy/18lzhLdR+bpAR/ni/jmn3bSeKgP+BiBw/T35s/Rb067bV1Rfq/8jNHvNQGs1ov7enQaVTM6XP27LogMnvbMEtHyXXzLIfK9SClfPXkdU58TrAByC5cWTOzs7K7sF8LxGveCT5YO01cgAd57e9M33pgQEEiUgkJxnL9+eY62MSq+cFBFV/XEEALl0o3LpOfgETrhvcz7JwfccRbJN2rfwXwOYH2nXHotG7YZ7Zi5oHHHy+vzoM1X6h/DFdU31THrjttymQINlmUDnXN0aATouzWj+a4EBpoSoUjr+j/TOkY5WNCE0Bwa0XHy7UYFeQ82JnJDGGRl3ylXPASGNLgzkUQHsAlDZ4gx55Z+P3XTrBFgmi8U/2xR5caYSy3OxWEwjCU9BqUNU7QbZp/MgOO+K5gKBlG8yipWBqIBwyncE/KSPlq11crZijrNOdU98VvJRp5AMuctjU2kdIIBrTg6Vvoykn9vnElXtPwIInJ5V4MeVo+U5P+J8TaVfIz6udz/l6/pfjx5knZNRTA5YhdNDZpyfOqMkUBVEJRAHHEbQWi9Cqgxsyi/lX93HvD8WCroXa/BaD9Dd3V27ubmZ8gIQuLu7a3t7eyvl4Z4CAZ1aQRl6lgPPKz/VNMEcqtottd8IYHT/H8MYVOkcEEnOVxdGOtCTwCpfTwDc9fleP3bpXJ30nhrfnowq++B42yRyzrhykj2a46wrZzpHZnOeHwE8Ln8FB6OUgGrl3Kt26IH+OTy5/87fjZax1lsLe52I06pRcQbSCYiHZFLlHBipAIBr2FHgwOVxvdzugaq+ml8ysK5+XG8eBdjb22v7+/sruwTwjAM5kK1up3T8cWSMsjhf/ub8+GAnTCnwG/CekpzDH3mm17HXiXpcOaP9S3lhHkZADJfJzzhwi+8E5Ct+kJ5HwUaBt+Mz8byu3JId2VSq2mHk3kPLU2CY0uM3aE7ZvcDJtVsPAFXgRdNU+qm6rTw4UODyd3mOUgIUyvecfGctIOwJk++nCMPll/JJiKvqvE4AGoFUYICf6X0rGKicOfPIZXA+1Vx/a6s7I/g5jAwcHR21w8PDaaU3RgDgpCsEydG9dnZMQ+zv79+ri57dwOV9/fp1ZRThKUcGHAjV78oAJSDg2lTTuXvJeDnDW+U/Uic2SskY9YCA/uYdQw40jPA8Ypz1/mi7rQOkHpLHU1MKkHqAYB0n5IBB0vs5beueH3luBAT2QEHlUB0/KK93n8vpAYF19K0CL3PzXeuthY4Zvq8O0RmWlB/n61AX55ucuuNNr6VnEv/uf/XR+rFT13IQcfO8PfOoixud3OCsDw4OpkgczhcOmnmqDoZi0u10bhsZFiXe3Ny03d3d6UVPCgTcs09JyaH05KJ644zLiHGa0x80XeK5AuKOn0p/tb6ah55I6cpAfqzLSDdaX60f58vXtJ5JviPGsWdHnpoq+aX26AG8nj3m5xkIMM0BZslO4loVnPX4TSCoJ7fqeySt8pAcf0UjbeLKf6jOPnhrYWVsRiOG1JmrZx2Sq9I65z/XGFfOvxohgBFcLBYrTlmdCDtoPtiltft75TEHj7l+jvzBj+6P5Trw+gIug1dU6xoEd0DRcrm85/jv7u7uvdBIzyn4kZQMgF5Pbec6WtX5RwzWSOTjIh4HAhKo6eWv+qs7SUYcdgWo59SL743yzuW48rSPJUdT0VzQ8qPJAVGXxukR28FKJmrHVTcq8FHlPSrbEQDo0mo5iZc5IECfcb/n6FePVEbJDo34yR7NejdBhc5cw44iFTZKTpiKfkYilzlgYQ6Cc4ZYo2f8VuK66W91xHDk+r4ErgNvD9zb22vX19cTOMCzSM/nCIBPfnERywiO3y1IdE6SeXPX+fNUlIwUX0vOlPlOIMDdSw5LZeaeGc23MpCJV31eR4kqvl05qV25T+vzqR+nOrt7CQQx8NS+X5X9M5KTvbuu/cPlkQC1ox4QUF4UhGp5DqgncoC2Cgj0ew5Q5G/lX3nQ5x5ClT9bt5xZ0wROoCOCrhgbQfgJDVXlJGOQeK3Qq/6vDKobTu8dPeyQZaq3AiIMv9/c3LTr6+t7IwKttZVthuAtOXlNo68+VrmmY50ZHFQHOT0F9RyRXh8BhvqM3nftrwC4ytcZ6wqcp3qtCwQSLyqf5KD1WmXQKyeS2inl7wDqCAhRR7IpustU2bLqmepacsZcnnOwSQcqgDeHKuDb6xuqT5VuJQebyqtAK//v1b1y7JXOuzzWpbVGBkYF5f67Zx5CvYapgEICNqmMZNwqw5r4SwZcf/Oxry4/zNfzXH1rbdoiyB2Ih/kVFPB5BW4KwfHHvDiHz6BoE9cMVIhe76sOjBqHkSgmgYaewRshl7f7pLQVVX27AhX6fgN+rmfQRuo+17awXXN97LFs1VNQJdOe4xmpe08vK3CxDs+cj3P0rh76nD7jAkalUb/W4yGl6+Xp7s1t2x7NAgOJUoWTYRyJgrSBNH0SDu5VAIWvJ4VJees1dqoOSVfHHKtjxjXkhbQwnO7MAC4LYADnAiwW/lRBJt6N4F5zzOUl57FcLu+VAZ65/E3ZWuiIAVfPETrA54xJcrqcprXVI6CTc07lI68R0M35rgsGkgFNZTOIZR3nNTSal/bxuQAr8VJddw6isjXPgXoAN9EIIHDXR0YqKrs9hyqf85B26wWMLs1cHjWfkbxc3r2Rjrk0e5ogOVBGaUib0vF/zhe/+TtRclaj9XDpew6g92HSg3h0N4B+4JQ5IkeeGOaHMx2JEvlAIgYbLhpTMMA8qGPj0w35vRBYxMhgBqAEdd6UkQFnxPh3alPnTPk559R6ACM54F56BiGuHlU+I9eSEewB9QpoQLa6mFa3zLr6JLswYgTVcOq9RM8FBKR25++5dZkzKjAHaK3j+Kuy9bf+T31oNAr/XqDwsfJ6LCDQ2pojA2rs2IAmJl30ofm7Dp8UrmrwdZFm6kiapmfguT46OuDKdTy4a25kAE6XnS2DCD2EaLH49rZBXfCorztm4hEE5MenCmIUYH9/376LANMYT0HOECVn5zpX9ZxzkBpdVrrlnPYIeHB8aD17Opoo9bUEBJLzr2yCjsRUfKR2cTRqGF0/ey7On0n1uorORx3gYzvxynb3aKTtRwHhOrRu3+n5O6be6FpK+9g6++BpAmd8QA7lJxRXRTnuWsqvAgaq2Apq+HfqUHCcPQVXIDDSaA4sLJfLe4f1MDhgJ80RPS9k1GFo5KvtozxqHryegPeYMw94zoGhx4oK5lLSkZ6z7XXs5CST7rL+ab/RNI5v5sv1m56Ddnm6KCjpcq+cajrK5VXJrKcrPVvh8hhxkqP8bRq5/uXaPTmQqr1GHVsF6pz+u2cqP5PSVO0/1+48JuiZ81wKbp2vquzDQ2jtdxP0OmACAr2G7FVwrgFRpXOKqIaz5yw4DZwdp3dOQstmR7lYLKa5fn35jwMIPAyPiJ6H+HGdeeJRBd16hbcYIg2ONnYLCpPC844FbHlE3nwi4VPTiLOvotXKUTp9dFGbA2JV/ilP1bf0zGg9qrQVMGEgoHLjhYK62yQdhb1uxJMcDufrnsF32h676ZT0SqmSzRyqnLlLq+kSnwlsMs8JaLsyNY3zAdUzmr9z2k4O2g9cP3VO3vHTsxOPqaNr7SZwzFXpcD2dgQ9KRtg5UL42F5G5hpoDBpSnlJbva1laHx5y53v8LIwuf9hpMyjA+wqQprX7++VZdtfX11MZmHbAsD8vAuTzAsBfOpXw5uZmeifBzc3NxiwgTB3XRdKtZRCrBkoNcmpvx09yzknPKjDD6UeoZ1BGQE6KbHSLKb+7gtfScL6uT/Xshvvu1UP5TyDgOQCCihJo7FFlW5Pzqnio8uu1rwMKvbRargNCc0FA9XxPDytQkOpS1e2x9XLtkYHUQG5PvetoIx04ISF3v7rGPLuyKhBSAaA5jVEZ8VF+2UnjmyMyOG98Dg4Opi2GLHuNyODkARxQbwUebNT1ef5mww8ggM9T00hEw+0+GiFCxmmRpIJXB/SqZ/QaP5vuufpUZYzkzXLhba+9elTnUCTq9X/mJ5Wd8tPrz93hg9S+KiWn2MuTn9f8XHoH6hQQ9Ox3D8SktKq3DhDwcwmMa54JEGgdR+17qkuV5nvq6YNfYazGJHVO7fxV2hFkPopMXaMlJ19FaKmcHmKtIk+nOOpMOA0P2SOtHiCEEYGDg4NpuH+xWLSbm5sJCGDoHnLmuf+DgwM7gsNvIdT2AXDAPQYCmwQGeoaI06hej4AInZrh5xMfIG5n5mEUjKS6jAIB984AZ9QS8E/y0Tq4rYQj9dCymbRfpT7cy0d1el3g/xTknGBr9yPXqo5KFUDtga+kd72gr+IjtUdVTgVWKv0eBUuur8wBA1V5I3r6mPQgMMDknLwzaiDuwKkj62+H6ip+knArQKDlKq0LBnRO1fHu5l3dwUDIz5Whiwoxl9/at+1/+PBaB167oEO5SMPOXuWBbxyCxOVoeU9JrvOlSKZqWxdd6G88y04wgQD+OCCivDgjVDmvpO/Kn+bp+lvFizOsVT2cDJVHzqOSG/drBwBG+vemO/2KUrvg9wgY7uXdc3AV+HTPV3YT373+N3I98Zbs8ShA0TzmgAHV1V7a700PPo64lzYhuMoIaj78TA8QOCPoHIAzHC4fx38yeFp3pOUFe64c8IDtea19AwGttZWdAvw+AaYRR6IRu8qCTzHEZ7FYrAAKZ8Sdwd20I4iZXFupLFJ7gpwBYNDHz+q++mSsk1PrOdFe/ZIM3KeqbwWuHS+pbzw2VSAE36NgwD3/3CiBWwcIRtrV3QP1gjiX1uVdybrH76iD5zwSrWuzEhBw9ez5Hk5b/X9smr2AMDnOhJQcqeFL5VWIsBL2KNKqOoIzHhXqqxxID+TASWCoHS8b0oOI+IRAzQdl3d3dTe8oaO3bKn8s5kuLt+Cw9vf329XV1cpaAwCQnuwdT7zz4alGBqp2xu/UVtp5U/48VcOygl6kefKkU8nAzTEQzim6e+suyE2ycvdHHESPevrGv7X/VrJI+bnnN5nUpqQ+W7VLBYKdbqzrOPnb2WLXJ6t+OAJctMwq/Rx9SWUk/9Yr+6lo9shARZWTHzGASJeUVZ9zSvXQ+rBxTGCgFwmlspB3dZ+dOK7BmfLOgWQYEfEvl8t2c3MzpeXhezgmXt2Psq+vr6cdBHzPnWWgvDO/ADKQCUYZNoXm6krSbR4RYODGMmKdqo7f5d+qc5qWZa35af0SGOg5S66box5QqsDNCLGsXX3SaICrj/7Werh83Pemk2vjHnjX5/R6BfAqgOzaqUpbtfUomOz5AgUWVZ8YoSqg7ZHrt5r3HF4433VosXwuWr6lLW1pS1va0pa+C23GYfFb2tKWtrSlLW3pyWgLBra0pS1taUtb+sVpCwa2tKUtbWlLW/rFaQsGtrSlLW1pS1v6xWkLBra0pS1taUtb+sVpCwa2tKUtbWlLW/rFaQsGtrSlLW1pS1v6xWkLBra0pS1taUtb+sVpCwa2tKUtbWlLW/rF6f8DAFbP2kBuL6kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmQ0lEQVR4nO29a3PcOO49zPbdcSbJzm7V7/t/uP+b3ZlMknF8aV/6eTEPlNPHBxdKanc7Eaq6pJYoEiRB4AAiqdVms9m0hRZaaKGFFlrol6WjfTOw0EILLbTQQgvtlxYwsNBCCy200EK/OC1gYKGFFlpooYV+cVrAwEILLbTQQgv94rSAgYUWWmihhRb6xWkBAwsttNBCCy30i9MCBhZaaKGFFlroF6cFDCy00EILLbTQL04n1YSr1WqXfLwKrVYr+Ts6OnLvWb3taHs08RHPozKqZWH++ENeMG/8MW02m/b09NQ2m017fn4efpg/55sdlTxYXsY/72e12Wza//t//y/vqJnp+Ph4qO+uSbVRNHbwntfO1X5BUnLp7S+mrjNflbJVf3tlm5xEvHoyFNVB3a/U2zs3Ojo6ak9PTzKfXdLR0ZHL/xzkyaanl5T+UoT6BY9R+ZH8T5X9qcR6uFJGr96s/LA8Pqq2tHsV/VcGA2+ZrGHMUEbG2DPQmA8aPKNIIDzhVoOLy+GflxeCAVbQz8/P7ejoaEsgmP/KIENCXjgPLkMp/dek1wICHqm26qVIIWZlV+95/VktT/UzyoCSN0yTyUd0P5K1bKxW5HLfMjQHVfvPziN9hXqG23yz2Qwghtse00WAU5XH95gUkFTlc9mV8akMcgZ0uCw1hpnv5+fnFzofZS+ryxT6JcBAaz7ajFAoP4v/q4bNBE0JPgIB5dH3dLIZfK8szs+EDq/PYbBa2wZLDGx+ZhrTjp4i8pRdbx95suoZZq9sdd8zBh4PXr5VwBjxxXlUx+gYYPCzUiZfSr45feTR2v2IVN4eMOFyVf5K7/QAFMUf1weveWVhmkg2pzpOPY4q008NBjJhUkbZAwo95VXK9ATbQIGhwUhR47OInLE+OBienp6GCAHej/JXR++ayqO1n0vBerLQ20bqupK5SB4zxc3Kh41lRBU58BRntbyKcpxCngL2jAHy+DPJbGs1HebJVUVvGfWAgEgOPfnPIhIeDxXAqUBrpd2y6Jsn36qdPVDSA2zH1KG1nxQMsCDheQ8QiAQ+U8QZqKh2kKoTP398fDzUpbX24mhzBDB0VykL6+Ld71Gab0HB9vRLZAyj+1keSn6jvO2/8kBae6mQIqXYAwKUnIwxvp4h7pGzbJx6kQNlADjPtyC3EfUAAfzv6U9FXjRAAYOMp0xnKz6i6BcfuV89uVA8ZYaf02TjAPPmc+axMgYykBvRTwcGIkUVCVQVCBhVhCJSMB7xu0kWLH4egcDR0VE7Pj6WrwuOj49dvpTwRsq5F6Xa8S28d80MRPYcn8/Fj523pj2IKEzK16cYt0ymPQDyWlQtr0eGW+sH74dCY5yOCBh4uiMDA0wZAMt4tGMm7xFI8P5HQDt6rpI3k8rbA9kegFX6e4wO+unAwK4Usf2fQ6lmxrjyTGtta3INTh5UQKeSn/HCdY5AQAUUtfY2J2BlsuR5Fup5L6+Kx+qhfQUKPKp4KJxeHfl+L0XKWxkS9Uwl78q5Iq9t3np0gKlqhCLHKPP+e9usKlM8Ljy5qVJkWPHcG6uqTJVPNK4Z4OB/BQgiGjs29wIGejzMMfkqIY6iAyoN5oe8VpQq52FGGr14T8lWwAxPPORfBcGq+jLv+N8Tfh6Qnqe62Wz2sjSrSlVjF/WN16dj88uoIiuevGYyojwQdfTGCsqBUmJzRyciRV1RxodKu+KzkqcHAvh5FRWY2r89wCDLq+KwRKA6Ak4VearYCzXOWmtbr3Z7AX0v7S0ysGsgwPcihFvhSSmyCEWioUYA4AGOCrK1tGrlQAQunp+f29PT07DXQDRgIyCk9iZg8tYX494Gh0iZMohIKYnouQh4VJ43fqsKswpge3lAPjJvOpJvTx6VEvZI8ZApTM7fG89vATRUyTNekUPktYXnEHhl8rUIVFZ19RQQUgVEeKwYY24jBqN4XtHBym7sQiZfBQxECrY35JEZYDz3fpxG/ffKzBRppXw1uCJFaUKjIgqr1aqdnJwMUQc72rPojeNeAwZQ2KNnBIp8oGFXAy9aDzvVW9glVQxe9AwrCDX4Ob+Kgcu83Qw0qms9xjXKL+O7mq5HLirgyIsKeDxmgOFQqbdP8BnPcfD0qZEa03gegSmvrEw/Kn3JfZw5Nooyb74K6pW+zIBCZSzidV527jlVFXAS0auAgV7Ezs96HoInZPiLPPIMBSt+M0Wjylbv9L26ev9ZOMzw24RBPBqPnN/j4+MACBgYcDnK2GU89qY9FOrxsqc8Y1RVNOp/9OwUA17hMeMh88Itjac8e4x5hf9KVCArv5LXLmmK7ozy8vqQ9WElr0q/q2tKF6v/ytP2ohKs93raKgNLeM34UADGa2f1X/Uv/4/AkrKPY+VjJ2BACSwz3MM4d3wVAHjLBvEZ9bxXfnZdDTDFg0J63B5KoKNBhPWdSpnCiQbeoRr8iOZos2q+Shl4MpcpZe/ZyFhXgWiVeqMATHMbWgUklN7woi6spzjtvmlX46uiJ5mHzJBVrmWGTpWr+GF9VHFEettSAUgv3dgyvPwiGxVFOXrG107AQNTwcw+sDAiod+ueMe0BKp7iUPlkBpu9dA/8RChws9lsbSbUWjyDPxMQT4h44FXAgOV1iEAhMpxT8xtD1QhY5VkFmiMFppTtlPrM6dVOJS5bKfaIv0OU3bGUGePM8IwpI7qvyIsAZHpJ8ThHdEDZhiqI6aEoesNlVcYy5xPRXiYQTmmsyNB6gCAy+N4A8JSD8igqfHr3K4reCwHZ+dPT0xbfnG4O8gx/JSR3qIp0rKLj9HOCW85/LDAwyhRDpc5Ksc/t/fTyNDbPKPJ2qHI6F80pp1FbZbqvN52nY5SeHtuXnox7oKhSN+bNeyYz3JgX2yfMQ5XV0w5vcp+ByONWM/ijmfd2rt7nM9rsMYBYjlcmXsfogBd+8wCNPWOgQPGPxF9Cq3qL1YFWHQRvjZQh7jXWqk120U7Kq/CAbQR41f+xfEaGmM97KVKEVU8qcgJ+RvIcIWX8WusDjlVDz7z0lJfJUyUvlhulpz0wwAaay1NGO6NI9yMvSsanyuybBANMSpArnwr2nuW8e8NMnsH3KPNSlKKyY6bE8INElXpVBDdqEwZPh6BYPR7mMMLRYO+9p0BUdC2jSA4jmfIUemQoeupu97E+c5AHYDxvku9N9S5fk8ZEiHr+c1k9+fcCASwnGi8ePxnYG/uMpfPsAtc5i1pE1KOLGKhU6lGhNwsG0OBH6/mzVwacFgkjAWZUK2vlI0TpGSXOVylmtbmQGnhWhscrAwQUWBV28yIMXt1ZsKcY20Oi3npMqbdqu0xhe/erfKCn4/GC52NCklkkzTPUPfwjTz28KIU+ho9DJw/cqTZTUaO5eVGGrQLWqnxVDL7iyTP4ynZ40bTMWcvk3XvOGytTwPWbAQNKgKMfP4P5MFDAZ/DjPqzwKh52BAQUMRDwlK3aaVC9DkHCVw/23368J4BqM8/AeEbBo58NFPRStd5ROgUqlXwqI53ln3klDBJ4zGT97wFP5i3iv9c7jfL2xvWuDd8hUKRH8X4vKPPksCqDWZpq1KbaZz2RFaXvvPZTZSj96o253ujGnBG2vYGBTDHN8Tx6yLxhjxdBsEb11uN7xhE7RSlOI8vLmyPAwt4LKpSh90Jkin+PF87HA0E/owJlqhhtD4jukgclc56ywv5CQJopo9469MgDK84KiFDpenhi2c6MzaFQTz+MMcitjW+DMbxVAYDSTx5596eMSWXM0W5wWs+z9/hkXczPViJrY2mnYCAzECq0EuWjDHe0tj5TXpU8IlJejEKMShl7W/t63knEn4EAzlfxq0AOltWDNhX6n9Pg7ZrGeilZuggQjM2/pyyU62ijK5S9quLy+KnIjgKQ0XNVXpQcqjRGHjgeW/9DJm9serqpom8yiiKKPefIjwJsfN7LX29dVfvxfQazEcDNeOuRaw9Q9MjzbGAgalzPi5wLCKiO4agAhv3ZG8DIgWeMlYft1Umdc/ooX1V/PmdCQJANRnydwPMHIg9piqcwxqt8TdqVEegFAll/e0CgF4x6ZVQNYlXBeaCAy6oAgrn6KBrnh0ZVI+L1I9+PZGGXpHR+BpazurMHPZaULFTlgdtTyWuv3HrjIuMDn/fuRfRqrwmmeEA9ys06Eu/zZjwICuw/GlN7BvPD/JE/Neg8cOKh3AgoMfDhKAaWz54+1scA0fHx8VabMI/eUfEcgYifhbwIS49XUQVDPWOE5ZmPGZAwfqrGBp+zvHqUsAcKKoCgShE/VVCvyjwEmZ4CKtW1DBRkztkYioCAp4uq/CkdOpVQz0XyPkU+IqDTq2eQGHBXaDYwoAZUhFaqVPF+PH6sIXhSIE8OtHQMCDx+WDiYB+QtigYoIICd5w2UrHOxPkhHR0fDh4uOj4/b09PTABI8oML5RmlUXd4aKZmNjJTqLztXBnsX/EZjBNPxcx7vPR6JBw4yIx8BgTHUa9g84Oulf8sUyUEvRcYlAqeVdJxmbD9UDGCUN+tn5fiMdX566qXGU2+ZPf29lw8VeRQZVfSK0cBHiFI1XmTQ2IDi1/k8o60EW31dEPPgfDEvT4lXPB61lBDbTH1VEHlhUKDK8NpO0ZxKaApVBmBUn8hQqP5SQGCMYqt4BVxW9hqNjT7L5RR+Pf56gEAEoCOa0r6ezO9TZndJkRPlpW9tXJuMBcNZf84lo8rIemDAk83XIq+8DAhX237WOQPRvV4vwwMCytDy83xNdTbzXUGn3qBQHpln1NWkPZUn5sX7KbTWwkmPmBe+GrA8cQdCjBZk4KmHfibvyjNWlUHmGeFqufyf5UyV46WLZBzTed6+xxPnhdcjZVSJGnAeYxViRB4oUfV6qzQHsMnyiPquIgd2jtfZEevhLXOgIh44isyvmnvkoQoglOx5uqbihPWCt1lfE0xBkEasxHhGtIdqI+9d8eN5Rd59zygqzyx71ZDVG/O1c2+zIeaf+VytVu3p6Wnr08YqGsA/r66ZB4d1OFSaqtw9xdPrcTF5A18ZfjUeIkOtiMdGlD4ztpE8RAa8aujn8gKn8nJoVOkzD0Dum6rtrXR5ZGMqch/xZISTz6MN6XpAi1fWHGkZRPT29ayvCdjD6CVWcMoARgjJU6IVZafyy3jlcvA6euNmdCv58JHDvhgZMDLvn79NMIYiIBA981a8p8xwel6DOo+U0ZRxoBRfVJ5XPl+L0lfyV+kqBlydR4qL8xwbneqltyLDY0jpGaMphlWl9cByD1W96anlZDx4ht4z/uqaJ1dzyFsGlHryf9XVBBn6U0AA/1u61l6+t44UpvKkuaMtjQpT8XOqXsx7VkfLi1G7AgR4X0UGor0DPFIbE431nDKkvm+qDohe9G3/1S8rwwNQmfz28sflVp/NePP4VHKRnVf5G0Nj8/1ZgEHWZ0YZ4KwAwIjGyEFmL8bcUzyNSVuJnvbSWP3pAYLePF91B8IIISkgkG2a0prupKwBsMG8TsZzBgWe8as0PIIOHqiq/qvVaogyINDgTYbwfgUQ4FyBKnn1rgj/oSjWimdfpamekOdZRAo5+lXLyfiNFJqqs6eIMB0DSVb+6v9UmfEMy1uS1zloipFRz2d9Exmm7BzzwGNWdq8u9saZ0m2eExRFrDxgvCuQqQCBx5tHs4KBMULHRlAZQ/aEmZRRV0hWNVKkJDwwkNU145efV2CI04yZh5ARDvYezzNrA88oHLKCncpbxTB7MjcFXKq0FXAwpb89PjN5iK5HHmJVwY3tw0OWy9bGvf+NAOUc5BlwBnwVEOiBgoru7Lk3JQ/ugwgIVMvfFTjIgJZHk8FARegib0wZwggIsIHGn+WXAQO8j8upFHH+HiGC9Mr3jnaOKwTQ+G82P+YcPD4+bu2oaPfx+BpU8R4PhSoDYuwAqtZVAUq8F+Vf/XH6jB/kP/JuIrnN+Md8VL4KWCrFq9JWIh6VPh177zVpKiCoPDsm/wgQqGtVkDdXm1fqpGRQjSOWwwqPvbqnlzygpc4z6gYDY1CZAgasvKJXAkrgqkYan4860RNiLM8j60zP48v4zjoLVwrgh474uep8gUqZmaGP2mOM4tol9chINT1TZIAzIFBV1FUgwM95hh55YD75ugcE8JpSqtU6KiPB/73rEVXkNXruLZIHAvg8c9LUcUr0xZOLTJco/piXSC6rfanAgFem54zO7Zipceqlm1rmq3yoSF3DI+8h4KGy1vQ2wcoIK8I8VBmZwHnXkA9lkD3BQUJe8BsDRrwXgKXDdvTqjvk9PT0NR+/rhhFYUvx7Xt2heFU9VPU6PeA45+ucDADgD18t9XhD+F/1rZKJCujH5ytGwPMcOX1kxKqemscX8xjV6y1RRa9V2mNqOyiPNTL2Xh5R3synB2pUnhkgyuSrqut6QOwYGqt3u8BAphA9Up4FK7IMBGA+2Hm9leaOn6ODbSa/KVPe9x+vc57Ih9WvOgEQQY23IyPyp/iJvEE8KmUcebtvlSJl05r2tFhuPcOWGTOVV4Uy4xzJegRSK0bXq1fGLytt1b6e7EVlVe+pdJE871ume73bKH1F9ynj2gO2MA/ONypP5afkLaIIEKixVbUB3A7e2ImcqgpVwbbnsPSOR6NZIgMesvKY9Qw/P6ca1Wv4Kp/K+Ga8R96wGWLkFT12Fhy8ppRixr8R7inA3qgHCDab7ciAAQI7Vzxy2dXrvwpFiqZqKHsNqffD+xGp8cVfr6zyEvW/B3w8Zary8oxBxdhhXmp8Mz9VwPba1AsE8L+SSY+U0ZsDlFYpAgTqv9JFHhC3oxovFZ1WtTuVMRQB0gr1PNNTxmgwUBWw7B4Lq+e94HnUKT2GNUKinpDwgGFBiyb3ecJbMagKSNgRJ0HinAL1vMeTUsYVkMfnypuwa4cGGBgMRoa7R8YzD7SSh7rHY64CBrw+VYaYAXLGb5Z2TkVXadMIBCg9cWjyOBdVPUuvDTKj2kORjKh7Uf/j/aqM4g/npWEkVdkXBVKZx13otGq9qnn18DcaDHjIOmLMjkphecq4YiCrFA0SVqiqDBYCS4cb/mTCPWVwYbmcD74KQFBghF8nVFsQK4r6Iuujah++BlUN/BgPzJNrVWbFgPbyo2TWyAMAeG4/9QorKlMBv4w8OVFy6IEY5CEqR+mmzMjtW06nUBYV8HRbBRDgNVVm1v+9gMBLF/1X/CAAwN/x8bGcgG3jAH9cnpLHHgDjtfkYoOXRWKD7qhMIGQQgeR5kZmjmpkipeufIt3o/r86r5WceDhIDAr4XPZ8JtErb0ze7QNE91DNAFNji88gbH1u+yqeqcJE8Twfved4P95OquwLvVYOQeVVzyIkXRYgAWpTHoZJq8+iaFxnIAIHn7GFfTjFmU59HUuDcAAD+7BrrbnttahO21ZdcMxn2ePLGzS7kbEy+o8BAxaNiAVSznSPhUhTdj0BGVAcURE+pZ9EKnEDIOwJ64IF5rJYdIXzjpbVWAgXej3nzeGZSxqEXDO2apigdT9FkIBePXr7cx718qn6KjH2l7z0eIwDA18eCEFV+Vm/V1p4ir9az8szPQF5deSyP8fAjWZ4TBKjxeXx83E5OTgYQcHZ21k5OTrbAgPH/9PTUHh8f2+Pjo5RhPJ9DJiJdWXnWI09nZzQKDLDi8gSh4kVVjEXFO4rQryco/D8yyJGCjpCfV0+PHyPcVpjbmNPz/AAV3oraxaub6ldW4HxPXfeuvSYp3jw5RGK5Uu3GabzxESnWbOB6AFRFotgwqi9aVgCA1wYZv0ouMmDC/Kl8VLlWV9XmmVOh8t6ltzY3RQaYSfWdqmtW90zXT71epUyfmbE/OTlpp6en7fT0tJ2cnLSzs7PhP374zSICDw8Pbb1et7u7u9baj/GjxrEnn5kusXw5fQWIVtptrPzOOoGQr1UMjpEa0JWy2UhmZWfnXAelhCt8efeMX++HaJWXK6Ly98DPZrOR4CBb/x4ZMpXWAzo9Gx/tg6YqoSgvbhM0akp5VXmLwFpr7cVcFdWXEYjD5zwgF43xKA8PdFSAiDJUEf+Yd+W6B9AOCRDsgo+p+XlOwhhgMoY8WeQJgmb8z8/P2+npaTs/P2/n5+cDIEBd+/z83B4fH9v9/f2gK+/u7rbmDyjZ8PSmoiro6nESvLzGyM0sEwitcD56Bll5AKgceJBGVCmX+VW8KwHzPN+oTTgP/q+AiP3nzZdQ2atPF6svOaq5AbzNMW+65Amf1weRso088ENQrlMoAnFZHSuGzysjy4uNdWSMI+878wg9+Y74ytIo8sYp3/d4iAyVZ/wt30MCAnPSGGM9Rxt4dsIrMytX6Vb78STB09PTAQxcXFy0s7OzdnFx0c7Pz4dXBRgZsK3e8T9PJmRnR3n1WV1Vu3jXqtRbvqLZIwORohybJ9/LnouMccZnpIiUosVzBSoUiowGhKFVz5OPPO/I8/PqY79KqEqBtB6FsU8Fmyn4XgPAfekB3J68IlJRBhUF4vvISwUIqL638yjCxHJUIU6v/jOfvXkaVcGYpc0AySFRpu+Meusyd72rfEY6SD3LgABfD5ydnbXLy8t2eXk5AAF7ZWDpbZKgfR12s9m0x8fHrb1YNpvNsLcLjif8Ze1Vqdc+adIEQgYBeO4BAaUsvY6uAIIMQGSoNHreeKsAGwYSdi3yRFRZXB6T2qrYBNbjn+umogM4ARJ59AwGGxiszyEJuJHHE/d/lI77paosq0o46vdIwXvXeoyiAnpYbgaeOf1YI6oAt6dDFFUjHxkIiTy+QyXPQCJF/dLbzlPAQjSGIjnkawwCEAhYRIDBgE0oxPJQ7z0+Prbz8/OtDdla+/HZd4sU4HMYkc3a0ZO3XclatZ9Gf6goM/58XhmUlfIq5xGIyAYH85wpu2hQVENBFS+SdzVU+wjYchjmV4ETBgRcPyuH84jy/xlI1adqnCMjbNerirgKDCoKe2zfVcZ6pmg8GcrGjpcP8sPXvWcix4NJAXgu81AoMpARKQchyr8izz3tE+llTya4/xkI4KsBiwhcXFy0q6ur9v79+3Z1dTVEBfA1rHn8qF/R2Lf2Q/c+PDwMhh9BQmYLPJuhjlk7e/fnoDIY8LyADAggVUBAJCieYVagozIoFKnBz/XjzuPOihSgV54ZePbMvTY9Pj6Wnjznm13DMipCVSlH5T22P/ZBmaFSYI7PGeBV2rZi/CPgmV3vVRqRcuPxHpVdBR1cplKyvTKa1V9dU+Pv0GkOPj257mn7LE9PHygdjnx4+tiAAK4aMCBweXnZ3r9/33777bf2/v37dnZ2NuwxYAadJwbipO3WfgABLM+WHuJrhMzecRt4QCADBapN56LRHyqKvAQlVFVkHpXH5+pYQaqVxsyUl2cUlWLzhFv9eJ8CE/ZIEEwgGVggqe8lcF2MB8Uv9+FYYLcPmqLElMx7eXtyrgwcl8NlVwxuVi+vn3vyUHzxOf63NqiAY68MFZlhmVMUgYBIXpVS5uv7pEq7WTp1Xi0jK7fi3FT4UXLN97NyUTfyq4Hz8/N2eXnZfvvtt/bhw4f28ePHdnV1NawgMKdrvV4P0dTNZjPcw7FnrxTs/8PDQzs6Omrr9Xp4rjqGKqBYAV+lcxRg9SIUVf66IgN47gEBr3BvMKpKeUIWgYDK81naqicUCarXIZkyNyHkTwubgOIyGM6jYph5d8LNZuNuoVylDATY+b5BQYa2K0qt0pcMBFTennxlFA3oXUQFjC9WvLx8i/sWgaOaee2BIpUm49sz6nyu7qm68j0PzB8SKfmaOs6UcfHKq/Dk8aYAr+dUqWcUELi8vGzv3r1rV1dXAxD49OlTu7q6aicn/5g721iIjbrR2dnZEF1Yr9ft5uZmKOvu7m7gbb1ev5D1qK3mlKcI+PK1KnVHBqyCvPOa6jzv6AlwRXFaPmxwq0hTXcf7SoGxZ8z3MR3XyePN88bNSBtf/N0D5B83JkKBzNb6V+rKnzfmdoiEroJu90GRPFXSe4o2GoxZ3koheiCby6yAbqV8qiAO88DrCA4QFFTlhsevOip+I8OknhkLhg7N+GeASK3wGDveIqCk+MhAsl33QICSfSOvrxkI8GsBezXw6dOn9vvvv7ePHz+2y8vLdnx8PGwsdH9//8KQW56tbW9CdHFx0U5OTraiBJbG9DPqYsW/8c2yHIGDCNBWqSd995yBTFl5xlM1gv3ncir/lQB54ET9N54iQee0UV4qXcXrxPQ8Q5UVL66LZeHD5S+qPgYsVPlWJk6ciYx/1dB59Tw08oxMVebHov0IFOOvahxVn+OxAswq440/+IIRAvxEtskof/TFePFAco+C9PhW5USgyDOClTG8D4r0oErnyYbKC69XjVFF33rPRbwrvnGewMnJSbu4uBgAAL4a+P3339u//vWv9uHDh3ZxcdFa+ycqcHd3t7WawMq2CYgIrh4fH9vt7e0ABNREQ1tymI0zb9xmda7QHE5XGQzgoM+AgGJSCVWFcZUuAgJKsCtCrNAr8p2BBjaWERLm8tFTj5Qv/lS7KIOt6orpvZ/y8KIj56vqsS9CXsfykQFAzwvIlK71r50rWYkMHR4j/tQ5XkP5zgCBOrf/uEsmbqftAa4eipRpJo/RNa++hwJgewyE165e//aOzwhwVHmw80gvesQbC9mmQhYV+PDhQ/v06dMQFfjXv/7Vfvvtt3Z2djZ4+q398PzR8To+Pt7akGi1+ue17dnZWWvtxzi3bxjY1sXZ7q72rDr32qnS31VZr9LoyIBiomKMPEOOR35mLG/eufFYRW6RosTrVXRm6aN2xDZRHrrafbBCyvOKPCb87/VpVPYhKNTK4FIKzX4eCO7J05N3BWZV2shD6zEWY/mckqdHr+V1Y/tkYMh79hDkuEpz6NPWXrZL5mB4jk5PmUgeMDXDrTYWwuiAnb9//76dnp62p6en4fUALg/ESANvVWzztR4fH9t6vW739/ft7u5uiC6wbsgiW9wunrOZ5bULeZwFDChjZdfV8/jfzvE4lqqIV3muWX6t/fhWAOc1hk+vXE9pKc/d+0BRpryiiEAG6Kr0WgK8C/LkqMeDUXmN4UMphQiURaA3U1Q94we9fnwlYPdN0Uby5dUl4i8D7Px8VF+leKPyD4UqRn4XICsCTN7/HiDAfegBAYxSmwG3eQM2d8DOcaMh217YliAaQLC8DFicnZ1tbe622WyGfHAHQy9armSpCtgrY3VX8jkKDNh/j7HMQ/byisrmdBUj3iNkXh5RWRUF4nl/WR08qoCIiiFX4CIDdBXCyMYcwGlO6lVMmUHE45iy1DMKdPcAgix/z9urGBhLjz9TpsgXyxIue/V49+6psZspWA8YRM9UeNs3ecZxLmdKlZd5uB5vc5TtXbcffpoYDbxFDPA9P6+EwchCaz/mC1hkwFYe2CsBy9vSWbk8kd6rRyVSkF1TFI2XXiqDARzsSilVjJCn6Ly06r9nXL38xiBmD0xYvU25sWIyUtey+RaKP6+eho6rAhjVWXlrXrosjUqfXXsNitp7F3lEhnUsH6wcGCBEhtHzoL1yIgBrhHKDUSqOTuGkWLveW+feNovkvqctDol2xWvWvlVHzUsbRWVQT1WdO5wvgAadDb89gxNYeYJ0a//oZZs0aBMSebtiLOvs7GwrjYoORPXO6sjthvlVnKuKzveoa2nhZrO9jKUS8mNhUYa7KoyslHq8sirSUrxymThLmgGCmrEfgZeIZ35GretWzyvvXt2PvDfMtzJYI8E8VG+rYiijAV6Rf6bIM68Yc77HfHqAAcuu1BnzrMgrgwAFACrRgUzBVT0hS5v1CbePun+I8tvrRCnZZTnsNSBKFylHJOpr1f4ewEAwwIbbfggC7D3/ycnJMEdgvV4PHyFCnYd589cM7Z4ZfysXr3m2AuvJ1yvtm+mcOWnSdsStbQ/+SNF4QtoDBKL7zFOUvgJeUDhWq9UWUsTlU7i0RL2zZ4XqKVfmjxUyvydrbftzxjbRRb2/9QBUFN3JDF2mSA4pMoCEMhoZ2aif8Fk+KjmveEde2ZGRx/9ePdR/bxx7PJph5+WsngKM5MijyBhVgDP3K/LMwITbj8fbIcjpnJTJnzq2lssV973SXxVwx/rSnsf80SCbMcZ3/GacW/sBBB4eHoY9BZ6enobVBA8PD8MSbMs/itxiGowInJ6eum2BdRlDU+VQyXlG3R8q4kGUDXhsIF5CxfdZCNUxU87qOk+0i5Qio0BEorjcZLP58ZlL29HK+OPoQAYIWBHiPdzYBZEph2Vba1t7DKh+wfI8pa3awzNafJ4BgAj47ZKUHLEB4KMno63FEYGsrTC9AibRZ4JVnkp2orLHgBNUlBwWjfL05CrTExFV5VB5Zd53PDw5yIzavsnTh2OBTaUPlC72+kQZfaXv1T0sA2VPbT1sk/pUZMC2DzZAiB8YWq1+OHmWL0YZ0HZ49oAjElG7qXEftZtHSq8rANcrs6M+YcykDEakoJCUUsbzSJGqvJAfde49i8bXOteEw95J4SxTAwDr9XrYovLx8fFFmZi/AgIVg8QCyGCAdx5koIH5VgSE+ffaS/UNemGHRBVFVzHkXt5TjYWnKCpKJvrP1zJg4oEBGxNq18HW2ot3sVF7zAEKFXhWoIyjAipq5vEzR7/uk3p5j6IzrWn9qQBU9nxWNutHnCeAqwdwBcH5+fkw+Q9XAlhEAAGJ5WtAwHQ9fugIAQSvLIjq6en+HkdpjNxlbVuh7jkDlUKmDHY1yHvy7AlxcTmo+HDdqW1scXFxMWxAYR+6uL29bUdHR+3u7q4dHR0NISgP+XkDiflC7wsVMW+JiXWutAueZxEB9awHXuwc80ZQcGhKNQI4HmBrrfb6I1OqPdTjnVaUtTJ+XFc+92Zlt7a986Ut3VITtlCh9tSd68P1Qj65nXADJAQHC/lGq/KcHSN5Y7ntHQ/sCPGEQQQCDAh4rwDO1/QogkEEAgYoLLqA+SDAYABs9zOqev7quheN5Dr28GPUtZqgghqz697/yCOK0KcKmUQ8oFKIAAG+l8J9ry8uLtrp6Wl7fn5u9/f37fr6esjXBMXOWVAihax44B8CARPWsUanN3yYGbxIucxpHF+TIq+R+1XJXyb7Xr5jFCefR6AzA59o7HGiFq6ttvumGC1SZj+eS4NRqyxc2gt61JEVp4FT7tOfARxU9LICQ3OMSU839wAvL6qMzhACAXtFgPsK2A9BAYb++RW1gQF8/29gwOTcZNsivyZDCALUCgWsFx572mAKjZXp7shAD3rk/54xVAqM/0flVj1cjwd+L2+KzwTu6upq2Oryw4cPQ3Tg7u6uff36tbXWhvkD9t5erduPlJfiBX84a1Wt6OD2iNpqCrEMZB6XAnCHSGwoMzn3FGtVZtUz3rio5BeNJzb+arIUrpvG12Q4FvCdqoFRnJS1Xq+H2doMCjwvypMPlCsVzs90jBGHe1le3ypIrVxT96Ox6o3tKTR2/LOcmsG2KC1GaxkQcITAZFjVlUEGOlwm1ycnJ1ug1mT68fHxheOnnEBV/7EgeIwe3clrApUxK8TIsEf3MZ16ju9ljc/pUbg4b5yljx+/uLi4aO/evWu//fZb+/jxY/v3v//dPn361C4uLoZXA+/evWubzaat1+utpSo4WcUDBJ7HhgBAKWpsd1a23D49FClm/m+CiQJaCWHtg8YoNO4TFQnAo1deteyqcYuezcAmyjoDTVSaphAxMoZek3lOm81mUJi3t7fDVq0GChgYtOZPbkV5NsIxk4EdVV/03hAUqD5VdCiyO4aPDDhGgACfzwBB5Az08o5lIUhFuTSjbREABgLv3r3bmj+golo4FuweRgQM6N7f37f1er21koyBgLfTJrblGIqcq8wBG0ujlxaysYkGq51jqEblH5VZRZhVgxgZYJyc8u7duyEq8Pvvv7fff/+9XV1dDWDg5OSk3d7etm/fvg0KET+IgQLCxsMbaJ4Xx0sJsX4MPrg9uO+8touAgPLqVPoIHLxFivjP5H6OsrP8MqDiAXFWhuZt4S5uuL2rKVh7H2tg4P7+vn3//r3d3Ny029vb4XdyctLW6/Uwo9ubzFWtaxUQsBeM5WF0wM657DFA+rUoa58ImLYWj33WEUpPqciK129c1pRxwfMGcO4AgwJeYYAbE+FrA951EOfBPDw8tM1mMzhkZvgN2OK5+tqraoOqzKNMvqZj1Q0GlOLB/5wez3s8pkiIs0iA8nzQ00ZlaP/51YCBgE+fPrV///vf7T//+U/7v//7v/af//yn/fbbb+3o6Kjd3t62s7Ozdn9/3/7+++92f3//wgOyc28zIjb0GA3AOqxWPz6aYfni+1rc9CgTygxVVoXR+39okYHW4jorYKhkdlfRAC7fM97Ih0fMmzcmeILs1dVVe/fu3WD08WtwV1dX7erqaiv8au9cbTXNt2/f2tevX9vff//d/v777wEkW/kWvbK9MLw2UvpEtYXX/sogtvZjMiGONd50JmrTQ5HjCjiMQGnkWVbqqJ6veKkVQBs5LMq2mBzjHAKTWZxEiMCB5wZgBGG1Wg0fM8J62Suw+/v74WcgV0WAVVtUxmwGIiL76/VBj9x2fcJYIWdv8OK1Md5TRaGikfUE28pnQIB14rWrBgZsroB9/cq+gPXu3bvhWbv//v37QQjv7+8Hpeft7Kfah5dteWhbIVH+z/2DfWfHyDh6z3n9oI5eun1QVFc7RgYZ86m0CedfLbtaBzXuIiCA1725Me/evRsAgXlaV1dX7cOHD8PkWfO6THk+PDy0m5ub9tdff219FAYN7tPT0wBiDSwz36pdMLKBUTGvHaN7Wf96BtKePRQwMAZoIjGgHVuv7Pkqn2zMWKc9PT21k5OTQZei7mutbXn4uAkRvybAeQb8GgHJ7MnDw0O7u7tr19fXA8D9/v17+/79e7u9vR1eh/EKmgwMVHRjpqOVfubrY6grMqAm4FQiA3wveg7ve9e9Z3k5Hn7EwoSCPSQEA+gN2fsnAwX2Lsp+ppwYNNze3g7vk4xQAar6WD3Mc7GjKVETNGt/3AHRfjyQqqi/giYjQVYINqvroVDFULDBygwvn4+5xmVHgKSHMNSKy7NM1g3oIjDAz8FaWgvBWuj/5uZm+G/yaz8LpVrY1eqDCh//s25BMMD3PEWp2oZXQVgerNM873RMe++Cxvb9FOI2yQBUFWwoYK30mOlBDMtj/6Ncq5UHvEGRgQE1rtbrdbu+vm5fv35tnz9/Hn5fvnxp3759azc3N+3u7q49PDy82NbY072Yf/RftQNfy0i1eVXvdkcGVOcxM+q8lzLwwMqZQ7uewecIAQsPrlm1o4Wb8L0ntsvp6emLpS0WWjJj3tOhls4AASpZu8dRh0wIo8iAJ5Rs6FnQPGHtAR6vQWxckBSA5Z9qv14PLSozKpufU/3gjTlMi/2J40PNDTDwiyDXIl82PmxjFvskrO25cXd3125ubgaAgDt3sjH3NqdiEIQTZ3GJYmVcRfe9PlR9fChA1gOInrxMoQgkeaCYn1N5Im9cBsoqT/zEV6HeXi5cf56AiE4hk73u+uuvv9qff/7Z/ve//7X//ve/7b///W/766+/2tevX9v19fUwN0x940DJm9cWrFN6SOkApbN7qAsMIDrPBqEyPsqI470KRUrQUD/yynMFeBc/nESF3tK7d+8Gjwm9IXzOPCz0rgwM2ORC26Y4aiuuHxp+AwTcXt6gqHjmnN5D5VHbK/RZ6et9ksfHGADrySwr5UqZ+FwVCExtUwQCOAHr/fv3wxwBe0Xw8ePH4TWBAgPHx8ft+/fv7erqql1fX7+YkGXkyZ8dldx5YxwNRWS0cKxEYVzL/1CMfg/N5YBl5IEApZO9+1FeShbwNROvnMLNf9RGV8iTigwhrdfr9v379/bt27f25cuX9vnz5/bHH3+0//3vf0NkwF4VYGRAzdFSujGiSO6iZz39M1aGu8AA78SkjkgVhNhaezGQM8TOxEpUrc1nhGjKEK+fnZ0NHpF5RXaOk6ssUtBa25pkZcDBJqdg+RmpwWGAAGc9t/bDO1IfRory5+MUFJkR571PQFApeyp/Va8sixR4NFah8LhSUYHz8/MtuTfZx6jA1dXV1kxt29TFFDK+RsNImilf5d1VnAqvrRAUqLpzGQoI7MJj2yVNkdFdjPUoKjCmHJQFfGVqhh/3rcAffpTI9gXgeQaYlue/PT09Da8Gvnz50v7888+tH0YF7u7uhqhABi4z6jXc7GAp4Dylb8tgwIymh7ztP97DNBwS9DwABQiiAWvnHA3gSVKm9PA9En+nGvcV+PDhQ/v06VP79OnT8M706upqAAT42gBfEdiabGsrrE80IC0d7oWN15hQwWE7c9vzM1n6CHBh2rfmRVX4ZaNZSVu93puPooh/FZXxPEZeTcBLsxD84mRCXE1gY8CWYeGyRNzARUUHIm/Kq6ONiypwYhDgLf/K9Ixqv0MhJac9xnjq+J3aJuwsctTZ9J5FRg184j4WtreFRWJVe9gPAQTqb1sabtGAP//8s/3xxx/tjz/+2IoK2OuBaL7AmDbM5I4BrDr3ohE9PI0CAyhsnnHhAckMRiFW5WWxQfS8HQQCPB8A5wHYNQv1m4dvqwYMCHz69Kl9/PhxUJDm9bfWBiSKS7HUBhfcPsa3GrhWV44GMKmogCeUVVBQobfmTRkpeeN5JlNAgJFScPis9z+KikX96UUkVL3QU+cJV7w3O5/zpi927fn5Wc6zMeDAE3ftqDYX8mTRxoM3x8ADtQoIKPLG4iHRXGDEq5uS1zHU+zyPl9Z+RHuMDAxYBODk5GQAATbD/+zsbNjfhcHC/f39IMv4ure1fyZ3//3338OEQQMB9sOJgwYEvG8TRIa94jyotsjy7UmTURcY4M818qDDa3y9Nb27GA/CzWbzwjNWlfQ8ICaOFODMUlRqvO0whkwx/I8fsbD8DbXiToHR+ynmH+uq2sp7nn9eOnXEPLz7HmG7e/VQBmtf3lUmJx4IqHqhXAbLtAIBWTkZoMPrve2K48siBApQ83p8Htc8hjHKhhvC2Bizj74YqVnYHnDldlSRNuYRf1ieIm8sHgow6O3njG9uu0o5SobHjGmlK5QuUfOm1uv1MGn7+/fvg5w9Pz+329vbdnNz40a0EOSaHD48PAzzBGzi4OfPn9tff/3VPn/+PLweMHCh5imoOql28+6x7KMDje3jteNc1DVngD+U09r2+2t8v4PL49AzySrJng1eV4gJ03penpXNO1bZq4Gzs7NhAqC9IsBXAziB0NZL289b/6rq5Skwu45KWtUdn1fgK1Ko/D8CAhXvd8z9Q1GsVj9vcyEjT97UvQqY8mQiKjMrrwpYUMGoSJ3dx/ev6/V6WClwd3f3Il9bQoubsNh4yOqkAEXUdqr+WdspGecxWFWy+wKyXtlT+OmR0SjNmChAdM8DBDZOcH7A3d3d1pys9Xr94iuGDAZw22HT4/f39+3r16/y9+3bty0goPYUULxH49yTNzUOlPyqfsjatkrdrwn4u+boKdjMdgvpRIORowFcOSNU1pyOjT2G5nk/a4sG4A5rODMaVwTgj4XJhBJ5V0bDeBo7iZCvc1tlAMDLXz3jCTW2MQ9SxR+ez63AplDWNjxYPT6rxsrzMrlMfM5r20r5LDcKELemN7XCNDbR6vHxsa3X62HsmOLl/G3s82e77b5a1oV1wEli9t9rKwWQvbaojgfuA7x+KMBVkXKCMsrGLV5T+lWVjddY3qv6yDNofB2dy4eHh61ynp+f293dnfyIETpyOFfMnl+v1+3bt2/t27dv7fv37y82GEIggI6f0pmo57Fv+DrXF20onnP+u6ZRSwv5O9E2EYPTY1SADbdnQPnH+xtYWnyGn8fwPPKtPAnjwyIH6uMXl5eXW0AIFZjlo9a9qvrgM0xeWqbIKEwRGq9dMX+vDoesPBUpWcgMdI9C7eUjiyxUvLnMKPBMfs6bowMGCPDDRFaOjQEDA+Y1tbb9zYMIDBhPFf4zY8P1icYClzMFiB06jZEnRRmozXRbBmTV+DNCXcv6cbP5Z1fL29vbrXkuBgpwjhh+m8DKtP0x7HdzczPsMohy7c07YZ2p9rtRu95i5APth9UH6x3pXY/GAIhuMKC8XIXos3feRpGQKUOvrjOf1glqoyReYmLv+U0p8QZEuP0qf9vg4eFha46AZ0QzA+/VD0FN1J5TQECvkal4xxVP5VAoMkS9YMeL7Hh5KEBSeS7KY0zbKwVrUQJcroWTDfFDXKgkcRUP7wDnybCNxej1gje2MJ0aB5WxcciGvspbJMdzeZZV2eotj71gvIZpTCbtP742wOXi+EqAP1iExtnyUKsTvGgAyxM7uWwPGICo1+tok6wNVqsfEWhv+azX7mP7uwsM4JGp4q164biKZ6CiBDzREJ/HSYMemlRbXNqz1qm8JwHmgULlrZ9G/vHZsUo88lZVO/caBw90IVWUK/LpDfDXJAZndozqmZFq757QZ5Rnds3yU+VF9eBVKPgzpWdjw8Du/f39Fsi2scB5okLkr8qdnp5ueVkWNbRxmtUj6yMGBDwGD9ng95DSG68Nvucoz5NTLyqHESSUVTOiakdZ/Foh7jyL3rkBAvvokL0iw68TZjod5V6Vz5vVWR3wy4f4w3pWHT0FBHr1bvemQ3bemr/+XZEHCJg8YeeGZ1DCk+94cyG1CRA2NoZpeHMU5IUBiQmLdSwvOxlLDHQiz6lHaJgUIFORDBYyVrSZd7ZPUgOEQQAbmwxhV+VZPcPXsqgE/s8iD0oBqP5Sm7GYl5UZXFN4Rvh6gJfz4ntc/PSrvTJATyhr+ywi4P3moEOLdikQkPUbp60amdegSF6R+N360dHRYEB5TgxvQY92A/UrRxtYn2cOLe9pgx9HwmW2GDGwcmziLU7aXa/XL8rkSb8ZKZ2XURkMYMVbezkjmdf0MuPIXBUQKCDACKs1HSHgjlET+ZBfe/dpM6NxfWq0b4ChSUSSGFpiUt6K6jjcayAyFqz0lCeqPEjMJ1IiVeNYUS6HAArsWIkGRApKIfEq4XMqX+aLwVrm/SOp/FDGGBB4RsZk39Zz44qh1rYjcbitN/4YKHOEAOvrASc1fiIAMKZ/uL2wrEOgXRtoNe7x3HMKqnxldkDlz6DR9CPOS7Nn8Id6XzlzXvlqlZgCAgoM4GR128gOP+7VWhvsja3UMZvjbeMd2ROlEzzHIKLu1wT4P1qiFHmL3gBV3hA+i6gO9zxgZcIeCoIBy9c6A0EGrkc1oWGFacoQAcPd3d0wAQU/YMFt4Q0CDyCgx8XhXW6fObwg9tAqCjEb0CqffVAW+cjI6zOvTbK2U6i9R7lmgCDqR5RpVEhnZ2db4J6/htla29q508ad3cdxpwABekD2ig5fE0R1tSO3ezQeMF2WN7dTr1e1S6qCv57xX0nrAQE2Mr1Gp5dHVbZyoHgsmQfuzfKPdACC1QwIeBEx/hqoRQdaa8PYM4fTjnd3d+54tXPkMXJqemW46xPGihlG+bzsLjKGvcKDSE99fZC9FHxvw+/7rR7mEaFR528L8HJKrCuGWNnrYUUTeZOohDnSEb3nzcCAQozcph4pkMJ8qGseSp1bWcxJiscK0FGkvHB1zeOhJ0+lANUPw6QcWTNPCCMDLMM2nmw9t6U/PT0d7mNkgPf0YDCAitaUnXr96DkaeM3IA8zcxtF/buNDkFlP4VcAbcUJy4jHhje+Pb6zMVUZT1XwwmXjPgVq3ETj0tNnGHXwvnprS9M/fvw4bGJ3cXExjJOnp6fB5uCXEDky4EUndqFTu14TeISeBgMED1VVK8Poy/scJXr+0WQOnPTXWhuQI4Zt+D0OvztC5WnPWFr+xDFSZFyUwVbXI8PvtR//r3oaiveesjNeXouwzgjqPO+gV2F5bdoTYcF7lT5TyknxpUKkXJ6N3fV6PYxlGze8bJAnReEYsxUDaLAROCvjrQw81tlrNzUWFECNKOtTO1ZXRr0GRZ6g0RgQGwF4JX8RyOBoAvNfBdwqAsF2oxcoeACaeWee+YhjCieb89dv7VsfHz9+HL5bs1qtBjBwc3MzPGtAAAEyTurleWyRDY0cQI/KYEANTGYaB6f6z/lUUDsOcJy1zMiMl/fhrGd+RcCd6SlIDKWa4TfggEDAwACuTMBfVG/lwWw2my10yO3BbaMAQjQgMY16xusP7zmPeMDu08vyvGW7xzSV16nARykgztdTXAxyUJZUH+OcFyOcRGUydHx83C4uLraiYHYdPTH1tbjo+/OoKzCyaEfPwVBgAOulaEy/7gvEehQZWKVDPf4j/esBA8UHjnP+nwE6jxfFjwImqM+9PFR6xS+WpdqYwUA0/wANPG5oh5/+tn08WvuxqR/aKZN3szXKuVZ9MzZi0BUZwIIVesFrFeTeSzwvAKMF/B5TgQQ2/NiRzLundOweLwvhL1kpb4fbUt2zNsbJWd6zWA+mzIPIBIrTVvtwDGrfNXFkIIsKKFQdKQ519K5xvh5FSrxSrgd8MH8GvRYlY4Ns8o2GHYE5jj3UBzhGEDTjZClbI86TF72xlwGBXnnj/uU2PgT59YgNlDeOlSxV5M/yjfJQoCHLs1q+B0gqzk3FOHJeGbjmNCyDnLflbzYIv4uw2Wy2ItLIN752RoeTX0NHbcV1qFD3awJG6qxUKqhdMYnKOqoA3levDngtqTfJEPNjPtR2wwwCeDkILpvy5kmoduG2iQa1akc2vqpto+crSrRX0R6aJ9Va/D6dSbVnBHCUF+Hdm5MUIIhAApLJOcotb/NqysrGEQJeBgQ2tmwJIW44ZHMHcKvY8/NzOaGQecx0iGqTKtBV6Q6VWFYrvEbg3rsWGXzWU+o5Tu+BaI+X3j6Z0g4qncmKFzXkOtk44j1r1Dix/GxZ7mazGcYDvkazZ2xMInD2Xr331NOj7shAay+3UOT36T2AwMgzaor4dQBO4MCIACt8Xqvv7Ttg5+jh4HtVnnBoqwrwq1YoBNE7R9WxDAjGDghvIGbelOddqLQZHYKCzbz1TLFVkbanrDMPsyr3Xt4ewPGADoJ5VDoWstxsNoPCsmtHR0cv5tFgJMyb12Nh0mgujv1XywsznYLtl7VvhSpjYZ+kAGzmQLRWBzsMej0d1COzkcHvJc97x/MMUETA3tIbCFaOmnJc2YCjXKO827jDsXJ+fj5cszLQ8by7u2t3d3ft9PT0RfS6Us8qlcEAe/7KUPYAAtXQTBUjiLOjbSYzvxZggTblpSIGqkE3m80Q6jw6Omr39/ft+vq6XV9fDx+0uLm52drGUs3+9NqjavirRkm1Uw86VmVlzx+a0lQUedIevUadKgou8/i5TpzOlBuuyzZvxrwPVHYGlK3+Khpm5/Ye1MaSbQVrOoG/9Nna9nhgcIG7sGFapkrfZJEfHnM94G/fxP08Vla9tuU+yHRTJSIwx3hiGbdrERAaS7waAWXHyrcxZUtlcayY02jOor0msOdtrCAYMJ7tFYI5nfhVUOODHU0FXqrUNYEQAUE1KsDkKTE89wwoT8qzZ9TcAURZmBbvqWWDrbUXnWKK6v7+vrXW2s3NzfB1q+vr63ZzczNEB3h74ywqgOfVSIDVpaejWZC5vF6k7w1yBDeHQpX6ZZ5m1N6RTHvPe8rS8/rxXmb4lbJUxHu743t//MyrfbvD2z7VwqT2DG6+0lrbCosaoTNhChPn+qD35bWVRz1j45DkdB+UtZNn5LP7FR3Qq7+UTE8FRFWPOgJHBrJVeB8/gmQbD6GdMfBscwr4Q0oWGTAbYxE03JAu0is9bdINBrCgSjRARQWQaaZMWXNoBCc/MVDABmOQwHMKjo+Ph3ea6vUBei3X19fDN6+/fPkyfPcaIwO4HMvqlXkpLNhKyVc6NkqjAADnnRnDTDn39u2uiYGK8aIAjZLXrD3VeXQ/a7coHyUj/MvIFFZr2x/2snsY5scdAs/Ozl5EBfDdKI6ls7OzIX9cMmUOBE8kNEVo+8xjfgZQrM9QDzGIUzKqFKTXD1XjsG9SXrEyVnPznunwsRGCyHH0AIAHFnv1ZBZR4HFl//m+2QdbJWAg9+bmpl1eXr7Y74aj2uic2hi9v79vl5eX7k64Ed+91PWaANdAKgWrKBIGJcSchiMD6KkfHx+39Xq9JRS2RhrDO6boMHKA66NXq3/CNfaVwouLi2EnQrtvQIPRnoV/UClmyl55qZ6CV+lUm0cDYCqAqJRRoX0pVZSzzGAqea3UOzLkSFE+3phQSq4HWLFh4LFs4wln9SMZsFWRAZb51Wo1GH8z6uv1esjHwp4GutXSX7UcF4nbIfOM1HPqv3qe89g3KcNkxypoVdd7x6YCHh5NyZuvZ8CXnZ1q31WAAYMcBKmtteEVgb1KNq+fv3zbWhsm2fIeBa21rU8x48R43iyM+VV2oaftuycQqnXASB6q7vGGVB4YVkQPwt57mtG3DsJtKDlMad6K/Wyuge0cdXl5ufXpy9Z+bB9p37y+ublpt7e3W++DcPmVB5q48/BcCbAyClXDxArTU35VNJ9RZuj2RZGhrkYHppRbzScDFJFyq0QJDATYuT2H7zn5GZt0y9E30wNWDm62Ys8Y0LC5Nuv1+sUX3BDo43hR7eYZcyXfnnGsAIK3QhUDHxnMjCKjmkVgMh3igbheqoJwjzx5qUSNEBS01raiaGbgLTpg7/35+wTeVxXxdRtHAyp6bAyNXk2glhJGFHV+Bgi4DAshmqeCDWUgABvQZmHy19ZwshPvo25oDt/xWP64EVHP3gLcjhViJTfGSM2l7CJg09rhKtaKcVXtqsDa2HKi/9GzXn6eQvAiCkwMDAzoR0uXLE+WAyOcwGtk45E9IeRJ7VfCPyxP9VUEeCPK+mbf8qyMVGTsK4Aou6eoIv8Zb2N48AwgGmGvDXrHlMdTxKM5n61tb9Rl0YGTk5Otbe5xfJgtOT8/fzEWVRtUxsEU6p4zgMfM22XyAEAWFcDy1Vpku47vZBAQPDw8vDDqFjE4Ozt74dnYzyIHrW1/T5vfWaLnpF4TeCgza6/oGU8hR3lWQBvSnF7UWOS+a4r6xrs+xnOP8lXPqnEQGTx1XXkxBorxugEBA808rnGMoqzz9zgwSoDKDT0gBgEV4BHpGU/25zTq+wYETL2GrkKVsa3KzcYE3+txINjYexEvldfUSAH+V+NIOWkWGWBAYNEBBAMIvltrW1EydjDR7qpVasjbFJDQBQZ6G7giIFHogzvBDLLaNtVeHeCSQX4fg6HOzWaztSsUbh9pisuOkYApheVFCiKFxmiWkWqECjMjg8eMlOBHzx+aoqySGuTRkZ9tzQ9T93hHFQDB+fUqVK8MlltUOhZ94/s4Wxq/x4GAgCdCGTgwXnApcrTaxuOzCgR6gB62F6bL5H9fpOTNrqvzqeVwnhlY9agauYqei66r/vJk3+5VxlMEhOzc5NrGAM6Rub293ZozYMsGceWZOZ42cZCjz9E4mAP8dk0gZCSkCvQUIzJZBQBMCAgwSmDXGQzgnAEGA621Ya91O7fdoOxokQZUdDzZCZWkmi/goTmluNjwq+vquQoY4PMxVHk+6vd9kRdq9YAZX/NI5aPCtFE+vQA74l3lm41B5XnwfiJ4D7/ToV6VGS/8KmCz2WxFFHiHts1mE86UjpRdRVF79fcoirIcGu16bEXtO6VdKtEIjARUowLMVxVs87XMVlna1n68dkNAYIQf1GutDZNq7ZPFuKrGIgvr9XrYuwZBd2QH8DiGuucMeMqiykzWuIp4WZH9DH3xZ4xxK0n7bxOYcB9o+8qagYL379+39+/fD8tALGJgIMO2TcV3PkoZKqSp2kEpdtWGbPgzQJAZ4l6BYcXq8eGVb9f2qVCjAa9oDgVbMToZf8xL5g0qEIBtr4ytGWp+BWdkHs3p6emLFQW8vhrBQ2s/vBybePv9+/fhk62mCFVIFHnLgLS6noEBRd5Y7OnH1yRPDiqyO6eTwPyMkfsI0EbnXHaUB1/n9vIifRWeLB9e+t5aa3d3d0NeZugvLi6GFWy3t7eDzbF0FlEwQODZmWhsZI4IU1dkwI7MSE+BkTdlHn/0HIICM/IYmmmtbYEBO1q43zwQm9hh+z1jBIGRnOIFlRd3kl3P2gGPfJ6lV4LM5BkOLxTK5UWDosLzoZBqB5SNOevAbVodH9wvHGHAoyLPg1JAwOtv+6ldCnk1AUbDeHUBkqWz7YhtZrWtwsGx47Wl4pPTVI1PZYwhHQoI8IxSxfAqmRxb/tgIQa93nj3H17OxocrEe5VxWgEkqJcR3OIeBLa1sM0hsGi0OZ+W3lavff/+fQAEHhiIHLaqDHeBActcTSTECXZRQ2cMZsbRlBSCAgMC+AoB05pXP1T6/19BgFtF2jsaU3qYj4VpzJvBZ3DXQQ8ZVg0+G23Po6m2kcrTM35Zn0Q/xSMPnEMADb0eSwa0omf3SVlfKtCB7/Gxrww4245qFto8Pz8fvH1bQ217B9hkxNbasIOaRQdwnGVg1I6e98PpM8DMdfbKfguE/Ct90Kt75uBHOQ+V9vX0gwK0VepJP0e7YB5oh3CyOc63wT0EMAqNy+ANPNhWxGZjVN/af29sVKhrAqFV1DMIkfHy7kVl8X/28FQH4A/v8Q5oFq6xUIyFME9PT9tms9kK2Zixt4kgDAgwhFNpK8+QInkIPBrkFQPlGYoqeo4oAhuHoHS9CMmUfOaslzLUeO4ZAEuDPKkxg+MA88aQPq40aK1tffPDQAF+hMXed5rnb+PAonY86RB38lQRBxufFZ0xtg89HRLRIcgv8+rJhKePK3mOpddun6jvq5ESPu8tP7vHfYLL0jECjfsM4LJcGzc2xjzAPhd1gwFjJFpemOXRWmx8+ByvVbxMz9ghSLDOsXeaBgZOTk7a8/PzsOSwtR9zAzwgYCDA8q16LnOQ8nq43vw/MipeGRUgwPxEfB0KVQBZ1KYMMKZQBDIqQMHjE18TIOEyQwPTGBVDI23GG7cjxugYev8Gpi0ih+PG0qmJiPi6oVevZOA5Osf2OkRZ9XiKgEA137loSrtNAWRK/vla5qSynM3lzHC++GrNNsrDbxGoHQZx7PEH8DxnO7MJHo0GA3juDdoejzK77w32iPA1AR7teUZetkNUa62t1+ut3Qefn5+3dhvkXQfVxKeIryqw4Wd62oCNQY/xr75eiPKIeH9N4tcmPbwoQBB5JHPVM5J5z/PHZyIg44EDzIdBgI0Te71mP/wAiwFo29p4tVq1h4eHdn19PXzUC7/0aSABVyWgo4F8RfqlouzGesn7Bgaoa8d6vCgrfG8MP1PaRPEQjRtPD3lHzq/imM3lpHnP46sCk28z/LwCrjUN2m1uWxUgj6HRYEAZJi+sic+r/xVEjnl6xmq1Wm198QzzVx+FwI1R8CtTq9VqWFZonff09PQiMoBKbGxHRco6Gzjcxl5EhO9Fg0/13RggsG8lqqiXp8ywes/MpWx72lGlZQWD/xXhfBeMDpgHj1sK2yQoe+eJk3nv7u6GfdbX63W7vr5uf/31V/v69esACBAYICBQKwvGtOcYwP0WSI33qH5VB2UqD3bd0+Vz6YTM68/6OwIBkY1iQJWlY8J5duycss5X+h8jdb1jopp2tk2HWDC5syqRg8hAKR4QBFh+2GkGDnDzIfwegf1M8VkIFL+aZh3x8PAgv0mAkQG1PMoDTl5bqPpwnaP2R+FSgoXtNpey3IXCmZOUkfQ8hjH58bNjoypKzr1xp+qk8vPGTGs/XhMgbzz5abPZftdpYwQ3EmrtxyTbm5ubYSKhXb+5uWmfP39uX758aV+/fh2+8mnLphQY8BS110YZ9ch5pPgPiQ4BdI/lIRsjEZiIIgEZr3ZUNifSCVOAF9op1Ls8z43rjen5F/HMVO2frn0GIpqiXDOqemT8wyiAfQLSwpm4qZClx4lOm81m6z2mvfu0H84bwM8W2zPKu1GdifVTQlH1Eqv3PMPSI1SesjwE5VQlD0BWqEeux4Iuz9gpJeiBRlY8uFmWpeVJr5w/fn3QNu6yKNrx8XG7vr4elg7e39+/+DqbjZsvX760z58/D2Dg+/fvW5uq8Dbeqm4ZqM7aN+qDTLbfily3djiAvDquvGiC5VEFfVH/9kQEouexLO+exwsDWQ8A8HmvUz1Gp7U2AxioICeFkry03rMKNTKqMrIZ00bmxeDMTX4WjX5r7cXXCtfr9fCu00KbBgKifQU84x/VveIJWt69SmqM4Fd4qaTfl0Kt1meMElWAaA6evHI8D4k9iEjBerzgkfcawFnQuPGWRQRsJQ5vPWxzDWzewN9//721xJA/g9yjoMfQmLF3yHQIAFzxoORUEctpFB2olInPKbkeAwQ8nj2+sv9qbPI1T2equmAeqswqzRYZiEghlcxbNWLlFpVhR/No7NsDttPT5eXliy8T4msDJp79yVuweu9vqhszVSIC2A5jSAlj5ml5bZ0N+ErZ+yAPNLbme938bE9Zlq/n1Y5pB8/zxzK99FYeAtbou+gcRVCrCvj1GhMvKbT5OAYEcCkiThzkyYNWPw8EKf6ZOO2+jeeuSUWPXosycBIZvEp0gK8zKblgAxrJTaTjomd62jjSlZGdVJRFu3r46gIDZmRZqUSeSBWFT/VyeW0zNq6FOm2XJ/w8MUYKcEtWU4CmyGw/AtxGFTcp8oy+GRMlgHzNlKvXDgpcVLzerOzo2YwqCL3HS90FMdhi/lrrC2l6zyiDM6cy9saZp/x48y17zuSstW1QgJObzJC31obltspQmxHHr3byNwgQEODWqvwRFjVp0BtTvUB0qtf01ui1QYBHmbH1Il69ZWTPeo6Z5wxUAIB3L5PHjNeevsvy6MmrDAZYoSimekM96lm8hs9nFUPvD5U/ryDAGdAIBoxMMRmoMA/GjD9vlmJejQIF/FPKlOtfCa1xG3kCnT3H51E65I2vYd8oQ3UontjcBpqjBlXvpXIvUkzqeZQbvI6TlJhnBAWcnqMDCCyYB44A4AZDBphxjwKMGiAAUIBjTPtVlLMiL4JwKPKLVAWvu6CqTo7Gvho7kW7PKLJLnqPW4xDN2c6ZfVS2NGpHle8Y6n5NEDGFjPcgG8/IZGXiPQ8I2NGiGni08nHTIHx+s9kMOw/a7oP4rhNnWxtVXhH0giV+Bv+PQdFjno8iP+x1evXbp1Jl3pWHkhkXL01Pvcb0WwaoKspZ9ZPKW4E7XidtP5x8aIYew/8MnvGVAC+TipYSeo6BaseKQZnah/si7kO+zrTr6MChtVkkF5gmut/atHqN0ccZIIjSKRrb792RgSoT1RCeAhG9SNA7GmEY05QUToKy3aAsXxSYp6enrQ1WbAtjnPyEykzVMWonr228Qc/8cb52ZGCEbTYGCHAezDPmixM4MT2/pz5k8mQUqSeKswtSY3IOkMH7DdjHik5OTgaDjq8LcZKtgWWeD4DGHyNoXrSM68nnrPgZxHjPq/98b5cGdB80Z50yx621PEqcXWOKdI5Ky/8jvbnrsRsBWeYhAwA9ToG6nlF3ZMBTilxpS5t1YuSxVQQgEggMP9q2w+z12+xnTI8/XDZlIVA7osJTm6WorSMz6lHuqt0VEIgUZYUHRcpYeh4m8rUvGuu9M3iKlGGl76p9MAYUZ2VHBhQJQZsZfttwyAi/2W5jBKMDuCzXjD8CZwYDPWMkqmNr043foQMCTy5U9GPXQKCHPBuRpbdzNnZzGPLMkezRx2PqwveVfUQ+omen0qjXBKpTI9SH17MOVuVVyvaEAjdMsf+29tmAAL8bRUXVWtt638kTo9S+0ZGCU0aS64PtwRELzlPlEwEC5iMzcB4/9rzVtYLw9wkGMvL4rqDzngE61nPPPIrW/Fd1Xh2i53DLVCNcWWPLdE2G1F4bCgioeTVTAAHy7OkH1a49NIfRmZM8uaiMvdcCOVONlgdmq2WNocgRxetzgNCI5576zNmfo5cWehXPBqFSPJ6Bi/JlUGFHVDD2w0lMuHsa/rz8cbKTeUao7PBVQWawPfIAgaortpvKB7e4NEXOhgH58xSLag/OwwxGVYkfkkJF8mSJr0UKYs66VfNisFd5FscgA02VBtsDX7XZxFsDzF5UzJ7FcjIgkMkS31cgN6JKJGVX3tec1AOAppCnj3sMn3omM3oVHVrlYaoO5rRzyEMGCJCfyGmrjpuMurYj9tB7BVEphcP5ZiAgQpts2C0dKyn8YhTmhRulMPHMZ/Z68HpUV1bCFVJtrgw5tpWKDPB7fG5TflbxoKIm3mZLWF/mb1+kjEgGBFqre5leFGsqn1VFxnlEiiLiFWUA5ZvBAMqWAgVqF07LUxn/SKkxeOF7Yyh6rnecvjYpUIc0l8FS5EUbM2KZzNJieRngifKs6CG+lgFGzw7NHYFRtmMXY6G1kWAAyQMCryWglY41sr0IlAFj0IGklFq05bCXT8Sb3cvaKEOBDAQiI8/kfczGQJSd43I1BdYqwO41yQObPKAqvKvjXJGBattVy+r13PC/1cnGzGbzY7mtfZAII0/4LAMDHi/KsagotbkNX6S4DxUIZN5kjzHKDGyForZnftigZXz1lGX3o/y856tjay5DP4ds9bRfld+u1wQ4eKPwxRjF5aVjReN53Mr4YTr7z0ZN1RGPrbUt5Yb3UdHxM71UQbzMmxcJYOPEERB+ll8tICix+tmMclxGiXxVlPquPJUqKUWkAK5dby0P03nlVK71pFGKVfFaVfCZwmDvD18HWVqUJebH5KQCBjJgUK1DL+1bHseSksUe+ZyTjynPZUAiS2P3FT+Vtsi8fy9dNvYy6uXTo0r79VB3ZEAV1uMJ9iD7qKGwzMj4Ia92ZM8F0ymF5Ckrpciq9a0SK3hu6wwQ2H0FAlprW19uXK1WwznW3ULD6Bmi9+jVzTNar03WPwhwMp6iekXXvPJ7lUUl7wiweApnrPJQO2Myn7gqx44RGLA8sjG0C8rK2odx7SXVxxnfSp9UyxrjGavnxkYvFNDtkfOp4IXLyNJX6zdGzhisZ7xUaDQY8EiFgirC2YPklEFUHrER7qaGXry3mUoVCOD9iNesDdSz0UDnPCNAoHjCCAB+3hl3azSyTzlje+BHbAwgVDyVaH7Ba1AvmGVS4LP6nPK8ewbqFMPkgZEKKGLiPkRZU8A6iwCMBQJVUOM5Bhm9BSAwB4+9xm1MmVOdggzAVIBQFRxkjukYfZ7x1ktKr88BfspgwBR+1ICeEcqYipBipRMiI2h8RREA7zUAH6N7XntwG3iGXp33KC6uN3tsCjjg553xq444mdImT2I/YFsg0FJ8Yxvtc9OhyBCq/0aVCEFUpmfsduUFR4pS3a8AApNlXIKr6uTJiFd/lS4aHxn/Hu9z0L7BQcWY9IDaXcnfLgjrperI9408u9IDGjwHrKf93kpbj5pAWPECM8HMIgj8fCQMmUes6sHhShW+5Hqr61WqInDPg/PK89rCiA11a214FYAAAD/vbDPFN5vN8IU64wPzsgiBx6+lU4DsNcnjLzM8HkVRAc/oqjyqAKRCHliODDyf8zUGtbyUNMo7AkKVemT18uqWGY6I5ojg7IKqgMer95z16m3T7LnKOMF03pj1bIhXzhiZ9GxVxPtcspMBmDkcj67tiLFg7z56EGiYepGV5+V6aSMQwELBrweiGc6qgbM28MBRlDbqbC/CgD9cWolzAJDUqwH72Uebzs7OtrZqtiVlGDWwyYS4xwK3rxLQfXtXxp86x/8RKFUgp0KeQu7hmwG0krde5VMFL4pf1TZZflUFqfKuKmCPX8xLPeOBi7dOc9dhrBz32gAvj149Eo35KkVjzstX6ZfX0oFjgPikHQg9xai8LpWPyreK9PAeHu1cbSSExHVAYID/8bzasMhHppCUUYmABNdVAQG134IRprMoAAKC09PT4V5r23MGzMhj3rYLnRHu2ohtp1YhHAJ5wE3JFJO6XjHYWE4vr1yOR71Kx/N6UMZY1lAOKpEOpRwjAMH9kOWbKWfveuT5HUJkoIcqzsUuymQa6zlXHL+MF6/PeoBvlG+PXfHyya5l+asxNQYAII3+UFGGtrwKqsGG16voUYEJJC8kjUYfz6Od0LIGnuqNKIUXGRG7z8rZ/vMKASRLy68GDBgcHx8Pcwha++db9vY6wPI20MC7L7b2AzDgVrU272CfStWT18jIKKOIP+95K4ONS+TNV72lrDxVx+zZ7L4CoAosISiwI8oF32P+Pb4j/qpen1ce5q1AhVfuPknJFl7HdPuiqoGrtm00Tiv59QIBTz6UDHs2zCsvcwyULsjGTga0KzQKDGTKK7vfi1yrXpWl84ALNhACAi+sHZXl1SUakJmCVvX0DIr6WVQAj5gfftKZowH2Ozs72/p4EwugvTe28mxXOiR7tYBA6xAmD0Yyo/qwMmgzpF6hMcbG4zvKv2osK/x4CtHOPcXFZSnw3UNq/GSGf59GclcU6SCPvP6pluWBp7lpV0Cgp+5KtqoAPuIJ84n48oCISjdWvkeBgaoQKUUVISssq4dYuXgehPpVdkTradyso1Raz8vy8m+tbUUDOOTPYIDncFh6iwIwKMCtZrk9NpvNsPuc7T+g2ou/4rherw/Ow0LqUS5GmSdW8SbUc9UyIwXFz3j3xwCWqrGpGIspClWVleWjxnUG6A+JKs5X1dnKDEsvH14aJXNT2neOvhkLBDx5zUBo5mBEdcrG+VSbZTQaDCiG7ZiFNLz7Wb6Kqg1l5woE8D31rEfKIFQQnOLV/nvRARxcPE/AwAC+8/fmDuCqATP+DAZs1ji+brF8bAMim1io2gy/3WDp90URiM1AALdd5n1gOiULSpkwSPDGjPrvAZIqnxEpWcR8ory8cWR5qmd7gDQ+k9EURR2VfWhU1a1TjcZYvrJrFRrrOPbUOQPPnoOb5V8dL979yIHwQGIPlcGAGRYL+fK6/arS5PsZIsKjuqfuV8AAG/8xQCAyJD1RFGs7npAV1Q0BAU8EZDDAkyl5noD6HR8ft83mx8Q/Ls+iAgoEtrYNBp6enoYvPu6bIk90LAiIojgeEPAAJD6Xle3RHF6XqntPVCED8V5+Yz3VDPxk4OxnpzmN/mu2WSWqxBTp8YoRVffV2Bwb1RordxXQquxYtaxuMLBarbYmA7HHqkg1YAUMeFSJFnjnEQDwnomMAtbDq5MHGvgZBAR2TdWVIwPefgHeMkMEEB4oMDBgafFTzmprWTZu+JrAvnK37+iAZ2B5gHl9Gsms5/n3eC4KLPQqmmgMeuVyGpRND6iq5cOZ4ub8o2jKmDpF/ZJRDwh6TRpbdsUIvCYYmjM6gM+/NmXgtspTD0iuPJ9Fvio0OjKw2egP/ShiA9yjIPHI16phF84nO1Z48rw8ozHKnBUw38OyFQjAkD+/JkBSy8JQyXuKf7P5Z5WA95VGJAYDxtM+KJOVucrAI1PV0I/hM4o69Oar5E7JI3opXvSDyzWdEU3YzfjsBTtViiI4+44gVIxM1AeYD1/P5HXX1Auax+SN1GOwOS81Bqr5jrF7lq8699JXrnvUtc+AGQZWAFXv2osORMRl4bUx6CgSkIqi8SIbVQ9J5aN+rW1/J17xUdkrgAGB1ZPnGvBrBTbcGBWytmcwiH3Crwn2HRnISPXfGM9wTCTAu4/5eQqC/0fANCLlueNyVbzO4ACfU8rd6op54fcsIj1SoUr9p0QH9gkEkDydWvW4pwLiyBj2PJddn4PmAv8RcGIZn4unnnZRNnGs8939CeNe8jwEpUCq+VQ8icz4c9qowXqFtoK8LV9UlFgWLgPkTySzssIoge0RcHp6urXaABWuKeLIcCgDwOCEyYDCarUawIBFBrK22CWhvETAbq6ykCJFqDwLPnI+qi5zeq5eJKAK3L3/c3hpU+uYtTHyqsDMPsgDSZ6xn4tPzmsKyKqWUUmTeegV6rU5+6YsIpDZmCp170AYhZ485aQ6kAUtGpxYrgcGekIlFUFXFHkM/L/aQR4QsOubzebFlwHxvnn2Z2dnw8+uqdcEGGlZrVZbKwt4nwLkSc09QH6wX2ylgf2M/31+m0B5Ul7EKsonojEGtJp3VJYHano8Mvb6PVDA/FbbD+UZn4tAT8Qz13nMeI549fLeJ2Fb7ROgIFUMa8Srp/c9XToGgEyJOL0GIJgDfKqoQG9e3WAAC1bnnC7Kw1NouwjxZOV7NFdUIAJRFYSniLeI5dcGGBUwQqNsRp8BCUYC7GhpK4PWQIbtULha/Xi9sE9Sxt8DByyHkbywAcuMYiaXY0kpFcVPxGfkwSvD7Y1jZeBRtrz2rAIzTF8BRl7dojz3La9Mu9aLSk6qOnIqIKim9yIDY4FRxrsHTrM8ka/KeM/GZNR2lbav0M5eE8whuNwRPYO5mnf1epRmqkcZPbfZbH8vwQwrvn9XWxHjnAE2EJYfG3p8NcErFfB7BQqBIn+2+sAUv/G7zwmE2f2oD9kb8wzmHLxkNCX6MJYigODxUIk+KCAWlanyrgIB5jmjXlBy6NRjmHoNUi8PU9N74KG13bzOwHx75CJzcCMQVNVJ+H+KY9la5yeMezoyQ1QZSoyiDVGarBEyRcK8R0IQKSLlQXn8ZEqMiXcfRIONKwx4a2IDAuilI4DwvnGA+Vnd1IoCrAeWid9K2BdFg4zbfwyfXoTB8qsOTmVkszFUMcZZtMJL59UB64uvsDy+LL0CBJh/RRFGPGdAoNcw/EygoDcycgikIkyV9Er+qzo5oop8VWhqBNCOVZBRoS4woL7o5xXOA9TzItV173xsxSPFGCmSTMlEBmAKQqvs5Y8KlY248ugtxK/C9ti3vHcARxsszWq12tqQCJ9BgLPZbH/lcJ+kZE4Zocj4RgPe83QrchuBB/W/lypenzdG+XlltK2fuU6qrhU+PRorQ0qvKHAz1YM8BIrAYa9XvUueeqkaLXptmuJEVCmST3bKxlIZDNhEMCwcmTHylAemzZSEMqgcERhrbNnAq470FGZGHt9cvjf40KDyDo+chxnqiA9Oj0a7tbb1gSFcOmi/p6endnZ2tvVBJ8tDrRdHQGH5Wz6Pj4/DqoLXpupA8Yx9j2GuyLfKNwPXXnlcpsdzlBave8pGgV7VXjjxtGLYlaxWqCfyocgDBHyNx8xrEwPrKVSRR6+f+f6uaCww8cborvntkdfI3lUAhXKO55TNLjBQGdzVkB1Sj6Lm/xWlo7waDxREfFcoMv52HweXAjqRouMIgNojQO0maO/xcZ23zfJHQ27pzNPDMvCbBbh0EPlXew/se/LgGFDm5YPP43X+z2Wo5zJ+ItBRochDxDI9eevxeLI0SnFFbeP1QRaVieRsjOI8lEhBVUeq/0oeK4Ypyt+Tf5XvrgxyL+DdReSnB8x65WfjlJ/1APvUupXBQGVZGHvameejBMhTGh4S6vWi8LmKAEVl8HXsrGzQ4TOc1uMFjTMvAcT87FUAtq8ZZJvh//DwsGXMLW+8xkZc9YOlQbDI3yRYr9dDefsgNVDY8/GiRJW8e9NH/5F6PEJPQUyJXHDeyrjg0YCiF3kweVHzTcYqMg9oe+k8AH6olIGbXRhaHhtZmmp+lXTqvEIMDHr4m5M8B2OufPF/BgB6eeiaM6CYUgX3KFVlCL1rVXQ8RgAinlWeSnCzo5cP/rw2U8sI8b/ijY22Cttb2ufn5wFc4PJDM5JYpgIDlgeW/fDwMJRj5e6LdjE4My8guzdFmfca8iqxB9LDn7eZFeZX2cpa8VThF8vy+LM0nlOhIpBZvvumiiwy/5Ge7IkEVdori1hk13dNU0BDxfhz1M8DKlFEmMvLro2h7qWFquBqmMPy4OtRBavlqfsRX+wNqucU2syoBzR5z6vBjUYZVxIwv+jVe1+YZKO92WyGvNQkMLWiwF4THB8fb32iGCMFtvsg/vZBnnGye2ycK0aQ5YjLGQsUKjTGu/eeV/lVQsDKCDCIiEC9Gideu/RG7KK0XvkeP9l4fg3yeGBZ9eR2jB7z+OiVu6pBq9zLeOJrU8B2pVzv/9SyK/0Zlc/Xqnx0RQa8jooK9RQLP6ueyxRFj9KOrlUUuofmmFeF/Ly8lRelCI0//gwcMDEgsHIyAWLAgeXadw+svJOTkwEQnJyctIeHh7ZarYaog/Fhaez1xL5I9ZFKg0d1n9PsCgx4Cm0uhezdGzOemF/mTRngjPesLaPxqNIyT3xd6bBdGpNeyuqpdE6ljavtlxmoKbRLoNUjJz157qPsqdGLjLqXFkbKgwUlU66qDEufnffkq9JnUQPmSaVVvESoVBkS9SwSbhqEAMKuKS8f+cZ+Q4BgafGeaiNcFogAwXjl1xSsODwv8LVpTNmRLKs+Uc9V8ldKIwIknuGqll0ByOpaljfz4MllBMSycwW6sSyPp6n9vy/KvGh2Pnr6v8ewTwEEUfrX0AmVMnoAdtXAV4C1csgiYpA9J3VHBiID5nnDnqB6DVHxsr1GGSPcXpmKPEFQ/Hh8KS+Kz7O9BtDQ4ueC+YfEoXv8dkBrbes5nFdg5+oLiAwsOP9DAAJInudaVaJzeUbeWMnaK5OzzNBiml4vOBqvHoD2gEAGsnvBlRqX2Tit/J/bq+wl1rt2Dc8r/Tsn9QKBuUnZoblobk/eA9lV4D+1/B4aHRlgjwiFFmcVs9fEjKJRU16tVylPAVaBgXUI8mnPc2exNxMp30jhKeVv18348+DHiX1cBq4awB8adfTk0VjjqgF7ZrVaDUbf5gI8Pj629Xq9tZMh7iZoZfJ1K8+ev7+/35tStfopuYo8fj4qOeFy1L0qsPRkx5NJda7IMw6RsurN18tLgQGuo/JuMb+KUe8h1jk8vo0nTLuvKEEFTCP/kfNl9738MpCo+ibiObtWpWp+HmCaQlm7W7nZOfIX2bcMPChblOmCquyuNvuEvQsttNBCCy200N4p3vN2oYUWWmihhRb66WkBAwsttNBCCy30i9MCBhZaaKGFFlroF6cFDCy00EILLbTQL04LGFhooYUWWmihX5wWMLDQQgsttNBCvzgtYGChhRZaaKGFfnFawMBCCy200EIL/eK0gIGFFlpooYUW+sXp/wNA51wAn+dQtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5CElEQVR4nO2d6ZIbObKswdoXSdN95rz/E513uTPdkmpTFe+PNqc+enkASEoqUhLDjJbJXLAGIjwCAeRqvV6v25GOdKQjHelIR/pt6WTfBTjSkY50pCMd6Uj7pSMYONKRjnSkIx3pN6cjGDjSkY50pCMd6TenIxg40pGOdKQjHek3pyMYONKRjnSkIx3pN6cjGDjSkY50pCMd6TenIxg40pGOdKQjHek3pyMYONKRjnSkIx3pN6ez2QdXq9WPLMdvQavVqq1Wq3ZyctJOT0/b6elpOz8/bxcXF+3i4qKdn5+3s7OvXbJer9vz83Nbr9ft5eWlrdfrtl6vt9LR8eQk4zq9I3p5eYn3lYfup72olK/nzzL0fqvVqv3f//3f92jKRXTk3Z+Xen331vul7WN/tp+Fd1M5dS0dq/NEanfKKr/OY+/8d6WZNpgGA0f6NnKleXp62s7Ozl79pNSptH0QJBJI8Hc8HT9n2mlQjepDUEB6eXlpq9VqC1z8LILtSIdD4sUj7xwujYCAn6efvyNy+VQBA5JkDXnnCAjG9EuCgSWCY5ZJvlUYEQg4ADg9Pd0aCLPKuPefQGCEptMgG+Xl4Ka19goUKB33Rhzpbel7K9KjYD2SqJJDIwBAr2ICBqIEBuglXWooHXm3pl8KDJCRZgXgjPL9HkCA0wMCAZoW0JSBu/pZrl3L0EPWveOoLmlqQKRzDsDjIPxx1OON7wUERrx47N8jVQDApxOrI9MQJQCg83TNvQJHL8E8/fRgwAFAcjXNoMKl7sgqzeQOT14BAQH3DJCxR3mP8vX7o+mAKk5AxzSgVXYOeKZF78BxEH4bVf3bA8E9Fy6p6hsfFxXPJI/Q96LjFMFhUk/2JmXv8UP+3z0DyRvAI8+l5H1qlHQEBH36KcFAxYSJqWYE31K3fBJ8jkS9fPQKnJ+fb8AArWp3688q0JeXl3Z6ejqsz9LYAAcCHLgq+2q12gIEKk8CN8/Pz8O6HGmbesp86bFKr7Vx8FXiGbe6eC2ltQsdgcBhUpJxySMguVcFFbvsSDFTrvgJBtJvtVq9mkogJb490k8GBqr5qCpync8tdYePykBKVncaGAQDmhpgeimav3LP+vWR12PkGagsyqoeHMyqB99xxX+cKlhGlQL3du79/Jke9aaNnGd658lFy/SO9PPTCAi4sk9Hv99ajjlyQ8KBwcvLS3t+fh4CgrSK6sib2/TTgIERw0nRktn0bE+wJaquOxhJbqxUZpbVy9ha22LqpUqTbvjW/hlQ1UqEqv5so0qRJBcfQUClbBzRH6mmWUCW+sVdsj2A4JTGx9JfCuoSX32Lt4B8ma4f6W1pBFKTXGZMlI70KNIoYuwR3f86Sr4RDOhaAgVuYB29BDX9FGAgWaUeiEfXuwfjJYHVi3AfgYGULpnOy+0DpbUWgYCYOb3P/N3yosBMQCCVObl2mX5P4aQB3WtHByy/M40sdD7jfVB5wTgmvL9a254+q8jHRaXoq0Au/6Xnle4uiv0orPdPCQgk3iQ/VkAgLUdurZYRUvg08CR/HBTwlwBCMoqOgODAwYALw6T8tWGPfpzLbu2rq+nLly9b7qbKAl+isCjwvnz5srmmspN8pQDdXwQDFJZ8p0LkLEt1recd8OfV1vyvPH0wu8KpNixK9fkdqaeMHfAlS6sStBUYaO01EEh9kGJVRv8TCCCgpSBOngOl5+3yuwvkQ6UKCPT41KcEmIZ4arXanlJ0z0BVFge3ysN58uTkZMOXeoc8KaKs+1158GDBgDPZ2dnZltK/vLxs5+fn7fLysl1eXm6AgEfmPz8/ty9fvmyYoid4llqwSr9Kc8aT4AKUVnkFLKr2mqVKICsNDaKUh8/7tfZawfggrdL7najqnx4IYHv3fhofVPxq7wQEEr8mV2qaZ3VwIAArPq5+yTLzMqhsv6swPlQaAYHkFajit9i3s3LW+daPZ2dn3SkE/QgKyMNHUPAPHSQY8GkBAYGrq6t2eXnZrq6utoABI/Op0DhPLcXbWh1E6EzhZfJ7nl5FfJ7egOTG8nzoEvNypHarrleuWXeVqd01kFLdXMEk74Cfj8r+K5PXuydcK5cr96NI19wTkPKq+tSnpkRcoZKIgvTLly8bfv7y5Uv78uXL5pxH8TNBga45+P3dhPHPQgkIVFNYaTrAPZZVHny+ArTuSRB/Pz8/l7Ez4lMHBWnq9HfiwYMDA+owBgUKCFxdXbXr6+stT8D5+fmm05PVLcFUWSWi3ly7K+KROzURn+HUQJrHops+zbHOKlUHEl63NAAcCFTtRSGQPAE8J0D73ajquxEIcHdrCpD1pankm97ca0X+TvIu+HXld3Z29mrMffnypZ2enm48cwQMdOlWHrrfTRgfIjmw9P89IOBKWNSTP55vUuQEGDxSZlH2pTQSKPjdvQQHBQbcI6CYAIEAAQJNEdCKpaKlsqVl0tp4BUGa966UL5l6pOh8iiDNpyqvBAAqSnEFrEslUKnomXcCAj1AUFmh7i2oAoZ+ZeoBgcqy8mWb9I4xLiBZ7R6411rfwzUiB3vK++XlZWs6TkFcrbUNAFCZv3z50p6enjbXBAySIK6mr34HQXyI1Bvbzr8EAH7sAYHU5718qMwdEPg7kqMOUsR3PHrZSL+Ll+CgwEBrXwPV5BG4vr5uNzc37ebmZjM9QLcoLZGnp6fN/2o+nvmQZhRfooqBqmd9TqvnKqvap7UW0TGfoZWfBmSvvgzu6bWJSH2hvNwjwPu/C6U+cSvGBVUFBHhN74jER60tXzXjVM3NEgS4J0LnvumVPAECAY+Pj1uAQN4B95KRjoBgf5SAQAUAetMD5PukZJN8SZa9DBQaK8lwclmUPHAODEQ+jhyoJFDzK9HBgAFaRgQCt7e37fb2tt3c3Gx94lcK/+HhoT09PbWHh4ct96RHlToQSMq9Z52k8s4yBAfDrLXds+Accbvr12MPelS56ahM6Ck40phGgrQCAWkZlgvW1jKoWq+3N2ZxUNArWyoryyxrPk1fuLfi9PR0IzhPT083Sp/gQB4Deu1koRHcsG5HQPB2NAMEeqDAed2pkiWV7HVln/hfz6UpSk1huVfBwULSGT2Ayv+/Ah0EGCBTeYzA7e1te/fuXbu+vt50sITIw8NDe3h4aI+PjxtQQG+AC8TE2CRnxF0s9pn71ZRAYtBKeLuHwO8lFD2qr9/jNIOUjYQ929Tn2ZbEUvxqVLksXZCmmABfjtXatgeIwjK1eTpWlk3Pq+RHlldK/suXL5sYBuczPfvy8rJ5hgDAQYGAggCBeCqV/1cSvodIs0BgiWegtf70bM9IUhq8R+OEU1YcKy5zdN/TZb3opSKY4HgiD3JM/Qp8eVBgQAGBWjHAGAF6BOQJeHh4aPf39+3x8bE9PT1twMDIMko/UQUIkhuLaVbMMBLASRgnULCEkkJK/1O5yfAccB6YqWeouHog4HfwLFRAoCdAq70CWvsKBAgAKuHJNp/xcCWlz2f9HqcIqPzFD1reRc+AC196/ggKXHkQEKSArl+dj/ZFS4FA5b2qjA4n8id5198hICAfEhiwfBw/VT0rYKD0PaaFADXV41fgy72DATKa7yVwdXW1CZxq7Wt8gDwB9/f3GxAgb4G7eSow4IyShGOySpKArSxvz5Ppj9ojPUdLvHqGiJYutQQwHOCkeistDQwFYiovgoHWXgdgJkv2V6QeEKh+1Zpskm+SNQMI+Dyp8g44VUKNvJSu613VjS5b93Q4CPI2k6cgpf8rCN5Do+/lERgZVzp3Pq14mOVg3xMUKF+Xi6k8Tg4KCAIISJOXgPQreAn2DgZECQzIxdjaP0Lx6elpywvAeccKCFA5kSnETK29Zn4+nwCFU0/Zp7R7yLkCAbrnwpCR+hS4RLiy1ggUKmJZHEhwgyVZgcyT74zS/lWpAgIpOJDPJKGltpyZAqgsKvcKjPjRx4mTA8XWvq4mkKVPEOBehda+bhLDtuLv6emptdZicBfL+Dvw01vQCAikX+JfT0s0o/wTyNXznncCBamMCRykulfXe2kmr3MyqH4mOggwoA7RNAHBQGtfhaFAgAOBylqq5h3V+clScsvZAUHyNKR3vX69wTJLrqiTJan/Ct7SsTewkweEeXJQuaXqYOB3pMqS8qmABARSP4gI+NQPvWmAUdm8jH69sm4qAa93fBdOWfbJc8Q0e5sa9cCR53+k3WkJEHBL3EFsZeQsAQAjQMDykQdG4MX5O7VDL6agBwh+lYDXgwMD8g5wg5X1er0VfJRWDPQYyTvFI+QTKNBR92gle3qVgE3pVVQxTo+hyJTu5WjtKyBIc3pVWZJCqrwJAgNqy0TfAn5+RnLhmYIDkyAVuYJPHoHe3KqXxY8jUFABjOo9UQpoZHBh8oAkQJD4r1IOP6vQPRSaBQKV5V3JPDcmer+eJzfxQgIBlN89IDMj//Ssy9QKWLC8HmT4s/Hm3sGAC04BAW4vLOs/TQvMgoAZIaPy+FFKryeAncGqcy9Dj3oMldJMyoABNkvBCNsmzRdzAFfp+4D61SgJoeQV0I+CiZR4NVlQFRCoyuRl8/8zgKRSGqQ0HUeByuWHPCZAUBF57WcUtodEs0DAeboHCFrry9kkr3tTX56OjgSuFRjgOZX7DCDwtqB8Y3pMww1ML9/PQHsHA6299gxoukDTBK193VzFgzcS87gw7Sm6ZIklpTrq1EpI+rUEVqoyJqHXU7j8T0ttdgCoLClfR+4ckNWcoYCcrv1qUwlJ6FQgwAPlnBIfVkB3piw8nxH2qSxVHlXZ3V1KIMh4Agpneko43keKhsCgV+YjvaYlQMBBQBXo2loNBHrTAaNpL09TMikBgao+znOJ952PmCYNqgQE9LyvflF6Pwsg2CsYSExHUKDAt9aylbpLA7OzZ4CAl7f3v3dvJOxH6VSIN5UhMWQP/MxQen80eL28v9KKggoI9L4s6GCoAoMzILEqC8vE8xEw6KU/IgeKIv80rQDBarV69ZEljn2WIwld7lboiuFIfaqMlREQ6E01joytmdiAWQDak9/+Do2QESBIxoynxXLyPRo8knMcDz8Lfx6MZ4DWgX+BUDTLNAkxVu8lNJveT/n0KKXLOlTKtMrDByif61lso6mU2fqNBkuVv45J6fyslIBABQLoERDN9oXnORIoFShIwm5pfziQcWVMXuN1L7/aQ0KZ3kACAg+29HS42yLH66EL3H1SGrsVCPDjyMXuYHYWCPi7qZxMd6lMd97gccm0AdNLMVJ6l3Fc3hajcu+b9gYGknBKSJTR6z5FUDH3Egs/PTd6f0QVENB5ZWGn8iSk3lrbmn/2fBzFpukVJxekPSHBsrjru/I8HOoAWEoVEOBOe5U3YCQUE196hHOi9H4qq18fAV/RaHqnJ/y9PL7k1fPwtqvK7uTBW0faph6IXwoEnCr51gME/u6sTE5925MxbohUesepB3b8PS97Cqadqce+aS9goKfwKqpczBW6XVKOamAk6gnOEfrreTU83QQCHAhUlCw1v+d5e3lckaSyeLk8/Z8BDe9C3h5SYOfn56+CBQnMZhXm6Ecaga7RWBgBgiTwKt7uAR2lkd4V6E/R2ynPdM7joQrbfdEIJPaAwIgPq74gn6egVwcBFXAlefrs5xlZwxgTgm03okagI7Ulxzt/3CuE6Rwij+49ZiBdk1Cook976VTM5I3vTJ2Y38kFjl+v/lflTQK4p4hb296rvheQNpN/apNUFgcC7v7WQEhCQPU8NMbfhbxf2B7uGag8AvTSpCBPnbvnpQKAPi5mhGNS0AkQJCDA8lUA3YGA588gVAKBJFgVN6SPzVRTEakNjvSaKtmy5JeoAoKjVQK9suhe1d9JJyRFW/E/0+gB4tH4EVUetJTuIQKCg4gZaG27Ub1zK2WSFKen1cvPhToBwYiqTux1bhKqjpC9bKRe2dLc6kwZeI1lSe3jP3fnamCuVqutj330BMHPRq6wuZlQAgIiAoG0exkBHtNVmgkQOMDgj+CsJ3RGgtDH1Kwnw9P3PFVubohF4hSC2lqAYMYLkcr6O1KSCT1FX3kFKkqK1UHASH73PBGeV8pntVq9yo9lq849rZl6jtq4126HvtLgYMCAdyAbKjWWL/HQb9Spop7C66HDXsdV92YUsCsGF8J+dK9ABR56SwzZZp5Hr33Sh3U8Yre1tgEEh8b0u5CDgKo9OG1CD4D/KIASwGBgHQPqXNFyD46Uj57j0es1M2bSMz4GK29I1ZYU6PzmRcqP7dKbZuEKhqrOvwstAQK9KQG+J3Ll2gMB7CdPLxkZiZ88Hx9XAgRJ4TrtKo98HKW2qdLVtZny7YsOBgy01raYidaNSNaRmEGKphI6Ti5cKMjdyvVyqUz6z3szeVZIl8I4eQl4L4Gf1raDCR1k6H71PtNJgCQpPiot/z6Bgw9tS/srkAvP3tJBzhXKAq72yvA0tc+G9trgj6R0+flfKdURaGWfz1hEaSxqDCoYkPzVs9K8DrwvPnVeU57yEHh/eJruXfzdqAcEeF4BAn+mogoIJO8Xy0PZ4lt1V4CAvMKxxE8PCxRQXlflJp9W7ef3nKcr+Z6mcJnmIYKCgwEDrmy9cRKD0jLxtHoAgW6pytJlOioXld0s+OiBgRE6dXdWGpTuQk5tov9U6g4MUrm9nWYBlNLn8i/fv/5nosqa8XYQURhVH9Hy9H1qQL/Ly8sNKHDeJBDQNXpiSJXnLT2jMrnAYh3JN/QKuZAdgQLVg2ONW2hzyWFrbctLIqDZAwWpbr86pXFWKfldAICo8gBUQMDz9THkMjjFybhXQOOL05IabwQGvfLzfFTvHrj1NhwB4EMDBAcDBkRkKm9cegXoHaBiS+mRmBatMJ/vJdPJ6tL7I2tHz3mevJasrCpNrzPrsFqtXglMCWVR5YJjWqmNXFi4d4DXRPoiHfPTf3cF/0zkbULBxfZorbZcXEhWwpEeAvKoniEfJI+P0wy/uncq1Z+g2McnvU/V+y54vWwVaBV/yyPgisQtSI7X3xUQiJwvfEz7LxF5I1nMCfRV5VDeFZ+7PHNDg2CDHgEBY4EC3kvgZARaWWbW10Fyz2ht7XVQobfzIQGCgwMDImfSioEr8s51oetzs1oWRgZJwXAsn/JJZecxlc2PI0HNenCQ+IYtIpbVgcCoHf3ZNKfnFoXvL6/2oxv5Z5wucECaPCRs+2S59IIG0y+1NxWeA81ES4VKssB6z1Tjz8cJ00teAp3Tm8W66/75+Xlbr9evADufrcr1OwGCHm/Mjn+SW8sJBPC8p1RpxLj89QBcgjyXGwIC5+fnm1gZeYn4tUwZH1LgCRC0tr1xFeVsalcHEVUfsN0cqDrRe9ED5D+a9r600AXgDIOmdEgjdOoggHOzel9ubQbBMY0qv4qJ+NzoWJXb24ruZHchM08XlD1hsOQZonxnfLqN6bb7GcnbPbk2SQQESUj22lvXRlTxyqwgcZAzepagL4FB1rm1vEOh/++NgwSABTh92kDXk9KnwB95P352SkCgN55HIMDT7D07atMKSNNDy2myBIaZn2JU5AWYqVs1xUvDz3kkyT5PowLOFSCo5P2+efTNwYAzaZovSqBgFAyiY2Vte34EAvpSIhVZa6+j4SvLu1dPltER5WgQJQCQIs31c/TKOdVkOSXlUw2qBHL8WpqGUFl+djCQ3PjuFehFUnu/JwEzIn+vKmuVZg+oVulSmKUfiXEi+i9+mGmTqly+OkLlqeqaxhjL8btQDwBUSrMCAZWHoPIUpDJUYGAWCLj8lReq4t0eCE9egh5g93MHwTp3L4CDChqWLg9cfr81r+5tB0IqNlfKae6+tVa6W/VcOld+nufp6enGI6AjO8ADotw7ULlDnchYPYuoUra0wjiIBAAuLi42/9VmvoVzGvRkahcAIyCQ6ubppnR+NvI+cOHFWIFKsKRlcJUA9v8JXCQhUfWbC8ukcEd9RIFMDxTn71lWPe+rGpaAAaWn8nHc+1QdQcHz83O7uLjYPOfyQm33K4KCnvKqAEF6XlSBs/RM1ZY9GUbvZgICnrdPkYm3OQ1ZlZHlc++RG2k+1lwGVmPKjZ7elB51m5fD2/Yt6U3BABmDyuzq6qpdXV21i4uLzdy9aL1ev4rGZvTxjKXtQIBR2jpKyLkryUHB6enpRtk6IKg6MF3vAYKEptPnndVejLAmc88u66usyEpJUCivVv9Mpchtx3dJBFM/E7EPepHPohlFR0q8SyvY01KZKKwofEQOXqu6JXIvkvNgNT3ClQ36n8DoqH0qAPH8/LzZZ0Dl1JhsrbWLi4ut9uOPY/hn5MNZchnC8xEocMC0hCqAyvzdM0Dlrz6sgDL7XORAQOc9MF4ZkgQETmxH8ZLyc0NP5EG9VXsIQHs9q3b9kfRmYMCBgBTx1dVVu7m5abe3t+3q6moraprLsjwQqwcKUp7yBJyfn2+AhzwRnHds7XUwE70DRKPKo7Xs2kmDqoeiWWa3Rn3lA4EALTa1jd51QNBrq3Tu5Sazco5LeaY5vp+Rel6BFKchmrV80zvO3z1PmLexypg8Wr25SPck+DV6AtJGSBSMCSRQkVd171EF+NU2XIYmoMCti/33K3sHRMkidy+KgzOXYylNHWfbrwIBLtd8KlPk00K98vEZz48ym9OXrH+lR9iWrri9HWb5ycEAy9CTvT+a3gQMqPIasBcXF+3y8rJdX1+36+vr9u7du3Z7e9suLy83zMElI/y5cKw6UEcCAXkhLi8vt9Zvu/AiM1GoVqgxWflMr2oT7/zkEagUkQOByvVEdFyVg+/1rAYGh6ns/EZ9a3WA2c9Ezj/uVSIQoLKdVeQi7yN6vuSB8rRYRo0pRVOzvA5WK+Ht3oMEBByQetS30iEPOmj3MjHfEdBhG/l3DFTO1trG0Li4uHglP9iGvxoQmPEApPGYZJeP12QkJEBQgYRKplVWM8fLTIxI4nXny+Qdcrk3Mib5fLLeE7hI/eBt6XK7l8ePph8OBii0pJAFBN69e9fevXvXrq+v29XV1WYeUutFn56eNucUhmnehx3iFp1PR8gzoHtKx60Xdl5SqImBesK/N9BY7jSQ6abVtIYDAQpAtZu8J2nuOpUlMS/bnZ4A3df8MD0RPSF0yMRB6jw0AgIOAEZAQIIzKTtfL83nUl+p7Ul6vyIHoxKYPb7kNfatyi8QI+ucU0gSxr2gr15ZlV56163Cs7OzV4aEz/cq3V+BklFBHq5A/kyaPQPBn0/8SRBA70DlCUiAIMmRykCjF0D86NMHo7Hp9XIPGGWjy0f3HPQAQQIDNLp65fre9CaeAVrnBAK3t7ft+vq63dzctPPz89ZaDQRae+3aSiBARwlIeiI0LUEXuxiYm5S4Jead3bO0SY6QKzdQJXx5j+40d6+pbAIBajvN2fp0SpVvdY316QEdCWpH/2ngHzJ5uWkZ857IwUACBSQCASpSesQoyNSv3ucsq7dzUnyzddf7Xk+vg8+LSuBS+RMg0kWb3LUVsX3TNwyUp0Cqyu8xHozF+FW8BBUvJDC+CyCvFJnfG1nVySMgSsrfeYO81trrja+cT3WfUwWpfdLY9HqkceXvVLzUM7yYvl9nvZXOj+bVN/MMeJyAlLMs9NbaljIjGGA6rX3tkMq1Q2tOeRIIKE+iMreeW2uvFKmeFf1oIUJlxHr5wFL56BGgZ4AxF2ynBE4qayC5wZwqi+RnAQMuRH1ek+7H1uY+RDQi9wxIoRHcqQy0ilO/+PhI46UnUFIfJWvQx0NlDQoIyEtAAOACNdXFFYbe4UoFliMpBMkBjQUG2f7sQECUlFz1E43q3Xu/GvsuTypZwnutvQYA/O95tPYaCDB42cuvc4ICBwa9tmA5yV9sC/I1rycPQVL8Drp9zL1VrMsPBQNusWiagKsGXPg9PT29mhag20fnyfKihZKAAFcO+PxmmmN0UJAEfWVpL+m4Sim7chqha9ZDVpSDAKU9AgIsA/NIHhlXBqw7XcPV8p9DIm/rXbwCiT/ce5XAFcEAN1JJnqDkXuwJf92vvFN8hkfm5XX26y6cZQT42KXLtUdsu2QxOi+6BZf60OeOPa+fiUYyo8cLo3Rn0pjloyTHRJQVbpA5f5DnaWzwWxbMX31PfnUPVeJ35ZHqonKQjwi+XeY7X5H/vU29XbyNUnrfk94sgNADkFRxWt60aMUI6syzs7ONRVC5kjhfyPgExgn45jyuNGntJVCQAEhS/DOClzQjpHuMywGU5pkTyu6BAs/L30+AoLXsntbA7M1f75uSwEqeAZF7BXoAgJQGtvdTDwx4OqlvVZ/qvLLAKewobB0AVe3X2tfxSkvMlTQtpVSf1Gat5V0N+bx/1VGy4OXlZeMd8CnA2Sm/QyVX1OyvSpHPWsIJDFTvjtqwB0ocCHCfFBI9Y+QjnwZIeXJM9+RiVbbKQCJ/89kkL9P5qG1pUFXpfS/6YWAgMRIRkQSeaL3+Z108mSEpv4qpxfwEAvrJK+C7DCovt+6oTN3FPjuQlgCBXnoc2E4sS1JI6eflTOVPyqMnTLwc7nVxi/DQKFkxdDE7GEhKaYY/RN4PfD/xOr0SIvJEr3/Z9skSdwDg7cF28bRH7UchTEE8o1y8rShkCYJY56QQOU1A7wAF91tYXd+bKgBf/Zak2UsjtVVP0aU8Ei/5+PFx1do2AKCxqIBVl1MCCixbUt5p7HkZkheMPM30HBBU8pL8zHFYtSuB68zYWUo/BAwkRJaEF2MCiNTdjUKrU+RCQB1PICCPgKYK1HECAHSnM+CODZ8siBkU3KM0eCrkmdKtFL2ja3dfV2VMgqVXj5EArQbDIQtbVyD+q1zlPb5gG42sBaapd2UJPT09vQIOyVMhvhbRolDd3GvjlFytfi8JzaXAN1llPeHpgjMBAZc53mZpqq/qm5+BRgBgBARGhk1KpzIwvD1HRF5iGgQFLrMcGGiMMGbAFSvHinsFvC2ct1L9mAff8amCBHZdxyXwwrbhe962P4JvvysYqJA551zVaKmzW/tqBbW2vdUp09U5XY8eJ5B2NlRaHiNQTQU4IGitbxWrXL0BMdOJCUSleWqRz1f79+F7ytgVfw8kePnI1D5QRmkcCiWeda9Aav/ehlepzlV/83pvDp08IwHobe3gRO/RKzDyEPAdv59AAOMcVIZKqPdArAveqp1cORE0sf9EPlXgU4FJyB46JfCuuicFvqRu1buJRv1X5beLseRGU/JAcowwD8pSjW0nHxOUn8m7WYGONF2h9Bz4uJJPbc5yJM/k96TvBgacCWVNyVLnJjncvcyFkAu5VGHui07kx6kBxQsoXxEVpkfbExD06unCtrIIK3JLp2pDH+AkBy1cUuhAp1pa6OWtFDnLqiOVgIOBVJdqquMQKAGBagUB65rAYgX0evzsws/BL+dK1+uv8/GpXRPIdiHjgKA3feNpOy9oLInEb/K0iffEl26Zpzicqp1GYMSFN/tNS4yZp+f9I6ytH0kjeZHkaE9Bj4DALJjjuzP8nsrWi8MhIEjllB4hjycA4HXl885b5HGCkFH7OQBgu/QAAfNYr9dbmyilfvke9M1ggBV39KUB6Fb6xcXFlkBjOu765FGd7JUX+ufniHX0nag4JcCARQm1kbIkJRQ6Sy54KkZiO7m7WgOmWk7I6YElQCDVp1IoPleW0qwAzaGQ8657ZXpAbEZptTa2dv0ahZEAga7Txehz/ZXQJwDQezNEPqVw1DG5crk3Aqff0o/gpWrPRMnK4tJBPicZ4FMFmmdmOx86EPBxmABBJae8vWbySWn0gMAsoEqWrufF/+ma+FjLV0X0GLuXyJcGi/zDWszX3f/0sjn1QFXVDw4ImI7LVzdEvid9ExjwinNKgF8iZEQ/rfWegmClHWSsVl+/mkZBnr7iRwtASxe5Kc/MksHW6ij5HuJeovyqdiSwSt4Ut3K8Tsl6HZVD9eV/V1iO0CvLgIrn0JYWukWltnZAIOrxh9KboSTYPJ0kKMh/DgZm81baCYj26uDv8GNdrX0VrAoCdoCa5uorZTIqd2o7F5IqD1cPSUakHRKdfw8ZFPSAAK+3NuY1T3dGJus8KbcRUXYkS5zHxB9O0g/aj+Pl5fUSZm8X3ddmWASQrmQdCLT2dSp75EHWsSp7VUeXnRz/NASSEfEttDMYSIKU2+VyeoDbAOueOiTNYbrgYz78apne99gECiiBAIIB9w6wsZU/66njTACWC6wZIV0N7gQIxIg+GFnPJQLW81WbOrN5QBbbl32Y2u6QPQNUqGzrBLxaq70CM3Ujb/QsKH+O40H5U1B4O6f0vM5uheh9f68SeMrLXf7JM5C8AYk3K36tgADfc9DP8qlv9Uy1VfKPsLa+J7lc6VmhTj15kMZmUjaj365UAYsZOUYFym96tLb98SzyuK4zXY99Imjxsvj3MUbTcj3+HYEBKn4HAj2gsQvtBAYqJU0AwA1/NE1AIOAdxMYgAtIxKUFX1N457Ng0l0mLRc+xDKnO7qb3AZOAQGKCJJAJqOQJ8A8TcdqDZahQu+eV2i5RT5H7wPLpAnejkU8OhRLwciBAkhDQ+QgIqK0duHo/JXSfBFBqV/53S2XU1iPw0nPjMi8CQQIBKtbKO7VEkI0sVgpqV47kYY2ptLMjBez3FrTfi5KicUBASkqWxwpgVFSBgAQwmKZfd1riFWCeBHwuo927yTGReISgMNWV+XB8pPozn8RPSV7zuaRjvTwJsH0LfbNnQAKUUfw6crdB/0LgTMEpjAgeSM7UFEwujAQGKksleSh6Qj95NVI7+X9nkKSQ0hcK9Xlnr+doACvfCp1WZXYh6u+qbcSo/DaBU2W17pNYt94UgYPExLuO5tmv7romVdYOhUeyWJivgwIHBkuI46kHCNxVyrGk/z2B3qMEWnmvkgMU5vypvATS7h2QtXfIQECUAIGOOk+Kp9cPDioSMEhKOqWZ0uB4quTIbPpOrhjFC/zwXdqymOPcXfAJqDsgT0Yn22CWHHC4/Kza83vz6mIwkCwq/+6AR/J7EB/RnKft50Ly6/U6Kl+l6Vabo7s0ZZCeZ7pV/SmovExLFa4rXnoDBKQIqKh4W/tqjfWEZoUe06DkQOjNvzEPDr4egDoUMFAJKgICL2vPYnEgQKHk1ksFPpP1k6yJZGk4EN51Wobvs9y6xvZzV2mPqrJ4/SoQ4Iqpp6jYzvRa6T2CbXoHpCySt+8QKNW9GuMkB5JV2qm9UzojhV31W8+oUPqVRb6kD9R/iiPwwEICfBpSnAIejR0vU1VGplWNZ68/vYfelu4d8GlCT3MpfZNngLECmgq4vr4ugwRlmffSoiCjolQl3R2t48jarwRwajwOnp7Abi1vjTwLCFQf1ZXegLST4vn5+VabKH8qMn3XnumzDmTIinEqpVAtz2nt6za0CeQdElVAoNp2uLWvW2a79VulTeLAdUDA+ymt6lplWREUuPJeQqPpBk5LuHD3MVspcAdOqkdV756Q9vG6Wq02csanZtjf9A5Q/ixVQG9FPUDQ4z2d85h4icraFVkv3Z4idJnu46vyxjoQGPWHeIdlFiCoVhDwPdaf97yNdI1ybga8pHb0OuucgIbvsw0dEHwPft05ZsBRtm/0wyhe/3Je5a5J8QTs3ISqqOS5nfGM9eVlmH22KkPvnSTEOEh8aoAAgFMFbIsEnJaUOV2v0lqtamtwNJhSfvsm8q8DAdYj9bHXJVloLkAkdOjGlkKt4lNG6fb6PCnqRIkf+E4VL+B8wrpxKZ/aOAlrp3R9pAD5TOofTgUQqCTvgMcOeBvti1IbuPHkNGu5Mt0EBPzZKg8+lwA3xxj7q7VvWyaX5FgFjFJ7Me+kcGfqP5L/FfBNafnUnPO5ykUQ8L34dedpAkfYHjDoa3t9vt4rwqVzInUc0VLFOLqWdt+bteRovTFNPp+uu6Jg5ydhnoSoBovAANuVIEltmpg9KaxqnjqBKxfWakPuc+Bu48To3l7MY59UCdNqFQF5yPmWaab02d8Ebz3LxMvaS3MG/LmL3CkBZlHlWXD+9jJz/tX5NdWJgphpexuktknt5PVKQpY84N8tGG3QtS8agaJe/46MlJk0Kz7tlbHy9s7wLtOsFOeIfGqPsqzKi0ZAJf+9DG7ZpzJ6PXqysfIMsIw0LryfU5vN0CIwkJQYFZmUlpSZCuRuIW7wwApJKEnxODBYYrlXc7NMb4bBkwCvGLQCBHpHR/18jkqgyFcPEFWT2dL0SG/DoerH9nRkrD7gUWXn/15b9vrhrUl1IwhLQIC0y8BSGkT5PRDLvqqUYLrW49/k4meevT5JgUwpHZ8+6gGW6lpP6DqlcdQrm+8j4EI1eYaS52NfwCCBTZ6nNhiVdaT4E/9VoNefT0CA46vXpklZLlFwKT3Kb+adPBQcsxWQSm1dydJU7lE9HGQwT8pZBwUOhnehb5omkNLmQJKFT4XHylH4UeA8Pz9v5sQ5UPmuV1gDfoSyEjFYYwYQ+Lspv8Q8qUOpkEQEQJWSYjpsRy6ZdGvWmTVd83KK6XxQEFknUJDIld0+yRVBElSsP2nJAKNQ0Tkj1pme2pZArxLO30JJyBCAjPIaARPyJQWwe/uqtAmgR3lU5ajAgcaI+t3fdcVFQHAI3oHEDxWPOF/Nlr9S8DPl4P/UlhxbIsqi1nbfb78HIJSuK1PnTx2TLunxQGUQVtTjc73Pez3ZXAG6b/EOfNNqgiRQveKpwq6wnFKaHNBM5+TkZHOdjFUhNZZvpMj4LMvfq58/x/8jS4MgyNtW99zj4e7r6nsEFRBwBiajkTnV1t5eDgp6bcH9vd+aEhhzYZW8Aq3V00VMbyZvChyf+/MgzyTwl1BveqC1MTijAGf7eLpJuaq9XOi6hZaE1xIlNFJeqqd7yryeleKqgOG+KNV5KY+kd2fer95zEJvaMxFlQuXBHNESwF7Nvycd4HJ6BAh65V2qnF3mpjKk9vf67cKz32U1QeVaTYqGikrKQVG9fJ6KsbWv64Q5xVCBDebVe06NV0W0en1FaeoglaEi7zBaLA4CKvc1wQA/uuRMNPtjm1Aok9nobnU3cjXolwZl/khKALY3PdBaPffnSmgWFLCdkgWQBnwltKv8euB2VoBWoIkC3oPyWnsdz5IUuY5sRz8f1dHL6s8mwCx547ydALgruX1TxQu7lG3mnQTMkhJKCrbiF5fNHo/jxoq/w2NV5qoeHHuSXUmGpSmFnp5J1yvdN0suh5VWMmh0nedLAYho52kCWgvuFVCDeicnC7a1r3tEc2dAVkJR9I5+pKDc4vS8eoqbloAzHKcSRu2xhFJ6q9XraQK6r3X0/RFmFPwMQOA9bwu2jwvL0XSLC4B9ULJm3PuUwEAVK5KAAEnPVPPpboXoWY8bYHmXWHKj+f6qH5QuPVH0TPkUYLL8xKMpeLAHbiohNmprL7uIvMk4JdWP7x26Z8AVbgIEM2VM6Ti5DEiAgCCKz1Ef+NRba9t8V8U49ZTozHnvGsdFJa+WGHp+/i184gC4Z6DpGR2rcbW0PN80TcBlgFQQCZHzoyX+8RINTjIPI9hdUbKyAhaVd6KyTMmgrvCdaVW2dN/bxZVp1YZ8p2rXk5OTrdUFrbVXewlUiHmmLAmB+3UXOP5zdMp3mN6+YwZcgTHQNSk1B0hMJ5079QYxBWpa/ZLKPQsEREuALMvoUwLkxeRJYb+r/AI34o+qHpQXyapJZZ2h0VhmmVXn5B0gkNkXIEi8swsgqPjWZamfpzQol9lfDgZS5D5lti85d+Mkkd8bgQIvfwUCZqgCHSP56jK2attR+skQSdMEu/LrTqsJKqHqjMWO1rLC9OlgnjuRsZQHO1OM9fT0FAVUa9tCIDVsUlSuAKqgQT4zAwhSZ1LYclnhxcXF1ncK3DOS8vc8WM9UZrZFBQxElUJ395unr2f27RlIPKtzEhVzNai8rfVepdBGvMkxo/+JRv0x4uteXZJ7V+Vle1UeFY55WeIvL9ufCk5KpwIEqU4VpWeUjsaNYovULvRo9rwDbKN9UCpLVdf0rqdTEfsleZdcAXnaiW/oPWitbU0R01AkEK7kVFXPHiCY6beeF01p9kCIP1c9PwtWPI9KrjiwdkDQK2uiaTBQFaAaPCoEG0GeAAIC3nNKiF0W8vn5eWutbT5Hen5+vuVqpfWshkzRok499ObPJZDRSz8ppQQGtLcANxySEEt1cOBSIf+RMEhApmLqJMRT/tW1tyRvc4IAD1Jt7fV8s7dvogQyKVRlTdHtTnc1n2f+1bnK4gCC422JIqNST6CffKolxByPEkbpi25uGOgdlp318TZZwjvVuGWbqV581hWYewd2sbS+B1GuVmNb1FNGFShI9fI59TS2k8zRz73Foh4QSF4x1mtEs/0zasv1+vV+IF7nkdFUycj0bJKVqW6VfnF9TDm/lGe/aZogVaCnmEjqfDFIQmcJYZLBXl5e2vn5+VYAnU8LqFH4IRIXQl72CgX2BlBqh17H6b/q459+Ths4CUAxjWogiaFHSLmHRr2uSTA5M3oZRDNA7EeRyuZryll2B6xpIM8M3FEZfMvpZFlzXFSCk8BX76a+6ykPkc/t8nlXBA5gWQeVl0Cc9ak+HNMTmEuAtj/vbeG/FEDW4+99048sj8sJn2aqwKLIg0mraTff2juNN9bXaSSDKxrxTtJhM3n5uKv4rUpnFuxSl43GKa8vAdM7bzqU/veEkLsUVVD9PNKX79B6u7y83HLz8SfvQGv/MCSXHDI/on13y1IpkNySSMFl/j8paCp//wkEaEvn6+vrjRW2Xq/b09NTjBdQeXpMmxijYpKKwUeCkucJ3O1LoCb3NwUWlXASUk5L6uFTE9q627eYJsBNHjT/9Dbd8AR+IyCbypf+p+kejkmfOhB/ObCoBKEDmdFUHcsyUooJEPhP4MQtQNXxkIDA9ypDb7xX111mkD9Se/EZkY+lCnAn/vXy98o6qmtlwCSZWE3LVgp9BAj47JK+TO/qWIEzGji9NnPaeWkhC1p1Ji0yt+6TwODe4E9PT+3h4eGVINU5LRWfJjg5OdmyoNkoyoN7FrgrMAmmav41MXBCaa1tKwbWiZ6A6+vrdnNz025vb9v19XW7uLjY1Ofk5KQ9PT29sihnqcdIvM96uTCvBOYhkysxB6bqW1otXv8REE6Dzgen9zm/PeHARAr/6empPT4+bsr89PS0SV9xOA6wE6V6KE/vw9n+JC/4VEsyFDiGBGZ8LFbl75XJeZkC1/mZMiIJ5kpG7YvHnYfSeBsp017fki8SkExjwKcBKs8S00/lHAEB1yWzSs1pZMCI0ry7fxG2Jx97dfJ28LxnyMGZt0/6LWmzRTEDiRmTVeWoMblonYkokCX0XIAyUJFzlfrgiOIIHh8ftwa0GlAd7Xm19vpLbTPBVzMd3FMIVAryBNze3rb379+329vbdnt7uxUb8fnz5/b09NTu7+9fLefs9Zszjfcn/6suFdplG/GdmbLsOpi/lZwXE5AiD/PI92fAT+p/8mLvY1TqK4KBx8fHdnZ21h4eHtrj4+NW2rRymd/3aGe60BOfex3dYvQ2pseO11h2Ahu3apKVUym5BApIlfKpBOq+wW4ao70yzfS/t83I4hWpXymHU2B3a189AFX5krKs+GvG8k/v9Z4jj3K1lsqh+BYfX6kOIyCQ+NYt/Ypct6TnK35dIg92AgNeMBeeRDCOsrl5kO753KGUtIShFL6i6z3Nk5N/gprY6EyfUcTesR5oqHIkVxepQn2eFpUlvRz8sNPV1VW7ublp7969ax8+fGh//PFH+/DhwxYYkJdEYIDfgRih8xHjpHfZr6wjGZF1S4IgAa19UOUREFXeAFJPOfhgTeOEHrLKQ8B0tUKm5wViedN+G17+WaKQSgCpmpIgEPCVB2nMcu1/kh3JUqwUWBrDleDWOYMZmU4VO7APSsq/xwujdPwdf8aBH9NNwNaXgHtZJAc4leV594AAr4/6vve/159pCaSeER/Rk1UBgRTwm+o1Uv4V+dhIusbPl+S1ExhIViAbwefXW9sWhmIe7hfujUoPwdnZ2cZdKiXIjU2UthSnCxzlSReQOpefMVXeaVAk0KLzqq2Sh4TzxgIC19fXW0Dg3//+d/vjjz/a7e1tu7i4aC8vL+3z589ttVq1x8fHdn9/3z5//rwV1U1XrVtfKqczCgcx36/6taqv0nRyQbBPgZqmCURpcOs9HWcUg7cxAWC6RmCoQFG1lYJjOWYoYAma9Q7bueLLmWskpstxqZgGjnWCLSpbAtY0Xdjrg5GiUB1c6FVtkNIigCHP9gD2W9IIiCbFugslpZXOyccCBd6X9ASlyHyvXwUAvTwzil/H0XglD1YGkQA29ZUTYyCSUVGBriXK2gH6DOBhXjM0DQbSQK4sFgcE7i7yNFxREBBo3vTh4WHrc76ehu8qRiXMOAGSAwKiKWdgAgIXYHxOSsYRs3+WmB6B9+/ft/fv37d//etf7c8//2z//ve/259//rnxDDw/P7eLi4vNVMHHjx/b5eXl1hJE7bOgunib+jnLltC9EweGM3ll+bsb7lsE1bdQAmcjIeHWUDpvLQf16F7yiDkQU5+dnp5u4kNaa1vKVkDWvzvhu1Gy7D1vjPLwNqiUX/IQ+Oocve+rC15eXtrT09Or5cEnJyebaQ895/O1yaJnmdhWCcjOEPuKU5zeFvsGBCPaZWxVgLGyfB0QkIfZ/j42vA2TspoBBD0gUOVR/ZKhxmtUur4FPutXeQYSGPB2maUEHGYMliVAoLUdwUDalcwVtIjukrSxUDX4KXAUSS1QQIFDq4NpqmwCFO6yXq/XWwBCkcUeQUpvgdrBg7Y836qNeqsGNE3w/v37zfH29nbjFfny5ctmmiTFX+i/W+Punuv1b4WQ2V7uHXHL0dOrAMlbkguBdJ/PzVggvJ6ep8JNoMBd5/6/ta88KZ4RyKNngGOF1stM+ZlXDxSMFLPecXnQWtuUi+3R2naMBoGOrzLgkecu6GaFXu85B0mHAAQq0Jr6g8eqzD1vSVI4ruzEXwL3s+2eyuPtPCp7Sq939HFfGbPiWx9/9ARIhyTDNbVVBWCrui7xEPSedb6t+CfRNBhIyt/dfw4KXLn7uXeYV9q9A/o9Pj5uCZjz8/Mh0mNDsmNdOajcXkaCgoS4KOwFUtgeAgLcR0BgQFMG2leASt/dbwltpnZ0obuEqDSdeX1ejG3h5wRQ+6TEY2lA896SNvN66+hjo+JJKnPnyQQmz87OtpbG8bwquyt7LyvJlaKXOwnZJBd4X+BF5eXOpD0rPPG7W6i8X11L9UzkAGmfQOB70Kj8I0Dl3hr1pYBbMqBSHpW86pUx9an/r0BAa3kjKclm/ffAdBqN8rImHVHJj8oroPcq0LWUz1I6lS6YpWkwoAasouG5dS4VkQpOS2BUSZ5TeDw+PraLi4sttyPdzz7tkICAmJdTC3re33UA0FMSuk/momBUxDgBge80SA8H3cECQIool6fA9/T2dqwGemJCuki9TiS1UXXuDJpAxVtTEjyjAZgGbHWP6bb2evMaL4PSk4Ikf3P8OCjl+Ht+ft4EzeoZWtZevuSp6fWNX3NvlMrB6+71UB7rdf4yYBLcS/ikUhA961c0mloYjYNDpSUgdqadXAbSO6C+dWXvRkOi0XgceedGYMDBKvkvGWk+RSp5xlUG1B9enkoG+/8eEBjJJH+/kkEzQCvRYjCQNstRY2o+n0qT85rVF/d0jZVubXtPcU4V0DrizmY+VZCAgAddtfY1OERpzAAAb2wynO8w53skcMMZejjktdB0iNK/v79vnz59ap8/f2739/ft4eHhFSBwiz1Fs1ZMtAsyZb0TIND/QxCiFVImny0VouSLXVA9Nw9S/7ubnzzb2utNqwgGT05OtqYN9DyFYlK+VflIei/xL8+p5D29JCwdMI6oEnY94ZdAMIHADCg8BOrxbwKqTmnMp3NPw72A3MiNwMDlgXsPenWqFP9Sz4CfJyDgcpgGW2rb1rb3v6lkSfVuj3aRuxWNwMEMTYMBBTcxCI4/Wbq0thP6dibjNb/PdOhWJDBgx6rivtrAgQAZhc8mQeyMrjySgK1AUmVVuQUoEPD58+fW2j/7JazX63Z/f9/++uuv9tdff7WPHz9uQMHj4+PWR558O+YqoIV5jgRxesevq01a2/48LO8tUbbfm9JgqATm6L1EM6DAAenp6elWYBLn1l2hujVydna2Ba7Fi1yq11peUkkLqLJs2M9MSzyscc5lkc7TTCdto8z8RsoiXfPxtwvw9DHRU1yHSj1DZeadHnAgzyrd1eq1d0BymUaVx4dVgLunWGeuJ1DoYIAK373a8trSI6vjarV6tXX2ElDg7enn6Zml3oHULrPlcpoGA5eXl1tWCTdL4RSChA0VVBI6SVFV4ICAgEDAv0tAYSfGpMInc8iaEnHeldMGJBeurW2vGhBjUWC6+9/TkDdASwY/ffrUVqvVxmUsMPDf//53CxDc3d21x8fHLUDgwra19krwzqJRBwoe2JUE+RIh9JZUDVwPhuy9P5OHU1KwDIrV+JDAodJObnPxLIO3yNNaWtva9uYwGrPOh6kdfFyyfs7jmhrkpklMj+Bdnqynp6cun47a15W/H739e5byCBAfgldgJNipZGaoZ3gloqdPZSEQqJbb0TgZgQBX7rOgvPIOOBAQ/3NK1nf/JBgQ36os8t6559nrQiU96o8eQJiV0T1AUP3v0TQYuLq6eiV46OaWUnTmTYVxIZy8BX6fsQPuGaDV3dprt6MzR5rPYgdKSVfvyzqjgExBXgRHRNqqGy07PqPYCJX1/v6+/f333+0///lP++uvv9rnz5/b3d1du7+/3whZRpoz3sDbNfVHAj7sJ09jZD05yk7pvSUlZZHqlkBBEjS8XlHybHkwkrwBrvzJbw4+JZzlgeF4ZB87T3pwL4lu3TSVxzSdtwk0xL8JvCvWhdeqeWVvBwecCRD0pic4tp0HZOlWtMQCfGuaUTqkGW9YlR5BgfJmm7txpWsJ8LnSpOxT2l7Pinw8JpAoD5aWYytQW+BAz1LHOGBX/WSgEYh724yoAgJ+PvNO1Sa78Ow0GLi9vd0k7hHzKmAlYEmVgkmIlQqUwkVr6pOw9GAQCg4CAd1TZ6rDU2dI+CbhWq2y8EAqBzSc1+XUx8PDw+ZDNiqbpg58moCxA0KzHivg9XBhOiK2v/ePD15ahhwo+yYqQda7Z40mEDA7uFR/zrNSOInU9w4y9EsBTy7s6CVQmgSu9FIlMEC+pPBO0wT0DHr0tepdefF47l4stnlqb4Lz9Iw/q7LsosD1/i79vm9ycJCMssobUP2XTORYFk97+yRvogMCAoDWXhteo/r17iUgze3e+RMgEC+rnFy5pt1vU75uqLLuLiurciegutQrwOcrXp3l32kwcH19vfXfUSGDnHSNX1lLVr+OCTSQHAxUrsGXl5dNBxMg0KpxICAmd4SXwIDHA7hgrCwwtY+2mE2A4OzsrN3d3W3iL1g2bUH86dOndnd3twEBDCJU+1OwJ8GQBIQrB293/u95B6hwDwEEiBJodEpWSU/ZcBCnuiYlJ+X/8vKyZU1XlpDHmCT+oofAQUCy5JmfC7M0n+/Awz1wep4uYQfuBLsSuOT/nmdA90cCL7X7EuL4Z/yQ98m+aVSOJcqgMhoSJX6mJ6m1r4q9ys9lLI29mfJWcsp5g0aZPAHay+Xm5qZdX1+3q6urjXdA5Xp5edlMu2oK9v7+fjOmHh4e2mq12nwsjOV38MTzyiPjyjxdmyUHFbsA2UUxA63lwUbXYlKAydKYITYwBUxr9fSDnvXoZp/voeBkAKEYegYMEBD4NALRMoGAmM2t+NVq9SrOgAPu4eFh81MaTNvn5xIDJgZhu1T95P1QEdHxoQjP1vLmOgmYknxAVYq7lw7nzqUEW/u64yXTTAKRAbJKQ4CWPJK8VR49XXkF6AZNnhLytQMqWlMcew4CyPO+HDZ5NCRHKBh7HkTl6/3TGwvKk31LZXWonoFKUVRKZ1T20TjwZ9nWkj+r1T+BdgriZhCxg+ye0TVb5ooYvyWPGPdz0cffBAg0bSCec6/Aw8PDxrNwf3+/GUsCBT4O3FhK/Fu1q+q9BBCkZ76FVxctLWxte190UhU9ymj3kaKqGoxMKObjp1x5n5YOlTU7j+jfgYDOqfgoDFNcQAIcbCcBAbfoaYk5QOFgkXdATEoQMBLmqq+OrtyYx8hq7gEFpc82q5D8W1NPoH8LEPB03KLWeXKpEqhWZZGQJdhjHyhgUDzD6QD3WHkdvLwaBy68HWBQSbNM9AT4z8EBAWzPK+BAqQIGrsB7lPqT79IV/rPTbB1GstmfS6BAR/cOSNby+WRwLS1zeo78zj1wBAT0aXidOxiQnJacFSBgjAGNQE4xO8AluHQjme3p438ECHx8epsQSC9t00XbEYvoVmcBPfjI5xCTsvJB2UNEBAQqh1sHnq8Epgf8qQ6KI1BEN3cnZMcmq4sCnWiYdaZHgGBAwpPAqmd96nl36TK/ZLk7U7iFTEqAYOTRGSnIQwEEXoZknbaWXWw9JePpuOKicqFAqMAA25sCxy0PpenTBClgMPEVy+JWMdPzaQeNUXoVZP3Tc0UwoDHgUwQcq0v6T2XoWfGVsPSj94F7EH8FUDBLCRA4fzoQoGInKKBBo3QYH9AzMCqjJJWJoFVAgFME19fXWz+BAU0VCEDT6KJHS1MFnFZwz61PsYmSnnSjtwIAIw/BjOdgKf9Og4EqExeCrLhbrEn4enpkGN5XmkyfebpClDJer9evAAEteZXz5GT7g0YupKqAQQlkt5Y8kroCA7PC0BWCv5MUReo3tbGTK69EvUFavdcb9G9JXr/Ej6nNXFkwvQRE9V/p0eLkvgIe05L6VPkTELg1zWkEL3NPGMxagyKmT/5+eHho9/f3m9UtAgM+NeDeDcoHT19t4uXluQvVdC8pf7YRr1Fop/z3RQlgziqC2bR7vJD++6/nVaymwkbvVcR+S0CAG2HJK6B4AYEAAYHr6+vNqq3Wtr25DHjVV2IZdKhy6Nlq+ouAwJU822IGAPSoB4JnaRoMeOETJUuVjcWgodZeu63ZYE5kKKbhHgFXyK4kfcpAglmd5vnoXbeSekAgfUtBVhMjqt0z0BPKlbLokTPGrDcgPT9ylSfU7zSjdH4EueWSBBpp5GJjeg7SUh1pcfsmJu5xS6Tn3Ruk9zUVxnvkb5bb6+D8R9AkC09jhMqcrlQuda0Ar0+9sQ1n+SL1U/VuT7hS5vhxFwX1FpQUxszz1b0KSPG4C6BYr9ev5u6T3HCjZlSfShZxWkxeAS4bvLq6au/evdsKHFQcAb/8Wnm9FK/1+fPn9vfff78CAwyOTfqmtddf8Z0BBLy2lGa8ZImmwYCs5kro9YCAuzjdimElZgWDAwDvxPV6vWV5Pz8/b9Ciz/V749ESo9D1eAFajXqWLlJ6BHSethF2F9OICXbtbBIHfFJMybqi4KyUJPlE16opjLciupNZ1goIzAjS5I1iWmlgqxycFnLlznzIW8m6FjFQ0Hki9Zcr4kopizdYB8YGCODe3d1tVrnQK+D8rTS8np5ndZ7eZdn4zhLh6vns24u1hEYAfOZ9joOkoKrnq/da25aXaUqMU709/aC0Wtv2BnAqjHJdCp57C2h6QEGDdPe7TkgB4AK88iSoTtIxNOxSnySQVYGxxKtJDvfGCWmJbpgGA4x+rgQ7K52WGrmL0wWWp+ECTEdnWHc3EhTQ3XN5ebkBBQy2oqJj5DbzEgolAnVhLWXPudPKK+BgoKcsEyOknz9fKScum3JAI+J1DUbOI/Ma251W5a4C6nsTFTGvef/qeuI7ptPa6ziNVFdPR22vtnWPUE8JKZ4ljaMkbJUu+8rrnUBNGp/sU24gJN6+v7/feAVoKWkMejuOBBSD0PRL1tQsJRDRSyd5BnYB3N+LEnDt8egsL4+AWUqzKpd+Lkspa9mXlM8OGntTxfSESflrtYCmBRIg4NdhKfsl09MH92j9Cwxwbx3Gg/lOsA6UOF2wBBR4X3ubOPhnHyylaTAwi5bd2ugteatcyy6gda1Cpcx7tVptRdxrGRcBAd1I3EqZDZsCqjwgS3kqbQpHggB6ChIQGLmZk+KvvBozTJCELPtEwp/1ZL7eXnrPeYR9nyLH34oqwdcrD4GNBwFRiY4EdeqXEZDmcWTVtvba+qcnzF3gSoseM9apKheDYRkH454v37UtpZssPW+r9Ou1QSJXjDqy/gQeTgloHwpVSkTH5CHR/xEocBrVPyluBvFdXV29MqDITwourTxfJHocNO/PFQLcUIjR/wQmvg3xycnJ1jJEjw14fn5u19fXW0HiDJrl9FiSCwT7FTgb0S58uPT5RdMEKRNHQK293g+/ckFWBe4h0ZHi1HUFa0lZ68jvGpAx3O3vZaXg8BUHEoa0kLRVMPcWcK8A69OzpBMQcMtp5BnwNncA4QJX89QODAhEfL67UnhUKPukkXVZDZ4EBHqgdJS/X6uAAM/V9v4xIt5TWZ+enl5Nh7EuVIYuvCpAwNgfXzroe2f0pgbET62NP2+d+HTGkvJ7JPGpR8HTcu2B7bcm54XZeiYgNEp7abl6xpnaUNY4N/hp7WvgHadPn56eNjy+Wr32nJEPuFrg3bt37f379+3Dhw8bQKDAQMoqj/vymBF5CAQKNIZkVGpsPT4+bqbGPn/+vLXSQF/VFbihUUk+Sv0zY9CN+NGvL+HbnTwD7kZzAeMCk88k6gXsOPBgAyZBzOf5gQkKNG2QIYZJcQQsG4UHp0uIbgUE7u7uNlMF/oGWanrA65KYo6fAZ4AA7/csMLUX1517+v6/UmYMGjuEeVhXKqlevcFWCUBX2J6f3k3KbAYMeHkdELDPn5+f28XFxeZDV/RkpTHKudtUBipM8TrHEUGCvAIVqGB9lOfIJZ+AANu7pyBT3umXBKiD3n2BgUQzir56L51/a1nSWKArn+57d7FXm2F5UKuXW8r78vKy3dzctA8fPrR//etf7d27d5u5fQ8KFBEUOEBgHIG2hde7Mvju7u62ViXQk+Aeh2S8pTHtVMmmXWj2vUWegcqtps5zEJDmIVt7Hag2W2BaoxQMPUVD4ccgLE0fnJ2dbTwFaRogRRwz7cpdxDkkHisQkNqpYhYXoksHdqX4aC1x7W0PrLH9k9fmEABBasMREBhZYL0274EJF+KudFM+CUgQENzf32+BXQIB38CqAu3eNwkM0JXL6YCed6FqLwcEXj8BUj7ba88RJZnFqQLlw/Ffjfu3JueBXevMtPi/ogokVeVLfCQXvJSmVnN9+fJly1PANBhgm1agcbMtAQJNF7x//77d3NxsDD3K/cSDvmcMpyEEDAiy5enw6QiuSuAOo8kzUBm4qf17lv63ggSnRQGEaryKIUaCwckrkkCCn3ueOroA0j1dl6UrISZFrk4nSnUXocrG/6ov51AZKEjgUXkEvKyJWSshOgIA1X0KFPcSrNfrLcFIJJusKba5e4c4+KolN29Fo0Hjgn+XwTXiUT3jgjj1fQUU1Ob+HttZPO3WiYO2makBHdN7brnNAD0aE+TBFJfhbTrbvrrWE6IOcr08zguH5hnYhdLYWwJseyDAz0WuXP1bAI+Pj6217dUy4t9kNJGPmZdvPaxVA+pfpu/lTJvIVfLfAw45zcyAxNR2lLOzhm9loMyksQu/LgIDrCgHiFsYSeGxkBx4TMsrkOYUK6b0cnDAOwPQNbperzd1SwohlY0IVu5Sj6ROQYLJck5KoCfURpbB7ACv7ifF7+2XAmFS7AMBwaGDgdTvIrdMKJh0jUdPW+T1nwUC6f1kyZOPE2inEndPTVU2z6vqx177OqAQVW2s/zPgOJW5sqB7siPVxRXDIdJsm/TOq3RnKckKjxshKKBcl1HG6VutdqJhwXLR20q5qj5jsGBrr78NQt7SWEkeNJdrej5NLXC6o1q23pMTqf1H8mTXNCpaNE0gyzFNFSTF5wzBQqZCz4KCqoLMi+cuwPi+z5mO8nBm5xSAB1ElcKI0eEx59BSXjl5WV1Iz5Hn1yuYIfWRxerkPUaCOyuV95u/qXkLuSwZ/SnskvN1CX61WG/dkVQcHwp72DO+wXjQKZCy4UE2gQ8K+te2lhD3lzDYdlTkZECkNtYmuJ1lxqLxLmh33S0B5zzr19NjXlIeuA6Qs9a4Hcfs6f/aRSB7e3j4uqqMUtvJymdza9tJc3ZcnXM8qfRo4rrP0X/dSe/qxkpVs/3S+hGaf38kzQAXCqHo1VLI+KHhYOI/25LVUiWoqgWVRPi6IRCxLmu8mJauIiJUuKHdF9azrHlWdPjM4q7omRmSaVd5+L91nu3s6rb3+Utm+KAFCbx/RjNub7yUA0OufBKqqcvXAoZ6lF8ytcPdMjTxUM3VM43UERj0/pTuaSiTYSsB1hqr+YLv5apck5N+aZsHZTNvPUsXHlVxKBpKOvlogfTSOwXypj6mABXbPzs42OwN++vSp/f3331vfGpAi56oCnxaiR2G9Xm9tH9/a15U5mtLgdzfcKzHTntSZHAtJzvv1SheoPul8KS1eTcAKrVarV4GDaX3xEoFDdz2vj94TpS9kJXIGpkBK5aYgJSOMVgjM1H+kjB2BJheU50MrPuVVKa80b+b/q7iR1rYBmYOEfYGByqpu7WuZxC+VAp8dvLPC0wV3T5B7XokPOIXH+jlwTTxaAdUeCOhZNEtpJMAceFZlTmmM+rS1r+Odke4pjUMjVwCzYGxGDvu5XxsBgsfHx3Z+fr71oR9+IVCyYaRQ1TcMKtS07NnZWfv06dNmIyF9WVexXIr21/y+L7NNOkp5aspC7cnlhPwGR/IEV+2V5EZv3FV9kCiNhR7vJ1oEBtSBLuQdaaVGYWGrwe+BOjOWQCWgmVYlCLgTn+qYniPDkIFnNg/qAYFZRe3ekwQIlAcFgg/8Edr3IBoPjPH9GJSP1tNybwKn5D14K1piFen5pSBU11Lb+tw429wt5RFASKCNFrry0H8fd2msVoqVZfLxlMBIBXpGnqHZ6w4EqjE1ArwiyrLV6uvukEzL2/gQyOsx4pue3NTzKf0RuHXZ7PJRS6ylSNV/8hC01raWX/vufUmGchpCgODvv//eAA1Z9p8/f94sMxQg8L0HWtseK6enp1seDD2ruuiDRQIEnJboAZqklKuxXfVJ6sfK2KNO/CFgQEQPgSPrBASWCGINTlJqACcXqrrGI12Zyuv09PSVANB1ehdYRy9HsrBGngCWK5U1DcKepe7twDYYIUbPQ+nyU6D8ebCNVmmojXr12hdVgJH3lhAVpV+vgJxIvNXaa2Cg8oz4xsGhKysptqpMrLvzK8tBIOBpMV/35ok4ZnadKiLo7CmJ0Xjike+oTEyDRo/qt+8Ns0Spnt5vurcrb4/AgJdDRPkvhS0lKiv75eVla78BeREICHwpYOr71eqfnWYZwMepCU0f+AeKCAhIDHCk7FM9VY9Pnz69AgQEMmyfyoPr7d37z7b1Pvbr5ONdZO8iMMAB5Nd1/Fbrr6q0yNN36yeRWzV8PiF+d3Nzrmkp2hKNGGEGCLjwnxXwnmcvD36imcqfA8QVD9e8Mz33Ih2SdVVR5RVIiiQ9UwGB9DxjcFobb1fqg5z58EigW+WdqFdv50HySRKu6/X6FajmWF2qqNg2FX/PCFsvYyWM2aaq5yGRy44RCJhp76TwnadHyiuBAVnwKptc8Hqeu1mm3Vm9DlL6rW2PMU0P3N3dtU+fPm32HiAgqKYMXOb5M1++fNlsOCQwoD1lfA+Dniyf6QMeU/2XjufZ5xeDASbuAzIBAaIVd19UeSTAUVFP0VTo1cvGZ6nIdG00n9yzPCpPRnVegYAeGHAh2ROWvR8FX+UZIBhYr9dbOxXSmmK7qj13sVR+NM0g8Vn0Pnu9es7d/BXxfQcCKc2lAN2F2QwQoLJ0cOPyYgR6ElUelSW01GhgHvua4mptHGtUAYFK/qQ0eF7JB38+ldPBgDbAoieAQX6SIfwAVtogyNuCXgARd4PVh4U+f/682aJYmxHxuwNJ7iVZ9/z8vPlC5+fPnzc7zirA0Mub5PPIoKj0Qqr/6N5SENLaAjBAYc9MZwZJrzBkaIKASlhUDZamGLz8XmZP161YWjSjQLhqIM7UvRK+ZFSdp/0QHAz4OfNLTOJzv2kjDg4UgiRvP/3cOq3a7S1o6aDYJf10vsv7FeDWtRH/O29TUI2Uil+rwGICBV4uegZUDvIb+XNW0XKcLJVB6b2UdmuvPTacKjkEqpRIzzswAgqutHou7hlA4EqeSpVgoLW2BR6qL/+lPFprm4/SERzc39+3y8vLjeKWZ+Djx4+bYEPfcZZbEafP1AtoCBDc399vyio5f3LyNc4qGWxJjyVjdKaN/X8af6N0nBbtM6B5mRFVc4desGqAVdMQySKqBFlFCQiM3hsFh/CcHoFqUPp5GoSOWqtrKb1qEFUAQP/9l2IFXNkrPwl+ByQCeKtV/sjOW1ASaEu8FGmwVfmIaGUuKafeTWPGFTNd8GpnWmf+P3mOKiGVgMDoKEqWezUlIkU7kiv0mrhw9bx3JdaHbbFerzdu7X3RLL8m2VMBgYq3vN91n8eRhap+opImQJAc0fMMxuYnsL18DiIpa6Sw+dG4i4uLzceE0tcMBQR0rfp43Xq9fvX5bnkFWmtbRpR7zNxDxvbr6YPUd9W1UX/O0CLPAJd39Crg93ruz56AFlOR1Dm04CkMJSSZrltNVX4kR6ZJkHo9EhDotUsSvCMwkIBAEsQpXw7AJPSIkqsf1wmzjegq5sBVv+zTzTpDPV7wvhyBg9S2s1QBAuU5An/qE+75MVo54OVMSmGXuvTeoeet1/aujDwOgWNtyfh2qtqFY27fxP5jn+ziEfB+qcDfTP8zffYHlX9rXz0A6QuxBKz+PZOUL9tBzzJO4ezsbLO88e7ubssj4AYOP6jEI7f1VvlZJwGWNMWgfXn4hdtRX/XI22rm/R8GBiqXeQIGrpSTBZAsJ1bOVyjwmaQEE0jwMqV8ekQGdYFK6g24ZHXpnINsZP0nTwDbikqe9WU7pHT8P1cLrFarV0zOuT4CsBRgxWcOIRo7gc1Z6gnR1uZ3yXRKVm0FCHTN+cB52/f+oJegqls6d/Jx6BbgLjTTBwkEUQlU/Zqsr6oMaqNqunEXIPSW5IpG5Dzb4+EEAkYKJaWXAAHvcdtsXtdRvNTz4uq6e5q0OoybE52dnW1WNPhyaf0EFOg5oIXPtvFyJjBAo0q7GbKtl8ieESUdw+MPAQNEOEnxsxAzEeR8h4PQhVvPO+DAg/fSVIILiiTEesLF3yexo0fKIw22akqgGpBM3wFaUk49cOH3qoHDKODWvrp/PdZCHxtZrVZbg2Ff5JY9j/5Mz/LSMYEA1nE0BZZAtLvCUzojwZw8WU6jvhgBAgcClQcsvasjBX0FJCpPFt+TAtAzvfFcCWLKCqWbDI19UK8fE7kM0jnvpXdmfv6Og0PPn30kOUADoSLe8+mu9GOZEihI05xU1pJ3AgNU6O5B0DXnCZ8akHdABtWMF2x0L90fjb0fBgZGVk9CKFWnjwL+PD1/t7XX3gDGNPDcEV0ql6PMyiuQiJaK/ledVIGBNB3QG4zJO8H2Scom5a+20nlyn/m58lA+2rxJ5wSNSt83eHpLSl6aBAjYb5VHh/8rQJXeUV7uQUkAssq3ujZDLGdlzVWUAAZBeG9qKqUxsvha2wYCvo+Bxw1IBpD3qrxTuZQOvTBLhOhbkSvBxC8zMojUM068HRyM9fjJy50MuhG5d3gWEIgfxEM892kfV/ApTur09HTrK4VcjaC6iD8dcCQ57n20xEswMmSUbro+okUxAz2L1wsr6hXErfekxFyAV0pPaFCCg+dutaZ6KT0XVFXje+dWwjahch9gDgpmkLm3Sa9tekQFVi0n5Dwb86gsMU9/xkv0oykNnupea/059NZee1JSH7mna4Tg+Z7HC8xSUmip7KM0E4AUuWL39FKZHYQTVDiRJ5OHTPml9+li9nHRE6QEtJQJLMehEeXOyPqvKCn8xMu8X8mcyjvgAHAJT88AgTSWHRAkVz/n9N1TwPOLi4v29PTULi8vtz4MpvuJh10xp/FUyaAZcOX/U38sBbWLwYBn7IPEBX+FWHrkwtAtTc+PgIDMIEuBaNEFQuWSquYiEwpNHd8bnOn5GUBQ0cia9GcTY/ogIBBg4I2EpQYR+4ftODrfJ82g60RJaCbvgO6LRhvWJF4cPTtzL/FVEqJJYXp9q/zE6wl8Mi2f+nMFofycvL1T3dK7LJeXNZVNPOxy5xCoUoAVYHPLc4kMSveqd5RXLx83tpYop1H9K0DggIX8yTIQALb21QOlo4wj3y5ZZeK3FnxL4tQeCVSn8o/aws+r/h3JM6edwMBMJj6H7QXlc8k74AAgxRN4+fi+p7dEMBH9+RSBNzKFLNProd8KhVegwNtslnFmiUqdc2cEAr5RiNqmUojexr8SVfyc4jRmqAceXZj2yqFrVcxBBQTSkWUbKV6OvR6luiyxiLw+5L/kJVRaPl+b6ip+TvIi1fmQaQRo/Xwpv3p6Sd715NWMPKgMscS/rkydj5KXKMldfspaoEDBhanM5DmtMOCH62aBe8WPswZgRUsBwU5gIGXaK6AH+c1SCqjahWF7c4jJbVlZLiKWgdYWFWVP8Myg8epYWTgzFtzLy0ucs+ZcmYAAf2kDDh+YDpqSJ2dfoGAXIEVedeuH7UhLw2NUduH3xKsJWCXlyzlML5vzZuLPiqdSLAspjc/UzqkuaWwlPmVeTg7M9T4tvzT95waC8iZPc2XNodOSMi4FAi6/enqg977z1gxQqHi0ArBVut6PFTASz/T21nl52d5Jkcsa5SUQMKjKm8ZjKnOvvXit8hB8dzBAhU7lV5EXsJrD9mtJ2KQNS2aox2jV3GUPCLBjvHMpRGYZ1q2uERCYrbM/n6xEIV9NDRAIcIMOgQF6BVwpcACdnJxsomjVhvvabEjkA6kSZiIHXA6+NPhVX05HtdZfMTBDPbDq4ypZOCIHBSMwwCPLzf7181RmUc+L5/VTeZ1/2d7V8tXeVFTlEUgC2J/z2IV9kIPSinpKrpLVlXypFKmPC8+jSn9WWc+e92Tqkny8nDqX7EoeIin5p6enV95S7T2gTYl8ie/ot5R6/TrDM06LtyN2RVg96+fOeCOX6gzzuiBguqk8s25MF8CpTGyHyvKqgIHXpUJvVRv3BNlI6RAESKjLFXZ5edmurq42P34nXIJYLjAJZy2hOT8/30LGOn96etqU72cABWmAuYJT23F+2ZWaewqYf0UjD5aPK6aXtqnWc5wPr3g7/XeL2z0FzH8pQE9jlx4BV4ICBCm9HphnHNBIAPM91m8m4PKtaBdAsOQ5KvzZvEb5Me3R9Z7y76UxKt9M/gQ8lTKV/Ht6etp4VDW+1uvtDYmqzzJXPFiBLAd0PTkw0w4VLf5Qkf9o8VfzxFWBkiUz49Zg46TgtV6MwIiSsPS6uOIddcgIwbkl5O7dGcae6XQHIL5qQJ6Ay8vLDTBg4ODLy9f9A7THOMGBg4DHx8f2+PjYHh4eWmttbxsP7YKSe+3L/vepgda+8hBXs/QAgfOaB7Emr5PScgvdlViarknX9G4C757myJJM5Bb67JisAhNHcT/+vwIFLB/P9eOumvumShaMFHNP+c+ODZdhPZlXpbkrGEjnM8Bn1GepPORTBh3KkBHfKICay7IFBhwU9HivAqZeh5F+8bR24ddFngHPUJmO5gETeWGTkJkpUzWfM/t+dX3USQ4UZqyOJeVwhDojBGaISslXD8hDIFDANbVUdFL+Xm8NGu3h/fDw0B4eHjbutEMj78MlgM7fcaUlSzYBAk/Xg1crYZH42kE5y1nFvKS6j55TnViPEeBOq3yWAjKXL7znPFjFBfC+t+3ICt43CJgxjHrH2fSSlyxRUjTfCgpGfNfj0RnjsZd2uu6AQKRNk7ilsn58VjJSz4+mkBONZP+PoJ1XE6iSu3SGaNdO9I6qEJ6/x3szDOgdVjHxCO2ljh+VIQ1uZ5CREvNALL0vEMB4AS4j9OWF/EiLFM75+XkspwaBwIA+J7rPD73MAjEqhyXWlsgVZQIErb1eGZOUlVsTPk3AMifBxfLRWtFzs4C1qmcqh7+TYieq95lOBZ5YzwQAeuOuAuqprxMdyjLDHiXlMStjR6Bwl7xmQehMXknWJZmY8p6R4T0PiStzgu60rTLHL39Jh/bATdKtPQBbybJZ2mmagLEDPmhHlfP0KsvKnxNVXggXPL1B7o3mabp7tnrPy9A755EKp6eA9Gz68X5FbE/3CLhnwLcc9k98+mBJoIJ9qc996othFxcXe7eyqoExUghLrCzGFBAQcApsyfx2xYMUCImHk+vSAccIDPSAKI8OBJR/GttVXITereIwUnulOnmavfHIOogOIWhwRD2Z8C1AoGq3Ks0ZL8RIKVUANMkb77dKJvL5Xv4VKPR3BAAchPq+BXo2jd/Ep6nOMwCnp+BHde7RN3kGKqEiYkUSyvcOnHHvs0Fmpgh6exwkUFAJzaTYZxR/TwCNBi6fowLvvdNLg0RF79sNJxDgZeFyRO5SqPLJO3B3d7f5jvghTBVUvFuBsqQQk/AhJWDrAYYe50JAsGSMuXJkPEASSj2BlKiqP+/x2TSuK8XOI6mSAyP500tzRpD2aEnc0femWUPgewCBCjSN8unltwQIVHmlcTk7HkdAwK8lRUqlL3DAMrlemdWXriMp6x1kcAyzvN53lW4a0c5gwL0DPQHhgYFpznGUd2tzHxVivnynQvnJzdhz66S24DUvk1/rDaQKELDdkqJJadJS585a/Axx9SlPd32p/CoLgYCCDfXT+wqgeXh4aJ8+fWp//fXXZmrhrSkpqBFVlvBI8IgqULparbbmuis3dyU0qrwdBDDNCgj42BnxX896Wdq+Xr+RLBgp/lFdRlbq0vLvk6o+WUJLjJeUTzU+Uh5Mg9eXWK+pP3uAoMdb1b3Z8okPe8CYvFrFDHhd0ncNmBZ3QNQeGpWn/E3BAAWZBwqxcyogwHTVYKP80znfTQq/GiSeXhKYPSutAgSjsrJMiZGqczIglRuPzkRcbkYvAAMGGSuga8mqlVVPT4IAwPX1dbu+vm43Nzft+vp6Azaen583YOD29nZvcQNLBGVP+Y2oJ2R6H2pKA9atgpl8qymGkUXBPNP/SvD6OOc7PYE6o9R3EWqj8VS9U4EaAqxDoZ5s7VHFmyMjpgcQRwC1Bw5mgUAv7R4YYJ7KqwcKeuXjOWWvGxkJjPT0BHWiG2T0zAoEaKkiAxlH9fghYMATT5Uk+QCrhEVPQC11zbkrlmVhtDWfV6NKWPaCPnpRoZWATQLXlbozXWXVOLFtXeELafqRyt+3HPYPFSUPBPcl0AZF19fX7fb2tr1//77d3t62i4uLzc5dj4+Pm7iBfQrWkdXiz84KG6ZV8UDKvxoPrS1bDUO+9f+8nqYHXPil8qZxXI1pf5/vVgqnB6yr8ySAq/J6mXzM+bOeF4Mu9029ejules4Cr17+FRCoFHFV/h5YHJUhlcX7sOrr2bompe/AogIMTKOnG1r7+nVOyWXu7SLjiSu0Hh8fN2nRO1+Bnh8KBpJQ7QmV3nUCAa5Bn+2wlLbOXfkLEFRl700NjDwEqR0q8rZKyl/3KvTtA4BAwOf90xQBlw9yp0G6+h2d0iNAMKH9CG5ubtrt7W179+5du7q6aqenp229Xrenp6dN8KA2IHprSkopPTP6MS1Rr/+J/Ft77anRvRHISK5Axhhw7FRbRTMQMbUBx4n+J/7059h25Bfe9xgJr4OXycvqY83704H/DHjrAVOWjZttHQL1AGpliFSgKh09Lz9fAkj8XtITSWGP0km857RE6ad0Z5736wnYO+8yH5VdxpXk6PX19cZQW6//2dPg7u6u3d/fb00dMNaoymsJ0JoGAymYrELZpGRBeGEdfc8q1h7yV3rV6gIXlLSgRktBdgUCVbl5LQ12KuTkBUguJs7965qYjmBAOw1yC2KuJGAZ+OEOfruAOxfe3NxsAMV6vW6Pj48bUHBzczPdRt+TZiwGf7YndEf58OhfQPNzxmf0lKaPE7kN0yoC1rcSDhVwcUtnVO+0MsXBT68+tHBUL0ZuJ6oAdW9cpbqldDn+T05ONm1+KGCANKu8ZsCAn6f+97HxLeVOfMYyjdJPZVgCdLwsSZek85Rf77+XwfOTDDg7O2tXV1ft3bt37fb2tt3c3LSLi4u2Xq/bw8PDxtva2vZeLz2PX9K3PVoMBkYCsrIk+J/IW/erJU9VRVKjJvKAO+an41IAkDp5ltKAStanK+IEAnwlAKP6qyWD2mlQzCdAoJ/AgPe38k1fM3Qvg1YOqD31zPX19aK2+lHkvOODx/tilBaPbLf0OWgP2KS3QOTAVB880U8g4OTkZLMzGqOdRzRrhSUBmXjCebBakdLa9p4HOnodq+k6lxmpXrsqqZQmvYtLx/n3ol1lTVKIIzDg73+LwvdyiBIQ6OXvx1GZdjHSKiDQ8zhU788AkjSOJI9vb2/bv/71r/bu3bt2eXnZXl5e2v39/Uaeavw/Pj5Gr6LLtSW8Ow0GHOVXqEwdx0K5he5LoWaRK/OuQEe6V61CUP5JAC1tyFlLqmd5JiZJgjct7ZOS58ZB8gjwP7cdTtsPC4H6emspN0+L81v8+QBWefdBI4Dasyr9XrWSw/tIbcidHB1IOSAgT0rhc75QH0jR9x84vigsemBdZXXhlOrjbVCBU64s4a6VDEhVnhpb/LKb7+Xu27g6SFiqFL2+I4HOZ3bJ80fQEkDQAwKzYIAKZUYBV+1X0QwocCAwk1fPcKvy57V0PqLEW+no4Eb5aAxJBr979669f/++3dzctJeXl3Z3d9fW6/Vmi/f7+/t2dnbWnp6eNmPye/DnIjAwQ6wsO6I3X6//u5BbdYmB0jtpWmDWO1BRpVD8/0j5OwhwASwBWyn3pKA5RVBZ9R4vwPILDDgAoEIjgCDQkiD/HpbGrrQE1FWUVsZ4v7iXhkBL5wze5FbPrbUt6//x8XEjALS188PDQzs9Pd36AJSeTyCgEhYja8jBQDU9RSCgYFJ6iFRHEutIsOMfueJ9/a9co4lc8PrzLiN6yuAQAghnaAQEUltUwHCUTw9gp7LsQiMg4M+O5HQvrSXGbpU/y8FrzJN568ipgpubm/b+/fuNJ/X09LQ9PDy0u7u7+En5VN5daCcwMOpk3tcgckXRWr196oxCd2Hl+Tv60nX+lgIBr19FPUHbs/pHgGC1Wm0pYAYDcq0/VwekH+8nyzXtM6A+THsTsPyy+tbr9UaJPT4+bq7tg2b7rjew3P2vvkieGY+l0LJLKkv2AdtN1j+3c767u2t3d3ebdn94eGir1faSo9PT083HU3pTBj1gkMaU8x/5Vf2vqabb29vNT/XVx64kP+gV4Eet+GEr/8iVzu/v7zdtpB/H5rfKEPWtByTum3oKPZVvBgj0ZHeSndWzJJfvXpbZdFLdenV147NSxqN69eo6sr57QMCBRAJR9BBINlxeXrbW/llN4KsMqsDjpAtn5e40GFBAWGtf5zTZCV55BgF5YBQLymOqTKIktGeQXAUE9J/gJTXi6H/PyuhZ+v7T/dbGc9D89DCtMglgd+snbwG9C2lJoTOsu8JVVwl4KSlZsoqE3dcnjHsWYLrmvO2Kwt3i19fXrwIxGVCplRaKFGYfqa1fXr5u4Xx/f79pt0+fPrVPnz69EgD6aqSm4FQ+AgH/pbbotUNKI00RKBL69va2ffjwof3rX//aLDNlQKnkgE8PpK9cEgx9+vRpA4jUNvQUCBRU9Uh1JE8n8O2BnYdECRAk2TRSkElJuMKasbY9397/0XsVcK+UcQICvbwdJC8BPaltRmX3a1V5R7qwB+57oHcJmF0UQOiFTq5/ke6tVqtXlkoPqbNSI0Tv76VyePkcCCRAwGfTeS8Pls8tjxT858cknFprr6xRTgtQ8TAIMLny/aeYgvSFQgdPvaDG1v5RUFoHS8V2f3+/8Q7sm5xXKh5LAOLk5GQDAKjoGQF8e3u72YSpBwakRBWgpt0a5Qn4/PnzZhvn1CdUqupn/deyTv6SAPR26Z0nUEBwKj589+7dBhAoEEo8qbqmoEiBg+QV+fjxY/vrr7/a33//vQFH4inxlS+prOrm190r4AB335QMGe/XnkzqKZ4qv8qCHin2Kn9PZ8n7M/nO5jlrSffI26YCY6lM3pYcywTH8o7JA8jpMr5TlXdX3l3kGZAAGiFRL5RbJ9X5qCIVSOh1iIOEmR/fG6G9EVXK0xWyR5azXfge5/vTDoASvB7E5flRoBNg0CIiWGJdUp30/NPT05ZXgJbcPudde0p/9B53XKSCf//+/UbxffjwoX348GHLRS5AoP5xrwCnCJ6enjbA6fPnz+3Tp0+vlhNRafrRv5vukfC7WmyjtqESFSAQQHr//n179+7dZpkU+cR/KhPjJbR75cePH9t///vf9p///Kf997//bR8/fmwfP37ceAoICnqWbPKO+HjzcXdIsQKuQJK1ODKKevdT+yRAuQvv9PSF91XSIT0ZP1LGI0OUcn3GsJxR/pXR4UBCfSkgLACsZYWttY1XTGOCn0b2Ono9HYT0aLFnwBFJr1NTQdOg43Pp3epeem+E1EYgwOvGo5/3ylnVN00L+HKs1ranBwggBATojhYQkOXpEd3Mo0pXlqrAAAP+nKFSPfSOlJbPAe8zZmBXpExl54ruw4cP7Y8//mh//vln+5//+Z/2xx9/tA8fPrR3795tlH7a0MlXE9AzkKZq2J4eRCcQoP72lTGuOFrrC4fZdnKh4zwk/vQlq1SuLJ/LA9VNcQJ///33VgyCfgIEnD5IW7X6+KVFxzp40KzoEABBJbO4UmtpeulaDzR/z/HbM8CqMrlsr8BJMi6TsnQd5mn1dMgs9YxUBwP0hJ2cnGyChAWKP3/+vCVPq5UuP9wzkFwcVdCdnuG7VEA8rypQeQsS49NyVd4VYp7xBiQaIU8/evlH4IBClZYJFZJ7BCrrk5anewXY7sk7wHtVOybEy/u0Vg9lNcFS8nbXPgkOBP7973+3//3f/92Agdvb21crM1KshntVWtseV2o3LieiIOBRv7Ozs817ih9QHgQFCTD3eLi6xikuxg9wCSV5keUgMHCvVWtfAcHDw8PWhliMxxAg4JSY2kv1p+eBbex18lgdlYHv7YvYX9VvydiarYsDp13aoCeHqzJ5fdyaTlZ2lV/PAHVA4OXZtc+XtJn4U2P57u5us/Pg/f19W61W7eHhoX38+LF9/vx5a8q1FytTye8eLVr4TQAwisB34jycBl2lVJI3oELt6/V2gKI6fAbhOfU6L3VwD4HyfPRL9aOicFe+AwG5pmU9ebxAFfBHMML76me1HS0teQDS3gx+bwQc3ppmBRoVhMCA2ltg4MOHD+3PP/9sf/75Z/vjjz/aH3/8sVkOpE2XGAPS2lcFp/ZkUCDbioqVwO/q6moz/XJ1dbXZ6vnx8XGTlvL1GI8kDFO9Wf+Kl326iyspfL8LglLxh/M801H5W/uH9zwGxvfFEEhQe2kNNqcNuMGRywcHxyybxxDtg5JCJmickVmz10f5z1JS5J7mrFXuaVUgtioDgZ7zf5Vvz6j1enies+3t/aip1c+fP7eTk392vry4uGittc2n4Bkr43EylS5a0m+Lvlrou4X1PAN6hyiOg5/PekUqENATZD6NkZ6dGTQs78iKSmWeUfyjOlBh02qigpByIBDgsjXfBa4CA/q5ENaRKwTUZ3JhyQrT3LdWnBAMKB9fsvWW5JbE6FkHAlw6p7lwxgkocj4BAbWhXH7uBWK7rNfrrbZWu/nyUQIBTu+cnZ1tlhk+Pz9vKW32HQWI8/1I+dMbkJa3SnlTSRNkigg4OcbJ7621ciktwbDy0meytQxTQnO1Wm3ahUqUfe4eOhLLuk9yEOAgMsmXpQqBeS0ZNxWlNEZAoCoH/yf+TXqEPDzSCUmPLW0HL1sFBNh3HjPQ2j/LCbU/h4IJGSOjGKzvyZfTYMCDlhIYUEV5JNJOHoQKCHgQnciDehwF+X4IHPg9Be0AheTlJM1aUxUoYH6c/yMDe7wAA9n46WBNEfiUQJrf93Z296hvfCMrS+3EASIldn5+vrnGb28T5OyLZga0Kz8qH8UKCAwQBMgbQ6XOffd9rDjgoBdI7z49PW28MVS8nJdPOxl6PzsYqCyfWTDAYEGuZuEKCrfmnbcY6Nda2yhs5qF6+7JYTdcQBCtAUffPzs42H3XR6hblo3TJm15Hjo3kin1rqhSWLyOtyJXm0vpUBh7vzQCRSkeMrHC/7so25ZuAQJVmGhOp3FU9va4VWKl0i2TE4+NjW61WG+NB44BfLJQ8doOrV7ZZmgYDHsBEYZc60zuMFrs3tis+t5ATIPA805w00XO1/roSlI64Zywp92L0gICXtQoEcnesu40JBOgVcKE+IgoYzlNrzbeQ6Gq12lhdXDFABcA2p9D1negOgRyMEghIufCLjPIGKEpebS4+0thobXs+sNokh4CAgMVXCeh5DzZNQaGtfVWkLy8vG6GicViBXraHjxHl6TtXMnhVvMipKnrs0sqH1Wq1Vb40jpSOgLDAgICZANnV1VX7f//v/7Wzs7P26dOnLVnCdk2yR+TPHxo5EEgGD48ur3rKKcmJZN0uNZj8vR4IGKVXeQpYhxkDrPpV4yMZE0nfzIIub0+Njdb+GSv69kBrbWvZLccPP56V2sT12IgWgwF6BSorwwvFwvaAAHezq4AA01bntTYHEBwlcn68Yogew44QqB8JeCpEr/zdQknCmBHrHqHuaao91CcESq6EBAT0k9IX86kcvrSRiiBN73wrct2VUl1FbA8HXnRJ0zMgIMA9A5Q+ByhXV/QAQeIdWgsa/GnseBoCMgIBqh/nwHt8PQMGUr/TZS/AQnAkkEkPY2vboIV9orIKQHKqTHlzX4f07QcCEYGyigis9I4L2H0T+8yNG/cqjpT+rPIeKbVvqQOP35MqEKD8KOfFZ72xkYxA3e8BgllSXzLGhfLfZYivInDFv2ufLZomIKKvpgdEVSfoXhJgbvFQSCoND2zzchAxc46QgnG93p47deZIgtOZwYX4DIDxuvco5ed7EqQlid4XqV+8DGxf3/zGl20pUp2KgYJZ0fQSxrRc9yVQl/SJewYYPOhTMlJ+tII5MNUn4j3nVypAn9N0BerTc8nCpeIWQDk52f6yYRUh3wMFqU38+xb0SEmgyZskvvKlkaq3VkH4ONTPAQGDFrkUs5rrFxDgLqqJB3iuKYJDIQftrW1/qTKNr8qAcSU2Oy5Hbde73+O1Kr2lNDIedSQAqACBv8s6VsYe78+0KZ+hXnNZQKOCZfW6pzKk+lS0CAwkIFBlxAJVHcTOoxAjGKDLW+m6G5ZChEqeg0XvujBMzKGo4woMuOJwq8LnSJUX663nKkuV77gCV95eD0b8817V7s7MnCLg7oF3d3eb6QKVT25bWq4O3jgt4G6tt6QZ8MVnCLrSJk9ySfs3BrxP6Aon0UIVf/jgVnslFyE3HaG3x61sjimViYqE1LPUyOe+mZUrYvIQZQDrQKtGwY7O9/xxzwCPjaisp7TdsVtUytMFL2MKDo1cqTqwrLyCreXpTl2v8hkZeXzGFWbKK6XX0xEp755Bk4h1SaB8icKcKePStJIecp708V71X+KPWZoGAz0g0GOYHhDQ0QOf3OKlxfXy8rLZk11lcXDgDdETfBTGEiKyClJdHQSovAQwVdslUNFro4qcceh2nR1YFKS05qqPxzBwpbWvO1IqrbOzs3Z9fR0HGcu5T5oBBHS1pumZ6quPera1r/0jRUeFJS+BnkuKx/u1+rl3QGUQD7j73SmNEVcuSlfp+a6WVADcHEnTSqvVamOZM/BJbez7ISRwnKaduOLg5eWl3dzcbPFp+qnNWmtbY93zrLyP+yYf20lxtDYPfj3tdN+vu+KvypeAwGxZes+kus0AAZ0n468CBTOy1GX4LkCA7eQAtQIwvbT8vdkyLQIDKYPZjHqdSEvZ523T8iu3FpKHgGXzMrp3wHd0kxAmAGKZHQhQQCbBorRZbhGnGUbkCFfl5NItF6rVUQLYPSBuXfmPzJsYzT0lIy/FW1DivVQWV4L+PutGd7W8JByIVPJqM3c9J2FJfnZw5p/5dXc7AQljaJRXRUnYpHZgvX36zr8t0FrbWl2SAAx51r+86LE9us4pF4ECfiuC4NU3aXIg4kaLC1Mf+4dCScGx3wicRKl+5L9Kme1i6bJsSw2dRAkIuGcg5e3/e7+Z90eG7a7Uy59gPZXX+9Pf/aFgYIZGDVd5DpLQZWCc7qfOdDTvDeLlc4+AuxQlmNy16Baj7y7nrmIJICmC0eDqIWCmyTJzbtq9KW7ttpa9At52qd60On2pmwdwERzNWCo/mnygeL396MoxDUJaqY7mRalNHSCmfEceGo8hUJnSVJWup77w8lXg2vnJvXUEArTY6XXiSguWzb2O3k5eFqWr6Q+u+vDYBB8relcfgakAU+rDQyAqcba/yEFgRW4cMG2d+7Pfi3ZJrwICPQ9FNa4rHbHPPnZ+W2rhV6Dgh4ABJp4q8K3k7lnf2lSbuSS3npfNBwjv80ePgAtczYUTEKh8UgCuEKUARQq2cwGYBjAZ3V2iJAlGlZmR7G65+bIzldsDHVWe5LlhXd0jwgBC7sfPaO4RuHkLSuCzshxolXPqKP2qKTO9Jx7TOmECTk+DZXArW6s5+HnfNP+ePEyuvL3vla9PtSUXKsFA5RUQkBZPMpYgyYvKY5OUEfmY9SEwSVHXLy8vW+2ltPybGcmyOmSqlFzlHXDqAeRqnFRpzNL3AgIVpXHtRx+vvTSoXH809QyVVLZROkveaW3hDoSzVCmVyiPAa1zW5dvuckezWavTB4kLaQkxBsxxlycGyCWXLIEAwQC9Aa21zfwk02A7qO66R4XuqwWopOSS1Xw0p1dEEpa+RbHyppUqdy0jtler1cYNThDEJY5c4kXgwL5hmQ6FHJitVqtN5HnlpucctO8F0NrrJYUONH11gMrBd7WqQ1uR8uuPvt441UFHKs4EDpU3V95Ukf2ttVf9WoEBBgBXQMRjb1zo+7ShA3DGDQh4uPeCZXQvio5pKvCQgUDyDjgQSEqskpOVVenvpGuzNFuWlEcCApVBmM75/1v61ds9Xf8eVBkqXodem+7i7VitD5nrj3SkIx3pSEc60g+n/e0Pe6QjHelIRzrSkQ6CjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35yOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35yOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35z+P4M9Q/sgg91NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/f0lEQVR4nO192XIjSa4sSEnUrqqa+f9vO+/H7pzuVpUkLpJ4H9o85XQ6EJHUQtY0YUZjrrEiAAcCETlZr9frONKRjnSkIx3pSP9Ymu67AEc60pGOdKQjHWm/dAQDRzrSkY50pCP9w+kIBo50pCMd6UhH+ofTEQwc6UhHOtKRjvQPpyMYONKRjnSkIx3pH05HMHCkIx3pSEc60j+cjmDgSEc60pGOdKR/OB3BwJGOdKQjHelI/3A67X1wMpl8ZjneRSjbZDLZONZrY9Lhd/V9Ps/2bOJnkMZ0Oh1+OOd7nNd6vR7SxjHnxcdV+fj59Xodr6+vW2mPaQsuv5b75OSkbOvn5+f4n//5n/T+Z9Gh8K4rh2vnXZ5XPs3Sq3hDr7ljPtdn3Dsu7SqNQ6Z9lO9QeNdRL6+6ayw3Mjkb0eYPx2ct2ZalX10b+8w+eZl1CKinPN1g4BCpBwS0BlPGsFXa+qxraFcOVabun4lBgAKC3sGHdPi/Kn+rvVS4v76+DuV+eXnZqoPW+59M2ne9/6BeIDAmTVzrBQPr9Xp43gmd3mf4fgYYjvR+4r79CGCRpVEBA8eDmVHkqAKOTja6c31PyzZGBrpnPoJ/ebx8BGW6KaPfGgxkjTfGG6BpOEtqF0CRXQeTtgbMrgO4YlKtW28eGXpXoIRB7ej19TVeX19H1eW/iXYZ5JVwcPzCzzqF7N5veYZUoasSr57PzvmdCjAc6f30kW26Cw87o4hBwMnJSRcYaHlK+dlsHGT0GXw3VhHjnTHUM/7G0G8JBlpeAFigY0BBpeRa6VSeAU2j9dN3WGG/vr6OAh4oW/Z7L7pFGhmw+W+iXQFhds8B0Mx6r+6Pead6rxKszIMOELhn9LjFc9k0Qy/9twKJXZSKe38fY1J5j0EAficnJ8P0YmU8jf1pGhmIHUNj2/G9fdcqS3bO5RxThlFgwDHWVw7CCgQ4pdoj8Nxzmrbec+9n7qcxoAIEMKPKv6VU9JyZv2WVj2H0DMBkZZxOpwflFcgUXM97Pdd3AQaVoufjlvKvnm3xUlbWyo3vhCz/a1szZUK6R8a00s6er9L83SmTc18JBBz4dCCAgQBPIWof9fw4DiqTMx8BBFw6vUbCR/Ob1kXzUUDQQ6M9A04IfVRFewWUCk8XjKLptQR+BiJ6GtS5Ul06lTBUD4DLo6KsfOpeq8qOdFxbtQCYluGQ4wM+W1h+tCWmvNOj3MfysFOUGWjK+N2l+R7ZoALXCb9eYdsCbO9VFvumsUDvPem38nWyggGA/rc8A1D2es7eJlyH/HTAIPNYtahlhe+LMsNiVxoFBj674pWQrhBnBQh6y12BgZbgcUKkEsAZWHH1rqwy3Nf8nYWmAypjaDdInAJwdXOK4ZA8Ao56ET4/y5RZCWPaiK87cOaoFxy0lGCLVOlXvKiAIaMWv7m83flYqnj4MxToV9FnlT0zDFy+mbEAuZyBAA4kzAiGhSp//OB5BBBgg6oCBVzHz6aWMVm991WA46BjBipGzFxPEeMbsLJ0ey0rFWotxJwtrWGgA8buqY9TOvh3wrel2N25G+QKzEA8GPF/iMCgJUh7BG2PsGy9m4Fd94w+597tue/IKWdnjeF6L0AYY4llz1UWWg/1gqzfxTuwz7K2gIALElQQgP+ISGW3i5NS2caeAPcDOFAZ1AtY90lfWY53g4HPYkgn+JxCUmbjd1l4VYooSz8DB0zKmE7IOKHcImXayjWlfcD11p++rwK9BXjUUozYBgJcBgYFLy8vzXp/Bu1DaLYAQi8IUWCg9zLeUt7N0nDnjpfQhg7kuedb1AtuM8BxKMJ6n1QZS++hCjRl52ogaGyAyunMG4B+zeS1Tj9iabMDAypvnGGS8ZcaS59JVV67yK4x3k6md4OByr2X3c+oYrQexFkJtCrtiO1NMPg5BwpcG7SQZuv9XQe2E5RZWTIXbVa/7Fq1RtgBgX0LbwyqDPi4Punpjx5rM0sf1ys+zxR/S/ln6Y4puwOTELxaj+z5iNja6Mq9m6Xnyqug9EgfR708XMlPBwT0p/xYufKzvCMiTk5OBlmDvBkITCaTeHl5icnkbeqAAUSPoeWufwbtw2hh+rRpgl0q5ZRSxmD8c4zFCqmy0ioBzM/oMc65rvrfUjxZuq6cet5jWfUAgiyvTJG4QQ/iVRA4P5SpgbFuajw7pl9671dgU/mwAqK7AAL3XnZNrf+sDdVzoICArTXnpcv6JONhN64+Uohq+ocKOHY1Ht6bl+M3NRCcR0D5MzNM9B6/B0XuyuB4KytrxotKu/LBrl6bj+jTXdP48GkCJ1QidpvfYyY7OTmJ09PTODs72/hnZQRE+PLysjFf5BqnEsJaF37e1a11rm2Quab4XtUuPeQQbs81XM/mq7O2iogtT0Cv0N83Zfwx5vmx+TjeynZly0AoH1fKPlP+WZou7RYx8FMw/vr6Gs/Pz1tzuL3zt1oGN37eI2/cu9o2h8q7H0m9cs0pWGf9u2kB7UfnSXJyivNQQMBl0mkEvAvvgAICBgYOnFR93+KJXQHBR1Mv737KNIGj3kZxDAYgMJvN4vz8PM7PzzfAAAub5XK5pYgYOTpGdueu7JmbeVcviJ67cnI+mfDOFHrrWtYeLRd1a8ewiG1gcCjC9L2DcyxwqNLI2jQDBC6/TEBXZWwJfSdQ1WvHz3He6/VbbAiOIXQB1DkNCGLH9+5cy8PXM+p5rgLoh0ofqWxa6WR85gK5nUcgiytSC11lhVPyFSBw56z8FRQwgOVyvUe2/6704dMEYxk06zxmrLOzs5jNZnFxcRGXl5dxcXER5+fncXJyEhERy+UyVqtVLBaLODk52RA4meCshGhV/rFuo57nHMjIBF+WR5Zm9lyWpg4gvhYRKRA4pCmBjL4apVd94HjdgYDKW6Xp6f1KoPXwem//a7zO6enpIOBPT0+H8fj8/DyAAs3bWYcZv/Yo7jF97SxSN733T6Ieuen418UI8LNu6omnkLT/VWmDIPtBLH/Yg4DysVeKAQETyoJytnjuq8BjTz4fUZYvWVo4BnUyE2E64Pz8PC4vL+P6+jqurq7i8vIyzs7ONgRMyxLNlJu7puUa4853DMYKvXI5ZczGaarVFrEdfFOBgwrM9Ao+JyhbLt9D8A58ptuuJSwc6M0CqzK3aq/irspXXc9WLERsKnwtm/taJQt6Hd/Pz88xnU4HoczTeq7tXHl7hPJ/i0L/bKVTGQ1O+Uf4rw46EKvvMTGPZNMFnJ4CCBD4VqeMHSjAv3qsoEMYCLipg68CAEpVvhV/jynrl4CBSumoouMAQQcErq+vYzabbaC91WoVy+Uynp+f4/n5eeho16EO6WVK31kKFTmQgXdbaaEs7HqtgIq+02uVt6wrJxh6rrl6HcoUgVNUfP0jLMyWMtZnnSXVIzwrwY1n3Hv874Cwux/xJvTxRUrnom0BHkzzYTqPx6kes3LQsmdjqIe/duXBzwSQ76WPKFcvwMx+1UqBCpg6xV/JCwUBkF0878+ykz0H4Fn0pW5QhGMNdHXAQ8u0q5IeS5m++sg8PhwMtIRVRoza4BG4uLiIq6uruLm5iZubm7i6uorZbDZ03vPz8wAEMFXw8vKSegUYHfJ1PnZCpgIJWR1bwqoFkDIgoAwBxIwlNqCKgbMygPExqBiZZwOcVxBUyoGf/Wpqlctd+4iB5oRpFmQF4eXiNapycr0+U+HxuNGpCzd/q14G1I8DfAEEMHbZYmMh7HbPrISw837tatEdKhCIqL09EbuVPQOKGRBQmcplUAtf71U/JfAA8xXk3svLS5ycnGzILld2PIdrDCwAdt3KFzzr6lTxojNC30uqC/TeewyvT48ZqASNdhavGAAQuL29jdvb27i8vIzZbBYRfwuU5XIZ8/k8np6eYj6fDwIFQSLMWCq4MgWL8up/y7rtVRyV0O6x+pw7jJ/jerB7TPNoMW62CoPzcUqL54Jd/vumMWWp+kIBWW8+lYVVWVG940nfq875mloanEc2BYX+Z8CYTR8w+Dk7OxuELMDA6elpLJfLmEwmwzWe9mMXMcrgeLklCFvC+5DpK8pcjfcWEHA8nAE3trj5P5O1DAJYQeMYhhCUtpu2YpkEAAEQjrIDTDAg4Oms1nQGjjXfj+i3XeXomPy/bDvilvBkYXF+fh4XFxdxe3sbd3d3cXt7G+fn5xtTAo+PjzGfz+Ph4SHm83ksFovBzZh1Vq8w7kWrWodMqCujZIjRgZexTMACTxWy/mtZ9FzbDQTh7AZ/RGxEk3O9DkkAO8XXQ64NNR29p8LTuVX5WZeOlj1Tgu7YCSjHAy5vXEOfslDWtLmuPJ3AMUAuwAxCHUDBjYMxFj4/49IYw4dj+eMzKavXrmll545/K0Dg5KiTIzjmXxbrlckl/Ov8vnu2BxAwGGBedJ4BBiBaflfPzyI3nj+C9v5tAmYiDhi8vr6Om5ubuLu7i6urqzg9PY3FYhGLxSJWq9Xww3xjprxblkCm0DJyjFaBnFa6jpGdBRQRAxOD1EOg82kKCFpKpioTD7yWgHTK/9DAQG9bVPcdD+g1BQFuuZVTzhnP7tKGPUqEhRjzjyr7VmwK3LX6jouRwGoD9jK48ZtNQfW0xSEp86+isTyd8bEDp9WPqWVkVIaWAxIKBjJQwSCU6+OUt8a/4BmOMdB9MRQUcNpcvh79sCt9pGxg+rRNh/S8us7CkpcR4gevAHsGAAYYxSkpINDrEZsucSDDKh2+1qsoeskNqCodnSPTtByCzBR0BQD0ffU2uHJ/BrMeGmn/ZFb1mGDBVru5+2MEcYt6QUlVRrawIja3jGXhiyWIeN8F//IysKruWVl/dyDQ2/4flRf+q19raiArt7PuK1DgSEEil5vrweAAeVXvK+BgQKxggEEB38vK+tn0Ubro0zwDPQVg5uNVBLPZbAAFp6enQ4NjL4HFYjGsHnDBRRlDVoyaPcv3nIXlkLPW372bWWqu3biz9T1l+l5yFpim75jZeRmcUDgkyoQS92v1ruvL7ByUCdDKtar5ZiBU83FlqPjb8WhPH2ZARcuK8kyn02HqzhHAEVYaYGMxDeLK9iVwY8qN1ffSIYHY99arZaz1AgAHgpkynnW8UhklLg19Vy10Lg8HrraI3+OpUNSf+dLtZaP1+Uwg9xlpf9kOhC2aTDYDCLHDIKwKjjrWICMn3FC2MUoqY3BGsE6AusA+FVzK8E65V0AA/zpVkFE2ULJn+V+PuU4ONFSCQdvhEAj16C2PAwBIR+87Ieq+3V71tzuvrOIMjOg9zbcHkGTtkRF4jsFqS9Bj7J+fnw/vO2vReQB1HO1CY4DU70wVEGiBgYp3lJwcUQCgx9l7mfxg2YZzyEcuWw/vaT58TeWvtkHE9vbb/K4jJ/85vV5ey/rTyace+jDPQAspumdVYMIyUK9AxNuSJAYCykyuccYOYld2nnfvSS8bIBVjZtcqxhxDrAArC6+iqq1xrbI09kXab07htoBkNmgzgclTAw4MVFQJzDF15jJWYKInDf7XcmZlxJiBFaVCEMITIBp7i2Ccw2NQ8V3VNlrvTDiy8PwdlP4uY6kCAnyt95eloePMyb3sX9Oo6snvZjFR2fstEFQ9yz/mb5QF1yt509KVHwFwd6EPiRnoIRUE2sjsFQAgQKQnOtwFf7Dg7UGaVR0cw+M9jidQAdOj8PT9jEEcU3MZXHuyC1qDt9w1BRaaVza4tazu3A1sjUDfN2VKQp/JqBJWFRDYRZFpf2n5Mr7LAGkmALV8KFsFgscoJXWxPj8/D2OeQT88BNPpNJbLZUyn01itVoPQRUwBl1Hr2CKtp7brLmD7d6IKsCs/tABBxDbgVDmXGUIta92VVakVHO1kHP9ny7Uzfq/aReMItP4Vbzqea8lhd+89fHsQqwkwb5h5BSBAdMMSnVvsVTaZhV25dVBW/DuFUAERN1CqAaVt5N6J2GZi9WLoNIFrMweiKsbsUWpOke0LDGSWB59ndRozuFiQVkGDrTJWyl/zq853qQOTW/bVAtsoe2aRs3LHNCADf7QTthuPeJv35W8bMD8zn7uyKe+1+OHQaSxYqZRrS/lzVL4DA9y3WsZeMFAp/NYY0LRafelANMcHjHlfp4XdR5Aqvuwpr+bbev49vPwuMNBrkbhnlOFYeEa8AYDFYjH8a9CgKrTKYnDl6x1Q2hFOCDtknB1nHgYe5K2yaT24DOo1qZaDZR4KTbsqk7ZPVud9C90x+fe2fyUkXRq7CK2x4Iyvj7UaOD+3cVQGTNG/TqAqqOBvEpycnAxTArwPAQOC5+fniIghbggyYMx+FhWA77XAfnfKgEAGAlp8nfF39avK5tKt+qqiHhnL5dV7vVa8tpN+lTNik/+zMXkIfPcpOxBGeKGhjaCMFvEWGwDrARHJ8/l8I3iQP26SIU+mXhDgytRKD/lmHgBtG0cZo7tyO0bMypXl5QapE5hOcFTld+CidwB/Jr13sGUgKQO0LkZgbBmcIM7K44j7xPUxE+bu+Z7zDGTva5ncONDxn3moeOqADQR8njwiNrYdHxPPo+3D/72g6ispAzbvpR5AkIGBrAyurC0gUOXF+bTko+sjx4OV3NY0evijt20UVLeMsH3Qp00TuEbNhBo3KJYQ8haT2H645RnIAEHVSfoMl7l6vqXYe8FAj3KtBgQDg4jY8gj01iFjeOSZDVZX50x47ovhP1qQZyCApwXYwu0FA9W4yEABU6/Xwb0D5ezu91p3GRB24xP1USHMvMueAlX8q9XKCn/lQU3bWYr/JKqMCxz3KmhHFa+0DI3KuFFZVZWnsvBb51oPfsbJSJa/1f2x+WdlatF7ePrTP1QU0VcJKHcEFy2Xyw03Ymt6wFkgqkRVEFTPVEgzq1PFQL3twGVRaqHkCP9NgqyMPWk7heQAQSUEMgDxO5K2gfMGuIBBx5+cph5z+jivViJgHODZDBhkPOh4JlPm2hZ4xilgflbHB4N9lAFjnsch9h5BXvP5PAUXTgnouHb3M/rd+XYXhV8psxYQ5fMemaDjKCtLy9DTZypgXMlP5d0M1GSAptVePE71+nso07tj+HdnMFApq4zcAFWljimCiBiWFmHqAMQBH5yvMkarMZzV5crqrrWsIHevVQYWanhP6+Tq41zRLVCWlalXaGibcR9qfTit35laQEBXDnCfVMIxA1xIm8+dkFQBw4q96vPMUnPUEub8jNZR9wPR+rud5Dhd3pzo5eVl+GAZ72jYEqYOoLTqvMtzh0ROMVUAwJ0r8ZiuAABfa5WB+by1u2EF4pw+yfq9qkfP2NF0uCz8oaRMr+geCR9FveDf0c5gwCkmp7zcvYwh0YHcoQABKhDwPCv9lgLPBK5TbBnYcQI9E/It4Zul767rObum3SBer/+ee8USLhfYMpa4/NpmXHYHxH5XMOAApwIBzHHzPvt4XufFXZCrCkDtV/A+nkU5WOAhzQyUOgtHy6H95Y61bVrP9QBi1EOXDvN9bgsYCewp5GVdYwXiWAvqd6Bq7LWUfqstegwlZxRp/uBx/XhVBQYqcptVOaWfgVIun9MpTp9loD5bhdECARXo2IUyneJoJzDQY0loQTKFxhaVQ4a8IQksgogYvAdOIGY7lTn0y/cy166eV4DHvcdlqCgTSk6xar1YeDLD8ec6FTFzGs5KzJR+Vidm+GygHSK1hKG2BYQWAACWwoKPI7bdgQ7oMvFeGchTpx5Y0Ci/6wY//NlV7d8xytLxA5+jPExue1hXfx07PG6Xy+VGemgf5Mftgo8jjQHZ1Xj6XfiWKZO1LVDgrru2ask+nLeUawUE3Ee8NH1ND9fZQ8TAsgVIXFmRf+ZZ0DRV/vI1pINjyGLdM8OVsZcq/h2T5k5ggAd4D6MwI0TERucD6fM/W0JIF1YXX2PF05qHyQCMCno3WLieSNPl1yNoM4HlkKbe1/rowOH21T7S8uoHYVybtMqpgzKr476Fa9auVR3dfQWw2CQL/zz4GXhx5LuzJDQIkS0kdaFyuViBcj48B99jpemxA8l8DnLfjcdzvOsg8nU/Vya+jxgCN/7ZOEB99TgDX67+fG0MYPpM6gEnmWzj+9WvRZmR0iqfAyIVCOBfxCborcqhQJPrVcnripT3nUfPGVYa44Nr6/V6MMx4PwJeFcfpav12IW2DFr3LM5CdM+mA18Zy80U6qPn+2dnZxj1MG2TolhlIGdIFfzkm4vfBcGppo27KdDpYMtTe05b6rms70MvLy+BOBakwdUu7evu2Alf7Vv69lPULUwYeeYoA39LQNlFQkCmmDKjwWOHdOFX4wPLgb7TDAuHVJS4fFZ6qKNxUFPJlfsIzqCu+SMibhTF4dz8WuBxMzBsTqbI4PT3deIfrURkKFf0u/NuiMSBA+UrHRmasVEDA8aoaLwwAHOh18tJ5ohiAcn00vswZqdm4ZF5S2a56jcGvGxe4h4B4LU8FWHelsel92Q6EKmCggGFZMfLnhkcnq8tF3YTsCmdiplCGUzDgkKDOXXKnOxDQGmQ9KF7/eVA461HLjvecEMQGLpyuCuOqTKo4/lspAwFOiLGQi3hbA59ZxVWeLh8uT4tveIzwPDqTA0Eq+PCem76L2PQK6BQV8maLR/nNkQafanAgAC4AQERsHDP/gs85jUqRcbl+J0CbUQsIZHzkvGKVF1Dfw7tO7mVyl8dQqyw6Hjh95Xn9ZWBYQaTzQHOeCgRc+zAQQV0ZeGtarX0IvoI+bdMhJlUmbFXx9wgYFKBDssbKOo0FF1u7mStWXVUgZ/k7hnN1bFH2rLteDWYdUI60rO45J3hx3QmF7BzXehTfV1Ml4MeCGuVnkLqmWSG+p02yvnXlUgFa1S0TstW0hd5ncjzEgjDCB5rxdefR47LyCgItB3sNOR+0f8UDWb6/A7XK3AMCNJ2Wctf33L/mnwGBDFi6cjCPKQBm+YzrUMaubsojXFfVLdoOWZ1VP/B41PJBRnAZ9ykzPwQM9LiQlCE0Cns2m8X5+fnGzmM6l8Lz3CxkOQ9uVL6XBaow+GCXIyNGMAO8AtzhnDf/c7u480zxu2stMMDCmhU7/qtveWfl1mtMldtN217v74MyJVBdr9JSocq8wvP2biVBS1m7vh9bV5DyaZW38lUmsBUccP15zKoAZuK2cEJV+Yt/FRhQMMb5aV9XvJgptd+FnEzJ7kf0gfyMWm3lZJaCAjXgIrbn+JmfMv7iY15Bxb9Miet0KlvxWpdKzzlQokYp8uDgVxe/xeO1lxffw7PvBgM6iLNnuEN4imA2m8XFxUVcXFwMYACdwXsOcKexoFVAEOGRHCt8J+h4pzMW7jiO2GQwlIXzbHUEM5cyWQYUMsWvxwpSeNqEETQzGDOsExAVufsVEDgE6hGM2XuZpRzxNn0U8TZFoFtmZ3yaAeaeMioPMQB0vNni0QwIILAXY5eFN+rMPKcgugKVLasSaWWxD+wV4DGrAKJSBG4s/k6U8bWTIw7I4l/lUCsPTSN7XseP7svBShZ8xOmi/yM2d1pVTy7zCNJwdc7qjmNY6m48ZuCC39W8MD6g+CNi8JYpGHByokUt462XvvSrhazUeHrg/Pw8Li8v4+LiYvAMQKBCAQMEgJz71QESdCqEGk9FuNULEOzMlM4NpdYIM4yWoxpc2YDVaxzBrj9dh/78/JwCAQUBXLdMwSti7xlcLq2xgVyfST3WjxOiThi4wDf9yqYqZy6DU14MTBEUqMIabazKn3lTAazWmfmjAgLqgeJ0NGARZXNAx/G56wstb2WNYTknAzIGYS5tZ1U6S+x3AwdapwoIKGX9kAG7TF5k7zswnU0LOKAIUKD8zTycGTeah+oLrp8CAqTNx1VaKBuDA7yrGxIBDHBcHN7nPCo+/Cgw+66lhb3EDMBxAhozwNME3OmTyWSwtCAs8WMEqIzF13X5CitSBQOMRCtAoAzUS6rsuZ108LFFptHrONbyR8SwfTMTK3ScO/eUlrXyAnC6Lp1d2+gjySmUXv51QoxdmuwVQFtWACDLOysPT/UwEM2UZFVnPq/qnykErT/aAGCFy7uLhcN58bGzwkDsGYMA16kZBgXKoxXIOATeHUOu3VSmtPimlW5GmXeg+jkgwGNI+0IVJYPQipzCzhQ48xoDAj1GGg4cKQDQTfJUFoCH3fRH1U+ZHlZ+7e3rd+1AiIxdhlphVmTn5+dxcXERl5eXcX19HVdXV3FxcTGs1WZFj6kCfK8AHyvCNZ020PzZ0kFsAitQXSvNQoQ7lxVo1hY9jZ4hbTdgGT2zMNb9GXiKw1lCEdtWecUs2qeaXgsIKDOPAY6fQRXYAVUWUQYg+R1WOsyTWd4ta40FR+b6xz/3U89zSB/XMoHCYwQgXZf3RWxaZE7gjVWkVdkywDmZTIaYn7Ozs0F2KHCq+JTTcxbjIVJLjrASVZncMyacrGIakwaPpYzvqzTVQFTDbUy59DlV4G5KlYEC840C30wm4lmeGsGY4mcnk+39BzJ57cbCl3oGlLLByZUFCLi6uoqrq6sBBAAIzGazDesW6BBrjVer1QAGAAhablhWnuqR4A7hekCQq1XBncll1HrzcWUluwHmgACuu7lqLrdaQg4NK7Xc9pUCydrgd6eszd0SKG0b194sQDh9PXZp6Hx5JpQVBCggyPLLrrXahevlro1RoE6wscDVNuExypahBgIDECCWwC331PzdmD0E/m4BqwoIZIAzA+xVXzq+b5G2b/UceLYC0ewV4CkBVc6OWvnjXwE4AxD2TqzX64HnFJhoespvLEvgVdO6aJ1delk9dqEPCyAEaUUgSBEoCG/Azc3NRpxAxJt1BQDAyh5fLoQ3wAVmOQSq8+watML1yJAcrvXOebcsrtYxX8vcfCijuqB0vpqFoHo7+L+qiz6XoXEmZx3uU7BWAtUJQgcEFNErr1TgKwN9TkhHbG6kgg188LzjLU6PBQ5PL2SCpMWnnB7zpLpnFTTrZmCOhzMFzHzHAl5XxrhYCQhY/jYHlEemLDJQ4u7viyrgojJC+8rVxQF9R47Xdm0PLh/nnZUpSwNgUJV1lSeX3SnozNjh8ikPa3yPesnwTFY27ifeM8O1w2fz4KcEEHKHwytwcXER19fXcXt7G7e3t1sBgzwtoK5/9hCoN8AJXydo1bWrDazzvU6R6nuZl8B1mhts2QB01r97VwUjyuQAk25Vy+/0KuoxlkGvxfkV5AQnSAW/E6ouXkDTyfJ1z2XAToUS34N7sUVcT7W09L6rv5aH04jYXgeuAAouT4AYTkst0AoIaD1awHK9Xg+7QKKPYADwmFBgX/Fyywr7CqrydwDTAYKPVOYR27KzlVarjTP5qu/2yBTUW+ffcZ0VNrdNJp8r3cJz/Rzbo+3rdIam4wBS9s5n8eWnrSZgq3w2m8XV1VXc3t7G3d1d3N7exsXFxUYUMJT98/PzhmWRWaCOSdSdw8Jc0Zym5RQpK09lDAUCqlQzQIDycYc6paHMotc5TbaauO2yeSc8UzGTU6Bafi6Pq88hUWXlZUBAwYDecxaEy6tqDxUaGShoBUkxZX3b4k21cthV6qYsNB0WwgAFADG8RwcDgwwQZPXS+zhmL05EDN4UgIGzs7NyDOsY3CcAyMi1lSp7x8MV72f5tK71AoGM2KLnftApzqzcLGsqoOzGswKFscR5sXzg9HrAAOqwXq+3YpD4XR5/fD2TydpGvfTpnoHT09M4Pz+P6+vruLu7i3/9619xfX097Ba2Wq02wIBa+zyvArefdi4ahgW2zvPyRkMgFnpQ/GpRR8TGMZMDAdwGeMa9lzGhs0TZRZ2hSOcJcLEPrkwOHWsZMyDDabQExCEKWKUMCCgYADlFllkzFYBywEIFJguhsYKMhY+zFLUOrPyV/x1o5Xc4P+Zf1NFZbdw+2l5MDFC4DBzUiH/IDB3bmp7SIfNpJuAzEFC170eSA8Ifma6jCphqWVRmOjAypgxOPvC41TbXMY5n1NDDGEedVG6P6cOx/f1hYEAtWQAB9gp8//49fvz4EZeXlzGdTof9wxeLxRYAAKqPiOHrZM/PzwPSxzMubyfQI7Y3qsiQqF6vLK1Wg/eiM9d+XPbJZHO3RLRTVqZMMVdlycpaWa96/RApsz6dsGAgma2t1wHupqt628L1F9LkKGOugyrTCvDxO3qtJbj5PscwMIDRNhkTS6LKyrUvv8OWHZdRpxVBkEGQJTr158p/iDzsgHf2XParLMietBy5NtsFpLLbno+1/50Ro2MCx0y4zm2QAfqesZEBXgYnLn03xlW3QM5HxKDrwNsuXTUm3kMfBgZ4wKKBGAx8+/Ytvn37Fjc3NzGbzbYaRF0hSIfdfogQZlcLC7/KmgbpHKjGHqjQ7JmmYGoxLc75mNvMKSPdBMYpJ2ZGzYPPM6vOPdcjQPTdql0+2mp4DzmFxG3PPMT7OOAdN8A17Uwwuv7X63jffYktwn/eVae2lLfHWm88PgEEptNprFarDX7l+nMZOOBXPVWOlPf4X9uKy4j8dPtZTpf7saXkuAxj2uurySl9vR6xbZV+hOL4CPDEZVT5leWn11oWvpsWUEsbzzgDoaf84C9nEPR4lDnmAIRYBA1+3dXo6KEPAwM6R4/IfV3Kt16vY7VaxevraywWi1gul7FarYbpAhYyaGS8B3AR8dYRHBDHyp/BAEdpMnFn8TEavsc9kylPzUcFvlNCaDe3IRJv34n2RlnB4Dqg1Hui87g4dqBAz5mpM0XYEp6HIFTV2mBy/ZEhfeUJl1YmwJwl5dKP2FwmyF4ivea8V06JOmGHf92Yi4H0GEAB4cZAQOvbY6VpGXUaUBUegwEGKu49JQUerl8OlTJQoFQpjh7FVwHg3vLh3G2hzoAT5JQ08mbl7mIGUGaVlQqSNH01bDN5zmOUjVEuuwPymjfrGx7j0Afs9UJ53Dh8LzD40JgBrgAUN75GCBDw8PAwHM/n83h6eoqnp6dYLpfx+vq69eVCBw6gHNU16ECEMl3EdiBSC2llgl3vK6PxfVxzCF6tUAABBwo4LQUvnCcjYXWttuqx673smZaQ+grKlAyfc1+oUuR09Kdp6LOavwNdyiNstbCg0TxwTcGr/rcAWsZbIDffrm3D5dbYFed9a1msPcCD30XamE7kcvJqInbrslXIeR4a6djKxlSmHFptrWlmACMb51l6VX1YvlcxKZlMZUVeKUcGu2wMaVs4Gena2Rk/LD+UKtnLfMtjEf9IU70DVZvsSu8GA06h6Za5iA+A0l+v18PmQfP5fNhNMOJtbbQKKRY8UPK69I8jMrMpAtcxWUxApkRdoyvDVExZ/btth7NlkVwfMJMGamlZuExZ3bJ6smJSxYNjZdaPRK7vIWfZKChrgQEHBFogg/PjYwckGLxVxLzQM401BggwVd4gHDurCf89cTetsvc+v15vLpvF/gJcRw4o1PbX8lUA6pDIKWwmBwxbwKcFBjT9lqH0kcZABkrUza756zl/C0BBhZMLSmPBVEY8BYd01cur8kjl+0fJ1Q8FAw4IYB+Bl5eXmM/nwzG2F8b0ADqB53fQMAAUr6+vG98sV/d/Jdz0a4OZQq7q2RKwLaGrpJ2suySen58PnhXnOuO9A3i6gK1K3qVN9xjoIW4fFaI9zNhr3X0FucGOf+0Lt+VwBgaQbssFjeOWJVqBNBZkfJ3L2EqDiV2bzvPA9c6Ah4JmBQDu640ZoMqUC193wI4BAerAfY0py2wMqLV1KCDWkePfSvk4AKCyLPup69sZQlXZlDQtRy154oAJ645W+qgXGzZ8TS1+JZcPp4f/qrx8znJU45MitvWEyp2PoneBAbacGAjgo0P84SHECWDA6o6CyoAs8NhiQoPhOigDAizE+KND71GM1TXtyAy96mBD+wEUAAicn58Pm6mgPs6LwvVhxmGUOYZU2aAdMejGIOZ9k7MmnMDjvmAhiDozZYqM86sGq7unabFnx8UI8Dlfq0iFmI6bnj7VeraAgLZVy5pskVr0LNAnk8kwPriOk8lkkE9ZHZ2ibFnRX0lq4eK/1W8VEHB58LjgtDNvSWYovQcQaB30mipYNiaRh5aXx44DPTp+HMDK2oCfV37MADuOnWzR/FWmu3K9l3YGA1xIBQLwDMDCjYhh/hBzehxcxFasukkUrUVsLxXh69pAmUWjTKJ5MlOxJyEjVZ7ZwM2u4Z8DCBkMgPRTsSCuq0OSOmAZjWaMrmWrmLwlYA5BmIIyi6qaHsD/WKVWWcFZufAe2i1734GUjDJlr9NvuKaUzelqWvqc8owTpk6ROGCVKTzwPHv/AAgAAlCn8/PzjbXcSEPB16Hwa1YW5ddK8Thw49LLfq2ytMrvfs6LNjbtCoi7aYNsrGg5WmAmS8MBEOb7VtnVK8H9qsbKZ3gHdgIDWkB8ewDK6+rqavgWAQYiBhtvLJTNI/I9BwImk7fvQDNp5+N9nmfB+xFvn8CsBBDSrYSuWvtZmSrPALwB/EXHi4uL4SNOeB9bMiNGYrVabVjtzJCuPOqidsLCIWy8y23ogIO2td7fB1XlUT7W/QWcMu5R7Fl+XKbWNQcImIcqK8XlmQEBBcZuPLipgIy3mL/ctADuZfzXS85CRDki/gYE0+nf8Ur4EJqzqDB9wcClEt77Ji6/U7TOA9ACAZqWtlXmVXAArwdYMLF8qfQC0s6oAgQt4JGVryW31FOXgVfmNx7TXB4tP9JHf+imYwwIXJ3G0mgw4IAATw2wAoOFG7GphLSzORBOGyKzzHX+UTte88I2xxHebZYxIAOHFoNq2V0arDQBaqbT6dBeWVuiLoi1wLQAbwLDbcLkznstVTfN4EASAz6XTiUMvoLcYGNezr5KmCmvXuHIAK03jVb5XcyLqxeIpzxwnj2X5e0C7PCvAMYBeW0fN67ZE+jqpGXKhKC2FXv8MObW67etigEa9smfFbE8ayldfb4a570KXBVZq3wOTLh+5D7KApKz8jq+c+VygCB7tgdouPcitvczcP3l0tIxjfGDsnP7gW/V64v3W2Vt0SgwoJ0LixZKDJatBg+qhcHbCnPaLh/OIyK2LHlMNcDjoA0D4nusNN0GLRzZCeoZTBH5dIG6Y9kjwFMC+Kwzf9URmzSh/phmWa1W8fj4uIE0VSE7hcMDr2IcDLhsTgv1ypRbNSC+klqWBveHWkMKsrh9M2Hl0uBBnl3Td7PxwaRKUZ9TJVdNC+h1zT8DI+r9YqGGa67cuJeBpKyNUU/lrx6ApaAoa29X1n1RBWK5/Z2ya41xRz1t4t5x7zrvk5NR7BXQOig5OcP9qmBcpwwU3DJPZW2B96rnWl5ZVwc9zzwMPFZ5moDL9F4+3RkMMDrheW5eF49KsgLWTsC/Q3oZquXP865Wq1gul4OCxLucfsS2uz4DAs4q4eMWKGhd57Zjt7TGXeAY95ygw1QBR6Bq4JYjzK+CnAB1iF7ro0pDrZHs+X2RlikTesp7zn2pyjujjAedQGyVr3c6SgGoKv2snK4ezFcYp+DHTIi6/CoLZowQq/LNSBUN5+n4XPPaJzkw5JQt7ukYfA9p3V2a2heO37RN8Y939YuqChBdOyhV9yuwrM+0lKp6mlwbcJkypa/XtO8YFCjo47TVq/6ePt8JDGgwAy8n5L0F2BWo8QIsXMEEbFGw25k/h8oDmzcz0YBEHvjui1BZGTKGr9qEyQWuuLbTdsOUADwD19fXG5955vIC/ET8/aEn3qiJt7FUlNpCqmpR8Ht8zvV2SqnXyvsqcmXOLBkupw44J5haCiNrJ1gzLtpeBT2PNy2/A74RfUAAZc/mVvlaNTfKxHE4fI9dntw271W2mXLiPCNiQ9FwmVqgbl88C3KKpgLmGfUowiqdrB0yWenGF0jlOwMCJzt6+qCyjpnHM3BVpenyQJr6YSHXLmPqwzIHeXCeGIeQ86xn38ur3WDAda7GDbBnAFMErODVO6DIhtOHYofngefIXaV5/lobBumwAGV3lAoKdWuqYHUCmBknm6dCm6knAPEBPEUAMIDoZ5STLXqAJP2iYa+AzQZfLzmrgMGAc4Hvi5wwzYCSDtwK0PTUyYEopAte13x0jLk0svyd4ufYDt3ytQIECggZZKIezAfgSQU3ThByfTLecwBOyeXDckfrr/lVvHBIlIEpB2Ldu+68t317ZEUFsDmtiNiSv7sCAe1vbQscg8ez9zUNTcuVSZ/X+y1DKDMqNE2VnywX3PRmT7s5evc0gbq5oeAgWLhQFSCI8FYlA4aKobVs2vEs0EAKBByzjCEHCLiMvKUwQA7AAEDA3d1d3N7eDmAAUdA6JQIAUCHwjFoo0jGpMirIAQKQQ+L7JMcnGlynIKASgGOUhusftpZ5HOB55pUMDHCZXdm0v1g5cv/0gho9VgHFQgz1g6cAVhSP5yrfrL4ZOcGM+rp9Rbju2s4KDvdJTu61lG2PMs3a9b1KpUVcNo1fGhsI52Q6rlfXsvRVwbuyM3DWGJkWIBgDctzPyS8cV+XuoQ+ZJmAgAEuVCVME+glRF5iG38vLy8a+A+p+R8fiGQ5IRBn5Of5HY+kWkDjWOmeu/6rRGQiw4gYIwFJMeARubm7i27dv8ePHj7i7u4vr6+thiiAiYrlcxtPT0xD57Pql+ikpOGqhWVX4PQKJ81Kl9JXkyu1QdcSm5eKAAaendcr4QfMHsZXN/OcGOkhjX5CuGxt6rJTxdYuQphtjLBh5mjBic+1/L3CtqBp/yLcyDPiY+YHLvE++dZSNu4xX+R7eH0sZKG4pHdfHlcxXI6UXfLvrFUCu0nZj2qXPUwSa1tjzrF7aNg4UOhmGe2NBwc5LC51A1eVZGhCiHxbKrC3eVY/zUibkzxs7BMYeB1DlKnICn9/LBG51DQTgBDAAAMVTBLe3t/Ht27e4vb0d9mrA8qfJZBLL5XLL2saxuo0ywKBtlNW/hxSpuvv8fwhCVflWrUEnSLN2cYPTPaNjhgUPCxUmLhvONX3Xx2PaOlPmWbwBjx31ekVsxwtomzlly5S1syqzikfZOtK8uH5MGTh8r6X1kVQB8AwIZErHgSEmtUTHAIFeA0Hz0qmyMQZFNjYd3/QCCmf8uHwZyEf07QI6hlzbc5mz3y482w0GtGH5x1vp6tf1VIm6AEJueLYelHggq2CC0kRZ2TrR51mBVnuVc74Zjb2Ha7yc8Pr6Ou7u7uL79+/x/fv3uLm52QgcXK1WQ5kQS6HbOWfXHTO1XEoZklXhnwmXse302cRlc14t8CwLIucZaNXBtakTbloeBbc4VmXMpArVKTiui5ICgZaHAOOc3+Fz/kqoiwliIwCeQijsyvJxZczaNBP47pzrgLLydzwqELgvqpS4U6SuPbJjTofTy36uXD3jQ88zMJDVv2ccZnlV6Toe4XbUOjpw3ip3dq7PannVA6h9CHnG4+hTwYBaDW6KgD+sE/G2BFAroEJC8+BpAUwXwIJiBa8CjT9opOly4CHPl/Z0DPJyTJMFXek7/EOwJeIFLi8v4/r6eogVuL6+HjYaQqwAt5nzsEDArlar4SuQusKC69+iDJn3vqftsU+hin5WJdwrwFhA9ggAJ1j409RuUKvSVg8CSONresrAgJj5lRUiK3T2LDkvE19jbxfGLviT+XQ6ncZqtYrJZPPbAVX8gAOdPSDWKQJta05TYxmcktonORnCpAqcr+G44lt9p3Llc5l6yqp5uPI68J3l0wMIFAxVaWY85p5rAYFsqtnVo/eetlFWLvcbC2ZHrybgAvCxbuMa4aPyeeBlyJSBgoIDFmBalvX6bYlhxoituuk1pziyeAS9p+9qkCXvNnh5eTmsJgCgWq/fIm0VCOBf246f5bpXAMApHT3PLFuua9aW1fWvIu4PN00AallBeEaFkiopbRvwPgMCbRP+AJXyNadfecCU2FLIpiMYCLiVKY7fMdYx7vEBIOZT/FA+zks/JqQAV/ODF0H7SZ9lypQoyxA1EBTA75sqYc/UAgQZKQ9zGtV0Lsqm5aye0Xx7vA49abXAoR678mbHTJUBoW2uXgUFKFVbqfHRsvjZM8AxMplcz+hdOxBWChfnLATVAkBUfNaRfF2FllNI/KxzO2UCpKXAnGLnvPgZLa8DBG71Bf+wggDeEJ5+cag0K7+2QcvKyZhNSduwUphV+b6KHBDI+nNMenoN5CwLjavhj+ewstZ3HZjTufBqiqCao8dY4n1BKjCgdeHYF3i7GAzgS6WqaHkXUde2meJRgc28nfVJpUC5rXTqiD8L3jsuPpN6lFWl/Kr39B1VJj15O1mn7zul3wMGdCy06tHDB/pMBqYzeR+xbWCN9Qw4D4aea59WXjTuAx0bPTR6msARBrwqd0b6HDyEQceWL1eW82QPgCL3jKr5J2VQLpOzSrI1/A4EZGBBXapuBYYCA3gGeJ50tVrFy8tLLJfLQeAul8vhfkRsTAmgPbWN+b9Sak4IZqjWWcbOgt4H9QiDiDpYB+lk5DwCIPCA9rUKILaWOV2ex2ZFmlkLKtQdAFZwwkDAfUND66ZA4OLiIs7Ozoa24/gV8C7/8P50Oh14WKf4VBBWyty1Pf+rsnJeRt3IxSm0ryatn5ajx6Ku0uR0mDJvUwWqKkDg6KM8A3xvLGirDDxON6szZGyPN6aSiT1AreoT9Qy02t7Ruz0DKCQ+oKOFYHe/myZgFKNohhvaCTSmjJlYsDgAoMTgRYVB1bgOLPC57oKYDWpG5ZPJ3/EFaEOAgcViMbT5YrHYmtetBpWiWYeQuS2rQTaGmfdJKqicsM+sFk6D02LStsmUEHsFWBlOJpOtpbScNpQUT5uBsmN+v+UNYwHuAhcdgObnebqLgQoHt2J/DAYE8/l8Iy0sP3YCFrzowE/WP738iXogXwZImVflK6kC7EpjgIFTTPwuK5UMaOm1Cgw4b4CeZ2V3CrSnLXpldo+xp5SB95ZBoYaTI77Pz2d6UIEu820vP3SDAc7IuaqhrCI2o6JVwfPAYwtGrQD+aSCSs4S0oVSoMjnhpvf0foWGs7bS9Fnhw2KHQn96eoqHh4e4uLjYmCIA2oP1BdCF9l4sFjGbzcppBC2bMgq3B1ubrk/G0L6FKMgBgF7krPygvDPW68FlUaucrWINDtVVL6qkFEDwMQNc/DsBmFHm9VBh6r6TgXIjqBX/y+Vy8II9PT3FdDodwC6DCKTD9VUh1wvY0Rbgc24Pfub5+XnY9bSXTz6bMqXM1GNVZ3VRI8w9q2MnA2DZ+OJnxgABPJeVR69l4Nydq4xWT67TEayvHCDoJQUGlfJmXan6CuOPPQNs1PXy7ygwkAlTDCAU0n1rwLmqmdycKG9HrEGFmRLmxmLGcMGMrHBdOfBcqzGZgSoBy22xXC434gc4FmK1Wm0EEjIYwLvYjXA+nw+R3FxW9ai0vCsqLLLgRJdeBpTwP0b5fgY5IaZlyXizx6rWa44U1Gr76ZI8BcMoMxTldPq2LDYL9NIxpZa+8q16ytyY5HpzuZhPeZkxVhbNZrPBWwBQgC+cgv8Xi8XG0lhtM9cn2vYMRNzzSBPTcNwWPIWJfxeo+5XUC9Z6gEAPVUqJZUwFrJ0MZGCHe1mZexVY1jaqXLNncc4eOoxF94+yuantjEcqecJlaIFYd+7AuXq0qnZWGg0GXEcjahgD2FWMvyhYDeyIbfTDHyTK3HYsZFmourwc+lVBCXqPAtP5Vnb3VwpyuVzGYrGIq6ur4RPG6mLm2AKeg1YApAqoNb/lkDCeVW9OBQL4+FDBQAuJKy+/V0gpaHb8qe+u12/TBDyGnIBwn97WcrCA4zGtaSnpp8OZptPpoOChRBkg8E5t7A1TY0E/FsaxEtq+FSk4UuCF8qI9QAAu8AygrxQI7YMqnnoPZTzNvIg2058qSpDKUgVju8iClvHSAvcZYGHQqt4trSt4FSCRgTrycl6OSt6OJZZL2pa7ej9B3WCAG0zdnNyAqkx0ThPKiLcmdgLRKR+1iDgfPub3kTa2K2bUpAhKy1sRmILJuZh07okVAaz809PTWCwWMZ/PYz6fx/n5+da88nq9HjwC+GEeFv9cZ/1XReLQZY8Fwi5nx+SZ9bxPMOAGtg5gBZDOk1LVo/daxOY3Opw7j71EuIaYAnVpOwtF+9btz8Fpgy8dENE+x3WtD1tLSM99qwSggccb74nB6U8mm56Q9ypkliU6VYnyoczwHvCqgkOij1AsLi1nVeM6gwIAAeVJ50llGaTTPfzLZBLnXYF6LS/nr0AAP+ZRNazYYxvxxueQpbyHTguoOfCe8RS3hXvHGSqq1/i8l7rBACsmXi+tIMEpSDcPygOTK4t/nmrgCqIsGQOokkcePY3D7yopo/I19WSoR0AVI97VOVFGetih8OLiYiMwiz9SpO2nSg7/7riFrFEPJgZAGQrWeuK4Z7rls8hZNU6xaVvhPxuAoExw8j1WrPjpXv1sgWRpOsXNlq4DMVXZ1AXKxDyqoIDn3vWbIxFvxgO+waHtAaHKyiXzPDpSPlZ5UvGngiAoALQ998++PQOttmiBAid7eilLm3mQZT7zI+cFWc4AzNVLeT9T/A4EqKzKCO+x9wo8OpvNBlCgU7fs1eLz3nyZnNdiV1K5oIBpDI3yDGRr5HEMdzYTu6px7q6p8MUx70Cog7QFCJziQ3pg0LEDndOEcmSLS4GRYxZG1vwcorKZKcGYjK4RK8DehOVyOXgOWECz1ab1dIqnEsbqDXCCt9Vu+yDuD9cnWT0ywYRzPMPnTNqOzMNQppX1rWlyHRBHg3fh1lbAi/5kXlJQnwmNClRoudlq4o+SaV2x/wA8Wwgo5HZxilyvZ1SBYSUFIng/s0APlTKww+dZ+TPwyWlngErbTwFqRFje1HGUGUw9YEANDcenep3HAO+eix10Oe4FBNnLfKxB266dK+8AX8/kh97L8lGAy23Tq992AgPsYmHhhGAgRVOTyWRQ4Lxnvg5+NAyILXpYxKho5qZnKx2NoACAST0T6qrUYy4XWxJqderSMU4HQIDdUmBCLNHCjzdzQd4cPMi/xWIxCFcWxiijE+4VEHBlRzm4j1Wx7VPxO3IDlssbUcdP4Ni1WWtwOmKeQRnYE+bc4grmlNeyuoDXFHjqfH6EHwsZIGBlgHP1fAAgYFpgvV5vAFj+YaqLeVd5uMcb1ct7LOiZ35W/Dx0IKGkbOCXr3qnItX3Vziw3IHeZV5BnpgD5fqX8dTxm6enzrLfgfcXH4iB/2WhYr9eDzI2IDb5WT6MDNs7jpmVk3eD6Tw0T10Z8DWWqgJ7SqGkCVvbqGUBAmy4tmkwmW0qYPQOsrLixGNUwkEBjuaU/DgEhHfYEaMyBvpcxu7OsVbHDO6JxFCxcJ5PJRls5hkV+qD/2F3h6eorHx8fhp54BPOvaNSMnMNyAW6/ftrRlEMD103Y8BNIB0qO8KyAwRvGDVPnzdbVi3XjgY/Cs9oVzPzrgqVaRpsGWD48bbUfeeEhBFnsKODCQwcBisdjgWd16m9vCtZP2AcZWZWm5H/dF9fyhkLMWte74rxRlb174V/5kr48aZ1l+Ou1SgWnHc/q88xA7xeyMNf1q7PX1dVxeXg4yHO9C/yhfq2eAlS+PhZ42ZqXvqAI+fO09Xq1uMMCbikAIAAjAta1zb2AStdQr159DSGyJ8zNwP/GcFfIEOTcRA40xCouZTAUqW/QscLnuPHjYo8KDCIgTgYXI9/n5OX7+/Bn39/dxf38fP3/+jIeHhwEQQKhWdaqYgtu3V2GiDbN0ewfDZ9OYubQWEu+hDOUzgRfYm8UeFi4nxgfnz1Y9jx/OE2mo9wlTUrz0DwBArXoOPsS40WkGDhJkYM7fJcA5Vso4T5YaCbqbZgUGqvZWIFfxgFplhwgGHPWAoTGk/MQggBWdAkf11lbldQqN740FAiyf8e+mCBkYX1xcDB+Kww96DbpksVgM9QQPc9o8NnQqRPsh8945gNdqNwf2MkDQQ91gAIrOoStFSFpQJrV8MjAAgjDRyE0WdJqfgg+nIJ0V66YIXF1c3AS7mzT4JCI2hB2Yk9dYq2BngQgGnM/n8fDwMPweHx/j6elpmHt1a7K5Dkg/YyZmpF2J31UG3xcwUMXqULjrc/2veNods9XE/MXClL0/7Ebl46xMuqwL/ceCHLzF8SjqJUBZ+FsC+sVLzVPjh9QbFvEWOAZlD5ALj8BisdjwDmAzLfUYuqlEJ0y5bbTNuH2c5ahjpvLY7Zu0Tqq4KyUL6h2LyrdaDrRRxFuAoAKGiE1jqKoLp6vtj3wyy1+vsdGq3jHI7fPz88ErcHd3F1dXV8M0wXq9HrzRmJ5lfmddyKCZ6699NKbtuV16AZ7qxzF8OwoMYHe8iO0YAhQkwluM7GJxVoA2kBv4VcXYO1C5xlFWgAhmUA1U5HfQ4QAgylQckarzYxnI4LqqsER9IKDn83n8+eefw+/+/j5+/foVT09Pg0DloEweQD1TBeqFwTVlRFV2IEXGmu4+SUEk8xbznipbvdYaXBnQ4rx4qgDTXOg3Fii8fpn70iknAHMFg8y3/BEsXUKFMs1mM+sd4D7l8Y93IVT5I1t4DqscsP3wfD4f+JwDCHWKoIoT4H/XH2OBHPcNp8HCfp9Alv+rZyqF4RR5JnMdZcZbhN+wCtcBLPkd7dsMZCjfq7Hp6shAgK1/Dg5ErMB0Oh0MuNvb27i5uRmmCZAO5Cq2fa/ydUq4Rxn39Jvj5RZPjClDxMhpgtlsFhHbUbiMrtkS0n3Gewa4Egs2FRRZ5VEmpM8uLGe5KSljc6MqCNBPEfOaai6/um6dUMfAwe6EETFYS09PT/Hr1694eHgYAAC7Wblt9MfonuuTtV8PeMhIwcchWVQRm4rEKR6mXmWSHWvfRmxvX8rnmVAAr7AHia8zGG9ZXzhn7x57B5hXGLy78vEqGHyoCJ8yhqfh+fl58Gg9PT0NYIBBgO426MaKAgD8O2HZS6qQWNYcChiIyMEpSMGsek30eTzjntdn9NgpcfCkLpV1u85q2SpZ1OttVlmqwYHYvA2ggFdqgXevrq7i9vY2Li8vBxn++vo6BG8zz+pPDVxeQsl8mskKvlf10xje7gUNTKPAwNnZWURs7uPMhVT0yMuIeP6vmtd2jMyCm4MGufN5XhOk1r1e1/Lo9q5cDriHIPz4xy4njplgb4imx20GSwlMjB3agGJfXl7i6ekp/vjjj/jrr7+GeAG2tLIVBNqWGTlm7BWAyqw6/71vUheiA6O4z8ctlM+KCferQc1uRM6DvQFcXlVOILbKdarAedIYxMIzoEtXdeULl4HHBwMnPMueAaxsUA+DbpYFkMtxLryrm6NMceh/1mfqclaFz94MxCMdAhgAtYBPjweV06rqxLzNYInT5n7iscV8y+XCc2hP7Scuv3rzOH5K6+CAAMdxXV5extXVVVxeXg58CtkKQw7BgwoG2LuhU7E6NlB3DjjENS6jyo2s3Xv4Xd/TZz4FDHDkMRdMFSoLC6B+nntsWZ1VI7l38WxrfT83sHNn83Ud/M6SYtTKEdVqpXHZ2WpjcINn9AMuyAeM+OvXr/jrr78GzwDvKeAAlqsnysbEUyxZ+7r3q3QdIBiDbD+SWPhkQMBRCwxE5ANbLS/cZyDA/MEAW/kc3i28Bz7U3dLwrPNG4R0GEKocdaUBCzTwJ49p5jmOD2APl656mc/nW98fULmR9YNre9fe/B5IrUceq/ws2kc3RNoX72aksqtSMGPJWfFMCmaZl5mf8Ky2Octh5OM8BviBt11fZHwMGcrBgYgH4OkC/F9dXQ0eBIABxHdBxoJf1eP6+vo6gFtdnaN1cf2kACD7d89mpPn2UDcYcEgkG7xgDDQgLx+qrLLKqmL0xT8GGRjIOFbPBVs+YDBmVucyZmSaCVEuL9cdApS/1sYBWfze09OTncvFQIO7lVcP8JbE2fSJtm8lVJXpVCm5OTsdoOgTbtN9C1IuG/4rgacDqTWgKkDAIMApevZoqfLisuAaC1HwCHvtFAywQNL9BpzyZM8XLxmMiI1AP3ihVqvVFvDHM6vValgKy1MEunrAlXssZf2lbcsAHu3A4w19wp6SQwQDGSkfquKM6FvtouR4m3kLfKz32ShgmQuPZwbgVL4yv6pc1+fcSoHb29u4vr4evvXCQYUnJydDICHucZ3Ap/xVTfAv5Ds+xMUxNpkxlrVvCxBof2Y0RnYxdYMBLrQOXFXs6lZk74AGDTpQUOWLY5AOYKTrLCCQzruq65aZVL0NmVsVxBYSA4HFYrEhPJEX6sUCyikHnnLR+VZ1WzFp3Rxliip7TpWR6weuI2+osw/iwVSBJT4eO6CydBWAKMhiS4mvqWsR5WJrPeJt/w/estp5opBuxl86pnhfEeQ5nU6HjVdgCUVsegN0OgCxLbz8lfcU0CkBHg9OAfEzOM6AbgYE0I48jrldAOK53X8n6lXy7pmWh4uvVz8uC+QtLG2egtG08I6OOzbidKzwD9Y+YgQwRXBzcxO3t7cbcQMAvpPJZGOTN+Sh0wS6hwuDYN00ywGW3r5pAQJOT59X+hQwoMLMWesseCCI1GrNCpxVUo8d0uJ92dFZCPxQRnHCnTsK84XMmG76QcvJghcMwvOjuqZa25bTzIQ1W1MsTF37j6Vd3nXlZeWPgQRwsE+h6hRJxKa1pFYJH2vZszSq/NVToPlG5OAAwhO8BR6dTN72V+dAQBe8y+k5Kw57djCQ4LoryGCFD8DLYIC3HGZhqXLEtWnGz/qMCsuKzxgI6LkD9vruPumj8q9Aa9UXVRkyIMBtimMs1Yt4+3gcjC+dasAxGxxs3OEZ9aZi5RuDgevr62G1AKYCeOpbwW/Em65x9UP+GGvgfQUnuiqoB6ShTVsAQIGzM2jGUDcY0Hl/tgpUGfF5NqftGkgLrxYdv8/gAkoHCht5K/qP2BS2yqhafhALThDyUDcnmMNZRzh3dVGq5iq5/fWf20vT1nuuzZmcpYW2YK+Lzr1yH3AZ9iVQ1ZLUgd1C1L2DObOgQOy10gHMVpIDBxFvwhNClZeSwsrR2AEF5c6KQ37Mvy8vL1srDZzih8XP1r+zlhwQqNretV+LevlLAQFTZrD8N1DGlx+RphtPKh+cgoTCdR5NkBuHkDOTyWRrMy0EDXKsAMAAfxYe4wUGi8aardfrAWSwN4kDbzEuzs/Ph43idFXFmHZ0Fn/1jKNdQcGoaQIGBKr81CXJ3gCNcs+ss6xiDv2w4EVZGGW6dPhY51/ZEnJWSWZN4V08s16vN7wCLDD1U8PcVg5wuI5Ud74O6pZ1qs84RKntpWXTc8ekbJG2LLbPpipfx1PsDdA+6KlDBhoy8OGEYYT3Euh7PO/JY0SVHfoC/AdipcybqvBuoniOeZj/M+9XNj2obdFqU7WSMqHogDC3g7O29H0GUIcACnYZMz0ygI9VHr0XgKlVD4WqU7gI1Mz2m1E5DX7neA8of97nBR6B29vbYf8A3mFQpwoqpfv6+roBMPDDqpzX1793KHx4eBjq6dpDZUvW1q4szvL/DNppmoCX4LGAUWsUzzrhVwm4DK1niovzmk6ng0DS3dJgnWAJILtzIjbnvTN0xcIx4s0zwgiX4wR4HhXzrK3BpwrKKaWs7TS91oBveWbceVYWBxL52numMT6CFIhmg7Rq80xQVojelUOPHV9zrAX4GUqWFS2Wot7c3AxTBgpcOWZFp+0YzHJcDPgZP1j9SEPjYsDfuu6aeSEDA26Mcfl13KjSyMYTAIH2mwLwffNmL7XkQI9xoG2YgVTOk/9b5WLLnYEl8mDe4Hl2p0cyoM5xLVgJAEV9cXGx4QlgUMArCti615/LE9MBWH44mUxiuVzGw8OD3Wyuah/tiwwgOCDg5AunrfLtwz0DEEzVOksU1IGCCm22LNOMXJoY5Og8dTeBSbmh0IlIT4UHyqLzitwmYGRdPaDR/q15Uj6uGEAFoDKNpqWMrnm22p2ZqrLMnLCv4kW+iiql7pSR/ly7qXJqCVXcc4IhA7k6yBkg8HNo4/Pz81itVhubX7Hi1k2quH+QLvM5K3N+FwpfzxUQMk9wPfjf1dcpKtfGY6wllAXjm8ckt5WWed80Ria2qBcAaN583sO7bMnzJ4GZj19eXgb5CK8U6xeWz0iLXfUIFLy+vo5v374NKwawZwBWB/BHiBgIMBhgXkA9NCgxIja+GbNarQYgwN+YYVCg7cW8z+3lDOasP9zvI2hUzEDEpnBXCxD3+XkcuwJnlqZDV5VrPLNSYdngvFKQGtmqafMcPqNbWGVuZyq14FgA91ic2tluHq16n69nyjhTPK7eEZvRvFnQlSqaKv99UKut3UDjAezAVdW2mXXmQIY+ryCMlSzzFKwr3qyKrXvcx/IoF/+jgEA9fAoiMsOAy+raaywftN5xoFjbmPlXVwqgjdiVzfSRAncsfSQQGJtnL7lxwfKarXiOz3p5eYmzs7NhwzV8AIgDC9XDxWXEkkBMCfz48SPu7u6GaQF4gLHfAMCA7hWDMjtgirJji2LEGCwWi43pBl2yqz/kAx5TQ2+Xds/6oiXzMxoFBtBByEj/HZpuIVBtgCxwjq31XjTrgInmiXLzzoHuObYe0MhsaelmKhkIyCwbJ4CcNeqOtazZO+5cy7ArQ2YgMSK26r5PcjxUeQR608z4BudV37XSZoXFfXV6ejos9UO787w/g1csaYUHK5vD1zpweznr33kHuewODGZtX7VBVcZWGjzWGCCgzCzkIzYDXqtA3n1SBiQ/It1drrGs1f5lMAD3ekRsBani2YgYpsVUv7DXAOni2wI/fvyIHz9+xM3NTdzc3Gxsn69xAmrcuTHLP45VWK1WQ3yCfmzO8YszLHR8VfzVkke7yhalUWBAg+1UAVTkBixf00Z00b6VAqzACN6DsIJghDA4PT0dloVw2sygfK5AAIGCvHd1b9AkM6IyZTbgXNu2gFIPkKrAUMT2UqEe2hWl7oN6gUDL0u1F+jqIXX8rb7DFzqsJeA5W42Cc0mbl3QMsHYBQMOGEkgMBqpxxrLzv2lGv9VrOrKyQtgJ8R9rm+6Csbh8BCLJ2zgBALzDifocyxda/vOLFbX6FtuYl444YDGBjoR8/fsS3b9+GTxGDRwFEsnl9x1cMBGD1R7ztdqsggKcVUD72BPCx8q2O/8ow6+H1XfhiFBhwrl/+zwiNwIOKK+SWn/A9R8qULJj4nK2AiNgQgDzv6UAIX1M0x8EvvNQKaboVFq4OretjLKfsWnasgiADAloGBgVjLKZ9WlcthdcShJxOCwy4Ad4juF1f6DUdR9PpdMN9DwGq40bn8J0l3yL1cKmiZy+G1sm1jx67c/duC9D2CFWOHdD03JzvPnkX5MrCli3/vzef6jwjBlw4V0AA1z7SdEthdQqL09HzyWQyxAXc3d3Ft2/f4sePHwMYgEyGMuayZnngWf6poeCmA/hZ944zNnoAcI9synTxGH4YDQacUOHOrxhHUTY3GB+7XaY0Hf5H+bicuM9LDVE+dV/DmqoaXSOPwbQcWMWR2mo1ZZaMYwx3z5WJKbPKsmfc+1X62ZIZfcaBvl7QeCiUtcV72i+i38ul58oPnBcAL4BApoxZ8fP4RRpjyszPu751/M7HPZ4IrS8D+0zA9VhM2n4gTBVyWpg6UEXyldQDuh0giNj2LLl3XNq7AGUFh7qaBIRpAW5rlqP4FDdksvKaKm6khe2Eb25uhrgBeHwXi8WGrmIwzFNfqtR52S7vxOkUOgOBiG2DKQMDWsfWWNDnKgNiLHWDAVgfyExBgLNkMtKGUhSmIAHPZQCBG0KVsQMxTGOtI0WUEMIuwCoTespIet6jWKryaX643hr0mg6UDP75YznMzBH5xknqItsXqVDVdmoJXbWAK69AS3hm/duD4lnoq6J3AZ1unFbj15XbAYIeZVwJNj1204Kcz5i2qe4xsGDAyjs64hrLoEPgXb02Rui3gJTmk+WJfx5Hjq/4XOUiy/Wzs7MhPkA/lMXeG15Fw2nh2snJyfCVQuwzwHtl6JJcBQOqj9yXPdnYAelYUuCYAQI1ih3ArvpSqRqPvbpkFBhwkZ3cEBHbO6lVCjHiLTo9+2+BAbYeVEmr61QHdGY5Z7EHXF/+18CqXcl1HiNR92zWvpUl4EjLrqBE3V98Dec8eJGGMv2+aaxQdO+10Ht1v1JYPYO2BfC0ThUQcACnpxyZ4HEgt/Vuqy/ce1zuTOA5S0kt5SxmQJViNs+8b+oB89wOyvsZn7dAXQW4nOWNY77GG1oBjPE8PBuG6m1kHmaFrj8AhxZgQZ15ySIHB3L/v76+2hgxbjuuB4yobGWE48NMb1ayRdPl93p10uh9BipFyWiblYIKHi4oE5RLBQj43WwuX/8j3rZyVfDCZdJYCBw7htIYCp3rcsLLCUydW+LnXJ2ZtO5Zv+C4erZ6nkk9N3wdhAHAjP4ekPQRxHWvhGGmEFVhcrotwNYSvplSywQCHzMwi9genwpcM+GY1b0H4GTvcP0qat13wMW96wCAPrderzfkiabN7XmIACAjbWcnNyrer+SMe075tCUfNY6Kv7XBgbCtMrh8sMvrr1+/4ufPn4O34ezsbNjLICK2ysB9DwXOOxryUsj1ej3kM5/P4+HhIR4eHuLx8XFYWq5e5mzcOEOr5XnicZiNSdf/PQACNBoMZFYBKHPf63Gm2BQQOMWDfBgocDmAwrhz0OCZhaGxEEwOUTqhqu1TWUE6QLUdMkXVEsqtZ/V6BQz0WQ3y5HJymwEJ41m4ZXuZ8jOpsobGKD6nnFRQZmDAKfkxZR5jJWTWUMW3WVoKyjPwqmVzysil3wOa3Dt8nj2vckjbBJYkfvucFhhDldLcJY0evupR1BpXxW56KOfJZLK1mVXGj5on0l4ul/H09BT39/fxxx9/xMnJSaxWq7i6uhqmGpyRp7omIjZWPGAZIvLCDpuPj4/x8+fP+PnzZ9zf38evX7/i6elpY3M5LTfygF5iA8kZz24MZB5y93wFDCsavR1xNjfMSoFdHpm1rYXENW4oDEoXQMiuI87PNYJ7n8umCs0FdWQgIhOsLSDgQJKeq/JwwrJSXD0CPlNQLj0GX5nA5+e0PfdlabWCdCrwxcdZG1VK0eVZgbRqEKsSRt34nD0y3A8oT6aIM5BfAR0HoDKgkuXbeqa65+SH8nOWB9rIyRDQIQKCbMxVBkYP+Mz4trcszL8KPBkM6BJuuN2x1TVb7Urs/Vqv35Z3Pz4+xv39fZyfn8fr62s8Pj4OXyZE3dl4REwAfthQSGMaOD8GHvAKwDPAH+hSgxN5M6/p+OXxin+VAzrGevun99mIHTYdcoocFa0y1ndbApEFmDIG8uoZrNkcNpeB77OFwADFlZX/cdyjMHraQMvl2t2l79JxVAmPVj4aNxDxNjUA9JuBnX2RE1x6rxKgTL3AacxAbI0dpsxC1/x1HOGe8q5aJD1WevWr6tACBS1+ccq+p98cWFArFp+GrtLZJ/WATlzrbR8nl/h/F0Ie7JbnZdgsu9kzAFd7b/+v1+tBQf/5558xnU5juVwOwABxCTyHr9b/bDYbyoJ7qtQBBObzeTw+Psbj42P8+vUrHh8f4+npaWOagMufjVPWQWqQ9oy3HtJx3EPvBgOqVJ3gqqyyijToQsuCjlbKPBjcoKzoce3l5WXLsmopYeTXQz11d23ZK6Rb6Y59vyUYKkufgde+qWcQOYFZAT0nVFv5ZB6S3vHRmjLjcmmazPeVoMiut/imh58y71kLQPPxLiDT5YlzDjTj/0MDAz1KogWE8E4m0yqAoWlp3+jzzIc8PaCrA3j6INut1ZUV6cJ1j9Ugj4+PG1sE48erA87Pzze+QqjLC/lTxuv13x/5enx8HLwBv379Go7dFAEreBhI+s/eb66fXuf2zdr4o2inrxbinAvH3oHM3Z6lq1YMgwB+33kI+KeUuZsUWXM58A46hdEh8hyLuMaQ8wxwuVueA66TUu91bh8XvAmqXP/sKtRB8tVUCbZWX2aKRNPP0HvGl3o9CwDEPe0T10f8PvOKTtU5oOvcm67dMkDQ44nCf3bs+LsHxGXPO89HBujYS+Diiw6FHK+p4si8Lxmg03QyMJC9655DW/L0ANKFIsezbFXzJ7ArMI55fCjciL8/IqRbBE+n02H3QfYI4ENGl5eXw5cIsUoA5T0/P4+IiMViEff398MPXgFMD2B/GfYIcJtmgMDpIT7m9q4Mr4/i01FggOdUmHDOgoiFEN7vITSWvqvWPs+16Pr3MY3jBDcACQ8eB2wqi+s9lHkFqrJXgzQbsNk1FTQaJ6BKScn1+yEKVqYeqyrCD9RMiLoB3HtN73GbcyCny5MtXi5rpkQygKl1ztJgHnHABNTyCjhAm1mx7po77wHJLF9Ubh0yOSVejTMnSzIgMEaGZc9zACE+QhTxJuNxjH/2IuBd5hOVK3z+8vIST09PG19H1E8oAwxgHwJ8+hhfNLy8vIzr6+t4eHiI6+vruLi4iMnk788U//r1K+7v7+PPP/+M+/v7IV7AxQpgPKCO/PlxjR/gNnTtmrVvZZiokdjblzt5BpziY4U5JlBMkTzSVRTokDsrYjQ05+1ARFUOBjWIRK2eV/CD40wBZsoDbedQYtVWTC2hp9ey6RUuC44RcMOrCFp9fMjK37Vdz2BTBZkJUO3LVlvwfdeuCgQUELh3sJPber0ueUvHnI7pSvnzOQNyLjePP20LHSdOFmSgpIe/Ki8bP8NyJQMn+wp+zcgBsaqOLZmyC9iq7nHf8nbvOOcvarLnUJf/QbbjXQcOACJ4STrKxDseAhBgY6Krq6vhuwYMBvDVw4uLi0GJ8zTBfD4fvm8T8bYsETpDjSqUUfVaRZmsUcp0sQKCHhr9CeOsQFywDBDw9AEKyp4AdKKbZtDO53Q4DddoGtle1ZHdtTzQsjnYXRt+l8HZcz8iH/zZO1xHVi48uBQIKONNp5tLOXmKgBXNIZAOHle2qqz8nva/Uk+6FW9WYFGX32o+DFgzazybRnP1yYBBVk8du8oPWXtUebv7FcDI+pb7TS01BTYKEg6Fsr5nypQEzrP/SgFV5eF8NTgO1/iLmgwGoPgdANCpLlay/HEu9aQhL44dODk5iYuLi+FLhrxrIT6HDICAlQYIIFwsFgMYiHgLOtQ4NtUPKpOzaaieNu8BfS255Gh0AKESZ8qZV+CB4wsyYsvHPc/HLER14wd1x+jArywxrpsKhMpKaimSHkuLScFWVt5WflxfJ2wVBGBwYSAxMNB3M4sKdGhzsI6XWgoqe4/bIwvyc+8zb2XPZQDDWQP6/nQ63Zibzaz+DKxx/RyvZh4H9jC5GIaMMqChZda2yP4zkM5lUWCgtG8g4NosA0balwDp2rcuPf2v+K8iBwj4s9mnp6cbu9k6Ze88AZU+yabLIK9wj+MInp6ehhUHiCPA9w1+/vwZ19fXg+eA9yvAFAZ/EwHtfHZ2Fsvl0u5aqNN23Ea9gDijHnDdQ91goCpIZh1EeGuZn3cDXBU/Tws4Yoten3FBh/zv3uG64b+F5LK6uOcrwZoJVxUKTvn2Mk/V5jyAePDgGn9gxJWFvxA29rsP+6LWAOpp37FCE++0FKR62yowiPtq8apy5mu9ytlNC1SAx415V1++1gICWV7aVtpfDjw5cnJk7Nj6LKpAQQaQeuqM58Ycjy03G14I+nMeVwUGfI3rpVQF40FeOfk2n883VhqcnZ0N0waIJbi6uorZbLYRA8Bpo0zY7IjHKEAAvAgK1LKpA8d7ytsOwPf0dUXdYCAbzFoQh8CrNDUYyqE8XG9Znz1ul9Z0h3aSO3Z59SJpJ/QyQcjvVAgyy6fKP2IbGLEnAIqf3Wt8D23AQaVYp83KiCNoD8kzAOoBAq4/+B/U47J9TxnUw8UfYWnFuGg+Ga8xcT0VGCipB65KU2UFK2BOn8vGbeusRVX8/FwGTphaRs0+qRLy3EcZCNLnW23RAgFOzlfpqZzIqMfL0yLlWYCPiDcegmcCXjMGBNgAabFYDFMCV1dXA1jQAEXk5UDA6enpRuAk2kF1Sm/bKjDq9Qb0AoTRngFllB4l6Bi1+leBwJV181DuH+QaVhGWps2uKu68Kk1cHwsG3D2Qxi9k4Ko1MFvAQAPT9LOdPAgYIYOZ2RuA8q7X6w1LtPLsHBJVgLMCba3pAbxf8SdT5tECP56cnGwIMw6g4rSrwKVWefFMz/XMwssEGKehwlrPXZ7MX3q/MkjUS+Csq9+Neg0RfV5pjBchAxnZfbSz9qE+4853NYR0rKoOYnDAX57lHRMRzIi4gvV6vfEBIx1D6/VmgCQDZzdGWsay481K573HOzBqNYEWdOy7mSWVzUE6xlKUlYGFXUjRmiI313k9FkfrngqlHoXimLuql1oL3OYcF8BLcfSc58E4bSDtxWKxMScIYX2oS7V6+hPEbZYpL5C2kSosp6xabaQubOYB3cxElaIDtEjHKdAecoI9A9Y9ligLzt64CwcI3DNZ2bkOVVzSPkFsr3DvUeJVH++qRHrbK1NcWVn4eCxYcwaV8tNksrnbLBT/bDbbALJ41oFOyMSI2DKKdGxVP1d3J+er9nPvaVu0aJRnAJk468g1dvZ+Nj/OQlZJERbS0WjUqux6rEJEn6ncOa6OagFXA0wVtNZLGdBRNeh6rC72BOCH3bscKNA8Ge3zdQQMQcDyVMG+aQwAcP2n7cfk+NaRtiHzclaOiO1VB+BPTMFMJpOtaZze7V3ZemqNY10t5MZTJvAygO/yrgRjC0A5ADJG4e0TAChxG/Zaya78mTHilA7fd++2gFoGxiqr1lEPGHDXNH8X9Ix/jD8YMXyNp0ZZZqquYl53X0asQEAvYNVnewF8Ly+PAgMOCDilzseVIGDhxUJMLYUI/zVEVbwOFLSslV6r1bkkHUPjeg+zK7hiIZ8FRPYOIn7XMXgGBLCchnft4m9zK0hyUwRQQHiWYwf2QZVVogoHVIFdBQKurzjdFkhgEOh4U8vGoIBBV8T2ahoVTjpOXP2zNlEAuytvZmDDgaQx6VaK0tXNpdkrYPdFPYJ9LPCJaAPizNpsWaAVyGj1azVue8rOpLrClX0ymQx7Ikwmk2H7ZJ2iQ1AgAgsjIlarVaxWq1gsFkPcAa7hHfWSjlHsY57dFcjutJqgAgQRuYXkFBJbwpl7tSd4UEmfUQGowMEJPn23Sn+XsrXy5Ps9gpHBhZJDumz1Y2cuXnvLYABgiOfUUEbMkeE3m8028lytVhtLa76aKmTeowwqBajvvneaCtQzbTCZbO6p7yLhAczYUtG89DxTnLiWKRvXrrjmPAFZOuoBcfdcHdyzLWBe1eWQvAMRvi1xvYecMmyBAD52hh2OK0OwUuAZgBszPvWaK2slLzE+UA/E4oCgzLFN8WKxGJYlwmPK31+Yz+fDVsXuA0xjFH+rPbTe/IzTzRXt5BnQjNRlkqH9ykLlZ116WlGn3FXRg7ghK2HoGjoTyrsg3koYZferd1vkhDBHwnKsAH/NCz+AgWragvsGG3Rw2qvVaiPAbR/EStAFg2b82kNsNShp2tlqAxZGeMdNGzjl7KhX6LjndRwwwHTKwXlOcO6AbCWctL3GAKvesaeKTQEie7rGtuNXUwUOxgCEzCBxSnbsObd3JXNbSr4qF19XvutRvCrbmB8YCCyXy+FLh/wxpIi3zY9Wq9XGigR868CNLa2Pax+nH6p+eQ+Ifdc+AwoEekEAjnlqANe5orB2+BpvSMH7WuO8R6lngmIX4ZNdr5g3U0aMThV4VeQAml7n+1DUvL4WzA0gANTrhDz3CYLWGDQo0GPQsS9Soc/XHekA42vsvldwqWCUAW01/aNlHWMB67tcRhVsfE2PW2kqZUCg9/3eZzMApf/ZtarPFQj0LNE8NOqVLz3vZtcyD8pY69P1ScWDVd168lJAUpEzMHlqgD/DvFwutwwl/tgSf5a5Ncaysn2UZ+pTPANZ4lVUtQMBesxp9jCuG/g6T91LLSDghIhj5F4mdQM1G5CuTSo07oCATsGwsmYwwIBAlxKCAAI4bZ63BsCAUIW3gQfHPkgFUCZgHADg63iXFbuCVyV2eSsg6C177zPOk8CAGc+0FIDypHrl1NJn6rX6q/w1vbHAuwUGOF2974DcvmmMAmy9U11vKeWs/3o9VWPvjaFeQFsBy4gcRGMPFRxDRrIXD+NNP7bk4gWUXLmcxV/pitYYa9HoDxX1KG1eIoR/HGcbNVQEAcodpVGafP29lAEA/GdWRvZ+5iZz7+N5h2ida5bfccTP6lJB/WmMgEuTI9d1wPDqDnxOFEAArrN9k+u/nnZ0iqcnlsR5fVplq6amHKnHQdNxAq6qI6dTCc8MNLTK69KrBJ3m1RLofO4MB32OPT34z4I3v5qytqnO3XGVRvYPyhRVj0fgPW035t0xvObe03Gt8o2De6HweWkhjzkGAUjPta3K+DHjh9PT56pxUtFO+wzwAHPeAL6uQEAtVk1fG0sFGkdF6/RALxBQ4d87SLTu+kwvGu9B35kgzkCCq58GaCog0DgB3l1Ly5n1G+6x9wGfLOWoWp5f+2pySlD7tmp3B34cSOP0QKxg8J56B1QZKbnrmdXqgIAG0mmdsnTccUZcv6wtM+DL5W6BApeu1r0CApo2e3i0f8d6cT6LWmCmJUd7nqvyUNpV8WZpZf1eybqPAmiOr/infAF9gzgofi4i91C7AEKum66Wc+Vs9aley8ZJRqP3GaiQDIiVg1MiDghUilwFpwMCPQo2u+/q2DtYVPBkACLLL2K781X5aOc6wYt0oPD5nxW/xgbgGn68XEbLx+mw94A3LFqv/96EiL/uhQjcx8fHtB++irJ+qpYe4RoURGURVwAN13SnQLUu1Lp3/eHeB1UetExZctl7FAPKyWXPQCnXR/PaJe8MCFfAQ685IKJCXL2R+yBVhj0Ax7V1Zj1mvBHhg0L1XiZbXbouj14QUo25nnqOIQUFPA7x73b85HpnXkNXBzXYtH5IT5cG99Sv0o1Ko75NwBnwQEIDKYM4UBCx7V5tzacoqbXDAzYTSBF+/3RlMj2uBiEfZwJWaQxS4zwyL4H+3PcEFAwACOAYH+jAF7pcH+J9PIs5M87r7Oxs8Ao8Pj4O0wOLxSKenp6GJYf7pMwCcQNRrdwsrYovtN8AmBgY4zlefqmxBpwnyC0ldORAgZaTj3v5N+PJ6t2WUuDzFnB2/ZONVyeI3VhnmVIpu31Q1V58XeteKcisP/i5rM2rcraAQI+CqurgqLevepWjggJcw3XHI1q/1njAv8Zo8Sql9XpzrxDk3RPnNqa+o5cW4t8hmNZ7TDzoesCAU+RZPpllG/E2582WYCv9TDA5gVYpjVa5cdyLxnkawMUD8E6CHCjIQEA3GFLlAwZlwHB9fb21vAb5PD8/x3w+j9lsNkwTzOfzvU4TRLTnnFtCzgEkTgsCQhUOT5EBmOl+DxFv/JeNi5ZVBFqv/Ra9Wv8WIOA6aZ1VSCpf9lhMLWXdqmfrfgVUehSpttGhbJhVyZGxIG8MiHXnmVznOXI3X96rnFyeve+6co3Jj3mAvQM9OrAaq8rnHMzN274zr/K3EjgwEaCgAnJjaOd9BjhTh4y4ITGQdE02Kop/R/yOBhJyfiygepdw4T1nOSlTV5aHlsXl0SqDY0QmZ7XiHz9mLKfoAQoUDCiIgCeAFdhsNovLy8u4uroavvPNcQb44Std3J+ZsP8qcorbkSo/vpYpUn43I/ASo36O24BlwMo/i0TOLD1VtL31bwnqlgIB7wGETKfTYU71PVa1a2dVVL3jL1Na7lzH/yHEDIAy5a2yYxfg0Bqfju/cM64dW+UZIxcqxYv7PfLWpalKnAEN56segZ4yZfdw//T0dPDM6mfiAQLcD+VxaY8FX91gwE0DMLH7ghU4P69KnPcMyAqtFdWlUdXAqLwXDCpctHXGyC2GrhihRZXC138of/UM8KZBvJMgYgEUDMBiZy8C7xugQYa6Q6Hu2/36+roxZcDRtR+x0mNXUuUOqlB8do3fy4QP9w8GO4MznLNXBfwGEIApFyxnclaAxjAosHXXNI1KWGT1zyxFAEmuv2s79YIwmHFl0jr3lF2f6alnJeP2QZly1f7tUdTZeWbY7NIGjrfGgmd3v2WEuvfGyO5d2k+9Zdk72TPsFeRdYHlPFpYDq9VqK76o0lGQC58CBjJAgMywAQ0air+kxqSeAb6mx+pNaJF6B7JOVoGpARquoSsBOgaFjQUICnD0x25n/s4AFDdiBWCJMmDgKYTpdLqhoDRN3KsC3tircHZ2tqHg9kXafgoAHFDgelVeGzfA0ScRMaB8bmcGa3wNfMfIH2NouVwO7ej4Fses1FRgOJCQCW4VYJXFlYFt9oSwBwFl0bJrOVzZegW8ozHPMqkB8tWUCf5eQJfdH1OnSma5PvkoELBLebIy6b1eOcyyoMqrVQaXN84BCGCkAVC/vv69TFuXe7NchRGmZRw7RrrBQPX9Zs4Mg9oBAS2oCwJUci6QDMmpOzcjLa9j4l3BQIsyb0VmmbjraoWx25mDBAEIGAy4GALeX0DBAH7MoGBCrgODQDA1t40DhV9JPe5D51XS88rbxP2i7afxGugb9tKAF7ECQ7dyZo9BxFu7wvOiwgHkBHOmcPW4d0w5bxVPg/C0AUAAdmfDhlRO6fL4y2SBXuvx5ui/G3OHQJmi1fsO/PF9fT47H1suPs8AQG86u5TFjesqnfeCuup95wHIQAnGCJ9DNkNmAwzwfgaoL8Y8p+HKiTR6aDQYqIgLgHnDlpJ371dp45gBwdjBq0qshfyrwZVd61UmKoTcMZ8rEOCPDem3BXi5ILwAbLVrrAALcA10w4+ZUZfbcHnA7Aog9kls6Wf9nfUF3tN+4Xd0KSd/owHtjYF+cXExxF4AFKCN+OtnAAOnp6dbX0Fbr9fD/Yi3ILcWUB7TXi69yjMF4Ah+U74D7zAA4D0p2GPABoMrx3vrowCGjyM2N03bZwChU/RjjJP3KtyeMup5Nb7G3tsVnFUy2/G28wRyWqzss2N9pwXMFMSywYDdXFXvwiBAwLbGNGTlblE3GMBHaDQjdvOrFaEVySwWXNPOUCGQMRG/8/r6uhG17tJwnoGWsq/uK2WN37Ly9R6/41yurMgvLi6GAD8cQ9HAM+C8CBxYCKWFZxzoYGuXlSArvIgY5r+Wy+VQhn2DgYg+S6IFwtxyPwVWHFwJjwv6Qfvq6uoqzs/PByWJPRr462dYorlYLDaCC8H7sCAiYmvb55aQbY2rSqBou/DcJ3gQ0yGIi2DA8/r6GvP5fKhzto1rNY3XUoyuP3HMngzlaW2HfZAzgpw8UsCg7/e2T2+ZnKx2eX8G+OD0e64xZUC5us9pO92U6ansn9NjKx9psLyAPlMPOzxrGFMMCDi/MX3bDQagJHiODxahm/fHAMtWAYBakZA4rhjdoTtO2zUkhBJbuSxwMmHTM5BaKDKztFgwRWwu0dJAPVU+UCoMAiCIwVi8UsAtQ2QwoJsK8T7cqgzhBUL9IEi5nJPJZG/bEWv/KQ+psuR+0jgZXRbIUwAAPdyWeEb3d4Cy5KBMHke6rhjXARhAUPwusIiDNxl0t3hayfGytgV7oa6vr4dVJ9fX13F5eTmAUXgCsAfFarWK+XweT09PG195Y1CAj8PwNImOV+47V/YKbGsf60qIfQEBEMsz5yVw/Ovedzzuno/wfc7n/F/xjwOiGTitQGn1buu8KttYcgqWy+T+s75R3cOfOma5GxEbfM/fRtCdEFtxQRV1gwFYOb1BP8wwzrpgS5cFngv6c4KMSQc8wAfy1GVuCmgyIODyc0iwQpuVMGKByoqXLXD2AigQ0HloFrwsnHX9KnsIGBhwPhCIuMZzv/yMBhgitgBMitiCfX2kiKkSNizYXL9yO6iHBUAMSpDdfKwsAcp4ZQZ7EXjnRvyenp6GvRqQHytMFgRcH+VfViRcP2fhZIrCCUG2Ymaz2QACbm5u4vr6Om5ubuLm5mYDDEC5o/zsFWCFj8/GAjDgp8urGBy48eoAQAbIccxyaJ/xLpVRpP3lAF5lnTpjqlWOMYrceQ+yZ6q0s3wqAKR5tK5nRl1WhqpOLo1sbGFsMujF2OBYATbQdNq2WrXTU0bQ6NUEbn4iQ+hO8UW8BTWo6xv3svyzJUWKjpF+Rhq42AMExqLNTNioxanzrapsVOHyUj+2QnkOWiPVeamKAhCNC2AFxuADVq7GGOj7zCda/30HEOpxSzBmwosjf8/OzuL29ja+ffsWt7e3cXNzM7j94WXRDZ94aibizeujiJ9jEBj1q3cG1gQCDauxqgK3EoiqNJVfAQTAdzc3N3F5eTmA0uvr6wEgYclUxJu8YMUPbwcbDwwUfv36Fb9+/YqfP3/G4+PjMLUAb4J6DJzwdX2pQIFlFK7B67UPUr50gKClRFtAwLVRdn+MHHRyubLis+OWoh7bNy0QMCZN5tdWGtoPeA8AGbwOgwpTBOv1egDFPGaQjgPBu7TP6G8T4N8VJMvUNT5bvUyZwmDLpjc6UsvMaTmE7Z5vDTRnbWSeAvUG4FgtzSwwEFYkW5lQ9ufn54Pbma1NVtoOCCBvnR7QIEAW/qywFOSh7fi73rBsx/TbPihThhwcyR4QKLzv37/Hv//97/j+/Xvc3d0Nyo89OKzgeQoGEfXsrcJcYUQMyp/diCCOKIaVjtgBTpN5zymX7J47Zv6A94k9AdihkqercMzftOBpDdQF/AXwgyWVT09P8eeff8Zff/0V//nPf+L+/n4AB79+/Rq8BeA3nhbhOulYVWCuKx8YUO0LDIAcCFBA0Hqf//U6U4/yVRDVysfdq0BKq4zZ+5ns7bnm8tO8eyxw18ZZXRkMwAPGU/IYJwwWAICXy+UgPzJ9NoZGgQFUQOc03TwFNxpbKDzIWPGrIlULjQcmD85KwSh4ceeZR0DTqNLPBKnWp/IOsJDU+AC2ROFehgeAN7DhXQEZWDhPAAt2BgMuJiDibf6fpyXUCnWDUoPB9kmVUO8RKNPpdMPFDxf4t2/f4vv37/Hjx4/49u3bhmeAAytdLAgGNsYR9mYAcbwNlBz6B9eg/B1PV940V/+MfyNigz+VFzAlwLyp4AnXMIWiYx0AC5bRer0ehN5ff/0Vf/31V/z48SP++OOP+PPPP+P+/j7u7+/j58+fMZ/P4/HxcSPu4BB47iPIya0e4V/drwAE7u2iVCpruCVfe4CAlmuMATqWqnZryYseXcJj9OXlJRaLxSAz1us3T19EbABjBBPrNNl7gEDECDCAQYW5DQYEmTJFw0EI6lw+SL0FIH6PQYCCC5ADCNnAqRpOraZq4GQWh5aNPSFO+avSdlMEHKWN2AB2QbsPCLEVyuBAwQj/o405khVKJyK2pirQp7pNpjL7vmiMMNC+1KkS3pb55uYm7u7u4vb2dit4kyPoGQwwj/BYinj7iBGmD0Cw+DHWGGjxD0CCvQqqDHW89gDZiG0goPES+MFbAKXPe17o3hfqUULwIcdbrNd/e5l+/PgRv379ih8/fsRff/0V//d//xf/93//F//5z3/izz//jJ8/f8b9/X08PDwMApMDsiqLVQntcqhAgseVmwr6zHzdtcw74M57lWSrDO4ZZ1CqnmkBDqfDNH33PuuMHl7jZzhmYD6fR0QMgcI8tQbvAH8a3k2PfbpnQAVPBgi4stxAEbUbVo/5eQgFNByfc/nQ2W7OOuskVya1+CsgwPXIvBuqWKCYVcDiugb24YepAASr8bbAbHG5+AM91mkatjT5n92uaAsoAc4zIgbEynPC7Lr9KqGlVFkX3MfaTwzGoMh4Lvzu7i6+ffs2uMV5e2b2vAA8uSj109PTDeWN6+o1cgpcNyFCGsrnULrswWlN7zneZf7kHS4VoHJAIcARgAJ7DtgwWK/XGysrOBB1MpnE9+/fY7lcxr/+9a/4+fNn/PHHH/H//t//ix8/fsT//u//xh9//LG1PbYDBC1rr7Ly9kEqU90PMlHl7UeXgduoF1S5smdl7L3mygXqMcyytHvOlU+y9qiMUC4P7nHAbMTf0wL8OXkYWzw9gHdanoFeudsNBriQ6vp1hagKwN6C7HkGAiAGAqxcFACoZ4BXQFQdnnW0PlsxXAYIdI5e5ydxjHy0TXumC9groEBDvRHqhQGzsSLHORT6YrEY2h2CfTKZbOyWxXvpa9Q7QMM+iAejDk4VdsoT4FdY+ZgnByjjVRy64kC9AQoI4A1A+gy2Z7PZ0O54H2XDMxyBz0FHaGseaxx45ObVWwKeARLqoitb3NcxdV8FDq5E/ig/9wnAB4BBRMTNzU08Pj7Gt2/fBq8MABranMkFFDqB7DwBuL9vr1amJNF/vcpZ0x37TKX4Wso2AwLZcXWtp9z6a6WpZcvy1TaogECLeCxPJpNYrVbDWDg9PY3lcrkBBlT583jWaVptix7qls5w/bLwcUDAZcxClpmYBVbEtiudj9FoIAg+XOfjk5OTQWnxTzsyAwZZR2YWvzt3P44Od8FKGbF1yQLWzc9mHgGNQ+Byc5/wci8o8/V6PQh+zG+rEkB/6DIwjvjeF1X9qlaFWuWskDhY7u7uLr5//z7ECDCKRztOJpMNMMTfgMBzGuTGcQXcLxq0ifdRLwU56HsAaHieoPT03wl6bgPmXd7yGlY/2oSXViKW4O7ubgMwgV/X67eYAF5SBSCJLa0RWAge1P0zcD+LtI6IQdCiXswTh+oVyMhZnZWVjHdaaVaGTysdZww6Rd8CBLuUF8fVL0u/st4dOT0ypp2z53iLccgP9fZw3JB6+LRNegEA02gwoNMFar064sJCAHEQIQ9cFpSwBtjNqekiTf4BCLQQm7MEe60kBwAcgNFrGsDnOg3lZ5AD4c6KX78r0PrxwEA5UFcoa7bqedkWyrtcLocIdk5jNpttzGfhGDvogbn3QQ6Iaj9rf2qwn3oGdGMnKFvkwWBU08U/Tx+oouIpFih1BBmdn5/HcrmM2Ww2BBk5oac8p+lnY9mBewWu6hWAkmZFrdth8x4LPNUH4ATZgLabTqcbX79kntcgWTyHNNkAQJ1c5LXWkQES077iByorXOtSKQAFPL3yzeXryubS7wUDWV1b5VQQoOXXexWQqfKuwKJLV4FGqy64zopexyue0+m9rA+4bXppdABhVRgN9GNyheKBB8Wv5CKwQSrcITS4DCygdapAFUQlFB2xxa+KXsEB6qLKRtsXz6jFyArJrfN3LmltIwAwtSwZAMBSY4seQBAeF7bU1uv1hmJ6enqKh4eHjSUwHCS3D8oGe0Q938jLKfnjQnBLY6oAa+jRR8yLETEo9LOzs8FDgOdduzA/aoCQKzfI7dAX8QYkccyuZZRVA+3wLnsEoPB5WSX2WPj3v/8d//73v4flhTpFwIGFAE4MAsB/PH5ns9mwSoDT5GjriIjz8/O4ubmJ79+/D3zHHkzUB+myFcb9ze2P6yo7vpqcLAWpHHaWam9aSK9SHj1Wb6b8eo53ya+XNE+nvzK5r884pVulkR27/uCxqSAmK3dVNuTTQzsvLayQiRYgU+JZozor2ylXTo/nTDE/zdciwv6z0nVuVyX1BDi3fGX1g9Qrgmts5Wk5OG5AAwzVC6AgIQNb6E92z2ZgIOLNQwQhvlqt4unpafjqnm4vu28g4Mj1i+MzDh7keW/ECmBtPU+TgNilBwXM8QDoM56P1ukD3baX3d/cr1wfziNiU7FhWk5BNHiKAYGCAV5SyUsJb29v4/b2dgimvL293fIOsDeL5/XB47zMEHlPJn9vX83XwYscb4B6YQoH4IQBQcTb0izu71YsgLbTIZEaOhXg/Yy8QT1Wtzv+CKq8ARm1yuCUOddxjKXdyrdKz4EXPs50k9Orve3eDQbU9TDGBZGhqIjNddRsLatwdu5O/ocwhnBhQIAyKMJnwYl09DsLyhQZENA5e/YGKMhQUML5cCCVPufy16BEDhh0z6qA0+kVBkhoGxaGCGrhXfF4fpeFtno7MkDyFVRZRczLztvDywqdgoOSc8qDlRsIbaxWOntsoLx4uoDbFEqQwV9Vt2qKDeMk8ybBXc+gCF4BXl6Jc+wVwEtPmf/Uy8jlUwHG86cRb4AJMQfM39xPPI2zWCwGsMqGDI8HlEtBHffhPqhlAVZgoJLPbjzsoug+A4A4y7xVth4AUAGWzwZSYyx2LW8GDHCuYEXz+XAwwIV3YKDXJaHMy0oT/24ZnLrCQThXIcOR2dpg+GcLjPdBh9WgFoFTrvrTIC+UEd4L1xYglFuRoPvPQAGDEm5btCNbl2gDt4GUHvM/Nr9Au2MuG3kgTZRTgdxXU89gV5DLngEFA/AEABCBX5UHWcEp2MR1BXwc7Q8AAE8N4i/gTldlyMQg1JWDFSCDFQcEHBiAdwTBgfwFRg1qZcWl4FzHGcsFLeNqtdqoa8ZPOhZ4Sk3bgXkE/aByzY3dryaVr85SdM8465mf61UUH6EsnRchu9YzXvHv9JA+6wDGR4EAbmdnnWu5WsDF9bGWW99xeev9Fo2OGcgakCugCjsjV3CkpZauCr3MQ6EChBuKhQfuwe24WCyG53if9Moqz1z17NWI8EuTuJx6ne/zr1ovrZ4KtsJVWTAAwLwqLytUC0qvcf1QLv1MLcqn5doHtXiW/12/8g56vOuji9FwlrhT1lA6HLgJK5j7BAGZAAQccc914jZmIMb/rgzT6XTDM4b+5Gc1YFUDKHl5q/Igp5t9WEg3UFHhyvVzUdauP53HzPWDs7T0uhunX0W9lqSCKH625RWrlEV2r1e5ZXlqOtqfCmhcHr06Rv8rwODaj/PK/qu0sjpn72f8WFEFiHp5d/S3CSrmyDpUrynjcvSwUtXonC8LYa08CwZ+BsJ3sVgMwh07QLF3gMvC3gk3V+9ctrDIuR0gYCrmxHustNllDIWBPB0I0rbTIDM9577RH9cdbcfWGluZ6rEYKzC+mhjgsLWfrdpQcKVTMPhx+poXW6M8VaO/bGMRpKObU/FqGgUqIB5/uvGR9pWCXMfr8LDxkkGOf0E9dNc0gATM8TPf8tRLRGwYBTyOmWcjNoGR9pkzKCrLi8fpPqgFBMak0bpXWbK9aWTlrJRh9r4DhS5NBxYyy1hBXlbWqt1dmap6V3oT5chASFWXqtzZ+xWNBgNqNSoqRaHwr7/1er1lNWkDOCuXFUoGMvQ5vq4BTKgLAt7YvT+ZTIaNXlT4sqLj5/GDMkQZdD7eRXuz90E9EVjbDysRZZ1MJkP0vrqteUBz3+gcqfYpLDdYorx7G/eLTtmwEJ5MJls78YE4gOsryVkH+FewA08AtneGSxxbDesqislkMgBIVd6sxNi1zfPn/F0C9tCw8oSiRAyB8xxwbAePLydglAdAeI6XOupUnQLLxWIRDw8PcXp6GovFYtiZkp9lMMAeKO4HgAQAKx63vPX1xcXFMG5RTt7lkuuC6Q0GcupVqJQDGyuHME2gcgjyAnEObirVKYgxVqYrR8+zveClx/JV5dyrqFsAwQG/rHyctrP6MyDl9GRVZ02jAix8XPVxLxiYrPcFeY90pCMd6UhHOtJB0P4+MH+kIx3pSEc60pEOgo5g4EhHOtKRjnSkfzgdwcCRjnSkIx3pSP9wOoKBIx3pSEc60pH+4XQEA0c60pGOdKQj/cPpCAaOdKQjHelIR/qH0xEMHOlIRzrSkY70D6cjGDjSkY50pCMd6R9ORzBwpCMd6UhHOtI/nP4/BrZ2Vl+RZU8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwmklEQVR4nO2963YbObI0CsmiJNs90z37/V/re5GZaVt3nh9zggoGIxJZFCVSNmMtLhaLKFwTmZEJVNXFer1ejzPOOOOMM84447fF5bErcMYZZ5xxxhlnHBdnMnDGGWecccYZvznOZOCMM84444wzfnOcycAZZ5xxxhln/OY4k4EzzjjjjDPO+M1xJgNnnHHGGWec8ZvjTAbOOOOMM8444zfHmQycccYZZ5xxxm+Oq27Ci4uL96zHu+Hi4mJcXFyMy8vLzefLly/j8vJy6zzSoZ3c3tmxu3aWzxhjXF5e2vMV+BlRLy8vMR3ydnXlNNw/euzKRpnr9Xrr9wyoz//7f/+vlf6Q+Pbt2xhjt5+5L92zt6rxdOPt/sPvqiy+fvZJ9WFZSmOH8cL3y8vLeH5+3hwjDT6ujiiL5w7mE3865aMMLY/PV//zf5q2Sr+0DPy+u7vbadd747PqXcDNEdUzrIOrc5yP5t9BR8b4o7LK88TNFzdvTuWZfp16tMnAZ0QiAqy8KuMHqBAhLR9zme4/NcJ6Tq+t2gR8+fIlpluKl5eXTT9UBl5JgE4qV0/kfyxgLFBHVix67tBQo+1kZml+jthh/FwZaKMSuUoRKrif9LqXl5fNeRzP2phkPRn1Wb30WMe2mlOVkThjf1QGfEYOOkSYy5hBdUC33mP8T19DrnGMb+TN11a/Txm/LBlwwsREQAkBIymEJYOahFSJgEunirIr8OyRdY0vl4FrdMJxf7w1MnAMVEZiRsAOTRKccugYzo6BHSMrvSWG3+WXfmv+fFxFR1JZqY7p2kMpWiUeh8z7d4TTb47IOmO/5Pp90B1nJfCdOi4hHaeGX5YMAJ3oAKNSonpuKdPUOi29bowemeB0rv7sRSrwn6bnY/49MwLA8/OzLe+jwJP0UF665jVGLwJQEcDueQcdO5bPKqyZjC7LTiIAakRBKr98+RKjY9W8mdVLiZ2eW6KEq0jDmRAcDikSUH1wnV7P59+CzjjPjD/rE51zSyJTp4JfkgxUQsZRgS9fvux4h/B29w0dVoqew1+AM8rO207XpgnCCpTDuKlMVtxavkYBXKTglKFE4NCTdF9SoOiSxAoYD5ACJW4dr7vqE2fcNW/ta3zv09dVZKDKr0sQKsKxL8n43ZF00lLj7/LYBxpxcuddG3Qud+r5meXklyQDCo0O6LEaheRxdAa68o5ZeKrNg27zXyIU+tsZarRvZriTwq2WBpLCPMQkPhS6kz1dm4xbIhhcpkYjHGblp3yq/q4I3SxK8BZwdIDl+C3GuXNdSre0PefIwGGhBh/n+D89p+m66MiVO57VX495D0HljH226MAvTQYS+1RSwEgGMSmnSghSBMB5+Vpvhe72R35pz0Pa1OU8/NT+RAJcf2hep0oG0vg4qHffJQQun0Q8uv2k0Qc35tW1+kmEwJWX2uTKGeM1EuXI5xLisQ9JqWTybODfH0ujAvof/56hSxYTwVvqJCgxgC7WyCvn85kIwS9NBhgzgdOBUhaZFBIGHIKBdM7gII2LECg43Mv1xdIGvjUPNvzPz887x0iPdNpWLhvnsN6vRkT7Svu7c+4jUCmJruc+M/icTo9dPu7aDjr1cNe4qMDsdsKkFFMZqa6uLvvk171m34hCVYdTVuKngooA8G9O+xYSsGS8l4yl6sUUtUhkBtd+NkLwy5GBGQPl7xlYcemxy0cVa1L6jhRwHmNs3zbIRpyJgMuDDb+7JQZpscGLz3H5OAYRcPfXumtQB2XJLt1HQcfDHS8xfFVUoCrD5VN941p3TafN+F4SFVhCYLgsRyw/UvG5+ldGYSmZOqOPblQg6Wh3fow60rOUEHTrzdc5x46dL6fLK6fg1PDLkQFgpmBZgGaDowqm8jTTx9UvGQgn2I516u+ZUldCgDo4UuDa3zEenfoeCzqOM2PdgTOWnfwqb0mPZ3l0FaEjtx3ZnpGdVKara+ecU6LVHH2rJ3jG25E8/qUkQJEMaiICbyEBySGYEflEBjTPU5fDX4oMdIQOSIqwMuAKJ6CdfHidv3o2gApntRar13Fon791WcLtJ+AHaqD8JQr31AR/ZuA07ZLoAI5nafk4eUKza2f5q+KpFKiedwSvMsip/5wxV8I0I50VweqQ9qqd1e8z9sMsEsBpOroZqMbcyes+49shutpOrlenHa4tp6Yjx/iFyIATNvdEqzGy0njr4FSRAX7CH+B+6+Y+vnf84uJ/SwAw6O55AdXOf3cHAy8XANyXSgwYHZKQvNdjY6mRS2lTGndOFUZ1a+g+6IyHnqsUaKePHMl2xjx5gE6xVpEBvbbTrm4bHQ6lG34HzOTePVlQ0yg6Y/wWMsD17Mg3n+sSeq7PKROCX4YMjLH7zPT03oExvKJLnvzSQZtFFxyTdvWBEWZj/OXLl81GMA37o+xkvPEwGFcHfcymiw7MFHnXEH00tA7OgOF8NWbdSMAsTcczmik2ZxwdugoyRQb0Oi13Sb3SuVkkAeVomZ15WRnzQxiRM/6HmedffRwq4leRgLfqICffTFJdGiY7Kbo7K+8U8EuQAWWf7lMJ4EcPhotW4Ntt+mMg/O+IwBjbEQVAn6eQXmLEx85j7bBfrccpIpGDFC5cQgJcvjiefVi5MUHF9fsSAtfmt2IWGdBjQOXqrW1y+ezjOSp5XxI9+J3RkfH0roEOIaiOZyTurWPo5NjJJ7fBOVFap+T8HRufngwoCXBvUEvRgW7+KfTJafRbDb0++tgJkApYpayqDX8KXaJI7bi8vNx5bLCSEp0UiYknZX+KcCQAvysPBZiNgzOIM4XYUXRJntO1lZc8kw0tN5W1JB9Xh2qOLfH6uK1dMjBLf4ZHhwQs0cGzcT5kJKeSQxxrOjef+YmfTl9qmadICD41GVDBS4SgYqdV3mP4UHjl7cxYsYbpuX4w8F++fNm5PRCCBlSCw/Xj/QUXFxdbSwUKjUK4uw/csxT0N9fxFIS8i25oupsX0qtnod9KsDgPFy1Q2U0GumPYnOKr0EkzI4PdPlxK3Pf1/Pl3N6pwRk1y05Ne9bkpjKqP9yEATve8JUKQ5oojAvrtDL8jBPvW8RD41GRgjG2vGy8g4hcRJdaqSjkNAA8qGz4un+uhxMRFJmCMXf0gVCAEWg7Kr+4o4AnHUQEVQM2zgt5TqwZnFiX4LMrUkb0l3nIyrBUhcPlVBt3JciJjbly0XJbtBFXeHQ/PtQvf2l9cvhLxbr5J+bs+nJGBKu0Zu2TWPSHVkQEn+53+7Rr/btql+Supd7KZiIAj752yPhqflgwkAz/bK6BCyfmpYWOPVx/UwteN4TcvcoTi6upqi6CkBwbh8/z8PK6urjZGH3cRMEFIXlf1VsIx8psJVWnq2pdGGSrMJs6vBmfIGM6Tdx49f9wDnlLZjghonqk+Kvtaf5bT2Y5wzdv1hTuXZFn7qko3Qzc6kOpzxv+gY66EYBaRdej2dyLbWj8liDMZcvm7OYM83PypiICr70ymuT4fgU9LBhiOnVbnkiBVHi8POP7nsi8uLraM/8XFxbi6utoiBkl5unrglr8xdm8vrAR2jN33GLhyqhfZJAFkg4A8qknZmbi/EhxJ1P+TYkpENJFPPdfxdDWPVL67riLVFRHo1CelnaVJRCelS2WcSUEfjgi4JdnOXq239PPMwaiM/hJC4MrkslUfj7EbRdX2O0dppnM/Qg4/JRmYKaVZRIDD6Aw2vjwIToErGeBIgL4/QL8rr53bCGBZQT1+fkEGC6Lrh0QKuI0gArPoQ6prZXh+ZXSiAqoA0vc+UYHZeUcmVDlp+Srj+O4QglS3tyq0juHv/O4SgTO2MSMC1T4thiOd++gOJQTJSXLzr2Nkq3mshMDV3c2NTnTiWPiUZABwBCARARjRJKDID2lYSNXoqlLiSYDlAEcCkBbosFsOOzEp4P8cEdAyq0nJ0Q5+cuFbBdZNyl8NTiElj8Ida7qq3zvKsfqtykvrzbKA/1XpVYTbtbmj9FM70zWOtJyN+vuikoGKEFQEcSYTHd2R5purvyPt1Vx0/830NV+rn6Tvu3PivWX605GBZOhZKFVAMQDOQDpwp3OIHjv8OZTOdQAR0AhBFYlwIakkhNwOGG0sJzgljfZXcEQADzXq4i0G7HdEChPODNwYtWevZeh1LEOqqNVbqyIDVeStqou2Kcl+yqPbR12leSYMPVREgJdGqz1R1Vh1dEflOM2cqll+lbc+iz5w37j/HGGekZVj4dORAUANnhrhFK6qIgOcN8A7rUEEnMerdzHwfgGF88IUvC6v5/VuAyY4/ME5FWbd9wAi4CIF+K76a6acuY6nDlfPrqwsSaOKI13nPHOXpzOynC4Zb74G1zm5TGSC55S2p+Pxub5w9aqIQEf+OjhHF3bRIQLu2S4VQdy3Xx155P+68zRFE7Su7lwy+o58q8OY5PsUiMAYn5AMqFBWH/WOKyM5U64ajmfFo+XxUgGXg3z425ECXqZQQWGScHV1tTNBqqUJlANCoW3VejnlWhm2ZASSAftM6CqaZHBnxrjK25GAmZfh8qhC+yzjiRC5T4dcdyMXszQVETjj/dAhAuqAOZk41Dglw5/Ou/ngrpkZZqeTZ2TekYJ98voIfCoywIpQDb97voAaZKe8OmF0XMdRATbiLjqhBnmMVwHgjXqOEMzqiLyVsWq/6IS8uLjYlMn1wLIAPvt4+r+iQk5GdYmxTEZ4Cbng/F3ayjvB92xTl/5Wglq1b5ZXqttbZSZFQxRuDlZ5zfL7XaCyl/YIqN7jZVGNLnbIawezSIDLO6V3hADHXO+O4U7tS2Q+XdPJ99D4VGRgjF2l5MJUSgQgnI4cOHDH81v9cB3/BlThV3sSUIYSAgXycIqZv7mu2naGe0QmkxF33CUDM+wz4U8ZM+PoFGiXDCB/LctBlVW3nmPsvj5b663jn8hNqr96RC68Omt3Vwlq2krZzvLtKvlfGc54JSIw2zSY8n6vOrvflZyO4TcMqpx0Q/o8b5RIaL8uiUy8Nz4NGUgK1ilZVcBjZEOpAuDeAojrOJSqoXyUwb8d1CvHOWfwmXA4Ba59w+10G3hwvUYHgCWRgSXM/HdQpDMiMDOgM+NYXVN5WxUR4DwR+YJ8ufFPeeF6QEkn6ukUoKuzO9dR1pq+i1mE4XeQX0YlOx2ii2tn/dYlBUvzmf1OeaTQvdalSyYT+XWkYEn+74VPQwbG8IQgKSe+prrVj9Ot1+ud9XQVDA3Pa93SsoN63GOMrdA80jAJwLF7l4ATplkomOuiv1Uh8rnU3s4k7ZKGzwz1QBIR0I12Y2SvVfNUuLClq1dFBPQaJgQdMoBrqvakNmk7Ulu1fRUp6MpbRXA76X43zEiBk6VEsLqGemnfLyWXXIYjApV+czKY6j+T333I63vhU5CBrgBWcMsHwOw2uq4Aa7iMoRGBznuvncJ30QJuH87vY4CrSMBSJOb7mbCUyGj/V+R1VmYykJUCq+qh+bi648PymRS5yiArUd5f467Vtro0zrDPCMUhvapTUM7HQCXDHf2rBo6NYkUKXD1m5Kyrl7tw86hLHLtpnLwnOf9oGfwUZIBRCUDqPFXIKUQ6G4DZHQicxtVLIwIaLUiejSMAziNcOhne6tnPjIv7PnXsG8lwRGyJF+X6OhlHp7Dcda5MtzlVZUqXC1Jbq/NKCLp9WhECradLV0VKusr1TAT2jwTwGLjokitPj5f0/z5ylf5P5HqGbtpku2YEd5867YOTJwNdgWTB67xIxyF1dtrdXxliXW5Q4z/G2HrsL8pHPro8wAqa72LgsjuhUl0CYbg+XUIEKkP2WciAQ8cgOoM8k1sXmqzKUaPnvvkaLdPJMUfIVL5T26s+0ltwq9sV9drU/iUhXL2mOv8RCvaz4BBEQI/xu4oKOIPYHWe97hBIcypFbqvfVRlj7L7l0OX/kYTgpMnAUhLAHvYMXWGb3ZZYsTvkr0/2e35+3grDujqwZ8YEgQmAEgTeZ8D16oT/Xd865emu0+PZ96+AjiEHVNHq+UNMcKfM+XdFBNweGoVGtwDdLIj+YBKAN27qsy06fcd5zs6567T+7tzvjooIuDsFnA52UJnRMVA51Tp1xrxDMqt2pyhbijTNSEFnKSMRd84jlfeehOBkyUASyoqdstGDQuJd/4Ce7+4Z0LqMse2d64DqEwK5fu5FNK5d+lvfYKiEQBWwlpfKTuUtIQBOsJ3n+aujG1rfZ1Inz4X/1znSIQJdQqBzhjcbahQAv/G0zIoQuHZyHzkFvQSVMk9G4XdAIgLumQJ8HqgMYXVOdciMTKfxcHZA/5tFkThNmlfOO9d6Ve3X9qIMFx2YyeN7yedJkoGKnbrPTJjGGDvKqnqFr4ObDHwOv8fYDpXqUgDKqlDt9gb4P15SeH5+3nqhEZeJiATa6YhCQpcAdMfjVDEjP3wueTVj7CrJNJmVwGqZ3UiX1im1YXa7bcpD50ciAUzCQUpZ6VXK25U5a29SxklpV2NVKfpfERURSDrWOWOdyKOWWxFANchL5wDXi891SUFVbiKkKXLm2qP1VD3SmSPvIZ8nRwYcY6wIgWOzDFVYMJaHMlZJyVbCkfJRhex2bDvo7YwuKoBvLFOgT3S5YjaxnQLh9i+p96lgZkBx7BRhIkZVmzseVEcBJiPnxkX/U2Kp0S5Vqs7gcxnutx5rnbneSbniuPIMZ/JahV2rfH4XQlDpWfdYdWdwl5SXZDsZ2hmZc/lw2s617ppZWR0iy+1NeXbIwEfI58mRgTF6JCCFsVyHamg9DUqKCrDyY68H/3WNdTXoakjSpsWqnNQWRAXGGOPp6WkrSjB70FBncigRUHJyyugQAT7nyGe1nqrQif3WybyEaOm4KClAGkd4QKRnBEAVdyIrQFLU+y4FLIlwufJ+BwIwhiePjgik6Ou+fbSEuLn/OtB6dupdXdOFm9NdIsDHjsR8hEyeFBlQhVoRAj5fKWIeDL1lqiMk+hhiEAImBlrWrI1jbHtMfM55aVwGL0VUYMHUdyEoEUiPH64UuxIvV2/Xl6eEzoSv2lp9V8SgM7GrunWM6XtAvfxD4b28nkoJLzEsvxo5UFnu6ltFWqLplL8v2UtlpTydYU2o0rAsVVEsV5fukofK60eTgpMiA4DzvtT4z9axGDByTArcU/30GlW6HPrEcoN6R5ye4bwy/nbnqrVcLUuXBLjOMyJQbShEfZIQL41YfAYkZeCIQEcmNb9Eslz56XgMvxFrCTTipQSXlRHL/yxPd5ygsrXkGv6Na91/bi5XuuJXRiICVcRVI6GKpX2WjCrqNXOqKmOa6tWRr66RZsfJ3RqYylgSHUikIMn3IXAyZCB5YJW35QwqwMYRRrsbvmavmhUkjsfYJgQqGCiXFSgLC4RH11adh5mWQbiubPQ5T32KHBMB3jfQUfSV0UE9uX2MU4sIdJEMO9qrYVQ2ojNSMPMUOoSga+AAJsF8rKFMdxcOyxJvinVEwR3PFH+KQHXDupqf9oszDKlevyoSEZiRApXdbp91nIuZl/8WB8MRgCX5OWOMb3XAKhvkzs8ITdIP70kIToYMAIkEuI1QgFMoSdlV5TqwghxjN7zPzxDQ9xY4IsBlqQFx/83CdezdpTsXeKMgRwLSEoH28yx8psfpARqnpng7BnSM7aWB2XvckZ6v43NLsOTabv48lhzd0rxmd9s4EsBjrMeuvkpCkHapcnOKc2ZMuqHXU5PZfeFkyZGAyuma5b+EJDjihv+4zO4cndWN8+6krdqfImVvdXqcLnVLc/vMkQ5OggwkduqYaRrYKmyoUYG0BpbyQ55MAnDM91A76EAioqCDzPVxmwfTejxHGC4uLsbT01N5Xze+08bBpJwVTGQ4f+dBdCIPx4LWWZUBb6ZiAqCfSp4q2aiu0/+UOGo7kGf6j+cCokgqu9wfuj8lEQB8V+mq8VfC6cg9l8XXafscCUjeFR//KkbfIZHUigSw/pkZZKczuLw0bs7ILi3zUEjOGPcD1xP100+1GVvzSE4X12OMeq9Ol9R2cFQykBRvCo1XwpEEqRIqVnYoP4XN3TIBvCsoVyUdVWTAKa0OSeE8cA2Xq+TEhXyXwHkJs3HgYzUQnwGOCFxdXY2rq6vNsRIBN+4VYIyRvpJXF3VIUANehfyRH48Rt0U9ezeW3QiCgyMBXTjlmQx7SjvDZ5HXDpyudXo3ze8U5emQt+RMcH1Suqoth4YadtapDNb1vOyK6/C/EgLnwGpblCC4iLReeyhCcDQykIRzRgiAxKL0Nw+qY39jzJmXelQ8SGNsb/RzgwTBSHVM0LKYfWqkAwaF26t1dp6BTliXxnkLCt5XkYzHqUYHAFUEl5eXGxKwWq22vq+urjZEgfuk8p75GOM1kwsn/454VIqAFUo6z0QghW/dGDoF19l/UkX2FI5QLFF6b7n2s0N1odO1aY6zEdNzWkYybB09nb7dNakOFWbpnc7TvnFzh6Nr0Mv4OFLg6jQjBOpoKtGuxmUpjkIG1DB1hXOM+YYrNvBVuirk6jbgKQHg67FWX4WLu4OFwUZ5/A2PX+vCbUtEgOvN5AC/OV1FCCroBsrPCJZDRAFWq9W4vr7e+uYlA/QLK4PkRXPf6tP5OlC5dtemvJz88nlVeC5N8nJcGftEg2b5A10vaEYyfgdUxF7ntupaPU79nnTDzLB3CcC+6I6x6jw+dnodehNzmJdlcY7thi4dsBF3fevKc1GCQ8rwh5MB7uwUDWCCsJQQpEHt1o3LUOXJ5fIDWPA/H7u8lNV1gHS6tpsiJkp2WIAcEag2N7r+5HNs/Pmc1v8zKF1tHy8NXF9fj5ubm3F9fb0hA1gq4H7mkCGP+Ri7SybPz8/j6uqqXFd3e0ecLHfWFNFGVxYTTI7w6F0Dro4JXO4hieHME3IGDMdJFj+DfO4DpxvU803RV7fk4n5X5aVzS9M6LDXy7prK6UmP6ta81OjjenYIxvB60bVJ5TuRJNdXbsyW4EPJgBpPJ5RKBoAZAWBhZian3g4rtepZA9qhSaHx+mryxvF/1+vReqrB4R3gKRrB7XdLBbq0oJPckSlXji5ZJGX9GSIFqigRFUBE4Pb2dtzc3GyRAfQdSADvIVECwATBTdpqIrt9A8jH3UWC//k7tbkivbP8kgJfSh6qelYKHf//qgb9rXCGrvowOuORdITmV8lTyrta3tlnzDv2g22Pc0w1LyUDuoeAy1CCUBECbp/Tv7M5sQ+OFhlIREAjAowUQnGMboxdz0rXaVS5ddZ2nJFLRAR1cAxx5gVqGZwGBgfrVThOZWp/MhFwyt8RAf6vqp8TzM9GBDgqsFqtxu3t7dYHZIDHg8kAjgEmAkzooDCenp42+ThipvVMcORD/3fXcN4a8erCLSlUZXXByjZh1q7fkSi4+fwWElDp3CrPmSxVY5ccC5xL/yejn8Bzn9M6YqNp2AnE3Nb5DF2wXm8/BybZFEcItA0VMdiXHB+FDDgCgJBrMogpLyUWzOSQhrFU2elyAc5pPcbY9aoSEVgCzs+tybNhV1R7BrjeqnBnY5CUxax9p6iUnVfAhABLA7e3t+Pr168bMqBLBCAC/GZIXSJYr9db74aA0kAeGAeVuWpJyC07zQxhIglLiIfOr04YdAbnDc2IwFvKc+X+CnDzmOV7H6PNeet80Xzd8hYj7SvhzbD8P+unZDhd+7UvUnvwrW1QOLuCtMnQPz09beWh+wmS3M0IjrbxEPL7YWSgUroaFWCo954Y6hhjKw83+BzOGWN3Bzyv8fIxrlUl7Qwtt4+NdDKgiX12SJGG+StGrMsFXD9dQuA6cN2rEJeLLmi6U1e46APcMqh7BvBBZABg465yhP+RBunwwB98+HpHQKs643vWvy4Sxt98XMkS95Ued+G8HpUhJ1PoH+0nvW6fOvwK0DFxn1kEFqh0CueDvDqvxNZx498aWWS9w/okEQRnqPlbocubTv86UqDpUC+tZyLKgNMTWkaClrOP/Cs+hAw4QXSRgRkR4GNNy+Gb1JG65u6ET3eCY8D4SYNcL1XGTlC0L7jOmibtXHVI57UsZa7cVzwxKw9UmS/az6hCd+ncKUDlk7/52QL6Qb9CCfCjqVlOWa6enp42ZODx8XFDBvhhUR1CwGl4yUHHiNO76zWC4dI65eqMTupbd6y/Zx4ep1GZZVLL1+oYOIWZjMrMcztFOOOnRlk/CZXzonpcH8alup3Bjhh/1Ki69jiDW/VD5VRVRr5DbDVv9IkSFW4z4OxHitYh78oZ5m+V4SX40MhAIgKJQSoSU9VyxvBPTwNg2F25EM5EBJQMoEz9VBsOuUxmdkwOqqWOVHfXFxoN4E2TvAnR9R2n60wQtOezoiKY+r+ON/rZsXvIEIgYjP/l5eXmm9ccmZC6PSZMBC4uXh8rzEtgaXNomleOFLi+ScYkGXNnYGckOYHzUyKW6pOUo86/GZH9bHDyqf2UxsKRQZcfEwF+EBc7d7zJdoyxpUtxzARPdSOge5w4asBwSxTaTkcEdFlO286/9Vijy7hLCP/zHOd2cRsqmav+U+L6Fhl+dzLgBNKRgJmCqDwboPKU1ZvAuTQZ3IDxWrCrj+brBIeXJuDVqdFxmxBdvzjigPPsMTlSAMwm03q9Lj3PJUL32ZQsk0JHBHmcK+I2xtjpQ/5G5IFvSUxEFGXz5iTkze/G4PGDHLhx0/ZU0QE16Dqvnfc9U6RLgXK4XW7Nlstfokw/KxJZcx9Or6i8bdbd/JufzlmRgdTP7JyxEXXyotEBju4mAlDdXaY2oQtXFs8RrT+ACCDaorZiRty1fBy7vl0q0+9KBlSAqqgA0led0VUgs4F1m7O4fI4KKAFIZECFYBbCSkRkSXSg01ZHBLieFQvmtqiirYiaw2dTtOzJwBDzJkEdJ3xzn/JYu1uNIP/6WmnInXpRyEc9ATb2HC0AeHkI+bOMOrlOEYSkoPm3/q/XVER3BvUemeS493Gkumu903z+TCTB9XNFCBRJ37rreVlAX9qFJTTW72zEQVzH2H63yhhj52VvjBQd0DorCdDlCo4aV946Qx2uBCUF1TU855bqU1fmW/N5NzLghIcFxgnnISddmsTKnJgZqiAkZcmC6JigC9ssRWcZYAmcIVq6SQ3HjsHP+voU4frWjTOv84PZQ4lAeela6Rj5jWNcPuaEkk4mAExEOMJQbUxCvXic0tKB6wOtq+svlm810OlbCdSM7Cqq5Ri0EXVj4pPak/I5ddllLCUB2s6Z85J0eaXf+ZjzYhkew3v2eqznVK4VXDeNUGg65Md5Yj53ZUBlGpgtr6oc7xtxRR2cnC8hs+9CBpyQVBEBhlb8LZPSGb1Z57g9Bt2y9Lir4Jih8rnqoUh6baX0AHihro4d4sJ9OSMEqmRO1cNKY8VGGN8gAlAsLONjDCvfrOwQYWE448bKCWU/Pj5uNiCiXL1tieHGSZeOKrI5m4eVvGu++ruzjpvWcF0a9jiRr5KCBCbtpyifXSRS1iUEnfwhQ0xiNTrA/ykpTk6Inp/JBc8rJ5e4fnZ3A0f/mCR3nSRGkumuQ5giErOxUf39lujAwclAYou601SFU5Why9eV0TW4iXWqh8JCOVMieuwm2xJiwOwUyi2RJj7n1r0cqdlHyB14srEQa5/MxvRU4IgAe5YgAtj9r7LHpM2RXeSDdDDiySviOnBEgIkA0j89Pe0oUVWuvDyA/918qjyKSt47Bgf10P9SBKzqG5VzkCyQAF4iSd6Za2vqg1MmCt1x4fPdfNOHdWb6D6iWgaoly1RfNthJbpE3E4C0b0CjaPh/5tWnPnOEg22hfrid+pySWaSA5VPnVZq7FQ5KBhIR0PCRGjjnGXXK6JACVozqaVedpAo1Xbe0PirwGExW6LMXEnE+XJZjlexh4hx/p3M6PlyumyhKDDiPpNSPiS4542cDgBDwpFePRid+KovHhPNCel6i0PdSoF4akdDd2e6Y28+eSyXvfE0yONoG1MuVy212Croq2ylbkKXLy8utBzlpf1fyzYqVz7v0p4bK8Dt9NGuL5uGiXbphMJE6F/VMXnCSE82PSYDTRY50uv/wW0kAl+vmg5NV7iclH5DR1Wq10SP4XF1djYeHhw3ZZ0LAe4iSjVS5nclxhYORgbcSgRkB0G8XXaiuTwPIgHDpbVrcrhSWckJWtQXgzV9MBHRA1fi7aAArfvVsUZYTMvzHZbnxqIhRZ+3xVLwrHVc+5vawQQYRYLmDbLNh5/NIC89V5Z/H2P0HWcQSAT5s/GcGXNur5EVJhn4rkXBzT/uuUsb4X3/PjJUL+QJYPkG/PD4+bvJBFCaFa1WROpyK3CpcfWfj8xYiwCQAMu50H8CODjslHaM2ho8aORJQyb8b91m0lOfgDNx+FwFnOcVDxZgMPD4+jvv7+82x7k/ipUrWSU7vuqWYoy0TOOFx7BHgxjkjq9/6SUoHClOFqFJMGp7n27X05TNaH+QzUypos0I9PxfSYgFILyfiNTC0yX04YuDQWU7QdjhScapKVKF96WQU+wV43CHbq9Vqcx1kXl9kBDl6efnffcg8qXlcAaTFsWP6Oq76P4MjOjhOUSqdk07m3XyaGRpNO7uejYG7bY3rfXV1tSFrnJe2oeONan/w9aeGZPCVfC4hAhwB4H53txDyOzpmxJJJQQp7A2pIXR3TPgSW7ZmThbqxPqzGWuVL5ZMfSobfSlw52ggy8PDwMB4fHzffIAb45miBknWenxq5XTInD0IGnBC6J1FVREBDcsrYExFQIUz1G2P+EBmNDOh3paw4f4ZTPk7JYqDdTlslATjnQqZqKPhZ+Cz0Woe3oNr0cshyDoFKprgvtU85HM2TGQ8Y4bFkMsBKCePBZADXqCK9uLjYCXlzXRxhm3k83C4lBJBBNydddGAfZePqmq7X28JYwUK/ABiPVIYeaxTMbVybRbqODUekZp9Ofo4IwKA5MpD0uwu9c5RyZnCTTmVDV0XFWLYdEXDLADPi6PoKv9kJwFtO8cbT1Wq1FSUEIXh6ehoPDw+bD0gBPnd3d1uRAyUETp+zU4u6dWX4zWTAGWglBCqMjggkhVMRARee4tAUs0tXD2WPOIdr+TvtN3D5cl3SWroqW1zv9gsoCXBKGXAhOb1HvYoK7IvK6J+qQmVUihOTF0QAUQKE8ZQMsGJQJaC3ETr5dXsEeEw1uqPylfpbvQaWcedtuDGtCIHOPSX13J/qLfH8SkQAilWXYHSZQEk+oBsLtV8SMThVdAhAlwiwblUioESMo16V/htje68GE4EUHUhLA/w/ZJivd6FxJiRKBHgeaD26uhHEn/tptVptvcfk5uZmXF9fb0UI2DFANOD+/n7zubu7Gw8PD+Pm5mbc3d2Nq6urLUKgpODiYvtOGnzUXszwJjLAyqCKCPDEHaOOClRlJQHvNFaJBEN3k3KbAFUenB/XQRkaIzFZFlr+rSRA61YJN0+4QxCB2RidWgSggvZlpTTVo2RSoOt5DFaoyJcjP66/eGz0PJfnojuz/occsaxwvVBnNze1Xyoy6uDy0PM4hlyz9wkvC0rVkSyQASUpOj+1fDX++l316bHgxkMNc9KR2pZEBNy7OJgUqA5yeoVlkuW6258u8olynX7VMtVQIs9ZVGoG7WvuM7zUDG851Tedqsw+PT3tkIC7u7vN58ePH5sXo4EQ8F4CF2lxTmMHb44MaDRACYEKZeWBuEproyoS4Dx4rqPLI7WJla1ez+fcxGSly+cc0lpXRQJQviMELv80KTnfCh1Df2oK06EiASofKrPslesSgRJFNyeQN34rgWDihjLH2N47wPXBNdUylJ5jWcH1Llzaya/qw9myHZedZJxDrviwUmXFivFQ54MJxcPDw1ad+UmSLhKoBujU4Po+EYJKZ6pBY08Xr+/G8eXl5VbIm8kk952G3pUI8O8ljgnXXccrkWpGIgIVYazO8/XYO4TXnX/79m3rc3Nzs5FFdtAQGUB04O7ubtzf34+fP3+OHz9+bI3BarXapAUp0LrB9kBul+jlvcmAY5RMBDiUp5XtRARmQqx5KvN16TtKSuugx8oIndGYGehuuerh8KRNZMSFy1IZSxRd1/N3/X+KypRREUVWYEwGVqvVjvF2nqaSAbdUhAnMLF/nR5ovPPHZkKnspfmQ0i/pL0cElnoliQTo66M55KpkQMnD/f39eHx83ApxQ/kCjhBoX45xOmQ3GfOKEFR5ab/za7vx4dd28z6YMV6jVvgw2WI4IjBDcu7YyLn2pSiEXoN+Urnn9iU9qQQKsoeIwLdv38Yff/wx/vjjj/Ht27cNkdWlAmwWVEKAqMC3b9/Gf/7zn3F9fT1+/Pgxfv78uYkksBxze5UQdOfgYjKgHamMMkUFUijTCYXreAc0lsOeKkBvncQqGDrZXPqkVN1E4PRMLvhWKrdW1xnkpf+nZRGg05dp7E6NECTPSmVWv9krnxFb1/ZkeN166ow0J4M/I6POw3L/oT5u7LifVCe4fBJ4PrExh+G/vb3d+tzc3GyRAQ633tzc7OzKZgW7Wq3Gz58/d8YZ7XdE4JTkN5GwSob5WjWGrF94zRskgPv8+vp6Z9mLiZjeEjfG2CEEjOS9a3Q0QaNbOkcc+VC516UplOn2GswIAfrr69ev4/v37+Mf//jH+Mc//rEhBEoGmEQxIcCGQZCB//73v1tjsFqtxo8fP3acbXZYZrKQsIgMOAaqoSXntapicwquEuKEFBFghY0NWxjkKlrh2qu/2dNj7wTlcVpnRBy0vzDh+IUf3K9666EuNaR2dCYX/+4QgpSnlnkKynQMv+ykCoGRZJc38Ci5U+OPbxe6c9EFHLu645vJuAtzc326Hr9Lq/XlfuM6VQTZlcP9DqKr662sXNm7Ug9LlSl/4EUh7Mo66v7+foyxa7RUoXI7TwlLSYHKvUZiEAEACcAY3N7ebpYJ3PIM+hqRl4uLi82zHvRdBAmsy9mhS8tbqT26SVRJARtjXAMoCXFOmvY9lgcgtyAC//znPzfff/zxx8aQcxv0gWb67AFEBlju3V1KvJ+IlyHejQyoAWQjpUTAhc9nxwmOkanhh6GHADlhglCqIClU+SmbRD+wQXYKswOnUN1Hd1dznVy0Ia0/L0HXgOj4OOV5CopU69NVoGPsLhVURFaNnOanhAJKVUmFIyxjbL8KmeXGeX0obxYhwP9LIz+OWAGVd+dILxugP/74Y3z//n18//5941l9//59fP36deOhYs7ruis/uOXx8XETcv358+dWVIHH5uHhwSpQfFJ05CPh5OGtRAAkDAQABg1r3gh3c2SADaU+oht5ghBgTRv7OdyejDG2I28stxjjJFvQ8/zkTTd3nbPEefB1bvnBOZHoOyaxkFdEBf7666/xj3/8Y3z//n3c3NxslaF7j9igPz8/b+4mUJnlOnEeuoF2KREYYwEZwGDzoGtkgM/zYLwV3cmYogNjbCvMWShKwy88kZIHhP+cd8b10Gu4zIoIgNy4+rJh6fSPQ9pMVkV0XB+471OBM15uAuH/MV7HX8mWyxvfLk/1/vGp9gm4OcabhvC/W/PUvQka+dH/tQ2oUwcuqlTJAEe4Li8vN0rv69evG48KXhX//vr168a7Ys+U783mUDVIwt3d3fj777833i2gpGxGCE4JjnwmvaTfLFMcCeD1bt38xhsHQV71XR0PDw/RGPFLtVgnO2cmkQBuh5JcfT6L27Og+XNkl88hfSKy3Ne6VwCEgOX227dv4/r6etN2EFgdE5T78vKyiSRcXV1tXQfDz0sKvGzmdFhXD7fJgHr9ulGQDZdjfQ6Ouc7SdZGMG5+DUuEJhf9cR2p4Hv9jALuDoOc7EQEVGICZr77kgsmPMuTUZ4zZ8kbVtlMjAoxKkSbvopMfzw/1Pt2Y8ZMiO5EBlY/KI5pBCYMjskuMIM+LGRHgD5QeQqx//PHH+PPPP8eff/45/vrrr/HXX3+NP//8c0MGWDkyEcBmQQ69Qun+/Plz3N7ebt1CzF4Ye2XOmO3Tv4eEkwUnvxWx5Q8TAV6agfFHdAa/sWkTABFzsu2MEYBb4vT2WoaL+rqIAZfLMss63eWt+Y2xHR1wJMGNB4gA9gtcX19viBRHCP7444+N3ELOHh8fN2TK6aD1er0VDUB/836C29vbzTMIZkTg4GRgtVpZhcSEgCuUlMjM6HcmYbeBSgh0sDVCgHqnHaxj5IdiXFxsP8ZYlWsK1XIkRfuVhcSBDTx/KwlAWr4utY/TOG+2g2QEuksP7wk3bh25S33Ak84RAY1AaT6OCFT5OQVftbWKqjmyzMRA278EWibXH+1BmFXXW//888/xr3/9a/zf//3f+Ne//jX+/PPP8c9//nPc3NxslCOvrUIpwthAeULxYs0bc5SXEXitVtt9KmSAkYiA/kZavob1NYe4mQhgeYaXCRBRgc5EvwJp2cxFYcZ4jRJUeg1l6bdGoap83H88H1L0gdO5+VPJMBMC7keQ94eHB/s0Wx3LMbYjfw8PDxtSC3nWB3Al8tfFIjKQPJ8UokqM0SE1ZKasq4EcY5RMLxl2hpIFvs6ViafToeyqnpyPLgOkOrlwdYoEaHr87i4nKBnYF0x2joGkHLuy1ZlQLo9Ze6slGFf3LklJpMspIA63aqi1mw/qoXKa+u3i4vWRzXpvNsjAX3/9tSEEf/3112bddYyxUar39/dbfa3eJkgD9hqMMXZu48I3Rzgxb3XJ4Jhwyt45ZkmGlQjwpjc1YLxhE14t61PdpIcPynN6lXUJ6uE2bqKuaoxdKF+hUQGOns3AEYnZxkHtT42woD/xfXt7O8YYmxeO8VKfOl3Ik8t/fn7e7OmobvPk+s3OObTJAFi5G+xkrFKlMLjV/06x6v+Ael+oh/5WQdK8q05Tz0bLY7bHStRtnpmVkaIB7lrnwfOxLhssJQOqXCsFf8pwk9rJV5JrZxSc9+8iO2PUXgijE7VxaRP5c9fzHOB6scLViFPKW1GRb+1nfrgNyADWW0EGsEzw/fv3zQZgbPjjhw3xEiVH215eXjYPfHl5edlEEnB3wd3d3bi+vt68RlafY8+E4BhIMuiIQNLLnF6flKehbRzrk/PGeHUyuA7IT+vIOox1j5IHhxTRRf77Rhid3XEkg+uddDGTAkeweDMm7xfg/Hi5UGUMv/mZD44EVHK5VG7bZOD29narA5yhxbF+tJFIVzWg+gCdDhlj9+EVLKwapneGAP/x/9oHrEB4swx76yjPCZ6Wp+tkKY0z+ChP67CEDFSRhWQwEyo2/9FIky4RAndNIpTOO0tl8Sct5SiB03FhxZr2hTjy4toC4+oMifOuOA+dXzMlyncf8XMFQAYQHcAGQtynfXFxsQntsyJluUfoFuvi6/V6E9XE/oEfP36Mv//+e0MGfv78uaVkmSA5A/LR0PmmBMAt0yKtXuOiMXznBogAe6Bj5OdqYDwBkCk1eviP5RXp3FM2WWfonWAqW7z3ptOXqJMeO72M//k/tRdMCPTBV+jD9Xq984wG3hTIeeozBDhv93wBrucSZ0KxKDKgioSN0Rh5l3Vi16niFQmYGdGUr16rbFnZrNZXb5/h/F5eXsZqtdoo08vLy633qEMQEMasBE6FstoY45Q/t5+JwSwcXV2fyEh1vaY9hf0CjCRjVWjQ5cF54dgRTQDnXBQHc2Vm9Nmz4rT6nHIlruk3roHC5dsXUQ5+J9nRMpNi5X7mjWy8iQ1haoRacXsV2s07qvkuAkDnKkjB9+/fx99//70Vwv3x48fG8Dmj6kjdMZBk1UUG+JoxXsebnzCo/c3r2/BmOSLAhos3XioJc0QX165Wq81xIt5jeOPMy1dOD6ZoJs9LJ7sqp0o4lOjqmMzGS+uY5rPOf8BFfHQZ2OmMfbB4AyEXxgojeQH8zeDG6zUzJT2bmNX/GsLl2yK5nFQHTTvG6+BAyLG5htkvh7mckdX+wLU8MbgN+8IJjBuH5K3O+t6N56lA5UeNuSonVaxL+t3lCYObJqtGc9jzTR/eDY/rUl2YnLCXwmUiL1zDRnZGCGb9ob/16Xf8CFzsYOeQKD9TgF/mghe48DxxZF7D4/xUN31OikYHjinHTk6VcM6iWu5RwxzKdk94HOP1rg1suFQioFECjOsYr/KEcvn9EdyuMXafdaERTrTPbb5Deo2Ocj4VZksEaqhZ36tx1wcx4cFWLy+vD8fipzXyfHNEJkULHSlzjt4S2V10ayEaxYzThSXVaCTm5wxNRQRSo9SLdv8nVp2MPLdRQ3KsoNAHmDRoy8vLy8ab6aCKCmgbqjyTMWM4w79U2Tl2zmXyGH8GQoDjigwokjeieUFG2PN2ebFBZxLAk55vg2M5mMm+i4IpuWHiyf2gt4TtO54aXnWEXOflGK/hZX6728+fPzcfkAEOOfMcxHmUrSFdfhPiqUUGKsKqdU2RGF1OUFKAZQN+CdQY2w8WYkOm0SkuF7LO48rjy+OsdQWcXXByx/LL0em0ZObKUePP/cY6WY01kxV+3oXKKK6H/PLDsUCuUDZHcLlsti9OBzBJ2DcqMMYbXlSUQsnoSO5onkwplOGEwl0POC/NkZMEZrHKsJUUsGC7dZsxXtfKxth+1KRTus7LZ3KkbFhJQuorVXrVQzjG8OtmHVTXJWE8NiGoynfy1amvTl6dlDon1GviazlPZf/qSahHkuYgfzMR4G+WTSUDWk++ZXaGROA1wufIOfcF2v/y8rKJCOCFLVj/v7+/3xiLq6urjdF6fHzcGLj1er1RvkxclSAl439s+QUcYXW/AdVpHCHgl0FpFAbjzXdf8OtzIROs69WYOqcr9a/KVEVuOQ3LqVs6mxlHRwi4TfztInJKBCCTiLCs1+vNC4UgvyAF3J9cH4686/KMuyWWScFbCEGbDLgKO2WoHqIOvJICB75GDan+7hiiThmOEGhEQN/prRMHihQhsRnrHWN35ywbfCYFzLi13domXl5I0MnCZGQpErHbl2wcGpV3tQTK4HFOFQQbbjW2FXguYYJzXqwQOHKQ8oVcM3nV912wvLAXxvXhvTCuP7hvq3qokdL02n4oWZwDAeC7ATgyMMYYV1dXG+MFzxcEjJXw7JYzlZO3eFyHgiMoTrcmsJfOmyyViKG/+SmO3G/cd5AdRL1UHpbON+fRc9/ruDknk0mBWz6rdBETAvxWZ4yJv5IBPO0Sy+rYKzHG622tkEMmpygDeaJ8HQOOKjg90CVBDovIgBIC3bCkcALgmIsSCJfPGL27B5znwgxSy9QyVHA1KqBhRQwinirF62JdY+OWBjQqwMfVhhYlAh1igP5YahzTNY5gnIpnNcOMpLKBdB4CH2NMsSObr2MWz14HX6+fFBVQQqBRAfaA3bcqPhwzaeB5ywZAy8T/Sfmn82yAWAFiaeL5+XkTFcDdAHx7IO4w4HnKXu8Y/1PGuI6VajesfCy8JUqh0Y/k9LD3i2/3Aii2Azq/ecd/akPHQeHfGi3tIBnELiFw+Wn/8Dzll2GBCMAOgZSCGPCSiy71ffnyZaM3UFd+vwa/uljJQCI+S9AmAymcUYVFuSMZqggZTpEtQRIaV6YKh4KVmm50wtobs0YoI32AUKd+MyThdWEzJQIur30EphPp4LTHjAYokqfCclrJA6eFh61hOzZgHDXSNUf1/N1by9zv5A04aFRAo19MCFheeDPSGNsyhfzSvgFdAtBzCp6HHPVAOBUeFYwMlC0iAiAGd3d34+HhYYvAKHG/uPjfZki8FhbXsWJ2487jf0wkfVgZOA3LsxwoKWOCOcawss37BZA/6qROh5tPTufrbw31u9A/p3PLxWqntJ+6cO3B3OX5//T0tIkIwEmETOM5FiAHGtnjNrDOQLl48iBk3i0z6NJNsq0ztMkA1j20c11nJ4/QVfa9PEftCA7nciiGJ0nqRGbQvFSgg6hhNy5b66TtdksEGglJxpUVLytEpO8oEs2/Cj/O2D2P/ylA29IxTg7sQakHf39/P66vr8fd3d3WmOKtZEmpsAHUcCA/cx8GSyd/NyoAQ86/9RhzA5EAyBKHgPV/9IvrW6eo0QcaaoUXxZuveMMlLxM4MoB9A5A/3bwGz4zfE//3339viIRTqtynpyTPTvc68qoh70SCWRaBtD6NsmZRSpZzDWNj/iRbkIiA06Oos9qZ1FeaVpHIBWSQ578+Evvvv//e9Ad0Aj+4idvOwEZztBFLzM/Pz+P+/n7897//3cgrk18sj7llAtcXM7TJAG6XqzKHkDmjVXnlfL2C82IP3CEJDytx90FnQtk5MuPCa1AyfD33A5CUYmof8uDJ5iaehmOVNMyMduUFuTxmhO0tLPy9UbUFMuC8JZce6fR+d+weHmObCPAb37g8KGENxyoR4LCgEloHjgK4+uO3poNMcxuTJ8nXOVlzS3pQhEwmmAzxBkFec0U0AqFYvq0Q6XUvgNYfY8JlYLkBEYKkWE9RntVwJn2aDATLEOSY9R6TI950yXpRN1+nSIMupyE/jXBxv7Mu1z0sXA9ua+ojdz5Ftqq8mAig3SADP3/+3FwPecZrs3nfCtcXeUBHQF9gfoC8/ve//x3//ve/x7///e+tzbPVBsJ9ZHbRnoHEQLUDnQJRQVHSoOyVoQZzVk9No4xOGTIGhddMUxsrT9vBhU4VSTjxX3Vt8tqr/Bxz7pYxm3SnqDiryEBX6bOixMZADuPf399vkU4oBN6p7ZSlIwNKDPTeZJbxrsejYM+/moduXqa5O8Yu8eW5jvnl+g9GGgoU6/wIya7X660QKXvz3Ie6DssE7Pn59Z0GvBERpMt5sMcmBB1CX5EBl173u2AMeFxVzgCNguptmWNs62iO/OhtcUwAEhFQ0qPH3DZuc+XoLPnN7eA0LE9fvnwZd3d3m/ZDHu/u7rZe/+yWbfjOjsfHx00UETrk7u5u/Oc//xn//ve/N9EB7HnBHHDRl6oPEtpkIAmdKgX9jLH9HAAdLB5E54G4RiWDpILE6Vn5Ve1L5bnrkC6FFt0Dilz0gZGWC1QBaz/wxskZsXDt5fokT1CPK2HTsty4fiRS+V0mrYSRPaqHh4cdD/Tx8XHc3NxssX2uAytmJhR8X7fbOZyU9AzcRp2HyZCw0uogpeO7KpiMf/nyZWuHNUL//Dx83Y2tryrm/uDfaigRqQHpwHfama15HBOOqClcHdn5QZgbRpiJGIwQE0P2yCEDXH5aMmXCnKICTAj4W3U36/OqnZ1+YHmvogLVtdqnLMNwBlBnlmuQJt2Dxn2I92OANEBe7+7uNlEBXtoCKeZIi5PXJbK713MGZsoDjVUFjM5iw9Ux9JrODdAYu8sEDPaCeMLPJn418SoP2+3YrZ4+x21SQoD/E5npKutUrpbPqCIhbgw0Tz53TDLgoCSIzzN4XPAbcgOFypsGWQFiExsvK6FMJgPsIfOmrW5UYNZO9szHeJ2LLg/ee8Lt5//cNZxW5yS+YZS473ivwI8fP7YME/oQmxvdnRXcBvU0dTmG11vxSbdonQIRALoerPZF9UhhljFe8mQ9hXL0HAgub9DkclAXvTNGN9DpeHEbnJyxU1Tp0nRO5bOjk1CeOmbcn4+Pj1tzivcS6aOu2R58+fK/x3E/PDxsLSeCUGCZgPcL8FM3dWnrLWiTAe385NGjkaz8dDMds071WNSw7esBOYXOStGRgaXlaN2YBDkywH3k2pUIgQphZVj3VWCV15H+70QGTkWZJlSKYwwv96oINCqgSoKVAcs35sHLy8tW2Lt6bOkSEq0EmPfbqJxoFI8VFt8u62Q+Hae+Rf9gqQAKk5+CB4X49PS09dZB7hudg5hbrFt0KUb7Vz1TRwROSYZTf7M+VnlVXcd9ADIGGV6tVjvtVSLAhow9XiUiuhThyJwjdYkEoD0aJd1Hd88iBekajgzyNy8DMgnCcy8qMsB3vnAeIAN///33+M9//rN1R0EiAm+R2UVkwHWgho50HcmtlfKtGWO8Co5uDtQoQgVVco4JVt61C71y25IRZC+KmR6Hh50hcHVXIWcSUC1xJGLREYikXDqo2DnqcKroKhNVFuxh80YiDpOqMnh6etra1c75KXHQ2wzxX5r0Samx0nSkgKEklfNkcp/WhZ1sOyWbjPfl5eW4v78fP3782IoIwFDd3t5uFCXO82ZBboObq2wEnYfK+wxOKRowhp+f1TzVumM80X5eLkD/MlnFNbo0yWSRdR0TYZSvEQiVa9RFicBMz8/IZiJEHfAcmelBnVtoD+cFG+ee6YGPRleQhvUHomUcGeD9Mbosxv2wFHuRAR0UJgH82kZeK4WiYW8InYhzTihmDXNem4tgjLE94CmCwO3StmpfqIIECYBid6+ddIQntZWZqEY2nODiv0ownMLU/5aiy9CPpWRTm9WgpmsdmBBAEbBnA2XAZKBaKoDSVC/Kea3ahu6YaVqWYX05DY8p2uNINh+76x2ZVwN1cXGxdUum3rLFb9Hj/uL+QT103vKcUe9Y9c4pkQCGk90ZMeD5r+3+8uXLxltdrVbj/v5+ywGp3uCoUU71ht0yhFsq0ChXNwK8xIt/CyGYlYn2slPA+aDN7jkfajscsYI+4IcZ8X6BdBfBW9AmA8oamTEqGeB3YfNmIAw6du4+P7/eNgTloF6XGwQHd57PLQkpuagHh4JUgYLl4SmEug6sE8sBk0GFkdm58/J0QnJeFRFgg+Ta7QxnIhAVoTo1BdtRJjNvjPv54mL7zX7r9XoTEXCPr3YbCVl5cOhaN7SpwuRoRLddrIw4kqXrlZBntNPJpBID/tYoBBME1Jk9e6TBDm2QgG/fvm3IAJ7khrQc4k9ECfVgT5SJgOsjrecpybGTTT6uIgNYmsGygN4Fg+vX6/XOWxw1AoC0HN3laIN+qo2aFRGooqEqb1q3txCClBf6km0a2yr8xjxHRKsiVtq/GhnT22nd0wcPoYMXkwFWBGgU74jEazD5jVisZJ6enja3UeB2FvYIeEDYQDL7X0II+D9myy6tDpjuf4DiZJKD9o0xtkKZzIw1OqCTiicDt5nPJeOskQ8lBNw2XDMzIl1PE3mcOtSL0UmJc5xejxMx1bGDIWUjpMtFY+yOL5NI9V6T55SWjlh+ebxVCUF++TW+kCnUm5UUrkUdKyWkc5gJAv+vu84RGr25udnc+ofX6yI6oIpTPV9n/Dl/NmKJ1PC5JdGX90SS31Q3pwuQFhveXF/yxleWW30YFQN9zc+L4Efo8h4Nlp8OEXDjog6mc25m/cj9xOd0CcylQTkw/Bwd5OU2RAdwrc4nPs9lQ1b57he9zZgjhlUbu7K7aJmAn6LEjbm6uho3Nzdb78dGdICNJToOHgegHi83gDuLFQuu0zp2hcHl70iAPuecP7xTfIyxeVAKRwVwa0matN3wGNJqVMCRB/xm46/HwKGM+SmTAiV4iQjMvjk/gMdijLGlFLBUwMZ1jFdFpp5A+kYaVwdVzKps8M1enr6+d7VabdblWb40qsXXzzZ+qUHl27Gc/LGhgI5YrVYbg4LHurrbtJgwcVQl3aVRKVI1/qcSGaiIgKurOgm4FvLp5gH6//r6euO0pRcaqfFk54fvDmEiwDKTjJhr98ywMUnpGr5uukS4cR6yrRttUS/oaKf/U74aKeQ+dMss+7ZN0SYDUGo8gGg4lgb4c319vXl4CASU2Y8L0SmYYfFvIE3YxOar3xgsJQH4BgEA4QEZ4GUQvGGNN+bwZHKMdB9o2GqMXVLBxg//85KMKo1ZXSoBU+XezfOjkBToIcgAgHaztwMvWscLSoPBnraGTzuTPpFbJqK8tMXRPMxZJu5YO1aSjN3RLtwLIqGKWWUP/aVtQ1m68xzziR/gxFEW9K2Gnnmd2j2vgcOsKic6tvsq2ENCZZcND+DC5WNsv2MCfcPkGGnRJ+gf1V+OgCj54idnOkPW0QuzZVXuE76mSwiWjGdyVJlkYQlGHVt1QLSunA/mjvanbr6siNSMOFXYe88AGqdKhY0mjCGu46WFfYCOdYavYvOq+LUOujbG67xKBJTwIB366Pn5eeveUrfj1qGrcJTxJ8apjBbKWFk0L/lo/lqnThv0+BQIAStOJkjO2DtZ0TQOjgy4NMk7YIWgIWyXn7YB57itTAhYFnkXM0e9eL6C1OI6LgPrze62R13a4znLsocyGNxORFNgkPgWRH3ineahRg3hVt3EpmQAYN3hfn80nHyqZ+/mW9W/Tg8+Pz+Pm5ubrX7TvQNcnxSN0dsW0efdPkz7BNJ4c52UELixrJDSKiHA/yzvLhI7xthyBHnZgctkYuDIwGxZpeOwzLCYDLCiYQ+aowEuhM6hIZ6APHF1YqawY0UI+HhmyLAcwAqUb/Vg71+XCngZhO/D5YiA7hUA1CvivlBvykHXyFI7dV0ahID7UJUJ12eJQLExTNGBY3lXs4iAptNrXNp03Rh+LwHCiEkO1RBWRhNKKJFMrbPzJpkgMPHFufV6vUV0XR1UWToFnGRTlbfOASZEvCGTly50qYD73nm5TrlqtNPV9RQiA0k2k9EDXNQOfeLkdoyxFRVg4qV94MiA82j5NjjV/28Fk2k1uEoU9LrZEq2OuyMEyN+RgjHGls7FbZ2pLF4aVPlMcoryk55dQmQXLRMAvFOSDSeTADaC3DidoCog3AnaWR2wgeRBUY+Jw17sMfF6avXRXdioe1pjU7DyUu9cvXRn9DUvFQAIIa9f6d0byJejBFye9qsr1xn/mfB+NLpEIKVfSoqQh4YRHVy4kPOqFICGRF2b2JuryAHkFq9bHeP10cE8b7V+mMuIinEfpHYmRew8HyhghLYxb523peHWpHNwnEir6+tjyXJHTsd41QGoq2ubOld8Fwz+ZxJQbXzmPsZ1GCNdplFDNwNHNdVBYgeH2+6cm+RM8f+ubxhKajWdLh+wjPO8Z33s9LyL4iSSqvre2YZKLyQsJgMaGeANdc4ThpBUD1TRCeqUymzQ0OhEBPCtH0cElBDwxGBvivuBJyMrWf2NtqjCwnnOw3l/VftSJIDbqoRgKZSoMFybTgHJ0HeuS+ln7cP4VPLKRlENzsxrYWOoShJ5pzIBnRe8a5z/Z2WvBhVyzUpeoxrOyCtSJATl6Rxye3A4L9YXaoxUTk9JVjtIpHYWGRhjV66UEHDf6E74lE4/VX+neipY91WEgPvARQkYeh07QUwmZv3IeaclPBcd4PJTGwDMQSbDugRSOW/7oE0GqnA6G0xmZkwEsLOe37aE5w0og0RDO6wtKQQ1ALrG5tZOeQnARTl4AJMn3B0UFwZiwVfB5m+n0JU08DotEwAVLE7r2tYxmqoYXF8c07tC+bO2qHHkY8e8q35KbXUEl8vW/1yEBh4HPBv1Dseod0EjLT7qJXOb1+v1jqeodxgo8WcZqJY/Uv9UaVCeGrGUF77V8Hdl0Xlix0Ly/mYGTP9Df+B6vgMGJE83DfK1PD5pvNP48/eMILJ+4vYm2Wbj684roPdmelCRzmv0gKMDSgSY7ChpYF2NOa5tUlJwCPlcTAYuLvJjFFUpcOiIiYB7PKVTSimUqL/V8Dslq0SG103dRipeP0XbebJg/Rescr1+3fCkaz4VHCFA21Fnp/i1XSxUS42uMxCuv9UAdj6MYylUFxmYpdWoQKd/dXI6ZVz1SfLy1APAmEMe3TomrmPix0tx6uXr3QEa7eK54u6QUeNQGQGGm+PqQfJ1Ln01npVBnOHYBNZBZXE2p1IfalTK3Sfv9riow6YRIS1L0dHp3FauL5/DddV8dktkri4w2FzurC3uvI6JOnapbvj98vL6jBJ2AFP5PIaHkNNFby2EUsCxKkhUjPcBPD8/b93nm+6X1Mao0CxprHagRgVUuekGQfaEOLTPJIDX13jyMNlRcqNQw4pjjl6oYeE2zoR9CWZGXA2Suy7lcwpe1QzO6LtzOF/lA6hCSQbb5efIAKdVIlDND/bSmAToZi88BAwRJb6W5TJFS5J3CLgoQWprle6tJLOaL278ji2/qb5LSK6CxxVyhGWBtDzpvH43JimC4eqg16qMo11KCKqlMe2LtOcBaVPEVNPqcWqP6g8HbgPqx3fysKPpiB/6PzkQ+2DRQ4ccYCTZaxlj9+EJ6U1saWLroCSDuARsZPGtSwW63IG2KBt29zvzPbZKCLQtM6HDb1aGOgGqDYpp7U6JV2XEE7g+MxJxKpgpqCoSUOWZjDngCF+qhyN+SgTcb5UP/g/fGiFgIgCyrmk5vXr7M890RgT03CxknAiBEtUZZvWeEbNThxKEDklksufGBml1CdfNe+3fND7JwHJd8LsiBBw+5zmr+7Uccb24eH3mRyLqHUJfoUqPKADqrsu/bn9ANWZvxaLIgILZCT9IhcOR6n1waBJ5jOHDpWnXsaZfCiwRMCFwz+JG/dbr1yUApOF7sJEWzxhAdEAJDwumfiph5P9074K7RgmAbshkUuAMeocMpA+XA3SN63ujIgSJDHQIgSKRuiX14XyUALj/quUC/o83/YEIaMifI1643t3u1EG13ye1swOnL1L/uTTOaCbPcGnd3gvd+cM6pUNYAe4DPjfG7kOxdL6r8XZlpz6syK9CCQHSOSdpjO29bpwH8tbl11SnRF4qIF8nTy6ix/pGyRQ7d7qR8FBYFBlgj3oMv7mNBUZDkqxQ3NKAiwbo2tZSuI11yEtv/1NPm9sBgPTo9egPkAFdJnBlLDE6adMMgxV1IgS8LJPYpjNmM4baUejHIgPJ6OvvJeOh+S9VEFUdZ9drmSobOi+RFhE8npdMCJA/HjfMXle1pLekr1g/4PcsKqCGxv3X7dNO+pnxOib2mUNLr2F50nGq5v2+87tDEgCOEMxkwd2Giv/5LqtU70q3OaKp/+kc1TZoe7QtfNcX73dj0npInbp4A6E+3nSMXSM0xqs3gXO4W8ApkzF2owGVt6zXdOA2oOA3CxGTFcBFMTiCwBOH75bQZRBOD0aKT1JA+ls3eGkoSfudFbiG+dLkriYnj4vL4zOhIgLVBNc8+NuNX0WUZjKs13I56smxLOGbdydDkUDB8MtqlExo1MtFB5bCEQEll65/qr6vjHunv12EQL9PAVrPWVrum9R/M+g4dZ2G1Icz7zu1RdOpA8oGlZ0u/h7DPxXTIcnlTC+68wwlBGibswNIo/PTyXyS06Wktk0G8BIetxkDBSYioMZ0X8wMpdbJ7dh0eepg6zq/rplWkQT3qk7UgQeWJ6yy8KpNWm8ofIANv673JmXcUcqOCMyURDX5PxKqHLXvu0SAjztGvKPsOnnNwP3OynGM7Yei6P8vL/4Z9S8v/9vVrETDyRKQ9ILWkWVvyW3EzhhW83ofr4kV9Kmg6tOUtpLRivjO9CS+k4GsSFTVr7N5koiFIx3qZWub0l4tlj9Hdpxe7I4LX8fL6shDx0HnnOuPDiFcWs82Gbi5udmpxMyYOGa070Sr8mVjrHV0BiDVHxGMMcaOgdW665IJgLAr3zLJ9QAZ4Cc68j3TM2OqAqIhPSUCiMg4ElD162ycOkTCTeBjIClA9R5mREDPv0d7Zl4Il81p9SFS+uhTtwSHb5ZjyAkrVpTFS31LIgQsf0kWnYLWuupxRUC6XlFFPk6JFDiwQ8BYQiD4mk55s9/OYHcwIwouL40KJCKi13DelR5jmU316TgFfHx5ebkVpcOyM47dI4t1qTrNOycHWocKi8iAhiM5AtApEI12BpKZfDeEw+dSR/Bvx3y5HfzsAP6fw6OcF7PNMV4jIu6VnUin6z74DbhQktZFFSILMStyt96H3/ytgp0mVUUWukbhGHDejyMGY+w+xVGNLuexb120TvvmgTrxGiKD5RIyBxLKnokCc0yfHwKFNSMEUHhq/N0x8kW5/K3t5fmb5jPy02uSvOqypPOuT4UUzNqiaZO8VtGBTvS00veu37QPK8Ltxr7qfzasnB5jqv+PsX2nG8tyJbOunYmEpvQoW6+D48jPGBhj+6FIjpxU/fIhkQE0iJ+qxJsc2KOuKpoIQDX4M0FMja423jERwC2FfKskEx7UTz1LpIWxdi/oUHbHeTCzdbtMXZ25T1y0Q/ulIljoIzYsSghmCrESuGNFBLh8JQTu2G02VUPRLW/2n37vmyfq5cYW48l7BuB9jLH7KNoxthWle7AQy7duCE7giBXqxdeoodF2a98746XjhnI7/ed0D8/rY8svoEYTn6QzVS/ouW40IOmAfUjSTL+7c85BYwKvxp/bpY8Chkykl1Xx78reJLLliI2ru6bh+qm9wtyZbcDnumm9Olj0bgKtMHYhdwgAYxYRYONVCVyHeWqHuF2oyMu1gxmk5qN5rdevtyCCCLjnDSThSkyT6+IUf2oTzvPOWVbC7GmoYnGThL8dZl70sZRq8sYrksCTNnlkmg5pO7KYrmEDxHknLw//JdlIL6wC0rPp9bHDY7wSBShSvU0YULKq30oEKoPDcH3B5HUJ0lxTR2VGoo+NmVeN84lMpTnpxieRuH2RjCj/TkQAddTxAeHlZVgXPdXogO6xmpEBV/80N7nspF85Mql6ip3MWf2Srutg8QZCVVDwNFghJbiIAF87Rl7bxLFTlPiv6gDduKdr/s674aiAPi9APxgU92S3zhMXXV+5Y7Rb+0t3mzJxQ/gJbdTlHqTjc12GzOOSxsa146Mxm6jKxtEOlVdcN2uLKuJZfziPKXkfXA8ta4zdx6xq25gQqOHmqIAjvI4QVB6WejKJCCT5Un3DBABt7Bhrt5SA63mcdT6lJZhjoeqv2fzEcQWVh2ocl8KRXgdHcFJ6Ny4cAUNkjK9Pd1s5I+tI6myuVu3gc1p3vm3dkQGeb9U47Ktn22SAlYJ6lLxswGGarsJE/koCdIJWxsYxIvfNRMB1OCtUbhuH+fVaVhxQlIkQzMI8S41OUpC4jlkxxsiRAD6Pczo5ZgrRjY1jrR+NZEhZjqE0quuS7GleLo/OWC6BKxPjw2uk6R3q7IkgOqBLBEwqGcmz4v1DLN/8PSOdnN71M85rOHVp3/Kc5bniCME+hu+9UZEnh64e0fyXOgYoq/N/Gt9UP1ffyvnjb20Xy+/M205lV/pbSXFnrFAvZ5sceanyZpvXld9FDx3i9z9rJfm5yvxMAa4YMPP+1RtTw+Y6QCMD1U5x/e0YsAqMC4cmQsEfJQKsNGcRAtf+Svi1/QwXIeC8VRBVmLukzLUhKfePhmP3Ks+ujiyvaXKlCfmWts8mcSqTnzLIG6hgRNWbxpjyQ07c80Q0PSsoJdE8f1L4FW2olLBGJVxEgPe4uP7QaxlpqZJJ9Czi+ZFwpEn/d8dVfkpYk/F347cvZkZqSf6O7KK+jgxDbtXApshARbDSfyrf2ib0tZaptonbonOq20dd2V38OGI2SLwuA3DjNcTGQpd2P2Pi4Zg3P7HBQj7a2LQUgDTutZzIC3njmEMzqvQAN2h8nSMCnTBPMiJKDDpRD6TnSc1lcJ9jgrAS5XKd4nD1PCVwHXVi8iTEbyWnY+Q7XN6qFLUumucShc4fZyiRF0eI2PDh/MXF633QSZ7UQOiaphLeStHODByDCau2VaGbCzuEgMlwSn8sJIKu41tdr/rKXTcbpyUGsvPbtXF2juvvvGhHYjVNhwQ4uez2dfWtebCT5XSpkmxXx7fq4MVvLWSjA2GsvPDHx8cxxvY6JTrCEQU+p4RAvXmtG39zmPPy8nJnZzS3B/k5IVFPn8OcXB7noff5JyLgHrqi7QGY0KiC5raqN+c8/zF2b7/i/90O3KQ0FNofri3Hgk4+NogwKm53ukKjCjPFkPKaKQyXt1NK/M0K0EUDdFc1e8BJ5ljuFCzLLPM4x9+dyIDroxSh4P8ZSmS5HXxO25p00TEJwUx20txMmBm1NC7uvKtrlyTM0mtdZ+c1csdz20FJaiKtrrxZnbVds3mtJCARJK4fflfkaYlcjPHGyAAMLBtaGF9OB0IwxvbDfJQQoAEautMQN85xnXAtT2T+4M2E/K2GEvkyIXDePa5x4AFjJagKMd1mVfU5968734kOQLkpAXAeUVUnbbNTWo4YHAPVWPEHxiLtHXB90iUEVb2S4pnlzZPeeb+OLKhxq+4E4vFLMoV6pLCrzidnWPQ4QeuubdPzaIMjeU5/OCKlx8dGZYz3yUudN+ccdWXckcoOaZil75TL9WeZSJED/SRve5/5vaQNnH8lY0vqta+s7hUZYIM0xqux/vLly9Zb0HhHMh7og4Hie/nV+I+xPTHd5rYU7sN5fZcC3kzIrx7WyAAbbPXoHx8fy/C+CpwSApzX748iAmrQ1Ntb4mFUQpkE8VSU6Ri7TJs9fWdcxpgTgjQ5U35aj0pGXL5ar1n7mPSpUdVol44lk/9UHht890lKeNZGlsmZEXG/lQSp4UD7U6TglDcRjpFJ1Gy+af+wbnZ5LyFts/K0nl3j2SGL3BbnaTsCWsml9kcHS3RdJ/+OTmA7ti8Wk4Exdm/TW6/XW8aXvW988FIUGFdWwGkNWxvJE7qqF0cDQARATDgqoA9UQRm8+Y+jA6zctPx9jJ0SgWRQtS+6REBDwgodPywNzDyhDmk4JeOf6sIKiskA/1fl6Say9ss+jP8tXkmnzDH8LWR6Tsk5n1PZYuLLty12wq9dIpXaleZLarMafkeQ9P9jynNF+JJX7foq6U3nQafrKqOzlIB0HY9unu68q3MiA3zOpe+UreSVz8/yqs65ujiSXBHkGRYvEzDUY7i42N7JrJ4sIgS4B5SJQbolkQkCRwj4HOfP+wPY+GukQic+FBY/RhjRACYHSOuEDeFlVaK6Fqn9x+1kuH0CavDTsV6L/kIeSagQ5cE9r/yf5p8mg/bLKRGDt2CmLCuvqTMxZ0ppSf1YRnWcXDo26lou5GKMV7nS9BoxWxoNSMqwKztdQoC6Abx8oIRgyVLZR6DydmfHDiofjhCkPJI8zTCTyaXEt1NXRxQcIeC0HfnUdih5dUjEpTqejWlnjDpYRAY45AikTTYsXBcXF+Ph4WHLg+WdyxqqdeVWSwVKPng5AE9O5IiAhkg5pF/dDuiiAlx+JRCJFMwUjpv8auRx7MhCSq/gvuX7zpEXHzvl7uqblNdHY+mkWIJk7FIdOso2kQKXp17XUUiztqg8OoPJdWJiUJGA1KZ9yI7qlw7RcnnpfgL+fUpEgNEhpQlL5+vMCKZ6zeqgROCQ87PT/i4ZqPLbd75VhGAfMoA8XZp3iQzwhjfehAaPm9klGx31Jjk6wGSAH1jC0HW7pKx4kyBHA1arVblpkAdGNwy6ZwO4ycQkiT1y55kzeYLi5LTcJuflO4XIRECXcLh8vt5NehAifVASR3F0DLRPXHTiFCIDlSez1LPBt07SynBzHXQMK2WTFLy7Tj0UHivn+SJfNeYzuDRdj6XyihSHkptKmWq/qLNzKnB94c4lGZwZNP3N53V+d4yfyqfLw6Wr8uucT/XWNPiujO9Mblx5b5HZbvkzXeDGs4M2GUDIXN9/zuF33WCEc6iohvFBCHit2jV2jN37LBkod7VabcgASACTAdQZefCb2zhv/nSiAtUE4YHScL2e0zwTqdBjJgW8T4IJgnpRWgaTAbxPQR+lzLeM8TWJnLnjYyB5N9rHaqRdPlV4PJHF94CTN1XkqA+fS2vjHYX8Fg9I67Ukj0OhMk7ujgOX9hRReZp6rL95XPCZjXM3ApDG2snEDI5EV2ldGkfe3bFLO6tPhdRfVd9U9enWZel8W0QGcIugGhUNyasnC8Ok3itHCqpwOSth3pDEHjHKByEACbi+vh6Xl5db71ZYr9db6/9cjt4a5R4S5LzqChwteXnZfpASL5ewEDsCwGVyviBlTLTQfpxDOh4j3TsBgoQ3LoIUMDngKA5HNrgPkKdu1DwWGWC4yIojBgpWGEoAdL28UhRVGQkzRcD5JUKgSz4J1TycGQgnv65enD5FOPT3W0lB8pi5jGoT4amB+1eN2hLD5jxb5+nqea2H5ln91rJn49I5l/Kfne8a5/eCcyJmRKCKAjCWzpk2GXh4eLAVd4ZYnz3ApIEryeQAHniCel8suGwAmQQgSsBlq2fL6+O6C9rthHYhRTzyMnkW/Ft37esDlRwDriaE9iX6gKMkuoeC765g4vby8rL1tsXHx8fx8PCwQwr4CYs8Nlxfzl/ffvfRcAYoEYHkNbNsQA6UJOqEPgQhUGXdbSNf6wxxhbQPSNMwdK3dyadrV+qnWR0TCXLpnIHEtfrbtfuUlg0q0uqIAY6BmWHmYyUc1VimPDvpuP5VvQ6BLkE6BmblJrJSzaMlWBQZYCUI5aib9lyInpcPsPmIiYGSBZzXRuvEZs84kYDVarVliBLpYGOfFD1HJ3jDYAeoqyobEAL23gDeqJWUnpKhq6urcX19Pa6vr8dqtdoc4zwTBTXSMHoPDw9b0QEQgvv7+51nLrjlk+pujmNgH8PDEy/dKlctEczkQscwQTfrdequ7WCylwgrzqGstO+H/9NzkF+OLugemVS3ql1VGx0J0v8qw+gM6ikZf8DJQMcop4hI6rd9yFnl3c/6vRq/pPP2MXyHNvCOGHUJ7JK6dNIeijAtemshwsR8z/0mo/9f6a9Wq/H4+DhWq9XmvdK8eY+FkzcGOvZZhUCQhkPjGgnQ8DSHtXk/AO8L0GUBJgCz/knn9Fr15lVxAo44OA9bCcH19fW4ubkZ19fX4/b2dkMI+KPjwhsaQQRACh4eHjYfEAT3eGWui4tIHHvPQCfCkq7V6JAjiUvK5fLfOpk1upHq0lGozltOZervJMtLIiEu/6UeKf/nCIFLWy3Hzcp6T6R6a/+wNz8jQZp/hWr8K5LhPO/kjaeoVSWzVSRohiVGuSIpzlZ1Zb0rTxXROjT2eoXxGNuh9DHGZtc5CMDj4+MmSgBPVL1QKFXtVLfhTIWf0+omRhxzHqgrb4qDYeM1cWfglgwGR0C479TrR9pZ3hyF4DzX6/XG09boDAjB7e3tuL29HTc3N5uPIwQuOqD9AzJwf3+/tVyATYVM8FyECOeOgTSZ029On0iA2yfA+S2NGnXSJ3k5ZBh1ll8ymolAOEW5Tx2qPDAOri4atUnjpFGTQ3lbh4aTZXamOtdUeauxrebOTH8l46+GP0UKtB46LkuN5L4GuOtEVOdmhIjLXTqmXQI/wyIywOvbY3hCAFIAj/D6+no8PT1tbWhLHj8rDrcDntO4jYjpOQJjjK1d8url8oOGXCh437BhElr2orhdaeCZEGh0wG0cRGSAyQCTAiUD7k4LJQRMBrBcwOQJwgsywHsXjk0GxtgvlKZ3DqTjQzP3jsfu/nfzpcrzLfXR8zxvdbnAKXGnA1x+qTxVljh2RECPNQ+tB+d3CqgIzRi7nvVb6+4M79Lr3XH6b2lZs7RLogNLkYz/jKx28k1EoEO6UgQl1clhERnQ3edjvO5AB0AGHh4extXV1dZ96+5uA+TNZSBf98KYRASYPKhnB+PmDBtIAULivGwAw+jg6pfAilGXAqroAwuDWyLQ6IhGBmD8NUKwWq0237qhEOU6QgAicH9/vxNJgQDyRk5HCI4BN8mc0eB+ZiKg6fR8t/yqTsn7GaNnmBwJcKTgEJiRg0QIxqg9vaUKzHmJ7rs7ZlXU5VjEIBFPJyPvQWCS4a30VTru9H+KFqSogJtXh8BM/joym/JIdZxFQN6boLa189XV1UZROlKAcDGOscfg6elpEx3gzWTO80+3vLGxV2+DDbYyKn5WOq+DMyFgIsBkANchX4YTWF3fV0XcGURngLQczT9FBfiTlgr4DhB8uG0w9BxNARnQOwtAjpgM6IbF1Wo17YP3QMWa3bi4jW77EoFUjvMA3H+uLcloOU8Fvw+NTp7Ou6mum9V5ZoD4d2VEXf6prseODnD99fORdUhRHZxzx/vkvzStM5rviRQZqNIBHR2QzrnrD429IgMu1A/jwQ1QQsAhaQ7pV94+/w/Pk3fy8+2L3GnwbNfr9dYeAV4eYCLgjFs16SoD4zbKOcFRIuO+9RoG79hnA6xRAUcENHyPc/qURn5PA4gAiAH3F+rDBMOVcyx0jYtL81Zll8qdGf0lcGTg0JEBt3kV58fYfZiWLoOl6Ii2Q487SrGK4HQM6CkSAUDbwM4Qp2EsiRR0PNpEolL56Vyn/BkSIajySYZ4di7VUfX5EvJdkeQqMvDeOJh2ZkLAwD348JyZEKjB13vfmTB0iALXQ5cHqgfpuKgAG2qFU34KJzyXl5dbt6lx383IB+fBZCotDbgPjLM+f0BvP9S3OaIPb25uLBngsVYywBsJj0UGKuWmhiJFDWbjUinLSunMPGb3vyot/W+mjJYYu4qo6IY7t1EWMlvNlW552mfcHv1eQgY6BOBYxKAiAtXdRfsa4srb5Tp1854Zt2REO8QxpZ2lSXLUuXZm9Ku6pPISEXiLzC2JtgCL3k2g99+jUDVmbEj5Fj4sNWBfgTP4SgjcMS8jcGSA68O3CnJkwD1iV19P7Nb0x3gdNN4vwJPSQfcIMFwUAPnz9Vw+95MSAd04iKiAPluAl2uYFIAw8DIO+hKbQLk89BtHaTiNewjVMZCMBxQr3w7HcAYkGfuOd8VlzwiBKgjXJofKEx9jv2dkjLH7iGy3fwXn9fbCjoFxbRhjd/7NFHlFBJJy5X0ivG8m1eMj4YgAvpd6t4o0LpUMOblJeozrU8nzEq86taFzbZIdR+aX1HMm391xSuSpqvshsegJhLrzPk0wvVeewaRAJyCiCBBCfYKhRgJmSxZMRNwjdWHkHBFIiiYJi5u0bGgqcJmd9Lo8wPsF+MNLB3rfvyMD7NVzv4LAcb/jzhKQASYojgikEPNHgScRf6un5RTdLCrQRZKft3o9S69hQlBdm/JRYjCrA0cHOvXTfGbKz6VxREAJoVO2ydAeiwygbBcZ6MjmrP+cIesa1Qod2Xbp90Gn7m6+VZ54l9xXhOojZaaqexeLyIALqfMSAHuIHD6GAON5/NhMCA8b3yAYjp0rMcAxfnOnYNK46IB7EyHfSrgEGhWolE0nrwSNCFxcXGwZdjb8bgc/G2TOR58UqJEDNZKqfDB2Y7zuKdGlgVMlAjjmcWeZ0jQuT/zPxy6NQpVPV3EuNaKuTCBFnxx4vjkioNGvWXQgtTMRcG3XEi+pExkYY3cDcKduH4lEbpIHu7Sf+Fo9nsnnociypk8GzkUuEiFIc8wRgH3qWP23NP+K0FZpDqVb22Tg/v5+y7DyUsEYY0tZvLy8jKurq53/1WgnZo70/BIfflsis/cx/HPS1+v11lv2EhFwEQ533O3wFGpk0sHg3xUZYUPFhp2fuKib9dTg64ejA/reAg7poz0gcKgnP9pZly3S445PBUoExtjuY63zElKQ0szqM0vX9ZKXwhnCjsLTO37cBkJGtXegIlWp/H0Ue2UgO5GDj4bWN0UJEiFYIjPJy3X16WBGSJden/6r6l0Rde3b1FdvjVq4vGcGfgkORQgWv5vAPaEPk5yfiOeUp67zs6FQbwPQ9Vx+6BGXzYOOiYIPkxe+y4BvHayWBxKU4HA9K+wzodQz4ygB3r+gxl+NMUcYlBQ48oDrQMqYPCA/HnN98iDv7TgmEXATUaMFahA7E9R597N67Fv/ffLopq2IgEYCnNHhtG6nu4sU8LVKBLperRrrJaTTpUnRgVMgsdwvrFuraFQitg4zD3spKsPMSN5/Z8z3qavKU+d3lZf7XlI+Q3VUJ10H3b5pkwFdV9fJrgzVNYY9WzZsjhg48ARAGudNKyFgEuBu5Ut5cL0VThAqRcmRD42CJDjFpIRA38WgxpyNvkYXXDRAN3Cu1+utJSBdruDzvIFQ93Mw+ToGWJGiPgDvX1EFypgRgqrs2TGXkby9Wd77pIOMdRSaRgL4Gq2v/sfnkU8iBTNPP5EA/d+RPv52ZRxKAR8SqvccIUj6R89329GVqxkZnunypdfhvyUGuPLCOc8lxH4JOgQgkTsda3etluW+O9iLDHDBLkTvKoxKsbfIt7B11pWTd6fCDgPP32qM9Txfm6B15W/uD7epkb/1bgxtm4L7WMkT/1YSoMqZDblGEpQUOA+Dlya4Xly+y2PWr++NZGCqY21/Ry5mdVh6TarPvmUyZiSA/1/i8XT3CyDtGLukYIy8yavTxg6h0DL4Oj1G2mPAOVjQX24TKMZLz6c7pPatU1XPDpYa8UQ0Z3l15ntXXrr1rq6tjHqHGFR1egsRGGPhcwag9HWCd0LjSMtGZQzvYYyxu4dAUbEl9f6d4Qc4rfMcFC6CwQaW26nlaBlMShI4H81fSUCKAmh6DfmnqIL2w8XF67KA/s8bEXl80fZDs+190ZmQWlencPX/mbHexwPqGsAlfbuEBCzNe1ZukgMlBSg3EYFZndRzrJS9GtuEY5JZlI/6J0Kg7dbrq7zdNSndrI4OzjmapUvnO7LQIQGaf0cWNE2HsCYkR7RyUA9BkBIWPYEQk9mtk3cqoV6zrkeykOM3OjntaEc6YJ+1f06fPERVLqi7euPqVTOYEGh0wG22UiOsJKpaClA4AqGRASYDXC8mAchLhVJJiU6qYytT5+lVnkA1sVPkwM2BJUasKnuJZ5yQDL2ed3m7CKBbHuxCyaTz1PR3ty+VAPDvLrok4SOgssqEgD+AjiuucdEB7Vcta4lx1Ov3IcD8/77yPvOwq3K77a7KTvVOTogjAkvawDLOtinZgoTF7yZwcEbIeRxaaafw+DZEp8Cd4VQkrzt5JW7TU9VOZ3zZY071QZ30lsYEHVjUgb1vDvlr3ZRQ8P+ct7ZLlaeO1ZcvX3YmjesTHk/0wylhpgg7qBTfEpY+M3T7MP1OeUuXAxTqsS65zh1rHZ3XWvVPIgBJ36T56nTPsTGLDnDbASb2Y9TLBc6QV46XntMx0DyBmXxXpDRhiTGdEUltU+onzZfT7zuXnMxV8wPfjgS8GxmYPUFO17VdZdWoMdho8IYu/B4js1sua9ZxyJfz13ROAaU8NdKhUALghLSKCrDBrx4YxOcrIdG6ufq6ickRCTcBHBtVBXQshdox8B1FWOXPeeDcEjLA6d6qGBPSbvmlSgPt1Dt9UAbSdObtoWXCEQAe15nn6s4vJTrvARcdYD3GhEBJAeYnkDZMa//gWvzfqSOu0WMl3Zw3w9kO/U/rkwhLGrek42ZtcGVoG5N8pf7jMesQAacP+OP2sXVld1FkICEpLP1Wo6QVrTz+GUPtKhhXt4oYVNfMvJX1evvlTZ2ogEYb8Ds9KVA/6a4AgDdQ8jMX8EkhY9TN1VkFEW2v+uaU0J24MzhW3iUEM1lKaT8KbHBU2aVNw3rMv/V8mvtLlJnLV/OpDF4nn2NDowPuThhHSvVTGckZIZ45XCkykOS2ItAzopoM9lIiz78rEpDqUMkXp0vG37VpVraSAI30LsWiPQMd45eMyCwc2VWaVflaF6TTaAC+8dTDalczt2FGAjQkDsPLj+3luqnHpERAnw7o3kPArwpWQpD2ZOAhTC60//LyslmGqPo5KZs0FqfgXc1QeYuMpNxcn1T7OBTqtS8hy11wdADjPRtrLZ9Dz3qNRgT0N39rvl3MlKgieWqVvKoxPAXZddEB9C/ruS4hQB5VGUvrh/JcZGDmTfN/XTKgZR8Cs/Z3jPQ+kQFO13VoVcc4fXPwyAArKjWI7PnqNTMPyXW8pmfPnderHdggpx3MnKeuf1eeL9ffKcGLi4ute+k5MpCiArq8cnFxsfXsgMvLy53XEruXEbkXEukGIuzDwAOkWJmgfnhREV/v1qJcH2h/6OcQxuwtSGy9YvMOiQjMmHoimbiev7ks9gBVWXT6VOtbEYIKyKOzZwffMyJQldUdCz7uks5KFly+pwSWVSUCY+wu7QGJuFf9kMpXOKKVyIGmqRyOmZORsC+hmaEy6qnNnKaKDOxDBFTfJNvcwaJbC6tdimkizVCxefbkVfgTOF2VJ9qj4bVK0bk7BZgEcD3HeA3Ju4cdJYKCPQL60h8QgK9fv45v376Nr1+/bh3jP44ScESGiYm+yRGvJMZbCzW6oEsO+tAo3aSEtuvnmEq1oxxmSrDKmyelew9ERQoqz5zJo3u9tsqbu56/2aArIeC6OMy8aaBaNnCKKq1nO5KWFCiOK2XbQaXsTwGuP1RvqZfNqPS3+93V6ZXXr+c1TQVHkmde98wod5yZGVKZ2l/8e/Zx+aZ6OxLgIsGzPBmLnzPASo07wU1AFdik7Fw5SK+hL6c4uRx+XLFbGtBB4iWCZNi4XnwNrsN/ukmKFbkzhpwfjKwuC3BE4Nu3bxvj//379w0Z4POIELARQj05asFlohx88FtfdYxv9Cfqi7FSwX95edl6K+SxFOqMCOgk7igonYx6q6bb9OkiLfiNfLVeureD37ehMoYoV2fvjRKArte/DyrPT6HRjw7BUT3TqY8zVg6nQgIU3T5yhn+Jt31IQtWFq++Sa7uEo0v+k7y5vBL5eQ8ioHqIfy+dE2OMcbE+VWk/44wzzjjjjDM+BL1HB55xxhlnnHHGGb8szmTgjDPOOOOMM35znMnAGWecccYZZ/zmOJOBM84444wzzvjNcSYDZ5xxxhlnnPGb40wGzjjjjDPOOOM3x5kMnHHGGWecccZvjjMZOOOMM84444zfHGcycMYZZ5xxxhm/Of4/HckHaI4QL6MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxHUlEQVR4nO1923YbOc8s5ZPiJHP4/vd/v30/iWNbtuV9Mas6pVIBBFuSpUwaa2mpD2wSJEGgAJLdq/f39/e20EILLbTQQgv9tnR1bgYWWmihhRZaaKHz0gIGFlpooYUWWug3pwUMLLTQQgsttNBvTgsYWGihhRZaaKHfnBYwsNBCCy200EK/OS1gYKGFFlpooYV+c1rAwEILLbTQQgv95rSAgYUWWmihhRb6zemmmnC1Wp2Sj5PQarVqV1dX07/74R7SgyrvYkL61Wq11z56j8+1rNVqtVOenkfluvyUD+TD/6PvmYr6nvNx+brz//f//t9Q2cegu7u7iT9Xl6jt3LWovUf6JMvf5eXkR+9rWicH+ttut/Y6P5PViX88lvQefhUetFzHy8ixq1t0LSob/D8/P+/dOzVdXV0Nj1dHo7qtl4c71+tuTLj7Tm6dbq2Mud55JiN8XP3p81EZEV+OjtU/fP3t7a37fBkM/ErkFBV+19fXe0AgUp7878rQ8vSeU4ju2YgyQdLnHKDRfLbb7V6+TuH3CM9kIEYN72q1mso/F40AgREQUAEEI3w5A9/jKfqB1Phut9t2dXUV9okDTq48Bdt6Xflg4w8eVMGqXKHMyFBHY9TVwckll+nyO/dLWqP2AFV0VOV6lFcPsOr5CBioyvCoDq3UsQcGWmt7YJXHi/aL04sOhGQ0ImtZHeeAv/8kGHDkDL4K3SGDPvI6tTz3r/lo+iq5fJ2Cc8Lq8sqUTA8QjA6CS6KeEs0M9VxA4NL18p9DFTl3xrAKpHScOdAKhZqBkYwfx0dPzqtlXBoQqPDgAM8pyplLFaAQAYDWdh2dnnxF10AVPe3SzjXuI3wdk7LoRET/OTBQRZeZ8DmKjGekrDV/eEq9cuYg/ixvVpSsfCsDYgRd8iDpeQQfTYz0q22v10aAQM97GTVQ7tlePSJ5QP9EBhTPqFGtjCGXBgSFrtEA8ASvS8t2XvuIkXftpEo+ShM9fwmUGbVRnlkmKjQ6hubw1ZOx0bIi5yXKB+mcvqyMGzeGLp2GwMCcCp0CbVYUYWSMKyAgUzgOIUYAQc+dclTSMFRUBufRAxla7pxwPbdHdX7MlX8OcsZlDkVAwCmorE+4X6vl6TU+z5TliOHUfFXWRwCAjjvlB4Yf7cAgAdQL28/14p3SPgRw/E6U6bpsHLhnMoMfTTlFeVapEiHl69CXlYiWys0pZegUOvXkCwij5441N5Kly4TNKe1s7nE0ZB7xzMqR02XtEQGBaHAo0GB0+/7+vuOlRTzqPTfPpvcyuhRAkPWRQ/IVL1Kf0fOoj3uK0v1nz+K6AwYon3/Mk7sWUQQ6MpDg0qIcBgZcvo5JF03QZ7S+x6BDAOSp6Jj8HKJfs3QZmO0BAD6vRlUz/e3uu/SRrmWwqscZPxX9zuWeU5eebZrAKSpG5SPP8zMVj8WRE5RIeTovQvlgPkeUScVzd4seGQA4cKDhLgYFVT7mAIIRIT8VOT6rqD1D+trv2s+HhrQrCrCiHKG08MM55JqPR8gBjohYoasSVXDA/EdjcBQMjIAdR79zlCADrVma6Jk5QCCStQoInNPvzGsWGRiJElR4iOzaR9AQGBhhrpp21MN0FAlZRcBGKAMEKN+FoXoDR411ZEDUOIxMEyDP3poBLrcCCPQ4ym/EKJ6C3KCM+rByn6litN19lQ3nUWWKMFOuqlS0XGdkexSBage+W2s7403B6mr173an6+vr9vb2lgL2UaOf3f8VyTkdI5Sl/yhjk8lNpLfd1K6jakTAjYNo/KmD2do+COAoAe/UcjpEy+jx7tLOpWo+J1szUE07gihHylbh0ncLqICNGqtKZMB5MgiJZnVygIDT9yIDSlym5qvGvtcOen9E+Z5LKSu/kcHntAoEeoM4SzdXiSs5UOkMscqgyp/K5WjZzvA7/uaQAyouCtADpT3vcPT/nHRJvLSWRwUi2eBrFeNf0dM9mRjpUx0zkU7nxa8MBPQ685qN/2PphmPQ2XcT9DpG00QKJ1KMvTBTxkeUbrQDR5TuHBp9aRLzH60fYKHW6xnSzuijvBBHLkLhgI/r2yxdVl6kULLjnucUPe9AAP4VCESGtjrOsjprGpYjBqwjY6fyTBUcZNcuFRBEQLNCxwagc/MYAQI9GXMgoAcQM73FaXuOGM6djGjUIHJCMh7OSScDA64xnUCPCltvUGQCFwldZgDUKLqynZJWfnrkjHKvnnguMhKoD+cd5enWFUTzYRHidcJeGeDnIidLvWvOOPfydwa7969ljTzD5atMOzDkjE1UXzeGojbZbrft+vp6h59DqMc7//fS/0p0CL/RWD0l9QBt78eUORxVEOD++XnXRsyLswsYBxodqKwf4Hyi83PQycBAZjQPySNKp8qqijidAY06KkOMTuk7Rc7HzqO/vr6eylDBcukhhJkw4Z4Kqwp/ZfFiValeovFvLQaTmSev6UC9OkZGugcQKs+4f/es66OekcyAQKVdXDm9KNMhFMliLzJwaP6/CkVyOPLcnHKqgDLaOuj0jDPuFY/f/ev9iDRiwPWEzmSdPgIIuPxIL30UnX2a4JiUCVymxBwgwDGniYxEDwmr4LfWf1GQ8uLKGqEIEETlRFQJoY4YzEulXp9zmipFILFn1J0yd/+ZwuFyHfCJIgMZ/1ndFQTollq+72S8F22qeFsZRQYh8zJ/JzrWuHXyN/IOgagfKnrIUZS+JzsuWsAAANdchCCKPlTKzkD9semXBwOR91JVWlGereWILeIj44tXVWt6nk+NVvzrYMB9CKDyH1GEXlWAeYVsRRh/FaUZRQHUII4a+15+SlX5rBhqTsv/UbmcbxTpcYAlysvxy+Nn9BXEGT+O70ihZsa996/H56Y58vjRZY06Rj0w3AMDfHxIX0Wy48C2q6fjwy0kdI4mp4loBOjOpYsFAyMGODK62VsHtZyeEcgUjuMp4q+1/ZX/GubX+Xs2xm9vbztIFPlGUwoVUmM/VxlyHartdS7KAEFr3iPtURUEjPDYK6/n4Vaedx625lkBNe4Z5UO/ngbZy2SwyrfLV6/pcRUIXIIcfxQQGCkrMo6RHuTzHn1E34xElhQQ4FprPxcNqi5m3h3PGUBQPk+tTy8SDMxFpL2fS+vKc52ur0rtlV95x0H2ngDnQeE8e3Mg8uA0c4BBJNDZv0v/kQpslHRAHip3ONd7Ln2FLz3ma8pz5hU7Pvl6xscIwJkLoCt5Zfn2yphjRC7B+IM+egzNLc/p2woIcHKixxmwOxZpmZnxx7GOP6eznaxmMhvd+2UiA1WkN4o49Xm+x0b16mr388QuMsDPcDl6XlVizE8PhLj6aHhfiRen9JQYEKnOzaKciH8YfgUB6q1VB+M5hHguRYO88lzPsB5LgTsFxfmPeFguvZPzXt+O1G3E+LoIQcR3pTyu25wowe9Io+MA/3rsHCKlCuiN7meGNMrHeenquEQee6bX8Xt/f99z8JA3dLmCjMjW6LUM9B+LDgYDc4RnNF2kHFTwGBSoMFbJdUqV10ho1EDjOOJvFIzwM/wCjKzu51B4l6Rko3Zx10eNfMUrcoqF71X6vpLO8a9G10WBsrwqyr5nWJ1jELW9U9h67PLIIlbRtUuS0Y+mQwBspPOcnFcBYnQ/A4tzInwRWOA8ndPmAENru98ywPP6Ya7q2P1IOkpk4BAkX3nGKQ0neLqlUI2telaRouZ6ZYjNeWnKD993XvsoscC6dQIMCKp5aIRA6x71r0PRvwpFSmOOMumVk1GlLDWG1WcrxlYVlpbJz0ZjjvOOFH3Vs0NeWldXd5dnz4PKAIFL+yvK9hwaddRU51VBQNQ/qlN7/ac8ad5zxnAmo/wWV35vi3vNNh9HoL8XCcA1TTtHHqttcTAYqHTasZSra2idi3fTBO55zifjUT2pSNAynvj40Lq35oFAa7sC2yPNQw1BpDRH0X3kwV0CHeJFtDY/0pXlF3kpehwpBZZnBb/4V5lubf+FVPy8ypRTcJy+Kicj8qCK/liy1AMvlyazx6YR+Y+cMqeDIwM4ArxG2743niMHRmVXy874injsgQHle4RG5H+kfz9kAeGxIgcuj8gIV142VAUClWuOF32ngCunGgbLygdpNKAKCtTYZN7TIcrxWKDwmBQZsEhm9Fm+rnll0YeIB72vfRKVndVH06kB1+cV9EaKzYEEl29PxqN2jaiXX/X5X8HQHxP4uLznPlfVvaAKQBzVheBlBAS4ZzL7NCprriwdK5cqd2fbTRApsyht5OngOPJWMoUFirx2eM8oO1qIxwOitTatWeC8Xf7une3ZHmxeUJi9KtgBEa5PxAfSjCrLCHH/lygyjK31ZVmNfWSEo2ez/qiOox44yDwXBbgq77o1Nnvt9RyFH+XjgNIxZO+/KL9Ko0CgonddRDYCuXo+0uY949+rRwSYHUDoAdVs3HKZPefz2BGvCo9KZTAwYrx7DGQdEDW+uxcBgN49UG+BIe4xKFC+tIxo8aJ67VGIPiInKAwIdHokqhuvas1oTugKz7n2nDt4L50yQ5oNftDIuBpRFiPtXQEDmk7lXdPxmFF5i0KxPcrqnkVPKvQ7AIBjUQQAoulZprlgMIumHUu3VAC72oBeGuTl7NBHyNxIGSf/NsEo4qmky9CpKrXIIEaGWjvbzcO70FBrPxUjAwKXZ7XO0XN8HR+CiQYmp+UXvjjQpV+1yygzHJEX+l8FBEo9owrqhSp7+Y8Cg2h86Mpn7X+VLWzhVYOA53jMvL297ZSZeVJVQOB+Ub1HDU3F0/tIugSQEoHBCBBU+rtCFXDXc0Ki+kTRuord4mv6eXgHBPDPuwxc9GzEVo7Y1CoNg4HIe+8Zh2NRTzAzYFAN33NZuP/29tZubm6solQwwGF6lNXa7gsoojA/19FdiwRJt1UqIEEeePb19XWPhyqAmwsEfhUw0DOeWf1dfaN/PXaURc4yxRPxE9WJ+9wZ2N57PFgukQ++WghA4OSqFxlk/o5Fmp8zCv9lGhmHkUypHGhEtLV504wRHdonURlO9ipGOQPyfC/7dzbgnLJ3lMhAT7iOYQQqiNRta2mt7Smt6J4jKEbueA3t9sAAE7xvfblP9MZA5isSlGg1r+MDeSCiwAob99Woj4ZzNa0zgpdMLhyobVEFkRko0GciPlyZUXTKnUf3dK0Ke/cO8K5Wq3ZzcxN6gQx6AQzw+myVq8wjcxRFBKpRAq7L72T4mQ4df5kOViDAz/SciszBPCYIyPo+k0nwoxSBAJVzNxb1P+LFnWtex5LhWWBgJCQTUaa8ovROALNravwzUFApl0OgTC5k6tYIOAFQIIC0mrcjnoZQgdNFhJw3G/8sdFU1fL3zXw0MMPW8cVxzINSdu2cjcgrS3TtEGThD7nhyESe3SBXG3wEBHkcou6dLkHbU6Ls6cn4VY/CrU6V9e8/jP9Jx2fqk1vLQvjuPjK7rrygPZ3Czvs1AalSe43dEbiJQgDyreR1TTmeBgWMDgZHnHADoGXlVzr3FfUjLDc2r+B2xcuTpiNbaNC2gH2lBvkij/EY86VoErlMU+UD+uugw8jCrApkNLJfvJVMWEWCqGn6XDvcy4j7Q6z3lquVH/KqcZGMB1ytjLZv+6tUjiwpE10ciAe7afwUERDJzaH6ZHDEIzICr5psBFK5HpW+jcVXRN5X+zmQ1AzGuno6n6vqB3tg/Rr+XwcCxlPmcfJxidUIZgYXWfAjfLfDTMpXvyGhHyhH3olCY5onz3mCJeOjRSL6joTpVDL8aIKgaaXe996vkH5UzYrAyMOLGSzYGNE8GuQp4OS1HmzJAlQHREapGCo5tMC+RtF2PMeacTlWd6yiK4mR6YtT50OdH6hvlVZFLvqbHWUS1Z2uy/E5NH/aegV4n9cJZkaF3HrGiVjenFSnBnrGMDDvzyPlXtg3OpYrg6yszM8GCEndh3FGBHDWA56JTgNMMELiyKwazCggUDOgxn2eeHdPo9Fr0dU081wutqnGoAqCed1YJD/+KdGzQXQGUmWxXoj4qn3y94om75+ZSVW4yUNDLN+OVI7QaKWD5PLWcfggY6HXUCAhwhj9Ser2yXNrKHJvrTL4ehVqjSMBccqEqXrgF742nIrC4qzX/uU3QsQQvU8aXRBm4yxRX9HOek5O9LJTovAT3TFQXp9SjRV5Kbj1KZVpAZZw9w17oePRelt4pUGe0fnUgcGyK5NutE2BnTCmL1mRAYg6/Tt5dusjJiQCpk5ve9ECUTvNB/tDJPI6OOR5G6ORgYC4QiNBptHL1UKFqrRbmUXIRBrddhD3u7KU/o/UAzxwBABDgxVzMAwMCN0WBf6fYqzxXB805KVIeFZmtgtSe4qsYdW67bLqpwnuUByhalBpFBBQI8Lsq9H5Gc2WlouQjMHoupXuplIHIqjyPlsdlOV0U9WXGM9+rOmBORnr1y8ZRj0+950ANl6PpR2S5SkNvIDyGwXX5gnoNFU0JIB/2jKGErq+vbbiy99rfjCdOpx2oK/eVN/XSHYJ26Jwp6nQAgtXKb+liHvgXofhoAP6XKQMIkReS/SLjCqq2ryrFHv+OR7cinCmaNogiAq3tyziOM8A5YvhHFdxIO2Xh39+FIjnH8cjOAZe3c6z0+Qwoz4mCRXlU+rdXL5YVzTPLPwMy0NNuiiDKq3JtlE4eGZjjbbsOjoBATzC1E9xnJ5Xc1j419pHSdOWrR/76+rpjnJmur68nnqPphl57crTA1c0BgUhxc54RZaiX+TknjSiW6HoGADL51GczADzSTpkMuD7BtlJHEbDt9e0h1AMFVa+uV8YcwFFV8v8lcjJ9KBBQw+ZAQGVsZBGxKk8VnnvXNQp1aH4gBgLRmBspew6dFAw4L2Xk2UggI6F0HohGCnilc/YsP4/n3HlEMLRvb297HjnKc8aaQ/uZ8o7K5rrpQIwiA1kbZFRB9z1+P4rUsGRGWI1+RBEgyMAAjp2hU5B3qLJxxr1HCgQisAv+sq2EER8gFwbmvDVtFMGqUgY+fheDH1EEbKPdA71x0XMCe/rAPavgwvEy11BGtiriWyOuUdmVeuKf25/fVvtRdPJvE8x5LlKy2XaWaG6QG5SRF299wj1HbJh7AACkXjYLjL6BkNPNUd4ZqcHRiEAU4nX/ShEQuGRAUKHK4HUKIgIEWT6RzLrzY/GvZYyASv2GwUg5cyhSrhWQNOc50O8QFXBAzU0jZY6Xtqkzypl8Vw1lFFVwFI2jqh7TY/3vAdbK+NN03Oat7X/vIKvfMenoYODYIKA3PVAxQhFV3gvNCtCBCS47Wkyl8/JRFKK1fQBQBQZZXbJ1CupxVRSha/ee8eO0vwJpHZ0H0vtVKYoS6DV3nvE/Qk6ee+mqVOWlZ7Cd8el5Zc5oVel3AAWt5VEBNlLHGr8VYHFqUtmp/PNxJIegqC4MBDgvp2tYj6icZ2NhLn3YewYyilBSb4ogUrpzhBYGUY0qL8LDoNBogStXOybaQdBTfu7YPe/CtQpOMGXB3yFw4dceT85QggdHvGXmUihD8ZnRV/kbXcPC5fN/dL93rUcRL5iC4naoAoK5Zbrr0RSBU9b/ZYN8DorkOIoKREY8yz+aJsDz0T3Nh9Mfi9w45+PM0VTdiboeY4pCf1mE5Zh0MBhQZg/JZy4QqJTdS6NhcxCvEVDinQp634Xgs3IcYgRVpife33/O37ooAQMA5iMS4Cg0F507HhmotHbaFzAdm9ygjJSlnrfm5UXf48B0zGkBJ0fR4lZ9htepROCgGh1A2+g+ai1TlZ0DBy7vXhr3TEa/Itg4td49RhkVcl6u84o1/TF46xljV45zpBw40Lr1eIh0DvKJxskx6GAwcExmekp3LhAAnxFSVaMcTRcwXV1dTYv9okVUPD/v8sgoMzQOrKBu8PYcGNH1Ai4qwFQZJMxrhv5/BeoZ1kw+FQi4vNiAar9FcuwMtruX1QHl8RqZ1Wp3twn3ocp1BAgy0jGRjVf2qpwh+Gi5ckr2IwziR5HToZHjdazyjgF2s7FQ5WFkjLPcq35TMOB+XGYFvGi5eDbKx8noIePiqNMEh0QIMk8sMv56LUrLjeyMVtaIGkaFEo0QGz+nhhfX8T8i3FEbQMEzAMB1XZHq2o75dfe0XD7PQAA/P4KQz009GYSivL6+3vln+UI+Lu/WfkZxWtv/SmBkhCJZGwEEPXJAAccjXmIkcyyTWm52rWeYM7k6BEgcqlw/mqL20vt8Xp2C7clZJhcVGc3A8Eh/R+VoPpEdcW2g41p1uDpWLlpQ4cnx0msD7fNDZPZo0wTKQBUYqJKNBNPly2gpSq9z+k454V5EXDd4TZyHM4gqKLzFsNce2b+LEDA4eXt720nrdi1kSBb3nZAqEKjQnKjIOagHAK6vr6cfn2tItdIuDNI0klMBhe5co1vuOdcHDpQ4sOfkXGXRbZutRp1curnORS+EOgIQzg0IjlW+A/iqe9XwRc+7/PRazxN2+kzvR/3Ya5NR8BGNeffPZfAUcaRTKxFYR44fXXd2bNk82TRBVamposmAgJbphJBJ89V7/O/mNdmQaYgXc6vqjeM+nldAwNdHKVrQA6HgRWEsOFVQpscqkFrPqH80X4A19wnnc1NUhwikMigAGGgt/oqfI43moKxDgJMDBUyRdxIBBAaWEfjVnTYo51iRIDYIWV2y56oeU6/9LpHcmMVxBuhb25+GdAYxK7OneyPHoqdbQJFBj/pzNMqa8aMAgMe2m+rT98eogzUCCCKQwudc5ww0jdLJFhBG4cweQtVjzZPzrShf7pDoBT7MD9eJSRcKQlniGp+rUs8UpANFED7+z0LyfN0taOx5na4PXVluEEXeG9e55yVeEqk8AgDc3NxMv6urq3Zzc7PzWewKMAIpENDjTE5dG0bgYdR70nusAPHj/uY1CHguAsLVqFgU+RuhX0HODqVM1iJD6vRtz/FyeejxCJ8uj8h2sL7PDKnKTI+PDAxEEQEH9iH/7ESq3CNfN2Uc8at1VRCkabO6joyFMhjIOj4yUNV8VaFmSJEbpocGedGUNmi0IlqnDtDZyM9tJ+wpY1WEGSBgPrJ2Ud5hTDS6wemdZ64K2P1X+4MHpPNyL11JOyXFYOD29nYHFESgNcq3tX0gwNM6bj69l1drXmY1TY/cWGJFBjDNdVbgeUhEAzyoPGVg0+XViwhUlOmvSBlwqgKBzFngfDTPEQNcKS8DAVF5vShoxAv/OyCA8a+6mPlsLY8G8/jmcD/bhwjMuPZyaY4RHfiw9wxoZ3BjRyErUEU5zCGdGogUkYsSRHPDDqxEEQJXHzUuanAUiPQGSjYImA/3jHtW66/tlYGAS1a8FSAAMHB3d7cjq5V8QawseEEq0lY8aJd3BghQrqOeYuWffvxKQQE/O1KPqG49A1cxEr28DlWgl0RZPVSuI6PMBsfpbPdcBrhc+mydVWttMqAKCBQk9OQ8MvrRPQcEqlMFrA91fL++vu6kd7Yt8/Bde2udozYZke+DwMAco9xr9AgIHFImGsmtinaAAOdZQ7qthm4OlXnIOlwHiANGyrs+r+XzZ4ydF4nnKwCiV39HWudLUrquXg4IXF9fT0BgvV5PgEAXz2meUbuhTRClUZDV2s+PVfWouugw64OqMkJ9GQiAXJSK8z9Vv/cAwyF5/srkjDGOs7UCUV7OKPHPAQd9Vo2p0/Mwojc3Nzvz8MhLnalePzk+Mj557OtPQRRIZV/BAOqAj9OBdLrA8Y52Zb7c2jaU6/pixHkeBgNzBkuEFLmReV5cySmsHvp0eQAQ8JwsOpMBgDvv1ZkXkyjfUR0iYqPPbaSkddWowdvb294LZHrhNL03F3zxP44vRclqnSJlwGsF7u7udqYJ1DtgOeJ/lkmAgPf3n7tfdFCPGHjdiRBNESG9O4/+eZzjWJWhTsO5Ml2kKEvn/rOf1k0VYlQfLvvSAYDz9lya6Joa/54DBqrqWzeeWts1+r31NRgbTu404sV9pnKVjW1tE/ePdnHXOB/VtfzP49xNzVZlTQEBy3XUX4fI8jAYiLwM17ncOBHCdILJefCAjwRe83P8qIA66gGC6txoFrpiXpzx0YELcqF5zU+vsXFgpY2IQSZYVcrqemkKNpIJlrMMECBSwM/DKKNdnZJF27O38PLyMq3jQDrcqwInlk0FBBkojq71+k53Pqh8RTxW6BAl5oxlBgIuTS4rNHeMRkA3MsrZ88xHBAQUDOti6EjPw3HhRdksb0jXWv4huKzuzL8S86UghvNS+8L5Od2gOsaBWa6LqwP+dby5seXsblXeTzZNkAmPCqbrtMzgubwiQWPK5vk5TQYIOJ9I0amgO4UUCagDMxzVyOqVLYpUMJV5kT2KhDgDBoco+1NRD2C6UCGIByWnZdCgMv329ta22+00h8hAYLX6d24RfVXZhrlarXbee1GJELCSUoMZ9VHUb5A3lc1onGX1cH3RU5Cczo0XPs7y+hWiAxllMuzkuDI9AHL9onrLRcG0vGwRHmSYpzbdWONyAa4xXiJ7oeAkay+kU3uiY1/bzemIHhjQxYRZP7B8Kh9ResdDj466gDAqtAICQJmXkuXfmg/RRvxFaXr1Y75GDKoDBC6NEz4mF41REMAARoEAo+/K3LSrn1OcbkA67+ySKAOqKqtZHhpBuL293dsOCqUHhYd+eH19nbwiniu9ubnZURqt+Q9P4RmQzrMqOaVZ6ZsojZPpubsKenxkjkJk0I9h7Ed0xEdTZqjV+LrfaFkKBLK1APqSLvDDz6s+w1iIos4YEyhHgQNTFtpnYlCL8vQ8yg/nUf0c6MFPI+baHlp/rafan0P17cl3E/SUrBNKF/5xDcL5IUQz8vIXpWOEuKuelQpU5NGroEQIWBdHsqBwWW7hmuMN5Shf2Yr1qK4O4J2DMg8SxPLJYX+3pkWjAjDoWHTI93VB59XV1c5UAf+g8LS/+Rryi8aIi2j1+iuT/0p/H8NoOtCcyU0GACp8qdd1aQB2Dh+Z8ddfFQg6vcvjwXn+GhWIdLMbIxG4ZL4ZNEd2ogfmOU9QFB3QfDUNthujPd7f33fKV7umY5vzd8RREAZFyFOPR+VmNhjoDXxFqNqw0dwVN5IqJ5dnhOZYABT5ZTz3lEGmoEZCrBVSjz/LqxrpiICCS6cE4e7tRrhUcoafj52sVvJT2QYg4Gus5FTRaTh1u91OoI0XpqLt+Rh5In8GHKtV7Dn1PH133fV1BE7nEBtlJlWCDuCoQe+BIFemU6i9589FkVF1v0zXKmUgyjkjre0CAegh9+K0TDYckEW/g2+UrWtX3DQu15PLdoBX172oXVEeXUQA/wwINLLHZak8o67Ko5at15TPQ2R1NhhwgzZCkA4IOIOuQKCC7jPUBqpEC+ag794zczuGhT2aB3Zo16HiyjxyRq7d2Ot0YeJfRXniegQy+Rmd3wdpNMYBVPUMmBTAsrFXL8ABVY04MFBgxRrVP+srHX+VMe/SaH0dVXdRsNKMeFbFmOUZAQh+/txUGVsO6DoAMAIMK3whfwUEDhi4ciPDpw6LG3O6wDACBDzGFFC8v+++8dPlwTxEUQN2ArSu6gRsNpudemP6MGqTrJ2Yv0MB7EmmCSoIlQVVyUUEekoG5fK/Xj8FRUb22IrEbUFz0YCe8e6RQ7GcN+qleWagoAKcTkmV8jM55PC8A7y6WBDXIg+Fx4OuIQAYQISAwcHr6+vOmo/W/NQP562Kk+uVtc0hBoJ5y+4zMZ+aDjz2fsp/Rd4zz6qqd85NGZiNwC3IyXQlf416ue90qPxrma3tjq2sbBwzr5F88X2kcfIFkK3Ucy4d2Ecb8DtIWKawLVkXF2Ncq45RG6g/XSeE/M4SGQCTkRCNggDXEDowK8IdhcsjdKg8ZAjN1bHa+M4wMj9Q3Brq5bLccYVGIgLsWTqKlCYoun4pCrWq9EDoG0b3LMNQBPAMeBsiKwpWPrzwD+e4h3P8+Ly1Nu046C0U1Hq5qaFTArRoHEYGKVLwqrx7ilHzw7krXx2NKMpxKRGC1voRrhEwoAbHleGMfzQOXFSgNb/7KjLC6u1rZLOnU5znrgD1/f19Zzxr/yqgcGVqdJvBgPua6dvbW7u7u9t7X8nz83N7fX2ddhhBBzDhGsu768tDAcFRtxZGgqONox1URfkZWMiIyxwd4G61ZgQmHE+sYJyxidJq/lEUJSobQuMQZg8cVMCDGhhcc7y4++ck5927NFAa6qW/vr7uvXjIvWtAV1Oj7fXLkrwuAPnjH7sNXl5ewlD6nMGfhSKjSIFrJ/UaW9sPr/bIeX8ghHBZCUaOQ6ZDHKmBUZDkAMKlkxp/53xpP7s6OiDh5JrD4+rxRmU6EIK21qlN7gP3AS/toygax2XrQsWofzWvKBLBzgAbegYHrf0LCJ6fn9vT01N7fHxsDw8P7fHxcRrneEsh6wZ2EthZcKA1cmaqdLTIQCQ47DkpYowQfhQRcICiN1DVQ2HhyUL8ajSrjcrKLPpnQhkuGsADSgcIynJGjYVJvc7IG+DnHbnnMtDAvFyCd+XaKfOeFJRlddUIACuB6+vrdnd3N/Uv90Vru+3Kg/319bW9vLy0zWbTXl5edkCJvpjF1VUVq96LnsnaT9unZ/AzeapEnzgdxqvTFavVak95glT+Ii/QRQfUCblEiox2TzdGgCAy/g4IaCSMjabqeRcViEAXg+WKsVZj6Iy4izjoGzyRFjzxf3Qd7YRXlsPz5398y6S11l5eXnbAwI8fP9rz8/M0ztXwwzFAdBCgQaMDkFEeV6NAdvirhb1wkjPcrCg1nwzNR0aPKTNujk+c9xRfa7sKS5/JlHCvHFVQq9VqR9njGkL2OljAmzt27YFwcwS43LPZtZFph57B+AiaA0acPGKAsoHADzIPZQlAcHt72z59+tRub293+iDybDkSwG0GZeDaMQKdWeTKtYkaRb6u6ZQiReyI53EjWWLl66IDHO5FmQx2MwOegaEIxJ5LfquyGwFb5TvSlw5McFRLHToNh+M5x7Prk4ojkr0HJbINkTcPWYvyc1Oykdzr1Ai2Eq/X6/bp06d2d3fXPn36NP3u7++nrcavr6/t+fm5/fjxoz08PEzRgefn5wn0s+F/eXlpLy8v7fX1tW02mwkMbDabnTZ1tsrZ7IyO8m0CRUkuKqCdpspUB++IEWEFDcRXqUdr8RsHQXquSJIpU7QubQYIeJ6tMkWgvDG6xHlFUTJlRr8KHJjOCQgi6smZRlXw4y193IeQeQYCX79+bXd3d3t56foUnhrYbDZ7XkxVDkCZbDujHynqqH2cwakCAdQrSuOUvHvu5uZmipSgX7g9NWIQ6Rz1tAA2fgVSw8gGPeoPBTmZ7saUGDt1fM1NRYC4b7QPXB34nA2ac4gq5NaT6LUKEMCzTtYx3hEF+Pz5c7u/v5/+v3z50tbr9SSrm82mPT4+th8/frQfP360x8fH9vT0NBl91gHPz89T5ABpnp+fd+rHUQ8H6KttNmuaIIsIKGJSQeFB6DykiOYIAg8Ine+JlKQKw6EKIQMGrtNYOVUBQSTwmfEZ8e7ZSPSAzqUrUJVdvQZSOVWjovKkkQEAgc+fP7fPnz+39XrdWmuhscIxPAG0MzwE3bIEL8P1aRYZqLZRBAjUwEQG250zVXnTlelaJtoIeQJQ4Tq3L6IHbuqEx5qjS5VrBwQcIGhtf8Ek56EgQBfDOeMfvUPARaocKAC5scT/er1HmaPiALjjwZHjh4HAer2exvuXL1+m469fv+5EB7F2gIHA09PTBBSgA56enqY0j4+P7erqqj0/P+9MJUZT5xVdrXSUBYQOVTrE6ICAeqyc7xwAoPwxbyAOqygg0JDLaHkj0QHwwnWcGxVAXtym+jY7pKmSgrRqRMFFeM5NbiCrUVMvSusLQ6KeBEcDOEQI7wCeAfLEYOboDQa3iwZoWBJAgPnS/u2tFYg8CD2O+s8BAr6mc6zMW0YK4KFw3bojHrOQdSzu5G2Y7jsP3D5c14jfS5FjpsgJ6xkHra8CWciyWxOg/9wfHDFzUQA1wOCBx5STu8hQOx3di2ZGjpDy0Gt3HpM87mH88f/ly5f25cuXaaoAfGw2m/b169cJCGw2mwkMICKAqYTv379PLzNiQMu6A7zo2ogRuT34PQNRRIAHLxrAgYDIwDj0qvfxcxV2oR82sjxInGLQ45H2iCjytpQYBLBHk6HXCAiwccgGQ5Qf891rC9dehwK6Y5D2KV9nuVVj4CgKo2KxEOYNOUT45cuX9unTp6lN9fXDvEYA90enBHTwO0DLabhfnOeobcXtlRl/Po7K6wFu7hN+vbNu2+Txy4AKc6vb7bZtNpt2fX29M+0CwpiIvCnm91wUla1tr8bf9ZXrcxcNQFtrm69WP9+wh6lY1aNsrEBO97B+wTPgR4FANC65r6L1MS4iwPcrRpN5UhDACwcx3r9+/boDBL5+/drW63Vbr9fT9BPGPNYKbDabtt1upykBLDD8559/pm+dcHtibRGmFJgvB/wqNAQGtMGYgWixCQ8o/WkHuQ5hQ6RKq8Iv86hImUEB7+9XlOWiCExqqHXKocKnGwAVUs9VjbgLi47k6UBBVIfo/iUAAiU1aE5Ges9DKbISZUBwf38/RQccGMACIfbyGQhkv15Yk+XWXYumxnSccV217pxnlobzzpS3erbwuHhV9nq93vkQFMs4wqsItW42m3Z3d9c2m027uvr5LQhub/DiDOclUMaL6jf9IU1r+Xw373ph44Zz3UHAQAx5w0BBl7a2+0IsdQB1mgD8OA/d6V3Wxxp5wH2+lulAjcRymbiu2yZ1XdCXL1/aH3/8Mf0ABjBVgMgBT6moDgB4xW6Db9++TQsPwYdGFnmNAa6pnavSMBhQNKXIkgUH6TQKkE0NcFlOMUeGBfmq96/5qZGHcgYQ4C1gXGfOh/luzc+VRmFI16b6rKJ+Vv5qxEA6d6z/fK9CzsOvpI/qegnK1QEAluEMFGgkgL0CNf739/c70wS4xgMZSqC1n55ya7sLP6EgdM1C1JYs2+iDypRXBgI4jftp2/Y8OeZV761Wq5392VC06/W63d/f7/zDKLFO4blWXniFvd1YgAVAAFDQA6uXBA5ai8GYThHgfvS8ercAWpjmYuDl3rAXATGsdGdHRIFAFhVw06PuXOXaAY4eGGAHUBdvR23HNg/txsCfQQB0ASID/AEzbiOsc0FU4PHxcZJzN544AowoA/hHnStODdPw1kJVorzQREN4rdUWnSEdl8PPRuk1NMWCpS+V4LwUMPAef/aWXHRAeYx4iwCBSxsZTq2XhoCYFAAA0OjiqhFSw+P4j3iP+vOSyBk0tK0aXu1LXiSoP4CD9Xq988YxVXLv7+9TiA/nLmqmYFRBDGStBxLwvEa6VKYi+Y4AwIjCcaC/tbYzFQCvlNsUUy1YjKkeE7wqBgP8DwXLoOD5+Xkn1KrRwkpE7NTUiwrolJWCAfcc626OZAHA8j9/kpunDFprO4YI7cp861oNZ6DZ8DoQoHwzsdxHus/xgWdXq59RDHz9kPlAufyMm1JRZ0DHvluLoXqAQRXkn7fURo4LnAusOeDowCjNmiZQxlRQuJIuIsAKzimHSMmo0mJFzSEpkAsJVuoHcIA8nBHNAI4DHa4+yiunUU8rut+aX73r/plctKOSNqPMszwnRcY08nIzQn9AkSoIwEB2ryVlMKfA4+XlZUdR6KCf25YoI4sQ9MC6jkk+701XRGlY4bIOQRuiTXl1NkABgwHWJ/BM7+/vJw8Vi7OwKhvbuZ6entrt7W17enraAWP4z/TQRxM7DJn8qsww8fPa3pjrRlurR6vO3s3Nv2YD6zOenp4mwwXj5Iy689Q5KoDzip5UcA5iAMBRNS2HI2cKlh3oyGwevH7nGKhegG7QcgBKt9vtlC8vSkTkhesDIIY+4KkCnfqqUBkM6DwUCxWjJTew2PhXvI/ofgYO+BiNAQHl1zxyPUAu3BS1QaZQ9fmeknV5KBLV9lBg0Atxgphv5anHY6UezmO8JFL+Kzw62dWQpgJhp4yd/KtXx8+yUlcZyIAM0rspMgUEfBz1LcsWj6/I0LgpLm1rvcceE08JQAnCSGFFNiID0TQBDBSvGwBAeHx8nPLA299ubm7a4+PjjgG5RPl1xHq4Am5ZttirBQD4448/dla/Y0oGwIsBQWtteoEOjJsuiMUzbo0GiL1xXSSH66yvWX7wjItAsB3g8iLwoZFX5YfbW9cIuTcO8vqLTEeobmD9wA4HR694nQCiXsgfgMDpgR4NTRPw4GYlFr0QZY7R4f8KOUWtQqLCwCthXV6sVFvbVZx4yUzW0OohR2WAXNupYuX2d3VH3TgCw0icn+kZRvdMVEf3fJT2nEo24renQFvzi5CcIeV0+vpQrA9gBaBRAqfUtQzmX59VRce89urvpircM9U+VMeBr6uXBe8KCy0ZAPCqbHis8K7AL8+78gJC/n369GkCAw8PDzvRm9Z2PTM3ti9BdjMw6BwHPXZeLa+C5/Zm4HV3d7djBKEDX19fd6ZrGAis1+vpnOfi2VA5+1B1cFTmmaL1CfwsT0moI8mGGvlxFIvtn27B5PVEAAQ6ZaBTBACi+oEylMPrEvhdBJvNpn3+/HnaeuhsxknAgIag1KNRg+bQTmZ8uaP4uKeokQ8PYKBUXhQIdMqKMpufwn0VDu4krYfjZzQywHypFwViQKMC76YG3PxzFr3IphcyEJCBoEugQwYKiI0lex4KSjHAAQbUy+DnmZ8ozOvAWa9/kMYBW1amc7yICjkg4CIi8H7UIH39+nVamY0Xt+B1r2gnBl6IDDAIwDmM3o8fP6YIBJQ5gATPu4L/auTtVOR4qADICPBpeFsXvnFkAOAM++N5AWFrbedlWGhDtDciNVjYln0lkAnjgr10jCWe14+eBSkIyAABp+H2ztYwaLuqXDPY0rUDyI9BrL56GICgtbYDCF5fX9vnz5+nqQGMhywyWaUyGOCKACXyT4FAxQPNDDGOex4b0jkUxx/+ASAASsV/a/veCitGNboV75w7O0OwjlxnuvpzeRll0Qk+zgx5pJA0TcbvpZJTok6hKrjVSAHnx8SoX8cEDFkPEHC0QQFIb4qLx4aCXPaMmKcoL76mbZONUW1PVphYhHl/fz8Z/z///HPaovXnn39O27Z4RTbyAuACGIDHxAr27e1t2mIIA8h76Hnumz2z6pj9KFKjn/30GZ7SdQvfdL0AL4YDGGCDh3PIDxsy9Af6gduUKWtflW1eKR/ZGmdzesSOmwJjBxh6xH3AkRS1kyiX5RQeP08DuAgBr09w6xAyYJjRMBhQBFSJCowgFSfIfBwZRlZqkXJjYACgoPNRaHgHNCIDzMZhtVrtgJAoTMU8RcaIeeb6QEi1/MhAaRptI5xHqD26VjUIWT7noEiBKiiMFCxTpIC0T6AU9b5GB3S9gObJi4ccOEC6ijejcut4j/ps1GNGnXiNAFayf/nypf3555/t77//nn5//vln+/PPP9tff/01AQPe6tbaz5evwBBhOyFHBPAyl9vb2yl8/fT0tDNFwK9+ZWPGeuCc1DP8Kqv6HMsT79TQiAADAd4OB4+8tV19BAMNQKdTMxzOxnv52etXcgCVdSrqBD4wbngcMOiYA+Yg14goQ9c68O3GCLcTy7mup1PdgLUtCqDYkUAf6tbmyA6P0hAYiD5OwWiHK1mNELh77j9CO5Eh7ZE+pxGOKrFChtAiLBaVGZHzvLgcFih+JgpVR/kfquQiUBalvQSl2qPI8Ktcs9LReT7XLzAsvJBV8408bi4Team35aaJNK8oeteaD6k68Ojah6es9NgpJ4wzzKlioeAff/zR/ve//01g4K+//pp+mCqANw954tXU7BkhCghFjLnt19fXnZBta/+O06enp/bt27cw3HopsjsCAjS9zmUjQuJ2D6B9tJ/VGLKnznvuEYHhRXWsG+Hx8vorXmOixFO+re0CAR4bfK3SZ26KgEGAOnUwyjwN6MaljknuBwUBDJwYyHK+XBe1v84Oq8xU5bcMBjAQnQCq9+wUEnsiSj2w0PPQMq+2Nb+ACh3O22V4PgykSFU9tvf3n5+d5a/NrVarvVW0rp46EDQspZEN55GpUo8iIxEdS9kxKFSAeAmkMsueeCUSkBlxDX3zNlsojggwuDz5GY0AcHrX567evblEKGcHMjB+FBhECpQ9Kh1PGhXA9MBff/3V/v777/a///2v/d///d8UHfj777+nd70zEIAyZXCMkD8bKJ6XxXQB1hwATDw8POzMvfKqbNUdH03OsDsg4PqWwZHOY/O7MPR9GCq3rf004E52kYb7FmWop8uEvmFZ4nut7b8PQKdc1TDzR6rAI37aPgxYuTzeGqkAQ8ebGnYYdV7Eent7297ff67d0WiApmc9wTpA3zaoEYRD9ewQGOA1A0xRBKA1byBwrmnccz2BjyjysNnw8uAAgtXVnm7BIRuP7XY7CTzClPryjdbankJlyrwo5ZvzjM6j9ogAW5RP1NbRdacoXPkfTQoEVaHylJemB6l3zl4/ZFsXD7mXcPF44HPmwXnwbJxYCbDiAzmZZaPg5ny32+3O4iUof1biDlgqENdj/of+AB9uDlTD1GygNMzqojTqkXEIlT8EhfHKxjB6zwP310dTpgdZhivPuS1xFSAA0KTrXtTbbc0DApar1vajUq6NcU1lzjlKPD6Yb76vpA4LG34FB8jLTcuxwVZPn9dR8DjT9S263kKBuO5K4rUw3K6R41e1mcPTBNpxGQOM+FhoVIGoxxHlFaHf6kDVQcEoGSFLKAMGPupRssIAGMA8JEdAIKStxa/PVDTMHhUPuqqHDwFydY/aKQJmrj9GvKRLiQgoqTKNwq2cHpSFInVeXBW1GkfOr7X96ICLDKhC7rUx6sQLmRxIgUcPZaMeUqUv1QC5xWYartY34LFxhoFmEMDKkb0q/PNnnbVPb25upjUEDNh4DZRbG3UJ0S1uWwaxTqZa2x27XDeOhPK0CMsD6xDUmz1WlAceVG4dMMY0jU6nRnqR25sjTDz+OL1Gs6p9FkVi2dlj26VTAjDSkEE4g3d3d+3x8XFnxwrqytNbuntA257bi0GHm5bgfudfVXaHtxZqJzHTOGbKvMjI8PTQsFKlwpoHtjTpm6MguC46wAqOw6K87xmeG28pU28liw44kBVND7g2dUg6AxJRlEFR8whFeZ5ToUayxH2qIW0Fqdw3HDLk/BlEOs+SZVjzxTUe/BwW1JBgBPxQDhsNXIPy54VHrf0M9UZjzY11pUhWUAYbWWd4GWhrW+A9DbxzAG8XxD+/F5/L4fxdeN1NFfUA4kdSTx9GgFPr4cAqtxHLLrd9a216dTMbfOQF0vuat4Is1k2RXGFscFQBxM+6aQGc9/pPAQE7ZCgb9XVhe/7+BV4AxM4zbA2vkdDtrxzdcsBDv/3AL9ZikHYIDb2OmBtY5y6doq8MosgrrQi+ywPnmTFjRcSvfeQXmqgyB08QYqRBxzLq22w2ExJmz4732zpiAWS+FRgwHaKoMuM8BwSM5H8OymTKeVZ6rkidByx7JVn5zIfzgDSMyMCSFyByWQrgXLnsFWIVMhteeEAMHJhfRLgQLRhRPpxvxifq4pQh2kvnZqGEcY09TgVDUTnMk9b/3GDAAQG+zvfcswp4oh1hCpo4OgUdx94r8nSG0kUPHDAFKRBwdsbda63mkEa6zOlYdrx4+tZF63jeH9EAnmoGuLq6upqmvFAuh/x1akB1DdKyvOO7GwAE+rzKToWGwYB2mlOAVSYcEBhBwZyH87A4P1W8rCD1k51YYNRa21Ni6tG8v79P36Ln8I96dBCkniJVAdR2dBGDjHSARODN9QV7riPAzvWDHl8SRYafz9Fv/OP+VcN9e3u7E2LMPDnNk38MCjhikHnoSqyUeb6e54h57na1Wk0eNs5b+7mIzIHUET60rfWcvSTsCuB77C3p2waZPxfpYZ2lCtQB7VGFegrSsntAxfGdpXPREsgE2lx1mRp5pHfrCjQqw88w8XMsW9HUAD8T6TQG3uAnshmoQ2v7rytGO/AiW44MAAzofn/kj50sHG3gFzRpxE8BMcAAvq+Bj25hB0IUHdA6ZlQGAzyIog5wis7lo8y663o/E3w87yqe8QkPnxfU8LoBpxw4ogBjDEOBfcy855aRHysdFWw1+M6b0fo7wdW6Z+e9a2zIHFhweVyi8Vfl2JPLDCyxEdFwPowTZCma23VeEQNJngfXF7k4cMd5VcYT76RhOXbGQUP2veiW8lElNc7cpq39/KocrsNLwo8VK9eHpzd1qoX7kcmNvXPTIaCkFxmJ5uwVnG42m+ke5IO9X6R3bQreo/HHpFHnnkMTgYHM8GfEUYHW9qcJIGvX19c7awR0TR14x3OwLQyc0F4c9WOdwHoF0xD42BY+uIWIWC8y2aMyGECltED1Xh0gqBoSpQq67SlxTuMUKOerc5usDJHGgYHW2vTKUwcE+CUm2Xwr8+MUlLZ1lNYNogjEZUaDgcAcAKB5H2Neay5lYJHDmnxdSZUejBJecaur3rfb7c4LW5AHyuHpAJ5zRBiQX0Ki0xEMLllxsSJzc6GqxHUXhRvHDHyQ5+h0QWQAGATo/CjmozFNwMCa24zbCPxxuzOI0TlaN72jdRoxJOegnoFVx4PlJjOwClJ5xT5kh0GXykmkdxwPkc7S+xGv/M91jZzFSK9xWo7S6tQHFtvy4nE8q4v83t9/flxIP73t1gowEHt7e9uZHsCnuB8eHnaiAzrVMIfKYADoKJuXUIPF95whi4hDLPxspZKavyq0yCCyIAL4qKGFwAPp4Tmep+QXquAVqFBuTMhL6xa1FSt2FfIeRSCpQg4QRHn1BuelkA66nkyi/hrOx9qQp6en9vDwYLemuakcHuwa/nMhQA4DqvcMYjmF3EbgHcpH3yz3/v6+s/pZ5z6rlLUpt73OvULhsfeERbicng0U1gugTqgLGyRev6NTMLquJwI3czzyY5IaLgZ2rGsjPatTLxrRenl52Qlxa3uz3LRWm6LkfnZAgfWtGv5RR6ank+YSjyP8Qy45Uoz20GgKwACe4wiCRhh5TPO4wNsxHx4e2vfv36cvbj48PEzyr9HnOVQGA6i8Q83OSERGWYkb2t2rInYnIA79OU/QhW65Y5i/SAAg5Ai/8h5b7iy0JVNmPCtKyD2nAy3yBqKyItQcla3AyvF2TnAQeQDcJpmMgnc2wJvNZm+RKdLrIlXIBisMDf1hkHP4zxkr18YMepUn7htVQLz4Fbzz4rKbm5tpTYxGGXRsahRNASwrUhgfXhmtL1/hMcbeFSIDCpK0nlCo4ImjOboqG8qY68ce76VST8+yrKBNGATA6+S3MrLnqs4QACSvPWHvGfKkNoHHGcugAgEeX6q3ND/+d3QsfcNjH44g5AOg1G1FRzvyQl18IAv5cn9opIAjjw8PD+2ff/5p3759a9+/f2///PPP5DhwZOAQR2x4msAV8v7+br3W1vxCDEV3kffvBFt5GDU2ECqdf0VDQnlgrzU3MPjRtxVyfTgygNdy6rQBPBetW1QHVq5o06yulYET9SOX5ygzms4DviRy4dQRJA05gWG5urqaAIH7hCl+6/V6MoxQAOzZ/vjxo3379q09PDy0b9++7QADDgO6VceujpVrbgwyEOA5enjWWMynYDZq32iuWsEIjBIAgX7uFc9F4X2VWx4vPM6hXPH64e/fv0/t/vj4OI1RbZNzRwV6FDlkTGpwsTUTq9x1akujYUy6poS3Fyr4022xCgSiaQD8R5EArf+orlFbEh2jTVAvBpcAA7rjgEEXO5Svr69tvV5PY4zBMa8d4LGx2WwmfQCZ/f79+3TNTRFEjlmPhhYQ8j83WoROGSFyiD3y+CvGasT4c4c7oWJUhsZnhc/hMtSBPRWuHxt3eIZ3d3eTB8ShVh1crtO0jaoKyeWtbTVi/KI+1rwjAawAjHNTpGyUZ/ae4SHAw0J4W9//jley8pvdMMgREWAgABDw+Phov2Km3hOIDa9GIVhJ6TQDvxAF+fB+aBfhcABfeXHROB7nOu7YS0Wb6evBnRHhfuIyVTFut9sp2vLjx49JqaK9MSXj9MQcY3Ns0ikCvZYR2hvrJhCVurq62vuIzna73ft2AwMqjZC6yJj2k5uaULnEP/M80i6VPlJ5Yb3mjlkOOOIGo93a/ofmGARpnR8fH6fIAI9PbmMFA6+vr1O0kIEr9ANHD3uOQo+GtxbqAFHBVA8DlIEARpNaVuTdZh4q86OdrALInQXAgsVRirY1FMp5c5iR2yCaR2YPpGqMojq6Z6N8o+PqlEA26BwPjp+PJvXuRpSoi0TBCCJceH19PXn5t7e37cePH3veLcAjQqmICMAoMeLnfcQMBhgIaFtiLHEIEvLqpop0GomJF88yGOC96CjLARPX/tp+PF2gkQG0IwNoKGEFAfrj9kB7vb+/T3nz2gyOvkRTBe74XBRFfbLoBcsr2pz10OPj496CNn4zoQJKLVN1q3q7ahR1/UGktyKdqG3hnNPovEcZOED7aN4w2iAFP+ws8Eeg2KnkdRQMDDANposGMTWgQIDbbo7zNxQZcBEAFggFAjyYFaW3tvvxot40BIS54nXquVPmLLBQRq21He+Hwz9cV1amDHg4HTxERAZ0u2LGY0bR89lAiNp1VMFl0QE9P7cn5ShSmlXQxeBAFSwbTw0bvr39+2U8vI0S8sZoX6cF3EBnIBAZLQWuCn6jc5VxGAIAWkQGwAM8mAwQMF86Dw1PVRdJ6TgBrwxyXP2Zf+4nVshQpLxXW9taZcU5MR9NCkp6AIBJgWtru5EbjgogPbZIY4W86vdI3tixQr/qa3d1iyxHBVzfunZwsq+2wNmGnp1wpHaP7RS3KTuFui4DC4313R7IX51Ttk/YTYC1RThmR4EXsyvvIzTrDYR8rMLJQEBfb8nhdm0IVrLIV8NGThgiPrOOZqHTyACuaadpaFQVIAMV9ay4PVC3rG0jUsFz+Sif0bNzyquSysm5vSqnOFWhjQICHGvIUK9jOuD+/n4ysHydpwV0z7x6VZmyBE/OcIKiKSStF9cDL0+6u7vbGcOcpwOivHXRAd+3t7fpC5+Pj497xptBOt4Mqn0GA4Sxx9N4Lh+0NSIw3O76FjfXtueiyBHDf+ZYQFexlw/wulqtdqawWttdZ4G1BNBnukgOafGcRnh4S6J7m6aC3KgOo/3hbEUFCLh2jJwsjCVE7JCeI15wBjnSxV/+xTNsB3XnBa8d4IWvbotsBqQqVAYDrnFZIBUE8HuZITiaBwMBBgqqtLTRcO4UNPPqkKyGY9DY7t0C4MehcVcXrpOCA847EuZeR6IdozzUE+M5WvWYVMgPMdrOSGWD+aMpkgc+jgxs5oEreMVHcGDwgeYfHh52VhHzSmGk4fk/nhJgIOD4UvlWOVNg6mRYxxuvgoZRYKXD5MK9PI2gwICfw3SZOgxswD9//tw+f/48tV+2hoDBANpX12cwCMBUga7I5nZGfucGBODH9V9ELCPsyaLPVqvVtFME6TnMjcVuOk0Efc3TUNvtdm8qBltknXyrjtQolda70jbOM3Z2oZJvdo+jgmy70MaIeAH0uy9hMr/smEJ2OUrAY4IdhGzhILdBlYY+VOSUI4MA/pa7rrjnlZXOcCINGgrz9qhoppgzD5hJhZe3OIE/3nutg08b2QmfhslGBkCEYpWYJ7diG0LqAIBGW1yZGdDoIW5VQFmeH0lqNKv8VBUwRwjY88WCtfV6PY0XDHD9+Ah7A6wcQK49VRYcfxhnDlA7BcLEYILHOuflAIkCArcGh5UewBP2Uv/zzz/Tp4w/f/7c7u/vdzxVrhfajXUUwAR7VTzfyi9y0ZcWab8DEJyLnOw6R8fpERzrtBZI+4Vl8/X1dW8BKRsznLMu5XbGtJe+ol1BXAQCorZwpHqu+mzvGS2Dn2nt57c6cB8AF4BA5V+dTdbHPP65bdTwa/TA2ZA58jr0CWM0AjcKh8IZBPDnR1lhOO+C8+K5eJcuo16HOsPJAwA/jRCwR4NnWBHqdSfojs8eUo2QrkO8qoy1nVWBVI12NrDO7fFXSes+CkwcINBVxCCOxvC+dl2o1VqzuwTwjzx60wPMI08RgPiZaiiRZV8Xvmo7sl7Q51n5KXhlZYoxA0+Vvfn1et0eHh6mqQJdk8Fzzigb45jD1e6jRs5IcX8zCLgEWa+AUpDTOdzObEwYHPA1bCXVxaM8bYCyuL0h7zy/zbKOciKAGtU9Ond6sRcV4Gs9gOHyg2OJY6TBMUe+dKrMgQEd/6wHFDy5tnOAYJTKYOD29jYc9PzhE6yY5IHLnirCgjwtoF5mZGjUs9Bnov/ICKjxzogVhIbMIh4dUneAhPnh+lfAjVO4uJdFVUaEJwMv0bOXoDxBKgO6CDNqb31Gj7XNWRmoodK9+RjsjO55gEcRnIw/rZN7XuVcAQ7kG2l1fY/ywcrd8caevEYXXV2hIziyBgOj2+AcXzB0GnnhnQvRwit2SBS0XIo8V8As88z6CPXSiIqTYQACXvPEQKC13fVJ3N7oL42MAvSqrGsbqz3Q+leuuftVJ8CV757l9mRSm8fHmobLdBEB3BuJoEQApkezwAAqwR88wVYqfOyHtwapd8NTAJWtSRGNenit7UcHVIn1lK4rM4piZJ7kqIBGpKBHeYZAYGCjjo7fUYV3KQqyR67/XHtlzzhAEXkKrGABBBwQ5XHBIEL/1WA5viPPg8uLAAGn54W/kJ2eV8LE7cBlq1FyvOFZXZGNH3/1Laob6yjd560Lr6L1GGiTSNl/JPXGt5Ly6pwAjQ7oFBciAjzXvVrtLgbl8nX9Ff/cOhiU42RopK0z3Rk5adwOjioGlNM4EIw6siz1wICCgFGPXwFdr56OymCAQ/5cGKICGhlAeImZ1QaJBJeREFe0h9gyhc4UeefMj6bhfNQQsEeB+9FcK3txLu+s8yJBVbSug761n4vBWvs5z8VChrRV4YmMVS/9OSgy6Hxf0+Nf+9IBASbUkwGvAwIcTuTnXDuhfSNj4PrfAdCobbiuGNM8vQdSj5Hn6rkuTC6cynXSdlDvFeXxQl/NA8/pOOLIC8/F6vqdKCoIYHIoYD81Ob0Q6Qpc1+iAtj/aSRedcgQK+fDCN7djwHm6UVSgUoeI5oKDiEZ0cRZZ1l1kbCt4/HOfZG0UgajIka3q3uHIwF4GtEYA0QEO54HJbD8yN0RmWKqdHaWLPLxK/riv22v0eShJVtBO0fIirB7v1UHh5nSd56Z9wQrCUe8+p3NCWgE6p6QICGQgoDXfnlGYlP9BWfQligg4fnrtFoEEZyCcYuHneAqM2wD10R9eT6xeDj/L55pGlR/SsZHCmNI3EmobcpmqT9x8LE/RZB71uWmOIWttf9xqVED7BturWRZ0sSGXj7wVWPCCN976CR4yIMDHyJ//e20TkfKu7YR24DHnxl+mz6IxzFPi3OZ4RkGxjofo/9g0FBnQxUkQGH79qr5YAZXTRmABUcpQlnZEptAzL5C9PgcIMgFG57l5HxX0bI2AIxX63mBQigwDiMOfqKMz9Nq+kffRq0v07EdSD2xF8oF/J0fcr26ayLVnRSEe0k4uPN/a7hdH1Vtmw47yOYrF/LGi5x04IB3T7FVruJ2Nte4ygnyyrLqFWAoEuA0YEHB6niJgpZsp6F+BMuOqY5j/GYxyu7eWf32ytV1dqSFuBV3Z1JLyrLy7OlQoW0ej9dD2YNlX/dgDAQpo8HOguLX96IDLa8Qhc/Wr0NB7BthbwDV+H7tuKdQ5KQzGaAW1KoYeiuTzzFA5D55D9wA0HMaPQsE8QDg0yeiY+R2JdmTIT1G4ovtM2NSw6bVMwKIBofz2+umc5Lx6XNd0nN5FBFiWorbLEL37qYJ2vEX1qpIaXwUE3HeurVprO0CAF5RxNMxth4RsRuC5td0v5PE0Aesc5ikbT25M4VhBkAIRbats7J6DIs+W9UN0H8fZtIjed9Eclz8/p3rQtaWOiaxOlXHhHLoIvOu4ZZ3OMpoBAq0714mPnS6J9HRWv6ojpnxWAARoODKgihHGP1thz0oo2mvKysANwmqlXOc5xaKRARcl0OfZ8CtCRRp9KYS+JSpaHFKplw4ON1hcuCsLRWdtWEWhWodLUp6t7c9zKvWiAQ4U8LOZknBAgM9xjH+VKafYuB66jkGv83OQP0wT8fw/1pSw4tay3bRJBJhdH+h44nbgqAIry0xxRpSt6eCdGzoutHx371wUtTWoN/6gv9z6DZ3WUSPai3rplKO2Y6TrNB93zjqO0yiPGQBwbcf5uToqP9EY711TG+Z45rdDqt1y8hdFtFx5I3I7/DpiIBtdFAFjz16ArgbWrSVuq0nUCFHDKG9M2vjwYq6urnY+MctTG84DUa/GCScbe7eAhhfpgLdIsUYd6MCJQ/FOmbkXPmVUNfAVpD/iwZ6CXGQkus/pIoOn/R95u3otans19Nm1SMZ7QIAJMsoAB2F/BgTIi/+5XLe4EseqpBiMOyCgdY7aIlus6EjBMq65dJFiPTcQiMiN0SqAZ92B9lXgtVqtdiI9EUjKDGnPYajwqx66o0z23XoB1qGcR2TMq/pPr7trbEN1/HJbK7/4x/OcxumUUbkdAgPMTGs/0b6+JIXno3l/r271QfpIWY4KjwMEGUUKn+uEdBCe7F3rqC+vgNb3cLsf8qgIlPMcHTBwbaMvsYh4GFEqjpyAnlOhOmM/Nw93HHkWc2gO0M3yQjpEBLAgjMcwwLEDA1EEj38M5rN+dm2UtR8bAjVYuO/y640D5jlLVx0LvwrpeGTHDRS1X2b8e21Ubb/IgPX0egQEnK7mZwB2HJ8ZeNf0o8DGkYJcnDMfOi3MACJquxFdN/Q6YlcIGNG5QgYD+l5lnjbgCkfo0Z3zsTOQmpZRsAs5speCNKgTC5tDbPwsIh5uPtahN/2pYCkqVuEAX7zFiynywvhclbkbCA6luvbTa1zXS1CqmZfviNvDKc/W9rcH6rHjYa6B71EWFWC5wcpxfnWqgnUQR7x4mx7LN4fdXZmOVI6V0NZuDET592QsmhrQPEbz/Sjivh2RF5U3BVi6wNM9r7qD70XjKDPGTlf3dGAvbwcEVIZQZ9bzWb35P6MMzPB9BbkcueB3wTCvuI/ou7MbPTvYo1lggKcIuIJgGo3L20t0nYBDVdEgryI08BQBBa1PFjZ6f3+fBgh7V5kh4CkBXand8xwjPrl8bgf1lBTRa5tF83dO8WkeepzdvxSlyTQaLXLk2pzvRf/HAkQKynogxhFPd7FiQWQAoF29lO12u/MNBY3yqdxFRoP5iOrHxDLNnlKWT4VG+uDc8hwZ/2MAxwgQOMOJ9E5nRI7DRzsAbPxBus4F/ETRKCe7x6qD6m8ejxrFUDvE4IUjA8ekoQWEjGR0Xp29S7eXNzKOmTHCffffIxeq1ntcBjcwzvW709oBPDBYcbJ3xduvdM3ACCko4IGnyD4zVjqY54IDd+3civPU1GuXQ9qiF52IQEAECiKvS4EAjvlDM63tfwoZQEDBgEb7eBz0wvB87NLq3HUW7RihHkC7lCgWExtYBQhVr7VHmR7J9ISCAFd2xuMp2lvba6SsqpMz1xij7aII4UgZDujg+qjDMPTSIc5cP1LBQEABgAsp4llXOafINL1WnK+7BtAVpw4Q8GskWXFyvgoyNEyqbQBFyYslo7q7dojIKXm958pzQMDxMzo4K31zCRTJlt7HMf6zgTXSVtkgrSpF5ouNO7b4tba/r5/L4LSYLthsNjsRAXx6FbKFDy7hwz9ugayuSXFtEwFWlzYDCBlxO2btrNN+lVXlH01ZNCCq2zHIAYFoynNUj2c06vQhbU/ns2wzT5nejPRj5mhymkj2+d7b2/6Xcl39euXps3NktgwG7u7uwoGCny4MZEXh0L9OMyA/bchDBqOiaF1Zqv88FdADGQwC3M8BgcxjqoAaR5HQVYx+NFidwGfCFuVzKR6WG4g96oXiRjwMzde1X8ZHlL8qFijASMYQ1WNPG4AAeUJB8YuH3t7e9j46o+sHWMaRF9fTKV4+zqYEwGsVIFTb2C3cYoPhvK6PJtVhkbc7yqdrDxdVdEBg1Gg73emOHbm6OVCdgYJe/lEdtZ4R0BypA4f8daxG09cYg635F/a59qnwxTQMBphx9QDUM1ZvWZUDM64NwD+3xoApMljuvl5jz54BgUvHDa68cV0VBLm5VeZV/0coqpsDBJo+AgtzjZyjS4gMuDo5JRIpkwowy9okA1vuepSX9p1GrTQy4DxJyCYWDepLZRA1YDCAezxFwOuB3C4EB/65HyKwwkovU+w8ZlSZVuTTKXLXXnOM7DEpkkeVyZ78Io0DExFFxnEUDIxGvKJ76tG7lyRxRJf/o/fHIC++F9WV+dDjrC6RDCmA1jVqeLb3Ij5nPyo6S2lozQAbO55zzMgtfMiQmkNpnBfScPoIoSm6xzX37553oESvoy3AH6fTCEEm7Kp4nMDpYJ5joBTZRmXpgHFIMwMYfK7Rn48mVxc3WKI2rRjuKgjN+MvOIx54TEWRAbcTiCNgGt7HOwcYUPC0l04R6BRYNE75XlZfd535GHkBUY94LPGCSozXzMieg6qgPZLjqu5QIKBALzJ2PcNf8aadXokiAZAHnS7TtCp3EVDtgQGub4+0vVSHsl5k8OJsktrDqI0OoSEwoHuUefDgh0ZGGigpNaSZN8wDktO46AGORzy6ijJRAeDO0KiHQ28MCBg08HnPsGqdK3Sowe2VXxnsFaXwkaSDT8kpyeharwzNN0oTKbco316bslJU71m9DlU+HAmDYUekgRUYr4HhcYD70fwreHD1jJRbZsx0OkGVvnqBTsHq9IA6LJzvJQEBtLN6vBmPTm4yndkzipEToOX0zkcokn/nRKksqhw7UJOBA60r85EBA20flW3l2+ka5XUEAI7q4aGthfy1u0zRMbkQTEacr9tSgXycN5vlFw1sp/TdwMG/rgtQ1KagRxFdpjB77VJB9cf2ZCIj1xv0/K/HH00VXpm0rau8R/Ljyu79u3yifN/f9xfDtba7rSqaPmCFwWCVedX70e4gHSeOz2qdK30UGcNe9EC3nuEZ1jMaHTg3qVFW0DICLN01lc1oisDlo0ZNr0fnPd5cGh2/3FeOFOwiH6ebI4Or16r1isaytrk6IDjmtNm4cDatx5ujoQ8VuWNEBPSLhiysmJuMFEQPWKhCVoFwyDDKk4UA55lAOADAawL4mQgIRCGeQygTAG4Tvp8Zk8hAVLxbLt8pl0tQpq31jbQOyggMuDao1DFr/57i0PKU2ACq5wjeIgMJGUVaTBFwvcAjLxaM5LsHBNxYyMYEyxF+PB0SAQJQFClRcjJ7iDd7CuoZZiXHvzOqrj8iMODKjXRwph/4uYwPrUvGu5M93Qav07gqz726O76VXPooTc9hjZ7v0ajsDr+OmAsCAMA/Gh1TAxp+bM2/AazXsFUPzYEGJS0XwgDl54CAAwQun+gc9dZjty6iUi+9F6XPBuSIcEcAIDrPeDsXOSWi91rbHZD8c3XMBniFHz3uXWNynrvjUech+Th6gRZHEvQ+ZDZaEFwFApHSz+qr5aAuUdSD61IFBFHZlwAIsvbLntHzim6IjCDn6Qx5Bgi0HJef+3d14XxZr/ZeDa76WadzK0DA8dO7n6WNQEGUl3PyFLyOOCmgMhhQZmD0mXBdFxdqg2o4k59XwtQEyss6mnlA+t7rWVU4Wtv/qM+cqQF+viIUI6AgExpN79KpMukJvT7rFACfXxplitOBFxcV6NWxpzB6yrsCCDKjFHlLIxGLCARwOhcNqyjMTMn2jBsrNvfT+X8QRzciQOB4vURiBe/arqf83b1ILzkj3DPQ6un3gEHGS4/3DCQ4QBABVMhvBQjMlY2R5x14qlDW9yP5DUUG9OM9OiDREfyJVE2vhpXJCWRv4RHn7/iKQAB7OPp+avX+OYyUzY06nrSTRr3lSAEqRe9PcHXPAIzyPSKY2aCN+P4oiuTFXdc21O13ro7qnWcKK7rX+6+Syp0axJ7nEd2rAOCork7h8vN6LVJs7sdRAu47fpeCbrs85o6Ec5C2lZOpaCxGgEvzxX8GVF15PUAQ8RCVr+m1vhrl4THq7nFZGRCIeMraLapPliZKz2WonsE/6/25gAVUBgNquAEAwAR7zAACLy8vU3puYLf4xVXElamNgmNW3AxQVqvV3noGVmC68IrrwOcVAHOIp+GEShWinkeRGX3bovKkg4DnmF1f9AQ+o0MF9JgUKSOnAEBqPCtvqcuMvYKiTJn38s08LVffCByA3AdbesC3ByKido4AgatrZtQUAETnuu1SgRHrJkfnBLJKztA7Yx7JlKPIUx8Bpg7EOUDgys7kPQMCIAWECgpdnhUQENV7VK9V2q/3LI65PSHHru1HyxuKDHCB19fXewsH2XC+vb2129vbttls2vX19c6X0bBNEfuZ39/f9zoMqEc9Vje3rxEK/gcYAL88dcCGn5UdgwEHBKrojYlfhuLqFSl1NeoKevQZbKPR6RENpbr53+gNV5niVkOn7cOCey6F6vjtRU5YPpxn0VMmPUCQ8ddTwE6+mE89bq3Ze1AmjsfKdUeZocfzvfpmeauHiXo4AKB6AbxjjPT69hIoipCAnJGdY3iy8eCO+TzjJwICESifU6Z7RvVOVE40dqvt2dMn2fMVeUfeql85MgAg1NMtPRraTYBBBRBwc3Mzvb+cBxuM6cvLS7u5udl5vSh+mErQrTwoC+mjyjplAMPP/wwArq6upjerqVfAC6J4xTR/gTEjt7fZtSH/uzpH6RXsqLfK1yJAwHwywIkGbAQAoEizembG75LJgRY1jBUl4ga+U4B8ngEw5i8yiqo89FhJ+5yNPRtvzT+jDAiMtFlmnJxy7NWVIwHQO5U1SJdACnb4WubRZ0a1NyYzY6ukBrHXH71IgCsvKqNHmQHuyeGpAGFWzyyNAwcaEXHtdBIwwIYWYOD29nbH8ICB7fbfz57e3t7u7eu9uvr3O+pgPnqvOecVVUxBCs8HOqMIcKLGu7W2t3fagQKHBF2Yxr3UBNc5tMN1cG2udVRvX591ddZ0XC744akC/GeKkvl3Rgl9WxH8SyIFPc5g9gwc0rm8kW9WfuU8A1noQwXaLlqA/HTcuUhdFQzofwUQRKSgf4Q0XwYErEQvmSKnxwGEEcOWyU/kFIySA2xRuqisCt86RnvlR4CA750CGGTtmumLCqGuGj0YyWc4MsAeOH4wslBAYADfSHdgAAQlxDsQGABoBd2KYUQqosiA85rxLOeL/+hVq65sKBY+52u9Ns2iA5nh1+9fR8ZfwRHqi2ej6QK+zu2TKRwmZ0DO5YVlSk8VKtOIYeN0o7z0lK/L1z3jtgrytFo2RcD1i6ZCOF0P0ERtViHXJxkoqBh0Bj08TajPXypgVVnV8ww08j/np6A3O4546rUX3z/Uq+frzujxuQIE1w4ZUMruj1KvnSrjfeT+XJoFBiIPFUYZCgdrAjJPk8PvOmC143SOTz1+BiaVcLqWy0pLjSSnA+nqZFW2I6QCo3z22p7LVCCgayW0TXGsb5jjL1BqNEd55zxdVMC137nIKVVVsK15DyICAppey9JymSJvJyNVdlG/MJ8YhzyGVGFmayIcf6N8O/6cYY4AQQbsHD/gyfWra4so33NSBAQyecW5k89jAAHmrWc0eyCgWlZGDiBEY3P0eJSi8a1tO8cJ4DKq96t1GXrPACsUGAl+DwCY4MV68EZ5oR7T1dXVztoBpmjVNjc2AwBMXXCkQMkZQ7cwEPdYcTA/6mFhYG63273dC678TOnpOcrqTRPookn+57USnK+2MX+VDj+uF/o6Mnz4ZZ7IR1PUthHAUsqAgDOUrswef3MGfgYiVBkwmFYjiDRubUSvzAgU8L0KZaBJjWFUnssjSgtybXGpFIFX7fPMqIwY+GMBoUOM2rHKHD0foZ6saXsew/N3YKLHW4+GthZCYaxWP7drbDabScHwGwlhmGGQkAczqMoYeXOFowoiHU9X8K4B3eWA8t2q+uyTqbyGgAedRgFcZ0eC4eZydXeBe47b2AEBXSvB7YHFntw+4IWV4evra3t+fp5+Ly8vU1QAdXNrHpiccgX/56CoPTOPS2kEDCjyV2UReQ6uzMiL0HppXzgDwXm56JvLOytzjuLj9uoZCfy74yg9l8M8ZAD2VyGVUQfo9Ny1ddQOfN2dZ3zNMa7HMGZz+u+YwKAijxXDPQIQnFxH1yJQ72g4MsDCxQvPYHjALJi7vb1t19fX7fb2tq3X653voLMhzkhDeQoGYNzY+DGBTxceHUXACghcFMApLQYBzsuJVja7AZ95RQAJGilBPzAowDHOr6+v28vLS3t6empPT0/tx48f7fHxsT09PbXNZjPVy02baPmOKn19KnL9wWAoAgNq9HnthAMDOjj5vOqtgnhhak9Oo3tOUcyhTOb0uBpVyMoaBQMVPp0MONIoyaVRJKcRVT1N5B0ZHj7P8q4AD3cvA8S9dJdAx+BrJCoQXZ87zociA7wPvbVdxQ+DzF8+Q8VgaO7u7va+fQ6jiueykJ2iYgYEPDXhFBMvpEJec4EAyM039vjHv0YFIiFgD455dVECnhK4u7ub2hzG/vb2tt3e3ra7u7vpHz/sDAEY+PHjR/vnn3/a9+/fJ+Dw9PQ0laORktb2dzIwuSmij6LIQEQ/JqfYRtA2l6Xl8n1F8qcyRply5agZeMyiH+5f68F14THYi0hE/5rukLpzlITrr89cElXrnXn5Ll3mWfZAaGT8e2VyuY4Xvj4CRrPyDokCfARlfcVpKlSJwDENgwEOrzPBADw9PbX1et3u7u7aer1u6/V6GmSYj3aGgY1IpKB5oaICAw13R5EMVk7v7z+/0R79u90ErDSz9QGOsugA887tEm2J0kECILBer6dIDAz/9fX1Tr8ABNzf30/nAHOPj4/t27dv7fb2dgISDw8PE/+8sJD7haMyvHNhu922m5ubs4IBbdPMQDvF6EjlS5Uol91TZsgjujdS1+w8oqxvojz1uu6MQd9HUa+sLKfoo3J7VFWu0e6KSh6nomMZr0iOK205CgjwjDuvyPyok3auSMExy1Wd0dpYX4+COEdlMADjyHPoGjKFMYLXCTCAtQOttT2PEsacK+RAgG6Xw3W+xo0IRcQgxm2X227/fR8CthEyEGDQ0FNmh4Rg8Tzzrvmqd6XKEpEZhP3X63X79OlTu7u7a58+fZrAAa7jGOcADNvtdgIGvCYC5eHtkbygEvf5HQ7cF9Hi0UugyMBERsD1UwQI5vDhrrt2q7al44VlKls3EPHlQAAf6/oX5oGP5xioqvGqkuocvn5uIMBlV6JRcyJWUT49OZ5jsDjvY6UbLVvJyWDFO0d+pwIEI/eORbPAQAQMWmvTYjUGBLqS/f39fTK6OHdeWrR3HuUwMSiB16qePxsll4Z/rm6qRLmD4LFXtxdWvE0mNa7OW1Mw9unTp+mHc0QCcB2AAFGA19fXnde1YpshQNT19XV7fn7e4RNlA1BwlIbb9xKoZ9xchMZFmTQNn2seIwDhWJ6ae8bd06m5CPRG5UXbFPVZFymJ2iqjCNy4dO65yOHo5XvOyAD4dj++V+V1xIBV5Vf79ZhlfzTN7WsFvdU8K+MG56P8jNDQNAEDAQYG7Hm31nbeTvj4+LgTbtbB75QPjL9OC4AyIMBTAeBNgYwCAfDu6sX5M39s/KOpAifMLhTpjl39egsWERUACPv06VP7/PnzZPTv7+/b/f39DkjgKQN8PwL1enl52ZnawbZCvD+CiRcj6pTN29tb22w2tm4fSb3B5EDByKA+lDKlO+oZOG+3NR+Wnbs+obdHf4Q0ulJJ27vei9w4UJDxdS6KgMAIX8fy4PV61ZAdSmpoRyNpWb49GskzA5XVsjjtIe04+uzQh4rUW9Y5dg4bw4PE4jREDNRzbG0/3K8/pHHEnjl7/PpzRp7rwcAgAwJRZ/c8Th3ArIAdKIo8Oc5bpwYAwBABuL+/b58/f56iAZ8/f57AgUYG0Ec8ZQIwwO2BRYZcJ/QTTy8waHl7e2vPz89nQflMPSXC/xr14HTH8nzmpJ+b77HLyaJfI2sETkUOCBya1zlIdY/qkUuQt4rRqUQVHGUgoBol6vHVe+YjHYBjgIC5NAQGWtsHBGxsORQMA4GvE/J7BzhKwBGA6+vrvcZAQ0XKhcEAAAEDFD3mqACMMPjmvfT4dx2iHgaiBKODM4qMoP7uGG0LQrsiEvDly5f25cuX9vXr1/b169cJANzd3bUvX77sgQFMIfDCP37xEMLIV1dXbb1et+fn5511H6gzdi4ACDCP2KFwrpe79MDcKI1EGI5VxijfDG7c8UieUb9F+TmFlpVTAWkjlHnOcxTsOcEAyo9+1fbpOSsox91TfXcsynTcf416DoSOE23zQ8BWlcpgwHnsOjfc2u7LieAhYB6aX4CDZ/k63mjIz3PUwIXUdWdAZSrDLSTE81yHKPwF0kV9bt0A86v5un9XLrxvnSphLxwLBNXQZ4sIOTLAYIABCow8PkeNKArzC37w0SoNvb69vbWHh4eLAAN6PWvz6o9JB7AqVaRRqhp/50VEeY16TZFCcTuHIj4Z4LrxGpXr2rFCrgwnnz1Dp6ApK+cjiWXJyV2kpzQPpp788L1s+qQihz0dWqEsOlB5NuPR0Sm98t6YHY0MHBOoDYEBGAoYu5ubG7ttjDtAw+G8Gh75AQQgauCAgDYA548BoQsC3TSAAgA9dgokUxIgXpntAIHuTHD/mYHhY7QNRwQQAWDvH0YckRh+rwCvK8CXJbmP0ecMIDabzR6vzBfvGlEwsF6vw7Y7NTlDr22Kds2o5+lWjQhAY0WuMoNa8aZ7ytwpn+gZnRqIpiJ0+6xTWK78jLK6zlHcWm7FMJ6DnKPAP+couef1WqZXW6vLN65nfRw9U+W3B4pPTQ7QZ2lG8uwBNde3TnZdH4wCoaEPFcEAgXjRINLAEPJ1nKuhAaMwoljAhspEYADPMdhw6xkAAHQKQZ+PULcrU3lhxY78uB30+V50wLW7Giv0A+8cgPfP7xbg7zRoWqzlcOs47u7udhaDIi+Nrih/kA2cY93Ay8vL9A6Dc1A24FSOWN568oD0vb5zfGSKfNSjj551HnAvr6qBHlF+FWU6l+YCAW2LU/J4KEVAQPnnX2ZMRg0081EBbVWA1+MhAwanBgJZVGNO/ZyRdnlUQOqpIhdDawaYcSh6GAAO+asHzqTfDIDx5I8dgTQ0jgbQaAMb2egzvLpoUHnQweUEvzpYnLAwbyjTTVn0Opk9eLxRkN8pAMMOPrh+rhw9h1G/u7ubykM5mgdHKdTwcd/h+wbnXFTm0DVP74CcAXd9UzGqI3wdwxhFQKAXHeDjnsKvevBZfx9TkUeRBiYF3JFijni8BHDAdeAoZNRfpzIY4KHShofSoXLiHK0Kr05XROkqURClntxV29OVOcKH0vC3CZR45bgiUzXS/IITDqOjAqw8nDJxAAP5ZYZWoweclzOOmjfqFjW0CkW0ZoDvq2HlRXlRmWyo+GNQiATgxwv43EJP3mWB+6zEMe0DYLDdbqcwP/MJMMCvRdY2en9/nxZmXsL2wtbiaazW9r8HgHQVUJAZVwcUNT3o2F7PiCcSUbSNsPeOgszDOSbNUaKRMdNr5wQDKi9OT4FU/x7TUPfkWflQ/rM0vbQRjY6TYwKB6Nk5gEDHSK/fsnuH6I7hrxa6wlernzsBuGIAAVgTEDGcGU8+14VJek29f70fAQEtM/LWKuG1KDTrgI3yomVrmdzWMMT8kSH+8XO6ZfLt7a29vLy029vbCaRxeWrgHb/ghz9Q5d5mt91u22azaZvNpn369Mm237nI9QHvDNF00fNzy86iSKODuhIJQN6VdL0yWttfQ6BrBaJnKwbl1DRa9jkBAcqPfuwkOECA508BMquRogpV+6OS54hRP1ffZhG7c9CsTxgrsRJA2Bjp9U19rPxYiWhZ7horbJB61nzM6wN0rYAzwtVOiHjXznVeWCVkHwEBLZ9D8fqCJkWbCgYUqCEyw+sSnKKJwADK1r4BEMH6hEsl7YcsMoBrGXGbVf7dsz3K5M15ZyNgVr1/va5TeJyW1wVF0YJIzpXnOVQ1KhVP7FxgJSPnyIAYDGRA4BBgcEqQ0euLUTp131UBUQ98joCXU8nk0OuIdR6emVPDxAuysG1QDXn0siFnRB0pOFAjy2kiirwzl44HmN5j0q1Xjm/lLTJG1QHAaZ1CwL8uAkS/spenhoSBhvKo3zDgur++vu708aWCATdQ+Zjl3YHauWVpmaMKdlQRZ1GBCEg4sOvAgZaRRSoi+Vb+euM2KvdYXqCC33ORA6V8DnLjn6/3jKzen6N7jkGOnxEwXaGecdbyK9SzHz0907MLvfIObZOydsab6dT4gtijBGEHAeaqM2HLdg7gmvMy3DRAlFZ5rlBmYHkFvobmXVkauYg8zkjg+d0CCpo0Df+iDwg5QMfbA1nB4qcLMPVdEwAYiArgTYaX8AnjEW+Rz7WtouMegHODNTOaFap6Jtk9Zzhay42+lp+BXldmRRmPUK+Po6hOlZdzAwJQJI8qR9qnmZzMqZuCvlFwXOGlZ+yqYCcqo5f+GPJZzcPxlOmdY4Iv0BAY6DEGg8jnEMJsdXEGBFpre0Y+WlxYIY0EVLyPyOhWOsRFLXDugEDEgyN+noHa29vbtAjQRQH0y4wcxeE1AG7Q6TNoB56a4XI2m830WuNz7iYA/5n3nymoah+545H77rxCo6AiA92txW8dHIncuXF/LACQRRV6z+m/Gsvo2jlI9YWC+cjBigDeMevRAxnZc717Wb3cPygyqi7PU1PU/mi3KBIQXWNyTuOhNLSbwO0Tz5RGa22aL1aPUp+NOpWNf6XS0QDRqQukrQimIu2oriAHVHiapAICtHwGWi5Kwbzwtwr42wX8xkLOU99ZoK8TZkCjdeUpAtQNb3/Ea40vJTIAGvFicW8kGuA8s4oy6wG/jHqGy7VBVh5vX+N0DAI1PefN4zerxwg4j6iq7KN0GU9RmnOQOhC8E8jp4UMiMFVdi/+qTuXnDjViEcjJAEGVR33G3cvAY8az8/4dGOD7p4gEKA2BAf5XJaaGhkPHLLguX9dAFQF2nc6eu1sZ7pSPU6LHRF1OsfSQPdJFCl7ziO7jmKMDeAkQdhSwgsf7C5QPGHkYCPc2OpSDMvBDdODcYGB0UFWMhv5ngK0KCnAeKdtePSuUeS0gBgT6XDSW8R+BA87HgYARwxWBut5YiJ5Vmuv5fgQpKGjtp3xFYLVa5+h8Tr9kbZi1bQSyHY8j/Iw8XwXXo8C+x2cGZrL2cvdHdO7BK7qYCbcIkJGNCiR7+9qQSAejjkWIrkxdvewAgTt3ddFGd4q8N63BNKq8nWFxafWeWyugfGbvG0A+7quSqkxV2eO6LjBFeW7R6UeTQ/G4XpEHziNKyz+db4+AQKZItM3nklO6VW9Gp4MiPnRcu+tKc0FAhRxIrgACNZ7H5msOKRiMHCwXyWGqAEqXvsqjey5q6wpAHwUCrq8vjZwTp7KayWcFnM5th+HXEbPwabiZjRC/IcvNleN5xzQbbBUyBgc6F+moAggixeiUtiPekjeCOlUROuPRK5uNDy8YVECAevJHoziEzy9t4rbDc2gzLk8VE/87AxZNKX0kubbW+615JJ5FBnRrJwOxCgiI2kajW5GB65FT1g4YRcrGbffle70yI4rKHzXEvXRVRQs+RvM/NWmfR6A8czBOCbzcOOkZ7hGwcU6a015z2zqTz5HncTzSzkNgIPJGnVfKAsiLy9RDdMdufr9KauyPpUzm5sED9pAO7gkJ+oB3DnCUhg06AAGmCTikz+8dyIwm88WLFBVMZFtGP4qiAemAX/ZMBBwYIEVggMeO28YZzcErqAZfVeMX3esBAlffQxaAqjz1wMkIIIiAkt5355EjcKmkEYJsHZZ7Ds/25LvSFpV+OVWbZiAd91WOq+DUpf0oGenJvXMsHFVshtLQNAEbaY4AsAJE4aoEs73artOy3QettT0De2rk7gSBr/UWVvUUUpUH/aFM1xc6TQDloe+M4E8+v76+ToCC+7G13cgMKyPND2lXq59vpozWjHwURcaPaQ6adwbfjQntC3cOYi+c2xl9gu94zJWhzBvneh2q/E6hOOd6aO5ZpzscSLkEYlnBeWuxTtBnXd8eQlFbOh3pro9Qz/BlfLl8RsrkfEfrwHxXALx7XvstAgMqD3No6A2E+NQtCtY971GoPPIqOWLgiCvG3ieMCnujnI6fVcPF95xH4YRXPUCXhndPaLtpnd17BrS91FBovTWdKosIFbPxx+I+RAfw2mDdIuoMOwt4ppi22+20HfHp6cn280eR63dHFU8i86A1H16DwSAgWnviogGt7QJOt0BPjVoGQJVH7eusXsegHm89x6GX1slhpf/dmDq1o5ER86zAHvw6ZyAzEpne4WMHjivAyclN5VpvHGVpevxF1w4FGLjfq0smm635dTYRr26s8rP8/JBj835OSV9ooYUWWmihhc5O51/RtdBCCy200EILnZUWMLDQQgsttNBCvzktYGChhRZaaKGFfnNawMBCCy200EIL/ea0gIGFFlpooYUW+s1pAQMLLbTQQgst9JvTAgYWWmihhRZa6DenBQwstNBCCy200G9OCxhYaKGFFlpood+c/j8GjfO6cyODcAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGvUlEQVR4nO2d53IjyZKsA9Sie2bP+z/j2j3bgprE/THmxQ8Oj6wCWxDsQZjBoKpSRkZ4eIpardfrdR3kIAc5yEEOcpB/rRy9dwEOcpCDHOQgBznI+8oBDBzkIAc5yEEO8i+XAxg4yEEOcpCDHORfLgcwcJCDHOQgBznIv1wOYOAgBznIQQ5ykH+5HMDAQQ5ykIMc5CD/cjmAgYMc5CAHOchB/uVyAAMHOchBDnKQg/zL5WTphavV6leW403CMq1Wq/g6Ojqa3vXid/8sWa/XtV6v6+XlZXrXS+c0dec1KZ2uPKks3r6eP19z+XneR0f/YL6Tk5Mp36qq4+PjrTxZT9bX373+/pnX8PP//u//xjb7lXJ6errouq792Ef+Wdeme+Z08uTkpI6Pj+v09LTOzs7q7OysTk5O6vT0dHodHx9v9NN6va7n5+d6enqq5+fnenx8rMfHx3p6eqqnp6cNvdH13q9PT0/18vJSz8/P9fz8PH32Pu/6O+myynl8fDz9xvqdnJzU+fn5VC/9x+vZplU16WlVTWVVXfVZ9Xl4eKinp6eN/5MOp7rN6bg+Pzw87K58Pyj7aHffKj4G1P/U//Pz8zo/P6+Li4u6vLycXhcXF5P+aJwcHx9P7aNxoZfreFVFey/9c91znVdaHH+Pj4/18PBQd3d3dXd3V/f399P7w8PD9C7dVJncpv8OWZLPYjCwj7Jer4eDJRlp/s7PNHSjhvPrd5GRg0gycvxLyqX20fvT09OG4r+8vGzkn4wk0+ycfyoX25FleG8ZAbhRn6a6e/t6el0+o+/uWPXSde7kj4+PJwNzfHw8GSxKcnJd3brysi+XiuvT8/PzBjhl+U5OTrbGg+qaQIz/x/Kmce8GeAR03VAfDmn9cXEgfHx8PAFfAgC9CAIEBM7OzjYAJPWEuiEwqN/Ul25zT05O6uXlZdJHppnG6fHx8UY6Xi+N0xHIFTChzu6Lfn1oMFDVA4I5IDDngB21dU575FzmXl05dkGMS+qh/GTwyAyMGAl+79plrkz7AASWtKU7dr+H3x1EUbrfvM/dIfp/Mihic1gm9eEuOtXJCIyO6uafR+VwZyuDKDk6Oqqnp6dJH6mvenlURUDgIiOcwOwcEEhMyL4Y648qdJhkjRTlEwRcXV1tAIHLy8uJEXAQoP6S4xcI4MvBYlVN6WisS+8SGOh+6+rJ9D3Ictk3QPDhwUASBwLp9x9JN0VJdHgJVc6BAhePULpIfA4MMC0a2TknnQDALszAkjK+t3g/OvjrAMBcP/K35LQ7SVNXnNbpJKVLZzi6Z1ed1L0pDdbVp6BklMUOUHitR1IezZP58Gk7r5+X3V8jZoD13QdD/VHFgYBPDRAEEAhwakDTAuxTgkKfHnIwkMY1y8Sx7eOVNtKnc4+OjjamILvrqnpd2idA8EeCgaocufjvnbjyuAhVdkbIo7xdjG4yWsnxen0cmHh6+jyK4NwBdmVJ9Z6L/ucc4a+UuUE2AgVLZM45pujCjUr6TjAgo5GA5pzo/vS+Xq+3DOIozU4Xu7U4ySg6SJFOkYZN+erl0wRe15RGYgU6IJAM93sb6o8oaTwICGh6oAMD+v3s7KxOT08nQExmyVmBx8fHjekB/U+hrvs6oGSrR4Bc/5+cnEzflYfbYwea+l316BjJ3yl/HBhwJ7c0KvM0lkTPfo+XoVOqXcGAfk+OIKU1iuSdJfCy71Ier3vXVru2/3sJQUEanA6maKAkI+MiccfJ39P8ZSpjJzJ2ib0aMQxpMSkdZqr/SMe9LkzToyGWS98ZmVXVFivAtnBd74BAYgXm9PsAAt4mHhBxjYCAgJiB6+vrCQRcXV1trBPQYlMJF/ERDGgxHxcNsk+TjRoFahyjnP9Pi4cJCM7OzqL++bRWsu3vDQj+ODAg6SLgpeDAo2W9L4mSPT9XupGhT2l20ZinJaPKqMmNuec1AjxubDsDmRzPR5YREPDrKB3wq3rtmwQa6TgJMjqnJvGpAEXFTEdRkKJupjuqD/XGr+9AAI2n632a66U8PT1V1fZiwk66KRAHPyMadm68HYDA2yTZv7RgUEzA1dXVBAi4fkDTA7RrtGUOBHzFvi8sZZlWq9cF1Py/anu6TmCACwSTfhO0ME2yGfo+sq3vBQj+KDAwF7UsiU6TcqSOG4GBVJaEKimdgiSH4+lXbS4G9MVTUvxReZcyIJ2hdAVOjuYjgQVnCbprCBIlc8Av6SONDo1IVcW+Yx7aUaDyOO0v58vvfKfRJAWbrmXeyRiOVlL7dzfW2hGxRFeOjo42DCzrrbw7kNoBgCWA9yBjoY5wncDJycnG1kFNC3z69GkCAtfX11vrBGTX2DecAuB6Aa4b4PVucxPYTvrtdSAokC77LhifMlA5pKsjO5+Ctt8pHx4MdNHK3Iv3Mq10jXdeWnEs6ZTK003SOf855SCKTfd2OwP82lSP5OCXoFe2w3vTXz8iI1Aw50Bcur534+TGgcZwDnQwLS7Wk5PlfKk+d+sR5hgpN4z8zl0QSTfn2qRrp6SP6T2tg+jy+oh6uY+SgAB3DTgQuL6+nl5iCcgISJecEdBWQp2xob38Dw8PG4sGZXc8YPJ1BCObKLBNQMCXwCeDMU25aXGhl9/zdaDD/3+nfHgwUNXP1ztdS0OZDEgXsbGDGDEtcQJduhQCjDnGgfcwwmJUlNqF9UhlSCjZDe8uytnVc19krs/S9XTWeh+9RmmmPNKKexkj5Zfoceoq86VDlDAtXpPKRAOl/k9jy+dVGdGRUlVanYyctdfdx6e/87q5IOAgPy4JCHRTAwQC+qy1AlowyOkBOnhfMEhAoEOofM2MyvP8/LzF1FGv0jbEqlcQIRaAh4GdnJxsnFfga4DEiHi55liB9wigPjQYSCDAP/v/c0BAnem0e0fv6DvF6clRZJLSHYkjy5EhlPD/JayA19EpN6LuVN8u/X0wwksGV4o++Z9H8EvTlfjCOq7t0Ny50ky0ead/I0frdZG+617Rm14PAROPtBLYVp1IofpZFhxLybl7HfWZNGuqU9KxOfA/114H2U1cNwgE/DAhggL9xukB6RCdqE8P8D3tChkFPSMWzPVTZ2Do/fn5eQICylvfqe9sh7OzswgAWC/+TvD9uwDBhwYDVbtPD3SgwI1b1Sv97hFSMpBV2Sl6XmlRk4OA0WeWJzmBOYfr/3fzZ1RIL6cb6n1w8kvkLYPK+3dXxsNBYLc40Pff0zD4WgL+PwdMO3peovR1rfSTuwvoOBMY8AOS0voB5qe0vGwquyI4Xc/6dqBA6TFtAuQuQNgntuqjiusE9YFggACAiwedFfB1AhwLfsw0o20vT1Vt6Kj/XvVq06mXXQSv656fnyc2II079yF+rfIg28GdMsmn/A75sGCgc7idw19yrUc6BAvr9XrDUKbDU9y4OELsAEHV8vnnTlF8VblLWk+QnBTnlBNS7crZsSP/VvEIpJu+qdp0/M4OpAN5dm3bETMjcEujSZCZwIuPFZ9HFRDwZ2EovQSo9b/00g2tL8Dy8cN2ke5y3I1swi5teJBNSQGVAwFtIZTjd1ZArAFPGayqjT53AMAFs8zXbZr6v3sGQdXm9Jy/cysj0/QAjm0hlo2A4OzsbOMaAg9nNjTmWcffYU8/LBioyo7dB3+6Ll3DuU0aMHUE51494ujKJvG5JBdHoXPSXeMLwpS3l4kOKoGCZKA7UOCKSnZk3wDCzxpUiQFiHnppUHuU7WnJ2MhJVtUGICA420W6/mbezgwQDOr3BHJVPy4YlAPQZ64jIJiWfhJQU5cSyE0gYDRefPz7dMZI3ltPP5okVoCLBnmgUFozcHl5ufHcgaoMBLhTQPlK91arf6al+B9tvR91rWs8D38I2Gq12tj22q3ZYZpPT0/T4kHlz3JQmK8vfvydQKDqg4OBqryiepcX7/FFT54HjVe3IMr/Zz66Xt87wzbX+Z2jVR5EzGlRoYMAByp0+k6zJlDAMoyUdx+MLA3Az04z6Vd6/kO6V8L2TUBslF+XrtOWEk578bp0ABHpdwcDPEyGgIAAO9G5rksqE/9n3ml8+H+se2L6uvaaA+L7oLv7Jq6HzgqIEeBZAgQB3EHAUwbZpzxa2Kl4ReBisxwI6D931j6OJAQDehImFyeqDN0C1aOjo8lH0M6zbXg9AwE/H8EZWLXHr5QPCQZGTt0NwAggpMMj0kMrGEFp8QhXps7NWbnx8Wgn0e+7iJxwmhtNgEC/s3wUZz3StMaoLOndP7+3LAUFyZF3v1EXkw56fjRK3VoC3TOKFNhPBHD6zcsj4XWk2F2oP9Tn7hHF/oAlz8vTTA7dQUCaGuA93f/sjw4IzMk+6e2+yFIgoOkBAgECAp0rQGpczjCdHVBVG1NRibFaKj4+pUM8yIiPJb6/v99ap0AHTp9AEEzGw6czCHh8MSTBwu+QDwkGXJIR9k6ZAw9VtbU32tMnEOC6geRMHRBU1YaD9dWj/O7iCk+nQJTZgR4CAiphclCdAe6+J+kAwUczqiPD0v3nuphYpqrX9k966tGMZDQtxbwT4CBl36VH3aTe+LQTX1oprZfAQZqSUNpqF99CSZ3y6JDpJH1N/3sUyDJ17ZjYi4NsyggI8HChbp2AA4HT09NJ1wgC/DCh9Xo96bGO/fXFqxTS7+mhRSy30pWNExi4ubmp29vb+v79+wQKCE5Ubq67UdtwiqzqdbqQeklmwJ/Mqc9pHP0K+dBgoHN8KRJwo+uRmHeUGzOtIOX2Es1RdfNUyeB0B14sZQc8L4IA/d+1CennbprDnb6/s3x874xoun5fZNfyLHHEfh2j/qrXdvRrXW/deatf00r7JMxTn7mISgyC3gmOnfWiznLPtUeCfliMRGmk9qNu6rv3C6cZEgPQMQq8PzEDu0SRB/lHEhAYsQK+nZBPIxQQUP86Ra+XgMBqtZquJwjVTgSVRWn5gUSi+iUqs8oiQCF9fXh4qNvb2/r27Vudn5/X9+/f6/v37xNj4EBZ+WqcEiiReaOtJhNBFsQDxN/BDnxoMEBJEX/HBjBid4PQOXNtD9G7nGrV9vPl/X6neTsZgQGCAP625LsGCA09JdG1HQswov1H3z8aEFjqKFxPRoyBU/gS9keKYB3oLV1ExzR5ipqDXP0ukPv09LShNzxpzVkBrRXww2Lc4C0RlsunqtiGqe6jPLqg4SA/JokZkB6QHZCzlfP2NSV0inK0fFcUfnR0tJE21yJwqkGO/P7+vm5uburm5majzNIrsVha5OiA4PHxse7u7uri4mJjLczNzU0dHx9PLAHttgCB8np6eopgVACB9RFg8Ucxu77+Klv64cGAI/0ECPw6ilPu6lDO8XT5Shh5JVaBlM+czEXRqbxeJr9XhpzvvN5p2LSmoSvTUlo1RXy/S96SrwOrLuofSTf/7vmkNR3d/SyX7vX+YVsnQEz9lFEipSrDrijNdYzRv8CAXs4+pIWDLokdIPPF9TpshyVAg6DC634ABbuJtxuBAKcJ5PwJAHxhKQMQ0vKam7+7u5tYAU4tyXlruuHz58/TMw3kxO/v76epBwEMH0sMzpS2MwTPz891f38/fU/bE5XHnC76mNO9DqjPzs62wAAXLia7/7Pkw4MByYgFmGMDqraPXPW0qzY7MV3HqInXSeH1O+ksys+g0x0sdGmPFDeBgLeU6T0BwK+UxAb4b8n4eESvKEVGjA6OUbmu9/SWlFPvNNqKTAgqNO3FhUxkCyRkGLid0BcOso5VtTEGRgv9KFwEme5JCw+ZnvdHxwwQePypOvujkoCAswJkiHzqyIFi1Wv/yWHf3d1NL1H7XL8i5oHTDgIFWkMgx6ntgGQdRMeT2RXrpboJzKisYgU6YE777p8JyB8eHmK7JoZNwIjT0qNptJ8lHxYMjAxyYgaqtoEAHbQUSWnIOOo/idYJdHS7/0Yg0UXmu9Q51d8/UzonMpqyWMIIpHuW/PYnSeqDDmhS3FB0EbHe56Zf0hRSArQ0qq6rmv5iFO6GqGpz/l0GXu+ct1W9+Znjy/VV9eX3DgSwDdICR28Hsnx8HZiBtwuZFgJDzuVzqynZANlPOU9ftX93d7exaJDnCHCKQEcYK305Yelu2g1AMKAy3d/f1/n5+cRCrFarCcRIp6lndPrcFsixyMWAEl1DdkTlICAQ+yFArnb+1ezAhwUDks4gExCkayWMPmh85PQ5V+qGy2W0VmBORte44UzvHRhI+bgyJQDxIyzFnwICRoBJkliojn1SmtQrBwUjoJj6eJe2pgEn7cm0fIEsV2GzfkxDQCCBDJ406HOgCRh7vTsGjZEYxQF+qnfHEhxYgSxzrEBiiXj4lANEbhN0VkDrBDg9UFVbQIOsg4K3p6enaZ2AFvt9+/atvn//Xjc3N3V3dzelW7UZoHl0vl6vN3bGOAtAwKGFiWQFpOechlO63jYCOmQGdHCRGA2lz2DhZ8uHAwPJoSdDnIzyyLDTqDBaEzvA+7kndq6sTv/ylcCCd/Io+uzeO/F8CFrmrl+SbgIRf6pxTYZxLur0eW46Qj+sJE0pSEZgo7uH/SAj5TsWyApwDYGPDY4tT8cPGtL1nh7bYgR8XLgGwY8oZl5kAzhuvZ9+B/36J4nru7MCvi5A7S+bx50B6/XrIj0CAUXvVTU5YzlmTkWoj+WMCQS+fv1aX758qS9fvtTXr1/r9vZ2A2RId3nglnRZeWmr7NnZWV1dXW3M4WvKgWX2rYGr1WrjgUpPT091fn6+ocPUUwcDyiOB8l/BDnw4MCDpjDHZgKU0IClHGmYiQs+javOYWXeEPoeU5pQcEHRAIL30P69dKp2jHkWz6b+Ork7pv6eh7RiQpfdy8DGdBASSnuySl08ZcL5+btrLRTSjg1Cl74uiqjYBgf7vQK/XMwEF7r/mb7rW1ySQVXD639tK735/YgNVDxnW0TkhB3mVFIg4K0Qw0IFMLRIU+1T1uuqf0wMEjDzj3xkHATmeRSAG4Nu3b/X169fppTMCBAYkmpOnfVD9uNtBdbu4uNjYrqgyK+3Hx8eN+hIQKC+BYv3PKRQ+z4FggOxAYnZ/lnwoMDAXjblB3gUI8LtH9K4siV5NUT8RITuUCu9zTUvrr+9831W6uo+udSUcsQJdPu8lHh3/iLjj88hY6ctoOSsgcSfHssppSbjmpLuP1zIdGaHT09MtnU4O3euZ+pDjRHk6WPG6sq10r6hU7xPWdb1+PQ/BWROvN8EbWYqRvTgAgl6S3U1AQJS9xOl0AQH1D+f1NZ/vzIGcJNceKG2eSaCDgTQ1IBDw9evXyWEzcj86OtpgvdJYFqNxeXk5/X56erpxdoLOUri7u5vGPqcSlLb7hdTGSp/sw8PDQ52enm4dh8x2/ln29cOAgQ4IkNrxAU4ZNRj/o/FJTo95+H80UnT2UlwHASMgsNQ47QIIlkwHdIBAv3XR/2haYB8p2BHwWSodM+AGUfktmVZK5aSQAndwKONJY0MAoe8OisimkdpnuruWXayGs2SMbPw+/paA20jXHaz62gEBDrIhByAwFu8bB1HcPZLYAB38w/3/+t/BgA7dISNV9branpF6VW1E2Xd3dxMQEBjQ+QICAqTxVT6uF6Mf8Z02Ly8vE4im0+baBT9109dGEBAoT44ztqMAwfn5+dQunCpI/ulnyN6DgURTcXuTFJKd6AOcjmoXp5mi/VQ2v1evxALsAgK6evC6zrAuraO/J8edflsCAjyNfZOl0wdJb9jmXbTJ++ec6Zx0bJgDD4+GU32XGJKO7ep0QxG+7iWjwL3SzrYxHb6P2mFX8b7ywGKODfs3SrK7zgrQ/hIIqM8FBOQIecjQer2eHDS3EUrYT2TcqmpDlx4fH7dYgdvb27q9vZ0OBeIr2bk5tujl5aUuLi42prTkh7hGIk0bd0dpe0Cbgls/w4O7e7pg9Udkb8FAcoqOSgkEiKxGkUPnAPx7QmAyiiMnre8OCjpAkfL23+cioS6tkRPvZAkQ4HVdeini21fZZfpgxFDNsVKpbRnpj9pSaXp+zIvpKAreRUhjkqr0B8VQ9wg8dD+NqUCFP4TF18sovaWy9Fq2wQgI7LuOvod0ep6mB9wRkhmo2jyllTqheXGullcaVZv9x/uqXtcciAW4vb3dWojoW/wSC8wTN1NQqXEqdsAjfmeKlQ/tPvNerVb1+Pi45fzJEsj5i3ngrgW21c8ErHsJBpaiUl/BmozfkijIDYIiGzpzIbK02CkBBl+wNcq3+55kZDiTcfPBldIbOavRfd093n9defdRRiyASwdMpatV24/knUvT0++MMYEvdU9pM/0OpKhMdM6+WlrHwdKRex00DjkFQGDCuWO9O2BOeupMxohZSG3HOWC1U9LNg2yKA3m13xwjK53ndADZIfbxer3eiNidPmc5FJQRVOr++/v7CQTwsCI/478T6ebR0dG0O8DXDij/s7OzqqqtJykmXUzTEQ4g9K4pAI7pdPbAr2YH9goMJEeWGAHfyiIwQGXzRRo+h+h5JpECrlabBxLpP0ZFymPOUCXn+CMRfJdel2+X/ij6H+XfSYrAPrrxZVsnfaSjrlrWfu6kmJdeiUaks5Oe0nBRLzuARiBQVRtMAJ/jzsjNI3lFMlzg5TsEZLj9aFWyBD42CQSSYZ3rJw8i2G9kD71tfmak9ZGlC8KcEXBAIFE/+SmCVZsAkUCT+XgELyCgsSLWgWCAixATeFW9KFxMKL1P0wYCA7rW1zkwrxQYpjEuVkKLBMkOCCQ4GPAzDX6mzu4FGOhAwJwyEgj4Sk6JGxOyB8k50ZCnOVcyBUSuHlnNzbPyc1IU5efvo8jGjR/FKTjmO4ryd5HUbx8NDHRlTLrpYICLiOjk3jpYUzTmUxJV24sE5yQxAVW18fQ0f9obo3lSvgQD2kLl5WNU17FmPjb1W/fZgYy3mwcS6j9RwtTPg7xKF4h1bCwPztG9BJdy+gmA6j9dz4WG1BE5fpWHrALPKHDn7GsQWDYKwcnDw0PUn/V6Xefn59M408JHZyBYJ58S87bVmoqTk5ON9RVkYnjQ0uPj47S4sPMvPwIM3g0MuEMcAQEaXR5xqYaSQjpdmowFIyiJGwWPSmg4/f40V8aVrk4ldU6cnxMIcMDQOd3OwEmJdd0SpelAypx0oGDXOex9kxFAJSit2jx5b0m6TN+jkrR/2/uxW4/iQqMlx6jy+h5qGVfOVVZt6oW3AdkB9nliA7r2lUhnO3A7Gh+6n6+q2ggm/Ily/3ZZAgTc/vqaAUba+i5JLA/7Tu90qjzch5GwAKq2JUpfGYxJaPsSaCZAIfDgSwBAFD3zTmsTUj2VF8slp89AgruF9J/WDTgYoG/6UfntYGCOBdBvPm+TTrny4y69k0eOmDR/ctBdVE6Hmu4laPAOY3pzbcL0WAdHmO5ouzRGA8G/J8OY0kvXjIzqRza43uZJL/WwFLUpIyKJ2r8DRiMwnBYNLm3TFI2pfDJuCQjw1DYHHD4+Fb34drOuPCx7qhvbbAQk09hg27Ac7sAOYGBTEuB1FtYfQ+zt1zE3dFruwNwB+rqVqldWR/pKHb2/v58ceZrSUtpV20dcy6brnSCZ/kLRO1mE0dQEbbcHqqvVanqaIqcJOM2nd2dkfJu6t/Vb2YHfAgaWsgCdIaQxdLrKo3yPQBJNT5rTy+fXJXEQwPy9c4gW54BAB0r4Su2n/B0QLJXURiPhAPHfPrqM2JBkKAkICEq9z90wUgfnwBXHASMHpUmg1+kR2QAZGa3K5uEtCQikB7FQ92UgX15eJmPlu3tGIGZuJ4ZH9/6/6qd0U/RFJo87kNLK8R+hWj+qzIFQnp3fPXegansawCNXBwE+VblarSbWxlkBnUjICF4vP9RtjilzQMDxSUDANQQE92IK0rMJPAh1+131Giio3Pf39xtT3VoDp3scEKQt67z+LTr8S8HAHAvgypeuodFNKNSpp26+RmmPaHSlwcZMCFfXd5GwK7+/p0i/M+Iqd0K5vL7bUuntlNAqr9lF/hQA4NJFmMk5k8LnlJHSkS7QQCgdRiSk0ynudKm/LCfnNvXyhVg+HqpeT3LjFEEysMm4sh58nZz88wREgQR35mwnjiOP3LrxwLLznW3O+nqZHaT4WP5Ro/rRxHV9ND0wt6VQep7Y0S4wYrsfHx9vLWKVXgu8Kv3udFcHIl1QR5GeKh85auoHx6lvu/WpCZWzs/8+DXJycjLVVeKfve29fD8KZn8JGJgDAV74NBi7qIgipVCjpQVKo/khNjbzJAJ0YCAhuk3l6qLtt0bh/hsN58hoJgopKanf8xZHn9rhTzGsSR9HA5HtTlAg0X3Pz8/TtjwaJO8nz1t5pH51A8hoxIGADJJAAA9q0X/JiHudHXTQ4NFpqH4JYOn/XcRBtf/OzwRUMq5z4+ffIh0z0AEA7ycHAr5uynWIeiQAQFZN9ykyF0NE8MltsN3C7V1sDgGofADLULUZNKZnBszZVd2rujsoYLt6gOcMuQCBfOBoDCyRnwoGEggYOf4OCOh9FDFz7tUjMFcKls/pGmcLpJzaMeDzvkuUzBXiZxqanw0Elg6YX1GXjyAeNVFv06p5OkHOzSdHXFVTFK30CWLlSJm307Iqn1gA5sG5T8+XRojrBbpIK+mJA6AEBmWweL1kNN3m7Tk33abfU0ToNsD77t8MCJJ+J2bApwWoh66z1CtOT1VtAwHaXV2nfffaU+/6wX7uQMBIB1TmJK5z8gPUYabR2dA5faLPUltxykrXyL+p/gRpumevmIERCPD3BAhSw7nDk3hHu0J2BowRald+GVRRnAQEmjPyCGypI+0Ugx0/59TTdW5c3fHz+9w0QUpzDm2mfvM+/ROMrIOALjryeVLqjEfr7C+CWoLYFOFrTLBvZDiUpsrp+bKMTscmIJCingQwFEV17easRQI0TC+BqhR58Xc31F7fZItYRn1+qzH9qJIYAQcBjEhpc6s2F01Td3gEcBeccXqYOxJoz4+OjqaV/JI01tzGORBY0q8cj14G6o6P087WLQEEare0A8fBPxkBB7UMKjQedtHlN4OBuUh+jk71e5YIOzjdo44bRTJ+r/L3Ax/UmDSkMnq7AILOcXf1S9/T7139eQ2jwAQGRmXdVf5kUNBFTPpc9WoQSVt2zkzt4IwA8xIQVdp60Xj6ff6e2pvGx0+AcxDQ6YsDU5/j93Il1iJJcuAJGHRpJeDa5en9+G9lBiQdI0BQ4JFr1fb8vdPnHUurPKs2Txj0d04De2BHPdH/bwEC7tCly84O0P57PdgunPYY+bgODFDEDKqdNJ64boCAQP3xFlC7ExhYAgA6IOARfvo812FdZ+h/d3gpL4lHdQQESi9FX24Uk7FMjnFpx3RG19OSsiZF6yizORCzqzGcAwAs265zwfsiHRBwJ+IOzFfgp6jWjRrZgartftRvo7Yc6RnBMstJJ7tUV1R+5cnxSXZC+VIS25faw8EU6zFXV/2f2Bgaz7SbYIk9+hOkYwScFeAUAW2kM0wOLrv1At7WBAp8T449gb3ROEs2dDRFoHbx9FQH1w+Wh1G7L57t8mUeaVpP6RJovLy8RNaGZWT5lurxYjCQBow7/yVAIDk75tEVfA7hLTVcc3X09QPMV4groeOuPvqdaXlZ/L6kzKkenE9i+gkpp/YhsOiAmktXnqQXHzXactCrzzSYmrfzge7RbKePSUb93v3f3eP/Ewj4FMAco6b6zwHsTpKdSGmMAH03FkiPduLldlbg384McNw6EOChbh4sdUBgbu2WbI7bL3/3vPg/f6ezTp9HkspVtTn1dXR0tOGoHcyqzcQgaEGwvo98HnWe69M0Ld1Nsztz4wsJ38IO7AQGOkefHL+/s+J6eWFHjn7ECPj7W41W1WYES5RHqohR0BxIocyVZVQXKqojVg4qptWBAC9TGohd+RzUJTDQ1XcXxdwnYR0dEFBfEs05Z4x0n1OhLp1j9L716zxqcjCQtkSx3l0U5O3C61M7+YK95IC9nEvA/UhnUxpeVpYnpbOrQf0oMmoHP8clbWkdbR10Rmtkk1MQQdDh/yn/qu3+7YDAkv7z8SMgQEDgi8k7B81dFZ5/0mf6EzJiDqKVp/wQAcFoIeFSH7gYDPig5nsqiDuHkSPv/u+u7f4bRa3+20gY7QnZsWOcLkoGw/8fRR7p9yVoUgY6UbIjkDIy6qmtqFRL0mM5ibQ/srjR1GeJR9ij+rpuLJlC6YBVmot16aLtrlwJIM5d3zGDMlhiUubm6Ttgw7I4G8Dv3pbuIPyaDgz/iQBA0oG4NA2mw2+Sjo4AQFWe3vRyJCAiQJCecyFJDrabGlVZvd87ob2jkxYwqNrWOZ9i6cBAAqgJzJBV0G++rs3ZLQWtaTpjiewEBrrXHP2XGnrutyXS3Zcc2lIDxzTp+InIVF+BBM7TePpu9DwS6mSE7DwNKaunO5c+P4/ahkqlci1Fm4lN+EjSAVyubK7q15N4Wp5ml1/3nel35e1kBAikzzT80vU0D+nlS0Y97U/XqwMCXf0IBOjUR/O/NKR6pXsSCPpTJdmS1Hcd+1U1ZqY8bbcZ7McEHAkeHTgyf7d3LA8DorTWhLruZU1tpHt1X9JNj9YJBhywL9FZBhdcRJjaLh1C5Mz1EtkJDHTbTEhhzFX4V8rIuM5FPI7OEhL2QcPonEaKCt/l3znJOYe7BNB4mql9UnSwVEZKtuvvH0VSP5Lad1YgGYxkgNK7PneRzJxTS8auExldpktJuullljH0KIX2wlkB5a18U/3T5669OnYlRYy8p9P/XQ3pR5NOnz1Cd4C0hGWas7fMiwyEP3/GdSrR/k7ds5xL20HXj3TO06TdFwjgAWICA+v1euMsEaVN9pC+h7ZEzADT9ekC98nJ5/x0ZoDHUXaMACkZb8Q5itIpJcoukWVnbEdOzztCnSVJrECKDGnUfJB557gSzjkPIuu5SGYUYXXtkcowx+KMAMfcdR9JksGkEACkA1A8HX2u2j473/vU73EmaG5cdXVJIEDRBevLCCONUW8Xj+wSncl667OPHf+cyuugyA06x7WMq4/b1DZs54+uu5QuuEhRugBeZ2Oqss1OYFnX8prRrgX5GPkc9zGcU9dvtL9O4bstZzm7tqHN9nZhu7GeiuCpcyyzDi7q2tC/M6jgVmPmnZh6tU0C2SPZCQw4WkuIkY3hFVxquEZR8Qg0+G9JQSke2XFeyOvnSuEyRz2OUPIIYafflgxQp866crEMNPpLnXnHcHx0Q5r6LkVOVZsGSnuuPQpVmkw7GZdkeCTJcCxZCyChA3VR+fWZZR6tS3AgQCMvY+VTZV0anOvk2CQIUD2chVtq8NgWDsh2TeOjSmeb5vSvKgd8uo7OSuOffaX/SG/r4Ud8MuLp6Wmdn59vgAHqgyLlxApo7KmMndPv+pzfu2kMbyPlp0jebajej45edyWo7Gl9kQen+p9jd7VaTWyBHxNNkLJLsLAYDKjDSPOp4GmPcifurFKj0TmlzppznqN3N8IUNTpZAAqjE0d5HAD+G8uQplKWGKEuHeXZUU4jIODtO7p3JAm8db99JKG+OPpm263X662n+/nJfa6DzMOZo3SdM1feT6OFXMyrKi+gS/qsOlCvExhPTsTZM5bTIzdKR/czjarMDuzi3N0WdO3+p0gXiNA5E4SN+iHdT5rc15h4GTR+tHXx7OysLi4u6vz8fPrOxyW74+UY41MF9Zn/J0lUurcR28M/u84ssXVsKz6KudsC6GO78yvr9Xp6UujDw8MEktJCwjnZeZrAnRn3Lo/AQIcyk5HxxnWjOAIEfk83CFJZJNxG6GkmQ9fVyX+XAnDAERB43XZBtMx7rh9GYIDpdGDiLfLRgEBVbfS1z3vrs+t9d4Rvl3767oaUK4yZHiMGshN+PfVJ0UvV9kIqGg9OlxF8pDoo3TR1qHowbQL9tLaITindn8ZfB7A64O/lTzTwR9TZJEnP3LmR7VLbdiyo/vOASW2m3wj4aDsSGCAQcEDA0w8lPP5YD9niyZ9z60QSEPTV+mqLTo+YfmIpmNbj42MdHx9PW9VlO3hkM8fFHLjg1MTz8/PUVulJhktlMRhgh3jkM1o8NXLKXsmEsDwdXjfKJ93bGV9+HoENz49K7wNgJB1V63k4KFhCbY0cOT//iGP39DzdVKaPJm4wudDJDacGM511F5knPXbxqEBGo6q2nCRBSNXmdq+5enkZEzugdzeqlGREWUbfr50AaRqLSk8LtFRWMTCkpck6EKDMCfP6GeNinyW1ues39XoORFVtP2a3Y6OYXgIDPjXAhYQ+PS0RGPAnbRKgV+Vp0rnIf8QCeBAs/dZDlhy0Jucv8KI8yK53dp4gXu2nMqgt/XhisjRzstNuAk+0O3jCoxF2AjtlqSTnNwIOS9Kbo36qthdz+G8+IDp6LN0zAg1LmJUEPro8uzRGMopq58DVnwIEOKB5CAvnw/1wkDT1MwKqlET5K/1E36apIbIE7MMEPhn9M9qWoxVDxpM3O4BDQ+2GU3lw3DotndqHzkPffapOIMEZN/Yf66t7WY9kA7r6fjRJujfn+LqdBJ4e2QECAd7j4MKZCDl7AQKBAa4fIEvAsgloPj4+tsxAVQYDKhvrzfUJaTpQ6dKh66W0NV41bhS185klj4+PdXJyMrEFekgYQfwosuf4Wa1W0zQBQZ3r8hLZ6QRCCZHXHBjgvSyYf07Xdcr41gFK4+Co2P8jRStx2ilF7s6MjFgMylza+m+0DYzppDS6vHntXNvOAQFPb+63fRNvK+qJ76ZJ+pqAYZI5+rpqm4ZUuukav340TSF9pDEnuPYVyQ4Iurok56u03cj5/Swb3/XZwYr6QzbH69DlRXDC9NnPyTZ9BN11SWPUXx0Q6NKo2j5/JeVR9Xo2jTspvhwApC2GZA3IElS9rtcRGHA/VLU5ZpL99wg+7X4hQ6fHfd/f32/pG32Ag3syA5rauL+/r6Ojow0wsyTQpW6v16+LCAnMl9gYys5PLexAAH+bAwOsxJKoKTVOF6V0+dFhs7N9tWqXPlGb59sZig6Zen2SEed/TpUSqXo+yQkQkPD+rh4jw7dEUZe2zz4LjWVaQcz/+IQyRqcdIOpAsF/HKQAaMddNN3ojIMDrl7SBhKzH6Dp3zFzX4OtwRI/qc+e8eL0MH8+KH4Ft9om3JcFyxw58RN2t6qcFExBIO0Cckl+SR9X2aXxcX5MclZy73n1boYAAXwIFKh938SQf1AFivVJZ07S4nPfd3V3d3d1tgVjZgWT/CAgeHx/r9PR0eiyz653b6a4faWvIYCaGa4ksBgMyBj5fkhiB5IxGlfEKe0PSgSbHmiQZBDa6R3r6jcZLhi0tjkzAIBnLFOGna9JL96kcHs2k+7u850DAkjT8dy9DuuYjSjKYHYX48vIyOSdGqm6I0vRB1eY5A8zTB3GKbjp9c5bJhbqUrktGdG5aizqWrl2tNtcMEAQkPWEddQ2v5TTGqK4sI8vn7cl2J0j5iJKAAD+7PeTL57yd6Rnl5UEWo/20LS9F5LxX0wPabXB5eVmXl5d1cXGxsbstTVe7Dqd3BwPprAPpy+Pj4wQCbm5uNoCC0iQr4D5OOiowIGaBdkXXC9Qoza7NCQZ8oaMDgiWyEzPg0cpoimDOEdCRd4UdAQGm031PrACVret4zQuxDPrs0RfBg7dRF6F7nUbMQGp7Ksou+TpaZpuOAIn+93ZeCnQ+irjhTJGTTylpr6+2QKVttnRoDmZTPomB6IABpQMC3k80lnyoSmL99B/T4Zhw55/AgK4nY8CpB5/yYn2l47pX9LSnkeyDp8upG7ZBiliVrwPpfZcOCLBeI0fM35ne3DhmGmm+n1Grt3PKm2cQnJ+f1+XlZV1fX9f19XVdXV3V5eVlnZ+fTwf9UGeTviY7q/rJJ5CNIFOidQHfv3+fgIDS5e4hLiCmg9b1ulZggE+EdMDGrYE+/qmvanu241tYgaodwIAaeQkISJEFZTTAEgDoHP4ofX8l9OcLU1jPqtpAaPpP7wkUuBNIbZE6aOSE0zUSP+FqlGcCVP55DkykNu9A3RLgtq9CJ5z0RsbC2Rqh+qrth7jIWCRmoGMekuFMbezO13VzdD2BQDe+CQiSePTC73T+cs5Lxjd/Y6ROlkBTDx0g0JhWmmwDpp2iZQeGHwHU/ggQ4AJZ2szUN10bCghwu6ADAm9fj2ZJd4sRuLi4qKurq7q+vq7Pnz/X58+f6/r6ui4vL+v09HQqU8dWz01lO/jg2oTV6h/6/+7ubvqtqqZpCc31r9frjR0/bFP6Fq4ZuLu729quz3ZWej4W3LdpPKT1Gb+MGajanP94CxDQf52DGhmK7jMlDQg1ChWfFBQjPs37eH3TdwcFqS28HUaO09uBdeiMWZdfyof3eHqjsnp6CWSkslF2Ram/W7y93TA57amIhGich654xMCV7xQfvNTF0Sl+HqVT/whSRlMArsdkNZYyfsxbDl9to/q9JbpmPgmQext20zBeDk87RafJ2O67JLvnDjcBAV8U202d+mcJ9TbN7xMQsAyp/Gp7jTHdf3V1VVdXV/Xp06f6/Plz/fXXX/Xp06e6urqqs7OzqY/S1j0tyuPJhFWb9oxgIJ1+yEOClPb9/f1GMMk1DJ4eAwcuQiS44Fjr+ld94gBKebJ/f+k0wS5G4kcGzwgI0GDzPRkov8YRr1Csn3J1fHxcj4+PU32lCGp0Rlcjij61R3KoSdJgnuvY1AapPdL1c6yE38N2nzP0+wwAXNJA48D2aSVGqQIDeuk3bvnpThtzgy0gQKTvURqduQwVaW0X9q0716VMF+nVVHaCIZZrqQ6k4ID/eb58J9Dy+VbXf37mtIM7zV2N6XtJsoudLstxdy/qmhyVgwD+R2dKRkARvc/vdzqsfDxKJzNweXk5AQO9BAZEvytCf35+nubludOAbKraRfmpPu5o+buPSb7YHs4yqN4MDJQ+QQwBOctJcMbglvpPRjEFEHOyGAz4nOJSB8LGXOLQ3Ll0zjA5pCVlYEP6wNA1BALHx8dbh7F0jnQkHVhKRmoODIzYl9S2I2VYYni7/3cBAB/BqFb1UwR856Cr2nYoEndQPq3QgVmWI+WnezySIOCg0JnP/bZkPYLrr+sm5/i9LD5+U/odm1G1yQKofQk+1uvXZxl4PuwvfaYDmls3sI8yBwQ8WkysAA/SIhBI49WBQXLgDgg0t+8gjHrCtFg2pskji9P0rmz2/f193dzc1Pfv3+v29rbu7u42HC2BgPI6Pz+ftgzSMXNNAsvpeq92YR3oXxjB01GL0dA6ApaT02NkBTxflcn7kLq8RHZiBmgIRpSyD56lziEptH9PKH9JNOtRDRtLCqHfeXAEAQSlM5qpXCOj7+2ROrtrp7k0ee2POGNnNDz/j+DkR5LavDOi/M/pTo0POqk5IEbdoIFkuZR/1fYBV7xfhtUNScrXwalHft39c+O/AwCedgID3f1Mh0aUDEDHfOh/3V+1CdI6+py/76uOd+3sts11uGMFSPl72nJ2DsxoP51q10vMAPtN6Ts4TmVPrEXV5pgRC3Bzc1Nfv36tr1+/1pcvX+rbt291e3tbj4+PG3v4BXjEaBC8PDw81OXlZT0+PtbZ2dk0/cVgOPUD9Zq6mpw26yAAo7MHOO7UZvRHbtPT9MAvZQbmmIARAOgaqHPyo//nKudGbrVabSDQ1JHsIM19Ol1YNd5rneqd2qW73p2/5+sO2KOhuTL8DPlRILCv0ZWkM6Kjl0QD1p1oN17IaCma9/RYrqrNU0AJWmlgu3FC2rGrt7MXHShIY2wJO+bgadQmbj+o5w66nFFgtJnqyvSVhvcrWZZ9BAKUDswmNossV/eSM6l6XWDKvAiuEsDwuXTOjSfA5uxuxzzpP9H9Dw8P07Tc3d1dff/+vb58+VL/93//V//973/rv//9b3379q1ubm7q4eFhA2wL9KTpCDpmTXNUbS8oH4nKyboQ0I/AAO/TOPe2cEefmMxfxgx0aEifPXrkf0lZR0CA9zltl4QN6/nzt7Si1MspI5DKuFRYh65d/PrUNrsiO9aZ5fgR6RyZpz8X0e27JCCQ1ggkfej6KEXfzq5Rdzuw3ekCKdsugp1z5m+VJXq9S1qk41NbprHvax98jCfn4pGt8mVfc50H12Lsk4zspVPUfqCP3nn6X9Jz9nGqfwc+mD7TrKotoMwxQfaBi3D95D4BFqX1+Pg4MQICAv/v//2/+u9//1tfvnyZwACd6tHR0QaLofML7u7u6vr6emO64OLiYmNhsI9VB6MKKlkHjU8fxwIDYiK07sH1VPd2uuB+kt9/OhjwzPXuStmh+lRIp1VS+gkIeKNwsCYDwDnG0QEVHcLuyjUCSPyto1b9PgcCXueESpNS8r8u0nJj7mXvytpdO+rHfRc3pDRkTqEmfegA04hJS+JAIYGCNM5G7Zx0hv1PhziX1pKy+zzwkvtGeXJhltsbbysZX9WHi8VG5RE74AvCPCjYV0n6y6jcn/6X2AFnwqrGa0jcFiZmxcGzB2PccVO1ufDT9+Tf399PK/ZfXl6mc/1fXl42WAExAgIDX79+re/fv2+BAS7yExggK0Am4eXlZWOhoh9C5+Nci847x+zftdZB6wXU9pKHh4eN8dr5marNXQW/jBlgpu6cR8hZ1/sqR3fyI+Qp6ZDRiL53UMCG54Mt6By9nBooPAJ1JAkgpfKkunZGmTSvG7k5xzNSnk6WRH4dA/GRAAGBmPqaB6Zo8VM6SS1FZ53M9Uvq/1F6Xb/MAc+5+118l0HKb1TO0fjW7wT9/r37nWmqbHywkih+jdk5xyYb1QGCpfTw7xDXEbdTrr++4E6sAT8nsCu7mOqfAgy+6xoCNQIAPmGQjo6LtTkeuVBQpwHqemcF9Pq///u/+vr1a93e3g7BAKcH+IwA1UH5Kj9/IBLrpvRH9lg6rGk/3euLHHmvr3dwP0wf+9vAgDJOBUqVoLI6FeXKR/E00u/+mxs4/+ydl9gBH1TqJNGH3fnTqY3YVirDXDSZ/qdyEZF6+R3UjMo1uob/7cIQpPv3GQy4MeUcIvdIc3uUb5FSO8hgpoHI/5OT76LfpdIBgPQ7x0gCBDR+S4DFnJOv2gYE/L1zbHOfU740qryGIF5jJwUa1AN/7nxnp95bCGTSAj6d1MftfQSzrqdqE+lqAgFc5Mrfq153nZHiV7oJDNCJqiz0ISqjwJ4W9WnB98PDw8ZaAb2+fPmysYBQkb7S9F0Evh6AbaOxe3JyMq1V4JMS+SIL3THPbHv5mfPz8+n+BFy1lqCzET5+Up/OyZuZAYIAX3jk1/pqU18ZmtCkL3jSb3PAoJMEBojuVN6q1yNmpYDqaNVDnaY6j6L99J30PeuhAZMGocTBQGIFlrTLHChIvyUAkEBb975PwrJpUKbtUekZ61Xb29T0zvQ8YpBjoWgMCBB4+ZaKR/DJsLmeS3zsOv0+xzwpTRoj5jt699/8PjdwusZpaNVZQODx8XGjnoz2WE/XA18zwL7cB3HwJN1x2pt783VSH5/4l+wuPzPK1W/UK67xcHuqg3nUfmxnXcM0mWcK0JSfHDGZAgcDBAHaWnhzczPZ8KpX0HF2djbVwxkVPZBIY3+9Xk/rBnR64AgMcDoh9VsHCHwaglMnPJHQdT/pyS8FAx0I4Gd32E6/arUp97ZS4aSEVAg/bpQNvBQQeMRDR+pl5bVnZ2cbp1ql+3RtyrNztMlxz9Wlm6dKQGBpu4wiu7m6ENSk91H6+yDUZ59rZZRF8Fr16sDX69ctfB7t0nlpTpoRZoquflTmQCkBB3U8tYmnm/Q0OSZSoCmyd4ff5dmlr3qk1dJqX04ReB26qT6WUXrAaYd90mNvbzoyAgGd2sdz/LmYr2pzEZ874S744jhP9P/Dw8NG36zXmzs/PA+3YR606TcxA9y3LzDw9evXaeeAzhbQ/L9sN8EgQb3+E2CUk9dJgwIDAoVaw8BpBQcDKrP6S/3Es2tUB/bh2dnZBihylsQZE++bTleWyM5PLeS7F0K/e4E5wBR1kW6lgWRERWUY7Xnuvu8qqYFfXl7q9PR0UkJSW15XN5juGEflTHVJjMkoUktMw67syVwE2NXPDUVXj30QN6bUT26P6g6imauPjxG/ngaOBpOg2Gl6XruLJICuMgnMMProziZQOVxSW6a29ajewdMSo5VYAjIEyXHT0cm5e8S1Wm0+RZHG20HMewrrxTIKuCYgoGN7CQaUDqN5p/cZmOnaqk1g6IwAT9cjm5rsIHUkrdBfrVYbYyCBgfV6XQ8PD3Vzc1M3NzfTUwXlpFUellF5yxl7cKg6aRpAjxmmb9OzCnguwIgJUHtwylkAo6omRur5+XliBxxkqU24xmIEapXvLwEDysQdfnJiHRhIq7QVrTjKZHrMO+Xn0U1yZl2DpOtoKBkVikJ8fn6O0wWe3lJA0AEBv2buleq2K3syKtdcuenM/Ld9FI+uut0Do75LTBP1MYFLSvddjk3Oy/Oe61OOl+TISPPq+l2Am0ftbK/RKvXEInRMRNLfjiFwMOLpcApAQYe3FyO3Dsi8tyRWwA/O0RP+BAacGah61UVOg3L3hOwa6+1TSeobAQeu12BbOhvRMT7OTNDBykFziqCqpsWEAgN+giDHHMsvyt+ZCc/v4eFhcsKqr1gDgQFfUMg6Kk23EbqGOsZ21n1caKl7UqDg+uFjYonsBAb0IvoegYGqfMSklJeNIOXjo4NTlOkI1b8vMZJUwM74dZGNvqu8XOXKcvLzUiDi/yWjtkukvyS/FNkzz+63Lv3UZ5J9AgZuUKmjfB9F49RBN2T83fsugdeXl9cFShpjctAONLux19Uz6WBiDPiZgH+UNt+9LekIPEpJQKDT+cQ4ckz66Xa8X45fxp+MZmqXESDYF+mAgLbH6TG/euQv1wzQ2dN5y/bqvzndr9ruI7UbI1qODVHzVbXRDx786XqNA71UX94rpyxWgEf6divzda/nqes4LSy90xoUlZdTCczH+6nrP+9D100yIQJB+q0b/wko6vMSWQwGRGt4tOIF8qgogQE+0pKokCv1R/RGUqCRs3S0xN9SGul+Ui8cQE6x/qjDZp5vub7Le+Sk/fMcMOgcfGpDOqOf0S4/Kj5gXD/5nag6tV0Coh4h+G8Eu0yXi9RUPl+RnNrxV+ibO16OGdcjj24SqGKU4v2QhM4/OWz2IfOtyofaCFiNWB4PYBxwOJPwXkLd5bQrGQE96lfTBQIDAk1VtdEuFAelzK8TBwVpvrsLwtTXTo3rfgIC1yM6TAcCiQ3oys5rmabyYTuxjr4dkH3k003JUZMpX61WG7ZBtkKLGannyUYzX2ezl+ruzmsGOOfGCCaJBhSBAE/DSg616zyPutK7JDkrd+huHDyy8+/ewaltUv76noxq12Zzv6X6zUXgc+BiCSOwhBnQ+744/07oTJLzcgeXmCQZMYm3V6dPNEDSKV8kq3s6HWc9krgxTqA99aeDcek2dZz/J8fMiGdEsy/RSS9/YiFIHTvdSiDA+5m22xy3FfvADCRnoq1xYgE0LfDp06cNVkA7Yjz44tNZGb1zisDZnLSmpGPAVG6yqgR5CegRwHlgmQIPTfv4QkGfW3dd9nwJAtTnZEkSY8XF7qoL24xO2e0M13roiYlqG+2acHbN2ym1c2Lhlf6c7AQGnIpTQ3WAgErLVdrcTUADOHJ6nXQIiZ/dgLsR0+9zebohSkqdnOpb6tVF8f6//5ecsAORJayDD+zkmJSXo+ZEQaf+fS9JRtVfPjWU6GLWV+nRqfO6qs31BRLe7xG//k/lZ3vS0Ll04NpBSTKc0nECBG9D/UZKspvH7wBiB16T3jJNGlOBAZ969N0DbshZHjo6AQHOge+DMPrj1MCnT5/q8+fPG2CA0wO0txLVz/U1AT0HBrquqrb6OPWVnJTuS3PrBAJO81MIYPwej9Q5XlnGxIhwekC/MRjodNfTpANfYk+orwn0sK5kTZzN4rQRAdUcOyJZDAacEVBDcPsNK0J0RCDgjeNRsxqgQ5neEbqeBtKdcEKnVPBU7g7dirpNgCKVn78xjyRehzTwUnpzv4/KqntG4vVJgzNd5+V5b6YgGSpH6GnxW5o2qNqks505c0fGMvyMOkiUv3SS0Y87PLZ/Fw1z7pL1SWMxGda5ersu+Lhzg53GJ8cwIyE6mcQKKN/E0PB/1o3rg95LvI1o9C8vL7fYAO0ekE53Osc2SEEM82SfkNVy59a93OkpL7ISdGB07CwvAQD7umMU1F7MV2WnkycQ0G8EA94fbA9nE33KjPpKYbnl6HmYkR9s5FsOJW5zUj5LZCcwwArQYWnhCBc3qKFpaNOebQkNTkIzNG5UyjknmRwhDRiNj9PBCe0yKmF5/boU5aXvyXE7qHEZOZQEZLwdunJ4mTvnzs+8zwch26IDIu8hBAKJVkur4H1A++DT/w6W3XGPtu4x7cTKMHLQtXTgjOQTM6O0ury9f0i9+1SB67uDAuVJwNSBos75jwBsGsP8niJZdzojloLAXwHPPojqppMxfcHg5eXlxvbtkU6xLXx7HK9lm/A7wdgcCEgOyrczdt8dvDmgI6ij73BQRz3unCbn7dXvnf+gH/C26HTQQQunanR+gRZD8sWdCxzDZOE09lN+S2SnBYRsNHce2j/JQmo+r3voi9Jiuv69G7DJkXkjLHVAnUPmf270PYLxgcJyjKSL5J1JYH0SA8KBkdJjWkvKRyMyKrf/3zmL95YEisgMjKYIuvKPnEnXB8rXgZOLGz2P0h0Q6HeWm8Cg60fqres865kAYde3HTs00s3E1nn5PI/Ebvi1bnzp7PxsAd3HwEcGf6lB/dmS9JbrBbiNUE/e0zZCtZ1H/1W1saWQUbFT7brHgaB+4xjiWOrWZSlv9QNX/qcdCHTQaUxIEvulMnIboQNG9rWv1GfU7/rB8cbxwPUGHjwQfGltQtXr6ZjaFaGDk3R4koMBjaPEnKWg5ZeAAWUg+s2jHG8UHoZBVoBOzRGfKy47nobUjao7yS6aSJ9dUjl0D50/p074PaFBvnuZRk6lKzvr6p+Vl9+TyjTn9Ef/jwCBU8ejPH6XOEAhuu/2xFO8H+eYk5S3Pnv7uOGWbvvWKl3Pd2cCyFLwPxkv5uvvvF5RCNvLxwPfXbydOn2kUXPD1qXlVLOYSRpdORKnnblvu+p1OoRlY2Cja95b2A8KsrRmQMcO+2LB1PYCQgIAOjVQTkr/JftHverYNf6uMkiP1CfplYBAYgLSeg8fdxxTCYBXbS9KpF9br9cbzFhy7lXbTATz1zVMlzvR9LwEjbWHh4fp+GS99FyFu7u7rWcfUCc0HaT24fgasZGUncCAGpdTAskBaTBx64sfQayGVOGJmtLcDzuA0gECSTJYXeRDZOg0VGcEPbJJRrMrO9usE3cint7IMXk6Kc8uGhyVcYnzY7pL8vid4oBORiut2q3Kq9rpdOZAAdN059yJR0CMXBxsMd0ESDlG2JeMdDwiSkA/Ad1EiXb9nHSZ9yajm9rl+fl5ivbk2JW2nI3mWxVxORBwBktlYaDCvntvICthoHVxcTFtKeQDibw/XX9Vfz2q9/7+PjpmOR9nbNlODgTEBhNcUffS6n/9lubF5+xwBwI4HUCA7eK6lkBfGjP6nMY/wY/u1aJEBx+aZtCphnd3dxuAQOwAWQGV2RfNuh6zv5fITmsGlDmBAHcSEDESCPiKVhVS9zggcEUgEnwLQndjTPHO5HnmPodWtW3EaMCcPnIq+K0GJUVKKrsPen2ekzSoRka8uyelx+9zYOd3SAJv/qIBpY5S5xwQUU9Jq/Ll+iLxSD4BVAfHo8h5aTswH5aJUVxatMV24lhIEb3n5W3NOvN+p2OVPz8nMMbyPj8/T2fS8/x4nkxH55bKQZDEAOG9hWUU6ypAwEcVM6Cp2mY6GZ2TGSBg8mhd6bAsvlCumwYmze/TE2QkCO58TFHSlIUHHbRZBAIJPFDSmCdAdN10PVQg6GNBvpPXcx2DnoMgMMCXwID0XGmJvWIAznKqDL+UGVitXs921iIbL5QvHCRSdIVMSFSKkIAAFSTNG7ETOuG1bmz1G4GJp+mOxA0m80lOeonD7oyn7ncFc6e9hJ1ISi7Em+o8SsvZAJbnvQ2qOyQ6oBQdcNCqPagbVdtzsclwMe8UsfD/TqSb1DPdxzKrDCl/SucAVT8yA8xb45HpuUPoFl6mqYDUH65jaidvY9kPlVn24unpaWMRloABAcEI2Puiybm++R3iwEpl5ZM1OT1Qtc3+0a7K+RI0ORigfaZzrtpex6F2S32oiFi6w4cBkQ3wxYMdAJG4ja3aXsDMa0fB0tI+TvaP7SrQk4Cx1tQRDOk6tQfXCPBF9oRjlPUlw6n/3V7Nyc5PLeycmJSPgyoZW288nvNMcCDlcaTm3/Ub33cZvI7u+DtBDg2iz9f4/95eTiOlMvMeH/z8ndd5u6t9E9pdKp0jHwEJl+7+fTCqnZOS7Mqu+Gs0dVA1djIdQ8DPjD7IyjFvB7DM1yled4LMywGI7lHajFJ9IaZ+7wBBArkOdl2/WEcZUy6oopNzQECDmihjByXeV7uMoV8lLCPb2NdjVW0/6tyDL28jbmGTbrmTowOUDnbsFPMnAEkAIL2S3Ux2kde4/U1looyudbubWCu1g7dRGtsaRxpTfMQ2Fw9SZ/VSvygdvae2IcPnQcecLAYDjIIYyfuDFDSXl4yk0iE65Jye03hzQMAN95KoyOvCzzR6HuEn4X3KKzlxvbOcdJBdZyUn9VaHOhe9/gpZWs/fIQ7aGMEmkOX3Jkct6fQ9AYIujRHl7+lQTxNbxvz53RmBFKnLiLhOJ2aAq6b9LJGOHVBd58BuqhPbVtGW2qOqJtqZjo5TBYxuRdMyby+Tyspr90mov+6kHBySliclTfbEHXQKxqpqAmHSPzp8ggmVJa1HSFMBHYD2vvHx2t2n//0zdWh0T9e+FLavvvtYlg5pETDHr/yhgzPpcdpOKODrAaxsG4G26rtEFoMBOnyiyFTYqs0HfujdwYQ/C9oXrCSnn35LTpbiFG8yMHS27EyPqCQ0jCMDnyL1UVndMKX70mfVben1IwC1yzUUbx8HQO8pHvmNqOyq7QNVkk5UbUZLaTW7R+pvbYc5g8nr0meVMU2JsG7UvUTpc181mQGfEnTaOBnVORbE66k2TzsB1uvXh9bIqGqBXNpFwCiyc0CSuYjzd4uPM+qcHDTrKyet9mAUSrDki/c4RZvaR07Qd4ip35UG1wb4Ik6C5lRP6lkCkalco7T0n9PsXRvP2eEEMNN44po7jR+2oXRXYM19I+uksif74uzALsHjYjBAtOlAoAMDXjBHkAkI0KCq4djw7AgHAnwfRRlUdldGKh/rzk7WvY4AO+OVhIq5NGpe4vy7a3dJe9SuLiOlGzmm3ynJqJAhYH9TZ/3FejD6TpRstyr6LeIggDTtXGTkUZ1HGLyfnwlk3XHqXgEBXyzsQIt5sVx89zKnsqe2EE3LCIsnuHlEqrS5M8NtgNuQETj/neI6yLl9Mja0swy6CJb8pWuT7fU+IGtEMKAykZ7uwIAzCC5Jf5Y4tw4ILL2HY0v/JfCldNN/ziwlP9H1VfKNDIyps8m20NaN2iTJYjDAzvO5fhVM9BFpJCkK0ZNXeFQ5BwLe8KPKurPtnJyjLi7GoFKzI3zBIdNyJV/SGW545gzQCAh4unOgIwGBJe3rZU/C/htR4b9DukjD2YKuD2gc/bPPf/K3jm6VdA7TJbFaSeb6OJVBuu2GjGDAdUnTAQIC5+fn09ayblrF9SrVg+Vzo+zOmwCdjGMCAtwpxDlXB3YeRaot3lOcZVM7KKLXNAijRgcEHRjQvQ6KUj9IuFiOZ/nTbrKMaaG4gw+ll6JptsFbot7UjqoXv7uvcHtOhpnTXiqP2w8HF8yHLM6cPyTrk1gBB/kezC6RHwID3qlErDKucqI8oIf3srIdpTpSyiXCdNLgJ5iRkePJUwQDrEOiXHc12EtYgbcYIiJPjyg6ii0Ngq5sc+VO9VuqlL9CHAikdQOJGhzpi8/b6f8uyvL6EwTwPdGhLA/Lxd9H7APzd32i0dJ3fT49PZ10nwCXCwYFBLTHvTsGVwYtGdkRgPF3pk0w0IGA1DYc0xrzCQx5e7yXeL/TiegJdzx4xsGR1gU4Fe2AtWr8cCuK7KDaTOl41KvAkSwG2QF3xvIX6jP9phX5uy6MWyJ02q7vLENi2TiV7GO3Y8eotx4EO5ijf6Ld8fV1ruNk75bID4EBp0LTQglfiUpqnhVzWdLRb0GIBASO/I+OjraOT6aCqH4CAt3iki6P5ITTQHCloXLp+tE8pqNEl87w/qzBRfS+D+LtyuglbYWT0GERCHpU04EnB7mSERPgkZGuo7hz9M9+rQMR1w86Weob7+W8pcqmtQJkBhwI0NkwTf5HI7ZEX+nwCLbSfDRtjK7nFIj3MdMnS7BPIkfPhYAO6FR3TpcQCHAthTuRtLOE7czfODb02ddnddPBaRGc8pfj538nJydbgGAk/J99rbJJ9FnvAh7Ul1Feo/Ux/jsZcmdxUoCRyke7M7f+Yhcg+yYwwMiHqElGIiE3GgMvdEd16H8u9vB0PYrz3ztn7cKFUNqze3Z2NoEBAQAHRFxL0E0ZdNLVw4GAo0m2hadTtQkU5qJxv3dJuZcIjcZ7G1MOTPVXOjrV29udBB2Qs0xvKU9VZgHcmLgOM0/9nlZl83/dp9/oOPRbmiKr2twOrPI5K+D73AmaFRWy7O64R2CA4vSnR6UOBBIz43aGbc0AZgTI3ktof3hITepTtYmzAWRQaGP1nnTNI2XXeQWDVa9ggkCSUayzA7q2anMdQrJDDghcfCx1/Uaf4m2runL9A9vI8+N1bkfSuiSlxQg/TQ+w/rTnvsbAXz4NulQWgwEO6DSYqio+rIKixk6AwB3jXHSZoiX/baQI/EzDxrO+Nfe5Xv9DQYpuoSJrYElJ1Qld3boyE1R527rDcBCQlNrbjsqVotlU3hEoWBKVdnX93UKE7vvhRW3zhEwHXZTUXqQJlzgzXcOteSpnAgTJmKTydf2VmCWnwNkG3BHAqI+0qK4nGFD7yWA9Pj7W3d3dBpDwRVLODHg7uN7T4VHPU4Tk0SzvUTrOVCg/OSTV972nCao21woo0r+9va3z8/Oqqi0nyX7gVjXa8qpNPWQUq2vUtnLUEqZBMOBBoINolYtTxQwsWfa0wJBTOl3QlwC0t6Wu0/cRsE9jm+OY0+IEBhxvvN/b1lkBHxP+me2ottS7T00sDex2Yga881VhvRMMqHFcsdQAdEpJHBCM2AH91qWj9xQJ0bCdn5/X1dVVff78ua6uriZm4OXln7O0GTlogHVbqfRiOTvnkox1qk8ykOv162Eb3j8evXZAQNe7M0n/zYGcH2UUfoV41EsgQCbIzx1wsOUOS+9sD8510uFwcFZtP/ykAwVcqS1htCZhng7WlQ5p3NQeOu+eR4i7Y1Gaul5rBbR4UA5Dc8m8j06A89mJyehYEgIvtkWKqubEQYA7EMo+MAMsr5iB29vbjSCFerxev04nuNNwlifZbd2vNFQGOmi1OQ/V8TJ3rJX+T1MFSlNlTGOF/of9kxx3CkCVD6N0Z5M6vWReakOlxfaXfWfZHfT4AsukywTimoZ3YO3bPNWGPx0MPDw8bDQAG0KNoYcRpQiLNFPV2wDBUhlFoa4oGgRiBa6vr+vz5891fX09gYHn5+cpwtEg5J7q7pGdlORQWE+PelhnDoyl9Xfnn+injg3wtLo85q7h/+9pTDvnx/UhNIYsN/vAB3ICDRz4dF4uHtGkKaHkoEb91AFAtoPn7eP37OxsOu+eDxeTI2cQ4A8ik+HRGBGIVrs5TcyDgBIIVr7Kz3+XeJSU1iEt1T+2nQO9fRCVjWCADObz8/Nkt6ry9Anr4ttCeZIh2R1nTtQH0geuEyNL1tm7rm7J+XrES73VNXSCrufsU73ojHndnCNmHXSfzt4g+Bdg1n1pbLMv0xo8lS9J0nlOW4sl2kV2OnQoOS0ZEs6z+7oBoR8XDrSu0iOFGkWmKYrjdzpxRYcXFxd1dXU1AYLz8/M6OjqaWIEEBHzxWVL0kfNNzIWn4fRTSl/t5zRp97lrqw4MdCAiyajt30McCHg0TGpc17M9JR6NU+jQu/9HoGgOCDAS9shGwr7pwKfSdL3VS2Ph8vJyegCOnDzBABk1vVTH+/v7Wq9fp9ZSFD9aMMV+66J15aU0ufZgpM9L9JFGPUW7v1t8DJKdFCBw3dNCTjo3RuhVtWX7+Kj5qn/YYAVBbONUPjltZ29GoKwDyl5X+R4tLNR96m+CfWdnOSa66N+ZAGeaOjDAd+oZFz+yD7jmgnmLGUjr8VwIUpluYga8zHPyJjBAo8lVxU63qsJ+cAIrtgRxOxrl77tEqExLdeGKaDIDnz9/nhC2gMz9/f3GFqp0YI3KSeScojYvEweJfybqlqSBlBiBDu3ORTzeriNAs+/i2wjT4kHOkVf1U1GdI+Y1VdvrUjog4QChYwS6PDsAkL6nsrK8nD65uLio6+vruri4qNPT0ylvpcOxz/VBnB7wdUOuiwQEKQIj8OBcNdvM01vCOLokg+n3dk7rdwsdpKJ2ZyYlboN0f1VtjAWBPz0GWX0mu6f1CYy8E9hUvzNo5H8EkdQjRsHJ7uh30uNcZKh0OMY5lv1eMiUOoqijXNyo3x0EUDc5br0dCAbULtJVTsUk/e2C3gQIpAvy17vo7c5ggB3ACJu0K+dM2JEjVD5CicorXTcCBF00RkPm0dDV1VV9+vSpPn36VBcXF7Varerh4aHW6/W0YEe0mjuVzoB7ZM7BmQy/f9ZUhcougJDy0OcuzxTZz0X5bwUC+8AKVGXH5WfoV+WdJ93vikicOWC7yDh3g9mNkANVpuMMgN4ZbbgO6N1BpOsXDajGsKYKPn36VOfn5xtRlht26b6inPV6vUE3k7J2sOrvVbVhK9h+Wv3uUzkOdvmZMmdj9l3YxwIDDghoh7izw21OVW0APzGiFxcXEzOgkwm1NkoP1+nGg9L2fPSZesAdB0xD/U39dWcuvSNTofpyqkO6TqD4+Pi4xVSxnD5+5lgrZ47YR/SBvmuCaftiWgfHSQ9c1x0UqE67TC/vBAYcCKiDaVhlaOmIicASclUFqSxJOkDQiRtcllmsAPdI+zTBxcVFHR0d1f39fVXVNPC0nUdMiObs0lSBO9KEfkfG3x2E1zs5CjeCc447RcGj+3YFAo6mf7f4lAB11fvN+05CfU7t6yDJHRT/Y+SQGAPX29S/1KUOCHodlJazDw6WBASur68nB0GjonvYbopw7u7u6vn5ue7v7zeAFsWp0MSYqQ1SECGHwDpyt4LXeYneuV3qgOF7C8GAIvaTk5MNQEA7SxCn7wkMXF9f16dPn6ZdVAJ0erRut6MlSYq4q17bWDuvunuTLqiP6UcUyJFR4sJgTpUICBwfH0/r39yRexnmxP3ZqD1Wq9VWnVUnnr2QDmIapevsAFlkn5aYk52eWigh8qRB8M9qbH/5Ckc1lhphCUuwBBBQ8Wn4pDS+PYpgQAPj+Ph4mvtU5MOHSmjLzvn5ed3f328Z2uRcRk6W0RcdS0qzo4EcnSdn3AGAVKZR+v5799t7GlaxVm4oGEWpfKM+8nrTGSXWh9f573J03AlC4Mw+Vx4jxz8HCqq2owRGU9R/MWQaCxoHiRGQMdR6mvV6PZ2IN9euDpS6CKzq1cl3xpeAoNNrB9yUkQNbavR/h7BfuatJgIBTXlWbUwUS2kCBAU2RXl9fT2Dg6Oio7u7uJrZ317EsO8Ygj22cgLDGQAIEBIZaP/D4+FhnZ2dTvVgnBWlqK639YlmYL9um8y207/RnnR9k2VMfCkTrmjkw70JAwGk3b+clshgMEACQjkoN0gEC3efKKSO7pAGSIxpRU1RGlo8OIp2kJrQsEKAVo76dw5+froGpTnEn3kWXSwbYEgdMpdY9jEDdYSUjvRRJjiT1w3szAwQCfCWHlRxrEl7rq7ad+qZwuqdzUslhjco3AgJMk0ZTuk5nIABwdXU1LSzjDiGfEhQA+P79ez09PW0saJsDSnOSpjg6PXIj+9YpAbKHjLDfWxw4yQ7JBp2cnGwxMlxRzrYjG8RpUjIDT09PG0AgBRa0ZckGM29ODTgrprSd9k5jUs6dUb+uI7jV+oeXl81dLQLh9AepvHp3veM9GhecLvY0E2jn+oEE5tmec8L7fMqgm+ZIshgMdIuwnG5Nht9Bg5CL/iN9MhexLqVv+M7O8nKz/KnMdBaKfnjyl941baBjPrnAxZFuihK7yH8U2XdOhFElo04a5BEg8HKm11JmYR+MaJomoHPrBq6+uzjbQyNFUEDgyPYmoyPgyN+dHdB93XTQEgNC50Zw5GBAzIDmjj0iPD4+3jp1sKrq7u5uy3mwbB316kZ3VBeec+B1k3i/zQUWTIM2SbZKdd4HPZZwTIv+JhCgbtMOVG1PO/oYYGTsTnIXMPfysr0d2vP233Qf+zmxR7qGCwIdNBLsqNzcepciZ7fBHIOJEWA+q9Vqq90dEBO4OBhQ/d4izlDKv8pOd1MyLjuBgZFRTUjLI35GFlWvT77SHBIb38UHd0eP8907zfeTu0KIcpODlzM/OtpcwKc0uGbA24LsgNLpwIDK3AGC9L/KkiIlKcIcEFji4HnvHMLs2I73NqTs8wReJV7+rp+Sk3J2gEAgoXPl74adjIFLp/sjAMBys/7OiPGwIRlxORq2odqLoEC/ad6aRpDl83LS6dBGOCAYTR8QWKV73JmkdDxYcUPvevLeQj1wplLMJPtrtN+cDAP7W/bQn1+QKPxUPgexKdiSMydo4Mp8HgHP/Bx4OxhPZe0CncT+dfbVwaGDgRQUM22yAgQEu4CsUZszHU45/FYwwNWbpKikFGooGT2uGVBBqRBuIHYBAhIHAjSEnOZQeloc+O3bt2kOSotnhC5vbm6mqQAOEuVPNKjfaPBSxM3yex1GQIDlT06NoMoBwVLayB0fB6YP+F3Ygt8tdITUh9Tmfl/V9oI+ihvm9FAWggHP09NmRNY5/a6N3dj6Z49YnBlTnloIWPW6cFigoarq7OxsAsk6X4DbmpZElImaTYCgi5p4LevZGX7PW+2g+zyi8+/7ItQXjmfqnACBgpTUhrxPtu/s7KxWq9X0pMrb29vpmQY8gTa1MW0cg0DaJtd16aALV8M7ayxxap2giFsPla/v43d63uvjrEBiity/OIPg9tCnCXa1x3Pi6Sk/LYCfk52nCUaAgFGBxKNcAQEaaBXcB50ipF2cTKJzHLCw89QxDw8PdXNzU1++fKmqf4DAzc3N1labr1+/1tevXzeAARG0l9/rz7q81XlSGTsQkSLNuUjdkTHT46BJTkrXpLRHzvR3yBzrws/JGFA69sCjJ58ykNDpdhFnat85o+FOsfs/OTiVX8xYVW04FS7KWq1WdX5+vuGMZRcYRc/1t/cB39OYSL+JFeBY9mivKk9RMEihXfCFpfvGCkg0pqhnDkRlk7oxybMKdHbKy8vLtEL/5uambm9vN44z9ui7avupes7asJ/0uwvbm0yxPie9YH9zrGkBa9XmXn5O4Tog6Ng7vafdR1UVdSXpf9LFpKtd+ywVBzkKdJfITmDAB76/09CM5v5ojKQkaX7JV1tLOqSeOsXXNaQ9qFoLcHNzU0dHR9MiKD6Apaqmcwa+fftWX758mUDB/f39BvLsGACPkNJnOtXOOXf1ZVqas+P0BqPTrl9SHimySnXpDPl7G9PkAOfaVJEvWRWKD2jpkUcfvtVN/ZLKp88+dtxoJEZJ6bJerK9Pi+hdZdR8syIJjhstyFK0dXl5Oa2DIKh3xqVrY6+jytPZDXc6ZNlc7/nZQUDK0wOHFO3tm3CsuTNMgMD1ggBW06ICAtw5dXd3N9k3AYLOmVHcVnO7WxqDZE8lHCOyYwnEe925k2W9fn1WyMvLy1RXPrWx2+bK8lO/nRVgHVzv58BpN0UxChBH+pjAmdpkiew8TSA03aEljzhUcTeKbEQVXGmp8xi563OK1iSJFXBGg0hOokFwc3MzDQLfglZVG6Dh5uamvn//Xt++favv379vDJhuD3V6uXCKRG2TDF+ipbo2SZGRp6d8ugif7f/RZJco1QcyWRUHdYxGZChpYHy9QHIuzJORCNvZjYYbWweEiZ3zd40r0cTScW2/4vg5PT2tq6urWq/XdXp6WtfX11Pd1EZLdHHUJ8kQd+KOI02tOJAYpZuc/z6CAJekhw4EqMe8p2pzfl428O7ubmrLx8fH+v79+8bUqPTb9TDZdgYfXDRetQno/D7qk9Iho+zAXvWX7kq/OVWgsstOi9HtQHtXnjk9d0Da6WGyJWqXTpYAAfe52vq+RBaDAdJoBAROuROVuFF0R8kKcuueFEXX0nhRiajkCaGlxVJ67+ZJ04pTlodnC9ze3k7TBVIy1tXpmm6eSkIFS+/8P9FujGQdBLgjSEIg4M5kjqVI1+6L+EDurvH2V7+xLdmPcxFZolPp8Cl0RKn9EhBQOfnerXzvDNh6vZ5oRJ3OxrS0UFDR3cXFxYZzGFHwSXeXgIWloMDvYZ1Sf6V+cNlXMOAAPbEDDghk1/jcCInrsIAAF5DKJmqqgP3NxW9897I6UCNj2emp35Oulx6p7gS0Kp/0t6o2gK+/0toeSqcLXk+VP0Xo6p+URgL+SUZAQWlRH/jo6iWy8zQBKRPvECqGFFPoS8eUssHdIa5Wq42tIHROHbrlvXSKiRUgECANWvUKCPw8ar440Hj4kIwjDVBnkLz+qQ7r9euxnHT4/L9zugQEuq/7z/NOjEAqY4eg0/d9AQZLHFECQVUZxZMFSPOQ3tepjToqmmBuJFzQRHCbgMXIoMlIpTUvR0dH08LB09PTury8nLbUCgSvVquNc9V5f6JVGWl1dUz9MGcMWR++Oxgg+5hsl4+xfdHhND71+xwgoD64c/JpITpiRtGJVpekfnS2Rv3PqcuqPG0p/RAQkF/g9XTEPP2S4MCvoZ3vxq2E4ELttlqtturDMnMM8b5kQwgE5nRM+abpFuZHsKbzJ7QYeE52OnQoRReK1ulE0/YqNjgLz3dvWA1azWHRESWUz7KNWAE9V8DXO/iA8rL7XDDBTucgHa25YfJ7EjtQtenIyVao/k4TM6Kl0WU6Dnbc+LkCp1eq876J078+lfUWY89BR+OaVisrXwn7kI6SZRrVhWnQgCdWgN/ntkAl1kr5KULU9NjXr1/r8vKyTk5OpjGgtTPSNTILZ2dn0yOLXWTwpZtcJ8TgIBlO/8x+8f5J9oYOp2OF9kk8KNK79O/o6GgLEGh3gNtPtg9P56PTdrtHHZkDq+40EyhwoOfgWfrK/NwJy8GzLTge3P6qbeir0pijTfS6kgFYwnR1wJN9wfp7XsqnA4S8V+1xf38/BatLZGdmwKO+9fqVZlRBiMLS3Kk3hqSL3NQAdGpdtMCpCwIBPlVRLz5sSIhLdVD0n1agpqif5T8+fn3UZgIFSxxQ54j9f32WEfX2TO8OLFIeIwDQ1SEpasdg/E7pIlMJ20LX817/3duAIC9FTQSo1E+ybF7eOaDlYIJnZ0i8DKvVaoMZ83U0Xie2jabFvn37tvG426qaaEjRyev1espDi3AvLi62wOyIoZJB96jMDbM7RLZ9xwyoDKKSu4VxnKfeJ/Eyeb+laatkW3l9Aj8EVvo+AgBJ51O56dR1bUpXtlSgQfrgaUs36OATME7jlfl6oJD0jcFV569YN/o8Zw2WAivlOdJDgglnsH/6OQMpgvEKJOfPDlKhOxSUmIfk7LvyJVaAe6R5QJAfS6u60ZBw3+7Dw0M09G5gxGLo3evUOXSvC1Fp56R98I4MlwMpKivLlsCBK+0IzHXynoAgAYCqzUWCbM/O8SYAlgyLGxi+HAw4q0PHJ0nTOw4mmE5Hz2pMKFLnQ7Z0PXWIYP/o6GhaXf7ly5dp7dDLy8u0Gl3Gp+r1UCId6+26xzbRamell4AAqX05cu8LfvbxksCAomi+OzgbGfz3FOqtvjtDxe2hsk28x3VuvV5vMDv6z9t6l/JVbTqz9DvL4v5F5Z4LoGi3ee8IECTw0gUv1EuOxeSrnPVw+538JuuQ7KqP/1R/gjeBAE1nL5HFYECF8sxZEc7JOBDwzuyQEBFdomKc8pXQwPj0gAwfDaBHR6nBVQeyA4nGYtmlMMnYLzUqHOijCIAGM4ENSTIA+i2xBMwvUVxJab28o/Lsk6TI0+uR+s6ZoU6f50AAr/G2Ut90ferlk+4TFCsdGVWCAY2P5FRYx/V6Pa0N8HllTQ/oJEKNdbECV1dXreGl4dfZ8ayzAwGViW3D3xLQ7vR1Dth6/+0jIKC4bXB2QG3N3VQEZkojAf9R23QyCug6cWDAOXsPWjwf2kN3xkw7jVMvn4Mh5iew4XVPrEViWTp9Y5un8nnAkoSAztdELJGddhNUbVOl+sz5dW5rcSAwokOUFpUhfaYx4TwXoyUxAnwqIY9b5RSBwAAHjcrCBhYFqjJ4JKbPnMNN9DTT8GiF9WM50oB0R+aGk8Jyqh9oENxg07i4YUjlSWCDv7+ndOX1uvj3xBDounR9F2lUVdSDLn19Xtp2btiZD8cDwYBvm2VUQZDDSEv1YDsoCrm6uqqzs7NJxwQGUpTTGUlFtDR8bthdV9/iqHhfB7ZY130FAilYYL+R2aStlL2jvXQ99ikCl46y79pqLoDrgjx9Z+BTNfYjrIfSnwPr/hsdc+ekWQcfHynPlE4C4W5HOlaAfToCgj99moCFp6EaoZFEoY6ERoKLiqh4XZTlZx84GPA1An4qoRspd4Q+OFQm3/8qdkDTBN02RbYlZYkRcwVi+6Spl0SZeV09/VSOzoGy7Pvg/DsZAQAOOq+/A2AfeF5npxIZSbMfmI+3Jw2yGwmW0cFLGg++dsYf4azxy3xJN4sh87ljXygsQKBy8LkFTDexTdTbkb3o7uvA6Jwz9yiLAIpjep/F9YL9o0OEFOjw8cT+oi1hugnkJknRsn7vQMDoe6qjM7M/Ym9SmQhClV8X+LA8HShIMgIXKXDpgAD/U5qaHvilzIAXmIPQV6/64RRLKugNSQNNRyoj5w7dn4/g2wnTw4RcCd1IueGi4WcUTnbCBxrBCacR6Hi6NlH7dhFpas+k1DR4KdqhYe+MZypHumYfwYCvhCa9TCpyjpkhAFCaSsf70Q1hApuMfFN++qw8qGs+rUGHkHbSaAEtt9eqnr71zMG96ulnJ6Qxsl6vJ4bg6Ohoeo6BAAUXNfGlsdE5AS7y404BXiNRIOFbw9jP6eWRKkHBvoqPS718EZnvOqn6R1f8IUZpzYADLUk3XhII6H5Lbe/pVG3v43enrbKmdvG0PD3mq7JwbKc8fLzTT+m+0fSD0nBw60CB9jy1L9PWi+sFZKuWyGIwwEKnCDpFChzACbm7oiRxCt4jnBTt0AkLDacIPdXNpzvc8DsqdLqsi858ICotdnQ3uCids6UTSP8lRoVpcveEG2suskpOyA1tGjCjsv8OGUU7VX3bJ73wLaejNGjoJIm9cYTPccVIWe9ipJgP+zntotE7nyEiQ0HHSjbAaUZuN1O5CNSVBg+vSQwF97WnnUqcruDOJN+i3IFpMotJR90WsA4sm9p0CbP5nuKMknSUQIC7pmgr3Nl5wML0XZLDXRL1jwBACkgSHT4CBollYF287n4mgcS3vcq+jaL+BAiW6s/cdWwftpPGrew3X7+EGUjRMA2DD143ZBI3XCkq4zuVmWsATk9Pp21OXA/Awd0pl5Rbhu7l5WU6rUm7B9JJcjTGLg4IVHYCAjr+ZNBSG82J6ukPY0pRjhyB5g2Vv+YWdUgFV6ISFHjfcjAmgNDV73eKR/aUFLnTsNL5Eyylx7uKFeoiXP3ulLhHn85G6TeWt6tDGisaJxwj1FUHuHS8XCujsrMdmSfXH2hKToCDwMnbnPrKulLfur3ubIOq7ePN9Zl96+PSAXuyG++twyNJ7IADAk0VaJqgaswS+u9zdig53c7xMxjp7LP+o2j80G84EOgYvrmA0yPwLsJ3RrcDPW+RpGNkHPzlQQTXiPjzcpbIm9cMuCNzY5scRtXmKnam14kbOkY92r/Mfc8ydIli6hyWBoAOaNDJaunkLW+HEWJ2UCJU7oBglM6cMA8/apmOn2souGhSddEhFaq7XgkUJLCXKGNv748gKcLiaZMJIKXInULHRJ2rqslZegTh0axLim59esAjcY94E2gjGPDjWgkGqjYjfuVR9Y8T15SEwJGnlVgNbx8fn65T3h58Z9DSAXdnBvyzXh9Rdzu29unpaWNqIFHb2ibqgHGJo5sDArTPtNEjZ81rEhPH3z1//tal6ayU50P997y9rp72SNQOyVmTwdK1bE8PIJzN69jLkbwZDOiz04ZdlOiD3xWXznWkfGxg73in9pgvy8kyyvgJUREIOBigwjldrrokoVIK0VZtTzO8xeh4ROjTJqSLub+cbSVjLTBAQCAnmCJi73uP3hI42Gdhf7hTZP0Ta1S1PWdZtUlNqq3p+BONmNgWpcW+TrQ2QUH6rzOSPpbduDBal+4rr9PT0+lce7WfnI4Mq7YgEhB0kmyDty/FWQE32l5fDxa69H4kyvvd4naZ4I1AwG101fbUJndVdUzXrpKCI6XveijZxV64X0igQP/5Z4+wNS6ZP8Gl/+5AIOlWl94uQibL8+T4TQv5l8ibFxDynQqWFg2OjKQLlZiGWfe6E1flj4+Pp+NOyTo47ZkclQaK6BU6Ql8MqbJrLollVdmcFq3ajOC9PZZGzksiRW4d0/QJqWKfN1a5xQzo3PkEBrxNnMJNvxEs7CsYcNCo30izJlaE+rUE7MwBAl6X0kpRrM+7e+SVol2vt/qf9XUGROVRWY+Pj6cDbagfmgrTAj6CAwIpZwdc2K6pHdL3ZJS5+8ejyiXRaJfnvoozsLRxzhSQ4RFb2wUuPyIJjCnfxL44ME5p+W8OmDudl4zGhMrAKSOWg8Ag6VzKT+3LIHKuTnrn9G4a5/Q7HqjNjTPKzmDADZkrmyo+QvHdwHJWgJE4Hb53ghrCn0aocvhASINEYICvboqABpGAhPmyTqn+c+3A69k23laO6sUEyPHzpXljUbi+tez+/n46NW4EBtI6AneW/J+v9xCPhBJQTZH5aM66o6sl3rccNwkQVG07rKQHZAZ8jpuvFN2mMon54LRANy2kMla9nvJJsPTw8DAdUUznorbkKmed6OnGykHjUkCQIkCOmbnITWV2PZkbq/skzg64nUu7vdIUSkd7/8py6919iIPiOUbHgWHq93SdlyWlqe8OnJh+utY/d/V3ceDPaV+yKwkIpMW2c/ImZkCJ05mOItxE2zl68+uUvlCZHJauoROWESKCUuP7oKAhZ2N5RMQIho7M2QqWm9Elo5+Rw+joZKZHScyKg4K0pkLg4OLiYuMURtXn+fl5YhHo/BNI8uc10NC4EyGg4qr09xA3NKq3GxhS4kv0W7KU+ksMAcGvrpF00U56+f2JhdJn6raD4PTMd9WxahMMeOQp1oBgx0GH60Zq52SYE92q/7yNl0ZFPk5V3n0AAB4ELL1H797PXFDIx/5S3FG+hdJ+edl+VoqXz1kx+hWOVUrqFx+/SSe6KSQvF/Wms98pjTkArn4ctaX/rut9HZBP8XbMzy9nBiTeaE49dU4+GTY2ZKJMqQACBdw2c3R0tDEPnuahHBg4RUpA4E6O1zL6onMTWhwBkCWSAIL/7+3KduQ8sa8VEEPgOy+qamJWBAb8bGuyAorqNC3jFLPAgkeZOoP+dwsHBIEgQWO6JzFdrqcyetSP5IhHZduFru4k6VuaruL1Pi0wmiZTXQgGTk5Otlgfd6qJFUhg0dkmTjd20WFn2BPz0/Ux9Z9ghpTuKKr7HTKyB+naxA6wr8ksSXcdjHJOf9eyugPke9X2mQHO8PrnJAlEc/cI6+V5elk5zh0IjBzqHBDwazsdHAXRDgZk0709R0Dgp4OB5KRZEFaAzsnBQXolesXzZIetVq9HB49o0jSQ3cCQGRhRwjT0RL0EBIlq9jbsor/OeKV2cerIF4oJCPD3dPIid1/QaJ+fn28Ya6eQ07SAswMCFIw29XS73y1kgdS3mk8eUcbsQ86/+x5l16nkxDzSlywxtsnAuKFPDAHnE5WOj6nROoG0Xobt6TS/M1RVm042nWMxt0tlNB5Sm+jdjfpI9L+mIjWmNebfGwxIOh0aXae2Pzo6qsfHx2h3Fch4X/rWzLe2gUAVHfJqtf38AF07GkekxqnnGs+0Z0lSntQbB6ECwilqZ3n4G4VBQ5ev+oj1SlO/CtbYBgrIaH/fMkVQteNTC+fEF1Z4REVjRIOh7ylPR/wdTZQMUWdoqWzqfLIAHbIiM8DyKT1t2UlRZEcPudPplNjT8tXkftIiGRKfWxYQ4ImMqt/Z2dnWYsDkHLoXmQFSz4o230O4LkTRLOss6aYL1PakPRnxVI0BQdIhprMrDezlYlpM0+l9PotADkCf6YA7UMx0uV6GY576pzrL0Dko6KYMOPa6ulJ8DLEPKD5uvf7r9XoDCKitfgZz87NlKTgaAUa2gW99dbbR2dm5vFkGZztHDiqNI6YjXUrOmIAgMQFVeYdCytNBwQgIpTGcpi48b0+beTgY4MJwpSVd9fUC7rt+OjMwJx5xJMVJUwNd1OPRk4MCihv0JQaWNBQjEp8WGEV0I3rHr0uo0F9et8QE0MGnM+fTnvIuLV+IprZMTj7NDVP5CAZIO/MgIy0u+93ig0URYIqUk/h1+m3Ur6TIqWvd/KZLosZJedKo+piSI1b5XF8YCTNdZ8ySMaHDTWWkXqlsDr70EuvkDIQbxSXRzYiJUTn8M3+jw6yqjShznyXpIH9PgEB9JMCedLsq0+4pwt2lrHynpL5LEblEept0kFOAHVvroF2/daCeQiDiviZNYSUZsYYeMHesN4PYtNNpVyZnMRgYUTByeKyEF6YDAckYJyDQKbyLR17pWp8i6KYGunp2eVNUVw5WjyKT4qV6OpLnqtIlh8skKotGwRddknbS59PT06328rZzutmnLroFRb9aHNiIHXCA1LW/rpHIQbFfqjYXkPKaDhyPhNe7/jj1mAY/waPria4nEFhS7/TdwUFixbyNPPJPYzPVlzIy1nN1SEGJp9uB+H2UTqfcqUpX3IEowiT4ERtAZmBJOXbRl66cXR2YJoGNC0FAYgAdsCcg2QGRDjg5CEj1dmDb0fiul86i895ueiAFmnOyGAwIhbBxUxQ7miNxCj/9vyQK8Dw9DZWX0nW2AwFFJ05TJRC0pHwj5UiMgA8oBwIEBL5GgECA96Q2YrqKHGmw1Vfqcw6eBKIYZXbgbYlB+RWSwA0j5LekV5X7qmr7uQH6r4swHCQyj5Ej0//dOCMb4AyQ938SL1+KgJJR1fcECJhGMlbUObcho/4aGVX/LZUrOQ2v677LiCVI9o5ggNMFbBOlqf7obHQKwjq9ciDXAQNe6zLqL9ajy4uOeAQIWBel50HNEjZ6if9Idp/9ISGL7dO2b5kekOzMDKSOSxFWZxCr8uB6q2FeIp3yJkPmv+0ic5FEAgB8dSCAUZ6fJOd0vx9Kkcrg9XOwkX73tpHipahPuqKXotGzs7Od2vNnCR0UaXu2YxLvH3fWMoC7OFT/XLXNNAiMeTrujOnYXT+STiRH7BF9oih1PfPxtNzB6LoUMLi9mIsm3ZCOjLjfk9o9sZNdBEuH8hHEbbLaYBQAcdqMbZaCmZF9WyLuP5b0ZbLDHvlTVqvXtQUELx0jMGImJIn+7wB5x2Sl8etjJIF9tgHtmLMCI1Z7iSwGA1w1n1AZG33OMLrMocAfkUQ7JdagM/qdOFJzWrGL/FmOLl0HAD5fRMOfor0l9G/nDHRPYlgYGbC+XV6pDu8haZ3D3PoF1wU3ovy9AwNJj9wgOJvgoGDOgSl6cPDFxaHdFJBHFSyX6xz7mnqoer68vGxMD0k/q7apf6bhdXLD6ON3ifNIbT3Xhvr+p4jbIr27LnNRrQcgErE1P1KGZIdTlM7/+e5pqO/SfdQvZ3qdEeAqfs+7aswIqBzpu4Nlv6bTW44rps1ya6ylhd1vnSKo2vERxkL8SdFYeIKCDtX5wHdaXvc7/TSHTEfGwRsnfR456ZG4YWJ9ljAOHRPgL2cGknGdKzsNAl++Wt7T6+7z6QN3opL3MrY+TcBoyBF7VW2Vn/fyndIxDAS6naHoxon3K9meDhg6ABDI4G4Z7vTQwVLOFCkNsTr6neCDQIELSPUQLB+7ib3QNb5YLTmfDgh4NMz8vD0JvkbMwJ8oBJvUay4i5HQBZWn7dMyEXzMKkjoAQCEzoHpxjZSnS6fPz3OAsmMEUsCVruX1DKaSvU/fvc4qvz8jxYHAW2SnaYKqTeTFirPznSXYtXApcne6cpRmUj6mpd88It4lWvd8nN1Qp3VOMpV3DgjQASxhAOZAVIp+3Qi4U/T1FTQqTlWpDN5uv1ucEmW5Ewrv6kwUTqOi+zswlq5xUD26ns6T5XXnnB5KJOevlfv6rh0e3NKnscspPo6RBD7IYnh7yQ4oXYELRaOJruXCNRrP1Df6ntpN5ZV0jMySfvuokmwl++no6GgCxY+Pj1X1CpI4NlxGka3no+spo6mC7hr/3+vooDMFMfqcvrskRmDk91KZOkkMjNvqVAffSsgF22nNwK6y0wJCOmXvaDaOAwKXhHrS9YlmIup7y7TCnDIkVOdozSN01seNm0ekrthqryVAIDECahOWvUOdvkiwo5MSmHOHSKfvOzHo7BgBvtduAoEADiA6Vka/VZsGM23dYX0p7lTYLx6RJieUrnd9Y0TO/u0WGqn8Sl9twWdNcH5Vi1HZh9RVZw14kmXnVKV73PWSgMBICLzS2F3i3N3ujK4d2YSPJA4IEuPlTFLV9pjYNU9KSifZmxTksY9H/kT/0z8wPWcDRukxTbex3lbJmbN+nT/xvFQW9yusm+oz9wRVt+lLgcHOhw4tMereqUsGoDv9rgJLFLRDkJ6+U0SjSEKGMj0utmMiXPFGzMDcq6OR6Fw88uxYBJbTDao7FTl0fSYAcENOY8J6OYD83cIya+D4/mqVmwsM/R5+Tk4sgTGJ+sfPOHBQpzKRQtd/PkWk3xMAoKGvenUKPu3ByEo7LAjgEsujfj46OpoOQvHDrty56H4eYSxbojzSomOWPYlHaN6eozHtvzG/t0RWH0Gkt6vVaosd8PGfwNMS4Ma8+N4BRQaPbwFeDFw6G5PsfccIUJYEgJ19IzBJwvHu4D+BAZWZwY0HYj+iuzuDgY464jUSj/aTs5L4vu+RjFgHp8Sqlu1p9WiMBohggBFOirZZD3XOCAgw7wQAXGGSsvDFKM0BgreTAwHez/rTOT49PW21lQMVGnhGpu+9tdCnN2QEVT9dy8GWBl4afCOn5DrPOUMfEw4IEnvDPkvjYLVabRw9q3vUr+7gj47+ebaH0hVVnxZXUU/EIvAx2QQFZF+0w6RjuugM2B4+Dn3bof+fQJb+Yx34TklOY2TzPoI4O1D1GmkSEOhd7cLTSau2fcCSaQBKcnx6d0AgHaT+dsL8HTh29j5Fza4PPi6T7R2Vj2De83DdZtod6KjaPDOlO1uAsgsw2OnZBMmpqCKpIUfIy+/xucLu/tHAHAGBOXqIxkfXu4Pzldo0dkx3RGl6h41AwAgtUmkczbsi+eCQQ+QKdrWt6qnvBDZkBNhGTNepXw3o95wmcGqUg0flY1v4tECHwn3aJ0WhqW/5uWp79b5edPqedgde3chR19T+MrwqixgBpaFxyHl95utgwE++9OOwd41URsGAp+eA3dtrZLckHly4fUhG/aMLQaGzSQRnVZtOnPZ51zZhO3aOV/qXAEHHHKVxpzryfRdJtpeLc6lXo/Q7YOS+hXklO161yVqO7NFb2YE3PagoocWuwqMovrunS9vLsEu6jgxTnm5M3ajICKbDfUZAo6PW3GG4kklROjDggMAdjTsNBySMEFVH1Y91Vh08okwOkQrJaPs9janXm+XkNayjMwTOLHgaiQpNgMCjX+8v9Xc6FIkUb3Jwipyfnp6mSN+dHFftOwhi/7Kszh7JMOrFp2HyNEtvV18/Q/1JbblUmF/6zHaaCya6iPG9prh+liR2gACZrAsDMwJWjmNvjyV95v3hUa/KQ530gGXkb1zS+Bil4+XqmCy2y64iIM51OioTx777GAYvyU7tMn3TyWIwIAehCkl26Zylsqujr9pWxhQlLREacMnI4aZyuLN1YzdCxe74pRzOSqST5YgqPU2JBv9qtdrYXich00AD4uBBCupoVNez3l0f/S7pwAD7hOVlpNRNDTgtl0CBR9QODvhZfSaDS0OtfNg3SfcIEFlu3a+Fe8o7GZA09hzgcDz4A6+cKVuvX7cyjh5XrLryvaM+VU6WKY3bpUL2ztkttuufJj4WEiiQPiZWgO1G8Dey34nJ4X9kBqpeQeuu/cpxncYdgTUlRf7Jts7lm+qcfkv5JObZAUE3XdkB2iWyGAz4dqNO5hy5U5HsnJH8rMHYUYz6zjom2rETp258C5t3lBvYFPFLGTwK0zytVnL7Nq+kxCqj14OHjiTAwp0AvI7puRGlkVFbaPXre0k3WBzEsNwjGm4k3rfJWXme6fvz8/MEwqWPjNRSvtKZx8fHOj093Sg/5+1VBv2etiixvtIn12EfG4kd0lZGf6S1PzK5i3o6NmfU1w6syMwkGUVZH50VkCR2QG3kYMAXkBKEjsCixCl96kl3xoP6mDsZXOc8P/cf7qOo68yD+ux16Rx/BzhTcLBECK6SvdfvGkdV289Zcbv9IwHXTgsIpUiO/lWxVEl+Z2HTwHREvoukDqLMpZkQYlc2vbRIy53e6Mxoz9MdN527P5VQAICLtXzxFgGCDzRFaVWvW4dkIJgPI89khB1pu3NlW/Dxxe/1COPECHgkKuNHsONCtqT7rYv43XF2g9bBwsvL65M0l0Qm6kvt5+cWJNL4EupuovGZrtL2iFl6q/QIELmdU4BgdHqaO2TOk6pdvH8I2km/epTp1zMdz9uFzOifJD4mCIS9/yWy507h+3Wp3dO44PW0JyMg0I0BXu8+JwWzKX1nL5Iv8PYb+S6/X9fI2as9NDZ9u6502scMzwfxerwFFOy0ZsBpFQKD9LsDAv7vRlW/7+K0u/krXbe0QcgCdOk5mmZUTAe45KzoNCAIBPwphJqP1dysfte7AMHZ2dnG9kc6Di/H4+PjpHi+KPD+/n56bjaNuiLHEQuQgMDd3V3d39/Xw8PDov74VeKAgPo20hVGRDRQqU87YOfTL8qziyiS0ZOOcoEq66T+FtsjXVBkLiNDoyvdJRBKZZLhEuOg6wh6yTooDYIB7onudmfQGafPqa1kZ1JbdW2Z2s9BB22Xnzj5USWxAxwTzgp0esnPS1jb5GT12QEyAWWXRso3Of/Rb/re5ePTA8rD/Y7rjac1Ci7YHrLHnHJjm9AO87AwHxdvZQd+CO7OobQOQKTPnVEeIU0yFYllmBMOeFcQf2e049GZnGkHAjqn4UqXAMH5+XldXFxMLzn9tH6AzECi3+iwq17XB8hRy2ALcJDOYwTp9XNknCK8ZFh+l8wxAynS9Ig3pVW1bThI9amvCOCcqWE5UnRBQ+Pt6g7K72O0f3JyUg8PD1sGtYu+O/Aqx8iFigIbSec0BcH3DgD4mOmMbccOzNkjXde1l+up0nmvXTC/SmjPCApTXzw/bz/Hg/R1F4h1koBAYhDcb6TrEwihzowc/y6AILF1zK8bu5yiGrVLWifAujHQ/FVAoOqNYGDU2f6/RwpEfJ0D52B0BsENWUKQncFgmp6G39spSKJpRwbNjap/7kCBR/wXFxd1eXk5sQSMOOW4u21ddOSM7iVnZ2d1d3dXDw8PdXd3N4GOLpL0Acc6JedIFuM9JfUtAV7VpiFiXZiG3vl/WtdxeXlZFxcXdX19XZeXl9P/ut+3CiUdcsYpUezq3xQJ8X+yeD4GEyii8FAaXfvw8LB1CiHbyQEoGQgHOGyPpGMsp/eD6sR3/5y+ezoJ6CXm808Sti+ZQOqDrvEIuWp7Cnjk8KrG7Uh7747eQUACEcwn6ZHeOd79v1QmivuODghUbT9YaaSrXkelrzGjRbgd+/wz5Ietc0fzVG0v7nA0+paI3gFA55w6h9WlyWs7QLBabc9B8roOBHSSHI4cSxdhXlxcxNPe0kJClUEOxY+gVVve3d3V2dnZNK9/cXExObRuDYK/q/zdXmBGd+8hXd+ODID6RbqqdHgdwY5A2/n5eV1dXdXV1VV9+vSp/vrrr7q6uqqLi4uJAuRAV9RMR6n/FQmIvdE7mRxfp8Jy0rh3bTJnTBjhsIzHx8cTQHED7iDDnb7n331WGrv23eizvrthT+Pd7cmfInTcSVe8z6o2bb12rFBSJO//jwDZKK0EBJI9Sk7f/UICAvw819e8rgMdXu7EZKV6SpR2t07gZy4clOz01EIKK+POkcJOVMTFawgIvEP5GyUBgWTwdsnHjYzTL7om1ZXXLTFSnZAZ4PwRnY1epKR9bsuNss/hC2GqzZSHnIwiWubnAIT97gyOsxzcK7sPkvrZHQ/FdVifHaxdXV3V5eXlBAI+ffpUf//9d/3P//xP/fXXXxM7wLUDjPzTSmEBgdvb27q7u9t6aU2G+i4xDKyz6qjfRgCNAIhtoKkCsgXdOJ0D6xRel4BAx7p19qJj4lI5vXys/z7p7s8WBlfezgkQsP20HiUBg13y93RdRgyP+x9npV0HGaF7Gfyaues6IJAAhpfx5eVlg03jWCNoTrtu0lSt5/sW+eE1A2+lz+iQnSHo0mRlU4fs2ijdFEMXiaRy+PfOkfj1nq7TYL7NxOl239dNQOB1eXl52VrZzwfUVNU098vXxcXFRqSqfFhe5iewJ/Ttixn3QRxIatBRHzvDz2hktXpdtS8gcH19PYGAv/76q/7666/6z3/+U//5z3/q77//rqurqzo/P99wnkL/iUoXiLu7u6ubm5u6ubmp29vbur29nT7f3NzU9+/fJ3AgpoA7BGg0uug8OVQHv6SRq16jLK1dcAp5JB4Z0SnJHnSgZTQ2vb9G70yP6eoaBg8/I/LaN0lAoANe7FOCewICd7qjPKu2aXTKEr/iupkYamejJcnfJPDg6fG3DuimPLyM/ntKVwCAjO6SI4jfKm8CAyPDnhpxJIk5GAnTp8EYzZ04+nJFcGPgAKOLQkb1TEbO/0v3cOW5rwsgKPCoLEXqMqJqGzIEvnZgtBiFjk/1IS1MI67/9TltkXlv6Yxf1Wsk6nPwkgQELi4uNsDA33//PTECBAPX19fTNA/ZAZ8eUH8pMri7u6vv379Pzl+v79+/17dv3+rbt2/19evXDVDAaILAz8dPB36oU53xHgEnilO7/nIgxpfaxfXHGZxkFDkenL1K+qDPSf5EMEBxEODtr0WE6i+Na257q+qnCZUHxQMJiS+8837jdwfo+k22hzpKO8xFoQ4eWD73KwkEeN26MSHw7GV2/VeAICBwd3e3sV6Ia2u6tn2LvAkMcN7FIy0vmKMqXu8Nn5x1modMzjrl3dFLSyKY5DB+pPGXMihqB+4q4Lx9d+pgysOBUqKiNQA07+u7GbSVTNRUB4a8T9hGDh7eS5LzkMHjgOScvUeLdGg6ge/09HRaKPj58+eJFfj777/rr7/+qs+fP9fnz5+ndQPaDUJAkECnontNE5AVEBj4+vVrffnypf773//Wly9f6tu3b3Vzc7PBFKh/BdiSU031dGfKz4wARxS8O4+0A8bbwRdN+nkJ0mX1XReAjJyPS4r+2Q7vrbu/UmSLyew5DU3d8JPxJLreA6wUITNfiYNODzZUtrS7w1nKuQDM/0t6kyL/BAxY/znpQAwDA+m3gIAzA9102Y/Kav2nQ96DHOQgBznIQQ4ylD8X7h7kIAc5yEEOcpBFcgADBznIQQ5ykIP8y+UABg5ykIMc5CAH+ZfLAQwc5CAHOchBDvIvlwMYOMhBDnKQgxzkXy4HMHCQgxzkIAc5yL9cDmDgIAc5yEEOcpB/uRzAwEEOcpCDHOQg/3I5gIGDHOQgBznIQf7l8v8BL6MQtwCxJYQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIZElEQVR4nO2d6XIbubKtQdka7R72Puf9X/D+2b3btkRq4P3Rscofl1YCKFky1aeZEQySVSgMiUTmysRQm/1+v28nOtGJTnSiE53oH0tnx67AiU50ohOd6EQnOi6dwMCJTnSiE53oRP9wOoGBE53oRCc60Yn+4XQCAyc60YlOdKIT/cPpBAZOdKITnehEJ/qH0wkMnOhEJzrRiU70D6cTGDjRiU50ohOd6B9OJzBwohOd6EQnOtE/nD7OJtxsNm9Zjx+ms7Ozttlsym999L+1dnCd/510LpN/+28S80n5+/dsmZ4+/U918mupHlX7e/Xzaz3ePD4+tv/3//7fVP6vSWdnZ2U/9SjxpvdJaT2vlObs7Kx9+PDh4HN2dtY+fvzYzs7O2tlZxuz7/b49Pj621lp7enpqj4+PB//3+/3yzb7xPkqy1pPrXru9rT4OP3z4cPDN8agyn56eDuqX7qmObKe3tbqfeKPfzh+2e7fbRZ68Jf0svdsr50fOpUv5uux//PixnZ+ft8vLy3Z5edmur6/bzc1N+/TpU/v111/br7/+2q6urtrV1VW7vr5ul5eX7ePHj8/yluxrzCh/jR/KwcPDQ7u/v2+Pj4/Pxo5Iae/v79vDw8Pyub+/b7vdru12u7bdbtv9/X3bbrfLf927v79fnlU5SUf2+Et9XtkMjQm/n8ZRj6bBwHumShFXgKCnvCswsN/vnxlaXav+j4yBX09tSsZ19IzfZ71SHWcAgbff6+dlKA3rfyxA+aNAYJRuBA6qfKmsXIEJCLhh5QCXUaV8fvjwoT0+Pi5pZ5S8+mmmf3pAJ8lIkrekqJne28kyeu3qyb3qzDqmMVGB2WMe1JrGkeud2XzWlKm8e2C6cjL4O9VfgPfDhw8LCLi6umo3NzcLELi5uWm//PJL+/z5c7u8vGwXFxft4uKiffz4cZF7GXIBY68P5Utp9U0w4EY58ffDhw/LPY3Rjx8/tt1u1z58+LD8Pz8/b+fn52273baPHz8eAAKWJ76w7MqeOA9TG9M4Szyp6P8EGHCaEfqR8lszcEZGuld+9WxPEVUD0IUnUTJOrjBn6tGrX09wj0Evqc+Mcax4OQJ7vXyrKEBr7ZmBZJmix8fHA0DgzyVjSKrAXqp3BRw9rwpM08CrnqP8Eg+U10gOEyAY1d3r+rMp1bMXJXyLsTjyXF9Km81mMaAXFxeL9//p06eDz9XV1WJgKSsyrvf392UUTGlbawdAQNEBRozUVgL11g6NLSNbAiX+TWBf8b+S49TXM32Yxuta+luDgeTRVteq+738eN0VmyvVkfJIeY/ASE8xp3Iq5TwDerxelXe/xgvpRUqORS8x8PpOcqR7HPw+FTUqy5+jB+IGc6Z9MqoMH1aKks+lPk9yOAN4vP5+zacNWNbT01MZAaBHqHw8TCpK4NgBAct9D/Lp1Bv7Vfte4pykMj2/tc9W9/Xh9ICmABQR0PfFxUU7Pz9vHz/+ZapouAUE5HVLtn36R88JAOhZAYPWDsP1qh+nshQJ0PX9fn8AZNQWRgg4PcF+VDke5dN98n0Ejiud37tX0Sow8NqD5UcHYE859RRVMlA9YMH6ukIlMKjalMpI95mnl9trf++357OGHz8aJn1PynUWBMyAAd7rgYI1itHLSdMEVR77/f4AQPi3ogQuv0luKy/e+ZH4k8AfP/SwFCKmcqVyTFEN5i0QwHRsIwGFP0t+V6A3/X9vNJLZ0bXXrMNsWvV9ighcX18vn6urqwUIqF8pCx7q1/3eGhFOJyiPtFZE9ZQMqb76L5ltrbXz8/O23+/b+fl52+12y/SAgAHbnsbeSOfPAoIRz2foqJGB1wICVZ6z+VdAICm6qkNHaHzUoenb73telfJNZc4CrxkgMgob/mhY8j2R820E/FrLwEHpmcaf4doB5tPjJ+/RQD49PS3TBfqWgmOZVd4e+dK1GbDrPODHw6iMDHj911IFaj1NNc4q+jvIs8tode+lec8Aw1Ee7HNGBRQR+PTp0wIEtEhQskBjTmPPqACjAJ6W//2TptFa+ysKRcBJOdW35FnTGB8/fmyXl5ft7u4uRr08cqEy+b22v1KUi3z/6WDgLQzEjwrxmshDZVR7ns9LqGdY+N377XlVdaoM+2z6VK81/fhS4T4mVQa7assMMvdnK6OqNFScLGdkICtl4/mP6ultq/LydMzfIwJpGsXb6J7cDK0Fq6O2qO7vDQC85Riakd+Z8keOmYyngIAWDH7+/Ll9/vx5WTx4eXm5GFn1F1fkM7yv6ICoihDoQ/JIA/PYbDZLGb7zhRGDDx8+tIuLi7bf79vFxUW7vLxsu93uYKFja+2gLekzy9Mef13PrAECrb0iGBgNoNcS5gr995RN5e2PPqN6uyGfpV5IqEoz8rp4fVSe55f+V23qeSDV9femWJ2STPn/ij8945rQejVgqz5N1ON7tcjQ59pTfu4tuaKqAGEFngkEGBqWck2yxG9uI+zx2f8zrOzRBpU7G23pXfsZRB0zo2+quq+Rp5kxXuVTAVxuIRQQ+PTpU/v8+XP79ddf2y+//LKsERBgkOHlSnwCAnr9Kt8jCPo/AtIj/hCEMDKgHQ4cX9qCqAgH25PGdooSzPJbdfdx+hJ7+6rTBG/tAVZAICnsSrHOeHKkkVFM+fWU7Sz5wB+1bQQEegY6KUc3EDM0aud7BQWuaEfy4uln0X4asP4MPRifN0/5ukfjRtTLFY1W8L/UIOhZGQCVJU+P5MDDFf0aBZfaUy1CnAW66p8ReHhLmgHWI727Ri+PdOMsH6ifBARkOC8vL9unT5/ab7/91n777bf273//u3369GkxnK19N8Dc2+/79ZlORJCg+04uh2xXb5U/F+ZKLgQIfKfD/f39cp1gvMrbzziY4fMMQF4jt6vBwEtRx4/QrLemazNGsrU5707fbjz1fOVVjrweNxqV0ukBoMoj87bN5M1nqv9OvfYn+tlyM0szbaiMw1oF6f9dPmUMpXQqqu6NgIDPf3KRk9LTk1Z7PXTvMlgd7iVFyCiBymGo18EA607jXrW/AgA+DqsxmO7xuWOT66I1Y+k1dHbiR0/X6L/6/cOHD8saAUYEfv/99/b777+3q6urRRYVAZBM8MCftCvGZaGn5zwqpfp53/s0A8ej1hKwXG4tbK21h4eHZQ3BZrNZdkOMDtty2fM0I+o5diNaBQbccP0M6gEB79B0gIsr3CSsrsDSYS+ianUz01WG2RFrQrEj49IDQL00M7QGSDB9eu7vSi+R7ZeAIJc7yp5T5fWqvvRaeovvvL9cXpkPdyCIVFYaN774sQIDzou0tavHN/KkBwjIr6QH2Kbe//dIvbE+A/pn8l1TpqdzuTg/P192DWh9AIHA58+fFw+ahpdymYz0qK6uw32sud5XWZoOYFlMyzoxf04HKBLG/nh4eDiou69lqMDwLP2o3n3RNMFbKvsZgUwDPH3Y6b18qmuuLFs79KR6YCC1gx3taHONAFQK7kf7hYq+Qvu9OqW8emn+buTRAV2bCTtXbed1N8ZcjVwRZTXtFEh1qIy2PDG2U7sQ9J9ywTHGY5R93KVx6J74aBxwrJB6HisVdzUdMkPHlNvR2Hstx+w1eJOAAHcN8Ijhf/3rX+1f//pX++2339rNzc3ibcsgciW/50v5TKv9XQ44Frjwz4EsZV4RCa5JYBsJTji1xboyGnJ/f99ubm6e7X5gtEPkkYEZh+w16N0cOjSr9FI6F8CRp5VABf+31g7QYiqT+fpzVLQizou21pbDL0Sj6YK15AY9lVVRUsRuAHnPf3NQeD7/V2kGEPj16p6DDq5e9jzcS5LMJ+PHPKpwpcrj98PDw8FqaJbTWjt4h4K/TyGNv1kA3ItQzUSq2C6CpZEcvvfoQA8A/My6Jz1KQ+jbBz0i8Ntvv7VffvmlXVxctNa+60Tt6RcQlfGmDOiTDugSD1wGVS+uYXEQy6kJnWFAA852My29egLk/f6vXQY3NzcH7zhIgMMjIBW/e/3xI/3/IjDw2uHgXj7J2Ljg+bUUClK9ex5Tr/xqCkD3EiBxT4iIt7Xvwp+Uv657PZIiqK712lSFR1/i5fb+9+r9Hug16+T95QZ/NG7cCHuY26e4+M15/tbas9/6rqbTWmuL8vU66ZwCL9dDr75bgN5WkunelEaPv5WyTNMQBEaVvnjPxj/prop+pB298dnTN85Pet4+PSAg8K9//av9/vvv7ZdffmnX19cH61NoTCVTaYFgcliSM0KZoPEXaOVpgVyzoJcR6ZtrFlgXAgffNaD8RZomoBwTGBAMKH/n+6gPqz6boaNHBmaBQC9N9UnKIT07uufGPqXxsJOHeIUiGQpjyIvp+O3Xk0JYqyRGhl95jmgGVNGIJS/x2DQCUgk8Mk0FVv15v+55OSBM315Or1wnN+JSVOlglM1mc+ClPTw8PDsl0AGFlKoDArWPETEq/8TTNbJfEdcNEIB7vh6efa/AYKaPf5SSnFdjWt9J5xIMaAvhL7/80n777bdleuDXX39tnz59WnSgR7KUFw2s5MbXWLX2PApLQMH6CQzohEAeFkSZub+/b3d3d2273S71YUSLYf7dbncQEdNWQ0Yg1E627ezs7NkiWgcLM2Oi1z/p2YqODgZeI8qQvJRqvYA/NwIRrvRIaW60mqLwEGXyVJySUWLaUSf3gE4K+yfD1vNIeoKYrr2lIntrcj6MQKQrIuXRC4lL4XCu2/Nt7dADpjfl25OYloqQXhG9d0YAKLs8wTDVg/nS01I6f3nSS8e8RxVEPrfs0xQCIN4f+p365L1GsipaC2IqpyLlW41p5yM9b20hvLm5WbYP/s///E/797//vQABHeW72+2evWeAc/G+gC/JYKqjT/U6wOCcvgy4xqA8fb4VVC9Eaq0tQEA8olw/PT21i4uLttl830Ww2Wza5eXlMzugaMPd3d2zFydVEbXUX/z9UkD7YjDwlgOlh079d0KlFRigBzabR2vfvX59pwGSohDsSH9vtr/Osvqw7sqfApXaot9J6faiAgyvOb9HwuaGwtONgNl7pRlvqQKVs23mwE+hfpe5WT5yasvBMlc7J1mm7BDY+oKtBBD0zXwFCJSHgwN+p6gByQ1ZNYXH8ct1F2k9xXuNCMxSBWoqei0A5LqTBlY7B/7973+3//3f/23/8z//03777bd2fX3dPn78uACA7Xbb7u/vlw8BQZqrp36mB+484Hjy8D7HVWtteZWyjL+2Bsqot/aXDO92u2WsPj09td1ut9SNEQOWJ7kXb6jzZQe22+3yXLILie+vTe9iN0Fl7EWVAff/I2XMzqfhcxDARSWtHYKBUQiZaK61w4WDBAMUnGT4q/an6EC6V/2u+Nzjr9cp8THRWgX1lpRASqq317niU8/Yu/FlmSmt55XypHc0kjnKA42zvCGX71SWk4y1vxDJ8+D0F+vneXENAttOJd1bT1DJnIMekcBIDxA4pbH1Xuk16jer15OO9QWD2jmgaQFNDQgIPD09te1223a7Xbu7u1uiA+4ds58czDLcz+OLXed6ngS2rX0HAvqtsaK8lYciAzT4+/2+bbfbg4WEOn1QaRUB4UmIaoveZXB9fd12u92yPsEjBD6m1vT5bL8efZrAaWRc/P/oQ4UwExZjvq09X3WdlHFqg4d62MH8TSToApDqPKIEnGbam0BGr4xU5khYj6lQK0+otT4w6l1LNMNvv+/gQ4aLxpBG3Y0U5xt1LXnOyt89eTe6uqbv9FZBz5ekOjFvD/sm+a48e1JaVKW6Oc/cWGm6YAYEpN/HoLcCI7NAPQHUFA3gWwj1SmItGtSuAQIBzbXf3t4uoMD32bPdDgRkrPUOAM75y+FSpKG1dqB3VfePHz8uhpb5+GuIOYVB/cxFhQQK/CjCoMiBT4e09te6nKurq4UPyQYknsz226zsrAYDbxkVqPKvrs0AgZR/ZTAJHty7c4Xqv53hFGoeNsHfbvxdQc5ECPj7JRECz9d55flW7a0AAe8fW7GOaA0ITWlmxsaIR5z/T153OntAxle/mQ9/ez34EhWuNxiF6ZnOwbZPcTC/6tWxfL5XlqdleQQgap9kkoBgJgqzRoG+B3pJXV0vzDoN+qaO5fSAdg/oLYSfP39u19fXy5y8DOJut2vb7XaJCjD87gDR+8vLohcvOSAI0LeMt0iLY5+eng4WAG42mwUcbDabdnV1tQAL1Y363acHaPQvLy8XMCCgz09rf40VRgf82GWW+VIAN0OrwMBrAoEfyWvGoydVc6+e3+x1J+8wXk9ef1og49MGzIP1mfHYK+Pd8zJmjVkVtZgR0vesYEeRnrXy6uBnDc8kq5ILznlXdXHjqHx6nrArGTeu6XqvvdyayLYRBFTlObHO8t5YN6+f864HgvT92o7NW9IxAYobY3e23FO/urpq19fXz95CqP4SEJAnLAPY2qGRbS0fH6yy+eKjy8vLZXwoL+bp7zdorS3ef2ttebeARx80hUAw4ADUX6DECPD9/f2SN8cGHUNFVAQ6ePYAv31MvDYdZZrgrQeho8nWngMCr0sKSdLbdSXnCojPUGDUmen89QoIpI5+jc7v5UE+iHc9I5iMXQVc9PtYymzGmKeoSQ9MjQyyjHkPgFX19I9HCXzBnBvVyjjy46AhKbTKYLP9DrL1HOvmCnQGXKh9HnFKQEAfGQmPjLwEyL0neisgkJydXhQsRQT04XoBvZr4+vp6eefAfr9fDvHZbrft9vZ22bpHA51kmYCA45Rly3BLLrhWh5EIGeDW/gILmirw6WCuS9C8PiMDrbUDg86yNJ4YMWG+BKuSTwIpnmvAdRRvrUOPAgaS4p25x+s9oSVV85pOrsBdWdHLSIosgQBGAiogUCm3ql09dPgjSo/KPIEp5j/j3Sag8N6UrCiBPd5rrT/N4ukpB1V/OX8TyPS66TmG4lt7DkZTnXxrII05ZZSyWL03gGOBxld142InRrp6oGVEvYiFy1qKCCSevGeZFHnfjwD9DOCv0lSgwOUmLbbmQribm5vl9b3yvDUX/vDw8AwMcMeAy4iep3FP44gyrTx4IBDffsix6esIfMHtxcXFwUI/5c2DhlJUg9tZ+ZsLdwlgN5u/piMeHh7a9fX1wcuZOG3gfdgDcmvpaAsI11Q8KUR9c56HQppAw2gVMb0QN/gJIPC5BAR0r7Xnh0r0Pp63yqcHNKJZT5jt9uujZ0bpvQ7HUryvGYmqlCT/i8ijWUXdI00Z8H8qaybfJONuuEdpafR9OsJDqal8Jypj5eFRgQoUjJyHNF2QAO97BweJem2fMfzVPZfrXkSACwevr6+XufLW2uJRy4ByikCH+lSOkDxvls/QOY2+jLSmHpS/e9p6jjL78ePHdnd3d3D+gI5JlmevbYFaD5BeW6y8WV++vIg7elo7jMQqMpAAjEcHZp3hNfTupglmQ2JJCRNlifleloTJlZ6MvYSEoIJojiFaHzS+9bAHPEgz7eWAYJmJH7xfRV9m+ez5jeqb6vUeFOyP1CMpxyqNE+Wsh+bTtTToq+hE1T56yg46HVRrQRXzTAsZdU9jQ4fMuCEXEPAdC2u82yrClKYJfPsV28nyX0P/vFfy+vfkoieHlX6hnvVdBAIEWnynhakEAjLMXCvgzhSJK/45DSDZktetNgls3N3dtW/fvrVv374tixT9SGHq1N1u9+w9BWdnZ+3+/n6Z6thsNkt7dWrh+fl52+12C78Y9W3t++Jc1V87hQgkWvt+FgGnJMSv7Xa7PJumukd9O0sveoVxop7RqfLp3avKSALpW0HYoWSchxSrOrmw6Flti/H5Hz5PAEBl6grR21V557MDdtZgrRGUXvSgx8eqLq+BXl9KIwVf8bwil8UKkK551st3Y01A6s+4QqU8+xoD/k47CriGQADBDS0Vo7ZGqV7c313JCutX8YljxqdEeuOpyovtHoG3vzONvMbKmPTGbQ8MCAgIEIrXOpBHv+md04uuIlLSxfpOddZ6AG1NFBC4u7trt7e37evXrwdgwPf6q4339/cH+lz1uri4aLvdbpny8Jcn0dvXGGEUWONIwFnjRXZEUQORr7/Ybrft4uJiWW/ha3KcPBqZ+r+iH44M9FDKCIGvuVYJpq/85FGorixJPYMm4WNIVuSnEVaAw70RTlH8iCLi873fb0EjINEzaG9Zrxkaoek1dUsy6B/2RxURYLoenzxvXWP+lC33svgcy+M7BAhymZdA8MPDw0G9fK6Y88MKmXo7vJ49/q6JHvB6j4/O61S/907e9peOqZGuGOnbygnj9j5uo2bYW9f8BT2tHfaBdGa1o4DlCBQICOj3t2/f4jHHyl956Xkfuzz/QKcREkz4tLTIt+rqmyCB0QCCXY5NRVlob5xf1AM/om9/GAykTqzIjXMajJVBqQTSwza6x3woAFX9vUwPjbLTuSeVx2AyfEmlynJ4nrWX7+HbVK+E0tcouR4IqsqkMUu/Z/OaXcz5XikpJF8YlAx84jmf1/9ECWg4IPCwuUenOL/Lj/ZmS1YFCPz12r2IFsG45og9wpCAsAMkgunXpAqU9sDq3xEUvGa+vXtJ5v3QH/W7jGvafpeiWD3nTB8/OZNl+cJEAYN09DuNemvfF/z5wVSMBOz3+2cHcLkDoHbI4CuNj09Nf2w2m+WMBdoRtpW2rhrnpOT4ztCbRAZmEEnP4PF3UmoURio27hUVVVMSyYMSOTrkICBK8xe9qHN657Druk8rUGFW/BwBAfeMyIMkICqrAmmjez1KoOalXsyP0pqpkYqSMaGR5XyjG70kYz3w1lp+LbYfI+yyx8VL7mH5yWqss8qgEec8rPKoQpTuIal8lUdZp1fleez3++44YD3SsxVx3jbxnXX+p1GlH0nuiFXy5EZUz/p7BtasHyFYTtG3/X6/zK/L+AsMMBrhAMSjAtLRHgEjGGjt++6GSo7Vpt6HkQIRAYL4REDAqQiPAr4WiH21BYRrlO1LgACFkZ6I5lYUppSg+Ly/XsOq/NQpHnZhea21g2d430+sUjkUrNYOj3Z1BU1y7z3xp/dJoaoqr0Re/ksErGd0j6lsfwQIJKOVZJGDlW2t5kMr8nB+AgLcbkVZ5uuBqWjoYXheKTKheuoUt2SAq7qr3lxjw0VezhsnB8YVOeBi2hSBcrDcA2Lvnao2vMb4Ii+TM0T50YJBRWV925z617etsqz0rTIJVBwEONgWINBOBX/xkRN1Mk9G9Hzd8GqOX+mZxvNPjoAAb2s5YqBy2HafhumB6h+hV50meEnFKu8xGTufq+KWFs6tqD6uFD1sn8KrouSZedQhAZie4hSPCBD0rISkZzjc8PfAQFK4abA5/9cYLm974kd1/z1TDwAkxchpKlcm/tvLoNykawkI0Jtv7blcKw9XplSiXg6Vo9eDoV3KRxVt8nb6LpseMHS+OVVggWVzbCVyYODl8/s1De1b00sA9+iZpH/piOnj8/oexq5C1/SYe+W3dvgSqmS0/ahfRgQSMUrAiIB78qyzDPN+v1/WIXj+CQD4PQJ3EXfusN5cC+e6vweo1trkV5smmCm0Mvz8ncDAaGqAoSqRKx+iMd0nGKi2UFHIk+H0NlCxsrMrBcf2JkXrSsn5ojZ53d0YVIORv3tKQW1N9a/633nzd1Goo/tJQQqMihgWdSXpZbmh5n8afgIBLm5NAHQtr2mwqQjVRrVH9zlupHiVB+8nStcrw++/07VRWx3IzDzzXuilTtZL8+8B4eSQpYgAF89tNt/Xo+h+ApU0zE4e1XJZUJm+HoH/nVxHc5rMibrW10akNwyyjF77lFZrHpi38zFNkczo1DVy/mrvJkhKbiavZOT434FA+vj8Jk/8a+27Z5O8eqWVwmM+yfgT2fEZpvFDMLiClnlURqLHr9ay8XAhUzluKCrE621IlPjiIKHy1o5JlfFZK6e9yADBaOJvAnj0nBglUr9V/euh/cqQVoCP4VDmLZnxM9HpbREksA3ylARS3EurQsXOL4JnNyA93vK36sMxwPHXG2trnJu/O1VtTLKe9K6P9aenp8Wo0ZB5H1X6yHnPKdoqEsAtd1yT4H2corXKh3o8ycjZ2Vm7u7trrR167/v99yOWCQpIXh/aIgdhGj8cu65jHPQ4736E3uTQoTSYKpRfKdtRRIAHW6hzJIDeMewI3xKo+X11siMyBxisE+eTmN7BgK+kdeqFNEchT+et/lcGcAQG/i4e0xqaiVpUVMky5ZMekgY1kXuP50oj2ayIcuAy4esS3BCyTMmsR6yYxl+x7fOjLFPfOmbWo3MaD5URYBucN+R3+s1r5GfSIa39ZVzYN708/y9Sz/jru6d/3QEj8Ntsvq+XEo9T/1ZTqK099359vHh0ilEpP0OAeTp41fMi6X69q0D113Xed33gOp1jr5J9nyam4Wf+fE56RoBBAIbg6Efpp55A2DP86boLBwWT80euoNJcjgy/mO1lt9YOFKjP5bTWlg6ggnGER6Up4amAQPLwnUaDh7xKz/S8ocpzFL/4TaquVUYz3TsmpSjGLFXRAX1aa2XEKBk5BwX6TY/bFQeNuajatuX5SMlJQSaFK6Xrp8YxfypLpZPCaq2V8ug8Sb8TMKgiA27UK70hnnFnD8cuwRvLfg2P65g0kvFZoOsf7paikZQckNwAJx3jskjHjKv8qX+lpymfbng9qkBK9aH+17fGAyMXylORAUa/fBujt5+RORIP+OI4ZXRG0QGCAeX9o/L6YjAwW6AbFVemPUDg993otXa4IEP/ExjwKQIymfl43mS4gwLPl8+kTzJC+u1hN69rqiPDTa5Ak6B4aEn3+FxFM4YzedHvjSplP6p3b6C5IUtesP9m1IDKivIgpUFjLkpzjz2SrHC3S5JtAll+V3LM6/IKKcujqBbr9yOUHAyCNSlpgTbyttf3aZz8HWgUBUjA1D9ctMq1WQRRAphpxb7IZVdE/c7zLpJOpX6nbdjv9wdTBcqX+dCQs06JksfO37PXlFfPGXOgXq1ZaK0d8MkjA54Xn+m11elFYCBlPvIW00Dlt+fhAzp5mSkc4/NHIgcDDiykKFt7HgL1hRxU2skDSsqTgsOyk0Hy+diK5yyTvCMvaPwrILAW2ImqKMJ7BQQz7XwpoKHC8fCdewgsx5WqPkT/rdWRF7aLysHrpm1+rrg9ikBPSB4ZvR5X6gQ17lW1lo9OniXKZ8/T8vqwPJbPMKtHDfh5b4Z/TX1GICD9dx1dTQ/4YkHVjXrGKUUFUjkMxycPnrrZ+zhFgZU/o0HeZsqse9buSOl3AitebkUO5lkHjXnvC/7mOQSuWxLf1tKLwEDlTfUEjIY/GflURmJIa+2ZQhAjE6NYFylBdn5P2ZLoQY0Um3dUGigeWaCQu8ClwUE+pZB0AgIpjzXAjr+9/3uy8F7oNRU920dvWrz3dSIOCsnD9JFypIGirFJGlH9rz6NCIi7uE1VAwAGBhz0TT/3jMqzfI7moxkkFBEb9KW9KaRmK9XCzt+k9AoO1NOJ3z1lL07I9PZzAIvWmSHn5+Rc0aC5LNPyUJY0F1+Nqg281975O5ICe7ah46LyZIdaJ6y18XVtr33f7PD19P7+DdfR2UT/P1unF0wSV4de3I/PetyrfK0Np2OCkEFMonHVRHlK0XPAkYpTAlc5MOJMKtlKg3jbOZdLAJ4/SecK8Eqqt/s9S1dfOX//9HmkEdFp7DrZ8YHl6yRONaHplagICzkP3oJJS1L0EAFx5ebiUbUweN3e+sD2V3BDQuEHlbwe/Tr1xVQGBGSJ/6eFybtY/f3cAIJoB6JXTlqICvvXNdW5aeF3pTRk3GnYZtKSzPCTOOlf63p1JL6e1DFI97Qw5/5y8/RqXGhtyaPUs16cxf03buM5JgOCngYFUYM/LYSSgFxGoBqJ7HmKcG1799rxcqUrxtfb8tcYVQytv5CXGN4WmEm/4vIeZKt45anSln9owa9AT4uQ1b4/3wTGo8vJS/XvkPNJ/DUz9Fgjwo1BHefbK7YEREfvWQXNrz9/85+OBCiYpe5aRABHBNn/3dkl4fap2rYkI+JiR16V6e1Sgx9P/S+CgokpXu9dOTzXJjkeoKiAwE9JmfzBf5sG8WBcH8/p2PV+BpWTQKye0qntaRNza4UK/qk0iGX0RoxxnZ2ft/Pz8wLn18f1mYCANmMrwU6j8d8qn561WCNGZ6XkkBe/C21oOn8pLp7fOUJUrx7VggArGFzKpnFEHUiCTp9jzFhOC9vo5VQBoRO8hUrB2UKTnXFHo09qhcnPF2AMB/vHrXmf3oiRHNL4k95aSHFSGv4pqVe1geRWf3Zj8CBFw8poojfVU74rXf3cagXuXNwcAvnuA+ps6pdoxNdLHPWNKYKr/3gbqTZYhMJ7kmEbSdbpHqknUrylym2S5coI49lzfuxOq8mjkuRhWoMCnWVye3xwMOABwBDkDAPibgzsJsisR90Z7SpfCICY7CKBif3p6eobKNpvDBR4s1wXD29bzlhNP2Ga/RoVaIU9X7C+NAiTqeaUjRX/syMBLqPKaGD4lKEueq3sqnl81tnyu1seZ0noZTlUIvvLuHCS8pN+S3FcelStmz4fE9s4AZgcD/r8CY6nsvyP1xnqSRT9PIC0aFEk2fHFp5Th4n/EZ5cdwN3We7lP/JSDqBw/5FJfr7B5xbEj/V4DbZUr81JQU608++DS5yvI8lZ8Agaa302Jx74M3AQOugCoBqsJKyTOpUFUS4p6RSQrXnxexc71MKlpSihQko586w9vcAwTpGbbDwYGnT4CkooQcR88lJZzalNL8nZRrpTjTlJdTD5j2Pl42QQFfVqJvkmRasplk1OuYgCx/9zy73v9K8dL76XmGa2S3krmkVL0uzueXAsZjUs/7WwMEKrBLHd7a8ynIytiKKjDHsp1cjzlgaC1PNegegQDvMX2aX+9NG9GRrOrb2uHaLx7xnZyzqu/ouDrvNO61s0BOq6YlKrs0Q6sjAy48jiDdc3GlNCsoqdxK2fDayOt1wyWBccH08Ay3Jeka8+m1q+Inv0fPp8HTAwTpelX2WiXYa3MPuP2dwACNm8tgAgSVp1EZncr4eD8zHcvjs6zPDJijguK1nuIYjU1PkwBOT34dxCSeqK6s+2iM93b/9KKYa0D735UqmXZHrrXnB0HRS17jtIwAGAGAA4UKQDrYc5CSFjYyv9GYpK1wTz4BXl8vIBBRbc/1cuissj7cZaAyUkT+pdG8aTBAr0QNTuFS3uezaSVzpYA0EHsCk76dKm/LyTvB0wjhCfWlNrFdvXr06vLSaEF1zwGAGzj/Tt7dbD38eqrXe1WsI6+K1xIo1m8CyyS/1bOVoa3quha8tfa8D0ZznlXZXo9k9FP9k+z57160hcp2v39+vKynlQIWQKJxcWXKEwmpA96rvP4IuSx6NMANi1NywFp73j9Vma21Z1Etz5v9JrnxqLSXr+eq+rHNiTgVkt67kMBhAtaqK6cHWvsu234AkssvgUd1uB37jhF5HrX9EvmdBgPpXGr/TQ+GjfNFHH6tZ+DIIP8/8yzJ0a6Ic1Hq9GrRUfW/x/weGFgbWaBSTWl7QKny1rxelVdUefsVz2eiBe+ZklFPXhTlJvGX84QOAtIzDrgrxfyzqDL2PbDz0nz122WFxp/KrgcKEvn8c4ryUP7fAyj40Tok4N+TZwcITh4laO0w7N7Tk/Rukz4maHP9nsZKjy8EECM7ofFWjUu2Vb8rG8Fy0+mHvEZ5TLrbI9Asw3mY+LkG7K8CA+fn5wvqIRBQ5Thn45XhKWYpKtAzKqlhCRDQG2CaWeXk4R51AsGL0xoUVnlGFepMadPAdl5UgKCnFJjOf4/+p75LUYZjK9UfoZ7i1H1P7/8rINADi660WzvsT8mmL4zrtaMHWimPVZpUt95nhj+8VpVPY01F6bxIwClFYpg+RQbeEyCoyIFLRRVoIwhyUKS0FaU593TP3wlTAYEesa7efvajLzL0tJUOTlNvuie7ojzYPtet5B+9+hm74rrc10d4/QnY9M6CpE9maRoMnJ+ft/Pz84MIgdBUa+3A0LvXT4Wlhs56mT2jUkUW0qpNEhWDP6PfTDsTJajqnAYhn3cw9FJQMePFsw4jYDHKp0feZy8VztekHjAcGb8KCIh6MrK27Qxle319EdNL5gdHUSenkUyuAdxurEeAg+TKmsrSwcGIH0mhJp3wnskBwAhU8pq329d60cFr7bl80+iS5z1j6sayIj6XgHeyD0qv0Lp70Z4u1c/7P0USaGt4IqDnp+c5DcUzbTSG6TyfnR0eh09yoE/+V2DO6ztDq8DAxcXFgeCIiJbSEay6Vykb/+2dmTzWFF0gsaOUj88levnpekK/nGdMdR0ps2ow9DyihOpHVCmM9PlREFA9/16Ua68eozomxcRFsy5TPi3Q6wOOI1eaSUY9CrbfH74lrbdIyb0abyPL5tjqybXLYgKbPPBnLVG5JUCg9pAPah/LZR5cfZ3q/F5kllQZqTXPJ9lLxtb5UEWc6DxVQKS156er9sAYpyaU1qeo+bxHxjwymqJplfHUWE5eu7/8TmlcJl1+ZBMdhKi+AgkcX8m5UDnijcaoIvVaL1BFuGZoFRjwAyjEsPRSEwcDCa1VQKBCc06j60lxVKEikUcV1iiG1FaVw/y83RQ+r6PnU9XJDXpS4D2hTe1I7UrAoSqfz79HBVtRz3B7VIyD01fDJzA2Kq+1QyOWQt6t1QsCU5qUzpVaiualSFyvHRVVET9RlV/lrbsxcJ57uQQ13v6Ub6r/sSi13fuh1x/peTeGNLTpXIFk9Hsh+aT/HBAmuSb4VZ3khH78+PHAYOtD+U2yncCAR0E82sf8ZMs2m82yjc/Hhnvt5Ml+vz9Y2CdgIDvZWlsOSfKphZ7ce186WOK9WfldtWaAnlBiWnpBS88wKg83lk4jVFwZvF5apvPpgWoFp6NFb18vSsG29uqW0rBjR0Cg95t5sT5uGHrUuz8S3mPRGjCZBlxSnFJODhxdUSUgyL50g5+8NZ+SG40HtoVpPKyewOuM4uilSePdI26uPGcA02ydvL0ct8x/do3Fe6QZHnGcu8ylCADl0GXfDbj4mjxY3SelaQYfV/rI4Tw/P2+Xl5cLGFBU2uvcWl4/Rj7wuo9jn/ZW/d3BPT8/f/bCrhSJcx631g4AB48pd30u0MBIQjq3x/WLgwFOlRAQjWjV1kJWnqjJgcBoP2UyWJViTobelWx6xgfCjygZFyhd13fypnr5sS1OPT6wHT7AqqjEiFL7et7h/2VKMqNP2k2jKBlDcp5PyjeFJkU0/Cw3DWgHtGmr68jgVX2d+v6tQJ3ziUbJy6yiHVWEhDxwJ8Tr8CN64q2I9fFoSgJRs/rQDTKNSmuHoNTrMgKj7o064GX+viNN44qA4PLysl1dXT0DA55fa4eOnHvbrbVnZShPgXt58grh39/ft4eHh7bb7Z45uT4tzrayzcp7s9kcvDFTxp/EqezUVh/zOnyIQKp3BkSPVkUGKATOiPSOZa+MG/P0u6LEEPd8dK366L6jXeUzUrgUggoE9NpAD6lHowGtPCToM2V7FMDv6XstuPm/QonnldfCz9o89e1y2FqLAIBeC8fJjKFXGclAzn78uaptszSKjvXy5xQerzG9j4nkpeo6QU71ma3vMagHBFJb3GtN0SnJn3u2rX3X+y7HTt4/vj0xjS1OU+hzcXHRLi8v2/X1dbu+vl7GmzumVful091rF9DgQXk8TE7RgPv7++Vzd3d34PjSBtL2sW3kAcEWAYHzj2cTsM7Kp5o+8KkPjd83mSYQKTSSFu0kI7km35coiR5CTiCAaRLqnalna3n75MgoS4BmwzZVW15CvWdfAgYqtFrl/94UalX/SolysEmZyEhrcDOvKoTqxFCfBrX+U1k5EFfd/EValUc0qkOv36v+84jByEj0KKUf5VEthNR3BQhEbGdyHN4DudOUnB99V/VOgCB90pwzZc/LqHSDTwl49EvXHQzIQCsicHFx0a6urtrNzU27ubk5GHOpv1I9aR8Y0fM1cFpQ+vT0tEQDHh4e2t3dXXt4eGhXV1cHbyFlFPz+/v5gNx0jLK21g7C/Fvvd398/iyCICAjY/5QD3eOuBt8Vwr6coWkwIMOvyiqcQmQ0CwSSIl4DBEZpe0Iyk+fIu09Gf6RI3Uik+v0I9Tx+Ua+Ns56hK6eU/3s0/qJevZIxINL38KLCf619f/ule6+VEd1sNgdeE1G/o/zkWflRpT1D0KMKCPJej3pjbFR2UlY9BUbA5V5fBYTUBvGLYNyjCpWRfE/RsUqHpbHY+1Tz0BUwbe35roFk4BMlL5jlnJ2dtYuLi2X7uiICAgK//PJL+/Tp02LAvc5evutbyYrGLUEH1/5oPl/RAIGA+/v7ttvtFqNPQMB7sg0JDEhfeNRht9u13W73jGeysdUYIq+1W4POg+T8zSIDVBZiSIoI+DM9pVAhXqK51p5HAEizCsifr4xxQmPV99roBz24qu2qg9eXRoTXRkZ8xJ9eHqPIQAVq3iMYqPq5ukeFxf++iFB9Ir55//gCOioqkUepWDbvM2+fuxwBcALRkdwmUMu8KItuhFVXPeNRCrXL+cL8SZ6GRpohbPGkamcvYlIZzfdOFd96xr8K0dM4+9oV5VnpKsqp//dpCTpICQxoauDTp0/t8+fP7bfffmufP39uV1dXB8fes83ep7rOXQiMBqgsjjuuD5Cxvri4OJguoAMs4LDdbttut1sMuLdXYOD8/HyZhlA5DnB8esH5m3SS2vn09LSsGeCL9V4dDHAgceGgrxFgZyTjm4wI76e0fm2t0Un1S4qWbfW8fXGWU6pTL7xKZZXamYCCp6uM+BrPrpdPlTbV7z0Dgao+PXDockZDz6kxKicNPnr7rR2exV7VxaePKJvc/+x5eH6MXKne+nZv2XnUkzVPq+9KvpluTaSoBwR6wCgpRQdOabwzkuNG0qN6x6Re//QAeQIEaRU9p8AcCCR+e1maz09hal4TUSbOzs4W43x1dbWAAUUFfv311/bbb7+16+vrZZshebLfP391se7z1FyCAW6h1LOazxdftItBRp+LCgkckiHnlMt+v28XFxcHddSz2+22bbfbCAI8OkAQ4MCKTjrXNXBnwYhetGag9z8NHBfUkXJOle8Bi1FaEUOxup/ms1QHV57JGPDDtLNtcn5UAEH1nwEEXg/m57+rfGbJDWfVVi/vPVAyaq5ARVI4QvX39/fd/Fo79IhHPKHM8bQyvhirl5d750m2+KzLiv+u5Cf9F3lUoAL0HIe+wMzzdpBEJVh5+UyrdkgpJrDBulbTFMeS3REITPKaAAAjADRUMpQ0kGnvvfKVPEpGWCdOoylffrPPKW+q09XV1fJRVODXX39tv//+e/v999/bzc3NEh2gDuMWQB+bFxcXB23kKbqitPCdPBIg4BoBhfhb+34gEWWbPKexVpqHh4cFCNzd3R0AGfLHTy7Ub592ES80FSEwzDctjmg1GFChyftw8kqMQEEl4KPPqB665+UR+SoveoAS/qqevbb5AJ71MCqPu/LIZ/ui4sHomdeitSDjGFQZL5IGMkEkjY57lk7sVw+dp3JcntYCNveY0rMJZPfAgKdNY7E3RnpROT7HdByn+l/JvdKmOe5eVCEBgkpX/Sya7edKNzIS4L8ZCfCts/T0qQ/TFIyvcUm7bgQI1CYaPpWntQJaMPj58+cFEHCq4Pz8/MCoKlSv8SIPmTxkBEGLBFU+1wLIGxdI2Wy+7+6RcVV79/t9u7+/X9onT9wjMARVfE5TIx8+fFgABoGNO3aqi/rWgQZBj0DAm0UGHNG9hYKvjGZSWLy+JqrAPFypt/b88KGUX69ufq1Kk/JLBl+U5kFf6tH/CFXRhR7//y5AoAc4qcT8YJDZubmURopN/GO0KYHR3ip6plFZ6QVh6TkHxFRCPs5GfOvVrUfVWHUvVVQZfRp+5at7Uto0Rlx0NWrPe6IKADgQ4JQAPXUuhiUQ8LUCrc29GZJ14IFBMnqttYMwtoC1vHal5fkCWj/w66+/tuvr63Z+ft5aa4vx/vbt27PorORfoMC9ZKVXHpzyVjvSQmHPQx6+eN1aO+AzgRDT6DnxXAsJBW7En81ms7Qh9THt2MePH5ddCupv7nQa0apDh2aU0Oz1ypPw+274R0bV0VSvLrqXwmGt1S+QqOrT2vMDN2bqkKgHbnjdlfxrlM06VHmlyAXr9p4UaK9OlfHqGQSt3KW3IQXUy1c88tA37ydQ4JEIRq961IsCkB8EAM4z72fPp0cVgJh5Rr9dL1ARs2/ED19QyLSpDObnawaSF3wsGvG/BwTc+2f7KjCwtr9ZthbLydPXSYIy4vTG3XDq2bSzgIcPtXaoazUHr3n43W7Xnp6e2m63W+rEKSYuAlQ0gHzkugmG+ylfqr/4l4BEipSovpTv29vbZecCdyYoDeXTQYGiAixL+QvkztA0GGDBI+GYBQI+0FOa0fVEPnCTUvRBzwNkiDCpyAiIqrp7WYlfs4olKdEqNFpRDzy9RMm50fe8ExhbU9+3IhoNXktpONB8ALZ2GNruRZ0SpagT51KprHTN0yVZ5gLXtXKh/w4o+X8t6H9JOl8bwN9U0KyvLwwkv0Z8oKL1/dryAFPk4WcS+7vnHLi80jj4llgHBA4YOM0l/szKFIGIPHwZcoEMgenHx8fFWG82myWKkECB6tXad9Asw397e9u+ffvWvnz50m5vb9vd3V3bbrcHYINgQFECRgREvrZAAIZ6QHUnv1w/eH9wB0Nrh4uKn56elrUSnC4gGOBBRdU0lvP/zSIDMzTjmbrCTff9u5fuR8gZpwHgSrm1cWTEB63oNQxgFYrvGV6vY+LhS+pBo98DE8dSnolGclMBAFeYPvhFvdB7JTckhqcpf4oK+EmHnH/s5Z1Wf1fgxfuT0YfZvkxymoDRDKBnf/TSVjyYiZyIZPzZ//KoXFf9bEr60L9ddt0j5Wl7vh5Axo33k/FYw0t+eIAQ5/oV0pacVMBb34om6L8OBPr69Wv7448/2n/+85/2559/tm/fvrXb29sFDDiQpF739QE02JeXl0v9JdcESOlDXnGunnaG5xoIlDw+Pi7TIYwMeD9z3HNceP7i01qZXRUZmIkK9J73/5WA+7Ue41vL8+ZVyJOhWno9DAVV87ejtrlxdMU7Qvgz4dSRER49N6KRsU/TAVWE4L0AglFd9btSrGk7khuptBJ4RORRBTQ3m80BIJASoWKoeM2IQdUXPvYcDKwFnyPgNYouOgCYBQVVPqPdBq0dThF4VIBe3jFoFjSRT5yDFxDgqnp5pTKSus42t1a/dr61LB+6zrr5tIXz0j1zXxR4e3vbvn79uni5CsfriOBv3761//znP+0///lP++9//9u+fv26gAEuwHWQI0PsQEBRjP1+v1y7v78/sA004n7oHqeWafAdGBAAeX9p9wKnL7SF0fuokmFOb7z6NIEK5qpSCgSNtM+/sDPS4E5gQDQDBkZUKUvl5WG0/f77aycJBhKAmS2zqkMv1J6uj4BAAl29+iZglagCBSla0CvvWFTVq6dMPVSZQqmUbw1IDkwN+jUgQeQheo6bGdBVAYyRMWY61tl3JHg+bsB7ZThoSPoghVtVDz5PvUS+qB8Y7k5gheW11g5WjrMfj0GVznCZYDTAj/WVgZHRcyOt5ynT4l8vzEx+MpJEIymjxtB6Mox6Ttv12K7Wvs+p63kdDLTdbtsff/zR/vjjj/bnn38uUwXb7XbxkDldwPqqbR8+/HWmwPX19cFcvcb/drttrbXlzYU8OZBbGrlQV+VuNptnkT22lxEA9Y8+l5eXz2RB9SegY74OYNfYy1UvKtLgYPgwFeZKwQd0NfgTuWKYadjIK5Uw+ilNrsC5GEPINHkcleGvvFD9n40cVM+OqGcAX6Lc0jNrwcl7IpdND3Fyn3QCAol4PRkvKtoZ3iRlz7FDWXPw4ACFeVZ1JjFC1uvj6l5l3P1/r+1KlwCB19XHJPfEs61Kx3arLIJ/6rxZ7+q1aaRrEojlKn7NRfNcfxnUBAqUHz3aqn9H/UcwIMPrQEYfB5n83N/fty9fviyAhkDl/v6+ff36tf3555/tzz//bF+/fm3fvn1bwIKPtaSnP3782K6urp7p3PPz83Z3d7eAAAEaHhh0d3e3lMVDgiiPPADLnWfx3vtM/P3w4UPb7XYHfab60SFzJyTJ9ohetICQBtEb5s9U6LMy7pXBGaXtCW0SvlFb5R1wD6ny9/dOj8pN90devt9zD5zX03cCG/67ikB43j3yATQTvfjZVLW1AqsOCNIioUQckG5cBCh7a1C4ViBF0TiGKAs0XEynPHv1pTKu2uOKNIFW56ePtQoIsH1Jf0ipaUzSeyfReKjNGsMewUjgJ4EBOgvHomqsk7+cn5dBubi4aDc3NwcL+JTW+y3xX16r9wmjQ7wvngmE8QAg8Xu/3x/0odKS5/LYuTvg27dv7erqagEDelbPaO2AFhLKQO92uwNQmIhTKJoS0Lz7drtdwLfaQYCjaQwtWCQYUH4ay1dXVwcRZvFeRl66RkBA/1UHhvuTrOt/2sEwq4tXTRO4wCSFyrBHUrYejuLArBYC9RSwg4CRYe7lk5SwGEvl0FpbkO6M99QDBTM04gHTjajKZ40Bd+Xq1xy4zCLTY5DLaJJPyqnaSVmd8RylSPya59N73rc50QPxRUv0fuk5zFJSNPrNNE5u4FWHGRDOtAQBDoYqx0D15fwtjVeqt/Lh2GY0sBcF+hnkhtu9Q+pVKX95lzrAhwf1cO67tXzcM/u6imBVssRnaewFEBxYMj9GI9S2+/v7dnt7e7AA0cHwbrdrd3d3ByCALxaqomLkpwCAwMDd3d0BcLq7u2tnZ2cH5xJwXYPvAOB443t8KIvqt/1+v6xX4HUH/4zUOIDi7ob07Ay9aJpACiZ92NmuZOlpSTDZKWqkC6MYRMGpyI2aeygpvf+nAiVzibI4QCnkyTPu/U73Uhv8tyto9xqSQa4iFF6vlGYmHcvy38emqp/Tp9o5QBlkX6X1AP7fFVLiowx6VX9X/pI9lUdlw3FaecQcF24IXKH12sb8PN8EBHrgoJIXH4vMJ7Vfxkdt8EVqTn6Mq/6Tj8cgN9Lkq+tVHtajiAAjBQnUpHAyZYq81sennvRfz6gv6PV7myTn8saVH/vx6en7OQE8vIdjQX292+2WtQIEBF6+AymBHdomtaO1tkQ36ARyTYSmC2TwaTf0m4sM/Xhg5XtxcXHAG/ar2kvAoQiF6xI+S9s7Qy+aJqBAVIAggYE09ypSA9U4XxDEdB6+9PuVkkmK3z0P1luhGQIBRggYTfB5PX5Xv2cAQ4Wke1QZf4KEUX3WlFOV67/fA1VgtScbrkR7oKq1w3MqekChFwnrAUWvc2uHR8L6+GPbR33soMDrNpIVN/rVtVnysZD6iDqDY1Lj0sF6qgPHcTKAxwQD/NZvjwhwoWsCBWl6iTo9gcYKFLMOST/TALtdkC71PGUwW/u+0p+nB1YRO5XBtwfy7YLpHSKiymhymsNfJMSzCfiuAu4YUBtVBoGC88L7WM/STqqNBBaSe9VDz1P2fX3RiFadQKiOIeOoIByBqSIeFaAwiDhfytD7yDOpvGhXnrzvijKBF+UhprID0mKOqo6V8qwAgdfVKRnbpMA9QlAps5FH6+UmIDECBLp+bIXK/9737nnS+07kEauenOqbqJ7X9VvyTzDg3pLLtXsS3E6VFHWq+4yyeGnfuYzOlEM+sL49QM8yqCC9/i6/VZTR1ze9h8iAGw2fH1YEQPv6/SjgBAaSbpCxq0BARS5fLq80dHqboGRQ3rfm3blCn2thWmvPxieNMoEAx07iq9rKa1zrsN1ul3UYSs+zCTi14TIq28G6OFh1efYFzNQtGg9qp55VpIGRsKTHZmg1GODCJBbCzlJ6AgI/ktEVrQSAyjIhTCoydgDz8Wv6n0BB8qSIulzxCAhwjtEXGiUgMOuJu3GvAEHKP5XjhrkCBj3wkgBXDxC8N3Jjwb6vBg+VTYoOjDxcH/yc23MPOwE8zglyixLHA9viQDbJv9fdx0SVPhkkT5tAdsqrRz6+qThTefpNI9EDs1xkWRkJpqdsHJOS7uKCQU4J8IAfvqHPda7LmxvySicmOeiBSl2jt8ppC+lTvvlP9aOBdx5wzGqc+Ot7E+hLjiOvCwzQTsnDVjqO3TQ1J3lhVIBjmTZHv2VP1beUf04JaNpEWzDZDk1v+fHTs2uFXryAkMaPCy1EjAo4GGB4xoVRWzhcKYgxQkd8dtRYNwIc6AxbOVBR/g5s9NvnKF043EAnQDCqdzK0a7yUyiN6CbnRqtL07r83cqOSDFpPgVDZVdEBDmrKiO5LxinPPeWjD8fGqG85vytyJe7y6Z5VKqPXz27IpfRYvl9z5UWlSN4kcMdn6H2pLpUSd76wvgkI/kxy/qlOfKmPtg9eX18vv/k+ANe5Ls90vno8EhFUETArPwebKlt15u4Gnban7XOUexr4VGeCAengNEWXIhXM6+np6eBMAh7AJLugtN43lBuu+ldeNOZaG6F8vBzxltMjDw8PSx+qzQIOlS52Wzur91e/qEgVp2ecCiPKodHlQhB2vBt4lenCqVW+VZTA6+Mek9InQSUD2Q7WdcbIvQQMJMPvUYJRGaksPl+BC8+3Rz1Q8VKP8GdQAoSUDQ/bOXLvebwcGwzpJUoy4FGCKq0vQtKYGe0Hb62/6DaBAP2uFKj/Tt6jGzLSTGSFHpNTKldEDzhFD6u28pt5HxMMJCfEDev19fUBEKimBgjOHKjRqeGCN+eHZNynSn0MJefPX16k9FrBn6YypPNdDglImNaBd9pW6I6myHeIudOY+oR9o7LFG/JU0xd0NCXXzENtIS/YD/ztOkp9oDJ5vsMMrVpA6BXgwgUiEBVOo5+Oc6VgtvZ9roqItDLyCQHOeEiO+DzUpjpLINSBaU6WddV/KhVXsr26Vcqo93+UF38TCPSMTpVPigr4/fT8ewIEpAQKksFnenpBbhDpsfv0lvPaZbXiHdPz0BP3Vjm/miJTFblBSFNySY7Z7pf2sUc/XKYobyyzAmpUsmxH8uzZR2xfFQHpycXPICp76SEBgZubm+UVv9pCSIerte96KTlN0nEyoPKSuYguyRBBgINq/wgI6Fsf98STTnJnkP8dOFBuHcgkchljZIHOH422iE6uvrlTIMkLp/yUhmNIeciI66RDHtzEaRCvU2uH65IEQGZp1dZCFcYwHRGao3MHAtX5147o0tw7w5zpNykZwBSy5OBysCJBVX7udbPcBALSMzOGvGe0UxtH1yoapV17PwEFBy9r6veaRF5STmeBAOWEIb1UDilFCFIZCWj3vGxXjFIcrjBmIgasq74rGe7VvaLZiEAap260fXpEz6mc5FXqmwo1gbZe/Y8ZHXAPlVsIFRX49OlTu76+Xt74l6KurdWHLZEnaYV8AmPKm2CsBwZ8Dt4jx3zegbbKcjuQ1kC4bva2Oh/o2JHfjCiQfwScj4+Py1sIW2vPQvceUaAsirwdAmO3t7fLexl0sJG/3ljlOCB7enpawKJvZezRqsiACiOSYXiUTKEAJwEhcW5I32Iev5PnUtU1/U7pXFg5P5SEc4ZmECnTzuSfjMprGtfknf1foplIAOXMQ4iSh7QQi1GkKgzLEF6vjiT3WmmcXVm5gfNyPArHa69Bo6hKKi+1l4BAMp4iFeQ7y2c93FPkRwp5Zvy5fvvZlBwXThNweqDyTKsojwyf71/XN6e9GDF1z9SjA6Lk8XOHQIrO+LhLctLa4U4Ap2qczehar08a03SOlSffQUBZ5HS6R709jP/4+LgcoqSjlb99+3YQreE0hi92VtnsyzebJkjXEnKmkDgI0HNqmAMBDlQRf/vATF54VdcUHnTg4u1yr4Pt02/WqTLUL/GsUnofLGrzKJrQG1ijZ2cp5dfrl59BvUhAAgSssxtPygL5RcXkioRK9CUyQMBNIKA6jDzdSnmTegavAtepPTT8vN8Ln5IICKjU+PE8uGiL6RktSWHWNI6cJyMA99ZEGaWO4hvuNAdPL7W151NN1bRIisymBdFeL1GauvHpJ/WH3r6n/uKhPWltAO2H12VGxybHM6VxECmQRD4xvfOU9XHb4HyQfDOirnx4zLFex6yTFVkXgkOBAr6EimBgVqev2k3gVIVmeltxGL5q7bkgusLrlTuqk19PZTkSpaL3rSXqAL6wiMqCv3sGplf3GeOeDO1Mh1eGqAJda2m2/j+bEu97gKC17/JCI6mQnqfjd6VwU51SffyeRxj8vwPhHg96/0fXq3SJhwkI9LyTNFYJdDSX6o7Cfr8/GI/SGdySxr3nPkVA8vA320nv7hhEI7vZbA70Es8S0Cl2rkM9QsL/rbWD1ev0Pvk78cwdPa7bECkfgQCVJy/64eGh3d3dtdvb22V+XHWsgLvXn1RNM+h3cqa8zkrDsZ+iEQQFPaLN8Xrpeb1USa9m5hSBz/1LHrU+hGBA7dd0gwPEHq0GA2qUG1cSUWJ6nr8ltI5SW5ufZ3dy40bFwjMBUlhVjCVoSQjQB5jy5NQJeeNGcU27RoBglkZRgVRuVR+v2wigzYCht6Jq8LsiWAtaKFcJbDog0JgYhZwTkHKPKLWpte8KyttUeb66znHBdlXtZrn6z1ClAwJ/jSvb4Qo3pdM3w9b6uIfFBVg6lY5RAc9Xz/UAy7EALeuVDBtBgXhMY0pQQCeI0RHqYd6vpp5YD06lJiDAEwAfHx+XtwBSP6qfuGDOy/NxQJmhvCd+JXDgYMPBYIogJOqBeu9H8ZzliOdqt96EeHt72758+dLu7u4OpgbEb4EA5sk1b4oy8DyCEa0GA0RIakwSElWci0M8H6IlV6Yp/MIykmFzL0lMovJQmf5mrO12+2zeRUy/uLg4QNSc0tCiEYZuK2Tq7egZ4GTsKwRLtJw84IoSf9N/v+a/U/pkzI5JFQiYAQIum0TplGPfkkWQW9XJyaepVEbyhhJQWEOu1AVqVQ63SKXnKsPvYWM3GBXAHtUz9RfBC8emjqX1U+l646PyGo+9ZqA3tgkI5AW6MZPea61FWXV51cfD9tRNaRrY+0HPSNfe3d0dPKtyWB95yGmHjIhtqUL47Fc/X2E0VlhH52Uan721ZQ6mWN/9fr/IJt+rcHd3t6wVuLu7W8AR1wdcXl4enMkhW6XoAA9OmpXdaTAg4fCFJez4FA7kYsIU7hwtbugZLDe0SXB7eREYUCAZ8lI4xtOTFwQ+3G3BCEGvbgnskHqGKikwv18ZlwRI3CvtDZzRvfcECFxeWqtDhIk4x8e8ZGDSmeWVZ1VRAswqj4qzSr+GkvfEsmQAex6SgwAf6x7aZrvIS15nnZx8DKlufkhL2pbF/hvxQdfpZf4Ir3+EkpOj66oXPVsCF02v+LoJ6i4ZpGS06AC19twZIY8oJzxSWHVihIBevTtZ3maPVlB381lGBlQ39RlX1CfwwD73Olb6OK2NYJ39XTayEwQmiooIADAqIDCg9RStfT/U6OLi4hmwJRjYbDYHp0/Oyu40GHAU6UCAjJNhFEphJSlc3qEenkpoOBkXz7dC0S7kRMCKDLTWlrkWnxOikkvC0DPaqS4jwz/yZqv2Mx8fwORPpYgro+VgZuTNjUDOzyTnn4c2E1DoEduWQq6UL34SVfOcXoeegnoNoJU8YR8DvE6++boaKr7kCMiIszw3NMqL3w4y2H4p3bQ/m/wnAJDHlXjBtMeKDLhOc++yte/buKVjSdKpvnZC1+jc9eSYoIhec2vfp1b9eTe01dhQPav20y5wilo0o1vYhnQ98ZV639vjethtivhLR1FpuXaCMiu59Tcvss1cI5CmD/wwqFn+tLYSDCTyENpLEHTqCF1PBiVFBZwq5eohHQ+Lsf5+aJIW6TjK1utOJTAVr2ggq7ZU9e8ZropG6V9iQGafmemjY1EVIXAvi7tLkkFrrR0o0hQdcI8n1cEVjYgGWIaL440KjnJMr4HfXmY6TCXlS1mdGd/OSw8ji7gv2/nggE3lMwrJ/NRugQBODdBTZRiZeSR9wUjfMcGsRwfcUUpeomSEEU/KqOuwFOl1EJjAEyMzblTTYlsHx9XYcIdnVL8eQPaogZflANd5PgIqHCsCuHyfwocPH9p2u12eI2jjWGYkxGVYdU2RZt4j79bYitZWrhmgZ0KBU6e78qfQJuF1T73n2eu6yqmEIEUE9O3G0T17dYKYStTFsE8KtaVwmQt04lEPCPQ8WeahfJKAuJKrjHKqa49G0QMvq1f2zyTnqaN9Gn3nvciVCo2///YxoHzVZ0ke9E3Fy3uSMQIEJzccrG+SOXp7XEhImU4yJtJJnfyt+sujYd1YL9YhjU9eU10qI5EOYPJoINvrPPTx4sfeHpPcA00L/twA0+j2DqWi9zkCsHqGPFOf93QU61JFzFLUx9vi8pyoGhfpOcoA7zEy0KNepILjnPnQfvq9qj0efUj6pRqfM/TirYXqtOQFO/JLwpHCPaRk5Cv011NSzI8fP3mQgk6mM+TJursgJ5SYwp9KyzYmJe31TYOM6WYEIIGtJEg+2NYAhKpNPyKkr0EJMXOQ+rYoAtxK7lwOqKR7YFj5kkdURj3D44ChtcMQa/IWqEDZPsk15ZtlqF1ufKuxKV2g8lhPlw2lTYv6Wnu+CDGVo7KSwXMgwDpxXI74Ld4cS3Z9bBP0PD09PZsSYTpGPBNflFcFBJifSOBIpPwpP4y48JNAgIMBPl+NO3e+9Ax5xvqlyBfLIp9HTlGlHxMYoKPmToWD4x5x7JGfiY+jafYerVpAKOJgcuFgAyQoVQNpSBMCJfU6qWpwpfQZ8udZ3i6ADHWmxRieXu3hgiamSZ2TUKrzwD0l/e6BKeafUPoIEKR8RuV4Ojd4x6IeyCI/e9MEIudZQuhM579Tv1Z1nfFIHMR6Pkme/GjldGwqDYW31/mQwIiH5F1OGR5NynmkxPmsg4G0gJN9Q+CVyhmVewzyscn28jAfAiZd14dhZ4JW5ef5s1yNFy7Gc2CWdA37uVpU6/ajBwZIlTfu92f7r9JxLp+qc5Lr1r4voFT7aUNctlIf9ChFugjmOI3Q2lzUQbQKDMwCAlccCRQQ4RKpqgHpt/7r+fTf01VgwF9SpAWDZ2dnBy/TYFq1mdfc2LP93t61SM0NVDUnVCnk9D8BgFRu4mcydOn/eySPrPB/dWS2pyeNFIwbfSrKlG/l2VQKUVEret4Ved5ccOav7W7tMHLnitoVrHt8nlZraGjkRclAq770LBmN4PMOBAgC6OkmWXflqd+M0rBvjgkI2B7pUl94dn9/fyAPj4+Py+r07Xa7LEojf8gjlpWI+lb9obSSZ8oE+4+RBpetJGOt1Vv4SMnj5vO9NhGkst8r8vT7/f7g8CSVw+24j4+PBxFGP79G+aWx40bcx4DLvKI+3o43AQPqyBm0xuNB2VD3YpJHwDzSANa3I9BkkJMwSQnyTYV625fAgkCCDvJg5IBgIK03YKfMkqd1w7WGKoOta6OPP9szMtW9ykAdGzRQebiy4XV9uBpe6WbKkPEYGZFefjOL1lyh6Bq/RbrPRYMOjLntyQGmnnFjPrMITeUnpVcZIoJc90BZDxqYyltKbXGDpfI9cqS6HItSNKO1Q32z3W6X9xIIeDFiICDALYQkttPXSCQnwB0QOnq+953gsQICSd5SdMDXpvn6CF/rozpzLDm4JPD0fq7AKvmmKRLKk/jI/zr7IkW+qH/d6yffed8XGirqI55X0289WgUGRKmjeopPne6Kxr2KyrsfNcojCbyeECPDo4wOfPjw4eDFH5eXlwc7ClRvDTC+M1z19HYkEJWAirc5KaUZGnnwa4CA5+fXKo+0qu+xlKrz0o0/06R6cnCLuNI8zSkzr94CtGosudfDOlQRIlfiHJN8VsZfL7dRZIzHmXKsJl7R+2E4Oq1Ud6MrStccbBBYiTc0iK5IHRR4dCCNJwEq8VCLhZMsHIPcUDBCwHMVeD69jrUlEBBgE1Vtk2xTrlM/yTFqrR3sxEqeNuU5AWXv9wRE+Vt9VQECL9f/p/51J8jrxDUxtAkEAAnECwxohwHzUF08qtVz6lgfP1fD28pxO6LVawbYyd7wqlA3fj3FqXw8msBnPY8UGdDvhPhYXx7neXl52a6vr9vNzU27ublpV1dXz94LzpOdiFSJ0txTc4NbAQPnR0WV0FYGns84GOO1lH9FjqarZ14CaF6bOCh8GkAyMKKeHFHR6b8UlRsX8inJPXnFgcz6zvIzgfMECBgdE0j2ccfrvC9wzFes6r9As05RoxGv6knQLS+TfPC6JcPBPqF8VoDQaQ3AfWtKuo7AwHcIqJ5p2sTz5bdklDpKfE1rR9j/rT0/pImyqvqmCJsf4+5t7jlRDpo5lqsxknSjG33XqWlNg54TGHJgwG+BVEaMFVFQXh5dq0Cbg1uPDhCIvWlkwL0Vohsyv/JgvHE99EOG+/OumJmf56U6+J5x7ia4uLhYQMDnz5/br7/+2j5//tyur68PXvTAl0jokCLywlf08lxoGQgPn1YC6zxypO3paeArZNmLCJASv19C78Grau15tIWKg/JBmf3R8qTceLwv6+JEo6T+TwCcaSkjaSuY6kBwwQW0V1dX7fPnz+3m5qZdX1+3y8vLBSj4NAqnzTil0NrhuODpaV+/fm1fv35tHz58aHd3dwcKtgqF0riIGHpmKJ8yrvHnHrSPBee/e6nsL4+EHIPcOLXWlmkAbqO8v78/WAQtw+LGuwKgKkvkz0oG3XCyjj1Hz4Ey9TvT+XMjcp3uYNrz8wi160nKJiMBPk1AsOplOdHz17Osb2vtwKA7gHOeelSdEQLptGparkerDh2i4LAze8eQunLlQEsG0YVgVpnyeebrXoAbA00VKCpAMPDp06eD87632+3BCVBcib3f7w9CcT5XpjySAXbjnwYVlSCfY7496gGBHiCo8l0bSTgmVTJAWZgBAlWbe+3neEkDcyaE54ayej5FHeix6UMw8OnTp/bLL7+06+vrJRJGudZH6fW6XL4URWBAb1n78uVL++9//9v++OOPBTi09n0ltIMU1d0Nj9ohJcrn0rNSkDOy7gaMOkll0ACsUapvQWyHDIDC/3y3iigZAy70dvCbZLjyLgkUXJc7kGrt0EuXvdBvyVeaOvAyPYLn0R2Cepbp9kVywnYTnFKO0nZZ1YXb5n3suTf/9PS0GHrXO60drgHx46F7pDSMBDmAnNXPq08gZCN9paQrEJGHgCgYSRASc6upA1LyplVPrqCWgvIdBYoMfP78uf3222/t5uamXVxcLArp7u5uUYJ6+5YrRIVHBQp4Ql3yaEQzHZY8m55BTyBkDRDQ717d1gCBY0YKHBiyPqN6JQVHsJfS87d7diT3LFzuU0SAEbm0FsfbTbCjKa40LaZIGAGBfvtaGkUJ5KXe3d0tb1n773//uwAGKjuBAbXTw8Pe/oo3VX8lcNwD4PwQFIivnKZ4D+RgQIvSdrtdu7i4WCKR4ikXkXHKSmn07fykbCVZFhE0ubGuHD32t0DE7DhkPvxNGXd5Z1tVZ9qbBLRddnzxqnjjUyusD9MyfwJbtlv9JSDA9R2uA1weWU93QpXvDK1aM+CKdL/fH+xX5rsIPPyU0CQRpTeu91+UwqUUStWXq6YZ6uRKaipGAYJPnz4todOHh4dnoVKuJ7i9vV2UpLYl8k2IrGsFCNhepeE321rxzAVzrdfu5XikItVrBCiOTSlC5FGsakqL5IbW2+0yPgICvbxby1EDemKjqAP7SG1kNExyr101AgOSbQHljx8/tuvr6+Wj9QUCCg8Pf7117fr6ut3e3i4GZ7/fL56OgPL5+Xmcx64AqgOiHo/StMAMGHAA4IvnKg/5GEQFL6OhNRqSC72pjsZcelBEGWK4mmNBYKgCbqqP698KPHFseWT47OzsWRkjEMY60yHlf3cA6HETyKh8T0NPm3UnAGd96ICmCIHSu4EW77T+o5LbxEvKPfXN2qmCaTBABO2Vosedtt1JKbBiKS8vj41NRA9paRCQr4MBbhVkFEPp2QYqSg0KPcv8Ff5xj8qFUc+MPMl0LxneXnQkgYhZSv1b1adK03v+GOQAIAECVzwz3qB7OjIkI4A72y++C0FAl8pyZCwpe0ovOeW2Wco9t9ZeX1+3i4uLJXKghbWMinEV82azOXgNa3WwlzsWFRAbGWH36HrRLwe0/NDTY5QgRWx+NiX+0Hjsdrt2fn6+9IPawEhqMrKSJy5ko5wQcAj0sXwanopf5OfIaaCsehofM+71cxxTtxPcEEgRwHibxBsCoapeKRrBtUju+LmnnqIQLHuWKn73AIXTquOIqUTZcBlaDnwKhVCYXmPJAZwEQOkrRM9nXJg8XJRCo6onoxq+q0DplLa176+QJPLa7XYHZxBwVajP36hdqqsrJ29n+p0iBH5t5LV7vqkePliqgTwjaD1l/zPI5cGns3z+Ts+01p7dp7LwdBXaXxMhqIgK2q/1lKiIQJx1cuUjEKs1AgIBnz59ap8+fWo3NzdLtIxz0Lvd7mBawWXSx3IVCZgBUk5JVt1b4n2GiX2s0GPUdwXifwb1ohp+1gD5noxl2obnBszD13znAMlD7JxW8fA2+6eaXkt6Ld1P11l3gpu0KFjRBy647fWvO6UVIEhghHlU4831Au2GAwcHg/7tH4+UjWhVZEAVcqbLiGrfsg7wUeOEKPf7/bLXMgk4UWb6r9/qAEYGEgigkaf3c3FxcVB/R3fsCJXLFxX5oih6QnwPtb91SvyoPBhS6vhk9NO3fo8UayqrohRxGAGO9xAVaO25QZ+NDHja1p7zWsrFlUbymtZ6l27MVS/do3Ly/yo3eVPKT/PNd3d3S1t2u127vr5eVuZrvOh5TiOIP3xXvesJH5vkB3WDK0hPz+/Ep5H3WTkVaRw6345JVd2pIwUIeKiNdDBlmM+39vzIYZUneecOshExDwKpKi1JxtgXiyeq2uReugME1csXL3r7vB1etvOIADhFnJmn9xkBgvOnd2gQw/8u8x6NSPyuaBoMJGZ7mJGhRg9h8k1mREgCE/SaE7Kh4Ko+VcjXgYrqdHNz0z59+rTMe2r3ANcI8IwBRQc4R7rZbA7m5+7v7w9WUH/79m2ZH91ut89OaOsBALat15lUVj1AUPWjg4ue8nOFXNW5eu6YEQFRAob8JDDQ2uGKa/eq6EWqb6t2Egj0Bqb3gw9y5cV28XdSwPSKpEB4FsC3b99aa205svbq6moBCfv9fokQEIxwuszHKA9A4SIo9oErUy6udX7wdw/IVmMnpe2RA2rqmGNQ1W45K37IE4EZj8pNefrZAbzPOXP2Y0rLOkmnc3x42hQVYKSGfejy7nqFH11nnu7w+UFF3CU3q6vceeTOMsq42uzAlm1LkRSlqyKN5K87GZTVFNHp0SowkIyuz8FznlyVYuhQH1+gwzBo5eFWykD5bTabZyhN3wr5awogTQUwvOPei0JLXMWrA1W+ffvWvnz50r59+7acQcDXqFbeRw8U9IxwGghpQDga9WdnogQJOKTribwfj0UVaFw7TUAahY8rxec0y5cE2Kg8PSpAAJBkWnuab29vl2gXX2qz3W4PwDpPKdzv94tC3e127evXr+3Lly/tzz//bF++fGl//PFH+/PPPxdwvN1uD1Y6u/JNIXvno9qUAFK6l/hMxdwDq9Rda4zEW1ByBPibUSgeiKbr7v3qup/JoP7hYWoEAkznsi1dTh1BoyVyYydK/Fd/Je8/8SPZiAogpF0S+h7JEO2cxoZPO7rx1ze3K5KnyVlIzi/ry77z6QSnV48MJACQmJHIFTENuFea0QP3YmnUHJR4RxEZMmIhxcaPe4mqi8oj+uaJT1KafBGI9pKy431Fai8q4P9d4c18qj6gMkxK9pgG+y3JPbzqQ3KD5byRAevJfU+RV/XspfPr3o8E1ak/KdMyCD5tRwN9e3vbrq6ulsOENH64Re3+/n45XEjRsT///LP9+eef7evXrwsYSEfh0uiqfjQgrgPIo4p/6ZkezfbJeyBvWzLmAgTcUSU96MaOXmlrz9+2qvw8OpCmvGj8Vc+ZaQICQXcQe+PBHR03jmwbdV41XZeuqT0JvCYHItU7OYH6TnX19qW8ZVfEO0bbPdozAjikF4EBjwhw/pAV8cHP8EVr34UvPUfBl2CR0d4pvsqf9eNWKkUCuAWQUQEKDd9K9fT0/dhVBwAMiXJg+qrR6sM05IeuJYXUAwLiM4VHlMLZXkYCYan8EYp+L0T+VCG9FFJzGWste/xJ6bnirHjI31X/94gAIP2vylOd0ilmOs3u/v6+bbfbBQxojOgc/Nbasq3w9vZ2OYWQ02QEyDOeF9s8Y9xTO2eV3whYUF/N5vnW5Lyhw8KFZx5e9zB8a8/BQGqjH6TmHqvXzfX+DKUpAk4fVXxwzziB9mp6r7dq34Gx8vSdF6lO7JfWns/vj4CLyP+rHXqWNlFjV99Kl+xQj6bBQJqH11Y9Xacg0BC5R8/ffo0I09EllYIDASp1RghUz+q1xL43VYzUGgctytlsNsu0gDweKT5fLOhIncIwg9he4qUTCFB4xXsX4FEdyIu1CpeA7T0QEX0CUGmAM5LgHiwBFZVj5QWIyMukuBIImPFyHQj2/jN/GRCtD9hsNouhZ+RLa2LUXh4oJJDskTN+p3AzeentS22u+ECevsRgj4B2Bax+Nvk4pIwR2PFwJ86PJxlo7RC0cqeUKJ2Z7559IhqsijgV4w5Ma4f6y9vvBpHn/vecFzfIHmGo6stxxGkC1qdyCtKHYKECUEkHqN0CP+xrjwz4tRGtBgPVAix61GysGE1DKXIly4Y/Pf01f8XoAcMj6hhGANzzS/umfQtNT0nqNCiBE527rjDoly9fliNYdfIgF09xi2ECA+xw/U5GmGlGisnbpP/imyiFpar81nhl6d57UKat5XUAVPZpfpIKgGFHUgXw3ItKQIDl+4D3MlJerDMjGP7NfOhNCAhQ4bLNHF8aE1xQq/o6KPJIg56tQIH3EXmSomdOzp8RMKvKra69Bxl2PeCGTHpWUzluuCtQTx454Oh50DTmKf9KtxFIM4/9fh91VLU2xw34/f195EnyugmaerLIcVRNCXLcers9CkFvXvXjGoZKTt2BFlCiwReQpyxobdAMTYMBHsTDbxpiKho1wFEX71MpcvAT/XAriAuRkKEAA0NLnL8SE/l8hXQJXlSO0mle9I8//mj//e9/25cvX5YFg/SMfBBVUQFX7Cr/JSBAbUy/hfqTp5oMXDWInWZAwntQou7hu6FfS96HVV8z/Mm+9nq09jxiRvnwPFL7+D2KDmgMCjyrTWdnZwfGhKfbaVGawC6PJGaExafndG/WA2M7nOe8lwBCAgIjEDAq99jym9pAfjKN9KWimpWxc12c9Iyuceoh8TKBUukM6k8Ro75Mw7xSW5m3ritf7lTz9u33+0VGU/tdNzvvK10mnqh93B3n5NEa1tPbNYpMeGRAeWpctvbdDvr1Eb0oMsCwO4EAQ+MURDZ4NmQhBig9F2wRgVFRqvPYqVznkNAdlZNCpnwHO68rGqBvfm5vbw+mClwhueCp7NbGq6J1zZU+DYv/Z54MtzFKwKhHT7nqt7enR+9JsZIfDgS8To7AOUiJ5H1LF++n74ofo1DprDEj2KkiXw4QBaI1VmXQWQ+l2263yzZbHkuss0Uc3HINjgMwB6YqO7XZecEyEm+qsTNLriPYL8egCqy788SwMU8M1GLPyhGodDJ1QDKcoioq4PWv8q8AAcF0NS4ICJw3slUaq+xH6rAUQemR6qBv7spw20IbQuDluoT6dAR8UmSAB08xHy50n6HVkQE/U8APikjCw+szNNMxzpxkKDmwJRwelmKZ8nzIZIVZ9CIWTQtwvYCvlJ5t48jov5QYOWHeGlzcClQBFAKr9GE7WMaozccg8SItEpTSYVqS+pULtNTfaTrIw6qpj/07XePiKUYYnPxaAorpOSo11ZFjxXcICRRoceH5+fnyLL0WjxTOGBNvXwWOewpTv3vyuYZGHuvPpAr0EGgSCGw2m2WKlf2b+FsBfJZJ56by8qlPenxLz7vRr9rs9xyoe32Ut65xOlvP9exSshFsqyIxNOjJwSDvvGznr/NIfFJ96PyyfG5/V56cnpuhVZEB90S9oVSIVJ5K50ThTB3M/27kRVRefgCSrxfgscm+/oHhHl88pYOEOC0gQ7Db7Q6QterC07sq4fA29wwEeZY822TEElBy8Jb6kddG9J4iAGuJ/ZC8DE9Lo+8L5hLKr6iaz6/KrfqkAo/JIx+Ry5PAiCJeejNeOkiITgHzSutzkv6gIndiOLRqRy8aQB5VwDXl69GBY1GlI3ifhohTBfRG3SBWoLfSAyl6IMeC6VJ0J9Vbz9NYV2F2PZ+m3VhWiuoxP3cGKiA0U2/dY+Q6jbUUyeY0QXKWnXeuyzlmCGhkczhFwB0GI3rRoUO8xoY4KKAQ9cDAbPkeXqTSqV60wo9Cmpzq8PMFCAj8iGG9olXRAnWA6pQAkxvu5IErnSt2/53u9Xjogys9wzURul4J5Yh8kL4nSh5yD817On0c7DoQmJX3WdmnEkxED58yTOXE670yOL4JfhhObe37scRaO8DyBBA4Hn3KwOeNqeCc5PlQ8bFPRBXArpwRN1xVfxxziqC1GvzRwFOOCVZ9zUAFbsgjGv2eI9dafycB71egVWl9+x/r6FEjHwvJc3fjy7r4VFlqZxpzHBcsw68zPcGC0tBGugNR8XsElPS8RwU4jTlDq8CAEwXQw4BqKJFQhcy9g7zR/t89YikdGnq+mlVHDOslK1RUnPc8Pz8/QJkKi2pLIfdNs82ttWcnU+k3B6pTEuQ1NJueeXtUhSjXFa2j6Jly+P1eIgTeJz4fXEVXWstbB9n3/klGit8OoNO0VY/XDriSp0dvnN5QijIxssbFhFRiysfXFmj8aF5aIEFj6vr6ehk3FxcXbbfbHShYGjUfI7zGqEFlyF6THMC3djxQkNrtgIA6S0ZB0QGuG6CMkmiYlH/ia9JRI2ekte8yWul/b6OD5jWAgGUTBPdAYeLJLKWQfgILusa+qgCr5yk5FHBKNpLtkLOajqju0eq3FlaVp2BKsHgUL5WqAwH3jn2+VN/0XLiVkJ6+vqWQLi8vl1evfvr0aQEDAgR8B4HetU60zUUYAgL+8iFXqtzaQ6+m8kA5uCue9671wsFVdMDDut4e7+ue15/S9Ab/zyZ6pPrNdxK40RTt9/tniqgHBEboXteTN7RGGVURIve+/ZAUKnn1MVf+U3l6NEBptaamtbac5nl9fb2Mvdb+8kw+ffp0sN327u5u0Qcqm9GUFB3wcdOLkKh9L4lOkYf+W7JxbEpg0ttKoMrdIJoWZTo3PA4Eenwe1VHEMeNRiRnnh/d9etPHZRUhcJmZAS8j6skX68ey03oIRtN7PB85Vx5hkM16s8iAtmfMzKWxUR4+dUqGzPPn3KQfg1ydJ8B3D3DlM8GAtkheXl4uypCrQ8VQgQEhLt+OI+ETb7iKlWe50+OugNUMvSSKQOXhHo+ME7dy9pRP8lJSeTPXfgYRSFKGGM1JQIAInwbJycEw8yAlvjHEXvGn6msafxoujgt6/O4BVTygR6EomPLWNJkMuID35eXl8p8ROZ1GeHl5ebBFUfXgIijVSeX1+FfxycFolY97/r1yjglke2A86Q7pLt/tIoNQrc1YU59KjkUpkis5T85g6ocEeJXeAYHSpLFHMDmKTPSI9U/3VJ9Kb+i/G/y1+j/pW0YMCAL8ZWEjWrWA0PcQO3NcYXLAO+JMcy0MsXj41rc0EhTw48cN+9ZHrbqUctM1KajtdrusEdDxqvqvxVSJuT5dwO08VYenfHqKp2csPJKSqDdgda1C3v49U6/3QuQNDSBXvqd5dQInLc7R85JR/Wc0qyLKOpXUaLAm/nJ8JEDAMUEw4KCc+TBczJcWKcx4dna2LCJUxOv8/HyJvF1fXy9jUFME19fX7du3bwfrczh92FsTUNEaUFA9WxmbxOdjrxtoLYNxBzuMrnhUU7radTOdFEZovOxUF/12A5X0TE+PuP6vyB0Yyu0M79yuMF9GAStKXj7T+7SIRwAp2yk6wDRs7wx5VMB3Os3QqsgAjx52YWBYsZo2YGNZwTSv6d6cvH6G9LkIsPKI1Cnah0lmsy37/V9zLVwsyFMGCQZIEgwBns1mswABD/1U3rIrwUoIyCMCL12vXlnqZbuC8xAW54c5T+wem9c7IfOep/wzqYoOcPFoa4cGkcrXeZa8S4Lj1NYU/XppWzxfRgUYMWBkgB6SR4g0Rlpry1jRhwrl/Px8AcQaa1qPo/EpHvp0BZ9VOxjC9LHi0y+zvCX5eGKbE4hOXmsv/7emXmRA95NOlfwSDLT2PcJLw0hdUjkoyUgx/F9FcdKUWNLxuj4D9PSs9JGDA1KaWk59LXkjoHJdJ3rJFMprUcUfAkA/+XP2bJ9pMCCP3D2JdPgKV7L2Qn0URu80Km5++zZCBymtfZ9DUaftdrv28ePHttvt2vn5+bKgidsMn56eDs4S0GmDBANpAVQSKLVhpLQ2m80BSJrxhqpwGo1A5b2Tz5wzFzFSkvqTfUqww+9eqPw9RBCogC4uLhaZEnHwsG802ETezhRJceM1o+xICVC2lhfZJmDi0wh8nu3abDaLwdCY1tZaXyND/rgRubu7a1dXV22/37fdbrcAa70ZUTpEz+i66pKMUeUxkad+3/ni/J/th6S/jkUOCrz+jBKoT3lWCiNf3PUk3ZcMdpI9lqX8nBguZ30JQKoowIxn7ICgtbG+9alAlwG2J/12PS+ifM4CmbV6QMSItutu6WkCAka9Z2hVZMCNbWvtQOCSIamQiRsudrCEhecG6JvKvBrcHonQwNCWC6FlApyHh4flvQPfvn1bAACnDOjFVOiWc0U0vG4wSRoouj8jKOQbEa8LvXs39NIU5lUa1ZPzxVwr4W9npJGkx5miBcfyrETsD7afR5WyfwR8/Cx937Ll60e8zOoeDXpS7PqujGFS4KkMpadHxHssR21hXzsY4FZajr2Hh4f29evXZe0AjzLWOoOnp6cYvUpTLARfyTtLoDjJnvOtigwcWz4rGukDRnnYLxqT6kO2VdG/pD97BngNMOrpdqZJ32vKISBIdXeH020F9TajxCLP23ntbem1V9doD1V/OhO9aJb+e94cw4zq0ike0aqtha5QaAx8T6sDATcK7sWwgSmEytAtO+bx8fHZXmaRM51zxf76ZU0RfPny5QAAaN0AFw66YPH1yWrbyMuv2pnSVR+CIn9hkw8C1c8PZvK1IK0dLiBjuJieohtDAgT2GZXVbLjqLSkpAgIA7tGWASMwINBNSiOVRzn3axU5EBiBKjd+Aguqv367wWQ71IfcPaNomPpZXp9HFxRVk+cvUEEQTl76+KAMOQBLgOhnkcr/kWmd1yAaITf8us+0+hY/qStEAg2jqKTn7/VhPVr7sdMbvR1Jl1JevV+8XLcxlaMkSmOV8u4G+K0ogUC3GXLuRIzUu8MyQ6vPGXAl4B4UQxS+cHA0L6d7QkgOLFQ+G/3hw4flbU3e2a5E3YPm1AIPGdIpgzpfQF4SwQC9bA021Zu8SmApeStJ2ThwcoFm5MGnTBws+PQKd1TIU+aOCilw8UC8ESDoKW0ntfc9gAEaTdaXMuUy7DLuRrSnFHoAwKNJKa/k4Sq/KlzM9qmeznu2nzt+CASrSJDKvbu7W57fbrft69evzyKIDgh13Q9boQyl/z1KPEjk487rlersvPrZlIx8a4cgILWhte9yVYGBNC1TAcVUdkW96co17aTNmOF/VW4PCOgad7RQv6rcxKt0fQY0ruFLcpR9bVBrz+XWx9IMrTpnQMQCWVgawO49pbmpijk0pBq88kwEBDh/Qq+ZdRW5YuZOAy2akvHXwil5Rx4epcLz8LzuMVzjnZUGVw8QuKfPLWEy8HrPvAACF1UyPJ6ObCaIILpUqPfbt29LXuIHFxr6gEgKena/61uRe5/0OhjJqt414O2s5LYCAFzIR6L3MYoq+XjSeHDj5WO08jIqIFCdPuj53N3dLdGEu7u7A4DtYzJ5MSm65ECh4sdar3OWemP1GFSBAP5P6Qn2uItKxAXWs+Wn/4mqvnGPvVdv2pZUpte95/lTZ7uTpfFB4JHGYZqScPvCOsyApl5Ekd/U+cmBpL5i9G0GTIumwUDlnVTGnI3RcwnlpE5SeepsGREZXilBgQTO2Xs+eq6qn+7L8PMsgbRPV+1QHhQc5snOYCf1lFwVsmIbfdeEPjxDgdfp8TMCkMAAB4PqrffXa6Gl9ppz6wr3MG82m2evDFWfzZ6E9dpE/qtf6RG0drjolJ6rDyif49PzCci5XFaei/hNUCCibFHGqmiSAxeBBebHa64sEgjyOnn6p6enZZGuDIwDdSozlsMojEcyqnKpiJ0/lSGvPNue7tJz9FB/NlVe/wwQovy63LsDMhNNmaXKIPOak/fzKCojGfZp6+Q8pXq40aYMpXb02lqN/Yoc9PB34jftjUcGUiTNnfI3BwMzyN0b5IJYdY6XsdlsDgCBC0g6NMbDJ8yP16V43PjTONAjFABw78fDcFUIzju9GtyOXr0Mef88OInvX/BpAG65lOHneQy6psgAvUWdQf/hw4d2cXGxTBek6ROuw2C/7Pf76VdpvjYJ7Mk7au2vwedv2BPw5MFTI69UfZEiIw50UwRI8s08ve7+zfqOjBTrQU+IssgthQ5gvC563ndaaLpM/PQ1OVpXQ/mn7PSiiiPPNEVEEh9G4NsNBgHVsacJXhoFod5yENXa81X4azxJUWX8q99Obldmxl5qVwUEqvomEDlKn6IDnrYqvwI2lZwzHzqBPiXuTqcDgVcHA1T4IjLFPQAtWvKVwr7AbWZ+6fHxr0NJuBWJ5Mqrl1/yPlJouLVDICGl4B1T7VfnYkev30jZVUCAIEBRAJ30prPgCQz08agCgQQPZ5LiJhgSGKAHTGXPyIDyJrjQc4+Pj8sc888meUSKTLCf6a3qXmu5T+hRJxDAtBwTGjfJ0PK+5E19wHnMKn9e61ECZ4x20DBLPhxI97ymykt/fPx+CqdHPzzy5mtQkmefogOpfhUg6I2tilzvHZMqA5T6g78l8yJGBJyXBE5+r0du/Kv6OjkA9L6vIgMcO6RK/zug1u9eOcyTZXvaNfLh4GtEBASMDjAPBwME2K8OBrRX1RnNwjjA9J/IM6G41rKgVUxKEQantKLeSYrP92Om8KTKpWfuAIj14aBz4R6htkpZSUHzJEa+EEZAgMcu68VN6gP32PzgJq0E99Xz6g8CQkUdeIiMbwUVINAUgc6u/9mktlAB8tOLLIn37onQS2DkiM/oN59zwyOZ0DG9kh0BgVmvtIoU9Aykj0uC3SSbDiDIp2ospsiIj4dqjjN5cD3jtNajrch5+Vr5/ig5r123VbypACvBp4fb/bfLt5fpMt8z0Jy+qnSm//e8BCz1neyJe84VJacsRXVTXVjOaxMdT18L5m1Li7nfLDIgrzwtlKPh0j0pFHoDvFd5FvxfITY38ili4XVRHVI0IB2qI1I+HhnwUw65f5oREXWglJ4jUu8sV0CzgEDTA4oMcP2A6u9rDQQa+L4G8U/rBXa73YE3pzoKSPg59X5ktfKrDgX5GSSj6lEqUiV7vC/DTAOdPKDqd1Wu8mNf0xg5/1Wug9OKKr6zLMpGlZZhc/dWfAdL5cWwTmxTZdzXyAw92nQv/U5l+v+Z6Zi3oqpvk9Pg5MbNvVvKW49c/zo/0nTASO45fpg/gYDLiNILiDPqRBtDsJF4UbVtFmD2gMUoyjRD7shyHDF/dzCrqNpsfabBgMKWYrj2LbMBrX1f9agOpaITsZIjr8cVApVRoiSULL8HBjys4h5TEi4KoHdSr35Ml9rn9wgsZIgdCHB9QJr/ZFvoxXPtgCIDDlx8XYCiAooMnJ2dLZEInjJHr/xY864EYtWHgHFkgKhACXb1v1KIaTcBPW0HAPomsOzVrafUfduUymaIsfJ+WBe2wYFAmgIkuZwzGuBbkXvtnIl2VMS2+LVUDsf3McmNP68lIg8ZxaK80VnSNeWbHJQf4YE7WCKCQQeHyaP3qAIdTgLqqq49g/8afdyzTz25df1IAMD1XOx/BwDc+jwDhJxWrRmg8AiVeYMYdqrmK+SJJKIAu9fg373B4BEMGlgyzg9nSAaYKFb3aVxmaKR8vPO8Q6Vs/awArtjWswI6zFdt4MBP5w5QiTOicX5+fsCHjx8/LlvQpGwYjRCvnp6eloNrjrmAcK2XmTyGGWXRM8hUYFV5bng1znTfvSQ3El5+T0Y5HnrnYKgs9j+9fz/a2qME7s1UJG+P5VY048WlMecg0NMnsPSjnt6P0qzx52/XlS5fDli97V4mAcWIKv3sHvxI17/EOI/kIkV5XhPozUZGZvLgN508kYNpgnvqvFcHAwyXeaeKfpQJs+iQlJSvvCkxUwwSORPdS/E68TmGSj292j8TGWDaEbmBqN7HIJBD5EjQxT5zMOAr6+klcIpCzzMP9YPAwMXFxZKPQImOfz4WVXx2Y5WMX/V8L8St60khjojRNJ9ecXlP0wUOEJWOYIFKl+MsRQrEF48KcDFqqofzljxLbaZsuUGplHxKS6pAAOtYgXON8/dwWFZqR6LkEVbGl7qM6agDpBddL1T1G02ppPq5vuc11qtHayI4PR2f/s/YtTRdOENJvjhOuS088ZVnwvjaG7XlTSMDqjA7iY1iODMxJzWKCqkCAcljSZ3vYS0qKJaR6rCWfDDx+ggQ6HfPYxT5IpJqbl7t1X+BIl33qAdBga+t0G4BPauy2Val19SBAIEGpr553PExqBqkHOg+pUVAUMmx0vtKbY6NSpmlPlc6nn/QU7CVF94zzq09X1fjBkJpUv0q4JHCmTS2ac1GMs6VN+46ZTRmKgPK8eDX1G7y/71Q4l1r2diLqmuuaz3PFCXwPP1aAgQVSKDRf0k0wNucxunIMSPNOJzOB7anx68RpTGg8eTndVA/0/D7x8H+DK1aM9BaW9YKqBAqF1bOhZADOU0TOJrpeWVkdqUkvbzkyTtVg807iR3jx/+KF74tjF5eAhDJ4/Z9pUSIrKuULNtH1K+PC4oETt68v2PBeS+jJ/DA7WBnZ2cHOxOUD585JhgQuSyJdwzFa7DpdwVSK9BaGe/e9FgiykNFCQxQfrh7xI8KZhSJbaFXwkVaqhOVVTrpMoEByTfPMqCSpVGuogF+nVGNyqAlT9oBUiq/qsN7IgeciRJgUj9LN2p8Kj15RT0267jM0ijyxjYkorymqIBH99aQA3h3fBNo8rJFaQqwGtcE2RxPnPb2CJ5HBTge3hQMiPnudSZFSi+DQpSEyY2YN4Sd6t6GqNcxPk3gdU6KRR3mg8fDa56v6sX8KhSeOspRJj0wF1DPr/IQHVy4EqexlqevdFwfIuUgQ0IFT/4on5eEq96aUl0klwRMki3K/kg2W3u+dkZE+XdlUgFRym7yUJIRoydBWdD1CsA44HGFwrp6u9ywu1FRPmuoNz5mgIB7/s5rN/ziA/vvpcbkZ1HlpafogH6zfwSGkz4TX3o7w2bqRyNW1fVH+FxF70bTeD2qnNckM6QULfAF9WlawNM7yFedZHf5ZtnqFE8982ZgQJV1VO0RAEd9LmyVYKTfFc0K5KgsKjO/ngyqh288KqA8HLVVUwdE9702iY/qfAqNSB6ugxiV44DAP4w+0KtjmxQRYttVLzcqj4+PB8c8H4Nm5YRpKcdqB78d6KQ83AB5XyXPWMS0aReCK53UxgpgJLDpdfGx6uNgs/keFfNIkhscN9CcovBohhsGb7NHMBKAZ/1dVyW+ODFvtenYNKp70p09fcrpLfUJ+86jnHQC2T8u0609j9auAQ/peVEvD0YIWG76vaYurI8DgSrKl/IXIHDgpT5gWeI/xxYdWJ6WO3Pq4KuDARoWopxKEa2pTFKuldf1Uqry7AmJAx5XbOw0Xid/0sBI0YKKRw4s5IV7WE/GxuuevP8KEOi0QkZB6PULGKQoB+voc1lCr8cCA1XkJ0UH2Dd+EqPPy/kzrT2fn2Y/0Qi2ls9PV1pG3URMz2gBla1HAdyAq39pfJmm5yES0PS2O6U6t/Y8WpaAt+rjNNIDPi7Fex/DI0oRgfcABnoGdQRa9CzvUxbTeKYBbO0wSuN5OYl31Ec9J4jl+PUR9SIPPedzVF6l6/XsrDxRn3LssV4ah9TjDmzUVgIBHp0+siMzNA0G6GEyJFyhOFXe89Dz7MQKCPSIgjmTdhSKcuTtbfXB0SvD53PoNScQkAyJK9nWDk/SU2SAhklKmscLezTDeU5UyTBgMpxuDCsPmV40DemxlGrVN+KX6ioST/Sb7ypI7a8MmxvtpER4LXke9HjSdIF70ay32k4+aOypjb6/P03xOC+TsUyKS3Xy65SPXsQsUaqjl7XW82PezgefYnwvxHFZ8X70LEG/wCcdGBokdwalJ3q8nrnvNNOHPRvh+rKiyhalKAf1P3XoKNJdEcuifLkOYFRAfBcA4Ivi0nqBBABHtPpFRQ4CyIQeMCC5UlsbERiBkF6ZKscpRQX8fw8IEGEnMMDrCRDQCKf81YZkjFr7fiqgVvQz5J8WkM0YMw6EFOVw/rJfOUXyXsBA+kixyYvhfl2+ttpB0wz/9Lu152HMFB3wUD29t+pZL0/KitEfyqKH1imrJFdUFV+r+wkMJLDI8aD0lRPhwCaNn/Q9Ige8qa7HJHecWht75+m5BBp6IFfl6FsGSVORrvvXgibvK15fQ4knLwGEL31GIDu1fwSuHRhUTgOBgK8TqED1WrmdBgOJUc74tUbaDfQMEGitPvIxAZSqzqRKcbgiE8NVTvKm3GikF7C4IdGzPuAr8siBBIjHEXM9QVogqHrT81Ud+IwOG2KEQ78psAQ4ND4U2PcCBnhglIwl05InFZhLHy/TlVNSsG7wdZ2y596I3+d1rtZXH97f37fz8/OD9zMkvswoc3qTLLc3dhNvfCyktEk/OJjm/TSOlbYH5FmOfr+3aIDLTg9s+XM9g8vxyp1iTMNQt0LazIcOCSnp6ArUrI3qrPV6E41slQPwkTMk6jl0JAfwKpOAgM/v94fv0pldMDjLp2kwwMpXSivNw8xUxBuQwi+edyqXKI3P0supQM0aT0JG0dvaWjs44jiBgAQEnGjoPf/krfNdBXxBUfIq1V4XKBprDXp6AG7cCYyIiqnoHQi8FzBAcg+HfeSh9BTVqcrrXXNvyyMBTKM6Uf69P5N8qA83m81yWqQv9nOqDK23gQd6MaKQAEHFc94jPyswkYAAP0lxMhozchC8bAfq74UqUOD3q+f0rBuPKmpJh6K1fFbETD2dKvmdoVEkIQHlHiBM4JrXexE9p0pmXP5YJ+pR3XPQnvTva0YFWlsBBtI8UgIH/NbvGU+3tdyAEdqsFGOV1wjxV3XVc/7OdwoZjaAbw+p0KK+3Gwhf7Md3CfAlQ3pjIcEA804f56u8Sb/vXrUAl6YDCEz04qJZfv8Mcu+XoXLdb+3QK2R6B0w9w1F5ai5X7nFU/dJavdDQ8/LflFM/MtgVjgM6BwUj5eZ84XO9aEF1n3mqvAoIpPoJINAhSOV7fdPYfE9goEcjINAzwAkQpLQ8j0O6nTzrySLJjTPLc3uSQGYv6kCivHuaXvoeEKjI5TXd57fyTgtdaVMYleX0wGg3QaUvKlo1TUAD0wMAP5N6iI/UAyUjwJIUBT1jr486br/fl6vQVa6+aYz9oBh5/f7aYr6oSMBAQMHfR9/a90OGmL+8Rb6fQIaBK9L5WwcO+bqA7XbbttvtspWQ/TMKs70lJRDAtQI0hPyuogHO15fKldLwd28cuYGboTR9wOvu6bC+o3Ic7FG++bsXRanIy0787+WrPnN+pX5LSvy9AIA18jN6hgZCv51PPEOEY7615x62nlOEKBnaZEwVcWC9ZnSDy9vI5vQiaKP0STenaB3lJUXJeuTjTzzwLYvKO71Yr7etcG1kaxoMcCsRGyOqOlMCw7mml3qL7nXpvwuo05qBXYXdHKUmASFI4MdXe7I9DgR8wZ97/hcXF+3m5qZdX18fAILr6+tnLwryMiVI8ui32+1S1na7bRcXF8t/1Y+/2XZHpA8PD0vZfgaDyj7W1kIqu6TQGJ73kJv3ZTJAVURM3+4x6borml50YETJsKlc5qnvmXUIpDQFyB0LHk1Jvyu+8XeKrKwBAf6s/67yZjt4/1hOjijVnTI1uq88qnaQn9JVlcfq40d6oLW8XqsX0XKjXjlJ3qaenq/aNyvXa+6xDkk3pGkBkbePkVXyi/bDtxNWawZIax311WAgNbS6JqKw9SgJt56RV1elTQyZBR+VokkM9rBjFW5zYDADBGRIGQmQpy/v30GArtMQV2icbbi/v29nZ2dtu90uUQGtM6Bx1HO+hkB1Vjv1LKMH/g6FY3lb7v1IobFf3LBxe6EbBpc99yL8d6LkOaUDXJSmtf6CWzcAlVeueiUl2VN+M1GLKoLCTwJF6Zv5Mn8fnwlgJPCT8vT8/d57oqpeVZ+MAGrKn8Zns9ks25e5DdeNthyLRIouJkpevoNY7yf+f60pSAcvI+DkYJUyTx2SbJE7zz3ZZ38kEOBTzyMndoZWrRlguCihaVbC/88CAQqBhyBVdq8cTz+inveR8q0iI8xv1hNiCF4fAgEZeRr+m5ubg/8CC/LqibKrqIQMO19BTCOivHxemYCABrW1wxMqK0P5HhSt94v/50LKCnGL3PCzTz1yVHnhHh50L4qgzD3uFLWQQhK/K6XkBnME1mfBQGWsXdHPlJGMgpfHvD3/Cnj4M34tjdtjy24PcM6AzhEIo1zJ+PshZ+JtmiZQHhX5WNjv98+OOa7qPvO/Mn49cJ0o8TdFzhL45fXW+usg3AHgNB0/viB9dNpgKmOWVoMBN/zJA5k1xO7xVECAlBhc3a/Kq8oU9byFGUNXeS494yFDS69aoMD/6+Pz/i6sCUG2drhn1ee5tI/YQ/7cgkfBTsBQ/xn+8i18x6RkUHmPgCANttYO+zD1JVfuJ4NPJcCP0lfKh7szPHyodvBQGD1b8WF0zQFsz9NOyqkqI+Xr42mNER61ZZTXTJ2PSRXP+H+Wep6vDLNkS+npSPTypU730LjXl+CiAgSt9aegR23y51Md0r2XnF7Z2nPnmHV1QEBKUQGeeTI656SqSw98O60+jpiFuKfCtFWjX5N+xLj0wlQ9GimKnnehbzce/HDRIBcPOjhwAJD6xMNKFA6VR4HT9AHLZF16g5uAxstQPRk9OAaNvMmE8BMoYF864HFQ5/1LoMBvVzwJDFApPD4+Lu978Hc/VAaZ7Uz5O1/YVv0egYGUx0v0AetZldeLGsxcS7QGOP0MqsodeX/kTUrrzyU9LpklKNBz7hD05sgrcv2R9Lk7OamMnu4eASa/1jPYPXK+VbapB8T0TYPPhYO9aeeqTvv93OLM1laCATHd50YqUNBbNKHKpohDJWA/Qins+qNUKT3+duTZ8yh9rt2jAn6SoPqDgpMEiZ4jFcTZ2V9bAbfb7cHpVgIDmn54eHg4OLugteeruxlpYViR/Dg/P/9hnr+E6PGwzvS2GbJMwFdt0zeNt/pDJz96ZEX9msCCRwocaHgb2KfavcGpM/ewEqjpjYEk0yPFOPKqZ8gNvHiRPLc1YzjlO4oQVIbyWNQDU1L2I0M3YwjdIHHbMGVez7qsUvbc0PfapW/lUaXvAZ/Uryl9L5q8Bgi4jvAyvRzX9a0dRh+Yp4/1KtrAdjv4e8mYXPVuAn47EEiLSHohfRoVvz5C528dcZilUT3XKpC0hsC3GqZIwGazaff390t5XHjC/agMJas8vkBIYEJnGPgclUcHiFITIGGb1oTaXpvIFyocRkqqwU1KEQGd0qi1HVzDIQBFECdQxzUiPjaSUqKCuL+/b3d3d+3u7m4BWOrvGV6PjKG31wGE5+33Rko5GaFefZP3lpRjb9zNjMmZ549FVcSouiaizpwdf9QtaU2KR22qSJbXZYaS7PdAgP93I7gmGpDuOTihLkkOcBWxSacMOpHHHgV0p5vlVaBuLe9XgwFnQC90QcbMosY03eBezWhgJkGqogwOatKCEK9P77fn3asf0aJ7jFwb4O8VkJDsdrtF+VPYHF16qEmksi4uLpb6bjab8ujg/X5/MBfuYIDzjBJqvVRjt9u129vbyI+3Jhp/AgIOOLYpRQ/UphTV4SJPLvBUpICLQn2Xhc51EFXer4y9IgJaXEpAp5eXVGBiFBVg2qo+lbKrnneqFDZ528vTx2gCcan8pDdGRp+e17HBQOVwMULFa2zvLG9drvleCx5L/vDwcBD1SsZnxK/K23UagdtKD4/WLLhT42XqGX57OTNtUP25BbN6jk6cPnd3d4sO1YFuvtPJ2836rZHbzf7YUn6iE53oRCc60YmOSsc5Eu5EJzrRiU50ohO9GzqBgROd6EQnOtGJ/uF0AgMnOtGJTnSiE/3D6QQGTnSiE53oRCf6h9MJDJzoRCc60YlO9A+nExg40YlOdKITnegfTicwcKITnehEJzrRP5xOYOBEJzrRiU50on84ncDAiU50ohOd6ET/cPr/IbESbsJ1fFIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJC0lEQVR4nO293XYbObJtDcmWZbu6v/0A5/3f6lyfF+iu0p8tfRc1Fj05tYBMusuiehdjDA6SyUwgAARWrAggk1cvLy8v4yIXuchFLnKRi/xt5frcClzkIhe5yEUucpHzyoUMXOQiF7nIRS7yN5cLGbjIRS5ykYtc5G8uFzJwkYtc5CIXucjfXC5k4CIXuchFLnKRv7lcyMBFLnKRi1zkIn9zuZCBi1zkIhe5yEX+5nIhAxe5yEUucpGL/M3l494Tr66ufqUer+q5urp69fn6+vrV+4cPH45e19fXh995/RhjzJ6vlN993YcPH8bV1dXh/ePHj4fy/VvqzneXlfpfXl7G8/PzeHl5Gd+/fz8cy+fv37+PMcZ4fn4+erf++ZzfWxn8PGv/KeMaXffoxXPz+eXlZfy///f/dtf3V8n/+T//5+h7xifjxXGl/fjcvD5+/Dhubm7Gx48fx8ePH8ft7e349OnTuLm5OTr+8ePHg11EOP7Pz8+H1/fv38f379/Ht2/fxrdv346+Z1w5D6KHbT+2mPpvbm7G7e3t+PLly/j8+fO4vb0dt7e3R7pRl9T7/fv3o2PR6+npaTw9PR2+sw22Cbcr7zk3NuF28cX55DnF+fT8/HzUd66PbWLbqM+3b9/GGOOVfvn8f//v//3VpvpK3gp3t8RYzDEj9vlFO8tnYynnG+sa4xhPiInt5WssW/jvvs75xFXaULMn2os/sy1bOv3Vsqee3WTgHBKg8Hcf31MO35tcXV2N5+fn8eHDhzHGD2JAgM15W8LJkrLG+NOIczyfY0Q+xrJiVJ4wLy8v4/r6+uh8ttlGxwk1EzouS5twKwNvhOAcwrrTh2mL+z3vAak9Zc4m/vfv31/ZK/sg9pXPJiD8Tv1NNvkyEPtlsE7ZdMqsw+0l+IZIbPV3I/Yci0b6m/O3eD7k1UgCCU0jYZ4fe+fL30G2AjOS6kYEPn78+IoApKwxxsGWcuxUnOCYUfz9Z8bShCCStgeDcywYYvLC8jyf38tDgN81GfhPZcs4KHsAhxPgZySOe0UUWDbPpdHQkbFcv/+MkW1NmJlzn5GD90AGKM0m6Awj7FuDl68zMSDB+/bt28HpsmzbgO3CxIDRT4umeJy/O2tgB9/aQp1y/ocPHw4Eh3VY75nMoi/384wcreT6+vooG2ZnHxLAzEGLKm2js+N/J7HdkqAxG0DHbzLqLOoYr4OORi5/NivSxtC/rc7ZU64J84wItDreqy3915GBVVZglQGw4zLQzJzBGKMCr8uaOQdH+jP9ci7BeIxjx5/fA8wtW+B3AnbK3avPrL153yIAs/PeWtrY7QUa9lsjaxmH79+/jw8fPhyRsZwfB9oiLNpfHFpIBM9xKtQO2GPOFDvPowOk7fKY2582v7y8jI8fP1ZbZ5aKbZoJ7dBZAGc99gptzUseWeLgEsye6N8E/O8kq2xAnHsjBM5KkeQ540WhPYyxxnrKLDvacK6Ndwtqmn6tX6wrcbnNvVbve8kO/NeRAUuLzGbn+X3m/CntHC4nbKX4W/qrkYZZfY0U5J3G9+HDh4ND4jt1nhGCPcZ4SuS/hyS8pawA5VRSQPaf79+/fx8fP348fLaTnwFhAJV1XF1dHZGCvH/79u0QOcV2G/lzWRE6fJdve6RtxFZIQL0cQlCL/g0MGzHN+2zPRhMCb8Ygurmds8wAyUDKoE7sm78jEYhwHPki4Wz7BEwGTiF2zEhRD5PsnMvfbBuRhrUNu9rvs2CCdsy5YD+wJ1PxHgjBfy0ZsPOZOdd2/hivO7+x0K0145RD5xtxhNh0scHMyAEdSsrOb9FzRghsbGSt1GEVze2ZRHuPnUM4WcfoKb4tmfUjHY8BL5mCjx9/TDMCo9ftZxFThMsPLI8yi6iZwUhZ/r3pYMLS+iTn0f5JRF1eI7xtnwBtkgDLaIzrsiQCq2WCtjwQXWaO/9xA/dbSiGUbK74aEeAG0DFOy7A0O3YgQ9z1b/w+w7ctv7GamyYBjRw3od29BxIQeddkYMbIKI0QWFaR6R5H0M7hGleAMAafz80omoPcStu7fjp5OvdGBLyO1UhB6rSjsQM0eeLnGRl4D4RgthZJR9fsikDAaMXjlcjd8vLy55LOt2/fDhFSyjOQstzsM4iDm5G6fG8v60EiQHDzuDSn3EiT63t6enoFmCEE3ltgYhBHsoogeX1bj7Xz910R/JyxajbtNqyw43+rNOLWMgPOEDhbwOUEBzUrUjCzA9bPeUlSvgp6HDzREZ/ilFc+w7rNxPWfqsOvkHdNBsZ4bYRNSATspPM73zlgLSOQc1o9/M2RSgzSGQEP8iptxPKsi8GYjsKZgeb8uRGNrHZPtqAx6y2W3b6fQ+JYI0xP53c6vQj7It/TD3TW/J0kLd+zhMDlJUda1DXXcRwNoi4nn9t7yvj27VttU17RJZkM39aXcwj8JA5PT09jjHHkbJt928EwQ2IyyldzUi8vL0eO386fGwbz7rKpV7PVcxLZt5aZ899LBEwiuWmwYciWHm3JqOGZX1uk4Orq6ihoW+nU8Hd2non1lrTs1Lls7V2Sga1OpzRnM4tw+f2UOrZklppandckht8cVxOSGS8VkLBwMqRME4E2cXj9qQZqIM+xc4gdbo7Rqfh3Ej3bC4+5nSQAbHvGKACU97Y+GmmRdMtyxIF7VzfbHV3iJHmMdpHbwJgNiLMe40da1sCf8ljujMC7PS0SpH1Gb5O4nEdnP8sKeF9BIwJNLkSgL+PMSOFK9vQlycPW3Qcpk88B4LvH20EQ56+d8qqPHBTOzvEcmJGK90II3iUZsJySHViRgL3itCjZ8BaJaBtH6FhX9fF76ooBn0JemJlwlsCOP3qRLfO82b4Ht9HHPPHPCapcs2/i8aYdecxa1ontstNJuVv2m7La5jaSPepJUP7w4cO4ubk5em+p95mu+b0tcfFecTpmR+dZElkRBPdvA0gCdIv4nCkx6PvWQY9HIwJtXDzO/1uljYWzAHsyARQ62L37BWhT7WFTlJDTl5eXQ5bO794X0siBP1v3lTSbYIDGdvkcvrNvzkkI3i0ZWIHnFqC2AWnXN5BukZiPNwbcUq883qLj5nAcLW61tdWzMmS2IeC6Ig8+123YkpYheGuZbYBbyUxX9q03jTZpkYGdEtdUvf49i2AdkX369Kk++XA2j1bzpNXBpxWyHVl+YMTIthFoDbgEPBNH9gFBPfWY1DD65/UmBx7XLZx5byTgrwh2WnkrImBbMyFw/6XPx/ixt2oLi7eIwIp02F62sgO+zvq2ZVTLjOS6bbahVUCwNzvxq+TdkgGLO3EPIdgqz0IHzJSkDZLXZ+DIfmdOs32fgTSlpZIbCbCxtzotdvjsi0YIeI3lvQFnhLeBbskpY8bUNbMqkaurqxopE7gYded3g1nK4j4BgnKyAXkU8uwhQxZG2mOMozXe2bqwoydnCGZ9bGdPItzsPe1va/124CQbJh4maytSOiP574UUNNL2VxOCGRFoSwKz5YHoxCzTFt7m3fXG7h2Ysf0ce+PWLDuQ77EzZxN87owQzOzJ7V3Nw5RhQvXWdvdfQQb2koA95zgb4FcjBI2ZOvVlAyXArtLsZsYr1tjSbVskYI8DbPq8vLxeIjBhoA659j2ApqVlWWb906LV1maTP9pB7IW76QlccW5x5CQV1M9kwC/fxtXIQJPo4k2QAX0+PMag34CLfUXdV7Znm3Fmy1kS9odJjpcSuFeA+szEzpA6MlP2v02Mq3uIwNYSgbHPtuIl0FXWrumSMqi/bcWRPQmhbdMkwC+KSYWzAqdkP1o5LuutCcG7JwNtohoUZ+e347Py22eTgBUp4GDSGNuOVUf6rbzWtubwZ6yX0qLbLXCLETYycyqD3QLjXy2NRLl9lD0TkFExo2RH/tfX169uZeNSkO/FbnZq26Ojzv6ALBPMduanHL5H6Jijk//LoKXn6bibTYUQtTpdRjvW0v9pF/XIeX7UMDMLsyhuBtR7MmFvKb9Kh1VQNFsaoE20O3EaiU7/Evvo8GbtdZBm2/Y8blkiYnTenT0iSX9+fj5k9NKOVf/PCIE/EyesB+36XEHVuyYDBq8GZjNS4DLa+bPy7JCdrhpjnvbxYPO2tq2U0l6D+9mlgQa6LjN60LBJCHi3wh4Ga+dxDkk72vMZxphnPPZMShMBE77Uw9v6Yk+54yDPIWi2aTLa7hpY7RVwe9pvzd63/nXRt+61ZQ07Fe+xmNlLc+JeJuD5qycNMs07IwL8TFLQbu383yIzB0z78NiRALQlpYhxKCRgjB+ReMusbWG45wLtmBmjlOU56c+xCWIaM0rZC8Ps3Z5loxkhSBvYTyQCbc6+JTl412SAYqboY3z3NbPvLK8B4kyHdo93xGmvWapqpVcDwFO+tzosjb03nWaTjJN3DxF4L+JIYosQrGSW5nRmyEBpMIzTIeFkWtQO2kSA5IDp21zLMnxOW4fluSTAjMD9d8F0timDz0xg37a0rQG7bQBr48NIzn+vbL32SMOSn7GNt5K/ylHQGTUSMCMCxEJnayhcZsrvvCOANtayprZZB2WeRyQCLQjiixtg6ZzHGAcb8rIU8XHWn+0Y29qIzWw834IQvHsysGKLM2IwGwhf186jATVC0NL4jrZsKC8vPx48w3qa0IFcXR0/4nWM7Q0xW06+1WeZMVuvb6+A9j0RAU5A98+KSM0cUCvbdjMbCzP9XJPnAozxOuvUnu5mItCiM9snCQPLbHUSdB19Pz4+Hl5PT09HETiJi/uOmymZxvWLY0MiYMLAZQT+ERFJgEmK27jCiv8G+auJQCMEbZmgZQRo1ysCtQrSaIctE2AiwAAt400SmsjfGUraWZazgrfNLpgx4LGftZVZcDvLDryFvHsy4LTg3t8opw6YAZ2prDGODXYFMGTCiUadQmOdkXbLmh3vnuyAxdc3MXv18ZYVcB0GbR47h8z2UTQSMHPgfB/jR7vTFwQROsaWPSExSV9bR4Nsi47ozKmfxycRnEHdWQS3ta2pPj09VSLALENsJPZiUG/jY/swOfB7Psfxh6TkM5cuvATmz+yDpgcJ+LlkL9btkT2B04oUNCLgsjP2Edtau2tlVWe73vXN2hgx/hGPV/1yfX1diWyOzex3Fs03PJyRKn7/1dmBd08GIi26mzmu/LZ6d9kEdUY1s/NptFwPY/2rAbd4PSrf/W6HsifdbWc2A7ZMjpmeW2C0RTbORQjY3lnKcPXbqr/GGIdbBE0C+J2O/2eE9pt6TQZXUdTMGa/6w+eFDDAdT4Ic0pHznXKdyR6gS3l08AFk/vlQWxrwHKHYqXkJh3WfW/5KQkBpNmJH7eWkrfJ8np36GK+fJ8AlCW9WjF21LOwqsJl9J9m8uvpxC/AYr/cT8a6gBGr+w68W9KwIbjvf7ZqV86vkXZMBgoQjq1MmRiMEzWBZj7MBLs9rVSESXBtr5fPdx7d054SkjqvvlhWoEQh/FnhmmYFzStuvMcsW8PPWsg5JIPcG8E+LOBZt2Wmmw6zfWFYjK6vIzQDTHku8hwx4c17LlEWvDx8+HP6zoNVhEtNsJ68QgWzG5H4F30nAJQjrOOt3OgP20YoQvrX8p3Npi+jPCAHxx/rMSJY/c59BywCYAPBultkdMj8rtLeXlx/LuMF8EnoSXT99M3bBucR39lPeV0TAvq35vF+Fp++aDFBalL3VOY1p2aD2kAKe6zXzmYE0Jj3Ts6WIaQSObOz0eWxGCk4xoL8iAjk3AaBs7WCnmCzMJnckNvHhw49/JxzjByEgkO6pm2PGTJP14Lg6SrJt5DeWxVdbv7cwMne9bRnABOj5+flw90TaZlIzy1xQJy5dhAj4vwh8zZbMgJt1vRcy8FeJnf7slXMtdJIRY17eTQJWZKBlB9qemDHmhLnJjAwSK91mZmWTIbAe2XzILCDx1gHGFulOGcR/l/OrCMG7IgN7HdAsQ7DH4c8+U8wQuYTgdLCfsmWCcqpTbSSA2QYaHsE8v1Mf/2HRHvkrsgPvTbbSvHuiRkffOT7G8eQkIaBj4hjNys/vcZazaGLP0gDrcWqVRMJ3A7Rohf2Y42xLy0ZwmeD5+Xnc3NwcHHfaxvau7MykxX88tIcINEdCWS0RpY7/dmnOfS8hGON1kNOCHtshnX4jBbOsgAnBGPP/OJgReJNVtz3fOeeItRn7tmfB9Sdj1Y5TJxMB6jojYA1nGkn4T+VdkYExXhunpTkoG/esrBkJsEHTOcycfFtbJEA23Vs6dfXdejramjmH6GTjIRBvkQO3m/X9t0lSvZRGGCnee0Fi1q7hb9++fTtKa7ZNUrnedsRlJ5OJOCWOh6MvRzZep6XN+DZBR+gsYzYvZ8fZf0nBcs2VZHdGBDhmLUNAUuBzPHa245zvugzaXHb43yQNG9s429ZmWU+W2fYF8OFaeabG7JbFdjxCXJpF4JSWtWrE0BmqMX7Yk8mA55PnZY7PHL+PG6dtq/78q7IE744MnCp28M2w/fsY85RWE0YvTI95zXQrGzBjqASrLSfFe3MNji8vr5+xzTUt3qVgZ0dhlEpj+28kAmOMGtVx/GfEsxGCFYnLuXR4tEeTxpZpSjqSZCDkIjaY1CTBKRtfqeuMDAS8sv6fDYHOSnHHNsuYESLaCvfPMPrjRq2flRVJaETXWRmTAF/vOfW/gQzMcLKRxlkU3AgBI+pVWbyt1U+29OcQBtocddgaD9tk8wWW5qidGTBOMLuWc2a2tYWhM/1mY2BCsCp7r7wbMtCMtDHU1XcDZOvgNqg5zvO2AMsMciUt7U49HHFaHzNOvjcHM2sDn6KVa/YQAh/fY9zvSdhG9rlBzNd4fPc6MT+GOM66kUj/2VEikThNjusY40D4nCXibmtGVwRhRlN8ZkBIQeyT+jB1yuiOYgfsdC3FZN3yM/bUMgIm5ukrL7HNANtO4b3Z+c9EhCsSsOd2UwqDIteRd5btDYF+ToYJQNMjJDa23PCJsvWALbePcz7lc7nL1yXjRRxpeL3CSgeFttPZHGnj/zM2cdSen77yF8kqsufvPMdGbXBvBOBU509pznvr/AhTwM043fY22TjgMRySDBoUI3xOnj2GsyI5s3W7mZ7nlDaxZqRyjGMgSL85QzCrw8DCSDzRvR/n3DJMjjgMikyfxmmnDY0IpD7qw2WC7Phn9M95RvBmP7WlDH6ereW3FO8qauJ4eB63iIyfTepmRGBGCN6b0Gb36Nfs3o76FEKwhZW+NvWlrtn/abRAjnab35ySZ5tanW4P7TfvJtnEU/ZBsm8k49Gfc9v4soro3XfG74bDv4IQvAsy4M5rndnIQDNqs7TIzzj/lqLyBFkxaBvCrN2zzzOW2VKibwlc/w2ASZmNS6SBlz8baPbWawcYR77qM6cpsyyQ6N3PszAp8FwwoPkWvJY5MYBvEYvZnwStCEH04bt1cTu9/DDrxz3Oa4sMUE4JFt6j7MFMp8NbMLJHHCw1+8w/bIYYkMxuBUCz9vG9ZTxc7swWXW/rO2bLsozHpTqWtZU5ZtAQ3UkEZj7nryYE74IMRFZEwJ+dDfD9qI0QNKHR7lkXZDTHqDu6uT2sh/owwnIUtkUEGgngMQPyXmHWYOucU+W9E4YmLV036xvuE7BsESZHLY1gBhRcR4uGnDGzHisSF8Buf4AUm21khc8fyG8mDDOHu3LEnmNMEc+yBa3/Z2T8v80uT3WULcCwQ2up+RaItfotMwfV8Lr9GVbD4xnusV1uq+trmY7VctaqP0kEnp+fD++0eZfJ7IaPs4+YcfDeDPftX22/ZycDzfH581ZWoKW8xjhmpHs6raV/T2HGLeJ0G7Yc/8qZNIPzhOF3Pwhjlkr19xl4bsmKZc+OnUtWWR/3ZcRZAp6fiJ+bFWcO3tJIcJzyzB5W5WQuzMiky2BdJgGzfy8c4097yubD7D1oGQDa7l5yav3Srtm4nBLFbkVWs/P/W8WYSRtp2dQWkKWcSIu0mzgIsoP2xsFmn1tZG+q2Ijwrkm2n3IKAzO/oG2d9Chmw/qk7722JYGbffzUpOCsZaCx3y8CaUZsINBAlAFhW4Nr0jLR1/2b8/u6y/Zv1MpjyUZh28DRyOrVmiGbGNq6taGorynxPsgfg3N88NhtPlp00Ia+ZgWYDrZzH7JYjmxmZbHqZNNImTBzStjj/m5ubQyo3r4x9eyQw/6tgBoazPm39z3ePX3TlKxIAbZEjo6y0va3LEpz/KqD9K+QUYtiuM2auMgK2pRbYjDGmhNX1E5dnhKC1aW/7aNPUc9Ye9kubN07R5zuX6Fbzi3X4KZYt8MqxFRGgnf4Km3yXmQGLHdOK/XmZINePsf3XkzNjmckMjL0EsIdFt6xE9KSxef119nS9ljVwuavvPyONwb8nomCwiDgdF7HedDzeSMdJzYndXtTFwOg6aD9td/QM7EwE+WLd/rfEEIBPnz4dEYKAIG2K+wWyVOBnOjSy5fGYETKPB8eB7UjfuO+JGyZbjsI4lo0AbM3f9yjNOTa8bGRgjHlgk/IitmvXx3r9V9suq8keDNnyH+08Olgff3l5vaGQpCMPF3t+/vOBWp5rEQZuxodGOtsSQYRlrObVz+Lt2cjAnsm1mpAGQYNmG9yt8me6zVgxz20TbIzjh8E0Y9gCTkZiAV4fa9JA1VkC6kDQNXmhUXrisIxVpuCchKDZSt4jLcOSCUmAa5FUc7wrwuoyY7OrDV0GVV9jYsIMkttoIpCxyTpuSAAzAznPpMcbCP13xo6sWH87j22YzZPV2JIYcEOWgTXn+vHip2LFe5VTSIBtsgU2LfNE8TW015TRiIeDNuPR1rjnc8Ob5nhnZXAeuF7jWnDBDwBrWJ46cptxy9I2Eptzm303P8E+mNnwlpyFDLij7Cxn17CxvH5mXDNp4GLGuzJ+M9p2L3ZL7aZuO+aVA/XO7BAALhv8zDqsIzwL+yHfVyA5IwSekOcQO1OPdaQRo6QGZ+DWnDDFdkEdmCb1hqotQkCAz/nUmePbbDjlc055p7dvJ2x9wzF2VoBlz2ysRaSz8k26LOnntN8EoJFab/y0na+IyFvKFqa1c7cI6SrTxD0kzd7H6A6Q9dGWc9cA6+bcYXmNCMycHUllrom98T3Ssh28tvW3A6romLt80ubVWOR6953JNcmGhUEGv1v3n5V3mxlgJ/m9GeCKtc6iDHf6iljsZcSzCI9gmohkNpBtYL0mRSIwIzZbZe6VVb/m/b0SAQvHlrJy5jm/OWvLzD5bVMRzUleAkunURixXhICOmYARfZveLsfRItvW7C2OY/aEQYO2HZY/u0+5PyHZCP+BEMf1Z0FyZtPvUVYBDe3cTrgRzbae782jMzLgOdM2o7bNim7HLDBZtW+GncFYX8ffGcy1Olp/k/h++HD8RE0Gbr6G5dMPNHtjO1hOI7NNR+p/iu2+ORkwCK4c+R4n2aIG18NookU3BtatTENjkG0Cem0sdWVgTUxm8leAUZs41H8lji5b5LQC0fcAps2R7mm7x9OOemW3Bh7aV45vnZ/6ZpHcGH0pitFVzm/LHq6vzZuc4zVRRoA3NzeHY23cfcxziLuzDaDRI86fD0ziuQR3z6vmcJqNGiveKxk4lQh4gzXt15E/nXh7MFDqj1NsGzZZTsNCOtBZVM3zIiGVzW+0edSwqZFP6jXzS/Yzeb4A8Z32FVuNzslCsT7Or1zb2theJNhsVyMfe+RsywQzIN4D0GO8jvA50M2xbkV+qdupNJ9jMNnrUFIO01dux5Y4umL5e8qgrixrVu4YxwSGRm6wnJGCyDkBtbHzPePW0vpcQ59FOc3J2OHSgVOc6Wkp15babW1m9GBCuop8bN/MODAbld+SBr6+vj7KSNBeuM5Kac4r5ybyouNpDzhyeXyPbbcM2srxvycysApG+Lv70tmAlhXYIgJ5kZRGBxI0Z2iiQ8sK2PnPsKfhWnPk7dwtbKZ9OPjzcZ7PdicTRgJrwsC28eFE0dfElWSabclx6sj5nfJmhGCPvCkZsFIrBjaTmZNhx7fJ09aVKDaIRgjI1rb+pYp6kh02wNkiF/8pcWrXuY9NCKiLj7u97TcfO6ecQpQcITAbQALgPQBjvO6nmWN3ZO8J7H4loLfnt7c6SY7zuZEAZ0mcKYutsw7uDYgDSflx5gbDLZtIW15eXg4gS7AjGfCeGY7XLAWdtq1s9D0Sgb3SiEBbtlwtEfi/Az59+jRub28P2YHcXppgxmSgEd/r6+sDUdwisLN2RVI+sYoRMnHNTrzpNfvcfEGuJzF9eXkZT09Pr+agCQHtKHch8Hfq6O8kAiYBJvgeg1Nt983IQGOvjQisZKtxdvr+bYtl0ijaphlGGUz5pPw4/faUON5rmmingVMjBL8SkBqT5Hcbpp8kNyNATedzAWvGLGO7ihpoEwYF/rEKnXImXsrmX/TSKZNMGIhnwjnS0rwEolnmJvq11KOjC4qB0dERCUA+00nY7mcAnTZw7dZg2Qg0yUDT03W1SKqN/ez39yBbOm0RAmKbMS+fmR24ubk53GbqZQIv21CMpX6KZbP5vRmDvfsKmpM3Gdr7sn6xvWy2PYXgzDAietPWiVccs+hgMsQ6TrXhN88MuEEGGQobtOroFYvPsbY8kOPUpa2lzcCFDDXv+StYAlYzIr4I2itxG2aOd09Zq98JsI6sUv4symp6nRtUOQ6OJCke2+bA+b2tobaIswGSN2wZTFr6u+mTctoYtOzEHjJO+zGoNrvhXCEZ9l8tu4+NBU1//vFLa1uTmZ4h8EzVzvrEup5Lmo16PPO+RQRW2EYicHV1dXR7aSMDCYgS3ORee+s1I7BbZDw6ObNkUri6lvXO9t14LnlerfQOEXp8fHyVsZvhi/1ZI72tzcZh+xSSgsiphOBNyIANtU26lUOZTQCfP1sDb0YTY246Wk+WyU73YBF8kw7ixOO5Th+xrW6XDWFVhvvTTLOVOZNGPlzve3H4K+EyTZuQzRnNIieDiMGhZUkIjIySHJERbEkyrJNJgecH5wJTudZn5YhZ5xhjCqZ26Gx3i2rYDvd9s/3V5rMmjeBk2SG/xw7yHtLCtnP9dg+5fkux/a4IgR2xidsYr2+V5ljzoVM3NzdHOBbb4ro3dTQh8HzJnNwTGM6O5TpjeepjNq9lBVKnCf7WEkvk+fnPR3Lf3t4ePZujBRH5/47sHcic5N8yt/83IW7ZTo0/q/7bkl9OBpqDdaRAw7aT9e8sdyZkVi2CIIC2ctqxVWrKdWSwGRmxzSudZmWbBLSNWiyL16/a0MpoDp4gaYe3YuinstNfIemv5pB8jGJH1ZwwiSHHiv3piMNr/3SMBpstcRuiRyL0tJ1/IsTrol+u9dwhWBpYGyFakcP0V/Qb4wdRa9eEsDvFnbGkEyJQGmNeXl6Onj/A28GIO9bVWZX3JA0PTQLs1Oj8ZsQqtmAn2FLhqWOVecp5Jmhux2wObvUBz3cfcElv1g/tGveb/6eDmYMx/sT7h4eH8fnz5/H58+dxe3s7bm9vxx9//HHIqnz8+HE8Pj6Ox8fHAyHgknNsLXYXISkd43WQ3DDdpGBvn77pngFOUg/kVmbA5fBzMzRHsSyLKeOtyGhVpt+5bmY2ZxYe/fk+qy/l+bnvjQjk3JnMCATb3SL+lgWxY6FznNV9DvEGzkiLkrwGbYfNtgY4WTbXzPMbr2tRhu14RlBWkZF1y/mxyzwqmGOTuvmHViSe7qeAYaLB1d8ae+45M2N74TsJTUvj5m9i/UwDOzn3C/vKgUZ0a4+Pfc8ys51GDGaZAIt/d5npF2dXac8muRQTzpXQbvLZmQjrNnPkJvHt+kaivHeC2ZL0xePj47i7uxt//PHH+Pr16/j999/H77//fiAHnz59Gvf39+Ph4eHofzy4ITYk14HZDI9n2ZMt3zqTX0oGVobaDHFL6RkpmEkzuoAMJ7s7ls7SnerU/OydD7zgRCSjzPdZPxhQ06afBSgSFpMCt2kPGaAY2FP2ewDUNm4REoJ8528URzh0LKxr1V6ClskAy5yR3ln7/J3jRbBhxO+sjQkNyZ5B6+bm5jDWe5bB0l7az6xNzamRCDRbNaDbET0///irWbf96urqEKk5Cju37Z4ijQjYdk7JOm3ZcbCLRJfO1E6XS1exEW88nOFKpAVTs2xInHiWOFaZtxmJIqG4ubk5OHZG/GP8yA7c3d2Nr1+/Hl5fvnw5XPP777+P+/v7cX9/f/i3z2QJkr2LLZo80y45j9x3M9zeI2++ZyDf875H2RUQsqwWlTbQ4KRnypHpXTM0ludIqg0KhdFmotQ9k3LLAZ8iDUBNBFZkwMfH6JEFx8ApxHNJGyOCBm3HNjmzW0egjUyspBFjRzizrASFTs0v2rN/ox7MkPn6JiQPsemmF98J3CSKJhGNLJAQcI06ukdPOqfU1Zwgx7qRYWYq9o7nOWQWZM2yr00yFhz/U5YCWefqIUNjvN487Yxd6+/YC7Fk5bivrq4OBID/s9GWtRrGuS9NLEII8sozGJ6fn8fj4+O4v78fX758OSIC3Iz5xx9/jJubm6MMQf4CvPkF9n/zbxw3koafsd9fRgZmxsjvdjQ+NivXMpvo+TxbD+ckoJEmEtpKb83AckZyHA21VJX1TL2tPLPmJl5/YtvZlq1oiBMx7Whtdqp3q6/eQlaO0M53ls1w+nNl2zy+Igl0ei6nRTkNYFlOA1uTgqYvlztYJsGHKUz+6QpTz400uR7fUjVrA8eKfR/gnUWLM/K0GhsTkwak/42koBHKvbIaj1YPI/CWlqdN5hWcTX3EkJTbgg+2yftJSErohEn8SQZMfNyvzjrwgUy3t7fjy5cvh6dvJjvw5cuXo+UB9gd1e3h4GA8PDwe9n56eXvmAZAtWOML5ZBI980VNfgkZaODmRjoiyGe+t7L21OvJvOqQmdNqUe2WUyN4Um86EEainLBNSAIaIZgZBvvRbLIB8B4ixvGaEYG0tRGAxmrfSmaTfWUTlJk92+nYyZn8WRdGp3Sqdn6OuGhHLNNrkAQ7iu0x3z22JkbU3bcNcoMmnT/bxTJIRlOXHQ/1dgRocuqx8pxyhJolg+gwI0vN3t+DNNtrzsskZ6sts6zAzFGOMY6IgP/tMkQzY5u0uOeFMzyzaJ0kwATAm1ypS3RsdXoJzcTHOmQeZrng9vb2QFJDAtotmZzP7V9BOT7Ri3Y6s/VmAyYFe+QvJwNNQQoZYL7PotEm7TpHCukQRqnuSF7vnea5ziyS77P2Nsdux2/AbA5jJWyfSUf0z3mtrNnyx6p9K13Yvx4TAu25QLWthfOdMuv7Zs8cewJwAzLXwRQ70965xlHEp0+fDqBnu3R7SAr8T4Jsh/+RLtcH2PgoYINj+pXkOe8mRQYp260zGh4r6u6okI929Zh4vjlYSN3/bTIjoY0I5LwZEZhh1oyUua44RhIBR+Qhi8m2NvuNNPwxcZ3t+PeGQW/4Y1YtuB87b/93YSJI4so5lOh/jHH0COccbyRiiwxwLhNXGqZvEYGzkIEZU2lg6M+nEoIW1c6iVr5cN6OzpD/HeL3+2BjZGGtHP/udejVpA25wpY5NJzvl5vRWmYGVbiyD+ubdRKARl7cUOpdMMDoStmGMTgY94excXl5+7H7P+ZE2yVlupJGBGbBskYBsiDMZi/7ttrG03VFJe8Ic+3aM42UER2B2RE4DR0cCsUmB+yjjtyLFOT/fMzYcZ+rEz7N58Z5kiwy0W+n+ivpcdntAkTfYPT8/v0qDZ2w5XsY4t6URgejAbAQdLv9sifMw8yS3++W3+AHaQFt6y2+pPzhgXdhnjaS0JUDqtyej03zuqWP+l5GBBppNPLG2vvs3R580qABR9GB2wGVzotMpcD10xqTH+GGkAU2nbxnxmwSs+oXOwk6cxxr42aE1nWeg7nNXnz1hzVip9x7y86vFROD6+vpo8ptExqk52p1NMk72CMmbswaxuRCIFtUaPEgG2KYxxhFAcZkghIB6rgDUZbc/BmoZtRyn43U72M6U7boclZHIrDI2tLcZ+XbfWdfU0eo5JVB5K7Gt2EE6it4qq2V2/DvrcCROB8cd9yEDzAqM8QN3296srXZxuaxlBEhOuIHPNp5bbiPEVROB6Oo7ADL3jP3erJj28K6E29vb8fnz5/H777/X5xeQrDT8PCVDsEf+EjLQiEBzArOJxnc6ldaIFSG4urp6ZXQsJ6BBPQL6fCpUzp05w5yXgc/vjeV5kjVn7TaxHSQ4jFibA2H/kQgReFfSymrjsBrPVta5gZSO0pMjoMRJyHEboxMa2xQnYcolGfD1Y/xwhKmbzi/nc40xDi06jzFeOVVne1IOU+stlUpnmfICRgY/AqDv9Wd9JDRcCjGZbfdbe+wcrVtaH+ezl+IM0D6f5OK9ZQeMSexr9rmPWRp54hxoZdsW2/8XcB29kYExjudcsDSYlbpn5IMOl8TFvsfX5mVCOMtM2OZi6x8/fjzs/uftgWkPgwL7qDHGYUml3ZHgZxeEfOQ4M9cz25i99sh/TAZmRGDmSCgrtt8+r6LndHZSm43ZMgNg5sd6WrSW4yknRp7jNrpGCNgOAzfXMJl6ZTqUqe2tAXaK2H04k72EgNmA9+DwV7JFBuioAk6zVLMBhzIjwUwVtrHjzmpuGHK5JIJebvD5zlSM8dpOvdGJjtHRUIuIohfTv15+YFRGMsDNZa6Pc6CR/kZ2/HmWWp3Zacad5J473d+TNMdnIsDo1M7OjtdltjJWG/NMBuLgbm9vj+7DT/2xc24k3HLmbcmDOMm2kGC0oMkZYma6bOM5J/ZAcpwnCj4+Ph7mD+vifLu9vT0iYM5gMCtAInB/f3/U/sz5Zv9s65uTgRUR2HLop5bP600KnIJ0ep3ltaUClksHF4kBcjBZptm1U3UGWYLiLBvQJrCjlibunzF+pJFTv9tuY9kiAuzL904Exjgmj6tlkpCtPNjmZ8XEYUYCohttwe8eJwLNKiLiNWxfi+4I7pQsNTAyISlg2Yx8SDhYds7hOmjmrsmAM2ckA03czkbYZlkTOo8c83/PvzexbZEQbBHWMdakiKSC2aM4+Xx2VoBkgOeOMQ7p+OwdMDbGDpzBMpY6mKPdPT8/H+rjXPj48eOrQJD2xqWwtizG7C7nQYjA/f39UfY2n5lBu76+Pjyoy7pxvqb+p6en8fDwcMiusJ9Wc2DLF6/kp8nAHiJwyiSanTsjFRRH2K0DZsww1/Oz28L0/Exs2H6lXg6my2MWgEZj0tMMwgTJ6SkSgl/tvGf1nIs0GDgsdiR7+oljMiuLtjDG69vbXFZ7UW/bZuowCeCxvGI3jLjayzrarmfkJte19eS8uCxikpx2ct8Ax8Bj0TCmOcJ8dqaB5bCv4jjG+PEfIw4O3ovMCIHHMu8z++d1dMRxRNzE+vnz5yPn3zIDJAQhmBmD/MNhHrLT/MjMLm0rnCPOKnlpgyR6jPEqyjfRjR2m30IQYyMfP348EAHfQpl+jD0zc8FAg34hmYA8e2C2ydC3ZbZ5Qbs4xXZ/igxsEQED4qlOoBEA12nZk/6mk801jQi0a52SdX0G9xxj1qJFJhbquEWqDJRcavCr6bxX3isYniKNMIZ4+UE4Hic7ZGZqvMbPvuIYGsxYFq8NMDRSwHoM/sxaBZAcbY8xXjkK1ptXIy+u2/YZwHPmgVFmyjQRYJ+4X1hvyp8tlbW+dh2NFDIy87ps2xNxLlnh7SxTFFllE1m2s0fc6JYn6vkf+kwOvEzAuTLbQU/7pM3YVrhZln++Fd0Z9JAMkKxmjoUAeBnMf+p1ff3jgUDX19dHTwukfsykUV/+MRH1enl5GZ8+fRrfv//5N8jMpsyyIrmOGETMacFsm8dNTiYDe4hAm6R7HNGMBOx9jTF/BCmdOTtwTxS4BQZ0xlybvr6+Pvp71Jxj8D21bpZhEjKLMmeRcRsb981q/LZ0txM7hzSnTnLIVya1ow72a0iEHb/bOCOtJhY8TkLXxpL1mggw3R2dvf7pqMK3LrWIPce5jOC2OZVKp8LsiEnEjNxTrDNJ2+pc93s7NzbAzIqBeysr+NayIgFNZhjhMWF2JI49JCCP101mgE/W4/6Bdp99+j5ZAdoEyUDLrLJdsWlH9RyrT58+vSIDcaa5NmU1IuBNsrE3R+W23cylECBmdNudOOn3RipmGeamQ8Nqj+neIPAkMvAzRGBPeas68nmro2w4ThHS4AL67siVjg0QYlxkpTlOwLbRzBzzltCgXBcdzGyHeX7fI3syJu3cMbbXJc8lZtAzUsbP3NTH+34ZndKmZo7K4z0bF+piIhASQhBPpOB6c34AxLcZkjAEyNo+F89Db0pMmx2hcd1+jz3MSBT7mMcbEfa17ItZnSbqBl9GWueUhr0cI+JipJF89gXXt8f4QfgS7YcI/Pbbb+O3334bX79+PVom+PDhw6t332LIDBUjXmcGuMnW7YresVOm9fPvf2OMVyn46HVzczOenp6OyHTIQNb9Z7cMsu7ZnORG24eHh6NMBK+3kCisgjb2ife35LPt82d88m4ysJcINIfZPu8pf4zX9w2bDDSDynuud4qfws6cObUmZNcx0pTntda9kY+BrGUOzDAdZdpwfR5JUK7LsdX4bBECtoXA/LNE8a+WU9qZd0bZdJbMDIxx7JTdz83+29heXV3VsSXocBMe50RAsDl7p1i9dBThHCIpoGNnW6mDoxQfY7aDSxYpI++pj5u9PLc9VrN5QrAMBszGnXU1539u26UeeTcONvxoJIh9wLnKfmZW4OvXr+O3334b//znPysZoI04S5Bd8rFdnz+Lhmk/xDeTgIeHh6M7WzjGmRc5N3YbW+A9/L5FkPPE5JqOn/sMHh8fx8PDw1Hmo2GAydr3798P+wT450Veqoj+7R8NU1azWRPElZycGfgZIrA3QnRZs7RRywp4LdSA1YCiARl1sW5NGqh6oPy7646+swltwCOD3CIFs37OubO+2ZLWtlk/vgcyQNkCezpi3t759PR0ZG+JrHi9HWAbQ/7G+rkJKedxh3N+90a/lOFdyZ4jXO5w6nKMHw7B0RsBzn3m/shvbDufH+AoKFmNBl4kCK3NHCcTApbt+ZhjLCf9zojwVPz6VbIC+ZbBGaMHYcYq2kvsJ448RCBk4B//+MeBDDDCtw3MbgOkHpwrud5EMudnPnGN39E8s7Nj/Dm+3hxI8t6IhfcLmAx46TeOOQ789vZ23N/f17nieU7JfoHff/99/P777+OPP/4Y9/f34+Hh4ZD14LxiX0eMJzz3FDkpM7CXBDSZOeNW9srp73mtwD4GtnLae9qTa/PO1DzBbFYe0700YpKTWSQ5IwIW1ps6CAwmApF2jOf686zOFimeS9pY7LFnRtjcEU+gsANjJExS0UgawdBEL6+AFMdwqz+dzpylNpkliC7MQvBWLerdCGlzniY/XLJYZQjiyNvcZrnN/kxIOdZNt/Sx+4fjdi5pGOnv7JfIDBMo7EMSL67/f/78+fDnO/wnPjt76hFdooPT775jZIYPnBN03nl8cL4HczP3nHJn2j96tTsIPCdMlqNryEVID28DZMaE7fB45njIwN3d3fjXv/51IAX39/cHwmOsaXawsp+9uPsfk4HWyDSU7z4+m6zOAHgZwE40jJDXjvF6J7SN3searnvFEfbWRGT9TIty2SG/bzl765y2uI2+xssnW20nwDawXen3HsjATJo900bo6BpYsByWN8YPO6Bj8XMOSCIa+aODCogS/JpY36Y3nWDOz1xim5xVIFGlAyV45pzoSaBujzZOPzGdPwsU2L7WZo8tyzUhoKOhg7DTWmXZziENK+1k2udcm3cGLjnmtL+fFcE7AZr9sb+CZY7AG8my/sQmjkfGh6RyNkar4MmZgxURMNGlXSVTkPZxOYQ6NAwnGbi/vz8iAiEDnC/uKy+pNXkzMkDF2MD2meVslbtaArDz9zVjvN7stwcktmSPA4xz33MuQZPvmaBO/TB6S3uje+rMebPx8SRzupT1tYna2mXgbqThPQHpGHNiSxuiBLycGRjjuJ+4b4BOdIxxBDZ0vtGHtwylTkc2MzLgMSYAtXpnwrINoCQxJimug31Km8v5LbvicZm1y/U3YrZH7CTSv+5rZnTOLTO7XWEw9WY6nsfyTkz1rX2NdLjOOKbYSvAlDs9R+CxQ5OeUO9vxb1z055SR85xta+W1bFfK4VxIn/B677GhrbpNJAOPj4+HJYK7u7vDMkF0zHUNu1cY+0vIgMFnZYAzpXIOr90iASYDzTBXRID1pY4M5gx0Wuf5WAPjGVtu183I1Bh9DcjEhZE/y/HamM+J8TYDmo3hFgmgeJzfExFogDFzQK1tJAQNLHKdQdfOOddkTB2dRUwI0p+29UZ8uWzlqILLEnws7BjHe1dmc7wRAUcv0Y/6mgzwPGZIWr2NnDSgnY1dE2dd+O5U8znt+BS73SItjQi03ygmmLMsS+ujZAa4zj9bMnM5+czNerQ3kmovLbNv6MDzeWvMV32SecvMX9rDJd8x1st1JCXJDjw8PBwtEXhJxXrtCWj/cjKw5cAoe1lKIwImAPwexsqO2NPQGWA7Cvc5ra0zAtCyFTNxRiPvW7qzTjqUdj7ZcECZm2DY5r2kYCWtve+FCDS74/E2FjNH2ICRIOA6Ii0tvkVac10jA1dXV0eg3IRgSRtlG19eXo7sKb85G8d2mAw8PT29alf0a/qYpEZC1O1kTB4I2gR59iHnhesxmWsZjvdEBiJbhGDP9Q6gVvZussT/oGB62uPqzIQzA404tjK2HDdte0YGaJcc69WthBEv4dFeElSxnXl33VwaoX3leJYDshnx4eHhKHvS9DKGOPBqeLcl/xEZaGkdX7P6bCBeEQGuw9h4DVZ7SYKvnenpSdNSau3+7Fzbyvc5rJcG7GudiqYYQBkBrogPr93TR27Hqrz3AKKRFYDumTwmAARLRwTNOQUonAloAM3znFVoIDhrU8tSjPHnPMmz0ukcTcw5B1s/MN1pQsE6DVZuP+cUwdsOgnWulhn2OhuW08a2gfE5ZEYEeGwls6VVX0uSxRT2w8PDYQy/f3/9z7Dsp+bQvVOftmJSYbLnZwq066+vr189u8Btsi58NTLLudD0yx00zuTattj2bAgk+WTmI210fzUxnns82vGV/BQZsKyIQDNcv8/AJwPs5YFZ/e6MVSfwt73ZgS2dqetssrXv1NlEwHXSocwAigBnBt/OWTnuUxlmK+/cgLoC0GabkZatsSMk06cT8mQ0qFCHbNZydqyRXANW9LQ9r/qC7UjZHJ9G0N2mBtyzOee+zjm8b5ov6+Q+z3v0cD80cmRnxbZ7XBsRmAHyr5aVze4hAWOss5fMFtlhZuf+w8PDIQj59u3bq6dKNhJAyZj5wVeNzLT55TS+5wAfe+2gzGNtMuA9ITNsj34mS172ss3QXuPoudzBjEd7vsAYr5cCGk41YnyqnPzQIYsNoDk+RwrNoNtgnkIEWKejZjtSHxtjTghaFqBN0BkpYBmryeu05xg/1qKs50rYxrBXlpnjli1Daoa4Mrj3QgQiKxJAWWWdKA2wMlZjHKfoGVm3yN5/6ENA4nhvzTWTz9lcJPA6Op6dP4uq3ccGU7Yh5Zgw+8X20TlwB7ltmhmQRsKj98z2edx98l7sd/Wi0GbYr1sbr8f40Rd+uE/6N1kwOttcZ33z3vqQGD8jEiZoJqxj/PivDd7S56xUbGV214iJgB+iZEJMcuNbZZllijgz4QyBMyazuZh+854393kbjz1yMhmYDZrPNQlorL2RARquG+i6PLEJOp4kzUEaNO10PWHcllbf7FbIBlLsSwMcHYvXh2ZyigHMHMuMFMwMb4sQrOzkrWRFQm0nIVPNhu1EAwi+/9/jxsjMesVOGN043Wn93ZZmhx6fdi5BepZpMuA3YG/zu7WBEZqjrrSdQOj5QEAlyNv5eQ6zjJl92CG+JzK7lwhwbPNOp0sywHId5ZPocm09fcs/4mm24HJpQ9aJx6l3HvDV2uPvziY3IjDG8VMEibfGb95Smf9X4BxnABA900ex80bY7ei99MdxzJykryLh/RVy0hMI7UCa45g5+hkZmEUIHninSVv9ARle14wxa16NGHiiuG0raW1e3QWRNjSjpUNJefncgIlstEU1ZtarNrTPW99nekWfc8vMuXss2hgbQHMuI9YcswMf4/Wf3TRAu76+PkQh7YEubfMfPzeg93uzY88NS3PCBi63swH0GK//VZMRGG/Nct1OweZzxEs0JB/ua+rqDOKq7eckslskwJ/z3dlK20jOb6SJmMGU+NXV1ZG9c3xokxzHRj78PAvOjZSfOvIeZ2sCMbN924v3GxBTxxivnriZf2cMOWA5IUeuh087zNLKysYsK/9JfKIv9Lz9WVv9qb8wtjQi0Jx8A2I3uBkmCUGOkV2RSVHIeFOPAYcko4GGU2v+ndJYct5X7bMTJwu1bq6P/ZLPdPxOOVlWBGfvb+6XGVk5l5wKqBQ73sgWGTD5a+uZrLcBdpsrnlczcrMCCH9eObvmkNln1mNFBny7I1POzgyw3tmYWc8QgK152mQ1v84pDVtbfxDrbINxZjyHMgtSPBa2Ba6JR0fXEeftdliPHIvDty45x3jGNsaGiENtLZ96cL6RnOZpgvn3RTp+L+UmoFzh9cp2Wz+0MYqvin9oATL77FQie/J/EzRnl8//CRlYAbPBy42fMfyUQ+c6xo/ntufa6OVBnIG2pU0Y6+1+mh034zOhMCjzu++lze9tHWsPYP5VjPM9yApMWzvd77brnMco5vv3H3/IknQqAYZ7AhwB51iAzSR5S/89RMDjt8rw8RyCPsGURNsOyLcEs+wZEWiZAd89k7oIvO5HBxAm4FtiR3TOzED0abZgTB1jTgRih7ST9FMjk5EZptkuIh7zWXBnp9dIdNqe3/nEQUb3bNuM2NhuGTzSBvnExRCB/OHSGD8IbZ434vpWZHVGyKkXyS8JCG//XZGC/8ROfyozMGM9MyM1GWjXtM60k58tEeS3Rla2InpusCO4eII1YZ1kzXmxXTFAGiWl6c3J6g1Tqb+l9FKe2T1lRoB8DnVj/xJwZ9f52LkAda8TbdflfQYyY4y6eTCEgA4+INNS52P0NPseZ9/aGD1mJLVllWZtbPc7ex5zXwT1Z6QYG3D6OssEBDz2Z35rxHY2N5vQ/jhP2f73Jo2MzgjijAg44+R5bQdMmQU0DfOCWTnn6qo/C8OOOdeREM72lDRSSsLtvsk51J2fWbb3C/APmRiZGzPbPHP/zH7j9ZFmh84Y55hJQdr0M1j7H99NsEUCGvNcAZudorMAjV25DJIIOmMOJsHYhOBUMQHg5pRInltNkGM7Zmkd9pOJkoHaAGcWH2EfXF39eCIhjYiAwclvvRsxJPtnuTMb+tUyA80VEWjXtign7+ynXMesE1OP3IDF61lfA/z8vkdXj9tstzLHhY6b88PXtD7xnT8G8mRKGFHe3Ny8An/b/tPT0+HPkkgG2vdVH62isvcsM0dvUuDlJf/zpPdSRVbZgb14xGUD6208aG3L8ehJEs32t+cUpBySHs9t2rjro722LB43D7LPuNTFz+2WQ84/XtPawjZxvG5ubsbT09OrcUi2JO1oQeNeOZkMNGa1Yq0zljZja3TULSJtQuDz9QY7MiwSAWYF7LjoOE00ci7XjnMNBz9AyIlL/Xm/qyOWGWHKu3dXkxxYPEnTB/k8c+6u27/tcarnkpmDnaUk81vEWa18Zz+nLAIAgfnTp0+Hf3zjX5zaUW8R5i2nZhAc4/V/sTcn2uYv6/G42/E7EzAjMw18CcLNZqkDdQ6JJQDOoip+Zn87gntv0vq0RcwcEzu1tmQzI6CNCNBeZqS+BQs57uyAnb/rDibZpvLo7JbRaZkESyNVzFA1Ww5xb3OpPbyI88zH/d8XKavZnolUbJyBG4V3e/DaU+Sk/yZoys6ApAFBrtuSPZOyRddMVaWM1O8lhzGOlwis4yxDwc+sKwSDTC2DHcbWNpBZfxKSxoDdTyYGniizPrPRkAiwrCYkX419U5rhvrXMbJXH2pqj09mMnCPsK7YzwJL/hv/y5cv48uVLXYP0I1Gp86y+fG6gTpvPebxNzA9Kib52NI0YNqLUXnvGIvXxboJkC1jPHqLpeTJzWARf9vmKOJ9TmpOfOb9VhNv2C9B2TATSP3Z2Yxz/IRczR8wQOPvT5iDbxzn48vJyRBRyztPT09FmPepuwtNsd9ZHJiUmFGxf+iHPYMiDmfi3ynT2fnhTe/LhKrO18rEU+7+fkd1kwKmSvWRgr8wacOpk9KSmATt9HnF6xc6QRsEIhym2/J7PHz58ONyDHkO3sbaIr0V+1nfWJ7M+bOBuEuAIa8byVzq99/SrbdYR0RZY2NExmh/jByhlzfH29nZ8+fJlfP36dfzjH/8YX79+PWxKSn/xT1za40c5wU24ZhE7z3F6kmDWiIQJK+0m/cDzZ9F17KnpwjrZ57l9y/bYnjdAYUaM56Us62g9ZkSA7+cSk7SWdWnYyz51+pz9YEdkIsAnEI4xjjbBOuNEG40OceycI7EzO/M2Jz3eKZdj1vYYeNxynMsnXkqZ4bIj+Th3vvtRwp5rPK/9H8KKJEVMqqgjn+T5s9mBk8iAwagBKRswYzCRVQaA0WfqWokjNAII0/c8f9VRBmSKiQCzAwTvTJjr6+tXxMBgs7ed1sMPzhjj9VhxPNzGGA+XTHj+jEBRGvA2ORewzkhAA9OWYm23ZoX4MSLK+Z8+fTpkA0IE/vnPf47ffvttfP78edzc3Bxs9Onpadzf37+a4M1Z0VZIENhGR3gN5Pk41Jlzbq8WfdNeaPNt3jdHPMaxw5vZzvPz82EZIdk2OwXW5c/MtLEv2ppts/9zyWwsmrPg+NF2s2k1v5PEOkOUvuHTB3Pt8/Pz0QbY1o928A44gn/R10TNwRX3ERhz2ebZkgP7cbYngE/9pM9h2/jdmQGTAb7n3D1ZgfSN/QM/c8k6wrlBW2Af75G/ZJmgMdXGzqxcyoyxOOq0k5k5NUoAx+eEORkctzqqpXGcMRjjx5IDiUDOcWaBYNn6qEVl/M2Eo+17MCHbGosAO5dO9ogdDo/z/VSW+leL+7sRgXYrIB86wrE0OGUcbm9vx+3t7YEMhAj8z//8z/jHP/4xPn/+fACfRAwE5Tjp1GEwMOPnb3QSY/wgDbZ7gni7NYxlsU+oQ3QzYWx2RnBN3XZCHI/oyM8k2myPI6SZsG62dTVXnZU5hzQiMEbfc2WbtsNz2yh05sGSx8fHozqT9k9ZsUMuF1AnBhm2zbTNJMLtMUlMuYym92YG8jvnNB/0Zd+QPmqbBLMEQHLQ9hDwr5uZFSAZaCSpzeuMk8lbAs20kf0zm5NNfooMUFkPsjfHNTFrYWpjpryPNRDYm3WwrNbGHZ1xMjodQ+bGc/K5kQWLCYbFEz/OO+c2ouQJkjYxqmOWgJP0Z+ScTn8ldKYzImAANRkwYPAulCwNfP78eXz+/Hl8/fp1/Pbbb+Of//zn+P/+v/9v/POf/xxfvnw57I5/enoaf/zxx2FCt39RY30Z70YODCAEmdkrQmeezwEX9p2jOBILkz07nHbNLCpvBGgmXqfeEtp4ruN+H7e5Oau3FJM8Yu0MJ+MU+EjdHBvjeO8EidcYPwhoHrNLfHh6ejp6PC/JBTHYTj/HrXfDbdYZEuAlBRO6FRlopKFlBmZz23PQRNrkgK+2nDBbVvF8tB36O8/Nxkrax88sFfz0Xxg3YDVJ2BJ2NBswxutd65GWAmpAlPJdX0tRrcpqsuXMG1naE8E0gpHjroNp/aSIrPus32LQTi3N9Fr1xwqo3wspWJEAggkdv+83JtCM8ePedwJWgJd7BUgG/ud//ueIDCQF+/378V/FjnEcnRDsnFZke2aOgu3MmNv28+S3iJ23+9N1eM4xEnc5JgQrJ84yeH67O8LlWE86GfaLcSjRW645d2bA0aHnXMtukAz4dlanvXmMZT48PByNVZzc1hMNxxiH/R/Rt+HqFlnNvMq5DlLs5NPuGUnKOb5zwHN7FVXPCC3fuV8gywXMDPA6kvwsZ6ed9Fe0A+qXzbchBCxnZi8zOZkMEICopEkAFZgpkwbZAXJyUtqEsIE5gk9ZTIHPDNisk3U0ZsYBoiE2AjBLX+0VttvGStY8A262r01OMvo9wOfxnU2kxv7PIStC4AxAAJTHHCkzHZfvzgx8+fJl/Pbbb+Mf//jHgQx8/fp13NzcHMD2+vrPXdJ3d3cH0jHG6+iNbSDweXNYhNfk3NQ7xnFEFRDxhjLbN1Ot3tDGsabDNvA10kBH7utWt3G1SMtjTjxiH/GZBwFV/iGP++SUTONfKcaT5rTa+TMywDb7NrX0n/9wJ0Tg06dPh+c+0O6My+m/fKfTazbF9vmVMmL3bWnJG3wbqZ3ZcfNpxEj/xnJdB205tst9A/6HwxbstYyZ22VSHTJAQuClgj1yEhkgE1w5vpk0J8yIlinKPdFIvrfGMtWSzuLk8URiOWShs7ax/QRWG3faPSvHALkno+Ky2YctM2BCQCBgX5B1ur5muK38lfGdixDMiMBsWYAPByLwsb/sIPgsgbxyO2EIQTYRxinf39+P5+fncXd39yr9yoneSIB1b4Qgbb++vj5kI66urg6gwd3P7ZZD1+U6Q6SiH69llGRCwD6cndd2Y/vFv4FtO+OJVWyP+6kBd4hAu6/9LaVlBqh3+p24YyKQZYJgRfrLzsUOiucmAg2pbHtpaKcsz87YNmtSQD+TucAsZsuENGJqAmoM5pLoqWKiQlllDfxymenz2OoWnjtzGHK/5b+anHQ3gVlYjkdBs6VVI/ib165nsmrUFgPKYKSTHDGk41onGmRMgtrtZ43xrvRaEQGDG/WKMTC1RHGZs3ZuZRW2xMTiFEb6q6URgUYG+JelzhZw/0YAhuPx4cOHw22DzA60V8jA8/PzURZiBfysJ8SDpMWRgzMAuT5EIO1ztE0Qiy50Luwz2nvKJ/hzTq+WCxh9O83qdVcSAd7u5U2viY6igwkU9Sb5eHx8PCJLJAXnEOOH7SKO2mL7pv3SqabtIWPux+vr66Pb5dKv2UxIZ0QikGtTF4kCXyaye3HTfeNr7Hxpc9Epdpd2eQ7xLgm2w9kFvii0dy9nOfpP9oX91kiD95GlD0ncmUHZE1xGTiIDZHWt8eyA5tS3HBPFzmTlTPk+q4vHDLaeaEwXuW6n7MxozZRbOspRkZlka2Njojb86PCfSOvnRvJS7ymE4VzSgMYZnbbu6PGNcAxTPjMJbYnBmQU6x3w2UaGTdaRnMuCyIwHrtCdRRxyA224Aog0bAN0u9lHaw+iGetnOOQd8nzZv5XIGgw5sZZskUs5qRLeQpBCPDx8+HOo8l3C+c267rRz3Zu+5pqWySajsfGgTLy8vhwwTdSPhcqbXjtSEYOb4W4bAdmYctP2ZHBtfr66ujm75ZpYr53P/iHUzdqyIfBOTgdSbORp7ZLDoLC79Mjd9Rj8G2luymww4ZUrQdGcbkDww7oitjnIZq+s5YVaM2scCWowmHC37/MYSc52N3WvOnpgENDqaU4QEapVh4fjsrecUvX5W/18ljhxWTj+yh1TRTuwgnbL0/cbPz8/j/v5+PDw8HEW5nMiJvEI2SAL4aGPOQ9pvxFmn1ZyIUzDwOAprEZHB1/PPGQJ/5u+NEGw5rNkcb3p7U2hS0TOAP5fMHB0/t7nmvjDZIrmaLRON0aN7kkpuXm5EgHjPttiuZm0fY/7Y4tZW4h/LnmUK0sYQv5YdyNxkG4j5zHLw4T/GnPxmIsdx9LIgNwXSv3g8jEHZ9/FLMgNOmyY1FWNhuo9gYufEgWsZAUsjEu2clbhDmgE29m1i0K43OzVwhnEygmL5TA+NMV6x0FOkkbD2mUSA7H3LiZvI0Zjb9/dCCDxZOE523MwKuV+aHXL8bWeZCyEBf/zxx1Fkfn9/P37//fdxd3d3WL9PPSGnibBJBLynIXXPHGLaQ3EUxmijzVXLFrD7c9pMQL66ev2UQva5HZQB3Pr4d4Kns3dMr+a86GKCk70d55LZOOzFRgYaviXOe0ZIzui4iOlOu7s+O7hTAkASWhMIZxJ4nctoZMh3oHB+0ZGmfGcHiHs5n7v5s6xkIkCsabpFP5Kq1EvSYd9gHGK9xI+9spsMBHxub2+P1ijGGEcglndO+KQz7Kxmstd4fM7WOkkbBIK/maTXZ1yGI33r2waIE4x9xH+kctpzJi3C8vF2Td63sgMuz8fcH1v6rpzLr5RGBDxhG8GLbE2qFcl7fHw8OP3n5+fx8PBwcIIPDw/jX//617i7uzs8jtjZgTF+rAsyxc1oKcR8pXezjYw/7WdG5vg77cpgN0a/rSwvRj6NCLSNhHQ+JF0kQdbdDqRFTy17lwiRep17zwA/bzn/iCPhMcar29xmD8LJ9XTGjqptMytbaWPT2tNwrwUcJt6sj+ez7zgnSTJzjclAyieJ8PltidE254wGg0sTXPbBjGjHL5GsWJgZ4LzckpPIQEtNpvI0ImmNNMgKM4L5KyNH1uG06EyYEpplBPYKJ5+zIimfzsgMMZHQjB27LtYZnT1hG1FyOZyw7bo2yWcSff/Kcf0rxE5g9n0WcbBNPifHKBnLx8fH8ccffxxSqQ8PDwdH+fz8PB4fH8fd3d34/fffx/39/WF3PAEnk7ktz/EctpUgTp0cGTk6nO38p0NoRN3gPMY4Wo9vYrtinSYAjQhwL4LtmHoZsJ3azStluh3pJ5L1t5TZOJu4zhxk9E+/+jY33lHiJYIxfvTznnmd+oh/e4lDrmN2wvZH52bHn/NMBEg2aPN8uFfOMzZQR2cGGiHg7X0tGzkT+0eKx74RgBlmPD8/H/nmLTl5mYAPYUnnm9Hx1oY08GcIQDP+yH/icNpEahmBLWfqVFqO8T5dOlqCeIRA5AnQNn80nUwEOKkbePt6Gjsn7lbmYPWbj58rKzBG/99yT9JmC83p+1ibqCECd3d3B5t/eHg4mjc87+Hh4UAGZuuTtlGTxlkEOcbrv13lu1+2HUZNDdjdP22phDqbaJNEm4gYfJuzZjksi+PjvQDOruT7y8vL0Xh6g+W5xBFlhPg6i5iDzbG3lhWgY6RjDgaReKVcioMvj4U/z2yCtpy2zAKUmYM1ObCemQu8eyblcTOho3GTzVl2oO05YXs4l5qsMufRgXcPzfRi/+0JjMc4gQxwvZKZgTisVNoc5KnSGN/snFMJRjqGqUaX2/QguaHQIfO2LaZ7YgA2duqUfjPozJhgfmMklQlvZ55z6UxcfiMEPNeTuGUtVsTjnJJ+5SRydiDOpoHqGK8BuZEHRpHpn2/fvo37+/t6CyDPd/oyQiA2mNmGco7JAq9xXSYFvJZOmBFZe7mfHMHb7q1fbJfOw+PHOmYEaXabYXueBMeE8zP9mL/f5eattxbamfcd0R5bfzArwKfh8dbM2YNwSAhmDsqYwOg++pGI5jPHnLjK8jgmfq3I/JZ4TuRz+i57I2bE1voxu+g7h4gzLZDY6kuOXz7ndmASY2I252wj7Cs5aZmAEyiT8/r6x/9Mc3DJTCgzx+7fZh3HMptD3SuzqGuMnoZ3Ha2TySxtXEnXtDRu9DAzH2O8+kwd7cBDBLwRaCVmvS1DYEPNu8nFbMwacXhLaelhT1I7q9lnrg3yt4wRI7Hcs85IdGZvjoxdPtfac02LFFI3wde357Vd5LOd5MwAbsmq79zelhHIb6k7wO+yOYY5N+1uZaYdfKBU3gneLZKm3ZxD2F4SAhM2Lx/RgTArlL0pzEIxgGC91qOJiecYP55NwM+pn0/Jc/Q9y+o4e9Xm05bDdQBk3IvP4mfbsfvD2aW0y8t6xJqZng2rmUVg+xnYMENA3dq825KfIgNpcIwxRuc0CBXc66xX53nyj7F/x78Hgawt1zaA5mAQbDkhKTyXhCjARn1NfnyNwZ910HFzPYvHeC6l9W8rb0YIeI3bYTk3ERjj9QbCFelcTf6ZE+K5JFUhyra/RkQi7NOrq6ujx7ryHNbDaMkRMsnA7OWsQOojEbV9uk3Nlps0ELZ9sR6TT0dhdpAkQZzDucYZThIpzuuALm3nHML+bQ+XGuOH02RfjDGO+sEZKI59ymop5VVkSzuPriQpOUan2aL6CMnwy8vLEZEgwQshYDY151P/LQJLImKS3cisbd1kYLY/xb6G32eYasJsMpR34hH7upG0LTmZDIRhk40YbNmJcWx7I4s9A0hpjpPSNlsx2jBIR0wE+DjMq6vX/+PeruOL4GLHvkecSmuRuo+1iIvC81oZBOtWxgzw2/G97fwVcioR8eTi5J8RizYOTFfbmbayrG/08NIPQZMbEqlLALTtDXAZHt+mJyPkVVTW7HNr7Flv5rOJfQA6jo+3B3Je0fkxFU0y4MDGmbeQK7f1HDKzvejJ8WlkIWTSD3BqpKnVaVyMcFyZEWCf0z/MbruLE6dt0yFz2cyYmqxY67NVENPI5kw8JxxQjjFeZQVMAPidy360dfsEZ0joU0ygM+4ss+m7JSdtIOQjSam4IwQ2eBUhUNiIPVkElpv63IEmASYE1NdGz85P1BAJWOxhXQZGA52NduXcedwEiwbCqMvXzHSkfk2n5jDa9wh/b6TpLYWAPiOuefexfPaEbpHNrN8Ilnagvtc9dheba2W1z+3paSYAM1LHdrK9dDSZJ47uGImu7GUlra9n4o2AeRE3/CIZMBHgXQ/Ospj8nENmYzHG8X8vNMKStpMU8hHOxAcSYI5Bi2pzTV7MLtgGo+ds7rFu4xbb2LIIfBpiE5NCzgET3i07bbozI+VH0nMZnWPHOZtzMibX19dT8tMyaGlH20/DMdsrJ28gJAtJAwyWK6f+VzsEGokNx+C2IgSt81YZDbPhJjOHaja4Ank79Vk9s2NbZZjd7yEEvG5GArb0e0tpEaxfJgd7XgY1O1zfZcPlouhl4HNmyVFOAwWSzJYdsJj0ODJu4N0inhZ1zMiq6264wSDC5+e4xzDfma1M/Wx7HD8f1hTw5hh5bwlf5xJH6gZ//pZ3EoG8fH/9rK855sZISvqZ40ZCcH19PX0iH6Xt2WAdbe6xzSyPyxYhPW532toI/Sx49RxgH48xDvshTPjdr9xbxzZyvmfcfLyNUzLWtolZO1ZyMhkgM21MOsrwfSYzoBqjO1kDXrvOn9sywSwC8gARnHMsulF/6trYGBlvazMnrHd0r9b+M4FW/WwiwDIaUTOJ4GczUtbNzx6LLTLzq6WBUQOUmY1EfB5tkUtIJk2t3+i0Vgze53o9MC+uobuOpnsDEOoxi+Zm829mNy6/zTkTAl7j8t3vLtfn8xzfUdCyGnG2zkBsRaG/Uhp5oniTZYQYMgs2WEfr0zYvWj0N/xjt8iE4rDO2y3GwmNA0Up9rgzfRiXslGhFif858mAkS5zyXYdoyiLMCscNc73GiLzEZ8Fzm3gFj8c/IbjLw+fPncXt7e8Q8U3HbMDfLCsxYqYVlNWlO0N9bRGh2bfbGshjR5fcPH378+UMjAdYhoEuDpv6coFkbJjHIue4vZmDyfa8RtD5tjn81TtS/OUz2oXV9a6HTYTqPa6xcKmrOZSbs/zFGnQtjrCdoIye5xpmDl5eXKSHIb43MOPImsATQSGiaA2hgQ/2aszGAZS7kPQAYQPP5FEeJrV8bmDPKdTo3Nhr7zPyOTjc3N+Pp6elsZKBFl7RLj9UYx85ljNfBhoMS9jPH3FmRRkQcuZrcps5mj7m+BXkktdQ95MJ2MMuM8ZZKP08h9TgT5PnPrABt5vv37+Px8XGMMcbT09PRXXaeN8SfHGMW5Pn5x63pM0KQ45lfudXQhMHLLXv9wklkIP+LPcY4erDOKgXExhKImqJ0GmRuNFwb26w+ThoDvEmCIw3qZVAx0WmOzobt6M56MyPAyTpzxpxQTCs3J9BIlb/PiICPtX7JsS1itrKNXy2r3b4kBYwWm03PInr3tcX2QYAg+DiyH+N4rDhnMua0p1lUYuAhSEW3Ztd2PNGBUZcJS7Mh6hPCkvrS/8xUNNvJnLA+dBZtvs/S/o38c0yi083Nzfj8+fM0KPnVYnzicQtJDc9pBKCV5UwNX4yI98xljj3tJc5zjGNb8r4tYzLnXbvNttmF76Txshnr8n/vtL0xnA/Pz88HAjDGGA8PD68IA/s3ZfA7+5lzvAWWnE/Nl/LdfbvXdneTga9fvx7W5aLw4+NjdXxUpjXCRGDl8NpvdIA8d4zXtx+S1bZNHb6+iR2+HawN0eexLY0MEFRNBNh+s2GXw6gxdy/wft8VU2wO3+fNGGZjwfzN4/XW0py/N6DxNrO9QNScfLMF2yrBIHW1neAzAHBUl7EOKXMKnOnVRFb5ztRkixgbIDFj1RxVfnM/2EY+fPjwak25OXyWwffUY+LsSMzg3sTXMlPBNr+1cAxmeEUSQOdrMtDGpH1vc5jj1oKOld4mjI+Pj6+yS7w1MvOF7TUBYLnMPKS8HJ/9F4EJTsbcfwTGu1Xi+GMP+ZfDkALPX/dFymGWg2OUNmduNBz2Z2OCMyKnkNjdZODLly8HZ5qJwc0aUYSA0qKHlYOZKe5I1uLIlESAg5DPYxyDcitvJrOsgMGkgf4s2mS9JgJMf3lCRq6urg4bWHyMyxrs41mfNhJiaRGViQoZ9BbI/2pxVigTm1GgHxJiIdhy/dPj7ePN7ukMHYEY1OzkOPmpJ6ObttHX95fHERs4WCfbQeAd48ejemfOoZGIZldtbNLXdkjWi9KIAB+QxoxAzl+NjQnBucgAdbK4L72rv9kfM04kgq18B0ye422sPReoq8lzjhPnmGlmAOdyYouz3/2MDZIhjm/6KctAnkd+HsUYP7ICY4xDQOz6beueqw4wuf+OTxclwWtiEs/vjeCvZDcZuL29PaT3onxjYxwsAldjpm4UxQC4ciR0QI0IEHxJDpqc4gRTJwe1Of7UbTJA4yQAEngMiC6D1zbAYhqYx1gv2z5joa39sxcBhPrNooi3kEbGWgp5BboEtFnaPd/jQFdOsL18DoGac8428OHDjyfs3d7eHt0CHDKQpw+yPhIb71HxmNGxtHFl+r2Bfst8ed43G/McY/802/OykG/fdADSMnDsuziDc0tzrhTud+DcnuHvHmxd6WCZkWJeFxu7uvrxT63RjzjJKDpjEGfZCDTtKfbeImTaCHHQhNjzivp4/pN8sIwEwqyX/cgALfsFjJ/u99b/zI7k8y8lA9kv0J5a1V7MCOyJ/ilb6eSZQRooWzaA0deMxW7pwInmQbbT8b/NsX6neahLSzO5fNZpw9oSj8veJQHqM5v4OYf908D8rcQRtyMPkiyPDx0gx5zOhxM+5VNYhpcLmu3NouOU4euZ3eAT9ujQGlCzTI63iT7PIeFvY+w+NFAbqNgmSq4j0WhtN5lrL46NnUYLXqwH39+DzOZtImXaqc+JeHxc/sqJrPpihQkuf4w/N95lTExmOIYkAi24csbASwS0nZTD1LyXDb99+3a0OY/COmZ/B+2M+AwfU799kvuTc4Gkli/uO2sZkS056QmEVMiVmxWl0/Y4/1V0OkY3vgag/s0OIMf4+8xgf0Zcrnem8vMYx481jlNpuru85rQiLy8v0z9WsdPamtTtGuqzuj5tMak5h3hc/FvLGozxOjsV8STkb06dk+w5Gm6TOux+RggcabS9EPzc6vYrYOssRHR0fzQ7yrVM+VKiQ1uOaFGuy/cxZgAJ5OwTz7fWByY4q7E9txAf2J9jHN/NMpv7xtlV+ZHYx+w82m1kCx8aOY6DNVGn425ZAZMB+qLmEBsZ4Fxy/Sw/7/y3Ub74B1BtvX5G+vk953kM95Arzi/2617ZTQa4GY0M3+mVlhHYO6FsHGMcP5FtZlyrTpxJ6+y9us4mlcGrkQLvyjUgMspiuTMjpT5h1+5HE41TxBHkrAw7s/cknkiridUcjz9TOP4GFJ/HFCSv5fhnXNv48xoTTDpJputbH7TIzefP5lGLSkl8aAN2GHbEfKaGy3a/p45GrkmCmNKlk/A4zN6tH29Jey/ijArb6MxA+oCBW+vnRubaWLdjTUzaqDc/x3cY4/hqdwLZzmdkIO8RkgxnDNy3LDOb51Pew8PD+OOPPw6v+/v7I0Lw9PRUM05tTq5khltud3SnzqvMW5PdZICd5Vs2vFtz71IAz51FCC3KGGPuzGd1MQo3iK0YV3Sgjv7M81d6OFVrAuB0usHZLzvqtuxhInB9fbwnocmsL5pe/I3tafIeoiw7qAh1d7+TmNr58p3gRULACWrQSTSU8ct7s++2JGF9A/jtbgJGvpYtYHd7Z45iRtxnEXebQ61dtn1HiO35AbN6TU4MoMa4/O3vOYVEknON2JS57fVwZxHYbjsTkqhVn0WIWW3uz+zFRIbjzXGdZQW4IdT94ayA92BlHuahPSaAmS8Z+9vb28Nmw+fnPzcPPjw8jLu7u/Gvf/1r/Pvf/x6///77+OOPP8bDw8Phvx8cpa98TPrfx3gdybDLapkBE5Et2U0GUhHXR1paxA6Ujdkqf29EyUyA66BBc2LkOyPv5jxjWNGJ+qX8GXFJOs2kYGtwDaLUMeXy+GxdyZ+dYViJyQP7gn3SrkkbV4ThnGLHPItUYyPs36ur4/v/HcG0aNWbEQnEYxz/Ic7Ly8vRJj5mdlhuIyq0t7Qldwo8Pj4efuf6ZvvL4pYmj8xIx8y+G8mytHNoP42A0en7uRDOxtiZsY2e2zlmJ+C/fX54eJgb2C+W1p9ek46QEIxx7CRMCGbBF52r+7FFpGOMV7Y7C4xMwJr+bS5x6SuOnPt9TOq8ebDhq7MH8WkPDw/j/v5+3N3dHZ6vw6cGZpng7u5u/P777+Pf//73+Pe//z3u7u4OGQL+RfQsO2sbTPnsC5Pj6J5jrZxVNmIlu8lAOoBrJSsyQIfbHBKNaRWphI3ZAbbzHXUR3McYR7cKGeRaOstO0Gx2psNq8tDBRjjQs0Hf62RnxGMmbUli1uY9Mju/sdm3khmLdlqYwNIIwBivH2DF3xsxGKMDr51Qyn55+fEHJmMcPyejtSvjFUB7fHw8inoIkO0fDNvOY+pJXUyc2RY7DgJcs92Z/bNeOwU/GIZ7BNI/jpDaXibX73kdx/Dw8HC0PnwOSVuCXWyD09y0I2f/SIj4W5unqcdONvbJOwJ4nTGVWOI5R9t09ExiTLLH/5OIPrETz6ek6TP+kTZn49dubm7G3d3duL29Hbe3t9PNuN+/fz8iDVkquLu7OxCBZAeC9TPsb/PFfZrzPSc8hqtAdY/sJgOzjRLp9NnEZ8TpNBUbYpmxSpKDlYPixEh5Afkcd6RHfVr9Le3SJiO/k4Xm84w1z6Iw12cdHOHZOFo9jr5aim+PmJW26MsE462FRMy34ORlIjbGfGmmOa0IQW+M11EqJ2scdI4xSxQhEFhcLzMAKc+/mRTwtxmImBS1CDx9S1CmeFd/+pd1tkiIRMB/P9z+XyDtI768vPz4K1/W7fE2eR9j1HXnt5SsV8dG6fzGeL1niXbnwGSGEWP0Rw1Hgpse62av1MWY6Mg9nxtRy9iT+L28vBxuMQxpZgBGomGyy7Y03/T4+Hio5/7+/sjObm5uXs0lksT7+/txf3//ar8AbdnOewsPZwGh55Hb1jB/L67vJgNJfzAFwg2FrHhPVqB9X6W1Ux6/z8QEYOaMZs53lpZdCR18QImTJrqk3L3O1842aWDWRUY8M4i0ywZKwjIT/sZ6x3j95CtGie9FSAQSVWRcAhj5TNtpa9Oz6DZl0ily/ZXA16JxR9Ikj2O8Xnpq0QXB0A6Ddc6cwx6Aav3gyHp1/SwjkLVhkh9mBRil+UEw7GPqYWJnx8f+9ZIO6z7n5kHOJ5PJCLHRwVLOm2UGXMYWJrFvZ2PN34x9dtS89c9E0Juh+ZvbsJcMzNpH2/afWfmPlLgnIVmFx8fHV7cypk8dyVsHk23bZoSZgdm4sK9OxeDdZODu7u6I+bTNEYyAc2yM9dPueN4Yx+ugY/QdqI6u3bmeHBFHf+781LuaECYW/s7sgzMZZMCzZwG0jIejp9VE2AvoM7Lj7wSI1i8Ep/QFbaNFuW8tAXOzbDvkgE/OYVTa7CTvjj5JBJxqdao+xywmkhEDQSMCsRHbcosSt8gj9WnzhqBngtvmaCM0tnkTMT4/IQ9U8l0D6ce0x5mcFmWZ2DDaSp/wccnnEBJJbgzMbz53jNdZSjoKZmcpHhcvi7EsY56XDWY4QULq9fpGBjwXiaHGMGcdZstDTa9ZNoo2mDpcD/eVNPKRclt/N+dPEsprZ/7KbWiEfC8p2E0Gwn4aEdhq+Ez2ON0A9IwU7CmPgJDvLU0YaeyqgVX0aNfTeLaiLpfHctjW9Hmrz1FA6xeCr6OpHGd/RchIbYQGGYPQnojzV0scRQgYyUEi0kQEEU9QZ2P4znFh9ob9PAMrA2HqZpaBx2fjRSKwIm3UZS8BaMLfVktf7Be+s74cswPyPgGnbrlXIOSHUT3HL+PUxpaEIuelP31nyFsLx6kReOrcAokxxisCsJekN+I5w3cutc30bJH77J8EWQ/tYYYlzbb9mW31+fYptJ+GtyYEXGpzOygp0wGDX41grzI3LSvQgu2VnLRnYPa/0C1ataIUO78WxTeG08pdAZGjATO95txoQHsi7Z+Rxu5mxCTSnECu2yIauaYx6hapWUeDJieUI1BGuUxXn5MQxDZDCEiEOMYzkLSd2MF7bJghY18ZDBnJ5pyZEDxc5mzS85oZMW3XNrts+syO8d3g63NNqD1PvZOcURuddNpKcud17hZl2bZfXl6O/ic+r72A+ldL5pj/4jm/UVqQRNsynvp8ZlT36ubyZoFR7Jw2z++zPSbMBsyCzz16NttM39KX0WYbRjYSwTntNpgYuGwSnUZ6TKC35mLDkr3Ye1JmgCxoNjjs+DgKSxrkzRA24pYWauIoxR3tf6SbObbGLlu6O9J0ctqRr1Y/67bBzOqekR/rxXf3V9q2KscA3fRmRBU9M8G9Dnwu4SQNWWEUYzDYEjv25pA9lg1ADCIhts0OHanQplbzMGPWyE/0nDmARhCoF52IozF+nxGNRsK25swso2dgdVu9j8J1pP9nD7dpGzjfQqh/2rWlS8swuq+dafVtqnt0avXa/nkNs4iMpJ3Otx/IJkrrNsPala8gCfUcbBjA8leEwn3X5qXtLefRbjPGttuVNAKWNp4iu8kAb9UwoDBV5WiJxseOIJi06MMDujJQg+QYP1Lb3ATifzFrxto2eXHymLE1R0t9nLIk0KR+blyztMnbHIId9MqAmBloEUPrX7ePurhORmjvgRB4Td6p15kTo12PcUyiGNFwnXCLwc8ii/xOgIrdZq74dse8uCnSBNbr6g3sWvqR4NfaMMYPksV+aDqkbmcA3R9Nh61+tJgUuK0cJ9ssMYplbM2nXym21VkmdIWPe+a4y3TGa3Ye66ZjNB7RLmYbaZsTSzDXSKzHz0TVdsJ34jrn8Naeitmc4PuMoDibRR/ijHXsMfh5ithf7bXd3WSAneWoJZXmvQFdhCw8722ysdPTIBOE1sHu0Paf9QTIMY7XCLmOa6C2Xg28qBcJgJ+bbjLCvnA/tMgzn91+tifgZ2MyCWhMuv2W6zIe1m0mK6b+FsK2sk/4/+QEDUcNYxxvbM3xEGTeynaKTnaa0Y/jyv0HtFufx1SyMx3e70A7nTl960kxSU9/cDd120jFOnk9270FXCbnXCZw1EhCEAeR9s7qW83vc8iK+LRzx9iOCFfRM/sqZfH7Vv1x/LY32omdsX2FneWMsEdMBFrmhPXN5rnn/IxsUlq/mAzYH7BvQ+bpr0j+GSja9xHTggFs6x6boewmA3b8KxLgAY/y7qgc56Rs7I7XOJvQ0oh8hQDMsgJmiIz4qAsHwUIDYSThdSAvVRCYKFsA4CwDI5hcFyPi0+08Npy4+ewxtzTHkPrahNsTlZxDPI4GJk5CA1LI4szx7XUi6bc23rahdotjfndqcRaRpN2njA11M0E3MfJmqpnj5nx3Nmk2xx21tkitRZnEH15HoS3YDloQ8JbSyF2kOfU9RGAWXJkIWGaONtfmHJNYls35xTa5DSQCxOY4S8/RtCe/28YcmAb3ZoRgqx+ZbaN9tnlLItBsn/O12Xsj7DNsbj56r5z0J902yvaiYmwIDYydYpLAQWrMvXVkynRqr2UE2vJA2xXa2GH0Sn2unwPqTU7NCNx3BKDG8p3x8MYqMsi0IfdJhzmSAJC159w2MWPwDSSsu9ffnFk5l9BxttQvJ5GXbRzdEDjYXtbVxP3nqGiWJSCJ5GcuxTDaTRtZDsln5uOKdJowtHnO9ocQkBS0CKUBYNqS49anjVXK5lyyPi3q5Fi4zJktt81hbyXNWY7RbYxzjWPv8/l5NadXc7aRsXwPXnBeRDeORdtTNptrxGjiKp2xSSQj5tjD1dXVgag0ItQwq5F0EiPWN8Z4hf3NB7T+nskWabfOHr+9wclJf1TEAZ6x1aZAY0WzzuEA79mA2CLwfJ8RAYJiXg3cCQB2/k0nM7s2EdNHHLy2o9WpMEdQIQJtxzPbkcxAi8rogEgKmCWIDo5+Z87C4PszDPWvFjtJR9kRA1mEJKsRghX4OjpxWS8vL692WDsTFfCi8w+YxalH5ywVsG4S5LRzReZpD5wvBnTaDO+35p/EsJ0mApknJjNsg4V6mAjk5f0crJ+EmvPSbWvE4hzi7EQjSsRMnu8ofxZYzcig63PAQztxObEP4wDnTWufryc+NzJgZ+tMAQOZp6enQz0p3/Valy3sIoZ4idrLeq2NW3Nxj3C8m1/eW9bJ/1poJWaMtU3yMY4f38oJ6QGaGUmkpV5MBAz8HpTG/r1xMG3hxGoExm1vBkDwp1OYAY/bzTaTDGQJhGUyTReHEodho4kT8Ya/dh7H3jZgInOqMf4q8Z/bzPaOkAxFDBptz0yLHOj8mKLnMUdOdqApj1kBbqZ6efmxQXCmy2yPisnbFgixXe4bg/XsFmSWNSMC7U4Ak2Q7IBM0vkzUmOZubWJbMibnJAO0s5bdIAmYkZtZ2n+M0/dFENtmRGDmXI0Ve3UxVgfLSI4dWDasDvYan2ft5By22J8kGCNGm6BQj9gZ2zULMtxn9iur+XLK+J5EBlaDRaFDIfgZFPco2piw373swBS6meMYPzqPT8Diy4OQa5kaav2Tc1sbUt/Ly8th8loXRjTNKVAXgqkB38sDedH4opcZOzfF+WEavMZZAhpmG79zEoLYRJ5tT2LgCHGM43SrwaRNUot3/eeYU/UmGrQT1s80eoT2bjshGDlbxih/Rr5ZB9/ZPyGbJE8Es62ny40xXmUxTAScLZmllWdEwFkJjosjZreRds8xeWthX7CtnP8k8WP08aL9MGjI+VuOw46OskUE8tljamyjtEAxYxwssw22sWXdq+zuKeTEGQk/mKotEbMdY4xKBGizY8wDYuMt8dt9e4rsJgONfUbsmJ+fn6fpSk68xixXjmVWdyZFi/oM+CYCq9Rmyudk2su22A47XzN460PgWxmpAT/sNKBqsuC2sX8J4vyL6jDpgOHKaayOOwJ7S4kd+Ol1JpKcrATctMEZEArtmpHu1dXx361GbPeN7dNWoisJXHOyJgNtIxP1C7i2+dfKTX+S5DR7dlSd/qNDsaM2QHKZK2VzrFpWgHV6HufukcxpY1EbmxkJeStx+/yUzDH+JFWOlhlwpBzjFs9ZYatT73S2JrSsr7WD9sVzGjnbk811BrT5FuvnuWN7d99RR+rm5UZnA0xMjLcMQNkezxnPSY/rKlu5x1dFTtpAOIvKCS4EHF43izLSoLzPnA0HqKViHCHP0sAeBBIBPxEudbGNkVmWgGk5g9es7RnQ1YaltH/VP5yo0SPtZXq5jUXK5n96f/r06egx1NkcFn3a2BHk0/4ZqXkr4XJKsgNeQ49kLOgwGmGlsB/tPNuSBPsmxNnLE9SnOX/Wx4zbCpTa3JxliSLt+hwf40+7SbYl4mje0T77JmWTCMShMRpv5Ix40eYPbdKOb09Q4szEOcSRtG0gyywhBJyDK+E4erz5ez7b6Y0xDtH21vxIO2a/cSyiA4O8OF6Ovcea19hZtgyTbdJ6mZzw3XvUTLZNotw3weTn5+dDwBU/5CxXm5MsM+e05d+Vz21yEhlg5zQSMMa+JyZZZo11usckhGkaAj5JAYVEwBmB2b9nUS9HFOxwfiZpWQmjUBq4DYBgn7pan9kJpMwQgbTB4J62JDPx+Ph4+JfK/J3nw8PDYemB4OiJ5+i6fX5raWSgpcxbtNDAq7Fuf3aKno6PhNEbGeMYVwSjHfPmJR/jNdaXEVcbJ5fHYyGQXpaL2JmxfxLNtmjPerXMim2rLRGkr717PJJy6RRmjuMcwnbNsgN2pn4keKQFJC0SNs7awREzSJhNNJvwnJapGuP17dkz58pskKN26udlYEbgJI1uPz870mdWYEYETFyd2Zj5ohURaIGz9xxwntk2VnLScwbcYXQ6VGBmEDlOljhjZDbIBiYkAlwmcNqIzMmpcGcFyKponBGu0TG6i468zmzYg9tSOy0t5DFoTstOPr/xFrPo742WjPKenp4OJODu7m7c3t4eEYL0mcePtkE9yVzPmR1wSi8gY73HGLV/m8zI4Biv11gNbIlm7LyTceL6r4nbihRYv5nNeOwYrRCsPR9CatJXfH4HN+2y7bSBjAXrjoMLGeVx7nuZkQGTGa+9Zrw9lsnKpNyWtm3R+FuKiUlrW+yJbWSWwETGWRY7Wp+7p+0OjizRLfbd/EbLbFk32jkxk8tJxv3gPaNwLw2nPNaTslp2jHOWmEvsZ9aERNP71Khby0YZi0yCZ4T7l5GB1X3DJgbu2Nlni8sJOBJIIiQDifj8ZyYRltGiEJOB6JJ6LN60w9u8LDMml2OzzwTggFabmB50R2Zpf/T+8OHDYd2c5CmT59u3bwcycHt7eyAEnz59Gg8PD+Ph4eFVtOTxNQHI+efahEXdIhxfAqtZOIEnwnO2sj9NBztl6sRxJGg72piV2xxHvjOiaxEwjzmD0MhN5mhsqm1mdVuIISYk3h/A9O+ePk0ZLrs5xNg6ycD3798PS2J+eNK5MgMeJzqUm5ubMcaPND4JQSM/P1MvP+edwQbFNuPP1Mu2byIwI4AO1FgWnWTevTcsjpf7szi+LNtEvRGDpmOEPqv5nRaMconYfdQCrkYe2Pf2hSs5iQy0ScxKVymjLRIQhdvgxxnSGBnhJe3b0pSOfrxRY2udfqa3J98KsEwE6PgdRVvSnj0kytEiy8gY8b/hkzJP/43xpwE/PDyM29vbw+vu7m58+vRp3N/fH/YQsE0eZxonjfycZKA5QKbmcw7PnRFbOheDY7ODlGVwmJFr69UipRbNsX0zJ8KIjMd9LdvdCAH1apm5fKdTN7mx3swiBEv2RjUpx/NrjHE0R0k2ss5OMhBnEYdBonQOmWUGxnhNboOhxOIt22zSiCJxlTbfHFDeW0Blsp1zV2SgzZ+mL8cpdhxHmyDG6fiGB9GZRKCRgWbHnjuca/Y9Xr5omNBIqLHXQWLLJu6Rk/61cCaOAGgQnkQtOmuOi+c7mkh93jDYGBodkdcU2zEaaJtA/G6CMmuTdTJBMbMjaJJgzQbcY9CiqfQXMymfP38+kIIY+7dv38bnz5+PyMDt7e34/PnzuLu7OwDljJG26DT9v7KhXymejFzicTYqfU3AXZGDMV6nBBvxGOM1KNLeSG7HmO9B8ARvk3323fMyzreV1QDFLxJzzsO8Mu68s4jz19Fds/8taWUYKyIss0W5tNPZPqK3FjrC2G10+/Tp09EYPD+/3tTMu4D2CPs+9dIGYjerQK9h0cxp5vxZBE69xhivCAGJI8+bjaeXgUzQOf+sT5sPvLaRloaHJgP5vEUC9ogxre2dm8lJZKCloKnEGP0eVgKsAdEsa5YaMvtprM0GwejUTIyEYHZLYQNaphZnk6D1Cz/PUjxOA3FS8vpZhOi+NBASsEMI4uxDCF5eXsbT09P4/PnzYRPhly9fxt3d3fjy5ct4eHh41WdMa82IQNJi5xA7ZkYC7Cs7ETqolDPGfM+Lo6E4TPbPXmI3+30WndApc154PZ9lB9hzHdtFMGmZiVxLkhm74hzLX8+S1LJNjRSM0UG/ySpwaHOA18TRZUyfn5+P/qrdt3mdQ1qUHn0YCWccSIBsZySlq4At13JpicdTV66PzDCHGGVdcp5tmjpSD2flbD8sf7YcPBvTmQ4rIuDIv5FSjt1sWcD4f4rsIfF75CQyQKBxBTa8RgrMKA2eTIs2Bt+u9bl8hW21jRo2CqbfXD4nhiNA6u5BoDEkCnOfcaK3rEnrp+YIuEbL424LQfvm5uYQ9d/e3o6bm5txdXV1lC7N/oG8Z03VGZUZCWBq7lxkoOnFceREGuPYjtIf+Z1j3wAlfR2g4mZL2rfnBTc0rpaL6LztrLNkluWfkLy8k6AwmqLuzlZ4U6DtO6n21P309HSwL9qGnRfb1Mg/xccc8fO4AZV9bjLH9jJoaHcZ/SxQ/6diZ9OWObN3wGSnkU5Ks/sxXi8DcHkvfW9HPHOkV1c/Np3OnFIrxzq1oJBzk2NP/G8Ol2M+64+ZU20YYaJGUkDbcnaA39lW91MLoLNMbT/VAoe9chIZyJo8J6MVdQMY3dKAZo69GTSvdyflPGcD2uRZpYscUQS8U643vjiDQGDmYNJAHflvRRs2Tt8+5jodHTpjkN9IBrJcEEKQCNHrpyEGJlMzx08WnGjrXMsEtgW2MREOo2aDThxZPqdM2kFsO+906HGWY/xwQBGOVeyWf60c8RzxElnGMs7/8+fP48uXL+PLly9HZICOxUDHDbsmkC0D9/LyclR/UteeT3S+jtoNuhQ7gvRzE8/L1Ecb8PxlmcaFVTr5rYU2FVtydo77BYi56X/eodKEeM7MWa5hYEUCSNs1dhurUv6s7jb+cazOijjz4yxP3nlN8x/E98yBRrKpN+2HBKCRAfsijpmXBtwHLYPjuzLyG+eYg8G9spsMZAPGzc3NYeBbtB6hcbBhJAUURraWRjwiBu/W8bMNG45cCD7RdYvNGkxnOu4R1uV0b777PxdIRNoDblKm7yQgGSAhSJQxy6i0v6r1Tl0/SIO/nUMIogHFfG+kzkSQKe6W/kv/MgvkyekJzInO822HFNtaxpPZntvb2/Hly5fx9evX8fXr1wMZSNaH6Uo745aqbOSD+qR/nClqbaCDcp/PiICPtb5qDp71+VziTwCddhqbNrk9h5CwxOE1HAuBpEOMrfMJhS1gy/mNEPB32nb0ME6N8TrDRAwyYWhtpaPl+NDRRgfiNOdpdKYOduj2UXyCq0mBr4te1s06tuDUxynGh1nQnXFguzmuM4K1kpPuJmCnxdhapY7q05CVU5wB4OoaGyudk0mBd7XvWQt0R3JgnBGYPXDFbTFgpdyW0reTz+1bJARxBnTujRDEyJk2TjqZESUjSBu8MykEUT6oKBmELCnknQ9LeUtJOs2TPO3w+qczMitHtQK3nGvn18gay50RArP+2AX3fvDFu0boxAMe0YF7YJq+0ZnnRjeSnZkDj6TP7STSjwZy9yEjQjpnAm+LGgOYjaQYN0iATYbPIc48cc4RG66ursbt7W0NtFZiGydZchaJ0TWXtYgXJMGZZ5xjszrz7oibwVx0oZ75TCJPgkA8ph1Q74a5nqes0/jnLA1tzZkV7w8wWeG7P0cYhM9IPM/bG4zuRmcONtOeqdTCAZ85eEbePxM923ia42/rM60ukxkbiEGf6bgW2ThTsarfDNDLAP6rYjq0/N42A3ofwfX19SF6zHl8aIwzDs64tFeAKY8v/uOPP6bOrhnsW0iiokTDHLe2Fk6ZRZwmcLne6cU2VszotDnSHGLEujvT4/v9U3ZAiRE8HaqzfGwn20Wbenn5sWdgC9xTnp+XMYtgZhE9nUBLx+YckwEuD9kmjRW+Hz2ZrnOJiQvHn3u5mNVif9lRUxoBpoMhDoxxfBsu8TE25qcjNt/giJ5tZEbABK+R5Th4EnrPY7eJdmRn7Hk8IwKrLLP1brjZfKCDEAbbTRfepbNy/Htx96fIAJm5WTqlNYTltXNnx9sgu7O9w93rRbOo3IaTdzt8Ajp/o6TjrRNJQMtImATMyAB1YGTIVD8fuet0dLIDfEa/14N5jfdKuI0BTz7JkO1PVJG6zyHRM+0iOXDbW6RrQuVIp41ZS6+zv1fkw5+tB8tuD5AymYuzZpTV1l8jDZRMbpxenaVTDbiOjE4ZQwJywwunXj1GvtbXEORNBM61+TVCrOMeKDutRLxj/FgeYxBiJzrDsZwTbG8RqElH9jK4jBnB9lwzETBus26X6bnB39MGj3XaxOvphO1rHNQ5Y9pIAOt1G5yVaO/pZ5Nbzm8uUbI/Wf8eOSlvy9QKO5mdaslvzdiabEXNLdqks20DMmPGLLdFfiswtBOl7gRhG491YJu8/kbHQhA2MfGzA7JGbKCIkTmSbOzdfd/GiWAyxo+HtpAcmNGeQwj0IQEkWoka805h+9NOOxmPjaMLZwU44amj6xvj9Q5j12OiyL7m2vcY45UdzmzekTXbGf25QzxRioGoRUB2TDPyz/Yn2k0f2Zm43hk+NUCmcyDYt+jvHOLouRECz8HYZ2xgRsD4nyW0Hf82C/ZatsBYku/ci+R54iDJmN5shMeYGTHRtu3QZhKosFxm+zgGre9JtLgZ0A6fdsv3Js4SzIga9W2+l0Rg736XkxdxzQzJHh058py9ZKBJDIesl/o0JrkiAZEWDeUzWWZ7mTCk/U4ncZmipabyzjVZR5g85rrp1LiTPNGi+yt12FlzgrVIsY0hSV5ShN47YedwDjHAhAzQmXJd1BOS4Oq0YiOFBCcTOI41ZUaYaPPOCpAMEgTjBOKoeczR8xij2jPBiDqyz9hm3kJpMsD6OJcNku4Ll9e+8/oGtqw/LwcTznqRwJ+bDIzR76jickHGL6SMd6N4KSWSKJ4kjs6QkXOIsgnZGK/vjhnjeH9ZyxaZTPJ32wvHxk49xxhA0Sbb+ek3OlJnl5gNZT+GIJosznyNyzhFMh7N51lfHouu+c3LgSs56Y+KOPDNCKKMlW3gYmcz6zTWQ0Jgdpi6Zt99LjMWBuYWrXvdvkVieZkImASwbawvTmcP8eB5zhBwIyH7ihO+rYm5HTMHQf3pONt5dsTnEuqQvuaETiSU/mFb7EBav3vvwRh9w+mMQDZ5eXk5Wgt1RoDZBtoioyoe4xiY1Ji00xGkv3KN2311dXW4WyFlt4ibNtUyeKnX48ZyZ0HFjBDQqdEZNWfDOulIz227Y7zOEESnp6enozGOLfM6O6mQXqb1OS4kbCQCjLKNvytCQFuIrTYnR52p+0wcNHlfS9rFJW3WQfujbTKjRP1ne7/2Bpt7CAFJQK6b+Vm+22b5/ksyA9yEM8axY5+xdYOoP2859VWapImZ/irqaGvYjAYJlKtNfJykTjUaVFqf0HBNlmZkhb8158QoneOzcu5bk8/9bEBnf5upZvngnEInlf0CIQHO2MzsrtmDiRfra+R4pR/FduFMBAmBx5lgTIfAOmIDnrtsJ+e6iQnnAp0riTDfaf/Zx0AH3Zy9iaz7y/3LKHfWvytS0a45V0bL0uzo6urq6J8e4+BN8ikZP2/4I/ls0sam6RjdnE1J5oK42chzay+zAzmX15sQkCCxftqns2TGxmbTfDW8JIFImZxHrb+anpxTs2t8vX3NL88MkDWtJmiu4eDRGTHqsDg1+TMyM7DZsRYZtUjMm6hMBDwgqzQR62zp/JU00pDyrPuqT5pzaNGxI1kDvtcmW3R4LjLA/jXLNxFwtNEIFzfuZTMm057sozhm98teJ8P6TQTaskzKdNTdnCbTyyvik3medhvoSBy+fft21DdPT0+HJxOmHyLpEwcELYKzjjO7jd7Mgs0ImiM3ttuylyT/ajEh4PJMgrWZg23kkv2b5TI/s8Ayc27EexICEj5uKDZmRbcWqLh+tsllGasYITfMcmaAdpS2vLy8HC0JsI3u5zGOnzsyI00mp1vE2L619X/D3V9CBsY4fuY6v1NhT/hmVGSGYxxnCFpD97DG6ENgZ4rIRjxjmf7sLAAnVUvXWCfW7/bMAM7GsEo18xobg39jPY6EmV1oZIKTK0DUiIB1omGeQ2x/ZtPuB/YB+6ItxZgMpHwCj/8SN3VvyYyItFcjpXsyArYjAxxT7OlLvnwt+9JkwdFOm5MNOONA+G+ZjbDyLgqSgTZ3aQcR2vvPBiFvIY0QZH5xXIgxzdGlzzIujEhZDjF9FglbvxaxJmvhrEAjBbNgJOVH90auU/dsI2iL8NPm1keug0sEOW9FVlv/eE5ynFoG2VkwX+u5bkKwR04mAxFGAzYIO700ypvk7CB5/aozm5ObpcNiNNw44nOoGz83Y6V4Ujr6S/nNWFqbeJ5BlY6qTfhMuBg8JxX1JUAQIFM271X3+NCRcbKvDG6L5b+FmHg1G2iEyLfrtac38s4NAgc3nbmPmr3OIrkVEWjZKb/aHoExjqNnXm9Cl7njMQ+QJvIf48ffX/P/KxIZsp9Tf+psUaF1yvx1/7Fs6sm2uZ9moL2HoL0XaXqTKK1eYxzjEl8mwJz/W9mApmPGxeU0p8uxGqM/lZZ+I+P88ePHw4Pm7MC9CXQrgLEfSF+RZFPyW8uW5DvrsY06SzXDqBUZ4LEZIdgjJ5MBshd+trP0ALaXHa4b1DrCndAYKw097yQElqaLP6cOtncWeadMT0zrvEdIaOyc2qaxRKIeF0Z2uW4WyXm/AdueutyPJB8e4xmZeiuxLbbj+T4jBHH4eT4D/xAoYzLG8W7lxuxNGm23/EyS5j0ss/INCDPAYeRM8PT84y7yvPhUvvRBQD8PoMrTKL3ZynPT9tdIaOqcOXEKnYTHtI15ykp7TwXQcwsJWnP4MyJgHGNmIFG8x4LZ4FbOTLdc64AnZaRMEwJmEXIO28nMgAM+knIvD/BpgLNAku0h1s+CTvslB04kAp7/KwxgnTMfyM8zQrBHfvr5sO6sxuDSIE5yRzR2EnRaaUg6e0YSZoSAesRgXIYjhkZQ7ARp2BSndxqrtrE2YZ8xIuXzBHxrFzMDW8yaa4JkyBRmIai/Myw2XhIBR7GrzUm/WhpZaUA5Rk9xp9/cJpO8VUTiB/7kutaftsMZoSLw5LsBgfW4fTzeyErOJ5jyHy1jm7FpPr2Pz/q3g6YeHBfv1RjjOPp0P7eIybbs9vr8tum39cN7k4ydHQIxZkYE8tmEgJvEQwSNZ7QZBhYUn8tAqsksEGtZBGNe9OV5HMPYrMeaNuT5T7w2UbT9NCJNstEyEXTSM/tqZJ/n78kOnBJ87iYDq6jZgzX7TiJgoGMHtChi1kB3DAeREQh/c3ToSMRiUIzus0wDy2X/WXdnF5oz5Rp1ni7Ider0KclADHhGBpz2jaMj6WC/2SGZyM0yPyQEvP/5raVFHQQVyyy6JrgQJElYmT5vf97kvh/j2PHnO3+LToymCVA8Z+YkWZ7nhglqAz0CWh49zScfpi8ZhfnpbNSFtj+zHTqRl5eXV8sksdM4A/eR+9AZPRM36r6K3t6TNELA4/zM/hzjODDJK/3DzYjGO+I55wLtlmM767tGYnINybvJXMYx/89AQmysJ8ljlqot2ZEc8XPOs90YF2bHZmTgZ2xrRghMBoxbe2Q3OreHRNgInNJxNNaiHRpmAy4zOA/mSmjENpJTBoAA00jADMhb5sAOhOczgqbTb48apuMmcGad2ut00e3q6urwPHnvjuU5BIlGnvaSgLTp3GRgjNf/BOkow5PXTtbn+FkTYxw7wxAA/u2zJ7+JM48zExVJ6pS21HTMMYrnph2vy6GzzHUB4DwKt93ayOsYjbntjWzOcGFld55HltTrvsxY8g+J+AdFfszse5dGDBopoPMzEWS/8rv7nwQt5Xo8x9gmBf49Y+TMK38f4/gvx9sc4hygHbYIe4blLCfnN+dvn+Ton0TA/mxFBppN/wwZ2OvrdqNzNgk1BfdkDfydjaOB2pD5PkuzWAcKGawdNutKhEGh8TUwIIMc4/Vjaq2PJyKBO5PO/yKYPxQKGciGNe5251PE4nBYt9kvMw4EQBrq9+/fXz3JkOW0aJsOlmQg9ZyTDJAQ0IFzHL5///NZ9PmNjj2blNJ3vsNkjNeRZnMqEc8JH48YvFLHjKj4vNYPHp/8RoldN1KQ82NLHvsZsUi5ltZeZlsMviawvGb2e6uHAM2lDY/deycCdvhjHJOoGTng9xUpaDhOPOB3O+Vc40yjHZSjcOIqPzPAG+P1Y5RbAMZ+odgWV8SykYrZO+1wtnnQ5Hg2P04lBDNSsEdOJgMrMejSeMaY7+K1MefVIosw+TFes7aAU+tQMl1fl3NohC2FTJ1toJwMre3RN2UE7NhfcdD8G9oQgJAB7vZ3xoXASZ3tGEgIPn36NO7u7sb9/f3ROm9eJAQNcNKfJlpsP+s6h8wyFwQf7rXIdzo6O722tp1rbbf53siTyzYwp8y82+ETbGYkIOJMDceRtsi5QntlWyIeY2cKaA/sX75TrD/nPJ3zbA02x3m9y2d7UjaXc7is0wKP9ygzJ29C0ByxCYFJwSzQayTQkTs/N1ylre0Rk4q2PGAs4meTFf7eHG/KtL147u15mSik7z0eDlSs1x4SwN/3ytXLqVdc5CIXuchFLnKR/1Wyj45d5CIXuchFLnKR/7VyIQMXuchFLnKRi/zN5UIGLnKRi1zkIhf5m8uFDFzkIhe5yEUu8jeXCxm4yEUucpGLXORvLhcycJGLXOQiF7nI31wuZOAiF7nIRS5ykb+5XMjARS5ykYtc5CJ/c7mQgYtc5CIXuchF/uby/wNTMI0oT04yoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLP0lEQVR4nO2d3XIcuc5lKdmS3D1PMe//aHMxN3PalmRJc3Fil1et2mRmybbKX3QhIqOy8ocEQRDYAJmZN29vb2/jSle60pWudKUr/Wvp9tIMXOlKV7rSla50pcvSFQxc6UpXutKVrvQvpysYuNKVrnSlK13pX05XMHClK13pSle60r+crmDgSle60pWudKV/OV3BwJWudKUrXelK/3K6goErXelKV7rSlf7ldAUDV7rSla50pSv9y+nz3gtvb2/HJd5PdHNzc9hub28Pv2379OnT0fV7ymYdKefm5uZQVqvj06dP4/b2dnz+/Hl8/vz58P/u7u6wz22MMT59+nSo9+3tbby+vo63t7fx8vIyvn//Pl5fX8fr6+thP8dzDX9zP8tjmbN9/2ZjOaYcm13n87PrIuv/+3//72a//Gr63//7fx+1mf39+fPncX9/P+7u7k76k/3c+j+/K52jTll/eQ/lF11IH+fX/UOewnvacXd3Nx4eHsb9/f348uXLuLu7O/w+PDyMh4eHcXd3N/7666/x8PAw/tf/+l/jy5cv4/7+/qD7Y4zx8vIynp+fx7dv38Z//vOf8fXr1/HPP/+Mr1+/Hva/ffs2vn37Np6fn8fz8/N4eXk5bN+/fz+U8fT0dHTu5eXlqJ1NPmOM8fnz5xNZZYxke3x8PNQRPvL/+/fvh42yzcaxwP9jjCN+/s//+T+/VC/30OfPn+tYDW977Nw5xDJvbm5OxjDry3/avPzPOMrYiX7SJo7x3z5n/6fc/NoO87oxxrI/vU+aHV9ds7KrzbbOjqcs/rpeynhFvpb2LfTp06fx9evXZTljnAEGWNlHkB21t+akbUQokMb3rOwVEMjx1Bfivp0DQUp4ubm5GS8vL4eB8v3798O1uebz588HRXx5eTk6F+Xi//RP28/9PNeUk7TH0dPBrnTj5uZmOfB+J7FvQnHqAQMxVg0Q3NzcHBky7tuxW/cIGJoukWxEmiFh+Sm3AZr8DyC4u7sb9/f3R1vAa9rjMcT2PD8/j7u7u/H8/HyQT3iIjFMG5X57ezu+f/9+KCtOOddSJxqItoxDkU+AxqdPn8bT09MRYMv15zgPBj3nGOXfRZER5XROsNPa0ECF/zcb6uN0/gbJHEsZM9SZxj+PUQdn93msGEDPAiYfIzUb5TKpMy8vL1NAP5PjHnvJe3ht6ysCANuI8LiHzgIDH00zhVkp6OzelUBX9/i40avJwncH5RoaMyqZMwK53ve6Te3/OfSr7p2V0wbepWgWlWc/A3mMH0aPRuL79++HaJWDvhnZlRNvIMXGiA7K5QQIENj4f9tv7Y/utTYlI0UdbdE9j83ApiPu5gD2ZF0IjOn8P336dGiHo1XrYAPo1gfqxSXIzie0F5xQL1vU6Ov2AA32ySxj6t/s7wUyoTZGVnxlrHJ8cTy3YyRncGf1xDZTFrPrORa2gq8t0LDSw2Zjt7IfpLPBwJ6O/JmBYwdMYbeN17R98jNz9txvKV2jU0ZQLZqikWsK4KgvhvTt7e0ABGZKs1JyDgJmDny+UVM8GggbS5+b9eUWAPsI8mBousLB2uRktB0nPdPHMcaRzjBios6Qj6YPjHAoS5br6YFs9/f3hymBTAt8/vx5PDw8HK799OnTIUvAaS4axTj879+/j+fn53F/f3/IFDD9Hp7DK/lOmcyKsU1pl4FAcyAtmotss892EOikT5KJsx5bp/8UABtq4IXHV/dsnTsHYBgQuO+cEVhND5A8Js7li2WnH6N3tpezAIXBlusn387W8v6Zr5qR+7Md3wsGm63eQ78UDKwM/8phtP97wUAz7C53azC0a23Eb25uTqIr/xIU2KGv5rJirMYYJ8bfmQCSHbwHGIEBj+11+O38itq1lwQBjRhBrtL7Y/zoN8qQ17VImn1BfeAcqh0u64wupM7skwg2uF4lAIBA4P7+/rAuINMDBAK3t7eHa+/u7k7S7DGmr6+vBwDALdMGz8/PJ447BrcB2GaM7fxnfeQsSf4nq/b58+fx8vJyAAfZZ11xELm/gYGtSO6j6SPGksdBy0YZANgWWtcbwBzj2PG7npyftdl2kbaQ4HqMY+fM+3NuJgPXZR3K2Gd5M14NUHx+CwjMeGu8v1dnd4OBPYrYEMze+2cOee92Dp+zOls0wsxAO76KXDy3NIv2CBB8/4zvZmRn163avSeq30t/gsFslIE469+Q5ZL/lu3KUbRsAY2iI6c22Ak0aHB43tmGti4gCwIfHh4O+3HirJ9rIGzw006CBLeljUdnMejg7XDdtjFO11pEtukP1pOMWuSa7ADl5P6lw/E6Gvd5dOdPIcu52bzm0NrxrXttiwlyrROraam2Rob8+9xsSmFlr9hHnurLvbOo38DBxOxCA/GzdrDejKcZtQDMbVzR7Pxen/jL1wxc2iGs0iI+t+rAPTS7j47e86le6OLo/5y6W8R+e3t7FFmSZqm5WVnvJZbxJ2QICABClLsBFf/HucQIzPqL5dNY0MnOppZyrR0oMwM814wxpwhm0wZeU2B5tDRq6vOiME4r5H/AbngPCCZoIsDwgi87XGestsaIg4MGAvh/dZxjZcuI/04yrzPwuKeM2f89x9u2BQi4OLWNv9W0Ja/zNatpv/ST5/6dHZgFXDMbmfIZWFBn2T7bv1XAZr5bm/fo3h5AuEW7wcB7I8xzyjciXW3mwwi20SwymCHemTEnCqWjoTGLAgYA+BFCKoZlt7cTZ87bjmV2zOTUq0FCq2/13/uXNKjub/bnitwGRhacd3b0yuM0mNazc3gfYxxFWs4MzJ4ayJoBZwbSn6t0LOVGx591Aw8PDwfdvru7O+hJpr3SzoyDgCuCAYOrljK2bMcYRwCtZQT4m6kOG/OcG2McZWNS316n9TtpFinuJWdfeLzZ8JljaUCgZYz8JEHLCoyxvW7gPbTi3eN35qhXgIBl8l7qlcFv9s3bHnu412b+igzvuzIDe1CIFXDFUAMB/m8gwP9xNK2e1QBq4KA5dxpuKjdTmSZHP83wtTRz/u9B/I5SOd3Q5rJm/eb0lPfPoV9Rxu8i9+MYxwM5/+M4sjI9zsJO5Obm5kjejEZWxtILqmaZpBwb4zSducoUJF3uDEEDA2w3xxGfiGG0NcsOcAtf5pGZAo8Ltm9LZ3It69oaKwYXNuYpz/JlNuMSNIsYzwEGMzCxCqp8bKVj1DNnA2ZA4FfSLAMUmmUGOD20BwCYnDmi43f9PGdQYoCyJ3DbQ+eWcdaagZlibg2UPecbYm3OenbvzIi0jMOKZo69/XedNKx0/omKaAz3PPu5itic5toCGU0+zXE7M9Cubby0jMKfRC0i94KmUHhvKfqUFQMZwJBFa6+vr4cIOdQMePqD/chsEq+ZgVaSxwtBBaep2P44fRok3kvwQ6DpepltIX8xgu1R25XcV7rqdhPEkMf26ONqXU6rk/1+qczAXrs2xqls9zgVyrXploFAA7jOthFobcmtXcd9ls1jbteqHtukgIDottfk2G5yEe8syEoA0dpgXjyuzrGdexz8LIDYop9aM9AU8lfQLAPgLedX5eypi6lE3rcHOJAXzyONcZzKtEK3qYKt9jTwQSIo2Eu/ApHOlPocIPa76PPn/6q5U8iOMEOzuWKDAeoL1xPw2uxv6W8zcCzPAIQGmesBZusEPJcbWWSL3qYOPlkQPjItQjkRaLC9ARlOvdNppI02tDPnS1nx+pABQetT1p3/jBJ9LPWdO6Z+Fc3G48p5+7pGK/3k+RUI8JMDfLFQ478FT54S8Bjb0gVe6zpTh8+xP1029Yc6YNC4mv8PT7OgjG13Wa2/mw2a1fszPvnsNQN7HSVp77Urx78HCNgJraKqmZLl/GzeqnVs6rHCONLh/xbFN57tZGe0B/0RDTc5bUUbHNBb0cqflCFoK8tzfIz5FFebx+Yg5yNrTT/H+OFI2joRg8YctxFpZbeIyW2wc0yUw76mLqQuA5Oc9zRB1g0YbMzWwzBV28YR91f65SxG1izk1cftpUgkR3DmiZFj6GfmsX8FraL3vfQeO0zwSTDQnhwwSDb/zYkSEFi32zQty+N9tpGpz8COuuwo3Vks1sXfNlZZfrKFjWe2d5ZpY1081o63+99rc8/ODKyQx4y5LdpCOytAsIe/vSjYBiD/W11WOpJTtPxv48x7UheNXgxz46FFLDNFWCnODAis7p2RgcOfAAhinGJUVga19WvLFEQ3uIjQOpXzNI7Zd//PDA7rPdcB2CnHyXGFP8FAslgETnRCLT3sRZGrccp9G0Kn+5vOtHlfAx5OB8wyZ23cEBBcMhPQaBYQnKsPs3tn9pV6sMoIzB4h9Bx6k2nL0uX/LJPn+9keB1rWe15rx5xzTOFbbqtpJfNF+03b4SxU69s95OvfYyNIv+zRwnMRa7tu5qjfi4abIXL5szmuFaAgmowBscJwbQAVa/axoT3toGPd42Q9MPbUsTp/jrJuIdiPJBuXUIvMx+hTLT7Ge/OMe35vbm6O3sfvemIcGPmcqwtt3waTwMc6x5dc5XyMuvtu5uQZCa7SujMjPnvd9srQ0uBxisLrArbk2SJ9Guk/BRCsxk0D8rQPvGYPuV8bAGxTAwQNMzu5p07a4rYRsPFey4S6nj51Bozrgei0Z2T7sAI41iGDIgLs5tBXNLOlDbica3ffBQZc4R5lew9iaaBgFXmcS1tR4uq4nXsEzzkmL96y4rT5spkxb4DAvOw51iKic6INgp9Z5NXK/pl++lmigZulFhkNOHPDzEDuc6o5xoWZAp5n5B0Dwa3dwzpXbZs5XzrI19fXo7cEpt3hN09NZA0CH1PkXDB1miB3BuLTNqZOZzrhzIDn7BuoyoeKsvnrhPzfdJbyYJRoY30pYLBl0GfZNwOElX2bAT1PC9zeHn+p1a8angGsGRlMjnH86CxBpsEG29QALx0u9S5b9DFl5/qZfjZQswfkuE/IJ+Xd+utnAqiVv5jRu54meI9h30Koe6KJ95bbAAUNOx8VbL9USDuUMfrjaZ4SeE/bfjWF9wYI9t7fBuEY56e4PpJoRGZI3c6iOQ6DAgOCOPr0f4yaP5wzA1MGA6wjiyBn1MaP06vNONGphndea7nxc8Bxvvn1p4s9Rdamzgy+mh5xXPl4q9cfTMq1q7TvTKbR+dmTJx9Be5x6o73ZwAYCDAYMBNp7M/bWz3pnWQCDkDZVYFvWMgIcRy3Fz3sMCmwrmA1m/Q2sjnG6QNJ1OlPA/Zbt2dOXs/976KcyA3sqbNHO6trV1spoiHZ1/xg/5qW43xw+f1tbnLK0cWuLUaxQ7TzrOrdTfZ+nM3jsPTQbjDOA8LMI93eReUpb4rx9fEZsr52fpw6enp4O+hEjl/s8bWCg6me3GZ35ewF+yyDBqQHQ8/PzQVdTvh1rMgppz9PT01Ek7q8UOrpva2cse8pyBgqcrUndW+DEQK+NKfaF6dJAgLJogGDmOHxva/cKEHhqwGAg1zRqgNdZGNrlGRDwi4tapsy6ljHrLws2IB6dTDu4b6IdZWAwowYeyC8zBLbTrd/3UO47FziO8Zu+Wvgz1zbH335Xiu1jVjju81j7Tn2u9UCZ1cVOsyNp6eAV/zNFo1G7ufnx+FbOcaUs+aDB2AMI9qT9Zsr7J5EH+NZAZj8RQOUYgSSjJqY1xziOvFtUwLJn0ZkjpGacs7KfwCBpfgODVn/aRZ7tuGksWzCwNT4sh9xjBxEeUl5z4o7sndlpgKRFYe7vlS5cappgjH1B1LllzfRt5ZRXaXuSbSDro131AkQCDOu3swMGtQTUto90stkM1GlDac8IZAMmCDhclx24sweWfWTiR3DPsaUzP+nzW3T2o4XnIA5fu7r3PUjGQrWAmwJaGVeDoaHXmfIbcdqIrQwO28PfVk/4MMigs7eR9j17HfceA/inAgASszQ0TjOgtqdNNorWFdfvdCQf8WspxpQ9e5TL7xGYfYuAqdzwwE8OPz8/nxg1P5bHcvwYX3Pu4dvG1/shv2TJL3mh7rIN2Z6eng7ZCj9W6L5sQIDHWj9cUsdb/XudxiyDu7KZLStA/ab9TB0zXmyP7NSjyzc3x5mvti6B6wpI1luOw9hEZm1tl5uDZps49Zcy2CcrwOrrmuwzFmzD98i39Wnr9736++5pgvcCghnZkFJg/r9y/vwdo79oZgsozDIDjU8SDVZr3+p/6mnnmBolD1HCXM80dwYbEW8UzqmpX0EzhXNEfAkiEPBAcWRg52Y9HOP0M8gGAgbAcbzWofQdsxa+ZhaltZcMtdcON+OYNjJd7ywSIy466xbhk7/st3Srs1OUp40tn8ZoUWCmCQJKwqenQyhX6nvL9DT9pKH/U2jLKcyOz+xpc/btkdEt+zTjw+PFGTXreI5T52m37XxzrEXf5tlZMYJc6y71n0CC10TnWL6dOrMDuaaBY55nOfnf9HTlj86lX/7Vwi2aoVXS3satAMEY20CAdVlp7CyaoV+1kQakIUQDDBKjIvNkZSOizL4XrdkJ2Om9hzig2q/TZZekpAMjh8jOcgrxP2WbczNAOcsOOG3tLAGvI6WsrRTq7A2Dnrag0WzfHqBucc1DnHSMlp8kMK+r+VpH68xKrJxx6gs/bSEjAYFpz7ijjAwaLq3D5CE8vtcJ8L4GCmxHeV3jiU5qBpzj0P0tC4MAZyVaVoDBD21Nm8Ico3/gKuedbW3On/pHIJoxETtiB97sbpP5LDOwZbN9bbvvHPolYMApETPXFHd27XvIQh5jHxDY0ybyOmtDc4wzHsnbGOsFg0SPY5w+8uRojnU1kPArEKTbPPvPY5emOKExjuepmVbMuRD7ZwXkSJxXJKJvIMD/U74jauruzOF7432UwYwXTgm0sRS+oqteYEiDmi2fNHZ0Q53O/xhW8xreaIBTd3uMkLywzxoQXOkKx1L6qgGMSxH162cAQQukCAoC7mijWqq+gYAxjoEA173MAEHLSjBzwPq4z/6xzdka0+E9+hOePK3A37xIzG/z9FqCHKMO0j5w3wGIed9q06+gd4MBG0gbfTN/jvM3uDDybNQUexWpmW92XpTB1JwAjYeNeyOWsSfrYEPasgK8toGAdr7R3j5qAKBtfwr56YD0f/q5tbUZPcot7fM0zPfv348eA4yhcbSc1/g2wNlAFcm6boMaQGAgGUPmiDoby88vdZT63Vbrkx+XFX4ojzZ2mg65HQQI5mHPGJyRgVr4b2sPPopWY3LLjtpptG0GAnzPLDL3OGE5jPJnGSy+w4L38X7rX/rJINC6ZL5oa6mL1FuWy7KoGwECyThyXLNeZmlX/UBw4owkebU+zPTAgHgvvRsM/Awi2UK0e8q2whIAcBtj38uFyJeFT+Wf3Zff2TXkhTwZrBhwpEwjUA/0FQjYQw3MNSU7x/G/Vyl/NXmAjnHcD44c3QeR/eyRI/ZRDEwoc98mLrBjxMA6HaE0EMaIJvvhg0bK8+ztEbzw2SIcyoE8WYdp3LKlrXYeBmItFRujm+hvxrvfk0A5Ut5tXDC6nGUALq3DJtu/vdc1W+k0PYElyxjj9FW6HE+2sV7wmt9ZVoA8EgTQFlP/3O8GjS3r2vSPem39bfXGwd/e3o6np6fDNWP0L50yK8Con/ywDh73faHfoY8/lRn4GUDQqCl2c8q+3siW920BASpNOsKCb84hPOV3j/M1T2wvpw6MhKmsudaLBJ1iIu/viZKarAxSSC2Ka9ddguiI3C4aP79alfc78iBR/rw2Dsh8ZIvReHl5OWQTqCO81qnK/JI8fmgY89QAn8V/eno6SrOvIkICoRZBh+eZ/GlEveDKcuNLi/w2wRYJtvrcT3vHaOT+nnsvTY5MDdL4vwVPbZ7e/c6gZOYDYpc4rggE+EVMr2shPwYCIWYEPEZItJdsq8eYf1eOl+A7+s7Frjc3N0dvIWUw0OqNDHks9bj/3A+/mn5JZmDlJHKsRZmzMs7lY+VY95RPR0ED6kiPBp/3mogKc58NdTPcLcpq7U2Z4bEBAhu1LVDwK5RrCwT8DgXeQ444CRg5+CNLR7DRC8uQYI3HAwRyTSgpRc6lBgiwr6g/jsJiAO/v7w9Agu1jWTbkfuyOTpfj0ZFRA9Q2rCRmJ2ZOw5klpvyZAeC6AK5T4Dn+p+N2nQ3QeL8Bvsj4T6ZmM2ZgoKXiGxAwYCAREIxx+i6PBjRub4/XvRBsMBNgvaKtm/mXGThuWZAG3AMwCYBZPtt8c/Nj6iggnuA/beI0gacTZv3jvjL4akR78TPB1y9/mqAxtHJqdoomN3SWIcivkd9W+aaZIbfBN3+tzXQUM8NJPtv9vm41DcFzK0Dxq+hnle+jKIbC+sABFwOV/TFO5+/sIBqljPQ9U/2ckvCvASyjCkc1MTD5dXREYxXiM/nJDjw+PtY5/5VsPJ4oU6dwWxbDvPKxQAK2MXpEZhDxs9QyPszE8P//FGq2ZLbNMgJt4d4Y29/KaDxQRxz5jzGmuhUymHeGbPU4qcG/x78DGPqZRslQ5frwRFCQcy1I89jNOU8vmCfLdAaK+Huu7f8tjxb+LicxAwFjnK7KPwcIzNKbW0489c06rPGxp7wtR86BxfQu20JHsyprRZ5fSzlbSNXXXZq2dNGOj0aLg3qrbMokET+jj1ndzuRkY9YgRi8Rxu3t7QEsJJpu6dUVOTWZe/0yI4IB6u/MMOY8jSrPtwwFAQSnBNo3DrxgcI+j3tJX8mfn/6uAx3vpnHFkQOlzLSvglL3fxLoVqBBEEkCkXNqrFX8rGc9ApLM7dpgNAIW3lOvj1mG22dkMj9m3t7ejR5lnWQL+j2zYhsbzOfJ6D/22NQN7zq2c3d46m6PdYxANAKwkLK85+BaFu+zG2yqyavNkVm4rK3nxOV4zc2Yt29DAkYFFS039LhD4q4hGy8douJoRXMlwRk1H7FgYiTDioROdbY6Y6Iy32sk6wmecQXuLYSIfZs3COzMnbp8dNo05U/zMEDC7kF+fd/S+h2zguT+Tf+uzP5WavaPN2ZoeYBqfwNjUbIZtmNPzP+vUZmOjHWMdHAcNlHDKoLWvgRfe4yyydYVysj1wuwnM2W63iX5hr+z20Ie/dMgK0VBQc/rngI+ZA19dn2tmjpll0Niyg1cggGh5q/3ka29H+j47r72RhfnzOQ6Sc4HAXh5+BzX5MDKyEeO1bKPT+61N0dWcb9cZzO11bHa4NIhjHM9dsp60w18/DH/hJQ7Bj4JlcSWNENtlQNKiODv2Nj1gcDNbMe7NfXtOWt/ZhSbjS4KBZqv2BFQGAtZ7P0HA/l6BgZRPHcv1ziis7BtpJl+CzNl17K+VrLbaQLIOOeM6xukaFJbLcZH/zDRnLOT6ZPmstwSpHsvvAVUrusgbCLecAs/b2awUY4b6ZuXb0e8FAvxtyNPlcWA1ZfW9v4paO30s2YbVPSSms3nPn5wdmLXfepZB1wAR7yOwM9pvOsM6Ih9H0yueTQYA7fpZ39v40wD5UTBuXAtBOTlSb1MABAQzx+60P/dnm+VGgEbZNwNL4NGyAwYHl6K9INuOop03ENh6k+XMJjnbM0ZfsT+bttqydavMzQwE8voV4PAYnwHMBiYdDDR+2T4DgOhVxk2OBRS0oIE8sW7bkJU89/qVi2UGvL9FbvDKEJ7Lx9a0wsw50LivgMAs6txqYyPOkZ1rpLZS3XuQNPezsf2UyezeS1DrhwYI6Bzd3va8fEvjeZ8vF3Lk5CiNj1rxGP/zWMpsBpR8sI9Slq9t0ZxTy3SgNHCzKN594P+W/2zqw+sETOGN87Cspxl4ZlMawFpFo5cgj0/3Fa+b9R+BQAME1sWZzbUeNBBA0LyyfXumKbcyPXuDENrY1fXmwUFmIvsGfDhOuZaH4yP9M3sPCXm182ebVzLY007Sh750aBatNDTUnO0KEW7VuUoH2Wmz02d8z443INAGxxinH4fxfsp2e/mf4CCOvhk2lrdKce/tV8rJPM4Q+yXJ/IaaLHMNUT3vY3qQZax0bTX9Yh5puL2Qj58ybgbcmx1H9rlwienKZrQtr+jXLNp3WwwQt8Amy2/vHCBYmEWp7teUPQMEPrYacx9Ne+3mDGztzQhwiiAAdpYKH+P0c9ZtCmL2WXiW18bJSldm55of2UPUUwNAy5DA8u7ubry+vh4eEebLv9pjr5wKYP8RVHFBLrdma/fa3d8OBrYG9hZtdWSrb6YYTu9Q0DOHOEZ/5MXHz6EVEHCdY/wwWrl21bZZOpP/s09QYBmsHPU57V0p2V6U/lHUBhWP5/n0DOQxfrSB0Xqo6QdlPYt0ZsaZRtNRGfWG6X3e7xXhLYNAUM1UegwUo2QbRvLObUvW1tEZUf9nBr1lDXg9U6gGugTYNMBbdqLx8dHEfuMx/2/3cTMQoK7M1gpEz/bYXUfIBh2zxbkrYDjLzLhducZ9bFvc6mBgZl44zsl/iOtgAlTzTQ6Cgefn5/H8/HyQNx8ZHmMcXmEeu91eDc42OmB0v7T9PXTxaYI9ERsHrB2ir+X/tgDEvDSnTQMzo9YZr6+nn20NP7O2NXJnsz2eY8qvQYONJwfLHgN9Dv1Jjr9R0492jGm/WZTFNH4DFjGMrMNgkIaY8/IPDw+Hzw/zM8Q5/unTp3F/f18/XUy+Gt/WafLmFHx7v0HaZQPojY8KpvyMC+rxzc3NwUBGpy3X1g/WcfdNM/y8LmOHGRGXzfLjlC4JBto+jzlyzK9BJzcCBAKxvU8VGOyNcQxYUwbBQAPWM/oZec8Cx0YeFwYQab8/ozzGOFr8OnthVrIFnz59Gs/Pz0fyeX5+PtSd1xqH+BbDyDr9YDve5EXd3Uu7wUBThnMiyRkIWCHEmWHzvqk5ZabhV/Wxw2cOnIbRtFcurW2tLh6jUZqlSc+JyN5Ds/K2DOY5uvKryRkjRhB+K1gzfLmHOtWiM/eRDXPKb/O2fowvG0EBn/+3kZ0Bk9lUh41fkxc3GsNZVJLzlHfqSjmReYxbxkvLqpEIQpgZIM3G9hbfKb/Rnwp0aey3bJmzUE7fU97uCwMG80DQ5HuYgZi96ptltfat2sUMFzNa1DvrVMvWsj5u5t+ZEoMBguG84Mtv42z+LpmBWQAYfmnDWFbT0ffY29++ZmAFArbAwLlEYbXMQq5hasn1WoFMLetA49/mJ53CjNLuaXeL8r3lOkY6vwMUGBDtjZguCQTGOJUFo90xxlFUyv2WduRvygrNHEpLoTIz0IyOI39mC3itjWubToqB5nnP+fNVvgQ2jpByDVOgfGWw9ZoGui3uC0+Ru50WZT7LADb94r28L5kIj31mClZ1/Uk0s3GUPaPxJt9cPwNknsayTA20eZ/XupCnPdk6948DOvNL3XLb/Tub/hhjnIAZPlHjabfYXWcGnp+fx/39/SEbQD2+ubk5ZAVI/OIpZZGXGDGr1/zcjPbq7m4w8DOZgPz/XUCg3R+nO8Yx71GaGIU2iBoQmAmeSpx6uIJ0NrdJ4qB06i3l5reBATt8A5aZMsyM3qo/VtFVK/9PIPeByRGlgZsBHO+blWld8hMBLXKabS07kDJIzhxFz29vj9cGEAzMPljEaIUZhtSTyIfpUIMBRpy5r437l5eXw1xrgMbMaTUZ+5ijXV+betKHjij/JHoPT5YBt7amhE7V197e3lZHGJqBgZubmyMnyrHSbGCzo2kLgamzTqzbGQeOswCa1dRH7sl9HHOZnrMMCI45XZDx8fT0dCSb5+fnZbBJx8/pNWc+vL1nWsD029YMuEP3goG9keYeINGcLh02Bd0UzXw5wtxKVzb+Wmc6g9DqW212AlvkwbjH4HiwbpEVc6b8H0GcJzZPq8WBjpxoLK3D54AqGszU2eZ1vbX5V7bRa0kMRNLvjGaYzowxyz1Oe7K+RD/5GqLl5HbOonjqd3NSlPUWud4xjp/8IMhhOwzaaWDD45+YGWhkXW1pbupOC4ZCs/stI8sudVhfXQdtnIMg6ssWUGhTR14XQVDibBqJAP3+/v5oSxmmjBvykrHx+Ph4Yl9IW3oVEE/QSnDU9PW99O41A++lGRhw58+ut7FuKGsrgqexeHt7O1LUpDLZ6S3lnv82FHHuMW4BHgQi5puGesbzDBy0geQytvpjlm5c3c/j52QeLkHN6MyigpmeW/YhAkrXE4ocHK21RYCO3Jpz5P/wFvICPrfPmQE6fM/rJ3vGaJ0OgECCmYEmw+aow0syEH6BUZxJzsWJ+wmIlMuy017WyeyGHYIzeX+C3o4xD5QYDTroMricPT7YMkuuu6X8LbuWDTKQNRDnOKLecXymDo/XlJX+MmBofDC70QAN25vx+PDwcFi8SzDgPjEQjx4/PT2Nu7u7w/FGewIs25UZIODYe4/+/rYPFXG/OWxf2xzHrJwGAhzJ2VmxM4zOqExMt6wA0FbnEgQEILhNbR6oldecTQMCLfqaOfsGPliG/7eMxSxiWkWCl6AYjAA00ixKIq0AEY0Ao+5QHCrrsKNlep18ecxsRchMUzK9HydIQ0Fe25QT/3NFdIsIyW/LOLWIz2Q7QdCUPiJINyCwXXA/zdpnHv6nUpPdDFwaNJGYoRljHIHWPNGSspvjMdj1FEGud3/QBhM4pLzm6FJOAHmOG0g3IDMDA1yvEzDw5cuXo7UP1LG3t7fx/Px8AnQyBefXf7t+2tdV8MeM3QoQ5N62v0Uf+mjhFjDYc187ZsXmgB/jNM3HCCFGOUbUz8Q2JWY5M1DQnDyVoM0FsT4acyoM/28BgSYrL7JpUfIetHoundvnv5IcdThlab6cfaIBpUO0bqzAUfhwvXZ6TefcH051MvNE48FflsdyDSrt4Lmwz0aMdaXM2ZRBjlmXrec0bk5TE2QFeLBPKbsW+bNvZqnilU5cmhqwXwGollGa2Uv30xjz11N7mooZoQbiWoqb/R87lIyWx5HHC8n6TFkw2zbLakSPKJtkAb58+TK+fPkyHh4eTh7htfzsBzJV8PDwcDR2DEjCcwv2+GIwyjC/tGX0M+8Nxn45GPBgaoNrNuD2lr8CFC2Sba/gpSB5LM93Go26/OaIXVaIgyb7LJvOivU0lJjr3+Ooo1gzANPaspU9aIqXtv1KMPEr6GdBziwj4kHMOrhCnU50xUcDC/6lMaHxyFy+397X6jRIMD80ODSYrpfGsEWJ3p+BEPPYHJ0BR5MhwXzKYxsIDAwMPeZmsrkUtTavwEAckCP0me2lPFwmV9e3aSqCCAMBypf6GrCZX4JL8kT9p+1vfWN+E+1HFg1sU1ZeuOt3ezgDRTAUChj4/PnHZ8xn77UYYxwBoehpAlX3h8cD/6+Cuy36bU8TkN4DBN4DGGi4xjhN47r8lqKNgNvKWdOWMU95rR3pNCs1DRCfY21OaOXUWffWda09KwXyYJqBsvfqy6+mmfEc4zRtZ2rOeNZeZqTYfkbu1Dlvq1Shr+Pg9yNNBAQBA61d/LVcQgYd5msV0eV+79M48mmGtpjRY5OAOtMGNpDuq9SXbJyBwefPn48WatGg/ikggNT0l87X8/Wr4GlvXS3S5zc3wguvb1EwnZ/54n/aRwNgl2l+vV4ivw2UZEs9zCR4sW57e2P05fX19WhKIIHl169fj/R95qjbdF0Wt7rPvc9f7p9rg39pZuAcB0402Tp0D60i8hmyb1EHO4n3ewA5vcTrGu8GAjPD2KISp09n0RPr/RnD9d57DQxmxy5JTY7+31YJM8JcrSswcHNW6Ny+aQbDkXSiqfzP6mU+0tRWWc8iDOtoi8DyS+OWXwOZkA1wiCDm5eVlPD09HQEZL2xsMjLwt6G38QwgoFwNbHw9r70kNRk2Z2mnnXMml8NjKx1x1O3MD3/91r4mZ/MzqzfluZ2tn29vb4/m+POba6i7BNe5l22LLAkUuAYhADPnCXryGGHGZlts68zAGMdvmo1t2gL0qbdlfvf6058GA2GiVTgznDznQdYcSivPhqUh3xkwyC8VINd++vTpaOU0ld3zqQ2h8RyPGzXb2LJd5HtmZBs1IOJUsMtelRXlcjmuK+XtOXYJ4qDnXBz7Y4zjtw/mWEtzz1C65UuHMuu/2Rhpfd6yA35xEJ/597P/bo+dyEo3PZYMCGzc2LaUxekwZzQCYvI4VrIGfOKhzatSTq7b0aX73Iux/P6RnwXYv4JmdtCydX+yjQZ8ptbGBgIaKHB9Y4yTyJmBT8ZgdNeghFkv1tMWQhLY2ZkTBORe8zB7JNFyY/1+AihPuwSApA5mA798+TKenp7Gw8PDCdDlR7g4Ljim3bf0Xd5mOrOHfurRwla5j80YXCHTLTJi96C1UW5gIPtMC0ZBs3LZiNrzTW6Xo0cDhpmhbeDhHHk0svO2DNoc7wqIzeajeJ6yTp+w3ksBA2cEbm5+fB2MgyztiFFyJsjOkuds8LjP/s8i1TZVMMaPiJlzje4jZgdm1ICmHSENpQ17+OXUR+Tidq2yVg0UpY3MBDw+Po6np6fx+Ph4ZDANbhoIMeC9vb09AvTNsTcwlEDANuGSoNb2oNlVt2X2CN0Y82+0tDINAOwoZ+CD+sWxRd3xmOO4ow1pUx/8b8fIdL4fpQwPdLR8LNC8cL+BgawliM4l+5Dyx/jxVkEuwOT9uY4v3PK7PaKXM8dP22OdOYd+6zTBjPkZszPj1e6xIZ0ZRztBO9jcF4PiiDBpGgIF8zKL+tt5D0pfa4Ayo9S1iu4tgwy0tpDF/5sBXfFl53/piIpEhxYnYvBChJ8+5rEGXvnfA/LcfnEEn3LtsFaRvMl9mHbTsHke1MDUztf88kmCFfgj4OeWrACnOQgEHME5C2FQy3HMR3tXwMhGn31+bqDyEdScttthkBuivdsDDFjPTGbNafMlRY7K2S8sP/xRf9r8v9ubawlC/L2P6DId7cz2ztpLPvjugVCAQcaE120EMAQIGDQEDAQEzHS3BQiRAcH3uaDgl4GB1rEzMEDygJs1wEbEW1Cl75mVRWop8JYqbANkZqTt+GeDzMcYWab8WUSQslsbLLeZ8fZ9dmpbcrKzmZV7SeK83Bing6npHCNzXkewEKIjiqGlU+LWnr2eRVe5vs1h5vrIOkYqunJ7e3v4KiDbwPQmv3tAw8X22vlTj7zAii88imGlweb92ScQSHYgbzX0y5DIB3UsxwMA4tAZObZxwrHlcdVszCXI+kd7t+W02C7aEMqN2UwHNNbFGdjICnvqUKJf2rDUaRvJfnOg4rl/Ao9WjqN3rv4P+DQYaUDcvsVl39/fHx45pLyit5FrXjzEV4onI8Apy4wbfvEw47eBuhk1ILBXd39LZsD7596zAhOkBghWdTShEEnNjlGBXU/jmdmFLTDU+OMA2UO/CgiwLCrflmPf06ZLkqPaDDBHmXFwXBUc40PisehE+svz2GOcOvsZEQAwqrEx4cItRtgtyvUKZjqMVk9LrXsek+A7xp+6aj22frTMlLMOBgLU11mmgufDX9rb7EPaGP69XoC8XQrc2jY127gKRmZ9MMb6A1rOGHEO3m/MNJhkxolOcozj9V0Gw1zDkeNevc97DfYInp3Kjz58/vz58JKggNExjoOw6FvKTaq/PeVCGbOPyKMBEh/3fXv78ZTLGD/eIBowMOtT190CknPpl3y10PszJ74HIGw5zb0gw2W0lJ+NBgXI49nnMZZH47vVeSs5NOTOlB73nT1oWREb0NVx87FSpubQOMjJ458ACuj0eSy/7CcaiDGOP7/bDADbx0Fto5b7PPfJemkgzBcNIx/pyrUxVqy3ObdEMgQYNvqMRAgkCQqsw4yKHFEReKVMgwcCAG4NCLA+GkHzY2pjMqDO87LWnz8B1IaajW2Zpj1kINHmxplB4i+3GSCgnmZs2SZyyoJyZnkEwJQDx6SBC1P5qSdAgI/tMWMQPYo+8ImZliUiIGY7vXg3fRRQQJ3OOA0ffPrg/v7+8LEjA46ZbqwC4xWdDQYaus7vbHsvrcqc1eGIlvyxY2i085vr0/ksiwDASN3o+le1386/gYo9CNCGrN3ja87lm87DMmrlfyS1aG+MnhL2XKoB4hg/XmFM4Gd98n6IACD08vJyMBA2OC2Sp2EMfw0MuJybm5sa4TEKDFhwGpVpTBpAZyEYobNeZqZafxgM8CuKuSb32Bi3vs69nDJg/6U/7UycYTGvfwrN7K7T+KSVk6Czop61z2gn2m7gwIAglP5NBo08NrBOftgmX0sdT3YnmboxxolN9jRFeONaldwffWiZq+hd2sR1CQQ+eSKmZTDu7+8Pbc3YCQjI9ALlm7UEqd96af8Q+eyls8DAe4FAcw6r8t3AVt5MELP6miEhOcKgIWhZATqNGW/ulJVBsTPdau+qrT9LLS35q8q7BGWApu8I/NKvdsR2qiGmVhlJt/5hXbNoP8Rr2hzmGD8MpCM/RnR0/s5kjDFOsgD8dRTGOvzMs9c90Eg1/Xl7ezusBXD2rNE549uAnv3EqbHIz5mN1s8+dymaBR/cbzaHNooOsNmhWXaAqfYvX74cgABfzxun5rUt1kfOjYf31O3xwbbRqRP4caywHc4k5TjHOqccxvgBVAIIGLEzI8Zr4rS/fPlyUl74y/sz+Ilw2xKD/dm4zH7AKoEUdSPlvieb9dPTBE0Z6ST5ey4g2AMEuE/j5IG/p247gigvF2YZCOwR+szYNEM4i0bOdcps888ABkfRY/R1BTzOe5tz/Whi360c/hav1G+mQpkiZZ1MsXNu0rzFiTo9PgMFLId9wRerkBeOCRrrNqXlthKAkFf3PVOdTX4EE7OptDauCZLbdFiTieVCJ2QbkWspb7bjTyCPfcpmFnyEovsEBC6HOt2mCQgC+K7+AIKAAeoWndWsz/K0zsy2tQxOxpOdPmXhxb8rAJXrOE+fsm9ubk4e9ctC17/++mt8+/ZtfPny5SSDEX6YHWCGoPVlNoMpjxdPZ618BP3VHnoXGJgJdmZYzinT5fL/zIC0slbG/BxgkIHEcmeOJfe5DhuWJr+ZsTvHALb2Ntoqk+2Y/R/j+PsOTOeutkuQ+V7xQodHQ0EDQePJlcWODmJE8o5yRhmh1JVFSt+/fx93d3cnDorXu18cBeW39b/fCucyrZvOEkQeTZZO6/N4c8KN6EQa0HdkT11u5TKbF1Awu66Br3Pt2O8kBzq2iTnH/3SIzmayrNkCwMy55wt+AQRtuoDAMWUzRW5fwXbN5MwMANP5jODf3o5fH590Ot9FQaDs+gjGOVUwxvEYTjbg4eHhMJ//8PBwAOKUJe1i7p+BgVlft7HIaay3t7eq//RPqzpMZ710aOZ496DU5iRZBstqAIPoqEUWNsTkwdkBO3Xz6Uh+5jjpyGmgmiNtBttyo3KH3gsEWBfLsBFt/bSqrwGCdt2fElWtyIbGoI/zgS16TP/xuWPqYd6qd3t7e9jPOS5WStYgq4dpjGmAuAqauh2D4zbY8JOcPo8j4Lwr+7tFlaQ25jm+VuCYzohZOPLCOtPe29vbo8cZ+UjXyhC2rAVl6fb8Sfrc+mBlbx05twxBymDGq60TCBBIdsDTA+TJQYCftHFw1BwZ72VkHjDAcrg+IW3wmKUuet9TAZFbHu/LUwB5MRZBEkEzU/oG0G9vbwe+TbOAyX5ullWjHO3n9urub8sMuKG/AggYELhOp5Wo+Fy0wmvMY/b5O0ZfSMZV524v67Bh9b47N7w35TVfuX4r2o987CxW97SIyxHbrO3k+9KZAVIzAk45Ul/iINsqd17vx6kYWdDJtnnPMX4sYgr655bIgtEGdYtgIOWxb1s/u+2MDPNClCxqjFPgHKV1MNRAph1r64s2vvyfZQcIOCCYzUnPMljmxfurYx9BDFxW19D+Ua4EUAYEJmcICALa5oWDqdPjidNl0dUWdBk85rpE1Y+Pj0fjImVYL/xdC9of/idY8Jjz+DZQ55MWGf9ca+EFtmlT2sWxnXdr8PscnrJqfZ5frx2wjfstYKANcDvkrUhzNtCbYzcQYCrIwGOWLiMoCM1S8iY6cSpcUroZWAQFucYOlAqfc4l6Xl9fj9pGpbECpw6WvcpcRDYzx2AjaX7zn2XOHMEMebuMS5FB2Gqjc06fJ0rIMab+nTFgatFv1/NrUJna98tGGKGN0T+9TcPGYzHQjHRomBlVj/HjvexxAnEETAmPMWrbkrVI3eZvjA74E0kFgISPyJYU3aXsPGXRnKblRTnZWbzXkP4uao7ddq4Rp0fGmK9FGmMcOS5OfzHjRV3wuwYIMpypajqf8ybaIuooP8AVXaO+B2SHf3/sio8R+hFZj3nzSN399OnTYWwS/DMj0N7DYBmxTd+/fx/fvn0bj4+P4+vXr+Pbt29HHxqzfFIXfYEzmtGX3wYGrHx7HL+Pr4DAVjbA2xjzN/u5/FaXHcOqjHacCpRBZ6c8AxzMVqQ9THHOaOWk91CLsFbXziKklin4k2nWlpxrehJqaD5RwtPT08FgEiCOcfpVPoKGFsnHcN7e3h7WGMQAfv78eTw+Ph7ucwqSAJLtZRRMYJm6DAY4F2mAk4W0BjqOZjwePTdsp5NoK7/hNdeyH2JMQ+HPspgRdYCGlsCijbE/ARSsbNOqzbRPtntb9tZPmLAerr1Iv1Ov+agc5+Kt9xybnqvn4jt/6pp9z/1k1vx0QBbdrYKnELMY7PvYa2cCqMeZTvCbE3PN29vbSSYgIODr169HgGBr0aEz4eE9v78VDLTIe8sRbKU4VkBglhmYTUeM0d8zkPRhDCxRmoW1ameLMJqBorO3HHg9ywsgMDpmROfIbw/NAMDW/58xfnaufxJgWAE/njfytnN3WpGpy/Q9wQMNYotInBZsKUwb37SDYID/oy+cB2XE1V60kiiLhvv5+fnkTW4BKozCrNee35wZJoIEZ8jS3pRH45j2RN7JsJHoLFi3s2McZ+n/lun6aPJY8taoAadWno81EOTzBIdvb28nepksKTMD0SHfm7Kp99k4PUY9a7rGpxIYpfOe1NWc/MqnNeASwB6n7+f/CZ4D3jl20qa8fptgIFmCZAeSBTERCHC6jNNkkete2/uuBYQrhWyONcdXik2n3/6vnucO2VnTwXHe1vOKNDyNx0ZE2qnDxmtGBCOua5YGbvtu997pAv/PNc5ksE0zsrzC45/i/Mfoho3HjaDbcTtpZgy88ChyJIBj2S013Zw/t3wbnfqWtnC6KbpF/SRvzAp45bQNdeRFEEEw4OkP6xaj/wa+Of75aCajOEb+4TERVq4PX61sypwLEgMsmo6wLxqQuCR5XNGGjTGqfhgk2b6QHDkbCMfZ006lHmaaqGuMtClT1+lMlKehkjo3gHVm4Pn5edzd3R3dG/vWshNNriTqXP6nPH7/o/VFfnP++/fvR1/ozPTA4+Pj+Oeff46+z+FsCvsv7U3fRm5eu0G+t+hdbyCcKeTWfbyfRqMBgtX0QMj/Gx90cNnnLzuqtXHP8VCLTN5DW2BiRlug4HfVO6P36MlH0XuNuw0W05k3NzeHxwLp9Mc4NdrmpTkfG1GuTUlf0xCEP+o8AYt5ZraA49LAiHw24GKDRVBLI83zjOIIHCjnbHRqnMagMyLwonwaYLcNciak9cOfQDMbOnP6szJoa1fBjsFpym6gc4xTMBDds7NP+SnLOuWsGqcHmGHg/be3tyfgmb8MCNtUhX/p4CnT2fidbdTfZDz4VMK3b9+ONmYEnHVzoDbG6VoQAlz6uT3009MEq+vbf2cEqJw+lgbx/i0AsAUIWIYj+lkZzkhw/mzLwc34ZZtn5CiylfMrDNXM4J2TFfgV1/1ualkM/l/pI/uRA53pTOsoQWg2o3enIEmrTAUjf4M4GgDqD42tnZ310s+c578NnPmjXrp9LJ/OiHOvjmZm49PX3NzcnDxLTv7oPCID9k32Kcs/BQSMsX8MUS8ccNGWNhkZBDpKD+ji1ABlxDUXljev5T0EDQ1gt09btzLj6AlOeT/rakCd8/65xuO0gYbmt2ayJdDhVEGmBh4fH0/a3LIp5oOAgPvn6u9PPVrofZKFtwIDs6mBdAbXCsz42Mv3THAmgxB3fK6ZOfWVo/8Z57gCP7POJwrPfwMNn2sD9z18v0cpfzXtBaZObdMh2qBSflxUGKfEyD1GlDo3xukLgphSt0FpkWrLarFc0izSp0zY5pbmb3qxMoaWl/uAbXZ2oOmo7+eirNafbCcX6L6+/ngJDVPIzJQ0IHYJWoHWdn6MPlWQa2lfm00d43SahNMDSYuHAqrsYFlWzjeikyQgcEZgljLPGjDfz6ja004tMzDzPWwDqQULHi+Uv4GVpz/4pESOEbg7K7AC5vZre+32WZmB5iB53vvN6PK/lbIBBFKbNyE1xU4ZfnkJF13Mom7W34CA5RHDv2eho8tkuW5ru28GYlbRJY9xkDYgMMsUbClWM8Y8dwmi05xt4c9O0W9j81f9xjh+t7l1IeUmcmHEQYCQOtuHX/wIl/llO1MujzXD9/b2dvKilrxEpT1SGB4b+Em51knzmvsp2zhpLxx0ipr9aKfjMekUeLIN6QOmpq2TLP9PmypYgdoxTqdcLRceb/ZrjNOFs5E/U86JtONYHVCQrxkIZH10elyDM9s83eTpB265x065AQG+J8D+wXV633qX40zbc70A1wy0dQKULWUXHabtYtubzPfSbjBg5zzr8CaolRFuWYGt9PkYp+/Ht+PmdeYjKz2txKt208inLA4oA4EGCOxM2yAe4we64+/PONJZNOj9ZvR+pu4Gqi5JzVE1Z0xn5exAUolcIcx+a3VGF9KfjrSjQ3mxj0EKIzPfE76tX3bCNOY2ImOMk7fNGZDQ8M7k57pZvueCm3HnuLWRbanPFYhr99lhOEXNMTCbRrkUtbY2J2+ifeR+K6eVx75szj9PyhigGYzk1xk2y3nPFn7y20AEMwqMsqPDyQKF94zT2WuL7SMMatpjhGkzMyztkVxPbxAE5Jfysu8yj+/V1Z96HfHM2NvorlKJW8o8xo/nO1sdNCTN0fpZZQozyuEsw2xQGQl6f4a+PRBncuXAY5qPbeFcpyPAFuXPpgYiV56bOTPvWxeczXCbLh1VNcforaXG2//WX60eRvIh92n6gnXxRSbUca+Yp+5Zd525aH3rfuW8vT/AxGmPmR2gPppPG3MaRx8nz2y7oyUbSYK1yDE8MZXcaOYk2xi8JNlmtm2M0wyJn4VnoDIbCx4D7MfI9O3t7ZDKj1Mlb9knWA1/s8xmI9utrYCGOpMnC2wLCQQi27Td/2cBo+2hgcAYowKB9gIyrwtoY9ZTBbEd5q3JaQ+dDQaYXpldk30r7UqJ24BzZNGI6dgxTp32rA0NYc1oBlRmytxAwh6+2NatgdIMJ/+vgEG7p/G0R5mo+E0x/1RivzTjR+foaw34Wtk0gjk2xvHLWhytzx6fbf3H8yyz6U2LeM2rN+sux8Db29uRkQxfDZxyvNmhtHFH2cXYETylntxvYBVy5NkyEqQGdla26aOo8eLj+aWsmKFsQIBvzqO+MxvEN+mx772WgG8EpP4QlBJQzNoXYJt+54JSr+hP3zfbzCxGnHCzf54u4NhO3dGTBkbMuz8CRlnxKYf22OAsEONxAxPa2wYIZuXO6N1vIPRxX9OMyxaiDUUB3LhWHyMIlzNTlJTP7ICN70oGvM5O3BGZ+d0CFbPB4sgmiuB02TkZAv7fopWz+Z9AW06POprreW+I+ubN008hRq+siwa0AUbrKgf8CqA2IMH9Bh6TfWOa1SAg7WZdBEh0zgYgXlPReKbBz1sYX19fjx5LZHktQ2DjGZ7pHAhE2gKtRn+S3tvOzhyvgYAjdQJebgbIMyDgzeAs/dbsHscgQePMwbNcO/Gmp+SV+sK2UHeow+Hbm4EsbQWB1Ur/G0/kxXa2yYKggAHFzwZiZ4OB1bkZSnV0sUK4oa1Indc5pdoiLKf9nB2go20IdkUul8rNMmdggDQz2CnDICD3vBcIsIx/A20BgvzntSQ6cA9sLlBz5EpHF6e7FU2N0Z2fDQf5nTl7GyeTgUDaYoDk8tO2BqJokGk8yZN5ICXFm8iK99lA08izr8YYRyCA/dXkYL7aWP5omgFZ6+8Y48TR00k5E0CbzP0GAsY4XvfhNR8EVNQZAgI7r2YTuUCuEcdCZLPKvDLgC29sU9ob8NKc+Nvb21E6P/fP+oO8zmRmEJp2BIzkmPUxfip1xe6sAti9IOHdHypqx/caWpbzHsTdMgczvgxK2NEEBRQoz5FodMiD0W3LUrCtTGG6fBt888Coxkh1j+OfKcYeg7e3r/ZEox9JW7o401sT+9hREqOJZAisI2P0F1+N8cOIt/pjjGyscg0/bBQdZ9tZDnWFBnGVGWDE6ftoXG0Mw6NfWWvA5Oje1NK2KasBYwL99BdfsuQMG3+t47Ng5aNoZVttR9viZWcH7OwJVBkhs78MqtpCUPaDs0fRLUaz1mHqUXPsdH52cCu5rJxkyMCHG7MeM5vGeymr6JrXChgQtKCRoIjlMivg6zJW35sh+KkFhDzHa2hoV1mBRrOIeC/ZoDTjaiBAJYsyNkdtIhKmAZq1KWW3iLxFb83h+549QGDVBstqj/xXqH1FlwIEjf+ms3upgbZEr04xxqDQ2BkcMWsQso7aEc/a2VKmrrdlL1rkEoOfT7WaTzvxJkPqREstc+GZI0aWwSwKbQr1P0abfUGnljaGIlP+tnZcCgiw7gZWWzqfCylXQKABvTFOF+E1IMfvcHjMr/TOdmnWtgYsyWcAJs9tjWGP8wakzDeduUEB7TGnBjhmuaaCjxLyhUIzQDDG6Vdt6a/os34VvfvRQtIMDLQU1Cz9tCIjsNyTsppzn/E4Rn+FK4+xPhtgn0v95MW8N4DCsmbOnav980ugMAMCIYKa1NmOtXb5fJPjVnbmUs7ftIquxujRQHTVx0ORoxfvMaomyrcxZFl8QoT9xJQg+W996jRwi1ZcP8FAfknWz5UMbZBn46b1De/j+A2wzpMNr6+vh08526lw7GRspB/CCz9ww7qjx17zYbB3CWp93DJabTrACwcbAGD7ndbOI3lx/GOMo28NOGiZ6cIYHUCnfeQ9xIWMt7f//UJoQCvfe5D6DIoaOKCsOKYagE7b8k6F1Mm2cHEhx6WBBN8nMPv6omXIceR92ifKoOnoVgBB+un3DPg/hW3FXQEK054oNtfRkFCxYwgaGkybQkZnKbuhX5cRRQioSN3cYow4GGdtnjn3cwxSDOQMELA8DwICgtmxBnwaD38C2Wg2h8atPUro4yE7+e/fvx+mCBjhcBEcgUbKCM3GCAEaDX57BJDpcRqblEODz4g7BpXvGEhWIC8i8lw05UL50lF4CoQOgH3k9obPtK9F7nRMYxyvEzAgagDa8lnpzSXIEbFBX1v858/r+rFL6/MYx4ss80KpMcbhGsqXsrLNbOOL10bWLdNF/t7e3o70Jm3l5725KNBysL+x/DyGPK6je+GTHzyi7vipFLb15eVlPD09HX1zwG8abNMQY/RFonb8bNuvAKu7wQBTbmSW//cAgkatMc0hmTiPwnnaHHPkMOPfYGHGp3mgQ0wb2/xYEC1lSMXbqq9NEfCaBhzY7gYIZsdX1K7xANp730eSDZONfIu68ttWVY/Rp3dIdtZ51nmMceKY6MzCXyjrEcw7DX2cZf6zj8NL7nN2IKAg193e3h4MLnkfY5wYWbeR7yOg03h9fT16k2Oi79RJnnMscuECKRpfRmfR5VWWjJGcswrWg8iXAOxSmQECoObgGsAyEGC/NbBJWSYSZoarpdAbiCafMzDAKJq6zUVzBAStTK5vCS8NJDUgl+v44jA+QhniFEn4dBBgR+7xHXkGEMwyA073U5aUtfXAtnsGeH95ZqB1un9nxnYFBGbUgACVY3ZPmzLg4DfCj1D560VK5oHGtvHCupy5CP8e0GyXI/cVUTEaL0TZlAmBgnmbKU9rL7MxfzK538aYz8P64zyMHLaMX4s6ElmTl2SKYlQ4gEM2cnbQfH0wz5NiONnnYxwv5AtPTKvnPEFtyuOXGcc4naYI72OMGrEGXNigU4aOUmlgk4GhoXf038Zti2ibLmSscPxeSsdpExxg8Tjlb6BmoOOyLRfaQZbVHH36NbzY5nOs0Gm2LAGzSA6WyAdfIkV7Rhk4W8Kx7HcpfPny5XA+RJCcbJ8zFxy7Xk8QoMD1Av4aIdfu0P9Y1wwAZlmCmY7+FjBglNoMYqg5ufcyugUkMmDteKlkQaPNme0V1h6+ZjzkHO8zWIgybk1LmP9m6GdR/+o4yzO/MxntNZLvlfHvIPfbzJhwztKvHuZ9vt+gYAYGuBK4LSQa4ziSIQjg9wOSvnc6PQ6efNOpps4Y2NxDMJzU6NPT04mjoX7Q+bQxQOPLKRRm8PhIcHgnH05/00FRtt43EAjPdPScKkkkSLqU/tLmWr/aYkA7Q163ClwInhh5t7oip8iI/e3x0KiBAoPg5l8oh5ubm8PLhHx8BgQaIMhYYgbFMnh8fDzKztHpM7oneA6YyFRBe6IgwYCzCux30irw2/KRe+hdmYGG+vY6/xA7v6H4GQ+zaNxl51pmB2J0wy9pbxqw1b1qeyuXxppKzFXnzcBZEWg42c4MUhq0lhWwUiUa2pMlYPtWgGBPGZegBgDotPhaYH4zgGTju2V4nIVh9BGeDAgcFfkbAg8PD+Ph4eFouoD65O8dkOw4XTejn/YEgMGtbQL1jUY6gCG6lnLIOyMmjpEGwNw2Z1n2TF+l7zOdl/s4Vi9BHOvW1ZkdbMBgjGN7QMCXtvlFUwGSDVjYfjuS53/uN/0yGHA57O/oX3iZZZbML8H9LMtG+fgrjQZD5J+OP3rLRy9n3yLgtBfb2TLIs36eZRLfM631LjDQBqidWJxAG5Arp+9jMwTUDJszAEH4VHwLfNbWlpJpfDTnTeX3vY5SmB1IlOSB1eqepf1bnWw356dcRvjL9bN+shP406cK2JaZQ7Hj9uaBaUDWUpFt8d0YP3TAb+Tzi3UaYHG57cNCBImcJ+eY5Nyi5/fpAJmap7Hj/aYW6THD4QiKYPecCKeBj5YNaDalARnKmX1ySUBroGWbe85GO2H52HayH+hEne2knTXZJjhIIxjk5oCnjQWCATvPWYbEx5whoN0Pn5xScGaKNtMZN357gN8iMHBoNjv9wLbznAM2+iAHdzOg1ejsaQKifAo+ZEd47kCaGYMVCm5ExbMCsrwt3mbgY8bbyim6cwhKotic8211z0BAG0Csl2nQBki2kKSNu+k9SPSjqBlSG404qs+fPx85V0YMMznZWNjIJHqnkyUoixEhWCBAZJnOCGSqwO+Rp245Qkq5NI5tDj68pSwCgJaetXNO9G8gwMxI6mjp0ra1vl2ReW33cZz5/fK3t/MPHH0EZXw7A2LD3+7LPc4kzOSc+1hGrnHWLOeps+SLfqHJn2QgEPvFzOkYPxaF55eZKpLH9SpzR9nQpyVDlHuYQWC2gPwxK8B3DDQg0PiOD2iguIEtA9mVbPfQuzIDNCgZQCGjFqPArTq2MgNbFAWiEWNZNJA2WrnHgIbzow1QOEpkO5rzNjmNxvRok4UNrtG60aZBQ+r0NMEewzqjBq5s4P/E6Io6TacVx8tFeYyqaODsrFvkTjAQQ5by+HbBMU4/ZsTymzFr85npa89V8qMyKT9tzv0kZhmYSXA056iO0X5AgI0X+XG0xBSrX9bCldh7QCjHi8eVdZ6ON2OEUzkfTQavM8PfZEEwSR1pGZNZFoXlzHQ/QJZ6QRtmec/sICPstDP9EWKGIr8tQ2XAu5V1IvhwGQT11Lvc8/j4eCK/nKPj573M2KUuPonG/wGktB+5p9nx1q49dPZ7BgwEOB/FwW7HY4fLiN0AYi8/vL455pDLnBmEmWDJ8+pe0gxhbxEHfWvnGP3RKD+ewvbM+FmRjTyP55cDu4EAl3cpojFlpN2ieGYEeM4Al2W3dQK8n0CDchvjFDAxbd50++bm5ghoOCNgI0QQ8PT0dDTnP8axTjqjxDrDK6cK+D/75pdgIjpqHc/jbLmG6VWuxM68a5u2IL+s2+2jvuZa2q78T58nW3cp/XUKmJmWMX6AgJmjMBigno3xY5Ep5ei2xsZzvBsARE7mpd1LB92cdOyt59Mb6DUYMFhp19vJ8qkeA/bw8OnTp3F/f38S2ee/syAEzRzTDo7oB29uToNVB28zsq0g/RYwQKMz+3WEYANh5s9hdkYuK0JkCssCtwFgO6nQoQYSWrRhQxdydqHVO3PYraOboVspy16EOLvGzp6DjHw28HBJIDDG8bw+HYIB483NzckcIcEAdTvlOpNAJ01wEeM30wGWSwqfBCwGGSmP2QCmKfniE0bVaQOjPgMPGu9MSSTT4ZXYjMBcXgyvDXSM7vfv348ev/JLWh4fH8e3b98Ob8ZLW/hIF+XVMoB2KE4nhzcu7vIrjD+abGP2RICeykk5qyDA2Z0QA6Q2VcT/bQqJdRsINHBD35F7mfn0uKUO8T9tPs87Q8V2GmQxzc+6o+t3d3eH8cSxGD5mxPobSOD9uZZrgWb9aODIbQ/tBgNcnNQ2MkMgwHkQptwdsdqZOWXTyA1tEXUjO17z3RwrFauVZQPjslN+jrUIzPfPAAs72c6J6H5PJoLUnHjLDvAaK/ZMuS9J0bkWXbX5Q4OGMY6nWhhR3t7eHr0B0E8PWEdtQFsUw/K9ZoAAg4AgRtOZAddlI8PIzf2Z3z1yct+zjJAjQe6HTzr7ZAW4GpsZDr7O1Y6PToz9QKPtaZdc55XgyVxcgmZBhnVqNlZXY5BZHTpMErOidvrtl/vh021gpD/LDjhDxvH79nb8gaOUS903GKWcwtvT09ORfBrI4JsCGyBw5sV8sd8MUme22uPn9vbHGoZZsEn5fggY2MoKkKk0iAujAhDC4ApxrxrQjOwWamplt4i+OTHzvSqvOfKWZTBZcRuYcSrQ1KLXlM1jNtwNVTfjste5/ykggOSB2bY2yJouUGdi0PwykzhwljkznOfItwGLENPrNGJ8yQmnCDjfa9DDuviIpQGJwQHbSr1rTyK0VdfMYjhTMHuF6wxY0+44C5A2+1XO6dNPnz4dPcd+KZ1umaxZoDNLl+d/rrHT9n0kA71Wnm0FM6szpzyz06yHQaXv8bhtPLhcjr/cE8DXrs15f6ExPDqgiA5l+sQBMzMcrX2zAM4BN0GJp8gs1w8DAw39GBXG4OS/EXtLv69o5iT3NNoozSguvLucZDTavLzLZ3ljnL7CdYyOBFdOZw9xMDen72PNEfmaGRhwFJlzBIF/EtnR2ZC0ax318Fwry5HyGKfzmjw2489k2dO5JjJO5oORLIHAynHaSFHvqLvOUNCxOpNiJ0Tn3+ZbDQb8hTdudGbsh1mfsx1+iZTb5PntNk4+mhhc8H8bay1NPdMf9kkLAlLHjGb9TJ23jZ/ZlBlw4biwbhIEmKc2ntJe6mkWhrbxGpqtkcl9Hv8eExwbBC3hZRaIsU25htmBAA7Ki3pAAPLLwcD9/X2Nrlo6NcKnoZmBAO/nXjeOtNW4GU+t42xMjLZCbM+M7CBbOozl5Z4o2XvJESfLNeig8s1AwZbhYzsNEHjNn0JNV21UHMlkf4zTJ0joLGkAaPDosBl50BhTdgSSrI88pf9SLo0Co5i2wG5Pn9oIUT52op6iMOB1OazDUenWs9lc4OZIiDyyHl4T/pnNaGtDuBg6X+zz8+AfTSv5uv0GqCFHzG6Xxz5T2Tc3x+uvGrl8Z38biI6+csykLNqS/NJWhyde12z8Kjs6453XpB72fcvozQIMHuP0eONvltUln1nIamBIcmBiwLSi3WCAL2VoDpSNak7Yjp4gIEoTxrnwr5Gdro01EaB5tHHLOUYCs7n63N86bGYInUqy02Haioo3AySUAe+nvGaRqK+1Ahq5N8e46ocmp+zz96PJ2SBGhKt1Au5n9rGNNPs1ETrL4f8xfqxWdto79dEA08gSCIwxjsYNwcIWEGigz8bLcmoLI9sbFjMGIycDYfMx0z1nEwh6zPcqY9heImVgkDc1jvEjCmfdlyLaKLYx9sJTNHbaBABjHH+Twr/Wd9pn2wEDiOghH8PMuVnf2wcYwOTXjn4GetqxJoemYwSbBAPkwWB/BQpoc2b8trY20DvGcWYoMrWfcrab43EPnQUGtipYOTLe4ygoStxQJMu18aKiGBD4fOrzNUyFRsgzEEI0SmTXMhdUBqdXWwR5c3Nz9K7qVRbCCtm2hjJ9bIVEt2iFNpujuSTZaXtjhDvGsVzo5FMW73OEnGtfX388n55yOHjpuJv8WV7jywbN4KtFKx4jbmOIDiaAIEDACyWt2yQ6burr58+fT8BR5DQDpNQnBhYEAhxbHnt+7azbEvuWe9N/zLRcgrzuIftNn9kf1B/qh8FVm6+2AzYItm4aGPBNmunvEHWSjw7aqbK8ra35IgPv9KftpLNpzRGnH+gnHIhZXgZotikMmps9z/FQZOUsTfgiHwQOqXsP7QYDDw8PJ4pBhmmUwuTW0wREWzxHYpnnkpFZyJEiB9fKORKwNIdtBGt0mM6h7CxLRiENEFgR2y9ll3vyOwMCzejuke/qnNt36cxAW/HfFsGNcey8zHdD+vnlM8t817sBQ6il9MMznRN1KBQdzFvz2H/OhJF3R4sE8UzHmveWTWF5TR6+Ls6iRaTWvxmQyTXOIBLM00HysU/3O9vFQODl5b8fmPn8+fOhHy9BzYbZGc90Oe0Y4zgDw+kXPmef61g3bbPBSANz4Y+fP24Alm1rQGAVSbM9DYCaJ2aYsiiUQMDv32BmgP7MQCgAYwYWm4+ZyW1mj0n0pyzDa11avXvorDUDrDjEjqZzZwPCaH5nDsdM2+Gu7m00u7YpUVPCVZaglTdDqaHUSSPmCM2Ik22h0Wb72m/b3wME9gICG32foyw80C9Bq+jBUUSLdojIHXUyKo6xvbm5OXx+d4zjdDmPrfqgGUlfm3lEOk3yGGJWwoaLxozjuBmXtj6igRDL10ZppqOuj/XuIQNvvw2SH3NyUGC9pzE9x+78SmJU7SeUwlsyGwRrtDHMOHrB5mwaxNkABzgN+GXs2LlFL19fXw+frw4Z5PgcyQA9dRlUcKPT9wurvODWmVUCgQS0BMvkZ5ZRaO1ox2jzbZ/ZBwEEBF7xk/lPAHvOC7PetYCQRIF74DA9yuyA03wWLgXGhq6yBEZBTWEdqdvYNZ6oaDa45C11rMhgwU7fTt1Of2aUZn1CWk0NuEzWQ8fe6uY59iOBwAo4fBTZwcyejAk1R7caVDNHTjk7/d6QO+vjKmLXQePK9PAYp2t4otMsz8CABtsyi2Fhn9I4Pj09HTmj3JvraYj5iBYNrw0xwQUNXcp2HXZYt7e3J598TmbANsdjkv2Tsi8FBkLU0/DEdrYXPxGwUd7tUTmDzhYwhWxTx/gxzpn6p6M2QGgBT9pJapF1qNk5ptOpZ/xiIAECF6vOsnOzhY4OqGaymvkctsU6NrPfq0yIwX/422t33w0GaJgc/dPpz5yBHasbxAgn9bXrG9lB+7/5sbDa/9k1duaz4+03+1SyPe3bS01hZ0Cg8euy/L8p2WpQXIoM7DIwPcdKkGDg6Eh1CxiPcfx44hjjZNrAEWoinZTFcl2PgUGccKKGpvPNmIY8vRReCCQIDjgena43uCJQbPJrOtgczhinb1lzf0WmBAFe9Jj7aSzZd14Pcck1Aw3kjHH6QqqmT2Mc6ySdYEuLs76QnVmONfBMcio7EepsOoj7zXHyOtsxghADH7c9+5aBF6m6/StaOVwDV4Pb9F9bQ0O5NhDUMikEUwTse+is9ww0JbOjofFsA6ilMi3MWTZg5mgcMbBs7/N/U7TGz7nkzMgMRVpZV/NFjfbwuAUE9ka+jZwV8Ln38Ps7yEYl6bOWKvb/huYNEsY4NboxKu25ZL73vhlwE6OuxgujaBqElEsDzExd67NmcFM3o6SAgOzTHrQ1Be6HlS7Q0efetpCODjD9ScfILzomc2Fjmb5hdtPvUbD9+EiaOZGZzlovqINcPOgP7qSu2KwGxgiWG5jzPtvAqQqm4T2WaHs9ZlkHQRyvayCgAQFnKCgD62uTc+7xeGH72P60IVvAkcc+A+nmP2eyZhnR8diZvXb33WCAlbTUeoTgRobIIJWADsbUQEYDAu2+ZuAb7Un77MlQEAjQkDKTQofBwdLSX61+7jPNtKfzrax27O6HWZ+4TNe9BeQ+gjgI/SihI6qWEWi/Td/ZdzZKkQXHQ5xdfhvST99yXtdGNOVFzxqvIZbnc95vYCHtoTFMO1MuHTRthDMaNsislyuwmzHNNXwawAtEAwQyPWBwEsfAPmLfbNmKjyDa0vBmfbSTJlnOSY1bT21HCT6sa3a+zSG6Dex/glW3oUW8rIeO0rJh/ZwCIQjiMYOA2FA6Va8LIvhv9q7JvsnV7SXwtQPfqoNEf8B69tBuMOA5K3YAj+1B/3uc6Yq2ULqVxMcbbaHb1DsDNPxPI5njBABE7W9vbyeDc9Um8+IBamR5rqzPAQKXNJLnEnWSAyVOywOeTin3cN+OyXWQLDvqha9rutvSl25b2tGiEuvKlq4bHLWozO3JsaTZbdhplJmidbqWPDOCou0hgIujZwagPUHgBZSRE4ERndWfAARIDYiGmgM26PL6gMg+1zojEGq23fUFhI7R10EZMEcXs3YlY4tTUc5MxYbaYbc2G4xzWsDHyZ/LNLiMPUibU2fTFZfJe+2omSnMeU+9s9w91AKGLdoNBmgYQ1YKpkiagqacMU6dmbMDKz5SV0NPBgpbwCHU0uezum1gt6LeGYp1etV8+PoWJSQt6wHpaxuf+d/60de1Nhos7JHFJanJjwsJ7QSaAZ4BTZdvXWlGZ2ZAXD5l29L2s0ei0ib2c5x0+pSgcYs8vp1ivb3973oCP7qX9jMS9zP8zg4Q3OQYHwXkkwL51jzBgMEBxxEdYhY2sv2cjz/HmP4uan3jsduys8222Db7d4we1DXgakfd7D6BHB83fHp6OhpjlHd4ZjtCs8CGtjR9y6kCA06DpTbOuR7j/v7+KLOUNhBEzWwGp7gaJSDMeha+Zrw96eFynN2hb/otmQGuwqVho0Ab6moNZ3TB1AjP81ijFRDYGrxtMDBqoLFY1b8FCByNNcDhqQNTQ500DkS3RJcZeC2tZlnMaAYeKIMcp140urRBTf0tuifqb6noMfoX7jynnMiGKfj0g/VsjJ5qbKCKxrw54Dj41bhrY3PWnzPjH4NKB0m9jfFM2d+/fz96s99svtogpkWjjKQCBDI98PDwML58+XIAAHzJEF8zbLuT/mOUx+Pur0vQCqS16J/2wufHGCc60vSygYAGOnxfrmt2m+Mq55OZICgnhVeub2k8NR9Eu0ow0Hi1vtEuBAhEjyPXOO+29qbJcqsfA3wtp72Z3aavzlxu0W4wwMqakzD6YkfMFIT3m/amtmcdYSG0/WaIiS7DR0PPW3yYHEUTANAYuUwra3jaUpKZA9qicyL7PzkLQDJYzD4jUA546s7s0cOUG8BAAxznnJQ5v4du47BnAWGITjZtyMdLvDLaL8ppRpP64aiGYIcRxxj7smiRQ+5z5qtFnnymnvprIBDQEWf/8PBwWCx4f39/FNFlLUF4Yt+9vb0dZQYI4LzocG909avJ9qw5TMoq8o3M3d8tamc9rtugIPfZ9tBGzux5+tC2sJUfB5k1KJYHr3M7nREgOLDNNw8NdDK7RLlabyyLRg0UvL6+Hr0bwIHmKphb1ZN27c2O7wYD7mwLmxsXxNmZroDB6jwdOP+HtozprIM8OGYKNoui7JSbI3GHEFC1QTRzOimfdY1x+tIj7xM8rECEZTEjG9UV/QmAgU6uRZ68xs55FiHODKzvmQ1Er8oOqHD5/M+6Yji8OCobVxLPADPlwXcU0CiS/xjU8EO+ZtHoary3aK/9b0CAYCCLBDNV0F6T7D6iE/BUhac5mgw/kppDHqOvTcrGIMzR8ip6NwBs4IPlh4/26zbYGRPUMuomvw0o0xdwHLqt9k9uK2VqwNF0rgVYHgcr/0UgxP7bsjXhd0UzUHgOnQUG9kTIzbnasbq8dn5W5hgdCPi4Ee/eqGtm5PfQLFXj/0bvjZeGNJ0pGOO403+m/TPaK4Pw7Ov3AozfSXb4M+fCQc/I3WVxi754NTdXw8+iShqkth4neshvHDiCD9kgJqKyk57Jx47ZANTTer6fbZlFlO16gzSn6Hn85ubmaIGgHx9kZoDZgZncOa1D29YWI15ad000/rQnBmYOZDiVaDuT+mY6RvBk522aBQxvb/+dn599m+Lu7u6wlsTAfGbLGhjI5qe02Ea2gfzSqbZx0zIR3Nj+Fizk12C7+bXVuDOtgPceOjszMMb243fteAMCjnzOaXioIfcZipoNrK2Od30rgdOAuuN9XWunEZ4BACOBRryXCwtbuQ1k+fyMz0Z7AMGlqIEjR8Bcde7Fby6HZWTf0X7IkXK734ZhC+k3w9gi8pSxB5RZJnbaTlXOgIH5ocGl0WzymAGBgDQ6ab5Y6MuXL4fMQHtc1LyNcTw+wu/Ly8sJEHBE99G0yno2/TAYaPKmfjRA0OrJPbRBzWa6Tw0iQn5cluCZ0woGJv61bnG9AMGAZcrxzS310XamTNbBNTB+q6PXxZBX0yrqn/lS9i/bsDU+V3TW0wRbBsVRdUuvGwhYmbciGJKBQDMkzRHvoRUf55CdT/a58ITzUGN0QGDiFIGvoTI3HmzYqVwzQEC5zAxTzrf99v+jaKYPNAiO0ulMZilV7rN8r0JvTtrlWJc5jhJN2eC3yK1trbxcz19H9E7f8lpSA5Vb/K0AAe/l3L8fF4zz53cH+O0BltPsQByGjT7XH6Tclc7/KdT0dDZN4HG6p33UAev2e3hsC/oyxRX7aDDgYGsGNOmwUyczKAYD1McxTqeScl/KzWuMn56ejl5n7CdkZgvDPTYp3z3UgIB9ATMme2g3GEglVIhmaFaMNyAwO9eIxqUNckdkTcF9zAOhARie430rfmlM41zsfPOcLb8Bvpdc7yxKY1bAyjJDkTOQsLrWx7eA4yXIfeLpAqaWV9mBMU7n8EMunwMz9/H+psM5z/S1U5COnHkvy+f7LWwgDdhnY7gBWhtN67rn3PkMtbdEgmxbMjVe0U1H7dcNt7l+1kGgk7oiEz7q9vb234WFj4+P4+vXr+Pp6eldY/RX0CorEFrZXa+HaL9jrMexA8F2DWlmXzwWvHD69fX1aFX9GKcLbA3cnT1LfzYw4GAr5WdKwrLiGKQNjcMPEODmDMFMvls+k7JsIMx9wYzNe4LfMc4EAyuyI/a5n6U2b9QQY67dW3/LNjhyI6JcgZXX1+NvTbMMpisZlWc1OGnmbGe0x9ka3ba0r8s7JyOQ61vkeWlqetKiYAMER/cewIleOBAdzTjyd9TejBoBGKMaviQmZfK/Df0KILquFi2mrKTJGem063m8OYjIJkb//v7+qC1pX67zkwOcDvA3B/zYJ+vzOdqHGHw+SRIw8O3bt/H3338fPnN7CZql8luWg790gI56ZzbMY3eVrWw8jtGn42g7qNcGlrRNBJENxFOXUo8BgIGv5UdHy8dMeX9W+YeP6EsyA9++fRvfvn0bj4+PR+BglmmgnFu2jrQV2Lb+S3+wD/fSbjBAo5Qt8yJjjJMopu3PsgJ767fCNfLcUkOUOdcQrMveymjMaBYx0fgyJRYFasZ2BbRy7QzxN74ip7TPZbdIgMe2IgX+/xMyBE4Z27iyn2x0LCcaVzrj9giUI9FcO9MnEp0ZET+vTfRs4MIyPW7JfzNY5iFl8Xrz7OillREZpx109C1j5ccHP3/+PL58+TK+fPky/vrrr6N3CvipHfcnMxV5eQz79fX19eDsAwTydELeYcDHHv8kmjl49v+eN5z6XoPAPYFQC8JmGYcxfvgMA+Mxxgmou7n5MWWUc7mHwKFlBxo4Zl0BAQwKEuFHdx4fH4+mFGKzHx8fx+Pj4/j27dvJFxA9riif1dgnTzNZ83FZBiO5dzUmZ7Rbw1u6cdaYGYLcg26a0s2mAXzMzn5VRzPUEWB4+FnnNXM4Yxy/K4DKnGPtZRa/mmigjVxn+1awWXTo6393W/bQKiIK0dhwZXvSiJnasaPM4I086bz3ovqmLzR45tUp0xmoNTBxJoogwcY7RqZFmOnfZphnoIsGN0CYXxJku5gRiHN2ZiDPf6d+Z2UICLjAMHUlEnx7extPT09HwCFrFfKEwqXI4zPHSKuAxUDQ49R9Tt0lCG7X8tgsi+HggfeFN091sc3pP7aLoK8Bc7a7rZXgeIitJejguzr8aCEXDz49PY2np6fx7du3o6CO9TWZ8Hwb0xxPzRflfH75GCZ14xwfdvajhRQukRcrNhLbi1DojFfkNF/ubcpoA9MMJ9vHAUTA4zamTArec80tUnF2IAMhaVIqd1OWEOttzmaF5D1FQIAyK491bWUF2rFZOz6C0pd3d3cnkYNfixvnZIdG3v24Erf2bDTvpWG2weDWohgbZRsq18t7OWbsLGcRGu9rOsFxQSPuLILHa6vLBpDvEggQ+Pvvv8dff/01vnz5cuKkuViWsok8CB7Sv4waHUFSRnyd8aVoBqpXIGCMfW+edB3+30ABr7FNbcCWNq/V16Lg9G2mA+zM6cRnDtPbLNAkr8ny+ZPjaQNtCDMBz8/PR4CL8muAyH1q0O5z5HkG2ptv20tnTxNQqK3hYZYKwV87Iqaics1MWS20c8mOembg3JEGAgQ9e+o0CHG6aFZOW20bsrMniDBQaOdaRmAmj/DJwW5lpi40o3ApIEDiQM5gJghw/1o20WvrMMuOMQkR2I1x/NEhA0kanlmWa2aQ2aboefgxEGjbFngzKOA9s/FAkJP7CL4IwlYyT4TO9QEEQObdYIBPIfD1yOGH8puBlUuBAcq2BUm2wbbT0XEeCxnwWp9ZHuXcAEkLwFym7QfbR8p9tn/JyvE9By2r6TbYZ83Os276iuZ8U94KCMz6LPW0OtkWPxqeflhR66O9uvuuzMBs4MyETqZmxpTR6Yr5LWG0Ots9q0hnhu7YphXCnBkPRhtWBvJAWgGCPdTqyW8DDrP72xyV+3rmWP4Usg7TITFdbP49d+rpHpbN6/i8s42zxwiBQJsHt36R9jorj4NmDHnOjrmlymdTB84gEgxQ3tYfyyEbpwgCCjiOVjrOsmLgOc75rLh1gXxdgtyuGQC3w49eNiCwclI8xwBipV8c8y06ndl2A4KZc3QGIGOL2VPe32Rof+V6GzjnVxUbGKD+2G80YGzQwrKjp2lfgEDkYXnvdfDngNiz1wwwkhpjnAx6I6/GXABB7mfjjPQb6t/bQEYz3LfBWClJQ9176sx+Q3xUrtZet8+P4LD8WfruV5L5IYjYqtuD4JLkvnSK2PrL6ID9wpfQ5DjLjdHiPSmfc4q8JjpBB8i1C+GHv84irEBoKPppHW/AkOOmPWufyKjJ1kbPcrCjzf/VEwTZ/PEhj98WdaXtdKIBAEn18tGwxucliOOsZQLHOM4eGJyyDO+HWqRPvZ6N8QaWzpXTzO5a//ikCYEBF/7NQG0D7JaPj3kdwYr/WXZ3lt3zfwaIq6y1693ii3q/h971NAGBgBVuj+NkIzioU05LcbTGW3D877me9tjRqq1uw94pgbbPY16lnnoih9RNuczQuR1XfmdTBo32XMPrnFVYGYuZHC5NDdG3rMAqCxBA0IxLrmEfJ9pkOtFg4Pb29vCRnOgEgQd5Mahd6XQD1JzySB3WXz4BY0BC590irOgKF+tFZxoYINDKtADfMpj/zgbwMS/yx3HQwH36w2+PW2UuLkF2lARVlPcscJk5qpW+tOMrG0F708aCr0t7uM0yrQZ41B/W2coltbHKe1owsJKHKZkK85/7m7xn49dAwVMFK4pM3mN3z3peZmtQtA5Y3dcYbs/cN0e4AgINANiwuw5GiOTZaHvGdyuzHWN6q13XFMNG2g4r/Nn4zVDpLGpYoU1HjR6k7ZjpUsDA7XVWgJmtZjwtR7aDZRAwsd/e3t6O5hZnkWd01S/RyZy3P6NsvXCd3Dzn2/SK+wTTidRbu8c4zlwRVLEeAir2B8evU6YBA0zttymXPNt9c3P85UPag4xtRpReNOhtT2T4u4l6ZQdjcGNwMAvKWvaSvyk/NLMLzYZEvrQLoZkzs31tZZJfjp203cEU5cCyt0BCyw4aXKxspOVnHaLsmfXxOGBbw0PzXQwkTSt73ujsNQNNuO7EGWJd0QqlUvG3yohS8xGj9kKSkB/hs1NoA6t1OA2NB+oMJLmMRr5/C3GTty1EaSAw463xtKLZ+UtFWLNIJcS+3prPjvGxzqSclq5kStpPLzDC4bxhDFzAQJ6GyEZdbyCA6xUYZfG6RMINmMycMtucOVW2n6DasotOkuy8WQ7HYsp8fn4+cgiM5gkYHBwQEDgj0N4atwJOH00tanZkm1/2Ac+FVtEpyQCfx/if5TBws4N12fltWeaU14ImtzX1eW1EG+8rP9XsPeWysh/N4fNYdNDlOXiYUau7gYv2/xybe/aHioyked7XmJmmPOcOspYm9ZRA0okGAXxunEpqZxDjbWUOv3a8e9pjIOW0Fp0QDRznZF2e5ULFsuJ76sAOZE8KqtXbshizqOJSBrUNNoNCG6/InvoWB+h0cq4nGGS5LSXdnHD4st7mNbx8H3/m019fX0/WFyR172mF9EX2yX/4sE6nzGQqcpzAh6/qzdhx1E15sK0cu/k6IMdvnv1PXV7IajDw/Px8+PLd58+fx9PT0+Ea3t8WCTqTQXnunXf91UQdDJ8rcL8KPmaZoJ8hlu20/cwe5HflIwguCLDT524D7XqTge0d6zMg2AoeXK5/rUNtatr+Mtc7y2t7vgUcZhmkPfTuaQIKnYh0VvFehjw/m3vpuHmdnRENo99YRSFZKRkVxnCsHskJLzMjkfSNZcNyQ07xcUtZvscyI/qkY8qxGBXXn3o84Cyn2f/IY4/Tv2R0RZr1mfU5W95EZp2x4WFUNMbxQGzXUx8iPzpnZ3b4GJwNfK6NU03fOyJZOTX2H8vKc/58LC9yiZ4las+5WdaBgMSONsc4HtleG0fbo+g112WkvAAWvmPg5eXl6EMzrDMUIHQp3fV4bCDW5EBjjD72PEUwq3sLCKUeguFmS3itHe8KwDjbasefcppezPjl/e3/nuAoNtMgy0DAU3qpy0HZLGsz+78XoO7V3bM/VOR9Np5RUfvd6qSW0p51DOsNCCAQaJ8yDTkl7C9N0bA0EEKDRuVkyioG2WAjPLuNzgyQv5ZCo8yMFmMA+Zxqoi4rrwelB54dGmXh/qB8fO/svo8g6gof2Qu/Nq50ZrnP6wq4Ep3OirrmPltFCJQNHW0ecUp/WldYb/Q92QL2d4so7LAjj/Cb6Lo5c7aPPEUu/pqbbQPBRnhu+uG57Le3H+sfCKTsBOjcCXjbm+So/84K5J5LUexQQExzIGl39JR21OCUv6HmLBhIRHbtuhmIoE5bZxwg+b5VmdlPn3JsrwIZO/oZ8HfQtQJTTcYe87NIfpapWFGz3W0KcNVfK/qlCwjPubd1+gxF+n5GokZhzgg4xWcFaKuHHak3Hmk0KXwjVA7OFmWGJzt/R1UNpRuQWT4kzr9Zxs5GhI8Am61IxEaGmQYDl0sSByedM/sufUYgRQNiGc2yNjbW2ehoHB3QePLe9EGcUuuDOP/cR3DepgpsDD3HHJk4U8HsU5NFA9rPz89HqV3KIE7H4yrXPj09HTnxpovWf4KPgJrUHwCS+5kJsP3IWg2P14+ktCPycT+b9gRdWzRzyHvqmmUGnPFtUfkeXmxTZ87WZbqeBiZnbVzRyuly7NHGeJyTx8Zza5NtreslmNurD2evGTDje5lflbuFLlnPSvANGPh6G3QartkUgesZ43TlKActO51RD52GETzbysVf5IX1Ggg44nX9BE+WI2XhBVV7BjbLs2M1iLskkUeDxeZo7CzGOM0qMbJ0nzgD0fqjPT3jCOj29scX/bLP6Drp+dRN8NlAmesj6GQfJ9KMQyfwjQzi6BsgaIvzKHvqSJy2wYCjdMszlP+WH+Uxxjg4eAcIuS6ZkKw7oHwuQYw+CUypNz87rracvzNaLfBgv6RM2mxH7M0+NGpj0vZlVU4Luswfr2nZabar8daCMV4/80PmI/XO9I3jmfV7HOTcuaDw3WAgZCGEocb4HsdgQ9gcke9lp9CwEyDMIjsuCHPKdKZkewYfjWb4HmMcIo3wRkUwPwYC5oGGkhmQhsJ5D39zXYx3Przx/Px8WLzlzAHb1MDgTH6XMqhjjKOUL1PUnl6i/oRfThmlT5iGznmnlO3YOH3z9vZ2+Dwqqcku9dze3h6cssEvicc8XppR4liLU075T09PJwA4/d6+395e5PP09HTQm8g19YUnTwfc3Nwcnhxw9oZjiO2gflJ+5JmLLg1cKdPZI5wfTZbZGKNOW8wyf3sp7WewYZBgh08ec3wW2DFIOScSb5mB1GnA7ftngKGBgMYPdbHxZr/DYy1iN7Vgd8tG0q+2/mG99kFb9K5vE7ABs46lA89/NyYN8P0zRXFEnF9vjvSMuLaAwAyZ7U1zE70y3c4BNwMD5Ie8u63hh8+BM3oirymjPVnBLEY+yZnvc9/d3R3N+zLyYz9ZkVt04LZ8JBF8tazATCbU9ZYRIBCg8WS/ur9IOc5PgbeopxlDOrr8N/DldS1LwbHCDAKNCTMAKYOL8pwNcJaJQJMLW20EUy8/1kWAHGAQEMKFkSnD6zpCzHK8vLxUQECZmX7Gyf4s0aA3B0Njz+xByFFks2HONBCA2MnZBr+99a/ysX720SwiJ9nBk6fst+s4Bj1+zVNzxCG2ufmZxu8Yp+/IaXKwPXGwu4daJsB1OKDZQ2eBAQ5kptE9+Gg0OM9o5k00UlGyhgD5CCENe1sfEKLzz0tK/JgXjbvvp2BTfxssJCom29XQqx1NywrQeDGq5dvaAgxaxEgZ8f33oe/fv49v376Nf/75Z/zzzz/j27dv49u3byeyaoNphoT/FDDAt9nlozXcKMfZ6t84OX+m1JT+4fvzc9x62J53p0O0YW+gpDnXMY7BYvbdJvYfjewMEHN+n/XPiLo9yxjNxk7uS7bq8fHx6FXEY5xGpc2wcpEixx/Ho8EH66S9+2hiEDHGcZ9tZSxaoDUjZ0deXn4sgk5ZtsMN+Lr+tu96V/cYxMwi/2TODDx4nR2xy2D5LfDib8h2r9kN6+MMPLdxtNXHvocgYAZeZvSu1xG3LAGZIZolILBgWgd7YVXqNDJlZNBQG5Wbg9zvIKeDI8BZodaWpvQ1pNkKVSupDTvLozI2INAcWhwAo2IujnIa9Pv37+Px8XF8+fJlfPny5QAIYhifnp6OokGCp5lByDnPvX8k8W1+/vpd5MY3/NkAOMJN26nP1EdO3/BzyLmOixOZ8mO0TrnOohIbMtZvEMB7qV8tYrRBTF0ch2x706/USyNNvmkMWyRLBxy5Z9qKTp9goE2JcGqICxlTT87RvqWur1+/jsfHx03A8zuJwMs2z33m7A4DkFnUmLJyPNdSJg3kGxSE3JerSDr7DRjaETf7br/Q+qg5XOteAyTeWlaaWRHb9Jubm5PF4gadDAy8/ii8N5s5C0Byz7kgILQbDCRt7YjQKQ8aiPyyoyKcpkie60ijqYyMeBkB20hRMTLA/Q5yTw3sSdkw5cjV0DNidsDREY0dAYGJj4sxym3RbRzb7e3t0XPhzCbc3t4eOb9ckygs34wnICAoiNy4SpsKv9UfH00Bj9zyIp98CMdfwgvvdMZjHBsXZkTi9AyM7YxpQEIG1y06Iciwk+Yv+eZmkBO+qc92HNHH1qfhm2M0ayD41kSDnrTL5WU8RZ9S78ywsR9SpoFX6uWXD/MSoozFgEKCva9fvx5tzhh+JNEhu48oezuB2W+Ifey6SHFg2V9F8ucQ+95l7AEC3Oe4aYDB00f2X+apjTcDL/PADAHHhdtHPqJXAanmd4tWAdjq+IzO+mohkY2drZ1oE7L/OyqxsXIn8No44DZf1SJvoi9PDayQIpE0BwZR+AwBU0Fo5FpGoAERGlEucIsz48tg4tAICjgHTjBA0BBjeHNzc1DMv/766/DJ2Pv7+/Ht27fx9evXw1oCo1pHyM3ZeaHcRxJBgKdVKKuW7WFklv5qb9jjnDSdu6M462aih+hiHGqOGYjYGTRw3jaPzegdp6VSjoFAzjEgyK/lENoy6CRnAzhuUpbHCK+N/OP4LfMAvRhdZgozXlLu8/PzQd+/fv06/vnnn6M1HR9Nbm/axgxqs5E5TnDZqMk6xyN32j4DLZIj/gZEZvvt2My20xmv2ucxkOt5jnXOwHfjg+PCZTuoJRBmANjWH5E//lpuBiMeay2bs0Vnf8LYA9/GKDQDBjNyY6nQJHZQHGOLvmw4mB0wMnPqyHyzkzko+DsTfkOMXBPgDAFl0AxQc2iJ4gkGmCaOPJkOd0Yh8k5kFKDw+fPn8Z///OcIQHgVOaNJR8NpHx9/+2jywDY4sKyaLrcog/u5fzYexjgFuQFoM6fOOVuC0vwPUc/TXmcPVgCZBq057WZMWS/L24q6WrkGLNF9nmvRE/sgDpLAg3of3Q2gfXx8PIDeu7u7Qz1ZJ/D//t//G//5z3/GP//8c1gjcgmiE2EwxozLz/LWApzUyTUiITpCL+R0xN/6nfZwdn4GJmhreKzx1/S+XZ97uMV+zYDsDIy7LgL4nKPecoqaAWmTufu6BaJNZnvprGkCKmOoRR4kC95KsooaPN+S33RUWwVunjh4GBHN0ke83/zSIBuNrYjlNvBBQMBy/SyxU91x5vnOOx04I93cm1Rpu4crxPnqWW+fP38++e47+yjXMHJ4eXkZj4+PSxn9TmLmyWDAGw3dzPERyEUneM8MEMwQ+wwM8LyjE7apjSUDAte1ctZ0pG1M8VijZpxtzMxbcwwcI36bYYAreaLO2bAnm8bprsfHx8MYSL8nMxAw8PXr1/H09LQroPkdRLkYCDT7SFo54jFOU9iObJkZ4D05n6mg3EO7uLKRzb753AwIeN+gZC813W9AIHxTdz2Gmr0gb3bi9jn2Basgghkhyto2jsf2gsWzMwMNXVFIzVDYYbCRMyDQlMGOKZEVy2kd5FTMCiU2Q7niywh2BgzsQFo2gvXO5ERnxgVxMWr39/dHkS6nVQgCMg2Q+5JeDRigQ2d99/f3J09hpN8JGGiskm24VHTVQI1BgbMZt7e3h3Q9sxotAljpCgFS5EEj0aIeX9MifsrbAIzGwKDABjtjKHpInlyHy0w5NMi8JzrDc2xL42+M0zUUfvUzQQBTq80hjfFjmqhNEzw9PY2Hh4fDtc/Pz4fpgX/++Wd8/fr1aOHhR5OjzPDBqaWM8aaHswzrGPPo0dEnp63yy/HBfm1O3/+3bL73m43m/pb/aDrWeLMj9RRBAwT0MTzHa9oC1BYIMgtoPg0o+L9lUsz3Hjp7ASEb66ihEa9dodgx1i9IaZ3ELeTOsvPPNVaoFpU19NjQrpHZrH1btIqoYlgDABjh//XXX4eUZ3MKKYPrDP7+++/D9AJBxMvLy/j27dtR1iHlZ3V1jKMzA3aykfX379/H3d3dRVOtBl0k6hWdGw2pjUuyAXaUBhhcozFLj7axk/IiZ5IzGW3Kwy9SanXNjAR1mG2yTvH6tMuLn2iIaQBzjuVSjqsMJA1sW4NjeVJezu7wUc4xOhjIOplLEjMgkaXf2JjrVtSCrBk1B2/gT6DBdVy+nvW3gGovT608A1W3lfbcTjW08imURwMAnm4mr60/ZhnoRg1AOUNnYL0Ksle0GwzkpSNbtBeFjLF/kdFWtBNytO33B3jNAOdrHJWRjM7tMMhn45/ob7WytUU4lpWj9DjsRPl5O5l58T28L4AgDttTCX///ff4+++/DynTNk1Ax5j60qZMEVxq3UAW5iVL4bfmecU8+8OLe9rAb2k9Z1QMBhghUxdyvfXQTpwAMfvsc+pT6vGxHPf/trkOG/Xo+P39/Yljjvy5IDH32XHwHi5S5arrZAg4hpusaFvYB22NSMDd09PT0YLZbJfODLif+HpqjrvWvwaze+slyIutMxigLlpGzUHznG24swp2esxENXCe+x01O7M2k8PKgdL+Ewjw6TTKfmYb2hg0iJiR20w93+NHt+jsNQMmRsRj9JcgkMw0912+o+0GClInjbc7iIalpebzO4vQzEN+2weRVgZ5hgIph/xvMsmxFnlmuoAfMjHydBstVw4oKlrK/+uvv04WDzJ1aSPM6CXp2EtQ0plJNWfdw9PT05GTsOHZ0olEQlyg1p7mYF/GkKUfI1+WTePaIo7c6ydCrIctQ9Syc47wms7Ziab9ATMGPlm9//z8fHikz6/7Zh0hTjuxH9Lm1JVzkZPBc8hZA9oIBzgvLy+H9wvwaYK8eOsSNNNDOj5HsjNHMHO8oQYeDQpCnjawo85441z+LHKf2f8ci32Z3UtAQt2cZYoIwGeUdvAa2rsWZLquLQfvINDkzKTbMZsmcB17gezZawbMrFGrGZvNgxi5NUOU/0ZzNBT5dSagAQEbha2U2h6aobKVYdpbHtvY7nf06e/NU9FapNechcEA781jbzHyTAm3CIZPEWTq4RJEMBD+M4ccQNAiFa+03yLrLjNANK40Ah4XkXMDBSROE7C+2TZz9ASYs3YYiKd+6g31kJkYZjsi06Zj/j+LGlcRj8fdCsiNcfx0T7Y8aZAtun5JMOBsZBzkzc2PjzvZ7u7J0M6CL9oM8sA+SHDYovVZAOh6WsajjSED9VzHMdLeHJr7Zs622WnrD8etM4TO7nqM0iY2vaW8ZgCZbZrJajYmwtOerMMYZ76BMM4/DOxBJmScjoOKNisrx2KoYkha5NDQGv/nGjpUK84sJcdr6TBnMgpfVBI6Zg42KvoM7drw5t7m2Pk4muW9MvKMkI3gc8xvcKSzpNOMHNMHnDe/FAWY8AmLODE6X6fBM91B4EPnlv9cj9Ge6uCgngEM6n36PiDXK8eZmfJbJ52dskMhMdLm+A61NC+zBbnn7u7uwFuusR5zAV94CxkkNf7b9AmjYgNgy2sG+KgfmQbzW0ovnRkY4/g7BYyWc5zZAtNqtb0BpZ1TC+hcT7I0BCc5lvrZDupc/jfnxmBxZicNBgicWLdtp6P4BlJyTZsm9LFZsDfzKStq/ta0AgEMNn55ZsCKQAfDVEY61gJoQmoZgXaspV6osHQ8bX6XqK0Zi4Y8SYyG7IB9zawO/5LYFhpfG7AGBJpDJ2KN0rf5Xt/P9pnXRCN5wxynYgx48hvwRgR/CeKgcGovGyNb92tAAfuI1xAMJGXPdrPfmiNkPSyXeukVx36ttHXSTiRk45KyaaxJBngtSox8eM8MfHKqwOOaPDMNTT1iP4xxGiDMxtcKEMR+zHQj2yXIDsZRe9rFLIyzgSmH99FmkyzDlXNLP3K9QEAby2tgkg4quteyDI0nZzJblpO6b1tn5zgDO2xvyzI7O7ACS+8hjjPyYqKsnKlYZUZMZ33CeNbYKAYR12xgusPd4HasOUobp63O4rW5n7+s32TlMzol2fA6WjFFFjPjukKUVnIuPjMqdJahDSBGwpRx7ufqZf5PyrINKsq96cNHEHXAg9eo3tGHwZad9s3Njzc7BgzwzYYznW1RBJ0aM1WOftnfBjENgM/6k+2js2iRUaPZmMg5tznEOX7Wy2iX5eY3TibOm1Gb7yO4N+Cl3rON0QcCg3Ojq99BLZuTtlF3DVANLsc4zbza7qzsYbOZBJP5TcAwxvFr7PNrXq03rc7wzmsaGHDA1AAP+ZiBc1/DALP5l0bNmc/I2ZhZGavxGF738mf6bXnbhu5IKyc3xrFD8aB1PTbs+R9FtEBm0YOJipVr7Dxn7WW0vAIeTU6MglxnU26nY1l/DH2cmQGBHz9zNMEoj+eenp5Oro+s89tSr5egtMPTGgSJNnCtXZEXU91ewJnMwOxbBynL9dEh55oQF0MRDGTza5U5ZeA62T/UM/KxGquuO/V4AaPLchnODtAoU17RI4Lc1N0AFXnktVzc6MdvyUPLIrU1Gx9F1E+O5Qa4OV5DXuSZ+9p6k9ZXjR9fP8aPJ3ZmgICZngbGmE2mfd0Co+3/zLEyKPFYMBie6USbfua9K75WZFDSbOoW0ca1rPgWvRsMNMRJsjGdleFrWue31aS8lo2eRXszh2yeWz3hdeWUidab0lkBXeesHqJ7Gl4afhq8GHamChld2ni7TeQr12WwUu6UY8rn/GvmWR8fH48+cHQJSiRKI0Xn6OiDYCDnbKzG+K+MCAL88acmM6P1BgrCh+81QLY+BBg4SmpZEV6T8mcrv3N9A7MEB9Sz29vbA/jz2DMYIOC0k8n14YP8cx1HAxfUa4MkOiIa+qwV8FMzl/y2RiiyaVGtwUADBZxuidOmnDwOmJG1fePvGMfZYQKCyDr1UPeiMwYKTQfIV+qbBWS2twwOW9A4i8hTJiNtP5Hme8nfnv5sPqHJdst/OQjzuoY9tBsMtJQTO8NpmT1RhsuzgZwJysQo3I5/lRGYOX93KBFnAzlRQiIwG/w9baHDvrm5OXL4fGSNW3PojIw4oOm0uJ/NTyNEmbL4yxkDyiTti/HkI1r88uGliIYhgIADZozTtRg5Rj3lugquFaD8mKL1wLQx8aAnefxQL1s0zo9OhWgQbMCozy1i5jhumZNGNPgECr5nFflZ9pF1HAz71GCb/WQQQFlRPnb+bQHhXoP6u4lgh0CfWRPbAYIDR+WURQMFrY/aMdo3jxcDAI6fgABOMzg4ccTPrFC26AWBozM7Ppb/swwTdctZgRZIBIiEV/JL3uyf3uPvvP+hYMA0MwYNFIxxiuhCdD5xqHQuoRkiagiZkVDKnvFpPpqho1E2El0JeobgyUN+PXibAfMxDhyW74wCDUeTndNkY5ymEdt9qY+DPMY1737n548vFV0xKiEgCHDJYGfkZEDA1c9xMknP8+NPXtFsoNoAAQ1zi3jCg/WFG6eHqG8t3d2iGYIBg8ymCzM+7ZgbcMl1BgTcv729PZrmy6NsBCeO/BrIiRzym2wFbcT3798PuprHCaPDfwoYaGOX8uM+szRjnAY1ccDtd4tYX+OLDvHm5scjiAYg6d/2oTA+3UP/wTLCcyjvDvG4y1SlXzTGR81X7W6ZBC/mpWx5X47Hp5FmvmGWafDxBiDSZtr0c6a3zgIDRvZkeOY4eN4R9orY2D2IaSZIO8I90f5sEJGIUBvNOs/HLFMbTqegPT/cIvkmaxvvXJvH7ULMDpjn8BZZs8zUT8cxAz+XIDsNyosryFsWIOTX/bbsyswpO9WYt+jRUDhqIsjKef66T10nQY/fvplrUg7BTdpHUJo54fzPy5uohxlnlCef0+cjqQaUs+jMREBgB9HAUlvHQJtCXh1Nka9LgoHmSBq4zzlHi7SDKS9OgmW1wK21fVY3iSA3/2kzPTayviC6RVDdgG9sDsF8C9Ri4/JYa8sKsH3m2WCeAebMcYePBgLIHx31e7MDbcwTDLDft+hdmYEZEHAE3RChI5w0IilVNsqR/owH8hKHlLJybHZvAwIz0OOB0/hqtOca8xcD7YVPfrmGld4Ow6m7ODxnFaj4LN+O01Gf+3mmeC2K/ChivRwkNJpsIx2GdZtAoH01MmCpAQz2U35ndYzxY1GWI8C0ye0K0Sj43RCO3JnZoX75rYZcKOnUe3vVskFI+57F1mbj3bJYtC/MKjiypFzIp4ELo8dVNuWStCeQsm5EHoxYm22L7m/VsQqwWC+pZR+aTU3WgNNtzBoQaGRhKfub45v965fStWBlFYG7/aafceI+b4CyxZftGsv/5WCAiOm9NHOyJgrHxmtVJo9ZgL6utWc2HdB4c+fY6aaMc4EAeZltBAKMNJkpoJEMf4kI4ojoZKhMnle1ko3x4yUmXGDI6QxuXGR3CaKDbdFKnFeAkLMrMRIpgyDIWQKDMWYK7OjagKXeMqJzFiBE9G9D46wHo/KZfBxZ2gHnGp+nHnHRHX8dcbu+Jp9ZQOAsQO6nHBsoYNmWD52/je17x/HvoBUvcZT8HeM0vW8AaofasgSNGqCYESNh9xn1nNMIAQTMBtAW8j/5Tv/S+XNMNGBJeeyhmZO2j2iO29e6T8mXMwgei6uNst6is146RINxTpS3imhybHYf6ye1BhIEcD8Oq9XZBsCe9jSecsyAYNWuRk7tt3Rn6oqiPz09HQ0wPnfOAULla4tqEo0yTce2mXcDFYOA+/v7A/i4FBgY49Rocd/RIoFR7rUOsa1+4RD1Y+bEU/eMFxPHnstIXS6XEbqjcsqEqdsY3JZNsz4xCxIeqEf8oFBLyboNNmL+b2fBtx7OgAIdieVM0OS6XNaliIB9jFPb22xJ0z/fRxsSGTErkL5uqW7bXpY/48d2qNlzgxCDmub8CbqbrfPUz0wfCTZmbeRxA3bW2bLaTbf3ZJYb+Pf/2ZhZ9Umjs6YJbES2GD+33HPOszOs5C26mvE5Q8Kux7zMjPYWks65LUBFEEAjSD5i7GdZgzYtQ8eQFfX+CiFTxC4zvzNESycZIMDBeAlytD7GKVqPPB3t5j4DgfRNAwO89+7ubjw9PR3J0gCB8mWU1AY0j68MDfWjpefZFvPR5MLFlTzu6YGWXie4aNGp5Z/y2H7K3KBgZVSbnEMGUC06jKO81OLXpivNsW+BTjsFHnP5tp85HmK/z2TLevib/ebUGjj10wh+HDL3OJvHemYgf489YkBAMMJz1MH8EiDvAQczGW751C25nhPk/pKXDq0UkOdXDeeAtmBngz2Gc5baaUiY1ICAlalNN+T4rL69A2MLEKQsL4Ayn1G4OHii5cZnnEM+Wcz0bWR6d3d3aGdzAtl35BYH+fDwUCOCS5Db4AFJ55XVz+GX0y03NzeHOUpma5ghMPB4eno6TCFkKidlmFKvFw/SAbZIoRmZWeSbehj9+WVFTs26D722Z4xRF2d54ZUzZpSBAUMDLQQDKSOOo+llk5P5bn2QjcDuUt/VICAyEKAt4rGmK7zPQID1ZD9lNccfcnkzShnub4Nz2tucy9Rd+sFTeWOcgnW3zQ451ALFFREEEIhmPNjONRDSxir5bjJmP7frm66HXz7Bs0VnvY7Y+025crxF4zzGuSoKye+6Z3TRiKmtxnNDwyErekN9ua+t/GTbzE+OUzFm5MHWZNecf+RlHl5fX+vraVlfVu3GUblPVxGJU2OMComWmV2wIn80EbHHsNu5fP/+fTw8PBxAFd8gGBklm+LFcVmDkdT58/Pz4VG1PF6Z9y3kJUxPT09Huk0HbUBgUEIiqElb2V5H2XR2jMISibFeAgf3J52x52WdmrV+7QEG3LjgkvbCY8XHUq7HL8v1Uw/tuwS8/yMp9c8iaQYmHrs85n0eo97x/wpkNHASvkgOpMj7jBcHaJ4KMF9sv/UrACL1EhhbL2dZMvoEA0/qEPXdTyxQ5xoQMP8+7t/WBwa5zZet6Obtkhb6Sle60pWudKUrXZx+/hGBK13pSle60pWu9D+armDgSle60pWudKV/OV3BwJWudKUrXelK/3K6goErXelKV7rSlf7ldAUDV7rSla50pSv9y+kKBq50pStd6UpX+pfTFQxc6UpXutKVrvQvpysYuNKVrnSlK13pX05XMHClK13pSle60r+c/j+GGbHekYRzywAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZl0lEQVR4nO19eXPjOO80ncmdOTLX7tbv+3/A95mdI+f4/WOrPe1OAwRlO3ESdZXLtkSRFAUCDfDQYrlcLtuMGTNmzJgx49Xi4KkrMGPGjBkzZsx4WsxkYMaMGTNmzHjlmMnAjBkzZsyY8coxk4EZM2bMmDHjlWMmAzNmzJgxY8Yrx0wGZsyYMWPGjFeOmQzMmDFjxowZrxwzGZgxY8aMGTNeOQ6rCReLxS7rMaMA9wwqz4XTaProP39nx3p1wJ5W+P7+/Xu3vtvGmzdvbJ16mPfjmsF4CnmY9e6MbaAiu2UyMGM/ET3knhKpEgvOf7lctsVisfrWa7Iycd1To1eHfajjjBkzZjw25mGCZ4QRQ6VGPMOop48P/4/K2RfPhus55fyMGTNmvGTMZOCZYcRoVaIGvWGDkfxdtGAfMJOAGTNmzMgxk4FnilEjVokUOGKQDSeMntsXaHRjxowZM1475jkDzxxs0KIxfz6u/yP05hREkwn3FbPhnzFjxowYc2TgBSEyeG5MPzum0BUF2UqDfcRMBGbMmDEjxxwZeGVw4/xZtGB01UC13BkzZsx4bPRWTL1mzGTgBaG3CgDneYlgdn2PCGTDEhHpmDFjxozHQNVpmQnCf5iHCV4IKoJfGSYYWZIYpX2NHWnGjBn7gWzic/Sp5vGSMZOBF4BtCG1v+R3/7hn+aN+C19a5ZsyY8biYath7K6deA2Yy8MyxK2FVI1/19keGFGbMmDFjWxgx5rPxf4iZDDxjjApuNf2U8P9r7kQzZsyY8dwxTyB8ROh6/23kMzXN6E6DvdUGo3nOmDFjxq4R6a7eMuzXiJkMPAIq4agpYfjK8V7abMWA60jVTYsUr7mTzZgxY/fIDP/oBOvs2EvFTAZ2iN6+/73dAzfNv3p9NMGvulQxS8PfM543phLYGTMeC6ORgF5erwkzGdgRpsymrwhfdZvgKiJCMDK/INtD4LV1qKfAtoz0ruagVDDLyYxtAbI0VT5fqyzOZGCL6G3ak70jYDT8Pjprv/J64dEIAROBeVOh/UHvWUyVswjbeO48NDVjxjbQ21QtS/saMZOBLSDz1nsGllnsqAIfiQhk5zeZh6BEYFuTJGdsF1Oef3Z+0yEulw/ymuVmxi4wy1WOmQxMQNV49iID1Xx7ZWWkYLQDTJ0cOHt2+4VRA19Jvy0C0NrDUK7Le5alGTMeDzMZKGCK57yrkNQmHl7lGhj2XiRDMXWVwYzHRUYct7kcNYMjjxEpmAnBjBmPg5kMBKjuTjW6Xj/6X/G6qmP3UXkjiIz76AqDWZnvByqRpE1keUoeLj8XgZhlaMaM3WMmA4TMU6p65NFa1ShNJX2UdhtLaNzbDEeu6dVnxm4x4s33VriMrHbZRoQqmoAaDUnMpGDGjN1hJgNtcyWpeVU2r3D/R42pU57bMMi9uowQgW3XbcYfjESQenK9rWfTy9MRgIgQIL3mN5OCGRm2EeF6jXjVZCAiAdEKgAhTX+U7lRBEkYapk7ymGP+RMmYSsF2MkrGR3xG2pTR7RKA6l2CbdZrxvDGqgyo68jXK1qskAxUSsKsJgJvm4Xb1i8L8VY981Fj3jNFr7EiPgakkwP3PDC+nyVCRwRFEUaRotco8n+B1YkpELDoWRWxfoz57dWRAiYASgCwq0Av/j0QFpiiyykz+aBLf6FCHtsMmIeV5mGAzTFFyFWxzwqnLN8uvSiQi2a7uzzHjZaAn71OiXj05fW3E4NWRAWCUCPQwQgS4Dpx+k/K1LtU8InKk/ysdrKegX3JH2hV6Hn50rHp+k70DWH4dsdhGxMmhN+FwxstAlQBUv1vzepq/nSy9lmjUqyID2ZBAzxDvUgC24TH3lG9lXkClXbL26XWkGWPYNRFQTCUG2+gzU4jATAheJjI5d9+R7nJ5OQKgv3vOjBuyegl4NWQg8nAzjzd62JXQ0lOj4plt2rG0rH2595eAHhGoGM99H5aJ6hcNC+jvWd5eDnqyEOmjg4ODB3or0lkZAdAP5KtHCl6SDL4aMsDoRQM2ecCjCnibwrRJdKDSoaa0k3pvM3JUQ6NT8tmkDtnxKTI8EvXIjP8cHXie6EUp9Xekn0AIIlLAUIOPY79//y4RBJx7qTL3KshA1fOdmve2yMMmM7EdesYf39qxqkSgeu8zCahhG9GAXjrnKWXX9Yw0/m8iB6Py8ZIU8GtANUKp/zMiAD0FIsD/I51eiQJEn9+/f6/qovMOtD88V7x4MuAEis/1BHVkMmDkuVTz7Xn10f+phCIiAVFbZXWYScFmyAz/Ntqtaugr9dFjoyR2loOXj1Fiyb/12+kmJQAuOsDIDH2PDPz+/XuVhn9HpAD/nxteNBnIPJFtKaRRo95LU52nMKX+vZCb63RRHaPxtxnjGCECmzz3qWmjOlQmVI2SkCifqK4vOWz73FA19vo/igTgN+sl/R1FBDLd70L/FbKgRMDlo/f2nGTxRZOBHjYlBL0w67YJxyaKrkcEXEeM6jKFCMze4EP05GXT6MDoNVOVeW9OSC+q4M5VSfHUNDO2h1GP3x1zOigiAJHjknnmTlcrmYwIAs4fHBys5hfwt+K5koJXQQYyD9eFkyKMPNARxZhBx6R6wlXpcD1CMKWeUeTiOXSCp0DV8EeKtvL8s2NT6rjJ9ZX+oPKjJJi/kd5FBzjfWf52h1ESUPmOiEBGAqK6uGefOXAsQ0wMmCwsFotVhABEoEoK9l0WXwUZyPAYE0BGjKwKpFN8vXyiDpl1NkcIsrxdtMIRqzkisI4R77vilY+UswmmkMPKuUxhVggB5+MU7kwKdoMKme1947caddVLI8MB1XlMGTmNhp5AAjiNkoKMgOw7IXg1ZCBTTtEDqgpWpdyMwfYQKcEey9XvjAC4Dhax7Yph0vDbjDEDHj2D6vOvlNd7LlFUqoJtEcFe+dXI2UwKtoNtkgB3zDkrUVQA1+hQZaS3qwRVj+lwAQiAIyIaIYiIxT7i1ZCB1tbHpR6rPC13tPxsKKPSMbl8x7hHOi5+R4Kthuo5dIDHQEUJVRRlNd8eKZjyXDYhse53lH4b5UdRAs7nNcvjVERyVZHhXprMKXFpXX1a84RgFNF9MinA/IHFYtHu7+9XBIHTcZ1Ub25ax13gxZOBqmLdRZn4PUIGorFRXBt5SJnx1nooKciucWU4Nu7So1O48bTXgFFPhI+PyusUspAZzWq5PVSJYwYnhxmhiPqPy3PfFPI+IpOt6neUT6VszcvJLXRNRAZGZCL7r/Ll9Ovv37+7EQLOb1/wYskAP8hs/Skw+lCq3p5jvFnZTkAcq3T16DH36uQbJRyRMuB07v54nO01DBdsarRHSF61jEzmemRhpEzkmZ0bIQBcdq+vaV4jEYl9U8j7hKo8at+vEoHePI8o3SgRcHlF57J75LIdGdB7UFIQEYJenR8LL5YMtNbWPOBoZyodD9LrIyPMafR31eC6PFwUoBoNyOpYISWKHilw5bNw8/jaS4wQjHo6vWe4aVnRsxopt2KAW1sPx6qsbgNOCWf10Ou0bjg3E4IcFSeHf/ccECCbw5EZ/ygKoOkjQjBCbCN95vQ6103vGzqP6/ccVhu8SDKgD/LNmzdr4+NAJmCcV6ZwnKHNjG5GPjjvqUQgSxvVrRIm7illzZuHCDC+dnBwYK99btgGCZhyvJrWPavsd08+AKdwM69sU+UWEYKMoDsFWyEErxmjRlJ/O3nLPHCcz8pTQhBdF8lkpf5Z+fxRvaX9g8+7/KH7tJ4qiyrfj40XSQZa+xMVwOfNmzcPvFag1/iRwmVhcbNeOX82jplCct54FEXg/5ECd4o+Kje736wMlz9/b9trfEpsiwhsmm8vj8hj4d9Ofl0EjWWXX+rCv5UMOKXtfrtjFRKayVNE4F+C/G0bmdxFuia6TnXXFL3q8lMDynn3CGml3lG9WI9nhIDPLZdL6/REkYFIVjXdY+DFkQGn6DQyoMpsxGCpoCB/fKBQGVCi9/f3q/KRV6S01Jvp3a/+ztqF66C/K/de8dBeO0a8rW2UERlQRwCc7B4eHraDg4PVNz/j379/t7u7uzU5VmLgPDKVsQppiOAMQ7WNZmLgkTkP2bHMuFbalWWrQgii/xUioOVmThinWyweLh/MIptRFAF5IzrqzvXk8bEiBi+GDKjSU2/nzZs3q7RQYkjfC8kroCxZkeKDCARvXXl/f78iAiinohgrLLvi+Tvvyglg1g5RHhleq8LdBTmqymZGBFhuYfgPDw/b8fHx2rd6Ond3d+3u7q7d3t62u7u7lTwrIcjqHkUTetdqPpX7f0mRqF1h1OhH11TlsnJN5sxEwwP82z3vil53+hfX6HW9IQF1RtkWZPdWdUR3KdMvggxkRICjAiwY/D/Ls7V1DxgfEIGjo6N2dHTUjo+P2/Hx8RrxuL+/XynT29vbtlgsVko0EuYsdJTVVclAr7NnjDu7rgpHdGblvBkyJeq+8Vv7BJPXk5OTdnp62k5OTtrx8XE7OjpaEVoQ2Zubm3Z9fd0ODw/b9fV1u7u7W51nWY7kj4kAkwj+cNop2MR7ek1yuS0SwBiNLPJ/58To/0hX9SICPb3ojL/TwSy/yANzACK97EiBlh39nxrd2BTPngzwQ3bRgOz91ppHpQyUg4jA0dFROz09bcfHx+309LQdHv5pUig/EAGNGLCQ6Yz7TDA0pMW/MzLQu0cmPVVohIWPj4Z0nwMqbTSlHUfKrxICJQKOwJ6fn68+IAQgs79//263t7crInB1ddUWi0W7vb1tb968WTPs3M84OoZ8QCwQZeAIw2KxWIvWcRtW4GRXo1wvSQanokcERknAtuqhshrpsCyS6u6D83M2oBqhgl7midDZ3C89ruWrTI6Sgl3J87MmA8q6mAC4yVDZg68IPpcBpYqIwMXFRTs5OWmHh4drEQB4UVoOEwIoxfv7+wezTqc8+KyDox1c3lEbVOoShfFeqhKuhEezNFPCqz1UicDx8XE7OTlpZ2dn7ezsrL17965dXFy0s7OzVcSAowIqk1wGywYPmaEfAjzUcHt7225ubla/MYTGO7hVZDE6nyndlyqPPYwQgSlyWY0sOsfKGe3Mg4/yd6SiMilWHbKejuN3FPScTGf0HSlxxDVqA5zbtiw/WzLgFJ6uHHCTBrUBWdH1Gt9FBRARODk5WZGB5fK/CSMgBIeHh2seFJQejnEdIw8p8rIzxemEzzHPalTAeV9RGvzmz648jadCtc1G7rvqqTkFqP8jmWW5vbi4aOfn5+3i4qKdnp62o6OjlTzc3t625XLZjo6OVgYeH5VHjjicnJyshhtACEAsrq6u2tXV1ZqSvrm5WVO0U9ua02Yyrv9fMkno6YbsN//P2meKsxIZ68jAumcF2XI2QD+cXvUvD1+pDq7ct9oYd79KUF1eTAiy++Z8tym3z5IMREQgGhZwD1ZJQM+L1agARyDwm5cvKjBWywwUhKG19oAouHqPhk6j714+WYd012ek4CVHB4Cewe8pAIfIi1DF7f5nJJknDcLIY9Ige/KY78IKE/+VfEC2j46O2tnZ2YP5B8jv+vr6QcRAPTIXhRhtV3euQoJfmpxuSgSAbRCBzGvPvPes/kp2nX52Q1bIGwQAEVn8d0O5VUKvHr775vub4qhFpHZTPDsyoEooIgLu4alBZBLAv93Dd2wTQoe0MOwsZKrYUEdWtHwcnyoR6N1vdC6DdjY9HiGr80tTtIptRD4yAtdL1/uownRDaFg+CEWJ+QI3NzerMD8bb0AnJiI6gN+ttdXcAAyHIb/Dw8O1IbLqLpWR4ozSZNe8RELwGERgpB49opqF8qN81UHj4Sld3cWADGPeC9eLo7Vu2KBHxp2hjuQqSs/ljEa5NsGzIwOtecHSY0jnvgENYyvwICIhRn4aauJvfKKHh7zU49J6cH04n17bOEKg9+2Evdd2ETi/l6JYK9iUCGg+To5dGk6bEQGXH4z+3d1du76+XvOaYKyvr6/b1dVVu76+Xi0tBCkAVH5QHkcBlsvlA4WtETZEBZBPFnGqKFKkf02EIJPDbcnoKFjuoknerE9b689B4LzY8OucFUzodsOzd3d33bIcOY3sjEKJgMqd5jkim7sgBM+KDGRK0EUFMoPY2vokkugtU5lShTLFeKgLQW26fCoyrBVDkBkBvV9HMjLiofVRYlEN9b4GRMoiO+5IgbuuRwTcs8TzZ4OPlQOttZVMY4Lf1dVVu7m5WUUIIN+ttbX5A5w3yDDqoDLnCDxkNnvjm1OI0TG+ntvgpRj+EWQytI18IwOHb33GbnjVOSwsC5ofDwlERIBJBjtd+L9c/tkQiMko63/+z+Xrb3f/nM+IIY9IxC4JwbMiA631CYE7xt+AE7YeC4wEFgzTTUxBOgbKZcXpvPORIQK9z8rsXBcdcMZjFK8tOjBq7F06lzYy5vy/QgT1Wg7VY/Ke7h2AWf4gAPhmuV4s1t/lzgSDx2hxnjctcmSU6x7JTSXs6hQpruVjPZLx3LCpHO6ybCYBUWSAATlUA8556fAAzw+I8mN9F+l7fLu+o/XokYFIriK5zOxARVY3kd1nQwaih5ApQzcm1RMGXeev5QHsXcFTcpNUXP2RprqDm2sLRwL4PjMywAo6ul8HNfDO4LvfrgO8FGTKYuQ6HMsUkHtGkfFnmWClgmeOKAATASheyLXbF0A9tTdv3rS7u7v25s2bdnNzsyoLRAJLbZGnDjewbLDydAYb6ap9pad8XxJG+pZLO9KmI+VEekon+qnh1HX9/ByjPJgEQMfxFvDOWXNR4UhvZvfF7YiyNJ+pcufkfxeE4NmQgdbicFNk+HXCVGt/QvhqtNQr0cZ1RIAVH2937EI+KlRcj4gQRA816lzu/l25OkehR0a0rXqkoEcOXgIqJKCiODOvIrvG9YXot85v4RUsMOQsy5BNRAJ4+2EG+srh4eGKXCAPbEzE/Y6JBSINbpJt1fhnclfBJgp6xh84Y6TnK/qa81JSqPm4FV0A6sJzApQI4LiShZ4udH1PSSwIDPLVe5iiEx053rb8PgsywIIShZrUGLpPNFMZ+bYWh7gd+4OCZAYa5c+EQMPzLIh8jfOQtGMpO+YZtEoGmIBA2UN4e0aePy6N/tb7eCnIjP6I19S7TpUIXxMR4owUsPwxGdCJVOox6TsIuB4su5y+J39MCnSFwggx5f96XSbDLw094lhNO1qOGjmXPiKnjgj0ynbDC5gn0Fpb0+Fs8NXQa+SWj1XvX/sgjjlnK4oOTCGzjiw5YjBF7z4LMtDaw8bXySMcbnKhG14yxQrMGfwK8xp5qKyIOc9Ikek1fEw7hM6ixaenjJEXEwJuj4gARGTJtYu263NXxJEynEoGRsuOiICTfe4DOobK0S9ViM7AR0uscAxyBO9fN/1S4sARB3z3jDkjk83o+mreen8zPCoExMmq+89wjpLmhevdHhkqE9ELtZzx7+m27P5cmujcKFR/bpMAMPaeDGjDu6hAxDKV8bHCy0Lz1bq4aIETqBFjocTBndOoANZz65vndFkNOgdCuCAC7BlGZMB5Vj3B26VxfGo4ItC734woVdsq87C0DzAZjDww9ZQ4auBkWe9BPXoQS9cejoyzos4m3PLvEZJakdcK+X/tyKIAkTHEt/s4KBFVMtBaC+cKOOgwbBa9rYBlJLqHqgxlMq759fIePR5h78lAa55h9kJNznBlJMCVqQ+9J9TOS3F5aDlZ2Xx9xLRBCPCeBF1ig+t5jBgvT9L2cR5ilQj0DNpzJgfuGToikCk6be+R9sgiA9WhggjZEBqXnz1/yAmTAYXKlH67fLnsXpSAr68Qgp6ynMlBHxUiwMedEwVE5LCiB3G9ykpFd/VkW89xGUyCRzBCGhwh2AWBfRZkAHDKsGeQe94t8uVvPc7/NdwFsCByXZTdKtN1RsIprKjT8SRJ3gEOW8HyJC43YQxl6gSxrN20ftr2FcLznFAhAhkZcJ02y9Plz79VBnvGnr0qfV5suN1Srh5RcIozIwLVPsl1d/0nq0slGhCV457TTAj+oNqXndwqVFdHw1K4vuc9O1nliYNcZlYPPa6/eYWDk90pjtK2sIm8PhsyMEW41NvlNJyvY18O6oGxQYdwsOA64XIkQH+PtgV7hLrvvJvRrSQG47YYLuBz6rn16usIz0uDIwLOoG9qRNwzdh8uC565ekuONOA/L4vFcd4/wCnZ7Bk7JaoRJme4o/zc+apX1cNrN/bbvn/nCDhZVZ3MukaX+0Hnaj2j4YGMvI7ebySnKs9cF+cE4pvtwzbbfht57TUZyLwtIDK6LHCR55F5ZO6/CjYrXD7P6VmYXORA0/FxpyhdXTUywHMIeBeu5XK5FhVApIAnFHL7Re0b1S27p+dIDEZkIUo/2kF78uYUKxt8/IYRxzPlbzX82KOd5dm9mdDJQtZHHSGP5KlHqvg+3Xkcc3XrHVO4fF4yYejdn7Z19l+vi+SCDXY0WZXzdnqcPXROgzJGjb77aF5cJ3b6dGisV35GCKptvG253Gsy0FpNyWRkIMovIwLROeddRXm7hx09uCkGAx/d512HCfjNcajP79+/H7yS1oWQXbvqveq5jBQ8J0IQEcTMy1ZEbVcp23kTSgKifJVA4INnDiXKdebhAY4E6LCBU0yuT+i9R/MDXDtq/1MvSz1KniAbkQR3LCIRDvssu5lBzhA5LpuWH/WNyMnIVq6ww+PSREsIe/NQtP6Rs5PZGSbdkW1gUsMftg2OoI480+zZjTzXvScDGUYar+LJcVo97zwxFUTn7UQKin9npEXroysJdL0tTx48Pj5epW2trc2mzeqRCVYPGavdZ4UKOEOn35niU0RKhvN0CqHXVpkXw/VieYHicq8sdtiGkXRKX5U96sn9RfspE1mAiYASgh4xcF7Ztj2tfcO2+l9VRjPj2CMCKANygciVThjXvhMtj+V6R7pvtG58j9U5PBEhiNo5I+Hbxt6SgW14Y5pOH5y7rme4mOnptS6U5VhgjxD0iAB7evyt7/HW9bc8N0C3mGWBd3CKs4fIgO4ronaPvqskoGpgqp1fFZgzsqijkgEmBfqud4AnXTkl2JNxXKsKlfcT4Ou5fJ57g7wZ3IdRjvOwInL1ko29oqcrR/NQZPIa6WaWIWds2XCD/OEbMsRlRtvAKzGIHB3nCEWkgo9rG7mVPM5eKQkeIaUVYt4jGBn2lgy0VguXMhzL4+NRHlMEmb9dGr2PKQ/J3TvPD9B5Am5iIyv2m5ubdnV1tXol7c3NzWqfeJ10k7VzVbFEhnQfMUoEMkTyUbm2ki9+q0JVuWeZQZrDw8MHpCAix5pnNv9G79sRgSgyoB4Zt5VTqK4fVfrWayUC1fNKqrZRB+c0jXjeSM9EgPWbi265uQMV46py6EiAG+biuuDbkWxuF1zriCzSVDDV8DvsJRlwnT/7MPSBOgWq5TjvQ/Pk6yvjUVMfUOQJucgADwGwMIExs7BhP3h8bm9v18gAv6/BGcaetzZyT88BUQQgIwQqa6Nl9Y5xvpnS0nwipQf5cQYA16gS7Mm9XqNEIIueafu5oYyRdt1ESW5TyT41RvrfNiIITj84PRx9OJ2SRY0w6ZCB5s/HIzgnL4paON3vyAnPtXHRgX2Ur70kA62tK2ENvbh1/k4Q+KNC5ZR61BEWiz/hqgrjHL1PVcYV8sPfuqwFHh/vLIg3xuFzdXW19vY4KGwW8Kw99HdkTLI0+4JIBlx7OzhjG+VfrQeXHxEPNdKR192rd+RhRYra3a+SUVWmI2TAtV9PFrNn0Hs+XId9VNKj6Om0bRj86LyS6J6zFoXynYGHDma4Y45UVBDZjl70wjlRrf0Z/srajR02/N+2/FWf996SgdZir7inIDNPxjW2Ix2ar/52ZKOHHluNvFE9p8Zf64OoANJhC2KNBjAZyJQ0l8/nImNZbY/HQvQ8K2QnS+fyHK2LO5+RQC4rkkVO5zyrjOQo4XX3FrVPpEzVq9K6Zv25tXg9ORtwF13Quo8q2edCDKpynKWdkv/U9M74O5lzcs/yhLIq+rpXV70mIiuun7XmNyLi/qcETYnnVFmLrp+S396RAVWA0daqqiT14UXjm/rAlGBkuwvCaDrlowYmUkoZCeD717bQdIxIYNFh8ApafDgagBfMZF6bu7+KsYru96mxDaLi7qtH8KLyWVmMkAH+PdrOjkg4IuDuZeSYU/rOGLj2WSz+rB7QeQ2ZsnP3EKWNnIN9kdtIn0zNZxfXRc+OP04fOjnolZsZZE03ip6s9spmvcv2IeojVblz6aI0m8ju3pEBQAmBexNaa/0xVG0kPCieZY/z0dvWDg4O1t57zflo42eKOlNIfM96/46cIK/7+/t2dHT04F75nh2Wy+WDsdzIc+M8uW7R+toRZfwcEHVoPl9Bz4NzzzxaSlVRJBmp6Cl5La9Xd6TlfhHJhiMC2n9BBLRcJ4fuvkbkDeXvMzGo1qNCPqeW3zsfOTE4NtqOm9Q7k4OecXYy2iMvnE7lWfWylqtt0yPlu5LHvSIDThHqcjk25NpobsIHP4joIUX10N+t/VluxTNHNa9McCKD7ZScq5fWQ38DPPkKZWAFArdvVN8IkYHJOn7PmO4buL6RkaggInlZeiYAbl01y55r90p++qbPbOgtuidXXqS4lCBo+owQOJnsEWZ9fhUoIeBn/twIgV6zSXnue6S86Jn3ru3pGORVJbVZOU4n9+qbRQYq9sWV/dQytnUy4Bq/YmDwrcqr8rrKKDoQGWmX1ikDraPWD9fifI8xVoQjYtiuXd3a3NbaWtstFv9t2MGbEek7C6L21PpF0E701EK9LTijUIFTopU2zIgw18N5365sfHTvCe5LKGtE0VcISKS8Uf9ICTqFyh5X1G6c11QlO0V3PTV2RbJHiUCmt/R59Iy8q4ditG9GfQTfUX7bbt+oLaYQWCCzKyN5bY0MTHmgmsYRAacUW4snfFSUiF6Lb7csS8vQ+kZsNapftV2qnQaGnpfc8H1EbYq8MkPgGHKkMJUMjUQb9gkZIdTnr4hIwFT51+Wj6km7svm/I9XRkFt0r1E5fFxJJYiyrgtvra29DAukIFP4KkPblqWs/7Ku2ZXR3Qf07m/EMEZEMTN0eq7af6r6NCI2PSK7zWcetYUjTBF2rUe3QgYyT6G1WmiIlZNGBPRVvMjTKYlIgbhO76ID7GXrNbwWH3WuGMcKMlbdE1COhDAh0PSch4aHex135Lk+FyLgDN5UjyB7fi4/p8gyQoxrVIFEdeG8XHStRwQi+e156FxX7tMM3Ra7KifOe+pdOyp/TASmRBd2iV3UITPOTn4jo65ppxjcjHjyuUo7aHp3H1qeyu42SEHP9qmOzSJmu8bGZMA99IjpRdfzx4U0lQyw96sPPVMO2XFufJ7BDETbUUaKccrDqxICrjfqpLu98badSNvbQS57bpFhwHdEtqL89gVT6tRTWtGnpxhcVICHxnoET48xudaho15EqGJg3fWcL96GmLWxRrEyQ7ILRFEWRzxeK5xBzPqAuz4jv1GZUX5ApscyGY0IiCMBGSnoOUN6rCLPTylzG5GBiDXq+cr10TwB/uh1GtZXJtUzatrg2KYVD46jBGp0ew+LDUDEUvV++Dr96PJHvW8mAnd3dyulj3pG7yKoImKqUViVv/cVI/JZSZM9M07rPO/sek2T1cnlEU0WVDnK5CHzYNBvlLy0lg9Dcd6cn7Zdz3D06hvJY9QPo+fzVNhVP+qR01Fy5vpClG7EWEdGeBPDmZGWjAxE/cAhc5aisp8Sk8mA60jVDuNIRBQN0MlOra0/fJ08F3m+EVGoPEyENaNdqNQYqlA5peI6WvRflbczFFw/kILFYrGqO4gAyIIOK/TawrUjH9sHYd4UTulViQAfm2LENjF8rp4RKYiIRmt/tlDlPHp9idNhpQPXP5qkytAJhdHKB+1Pzvty3y4tjmnf1fvexOBsA49RbkXeKzI5agOycnv/W2sP9O8oVE9zvbIPl18luiPDBT2MkNSRvLcyTODYo6uENjj/zuYJsCHkfPRBRp2fO71+GM4T0+V7UHpchiop/h91kBGDw3nw0kBtSyYDmKiFevAOhBwl4OEDbTdty14aJwN6H0+BaoiutVhGK9dViAN+j4ZNW3tIdPkabf/s45YSRgY+A+rDhp+Poc8eHh6upXdl6eZCOumRIw6Q2Wqb9e4hM4D7THArBnM0DxzrGcIor2paLju6j56jtunz4WW6Wn61DbIIh3M6uc5TIqiOALv2m9Iuk8hA9hAjJeoUFf/PyACGCNzYaU9hZ0TAefiuHM1P78n957rB49KHNNJpWInjm4dOGEoIfv/+vfaCIn6FcW/HRr3vSIAjIzpqVHeFHiGIyNk2SExGCKvKBP8r+VeUeCS7GCZzsq910L6lW8RylAH9GKtf+N54XkG0mkgnD7vfVQLj7v81okImIjlyuozTM9wzUZ2QyVqV0E0hCLp5HH9nZMDJEf9mfVPpw5tgRLdl2GpkIFI+WZqIDGRjjRzOzMhH5MFG0QE2tK39mQAF9pgZBtc5uJ6cR88AsEBqGXqdjs9CKWNuQGtt9R4CfNzcgYrhqXbOXkfaN0TyU6nzyD2pMnHKB2ADq6sJXB0rBEbvk4ed2JjjnBICVXB6TlfkcF/iY7gnjSTgvCMCrLB7uxzqPWcEfsY6sr7r5Mxdz3A6xcm8k398Z06KwsklywCX64awnA7nOjhdkTlQUSTM6dJRIpNhSl5b3WfAGWbu5JmAVZY8sbIaMUx8jSpZF8rBdcvln7e58TbGLpqA9C6/iHy4+vWUlUYHWKh5d0TePhlRAB0iqE6G1LZRREbUPfPniEq9M2Okz0mVQU+Z6ETWyNPKCKv2Q53op7LNkayMFGj+SioY0coBJspurkA2kdLBKeptKtp9QPX+p+ZXIQMj5fciiS7vyHEbfY5R5ICJdnYfTs9GpDgqn/PM7qPSdlWMyvxGEwijhxg96IwQZETAedKZEXcPnqEKj40oZkZreZF35uoVTWp0uxVW27cyKxtQRc5DAtmKCK4XC3sVqrD5PioTyXaNSsetIDP80W+VbUcUncFVz6pKyqL/SrzdigKeJ9OajxL0ytalv9wH+H4jMqBEQCc3ZvVwkYBMHwDbko+nwLbkmnVvxWBncFEBLUudG71eJ2xrPqMRgx4h4HuGM8iyyvWOhn5d/Z6KjI6Uu9PIgGPzvQhBJHAqWJU185lC1SgBPovFYjU04BS6U4osTKwEmRRoJMIJUaVNep1RoyeIAPBbCjMiUDFICu1oChx7akJQUWQjBs8dc33AEbqeEmntocxHnlJWV1c/eN6LxZ+Xc3F5fC1vEJTVtbWHE3CdLCqJZ7lxZCUikr3oCKdTQuDutZf3S0Ym1z3d3CNX+juyCa5v4HnpxG0937sXVx/uf2qwVY7cJMNo8mFUh6qOnCJ72yKwO3lRkXvgIx8FN7wLmapgRMqAj3FkAEoP6d68ebPGGJkE9Ayae6jOC4yYck8punt07YPjmD8AZaztgLwiIc2YrTsXebr7imodVaaj63skTq+teD38XZ3wqXXi8Lvbmhj5Q/kuFv+9spvH+FvzG3L1iCrX09XbGZ4oPyUTvfvm++Jrsrq6388RI+R3qm7O9IL+xv8obyWTqu/xHeUZISIBep7vMRtCdvVT9AhBlKZ3H67+28LWtyPOjuE4P/iq4KmXEYW7q0yfCYGDTszj8d7s/njoAffBxyLlrwTA7SOvQynuflAHvj/sL8DpHBnJ0OvgWo+IqD0VeuVnBt6ly8iBPp+IELhn4AgAwM9UCUHmebFsgQgcHR09ePkXhsgQRWpt/V0Cy+XSbv7Vmo/6OGKq9c3kkMkJ339073p9hlGDsk+oyOdIPo7Q4ntEL/D/yvPF/2huCBOHig6tIOpzESHVOvD7NlQuFe5enJy541F+U+S0mn6rkQHH7DMGmBECB1UGERmoMsWMDCANRwfwrQwSQF0QmodC5To5tsttxQrbjZ1GCtjdC+rS6zxVAlU5n5VVGfPdBTJiOnJNpCR7xCBSjO5/RFz5/IhCZJnCmyuPj4/X3mLJZABDZHd3d6t74b6meWs78di+ynt0X64NcB3nn5EglFfBFA9rn4nCqIfpzmd6ONPH/O2OZ/pGbYLq2mipaiZTWp+ojsiXjb2uXtGJ2XCq8OGo61Ryom2CukY6uSK3PVIRYSfDBK3FY6f47wgBzjk4EjCqFJxxQuPqucPDwzUhdF56a+vjpKgfL0nEkEPmGWmHYELA5zLwJEg+BkLA0YGobSIPIRMo9Ugjz2/fPC9nwCMFGR2Lzru8KkY+8pijdE6OuF4qUyAC+CgZgIyAOPB+FIgQRP3M9YPW2prC7LUD0uO+1ENTMtQbcmDl6QyWKtZIzkeJw1Oh0r+qJMDJcWb0s+OqI1ydcI6HraJ2j5w5Lid6rvrcuZ8cHh62o6OjdnR01A4PD1cyDR2KJdr8fXBwsCIGUf+N7lnbBHXLJsv2CIF7vlXZfZQ5A/w7OseIPCZWAqoQNE81Phnbau2h18ppeZMUFh78ZgFmww/lCmHi++CytSOwIDqj4urMqx04rbaPmzyYdeoRFuqO90jeU6NSz0hJRkozy1OfT5UIaProPlydoeg4MnB8fLxSeiy7UHp4vwU+eE229hOWfSWi+OhQA/clJTpMwDPZ17aInltEAvj3czD0I4gIqkuXkYCefo5ksUewovauLiFl2dCxfeQfPXtXPnTu6enp6oP+gWGx29vbdn193W5ubtrV1dXqt9u3xcl2RU9oW0wlBFOxFTLgbtYJmF6jHbP3nZEAlOny1P+uLlzGYuFnUSMvjBvxEkQIMqICra0rRPbStS5KBtySL77WjVVpSI3L0FcvZ23QO8Z11nvguith2idUCEzvo+myfBRRW/c8rajO6uVo+Rxt4uEB/OZwaDZ0x2TAkWGeTwCZg/fE98j9rHfvjkhFxobvO/OcXprxb80blqzfZeTRkTD9X/GAq96rA8tkZlMiMjjShw4ODtrR0VE7Oztr7969axcXF+38/Lydnp62o6Oj1tp/ZODnz5/t58+f7cePH+3Hjx/t169f4ZJIRwTc/evviDgoRghBVf9OJgOuE1augSLQsUWXt/MConBMpeF6dXP1cd4IQqit/dm+la/Tvdh1Qh/XG4iMpxIIZaDOIEf3VxGcHqtHOU5ouf5qVHB+3+Har0IM9PoeYWjNe/qV58TtH8l275jORwGYEPC3bgneWlsbZsBvzuf+/r7d3t6uEQmeWOvaAr+je8jaJGoj9rB6RqOa/75gtF5qfKpy3ZrXx9X6TG0/Xs2iDo+TfecMZgCJPT4+XpGBT58+tffv37eLi4t2dHTUDg4O2vX1dfv333/bt2/f1iK3KEf7cG9+lJJ2dw8uOjByf6PEd+vDBJnhVSLAD1RvUAWPf0feQ09Bal2yOmo6JSRs8LUTqdHT/Nibj1YpKHngNw6CFHBekWF298Tt5ox/xqojIsDGw01+5LT7hp6XFD3frENrPpom8rZGDSI/w0iJuzkrblKg63u4nuurkQaMs/Jrs3///r1GBECgI8Ib3b/eq/vf86Sc45H1/32V0xH0yGDP8DMy50zzzmSxV1ZEFDUPtRko19XB/db7f/PmTTs5OWlv375tl5eX7fPnzytCcHZ21lpr7erqqv2///f/2vHx8VrUgocIuG9FfV3rzbIb3YPeo9PHvfaqYBIZ0A7DwpERAYAfujOCmr6qIKqdOGJXrPz0vngdP7/MhUlBa+t7FKCM6IVC0QPnyVc69spzEbT+bJCd8R9hiVHbcH35G2W7DzP554KIBFSUqLYLH6tgJDrj8naKCHIFQsmhe5YZJp3RWCiA8CpPSESevG8H5h9kIVX3cfes95fde3atq8dzR8+I8u/eB8icMj7fq0OvjB4J0z7l0ju71Osn0FFMBr5+/dq+fv3aPn782M7Pz1trrf38+bOdnp6uiCUmEeoW7xpl692P3lvUDo4IZJhiFzeKDFS9F74R9SojMlBF5UajRowamNkdsz1WqJhYpR4XQkg8/l8xCloO7xyoH07HAGFBGS46oEw5aveeQYoMpS7NmWoQHxtOUbn74zat3o92dsUmJK2XjmX29vZ2jQSwLLfWHpBOJQOt/RkmYDnHvgUaLdOdPFn+nPF3Q18qo67NK4SAo5GcpmrM9hkjda6SAKBHBjhd9mxGygMxZcOKvteLHkS6Sm0VE4Hj4+N2enq6IgNfvnxp//zzT/v8+XN7+/Zta62179+/t6Ojo1XE6/r6uv369atdXV21q6urNXvQi1xo27i6RqRmlyR2axMIe6ye0zqW2kPmFeyiA7tIBn5zlECVGZQrEwIlBlxnlMObvDgPTT01bWfX6TJmGinBjBRwWjWUHDre14mDQM8Lac23Z0RuKh2y0haZxzUCJ5Mcomejz/MBkJ6HonQoASSAlTIPC6kO0PXY+rZMnRDsdEj2vFRJZh6RGhRN8xKiA631h1Pwu2ecHXHT4648V4Yr05WF32q08cyYILCMZ+2gxpn7M4a6Tk5O2sXFRbu8vGyfPn1aRQfevXvXFotF+/btW2uttevr6/bz58/2/fv39v379/bjx492fHy8ihD0CEvV1qlur0YGMuLQw0YTCLWSGRmIPM3MoKtHVSUCmj7yhjV9dJ+ARguYFMB4Q1k6MsDLsBTRUAC/ZKhHBHT4JWP6eq2e6wleRAQc8UHevUk1+4KKN5O1ba/d3e8ega7UV69h2WQZwfg9yypf55bBtvbHu+ZhNN3DgqMQWIJ1fX299vpskFodgtDIQQ8VIuDO4zmOKMx9IQoZ2aleXyECgNPrvahAVkZWLmSAV2mxnuEJqPrfTdJG3m5eFuQec15OTk7a6elpOz8/b+/evWvv379vHz9+XJGBw8PD1STC//3vf+3i4qKdnZ2tLdFlXQj7wHUZkSFtl9Hrp2CrSwtHWb3m0Vp/zG9TZPlXGhtpXFQAxtxFBHT8nMEKUScJOi+qYrRHSY+2TZQuY9i6cyLu7anh2mLEELh25Hym1mlXnZtl1J2L5JTr5a49PDxc26EQz/nm5mbVnjqeijAq1mU7IqB9ie8hAstyRnA5nf6OnIWovH1Gr37OCEf6SAnAyHPR8qKlqlGdebgxk00mrSC7TCY5gsuRAf7w8loe9tLhLx5K4M/JyUk7OTlZpeH+gXpqHaq6OmvXXemNjecMKANHI3CjR4YJ1+n/rGH0fKTo+TtCr05ZWlW4/MAhnDCIbByZpWoeWfjUzRFwbRsJ3qgnpNe540p00LnY01Rv8qmQ3fs2ZK61mtdWMTb6/EYUgF7L/ZHnm8Cg410Erfm3bwKcjuvKxKK1P8MCIAMYX726ugo3aHEORO++tN16JDfqC6POynNHzztnuAiAHo/yi0iHEgF1LDg9lqvimEakYHxBBCBXyM85Tjz3BxNgeeOtu7u7NRJ7enq62nAL3r6uouG9O3SpeZXoOjvI9X4M+dt6ZCA6B+yCYWcNVVG+ETGplssPHAKAfCpsOGLijplznXvt7u4zI2Z8nUPWyd0KgtbaiinrhKCnQMWI965H+pHOWSl3E7KSpXdRAiWMnLd7RiC4IBAgFBhqwBJClMPDW27GdbR96xSFpyRiKtmdSpafGiP1jQwvY+QZRDKtOoF1hbtWf8PLZiOrBJRJKOSS5VTlS/UV76wJInt3d9eurq7ajx8/2r///tvOz89Xyw6vrq7WXuDFpEDJgDpu6C/azpFO3xZG5Xlr+wxUbmIbHW1UcetvziP6dtdUjvHYrBP2iAjod89L4nxZkUVREkcIevel+eO/6+TuAzAReCneVQ/Zc+Y0qqh6zyFD75mqQoKXg+fbI8Q6aZbJAc7rShhdohhFBKry7sjvlLZRVIjAcyEJEdF3RIA/mfxEhkvzczpBjTCucXLG0VM1tFipgvqwbGk5PLeLy9BhW92Bk8nAt2/fVksJT09PV+cwfwv58pACfuuOr9B/HNlwqMhg5gBW84mw1U2Hqsq+0ukyA7oN9MrJGrzXcaqo5q/1G6lb1H6aR88zG+n8lfKfGqP1Um97G/cZeVaOIPaeeUWh45uVkyrpqF/w0sJeFENXDmREYFNkEbSszTJSUe1rj42KZ51dpwTAzRmY4tRF0QD9j7RZ/2Gjiln+x8fH9v0vHHniPNywpDorPCcAWw7f39+36+vrVWTg5OSkHRz8t/vgcrlsv379ajc3N2vGXodIeciMwQRFibdGHHt6YVfYmAy4EJt2suw6RqSIeum0zAyuE2UGU+s7onizelUMbwZnNKJ03DGzOkZKWpWJ61Q6Y1fzdnMeHhuZAed26qXt5cvoEQcnU71vztuVl9UjIhoR0VG559dya/4cOcDvaAKsylwVeh/4zWVmoe/I6Ot9q8w/texWUCWkSgr02bNMaDtrWVGE0BEDvjZyePg6kIGTk5O1yEBrbbViRd8PA8+cCYHWjWf+84ZZy+V/79Lg5YNv3rxpt7e3bblctp8/f67mvmh0gPWhyrm2ddSm2fNyhGHbMrnT7YijB555Fj0DHaFSpqZ1dR4pL1LOU5Q416tSH6e0ozryzH7t/L368vNwJCB7uRIbAfzfB0QkIPtU8uqdc8ZGf7tnERG3jBBmRGFEkWgZ7H1xvtEnGhKI7qsCp2NY8WdeGO4pK1OJwHPFiJwDztC4/+pkuE9WRgYYbOxuiUl80DW8fPX6+npVh8VisZo7wPK1WPzZC4PH9hEZANnguQM3Nzft169fq0mKy+VytckQ5sBw/o4E8fBohQxFz1DJ2a4IwU5eYdxaHFaNfm8LlYZy5zOy4NJkRCDzeqY+PNduvbwhQLw2V+vqvnGt5uOIgDJtIPIK9wWRUtQQ5ygpywgA/3ffERGIyAC+dSwyktPoOWees3rRvTpGhl/bbFO4PHXirv5WZE6BXrePpKBaP5dOjXRFb7pr3XtIlAhw/oqoTA7hIzrA7764vb1dvQ+DjTCiBbyyIJqDoHsMIEJwcHCwIhu/fv1a5XV1ddV+/vy52jeDywB0vlTFxjldG6Vz/RXtuCl2RgaATMCUvTv0OnJmuF1DVRjVaMP2FGMl70gJu2unMkKQgqjuWhduYyYC/O2IAOcNIsAb0+wL1Og7b6bnOUUyHBl9PeaOQ27Yw4mefY8YOiXvSKO7hs9n8hj9712/KThPNw8iczr0meqx5w4nf9Hv1mp6ka91OiEiAnxtRE6drtQIAdbzL5fLdnx8/GB77QhMBkAw8EHkgV9bjLJa+284AhMHr66u2q9fv9qvX78e7JtRjXo6fcHyF+kcletd9KmNyYDrQCxYUYcc7YAunVO0EQnIlKHWKSs3Ix/6v+epaXqnlLOyKiRqKulRwXOTglQJtLa+ZwLaQNcAPwUyjygjAM5AumhA5FVGSjE6l6FioN01FaLprlG4/qvnokgCl+3q4PTFKCqGLDvu+vAm9XkMVPVThIrn6sp0E/KYVLty9L/qRdYZvPy0tT+RAkQH+J0a8OIxRBD1K9RNhyDOz8/b+fl5u7i4WCMFPGyAdxHw+wiwj0a0Y6fbJC5qT66fIwN4Tk7vbAtbX03QIwdAZMD5XMRus7RZ3aYcGyEtzHAjMhCVG+WXlRu1mzvfIwWRcXRjYW7GMK5HiK01v0vjPqHXdu5/z6D0PDBNq+dGnpl6Vvo7ui4z6lHaTPEo2eB8IwLgCIrLR+uj5WZ113QjirPqKT83ZO3ac5KcbtBdRyMiEDljKre88gS/uXwuC6QAXj5HCtQQ4z/qzvMFlBBgm2Hosvv7+7WNiPgDQoAIQdT/ItvHx5QMoM107gGfi+Ac8h52PmfAVabnFeg5/tbjUXpXn+y/Hut5YY65bUoERhVYpFC1zaYoNu34Tlid4CrQqfeRDLTWj2zxf/2teajBj4hrdA2XHyHzsEZIJtdD5T7qjz2lMkXGemVqvdz1md6Irq/Us0rMnho9h8jJIsuNM9SqxzQ/FxlghwDQNf8REeC5RTCs+i4LpAchWC6X9tXYyI/1Dgw7zyvB0AEiBGdnZ6sPVhcgn5ubm1V0AKsKbm5u1qIDuoxW79cRYveMWK86HRRhxPA77HQ1wej53rUjN5p5W72OnXmFzrA6EjCCjASMtGWlfVy+rEwyEsDLB/k4I1pHvo8TCB0y72iEkDpSNlJ2JlMV0llFRIozuYoMbUawK32j1/ejPhG19yaKEdgnmR2FEgAFP7eqLHHbuqWEVcLlyuLhROwfgE/keUckgF/3jrphW2F2ShAhOD4+Xk1URFQA6UYjA7gXRwS4/fS8EixuHzcXJmrXzHHJsLV9BkbTRp52xQhyXs6rcA2d/e+Vw9doWZkCdHDXZUYlQ+aR9uAUvlOq+tEwXWT0NiVIj42p8tEzQD2yFnlKLp37ROm5TPfJ6qHXa9/i74gIaP2cx+k806ozENWn8hxGCdSIPOw7ItkZaZPIUajoHudIAWzIb25u2tHR0eqtl9fX12vL/xaLhR1SwPWIMDAZ0N0w0Q7Qa/xuFewXgI2IsJLg58+fa3MHsLJAXzGv94Y6ONnn844MVBxs/T+FCG/13QT6P2IprrKRMnDXOQWk5XFevXROKVXumX9PUW6bwCm/yDBvkr8rQ0ODOnmwkudjY5S0uuucUWSMPotNPWkHZwQjohfVIzKkTtlHRIDvISIxnL5KoiqEYAS9dt5Wf9o1svYDnBPT2y+C83MfjRaO1NfJ+mKxWG0xfH19vfLasQtha62dnJys0sFQw0Pn92AwGWjtz+ZDGBpwL83iaABICU8e/PHjx4oQuLdxumXUKrNR+2qkxV0fOQHbIKtbfTdBRRgiT6I1r1imeGlR3lrPqSQgU6RaXs8QTH2IGRmoGJ9Mwbty3B4DvPMgwOE1Zb377l1F9VM5UUW2zTLcd8+YcjtHhDiTjYr8V0hApf6cLiJdFaIbpY2IifvtzmX1eC7o1TeTwchQ4dvpGZ1AXHEKXB1Yb/DbAzkigLkEmsZ56UoGsAcBSMbR0VE7PT19EH0AEA348eNH+/79+4oI4OOGCbh9tV9qG2ta17YRWe3pnynRgZ3vM9BaHNKPOq4a24rxZUwhBRlByf5X0kZCoXUcMSwVMjDabllZMOi8eYeSAX7HPa/5BhFwM40fC5ERzNAjrNphex5u9qwjw9RDRgRwPCJ+zgAqIuMwSgT0f5V8sOxFClPrExn66Jxr730kAhUFPyrTmdz1nAeVp6h/Zw4Tnh3rYH7hGy9bbO0/HXN0dNQWi8XaWD6MMzz1m5sb+44ClKk7EGIXwuVyuXrXwdXVVfv27Vv79u1b+/fff9cIgZKPaE4Ut0mvH0TLCrNrtolHIQMMJQQ9RN6ME2oeZ+l5OxUiMAJnJJzi4vqOEIKMqDglmbXtSNtz/rzRkL7xi+8Fs3fRkfcNmyh4JZFT5CYy9pFizpSp82T5PL4jMlQhHs6AqsLKDEmWP/cZzVeJgNscqldPvc9e2ugenyN6elNl2X1H+VXapqd/I+ePCcHt7W27urpa8+6xIdByuVydx3ABG2e3t8nNzc2DTdOwfwGIAPK/urpq379/b9++fVsRATdXQN9SiHtiQgPwxm+Rcde+z0MYuyQFj7oDYWaAK54u5+nK4BmXmTfAcIqiSg7cdfw7M9BZ54vuL+qgGSngPEYFCIqXhwd4G09m7MgXnRAdDfXAhiBPCSdLPeK0bfSed9WjBSIjn31zHZxMuv86m7lnXCuopI8iBDxW3ctr6rmXAH1ekfEHKuRwpOxK3VzZPJkQwwKtrUcfMUmQl/i5SYJRuezgINKAYYnW2uoNhiADOjSA6ANk3+leXnLZ2p8tinGPfO/u2biXfO0Kj/JuguyYAzcoj0dFnpMz/u4Y8o7KzK7XfHr1d/fCHTNj5L26uHYcIVFOOWib84cjAdiqk3cDc/eBdb14ftgv/CkQGcwpJMA92ygdt23PM45+Vz1s57Xpt0ub1Ssy+qNtFxEI7QsRgdZPdeZ67x65Du4ee9fuM7K26UVM+LuXF8O9MdKV42SV5Y1/YyiAyQCijTgPwpBNCOTyQC7Uvtzd3bWfP3+2o6OjtlwuV/+/ffuWDkNEdo0nWPN9cnRACQH/jqIBTAq2KZ+PsgNhFb1O74QF5fJ5PubOO+XomHNVITiiocrKEYKoDbIyRwhV5d60blkkgImADhOwgCMf3kQEneupoAYnOl8xttF/l3ek+EbgPIKI3DoiEJHCSrn8m/OKyD7XQ/up+53JcoUkVOpfMYzRuU302a4x0pZ8TUTg9beDe+ZMAkYnD6qeYh0PnYJJg/f39yudw2SBlxPy8ACP4/MqAQXS3tzcrK1a4NcZ8+uLuSy+X9V/rE85De7J6Wg29o/9ordHnzPg0DOcGoqOFEzVi8J17ljmPU+NFETlZwqVjzsl6+7DGQJXf3eNRgIwuQZE4PT0dG1TDn6lKPIGgdCOCcF+SjLQWm5cOE2kZDV91Si5vBSqpB1hjJR3jxBMQVYf/t8jBPjW9FG9Rz64JqpH1tZarh53RGZfMUpaKnrMOQz6uyeHrT1cXRTptyhP3SBIX7bG+iUKpyshcPe+XC5XqwwwTICIA1Yr3N7ePiADej9MAKAf+W2LTJ54Z0QlAdE9VaMCU+T1UclAxWvpKTYVuihKEHXsXnk4FilkRuVcpKScsFbITIV8ZNdFpEujARwF0N250GHc7oNHR0cPGDNHCJ4aESForT6MkpEAJ2uRcdaO7X67/KPjmaEdRSa3vX7h8qqQpilkANdFBl7RIzARdu2VPQYiuYgiA9uMjDiS7c5p2UwIOALBsu6MqDOcEUFYLv+LMPArjJEGcwNABDjq4JZQqy7lfQPYwOMa3qBI6x+Rgahd+Zj77mFnZCCq0FSvRZVzxCbx35GDXpk9QqHI8ou8qizf7HfVCFTAQsssFiQAH97wAx0F7xUH243aAMc5fPhU7yZw3qSTw1Ejx1CZY8PJocJoH3X81pc8qeKpGOOpCjzKN/IQUZ9q3llbq2flZHRkpztFZIiqdd83ZIY9InLZdaNlT9GvrflITiTT/B9hdY0MaJ16elJ3B8Q3hhrcMAQiBLzjYdRPeA8Wfr076q3RgNYevuFV+767ryr5HXnWWyUDkdftFEEEfqjcCBmbzEiBO56Vrem3oTgyTz2rZ5amUo5LywpWIwEuAnBycrI2XMCzbx0j1nzZED4VGWA4IuCIm5MvRUQe8c2TL9GGHDpEWh5S0e1VdZkU6uWUcER4XBv0jIamj9ohU75RPln+/In2FojubSqR69VpnxA9N6BS320QAuTDRqxX/hQi5nSaezbOZri8lFDoPWCCIpMB7n9ZOSq7uksrVkJoPm5uQDRxkMty7aPnR7CTyEDFC9P/7sbRKFiOEXkTmYD1DLE7lpGIqpfk6jti7Ct1dnXI6g2hZGPNO3HhzV1KCDB/QL1agOca8NCCGsBtKut9gD5j/Ec783wLfNAu3JZs+DEmiW9sdeo8E/VyIpLTq3eGLM+ejFcJQUQGnHJ1ZMD1K6dEM0Ph6ravhIBRNeyaTo1q5HRpem1L1tGQx4j8u2dRcdgcSe/Jb/Ss+ZirH3vxOKYTEntyzToWssttFBl/LSMbHnBl6zMeldutkQHXcTIW7xB14ig0pGVHD6lKFnrCGXlUmp/zNCtlZ8iUqCvf1ZPJABvt4+Pjdn5+3s7Oztr5+flqsiBm1mrojNuJ80Rkga/n+QX7TAaqdVMy6rwDJgJ4T/q7d+/a27dvV2QLJAnKhtdLY/kSb6Sim5xghcbo+uMRIsD3xN96XNuF/7v2cvKZGWKnUyJkxCBLp6gSq6dEpouqJGFquZA992x4przKgSNmPf1Y1bvOdmTpW4sJC9c/moPA9w1o1FQ3HGICrySgt4zQQYmcq1MVWx8miFh+Br0ZZZzbqFf2n8vk+lQ9G5cX0laF0l2blV0lB+pZ8XJBEAFEBM7Pz9vFxUU7OztbiwrwLoIswADIhb4TXFce7AsZcF6S+63pVUkA6sGibc/Pz9vbt2/bhw8f2uXlZfvw4cOKEKBdWvuz3zr2R8fsZbwchTc7ub6+Xtt73S1ziuR3G+0/QgAq3oweqxp7TRORAHesV799JwKZ/AKZo+BQiQ4gD/6wzPHkvl7/6hG0EVntGc9evm6Iw9miKtHoyW9ltYCTUed4OHI/lRRshQxk4T2tUNaQzMoyD8axzorwjBhyzdM1eGQcNK8RRA+yp5gyz8qN5SMqwAYc0QEOZy8WfnybFcfBwcEqInB2drYyeMjnqSMD+pyisNqU/AC0E4jA6elpOz8/b+/fv2+fPn1afT58+NAuLi7a6enpaofG379/r8gAtjsFCcBLUvS1qbzrGkcM+GUpFcM3pf16aTXdps+d78VF3TISMqLA94WsjmCqDDtEXqaW5cgA68Oe3nfPq0rQXL4VEuCgdXJ7BlRtTHSvvBKC5x5EqwSy+8lkdBsysDEZcGGiXlRAH4Jj+RkR2KTTVghKZNj1mpG6ZJ3M1U/rWvVSXGSGiYBOFMRYtv7m8L4LmcHowADi+ouLi1V04fT0dC268FQ7EKLulQ4z8kxdxOX4+HhFiD58+NA+fvzYvnz50v7666/2+fPnB9EBkCQsYfr169dqoxMQAeyPzu9SBzHAB+QA9ee2dvLd86Zcu6kMR4oyU+yj/df1Oz0flbkNErKvJGEbRDYitT2HDd88Dt5zAvV6zWuUEETp1GHL0up1THAc4ajk465prT0w/r2hhx56zugU2diIDKj3ycpRBaLCzhkRSYjS9hTbaOjEEZZI0KYi8ubx2xn2Xj7aKZ2x4gmCTArgxfPEPyUDMF6IFiAszpEBHSbg14/uE5yM6vlIYbK8c7teXFy0t2/ftnfv3q2IwNevX0MygElGGCrgV7KCDPz777+rN6fx61TxOTw8bL9+/WoHBwerCYettbUowSbokeURDw/tx9dmct1T6FHZm9wzk54qiX9qRMZgCmmoEKCIKHF5WbkRias8N9XNTi/3+nKk3yMZqxIUdpb4nL4zQef6ZLal0iZPGhlwhkqXnWWhxdFOFgn1tlh7lndUx9GOpp0kigLotyMD0bVKyjgqwCsHOBLAwwK8fFBXD+gzRTk6GVH3JsA1+0YGFKww3LNXgqVE4O3bt6uIwKdPn9qXL1/a33//3f7+++/25cuX9unTp/bu3bt2cXGxugZtDW8BKwcwZPDz5881MsDf//vf/9YIhYNO5qoo6Oq5ajQggpNpbmP3G+miMqfqg56O2ufoQOY4RXqtJxMVfdhrH1eHamTH6Uitq5bvdCLnm/XrqD6u3s450CjAYrFYW0qYTRTM7tMRGKenMlRldxIZUEOlhscRgRF247zgzDPO8ouEVIUhY9bVsqppRr4dKdBzrCx5KR9+66RBRAM4KsBevEYEUAYDIULeZMNdy0K/D+8mqB536VjWedgFROD9+/ft8vJybWjg77//bn/99Vf79OlTe//+fTs/P7fDMFAaJycn7f7+fm1CJ1Yk6JwOXO+8DSgdXuaVKY9IYff6by9qUCXAjsjid2t/ZBz5685t+D1iuF3ayKN8LoiIQXZs1KlxRpnbKTLaLp/o/Kjz5+xDTx6qJNKRoIhAsDyC5GODIbdXQUQssjIrkZAp2MqcASUEmWJxlXasX70EPVdlRJHyie6lhyqLjs5Hhl6PuePuo15q7wMjBIPC5AAevu6Y5+6DSZ+SPxgizHRv7T/lfXNz023fXSDyAnrXcId0ZACbMmFo4PLychURwNDAX3/91b58+dI+fPjQzs/Pw/c68OQlPEtXX74Gb3TDCoTj4+MHEwlBwJbLP0M8Wh7OK1TJ9dK7NtT2y2SY12brhlVMapyC5R3qXJs6VO4JOmTUEdkWerrOebyZF+uuzcrVvhPpKJd3howI9OrMaSLdibRRu2T3XiW4rizIHcuiTh6MohOOVPCcDH2u0XOeSgyGyUC1g3OlVJm4m4iURJS35ssPoxKNcMyWzzlm5uoc5ZmV1yMCWWfjtoEXrksFebUAv12QNxDijYH0bYS9rYa5Lm6CIca/2QDBcD01el5Q1Mn4XjnScnJy0s7Oztq7d+/WogJfv35tX758aZ8/f26fPn1qb9++XRs24Q7vvASWPzwzJW9M4k5OTlbvYj88PFx7+Ulr7YGC4k1iXPu4PjTicUdtx+S1R2Ldi17Y+GMc1r3HvkcKRu/luWLU628tj+Lw/00MUKSjHQmJ8s9sA65Rm5DlWSEwjnip/lssFg+GRJ0Mos7aFo4IaNoM1XSKjScQ9gy1+/D1+q0kgJWIpo+IQEY+ovvQtNF3dN0uiYAjSUwE2EjA44+2Eeb5A0wMWAm7vR1cp9Vn1FpbU9TcefaFDCh63hG+te1BBBAZwBABLyP8/Plz+/jxY3v//n07OztbW0qo2w5HBgvRFY1SqDetm0Ph7ZFc5/v7+zUSEJGPzAOJkMmtGn83dMXvw8CmTDqJlWWLN2JCdAR7MGgbt/bwvfHOcET3WiHGu8RU5R7l1Zo3hCP9YCpG9WoPmW1Q0q110P+OiET102v4g36mJIHtki617hEBbZttyQNj8pyByBBmBlrz4LyyDw8/VBlgFiGoMECXx6hSzM5lRCBqW20T3TiIZ/Pzhj8ccmVlrF4Zh2m1Hdy9aEds7Q8ZwG8mA/vw1sIesmfs9mrg/QQwcfDjx4/t48eP7fLysr1//341YRBGipUGZv+zwee6YA8C7CngZiQDbPjx0hWODIAQRIqT798pnSiNno/IKxMAtB/klOdD8JAVExzIEEgA9lzAUsvDw8PVudvb29U1ANorurdIRz0nuOflUL03p6eq5WdpnG4ZqVP04TS9vCNClN1DdI5Jh4u6uT6jdpOJgiMCu8YQGXCdn4VF2Zgz0O76iACoV8F7PWu5yF+3e8wMGhAxtF50Y4SdRUa/QgS0bVipQqHCKEGp6rsFuM04SqDeJcrQe1Q27EgaPwMV9OdCBhROHrndz87OVnMG3r9/vyIF79+/X9t+GO9ih7cPzxZGXqMD7E3c3d2tbUSEvQiwtwATA64v6t+LDESKMlJE7niVCMDA8zDH27dvV/tTYDts7FGBOSyt/dmpkfdXwH4MkHN+Vre3t+E99RR/1jZPgayufC/a7yLjUy1Tr4sMlOrQqCxNFxHLav3cPDWtQ0QAo/8urx6cfXDkJGs/JhSO3PSICmMkLbDR0kLHyFihOW8H12b5AayAoUzYgCkxcGQgCw8x2IPS63XnqIwYZBEQd58ZGdD0TAZ6OwliqEAnq2k+bhWI67D4uPq6SaOuHUeFc1/gSBgTMBCBDx8+tA8fPqyWD8KgtdZWEyp5y2F+D4GOc6PNMBYOMoC9BbDXAPJxwwm8BbRu7c2ELeqPPc9Zr3VkXiMC8Pohr7wvA3Zn5PdjKBnAPgwgRt+/f1/JOerg5JGVbCaHGdF5CkxR6ozMMEflZd+aZ6T3erqWdecInD7kc5GMVnR/tZ34niFvGglwcljJ3zmmlWu2IaMbLS2MUGF/0QPVczxzmyfI8UcfCBtxrY+rv0YWdDY8T1ZCmDZbMxq1VyTIPaXMbYGwqXvtsNs3AAafoSs/HKHiD4daHRN3gu/u3c1F2Gc4AqaRmIuLi/bu3bvVi4iw+yKMGLxZjgbAqwUxuLm5sTuUQd44FP7z58+VN4zPz58/1wiB1h19yAEkISK47rdrJ1emRgUgk44IXF5etsvLyzUixTtYLhaL1cucOCIAIqAKX4djpoRdRxX5rlElBkriqnlHxyJPNvvvrpsSUdV8Iv0Z1TGK5FYjQhx1ia5xQwPoU8gnimajDHWWnJM5pd1GrtnaagJgRHlkx1gJ89is2z+fN7ZhY6YeqnswXG+eCc9KnD04HrtlYoDZ284DdiTAkYGsrd3saxCkUSLglBy3E8akNRrChoUJACt+nnvAcMeeAj3liA6kbc+ElN/BACKg0QAmAjDUSgTwRkJ+PTETASYPuhUxXl7E2xHj+tbaGgFgQ4gJdnxvjtBmxABQj4SJABMoJu68goVll/dS4O2seT8FLE+9urpaRQ34Hl1/xPvpdegK9d9UXh4DFaXORsvd57buY4rnGiGqb5QW35ndieoVGdpKtCu61ukKvob7ouphtlecN9sQnXQYYVvPdqurCbJ0VWFGeh6bPT09Xa3j5jAsb+CCxsYsdvXeW3voEePDHgSUsL5FThUwiAEUPRtQ9wDVa+oRgaiN2eiifXT3P12jnbU5K0kmAvpGPNSFvTA2kvCY4alptGGfUGlzfOsKDCYD8Gzfvn1rZZGNO8sTyw3IgrY7b03McwU4ooDJcojcoM8sFouVtwJDCKOIuQNYftjan+eO30qiMw9L200jA/qf56owmdQ8lIBhyEP3wVgul2s7NippzyYeA1F/1To9BUa9O0XV2GbpNim/qt9c2p7TxAYZ53tRgIphzZxb/c/OFKIBrC+5PB2m499MALLh6Oo9uPbpYePVBGpUNxVeFxG4uLhol5eXq7XbHz9+XI0vYqIcHgQUqiMDqpTUWLInB2Wrb4/7/v37SkErMVADqu3gFFPEbqO2cROyqssDI7Ag6utxedIfDA2UM4fMeRWDi9TsA0YUukY+dBlcb1fA1tajTdrBcR4fJgEsgypnMP5MxvA8dHiH+4Mu+eRNe1pr9lpHCirPkvsWz/MBmHxzn9PIG5N4tCtHl3CtW4WAqAHKnzJ59SlJgGJUr1ZIAOenBiTKo1oHra+LRkbnRtrdEQFXF6StpIvKcP+dZ68fOFxuhQGncaTA6QtXJ3cPI5GX1rb0oiItvAonLCAC/Aa49+/ft8+fP7e///67/fPPP+3r16/t8vJytZHL8fFxa62tGTNVgq21B0SAvRMoJ1bEPGkLL4wBIcDYrXu1rIZ8+R4zpqvt4s7rcIHuGeCUpuapBISJAL8SlyelsXJfLBZrQzf8pkLMnFcBf2pCUO0QSnKVfGESHIe4o7c8ar5u62b2LJQI6GoDPAfeRMp59Grs0R9ub29X/UHD6bqjH+ej+VehpJs9J9SL+xp2UeShBCU+2lej92Fo9GEEmbF6bGh0bSTKOmII+DrNo3dNVndXl4wYjNQ1KlPLRvoqEXARzSg6ptEINf7QI/f39w90MtuI3iT1il3dVE433o54CiIhZS8MxgaTi758+dL++eef9n//93/tr7/+apeXl6v121AyOsnPbegSEYLW/ihkeCgcosXksH///bedn5+vzehmBfTmzZu19eDRHALXJvzNv5GelSrvE8CEgCdVaj6cl3ruPESiUQ4uUyMCGDdHqBzPg8kFb4/7FHAdPZI//s2EgCdtRpGYjAS09metP0L0TER5vgp7yJAhGH/Mmo/uhRUSe95ulz4lBTrmHkUJenAKk0kokxQmAz9//lxr2+Pj47U24BUvOkyWRcjQbyJl6ZS/kuZ9iRBMhepcfkYuqpvpqGp5Lh+VWa1T1s4Vg56Rjh6hcs/cpVMdzfKDc0oIMIdI81Fy7qJzo3DyXMFWycAIk9EHz14Y9s7HG+A+f/68eunLP//8s9rr/ezsbOWF8rakrnFVOHWtPR48FNTd3d0q/M3hYPz//v376r++4OfNmzerGeLZPILov+tIPClLIwP6XRmvZ6Flww0jxKFaGCI8Mx6+4fX1IAOttVU78hDKFMF+LESKX2fFRzv+teZXYvBQg+7lgGsqoXIeDuDyWe4cweNog05+ZXIQbenrlFJEqLjc1v5sQIXr+b51kiQbd2foHeHiaIvbyliXzmLypHqP2X09NQkYibZWjWl0XA1blk+vzprWEW0+Xo1iVAw6/3aEVOsUkcDRyApfo+RZ5V9Ju5uEHn0cMtmtys9GZMB5se58RXjQsXnC4IcPH9b2ev/69Wv79OnTKiqANdzYB1+NPiti98A1OsAPjD1vnqSHjWbwOT09faCAfv361Y6OjlZKGJO2OOQatVsm4FxvLo8/OvSRlYc24+EB3uaVh1dYWaBNMImOZ9PjmeC+uR77MlSg7Rml0Y8jkK2tb8GMNuTziJSwfLpoDO8/wEMDbtteTNbkSIVGudjY6uRFJn2OBPImUVGf0vZj8usIhxIkJUIYJnCePqIr3JaokyMDbqjAEYEsWhCRhsfGtsuP9ILznh3hq+RfMaIV0lW9714EIstHZUOvcySiQpYcGdB0OkRQIQE9QjAVG0cGXEX5WIUIcAgWW7teXl6uRQTwGth37961k5OTVdiFdyS7vr62TF+9Jhb85XL5QLHjoUDRIPTNwxeIGrBChgd9fHy8qo8jBY41cp011MXExc3EdkbNCROHqfiYG6vG+DK3Hy9d0xn2/NIcpIFRQFj8KcmAIwJ6LrtGN7tynv319fXqPDo4L4vjsDjvGcDzT5SIgXxplIojVTqBUQ0tQvDcT379+rVGQJgwcGQAshhFSHAcad0kSF35wIYcbYu25L0EOBqwXP63agDDJGhPDsM6AsFDBY7gVeXlqTHq5QGs7/j6SD9PMXpcP/3dQ4VsRHXMyumdzyILmUPQy1vz5D7k0jIhyCYMRv8jEuPq0sNi+ZSUd8aMGTNmzJjx5HheW8LNmDFjxowZM7aOmQzMmDFjxowZrxwzGZgxY8aMGTNeOWYyMGPGjBkzZrxyzGRgxowZM2bMeOWYycCMGTNmzJjxyjGTgRkzZsyYMeOVYyYDM2bMmDFjxivHTAZmzJgxY8aMV47/D2Jdc58Agyn+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABp3klEQVR4nO1daXcbua6kvG+JM8nMvfP/f+C8m8Sr5Fjvw5zqlMoFkGxJlmw3ztGR1M3mCgIFEGTPlsvlskw00UQTTTTRRB+WDnZdgYkmmmiiiSaaaLc0gYGJJppoookm+uA0gYGJJppoookm+uA0gYGJJppoookm+uA0gYGJJppoookm+uA0gYGJJppoookm+uA0gYGJJppoookm+uA0gYGJJppoookm+uB01JpwNpttsx4T7YB4TPFbx1mvz2az6ufgYBVj4lyr5XJZvn//vrX2RHR8fFyenp6G+mmdJpqohXbBK5PcXaV1+oOf5bHclQyYzWZbKVtlnP6OqBkMTPR+yU2wCCj0gAB+frlclufn5+00oEK/fv0qpfw7ISblP9FEb4s2BYiiub8tpaxl1K5ndejtAwcIajSBgQ9KbCXjP3+7ay1eAZfPrhXwwcFB+fXrl51Qu67bRBNNtF1SxeiU/xjl2Vv+a9KYdkxg4J1QK8M5hR0tEURpIq+AAgLO4/n5OfQcbJuieuFeNHEmoNBH78mlvVwut6ogWuk1rNZ9pYyfonuRko9+rwMKWsamZ05saqyZd3toAgMBMVPsg1AopU/hZ9cjBd/yvEvrgILSwcHBzpYJSmkDPBpH4Lwb6yi8XfNPRvuqyHdlVe1rf3wEGgMCWu/X0kfzPAINqifWlRObAARjy57AQED7EGCilKHeKJ0qNDDbupOmls5Npl0J2Gx5QCcfAwI3MfeFFzZNrZbQa1Mrz7fm0/P8ex3rfaZ1gMCmym8Z91qadeTdruTkBAbeMDmGrCFdh2CjNFmezluCIMF9s6oQOFhT7h9F8Y+lfYimX7cOEVDWMvfJI/hRaCwQqCnwFnmkfOFA6L4CZpSbBUi20AQG3hBtAmm6pYEo8K/2bKv1D2W8K6Gq1n4L9fb1pDDG0VuwnvYN3L5XGmtNZ0ZRTUE6Qwj/ez2xLUBzW5TJn1bZNIGBV6AaY7RY+NH1HjeqU/gtv6Nn8T+LFdhHJRm5jNexBN9K21spE3xjXe2bEJDbELK9luNE26FtAMNaLJRbRnW/x5a/CxobtzCBgQ3Stq2cGjPXnqlNjNbnM+UP6gE4r0k9UcI162CskHhNxbLrPl+3/G3XX/l7XVfrRP3UCsY2KV/dsmkEBCK+2ERQ8TaodUlDaQIDa1IvI4wdqFZPQS1NpNw3QfsahV1Typmw2Ma68VgeiPJ6TdpWeZvyGowFodlcmLwC26HX4N1Wz0ANCPQsG7wG1fh0TN22AgY2OaFqbnGkWVcR9davp6xsHX5sUMo6IKD2vE4QzYe9Aq6MfQUFGbXyWfR/m/zzHmksr/R4wnrziqzBjz5W26AxRtQ6ZbTIv5pHYF0Q3yJjsmdr/Liu4bJxMLCOBbvL/GtrpNvajlcbwF4g0IJ+XdronvvWJYIIHOwjtQp5HZd1lNC+Wpat7tns2XWB3yaV+zrlti4XTLQ+7dIjEP3OPAJRmrH1icofk8cmaW+WCfYVhfcquQw4ZEKmV/lkeej/nja4yRIBgZoHQVH1rsZ2EuwvqYefN5HPuuWUsl2PU7Y2jPsT7YbWMcIyeeaecQCA00TyeVv88Zoyc6NgoKfitUm3b6CghVqYrUXg9Fr+7nqLW6yHWpSC8xiA9kWYjkX0vc/tS3uVtmlpt7Z5bB02UfcxnsV9Hcu3SmN2pKybvtULWFP4EZ+v66J3+b62DtwoGHCdOLZztjEB2WrfhlsmY9qe9mTeg16wtK4Lf13BzfXdFcCrjYmzCl5L+b82+B0jcHqWSrJ+WLeNvfPLpY3GnJ93vydAsFnapJdnWx6jdce8ByBHuxXelGegpqD2af2td2KPUbwt99ZZb6qtPfH/zEWWCU+3HJCVEf3W8nb5oiKtS5ZOf9fGaxP8vYugy57yWnl7k23o6ZMxQLk1r32RX++NWse3d6mqlj5bClhnrKNo/pb67AOtDQaijnyLbv6IxgrqzCW5LUsyUsYtdWsBA7VvTc/X9vVFRZvIe8x46jOv6SYcCwTGzoNMNrQGz/YqhYycF4jruS8CeqLxVFv66fGKjS2vFey0era2SVsLIPxok2kT1tGmB3+bzNSz+wHXdwUQl8uX7yaoAVenqF97+au3j1toE5bYuuXui2yogTG+vi91/oiUKe5WwOjy6AkWfavj32Oo7M1ugn2lHstar2fMN3ZtOqOW5YEW68pZ+ZtQQG/dWxQFJvVaD2PGfJOeqd50rwlS36rQnWh7NEbWtuahtCv+29YyVw9NYGAEjWXOTaw/tjL9GE8FA5SeyZO5V/cBALRYBGPWiNfxAG1T6GxjHXabdVGQPAGCiTJ6LZny2ny4rXa15juBgU4aM2A97qjesjOru7euPQpR3b7O07FJtLsJysZhjKfmNXfK9MTj7CIYcR2KYgqiddRtC+kJjLwO9QLSMfFPH4V65lBEExhIaB031KYj0FsY/rXc8S3KqDXta1I0QVpiBmrXW2hTSmafAFZGNZ6tCa+a8Hf9kAViZTEY7OHKAgsnWp82teTVu4Sb0Wss9e07TWBAKAIAuxS8GUKOYgJ6YwVcmS5WoGW9NxK+u55ALQp+Hyd6pvxcupa8ep9bh9apbzYWWVt6totNOwhehzYVw+LSZM84ebkPoH4TVGtbjzybwABRtt4eMdtYxsgGqZexW2gTEbljAMU+UBQjwJag9us+AYQWt/868Qtj7vUsI2XXMqW9Tp+3eHtq7duE4piojzd7PKCbeCYC2BoLFf1uoV3LjylmoINY4bcCgchF2Trw66w315YHXJ1an9VrkYfA5R95EvYBFKyzjv6asQGbzKsX1I0V2pFA3YWXrXe7WNYXytsT9dMmvQGarsZT6xpODhDwffyu1XNTpDzZuuzVSh8WDERKKwIEGW1yDbfXSm+tXwQIMgs5Klfdqq2Kdh8trH0BKzXalGJvtdj5Xm35pwUoRvzV+qzWpZfcs64uUczCW+CRfaOWPmv1TLUAzRZDh//3KszIS7AtapHFY5919CHBQA0IREy4C9dxixtrLHMjX1XmmWegdYLvk4egF7RsssxNUKtib1Xqjmpeo17e7wGVER+7etWsonXqlKXZRyC7z9Qz/rXna0o+k9mRLHJgMwOd68rZXuoF+Vk+U8xAAykz4ez8FougFn0cPbMtWkfJOTCUAaRS8gnxGqh5m7SJcdqUsGgRCq2goNfSimhTijhS8hEQ4LJfC4yjrLfKy/tMvQovUvKRwRJ9g5yHk+/hg2f1/jrANKNd8dqHAwMRqoxQpnvWUc9aTi2vHgumlXEiy08/BwcHqWfAtaWVdu0Z0N/7TjUFqv9bPAM93oQx6SJyy1Mu3wgIbCKQK6MWS3YX9Jb4FbSOVZtZ+PpdM1xawEAECBgMcDql1/AStFBWh1be/VBgIFKGm8q7RUhF93rr4YJcWiy6aDIBBOC75hXgctWF3AIm9ok2sXywaaEQ1Sera60dPcBB83X33fVa+yNrPwMp23bROmWxTcvvPdPYeVQDuU6xt8gs/e0MAwUF+vv5+TkFBa082ZpmV/QuwUAvym+xst2At655afpWQdySf69ll3kD3HV+RgFABmpqgGLfaIwS682jlVw5Lddq/2vXe+qzjrKMQHMNhOh1t647hhzYmIDA61FNHtdkVw0UODDgPADuOt606jwFPcsGNXm9CYNkXZ59d2CgRQBmCDISSI6hnDBb11WjQonroPWK6lLrg6j9OpmitC3157x62v+alI1tL7WCuHXyza4rf48pp6feEb+5eo31hLWkaZ1/tbwjPp1AQRv1GmC1a04G8W8GAIeHh1Uw4OR6yzLB8/Pz4BnQbwYLnO8YWbAJ+VgDzzV6d2AgQlgZ8uoVOtGzPW7aGjlQ4MqJvqP8HLLWb5cOglYVp04qNxH2GRAwbcOyb8lT+9bl4671Ctjovt7L6pEB01Zy9XFlq3J3FnxUp6zc3jZMQCCmHhDQwq8ZAFC55WRXBgaUjzMgwGkACPCZzWYDICilrHgP1jEo1qFNlPnuwEANbeLbMQn/1s51CnlT9YsoQplaZ827BXFnkyVC0y19m/2eyFMNCPTca7nWo/Q2AW6zsp1l35I+E7o9CmqdZz4yjQUBrbwcAQAHCFpAAIwcV1YEBkopg/I/ODgYwMCvX78GQMDp8KwC1gi4bgM4rJPnuwMDkTCpIU3HpA7pjenoaOLUhLIb2FpeGdLGdwsYaiEnvF09I4A1Ub9iygBf7Vl3v3dMInDqqJV3Ob3jV72nefM82ZbSnnj3N/UARJUpLWBA5REr++h3q+xiUAAFXjN6MpCqMSYgBwSystblr03w/bsDA44ipeeu66A4tJiVw2kjQd+ynNBipUVAx6VvQdpMNQusVxltS0jvK216yaFHAOu9rC4KejPhvIk21erCabQuLe2oXcvq9dF4tId6QWYmjzIZxd+Z4ndLA5qfyjCtI4BBBAqQhpcUOJ1ed8sFPTy4LWrl63cNBiJlWMpvRnPpdJCjdcuWcqO6aHkteURp3GSIEHr2cdSKbLUeePajUU+bMz6pCczoeXe9lV9bBXeLq77lvlIWd9JSRgZoPiIvbop65F3GQy1yRGVaqwGTje/z8/PwnAb8MUWeLNYZUdrlcjksJej1yNDSsjJP2msAi3cNBkrpV4K1wKRWlNUqkKM68P3a2uhYMBCRQ8Eub+4nl6fW/S0JZMcHvUBw7Bp8y1jWyu69r4rUgbze8YtiITa51h8FFbpnx5T7lnh2U9Qq4zRtxjtR3tHzLo/MYHG/VYlHckqfc+TywjcHGjpPQlSv1rLxTC3dut6tdwsGVEFG6NLRWHfjOgPRkm8kXB0Y4N+9YMj9ziaxO8ZZ0+7SDTtGieF7nTqPBY7uXiZQW/Os8XvrM8qP0Xq+3os8Cq395IQs5zVGyHM7xjy7bRoDwl6DInngvlt4t/e6ztEM6IFvMrmfAXeVb9Ah+txsNntxQBE+XMdaXaN283zaBk+8OzCQMWm0zgQa28E1IbquEozWUPE9FgxwOgcCWpRDizWX5bfv1LPmXEruGcgE2zrAgce5Zh3zN9fZWWL6XLRcpkKOBbA+F9XFlatlu3su78izFqWvgbF9VMabpk2A3rFAoJS+OYC0vNafjRG79yMeY351stEBgahd8BK4OtfAcYs8jdLVgFON3jQYiCwMVXpZIEopvrNq7u2a8tVrEbWsH2XC3Sn4aFLW0jCK1edcG1sZ8r0K1FbXYo2yMcF3xlM1hVorp6csVfC1uRPVs1anTOhxORn44jJ6Ael75NdNUS9w2IQR4ABexIuOZ9mNH+Xda3WzTnHeMD6kyJXZAlRfk940GHDrMk5QYsB0Tyo/o3m5AVaKlGYmbJ111dKOsWVnCl3LbFVurrxanTMltU/Uui63qYm7yT6JFGhtucfxkOMb5/7keywIe+rLz7ek1bY58JwtJ/SWsQ+C+i1Tr4cssp5dXko1/o7mCO8EaMkf36onAAK4Tfh2oKMGCFrbvQl602AgI2UABgO4D2qxblTpKWOp90HLcGhWhWqP9RIp5gwMtFhbWga3KVISb516FfwmJmYEzmpjWcuDv9XLE33PZrPhSFcea+ZjWDhsZbnjWSPhVlMIEU+15MV5tMzlCHhE+U5AoJ3WkQuZfMrGwKVvkXVu3juAm8k8nUfqeYA3orZssA8egjcFBlqZxA2QggGXR8sgOJChZfRYVipMs3a59mmdXF2zNLW21kDORKvU49WJrmdK3j3fovDx7fjh8PBw+DAvK+/qkaylxMKOwXPLvIose84nuh8JVpfe9V+tPu7/e6Ie42ATFHlwW5+LvFAq3zIjyMn8FiDpiOUj5gZ/WsDnpgDBOnz6psBAjZywYyUNYVdKLKSi606IKsg4PDy0gICJrSl8wEQMEBzjaj3ct6ZzdW8hB3j42ZYDOyZ6SdsSvK184Pj38PCwHB8fl8PDw3J0dGRB8/Pzc3l6eiq/fv0qv379WsnTWT36W9/+puSecaBA29YKACbytC4/6vXMxd9aTmRMcf6ZpykzijSv7LcDoq4sBSdRG3qWAHYhT98VGABFyhpKzQ28W9uJ8mYhqh8I04iRf/36NXzrCzDY9cp1ilCw+3b9UJtc7nkHBNRaLOUlKPjolE3iaIzWLc9ZRFEaB5BPTk6Gz9HR0QpoLuVfHlksFmU+n5enp6chD+bhyKphMMCeMNxzy2S19kYW1SZorHX4HimzatfNV3+3yLPePFry4TSt4KVFFjuZmwEnve7quG0+3HswkA2MCoVIUR8dHQ1KGs+pANP8XB2QP/I9Pj4e8j4+Ph6sK6TTQJJfv36Vw8PD8vz8XA4PDwcri19+AUuL0WYr80V1zsAA189Nfu4jF42bWYWuPvtIr1G3DAj0Cq/s+ahMjD17r46OjsrJyUk5Ozsr5+fn5fT0dAADDPIWi4UVZOzRqtUpA7/4IF8uo0eYa/0iAdribahd+yjUqxjdtWxZIFKYmRLVe8744t9RnFgr8OBnsnyUOH/lR9Y5ej/SRzU9tS7tNRjoRYcREMBvPh2KXTp4Putszf/k5KQcHx+X09PTlW+ADghJFoKz2WywrDjfp6enF+W1eCiiCZNNFjdx+dvl6SYb0h8eHq5Yeyo4I5CxT8S8sM5EW7d9mVKrXdM8HD9wfMvR0VE5PT0tZ2dn5fLyslxeXpaLi4vBO4By4BFgELFYLFaALSjyIrFHDEsN+l3KZoClClMnYFvGScveZzAwlm+zfmjl5V7jwsktdzR8j4Hj4rRU6bo5FBlZuO9+63+UFQFIHRvHhy18GuWxSdo5GIgYOULtUR6ZRwD/S4ldk2wJKTMx03G+AARnZ2fD5+joqMxms8Haf3p6Kk9PT2WxWITBVkxcv2gdy02oaMK5T0ufRu9u0OfAtNyuaILtK2l9ayCslDj4p5a/Ky9KHyl2fLeMqROc4GHw7sXFRfn06VO5uLgoZ2dnw/NPT08DgOZYAswlfKMcBd4gBQGYD/A4cJvcq2BLWT04hvN1fRctr2XegixP7dP3QJsAAko1oOVkURRwncl6x88RGHBtcso78khFcti1Pfvv2uP4VK/p89sEpTsHA+tQpqgh7NjtiYGFS54tElZqILYYuQwWeFoWwMDT01N1TShSBA4RtkxQnUzOI8Dtg+BlN5pLp/VhMMOMXAM674lqSiV7Lrteu6+/WzwHzAus0DE3sMSlni2OjC6l2B05uM/zDnOA82Fvgs4xEOZlJJijdrMgbRXW2bxseX5fiPumpY6bBDUtgCIzSqIdWC15Z0HbSpGVrbJMn3FGYyu1jEcNpGZ6IFtOGEs7BwMtk5TTOqtJgQALtpOTkxcKkIGAlhm5zVW5KvG6P/6zlcPLBRxEyOXVPg71ZoCCJ40DGXDxa5+yxcfXW6wmBzZw/a0ABUXopYyP+B0rfJ1QdL9rQtPxL3t9eJcAW+qw3h8fH8vj42NZLBbl6enpRawNAwEslXHsDPLH8gKX63i8lFVrLGq/kktfc8W65ycaTzVed3IpU+YRKNSg8FrQtiNcjw4Iwr3MM6C8GXmk+L+z/CO+zLyPkYwaa6SUsgdggKlFcGonKxiAMIIL//j4eEURqbXDwADCC99cL/dBfuxO5fV/KH7kj0FCJLZrP+eduZ60ryKBzwGNOtF4vzjqlaFrtCkjx4zOxfuWqGYxRn3WW0aUh7OYom99JgIEKBOg9OHhYbDgAVqxe2A+n5fHx8cyn89XQG4pZYgvYCCOuAPMLQaX4Lujo6OhbMQeoG4alOj6I/MCtPZtJmzfI20SvPbwu+NB52WNjDKdYwoEou2wpcTyir2izEsqE7M3ETrg6dKM5SvVA9vm0a2CgUipOQQ0RphmQAACCa5QtsK5XM1P0Rxfd8oa66Cl/HZzclAdewVU+DAocAol6j+9FoEjXk9TJaBMv1wu03XZCB1HdeJJGJ0J/lq0ziTa5uRrtXqj53qAgAb38c6a+Xw+WO7gXV7jByiAZwBjqwGE4H11/zKvaX0ODw8HMA3QDuGL+rm+YUDA4D1zpzI54Z3Nt32ndeu8Lph1eak8jYAAW/alrHpJnVGmQMBthwUpeAUx/3M5TvHXLHJOF8ma1uuOBx0vr+sFcLQVMBAptdb0tTSq9Ngi4Sh/MAlIFS/yKOXlZHLuUEWfUPQYFBZqijb5u9ZOhzhdHd2zDASiieK2dDE5d5m2uZfeyhJBL2W82zsPmFSJZUox+maejdyy4IGHh4eVIFoofo74V34BfwAoIC3y4e2zunvA7UJwQbw676M50GJg6FKBMw7eIhDYd4o8A5BRGuCtAADXVe5rkDjuOWAYKfBS/tULrAd4uTdy90c01op3XoAsz4yPOc+eOuzVMkELKbpkIHB6emq9Aor8sM+/lN+KkYOdMkte3VmlvFSQLsAqcvG73zzQzNwq6CO0rXETfMYC2sinyTkUzp6NUsrKUkfk6YmAi/N6fDTqbX9m7fN/TqvXdNknqoOeAcBAQO85sFpKeSFMORAR3gX2MDCAUKCoQrfWdy3Wf6ungNv0lqhW9x7Qui1SmcVGi9ZFY0r0/mw2ewEISvkt38GHAKRaDyboCJSr/6N4J50HXM8eg8kpeVdO5BmIvntp42BgG4zllGDkFcCHXeSRe4aj6LXueE69A6W8dC054rw1r8gyr01kRscs7BkI6FIJgrrQF7DOsLWLhTIDIu0H3GsRzPzbKY63QOvUu2UOtFitLYBAr0dgQJdpwL9Q/KWUFSHKSwIsmJH/wcHBihcAzz89Pb0A4ghORMwBbzFkwBEJfTcWzqrP+jrjRc7Tgd23xLc9tE0Q4AwWNlzYsMK3M0g0T5Z1ulTAy0xPT08DEGCA4NrM11Txw8vr5J/OqRqobeWjKH3mGcgMzlbauWegBcU4FxGDAN7nD6+AuhxLWVXQbNHo3mYcDORQKT4u0JDzZmvegQj2JrDA1Xyc4HeTyQEjHCrDfQLB/Pj4uKIs0Bb2BKCOmbB0AnYTjLlr2pQCcAo9usfXVJi66/ivHqtMCHOwFlthaDMrZgcGkP9yuRxiBgACkBcEMfM9LxOo10Hzdu0EcVr37ZQ51zniRTf3ojF66/SabVJedMtWrj7ROCJP3UYOzwAMHiY2cFiXcFm1+pey6kFwvAldwssM7IF2hmFNzigwqOnLFn0a0dpgoDbJsufc7yitokLHDAoCSvkt4FS4gVjYOYvY/Ud7NRIa9zhvjTHQ9SxuH+fN/aIMGE0q7RcFBAADCBhzQIVJracojU4sZdxWxn8PVONlZyk4wOA+Ct5Ucbr7ChwjXuP6aH3xrZYIW2GYZxxXo+vADAL4WqbEuUyuC8/ZDABk/R6lfW+06bb1glhVnPqflbcu0+oSaSkvD0RzS7eQdRhrNdo0YDFbDkA5TjZrPkxs/DnaN3m4NhjYZoOc9aNr4u7AFK6bc0G6MpgYASIfB3o4aIXzYgbQWAX1DugHz7t61oAA+kUDc/iAGQhxAAZYcbwlkieQCttsvJ2lhvLWQaxvhTKAmwlkBQU1r4oDAu6+Wl/Mr+riLOXlGRHqXYu8XQDGcKnCMsIyAs+FmvJXYRtZjfqdWZKcT2S4vEfezJT2NsqJ8s54VcGeLqHquGRLX0z8rAMEDhy6Z7QdNSDJc4aXFlzbe+g15OdGPANjqOZNcEjTeQT4kJMICDikmbWDy9QB0EF1bi78j8pyQMB5DFx9FADouhmfr6AvUmKXFQMFN5lV0Oq1zOqKmHbfBG40wcbUs8cjED3reF7/R3waeQSYT1SQKo8rKMHcieqplMXQOMWtSrwGoBiQaL7Rf36WFc97pNdoV8sYRfzKpMof16J4qlY9w32gcjbjz968VeZpWwGMo7m8jozs5eHWvlsLDGwDZXK+kXBTz4BbImAGcNuiXJl6OAryYsqCDjXyP3M7oYzMK6D9gD6Alc/f3B8cM4AdFhrQpcsEYF6tl/ZHpDhqzLmvAriHh2vKfBuUKXwndN03e5FKWXVtatrZ7OVBQRA+DLajcVdQG/F3Bhq1PeqZa+WlFmPDzbd95dWMdlFnx0PuPo9npJzZW5otETBxusgY4eWpGihwS6dKeF6Xo3lJjNucAfmojF3RaDCwrgDMmMf9hrLWw4X04Am1slWpR52vijuyljO0q+VqbAKXz2kyN6cT6nr0Mo6C5d0UHFyJF9KU8vtgpKgdrv8i11mNB2rCYl+pVeHUrKSWe5kS7wUCmqceABS5VZ0rlgWe9ofOiVLKiuB2gt7xEltXmYXJz2xiyYmfd21Ri++90CZldiS/I3DK5DyhKgs1+t/Jy1LKSrAe0rHid+VymY6XeHeDq2Mpq8u/ANBaVq1vWnj4NXlw57sJHDmB6NbJYSVz8B4LJyBCBDhlVkDr8kEp/iU+TigqwHBusAgIREKf0StAAYIEz8/PV5YJ+OyF4+PjYaIsFot07U3XulB3Fc5aX8e4GfDYZ+pV7LX2RX0Tfbtxd0GAmmcG3mrlurZA0PE1BQkADuAvrYvjc/7dqlg0ULe1zzVtr2dhXfCxDvUC06xP161H9jua9/obdQSv8Ng60KjPcFr+1pgnPSPDgY2onW4pikEA9zF4ywUxctv1o0Cnh3rS9/BuNxjoYbKosT3CNFOGGvCEb32hiivDCV4mdQNF15W5nDcC1xmxtnoDXP3cjoHz8/NyeXk57BxQLwGfBof30/NEbFlOydC+u/5WgUBEmdJsoczydMKTtwU6gaLPcTkKPNXa5/pECgTP8IEu0XiycAeQBAgv5eX2WS4zapuCVD3+GPlkcQQOfPD/aA4qvRceHkNj53vEm6W8lKtRoLLKeWfs4b8Gq/Ic4K3SSlonfVGbC4DVPnBzw/E4xxI4Ps2IQUTk1Yja1kKvchxxT7pIEapngJ91g8WDphZ6JtR02wryVe8D8o/cQ85NiutOCGl9nDLg18OirvCSQPGfn58PBw3pkcyKpB16jurP33q9ReHvizDNAGqvxbhO+fgdfTDmei6As0BUqOjcwHjXdhBw/dAfKmD5GSf49H+kdLkcndcc2KpxQNpOrUNNuWf3HG/08MU+UFbfyFPSm3/27dJloAC/Vf5oWlbs7AXgdml6Pgo7k9X8ezbz5xRw+cg/ktfc3hbQG4GD7L7mHY15D/92g4GIkTLmak3fCwTAGFwnHTBn2SNfPqEQz0NxKnNp/viN+/wf5eCaMk02iJlSUHKCFs/wenEpZfAI4INX0+JtdHxUrO6+6LGexgribVIL/60DBDLej6zuGv9rmghwOct3Nvv9zgF83LZCtlLwH89noNB5jpgPFfA6j4C2j+e3njWPMtXjgP+8rNXKf64ePWO1z9TCj+sAgtbyIxmqYxQtI5Xy25DD+PI3QIHmrcaaM3aUsusRGNC26VKe6xekyyz8aIw0Xe0/X2+hLjAQNXBdIV+zlkAqYPjUM/5GWnyrFVLKyzMCNNJa2wplzKeoYY8+tz8TlK4dUbudNei2TuKzWCxWjhpGXfCq2Kenp3J/f19ubm7Kzc1Nub+/Lw8PD+Xh4cECAZ4A2qc6di3jvw/WVTQpWtqQPdv7nFP6LePvhGlmefM4YgcJ+J7BMJ8/wfzsgEa0hMT1QTqnXGv9wW/bhHBlQK1LHmylOXkRUSSINyHPXoPWVeRjns/AKv7XeJtJ+cspa+Yn5gV+pwXzB6dX5e3miKuLlh+BW8c3DAy0zW67oTMOW+VRBCjG8vBGthb2CtlIOETM5ZYFwAjqMirFr4VC0Oi6aSQY2VpiNIfy+ECVGhJnVOliC6J2z2azYb22dsARxwKUUuzLYu7v78vd3V15eHgYvAI4M55fUct15n6M2ucmuWvTWxCyStnYZm2s8X4GBJjvneuxFC+0XNkcCwJFz94BPWLV5a8CMAMECiT10K9IGHNf8PIX/mO+cRsw95wSirwA2bW3yqO91AMEWtIqbypvO1IvgPMK6LMqa5kvVB4ifY1ftU6ujpFnQA1Olc2qZxwQUJDP6RzVeLT2fEbNYMBN3Ox/rXLR/0w4qrDiQc6CiHSgdJAgZHit0qVDmdEWLbeuietRrACn0z5xXgy1mvAMFD68Anri4NPT0wAC5vP58JIiCGt+MY1D0k7IZsrJtW+XVJscri0Zj0bPZuBW84h4XpfFnPs+EwpqKUSAdTb7vVMAvKQeAAcEHI/z/IieiSzxiFAvABlti4Jx1ydRH2lfaluyZ98y9cwDdz36xu9a/o53MrnIY6EyP+LvzILXNtXAiuPpaKkAxB4rlKPl6Zwfw2usW1s9ChmttUzQij5ahWUksCIwAEWH/3yvlJcBT24LHStYXavU+nDkKspRq4froV6AHkWL59m1xABAFQWsMLxkiUHLcrkcgIJbQ9N6uskZWVcZI66DUndJNSWepevJp+ej5Cxtd1/TKmg+Ojoarrn55KKv1ZLha85id4Ja/7u54eoLzwA+Ld451y8142Ufad261YBX7V4LIMjyczyr1yKZmPGElqXyq7fPdL5EQMDJa66Tzo+M93ROtYJaLU9/99CrnTNQU/wtQhLkGCJyRXL+zkXPhOAl53bCNz7sVnfvZEd+LYq2RlD+XEc9gZBPwEIsA5eNrTUKJPB8BgpQB9xzSt6NZyYsXpPWLT+zHlyaFsDbq/z5eSdAI96vCQanmEvxh2S1EPMqk4vkBs8poMQHJyFGvKX9XBvnWt9E4PUtAtoeyoCR/m4BBNm8d8o9MzT0GscOuHpGhpm2i9OBd9xc0LnVKr85nc55/h2VzXV7Lf7b2AmENeQTPZv9xkcD6Dgdrw+pO5LTsZWs+R8eHg4v+IGCRFpWpLCuOdgOv1XhMmVMxkqWXbUqHNEGgAGcPohthDhzgL0bXCaX48AU6s996sasRcE7ILDPFldGPdZUKwiISAVHlCbqx9b+VQGHuRMtf+lc5DycUI4sNX5boVoxumsAQMABdK0bK4dMAWXjE1Fkqb0mqRx4jfLc/5bvTE44xcrUw78KHF2arG2qZDMZzTyrbRgjD3UXT62tWj9XZ76nIKK1X0fHDERpVMmh0plyykCAi8rEMy5QCfc5r1JeHhgBEMAv94HQgXCBAGMXvPtocKD2VyQcta5Rn3JfAAjw8cOoO9rDQp0FZSRU0U60Ef3lxiarK5MCt7dmWbmJpIC3xapkcpYB/3ZCWNOxYGpVbmqF8NxjJepeSsQUBTOW8vKgFt4Sxp4od7AVz1FHuM4gl+epI6co3Phk4CG6vyvKlEDrs9F/dz2b+xmv1vrUKV5Xh5b8aktEUb2jMjV/nudRG6I83DU3F/FpAflZOieTemh0zIBrJCP86Dm95oBAtDbOB7AwqZXiOgRoDIqd10o5nVowDhGiXkqRYlc0qIOfoWV+nr0BOHmQX9TEXgGuAwcS4oO8np6eVl53zIpGFVzL5MyA3z4J1hpF/Jn9rs2PFjDg+ljTlvISUDoh555jYlAdeQXwrIJyKGIGmHqPl9TcvM2WIrgfUI7O5ahPndLP+LCFL3flGXDtWXce1ZRW1D8tfK6kSrXFko9AW1RWNrYaL+bqkfWH8wZkyjiSkW4+u3nudEJG0bwfw69rewa44BYmzSap3m9hOufScR2hSwC/fv0azusHANB82VoGiFDgUcpLrwOEa8SYXAbaBoGr+6x5ScAdM8yvJ8Z39FpitHG5XK6AABb2kcuV66hCX8eidex2TbV6ZTzfez8DAlGZ6G9WtuyxcMGrkUJ1QqOU35ZVBAiyPtJdLhzQirwBvBeLhRV+DAiispg3kSYLUtT6q5cnKqvFMnuLVJuLNT7m3zXejqgGALJyI9Dn5pGmybbm6s4YrYMDASrjGJS6ukfk2uIMKddn0Rg6b2YPjYoZyASYu5ZZzPw7GmwnRKGI2OJ3yIoHVd35uj7J9VXPQPQmLCVXPn+zsHRggAUfFDuUNl9jcMNMH22PRP9EVlqLK0zrye1xIOm9U6bAIooEWE2guvu6hYnz5DSZ0qy1Qb0HTtjyur4us+EZzDMn/CKeY/7l3wo8IsWgwrxG6wjSfaRe3oyeqQEB/p3xcesYcF5R+a33FEgyb0Cmc90yw1brnynmlra7/nRpsn6rgYMeWutFRa0dkTGPfvNE1/98vZTVbUa8xUiFiwIBWPuHh4eDcsSBPWzd45vXOXW9s9b+TKEy43HbIFid1c7gBqfKgbAmC1AQkQM7LW4wbSPXB32F/+8NFLTydU1IRUIr+2iZCnCjtfMMuEVtArk0bI2zReRAKqfnuIFauSi7Bi65bH77HfMjC/5W4mc+AjiIxsLxnfvO8mipT+ZJdPMgm3OaNxtI/F3KyyDEbDfaOjyg3qjMgx3x22vx4au+wrhFULoYgcgNyfk6axfEA87HsmJPPoSp2yLISwg1t5IDIrV+4A9b/6iXBv2xhYV2QRBzmQBI/J+PL9ZDhrQd+K1uMJBanAzIcH8fAUGPQHT3s+cjRe+u9QCBCBTo866ubt7UwAALTKdY+TnlHfAw/oMvFMy7MiJhzIHCABdcZgScOI0KZSZ3TRXVewIFpbxsU6ZkW4BAJntb6qL/M76O8s7Gn8EqX4/kuyrsHg+TAsmx3qmI77I5uA6tvbWQFYZL49zlkSBUocGnAkZgIBIMEbpzSBBCht1GSiyMSilD/dhKdwPkJhz3iWu/ClVuKwKynp+fh9cSIy3XBfEDbL0zGFBBr94YnQyRgtO26e99onWBwLbq0ELZHOMxy+YU5xXVjcvh//h2ChkAOxLe6uVTHlOKlrE4rkFfB87tiqwv97tl/KO+32eKwCP/bmlT65xnUp7h63gu42d8ZyAvU5LMX5wvG1og9YxG7XHfrm28dM1lcLsdbzpd2VKnTO/2gthmMJBNiFbGc2hPhZaujfN2OecVKMVboS1M69z+mVsS5RwdHa28MYtJ16GiQee2Ry59dgHrG7ocYILCR/3ceQN8CiHXgwMWeXuh6w8HdBhgKdhCu/fNU9ADBGr81AJ23T1+PgLFfB3EwNR9R/mUUqygitrmlACUP8ZZd9zw+0LY8gIpEHAeN+cdAGCPdvvoc8r7NeHYKzz3lVrkcU8eGSCokfZ7C7jIgADrIYx7BF75mho+pZRB1ml+uiQcgQXHs5yXzlktR0mfdX0YAYUWAFGj0a8wjgbZVRC/I4EYxQfoEcHsCmfXoRsw7TxXP7VAkJ8jXneFVV5KGV4kxMIwczc5ZuG+ZKGHpQyUhQOPuD+wKwCnCAIMKIBC3gAD/NriHmSMNVrXp9p+BQu7ErQ166JHuEXP6QSOgECrQHVA0i1hZcKKLRLwLAPAUl7GEWBsed2fwTae5+UgLltPDQRP6hKcAhzOwy0Rct2QJ8/9CFBkFmREOq5av32iHkDbkiYCs5wuy5P7q6bQamDWyRf3HZWBD3iSeYWfUX5ScOvmotaJiWNruF6OrxxpP7n+jMagVTc7Gh1AqI2rIckWIMBWLoBA9G5zDDK76zmKXoGBWkZgCj1ohdc7uU0u+Al5uIOImMHcTgQVhkwsmBVZajAYmBxp3Tu+Qc/Pz2U+nw+vPNaXFSFf91IYDqh0zMp118nTYpXtgloAbC0939MP83YGBFR4ufzUK+Dq5KwF9bYBRPI3nnUHAmUAj+vGAF7nKvMsPgCWKjg5HefN3jP2TGQyRsnxoROyNUH8VqiFfyOeHANgI3IAIdMJTnHqmPH1CMyogQa+Yd50B8dF4NIpWq2TEvN3JC+Rd3SPy255ztW5hbrOGXBMkf3WZzTojIUJxwYoKGDBlaEzrV/EQByEp20sZXX7n4IDt/6KA4z4VcC8W2E2m4XC1LWDBSgLZn7fAJ5He3gnhGsvxxvoscqR9QlhrRMgawOn08mzD2CgBgBan4nu1wDBmDLUmsG1mtXCeaN8PqCK32nBb6/UY4OVh1r7ggGkpqmBLgVAyoM6n1rAAOfTQ28RCIylqK1O/tcUYosHRueJGz8HRnlOqPxXoAm+5nS4z3FU2dKAyrKaLlKA38KbUR9xvhG5vu4BAqWs6RnQ63ovG2y+pgftsIXPQKCnfhEpquT1eLj8neJXa0URKNzzCgiOjo6G6H12c0Z1xqAqIFBLiJ+NYikcs+u7FSD4OY7AKQNVOm6MuV+1r127d0mRoHI8XKMIJI/Ji+unwIzvaT9H48I8CwDAB1fx0ttisSiPj48rApH5g2MBIlDA/Iv//IzylFKvwIyMiwy0ZGD2rVBN0Pfwrf6PlJjj52gcncKM6qSxMfg4sOd437VLPQJIC6CA/woEovx6KAMLWb6unDEysxcEgEYdRxwpffdbA6CckHKKNlJwoKixWYfim5cGmDmc8ncuS1dPMN3h4eGKwsUHoMahzsjtq4JR3bFuSYWXVdQjgFgBdY3xxMkUuUPLLYh3LHNuk3qAQNQ2thLw3wnOqJ+iPnG8weVEQCBqmwMCZ2dn5fT0dDjml9f6+cRNHTtYWOyJytrk6het70f9DN5UmRD1tcsry18VUJTHvlEvaBpbRgQGMssYvx1vOBmnQa6q0B1lngn3PP5z/cHnEUiN5EQERiIgwNey/nNlZe2L6jlG5m7kOGL9jtC6AwEKEpwA5hMC1Wpl12WtA3CP18LxH4FxyAPX2L3K9dRYBgYDAAQaAMXxA2r1MZPWQJPGWeBthfzCIlh68Exon2WTTMc3UzwufXR934WrowwQOKGW8b/GrWRCha8xf7OQc4KX66s84wDB8fHxAADAz4grQX1ZUIK3dA6BVGk7D0HWz0jLZXAAmMvLAQLtx17eeyuAYBPk+Nhd12tMLcA2AwE6P5DGxZRk5bnyWU9EsWPqhdBvZxy52BpXvvKS4ysHFrSdNQCwLm3knAG+1goCVKmVEu8vhkDAf3ZdtigqV1ceTATesRBjoasnq/FyBr8l8Pn5uRwfH5f5fL7yIiAAA7a43LsQHBjAf0XN6hE4Pj5eeWkRB/px/ca6nRxl6PetkJuU+M6EIv+vAYBsPRTkhI0KCKcwo3z4GQYD4JPT09PBOwAgPJ/PB94CIOC5B+JlKyfAXHzDWMKzbBBk83wdBR7x877wNSuT1ypLf4/NJ/IK4Jv1gD6fAXEdb03PclzTO92hdXIA3HkbQOp94HK0Ti396vpvW+O/1gmEaoWU8vJkumiZQBlAgQALAQ7iy9bdM0EbAQEINiBHbNFDnhBAHNNwcHAwKF5Y5RikxWJRjo+Py+Pj40rcAARsBghQDk8KjasopdiXF8Hli7Lg+tL4CwUUzkvBfapbzSIlFAEuvb8rygRKBAiiaxEgUF5Xz5ADuhmIVWsfefQoPDwP8AieARg4Pz8fvEcArff392U2m63ED0TlRX3IbXAR2ipUnfeDvXMsJ7hsBggAvuxVUCHO9Wrtv30AAutQi2LP+Mkp8iydXsvmV+YZ0F0jzBtRXrjmgIUqaubrms5i7wIvvbJnuheIOmCi81v7PgKnNQDSQmvFDOC3U/BRp0axAtoodDAUGxqniCyL/tROiX6ra5MtKTAM/juhikCs5fLfA1ceHh7K8fHxEJDFngQ9ClitKPUKaJ3QJxovwH3bOo56DaAoE+wZCMsAGZ7fBUXCUPk5+47uleJfBqQegRZyE1x/O8EaWV1uDgLAnp6elvPz83J5eVlOTk7KbDYbPFpuy6HLj0lBLAjAF3Ezri+c8GM+rPENl6ugwFlyLjJd+1nrt2tAMEahrwtyHfX2QyQbIr3BBHnp5ldWhn4UDOo3A2Z4el38FR/lDn7m3WJc1jrklD2DhJrx4J5toVFbC91/LThiAkUwrIjd5NeT/tw6TW0AnAB39xVg4FhfbbMK1bOzs0Ehsyfg8fFxhclns99nI/BhP9wm3Tnhli4ikMV96vpL28DLJLye5jwWXH50z/EEj3crU26DamU7gaLXXTp9xn00fYvS1/8tAiYDHuzZYq8SvAPwXAHQzufz8vDwMJTN8S6aL/LWeQ7idd+IR/SbBRvzvQMc/KyCI/3t+jfq813y67rUAwRaAWsGlHo8LfphJcxzhL22GWjJ5l1LXVA+e1mxlMZyHcYdvvG87khoUcjR/4z3eD5wWqZ1gEjXccTRJFOqCX9WgqyIXEM0aEj/R99Rue6/AzkQPHxmAFvmeJaXDfCbI1RZMcPTwN4BPvpXEbLrRzCDBgy6M7c1RgD3FTjgGk86fu+Buuk0P64zxyfopNilcG1x4WX3I7Cg12qCKbJW+Z6ru2uHqy/npXzIJ0eyhwuf2Wy28k4LXhpiN34pv0ErvvGctosPC+J2u3MxFBhn910fMH+rrMoAspbl+nJXnoFWxVbLI/tfo0ixtQIBN3ecEaNt1XFk2eKe0bgqrb/TW5CfiJ+Bt+z8/HwIsIUeuLu7Kw8PD+X+/n7gawAFro96CSLQ1TsODjC0GMGtvLuVtxY6VO/SlLL6mtMsv8i1l1mqUV5ZXXiN/ODg31cbu4A+rLMqY0JJLxaLlRcFaaChO04VeXNZ2g4+RYuDBnVN3y1FwLrSCeY8BBEqd/2rCgLX+GCnXQnTjBxAUAUeKX2+N2aSR9ZwzaKoUVQPly8LZF52ipYCGBg6LwN4i98Cp2cTgH/VW+D6xNU96nPXvuy5iB/3kU/XoRpftgKFmkXK12tzxwECXeJUQ8OBa5bH/F2rJ/Lg5d7Ly8tydXVVPn36VD59+jQAAvD1w8NDubu7Kz9+/BgAgmt7tuNFy8dvx6fal6pLI/3K13upyzPAv10luWKq7HFNlVEp8To5noksKf3NebprETjR9kCIMSDQPOBams/nQxAhbzVEm5BOlXJ0Vjb3h9aRBSh7Klw/sffBTVJY/ijP7TRgsKAo3tVXGZ6BRjS+r0k6SXrq4wRRDRS4SaqA1n2i8rUdUf6cTj0EegiVOyqbAQFI+QD8zssN4GkOsALQ55dnuX5Q4ntsLLAyd2DCCVruB36mBRDsmmdbKVKkLc9E3zVqlb06P2oxAE7mcAyIepEZBDi5qW1juQwgcH19Xb58+VL++OOPcn19XT59+lQuLi7KyclJKaWUh4eH8v379xceMBccW0r8ArBIbkT1dcq/1vdjebbLMxC5J1Txa8PdhOWJ6ya2luuUlQoxJyC1kyJBqvkpIGDhyOukR0dH5fHxcSUd0sB7wGAAZYDRWVhlyiRTqhrlirrz0bLOG6DBmRkTcdv1Wu3ZfaJocrl0UZrahNay3PWIlyNhwGW7+vE3Kz7mBbyPYrFYlIeHh/Lw8FBOTk5WzhpYLldPo1Ri3sez5+fnQ9wBA1GO9AcgQP14CYrrG/VXKflJnNo/jvhZBwii8arlu2tqqVs0VyP+7eHnqDynB9QboMsFbESpjGbPqoKBCAgoqGQwe3x8XK6ursrV1VX59u1b+fPPP8uff/5Zvn79Wj5//lwuLi7K8fFxWS6X5fb2tpyenq6cd8PHujtQrbJd+yKa41zflr7fFG+utUzgQEDEBLX/Nfe4oxaU5J6JQE2kaOHq1MFhQYa3AYJ52IOgKJKfw7f2q0vLASqclt2zHPHK1l+LV4XHk+sR9XvW3z2CYxfkJptrR6+gRV647pR1Sx7unpsbkXWBsQPvPj09DaCVYwKUf+/v71e2v3Jb4PnipQGss15cXKyADw5GhRKHdwC/F4uFBezaj44cgHbgrZZfNib7Qq28WqMxvDyGMuChQKCU1ZeuaXoYLuxpiuS2KlgHuhnInp2dDUDgv//9b/n777/Lf//73/Lt27cVMPD09FRubm5WlsLcO14i74DjcadrlJxe2yavjgIDkTJlcmuCeMaBgQxQMLqr1asHTGTWGQtSvq5W1nw+L4+Pj+Xi4qIsFovhEBd2ySIfXktlRavgQIECytX+ZW8F6ssTh2MgdJlCAQb/5/QMBlBmrX85/6iv940ygJOh+ozfMu9CJKxayCnBTBgul/+ef8EEAPD4+FgeHx/L5eVlmc3+PVvg/v6+zOdz6+qEN4zBAD6z2awsFosVPlHKAsZ6+0DrptdVduhHn3X57gP19FEGGF3aDFi2KKto3ihPshfAGYHOY4B8EHvE56c4I0UDo6FXuFxeHri4uCjX19fl69ev5T//+U/5+++/y99//13++uuv8vnz53J1dTV4d79//z54BTB3IP+hA3QZLDIuamAgAn+sd/nepmjUbgJUqNdtpP9bBWmtXtH/GjO7/KHEGAHiOlvesHKYKdTtCgLj8s4Bp/A1sFCVNTMDTyB9lt292i+YIFwPBgLRizswHpiYLnKX0zogsCtBWys/UtiaprWc2rPoP1ZMqIPz3Gj/RnyrbnCXH483BNl8Ph8OGoIHAR9sNwTBqucjjRF1XcrLo75xTdveSzqGPby0CY/AJizmbVCL0q89x/9bgIDjUc2r9nFpAQI4/goAAPKW37SqcoaJ45Xwn3n34uKifPr0qXz58qV8+/ZtWCb466+/yl9//VWur6/LxcXFsMQLjy9kJOQ+zxXMKTfnon7HtWiuu/u9crSVLza6myBiDNxz1lFv4zifTDBoeQ5NZeWCkbCtBMwEZcunCoLJsD+Vtxk6UOCUtCpjfqOgMr0uqUDx6w4CN1H0SFdV2goEnAXm1ujc5GM3Ga7tkmqA1H10LdMh+nWFcOQhyMqpKQE3vrxsNJ/Py+npabm/vy93d3fl7OxsSA+QC+8AeAFv9eQ1V8QfIB1AMYAEvufz+ZBn9v54tdwjwarAWHnMjVOLYMZ1zX+fPAbrAhOn+B0IiEBnlm9m+TuZqM/qS9cQZ6Lr85B3avSgjqgnL0GAZ8/OzobdA58/fy7X19fl+vq6fP78edhJcHFxUS4uLgY5dnl5WR4fH4dYG3zu7++H3+6FRywDWSep/I76s9XAiPLp4d2NgYHIsnKuDZBDiFEa16gIXET3MsrQaykvt0CCMXkdlUGCRmRz9H5EuuafoV91iWHC1F7HCe+EU8xRDIMjBQJMUR77al05igSko2zCOrCBZ5xXIFJ4Wo6CYhY2OhcxHgC2TACcOIo48hBxG8Dr2GUDtynAAAMAgAC26Ep5uWzV2q8RkEeb1TOhvzlOwuXjhLbm89Yoa09krbs8MnIAQMGAm1PK80gLCx5eVg3Y43V6fHM9eYwBQuDNwlkC2Eb46dOnlXMFeDkAeR0cHAzBsgg6/Pz5c/n582e5ubkpNzc3wxzQ9kTyNPJ2tRirEWBeh9Z+a2EvKfNFCF7R+SbrEuXnJgbXgbfiIR28BgAGHJyl6181YgvfIV4mtrzZomchzvmq5cTt0LZGVEP4bktQC7B4DdJ2ujFv/dTyr+WL+zqhM6vYldFyj5UvhBr4C4L06elpJTgK91zMiAISAGC0h5fNWHArX6tHwPUBz70MMDhDBNcyIyMyYFr6dR+otW4Zz0Z91GpR6jxyMQARQFBAoPXC1lXepcLLBeA1yGbOh+NWGFzgxFh8cJw8eJjjAZjg/mdQgNM78fvh4WEIxNXTOrfpWXLGwhga7RnQiVpjnmhCOuQdofGWia1MlQlUF8zUYgmoO5yFJyJe9cyByBLnerhYASVNy7+d+1Xbze2seXN0kkZuKK1fzeJ7bXJ8wd/4nQHVyKpxZbn8WBAyqfKrWRH6O+PTSEky0OSx4rSO/1zd5/P5AID53HZ16aJMLlvfOpq1I6MIvLv//JvT6O/WPn6L5Pg6Aww1+e54XJcHMuDB3ig+/h1587tdDg8PB/7iNKW89AaAACoYCCDoFUCglDIsn+EYbsQJlFIGTxhABpaFAQSQF/geeQJARDKxxxuwbdrqMoETYJG1D9KJWmNWfs65RyPwwL8zge/qyu1i5mM0qsg0UroOIWcuTLfGz9ZWBAZc+7R8bZ9jXG6X0j5bWZmAb+GR3rIiIOAALlszpcQuQP1dA3RO2fF/7PXXpQOtA+oJga3LXyAGA7o9UYNV0V69t0nSPlBSRef6660AgTH1dLwIajXwIj4Hj0RvTY0IPIPfIN3FFIFcB6ax3MAeAQ58hUGngbTwSID3ma9ns9lKIC3KQJwDvzUWQdc1IBD1sfOQZXw9lka9tTC7Fwlcdd+gQyMF3FJ+jVm1bM4jAhutdXGWVNS+1jqpp0LvaX8ys2kkObt8o3J1Ldil0fpw2W6boYKNKI9dkOOfjB/G1tcBAP1m4gmOfnPAkD+tcyVSiAoIwK8KTEqJY0IgHJGez7dgLxXXm9viQAHfb+3rdQSi41cHlPfFy9VLNXkW8Xo0f1vBgS4n1uYT8wQbN+BPPSZbPbJ4BtdRH8QK8Cu78e3eOIsXEEGBA5igfoiD4V1VHPSob6hlORmBfDde7loN3K5LG383Qa9Cz9I4wRx9M5JV9OSUFf/X8mpU83KAAdzAR25gVua1dTZMAN7poEBAo1i5vVyvDLFyn2SKE/XntmvsQNb2bVOLEHPf+F0TmJqmZQyj+jGI4/Gp9V1kzWb8jvJKWfVkRcGffCgMgwd28/JpbOoNUDCgH77H7XL1ztqX9Y3miW8HlNyz+0hRH9SA7ph2RfykIEB/RwQ+0rMEYJkjsJUND3ijGCTwq4a5brDez87Ohh0Cl5eXw44BvJkQ8w5LBXxYlwIOnMWBswVwT0EQ6jUWWLJ84f+91DrOGwsgjNxtSk5JcP4Z49aYWAULX3dlcDmgWrCfKvqonfyGuEjQadtdnzCDafooL46orrmmWvpGJ7vmpePBSoXv7QoMtFjTGW8peIruc16ufyNvCv7zcb0aD6Lj2SIUdD66NsC7hN9KLNQ4OJZBAYSkiw9wgKAFCOhcUTDaA3jcf+VdBVzZvHhtyoBMTx61uc35t9ZJZRTzCytprX8U4MzAEi97c7uz1CLH+DHPo1584iBOywQowDfHD7Blz4GKqNfj42O5vb0tt7e3wwFdHBTLdVQPsSr0nnHUcaqNWS942No5AzXh65SUE14YUGXmiMl0D3+G8h0QaBH2DnTUwEEmxFEPdYVpfdni53qw1RW5ZaOyHWUgQJWBfvMamda3BrR2QSoMnYCMeKIGXCNPgD6f1Qd9yKBAFavm6YSNClwuh+dM5r3Q+Yaxdeeya1szEKDlsMKrtY+vR/0Z5e3SRV6RMRbZpmgd67A2jlxG9t89n4EA9g5oOzRvBb4cl4KlKATzQe6D/1AmPKTs1meZpIAA2wM/ffpUrq6uhjV/1itQ8AgqRHDgw8PDAAZubm7K3d1deXx8fLGTwMlgNzZOLnI/8Vx3fMC6Yh0+7TqBsFZYD2qJFKwyqnverb9qxygCdXk7IMBtdChW6xtZMpzOCTWuAwuz2Wz1DW1M6q7CN1+PJrvLz93Xic5AhSc/E3tKXKAY2rwrz0ApdaGo47RcLlfW+lwerowMVChlFkL0P1KG+lv5SpeSojqoENVYglJeWnWujmoV1eaBkgPDtT7SPmmRJVG5LWXsC9UMr4hqwEBlWgR4GQCwQcPBpZynC5AGCFC5zmenlPLbGGEwgLJ0twru866Vg4ODlZ0F8AwgmBDjzwGAy+Vy5bTB+/v7Fc8AvAO6lTZ6eRFTS2AkdALLWDa0MpDcAw5GvbWwJ300IZ0QcpXP0DxfYwHEyohRZESR61bv63qUmzSufTXhHVlsHNEKpkdb9BP1Syu5ia7KnwGBG5cWy3DX1KJQdHJlfakKP1P+payuzbtr+jwLOvC3BiTVlKoDKHie0+l/7OtGWgRzMTnh5trI7WTBHgnLMbyStSdqYzY39dl9oR5QxGlqALUHqDEQ0LNVcI/zccYZjz3zqL7eHfORyyilDHMC+bFnoZQyAAF14R8crJ47gLMCsK0RcQMs9xFciBM7+YMTNwEGuN7Og4e2ajyR9gPrMTUYIwCwDm3krYUsXGpWkEvrlCrf4/tASfhmBuSO0sCUUuI160jJt3gEXBt7BkitNAYubqcAhLIySk/ZTpioMoq8AqpcuO7stXDt2RUYiCZNZnWWEiNuJ1AzEKDzwlnWHGNSSryk0qLkatRqNatAwnzS53js9XltR22bFT/r6qO/HS8rXzo5k5Xtyt0HIOsoAgY13lbKjBnNXxWzWx5Q+c087xQkE3s62UCCEgdYYLnE7WDgystsrFs45gDbDk9OTkop5cXLtgAOFAjc3t6+AALsycgMX5WzLH+5PWzQ4sN6jvPUsewFsBtZJshAQC3PUl4qlaihNbcj0rPyz9awtS6R+1Ov8cDoJ3q2tX84LwUCIGZuN4ldPaIxctYCvyTEfWtdNcAtAgG7XCYoJVYgjhwfRnlyvr2Wl16DcMj4NBpzV1+n+HTeZP1RO0Jb69Uyxj3zhuvYAr5qxkjtWi2ffaBsLo/JS39HSkzLUiDA764oxc93F9PE5et1Xgbgo95ZkbrnIT8BYHm7K5cxm81W3sAJHmaPA3sFGBDg3QQ4flvP2HAAmdukoIqvcX/pmQcqbyI+bplXTBtbJmAh46yOSDhxY1hpqJtJSZcAlDFY+fPygWtPhlIzIeKio/WZmrWo/aUK1vVnFDzm2uIAgebJ13jy8SR3SwQc+IMAHuce62XKbZACgZriVopAwZg8+HfG+8oXXGY2lq6emkd0ndvDlpHWjUmFPrepJvyj307xuzHk/nDtygDSPiv816QMBDhi/oCSxm8dNz1lMgKCkB2w6Fm+qAcCRxK78dMgxOfn38cL4xRB/EfAn4vRQh780i4FBPySIuRbWx5wQIABTiRjYSioQYx8M/nQShs/ZwCUoVcnQPV6lI4ZS62WVmvBKSjnFah1ZCTksna5uqmC4jy0rpmCzQSuE4Qs2HGflb++PQzgAPlgovPBM9l47YrQL5nwj8Cqy0ufwe9Mgbn6uLGczWZhP0bP8bNcrwgYOCGhdUAaFkzMI0pZ/7l+AP85gRYBN9evOk8yAdjDi1qvfQCyrWncuLsxcHMi66NoDNVgwPMRnzpFyYofipyPJtZ4Aa2TxoqxfkDwH5T47e3tcBwxXmV8eno6jDWDBX7XBr+umN9ayGAjChxUnuX2aN/xm2UBVhzf8zx1gCAat4i6lgmyjDMBVFOInH90jxvrFBwzibqpanXPkHGrEKiBAnctAwGab6YIorrr/drYMErF0Zp81KZOdj4cBEqMA3i0bvtImcJ2ad1zLddLWd11kYFlLj8DglzXCIxoPSIgGbXfgQQHwrWdCq5dnTNgmwEb9QK6ekTAwLW5Zb63CtTXIKeUo3ugSAYqf/G1qGz98FkAzL8aMBrVCfJbgYILlObdU/pSNrbKOW7p8fExNGhQ//l8Xs7Pz8tsNivz+XzYNvjz58+VXQP4AAy07CBQEK1ejijeAkYWb7XMdCjK0rJb5W/XoUNqITDx5MvSOWTDQRR6TRuvDMuMBle11kuZ0VkxGZLV51xdHBCI2qf9oJQp+hZAoP+1vZEw1fU5PXdbT6ADE2ON7OTkZKWMbLfDa1ImPB050FkTuE5IlhIfI82R9ApaIx6PrI0a0NN6RooZvzkvBgE13mXe0L50/aV1cuW5sh3/RkBeeT8aO5d2Xyiq+xhQwHmOBTgRUM6AMJ6L5CvPBSg/GBvY589eAxz+g7V6d8gVPljzByDA3AOQeHp6Kj9+/Bi8AwgWhCfh+/fv5cePH+X29nZYHnCv5nZzE6QBl/qqe4634CVtAIJoLjPPOr3bM85b3VoY5RFNZF77zyxczkOFKgIt3DMqVB2idEo2qnsPko7cXGhDVGenIHqsm8xSyCwzfp49BlxnIHoX/QqQgEmXWQivRSqsapNE07r1PgdcXXqtA/gN/7N1d/7WfHraEfGNKysCDTXAn9WF+4XXaaO2Rf3qDATNp3UOu3o7hbZLgJDJw5Zn8R2BhVreLYqer/PaNm+NZqAXjRnmBZT0YrEoDw8P5ejoqDw/Pw8vFkIsAJSyO+yHeWyxWAwvIYJMwvLB3d1dubi4GM4ZAABB3vAS3NzcDF4BHEXMXjLtH5aN6g3Q9xgocNCXh7XIaR1PB84z6t5NkFVmnQkTTdAIEUX107eqRfUtZVWhcUS8y7e1zrW6c9k6UZmBOX9V7hGy7h0DZTB8gMgxATX4kpdh8B5wXD84OBjQOrvy9gEM8CTRCdNiweK/U+5jlDMHSjGoRX0c8HMAxVmO0byp8UnW3mgeZkpCQTuAD+rg2qlggL9BbilQFQCuK7n+itLVxvI1SOc4U0v9etvQKkccrzpAUJsbKs8gN6DEDw8Py93d3SCTwEv8Uiz+Zm8k8sMrj9E29jjc3t6Wk5OTFZ7il3Ah3d3d3RA7oHECyBsGE89xXGcvAAMCrpfqgCggO5IPXHYvdXsGooJq90p5OUFb83IWikufWSycNrO2eoVCy6SpgQb+ZqXplFdUT85nrNBw2xWZQTVfDUDkYz95mw3nv0/E/NgK7FQZtwCAlvFQ5YjnMkWg9eN8tU6R4OCyt6loFKi48lFPVv76KWWV73iu6K4HVVItglNlU02evDZtqi4t+WRjxvmw3IgAoePLSNYyIICLv5Tfy8DsSldPAoyQUn7zhlrv4BUGA+z15LxhpcMLoVsImV8cWAV4Ua8Aruv7SPQMGY2TqC3B9RqETN27CbIB731WlZ1OXL2vQsPlrYzH1zW9o5q10Nq2TVJWjwwY6O/aPb3O/akC2ilBMDDQ8mKxWBlTdX3tklr6wT3TAwIcqUWLPs3c5rV68DX97agGrl36yKKLynEKO8tf56m2j92puvUKwj0qs7VPuT018L0rcnJsrNypAcysTDUSoKhms/iMDPYO8XgrUGWPAmQGFDO/mwDPoDze35/FKrGcgufB6RbwGjwJ7AngJVBuH765rqz4sUsCMViY+wxkkS/qyN7ZmkfAAd9W/tjY1sJWpnTpHEhosaQ0fTRhHSCIOqwV7GQKOCIWerBelKK1Y35er/HvMUoOxGtYQK9gXAQUoh81ApaXC3h5gF1o+wQGekn7dYwA5qUhBgWqxHTZKlKUbk1dy1O3OfLTtkVWWjQvo3mCtnC61iUitcrxW99cp4CKPQFKrYo8mlPvmZxMbW27Wq6clwvw1JgBLsspYraUS1mNJ+M6cDvUqmZiOYTysOwQEXgNypm9AXx+AvJVD4DGBECO8hIB5KICK9RPwU0EBJTGANhuMNCCJN29yJLk35mridO4ZznvCBXVyua18Zr1lAmPrI9YGbg6Z4LTTZqIMvDEioQFLV7ggdd5np+fDy/0ACOjjhxUCNDAa2DMwEiPdbt9o8gidOR4WK1Kl1bd3Bhjt+bPY5yBPS4DY9pCtXI4XdY+V6coWIzLjQCGegFUsAJwaj3YkuQ+4HZlFmttTu0LOHCyrCZ3o2uRYdQyD9QzoFtNmdcjvlJQ4MaU61bjbbe8ym2azVaPpsfhRnxYmiO48WGp864FLhu8F53Nome38BZHF6/GICiKF9g0bWyZQFFf9mFy11qUuaZjBmCG5/8RQ7H1kgGCqA8iMKCWG5hIGVPrr6AnAkoOTWeCF3XiDxiUD+G4uLgYXt6B6zgABJOAPQc4yhPbEFkYlPI7iAZrf/tGUV9FANbxOqcvZfWlTjzZo/PUoazAJ3yGP/NkNh+4DgwuS/EChwV2JLR7fis5flVForyNuru07EVBH+l6qga7oo6uLq11z9LtC/WOSa392XP479avkc6dOcD1a60j5oFT1k7WO+I0sMKjPlDdwweqOcscdWOgr0qfT2h0QED7NJLrNQN1XdrIMoEKQwg7/c1p9Pno2U1ORHXJ6iCocHJtxG++70CGq38NzCgI0Os6IaN8uXz9z54AMCy8ADiN6/LycgAE7BXAGlYp5QUQODs7WwEO7NaFt2DXnoExILU1fUZs1XJAkRILHo6OhlAsxQNP9TJlAIDXdVkgOiWaUTSfnYsYfMcA2CmVDFxx/fENflRwweVyeRGo5vS6rJIpmX0iblOrwo/kCVP0vCp4kHqGap7OrG763xl/WT7KRy7PrH38W4EA81bmMXWHCnE8A2KreCeEbpHk+rhv14YxPLv2MoF2uAMBuo6ohEYr46jFoNej+jmB4hgCvyMgMKZDs3Kj/CIm5/8q7Hki6/MqFFwdGanivd6fP38u19fX5fLycnjHNw4cQlQtBDpiCU5OTsrZ2dmQ9uTkZGXZAGDh6Oho52AAba8B09Zx17yyNBAI6B92hatXiiOjdVeGs34jZZwFJrKycFYzf+tvN+dBKvh1fb9lbikQBnDRnSnuoJmMam3cZ2oBn9ncZzmi6VrKdHmV8vKAKQb/URxHaxu0vGiMHaiJ2unAIO8kYJ3A6dU7x7zveF6BAANuLoPnN3YsuDcfahuyb9d3LbSWZyBSfAoEHFO1WLdKNabAvda89BMBgprQz1C5mxCZ8ge1KBkHCFxfq0KCsubYgMvLy3J1dTV4Bi4vL1esfAhjgAEofrwPHJ4BKDuOQcC91jfgbZpYUGg/6Xi18g/nxeXwb/aOADwBNKF/sBWThQX6mfc0z+fzlSAmPfbUCVAWJvpaaf2tws+1UdsXgSm+5sB9tAbKc83xv4IO5KVAIxoTJSdMnULZJbk+zihSpo7fkX+WF9Jk/RLJTV4qcJ6wbK5Fii1SfC3tQD3YYzab/T5eW+MOVDdwnZ1sxzX2EPDOF8xt9BnPZw0WdCAk6hcuPxqzFuoCA5miUSAQgYFS2txTSo4RoskfdYj+1sFW5JahUO0PLTMCPbWBzYShPuv60E0wHhcO+GOrHssEvETA0a+MgmHhYlkA8QV6dDGUH8DCLgVr5g1w6dz12gfEnjAGX9wXHGMB0AXew4Em/EIUnIPOh52om7wUv41PlV1mWTiw4ECStltBc9SXDgg4q0vr5XZd6LORcmkF1O6ZfQAEoB5QoM+1Kt1aGZG8cTtXWP47UMhlZqDWPRfJVeU/5QkONl0ulyu6SudONl8ivnBygfULQIB+eEcBp3H12BaN8gxEQECD03DNUdQwJ3D4fyScXL2i/Fs6tdfK4OdUmGWgRPOPFEytjsq0CiZYMfEHCp0teLbueWsM8mYw4AINsawAsIH7rdHum6ZImWka978GdnWceG+xxmScnZ2Vy8vLoc8YiJ2dnZVS/u1feARw6hm+ARD4THQ9BY0tjE2RCkPlZ7WakCaKWaiBAbdcqFaY5tGiTBzV+MC1dxfUCnKcEaEUgaYaZUqQYwUUFIyd9ypLMzCgoDSqr5PFyjutY+0MNycT0Ceq/AHmawGw2sYe6uHd0TEDLZYSC0w3iG6g9DnXsZoP10vrGH2zIOKyoza7+47pXB6t6Nv1Ld9z1p/2n9ZZdw24HQBQ4voqTQ424zFhJcceAvYMwDWu4GPfqHeCKY+6GBl90dPp6Wm5uroqFxcX5erqavC+cJDmxcVFmc1mw/IAXpRydnZWHh4eyvn5+fBiFvYQ4Bq/e50PU9H90K1trCmMiDdBkXfBAQAl56mI8tf6OFmB372Kfozw3TS1GAXZsxG1yqqMNK3uGNBgVX6u1cJfF4RFAEbb3wNYXL/p88znAACLxWJlecDFvdSCLbktrl0ODLfyT/dbC/m3s5bUM+AaEeUdAYkWtO8GPVKUuMcDlsULaF2du6gHTepv/da+c8+i3m7dyo0JK3AGA+oV4G0vUf05YlbPGkDeDEAYkOyaHMiMeLQGfPnccf5mrwsU/fX1dfn06VP5/Pnz8NFdG8/Pz8OLWe7u7srd3V05Pz8f3p4GjwEAAY5TxTVs3Vwuf2+7U0GjQlj53Qlq1yc8N9Syd+TK07wjYkABcruCtHw3LzKBm5W/Kxqj0J2M6Xm+ty6qnNDHDASc7KqBvRbjC9ejNmc6oZTywouhIISBcc3w4jIwB9EHfKIgb4dVfjw4ONhYbFUvkFzbVItAQaZ8WwSuAxScj1JNIDBzOSZzUaFOAbj8FSBE7XbPO5C1XC5DMKT797U/cF9fjIE1fN4KCOuUAwcvLi5Wlgac64/BGq+PQyEyWNAAmh7m3BRlwqA2dhHYQrsYZPGxo4gRQBzG9fV1ubq6GoAAPAXwqOAch1LKivBAmYeHh+Xh4WEAWI+Pjy92IfBuDQYE+J8p+ajPtO/WsSgjRa196+a/zgXmO6fgtZ66lOEAUAZ+dkm1fmt9vtaW2vzk+y6t9mnkdeV7EThjJcx5uzQtbY10BgcU8i6tqJxIDzBxDACDAQXoyINfWObyjfQP83JUl62AAVch5w2AEnGDWLOgnRCILACkdxRZPZpGP85y4jppuVpOz2TTyREJPhZ+EeDCt+5v1YMv1HWNtWuAgKurq+Gd3hoEB2JFr6AmAm+YALPZv7sQdkVZ/0bp3XPqbQG44qUXAIGrq6vy5cuX8uXLl2GJgIEAdhNgCYVfn/r4+Fju7++H+IHb29vhP+6dnJwM71gv5bdwnc/nQz3dMa0ROMiAU2S9sUDKQLf2bWRxaV/rWGmUugYXaluRjkEpC35ddnP13gdQ4IjlFJPydkv9a2lcfhEo0CUDfLfwWsQbeh+/M35zZThwFSliLbdG0CEs87gc8Cu8pFz+bPb7rbusc7Tfa3qwlj6iLjDAv92kZUsQDcVkc274SDFqmRpFDIq2gvB/3abB9/Q5JxRQ/5Zliwwtoz0RcytxXg5waXAfK32s1XMcACsw3VaI38hX66Hru0C+OM6TD8j59evXoNjwLKzcXcYMRIod18ZYXOjP09PTFy7/s7OzwePyxx9/lOvr6xcnOyK2gpdbnp+fhyUDLBtA+d/e3pafP38OSwg3NzcrVsV8Pl9ZqokCCZ2A1PnD97V/MovNzekWcFBKecHXTiAqOGd+1SNcud7R0kBkLGiZuwQD0Zi0kJNZY3idn3Pzxck58KWOv5O/mlcNyCj/ZXK3BnKjcqOyXD443hhLA/ifzRPmbQYP/HZGPawrIgfEe/iklA0dOqSTVwc96+DMEtD03IFqmUIA8FYrVmRsPWTAAemdAHRUY+RsQJxS0v7R9HD3awwAFDx+84e9NS6QEMrp4uLiheWOvgGzqveHhTPy1+M28ew+BhCW8lJwZOPA/9EXAANYCgAwuLy8LJ8/fy5//PHH4HXhFz+xEGChpu95eHp6Kg8PD+XHjx/D9eXy310H4FPer8zH9DJfuz3M3H6thwPmWZ845dmjjLhvuP0OkILXOF/wF5/aqHLAHW/L8921zSmsXVOLXIkoUlBRGU6maV7Rc1G+LWCCf2dtja73jJnWOTP4orZA1uF5B4RcXF0pxZ7QycsXtbZm36006pyBTIG7ie+EjXa+okguB785UEuPuo3OKFdhyILBDaQLttK69CB1p+y1r9zk5TJYcKG9cC9zAOD5+fnK+jVH9jPTRTEEcHUrQ/IWGLVkeezVquM2u357LWoRDBkg4HxKWT1hDCAMRzlzPABOdfz8+XO5uLh4cfIg89xsNlsBdlhqQCzBfD4flhXgQZjP5+X29jYEuWP6JZp/7r5ec2Agkw3Mk7PZbIUHwbellJWtlGxggOdA4Nejo6OVdzuwxwDpIto3pZ9RzfJz4+IUedTmFmXSYn1m4KAGDHrrU6Pa2Gcy3tUVcxhzkk/JdPFUuK4GNAA9l88vU9pE22vUBQac1VRTaBGi0vxYcYNxFBxo1DqOuUUaPtuZy9BITg7wULDQ8trIrE3cN9G36zMXwc+Cj9OgH3jdnw/+0dcP65o/B7rxdkB8uP+5nRyMyGCAUa5+46Nj+ZaIQS8HZcKrcn5+Xq6uroYAQYABDtI8Pz9fyQv9CyXHfQOePj4+HgAe+BVbCu/v78vNzc3g+Snlt3cs2k5Y63+2wpzS1nTufgQE2HOE/wyqjo6OVrZcYkcKQM/Dw8OwiwLtdPFJaD9eT4u+hZDWoEv9ONongJDVsWV+tQDjMXXKjBnmK77XW4+aR6LlXpY3940zYpweQDpekuM3ITLgRb6QI7qVm402gNrote8txksvNYMBBwT4WyuI/9kkixrAA4LOYyuMld/Z2dmKy9WtDULoIjCLhYoeAsHr387t6mIUsn6JvADuftSPIBageowwhCgE68HBwQt3s+aDNKrcs/EDI6s713kKuJxdxgzUQFvkkuSxYTQPAIVDhD59+rSybfDq6mpYeuF3PKAu+OjWP9yHNQBeU9diKeUFuGV+VT5m0OsUYCuo1b5x6dx/tow0tgWA5+zsrHz58mXwopydnQ2u0/v7+3J7e1vu7u7K4+Pj0EYtE/MT57uzRwHXojms83lTAnaXpG1hoNejiHv6wSnTLN/IKxAp5pY8NX8GIVnba14DBQUwctiQxAvdXIA35i7LEshQ9mCxoeCMRK3vpvh01CuM+RsN1zV5fDsBFFkdkSeBhQfWYj99+jQoQQS/OeEJkABrCie6YZ/2YrFYORDCvTSCD3lBetemGhCIdgzwM84DAeKIV3Yl84uFWDmzS5+f1+UWfaGGGwf1SnA8goICtqBxbblcrmyf2xVFwod/O0WgXg8GRbzMwqcK4ohnLOWoRwCKn8Em4gAwRnAVLhaL8v379/LPP/+Uf/75p/zvf/8rP3/+XNlhwMpPQYB6uFrBANpes+ac5Ye+0jwAQtWr8ueff5avX78O8RUARXd3d+XHjx/l58+fw7kKDgxgHutZDNhyyTIK9WQDImrjLoGBej5aKFMSLXlEba2BiKifesAIy59N9LkD+1o3/o5I03E9OWDVKXBeCnCB4Ow1wHyPYuda6xrp2Iy6PAOasQoWDcopJX4BSmQta0exoIUb9vr6evhcXV0Na6t4Bm5veAyen5/Lw8ND+fnzZ7m5uRm2YmHLFoSHAgE+/lXPiHdvlsrapO1m5MiUTXwoXt66BqsULxbi8tDnfO51KWXYvqLoltdZ2Wuih2A4iwz9xveg/FGWeihek5R/HT8riNMJC8XP5zTAtY24AQAzWLcAqjpv2KJgy/7Xr18DX2IZYLlclsfHx/K///2v/O9//yv/93//NwCC79+/l+/fvw+HEsH6dfyDNkEoZWDAAduIIj7mPmTPHvoKuy2w9fI///lP+fbt28oW18ViUW5ubsrV1VX58ePH4B3QpcDlcjnM2/v7+2Guoh7suuUxUICUzcldU8a7EW1CqY4tJwMHWT7Zf7Xye/N2/K4GTwtFug9GqQJP3mWFspy3z3kUtP5ZfdYZ69HLBHrPVVI7LMrPKVAWIPyK3W/fvg2fr1+/li9fvrw4vIXP14eyu7+/fwEGIDCwZxvuRAgV3s+NrVzwLCiAYCGjVr/zCPA19aSogprNZi+EKQcNwgJF8J8iYGZYBly6qwDxAqX8jsgGSoUCcUcM6/IC15uZfVdClfkPfVBDzsqL/NE+4yh49rTorgq1UkDs1gdwu7u7G0DEYrEod3d35efPn+XHjx/l+/fvg6UMfsSRxCB4Y0opL6KUXb9of7VSJLgYCBwcHAw7KcCznz59KtfX1+WPP/4o3759K3/88Uf566+/yrdv34bYl1L+XX/ll2Dd3t6W+Xz+wvB4fn4e5i28JewJRD/w0kxkealc2jVllrTzyOAZTqPX9J4+5+aH6oBWxV1rTzQvonr0jkkLj4MnIkCgoBHEfATLvpTV18zjPy9RubqwEca/tcwWADuGusCAVkI/UXq+H1lfakXwG/FwnOvXr1/Lt2/fyp9//jkIEBzr6l6YgwF4enoa3I4QSHyEK5Q7n+vOoABCBfu8+QUyyAcCioO3tF8yywP3OPCElalao2gzv1eAkacbL/5mQcdua/yHy5X3v7KF6wALfiu65Qmwi6WCDFHjfikvXbL8DMcL6LIAg08IAY4sZoAHhQSeeXh4GIAo+puXg+AVuL29LTc3Nyuf29vbF0Dg4ODfF0TB+/P09DR4FxxI1HFST57z9oGYByIwyAczYWkAHgGAAYD66+vrlZda8ZxgwwB8ruMFMH96elru7u5W5sZyuXxxHgbPNedNGat8NkmR8q3VySnXyDumz7E8itJl5bj8xpLWo7Xdrde1nJZ0mp/TcbxkXcrqC7o0QB158BKfO7Y4A++tXpmMRsUMoNNawQBIFYi6YWF5YtJzgNb19XX58uVL+fr1a/n69Wv5448/XoAB9hBAmEDw4vds9u8WLqz/8zvjOT6AAw2h/G9vb8vl5eXK2fGwQBgURO+mLuVljIWiTO3nUn57FtiS521qGqGt/YzyWWHwcgyDAny7XRSRRa18ADCBLV64DjC2C1JvjSOezNpuDd5UMMCAgN/HwH0L6xVK6/HxceAh8I0uPf369WvgNwAAeLUAAnhvMwcwKUBkD03UDxwMBZ5RoaX9WspqtDTK4jqgf7CzAoGvOJfh8vJyxZuHsnnrJfiHY15QJvpW5xR4bz6fD94FBHrpcpmTYfviGei5l/Ex38/yi+a5ltFDkTcuAx6Z0aHpovHqUfS1drtnIPNYxrg5pmAAvM1GK+udHkCQ1a2V1tpayAX2FKodxkpNz3S/uroagACsh8+fP5dPnz6tnPimlhlHEcPVf39/v/Iu+FJ+W1K8TxSChQX31dWVXVoAKOAP7vNBMOgj7j9mBPQlfyONc4nywSoog5UQ2sYM7XYV4B7HC+gBNhgj5KHMzsqSFRnXHX2KLXavSZnV4tJFQkXPFnBeAc6Xv3ms+LhheAacZwnPMrjEPSha1BveAKXn5+cXYJFBILcZ/A+vEAckMjhgYjCp26fY08dHYCOeAv0HBb9cLocyURYCf7FkB28LL4PoPGBAxcI3sxq1zyPFtUtihdei4CIl29seB5L0+ljgpPVzeURGSAQIWsvldtQUP/OIPpfpQF32ZSBQyu/lBPA6gwHwu/JzVs91aK1XGDNF7ovacwoKeP88TnDjgEHex421RBZuUD4Quhz4h8AjFrjskShl1TLijw4UBouXD/BhFy4imaODI6IAS1xz/cwMxeAG6dUyZUtLy2KBif+8c4L7abn8/Q4FXQrAGDiFtGthin6JrBElh/A1XkBfA607MkpZ9cCwUOCAS97uykpLlTQLBJ4r6HdtJ48/rG19TwVb1wwC2WOmloryKe8y4aUC3bHCu18YBPCJigieRB9BwQMIYBlFwSjqzkc38zzVLZiO//navgGBHiWn5NqkQCKzpqP8xtYlm3NRWv6O9Ajn40C+trWnLu45BwTUO6BeWsxfGEZsKLHxqltjlWczcrKjlYc3svE7Q1OltE0odsHyMbkcdcxv1mNvgFo5KtDYpaoCE/XDBwOmZw3AquV93FhCABj4559/Xuy/v729HfrBHSCRob0ICLAlxN4M9KO+k6CU1WOBdc1KPRHRuQrwZIDJVTlh9wePu3oqdkUaqdtDEShgjxa3Ta13eJ2Wy9UjhPWMALdzA8+o2xD5q9DhLZ0a6MnbQfldFLPZbKUeUKgcT8OeLp3XKFPrwXXj5QIcFgYggrI5ZoL7R8Gumxc8V3nO6jos0ioAyGTYOsp4UxQB2W2ClR5rf9P1iABABtSyMap5ERRgthgPzDsc5wO+56BhpGUPrPPuqjeOed+1L+oPB3Jr1L1MoGvdbq2k1cJl5cYNiiK38RuCBx3J5UI5sgsW2644qtpF+KNe3FbUj5cwQEB42LbIJ879888/KwpC1+OjPlALBYKWlQUzzuPjYzk+Ph4EHSsICGQdD/YsQPmwR4XzZy8K6jGfz18cGgOmjQLJGHy9NnGfqxCNLCceFweeOAYAaP7+/n4FdOk+Ys0f/KtriKz0uKxSfm9d0jpr/A3vquFDkvT9COxR42U1eNP0bA6uL3s+NBDYjTUHAh4cHAzxPIj2x5q/6yOeH+xhKaXYeeE8Ayy0dc7x2OhYsdx4bYpAkFqoSg40MdXAj0vXY0lH+br6Zs870NMzFpFF79I5fcD3ax4Vvq6ATfWT8wqw8meDTPN1/TJmrJW63lro0AZf1+Adl4dWnIUJK35sQYJyRZARrIpSyiBMeI87Aq7m8/kQnAVhxoFW0eTi+vB/XvtUIbpYLMrnz5+H+AXsXEC+3F8cYc6kfctWFUAB+kuBgyoutBPf6nJiYKHBKc/Pz6El6rbVIRgTTMz1ZaGNozUvLi5aWW5jpIofv3mSKmBxY89eH4wNvEgPDw+DFc8BqfP5fHgLIQPU29vb4cMBhKgLQCCDC54n+MZ1HRu44/VY5AwMANjyLgcsg93d3a3wRCkvgwTdMgkLNvaMAVgCQAFgcr/z+Ojc5XHUMtjjosJXieemulSZb9zy12uQxgvhW2WFs3L1f6tCbVUeTjnyXHJGYqaQI4qecTpI6+/AnfvWNmlfuefU6sZzajArH7NxwCBWQUAW+xKBJK1fFiujNFu2ppxoookmmmiiid4l7W4Rd6KJJppoookm2guawMBEE0000UQTfXCawMBEE0000UQTfXCawMBEE0000UQTfXCawMBEE0000UQTfXCawMBEE0000UQTfXCawMBEE0000UQTfXCawMBEE0000UQTfXCawMBEE0000UQTfXD6fx2ORcNQSTh7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRRUlEQVR4nO2d6ZIbyY6lwVyYm6qqu+f9n3DMpu/VkmIuSs4P2Yn8eHjgEVRJydQtwowWZNDDFzgcOIAvsdput9s60YlOdKITnehE/1g6O3YFTnSiE53oRCc60XHpBAZOdKITnehEJ/qH0wkMnOhEJzrRiU70D6cTGDjRiU50ohOd6B9OJzBwohOd6EQnOtE/nE5g4EQnOtGJTnSifzidwMCJTnSiE53oRP9wOoGBE53oRCc60Yn+4XSxNOFqtfqV9TiYVqtVnZ2d1Wq1qvPz87q4uKiLi4s6Pz+vs7OzKQ3T++fs7KzOzs7q8vKyLi8v6/b2tq6vr+vq6qqur6/r8vJyyvv8/HwqS/lXVb28vNS3b9/q8fGxHh4e6vHxsZ6enmq73ZbOc1J5VVXb7XZ65tu3b/Xy8lIvLy87eT0/P0/X7XZb375922m72k0eiJQ/n+O9xAvmR1J6Pa86Mj9d2V6/sg/+7//9v4d19E+g9Xrdyq/fH8kM7+m7ZEgf52fqH/+4PFbV3nOpjkzjaTk2Li8v6+bmZpLvy8vLurj4PvRfXl7q+fm5NpvNJLuUTaVhmzQWeM/rL/nT2Hh+ft6R9Y4ot0qvcUE5TM9Rxr2vyHuXWZdntd3TbjabYd1/Bb213k3yTz15dXVVNzc3dXd3Vx8+fKgPHz7Uzc3NpCuraq/PpMuenp6m68PDw849pWW5rje9j1N6H4tsD+WJ+krk+XEMdeOaZcoGrdfrWq/XO+Ps8fGxvnz5Uh8/fqyPHz/W/f19bTabqf1Jj/5MWpLnYjDwnoid7B3vQsT0ow49Pz/fEeLHx8d6eXmpi4uLen5+rvPz8wkIUAlLQKWkJBSutJi3Ol/KUkTjcHZ2Vufn59PvBArYtrOzs506vLy8TM/zexoAfE519TrNfVQXXhMYOAalOvI/0hyA7NIqL/VVl39Xv6pXoDXiE4Eu+83LeXl5qdVqNcnMxcVFPT09TYqNzyXQqt+sm+T+27dv03hRPpQ/padB8HHi/HPDq3QORBPf/LunUTs6AJDA7SjP/1Qa6cyLi4u6vLys9Xpd19fXdXNzswMwCS7FU+m35+fn6fP09DSBQ30oIyyTjpfyc5nlMw5WacRVNz3jwNKdJxLLVX78rrEhOj8/r2/fvtXl5eWOvZBdeXx83HEEHZy4Dnkr+i3BQFVW1O61eTr33Ijo2Mnfvn2blK2+K60EVHlS8KnMhZJJ7GBXOskoSeFSATOd6qGBKMHUMxJ4DoaRZzZStn6/qzOv74WS0Zirow/I7nfnXdCod7LJZ5Ix93IdACifUZ9KMT0/P9fj4+NUnhRcVU2yK+XNNiSZoDwm78uNAZV94pVHspyPfj3UWHv/j0DBCQhkT5tgQJHTm5uburq6qvV6vWekpWscCPC3e8QOBC4uLvaMLA2oEyNTkk3lwXy8jwlcPVorcuBNIODj0uVdNoNgikCIOpv1emv67cCAK1U39H4/CbZ/5PVX1WT8XTgdrbpX48rOAQM72pVgUrr03mTQ3atifegduuEaIWKS1y0h1CSondGbe+6taGnZ7Cv30L0PlX6uLPcaRiDEjVaKMoi/STl5W0gCBLr//Pw8yaiUNkPxrhDZhlRHB8a6cnpgTvZ0pQwmviRg0eXp484BQJoy+KcDAX6nfhQgkFFjKFwAkc+nyIDLg3vE1LU05MmLTvJJ/UPdSIfJiaCFTmCS1xSNIzBwj5910jTL09PT9BFISlG6t5bD3woMdOg1GXwK1ggMMGwqA/j8/FxV+wLm4aeqfZTJCIMAhis6KqEUmnJlyHx1j6CEA4bRAzdmruC7qQz+XiqUKTrDso8ZLXCPfnQvgbcOFPCeD+Kl7f0R4+OeuCsmKkP+prJmZICG2z30VK7a516R6sN8PM9ONueIkTTSHK859pJBmQMB/ySAQFBPHam5cIIAX0uVnKOq/XVQ7n273LI8AoIupO5gm21hfj495vVlHozGajy7/DkQYbQgtVG2RmBKH9VN6Y8ZHfitwEDVsrC/36/aNey8isR8ek8ielBpbtTTquN9ntUVEj0or0cyVgQiHKi8l55TfgwBO7EuPwoI5ug9KNQRCEjp5oz7XJuSvDkg7KItXm4XdfH/HfD6wlpGBapqz5vxqQgHeayzz+NSEXKKYLQIlmM0RQOcJx1/uufI7xEQ+CdGCFJEiXKkqACNl4BBmi51z51RJwcDCQhQf6qsqt0p0KQjRdRdvpic9VWeSbdJ50nnK0+WTcMt0KCP1pnpo8iJ6kRQ9fj4OKUnL1Xnt5TB3wYMdFGBLvSflFhCkCIKUTIY8rh9/skVuithChznkqg83XPy8hMI8MgG1ygkYXej7krg4uJiEmpFRpYauhGNBu6xqTMmh3j1VIRV/WJVPuOgUJQUs18leyNZdrBIORS50vbV/oxuJX6wXwkM0tyrgwG2gW3Td9ahmz4j7xN5/WioOsDRgbT/VGAwp1N9akDfHVw6kHQebrfbnSkCLz+V7bqO5VT162x8XHDMdDzw8ZLAgIx1ctyUD9Mqr8vLywkwMzrg0yxyHql/3lrmfhswUDUGAb6wz4GAk5jOcGkCBO4NJTDAK9GhhNOnC1JddE3hVAERtdG3OpIfVbtel+fLKRDyxgWWYS9GRHxuqyP+/zt4WktBwJw8KU0ngw4EqACouDqPrWo/yuV8JYCkcq3al9dkvKt2pxg6o+uG2nfJpDneFL1iWzkWHUgukSNGDNJzHThNQOA/GQwcAgS4aFBbCBMQSIviumgk+z2BV358OkvfeSUQoO50B1H/y3hzTElPu5cu3chpg1QP8kF5euS2qibeCgxcXl7W09PTXuRhDvD+bPotwYCDAAcCpE7J03g7CKD3wPtcQV2Vt+LpvrYj8p7K033VV8JDo9tFM7zNXGSTvFFGH1L7+dvDcKqj6pTWQPg1KdnfnTqPXURj3gGBFBHo5IzXVBdXfB7Wd2BKJeaecfKYq17Boeb8ExB2wy1Zc4NASlNtHm5OlDz2xBte9RwBAtN6Xh3o+E+QYdIhQEDnCtzc3OzsIFAfPj4+Tn3jawOcbwnopnIZgbi8vJzSUi86qHWQ6XmT1Ledp685/IuLix35kb7l1lqXcYIBnacg+daUR1VNYEA7C1LU+C2BQNVvAga6iAA9nzT/ow4kuSBIuGi4UyjK0WQyvHxedXHDLqH1UBhX3qawlnudRJ0pMqI6+6DRdw+VJkPl5Xn6xCsHE++d5iIC3X/u2aR0LovuKSc+zRmgUX2Tp77dbndkytOwLDfSXl9OS9HTkvy6MksgueqVp5QdypiHmlMkhTQCYMqPxsL5nyKC/vt3kuml5DzrwMD19XXd3t7Wzc3N5M1KfzISxN8eFaADxKtvASQY8MOxuOWbbaCepQ6kjq3aX0Td6bKqXSdMdRUQ0DVFwZSHxpzv9hIfxGPtLugOHvK6/kp692DAFW4CBclQuafhQkQSEvTwv3eEG3UHIksMBxUiQ0/+PAWiU3LMJ3mhbpz9XuclJo8u9QfBVlLSv5sipaH1/kh9lJ4fGXnvt0OQ/xxoEUkpuqF1SlMNCQS791T1ut+bfZ8UIqeWOt55PqndCagmsJq8f9cNnid5lMaP8+N3p9QHc9751dXVzjSB5Ovbt2/TFrl0iI4MpcrwdU0EAox2+mp75cVIl2TLo2JsC3Wj+ttlzeXA+eQyJNmXzSA/6XitVqvpbA/V5+XlZVp4WfW6mPD6+rrdZfGWUYJ3Dwaq8gpXR32i1KFOnkZozwWk83AkyJzncuWq+npdHRR4G6tegQjr73NeHHiuxFyp++rdjjzNEmM+UuBOS4zZr6ClhnQpdV5o8lL8OV5ZP147he0eT5KlpJxElFEqUaZNQDCFdxlFcAXG/+gRJtCa6u1g1iMEVJAdUXmmEHICAGlL5X8KCKjqpwccDBAQEBj4lmqCgXR+APuN5XcgQL99oWLV/u4TRmhplBMQSG2f4w/JnUTqaR+HaivXaPGwL7ZfPFAEpuPhWwCBqncOBtywJo9clBRqQlUpnTqRyjwpH4848CxuEQfMyJvsgEwXskpRCyovF8IEDNxjY1uEmh2VdhGCVG8HAS7AxwIDVYcDAjfMyetMgEBX94r5DPMQucdL8nLS9xGQcJlinUjcRcL8KBvMh/lz3HBMiSjDSyMB7h11cpaUpfODVwcTHAsd//6TQYFPvfLT7UTRlCbBAKeKOm+b8+cEHQ4GfPGgyzv1n8u/A4FR1Ksqy2MC2C4DnR2SbBGkMA9O765Wq1qv1/X8/DwBgm4B7q+mdw0GqsY7CFwRuyFKnUgFQ8Xg84bukTB/Cqg6Xb8VZUjk3ph/p3dCZUqhVR24sIvKugvxOwhycJG+81nnW5emU9a8HouWAgKXHX+mM8pM7/xKRsnlk7xPnpsruVSnqv4dE55O5KFdksobAQHfNqg6pwOwPDrmdZwD40kxJl4m0OWAgBEcBwJdWb8rJR64F00Q4IZOxld881MFCQZ8UZ7z2IGHpgZYfgLb2q+/Wq3q6elpKsPD9aov69A5WnToknPJ3wngpDIJCASwef/l5WXnrIaqmoDA1dVVXH/RAZKfSb8NGKAAjebIRd1gToDB03QKyIUpKXnNKVEISJzb9KkOta8L6XeGmnNaRJRdmMwNCgcBB4crT8+HdRh5tbp6JOQYlIz7HEignCSlyispgYgEBtJv3kuGyn+n8hKg9DxoeOnZ0WsWdYab5emaZEd5zIEAAoHkGblMdXzytN5+AraRkv3dAcGcXPkiZH6v+t5+327HqQEufiYYoBzx4J1UfgeS6by4zKv8JE98nvrUQSnn7/lMZ/wpl8n5crmqqh1b4PIsEMSpgvV6vXdIE/vuV8njuwUDyTNKkQGn5PF3RiihrZFnm54jQFitXk8a9IHkHhPnwrp2p3o76mQUwsNLaW6ZXp7zkOVye83cVEEXElzSnt+FugiBGyG/Jq9T+VFpOADsDJz6NXk5GheUeVeUfMZD/0mRVdWeQurGiNrRHVTUUQIDDgrYRvLHIyYuz7x6WTRkBB7/SZTGtztXPFrYPfOq1/6nbmU0gNEBjwxU7S44HTluVfvRU+nSkRPiUVz+n+rieo4gx+0GvXPKqBw+lxu/qj7JOVytXrcbrlarHUBAvopvv1o+3yUYcEMymh6omo8CJI/Ov4+8Wn3vynBlRQF1b0kDb7vd7hjyzpB2Qkby8JSHdBMI6IyGz5X54PTphU749fzIazsWJU86ef8jcsXagYJUdurTBAS6fPzAk1Q3gkHJm3s7DPumelblKFnHC4Jgn+tN5Xj757x1BwIOBlK9UrvSljjfGtnx43eiJUBAc/NpikBy9PLy/TwBes8yhr6LgMaRcpHSMLyv39STHglW2X6egQ7scUCbgDL5QT6QlBejIWdnZ9O480OVHDB0YMcBwdnZ2VSG6qHdBT4VI2eTeupn07sDAymMswQI8NnOAI0MkkcJ3DAkEOAfN56OTCXkFCZ6UTSuMs7JGyUfCChS2Cyhav3uPDiWm6IHnpbbbDqeHxMMdINnqeFXHqNPFwFgWX514+cgMNV7BCDU536olb4zj+4kN69bF65PgN3r6bxYAtpTfUYyNcd3znmzPQ4Ekof3OwIA0WgMekTAV/W74fTIH/nIqQJONXk9knzIQLqspJNWPYpFIOBvQ3TyrbBuW3iPdeeaFyfKEddvObnMExBoAWZVTXrcd1PwRUa/EghUvUMwUDWOCFRlxarn0hxiUiZLqVOSVL4i1rELrVOQ2dkd6Ejtd1RLT7Dq9cAL5sG2C0QkniqftM1K6Vwg3Rh0ivxYyvWQcucMvRvYQ4BO8nxdvsjbFMFI+SyVZy7wSnkkZU+ll/pV/OmiB56v94XySPe9zUzvdRB5RCJRAvIdEPmdAUHVPiigIUy7BuYAgUgyov/cM/Y6uPGtqukkP/eYdXqr/qfnrnIdkHRgwE8T9DbMOXwjSjLTgV3eUz316mJ3vBi1YX/86ujAuwIDHQjwUFFVXrk5p7xH5fpvn3uip6R76hB2SvLEXWjSwKJRV1qf1yOK9YErQfH6JUrnZXeomnXnvJ9+J14eOqjeK7lMddGpqn6aYeR5d893z7qX3/Wx50W56pS2KzMHAnymAwJd+YkHPjYTkBjxNvXBKEoggLukH353SvrMHQk3OvTEfSGhEwEl9Yb3ofcVy9V/acpL8srT/px8KtTronwIBFRv1YHTFMlYdzox8dV573Ik/ezgjPf8TI5O5/wKIFD1zsBA1b7Xm3YPuPCR3IMYKcuu/IQWkwfhHcQ8kjL0dAQGnVCRJ3wPgfNG+Yzmk12ZOnBRvok/Pvg6SgbgVwnvzyQHjx2wVNpESwx68pqWGHVXBAlw6LsDQ91nSLyTjwQGUgjdgQA/c4Awjc05RUcQwjxGxNAy6zACQun/34lGPOnAbQICyQFzcudoBOi8DiQ3upIrrj3wiM9Ip/gUKXUs89acvQOetDZgpPfoINE2dLrQeeF8Zh7eF79Sl74bMOBC2s1hJeXD58WsZICT99LVJaVnvkm5Uxl6Xux0huhZVgIEHlpLq3+rXgfUer3eqYvP97Gumu+v2p1bVT2EnhP4GhnEJUrhPdMSQCBynoyMjJeh/0YDvFMgc2DLvSmBATfsqS1UxKP1AgQe/uwSYy3q1sd0PPG809hhFM29V29rGtej8n936nQtgYBHIqv21w4scQyoS/w01tFUqsrUokKCgs4B6+rAiCbLpP5TWpf/FJWg01T1ulZL//n46r4zSqH2an2D2uQLOjn+fzYweDdgoGr/zH9nRFJUIlfgyq9qPKiXKKzOy9FVSjaFc9ihHpJLgMDrJWTrKF4fpru4uJi2G1IBkk+ah+OVYIPlcACmqQ0SDQbDsb+DQu2iAkmmSFSK5Bf/9/bPRRfm6uNpqHh8PHg9kmH3eiYj2XnSIo9u0ZMjT7o2d9NTXrfEJ6Zz5e55u/4YtTHV5Xej5FwsAQJJh3o4fo4n3ZjhvaRXGAHonqd8aQrApzBVZ9oOP5yIC/OU3mXEibrS25MiaEkPcrxoOoTrvJQ2OcZ89mfL5dHBAIWOjfcjG6syciPj6F3oPw8vebmH1NHJFYivqCeS5QpZfyd41a4gkScUfOXDhYf6T+EuAYEEYNJ6h9GAW8ojgg4CNefPITw/BiVlmfoggbeRZys+d0bd83KjmuZa+Uwy8uma0izxkBMlMOHekXsxHc8931THLn2ql5Ss19XbeSgo+N1oBMQkT74+gLJe1W9bTv0y0hn0tP2EVo9+6h7zY908OiCDOpIN8cKnBeiJj9YK+PkEsi3U1TxrwSNmrIPLYHeeC/uomyr4maDg6GCgqnYazBdUpG13I+XVfVwhHWLoOhopkCQ0RHT6z7cFrlavRxvTABBE8OOoneWLPIriaNONkYSTbRp5diNBPMS4HINcHhwE+ACcUzYpb33vDDqfHXlykhVX1Oy/bozo/9EngbfUlq7tS4xpMk4dUOjychDCaxpnMkAOmBJoTXn/pxFlyrcXVu1GU6kTeK+beqTO02+Sr2VJhl1E3eSAmM9oRT7bJqJRplz4wXAK+XdggNMl3ZQtj0dOjkHiB/mnSK2n962fczuB/g4dFQywcwkE0na7ERBwYXLlnUDAnIHrlLsju5EC5OB5eXmZUKkjUxHRJPlDILBer2u9Xk98o+C50usE2nm83W53tuakcJfzgcR6OMLv8nkvlLxwX0TVTefMtaeLMiwllstpJSrpNFXm/T8yuLrOyXECKksUkSutlI+nPyS/dM/niEfGn/dS+e9RZkfU9XVVjsJKH/BAoar96ZV0LoVHIJf2LQ20gxCPBlBvLQHlLMu/s01qrx8V3IEBeumUO49ca6pqqdxQDukIqo7b7XZnWnjuZVB/h44GBhyhssEUAjeoCQTwewIEDgIO8fC8zksNgCNUzQulhZESMlFatOK8odF1FO8GnfzioRYcEKwjj5+l16U8dD/N9XZ8f29KdeS5e2iu8+ZHYKmLMjh1XlRVBgOikfchRUtgQMNNhdz1i7cp/Z4DBJ2hcNlIc8cjSmUlL1RpR0CgAwFdOb8rOTD18wXIP45951tag9E5Tknu0/qaNL48BM/ymBcNdwckuzUpacrCn/cxSz6yrQIGDlo6/Ud+cnqZ5VTVnm1MJ2UuAeVL6M3BgBtlCma3RiAZti5PXtP3Q1Elnxt18hwIUTsECFKIjErR3wSn+SjOnUnZMyJAvi1tJ4XST2RjHbo8Uqg1gbD3oly7vnLjnba1Vu0PPio2z08AzL0cR/Wu+FhX5eGy7KFFgoAOELC+SU679rGOI+8zpU+8dkPgUS4+NzfmUxtYl5HRf4/y+bMpAdTklPiajw4IuN7wclgWdTyNaKof81a+nNPX/0ojPaWo5gjA+rPb7fezXRgZ8GlXdxDSVJ+3MwEFfveIBe0CifqCgMDfhyAg8TNk903BQAIC7jkRBarRac7v0HKXgIDu2ZHyTMqrU1CcLnDPnoLI7XwuJBIAX0/hc0lMT+Gm4eeg8mNFHU0T0eu3e10JjPigOTYlOUiAYGRkOtCZ8qmqnfMhRJRzz6ubA6WMCCB03rfIDWwHXKhQKPNzXrjnPQLSbhS6vmAdunokuXIPNCler9eS9v4nkIOAFGEkCCAtAQIi8ZRl+LQv9X5XjkAAZTOBE9dbbIcb4K7Oro+VRweUNRWQiG0cjb1UH4ICjhE6FNwBNhfdO5SOEhlICDVNDfhLIJKgJlQ5Ys6cV6M8O++B9ZeBTPO23pkitYcLTqpez6Zm21UHosGnp6edRZYOCNxLd2FTuqrd9yeQvx5aZhnko59C5l4YeXdoKPhX0Mh4Ozh1ZdAZRX7c0KUBnWTPZTLJjdJV7S54Uj3SNlGS+ocKsgOuNIzdWOnqpzHh6RIQ8PJSuzpA0AEvl785EDDq4/8EcJDAWAIEDgY9j0Q0SB6h8sWJydh62dQP3PpM8mlQd2w6SkAgRTa68Uln5+zs9bj2lK/LV1cff55ePuU+RSwTIPi78vpmYCAp3tH0gL9ZrAMCLsBkpIODUecwz1SGmO7eWdXuCVSuWJOi5TyRl+Whet1/fn6ux8fHWq/XOwOMiwAdPElgHTGrHmxb4q/zTuTAoYvakAcq/1jUAYERAGCf8do97xGAzijOyWE3NeGKxwGpR5u8rg446Hml8rz9zK/jrZfd8at7XmnY3g6YdPk5JdCjMnRN7f/difynvuUZJSNDX1U7ei9N44yMvK8DE430MfnuEdAUiaRDwna787HEEenAr9qtaVrXpx5JZfmU5QS2WTbtgj48S8Z1lT4/K6p1lMiAo1Pu4aRRGU0PuIJIAICeShLibvBTSeq3Dw43Fm740vcEChQWYseqLm64lT7N97HunE9y3qv+7uWzjh4uTEJLHv9O1BmGBAiqMhBgXq74fG40eQ2dEaMc+f+U59S3qZ1u8N3IuiGcA8ps/9wzo7w6peteovJP3pfnp+soQtUBgLl2/E4y7nqIsuZnlNDQiNyIcirK+4b569mq2slfUUyW447HqG/lAbMfXD+6Ie7aovotlXUHJrqXAIwDApbX6dHOZqVPAgEuv38XFLwJGHDF60JJ79Y9VWeU55uUdGKm0nSeWWfEvSNdiXQey0jZEWQojzRvpXAQ0wihpny97vx/5D2xX6p21ykQmJGc70umAY6lVJOCdBCQFnWO6qt0yQNyQzw60jSBL5VPkFy1uzbE5YCGMLXbw+gOvJcqSObr97oP6+f887YyrzkQIJ6wXQ6gWd8ErpKDMfr+O1EHBDjN6OmrXscyTzJlfyQ95WVpPGlLNGWY+kT9xLB34nWSa1HSPSkN5S05iKwPvX+W3wFZ1o+6tEtLIJMiB8neKO/Ocfm7cvpLwYAPbkYCuvMEloAAkXeMK3n+5v2qXZToSDPlyXOk2UH6PWq318EVrw+y1Wo1DUTVj4PHQ2NeH5ahsJbueSRGz3u7ZWj83QTeToI49ldC8e9BoXaAIBkwEfnDPiQI4NTNSMm4kZLXlLwYlxf1Iw9N8edcIaTwbqd4qnbHwNL+mgMCKod5v7y8LsLytQQJBCSFT1lLoVqvG2XRx7i35z3I6qGU2iy++hY1yp2DJueXR5SqdmWIepxXAl6XfY+0kpI3z/usl0dx9X8XkdNzqU6Uya4uI1Di9U3/s45pLZzrGH5kE+aAwI/K7y8DA6yko1MiUyIvn3/uvIJOeB2Vpk/VvocgSt6zhC2haDeEXj9v/8hD131GSbigSlECXySo72lgOwAgb1J7mC9Bzxzy5qCiUnYg8F4U7BLj5emrdk/KTCDAF3RW7aP85FmpDPaJg1mRT1MREPgiwg6AeZ6r1Wv0gnJAGgHexFf+9nyS8U0gaiQvlP1OoXb9OlLSvyN17XG9yyvldRTddCCQDCLHAPuRcihyPcBpiOSUpPFEUJnAQuJPMuKpXE5LeDvIF28f68L/k/MneXWdrmc9Sqnoo/Sy/+9jkY7HIfRLwIAPxKRAuWjQgcBonYB/d6VIgSdSrdo39kkxO8Ik+kxCsQQMsH4kV/j+8iI3IpomqNoP5RMMcaDTUIk3XhciYkekc+QD3vnin/dEI2PlHrx4RhnmiZnOhwRoXYZ4Lw1q3uuiMlWvp6lxPQgVXAfmVC6nMRzEsFxX1qmeh8hO4ocb+SQ3/n+aHuG46nj4n0CdEXfdS73I6KAoee1Vu+AzAQONibRVsSofoKYyXFY8QjuKHnh79Z1147VraxpXjKSmchJY8IgadQb5woiAT/d6WW6/0g4Qfv6ufP90MOAVTCGqtE5g9FG+Xo6XR8a7UazKK7IpeF0ZFCwRjUbXCS48qQylo8HujJQLg1Clyqexn4uQdJ4hedpRUhpp0Kne7wkIjAyZyBWjA4H1ej0BAZ3kKCWSTm9keewb9Y9vvUreTsdDeRe+WpsgYIl8ev6juXof4x0AGKVLwJzfPfrFtnk0oFuLsFSO/d5cVOS9UKev9D05SGnnlsspdR0dtqp9L9h1CvP1iA3rpe8+DhktpnxqTZVvqRu1f0RJ1lmuTz/QIJO3ykt10ic5YAIC5+evhx0xfQIhGssO7pzfqqM7M4fI7k8FAx0QcDCQGjxC+szfv3eKhkCAyM2VqyuMToi6VbWdsUtCnvL2Aer1Fsl7539pq8sIDLgiGAlLMmSjAZY8yvcEAkipPSNDJr5eXV1N74fQwigacoIA7ztXzHzfhK+d4XPJgxBPJdcOCKjMqbyTgWcbOSa6aILzZgkwmDPOVFzcDusggPdT9HDOACTlvgQ0vEfq6uu89migOwJ0Jqg73TCpf1wuEpCmrk35ez2rdhfqsWwZZo8aOBEgcLosTQX4+BBRj+pZtk918qiz5JaAwB0ITvnqjBmNXcq62kCbmGTVHcwfBQCknwIGUmXp9aTV1lX9Voq5MroySVRsaQ6bQqAO8ZdmKK0LhA+GUZ3ZYUnhOwhIg1d1l8AJCOiTBDCBAaeO/yk8m4xD57G9RyBwqIFSGvXH9fV1XV1dTR8BAhpgP0iKhzuxb/jSKV3ZR+pPRn66aTMHBCpP+fh978OkLKmgU5nOt6WgKj0juXUQkOSH3ibHsId9O9lz4KMrvcD3JLOJRrLK7zTs3YJtypnuUQemaVSRe+8EAeK/n2bKLYaUB5c96kTdl0zQ0Lssu9zr+6HE6bbEb9o3Rkjcwz87O9uZSqx6nd4Vvzj1K6Kcu0yyX8mnrp2HyPTfBgPeuRTAtGDQhccHdpc/y1gKBHyQe1jRQypV+/NBfNbr5Z3gHkrqOAkpy2OZeoaGRuVIqJ6enur5+bmenp6mwUFU6wsFObDIn6rdrT7+XgIXQkZHUiTAPbauH49JnVHqBv3Z2Vmt1+u6vr6u29vburm5mYCBtkxtt9vpUCj2Od+dvlq9LrRar9d1dXVV19fXdX19PYGBqpryUn5VryeTJUNbtWvkExAgIBB1AJzGcg4IJJ5xLLlMs36k5OnPgQH/36N2Pv5FbJvk2UHBewUEc2PI+U1dkKYHCDirKspsp5dT9InA0nUt+79bX5BsiX6zT50XrrM5HghMPL2nJVGOEygij/mbUQ3ZP45v5S1AoykDtodgxNvq/OkivT8ix38LDKTO82kBGbWESA81HESNqexOOVW9hsPSGf7e2T/DcCVAwJCyC6+++4If/uenUyVKkQam90HFULSu+pBPjuQl+K6gU2Tg2EDAB08KsXXPCZhdX1/X3d1d/fnnn3V7e1u3t7cTGHh6eqqHh4fabDZ1cXFRDw8PdX5+Xk9PTxO4Uv8LBNze3tbd3V3d3NzU1dXVNPgFAgQEUri2owQEtB2pqlqPilE0tt2/j4BABxyW8HououTANaWhfLM+9BKVjsBLgICggHV8L8Bg1O/eV0nWOXZlGDXO9ZtTjsqLMiVSnjT0XSRGHjEjxR4hTYDN9XknO2wf+9mjqs4r6nvKlY83Ef9zoOl1S44GwZDq6mNDsjin4xOfvczk6M7RT4kMqEG+ypqnT0kJ0Wj4McNK13kHSbFQEBwFe6e6omAbdD+hxLlQkzObnTsaBN6mDugQKHgdyX/lR0GbEywOBL2wiFMPXs/UXtF7jQZU5chVkhEnpb26uqoPHz7Uf/3Xf9V///d/1x9//FFXV1e13W7r69ev9eXLl/ry5cteOJZvm9SUwO3tbX348KH++uuvuru7q6urq6r6rpw3m82k1NJBVHNtlKy5t6b2ywsRsKSCc6+ez40MeQISlNkEevWs6inwMjLqzN/bnerEPKiDqDMECJwP7wUEVC0DAuyjJONVr86E+CAgQN76GqQULaFMJQdHPNVv130jXZLkrTNoblg98sztsjzp1fOmg8i2q10EGckW+BhVfdM0jNebBzvp4+1KgIz8ct7r95tFBnzwc0qAC6OEDKt2twR1oWg1YhTCdFBA4Rf46BbspXwpBCmkmtJ19SY/5oCAeMKwHOvnYU7nS/LcnSepr/Rb7eQUgQO1qv5wD8/b7yceHYPIjwQEEmDUc3r28vKybm5u6q+//qr/83/+T/33f/933d7e1rdv3+r+/r7+/e9/x62Gm81mRylqikCRgT///HMCFQ8PD1X1XSYeHx9j/7nc6jf7iPWXYmL418OQlDW2Oxl0lpvKI09T+FakZ+kkUFewDAIOl3cnBxEeAfT2CQBIHjo5f0/goGo+GtBFYjySR50m/vo0akeMqqh85cNoKE877HQ6iXVn1EZ77at2+9KdQJXDhbfUsb7w7+LiYg8UqR5OBEcu/2wf+aIoqz9HXXRxcbED/n2RIttM3qWP6nEo/RAYoNJgOHq0/zoZGjKMeXYGrwvzekjcF8GIujAjO2juzHel76II5JEPkFQnls9pAHrrEhiCqK4vxItE3YAkf9KaAaFVf3GI18Hb9F6oU5adwuTA4rzfzc1N3d3d1V9//VX/8z//U3d3d7Xdbuvz588x0iAeamGh7yLgQkLxnNNqBHSkpBSqdhcxuSyr/5je8+BY7IAA06by6aGNPEB64fpdtWvMOZXl+RAUiJbKXKp7Mq7vSYZJqa4OcFwWqU8kJ50OEFBUH3V1cCBAWdHY0SJZ5cXpR4JktwEsQ/9pjRSnNqpeT0CkkefUL8eF0oknioaST+QvvXL+5/JNvc7y0zsNOrsmsKN0XEjuoNYXh3fg+BA5/luRAffI/SQqVj69dMgrmdCNI1f3OhwccNEdy+88DZbjypNlMq8UHXDlNDK46Z4QpH7T+LKNaVqFQuRIUoLEqQMHFPQWSN4+KoAu3ZL7b02HAgHK9OXl5bR7QAsJb25uplB/1e70DXlJj6CqdjykqldllOZpfSw4ubwxPcPB/uZKPqvv7FM3lIcYXRoEDwunPOiFu8fHOni7k1x6ei8r5TNqy3ulrq0d4B3JkPePEw1q+q08Unky8jz6WLyWnlutVntrylI/ceEtpzK51sGnoxkZ0FXlaK3Pt2/fXyUveaWsu/y4bVBbHSwTuPqYSzbJ+4IgnHzlf7Kn4oWD7h+V6YPBgAtdd6pg1SsTWfG0ToD5JjDgCHFOUVbtngSXohFO3jFpvtzBRKdAZYA5B5QGEp+j0hZv1dEMJ7Ecn15IPKHCZd/w/xQicyXNto8AT4roMM9jUFKUIyRN2XYPPm2VfXl5qdvb23p8fKynp6edK40cPZfn5+d6eHioy8vLqnqdniKP5xR5MnJUiC7vjM7x/zQeRaPoF4kKK0UGUt6qJ+/TwyKYqcoh2DlKspgcAx/P70V2O3K92RnkQ+RI+Yi8/9xBYlkpYuvhe3rg/F+r7buIJusgG6IdVfT4mY5RVtVbgF4Oq8agvrNt1HEekaV8M6LFZzgGmY+ItrGL0ojn+nhemuIQX/+ujC4GAz6o1Zl+eAq9T1Xct635YE6AQL998HujO8Sv7/LQXDGOBosrRhr0DhAwvdIQFKT6dt5QGmS+w4Bpk8J2IKXvDDnNtSXVNYGB0afrm7ekTjmyHUqXQK7kW/3CHRcaB35ugCIKUl6M+jw9PdVms5n68fn5eYruUFZFDiLdiLrHkcaEGzoqOAcDPgZ59e/pd9cHqU9YZ5cP6pDus6R+HRhIwOg9Rwo6HiZA4F6lE4FWByg9zE55o06ivqKhJBhgPly4SZCtNF5P5qnxox03PHtFz6o/NaWg9TLaybNer6vq+7j7+vXrlC45VHQmSR7JSGncIXXyqdgOkKe+FBDwPvg79EORATdOfo4AB5sAgB+d6wAglcNreo73q/aNqsp3rzah2i4P3qfycIOXlBKfFUByYXeFlyISBF6cOkjPsO2qj8p2L9D7aQRuuutSz+q90Mh4uGLl9Jf6TYb806dPtd1udxb/pV0YrjCenp52phG0LXG9Xk/RAW1JXCKvCbClNnsbCQpJc153ykttoxPgck6FLtJ4WK1epzY6AJlkrquf1y09v2TKMtXjranTjSMg4IvpnEbTgYxMSv49neskj0p4NDPJXlVNtoPeetX+DitONWh8bDabury8nOTGFw9qfD0+Pk5t0pZgRSKenp7qy5cvdXl5WU9PT3t8oAfOcd3ZjRSZUb5pLZpPJ/qhYRpPAjbima4pIq/Pj8jrQZEBV5QMoXKRW9XufKhHBTrDuRQoMK2+uwKm4XPU5Sv9q15RKw2jhyiTJ+U8SgNhDmx0Rp1bUuhhMk/ym/VQmzjAhJBduHnt2uVKmfXuvDXP471RApTpf6V5fHysL1++1Gq1qsfHx/r06dMk+09PT/X169f69OlT3d/f19evX2uz2dTDw0M9PDxMSkn56lyCzWYznTWgKQNGs5SecuXvIujakIyB+sePOPa+H0V1OmPkU12uNDWl4p4ivb5ESfaSoR/J2Ci6kNq2JM+3pE5nJiCQflft96nrgardEwh5Oqael55yg+31STt2FA1QGuXPRYbUz749fbt9PdyLY6Gq4iFtHEeXl5fTDh6d6yEwcHt7W5vNZu/QNU5JjCJo2+12j+dPT087DkRVPmI7nX/jtkDjhsBK/Ol2RlG3LZXhxWDAG+srolP4uQtFkuYaQK+o80D5nzPbvXciTT9b3oVASjMBAReKDpl3obrkiXCVawqdPj097Rx5mwCEhwh56AcX3aTFkok6lDlSqHrOfx9LsXYeImXM68++fnn5vtVvs9lU1fftgh8/ftwBwkrz9evX+vr16wQICAYYGaOy22w2eycRMorg8st2dAaU3oWuaie9eW/zyDPvAIGXpfLpAXrZnt5pTlfMpU1pkrwySkJ9QufgPQIC1znpwz6q2l/Q5k4PAZl0x9XV1aRD6Fg5/7rxzvKpx7VWQKdw0qEUSBBA1vjS9IDqojZRp3NnAtumrcEfPnyoq6urSR/e39/X58+f6+vXr9NaH/9wusHbrnapTQS8nBrkMcTU23SaO3kjmHbqgBdpaZRgMRjg/ERaJ+CFs9HJUHQC60qGaNG9feaXGJCMlPLzhWB6xg8+Yad2eXZtcs+8and/rHe8e0oUZgdWrI/zgatryQ8NHH+GoEFIugNfzodUB6blvWMq1QQI1E4S26OolsL59/f39fj4uBMa1bhQX2kuU54/FxSmA150YuFms5mmCggKfdEtFZE8EraD3pL+86v+8+fZd6M+p+z680mmvQ8cyCSnoRvn7nQw3xSxSG3w+jgY8HyXKtNfRQ6gOn3ZgYQk4zRA5DH1NVfxq2+TU5TGdXLmVLb0r+bwb25uduwJ72t+n2Dcy6dzmnbsVL2CAUUGNOUqMKIonY9fLTDUeSFyxrztvq2RU7nUI8lZJd/VN7Q7Im4LpTNHHrNMtn8JHQQG/GRBKkUO3i4SMBJWNxiehv91Rs2VWTe4uf3JD0YionRF+6Pk4R3xyRGze34SNvIyTX2w3kn5OujSc4xkOKU35aX+TOTpju1duTJi/fidRoFRIikIyYwbO+bNrU/uYXRHPCtywHHFMgQk9OmIY4D7mxOQdHBBfjgY6ACB8qH8kEceIXMP1XmtOrHubBfHI+vA78n4eV68Oi8Imt4DGHCjz/vdx58lib/O9wT+q/YXryl9ksVujNNY6cOogN73wXd2cH5fB3utVqtpfMmYb7fbnbUHfKW46lv1ar/ozGqKYr1e74GAzWZT9/f3dX9/P7Vjs9lMAN3HMXnkTpzqqTSMOjupvrI/fnAS25WAMnXYqE8SLQYD/tpW7hzoBjUrRYNOI0QD6ILvgIFCeoiRZr6+D5oKiwZXq7vZLjemVa+KiGmJEJPySV6UGxrm54hy1D73EHxxiddFis+nKAjwkpLw8skH8oZ0LKWaPCNelYbtdOOk/cgc8N4nfJ7baQkE0kJNgYe0GLfqNczIaQbVOY2BFFXiAl5fVJv6twMD/j/73MeTnznCyITXL4EVV3Zsm5dLfrgR74CsjwcpbOXfyfVbU9Id/O7tToCA47lqd72AA7yq/XB2AhvKR/mzPOcXI7w8v4OGn2d4yIu/uLiYvHEttpVccf0M59AJpjlmCGSYdr1eT2NQYEC7DARAPGo1cnZ9nLjzxS2WPCbZo3deJh03dwhpK5MtWkKLwQCRF6cGVKgvvmBFXXh9Pj0JGRF+Qrw+NSHmsbyubBceKS4qDw/bsJOURvmS8RIeCgb/I8LmQHVesGyWqXs+8J23voDRPVjntYTNef2jQIDPH4JOfxUlA+H/p3pKpn3QUilQIbIcRgnc43UlLDCgK8OdXo4oTbOl9tI74VX3HRR41GBOmSQQnw4gk7H1SJcDgVReAnQOCFL/sT0cb0mnJMPalf9WlAy8fneflJ7kek7pvf+7HUbsTxJ1sssOgYAMMMHAhw8f6u7uru7u7nbAgUL0j4+PdX9/326jo+wlHaaxyDeL0h5I/6dXkwuI86ycTpeSR9vt69qI1Wo1LSpMfcPpWeXrOubi4mInje/OY5TeQe0SOigyoC0gKphzIZwTGQEBD//Ta3CGpkZ4qDD9l57vtkJqvokrUav2B4yHD93rYNlaRMJ6uFEkkl6tVnuKs2p3VTaVOp9LgIJgwKMNrLMDty760IGBxIfkab4HQMA6JEWl3x2gcT5R7r2vCfh8u2HK30OCqocOnUoh/dUqH4xFpc70Ck+yDlQ0XZRgBAIT6E7jm/xIfF3iubhyd3Jw7uBGaXwspnoTpB3iWf0qch2afrtD0VGK2qb2ERBw+57rnI6fqSw9yxC9ogEfPnyoP//8sz58+DABgcvLy2kcEAQkgEtd5o4qwTjlXbqciyTZPj3rU32673oj2SNOQTN/B06KzkoXcEzyu/eBypGuVz7k908HA1qB6Yzix0N7bPwcGHDi4BaDnFxBOJO9TKJS3w2hbV0qyz0rnvKkD9vqIU1Pw99U3Kyb7w2m8ZdQCMHSG9Uz6h8CCxduCpiHrt3AufFxYZ8DAu8BBHj90n9V+54UQarz0MP/6mMOyqraWzTk48CVF/tecugGjfVjexh9Urt0TxGHxI/OaDp1nlinbDqgkBY+EUSPQKmT96kDPraL+kH3OgeEfUQAcUxKIEDfO53qhpnUjQmPiEq3U8foSlDpREDLRbHulAkQ3N3d1R9//DGBAelj7cLhEcRck8MxxL5X38mIC9A8Pj7Wer2exq503dXV1U4bOY2h3T4s7+XlZdouTB3q+kLjj33lY4YAxflH54+y4Ot0qHvY/kN08EGRAVXcBYWHpLBwD2N2IICDLQlWBxgSOUKlgRQQIBjgqXEy1g56ZISJBr3eVdk4SiF71ICRCO5qIPpNqFhba1wYXCA4FeP95ijZwYCfgkf03wECb3fqi2NRVy9972TUp1xowLmgj2BV4JXlqu9T2NynGAho6QV1oMWjBsk4S8YYivR0nZfYgQCvc+ftELQ4YE5X5dtF4pxG3q3zjnVwMOXtmwM7b0VevgOCJK/eF6KRjk1pCXyraufobBokB5Ui9aHPuVfVjp7ybYbSxZoa0OvBtW2Xi/wYPld9udVdu3l4wqDswNevX6djxLWIUW1S+/SCMoIKtkX3eP5LWqfFKUDyR44mzxLwiC29fOXlsqG1E8qDYGApkD1oNwEZzohA50nye0JEFBhHRSSiJke93UBnmqTcuZdVAME9dxpI97RdmfjgdHTIttG4iriGQc9ut9spEsDFm1rwkiIxGlzkOcsmEPBQm++lTZEBV8z83SnN96JQuz5xEMVzKDiHSO+G60LI54TgHagxTfIaRAQSaUpA392rSOm8nZ3yXqpAaHR8DZB7ad1aCVHnZSp/AhjqCwffpK7+cyCok5NjA9oOpCSd4/ynczECfQQR1PMus1W7hxMpPxowN2yuczgPz2e/ffs2RQO+fPlS//73v+v//b//V//617/q3//+d338+LE+ffpUnz9/3gEDcko1lS2Z0joBefVqozx/HQ6miITGO9tJh1F5MdrGcepyLd7ytwM2jwYzL/Ez2Rv2M7fH+2dppO2gQ4e8kj7XmCihWuWhewkIpIGutHPGxUGBnpUQJECg+8q/qqZV5K7s2TGjwZk+o3rLeDAdpy++ffu+L1YCSUDG+tCwUaGSr0mZJp53gMDr3eVFWopQfzZ1nh5/MzrDHTPcTqt2ppAc82X/uafRjQH+T+UtGazaPfKUbRP5AkNXAhw7rJdkJC0ATgCfz3ABLhc+cgyxra6cEsh0EODKsmtn0h3ezz4OHdyyXu8FCJC8LS7TVbtrjar2x/yoTxMYlfytVq+Lo+nluvNFAOt9J6OtcwNkkL98+TLtHDg/P59O+PzXv/5V//u//1v//ve/69OnTzsnfCpMf35+vgcE1K/u5KieMvI6C0Tg5Pb2dm/qzhebOxH8+H2XHRp4jjUCoxRpSTLa2RTXxUvl96B3E4xAgBv9TgF7hefKc6b4IGDZnidRlgRAxE7mgkJ6ygy3d0ZEAkAF6CidH/3vbfSQkHe0IjMKg/FlHWdnZ1OkgAPTDZAr3QQM5vqmE6xOqR4LAJCSAuV9GnduOeIWJvYd+5e7ULw8pu2Uc1XtyJlHpfRdXghBhvNcYNlBQAJnlBPJj5S9iEZ2BHo7IMCyR96J94fq6uOFXlI6Tpl1dSXo/TEHylmfufS/kuZArMvUIcqfeSVg4aF9Gq6q2gt7z4EqgQGWyf3/3759q6urq6qqCQz87//+b/3rX/+agIC2/eldINvtdgIDDw8POzqZoMSn2uQMKgpRtQvieRpoZ7982sMBmetaTiu6M8dIiUfavU+Tk+l1I9hIACbRYjBA9JKYmwZeJ2RsXIeevGHdM16uP6t7yWOlEeDZ2EKb9KzZrg6YJA+Rn7SyXwqf807doHc+E5yxbM7FUQEy6qE+JUp1/iQPK107INF5IcegxNeq/W2d7CvKgBMjA1X7B+mwXEUV+L+UmPrLDxty46Yyq3bfda4+7YxjouR1657k28eYgwBOuTloFkkBpnYkWZYcCmR5P0letW5GdfM2j4xSKpdpxA/VR/w4puyKRrqgql8M6/LjkQPJoAPflLeDOwGCboy43vcFpJL91Wo1ne653X5/8dfnz5+n6YHPnz/X/f39tM1Qc/VVNUUSCJDnAKjGm14k5GBRadw77/Rlkik5ltLvAkO+EJJTvj5VNwLxlFdOExC0zUWjd3iyKFW9rowmIGClRK405lB1919idMrXF/uNFEIq1/N05iWjsWQOhvkQCDhq1XffqqJIgAuoL9QUuq6qHe+R/zEEzPOyE8Aj/70f2C7vNwrxKBx5LEqDdol86tnED5chzn/qPvvdn9V9P3lQkQCXIcpDksdDAIHq0BlOGkXec8DkhikpThrTtIVW6aW8Eoiuqh3A7OMogaiO6CTwt4h9xajIMahzCJznzmeR89qfYRr2KYHwXLnufXoUTb85PlRXgYGqmqKcLy8vtdls6vPnz/Xp06f6+PHjtIDw4eFhZyGfG3EaQ5ddfpduJKDgGToc2zTUaQrNZYk7APTZbrc70QBOTbhd9fozL8+Xferjs4scdLQYDLAhKSrgKN7vJ4EdoVsygWlTg914UyEnzz0RFTbrQmXAfHxeTELjKz3pMfmeU/HRF9fo1Zzucak+brw5kDnA3bOVkErwKIRsr/dH6pNO+SdhdhT71sSQ3Ui5uyJxXqff/jx3F7gxTuNEypDvdGdZfDYNcrYnRa08GuSKq1M63l8+hlgf8pm8oKGQ/HMqgQad9eR0DRducv2ESAaEZdLY+3cP35IcBPgzx6BO77khSJ5kBxq16jylo97yBbX67nIh/iQ96ZE1gjee+ldV04FA3759q4eHh7q/v69Pnz7Vly9fpgWD3M7rOj7pILbH+Sc9K54wMkKPW3o5gQC2TXmRt7R/kl+eWeALtjuwwfxGpL5VmxV5XkKLwUC3a8A96k6ZEA12jUoCnfL0DiYjOP+jqysXKg9nvO555zuwIVEoVQ8Po9LDSeUpHz+a1lFv8r4p9KqHK21XcD4/5f3Q9Qf7xNOQbz4gjgUESJ23mAajwJLv0SeIYr8zykKv3hWWeyjavsSDr5Q3jSjr0IEZjs3UZw5Q5tLOjcPEW8ozx7uPw6TgOK59u23V62JMgiWu2aDR9jHm107BMgKjPBRZOwYlx2fk2LgOkAcs3lXtT43wGf7mjhpfnKd8knPngIL1JDiTvnt8fKztdjs5MwIDfA24G1FFGZivRztFHvVgtJT2gmBHddaZBNSXyREWQPGFgOQn9Yq+e91HY9L52EX+xHtGEpfQQdMECRW5oLpAiQl6JpEbHzaKiscHQ5cPn6+qPeVCo+zC4ws5knHzMjslxpAblXHnTbPj6FURDIifSfmqzeSTBpeHp9KAYhkOHtje9DulHz13DOqUkn6rH3hQir6L/LTNqlcDwjM3fNGh3kjo40PKSUpIeSpCpPolQ846a+uUK0Kmd/IxRE+i6/uUl7w5r1sCp4m8LNXBAQnLcx3QAdeOBx0g8PGQvr8lubeaAKUbYX82HQ3tz3mZ0lvagueAlXrFDZ87P4wA+RjUVkJGbAQQ+CZB11s+3emG2McA28/F4hzDad2L8mQdOA2gdry8vEyLEd3B0vSfdESKMpA6IOBOGO2q/3bbvIQWgwEqJRKF1LeapBBk51UnoJGiAXyOyiIxlyjQdw3oWQkWOzqFctSRBAaOirknlZEIpzRHxM5MA8wphao9jKf2vby8TAd18AAO8pr97CCF7WQUgmk9v87YHoN8gI88SQICDig+yzS8T4AlY3529n1NAN/b7uPD5ajqdTWz6pDAKdeBEKB4CDgpCypqD6m6jDvAU5pkXERuGLzN5DvDq5QftVF5uMJnhKBb3ExyXpPfHcA9Nvm2NjcKSU8SiOq+9J8MOhdMpzJlHK+urqZPmrLRjiYulqMnzjKcn9vtdgKxehEYQTUjA9JbNKT6zohcF2Z3gK/1AkqTgPp2u52iFqoL7YSe52+uZyAgSsacbRAlgDaKCrg8iwgEfjoYSJVixR0FporrGd1nGjcmVDJdYxKQoJJKpw6mUBcXJvH98771o+sERgM8vOlRCK+zK2/3/hIYSAab/E8C51tYOkU38vKppN3Qs387r+5YyrXzgJIMSrmIj+JZWmXNSI+HD3lOwdXVVd3e3tbd3d0UIWC/uIETEVxLWapObgh9/lH10Hhwfijfqt13KHTeeJIFllGVD1kh37owaJJ58VxTLr6IkKFWAoOl3laiziM7RKH+bEpTnARMXld+529NR/GUP4bEmVb85nHBOr9f/a2tfNrqJ2NdtR+WT4CUgFayXfUKqnnKoIwwnxUx9E4d7Q6KT/uQv2yPL0jXzhVNW2jKwvUpo4IOuqULVD+eG5JI9U3/dzaIel9tPVR2D44MuOA4+cCe8wY7AU7zYzT4rJMrYQIBvnuAoSIPv0upKCJAQEDBZVlVrwovzY3R66nKrw1NPOICHyJ856srPrVfxsy9ds+vCz2PgADBQOpLpuW990BJ2fM/DmIZo+RlcF80vWp9l/wpvKozzm9ubiYPq6omBeLeBuvjYNv/I3l/cuwkIM/v7POub/2ZNEaras8IVI23Xnb9JJ4QFDAS4lOXKQ//ThlN5LotRfbekqRbeAqmg33qilG7JJM3Nzd1c3OzAwj4kQHj+fwCsVW1M6f/5cuXOj8/n6KOItexqi8jar72RmmUP6cJOC4UKeMztA1JN3oInbqNkT4tSFUaLWpUBETjlSCEx/F7VE7OqPKU4yZ5JvE3gblHFNge5qvf3tZOJpwOOmcgGSZVYKkXmBQBIwE+GIlsOsPCZ4SieXQvw2M+/yaSUPr0QBJYEQcnjasEo4uSeAjeBzWNwFJSWi2qcjBBdEqUqnolEOB153VUDypbCvMh7fmZ1BmgbpCpLxmGrNrdIso+k9zQmGpqQGeeKzolMCD54FSAlKSDSJWtZwRS5rxhB9cuE6Il8sY+ZFrKP38ncEyFzv9SeJZXgVsPCXfrI9g/zCeVnZ5jG0fp34LU3/QwReIp9W/nqLnHTyNPZ0n6k/eVTuU8PT3VZrPZOT9D02EcK13/V73OxUvXMh0jA4w4uCNKuzDXR10a5qOyeeosgcvDw8OOTqATOed0+Zh38j50o676OUjQ+hrPwx2YJXQQGKh6PUecFeD/3sAu3JGMfWJSJ9QMVSuNAwEdM+xAQMqKc2DqWAcDvoKU5dFrY524mtwHRKe4CRA60JV4Qv5RedKjIdrX6ms3JvqeUDVp5F3P3TumUmU9dE39o6v3FUECD8QhL7mwSApXYECyyAWsDgZoxDjIlSeVigCB0lGpOVHmnZIH7VcHATT0lHOfFmC+7sW7x+Nt9QiTzxO78nUDzrKXAljWg1fx+xgkvtLDlK6hvnGdwDY4KT+XT8koZVXRLfWrFtMJCKgfBGb1W2XTg656lQXXtRxvKWJGcEFZpj7jVAApRYNdXj2KJeNPMMC3FLpcJuI4cF3DKAx5poij95/zNJXlwHWJ7JMOBgNUXCPyEGJScN5JpFFDHBBU7S56oeHzRYNcZMc6chESFyN1yrJrP5F6GqAeRmKevhJ2BAY4IBLw0ODQlcaEysOBgXubSyMCrFv6/h6I8phCmCK23RfscS2IL9ZUHspb87Oco00LwRyYeJ9U1Y7RZzuoTNRGPU/qZDb1d+p/lkkeijg1IB4of9YhRSdGckKeELiOwEAHCrqykmw7v44ly+5wcB0J13mk6SH+dlJe19fX00t6bm9vd9YHSGa5i+D5+bk2m82Uv3SVjkh3Q6kpV4I5RnZ8rl9p/Dwb1tudQEZIHBT4WFmtdt9DIj4QxFIH++6y0bQ3+e5GOckrn3F9TdvmTkrqzw5AjGyV00FbC51YeQqfvvtiDOZDRUzF7IrMO5UM7TwhKi0KgjrelbLKpOJPCkf10VVtd0U9591TaLzTkweVnmX9U7v4bBpcHg0YhZyTMHYena4OTg5BqD+byDP3BJLMUWblqXAhGz/cckV5pvdFr0v/KZ3XhfU9Ozub5imr9k8YXEIdCFf7qmpH0SVg6ORjXXWXoWK0jdf0TAJTSbZSPnP/uWx2itHrmdKOjMCvJgcEqp9kxHWig16Rt5Ng4I8//qgPHz5MkQKfNlCZT09Pk7yrrPV6PXnRlJ3n5+f6+vXr9BzHWtJFnLt3p4nGvAOaIuZPPnD8a9wyCuLRAYJPLrx2h5hyQ73v4MLXnAnIez9S/ueAQNLZ7lgspYMjA15ZV/ydt58UmSNYlUNklhB9BwLckLvH5IjQhZMIMBlER72sF6dRksFRHo76KDzMK4Xrnc+6x0gI5xTJQ0fjqq97gX4/0Uhxz3m7xyAaZ/aNqDMGAgIObCS3Uih3d3fTu9AZOWC/cErKFYm8Gt134LrZbPaAYgJwHDf+v8tO8ri7j/JT2+nds74eMaRh0LPcceD1cAPQ6YdkBEn0ttiXSVYpAy7X3u/HoORhkocOqlxOu/oLyN7e3taff/5Zf/31V93d3U2LXH1xIccD17/c3t7W/f39tP1PelSr8+UsKeSvBc6uozmNQCeTkRAfu+RFBwbEB56gyMWRakuSRTqJjAp49Mv7y22gj1mV4WOL/dxRskvMl/1+qOwetLWQRLTKa9X+OgCGbkYVpCfrgMCNoJMbd25N4illXh7ntLiLgPNVzmwaD3ld7n2xrgzjURjERwn8yCC7sXW0mw5U8m1n/uFUCMtKAIz35+51nt2xKA3QEXLmIOV8piuEq6urWq1WdX19XX/88Ufd3d1NIdZ00EsHwLiK+ezsbJJZLWRSPbRa25WVEz2sZOAcDBFkuJfpoJf/EWR5O0cKjUCA3g/zdnlnHcQf9lcCnyPAQCI/OzBwLFmmg+AOkvdVRy7zMrKMCvzxxx91e3u7c8CQ1saorO12uwcitJiQ5wE8PDxMxwlXvYba1R46TOfn55PsMw0BHdvABau0EeRX0tncIcG1EGorbQd1Z5oacEOrfnBwzCitgwraHpbXOYLuqBDk0m44QDwEFCwGAylE6l4wyQ07hdmJSo2dkeZZmJZomKF5lu3AgANC+QvF6qN9ren8aJWXQjGpA1U3CkNSulJuypfbVZRPMv6+NciFWu3nopy0LiIBD/Kd7fTvfo99OTK6b0VEz1TunRcsUvq0q8DPNb+9va2//vqr/vjjj50dBFQGDsQE1PjGNdaZEQP1vUAnQTbbpbI4BaD89FwCETT6UmhS/rqvetDL8kWRBMfeB1RiHK/u3ToY0D16ggIESdF5RCABXebd9f+PKNRfQZQ9XxxctT/tQz3oxoH9tl6v6+bmZlorkA5MEx+lA+W8KM12u905b0DA4P7+vlar1STfviNHV752WFMJjMZ5VMm9cgd/GiMOCFx38ncad4pmSC7cmeh47FMr6jOPzFKnuNOZ5NFBs39P8su6LaHFYIAr8hnG7JjJSro3rMZ5xQkaUqhHjfPfNILMr+p1vtzXL0gpSjn7vlZtaXEgkBSYt4VGROSHpDAPGnfuRGA438EAkTuVAfnAwSBjRDCQlGXyhkZgIF2Tt3pMhUowpoGdDEEyBrqqTYoeXV9fT/KpKYO7u7v6r//6r/rrr7+mBVkCeTykRR6UvCrlT6WhuqkMN0z87uBUbR71DceDj0t63VX76wI09tVufVc9efiMe7MCOKqj8vapO/2vfHQlIOgiLSIH6UnBOpG/KZJ0DJJOlazRA6wah62rdoEcDWBazEpS/1BvqJ+ZD5+j167Fhjc3N+3UpOt7B7iug9TOJPtqj/Q99VxqI22V2jvyzpPzqzxoE7mGyKOx6TA7jfkEWpfYTE9Pnv0yMEAAkOYJyVgKMJUQB7yU4NLwYmo0PaQurfJOHhOnB/jhgUMiR9npewICKocHGNHLojIk6pcypTD7vLcDAVe++k5B94hAopGh6ZQs83Qgl6JHb0WqTzJ++t0ZCradysXl6fz8+9Gtd3d30xzs7e1tXV5e1svL95PM7u/vd4yeDFvyODx64x6O2jMyVKOx5J668nblS9mmEWG99Z3gSF4j8+N6BgcEKouhYRLrQzDvvPMoicun88ANDkH3ewADPp6oO6peDyjj2PLf3k/Um4wYUgeJj9KNWiC4Wr2+7e/bt28738VPLq69vr6eziRw3eUgwttMY+26w9ffEOjQ0BLIO1jmbgyW7VFstomyL+LCWS5GpOcvPqboQBcN6IBAigp4uh+R14MjA/QKHLF3A5n36A2k/zvvbI46A5UMHj2PEVqjQUtK0Xng3ibb5lEG1lc8VWSAbaeyTgaK4W/3uuaAlfOD5eraeQ4dCPD/RK6kj0EOCnRP1xEYkFIZeZlSBjxxUGCg6vUVrfKafOrGlT5l0xe1qjwfO1QuSQkmnlTtK9vkIXdec3rOPVfJJiNVKaLn5E7EqB1z4IdXz8uBfmr3scincAgKqvZfSezP6Vl3HhSZ+vr16847M1SGjLzSKGyuOffr6+tpPZaHwqsyCKGx5Xw8DSPzcgeDzpIDUhpqB/6u8x1ouMwSLJN3vh6AesLXz0iXi9cCA97+pD9JycDP6aIfkdnFYMC3rvngpJApRNOBBEdjqdLqgG7w6p4rdnpsHmJ3D96FzwFAMgj07AgMSB4OY4dznpl5c7U5061Wqx2AwPCU81b88oGg9vOoYtaTafXdAYH3N4VQQCQZgg7pviV5/9Aj7gBjeq4DRP7bP5IxvYnty5cv04enrPme5vSeDDcM5HOaXiMlg+p9rXQsw0GvniMQTXxz46N7BAQieXQcA0lnEOi4AZkDBKyb89Dbmvr6mMS2UYcRELix6CJxkhVFq3i6oPipRXXaHqgdA9Lv2k2QFj8T7LpxT8e9CwynkDrlnUCAIJJrGzxCQi/f7QP5pPzdueN9/83ohH5zykz5axqabzVUHzBaPCJ3DMnzERA4BBD8LTAgYkN4FC4rQ1TIZxyNugHuQiWkJWE8GlwaawqHgwAaV/cW3FPy9tGge5iX7eN35uPKjXnQw/WV1SzD70lg3WNPBjsJGAejGwOGaFPbyNe3pgRSErH/EyDqgKcrOa0NODs7mxTdly9f6vPnz/Xp06f69OlTffz4sb58+VL39/c7fc0pK1ecncGjvCQgsMS7ZRsTKBC5p55C754nHQQ9Sz0gOeZ4S96RA32GYR0cpPapft24e49Atuvvqt2dBlX7Bzm5biO/9G6Bz58/7yz+fHp6moy8vFstCNRxvHKKFBLv6v3w8DCB3vv7++nDtxG6vKeXxFW9nnzrYFhEMENnlH2Z5IK8lDGn00d+ulwwcsD/Cf61VkgLKT0SMHJG2MduRykbc88upcVggMxKYECD2pUBw0CJhMyoBKgsRgBg9L/SaLCzPF0dmdHo+3bE1Cniif/nQufGsmr/jW5d3WmEva1auOLgy8sngNGgokDR45qj1MfOE+f5selH0HJqk4gAgC9s+fTp0zQ1IAOnOVX9LyDw8ePH+vz5c202mylsWfV67KkvZtWrVKv2I04eZqQxTwbP81Ba9/5JNKKJCFqVh757pDCVobHR6QmWk1Zie1TEeSIa9Wtq65Jow68kB6C8qv7iXdI79Lglr3x5m/SXjBd3Fai/tMtKnq3kybcekpTf58+fJ3n/8uXL9OY/AQEBDO7e8uPglf92u92JblKGvR+dbz7NVrUbwZVeY3SBgCA5Yxoz+s56aXqFrz326Qk35in6w7Y4EHC+/11n6+C3FkoIGB5i2MNDe0toabr0jM/buOeutC8vLzv7tlOIhkLehZKoWLl2INVPgCIpEzeaql9V7fBRinSUF5XBkiiJl09ARnLk6gqdBqkT5PdGI6WRIgIitU+D+vHxsb5+/VofP37c2ZtNL+vx8bHW63Vtt9/fhy6PiHux+VpU5k9vgnONznsPpTK6xHYlUJwUTppCEnlkzOdoxTsadClJz9v7gdMPnQGUnFHfpKmCzvM6xKhrTJA3xyAfS248CAJcD3FLtbavst/0e7vd7kwZuNcv8MvthZQnn2JV+s1mM4EBTomll8H5wroEBtRGB32Ud0aIVDcaYJHzinLl/7mO8IgEP6yDeMqXMc0BgQ68ds84/R1ZPeg4YjGY0wVinm/R4PfU0K4howGbGKWwkH4nMCAlS6PpK+urXldqMy8qhar9t7L5Fi2f9nDF5x4aV2KLX76LgXNi9OaYJ3mSqOsHtZP/uQDS2CTlzMHp9J5AgXvObvz5X3qWoLLqtS+5797B3fX1da1Wqx1vSP0rL0ggwc+BcO/XgRcNoGSKoDF5ijT6TNdFz5iHPEHJve+AodJ1nnIsdYY/8dxBAOuVjD5lknl0emVO3xxbfkfy6F6592PV69ZqgQGeT+JnBfj5Efpw3BMI0PC7Zy9DqIiYQK/LNl8HrCvn1dU+9T8jmy5vdEgJJJK+lAyLRyKl5Tot1aGLWrlOp57gGQtK20UyloBVBwJLdNdSGT44MsACPOzYefjdAJ0rw+8n71NCOdr6QeXGukpo3DhyfsoHlwyzLyRU/iOB8at7Hincqf9pZLo1AR11RsFBQAIK5FeHUpNiPrYSJS3xClO400PFNMAy8GdnZ/X58+f43vfn5+e6ubmp8/PzeFKbIgA6rU1ggR5u1f4x28n4Ve3PqxJkdm2mbJFPXhYjT/7sSJERfMwZftY1AYEECDoPq+vL7spy/fsxI13ULUn/OcDz56pedzLJYHMtyuXl5U566T9tC9SOge5sAsoOF8lqnYHWCygq4LLsER2Ry65kz8GwO6JcrKh8udaJ+ZNXLluS92Qj1F6OM7eFyo+gxh1F9que8753veQy4Om9jofI7Q8dR0yFmCqalJcL8xIUJPL86QkxTMZ7MrbsNDduc53QAYF0+IR79F5Gt9q+243gRpXPsb5zc/OuEH1awA1L8pYTjxKI8I/ndSyF2oGBuTZ2+dBASclK+X369GnyoBUq1TynpgWkHH3KQNGBJJt+bwS+lcbliH3hxtnzc29c/HJlzPGXeJjGke6zbYnH+n0IEHAv1q/pXtfvP6Krfjb5tBwNi0dAq3qQQ2/VwYHL9dnZ96O2xXe9zIdOlvSgvHUaVD/RldNcvl2QfcX82PaRfmSfM5LGyAB3aiViBIx8YMTCx4bIZc2dUAcCnoe3Uc8QaKt9Lo9Jny69l+igBYRkkJQd53Dcs3UP9xAw0AENF6C5zpjzqPksn3dvIM2T0pA7EBAv9Jt5+RaZRCP+OIpnHi7Yno/qTYWrZwQQltTJ+yLdOxSZ/ipKfOgGzVJAoHUcDJMKEHRgQF6T1g8IFPBEQi0UdDDodejqRkXmSszBqBuR1Wp3vj8ZWdcBTsm7WzLufPsXee118f9dH3R9S+XqQKgra4lM/EpKa3lEqS26r2eraqfPqJsYyaQRVSRLedBQuaNFcoAsEODy6MDT15x4H6b2u3yzXWzfarW/M8DzZFqti+J/dJxYvueVDLg7oh4hFvjy6Y6RnKZ0rFsa10vooHcTiAlSBGws52p8TzQBgRpF6pA8G610STCSshGjVAc/qUuKiluevHwuEPSIgC+cqnqdZ0rejMpUGgmp85ak+iaF5PVxvtLLVxkOlDzf5GkuUYSuSL2vDxHIt6JUp2RIRnUn8OUZApK7h4eHurq6msCXFgMqKsBpA64lSCufk0ffeRVpfQHHgtYVuNdOb2VkhDTu5QwsBSwprUcYPfLA+12+iU9+j160h2v58TFwTCBQtR8qpozyPw9Vp8hP2n0h/cRV/Jqqkn6R7FxeXu4Ydk6H8eOLBEc8daOnseIOjtIyD8kgnZt0HgfXuHme2+3rDgVt09b4Y1udHDg66F0ylav2MGrM8qj7HdQvcbSU51z0WHQQGPBBS+JqUjJyyWDqQIDKGv2f/lN9WG95crqnZ9wY0gDT806nL9KIJ+F1gUkLoAhWSCME7cqAfaM2cWGkDyY9Q6ETLfHseT+BvGMr0I7Iq26eT9/5DEl9ooEr5Xd5eVlfv36dUP7T01Pd399Pbzbcbl/fTsjjXbnHmkqIfe/RKpd5goe0ol4yzXrreVdiUqwEy8lT8bxGRDCSwrVukL3+3oepX7vfaazMzd16NLMr9y3IjaOPt26MuiPBtnFenTznPXnEAoVPT0/TgkJ/GY9PDUi+KdedLVC/+Lsp+NZOyjf54GsNfEcDI7k6WClNu0gP67RQ8UHj2+ueHIRkcFkX1imBNo4RH/e6xyhAJ48+Vn8JGOiQFZELUSeFTOkciZM6D8xBgRvH5PGSKBTupbqicBTohsM70j0Xtcs9K1c6jESQLyQJu3if6kRSmdrXzvA1BwDbnQBBAnqJOnQvHieltVQofzZRTvzjddR3Xqv6Oe7kfcn71zYtKUyPnLlS7rwQlUMjlqgDYx72ZBuSt+KHS/l/SxRMAjTig6dLY7bz1FUHly8Hdg4IXL+4DvApjblo5ltRqnvSoay7AzamcSfEy6AjcX9/Xy8v39cZSJZ9kTb7VQthfaEso1SJlB9P71N7zs7OpnUNaaGg919qG3dRuB1yWSMo0ivDU3QjRVlJCXCwnwhMlZei1yyLeTPyPJJHBwKj9RKkg8GAzyGlxvt/rjg6hTcy6snQdNMDrnAYHmV7qDwkTJ0CcmXj5XGNAJ/hmQVE4ErDK+tLz17Pce6LfaFO1/+Xl5c7+1o7ZeIRAyrEpcrPDT9/ex5LQMavIPEqKTGPDLii7a6pP7fb7bRDQF4UQRbDs+R/5zEl5U5QyzqNvC6vu7w+hfnFG/dW/EAr/se0pM6QOyhQfZwXancHVpif55NAdQIJLq9ebhrrx4oMkOYAAf/z9Ol3VU2GsqomeXDAqhcN+diRzuHzDgQ85J5AoupGw+Xt4jo1Aha2zWUuHRznQNYjs8r74eFh+t3ZA5H0pds+Pet1ZV94hLmL6G23r7simJc7nC7PPl00osVgYL1et/8tDel1CiSRP9t1iueVvAJX/pwLU0RAguZl8xlH2TQGDLnpuXTyGutJQ63nOOflEQQKLpU4Eabm9RihSMKQDJErxDnPiB7ZKMLhPH1rSjLQeYsOCHyQOYlXWnAlQJDeQukKkeWqjqkc1kXylJSfjy+P3lHB6Dvr56dppvGl/J13qmdXD4/C6H4yas6HDshyAXMHrEfymfqW7SbfjxXVSjo1jUvnGQEg28+zBOTty5j7ORmKcvn4IVjUOwoEHH2tQHISGfZ/fn6e6kV+q03Kl7LOxY4uc/5biyE7J8rXgbFOBB1+7kBHbG8C/t6XjIAwD9VPNiI5anP29lA6CAyk0Een4HyQ6l5SIqTkVXieo2dFjrxcmMl8MdhDhcl4sI7e4V7v0UAmDzhwCAQ4TeBKX6icA5xbfJwPiU8OXnRlGDaBmESjckbPvQV1xr+qr2NnjLp81fcKi3LLVfc8eU+ZE/l4Y14OCKj8uCI6ySZl3AEC60JZYnizAx1+rwP/ritcYXrEi/xLC9+YNoVsWecEAJ0cWMzprF9JI6+S310/OdHw+dw/X8HLBYMy7CLXi+fn53V9fV0vLy/TSZuuD11n0lPWf7oneaNsiggAudjRo8CsK8GwDCsNPxcWak2B0qv9TN/ZpZHN4v8JiKZ+miOCe+X/M+TzoFcYq5OJktxojBSFD/AO8buCFSVmO1p6eXnZEW4ZS6FeCoDKpwdOgeiAAOvrdVcdRkaGoET/aUtZ2oVAwEWlr7b51I2Hm1g26+c7HVxpEiBRAD3fRElQj6VQvf/YllGdUr07RVz1agDTIizy1+XFlZCIfdTJENOKklHsFJVHChwQe1ruAedY9/GvdMkYUBGODJfGq//n3ibHUufBJwN/SLpjya4D9qSfRpEUEp2I7i20BJlaGOheMaOQVbt9zcN+WBfKCGVfRprz4S63lB0BAu6M6EiypvqxvTpZkdMfik7QBvm4TWC96zel6aIDPE3R9XU39j3/ESBYqqtFB4EBAQFW1A1fVR8VILmQdEhJNPcflft2u907IMjniyn0HnHogADLYttTOGyEFL3uNM5uIFQfj2To6oaO9ek83Tl+kjqD44LWAYX34F0d2vaRwU/5MV/uS5b8EaA6SF7iUXR92UXa0hQQZbwD4zK0owice3ssby497zl53XwKjM9xSyMV6lxdRJ1Mi2hwPf1bk/ehAwP2Y+o3lx0HDvyfvNd/3GooYvSgqnZkm9taVU83pCqDBpD2hHWkPqNe4xHdyfEiKFX0SP9LrpIT6HosjSXyUnV2B3YkMxxjiohwi7s7c+Qn7ztQTORO34gOAgPa08kwnQqcU7Cpkx3ljxTQqFOUfwIVRHgOBjxN57HMGcFDiZ6kKKFpN0Du2aeoiO6nveqsL/mpfkiryNM1DZhOSFV35/lb0giIdICJzywxBuwL8ZSgjWNH5Xofuvy7QnLqwIA/R8Xoadkn6Rndn6OlBrkDOG7IUpled45beqeHeEOpjOQEHJMY+eC9pfUkr/07w/aet4yue+CMHJ2dndVms5mMvZ5xMKA2KJogQFe1a/DT1Noo2jnSOYo6aHqAdUqgSR++IyTp0g6AyfCqXM9faVxG9Zxf+R/7ziMNqf9dvyyhg3YTiDgnyYYmZUZa6inr6uFsKlqRKzMKlgwQ54f8FczM09Gd50+w4MaPaXhNfHCjz9/u9Xle5CWNTEL7RJTO265eSaEnAOS8HkUjEgB7SxpFeubSzhHbS56ltrrs6h63SPl/Xf4qg4o2pWG7loaTUx6p7t5GV4r67vVg2zqeuRJM88ga21WvawfStmZvh+fDceYgzsfoW1OnAwjwOuJYZlid8+488bIDow4WmFbb7+jsuZ4WPznlw8gA6+pTl8p7DmD697mx6zZAcsOzP7gbgvaEdoUOmpxRAp2uns5Hr4fbvKRnO0eG+R0CjA86jtgHCX+PQhHsoNSx3fwkn10KJBy1euf5Pml2cgrFcMX/Uk+B866p3g40XCF6WeS3Gw6GpJ0PHY/Sb6LlNEhZ95GAernuGRyDDgEDfKaq3+6aBhlBJZ9JnojzogNhrIuT0qaIg55LUYFRPyRZckBCA+l1c5lIHqfq4HLP/Dp+JcCp+V7uLujaNkcOxukAHIO6vk96Inm7Ip4OeHl5WQ8PDzuHBlE3p/am/tA8/8vLy84OmjTe1H/Uv4xMVO3rraSPxRNOOSSA2+kbThGrTAFJASSdCKr1Etvt67QzX+/MMaX1FSLuYEiktvoWcp9moa7togJsc3L4fjoYENEwcRCOjF+qVBLiOWMxh4S8nqyjL5jxfBzVpm0r6VlXcNwLmrxAKjw/b2Cu7TQsGogyBAmlOorsIgEuOEkhpMiDf/hch1SPQVQAh9Sr8wydZ1X7IWtelZfoRzwdlZHql5ShK0/J3YgPiWgQ1SafbpMSo4JPYID8TO13Jc/2+2lzHV/cy098TCCm40fnNb8luV7sogVVOfonPUOniH3BKSyu0h+NV/GDW6oZpZScKK1HOlUH2g0HBZRhN36Sle12uycz1Ne+AJUARAZcZTFawkWNsiGXl5e1Xq+nD8GUtmBSVlxWHVQnnqYoq+vXzqHrHLildNArjDm4JVRuEEiOWLowp39XB7tXkUiGUGl83yhPn+J/bJPn14VhvK5cLOaCr4UrzLNTKBRm8rdTnKqL7vOseQoN57xS5MYFLP1meSOPMeVNnh6CUH82uTdAmlN4XRiWBpLKieHDFIVSfVj2yBNztM9y0tRL8irYj6lNnTL1+nFM+VbWs7OzyRvS2BUPmGdHDlIcPPk5HrovOef95JQsMf7J+PC/YxCdFNYlORq6dhG+rs1XV1cTv7lgMOkr5z9ljdEd6R2PzFa9RgcSKKCucv2cIgIOwMkzefJc8Mi6PTw8TONBMsaFifpPZzJcX19PryrX9sztdjsBAYEC8onev/eFg9vkwOm/9H0poF9Ki8GAmMUwhXdIqtwoWlCVF5dR+DsU7B2vK42/kBwjA66sukHkZfmWRAEAP+FPA8Lr7EaW7Urek99L3gEHh9og0qDyPmNaAgAPQyVgx09Sjklp0WAeS6GOBk2Sq2SQRs9SGfm7K5jHEhBQtb8Y0SM1CXh4fimcSCXkbUzj18eeA2yCAV1dcTmPl3jaXZs6QJv+G+kdtrUDPuTRMYEsx47rBJIbFudzcmzoVHAfvYfIWYbXQ06PPHCXLQfKOpHVIxSpPQShlCHfAqh7vnaKY9BBOeVF4X3pTEZSVqvv2w8FAm5ubiZQoJcaVVU9PDzsOG/uACZgk+xDirqy/5Jedr7zeghgOCgyoMpKSBJaX5JPUjLs8HTqEjtez/iVZwms1+udwzV0ZdlcbORzNczbX8yhdvgij9RW/03hSN6lRwa8zT7l4Yo2IctOKSbh6/rLlULX7mT0HQC9NSUjWJWBpiuyOXIg2uXbAYtklNiPo4gOPbFR3iI9ozwkbwSwc3X07x5V8HQOFJLHTYPUtZVy6u3qFCQBwVLnguTG9RjU1Xc0pjmuCQb9Sn1LMMDwuXu0Dkz1rC9k5pRR1f6ZLzLojNSybn6P0Tb+J3lgFM7bmkCCy6e3Vc/7lJhvU0+gMfWB5+169VAg4HrfKem0OTp4moAn5DEEzcaOEI/ycs/EPahReIhX7yQZfoIAvmRDHcA5SHrRvveUkQYiS+9EggmGLb1Tk0CQiC59+oMgx6c7XPhGc6xJ2MjXDhyMfieBS+09FnlbRwbbQVhX705R+3M0usybkQPKlj7+ghSCOwJHUYoAsU0sI01NdaR6OsBk3T2ypzFMvjuwoZwJnHO/tdI4MPIpBJJ7+ixH/6c+p7ORxscxZVfkPK3an0ZKxkhEHnKBm4NERhTp8Cm/tOJf/SYZ5xRp1e66BH6kl0k0wtKDrJ/kjYchpW2zql+yMXTA9FvXLkoh/nGhqut+74Nk1Jkv8080p0M7IDynmxItBgMMobigjE5K0n0fkLqy46UQugYlry0ZbYEBjw4k70vt8bBYBwY4lSAh8COE3SA7b+YUi6PWDgwojYej2L5UXhcNINJNwpzq7/+7Mk6RgremOeSc5rWpKEd5pTAnDaby90Hp0wnikwNKfZIhTVGmFK3qvF719xwY4MFJrAcVqsaKl0sj4rLhZTsQUBqNUecrKTkQh8hdmjpU+e8BDKR6ddcECmVE1RYexONggHLooML7oNMf+s/PJ0hOJL1+tVX10cu+JGfb7XaSQ8pV0u0cmw4EeGV7UjSEb39VHTQ18vLyMu0+SHzvdLD34xwdAiR+BAhUHQgG0utXWRlvuBslUgov6r57NhqkybOiMuLLNwQCuNBJdXQA4ItGmC+FSb8pMAQEBAJ8La3zaURJgafoh+rjPHdDTyHv+oiUBIjgINXV0y3xqt+SEljRd58O8BCkaM5gktzzFk9kUOmpdLtbJPNUkqkdyajPeRp8No3f9IxCwZJ5KcJkoDzKpLw9bEoQK0cglZ3Gj8tpAm0dPzol2QGCY1OaJu3GI8e9vtOQKh+CRr7fwfPrDrxh3iNiH0uPSWZlQzhtIHnXlWF6GnwHwrzvUSQuWOwimG5APQry8PAw/X56etqJaPiLmdwujc4RSTrT06Tvfm+kx5fK8mIw8Pj4WA8PDztvi0qGvlOgI+WUUCzJw7cOCjgPlRYN0mvigRv8pDO1KVgqi9ER/1DBuUfjHkbqLP7HQSNyzyql7RSHX5d4PFQiDgiWCNihyPRXkYcDl6wH6Nq3pE2uDAheR2WRv1JiVbsGv6uDGz4qYKZhPt0z3halUWiWi8ao0JWne3806GmHC5WhR2RS3TyClQAuwW8ymskrJjkgOLYsc4wTsPgYTgZb7e1Ao/ohbYV1483nEr9d75D/0o08F4Mk0Kl8fDy43k/PS+eqDI7BNO4JkBwQ6D9OXz0+Pu5MOXO6gGPOd7UlfZL0uQO6LiLk9ee4dlrqyCwGA5vNZmfLSdeZLgAiGpWE6hPq03O8ukCI4YwGcIpAncaTpQgAPNKh+ninCBDo+9zzyROiMk9C6cqec2lC8LonBay8qIwdEHgUwwezD2QfGOyb9NF/o/5eik5/BXUgUuS8ckp1T5EtRpGqdg9YYVqVJ6BI/rBP2K+dYaIXlOpOBeWRpGRIvQz+r++aMxUgoFxS3t278ogA/1MdEx9Sm2jYOodiBHYdEHjb+f8xgQCVfdX+jhSm0zV9Os9UIC+t//Cpr6QTvJ5dGSJFJbidLxGdKz2/Xq/3xjF/ayxINj3aS6+ddSZA7QCrn6GgqwNJGX6PnI36IqXpZDn1O9P7FDr1zxwtBgOHAgEaNm7BU4W9gilE6ExLHpe+++JBnhLFThYQ0KtmacgpOGyPOpYCxwWHVMjkgfNCbfKQVZdGxPyenp5qu91Ob5F0gRwNSuU1Iq9fN+hTOS7oPxKq+lXkykOUPOj0rEen9Iz/HnkwVAY0kMkLHYEXes801pR1lllVO+Mv1cnbxvZ5XsqPcuA8dSNNhZfGhZ6bozStk5Su1zeRg2/mRx2wJK9fRYy6EOTTK+3aPgJ7AgGpH1I0i+PEI4+JEt9cP1D2XZarXuXx6upq0r0+TjnVRmBNIy/dn6YbHDQora4EK3xBFkGBbzt3Jy4B38QvfXwBrY8hf84jRQQDS4FA1Q+cQMgCHL10KJ0eTlXeNjei0TQBF/j5dIEWn0hQHIQ4o9lprJu/spmLKNMg4cpaL6tD10xLoXLF72iZ4WTVteOrD9AOWHVggILnHmZSKu+JurrNgQD/7rzyfmNaGmL9dm+Tfedl6F7K18cX69QZhLm2epu6eVq2N8kIvycd4e3vAGwqh99deSZg5W30Oibww7BuZ0zfipLzlZS8gwJdqXdGEVfK3pK2ds+THJyoDgLDSR79Ht8p4wbRgSyvBARcP+D2i7qcecpRTPznrjStdUig2mVWNsLbSXCV2pf0qzuSlP3OkZujg95N4APXUV0CAklhJCFIyqDzxhiG9bkZPzuaQnR5eTkt/hAaVNkeGajK8zH0vHxwOSDQfZEPsm4gpT2z3fMdOBvxNwkqDUEnSK5U9N0HvD9zbEr1Gw2U9F/iU9pXrXJGXpl7Xfze1cuVnI85B5nuNVb1Y8w9HV/dzXKdPG0CKryXDC2Nu+6nsc+xzjYxTeL5nAwmBar6LAErv5Lc4RClED552BkRB2N+leNDYNkB/dFYcnlNhtIdSE0fcHzwQKMUiSJ/aPwZBXY547Oa5iUv3UF0eWa0xknt8LFHhzQBDJbtfBmBAT6r6y8HA37anldY5IJLw90ZGKYTJUGjkeSH0QECBEYGJGh8oYnXh0KVDkBxIkhwo0CF7KvBk4elPJiPCy/rmxSX85R9w/Cn/nOA5mE0kg9C5pHQuXspx6QEUg4ZKOS/84lyLUVRtb9VyfMTkJJ8iLejejkQ8Lwl52yfeyQjIjj09Q4pdO4gwsvzSJt7MJ0HniIjPt5p/JNXNRclIE9HAOzY8utRyqQjqnqPkvdE6kvyjsT3nogHPv20lJKDqDZQprhDhXLljo7nR3uz3W53FoX7WgA3kDTcPj5Gds3BqfOJIKMz/KmsJR/xz5+fy3sJHRQZUGexce4ZjkL6VftbB1M5bqTcO6AC8ncOeLSAKMkFYeS9dXXzKQAp87Q/ms/xmkJxCQTot4duHVixLT6NkPL3ejpvnbwt4kMyDF6vdH1r6oCAe5g/QiNj0rWXSlAAguOmU9J8vvNWaYxd4XdtTAbF/xsZDxEBND1qKkrVI8mJGz2Vy+8OUpiH+KmpMh/fo/Z17T82ORhIoe6qflFf1253WPhMVe0sbuV/Ka3K76jzbAkIKLPUQwzDy7CT1N8qx3eI+cFdXq80hTci6T5OR6svHAhw552Dl6Qb56IBrAN5yPY4zY1Z0g9FBlKBqaPdiCktK+8eZzJMKUSrD8GAL+RQel8Qwh0ASalyX6rXSwCE6NkXD468QSmpTpk7kQc8X4D84/HQjoaZj5R1pwC67542GdPR9ALregyi3DiYVN1GIJXGm4OZXj3JAZKDv07mRB6CdJ5KpueAtRvSDvgSlHidEshl/Rn5Ex/dU9JWRFKKKnbtTcY//a807rQkcMz2sE7vjTSWU0Rg5GDRyIzGHUGjPy+5SBErGis3TimSQb3H+hH8EhSoD7lY2wEeeVH1ehZOt12cbfa2JJlLbZGdWa/X0/sJqnZ3P2jnmh/K55T4MeqrBJb9e8rjl0QGRkZEaTwaQCXnW4xIDKf7e7Gr8twm1wUQCFBAJFCjswVcsbknL1K+2+1259XNbIO/r4FtSIgu8cGjKx7tIP+55dGRMAeZ5+31pnLu0Kv3c9X+1I3ziWUdCwwwYuRAoGo8mNhPDJMTSHQAyOXJjaiPA8qVnmMEgXUaGQISZY71d4+Zfc2QLfs0ednMS2NSwJX5jTyYJG/OU8myQBDz4AIxtpl5Uh4TJcVMHo7AyK8kju+uDt7ezqvsgFcC/aK0wJUy5JGJZEQ96pXqSEPvZVJnCVxSzxMM+G6x0diQnM05ruSRogFXV1d1dXU1OQNK61EB8j3JVwIhzk9P1/HZ9RLvL6GDIgPKVJ6JK6RksL1Cbni8cZ3SdpTKaIBvJaQCl8fs5wJ0HjzLknBKiNnW5On5gUwUNLZzFBnwqIbzxweHKIXQOKUhr83zYDt8b29C8R1QcnDAezRCx6AkU2kukteq/emENNB8pTLT6bsrRkZuGPInGKaX0W1V4nfll+TKp0MciDI/yqjzi2PC+UvdwJM/VbdkqOm1ddEKKmQ3+h11Y6QDbSwzGam5534lSc8SAPlYGnmV3bjr2tQBiQQ+qSuUhoaVBpvggR+WRdmkLNOZo55nFFh63sPzqtcoMuaOli+G5bMXFxd1dXVV6/W61ut1nZ29viMhnWabHDCOr9QvLnMdEDikT5fQYjAg74pKQ/cSGPCweDrQh41g2F+H6ahT0vSEp+f5Ah6m9E5KCj8pOYICGVMRlbWfU+CKlemTQvUQdhdZYZ1Tx1Mpq0wpVK+XypUR6oQzgQKCCyr65MU6z45FDi6pGDjN4yDOwROfJREsjjxcpqUBdx6rz1KI3YEA5SkBuM4zV9sdFLuH5NNBKYK2Wu2u3/H3Z0hPPDw87Dyj8G8HZpJMJZqbphJ1YLYzmiND+xbE6SAaF159fHcG3SnJefI6E5ilbk/RAf32RYDSmaLOGXPAoecICPzlcx4d9SiD8qaR97ZR1pPDw3eK6H/X/z6mkl3xMhz4dvzsrh14S+3oaDEYWK/X9fj4uFPJNI+zZFB6RYkiidJorLhKmkCAIZurq6udBR1ElZwO8Po5ahVJYKQ0HTESbDB/kgt2AkLkGw8YYT39ORdIH6Qy1NxHyzYTeCTE7AbGvWEJbzKazt9jhVjnyneP2omALLXHvRpeR+QAxJ/Rbhd5O91ulC4S0JEDmpQf+9WvlDVdxR8/50P36AU5EPf2cgwpXYpAko9V+2sGUvRO6ZJT4e2jE+BlvTXRwFAnkp9LQUDnTaofEyjgfyKeOpnAJx1Ff9urA+Bk2JLOcx0t3cb1NR510HPkFdePiZ9MU7UbyXSbIPr27dtkD3Wybedwijrdz/+Zjjz1Z7pr4uUvAQMCADzY5kcUEg2Te/j8LaHyoyC5gEOf6+vrnQUdRGiO3Lr/eEAF60blQCXBMKeEXzzhlXxyJO1el66pA1V+iiSwzRJsz4fC7mBAfcpzvZmfG0160PyeDEcS6mOQD9DkjSbg0BkjUQJNc+MhjRv/7sY5GW+vY2pvilR0bfa+6/rMZdDHr8uXxrTAvR/W4uDEFbNk0OsukszqusQzdvDgnpY7DMcgGiQZMJdHH5dzRseNPfsrAQHPR31JYn/xQzCgiICv+0igIPHA7+m+y3TSNwIAruc9Kkr5oX5ww0pboDUKj4+PLRhY0i/iYwcmnOaAgK5LnbHFYOD6+rrOz893XuXohmQJKGDlxNx0giDzv7y8nJjPdw8IBOizXq+nzn16eqqq78z1txOmLSApMsD2KDrh26fS/lg9OxcVcJLSdCXtHUzUzVczU2EoIsDBzgHAEJv4IXTLAcOFML4yNwEDNyxqE9O/NdGTqspG3Xld9VpfAiT3VJJRPwQUpLqqHlSaXq/kiXkaN7AObGmofUw6X5wok76jJ0UguqiYg9UEkGg4usiAxqZv+2Ua90a7vnkPIIDluxPjfEvOR0duOBiNlbPl6dLzBAQs16O8lC3pZt+WPAIDDnKkt/Wb/V2126dJDrspXZVB4E3QwHaoDvwu3elbCZ1cf7q98E9HlIEOFPyyyIDAADuYhkLMTaCA3nOKCviOAAkljYvSauGGPowKaEEHO9ENP1ebJjBAkoLVfQm/Axq1XwPEPU56cu4pu7LlgUgsV50q/nPxJI26wJquVJLKzxdbbrffw9GXl5d7i3BU3uPjY4wQUBCTZ0E61DD+LKLSSNMinTfii7fonScDl9q3xBtI992IK03ie7co0sPlCWRKpn0qZI6oyJLiZ9s1HkdTMqpb2oa1xGirPKZPZXWym/L0Pj8GUY8QCKS+8vHnILJLy/5Li1W7Z6tqz7AnI5R0hJeT+oL870C3yxzz8HGegACnn5WGTi7b5U5fijYkO8L6pnYdMu46fqb/mWYJHTRNkOaUVBAXApFZVGbekKra8Sp8y4iuXJQkEKAIgUCADBwHAZEktxMKCOiUKt8OqPrRo6QCpeKk16vy5EX6ewIc8amNrsRdAEXkv4Moenmcg9VxnlLEZ2dnO7sv1D7xxXdd6PmLi4ud7Tqdl8c6ko6pUD3i0nkhIlc8I6/b2zUafN3gXzJYWWfKR9pyqnHYkWQ0PZ9ksQP3Sj+atpKiTGONYMHzPZR8HLKtvD8CsiLn9aHK+meS15s89boSuHq93Vjru4f0fV1UVdZLzIvlsjyf7tFVZVBXer5su/MjRY7SmHYQP4oIOD+ZXnml6C/XIDC/1B53JtJ1pD+S7XV96/kdQgdtLRwVJqPCzk0C7I3mYiMCAf6vNQIy+jT+fhBPCnGn8wU0ZdABARcqb2vaOumrtnn0cUK/fnVE6Vu2EhhTOg5s8ZPt4xSBeCkwwIiCVq9zYSR56Qc2eX+64fQFO8egpBwJ5pKhTyv93UuhYuraT2BMZdBRF64npfzdiHd8SG2nIWc92MYR7zql5OOe3n8CAp0yTTzysvSMt595uhFwo+iG0vM4Fnk/pHVNlAHnZQdo2HeuSx2gdeH3xBvWMwFfyhzTdMYzATnnh5fjxps8TIY3ySLBTDceO8fAx6UDy5EddVDnPHEQl8bdqH86WgwGhJIoPKqcOpaMVkVUORlhNi7NLbmxY0RACwQptOxETVk8PT3VZrOph4eHenh42PN4iQ7JaH6nx07Gs23+nLxxpqnaXS+QFPIS8rJ8YNC74+ldelGH6qB9stp5ocG02Wx2gEcaeC8vL3u8pKFXf7HNAhKr1euxocekzng5sS85/dV9HCAmsKjrKIzNOqoenWFyJaf/CcA435y8KI47lSfieB8BvzleOnhV3nN88LaqfqMoBvMb/e7K6vh+LEqyRiNHI5PAwKGGQXn4NmU+73m6zq/a3zbrfebAa6QXXX8moNPVdQmgVnoHA16ek9eDebMv2N6unv6seNYBDAcFypu6KtVtRIvBgLZRsECBgtVqtbM62DtZRokvj2AjeHgEG+2vJPY9q7rS0Gy323p4eKjNZrMHCLja0z2IzttxBDYy3hRaGWPd68LKPo3i9RHRUPv/yRhtt6/b0ri18PLysq6vr+v29rbW63VV1V70glMKbLv6Ubxkf6pOHASMzBwrKiBy48X6cAphbuD7vTSYU+ie6QmU2I9uVEcesMjzYN6Sc9/X7VMKynu12l1kmc644DN+yJencVl1I8LIQYpoUJGqfgRb5BvzcD53/URdxe8u96zLMSgBAQcEyTHRGHYnjfm6YzQyrglMpX5L/cCpTKXpxpzLFA1dqkfXv93V5bWbSurKSleW67LVUZeGfUqeJR3mMsBxcqjMLgYDm81mb3CoUEUFvHJKp+kDjx4QDHQCreeYl8/diDEEHo+PjxMQ4PQADZgPEg0yV4KsSwqpqm7+20GBRyMIbJKxlKLn1EvV64lZBEqMmMgQS0mq3hcXF3Vzc1MfPnyou7u7urq6qtVqVY+PjzvHyPpxuA4GuIaDxx+zT15eXqb/VUeBj7em5LlyIHoYO4FFPidyeU0KJ3nayRB5np237WX66m8qD897KY3C/yTuSvHoAo225J6AnQuvfqSONFrJU3UDOlLO7oUlwDin2H8VEaQl789BgupKQ+Jyz+8EZEmn0eiNpqBofHRNC0ap85iny5uH16UjE3jxcjtjPOr/BAC8XSk906VxQjk9xNFwQMC+TSAgAWbms4QOAgOc1/eGeKi/anc1s4yomOIon6EONoT36eFQaChUMli+cyC9jyB1KA2o31f73QPn1IAPPA/TkhhhSQNNipRgQgaA5yxoTQUBEfumqqY0t7e39eeff9Yff/xRt7e3dXb2/VQ4bcsUGHDe0FAqCsQ6cvBR+KlsRovafiV1noCIdfV7yQNIxtv7nUrcQ6ReDy9/CRDwqBWVrNIJqFG+PEw78ky4FqUD6/oQcKbIC2WSO3ySwUjKfNSHPgZJruTnlPXIeB2L5gzKnDFxB07f6ay4bq3a3fO+tP2qS/K2NR5E1Btu7ByIuW1IU0Nz7XdgruccXDgl0D4qKzkezoukQ/w/2jcHep1u6K5LaDEYeHh42PHwnejd+2p7NYZGhI3wyEBiFo2R7klo6BFzx0DaQTA6JUoCJ9Aiw8dtfNxH7SCESLwTiPSbne9pPIwqxaudFH6+Ave5Oq/W6/UUGfjrr7/q7u6uzs/P6+HhYZruuby8nKZTpCS6OrgSJR+9PcrjmJS8In0fKYMOCJBcfsl7j5qJXOl2Hg3T01tgP2hMyrgyD+5qUdqkbFlGCkd6XRi543ePFHCaiOAwgTDWSbwcGXC1Wff5rHtN6VmRe94Mxx9ziqszJJ0ckpIxdFlmexMg5vVH66zv7iw4EVS6c8h6jYynf7qoYJo+SfZgjjoAkPLr+m8EQPg9yXUCUp0+nqODwcDl5eWOchMx5O+es5jfNdg9G11dqNyLEBDQd3kbHhFIQKADA7oKvKgMrsBnNMLD5J5fUkhOCQz41i/yiWF3LQTU2gCGYkkCNHrm9va27u7upgWFapPAge/AUB+yLp0R9UH4HrwrL3+kXNPg6wZs5205CGB+Pt3G+iWjq2cTAPZIlSI1ng+BnHvzqV5LiHXys0IImNM0H8ez88HLIC9ozN14pf6i5+llJeXtOoeOyDEpAYBO4fv3LvLoYMBX9vv0Wce3Ll+Ctc5gVuXdUKxHF8lL45b5EFR0MsP8nH9pjHpZS4FAB2BGPO34lUABnYHuuTk6CAzIW9T5/2S8z/34wOwq551F75qM88Mdql4VnxbKyZPV4kGtG/AdBAmVpfq5F66QvATUV8wqOsDIgh/KkYSX/Er7v2XE6XlR+eqoaIIuCokrfipvtUn1PTs7q/v7+2mRIJX6JDRNhIdXH4xVxz10yL8fCgRGYK4rs5OpETD2tK7gXC7cy+8iMIxYpemFzoPqjK1Pf/h7CcQvepzkfScLneHqyNMTeDKCOeeJ8T+NZZeF90AjI5iMl/hD8E6gk0Dxj0QHkpHjb7cJrJ/uUV9Qh3oZSaao2xJQ9ra5vXIa9XkyxtRxCbg5T+b6cEn55Bv1Lu3nIXTQbgJ2Ag2MFFRnWEcNU14M9ZGh3vm+Qp+K7+Xl+9Y3AYHNZjNNE1BwOo+P97lIjqccKg23nSVPbLV6PTBI/6XFdiyT4IOK3ndU+MChIneFX7X/ik4CmarvJxLe3NzsgKzNZrPTvxcXF9M2RR/kbI8bF9Kxpgk645LkNQ1weieUmaQo50CAA4FO2ab5en8JkGRD/3ey2NVF31N6GhDP0+VLv30ajZ6ly0xyIqjYO3J5SwBYebhh4hw180sA6Oxs950o752SA8ZokPPZ5Y0gKIG5Dvz7853BI99H+tcNeNXuC4joFKpulGWfqvKolL6P2tK1z+ueog7OC8qyg+HU9g6ceJ064OC6K7W3o4PAgLxyV0aKFNDgqGEJBXkD3MAnw83/0mK07fb7egGFuH0XgXs4qbOTB8bQulbDs66eDwdg1etRwi4A3mkql+9e4IJFeoIeFk556QwBPqd+IpBSu9frdX348GFnfYSAEM8WcKEnT1MkgP1/LDDg5fpA8sFUlQ+aqsrzoaQk58m40UBxfYeXTSDgUR5frEe++9Y7yuXIuFE+R947iQCWJ2ay/719Do6WeDOstz/HuogUqUvAgHkmXeD5jgDKW1Dqs6RLHFSx3zuvnff8u5eV6uKy3AGCNOZcP3Aa0tcy+DtkaNyTU5KA3FJw4+SG1w23tzfVzSnxNNk9/VZeCRCnengZc7QYDKTz6jX4aeSkiKh0kvAlRvqhD+5tEgzQuHKtgC8cTCvjyWyRh9A9zJSQljOdc6Hezg58qGwabYZc3ftXng4OHPUKEHCtw3q9ruvr67q5udnLmxGAq6urnbMZ/IwIby8FVkpHgM3B3TFI/dEZfqdDvZ65/ORpeogyAQEZYTfarnBXq9W0bVPPse+9/G6e1O97yFF5u8GlfFEO9bzPE3MsS9YIWhwIJCCSPCeVxXY5dWNQ/6VnNT51PdYUV1U2ol06fRgJ8Hw6Q5HkIaWnfCYQ4ICgK4vgVR9tiRbR+XPw7P2VSPd9MXS3iyU967xN9qCrm+fRledgI4E1T+/lKp33xRzQER0EBnTVwJcyopHWPvSq8bacFGJJ6ahgyGgaGnU0PVg3RPx0KMsjAgwx8ZQ9ghBdPXwlSuEg94I0uMQXlqNnVA8abX5eXl6mNzXqGRn229vburq6qpubm+mjQ4d8+uH6+nqHn+mNXGyz0jooInicU2K/mmiY3Ouu2h1oHVofKbnRs6IEBBw4irgIUN4Sp6W22+3O2POIDOvgUQOXW31S2N/BML15rlfhOgECCfHGo20EoQIE6QAmkSvCpFeo9EXkWdcvTsloHZMcCHQGafRcxz8H8m5AqKPcOFGHjQCyntWV9XFdIp2X5vn9MwIaupe2s/4oEGAfeLpUP8+TvBwBU+cNn0mU+sHt01IZXgwGVHDVK3N56qAMwOPjY/SmvdFVeVW1hzNphMl4N77cLcAOJ3XC49538qyklLm635VxAjXsJCpI/dcJl8pLnht3N+g9DS8vL9OCP1fWV1dXdXd3V7e3t3V7e7vzyme+54GDUEZeERfuCXcARr6rLziA0uB4S3JPxmXOB6ooKcKk9AgsO6Xi/ehonmUnpVn1GvauqmlOW23zKTrlR8OZxkPn8TJPGnGPIhE0s+4qn+DanxcfJetubETUF/7bPSJvX+cEkO8ddfV5a3IAkKKFoqRT3PlJXi1/e36doR8ZY5Y9R9QpqT5d1KHLSzJF2fcpBjf2PtbYrhH4Yt2XREGTDKZxn9qUHBrqF++nQ4BA1QFgwAeblBELZtgyhfRG952Yjl5EQmL+Eh1XskvIvZ9u4ZDP37vxTAf+KH+1gfN3TmnwMWrh2wqvrq4mRfr09DRtE/RpBF8HoA/fAOnz/f5iIgeDPOVRoEDt4wmIhyLUn01uENL/S5WWaAnSX5KPnhf5dFBKU7VvLNm+znB5fqvV69kfLvs03GwfjRCVWOdp+VSU5+lbogicvZ1LaaQMvd+WKO5jym4CAt5HCdyk/vAP03WG3om8TeWOPN50n/lSv6d2jOSM/9GRom52MCE+0Ah3YCCRg4tDgICX0zkR6Z6H/jvANld/p4MiA6x4QuE0diIOfPeM/XmRKxJ2uK/i93B1Cicx37nO6hS7z5FW1RQdUb6jcwyo+NgOtp8ok8qaCxnl1cuQMzKgslU/ruxmfRhduL6+ntrFtKoD53f1rOr/8PCwF3bn9srUR8egpcrc+3/kUXXPucfWKceq/ZfBsAzfNcIwvo+prl6dMVS5Cah7WcqHnpaIfcupDUYK2F7yyNtetb/QM0VTEpDWPekfH+euOOeM0yHA7ldTAgIJWFX1utnzSTI+AgRLgcKIb6Oxozy9vA7UjYAKp9d0L00Zex26sqkDvCwHMO7AjYCRA6k5/ZRAmPfdHOCao8VgYDRQiOYc2SXlwu98zhuaiJ2agIHP23j9D2kvvZrz8/PJeGpfP7fhvLy8TIvsJHzseCpgn+dR+2mA2bG+o4HevD6s9+Pj41QWjbfC/VW10x4/P0EoWs8rvUBE1e7LjXxahsZAfaEdHsekNKCqxouDCEz1bFIY6dkU1hZ1Uydu6D1MzzR8Pnkbuvp4JBG8pzb4OJLR9wNpOM69Hp2ipHypHp132NUn1VvjK3l7yi8p+U73LAGSv5oSKPAzJqqycUmyLnIAtdTwpv+cbyOd67rejaO+j4B8B9Jd9gkG+GznpbN+XZoEBLxe/p2/PT/eG4F751HHp6SH5uigyMAI8XuFdd87wO/RqHfMIPPT7wQQ5gaF18kVor57mF3hdYbCq2pnOyNf7ZsEQQMwRRDohXFrIQ2/ewYe1r28vNwBJJzjZ19y3YHCxekEQxkfbiNVOk6PiF/e1/rvPbzCOKH8qmygqKA6han80nOUpRRu1/P+jNLT8+PUlZfDto0MqddL/dXNPad5SPUntxBqHLhxErD0nSUiAgHJjfhMYLDE6PAgLAGS1G/pe5ev8+8YlAyL+MPfI0OhZ/03ZasqL0bTM12+XseuDXNtZD6jtqS+dzDhjmmKSqrdzNPLdRlZAlRSH7GN1BcjQNDRqC5Oc3x3WgwGHF24ovPClyLuJHCu0JKnzzzSd/+dPAHVncqWi6b8vh9oobrxvgtDp5jJM18BLSXNeXoKkIw2PXIaDr1siP8puuDbDdmWhHLpjfp2R64r2G63dXFxsbfNS789OnRscs9EVzfanPrqQKmedQXbAYG5+pCUV8pX5Fty01hhn/kZBCncTKCdFE2KxHHHkdLwSHBFzjh/W1WTrBMQ6D/fEcBxk6YROUZo3Lp5Vn3nff7fKf23pjkAS/02aheflSyQpy7fpJHBcX1PwDVqQ2qHylIdO6/XAZGeY/8zMsDnOa7n6jfX/14Hv5fGbAfkEiBIctiBgaRnlsruwWAgoR0axvQc0WdHrojYoRSsUZlLESi/y/Dy40er0nuSgaO3TWETeHAlSuVKXmqOnwpQxl4eOKcffJX/09PTFDFQnZlW5V1dXU2vLr65uZk8/KraSduF+31FedXr9IUAB3nBNRzHVqbJCHTgUOk9XK9nFbVRf6VBPle+ruxvV3Cc++RvyplHxkagmfv6CdDcU/T6EgilNomfypPGWzLAd4UQPHr9lC/l0MEywYz6h2tx9Dx5w/xJI13z3sCA16HzSkfPiT/uEfN5fXxBp/7ndz7DPDyNp0//JRtBY54AgQNkB4JJp6lcl2u3a53xdZ51oMKBQNIBiUZAoPvf+ergZM4uihaDAS5G67wcek9M13mFc2CiQ6iuDLgX273xVJ4r3gQCuPqeHote2iOD/fDwMB1/nE46dKWtqwMCppXy8+2SblgTX9y72m6/vyhG2wvv7u6mHQgqI3mBzmPxif2uqQZ9V12l/N2Dfg8KtfMi54y4fnPwuyeV5m+Tp0a+0NDxeckz3xuhNJJ5936YjnkqvRsBAg+mH/WX84Tlp0Vb3JFCUOv9wbNJkkfrBsl1x8gj6gyUp50DBMegOS+Rspj+58fTLHWeRvxLRtx5loBDBwY6cE3d5MaWYF1pu6gA83U+jMCUAxHm4TLrBnkJEEj3Kfvdcwlk/XIwIKU/Gkz0lFzh6LuI4W+RFC3DhkSoLMvvibz8Dj0zPMoPQQD338uz4vZFrRMQIODZ/ayHh+E6osBznp0CzcWEfGMhdxx422W0dfgQt3Oprv5JqDvxWnmrfJ0xILCUBvixifLjXoArDh/IHdB0IuDzZ9zwqByNH9bNx4nXeS4iwHr4Gpaq1x0NLy8vOwtRvb00OgIXIgI/P4uCkSzu9iFRLwhI8KN7PrfNBbcj6gC0+O+RleSNHRvIklxW3bAnYFPVT+Om/HlV+mQQR1NMTDsCAsrH9QwdPNbHQQAdriUArjOciYdzoNjBaco38TXln4Af0y9tg5e7dHp2MRigonAPx8kFpWrX0xSaUh5LAYHIwzJeNr3tuXoprM+DUdIUgcrVC5vk6QgMcPGgh3KpQDmofECTv47ixUMZ9dvb27q5uZl2N/CdBh4SPTt7fYmMyud6Aq6TEG8UBfApEkYu9L+u7hl2fHxPROMquUpyPULuIoYeacir+lPzOoXLaQFdkzdHA8Z8PE0i1VV95ePK60dZZmie02KMUnAhLY+CdYPhxiRtFWY7OHbTy4Q8//Rb+Tmo6pT0McFAJ3vJoRoZsSQ//n8Cqd2z7jxU7R+97ekOdQzcgWR53u++Xonld05PAiqui/1ZJwcEKd8E0ObAQHeP5RIY+TRfAl8jOmiaQJWjEPJ3qkxCfGSQKCEfBwSkNLhTyN07l+V7iNENI98Ix/AmgcDT01NtNpvJ8/G2cJBwbcBc29N3bgcUEFB0gBEN9hWRtUL4UuCcVvApE19ISYPkdWVoWW3UjgbVQQDqmNQNjtQXI29blIBDAgDuSScwTTnxOXACFTfOXT7evmSAHXRyvHbE/pa8MF/JiHv1aSpB5Ato+Yz3g+RQfCJIcsCVjCE/rpjdu/Rn3gslZ8Lv87vGb7rfOSYjUFHVh+qr9h28OSDgnn9HXh71PHmQgLEbaNolfkbt7trg5TkIEE8oc10UinXWd+8r/592qwNsS2gxGOChIvQoUqEOAObCSCOB4xxtN8j9HstNEQLPP7WB9eJ8vTyW0Ut8Ul5pTYOH8VgXRSiS1841Db6+QQsDqUifnp4mxe3AgQsJGRXwMlkvta8bLDyFkocm/Q6UUHo32JMck0ZgwpUyw/ACwC67o+mGqn0DrzS+20BlUClyUWFSIJQBPps8Rio6GnU3Vl0ExoFA6gtXkgnIJH4lzyzVjWUdk0agxL1OT0NeEbDTSUqGNJU1MlakBLjdFnjdq/rF512+SeZGRtmfJZhwuUl6zcdFkhcnBxeU5w4MUJ7ZDh9nDow8guttXkIHaWhHf/TciUDJOH+GlJD/ITQarA4I/Dn3uJif7nOLlK5cIe1H9abpCwpPB2hcSNW5PHaY74p3ZSpDr+ekUDebTW02m3p4eJjK98gCB6ej5Y6vZ2dnO6vGvT6KLGgLIw82OgaxPaldHZrX94TI/XcHIvyZLh1lozOyno8bshTmp1Emqa8ZiUjURQqUJ/+b88xFo7HZUQcICKQcuHZlJ2Xv+b4HICDqDHRyXFK6qv7sehqQEaBIRB3qctDpXD03N3ZUZ7aN+RBEu2FOwCMZUgeQqf10lDog0PGI4zKBgBRp9fp1+kN18o+eT+nnaLF2pueiitBjpyEboS11sHsMSeE6cmU+6T+nOUDgypMAQANFXjXrnMKeMshetlPX+e71642DNKbyFvVOAK51UDtVz81mUx8/fqxPnz7V/f399DbJm5ub+vDhQ/3xxx9Vtbs9sKuvK3ePuIgX/J/nLnz79q2ur6/fXXTAB91IufKZQ/L3ZxLKT2kTqHZvzseO7pES2PZx7N8pj56GIHA07ZB4pTwJZJLx5mJdgQ5vq+sMBwQp9LwUhLwnUOCgn3wmoBN1nj4NGadZOO/egQHnIeuh/xxsKq1HS3nV95FO74Coy18XGejALB3VUbR2ZJTdoHtagiyPdM3VlzaU+ahsb0eaqknfR7TaHlvaT3SiE53oRCc60VHp/S3vPtGJTnSiE53oRG9KJzBwohOd6EQnOtE/nE5g4EQnOtGJTnSifzidwMCJTnSiE53oRP9wOoGBE53oRCc60Yn+4XQCAyc60YlOdKIT/cPpBAZOdKITnehEJ/qH0wkMnOhEJzrRiU70D6cTGDjRiU50ohOd6B9O/x8oRMo9iNIwwwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+rElEQVR4nO2963IcuZKsi6J416V7bMzm/V9wbO+9VkviRRLPjzYvfXR6BJBFSuQ6XWFWVlWZSCAAxMUjgMzcPTw8PIwjHelIRzrSkY70j6WT12bgSEc60pGOdKQjvS4dwcCRjnSkIx3pSP9wOoKBIx3pSEc60pH+4XQEA0c60pGOdKQj/cPpCAaOdKQjHelIR/qH0xEMHOlIRzrSkY70D6cjGDjSkY50pCMd6R9ORzBwpCMd6UhHOtI/nE5XC+52u1/Jxyba7XZjt9uNk5OT/fe7d+/2335O5dUHHjs5OdlfpzpOT0/3x1VW9P379/Hw8DAeHh7Gjx8/Hv0eYww9w4nPctI5Hffy6cPyat/7zf6QvG7y6byx7uqa6lon5zvR//k//6e8/lfRu3fvnoyrE+fYx0S/KzminPjvNL78rvjo9M3r8Lqcv9PT00d6stvt9t8an6pN1e3nXAZZXvLDz/fv3x/pTjUflT5IHmfjVcmgX+tjV+mjju12u/H58+cn7f9qmtnd1O+tdXgZtze0O6enp+Ps7GycnZ2N8/PzcXFxMS4vL8fFxcU4Ozsbp6ePXcq3b9/Gt2/fHsmAywbtl8+nziUbquP68JzP4WycknzzM8Z45CPcX3Bc3r17N87OzsbJycl4eHgY3759G/f39+Pm5mb/+fLly/737e3t+Pbt235skg/oeJ/15+TkZHz79m16zTIYeCuUgIAb33SMhivVwWNjjCeCIHr37t34/v37vgyFVHXTgavcGH8LLoWc/yuhTYpZjQvbY90857z5+cR/d20ilXPQoXH73XQIEPDzPvZuKDtQwHorp+TtV+M8MwgVTzJcbtxSW25sx/gpw6qXRnwmE9SRJGs8nkCA2k/zWMmyy2CSR5Y5dLx/NdH+VMCsOsZzqY9+LNkayvG7d+/G6enpOD8/H+fn5+Ps7GxcXl6O6+vr/X+BgYeHh/H9+/f99XJGu91ufPv2bV8359eBttteEZ2/AwuOUzd3Ltc+XinoEoBmsEi9EkAgKNDY39/fPwIQLu+Jt5msd7ZDn5ntI/3HgYFEyTB3jlMkZZDjlPGRwL57925v9HhexN8U7GSgHh4enqBcOu0Zcl1BtBUg6IRoJmBbaAUovAa5I/hdVAGvyimtUqqDv6uPZ7uquXcgwN8EAFsAQdeXaoxUv+udl019cFoBUatR4++mBCC38NQ5xwpguOzIkZ2enj4BBXSErDdliL59+7YHCuyLyxJBAW0jy3nAQxs8c6RdNszHgH1KfkBlBXLIt5z/+fn5vqzGQRkFgYbKZ818Q+LvENoEBrY4lVTmJYgD5r+r8x0w8Ane7f6OYJUBSMhxC9pyvgUKEiB4qbGiQK4Y1K31vtb1v6rtClDpv8tQkrstbbtyV+dT+QQeqiySO39PfVLmXDYqWXGj7WnexDflsAKoXV89BZz67BmAFZCVylb9fu0MwSG0YlM6+6n/HvnKiem4fos0Z1oe4FKBgIDPpWSDgML5cYcvWz2zpx4krYxRklH3DzNZUR+1ZKClhPPz83F/fz8uLi7G3d3dk2xBxVsFTDraAhyflRk4xBBuIR+IlU/XbgcIONFcKvBUpQvADBik9XzxsQUQdOPYKVGKsiqeZ22vGsQVQ/yaNJMN/12Bgc6AVnWuGucZX10ZN+AyRGm/gDtAB40pwvLUrmcNUtSk76RDBBcEJ64PlN1kKGfR4AptlfXfQalvq/rV9WcGfB1EMjPgoIB8ce2ba+C+b8SXgFK7+k68yynzP22e9zONV5LHjsSn/IT30f9LjgUI3r17twcDd3d34+zsbNzd3T1ZUtxia7tjW3Rg0wbCQ5TrpdPOzwEFVTQh8gke4/HaVXLsHaUUKqMk1dGN0QwBsi+dYLjQs85D657x7L/fKjhwOhTIbAGgW9uuIh1vh0aUm514bAaKCRYrx+28ci8N69Jvfqf6XEY8izAzkC/hvCs+3xIwEG01+DMg2YEAAgEBS88OjPFzzrlZUBvjCARme4cqQCwZYBZBc/P9+/dxenr6RHYr+Ur1r2ZPPYsk2Wf/fYNkt+9C4+gBRmf7K8CT/q/aoGUw0Bmil1CWLWjI+XCeWA8jDAcGPE6DQ4PkwKAbWG+ju46GtwIENE4zR9/xVQECHweWZfvPoUNR6ktSZdxnQHE12kwR66ye5HhWgF03JxUo5m/2k9GLNnhxY1Yi3yfDSKkaF8p3Wo5gPV6OY0tD79mtQxx4B1JSm69ByXb5+e7aMeZBUJITAgNmAeTA3ImNMR4BAS0N8EMgQJ7k2FMK322b22ouGVRAIO1FIA+M4H2MVsBByhLwmxsPxY+WC87Pz/fZFoEG9wcdINjyf0ablwmSICUDuEIrzHtk2SHXZAwrRJgQsVOVDtWxRB1o0nEiW655zbIArMN5psNP/UiAgG1Vhs8d3CpKfYvR1IwqB7zyIbKvZDCNUSeXzlMlp86n7w3g8gDbdkdN/tI6bJdSTfLh2YF0bYrcZrIzAwKsz39X5Ttg8NrUjUkHFKprkuwlOXMgIDCg2wgvLi4eZQXk7AkAfJkgBTjUHc9gkS/fOOjnCGRpBz3qdhKIoU7M/EaqQ205aL2/v3/iszR+AgRaeuEyNXVnq03t5L+iX7JnYJXxLs3B4ysfL5vaclToRjrxTRBAlLqa6qo2mlAAXRDdMXfKyzSdG3v2jccdEFSUgEDnMJOiv1WaKfkW/jsH3jmeRB1gmAHNih+vm7LLjEDnrGmkySMNrx9nu7MIayU6T9kBv77T/VS+yzq8ZYAwxpocVOOSZNaBpICAotjLy8txeXn55DbCtFmQzxTwvQKpPe5FIA9j/LRrIslgtXnVj3FpjOcIHjytT3s8I+qog98fP348evaCHP/Z2dl4eHgYd3d34+7ubpyfnz8aM9b9u+hZDx1KUeQh1AEB/iZy9Ohnho676LX67X1adXKMdrTJJSljirg6BZ4RjZ4L8kq2IdVV/U/X02nNorXXpq4/FbjcCkxTm8/hsQJi5K3bfOWpd9/dnep1g5vkqloiSG16P7pMg2cu0vkZzcCufxyMr7bzFimBoBVQ7/ZVGQHfJyD7lrIB1R4ByivT5wkMdNH8GE83XqdlBu8LbZSDAfLqwEDXiNJyK+Vb5799+zbu7u72/RQ40DjqgURfvnzZj9vDw8N+WWVGVdYgBREz2rRnoBKg5ypLFXnqfzLGPsG+G5P8+W+vj8fcYFWApzP6WgLoqIryHZmmMm74x8j3zXpaLfHtAi5B7jYcdn1Z7fNr0yovLoO8fgYIvJ0OcFWOf1Yn/6/oQHJ6POflU50VeJ3RDNh01LWxOt4dr1UAsNL+76AKmK+MY6X7fsxtK5cIlB3Qb2aD0h4BOtYENCVXXIIgGBjj6V0mab9Jqr8bO5dt2ToBGzns1C7lR/Y2gWMHwt++fXsypmqfGRcBB38SYaWn5KmS7dUAdowXeOhQmugqst3CmK73T7U2u7WddE3630W4CVToPzMCXaTv2YGO784AJP67FBfr0rWOtGfXVv+djy2G6zVoBhi9bDKgM1BAmjmerv6KHCR6e5pTBwJMj6b60j6ZFO13spaAbaejVZSe2tV/Uqp3ZjRTPW+Bku14KfDdAQE5Lt8z4A8WShsFK5lim6qf7XhWoBsT2udK9ghYKMsVuEhLYKrHr+W3B078/e7du/1S3MnJybi7u4t7MC4vLx8tF3AJuaNkX7f6WdFvfQLhFgftRtezALM00izSSvxUAKAyNqwrZQxoKGmgVxx+176IqDYJ7ipVBjIJfuLVoxa/9i1RB2QOMZ4rjvoQ/txAk6rNqx0xJZrSoe6sfZ+MAwN30E4vkS2sfld6Ws1B0slZuw44Xpu6LNIqpetTsJWAgD8YRzJT3TXgskE5Yl1sy/cKiFcfBwexOuZjQgfODdtus9MYOfBd3Wfl2Qq2d39/P05PT/eAabfb7R/pfHV1tX/2QHpPgc/dIZmyGf0SMPBcw5hAwUsY4AQEfGBnUYeOuQNMvHC5gI57C78VqKn42QIEOgFPQGDVCM3Aw2vRVhC2Ulc3N0lOVutOMp7kJ0WOLnckRmz87TLv8uTrrV5317cuM1bRzOC9pKPuwH9K074WPYeHLjAiEHBAUEXqclZa807LA4mHGQhIdplZIn9oUZWBGOOnQ1eavpJDApWHh4dHGYLd7udts9XSqesQ+dM1erw9sycCRldXV+Pjx4+PNmI60FG9rhednqyAX9KLgoGXMPaz6CuBgC5CWI1oE1URiNedHKYEkcsFs81YFU8JHDkfSdBTtmKMx5GlC7j+rwKBCkSksXptg/orMhWziG0lJb0CUmbZAG9btyiRt2oDYSeHqW8zsLxyjnLSAXI3sOlcJ/Pkfcbr7wIfW2gGMJ9bL+WLQMCjdAeH3CfAKJbO2m25frPOqi909oyyfbOfvpN+OGhN7fI6fzKnrqWN5O9KZqhP2hQogM4xG2Ps92KoLn+zo2hl+fa59OovKkoop0Ox6Xo3WCuR7BYgsJId6CI2/q4yBF1k3rU9Q8XkJbWjsqmeFcGrxmb1+t9BnRKtgB03Zn6uq7c6t8JzMlh+bbXWL1lLbSfnP6OZHnSge9Zfd9arRu+Q+doik28hKzCzM05b+ugBlu8XIBhQ1MpIV99+K6FHskk+0r4Wd9oeIdP5r2QHqiDIdUv9TcGTZxTSUzYJOhJQJphx8KTHE0tvudxyf3//qP8rPuY59KxbC50ORa3JwHYoVW2pfEKiq5Fs1Q+PQNJguzJVx0RVhqCiFJWtjm9yEqlunvcNWyJX7kSdErwFmoHCSgZdHqu59b5ulcGqzUQ+txU49HVPlndQkAx44nUW7W8FQAkwrGYUvI5KH7t6/dhbAACJqj7PyiXqQACBAOv05SU5Ni0ReNTOdkRyrCqn/3LwLENH607fP7NgLdk677vK+VKF7LX2G/hjt70tjQ9liO9MoKPXssq7d+/G5eXl/jyzLklHOY8vGYw9+9ZCMrZCrpwuMJVR9Il1I0Lj65GGt5simNnApfoS36kPYzxNzfO4UkDVbv6tQMCpEv4ttCJgXiYZ2tegan6f66hXZXWFvxUQkCiNdQIGXdvd/5U5XO33rK0VXqsMROJh5jBnYP8tAIJDdb6T7QQEfEe/fmvM+XAqPlvA17lX7AP/Cwhw57/In1iYXnTU7Rkg+eZHHeO3l+eYcXnENyLO5sh9HjMpAgN6xLPGV2CB48uAzccx/e6OJXqxZQJPsZBWjXGFVpORrOqbgZZkNBkNVAKb2vSILBkgTiJ3/vO5AFsAgS8xrIAYtpPWAaVYQuVb6mcZN67O/1swrivUgc+Zs07glPV27VUg0oFv1aaD4Mqx8ztlDbprV/tSndtynOd8s6vzuQrGOllNduDQKOulaVV/ZmDW/7tdcJs7xtNNp/50wZRRnDlIOvTd7ucbB92xMSqugMAsk+Nr/uKPdpZ9TPKj8dBywm63228KZFajewCX+qDMwP39/b68nt/AzIEAwd3d3ZPllzTWzwW0b+LWQhfSJJhpjan77+3RMKfMwYzv1cjS+XGn4NmLrh4/nqL6maNITmXFYHfjMxO+CkBtXad+aZrN4yzCrMolo8Hyfm1qv6pvjHoME+hajcxmst/p1wx0zwA5aVbO9SbV3wEBzvlsrN5yhmCFVsa8AwHp9j6OCdfuCQocRHWAlEHHij2g89f/pAOqm8Q+rIxNWr71YCpttnagmvpA3n/8+LF39gIEJyd/P+nx/fv3+/O3t7fj7u5ufP369dFSDOV8JRj87ZmBGa0offdRmS5Sn7WzglqTIK+iXS/rvFabB8d4vGafyMGRt9kpli8T+PU6Xo1nBwoSsKqM72vSqtNJxzpHzbLJ+c/arpw/o7JEVRTrALi6dst/P5accSo/6/fKuVWdrcCAfjv/VWYgHXtLcryVKnvKICvd4ken6Gv3vIXQI1Z9r4JBJx/n7rXYzw0uNAa0zXTqs+XUWTDnJCCg6F/vJeDegYuLi/H9+/c9CPj69ev4/Pnzvpzq6AB5FYjO6LeAgS3OtIq0ksF0wdnS+a7cKuryaCWdq9LvzjP/p9397phcUKtNJryWSu7K3kV5W6iLwl7boK6g6OpYFf3P6qiuX+E1OcXksFhmlhmowMIsYq7qoox7/7bONzc8pnHrdCjZiRkfabxeW0YTVaB75Tr/P8sM+OZBZgP4f7bZuJLxZLdWAOzsXEWUCV/+qIIqt7+HykSSPwKCu7u7cXt7O25vb8f9/f24uLjYbyZ8//79uLm5GV++fBn//ve/x83Nzf5RxZzD5AMPpRcHA1scv5NP1CryoqJsaXe1fBKarv10vnPSFNYZ2t3tfr7gg48G5XPAu4d++H8HIqmf4r8bh6qPjlJfg7a0vRJl+u/K6KYyHeBwqhzV1si+MtbPAQMdr5WsuBFjGUZpJB6bGT+X5dU5rzIBbyErUIHL1XJdZiAtETigkj1hZqAbl6rdKiNKUn3d3TJVe86L98XfXFgFmJIbpuMrvsgDM6szOy4wcH9/P25ubsbXr1/Hzc3N/nXGJycn+0cUX11djcvLy/37INhWGpOZne7ol2UGtjrmFHlVyKpC9CtGmfVxoqsBmxmVVUMpAVOdvvbj7SR0yrJ66xWFnZtg2J5TiuJW+tWBndTfWX2/m1YdRGVAO0eezidQsWrMSZ2D9HKrAMLbTGCgAwgrALlrw4EAj7vsz0DratDwHHpt+e3GoPrNY8lJ+10Dbm/TI6s7MMA26Lg6cCzqxreaV262HuPpq44dCPjL3HwjtfiQndNafrVHIfU/LS3wem58vLu7Gzc3N+Ovv/4aV1dXexuuOnSHAd8Y6UsFpMo+r+rFJjDw0pG3C2i6e6ACBWyDdXjd/rvj49A+ddGDJuelIoyE6NWGdqqO0W/W49KF94N8ez/Sbx8P/q92qr8GaYw6QFAZTf+/5TPG01tJx9i2mZK8j9FH3vyf6vBrqt8zkOzE8hXwJi9O1bF0fWrzufSWsgGH0ApAcjtbRcjVDv4OBKy0Q6dMx9nJLY8TKHb2ScT6PTORAiIuEfDZAh6Mip9Ohzs7o8zAbrcbX79+3d9JoL0C5+fn+zb0MqPz8/M9cPPHK6fg9hDanBnYCgj82jHyOo7fOZDQ2oqydtGX8zE71xncyhD5rlI6XgpQeniFylPg1KYUgMiSk+8CW91/6w8+Wtlr0B2veHhLNEPLM6fvADUB1nSt103aeouoR8q6Jq1t8nt1btK11XWuAx3QcADjwCbx4TK56pxngJx1rdiStyzP6XdVzh1zultrjKfLgQ4EZny4TWe7CQhw/xLlmE8DTLeTkqqUvANwB+Mk16EqWPIy+p3GpAOv/rhhHb+7uxtfvnwZ19fX+1cpCzTobgON28pei61++qBlgk6ZV4WzMq6VkUzKm6IGCrQbZl7DfjhIqSJIP7bF0LpCVbzP6uEGFPZhjFGu7ZF/f1fCVurGU+eTYzgUQL4kuSNyeUypze7YDESwDU9RJt464m1S+nagWTm4Sp5Zn9ft59J1Dgq6Oh0UrMrEIQ45GWS2mWT4rTp+UgUCZjZ39hElezAD0f6ddIRAgBsU/VkrDw8/9ztV9neMp8sDnm1LSxNqg9Qtoyb7nMjPqx0P1kQetN3e3o7dbjc+f/786MmEFxcXj2SWb45k/14CBIgOAgOpsVUGVgywzrtRmSH5jg8/fiig0bXkcWZok+FJ97Q64nSjLCAghVG6yMFAetHFGD+VhICgohkwWqVVwPS7aQsw9bLpOj/PNrZQlzr1aCBFRQ7+Dpm/5Kxdlp8L7mjIq7pSZqAzrjxW9aGzIavH3iJVwCyVqwCrU+VokgPkfDLi54dt+YY+ybayAvrvjj5do7nmnoEV+Ur93e0eB0nVUkqi2cZB2nfyr2cKkLRM4QAnLaWndkRbdH8zGEiCsNKYGzF2bKVzW7MC+t9N4uy8G5TKQK7U7bxL6FLaqiOiZ39uATMHzAzofNohO5s/L+u8/KeR98eNhoOA9OnOq17RbLOmG8kOaJN3AgMCSJe5LXPd0ezaWSS1NTu0ymflBCsQ1GVQ/Px/Gq0AAX139jbV5fKZ7HkC0L4s4GCBfFTOkv/ZdjpG6oBABaJdjqvbZp22BgG+7KflAAGiMf7eQCiedLwCJy+h55vAQIdCHI34dW50Z2tXqf5DosxZWTdSzkMCBN63DkG7Am41it4Pf12nC7zvAPZyygq4kFeIdhYtrURqb4Uqh0VDlsDpKhBIBpJtkAgCKsNKvgkCdJ2nHFcik0MMRZLZLUDjEHlPdVS6U+mnH6/4mzn/15Tplxq7Cgis2PQkx3To+mb6n+VSpsB9QgK3Ls8z+SYlILBybZJr2spKj51n71OymbpGjzUWcRz8bYppDJMOst1VGfrtjyP2DvmrMl0QO0V1Ie2iqo5mRrKrowNB3fEt2QHPKBBBj/H0AUIqq/JqxwGJtz1Ln87O/ScAAZI7+BUwMAMBqQ2nBASq6MqNiO/0ppEXUGR0u2o8u0g6jR/b9esr4JCI9XT6V9Xb/Xf+PaDg/5X23yJVNq87PpNbB6J+nM4+/a6ify/jAIVz4ZurK+BQAYTOgVfUyfqKnU7O2HlyO6m++JsN7+/v9/Xx3QeV/XkJ+Xyxuwk6wUogQECAqY8x+ifppbZcqDveukGrMgQ8v0odCq+QpXjrEOUY+elsVarTedqCErdES52RfavUAYG0bDVbGkipxC1AwKMq39PBzBCBHl+WQsNYGaUqinbd6OTF5duPV2Pt13XGelVOE+9j1DpxiGy+RVlecQAdeJ0BAh8nd+YVCFCdvjkwAQJRygwwwtaxrYCAffF+6LjLL6N2AWudY0CldtnH6t5/p2QfBNwfHh72Oq02uU/Mx7Obv46HRC92N0E65kDAX4+p3xUQWBF2b4vHk6FKg1cBAQrHbNC7vneUEKxvonEjlgS/Q4hJ6FSedUkYK5pFZ2/RaIqSrFA2Z2DAgcMYT1/+5ERDtpINoD6kDZ6MvpkV8PVHLQUxO5AiY9bL67fMYxdZE3QQXFCOq01fblir+lN0n/rmYKAql2jrmLwGJTs0c/wElU7JHrpspkxAeoaAO35SFW1Tr6onqiZenRxYdDY0XSvi81zS2CTyPQ36P7Ox1G/KKutSfQ7u3WdtCQCfvYHQO0Jm9TtlA3x5INXVoXnWv9pZV2r/PUN17lR5bMugJ74SYk1GsTNgrtwvwVuilUzEynW/k5KRrABARTPDWRm6ZBB5rDOyvv7ox8jDyclJfGraCnB3h536nupKVBnLJOPpWgJbz5IlMMPz+l8BAr92pS9vAQh4H/3bdd3tYwIEVfTv/z3i3+12j+55HyMvEeharzvpi9s6l/Ux6uzAw8PDE5kn6fjqnoE0BonSOAuIy5n7uj/5SDZHWQACfWYGEl+VjG6V92Uw0BmIqlwFAnxXJKMX3wlfOZqZ8SI/lSLMrkt9dWHUMQpmUsBKKRldJmDkkTuzJ2lJJTk9F9jZ2ldH/ymZAFI1L56lSqAggdoxcmrUyZcOOM/eVvqtdnRNMmaMdsiv/07j0R1LUUZHh0YjJDf6HSjonPQhTp/kjve1qQJNM/46ULC1fcolZXImyxVRN5JcbwVsszormamyYp3uqK0EnqSnAgCnp6ePIv2kx17Xw8PD/jkyKq83HbKtQ+ayoxfdQOiGlksD3UMT5Px5f7wDgQ7BVrw4X/o9MyZdfVVE4s5jpS4HAqkOb1fG31PBXXROBXVFna23VfRWDOUhlICZj0uSEc4BZbzKADh59FRtpiIxRVh9J1qZVzdAOpaA9nPmuxsXBw5yNmqvutVslZ8qkp7pjHjZ0tavoORwZjwn8F+BgS4S9qjegbEf09ylOkRdlO7zwZS6b4xW3SkDVmUKZvOdwHBFCYDwHAEs9anTWZFsu54jIzDgPG6VjRltvrUwpafcGdLYCQR4Wkl1MBuwmhXYSqvRzaHlWTYZt6SIKQKdKZGOsY0KPHmdCWA8J0OQBC+NwVsBDT7+aV4cMPq13Cugj+R7RVb8SWz+siknTw92jm2l/6wn9dHPscwW3amAxCogUFm3MSrbgd6ujyvUyfVbpIq3Ts4r4ninoEGy62X8W+UTVSA1zdPKGjuzSaongXi3mV1diWb9VZsErZR/gqAEbMjrbvf4ziAvuzqnW+V/84uKvDFnzo2k3rYkw6d6fFngUBCwRVFnqDAZwdW23eB1jsfPu0NIzoVjx3YSkHIeV5R1tb9by3FM34JRdTllpsrLsTzXSunM9WGfaWzcwEoP9EYyf9OaA+QxxhNA4NmB546H83lIZsDLprn2CGmMx5sIq9u3aEyTcUy8pX74twPktwJcZ+RjW4232+UUGOj6dFzkerKyDOC8zsY2gVPXnWrjdPXfl3LTcR6r6uwyJC5DXpfIAQCz4Tyu37vd7okdSeCdc/xc+T14mSANDIGAPmdnZ4+iJw6EG75KqcfIEbeXSw43lVV9/nslKkqIsxubxEOHml15U9tJWER+rLr3tyLOTaLk6P13uuYtUAfOSI7ANReUa30uLi7G6enfasTHREumaSD00WtJLy4u9sBChoEbhmhAfG8AaUUOthiKBASqOUwgmN/63TkP1tFFjVvuiqj6NeOxorcKFCr7031URtdX/Xa7Udn8zs46j12KnLrimwm9jP8XoHRAXi0XVOl9/+9AKN3t43sVKjDh2QHa8U5fPTggf5392iqzBy0TVFGwBk9RE6Mf3i7HzsnoJfTvba/yOCu/MlhdVJQQbGX8XAFnqfkkgOyPnIaEnPefjpFfsjFLRatej7o6sONtJKPyVgxoAqwzQFDJtF4pqu+rq6s9GOAmH2ZrVI9eRXp2djYuLi7G5eXlOD8/fzSXqsNfR+3gwmXYx9oN6uo4VUDPaTb/yTak69U/8ex16rxHVFXfk94m46wsBCPHDty+FUDbURpnDyy6CNiv43dKkXfkc9qBgCQ7mhvuzKcPEYkfBwE6xnV7nU92PY1F2hvkY+BjLvtbyZx4SM49BWIpIyZ+XcfYl0MAwbNuLUwGM30oEN+/f3/y6dKdlaF2Hvz8zAitRhFOFRCYpdpEMkIeDSVl4IfXJ0Ol4xQ4N66sw/tU7TuoKDkBv875fE1ymXBAkMpSppXhkgM/Pz8fl5eXezDw7du3cXd3N8bIz2vgczV4Ld9Odn9/P+7v78fJyckeCPjjp1PE4L+r/ndZnE6WZxk7/k/fHThekc0knyk7UPGUjHPFp3TTs3BvRY6duvF2EOBBwYrNmo0bKdVXBXgr9jcBguT4+E1fQ1vLp/glG1f1U9dUn473SrZYv/sDHzeNldv7Sp8SrcruQZmB5Li4jsqlAXVME6KopwIBs455uVkZDlZS7M65V0Ciuja16zx0UTqv15judrtHSyw6707CqVuKEHWZmFVQ0NFM4X4XERQlhJ+Ic6CMwOXl5f5zdXU1rq+vx/X19Xj37t24vb0df/31137nb+UMuZSm5YKTk5NH75SgI5KuaHdxMjApfah+z7IDSSfS/xVKTn4VBKjvzluXsXIZpc4mh0GiAU4bvv4TaQYIeD6Nlcr4g4Oq52Dw2jHqPR9jPB1TZg4qeaAD5dxU8+ztcT1e72Ppsp2JqLMJCHSAQN8JsFDWq/539VZ1z67p6NmZAQ0MgYA/Yvjh4eFR+tM3DHadW0GyleOd9cMNoQOBFPWsINoZPxXQIErUb/Kj8e42lHXjNMbTF9r49R6FVfVU1Bnp1zSy1bz4/FTnlQ24uroa79+/H1dXV+PTp0/j+vp6jPG3gjOyF3lk6zytUAfMPGXqG6YYKW1pL+ldoqSL/rv6TsCUbfLTZQZSexUo8Dp9nitg/BapAlwOApLDrWyop8bTg7AIFBKtAMl0fQIumiu+znfFLiUAUYGBTtY5Lv6prktySGDOY9RZ/Z7pG32Ej1eS4V+SGXCmxBizAlwe4GQ4AOCEPjw8PBHYDgw4H+RnZuirTICTC1PHQ2rfjyWeE6VdrkSiXGoR+uU3gcRKex3NHHiK2Pw/j70mrciHl/W0/vv378cff/wxPn78uP++vr7e3w+s95Lf3d09MXZuiBjhkIeUXkwGSXPsTzdjxEuAqGt8TbWLrl1HV8e4G+/kmGTsyW+lex0YSPzw2/vt5zgfyU68JUq2q3LoPNbV59+6RntiqqcMkrrsQGrT+VQbPi+M9FcoAYgKlKdrScwCkNcOPPLcbrd7wgfHwElj4tkDBxQOnqq6fikYSMbJn+SWgEAHCCpnusrLDASIF/+/1VFWA971Q9Qpia/5S/g9ZedjySUY9rHalLXax1UBqgBBVeY1qJqfVM6NoUDu+fn5uL6+Hh8/fhx//vnn+K//+q/x6dOncXFxMe7u7sbd3d34/PnzODs7Kw2vR6Wp7XRtpx/6nTIAyWBxzZT7T5ynZNASUYdmuph2YKsNGrn0P9EWOWVd/KY9cp5fW27F9wroWZkDd7C8foynz8HQclZygh257WEb/rvyHcmH+B0DPgbsW8qWpk17iZLDpty6TU36rDIKdFm385j6UPXNX0rG4MDneSWDQjpomcDBQJpMOqUEBKo6K2e+GpHPHPIKEKiErbtmC4CpyB35GGMfdaperi0n1CvSNd1Gwo5m/a2yJVujt99FlcHU/6qsDKKWCD58+DD++OOP8eeff46PHz+O09PT8fXr17g8lkjjQaOnqNhTu7wmGQ2Vo1NPt1jpXDIafCHKFufqvKTjHRBI85EyGUmXOwO6Ckwonyt7K94iuY2kE00p9+raMR4/VMhfKKfj7qTHmG9c7drSb956zgdx8Tr6D7Wb2iFwIF/0QYkIplV/5adSmx7Jk9w+pnJc/q3q5JjpfDfPW/V58wbCJHTpzoExHqe0q93qqc6tHeucv0cu3TGn5PBmSI51J2fqCkxyQ5j4GOPpQ2j8t4MAomq289L0Vhy/U+cUkkGl0slYXVxcjPfv348PHz6MT58+jY8fP47379+Pk5OTRxv7nFKGJrVDxF8ZcBIdWHJmNCjiIzldkmd5/LiPqc65A/Y+rDx2udML79NMZ5OtqNqVYa1k463KtKiyyavRvKfAK5veLQ10jtDLqf4xHt9hkwABo2uCgZWNz75cUV3jcsn6HYAkYpQuUF+N9YpOObjn2JG4p6xaLtgquweDAaJIf/mQGNFgpmcJiFIqo1Jcla8MiRsl/+3l/bc7/NU0obfV8Z/aFXFdl0JdRd5VvUSVzNQkoLSljw6EVoXttQ1q52gqeXIjyOdm6G4Zga77+/u9nPNumRQRpKwJdSA509W+deccMFA+fGMTea5oJbs3Rv9Cp2SsK5BDGXabUaV0nd9KD3ys3hpVxt3H20GAgwMSbYNIjtmvm2UFkpx4lsv9BuvW3TrJn9AmSq/Ef7KFBAI6l+advHGfgq7Xg8MqXa6+Z0DA/V8X9BE4uVwruFMGJAXSW7N9By8TUOA4ceqgP0cgCU0lxD5pVcTidYloLCpDQaNI8slJH553I9UBgs4YupHmxsCUHnMHwnpo6FepM5Bp3Gfj8tYoOarqv5Mvs2h+7u/vx/fv38ft7e0eEFSkMRJguL+/3280PD8/fzTXNEaVsXVn6WlOb7tbUvLIqwIriQdvxw2WO6NqySo5/mocdZ7GvuKN9fDVsFvpNWV6NhZ0uAkQjJHtI8mdjttjbSLs6kl7BVingIBnBASuBbp5THOdnk1DO+nyQBmn7HGs+AwRBk3S0bu7u/1dcB6gqW4HGhVQ1fW73e6RHDKrkuQ++REH0T7frherfmAZDCSk6c6b0X96qFByzC7IbqDTICVhXo3e9buKvpiamqXjO+SZ2qagOOgRUdBmey3IT+XIElWpKPJbtdcBM3cgPt+vRUmmxqizAl5Wzvnm5ma/SXCMMc7Pz8e3b9/G58+fx93d3Xh4eNgbl4uLi319mk8Zmdvb23379/f34+LiYi8PfAyxrne9oAHhA1keHh6vM7rjr6KoCvQmMNDJOO1BdW/6iu66rvJ3KusGONVflZnpVcXjWyCXiSoz4O86ScGKz59nxQg4dY0/68SdjvsHpv+VCdCzNuT8CQSkZwTfWpKjQ/XN0xUPzDow03d+fv5IPtWO7gy6vb2Nga3v0RIPHF+V9awvAYAcuM8H62MbBM1pvrf4AtKzwIB3WMzTiVVAQN8J+STywZkpZxU1JFBA5EjDKUNOY+tGcoUXka/dJ8Pk/FfnV8YrGdWE2r2+rt2tPHEOXhMQJCen42PUWQEtA3z9+nX861//GmOMcX9/P758+TIuLi7Gw8PDuLu7G1+/ft0bKhk1RvcEeXzs8O3t7f7xxjRuMn4yTIxOPEpRP9Jx9t2PpaiqAwI+XiSPXOiEaCuoLy471D/VQ6Pp7VQgfIsTTwGK/+6A/u+gWcSYHAOjbzpyB5qpTlIFKMZ4vLPdeWSbfpeCO2U9w4MP4pKjHuNvfdDTPcfIQQeXwDRfBC+eieBTRNW21vx1i/D5+fm4vb0dp6en4+7ubp8JFCjQuLtN4XjQB1bjRx65dOdzUvkun/suYOtoMxhI6MMjjxRxsBPpkzpMSgZq1tEuaqBzZJ80mLqtj5OYjAzr7/hZUbwKvXt/3HF34+fIX0SBcyNc9eWQSKky2L+bqjFbGb+Hh4d9ZkBjdXd3tzdWAgQqf3Z29sj5jzH25799+/bISMjh0xjpvECAruH6JZ172mcivjpg0Olr5bBJHgWpDAGAZ8ASTxWl/TIzmgHqijq7dGik9ZK0AggSEPD79umkDuHBKaW52Z77iwRaPFLnR/Xyrirqbppftzm6hpkIPhKc7wgRGDg/Px83NzePxm+32z0CJSIPPOlHTk5O9npL+6s5cEBQjbOu8X6qX1wuULmtc7wMBnxDFZXcjUha405INiker3MjQuqUXNd2Rn+Mx2tJ/pAkCaBPUAI4q0SeKgfpKSMiRtbj9XYAy9N76gd5quiQfrItV5LXoNSuO400XpoLOebb29tHv7XWKIWnUZSBU2aJSi+HToev1Kn4kfPX9dXTO2eAgPWlfQIVEKjAYAdqk/N0WXSwkurpgH8FVDr7kAB9BcZpyJNzewu04lz97q7Z0uAYP+eGTksOKzk8fVf2qUtbk3duIuRmQrdblNf02+vnb7YhIEAwoDeISid5iyPbYbvJVrM91zkBAgcCGgP95h0Kmpfd7ukrjdk/zwwcEoBtygz4TlMyVkUWpJnTqhSaArziuFaQFVGVK06KrJiGqvidkerSxFZGJilacqgVwPKozMGbyJWYfB4KAip6bWO6atBZhsqvDUUaGxkMyY6IY0cDzSUC1k2wcH9//4gXAQICAzdKqrNy+GyT/M0+zsdMTil7OuZLUqy3ilocLFQGcNUezMq5EScQ0OeldeFQqsbbQQBtdQoEZnqQHK63Tz7G6N+D0QU+3EPA/QLSLa+z0gOXXe9vWia4uLjYvz3UwQDBo5YptPRHuUjj6rfYqx7xL154vMvMVs49BTEEA17vjA7KDFAIOAkr+wMqpEgkTloFAk5dFEMFoVIpMqPhrkBLZTBnxolCVAnuGI83honfCv2msfWUoQsgnUnK5HS/nYc03wnIvRbNZC+Vp6Ea46dRGOPnhiYZrGqntdfDaIDGoVpTVD1p/JLOpYi7+90Bdy/v45OOOSDo+B3j6XsVeMwd+Vbdr4AA5bOKVh0UMAJ8DXJb4Xz6soCDAF1fgf8xHgcqsjuSc9XBJ6KSN1FVf8W//nOpwDMDSQ6kM8qWJZ9DQFctSxCAaBOhxoljomW8tFTOMUhLY5XtTuA9yRnLaHxdv5i54W/1ZVV2N4GBtImkMyqds3Kj7EhrKwCYGajk+Jk2Ojs729fBtG0XwbuAr/ZVxIkVX3QYjDhdMRJKF/kObl8GSX2YRYar5NcfAuRemtI8rMgjZZG7lz1VqNcNz0CGUoAi1lGBAZHa4P6B5GA5zqtZnwToOmfJ39W4rozHFkrgeUWmKjBUgdTf0ZctVMllcnKMsiuHJeqyghobD/Qkv8n2CDzQUXGeEkBMyxrsl+sfP9rMJ33wNmk70zKC+pUAIDMIzACmPjglfWDWxMdMbfp8pMCaS4IEHlzKoT2ZgX2nzWBAtGJUfLBnDvJQJXdDQYH2ukm+9HF6evrIqCollNbdZlT1kQjcFUi/f/z4seeFY5KQpLc3Rn7GOG+d4dpV1ZfkXNwYd/Sazt8pGcVOHlMZkcaM0bx2+legL90Xzduh3Ci7IRSpzZQqTdRFal63603Sn85Junxyj8SMUiTF8aTOuJGrMgCkZJMo+8kO+br5iiP4FVTJZBXl8kl+HNfZXHD5UrZBjp8b1JyvlA6vAhbvVwI1aflZz+XQR7f7UZ8YPSfbpjpoF9+9e7ffCKzsntpVXVwKdH/hdoEy2vW5sr1bAKePnwJYgQLRlpc7bV4mGCMrXZUV8NRJJyDPyQZ0A+kKJKXxdfS0HqvrmUKiM0jtdE7GDbHqItCi4+amstn6j6cGPUNA8vXAtDZbRU76nhnfKkvwu4nzPwMDVHa/luNFZWbEn8AfI5g0j248CQpFDiZWgAC/E4j1PtFIOSDowEAHmro58bSsO2DVw+wHQZSP50xHEsgRL/quApjXJLdzbsf8k5ZymWJOY0Q77cRI1JchvA7OS2Xjq0CSZQhO9JFD1/KAHvTlAIQAg2BS+qNvgXi1qfeLqM+JzwQ+GZEzY0fweih1S4hj/NQZXx74pZkBkSuhK+MY26IvXle1J+qQvP9faZdUGRRXxGQouzZT245+HU26A6/WU92BszyFxMdafDvwmQlNMppJWbydquzvotncVGuBqZ5EMi4iB0B+S6DXl8ZmZeNPZyCS42fkslKPl0lgIJ1LddIJ+bVjPJVTXxaTrBIw0VC60eyALHn2OSAgSny+FiV5FSDwzYMOBNxWE1R17fkSBPlI2Svakmq8yI9nzDxDOsbYZwJ0n7/uvvF7/kmuy/7gO4ILlf/x48e4uLh4BKZcppLPYn20c57x5fj7XDjQd3vs/iFlaOQzuM+sCj4q2gQGEqOJ2cSoK1fnRLyOakI6Prv/qbxHWbOIK6XNXGF98jrePXJLToq8piiJfCT0npRQ9RyKJtVmVX4VaPxKWgGDpE6Wq+yYG1g3FjI8qoM8VSnoBFA9wmNacNZHX7vsoohkkHwsOuDkY9gZJI9KvU7KvMu/G2Ly7HWw7qpfDgSS7fqd5OOS1tkpT96/5AxUTwp60tyy3ZRBoP5TrlgfefFoX6n6h4eHJxlbgQCBAj6Aq3ruhttMLbkSmKttlVGmgY9GHmPssxAcU/ar0hveQZRkljwkgOABRSUXBNP65nhskd1lMMC1pOSwk/FMipQUfUZVZ7YqaOUghUpX+9f1l4o5izQ9ck7989seKVBCryvIj9e5UDpidf7ESzqe/nc8vCa9tEGnAXLHlMqMUb/ApTLebmiq5anUvxSNdxG6t8VIp2trxeCkJQB3/v5dLRtIZne7p/s1VoC/y3JnX14TCIgHfXtGgHez8E4hRqcit2vJVvHjdyZ4ua1j4mCBqXoBAj6cR+X4WGAuE8hJC2QnPWHb0hvaeG/r+/fv+83kXC7g0z9Tn1SONtr9JT8OZDwz4Bn3SiZEDBCq7MAKLYOBLnpwBhOqTsJTRSGVsZsdWyGfNCnPikPl4CYwkNLNDj66dlyIvG5dz/0FOpYMYXLsVTqqihA7WgVyKUp4DfLoMUUtkoWUZiPaJ1GZGUVUUahAXnLGHe9VhOB9oZPlLmPqYoocKnnw9tI323Xy4ymjpnYJBNwRqgw3J5LH1XRomnvvU/q8BrkT9qyA73EZI7/ivApwfC+Ab5bjJkXfjOxtOFVAy8GAXtjl2YeHh7+fBnhzc/MoQ0AgwGCIsuBzpnLUB+7zcZ7Ez48fP/ZLEgmMd3Lh+sOon+15HxIlgMz503GNIdtYld1NYGAlcnSF4jG/hv+3AAGV83OOPv14AgKaiJQxGOPxgzHUZkqxORjwNX9GY3Qwqd+8VY2fZGzdgIu8T55+csGcAQE3mKtok9e8JmnuXEY4z2OM/S2dnC93eG54FVW4YksGKAeUDU/5iycCP9JKpJCyUR41VyCA53Q8RSipbv5mBm5rFEkeqUPcVEuZ561us7FJtqc7X9mw300VEKg2QfPbSYEEx1UOOO0/4F1kvjmRgZHkdrYXgfKkh/lQVlx+9RhwvRnUgYA76QTsxOPp6emj2xP9DgJlAZQZUL+ZiSAlsKq63P+4zPqyFz8z20oQwI/brK0gdtMywSx6SYZBv7sIY9WxdMDA/68MAo2iO/eVaCO14WiNgi5BSHw4efrL+5TuN0/1EojQYVVC6ILLflYgq4sit4CGX0UrwJHgiXMkA+HZGI4rFVzjmACig0Vd6/OUxtLHejUKJvl80FCyX+o3QUyaRweq3l8HQjOeuXyQAA55m4EMBzqVrnbXV1Hm7yT2Pd1B4LxVNmaMp6+U1ocv6qEj3O3yRmb9T88c8KxaNW50XHqyJ+eYYIC3Feq/Z+JoL0WUAZdD8ecBk8AAl16YHaiWZX0p0O1kCsZ8r5YDBO+H//b/nhFIgUFHB4OBCjE7IqmQ94qTWOlEVw+FgMaUkZuEiZF/MrwpPeTGIhnEGe8ULk0gMxH6+NO/3JGL2CaBCMtUWQH20Z1lcuwJDKTrOGavQV27HhUTEOx2u2hY3XHrmJfx+75pwKW43eOGE1Chw/R5TzqXsgzJ4XOsPDvhOsE2Zg6VfPk90MmoJic/0yPxleRwdk1Hh0ZYL0kEAg4GUjbT54l1SO6YCTg9PR0XFxeP3hzoT9ujA1XdXK6kDZLOEBSTP5Kcr+Q/jbHKcM8AgYAHMi5TtIFM/1cyomyFQJH67rcipuCJPLPtjlImIC0ZdPLnmecEylfooA2E7iA8G5AUqHIoOsdvv0Z1k/x4ikoTL+642b/UZwljFT1vJU+lpWickaJAgKecK6WnknaUAAF56sjbfgnD+7soAUSeG+On8Uwy0ckTIwI5f21IOjk52RsYPvaaa5T+bgIaCq9bx2Z9ZB+2zkEySt6Gvn1ZKo2Pgw/aA8o8AZmMOPsrneyyYs63/04yIF5Tfa8FBtK6vW8q5jx5gMDoUHXwNcF6YY+e1c/MAG0JHS8dOO+SoY/gf5dBB4TdUo/aUVaAQIDOPwEBjk2i5At+/Pixf/IsM3hcnkggRDwkn6d58GwbgVbVd+fX21jt4wodvIHQnTGNpDvaDgA44100OYtC/H+H6jkxKVrhZCfBSzwn4XcHPkuVUpFUPr2+k+QKnwRmhZJh7bICh4CC16AEYFMZfScnS0ehejyl6WCCH9/5rWv4lLcxfhpHfY8xHjlEyRkjdndu7COPU7aqceJ3OlcdE1/6LRDrezA6or7RaCbgT8PsS18dYK8Md9XPDiD8DuLygOTI1+3HyECAdUjGzs7OHr2g5/379+P6+nr/Jj+9ypfATDZIzpiv1j45Odm/1lcv8uFyhNonX8l2JH+hcr5ZsAKBKQuW6pbusD72RWW0x0DyTDkjf5WsedAgoMRgoAIEVaBC3h2EV+OxkqEY44CHDo2RNxBtWZ9YdR4ONLbySL5maXtPoycgkAwFv1OdviY1Rp3+oSF3JdHkV2DAkaZHWYlWMgOVE03XdPP5WpEV206G3flOoNLXAHlO5ZmNobxxIxavkUFQufv7+0eOkPPtKdkuza8+pd8rDrkq2znEBDJSFrEKEtxJVAbOwUCVrVsFqoeC5t9JvkTggMD7x7GkDfRX975//358+PBhfPz4cXz48GEPELSM5XrBe/yVtle0Lvml46QMJ3tGnhkkpSyCL6ElYr1u87qAkvWKX+mig2z6gW5pIrVNG6LvtLTo+5VIzNL4XUIi1q3AZlXvDwIDY+TNgv5ZiSa3trPlGgcCXEOpnGQCAslhev9S9L9lIqqojUrkYCCBgxkAmPGwMi+Vs3mr5GNXyaaIEW4VgXjaludcD7QOO8Z4st7rUQp5dnp4+HlbXUoR83+i1bldWVqoABT7M8Z4wu8Y/fJGcgp+HQ2y9z/J5n+CjFZU3UqYxjDNiTIC3B9wdXU1Pn78OP7444/x559/jk+fPu2XCbiXhY4mgYHb29txc3PzyOHpwycDVo4zzWFXrnO8nhlbIS5rMBM3xs8N2lVmrcsIiJ8EQuR7NM506hW45zioDgIB6Vcamy2B9GYwkCKn9GEHEnL3Dqa6t/DBY+SDAjpGfrGGrztJGfxYFR0SReqbDsXHo0pjVdGNKKVMuzHz6OE5NIu0Zk7jtTMDDgRm4+Jy6/3Q2it3HlfZMTl/IXVFX2yLMioFd5LCc+Orrl9Zd1yRg1XwupIpYBnPdBwCWCuAMLu9kDyR/y30WvLrt/i5fDl4olMgYJW8Xlxc7LMCf/755/jv//7v8enTp3F5ebl/c+uPHz/2G/UklwIDSqnf3t6Or1+/7vfDjPHzKX5KqfONgu5MHdAlAJCc74w6UFABbNl7ZqN8ubUKbFf0xW01H3aU/KZnCESeFRRpj0MKWH8JGKgyAYy2VxqdTWpych3aq9BXlREY4+lz0NnOKrnzT0Tk6cYzgYwEmmhYZVCrNW1GDxyHQ+gQkDZzrq9FlAfykyJ/d2SJb42xjKtAQUqDUw61nsp75imTkgluymJdjLoqSvx2Y/+cTNKKXHCJo9IVbq7qsmmeTaFuVYavAvBb6KUA9SHE5QGBglkfaY+5Z0VLAVdXV+PDhw/jjz/+GP/1X/81/vjjj/0SwRh/j+/d3d1+3fzdu3ePbq379u3b+Pr16/jy5cseQOx2f6fX371792g/AaPdpGseeBEAdETHSWIQxjGk7Lkd4LIGx9MjdcqXeKW8VjzxnOx0CgBmWQHyyOs01uw/+7FKmzIDydm6odX/rYxsVdAO+XHDzG63i2/y4uAp0mJ9bpRmIMaRIqOgVNYVwFNPSXF8HTUJqj4V4Ol4Z908l8pX52btvAa5o6CjT8jfx59zyijt/Px8XF1djaurq0e3IukaRmiMYNmmojDVzx30zqfvCdk6npWBXTW8K2UqPSMl0ER9m635esZBY+G6NON99VwH+H81+St0Se68xnjqdAQElMHScsD19fX4+PHj+PTp0/j48eN+iUA2SxvpBHS5gU9PBdQ14uPu7m6cnp7u9xOkNXB3nB74VPayAnXua9KdVC6PVSBYPVSI17kd0bkq21vxQv9Zzav40rcHhuyzL7WsZvhIy2AgoRh2hp1MRjZFvarLaRa1J0WtnCHX2Mi/1zkjv8aBUSIvW0Wh/D8TfEf8UnZfw67G8JDovTKGrojs52tGU4kcCKyWFbmDYdr1+vp6H1kx6pdxERh1wKcIaozx6LfIHZvznfis+kMwucVQuCPuKGUIk37Igac5mUVIzgezA16mAtY8XwUUHkkeYlxfgrrbirnxzfUwPZdAtxTqTgJtJHz//v04Pz9/dF/9+fn5eHh42JfnrZx6oY/K3t7e7kEss7DOZ3LEq3rZgUvRLKPk7ZGYpWDUr7KJ/xUfoLrT78RHdQ37VgUClX6vZv6WwYCnnz0rkAaXvyvH4b9JqxGJf/xBL36ryxiP1zBXnwpInqrv7lqRgyICGpapriEvTB/ScHSGv1K6CiR1ClTN+1sCAoncCCVjVI255Errr58+fRpXV1d7g6s0oJy7ojK/P/v29nbc3t6Oh4eHcXd3V4KPBKITSKjG/lc6sirNmTIE/rsCDVWgUIFqGWo+1ChlDGbOprNJK7boVxD1WyTnoE1vdBY+ztxzoChfzxjg9+Xl5R7QSh4fHh72txtq2UByK/nWdbe3t2OMx3PE/QwEC0zby1Z1y0SrgPTQfShy9qpfvNOWzgBu0r0UtCbbnzI8vM7HI2UO2IdDaXNmwAEAPxUCOjRKdGezBTkKHYtPPoda5Ri9MaU1y148x1CwTvXP19aq8lXbnI+EzCVQfC63RxVdBNW1Tx67/s7K/Wqqshtj5Cix6ic/Jyd/P8r1w4cPjzZhydgp/a/MADdX3d3d7Q08X9Ty3Cj0JYFAZVzTOCVQ4BGZ243UzmxHdcWnZxY6e5RopuuH7qt4LvlzKaizfByvE4MDgQBueE0Zg6urq3F+fj52u91+A+Hl5eW+Hsntjx8/9lmxy8vLcXV1tZdhf4aG+Ez+orIpLg+JuFyWghjOfxXwicSfZ4P03+8WYhtq332Hfjto1XgQyLEsAVQKTkjqfwKCLL+qT5vAANNVPqFslCjIJ6WiJBhbjYL4IQggOvboQ/drjjH2a2Irgph4Tn1f4VfE/QDumImiKzDm5ILlfUnR5qx//O+8pXreUnagMj5pbwiJc+HjqCWaq6ur8ccff4z3798/2ohV3Z51d3c3bm5u9hEYH1vMhxBR2X0O0t6Bah5WqFqnr3TQl9w6AEAZoY4lXedmQ1GKFBO4S7bJwXfq44y22qGXJD6PghGkO5Ixno4ng4PqtkTJlpz71dXVfhOgnD6XuLxuAg7WqSwC98mk+WK/VuVX/LtNT/WrrpQpZTv+oCvpu4Nc6iKP8xkAqlvl3X5wbPgSJJ5XHQ4KKrBPe5DGYoU2301QIfvnbkLaAgJmUZ6DgkoJ/Batqq1ZxOzCOItIOuAzS2sygvT9ECl6cV5mmYDE62xuVp3PaxrVqq8pU9NdT2Qv5Ts/Px/X19fjjz/+2D/NTYZA4/3jx49xc3Mzbm5uxtevX/f/VU48eHtpOSBFwg4aOiPYUQWYeD6dq0Cp1+WU7Ilf4+OyJXuQgpFunld4+J3kG+IoD9RlzhudJTOFYzzOEmqjn0AqM5V8JK/a8gcOKXtA0OFtul0jMWDhMfb1pchBAMdQxICM4+ggQPrHZQRmC30zH5dyNPbM1LquV/3u7CzBx6FZrE1gIK0Drl47xtOMQVd2hbqMgyNjXybY7Z6mjmhkZzy50dxqLJKhoVCN0a9Zd5QEn0LYgYBZ1JX4Vzvd/+rY76CUxUj8eN+TARWa19PXZERPT0/H5eXl+PDhw7i8vNyvvY4x9td8+fJlH/Hf3t4+irh83j2icKOR+pCiLBFvXXSis1hx9MmBu9NKc822K1lK4CVF9VtkyUF6arsCI68JYNm+O8kVPXaSHEl+b25uxufPn8fV1dU+5a8InzJ4f38/vn79Or5+/boHtF++fBl3d3f7ZQMnOlsHxSkFzjZnRIe3CuzYRqVDCRjwf5UxqNqhzeXHwUD1qOOXWi5cHZ/NmYEZEPAoxuvwyescrde5lZjGShtwHMkSEXoU5gZpFgmtZAR8jYepquQgqnY9vcQ6XNBWsgKdIez61s39a9KMrxQ9JtDw8PDzDgBFVIqStO6oLIGe8S7QqQ1Wej8796xU+ziSEeE6rMujRybejzHGEz2o5joBf/9PG+D2IBkybyvdBubXpijOMyZbsx4zvvidnPHvpBRppijSbYkT5UdAQA7+8+fP+30DzJYqGr69vR3//ve/92BATx6U/DPN7bzR+Qk4V7bIH6QlSn5jBgiYKfO58/Gsxot1iW/JBDODrMtBvL7Vd99E7MDOQV7HI3mtdGkLbQIDomrThqhj/hCkXTkgL5NS6Ly9ZozHayx8pWWKfClQHf9b9hnwmhRd0cCp3260maUhVQh9KwjwY100/Z9AnEP2ZzavJB8/KbjSpTJk7969299uqCcN8iUoOkZDqSyDG1TNJ0Ee1wbd6bNfyQCmCHkrCPAd1iw3i+bdcXUZgSqC47G0AWsrpXnfGm3+SqrGhcdICfgySr2/v98787/++msPWkXfv38fFxcXjxwwwYDugOFSAd9TwG/KNZ2gA1v99/6lvs3mpVsqTU62ypRpfBMQoP767cAO3v1lWp5h9IDAQcEKJSAuHVtZwhdtfuhQh0Arx1M5oS0Kl4wLJyd9Et/pBQ8UyLQhK/FbbaBSJNhFITSGaT2P/a3QrVN1bZcd0HXd+HobFQisjNBboAQGqrl1g+PjKiXWJsDPnz+Pf//73+Nf//rX+Pz58/j48eP+LgJFWsom6E4D1Uuj6eu3vPPAowwfV3cYKaLtlhB0nmPUgQL/7de7fnGMvT5ScmD6nf6PMZ6MT7I1lf4kUOj02sCAc1vJLik5LAeet7e348uXL/sgiUHH9+/fx+Xl5b5dPX3wy5cvj8AAl8l0THJLsJCAAu2R26XOOT93Hrz+yknSmXrGQvWoHMdPx1I2z7N6DgRS1os2tQrUnK/kj1aX8zdnBpIwrhj95CQqBVWn3Ki5g+8+2idAw1VFgrxmi/K7cRvjp4BIGLwu3nrjDwdSfZXRT7w5WPBIimizAmccc++fjxXPdQY3ze1rg4MVpeocmOrgcwL++uuv8b//+79P1lt17fX19R6EVhu60rqi83BycrIHq4ywKWOu9NQzT2mm/lcAt8qcVWOXwMgYT+8kYBnx2KVNO3BQ0Uy203hRlleA+K8kOmU9lZLzQsclfsd4PCbcJ8CIUURHfXNzM66vr/fAVa/x1fKAO3lfLtMLjFTWswS+c55OMfkFyrs/VljEY647lCdm2rxcVS9Bp67Vvh/ZeZdjyjLfRkpdZ51sT7Qqt52j3yq7B7+1MDU4czqVs3gp5M1lAf6WIU4D48YpKZoLTjKOPCcB8Ws5cdUDLSggXkcXFbixd8F3UEDqoiadT4K1Zb5fM7qqHJJoBXXrWp27u7sbX7582f+XwdMa7F9//TX+53/+Z3z69Gn/iNbPnz/voysaShpJ36DohkT9SVFUyhDwXJcZWOm/GyfqTlo6pB5UhsnllNmsWZ8dMHhE1fVFxysZfU15dUpgj8+3ZzDjxPEUGHj37t3+ThYtn2r8tJ+ADyR6eHgYNzc3T5azPPIlMJCMMzNAOaetqDbHinxvgL59WYrfHhx1AWg1xrqee38SoE6bXpn1cNkmGOkCqhTl+7h0AVt3PNHBYMDTV2p4BgwSVcpLdF5dU0X4fCYCB60yGLpe16psMmTulKs9AytrNV6X0OYYjzcUkh/2u0OGrgCr89HVtVpfBRxem7ZkP0jeN92atdvtxv/9v/93r/jaaa206n//93+P6+vr8fDwMP76669Hm7CYbpUxZRSVDAmJc19F5Z45mMlkBYJSWp/6xeUCZi70zYxXGk+1kwBBus6PrRr7dNyvfe1sgFOad9qGSqY1RlrXTsGH5oub/G5vb/cvNdL7ByiTdOIEr8wMVHLMa9m3CghwecSBvAdRVWbMx0YgyjNs1RK4A1BmKhIISyn/ipLvS3vVOtpiuzraBAZSiskj6CrV0ilruobHtyom9wfwBR8VDwIANEoEBNXEzPZPOLHeGblQkDcHH+Kji5oqnraQgwD+TufeEjGqGGMbYua1Hl2rvzJ6fM+73uz26dOn8e7du/H169fx73//e/y///f/xr///e/x+fPnPTDoNhEmg+KZGx6rnFnKVolS9MU6Xc7Skhr1jm0m5+N9cnllVFVFjVXA8RJyXtmk302MwLtI2H+PMR7JEJcYeK1S3pQ5PktA6XDf+Od31PAOAy4j+Jr4KnEOKIsONNn3lPUTpaCOMjxbV09ZOF7LjIV4Xg0G03cH3NNSW0Vb5PaguwnSfz+XDNKMsZXUZFJUTibX2Lg+q8lLBqxKr7EMjUxSwA7weMTRjR0NYmUI3Rj7MsJLAoEqwu8AQdXeWwMJNI5d9imRKyqzOYyUbm9vx59//rl/vrsAwV9//bW/V9tTr87jSkSf+E3Os+tP0oPKEFPmBFgFdpNh029GcFwi8A1WVVYkfScZ7/q6EmTM9PR3URdZpizMGHkPhuZH8nlycrJ3+qlNzcFut3vy7AECAu4P4PKAZwYqQCfqxjoFUUleK7DAoCr5puTIEw88x8xM94bYCpxSR6qAenXjX9WuvleB2Is9gbBylBzgGYDw3x6liFJdyYh2/FAoaNCYkkrOdYVY1kGEO3IHCsnYsS6P1FLbFa9bo+Gq7urYS0Vmv4KSfHG+U/YogTeO7273884RXcdITNHSv/71r/1SgfYa/PXXX/tIigaTPPLxxG7s+Z1S6InfGVVRVyojHn2c9J30zmWaTkIf3h1QgYHk9Kvz5GGFVoKP30k+tySXC/JJO+PBgpYZBFpFDIw0jnRUOp6WBggACAI8w9NRB3o7B83rab/9nK5J/quqN9k7DxT5PYvWOf48Rv5pX8jDSiDp/mFLRmYzGCDzL0GzbEClBFVkwGjDUbEEMqVmXEj4n/UkXtlm+i9KE9Q5GwcCK0TBIs9VFFwBro5Wo/6kSK9BPgY81v2enf/+/ft+lzeNpSIuLRPoMcW6VoBA+wf8aYakalmJQIBRt5+fzUHq7yw96UDIswOqN4EARv5+21WVGajAddVXB1Xd+HXAorv+d1EVVKwY+pQxdJDFOeT8atzluLQpW/JNx89bB9N8Jr1P9smPu3NLdZBU3gNW2V0BbBEje69H/fe7HHw+vG++p0u/XabEi+r0W94TKFih2Zh1dNDjiA+h6rotiF3lkwMd47EzZkostZOyBCR/mAQnZ4XPJCzehqe/Ome51WGvGoxZu9W5WQbgLWUHKkBUAaQtRNnja16ZQv38+fN4//79ODs72ztM3o/t9x2rXsp8kt+Hh4cn79cgmNRH/KUxYRszolEliGTqX2vQY4wnZamTjDDpfHgLl+tQZYDdoSdb4TbDzzm9NggQyQ55v0QpaHKgyCyBE+VF+wrcEZ6fn+/vylK9eiyxPuk2QoK+ZAtln5gBG6N/emDqn+aR13OJ2HXcj/PR4RoLLaOIN0bz3hcPJCs5I9jypQuCMvqZ9Fwcn+8ZrZbd9NZCR5Bj1I8d9UmqjFGiLcrpkbQMTIp+0wZICgVTYhR8Tkham2P/ZgPPifZ0kV9fRXGOfH03t/imoLE/HbCojOZ/OiVAMCvvY8F6RJ4yTHcHKEsgoyp54a1WYzyNSH2+STSINFiexidvpNk+GbazChQka+LX74ZJWQECF+dvFhW5008gYSbr/PZreO1r6QCDEvLSySXtlOaAY5yiZ8kgs10Cs3ztMbMDBAFpw2cVMLjTTJGxjvscuJw4QKL98+fMcDN5er09gTPHbbfbPXqrbcpcVET/5DxzPPjWQwcFCSRUdaUxWaXNYKCiGXp3B5PqcuVO5zrSYNEgkX8qCc877xRo0UpKrnLkVXSS/s/66hse2Q/+9hSUlL0DVen3jNI8vVXw4EBgZS78en53a+tcM/3+/e93E/BVxYyqk8EQcU6TXhBQJgdRbTLzvnZGJoHg9Ft6Vxkj9te/WZeDIq/Dx6GT3cqmdIC3AgSvQQIDPo8PD0/fQ8G+MrJ02ySiLmguBGJ1reRVH4JZf/SwAjHeQeBjnjKh6ocvP5GSQ/VjnpVi/frwDjPpIV9i5/6DS3ceBDuocp9TAYGkb8luM5hTm6zDyQMTH+cZLYMBIqnUSOVkKgS7EpmRVpxVWs/h4FdvVutQrMh3QJNHzyR4dJ6MY5W6q0BHEjoHOwlkbd1EskozOXhLgIAgIAGCmdF3xzFGHa27c9TYa92VYKCilPlJ5Guh3MzI/jh4TPV45FH12ddEk8y5U/e60zhXDi7Jcxc0OA/8X8lsF13N2vnVJL45JoxQWc5/05G4nCRn7ZG9rtOH2QEuxVb1kZI8qSwdK/tWLRe4Q9UYKatRybPs9MnJyf4Ji+oXsydJt09PTx9laRLoTcElx7MCbmmcfPmPVAUOJAfwK7R5z0DVsDvWdL0P2hbH4U5VApCMZjJOyQCn6IgCmtp3UJCixcTnDMk5v52zWOkz2/8VdEi9MwD4q8jl5Dn1jPHYWc8cyRjj0dvatA7JKEm/9U3g3QFwRkE0YnQgFRhlfVX2gMcSEJ2BGlHa2Egizzw2WyrgNUnnKnqLgLUiz3Lq2+d+jKdOwjNByiJ5Kl/n9Z9LObxWjlP8sB5Gr52jSjbYHV8KGCkPJPaDgKACnAQCfOSy+sOshMbTg70EajtAXG1CFE9um2Yg10GQt6k6tgaBy2BAQiCiknKSvGNkuIomktOsOkmqIj7/eHrI9w4wpab2qnVYkUf/Opb6S+BSkUdT6Roa4yoTID5ShMcxm41tRyvG1AX6tYBAR1t4SkAg1eHOmmu3cryUdcqhjJLLKw212mBdMoDuKMRfF0l0YMF3XjMzwKevpQxXAtUpQvLxdRBQAQIfE//vfKT+pTGo6DXlNwG9KsMzxs8+OwhLa/pj5L5xc6fKMNXuoIvzzU8KEruxrLID3j/VzT5yjBjlq00HNf5GW5UlCFB/CawrGeY5zwpUgNh5rMjnzEEQ610BxIk27RnwdRhP5TglEKBv/nZFrBRf1AEMGm1NNNOz+rANRWwVJYOqYxwH8lU55DROaaJV1iNDpu22poFYd2q/45HnuujOj3X/fxdV7boirfA3A3Wkan7cWPub49JcJACWnB95pAymaInyybXKRO78KX9pCU38zZapPCvhy2zk3Q2yeE9j1oGCVC6BurcAYMVHlb5mOX0nW8UUegIFbg/5YCGOEQFqpQvcD0Ke2BbH3p3jrH9+jNdyrJyqAJGb9xhs0eednZ09ybSxfc+m6LyOVSCCfBJkpb45wEgynoDAasB30FsL/bg7u2RgHQB09XW0oqRuqLj5hTtKvU0JPieOYMeNDI2Y85XAzgry8z6m/s76TwTNFJW3VQnJjN8K0HT0FgzrIeQA8znX01ipPv53Y+VZBDcEnOduPmkgWKZak3VKBpIZNl1fvR58RhVokRNL/FZGk1QZRx8blvfjry23K7bDy3saOUWsXOtnRE3Hpc2BLp+eXaXcVk6rcoJVhM16nLamv8m7byD0wDAFZLyOvJMfbrxMgV11xxDHNt1ZxmUdB3GJkp6v0iYw4MquNSidZ9kZrTC9xaCIiJ75siI3ZqybKSEfaN2m6EpGcgVgGaLhhNjSR+eYtpoRFYTrWlUkkNoX+bhXzr+6vqLXNqziYZUPBwIr1yY96EAE9SllqCg76XkCY4wnEVi1RJSMa2WsU5+SDiWn6dlCzw74+UrO1B4BAHUiAaJVgMT+/yeR+PXll5XUvGw4I2NPUXtdjGxFbk/HeJqiJ6+sV2XTuCfb6eQy4ZklysgY+bH0CcgyE8LbXr3eaiP9/f39/oVOmh+Xb9pl1UtiZmCMnxkWzy74vPrcJD+zQgfdWujKTefLQXRGOcmriL1DbSyblETniGBJSVgdRfNcomqiq3LeZnLO7BOjSoIVokqvL/XDwUCljJVw6bf3YYXeAggQdY7HfzsQmFFVxg2A6wF503mueXoURSOSDG+35q7/HQhIfHX9T0tiKevggEH8i0/yxAfBOADw66h7M0cj2gIIX5N+/Hj80rQxHo+HjlNmRG6bBDZ3u92jKJZ7TvQ/3SpIojOtNpJ2YCDpWyeTnGtdr81+KdPrAEAbBk9PT8fZ2dn+N+XFH5KkutRHLjc7mNB7GVSPntXg/eKYuM5UmQGfZ/cZMxl9cTDABr1Tqayfr9DLCqMrCN+FK6VyOsfI22MkEAltMwrTRElh/P3zaeJ8PKpvj0K13ueREsfHlwecz5VxrFAl58r7tlr3a1Mlc+78k9PyOg6l5LQ4b5Q/GjsHhx2P5NUzRDJQM/BKY0cDTCIv3HzLPqYIzg1+BfKdXB9UD53DKpH3mS17bXIw5fOWsn9OlCs6H8kEN4irnL8zg3aGGQU+jluUbMgMDKT+JtDI/5XdTP7g5OTkiUP3/urDsSTATYCAdkVAahZ4kvz2T5URD8mfJIB9KOAVLYMB7qx3pJOEr1OymfInsFA5nDRAKS0up00BYD8cALhD9ckkOOC6DlM7M2fZGaHUf/Etw1dFiA4EUh86mgnac/r0GuSAJilJcrKpDv2uyicQmihlC2h0Tk5O9vLqqVhvNz1vfQZ2HUB6/W7wfQxm5MbYZcqzixV5VsTrVd0EyqJV4NaVeQtgQMTxV78rW+NEIJjOdXsHCDbEhy8PU+5nOsRMlV9fZeg8G0JfpOPij0shul4fj+jlF/SkUD4eW+SbZ5Ul0H/xoduGfWnCwYmPB2XYz/OWzZXAi35jFWSLlsGAM+RRdtfoCjNUXNaXDJErRcWnD6CiHAcA+u/psKR8/pttsq4ODHTj4RGLKz0dBw124jkBqU6QvF/dfFbgQP8dSLy2UT3UKcyi5+o6jeWK00vAgHPtGSHnl47SM3ieaagAouSJ/WLU7TKo611O6TCS/DgI8W+V4fcKaOB4pGBiFdCwXGXE3wJ1QMD77uUdGPAaj5ZX5muMGgxU0buX41JDynQlkO1LbpRfOW3fI+FA4MePH4/eusisAAEE++P9423oLFMBgJk8U+7T3FZ6pbZ9vF8cDDAiVQOzh4kkZreW8WOr7bjwu7FhJsCXBNw4i5judGc3U84OEHQGJzleUjKis3GapUY76kAAzycgdWibz6VVg96BFo9Qu+uqqGfFqdHZunNme94W+dQxGnMCXTfwbMNBJtOx+p1Ag/PmwIDnU1AhflczBjPq0qddeXdY+v1aspscYwJJnZ10+yQ58DVtZqC6YC+160s0XZrcz3vmK0X4dK6zjCiv9TsGXP6YFSAYYD0nJyePfIVnFzhGng3w1H+iSt6TDvG7C5QTKJjRJjCQNvIkpLOSaq2Oza5NykqeaPyEBhMY4K01jJhWndbM4Xdozid0dQxWiP3shKyizog60Fqt8z+BaAxJdJIqk1LRFSDgtbN7+Z0fURWNrdSRnK/X7wDA/6eNTZ4G7fpAHhIQqAIM0qpOvBSYUJspin1NWrGh3bUuB7ydmk55jMcZVl2fMj/PGW9mv+jAU/TtoIHAQdd7doByqna4b0avG9eHYIn6cHLy90vI6APpV9zHJLnpQKU7986HVL4w1b1Fbg9aJlhR3kQzhJ0GMCEdHfeIkylRCQaRHAXZXyTjaf4xnj6vwNFltw7bTaL313+n8Ui/xZf6XtGKsZjNTQICs/6lNt4iVQ7NlwEcEKRlGpb3KF3nmN4UuXP2Yz6/3fUpWkqg1PvvEX8yUDSwYzxdn3VyXvxbZRhdJf5EqR13Viu655TG//8P5AFHAoQJDKRlH9aZgMBWoKJMs5x9AtbiRZv3CBaoR3Ls7pCp2yqj67RpkG9e5O59yhPrUTntHWBZzyoIeKyAyiSzHShwO1GN9SpYWwYDaqjbkJbS6C5UXp8Pzuy/n/NUjIgGRkLAJ03RmftdAKxjjBxtrICadNyVs+qTO3+i49Rn8cjnfHMuON4df+xfBcDY/1k6cPXcaxL71RH77k7JlZ0Oc4yxv1VO8tih+VXwVvVF38kBrNRDudfY0HHzzhaVE/m4VJF6ysa543H5JmBJ/faoNRnQjirdmAHl16ZKJxNgdFlgfz265nWJEqhYvZbt+vNrJFsqk96e6PpF2+fLBTrvt+mp7O3t7aPbKGkPHEh9//790VNtubSVnk2g31sp6UQXAGw9lmgzGKiIjq5yQh367pBTFc3oWwPPHZ4igQI3aAQCKuO7bX0Dl2cGGIV0PKdUUcp+6DxBjjv/GcKsIsQKbVZU8efX+f/UP/brLVE3lpxvn79KliuglsppbmZynxyi16eyvG2sipBn5M6BbetbfMlx8NnuriveX5dFfTOqcqfmIGCWHaj63IG+WcT2WuTZmo5mANODkW5cZ5tjZ9TJndr3lLvz5wEMnyTrb/+U/eYGQNXJfvKhQPIB3CtAOXJdUhtnZ2f72zHPz8/3bQhMVJku7T1IS42zD8utjP0htOk5A5UBTIaNGQFObgcI0rHkaNiGPgQC2ivgwIBoixkBTbILIA0bI6G0/lmN1wwEpWPeN98d6xt9RL7pi6DMx+65VAncW4ygOBcVCO2uXTnu4EHjL6KOrCB8npvxTCec1nerdhMQqcqwH7yV0ddVqzF2/rzOBDKdaJwTrRjLTle9nbdKdKbMMo2R7aXbIbcPJM0TAzvV5VTJ2woIrcaYdjbJouwgX6fM6yRrjNT18eVgXypWmaqfAr781jyoXX82QxorUnL8rg9bwYDKOqia0eaHDqVOVUi9AgVe50q7iXyTCAEB00oJEIgPf0YAyTekzFKtbgg7J+T8eH38dESD4OtdXRvOX8VbFbF6Palu/39IuuwlKM3PIQZ/xn9ynCkKINFYV/WMUd873bWttGllFFbHwlOedPwOUskfnU+iZDQ1JodQlQ3YYhBTnQlI/W7yjIvbYz+ewJUHBDxPsKrflf17qbFwuXcH5tlX9x28U4D886E/6Y4xXyaunDD117MY9BsEx8w2+63mMxDbZQRYzolzzmOdbU+0aQOhI9LEkMqkl5aMkVOPuq5yPJWzHGM8Sh25YXIw4BPSGSvnrRuTCgzMjHw1WSkzkPot8tct6ztlArYISWUEPRu0mvl4zYjLx2AFaJG6CMmJ457S48moupFmO2l/wixj4bKwAtgSMdp38O17WNIucPWL0WYXWCQHtkKzrEIqSyOaoutkZH83uSzNloqqOlyuUlk6PQUX7myf049uLj1gTBkCtzO0jZI/+h7W6046pfNV1sdE7fFWTM/6qW8pK+FUZVAckCQwkMZtRi+eGaj2AZDc6GvC5Kh8EFecRNWG30d6dna2N04EBlIeRmCr0S4jII3BGDnN1hndxH9SDh7r6nHHVM1H6lvq5+z6qh8vASx+B7k8HgpKZsBu9t9BQDI+yfH7f5fHMZ5mIdjnTjZnoJc6IH2j3knfpHPunLisQL2RPRAPz3U2TodmA9xhvqbcjpGf1rdCyZEcEi1WtmEWAFQ0K0tQwIjal2bpND148rrSo4ZTNribZwfy4s83HBJsCHDM+qvvZKdngOCQOa1o0zLBqvNzo8R0pdfJaxKlNtwgcXdnteNUkzTGfE0r8eKggHw5SHBacfKpzGqU7XOzlTont3LNyvExDttV+xLkYMCPza6r1sJT2USrQGCM/vntnqLXcTfYaQ9BBzI63v1RrGlpzp/1nuwESbd3cX2afBzifLdcO9NRz9K8JslGcV3aZSNd4990Gg5yWJdnB7xO/t5ib1bljUueDgh4y7j+MyPgfWa5CgysAnLPsok/OXzKuUf3q5mq2f8qqOsCui3yuwkMEP2MkTewqQzfOqZJ9IFPa2DeEb4AhWXd4RME+GZCOmmhQV8/Il+MZioh9rWkKj1fAYEEjHidX0MBVb/ceLlxXWmL55+L8GfO8jUzA1VWqDOMHeL2qJzk8+CpyHTNaj/03YHBVZBakS9LpeWB3W73BAhwQ5eI0Rkf2SqScdZ4PVdGUlS/AhRWAcLvJl+Ok2PiMiHJnVDF92o0SfDButJyayKfj2TbWIeDFcmPbg2XY+fSqMr5XoAEBHgbubfrfauCF86DyjkQSM8s6Manasd/d8AhyfsWvV8GA3TuajQZmeTw/N53nl+NtlgXDRRTlA4QGElxM4crS0o5idKAJgedlDMpZOVE3XhVSsPoK42NrndQkNpwHjreEpBTH9PY+LnZXP9qmoEAL0sjmIxv58zd2KR9A6kOOmEHmtW8OckwMVriXG0FBbqWAIC6p+U5f5Ob+sHx0ANeTk5O9rd4iRwUkFx2OC4VpbmtHPuqQX4N4tzPMhZV5Kj/K7Y2ZcE88q3arLLFs7YTeCZfyd6qXtcTPi9Atw2mx817AMi+q13y5eNBMODBptfdyVDKaLwUbbW5y2DAN6mxwUTV+npl1LamkFUnyQeSQpwQot8XKj6obD7xPuk+DrPBrxSjM/Y06rvd7skSSGUEXImrjIB+V4jdx2PWl1n9r00rCqg5F98doJs5eZ7fkhHwqIz6Qz4IaDvaCgTcQRCspGwBwTizCuqL7s2+vb19kllhFk+U+uMZshVbREogsDrGOl8zM5AcYpIxHU/yXY2N113paZqXZG+9bm+7spMejdPuSnbS8gizTcxCcUnA1/C5TEC+XN8qUL7b/XxmTQoC0xM205zM7FAF+lh2FuS5bepoExjY7f7eUanB4FPV2AH/ThkFpyo1k4TH30SV0uZc23EgkIQjGetubY4Ah9GYlkR4S5fT1giNmQIHAxQCvqL54eHxLS+Ooqs29LtykEnYeH7Wh9cg9scNZKcobhTG+Lkrnucrw6zfMwDQyZ7k041OpfQOWrnclTJFiWedd1BIY+nyqE28yhz4A8AeHh7G/f39k3vDpZudXOl/Ms5pDNwmpf9OySAnJ/a7Sbw7KO3sUnIUVVl9z/YhiBd9b13mWh2/yg+cnp4+ebGSfJDLKW282/wqKyAeK0CgNvz2cw8kdczBgLeb5HRGCUA4/0mPV2nz3QT+/dLImcqegACjFP6uotpKOLiRhGCA/fJMBgUljY8LSmWAOpDgfVihhLK59EEH4QaiGjdHnBXvK7y+liHtaCVaSTRbHki/VyllFyRvvgHXdaTbFV31b6a7DoT0oBU+b12AnLLLDb1y/n6bmnRQywsJECRePWPBsVK5yrF3wHwG2l87M0A9TqlrB2jimXqcyvC7G3+3JX6uuqarryLaXm7UI38/fvx88I/bLt5GqPcOuL134K1rE/BX+1uI4+Vjx2MVgJ2R5rUDex1wSLQpM+DOilFS5SB8EBzh6rjq8+sTEHAe+J9Rltq+v7/ffzx9xImhw0+bHgmEyNMsMuRnFa3rd+pzAmVJoGYpQzcAaSmHc842O+FNoGYWhf8Ocrn0Y+m/ynYOIxnI2bp2Wr5xuaFhksPUbmrf4Lqi+FtAWQIUzq+Mqowv9xWpXHrWhzIEMxDW8ZDKVsZ1lhmYyeVryi3tGeVkJXCoHL4+KZga46lNIw9+bGVsVuSO/XF982yXeFSg50tODgj4pNmUFaiywavZj8qei//V2xer61fOuTx0NquizXcT+AaltE7kpImrNqFUx70M66+QrCMyOX9//nT10AkHOp4l8AzBbMLSpwIE7nxTffxN4zhDmZ52q9YHEwr38x2liGXlul9NW9r3CMT3ZiTwV9WfMkmqZwVIao64NuqR4Ux/0tJQxW+ln8kxky8+npX940dj6XsQnDrnXY3lDAx4PV2dFU+vQeTdwVjS3S7Cr4AA5UrlHMymsesCggRE/Hr/rf8p6Nntnj70R+DY+yu7zkcDcwN51R77eyit7OnQ/zR+3Zh2NMvsrNAmMMB1SzrHMZ6uKYp4v+gYtQHssgJ+LhkRd46MWLp9At2EpCi5EmrSc9NAjAA8E5GAi9r0OvTtjp97LnyuKKxpGagDLJWB0vdrAoIOva9kDNyQJEfjfUztrciPn0s8cv4qw+NGlfWk8Uj98+MiGWbps2fYxJsyA2OMJ48G97aSA+/Gpbq+AwKv5dQPpRnYcXlLekbZTIBgjBGdKuut+GL9le48V+85n8yOjZFvm5Wu8tt55n/nP7W9EmV3dbAul8/KN6T6KiDY0arMb7q1UOt6HlGzQWeSEyeExjRzmkwaDBfuas2exlq/u7sHKCgVGEgO2UFHuq463k2KT3wHfPy8G3sqOOeF94MTEBA9393djTGebpTpnMhKmS4S/F2UlDo5Wf3WeXeSSZk5H7qm2vtCHmZRfeWU07qxjy/lgTLiPLBul1NGZ3xLoa53HaKj4WPBHx4e9lFo5Xg8Cq2MdxdlVkBgxSAeYmh/NXWOhMQIOi3j0S44gPB9GLTJXq9nJ5wSOOmo00cS9cltU5V9o53v6lb56ruSR7d3DsaSf+wAa6IK2K3MbVVHRZs2EHLDRuqwR7EUKt4Dn5xsao+dcaPnH5VRvfz4LYT8uNLM1sM76oS/Ah28lt8VWGI5T7f6eDPdzw1d5+fn4+zsbG+Yxxj7e3K/fv06bm9vn4CCZFyqfiYg8NpZgfTbyZV7BhLHeLp5bYynqUIuKVVOOLVT9YXOnePaAZDquOpMoITRV0eSwe7jQDX1i333MaicdAID6beXJe/p/1sBBNW4sH+0A7O9BZUtYT3Ve2USmE31uFN0mgGAKhDqlphTe0mGOkBTyU5aKkn9Sf2eAYKqTGqDZSrQNdORjja/qMjXl8b4OUmMRMkYDUI1uCuIvBIaXU8gMHumQFomqNBlirhYvgIWzps+HXpjBoLtSEnp0OlkyOfJyc8NkPpPMHB1dTUuLy/3D43Z7f5e+729vR1nZ2fjy5cv4927d+P29vYJeEsKlvqbzr22geXYJ4Xid7p2BdV38pTaWLkNlUQQ4BEPj42RH2KUAEnSyS1rpxwTLc8JXMomPDw8vqvH21wBlx1A8u+tQOCtgQBRciCM1EkOCHh8K3nQ4cu8ldNZaWvm8AhyZ9F8t78ptVmBb/52sF/pexrjZA/8233BzFmzTOU7KvC1CgTGOGADodCVG6BOEWmIklOhcM8QEMnXwhnJ8DMblA7BcoNNAgvVNd2tKJWTrL7H+AmoTk9Px+Xl5f7Jbyoj46uNNeo7rzs7OxsXFxfj6upqXF9fj/Pz8z2oeHh4GDc3N/tjnz9/HmdnZ/tbc1Yer5nWrinEWwTzJWnmRGYGx/9XoI/khi0Z7zF+Pvp6Ziwqhfe6K9np9MgNnHR81o7rKnVOYPT+/n6v73wcbNLLBFa6ACBR0q1kdFci5bdADoYSIB3j6Xx7hsDJx6XrswMCb9Pn6jngQ79XdNK/Z+1TfruMXKWL3n7VRuXku4CiCxD1uxp//V7xTx0tg4EOWfsGN58kv/OgctAd2pyhyS4jIGeWJqNSKB5zoFLxkvYidPsTOkPHbIC/HU5OXWu3Ah+8hZLO5N27d+P8/HxcXl4+AgNXV1f7B8X8+PFjfPnyZZydne0/nz9/Hnd3d+P29vbJvbqcH//t688ra3a/kpJjJaXj6X8HeL0cr68csZyuR11eXyUnTA+7Maicdkc+X6yrGo8EAvw/r/FrK9oCHh08pOtW6qqcycxZ/mrqHNTMhnZOSYCB32P0T4OVPeH1qUzXF377NWybMuxyWcnpjAe2Q/47/7IKBEh+zRbHXMlh0kOV62R2te1lMMB1GTqqxDgNhDMnA5iEgp1K55MT0kD7faV0Xu6YVybHB9h/O1+dslZtzRwQx1rr+2dnZ+P8/HxcXFw8yg58//59H8mfnZ09UmxlE7Q8IDBwcXExzs/P92BAv/nCJ2ULmCFIToP91HhUZX83zRzszCh4vyowsNVhVBFwJWuUSc/OVaBAZcV/6pvriF+3Ej0nWfB7wKu7eXSN86XvTkecr6oev3YlCOA1W4z5r6TKnpDP5Ly8v94vfyiUU3JA3ZLBrA+pbs+iOSiZbbbt9qDNZGjV6SdZWJFPnZsBONevjs8uyDhEZjeBATlx333Kb5anIDJtRaadvFP6VgcVaVDw+fEMgKKTBAgSD94mj6fB13ikrMdWdOjGXcRd2MoMKJ2vJ7z9+PFj/xIYviFOAOLq6mp8+PBhXF5e7rMCBBQCAymlLOW8vb199G56H7cKDHB54TWI8uPOYJYNqOTM5ScZ4qpekhvVzsBS1xyQE5hXa65VhJWoiw513QzoerktS3fkufvfXZd0eRW8dXP2O8kNO+WX4+r7tVbr5B4U2YwEKMfIDyWbOWhv16kCGd28e3RP/mivSKs8Jv+TbEbnG0gzP9PxkALSCshUtMXuLoMBvrfZGfBd/SrHCViJyhNy930AfAOiynHTkn94fTLkySkkvjrUmcrzdyVEjPz9I0fub2EUIFB2QGW0kUZKrbE6PT0dFxcX4/r6enz8+HFcX1+P6+vr/ZKBlhr4rgmOJ+eQYKzrtwMBZWheiyrnrf9dNFEBAdbnstNFFZWcbQEEngngLnDXS9EsgjvUkRD0s4wHApSrdE3SAbbHcqt88hq3O1X9VR2vRZUDGKMGOSu6Rj3wZaoqHV3xNQMEbg9ZR/r237P6fUksgQmvowImSS5XQEyiLQDA63Q94Hiv+qyttAwG9LAHkSJQRit+77obo2pCO/TkCF9tdevzHqV6JFIZBh/8l4oMVBcVzNuhYffIj3cRKDOgj78YZrf7+aQulb+8vBwfPnwYHz9+HO/fv9+DgfPz8yfLDHLgMtri4fT0dNzd3T1yWGnOOOZ8H4S/svZ3UhWtj1Gn3WaU5tMVmGWTgeL5MR4bLKb2PeJP8uIPkvIIx18jnhwyqQO/q+CYusgNqNTXNA7qR6en3s6Mj9nY/wq9fylK/XVbVtnWFOmmerivZ2XvwCpVQMD5q9b7Z0sFngVbyWzMyMcsAbIVmZv9TuCHtrXyR13bKaBepWUwoBS0Pook2Sg74srsCNKBQupUcvK+Ocmdl2cFUjaiQns8z99yiL6O5Tx1dREQpOP8cLMgnb+eD5DAADMgfPe8Ng5eX1+P9+/fjw8fPuyXCwQGdJ1uJdT8CEhcX1+P29vbcXNzsz8npUvga4yfdzfolkVd+1q0Ot/p2KpzSPPIsRqjf0CKzhMAOB+UQc5zWi5g/eq/AwIRlwBnY+D64P/ZR+qH7xlI/fJbLSvj6eOeIrrKrlR9S2DuLWQHSA4C3MZ25OPk5SmDPn4JGNBJdvtSvD1dk0Cz05b0flomUKDzXJr5jDHma/WV/ef5ShZ97Fbar4KTipbBwO3t7T6lrDVmbSiT01K04OhsFgnQMDkIcEPy8PCwvz2JAMDvHPAyDiqch+o7DWoVtcmYVcLgCNEnKS0H8KP1f30LDMiA+jKNlgi0YfDDhw/j06dP4+PHj+Pq6uoRGHh4eBi3t7fj4uLi0bLCzc3NuL293X98PDhHHGe9C+Lu7m7c3NyMz58/L0jZr6GZQVlR8hSNiZJRS/LjUQzrqICy+CfIHmM8cv6qL2UHpAMsQ+NIkL5qNLz/PC45UHZKMsF3hPA9Ib6fpOJnlTfykiIkgozKwL4lAND1m3KZotdUvvuv9qrl4DH66DrtI9L3Ic7U56TyIe5AXf4VvM6yyM7zc8nr8u/Kx2xx4C9Jy2BAUZ6nsO/u7vbRqx4yUgECkXfaJ8gdDJ2+ZwJkePw7ZRQqI+ZCJP6TM5bBZZ1j/HTkMmLeP7XTte8REgEBMwPa+KcNhJoLPi5ax7jvgCDi8vJy/7yCMf5WZAEN3Yr4/v37cXd3N+7v78fd3d24u7t7YkS5FODgTNd9/fp1r5CvQR1S5++ExCtKRtIdPvUgpS8dGKS3ZDp/rHeMx9kBHvdrJRNa7uNbOcnDbG3WZTtlAvhQIdUr+ZAd8YxhyqBU+kpiepu2pAJwXX2dE3otgJAcvP9P/LlszeqojolW9wRUPFT1p5R4tW/Bl3urPrke00b7+1cqMND1y9tecdxVAOq/Z4AgHXsp2dy0Z4CGhoaFUblveqsEQEZAVC0FJDBAx8/f/nSzCv2NMU/PVFE6I2m2kdJolUGaCY+nu9KYOp/iQRmaMcYj56/bCPVbtxhymcHBAF/5rCifIMj3BPjmzfv7+3Fzc7OvX9HiW6DZHKzMk9d1CJpPkUgFAnTO9bBa23VDqCUkgfpk4LesqyajRrlgBi2BRm9HxrrLVPwqp+xRrPr12mDAqZIx55sk+zCrr8qQ/Koo1Zdc2VYlgykr55kRd+ieGVb91dyujlV1rqOZ36lAQEUzudxS36a7CciAK7+UmxGKp2uq6Ib1VhmClA3wttNz9P23858cq38cDDCC6pxGh84rJOiZF+ejAgScD4IBvouA+w8ECC4uLh45az7u2A23NgG6w1cGQOCBj6JV3+/v7/fLDL+bEirvaCWK8vNpHmf1pmM0ismoU39oOHe7vCvco6nnUtU36SKNsfTR9/L4XSpjjPhG1JSpYP0OwpmVoy1ZAThpfJIN+d2UIlAHXyvAleMya8ePdfXTua5SBV4r3ng8AUjn08t4cJnAwRZ+xlgLJjpaySzM6kgg5jlyuhkMeJTiwEDKl16TS0PGdSknj7pT1sCBgASAE9wpeEUejftGPvKujMShgtEpmS9ZkDcCA/HI18MyGlSUn5Y7uO9gjJ93jGivQXpoky8D6KVG2lPA5STNh8DI+fl5O05viaqIKUUfq1TN95a6CAAoF26UaRRnmTGvY4UIUkk0xNRJ3+Rb3W5a2YpDyeurokeed3oLWYFDosYxno7fyvWVXa74EiirMk0zes78MvCh7ItSprnLCsyoyw6sXsf/lT1I8pjk1n9X51do04uKnDFGIorUKRi+VOBRDf+TaEQ8O5DAgYOElA1g+/xfZQUUmRMIyJE6L6vjlbIDiZfEE9f/uU5M3vTSIbZ7cnKyd8bcbKZv9dEBxt3d3ZMITr+1ZKD9Iv4kSgECApQ0/q9NblyTsV2JjlaMtFL0Kwrq9dHpOxEEEIAlqvRilWYGzDNmDiA9q1dFZr5MkByaz4c7pJRV0RhtMaip3FuhzvBX/X9pSnLa8SHaGvXO2u8yFA4IXFZX+F3J6s147I5VYJWZQgcv3fwfIq+b31rIb5EUl2lBOU3fN1ABAlJKM/LDJQJ+pw/bTc44Od+0k18f8a26VgQita3jaUmFWQFmKBI48VsN/aU3Ag102Bwfzz5ojB1YMM2o/SPsj8+RjK6niN8CVaDQzyd597mkHMzkocsqpLYSkOY5r1tp+nR+jKcgW9fx+1CHobnmuBAEUFdTu5JDX+roAAFJ40r553ID29vax7cGBKpsRyL2lTo+y846eRusqwOJK/VWx1ayuOLLM2W63oPH5Bvc4aa+zPo2A2Or9ZDvWRsvAQBIy2Ag3b+ciAaPk+RC2QlRmsQq1ZM2DLIO0iyyoyNmlEwnTJ7dGVbClsanygT4S4nScwaY7ve7DQhWNOYOBtI4khJQE19VdkOp37R5lGPz2lQpe3VsRjMA4M6toyoDkOpfdWhV1q3SsY4I0qXbcvTJQXlGIGX0vJ8apy7q2Uq0RwnIzdp6TbmtbFiymU6VXEomZkCg0hVeN6vDx160ImvVuKe+OyDQcZf3JOvOXxW8dTzMaObr9JvfToeAgdWAdYwNYICOMJFHtpoUpaa7FGZC7Ywi3Pn7MXc2aYATJRAgRyxAoA/rTcaN52eRH6Md31+Ron89eliPD/bbHD1zwbF+eHj8LgmOsxw455YRg7I7HB8pih5dzLq0mVBvOeTucWVzXpOSgq9GAF3UoGMODnnMo2aW09jSqVaZNfaF36tAw8uuAgHX79n1HYj3MfDggPwyun8OdXUkMPDSUddLUpe5GiMvjbqjPAT4Jh5W6ktAkQ+Xmi1vOSVwIUpy6H4iyeDM+XtfVo/znNsIb7/zWZXteUm53AQGKgbYWTqjZMgq5Kb/VbSSAIGXXUVYFTniTZPnaW+/y8FTmQmZJRDCTYDMRvhTB30zoJYGHFiIHFzx4S+8bVC8qFzVH44rAYxvZOTucGZa3gIlZ0wZmil8MrZdW52R4/mZ4+dv15uVJZhu6WAWhdGZyEE7D9XSha5JbcmoExAcur7tEZ3zm+peNchvBQykjKKOj/HY9qVyVZ2r/dW8+/6jSrdZt8adgNfvQEm0MvZdlsezAlXkv8XRr4IpnyP3J9IR59HbqUBAGjuW3QL6DlomcAPH9KZHkZ62Zh1ulBMISAAhXa/202RXkXpSlGrw6CT5FDXeTpfaqdA4x8fvDGBWgLf6MStQOY7UP/FPZMz7vgUGpOi8W0DzkvYc6JycfdrDwM/FxUXJ76+m5ID4W2PTKW9Vb1VGd1W4XFSOjjuiVa9AXjLWSUc66sBY0mfy4U6A+kzd8CjP9VfHqrZTJLfSN9brdiWdSwHEWwQDyTZVgMCpGmfKE3WhK9/xNrNForTvI+0TWaEueu4AQXXtig/ojs98jP5XGa8KDFRtd23671VAsAwGPP2cBKRaKvCdvK7cVHx/VsBWg+eAwGl2LBkBtqud8nKiaT2cUbb+e52dEq9MnguPeNSY01mrTl/DFYiR0+J6LW//SsAtjQ1BgQOas7OzV91A6Iqn/ytGfiWCqOasWxYjLwmgePTt9SUd6WjV0Fb6TWJ/CRJW2kjRon5T/rYAgeeQy8GqXPwuolPhciaPdyDGAxK3E4lWxzxlUCsSLynbSFoB4CvHfUxWMgIVP1ui7dU+JRveOfjVcV7hMdFmMEDh8mjCgYAfo7M/OXn6eFpHSZ1Admg4ZQgqx5zQtUcnbrA8rcN60vpn4i9RFRGl78Q/DYXaSUs2HOf0NDj2i8sFlfPxeVUmQy9JEuA4REBfghIw7ABjuqbKOiWaGatK4WWk9ZsRearDQdkYdTRX8TtbR+Yxf3bI6ga0ihKorJYDO754jHPTOYfOEDtoXOnLr6YuQyDy/qmMg7sEMjtaAYczWrXnlf1cAQDVfHs7rtf+uwILK/ZrVsZlPgGAyleltma2aAstgwEfkIQ4vQyd1BiPb2lxRUtOULSC1DtjXQ1YxW/iS/99r4BPHJdFnDqQwMwJx6EDAARd/nHD5pFEGgsCB35UD4016xbpQUZ+6yfPvwZ1BmMVtK3+r0BGxQNlzX+7bCWnXwHnWYqX4HAVKBAIOP9Onb4mnRLPDgSSA+mMYKV7KwAggbUOwP0Ocrs6m7PKwXA/hsZu1Yk8BwhU8un10zZuBQQ8tzJPnfyugIOqbf9NWaQuJ9u+6uNW5ywB2hltBgP+3zvgaaxOkGjYViMev9Z5SsZ4FgHOqDIgThTiJMj+KGNdkyhlAna73ZPNeuk/+0V+HBD4Md98qPP+ToG0dKB+6MVH4oMPNdK516DnGPMVhUoR2oxWoghfv9fxFfK9PDrWGTlek3hN0WgCLs4z/yf99uPpWuejok7fu0iso9cCA2PkPQLJxqSxT4CyG7tkj3zMVwHhjNx+EADQVnbyNqPZGD23fEedHCdf4iB3Zc6rNqs2OloGA6tIXJPHb64T0cnxtZJdOjp1tvqe9UE8p35URtPr6EBKRayrAgCOFDk+uk7RN1Px+vClQ6n9pMS8C8HvZuBLqPjwGM2TIn/vmx5YpN/i7cuXL0tj9SupAolV1N/JvV9XyQvPubLr+zlGpwLdyYh3vFZ1i7ZEiMlgVxkB/13xmHhJIMw3Z3kdW5xJxcvvJm40XrHDh7ahurxulkkyT9nobGIVRXftcT5TtF3VVwGmKpBN7VfzvuJ3Kv7ch1TAoGrb+evaGWPdR216N4FuL1wRlmQ4vPNilA4mGYY0eKnuDigkI6OBpLMlEOE6t3jz++cJYjyK7yhlB/QIX25Q5Ca/9KpmjnNKt5If7vjmnQkUPEXvu93u0Xzvdn8/ZljlOAYcV80921XW4bWIQHSMx9GF7+6tkLj/FqXfMwNCqurl3gH9n+0dSFQZ6crwexmNlfPi/wlyfE9R0hEHvt2elcRz1Wevj/+dh8RLV+drkAdM3Isl3txB8ncl09RVkcaskuM0z12mwW35TFb9Wn48nZ5ARXKmrp/O6wwQzIDD7Hg1L6kPCcyQ79lSr8u9270Z7R5eS8qPdKQjHelIRzrSm6C38RSYIx3pSEc60pGO9Gp0BANHOtKRjnSkI/3D6QgGjnSkIx3pSEf6h9MRDBzpSEc60pGO9A+nIxg40pGOdKQjHekfTkcwcKQjHelIRzrSP5yOYOBIRzrSkY50pH84HcHAkY50pCMd6Uj/cDqCgSMd6UhHOtKR/uH0/wHzZJI9IkiWbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUtElEQVR4nO2daXIbSbNlHZxJ6auqfr2nt9a3m15LtyTOJPqH7CRPXngkQJVEQFVwMximzMgYPNyv3/DIXK3X63Ud5ShHOcpRjnKUf62c7LsCRznKUY5ylKMcZb9yBANHOcpRjnKUo/zL5QgGjnKUoxzlKEf5l8sRDBzlKEc5ylGO8i+XIxg4ylGOcpSjHOVfLkcwcJSjHOUoRznKv1yOYOAoRznKUY5ylH+5HMHAUY5ylKMc5Sj/cjnb9cDVavXTLuqyVqvV9PL3pc8uY/Q+uiblnJycDMvshHszbbsO/1E+71mW7/XUHc/nk5OTOj09Xbwe/5+dnU3npLy+vtbr6+t07V3agYzaQHkvLy/TO9fxuX79n//zf7Ze72fLf//3f9fz8/NUn9PT07q4uKjLy8u6uLios7OzWq/X9fT0VA8PD3V3d1ffvn2r+/v7enx8nNrjfqasqmrbe3Z2Vufn51P5HOdXVU3lcez5+Xmdn5/X2dlZXV5e1uXlZV1dXdXl5WWdnp7W6+trPT4+1uPjY93f39e3b9/q9va27u/v6+npqW3/6+trPT8/1/Pz8zRWjOfp6WlVVb28vMzOOT09ndr38vIyO59jU4+5VqfDZ2dnUz9U1VTe8/PzbG6hw56b6JbHgHf68vn5eWMcTk9P6+zsbDZ/OPfs7GzSAfTg4uKiTk5OJt1+enqa9d3//M//jJXsF8nPtLu/o3TtP94n7/2yS5/tDAZ+ptgYpVPs/s9jV6vVxnk+bts1XdZ7FKtzoKPfEmj4uh0QwPhinG1IRw4eI+f/7bizvRi5Ubt9fOfoshy3hXeuP3IS+xAcgHUAB7darSYHaWeJw+B3t+f5+XlyzEtCP42OMyDAEVJXQMD19XVdXV3VxcVFVVU9Pj5OdXh4eJhej4+Pk/NyXT1evBgj2ogOGShaF6xnz8/PdXZ2NgOAtMXgkOOraiobQMYxCQZOT0+n8pkHJycn9fr6WmdnZzOdo++63+hT14Wy/L/HAZDF9RJAUfejfJwsBXZHQPDzZS9goGrsnKs2QcFo4LcxDN15+VsX8W6TEXPRvbvM7hicAAbQBssRkqOb7vd0tKP62DHYmbstdug2upyTBrjrU/c/47gvg3p+ft7WE0fmtgIQHP2fnp5Ozm+b0F+01eNEeVVzPct+taOGKaAO1PHx8bEeHh4m9uLh4WGK2jNyNwC0ziTgfH193WAI3AfUx9dhXKlXAgqzAW4v5xssrdfryelX1XQubTdwcxsR67LbYfBmZ089YBjMNLiN1PMoHyf/dkZkH7I3MFA1d/YjpmB0jJ1NOtcfcfB53DbQkP+NaPdkM7KuGFleef7I8fs1qpvPzUgIo5rG28AC4+mIztEfvyUr4GPzmH1I1sviyBFGIKnth4eHKUrkuFGfj9iA9Xq9wdqkYzLg4hjXjTqwTPD4+LgRveK8lsaoqjYYqOwTi8EM7TCoMcgzaCLSz353/XIJADEoOD09nQAB5ydbk+MBEzQSgz+OY17ke7IOR/m1sgsQOLIDP1/2Cgaqxo49v1u6yLyTBBOj64++jxz5tvYs1cf1JuIyIBi1P9dKDQRGSwPp3O3kiZTSyJkVcISFYXT0l+fm2iznU96+Ju/z8/MwRyRfFqhjJGnnFDs2vjvq9zJQ138GEqbRcYTkNCQQIDK380pHi6TjH42LQSKfkzGiXnb62Rb6f0TrJ0joxmU09zieNuXYGtQZaPj61udkKxI0H+XXynvZgB9lD45j2cvewUDVOC/A0hnyn33dXR35qKxtklFhRvdd+7y+2+UFZPmdc0sGwVGp2YGuTbl+auOZ13Xd0mFUbeYffJTc39/PEsnoywRk7iciXvqJtvMdMcCyU+E3R5istY+YJM59enqqp6enOjs7q/v7+xkdDxhwfsOS5LKT60u78voe987RUpZBZSYHcnwCzhGQzLpaPGbO1XAeSDdfSBI8Pz+fsTCuR1XNxivZGeTIDPw6+RVLAkt2uvvvCBAOBAwgXRTfgYLud853Od153Tk+b+Tklq65DUSMnLwdUEbvPne0JJA0v3cemDHIOpDQVVWztVKX5/XpfLnNlJ1rw9vA00fK3d3dLGPffQ0jw7q8s+txIB34spN0X1qXvNYMuPCOjw6cUA6MBCACloVEQe8KsH4AvrockjzWzi9BsSN56uH5yTmU6fEfLX9Qvt9dv0wA9Ct3KJDcmWCg6jtIYKxJvgRM0Xduq8fQTBpj3+VRHOXnyI/ah6Xztv3XscFpV/+NcjBgwJMyB2abwqRRcDm7RvQZIaeBGF0zy0GWgIQdycjgVc23svl8U88u03VwBDtyXNR7RI2aqn56emqjUerdrac7wuyWJD5KHh8fJ5obR5nsyJJw/NnZ2cQOdGIq2tGrxWMCEDCA4xj609E5ffj09DTr5y4nIvU+t0NWvSU5Pj09behnggfK8oslAs+FZFLcZsrI5QeDGkBGLiPAQgAEUr9zzsMKmBno6oJwvc7x51w+ys+RXQO2Hzl/F2agAwWc+28EBAcDBiwdRdetdabYAI6y8j3QoyiF33YFEFmGDWnWawmBOkq04fOeaq8PJ/2aIKFbfnC9TWNTbtLEmV3d0bxch/VtG3onHO5rglE/2uG+tEOmv+kzO2Vntmf77cCSxh6BPGfod8sUlEsdO7BK3Z046HFKZ+6cDo+3j6cu3Oug2+nCeJ6cnExAwvpu9sH19/zLRL0O0CfI4ZoGULSLY5ybkX2ay0DZzw8PD7PlkWO0+OtkyXFvAwXduV3QN7J7fM7/MgD8t435QYGBJdRmWnIX1OcJnUaRY5O6rKoNw5VK1gGJURIe53Vr9q5HRkc2wL4JS9LO3XVN+XZsBH1jR9A5Brexi6YcVec2rmxXByA+UuzM1uv1dHOerDvHsGRgYMA4uD2+PwH/pcPvlnfS4eG40oE5ms3ERIvrkzcWMqWe4kTFBDSr1arOz88nmt3sFOdwQyaYCtqd7ffc9RZJJ0FyjJc73B/uuwTMyZxwHL8ZkOQccXvI1bCebrvh10dJ59h+Vxk57G2Rfef4R4FWltExwMnuWpZ80T9VDgoMVL1/EEYT1QY3X4n+Umm2KZnPzXJs0Gyw0nBlBMi1O4ZhCQBZur3XHTBw8phBQJc81QEKMw+O6nztDgTsa1J5PdttzN0ROM6np6e6urqqqpooZkfnlOOEQPdJF5H6+hyX+pK6UvUGWHKvuwGAQZ3H0eNlwMn1E3TACAACeF1eXm6AAec0eDcBwIl+B4jgxOlH8iceHh42+sVAOBNnzVxkrkV33wL6pFsmsGRfUmezXfuSQwAjP0O2Of5dQcLoNbpW1RgMZK5UMgL/JlBwcGCgajmhYxeFSkObv/mcHPwEAdsUbpuRzS2BaVgMCJxpnsfY8WaURR9ZubMfs+6ZIJbtsnR15lr+nGInu09mgH7wxAcMJTtAfe2U3Jaq+bjDMuAMM7pHsu3JXCUwsAEi+k7g5XsMLDFGnXAtlgOqapZk6dv0AhDsdO3UySeh787Pz9v+z+Uu50rgxL3V1uCI+hoIwNZ4fDqjb7A2cjzJoJgh6xIyj7K7LDn+XQHCyC6nXe+AUzp3v2ybOtags/H/VFBwkGDAksAA6RRgGwDonPkSqtwFEFi69ckEBRyXbaCtmSSGwuZE8R5vb41aouSznKqalcMxdnpZX9fTtHlKsh27JOr9KsmksKwz7fPOApwiOQDeA19V0+8jNgcZOWn3bceqGGQ5IS+NVv6O7nGNbpmC//Iui34ugu98mAwHdcu8AsrivBRH5y4XHcTpLq35GwhkwmYC4dHynW0D7Tk9/X4LaB8DwNmn7nZySHXZJl3w5c8j25vnjF5LNn7UT8nweYxzfqUO/ZNBwcGCgREISNlFSZbKcdS9i+KOEG1Gdkm/dgYIcXSDUcMYVb0ZT66BEeQY6t/1oR27qVjeobtHSj4CYnZiI8nJtS9mYOk2yO7TzEDHGdlQ2CnitOzwrSNmXzLaQPiNaJsonzE2EMgMfc7rHtLDu52pAYh1FsePc+/W4lMnzJ4AHqpqI6pP/en0wMBqVMecVwAS9+FIur7vyu9undzdV2Ofcij1WJL3Blfb7PPIpv8oGLDY5vqz7fBoKdQ6+E+QgwUDI9nGFCwpWRprznMk5t+z7Pwvf0tjVbWZuJcGMo+1EfWDa7JcMwI4Azsui0EAx9hhcIz3bi857qRMuwlox+mJtQ/JG+u4vx2JjqLNp6en2Z0ITYMbHIz6bKQ/AKpc58c5GsBR9zRYXa6HDaQj9w4gm5Z3+20cs0xfD/3swIB12aCHfAH6grZ28zUdsduf/W4j3f3ncnzNZAw8BtvG9iPkd3E4u4KAzqlbOmayY3u3BWjZb90c7OZUziuOG7EEv8v4bJODBgMjJ90NchdxIZ7UHG8l6mjaLN/vHUIc0fJZL0dcNog22o7Qun3ojiQtdnpdfbxuusQkpHHNfuj6hOPz3H0yAkgX3RkIcB9834PAupcZ+iyr+Il/OMXOMHQgkTF0ZL9er2fAhHP8u8EW5VgPzUI5cndd83wSAjt2yMAEga3gBj7oL8cbXHBdrlM1fx4E9YSZoH5++JHvd9H17VKUeHJyMrFn3XMSOI6yEugk8D3KpoyCM97Tkfu9698RC5VzaMkeLQUenT3vQDa6V7U532zf/imA4KDBQEpH1fK730fnbnNmHNdFJDng+V86xZGCYLDJwM5thJm0lXSro6u8ph0FzEH2TRfpWbq1fiSZhW4yHRqtWrUMBgACrjtJgVXzW9TSX09PT0Nq3ec5yvRxXOPh4aHu7u4mZ2zd9vinc696G0/Gg/FOVoC8BzvaLhJyXoQp9bxZkfXPxtIJsgYC2WaAFHVer79vZfSuBQAYfeQlEYMysxv0TTJtjEN3y+FdQCrt3herdeiOZgQEkglYeo3sGGWZMU3wkGA4r78kniu2Yc5fwc56bvxTGYKDBwPuaDsfR/uJ0nyuP++iNJ0TTCRoWUKiPsfX5juGzxRvTp7ca90pYnfdTHjrGJYEVd1SAZFpysjIbnt2wT6kG1PYkREtmO+cQz86kifPgPGy8Nvl5eXsHvk8cphr+Ol59BXj4XHKY5zX4OULnHKCSvrCN5fq5pZBo/vCBjOXn3Lbn2/xnNteV6u3nJgOLHVshJktO3yO5wZIOVcc6dH2DhR0ToryfndD/zNlNJc7u5rbZe3UO7Ys7ayDpxGzlfaVY3IX1BI76GO6YIuyvZXYduWfAAgOHgykpOFKoGAZKcI2h97Rpd05iX5HtGIHCrIMoqXRE/ayLMRb37w1saomZ41BtwMZIe0RM9A51O5uhSMqdzRGHykdpZxO1sAsHS9CP9uBOwrPMtPZ2dDQr3a6XIMx9f5837GP63YsGVE99TKrw3kdg4PjdN276NhOOJcGcpnLOskWxaT9KY+ojBsA8Z1jvCSDUU5Hb+n02H3Lux1+5yT2vdR1KLJkZ/2eAU13p033sZ16OvdkGPh9dOvoqprNbwN417+zg+izr8PLQMDBBPPqdwcEvwUYWHL625xMxxTkUoOVJAeyM5ipnCMw0EVXVnY7b6NYR1/n5+f1/Pw8RZXbJotllMdg6i37IR1LOnuOGxnVrm6HYEi7aM9OKlmQ7M901skcQFN7m13H0Dgq9Wd0ALED43+Xh96zpJCJf4ABMwOc53fXjfOTQgfkGExynuvhZYFcNqGPrHMs0aAzvq0y9y7wQ5mSeaA/eXiTbye8xE4lO2AWzPPabV7akfJvkS5S9ufOcTvvyYmsHdjqAo6UTn85r/MRWS//7qWlpaAqy8l8rfQfvysg+C3AwDbpHPboOIvXgXmNonikcyYZrfhYGxorbUaG+dhX33Xu/Px8ZnQNLNKg+Tcf4zqNJCenUXZOviUgkMfumxFgbOygOuBkx27HxzgmZZ6Ox9epmoMp3+aW3Ql+gl7qRNX8/gh5bc5x+yyOyPx8C5fvMqz31peOzs0+zEiwA4DWx+x/9NxsAP1lJsT924Gb19fXKfdi1Ias02iem9L+HQ37z5a0a/m5AwIGA5lDkrt2eLe9SDsyCq58zC6Boe21AYHBhOejQSLMrbcCZzt+V0DwW4KBLlLn95FCLA3MiA7O8vnsCbAkCTLSQFoBjTY7h/ry8vYoWztdDCaG1E8X7NZp6Z+cWB2qTnrV10sg4GM69N59/yhhwndLI+k4LAnu0vGboiaKNS2eFDZl8FCcx8fHGYhKvbLBHEUlZpksGZ3lky8tBjV2gskaJetjQGyg2o2z25/XRn8fHh5mN1FyvbK9HWvVgWHGgfelOo7a9Tsa9p8pnd6krrrfrHcjQGC9qtpMiLWk3uU522x7OnUHbmbyuna5bd6VYnBs+Z0BwW8DBkY0EP/lq5McnA6FJtLN3/yfDVyui+cShA2rxUo1WnN3G/3ZDAIPjiGy6pwceQmsi72Hvuc8r81uc/y7jsuvFjvEpaWUJSBJH1tWq9XU7w8PD9O5ThQEnLnf+M6DehwZOdrutpRSrpMPiaJT90znr1arab3e4JR68c5xuS2QdtjJotO5fj/Sv5EApABHGdXn8oyXDrzDgHq5Dwz+kj3pxAxbx6B8tByaM+kCo44VMINjVi4BeZaXwUd33a5OacsNALOOXqpAJ3Kp1HrUtSVzu7pAdMRyHKr8NmAgZZvzsXhAOkDg9wQBRrxdHTKi8/lVc4Ns6XILKNMPfcnIlPeMSv0a0aTeepY34un6KxW7WxJIytr92S1h7EMyaQlJZ7XUbvery8GR3d/fT2V6G5+BGs7XAG7ECJhyd4a9ExAdET89PW0wAe5/R2e0izYZRJrChU1x+721z0aV+hiUpm5w3Wxv6nwHguygYRIMaJxkmHfU7JZIzGRY6AMzML9bhPerpLNz7wECmadD/9sh5xKn31MMgBM4eJ6jC+gW+jDaoUAZzJXX1++7etLOMudSPzpm43cABb8lGMjOHU3WLrrPz51YsXO9tKPCTXF11/b5HbjonGWyBNlmAwGO7YBAomPOt4yWL7JPvEXM522btPtmBrg2D8dBck0+jZrPNfBJIYmtqmb3jnAZVZvJeRmp+trdOj9jTsSe65ZJjXOs7wWQ9ylAxxxhG7AkeHLk7nbANDla59hc403QAxsBiOrmnHXcxtiAZwl08lsundFfbo/7JJeK/m2S9nMJBIzAQIJwdMC6Yao+g7UMlizdvFyyM14esCPvWNQMxJhLXhJMO0EfJbuUzNW2eu5DfkswYBk5+3yNzuvO6YBAF6WM6rOUTW2qit8c6ee+fV+TpQhH6I7Y7Gw6Gi7b4t8tRszpjPIz37NfE53Tpn0IjoRJmvVJA5H/V82T9PhsI2e6nt0fp6ens0x8R/qOZA0a+e41fsbXfcrnBCsGHhlRW7f5ze1I6r1jj3KpiHq7n3AICdRdVy+rcZ+Gi4uLDRDEefQvuQUsyyR46VixkXOh3cm4ub93WVr4p8oSEMj8gFwCWAIC7n/T8p4HKRl4uI4J9BJ0Wyc7oJ020e3yHMwgKQPEqtrQRbd3qe6HIL8lGBgh9VTSziFlGSPE2wGBbeWkI+yMGobedFVVTdQnn61cNuY28N7nb+Rpp9Wh9px0I1ScW924vp1AR7Xz6tbr9iE2PiPg0jmhqpo54QQPufSAY0pA4WifMk2Fd8Azx8ZLPFn/pMuTPu0oVBxyLiu43abuKdNLAl6qMkjJB/7YOHss2CZ4cXFRNzc3dX19vXGnROs3iZfWQ98tkmPtBLrEXOunr2XjnUlih2S0f7V0OjYCAV0uQP7ncnxPBy8RYG9cdtXYRuX/HGPG1CyW6z0K1lzPbuwBzwlqc7eXEw0zcOwAQff7PuS3BANVvZLamGYUtUsZ73FaIyTpSZBGPSeRI9EEDQYE3n6WBtL/2WG5LzKBxwpvxsGGMh1P19ZuecTtpfx9gwGL65Bj1EWjHoeMytOwMB42ANaFdFQJDLPPzQhhcDpDi/N6eHiYJdd1/Z5LNgkGTOGaZbIRxMnSPupgySUO9yXt4D4IZgQ4z469Oz8lGZY0wEkFj+j/jtrtaOR/qoyAwIgJSAYggW3V/FbWVXNwnuV3tirHKevC/6+vb/kv3qZqfctg0fkKo7mSc9YvA1+3HZBKMLe01OG+3ico+G3BQNWYvrKCjBxa9zkHonNkGWVti+6s8Ols7QBcvh1KAgKO6RCmHVvVPMLvwEDVZtKO257ffV0Dja4vbZD3DQbSeSf6TyCVzEvmFlAm50Hp22ERkXbPOeD8bnyqNh02x/iOggaSJO2dnp5OgCAjeco1a5BlU8eqTWcJIFmtvq/vJ+AYtc+SkRrXddtN9Sf1710HvkeDx5Z2ur2dGPSkJI3t3/7JsgT+02Y5IXVky9L2Ie57Bzi+XncHS5eboGS1+p4UfXFxMVtGIjrvbHTaRX6nPt49syQGFNmPOZf9+9IY7AMU/PZgIB1y/uZju8+IDUgqXufI8jpJO42un0Ah0S+JKlmfkYyorrxGggGDjE55qQtiB5lr6V0/OYo0qNqXZD8kvWiw46g4x8EGLI0Tn+kj6EL3ZzIGVXODSx3yZjvn5+d1eXk5PdCHnIT1el2Pj4/TbgbXget4zBPcoLvcsthtTaNbVTPQ4Ig9lwK6eYFzpXzqRnkkYVKmt8nmzhkiP65FOU5kTAbNuRrpsHJ92TJiI/7J0tlWA4AEAxmEbRN0wM4yAy1fI4FtMhPMTWf4r1ar2b08PNZekshHfJuB8jzv2oZO22bTvnzlci7Hjfr/o3XutwMD6eg7pe0QWvfd0q3rMCAdyMjrdfRtGnmUcDSBXIYni+uSzrtrl+ub63Cp2CizDXUaU/dLUrVLYIn/t/X9R4mNmuszikQ7gNhFO9YdR5OUnbkdlDWisp2EBBA4Pf3+sKPr6+u6vr6enDc65UgGg0Z9krJ32x2FXVxcTHVOyQjN0RNG121N3bN0OuXvHosEAf5uY212pgN2RIldPg3fq2pqz78NACwFTmZx8k6C3XxKWaLF87icS3kLY9sv1yvtmsvJ52D4/7wGZaAHtqMASuwlQB+denl5meXepA567qVd72QbYPjZ8tuBgU6WIvfRdxvybROfwU8AkjevyGg8r51oNqNBroNys05MPTH8jsCQkaN3G0b9ktFROv38Pfumu37nIDOx7KPEkzjXK01Bb8tK99hQLud6cnunCGPunRgGiQZ5vHyDn6VoKEHn+fn5dE5S8iPhPDtGgyM71l0AHefRVupHf3nHDMlkZmusQ6b9XWbqls/JR8667R4HJ4yin5STYNBt+LdIBjx+zoUfub4t96JblqqaBxFd5G0qf+k6CdLZ/gewdbnWHetmsmcZ5BnAw/bxyjwU6pB9YH2yPaUOS/5n2/8/S/4RYKCTjOD5rWr7vvjufCsdBh8F6iJ9H1s1dyaJZu1wAQGsz/I/BjHvZud25GTpnJkp3HQSprRdLzvGjjHgXNchJ3auH3+kEBXgqDw2jsa9TbNjQAxmABc8ihiH5rv3WUe4Rq6ZO5r1mjhjjKGyIwUw4PTNCKBX1C93IfDuSB/WIa/lumR29sjQuc8MDBgHU//uBxIJ7Wzom6enpzo7O5tu4WwHngY2r2lQ4fZ3D5VCnOfBOf9kMNAFTRl5s/XT+p0OOgMXykg7mzpom+jX6Fq2fWZyPLbd9TwfmBP5OY/HtpthSvF/aecM9JMdcJ/tMka/GhD8NmBghApHx2b05SisW8PJc5fKMdXYJY9053drXFkfyhmta+MATk8370KXsuS0k8mwU8z+sbEfRWe5fJH9ZlptH2JHnICN/3OpICevx8flMRYnJydTNMIY+0Y6XvfOpQL+y6fvGajAFuAMAYteVkAfbbxYQjATxTh4DAEEbp8BKEsCjuw7AGCj7WsZcPnRxIAsG1M7Isrh+t0887h4qYLjqmq6g5wjSIMBj2Un+9LdXy1LQICxAQiQq5JJnwkAcfB878R2yM6f8i8vLyfw4cCoav5476qa3X2zs9G8DBQB7uhbMrUJjA3Y0++4LgkYkklI8Mr5HxX9L8lvAQbSyeRvPq6L5B0ZJX2VA7sEJFwGg2cKerVazfaQV/VPfUtnijLmuqwNqRUcw2XJ6MwO3L97svid/z3R7CQTKHSKawNstL5vQ0r/OarNcc8IN9G72RmPLc4DHeBzvhLYcZ00NiPjiTN8enqaASz+c55Jtme9Xs+cq3/nfO6oRjlZJyfyZRk2hhju1Hk/jbAr3+dQPsbz+fm57u/vpyxx7yRgHDp2IiNF07rpzBIAGvztW39/hYzsXgIBnLG3gHY35/KcqOq3brpfsT2ADTNDAAI/fpuyrH/+bjvbvVg+MMDPwIv6UNdk4zpWIXMJbA8SCOSywqHJbwEGUkaMQB7TUUCm49Np+bwEBL6uHb8NCsphp5tgwMqQBjABA9fq2IOObsrovnPkXDcftDEqZ2T8l8YjwQfl7dOoUhfXI/u6ajMCtGMxGGC8OcZ5A4j7NiOVHJ8R1egICzDAd4wc53QshvXETtMRvwEOWdE4bu/VdhksUTgSdyRJ9Fj1lhvgZS7qxov7JPDZa7j8d39/P1tmyCjQxh7AnOvBBhGeG/nEz24O/1OkAwL+bEed94LoKPtka9IBcpztCtdglwyv1J+0iWmLXa5Z2lwGSH3rxhfgkfrkZTLXiXM9Lw240/bna99MQMpvAwa6zhyBglRuKxTGbDQwu17HaLC7vhUhI8OqTYdptG2DNnolNdc58A4cdJJ1cwS9xAYsgTKDLt4PTfmRkR7YeWbU7feqN5bAwNNGwI7aYztK9MtIyxQl57MEge5YHxCzTYijchwfOmrwx2cbPhtA12u9Xk87HHxr4aq3nA1yEIimkiGhbRxT9cZaOH8ho0H6tkv8TMCQYwDYcNmpp/8UINDNV8/PdI4468yJyvMzcMoEac8jj4+BBmDAS2sjZiHt0Wj+GKQAlnP+uQ20N5fackdLLuMa0KbuuS5LfiWBfLb7I+S3AQO7yMhpVS2j4aXvSw7P0WZGnUk9peJ0MnIWTmbj8wgQdOv6XRtcB4y1fzNYGUW8o8naXX/fYGC0LNTRnY4iRvR9rg0yVicnJ/X4+Di9Z9b/Urk2YFXzMSBSz/9M//O7+/n19XWWrOrI3tej/h2QJkqzYTw5OZkiaaj/NL6ju7N5HKwXToQ0a2FWxH3meVD1dgvlTs88Lw10DAA8t7J/fmdZsmF5HG3OJS4ndOaSlI9z8JPr8LZpVfO8Dcowo4RwnnUiQVsHpA1sPJcyeLKOGxBwPHrFHOxyJsw4dfXoQMAuNvEjbeZvCQa6jk3UZ4O+S3npCDNyR5ISq5rf6S8pMtNtXMf3rKa+NmKmX22gulfmBLhN1C3bkZFRVb8M0IEAG3RLh9oTDOxqlH62dMs6mfiZn3NsUkdGbUmjwxhmFMD/S+X5GI+dIyGX34EMg1TGoFtD7/ZqE6XRh6+vr9P9BOiXx8fHid5frVZTFE95OHYzWkviuZuszBJQ8rujrCWHAajx+q5BDfX5p8qSs0qnXvXW5zmP7MQ7UJC6if6hiwkQPX52xJlnwvjuwlqkPU+7nu3IvAjvsEG/+d91RNw/HXvS1WGfwVLVbwgGlozwCBA4iktHN2IT8rgczPycjEAHBliPPT09na1PVs1p2USuVv4EA65j11d23HYko2WHBAkuK9s+6vcRCNsnGKjadPwJmCypNx07YOl0w+UkoMAQJEjyOHeMTdWbI8OJeQ3XY2egRzttpOw4eaVBd2T1+PhY6/W67u/v6+XlZUroMxjwkgV0L6DBOu92mrWwoXQE6uxuMwZmxKyDdmDWRzsnj4+p4Rz/bungd5HRnBsBgbRdGf0alOV9Vkyxm1kZ2Yqq+XMLuqAIB+wt1dmOJUDv331N6z3MgNuS86BqnrfDMpiBju1rzk90N4PUtLW7sAW/Sg4eDCRtyXunxEtsQSYOpTHJaxq15SRJ1FdVG//5+hybRjspf87xe9bLSp2RXE4M943bXvW2P5ffRhO2MxQuMxmOjOYOAfk6cvYk7KjFqjdHbUq9avvacXe3NDuulMy4zjXKjH5eXl5m1LsdF84TB8rvbo8/j8aUz3nPeS8jrNdv6/js/Xc/wiD4CYSPj4+zdflktEbzh35yP6CvZl6S5WC8UgepY/aDddpGfRQs/M7S9YfHv0vcM6DMOZFUf9qILKtq7gQZRz8CnHnTJXa6zmYvOlDPMV17DTI7NoD2Zh4B4Pb6+nraAslx5+fnsznhZS76Lu1rgtB9AYKDBwNV/d79BAAeVIysJ3dGrxkVV21Gd6b/u3fOQSjbxtP3BvCkSNDiKDAVngnH/3zHOKNI3WThM+f6PSO0DqW6LzracPQajeM+BOdhpsiRN2KAg6RuVG0CB34zA2QKcQQs3U8GAh4H67e3eZF4xZjk0/8oP+lNO26PK1sCDQQyIsoI3zdpsry8fL9ngsvJZS/LSC+sS3ZIrj99Y4aA/9JRGRC6r7t3Mw2/KxjYNt/SlmZEjKCbRLcJFEeAq7uOAxD3uZ8zUdWzAqN5YWfOPSsSEHZBkndLJGCxbV2tVlNSLPOKufD58+f69OlT3dzc1NevX+vr1691e3tbt7e3M33r9MlgqAtGPhoYHDQYGCHYLrLxpO9Q7TYg4PI755dgALGR4rrpaLKMdNouKw2r1167PbAnJyfTOi5i5L5arWZl5s1kuqWC7OuuL9xved5ovPZlUD3pECeQGaEjPtaO0bpF2aaZM0Lx8oLLMYjLYzEO1AlHf3V1NWVee0+2/+c/rsO2vG/fvk2RuRP+2MpVVa1xN6gl4sFA02/WafQ+nQZ9lX2dhrDrC8/bFNfZzoU2OBve88bZ4XmnxWRlfkcgMJIEtDnH04a6Lz12GZlXzZ1ox1567pycnGyASSc/M0a+NXdnr5lTvluhb0Wc+pxAgB0MVT0gpw88Dz23YAhubm5mDxFLZpAXYCXZgZwD+wAEBw0GLEvAwPSWE6GqNtfGbVw6J+ZI3BMj2YbOMPk3D2DnbBFHN7lG7DrlMoPrkfSmJ6WF33OZJNe73IZkS1wnK3Iad0fD+zam7qOM+r0UkBRhp2Md0Oz6p2pu3Py7WYEET47qzQiw9QpAABjInBTTta6foxnAoxknomu31YDFSVL8ZodAO/zZUZFBUAIv+qQDBYwZxtTHJ2inTV7bzrsMmuUwGPB7blHct/7+iHR9OQIC2ZcdO4CkPaiaAzr0iM9cx0xC1Xw7XtX8luGMkUFbBnQIdU2wwDWtC9TdoAEQMfIRgBZ07/T0dGLkqDcgwKxggmnaROBA2ckOWj5a7w4eDCSqG/3vwR4Z/g7p27n6ZSPbJZJgfPzZ/1F2t0TAfxjsnDQd0LDhRZxwiNI5ySb7qwNGI5AyMsyWjnrLiPcQDGk6bU/0fFnf0vB1gHC1mjMvKV1fdDrYGcqq2gADvFgSSMftiH29/r62f3d3N925LxP4qmpmbGm3QQn18PziGOcFjIBT6km+J1gagUtHUhZfy/3aAbzUCTsdR3AZhR6CHv9MSaCbQCBZom5+WNJRMxbJmGG/6F8HQblM45v9ZIIoYmfLdQEBlJG7F/LWx+i5gYgDqvPz8xlDwW8khDsATQY6dyB0uQOcN7L9u7ADPyPwOngwsItYsfk+Mrz8n+9WWBQEpfGaoxVmRO1Qptdj03BXba5loyz8NzJkXMsO3ZOH/7tzfN4uNKjPyX6umj8AyWxEp+z7EuqVrxFAdJsYA0cVPo7JvaRvVbXRb9YV60jn+LpcAd/UB8mHAL2+vk4U+P39/Ww5KaO7ZMm83xvAw3Xv7+/r/Px8Fi2NgJXb6wjy5eVlZhSzn/wi72ZUd37rgMLIoafBzq1rh6K7P0u2sQIdIOD/BA3d+HY22Mfbpla9BSbJtCVjaf0w84mgU7aB2FHnEFS9gVzb9Y6poA4nJyfT/Hl4eJg9o4E54gDIYNs5Dz4foNHpWAaW/P4j4/wj5x4sGMhJvcQK5H+mZ0flZjTD4CYrAJ2EYUTh0jhlHV1OTqCkslISaKCkPtYoerTWaVmKSv25M56JVjNCTkkHuw1w/GrJiLIDAwjj2jEE6IB1gfXyEZPSAac0sujYxcXFVC/fzSwNdjrcjKgcFTlLO+lb67n7o6uvgcXV1dUssnt9fW2zyel72mLWousfi+cn5fjdjsy/d2OfdH8C6aXcmV0A8+8mCQQyCS+XCTqgZz129O/yEsR6CYm54+t0jI+ZUKSLni1pwzz/0yZzTAZWvFdVPTw8bNwt0YmqlMl/19fXs6UnbqXt5YaRfhkQeK78iP6999yDBQOWRJtLUYgplW4dafSiHN+D21EY0d9ogBxJdpSajVK3tkUZHJ+O/fT0dHab1lzjtJJ1EU0HADoQM3LknaPIz9mnozI/WkY0m41KOm1v4/M4OAJN9qBrP/91a7E2mqb9kxJN6jQNNceZkvQ5HHdycjJLbjLbYebLwBN949zLy8tZAqLZgQQClFVVEyvhpax0vBndG4AxBz1m3fz3ODr65LspZwMBg6huDm1zQIcko0BqZPcSBAAODfqJ6rsclfzP0bcT+6wX2DRfn9+oK2PHzqmOMaB+Xc4Mkjrmd9gI29sEhQYR9gnn5+cT2EWn8SE3NzfTrpr7+/sJDCQj29lEM5lpt/8OKNgmBwkGOuVdorM6lGdjmmDAjjqV3QNuhXYEaOPrAc2IGeOMwqTDoU60iXIyF6CqNpzA6+vrxr3aXS590X3eBgY84UZ9aodiyYmXUfg+pGOPELfJgqO3M8ZAOcLh2KreIWYE5WP8m3XGGe4YIzvSh4eHjcfJ0kav9ec48LkTg0x0y/XjvLOzs7q6uqqq73co9FJXOl3rPomLuZSRTEGCbtch5zPtMZDBIFt/08hnAuFomYD6+f0QZVdj7+M7nbRDtZ1Mar17NxPg/7zcZMfLZ8rGlhoAUleO9Rjlbi3Aau6ysV/IjH7/nuDCc5/fLi4uJufup3M+Pz9PeTnUi3ny+fPnyU67vl2gmAHHR8vBgYFdUGxSWiiD0VZO6qoxTevyEgRkkknVPFK0I+7oJ4xfRox2AiitlZHrOLoz2GBC+PoGFCmds3O/+jiAy2o1v/uaJ0cHqpARE7Mv6a7fMRfJFBgEpDPN/nOE00WrgE1HUem8/ZhfHCd1ur+/nxk6bzG8urqaPQc+wXMHlLsIxTplx+o91jAJV1dXMwNuo01ZpkjJWUidRegP9D37lD5z/T22nAtY438Da6/j+omMBgW/Exh4z5wa2dOuj5O9sj0EhPqxw/nZS6t2eIDCqjc63KwAukV9O4DZ7WrJNnh++XwDavefgWPOXXSRKP/h4WECP9jCp6enSb+Rk5OTaTkhb5iUAVsCD4/rrsAgQfWPyEGBgW2MQLc0YKdU1d8IhzI7qpf/zAyg1N564uMSeLj8TjIKsjJgxLrjOYd3FHNEMY0i/ao+878DBGYifL7b4NdS1Dkai31ITpasS+oDYr0ikiE5KQHlaN3c+pXMAHrj9f0EAzhlMpIxvKzfv7y81M3NTVVt5qokm2SAY2bL4NbGFlD0+vp2IxfrlPWTsqm7X7ljwdKxWXb2vNOeBATJTiHMK+8YcN/m3e2S7TtUIPB3jP4osEJPnDdFnxsI+MmCbKnjTny+/4Xnh4Fh1dyW5bJE1fyGUdbdvNGV9TD9gsW6+fT0tAHo6ReulUytQQOAxkwxOuU2JWhOsGkQSsIjQZ7HyXbpV7MGBwMGRkCgiy7TsWzrnDwWVOqO9mRIVgAldaJY51hcL1Nsjpqq5vtyrWhcA0lkvE06pzs6D6Nqx+W+6AxhB4D43UraRZxG3x8to3Eb/ZbOu2MWrEdLDEiny4ijUO9598vr3s/PzxM1n0wG5bm/aYMNiw1prp937AjlOqHR9fb5NnD5LIKq+XLKLoJ+pr4ZhLiulL9arSZ2i7nmyDQBQbIhHTNwKPKzgEAuU5mlst4bfHoJgO9XV1d1c3NTNzc3G1tebfcSVLu/q95yUlwnIvAOpHbsY1Vt6LdtUCb85p0Hk2ngs+0wgMKO20tiPp9rXF1dzZbJ+Exi4pKv+5XOP+UgwEAHBJaMaNXYqef5Oak7R8znpJkcXZnCSWBiNGeFyu1irJW5vskCJOK1UnZi59xlqvrd/cPaGfVPA23Dy3e3tVPQBADd531IgoGMBtKwZNRkJ7ZkjLP97jv/b2dq+rOjFO2AaQu0JSwF9CT648gs6VLKcoTSjU0mYHnLa1eGk7AMCjg+cw+6vst+YWx8TRvvHDvXm3Xh09PTWUKl8xdyF063RHBIYOBHgEDaugQEdvr+3fYw1/99rgHB1dXVBhDA1jEWRMFemvX1Mz8BG2WdQtI3JKAeARGzu1y76g302uZyTAJjswier9n3tIUbhrHcx4vbdvv+A77uqNwODP9d2TsYWAICS6xAFwVnOduiajtd3rv1syUwgvFA4V0fl1VVLbJ1/exo7Ujy2qZ6XZd0vCNFYjIYxDBJ3Fd899KEJ7n7wgY0DetSfT5CMmdjpE9Vb/1tIDBKGLQkUEIfMortwF/2levgOmaUwjW9pEOU4tyFpFAzWuocqtvYJdj5eh3N7jXdjLK6uWkKt5uvXLcbQ/c5/ZTLWl4iSNbC7IbLSx3fp/xdRoD3BALd0oD1v1va8vnkqVxdXdXV1dU01gmscuz9Yuwok3wYP0I7t8d6flS95WeR4Je64c/Wd5x11Vsw5SAhx93gd3RM9n0uPWeSIz7CvsEv9Nog4Gc4/5S9gYGlxnRUyXvKtKHJ9cjOmKBYqeiJPEeObRRZoQRknnq/dQ4859gpJ63qyZWRN0qajiX7tIu2XGfa4/7s+j9BQUbFHRjYl3ROxA61ExunjiXpHJojEf7D0CaAy7VpX8NrlhkpJ4XK9Q0IWE6wHpsKRswkmdFyH/CfdwF0Yz7qS/dZl1NhQMMcyXwVR3S0wfOS/jUIcZTI3Rf9bAW3J+dLtmPfQOBnSKf/1qeOpu6AZAILR77cJyMB4YhxsWM30+CcBN97o1tCBTx6Ld91zt0rtmU5x/mewDdtG3XxEjBi++cyc6eat+l213IZ1PVX6+FewEA6lyUmYAQERsfznxVldL2lyL+LIJPStaJX9fvtrQhkl3ZJVY7KWE5wWfznSCYTUvzeRbt2gFYuU8AjRJ3STZCRYT0UMNABQz6P6pnndRGpdQAx++LlHp/jenQ0rI93hJUJim4nBtNRTkYW1n+XbQPkyCeXL7pIExrYiYeUk/OgS2z0UkdngDG+9CN95n529M8OBl5s/TIr0Dkp93n+9rtJN04JArYtfS3ZZMrymJqJ4d4S1qHRzg0HP+gmNtOJhN38w54aKF9cXNTDw8M05r7hVRf4cZ6BpOua9oL3tIGpL+im2wTQ6XInKNe+xbb6V4KCDwUDncPlfQkQ+PgltGoDageQETLHGhCMxIYyqdDOCWTdjXgxljZiprCr3p6i11Fs6USo12iJIA33iOnIPuuMQ5a7KxA4JPGE6v5z/RknpDOEfO5Ylqr5s9+fnp5m13JduA6G1XdrS5arM4Y2pjl/crnD9QYsV9XMOPNf6kmCXBtWHEBmbBuA2PBmprgZghGj5O+Z02HGjac0JiDw8xkSCFg/DlE8l98jqQ/JFnkpwMFC9+rKtZNGB7zVzvpF0pxBWSaXolP8fnp6Oi1DWH8ZP5L53DYc7ePjY93d3dXt7W09PDzMyvRNkJiD+AF0+OHhYcbopf+hzdQDofz1ej0DW1yH7cAZRCYIMEvsuZig5GfJXpmBJRDQGZ5U5FyHGgGDlC6CT0nHa1rXBpXByvNs4DiOyIjrAwYctXVMhlFz1nGpf90nqcQ+P52Tz0vH7+M7Y7Htv31JImu3ByGSdQazjWQaP0uWxTUTMKZhtVGhXDtxA9XUdbcjl3vSyDuxy/1A3R2Bcy3rAUtdXYRJmRh4ixO+fKx13REb67fWv07cdpxD5gUYCPgeB0uMgMv/naWzoV00PFoCQLp+6OyIkzQBXjhgfs9b8zpaB1AyB82Aelujl8bYqshYAhxcJ5bLTk5OWnYA4VzmPkwD/5nhs95jJ7wU4e/MOzN1AALP2WQjDHI8F9JWjMboR+TDwUAHBLqIZqTISfFYcRMIdMq9K+WbDEBukXJmrMWKnC/X3fcuWIqsAR++a5eNIIoNTZvKkg7E1/SxnTNPMNAdM5L8b99AgLYzqUfLR14Kol89qUfgcRvdSj0SICKpJ6bXM6rONfeOauzGvtP1ZLt8rq83At9ddO/cFyIkyjUDQz38nuDHxzoi9Fz0dsZ0+t269YgNeI8+H7KkTeyWBnI8M6ekmxsGqZSH47y/v5/GAiAAE+OlUS/TYDu9XNFtr/VYOxmbpDtT/NZHA4eqmq476qe82yzJfq6Dxb7BNwiz3lIn23LXl/PzwUkJ0kaAgLr/DP38MDCQHb9krEaAYIRm7eiWEr6QjLKNsLqIw+tIGelXvVH7lMH6GFndDw8Ps/q5Hjb8adCr5hFnghLqzqR0Ge4bt9k0cPbByECndE6vU8hdQMNHieuQyyEdM5Jon//cpy5rBBTQB8uIXbBxcVl2/uidI5vcGteViUHKeuU5dhzeapv3XMi2Guya0XAfem51zEyyMLmmysvA2KyAnU+Wv02n/ynswMiGjhgB6206+rStPh+anQideYDty3313f0zDNI5F3tohofzuQtm1Xx5NEEnda2qiVUwA2Hg67l/cnIyJfdV1bRl0ttQ0Unse+YWUI7nI3XJYDLZu7TVHkePbQcIfobshRmwco6MSx7fKXbV/Ba9/o1zkaWozv9n5FH1dr/4zllzbho8lMUD+PLysnGjC+re0cyI16RTedlPTTlL+3CZOC7TaNP1zygy+9OsQTrXkezbuHbXN0OQzEACgs7pe+L6P/eNxzcn9mi9FkDgenGNXHN3dGzw4eiIfcweZwOBpExzOW5bshnOBEPKNTHyBgAZqSeg7XJ4nDTr/jCA4t7wCeLc37vIvvX0R2UUzdvxjwCBf+u2E6ad5QUz4CTk19fXGSOQz6Xw+FjvOd/nsawAhe8gzdF4zjvk5ORkdqMuxPrkbYur1VsyL8c534F32uClqRGDZeBkW22WJgPb7pUMW/fb35EPAQNpANOx7zpREzSY2vJ71RhdJSvQ1cdRhSN9DI0ZAs53RIMx53wU1/f2TuPaOZoECnZUBgS87wIsdpVE7dmP1McIO8fHCrrvZQIk6+Q+w3GtVqvpxiI43qSrO73dBogSnKazzTKpU17X52bZu7AxCU4MpLv5RbmeE12bT09Pp+jNYJ+2JG3vSIlyaJOdhMFNUsGeX04O7Pp8JIego39XEqh3rw7kWZfzZmv+rTunqqa+T/0wi5k5AFX9A7wQAwrAADkrzE8zWxZ03wCU63gvv99Xq9XGczOS3aLtgB9sfIID2uZlgQy2OIb6OGl4CQxkGT9bfikYGCloR1F1FLPfU1KBdwEWGZHnfx0FxaB3W02cFJLlcd7r6+t0l6mzs7N6fHyc3VQjo600iiNlt4NwNnoyGEbcSEef5uesU/Yfv+eyRAcEuvL3JUbUvDt6p01dzocd8C4gdqm9ngfddruqt7sNeqyX+jgj79EYZlS2NHdsgOiHqs1bt3bOJenRBATZV1xjBGgNil2nTAwcMXjZV4egjz9DunFOAG8A6d1M2Brfhr37f6Qf9HVS736nHrA/GQmnL6h6y+gHCGDjkm3NdicY6EC89RJWgG2Mfv6C52Pm6WRugxPBnW/k5MMuGPADnnIejcAA8rOXCz6cGciXkdMuiN7nObpOp7rNECPueA+YDauZgbxdLOVZyarme74REg69xuvHbI6MGPWxQU5K1QxBlrULU7BNobKPcnmgM0iHKgkI+C2dqccdMOfINMebcvjuyLVjJzAW3fwYTfRddDwdsgEz9U4HkdFZV2++5/qob2WboMa3bs2liW5cur4EHOTygZ2OxzL7aUn+CaxASqdPyShlLoifhplBypIzMnDuAF5VtTbKrzzeZbP8g1PlxkLZ3m4e55zOMTZ7cXp6OnvQEn6J98z09zJGt1zhumR7OYbrPD8/T9sn7+7uZmzMkh7/TCBQ9QvBwBJC7ZSra1SnyF2n2tiMyumkoycTDPjdySOI19VAr65DF01ZSVk+MOL05DILkdEPZYG4nTi1S+QzQtZ+t8LZgb2n3EM3tOl4zb5gMHBq6JvX/lKSWaJMG8s0hIgdqVmBzmgabJrGNVD0+qd1xv9D72f0k4DYyV/WNebEEis0klwO6NgPHJOfIc81qJeTdBmz7N+PNKw/W5aCo9HnDgT4ZUAAW0lUnHqAoA+2gXxP/aYOMA08XjvrZfuatg2byE2pPA9to5BuDvt7B1gAGTw3gCRGbzUElHjbZN63ItmNkSSLxoOM/KCnzOlIps9tXQoe3iMfxgzsAgA64JCKm4jJA9w5QNM8nSPzNUeRXioV7z43oy8UirZQXk6i8/PzaU9pVc1AgA1uMgp+YYhHCp9i5RpNqC5iAuUuyRIYO1TGYFS/BAQ/sjRgQJl3lrQhXK/XU0a0HWCOp52zjaKNLcAU6hPdt+HiOEeE3a4BruV9+/xHWeg59aMfzKBllDpatkI8z4lcsQVm03AUd3d3G2u8nc1ZskO7sC6HLh0bsJQQio4ABhwZV82fAmjHWfVmywBktol5t8kul8S64GTTXL5gXHHK6KXn1pLkWDJfSHZdr9ezZyDc3d3Vy8v3m1eZGUDP7u7upkcWd2WnLbbN9PjYXxiM5ZbGXC5Mff1ZuvpLwMCIFcjfd2EDEs3yW1IxRpdV890BzlTm3YbdrAC/2WHugvY43/eipz7O9KbNDLSzvG0k3ZaO8kqGIFFh5+C6fs9+7F6j8pfYhxHQO3TpHEWCAf/PeqMlaW6LDUTnKDESHaiw4+W6ea7XfjEqLE9RfydHmhrOh6fYEN7d3VVVzfTZOuA7Z3Jetq8DUzboqcteusi68jttAex0wUI3rrYF3Vj9LvqKZH27gCqXiuhTP0Mln7SKDUwA6mAib9lre2sAl9EudcHOZaDlh/rktsJcukXfUtesk+lbeLhSzjsifl8PMOCtkoCKXKK25JJc1i/nLeCMXIm0O0s6+3fllzMDI0DQ0Ro+1ig2lcfnd47S/2eE7mt5UFx+Ijkj1bzJkOtvAAPSdPSet0KtersRRjqapIfSAeXaa0Zb/GblyTb5+ARV3Tr3iK7KaMTH/Az66ldI1ms0mQ2KbAxZ6/PjRzkecX8QrXvcHL36nDQWVTUzxpybSxc4ehs3DG23rst5bn86kHQIZq3sBGi3gTWMhNmGBLS0LcHASMfdBz43GTVHtJY0qiOwe0jyXmCSY9k5oqrN21+PWD/3r+2WQQK/Wz/5jjO3Pe+uYda2Y60SQANEMoGv8xdOAOYdoAEj52Rh75DocsY61mub/qQPrJqzsKvVagbO/OClPO9XyE8HA1ZE3vOFGM11x1qRLUmbdBR81eYSQZbTTZT834Yco5+Ghu0hGE3oLTsDJg8GO7e+UM8cfLMM29Cnjbf7xcd00rEOidJ9XBdt5bh5bPdtZDvAye/ZJ0sMifvIWe+r1WrDSaWMjGCu4fo9k/E8tvQx370lKh02euFEpxS3K5P+nC+QN5CxA6eNZsco22DJDrsD8gYN/O+8B98qliUMXjbo3fh30oGD30U6++nPHbC0ZICGg2X80AfbvAwiGCfbUjMCzpZPO+TgzWyD50vnB9ApR+8+n/87/wPQuLy8rOvr6+k+BL6FcgKA3LGS+jmSzu9Y35mXXkJ0e0eJhKPr/h0d/pCthR0QqBqvv7szHPn42C6qrXqjHa0UlMsA5OB0kXcnRGNGgkn5Up6pMVO6FicHOkLjWJTZBt9lbAMxFlNlOQYJBEY0d4IB/55j3KHlQzC0yQRYV3YFAhhGg8zUSaQzxkkROhL3WmtuOXTE3+ksukSZFxcXE3tB/TC07g8cQAogIu8E5xvI2HB7icLi5EIb2gQDnXj5AVBiWpaySOzyE+pyrEfO8BD08mdKF3wtBQJ2+taPZIK6QIFXsqI8jOfq6mpaB++Wd/2d+/XbnvBf1eY9VbL+6U86X+I5BkjxcwKsZwbBZps4Lu1DCrbB56Wt8VM285bGIzDzq/T1p4KBJTbA/21zEDmIqRSZRZ10o8vs2IAOEIxkG/JDrBw28MkQ2Gh3guH3uijHYlQz8qaPjFbdX1VvYMj91YGA7D+XY8OdzmhpUuzahx8paYh4T+fvvk5xn436I8X6kBR/3v7XSXOZ/W3aPXeRIAauCSa6iMNOlMjKkUs68ao38Or1fD/X3kDXZXfRO3XJuiVoTkfg9VzXK+0Iv/+TZcn2VvWO1EyA8wU63crAq+ptvLwrASBwdXU1Rd+j5R3Xm3qNfAQ7SjwPEJx2B65ziYC5xf/uCx62Zd1PRsAApAtm3U6PjZk6khT9MK3sj26e/qoA66eBgV2AgCUb0U1en5tMAOLkk86hmRFI58iLKC/LdsTSrY/uYlg8qCSEnJ+fbzh4K7gfmFH1fbI9Pj5uoMVOcuJmXRI4WbE7IDAqt3N+2yi0QwMEKUuMQNefI+q/i3YN2JIV8KS3UXUCoHXDtyKGJndCn/XN548AgevtyMfXIPqz7mJ4eT771dXVFAG635Jxyr7q6mQ991iYwaC+mcDmLb4GEScnJ22E9jvLiO1YshEW5j72xXdOtQ6PbJ4BLclvAABe3q7o65KkZyCSc896YbuILfPNeuxMk6nKKDt3KXCOwbfral22znl5zm0hiLD/oY18Zkvs3d3d7H4FbncCecZgSW9/lD346czAEiNQtbyDYAQIkFH06Q7PtUg7+9Hk98BbPCFy3Qgx/ZTolvrkEgDUbQILR1aZMNMBJAMl01HZT9n3HRvg5ZRRn/v8ztB0DMNozA5J3E9L7IClo+0pyw7VtB/ldEbI+pqG1Vu+MtPf937vDKHXa0eAnXp6q1hG4aen358Tj/PHcKHTmeUPxZrPrae/OJf3LlfC+s28M8uQy2Y28tTDtK/bfMj6aHkPk7HNhhpodcwSkiDY5yeIrZo/nt3Rdu5QyTX+s7Oz2Xp5Mhi0CSCQ28urarpPCwl31jPXwdc1AMUpV9UMUHZ2HDCKPjFvvHyRYuBse8B1YQUSCCRrOFoS/pnyU8DACATk5Osa4kEfsQLIyLEkdZNRiCNiC8fnLY39v6MPb2PJOnfUaxchGunmRPMWmqT+RxS+62oU3/VR9lVXbtf3S9G+y/ZxWY9DM8CdLjIe2wCM+6gDTlWbGfKpB44SfDtp3jGqJDoRdefWL2cfE73nkkLmq1jPiZa9z9vjaFqVeueNsaxbOH7WQe/u7qbn15+cnEz3PYAlM1jKHAn3qwEEQj1OTk5m660eR+qbkRv9sItOHpLeIjmeCQK6AAvbY8qccgCCIxvqu28mKBjNB9fPDp0xYFy8TS8ZMG+fdbsNOq+vr+vTp0+zJSyDauqXu2DQU8S6XbW5pGIg0CWAUz/bbso1eEUvYQa6XAG/d+Npn/qz9PNvg4GRUo6ceQ5qgoAlIDCSRLJdZIwyuPyM/hIU2HC4vFSARNzbWA0bbY4xlUvUh3L7iVmJ4ru+WPptKVrPMTHyN/uQoKDr/ywzP/8OsmTgqjbBqfsggVHqQ9Ubo4OjzP5MhsKA186cm5V0oJTzMzL3uul6/X1v9RJ49c1oHFE9PDzU7e1t3d7eToYtb9Xq+78DWjjfVKvnZYL31ept25VpYrZfGchkee4X70SycR7J7wAEeN8GCjjOtrZqfptp7xzIHSo4aeveEotrW4EeeYnLgSDX8TIDrFhVzeqWbe+Cmpy3OH7rJrkmDvCoN/p2c3NTVTU9ldB2cBQQ+Bh+S5AN8EjWLMFbN7YJCH6W/FJmgP9G51T1N2VAuoa6bA8g70vsQdUb8qUjzQxwTN5Ehutmua5zfs4B9ZYnR+FG7DZy1M3Km1ncWbf8nNI56gQ22WbecwLk5Mv3PD//+50kx9KgJ6lqS7Y3aUQDBY850QvruL4uS14JQDOfwMadZQSuBXBgLZdj7YgdXfk8lh2qvhvIL1++TJn8fO4e4JK3pOWa6He3ZGXBCQEoqJedkw2755Xp61xG9LVGNuOQZAQE8piRHe1AO3qXW+kQMykGEXzublbFeV3A4Lpx/snJybQD4ebmpj59+lSfPn2qq6urqqrZThHKcF3ScbqtzAEoeRgsA1ovV1GXi4uLCZTc3t7OKH3rNv3jZYZkAZJltj9IpqpjgZeCbJ87+r6L/C0wsIRYOgXNz4mCdgEC+X3JmaVYGW00UFTXZ9Reiwet++yB9k2HjAQTWdvJoHS+D3bmLLivUoE649YBpa6fsk+q+pvkdIAg+2zX8TlEGekzY4z+bNNdZAQIHI357meU9/r6Om0VNIVaVTNq1Y96xajjrL00AbWea/zoGW3KNhK5ETk9PT1NZT4+Ptbt7e3wccIsNQB+iNSJPLuolPZVzW9kY8DuOdExc0l9p75mRLkLsN6HbJtHnZ7angCGeOccA0fnRiEcv1qtZv2ODvhWxr63fjJU2NzcxgpLBSMAGPj8+XNdXV1NunJ6ejrpiJnctKFeFkD/uYMmesb8gjGgTNoE28Yyxrdv3+r//b//N4ECM2DMnVxC7nyaQVGCAepnwJBje5DMQDr3JTAwAgYjxTVS2oVp2CUy66KA9fotmctAwLdr7dBZChPFio9y+Rhedq4jIOCoDkVLBen6rvvcHdP9xzvG321IlqArw3LoIOA9IBLJdi8BK0dgVXMqswME1gszBLk2b2OT5aThceRzd3c36bsjZ8r99u1bff36dXLmHEOi69nZWV1fX0/XwbEndV9VG/WuegPDVW/OvXNA+SAk6sjxzA2PB9FltpvkMi8LdHPDunBIzt+yFFx13y22KzhUB1I4yLzDXtXbEkFnW7CRRPQwTWYJnP/B2FGGmR6zW1mGr2lg6KWuXCLjevf391X1pn9Ly7j0I8sD//nPf+rq6qpeXl7q69evdXV1VV++fKnb29spF+bk5GTaFuicMuZn1sl2w/7OOm9wkcsi6Qett38XHPwQGEjHkNH9yHkvOe0EAjZYLr9q89Gx2yiULLcz5DYYfO8oxPydiZTfV6v5w2ZcByNmt8tOICengUBOzKXIvDt+22+miY2Y/TJgyLqMoqtDM7QdIBiBpxFw5T8boFxGqKpZ9GvHyXkYEcaaXSeZZGcH7boYUMB8YQDNKnnbH9d5fX2tu7u7+vr1a93d3c3AAGv87Ca4urqaOV4cMZEUUZbbDmvw8vKykXfQOSLfCpYIj37mvMwQt2Og/TAVuXsjx5DrdDp7CPJe0DqKRlNPaCM6ayCQ89i2wdfBgVs38nkH9L/ZUXSKJR+Wq1zvpNDt9CnfCYLpeLkODxyy7XIZTqClPdfX1/X58+f6/PlzVdUssds7Xtbr9ZRP4CWvqjfGw6AmxXORenhO2Bbn+G7T0/fq8bvBgCuSjnoEBrYpsxUVZ+t3jnEdaChOKevgsn0NLwtQFtfyJHHbLDZAvDNgGNdu2aOqNpTV/xsdejmB37Kv3Ged09olUujKyTIMCJgIS0o2cq6HZFwtNnoGZQkWR9JNTBtdvmNgrde5xGBgCxhIw4JzTt3MZamkLrm+jQ5PIHx5eZk9npVyWEqoqlkEt16vZ4ld5ALc3Nxs3AeA8jCYS4DdxjB13tGsI37m09nZ2cwhvb5+v70sRtzMjKMxv0bje4i6677sbO0oQLKOOhI1bd3N2ZE9QVfRD+968ZZCyib/iURO9Khqft8OzwnruXfYWB9z/rqNDq4YZ5gukhZhpJws6/wYPzSJOvhumGajzFxZ3/wdcb9nAme2axdf+nf09V1gYMQIeBDzuM45jRBSp8jdMWlUXA8jyU6pMbi+jh2q15P4PyO5jjXg9fj4uNHmNPwonSMS0CDKZECQ0XsaNCvNknEYOf90fqN+dpndGHZONcfvUGUXEGMHnDRj1eYtSvktHQ36lLtX7ORtUMwSpJEw7elrOyeGGwVl9N2BTG/9os0Ahy9fvkwOHif7/Pz9Oe9VNd0bIZktL3OZ5ejq7n42aKKOtIv/nCCIIb++vq7VajW7E2Iut1GvLuI6ZD0dySg4y/V0L4tWbS7N+r8st2q8VIaecr//dNbsVkFfYH/4DBC9u7urm5ubCZze3NzU5eXlxnZD58d47d726fn5ub59+1Zfvnypb9++1e3t7RS5AyjQM64HcwebxfIaSwPeIWPH7WAumZXX1/5hXdv0bBvQy2OXbPIusjMY6BxvKhrii7tTRuXa6dpIjCZqLg04sWjUUSldZAyN6vVbG/9sr8vN5KcEFHzOyWen4YRBG8903AkCsn+68XJdc306+2UpunC9XY8EQN24J8tyCLKLbnAcfWn2B3FmsccmI9Kqt2gaJskvs0eZmY0DIzJer9ezSIZ6ML5Q+zhM3/bUwAJa9OrqatrXbQPHmLOE8OXLl6mORF+59ZW+SjbMy07eCWFmDrBMv7s/rI9cu6pmWxg532vSeTfHbl50cgjAwPOrkw4IJJ1tHUuA5blLv/u77bLtAKAvbxx0cXExOXH03DYRdgeQhtO9u7urq6ur+vTp08zxUlZVbdyl8OXlpe7u7urbt2+zG2FVfdeJ29vb+vLlS339+nVKooWRYMfC2dlZ3d7e1v/9v/+3vn79OrEXr6+v9e3btylngHwBzyMAhEG69RI77vltP5CSbGGO7zZ95fgf0dt3MwPpFLvkCGSEVHhP9Drap991nDvMGdGJijMqS9DSoTQfg3I5SnHGLIPn9dlMSvQkyvbkmrsTBzOBZDQmI8eeSpQJkQmqQPidcfE56fSQLmpYQrP7lgQw/n1bXembqvmSUTeuHSBI/cRIZ+KVtwoS0ef+fM6renuYlulT1uodlXDs6elp3dzc1F9//VV//PHHdJdBDLVvHEQEN9Jfr/dT99SPXJvN3Q9pyDjWDEpeFxaF/AAisY4BcV3S/uT4bAtkPlJG9sm/uT1LQMAOyTa0A/Wju0LS7/f397MdBTc3NxNIZSkHcJbAF130Lilskul79NmsK5H78/Pz5KhZikJHAApfv36dwMJq9bYDAiB9eXlZ6/V60nV0//b2dgIuThr0g7v8TIHUE8/7ESCwzlm3PX+ZFx7n/Oyx+1G93RkMpJN4D1LpnEJHX1lRjVCTxqKcqvnz012mqcSMlrd9TudN+3O9iu9VNRlKlDbPdf1Nb1I/jGjSuVYUR1w5mTOSHY1D14cGC/6e45trrCPwkTJyuockI93ugJaRvyPdnNzJ5uT4ZF/m3MhsbBsWb226vLycUZGwBja2GJX1ej0Z4pOTk7q6uqr//Oc/9V//9V/1559/zu4hgAGEYiVawxCaNfAcY52YrZBPT091eXk5AQqubQfjaCkBC+UDyjvWxWwXWzPX6/XsQTDdnd4MWJzj4bE7FECwTTrbakfeMa5Vb/bJtgV7kKCU/wywvETjmwbZPtrBc628fbABQ9rZ9Xo9Of+Hh4epPoCB29vbWeI2oJBt2X5+R1VNjvzs7Gx2W2COBxQAKNEj32LbwMDJfinO5Um/1IEIwDh1Ncvsseb9Z+no3wYDaSTT4OXxZhOSBRhR8Fzf5Znqcv0MBqreot8EBF29ErnZiRsM+KEsbHV5eXmZoV5HbmkwPXG8LEGyFufYSeRktdjZZC5D5lBkVJ9AwOPmOnPeaJtbB/beAxj3JUsgIJ0UESiT2WzRaAmkmwtIGuclQJdjZyOFvt7c3GxQ/Riqqu9R3s3NzeSwr66u6vPnz/XHH3/UX3/9VdfX13Vy8j1p8O7ubhZZXl1dTQYzlxucNMg9CFxvIkjv0baeGlSkTcmoPgEDx3rLGjdrInrk2nd3d7NcCpwM48L8c3245u+gw/6cDr0DtsnajECAASlicMn5LMWwzRCHzDjBYDFvyORPNoAbD3G/AeypwQOCbsFYObeAOuYuCesP8wfwi57g8GEtMj/AOzA62+t+sv3gs22Ldb8bz9F4JxAYve8qPwQG3NCu4Z0YCOTaaDp6rle1mfBXVTNnncbVFMuont3EcTRmFMxgUW/QKlupjFBdForrdX+vZZJok1nj7u90up3jySjVCuCIx7+7XCtmjq2P38YK+Hq55INsW/L4SBlNsoyqOkDguYAuu8xO3/KYjNyqxg96yvFizKFN6Vf2R0P151qmje2nT5/qjz/+qD///LP+/PPPurm5mZYYbm9vJ7ABncq93+1YbTTJt0mQT13v7u7q4uJiYhlyuaMzpgae7pNOjxKUV71tZQOAkIuDznOc53oyN8ihMgMZLXZBF98t6YQox7aZz4BL655Zqqrv+STo1u3t7QRKsU3eTeO7SebSDEDCr9VqNTECGYU7Z8HBm0FiZuqzDAszQPnoSAIB58EQvHGNJQBPm+hrAHqOm+s7KqOz0Z3N7gDArkD23WDAkk5nxAik4ctkqZER7RrkZQTXh/IxSu9lLCgjlyqsqLm1hHcbPh9PEkrVfD3Z23CgqUCoCYwSCDGJkC5KzzZ7fBIEuN2+XjqkNMiUt+RUPb4jI34IkrrQsVdVm+AKh0sZHTvg8Uvd5T0TBR39d2Vi0KATAaI3Nzcz4Jrg7/T0dFoW+Ouvv+p//+//Xf/rf/2v+vz58xSl4eDRCeha1vaJoL59+1bfvn2blg6I9uxEaPvz8/OU2W89SmNLH2cf+JW67nEAGLlcr+9aj93vdhKOVA+ZDbCk/na2YxTE+bN13vvjbVMceDCf806pt7e3s0DH4+6AIX/vAk6uYWBnQOCXx5Pr+NbYXtsf2UvrXNaVY/ExBlvoYRe8Zl871yePM+OI/8kAJF+2w38HtL57N0E2bNuxI0DQMQNGdbs6D9PbdpQjhJ/16iY9htP/Zb19bEbEUGG8bNAp06DICkQ5dhaOZGxoTfVTdsfWOKJKR+4lFTs0t300FqmASyj5kIxrZyRTTztdteSylMV9xbhVzaOuXIfl2ASVXCvnCRQ4xuPs7Gy27amqZoaP68FIffr0aaJiWR5IUO+lMfZkc/th9Pf8/HyKuLPP0jk7o79zBktRz2j8PFb0DQbUUWNS/3mdJXtwSJL6ug0IjJavRmVb1xhfxslr7lWbzAmA6vn5ue7u7iYwkMci1meABraXJD/aAghwxO4ymVNmLtjl4lwAn5t2L+ciNthtdGAAe0Y7c53fzEsGFMwN94VtEP1CHTpA4HHr2ID3AoN37SboCk+E1SmlFSwbZCNHB6aS+RqO/H1Ng4COBRhF0G4DCuQBNSigfqakHNUZTZoFgbq00/e1Ujk5nzognRHNdbAcm9Gr69ukFF3f0Xl5PUd07sdDMbAdal8CAmaB0rAmaPPvgMAs23klvhufAVcyRN2ySxrX9fp7sty3b99qtfrOYqGrZiCI9AAT3LOdiIrEQI6HHeAzuoyxtg7TF076S0aJsruIKvvPDIrnVuqVIyR0z2Nru+N+NtXd5cK4DX8n4vpVsmRjq8ZAwI4iQYMDGvSl6i1PJhMHGR9fFxAGy5TBRPqKZAecpHp7ezsFV4xR57Q9/8wKeVkLMOBlWfrOtzX2XHV97XNG7FXqUPbZNjvo8bBPo3znYfxsm7ozGOgcbH7uQEAqajqXpOTSMCwxBKnIgISsp/cv87+v2Tloo0BPCNCmqSKXZTBjlgBkjaFkDcxUZlKUXmd231kRs386h5/vI5rQQKBDxfRbLh/kWHlNjcl7CIAgx3sUUSUgcETbtcE6jf7k/LCB8bYmJ/vlWHgrmFmhXNelPDKrfYc+6mLK9+XlZdo29fDwMFG6HlvfOc466xuuZCY4dSVC43j2bfvuhgjGLR1U6qEfcpQRFPXGsecYUS+WVKreHIZvQpTM2SFIMiZVPQjoAFYGPKn3jFPqJ2PvfJgcG4Ibn0N5AE2OdzK1JZku6nJ+fj5tB/z06VNdX1/PwAnJiRmImQnyLhKYAe4J4IRX6g+b5sAwQb7P8VLK5eXlDFC6rQYdfk/hejm+1In2sXS4qy31vNomP+URxlx0CalaUWmcxZR41eY9AKyMDGau6WM4rPijbORRtJYOEAPj3zAsNn6Jwg04cnuN+4CJ4wmzLfJ232T/d8eNHDfnuTyvh1uyjV7S8Tt97jJHVPs+ZRsgsNHD4XbsAGIA2OmsHebIcGe04uQtvucT4swYrNfrKVluxEBUvWVgv7y8TMaSMn1f+ao3Q+TtVF2kRXSVTqaqZk4370aY+QBLRq6zKaZfk6r1WGew4TnhfveY/Iro6+/Iks5uC7yyLXZ0aQdhfbCHZnPMljJeBslevsKeZRY9knYHQf9w4Cxpffr0adoFw+ONYbS4B4ATBs0weJ3eAVrV3F7l3HS/uy851/MMUEHfdMFnOnK329fPMTe7nIBgyb6/R344Z8C/d4izAwTZqU5GsWSHpzJb8ZJe9HtXbw9ORlcYMwvlo9BGw0yUTCSxeC2TuhlBV9XMGHYRv9mS7CvaYSPYAalOYUYTE+OeYzHSgWQiRsZ45Ej3Jbsa+jSC+V9OfsayA6KezF7mqXqjYs1K2NGvVt/pf+6c5tupOsPb44jhcztcX0fElI8zoGw/stVgwPcN8LKWI3berdssR/Biq6GNps+j7wzQMorKfs7x8Pz1+Ked6gDriJnch2wDBLa9VXOQavtl+5fsU+6oSiCQ9fC1AHxVNd3vorPT3dhQntfgDRLRSZJgP3/+XKenp9MzNhzdMx+8e4SgjLqy5u8k3JR05hbT9Zn/4yUE+p+2W9K2ExRga8xO0y+wgJ0kCHgPKPihZxN0lNNIMZMVyApiGO2ATIMnKOgGLCkdO2A7X4OKjL5Mo9qQW7EYXEAASC3r1tE4OYlou8s3hTpiAGgT16HMjEgTUBgMeJxyXA1KkCWmonvns/vahv13kJz8I0DkCesoincmrfv09fV1454SnV6bMXAk4sioqqZMbo+xddbGlrp4zqFT5+fnE4Dg+oi3Y93d3dXt7e3EDFTVjBWgX3JvNp8dvfk2whnB0zfUmT7OYMHAlfecU6nbXMvsot+32Zx9yi62N+vcMX6038tOZjq7IK+bw/yfgUS3/ENdDARs92yrq76Pt7evVs3nADb77u5uZru7HQEGqsxBWK8MTD138nz3oeua/Zt9hQ/gPZngZNS4bgI1b2PPOnTX3VXexQzkoHYKaNQ5oqyyPDo+DUBGtkuTsusAd+7IAWZb+AzN5QEzyAEIsIULZGiklxPP322kMIhdRNNF8/TVEjgaAQGXk33i80coefRbKqPHlmt064aHJp1h9Xh4bK3DOdZOUsr+dw6Ln3zma6bY+eVx3RwxC5H9DgCn3nYUnoPoGM6fmwZ514LLpk8AH1679ZKC1+s9D3Zxuq5XOp+R8e8MbIJq2A0b5fx8SDLqq24+p53t2MW0BdneDhggad/RCQKnkU67fkuMZ7JeDuTS+Vrn3Vazbcw9z88ErOiWb1KVgAnx3OzEwXAuh5s9wJ9YL9FVX7cb427M3quzP8QM+Hs6/Pw8UloG1UbMk9kGzpM5r2nJKGJpkPI63rphpbJT9vWfnzcfMpMZqRldu56uYz6hsKN9kVQQl58RTV53KaLoxndJtilagoH3lr8vSXBLnRkfMzxdgmc6mqrNvBVfxyBplDdjnfTNUfjdYDJBAk7XANEGx0aX6J/7CtCWx8fH2X0FDALcR/nIZJIHYRPYgpiAKo1fOu5RvyXYsrMwe5fj6LLodwy+51cXKByidPPY9bWz5T/snZmSrtyu/5Gksw3KuG5VbYxB1juTFDtJe4luQZnnEymTcaia61eyrV6uQHfzccS5Ndh18/U41n7LjjzHhZd3CnRga2S3u376EfmhBEJXJrOIR5VNh54N2ObMMnJKQ5L0jo1fh5hQiMz+dnkGAtsAAc+ZBxC4zm6b61k1T65KhJzn2FG4b1xf19GOxO/bwMAouuiihhzj7nNmyh+qWKedvGcdcvKqnc9SVFXVsy2MLbqMLnopynMKx/z169d6fX2dqFH6lzrTFq7hffasOdrYcI+C29vbyeAloPDaqsGLDTlMgBO3fMtin4vNAHRQnkFKjkv2nedlGn2DHNO9jKFBm23AkqHdp3Tt744Z6VhVbbTTdhQwhE1kqcjr7JTX9Xc6uwS4aav5zuO1Pc/SDln/0bGvX79O5XM3TBgo617adztgB1y29052ZRnMN3pLW5h+BjDg8+xfkr1I+8gxaTNGY97Jj9jbH0ogtCIldWIHmJVyJ1JORvFJyWWUkEkvRvKOnkxXZb3TOTv5rlvSsLhcUClLBiP6jfNGipjbmvJ6S2JFTOBkitT/dbJkDHNMRudnfTOyPURAMDI8yT4lGDS9V1WTM6a81IWRZARqnWT80PXVajXtBPD9A6q+6yIJhQnKDQjMgLkPPH8TnNMfNuyOCFer1WQ4zSDkkzdNx2MkccZ8zkg0QT99htFmbPKmR8nycevmfOpi6sKhgYBOujm9RB/7HAMjJ6LZljqYQT+TrUrpWOA8tmNK0aW8XupX1fdxvr+/r69fv9Z6/X356uTkZAIHX758mT1UCzDgTH8747whFX3jnAMHb+n0DYr4TFsyn8zg1X2QjLDH0+dnQqUlg8QflZ3BQEa7NiBei0knslTRLmLnGkhGa47aklbsmAXKSNDQXZvOx1A5EZGbB5G84TIwRDZmGPE0SjZkBhDUkS1dloxAR5ITOY1656A64DWa1EtALctLhuJQwEDn/K1DXdTkc7MNjjgxPAj08xKoRK+4Hp/5b7VazZ7ghn55vzSRiB22s5fNYtigJICkXjaOtAPGgO2MySD4drS+2xvRt+uI0WTeOGO806kESzkeNtTUJ7eBei53gUJebwkcf6QsXde6mklmmaRWNU/qtf6ljUhWCBktWXY7MDg+I99ttij7mzJYblqtvjNh3OGwqqZlqG/fvtXXr18nhoD54T4xGMgnGuJwM7cFkJL9k76EvmDLo9vh5b2Hh4cN0OugmHpzLX6zz+j6KnXjvfZ2ZzDgvaQ2oBmJuGFdBVM6g8RnR+vdK9dYR2KkmWjO7cFgGWhw/W5A7Mir3iKWdCK5vmTFQpjMo6xfJnHnwEx5+ngbdn7PiC/Bm989Ph0QoIzsS/9u2ScY6HSr06nsk+zrFDM7BpEGsXn9qnmkxvhxTurlxcVF3dzcTA9t4XxTiZznLVJmz6yzTliyQRuxGV4qYwkjwQDGjvZ4d06us3pNFlYh15n57PmS/zmiss55mcDzyMsVdoI51rYvniuHKB0QYGyou6PMqk0GxHbFICptpfsibWTaJ+T19XWW39KV2QWXyHq9nj2Qy4+KZxmI7a5OcHWOj/O5bKsBGIABMwL+DqNFGw1wzeyx7NXdp4F7IXAOus//tNUJtbB/fDaL4LHjPYPv9+rsu8FAF0HtEpln5bYdl8AjmYFtYoeahpnr5rqXwYAjLCvQCBBwHS858FuiyWx3OiPLycnbg1QYbNfJx3lCjhxMjlEenwpup/MeZmA0JvuQ1L8EValfIxo9pYuikY5Sz+McabgefseQ8UQ461FGCTbiNtoeS2/rQ18pw2CoG//U+3QG6/V6ygEAuLgtVW9AAJ309f0aJdO6bl2/57ibmTs/P5/uzjjS6fX6bVeB+3KfQJZ65PyxDicg8Hw2GDA4yoAikwETiLk8s8FV862LLjej2aTV0Tv03Ddos+OkLMaPaz89PU0PzholqeKkDXTQZ+e1mDUyC2L9twO3/jPXuCkSTB4BwsPDQ1XVlPjIOBmcm7FD12EJsh9TD3hPQPAeeddTCzNySufeTZrOwecx2xxMHucGZ6Q9AhdWdKQDAx7cjGisuEk38tmTCAXy8Vw3v5uFsDGi30ylchzndoOfxrUzetv6No/rmIGUpfE7hOiqi4gcPRgIIgZN/g3Jietz8toJUG1cl/Z7cyzGpYvkHRFTnm+mhT5Cg+Zthavma8dcAwNmI8XLRhED57Lcl8kejMC/AYEjtM6hdU69Awh2Cp57bsuSXVsCHfuUdMDd56r+CXlV83lvSnzbNa3LBmVmI6pqNobdGHmeALhT/ynH+phgAFYAx+7xPT09nfIFnPDqZMFMFPdnru8+MyAw6MzcC+pvJi3Hh3sHdIyxZcQOZ8DXjfMu8q4EwlHkkE7Z53STDemcyeg3Z1p35XRZxV39ExmPjut+76IvK5EHBMSHk7CDR5w4BWjgWnm8UV+KIyd/TmS/BApc9ug6lg70jdBoZ2QPRejrpPaSyanaTC7NyeuErAR4XMt9YaNBtONnvXcshcvpkqwwxAkGAKTcVMjbsjKKsv6zZdHLD1mHzsAluGaNdpe1enTUa7gjZ+/+d71Tzx192lE4Iua7QV2O5b6lYyxGoJx5bJvlMbSNqprflyWd8a71SuYTANglvvHdS2kdOOZY52ZxHQPMZDHsyDsf5KDNQV3H4HUMlsFLgiPrLfWkTFgEQE2nX51j9/WSJfsZ8i4w0HWoJ68VszNg+XlbpMpxr6+vszUwOjUHrItmMxqr2sx8zWvT0Z4ooyRJBh5lyugQtsDHW3GdPMZ1EJTeE4J2JPBJxe5AwN+RDn1atgGIn624P1NOTk5mz29H15IS79ro/rBBSfDZLTs5ij89PZ0ewOIlgtQdJxaaAUidcLm0CwNmg9vdVIX6oZtEYy7bx/tz7sUm0uQucm5LR9P7P9qbOpx6nwxDggLPYR6La4dDQpe3kvl8g7xDkgzEqvqlkxEYN+hKnWW93eAQXTC44JqUZRvh6JtjcqwSeHRggHKq3gKfBOuck3avc+wpWef0JbbTGWDl1kvn48BGADD9RFDa7d09lO862Wf592Tpu7Ys2etO3r21cKRQo052hY3ousqOAAGdxKCkQiGjSTCq16geVW93zyJi94SwsUkqKOuRTttGjsjHZabD6ZxQttmKn8xAp9wj8YT2dTDo7reuvJEO8L6v6GoJqFCvbr21iy66SJ1rZJ/YuGYkkdGon8rWOVskWQYfk0tGCWgQR2JOevT91XESgGLf990MQuqqWQ4bt6o5cLauZlTGtXMMluyF65MMg+sH82Jnc3JyMq3p2sGZ8Tg0INs5PN8/ARkxMWmHvTPF42gAaWff2bjOftseIXZ+XqLzGLrvXWc7f+pi0GvxcoF1z/rka3bginPdljzf17A+Zz29HJHMGeXRduZyp3+np/Nn0aSMfMU2+VsPKuqAgCdj0odV7wMEGb07QnPEjLgT/duI7sqoy23BCObWm1HfZNJRTkIrVK6DJtrOdnspIsvs6p4gYKnuI0mjmn2VTqc7P8s6FKrVkhFK6pT1DlDUAYI0IIjBgPvRE9z9kxE9TyeEuTCQyOjIDpbvOIkl551Js5xLvSnTkRdtdg6Al71cDhG3cxQw1Alk879uvJhrHcPSORE7DMaQtWIbazvUpGIPCQykU6bPrA9mE9NRG9znWngCWOut54Yj1w5wpt1JvwAQte51+SpVb0mnRNYuz37F7DH9kH1gZ52OmHN8noMBCzqXx6PvCTqyX3I8s6+s40u28712fUnevUyQDsD0T0aBOfjbKp4TriuzE08CKynnZl3yGt3gLP2X4IXvaUwzSnfCSt5noKpmdB2SUX5OuEzMcb+N2uXj/F/HCLgfzAp0IG5kvG1gDkFsmDKK7La42bmM2pF9ieR45blOuKMcA4Grq6u6vr6u6+vraY+/+96G2Dpnw26A4Vtncw1vAzQr4vKr3nIi0GM7+fV6XZeXl9Px0PGvr9+XCLjvgGlez9FM5rIDS/qU3/jugMO7J6i/z/Gd4WA+EgTkksChgYGquf317hCD107cbyPWwDpO+amnHZBKp+Yx83ib+bI++ppeY7eeGQwY4NkWch3GOJNueTeIzSA17Rn/u/9yPNLG079p/6zbyZZZUu9yrnd93smuuvuu3QTIKHp3A7Iho8gpy+jKGyk2CuHJnggry0xGYReA0r1SqCOIjsnpu6SlcnV1zAmaDt8olPecdAmGlsCN27nL79247goEMur+KOn0qxtLR4IZ0Zhhyr7toiRLfncU19UVMMB2QoMBrmswaePTUZnQ45yP86d838wo9Ssp42xzPhfBSV84HLZvEaFzY60EydlXBicep1wO6PqaueKxMeDhdy8X4Dy8lnuoywRVmw6o6s2+JTtiO2rWwDbF7FdVDRka+gPnmE4p/QPlZvRvgNo5S9pGvglgMs9PJspOmLY6OTt30PiaKV1Aaf3O87uAj7pa78yCdfcP8Bgzj/ArZpdH9c767yI/BAY8OdMppcGgITawHXJcckZWPk9u1800e9c5ifryt+6apqCMaJ2wRTlphFjXMeKkzr5VZYdGXVaX5boLErRTS8fVHevPXeTvfhtJlu9+zLXvjxb3iSPJke7ZEXXGp6OXGfMRW4MkPZn9xC6Ai4uLyWHz8KCqN53BCXdRNWJW4OLioq6vr+vm5mYCGJeXl5OhzGSvjKRyvtqxV9VUlucidTEV7D3fGZFVzZNwuyh3NG8TsFFX6FxHpF3kR997DD3u+5SRfbTT9DzPYMO2zPbXLFIXKDkT346fsnIe2HZZt52PY8fo3BnPRQPdjhng2t1WYOus257LHF1yatrCru8NCJIVYR6ypIEPcM4RbcvndiCp7+7bjj3b5g92lR8CA8kSUFlnUiK7oOpRp+f/SNI1KFgCDiumjU5nYEaoMIEAUVQqw4jqqZpTTEm3uf+SnvUxSW+5jtuAVEoqfn7u+mOE/Jeu64h6nwa1AwGjSD+NAXqS65q5JEQ0aeCauuDrJX1PeaZOAQQ2pFWbSZvdEkFVbYCAz58/16dPnyYw4Fscv76+ztb/XbajGMo3KIZxoM5OaPSYUy60c7IRHhs/Mc7t9Tzo2LYEAx4rsrsN4t1XBgLOk9g3GOicEeI5mUGa+yADsDw/y039r5r3lyN9yrEO2hHnMhW6kkClAwVcJ7e20lberUv2RdlvDhyrqrXZthXuF/ep574Tbclv8HyhjZ5Xvs+H+4s2pXgedkniHs9uLHeRH3o2gS9spzuqXOeUliLUkRjd8p4RG9d0VO4BSWOHJIq0JBL2kwm76L2rc9d/SK5TW+EMYjqHnJPHv3H9PK87dhQpj5gfn7/NmHic9i1dW5PG9OTnHEc0eS8CM19+eexGIMD942z+0bjmeBhEdsYadgEm4Pr6emIaiOQxZK+vb8/g6KI+67ejPbfLa7/MjdwxY0rbdwTMdqUDywiJspEEeVVv8w7jCyvAuHnuuR2+O1y3Zv5Rss1upnRzNPXS9H53PSeopvNE3E+2sycnm/dpyPmVlHlev7NF1uust9uMztkXdeDCx/I5bVaCgqVrVb0Bg87JW5L1SEDSXfM9QCBlV9bgh8GA0XU6ng5JWUaOaySJHG04nZGa13UH8zkdUnYUCm0jaKSZUW63xYN6OiOU31NBEki5ze5b6toBjrx25/CXnHn32kW6a3VlLhmVj5KujR7LjPyrNnNjDAjclowWKN8gMvsiWYFc+8QA2KiYeeuMQ9bTCYKm5lO3s27kB1AHbpDidrkfMzkxmQX3A/XEYXSAx/riOeC5Qh/Y8bAcgOPu2D+DB/pulGeBfRkxfh8t26K9LvpPAJlAgN+s97sAgpw/9F/aOutIF7h1UblBd9pAwIb13XqZjjqPcd2zD8yguB7WZ8+bBFjWyQQDCXKte13+QsfIJOjvgkPrwq52HPmhZQI6q4t+/N+SpAFdum4aKwMAGzqui4M2zdg5IhStAwQGE14P7oxCF61bgai3IyK/vEa5TboJ3/VZF9Gn0uwCAmz8PTETCLgfR453n2DAkmDAupTZ6B2bwu/Wt0zeM2hLutnbqbzm6ciZh7PYKJEz0N1O2GDVywy+3/vz8/dnwTsqyVswE9lnVJa630UkCZg43yCGfskEKreDOUOdRrRvJ2YN0wG5PVmPXAZZrVbTtuJDAAO7GPZRkNUFcIiDH+sa7a+a32HPZbkcMy5cMynyfI1smOvB+VyfpR7bS9eL/2gPrNRSP3qe+vpuO/93LBV6lADe87Jj8HYN7Dx2I+c/kveAgnc9qMgX6JShau4IR8YD6Qxs95+jDxs71jx9wwoML463u40q1/EAJm3Gb0aN5+fnk+FyGXmP986xGgnyPbegIJ4E7zFCed1U3HRs24AAx1BGGgL6x+WOyj8UsdGwY+4Ypqp5hJHG0I6iu7c445fGtlsmYP5wLrfudXSFkUPnyNInkdBl+b4EVTXp2cPDw9RuJyiyq6DLYzDgyXbTF7QNnTN7BpB2vf34WGeLd4EFdci5gC1A3Ke+J0PeUMpja1DQ5Sl4yeAQZQTg83OOWzcvEyQbwGeEjP3K5RizCslWdbZpqU0GDslSeC+/fU4C0F0C06o3Z+26u03JANipm51LJi//T2bYkjrv9vwd/dsVOLwbDCTV5gslCLCz6CayZRSlW5FGUQ9JVo4iiMShsLimDQvHrlar2R3WXKeqt/3Vj4+PG8rPpLBDTOXPpYSkk+hPo9CREndRt6+XUUA6atcxFa67luvic1F0O8AEAr7+e9Dsr5RkBHznv8wFQNe75R6PT1KWnit2lL7eKMfF10E3/B0dd5Y1Bsjr9ZT7+vp20x9H8Myh6+vrCbB0Nx7KvIYOwHdUu3UCR/vw8FD39/fTy3Wv2kxMzn52JMj8S2fl5Z6lZRjOcVtHxpqx+52kA+Jul51r1ebN2UZ2pWqe48Q4G3g68k8GyXPFdcrAwvXEtvuVPiVtodlYswgjG2Rdta9xvc3+ZZ6XwYHnQbcc4HlI27OP7atGx/xseRcY8EAlINhG43VRUv7fKUI3wDZMRv8ocg6AjRr1RUn8IBb+49pu3+vr960gVTV7alaeM2JF7DxHzmOJSnf/uQ9zEiNJR2U9O6ed0hkUIlBHe3ZYHZ3V5VV8pGRfdUDAuSR2yPR7nu//LXlLVI5JVqADAgYD0J0nJ2+3ygWMMq4JJj2+NmBZRwAF14Jlc17Ay8vLLIInih+t11rvbYBzaxjMAADaUbznh9dd/TufHYF6XDobQb3StlgXHBEmIFitVu24fqRYJ/P3LoDymPi4DN4cRPHq9IXjXc4IOPl826DRckuCO49V1w6zvbYtGUx5TqW/cj24vm1bguJuC6D7JsXg+D3LwGnb0XWzOe+1pT+dGTBl3UW5u5bhxnTUUQ5SGvLR5M/PicYyaeX09HSiJVPhOjEFlA7ZZaNEGRl7LQmxA1rqCxTax9i5JBigrhh1yrDktfw5UXjWFWfTRf8Wt8FLK/sQ65GZALNK2SfZDzhOGwovXXGdHI8EYV2EXTWPxB3JQu/bEGVE7uvYAJmFcN0ACUTsd3d3tVqtpnEiv+Du7m56RKxvB+v2WA+89o/jv7+/ny0xWK87NsI3KTKjgWCLDAYy96LTTQcjjA9LAGYUcvljNF6HJMncWQeTnXN/4kyTGaGv7ITSNptdpd88NskSdeDBjI6/+3xsHe0z22S2zECmC4I6++OlrKraYJY4zwwwdcq6ZSBkH+Tx8flV87wN/jOgNYON7KKP77W3P437stJYRt87hqBzykxwJ1x1e76NcqGHXF5+dpLJLkDA79TfwMOsRIfgrBCcjxFakowWvXSRSlNVG+X7nBwDH+/PGUHlZ6+hjgyNy/g7610/QzzOuY5scGCddLvpa0eRHm+cq69BGdsiKNb3fVtgjy31T9Cd/Z9ttUHy3LEzBgxzLI81ZmkBR85z4g0ss6/MQgBGfb5BtIFz2gFHQmYquK7Hgt98M5sl+0Pb7fBTL2C8fH5Gu4cmI2Yg5671omq+vJXiMnD2eZzHcsk5ARIzQKMM7Ek6f8Cs6+tkT3S0qjYedFT1ZnNz+cpt5PhcKrROe57Yz1knEhR7Gdjnjcat8y27gNC87t+RncGAKY9EkNsq0SlR10grliOvHKx83OyorKRPcxKM6K7s3GQsEDMQWXeDha4vRg7Zv5vJGBkjAxVTbB0t+iNiNG6jzDWNikcIvKvPR0qCJo9NAsuchOmIfHxStx1T4+gpjR16zL5/37CHc6tqNueq+qgnmQhHJgkkMfCcCwPgPeOZk9ABgaynv8NmEOUDSgy8MpKHCcj5k8yL9ShZwRz3fE/D7P5jGyF9zjnU+RBlNOfszH1MggJsekrqtT8noB49QKtzfrnmji7mEkLaT7NdBgKAAfSrY0Q8d3IeoDs8B+T8/Hymi/f397OystxuPDr/4jHK/ndfjQCGy0+W4WfJzhqeAzmifap222LYORnOYZB4T8XrUBxlVs0NcCoC/+dWJl/fdbSzdTk2qF00YgOS90Bw9JEKk5ESRiopYursSdSxANtk2xgh3TVgLexElyi5fYkNSzJKvBxZdGB1xAxUbRoiPif45J3/z8/P6+bmpm5ubmbPCHBU0q11jtiAXA5wG+wA0WWvgSYISQOdzjlZj9EcIz+gar5Dh2PNoiTgoL9tvBNUJjBxn/h/G+DMNKdv0AN0PFmDfYttTToWfuv0wvbEOmDbsy2ypx+ow+np6eyJmgYDriPj7TV5g9yqmrEGqePr9Xq2NdY7T1jiokyCkw6oIh3gODs7m+7K6WtRX/dXnp//ZTCWQMxj14EByxIQyDG2P+3GbxfZGQx0SXldpdKZdRFw924AYeomgUAyAknN+PPoARC0wwlKFhvxEXJ2WenQDQJs8CjHCmXF6RyQ25gOYqScCa5GhozzmbAj5UynluUnGOhYln2KHYsBJXpmqj6Bm8cmmQU7DB/TtTkzmjFCfjKhHRFlr9frNir1WHiuGOy4bjZWUJ9EV+yksXAOfUef2egYUHSgwvqUlHKyMGlLuKb7eFtmeBdlJUuTCWA+L9ePE2Qdsnj+OnLE9vA9wWXObcS6gm5Rxmq1mj1VExCbANnHdy8HmNghR/7oVT4B00mojKeXwDK/YOSnPO+5OydzjfK7uUy90990wXJ3bve5alNfR2Pbnb8U1O0q7+K+sqFZma4hKeksfL4RakYHAIHcwuKB4FwMRiZ9ZDs6esrHdMguwU4qNPXiHYUzWiXacZRk8JRAh3MSkGWSoJGx6+HyR+ORgCaPGY2d9SAB4CEAgaqaTXqMF7R87rUHDKzX8x0nVTUbs+yHjDL9PQ1ut9TmOWXd5bdOV6rmd8QcJdFxTWf4Q7F2OwR4NxNQtZkI5qUE5l8yL6vVauYsRssx7lOOu7y8rNVqNW0RzpssdUbSxt7t8Vh0Osv8NuDJsg5BuqCB3z2HDQhwcKen8+dnZKDkMcg5nyzn2dlZXV1d1c3NzcZTL7soGRvOja5M79uxopMc+/j4OIH0qpp+Q/9op0Fe2p8EpdZtbAJLdV76TenmqQNGsxtZF/dpSgYZCeIzAE9QYElQ8B6A8FMWwjrjbzqoczQdqrEBtXNNI4Pk4Fi65JE8r0NmmZ3tOnSRhsukjIz6eLKbk0m2RUod8OA6Tk7JmyBlGdk+rpcTJfs8jQFKSR1yMiQS7qKAv4tcf1S8p54H9BDpAhJME9JW7tZXNdcnO7qcoKkzCSj5zFokZd/f38+WFzoDZqBowJlLZmmA7DgdeXX7/O2wzaZgjBlnMwu5XOa6mYUZLWNkJGtKGqfA9koHJACDZG84l+OxRZ2eut5Z/5wnhyid7tm+WVcT5HT6yXva7qo3++jvBqEc7+BsvV7P/mM80XPfHG69Xk9jfXZ2Vg8PD9MzNAgCzfgu9UnXP54XXuYgV8D91M3rqvmushGIz/ygbrz4z/4il70N3rtr/Wyb+rfBwCj6tDLZGHki2iCYFUjp0BVlLT0QIjtqiUoxeKE+WdcRrel+MBDwsgb1MTXtdoO2bSxtnL3UYLpslOCV9eqYB0un3GZYDELS6OR5aXC4bjdGHyF+WM+nT5+mCIAJmMwA/WuGILeV2vHSdtOGtNt9zbH0K1vuDATs7HGmyYhZMimvi4QNAhyJdUY983Fs6OkXGz3aRZ053jsk6O+sP3UcsYr0PXMTQPDy8jIxGr5roJk4IrwOHFHnTrp54fdDkHRs/r2Lyunf19f5lr8EY529rNq0DTBLOO3VajVLvOvKS3vA2HoHGLpVVRvBDnOzqma2DiYn52SKddSBgMEqc8L31/ByhV+ex+nr+Jz9mP2egWMGGdkPyYbluOd13wsU3r2bwNJREl3EOeokjGtGwZ3jzU7IsrvcANczo2XTriMWw4PHpMqoossST5CTZSf9aEPsdd800HZOgAEyth2ddcyA+zXXlalbOgu/UMguIsxx5XpdHfYhdvZ+Wp+dVkeHs0SQW4TQF+unI1brVUae1jsibPreoJCxr9p8SJjXRBM0InZiI0NvUGp9yyRdR3EJVhPgnpyczIAwzBjl0L8JVtw+92nV20ONaA866SUK+gPnkMsRtLGbG9bhzsgu2ZZ9StY7XwYEiO0qgMnlde00mACIUQbf/QTMLMtzhe8Gj9zmnURpzkXfUrcZa8+Ljll1/as2d0IYoDJ30Sm203ZgwDqY4+D37MPOHicAt78z++Wgd0lfu+vvqrvvBgPdJGawszJJOfu7FcMD7mztLtIZIT/K6hC8tyXZ0FjJ/XJEXDXfPcD37I+q+RYcBtAOIZ2Fo3QjRKJVjGrebtl7wC8vL2f3p3c7kTTWRE5dNJkUsicD4ANnQfTcjU8XCexLAAO+935ui6qqGfDxHfcyyQlhXNGV3FPM2Hd5HB4PjwHlckxn4AwoOa4zNvm9c5DolCPKEfA3iMWRGBxk33o5pnMUyQR0rEbVPJktxyODBIADdcukSrNsnJOJvdsc6qFJ1tc2zZQ9/WumkvdtoIBzcf5V8yVLcgG6xG5sX4LttHsIdcly7DcQg9mcR6576qiDpvV6Pdk57Krf0xGnLmRQ7DZ0fchnMwPJjDnAGOXJuF9GQO49dvddYKAzEo5AMurpKuNGdANrJ+Vowo4+6cYsxwPhqN6K6np1RiAzRW3MM9rPOtBPTjyz03A5CYScXU406/2vpuh8Qxhv4bKkscYwAzCSvs3kMmecO/nHDm4p8jwEccazDYENAyDLYAsDYQOQulW1yapYJ8wS2KHaQdkx20gZCCwZOr/7dwMSX596ok+Oxvivuy71xrFbb+xsvVzQzTf3ievKf+mEOxDg8xJwknDo47p62cFkgJPg6JDBQNUmIMjghjZ3S4Q+vwty8jgDLr4/Pz+3WwzRoaqa9TvzhDGxbXc+QLcElpJzy3UdBSdus5deEwhkXo0DSDPKHSBYkqxPBwQMAjwfEgCk3lL+e+XdYGBEO+ZgQWV2xjPPSyPSGZOq+eAhI0TEdRmwNEyUaSOfyw3ZySBcS4Kapbp27U7HBLX66dOnurm5qf/85z91c3MzZVb7rm53d3ezB79kMiF16aJhvwy6DDZ80xh+60AAOoFRHY31vsCBgc/IENrApQHoALBZAtrf7Srx9qTU9YzSqzaz4f2b9TcNHYK+d+U4EvKyBG3o2prX6hzpqA3u227udQ7Dzix3/NhhJMOWDtv6+PLyssEOeuxS6D+3f19goHMyo3mUYCCdyDbWNV9c2/pswJXX5pkt1nGDXo99lgvATHuZkXMXuGW/pH5RTp6XLLDZgVyCoryOzVrSjw4Ed+JgOlmI9L0jH5zXeq+9fddNh7pKJIXpScbvINPstFznSfTeKW066FFUukt7sm3ItoFN41u1efe5UcTGbwYnCQbIfP/zzz/rzz//rD/++KOur69rtVrVw8ND3d7e1rdv3+rq6moGCu7u7qZH39pQmyr1em4CAsbq4eFhyrQFFHRLCmmsHWFlH9NH+xCPSRqC09PTyYhVzR8wYkeXSzxVcx3n9466dqJdGiPOcZTMe863PKZqmR7l+Izy1+v1Rt6I25wGfRTlGdxUvelEl/2ckkAmQabZAM4H0Lo/GD/GcyQjx5HshB2SM+L3yQwkiEpJnayqSbeZn9xMJwMtzqe/fQ3Gzk44rwt4BnB5rpmFtMOnbOYU9To5OZk9ebMDwVVvT/Mk8OFalGNd92++btreLjcqE7M5n/5w3sBoPJZ+838OSMwIjJbERsxAynsYi3eBgZHjtdE0ckqE6XUjxI4qy3FSV05KR93dRO8cjwFN0mhdOZTVSRqxrH8aVQ9KZ2xPTk6mCJb9u58+faq//vqr/uu//qs+f/5cJycndXd3V1++fKmrq6u6vb2tu7u7urq6qm/fvk1l+YEymaDCNfI7yxCck4/a9RiS7GOmAWVOp9kZ4I+WUW4EfQVNaV1LB1e1eVvgdIYWGw2YKcpLZsEAICMgnB918rVGxs7/c3y234bw7OztHhb8bnoW8fGpI0SGDw8PG5GW1zqtA2YcMjCgvzH41AkbggFnScBMTkaPNtyMRTfPE1jRJuqyT3lPgNO1OZ156jjv2U7mfTroHCdobds+A7l86mM6U8+lDuCaNqc9BgOMNXqSYN79Yl10NN4BfjNt/k6dCBT4nj6q8005lunLtuXG7AICKOs9NvfdWwtduDvITg+xMXSHWqw8GS2ncaBTvMY5mqRZD461UzMy5Rzq0rEY+d0GJF9Jk/k8GAA7qdVqNbsBxs3NTf3xxx/1559/1l9//VV//PHHdAzXwJn7phxVb+tuZhucyOV65S4Gt62bjAZvdiQ27JllS98mEPwo6UBq1fxBPUQtjKlBLAlT1pss1+WnMUkdyXpYPAaOgO187ayWGK2OWUt9Z+wzSvN89HnWO+//pr+Ibkg0Y6kpWbU0ZtscAeNycXExzeM8Lp1h0sBO6s3xSaDEZ9qza3S1b/FYObp0220PsWu7OBfbBNtk6ypjZXDJsb7TpcfGeoi98pgYVGCHcrsv/7MjIW1r9o3BAOVaR7GnDhYNqlwfg4hM8nOZ6dfMyrkO3krYAYFuzN2m7r9d5IceYZy/u7OramNi2WB2HZQD16Enl4tsiz65fipAZ4gc4WXk5rKtUB0w4nxTUVYCO3A79tXq+17d//znP/XHH3/UH3/8McsXAKCYTvNkon2np6eT8+I471M3SuYYO3dPKoyFX8kIeFLTD92a7mi9/iOEpRGL65fOgfGyg0yHwrGc60gI3bETzzFIXfL1GQt2QfhmSc4ET2rThivHjTZbd9OZIo6g3FfMJbMK/AZdDMWayafoLvPB0Zh12FRz1tsG15Fignra5/csJwFPN7ft8PbNDGwTz7VkRLjJT9V8Z4btgSP1DjQuXa/TYeoBA+f7RfC7WTNuOWxg6aAs99tb30djxjhn/a3PDtQMTJi7XDu3GDqCd9+N+q9jPtIOUE6Cnfc49PeyAZZ3gQGv1+VFPfBVm2tySDrQjKa3OQ3OMdPQGdWsewIV/1dVs8jQk8mfq7bfhARlpl6cy1qYdwzg5FGKi4uLGRjgVp/r9XrKBSAvgKiWMskpuLi4mP2eSYKpxDbunqwWTzaQ+4iuy8lIn9jwfLRcXV3NAEq20Y7R9c9JmcJvmY1PmfQ/Tt2AoItKbKDQE26UhC5QP66JcWTd1obO7bLBcZv9/whUUybgkuuSa8H5dv6dke7YBq/X0q6qTbvh8fDWVwOCPC/1Nm2P9TIjvm1R8keJAxhLx2Tk8Z7r/GYgtZSY5+v4u0Eh9qQDXhzb5cvk8gV+xYGKGUcDTF6p6wYNGXCmjmffIBkgOHjF3naAwGDAc4zrW/+99JrS2RzbhuzbHJfu83tkZzAwGnAunpFg1Ztj3BUQJGIa1WOE9BK9Uw5Rev7u67tsyuJc2pX0tyeQDZt/s5EisvO98VEQ/vdT7FjHR9EeHx+nZEGvxZ6cvOUbfPr0aXJERMROGHp5eZnAhCcVfUCZaTwzygcQ2BAbqOU51GEfcnV1NbWdR+R2E9RJlBlxe4K7jaZF/T/lkRBqWt1LM52j5nwzA2Y3MuLJSLATGy4zFwmCRudWvUWB9CNPjDM7YKBJW2AzaDeSDFq3/Oe5xnX9SlaA8XAw0tkXjxF6C43t8TDg3YfYTnVOOT9b7CBTV5w/kfOyY1nsfAwIkA6EpV7zn52nj7ceeTksQaCdpNvUsUcGsh0g9u6r0fyxLcg8GL+n87ad8StZL49TLu1kO/2en/+u/K3bETsSWoosRmJknsmCu14/ldtGiAEZleuJhkGHGkpqq2MJfA2AAAPtdU0DAtPs0GNEXN3d2ox2c997othu22CyAs/Pz7P7E3jd3CDo9fU77ZtbPDsmh+UCMwvuJ863I/hI6W5oAuDJ8UjDYLCE0XSkVbWZyNeVSx/kfx2Fz7UAACNwzHhkvofnhdvidUifn8DAbfK16DevByN5PQywkzO9tOBjrVuex2kIaYMNcsfyIOn0M9/FbXZ7Egx0yxD7kI4h6MR91oHVUdlV86Uvt9nz2bIt4HK5nnt2oixt8t1bFKnHCJybyTNT56RS5nq2Ccm8Es9r7K7v5UJdEoRkFG+97thRA4ERw5BsRjf+PwsQvGs3gT93QCCj7SWnbqrURsJKNEK7vLvzUklcLgiY3zsltUP3ddMoZJTkyeD1LpfRGSMMJUAg7z9vyojr8e4XRvf8/Lyur68nVsG7Bkx5PT09TU7m/v5+BjAAC2ZHDAgsjJWXjpw8k5Numz78SgGswApUvTEcGaVbrPMdbZ1gpwNK2e7O0dlomLFIB5xilsYsVhooj2mnx/QD7UxA4PrY+G4bazsWg/LOwBngZj0NVP2b+y7HzgA5AVjuksn+R+yADiVnYFdAUFUbfWunnf3WLaPYgWe5yDaQlEtiPifthnXV+uhoP6/vMl0XB3IEeTnHkp3IDH6XlfkKyUSM5nOnZ1zPADeTBjuAsQswGI3TLvJDzyYYAYE0AN26CL9jYDJPwAbQ3y25Xp2IMa/riDSBgGXUeTnwLqdz/pRtJsDLAVYM2p9UPnf5y3IyUjEYuLq6qs+fP88eK+pciKqarRWenZ3NbreJYnrJADrY0afHnGjazqbry12U91dJN95mNZyljzGyLgN4bEg7MGCWy+NdVRNrhOT4dfVNA+l55v73ONhx+twu8jWAZ2xtMJM1SMPsecG5GXEne9AZwYy0fJyz+bsoPW0OkqxAPm8hgVoCggRVhwIGqnYDBB07YCfo9tKfucV2m+SczrnPfML+jpYjPM6ctxRQ5n+j6JzrUwfvpEqA/vz8PG3JNkhwO63rnVO2nensgO2n2YjMfcklgg4QuG45Jj8qP423TeORRqA7tkP1yTJ0jETVfEtHJnnRgRh4zumiNJdrQ9VROAYDjnhcv4w0rBidgaQMOxmvx+KwDAb8SGQm79nZ/Ol7gIGMAhzhYSRZe4WCrXoDAukscxxWq9X0v8cqx49x2od064d2FGY+zCQ56uY/nLqXDzy+Oebuh9zKyO8dbZ0OLo2A6wTrU/UG2qFJ+Y22WoftVBPkJoNF/6An6GoyDGkAHQlZt9IIpkF3nUaRUvaV51U3xqNncrhPO1u0Lfrdl6Sd7Bxnxw4kIKh625KXeV6ABYMk94ej9cwByPO7wCkdI79V9Ym9Br8uxwl9Lot5kEtz1ufX19cpKHJyYM6JJUk2IANAg64MvrC7yXCPWAGPa47135GdwQCRhyMMD25nvDjGMooYrAjdpLYiJhq10656UyJT7Ha2owjNymwQMOr4kYIsMQxLEbJRaWZNezcCbfLE9Z27PCk6YEIiGsrKmhj90zm2ROK0IfMJuglMffYVXd3f38/qYGbK7UNs8OjzdP42cllGMgTWExthL11lfkE61qRNqzapehsQjIpBssEN5Xg+jKjOjJYTMLsNTpJ0uc7G7uax53AX/WR7umiMd9e768sR0OoAF+1y3sm+5b1GPx146gsvAL3ZvqrN7eMOmgDG3Tp31Rxcdrahqgd7SAZXBhZpxzsnapvKy3MyafrUwbSdiINB/CC64gDK1zLQ6BIScwdBgoGl8V/SiW1ABtkZDLClyOuNIzpppBDuUDraRjcVkLKWkFlnxHOgTDUuOfARO4CYZXCdOtqqKy8NmcvMtTwQLQqDs7fjZy3c/fD8/P2Je0l3Jz3q8qiDI0lHaEa8Nrb+r1uTdR8ZrH20fPnyZYPJcV9bjOwNIB0R02+dLuScSN3o/sudH7nO7e2IrotZMWfWJ5vFCxYHEGnDh3Ccja6Nk0Eq1/CyE8tV/OY6dm33dUdgmd/Y/ZJAl89eF062xeM/iv4955mD2L1DkaWgJO1bB7ZsI0eO0qDUzts2OdmbDpAi6TBzPnTR75L/yODD18/yqjYTBK13Sctn3VM6nweoZx6TrwU7a+fv+Ws2wnqd/jM/d2Lf5N/eIzuDAWfZ8+5KJhqzJBrMCDYjrBFI8MDT2M6oJwr2gPj6dgwcm5OmU0h/7+j/rrxugrgfEig4aueVWe9p6Kve7vyWSW20O9dKYQIMSjKJxg4Lg28jjNEkKmQLZXetfcjXr19n9ODl5eWG87EhMQjyOp/X1Wl/timNJMdbb7pJjjiidZThxNIEmLn32v+73C4p0UyU62S9Mkg0GOBY08s5f+xklwIJM4M5NrYTCQYSsDBmucyR7EcyHQmyXH4ugX20vOfatlcW24h0zh07QB/Qb2Yk/T5y4K5L1oly055zTJaR42WQnvVxOS6bY30XxA4EWlxHl89n2wNsoJ/94qWIDkx3IN71WAIA3W/vdf4pP5Qz0CkE7zaGdkYdZTpqbCbabUNFHS1Nx/IfiXEJSjqUmW3NKAbJTFmXt1SW+wKlpt+cuWwlQ5m97uWoy1FBRr+O5kegpUPHdkpXV1dT3U5OTmZ3lQMoXF5ezvbEdxHGPuTu7m4WZdMu2uqotXOmBgfuR4PidIT8b+eXoMDv1lnGuzMMXkLq9j1bD5znYTBgw0p55EO4TlzXbXSd7LQfHh6m3wCugHAAauq256avl2MwYuk8Jh4bsyoZiRp0JBhIQJCsyT5kl+t3AGDkQGxPExC5Lwj+nHxtYJzsU5Y5sn9ZT58z+u725FwcvUbty6DV9R/Z0PzP9US/DAIyx4YcMD8F1uxaLkd3gGo0pj9T3v0IYwRnxH8ZJXVAICl9zuV4ys0INifwaJJ2aDWVp2ozCSVR72htKtFhshkdyBi1yxE7DslrcFwDR+uEGO5El7SYo0lfg2UBxiH7MpEp1waIXF1dzcYKMMBnJy9eX19PN0xiUni//D6Euze6D71WSNvsADoDkEbXc4AyfOOa1eo7Le8dHIxvOh0ifPrNVKOfPbFez+/IxthRL+chjBym25O6ahCfhjV13jpDmwwEnD3e5QJ4fpmdcnnMja6NjGXOLVPdOc/y1bED+b7PfBfLtmiwA0udU+2COP/vfrEk+M1x8bzIuZNAehQwbQM2rnMHBDnXY+6Aqxv/DmiimwmeHWDS1gQCtB978PDwsHFvl/cCgY+Qd4GBTkZRewcEcoC6cpjsZgcwoHZW7sSsW6JByk2FrXqjv0YOn/8S8XaOP88bHZsUmQ0p17FRu7y8nD1bmzIcda7X69nd7nJ9332akZ0NuseARMN0CmQeu548XMl3T8Qgc7fFfD7AR4kjT+diZNKO9/nS1lxmSUlDYUDBf070zBcgIB8tfX9/v2FkMkK3MXH7Oj2r6udq5+DtVLP9Hfj1mqdvGNPVIw23jS5igNQtC2TdO0Dg7zlGmahlG5Jr6AkaP1q2OYRRFJ6ROp+zTPRyxJikE7QNT2A3YhqWgiTXN9vatSvrjw3q+iKdel7LcynFwaDtrcuxnpkNoG/I3+KusTADeT+BXYDARwCDd4GBbnA8ye1QcRrdVhBH+3lOGicrkNfz7EQ9qB0dhDhaoU4JViiX6JH1eddxm/g818HvHTqljzGqUMA8/Q1lct6A28K97AEDIwNMHbJ+Vmx/T8TthyTxHVbg8+fPUwIZfetnMexD3E4beB7g4j43zW99SRbAZWeCkg2MKdfOQdLf3saJ82esHeV27araTMhLo9vNi9TDqvlOiKTaq96WKaifr5EO1XM3nTN1zLraYXv5o2tjOv20Gd0YpV3wb8kEGAgcAjMwkhEgyP86Z2tH7772O8d0rJN1o6o2bFoCgq5+nS1yHQ0yurZlXWECOvCe13U/+D/akn2U9epAN/r7+Pg4MQKwAgYCS+3eh7z72QTd74mg6KSOFajaRF1V86e1+XzK9M1wmNzeEjKiXOzoMkpOQ0udHCF1QMCOIZ0B//scR3LO/s4I31mpfAZd3t7eznIFyFTlenbIl5eXU7mOepAOJOGUTNsCahKcedmCa/NAHcAA/U1fs3ywT+kmrL+PItCRuB8dKeVn3w/CulE1f9phRq+MSQeO0wCl/qZTJFIxC2KDTRkwEF6iAJxUvW2Penh42AAt6TA7MLwUASZAcWJjJsTaGCfoMbhJp8/1MiHT/WHG6J8gI2dsZ9pFz3msAYGXWM0KGMglU5AMo6+zpBejOmc9PeZpo32c57fb3jnkLphLsf7YN7E8MGIEurrtAgp+FXB4130GqjYTOLLjEwwkK8DxlGElSarJzsgJTnaqbKOzMV+KePNOZLkXNB2GwUkaVzsUG66qt+WHzPynzpTptXzXk/f1el339/ezqOXp6WlyrqwnQ9N/+vRp2hPtOnV0lMGRny/g9VKSy+zcTU3Tpzc3N9MTF3kwkEEOyYX7EIyWI92q/mmDtMngNOlRl1vVg6uOgs7rmHo0G+V5lQl3SeGnbibr4KgdY8SSE0wIdYHBYU4AMFn2qXrbrWIQAFNkSfDrZMw0vNlXyZp5TnbLIB0gGNH6uQRpEJ/3Msjg4neWXQBBVb8cTPvNqlbVbE4h7nfvOEln7LKzfjme2+pssGFmIFmFtHud/1oCJK5fN7e8fRDnz0PhkhFwvbMvuvZuO+ZnyGr9u2v5UY5ylKMc5ShH+Vuyn/TuoxzlKEc5ylGOcjByBANHOcpRjnKUo/zL5QgGjnKUoxzlKEf5l8sRDBzlKEc5ylGO8i+XIxg4ylGOcpSjHOVfLkcwcJSjHOUoRznKv1yOYOAoRznKUY5ylH+5HMHAUY5ylKMc5Sj/cjmCgaMc5ShHOcpR/uXy/wGxq0cSKLtAYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJEElEQVR4nO2da3IjSc5lXVIpH1U9y5r926xhtvB1V0rKlOZH26UOjy6CQWWmqJ4WzGgkIzz8AYcDF/BHXD09PT2tD/qgD/qgD/qgD/qvpetLV+CDPuiDPuiDPuiDLksfYOCDPuiDPuiDPui/nD7AwAd90Ad90Ad90H85fYCBD/qgD/qgD/qg/3L6AAMf9EEf9EEf9EH/5fQBBj7ogz7ogz7og/7L6QMMfNAHfdAHfdAH/ZfTBxj4oA/6oA/6oA/6L6c/9ia8urr6nfXYLPPq6mpdXV2t6+vrF9daOteX16YzlnK9PbdVN5brekz1cnvy/ccff6ybm5t1c3Ozrq+v1x9//PHic3t7e0jzxx9/HNLlO/eSR8p6enpaT09P6/HxcX3//n09PDys+/v79fDwsO7u7tb9/f3h+/v37+v79+/rx48f68ePH0fPhlf8bx76d9r+48eP9X//7/8defq76H//7/+9rq+vD3VJ3fiddj4+Ph4+4UG+eS9tZ99dXV0d8X6ttW5ubg71aDwMsQ9vb29rf19fXx/VMXVKP/F3PmutQ5ks20T5T39xvIU/5MP3798P175//370DOXa42iSH6a/ubk5ei78DPnZKZ/r6+ujvmh1Sftavzw+Ph6u/Z//83/GMn8XndK7uX/u2XEcB79btzdd6evWHX4m19zOqd3ntOkU706V+Zpz+9imPenOKcMycXV1tTleQrvBwKXIhjXX/HsCB1P60DQgpk7aKrv9n65ZYdJ4N8POT+5dX18fvqksIzweYFTCUXJU7klvwfkVAyvtugR9+fJlrbVetD31WmsdgYXr6+v1/fv3g4FOX/FZG08a7BgdA5DHx8cXv9daR8/e3t6uT58+HQGCAI3r6+ujfmP90z7X6cePHy/a2BSDjbcN+c3NzXp8fDzkSePJuqWcBuBZz8fHxxfyMIGBBgRyzXJuEMDPFjAxYHZ5v9tgThS+tzaGtoyKDehePbf3/h4jNYGBKf9Wx6bLt+qwt7/Iuy3dNfFw4v3efPfSnnYb4EVn7QUS7xYM7BHS1wIBd2xj6q+s9wQA2n8qvgaEmpH//v37i/wcGQjFo+OHRs5eJMvZoq37k5J9K/rjjz+OlH7qxPrF68731dXVenh4OAyom5ubKieTEc39fBt8JGJg8GcQkP80jOwjRzn4m9divClfyStty71mQMO/Hz9+HLWRfRojPY1NEtuxRR4PqecEaLbolOGZ7l8KxKb85oluGcetvLb+n0p/LrW6r7XPUE7pW/7ntGOrvC2jP7Vl0iev4R1B6ZTvqefz/Zo6vEsw0JTJ9EkaP+frzn+r7FN1a/mfU2cbbipee/nmCYUkBrYZqXi1VPBrrReh7ikP0s+GxZpxekuiMeO19nut48HcvLLwjryNJ2twEMo1giJGhRjxIRDINAEp0RwaxS25TxkEFKxX0tgzp1yGL4kMpM7fv38/kl3WwcAnecTTbiCpGd8GKCjPUz4t36ZkHx8fD4AxbZvq+dY06aMWSue9PXmcU95r6JROOReMbAGCvbQFUPY8Oz136t45+e8BIXvo3OfeFRiYjPspILClAPjd6DVC2erI61N+W0DAIX9OBTTjQiPOsHHIzxoMJCpwf39/mPPNHPCW8W5TCU5vAb6kMl3reIrE9aCHzrThd0Li8c4JBpgHDS4NavKkYWFfpt9j9D99+rQ+ffp0BAZiqNZ6BicxymutozUDWTfQZOKUrHNufYouJTLQolspN/xs4CMgJvWLbEyKn/nned931MlrcVxX93eLNDT5fk808YzeJa+dol8JAqY8J2N37vMt3c8CAuvWVtcpMrBneuF368AGcs+ldwMG9nb8uWl+BZ1Sor6/lZ7KrXktUcJM67yj+Nc6Nu4tFM28GU2IAeFCQV432Dg3xN+E/1JKlW1p6yHI4wYYbm9vXxhWK7StxWkm9zenCGL8AwgS4VnreRFfZID99/DwcLRwcE+/MSpAwz0Z4rWOF+GxfZmqMgicDBanJ1odJ893WpAZg97WKLTy2/+2SNK8ei80OSCnwFUzgj8zLpux3NLl7feWrtybluXn95R2Kxw/AYH8b2VsydQ5gOBn+qIBwXPp3YABU+uoRmbCxJRTCO9UaG1PBGGr3lttmcqy158V26TJE2yLsWggDAjyPPPZCwTaIHF7Lk1cWc/BmTB3A2ehto6ied2+1/Lg9Ri2AEDvEqHMxEAlmvPw8HD0ORcIsE6ewqCCY6QkvGkgNcbYsux2MA15yD6hUedYmAwygUzy2jIk1gWnFtQ2gPieyQbI91r6U/mt1XXgpGNPGfI9gMEgx9dcPvtriyjTthVbOtu6fWpPSzf1h+mUnTr1zM/QuwMDk+BsfZjGzzrPLWO91WGTQtkjuG2BoEOynt/3nChXcOc6FRgNwNaqcBt9r5CfFqWZF1PY1rSFtN+KpnZYyVvRZCX3Ws99EvCU0H0LTycvkufpuX00UwPZRZApg+TnqZ1sDc3H2wsnEOA+a4CRUwTcLklD24y+DSh5wHIzRRBquyIm/k1raVi+03OcpS0pP+04NQVxSZqM0x4HiGlP0dbY3AP0rT8ng3gOCJgAaKtrA25bTl+rzymH77XysBekTM/uATft97l0cTDwMwbCxnuKCOzxVM8ZMFueBtNOAk2jz2ttisAK0N69FwOu9dIL9QBqiwfb7z28sHI1L9+DQo3nvNaxJ7jWc/2nOfK1jr3eGBTOj4fMM4bhQ8zbU0M8V4CecaYB0o6cEcEpHk7zsP+m9rA++SYQMDiwpz6F5M0TpvXc/CSzAb8BYwEQzCdltfl+1iXPZH2CIzqnaDI+l6AGDJpx3QLxLZ+fGZ/NmE+/zcvpf/t43YefNRjwh+kaYJiMrp9tQCd1n37zWee5h/+tnY1+Vs9eHAz8DDVhOvWb/1unnELIExrfUopJ0xQl2+EFT86PSr6BgS2PkAagAYoYnVbWqdXdVkzT/PqlQIHBj1fjPz09HdYFGMDRGCYi4IV65B2pTRO0RaH50HhRaXlxIKcMGpizwbXnS2LZllHXMcCJCixltiksRx7WOo4sxEg7otEW1k67GxilmMZi0hDQ5flpHND7Tt6XpKbDzqnbW9X/lLH3d3OWGgjgd1vrstaxYee4aECB6do95tkA6zkgwPlN+b8WmJmvr9WzFwcDpwzwHtoSOP9Omb6+VY9JeE+V34Q9vyPcPmzIK9PX6mHWGLIpOuD62DC5Plkxb6XceMH2TgYvPLXHdwmaeJLf7IumiCIbNF4O4dOAk0fuu2bkskagGUwrMvZx6rNn8FvmHTFI+3ziJesXsofO6y0q5WmvtZ5lxDJN3tP4c2yQLxkHPmDJoIZlNUoZBIlt7Lw1/YxxaHpuz/+W39YYmsr3/wYOPFY8/iwDBtKNGhjYAgbTfebFvM/l1an7W7bqVJkGwj9DFwEDv8MonAIE+W+jvxeMNCAwoeAJ5e5B8g0Nh6ykmFfSTmFQe4VTWGyLXG8Oyqenp6PV4VTWLPMSxGhA86Bt0FPv9MFaz/0SoxQPkjs7Qu5vEvO4uro6Mrgsb631oq6cCiAA5CJQ8j7lG9wFxFjJehGjj0NOP/vgoeTd1gzYm2d9eY1jk7IfkNamK1Je5J7bLd3/Bh97jdklgQDpNU5TAwU/Owb3AAf+PuUcGQxMgNAfpgnZy29Tobx/ChzkukG5wcHP8JlpG5Bt6cznX0VvBgbOrfzE5J8tewICWx14CmicEnSj3dYWek8WetY1ii950ZPJs1TKk6B54PwMXcrI76XMs6/1sr2eQqBysVKyYokBDS+3FCGvbym4EBUa69d+x0DnuYkMUKyEGyjgYUgG01ac4R1llTsjUk/LvqMgkzHwQsY8m7IdISAvmPdWhGCiaQruUrSlE2nALFO/kyZ5z3fTkzbsre/b+hXqSoLDtJNy1t47MYEB5uE1LRwvzbl6Ldja89ypKI+vvwY8vgkY+BkU00DBa8s5xfS9nTkp/a3/U6c5vYW8hffXWkfCTmAwIVjSa0NgFjAq1V/hdfwuyor7EA3IJFttKiXPUIlQiRnobYGB5OWQp/vM0z/2elpkwmW6Xva6898eeKYNbm9vD/8pgw2UEBhQma/1Uik3YMZn13p5ABJD/jY0bG/jI9u+Zdw5nt4TNSM/GSE7A7+bJpnfcpCmaYEtwNxOVm1gINeaZ7/WHCn1GhxHYuk0tOjBa/RgA63T/730Gpt78TUDJodafpWReY2hP3W9IWD+nwCAQ8EU5Oadhuj1OCpggdry/M9Rcp4Ddqiq5cUyDRguQRMwokfqfmAfEABMIbympBrYsFw0RcU6M6zutyd6S2mbr29gZvLE8h1Q4PckRNZ4wFDqwcWFKY/TC8n74eHhhYJnnc27FhpuCtMAt/UX5bVFYt47bXmBP5PnHj07eaRb9bOcbxl/yyDveUqN16ZpAo7rSRc2QMDzSDjO0g5HDsjDXPe1yeHwtXP43661aMA59vNNwIAH5LnP/gojYobYm5gYZoM/DUje98fpOW9JpGkgQK8tdH19XUOtNL42bs3YvIanNpRT6Kqh70sBgbXW0SI7D9KJJ1Yia3UQZQXWQEGbs2R+XIk/KTdTA5hbht//nf7UVMEEIvK8x1ML709lcC2E28d8rcwbAGgRIPOJY818NOC+pNyuNQPGc+q1R4eeExXcCwRs+CfguQUQmtGfymbUiOuXWjTPbeb6kwbc3aYGCiZ+Tk7EHiKomfpw6pdzZfenwMClBso5jCXy5bWWbno+343pk/A3QNBC/vyeQq5NKGmYs8Us/xllsJceatGHKbrgew2MNArfXzNH+zuoGUtPc3j+egJTeZ7ebzOAa60jg0eQ1k58bH3ho4cZJWhKzsbaO1N4j6/KnoAC+WdDent7+0KJ5n8D21Hw7hfLVKsL82JZ5GPz7hyJo4FwHb32gjy8NLWISBuH5wCGPbrU/XoKXBhk2sh7jDSAaZnlOJ10CdNnHO/VO+n7P/744+iMC04XTotTJ17Y0ZhAfevXrfzaeDhlv/bQ2WDg0kg5dThleF/DnAlZTca/PbdVJ6fl4HJYKsLYlBBRc1Z2h9oc8xQiX2sdKUWjYgKLc8igIoDgUqHY8KQpGBpC1rkBIUc6qKCoFOhNk66urg7AzQbd6RrZw0j+2RJqaiF2h2qtkF0WPXb+Ny/yIVAwjxghyMJEHpzE92ts8cJ5r7UOx0ozyuby7QnyXiuDfLzU+oFT+sw0GZa9EdZTUSgD1km3tZC/I0QcIwYD7Voz7I7wnLIDW/JAIMCjvQ1qcs9yvyUjBlJ2MHzd/N+jO6d+2ktng4FfFbb/nfSa+r3W8Ofbnxben1B885xjvIhMGQZjqD7/Ocjctq1B3to0CfbkJU/XkueErN+CqDBo+LNtjtv6GiiwV5825UjiXHM4cq2XHqUVXuqX8kxRNDSYLSROamFWLsSzgp3uU27Sdz7pcCt8zToa+DL0aXA7EcsiWGkRLYLiZrwIgjn2CCTWWi/49V5oj4F4Dfgmr/jf9/l7cobalBD/Uz5bpLKNk4yHtY4XgzbgHZqmy0iRmwCCHDBGox8gwKkmHxNvmW/83eqXU/zPPcu0x0C+I+d76N0tIPyV1IRqQrPTd8vP6baAwB50y7pRmU3ntrtOUx1CDn23PAk02DYqxyZw0/+pbZci9ouP3W2RgXyzPzjQqRgcVmxRBRtOfnJtmu9OCNMvlMo99jdljQrYxj7UPDUbv5Thk/ms9E/JWAMwVHoGvKyjFWyTRfMvvCLRgIRHBNNJY+BwKTo19ts1G5JTYeRT0QBfO6UHKVMeZx575PlE504zut8MjB0RCg8inwSmBDA8XyP/2W5GzKbpgwk0T22Y/p+6vpX3RK8CA+81OjDVyfWd6k8leO4gbPf2IFLXMwIWMHB1dXVAqcm/eWP8sB5Nwboe/k1vkICAZU7AYCvM+x7AAF++4+1qp1C7Fw1RIfAdAVyERuVAkMf/9LSTP7+bJ96mXZqsOVxroGgZdX8xMsVrrg+fbTJCPpgfntra4vsE0NpamymvremB8MTTHZeW3XPKP6WfflVbTgGBdlZFxpwX2mbB31ovo5KTrtpbRwKBjP+1Xk4ZJBqb/vdi0u/fvx/ut4O3SPbeXf8tPenrbyV7r44M0BBNld1jCH41qJiM+blo+WfqRSXcgEB4NvGHHlTSRBAtTG3OmaiWC7NsBFjfVnbyN9mjbW1odEmFGopiaPOWoVMRkHw4x21FaJ4TLNCgBQDamFkx2iCmzFzb8iSawW+K3HIwgYEWOWnjrfGO8kQjfmp6gEbfIMDh2j1yFp5NeuAUYHgvNAH5KQ3Tndu2Sc4a6GynWRoM0FOnQeYUaIsmTX0z1a1FyBoATnkBA55evLm5OaxN4Qma5I/Hhus18X0CD3m+9atBRtPJ7f9EPz1NsFXQ3kFJ2lJw0wC2IpsAgcuZFOIEBrba4+c8SE4J7lp9nj4GJ14mB0q+t86nn+bStoAQ6zMBC9fB1yzY702p2lvei8AN1BwqnBSNowLTwN2qL3m55Ul5PpaftpUrz7QDfrb4k+epxD29QaXIMCqNOfmw5WnxGe4caBEG9pOVJvuP9WW/pT3vAcCG9jhelpPmlW79PqXjpt+UJwMCgwG+i6OBgRANsvtpqg9BuMcjHQHKvtuf8izXAQAG+o08NiOT7pMtIL9lG3ltioadq2Pe1ZqBLYNBpm0ZsinNHpQ2gYC99bbCbVu6XB9TvCxujyIYcB4Ou9rLmgbJltJNGIz1afOx7Vm3ba+i+Z3k+lJxUTnY0AeI0WNoFJ5nwRHn9zlHzehAe89Aiwgk/y1ZncL+VH7NK8p9PtemFUjtf1t0aDl2O6e1A8mzRR8MeqeIQTt+NnlujX/y0iDoPYEC01Yf7QW5ftaGazLATdamqEC+OU1gnR0ANgEakqOtjdp6gwYS3G7qP+bDj6NZLTJAGWpAgN/Oq6V7jX3aS+8KDJxL7kx37PTMqd/nlD+RlWqukbxIykSPPIOklTkpQtaTwj8Nojwf48WV8AZjE9jaClG9R4VqD5JGmqv3J4CV/uWOhCks750FBBg0Os1oMSrDfCZvwX3Oe83gTePH8pKyHJnwb3r9bbX1ZGAtl5FFTrewjPRR8p5kzEAvdXW50/9L0a8AIr9at01yQoB9CghM5wgQ4BFYNv3YxoFpz3QPxwTrQyfAkQFPFbAcfiz7EzXwtRUF2isT58jOuwIDRqFkkJVeQ/om59PuNcN2ytA1ENEUsJGkaQpDNu+lhS0dgppCrl6o0wxFa5ujARnoASdtoc/kxTa+vhXFaGTleAZxDD0HPoEAPXfT1BZ7sQQB5HH6gK+N3loE14w+r6d9IYdCPQ3QAACjCO1+k2HLpb31SZ7s/ZkoX1u8Ttrw21Mw7rstAN7ktMn5W1LTTVPk7Zz8Thmmdm3qpz1TAwQKft4G1WNyaof7Kc+2OrIdScOIoNOST5EBRwWoVxtvbDem9Vdu1ykD3qJj5wCEid4FGDgl0NP9hkztkeV7UqJbXtFac8j7lEc1kYV2zzMEBBO1+VHWlQo+OxM4EDNIYpwyaDlwtsAXwdl787KsDNY63m7peWa+Drjx3Mrt+vr66FW/+aRsej2Uu/A0oMSgIM+cAqHMj/xv6wNs6CfjT0okoN0PwHJkwPLq+waNrg/7LZGRPGOlykhBA8Ysm8rbkYHk3dJcKqq1FWkjTaB+Alwcr5NubGVMjg4jAAQCBAlbeTpS0NraAECT1db35IejRBwvk+ztcW4MPhlZOOW4Or8pvYHAHnC3l94FGDiX9hjlvYh6TwdNz20BkEZUMnunDE7VjwJvJB1BTP7TgGSdYiQ5MBMS5qDh1IXL3CrjEpRy7a1SUXCOcJpzpsHlvCc9ooCCFqJ3ncK/nMRHWYpiYT9MirAZ1KThddY/RCNvL83yTeBAYuQjPKan7jq10KnbQD7Z05/GOPOhLLOcKT3za1G4S4KBc4z2pK9+liY5aFEBX5vaRUDCujb916be7Mys1bestrLzbV657OhQn/lCnRHQ2ICbQWqLVu0BClMbfiVdHAz8SgOxBQamshq6a0Biq5zXtMEosIVg9wKBtnCQeWRxGz22fK81r4ptodpc4+6CyXvZ63G8BbFO9DJtaKYBOxlfRgecxsadednQE3BRCbU6XF0dL9rjfdbPZHDQ6tmMve/Ri2PagAAq6PDFRpw8sZFxHQxQ82xT5ObrBKjcHpMBwSWnCk7Ra8eVQdee9O6raX0AFwj6sJ9QM2iOVOWZtviVYX4u9OM0n8fypLcNipPW0c7IhQ8gam1puoT1PMWLLfoduvTiYOBX0KTc8j80hdBNE1KbFKiFk964jW8LGTWDuqezGxCw4HOu3JT6Tgu8prlyAoKWzu25lFfF8mmg0hctpOfraaf70v13ChS2Ps71tV6uHyFIIQCIAvahLVttb+WZGpBhehsBy31k++rq6rCgjye4NR41UMUpltaOVkeC1olOjafGxzbN8Z9MkwzueY593c4LMBBgmrXmsy4sZ55+aNtdGxhgJIrvqWgOi2VnAqPUGVxYzfVTbKNlLPWJnmxO01aUgDK/N+L6M3L6W8DAXqE7NUC3FO6WAp7Q31adJu92S3kxf3pLrW00QmvtP9TklIFhXVtYjEqOhq2hWXtBDvlO5RP8tLq9Vgn9KmJ7pwVlGaxTW+mhcIpkrT7ldAocmOiFOE9PQ9ze3h7t1Xa4tIUkDUCtHLfC6Jw/zTe9vtSDQOnh4eGw/mSKNriMtI8yy3pzmsdh6IBaLshc6+VRxm1cevqBbfX/t6Yp5N9kbrpnudoLEBsQ9LoYnx9AMBD5aIaX/5k2/UpwYQCcOnFdEz83NzeHF4HFi3cY3+VZnglyyYPISrYRp7zGw7aWxffbc832NGq69Wd07S8HA00QpzR78tmiFipsYMGKdstrnUCAPxPibYqPeU+AYesZp5kG8xbPtrYpmh9UnjzcpRkY0uShtYFwCTIgy7W11ot2rvXMzxi08O3m5mY9PDystY6Prk3+kydMAEED69A665p63NzcrE+fPq1Pnz6tP/74Y33+/PlokRbbQyVEMNfKSP5T+DL3W8iTC1GTzjIYhRwFvwW6aOCpeHOPYy88b99W5LzfKM9QTg3aLz1NsMdATIagAbG945HAy9MCnhKYwIDrQB3pfJ3PNPVAWePUgLdWU/YtT44+OKJBPlF+HEXkwWOcEqGsh3xIWfLbWttwqr9+lbP1y8HAz1Zqy4NoaVv66eP6GVm1e86bqNEggM8mPVcnU2lueUxt4LOOVlgToEkaG6s2QFu+ebaBgEmAWT7R+Fb6tyB6DuwHgwAbqfCIUy1PT08Hw8a5wy25s5wZIDXDyDw+ffq0Pn/+fPjc3t6uz58/H7zplMP50nhH+bAclr/l1eQTueFzlu1cj3xx+1Ubq267vTDe3wKgJCp9/qZyZlqW0+Tz0iCANHmRexynltfkWfJ3AwIEBIlSTQZ1rQ4WGWk7VQbLYn+fajedtvDK91JOQLZPR8xziToxL4OBP/74Y93d3R2BlLXWEdiPzmHd/T/5bzmL7f7P2t7fNk3wFjQp1ebV516ueSC0OrMD+YngrvUyMuDyafATUnIbWF7r0Gakc51rBaZwlMFHnvEUAssjwm6ncbX68z89VP6/BKXcvN+htdXfJCouviMiOwAYNSARNLI8gqkGtPw8owINFEShpu7fv38/KK/7+/tDXlRgllHyiZEFnl9ggNIAMY1/nm27K8iHeO4s85QSn4wCw/2Uc4ID50t90O6RN5eiLf0U2jLqLd3kTIUmz5leO6esmKb1k2UgADPf7cOowxaopEzyWuTL4NdlBgx4N1D41dYSMRpBgJx8smU4IMJOIvujOaRuX+vfPfZjL/3HLiCcELGFrd0z4ydGW+ntFUrWbYoAnPKWnCfznsKhjejZ2TOe5s/zu4EO5jv9t3CfEvTfTZ4vDNEIuY4Ei+G196Bn2iUAg/nQKDLk6PnrfBuYUhFHwd7e3h6BAiuwp6en9fDwcJRfm0IwD2jMvZ7Eh/kkX/KTdQ3ZqzRQsOEl4HSYlqdBcv63jWMuauW0xCQDrD/J4/KSYGAy2FtRAcrVlF8Dr/m259y8dIfyuX6E/d+AZ8oh77ccrrX6ls/JCSIw4DMcjwQ501qc8In5p7yHh4f148eP9fDwcCRnAQoPDw8v5HDrQ8A6OaxTn/0K3fpbwEDztrcE9zW0hXzPzaPVrUUDGF7fKnOKDHCQ7AECVlDNu0n9m5fpvNLOFpZKPo5COErAtH7W303YL0EJkVtmpkiK04YHVFqZC1/r2Zg4tM683EdUHC0kby/G3ncUV5RYjOBaxwvtmrdLivGljKZuUZTmicOfjjTR82on0aUulIkYfAKLpM0hUHy/Afm21Y+sV9ragL/Jsn4p2d3y3H9XeU3veR4/nwBSGlcaUk9Jegzm06YXmJaAPDTpFhv+XGsA1eCGkQGuXTGQp07JWHG+t7e36+npaX369OmQR5wHA4DkNTmlbAPb6LQ/Awp+a2TAiu0UIDhX0F8zMLaYZWRslBqBp5Ct1cPmFnp7iXuAgIXBRoKLUWiMGp2jzKYBNgEA/m4IuhnItyRPE9Cw8r7J9aVCSlQgwIBTCIkU0Ls9Re5rK5YWOvV8q/uLocx4L5QRyiH5wsgC8yJIYFlRiORprtOQMGrhfNd6BhfhLdsSRWoQZRBMgMboGa/tGQtW/u0Mj7ekU/ritc6W9VXTe5a99rG8ekppqpsjRvxvx4T9QX1iA9rGktvEOjPC5pNE2zigU/b09PRiB0LyCnjNDhfL1NPT8VHHDcC7f7eiBD9L/7HTBCELsa+vte3ROu1a/Vz3oFcKVvLaCtWzfi30tdUuG621ukFyGKzRKcFpEYH2PeW5BQwuDQaaImekhPVqc/ckts3Gy0aqzc0nfwPKKAYqdSvXrXC7y01YnaF1G0IqSF7LtyNRUWiMCFhu2jYrA2rzs83HGjSstY4WQfqUSD7fxhjHCH83r78BgUuBgWbcTHvHVdOJk6dOuTs1n2/QYOO+Vf/mcK11fEYLo0dbkaDk5Qgsv70OwesfuCCSYyP1YgSLspc8uE6G4CnPZMrA0QROgTgSsEd3/wpw8NvAwGSY96T3tZ+NABjdbdWBwsPFLfxu+bZ2+Dl2/ql602Pj/wkInFIUzcud0m0Z+abMt/KZEPxbUjtKdJp/NE197LUXNGoMd3Og8/kpOtE8Mv92H7D8h4eHAwiw99za1gBG+ozlOK/m4ScdQ7PckhqybBBk5L4Nlw0D8zTAIV/NJ06DkFoUZMvwvCVt6b+tsb+lg9v/LSAQQxZdZhBpAGCD7DKtn/NN2TPY9MmC1JX0ylMfA/Ho4hbZSFi/vVuBbX18fD7UKOVn0WCOFedZF09PT+vu7u7oXAKPu/xnpHfq6/b7V9G7iQy8Nsy1Vhd6C96WQdozEOyJrXW8yI5en8NSiSp43pT121Jo/M+wE+uR+sYQWaGxrHO+91JT9tP9S5HryPCcQZr7w/1vrz6eeJMXg4fkGeXHdPnf5G1qUxRlFBUBAaMCzYO2wk7d+G1DaZmnIQ9QTVuswEmU0aRxP+U/QVkDbZP+cJ85zJt+offfph8uPU1AMj/sSTpdfjst7zfdN+3zb79jaBtwNTBzxGytvitrredXVnPlvkEpdWwbn9bB3gVBEGCwwKhw6hXj39rG8pL+8+fPR23hWEwe/D95+Vve/ykndw/9NjDwM8b9FFF5UpitxCz4E4PzzcHQ5sLsCbX2GQgwr2m9QdJzYV8zPhlwXitAIGJqYf/pd6ihdt+bUP57MPom7/Nd65mfDYQ9PT2fsJf2NOVCD55kj5JjIX1Fw5+y/ZtKmUCyKc4oTPdd0tOA814DAabmxZOvWzLoyASNBkOm4aFBwyTXqVcD/6RmdJxv4yVBzxRZeQs6V4fu4Ynv2VNtRtH78NtOAofgm97MN/WSoz1MTzBgcLvWOirfuqnpYBt+n5PgSEby5hkHPHOgOV75/v79+2HqIf85HpJPns0YiP6x/nitDO597t1EBvbShP6n+1seqp+L8DRk2FaWxhNsp0rxOQqZF6XQOGwZ9ak9rHvIYTQK1VYEoOXtaxP/9wjcpRQqARdDfJznbnxnSHStfngKpwUywNOXnC5oRF5aCbVQK72IKeLDvLmiuYXHHQJOGfb+Dao9VUDP320NTx4eHtb9/f1BoRtYTGB9L7FvHFEzf7ZC/6xbniM/3hvtAXOkJicGn/ae22JBAoB28JCnFFJ25IFy7HobhDEykJ0lNJD2qu0o8WPg0pwzA/+k//Tp06Gu0f1ccMhy2aZsMcw3o4isN/uk2S3brhbt+Rl6t2Cgefn+feqTtJNBc3oLiuds1zpWDl71bK+zhXptfKfQqCnlETRw3orl85kJCGyBgsYr820r3Z72vCVRebTpHIa2/Vyo3XO42aifYWnmYxDA3zGoqVs8EoJK/3ZeljHKbupL+WR+fn7ipZUTvaa0MfcDANaaPf3XGFuPt9ZHTWYtA1mYGPLhU5eODFh/NN34mnzXmufSDQSaQW2gINfzO0QPOr8dyTKPA6hzb9JVdLI8RhpIcaSNxpRgOGUmv0+fPh3yynTtly9fjhYetkPBQgQ5lDGDfad3H3vsbfHwnIjCm2wt9O/X5rHWvBCmKQPmYYYZWU1Awh4avUmfcJbfW4OU89Ssj7dStbldDwzOo3k+igu32kDa4tVrqRmJ90AEXBx4kQP35VrPiwTXel7EaQDWgEAGOmWHU0rN08919klbuGUvp8k+yyQlRElgxDq2CEbaO42P8MGethVXomjx6ujx+TkrL0/BOH+nO6VvPLYM4lI2DdUl5flU2a8BBJabvREB7qYiCGjz7AQQNLI8n2OtdRQlSHsnB87OTwPH1t8TTz2GXZ7XuXC6JLL26dOn9fDwcNTeHAxGMMTDiRgVIAjd49CeclaaXTuH3m1kYA9NQKABhublmekho98If+6xYwwEkq9DRUzjObIWHWD4yPnT4FOJcX6NytZ5T9TSTEp1inb42fcADGgAQx5gNPhrHfflNLi2ogMEBsnLht/ejBXA1dXzdtZpYSI/NPJuT+SIfeKpK0YGDFRYJ4Z4WaZ5Q9636ySOi71KrAFvjhH+57WUT8DMceM6vhc5XqvLo40G067VHQADQRv05kVH/tpUAUGE04e4JZUyMy3OtBxaHl2HKVRvAG55NTAlIIxMZJzE0EdeebZIeEMg8Pj4uO7u7tbDw8MBPLBuU1Sr9W8DSHtob7o3BQOviQ40Iz8xb6vcvfWw0NgLYz0iEJPiZH6tTltGtNWbkQEaG0cHJuE+l2fn9lVrQ35f2rtyRCaK0wOTXkzrO3vLyctlxdhwYRO/myG2Z+4wZp499aHsRjkzMhCaZLT1e3jnqBbTN7DVrvtZG7FG5M2eMcaIQgPcDNNyLpoG4D2AgWkMNiAwpTf/KR8thD5FAxgl9ZQCw+QEDBlT0ZMEBGsd90fkwGB1rXVYhJcxlftc3Ofp3TadMYECj6HUietj0ta8MZR6xRGS6JAfP36sv//+e3379u3FmotzwH3oXDncM7ZCbwIGfnYg7TX+E4JqaL+RPXsi0q1B2RB3y6MptBbqcd2tfO15RpnlPwFB8qBwNZ6dQ1MEYeszPfcWRO/PfdXmqlt/T0i+hbFdNoGZFyg1T8X1pufKMCvXkXhtQqtnC8tTNvxxvad+Z16ue+rpfE0TACGP2C7zr9VpGkscKx47nm5zW94j7dWN9pT3TA/Y+NPgBQTEW/7y5UuNDISfebFXvlk3R0wpIwSznINv0YlTUxdOZ6Ke8LswUmbazmkLgo7IbWTry5cv6+7ubv3999+HZ+/v7+t0n/vsLeXuTcDAOYZ8jxdhdNuQXqM9jGU96PGbmoe01Za9NAGaXGtRARp/z39SobltjaZym7J3XU8BgUspVIb62O4J5NHwNFBIuTjFR0cK2lSSjR3rYa8gfZ7n6Sm1RZB8jjKS61S8lqM816axDC63ADj/Pz091bHTZMvrcFqULu0mrymrHhcxKlH0VPgEAgY/7wUMTPXY6z1adzaD2hYOtu2G8ZI/f/68Pn36NIKByOz19fUBzPpsf6/HMe+bHmadHbVobfGuB8qNp74oNzy7wwcHXV1dHXbsUI4eHh7W58+f15cvX9aXL1/Wt2/f1ufPn9fd3d1RJCX8YBSl6du3oN8OBtygcw2kDWsDC5NCnzygLcCx1umjgteaT6tjHlb4VGRUXBwEvGfeMbRp5WZlZmU88Yj14ccKdcsrbM9vAYO3puaRr/XyzHOH53Jtoq2IEMulMWbZj4+PLxTZZHD5mwuP6N1wWsFA1oauRY9Sz2YwGi8aGCTPrVQ9hUW5b8DbkQ2HVZ2GQMMfHsLE7wYCHGW5JE1RjrXOi5i6T7ciAjbmnNIKMODrtGPwco1TX1dXVwder/Vy90bus99IjHxNkQ0adq+ByDQCtwBaN7doEOXm/v5+3d/fr7u7u6P2JU86Gw1cmVfZZvv58+cjHd4Addp7CuCdc32i3woG9lZmUjItEmAPwZ7VpMRtcM/J8zVE47N3wLZrUXCeY5s8l73Rj9ZOKu8pv61y3isYcN1CVEBROJwbJzVQ17z5tV6esOZ2szwqInv2VIL2PNrKbYOLVk8qYgMBlpt2/vHHHzU8m/SWy5/p573e0CS/llsDgZxz4GkBL7i9tKyaTtWFOm9PVKCBgYT625ZqRgaSNhGBr1+/rq9fvx6uxUASwBIcZwEdpxD43Qw+7/tDOV/reFFsmypogJK88bhNVCBz/hmTj4+Ph7UD9/f3BzlifgRO4RcjAw8PD4e6+fyTCfCeKy/nPHfx3QSTEZ9AwDkAwQqKg3zyfppCJjGPaR51q62smz2r5Blh9sl5BjR8xu00GThY+DPgqFi38rDimXj9nsDAZKQbSAhdXT0fRZp7zMMhbCpa8jeKogGvtdZRf7PPGcoMz2Pgoki4vSnTBqmzQYHrZc+dn2kKatoGm/o5KrDl1YZ3LZ0VvA3BlCdpikpsLbylbLBdl6JWvttpnTU5PuSl59GnLaz0dPmq30QEvn79evjPk/rWegYAbfoyAJhTXaE2lmj824c6q60TaDYiZaWujE5w7N7f369v374ddHDWAsSoe+qJUd8AKEcHmJ6HKVEXT3I32Y+Wbi+9yYuK9qbZAgKnPn5uqgMNcTprrefFKESVXAxCgWn5OqTjjnTILc9QgAkyUo+kiRBSgLk33ttz7MFv9QfRNOe1m2Js5LImEHAphToBEXslU3+1CM9exE0Q0naDUFaorFMHPptFgElze3t7tLUphi3p4tF7Zb35kfq0aaYGoCkfk9cy8ap5OwaipMkBmHg9gZso3vaZpk1Sz/cUJQhZDzVgTmrOT/Ou4822MDwXDHKdwJcvXw7/CQYit5NDZbnyGLAhn6YwqJszxqjLG6iwIf306dPR+HF9f/z4se7u7o4Aucdart3d3R2iUDHu5B8/iZQwH/YZ67BXH79WZn85GNirJLeUhT9TiHZKu9Z6obAogFZIU/4ECBSC1/DC+a310tvbSwYGr6Xk4bD4HgO+BwC8l8iAy7Wib16XleYWbfUDpwToaQToUQG2sP5az949Q6XstyjgBgaenp6OlGDz2G2U2a7mSYVvNuLOz94p86TnRFBGXjoi4Hq4viyzRTjsibUFg87vZ8fYz9I546YZgclZ2gIFDQh4F4FP2gsgiOEO8bXTTVesdXwmROrGSEQArdc0eEdA+ro5e22tgJ2vtLXxO4Dg4eHhMPYSkXPUKesLEiFI28i7nDmQ8wcij3YYt+Sh2QCCqnPpl4KBnwECWwbehroZb3veVhjN2E5eShsYa62DYk1+9CY96FiG598MBli/LfRHhW7hJZ/2KA97pC1CsQcI/KeAAbaX15vhWmu9kIdTsj2BW5a11rPi4V52ggWW2/qb17N2IPcDBjK/n/wty83gR6ka+ER+mR8jB4xKNcXE8gxiPWYI4D2O+XuiBlD3TA+wPZNndmnao+C3xtcWCLBcEQA41E7j7K2FeZkR9WVk22tj8ps6yECgrWdoCx1TFs+LMF/ohHmxrvW6dRp1s98vQPlO+hwyRDAQ3rJN9/f3L9rF3QXWCdZd7t+f1a8XXTOwBwhMkYB2nXlN5ay1rfjzvw2SCIoVqxWe82qAwIJ2c3NTUfQeEDP9nxRIM4zmTRtQU8Rgy+BfEgS4DhPin4ggwHy0Fzz9dsSFRFBpWXbfEdRGfq6vrw8Kp0UvCAaivJsxThq3K4beHnuMP73qVvYWQOZvguq1jo8W3pLfCcBmXNnYT7sGDHJMv0LR/k6aQK3Hd9OXuReivovM3NzcHAy9AQI/0XOui/VoC4nnfgMCiT5450PScSrIx26n37P4b3Ka0v+sV56lw0ZA6TGz1jqqB+UtbeQOg8+fP6/7+/sDMEi7LJ9Nr++hc9O/ORiwctgDBFq4cApnNYGkB8U5rJZXK8tTBVsU5Jv83UaDCz7n61H4zVuhR7ZFVO4W2mao9nryzG8Sui0k+5Y0AZnUm94jeRKDkn4hsf0tckCD5dCjPSH2r+c1WXded11a+ZH3pLGn4bRJR6+E44DtdZ3Xevmq6OTB8cB8zQfXq4GxCYymv9Jn3CHg9QL8b0BAPkxg5C1pa9ycAgGt7tZFJP6nnvF0gfUyiWOoOV3WsUnH/HmGQdYlZMcCFzEGENBTz/n/BoCM8Jo3lCkCQkcCKFc5OKnpFspe8sk4CMAJYEgEId/T2QN0IPl7C2yfC2LfDAy4snvAgAV3y3gnr6ZM2WnNiFFQnPft7e2R0k4ZkyEmAGB+RNPuQAqrIw2/yoja04ywNqU3RQAmxbjlcU95vSW1+WAPKnsSNuDcJ025Sv5WcCQqFxKfiXfusifwTLky0EyZ3urEMpunwTwIChrv3D4aVF7nNStk1q3Vhd8NTPk6jbunAiYAYCDQDNilaRo/1mUT2PUzdkomsOu1Am3q1CHztY5frMZXVrtuBANeI8DFiV+/fl1//fXXYeuij/VNv/I12T5DIvVi+8hfyhP1wNXV1YuIbfJd61nmOO3X5MjRAe8wYL151DGj0RyHDQjY3k0yMNEvAwNToRNiyfdk+K30TnnvXmnKMh2Wt4Gj0LdIgw28yWiSYU7W8ZTRJZJ0fT0v1ZTvKWJZTWA8IPZQ61/m35T2pcgKifzmx6uJT+WTthJckYctjG7Kc+3Ut6ur51cZtzGx1vFbDqm0w/8oNIb8m3fE+qx1vMvGCsqG3tMJuZ78UweDFE472JuZlGuIvOXiQIZqp+kBh3FdbvTGe6LWd1tpml5lxNOy1Dxv61aC4Hi1oSyCS5p4vA7fmyhHmZbIOQZ//fXX+sc//nEUHSAIThmpk8fe5ACaj3YOqLcZ4Yu8MNJ0f38/jgvrRdqbL1++HIAMtyV6rNEOcaqw9XvSnwtkXw0G9hQ0IdN8Tx+m3ZN+6tgQlRS9nYnYmXyOz7zGczc/gj6b92wAkDKJQo18p3ZNXlVLZ0N2qj0GVqfKvwTRMyGxrTYS8XTCq+zbZxQgeXCQUmFQIbTyGWmivBIIUGG3EK2nxph+rWdZvr6+PvLeUvctpUEZo/eVb96Lwky+E3lMt/5o110n/ud1Gvf2/FQnA9dzFenvpAlUN0+Q9/JNAGnA2ORrcrhYH46R+/v7A/8JHtd6fnV2e3cKdazBCoEJvWiuXUhd0ueMFCRPL7Be6+Wi4MkZ8vXsJCDwp76g8eZzdA7j9VNus6MgCwoDbqxjMo7X2nYwXiu7b3LOQGN6AwB7r/Ma87WxdgiMoRre5yIYK1s+n/y5X3xqu8EK823olcJkb8VIMddt5E/1A2ky2pNBd39a4C9t8LfIimcCXg4f2+hsGSmmc1iyKZcm21FmnDdtnhll09NiVtxs51r91b4trXniUKjz3fJSpjIYbnXZE095jXydvH+PLYK/FnVgHZqcX4JOgfdTzzZAYNlp0wb0vlmP8I8GiwaZ+REweowxT0dPWS/mxwhu6kJnkM963K11vCZnD88a/zke8p/TBSHbkACB1Jt8zBRHthty/QAjA+Ex89iic4DtWWBgb6Yt3R6Dvzc9n9tTDwpclIpXLFsAQ1REzSsnMHCdLHA27Axj5r4jAlaQfJ7XpvZvGXjWy0JqHk48bUbW5bEelyAqBbeV18x/AzPLRq4ZNIamfqFiM5+o8LiaO9/Na8uza82v7nUInwsjU24DAlFUlFeelua1M9PYtAG2/E4gg3ycZHgaB9MUAPm1F8y+Z7AbMmCfjGoMU2TNMjVFCNZ6eX4D+ff09PTCqTq1g4P1biC2GU+DdE8NtTLWejk1YHmb6rHW81s/GXVwPdt24ZRpRzPl5Ln7+/v15cuXw64C85996bFsarp3D/32BYSTgE7e0XR9StcUMJUby2cYk2iLStghJAqMX3Ri5dm8Mt6nYpoGialNATSF2pQdjd0WMHAek/DsBWATQLg0tXZa4VDRXV9fHw1+hgZpdKlwm0LLd+5FVnitKe0GCOwlWYFZSUUh85rrslaPFEzeNfNx2dP0HMu3V948dNatlUcAQE+pRda2ytoCIR43/ym0BQQ8LUC919YQ2DFa6ziiYzDtCMGeBZv04lOOve0Y+pTH6bi7u7v17du3o/39XkNAr9oyMHnzbHOTz1DTzR4TjGh4/P348eNwloLXaxgQMM+Mr1M2YC+dBQZeOyhs1Nu9Kf3Wh+lbPakoWrlrHe/9zMBoC2UslA59maZBRBTJPCZDxWuMSmwJqYWg8dd1m5RieDn1+17PqtXjLanVz+20UuNiqMiGx4AB5Vovt965j8wz5rEFCNqKboMAK7uMAYcwJ7LsWJHb4wpPGGlL2+JN5X+MQ9LxQ762vmpGuY0r1tNbCl3/LSDgMs5RqpegBgYnmaLxb+cFNI90rWMgR4oMcNxwTr+BAOaXerOfuAsk0anIdsblWv9ek/DPf/5zffv27fB2QZ6NEZnhNkSPzeYkkixXW7qS/8NjG/mMBbahLdakHWr6JfxI2a3+5+jcXz5N0DwVV64Z9a3/VrhkSvOE+HsLEDhs1JRrM97NA9kiClz+G1DkuvnY8uLgmgZZo8lr9f8tw9n4Y6W+VeZ7Iw/gBgooA/R+m0yu9TKaw743UOCA3qI2HiivDj0aaHArVAN7/G9j6tX5rU2sI+tBAEXjZO+JspPfDE2znKThNZ4G18KxW/ykIiXtGY+/m84pl/wkDwwIuF2wvajIC1rXOj5WewvsJmqW/mvgy89yAWrk7ebm5rCgLhGMx8fnI4Dz7MPDwxEYyALXtY63iadsR32pwzme85sAh98EBuQ/pwV4fHPOTcjBX7e3t+vu7u7QpqRtjlfTMc3hsxyf46it9RumCSaEcg41wGBFw/JCNKrsGBM7vR1vyfCrDW8EgkLB+nmLFwWZg4GKtvFwQpwpP4PIA+2UAmtKj3x0Hrw/Pfv/AzXP0lMF9ICSjsZ8kkuSwSM9KU8ZNTlIOU1BhAzU1joGIQQMDQhfX18fFHJ4kI8Nc8ZZZN08JTBi+Jj5NIByCmRbXhuIaQp8Gid2JMhn8vStyf3kuk7OFwEA9ZqP9PWefX7HOLEua73c+uyoEH8358CymHTUrVxUF1mL0SQA/P79+/qf//mf9a9//evoCODo9rTZ8md9ulZ/mVzSeF0Cjxo2sS/Cd+6KSFmPj4814md7kukR83eSyQYU9tBvOWegCebea2ZGu2ayYrCCS6fRyOc+f/u+BdQKpgl6OtDeUoy3pxxORRcaGFnr5ZRBM+JbhsJl+Prea/8JZE8514j8HV43cLOHsdZLg9jKdP9SHng/5cQAUynGOPN5toHl+f8EJlhvTpM53xANCnnmT/O6IqPeg84IAXliYoTA0QLzleHXSWewPBvZRpeU+y2lzzT5PjU10Kahpp0rp/Rt+oPrasjbtV7us8/He/aZN+X+27dvhwgAz9pY6xkM/POf/1x///334eCe1Ctt+/Tp0yFf6mZHZKO72e6kyVkCPC3QU8buEwKxGP2AgeTJ8iY5bXx1+j26/xTtBgPnZn4OENhTbkvncJPTOeyz1vOqUK4RCNo00yNA7TCTFl5yvVMmFSOF3aGm1yqcU0Cg1W3yLmw8mvFsIKH9n0DKJah5fm4L68vBzb3LQfT0NKb2GwQwnedKg/65XSvpnF+UKeVrrecDX1w228B2Jp0XQ671DI4zVhoR+Dq07CiawfDT0/MhRMzP0QvywjuAbExsFHl9cjIoC6TXeFa/g84pe9Kz1H0GsBOYC1E3NZla63idSqsTp9Uow238eOyt9W+55gFcBAMPDw9HiwcjaxynrKPfqugIRfufOmUawrYgu23sJDQ+8/pkMwjKPNVhHfYr6c1eYdzQT2OG0zYwYaIgNuGNUqNQOj/+pnLNAStEhm3h4KlBSwXYPH3mQYVOpbXHSyBPbMhPpefv/9QowERbbSH4sywxOhTjZ2++hVOt9EKUPZfBcpI2UQGG1/PNPKi0rJgJBNhmght7d0njcLEjIDEIpyIL9Mo43eK+MWhqfRUKDwiCeI+/m3y7n/17KveSZCBr3rFfHRlgH+7VJS6vOQsEBdSzNG5eULjW8W4V66v0aQy8x0We8RHEPjZ8rfXi5T8sK/lO8mgwwMiAncTIXMYCAXDsSPjOqILl09GcPX1F8Dw5bafot7zCuBlzKxk/Nz3rvBuCNzOdR5AlFa+VB/NjCN6d3XYRuG409iRen5SOw6hU+q2uP4MQz1F8exXHVn0uGSFoymxLpigrVBZUKjTMjdp1h7oDWqkA13qeS88qapfLtlje2A8GwFO9wo8ocIMFLtAjP2l4WLajdjzsZRrfjZdN7pLO03oBagRtLLNRcyRa2ZeU3S2y0rfum4yJjTL1YpOPSSdETi2jlD9OQ7UoQFuUGvDAML0jOdTPMcxuV8r02Alx8aLrxmtxBnlsMJ3FZoPyTKZgCESac0kwkn7zlM0Eln+FfO4GA1tIY0sYJyAwAYNT+acu+d4DBrz1xUDA4fy1nheWMCzETtsaMBPQIAhwPg4hbfFgy3hNz0/P+tpez8zyMIEKpnsv3lUjG38CPfabPwaEJBvOqdz2TbDpSJLLbp6uaZKvyZukEn16+nd49eHhYZR9Apzw0AbehmkCAK5ni+T5ufCY9Y8halGPqbxmXC9Je8dm69MGBKybmi49hxJ2j75kBMuAoEXF7Fy18WQHimOEu7EsE5QBh+ndXk+hWU/zZMAY/4CRaVdY+H93d3dwSiOLiWhkesNggP3YQPQpfTL93+zL3SkL7QUBzQs4lZ+vbRnAZgybMsp/U7wMDgwbfgoe07nOTeGx7qcGW8tv2h8+eeL2gpsSmQxIAxR7DRnTb5V9CToFkAgUm0zlfsLdk/Kc5uxPUSvTIU225ZRRY318bkYrmwbUivPx8fEwh8kxwHrmu32mcUkFfIqsEMMXggNuaWuRgVPK1ONm4uklyW3f0sG5FmqAkLotfdrWDzBPy2STneSZZxkdYNmRqRjVUw6G77F/eT2L9vL2w0+fPh2BXDuRBtvW/W3hYOyEX8LUxsb3798P71UIMOAaBAMhT/O4r7eA/2v17S+ZJmgDrRnF9px/70U/7FArp2lA+JnmZXHAtCmBteYXArltFr6tDrRQ59pkrE+Vv+WNMs1ULyvbPXkYJL0HELDWNmjib8uJ5cXeL0OMVHDOn+Ukffo6CtHp1nqpZLPqm4uLUma8Mrd1yzg0wMbISMrPAsLk4y17nlbz+PJOHCvdds31tV7gOiAbAho2K/enp6cjfhu0TTL7XmR5rXmt1dZvkw3dWs+6z9Mvk05mRJXTBQyJp49inBnyZvnZQkfdyv4lCOS48sLY1Dcr9wMGPI9PoGJ5oSzG6E9bC7nAnGAq4CEvHvr8+fO6u7tbt7e3h7Yz0uDdaVtrBZq+nXTcOSD2p8FAG6x7QxotD19viKghuylf58n0VOgU0NxrZdqA8L6f22pXvh0CdYh2agfz2DJqzSi7Pa19kxewlRfr1p47RzB/J9nwtWjA1N8GB4kUcK+yiUBirT5A94BLb/1y2JWyvEcxEMAkPQ0CIwLZpkUPyTzJa1wbKGBI1SHhxgeP0y3ZsScVwzKFxKf/vvde5DXksUna0r/2Lvk8PVcC1Jb3Wi9f9EN5a6F8nllAIEvDnPMDuH6A8jhFKliWgaL39nPtS0L+OcOggVuCgLVW3UVAMOCpgtQhawbynfY/PT0dpgcSIbA87rGhe0DqXjl+9dZCexsUwknw9uTfBLqVT6UxgYIoEQuoPb3cowJpczj5zXnIXKMi4gBxu0IRTrcr9SKybmsWmtJMOQYEpoYoX4MqJ2DQ6JKKdateTtP46XRrHctQAEFTpCEqCVLkzUqP/3mK2RQZyDOUG+af323c5nnLMRVqZD4nwN3d3R3GTK5zlbWBwFrrCCCc4vNE8fpouAzq2U9ZST55Wltj6T1FA9bajq5a37qtEwClVz3JboiHUBmMZpF29FV+26j7pD2CactG+rqB30l2CZhz3n+ARubov337diibgLgdM+8IFqc0DHAJBhitI+Ch7Ab4+HRP95dt4JbOtmzsSRf66eOIrbwmMDANuD3lWLC3PF5ft3dtL83PckC0bVpst6lNO3iAcQ2Df1MwU6cJ5Ez3zOeJ/6e84KZkTuXFOrw3RbrWablqNHmqjCZQ5qb8qMg8Tuz1WOnx9zSP6O1TqV/AqxVJyqGsZTqAp9XFs0qkYK3n8wzo2U1ggGNha1fOBEZTb4MU8s2nH5IPiWZMemmvfrq0PJ9yxk6lDXGsO6q11rzmJbLCaQD2A/Oj8aSuag4T+9CevsGot9rF0KZ+19fXRwAgcnt1dbXu7+/X33//fdDx3OY36T7zkG135Njt5TNxMvk2Qj/LcbNFe5yavWlNr5ommBTUNOCSthlrprWSa0qPebAeHMyT8LcPwQKJStJttUdP745eSupiY8E8rPBSdurWvKxTbWJZW4Z68oqaEWoe1RZ/nf97JctLrpkmY53/e4CFx4ONO5WdPSl+ouQ8pTSF4F1f1oHK14bRQJD36SkFEHDrlWV1rec1OG0KoY3H1MtTLNYNoYCZgPh4q/mkfBo2K99znJa3omb0bUynSOopoMDtrGsdLwYl2YjlWvrM/bfWS53CfGLsc68Z0ch6zvT3QTwBMnku6ZM2JxY+Pj6uf/7zn+vp6emwpY95TXxz9IlAhzJtoE3bwXaH17ZPHkft7IGpP7folINiOmuawBXamptyJSYg4PwnIOHfpwAB0xsNt7IsyMwnZVB4zRt6JhE6L8Rhfj6Ok4p9rXWkUFvY6hQQMB/yv/FoAmftf9Kb3/+pYCA0yV7ubT2Xbw/0rbR8xuNoUu68x3DjWs8r/h2yZF9tAUWP6TZtwTqT9gJu/yaoaPLLZzy9Yl7yPl8Gk5B1IgRceEj9sSWn1luXpqa/9n5CdEZseKwLGRVK+afGetMN7GfLdfRh5Iu7Af7888/DYkBOG6RPk3fS82jltdZhesAnGKb8tY6Po7+6ujo6HZMLhdmmyCUjK5Zljk/q+lxjGdTxXD+x1f/k9SSne2X31WDAAGBCWK1Sp0AA86TXvVZ/gxkFuykTp0lYprVxUuhBmNyC2EL8ARxeVNbASzM8VI5e0NKU5tTR9nhPKbvpugET89sy9pMQX4IslxMg3SIbr8jfhN7dfpdjb7d9W4Fy1X5rW1NCzSC7DI4xA5FWtyhvj9M8G/5krJEfjoqZX5OinurRjDnnrDm36+hAk+E2Tlv/vTU1I2bgOEUJnE+I7aZBa+PaIIrpDOoYXWiL8yj7bRwYDAQQeM0M1xokCpRnsi4hfW8wmfICrNMeTj1YLjjmqaMNlGnUPZavrq5e5M/x3aICre9O9SedgL2y+9NgYAt9tkq2PK1UGhCgoDCUOBksfpthVIDpJL65ix0fsudOg9CIISGj7Kbwkme+p5DqlgferjVluUVTH7+W9gKSt6BJwZ9q36l6k8dNBnlvGh+WLS4+4gKjLOCjgmO4lrJDxWIFRINBj4zjMemt7NNmpo+hTV40DFSE9vLj3dnIpIytvmlgZa1/RwaST/jghWhtimCrnEvJbuPBlu6dokwtzL/WS8C5Vn8JVHgYSj+2Z93vkdusqn96ejr0Bc+DoN4l6GTYP4aeutpO2WQPbNxTno9Kzj3KO+WFeWUcsh3krcG7ee9+MBjYcips7BsAOEd3nw0GWEgLcZ6bH59vYIDltc7cAwjWernojh3FDl/reTFWhKTtS6ZnwTqRmJbKtYENz6G2CMGeqQLzmL+30OYeAWqD61Qd3gNNRsO/Jzm2YvW9U2Qw6J0oMdTcruf8DV7j6XLxHI2fD0fxPCaVMZVivnnPAIPGOumoSD3FRdmi0U996MWz/TQwBBM0AG38c1ukPzne2dTkmGPj0nK9Z2z6/6lnKBPs19ZWv6yqTR+5LOuvLNojGMgx8QanlhG2if1C2XTbrq+vD2sE2tG/HtOpq8FAi3jkw6kFywvHPX9PdijptqIDoWbnCAS27NJEZ+8maCi0TRFsGZ6GWqmIMqCbgK91HGq0kTUy4/daxwOAnRzlcWAMhDRl8vnk0cJrnB5gWVuRhNTBr8WkAt5SShREt5/k++4T/jb/XYdWJyNT1++SdIp3W+k4aFuoNMqjRZA40G0YmxdAJUcF9fj47z3JX758OXhL3red9N4m5T7Js2sdg93Uq4X/Y7ibHHL/tiNbDNUnf07TsX5Ndshn8ibUpvbcBr6qlzyx0bfTcGmawKnvNzDbjPVaL89toJw1agDY+pt2gM8RoGYvfaJe8fpjVL1Sn2kY/eLCPx7cw2eSJjL5z3/+c3379u3FAT9XV1cHMEogyagHpyLWepaTjPfGg/yenFDmxft29hz1cF/mfwMEyX8vvSoycAp1njJIeW4PELARTmM9XRBhmZjQ/m8ZKKZv9UmdoqSt8Fnn5GHQwU70Viv+T30sUK7vHiXW2mzlwjyNQKdyGih4b7QHoDRQmbSNTy1tyB4FFSG3G1HRZGogfM/1u7u7Qx5rPb8FMIulGKnyNAEVSr49FXGqby2PW8aAipu/qSBZ34xne1OuA9tC/htoU6GmvY5gUokbFLey3wM4mOSs1d3XyNurq5en7k3GZ9IXEyAg0YOOsX56ejqSfW8N9PkEoR8/fhwO7iHgDhC4u7s7krF8IrcBAtwCmzK2duYQ6Kd90eEZg7RjLRrQgIBBQcj9lCnBNgXSZOBn5PSnwMAej4oVzW92lufxmmDZ+GcAU7Ew/xZGZ/3yjDuO3jnrGoHwfu0IW9K2KEH4FMVLtMi8HN5t4KLxcw/ZqE/57AF2VB6+P4GK19b7V1GTSyrLtu/ZMn6OQSCPaEBDBpGRx4AAes4Ev8w70wRZQ8AxYAXPvmpKnAcMcXuW9++zfuZNpj+ivKj8X+OpTA4F357ovko5DQRdX/97Dzqvuy6OGpK2onq/k04ZZP7e+oQa2CJPeK15+lt6mnWhzFm3Jg1BG403r0en/vjx42i9QCgRh5x+aXmLLuWrkDk+bDtYZuro+6kfp9K2bI3BlnlisG5eGhCY9jjfe+inwcA5Ct6KxKCA90PNy05eax2firUl9FOkgEgwz2dRU4jbuAgIGO6KAFnZsFzWycrb6NEDNPepALY63kZ6T8Rgqy8nYW+GhvV0GZci82+LttrwGtrDf3ogIZ+ISW++Pd9+sw4ZXzzM5fb2dn3+/Hl9+fLlMP3gY2On+j09PR1C7ymTK7Op/JrOaOOczzbAzLS8b16EV1sg7jU67K2p8eoU6A7Z29/iVdOvdrSmPLb4mDpQlg2wA+D8IqPQ/f39Ib2N4tPT04sDr1qElaDcbWJEy8afn5TdwJBluX0mIMCxZR7R7hBINdpyevbQT59AaK9zKpyGnt5IFpE0b2Otl6EW5pdy22EQeWYKOzJNvjk32xQ4Acxax6F/o8qpXHqFrgcRZOMff5Pv/iS/pjRfIzBbZTj/5PeeFKzrY48qv9vgnoCv+ZF7HtAO+2+Nj1ZXyyfnNFsdtnifMKwPc/nzzz/XX3/9tb5+/Xq0n5vRiLX+DU7y4hWfoxGF5bF9c3NzUOZuK738Lf7mf+sb5mle5duhWDsiE1D5GS/rV9KpsbQl3yQDSetW6qS2FY9lnTJKNHaMGLGvAwKoU5kH65I8GdIPcb0K11wRHESWWiSa2xCbntzrdPG/r2/pe5Mj3ltTBbQD7o9TOsf0S95aaGPTDIM9kzZF0PLNd/N0m0Ba2I329rZn8tDThpRFZJf0iSo0cNKAkwcP2046hUK3wATLZ/57gYDLcjmT98f774EmQ8LfNhJb86eNmpdF3hPtGziwTIJn/2c+jqyFOMXFdAECiQh8/fp1/fXXX+vPP/88vO41CnKt5wNReIRr2smDjlrdQ5ajjM3Uifep6HiNoKfJuaMWLURrY9Q+lolLyu6WnDYQMAEmep+NmsxSzhpwcr0mb5iRV4NljoMWTk/5yYNrBpIHX57FUzA95cpnOAYJfJpxn9o1yZ91sfXn1AfWBeSvdy1Mhp/tJI/30KtfVNQMWqugFYQV2lZlLRyhaa6KUwbMI0pxr4Hlsw7nJA8CmigY7sUlIDB/HH7bo2ymepr/BjANRPnZRs3730p3SuD2CuSlqBkFy2uTW8uvZc/91kKMDRCstUZPm9e8oyCKrQGDpA8YCBD4+vXr+sc//rH++uuvAxhIPo+P/97BEO8qgMC8m8C8PXQDCueVSEruWa+cUqhMQ6XMFeSsd77/k+R3S8+eo/xDNLrOl0ZoKn9yFhwdiJxMjh1BodfaOFLAMcPV/vlOpIBRATudHG8Gqp5mmF5i1Kauprwot5Phzjevc4pgWjdgfr6GXh0ZmCrUrruRVLamNMTbOCZiZyaMZECQe0ZPHjwMizKcn07nQS9Gl1dXV+vTp09HHZEO5HqEkNtEpLnXs2SebWpjC8VuDW4/z9+nIgMT2HgvkYG1Znk89ckzNrIEDiR65ms984hp6R23hbTtwzqcepaK9vr6+nBwy5cvX9aff/55+Pyv//W/1p9//rm+fv16ABcMsed1rx4vqQsXUzUDnzHEbVyTkZ/ky7/b8xmzTfGmLuz7gHk6DE2WL0UGTacM/yn9aqJM8vkWkt7Kr0UBIoNcf2VjRhml4WREdzKSW9EKAgrqUzt2SbfW8XQDwau3efMguJS15TRtAVjLsvWyIxhtfE+O7rn0S6YJ1tqHVidBbqGZdn2r7HwyP0VAwPwmI2gAQCNuRcapAYaYssKbncOjUSdQYyU4tXGt4wOMGpJPu1tevDYJH/nF5/h8E0ADlqR/L4Bg6vtT8tmiA1SMjvKsdXxaWf4nLefZDSxjVPObe+NjoNvLWLjy3wqDRo/5JSKQ9QKZJvj8+fNRdCseFSltI8i0TEzRO1+zTEyRFfebyX3r/mb55E/K4G8+f2lAYCA63T8FEho/2EYDXMviRDR0V1fHZ/qTaOSpv/gsdS5PtMwzMcaMgqWe3OY3yVimcA0gAghi6LkY0edkPD09HaXhq4e3dPckxwbW+Z36rvW8oN2yy/qznS5jL+0GA/YK9nxPhp+IjHszHV5h+panQ6NJQ6TJ72bAqOTtdbEuEQYr7vBmrfUCCLDNNhC57sVNpC3wkHY57GU+WalNBtG8a2Vu1aUJpK9fSrFOsmheWAE2JM78Qq1dNi65xvuUpVYPv0I48/2Z0+eOAE4bRJlGPgkUGBkIIMhOAk4RUIEGCCfEzz3W9qzpldNQEES7bxpPc20Cpn6+/T6lnE8Z0JbvW9Okc319AgprHZ/RQrJOsEGiTmy7vexZJy/2eX4H3DIf61vLbcCBdwJwGyx3xvB0SRpv8iBEYJC65pRCRgO45oBTv16TYLnfQ7QJ1OVeV7EV/XP7HEE7R3ZfdQJhfvN6+/Y1g4J0tr0BNmYPY1keowLNAE7PtXpT8NnZ3CYTgWRZBjhBu1RQ9khMU6fGuwxN82psx5TX5D1t1SX/HRpjno0u6WFR9pqX04xCAwBrHU8lrfWsIHi/RQXW6nu3eZ35UgHwtEG/mY1RAisMgmVGFvw6WCpwzvFn/3YWZTk8Sl5FJu0pNoNF+XFE7JSxj6zZAE7jyP0w9XUAuxeT5XNpQMDv/KaOsnHlb+oi64Pk6YgVDfMEmAwyPN1iMMAt4JRTlmuDenV1VRcCXl9fH+T46enpaBFiDDq3fDs6wDHHNQYpi6cltnZlrHg8GFA1INbsUvKnjvLzzH8LvLpv99JPvZvAhbbBPylgKox2ChO/XR6v0ftZ6/lktrWeDSe3drXIQJ6fEDCFPcKU+llZUJlwIRSfzzUKKIWhtZcC5HMV3DYb/4macjmVznVv5Vio99Tld5INEa/nmgEO5devC3aea81nSBioWgE03lKhN0Bgj4jXUlcCmaTh1AOjBWxDZDtA4O7ubt3d3R1+85x3hlAnnlsJGgjYq7Ih4Pja0gcZu9QrKXOaotsCCE3GL0Hm36QHLTfUDY50bpFD8C1P9gl5TVDJaZhMldqrdYS1Tceu9Xx0NmXNtiVgzpG2GHRGCSyb3pqYA4z4aQ6row9p+1rHJ4nSQbVsNtvYph7Z1xMgmJzBvfRqMOCCGnp0pZvBsQKePASWM3m3YRQ7JIxtCM31bKFbb9lyPql/C/fyOS6q2Qr/u/0tOpJBmLpPobCJqFwn5dL+N4O6p5xL0wSwWrpTiNtAca2+3qTJZ/4nnxYRcF04ZZD1AvTu82ljba2XBo/1jZK8vr4+HOcaefr+/fsBCHz79u3ohS8M3TZvZuKfARf7xHLcjPHUj1NksZVvotKe5P4/hdz/e/jS9HUDAQ04h7hTw+XHGBIgGAiE/5w2jmxdX1+v+/v7dXNzcziO2JGtyKt3FbRwvr1yRhK8eNDTEwaJjBxMeprprf+35O1Uf53SVa8BtWeBAaOVLTBgBMP0NiqnPNq9g/QUkGh5WPAdYnUboqj8ohUiX5dBIWDd+N9zPhSwLWDUplX8zCl+tLBV+83vBgzaYGhe3X8CWaGeAglrvTT8TZE6baJX7rfJcE1gmgaeADX5TJ7GWs+yliOEHx8fX0QG8p8KMsrQeVkJe2uWt/nRYyLobuP+lBxtgW3n1yIGEyi4pPxu6T/KqacHJmPQ5NB6muCu1cERmwngxbhzgR/ryMOtmLaBi3YyZmQ3MpbolcP+lD+2IbLuRYGU49StRQdT1yZH7h+PRUcJ+G3gPgGNLRC7R2eRzl5A2ArNb3snLdRu2jJ2JqNW5kvluicf/vaA8japKdydEFEGBJ9jxzfF1pT+VsSAvyejfQ6QaNGBKW8O7ib0e8pwO96STg2IcwbMr6TGn9ZnDKMzLZUVFYwBbhSbtwzmk8VXDNcmEkAgkDcSWmZIjCBweoErtN2WNnU28WvvvXNl7bXl/m7a4/lR79KR2cqD+pL6rRnqZlQoh+w36pQAxxh5RpHoOHkKgutP6Jnf3d0dtS0RAYLPRLIic5FdRw7yPEErZZRTBGmLbQ/H1qk+JDDLt/WpnQGCboOt6cM+cV+dorOnCXwtZIHcQi7nDC6jHBqmKSRp4+nOolBOdd8KkfG3FWOEn//3euakhC+3oiYT6m+fqVznQX6TTwx/Tx7HROek/R20ByGfut+iJ6domgZog9YGf+pDD3LOX7rMeDOch+U9r0egovU2K68PmMYEIwFWsIxabMmllaA9KMuhxze9xamMrSinycr1ranpXetFGtdz6ko+RF4Ygm8RpS290fg97TaIvHmc0MBeXV0dgGqmC6KXn56eDgA18nZ/f38AA17jwh0CkS3K9vQyI9oF8sXTA63tdrgMCPKcgbFBwRTB+hnbavopMOBKbaEVV/ZcQEBmcuvJWs8CzU7kvFPLj/kyGsDB4ENUomBa50SwvMZgrWNF7bpN4SW3u/Gsta0JWPu/h4z4G/2sR3YJagCzyYFBYagZxCi1eBFN0ZmmiFNT9klv2cpzNJr50JuhbPqT9maHAhU2FWimCTwmKN8/fvx4sQPBYdom9+aBwZHHgXnUeMH8yPNMy3h6pukqK+lL0V7dS7AX4uI15sX+5wJTn1nh8veAjaYHIoPxipOXd19NZXKBaOSRUwuUPUemDFKTT8CEzxRgfThGKDcGQKccP/ZBS0dwQXmjvTgFpH+GfklkwMLYwMCWd3qqTCut/GZ5zqeFVht5TthG3FuNprpzi2SE5pSwnGp7vm2Qt3hpMLAVJTBqTR0n49WUb2tL64/3RORRM7qWhcYTXmMo02U438no+HuP/NpYUdmzDVFC3sbrNAazVEgOP1MWI+/89of8dDtZ/7Ygy7zm/Kt5ayBg/plHzMPtanx+b+R2tGkC3mP7qUv5CTBwf088b3Va65hv5iudtrQh16Jzc65Lnvc0VqYNCAa4EJCgwOtWUjanGVr0iu30zhtGgHNt0rNbfKOcWn4bsLVtbdT0zCl6NRiYCmpGkL+n7ynfU432nMsUWmd+nhYwICBRgdqbt6BHwNpgTN3MD1IGa/uegMhWW09R+qrl7XsGGhNNBu+SNIU7Ay6pBP17S/6oWCmHXD0dftjbscwR7LaPI1e8nvKb0WJUo/HAzxkwsC/poVjh2/CmnlT67o/sZOBcbgNE5LXHEdtmXdDScO/5NCWYdBNPL002BmxD6m7g5emktY7fk8FzLBwdSz6n+DA5CdQj1GeRWwNU6tjs98+9eP85HCvpacw5RRVQQINvINCAqOueOlGW2uLZU0CAfeI8zTefkdDSNYfb+nev/J69m2CqWCvcxqR9t/QNSbV5/bVersxsncS6MR9ON3DwROh4dkHIHUSaPGoLiBFfqyfr1aYkzO8tb/xcZTYBgUnQTwG619bjd1Lzni1na82Acg9FJun9THXw9FIDAtxG6HqmPPdRZMcLYlv7fd3ttXKclB5D8Y+Pz2829AFNjSjzrX2k1IdgqNXPBtH5nYoeXpK2xrT7aJIx6jaGuK+url6cUdHOn0g+U9lTXSfjtPUcHa7UlRQj3pw0e/mcovK9yAe3HBq0trpTtihrvBeiHK+1jsDL1dXzjrQGgBvQWOsY2LLPT+msPfTLIwOkiZH5zeutPDLcoUIqgRA9l1Ntcf2aYbaXtFY/ZjbXnfcpr2a6ZhDgcHQz/PbW9tKe55ryN+0Bh5emLW+KHlXbJmp5be2LXHDNQH5TgSStZYbGmXXkN702gmLLXQNoeX5SJAH709j0+LJijMx6Lp6e15YseVouRKMwGXr/dtsZFWhlPD09T3NYF7wH2mrbZBRa2nxT5gkyp6iAPVjqZ19rdZ6cyK22tQWnGTecQqAxZ5SJUwe8R9DMxYRNF1v3sp1TJIrpKLvhYQM4BAINRNHJNchofT6NkS36qUOHtoxHntkatJNBm4TIiMxlmKl7B7UN4qSUiPDa9caDBgQaUAgZBFCAPOc3lZn7jUd7eOC8PCDfi3E/lyi/Uxi+AYE8ew6Z9w7PBshGllo9/JuHDEXRUCEGfLCPcj8HFhFIUI4jW1Yi9J592lquk1cxqBNvrdgTjieYmKIezbM3gKGeooHPPZY3kafm9oyf30nN6Ob7VDSAvHUelKnsKvHCQZYf/WUAmjS5NhkijgWnc1rqO/Y7d8aE6E3T2BMM+H7KoMw3e0H5NiDdosajyZEkbdktAvap75tN3UtnnTPAAWIymmnp9lTMgu97DL2yk9jBW204pQQmQ08jkv9b9WRdORdq4Z4GA8vzXFXyYTr+/hklZiPyn2r4SVZMW9GBZijz7B5waZDn+VArB3r73urH09b8UiJGBqI4DTZZXt5pwHnhgAoCCs+r0ghMfMi4obdIbzxTBVzFTaXNSIL5SIpnz3vms8dJKAaEICR1ymFLHqMcw+eCwV9FTSfk9wRumXZyICxz3kHQpk3blGWr72RcPf62qDkzqQtfMMQyeaiQowMtMkVZ3KonwaFBPevb6s7/DSCYb26Tn2lAcCvfreumV08TvNbob93bQrw2rtyOEnLHUmDoRbXwbKuLwQPnddu6BdYhW7AmRboVHWj1sDfjQc7+2IoKnAII5vseQOHyeN31uwQxtN1kjFMEnCbIs6F2Lf8bUKYCiezYMyW/DQg+ffq0Pn/+fHij4OfPn48WTtEDblNIbN/t7e3heb7siLLc5lqzInut9SJMyXYamPB6eHR7e3vIh+OkrVWgdxsyWGiyxro4T443eo25lw8XDyb9pWQ3dZt01KlnmjNDuTCImPI9pQfIqwYG6NEmv8mgTeCLBtKAzdvKuRiQJ2uyXxkZcDvMQ0czPG1gvtl2+ZufVnbLt9mBX0k/tWbAjdybT545V8BJVCLJr0UHHHLkokHez29/c6AwPGtAwDoECATBMgSbdJ6bmniVZ04BgjaPlLIaiGMZ/p7ST+Bpj6G/tDIlUeE4bO750hbaawPd1/3fxs3KmOsVvGDQLyNqW75ihA0GkndefRxw8fnz5/X58+ejV8Zy9fXd3d1aa1VPa2pri1QkHRV3vPQJ1E88Y981j87jskVQ8h3QkzHNOqadDsleiqay7VDkw+mWiaZ76aMWRXV/cAqJhtXTTTamrjvb2PrcUxb5JgCw92+w4O+Wn9vKb9bZTpynEficwQPBivN7rQ61btrSSVt01iuMmflkALY8xCmfdm8ySBYwz1dOdd6Doj2QGqjglrMoEpbL/axXV1dHyrQZ74lnW9TQaUOb54A0l9/4P4GBU/md+9yvJnvKBj72Jl1Xe8L2ELYUq8Fqm7s1MGgAwCcENkNgxZJ8//jjj/Xly5f16dOn9ddff62vX7+uP//8c339+nV9/vz54LEHBPz999/rX//61/r777/X09PTur+/fwG8LVsBvi1NAAnfPMc6c1GfpyMJxOxFeTwRkHjbKKOBKZNlPT6+3HP+2nH0K4ky20B48y7Ds6Zfmo7jM638Vs5aL3WYgQAjSZzGSj81D9v9vNaz7vSC7uTnqS3LFz9bwNPE/jc/t/TFRA2kRN5YnmmKSO5pw28DA/Y69qSfnmv/t5BP+0/lMz27Jw3TUZFEaDPHOs3ZcsCwPc3r4aDYQ1ug6Zxnt/oivyc+0atq90OvRaRvQTa6bU+/50vz3FrHi0apPA1GzSNPLa21XmzhatEAypuPh01/2ONJ3ViHLBwMEPjHP/6x/vGPfxxAQcDA09PT+vbt22H+/uHhYd3d3R15yjaS5BFBUfPybm9vD9Ml3tFgvlp5N0NEHZDvCQgQDHC78B9//HH0utq0LYcvtfMM3poMXE+RAaqfax4/o5kue+J7yqLc2cgxf+tJTmtttYV58Du/I58NCDSg4rw9biY9S3DqaOGWXiQ/Ajh9bXKI19p+wZj1bQON59iNs6YJ+H0qna9NBn0yIM2Do2LlfSra5nmZtpjv8uyteUX2Wi/PhSeQ4PNrrcPeUobNTiE+170JdkPBW1GC1t49fbwF2tqzzPdSHpY9J1IzRtNgIn/abhOmaeHttY5D2TRaNvjO34bYHiyVSuqX8RLPP/lGjr9+/bq+fPlyMHxRVnd3dy92MLBejYc08K2fWUeGSCPHXkeQNjKdV4vnm2Ak9ZsMmcFdxnXOv99rdN+KJiXvcWUD64hV0vI637yafCg7kyFyvnmORtLRNNaRUQFHYO2oNDCTdhgUG0CyXNeD44h5N+fN7XQ06pS8EAh4SoN1bXaAcryl35netFfvnh0ZcCGvAQd7yrEwWAANCmh4T4EBI1cKAdcUNC/D748PD9rpgq0TKPw0HOcAglbOloCYD+33BAasVE/VdQJ9l1SyU7mTHLVnWh5WllseWSszeViG+VxTFjGofhMblfnT08vz37lToU07WKnuoaYTTPTeUs82XcD7Bg9T/uZVxleUNkPVSWOZ3tJj5/Did9AWGAiRX9FFiUpmvFKvUU7taSfd09PTwYFheXmeoHByJiZdkbo2YMn8nFeuR7YJPKZoa+u/yQGbrlGmHK3wVFXyJ3Eag2/u5BjI2HdeU3u21hzsceoanbW10ERj6Aq/tkJ8poECrso2CLAynco2GHD7Jq+O9SAYoFGewj72WijMFO5GFN49UYCk21Jip8DBFnlQTHLwMzLwK2kLnJnsUZFOyZafS58yUsR8DASs4H2ACvOMYvELgDI2slOA0QR7MvamaJgn+WmKda31wmAzWsa3F/othgY09voNhgwUJqBq+cx8c8LhbjN1gg3wJeXXIWnSFhCyF+vxaUOWspJ2rXXglfUD5Zh5hfLc5EFP43ACFd49kzINOn5XX7UIxlY7rIc9zcboMOW8Rbfz7YWRybuBY+vnvXQWGCBqTGOswNgAfvte0jdDwk5txr4Zf88B51nXxQov1/hNkBHaMtRUULxG3pFfzner84xErSRbdGCLToEA98XWwGWaqY/fAyCYPL8tEGRjkm/2X5Mt5295bCvePf3FQZ/tfQaPUSo8XY2gMm3OXnp/8nzq4ne5U5aozAmALeOUA7ahGX2X0+S4gV4utjKo53OpDw2J+4eh2+YcEMCfs87nV9Jk4No1RgcaeXwaOOV5RgQMXPM8/9tL3wq3n4rcMk+23/o49W2OJ8dArns8nxuNnTx22oym/ynvGQe2QeT51tSDHU23qQEpp9uis8CAjXsGClFZU6J7//u6vX8fimFB8byr0611vAWHHeLTqVqHWAFFANoCKwoE27PWy7k6Ctqk3LYiAls8nK7vUTAt73OMegOFlyAbc8oMlYyVHJ/fWq9Cakid6Vg+88y9ZkRvbp7f5b7WOrrHecjkzWmCzIf7LW5RPtwG++3bt6NXD6ce5BfHuOXPY6Yp8klJsd40aASpkyIMpb7Mh/lfX18fjT0r6GYw8nmNp/U7ybygYSQgonxOBob3b25uDlsuk3czNB4LdKgY+s4e/7V6dLnps1YOwQSjGhxfewHbz/TlBHK408GggGB4Ap8hj+HkzbpP0WcD9nPpLDBAAdkCAQ1F7UFhFFZPB3DF9VZkIPP6zQsLNQ8lgmvAk7pHYV5dHb+zIHxwuNZek3nkl1SYmnfE675GHjYP3Xx+rWGejN3kfb9H2kLQW4M98m+wynxbPs27cj34XGQz11J+jFLSUd44jZC+uLm5OTo34Nu3b4fpg8fHf7/L/dOnT+vq6uqwe4Bp8+pXKh+Xz+s2GubL1BdU9lw4GSPTQsDklXnN9vPs+Rbt89TFOd7iW9KkJwjWWlSgySfzjL7IOoN88wwGjhXKMgEed2m4T07Vi7aE8tXO/Jjy4LUGJB0F2ernvRHhyGfqyDLobDoalzS2mU1POI0/jRe/HQzEGNtAttDUueiEzxJtEgh40VMUM/cnt0V+baFUOsWGP4OBAplnqPSs1NPhFrTUsynMtdYBJbJclmfhMs8mo29Bcl80Q8j0/t36iQPXZWwBnEtQ8/z5IWA8FcYkGQCFB8mnlZ9vyoGNFI170iekn/v8TEohBpuAgBGBKPx4zD50iO+G3wrzs92TMmb9HILPh281pGG2fiFItpeUZzzupjHNetvBSB0nT+ytiHLmMW/HIGQnqIW3DeQJPDk90vRLdKtB2u3t7UE+AkYNJll/tpHnELT2OmpKQNrkofGl8YOGOGny3AQMJr5SzgjsvROoOczO0/VpfJza2sbeKXoVGDAQYBitDcw9FXL4lVEA779ue5U5oHOPZ7BTCbYjSP2f7YoHwTnWyaN059owNOPiaQNurWqAxHlRWWwZr6Rtz+d/AwSn+u8U8LPRfGtKPzqiRDniEcRTHmsdD1gP3uYBkRrYaNNYBq70/nKd3zTG+R8lnumFAOLHx8d1d3d3OHsgCp1rEPw+eF5rC6HoiXs85r6BreXQYyV1TTsIjngOgKfW3L9tqpA8cx/z2dSTpxReijwut3RWyOCXchq+Ud7imCTfRMMoZwZOdraST3RmAAENZIhlEYikDAIRAyLKUXOi8psRNjtlbBOnIdgOy2lzzNg/KdP14Fhujp11Sfpny0Y1XT45hntoNxiIQonwsKM8x0dU5TDW3rJs3KeDRCygUUo+uY2KlL+pBO/v7194ZawPB1sDBPzf6hcyQCCx07eELvn422VNz7rekzE/dd+GqHkxU9lvRQYDPtmPUaSpvpSvZlxSjvvMng1llaFE5uG8Y3Qnb8bKxHIZAPzt27f19PR0ZOw5bcA5TSquBgzo8aTc9rE+uLn599HI4UnGKw0wyyYQSJvpfDRgNdXHZzc4HBsZST2m/nhLSr08pibjwKgkPzTYBleWl7WOV9Db+CRPv0WTYIPTWimP8m7dwLGRKKsNtOvpdht0buks60wD2ZRPR812zdG8tY5PRWRkIECaaaMTvJ3dZFswAYKfpbPAAAe3B7krRaFqA5dkRRZB80BuR7O2hV08KZDAoYWZqHyI6jgAqfDcYUbiKct5pEzyxddbGMi/J/5NQIDtPgUSGsJu/T3l0UDAeyADyyZPjB6t1ZVJnrO8GQhZKTdq/WvvzuU7ZGtw2uTz8fFx3d/fHxTy/f394SVFPHMgaRnSJEj+9u3bYWeDpwpSvnlMA2x+8h6nK6IcwwtGIqKcyX86IqwD6xF94r4gvwMAmid8Sdozlk4ZPgNEGu5T43qqB40odXHSUg/mnhdZJy2BSfqOYKQZX4fgA1q3jGTjgR1Jj51pkXwz4NajBNNtLRmfn0Bt8mF+e+xB6BxdfPYrjDn4w6xpXinEsNSUNzuFn3YyW4sO8BkeGUzEF+YQnRqtGmFz0HhKhAjbSNPCm7JZ5hZSNi8NLFhevrc8VpbfyOFpCjYVxp7ffO49kA0mZcORp1AL+Z+KDKw1zyXy3tbv0B4wyDFog5jnIp8PDw8vQvzfv38/nEaY/uO6AL61kJEBK2LzJvogLyTKeGCI1AAt1wikGQmwfKWNXvuz1sspRuZBfkapp7w818p5L9R0Qag5GnlmrX4uQNPJTZdP18JXggLqz/S/F85x4av1Dfs9v714N2A13wzNTwYzfKO9cBuaQ9Omo7aI9fDxwyRHqty+8C/fjno0x5H3270tOntroZnSrpE4wO1F+/cEBLyAsIGBIH+mawrZEYtTTGMYJ//JE+ZLReY8OQgYQprmkJx/yp4M1Ckj1YBAa0uLCkzCR6Aw8Y+K61KKNf1HuWkyRX4373wvEGjEZ7bS2WPbUvBUblRm9Pw8Vie5T7u8SNBnEzj8SQXFOseLn2SEdUz5DvXSG9uSs9SHSj36I7qEvDVPaBwIDk711aVoqtPkEVJu13p5GNbWlrwtY9IcOJeXvknkhbbCwKDlm/50n9HAMrLrSAP12FT3CTASxFgmG38mZ8/1ozxvyVdzWP3NOmzp4T109iuMU3lGBRzWYAVbuHTLoHG3QFPabRFhBn6bw5pQIgXYSr4hrdZpVtDN66HwGAQ0D6R5QVvEPpkMlaMd5IEp5U67KiZ0yuc9oFzPtybKVMLjeUFPvi0zIRu7PW1pcjQBvORtb3hPZCD5WSF7PFJ5WLmknwl+aPQzTWCFxg8VGyMBMTQ2AFb2jHBY4dHIJIRv3mflOnWUpxnTB80o5H6MTqYLLimzJOveSTbaWHQe/B0ek+8TbY13UoB3+j26OTJGfrKfm26i7DTAMjlUjSeWG/LUAJry6umA3Gt2zXxqH1Kzg2lX8vIUdosm/wwAIJ0FBmzcYrzbNEGr5BYIWOv4bAF7vPycAgOcr4pQRaAm9NQUZagJayMKCgWKA2/q0Cgw8s0GZDIwexTWBAimNAnxElk3Q+XntxDvpRRrFLvBpefOHR1pqN+/19oO3Sa97zVj3Z43OGGUykY1xGhW+syrqtnPUbpuK0GBwYCVL2XTi8dOAae0i8aJ/Hh6ejrIY8Zw2s3V58nPgCt1OwVm6SmmjNSlhXTfiibdahlieyYniHnm48XgrSzmZ4cmMkaiMacub8azGfvJsWp1IyjNNeYz9Z3tSq6ZR7Z7jiDYefD44XTaWsdjmGU3vpA/lOEJmE22bQ+d9aKiiVpHGYUxjRngyIDn+5LGAMDGsAnt09Pz3BLDnlRuIRtp1nePQnM+7bqVMfnHOatpgaSBgsnt8b0JEIQ/5oOvmUetHTSODby8NTHcSBDw6dOn9eXLl/GlPWwLZSpp+O3fU1tprJpizHdTzgbJjpQ18NhW0Dfl3MCOFRIVNJ0A5tPaZl7ZI2N6lsV54Gbwn56eXihWjpVTUQHWhc5DnIurq+dplUvJ7haYal5nk9XQNE3Ccdt0uaMH6Zvo0wAmG2XWv0Vhc99l7SWPvS1eUd48JcjrkRPypMloo9R9y3mkLvJaOMpoG4Nb47Hp41P1Ne0GAw2RTMZlqxFkWkNE9nbIqIlosKKgWK5RbOqRvB8fH4+E2nOhXiRo8vxYfuf5POeVtGxzmw7hJ0JjxWrjTAXa+rAZMRp+f8dzTDk5a4HCyOkYG89m4N6aOIfMFfSJCmR7XepuINcAwITAPQCp+BzdorFyufzmeGiGlHVKXzBfK2dS5J192Mbpp0+fjvqcHnzKZbtZpyaPjvy5vSljAisua+Ljlkz6N/VN/m8p9rcgR+ImuTsF5tY63prJ/zZ+dMCa55p8qSfCK4O6aT1A8k8d7Ji5nXY6Un/yqfHO3wQDbXG59SqjFrYnBE52kNw3jQySmlNr3dzym/i2FwSEzgID7JA2yCmMBgIcVAwDRojswVChhaygWV6OEm4eiduRvKiMbm5ujgzd1EZ7Pqk/AQHrOK1QpdcWMPD58+fDQTCZy87/FsaNkFBgvOBly3BZ2LJ/PJGTAAFuC8qzBARUKkapru8lyNNI4WuAAT0FK8i0ifK7NSBbyL0Zusmot/wn79Zlpf42sKT0a2TPbfWH4ywymzZxrHi+32OfbeKYSXv930q58ZzjN2nJLxunRqzTRDbIl6JWRxsyGrCrq+c1G+k78tkA04Buitrk2Ww9ZfmWC+v+5Ee585TWBCBD03XyxwZ2Mrr8bnqf91yvXOP7BrzIdgsITON/aucEaKd7BsGnaDcYsNE3MMh3Yyg/FNC1jhfM2bBu1eX6+uU8aBhAsoD4XpRYDIYNrRns9RENBLg8e4f5TptjoL58+bK+fPlyOB2OgCDCTMRo4ePvaTBRUTofvmY24CCAgPu7Uw6VRTMEFsRLRQZ4qBAVgo1OaIt/E0D085Y1elmuBxVC28ZkoMxnHh4ejlZbU6nb88k1bvPySu0J4LNc/o8MZwx4T7X1gOtIj5Tle0rPb3trypljlHVkW86VwVMK+y1pAvUTIAgf2ccEBGmXHZYm+9GH7GvqhaTxlAH1qAEB9W+uWa8kX3vipDbWWMapKQo6pizPvGRbKGu2cX6OdQr48bZmgyjyfXI8WjreOwcIrPWKNQOThzR500nPk5wa0rbX38I+yZ/Gd/IcDCpofJMPycixeWstQsA8o7ST1q8CpUCGOI/9559/HsBAgEGiBREeb+2KEQ9CbQvFqLDJnwg3wcD9/f3hTXdUwhFaRmAyiAj0tkDBhOh/N/nFVZ57J50aPM34tHbR8DUjuuW9Oz8vrmqAxh6QQ71Mf3X1/K4DToFN3gzzNoChYqWXd4qX5J2jEtEXBAKcYpu8o1ybyuU4cJ84TM5+9ph9a2oG3yBnAl/8WAeG3I9J0/hIh84yPI1x6qvkyT73TpCpj6d+mCICrJ/HBMsiH8nPybBHb6ZtlE06ZK2eLHuPzdky7g0kMM3UhxOdNU2w1sttD77fgIA71ihvKwzXFGnIneVy2iBqysrC09rOdhOMpP5RrOzwJshGqFGgMfoBAQEFX79+XZ8/fz4YNIMB7gM3DyjUHgBeGMgjZ/OSGirj3I8hofEwcqayYB0u5V3xpVY8ic6KZyIDnFwLDz115N/tmhWwy+N3M5aeikg+BGWn2tU86ubN0GuxQqWSbeOn1Zdt5nV6kC0iYKOy5TE1XZByWU+PRQIC8uhSsjsZgC1DMIGCBvLoyFA3ENi3eoQIBjIFRfkzsDIg89kY7FvKvfVWI+rXtZ7Hfa63SJn5mt92aGjTWMcpMkt+s8xEBn1Ojsdz8ms6toGlLZCwl3aDAYb29yrQ19IWCm9IiR2V600xTx5au7dVNjuZ96zcaexvbm6OtrBFCCIQnz9/PgCCfAIIMl1wff18kAvBAJFpU2Tkaww1+ff09Hz07N3d3eFVtjyLPr8TNSBYICr2tjBGDbYG8u8kDzjLsRWOB3wDupTDrUiW5YshWdeJhmdLhu1RTAbaXvApRWgl1uSHYJhrXshXlpO8skB34s80rtkfTdka+DufJnNc90C+meehP/7448XLxN6K9ir75gQYEBiUN1lh/xJYrtXnzeMYxHhzLFAf2ThOaRoIWet4esPtZp+1MbDWOtK7fHZyIs3L1gfUE5ZN1yft9sLwtouA/dV2v7lerFMDIHvprGmCFi5hRZJmi5jOxpQRAxq0MH2t43fIu6NafSbBZ1ovaGwC5/bmfwYO8316ej6bO/nf3Nwc7Wv3nNHNzc1hWoDRgVzLMxY+AwF6v+QTB3sTpAjc33//vb59+7a+fft2OIo2n7u7u3V7e3sUOcgndUpfpa4OU16CaCw9ZeDB6u+JX9NA43UedsQdIm37rJWU5dcroJm+yauVS5N7G11Hl1J+QACNv6MV5oE97tvb20OZTmed4bq3Om/xnWkJssIr1s3bMqMHaPxP6bS3JALXdo9pMhb57gnLSmSvRZqc11rP0SPS4+PjkWEzKKThJ1G2ozOaXLEOPItlkj32bdpILzzPsx3Ma6u/Wxo6DrzucTDtEltrHXQo6+Z8J3Dicd34sYfOWkDIgdtQNwvdi0qYbwuHMq+EkehhOIxlZROFwKkIezJM43o7TNOohUBtABmq8ir2CAkPwElE4MuXL+vr16+HdQMREJ95HWHLqXoGJ+RRQ+lPT0+HN9v9z//8zwEQ8P323759W3///ffhd6IHRMV5kU0WqnEdw6XAAJVC2rzWrBDc514UN8mBPU0qoXZyJg2RgdupfK1wJy+hAefW1vT/BAa4W4Cy3CIJHosNhCR9IkbkdeQo61giX45EnaLGF0ZIwv8o5bSPUYw95fxO2nJE/N+6M22KznSfWE7DLy7io76gvo8uYvmUjZRhrz3X2YY2njwmLMuTQ+oyPZZYJkGwaeI7n+MUarMRbK9BAE/KTdTdR36nDDtVDRCQT+TFOXRWZIAFtfDbHgT9mvDFlifgoy5dBypPCn3q65D2lrJvdUmZE6BhHRgdiPEnWuRBOJk24PQBlS8FZq1n9Pv58+f19evXo8FNAWrPRWh//Pix7u7u1pcvXw5GP2AggOBf//rXIXrA61Hcnz59Okw3OPJzbr//KiL/fUztljw2hdSUkBWePQF7BOesJE6eSdfOJyDQJZ9buJT5trDvRFO6GAWDkqawGtBPPdruAb8XIdvYWO9J8RNAcXoj//lWU7/GeQv4X4IakNpK2z5pW2SIgIjnbFC+qRupPxqoj25iRDTkfnHkrckm702RhdbGtV5uK2R73BaH3xs/PebtpdOLZxQufLGObyeesh4BpAYZrY5N5recgC06Cwxshaam+36eCo40oUmTFXkoncBtU6wTkTCvJS0FhB4TO6ih0MaPqdO4c4DTBQQH3APP9QMGAwQyjgr8+eefRwt5ONXi1a4GA3w7WHYPpC5ZyJhzELK2IIDg+/fvBwDhPrrkNAENKT3zJg+ORjW5oZLcIg9U5mMvf/LwWQ/XezK2JLaH8u51I16t77EVIthl9MtbwqyoU9YUibH3byBghbzlIGz1Qby0Bg7d1vyfVoe/BTW9Q7LBa/y2/qJMMHrFMpmf6xH5N2AInxoYiEy1aMGk80/1seWsPd/0tPU7dT7rRWI6/m/OFXXydLaJ5a1FAqb1MVs8+Rmn66x3E5y61xiYM8XZcVSI9tqp7HjNCr0p6IT3vJLdnn8TjjaIWpSBIGNSPvywbQEC+Th8bP6xTmy7BxOnGb5+/bq+fv16BAYmBet2MGybvJNvnksbEhkIIMj3zc3Nuru7O5KBfNoCsrcg95P7hkbSzyRdIlBrvTSIzINjwcrP365PkydOcXjMWD5Yn1xrcpV8M2aaN2ayoswYa2OkkXnMMbe1c4AKe1KM4d2WwW6ggBEcesacjiNYeY80AcKM5fQV+4xORZNJA8eJqC+Y7hSvrLvt2JGs6/ysdfckA+GBo2EN7EUOaEMsjy7X/HNEIDqfB34RAHCRdqKxbZF2A8NTH20BpUa/5N0EJDIl81QhCijRk408jSR/E8XbKBJk5L/Ldii2hWUnxuXZPairCQnBABcExlOh18o2cNCGb3zDHoFAphgYGSCCpbC1ebIMYvZTgEDyYFl3d3cHYJDIBNtMurq6qmW+Fdk407iudTygKCcGd+EpIyunaOKHIwW85+uUI091RT4mYHIu0Uh4TNiDatTaMgHdlpcV8+TZuaykb//zzak5fpsYMXnPYCBkENdAl9uU3xm3IfLMRs7lcQdRyEB1rePTITmtlHynceRxtwUIDBQNGB0lyTcBMdtp8MAIggGQQUv0tKMCXIvy+Ph4tBA7AOD+/r6+Mtxtmsjg/peDAXrFafBkHCcBYocTBPDb86pege1VoWm8BYIMnDy0tV5up2JdOdfo+k/KyCCAbfLJggY/jpC0wZ37XnSYKYIsOGyRAR4qxEVxyZ+INQPU6NRGjN7q/f39IR9HfbKu4JJkEJC+a8Y/v/ncWsfTHZZ/zsUSrFnOm5dPOWrTCQ3ENIC71rOi3qsIkp+VSMtrMjjknT9rPb85ks/aYO0lg6QWhSE50mhdkjSRT09X5Pu90BS9yT16yTHYdsAS5YuRm8iG0eCUZRoo87oXEbOvyPtWvvWMx0vIHrsjdwYMdH48hugkNADBusXpdT2tn6mTvWg2ejYLZw0EPB730G+NDFAJTfeb4cw9/m5K0pEAG74tIEAGMgzudPaeHP5p7THwoeE0b8wDTxFkQSB3FHjag4CAKJtCyDUCWWDIb0YGjMaTN0NkETJ6+GlDwqbcQhhAcXt7e+SpZd+x+zQK6BLUBi9DxGu93HvO5+wBkFfM2wrX0S7zo0WD+LwBwFrHazyiZA3UJ4PYPG5OQ0RWWru3PHgq/aa0I4c04szjHNDitjXg4Xa3MeVnqJinRYzvhZpTs9ZLeQ3Pr66Oo3KcIuJxwtRv+W+gaAeplZ/fNGJt59meqJpBu8E0y3O0yd++135TXinzLfJg20BbRiAQvRzecUeYpwdovzwlwf5pfT8Z/18OBjL3H8rc2hReYWWtiKwUyUgDgYb8rbD5gh2HV1jfGDHXL+n30h5kxgEWA0swkAWBbGt7nog0IbncJ9DgPl8DL6NVKogYlAjYp0+fDn0WA+7V3A6VxfMwkHC5p8LLb0H2NJoRscdK45trlP38Z5/TGDYQ2/qICpdGq0UK1nqWaebBvCkjvE9QnP8EBlaqNAbNs/KWs8brJpfOO0SDQ9ASOWsKmc+6v9t/tjG851wtp9OyOPYSNIGzLWJ6gjD2G981QmPj/msRo616UE5ozJp+pS7bItoBOnMZI5OxNzjhdaZ1NKVFDNkmEsEKo7t88VxAAYFAxi4PeaPtmhb0NiA49cc5UYG1zgAD7rgIRmNOG/gcpA0MxEgZvbe1ART2GH3uR+YnRK+H+TZEZSWUdqXMiYgKjQ55quDXr19fTBPQIDB8FSNscBV0z0+ey0I+RxUo5OmTKDkaFYKG1C/3CQjsPflkwuT36dOnA9q+FFH+6DHlHo3xWi8HXZ6fpof43wDMysteP8FGeG8QYcO+1jqAw/QhpzqYn9eh2Mt5fHw8vJDKu2m864A8ZLrIV/NO3IaQvZ1GzcFokQj3X8vHfebV4YwI+FCtyP1bk8FACxn7f3OY8t2iPdGh0SmWHxLBk/NvzhcdBuvYyG2zGcw/79GwruS7X9i+5vH7fotiMCpg0On2cczmm5FeruGKLaBdasDTU7Kue/huG+x6tLbtobPAQBiV7yYYrjxpUmw2PM0jYr5sZBvEFsQwKXNkLSScNPwEGSa954gnHhEUTOcHOEJBBb/WMbJ1qJNKn4rQz0xhOCJ+RyXYx619HpDsE9c1/9sipbekLHxc63g9hJVkQ9/NgJk8aP1Ng8mpAQI591cDEJ5SiJw76tLGGevHcdNCpFG+TG8QTiBuJU++08A0ZZZvRwg8FrfGnscA2zoZPwMkK2gCAoKit6amo06lWetl5IM6w+mjKxOt5Na3BnKbTExAgLKWeiWv9FumuiZiRICf7B6bvP4WAdgCtymLOo78jexa/3kq2w4gx2vkiluyW2SAutz6yNfI1wb8Jjtg2g0GHOZMRcjcKUqQtERfVMD55oCPAFCIrRAidPZKeUSuGULBsWJtXk3jA9vP3wwRUTB8/GQzpKxXhIGDxWjWPDBf7CH4PweqB7Y91fyP4fE+7aDepL+9vX3Bz8fHx8MUxFtTDA0NL2XVcm0+u59NrQ/5P30Y5UU5yTd5SW+d5To6R08m5U3RCNfv8fFx3d7eHnluDVBzoam9leTJKAI9zJTHI2Qth/YabSz4n8aIfGFe1BtMa4+Xc+Vpg5Vx2j+NvbekPbqJZD4RFBDYOM/0lRd8knfTCncaYUaYqItbZO2Usdrr2bpOlCtHC+w983dkmG1vkYC1XgKBbB/ktO1a67A4MKe3+h0wDQjYPk59b9lwn24BLdJZawZSKYYlM/gmQ2XjGaG0AaPHQEYEARqMUAkZzXvxBb2LeKpsD6kh57TFbWLeebZNgTDEzJXJLittcviS1xqfHRWY5ucMBqj0OHg5gHh/UgI0VCkr10mfP39+Ua+3IMtV2hZjs+V9se8MIpxnM2rNE/JiWQKq5mGnHm08WYbo2bFM15NTP+QBI2FW7p7T5FgzmG3ji8CEfLXxaH2xBcJZ91zLGgMqUStVlmVFzDadY4R/NTX5DLEtE+h3XhN/W3pOpTIP58l82ZcEjy6b4KwBhFznGPXzjJKyPpRrRlpbtMBExyeUyJvXa/ETx89RhfDg/v7+cJx7jnr322ENBLb6PvVo/cHfAch76KythTHiDulZGPgMO5QNcOfaaK91rABb59lIehWm86dnmP82xpOxdbmNwc0bT/rU7/7+fl1dXb1Q2GwvhYDC5nCxQ8fhbfN6028tEsJ05DUHohVwhD9po3wN5PgcDyO6FE0KwW1kBKcNKA5YrrugMWFaKpA850WjMdDp5y0DZE8l9fXW3NSfdSMQCE+Sh6cYKAMGECaPpZaujX0/w/wia7lnXUAeUl+wnQawBmu57wNe3IfvgZoBMBBoaQ2EmcYAyOBprXmrncPuvu7xYDvA+k86nvYjfRV902gCAdMUAflHfcZr1oXWz0nLMRe9kEWoBAI8zp3TUW3cTMCObWGbzgEUpLOmCdwxWxVkBYz8WqeTiS081cqiAFq5kTFBkM2AbymnLXKb6H21OgYIfPv27WAI/CEvGIZnGv+P0je/mlDR60vaLQDDNK5XQsz0wuyZEeg8PT2tv//++ywe/yqiwqcScZvdzqZ41+r7mSmHbXBOHn0D1qfIzxMkGgxQKbmu/tgQnFJIp+poaoqpKTFft4xSUROwJf/IJR2J/G/G6enp6fCCrWmNwKXAgMfzVrpTfUQHiPy1XmY/ca2Y5YSRrAlMuHzSVnTO5LTpH44rg7e9UYFJf7pO1GftN/nLOuQFcIwIBAjQgaUMb9XD1HjO/vgtkQGi8obmyGh3slEXByjLsAKyMXJHnkLvDku2du2lhsjZpuZ1hCdcOLLWOlpTwPr5dEEeWOEFfCzD/TOR5wtbG1s71noO7WVR5Fr/3l2QMBrr4QWSnKN9awpPrOTtVfO6ByTz4EDjt1fih6wkTgGBCWi4PwK6vHjJR57SwPlIakfS+IKUrbUqrDPbl48NMBd72VEwOGEbXRb7LXlNPGw8NVhj2W0VN8u7BBkQrdVPaLR+c5TG/GA4nAYoQIpbKR3ROtdxMthmvu167nHM8ZvjhvJkQ5hntoAA62h90JwDg4B8E3imHhlv9/f3L17u5rUClm23aQvsccxttesU7QYDk5eQUJwZPaGvCByNtPNuhnsK07qshj65PbDlw7QO9fqz1aZ0CFevU+lEOGI82fYYUG8r4wlWjARECaa8Nn+2J8JiXlAx2tgRvFxdXR0tQONAZfRirX8PirwO+RJkxeCBRm8pfRlE3TwgGxHKRpMTymojR2Y8gAmyPLWUZxxJorKPMaYCaluYnp6ez+xwZIhlpJ2WQ9aXfIl8NpDVPJmUe4ro9bcoztb/lM2DtNo7Egzk3poie9ELBkCR0z3eX5NhlsP+4ULWtV4uim2O0Va5zVGZnmkO3GRbWqSadd0Cl6xHcwbW6lvqXe/0iQH74+Pj4Q2uW4sFT/GF47+RIzocr3tlY60zwMDd3d36/PnzCyCwpfhaVCDPMT0bwMFHxdcM71RuKJ6TGcNrViItosFvEutxff280DH1sULkGdQEAZzb5LUpEsD8Uv+np+eDb+z5kB/m1wR6/LwFKn3vtAEwBAJEyJeg8DWKn16qjZQHE9u31kuvPfcdio+xZPkEGvm4PCrltV56ZSFGBbiepAHFhCqjmBwdYH28/iGRlD0eNT2i1IORiwZyJkVOiixRFumN5ZqjN87foJzgn2MzspLrWSh5CcrODusWy1kDjwT1vu/pJZ6d/8cffxwifl54zDHvKGMLy+e/+2Mac6FmwM6JSDQ5nWwEvf6mA/I7vLBNWet5OiV1py7N9ACBeMYjZZB8YRtYvvuSTkzkxHp7Lxi4etqCTB/0QR/0QR/0QR/0/z3tgwwf9EEf9EEf9EEf9P8tfYCBD/qgD/qgD/qg/3L6AAMf9EEf9EEf9EH/5fQBBj7ogz7ogz7og/7L6QMMfNAHfdAHfdAH/ZfTBxj4oA/6oA/6oA/6L6cPMPBBH/RBH/RBH/RfTh9g4IM+6IM+6IM+6L+cPsDAB33QB33QB33Qfzn9Px/nbVT+ZpBnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/lUlEQVR4nO2d6XIkOa6sKZWkWrtnOe//iGfmnumttOb9MeZZX7ocICNVpdRMJ8zSIjIWEgRBwAEyIi52u91unOlMZzrTmc50pj8tXZ6agTOd6UxnOtOZznRaOoOBM53pTGc605n+5HQGA2c605nOdKYz/cnpDAbOdKYznelMZ/qT0xkMnOlMZzrTmc70J6czGDjTmc50pjOd6U9OZzBwpjOd6UxnOtOfnM5g4ExnOtOZznSmPzldrV54cXGxdP7i4mJcXl7ut/q9e/fu4D/P8x79SLvdrvzpvPPCMt+9ezcuLi7G1dXVuLq62td7dXU13r17t+dN55wPHfN28pokn91uN56envbbp6en8fj4uN/XucfHxzHG2B9jm6v/LhvdT3n48S3EMvhzflJ9fi/3//nPf27m5aXkfZP60Pvdf16OH0s67/ouPRRVfer6Sj1N48PJx9z19fW4vr7e67fK05a672NS9YoPlnNxcTF2u914eHgYDw8P4/b2dtze3o6vX7+Ou7u7cXd3N+7v78f9/f14fHwcj4+Pz8YqZfH4+Lgviz+OEbZxjG+6zTHFsaY6tZ/GX6XT7J/dbjfu7u5auf8ImvX19yjbx4HbR9dB6Qz1mbJSn6kPKNeq7tTWytZyrPJ/1T5dQ2KfU0d0jrox8zez9viYp7woN9dd19MZD4lU94oPWAYDqxWvdDLPy0hWBnOM8ayjKlCQyqZh43lXDtXz9PRUKs4YWfGqAat6yJ/z+vT0NN69ezceHx/311cd151PICEdJyUZ6HoZ+sTD1pdWvrWXXO52uwMjttImXZPuWzXYquNYAy9dSaS+9DHFseWgR9e7TmsMUHdY7tPT07Pxu9vtxtXV1Xh8fBw3NzfPQI6uTWOWcnEjr7GhOhLRQLqDv7y83I8tlu2OPvGUbMt/C3VAgE6/AgK0HS7Lqp7q2AoYECUgIB78Po7NmR2kzne+a2YvJAvahjTuWb6Xtdvtnsl3pe6X0ncBA51zTOcqBXS0KfJOTWjJlSEZFhrMxJ/qoSHxMnmObUht1TGV6zy5QXbjqXqkoCtKkDIFJAcA3v4OjHRtSwpd8fXWaMWhp4Ht97FvZ2WRaIxUTgJqvLczkBxLGk9d5o11y3HSKLqRf3p62mcHEl/6XV1dPXMSKr8CBE6dUfY2kKjHaex5Wav8/DdQBwRojz0z5SBgjJzBZD0eDM0AgF8ncrArSsFbN0ZVFnXD63BgsFKmkzvw1LbKNxDg0Dck+/M96btlBipH5+f531OSTFWSdrvdPkLwsgkKEi/urN1xu5HjORkukkdRipQqQFBF1wmNsg4eq/53NDvfAZdj6Uei1pdQN3CTHlTXVQYh6TaJIFORvV/jxytAUOlaAgI07A76WJ50ONVzcXFxkGLXVMHDw8PBtAVTm8kh0ClUzoP7vL4CxNW0GIly9KhvlmF0Gf+3Eu1klxWY2U8dnwUwW2VaAQFRCt5mZblOyL84IOA1Y6xlBjpKtiMBgurHer63vX0xGOicfmpEaqCnn1J2gMYpCYKDmXX6PGilTDRqTlRGj96pQN5eGiny5ynUl9JsXYFTBdi2KNaKIs6yBa9FzmuF1EWJTw7YKjJIYNivTdkEp1l2zP93QMDroA4yC1Dp6hjfxpCcw/39fczkab744eEhpt8pP/13R95ltdgGXyvQ6X2l797elHXxMv7TKdnmWUaAa0QSpYxmN61zLM8zclDQRfAp0EqAgDKinZ0BnQ4srNgQ1elAoSrre9B3myaYgQAd9/PeeF/EJ/LFdTJiEoZH8Z7G9ywEUa7KrIhlqxzNY4o3tovkDtoNb4qQZpQWPHl5r0UVOCNPVdT1mrRi4GcDON1XAUzeo/an63wqSttKR6X3NBQqx38ycE40morwVX7KtOlan37Qvs5zCk+AwBeRpUzAbMvrKyCgrGGna1VfeV0rgO2/gVzPPCvAbWXXqnK5XaHvaR/S1MEYh0GdSGNEeuXrt1hmB+pnlGSSsioOnDnOU0b4ewKCF4GBZBS3/pIR40+kAS9HLKOoX2VoK0Dg5ArkiwZpiHVM/MzS9jSENLZu1HRtVVbn/L0MJ0ZvzLD8GakbxMkpzKKLqkyPgN0gVNmqCgx7hoq6nMr08SN98TlTRuO6JqX7xxgH6eI0plQPAUDSeZfRCihmWWnl9wwMVw7Mwcd/KxDwYEz7DgR8mqCyi6Kkhx2lLNAWYD5rn8p0QNBN547xDdBySjqVsUJbgZBnpmh7fOqiAgTar87N6LtME6SI5lhQwH1HpEzjMCOQsgYiN46dca86mgBAhljleIqMncFzyVjNjGVn4DyrUGULnOhI9F/3kWcq6FuI7F9Cjrj93Bj1lEbS01SO30diJC9KTrsyqAmIpoxCpd+V0XUjksBANSY8y+b1pgxAkhV1izyI38QXf54VqOrp6q+uOSbCfavkbWHf0d76WgGdSzZgFdyKvJ81LpODm4GDKqruAPSKfBwQcHxw+sHlsaojs+xX4qe6330F7zvGXn/3aQJ3vNXWfyyL0wVEnYyGONdTGYRKSStHKEqK5iCAVEU7lXPnPdWx6v50je/zP9vIwbuayZgZzP90mjktR+h07B1Y4n360QiOkSO1GZ/UwyodKuJ58sNyWL473ARWVa4ogQEfzwmcs14vP+0T9PPdAx1gdlmwnq6vSSt9859GKQjzRwcTUE12gGU4SCWxn3w8jHG4xmBmm9I1Xm/XZ7PAgICAbfXgq7o/jYPOnnYgy4OSzkccA05IR4OByqB1gMAVUB1IhXRU6i+24Jw9AUBS1oRc0/HUKYzC3Ei44lWpG3f4K8CA24T8ZrSCPB0YJJ5WFXcrf6emZPB1nNvqXm39RyPXjYl0fUfUQxGjINcjguSLi4tnT+C4gUv1uzHi2HJdfXh4KI2iKAH4ChCk9lNmXIvgDr7iX3Ws6rTbj0pn/lNoZqNXp2nT1JGDCdr0MZ73n4OAZDsrYNCBBc/eqs+q6bWZrKirqS4H2S7fRG4vusiebfB9goI0dXCsLf4hawa2TBX4c9BURH/UMAl+jG/pTwk4GSO/x9uRgID2qeCpnWOMg0UoTluBQIWMVw3SKhBI11TRWVWe35t+b42SsefW9/2YD+ox8grmSudpFLntyOtxo0Z9SnoufRXffo0DFm2ZDfGsCNuR5OPO1A0az+923yL9lIngY4sdGEgAZoteOt8q87+Fkv1K9nqMcdC/Sc5jfFtYenV1dWDPWR/HCW3biuOlo3M7nYjZ4xVAUPkDjoVEruOUWzdd52/hTCCYZfLeCmxQdi+xtz/kpUM65ormQnLF9McLHaGqE7n62VdLVwM3AYSkmC7MhCIJWpJjddSr693Jd9mEVCeNsyPIWTv8WOWAVgHAFqV7C4AgDeytfNHJqK/kHLv0v0fENJAEB7w38aZrq7cQVvrDcUdjOcbzxxgd5PB/OucOugKRNM6sn/LkPSniJyhYSft7m7aC07egty+l5KxmgIDkT2l4cORZAc/k8jXSrN/tmGcDEpjtbFpyvC8FcUkeogq8sP3uH/SeDg8MU0CQ7EHFT2rrMbr7Q15H7D86Th4TJZBAIEDhVmgsoSknR4NVNF/NP5Hv1A4aWi4+SSmxCiCskg8o7TswqAbQDPVy6/vp2rdMM6PgUWV3T4o6k6P3AU6nz58MhBbGVvLsQG7H6xjPFzDqHgJuByEeVXPfwYAcNLfJwYt8Co7HEmBzR+4gwJ286/ZWIJB04D9BzytKtth/rke0U2M8B5qpPH8xUUphJ5uVbDjHFa9LUfRq38zsQDd9kMqiTFyGDgqenp6eAYExDjMMPj5ngJn3uhy2yEX0Xd9AqO0qKEiK2HXIsY7TIxHn2zt2jDoySwPKO50Rn/OenLbzOpsm6DIOnQGjc/oeyFn1zZTuGMX8nkQQmRzUikx8gIoqGbusacz0Y6TQ9bs7ch1z/pwn3/Ith8y++QeQZn1FUCDn//DwsN+qLbNV/tVUR1VfAibJybvs030uuy7q1DX/aUSeK1tcgYEx1t5iyswA9WgGqnm/1+nA2s91Ni9NCXuEntpb+Yjdbhd9kupXQJmAgAfACRRXdoVt8/urMfBS8PrdMwPaViDA95MC8mMoJBqgNMhX+fNo3p1suq9SMnY4lYJvstJ9fHY1TSWoHVsAgfNYrVngvTNiW1LUnP53vJ46qlI/VOh6RhWQ7O6vrqUj9dcAV0aBGSfqm68AZzlsnxs9/q6vrw/KTu1IBotZAb11UG8m1DG1j23eEn05mK6mBSq9TtmBdG5Gp9bfl1Cyw+lNlSk7VP2n7rnDSzbbHbrKSODbX4BVAZRk61JgWYGCFXCg+lK7aM87UJF8Itua/FgCcfyv4IC+IwGOFRtN+q7vGeB/KiAVkQ1K94/x3AjoPFOQfLyIc4iJrxlKZJ3unKs2p4GkjtR/dpTeWJgAQaKEmFk/96t0W4UWk2Kna1YBwYoxPiVdXf1bzR1J+0Cc9Xna30oOCJySwUrHfIxxHUH6pobuoUPwt8yl9lbRo4OBu7u7/auKHx4e9lMfHJ8JgK049ZRh4z1JB1MmoMokJPIMz1vR5VVyPXEQmL5C6HYg9Y07/wQKXMdnnzGu+K/kTrvKvp+BgGT3Z2NN+3zjLO05x7Fnib0uZja8HauBHK8XICBwSrZ8lY4CA+7wqWwJCKRj3mAZjIeHh/2x5Mzo+P175U5K1ySFcR5StL7Sfg6wKqrn8dk0QaKVdF1qhxuzFYdGYz+rqwMCiU5lUK+vr/f7XPBGfVqlJMMEPP1HciDiepfGCMdOelucGzGNCTdyDgaur6/3++TPwQDTwGzD4+PjuL+/H5eXl/vMgDIFAgocsz4VRyeRQMwsQ+b7KRvA/j5GB7fq+ampAwL+uuGUWRrjudx9iqmaXnIQwKCto84vpPalzMGWzADlVN3PazgdoKxXBbq7NnomWn4jgU7qnQMzAgL5F163EuA4bQYDVWSSfp1BFNFx8fEhGb2EVt24uKFR3UJvCUkemzKkHLztag8zBN6hiecuUnRK6c6Uhkv8rhyvIv8kI7arKn8l8vvR9P79+z0vNFTaqn2reuDGYuWXDA3rrNKRs3FFw0ye1Cc+JlJkqKkC52m1/ZwOoExUfvcEQDLqyXGkDM4KCFj5VcT6/lMyAzMgQBDgj257lpTkAZUDgDSlQyDYZQXS2OA5v4/fDnCdWJ0aSHU4D8z4Uke5ELBa+KtpQO1XAWYCH5VvSnaHQaiu9/pWdfdFmQEpmCtcMlqk5PiEIN2QuTIIZfqWjebiDqbnOUfLcrdEhpUs0v+ElDsQM+s0b18V9RwbAVX1dUCgu8+vO5VBff/+/V6fmFVSFkq8bZWbO/oKAHeA2MEi7/G0YxpjXrfK8ewQAUMFLlwOHIcaZ6kePjstXmQwCcLpGBwEMyPoaylSv7gsCXzSuEggZLWvO7D7ligBAYKy9CEinRdJV1aCCsnQwVtl31IZVQq/AsdPT/9ele/95wDAj7HsFeJ1klHl8KsMAcfESnaXQGBFN90P874OgFS0CQwktOlRxgwI0MFLURhZMB3jzlv7NCr+SlIqggMBGrOUyk8gpQMmidwpp+h/9XWqFWDxexxQJENXGbSkdN4Gp2SIVwDAqQyqMgMEAlVkw+Ok5Iz4SyuIWZ7f42VXsqGxTuCiAh8sWwZe/KV26FrqJ2XiDoble9QvYsQpuSuS4fhVeXoSIfGfokuPZAlc/L4EQliH7q+M8KmA7CpVupGyAswOJJu2Mua933nc+5fU6R/PsW+ptwSWDiC8vFRvaof/d3uf6hnjebC5QhUIrcZu4tGvT5mJMbYDgqPAANHIKhBIKInpfEdiNCS8pwMCOj/G8/UCHlW7UrpCcyueUuTtSim+HBlrfUP1OtUk6xlgqaIe5z31QXWuav+MKifaGdjXIq0ZUL+McZhOS+lR7++qHR6BJefs14u6/vCyWYfOuQFx4OGGIBlCB8ia67+/vy8BQUUOavifdWjM0PCSn052lYFOIMCBePX7byMHASkjQHstYr+QKiCpe7ifbJR4cnLnn/STOlxlDPy+1ejfqQPlXg+DAC4mrK5X+WP0U7ld8JT4k0w8MyBy/9TRMhhwpFn9OqMhRdE5Om4KyDvT50O0n465U6rKreYl/R4RV47S2LBsHpfz56NXAgJc+JiyApUyu+NPho7tSJQGewICqZxqAL51g0oHqugz6awjbAcE3Oq8j4vksGbyYX92wECUps58bFX97Pr79PQ07u/v9+f1NIBAAfW0y0K403cZ+Hm2V4DA7/NpEk/HVjYmge0ZACA48fKqut4KUcZJJ6sFp74glM7WgzNuxzh8Bbzu97cV+v0Vv2mqQOTyJ4+iKurn/Yl4ToGBB63pKZuUbV5xuinA4zkCeOljlblge5PdOoaOBgPVauZqMHXl+kK/tKVydlEvow2fC1tJl7jRV3tkiJhmpsHVQKhAQAICBCQOkqp0bAICnvrsnHjVH8eAgFkZM6PwWrQySJPBS+3p7uf40PEuq0BK/e91VNETHauDZNcL6Z0AAMcJ3xdwd3f37NHAJK8UENAe+IrzFNG7Q0hAonIWSRY+LtIUWurPBN7eMghI5LrIjAA/AKenR9yRuTPSca4voJwoX9cTlcd9/ee0WhX8VADAF8tWNAsI/ZxnjSuASKftU3gzPrqyknOf2Q73QzNeOtoMBqQQVXQlWo0WhUj1NjYaz6ozxpivePVru2i7Ko+kR6YS77yXYICAoAICx0TVK9kB53OGmjtH5/fTSKfI+S1mChLCTs6gAmCpnCpLMIty0jEa2CoqSPcmA5z4F+h23hjZCCTwxykDj0qYBWBQoMcVBfDdRmzRDwcJ1bivfh1Q7ox9B4jfEjlg0n6VEUifhk/OiFTZ+CorkPiaAYHOSaf2kjenzpavBISesU7j2QHBDFiqnG6NgUBAAvBVoKe6ZrZnhTaBAU+FUqESqiZVDonnOD+ZsgPpvo68Tl6f5uNTmbqf2QuufKaRlfFx55+mBpw8YmKnzqL5GRhYKYP73qcc0A4EKh7fEiggACM4I49uTJOT9jZ10SX/z1C+R1jUpQRkaVjGGAdv+0v8pszabrfb36djenkQMwSUl0dONO6cj9ZLh9IctcvH0/msJzkSyjCN4dk4cL2t+sTB2VukykE5EFBWQEDAH9keo56PdydOcgDgcvTskAM79yEiL6dy4MkesS2818ezU4qsCcz9XjredK/7HfmBi4uLg3HH+6T/blPdPpA3t1svAQVHvWdgFqnPIi5eJ0dPZeyeAnChVMifQKICE7w+AQUhNXYOO1TnnDd3/h5dquyExikrHeN1LitX2Bklp52uccX3uWAdX3F0pyY+vUGgxn5xHWV7fFCSEnJfGYRdhFo5cOqz7vc5/aqelCpXRk7n/dXCDgRYJ8ukvmu88i2EdEQ04D5etE4hOfVkZDUO0viibJ2qKccO3L01QFA5JgcEnBqogIDIx3Zy5KIU4VKPvb7qaRsn74+UQU0giPW/lOiX6J+qulO7KMunp6f9WFAg6f6I02UuA+r3ajDJ+1dlsnmagFQhlorJjmhoPPJwp8y6RWleiMCi4iM51GpKoQIrDk6881TPLB2nY26AZkqeAALlNNt3Pt2w+H4iR8reV99roB5DDgASEBAlVJ62FVioruFxp1WwwfIcsKa5Wh8TvI6Rhf4zShfx3QQz/aFj8OkrpVPdjug+ggEuXhSl8ZPa6rrbOfgk4wrYVTbhNSmNvQ4IVOu6SC6fVA6dOXWxc2i8V0DQ+95lSt2mPqVALjnpzr7M/FAHTliX88828VFNX1uh6TbJ5uHhYX+v9ikDUQqUuza4HNIURkVHvXTIB7kP7sRgGkxu3BgJqywakTGeP1ucBjsN5VZA4G2YKYm/iMUV1x171Tld5OODiDKnkSRoSsa6GjCVU3TD4ICAzqVD+6em+/v7A0dHwJbanpzDDGEnB+LgwK9N+5Kpzx+mKGWMenFUNyb4RIUDApYjvbq+vo5tcKPN42OMg+m0NM0gvlSGMhIEaq7rfKqHx1130/xrpaOUsYMl8XtqMNCNrQoEeB9vBQKc4qGjkawEstO8P4GA294OBDhfDk5ZRpqzdz1NoDjJ03nwcxwjKUiS7Dn9wfp1jo7fbfoM6Kp+n/pwcoC4apc3gwEKnUbLz4updFznUgQpSvOTCY3y2gpVjTGWAIHK8GtmgIB1e/TiBqwrj+1N4IeAwtN0yfg5n9WAqUBAijoSuk+GeRWNvgb5ux0qOZA6IOCD+VgglPrJwTGNhBssz5hVU2EOoJPj1D6jG5adwJIyLEzvO7kh8zFMMMBpNS/Po3/KiAsjJZOUFUjGkc4tjX3edyrqbBZ/fGTQHyEUua2uskC+DsTBAAGgHJyDLt5bZSVEDgQ60C4dcltT2e2Vpw+o56u2awbC1GbJayYD96V+XnJKPtNl4EBlhV6UGXDmViKnzum6oibn7wJNQCRFIESPyZmJVtqSKJXpIKCK6Hifl9Uppzq7cgIkN4pd+1yhVp3eKt+vTYw2OyA0Rp0V4PUVQFpxGhy8ST7UF4IAHpeBTXqV2laBBx7zaIZtc4OSonmtL6iMlwx7lVniFE7VRxxPaSx1QEDlJDBAIOB6y35+S+Q6SMfvkarz79Gl6wPLp4Mbo1547ZkfOsMuCHNe2B8p88TyOU3rjtSDFB5P45R1dz7KgY07XQIDXjcDAsnXeVbYg1uWU4FYbmd09CeMPdrUMTJC5+sMJwPqnZCce5q7Yd0edcgpK3pIDrdSdG+r73tbSK6MbthTnUmpO77YjtTh39sZVwjc+WB/vwVAICeVonvtu5PugIMP/pSOnQHdKjvBulMkzAW1MwdV6ZEv/OKz52mumc5A5T49Pe1BwN3d3cFTCGyDyyE5Exp+khyJy4LjaIxvzkH1ORio+sX5rMb1Csh7TXIg4E7IFw2KkuPVPq+r0t4efEgfeV8qw8EI+zJlKrrxwWtpZ5JfqDIClf/w6Tn6nRQUOWiu7ILX7/YlgRbKR3x5QFv53mNp0wJCp87gJweanEk32FKHsUynarpACFIrnFMHeT2pnBlKdIV32STkV7XB+fGBTKpQcEUzR+1y9gF3DJ0SFHi0yUHdOWN3KKKV1GBVdqpL+1X/ae7dF62uOCsHORcXh99iV9u04v/9+/f7TxvzkTRGd4rglRW4vb0dt7e3e1Cg891iJ7bdr3MQ4A6ezoQgwJ1VMt76X0WC5IH7bwUMpDb5Y4Suk2PkIMnL9fa7g2P9Y/z7632aguMjqp2zZF3s2xXb2FGK+D3LwevYFgekdMBVHQ6QUkDgPEmnWcfT09PBR70qkFABVp1LtNXmHvXSoS3kCC6Vl5DaS2kVEHSRipM/y+3nuiioO9chPL+uQvfH0AwQ0JEw3TtGXtjyVsmjTo9USKtZAQcAHgnwHv5355z6O0UOukdGV4alGkPsM5Yj/nSeq8Vvbm7G+/fvx83Nzbi5uRnX19d7UOCryQUG7u7uDkCDHITWEXh7qjSziMCW9qYak6l/3E5Vx1JfOAA8NQiogiT1mb9LoMrmjDH2/aZ9tTNlI1N9ItpO6aMcG52uO0lvk/pAPBEYeBY49Ukad77Y3Pu+mibw9QlJ31J5XE/hgIdbyVjj9vHxcf/NlDG+rbvgK7f53+VfBRoe6G2xy0eBgarhiUFnzJUizSvNGlJFqAlhshwHBGM8fwSECJH3qmN83tKdhPOXjF/lzCtD6YrpvG1F0T64KjDCwe1O5xggcCrAUDldtcnbnxzDGM9lUI0H182U4k58Vej/8vLyIP0u3aXOORChQZU+p/PeLjkVAQK+I8BlR2IZeoTKX2fM9LLLhnJIKWUn6r4DV6ckU4/O+KOdeksglzJmdsrBGKcJRHS6KTPA4w6eJatkC3Rex8mrX+vgzoGfeCQoSL5jBgZ8TDhY9gyR2p7GfqVPbJvztdJ/etuuAky1PWXEOvtegVieW6VlMJDSIF5xxayuS4aVCNfLckNBYdPY+Tnuu5EgIOD8q9eXUpy+9kDC5txURY42U+Tn1zpPScYpczBzaA7SXFapDirmW4iYtlAHeJy6weV674MuGawx6kdEO36ScWJ72KYUgVXRA+9xIjD3eqiHmgZgWUp18j49wsjXeKd+6IxWykCJBz4l4i8roqySHHhf9Q0G3r8VcH9vor10IOCZATpqEe2JO/sUXCX9S4FcF/j4Ykb3HXSCKsudY6KUfk+ZCOkyAQHL6Gwnj80CH5a9Agi0ZV+KVz4dVk0LV2At8bgFEBwNBjrywahjCRD4vMsYzxeYVAOxSuWnDmS9/mZDjwRSKk2ZASE6d9hd2jkdq4BAal9SyqquGapVWypAQJ51Tcp4qBxvIwf8FlT6I4nAbYzngyWBx4oqEOB9mp6tVl1JRlV/pD6nofNjXVTtmR7PJrgMmL5lez2C5NQR50W9vN3u20p/H5/8n9rAuvkmSYEC8uVtcZtF/h0IOK8+1XJKor3s1gl4cJL6jA4+6fMYh3aSNoP8eIBEXfAIXte7rWUWgH1YgWyW6w7VQUECCE4dQKU/II/JHldlJ/1xMEV/5M6+olV7/0PAgCM7r6hzLOm8ozemd9wBriBzj5aqtPsYh98aYBTVOeAEBBJVGQvyqToqVE2eV4GA3+PHKZ8ZECBxSmSmcFuQ6GsRAWKSS0dVxkmUBqRf54as0wmWK2LfX1xcPDPsOs4xRN1KfIyR06x8G+But9tH94zWaCBTOzSmPdLz9qc2q31+nCAgffsjRbyqg33ijjFNY3gfnDorMEbODKRfWrtEG+LjoAICDmydF+6nYCFFvnwToYjgMIGAVK8DguT0JYtqqmBGDgb87aWuM96mFfLAwMtxflb4fQlt/lDRjJGKodX0CRXL76kGe/rv1yW+OEXg1yYHnASeomUfaIwKGW2QvN0zp52oishILp9OXg76kqPreHkrxJXzbnCq9lQOO8mkG4je3zSSjD6937zfWY9HeN24oG46cEgrzhVpjzGeAQEaQ5ev6vMIX+ODoLsa16lP3Hl36f2qH7ryWEYFnE8NBtz5sv98wSD73Z2/76uNK3bDefGMQuJTfHjAx8DCwQjL83KT0/SXGnld/F+BcQcw5EfjIf0or5kz9/ocHNM3sJxZALMit1V68bcJKsZ4X7o2lZ2UeRUpdQ2vhKkopIrWViilzdmxDgRIHvHxeJWa7zII2q6ixAQ0ZuDDB3DiIf0/JTjw1DUBASkBS3cQomRMK4DhTtEHv09jJErAg8adwNaNHvXH06k0lCrn4uLiWcqS2QIarBSReqTnRo9giO1Luq26GaH5L6X4vb/YVw4sXKZpDLwFQOB20tPfbjvHeJ4VcB1atXtJnzyrmr4lQZ6pJ3TmLvuqXrfTHvGLLwKEbqqgyhokvddjs3d3d/v6/SVbCQxxW41vv/by8rLMvFX3uv2nPFf7+Oj3DFRRy6zBW+qq0u0rUVRS/jTA3SiR3NFXyLJqZ+XQ07VVVELDzHteGrU4MicfK32VIjhtk27wmtcmBwNV9Fih+4rvynGkMnjMdaFy9Mm48B5Gt774yOu9urp6Zph9ioAO1+vx7zuoXIGJ6+vrZ2nYyvGkMeROmXrtmYAEBjr7k6K9FDU7dU7qFFQBAs8KEAhUUyGrY9KdKJ05neZutzuw1+SXvPl/HWN9qZ1+3uXhAMPv94WEXF9xeXl58FVNyu7+/n7c39+Pr1+/RsCbQGxy7gwCvH2dH3KZJkq62dmmil780iF3AiuGMXVgx3RCShKQpx7ZOZWRJR+6vlNQ/XdF7Ijn05ybK5GOeUbk6enpYK0CDbFfP+t4N9Tpnq6vunuTnFd04zWITs/lOEZtVNyJaJ/UHa90hIaA5Sc5JcPIcgkIyK9f75kAj4TG+LZegPKponDKVe8W8JSteEnTGJQvZeYpbR3neoHETzXV4uVXgULHE7enINeBLtoVSWZ0WD5FMKtP+9Sd6qmvKthJvOncGPlFPslZV2A9lS1ePOr3aRW9XEu/lCW7v78ff/zxxx5MJ4DlvFSgzbPQ3u6np8P3NrgvSLaZ+52vW6EXf7VwJaoRs8ngVuXPKKXnUxmdgVhB/NV5DjBP884csxthz34QLVIBJTf+93IrYzYb/H59R5VDTNHWKY2oyAccnbDIDYfLxJ2TthyE7CMuUGUZ5En1puiC17lx4f1jfIucCSBlVCpjy7LG+PaWRuo1F03JGbP9MrAPDw97Y+pR6kx+JKZm/b4q09cBqbTv4GQ2Pk6tw9533o+JJMNKdrrGnYnbZp/n93cX8LpUJvnhPgGJ2uNPRvCdCZxe8HJdr9if5I8ZAIKADx8+jA8fPoz3798fZLd2u38vnr29vR03NzcH45TrBtz2+/is/F164mOMb1MPHL9u65lF8LLpe2ifVuhFXy3sBiA7u0JKVOiLi/x5VjeUXbQ1a3SlqKx7hjp1D5Gb8+dOPjnP5AAS/w4Q0v9uOmUGdlJ9biATX12bVgz1a1IyEt7PCQyw/Z56rcYB+2Rl3s9Rv8s+OfFkSMgjH/fqskbeppRSdkBAcjChshzssi46fJch2+/6VGUXXA5pm8rtxlpX9muT2870TL3zyDUW1dqIzo6O8Twd7+ND9bG/GayQJ9Xv0SvrYqSu12JfX1/vX3zlYEBl8skSbUkOot69e7cHAh8/fhyfPn0anz59Gh8/ftzXJVJWQPb1/v5+3N3djZubm3F/f78fZ8n2VrJ1MFV90pjyo7/xN49Wsq9AX0ebpgkqRJ+uS2goAQIXkChFSgklefmJjxlC6hBtQqPigQauiwbdoPmcbNpP7eoAga7rAMyMXFZsf6dcnfN/K2BAlAZeFTmn+ylvysT1Mg3YijeXi48h568CBMxSEeA6UHE+ExBw4zpznjT2nWFyYNXpxNa5UrW5AgUJdOi+ziD79a9JrpfV9ID4q2xPJ+tqTIyRHylPAcOMfIwkMM7vY/AnJ822arpIc/o6LpvoY0Bt0U9A4/3793tQ8PHjx3124Onpadzd3e0d/u3t7QEvPmUyI17HAJiAPclG/cYFvX5dGge6l9sZveirhTPl0n76pXTnGPmNeiRGwTyme1W2G6ctCKkipl8TKPA3GuoeRkIpBXoMpcFUAaXk1FfK90gi3ZsirlM6/kQeVbo+JGfLwZmcqMgBgfaTM/f6ea07qsTbGM9f4MJrUrtpbJStcCeSgIB4oV75S47GeP46b5dLJyeWlQycZ78kFwIcytfrn4EAJ++rBCJfmxwM+FSMAzJtUzZgVo9odQrW99M1qa/ZLtbJqP39+/fjw4cP4+PHj/uPZ3E8aoU//7Pt1F9F3zwu2enV2x8/ftxnBxTQaa2Wpgr4nQ4HZinLW9kZP1dlYdgm8dJlCNI42EJHrxkQ4x1CdCEkw9jVkQaj0J/XQ1To9ZLnRB3viS9Hbiki83t8u/royIz3Ci06vy91zh0oSP+r3ymoimp9MPGcD9xUJsv1qSLpY9LFhNxXAAHnEQkIqmyBl82pLQcDKY3MdqSxqG2VSUlydznxPoFpPm5GfeM4IyCY6V/qL/JPXir7dCowkEBAmiLogMD3HnvsjyRj6hqPE4gm+14Bgg8fPozr6+v9fY+Pj+Pu7m7sdruDdSwEs3yyhqBZjt71UPVyfcButzv4ENfs9cqUD+WQ/CCvdbAu8OLlqm0cw8nuH2vvl8FA5Zi7QbLi+F1gXl+FLFNd3K+yA9V9CWnP6lkhdxg+CFY7zSMqKpvIEeoKEOK1K8ChA3//KVQ5+TRQta2ATQIEDiSqQZvqIC/OE6MpdxD+bLXXQeNRgVWVW2XtEnWG0OWS7qWx1gfEfI5Z9+uphapdbMusrxL/qa8q+/RaxD7lSnjqgki80jZUANOp6q/k1Hgds0puk7zf5YgrQDDGNzus9QNK5TN9z5disd0CCQRDcvT+cS//uiYX0Oq67leRT82N8e1tt9X9zC74Ggddm0Aep5/JM/t5Cyg4KjPgg6VyJFuEOIsiWG9XxmxdQVUe+UuI24/z2mQ8HYzwWIpkOvLBqW1nZHntVsVIgKAzJO5Aj0WmP4rcMVc8VlEmB11ydm5IfVFXp/vJUVXAYYxvIIAGIy2wch7cqCeDpDpn88Sp3YrYJANOmdDQkTjtRh3lOOFTEtpq0ViXoq3Am8vYKclmJUj4UUSwN/v+QPUEgagCmCzDwRQdvo7zfFpg6k7Vv3HhzpIk5602cuU/+5rrBAQCbm9vx/39/V4/VL7K8ekvTRF8/fp1fPjwYdzc3IyLi4txfX09drtdfIx1RZfcZ6Sx49NrkrX4TFPOKttl75mCY3V1MxjolMiNbAICRDpMPx47d554035yyIkvdQwNExXJy+f1njbi9VzVXcnO60uyoAJ2UxAVeKqMeKXU7D8HFF07/NxbBAQdpSgyGVe/xuWQIrHVPhij/qIg2yJd82jR63MQlwADHSv1mVFKJSMaJhkyRjGSmzt91U/jrPHqkZ22epSLmYTEo/Oa+qvqO8rpLeivA4GUGaDj60CrU9JbOibqvq5NL6RK7zMg/0p/i+jAOluX/IYDFK3w1+/29nbvxGnDLy8vx83NzcE5jSGB6TG+ZacuLi7G/f39+P3338ft7e24u7t79l2MjgiGKQv3G2lsKfshsMxHOqt+5jR1ZY9mtAkMJKeWDIN3Jo2MR9+MDr4XpWghAQUHAhxgIpXDaMkBAN9e5VkFvpCF8z0ECjR63VSAD+6XAKgVI+Hgzq+ZgYG3YlATeVRbtbWLMDsE3pWXtiwzOXAaER6jTlb94WPQ3wUg45ecDqclkm66Q5i9KjgZqouLvKLaIyR/IYvSzmxbFSFVeuiynl3/2pSyAuxvzwZU0esYOTMgYrDhDpe2mjrN+jwbJNJxgkHZPfUX9UXOms/yK/JXebe3t+P29nb88ccf4+vXr+OPP/4Yv//++/j69ev+6QLPAuh9GHTonnK/v78/WJ/w+Pg4/vjjj/Hrr7/u67q7uzt4G2eSodpJ0ONgntMhrq8EBDc3N/unGjhmUx9VWb/VTMHmzICnEF2JZmDA5+ZTFOT1Oc2cYAUEvE535kmQrD9FTzSi3lmSjwCBAwUtlOoGkY5X16V2at8N3RYDVxnImaK5waki49cmB6085n3Ge5JOO6UIppN74oXlzH7dQjKWJfKXrjjwZbl86YvrdCUXZQYUqcnwKiL0lxU5n+m4DFyKwFJGQ8CgeuTS66r62Q3qSoT9I8ntZhVROq9JZ11P3d55xM6pmjT20/RZss3pvRfsX+mMfpoW+Pr16wFQHWPsnyL4/fff9yBAjlrO2jMDDgYSgHp8fNxPFwgMPD097cHGL7/8ss8ScCqCQJd9IRmn6TGdSwsT3dkL3HCcc7yRh2pq8LtnBlIU4kY0oVJHturYVI5TBRRS5C/qELH23ZB2RpX3k3dmA9iZJA6WlP1g1oGpOG+Pz8WttFHbThFSlNs5xsqQEHika6ro67UoReFbjXsHgqr9VV54bwWgU0ZA5LpD0Cv9pNFJn5J1MFBNP4h3toMZsMvLb49yOY8diO/sgO7v2udjTOUxmu0Mo59LDvYUVOmA0yxz5YCSx/xaz/iMUX8wjfZJ/538/SuqT0CRjvr+/n7c3t4e6B6fMBEYUMTuYCCtGWDWyIGAHKpeMKTFitIZfZfg999/32cf0pTBio5Qb7ke4t27d/tHGr1v9Y4DjUv2C9sgOSZ9+O5gQI1J0f0Yz192IXJkm+bnV+tW+RV1xl73OyDxbUVpvseBgCMznxIgH556034FdLrOrSIe/t/qCCtQUF3HdnmqdgZKfjRVhn2lbSvZkJW6ZzQDAjruJJ1J/e9Gx7MCCSQnsMG6KQ8a25T9SPpaAYIEBjy48EVs4otZtiRPj15ZBmWW+uqUQGCMnBkgb2PkT7uLEjjvgJdnSZTV4bhmvbyHx8j/GOPZ2immtwUi7+7unvkYAQDpmMDA169fx2+//XYABpTC97dlKnjb7Xb7pwroSDUN8fXr14MXHAno6JymJ7Q+gW8f7PqPbRIQ59MS+vH7CCLVf319vf/v0yha58CvKL4KGNA2pQ/JBIWR0upbDOpLokoKVoOgAgJdZsCjkWSsnU/vBA0oboV8ve5k8Kqyt0TeXWSaqHOIHlmQ51Xjc2rqMh5bgIDLtQJfLq+ZXqUUsSiBR1/cytXYAgYVSGO7mc6tZJHa5LwyKpvJLe0zCnJZiuQoUmZAbRQPFSBwnlw2p84MjPG8Tc5XFQAlkOdblkFHeXHxbeFmdW1HtHOcrlH2yMt2Pp+enp59NljO+Y8//jgAApwiIF8Ess67HKvKpEMWGJBDVsqegCNlw91f+NMRcv56o6FerKSXK/kLlm5vb5+BAS2cvL6+ftZmyfqHggFVxAZzsEnIK5kBpyqy1bmESNP9zqf/5/wpB9pKpsKvSYNDfHYdQAcvmaTrfQD5vFsVCW0h8jwz9lVdjvg1kN4yCBCttrk6lozxisNx+REw+4IxHScPkq8bPQeRnhmQvnukJ+PBPvSFr0kGjOC69iaqohhPg9JBpchTfGvfQamO8XzKErFvtO3s0msQHYk75M7gV4C8GpPe97Q7KfPU9bPbkjQ9kLa8h5kJRfO73W4/DXB7e7sHBFztf39/f6BHrrfkn1E2Xy5EvyCd83cS+Joulp36zt+boJcp6c2Hnz592j/eqOtVv0CK2q+pFAIU8UY5/1AwkBAQt9VgTFHNSrnszFmD3DmyHPGWfmOMpUyFp+cobOeTiNnnqcibTxUkedIIepSzwmt3HQ1hZfgqp5iMC3lzA5L657VoVndnNDunwbIdFKSB6E7Gx4YAANP5XWo/6ZRIWYHq628eLXN+mORgnvX48d1ud7CwyheiufF0MODX8wkFBwIuV+kbjT+n4BIIIAhK+tEB5NeiaupGlDImKWCrMrmkBDAZua/KIoEHlc86tPUXSaldioAZPPnjhJzDT6v8fc0I5XVxcbEHvARcCXTRhqdx7TJ3IC8gQAAgEPD58+fx+fPn8enTp32GQOP04eFh/wllTlnoJ5Cvl3Up45LG24yOegNhIjeeLhgXGssl447kfOHKCg9u/N3odkCgqysNFvJKogGUYVMZfh8Xhmhui+2nAnqENEPobH9HDgh0H3mhE0gGyg2wX3Mqw5r4cUNfAZyqrDEymHJHw/NeTgcEaKDSIr5qvCRD5MaOBpep0rTy3x2/jjHTx+wAAYEvckogQHz4+wk8DdvNi6f+S+O4AgNVhE09maXDfxRVWQFSkouDAPajk9sSyYSPbqYxkQCi7q/sKEEAs1NchCc9vL+/34NY6pYAgUCB9tmXzlNqq85zwWs39isQQADhY1qOmkBAAEDbL1++jJ9++ml8+fLl4FsM4u3XX38dY4xxe3s7fv/99/Hp06fx+++/H3wvgdlDyWE1kBYdlRngrzJyIs4hOmPJYKbUjpOvzE/o0ykh5G5gVMSoV/uXl5fPnsclL53jJu+cLvCIxqMmN5AeJYo85ecOX/em44nPmUNP150qIyByMKB9Rufpet9PVAGB5FyqMh2o6j8d+Rj1UzQJgLuBEnkmgGlSPu+dynTnQqPngCCl+l0eCRwkHSc/Sb+YjWI7Z5lIZuQS4GDfrgYk35sqRzyzc35vAhO8n3qlaxXAJEBBgOT2mv997FG/2QfiRyBEekm+pQe+gK4DAqnd0o0UoLksXVZebppedllxrYAAAUEAf8oOSIZaVMm3JKYPJvnTGp6pXqFNmYEODLgjpMBcoCJ3mhUgSOg0KZzXQ6RLfrpOTu124spYdkKVnk8dUjkgGR8CA6LoBAYITNzQzRTBZbVCnYPsnOGpQIE7kK3OflZu0qHVtlYGk0ZTP9cLLyNFN+5gx3ieEZBBZXbAwQC3nLbQdIRPF6xE3pSTA970uFYa/3Qm/N8BvMSHjx/dc2ogm9LWiZIzSgDOKbXPbbjbef0nKEiLN3W967VfQ1tGe8+1BAlk+guEXA6eCXY90bYCBa573BIAkz+SA3utG+AXGT99+jS+fPkyfv755/Hly5eD1yJLJt16kdTn7jtmuiN60SeMtfUOcAbFlEc27GDe3ylYpVy6d1Y+iQagal91r0cKPmgqQOLXuvzUVm3dAehevnWKjr+awnCn0yl+x5tf68fd8FdO4FTEwdsBQMpoK1CqDG+6jv/9HDMCvIa8dQBHcve1AAkMpAVSFYCV7snw6Dlw8pqAfpLnbHx63SkoYHl8wU3i3Y9VAN75PBVVepRk5mM92ciKUt9cXFwcyNKBgI6Rx/QOGfLA4/QNOqd6HdRRhwQUBVqrjGiyfd5mB8guDxKBAN+/wHZWAJbXMFMgYKAnC/Q0wxjjYM0Mn2TwdTkdaN4CaDevGfBB3Q06P7fqqN0ZpSiJvzGeTx3QMbHjnI8ECJJRqAYJ59bGeA4SUvtY58wx+UBTu3xKwVeSVinlDggkQMD9bg7Kjb5PYVT3nYood8q4A0lOK+3xerZEaHK21HMfN2lspOs8AqehSaukE4gQebaC0RwjNLcVMwA6ozTux/hmkPkBo6pOl6+2L9GDH0lJXyqQ5vfQIa7YJZcX7Yv6eIzDrw/6dIzrYgritgCciscuxc+6uCYsZa+7Ovw6Tp/QFqcxVwVGLid/ckj8PT097b+14G9Y9McouR7HaSUwEW1eM+ACqxxZF3W5oKl0nhHwMjlH4o8I+mCWUKW8WhyVHGIVFXTI08tKg6OiBAhUxoxodLXvW6dkMNLAJx9JRqzH+54y76LB16ZuoKR9v8cH8azsNADdEM4i1yq6kxH2jNhsDPB+Hq8ek1K5fpxOgcBU/z2L0YEB8UN+03U07v7ol8ogcNE4T1NlDnJd5hXQfctU6VICBWPMwTyvcTDbBTGM/l0nO5u4aiMSuCX5FISDEZ2TXnfjMZHGkdruU0uUH/2OT39p64tmBWZ1/9evX8evv/46fv311/HLL7/sX7KUvsGQMnlb6ahpgplxrQwmBVWV5SjTtw4E+O5qKn2KgHRcUT35csPnvLqzpmJU/PN/h0ZXOzHJryIfpJw7WjF6FU/kIRnaCgmfkr4nIJmV4UbSHWT18/Mij4RTdsYNvkfqimZ0HyN/12tGP+Ilpd0TMSvgMiO/VeZtBqz8SQve72NRYz6B+aqelA14K7pcjU0f2yJGxB0A7exACvYkTw983OkmMJDKEXmafoscnAfWn+p2QKB9Rvsqy/lM44ABLuWg6TQ+HaEnIPxthl+/fj3wQ3o98i+//DL+3//7f+Nf//rX/vsIehuiv18gZTLS8YpevGZg5ZrKiVURVxI4DaKE7e9RJxJUB3HFtDqG5zukmc5pcKQ5qe6FSqljfGphtdNU5jGIcMUA+LVVVOFOb2bUT0UdbymK93uPOaeyfevp0spQC/QyE+YA1tuQHKKX7XLgfYpyPJOQImkHD9zv5Fmlp7vMBGXAN7RxbtUBAkFQMuodUUbMpLwFSrxQTmMc6nRlk6oMIuup7ESyC6rX9TbZRbchnplatWfJZ/j4StMTzHRIdzzaF0+uzysBL4PPy8vLPRDgWw61kPDXX3/dZxD4gSR9jOmXX34Z//jHP8Y//vGP8X//93/7DAHfr1ABqdUstWjzh4pmQknR4gyZd4Ylda6jPn9Ri8+9qMP19Sfx6G/A0j3cspNTFOfTFUlJGEW7weLW5dMNCh88brS6yD5FQOkeDvxUTurr5HSrMl6LXFZdBMr+rdqf2uxl6Zw7/mSkXG/cqToQrsjHKMFAGqdpnQ3vo05178lIBreSWwK+VSBAR0Ig4M9V64UsHpXpP41lNT5mWYFT6a8AmqiSmy+21r1bQXhnH6rzTpWee1n6731TgRQfA9WYcSCUQLnqpl1mar/KFHdAq+LbAbcHrY+P//5iIsEtwcA///nP8b//+7/jn//85/jXv/71DAz4VxrJ4xYQuwwGkvHqIgI3LLNosTKOaZuAgQMCIj2iP3+lr/ibpUJ94F1cHM5fpi/BJaRZyULHuyjEB6XLt3LqMurp/i1G7hjE3h17LepAirb+0/FOTkmepOSAKyDghkLkAJlEPfEpMhoDN6LJcOq4Z644hlZkmGTkMpTxpb7zhSly/gIgBAQc55wy6ewE52RZR8VrNVZOTckupHasAMeKpPMeBCVetkSdLI/Bi+vGzHlVfqc6VvmRxJOmCRKPrvMVkNd9KaPENsqJ6wuMHz582Nf/+Pi4Xzj4yy+/jP/7v/87mCr47bff9q9hTh9mYr9s0YFNmQFHNVUKRrQCBFaABcvwziEfMhRuGPnyCr3ekh/KkGJXq6fJs78m1tcueOSTDGySiQOB5ISqFKvflwabyzHxsEpE1MnhJZqlJX8krWYE2H/pOpXhIGE1UvL6kuFy+XEayCOWWZsrR+GZtSqCTGCA/CRQ4Dxo2wHclHlwh50eWXMDn2yDylL5Gu8MGHSt/yTDUwLZMdajuzRNcAwlW069r3SL13aBDW3TlrZ1fsfXSFTjSWWJD7aXbe5sKO9x30fZUGYCCAIC/MaA3iYovggSfvvtt/Hrr7+Of/3rX88+2aw1A/xaocAv27lKy2DAXzRCY+KUnJMLUMwmhFVFQpXRlZNWhsAf06gMHs+tGHSCDtbDL11REWSEZMCrAdRF7RUA4DYBAd7vRjLtvzT6WTE+pzaqTgkIuAH5npEiy03GpALAdF6rxnMGBGZP46h+6Q/BwGwefVVW1NfErzvk1C8uU/2YNucrltV2TiMQFLAszsWfKjtQTSGy3V36fLXcJAOnBAI4PqgTtOEpOq5sTppG4rhk5tf9h+p12VTySE+tOfDeYhtdFtQtTllzIaHeLKj1AgpeBRQECPgkgQMBD2LV5q2gYPM0AY3HGBkZdYtBEpJjeV6fU1osQUXx7IAMWeJRaZlu8LixcQXsVjjrXk1TzDIPPmjSIPL9FYPMdvsv3bfVaVdGiAMhnT8lOQioHOLMAb/ESTgPOqZyaUTGyO+CT/wmY8gtwSxBdALfzgd/CWSmrfPH8lVW0o00dcfxzPvIh4w47YuAAJ1TBUBcft8DLH8PqpznFhCQ+uul/LiecMzIqTrYSDaclNZA+NosD0iTTzrG5khXVrMXya46mPG3fcrZy+HzK4VPT0/7by7ovKYFEhDwdSQ+NbgaQBwFBlLkXgGBCsl2yI7kkbYbLAcC/EkBHRik6CDVXbU/GVMdVz1VVC5jNEPIFVUDaiUrUGUIthoHj2r9vwyx9/2pwAAzM0TsBAFuWAhkquiG1zmtRFozouNNSD9FxTyepiGot/40Dst2Pjy64THXu7R1/hiBcYqAQH2McQCgCQT8vfXOi/fRFt1LfJ4aDMzq3wIEVqYtV8t1oHhx8e0xVvXjS7JZYzx/TNADUmYLZmCZfHdt0lb+o7rO9S3ZXens5eW3z4Lf3d2N6+vr/Vbn01SCFgvycUL/sBjJX4K3qvtHLSBMaL0DAqJZZ26lBCh8ISE7h45cawa8HWwvBepOw5EpzyWHO5vvXZ0HXrn+mKwA/1fZgeR8qkGY7jsVGKCTF3HKh/u6ntd5BMp9Xe/AxwGR39tR1X/Om7eFush+0X+uwk8/nyZxRyvH7S9TSQYw6acbJgIzTtn5293cYQkIpMyAZy/GGAeLH1fI9fzUVPGdprW6MpKN7sqflcU+YtkKtJgNrQCst8WJ7aseWXQ5dA5wxYamgKYrh8c4TigrtkU6fn9/v/dXPtY0naAnCwQCuGAwfUNEYMynClZo86OFFDiZZ8NnUQG3/jigqGuEO2f/bjuVZoxv73h2g9cNok7JmFJN0VclM7Z7hRw8UDlV/wxcVECgAwZJFqlN/ylggEiZfZmAKcnb7UBgyz5pRfY+Z8loOfGZQCnHFXXfr1EZKWNHfhjp8b3wMl5sE+0D60hggH3U6ZNPG6TMAHlVVKatf3MhOUP281sFAlv5qoDAFkeRKOmonJGAgDulBAo4/rxtCegmPffsQDfutE97mqYtVsC7B32uc16vgxvyrmurrzNqnDkQ8Da5vFf1ZVNmgOTCWzFwbmwSsqOzc0eYUropwvE1A2McflylUhaVmRyH8zkDEr69vOyfVkj18nil3J4C9/OrQKCLPL0tx4KBKt32o4kDwnleAaOpDzqAl7IH6VxF5KfrDwLT1exVBSjYVtdzd47aukz8hV7e1m7cdAZcda1mz5imJiigMa2mN9i+mV6/Jq3oTbpH2woIrAYGMwfLvmFmIM1fc6xR3/Tf5Z5AbcrKJpC72uYua7tCBMYrgGCMbwtbPbDz+6m/HAddn0lffkhmIFFCRTxeITVXKu98NSR1UFKaBCwIBjzi6BxWcgxUZj9HNMiyXfmoKBUqZ9nujHSM5ScAoHPkbRUIzCgZ9mQwna9TG1KlnclLcphjPJcFr08AwffpDBMl3WeZOuaAIEX1bhhn44166vrnc4+qy3WJMvK5+Yp4je9zbKQUdpqGqAwcz/t+ZVSTQV0Fua9Fq+OT11J++u+ye6k90LWySwxKaAOY1UqRPvW70uN0bZo2cHDhbaeDTnJKMhS5jUjy45hgtiyBziRH51e8JZ1OuivZu59YoU2ZgU6R2NDkHLh16himg3QDx1S9X5s6NA14prO4qNDJ1zV4h11eXj4zqDqfFlyRH5fPbvftBRgcYMnppPYmZalQZDfwk1OZganqWAVcXoPccYsf709RB0AdEEjeTJf6vRygHs34MZ/K6iKlBIa9H1xfuGUER31jFo3ycSfq86PUO92TjK2X6V9O9HR+F2V52bwuGdEEApJeduDqFNTZ0AoA6FgFDJLtXgEEM1kQHDBLuwIEXN9dzyvwUD1pQBsq3jSOu7an9ru9pU51drUCsgkodH2YrvP6GIxINqt2d9OaAWcuDSY3Wt1AEsMpPV6hMoIAUTfI2WEsy42yFIRRpF9PPjg/pvs8cpdh8vSkKw/b7Q7fFdr/d0Zx9kvy9fam/4k6QPcWDGnKDrj+zcrwvifA8IGuexwIuOO/uLg4WOfihjIZQPLjsk1Ak5GQrncQTGDg0RXHkTvlBAAqPUzHNB78USmNmc5QVwYzAQLu8zqW7XJNzukU1NU9G/9dX3RgwOuv9K0b8z7VlYBAKr8CArM+6ABFBUZdh5NMEvl91KeZPUn1Jn3ckuJn2WM8BwUrdPRXCysgUBmrFLWnNOuWeWUXloQqg6Jyq3SgG1xmBpKzdt5kPLWf5ERj1wEBDg6V6SCAWYs0j30MpcHdRSHd8cqQzO770dTV6yDRr/epG07ZOAhgdsAHYgKgfHulP/MvAJPGlEftpGTIEvCT7viTASkroPbSaKWx51t3+n6tyvLFUcwMEBA4PyyvAwIVEE6gOMm5k/cpaebg/NgqCKgCFR7r5JFAQNLprc7e206H1/WlH++CxgrUJqrqvbzs14e5rnZjRG3gsQ6kpPtXaTMYqBiq0N0YefGhL5rQPd4BjiArnuh4pWjprWkqhwOdKdJqqqACKTT6XSTlyuZUDQY6/cSb2iCZSglXkHxSuLT1chxtUq4dncqgOnDqBrwbMu3vdoeLNX0/laX7KiBwcfEtK8Av8XFLPSVVfdC1z/uJek89rqYIWF6lx6nuyhlxbBLErxjmLtqb1e/8ez/xV8n/tSg5s4rcqVQAqNtuoSSTym66819ZI1DZHpXnGS+/30EnZePZ5HTNTCZVRoHtZVDq5emeavor0ay/kl9e7dvNYIADhwap6lCdqxgXAJhdm+7VlkaFghWPVUROA506L7W944fKp61HK6k8Gl+CJMqTL65IDsnbxPtVJmVWgYRqW7Wfg7NC5jPZ/WiiDNL0CqnSRd7DvqL8q8yAfg4APDOQQIDLTfrs6xWqKGYleiEIV7kJ2DLl7uQZFK/bAUAqW/sz8Lxi4JKzoxwSuHUQ8NYyAyv2p0t5zwBACg628ODgwO3PKhBIbWOfs7+ow+ke7VN/u18lq8STy7zTV9Iq4P0etAXkbQIDVWq6QnU6l4gGbQYIPKpiXQ4EZinOxDMdKOubAQLnNyHPSrE6IEBZ+39PU2ufc76V3N2RzABBVU5qS0Kkuu7UhlR9vNsdLsxcIcrZyxzjMLom+HTwUE0L8EVABAMVOeBMYJzXVlFLMpaMptxIzYydy3MGBPwaL5v7Pm5FtEerRs/b7sfSeo1TZQXIX0cVyEqAIG2rMpOsOqrGSqIOCCQbXtlQ8cixzb7UPZ594toUfruiklniJYEHb2N1L8tYAR8sb3bNFgBA2rSA0FG1b49ZbONlugFNZVdCpiFOdXh7VlBpolk7vT433KkcAovKsfJ/AgcEBBoQ/qZFGe5OeVdl4Yid5bgROSUo8CkpHZtF1aLqvDsRZmzGOIxg5FT85VgEBOLL5Zb2U3vIF7eJb4/QKiDuho/HVvszOXDnk0Cku8fboOiwskkzh8bzHnQQCJwaEKySZwI657biVBJw1L5sTqp/Vj7r8WAo6W8CkyLpB8ezjyPPABAUpCg96b23U9ek12mvkMuqAjyVna0CMr92FRxsygzQaLghSujOialIlunOyv+nNwd6+Sk9lpxvUphkAL1DqfgVgNjtvs0rswNSlJ/uZyemCMqv9XY8Pj6Oq6urvcJz0NJoMp3N8ny/U750zA3GMdHFjyDV7VE8KUW2W8r28r1eZgUSIKhS0W7MnTdGRsmwprbqPDMSK9FYFQHNZOP9X02viA8+6cDpriQbB8G8r8tkuoPTcQIAl+VbpirF3WUGOkpgfowcFPr1DFLUR112bYw+m0wn645b18uxc10Vy/RFpf6rHHkFoir7vCXjmCjZ3AQEEq1eV9FmMCCq0tHd3L+jyKQMHIA+b+evG/ZnWDu+ZXCq6QYRO7pylvzvkU7VGR0A4sAZ4/nHQ5ynSvESOJCs+I7w5GAqZ10ZFpcP/78FAFCRgygen4GfBGZ1L9tMPZ9lBfyRQq9vJbrnrwIWCUzqR35TfzvQrvjx/wQoNGrcp0xZH19SU+mcO3x9BMb58Dcjkj/nneP6LervGPWryDvQNhu7pCoYSDJLoIGy5vRTFdRoW2UE1FaVJ8dPks6oPrfv5MdBhY4lOToPSZ4rAIJtcJo58BU77XQMMDhqAaEoGcXZPaQKDfpxN3Y0op4x8KidA0f3p7S9K2s1T9lRQq26n4Omk6E7/eo/6+SWdfrTBz5IV8kdg9f3EjT62sRoXVHkGM8BWCeflJ6votdq0aC/Sz05ny6y1XmOiRTpuzGs5OHXJBBQAUgfc0nP3ZH4WJPDeHp62me33Cl537jB83UzupbjIPFBHhPvW8bKj6YU9GwdiyvOJ+lyAvvqJ27ZlylDoGtVXpriSvUSCFSAp5reSXbU91lXBQDYlnSclAK47vqq3aIVB/+S7MDmrxay0mOoAwAsmwYtzeP5LxljLsaiYWEq0gc90aLznAZJZSjSHKe3ubqnUlid47bjQbwzW+CDtLqetNvtDlbtVmCiMiLuLF6bPJpxQJB0JN1flePk+kgg4Hq9Bel7+QkgV69kZVvcsTvY82s8ciIf4q0CBN4GN1YO1gkEmBWgzul4Gr8O8nhcZSSQ0gH0/0SqIvEt9yfHwmO8xrcOBLxc/nfycbiikzzOF8Cla6pAq7Op1T3pWr+P51eBZZLLDMy/lI76UFE1WGZOyR1CmlLoAAdBgiNAj1L8HipwByB0zYxcqTt0WTlJ3ef/qXCri1M65fG5187YpRSkI3l3IrM2vlWSLDx6dOOVwIHaypT2GPnd6x65J0edAFqaBvJsAst1MOD10Ii68+9SpzSWHGf+EqwuU0i94phM7fbzLEN8se/IQwV00xSPZwirLM9/CjhYjThfEj0SEFdjnsepZ8wIuTPtpqq8nBQcsX/9qTK3XRVAYDnengQEUpY0yarbn1F3bcpsHduvY2wAA90ja2P8m+nqsS13vFV2IN1TZQC8vOr+FLFUc7SiGXpLzoEGtAIG7KyEjj0yW80MrPBcGeokf88OCJSklGAaXKncU2YGkoNwx+EpTMqgG2QOkvWfjwqmqQERy62+i0EiEHBAMMuY0RHzzX7UW34alfqXeOCPsvIsH52sg4LkwDlWHAB08nGd9jHvoNbXF/CeFKj8J9Cq89jSrtT/ngWoQIEDvmRD0vQO73ddTGBBZY9RP5ad2rQa4ac2bc0OrDrqKqgkpb5czSZUtOnRwgQIVBkXdFD4FRDolHEFLLBuIktHouSfRvQlyF/K7YrgURfPeT1JiXU8ZQM6xVuJBDhVMIuEEq8qQw7DFXDmNPT/lOQ66JGlgwAdSxGQ61YCAlrgSiDAqavKgLgz9f7Rf193wHak+yqjKJ3jq4A5L0uj4/pTjeeUsfM+SNMBdDDuSPxbBT4ukv65LaocF/k+JXB1mjnvDrQlSsC2A7sdTz4uOtmKP9blYCFN72jrOlG118czy3HeuZ0Rg7EUpCV5bCnf6Vg+U1+u3rsMBrhy3yvyNOsY82h9Ro486WiZBqoiOt67khb3Y106npGQg6GkJKJZit8zADPF47ZDppQVV2mvgjSieLVTK7f5KFdHb8W4OtBkZOogYPaCopSOT0CgGzvcihhlE2gQ0JHPY4kZH305kN8JcIOb+OFxycSfXJHeOa8+jy8do04ncOC2QG1JaVt3DKrTaWvAcipKukpyAJcotauK7KtzKzzS/rKfHTQkoMDjlT5WlPrfy/VjXVkVAE2gpCuzuy71W+IzyYltTfJbpU1gQOSGYIznSsqI6nso0xjj4L+Ah382WPyxLBmiKspecaQiF7A76MppV5TKSshdvHQgIxlvnVc7CGY6YOCU+tABQWWITm1UHQB0xlAgYAZsUyTO6F/3dfPXCfixPpY7xjdHxgiEMpeR9SxdujaNAQIBz3KRF3fenpWTnvn/BGJUDkFDJR//Aih5T3JM4yFFbxUIeAugIMmvCgqqiLCyQV27kpyOJQcFYxwGT3RibmupC1XA1QV7KzJZmR7we6sgbfVe1Zv6xgGI87vq4LeAnjGOWEA4c0y6plKmVcbowFJ6WkRDJIW5urp6poDiyb+dToNI/jsjnqhSjC4F58dT2pqG3CMlv8/rcwNCVO7AgP3L/6nNjLL4oo+3TOrTysB5Vim9ZpjXiqonBFx/XI7SRe27cWMUTv7oZNOnicUTyyaYTs7SjU8V9SQ5+lQF20tQQL2rnLHrrvpD9xMIqP0dAK+ip0Quc98/JW2xpalPE3nGJNVX6bz/n+k+7YyuH2McZJA8W8C2VGBvlVLEPMba2jCOBd86by4Xp618Vzz9qOs3rRlIFaxU5sowRv3ijOqcFIcGkCnDBATkqB4eHg4MC7+drmhjtQ3VOfKeAEG6PpWXFjVReWUEubDK662QdipP17gjShmP1F7d3y3SOTXNFoNV00x+Lt2XjCqdn8skGTbKV5G9AwF3qKqf48H1UFsad3f6Kw5D+1yo6C9Lcvk4AEnOxUFAl/niGK+mCY5xFKm9BAJd1PnalGwQ9cf7VvukFWDTZVC832bOjwGIjwnpTbVwNkXTqT0MHFNbVsltHOusAKgHXsnuzsZZ6rctVPXx1rI2vXTInUhCTqtMVKl0KgtThjrHwc/orQMCvmhLQIBzpKkjVtJQiWZz6J2C+uIxtVX8uNIRFDANlxQk1ZuyAlU7CD78GnekbwUIiI4x6nS6YzzXBz/vxOkTUTIyFa+UJV+a49f6Yj+uZUgOjc41tdkzIywnPbnQyUDtZFmU3WxbRXRVZiBFs12EK97Zl87DWwIEomp8uby87VVQ47KajWEHin4s8SX7nQKO7j5uU0BJ3qvAy/e7YCfZvAoIpPI72VX2ubqefea2v+rbY23vMhiYAYEZAyvK68rqneudJMPHRUF0jA8PD+Pq6uoAeaZ0IxGe6vW6RKuGoQMEXkYaTNU0RVIM1pUUpeJfZVROjsCL9SelryLptwYKElUAZ4zn6XfqZDKIHbgaI6c+SbrH36KXpgi0z8yBv5JVPx9H1H32v+sTp0HSuxIS2KgcuMolQOqybR71Uve4XbVBq5ScypYI80dS5dz8GpdVchYVKPDxPQNsFQ8sK2Uhx9j2zpoUNBI4p0cTEzhIQKA7NgMCbj+93uRjttCKo/c+PoaWwUACAdX/FUrXeUM6QzHGeJYipSGT0aLC6DoHBDSOK4b6GEoRv++nBUtUdjpaRo0JNZN/V/aKZtekgeMZAfFcpdZPRa4HokpfK0CQIvMqxenAVnzwvxu4jih7Bx++dSCQ0paMepKOqG8dDOhYWi9QRS+upwnwf0+H7mVTZqSUNeE6pLeiw8fyUgGCjrpIe4UHd9JjHGZ5OWbSi77IN8vUveSNUwQOPL3c5PS7aSZ3/rMpKba7CsYqG+3k43Ul4n8pINg8TbAVCFRpm9Q4GpX0KmERO9udONObvI4K7lGR+Cd6qzo8zT+vCr7LAJDHChQQ7FA5SZXys50dgKjK667vAEHF2ymoamtyzGOMaFCOjWpmdSXdp9FUXxKQunNN96fMQNILL5N6mcBF9Y4Db2sy0mN8m0JRHbq+symsZyU6dfmK0hhOfFPeaS3Pa9BLgFK6p7K7Vd2017N7eK07fn/c9FiQ5ePP+8mnIByUkNfVJ1K2rEthvQlYaL+i1f5Z1YUtct40TbAFCHQKpuuTgtERpn3nyTtejt6VIxkcZQWI/mgcvfOk1F2EMTNSdJb6n0CAXzfGoaLtdruDxz1TnR4BcmpEx4lkVwFCqlM8p8zByiD4kVTVm9qb+pG648+pd/pc8VABAdd3zsczknID67zwmqRT7Gs3dN62BASS7vIej/Zd1rzPo0gfi0leKRNSgQdu03qARD7OVqKyH0UrdTsoq+6pHLvOpeMzwMRyU+TfpdArULYSLRMEUOeYOeN/lp3AcOf0PfBa4W827dDZWB9DXZ0dbQXMmzIDWzIApOTQXGHdcFVfX6sUyMvVvdpPkZH/uFKZaLFrkyu9zqV6eb4yVAn8JGCg434PZUCjykcqq/SwlJ7z056W7owD5aBoqkoDvjZV0b0TnZPLvdLdVMfKOeqHR/OqN+lQlXHhdRWo9nuSYfLrKz2WjlTGK0X6LD9lOqSrvt9Rp5tpfJGPJMvkRN4CzRxI+o3xXPc6+9055uqcxoxklwKmZMc7cJIo2f4ERByAOFVAgLpaBb+833ny9qQxVgUFfs+qI5/54lXZjrHx0cI0F1ylYdIc+W53uDgpGREaLzeM3rhVx1SlSd1g6Z5KIVhWlS7WuUoRSStIPDl7j9LSl+qY/SAQ0NMTHAgcENfX123arJO3gITeB/FW3kHQGUUfkJUR0/4MEHj5IteJBATSK4vTnLbzn/rGx06lj52xp87x+mqsJ332aEtt6JxPAucroMApAQG3Bektk28NEMzG3xg9GEjXrtLMxopmgROdnE8VrGZVvX71kaZwZlkB3ut2j9F/FSwlSn4gBR4VmHBa6TMfs6tgeUZHv3RIQtrSgWPUb89KTt4H85Z6WK4bYo9EHBBUiwm9LPHC6YiOkuHr7nEDVn2h7vr6+uATueJJRvT+/v5gm6ZHOCi6wZCQrc6nt8etvq74RxJBbAdyCPSqj9ikucCOeC31JAEBB3VJX1S/GzSdZ/+L5xXZJ2DudXs5rGuWPfAx5mXwetdDB7AOZtn+rn3abnU2p6RZJElK4K3i3+0t5dJlB9LxGV+uHxXYTQFkOufnCTQ8S1Hx7ZE6bVmVGfC6nJcV8OHHvE2VLLceP4Y2gQEx6527Gjn6sSTYjrrrZpF4SgdWCqDzfoxlddHQjDrwkIARncXV1dWz3/X19bi6unoGBpgVuL+/3ztrf50rlZUggfuUmYOAhK7Ta6JPZVipu+QjAT13Fvq/JSpdbSdBXnp+P2WzyJc7igR6PZPVZQgqQ+4RT5JF5UyoMylV2mUGpE/UWQdBK1GzqGo7QR7l+lYAQQU+UyZHWwYSyYbxulRGdSyVtTI2yI9shD9h4Lo246Wima6nYLDKCHcRfQdQVD7r4fEELjoAUwGAVO+xtAkM0FimqGqMHh1VURnvpVBmkfOxRIPjkVtnbHxhzNYVxt6ehGj130kO4vr6eu/8b25uDv5XYOD+/n4PHPjmRfHgBjsNEDpQXk9Q4XOFDghOCQZcV1P6OuneiqHb6vxlFNN0DzNAJBqklJ1g/6R7u+hlBhA6IC1yx+L2oAKSXr+PO31S2cFmAhjuKNluXVuN2S6KPCUgoNOo5O7EDMGxfHfRJ//Psoa6x8GixmD61oVPa80CL9d51/WUFU6U2tWBzRWA7WV5PaTO180AdEergczmaYIxDtM+zBTsds9fKVpFkSRGMCyP2xkK47EORbmzp/MTLxWi84j+JWCF6SzxLGPlHc/pADn19+/fj+vr6wNAoOvEt5z+u3fvxv39/b4snaN83Oh0WYLqp9c+k5TilbM7BTHyc/KIOuna96AKCKRpH/UTidMtM53zjMBM7lVGwWklwk9ratI9HDtcZMqx6a+ATQCuIgdAK+8OSNmB2T0/mhKY6gIlz2oxM7DqFFKZ6V63GTymffLq9pnp/Ko9qxnYChCkc85/167q+lS+X5/8YAWYXkJd0LJFdzc9TaAGrxolMqStOyFRMtT8Ih55EK3Unxy7Ozw5R4+IuzIdEHhkP4v02WZex7KJqDlNIADgW0aUDgZ0ztcMVLKkLGiMGalRblw8qDaxr9K0wWuSGyCnDpDSkWwh9ivrT0CA2QGXner1BZnf00FV+uvRkoN5Nzbd9FcVYTE17KAhAYFVItAm2E/pcacECE5FlVNi+xKtRJov1SEHGi4z148UdBwzNZAyJMmevpRmUX2VheiAwEyXumA2Xev+iPdukcEmMDCjajDrf5Xi61JaDgRWO7wCAYmfBAJSW2aRVjKoXOm6cl9Cse44Li8v43qBq6urg4FFMKWfvsfg7RrjcGGPAyauP+BUA4972tsd4KkAQXJo/J+u9wHJTNiMKhDgmQGCAPUhswOsXyBc9XOqo2v3Cs80aIzW3KCll7R4u5OTqQxUN3Z9LHo5nolMxpD/CfYEqjyKVhvUtlNlAxK50531a+VUk4P2elj2zL6mY6uBVFfWjFI/+1TDGC/rQwcuVf2eJVjh1+l76dpLyvkubyDUfoq89T85YZE7Q58i4HaGgqnINCrd4iOen2UFVG6avkiKmAzPKlUpZTn9zsFIlp6C1v00Ch6V0rByCkALEbVPYOD1OG+nNKwpre26Sx1zSulNXluBVLadfTTG4VMEDqC0L95XItmV9nc0i84cHHqZFRCY1ZccMuvsqOqPDhB0vBIU+z1vjXz8VgBrJTvA/12k+SPJg6XKxuraijhN5YEZ6ZisT5UV2BqBO20BXNX936OflsEAo8nK8fs5nvd9J0/TulKSaDTH+PbZX49G6Oh9fju1ReTC7dJUvNfnS2X8Z+3piIO8M5aVw5FcCRYoAwcDDlyYFdBCxPv7+3F/f7+/R08qpA/YeMr7FOSfsE79PUZOcXuGQ05H+xUIGOP5+wN4jPtJJ1KacQs5XyvXdxF7Gud+nveler2trtsviZ5mgMB5rTJ1HlQcO0X0vaiLwFedgMvEbazOVeWlLM+KjVw5t0KVI69kQzA9xnhm0yq7v5W2gF/SVoCmrf+qe1jPlkBiMxggY2M8f5tTd82M3BgxWqpeyMIGUygJCGi+OwEWbll34r2a56IBTpFmZyw9Iqycv0dnbpw9EqdDZpt4fZUZUJsECFL0KkfLaQLPDJwyK6A2uDNL/Zr0zgGNwJ3rGstg21deJOTl7Ha7g2ucd7bJ73Oafb8itT1RCgJ4vUf63ZSfjwOX+9Y1EasZAl7v04863vXrKSk56g4IVPx2ACJlBGaAI0XHFVCY2QLPBlQZigooUw8I+PhdhHS/TxNvBQkdKFiVY+XcKzDg130P2vTVwoTQKoO0FQjQ2CZjTINaORoJ3AVIIMDpgo4qw03wk9pAZRY/nupKmYxUN4ltUaQuwynA42UkcMVne3kt5e1tclDjsquAzFsAAmN8W60+xvPslNqXdMyf/WcZlVPUPsvSNySqeUxOoYkXl3mammP9lU536VHSSj85IJDRpQxXy90SSaZrWVeasqnKcMfkWUb28amzAk7VGEzjcWv2IJXl5XR8VQCg4l916T4GT9rv+Kv8C0GEA74EpjogvZUIXhKl9qcyZmBghd9jbPAmMNBFRM54Oi9KETcZZ0qb+zTULKvixREfswSJJ+ctdV6VLSAPfHbW29jNn3uU5HUzK+BgwJ8QoBIQpPAa8sXr3HGmY56NYFl3d3fPeOf2tcmfSPGIz0GmT3dUi81odDwrxLJ4XOSy4ItYKqPimaDUl0k3Kf9uTHr7eH+XIfOIjmV4W2aRYUUJcDhgZx/4+EvZGs/4eNtWeH4N6pyIO9TKmR9DCVB0fZmieKfknAgC+JEtL2sF2BL4c5q0GlMOcDtbdYw8u3v8XHL2CezP7OkKmE70oszAMSQB+KD26NQjtLTQiuRzwsl5ds6wapsbtQrNpWu78pJz8IHi/z074JkBtj9NoTiQSnz5MbZXg+vq6iqCw4uLi3F/fz+ur68P+D01GBgjv6zHnUXSO9c5Go4u+qkMD/lxcqPFDJLAbNJvN2iJZudThNUBC/GoVCzLYRRG3et4Y3mVnlSAhWOKjiWd9yksB8B+z6mzAq5PlBXHlQOCFbk7VZH9Sl9WIKGSX+Jd91Z6NwsyRW7jVhZwz8bQMfLkvbO6Ey88twoEXkJHfagoOZSUSu6MbyrbDTAft+Jxj1S5JT8rhpMGuOs0dxyqo2sXr0/THcngONhJxiCBHGYIUqRaGUinJE+1d7f79riiIlh/XFQp8bcAABJVqWyP5tM0lVMyTpUhrqbYeNydlJeRAEFVvrdP5a8C+hk4Js8JIOicU5IL9auqMzmq5MATYE+O37MCyYGl7N4piTZ4jHqqYMVxzaLcJMOk26kvUtnOq9u+TmfSGoEV3quswKwOJ297Os/tS2hLBiCd60DjjDaBgTHq+W4JXYZKgkuP6aR7PQOQgAAHMPnioHUEKUep4+mxRvGQeEtyUNvSFEXlOLpIJBk1OiG/h1Gu1kNQZuTv6urqWRkJ+FDxkhKSfz6RoFccMyrTNSxLx98CdVGjZwZ0jRuClBkRcQwIOPk57TswlYzSgkNOdzm4dfJpEfZ7Z9BSWzpaMYAdkNL4rZzcVnLd9rGT1h3pujGeP1XhQOcU5Ly5Q06O153Ciky767psA+XosvMyk6Ojbvr6Hm2PCS7oGxIY6Pq0A0NVXTNKU1HJb7H+2bGK72N0dxkMpNfkckvDVgGDLipLL9Ths/HVY1iVwrlwGUm5k6JBYptElRPz7ALblJyvO+KUOfEMAh0U75VsOV2guXo5ab1PQM6oMoQsLxHlo36sfux38q0XJJ2aEop30MX+ZtSqdjHrRKBJOREI+Bv7KkfO8SPi/em+1G+eWfI2jNGv9ue57kVZHSVnm8bvanmkZJR97FaAIO3regYvyYmcmnwapAKiW4CAn+f/LtvgTjzJnWUkPqpsgV+zJVL2tvmWgCP1bxewJPC1qh8pSNySqVNdVZ9Wcl4FgmNsBAMpimYD0wInMVOl3Nzx8Wt81RQBBSBn2CHaZIDdkfsUyIoRS46C9yQZkapFKwQFfLugL6BU+10ej4+PB28nVOreHZ7LkjzperVNdcvJq6896tR9WlcwxtjXfyrqDKS3yfuKOuEggJG6iNfyDZA6xnI7hyzePJPF+qqMQHLCvL6a6mMZzocT9T1FUR0/usavm027VXx3ZXrdnBpwfmls2WdvIaPVOX9uXc+/F6Vx4/V4fcm+pP8zB3dsZiDxkmwVf1ud84+mro4ZGKyuqWjTh4o8YvJBpAEtg0UgwKhRRITuQICZAb5xj41Uw/mMezLoKfoS0QAl5EbjkYwC28r7PcL0+jmYfIDpXgEhyiOBIUas+jDQ1dXVeHx8HNfX1wcGzutKRo8AqnKiFbpmPb5qu4oyfzTx62hOKYpne3if5O3rUXSOxkRlug50Bp2yTsDSHXCXzeG9bqxXnNssku8yHKorAZLkrPmf7fbpgzHyAkVmoVhWxTf7SWWlqI/lvIbh76gDX27fxvgx/H5vgOFlV/sVEJg5uiQLd/7Vz+9bcbwz2nI9gelKud3/VdqUGRClQS4mGC0mUOADlj9Fs4yEfc2A6uHg8LldkqNLH1AdwtXW0+veXkXBbpgdEDgwSuld3kdAwKkSbwufJhAvXPGv8jRtwPrYl9V8qYgRNKczEiDgFIfAzM3NzTgFMYPkfHq26927d+Ph4WG/1oIymK3mZ5mqawZOdY/Is1PJ2VdAIDl/6mBl3FwmXpY7Vm9/0v0EALpUPv8TZCXaEq17vzgfDv6cUnr3Ncn72e1ZCrBegyfWdYyT87JS+dV2dl93PGUEXNcZ+FQgkW1ZabvrHo9VfFfjpGtfd2xGR4OByvGyAUpX0xiTksPzKQJmBqoIqRLaStop3SfeqCgpMyAZeCq4iiYYVSf+dD/LpnyY/WD7PXLylxBJrgmsVAa5+q8MUHUv1ydcXl6Om5ubcXNzM96/fz/ev3//rL2vQR5hElSKbzlt6izBm8hBgFNlHNxwSo7J2XfOTnV2zpdtZP3J6acy6LyTM5TBpCNNWSfykfSF12xJz6b7nVgeeRujBkIVrz8yIp5RqrsCAjw/RnZWnYN1SgFBxVuXkUj1k7fUN5Wt7gDB7L/XKfvqU4EVbx2ldic9cz1P/ZD6rdK/GWDZAgqOAgOiKlImk+rMZFDUAf7VPc8KVO8QT4PWhVtFLk7VmgaPatRmZjoYVXdAoIrydH1lwBnZ8z45L5e7ZwOY2nal6xQ+RXa+RsCzC6pbWZ7379+PDx8+jA8fPozPnz/Hen400amnCJHXUWfVVgdeVZSgLWVSvbBI1AECXuPHvIyq/NS+6n7vU8/+qAzqGx8zTTzPQEBHlPdLwEKXaSBv7CuukVnNQvwI4nh2EFA59AQ8vcx0H+/f4ty3AKXEW2WDOud+TLYgRfwMFGjX/LoOWFSU6u6AmZfP/aqerq+39s3RYMAdhZhg1EWnSedPgXs6mVGwBmSVHndj4W/jcwMyS8tU5ECgI5eLd5b23cD50xqUE6dS2BYd81csc47cDSHLfAm5srLf3717t88IfPjwYXz69Gl8+vRpfPny5UV1Hkua3mAfJGfFNvnc9Bj5Pf9+n6+TSDrTObekmyvrApyPdH8HGtzgsMzKiBEIe/kdP1W7fDyvOK3Eu5fZgTi2Q23QmHoLgMCdfoqU3XFvjb5FFWhNwGCmF7zObV8aDwkQrIIEPzbLEDil/p1lBlYcbcVnBTASpXGZQM2M1xVaBgPdinAx5Yt/iLJ1PKXf/RFCnUuPE3Jw6+ev4+W5NHg6wYlSR3s6SeWtRi26LhmmhPSTE6c8+Hy/l1MBi8pwusHhfYkvIl0a04uLi3F9fR2BwE8//bQkpx9FBAKUA//7ExtpmsAjYAKz9OPg57jw8ZJAIrMt3g7t87/zSmJ97D9mTZx8vHTjpjPeK4ZToHb2OXHPRjnAU1uTrUj6TfBGW0Xn9pLMxEsogQHuJyeYnE3qv3R9BQhX+ExghDSLoqsodwYKtgCBSn89MzDjVzx58NvVU/meymZ7famsWd0rY0+0DAZubm5aB+goxffp4B0UpCyAdwwHNTMADw8Pz34EB92HidyIutDckNMouOF2B6n7Re6w/XE0L6dy5nQ+TM8qmkk0G4SUrUcarliJLwdy19fX48OHD+Pjx4/j48eP4/Pnz+Pz588nywxQlzxyH6N+Dl3n0gIulTvGN6DMJz64FfnbIcd4/v6LlM1KEX0FaJzP9Nij9JQAjsYwARbyozKONbxOdPwEBEkm3lcpayYj7YDAP8NOG5XWRJ16imCMbXJ+idOsHPfMIaa6qrK2OKaqTDpU36quLXrX1VedZ70cNwkQOf9b+FiVfRfcdeU7bQIDROxCztVq3DRo09sEPVPgSsjBTADw+Pg47u/vx8PDw7i/v9/vExDoMTvdlwYF63NgktBYAgBj5FRTVwbJF7hV11JmMmxcJV8pj0cUvj6CRpOGMiFOBwvM7Iwx9k8NEAzo9+HDh8jfj6YEWNL88Bj9y0EqA6o+qaa5KNOHh4dn5c/WAviWfe1rEkhuEDydr/8qg6lx6pUbuQ68rLTHdaqbviNoYRkJdBHA+Nol1uey6JzaqQGB26xkw3gtnVhyTivRZwrqqmur/909yYE7v1Xb/P4ZIEhOfWW8dFTxmeryvtgKiFbqmQGg7w4G9Mifz8m7E2MUNsZ49lQAB281p8pGENULABAIVJkBAYFZdkA80mG4caFAq3SuzhHcfC+iTOl0Hx4eypflMNr3jIpHiMnJc9vx5HPWWjQo5//hw4fx/v37cXNzc7I3EPJJFXfUKSsgqpwdiUDAF8LqPKevmMHxrAAjVAcn1X8eI8+rDs4NJ0GAR+SkY9LmDCJmBpFTjamtkpUHF2qnbJSDGH4dUm3WNo0hl8MpqIq2uyxA+r/qFFR+2k//07nZNe6sK9lXVAGClXtX2rESrSegucXRp7LdBh9zL2lLn2/KDCiqUYQj4qDzaClFTVwX4EaJ8+pMHToQkMMXKPCpAzpBCcXRFB2AR3VqgxtZAoGEOJNxYSSWOq0CDgQB4tWjJHfGad0EZZPAQKqXW7/WgYmOaeGgQICAgN6EeKqXDrkM+RKrDgwo68X0fsrU+KOxnnlQWWM8/4CWT+0QRHufe2Rd9R3HUso4VeTOz6cRZtRFRpVzURvTepwq0+a2xd9D4qDLwa5nBjxD+ZaIWaUx8iJB/ud91X/eu+p0Ztd14GErdcFhskkdEOgc9DEOd8ZTd0/HxyoIqJx7BQR+CBjgC2t2u2/vu9e+P3OcBqtHYiIaLzoyzh+mzAAzFMoKJGdYRb7aT0alMwrVQqREdICMdtyRumOqgADvo9y1rz6hDLWVjHzgJBDD/x69kn+mbblwUEBAWQFGy69N7rBdP93h0sCkdRTJKXs/0SmPceiQqoxVxVcCpyI3fO7odrvn7zNIY9BTrWPkxxs7pz5LVXb3CnQRHCQjWdkWvSQqBRUuR0/9OyDo+H5t8rEnYv953700O7DF8W+9t+PB+3ur7LdkUPwabn2/u74Lprp7yXNHaVwmm8JzCfyu0KbXEWvBmoxMhTzo+CvD41EIDdnDw8N+n85MAIAggNH/GPVKfSd2qBsXd9ZdVJTmHh34eJ1eXueQqzKlIHJw7uTd6TBrQgdOI5nq5XHx7o5BchMQ4LsFND1wSjCQ2qTj2npkSMPCyJWRvOuOy4X9kBa9embAx03KVLF8knRcTlSONUXZlRHrjHTKFlTGd5aNoFzJM8GtO3XP4FTBBsvX+GCWRPYrySLp+SmBgKgCUgmw+33c+n5XXyIHH9X5lbJXHNVqeSvg5RhA0PFRHVsFFFt4q/yZO/6XZgc2f8JYgy+dryJNMXVxcbGf53YG3bmnyNZ/Hvl3vHuqjYbfI4O0KMtTriqzS90mo+epUJ13Q0e+/NFLGkulsB10SSbugLTWgHLwfnMgI2Oq44xkJa8uK3DqaQIfMNXctTt/9jGv5z2ezVF92lKHua7FgawDMl+I6JEsydfsEGhXr8pOwMKzAg6MHBSkceXj0I85uB1jHDhs7lfGdbZN9c0AYQKBCfi+Nq04S+9DyrwCBJ0TStlLrzfJeLUtKyBlBjxS2d11STfS+Uo/untmx6vrOgBXUZLhym+FlsFANaBFKRKg4+CCHr/WI9nqp2iKmYOuTkYpflzXetq4e86cTrCa/2e97lQV+bghlfFPH2fyNzFy4RMzA1WKM2UI+EKilBUgIKFcaSR47bt37/bO/+PHj8+AAAHBKUhtp3z8+wMpdcz2Uo+SAx/jUN4EY2mRa8oKiFy2KY3tDkA/8s3rEvhJxHHl0w2p3s65Ejg7JQDFvuA+yccV5eYG0qcIO6Po/S8eVf+pgKwD10qWpC6S7K5xeRKQdWCKfTdzfFsyA6lt6fyqs+uur4DlCm8rfbJCXf/wmOu59tOU+BbZLFtnzse70aFzG2M8MyYdUx6xcc7fj8mA0pC6waFzrQxLMq78XzmFNFhEPNc5VedLx7qfnAI/RyyZ+DU6XjmLyiiSX08Fp+skG2UFODUgIKC1AqfODAhIjjEO9Jdt8og6RYTJWYioqzyWwAB12stRPSkN7vpJR8oxovLVlpnB9HGS5JeyEVXkKN58usAduYNu9kE1XZB40zW0P8woMqBw/edYqbInl5f1Ozx+NKW+cafscq7KWTleAYAECCpg4OeOBQJetuun17elvFR+tyVV9rMCa4lSZO/H07W8pypnBnwrWgYDd3d3zwydV1qdp2MnpQbwuupY9aEfRd5pntDBgDpODrbqRNabiPclQMD6VI4bUmYDrq+vD37uTJkZUDnMILD8tGjOnX4CAN4/6VE4gi7J0Pn2j06dCgyIf0XkDgZENADd9JMbHjpgGmZmtJgRcDmyD/1JhwQIqL8iz6LxSYiZQ6Uz7Jw4KfFA6upL9XNBMoFMlYXhcWW8KIu0cDa9a8THL9uXwOFrU3LOosTvisxdp9VOymYVDPC/ByGpvs7ZzSJslp+AAPnYSt6mip8ZVTLged+uAoOVcyl4W23HMhj4+vXrvnBvWErHJSfijenARcoqJKDgDU9AgGWwDTRCblidL48uOkoRZKVsMr7++WZ3ppxCEF/JWeipD88m6P7KUbtBpqw9qkqgZxbNblHK701dVOnTUCJ36nTirlPSc7+H9/K8dDQBqtTvBHbap0zFk08/VIaUROere6Q/GkMVsN0SBSWn6pkCXkv5OIBieeSD49TXylSZAZG3kfKiHXltYoZkpQ86ULDiNN1Jr4IBH9+ub8n5V/Wl+9nWBARWqAMd3p7qOgdO6Zy3y+vfCgi6+/ya1J5VILsJDFRG3Z0/nYkfT9ukuElhHAh49OKp947SwHJeUn2pbpbjyL06znvoDDS/TqctkCBnwEHKMq6vrw8cExf26TPCjN4dCNCxuKNk6pkydpA1i2BOQanP5EzoPMZ4/r0H6jB1maQ+6CJv9R2vkczp+FM2pcvyqM+0FiWNtco5kH+BFJWz2+0OFtImUODUjQ/eQx3xJ1pSOe7IHaiKJAe+eZQvIZvx5sBWxysg9RrELA95mIEyZkQrh+JOrdrnMQehHVhIcps57krW1bFVUNCBE92fbFbn3FP5KwArHUtgYAsg4D77QbZjhZbBwO3tbRnlVc4yDV5SJeB0vAICFSIa4/mirOo6r4P16PiKIfE0fKqjiqhTFMhsQAJhIk6PqHyVQTCgn087cHCrvXxiQ1vWtzJPOUPZr0XdAGMqWg5d8q50WverTYx4Xfe6LFG1PsSnChwQ0BHQkfu6CPFcRVQ85ls3LF2GR9dXOsG6XN+p4wkQEKzxf7IxfG+DTw8QDFT2hQBFMl2d6vhRJL78kVbvR98n8fq0dXms/K/0oNKRRJ39n93v7fagxJ2kO/VOVltoBkY6p52uWQUDVdnuV34IGLi7uztwdqpYzKSUasWwR/QvJZXtUb4b5goZVtMC6b+TRxRp2oHX6pwbRu27gUxIPHU+U/wqW1kFBwH+tkX2oxtgGVKWzSh4hphJpwIElcFkWy8uLvZZAersTA/Up09PT3G+f4zD9znw172V09G9R9FsBzMbntp3mac+oNPjNFRy4hUQ4Hw8p0LIDwHqu3fvDnTy+vq61EV/+ZiDVU3xsK9W3kjqcvE+S9M/r00EKd6fle1M+l45Ef666Lo6nwAAjyXHPovinc8VwLNSrvPidrTjgfszB985+463DkzMqALcW9ZqbXqagNFOMqra75ynkxuh1CkuaB/QlbJUqU1GS4xoZER0nGi8Mh4qX45ARo+giW11QEA+aXDpNBitedpUZbHDGXn5gkSuS3DjKx4dCPi8d1JQKmMHdk5ByZC6/jI9Tkr6xjIEAjjwfJ1HWg/gUwLsZ9bt/LsMxbteyCXH3o0j6h11tpObp6WpjzKydFx8m6DqEgDQUyZ6KRVfWZ3GDJ27P5mhj5Td398/60svx9/46PL1/lWbT/UkwRj9FKpsV+rrFRDoYIAZsipj4GAtAQCCAAcEW4DAShsqJ74VGPjxCji4XGZtWQECHXkQyHa5nN1v0B6t0DIYEAqX40wRggMCb1TaH+N5xOzlpv1E7lzdYfM68Uvh0lj4YiOPuFROSuE6Dx2l65PB59whQYEMAsuQMvjTCCkjwPYnwJGAB+WYIl7KRddQNq9NCWCxLexjkve/lzlG/SQI37HA9y4wS8PpGhpgPnVA2YtnRuNPT0/j7u7uwGG6EUvjMfWbO/wEWFkuHbXAAKNpOgxlBCQLPYaqD1oJEKRsFcGpHP/d3d24v78ft7e34/b2dnz9+vUgq+GZgE4eKbp9K0QHLfLxWmVEfcv9NOapW5XeOFWAwR1VIufFj6e6ZmV1ICCdW43Gt4KBVRCQ/NJWHeyAwA/JDFRGkecJCEgyDKmRM6e5KhiPdrqyeW1KH87WCIzx/GuMblATqJHBpKFUStV509b5Ixigg+bcPxEhwUAy+k4OCGgUUqRIMMRFkHJyNzc3m5Xye5PqTSn8MfrXTVdRJKcFJGO+iplvY/z8+fPBZ5z9mw3ir3pBEUEq+0Yf6ZJOKHtXOW3xry2nK/wDS90YIh9y0peXl/utshOs8+rqav9Sqk+fPj37SS7+1Izqk2wEBAQC/vjjj/HHH3+M33777UDH2becTqiCDUZdHiWfkjzI0na3+/aq5QrM+LGqH9l2H/Ou/zNHWWUF0v+ZI3Xa6gu6aLrin2Ukpz8DAytAoeqPiueuDyhPX3Cssf3dwcBLUHNaYDVGnhpIRnpVOWgIuykClk+Q47+qTgcCaf498U1AkAZtlSFJoKQz7g4GKv66/kzXEQDwyQc5Njk5vn1Q17J9r02st3IG/n+2RoQyvrm5GZ8+fdo7fDq8z58/jy9fvozPnz/vQYF/0VHgUI7Of+kVxnKMt7e3Y4yxj5pX9E9yYF/y14FGOgxmy5x4TKDww4cP48uXL/ufZPL58+c9IPCnXEQEA8wG/P777+OXX37ZA4kOkKucWeS74kBei5I+kncBAgL01HbP+mjrsqiyA36evHUyTICA58kHaSbz1D4n2lnW6+V3AMf/zxxzVZ7zTHl0AJXHqvKT7a/WF3W0DAa4MM4Fy9Skou1VWgECK5H6CqVpDEUNjLiq7IZPB3SOluSOm/s+gD29vtKZM2VYyb6QR9ZPWfnUgwCA0r36edS7OmXyo4g6OXP2vMazASqL6zHUdjl+/ejsfv755/HTTz/tnR5f2SwwoHT/169f9z85PQECLpq7v7/fO0y9WjllXzoD5XpTre53B+HypJ4l2SkrIBn99NNP48uXL/ut5JL0RqQIXwBJWQHqWzXlwT70RwwdFHgkfWpiv6WonfKn0+UYZjl0zvqfqAMFnSOtola/pgMCqdyKx+548ifuuzoeZrQCEJynBNqST51lJVxfOY49sFxt26avFqa5VqVL6UQ9CveU32yQ+apg1nUspQWOBAFMJaa2+wBLq/1XyTMA7vhdYXQtKf33X8pUJGVyxSI/lB2jYZ8P99cRc2oiDcDXJMqA0zQVIk/rAwTUHAh8+PBhfPr06cC5acv9n3/++WC6QDKTjB4fH8ft7e2zrzyqTn6xk9+3eHx8HDc3N+Pu7m5vCNL6jFX9UXu7LNIsYqPOKiugKQKCpZQx0bSSp/w1Rh8eHvaAgF/FZCbB28Kx4BmWFACkMX1KYODy7tZBEMRzO0ZuF8kddAcIKh4r3UjZgS3UZRcuLvJbIlOg2U0VdY7TZeL3ulw8AEx2vgqSErjw/piVy7JW/eamzEBinFGCjJOY3poW9lQYH5faCgQIRBy8sEzPDOi6FFU4COgi9+R0vTw3nAkUzAaP81JlAwiCWJcrnCNmKleKIpUmT18qdNmfCgw4zXTJZcB9LoRzIPDzzz/vswA6pozATz/9tE+FEzBdX1/vnZTGDfVS/OgaOsjdbncABDrdoTFL4zIZMj/PaJpRqhP1hl+zlMPXFArXUfCbFj5dIRIQUpu5MNYNv49XgipOu6THDo91WD+CkgMa4zBLQH2ogAD7fhZkpMi9+rnNTvyvBIArMuiOVYDA21Wdq+rx+ro2aj+V7za6AgOsxwM133ffkQD7lidhjloz4ChLDVNnOPqioFaUIgGBWUfqWvGn4wlF87llGl/yKnK05Q6S5VaoMfHKjkzKkcCD+PHjCQx4fQkhJqCUFg76mg/Ww/S0v0JXvCXD8Zr0EkCiez0jIucmR//zzz+Pv/zlL+Mvf/nLHgQw+lUaXNEsI1rxVq318AV5ul6PEvp0lf/0zLzrQ8qQyYmwzxMQIJhOAFLAKWVR0meuCS79jZvsv8fHx2ffwPD1BQQC/sjn169fDwDB5eXlfgqGlLKgp6LOEfl0TdoSCHiEnUBBBRASEGAwSH5X5XUMUKjuISBI4OEYmvE2s/f+qyJ43uOAoCqbdZCq9WUzOvqbsp5WI2ohIOgUOREVyR2T02yAdOWnFGFCse60eYx1VUDAO8qVoXPgzrMPXAcSXHjlmRw35ho4rIMGPn38pUrDdchUdWqB283NzfNOeSVyYzZGP+9IAHZxcbF3VEx5CwT87W9/G3/9618PMgNKf3/+/DlmTAiQkq5XxoTGnQ4/RcICEmM8jxI4Fjj14Lx5JoB9yv+Upxx79Rgh3zdAvtmetN5EU5L+yKzf6496EjBpLcaWDNxWh/W9aQYIOBZTdMlt9xOl/2n8cJzzf8V3BUa+FxEQOM2CkQpgOK34sgQA0qI+BtapDpd3Isk0TYF0gbTT5kcLkxPxqC8Bgi31pFRkNZdfdXCnDDS8/inkiqoo2+XhPFD5Wc6WgVABoRQBVqtIV1LjDpCohJJ1dQ3v5wuqdFyR2CnJdSpRAn/KgNC5aXrg559/Hn/961/H3/72t/G3v/1tvzbgy5cvB87P09laA6DxwblwPlLomTEf3OQ3ZWh0P528ZCH9d8OsLEUCkr7vOkJgygWmCQQQsFZGj4CX/FxdXY3Hx8eYReF6Fl+QSKOsJzFYV5Ltlkj3tagDBZQptzqfQFA1fdABAuejywjP2lI54q3BpO6r7N2Kk03BIO+lXpC3BKa2AgEfV86v88G+9XZ2vjPRppcOsQGibs4oTRnoOkdwKRrRtprLT3U7Uk28pmwAr+dz6anNqY6Uvtd5lucDLsnGHbOulTxpRD0KdIVzcFV9yEbtSYooR3NxcfHsmwV8E5zmrtlPzDTc3d2Nv//978/65TUoDbLKELBPOB2itDZXxf/1r38df//738f//M//7DMDerpAjk/9IqfvPAgs8YU6eqkOnyJILyOiIyav+miVzt/d3Y0xnj9OO8Y4AGnUExqryglQR6SPPp2iX1rsJ0DiPwcoPpU2xoif+vZ3GWixpjIyzMJ529ge6sMWg/ojyZ2785oCD9pZ/ncgoGvcWbl9cqDR2dnEX8VvBQhY7wogcBmk+mf9za3vez2JbwcCstE8LqqybzMgMOPtGDBwsXtrkPdMZzrTmc50pjO9Kp3mLTBnOtOZznSmM53pzdAZDJzpTGc605nO9CenMxg405nOdKYznelPTmcwcKYznelMZzrTn5zOYOBMZzrTmc50pj85ncHAmc50pjOd6Ux/cjqDgTOd6UxnOtOZ/uR0BgNnOtOZznSmM/3J6QwGznSmM53pTGf6k9P/Bw+xeHk5nbSiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5SUlEQVR4nO2963YkN660Tal16IN79v1f46y9PTNu2zq19P7wF9VPhQIgs6RWaT4X1qqVWZlMEiRBIAAymWdPT09P40QnOtGJTnSiE/1t6fzYDJzoRCc60YlOdKLj0gkMnOhEJzrRiU70N6cTGDjRiU50ohOd6G9OJzBwohOd6EQnOtHfnE5g4EQnOtGJTnSivzmdwMCJTnSiE53oRH9zOoGBE53oRCc60Yn+5nQCAyc60YlOdKIT/c3pYjXh2dnZcqZnZ2fj7OxsnJ+f7/0+fPgwPnz4EK+fn5/vnqno6elp90v/WbbyIh8XFxfj4uJid93r9Pj4OB4fH8fT09P4/v37XrneDh8+fNgr4+zsbHdtjLGrh5fx9PQ0Hh8f9/hXmenc0zk/Otc9puf9dG3Wpum6l7uSP/vlt99+G29NHz58eMY/iTLj19P/dGR/M69ZviltJcPVPcq46uv3Sc4rn03P+Djyn9JTTvV7eHjYXeeYYr7kye+RD+XhZfCayvv+/ft4eHjY/b5//z7u7+9353pO441jv5KTh4eHeP1n0qrerdLNrlcyR319cXGxp7vZL9SX1F+ip6enZ/LO844P3vdyKeOUXc+XfEj+KDv8zXRe4t/rksbaTN8nGUz8MY+OR6/32dnZnn2oaBkMrFLXqRVIoFIZY19JqEKPj4/PlA7LdKPjgkahIR/p+e/fv+8MyBj7htaFzxXwhw8fdvmQJBSsg/6rDL+nZ9I9r7vzq3yT0fYj29OFRvmzjdLzEriUVrQikD+TnK9ksGcAID1XydxqnitjpQMBOk8gwMdSMvJ8VtdX6px4937/8OHDTglrbKQ2cDBQ8az8fDyl8mTQJKNqSz7nY5/ym2TlrakaSy/N09vdAZ8DATlRlJMxfhhZtWtyCqq+JC/J0IuoUysAXDlf4uPx8XFPRyaSXCSnxvlP+p31Sfeky8/Pz58BAzf8KR+2rcst01T6ZkavDgYqBrzDq3TsYKbxBkydxoZIwEIdkfhSWhphlZE6uvPEdD/VQXx0bZAiABV5G/izyYBXZSdBonKcKSYCED6ja6+t1FaJimqmmKr/Xpd0zucSKOjK8muzftlKFQjg/yTn6blDyBWZUwcUOZYYDfDog0CA/rPPk9Gp+kZUKdy3pNmYmY1J578DeB6FShFcAUeRHCcBglkELl1zOXSj392bySSdJze+r0UdECAfJNYrtVeSW9c7iTr9NqNXAwNpgM0Gof9m4U2CgTHGs6OTG2d2mpeRlJ5777yXBovfr9pIPGsQKa+tAvoSILBq2L28FWFP4GFW3s8kH1C6ltL4tZSXp6/kuZKvlBeP7uV0g1pylHjr5DIpVBrdND68TlXYuGoj1tvrmupFPsZ4Ls8+rUdAkGSN9eQYIUhPynkGGn4mVeNmVenP+PZ+peH3c+pokXQYddkh5N5/ir5WICDpmzHGM1uRIhdJ587a3O0B27Eil/dkV8i35FBH11+eb3Xdzzt6tTUDndJIwsbwp6POJHSiNH9SedJUWmPkqINTCiN6fs5/4jdFBhj+V10SCCAP/J/IBTqF6WZUGX7yzTRp4FUD8r3QbHCsGO2UrgMBXegyGccZiEj5uCH3udSZMq3+d7JPnnlOpXV+fr4XrvepLS/PlbiHdGn8v3//vlsTwP9KT0Dgc9idbjqWwX8N8vHp1/g/tYHLC6cKXEd7pEZ9RcNUtWU1hUBd7fKx6mxVzpEDgc551L2k7/y6A5IZJfsgPU8gqnvil4DAx9JrRq5eHBmYKbXUqRUo0LwUBc/J51r8PPEnY+38VnWp0JvuJd5Xy3BDv4WoNJNg69pWMLBCs7x+RpmvRZWSqpTl1ny7eysgYwYGkmGuFHml2H08OniojGICtSIaX12Xcdb9ND67uokI+pUXjb8WAuoajb47CAIK/vN6eD3foyyv0KpcJlnxtQLn5+e7c9fnBG00Zh0QSNHWMfppAJfhilKENE0T8B7bRYaXgKCrzxZyve/l8Sj+PIKluiXn8DVk9UVgYEXodD77uUDKuHoZGtxqEKK/NIC3dOSsQYkEvYzKC0zeDRXSa81ddVGSSqBpJLt80/+VZ6rjsWhVXrdSat8qasJrK4ChoxTKr44JBLmXPwMCY/zwuiuiB6+x6obd6+DP+zjh6n++JZBWW1f5eNpV4PweQMFL5Db1e6V704JBAgHXxw5InehU6Zj0dAV2q2ljj0wk3bfyP7XVKiDoIszpHtvIow8pGs11GeKZdRZQSOPqUHl9ERjw8EnyPiho6dzT6vW/JIASpouLiz0FocaU4nBi54jntJjQkaXnUaFpr7/nlyIZrjCV7hCA0Cm0Kizn6TvP6RBKPB1bqb6UktGeeSuzPCpFWBl2D03qv7+2m8ZiMgAJyFagt5IXv8ZXuOiVpzGX6kTZ8VcEEwggGHCviWNMP/K1FRy8J9oCBHjN5YdAgD/JU5oeSKBA5PLDhZ1nZ2ft2oK0GNvL8IiRy5iuV5ECz8PbJwGCjhJI8XvMg9EUBwQEDA4IOH49Esb2OJQOBgOVUkshys74MzTlP4EDggENZlGai/Tr3rAVIJgZ4UpBM9TKMtw7caF15VN59syTlOaOZoJRCcuqEBEpO2LeEmF4a9rqdVfPr3jxldeR8nLl7Pl6W9ODqPJP/5NySendMOvosuoet647uPUFfeI/GQSWUwEBnxZw8FxNmyVD38nkrD3/G6hy1hIIuLy8fAYGLi7+Mg+dYU5ee5paUls/PDw8ew3aHapUXqXLZg6Vy2zKw4mAQDySqihwujYDTYyakJ8EMLwPqRMSMO/qmOggMNAhzgQG3CupgIQLK9GpKnV+fr5TJAQJLjCrg7kyqN6JHsapvCqSRwG6aAB58Y7shPhQZdfl59ecHBDwespT946lUFcAy0o9EgCqnp+1fZLPGdCoynairPLcjYOXW007JD4cCLgHrnQOBpwPGQOWxXUBK2CA+TuPBBaMDHRTBv9/okpmHBAIFFxdXe2AQSdr0nseOeD1FKHhWwf6L37IWxqzCej5FIQ/Uz1bURrjyUP3tuj0G+W7ikxwqoDls22TLeE4Yv1WdJDTQWAgGUsaSBe0BAr0nAsVBZPhKlVYwqSfwIEGuXsxDB+64vNGTILgijJtgMG6qX3YUUlI2Pl6xvlgOUxb5bkKCFaNsvPB/CrD6OUdIpSvTeR9hZ+uDqlN0vOzNu6A8SpVgJeymGS0euMgAQTWqaIExpNxdbDNsUfAT4PtwIPeYDLiM6DWUZKNYwHY16Kkp/lLQODy8nInIyn6wvyUjpsSjbG/t4d+upZeQ/ToAK+N0S8KrCIBfE40AwLeZk7J+etAgNep4iF592wHjRkHBb5TbhqLq/QqbxPwRwBQAQGCAAcRriDTdVWcAuaCkzrWFSSfX6ln4tfrljqBgknhTQOt6sRVPpnHihe8cp1UGUbef6+UAMzWQVM9vxUYJC+9K1PEOiRj68CnotVxtvKMyvN5zOS1EdhSgfOcewa4N88thDswQD48XQIq3p4ryv69UVWHqt8IFF1ns87sm9QunNZlJPf8/Hw3LcBdKH2HV+dRzzp10YDUp6v6csWYd+k6nrvxlBw31sP7TPd83LFdVoBHRS+aJnBm0zoBCkdqlMoLcYPpRBBQzYW6N63nyLcDghVlWtW/UkQutAkIzBBrihQQfc+o855e6rmvKMtjRge8/bby00VAVuueFPXMIPm9dO01DFUCAglcr5RF732MOfBUOi6qIhCoQvopvO9gr9IdW+i/BQg4Vc5Qct6qKK6Du+SAJSeQUdcPHz7s6Wku+HZeRSmsrvMZEJgBgBWDXhn/ZMcqYL5S1mqky/mppkvSGO10itNmMFB5E2mdQNqhrGpoN5rMl+kdTTGdruk8LVRJ5acIwSEoUOQK0a9tAQLkp4oOrBga0qy811SgWzzgn0VJ1lYHNJ9nutW6VEZ0tY2TJ1YpqUNpC7ChHCbeHKhWJEMh8nUGHC/p1ynP1aiIAwdvg+r8PVMHGjsQQO+exDb3/CoD6G3rQDPJceUwpnIcIJDXrcT6prE6Ww9wiFw4yNKRv27ckx/ZOE4lVPp3RpvAQIc2K8HykJMzqcF/dna2t2MZFUHy/t0jFh/0MHRdwMB55/8kcF0jcmqCdak6eYwR3yZIZXdlduQ8zOglgKEqn89WbfvWVPWjG4PE7xaD0BnVSp629H0lb36P/xmSp6Km0knehU+9KW8HuVuJ0wXyEsf4IbsEAb6pUAIByTC4AUnpvN1XQcF7oVXgxnPqagcEbkSqacwVHpLuc7CYpglSnlt0x1ZQXPVxtX6BPLKOae1XpU+26sLK5spGCgjwP/mbOYakF0cGUkSgErBEDgrGeC6IHz582M09pecTfyn0X5WvMnmNDUuk6w1+KDJkWdVgmwm398UWAejQ9oxSWVuE7q2Jcri13hVgSHmsgA4vszNCVT4y1DT8NLJj7EfCVjzlRN1altW+ruSCdfHrjAyIjyoi5vmtjkdvlxkIeI+AYIyar+SVU2endV0i6l46MK4LSdTflT53/l4im7yf8jikv9IaAbdjKSrmUbDk5CU5T3VZ4U/lSwcQDLgjsMVGbfo2QQIC8sbTHgE+ONmgHjUQ0/QWVFEBAX1PPIWylD4Z184LSKiNeXgH8LVGnafpgAQynCfn1RWS8+B16RRyZfzSta1GfCX9ewIH9EIc6Klfk7folBTgFqWTwJobMeZJRefKPPGzUn4njxyzbmjptfO6+KES4jhXeoYxRRxb3kbVeqHK4KfrHQhJHhSfec9AIHmLfk/n1NNpGpe6xjdsS7tH+n4tT09Pe3rZ10Ypb8qOO2qdPPNDbsqrM8yHUooG8L+vj+hsTRc5S/LM/DxdBygI7BglOFTvHhQZcMWk8/T2QJWHE4VDwqPFJ2PsK8nkMa8gr+reqqe+Eh1wAVU4lNTN/Tt5XZMC472Zp1l5Q8lb5TMVnykq8J6AgKiTxa1GvVPGh/Awe8YNNMdXt5FQx4Pn6TKRAKOPDfegdM72JNhKfPCZbg2NRzw4BvWMyyX5XgF7ztfK9WNQBWRISUefn5/vbTdMMOBgL4G/yrkb47n3Ty81rTdI4DARDR3/J0fJ65/arbvvepx2zW0PdXy3RsbHU6VrCaqVnj9f28Dz2W+VXrQDITt2BQRURC9tjB8doSiBznWvUjCH0Gz+08Mu6Zz/OyMvYJCUXiWoW+Znk8J1IUzKc2VQVgDhPRp+J687AV1C5aSZAtH1bgBWgCwBs/QM8/UvcFLZM61f4zFF7TxSQQ+dadzIOjF0qWMHrnX06BqNRYowdAY+AZqqfzvgeyjoe03qgFQlZwkI+HcHLi8vd+CgitCwXwg6Cf5W5MT5S/lUxptOIvcncAC5Qiv96BECjiO2Ae1Q5Y2zHchnAkhu16ijKhlw50DOM8fGFv28eQFhBwL4E5NVHh3R0HqY6CXovqMq7EN+vIO25L2Vlyr/Lq9KaFYNdxU16FD0rG6VYnhLYh3SYFO/e/t0xnq1TFfQiaqoigMCKvY03qrPv/o158/HVvLSq6PzJ6Ln5N4dn/cwrwMB8upeYWo/BwrVwsNE3Zg+JiBY4SHJGdtNP247TEBZGS5R6g/e655NnvUK0NI9RYm5PwEXu87aqOvzqkw/po/myYB3QKCyJ125KwCV/9WPdEgrx6SjTWsGeN4BgjHWgUDyksZ4Pl++ggCrkNEKJQVIvmksPFS5SqzTbK6rAwRdW7ix23p/Vh9XAv5fx0r5H4N8YFd8du2RlJeD49nvUN7dA0jjzo0/z5mPp3eqpsxWAR2Vp+fTjX0RdxuVt+PvplfRhmT0V0FAAszvAQCMMQ9pp2vsa0YDCAY4HqoFcEn+nLqFpuQpyV2ns+l5J0NHXeyR2pRPohV+K1u2RafNZCrVc5WSPmCdV+X4RZGBpGDGeL5pxIyZpBSICj3PFSO5FRhUixB9LtSBAKMGWzqQfFbTHklBHWJgO8Fd8ew7AZ5FGlaU8c8mV0CUTUZ6ZEyI9jul240HljlD+xW/nucYP7btTiDcFXcHClbGpBvXJN/VOPP8/VUyV9A+/eaggM8pfWWEKrnr5LADAe8BFCTgvQJQ1Zbc4p3bDXPhYKVjXGYoT643naq2dHmtdJ8/64aOH4lL/fT09PRM9sh31bes42tS0qcOZnxsVDrY03u/b11ceRAY4Ln/0jPpXJWolEkamJVHO/NwtlKav3Q+DqVKqc6M6izPrWkrzz21LYXRzyse3gMIEFUgUnVzD2PW1z44q7Hg46V63vlM1wkIqOQJxkUriiyNRfLHn+9/zjxclleVaKWsOlBAJVfJGwGMg5m/C82AANcJpDHMPp19pGfGRzpSXlf0apIxlx3mzWdYdopAbfXuK/DiVDlKSd6T8U7RgZmdTZGBnwIG3Mtwj8RDKsnLd6ICm3lKKUKw8myXp5PyWQnTeJSAeVbKaSs/ibfuf2Xct1xP5TogWC03HY9Bs+iGjikSU3mMydjT20n3U54VPyvkQMCBdQVEdHTvTtcpt3zP3IFsmv/1BWeVM/D09PRMaZ2dne2+eT/G2L2yJpIXm9YmeDu7/ulkgPReQcMKuHPPkNMEKZpUgSXdE9jkmgPqeM8jEdP6GElEQEIgyjI6GRTNIlFsN5abKDmtlVNHw666VuNG6R0AcGpsha80jnR9CxDeDAZc0DxsWTXuod571dmdQhWtNIIrqy2AQGV4xMIXLVWLTLZQqq+vSCVPHa9M0xnrFe91pR+OTamOqR4JoSeg4zJThes7hZfaLRkwv85yyIuD5CQPMtZSEhVIcAORgMAY9bQcjS/z6aIRzEc8Xlxc7ABBMgSkCuQ6T4k/T6d8qvZ8D9SB26Srff8X9ad+TgQCWl+gPvEp4W5BXDWdJUrTpGmdStf/M6C/1Q4kcsdvlo8vdKwi4GPkvWwuLi7KvklAnrLNMbQlQn7QNEElYN74riy2GhIqL/+fnusq7oPblVc6X32HOy1qScqT11zBV/m+Fq1EB9Iz3SBxj8ujCLOowltR8gqSse7kMdWT46HbbGsVhLGtfNrClbcbdV/j4gBA187P/9rE6+Li4lm55DUB4065kJ+tSoht64rTP4nLL+B5/80ckKqe5KECLu+V3PhXDhvrqfbTVs8O2Pg8PyOfPkTkRmmM5+tVUhTZyR0nnvs+LYdQFTVzHrwuJJ/X9/xSNMLHYyejkm0BAd33NR08J+B2QLB1LB40TVBFBlgx70BXVr4QaNZZlQckmlU8AYEOUa56u+4B+YIahVkZHVj1xr2tnK9ZfTvPM5XdGW0auOQ9JQDwXsgVv6513rvXoQKMCSBTKRMYdv1BnhKvNLYua6xHBQp07/Hxcedx83Upr5PGk55zAD4D3is0k0fyxXCo/nv9Ezj1OrnBf09y2lFVF16rAAHz4JsZmnZxICC5EBDwVxFZJveCIXVAIPWPG/+kT5n3FqpAXgUWK4NfXeMYorxW028dEVCofbm/grdZ5VRQBlbpoGkC72jdX6Eq1OhKzKnygKp89YzXwetTURIgpncAw/I5TUA+/FoyqpVS7hbEdCi3u+7naXD4ryrPvVgqZ+Z3DJqhcvLqniOvzWhFKVS8Vfe6n4dXXT6dpIgFBNRPSVHzSBDCepHPqm/ZfmnsVk7CIVSN6Q4IrACCrn7viVw3+7hlGJrGl/PbDgSurq52QCC9Llrt/VABAdfblYNE/iodkqJwKW9/1tOnSIeur8ij2ivlqXx1TODGQbbqRCDg+jXpNHcm+MwKbQID3rkUPhZO6gxWohQlYF7uAVWUjG5FDmioaEW+ocsWxJW8wlVg0hmVCtmm+1u9oQ4EJEDiz3i/H9MDSwPPeSSfh/Lq4MEHbkqT8nBeHADoJ4VBgy1KoNINL71tLvhzuWL5BAZj1AuzEggQrXhcNAZVnVQHRiErcJTaNHlaq+PjrSiBlhlwT4ZYz7CtaJw4phkN4NsHNJre/4mfMcYzIOD6wdvfp8ISyGD+K23n9WNert84TshrZW88UkIbwfHvUx6p7en4uT2txpi3IflIeqGjgyMDyVhUdIh3yE50gLAVpXeAgMJFoWAHeSeThy11T1Sh1DFqwJPCpRzwqexklGeKM/G5AlyYbisY/BmUwEAlE1uiAclLZ95JGWzh18EEw/Xqf84vrpC2LNW4SnLvYV+W10W3dD/xzjRb2iBRBYzTGEiAterjyuPayvtr0lbgnoCAyGXU25BfMlRUQBsVuWyntzpIvm4g2YsqCuBAwG2Bb408axvXQQ4CvB4EvGlaKtVR7Xd29mOHUBHrpPHH6LHrD/foOZVeOdszQLBCL96BUIyoo5zR5Cl5fh153lunJZhP9VyHbFO9u+iAC3PVWV4/UaXYu7mq1XBQ8tZ9YHb1XgF/CQQcGxCsKPaZ9+71cUMvqjwlykHlFSl/XkuKU2W6clhpXyrxai7SlbeDHippr4/S+xRG8vJm5EDI76nOSTZd7tiOXh/yzrzfK6U6Sx/RoPtXCZ1SG3K6gJEBPqO8HBAkHhO/FXnEQeVVwJ3XumljT+fAKeUjL17Ax/Ua60Xw5QuJ2Wb6Lg2/BpmifJ0u1v8OZPO5nx4ZcHIF2CnbZIjG6Fd7Mu3WKIEbNT/3QeD8V2sUdM/fOHBPMHkwW4zjqpfaAYJZ2/N/Oq6AAXrDbkhceN+a0iA+JI907kYlGaWt+ZMSSPEIgUeKxuh34/RIUuqbBHgp0wQGVNiV0UlzpV29Ez98i0C8ebun9Q1Vf6X6dyDwmFSNHxojbjDkK/89H7YRAd8YYw8QEFTIQDJPfkCu4o3HJG+z/8mYu3w6CPT1Da7n9eOCX7YNP0+vY9KvCQgQkLGdCL7THhq8z2hA2nPA+agiAyltRS+aJvDwBhmrPAZndLYI5CWUBlBlEBNV3gjBj3uMHQKfnaeBMvOmOgDGNCv1TQj0pcbsvZAPdl1zqmSma9/K05+1e4Xwk1x15GC5IipEp2oagwb2/Px8t/iQY4AeDcd1xUtqpypdBaqd59QHCdim+WD9T9GB9yrXrotpiLg3gCjpZJGHxlNZOvqcNvNPYXRfK0De9ZwMHnebTAsTfQrEP4DU9RXL9J07ua7Cp9/co09G14EAwZiPB/aZ8tRGWw4Y2D/e/qlPq3qv0jIYqOahxBQrUAldhar4f4y5AfTogPJOipUeE70XX1jjvKYylQ87jrysPF+lYz4zQOGUBM6fTUYlGautym8LuDpWdID1nBnnMZ7P+VfpKqrKcOXsz6Tn3ZNjmpU6JeLc5QxsuEHlq08u+4xSuOLvwEGiLprQ9QnHOctP9XHHpuLjPZHX5fz8fG+xn747wO12k/Eg2FHfdMCLckY9xf53cKWj94FHdMb4MWWl+iRPXKCH4KeKEHh7EZB0YED1Ujt8//5993t4eIgGuPpWiH/p0G0WowMC2f7mQNVe7BNRpTdWdcNmMOCdmwpdRZgJNaoskufnCsqv8zkRFRUbu1NQPmiUDxXISwypl73qSW0lF5otBnylTDdYK4j1rWkGAFJ/rhhbl/tkfCpgsMWYU1HRi0nPpdCp39cYrMay8vZwZupj3zK26ntdXwUFTO9rcF5CqQ7vWXYTiKdh88V+Mk5sN+bljhqveVo9n6JJM4DXySbrkb5/oLwJeh0MCDhU0eW0PoCyT4NNHcl6CwR8//593N/f7833s5xqqkD15TQXSQDDtyD2aTFvb9cfyfneKsMvjgw4I85Uh8yZJ++5EZ95WU7VYGY4jI1ZedNJ0PldbQIK3ymtOm6l1MmJVoGIo/ekaFJ5Fbib8fcelKsb6wrEJQPtHg+fqQy//xKt5M+jnpmRj89KQXZlKBx6drb/Klo1JtL4d9oaFWBZVL5U1Cw70VZw/t9E0p+MCGhPABrXLiqQQLye8UiByzP1Gg228quAqK5Rjypfzy/Jm6Y/uCuifzNBVIEB/rQ4kkbVAej9/f24v7/fjQf9CFIEBBxsJBA1ozQtwDUDdGa93V9Cm8BAp+RmYfCUV9VgrFy1qQXzch66xuEUAUP/XBhT1WVmLNgus8Eg9DeLTFS0BVzMFGaHJjvgwPsJFCalcwyqvO+uj6o8/LnVHym1x6oipbIST+65JQDAe0lxinzqoOrLrn34LjXnWTmOV4AD6yqQovs0VCtylbw+5nNsGe0oyS09UQGBq6ur3fUUDajGo+SHTo5HFZJc+jy465EKeOu/77bHKYcECNyb55RINYXtzzCtv3HBMhkBYBkPDw97H9Ny/gkKWK7r6k7njvFj2kD90zkWiQ6R42Uw4A3nSKoaTDJ6rkAZPtHRG5jGPSlLp60Gkp3kHVYNGJKeIaqtnv8ZlAZ9Ivf8KsPeUfecC/Z7AgJjrE0R8FqFtpPxroz+SnSgy9fvu+fmQMDB6Bj190BS/pRlXqd37oqZ9WTeVKj8z7x49Hbw8U+jzTx9z3YHGEkGafwdbLxHIOBEmdIUAdcMJOCZ6s37PLKfHRCkvu7IdbXLjMokCEiggnJCQ6voADdFqsaAv2HB5ym3vl7g8fFx79n7+/s9wEUw4MAkbdOv9medU7tx2oDf42CE4LXpoDUDYlhUGQB2uldAjTfG2OsQ3dORXhDvOc0aiDzRcFeGPIEKXjs721/9KUStdJ3ncoghXqEtHq6Dq5mRTyi/kwG/dkxl27VLBQjGeK7MkgzPyltF9JVX5fl1YJhpq3nURNwLnry4UXA+BepZjkfXfK4/5eXGX9fciFXnMxlL9dkik4eA559BBAIyElovoCkC6TNf7Obt5vl6/zsYcMBZtQfzSbLXRaZclqj/CULp4Xt0IAFwGX6fWvApFbaRpgI8MsCoNttY/Pq0d/qp78bY/xheNVZZ987ZrfplNaLwon0GtgwQ72T9/JOYNMRUMIfMt3fkAKCbC9W5Rw/0PFEc8+LzW6Y5RMkAO29sG/eQqv5ZUW7dfQp/KrP7HYMoewn8VEBzqxGuZLxSipVnXHl3SWFXSrWaBkjRqzHGMyPpxpwKmXnRS01K3kExZdUXVHnZqyDA0ydQQ148zUw23yMQ8PUCMmzsJxq0BNSTx+p9xXC5Tzd5u8zaibx7lJkePP+nPk+RkTRVwPqxnXyrZdZfddXCwcfHx3F5eTlub2/3ogp3d3c7va9naMsSsPF24HhPuoI6y+vOKRrv00PldTMYIHPOaCUcjtJcWSUk54BglbYABwl45/X6ANJzUuaKELiSdSVFYjs6785fBQQ4UDpyo5cMeUrL/2wftlNSuu8JBIg8tJbqQNrqyfs1B0lVntXATe3u9+mtde2bPPWUxhcKUgkrcuDG28cyvceOkv5IACDxsuXH5zuQkOi9RAPGyEDApwhc/8hrnUVCHLwyj0q3eB7MnzLi445G3EP2bth9YSEX7SlPzvsTYCSjyo8ucY0Fp1YIerlQ8P7+/pnTOsYY9/f3u/xZlxkYl14ncBC4e3h42EUdlL/aXO3rQKKirfK7DAaYeTdASauG3BV1pxi6fLsBXN1Lnr5fT/cdhXl696zI/6oBqvjZgso7Q16dJ56qNp8BgfdADmTTMaF4tksngysg2PlZGcxM678EEJKXsAKMU0SAip3hUB8vajf/mI17dmwX1x0rQMD/JwM/mzo4RCaPDQrca0yGUzzyfXj9Zjq6IrY5dZn4IEh00Ci+UzTBjZ+MuQy0PHh/RZKv+PlUB/NNTqsbXi8zOWEEBbe3t89eYaSu0Phg3ZiObe9RGj5TRbjYDwIMIm745bLuoGhGm8AAGfXwnzPvTFShEM+7UgRVvl15Y9SL7FI+M8Wp+SPnV51fzXnyf8Vz5Tnq2dlbFZ2SZH6HKrZkgFKeM9BwDOLA7fqhkiE+6/XtAB6jWwlodPy+pE2pHJ2X6tnZYr8ke5Xsp+gc5dOvsdyKOmNWAYAKECSqZKC69laUogI0aOKNwO3+/v6Z4ezad6vRYD4OBGiACQioj8m/PPXr6+txdXW1O378+HEHCJ6ennb1uru7i5sArdgV/tgevieA6iUwoKkEAhK2b7IxDkhSuW4PfYrDgU2a7uE9UppGmNHmyECHwNkQXuF0Xs1fJiCQBDkhOl3fEj4XPzOqQj/udc/K8vJWvUPxMFPs1fWXAINOWXqaio4FCFz+XGZT3bwuGlgJEHS0YuC8zCRLW5V18sy28OblJmCR5mfJp8uq/h8iB64YK1oBA6ttu1Lez6YUFfCNbQjcHAgwMlnlXVECUZR//RghoGyIp6RrGeEQCPj48eP49OnT+Pjx47i+vh7X19c7Q/zw8DDu7u7G3d3duL29HXd3d3t1rXj1qVyF4BmZ8IWBbsjPz893QITRDF+jwHbzKEoCw2oLRnc8quBgwAGB2zwC858WGWDhDghYSVewvMYGSLQ6RzVG/nphBwIqZNwpYC8vAZvERwIzFW3pLAdZh4CA1TQJOBzTQ3oJzYDMzCukAqyOTqmfVkHESyI4iVbkkGWPsa/M+T4407hH4x6gjgRS/nzyYFg2Faquac7Upx9WyWWZ/5Peeu3+2EIVEGBb0zvX9AAXD7IuyjOVURkPGn7Kkhsnv6d+rPSu6qRwPQGBQMHl5eUY46/5+dvb271oiDz35KCy3g5e6FixffWfxvnp6Wn3zn9l+Gn7/LsCBMA+1UtAxLZKgI/tzbb11w7dafkpYICoo0PeqlA6J7lhZfo00CtEXynwVS9kxci5ELi3VXkaSRHy/kuMq9erUowzLyr9T9crr5kK04HSMZUoaaW9Kzk6hNhenfwnwJXSpXad8cfoQLrX9YuXofHIhUuubPg2gT+bQDqv+SJHf84BBvlJQGOrzFXtueoo/EyioaLxSFEBBwGd/qtkikQjS2BGmUjTBMqXMlPJnAMCTREwQjDG2K3mZ10JCrXYLtmns7P9b8n42ga2saaBWc80lh14+OZaep794xE1Rkb4mWgtWhSwE0++gFdrQipAwH5eoU2RgRUQsNXTTWHMNI9INNSVocZIaIx5K22VR8XvyrWKKoM6o4S8D/WMtoAF0RYjuhWNvhVVPG29LnLg1EULthh+955X+XGPOXkxHXVji2/LdF4e+74CwkrvyljGX3VJhof5Mv9Dx+CWZ44dGXBvkfXmHLoDgS4isELu7Xq5MoRKmwCeDLF78MovLeq7vr4enz592oEBec/y1O/u7p5NRaS60zDz1csEBtJ+BQQ91c9f4Zy1N4GH6qrXHFUPrv0QUKC+py3gR45YdtJFHW2ODHRehSOpVeEjwzx6pXXODX5cCa1EA3yF6wp//t+9oNn6ha3G388dCKTzLfltvb8ChFa91rcm91R5LRmqRC6Xfk3HWb0PaZ/kxbm8dWsDqjy7iE8aI0lOHAAwDymoSnaq6QAaDgcXM093KyUjR6rA2VuRL7bjnLV4IxCo9hZI/Z3KIvkUgD/rzlqaJpDnmqaV2ZepnnqrQPT9+/e9eXs32PKU+SN9+PBhZ1yZVu1DwOsbOPnCQQdg1X4Obp/4GqQWTn7+/Hm3PkJgQN9DuL+/39uWmG3PoyIlVcRshTavGaj+i6iw0n/Pg2EUFxT3fIlIuedz57U40QNKyi8JPK9zftQXkCQPkHmTVsK33vkpOlBFCFaN/qoxXKGur49JCSF3XlMyftXzSeHqvBoHK4qZ5aY2fQno6kA752R9MZUoyW4Fhn1DLipvN/6edwLSGnsePVgFoqndO5ndqlBfmyogQF0ow+beaRrb3pb8UZeK6Pl7xIlTA16u8tPRPWwZZd1zQ56iB9W6CdaJ3roDAnnQXjblhpEMyZkWLN7d3cXoi57RK3/kW28j0F6cn/+1c6KmQz5//jw+fvy4t1hSCxa1/bHajDqn6utDdfrBYKAqjA3rBlPnTsmYpakC5s8GTwYy8ZyURRIo5rXakA4IusWMFcLrvP8qL9WhQu6z81SHitj2M+O4Ajzeilgv52+LVz/jP4ECz1f/O4NclZnyWelLn5Pv0tGDca9fefjrtc5vJ3czReWv0HbjyI2Ze0bVM+Qr6S7n/Zjg1g0gDYuHqt34dYY/XUu6mX3BiOwY/QJC5aXIEG0BN9a5u7sbNzc3z8AOnxegpDFO+tGBERdQiqcUNWB7cJMhja/b29vx559/7kCBjtWeDsxXUxs6v7i42C2U/Pz58/jy5cv45Zdfdm9PKDLANyfEi/KobJV+3u+revegfQZcmblSqwRPndANVjUGK0jFQEProcyEmJw6L4iUjOuWeVj3YFg/D4N2hrMCCFWaGa2Agq3UAYH3RIlPN+DJa99aJ4YedayUcAVCPL2D1gpEMG1a+Oq88R7HgsqqQEFqG8qzFGtlbNOiQeWX2nKrTHXjNCnM5BBsUaQ/i5I3zD5wb3qMGuhUPyfq0U5Xs3w+q+tj/AAQvviNfFHeKAcCC8zj5uZm79VCvl7IHQMJCBiVStNNHmkRMCEYULm3t7d7i/scgLANVK7y57oIBwSfPn0aV1dX4+zsbJe3wIAAQQJLKkv1dFu5xaHdHBlIg7sTuhQNqNArDX9CmxJOVTChvpSXl5PmcZhGgCPxmpTxFiVS3WO9u7mhl9AqEKiEp1McPE/G9phKdSWCQfmuDBj7rvIiPZ3fm1GSpZlho+JOZXVGOK0N8LGbFDXL1o9jcLXffdyuGOA0Jsl7UoDed95fs3Y+Fnl4Wf2hPqdnXkVeOjBa1VtAjl/ucwes62sHhAKKvhhRYEfn9PL5br/qqkiCjLJ75zTUzEttmeSLhlNTCIx+qcwERPzVxs7mcLpHb01oquDLly/j+vp6xx/BwM3NTQSDjAppvYEid+60r9DmyECqKK8l74LkDZYoAQFRigjoup7tKAGBpDiU19aFWZ7HDFmTr1UP3zu48/iqaIL/3wIAEr33qEBFiV8OpEQroCAZJUYemNcKOcB2jyqteemAjct1NZ67fGiUWPcZMZ17nwlE0ei590X+GDFMhp9H78Pk2FQ8vyVxrpzRG3eaKhBYGf6uzmwfhen5Kh/TkZfEu4AAt9Alf14+PXoZRC0ifHx83AGEZJgZuuebDvSiNT1Burm52cmYFuwROLBM3+yI6zTcOXVQzR0XfW8FRQlkjzRVoCkKfoNCbepvHXARYTXuO9oEBipBotKrBNC9ChovV5irgKFTylSQzvsYzzuLxMY8VAkc+hyVmv5Xng7LIVrkvQoZroCC6ryLBHR5H5sqvpI3xesVwl5B3ewD78uqXL/WeXBM4+FQyvoYz6e+UnuIRxkCH2PuGa4YUqWljHjEL6X1Yxf1cEDgIMDb3cdUV4c0/t6KqqjAGM/bVLSqi5NMqb1lkLgAdKUdmKaL3HodWbbq5WBA1x4eHvbm72UMZcwJBCpb4ov9mD+9b4EBlZmAgNdDbav+SiDAN1n68uXL+Pz58+7DSSr39vZ2XF1d7SIDalefRuB0SuqTFdocGUiehw+kSvic6OV3hmvGR8efk0cGqDRVvqOrbhB0nvVrGcEOmMzupXbdyteKAkje13uJFFTtsEXelL6jmQzPACzLqcaVH1PkivlWka1kBMQbpxC4+1pS6LP2S+t3OqCf5EjHLgIxAyWzvu/64pgyTBCQqOJtBgh4TyR9vAUIpIhUSkvnJu1bQOCXpgnEAyMGvm7Apwaog1QGSYCAANiBNAGIyuI6DW9H2hUtGEw7LH7+/Hl3/PLlyw4MyPATDHABIdvm5uZm/PHHH3vrel4CWg96m6ASqkoA2Uia0xB52F/Uhec9z26wpnDoIQ3mCpwCVi1kHGNtcV8yENWahRm5Z1QZQtYp8eHXZmXPgOAxFWoFEGf16gbYzEhsBbfkLbWh5CFNEfCZ1WmtTkY5d8vQe1I6VLi++cyWuiuPFBWg4k0Ak2OnisTMjt4HKd9jkPcz29sBkyiBxk4nOyDQNc61U67SdEUFWKpolK4/PDw8uy/PV0afu/MxPC5P3acHHAg4P6qfDD3zZV0ILLhQ0OWxamOuD5D3r7cHvn79Or5+/Tr+8Y9/jH/84x/j69ev49OnT7uPM6ltBAZUhtrm9vZ2/PHHH+Pjx4+7HQypIw6hg98mEFXIMynRFSb9mUpZzzyiVcPpfNIYVyGXDhD4qtkZUElz/Tz3feET+YBLodJUjxUeV4walWonAy9BrS+lVYW+UoeuTVO7JmPVlU8+PNzPn2h1LLhMVwaW8iQeCAqq9UApry00W3yYFLz4oPzpeuoLv/5e5LMiN7LSL+lVwjGee6kzIJCI6y4ECmj0KcOcw06AwKeoCDC9rwgqBQa4sl/58K0BrupPEYGqfuRfUwMpndraQQbb248EAowG/PLLL7vf169fd9EAfYvBwYAWBrK/NTWgrZr1CebXGI+bv1roCo0KqwIBoioK4MKnfEUeyj+UXBFX/DAkybTihSElXvM8VogDo9p8ZVZnghPO4/rmTCvK1XmvvIgO6DkwWIks/EyqFpQdwhvrlO6N0UccDmkHGmTmkZSvjyXKOI2tbxij68nLlGxKOft4F9GT7zxXJ0+bogNVu/h51T+pb5LcV8DvWPLLflc7VO3ivM+AQGoHGl3yQHnidR0r8JnsAdckjDH2NtMRELi4uNi97++6hVMJafe/ymCzLxnF8v86emSK4MvXnPFc0wOcGlAk4OvXr3uRAUUL9DaBwIDa6fz8fPdKpdYa6G2Hy8vLXcSOfe70U8BAhYKSBzPLg+RKLgkT08wq7F5OV3bKx5Vj8qZ8IRWvpbArKRlSX4yVAAbr1i3GIbjQ/JwryZR3iiZUfe71IQDwdSCri4+OQakuSb6757Z6wp5np7SrMZF49yhOUuCV4XW5T3Xk//Rhos5wk7rFZLpfvZcuvjoZdP4T2ElRG/7ntWNSMqQE9hWw7cBAyldU6YUx9kGB5KrKx4FAemtL5QkE8L+u+V4V1TTSzAOmbDgAqHjSLy02TOvdxtgH7vpp4aA2FqJBr37iz9eMpL53AHMoHbzPQBK0tJiky2OM+dQBG5fpu4FagYHOELqRpYJkI1fI2ZUuKQGIVEd/pjJCT095//Z0j+DAoxqdMKW+WlEw6Xds76ryEqtrs/tV3h1ASAa8AxoJaPs4qEDBGM/X5oin5HmnKEGqpxtc8pbkaXXdgLcJ867CyiSCcMq4zw+7fFcOxEuA3s+ipI8S+FkBsspvaz1dj3XjhGV75MB1ncp2QHB2dhZfSfQISeLfdSLbSem9fRwEONggAGDdUtS4A7tMw+kHtpvbVE0R+I/rGF4qqwftM5AYTiGhmRKuIgK659e7uREXODfuupauJ34rr0llOUL2aytEb8SfcUVOnijYMy/L27BS3LOjK+lZvSrA8J6oAwBJqZESCp/Je5WnK/Hu2hjjGSioykv8VSF83vNnk7xoCqoCukkmKe+U2y0eTTIwCQR7vdierjirst8LEBjjed9V4KWTo5RnOnZEfVfJN8Gr8+c6XKBVumX29sJMh3s51RilPvO8qe/9v0cEEgDlfR451cDvD+j1QPHCqV29waA03PzId2BM00dbZPhFmw7NFH3yJFIaHsfojX6lDMbIOwl6x+pYdbYb14TyEkKu1h+s1HeLsawWgbF+Xp57VhV1SoH9WIXIUtnJqL01JaXgMlkptlWq8ve8KhDAew60z87O9sLyHh1IICDJJGXeowOrlCIOus6yXOaSDPJaZdz0P021Ve2qfNN71+TBDYPI+62T8bemBJxmYCAdlZefbwEESR94Wex/L59lsw9mXnU69/olfZwiAym/rSDVp6IdtDECIBBwcXGxe1Pg6upqXF5e7hZFEgzc3NyM33//ffz+++/j27dvu/M//vhjBwrSWw6H0DIYSN6eK/oVQVsZVB6OcY87LdgYY+ytOmXZ7JTqXOWm6IDXx1HtCq0AhS59UpoVdWleotTYf+/JazqUVgBZpbx07BTGljwTEPDrvi6n60sCgsR7RRUo4nhLVHmByStPMrTqKKQySCyPu8+pPNWBfZcMg/N3bHmvQFsHKNPRn30JIOgoyWp6xvsnUfKw0/PO26phTGu9nJdK7p0n1ZMAgJ8jvr29fWYz1D5//vnn7u0A5X17ezu+ffs2/u///m/8+uuv41//+tf497//vQMG2hWRH0qa6aWKDgYDvFY10IwYbloBCu7JCQjwG9FcqOJAwBedEElVIGDGx8+grQswSStA4KWAwPOcgYTV/n0L6gxRApKz861lHMJvNxWQAHgVpUoRMb+e8vUonPNUeX1M52PdowRV+3ZRrRkA0Z72qX34n/LZRcWORdVU50oUYCvf7rh1QHcrCE7tyDC788A0FaV5/ENoZarVacbn+fn53lbG2l3w8fFxXF1djbu7u/Hnn3/u3eeeCk9PT+Pu7m58+/Zt/POf/xy//vrr+PXXX8e3b992P31N0V+trHjsaBkM+ApJ/pLQUcGkEJ+udwJbhTv5vH56r5OvojhKEhhQuObp6cd3tMd4vkcA+SA/yTtjhIJtlurNPNO9ihztVfOyq2HEmaB0xszvzQTwPQAB0paogBtOXnMU7oq6yv+Q9lgdN2PsG1/ylcrv5n91X7LsbxF0Xrr4UH4OAsRjZexZX7/u6dN0iM41R5uiAFXfOh07MiBif7rR72Suap9OD1TtwWd8ztz72fmtAIF43BLm9umyQ6lb39LlS9mhLIvu7+/H2dlfU3zfvn0bj4+Puz0CNDVwdXU1bm5uxrdv3/bAgNrw7u5u/P777+Of//zn+Ne//jX+85//jG/fvu2mCX7//ffdToz+0aSttAkMUOhoiFMjVfPaqx1HIUuKS69mnJ+f797NvL6+3tvDWbwIAIzxY/MGvnbHL3MJHKhjdey8gyp8u4ooU93TM+zoNFBXgEJ1rTPgKeTkz6306bEAwazcl0S3mIfLyEyRVJ6ce980vitGmCC6K1/Pprl8560CAR3g5X0HASvK1tvG+eM18cd+k3L0nRF1XgE5l+ljRwbEg0cF6JxUACkZ+xQWT2UlYrnu1bvO9khMF9JP/LgTxvTJHiU+q7wTebvM2ol8JtDrzz48PIybm5vdfgLaqlgbCPHLhNLzAgP/+7//O/71r3+N3377bfz555+76QGtGeBnlA8FBJumCRwArCjRylg4kHBUVQmOkJYDAR19k4pdRf+/kCH32xZy030fcFJaHuokf/xWdQIE3ibVnCmRdWpTV2Ld/FYVVuyEg4PHB1LnNXYe6sxbeSuq+J8p+UqWO0Oylaeu/FWD6emdksfFvF2m3dj7/y2eWJIpAXCBb41Jjs0x9qMKrEvn9bJvz8/Pn72u5vOqzqeX914iAoncECa9vMUhqa6l9qDBF+DyaRkRN9ERbV1DNcZzIEAd7FMNSi/+ZlGHBLyd/zHyugWR1+/p6Wn37NPTX98auLq62n2FkB8w4k6CfCvm+/fv448//hi//vrr+M9//vNs4SA/4ywe3GFcpYOmCWj8UvgpzcM7JcPJHfiSInQkyJ2YeEwbXEhguYkFBcWRpnhjB7vBTz/dI6WwHBcEVkopPZ+AQUrH+x1wILnC9vRVX/g9lnVsj2qM51Mjs2hGx/ehRn92r/PwmLYz1IlSKLUDDV6WrruydKoUrbe9e5YEACnUmsj7hyDdx4N/0jYBgvds8J3YfmM8799OdlbqOQNKzC89K71GIOd7/o+RgcGKriAQoN5OYMDrU3n6PjZmesHbhvLEqMLZ2dneSn9+a4Ef/+KWy7pGkHVzc7NbNKhXCxUNIAjQ8VDZXgYD9MaJyNgoK5S8tM7zHOO5cfVGrCIDDlRYFjtPykhgRHWpvsHtwuhgIj3TIUoXsC58V1EHBJLAusCsADdvgxkYcMV+TGAwM8pd/at7HilIZaXr3m4rxjxdn7VnZ9xTuR4ZSIDdn5sBK6ZLhqJT5HyWRoTKMhkXUTUmZvQewQH1lveBR1m7PGayXF3zPuePjs0Yz/eg4KtyKYozK49yknRvAtFdH1ZTW16m8zZrPzppvnPi09PTLgpGh/Xs7GxnV1lX5qNFhFoseHt7u7Nb1TbK1POrenczGGBnbCV2Jo+6Vy0kqvKQAWfIRdc6gEEBTgKl6+m1QaYlQFIbpUHjg0X58/qhBol8ufJzo781hJTSVODNB1IK8R4TDHQ8pPokxTSL4PDeSl1XAUGXZwXCPH/e65RoMvwd6OvApLeht2vaYGbmlY2RDb/4dlBdAd8ZEH6PgGCM5+PJdWgij9S64UqGxOtfgT6CM52fne1/F4Xb6jogYB4r9XXZnEVjXRdV/briyHVEzzyBUH7XQ3bFozpsY0YG7u/vd0DANxnq1lm8SWSAFVDBKwvW2JEeVmfHpnxcgfmUBV8vdPTpitSfd3BDBcXdsfxZXy+QBFL8CikSBFQAKBn2JJQOPPicG64VZdjln/qkMhbk5T0AgI46I+RAjfLuAOHQenaGd/XZFGatQEIKr1b9mOSSRPlOMrQVRKW6JUpyWsm9PKgZKPCx9F6IY7qSUQcFogrkVIsoq/QzoEZimNxBgPKg8e8AbgKpLrNj5O8e6D8BJ8fyqq5LepTtx4V6Dj59gaUiA8lWJCArMKCFh/6FRtfdPt6SbHd08KuFVZrZB0a8I7vwOp+rvJMUOqrySmUSkGgR4Rj722Q6H7MpAj3DQVCFzFU+DWfyoni/UhDVYK4iAx0QqNovIfXKiLFu/P/fQAQAqW+dOo/Dj7PfGNtel1oBAYkHBwVMU4VSOxlL5IrpJZTy6NYXSJlK7qvFg+TzvRH7Js11zygtPF51ChKw83OlS9Ow6XylvquUeGKZT0/5Gy7e/zMw6DrU8/C2Zej+4eFhT5do6jn1na/t4tswKSLg9XCbkerS0UFgwCvjRi55tjPBTQgn0RbQ4Mi/QoPuHcnrlzev532KQMcO5akt6EHSa1Za/3yxC6cDgA5cJAX5UmW3xaglhfsaxuA1KA2WGXh0IDoDYFV5FZDqps9myrEz4ikPrvupAG0q8xAl48rSjdGMXJY5PhIfVNb8z+jAf9viQXd8uvukyqOt+iKN10OJ0wU8r2jFISSlsZNknbqIOtmnbStKxl7PU7YkXwQCDOF35dC+sA88MtDJ8Ayor9LmbxOocA46NlKiLR5h5WFWXqnzxoZlo52dnT3zEtipep7502j7eoluaiMNuE4wXJAZ1hqj3riFIShXhN3AOmTgs11nXrLXSXx2XtxbU+W5JJBLz0znqg/7qmpTB0spNJ/C9iugQBGsqo48agyQOo9Pz+p5PpuMifOV8qHXRAXqvHr+CQBU4CCBELaBA8CZA1K1zVsRZaAacz7vnkBRBQiUZqYHEihmmWzjlbpQn1a01Xak846qcZtAZqXXXben6YIq/+qer0FIb8Mo7ayuq4BgGQzM0HhqRFKn1LoKudGdeTEzpJw8PE1vpLxcOafpiGoQViDj6empVOBKT/TqoS4HASqLnhTnyrxd3JivGHfnz/OsaObZvDUlQNPJ3hjP30RJBoVU3UsAoJq/T3wwb48sVeV1fFbPqBzVvZtjTkqNvPI55uOgpJK9TplWgKMCFH5vpR3+myj1QRUN6YAcyfXsFg+eefDYfXRL1PFUGWyWkcpWXalPU3lJt3rb+Y87XNKrT2OkkuEEZN1p7eS4a4cV2hQZSJ6SGOi+iZ68H+ZJo9VVJM1vupAmpU1KyqwKXXYonGVUoUkqPW+bNI/r7UUhStf8eQEaAgZvl867cKrAwgw8vEdFmoxi4t89LBKNa4p28L7nXcmpe1ip7Tzs6iCA17roi8roogNeblJIY8yjSzMDzrGRlGsVUUvgwxVo+t8Bgko2DvE0fxYxSpn0VDKkrtsqYJDGwQwgrbZHNQVGIJAWALIe/p82w/VpRxXYSDKjcnitk1elc72f8kkAoJPdGaBN/beq40kHfcI4Va4CAmkO08+duoGYvPFVnp3fCpUx0lHxpvRJibhCS+1CqiIMVWSAz/A6N3Ahb11bsy5eD69zut+BixWAdyzqFOpKX1X/mRfbqPKwKjlP86yebwKJVTtTBiUnFTF/hSj1v5PlTnnrfwIUFRjwiGMVfaiU4ar8dX26MoZ+JqU1QBz7ySCkdk/ereex2kYrY6Dz0Hnk+/YVdf3LunRjyo1sFe1KIDPp8u6YgEUHBCqPv/p1dAgIEC2DgWowplC4qPJ2XOmtkCvSxIcMoZRj5810jV4RvcbOYPjWkLO8vJ5j5H2x05sHY4y9xY4pHxkRBwmqf0LMFYr2Z9xAVdc8z7emJIOUAXraW/KkTHZAsYoIuJc0xrY3CbjBi0fYnMQTt/71+zynUe4ifx11AED/K49rVl5V18o4zYxOlceW534mrSwO9vtVJKACES+NCMx0fYoSrOTpoIWyy3bxV8F9TI4xIrjtwvUpusIIAGV4dXxUQCCBFOdpC23RactgIM2ps0CntMpZAlBRMpDdoPRGlNJyMODp0sDoPBEa0S6MzPwpcE6qB/OqjBXDg962vK50NAgOBMSjt13qP16bCdPs+ZU8jkEOWLZ4jyIuIHRA4M+7IvQfy+kAs8uNylpRQpwq8HzJu/IiEPA50BVaiQooXYo8zIyfUxepegkYOCZ1i5THyIs1mSYZHAcDbjx5TfSSNjk0PflL4F31Ud9y62M9RxnT88nT1z1v1w4IkMckd100a2aXnJ/URtU9B3krtGmaYAVl+LSAez68NqNqcYkLKxuzCsOMMZ51JhWc1zMpJH5ww+vpQMDLTvWq2tIBTwIEyochsioKQCBwqJfTKQmmSXXwe8emLSBAlIx7Nx5SGf5j2VW/VOMkRalSRMH/r0a3xuj7bDU6oDz8TQQHBqnMNC4TrfRnigzMgEOX31tTxyupMiYd8Fe6WVSgKzOBiYo6YD3G81fVHbCI0vQA83C+kvPHtB2oSrZDz65Esbz+LucdUJvl5WkP1bUHv1qYmPJOoyc0Rv+xlBma557O3RsFjhpnDas3CUTsDBfKtKOWL2RxAdI5DXGKOCTjTZ6ctgiK9wf58xBa1V5J2SY5SHwdW5kyakIFsqK4nNSHlDNdH6OeUkmRAV3TN8y3TA+M8TxCUIHU1Ty3KPLqDRrPLyk9B+zVJ4Y9Xcc3eUvGY6YrUh1n4Pc9UHJ+KjDg3ufP4IVf6fNxwshlcmyc0jhT3rrveXZgJ8lXAqT+nIOFChwkea0cOfJUAbYtutTH+hZAIdoEBlYZYVqPDvj8KNP7vOn5+Xn5TYRVAMDGWEVwDgjSIkhX3FWnp85N7ciB1E1FkI+np/2oAfuAfPqA4b0VYUmDd4vnNBuob0Hqr7QYc0bJqKXzMerQagUEBG6ryMCMEiBQfV0hJ/oZhs7bhOPJ06WxWoGILeVWRj6Nz5UIwTEBgcsQx7uoMyyd/FZlzUjtRr3l1ytj7ffGWI80eR0o82P0O/s5MOI1put4qsCBU2UbeN45xF2eq07YVloGA/rIQsVIFw4f43lFuNBPlMKdakB9jMg/TOTfJaiMscrhNwI648w6SWipWHmN5J5TFQr1wcDIgws4n6vanEKaiKCM7ZLOU5kzQDMTxmMCgUQrSqhqi46SLKXIgJ8nj5s0m25i36b8kiKZLeTSfy025EJVjl1vy+T1dbK5QitRjm7sc0xVHpiDiS2A92eSG1JdS/VZAU7J4/a6VjqxM0QEASkqIB2nbd+r8qv8K0DJ56tQv0cBOocw5aHfyjoBkjtlnVO1ks8szUvG2ObtiPlfRPRXDahKkHjfr6f1B3yGijQpwISgSUkZrDZmUqDqcCpNhqa9zolSVIB1cBSbkC6PzCMtMkzHVF6laLoBulLfY5D3Galb8KPz1fwrAEwDTKrA5dPT0zOj7mlcHiv55DM+jjxNGj+VPIvHrR5eopkC7Z7prtEJWAEDOs5AyHukVSO1FfCwLbrowBj78uOOlMpLbX4Iud4iHwk4VeC04mF1yirRa8pO6q9U90OAwWYwkFCjBlj3xoGoG1jJi/GpgaQwXVm5R0MF4PPGpAQ4VskVmK8rqDy7VI5HDKi4OhBAIU/CnpS/qANMleexAgy6Mt+KumkXB6NpXYHTCtjpgMAqzWTRDXgCBVLSKY8KQKiOKbypdG6k1VbdNzY6I1/dq8Zr5VGmKIWDWwc5HYCu2u4t6dDyDwGwW/Jd6Y8xfshBmjrg2Ey2oXPQVowfdWSKDpC2AD93vly/r05/vMQhTc+/hA6KDCQjpjBiF35h53vofYxaaVfIkwaQwsW0PkdDI9nxymcro53ABJ8V71S4lfeR6uxz+mlaQOe+53uis7OzdhvkRAQW3Y/pu3Y5FkkuKhDkfTeLEPj1FfmoyOX/kLwcdM2iEEw7xvMISaVcCTJcESbDnOZK/Z6v41DZHZiuwI3u+RdH09z1DAyIXkPR/ixyXVgB9Jd6jVsoTat20YEOrDtg2EIpSvCaVAGBrc9vMejUNa9dp01rBirlwdB4xSAFxD3nlG6M5/P7yfB7nhW688HfzWG6F3QoJSXIgThT8NUCmxUgUNUtAZYZKCEY8MhDt4hGeb4XD2uM54Z7FiGZRQc8L/5EXVTAlV0HCGbka20kf90UQ1UvpxQF0DF547pfAQI3+rP/Pg1ZeWKVvDGvSgnP1um8V6oAQEevYVBW9Rj71I+p7d22+P2U7rWoGqM8rtDWiMCMHAR0fB5Km8HAGNkjlhFKoSNRQvdJKN2wPz4+7r4LnRrBd50SeYgx8e+gREpnZcGHl7ka4tmi6KvFLDr33dtmCq5aZJbalu2gn/rap0OqOr0HAEBa9bBn0wWr9erm7pPM69yfXTHSHoVycNBRF81Lcl2NQz3j4y4t3HVD789K5tgXbJsVnmYAhPV0XfSzPctVqpyb2TOJXJYquVgpc2UMpAgwFxH6lKiemfHCvA+lBECqspwfHd1J69qTRz9foS4qUAHcLVGgZTBwdXVVMijjUO15TsaIDMfIKFDbq4o0iB8ff+ww6IpvjLHnFVOBuGF0Jaz/HkbsyAUxCYZfew1KvNHj6bycNJ/s3qPSuUIWGOOqcle04uW/jbo1Hcnb7ZTiCshKAE19p/6QjFMmZ2WqP7nfO6f2WA+XVR5JMxmuDIa3XZr7d7nxiIDn4/xXiteNi4MUtgvrnLZnJgg+BnkkVHytkBv9QwwE89kCpCvjzden9YwDwuRQagxsAS+zerpsJedOvFLHJrDCY6pD9YzOqVs6vlf7grSadvOrhcngkckx9tF4hTArFMj77hVQqfiOZv58Cs3rm9BuOEUePUhGwoGNt0WlZFOH/CwFUylvGggaEL2aOUbe1niM8QwAePhX5a56bMcmgh+vAw3U6gI2ep7Kv1NepBSZohddebwql1sLq5/keXEskejxu5FJisjBR0U05t3Uh5dBcE2+2Acaww4YZoC76k8f39r8ieV7NOMYVOncLZTG5Kyf9dysv3l0uU/9XhncFfJoV5It9jf1eKovI58+FUW+kuedwFkFqPlM1e6rjmjK288Pcc42gYEx9r0YDwW6YCTGK6++S5vKda/UlXjKm2Dg+/fv4+HhYfdfz600HpWs/qc8Km/T6zjGfCVrBYr86Gn1vwIC7Aehdjf04qtafMgByfYkvTdAsBJi9IHp3hWvd0AgRb9EySiOsR8dS8Ci4p8KxQEx08iw8r8rKpdP1sX7M3nwyiNNJXVeHMc131CSZ+mgO7VDqjenANOzCfRVUaO3ItczlW4huHMnLTlLr0FJvv160vPJU14ZizT+LMcBQVU/6s2UtupnOpAVOOjqswJWq6gCaQY6qrxXafMOhKtMVHPJ3RwqO7UCFq60Ko+8ek5AID2/MuirNIkPXWc9qOBFleLy+z6nnJ6tBiipQv9VmLR6nmU5UFnxOt4TeV0qcNYpnJkH756pKHltmo7pvCoqRpcJn87xfBgd8/NEmkpKnlgFSrZQMsACoNWeHV10oOPJgVQaX172sSi1ozsersv82iy/RJ1jlww8HY1VcmduRnQ4Eh+rUYxVSuND12djpgJrOu94qyIE6dqsP2dtQtr8oSJvABrSQxBnhdKrsjU4fT9zeQxd5RMgSOCCaXmtynOMOpxEWvHsHPUmb0r1v7i42A0o748Kbaa2qcLgDM1WUZM0bZDa570R27ky8CkSUAGEzhti2x8yeJMBTqT257RBNaYIfjl+k3FN60lSHVfXWFTEZ1KkKynCmTKuPLRZZCHxdQxyPeFOj58nPg/lnXLLX5WO1K0bcIC8wl+KCnBsMsw/GydVtCe1p+vVjl/XFU5V3zlVjoiPp9eO+CyDgYSKZCQqMHBIiG1myLmYxpWs0HznzVV865y/mbdUtU2i5Il0bdB5Xo+Pj7s5YeZHQ+CKvQtdK43Xyfva6+PK2r1UF+hjeVhb0HHyQJORe01KoCOlmSnXMfKniSuDwn7tAH3yuhNI8nRb22plHDFdus6+XvU4q0iNe9zHIoJtUeKtuzajapwe6ml3ALaKaHXk0WM/d0CwlbyP3blzUJDOmZd48rwrJ5HPrACBxH9XtxXaDAbcWHIevgIEeq4zSEkAZ96Qg4IKGboipKFL//lTOcw3Cc2MVry7bvFNAgcezuZ/BwJehucpchBQCTyNpvJJHuN7jQywXTqwsKIYq+ven/R6xUP3bDqf1UX/nT83JAnoUeYTL5SxmUJf9V5m4IN8pjJ8jBKgJqU8owQMDo16vial/jsErCTQWUWxXoMqkFt5+RVVIKACBKtUGX1d64y/P+v6cQsg65zgFJX8GfK4DAY8pFh50hVVQKASPhqtauc4Dw15tEDH1ZCQA4KVyMCsU3ygVUCH7ZMMdjIsXEx1cXER35bYEpmhYfDzlXpWUwXK4z1Shbg9GlDtkidaUZ4eyaq+oFgtvNI9EfuWRjDJfDLcNP4VEBBJHviRGVfEFVUGuytLR1e+fiRvqcxZGbN7bnjfmhyokp+KzxQpeAtKhnmM2umrPHmPytHZoHz7V149XcfnGHUkKslpcg49j9U6kaoIQJXuEIC7SpvBwPfv3595ElWYzYkVSY1Gw6fO5LvwVchJlIxoUqrqaNWFv4eHh2gIZwLWdaB4655zIOAgwNuDdRljxKmPZMyT0Pt15sv28kH99NSvFGeUYmvI+C1pNnBXjEEykF00iG3ECAXvcRzMwKDzTmWcwMGWvqDidUDEe543eauU6QpY7bywpJhJaeyndJ3OOjYYSPxU/2fP87q3TdKdOlYAn+M6eeYOClhu5aiR+KyvV/FyyWvlAK60FYEl5Zd50OHifT9Pdal4WAEBzmvSq65HVukgMKD/ROgzz2KM+hUgMu0b4bhCrJSrjF8ywF6G0nqnumFNnsmsbisd4IrdAY88UU/j9fcwm/cJ+yp5/EzPef/kVaYIjht9GQb1w89EsT+LUh+7TDmgUhoCgvSNdz3veSZKY2KVpyqM6jzPlNMqJbCXgIB78EmZJh3RjcGkmBNvOudRlCI9nv6YslsZ/1UQkOqr65TbGVVpXMY6z57XvdyKT40p76cUiegctgQqee73t/zvyvT//kt1XqVKZtO9GW16m+DQQkRV5yUv2H/0oFLIs4saMAKRAEwVGeiUVULLyWCyXm7wK8+PmwARBHCDIAcSYzwHOaobwYFeOWP99XNvNXly7p3SU1Q7efhbz26Zy3tN6pTYFpopX1dsCRh0MlKlcTBG0LqioH2cpagO/6+0AV9ZrBwBygcBQfKm0rVUrpO3VddHleFL0YNZuW9FXWSgAytdJK4y/u6189jx5p44dSRlNE0h6HpyQMi/g22fDptNj42xPt6T958iqivRttRHKd3MeXoLh2ozGFDHdR/EWUU7CQgwfQIJ7jGtoDP3eB0JpsgA76e8dH+mWBJ5XTwykECQgADBgKd5fHzc2/P74eFhby2B0mtrYW9rvq7ohryqH3clZD5E8bz3305bAQQpRQVW1gf4/c54UyYJRFI4n9QZjwrEeQjX+VCaKmKQlGMySM5LBVwr+XJPuLrPNjg2CBB10Yp0P1HXt57uEL68XVOENgGDFDEQ8Volt1VkgddmIJXXPAIl58qfS/lWsjy7R0q2ZBXkrfZxR8tggO/xjzGeGdfZABfDM48lKZ6ECEXuxVaU9hWQkWRkwIFCRZViIbky97o6AEhREUYKCAb8HgGKeJdhZ/3u7+/H+fn5s28LuBGpvDj/dC03ttE1V84+J34MqqaXVol1mXmvM+PjPFHukyEk7zMPuuPJ2z+FTGfRG4/u6VrlaTq58V6VCW8Pl7MZIFiNSimPFa/vranyLiuD4XL40jp4Ph14ohynaYMUSfDnvFyeMwLpEYIV3UxKoIBAoAIBM6CWrlX9toVn78uqT7bSMhiQ0nJjTmU2G+CVUVcHsJO3Upo68BCNh308lO7PeD5Ufkm5uMLSNQcA1TOejr8KJKS1BGOMPS+fUyBC6AIXiiA8PT09mz5IgyBFAXynNgdonaf3FtQBgRWEfgjN5NgjAi4bSX5cGadjMvgppEpK3tWsbg4IKi+Nz+h6AiGkTjG64qOc+bnXb9avjLbIqGgcHEt2XQ/NvEvRFq9yKz/s8wpoeJvTfoyxL/8JLKy0OcuuogwzENiNJeZXgYAtgCClq+7PqIqIvAT4bZomkAEZY98rdObImIgDzEGAC0DqZBcOL69TLAntyeBxjQCNYFJYlYC6sUlTHhTKrV5qMhoODjxUS2VGsHB2djYeHh72gID60YEAQ7xsE+WdvmBYKef3RmnQrnj0h3q2elbPs099uoy8JDln//iPRBCQlKL3T1IwHLdMx+up75lP5T127dSRA3+Wm9Zn+HMVMbJAR+c1jOih1IGBlGZGXduugp4ZQHHARl3egYIx1vZjSTxXvM/0j/OexlZK1+XVef+JKvlaBRbM4yWAYBkMeEiTQKAKO4sSqvIIQ0X0PiuvWuXJu6XhYrmKAFRH94YPoQQEEr9Km0g8dJ2aAILnzwHC+zT+XFNQvWFBdOzeEgEDaeatvSW51/2SfFTXrWHpNL2V0s34pXJy5ZXSujI+hNxzY9+T5+7bFi5LeqZS5hU4Ul7OWwIiKbrSkRsxrn05VmRgjD7y09Gqw/RSvniePGWXQfZLijL5s6TUD0lPJpDv552NOhSErXr8Sa+781vl589VAGArINj8oSIacKFwff1vjPyaUzpPXmxFXK/g4dcECJyPrkFTA8/CmB0lIFAh3SqEmwBVEgBGCNzr1DNE4iyreqNAfBEMJC9UipKLFL3+vpDwWN7VKq0YTB+saQD6eScLldeeePNXRatPcvuY6OrUAfLqmvPr17rogFMFnMVbus96dtMEfLYyOLqWgG+a6nprYttVxmCMNf46Wd3K04y/zrA7AKj+d4aftBp9dLklmCb/lR7cSjPjXAGCRKsRAc93CyDYtM+AG8nUSFXHeCNwkPnAUyfps8lK596vC0zylHTuYfAUEnfqBo9HNnTOxXSVgktt44DAjWsVgk0Dh+2k5/Ss1hEkz1LXfOGMtyEXIz48POwWJVIwCWgECo41ZTAbgJXnkObF6W2PkRfPsT8EXCm3q0quqktqR153w0yvncDbx47n7eObdWZdlZZHT8c8SVWdO4CUAEKKJFRjIpXFfkyg6r1QZyy8vn5tJmMrXriX2UUEZs+yHNdjVeTYQUPKs5KxmW1KwGBWryrSwPs01qk/klefeFgBBJ6v89jRMhh4eHjY6xxXHBpQ3Wc/HTnyeXmqmg748OHDzutMkQN6wiIKUFKabviqCMCqR1ABgi705ZEN92T039/eSAKx2sk+J+2h2+rc03EhotYa3N3djbOzs3F/f/9swyGBB0YjjkFUNO7V6OgDqSKXjWpdRJVHZVw9alM9p2MCt6yveFVajSveq4B8AgasP/lPOqCiTjl1Y6dKL9majVfqlBkgEA/deqj/BuoMU/eMAyI+t+JlJj1dea4zUFwBAtEsGqWyPH3lQCb+dW2rx05Kcjxrz9V8qzZd7S/SZjCQFEbytN2Y+HziGD86h/OQlZDQ+Etx+qK5MZ7P/fjmQVwnoDRMv5VcuYovnut+NdCUDwWfxpseuv/UZkS3Hj15enqaLspJQMDDZQIDNKzeflK6XFxIUHAsWg3HO3k06unp+bqUKjw9I/ah2psLMj0S5YqrArUJZDAywLTsv0qhkpK8s7zV8XRIRGBGyRtyIFDlT/lM66HeC7GOlWc58/5nDkXnwW6lmV5P6cmbA1sHzv5M5V2nSALJ10uRh4q/GXUOQTLeHVVgJQECP1+lgyMDYswBQfIqUmcxNKT0NPIawP7qXHXuhsnRXlKafp0NOPNynLooQed1OhJe9Z5ZX1cOHjXRkVsck4+ElL0/BQb0eqLXQ+3lCxL5tsKxwAANbiL3dkkeUSEwkJHVuRtHl2fnaYznG/dwh0jnzZ91WmnfFc/dryXDwLFb5dF5c6vGoUq7Ygi8/dO04n87+dhfoVVDsZLnlqjBjFzm3VZQ5mZ8VcCoG4sz2VV+qZ4zkFXZgGrMdfdXyj6kLzatGXAm6TmmcCXv6ZmE/Lj9rpSpgIAGse++55vt6NmKdxq3TiGy07oQldJ4OWP8mPLY4iXOiAZHZRFIudHiXLXaqQJXLpwy5nrtUj9NBSQDxbUJAgQCAgSSx6CZx5T6yqdWJHOuMAh0quedfFcz5ZUiAzNQPaMt3lgX7WB+Dq62hGt9yiZFxvhsUtxbFV0FyJznBCa2OAQ/m2aGt/LCOwdklseKZ7/VI53l3YF2pk06pQOgnUPgzk9Hs/p2bb8aCWCaKirw2rT5Q0WkFBnQdR0rINARPduLi4txcXGxZ8i0joBgQMrEw3orZfqgT2iyaweWlQy255s8a5XTDVLmK8ChduJ0CL1/gqvLy8tdO3qbim959DLmHCS+2yDrJgDBPAQEHMi8NbEfOoXmg1jtlga3wKLydrnw/NyApgga21fpVb7S8qh8eOzqmCjxMcbzt4Dco3dDnvL1Y2X4Uz6pvFXaAoAqIOD5HTuKsNUDXzXe3bPpuMqj8lnlc+Yhn5093864mnpMz+lczzpVUe2KxPNry8VbGf5Ey2BgSxhK6bdQ8mD9JwOmNDSeFETdnyHgmQJQuq3KoIp2jLH/HYKqzM6LTgIrwyQeKfxqI7bL9fX1Hsi6uLjYlS0QwKMGyuXl5d6bAzze39/vAUOfUnitCMmh1BlL1kP/x3g+3+yAjPm5cUt92YFkKi2W699+YPkzxTULyb+2MvPIhfOWQHUF0hIAmVE31g8l6pdjkes4J/dSO8800RZg4Hylsj0atLVM3vdx60Bja79QTzKvNK63jA+X/ZdEBGb5v2Za0kFfLVSBacBXxqoKpbixv7y8HJeXlztjxXMqSRo594YrfnkkzaYNKORUzA4YROSN+ZD/qiyeMx//kXd5nETLbpzUvldXV+Py8nJcXV3t2jWBAe5SKMOjcL+Xrzpzhbt7xauI+2dQJx9eHxpxjwwkReSGeiZ/XWRAZXr0xUFEisB11HmIkmufAknPzxSvt89KmF3AObVdmjpIZa4ov5RXFw15z1QZllk0wNPNQICeq4x8lWarwU718OvM9xCAVunqihcve8bzFj6SY+JtuYVeC9Bv+jZB+p8WViWj6YLCML9+NE4OCPxrfd6Ivi7AN2QRVeGgznuqKN1Lc89ssy4ywPnULYOaoeWkiFWewMD19fW4vr7eA156XvsGMDKgKQiPxjhfAiWcsuDvWKuyq7bsojM8Vh6ty30CGqQEBFw2Oe2l9mR5FY+pbs5TZZyTwq/aI5XDunmenErR9TQ+qjqkZ6hPvDznm1RN6Yxx2HqMt6TKSFSGNAHcLq+q7WaRgaqMFerqUx1TmZ3e7tJ7PQ/h16876OiA10yGu7QzPg6R4c3bEXth7pF6+JTp5BFXIEDGKXmuyYjS0BAM8DURzoFTGae1DC7wSQl5vUhMz5X7lXfjefuitTS/7zyxDSh8DoToGXskRvmPMXbtf39/v9tUSO3JPiMfbAutM2B5BCPvjcgf277rtzGezzUnhZCMji9U8jSU8w6gugy7gXVZFF9pkZ4DElJlkJ2kA9I8btox1Kf4Un5duQQE1RbkiWZAwPk5xAt9TVr1Sle88C3Gxz38maHq8ux4mkUFXD+n8mZ0SH+u5PvSiAF1d/fsChCYlbNCy9rZdwNUIRpcmh/Wfd3j4NeRPxklggECAUYFmI/yTsLkP/Lqv4rSAif+74SeCt0BQaXYePTneJ6UOY/ubfI5BwFXV1e7aQNNFTw+/vh40YcPH3ZRAi7QZHvy88jV1FDF+1sSjcqqgXNKU2KVcfF8PRqQPo+qqZYEBJIH3kWmXBYrqrzulG9FHoHi/6TAnacuQtPx4JEZyuYsr4ocHB2bKv3m57y/6sGvev0rvHV6bfZc8miTkUygoALMXt4qsOnyTc7Pa8qKj5dKjrsyX8LPpshACj2q0y4uLvb2qU+eTwICMvQySpweYFSAnoSH+6rogG8kwet8jqT6MZJB/r2TGMZ1g8M2Y3sp/wQ40vSJDHgVovfIhup5eXm5V/8UJaChZv24XkB8sa/1ieT0iud7ps4j9X5K0S737HXN83AF5EDAwaryYXnkdfaGTJILGt0KjM4M54qi7TZh6iIW3her9WJ+iV4y918BmGOSG58ODCTvP1Elp1v42fpcl1dlYCvP+SXe8gxM+LUVEDDrB+aT0qdnKwCT+niW3wotg4Grq6tnQICDXovLuB2tgwFfnc3wNyMEFRhQw4yRV336ugEpXr+u55PS8PUIjEjQgDJ9l4dIir7aI94NqhtpgQK2Q2Ww2C7KSz8ab+XpEQiPJigvRmMEOAhUKlCw1QP/GeR1TEQwxXrzvof4XY4qwMY8eF4p1gQYx6jfo+48pC46sGpsk0J0z5z8+YLEBAI6z2srv2lMJrC1Ql6nap3BW1DyijswQFppz5R+K29bogJ6Lhm2WV1T2To/RL+kSIPfXx3L1T0a9pS+yiMZ/xUANyuvo03TBO5dMHSp16B8FbruUwEwIpBeGfQfjQzno0VUzgxbpy+7uQJPKNqFIHk0FVVe5xg/9ojXOfPziIEb5AQGCDCS4nbj3rWtRwsqgML2Z1vyNUTJAaMJyu8Y5O2xwgdBoxsDgoKfbSRe6uUSnHSRpU7pVV5SAoopKsD8KVMV0HFeXO8kXlOf+lRimmqpSPU4dsQrGcFVMFBFDpwOAQGVV53y6zzZyth7eV2azvBVRrMrZxUUzPJMhrmKDnRpOyDwWnUfYwMYuLy8jMZChdFTlDFIFfbXA+lVXl5e7hk9N4YJEdHA+yBxD47TBkzHhkuNyXMuxhJVeTDsrnsM9+o+PdE0PeCLCL3eNMz09D0fn4YhuPA2dUBwdvZXJOfp6al83kHa/f393v9jeVcus1u9zjQdteqVbaFDPRzKT5reGqP2xld4nYXjlW/1tkgCI4mfSml6HjTSVZ2YNi2K7GQxOTuH9MtrEZX+S8DAirc4qydltJOlqv9SROCllBy6dG9rnpWX3RlZtwuu/2c6Y1UHzIBD1yYVbQIDzJgr26UgZTi4Hz0ZdMNCY0Vw0HmuaRHX09PTnlfqP61wVzo9VxGNBj0ZLaJcCd2Sv1SelCdBFfNP0ydaTKkyfY1EMuD673mlvRqUr4Mk9Zf+KxLg6zv4NsjFxcW4vb0dd3d3O5l4rcH/GjQbnMkrpOwkOVoBGR6lqHjYAgzIp3vdLsM+DTajmbElQKKhTgZY+XX5doamei23mp7ytR4EzWPsG0vnl+Ufc5pAVEUIuj7kGg49w/ZNsnso6PHnu3y26oEEHKpxtxIJeaknvQI+knFeadtU11VwwOe7NqloMxjgwOPObDTGXETo3gMNbfJixTzD6D4Qv3//vnvtTe/F8+iGkt6cE4WXfKSf6uzk4cdOMaWBqevJo3dg5OkT4nZQ4GDA83RA4Iom9dnj4+MzMKC3E7QY9M8//9wBgtvb26N6V6LkjYq837x9aRR07s87ENOzjJrpmBSnX9sS2ibPnVLeEtFwPpzYBi4vFSBICxuVV0rPelXTYR7xYR09iqjzFS+52iDsGOQRz5U6qM4c4zMgkGRgFTh2+SSDtWI8Z551F93dEolY8bK9rlsMd8fnSh5VtMLlfrW/nDa/WugGXAxIwcnwuCcuoqJMA5wVqhbFcZc8/ghI3GumIhhjLcQ1U6S+7kB8py/0pTq50WC7+poK/XxqRh3vnmxVPu95Hk9P+5sOsX4eVRhj7DYvur6+HldXV+Pm5mZ8/Pjx2auhNzc3bXj+Z5Mbhq180PvV/ySbNEqUa66pSYAgKWb3pNOCxgo4sJ4OyH3tQyK2jy8+7AAS+WHeXd/PQA7zrEBEpUO8jv75ciefelgxtu+NOg/aqdKBnf5L5XVgNuVfRUt5341dByQqXvxeRzMD3OVX3U9gZsbnjMcKLL0GHfw2AT1VGX4NSr7WlzqtQoyc92YI3T1W5X9/fz8eHx/H3d3dHkAgGPAynNwg00NPnkb1xTnP0+vqdfb8WX7y5n1zICl5foeA+wGwvRgdcaBEUvifYEBKWPtIqH987YTScfqIoIZt/NbUASNRigrw3Ad/5bWmyACjCDyKFw+xd23VyRHHJo1niv6wbKdq+igBg0SdcqoiDIm6cZnKXpnjrwwR29CBHO+/V6o84EONYNXPK/q8M56rEQ3mUxm+dO1QQzujLREAvz8bM8nOHEqp/1fz3BQZ0EBx5dMJSELYCTUR7XADI68UjRqNPyMEbvRSY7gX4B6dz72KhzH6jV+k6CtvyJU3y/VFhOl1S4IBbhPs86NsE+0mKCOvjw15/R4fH/fS8SM5NDQ0+h8+fNgBRb/H+h4TDLhnL4BJnjyysoq8ExBIBi+BQje2zjPTpumCFIXw/8yPx24RrU9pqZwURnUgT8+b98i/Rz0SpSmxGfkY4PoXny70hbzkjfIq+T/WVtpj1MYi6V2X21n0pzOe3ufe/xWPFb9bohYdJXBelbMiN1v10ipQfy1yp7qLqPhzW2gZDHTvKnOQ+blfI/Nj5IFeAQENdl8oSBCQPGA9U3lz6bzirVp8RAWX8vFydd29Z1fq5I19QPCUohhqByo/AQHO+9OTT1MrUoJaACijT37Oz8/3wOIYP0Ky74FcfkQCBZW3Sv5X55rdgKepJOWX8klAkjLBOezKU6685w4IeH35rEcunCqQTOMhWVuhxP+K98Q2phxz+pAg2uvn5XXrGY5F3g4zIzDzmpNh9edW+Vkxhls81ddI52DmUHCwxdBvBQUrRjy125a2XKFNm8VXgufGR9fduOh6Mmi6p+upDBq2p6envSiA7yvgyn8FCLgn1CFcz98BQaeoU5pKgZM3GQMpV0UFCArEC/PyiIp+DnpS+/O5MUYZWaChurq62gNn5OEYpDqo3cRvZdzS8zomAKj8aFDYPmlM8H/yzJNxctlIESyOLV4XrRo1ttlMkc6UH41WBQw6wJzqUinQzmGg7qh0jY830XtYSNgBgaSbmXaWxu+vgK+Kt1Q+f7yWnk9g5qW6g/l0vB5i9CtA9BJQMOvL1euze6RNYCB1jBt9/lLEQJQa0gXRkb4DDw7wagtkkpfpQGB1brsrQ/l6nl5XKvE0z+57Lcj7dqWvOmuBp0L79OCryAF/Hongq6GsMxVsmmfX1MbV1dUz7/dY3pUrAhpbnVeh6DS4n56e9vqhiy51g7ebGnBjSLDXpekotX8F8JWXL3rsANT5+fneGpau/nymGh9Jvrr8CATSVKE/yzZzYO7lH3OaYIznjpPrsE7OZqBhta88/YwqB6DyclfL3gKEVvLj0c9Xnt3y/KrR3mL0Z3mu1mcZDFSd51EBGhj/BgA9oi0CpSMHZBXq1GBmaDN55zR6PCZjqzwqb0J50mB7GD3xQH757QHm5Z901nM04GwP5u+vJFbGTmnZ5qprAgT8eb3Ozs72wEDH41uRe42VXFQymWRd+bjsVUaZwMj58LKrKFaKAlC+ujr4Pdaje2YlcuJlVPVinqndvV5OVft5xECOgo6Vs+DtpnHAr6SyvGNT0kEug5WxqEBAZ7ArQ1nlU1FyPqqyKqI+dmDk593z6Vp1nNHMeZhRZ1P9urfxKgDaApSWwQC9qRQZcFDgQMBf70sK0any9Hnd8668dhe4Svn6vVTPtOGMh6E7he75+97+/uNbBQ4G2B4qS/dSREBplK+/pSAPUN4g3wpRvTzqwTUPagvd5xoF7Ur51iR+KDf6r/ZKUyt83q+J2JYe0laeTpT5Tk5SO6/KcDVm/J5HTXycpHGf8tZ1H39VtCPJONu/K5MG0Ovt9UwRRSd/jVdHjudjUeqXGeDb6n26DOiXnJ907kaqynuFl1WqgMCKMfY6VKBnCy9V2Sttw7RVm1RAoAIUW+swxgYwoL3mveDHx8e9V9F8zl7H9LrfGM8VS2XIqcQ9nZSrDNjFxUX03lzRuMe1ZYHTqpJwbz95ctW1rv6sE/NwhedTNpxD1fbC3jbM388TmHEB9EVuY/wFMq6vr5fa7LUpeSUuP1uUaJU/jT8Bqo8HkfdzZSAJFlfrm8ZJ+l89v1WRVORynDwcjkdGyOi5OvBP7em6hukqAJ/4dDB0THKQL0reuhuTlbwrue/Kcn6Sw1Gdd+BghVwunY8q30qeu6jAzLjPqDPU6VoHBshTxwOBydZxvAwG7u7udvPSZNYX7tHgKA2veUUqZik0btw8DfOiR5a8Mzf+roxeglY7SuDDDbDuk9yQ0btmeyfBU1s9PDzs+o/GRttGs/6V4mS+vmaAQMXrQMOmXSzfmmiokwJLUywdddMuPrecjJaXobZPa0V87wbPm2VUVHnFVD6VwicRjFYRj5W5dQfAmhKjZ+6ypd1FJX+Ue9cJfGuAm2c5D05cF6H6VP33VtSBR11TugR6PY9ZGVX6ymhWIGVm+LZQZ9BWIwMdX6tlrhjzij/nszrOPP0V+1n1zYw2RQaSMqGh5wDVYFS6ahVvV3kPz6YGdXIQkAYPjd8W8vDuigJO/HloyiMDnoc8eZXLe+4BVWidSlQ/ggG1LRUsFalHDKh0VBbXaXi7ad3DMYgD0s/T9E4K4YtmngOf8XxUrl/XkXtJCBzIW67608sl+O0UQVLgaUz41Ec1pvjNDN9uWc9yOkVH/67F9fX17toYP/TO7e3tuL29fSZ3K55VMuZ6niBRbUp59mnPt6YVw6zzBAhWgIB7k9V9lVOB6vS/olVD1Rm7LTTzlFM7pIhHZfBT3snYs94VkKjapQJd7JOXtNemyEDltcqwjLE/b1gZrDH6cDNBQPJokpJ2AFChKFdQs8hEFZVI5ae86E2JBz/63LDXPYEBtlGafmF9O2FwD5n5uZA7iEkkY+CCK6/vPZL3NaMkpEOV0Bj78ukggP2fwACnXWjs1c40aAmMcQxt8RRWpyX8mQQKXYYYCREYuL6+3tvOWuD0/v5+x7vq4jLmkZ90rNZpEAT4eOGUwzGoc3p0dCPmv043uBHqAJaDzBQVmIGXpJM9z+r59N+ByWr5lVGvgFH1XAeiOlrJe4WSc3KInhrjQDDgiKkyIlRAjqzTwPRwX1JirqSrELtPD3hakRvfBAIqhE2Ft6UjqHB8HYGHipnWBzbbnO2e6uigg95ZBWSqgUW+ErjiOg098/T0dLTIAPnoAJtki5GSmXJKbefG2svy52j4OZXjQK3iI0UF3BCnKTOvC4ljJYF21wFJyTuY8Dw5fXR1dbUDA9fX1ztZeXz8a7txPnd2drb3ZVQ5I24UyHsF6skTnRoq+fcWGRC5HCq9AwEfj1UeXl4ycDPvepZ3VV6Vp8tfNR5n+SQ+ZoAg8dl59TNjXpXp91fSdUc/X6VlMKCNZtw7dMFzI05DNcZ+5yfvqwIBblwSpcGR7rki4zGtSeiEnHv0u2Gf8UkAcH5+/uwrgJwzZt7Vwif+V/kelvW5aObv0YAEKKqfAw31rX4zAf+ZVPVFApg8JyhgXiKvL9eDuLHviG8JpPUByatPebtsuIdOrz0RlRHzTnVJ48bHuuft8ugRgU+fPo1Pnz7tpgq0BuHy8nJvqun6+nr3PRJuse1RtBVvjVE1Bw4cE8citrOPN/HY6eQx6oim97eXmf6/9jimPKVx1hm8lE9HsyiI3+MzPP5Meaj6JKXTsQMBW/pr89sEFEY2WBdCF60wRQW0kief8UZZARAin5rw61WZIjeGNBAd3x4e5s8X/NFQsM1VBuc7fatgzsv6T98WYH7Kyz3ZVEeGs8Wn6sffeyUNPq9rmvceYx7KTGF+yoFHsNI0kshf0fU05MmVSJLdLjrG8xmgFU8ylr59NcujvlAkQHL38ePH8fHjx/H58+fx+fPnZ9MEMvD6Bsb19fXed0ju7u5239+4vb3dXVPbffjw4dmiWxKdEkUb3BAcc8MhTn2SHCSM8TwczmmpKnpT9W8ylltBAfOoxky6l+qzCqy7+8nx7HjX0c9XjesKcFnVi1XEd2s+HW3aZ0AdVyk2MuVhyarDmXaVVpBTKpPP61itT6i8G/LM6+4ZbhXeylt3r4wDQ4NcK/u5NTHTpzz5Iy8ebvQ6+j3yzdfC2L5Kf8w1AzNgkqIEY/Tf5PA+JvBSe6RIjxvsanqMi9c8VO1TNRxvCZxXfVlFMCow4FFAXquMpvi7urra/RgJ+PLly/jll1+egQHl/fj4420CLSiU8Zbxv7u7G3/88ce4ubkZNzc3448//hgXFxfj5uZmnJ2d7UCD2mdmCDh1dEyqIgNjjD0jn/RrkgtPU5XpbeRlrBpEN2IOWGb2IQGBmRGsxrfaqxobVUSE7ZH0Ylf3zu7N2iTl1z1bpV2lg/YZ4LakVUiFHoOupYoy3MVwHYXoJWGZ6tkKCDgoIJ/i3b/Kx2P6Yp+X6+2QvDUag2oe24WHbUZloNDq1dXVuLy8fLYzYRoMDvqqgZimHjiHzdcejwUGVkBheubs7Gxve2ctXBvjucfru0XS++X/tEGTG383eP7qLvkjL9wKWH3CvAjmve8SsEkAsFqcWClJnxJQJODTp0/j48eP45dffhm//PLL+Pr16/j8+fNOThUZoHdOb1dlCwz8+eef49u3b+P3338f3759G7/99tveZlriSdMIFShgGVsclJ9F3t8O0PS/8xyr6a6U1o0e+7aKEqT/Th5pqED5KvCegYj0fLIviX/XC5zy7p5LvHRRER07JyXxU+VV1WXVfm6KDKhgVdBDnElZJKaTsRRy8/k7J29c8pAMY+InKTYq2oSgU7guGf4KCDjKZN6uoKmonQ+m8bzZbgQufHdbPwI11t03j3Jl5O9hc+Gb72boyqSbMnkr8rZKik731Nb0Et2IMhrghv/i4mK3GE4GjlGCMfZBsM+Bp6N7iAlUen3cWPtCQsoaZcunM9QuAkgEFwngSl7UDgQCnz9/3kUD/ud//md8+fJlfPnyZddWvnaC9Vb7SU7v7u7Gzc3N+Pe//z1+//338fHjx2cy/+HDh3Fzc/Ns4aG3XdJRxwQFbgh87Lv+rAxDMlSdESJ49OiV5638KrDgQCCV784H85wdU/0SefqOf69HB4S6/GaAwPVKKr8CrR1V9qajTa5aWpDUMVM1WqLUGT4Q6SHzuTSoq4WJvOeggA1Y8ZnmyZOBTnVVWd6G2jWRzyVQ0XkHIp+vl7GiR+oeaNpbICkAtb08zsvLyz0jQeDB+sr4HHuaoPu/5fkEBOjRMgrD6AABU9ppT3Pf+vG/DJh7Vin0qbzIp4fw9Wz19oobYoJAj265MiNwVJ05NfD58+fx5cuX8fnz5/H169fx5cuXvcgAIygEx+JV9wVMFBn4+vXr+O2333aLELlngZ6/vb3dASsHBORb/cw2PQY5fw7kKiM/Ru21zvSJl6Wf60nq7GTwmbYytA44DwEELH+FkoF2/rf2d1e+t30FhDoH0gF9B178t0qbPlREAeFxi8c3azTOcfH6GGvvPXfzQR0ISELcDTTx4wMrkUcuuk6s+HEekodQCRnnsT3ikISHYWUKn4dPpTj5ehi9OoKKY4OB2SBK5G3thtOBgAyZgwEHAYygsB/v7+/3FpLe39/v9WUCAwQSNNJp4x8959M/rowqWU6ynpwDRoskE1of8Pnz5925pgp0lAH3qSy1NcEVpxHu7+/Hzc3NDnBQ3tnnrJvalq8kJurWEL0FJQ+7iqDSuK4YxuSp87+n4XOUtQoQpKMbb+kGOnFJh60ae/Zz4rmq0yzPKo8tACSNRd5LfVCVU0VIeP+nggEySObc203POlMEEt4ABAQODlbDJbw+AwEV31XIlPlSIVeCkaZTOsGsUCNDnlW7Vdc6RZ/AQBIm50lHLpaToSMYUNscCwzQWHExFQcjKQ1KD+dxaoCr4rlIjgDAd9yj0acRlZHyKbQKnKp+zl8ChltodZyJaHi5gFIgqQMDbDO2GxelCmApP10XELq5udkBMbWr66hKOfqriDpSTxxrqsABufhKESEHPX7d01AvuVFmeW6Unb9UTuK/kmOW7zzwHuvmRtCvpTKSbnOwVfHO9pgBk2TkD6Wko6o+qBy71fI3f7WQ52wUD1OmAeQehAukrpEcCbMMLzcRG4qCkPhVeVsQqPOR0LXuJ0CRBtzZ2b4Xyv9+nXnomtelAiKz+lVAhSFbTpPwuvhhWx1zO2L1ucttUmC6zjQOergegMaO4emrq6sdAPB+dDBQKUFO4+jajBy06S0TB9+6RoVRRd+SUmfbKG8CHl8w+Msvv4wvX77sAQFuMsSjg0tuSKT76rvv37+Pjx8/PlukyTpqysU/YqQ0KYpCuTnWFzcrSvo1TWu4cXTdoHvUHZ3hcarGT+J3Nc8UHXB+ExDQOY/OQwICM95W6ujlJiD+EnBe8aRjAgQdAE706q5a5X13lOb8Rd4R+r+iFFl2AgJbGqrK30FSVQce6eXLQDgQoIFI0xHdNAH5E1+qv3vrXEegfLw+vJ5+aT8Enw93ft+SvE06L8IHry9Co8fLELg8XhksebiclmHfuQyksrs26+SWvLKPqjGTpuUqw+j1oEepH6eMBAS0QPDLly/P3igQCBDfySFIitVD4lz86q8d/vnnn7sFhL441oH9e6LOm+b9pMtm3iTbk//9+qGedEqXgMkh5Pn4ecdHAgKzepGSTfJjJcNdfRzQ+PUZpb7a0sabwIArLw1G99xnYfgUIdCxijAIvfMeyf93+ThP3gk0kK6QJWyPjz9eM/P60LDqWc7hulJNguP3K0FyQayQr34M1ctIy1v2xYNpEPM+Fa+O2qmSil2/u7u7vVe93orUV65Yee5t7OfJ6yUQ4HvyDgYq5USDzw95EbTxq6DsH+andNqFj/LFD/6oHJEDY9aTbeBlefljjGftwx+BAd8qIAhwT168CpBJPrkxEBeqjvHXGOOmRPxSKhdl+uuaKocRGLYNNzJ6a+LropWnSafE01SRHlGla5JBcn1COaj0TTK8Xm5VfsXTTGemOrouS8Z/VhevQzLeFbD3/zo6oK5A+Ay8VDZuCyA4e3qPcPhEJzrRiU50ohO9GR3/xe8TnehEJzrRiU50VDqBgROd6EQnOtGJ/uZ0AgMnOtGJTnSiE/3N6QQGTnSiE53oRCf6m9MJDJzoRCc60YlO9DenExg40YlOdKITnehvTicwcKITnehEJzrR35xOYOBEJzrRiU50or85ncDAiU50ohOd6ER/c/p/meFVBij36vYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5m0lEQVR4nO2da3MbSY61QUnWzW53z+xsxP7/n7cb8c6027Yk6sL3Q8cpPTw6yCrKskVbREQFi3XJKxI4QCKzVpvNZlMHOtCBDnSgAx3ozdLRaxfgQAc60IEOdKADvS4dwMCBDnSgAx3oQG+cDmDgQAc60IEOdKA3TgcwcKADHehABzrQG6cDGDjQgQ50oAMd6I3TAQwc6EAHOtCBDvTG6QAGDnSgAx3oQAd643QAAwc60IEOdKADvXE6WfrgarX6nuX4rrRarer4+LhOT0/r7OysLi4upuPDhw/1/v37uri4qLOzszo+Pq7NZlN3d3d1d3dXNzc39fXr17q+vp5+1+v1dP/+/r7u7+/r4eGhtH/T0dFRrVarOjo6quPj4zo+Pq6Tk5M6OTmpd+/e1bt376ZyfPjwoX7//ff65z//WX/88Ue9f/++jo+Pq6rq/v5+yv/z58/1119/1V9//TWV4ebmZirH3d1dPTw8TOXYbDb18PCwVR6V6ejobwx4fHw8tc1qtaqTk5Pp+aqa3md6OpQf689zlkNpVFX9v//3/35Qrz/SvvOu+sb7SHwjnjk5OZl4Q79V9aRv/PB+GB2JluxL5m2s//xl3VQ//pLvyE/kcecvlu9775/2Gvuz7TvvHujnoCW8uxgM/AqUBC2F7fn5+aQQHx4e6vb2dgscnJycTO8+PDzU0dFRFKIEAcqHvxR6d3d3tV6v6/r6um5ubur09HQCLlVVp6enkyKQUmcaIpVBClzloEJfrVb18PAwCWZd07NVjwBB7aV39R6vCxCoHdS+IuZ9oExJiVJx8j+JbUrFmNJaUoa5PuL9Lq/RNZbFwSqvp7I4WPK0DnSgA307vRkwQEUmQCAwcHJyUmdnZ5PildIkEFiv17Ver+vk5GSyWggGqFQdBJyenm4BCVrjSv/29rZub2+nfPVOVW15LVR2F6x3d3dT/lIOErausAkMdF3nXZvxvbu7u6kuVTXlnWiJ5Xmg7B0gr1IBJsBVta0YHex1efo76Tf1oYODXS3YJV6JEQg40NulxAMH2fLt9CbAgCu1zhUrMCCFql+BAB13d3cTUKBwlJKXp0EHwQCJgEAu0c1mU8fHx9M0gsDHxcXFVDa9I89CKo8PGNXHvQOcSphrQ6WpNhCNLDm6qQ8DdpuWuNIJCkaKcKRMvf0TCEhAhGlzKmJOie/azw6oU5kOnoG3S3NepwRGD3yxO70JMODkQtenC+heX6/XW256Wf0SjHSrC1jIy3B2drblcZDCluKvqifKXemcnZ3V+/fv6/z8vFar1TSFoLw0lyqPguZTRwqjmyKoqqgwEnE6QWmqDe7u7mq1Wk3lYF6dK/ut0mh6oAMErqi79iS4SECNfe/AmFNRzEc8yzn7Li7kOYo6Wf4q22azmcrY8fCBt349cl7wa7w38lQdeGMZvUkwUPXIVCnATxbtw8PD1jy/zo+Pj+v+/n5SiBSg5+fn03FxcTGdn52dTekyAFGCTgJX/9+9e1cXFxf1/v37Ojk5qfv7+wkMKJ7h5uZmOtbr9aSoj46OJrBRVU+EJr0DHvvA6QIOKPccCARUPU4TyIvB9tORFNOB5kFABwpEBK6ebrK2OyBAz5f43MGAA88ECtxTpvNU31FbaBxUbYNYP9LUyIF+bkoeIj93Sl6qbwGnb5HeLBio2o76pxAU6V7VI2igFUXm0vTA5eVlXV5e1vv37+vy8rI+fPgwgYKjo6O6u7ur6+vrKWCQgKDqkWEVN6BVD1U1AQqucri6uqqrq6sn0xcqOwP/vO5OnBphOmwPlo/eDVJyf3dK6y3SUq+A81xq5871z2spv6qa0tRUlg6CggQ+HRRwNc3IU5DaIR3Otw6IHBwchPyvQZ0nwEEwz7t4FvcUMM0Dv2T65cHAyBVe9TTyX0rQI+FdULsr9eTkZAICv/32W338+LE+fvxYHz58qN9++22a/7+9vZ2WCmqp4u3t7VQWWuir1WryEGi1w2q1qvV6XV+/fq0vX75MgIDehjmXGs/dC+BBhqQlbukEJugdONAjdW7xziMgIrAatelcUJ48Yqenp1veLA+mvb+/nwDs1dVVXV9f1/Hx8cRzAqhpzIziSdI1ji2NhRQ/Id5yxXAABz8nJQPCx0PnVWLAdBeYevAgzdMvDwZIDILiuvyqbcE8WqddVZMngVH1UtofPnyojx8/1h9//DEdv//+e3348KFOT0/r9va2vnz5Mu0Z8Ndff9XV1dW0dJHKU5a3ph/Ozs5qs9nU1dVVff78eTq+fv06TRWcnJxM5dVUhrv/VV/+Ovl0gUet0xrU9AZBFOngGRjT0ukBggLvV2/bkSD06YGzs7Mtb9bl5WWdnZ1N8TP39/cTz41WtHgg4JzAdY8Ar6W2ca/BYbrg1yDvex8PMtJ8DFRty3TJIcrtNC6Y54FPHunNgAEqKykyd3P6vdvb2ycbCrkg1S9d+hKoAgbaUOji4qIeHh7q69ev9enTp/r06VP9+eef9enTp7q6utqyqBkgKIF/fHw8xRFos6TLy8u6uLioq6uradqBSx9V9hQH4O3jbudupYHah6DAQROtxA4kvEXqLKBOAHJjnm56oepxXn1kFXlevgmWvFqXl5d1fn5ep6endXR0VLe3t9MyV+9zbjhFz1ZX93ToHhW+6sS4HB4EHu4dUHoHQf/zUBoHjOUagVDxoICr0uHSaj1/AI49vRkwUFVbYEAudc196twBAwVfVW0J0qpHL4EHC8rVen5+XpeXl/Xx48f67bff6ujoqG5ubuq3336rDx8+TMr806dPdXNzszVV4Tuvcd8Cgo/z8/NJqBNBu2B0RM2BkAIK9bwGGBU7PSsKIExggPkdBt02uVLsYgW44ZT3oZQwp2Xm3PMUtJp+0hSBwKzAwGr191TVZrOZVrScnZ1NG3KxnLTYl9Sd5fJrVU+nQ7q4gQP9vDQ3BjyoNRkmDgI8eJp8dJhK6unNggEBAv2u1+s6OzurqsfdB5NXQEKXc5tS+gIAVMhi7NPT07q8vKzT09O6v79/Ah5OT0/r8+fP9fDwMFlkAgQCLJoCWK1WW6sfBA6UbxKSSWj69IGmFUZWfJpmkZcgBe10/w/0NNbCPQIe2S8r2efIucyV13lOEKCgQXm0BAgIYnVdxE20eO5KugODrPNoasA9WAQ6Pm/cTS0ceO3nIJ8OmgMElG9VWcYkr5jHKyUv6IFn3iAY4JwSvQRaOsW5Jk4hiKSIdS4Xq4QoNxeiZ2GzedxM6OjoaEvoitHfvXtX6/V6GgASrirb0dHRpISlHIicKew5sJJgJghwQODom+/QLZfWnaudD9STK7/u8KkCHSIHA+INCU3nW3kZBCLpvSIAYJ5eZp+/Z+wMwYDKR8HcWYGdZ4Aerbmja+cDL+4nOZBznkhBg3ymqp4AYE4f6XAvp+jgIXhKbwYMECmOpgt0n2up9a5HOHOTIXoFqv5mVH1M6Obmpq6vryd3Oj88498cuL6+rs1ms+XyFxhYrVZb2xZXPV0N4YqG8QJOHCAODro2dCCQ1pvzeUf/b5mSt6bzCvh0gfjE+/L4+Hgrkr/qccrHlblvv+2egPTtDP2yXwkqNAZSMK7HkbgnJAn4UZuNgMBBsP88lEBf4gleW5JmAgOUf10wod5/6/zzS4OBThF10wWKGZDSU3SqSEKQVhE9A4q+FphYr9dTFPaHDx/q8+fPdXZ2tjVXSyF4dHRUV1dXk3UuwLBarSYgcXt7Oy3pkrJN1qQsto7JR1MBCTWrzfzXA8lS0Jq3/1umztJx65/Azve3oMeHwk7PMKpaRO8Td8nU9AD32GBktniZ4NNjDjhO5gBiBwhIyZLzeeGRZ+Ag2H8eGnkGOr7wlU0pLQcGzic+lab33zLf/JJgIFkTfl0koSnPAK/R2pGgdKvNLStZ8uv1egs0cF6/qur9+/eTh+D9+/dT2lpm6N6Hqtr6VLGYls9IOPuOgE602DphrfNucHBKgOkl17D3w1ukkVdgTgjqeXoK9L+qtvap4NSSKO2yKX7UFIF4l+NBJLCsPJSG86FAqzakIijphHZn/XkMinsdnJ/4/y0L9H2nuemBrn8JbtnPLt8IBAgIREwjgYC3DAh+OTAwckElgUsvgJRw1bZ1VFVPhLYEKz8xTGFKj4PK4bEECig8OTmZth2+vLzcUvish9JkGRTdrShweRXo5fBBlZZW+qBROfluF39A8nTe6sDqKCnBkSXUASwuNeTcPQGsiNMP6SNa9GhxmVbVY8Co+Il8x/qoDgSs5C2CE5F7BpQnxyD/ezsy/wPtPyUg0MXLdF4f8maXB2VtJ9coy9wT+lZB5S8FBuZQp0dEk2EcDNA7oDSTFc65UwbYyaXpgIL5ERAcHx9PS7roXvVpi6q/LbXLy8spfoC7Dx4fH9fNzc1WvhxQ3L9AW8tSgFORMCCM7UEL9CCMl9NIGLrwc+8UD669p8dAq03Yh/Rk+Ty/R2kTuKoMBLecKmAQLdP35bDiNy1P7KYMlB/rrnOfrkvWY8eDb9nS2ydK/TQHCNK4GMWWdOMr0dwKAy/rW+ChXwYMJE8ABZUrcX6JsGp7Ix39r3q6YYsLVd8Mxi3uNN9K99XDw0O9f/9+ijmQxeVlUFpp8xnGDpyfn0/LIkVqC83/+tayNzc3U356z11rypPLvIiwkzJj3xxAw9/kiiwpNvHFarWa+EnEdld64vGq2uI1/dKTJP7xpVrqLwbROiCmp4l58r82KPKlu513QMT8WE9/xtvSf9+C0P7ZyMf9Es8A5TeBgKdFPiEfOAhwb6We8fiDjofeAjD4JcBANyWQNq5wN6kEYrJAEhBwJlXeXN7FZYqykqpqqyyuHAk00npaKWoKYK+r4g/k0qUCr6oplkHfRiAY2mw2tV6vnwwsnRMkERD43FxS+G8dDMwBgK5dCArcSqfXxnnRfz0A0YWqB356gGgn/BIgkYeMQIBeJ3oHfAVEWr3gv2xP1vFA+09zY2DkGXAeT2n7OWVbOqeRQyAwByp/VdD504OBERDweX3O7/M6rWZHlI5ORRTOBBNcpuhR3ZyzTfsBeES5KwtNPVRtR3XrOD8/n1YjpLLf3d1Nqxv4HQT/8pxbcCyDryuXldoJeb7/1gV3570aeQX4rgCjxxDoPr0BXV4UgORdkfKXNc/YFS8r0+3AAD0EnOri+EnTWenaqD3TvV9RYP8qtMQzkGRhInon+V/5dKBAaSYg8Bb556cGA3NAQACAa6p9nl9HVT1RhGQ+ggR3oYr55BHw7xqIMa+urqb801IyloOAgQJXy8JUPnoFLi4u6ubmZmten9MS+mLif/7zn+maAxh+BpntwP9JIfG/D1r2z1ujZP34byK1o4MteogYR8B0kpJMVlDVtnVPnvbAUoKRzjvGPQc4VcBYAgbm8vsZVbUFYjseStf9960J8X0ml9HdWBgZQUs8Ah0gcLnt5y6vHBD4e8z3V+OznxYMsNM7ICAAwE+zMlbALf7O2qKio0AW81HIMaCP7tbNZrMV0e2BjLTc7u7utqK8uTGR0K22inWQoCkJAgzV8fb2tj5//jy9q/Lqi4cCMJyjTgOSUwU6vJ28r96iZ4D1dSHYWTwEAbRcOh4kEFU+Hi+SVoAQBHj+vrGUnvfd3rw+IvGHfulJ0t4XHDssw9HR0Vae3eqVOY/BryaofyXqgEECBb5qhuRTmh0gcGPEpziZlu6Th94KP/2UYMCZiBY+4wK0978+FqQP+shFXvXULerWrTOBu04pnH2KgIq5qqYPEX39+nXLO0CUrHl9bQTjO8NRCB4fH08fk9G50DCjxiXEb25u6uLiYhLCCiLUFw+5mREFMq1GpUUBT++DL9thfx08A+N5UVHnXdE9WvBSpnzP303z7qlseoZgl1M/BLV6n33KaQpfmeK8sQswJEDwOnl93ooV9zNQ8tp04yH9d3lHSlORVRkQOLk30/mfnoERIPjV+OqnAwPONL7Mjzus0StAMEAL5+HhoV2TnxhU5C5VBgtyK+OqR8Zdr9d1cnJSV1dXrTLgR5PkHVCZuW88B5SWeckaY5tw06Lz8/Oq+hsUfPnyZdoV8eLior58+TK13cjVT5DgB13a3o6jgf0rUsdHSSB2it/fd++MhJ6CVTsgkMBAEsp8x4MHyZ8EJOKtJWUncXwQeKSARQcVB9pvSuPcAcEIBDiIEHVeIs9nCSCoyhtbSX7p/lvyEPx0YKBqO/JeMQHcBZA7/gkQMIiQYIBAwIWmvA6cgnBvAIEAvxvg6/zFWAIEKj+nNsTEd3d3T8AAD37TgOVVmV3Ic3B5fbgOXb9pCZgPRLf8lL5+Oai6wf2rU6f4546qbSub6ZG45C8JSl53IKC06Y4lP5HHPU15jrivgQQpy+jxB+JtKn4GKvo2xuQxAgWuSviVhfPPSHNAdo7vndKc/hKaAwTOO8kA4vUOENCj8LPTTwMG2KkEAvwOu5S9PAa+n4Arys1mMwk0riRg9L8rS5XFl0VR4HngoNLiZj/Jq6H0NVXAL8lxxzhOHbAMdOPys8dKd71e15cvX+rr16/T/gIMdKzKTE0LzpeJUWgnN5p+3xoQ6CgJv84a6oSThBw9TxRSbkm7UnePDvmoIwEAxSnQE5RiX6i0uZKA/zvPQHek2IkD7Q99KxDwceHK+lvL5d4vntMQ7DwQbtz8aqDgpwADycVEr8Dl5eXWXv9pTrbqcUMgMp06TwFxdJnqfV8KmOIK3GJx5ahlgZxKWK/XdX19vbW6Qc8KDHBJpIIiOSWiMlDYrlaPm8qwzOv1uv7666/6z3/+U3/++Wd9/vy5vn79urUTYbLIaMXpGS4XY70PNHaTipa0FefZ/T9XFPB59wYk4UYQwCAs7mMxSseDsggGXKAn7wBBC887z0ACAWnq40CvRwkI8JxTAT49MGcsJJBL6qYBaNw5ICD/kJ84VTCalnD5n+r9s/HmTwEGquqJ8KFngKsFuoARd30zYI/pOyhgcGISynpX5CDA3Utce71er+vdu3fT1w0JBugBSJ4BD4R0aysBoZubm/r8+XP95z//qX//+99bgOD6+noKIGQUud71mAgK+DTHzH7zNnrr5G1EcKlfut0pmBjTkdKhNc60mZ6Eo1z9eo75e7q+MyWFq0CEe95Ypi4mwBX8EjDg7fizCd1fjTogMPIEJE9tmiYTLYkX6Mg9vh4X4MqcPJqMHAcCHQD42YDBTwMGqrbX1XMfAX2GVVMEc4IlbSNc9bhTn6NW7gpY9dix/ELbnLJzgSfFraWIJycndX19PaUroJB2T2RsBMEAtz7mwFJ+AgOfPn2qP//8s/7888/69OlTffnypa6urqblhUxHZZbi5/JDCveDd2BMSXF1yq3qUSgRDJC3E7/5VE+y6AkQUzwCfzUVwPQ7LwPTJkhOXoCuHdK47YBAKrNTAkwH+r7UAYHkrXU5S4+sK9Kk0JeWRUR+9vgYUTeGeJCvRjyWgME+8+PegwFnmrSMkAqzqrYUFAWYFBqVOyPz3X3FeAGCAbpJpSj5jltPJDIVFex6vZ6Eveb6uTSQOyr6xkWqq3/emMJVsQpfvnyZAMGXL1/qr7/+2lpe6B8sUjkFKLrtZUdAoLM43zIlYeMCowMCnVdKwHQkOCmMyeMcC15GnZMv3J1KQc/xwfcTfzC90ZTAiLeW0AEYfB/y6QD9zh0ODBwIdLIz8f0uZSVwVZrpOQfiSwFBx2euE/aRF/ceDIjIQIymlwBLbiWfq5TAk1tTm+8w+Cl9zCWBAQUD6n+XT1KE9A5wykBp3d7eTmVxRO27JzJN3zWObbBer+vm5qa+fv06eQK+fv06AQGthPApggQGOLdLQe1I+AACMnl7ucIbtZcLTlpRnZAiKBBvktcdFCgtCkyWKXkaxPee10hZ6Dn3PnTKPymbdG8OlB7o28l5NHlpkkdgND2ge11eo3Gxa78yTwcZDgR0Lcm69Eu5l8CD8tk3XvwpwEACAg4IRO4RkOVNdyWtZwpHX8/PdfoEA0pT+VMRK+1uCsEVNVcx0CvQBdukgC3Wy4OwpLwFBvSlQm40xE8gk+HpHUhpuxLrBPjo/q9GLrg6Ada5IVM6FFT6794tkYBc2q5Y7xPgejwMyZU+p9G8nCO3bee9cCAwIgc5fnTP/wxC+Geirq31u8QL0PWf85Jb0SNeWWJxExgnw4VeA1fivNaBeZ77++5lW1rmH0l7DQacoXz+nFZyFziYAqpEHo2tXfz8q4aaoxfRta//vuEQhZ5bPrrO3eMktF3RJxevDy6VwT0UPg2h1QsCAZoW8KmB1I7eJ16vJHiXWLq/MiVLmJRc4c7zifed7/UchVby3DiY5Ps+flzxsk4sK+upPFzIM23yjM8NM4/k4ZgTnh0AONC3UTd+E/BNvOvTAd148LT9GU7BVo3BQQcgqLSTF8o9THOKn9e6g3FcnXzcB379bmCgE367vEvGkvDyyHouJeyC+RzRSekSJdL1SmGpwER6AWjN393dPdnLQB9m8bLQ5cR7FN502bqw9AHmaXPagUsANQUgAEBvgMdVpEGo/76vAQeMB4h1af3KNOcN2CWdzhPmYMCBMD1EDtjIWz79lcYM+X21Wm3FpMy58ZWfTz2IfBUPlQbvJeHZ0S7yZR+E777TyAvA884b4Mp/BIh1PspzKdCjAmYeS5S35zvSY56ee0tT/FZX3n3gyRcFA4lRRN7RI2Gic7dkfHmdb9dLq8hJ16nAvIPonnKBqTwYfHJ/f1/v3r2r29vb6RkJTIKTZEU7IKj6W5Drq28EJwkc0WvAqQn/NoIOBRD6FwrTksvUF4y10DUyvUAO2/QtAgH+H4Ghjgc7T5h/pyJNJblnQf0iInjgNMPIxS9eFB8zJqWz0nxqy8GAg3G2E8vfeZuSUD/Qy1FnDHTnIxDQTQ9U5VUk4tskh/ROVfYKOB+MFH53LdU7gfyUjnjVQUBXFi/rnOfre9OLgQEf0On+UgTo1sJorT0VdlV2PboL3BnArWNXZgQGtJI90l+/zEsWlYCKKwgCg6rH5YocGN6uEuic0+VGRgQBBAO8rzyVv9pNgjr1jQCB6iim13tsW/bxW/IQdHw9V3/yBpU899QQj6XPWzMN5ktQ6fEmWpralY2AT4CXAaZJuHreSXn4Xh5so5H1OMpvFwF6AA+ZOhCQ5PpzvAIu9xwUEAASEDi5LCfRGOws9k5Rd3XveJPAJMnBlMc+g4IXAQOJIUYoakk6LgzTdrx0lzpjed5Ly5I6Klk5abnfu3fvnlg7tNqSwE8DTVZYGnz0SvBcip6fUKb17+DAAykJCEZgzZdOJu+G12ck6H8FSkIzjYVO0aV3nf91TgCcwEA3j+rg1QNQvSxuwQkIKHDWhaxPE5FfdS5eSePc3xl5BUbWXNc/BwAwpk7R67cDBiMwkAAhKYE7GT8JEHQggOcdEFi6GsDbwuvo1zeb7TgdemtlsOn+koNl+dGg4JvBQFJuCQyMEBEZS2n4XgL84JCvtaeyZUS/b5VLxUcm2bWuEo4OVM7OzrYsHsUOyJJmJ4tpumBBtZuXj1Yj66y4gOvr661pgG77YPeWJNTbAQKVQ14ECnmfEmG7/apggDQHBJJASe/6/D753WMF1OZulTkvEhCkqSaR39tsNhMvcZUCBa6DS1cWuk7w6HE6FKBOS4TngXanJSDA+XgJIHAg4Pqg0w8yMOipJHV9vkuMgKczZ6CyvCMZ5nqsAwJephS87frxR/D4N4GBTni5tcIKd2CAgMI9AvoGAQ9+gIfKn1Yw18X79rr87eqUGIBlVfnSdwEUP+AK2NOpylMbBALORG7Fa+mgPAMeE+CBgklwO7JVXksUOJWR/qf+/RXBQBKSfj/VfwQKCKrp9eL4IJjkr3t6fCwlr4KDTgf2m81mi6fmwECy1FhHgWn9+vdCeD4SoqmtlwjRHyVc9506IDB3+POj9zwfJ1eUyaJONIoZSPySzv1aV77EL6NrDiD8eZflaqsRKPgRPPtsMOAoKFkdVU+D5SgwkpBLFjc/RawP9dAjIEUsxcfoeRdgstJlsbOBfamVyiNKnc853c1mM70jEMBlfnNeCLWVezF43Qcb4wVUb+4kSKAiQOQuXWdcgoKE4vUMy5x4g/9/RTAwAotLBar/dxerKM2f8lkvF8FEWorL9EfeJ/EYpwmSgiaPu7Wjc+1jMaqnKAnp7j9Bi/+yTQ4A4G/aFQQ4n414rrvv5B4kl3niu6U08gKM3uk8DXyGXrfEW52BmwCBv5P4MqXXPfuS9Cww4J1OMCCLXc8wOE7kg9jfl8DiagFNEXRAwJWiR9aLse7u7qrqb4Hn9yg801f/9K57OvSedjQ8OjqKQCApTqZFwDRnyfN91ZXfFkjegDRQukG7BLi49yLxyFuhkRBNgVR+za1xJ/JPsphSWjr8U96+nJCA198nGFAQoQu9qprGIgEozzV29GwSanPWXGrzOct/yTNvhZIC12/Hm4l3U1pdHlXzsmGkFDtlmmiOT8ir/t7IA+Fgs6tjkq9prLBMykPXNN4oX0cg9yXpmzwDFBycy0wuSz7PgepuTP4SDDgQULr0CMhdnubJveFVbj3DDkxuUkZQU3kTULi3g3VMyljpsk14j9ZUZympHClOIEV+p3RYZh+A7EfvU0/3LdESi2rufidwSeQFgsVRWjw6bx1/E7hPY4BTcw5gnBf91+ui91lPj2VJfMf2n7vmArS7/6tTUl5LebIDA04uN0bGhivm0TPd/a6e3fOpbClPz380rv3dJMNTnbxMqY1p/P0oQPBNYIBAgICA7sdRQ1JgJRCQPsqTgACnB3yunIpceWqp39HR0eRa59f62BG0eBwIMG93ybsrXvWm4BQ5AGC6TCsxV4oJ8Py9Pl1/OvGdrryjNH9F8sG85EjP+rXkKnePUScUKSRcoXO86Nk0rcMyMB8CxNXqcetjjz1QHtqLQmOM0wqsi9fTeWkEXF2hc1y50H+rAEDkbd3xY/JUzQHVqjFgG5VpBBa68jox2HRpOjx3XhONQEFXppRWx7spncTTHKc/AhDsDAY6FJncnB0j6txjBHwZlQsbKiW3ztMaelr8ek/CTMJK72l3PgERRU7znaSsHRik6QBnLpaJaSYg40CAabk7yYVqig3Q79zg8XZLnoWRl+FXpAQEljy/FECQ10XqA05RJdKeAUmpcsx42iob967QtIDHzKhs7gkkGEjWfgoSTDQnnF0QjgQiBb4Lf3/uLYADBwFV2SJdMkVQlUHAknZMoK17Lo0fB6zkNxmfo/qP+Kaz5AkIvDye1tK2SLqR03KJvjcgeBHPgAOBJYPU3yUSdYHonSxhkdbPdy5ykXsJ1ut1HR8fT0Dg5uZmS8Bx7wAHA75aoVvK6B2fPAxMZ+QRUNt2c/XezmwvPj8akA4EuimOOeSbhPjPSMmqcOGQjl3TT3zCoE9dc6AnAeL5u2Xh74vooSOoTJsDeXAtp+2qHve/GMU/JOpA5y6Wp/N8BwjeIgDQ70j5zx0jSvJA10dGIa+N8qSXK9WN/Orz/NQfrtwTAEjlTxb9qC1S/bu28GvJIFBfJY/zS9GzAwjdmnErvutwvk/BUvXYCHR5c/c+UadMU+CcK2WWS3OZI0tH1g4Zjcrf804WOfPWdaWTQE0HBJiWGKMb8EuJzE7LzoFAas/OK5CU2s8OBEaClf8TzQmE7h21rxQsvw2Qyim+oCLlHHzVU2Cnd7XOX2Pg4eHhyaeyuQrBhbbzhY9BXSclfuqsIrZLotSmc8DUr/1KlJTOnNW/qwyZMw743Jw+8DKK+D+lkeSgzn2TqxEI8PKm8nfG3dL3R9SVk5SM4pfk3ReNGfAgpY65EjNWPSrf1Wq1tQxJbkYRBZ2e8zX1nfVMwcXrBATMQ3OgdMP6FEVS5smiJxFYEBCMwATfTeSIkgNlhNrdwhQ5EEiKJJUxIfifkUYAIPF26uPRefp1QEblLmWte/qSJsdTN8fLNJzH1O+pj10AKg/f9VNjMW2JnTa76gACy9opmjQ20lhLfP/SAnQfycef80fn/h+Bga7dyFf6n8rjCjGVkfmOQIADBl/+zSnhBAhSvnOgZiTLlxDbj33C9Ob4VvS9vAPfvLTQ3fx8ZiQ8O4FFEEBg4OSWj4TRnNLqOv36+vrJfKcUND+GJErz9e6tUDqp7PpNljcpBZZ5umxL9kcCQV2ZdJ0C3svlSqRL35n6ZwQEI34dAQCRD/4ODPCg8hcIdXe+nqU3TXzqy/687b0PdYyEj+oq3k/WisYtl7dyA6y0ERbBgSuU1JbeZiyj91cHFlxh/YqgoAMCaTp2KWhP7e18mwBbMgw9TdclVdXyGpVnV14qd4FnD1pNwKCrcyr/rjzTtQPHO58jIErlYv1fEtw+K4BQv+lwN/McIFCFJAAZvSxKUw+qvBiRwYKu7FNDqXy+la6I1v75+fmW25Rl9nbxQeJeCpKXzwVwqvMI3JCc+Ze2idejyzuVPQ3Qn1Hgdjz+nICqkaLtgED3ngs1gs937961ANGv6bwTTuJVTU04yFDZExDQJ7IdAKSDK28SJX5NvK76+H9vR9ZNaXWA7WekkTHWxXdV9QbLqE06YJnGQeob/+8KcAQEnLxflwCFVB/WayT7ltBSA8jHu8sef47lmIsb25Ve9BPGI0qVFTkzJUZIKHak2FKezKvqKWC5vb0dRnTruwgjwONzWHquGzCsTxLg/pxb5kzbrS2W3+vT3XvOQEppdUpo3yn1RediFXEwJyHq7eLPU7CyDInIm1LWvpOm1yXVJ1kl3Iyos0pcCQg039zcTId7BVKcTbIm57xgHZhN4zy1tYMdT+dnplFfd8HaVWOlPyc3nBfSO572c0EXp8/SPS/nS/TrkjZJxDr6eUqv03tVj2Mi6cgun+fSi4EBV7CizkJJ76WGkwKs2m6YDtUuyYv/JdCUvt4n6vJB4Du4EdVqAI4QZifIXPl4WQkyOAA9SMzvp7w7Bk2ArUOrXbt29DMBgiRM2TcdwNT/jgf9mQQS3crxtAka0oeDEs0BUcb9+LnXlSsc5BW4vr6u6+vrCQz4VuD0AhAcLAFAyjdRBwRS+xEEJQXyK9BSIOBAqWo8fejnzrdLQdqor1KeI/n0HGL7uAxfUv9ReV0njXgztUvSfXqORia9550efA7tDAY6BTNCN89N2wWqBrJfT40/h8LIvIxNSMzn/33VwWbz+BlLuVSZruZ1O3LrcymTpjrNgYBUJy+L58trCehQqXlaaeDtK6XyOkBb4mIdpZ3I+697RukQAHhgnmINvD9GU1ZeNwbTJktSaWh3wfV6vQgMsC7cFZRtRKHXjXP/7+3aCWUCAQICf+5nIwfrHRBI43CkzP2/P5Pkafeul7V7J8n4XahLlwCI/1mmLr10PvesA4GOR/Weg7NkiHnMkIO5b6VnewY6hkgNu4siGFkA6X9CTl2D0jJh2asel/p5J3kdNpvNND+rfPU+n/PO86kDT3ekKEZtxcPdr7u6z7ryzd3vQADPOxffvlAHADqvwK7Cagkw6kCBBxHy3DeqYsAUhYbzPstFF6zXN+38yYBdxQnouL6+nsCAr+5hPZXWiHe6duxAQHqW+XFahIDgJa2r16IRiE3erEQJECSg0IGCrlxzNCeXqp7GDFC+d7zVlYf6ISndpcBmV5qT8x1vdzolxdd9Szm/aZpgDhCMhF93b8Q8iamTxcDfND9WNd6EJZEDivv7+62PMo0Qspc1MaBTh9BdYfAQ+RzekoG6ZND6gGF/e/27gbaPlAbeUsuq47+UxxJed4CqayKfQhAg0EeEnE8dDHhZVTcCgk7Z0rOg4EABAMYLMGaAnouqp3EBCRCkdktW01Lqxqd7IF7a0voR9FzedZk9p/SXAIKuXK64U57+HNNIwYPeT6M+c9CnNloStJvSXgp8Ut/w3J/nuPMxSCDgZfbnn8u/zwIDSTHxOikhGl7XPU/b3+f/qu0NiniNQsfTd+Hq86xdYBHT2Gw2ExDg52D5HhX0kvYhzUVWc/51NKD5Tpe3p58YydNMA3JOmOt3X8FA1VN+dLDalT8h804odACJ7cg+SMKOaYsX+LVOgl0GwybAq3qm1QKr1WryMPhyX04PuGeAYIDTBGwXCneOlyW8tgsPeb+oXVJf0pvyMwKCpUAgyW6XE90zuiYatZGDtw5geh5+n8ZcGled/OYzfu5AII3zJaCgq7Pnn2RIV6e5dBwQuDf8W+ibpwn8PyuSKpzQkSNW/qYGHLmc3XtAZU1B2eXrlpe/SzDgsQM+D5nmdX1QJEQ3UuDcpGgECtIKhtRnSWD6/yUgJt0fpb0v1PHjyL06UhipXToA0AmCuWviMU5t+ee1tUw3lZ1l0bSCftMhHiffyfInGCAQ8O+EeFu4x84BdKJR2476gs8I0Hib+Nj9GQDBHAh4LhCYe0735sqWlFonqziFo/eXTm9UPQUCbix60GjyDLhe2LX/O303BwgSJT3qnjtvt28Fs999aSE7whlE96q2O0/3SM+Zc6bAYedzrwAvE5mUMQTr9Xoqn5ZzEQywLnqOTJbma71e7rlIaFrlosvWjw4YME2l2zFNAiZz4C7Vb98FalXvXvU+dT7hdaUzyqN7Zm4AdwBBvKipAtHDw8PWlz67dFarR+tfdRZPa5Mter8INLjToECAAwHfBIx1p6BPSqird+I9naf6sd2TgeFWafrdR+oUTgcGRCPlnv4n2TFqkyWKO5WD+uFbyeNqHBB4Pryvft8VEHSAn+eUJyNgO8qD5fQ4OdFzefebtiPulEL3vN93xKPzufn7UWDcUiTJZx2VKk2mLWuIQlgxA3S3urKg9c4ljMrfpybSVIXXRwI57eKWAEIa/EsEXhIQCfHrmk8FpbbcJ0qD1QfuEl5KAMHvibo2H7XNCAxovLCvCTwZCzA3rvilQsUg6L/qQW+XYgJ8g6FUFo8ZcB7S+Ei86m3ZyRpv12SNUdgzbwcEPwONQIB7XvQ7x3dLwcIcdcDZ5U46pOAeHh63354j6pBkSHI62RWon5Oeww9z8mSkK0flYD3VVh3AeU7Zv2k7Yp0vBQLddQqsjvhMGsgdifEonJh/Ah8uPPx78uwECku5Zr3cXexAahcOCBIFuspEQesbunRxC8q3U+wsR0dz/Z3e31cBm3h5NEXg71Qt8wyk55leai8XpqP0kwJOIMAFPe/RS+CfMPa0yHMCAun7A87L7qr168mz5W2lX5534MGPpOR8Kea+Txd4G9CL1fGsy5+lddoVBKT3R1brS7TtkjFKeV2VPdDJOFjCA4knPZ10dGXv3l2Srug57fri0wSjynWKp2ocOKf33brwd9N1Wv1pzkjnyaIYlVFpk8kYsMXySyB6/bs53dQWFFC+gYsL0O6jMKrbCAiMBm73XPqv9/m7r7Rk0M697zQHhpYIxNRvXX4iCrwkiJ0fnd/Ew/QMuJLhe2k6LI23VH/n886L5bSrQE1TEiIBgZd2uX5vGgEB7yv97lqH71XnBAi83+eMFVHqm042uYcgKf/n5pWUtZ/vmld3Xf3tMQ4uI3bl3W8GAx2TdRb30jT9XBVLQiS9r7ySQEqKf66TJexWq0cPgK7x868OTGjxeD08P93r3LoJ3S/xDDj5INtF+S0BAV5m1ntfqKs7j1EAntNSZZ8GaAccklLaZXCLR6gE6YpPgIBKhcLGd91k+l2+qe5Lyrv0+aqnVlx3r3vOgfy+Kn9R4lsHAk5dfyzNa9f3OloCZr8X7ZKnK3PXF13aiddSmkvK1YGMObntIHAXevbSwpEgeG5ndyCgS3+uIUfpVG0DlpRWCh7zr8kpCpvP6hrfpVL2eTDlzc/TKn8Kawp1AQBX/KMpAmcs//V5xq6P07u8x/ruKtx/JI0Q+xJwlITEErDg6N0RPu+l9B1opMOnwwgcOdXENMTfysstaoKCUV2XkPNkArp+TuqEYHrGz/m/CzBLQGxfaAQEvG9G4/g5+TLtXcjbsANuS971e7s8r7yWkCvfOVnY8Zjnt4R3U9qpTCOZsWt9v3nTIQoZR9wdpblCT9d/2Qj+O0dpK2BfxTBHFBJctpW8BB4o2LWF0vOob/8yotJmxLjaZgkY6PL2cixRfksAmP7vq5W1FAR07bFLfXa1yjorhMpK/2XV+jfb9V6aIx3N55N8+qtqG/juqhy9DUZKa4kCS0bBnNDt7nG6j9f3lW+9rz1gUETvz9K052ikHJ+Thr/3XNDl42bkhRi1RyfHRmXrQADfmQOXc//nypr4dlce/qZ9BshsOh+5VlOFKaxY+A4Q+PuiLnhml47350f1cOuddVFZkqCVZaWVCJyX7SxzfTPBBaRbe10AF5VyN588BwZG/ZDaawnyfU1yYTqnOKqWea54f/R8GqgjVE/lTG8Cx40Ao3jGrXgfr1V9QJ/6uZv+IqXpKca1JMXu7ZDK14GCUR8tEd4j2kdeJbGeo+WDVU83VfM0urR1PgKLu1jfnazhOcfhqIxdWRIf+xibU4ypTEsMzq4+o/cSj47qznE8J7c7sDZH3zxN4J4BKp8RecVTjMHISloCBPSsp73UG+AeCApj5eWgQMIzMTeXIAoEpP0KKCC5jpwu3M1mO1BQ52m5oddF/5cyS1Jso4HCwc022wdLywdtF4C1hFJ9EohNwMHbbgQqnPc47lwJss3pSUplcwXfjTeWNQUTchdEX17YKSSWOcmTERhw/uuEYff/Z6ROAbgicr5bqgD9mt5znnMaAdhRHl4P8pXLzV37z/l6DrSMjtHSPaY9V94l4GlO/nR878dz5ex3CSDsGkP36EHYpaNTYyVrJpEvLRmV0a/xWQcsbmm7u1/vyrqi8uGWxvQQMJ/VajVtM6uBOdp0KAlTpZOAWgcOkjBO/dz1vYO8b2HSl6YOEDhvJSU01ya8ttQqYZ/MPdcdnAYYeecSKE5WSiofxw/5NAECNxJE3bhzXu4UUOJj5+lOwXkaozrvI3XAx5XAUuCdlDbbNPHXc8fxnNJ1UFM1b7TNlYMA2svi00IJEPP/UiCQfrvyjuRQqusSIKD0XO4voRf5UBFpNLjSAOwU+NIKdBZ/6pDRBhZzQtjT1fUEDjqA0AUO6h3fOjkFIcr9ynXdo+kBvj8n+BIYSJbdHLN1g/q1wUAnRH0wjSxRv57O+b+r85zyGinBlC+FtcfIdGVwz0Ii94Slb3EknuxiVjowOgp8TXVhW7iQZJulc382Kdl9p+eWN/V3d40yYOTdG43rDnDw4HSH89e3UoqbYbkon1MZ9U5X9278LKkDx4KDkpQPZS4BjQOb58rZF/EMJEpuf75DC6YTcB16TwKFHZc6d1RWvz6ynkYKgXVjuTwIq7N69A4Vv47khk3Ct/MKJOoUYGd96p1dmG2kZF+DOiXQofjEa7uAgu5aohGAGJWD/J8E3xJAUpUtMQoZ/mfa9A74Z7SpsJWn15Np8JfPOA916XvdEu//bCAggVinpX08Ul7pGpXNc2lkyXbTA0s9x0vG1pIg2TmaAwPfQsl4SvIojb0U+Mq0dpG5L7LpkAumqrzrmROVtw/+UV4jAOGgIFkNnfBOTOMAY+mg8MBCggF5ASj4XEhK2etrdL7lqwOCJISdRsqP7dEBAd1fwmgjC2QfaAmSH9UvKbRd3p97dgQU03gTpbibxA8O6larpx4FXRdR8JD03ij4j+PW+Wc0zZXaILWF18XJg3NdgC4ZG69No3IlkD4CQt35LuBhCc92eVD5u+JfAgRe0rAYWeW0tjueXFquBFpTGTpg5qBM5fF3djXYRC/61cKE1Ocakco7CbiRkO6EnI5u/tTTWaLg0zMjRUBhw3gBrQxw4aQlWz4HKwDAj8Gs1+vpfveNAqdkXTjTLRW0SxltZJ3tA43agM909R31f/cs00zW7ijdDqh11vFo3HFaYVSH1DZdPmlaIFHHZ3PxAiq3B7Xp3c4jmAQswfq+g4Cqsbud17o+mgMS6TcBOM9nadk7AJB+lwZ4fytRwaaYMta940nn5a5tUlt2POd863n5NbVZAuq70IvsM+DCgIVaiqj4rKhTJgkMsKGI8jo30C5AIL3n5fB7LMtm8/f+5wICqg+nAlhHWvz0DPBrcCMg0IGpkSXkDL8rEhaTL4ngfQ3qLCKRC7xOeb+ERdKlNcdPPuc5F5g5AtLd/+75kaIZpTMC4kuOlB7ljWgUINwpTbem/Pel+/0lqLMa0/noXpJV6f3uGu8lRZiUnh8OABIQGHlknyvDnXzVE8vvYID5Jj4dAYE54rs+fVJVW6BltVpNK80Yc+HyvGq5LN4ZDLhwcFQvl6Ez3nPAAGlUocSMPn/KKQNd24XmOjw92wkctZd/+VDl6uIECAC6WAHmS5oDAs9ph7m6s877QknojYAAaQQEd6VOaOjX8xpZETpSgCzrOwc++PyovIm/OuXSvc/zpfIhlZmgwIX6nBLTr4+DBBz2gUbAvns+yR79n+uzJWVIynKurK78HcAl482nkh0MjmjUfyo7lSzjxHTP+VT5sywvwScOaNk+vjJC8Wdpyus59E3TBGpIV0oq+Og9nfs9v85nlwzulI6sqBQIswR8zAn+kQXBd7kRi7wBHj2rNlRMgE8H+LLCzpJagsw7i8mp649ECWF7e74WjayfqjEIeInyLwFSc7zWRUTvohxeQmjN8YnyG42HjndH73s6Pq5dcHNsduXwPPeJnGeXgPn0rCgZDLsAUxEBVwIELjNSfIADhFHbfy8g4HViXmwfbw8pYMnrNLZ2kX0j3UJD9uHhYWvbegIGB39zstrpxacJ2Egdk+rdpESdWTsk68w2AhD6TRHWuwqhkaAdNTqVN9vp9vb2yTP0svDXvQCjwddRYpZOaKf0lzCW6uFIdh8Ebap/1ZgP5trTB33Hsx0lwTt6zwWhf09gTrDu0g+79vvo3OvnMS5pTKeydmM/AQwKbr4/suSopPYBzCY52gECljfdSzLX3039kcZxWmlFEObl9WmBDrjOKfqlweYdpfZkmyRQkIDBSMd9K+BOAEnXJFu76YHn8uo3BxB2gy9VZGlavL5UoHYDpstvVyXK+0sb2+vCQZLWgjtYGEVZLxWiqQ9G7eK/uyiDlE4Xs/EjyQfJ0kGzRBkpvfQ/PTdSmKO27sCaBJLvSbFEOMyBnTT+5gDv6LxT1j7uk8LycruCG5XJ2yeVxdPdR/LypT7u7uu/AwLRqK+7PvAyOQ8zj05ppTIkIr+PyrZUhos4PeBtQHc9AQDr7ccu+mQpjcbvS4AA0bO3I3YGSIN66UDVebrXMW96RzQnwL2cu1DHTH7PGatTsAlIJeXvMQFp0M4J945S23R9ukt6zwES35s64TknVF6CX+aU5RIiXzkg0P1drAVXHksBSRqvc/eew1dJuaX/qa4jQDFXhjn+eE2aU6r+jP7PydIREEjvpP4YKelkyYrmAr31THeP15bIP+bVAQKvmz+b8knjPaWzC7FM3gYdLzwnnxfdZ8CPhFbTu37uDDgaiB0Sm0OYzyGmSc+HB3KksjHvBADSbxKcc8J6FyZwEDE6ujxHwsb776WQ8nNpBASScPzWss/xrue3lEaAgMCUAq8bj0nAk0au/F3OR0B2KShI/ad6dkLQZdGSceQ8vU/kfbgLGBgZC4mX+E5XFs97DgzMKSu9N5oqeK4M73h9Lq2R0l+qgBNwSsQx60se6RXx2KFUhl3598W2Ix4BAmfA5wi+9N5oIM+V19OeAy68rgAOfzat9ewU/wgEdF6ATuDO1XuOUeeAwC4CewQE9kWwjoSY7uvaUhCQlFD3XAK5u7ZVBwhceIyUxa404sNOCXT3O57qFNbIAkqKplP+qQxs93TsA98mEOsKyZ8f/SbyYLiU3tz/Tlazj7p4gdHywaW0hK9pyHXAaJe8yIME4yPe6shXw+jXAyhTWZbm0dE3ryZgAZPi2EWg6vkl10cdNhLMSyyC0XWP/ncA4CsWXGAvAQHejiMQMGqD0aB2hTRXRuY9BzwSCNyVD16avD3mwFHioZGFkK53AGNpebvr3b2OZ7q0ybOkOavM0x8BgjkAmwCRt9Wc0p8DA0vKzDK8hGD9UTRS0nNggdecv/XfAZG/t7SddmnXOR7u3n1OP40MnSTHqp5ODbM8vpIqyYC58krurlaraTM69oGPzxRMyLItlTkvMk3ASvgx1+EjGqG2TkE5447yHCmGdI2I0qcJfOOg1AlLAEEHBJa2V1J43eAjs6sM3YqFOYA3NxD3RaB2gqRTSh0vJaHbpcVrCYwlgTMHVkd9ORIAKa8u3wQUR8847QJMWId0r4tE30XBdOVJCmFuLL82zcmsrl1Sm1Y9dT0vkeGed5I76ZkE2EheFpZ3VH9/RtR5HNIYSmXx/ncg4PsSpHPSSAZxfN7f30+71yZi3iyLjiXGG+lFpgkSCNiVmZxG78wNbL4/Eorp/xy6req3N+Va544Bd1H0SwVQEgLd7l5pIDpIGXkFuvzZzx0IeW1AkNqpU2JJaXo6c8ongQmmmfLZZQCPgEQHUPx6ipjehZYAkO69lAbLyudGfLwE4PFaJzOUnx/7BgSq5j2co/bpdrdzYDAHsJhfypf30rOpPilIMI1b1iOl53kSYPiyZ5+6depWQ3lZOiAw10esK8sgQDBamcdpQRqlz+HfFw8g3IWJ+H7V7soiWaudYPJrSaDP5Z8Unqc3yrOj7jlXJiNrkW3uQrMTos6wKZ4htbGfd3XqQMGPplQW3nPBOgICXZqiuTYa9WlS6ilfEvm9y3tUF6/HSFF25OMu/Xb1SG2R2kz8qw996VpXryUgtivTnDJ9TVqimNORFGf3yXQ9v0SppXxHewgkek6sgMo+AgSuXAl8khek279gNG1GWZqMvM5w7cCQgyL3DPhujXpms3n8vo3eGa16SPRi0wRuYXpDqAIjYbNEMMyVwdNcSrvkM7e0ZC7/BFpSWkue0fU0+NMxYsKu3/y5XdpqnwRqEva78koCE0sEdFUvJJyW8n7KuwMgI0Dk+abrS5TBCBCwPt5+nn96nkDAFQHblwaJp9/V10HTXDvtG7mR0gEBPZOUNQFC1fbudvqvvJiPE/PsyprOlxLrk+SajzV+AE4Gjkfm0/jhuwnQprHF88Tz3dhJ7UfdcnR0tOUZ8Od1Xd6AJO/nNnAivahnwCsyQkJdOqkhO+ru76KMWTZf1uFEhOnumyVAJCkgf5/XdH3umREAkAD1QUMkTFqKZOfq2Amb1yLva/4+Vyj5sRTgzYFmf35Uj7n6pXKLRvOrXfm68ujc2yA9k/ii8yQ4bx8fH2/xtI8Vrhf3JVmkNK5Sn47a8kdRl38ytnjuQCCBApG3FT0DI1CUgIfSZeBbF2WvenTAQuTxWuQH1o1pKg32f1qp5fFRfN95YwQMUvmXypb0HJcLq34PDw9bq9lWq9XW0nZNFaQp4Tn6ZjDAQbxUeHQNnp7XO+n/yEpdAgiWEtMiU3eoawkaGwnMVK8kJPWbBqMLTl8FQeQ8Guij/hgJ+X2irq2q5qeXmEZqa1cac+kozzRPOffeqP/9flf29JyPw26fi9FY7oR5svI7/umARAK34md+nEm8zN0G5/jSQUHila5+r0FLlMsIKFKhds+lgLiq2gJaTM/HQ1W/6srrkpRu+tW5+ptgkHm5JyP1m9dpTneRNzt+6PLpxlp6biR73Bvt3hAfJ50neEQvupqg6qlFseR5/vq9UWU4iPnf0/Z3RgIslaEDKz5/48/NtcEuHTUnWBMISGBA6TDQZJRfJ+R5vrQdX1OgpoGc+m1pfUfz1iOLjdZWt5+E9/VSIJgU2JzQ6gRjt6okURJkXbk7ZdsBAf2Sv09OTp6AAbZpVU2R2AS7nrbn2Qn9pTz+I6kDa3MKXues32bz6Dr3gEJ5CPxc73rfUDkrzW58dDw1GoMOCMgHzmu0lkmqp2/h3YGBbvwlSvy0hOaMhy5/9ZfiBFK82FLe/e5LC5e+x99ES5DY6HoHNvRLQcL7qS5uTaZ0R8eIUj1HqDkNSAcDHJxVTze2SAJ7pLy7cszRUn74nuRl5/U5/vO5Sl6jwumsHZGElHiOwMCFugtf/x0Bg3Sd5PzuK0lGy0tdmbpySed8N5WzU8ojkEtXtIR72nyps75GymhfgICPxVSHOVBQNfYYiNReBFnJU+Cyx5Wy3hcgS3VaaiwRZOg6A0kdCLB8VfUEEDioSTQCKt24HlGSC7y3VJ+5AcrfzjPwQ8FAapxU8ZHAXQIIPA9e65Syp8mGTzu1pXc7MNDlzXdG+wgkayr99zZMx2h6QOeergdadYoylW8k3NNz+yBUO0p82SnTJa64OSFH8JkAgZ7hr5eJZRuV1/PtaG4jrBF1YCVZNCMFO+IbHeTnk5OTJ27hzWYzzaGy3mkMu4B242AfeTfJpe5woDandKS4Oe/sbcbnHah1ipnATJ9x7wBmVzaWkfnPkcpIQOCxEZ2HwOvM/962qY06ed/ppdQG7EvnSY+j0O9z4gWqvqNnQP/5WzVGU3NAwTugU056h0I+WStVT1cG+P2OMeby9mNuUyFSp5Q7xZSUlIMAIv25pTKj60sEdirnvglT0Uhgev0SEOAgHAVJJaKwJb/OgdgRf8zVt7vWLStdyp8jINAJzRFPUMg5PxMIsP3v7u6GrunRGOzG4xxA/pHkPLLkINB0d7kTFad7EROocyCQvGSjmCS2O+Vu4muf5ujahv9T/fS+ACMVrfNsN3Y6IOD1eq7sZ33TM+4d8Ouv6hlwGiFVkivedM2VeuqIbsDOdSb/jzp27nxp/UeC3ttAv0sVElF5QukUkg4GXHkn6hSknydwsg+AIAn/kTJ1IONAK9XLAYHyckq8OweklwJq1nf03+89B6im81SvERDoxvUIWCYraLPZtABtidJkWVwR/AxAYGkaVdtfCOz6Tb+MVKdykWxxUMa85F3g9I2XxeuX5N1cfdI0xOj5xFOi0fhNuiPlkYDAaMWCiHzMqdyufzt59Vz6Lp4BnfNX544cEyCYyyMNztG1ufQ75cD7c+f870JliZBNAKdTSGneNAlCF9Kr1dPvuqc8O5oT1MzXy7YvNFKunTIagS89q3cJCOaIg78Dzvy/hI+XXk987ILH26gDAnzG81gyphI4571k6VCZpT7rtnGdU6a7yKIfTR0g0L25/p+z+D0NGhBpDCiQk0aHFN/d3d0EJBJfOHU8lWiXtfOqR3c9eUuSZ0nEsjuocj7qAAHTSWOM3updwB5pNC47+i6eAZEzaipUp1D92q7onJ3TCfu5sqR7nRCd+12C4lM9KfxSYGDnMiUtXeqo35Hy6YDASHHSentN6hSOqEPa7hWgZcTnl/BPytP51NNKgmYuXa/nkvdHFsuIuvtzYHwunwRmu3Tc0OD7S2THHG/uKn++FyWguMu4SisGqHRcVnTeAAGBk5OTLRD88PAwGRx3d3dD3ujkS/oVcb9+r0tHCfQobQLL1FZ8vnumA1QJEIz6jDxMIMY0WNY5A2Qp74u+2zQBzzuFv1RZJmXu9/x8CaONaCTcExr3cz7b3VtSBp5TOREIeASvW1pe7lSXpXX35+aAQAoo+tHUDdCqsZu0m/Lw1RlVeU/1ZHUusZJSudLzS3jqW0CAyuHAZI4cBHT8yHv8ZblG1pZc0D4d8KsS22kk35zcgqVXQO2n55SPK0x6AQQGeK3qb0UtIOBBeV5O72v3DKTxpeupzCMwMJJBXfzBCGSk8dDpOJ2no0uL+bq3wEEQaVfl7/RDPAPpf4eenJLllJ4ZgYT0fFfWBC5Gyn/UuXNAYY46kKRydYjW25P/uWTM81hSHubP8iRQsA9AgLQUdI4ADt2iep586/OiuyjsXZRxAtTd892zc0BR13cBAKOyd+mP0qiqLb7VsVqtJle0+FnKaDRmlgLdfaMEmEZ8PAKTUipV23EuLjcEGOgF0PHu3bvpunskFax4d3e3lW+iNOa6snNnPQcbIzCgOo/ilrwcOifQ7NLm+wkE+P+RXGBZCXo9hmDEw17PpTL4u4IBUmJiBwKjAUxyxtnF4ve054BGV5elaG8XwZvyoauIbjiiRS4HYvk6MCCh2QnOJeVKfUJLOu1tsE9CuFOwLgiSl8MFVrL2u4j8OaHSpdlZIH5tJJz4f04gpTIsoaXKNuXR1Y0Wkeajq7bXiwsMdKCXZUtt4+VI1uu+0Gi8Jr6cc4P7uZN4nyCAYIDeihRIOOJPlnUODKRyuqzTtdSf3VSqlG1aWjmKH5ijVJc5MMDn0tJjlU9pLNWNS+hFwUBSyp2g0bkDgrn0ndk7QDASmnMNlBipS9PrkerYXevIldLoOSFGLqsSSSDyeReYo3W/S8j7oIu0V3lei1Idqbg6C8WPZF0oDW/bUZt2Fn4CJiz/S5Pn73xKpbiLoEkyYG4spHFGhS6wSxDAeBR6CFLQ1pK26Pr2ZyL2DacH+Cvqplf4PsEwgYBilWSQdH2e+iDxD40HjjMvX/K+ufxlffWfu/SJeK5nfPdK956M2pNp+bhxGulGegT0Pq9xuoAGGJ9nvMcSenHPQFLWIgoXBwFzg7azlDrhxHw61y3Jlb4zU3o+pdUJvlHHd9QFp0jgUfF25fO82Cb83UXodYOYsQweYbyP5H3uEeoOAtJ7tFbJyyOeTjyVBFkCot8KCuby5i/LMAIE6UiAqxsLozHGcU2+1xRBUt4CZaMlZ7u0Qfr/IymBFKc54JraibLRQRnjj6rqySZmXC3kir9qexMrL2dXdlEK+HMvp/JcArpZToKCtOKEyt9XXvhYSHXifXfv+9hg/VLbsI8EBjq5wj5nfNMPBwNJOXRK2oGAd2ISIiMgwPxEHok5Ejb+/yUsg6SId7VOHCU6eFLwlLdxBwKq+hiIJc97WycXuiyFtDPcLm3wPWiJMNVvx7tV24JB/90iTXEZHc/OtUkaG36+pF6jccD0duHXEUBQ3kvKnMrmY1/tTsFKK4jvJaWU0u5kkKe1r2DWKQGBkaGQvCd6l/8ZoJy8fgTBHcCgHEgAZWTUuPzrrnVggLyjuvkHj0juLWCbLQVmTIvgwN8f8b7n29W9y38XIFD1gp6BDpV2FkNSRB3a6fLjr4huJgKCLo9d67jL+0mwjjpvlEbV02jfNJ+V8hwJaX9O1/zc+9Y9ATpOT0+fDKalm4L8aPI26UCAK540FTOKEUjjIrlBO6XFdDqwPKdoO3C9VOl36aY6Mr+58dtdc/5UeuT7JQovyZju2LUNfjSl/puTu91KgcS3bixwbNDaZDqbzWYrBsk9Y07eV6MgY+d/L28ac0mHeOCdnnl4eKiTk79VYAcIGEtAHuzySsT8OyNpidL2srMczhOv4hlwYUqmcXeFV2oO2XR5PIeWDOYEMHYFAKN8lzBPB3L0PpnBn5sDAqn9Uv28/p6OAwHNH56enm55BVRODYLn9t1LUaoXz1NbUal5O82h9FGbcVx0wq1TWF6WrnxdGyQAqHT4y7T9me5+l6cDr5R/ytvPCcochDiNxp4DhPTuUqCwD8R28KXGVdurBmjBOxhIykrpk8ivd3d3Tw73yHg8E/m/mxbg2GB+aYpzpKAlf/xZxVpprwSvP+NR9EtQwPKOeNoBif6nYEjvyxGxHRzMjGR+Ry82TUCB54dbJk4d4k2/3bWqp0Enu9YhpclrzxEKrPeoU5YIylSGJPBcaaQBl/KeK5crNYKB09PTKbDI24u88NrkSmmXQeMCokvXPSNsL4ElrrbgNEP6XQISOt58CQBGYdj9JnIvSLJWXAnMCfkkhLv0mCbPu7R+Vkp83FncBFVp/tl5yces7nPlkgAAVyiNYpEcCHSKLH1AyKcj5niEuifJn9Vqe98FEbdhZnl4XXmNdJXqm8BWAihLiM/OBUTuQt8EBpwBR0BAtFSIKf3umgv09BzRVyfAR2mrvP7MSwmOJfl352TCNBgorJ9bpk7IuHJThLHAgBiSKDqh1x9FIz7y/x04UFuOUHi6zngKPxIYkFUlwarARBeyKY5kjjeX8u4ccE+AIKXB+hMA+Tczqp5+KCkJ/Y6W3OtA9K6CeN+ok79q56pHS1u0iwwmqU84NsSjd3d3dXt7u+UZcLChvu7Ky/JpnKXAQR8Hus9fpsXyep11j0F6XEIshX1/f18nJydb0x9z3hOmzTgMr2eiOSPF01rqdRnRs8BAUsgdEGDhk4WzND9H/17R0dxT16hLlcRzhcUShZyU/dJrXRlH9ezQqz/vQsYFuys29wwIieucu4btCyW+IiXB4ZTqxMGY2iit0aZQTS7Xbk6WQCABgm9VdM8Bk+498h3rCAxIHQgaxWMsqWenKFi/XY2SfaAE3Nn2Xbk7MJBknZQMtwHmvYeHhyf8SlCbypz0RtV2nJfK6TqkA8S631Eaw6vV426GSof3CVQFBJzSNZ8m7YwFB6RuzHX16Iw/1YkyuwMTiXYGA8mCmgMCc3NVSwZiYnZWuBMuTrsKx9TwqRM7D0LH2F4/r+vSe3Ntl5hjRAkA6Hy0E9m7d++m4EENam0Oo8HEHcleizpgmYCAfkeDTuTzjjroNXn37l2dnZ1trdMWn0iIyrq6vb3dOqcb1hWlA4HEjyNLf1dg7vX3OndeI8WU+FRJVa9YEhDycs8ZGKPx2dXPFeS+AIIE9JMsZttK4fk8NduM7eG/9Fzpv+4nIOCg1ctaVU+sbwcEysfH2Uj2jnicY8TLIx5zhc3ydQbBnCGm+iSvIcdsCuRM9ejqTuCS5PcS2gkM7AIEOMhZgc47kARtYnBaF74vvwMQbl+ZmNMbuLs2eialNWo7P/d2nftdqrj8eTJIei8NEgdeycKVkPd4AQ4A9fvp6WnbPj+CRu3OdnVF0LVP98loxlOwrU5PT7faygW2A4H1el23t7fTuvr1ej2ly10ofTqmG1vOv0sBg7cV28C9Rhyjqq+O8/PzLSDkYECKhO5mnruS8TlquqTnxirrkgTwErD9o2hkHOg8yWIRvx64xCAQ0Xgjj5HXEnjrZC2X8/k46YIdBTh8fHYAcEl/EUBTWbtyJX9rmkD7W6jdfbMlJ5Xb23+zefxUMdt0DswToKW81JY0wL4LGGDlXFmwY0edlpCcK7BOwLg16q5HNlzndmW5OpSs/x1aHgnREUp9CRAwAgSdBeRHB2RS+dQPamtZtufn55Nik8Xnbm/vk30QrKKuLTuwpHMPnOTHWghQ56ZS+KVJ8aKUfprzU7nEw7rG/xSgS+aIlwjUES+6UPe6np6e1tnZWZ2dndX5+fnEM15/5ZnGrEAR73XnVU+XXHl9WBcHfT8LzRlNPNSuid+d110hVW1PD1CxeJxLAgMsrytEXdc4IS+4B4gesA7MzPWf8zTr6dMNLJvKpGkCThcwoDD1D/OmV4LAI3nLU3mUDq+nNqZxkYDhiBaDAReYcx6BJSBA52wkdzcmK8OtUj2j9OhylTBZr9db7lWW0edgRwito65+/syuAIDnrhxcqHEAzaXvZVL5Uz+rH9T25+fnk5CngnNXFcvmCuo1KSn/OYvJ+4D1dmuXoICHP+NjRoLl5ORk6g8JHO6XTsvJXZhuvTnN8XUCAl0b+DglWBR/EAiIXziuySe0+BMo8GkTeU5c2HF8e52SUpijEV/sAyUFSz7xCHg9p98OHFLhC2zOgQFXZuQX5p3GBNuZhpvycNnHsj8X0Ll8YnqcbuF11d/3H2D5WV96IFw/Ohig14J9kYCQ8tB1AhPf/2UJ7TxNMEKijjS9wrzXpUdBQQUkQSLrQv91X2BACFYg4ObmZvq9vb2NQVjucvS5Mc7tOBOqHnNAYGn7sl1SGzkoYJumAdGBgCVlYT7sjwTMxHw+L7cvlMrUtXf3PvmTMQBqC9+BMR0e6/K9KFnHPgZ3Abui0ZjlWHUgQE+SppPobqWsUPs6MPDpk5OTk7q5uWkFbGqHpXXfd0+BKweOVSoJKiy6kEf858CMfe3KMwEBb396v7xsPvUr0r2qmlz0/vEgN4jcAOnaKynWUTsTVKkMPPd5ek+383gQoAnssL0JDrxMXVkTKFwqZ569msABgXfMyAXDChHVHB8fPwlIEwDgQatUlgjBAL0B19fXdXNzU9fX15N3wIOwPFCJbjHvXHaW6pqoY0hHkGyDdD5qs3S/a2eejxSFg7wUCJamaRgQpDbsyvGa5G2b2rvrHwcDUnbiRZ8yUDrJoql6apV02xn7h3d4zwVv8lAlRUjqgGziVbYHeYVjlmO3W0HhU0hK15fDCRRI4azX6zo9Pa2bm5utdmYb0nOS6r+UXgLgfyvNKYLEV2pH/ecqgO75zjvgSksk2enu7WTRpvZL8oVjRnJWQEDjyvNwgyi1Uao3+bcj6jYpf+oZAhv+dta4T5+wbQkE0kefXNf6VKJ7XtwIWUIvEjPATuyAQOooAgEHAG5ZXFxc1MXFxRYYoJs6gYGbm5s6Pz+vq6urSYDIO8CpBAobRmyrg/hlPyJBMnvH9HNtmdqW99LAHaWRrnfvinzwdmAgAQJXfMwzWcmvSaN26MBVp/jSvLi3xxwA4vhg8Bx5UEDVI7UTQBhNc40s4RHvdoCA7TMCjmlaRHVX+p6mnmNA6rt37+r+/r5OT09rvV4/sSbVJppi4bxsymdE++gVSAZDkhUE5bSsO69A1/fkH58moMd0Kd8xD1dU4hf9V/8pT+0S6OCDgHhJ23V6q1OwSclzek7Ea24c+7SKAyuCqq5PVU+Wsyuz8kryf452ihnwBvVrbuk4c1BxkmHlEXC3ogDA5eXlFhigR4BuajWEXIryCEhoCwyM5iN1KBJT3gESlSaBwdJ2HLXrrp3I9uQ53+e1pKicSem+o6dmBAKS0OXgVnqvQXMga9TuPHfPAAGB82ESFsna6ubJxZPOm8mTNeeJG3mL0v1EHL+dAtehdmCkOEGA0lEdSHxPCoJjWwo/BZ2lKcDngPXnAPvXIlcEriyqqgUBHZ+7HKecYzxGAgId8R5lkQfZitjnGm8OBjz9jjeVl/OpT935NIu3i4g85/KU/Mt7Uvosq+qh+8yfxigN0VTupINZ1hcHA2qYhLCSYmFldd3TUIUEBC4uLur9+/d1eXm5dTgQkBD2IC3l4wwmQa25RgYg3d/fT9c1jeDA4Pb2NrZFF6WbBoUPvASo/Ln03wVbBwKcQdNAcCJoE6N5wOZoBYcj9G4w/Gjy9k7tzmf9PAnb5DHhdImIQICKn8qwC5hj7Eu39n7OM+B1Ull43XnJyYE83yFRcbuA2mw2k4CjR0MCXqR2PD09neZpfXzf3d1tgVK1s69x7wDRyNuxjyAgyY4ki9n2BGFqd61W0e9IibgcF9E6dhnvZR61JRWaTxVUbQeBnp6eTgaau9pFnAbpdA3bJQEBlWGpLGfAnt7xlUXKs5tKYSyCnpUnx8eLy3D/z757Dr2YZ0CF6NxFKS1aWRcXF/Xhw4f67bff6sOHD/Xhw4cJDMhTwKh1ByJcyrZarbY6VXmJqdLSJQIFuWo53bBarWq9Xk/pU7G5da5nuvZLXhVXTAlJp3u8n/KgdeaR7lRy7rZl/7gFTKXnoIJMS+RKIfKjKQEhR+56bkQjQULhSwVIAMBD18hrbv07SOB7bmV4ffXrij6NTRc4o/R2Ia+/8vE2UeS47tNlrHP3/qXtrwm0WG9OqewqKPcFHHRgn4pAY9ava+qEEfkdIE7X6FVIsRgOFJmWl93zdWCtMrNPNX1MhZraZ4nXiuM2yUYH9IwN8Hy9XpStNFTZjs7/Ole7uIdAnm6RA5dkkLNvfMpgRM8CA0mZJfdnsk6onNXJl5eX9f79+/r999/r999/r48fP04eAkYhu+KhQu4UqgRJVU0IzN2yjFCm8GUQ4snJSV1fX0+I7fb2ts3PmdIH7mgwKp05ZJ36Jykm95IkK9aVF8ENvTcugMmE3s8cWBporyVYO0EwB8Ao4PibkLmnozHg4DPFqfh9rtdmoCsFoQQFhQYtFbeE0+FjlJ6hbtx2PFu1rYyl6Cnk+I4DoyQE2RcCpOKjs7OzKXZA6buXQQA+AYIOJPm46+r6o2ipUeHAm+NQfOLglYCBlrUfSdnoWaVPuTdSyCN+cmCjPn337t3WmEgeHwGVkdx1L0CaykpGjhtK4lXVm0cKrlbZ3BBg/1KOKn+OIfK1e8TdKHaPzVK5+6xpAj9XhnNeAVcuWilweXlZv/32W338+HELDHBaQMzhLlEf/M64HvAhphXilPBl1LKuySvApXNHR0d1c3PzxKpkfi5sXLGmQZvaMLV/ukZmFyoleuTUCue2HQywbZk+GU9p+7tqW3ftsu1eCwwk68CBrFOydCioXBjzPSpDrod36z8Fr6a9MAh6KdzZbw6UvTwOADgXTGFHAcJ6JaHdAVm6opmuC9jEb0mAufWo92nB0Zsy8kA5bydQIOHt9X4tSooz9YMrFgcFLnM8LV5LoCEBXl1jfIbue/lZhrn66pf9rniRzthMY9kNAfeO8v+Ip2lpM222VTedWrVtuFLhi7RSgSsWVBbW1+WOp+PAYRfaedOhUWON3HBUhlyaJa+ApgY4RSAlpjySeyXNU7NxKAR1v+oxqIarGLhWVsL75uZmi1FGglD1TGWiUk1puKBm+T39NGA9sM2Vv28b7O4wWlaOsF0Y+7w4yYED3VmvNU2QBk9S4nPvu3XhAtIVuK+L5xSUrxbwYECR+IZlTJYKn3dyoJcOD0RkWj72O+tS9eacNEl845aLg46uHq5QNpvH+eTz8/Mt7557PpifKy6dExA46HpNMCBKPJwMDD07SkPyj30nIm8T+DuYI8CnZyC5pl3uiZw3/T2WQTJFYJP9SzDgAGEEBNy4UV0cICfZJf2xWq2eBFnLCKJ8lbU/6l8aVL5Em9MJrueSfP1ungFHpcxwdDgDJ6+AYgUUL3BxcbG1iYvPMY4EZwIISbipLKyDOkp53d7ePunUOaEgt04aXGRKDq4RwnZB6YKAHgDO7XOO30FBAgJkVm/DLsiHbet19ZUICST9KPJ207VEiWc12F2ocCyo38inBAA3Nzdb3gB6ATrXf1c+/XagM73jUw4E1XRFdmDAjwQGRExTPOVWKvumKz8FMV2mbsW6TPHASk69UGn4ueepcfyaYGBJ27N8blx436i9FD/QgQHxPPld95gu5ZW3G/P08vJ98ovy6NpAY9B5TOSeLQf/DpwIBKh4qVyT58zbnGXzIOvk/XKwmvrd29rzS23lNDLQnZ4FBpgRM+wq50BASwi1esC9AR4slKyoBARYJi9f1WMHM8ozKQeCAbq4U6MqDc1Nps7vwADzdsTo9UmCgEiXAIB7MCQgwHqz7zrGS2AgWVwqo4MTendeg9LATZQEmHs4koBkOxAIcKWKAwG2GYUQ8+/KOAICHRjw4EPuX0CeXQIGVG+PS3H+ZJvSOEh17JSZyqoYnc1msyUbCKTkJaDBoHdlaXkZPE+2pwOC16IETl0OiI9G/M2x3XkG9G6ynpUGeY98o4h4588OODrQ43X9jvgxgQfns84QcEDKtkk6JMl0Pqv/9IDQE+blS1Z70pvpNxGBCz3M3w0MUOAQDbpCca+AewQ0PUCPwPv37+vi4qLOzs6eoEYGWLHRRozPcrAxOB/ToWu97wEg7kKnQtbBeUsXLu4RYD0dTbPdWVda3mpTWd/akMm3bHYgoDacA3A8fM5Wgz95gXzK4vT0dGrD1yDnXVISOB3S77446O72tETQBYn4S/8TXzjwdgsllZnvi9yrxvKpLC6QSRTi3o7dlJBPibGOBM2dgGZbCmiL59x1qnILEDjo4fRBckWTTzgufAy8BiUjIBkW3dQdFYOny34lqPL+krzRfT5POcA+cqDnQICeKZ9SoqJl0F2SH5Sb5CkHECSXdcmjwXZzue/t5eR84wDXdSVlcAL5Kls3VdEBb+azhF5smmBkVYiZpLDoESAY0C5uVbVlyXhgkAsjghNWfoTCfJC5xaxGVroSJA4EPKqT355PVnNCs0uJA5PKNu0Dn4CAKy/23ai8bg37INF7uu9xIcr/tcCAK9sECEgOBOaAFUGrg1dvV1rV5D26FV3hOvDyvnOQnkCEeyzSKgYHA16O9J/jwJdVrVarrXNXWA4IqIC1twdBlr5H4IpFxOBCvqPvk+i9Th543fXMawGBqhwj5FNVNDJSu1DBOZhwvtQ55Uxaiqz0qh5XaRHwd55O5029JznLcVVVT5bacjwleeKWOMvqOoLlVR1YNpdxDuiVrit2novfkh7q6rCEmL7q4t6/EYhK9M3TBN4ApCRQz8/PJxDw8ePHKU7g8vJymlt2FyGBQHLHUGiybB1jjCxhVxgqy8XFxVRH5e8W0fHx8bTL4Xq9ju3yHMHigt4VrX+7QWAgWbEMcktMzjamMCcwYv/c3t4+AYAJECRX+I+izjPgA9QFL4NLuVV2AgNcIeCDserphjwUuL6RlvM1wZovTUptr/8EDt2mRgQDiU/dK6B7BONHR4/7ALjy79qdPEfPksohISohrWWE9Dy4Z84VifpDS4MViT4Swm7R7oNnIHkD+J+AgLxe9dQgYpoPD9srMgh83NBJ8raqtvprtXr8pLbSo+XKPGjY6Trro2v0HiTgSvk6UrpHR9vBe/QyOyh170CaluYz9EIlozIF53paSU+NvBoOZnQt7VXywz0DXiEHAgIBAgD0CChWgIEhvuaaZUjM2bn2fHC7MhNphys+p3PGOhBJ+1yyW3VUDGwv78TUzm6RuHKWUtLOjCMgQGvePQEJ7SaXJNNwhcLgH+3p4IBAQO81yC3nqvEKGLfY5X2hV4DzqGmAV22DkKptL5Z4WHzFjx15kCbBBvsteXKWeAVkYXfeCwdFnrbfV120D4ALRJaF1qALcQo4KRYqfY57H3uSHyqfABDblgBdCsDBlPffPoABBwRsDwcCqbwua9hv3g5+370+5IfNZjMt+WN+9KK6p8LLwiDaTrd4nAv/u6fMFa4DAj/vvCksQwe8BV6Pjo6mqSyXL5KbbJPOEBX41fuu6FkWejL0nIN96tEltDMYYCONgICYybcafv/+/RMgoOkBWqvuEuKA6FBqKjPdgkRrXhd1QkLVSkd7ETDtxADsOAoe5e3tmSwVCkteY/t6cKADAKbtLiQCAQoUDg5369IboA2ZNCDVFi5g3Y382pSsiJESpCCkYnLlWLUtWBxQepu65yF5HQhyZdlwTHT8QdArPpRiVSAex1KagmMbcEyw3smdzGW4DrwlPN0C45hhXShsCYQlK0TucVmtVk++qaGyCfSnpY9sQ6/ra1EHBsifPm69zJI/koUONNkfqX8JjF15Uq6NlCrT1zsuKxMlV73GgVvtI53kY8I9zV0/Mx1vQ/duJJkr3mSZ9U6nvwiO2C58X/yrNuU4dw/Kd/EMLH2Ogk5TA4oR8KkBupCT1eqCunM7JkCiBk0uGDKRnlVnuwJ0V69AjlvbQmQUOmn6JLnO5trULUoP1Epz2Dp3C9HL5IOeyov9wt0a+dGnqnoipF2ASZC/JnHguFBw6pRgpxTV1w6IUloU5G5Fs0wEA95fnr6ukwik2QZuiVOodECgszypoNPa6i7CnOVhvRPAoWfK5YHmvROgc8tWZaVQZxk6ek1AQMXP8aR7SfF3gMZ5VteqcjyVxya591MW78i6ds+j+CyBQspq8gvBggMD8o3rgREgODo6mi37XH1EnBqhnOWUGQ1db2e1jcsAn7qrehqLwbqmAOHvAgYSdQJJSkXWjr4xoCWEXDlAlyinCNxydSuMZXCGcErvVNVWQzEIpgMbSishdPdYdChd1AnGpcDA0yazMbqX95I7mOWk6zFZdtyVUUFZLK97TdK842uRC35XPhRErvRGwkJAUmBgpJxIvPbw8LAVMJesL+fvZMHpupeN6ZJ/VVbmxfvpPLWNe09Ybra1zp3H5wCB10/1In+6YmAbcWx6+efGG9vlNagDYgkIeN9XPVr+km8u5wgK+a6P325J7ZxVP/rPdES0wplHAgYdEEigwNuH+S1Rlm6EpukOLy89A12ari9EBD/Hx8eTB9bbmx4EgTMHAt8FDLhQ88FERJ42FhIQ0DcHZEm45Zo6yBVX1djlW5UtJT93pOp1dKHcCSyWp2uzBJ74bodoEyXLnRG9qdzJTaW0kpDUO+4REBBQ8KD6XOlSeKSpix9N3p4dv3TvdopHpLp3Az8BS5820jW1kc9/O1+PrHalp/cTGOEzOu8AiwPgBERcuUow+RSVt6UotTHry2k8V/6UHZ6Wl12CtVPuS8HBj6LUtyLyxcirQs8mAasUSRqX7lFJK4rcunfFrHKpLE4JRHTAkfwwUv4dIBB5Og6qkox2mZoAAcezvAJqH3pbEz+mqV3GYRFocHqk6umqBsYJvMo0ARuNLkN6Bfhp4u6bA2lO1BtxTony18tNQUJhUpVRq6NwCjRHX2lqY0Qj64jX2Lau4PVMAgIOFjhY1U8doHEgoNiAm5ubur6+nkCB0pPrVWX0DYcECF6TEo+Qd0bK0vmT1lVSzKLObZ/QvMh5bnQoD76zhDgGUryAkwMC1o3KgPsWkH9GgY/e3skLonyUtoStu4yTxaiySvB27ZTA0D5QAgJdO+kaQSnbjYqjqqIMcG/KKB6kant1kn5TXNIScpA4kuud4TQCA1L+I4DixPZwI0vyVtc57UA5TN6jHCTgYgBsVU1pbTabadMslZdT3OQB6qbn9ME3eQZ0zRE4VxDw2wP+8SGfHmAllbY3ZofiOlLZOIBcEPIguRtHaXCbWX7+2HdI9LSWAoWllICAABaFNQeOe3b4620kj4DiA9wrQPSqPNyi8GV4r0HkgSQoOoBJvpRic2Hgh7ujmabaVLyk6/SGJVe+Tz8xitxd4CIJ6c4rwT4m8KYiSGA0uTQ7gENLxa3GZP15Od0qpPJK49jnbl0miS/5nPLjr4+RDiT9CEp85ICd/aVn+L6nNVKI5L+0175bosrPgZ4DskS85/zQKfNd+6EzujTW5hSl2kJ508tCfiEocPAsbxSBgLezpswVdyUAUFVbO3CyvZI3zY3qXXTOsz0DBAG0Uoh0uMGQPAIeJ+AoV2m7YEouyhGlTmZDuSslRdi7wFUa6hweKViDzDBXtq6du2tUVlQEVDYOCvRMioyvelQgWjHAffUFAgQMGJegweBCyAXpSwKhXYj5jwQNyb0CmtP3e+RZLk11hcm2p1eBQIUCQlMso09H+zgRyTqk29zbIEVkO78wnwTskoKnQOL2y8mCTO2uvJfwSvLwuWHi7cjAW1doScbtAxgQOZDSfQeh/BXNKT7nKYInGW8MhlPeVPqujMRbSyiNzTRO3YBJ7TXiLQcgo371MaPnCQpE1GfUh6vV6gkQqKotsK34uvPz8+k5vrNer7emW93odIOW/ZDAdkfP3nSIQswVt68k0Fp4uUIkBL0iyofzgzyUjzMjKVkdzMc3ZOBnZN074NaZ0uQ8etqwxa07lVVpp0GpdKlYEzjisykgSO+zzfy8s2ApxOXxYJwAVxBokItBdd03syFTvxYYSNQJCloObGffTMW9SomSN4SCwvlYQtg36eLeEZ2VyP8q8+3t7VQGgkbyQVduj/vR+H337t2Wl8zXfhOAuALqyut8ntpnZAiksZd4WjzMPRa8PTsw/lpgQOTWtnsxOL7d88E0EjkQ4Iop/9iY0nGrlDKVfDhSzEvqmMCAAwKOH/8d5b1UHqlMSeGLEjggePB7nA7XuFfAvQDEavW3p03Ts75SpwMBDpJfHAx0xA6h4qZA4/ppdZQzkgqsBk9AgNRV0FFqEup+3kVeOhggEqY1JStDA8jfT5aR10PvJ3dbZ2G7K0jXafW7K5kAxa1JCff1er0VG0BAICFKEiAReLi+vq6rq6utD0752vAfSR3vuEBN9wnSeJ8Ap1Oum812pD55XP3NvqBAuLy83NqbQ1/yFNgT3xLEUiEz4LOqpucV2CQgSeCsMjgYUVkuLi6e7BLqwM83pFI5fBy4MhGpHV3hJSDjSsw9cQRC2nxIuxHOeRmTwnktooxQWVxJpukb8RjTScC1a0NfSSCARlnGKRr3Cjjw8/oob1533TAnM+YAQXpWee3igXLl3skOglCRAzS1MafPeJ0yk4GbnZdI7e4AwPXCHL1IVJejSg868WhJFpIKzS3ZNDXgTOWunKraEopJSNJDICHpzOcuMAp2KgBvB7YHO52CN5FbdQkQcMCzrrSilD8HND9b7PP33gcpHsKBAPuL7Xt3d1fX19cTktWOdFSer0E+iJY8V1VPBpMPPu9fXaPQlgDprBz1x8nJyeRFY5yN9uXQdt1VtaXsFdxJJax7BLApmI/gsepvYcRNkLQ/CAEJwQABSQIC4hkCSoJJF/YUtB0/pykSjjcKTvH52dnZ9DlyeTb0HDdv6XhjH4AAzxNYYjwLfzvjQ+91xhy9vDoXPysdytfkLfA2nfMS+FhLfDDXRmyfzsuT0urS8HM9y/dHAKRqe+tgB/L0pHZTK6msDga83d27soSeFTOQEndUmcBA8grQGn942A6A67wC3jBsIComNjL/U4E5M4s0kFxx0u1Pa5tCSO5Z1sO9Dm6VpPKzo72NRxYNn/Pti93VRK8MXapUKipLmkoREXAJPMi1VVVbHpMfTaxvh+wdyFU9dTmPLMlEFBA+MMkfXHmjDbk+fvxYHz9+rN9//70+fvxY79+/n3bA9Dbm9zB00Cq+u7ubFCEtNwop8bN7BAQEPnz4MC0H1tggXzi49niTq6ururq6mjxO2qPChar3l/4nw8D7xT0HVfUEBFOxsZ9cUblgfy1A0ClQlo+gVCRZqr71d/Wetz9lGb1EacpL5aJl6p6BJfXrlJ0/s0t/fGt/uaE5Kq/yG9XXDQkBUY89U9tTL6X2cMWfpgaWggDRzuZaYkr9unvJXUxsXDYMmVpp+dHlzWtUZm4xpc0YaCHRAqdXIC2/cWGjvFOgo6JAWc+kbDow48rX3f1pkLqnxgPR3N1H120HnNKcmE850FpUH8gj4HEVr0EJBPDc2039Q8FIS9553a0qenE4gKu2dyHUNya0F8fvv/8+HX/88Ud9/PixLi8vJ+EuD8zV1dWU9/X19ZSXnuH4S+OSCp2gRECAHgpNFXDu2EE1FQN54Orqqj5//vxEDqzX660yp/5iW81Zc96H3scjMMfxz7Rfm2c7ob6kbqoP25xtql83vjhdpXgVjW8FDyt9V0LMO5V5rj2T0vsWeglQsCTtDtRwrCTvAKfzNA0oneP6yo2K7lhafqdn+245WByVJ1DgwlENlFDPc8rABuZyP0b7e+MmJubgUKf4agAqDFceLI+/Q0XE9/09By9uUXosgFs6XhcJfwahaR6cLilOn7jXhmmqvFQsFDhKR4xe9fhBkn0g9cWcZclgWAW/csrFvy2QvtyXPGAsh9JMn/bm1t0XFxeTh0lWNV2NDrZdULPtXfCLx/nRJA9e9CXBBK9Mt+pxXGssfv36ddp23K1R1SXxGdspWfLpUJ0peL0dOkvLZRrvvxZ1spHyhMGhfFYgr+opoCJ/6r57hrgKTJ4Htas+zDOnjFJ5EyhYogPmAB2fY1pLQIg/n6572nPp+HtuBK9Wq2mM3NzcTN5T6RtOA9Lzmtqbv929OXoWGEiZUKl1QWvJ5U43OOeh1ek8HwkABwKMfueRXFnsMLfuGNSXGlXTGlXbilpC1qdB+ByVDgXpCAyoLZQvFY9bNe5RULnYVw5E/BBJcaT0unXICirU+8n6ey0iIPB+V101j6+Dy3vcjcqldwRn4pvk3VLfSwArXkCHtuyWN0dl9ikuCpTr6+vpSPtCJF5O88TuUXCgIdI9LkXjs7e3txMYSBb+EkXSPUvBSm+I0u/mZpNHg8e3WpMvSZ2xlDwf/p7c0Z2HxQ0SXw4uQHp+fl6r1arW63V9+fKlqqqur6+fGACpvO6RYB38/3NBF/nNgf4ceZ7fo+/Jr9JpmtLRVJqMjfv7++m7N/IAcg+bpOgTEOjqN6KdwEBCIVXbDZgGvFtcqfOSMBBg8HdcIKixCAQkDD3IigiL6bGcyfKW5aSIbP/oCZVgsnJc+FKpc0BquoFR3x5rQOHtFm3XV8rXn6EV58qCilFl8DZy65gWB4Oa1DavRYm/3CNAb4A8KbKQ+C2NBAi8H6tqS1HRgmZ/+Z4cOmhJyxLTr+bgv3z5Mh2fP3+e5uU1N09w4N4yAmJai1SUnHITD1O5sB4cI+SD+/v7reDHrm+qtqeSOoFGoUrrX0BAQlPt7/KAgjV5Dhwkev4/mpLr3ctHTx/fc8Oqqp6AA6Uvflfcyu+//17/+Mc/6h//+EddXFzUZrOpq6urOj09rc1mU9fX1/Xly5ehkvcyOqV27ZRzGqtLPQWj/ObI8597LuXpXhwCKAFVTfPRgGJsED0EoymDb6nrs2IGUsZUzp2bgoDArSUpDqaTlJ5XXg3kHgEHA50Q6MCAFDXnh30e1ueO2cHddATryLZheql8yYJNAKkqf81MZdPg5/SJT6VIcTE/UYoH4W6DtF7lAtaGPR4l+6NobmC4QiMQuLi4mD63LcBDz47HC7BPqJRoOYm3lJ68AtyPQ217f39f19fXE+iVcv/69Wt9/fp1Cwx8/fp1CwhwLNA6dpApnvfxQOv79vZ2S8lTuUjRK+5gtXr8hPBqtaqzs7OJLxxUsg/kuRt5Cnz8y/qll8R50OWAe0k8z33zDHS/VDJV2wpJU5wOBhz8VT322/n5eX348KH+8Y9/1H/913/Vf//3f9e//vWvev/+fd3f39enT5/q+PjvPUUYA8L8Rx6LESDowHpKuwMDDt5GRuYcebqj/3PkfUS5IMDNJcA0Jm5vb+vq6upJDFkHBpJuWUqLwcCogf0aB1rnmnQUq0NoVeedoNVgp/JlBLyfu9udngGf99RBa4OK35WA79mtMrGMBATeBhq4VL7eVu6lIDjyttaz3HHN25quZXcl6zkCo6rtz9VKgPhUkPqf3hh6Cl6L0sBwrwo9HfQKMJre16h3FgpBnlud9AgoH83T+8ZcUpDcv+Hq6moCAwQE9AoQEDjY82kg1d2f4woFTpOo/uQzpcU2FOhxZd31iyzcLora+4zGBa0tCdwUOMwjCdXEI69JHRjQOa1/B9s0IthG4i16hjQl9uHDh/rjjz/qX//6V/3P//xP/etf/6oPHz5MSzNvb2/r06dPW9+WUT+Q2G5UbsnbsqTt01jzcejt5EZqalsapgkIzgGPOYCT7jmPHh0dTZ4/bhRGOd15BkbttyvtPE3gnZisdSqoOSRDRaYGEGL1CjrD6XkJGR/s3bLCVC4KRrfCpYA5J8lfghavG+vI9EUaxA4A6HJ265vxBgQfdJFy3pub/+gZLkMjYOqmJegG7uaTqx6XGCYB8ZrTBMmK8j4mEODyOh0+DVKV3dkuCAkYdY3TK9zpjXwkxXl3dzdZ/fxN5wQD7h3jFICXV/XnxlGKlRBo1DQJAaBiHqpqiz/kTtZzFxcXT5bMumKuqkkYUiYkYOxjs/OGVc1vOztHrwkI5pSme1pcMSaFWVVbc9MCA5wm+OOPP+qf//xn/etf/6rLy8sJVP75559b8R/dmCIRhPi0Rxo/fMfT7oBA55Xz86WelaVeiFT29N+JoICBmZxadUDrq3aSJ+C5XoGqbwwg1Llb7N15BwIooLyTnWESstT/Tsh0hyvtqu0PvNBK59rQBBjSfDzLJXLLX+nIeuJgciDguzm6O8nb0ee1KWS5tMW/r+DLIDmYOwHsXpDEM68JBkgc0Gp7Tg9wDp9b8bINq7b3xmd6LlQ49VO1bT17W7pnabPZTMrZAYB7ADgtIC8CN4zSJ6cTGKDnS9MXaSopgcHN5nE1grwdBKZK8+LiIq6tpkdKHjm6/ykDHJyy7TgG+b9bXpmUZ2chviZ1wNOVn/OeKMklP6d3gEtK5RFbrVZb3gC9nwDKrm03smx9rLpCpmHmHlBP1+UPeSqBmiVgYAkISO/rWXpzfFWI5LC8A+5lXqr8lwKDncHAcxohoTafQnCFmQSso38PAkzWRPJSJCCQlDbvC7m5ckxIdUQScLLUlQ4ZQXmxHTyQkRHmagufB6by1nNSMsmNmvY2kLD3vqarS0yt+a/OjfVaYICDncI+gS3N33NZHQMEVRe3cpW2hBP7xq/xP0EAQVrV9jbPKQbGQZxvAcxtpeVmdAEkouL0qTZaJgSjjAvQe8nDpPsCCpeXl1uBkOfn5xPf6HmNCR+vztfsQ7a5xhe9Y/TCaIMXBnSRNxwQvBY4cGHfKXOOyap6Uidec6NM5B6ytESWcoYR7vRIdsbAUkoWOs+TTnAPJY040mi6wPMc6R4+2ynlEc9Ivlc9Kv0OLLiRO/K0exl2oZ0/Yby0srSWR4BAlUzoMlkBLIMGs9JMA8evzQEBPqd6UAh1AiIxI59h3SWoKPRo1egZuo9cuErAskzJve/gSQKD9XaPAJmTnhICFm9behqo0F4bCCRy3iIQ4Pp6fpynahupeyBa1aMw1UD3/umsC051af222lpeH4974bjxaTYBA+4C6CsIXIATpJycnGwFHLLvNGa1dJa86sGJBNIEBAIFjJdQGV2++Phm3yX54jKC4y6BHE5rJdD7WiCAZejOWWbv08RzyVKmHCQfcsOou7u7+vLly+SZEjBN04rPqd/IK5DGjP/3qVvWb7VaPYlToTdPaSTjc4mh1/WP/s8Bgqrtjxr5+xpHcysJXoJ22o7YK9cBAx+wLhQdDHCg630f6AIDej8NguQ+8Tkq0ZI5Jf2qDKnRVWafPhC594DvEQy5lULQoHRub28nC4yWEduq6hGYUAhwKsH7ge1HhdFZElJ2vE8hkqJe9wEMeL9w7t6/0MepgarHtqKgVF3VVlKkm81mazlmZ1U4CLi5uZn4wqd1HHh4uvRk0XJjIK0DCCcpdfGA6p7APIVnNx1H/mI56Y3x9mfZtAqlantJltfb43d4jx4s37JZAIZTd0mg7wMlpUNA4H3qbaBzvadD/Kfppa9fv9bnz5+n2ADJps+fP9f//d//1b///e/69OlTffnyZWup5pxSSmBr7voICLiSJg906dOz63psSR5JWTuNQEZ3L3nq2Mcc027EpufnytjRN3kGdnnPBUmqkHeIK7yknNhYCSlRATulhuvQ3RIrwcGAexVYx64d3QpLKJACW5YrhatPDbC9uVudDwhOHXgbiBkFWhK4Y7AmvQxd2/4o8nzpZpYy4rQAo/qlSDRnR4UiBb3ZbLa8AsyPGzVVPe1/Al0pVn2/PMWEJAvG54Qp5NP0TwfQODWlw13y5GMJXwcDHsjrwo7jw+f7V6vV1q6IbCu2GXk8CXCRB2QmLwutLu+fufH6vWlOuFM+VW0HFFZtx0Cpz8XTBAJXV1f16dOnaRWIlg++f/++VqtVXV1d1b///e/63//93/rf//3f+vPPP+vLly/TstURyEzlJiVFmZ4Zyd/kGRAgJy+rvUZ5JDDwHHJlzXq6MevP8x6NsAQIXoo3V5t9gb4HOtCBDnSgAx3oVag3mw90oAMd6EAHOtCboAMYONCBDnSgAx3ojdMBDBzoQAc60IEO9MbpAAYOdKADHehAB3rjdAADBzrQgQ50oAO9cTqAgQMd6EAHOtCB3jgdwMCBDnSgAx3oQG+cDmDgQAc60IEOdKA3TgcwcKADHehABzrQG6f/D5sNXQPDNNocAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8yklEQVR4nO1923Ijua4sZMv37p61/v/v9tNesc+a6R7fdLGt8zCR5VQqAbIk2VJ3CxEKSVUsEiRBIAFearJarVZxohOd6EQnOtGJfls6OzQDJzrRiU50ohOd6LB0AgMnOtGJTnSiE/3mdAIDJzrRiU50ohP95nQCAyc60YlOdKIT/eZ0AgMnOtGJTnSiE/3mdAIDJzrRiU50ohP95nQCAyc60YlOdKIT/eZ0AgMnOtGJTnSiE/3mNO1NOJlMPpKPT6Ozs7OYTqdxcXERl5eXcXV1FdfX13F7exvX19dxcXERk8kkVqtVvL6+xsvLSyyXy3h5eYmXl5d4fX2Nt7e3WK1Wwec1TSaTtY+WyWkiIlarVUwmk4Gfy8vLuL6+jpubm7i9vY2bm5u4vr6Oq6urmE7/6abX19dYLpcxn89jPp/HbDaL2WwWy+UyFotFLBaLgU/w9/b2VrYFeDo7Oxv45OtKnC/aCNdfX1+HNsE3l//6+hr/8z//M67D9kDHKrsqM+gH7RP+cL/ob/7mMiJirX/dfci89h+ucZ/z9awcxy/uOz5BKlsYgzz+MAbx+axz0w5xPtuxyu4xkZN5yDNT1X9j0/9s1FOXbjDwKxIbYxjky8vLODs7i7e3t1gsFhHxj0F7fX1dEzqnNBUM4Pvl5WX4r4I7nU7XFNrZ2Vmcn58PgOXi4mIAAxExGFwoSQCExWIxgBYYaOZPhX2s0XDE+fFvBghZ+SfaJJYbBwTYuHJ/6fMu38r4TiaTAbSpkddrDiS0yuZvzZvrAT7Pz8/j9fV1GIcZyD7R8dC2fbNLn0KnqL7SPFV2q7yU3LPb6rFDyO8YXn9rMBDx3kHT6TSurq7i5uYmJpNJvL6+xvn5eczn8w2vCMY9IlIDy8ovU4BZHmdnZ3FxcRHX19fDB+U+Pz/H29vbELEAYGFPypXp6O3tLc7Pz4f/anSUNyhmpMU3e/9vb28b13qiFCf6h1y0oOeDZ7M8I6IEeZm8QtlC/ntAHQMFlSO+VgHQ6XQaLy8vcX5+PsgO0nHeGcg40ecS9+vY53ooc17GlNkCpL0Oy7aOzbZtxM9XPLXStOi3BQMcioUXjikDeEqsiFwI3HWu+58ZZ50+OD8/H0DA3d1dfP36Nb58+RI3Nzdxfn4ey+UyHh4eBmMNvl5fX2M+nw/5OsPrwrPIh79VMbOQcXtExPCfiQEDl/WZ4dxDUc9Ad/Kh/dAbGRgDCBw5cMD9x9f0PuRAATDzXvGi0Q2dpsL4e3l5WRtDPEXHQAX0q8vYsdJHer0tIDC27JZc9gIC0LaAZp+0D7n/7cAAK08NyTMYQKgbc5Uczmcw0OPtaoiTld75+fnaB2Dg5uYmvn79Gt++fYu7u7uYTqexXC7j4uIiImKIDmCaAFMJPI/KIVye5kD5TvFzmqpuGDQ6IDXEi3bi71+J3ABvKRv9rTKp/x0YyObjnZJqyajywc8yaWSA0+qz1fyr1gG8KyDgMiDTCgZ02qJXmZ+mr/ZDH2XgxgCAjId99CvruUNPD2QAZBtg4ui3AgOZkuUFhVhAeHZ2NkwVwGirwnIhcZTD3yCkU09OwQkDk9vb27i7u4uLi4theoKnCBaLRczn84G/bGEVlwPh1sgEK9dsDlnzHRMy/l2mCXYNB4KyCIADBUivzzvv2ZURsQ4A2bAjNO/AghpkjRpoeuYbZYJ0fHG+iIDpVIEDtI6qqTr3fGtq70T9NMag9oCAVkTA9d0YI5mlr66j3M+Sk6ycXUDLbwUGlBgMTKfTNcXKBtWFuJEW11Upa7gdCg354pmMXORiOp2u7ShYLpfDZzabxfPzc5yfn6/xjbKdQQHxAkcof+abf6tR0fAtplPUg/tVpwlYyVUIPTM4LEMc+tZn+aP5uagT970DAhpxiNic9sFzvEaG65bJAnvpWT1cm/B41PbB+gGkyRYW7urFKSlIPtE7tQxfFgUbk6+TmSwv1VW7gIAsQlbluW8gUNXvI+i3AQMsVDo1cHl5GdPpdFCGMGqYImADHhEbyghGezKZDPlwRAEKmVf78/P8DPKJ8MoVCx2/fPmytmAQAGGxWDSVMucNPrSOEevKvpoacYAgC+v+alR55VlafU7XbOhvB+R0moABBPqH+1SVHIjBMC8m5b7juXvICv/WvtYtiMo7gw6+Bl4wBnjRYqtdNeyvSjtT7lU+VZknymXK3c+Mam8kwE0faV+rjnH5V/3fE/F01zPgsavcZI5G65lt6bcAA6qIdFoAYAAeCAw3ny/AoECBwWQyGTx3bE+8urqKi4uLQbG9vLwM5wIgvO+iCrxV8Pn5Oa6uruLs7Czm8/mwbgAAALsOrq6u1kDNy8uLnbPX35jm4K2I2S4BBwZU8JCPiw5gsePvTj2GzX2Y0J6sGHU7qZtbd4oVQOD6+nqIjjGo0wV8GahjIODWrLi1ELxOBuOHwQDkWOvulH7W1j3KsUfR/opAdh9UtV3V/u66AwJucS1/NKrG+qYqq8XLtrRP4Ojag2nfMvnLgwGOBmhEAPPyONgH3og74ASkK+3hrePQIBwYdHd3NxxiBM/q8fExnp6e4vHxMWaz2QAweK0AFDLAw/39/bB24eLiYjj/ANMEyAP8QJk6QJCF0XiOVhF4FQXAf72uA1O9xZ+dWl5Nb1pVer27Bnq8Y+WHIwgcjofcYjwgOgAgAFljntVrw4cXjioY4DHIAACAHLzwNEBrGq3V1mM8KteOrfJOVNOYcHoWEdCx4caA0zW8roTT9QLEscR6sKrn2DxdHr3RrbH0S4MBF2rSnQN80h/m2zU9lBSH5bkMPUHw27dv8fXr1+FUQ+xEeHx8jIeHh3h8fIzn5+dYLBaDRzeZTAae2ENbLBZDGZi7ZYDCyhUKned6eZ2CC2M5tMnXNPzcQvvZ51cjNbTb1jEz9uoR6Up77jvd8qnXmFfIlkaxbm9v1yJkiFBFvB+6xREDjjCop6aKkcEAvH+AAQbjAOTIB0AXAJeNQrZmALSL4ncA7leU4Y+mVhRM77UAcg8YyBZ1c9qxcqFAe5/TAduAz+zerjL6S4OBiM0pAqeQ2AvWI4f5eeTHhPwwLQBPh39fXV0NeYGPq6urIeQf8U9HIh+ADyhEeOxQ5FDIEe/bExngqBLm6Q3n6aPuXKdsMGkYmJV/dl3L+pkpG4hVlKDyehwAcICAF/nxPc2P+4KvqXeOMQBQAPm5uLgY5AsAmIEGRxhUphwQYLkHqOXxomt22KuPiA0gkLUdl6XfGSmod16d8nOid+odCz15ZP3K8u/6XAn6MSLfUrstQMSzu8iE43vXCALnswsIPlowsCsqd8LEgIAX/aEMBgM8B4vQqSJOl2fEe4h1uVyuLQqcTP5ZW3BzcxMXFxdr5by9va3lw2AAihnnHcDAo114LcTl5eVG5AB56PyvtrUTpKof1Og7IKCh61+dWvVsKVBVdPzfzZ/iuhp/vabP83oBHguaB69BAUh8fX0dol1ukSLLCeRagYiu2UFZDGAj1sFPNY3igEBPX7Fyr5T87yK/vbQLEHDAuQUCHPitiKc+3RqnbQ3msdMu9ToaMKADcSzCcQPbCRZ7RGro1JBBgWVGksti4z2bzSLinzD9fD4fFgGinLOzs7i8vFyrr3peXJ563xylYEACxcrrCKCMse6A323gSA2Na2P334XOPnKO7lip5Y1GbEYNKu/IPacyjWutqEBErMk/g2FeAAgwCTly4X7mx83PIk8GGjylpYAAIAH1wlQEpitms9mGcdCpgt9Jzg5JY4EA943KPr5Zpp0Tp+OE8+0B2Mcw7bNvQNly4sbW8WjAgGN8Hx3mgAB74NygLDBQcM77wH0VThwLDOXF3jqmBnjxFEcoOELAvCjAAe8R717T6+trXF9fx3K5HBQkQrHurW/4VpAB4mkTt2Yg658sKvC7URVu5usVCFBFyMZbvWUQA0DHBwNHBcNs/AEIdI0Mns3C8Vl/M88MWrFegdcM8LbC+Xw+7OwByOVxuw/lmoHeE42jVjtWv1tAIAMD7rebuuSpg4jdDiVSYPPROq5HFvclr0cDBnalLLTHwsV7mVm4NJTEz8HwOgHiZ7G4jz0sCDI8IbxnAMcLwzuClwMvSI8Odr9ZYUOBw2hwnuAFixF5B4L7IG8FApXh1znjyij8LqR1zTyYFhCAvOoUEn+QP+fJMghixYr7WCQIQ4u8INOIdvHBQwwW+Y2aykd1Te8p4MFUBK8Z0PUSGSCoyuvpl98VxO5CPRExJgXCOh3gwIB7vuJBI0ju2VZftwz+MUWkxgB0R78MGGByIIB3EfAWPjauEZtb8FTpuINZ8Ozr62ssFou1PfWs5JDu6uoqJpPJsJoa8/qz2SxWq9WgoFEelCHC+1DOi8ViOHkQZxjoGQSoJ9YcLBaLtUgBgAHyVQ9RQRK+sf4gu1+FBX9W2halq0ejRl/lVBfN8dy+C7uzcWeA5gBsBia4z1muIXMadWCgnNUb5fMxwg7o6K4CyBcUOQ7UYoCii1VRHn8qg+Hk80R95CJffL1qU6cPMjCs1yti54ydJ103w/d7wurOCar+VzQWMG1Du4CTnx4MZCEnVpZuwRKv+meFGrG5CtU1MAQNxB4ye+wwmDDOmEbAPfDIaZEXBgbK0/cPYJEiDimCQsdzvN0QipsPU8JvRA1wTcEC6qfGHxEMHtQ8vVL11bFR5h32KrbW9UzxZQaaQWA2ReDyaYGBiNgAFSAHBLQddArJAQsGEXreBe5r/tpueN7t7OmJDmRKUYEZl9d69kSb5PovA1w6Bvh3Nh5YB7bKdcSRM54y4N8OPGZTAa3/+6Qx+jLjawx/PzUYcEKmnpbb5odrPG/P3hV+a4iJ849YXzjFA0HD5xByeDl8LDGedV4fDIGuumYPXtclRMSQ9ubmZjhHAVvGcGQxogTVB3xCMfPKctSLp0eYHCA4ZjCwDanCcN4H7uO79wNyilDzjHiPWGWAlsmFXvk5jTBwmWqI9eTAiPXdNCzr4JM/kHnwwG8LZZCraxeqNuP6OCXvPMMTfQw5Hc33HAhwoA+kAMMB3my6AOkVFOCZanqzBQgcL472ER2oQJeL0PaWd/RgwFU88wRYgNyZAny2gEYGYPjPzs6Gg344NKrCCp4YLHBIlZVX9rZBKDoGAFj4x6F+ePfw8LHFELycn5/H5eXl0DZIe3d3F3d3d3F7ezscRsSGHtMMs9ks5vP58P38/DyABqxhgII/Pz+PxWKx1vYADJU3oL+PiTJ52jUPvl4Z/myRFN93hOu8rZW9c0dV+JwjCnz+BZcHnjTipmdjLJdLqyS1TqykeRHtfD6Pp6enQSYZEOgOhx5iHjIDcox0zLwxVf3gnILe8cDPOE+3R7+4tU8KCrgMparcsaCgV157dFKmYx0g6KGjBQM9FXfPMBhgIICVyzxFwEehwvjztir22itPq+KJO4SPeIURvri4iIj3E+N42xaMPJ+WiJ0HvD8cZxZExAAmbm5u4vb2Nr58+TIcjYx6ARDMZrN4enqKp6eneH5+HtYewMvDuxAACJbL5cY6C42gqPB9xjzZsVPLG2p5uJA97nv1aiLePX6k5f6AfLsIDoNe9pAYILBcQj740KDLy8uYTCbD1BFPI/H4ceFfBQKvr69rIJWjA7oLRmUtU+b827Wx+3+KItSUOWeZrm45cdUne17JRQVg9PFbv3WqoBcQcBu4eu5LZrZxTI4yMlA1Fqhq/DHlMKpsgQGNDDBfmMOHgLCiYp5UIcGAQ3nyroCI9fPen5+fh1X/q9UqLi8vh/zBE2+/gnHHa4z5Hq9BwGIsvCcBn+vr64EHeP9PT09rC9NQB2c0uJ48X6z3q3DbsSpU52WO8TyrMB3uZ94R/+axwsaUdwVgmkj7TL1tnXeNeDe0WT+p141nmGeNYrk3HvI40QiAAh5eqAqDz1ErfgeHLnJ0gAD/tX6tyIDey/I+0TptY6jGGH8HkDPKxhxP5/I9Xv+kwJrzBC8VIOC0fD2LYlTtU/136bPIxdFFBlpIvedZrlDmZekKZX0HAYfa+S1pvGYgU1jMC1ZGK0/w7Dm6wHuyWSFD0eniReYdwOXm5mY4O/7u7m4AEAAV8NzBC57lz/X19TCNgF0L8NY4UqCvUs7mlt2WRPYiswFVRVeOgVoewVjF1wMonCHictmD4a18SKtb/ngM6MmYmF7SXQPw6JU0IoAxorsdwA8ATAYmlX/wAPnlRbHz+Xztw9NVvKhQoxgKBDIQkLV7RidQsEljALOSGn9dhNo7Zqo0mXHUBakMCrLnVQ84eehxfMfUpRcYaOTE2c0eOtppgoi+hmJBUhAAjxqhchhW3VqoBk7LgeHMOlqFGiBA510BFHAyIc5kh3LFIsDr6+thrh88X19fx5cvX4aIBvJVvth7Y4MwmUyGcCuvEcA0AV6ehFcs844DPqyIvTRWysyHi5jw/5+NtuVbQWVLMTCgilg/yjdiMyoAAAliRcqLUXEdb73ktwsySK2IFXUWdch2CGDhqQPYetARwC3WCaj8aVg3+yB//taylTQycwx0LHxk1DJYmadffVo7RXp54evOmDvj72RYSR0DBzJb/bZNRGUbGvPcwcCAY9J5Yc7LVOECEMB0AMLkAAI47IdfKaxgwC2YyniuGpinGCJibaqAFd5isYinp6fhube3t2FNwNXVVUTEBshhoMOGHmsenKfH0QqUeX9/Hz9+/Ijv37/H9+/f4++//47Hx8cBBPBcLQMDeGhQ1HxGgQvNjkWmvxK5CBb/zpQdA4Kzs7O1SBRHCTiapfPwnK96Nxmg5VX9TDrXry/5YvnjSBinh6ygbN4pA1DDU2gc8dLzMBh0uDbPQqbcBhn9rrK6L8r0ohpPFw1wC2hb+bpytAx3n3UVdCXrzgpwIm/Oy8lXBQp6Ixtj68/pqwhGRgcDAz1Gl39njcpb6wAA4FUjIsCvEtYwFBtLfLuFSiD21FS4OL+KsFpay+eDivhYVuTNC7eQBpEDfvUsPC72rGazWdzf38eff/4Zf/31V/z1118DGHh4eIjn5+chLZTxfD7fOORIlTS3XQtVb4tud6VdQMkuCL4CAUoqP/wcG+SI95dPOWLvBosNee1B5kGrssO3ThNFbL6dks8S4PGla3HAO4AH8gZA5shZBgKyOri27L1+ovFURQSye1kUIAOyPeVG+OmKynFTMKBAW8eKrpup5EttQ0t/cHqXtvdaxsdPERmIGLfAwgkUPGN4y5hX//r1a3z9+nWYGgAQiFj3vDhMyd8aAgdlW7xAPUAAaXi+XpGxKknwpG0AjwzrBCJiDcigHrPZLB4eHgbjD0CAqAC2cPEWQueZMVjQo5A1xKaD+lBAoIcyD6KV3hnPseQiX/w7a8NqfUvE+yI+gAZWcCyjLI9KGJ8aWmUAC1543pUjALyglq/xWILM66LdbOqO2yL7riIHjnYBjL8ztQywM/4uKsC7X3qNeounLNKgXr1+nCz36HbO3+mICiBU4Oqz6KBggJXMmNAJCxOHzgEE/vWvf61NDfBhKGq8NCrAAICFyUUUuB6ZYcR9DklxHRgQIC0WGT4/Pw/Rjpubm2HhIZ8cCFCEtmCe397ej3LF9MDff/8d9/f38fDwsLaPGwaevTPnpfFxsOqlaT9xG6K+PwNVMtkDcCrPyFHm4XJEoOLJyTJ+u9MtXdmZonNASQEE8+XmexXscnSN10ew7Ol0wDYRp8zAj0lfgYtjo0MCmmys9ACB1vZaN+ZU37h+y4CyA9WOWOYQ9XLGXZ/JvP2Wwe+1gy3aNo+jWDMwFvVBoPiQHiyw++OPP4bIAMLnEbFmxHg+XdEfl8HCpB3FClQVpHo1rGh5yyEUNebzWUHyq1v5vQNuYR94wMEvCgIeHh7i77//tkCADxbCOxEU0LgoALeD9o9D3D8b9aB3d2/sdw9VSoKnFfTwJwAAXjDYQ5PJZJh24mus0Hlc6DQGA1QoUPCoz0ZsHl/MU3W6cyCbHuA6Vwax1e5jnJNjIdWlhwQuTs4VEGQfTu/ydNd6w/ER64afp+IyQMCyxtsTXbSsogxgZnVqUSWfu/T/UZwz4O5VSA9AgM8P+PLlywACvn37NkwNwBvneXn1OLQMtzea01VKlQ0plDMbR8zjclp8MBXA/9n48zTGYrFYO5BlPp8PCxDf3t7i+fl5AAF//vln/Pe//40///xzmBq4v79f2z3AwEIBjRIPgEooVUn9TApWqUdms+u71tspx8y7QTQAAGC1Wg2G3UVvWLFUgEW9t0wJsvfP0wEqRw5A8/QcT3dV61F6DEWLnGH5GSIBx0I9wLcCAQoSe8BAxHpkWdNXYwT/W4AAsueAQAYIlJ8WsNxG1nodlbHA9mDnDPQgdHeN55h44eDd3d3aaXvYfgePV0PhEZtHt7rFUqr8kJYVFYfQed4dSo3BAL/ylcuDZ4SykC+/iIi3XsHjf3h4iPv7+/j69etQbwYD9/f38ddff8V///vf+L//+78hMqBAQA0/b+MaQ84j4P8/K320t6hGOfOoeOFdNs/KHjfyq8pFGp0K42+NgnGkQacxWLFiis5t40VeGC86xpg/FxFgRZq1wRhlewIB48gZcDfmW9MD1U4C9z8iBwJ8n5/lxa2uHswveOI8ehbfKkBo8cTlbyN3LSdkbN6fEhmI8HsxXbrsHguTbm/CoTpYbQ8Fw4v0GAzAa1Ljz+EqRawcyoxY93R0MRSuMQiIiLUtgvpRfng6A/9RPsAADPv9/f1wJgHAAM4QeHh4iB8/fgwLBgEEsE2QD3NhglLOBD/rP+6vfXnGH0kfwVsGgHrboxUGZFnRNw9GrCs+NuQVTxVfKgPIX+vJuwd4iiBT5hqtA3DO6s3fvHsBeSk44LZk/rfp82OV4UPwlTlM/NsBWQW0Cgqy/DNSWamAYkT7LA3ml4GuevpOJypYdsChVbbWpWqHDDDtAmY/bc1AC+05RcnXIES8ewBH9LIhXK1WsVgs1sLsHE5HY+mKZj1xT3+js/ktfU7IVDjU23IDgNNj5bWGpqAoAQYeHx/j/Pw8vn//vnG08mq1Guo9m82GKEEFBBxq1TUQvX2ceQm9c9afSWOMQ2XYWkZWvVb33+XPcqMnQ/JZGWPq4BQGG27mQ0EA0upR26vVam0NzMvLyyCPDBI0GsAv7HILcB2/vQrWUQuQVYDoGMnJ0kdRBvirTzU94CKxXKdqnLBc4luNtubR6nvnsFbjgct1kQO9Vnnpet31aY/MVmW06CALCDPmM2OiQADn8mOlPb+il/cm81sCYfi4TOQbsd6pvCqfPTAlN4/JdeF7OjhYkXOdOQwMA4q8eKqA24+jGVDqvEUQoAA7EaB83fQAGxaNhGQDT/tU82kNwp+dtlGS/Fwl95A9PSYaUTDcZ3lrtbcCVFxz8shAdDKZbABDHjcACTjaGtE7BtUR77LEYABnWmhEjMkpuZYcIg3X51eUw14DsI2xyBw1llEFAC0w4MaDq4/zyqs07n+Wt7ue6bYKQLDhZ5sA/d0CBC2gUJGCll3oQ8FA5Sm1vp3x5HP3sd0OUwTwiHnunlfJQ9GwUnLo081fZUoyM454ngWFFbeGdllQ4HExb8hb1yu4gQIBdGcG8MmBDgig/pwnf2drCLK+/ZlBQCsKoFQpNpdmTNsgjY4FXaTXUgbKH4+DzFMDaOZdCer9cP68s0EBLssRg3VE7BhoVHO0Vd0q+TxW7/6zyOmwVpu5/w7c6vw/61F9/4veb5EDANn/7Hk3blUuHBio7BaIHTaMFZTnAIHy5nR9Ra02c3athz4MDGRo0v3GfzXAPMfkjhrGC4iwKE8NIK8RUDDAxwZDMKHwWPlyNIE7S/nTF8hEvCs9rZsTCjxbtRHyxDeDAhY4Du/jw9EAXdzI5fF8cybE1SB2YKCqzzGQDki+DnLXqzZwH5fO/c7yBLHcuYiVqxvLtOPLTV1FxJr88nQZP6drCBwP6j0xSNdDvno8uyxdBuCq+3z9dwIMvYBU5Tcz/ur1uynXHgDQEwGq/mf3qvFdgU0H4HU8smxDjyoP2TSpymevXDv92tJNFe0dDKiAVZWo0KZ6QdhCyEAA0wNoBHgY2ZG5SqzIHA89DcrAImI9SgDvCGXr8azwhvhgmMnkH68KkQ5WwHiWvSh4WBHrxpvrnR3vqgIK/jQM3LurQAfLsRp/Ry3PcxukrQrEXed7bgzwGgF+p4auIWAQqDyA+MVFPLXEipvr68CpLqhCWpUjPnbYpXVnCbQWEXIb9ShQvd/reR0T7YPnnjwq2XaGUI28TgNEbEZZHbX6sTLyer0CAVkelXOmlNkGlsnMEXALDLO6OPnm7+r3LrRXMOCAwFgwoPOkfMIgTw3oGwjZQGYKRhuaUZQqWOYlU+oR72CA82YlqgpV320AsKBTF7jHxoABjdaRDYEqW76vHhoTt4d6c7jPgtxSwK69fgWqQGymLDhtlpfmh/+sdHlM8LqBiFiTAfWGnMLGNS4H+eC76mPk4WSJx5HKjEavMlnskS+ua6ZEs8gPP8vP9Hpmn0X7AgTud29alUfV1wxcK6egatvMaPfoG6UeEIF7Lm1lePFfI2ns0GVt3IoQqJx+pizuDQw49IjfrbT41tC7Tg9g9wBPD+A8AZ0nd8bQKQN43hr+ZD6ZXwUQrGx56oERoSsThLROGeI5RA+YB92ShTZA+gwcVYcJcZREhdYZBqekMkWyjWe9L+pF/QoWKyDr7jtD3lNnBx6c8eZ1ArqgUHnWOqNfdUdCBsz51EK3jqal5NlQOACqwIU/vZGorC0rnip51WstpXwstA/eWsavAqcMBjIgDD4dYOv1+LNxWRn+HiCRAc9MDjJAj/HC41cJ4ykrMwOsmR7Zp07dGQw4BdFShk5Y3Bw8HyqE76urq7UzBTgU7tYIsDEEsecNpTedTjdWgmadxbwzEOCQPys3FgqnfDOBhdAw6EA6BTmV0LNw8iEw/Fw2iHmdhfPAKgTcc+1YyLVfzyDMPIEMKGT/Na8MDPAY4TRQMg70urzUi1NyCqsHDKg8MaDldTsYL0xOkWfKXf/3GHptl2OWxzFUGdSeZ/V3ptMzudRoE6hHf/K16tlqXPbWvwIdlWHmseAcGzdOqrbLIgNZ+ZxvRrvIAGgvkYGq8j1ggA2qhkFh/BEJ4NAj5r91+2BmKN/e3tZe6QogAAOuawtYGNhjxrd+Wm2D/w7JMo9Ip4tR2EDrQS2cL7wrXqWtHhd7YRGbByc5xepAXlX37PlfhSpjnqWDPDklod8R79NQAAI6H68h24jNw1UUOHBkIGK9DxXouZCw/mdy8sD8ZNsGNd+xXnmVxinwnjx6FfFH0z4MfStdBvScDHBUQKec0NaqZ7Qu7EVXdVaAMqZ+mVPXAzr1Pssw6smRVOUrA1R4XteBtQBCCwjw723lZScw4BSDUxqgzMuIiLVpAUwN8OmCfKCOO0sA2+Y4RO4MHhbnKVhAI76+vg57o/WkLJDOwfM19uS5vromgA28AoLM28FvBQJOwerccUZOmLmPnOBmht0NfFbovYj4WMmBoQoAZKA4M0zbGJwM3IHcGgHnwfE4cPzrNkb1CFk2FYA7AN0C7VpH/Wj0rdU2es2lq9IcOylw6pElJ59OblluVI4UkDJV7a66oQLQPf/5usoyl9Hb15yeo26t/HDPyR7zwzbC2QzOP9MdLYA7FhhsDQYqoVGvgSulCidi3fvhY4YxHQCvCMaf5x2zQ3SckWTFxYNmMpnEcrlcE2gABvbGWDhY6VXevfOgsg7kerHwKRDJhE3XAujiwpZBdgMlW2TI/x2I0TS7INZdKQMuvV4J/+5Vnrvwx3LTWx+QC0OqcnTgU8cE88EROx7femaGGxu6O0CNv/vteOS6u75z6XC9kr1fAQj0UkueW0BAf1dTTZlscdkOLGRGP9OfmUwzKHCkZbf6XaMYPU5RlmePAddv5NtjR7alUWAg82YyoVHGXWUUZbpz+/GMWwsAEKBn7DMY4HLPz8/j5eVlmC7QFc0wxDo/y3wgz0qAMmHBf35FLMpWpYW0ikh5HYQqUgZAleLVfJmycHNFlRfQGpifRQ5lj0mfGW0HBLK+b6Vhcv0Hme+pz2TyHsrkPs/KdKBeo2Mw/nrwEYjlEmA9IoZvrovWTetQyRT4VeXvDE3PfaVeo3IM1PIQlSqj3wMGXFo1/vp7X3VpgYMqz7HAz91XR6961tXf6QTnVG4LYltjpqKdIwP82wkVM6aDl591i1B44KrBRpSApwt0btx5PJmCh1IDUOC9/iCeEwNf/K3XKoHg9gFPLtyveetOAQYBauidouX/FbUiAu5apoCPjVqGha+5dC3aFbGzMoh4XyOi+fJKfy0b3zz/znLmpgrcszo2ewC7nu0B3iGnHMHTw4Zc5CszLj3y5gBDlrZHxo+RnNPl7jt9nQEAZ/iz6V+Q6jynHzP+1S44fl1detog00O9+knTMKCuwGVLVpUPZ6uyPCs7hLE8Vv9uBQa0IvrJnqmMosuDlQP+s+ehikdD9yqQnL+GzzlKoHUAH7p2IGLT6DojzcRrB6p2cgNJDb+rAz/XGwlQ6p0ayNpa63MsxANYQSHf70Hzldy6Z8YSe/Q63QOPWxcCssKu6gX5j9icVuDDrrQek8l7pICn8/A/4p+Dts7O3s/EYACtkaxs3r91LZM1Je7nn8Gob0NjAWslu9XCVifnKldj+icDKNV9VzedQs3awwHfMTKhstg7vrWsHh2h6TFOtA77pr1EBvh/CzVWealwsXFmw+rmwbOTyzLFz/lD4DmU6U4GzObIHKBgY4z0GjFxgu2mBLQd+Vuvu2kCTlMZPBVYBRZZuRUC5vyPiVoK013r+ejz1YDXfPWeGk4eDxrtaSlVJgWYHPrMlDnzyfvJYTAAXLLFiSo/KpeOWqCzUojVuM/K+tVAQ6Wfewz+GHCr/cL/tS96ZLUXBPB11p+qw1S/Od4ynZrpTJe2hzL9krWhW1zY4qNHJyvtdc1AKy0TdwArDCg73NO5dF5kp54v8q2UBpc1mUzWIgGs0HDuAMACBI1XU4OYp8yr1GkQJ2As+D0d6LxGrSMbi5bS5f9cL9euWbtrnbScQ9C2St4Z7DFAQKllnNw40ggB0mFnDDxyN13gwrvZWGBDzmNPjxN2/GEcrVbvrw3HB1t++QVi2PKqkTTmS3nsJR5XDuByvj1K/melCgjozq8qWlkZStyrDBmX73jpAQRKbioZhMgWO3HO4Lf6PjOmu4DGrD6q913enyGjezuBUBspQ1kgpNWwOxRKRAxrATIhZQXJebaMKq7B+0d5eg3zoRGxsZBK68L5apkVCMieYRChdcQ3BnOl4LWNHDlhV97049ZlZAJ7DB5XphBaKNspMedJcTk9pMCgUsTaf5BNvueUsuNbASMDSo5s8cu3UBYvekUeULp4jgEAXk08m82GHT8cuZpM3k/t5EOIdBwrv/iv111fOidF88gABJd9SNoXmFU95NYAZHLIv7O0rm8qQ5/l43hgnVsZ1UyPqkz1tmevfujNa1u9kfGdjYltgO7WawZaQlPdq4QJnhDmHrU81xguhO0UiuOFjT+ACJ9uyOcScMQAxDwi38z4unqrkXLGX1f3c5TCDbiWALSQpyrWChS0gACeOyQgcCCR71XPRUSpQLOxEFErC1XUjtjQcnTAgQDOlxf7uUVgWQQpYn2xHwhyz/kgrR51vVwuYzabDWAAgACRAfUWlSe+NwbEKnCo9EVGzmBso1Q/iyo5Zrlw2wJVlpUqAODGUUun9IwDpWxrrZbR6qNK97SAYFUOxo+TF1d2r8HHbx6nCmIznZsBsR7a+dChMWlbHRKx7m1sU6FsgDhjx42MxmflC1CgAIGnCrKVpQoOesCJExwnpLxWwhELUZamBxDovRYQ6Bn8PwOp4stWU7cUacvjyZQI/+e1K1oGyyFPdzmFzc+7BYkcVkU0DoDcLYhVJQhQAOMPIMAfAAQAB5420PNDWMazhYZj2rGHdKwdswz3AIFMfvkb6Svwr23SAgOs61ptWfUR61p9JqNK5+1KLUDoZM/p9uxZTavt7HROrwPeQ1uBgW2VfpXWDXQngO65ltLla9xJDhQgDXtiEEj1lnROdVdPgr20FvJT4ukCBinqdbn24GsOjGxDx+hJZZTJj3pTrbBq1naavgIF2m6Tyfq6FiUYYlU2yjvSVopS5ZeNMU8lKGDH/5eXlzUgoGsF9IVaTPz6bB5vaC83tlqGP+ubTOY53bFR1v9VnR1wdUCASYF9b3u49t3GmWuRAwjqKLnrjloGWh0dl77KQ2U207maP+sIBQVOf+xLZveyZoANag9VylQbg9OrUuDnNK+IzTCTLkZ0vDtPKiKGdQVchgvTu/wyRM7lOG/beYO6aLLylDJBrRCrM0xqpDLh6xlch6YKKPJvp0Rbu0GqMp08V6R9khlxXnCr52L0koIWF0pGOvbe8Y3rumgQH7d4UM/FyEjHfpVuGzoGmayoB5Q7QOB0Tkt+M2cs068tnVDp6R574aICTndWVDmuDhS2jHvr2i7gx4GoFoDYJ40CA5lQjCGneDV/Vy4Lwa6I0xlerZtuU2EvKBs0ei3j0a3SVw/MlaGhWg2nOn4cD5kAt1Bvr/I+RgXbIy+qKFmJVosGe8p1Crjy6pR0rQDSO8+dp7PYk9LQexaFQr3dolmWTS4T6wXw9lC8QVQBAQMBp8zd9rCe9q0o89Dwv4cOLdM94yqTXQV46nnyd/WbKXMmMn5dH7iyuW+yaYJtKHN6mL9eqgBAyzZV8lfJpQPFDsDson93jgz0GGan9FpK1aE2/d/y8iLaLz1xConvuXBaD8/KA4fxwT8rZz2ZjfNkpa/8sXJVJdsLXLReLYTsnsnyP7QSjcinP7I+Vflk5cr3mZw8uvxV7lvAwg1yAAM+cwBhel4/4BR+tl7g7e1t2D3g+NJFunrwF4MBbC/Eb5ZrXXyroEX7ybVPr77ZVkH2eLmfRb1eoJMvltuxOrelOyrAUOlnfqZyQkC7AoIxILAlJ9vow4rGOLXaf7vKs6Od1gxsg9ydULaMEEcGVND0W/db60p8zsMhU6RFHqzE+KUslbJS/tz0AKd13paCFA3L8rMuqqCggMtz5JC8gg7nRbp8svY5JDCoZDVTpOpVcZosj0zJtJ7pUaBMmXIDsAQoiFhfT5JFBNhg8CuS+W2FusDPgQAFAm69AfIA3wyKe+VT21DbM3vGORauTY8d1Gb3ndz2AIExlIEGBd09gKGqi/vN5HR7T34ZbQsEWo5p5XS08lEdoYCgBXDGyO1oMKADplfJ8rVKON0ghPfj5ug5f2ds0Wi8qI4bVgGBpo3YPKkQ+WJvdLaIEP+zyIACkkwZsgKFN4br+O9eWsRpsvZlfnqJ27A1EI6BeuqXyWWPfEdsAuSqXTR/zccpTm5rlnM+I4PHgS7CAzlgB/lUA8I86ZQUIgJ4fThAAe8OABhQcMrtxbLMlMlsD6hSanmhzoCNcXg+g7Ix5+S2AgRMmTPk2shd1/vMT0asy6ATM88/0/OaXwYKuI0ywNCr98bqyG2oV+coINgXj1utGcgYyxRpBgaqvN09h454exULFQtI1mhZo7pV2KwQ9a1xGYDhuq9Wq7WzE9z8LRt1JZ0S0Gf5VDcFGb2D2LW7fqo8qryPwbMao8wyw4h8sn53/zPFneWvylfzdVEujS6pkc0iAsgLgFYNCYNglk8AAd4yCACA31mkyhHLtka6sjZ38lspSQXhrh0cMDgGqnjJZMrp5Oz5VvvyfwVfTt9l+p3L4HUwGY8KSl2fI79qcWEPP1l5lUzofc2n57unf/h31q9j9LOj0ccRtxRqCwy0qFUhBwQQvmeFpjzz3KTylgkZExvsiHePLEO1fH0ymawdXhQRqVFXo5sZHQUQWR49ApL161hlWLVhS+APQQoy+ZoqyAwQtKgaA1n79rQ7g1wFfpAPKFq+p1El8MVTC9iVoDLEecDo45AhjgboFIGCAbe/XafBesFnpWR7DBw7BXy/t38/mlw9MqPJerGKCLTKySjTk2P1e2bgs/LdmGyRRgt6y2zp3hZgydK4+9vKl4KBfYHWrSMDmVC4gYXfuyg/TlsJRNUxji8O33M6XXuAsvk4VXj61QIXVnwMIFhJZwqaedXzAjQKwHOyPWCgZez42Uo5u/TZvWPytEAOaWfovSevCB8R2JYyoFKlZzAAQJBNMYFcxOr19XXtFcV60qBuI+Ttg/rOAZ26asmbUqa8qz5yBlTz1vUUGYj4GWisUeJ06t23nL6IvkgbUwbOKs87Yv3k1V4DjfLcOSs9QCDLu0cmMvlWuc3spKOevtmV9hoZaBle93xPw1WkHjhf15XL8H6y6IArV7c0RrzPc2JRIQurRiA0FKwLsTjfCmxBqWdnG/BvBwgyj6iiSjln/B6zEu3lzRmWFnDS5/dBWfsrD24RKYx3lkbLcJ655sfRKJ4m4GgAIlWYttIP8snauCVzvUBAn3EGRKdbOJ9jlGGnpzIw2wKMVd6cfy8/mndr/PSWxbIO/TeGv4jNk2L1fgWyeyIXWbmZXcuu98qc6+t9yOvoBYSZ0c/uM7WMnl6rPAhWWJgeUMHJ8uXfGRBwAsjzqwinAmBwvXhRF/OE9Jkh5/UPyo8CGVXiTvFyOkXfPUovyyNLWymH1vMfSZn34QBXD0p3+Uf0tU92r+d6r5ei6wDc4lL8Bp2dvb8PxIELlMdrVDAVoO8nyGSyqpNGKlx9lXrAgDNA+J2dabBPBbsPqpyVXjCQjc+WvG/bBs6IZoC60vOaPnOIWqSAwOU9Vv56Igm4lgGRMeUhDXjuBX29fbiXdxP0ILseo+M6hZ/HRz1vNsi4VvGlYX2HGvU+nptMJhtAoOJ/MpmsPafTD/ybpxx0MYwCAVWw2YcpU4zKM6gCA85D6QUZhyAHMJ386iDrBQgZ6MmUXw+1FB57PtW2Vf6txp0BNeQMMv329s+pghcXF2t5rlbv6wY4IsBTDJUMurbIZJXr6ereo4Ncvpy/jqNtFfVnksonPtn0Jn9vU46SA9dVGr6mOuIj2tbxlUWFmZdWnqCxYESJDXpPWZ9BW4OBMQ3REkYnHJUguY7QUD1+t8qqVjgrQVkyIOBrzgvPymf+VDB5ISTAD7edWxneAwYcEFDDx2mrb6UMZPD9YwMIEbVntc1g721z5UGfd+2deYVKunhQn3HzqDweeH0BXlus5TAAwPO8bsUthtU20bIdry693kc7uLZ2z3Ia9hjRNo6/Q8muGjUHggDgsm2hWb7Vf6WxTkQGSFogb5+UOSgK7tkw97RXj/y2gMNYB6OqF+urXeR09JoB/d5nh44RFFY43Nmq5KrtJj2k/DCyVECA666d9GhXPsAIhGsKLKB0VcHrDgLlOatPDxquIgVZfq20x0AKxtibaoGBbAD3tFWPN9QCXnqdZRHygV0rvF4Az/A1zVunDFj5c8QAabP+5XUzbESdJ8TjYxevNft2eTsD0QJ/H220WlTx5WRXyYGJzLHKnndga5+UGdTKAcwoM/YRMeyU4bGT2Z1MV1ZjudKHLl1Vb33epXFjqvVsRnt5UZFSNfhalCngFuJlhcjPuMVSVXmOnJLGQARle8bdlIV6H2yU+JlsFWyLz7HUGuRVvk4B6/9jAwaOV7cVi/unMuI9CnIf3hDLn0bCGBjzOGCD7MZCC+DB21fwyiAVZVQRgVa9MyWmefUo3ixvBR/o9yyCcmxyC8qAq7ZFBVJbAErTOqPc61hovi3w5XjuMbDZdVdHjQgxP2PHaiaffG0budU83JjSj+ryMTK8dzCgg65Kx5QhHfeME8wxwp3drwaTa1S3i8Dlw+W46AAbHc6bV25X572z0mwJQU+93fMVUOg1hseoXB0wqGRI/1dynClQJSdnVVtpRABpeb6f+eUtcy6fihD5cp4NjD9PF4AvpKnGgqt7VW8XZcAzmbJtjeGeMXPMspsB2DHjUmXUpeFv/e34yq5VTsO2lI1B/l3JYdaG++CFrzlj3dv2WbuBb43mbUN7XzPQo0hxTQ3/GMTojFWPAh6Lal1nsAJSxZytA9D6MSjg+T7OWz0uPUegWjfgaB8Dz+Wzr3w/kxyqzg5qqepXKWEdsI7GDmCVW502yuaNszJUvlUx8SJZBq26qwXX3I4ZLYt/u+/st8sjG8O9ACsbM9t4Vh9BmcOTye22lOloB7SUvzHU0suOh7F126bPxoIBZ2/wbI/j1AsIMj3EgLhHz/TQVlsLt6VWh29DFarqLb/Ku+e5bPthBkockuUyOSKgq7Z15XYPCFDaBgE7ga0E1dGhFStTS25aSisb9G6wt8roNUQKQLnMzGhH9EUAOK3bbcNpWh4ih2C17SoQgO8MELi22BX4unIrgPLZlI1VZwj0vjM6Lv9ddboDwMq/AxVOZ7R40dMruV+cnFcHwrk64BnNu2Xkx5Lql1Y7Kr/8HAChA/ZjaKsFhNtQZkx6PbBtyts1XzeQnCKEgmZB5cWFLLgw9k7pMhCAwXdAQI8f5lCxE+JW+4xpj9bv3ucPRU55Kl89KF3/jxl4LS+ixyuFrIAcEBgDDjXCwATPU8tzaV3e4LfH+6+iAr3Uo1Bd2m280M+mSi4rgJo968i1nXNgKqemN1+XppWXu5fJoQLZCjRV5TjwuS0I4HIdTxl/FZ/62YbPracJqo7tMRqKalVgt0U3Y4xUj9FskQKCCH8eAerI4EC3NCE/Fx3QQ12q9QLKn6tb1X9Vm/e07zaI/6PJ8Z15VpXRr+pcDUCH/h1VefBzevYEp+lRIBoJyDw4pOFnINtujFZ1Q9rsUCJX98rzz8ZvL5jT604nHYv8MlXApeK5MiRjylaD5vqiV2+32jcDJnytJ/LlnC/mt7q2y5jttTFcp6zfsjHq5Hcb6gYDPYLVeoavVQDAVbSFdCqg4WiM15Q9w0LCyouNvG6zwn8+950VK0cEcNQrH/nKYCBTpi1jnhkKbeMeUJflq2l7PbVjINculfxru7l+4Hbp9TL0eWeocA0yx/ersQaZc8ZZ64ffDBqcgsZ3tmsB95zc9oIB1Qeunyqg4Mi11zGSgoAMFLSMW0/9xujHbHxUkYOWActAAuvTHp4VNFRnz2T/GYBn5fSQA1FZurEgr2rHD40M9AyaHpRTKSsmZ5iconSDwikHVcbbDA5VVvo9mUw2hFYFE+e3I21ErJ3t7nYQZOsFHJ8tr8oN2B6gVbXPtgPlI6kycPy7JbPZf6XWYHe8Zf+rdCrzGYhRI6kGVQ221hPP6sJAnb+N6Js2qGTEKa+xMlW1fQbyjh0IjKEMDLTqto2Bzdq6x3vt6aOKFHS2nCAljo7pOGJC3tlhXdlzVdk96TMbyeW67fTK997BQCYoGYpSxlq/KwNdKRD1ttxxnJyHM1qVR5vVzZWvnhUfFITDLnAoDM6Bj4i1Pdzw+t06ARcVUB64Pi3kmSl+bbdeqozS2Lw+gpyCygaRA0yVrGf9oc9XoKl30GZGXw2/AyUZEMwUhyoj/p+d4ZHVbbXajAzgfybTSpleaBmZHmcjuzdGoX4EuT7Qj6arngVlIHBMXTPd7MZNNfYqgKH5OINc9VElDxHvBxGB3NQbZNTpx21lw7WH69csmgGA0qPve2hv5wygMxxKypRSBhAcVYrUlVvl1wtsHA/6fPWMCrS+1AhtwMAA2wcZAFTTA616OV6qdq/atipD+/iQylOpp2/dM0xVvTJF6gxub3nV9YoXB/Lc2OPvHnJ5OlCRpedrLcU9BkyOMZSZItf01YE0n009AAe/XV1bRjcb7z26pOqXFvDu4a+VJ9dBHbHqmQo0RWzummEg0NKFbvxlZfWMwzFpmLYBsXsBAyxA2iEVOnR58H+XT8WDps+e7RV2d43zdfyqV4h0imozQcLUAS8WrICAGwCVsG2j2Hrbz7XRLuXum1oGA8Rtug2Q0DJ7jeaYgZvxVbV9az96r4dYeVFjQIBTWL0KzBmRrF5jZc8ZyEOBWzd2q7pX93q22UX0g+fKMOrY6eWXv3cde5q/k/9qG222ONfVF1TpxQx8aN6VPFe6alfaGQyootOB7dDUPjvb8RPhw1TOYIN6+WihTPaYsmcqBcoveql2DbQ8+GyQVYYgo1YEwhm6Hg/jkJS1RWuQVwChNVCdIlEQ3WovV34L7DkjgpdhMa8cBnWgoAIz1b1qbDmDUl3rNS6Z4Wzx3QIWh6IeENsDDECtth47bjPZznjX+8qL+99Tvis3In8jrJbB44IjRFj0rXXs4Ud5cvxWxj9rn1aZvbyC9hYZ0N+r1Woj3DK2s7P7PcKaRQYqlF+Bk8oDV96Uv8xIOOOuc6itLYQZCOgFA87IZd5hZhAzNHxMQCBrA9dWLWDk5LjH8G2rbFsAuooGuD5362qQDgov69vsf3a9kieVucqgMI98vQIDWr8WjWnDY6HK0Ga/e9oatC0owLMtQMDPbNPGLaPL0YDekxqZ7+zdFZlTVsldBYJaMlzxnI2RsbT11sKI2kN0CnKb8FOP4cnI8bJLVKAifa9AlicEq7XFqnXUsAMEGWBhIWM+M2/OGauWp9gycIdUppVCygBdi3pkWWVWx0GvodU8WgrI3VOFCNLDg1rKj3npiR5oO7UiIK26VIaD72dtrLxlefTIyWeRG8/OWFRgKcuvop427OE7a0/kn/HTaxAdAODnFRAouemAjFpy65yzrE5OlreVt33I6F4PHer1uCtPUo0/33PpennNvBP+PwZwKJ/VoRbMwxijr/eVt8xTx7UxQua8z16FWqU5pBJlcsg7o8rLz4xRq11bhr+6XrVxC2hrv2JnCyjbCljJXisa0EOqD3rkMlOePTy0wFsFAg4JBlrGMOPTyXoFpJgq4Fnx6JwDNcYVr1X+nKbnhXBI53ZscT1b9WPnjZ/T+ma8Vr9b9e9tH81zW3ndaWuhu6eGuxJgTu8Ga9UYlSF05blnestoGUrUpxVOYgXbc/iK/le+KsoMWg+IUyVQgaQWCsb3IUGB8rGNot9GqYKc/LTSZ3k4YI1rbgW8KtHJ5P1kTJePOx0w+1/xCmqNT5UfBT6ZLGoelYxW4M7V8ViAQC9l4yxrq+o+07aggHnBR731Hr3tSPOpruuL4LheLOvZ+QGVrFe6cEwfVNd72qfSaWPbdqvIQKXc9F7LY3GGrjLWVXmtRtHnQFWjZUpPhTkzsmz0xwKBrFwun6+P6fwMwLmyegEEf+v1Q1ImA1WdnOxqPmPrlsl86xkHQB31KPdq3GVrUyrZ7DEYPeCpF2hk9a30jPvdyvOYAEEGBHEv05lKrh54ToGglsHfLaOV6YBKH48BHHiOAW22NoCBgNYT17AuK8IfZNRz7Lv2Ty8Qc/qkpWuzNuG3324jr1utGegxzMxkZZx1sLYQYyX07j9/MgDgFKRTTkw9qM0pogwQaJlV3VvKtScPLa9XAfcasmMAASCVAzeHWIEhzYP/V6SGsqWwNf1YQ5YBa62Plp15RvjuAQMtmWtd65GXTIdkaRWsO4DnyL1AbAyA2ydlOiu71gPKM0AQkb/zoqWTs/J7dH8GBPQZNv747Qw/X+NnVqvVcIomFsqizu5I7mx9V2+9+Xsf8lOBMeZjW927c2RAr1XKTjsX1/QZJzxjaUznZI2rhtOBoKqD9NOzKLASGseL3u8xUA74aJtk3sHPSLylyMmWG+i9cpzJTjZGOE9t0x7FUclelV8LuDs++X8LDDhy44WvZ2mze6r8W89mRsal4zJ4O1lPPT+aKj2o8uba2gFYt79ej+fNyqr41O8WaOvJVwkywIBA1wboN4AAbxFEXTV6y3w53eDqncnktnUea/cyOzeGdno3AahlhHrQoabNyutBqK4czadHUWRKMFNymTHt8fLGCEero1tAqseb2yV9xs+hSD0H1z4VIHLKlY2FluUAF99H3lmasdTjYSGdq1N2rHD1fxu+nZFgvvTjxnMVBnVgpcVrBuwACiLq3UEfTT3lZjox0xnZC6f0Laowkj28ZH3b0sNaj+w+eFbvPzP+/B0RwzoZ1NOVrdMkLf2v9VeZ3UXPuz7N2s+dmIl0Y3TMaDCwDWJxg3nbcrIGypRHS/Dc/15PwAn+mHx7ve9qELUErheh9kQHMupFo4dSqKpIMsBZgT5t0zF1ztqxBaI5jevT3vZk4+rK5LAw13kfVEUFVHFCIfN/pGn1oQMTfM/VzekJTQMeDglmM3K6xcm1M8YunUZCMsDMeen/DAz06mFca+l/tiXn5+dxfn6+sWBQ68QRAS5bgYACgMzIt4x1NpYywJ61b1YOk76joNXujvZ+AqFDJi1FjHxcvr2UNZ7LZxdF54Q+a/jK+2uhT62H44PrVqFWR05ZjvGofiZygBTXK4DW8gR6BpvLI+u3TOZbY6EHkGTKmpWmvgaZ+XJ1qoAj16cHEDA/GfA5Ozvb8PyULz7Bk8EF7jtDpZ7yZPL+hkaVmWMgBXf6m0n7U+vBUwOqw7O8Wr+3BU493jD3lxp9BwSqnQKZ4Xf6OJNv5m2szeJnKrCetQXzgU8V/WzRqAWEGSpS5ZYNuh4G9XmnGFpGyjWw3nfP6L2snKxu+L+tEa2ec23n6liBlao8HRAVj9sIvJZ3KNpmkPBzqnBwT+WU+0PD8L0y0mPk9XcvaOhJr1QB16ycipdWPzggMJ1OBy9wOv1HfeGtc/xiL8wFwxtkz0/HhX50XChAOSS1AKPeH+MkOEPsnsuMUm8evboGxBEA5MnrgLKogPLl2qUi5rNqB/2ftX9WZqY7qjL0Gp7LznToodG7CXoVlGMoC++5LS0KCnoak9NsswimFxBkA055rxDoGBpjOMaAAebV/Xb5Z3m0UG1vPT6KqjbIlNUYQ5kNYtcmrXZQ0JvJfna/xbd6kxFhV1NX46CSZecMOCeBqaVYOSJwcXERFxcXAzBAGrzye7lcDm/6ZP1SKVI2MHp9G/C4L+oBjtqXY2TBHZaGtnCRIvzuBQ6OV/7tDGElC7pTQG1KZvSdHlZ+emnseHPljB2vWRqd4ttFZneaJnDKqIoK6HP8e6yn1ANKWgbbUQ9aHQsy+DlnZJ3xyYx7NhD5tw4OTYM6VgvHquuZIPeAj0NRq19d2zoQi/+ttS/Z2KjI9as+u62sZEowO4Gwh88sylHJAeuHqi5aDyj+y8vLuLq6iuvr67i8vIzpdDpECF5eXmKxWMRsNov5fB6LxWKtDHU6sv5l4IL7hwayjhyow3U81/JuFQCxcXG7KZxs9erDDAhkzgT3DXv/AIDaf25M8iJQfQkc10fba0x9Wk5Q6zk3Jhw/nJanOnmqp8VzRXs5gTCjzChoxSvPlPNQweXvHv7HosKeOmeeX295Le8P9yoj3wsYMiTueKoMWAVGOI+xffTRlPHp2gXfrm0zyuTZlZHxlY0N/V3lk/GZGYwqP5cuU34VMNTnq/T8zQZgOp2ugQEAgouLi4iImM/na1MGLy8vadlVPZinQ8uuGovWWNuWOBKgUQFuMza4bh0FG9lMh7TGhMpOttYM/bxabc6VKyFqxFsJdbcEl81l8O+W3PO1XiOf5a3jhNPwseKTyWRjceQ2sru3txa2BpV7pvXBs4zYxyjoqiN6OqMylu4/5519sgMsKkWv6D9D0e7j6sN8ZIqyRS1Df2glWpEz1nydKQNiGQDUfCvFNwYgqAxUz7i+yWRWlX7PmHT1xbcqLnyzl5nJqTN8zjAgGnBxcTGAAZbt5XI5TCGcn59vTBkqn1nbVP1zTNQDaLI0Ok1QGXpc18gYyxKiKNAxoJauU92u/Duvn8tF2WwrOB3WkyBCgN/V9skxQFyfxX/V2a7eIN5J48YIRwO4zSLe183sAmBHRQaqQpxCrZRtZSg1Pw6DaIOMpUyJcR17FYAKkduewgKbKVdVOs7Y47oDQlm6rI0+QsF9tOeyD0I7O69F2yQDV5lSavVtZnAycuB3m/pqfiDdl+xkMQMBGb89vFTeTybzbnEY853xh7yyccn3NSSegfbPprF935te6695oG1Z32pfsFFyQAB5ZOtRqnbtsTVuiiuLVgAQ4NsBgYwHZxcyeXZ5jJEfLUN1OaI22Rknzi70lr+XNQNghK9nyk8HcOtb0RWX1zJ6jt9WedWzzohU5fR8esp2CtLx5vjg9GOMlStLy6n44vYaOyD2TWMMswNbboWuK2NsH/N9l2cFsDSfLI0qBFUw1bh19XDpXP16+l5lBM9xm7u+gUJfLpexWv0TCTg7O4vFYhGLxSKWy+WGsm8BmixC8jNRNTbRxuxBV3KDPNgIZSv2GTxxuDqTaS6X5b8l71yHsaTvH8hOHWQe3X8n9732p2WcHRDg39x/4JvfQNoqt0WjwEDLADr05BQJI8+Wl+YaWxUHXxvDn+bZAwha9/CtiqhSrD1lZobWEXt9WsYuoCSjavAeA2k/ZPOhFdhUBaj7l1tgQMvKeFQ+3D1neKv/WVksW5XRzOrRAjrO4PD4d/yybuBrCO++vb3Fy8vLoBDZQ1oul8NnsVgM6bkOWX+o8j0WQNDT33wt04ktA+tIowJ6uA94w3jCKX849tetQVDdlQE+5UkXNfI1BbpZPVUWKlCxjQMzBhhkz1ZgQ3d3ZIBujIPMtLdDh5gRpdZg5+ucLz9bKbyeiqsgOoQ6tgEzpdhjaHsNA0gNvANUbKi03VigKsXowAeT8yorD4D/H4q0rm4rlfufeUNA41B8eAZ15vIq+Wopr0w56O9eQNzKJwMELdnNFGdLxjNA5gwB+Hh5eYnz8/MhAsBtjrlg3VqYfXTcKCg6FlDQOxYVvOo4Bel0qxun/Lyu4ud3AmRAwMlMBWoqA8bPoU9RD3w7sKB1zvKu2lfTVcDX5deSm2wc8H/V7U4mK2DQS1u/qKgiFcrs+Wqgan74dkKq1OOxKR9cVo9iGwMEsrJ6KXsmQ9QQCmckGBVrW/QCAqYKlClwyQbqZxHXPVM+yrNTsrg/ZqBr/pxHzyB2suT+O6UwBnj2goQq72r88qcFhri/+ETAiBgAGe5HvBsFXiTGxsPxpPVzv4+JMpl1AKAysKBW2+A/8p5Op2t6F0CA57LRr7oHvqpTxjP3r/Lt9FjvFELGj+6kcOmdnmwBHU3v8mlRZlvUPvZsfXa0lxcV6TXt1G08l5789TfILWSBoLKwsEJyjdtSdGOUZaXM3XXmqeKHn82AAP8fo+TGKMNs8OwCgvZFrbZ3cpopKCdvPZ6FRmu4f5U/B97c7yx9BSSUnPz3gtiePq3arcpD94HzdrCXl5e18c158SIxHj/OyLi6tq4fkpyBcUBAjbU+W4FyyINuXUNkgJ93U2U6F98CqnzPjTdtey6vtcgz0+uODwb6DhBkBt8Z5mz8ZMZ8LBhQnrm/V6uVPZGxh3aeJkCDccGYW8JHlR9XTPd8amVbwMMRlAGXo53QY8jd9UooHFXCkZXn8nNKPysP386IVYZF81Awovlq/2SDjJ87BFUIHlQpVx50ToG05h71ee2X7ATOiM3FTpXic4q/t82rttkFPLbGSg+Qgn7go4VZdl0k0OXnjJdT6K3/n0kV8NRxyIfvOAOg1zK5ZV2h5bPBzPJy/ZMt5uTymFj++Rr3RS8YqPSRjkNuQwYETna0HFc35pvL75En1VtZXXkKZ7V6n0rjuvTQKDDAFckaWEFBC5lwh7l8NU9FwNxZEesLTbL9xdk30lTUUnjOiPfk4a73KPWKX9TLtW1r8DhF4ICAGiD9ZoE+FBhokQM1fJ0VoK6ijvBbs/i+Axj82xk2pzyqE8Yc4MkMfHXNfffIa5anU/I9cpAt8sTzznPjZ3vr4Hj+2ciB1oj6UCAmNWyY/+dFf/hwpFWf1fn8XiDbMpTquGQf1y4u/wxgZbuGMEWl7ZeBSR131djqocwuRsSG042IzjbTBaPfTeB+Qwg1IpApz94yVMAzBKnCqUq1EkgnSGMUQqtjnULOlHTVaZWwtXh24Ccjx4ND0xko0Dy4rGNYM6DE7VJ9OGSqSoUVJ09RIQ3GxnQ6HfLi8eGMF2/V4pPTnJLFM72DviUDrr0ycFj95+stOcnSqjLj8e50SzUO+bsFiJxXdkxUtV3E+5oKpsrIaj7cFrpeI2Ld+YJ8OnnNjHam6x3P2Y4QF03OKAMGuOaAArclt8E2IFjT9wCCykFxzsXZ2dmwfuNDpwmyzlIgwCd/caiiakBWyK7MqvKOnwyVZWAA360OzK5V3lRLOWV59gKDKo0DAG4wtPjjvnfhcx1IPPBaA+czyPWtKoDso9EnXItY3+GhkSl+5uzs/dQ8fuMe/iP9y8vLkAc+2EbHC+JQpirDrI5a/0w2WzJbyafOUXM6Bwb42+WbPee2zfaMJS0vAwW7OAYfTa7tXHtlr3fW/1kUKuJ9xwFHAhB+ZiDmTvVD3i0nrAe8Vvq7V7dkY6AqX8e4AgLHn5aX8dZyHDPZdGMLvKI/nDP+YdMELDisCB0YYMPBgtcS1KxsBwS4oq2Vqy1B6jX6VX67KI9KOB1y3TaviFqxOyDAiiYLp+kg0cF76MgAyBnJChDgPhPk0G1p0jHC62YAAnCcLlZnR7y/TAWeFYcnka/KFytrVULMy9jrFbWMkruXAcdWOZlsoc6VTFVz4sjH0TEBAFDWvvitbcyRATb8/N956yr3THiGy8HUAG/l5BP+UJ6T3V4d5QABp6n6sQIA2XPqAHDUT8t0Y47rpsa9sk38nMsr45XTOV39IZEB/WYkwkoO1/R5h+ycQdXG0w7njuKG6lnMVQlUq6NaymMMOnUDo8dA94KBbSkzjro4tPJAWPnwwqGP5n0f5Aycer38H9fwUhxHHAkACMDn+vp6GCsAAngNL07Y49Afb99i5eTAiKNeb6pqF76mRkgNeJbGtZFboKXjW68xLz11c/qkldexkNMJro3duER6RJki1scq6ycFujD6kDs2jDw9wNEABzacEXXfTFlfOWcja6+eqECVB487F5nislq/M1un991/B9zV3rGOxu/e7ZZbTxM4A+GiAhHvC0tc6CiiNhhcDoMPtx7Bhba4EVveU1V3fLdQaK+SaSFA9ztTpGO8uYynTIFz+7NRc4jTKRe+fiiq6u7qqe3MBti1F4y5LrjCfZ2/AyC4vr6O29vbYS0BDstZLBZrhl6nAxCuBQjIwrHu2ynISgFV1ypjz/+zOUw2KFqPTIEx3w4AsQFTg9YzzrOxfkxAtsULt31ErB0IBFJ5UQOpCzQjYmNsoP35PAfV81wWfjMP4LdyxjJqAT7+3/OsRpqYLwXizlBn+lt5qsBJj5yqPkV7q5PyYZEBFALSwc1GmpmGUOiiEk7D+TvDhzSsXNgooQF1gRXPY6nicgaqMvQZz617/LsSdqekK+HKyudyW4BDr1WAD33M0R8eJKrEuc1ZDo6BWkbM3cdzTBr25tBoxHtfMgi4vLyMy8vLAQjc3d3FxcVFvL29xXQ6jcViMXhaaFvIcgaqdJw4IFbJes84UJms2opBFdcdMjOd/qN2NHqoBqUCBqrgdBcRrjlAVI3zrP6HJOcE9AACNtpsyEBuXEJmVRdHrLfxZDJJnTydIuDvildXT9zP5LmnPzUP/c9GH/zzWh6Qglcuh/Nyept1IfJwYLwC6do2zklgXj8sMuAYw2DXaAA3Giuz1upPNWLOw4Axury8XPNQWfh0UQs8LtxX4dL6KamhduitFxC02jcDAu46/uvgyEBES6E45V6RU8hZHVtTOB9NlbGv6grlwB6B5ol78NYjNhUnXrd7e3sbt7e3cXNzE1++fIm7u7vhufl8HrPZbCMqgLJw/K72uYZmNVKgilnrV/136Vty46J4bhpRFSrPOaNeTqa0fH4WpF5wq26u/48RFLhvdpYUiDGx/sJ/yAcbRH2GZRCg16VRIMe89dSp0nFVXr39pEZf2wG/M0ACctMF1TOqX1y/uP8ZkM/SaBkMCHpop0OHnOCoUtKPoijNL/M0eA7ELcDiBmYgADAwn8+H+Vheta2CzHXhb0Vyiiz5OuehirunHTWvfSilXbyLzGAqAMNvVRYOPH0m9QABJ8t4Fv9dGBHe7sXFxcZg5HwvLy/XAACiAgADMPRcFssN8nt5eYnpdLpm7Nw444+rW881bgeuc9XO4BNGX8cqPtx2bMyzOmTtimfPz8+Hkwk1OuMA0hgQdEygQA1MBWRxnZ0zvqe6SkkdQFxzgELbtaXvesagAz+sS5zObumaDPRUxMZfIwYAR5VNQx4Zzy5iE7E+5ZXxzDqYy3LTci3a+QRCEA84MK+RgazzInyoE8TAgCMDFxcXcXV1tbFGAeXB8EMx4eUmmD9jZVkBAuVHeR/TRj1pHLhwiNYJfjWgxhp/fY4HIcLYDHbUKzhGaimgiHHGEoYvItamTtg7Xq1WQ1Tg69evAxhAhAB0cXExyCcM6cXFxVp7np2dre0y0PGSGYuWwh4jy1k78DjVazrF5E4mhUyhns55YMABeQMQ0OnAFv8OvGfpj0mm3fjUTza1xZQZbjb4LUfGgYGqHZVntw5BQbF7ruUsZXo0S6M8gly0m6dd3PRLVWf24lmuFeAwSOiRPW5L8A3nuVd2t343gQ4ih8g5GqDzSCrQLn9VJrpzAfOvFxcXG8oFYADfs9lsULYACQxW3EEZ+l8VkzPQfC+jDPC0qCW8lZLm3z2o3c2jgwdFrmhvve94OAS1FKeTQ67jZLK+dU/7QaNXavAABq6vr+Pq6iouLy+H7+l0aj228/PzYS0B2le9ZIACXSjnFju1qAWAKmXnZFLDlKgTvllxoQ3ZuEesv4xIlRz6hCOAyju+ewyV8u8U9iEpa+dKhvmaziG7iFGEBwYKGtVhqgCBjj3lB0ZWd0CwNx4RG0Av02MZsNH//N3jOWu7aiRaI4Zclkuf8a1tqGM+AysOCH5YZKA1iDSMroZU5/S4E1RIeBWkbpNwW7SgVFn5sqJ4eXkZgMBisRhAAgMBBQi819vtm2VygumUaAYclHpRrD6jCsEpCk3j+tUZSyf8PYrjWMjVRweSEgMC1JcNMOddba9drVYbBhB5AZxiKyFkE/lyhAFAA7LJCwwzL6+3DzI5HAMCXH4KLhm0u2fYE3MGBN+r1Wo4kMkp/MrwZzJf3T8WcvJajXNOo3PdPYYVujQzKM6IOZ6VTxfKVr45OoQyMr6dLuLyx4A6BapZfVxaHeMOpPGUAV9XG8MgQNdtOHDCYwPRMtVVFe3tRUXMMCrCoCCbR2bhYM+BVx5zFABeFQMB/Gd0yUb99fV1AAOXl5drx2eCRyhjBgz4TCaTtTelVUqyaiMV6qw9lJzAu+fxrYNOv93zmr8rx+1fBt+K5B31CuW+qQeAVR6Fet2s9LhddW4cbcIHs/DaAEwJIHI1m81isVjEYrFYA6EoB9MRIF497IhlogXcKmW6jXHMngGY0vzV+9Ez1xlcTSbv5+cvl8shmoC2hHFhwKR9vs34PQSpJ8tUAVkQwsTVeoGe8iqwoPertnX6iafXmDceY1xeBnycTFd6lZ+v9KIDKJBJtC3GpgM1GRDJwIDWU4FPBqjQjuCvBWqURoEBF1JxoSFdMMhgIBuUqCB7V7oVC3uzEWIFGEBkgJUlyoQnxcrarQ/A/u75fD4o5NlsFsvlckgDJaRAwtXHtRHno9+ZALnvDNlnyFvDtE5gtd2UdB6YCeW7sC7Xx+V7DJQpMqd4WI55246LDKBdtE0Xi0U8Pz8P+UL2GITyWOIIl8oXDB5HEyI2t5OpAVaF6+qvafl/9dE04LPlyXPImNcHYcqEo1G8Owhgn0/B43RsTNx4rQzjoYn1YwUInJetURgFBhUoqIxiBjIVHGQAnPUSjxV1NjgPBb6ZU+bax0UBtd1QfitSwd/gg785DTvHaueYOK2us+N6cB4OCPD0Gh+CtvfIgA50JhYwjQa4BWXIy51eqFGA6XQaV1dXw0fXCVxdXa1NGXDnwHCjHDfvCnp7exsAwGw2GwTj6elpbaUzK1EFFdrp2lbZAMkG5ZgoBAs4T6vwHDZHT3jgsbBwXZkP1898381rIV9GqoekSvlpOn2GFUQW4uRBjIEMQw/DrHN42ZoV5jXzwCLyLZvZPGMmry0Zc23SCwRcfZl/XHd58JQgjBnLKJ8XzwANdcO4ZxCi64C0/pknd0hyuqMybGzgnKfJXiN0TGbIIzY9XrSjAykqv0iv/OlhdcxbxOYhXpkjpGWjPG0nBwh0Gpp1o3rWuObkg9vARagzAIY2YedSF8OqHQWPupie220bXTsKDLiQMxsrrpCGPLghFAiw8UcUAB8GAgi9YmuSIjpVoJPJe3gfqMl5uFCoHOJFnpk3y53NAqvCUyHkDAyoN+DKdkLOQp0BLd3Wxfu9MwFCG7CHysDKgT6tpy7wOgRpH2VeMfcLf+O3AwN4frlcru2Tx7RTJkfuMC4tA3mhDPeqWCY2Am6OGPm435pP9tsZoUz2tI0YPLLM8YtwXl9fYzqdlqATBKDL0RHwBQ8J7Yb7bp0FtxcboGOIEKghdvf5N/eFzj1rn2XTe5kBVb1Z8azfDrhAVlgPQWew06X9yx9noJ2tcsDARVPclKjWS4G90wnsHFQgK2J9Nw0iIbBhXEcFUmwTI2LNHo4BBaMjA1mIWcMcbiBp42MQAxBgq9XNzc3wG9MDV1dXGyiK82OjBkIaLg/XmR8oB60v14e9PlWyzAt3eKZ8OX/+VlCVGSvHpyoA3eftDnvhsJgbFCrsmPPGFs1qkaWie4SuDknZ4K68YwVkLEs8CKGsGIDyAkHXlxoR0DLUM+HnIjZP3eNpMpTHJ3BW4K3X4LUUZAYSdGxmhgTtxpE8BhD8zW0F2b68vLS88hHODgi1APixUKVDmHRM86JTAARn4Dnv6hNRg0inB1kuwKMuFlcDBkPIdXFywzxxmVn5Tj5bQIDL1jE6mayfraEOAi8MVpvI4xeRbNQ9Yv0VyvjPulzXKKmD1zs92w0G1Gg4AcqUiwoNAwGsA7i7u4svX74Me7Fvb2+HyAB7tFBq6kXpnCLKVWOlyoQbGIoCabEmAd4eL+jKIgH6rfdVSPmbQYACKo2wqECz4VevLNvfDcHXAanCxmh1sVjExcXFAAheX19jsVgMAqsnv+kAOgS5Ns/S6TOufXUXCwMfBo26QyUjvcfG25F616xAnVJHfhqd6VESmXw7o88yxoqd+12VtnqtLGswYmw0srKhTyJiY6Elt5uLDmAcc3v+CuQA5Wr1vguj0uXZNf3vooEOJOj4Yz3EzgvLCgwbAwLmjT8KPrJ0FRBQI4p8FXzjN+frDtfC8+fn58OiYI1ycP4KQmHPGDA4va86nZ9HW/fQKDDghEcFIjNgzpgByV9dXQ1ntX/79m0ABbxLQOdhXF4qSBGxoQA1FMjEwgnlhm+EITkywOjPIWHXVqy0tQ1ZyaPzFbxotMMZcbQZ+GdFqqT9ou2JQQoZUFCI1fHVUbkwRIdWshVIc2mdwWFgwP3LwBMePy8GdB4LKDtrwJFGKSLelaZ7jr0KV//MO28pc20bBUyq3NFWLAcMFLlMBVR84qLKl/LCawaUsrpqhAVKOJuWOARl/QfKolps1GBY0UYaIUA+mTHFtYw/F6rn/+6b9VJLPzhbomW4/NV2uYgV19HpStW/eh8OKebvGQwgLV5A5iKkDlRpXVzkhJ/X9Qkuv4pGTxM4BAJmXCdphRTJAwzc3NwMJ7NhegANqw3gkI4aPA6FMq/qkSja0/q6OXeupyp7FhYFBCr8Dryol+JC2JmR0sgAh76QB/J1baj8apsiesLGi+vGikYjHFynQ1CPwtE0lffAQAlGjgdkNg40b1Cl3HBfowER7/2o//k59Asf2wujrAqkCv3qtypaF51CO/GzGSCIiA1jzG3K4Fv5Ah9cTxhABaeuHi7Sx+kOOXWQAVfVwxVIQjti7LK37fR5dh33MsPPvGT5OL75O2L91ci414qwad7OZmkELXOWWF6YDxDkiv9D5vmYfHbo0O4ot3r5mPKY6RTwpgABIE/HV0VbTRM4AXSCqN/cWNgZgIgAPlg4yDsGFMUxsWA6lIlGUX7ZYIGyiINuScR9fNDRbPDcQOPfqrShxLRuqJe2rRoqFkLeNeD6jBWniya4aQI26k7B41l+SRTam5XzIagXCDjFkU0PoK05asILB13IL2LzyGJVQo5HVYoMOBnsaXQM/fb29rb2emSOWvBiUAW1VRuq7DH4VCDggKc7b4DrWzkX2mfIH9+QTY4OqvLnt0Jyfq7eGUD6DKoMW0ZVxJNDzVWZme7qGUut9lKgx7LAepujbNUC5AywqCOmwNHZEyYGAhrdA89Y6MplQv7ZGAOQ83tx+Fvbx9VP68kgg3UPRx566gnqBgMY3MyoDtpqELNAQqHC8GPBIF7cwmCAVyMzqlMjzmWwsXeNVymYDNgAUcPoLxaLiIhhgPGiMQcY2MBkg5mVU6YoOQ9VxgwIskUwLj8FDmhT1MW9RIbrmEUZkMatJ/hMcu2P63pfgYCGvnWrG4fBoWi5PRBJcgBOga5TtjzYedBraN5FLsAbjD5e2MVnaejZBhkgcGAAcqNbnHiKAPXWMcXthXpGrM8la/2ZkJ+u5WEeNTrQGvvHSk5e+Zt/awQEhD5geVVjmUVG3PjRKJXTte43/uvUFXjmvKFXW0DVtdc24E0jmOrNu2gIj/Vs/j7jp4oIYHxopEud24h8KnysrHeDAQxuZyzZU8nCcFgfAMOPhYJ4cQvWCdzc3KwpFVYsvH2ClQSHShjNMaLjBnJzK/oce8K8IAkeIJ9kqHPEbq8+KBNSNbKundmjV69VT2Zko8d1ZlCmxkk9VW5D3UrogJ+iZxbqyWQyLPD6bFLjC/6YFKjp1IszdBw1YaWAsrj/FcCxsXSrkCPeQ/yQcwWaANYAJvrNAB67QJ6enmI2m8Xz83M8Pz+vAQPtWzd1wO3HvKPcCgi46SNVWDyVgTJms5kFWqr01APSMwj4OedMOGPYa4A+iipnQuul6bieTha1TfCdAQItG/m2nCuQ6kM2si6Cy2CAAXFP1Eh5QH5V2Nz1Pes/JuQDeeUxiggpR+acbnfkQLKu+1FQpou2XZk9NHqaQAvIIgDqQUyn07VdA1+/fo0vX77Ely9f1rYS6oFD7IFBEbCRZ0CgiE754t8aKlMhQSMrEGCExuXwccY9oEDbzylHbkegevUIdXqAwQDIbWnp/a0DkoWMlagaELQXDAYWgh2C1CvHtQqZR8RGO/M0CucDgKjgh/uA/7sIhE6LRbzLIH/Ygz4/P984jVN3OgCAAQw8PDzE8/NzPD4+xsPDw9oxyCy3KJ/7VOsDQMLAidtYjX6mqNgAcb+4eVpWlK7f2BAyMRDmfvpZyIEAlWvVaXDOtD/HkJYDXtiwalSCf+s11REcUVVSY+wcEObT1U35aAECjVQpQEZZ7ATy9ChHifE82wXswGJedd2PRoi5fhqdcNNd7Jx+CBjgDncfTcdGC9sHb29v448//hgiAogG8BvdcK4AfzgMyo2NjsXgd4gWPLvwihKjaSi3XlqtVjGfzwely3vxsSpalRyDiR6vzHndHB5mXlTBQnHzc+zZaSRBDRG3OSv1FnHZh5wmqP7zNW5bJihVVcbcHuqpKqFPWHaZNOzPSkeVIeSTj+jWQ7oADiLet4U+Pj4On4eHh3h6elqLEOh0BOoO/vl/xHpYn+ujsoz83NoHzpv1Cbyu5XK5ESXUCE/mgSrocse0quLV/jokOQ8+iwbo2G7lq3koONM0EbttD3aRCo7AurSartfbrcAgxg/y4yheBgaU2DGGs4QxFvF+PgLOGmFAgDwxhnlKl8vX9sKzzF/E5qmx0N0fDgZAFUKDUPJiwdvb2/jy5Ut8+/Ytvn37tnaWAK8hYO+Gw57sbThyCFR5cnXSexpCY0UCQWLDyp7h9fX1AAh4bpYRITqMFzVVSFd54agG88V1UOHNPAId2AqeGOm6yAArdKc4Wgb2s8mBQueValupbPG8fcS6sXRgDnnjGeZjtdpc8c5KHYDUgQFEFPiYbowfPrVzMpkML0UCD/q8ggGtA4ND9e64bdiLy2SmB0SibdnzyYCE66tMP2Xp9Rn1KI+FdGzht461iE15536p6qX5ufsaHWgRA2EQeMuchJbj6fhy9901jt5BxpgXN4ZZ1zFIR+RzuVyuOabIm1+Ax0CAbSSfo+PaDMadnUuUz1EJ1E0jFD00Ggwos/ytRoo9l7u7u/jjjz8GMPDly5dhAWE1L6vzqFnYJguRgT/wE7EeftSwMToKCM/lr3PGWFyIjp/NZmv14P2lesxkzxyWon5uFydAml/lyWm0AOlZcbNiV8HjdmSDj3w5/0MqVu7bCizyYMe3A27q2XN7OA8oYh0I8N55Vs46DTSZTIZFiC5srlMCbmoNdVIwgDF3eXm5AQa0XmgHKD1dcMgywrKN9ughB65Y8fI1t/5DDVfmBGjdfgZSXZs5EO65ysC55zPnIysj47V13TkSms7V141fBd29PLpxymkUeHI5DH45KsCRVhhrBgIR728hRURPt4Kr8+BepIfxqkBdwXhvm4x+a2FrYLOR4ekBrA/A2gA0wuXl5ca8rPPYIzbfhshlcghIQy4aSufrzpBi8KBzoSDZ0LGyRb7oNN5qlRG2mqBeGapVw119uD4VwOABzorVzVVp2ygYc1EUBgZshA4FBjIAywObZYaNLl/Xtsm8U6TR+kKGVHlxuzGI5rdxsvLhdudxowtHVRkwIHbgAwdrKW/qmSD6pVMK7KmgHXlqpVJO3KaIlDCf7FGxPKksc1+pF+pCwjqloH06xgh+BGVecWYk+T5HsFBPPhXTyb+LMIDcNJA6Zj1jXPl049OldwBAv3vKZOLpA84XzzjApR67Tj+xI6TGGfexhg72kcc6A104AnjTKT4YT7zmgqdyucy9gwGH6rSRWLHxFAEqjMOEOOSOAZqheGfkuZyKz8wDZCOlc+XsBUbEGtpj46mrzfE81433cGsbKeJ2IZ3MUCgIyMCTEitNpwBaYT8GBJw+45c/leH8aFK5cUo1YvOsf44iwMDpXCOTRpmQp3otDH55ESjP9/NZHPD4lU+WR+TLPLI8c9q3t7fh3Ay0gSpUlU/kNZ/PYzqdri04ZICo60wQQgU4UCCJvPm3m+bScQniyBPWRzBwYsUY8b5DBnyhH2E4VT6czHw2Zcbeecuurbgt1HhHrIf98d/pB+VBeXTART1pl0+vQXdtwqTyW5WveXE/9wAbNrQasVM9yoAZoJsP2sMiep4iZ/2+Wq1iNpvF/f193N/fr+1eQMSBbQ1Hb8fo3a2mCVR49DqUHSqMqMDd3d2g6Fip8ktENA/85o7BNbcNkBuDDTErGZ4jYgPJnYcGZ4Wv8zzoWCghDESc1c9ggQ994ZWl/PKf6vhaNvwa0eBwrCJBFYQWoGJlgfpwiJgFG+khC2yM3EIvNZ6fRQ7ts2fDyo/n80CqYCLez05Q+WHgo4aVQShPi2EaDWdscOSMI2hq5JlUkXMkif8DCCyXy+EbfCyXy41xxpEMRAUuLi5iNput7ZxhY8ty4g43Uq+d6+AUrBoYDXWzjLnpLu5LtAl7aRoJUjCROR6fQVxnZ+D5N7eftjHLPHuNLK8ZsFd9kjmGlcPIY0LzaE3XtIyZjrUMPDlAwqAnAytVedqemALURd0R707AxcXFAAS+fv0af/zxxwAIMOZ5a/3b21s8Pj7GX3/9NZzIC1vCfeZ2Hqn8VzQqMtDyPlXR3dzcDJX9448/4u7ubpgW4MZSb9l5sCq07JVC+NFJDFTQWVBkmNd3nqsqNPZ82LjzVi7evsWonMHIavX+XnV4VbywBKAHfKEzs/bV9mGqOt4NcG43VSoMjtgIuTUXqpBbCuQzSZWom27i9lTPKWJ9TQTaRU8ec0bDgTgeIxgnfBw3R9H4VE4+WY+9bw4RKgBheXEAhuWAI1zKL8AAv2WUd8uw0cI1BsAs82yYFNgwAGX5434A8TkKDNQ5Oqeesi6Q1NPatN9bOu+jiY2OC2lz5Cci0vpkbc7RMNxT3Yv7FW/Zp1UvzceRRih6wEGrTL0+to8dkGA51baMiGHBLgD/3d1dfPv2Lf7973/Hv/71r/TQvcViEd+/f4/V6p8daw8PD2tAA2OTQTcvOO51wrbaTaCKk69BAaHSX758GRYO3tzclPOBEe8LK9ycKRoU4Uf1YoGYMMj5hDV0FhQUeOY5SJDyMplMhjke9tR4oRYU9HK5XGsnRA84rLNcLjd4xH7v+Xy+1rFoJxU6Fw3AdQcQ1GBpZEAVNRsbjmKwkHGZKEfnb9WDOQSpgtJwaeWpKCBFn/DZCa4dWHG5aRPINx/ExQdycXSA394JGUf/YDywMmcjrlNaLKeQPRhPXS/A0QUYkMViEZeXlxtbZxlUQ14g07PZLKbTaczn87XpAo5msKyr4WLQhnZGeh576g2rIr64uFjTHRph4HlfPN9j2D6auA2c3kUa9gJ1Co/bEv8j1iMjqjcYxDpedByNBQKZJ67Gmceo8uiuc9s4PrL7vYDA6eOId1nkSBnaD4YdUUCcuIsddv/+97/j69evg51k+zKbzSIi4vn5Ob5//z5EByI2F/ZyZI77qYe2XjPApEAASgxIhxGPG2A8F85zqO4QHSg/RfjIi09/QmNxma6zWOg1rK2dqO9OYAXNR74+Pz8PCn82mw2dxG8/xBzsYrFYmxKZz+dD27KS1MVY3PaIOiggYO+QjQPvRkA7cXu5gaH9poNQFcOxkHpILaWVRV1AGGgwfkwKjlmu2CjzS7p0W6A74Ej5YWWk/PLzHG7kXQk8ZYXFSQ4MsJEHGHDnaPCiJ4wBgHnw6RYnsteu0ZoeReYMEgjjmgGAjodsWs2B2UMQtwVHRzUNe4FI4zxCblMGREzOWQBlxt9djxi/+0CBQk9kxhn1nj7LQATnoXkpMGHwzaCU88EYYB2MMYpxz1vvOYKOMgGi1XHUw8J0G7iTl4xGTxO4zsY9VnS6iwBhTmaUt7wAocKzRsPB2HLoD/fR6OytMkhgxKRbMhjNsSfFK7KhQK+urob5HX21Mtdf5x7ZCPB/5vf6+jqWy2U8PT3F5eVlPD09DQpcV21n/aJCqwNJgQD44TxYkHVuV/PTwcH9CWHU+Ufm61DkFDsrGzZ+CqD4dD1npDW9yhWew/XsHH9uY7Qn2hLA0M3D88pxGOfeaRDIiPa1TnFgKgFjnMtnwI7x9vT0tOFVMnBmfrjdldRgc37Zb13wyyAX9VGDxzpF2+ZQxPVix8alY8PsgCrnxxECZ3i5jTJe1Og4QMZgNauX++/uKQBuPbcLVSDfAQLmCQ5rxHrkSvtIwQMDeOgGlLtYLIYFhPf39/H4+BjPz88DKOd1AhVArmh0ZKDlSSEygDAIv44Y4T1uGOSJEL7OPcNAM9hgzzhi/Q1XmicrTT4JStEb8l6tVmtTEwADeJcCFkHy1kF4N+ABCyLZkCAa4Vagoz4wAG4RSG+nal+w8mZDhbKZfy5fQZteZ/4VDPACLW7fQ4MB8KIDG78VCLBB5+ucnmVFQ/IwSAoQ2DPQshRIRGyGZjkkyDIXEWtjBv8RNWK5UHnSMy/YGMCz0fUHAH6TyWQjSsaRAQWGyAPTUr2eC4iNooZD+bdGZjSCAn7QTgoEcG0sf/smZ3R0fHFa7l9nzN23AoGIfP2RM2qqzx1vTA6UVnVv0ZhoQMVXll75cVED3GcwHrH+3hsHoiLep6QRLby6uorz8/Mh+vb09BT39/fx48eP+Pvvv4djxbGQ19mKDwcDFbEBQqVwwiALKCs3NBbPZSIfNkIssIyY8Dx4RKPznCjQE66586GhMGDor66uYjKZDCCGIx6ok3psuvIehhF5u3k8ENdVO5fryR4PGyr3m5Em14MHApQd881troPdRShWq9XaOgznDWg04tCkBoGNsTPc3L5qyBUA6JkZzuC7ED5HCfi/AgQ2UPhW4wCFlEUAIAc6DcDG1HmGDIzYaCDSAfDBx4hDPgAewC944zUHOkbAN8sel838shKuPGMFV1m4nIHRocgZWDWQDBrVGaoiKqr/eNxqBBHyoflwv/TaCE6bGdSszd09Hgu7OhxZBKBVD+WP24X1p9ozBQG8RijiPQr48PAQ379/jx8/fsT9/f1wlDiixw6UaZ1atNObY1Qg1StlTwqMsqfODY/BzFMJuqrfDYCId+8a86B4K9vT09PaB2ewO2MLnrHlCvcR6eDTnlhZo3zM/3MomL0R10YsMAAfaCuu2/n5P6cYsgDxR40IgwU1PM7bZBCCKRRVmNxfPCDZaMBDZT7Bi9sd8Vmkg8HJrTu/gdtXjbNbf6Hv01AQwO3B6fTDu1XYyAIgIy94DRzVidgM4bppOfQRIlWXl5dpVEjbkI2ngk7kh/pHxBApYNnK8uM1QVwnNjzcjgyOlXicaR4s9yrvKiPbRC/2RW7M8T3WIQryGcyp8aoMHH6jD9EuuM+LpFuGxkVjHD+uvkhXtf+2/dLj4Wf8tPhjIKZjSWUM4wZrhwAELi8vh7Q4Y+DHjx9DZICBgIu2M6+9bbTV1sKsAdVjxYBThaUerzYiAwFWpKvV+lwgGyReFDWbzeLp6Wl4Gcvj4+PwnyMDLlQD5TubzeL6+npQvtgbqusFOGysvLFBVgWKb/W+WGiYMMUSsX7ClS5I4TwRLubDLNCOMNyMXrntK6WhfDHvIPbQWD4OQRyRcshZowLanmr0+T6uKVBwYADkQAKXr0oB0aqI97egYRcAn5KJD/6jP3lxK0c4IjbX/Oh0BBtMENJwVARjkyNq4BvjHs/o+OB+wHjjaTWN/PHY135xER5V5DzGdFqO02bOx2dTZZDUcXA6pic/da7cotOIfIFxK89t6SOBWAawIurIQBUxcGCSr7MOYkALJwA6ezp9P5sGYADTA86xdSBgLI2ODGSF8mBEQ8EjwGr6iPXVv2qwnFeGMjFw1di+vb0Nq6GBnr5//x4PDw9Dwz0+PtpXtbKQR8RaZIANJStohNsRCkUolt9KxYCnB50BbOicLFAjr9xG+syQqNFxawZYeHQtBfhXgpdXRWf4GurOIdtDgwEQD3QYJF24o5EA/NcQPrctRwc4QsSgyAFAJjbWqiQQYXHhew7Do3/n8/lGZMhFNZAXywJPrUEm0G5scDB1xrsCOJKBxbfz+XztOQXKqDscB7RbFsLn9lLZz7xhN+WlHltmTHtDrR9BLcOjfDuvV+WFv1mXMgCG3LCuUGDr+NmW+Hk1yqBdAFrVhu668tNqW44IgGAfNOIG/iHrHKlC5AW70nitABYO8rtEnJOTyUxFoyIDDvXgNyuo1Wo1zNU/Pz9HRAxGlAmCp6FD9vS5TEwjMEgA4Hh4eBjCKD9+/FgDAwACemKaGj03fXF2dhbPz8/x8PAwoOT5fL62iBB8YEGHe30xK1T1ztAWEbFmvBGh4HCQrhvgTwYG2LCA1CvitmGDo5EGpgr9O4N3KDDA0R8XzWJABePLH+4PXifAH7QFn43BcsrlRWweSYz8sXiI5w6vr68HOUOekEUGyejH2Wy2JssM1DWqwTKjwJAXKXJboa684BZevE5JIboxnb6f04HzFODhYPstlJvulnB9x7KnoA31dPJXyawzRtpvhyDVvfo7k21dR8L58TfrYPznsQ8wiykcxx//7mkrF63LjHXLoVIHxH0j3RhA4O4xLxVQcZEA1bMYq09PT/Hjx49Bv8DRnM1m8eeff8aff/45OLi8g4Btimsbts09NOrQoaxAVRJQULPZbEBGWEynRksNDHsJbKwhlLryHdvyGAxg6wWHU3hPplts4eoHXp+enoYy5/N53N/fr00VRLy/Lx5lsBJlL4QND7cZ1x/PwQvFc7yroup8EBsA8MHthnZB27hDZDgiwDyDP1c2DxL2Wg5FDjVHxIZh59P1cEoYG2X2eBnQsYJAPs4YgReORjD4yM4euLy8jMlkshG1gUzxYlmOgPGuGR2nHLlAXq+vrxtywIudNHJyeXkZEf8AfTbgvFgV/J+fnw9teXd3N4D1x8fHuLy8HKJ3qAsDUB5H3NacxkU8ILuoB0cQkI9OQTjlf2ggoP/V+IE4hF8BH60rg4rMKDPpWFeDW5XvjKSWmzmdGdBwIM4BpArs8fVMt1bOcJYXR58AdAECHh8f195aCIfyy5cvMZ3+s7X8P//5T/zv//5v/Pnnn2tjRKcGHG8fFhlwSEjvgwGuMMDBYrEYlCR7Jkw8mCEcHG6fTtdf+6roCh8++UwPZlAwkNWB/3N5j4+Pa8oebeLyZqPJ6NrNSXNebCw4WgIvj41wNYA1LQQSr8J0YIBBDPoH/Og0DvoMZTFPLsQ7Vjg/itRziFhfSMiLenh7LLb7sJJjgOW8mGx6Be3Jazp4bQd77aysoVj0vRbY14+3mnEkzIFeVRocFWCPHJEo7LBBO6AtUEeNqvAuooiI6+vrmM/ncXt7Gw8PDxsvLkNdceAW5J35V6dDox3cZi5K5sB3FfJ23uVnU8toZVEDph4DoUaZF1nyfc0389qrexkgqPhzdRoD0lyUwJXn6sHluXq5b8cbbAhA++Pj4yCXb29v8fDwEPf393F7exvT6T/HEP+///f/4j//+U/8+PEjnp+f14BAjzPr6pTR6DUDXAAPUBgv9TSgsFzjY0C7RXMKPnTemQ0bjD6O8lXkpN5ptoAR99A5mL/EfCcWc3A9QTytwdEN/kTEoOzf3t5faMHtyEACbQpAFREbwIHL03pq2ZxeP9xn3BZukaXOPXMEAeXooThoo0NQC8CifViOeasPjg/l7aQMANyCz9VqfbEr8kaZ7F1jLQovTuX2RP4cvldAhzGQgQGeE+cxCv7dQUYgrJnBswCpqJPufACYwfXJZDIcu6xTILjP8/0sk9x3bn0MPnymgco8R+Q0qqZrCLTMyiP9bHIARQFAy3PG/+waA07eLszrKtw4dvlpBOMzjH5Pftukr8BAK1/Vu/wiO+T39vY2jN2bm5u4uLiI+Xw+TBM8PDwM9s1FtnepI2jnrYXaQGCOwyKK0vl5XjCBRoGCwRoBKF0oVzQse0bsKeliDVaELWHkZzAlgW19UMjqYfAAyhZJ8WIp5UnBBXs9amhVmbGQuSgBAwe0Ga8VcFESjkboIivwwOFwnSNnw8Vtd6jpAlXmOqBde7u9vzjIJ+Id2PDCOS6PvWoGdiwLMJZ4UREMGk8xoM8UDEDW9TwNBsa8zkSBHvcJrxvRxa8cucKUVUQMxj4z8PxBu769vQ1rBgCAOPrkvDeeLpxMJlbm0JZ8ZjsI8s5t6gyXmzbUNIck1lsOEGg6pl7jUIEBlaGqPZwBH9t+LZ6r/HrBXC/Iq6IBjlcXfXB6ImJ9qg+R7ZubmyFK9v379wEMZKfRuvIUfPVQNxhQr12ZYWHRrUzqmSpC1G1PuhCJvRI2OEBZGt7kkCf4YQMIIXcDHwZbF8qgPGx31DZgg8kCw14MlKkTVi7f8QNSUMWgAjyoEOA/L15RL5Cf4zULvJ2Roy3qpfG0jyoMXSX72YR6VQOfowQ6n8/ebsTmme4MmhRksFFlQMALBnlNAmQFPMOz5zUp7sOgWL/Z4Gu0jOWWASLqwOONryFaAOMOUKBnJGA6AXK9XC7XvHg1NFxn9pp4LPFLzNyiRTZoEfmBV5k+cuHWQ0a1xniimfeqQChrD9bhiFpCHp1TlfHVC0DGABXVldnzPdESl47L4jSuLXv4VnDJNgVtyG/2fH5+HtbQAAz8/fff8ddff22sFVD9XslGrxM2ajeBohttKDaYegIfCyMbHd1SFxEbaB+LknRhlkYAnJfMc47s9SAtCOXz6kyNLiyXyzXvSEm9C3g1yM+txNWwpmtXVnAqiCzQLHh8jduFlX8GGjgygLwQpeH8dCChXdSzzDyyzyLXPq6PWSZg9BCl4rk9Da/DIKPOkBEOp8OYcSTIrRfgaSFuR7fgE78xLaDv32AwoB+QXtcdPGwMGFSxEWZjj3bW6FrEu1HmKQREFAAowDPLD+9uQTvxLgWOQETEWr/AYXAAXmUzM3JO1j+L0OYZ/5lxz4xyFR3Bt4Iz9D+DRU5XkYtisPHq8c7dc1qHzLC7NqjK0fROF48BApBfrsPLy/uLs2AnF4vFEH2EDuD3EWCHkJPFjKfeeoNGTRMo0nGNw4Ly8vIy7FNVAYOSwHoC7mwOA15dXa159gwIWFmyd6r7wHXvsiPw4BYlsfJ2kQ7U2wkRp1Xj44xyZqCVbwVhOkj0o8ZO+zBi/W1l7j8bSJ6fxXXuQzW4UPCHoMpLUF7ZsGlf86I6HsSIQuF5rSe3k4t6sUfN3i1HsuA5wPijTKwX4G2t+lZBBsLaJiynmNZgMMuLKRHeh+HmhZW8oBDlIRKkYXpeoIppktlsFre3t4P3A9540TDWBqA8jj7wgVqIikAR8xRW5phwJEHXG6A+hyCejspIZZjHY6an1fCp/uH76Fd19DiCqo5KZohU1yk/7p7m6Qy0a5PseVd2j25ybZk9Vzkg0DFYf8aAFrIKnfn4+DicLYBthQzYQQy62Z721i0iYrI6lIY+0YlOdKITnehER0GHezfniU50ohOd6EQnOgo6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+czqBgROd6EQnOtGJfnM6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+czqBgROd6EQnOtGJfnM6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+c/r/mlHX2XgcpiEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABe8ElEQVR4nO1d/3LjOM6EM3Gc7M5u3fs/2b3Fd3c7PxLbib8/plpptxsgZTsTO2FXuSRLFEVSINAAKWqx2+12MTAwMDAwMPBpcfPeBRgYGBgYGBh4XwwyMDAwMDAw8MkxyMDAwMDAwMAnxyADAwMDAwMDnxyDDAwMDAwMDHxyDDIwMDAwMDDwyTHIwMDAwMDAwCfHIAMDAwMDAwOfHLe9CReLxVuW49MC7cpbd8ylwe/m5iZubm6mfT4H7Ha76Yf/WTmyn57Xa7N6oHxfvnyJf//73ye32VwM2R04B95jfbYhux5Zu4w19Dx62qWbDAycH8d0dDW8maFWIsDIBKMiAu5eDpz3breLxWIRLy8vs+s5MDAwkDkd7n/Eof5x+wMegwxcIVqGmsGRgDkdoocQZPfS/YgYhGBgYKAbzunh47p1uifTeYMYeAwy8E7IQuvZsV6vveocup+Vy90Tww9aTs53sViUUYhBCAYGBipkkc/e6CQPh+rQKM47HTkwyMBVwIXH1EifEhlw17mxf/c/A+41xjwHBgZa6HF+VNe1yMDLy8vetsdh+cwYZOAd0GsgK5asHYM994j542VVKE7vX5UVnW2QgIGBgRZ6SYBOkNZIpTo9Ly8v0w/ns2gB4zMTg0EGLgxVFEBJgHuDIGI/GgA4Ia+GJ3pwc+PfTB3DAQMDAxV6h0H5TSTsV9FQjgbg9/z8bKMEGi347EMIgwxcIJyQt5hyZsRbQwOtMTjOh8+DCLhrlSRkrzMODAx8LswZDmDjDzLApMDNk3JE4ObmZiIENzc3B4QAzstnJwWDDFwwqghANl/ArR/gjmVkoDUel80fyEgJE4ERMRgY+JxokYAs4gkCwD+c//Lli9U3z8/P05YJBZMEN4+gGkb4DKRgkIF3QDWmXrFkjQq0wEQgG/9vddKesqNMERFfvnzZy2+QgYGBz4teEpDpOSUD+F+RgS9fvsTz8/PBvRwZ0DkFTBKQ32dZr2CQgQuB89CzjuKMdSWkbk5ARgjmDh/weXRON5kRnW5gYOBzoBoKUIPfIgRMDBaLRdze/jJdTAjYoDtdlpEB3q+GEYCPSggGGXgnZNGBLFSmZEDzyqBpXafk43yNIxGal5aNCQGAzvn8/NxqloGBgQ8ARwRaxj5L54YHIuJA1zAJeH5+ntJtt9sDMqBzC/g/DylUr2Z/NFIwyMAFoWccrfLWqzcGeD9j6nwuK19V9oy0aOccGBj4mHAORebYqLefzYlyaV0U8suXL5NRv729je12O+kcEAX2/B0p4NcRQSBwPSNbs+CaMcjAOyMzzBpKc0MDEX1RgRYJ6BkamLOIkJaTO+HAwMDHRKZnXLjfGXhHCPj6jAioroHzcXt7O+kcDf9XREDfRkD+OmTw0QjBIAMXgowI6D5QTWpxnUPvwa8GOqLhwvyn1m9gYODjoXI63DoB2WuCrONU9/EE5YwIcHkQJQAQ/td5ABUJ0OFNFyX4KEQgYpCBd4ML32PfhdNY8KtFhcBUtZNkrJvzzTqYY79Iw7NxucNpvT5SpxkYGPiFKurYeiMgGyKIONRFPFGwIgJaLpAIbHnsXwnBdrvdeyWxmuP0EScVDjLwDsjC8o4NMylgVK++OGOeRR0iDjuX3osNvgPP4OVOotGFgYGBj4MsElARAf61Qv6qD/WeveXDvAHVX9BJTABYj7l7qYPzkaIEgwxcAKpQvuskbqyqNabv8o847HDaAfDebiX4LpzG7/oi/bV3loGBgV9QfZK9KQDDf3t72yQDnB/gdFLEfMPrIgk8bAACUE0Y1Hp/tGGDQQZ+MzKjnEUE1EgzEXDeuhNad+8ITwRcVAHgSYCaDvfFWwMcYhuTBwcGPg4qIuAmB/KQABOB29vbMiLA92LMWQSoFUFQPRwR05sIIAsoe4WPQAgGGfiNyAx0Nu6WRQbw/xihc8a/d5gA551hx3yBiJhCbpz+WjvIwMDAKzLnxZEBJQGcllcqVYeH75OVoVefqPMEOB3HBp/3syWKtYzXPo9gkIF3QkUCHCkAWt8eyLz7ViQi4vDjQ7ifRgSQrvL2+ZWea+sUAwMDh6j0lX5V0L1FUA0pOL3VWxaFRg4cIWDnhfNk3aZ1ccjmIWTnLxmDDPwmVFGBjACoAYcw86/1nQN3r2rhDiUCuAdPrgGqDlJFEQYGBq4Ljgg44+9+WQRyjvGPqL+UytBliXsIAfQbv8KI4zxMoI6XK8e1fs9gkIF3QCsq4IgAEwLNywl61nldyK4iExUhcGXK8sqIw8DAwHUgIwJu3QBHCIAsdF+hetNK8wYR2G63e5MCnZ5yhMDdp5oArbqWFzTicl06Bhn4DZgzHJCdy67n/LN7aedBx9V78uuKmUd/ilGf6wkMDAy8Pyp95dYOyML/WUifDbJLk01K1G8WIL/n5+d4fn6O7XYbm80mttvtNKGZx/+VSKDMPH8A99RhBdcevGIhExBHRi4Rgwy8MeYSAceqNT++hhf60Xu5MN3t7e00i1fzV6F1ixtpnQYGBj4uKhKgxtl57HwNg0kAjKcSAs5HX01cLpfx5cuXuLu7Owjjgwis1+t4enqKp6enWCwWsd1uD+4dEQf3Zr2K16qdIVc9zEQA+/x6Ne59qRhk4A3RIgJzxtwi/GQVntzH980YvHZiNehuAoxbSIgJDN/XEQieTDgwMHAd0L7thgecXlG9UA1H6rcD1CnSdQrgzCyXy1gul3F3dzedQ/7Pz8+x2WxivV5P5Xp6eoqImFYZxL0dIdA6V4QGOk+jA66el/4tg0EG3hiuQ1WkgDsWPHigGq/n0FdEHHRMRw5YwN33B7LhAiU5uJ8rJxYtGhgYuB5wH6+ilu6bAxGvE/BUp7CeYH2lYXuOYi6Xy2nfkQHsc5Rhs9nE09PTpE+5LIgQ8CeL8V/nD3B0gMvN8whaxp3nIVwyIRhk4I3QIgHZOD4TAV6UA4aZV8uK2A/t84JDWUjPjem5iIMb68J9leW7sUFm3wMDA9eDKqLZG82M2Df8Sgrcf+gRNvqr1eqADGCYAKRACcFut4vtdhvL5dI6TRERm81munc2XKFtoMOxDBc14OEIJT6XiEEG3gA9wwPOWHNIjAUf+fFYFNgth6dYyLhTcid24Ton3IAyYpdW81SigLIPDAxcBzIS0EsIsmEBBQ8psBN0d3c3GXkeCuAfHwMZgL7ESqhsgPWzxezwsJPjdBUbdDc0izbjdJyWIwNIe2mkYJCBM6OXCLhwG3cEnegXEdPrMrieZ8lGHL4648a5XAdtCaUucdzbDvpa4sDAwGXDOQpVVED1G19TkQLVKewAgQisVqtpX4c2nV4DmUB0Aen5q4QZEXBl4nyRTodDtQxuLRjXRpdGBCIGGTgrWuG1rFNpNAAsVyMDGH//8uXLRArw44kxKIML3SlaQtmKGijbdfnOIREDvxf6bC5RSQ38XrScGHcO1+F89jVCDdfjHJMAJQMI96t+4U8NPz8/T8bZzYdCVJXD97vdLtbr9R4p4EgFt0fE4XwHeP09OpRtw6VGBwYZOAP4QWPbSwg43LVcLqcxstVqNUUGMAGGQ18qYBGvQh+xP0zgxrNcOAyCyZNneBUv7tC4nvOpvP/esOHA+TE3ouNwSUpr4G1QRQUqQhDh3zLilU4VbBDZAbq/v9+LCCD0HxGTMWcDzBOnOVoBnXp3d7c3NMCEgPPSCGsWHcjOc57V4kSXPHdgkIETkREAHNOOoxEB/DA0wISAx8BgmHmYQMuAL20BzHJZeN0kwOw9WiYEDAg1f5ToLRYqGjgOPQSgJ002RHRpimzgNPRGNbOwN+fD1/Ak6Oy+iALgh/86BwDe/2az2ZucBwOvYCfr/v5+L3rA5EDnEjCxydpH5w3o3Co3ZOsiJJcUHRhk4Ej0RgOUUSsJQGSAJ89kK2yxIGUrW7nwPHdGNeIMNwYWEQev1rgIAYM7E86P1wvfFsca/9Z1qqwGOfi46NFlGQlweelbTHqPiJiGB+7v76dfFRHAioIY/4/49WZAZpg16oprsTCRLlmcEQLUh/UmkxHcVyMW3B74XWp0YJCBmVC22Ptzk28cIdB7uHsjPxhp7ggVu404fE1QoUMFLrKQkQ8uA/Ko6jNwGnrb1Xlvc/NwyAjiwHWh8oBbJKBnvFydGR0iXa1W8fDwsDdEwBEBvCq4Xq+nxYQQHYiIg4mB7g0olANvJ2w2m1itVrHZbGKz2RxEF7L5A9xG/ObA3DbhsvVc8zswyMAMzIkGZGE27gi85Xw5ZOWMscuf4cLyOuaVQV9PVOiCQq4D8eQajgiM4YLzoEUWe647lRCoEtSIwSUot4F+qE5zxxk6Rs59X9O5tf5BBHSIAHOl+Hr24tfrdazX6703qb58+ZIOUe52uyk/3FcXLLq9vZ3y4/A/tlWbHEMELnGIIGKQgS70dI5jowPMMrGvY2H6RgF771kIX6GzeHvZqyp8jkYoeeGyO8Y8cBoqL2XOtRnBPAaZYrs0RTfg0YoKaJqInAhqiBxroqg+YF2YvUEVEXvhfEQE8L0BzCGIeB3G5AnTXH6d8Iz78jcOVJfyNUpyeuTaTSREn3CE+RL6yyADDVRK1HWaVnQgGyaAMMCw4lVB9rQBVsCLxcJez3BzDHom+znCw+nmLCQ0iMHx6CUBPW1cEQF3vSovVWhZOs3vvRXdQA7VVXqMwTLgxsj5Yz1It91u97x9fsuAVxPk+VE8wQ9LC4MIYN4A9A9IgTpWXH6OUOLeIALL5XLKk+vp5kRV8wI4jdt37d6T7ndhkIECzvi7re5neSgJUIFFZ4rY/7CF+4gGRwd4q4Kor8603ovVsbJsCIOjGEjHnUYJ0MB89Bj8OSTrGAKhRIDhyEHl+eixgfdFJg/ux3CEgIcK4MwAWBeFFwFCHmq42cAjGgACgLkCGON3rzRnZcdaBUxUOUKgkdqWo8O6tUUOtH0vtQ+8OxmolNF7NlovEYDAVWFxjRDovAEARpYNN7/zH+EFH6tuKSCwvIQxh8oygVeS4/7rrNqI/Y+TuNcaR3SgjRapdGnO1a4tGeY0PdGBihTo8YH3QWb8WzKlzxc/GP2I1y8EPj8/T5EB1pdqSKGbMDygEQGOClRkwNUL8xYcIVBdjPNMaFRPc5mzKEnvkCyX/T37xLuQgR5llo1LvTUyQ1gZNFaQVV46VMD7AC9+4SYeZpMR+etcAC/DyR/mgJA7QsBGnOcq4Dg6gM5V4Hy4jLoa2ECOql+8JQHg/FyIX+9bDR24/LJ+PIjB+8HJU4sUuDFuFxnAXCd2ZNg4Ig0MOhwWfitgu93uEQFMGuRXA5Ff9p0AJQP8xhZPDlSnDOc5ogqozkR5lRQoIXBteGl4czLQq+BU6JxX4f6fE73RgAzZhBC+Xo255uuYMhtnnuyCa3kSDueFDsdtCUOuk2+QlxIBnYwT8dohlGHzEIMSgR5v4zPD9YWevlKh6ivOSDs5dPdS2c6GC/j61jyCrL8PnB+Z9zwnOqBDBbpSKeuu29tbG56HfuJoAvSIThjE8ACTAeDm5ubAi3f12O1eP6fOQxWqjzmiqsOqbv5ARgQ4Tc8QwnvjTchArzKryAC2WejkHA3bQ1RaRMB5RqoYXd4VIciWxoRA8apeIAe8YiHSKttmo82EQA19NisXabO2z4jAiArk6JG5Sk4ZLjLVIgScX2Wwe7x4RxK0zL3HqvsMnBeV3DlSoHqZDb9ey4aayQGIgJIB5A8igPkBIAD4QRcy8dAoA+sf6CAs6d4y0Din9+L2QToXGcC5Oc+gsne/A2clAyoIeoy32TGAG5YZqENP41Usdw5Rad3fEQE+17qXMkq3gA+vmAXDy984QBrkg86H93GZEGjZ0YFankELnM+ARy8RqMhAj3Ft9Y+5Xnwveo29S9db9oF5yAy9++/QctA0P6TDUum73evbBRgOABnA9byuAEcCWO/xsERE7L3FgH1MXMQPEQkuL7cLys6vSbuhAkeOWhGBa4gOnI0MsDA5AasUWosMzAl3tsrYOj6HBLwlXPhJiYGG3nj4AOmy5wLoMSUCOnGGy8Xlc2886L0GXtEiAq3ogF5b9ZFeo6p9yZECTV/91zJqGkc+BiH4/VBZbBEB7FdpXAgehhpEAAYexp8jDUoCmAywLuShSfXSlVRwOhAHrQf0KJeF71dFB+bYLG3/S5Dxs5ABNTjOCPUYYkbFrHobuiIg1fH3NmAs1Doxj49Xoame9sqUb0YENH8uK9K4yThcr4F8HB7bKkoAnMP4Ozhy3UskenBs9GLgbZBFoFoEUJ+ZHseWJw+qzoCRz8iA04F8L4DnK3C+vEAa7sMRVi5z5TCxns36YqZvj4kIvFd/OJkMqDDprPdjQsUsTM4z5nNVw/UI91sY/l6vTuG8bTBcngWLsBoLOa/IhXTMppVA4H6MzIhraE5/Lr3Layj8mni2ogVAr0eu93mr9j8m36w8IzrwdnARWz6u6YAsYuTOq8F0hpK9bTbSrJd4joA6IhlU76ieAkGIiIM3r7K24TqyUW+dz9opO8ft9V44a2SA39fU1+CcMLmKq4F3ht8xzewhcRmr81q2uWh5c+6+mTfvwmL6Xi3YNMbB8OogxsQ4/MZf53JRByYa3El05qx+T1w7aVVHzW8gjwbMiQRkfai6n0vzHtEw1891f+D34FS96CJKVb7qxS8Wi72vFOJ4y1bgHkpIWJfq8ASIB098ZNtVef/ZvbWM1yi/J5EBFw3ICAHgDHjFkjISwD8+n5WTtw4V42tdq+3hfhmYzbo5AnwMM3O1vdfrdUTE3uIeMN5YvEMX6+AIgY67aX3ds2oZE5Rf6/aZkXn+x0SQeo71luVU9EbnPvvzf0/0RgHUw69IqBrh7J4VWM8BTATmyozTT+y0sG5FGZ39UmKg+bv/LjpwLN6DEB9FBliweDhA34N3s9Idw8qMEP6fQghcJ2CBV/R4TNkxJkctUsDl1jA8dwQ3LwCvzTCen5+nVwvRFvz5T/12t3rp/HqOhtA0XdZGrvNw3XRW7mdCRgSyY5VH5fZ77vsWmEuWnewMkvB7ofrIEbYe+eNjFdnInCKNUroIKeupuWRZnRi1F7w2Ci/cpq9Fo+w9UYprluXZZCAjAvrLQsbHhDVbngfnmykct+X7K+nIypLtq0GshkkADlOhHOytK4tF+TDGxnmi47iVtHQWrpuYWLF8bhN0IK0T15/b1e1/NvQa/ZayOwcR6D2W3be6tpdc95ad0w3ScDyOJYSt9s50bhUp6CW5rKN6yuEmEboZ/uoEZREBfNYY59wQZ9Yfe6IDlZ15Lzk/OjKgEQE1fgwXYlZvVw1RJcAaJegpr8uzN4TJ17e8OkeQssiAPngWXi0Tk4TFYrG34haOc7if20jnHSi5QJ69bcih/4jDjxkpi+7t1B8RvR7zMfnOac8Wme29NoP2Xy1bj2EfBv9tMYcIaoSg5Yw53cZp+H8WMeb9XqdR7+UmEbIO1LrhetbZ1by3OVGBHiJcOaG/uz/MIgMa8nHRgIwIYN8RAj5fGWz8bwlmds7l1xJkvbYiBkoGuJ2q6EDGPLlMSgYcIUDZNcxfheNcm2TgqMBut9v7dkFW7jFM8IoqKnBsfq0oVnXfuaSgBdfXtYynKLdBFk5HzzNnHdjjlbccN0b1lpGLivY4fS6yq5OvseWlkbO+w7ZN9be2S7a9Rhw1TDCXEETkEy0qZdYjuC5KkLGs6npNk7FbFQp33JEC3uo9dM5AJlDcWQD9Brerj0YI2Ejrgh2YadsiYTivUYGI19XAuIN8RiLg5PcUo+sUdI8inrt1efRAiT7v65spKqcjUvA2yHRp67m2Ij2af8uJijhcBI2hThHrdA35676+HcDXgADw2wTZK9EuMsD7KtfaNq1jl45uMtAiAK3x8YhDEqBkoDLY7ph6H+5h9SrO6p5zSEBFBDhPDmdx+bOyuIgKT/rjLxFmcIqZ83Cv3PC1DC67Y//8kQ/+JPNnQYvI9hjinrx70zr55eMu3zn/Xb9rDXtlpF37bPV/oB89cjMnKqDXYKs6gXWgK4c6RWywVVdxmTg99JGSAugfJgdaFtVLbON4nwmLtlFFCBTcVpdEgk8eJuglAhUqL16VlhNWRwTmMrPsAfUYf22PjBBo3bSsvcbSEYLFYrG35nf2SqeO3y8Wi73vFkTEXiiNr3edhlm/qwPf97OQgRapfSvD37pfRmh1PytrdSzikOxDcWrki9O7fjcIwXlQkdBzwUUE+F49pNfpbtVxrEec46SGGtHJxWIxfZRts9lMhp3LzpEEhps/wISnMug9pIDbqZccvyVmRQawzQxgLxlwRlvPq8JxwqQNXpECTe/q1jo/hwTo/4hDrz2bocrvwPKvqq8uqqGT+zT8xvnAk2dS0ZoPwO2SvT2C+zoi8VGh7VApw17ScAyJcHk5458RA3dtT5lUibNH5kjBIARvDyeTx+jrKk89lulMl7fz/nlV1Ux+HCEAEYBDg7TQaYig4jgMPC+oFhF7kQGQCaTF9Sq354wOvAdmRwawrX4Vss5f3SfzqjlPbFuEoCpXVWcuTw8p0PZwcwVcGaqyViyUGS7fVz2xLApxc3NjhxqUwLh66X/tFHOjNNeKXiKQpdM0LWM9t1xVfr37FaGIOJyfAiUOJR2RT5ptEQJXr48uU+dCJTPVuR6vVnWge73a5Qv54Kgky0wWIVCdxnWADKlDdXNzM63Sijz4OyogHNomIBD62WOOEmRtNEc21Sa+h2yftM5ApRQ4bXa9q3TLwGbIQk34fyqcQq8IQVb/Ux90r0FQwsH3UyXMHYe/exDhjb0jAjqW5sr4mRR3ixhk+5l8VXM0esvTIic9JMCRApYJVrRKApzH5CJVqth7ycFAjWPkpiefjBAoKVCACMDr1jkDHB1wjkWvkweCwcf4VWw+xnlyZABpeSKh6ws95AnpVD9n8v275P7oyIAem/s/Iw+VQPH12jhZNMARglan6D1fKUjNQwXP5VeFl1Qp6v3dPbMIhPPKuHzoOPpmAb+yyPfmj3/wcMNnQlbfyuC7/YpgOjlTtDzpnnJVhMSRAP7PoVe9jyOk2fBR5iWpYhwEwWNu/8t0iGtv3nf62v1Yh7MxRd5MGPXtgQg/3MjyUfUH6CTg5eVlb0iVowMsZyzzvOXoa9XOlWyqzncy/rtl++hvE/QIW0vh9JIBNxs/M/LaiL3KcU69XJ16hIMFuWfYgO+jaXQf+XG+mobbxk3402iAjp85goK5BZyvDjM4w/CRMIcQV4TAGd5j39g5tvyZTGu5s3kyLFcsQyibQzVcMAjBaThHn8v0pNPXvBy9rvGvBlnlA2AvPZNnRwTcpOlsSAqfTEb4H+n5firT/J/Tsv7jsmVth3vx+Soipnm+Fc721ULe9uwzywJazFLv2cOeXGO7clVl7sm/RQQqzL3O3bNVN70uIg46g3prTAo4Pzb4Wgb8EFrjdv+oZCCDypMjxLpVEpCRYkeOq8gYp2uVV/POCIimd/NLIl6jTixrikEIrgPumWdEoDV3wBnEiDiYzMdgm6E6yckt8u2dwJy9McX6TCMD2j+OtUtVlOB34OSvFs7dZxbnQopOuPhBQ9Hxu6SVwXfl6C2vHssYanZdhtaESIdMOTtD4vJ1Y3bcqeDVa6RA50CowWcjoJ2E88MQwkfDHILJ/7M2VQXKirWakBXhX8tSUtCrpLhsVbpsjgyet1sNM2sbVdpzQ6WDELwtMiKgUQD+2M/t7e3BPCOA9b8+O3VQGM6JVNuiRBl5LRb7rx32EAXVZyizIwV8T0dYGUp09bhL85byfXJkoKX8+LhWmsMt+K8KUA1OxOFDrYw00IoMtAhBhblEoCIQrYft2Kjz0nEvvU7LouQqYr8DZkZL80M51ODjGWKS0EdC9dwro1oRASXDqmjdcFDE/itZEYehVibScwhBBteX9Vp+7iAFuI7HcVH/bD0CvWdFbAYh2EdrCLJCRWQzWb25uZkIAP8ivPeuDqF7ywkyrfKmerSlW7k93OvbCheZ47cK3HCBu1dP+zpCgDS/KwI2iwxkhciMg+4zG9MfzqlQOe8T2zne5rEd4tg83JiRY7AARzr0npqXtncmyJxWy8DQ2bxM3JSIaQfn+rqO/FGHCVxdtJ5OmfYQASUBUK63t7+6a/XtCTw7fi9aJ0adokzUa+GxXy0X+rMCRIC3DPW+kJe7P+/zfQch+IW3IgLYKlmFzm59vA5QHZiVBfop61ut+zAJ6HVKHOmBnPMQKzu0p6yn4qIIrWGEc+IskYHMW+Q02bU6RKAK0JGB7XY7KRENGUX0v8LWGqM5tiNpuEsNgFvQh5Uj6lSV45iy8X01asD3Yq9NDZR7xq3FQJDPRxkmmCvjjij3EAEo1tvb2z1vSz0IndOhk6b4+eqzcTKWeSmcjoeQWsNz3HdBDlB39vrc61/cFyqlOAhAH3o81cqRYx0GeWX5VDIQUS9KFvH6PN18ACUhzuHg8p0DfC+OBgBZ1Mqdd86dO6dl77FN55b3s8wZcB6kpnHH2fuEgLFwKbtkI4VvTQNskLKG1X0uR29dK1TDFTCkvGXwO7etslXsF+d5EiDnxcyenx8zZ0eIOH3mselCM3hXuGdc7hpQybLuO+XkiLMjBUoIlBi7e2dK1MERAzd+2QrHc1RAo0BMALCP17kWi8VE6JEXZncDzgucoyAHOcjRazQzIsByykSW9bY6PVUEgJ8VG3w3RODkqocIuHK00mta7WsARwbmDMtwf8v0vMrzW8r12eYMOA/IwYWNYZwgTCxULFBs5CJib2lJzo+P6b1bx9zDbHk/GdnQ+vGkGhyPeH3vFQQne5c2KwOHqFQpc6fRDsT30Hy5DEpcstfG+FOhutW2uSb0eFO879rW9Q+nYLNfNnemBVVU/B/HUBZVNi3jqtfwhCoNx2rZQQwAlrGMFPB5Jgg9yvQzISOMx+SREYFsSMtNeFXwHAEX2dJoUBURAOYYYa5fdq32V95nOcf11XBBSwZb51WO34oYdJMBVSiMSuHp9QoWmru7u7i9vY3lcnkwgRCVZwKA8A0LTG9DzW3EzBhXUQeXh04EQxtwCNWFR6u81eAzMgXMnVvz0PpyOhzTIRpHAjhacI3RgV5vg/cdIXDXZQrWvZ7FY7QKbmP85y2na/2fSwicQlUiqmkzz4xlhAktfk4Z8v7v8JyuDU4+s//Z9e7H8gidVr1RoHLCBpOfbzZvyoGjBy1naS5YJ8J5wz6iFUwE+JVD1K9FpHEt788lBVXex+CsEwidgeM07jomAsvlMpbL5V50QNlYROx50MhjToPMNeBz8nFRCq6n7vM1KuC4VvN0AuGiAsgTRMNNEMw8OOeRaV3h8VeRACYB16SkW8bc/Xfb1o+HbFgu9LxC25RlSBWT+/E1LFcto6rndahAvaas3ZRc8hgtEwF37Ryjn/WZj4o5ctubxslnNlTA8wZAFBisD1iGIqKpdwC2K3xtRgjc5FaVIb2Oy440Nzc3e8NbXB/X546Rvd60b0F6z7LoUMRhSDwiDhrThYNABPgHQsAKQz9ywnmoQjkWLSXTMo5KDlS4IGAaGWBl6gx668GzYVfwfAtXl4y06dgdkzKNQoBw6BwBZ6iuGZV3dQwRUCWroVc3pKOKkBVRi3Q5IoD9ihCo/Dmvx6XN+ouSBv3PRAD77v6tbfasqja6ZlTy2Eqvx7Pn4Eirm+uFX8S+LlEiyedbz4SvUahd0PpVUQMmC6zrWBeyg6ZDAKz7VJZ7IwKVY6l1eqvowGwywAXVDsoCwkBh1cCARS6Xy7i7u4v7+/tYrVYHUQGEZXgGM64/l4GpPPtTr3cdKuJwMox6RD1DBS0CoxMJAf4gUTYxzXUMzlOjAUwKrt3wK3qJQEsJt4iAiwwA3O5MuJSAaTrtqw4ZIeBy9xpYRyKzttA2mYtM9lsKUg3FR4aT1TnXZj8QACYE+iosG0U2nBrJqsqWEQW9zuk6zbOa9Orq7dqBnVpM/AaJ1whBJWfuf0UEXBnPKbtHRQZ6O5mOveAYGhVGvyIDLy+/XiWcM3u0pSDO0YiZh6VpKuOQCVvEvDX9K6HjcrKQoi156wxedm9HBPgLY9esYHsMP++7rTN0mXflIgMZsdYoGRMCnMe2ihBkx5UQcHonC5ArVrBI20MKMAarbarQvpuRFT7e28/PrVTfAy39Ul1X/TSNklYYfWw1OsA2gNuYbUJVTr1Gj/H/jBQ4mdZ8MlKgsqv94vb29oCQ6/oDlddfpXF1fUscNWdAK+oUj46FMjNkpXd7ext3d3exWq2m33K5PBAiN5s6oh0GyxQc/+9VGK12qc67Nmpdh/q6mamuI6lCVKFSxeuiA5kR0qEB5K9E4CNGBYAWEciOtQiBjr3yeUYPEdC2n6tMqv7Sc52bg+JCuFU+50RGYD4yjiUG7ppKdnWtAR4q4HUxoHugbyL8WyKAixq0SK7qeoWbN6DX9/xX3ch9MCMCWZlPjQxo+U6V61lvE/AN2bjz/mKx/yU7nSinZABvEOhYE4SoYpBO+fZOQuF6zUVPVMBdw8paX61iQXBRgZZ3mp1zAsYGhTuQRgv0+eGcGnyVAdcexyijS0ClWKtn00MEmBDoMb2vPkc3gfAYj6Ly+nvrotfzcJ4eU7gQcI/i1HJWUYMs/WdF9qxbUYFKjrO3CQAYSl5YTecxORKgQ1+cH1CF+3FcCWrm9FTtw8A9OTKgc3jYCa48/4wsOLyl3M6ODPBPJy+5BmdlxxVRZqljpchD759B5yNEHLLPlhLIFCP/d0x1DtBO1SQT7mjaiZxQcnupwVBCAPAiR1++fIntdjutfxDxOvlT7+kEGfX6yOghpJn3wGkrIqAKKssnKx8/m17D2FNfp/y5bJXXX3lrlVLsjdZl6QYhqOEMvzufpWeZdctns04HMh1RRQJcuoj9D92hfFk9eZ8nCjKRyUh4lh/uCz0L545/bCd5/leGrO6/S06PnjPAFc0qr7+Ifa9BZ5xyA/d2VjxEhKLYALbeZuBznB9vOQ2OnUoEuI34nNaJz/HklIi+7xygHbhNXN1BCLLJhoxjjFPvNdcEVTJz9vl/5o31htU1TybF+gzcfqvMjgjoPBNHULN6O7DuUJyiCD+7wa+IGMMZej3O/1Wvu2MgCYvF/keBdNiTy9pTTrYN6ggBTBCUtCwWi70hjNbwqN5ftzrMBzLkIgSc/yVEAhRHv1qYEQI1ctzg+I+tKhc3Cxr/FZkHpUYT5yE8fB+cwz2UAFTEoQrJZoy7mu/gogCZgddr9W0ADk8xEXChNiZM1diutp12aoT91Bh9BDglwNvWfqVcNU0vCWDi6xSsM/7OOFZeofMCneLMvDOnoOfgGAPx2QlAxHwSoP8zmXXn1aAqSeDjWWTAHWd9DmeFdZirnyMHvN5BtaBXRdxdudRWYKgAW56LpW8X8PM5p6yeKvsnvU2gwwZVyM4ZQn4YnHcW3mbhitj/PC6v6+8YGM94Rho+z/taHi13LxFgxdkzLuwIAeerx7TDuXZEnkoKWqHdHoXiOpGTgWMMwSXAKYgeRXFOtDp3pcTwfNzwQS+0n87xpAAmC+fw9LXvVvlm5z4jYWgZ+yxd9uOhxIwQuDwzcOif9SCH4OHoaL00HyUivBBS9tGvOe3I99GhAmzhHDFx1z6p939PuTwpMoBtLyHI/qMxs2hAJohQDCw8fC0bwJYn5eqGezul06OkXQjJhaa4DVjh6SQ91JnbJGJ/iEXryel13kEvG1ZUHVKJ37H3eC9UcjqHHMytq0Zy3CQ8zdvJtJNvRwpaZc76XIsQZP2X9+foCO4PLWJepWVkw2XXjN5oAMMRgpYMADrUi301smoIOV/OS4coObQe8fr2DOqa1QVwEQH38TvV6VWUQnUuT5iHfmY9D1LQIgTufj0yeW657SYD1cPsQSas1WQLvT8/QGZ+nBfS7nav3y7Q0HalDNTwqyfSqrcKjK7OpWRA2wJhJjU2bMwZTAQ0Xy5/FW3h9lU4YqLXYoiAj+n+NaAy/BWBys4rHHHmXyti48rK3lREWHIwxwtx/Twbb1UygPycnDqFmxGGnnrjevd/DBe04Qx9ZvyVEGavwbJM6rGqf6i8ch/AbH21ERU0OsHfu+G1DwAXxueycRtwndg5AxnQ6IAOr+Eert/MwalEwuHkTxgfQwwc8JA5tNJTMWfMdKJgRgJcGXS/t3HVSPBsWv0aYzU8wp7hYrGY3s3V8XjUSzsg9gE1DsywNR8Vdr6+esZ8rWt7bZ9LR0Z6M8XW2jIyEsDKgscc9XmwDFSEgMuM39zhAd26UKu2ET9/lTUlAtwnq7JlslPVae7xz4LK0PcSAj6mwwM9M/M5H0cCnLHGVueVVbqMF7VzX8FlnYtXA6vyuvZjEp9Fgd0yxdwnHXF+D1I7mwz0Cg+DGywTEFYO/P4p/mdDEC5M2BoGaEGJQOvBuIcK4ebVuZidRhyOOaHcXH+dC5HVjdmqloMNDu7rkD0frXMPseL8roEIVIZclYFus2sYLuLEz52PsTy5aIESAmfsde6JKjAui0MWBWNS4Lws7q9Iz+taYOsmC88ZxuBjVX1GlOAXegx76ziD15KpXg13Qzu8ddepDouov8OhNgBlUjLA37tBns/Pz3sr3GrUqkd3qaHXyAhHKRwh4Ptxu/1uQnB0ZEArpOPWc8CKUT1L9mY5nMPhGc5Hj82tU4upIZ0776AsEULKHnNWd64Lh+IzuOgACx8m4zjFy4LpogOcn3p1nIfOF7gmIqD/tfwtIlARXe30TNBclKAVkXHek5MdDU26snA5XXvgfirDHC7mezIJ4U+Ocx2Z9Gu/njt8wG3o4BTtZ0DLsGeGnq/nLet31vkZiWhBI4lKMNVZUk/ekWqUCzIKInB3d7cnqzqfzEU1tR17o5zcXto+6I+cVu2HIwC/Q26PIgOqILWyEX3vqjN7AnScE0qDV3ji/7iGt4Aqn6o8lXfhjH/VHm5MFYKOpZa5rVTxa+iJFToTAihehRvX4nEsFvqKyPA5x8Sz7bXCGf5sPyMClazovioyln3eMhmrypVFzrSPtpSMyoRTsm4OTMS+t6XyzMrc/e+JOPWSS0cosrw/A0HoIbKVUXeOwhwS4HSE2gsNtTMZUCKgUVQuF4gqEwHWuxG/5HS73R5EL13/6AWXmYf5MtLkyLnKamabqv5+LM4WGWAyoMTAIQsh46EDEIDtdnvwIZxsDDwzTlXEoMc49kLbwi3VqV68jqW6tyU0bVZebVf8RyfitmgRATVg7MXNUeLXgjmEAPtOjvk82kvZf/Zz0QEdLmg9c9wD8sNKRMuRtYH2bfa28MMxVbLb7TbW6/XeMdyvIgIuOpDVV+vJ9anq6BTpZyQEut9zfSb7Tt9nzzLL142547lkXnvE64RVJa1MXN2QFgy2q1dVVk3j7s2kpXeYQI29O/6WOGkCIdDLDvUabDXU6MKJ8Dawz1+JwjW8jfDGv0fJ9DR8pkS1LdwEGx5v47yYSbJH1wMlIBGHEwl1QaOMHHF4mY+hrErIeB/Avc9Brt4SLZntIQFZHs7j1v9KANRjwGRCVw6NqjHZUyKg+WahyowI8PjrcrmM+/v7yeOCsmXivl6vp/IxQQCUCCghcO3lngOXX899RoMfUROnOTqar3HGz50DWKcx8eslB63yV9eyJ67GmGWA9VXV/7XN3LHdbv/tNV4fAbaLdbvq1ozI8/5bE4PZHyrCfo9R1croebdQBdIzEdhut7HZbCaFwue4LJlx4zSZ4uBzlUKp6sPHOHzq3stWlsqKG4Za26UHmaHgPNWTd8+yGnLRju3aXT1Zd59LRY9nkB1X+WrVuYoOROy/b63DQipzOmGQr+X0TsYzonNzc7NHBPCpcf5hPDbiFyFZr9fx9PQ0RQzQh0Hmud5ZVKBFCHpQkTP3bD4iWTjG+PO1Ti6wr4RA76HRTtbZTBLYQGpkjKHywsMErfofA61rpsPVhqnt43KqjGdth7TI3xGCc8vr7MhAZURagDKrGpHzzbwHN1zQKisD92VG1lKSVV35gfJwgCMCbNzdnIHMO2NWWZVDy9Qqe+bVaztoZ1bhdvethmWuCRnxc8+M02ekgA2diwpoXi6UyUSL5YhfZcIxJdpZVEhljYkAk4CvX7/GH3/8EX/88cd0DB+52mw28fT0FD9//ozlcjmVAWSAowMZEWqhh7BnaCnQnj5zrcgMTstg6vlsiJcB+YK+ViOuWy6Pi4wiHzaunCfrTHZ2HMFGfnpfV2d2rrI5DcDz83NsNptYLpex2Wzi9vY2np6epjQYNlMdr22mmGP4TyEIs79aiJu5xu65NmLfa3RKkPPWB89CwQ84u38VNXCEwJVXH0ZmHHhuAM+4dq9i6cQ/p+y1bKysM8+9JTjaEdmocxp3nfs56CQjLuMlwT3H7FxPPs6QtDpnpbQcQeV81VNZLF6HFQCELjUy5OrKefL8gNVqFXd3d/Hw8BBfv36Nr1+/xl9//RV//vlnfP36NR4eHibDv16v4/HxMb59+xbL5XKqw2azic1mszd8kEUCeglBhurZ9T6bc3tdvxuZwXHQNnH5sAOT5ec8e9XbTodH7JPWm5ubg9VS9TqNKEH/oswgxEyMeYVaLZOLROH+qsdvbm7sIkY8JABSvF6vp6G0x8fHiSCgHZkcI4/qGfVEB46V3ZPmDPR4nBH7XypUQqFGjKH/9X6OCLgyZV5QRL7AhSrLikFn3hRPXtFlO9XwZ+Gu1kNFx8s+cezq1vLutd7ceeDlcX6cHkoA9boGhdpDAqrogMujIpCZXLvnoMMtTAB0CAmypZEBNvA6r4DLx3nzLOzVajVFAr5+/Rp///339AMpWK1Wsdvt4unpKX78+BGr1Wp6jXW9XsfPnz8nZYg3Dfin7ZRFVTK49JmXr2k+AiGYQ14j/ERLHNdnw86O0zGsHyL2I1UcFeL5XmzMUQ7IJpMPdw/oLpZf6Bqnk3A9v4WA/yiLkgJ18GDQIdc6iVYJAYjv4+Nj/PjxI75//x4/fvyIHz9+xHK5jMfHx6n/bjabvTKrXXNOag8hmIuTJxA6o84GhCcRKZynq0qTFV5PBed2YM2Tl5iMaM+65+GAjAjoa1jqGSnYc++pC69YhxULXcd0nUi9Ua4Tn9MOr2yaO52SgktEryzpf1WG7hhQGZwe71UJqPYDJrS4B88rQP/j/0wItExuaGC1WsVqtYr7+/uJDPz111/x999/x7/+9a+JEDAZwLABIgI/f/6M79+/H8zs5ihF5W0e26crg+fSu/PXRAhacA6NthFvlezyfzbWTjfgOC/qo8bXOUAuqqh6yDkxbn4VPG88Q9VrPJdFI51cTx4m4z5xd3c3/UCUUE5Mon18fIzv37/HP//8E//880/c3d3F9+/fD1ZCVKdYdSqX663k8eQPFfF/JQIwCJlxgIeJSruVp9irYeWmSzxqg7kyOrSUcjZ5jzsGL9HqfjrWxNdqVEPbkEkBR1r4WrBqnGNB4vJzXrrv6t4DNlxZO10yMs++Sl9FBVzeTjaz/632BNyEJhx3JCAi/xwswMNbmCwIIvDw8BB//PHHNDSAyMC//vWv+Ouvv+L+/n4iAxgy2G638fj4OClBXRaWSYmSSYeqTZz3VF0/JyJwTYSgJV9z8mDdywROhwo0hA/sdrs9IsDpsjlfSnhZ56nuwnnYFsg7h96Rj0an2Wi7qADKgv4AMvDw8BD39/exWq3i4eFh6h+Qa5QJE2lBBv74449YrVbTegfcRmiTXnKMMh5DlCucPTKQpYl4ndzBx3RCEYei9MfeBPIDVBngmCMt7hqGMjM9B+jbENnQgK7j3hJ0N56WzY1gNumUq07M5Hzc88o6Y9aGelyVevUs3gst463HeiICzhhlsnYOhe2ud+WL8J/6dvXhkCh+FSFAhODvv/+eyMDPnz8nj+zp6Sm+ffsW9/f3ByFVJTJcB+17c2UoIwKqQOcQgmvEXDlzOpePu4mDatC5zdT4c1QABlP1kNNvHHFw90HZGDx+j/88l4Z1rX6XgHUgRwYwbwZDZg8PDxM5uLu721tZ9uXlZZo3gD7AdgBl4DflMnLsnpMeP4e8vsmcAR3n1PRQRup5QzA4QsAPRIlH5uW0GrIHVTr3SmRGBjidlssJOtdNGSvXMWPVSgQc09R20dCa1l3nNBwjeJesWFukj49lpEDTqZfhOm+L/Wf9SM9V3jTLBOSBh8LYY9LVBXnOgJIBEAKQApABnieAuQPIRyfY4t1ryKi2l9apx4BrWr1ujtfvnuMlwslfS0Zb16tuYwOpDo0jA+rc6DwBnbekcDrS6TyAh0ZdOXX4F/nwz7UFiDTW1sBwGfoASAEILw8XPD8/x9PTU3z9+nXv9VtEJEAWlsvlNLGW9bWTYW6bcxPWsyw6pOxOmZV2Un5ovFgJP2xe1cwxVrA89XI4fzWKFTScnqXh+7M3xWSAowHKRrUdOITG42vcFty+lVeOtnDl1Tpy++g+t5mSMqcc3bFLVZ6tMrrzzktqKVikbRmTihA4hatGTQlDRjq4T3IfwXE3XwAKUMkAK0MoxNVqNd1zs9kcEAGNCqinqcpP2yBrl6wNte2rSFVFlK8dPTKKrfuxI+NW8YvYH7Z0Mqtvg6ku07kGDEc2VH4Xi9e3aFj38w8kmMunbybo/CpuA36zxhHjh4eHPdKLfDabTXz79m169RaTC5+enqbJhTyPxumXFonNiO5cnGWYQMGC48ZH+IGqsMC7iNj/MhYeCMDzDZhhsmJhY1YRAhVwTasKk38ZGXDjagzUlUlANq7GHUjzQLv2RAnYQ+RnhfPqnanBUQ8zIwGaD5fxPTHHO9LjGSGo8qs8zh4yEeGJAPZZAbIiy+7JBM8RO/7CJg8XsALULX6r1WryeHCd9gfVCc74uPpn7arpMyKhkQE9luXv/l8ysvbIDL07r2SN88qIZeatO+9bf3ptRRRcOhzT4S/IIqCvcmv5kJcjO2gTXnwLkwgh/3/++efBcMFu92sY4P7+PhaL16EzTKj9/v373uRD95sbzToFZ4sMABmrVHbHhg4Pjx8wDL+yJX6oLFROMLMJhj1wBMENCygZqIgAG0TtFDyuhuhARKSEwIXj+DhHCdiQs/Hg80x4uNyqPPGMeavn9dwlwtVBz7m0lQFiVCy+dT8804wIADwPwCljyL8LP7q0PLSln3/luQO88iBPCkQ+2k7O8GTDHxVaBKt1nWtnlu+e+1wanDxmht79eP6G288InEKNFjtomeFHOt5XI59FBrTOfH8mBXwtv7rI9+H82PHJHF11BHVuDQ8XoH9uNpv4/v37FElz/cdFBrRub0kMuslAJgQ4p/turIkVU8Th62kKNlCsQBA94C+j8YPHQ8A59oac0lRGqCFUvkdGBPQdXDw4dAjN30VHmARU0QA9rmE2Njxo94jXcTMtIz8zfpbcXpymtQQo5439944MtIyFpnFK1eWVGRm37YHm5yICbrigVT83f0QJChNuNhbuDRldcAVKGK9qYZEhfsecSa8Of/W2TZbekVFHYFvXcpu4/WtBZfir4xohzPS+I3NKYHGsNUSraBEBjYC6/oi0OtcpIyMqA+qgqWyrXLMuxTAx/mcTyx0B0OFZRg8ROEVWT44MqOBEHAoKjJAao4jDMX42/Bzm4Tyxjw9B4CGzUeSwERu1ihBk9dNy6YxoJT7OO1fiw2xZIyU9D1MNv0YKuH1RTjUoLnR2DJzRUy/hvckAozLw2gmVEGReUXbsmDpzezmSi0l6Sg4yUu6iAqpwMk/dGQ8ACnO9XsfLy8s0afDHjx/TIkNYhQ0KVIlwTxuo/GQeW0YIuD1a7a5E+VJktoVMlisi4HQY/+f8cLy6r0MrktPzXDJU0SXuHyxrSh64jE4/w/jjexuPj49TFODu7m6S7/V6PQ0RQK8uFou9Zbh54SUdZs2GabXfviVmkwGnGLIHWjFNvUYnAqrw4liWr275NSouD+cD9DBXMD4lBS4/Z/gcw+VjSg4q9BoaZclzPcpqjC4rE9/PEYJLQ0uJunTuP6BEDFs1Mtm1nC57bqzYqvy4DkoIqjk0WgcuB0exNptNPD4+Tvd6enqK79+/x7dv3+Kff/6ZVl37+fNnPD097b1CpeS3V04q4pl5U9i2yIeSh95+cilwxDUjANUP178FnGNWyWILPWSEnU2N+jqgTJBzJgI8H0ZXJ0REDcPcIANMkEEeQA5UjjP7+Dswiwy0BI0VT8Q+O+uBjqFXDYNjHG1QTwmr8ekriGqkNISv42MaNmVSoAslqSKrCEBPGIzhlKRLq/VTxabPxCk7ZcnOM2t5bHr82A5/Tjhl15JPlfsMGRHAtqcfOEKgz43HNRWO6Oq8HSbFWZSMjT+HTKEYMREq4tfbA7vdblpg6L///e+04tq3b9+mKIEqQddG2hZZdCBrM8C1NY8Fu/yyaMDv8szeAi0i4I4BHOmEPFQRpDltpMSLt1WonMul+THUFqhez0gByoQhaF5JEAsG8dAwhgSYCCBCEBHTXAEmx4iYMSl29VBy9tYyOGvOALaZMDGgRBaL18VwMrCx0AiBGi0XaWBloFsdRmCliHRKDDgPnVDl5gko1KPuMfq9nrPmw2Aj0mN4ss7tjJpel3lyjmi4dJcARwicd1WlzYwTb/l4LyHg/FkRs8FyClr7opIAlX8lBNwXkY7XWoeH9P3799jtfq0ngOG6nz9/TmTg//7v//ZIAQ8ZIE+VI9cGVftwHSvM8bIceb42OF1YOW8Zya2Mfw9abcf3ZwKg1+ncJe4fLXIO+8OTbNlmOTKMOoP88jwxHk5RG4j0eEMAwwzfvn3b6w8gBOv1em9Z5ur5ZJGrc2IWGXDjSnwsYt/QYcy/mp0JVEwQ10Lp6GQ9bjwXJUBZWBFymVjQAK2fIwPMZLkeWm6+B89tQBrezj3Hz0eNTdVpMmWX3asVzq2Mfqbwfxe07s6wV9dU5OAtDYZGFVQh9kYIsrFT9Y6U1CkR+Pnz57R4ysvLy7RgCjwofK3wf//73x4hwGtUT09Pe2vBV96+tkNvWrTPHALAdVfF+1EIAR93BseljTiMCmQkNGsjdYBa5cW+i1pljp/z7rm/IOQPna1RgqzMwGaziZubmykS5ur88vIyDZvxq4Xr9Tq+f/8e//3vf+M///lP/O9//4tv375N5BhRMr5nRdTYzjqcIquz3ybg8Ei2XjVPnEOoHtCwCEMfgioAEIKIOCAm6gFpiBPX85KPmUJlsuPWEeB7anndfnbMedUubeVBMRyT7Emrx/leXCYuB5c/IwZZPd8Lx3iQjqW7tOc0HCqLTlZVbne715U7NVqnfaN6G4SfFYgAlNyPHz8i4vWbA3iFarfbTccQEmVS8M8//0xDBZvN5ui3CeailxBwX8nKM5dcXCO0HZxOjXjVj/z8KtnndBU5yAhA9b91XOcLgATguE6i5vo4W8V9kX/oIzxEgOPfv3+f+sJ//vOf+Pbt2xQdQH/gelTRgbdENxlgo6+vR7iVqTjMqELWamT1qPFDZEDfa+YysiFUdqXlYGPH5zIiwO9ha9nZ41cCw3VyaTIS5MLxmtaF8bIoi5s1jPbhrcIZ+x5mqgTmEggBMFe5O0Kg589FBFx0x0UHsshApkig4HTiFuQKfQr/MYHq6elpknsoPbfS2uPjY/z8+XP6ZCt+mDeAOQPoK73txW2r7Vx5vu58q731+DVGB1T/9F7DW/VUHRnFOZVBF0WcMyTq2ruaZFg5ZRUJ4P6gddb76rAZiDIiXYiK8YeIXl5epogaJtV++/Ytvn37NkXKODrAZc6iN4qWAzoHs8gAT5ZwIfNsIh6/a98z3o3rectgssAGTVke358nGmaG2A0NZO+EKllRkuEMvyMFWd2Q1r1yyIrRtWFmILiOvJwyb7kt3JsY/P+aFGTLkFfXVOfmtMEcw1SRZVbO+lOCp4ouG1bAPTiaBkX39PQ0KVWEQZkIQOlhohX/QA7weqESgTmEQNuIz7WUpsvH/f9IUEeiZYT5mohXp0IjvRGvbV7pZzagWh5HDjLbUOlLTp8RZCUESi6dM8ZtoNFR7iMgwhhCg53gfsH9AG8V4M0Cnkyb6Wz+r8/Utdex6CYDFRHQSRURuceqqDoyG2z9uqGSgWy5SZRFx0f1PxtJRwRcOCmLBOjKW5wmE/gsX20H134Mx3K5E8Dw67Nz1zrWj+PqOaGcldK+NJxSvsxYZ+d78nIhWk4D7129NFeO3vZneeM8cXyz2UzpNpvNQRQQShFkAD9+/xpEgL8Op3XrNVjnIqE9wwLuOVwyWI5cm/aQATaaETGta6ERKdbHuIbbykUHsG0RgRYxYDhD74gvp8N+ZjNUNheLxVRfdQL5DRv+KiHsAH+HgH84zgsXtVA9u3PI6Cwy4IYG1KBE+HXuFTA0/CAzgQVDVSHEvQCnAFmw+BwvDIH/OlGQl4nkMkIIXDTAfZ4zE3RXD06rQy2uDfl6Vz9Op88riwqgHOhMLuLgQtBaNlVO70UOVBbfshyndkolWRkhZOWmkQGOVKni1egU58+KlNsI8uwIMa85wCsP8muEbqGVY9ppjhw5strKU+VV010LlJTzT429QuuuMqHr/0ccfjGQy+Hkj/9n+tBdo7LTeiZOh/XCOVMczmc7gNcPsxU5scaGkgA3mVbr6frJW5HTWWSAPWc3cdCRAA1bslLTSIJ60nodkwKcY5KQverH+TFASLDFOKh+blUJhwoEtjweyuHQiumiHK6TuPK76zUq4+CGQJTIOW8UbcNhYY609ITStQ6Xhl7DkV07p15V/o4I8JAAe+1QyipvPLTD/ZG9GaTjY0gDsCcEIsDywaRXV1ljJccf39J7uP9Ve6nR7mnTU3CN0QFASYAzNgpHBFjvtr6Doc9Ky6I6LitzpSs1X5TTDZFldUR5e8F562R0tT3s1O12u6kvIEIGwox+owTdOcRzZe9YWZ09Z0AJABshNe7OQClZYAXswup6HdJVBqk1RKGCC+84IzsMVqBuvXXed2TAtaurQ2s4IWtXV388Bx0K4eiA5sNEQKMDXEY2UNfkPfVgTp1anbeVTxYRYKgMu0gZ8tJ+GrFvwCGfbPQ5fArZRd9QcsD5MCFQ+e+NBmRt5oyT0x0VepWjOizXhKwtesiA1tu1rxLTLEqg+qFV5t+BYwiAQuuHPoahNOc0at/QFTjVRlQEjvN9K8yODODhVwZYx6Fb3roLo7uGwH01xM/GFkJaQcNbbNC4DJhEx2QFDxPsDlsspqLRAa4X1wNbZbTHPOyMCLjwOEdCeJgA4Gei0QBNVxGyTDF9JJyjo7ICzjwhJcKARsY4vfNUsHU/gMkfttvtdnrWHJlQAqzDAVmUL2sDZ/j5OiVK5yKfWbThWqMCgBrzqp2rZwMZ463OJeAV+HrhyF5EewVCLR9fy1BHi52iViQ1A8s0E4TMAUXf5EiZEgE3dNciBW+BWZEB14AsSOx9avpWCIcbN/Mo1MPlcuG6OfXBFgsSaQhVOxNYHkgAP2j+6qBTstrhsvZAB2FD68634Mgakym3eBLKGfH6eVw3RID9rN1dJ7xWhXoOKCkDVL6QxpGMjIRDTvm5QKbds1WPXYkzywmesRoUzoNlXpVcq16V56/XZd6qtnHV5qfI4DVFvbTtXNQpq08vqWfDD3JQDdNG5CsJOqeCCQF0Ufbcq3tyfo4IKFl2ZVVkwyR8PzbsSpqd0c+iBIy31qGzIgNOITnhaRECvk47azYTn9O2mJ0qosxYsffLs6Z5tSoc44fpmJ6+P83khu/LitZN8sv2qzav4J4PkypdzZGNPLxCBv7rDGN3z2oc8RrQaucekjPHu2mlcYaZyQDSVMTdeSKcf8S+nLYIhRIBrovuZ2Rojqda5dejm/Q61/bXRF5dfSoDXqXjfq9t6YZLNa9jIjbO+eH7Q9702zIKZ2tYhtlY45i7vyMcVb0BRxBcFCHLL4sGMCmo5PIcMjubDODGEftsiw2Ljrc75aTzDlSQ1LNmaH7coEogqocERot84O07pcuTRZgA4BwTGS4P1xFeGwuja0/uAPz1xYytZgrAPafWglFcd2wdIdBnp6FmZ4zmKIlzo+fe5yrfnHo7Q9gCZNQpjYqI6bCV8z4gp44M8D016tXTDtm5HmPGyCIFnF/mbFTkI4tcXBM5aKEiAbzvCIHuq/HUIU8cBzJ9jrS86BXSKykA6c3Kn5EC3dfrHKrogLM1Ll+VNeTJ5EMJhvbLHqJ1DvmcNUyArTY2RwF0lnqLBAAsEBw+0kbhsgBqiPghVQ9Ur3eejYZ6EAFQIlCxP2WlvO9e78M5JQLVA1fiwVDFzpMldaiAoyJs9JUkoa48iUi911PnQrwFKtKEffecdD/Lu1IMDNe5qzbK2lANPMqoHlTmbbjysrxwtKEy+qzoqvJm18+pM9dJZd4RATXqWb7OgH0WZO0Wse8IqnGN2I+wRnjveQ555PxZt7IMOrugcqT2R887otJDXhyx1vN6L9bjWRkcsrL3XDsXR0UGMkJQLUKEdIA77kJAFevjNPyAlHW5yR2cByswnojFRGC32+0tEKFjry3hZGOsW11TXiMDqpR75kbos4Lhx9oJeH2SF8rQtru5eZ1AyVENflYor4sOaFtckpJteQWapic90qmhrzryMV61Xuc8Kc6D71URAiYCnAd7M4A7xgrbKcieuvW2c+vazLChLNw2lyabp6AiVnOuz4y/6l/Nl3Uw/4/IJ4q6fDK50uuz8mf/Nc8s0upQ3Vd1nzpGEfuOLvLLnA+VTy2ryvA5MOtDRW7JWjw0HXtueVFcGa3k3MqpIcM+8u7tCDyZiklA9tqgIwIoT2UIVNFiqwaUO0FVB2bmarT5HkwKmBC4+RGs7PHWBd6nBUnBf5xjQ1DV+3ejMgzZc+p5fmr0e0gA53GuTtyjvBwRyDwaJQA4rrKVEYK5yNqpkvtKxrLn/VEMfguV/umVTdYbEf6tMCVYfCwjAZnR5GNaTn1+x8jYnDJW93BRAU2rfQL1UlukwwUOGfF6C5meHRmoJmro60wKNdQAV6wKt1dwnu1utztgYxn4ntkEKSYFHDlwId/M4GhUoKfT9hhRVwZ9NogC3N7e7i2w5MgADD4mCr68vH4oSheaYaHmoQUul+7/bvQQAWXlmi7L17V9dW1vaLDar5B55S0ykF0DOJldLF7n3aBfQ4bQNpUX09O2SpwqI1QRP/7P130WknAMsvbMdLxry0ynO6OJe1T9tHXvlg3JyogyVfkeA9b56mhx38j6ukYZWtGsY2X66MhANVGjZcC0wZ1n4SrDZCK7ByslDv87qKKDcc+22TGnqJznknktmXBn7aDnnNfm7gvjj6ECfG6ToxJcT60jkyK3zgKiA0iDex8T7XkLtDrdOfJuHeOOXBm5VlnnksSeyICWyxlwJ9MgjnxePZ5e41uld8qwRe5c/T4bWu3SgnrrTl85w6563slbpbfcvTMoAeC3D6oyunK6smpe6rhWDgGghICNvNrOlsy/hRzPXmegIgH4H+GNYVaBbJjAkQYIEN8rY/9VVGDO8IGDeyCV0uSycls6qKKumCz20S68xX0RDeD5And3d3vEgOcrcBlcCIyjAliLfrlcTmtwQz5AKN4bGQnTNL3gTlyFq1vXZ4QxK2dm+FShuPv1RASqcimUwOsbL5nScv/VC+qFU5rHGryPiBbpndNGPWmP8arV2Dly0EN8uT/qUIQSggxVWdXoOyIwB606ZU6l61PnIgez3yZAJTQS4NBiV5p3RM0m+TVAncw01xtwzLGFXoXjysDGX5WfTpBBmXiIwhGkyrPT+2KY4O7ubu+HyIDO+cjqvNvtf5wGX+zCV7seHx+nT95iMuYpneac6DWwx+SZHXPe9ZwyVqQlIwLHKocWqcgcAJzjaMCceveQD72X88Sq51sRoI+Aqt+6/XOhJ3LZo/NVNzI54DcVMgeQdXnvJGvncLXIgpIAV39XbmcLewh6T1/OyjBXtrvJQEQ+bwBohbuzhq4ma+hDjnhtbPZAq1DTOZgT8uaQaCV0jrQouBPAm4rYbytsmRBo9MRNxGHFzl9kXC6XU2QA0QF9xZCfrX6PAmXjr9Phe9085LBer/eGDN4zSqAKkbfnyl/3e0lplldVzl6iUBlZ9dxbeVXoVb4VsrL2KskeEtWjVD8KOVBUz/dc0LY7ViaUHGS6jYFjunx8xKF8agSglzg4IpANebO8OQdXh2ArUjDXoeDr5lwze5iAb8Tn3HGgN5zuXkdhj0PL49DDVAF+sG7BIActD8+g1zq1BJjLoOV0hMCVqSIbOL9YLKZhAhACjQ6410KZJDBZwFABogI/f/7cezMB6b98+TJ92vMShgzmGtiWh9zaMlw43BnjuWSlSpcpg6pelSepoVygeq5zFNIxEQL3/xxRkmtB5gDwf01ftXGrrZy+mUMCMs/eyRTbg5bziTT6Pn8rWlANbagRzogAp9dyO3KgXwxtkYJT5HdOf5o1gTDCzxE4B8t0ryy5+zhB53kKip4xIl0CWR8SlwHl4n29h5ZTO1AVsswmqTiykREQNsiICGAfkQEmBDivxp/XJkAaCDW+071er6e5BzovAvlgZcf3JgMoW0+aijDwvpPHY/vDsde3CMHce7cMRsThe9pOTjXvU4YM2EOs7nEMIfjIZCGiX66q9gXYwJ1KAjJCgDLo/4qwsz7Wbxn0EsLKadV9jeRyeRwhYEIB5xP7GSGoyvYWmE0GGK15A1wBJyhKMDgPXYs6S8tlaIV93MPV8Xl9OK1y68Ou6qVelrbN3PBVZpxgjNm7R0SAhwp4X40/kwCkhcEHGbi/v4/Hx8cpPZcZ98ZcAqzYeG2ovK1q3yGLDrxFmd09oBRZ6Weeo/5cftn8leo5txRzL1mrjldE7hijcI1wz7XCqbI4hwhU99EhX40YMDQ/56w5xzLCO149cEZao8R8b9SB68e/7FPG74FuMpAxM/efj/dUTBWORgQi9oWEjZ2iR0FV3nf2+WONQjBJUcFy5axeacmIR6VguW21bLif+w6BDhU4MsDGnyMJbPTxOqEe41fMODIAob8mOGN/ChmIqN+yObchZPnUrfMCM0LZY0h6oASkVzcgbXZdpjta95kTin0L0vbW6Hl2GXqfaatPzyECnKcLr/fkq8ZfbUk1LNBLiDQapsdxX53rpo5nz2q2Ws5jCENv2lkTCBUqbD0TiaqCuTEgCEO1xoHLlxusGpfHef6fGWctj4tcIB3KyWPwXDctR0sQHLTtmQAoGYDxd5EBHgbQKAIIA7+KGBHTgkQcLWCBRplub28nMqAfPHoPVB0+84h7juM/b7N7niMiUHm/2VYjT07esrpmxED7ShXCVwIypw0cKXDns/9ctjkkYOAXsojQHJyDUDmyq9CoAOD2XZ/g+2RkJJMhkACd7I50rCcdCdA+WRHac8vurMhARHsyx9yZxVkISD1wHMsEIHtoLlLQG4bP6uK8wUypVmXuiUpo+7j24ntlUQD8VqvV3pwBnlgI4637mn6xWExkgL80xvMCUJblcnkxkYEqPK6oiMDciIC7p/PWW3BG3hHROWSAt1nevRGCrLysYOdGBrI8e847hT2XEPQ+m0tCDzFinEpOKwKocwwqB46vfXnZfzUvy1+PtZ6Vc/q0nMfAEYKIQwcX93RRgYpQV8d7y9VCNxnQsZzegrS8BoXmzwKhnjCXzV3rysLp3bnqPg7VvVtEQCcuZvlnM3D5GL/2ycsN89oCq9Vq2mKfowJMJnRSIRODxeLX2wk8a1cjAyjH09PT3gee3gPOE21FCLA9BxnIPGJHTioF6bZ83pUNYGKbkQN3r5YMu/+OBGTpWjrhWCPVQwQyw+DKcG2E4HfAOVdz3iyrSETr2LFl1CisixYg0tl67lXEGX1GndEsKuAiw+7+bymH3WRgu91OXqFTbpkHriESgJljxgAzIehlcO7emUFCfbIJJxncJJHWxEo2/hpaZ8Pg2LXmyUMRNzc3e/MAVqtV3N/f7xn/+/v76Vj2WiGTABgEHYKI2P+SpXYuRAVWq9W7k4EWMsM+lww4ZAYX17q+VBlnV96WAuXJpBrha7VJC6pQXT49dexFRiyyY71E4LNgjrGFjGRes3v26hG763snG1YGOYussWFVo68heXVSVd/2RkwyIqkkX38VEdDre3AqaZ01TMDjMPyQ9YFkY+KMytutjivmGJiKCGALQoD0PWEth0w43PiRtlHFrvGfPTYd69dIAPaZCDAZ4HkNbPzVM+T7cRm4boh2oDwgA0x4LgFZu7pzvXkoKkPE2558MyIwtyzHwkUvzkkEMgLkyHGWTvNRw68/d99LktFjkRmRXgLr8qoMOrcnG9SIV4ehmrjH5csi0GxrOP+MCPC7/Dpjn9eUyUi66uIsup3JiyMylRxqfj3Ph/tXVZZedJMB/q79YvFrzBiLyTB6vHCc4/Fmx/grxtqCPoRe0qAeVUuI3fnqXo6VavlU8LUdnMeOML4bEgABYCKAuQM87s9EQyc/Zt5zRMRyuYyXl5fJ8CMPvFJ4aVGBHuMyh5ErnALQ49l9W+er56D3V8Xs5LkVudAxXyDLRxWUQpVXywPsQUWyKgLgiEOV/zUjk3UnQ2grfU6V7GhkFHnObVe2Mdjq/V00lvPUT8+jfFlkQMutZeG85wx5t+racy5D1m9O6Uezhglubm4mZd9aljdTMiyAqjSUFR7b4L2dHFDh4obWumXEonUfJUi9pEm9Pw758qJCbmVBNvwcDQARWK1W9iNFHAXgMvAxHtrhqMT9/f3UpphXwEspvwe0Pjim27kEoDJm6pVm5WqVuypvlV4VREQ+mbbl3bSInF7vJoypMXb/td/PeR6Zoe8hBpmu+ggkoAcVccvmLGVEIOJw9cBsWFcJhCOULn+WFRetYCJQRQay8rSGRE4x3nosO9eTjyPep8jsrAmEPOEt4jVMnH1Ix0EFC40MZVwJD5clA7M+54XzvTk/xwqdcsjCY3OiFa3IgraReur6GuDNzc1EBHSSIP93W54DwO3ExEPLr2Xd7XZ7rzDi/+3t7cGciPdGRnJayIyVEoHW9hQDX6Vz7VsZed067yIj7Q56XvtTRURaXnuFlmGvtq32aR27BPQ8GwYT4yzip/nOmTMAcOS3Rze6YQiNEnC5XLSKywO9gyFK/ul13DZaXqcbq3pX6InquSif8/6zczh/jLzOigxwBfCwVUE648ihZmWNPFTAeWeoKqmGX0mBQqMSmpfmVwlErxKrjD+XqyIC/AaA+/iQkgDsa+QAbxwoMeNn4YQTWzVUIAQgGRg+uERFmkUGsjo7Rq77SOu2eu8ehczo8a5wvx4PtzKK7vm7smkb6pCSI/5aZtdPW157dr5FBjRNdV2r/T4KqueqOrk3/A9kzlcv0O/4raUIv7AQPz83b0Cdksq4MpQ8ODuQ6URXd6TJdMAc+ctI+7HyOnvOQFYQwBWEIwl4kDpfgMfJM2+0N1ypDywLC1WTGN1D530lGXOZors376OtIsIOCcDg8tsDzvO/v7/fIwW85sByudzz/pWFg4FzWfXZaFr+JDKne09Uxpe3DnM7mDNaWRl4kqYqu1b5nBxmUauqbJkR5P7tlKVuQSp1PovWx/UXF8LV8d3KaKuS7yUEc0jTNUAJaqvsFRF2Mqc6erd7ffvqVLhJg7gndFJrLpXqf/2pvs6iHdkx17+cjDlCgONMZLgtOc0cmTsXEYiYGRkAIASu4g540EwKtIFbQqWN3jtUwP8ZYJxqgOdECLQcVQdUj0kNq76OyGnctwJ4hUC8FQDDr/MC+DivJMivD2aKXocmeFIhtxmTgWuAtn9GQN1/pK86niosNfxod36bg9O1CIoqPETu9OubvN/atsAGgAkN6qNrVXBEC3VjZGO8GJLUiWA8/psZ+t76ZoRA2yz7f2lo6WI97/p6S+6ya6sJfRVYHhwJUeMfceiUKlRfKxFQ3V0NSWt6HOOt7mfQts9+c/PC/U8lAhFHkAE0KoxA1tEBJgF4+4AjARGvD+yYUGgmgMoSM7DX4sL+rj5MGuYyY1WkGUnIhgdg5Nmws6HXH79FoIsM8XwB1I3fRYdi58iDRhOgrFFONoI9UaNLQEsBVrKQKWGNAKAt+Vny4k5MEIDMeKrR3G638eXLl4kQYLJvS/aPAdeLCU32YzlDW2h9UE4QgO12O4314m2U7Xa7t6w10qoS7IkMKC5VLs8B1LmScefJuuPZNUwSe9AiAZomos/4toaftC9k5VXbkt37GLmpiMCxBv3YqIJi1jBBxGsjq5eoYzgMNRRuDEiNMSOLCjiW5vLQdMo+uRyu/KzEUE80PLNXZq1cJjb23GaOEGQL/fB3AnSdAF5PwL1RoBEB9e61nHx/HX64u7vbe3aoN3tvXB9uj3MbpnOhN8LVgvOY8Az1C5Du2xAqC9x2Gg1Am282m+nH1+pkqVYYs6qLIzZONpmscr00CuVIIuQHRADGH7/1ej39uDz4GqYjBW6bPbePTAgY3FYsXz0yUUWt+JiLqrRkDPm7e7f0u0vba/y5Pr12hK891ghrv+Lj7l7unlW6YzCbDABggmrctIJMFDQawOeBnuhAFhmoQnute3A53JitCqwLR6ny1vxVmTpCwGFVN0mQvXw3MZA9+GxoQImAhkwdEeC5BzwfgA2Trieg7ZHN3XgvOCU1lxg4eednqus/6I+/GsnPXju7iwZst9sDA4k84D0jD+5vVT2dYsqiASybOkdF5U5lj/NmkoM6gQw8PT3F4+Pj3qeyb25uJpKgz26OctQ2ZqXuzl0yesqnRKAnalBBozy9xpHtAOvVimhoRFrrVf3nPPg/b3vycoRnLhGojHxvXiqn5yIEs14tBBAZYCPSIgSs1JQQsHHqnTcwNzrg6qLjUVyGTFhdeXjyUxWSUoXaIgT6XQC3hkBGBPi4U8YovysvyqCrGj48PEwTF1mJa+hW24jHeN8DqvC0Iynb7oXzmrGvxlIXfOI5HfyKp/NUuJ01IqBDPQA/T0TiWs/AEQFAh63cipdY4ZIJazZHxRFSjgyA5IAM/PjxI37+/Lk33FD1R/x3Bsp5VZkhO6eyvQRkhCAzoPq/1Udc3ll+gCMCjmig/EwIeolAVlaHnghmRSSd565ydCxx5TwVPW1R4SgywDdzhMCNCcHAqgeu/yul7Do7tseEoB0pcPd2xpvrD2PHdXXlmTNMwFsmBKyAW0RAvzaoCwwpGUAd+JkoMcjIwM3NzUF0gD0PHRr63XBKySnGStk5ssvkjUkAtxcvBf3w8GAndep8AS43G0oQgeVyGev1eo9Y6xg8xt2xQFhVNxeiVeXMZNbJY7XktS59rUYd9eQhgvV6HY+PjwfXMqnQcvLcJnVgMhLgjn00QuDqz9vKY+U89BigHntmmFqG2ckh8nbPKssH9ihiPwp9LLK+WZUpa/Oe8vfinHJ5NBlQYwLgwXE4PcKHJ9UD1zB9VYZTiYDm6wgBKys10no9lC5HCRQVCXDnOHSsClg/Tcxj0Dpeq14Z2o2NOU/iREdiw64RCzae3F54jhoROMdzOidahl/P6z4bRjZQNzc3B/M77u/v448//oiHhwfrPeukTNyfjTtPrkNUgJUdRw1QHjxjLB2OPLnPOW+sIgRcV0cKmBhw/XS+ivvgFdcTdeT2YdnT/sJQQsptqnXKjP5HIACAi3jgOLbVBO6ItpHK+navw+XuxTrGDQ9wmiwPjSRkYH3o8snKWXnpWZtX0ZjWfTPSoQTvGMz6UFFLoaMgTAic0tVjKiRvYTSUJSqyzsCKB0aVDTjyw0QmDBW47zbgGtzHzU3QrXqfGqpVxawKms8jLyUCPHt7sVjEcrmcynd7exubzWbvGwNMArh8KuTXoFB7owIR+fNQ4sWRGhAB/EAIOIwOI4nyuIgNvzXAzxHH+f54TogGsJy6NxYyedR9R1IrgqD7+tZEJptMetz1aHMlFfyM+Fsq1RhzRgxw7tLlt4XMKEW86jyd/K1yrumRrooWI727lv+3IgUuSpOhMqAZIXiL5+sijnwuM97OTvLxjMzp/2PrNJsMRPQZazUOEB4VAI0iHBPKUUOvRp3z5FfnqnpodEDH3fWeCMXOiQ5UdcG9uUNyhIAVa7ZVBcpCpR4YCEHErw8PgdRAafNEN66HGi5Aw2LXFBVQqHF00ZrslU6QgT///DMeHh6mYQImAjrswlv22pwH7Awlh+CdR5ZFqLRvujZS45+F/V1+LBOaN+fhomAcidEf1xX7+vphNnTXSwCO0Uu/ExqSVmOUGRQQgYwM8DE2qPxsuc0q3ermYkG+cY9WhAJ9gsvSQxAqQ9pjDxyZUOLu8szKX0UHepwT1a8totCDxe7aqe/AwMDAwMDASXi/GV0DAwMDAwMDF4FBBgYGBgYGBj45BhkYGBgYGBj45BhkYGBgYGBg4JNjkIGBgYGBgYFPjkEGBgYGBgYGPjkGGRgYGBgYGPjkGGRgYGBgYGDgk2OQgYGBgYGBgU+O/wfHZv6+8O7vIQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmBklEQVR4nO1d2XIiy5IMJISQ1N33/v8XztvYnG5JbBLzcMyrHccjlwIk1F1uhgG15FaZER6RkVmz/X6/jwkTJkyYMGHCX4ubzy7AhAkTJkyYMOFzMZGBCRMmTJgw4S/HRAYmTJgwYcKEvxwTGZgwYcKECRP+ckxkYMKECRMmTPjLMZGBCRMmTJgw4S/HRAYmTJgwYcKEvxwTGZgwYcKECRP+csxbL5zNZpcsx18Pbl/8ns1m9nNzc2OPazqtebp7tQx83OXBe1fNZrPQvaxw7H/+53+ay3cu3NzcHJVnwoQezGazeH9///B8b29vY7/fp/3XjbVzolWeuOv0mJMvp5aplE6pXTSN/X5/cMzdi2P6PErXljD2uWV1VjmOcs5ms9jtdtV0m8nAhI+BU+wZKQAxyO5r6WxZXqX8Ffv9/kDhogPiP+77DGGK8kyYcAo+qw+xolKFpddk90dEeu+Y8rQcH0sEes45I8YpaZZD7n7XNjWSVWvLTAar0eSuacmvp31b5e5EBq4AJau+ZXBknoEWIZHdr8dKZKClrJNCnjChH5kV2uoRqFmwvQTBKTMcd0rZKdxzEJNWmdeSl2vLrN1K19VwigzMPK+OUNSeeYazk4Gaq+VPR28nz1z1LV4BPa/51wZCDwFoISzZ1ACXZ8KECafjHC7mU8ZjzVLtubc1zRYvpnpRmEy1EihGq9V+yjSO1rOXYJzD4xNxAhlQBdCjJLLrGH+y4shcOr3KuXXw9LZljXjU7s0G4Lk67YQJE9pQGn9jxmN2T6vhUTvfKxsdGdDvmvxrtfbPZdnX4OR2K4HqzYsxmgyc4i6ppfWV0eKWb3GZZYPilPLUgvxKaClDyTvxJz3jCROuDSWP4LlI+CnKvuW+TNHrOb0ms6xBBLJYprGBf2OuHYNWAnVqOsAUM/BBcHNqJUJwTvcP0nP/T1HUWfkzdj4RggkTLo9euXEORd56PpturE1LZl5KPe5kjn6UELgpBsWpBOISBtG5Pa4TGfgg1Fh15o7Ppgdq0waq7M/VGTMSkXXMiQhMmHB5qFKLaFcSLdO4lzJYSnIOS6hxXldOZWQA9Xl/fy+SAkTZOznmlP+1yrBzyfeLBBCew9L8E3CqW62m8FvQMm3RQjxayqoDJxt8EyZMuF7wWM4s+eyYO55Z+fzbkQD3zfcoWYgokwH8f39/j/f395jNZgfHMpyqjy7hFVCU0v/UaQLtTC0KqeW44lpJQ0+9MndZtrFQzZ3G6WSMsWdgRxyy5NqzOUennDBhQh8cua9d78ZqSfmfghaD4+bmZvjofz6OtE4hA29vbwMpADHgaxROlmYeE72Py+fOXQsuQgZaXSulztiTx7Uh6yDakRROwY8hAlkeNRLQ4w0oBT6W4iMmTJhwXnzG2OqRObWPU/r8ub29HX5HxBEpwLGIOHD9q8XPyh9kgL/Za5BNLTiMddOfy2PAROiUNLvIgGNGpcJdEqpsrgWlupfcZ5mrrOQlqOXjWGlJiWcko0QitA74rd6Ea3pGEyb87TjFEGv1cOK7JN9Kyp9JwO3tbdze3h55BjRvJQBcTyh8JgD43NzcHJAFN61QasPWIEK91h1rQYtM7k33JM/AZ1t8X0nBtAwW/Z+RApdea1uUiIC7ptbpXPm5LBhkWVoTJkz4uqjJk8ygKVn/UPz623kHnBcSUAU+n8/j7e1t+H5/f4/dbndACthbwLJsNpsdkAIXsNnTZudQ/ue+r4sM9C6rcAprrBL7KughSGNcaqq4W2IzXF56vMUbUEpbCQTK8/7+PhCCiQxMmHC9ONW4ywwcFwiI36r4S2QAngFOMyMDkDu4Fkr89vY23t/fh++bm5vY7XZxe3t75CUAKUB6+/3xO1h62yeT16d6T0v3t6Z70jSBO1+7/09HzYWWudczF5p+872ZCx7HM8XeYu231NNdy3N3KDMG3d/w/CdM+FuQybUSGXAeASj72WwW8/m8mQxExIGxweXAechC/v/29jbce3t7G/P5PHa73ZGnYDabDVMLuNctR+xpKyUEnNZYT0MJF5smqCWcxRP8adZ/CSXvBzNZ/ebrGDWLnTuqplUiIZpHi0eASUbmqdDrW2JMJkyYcB0YM14zIsCWeY0IQNHP5/PhvPvtPJARv1/1rFMDXA5Xr91uF3d3d7Hb7WK32w2eAq6Hylik0eqVbWm/U70E59CxZ/UMMEpLKv50tCw3cYSAB1VpSU1LfpnCbvkuucGydG9vbw/Ko2lNmDDha6FFhpeIAE8FZMGBGg/ApADpute0a/6lYD4QBPY+APP5PPb7fczn83h/f4/NZjMQg+12a2WYrlC4RJD0OfRm73TGWT0DjL+RBABjpgrcOceys07XusojG1AtnoHsHmXerkyfiYmUTPjb4DyOl5LJTlY5g0aDAZUI6HSorh6o1VOPR/yeRmD5iXz1engGNpvNcIxXH6ink2MINODwHDglhmNMOabtiC+AbKogc+GXkClqdEztoKV0NKJX0+RrOR8tsxIB/u/iF3rKOWHChNMwNsAton16N5sudESgtDLAfdRD2lJeJ8c4+I/T0fJBic/n84EIcHoaN4BvjVUoeQjGKPaxZG6snL3YDoTu/9+iDEoK1n2XBpR6BjK4GIFS2kBtrW6pLrXpC7721EjlCRMmXBaZ3K5dk00RlKYG3HVO3mVyK+JYdkG/IECQlTWuY9nK5CTi3/gBBkgAVh6AVLBHoOZRPcUrU/IAl7whY3EyGWAmVKvwJSpwbWgZUHzOkQL9X1K4Ljgxu18HVqlsGpCTDURXpyzIZsKECdeJlvFZk1Ulr4AqfCUEmk52rfNq8soCHIdiV48Apz+bHQYs8oqD9/f3IY6A68LTBXw9vmvxA2On2t0UhbvulPzO4hk4RdD/KV6DVhbdm1aJDGTWdkn5a8d394NZRxyz6zH1mTBhwjhcyxjLLODMm9kyFcByKPMWYKlhZsjgOihLLA2M+L39sCpOfEBU5vP5kB5vV4wlh+wZgJHEabLHwBGC1mncsYGI2bS0+13C1cQMtLCbUoU/Ey1EoHTOMW6d3+cBoB1O5+RL3gB20wGq8HUujP8ribjWZzJhPFoV0CWiqCcc4hJt2ztlp2O95nXMZFdGElg58zXz+Xz48PmIY/IAa/7m5vfSQKwGwEZCrh1YlmrdIo43TMLvWmxUKW5AFXUmS3swRvkrzkIGzjEf3FIB537+DPQoej1Wc7WVjmX5ZsxXiQBv6KHpoYPzwOFlM87dxvfiei2jIxITzg+2LD4yT/5mTAThejGmj2QGS6YsnRfAWfQ4huV+vLRwPp/H3d3d0UZEznsA2bXZbGKz2cR2u42IQxkW8Vtpa+Afyz/2JmjMQSZfHRngfErj4VpI9Ulk4ByM5ivk2YpamTIl79i0G0icDnsFAPzWtHggsdstK6OSLl4240gA58XzbaV5rgl19PbxaxoTLHwnXBaq7M6BzKhRA4N/l7wCDBcjgOOQV/BgzufzuL+/j9vb27i7uxtkGc5Bnr29vcVut4vVajXcv9/vY7PZHFjyTkHzygAlA668PURA694bS/CR4+cqPAM9Fb6k9eOCMrKyZdaQHlfykrFLx6jZpY9NfZgEuGUtmofu4lUiA5gTe3t7G755MGcuLfUMKInAf96YaEIdvYLgM8nApPQ/F5ds/16ZVZJhGYFwQYPz+TwWi0Usl8u4u7uLxWIRd3d3B78Xi0Xc3t7GbreLzWYTLy8v8fr6Gq+vrzYokGWVHud4AV5OGJETAhxjeczthnR1qrv1efV6DE7pBx8aM6DK8tQOPIYYtOZ5icHlrPvaoOJBhI7FrjZVuK1EQHcM5HRK5ee8lRgwS9agmulFRX8uJiJwnVAv3znSqynymgzLXP46PQCPwMPDQzw9PQ2kYLFYDB/8v7m5ibe3t1itVrFYLA7iDADsKsiA8uaXE0FWZfP+anAxOHYha3/1umbHT3lGnxozUMO5XcVfxfVcc7WVvAFgxjxQeP5d37GtwYNQ9rifmS0rcm1Ldp1ldXFvD8M9Sio0sGfChAnnxTkNLJe2WsFuSiAjAaro1cWvMo89AovFIh4eHuLx8TEeHh7i/v7+gAjgGGTL/f394Dm4u7s7KDfIABS9TgfAE8DfaulD2eM7I1jOQ/uZRmgrPn1p4VdErRO445mLTQeSGyw4FnG4qxaW0Mxms8GlH3EYAYvzTArO9bw0KAjH2AswTRNMmDAeNeVwLou/drw2TeD+s/xRZY/AQI5j4qBBKP2np6d4fHyMx8fHg6kBkIHlcjlMabL3kw2W2WwWm80m1ut1vL29HQUXcrBgthwR9eK3sUYcxh3onizaVpn1fw3xAhEf5BnIOts5K1sbFGPyUldOT/4t7nYlAi6CVr0DzF5xHESAO9s5lX5E+5QMD5SIOCIGE86Pz25X52Wa8DlQRTPGbexIAP9uIQUlsgA5xy59yD0mApgmeHx8jOVyeXAtkwtW/vyfDaz1eh13d3ex2Wzi9vY2NptN7Pf72G63B1MDLvpf5XTmTWV90dLmvddfGp+6z8A5GyGb3zkl/Uu63DJPAAaEdnoOhtFAF6yrZa+B1kODDnnKwbnHSktimEmz4nfXM5uePAOXwTnnhU/BtQi1vx29hon730ICnPJ3Xk+MfVbmUPas/BEnsFwuD6YEcB3SgtzbbrfDJkCQk4gh0Ncjr9freHl5idVqFavVaqivegG0HVjuoj6l+KraGGgdI58xjk4iA8xqxgiingqPsT5ObdAxHgE9ljFlnRpQr0CNDGD+HR4CjobFNbiepxBQJih/Rwj4mHNtuahc5K/kYMJl8dkEYMLXQosyapkeKH1wn0bgR8TRVMFyubQfnv9n2b/b7Ybv9Xodm83mwIDiaQf8vr+/j/V6Hc/Pz/Hy8hLPz89xc3MTLy8vB1Ot2G0Q8pLjrnh6gGMGNMaKDa+PgAtCHItP3WeA7xvjji8xukuihQDwb2XK6hHgoBcMAhdxqwONl/45QgDw/BZ3fvYW8Dn1InAaOM/HQS4i/BvC9D0HE9owZnyMTb8VY+awJ2/B9aBmtfLv1imCksegtGIAZODbt2/x9PQUDw8Pw+f+/n5YEQDv5+vr60AAIG8gN0Eg8M37EyyXy9jtdvH4+Bi/fv0avAwRh1uvQwaq8uctiGF86Sou3K9B2EoMxngFSsHc58SX2I64dI/O7dRQYlLn8AS44zqgMo8Az6HxCgKU1SkEZd0MKGacz5Sx68B6rRIDlIWVP+ejHgKuy4Q2XIoAnKKcx9x/LstlwulokVXqAnfHWvPSj77OGCsGnp6eDggB3P3v7++xWq1iu90O1v3z83Nst9thenSxWAxBht+/fx+CDjnA8P39PZ6enobYg4jfHlZdUgiwws/agBV+9sF154CT/w5jYhHOtukQ46NclyUGNcZCqc29thABRwDwzWQARAA7a7GHQIlABiUBHKzHnZA7MUfLuimBkvXu4gOUELACGyNAJpwXPeT1EpgIwNdBZmg4r2epD2VEgj2dsNw5SJAV+N3dXez3+8ELgDn/nz9/xvPzc7y+vsZms4mIiPl8Hk9PT/Ht27eBJOz3+4O9CvBb46622+1BnNQYDyYTiRZCcMpUd2bMnsMjd5aYARTmowf+GKY69v5z3OvcZi4+ILPk1bXFLqtaBL+e52+eInBQy39MG0zIwWOnh4iOueYcmCz9j8NHy9XMEs4sYv6tBgiDAwnVO8AykD2Z+/2/0f6r1Sqen5/j58+f8c8//wxkYL1eR0QMqwNAApAfiAA8EBER6/V6WJaI6QgYYDoVq/XMUCIAfE0LWqYULtUfzj5NMCkID/UM6ODgzqjBeRy4B+i8PfLgVQJ8jo8hSAbplDqXGyA9GOOuOje+gtIaO24+c7x99nOdkCObUnSo9aHSec3H9Qc3ZciyEOBVUvv9fnjXwOvr6xD4h98gA/AA8IoleB4w/bDb7WKxWMRsNjvaypgDD11clLP4+ZrWT6l9Sudax1hvXILDWQIIs/896ajLo6dCl7ZUTqmXmybAIOCoV95TgOvPVrt7pwA6sK5/VfBe26V4AE63lwSwYOB4hc9WGNdQhnPhI5V/TcjjmlLb/klt/1Uwpr2z6STnEcAzzT7OU+nyYfc6L5FGHtvtNl5eXo4+ePcA9gpAgJ/GIjw+Pg5xCHhxWsS/so33NIAcZvC0AZYy8mqrlimBMd6Az0QXGRjDLF1ncsfPQSzGCkp9GOeeZ3VeAZ0uUFbqdsNCpKsO0syNz+nNZrOj7YCxIkGheTAxQHotcMGFfzuy8TDm3tZzvfnU0nfjpUYIzlGGvxEtLmpWoL3I5vdbvAGnPE+WcbvdbtgVEC8ciojYbrfDckDeIwArCjabzfCGVHgFOCAbsQj39/fDeWwyxISAvbMom5IAjidQ2VzzBJzi7v/IMfMhby10FVJPwDmgg6K1IccI2dpx9QjwbzfgmFW7j6alQYbZd8RxYCGzW51aqBEBPtfizeEXFk0YP7hPJahjvDultHoJgSvD1CfOCzdPrTLmXLK25CHA+Uwe8IZp2Cb45uZm2B0QZQQZ+Pnz58HUwGazGQIFdfpTly0iGDHi32WIIB8gBOyd5brxhm7IR8mBIwRc95LrvoXkfTQu9m4CVSCt95aESjan0prvOchBz33qEchYNzof6u5emgHophf8di5ey+vqzIwXnVv3JdDliCUrofXZTZsRHaOHsLZ6zc6hbD9jGmIiBTlaSFbpfIkQlIyUFi9ByVXupg4gc6Bgt9vtsGQwIoYlfxExRPrDM/D6+nrgFXDW+mazOQjE5k2LNptNLJfLwfDRgEP+BmHgDxOEjASUoM+R+/6pXhZ9JmNxkX0GSuTATRO0WJ49FksmZFoF3akCMRtQbgOOiN9zarxPNjNR1AWuLoDnwbI6IG/eXQv34V623JW4qGcAZeFy63HX6bNtPz8Cn61sdOC7c9k9peMt4wH5nhuZd2BMfhMpOA2ZMmnxJikxwO/MsAGcFcyKfzabDTIMcmu32w2yD2RgvV4P8ogNBmw3jMDB5+fnWK1WgxLHkkAuH5Q40nx5eRkCBzebzbCyIOJfebRer2O9Xh9Y/uw1ZTLgpgdqWxkzWL6WZLbqxxrRc/eOxdnIQK+Qc0Kt1aVVegCa7hjLqxelumakQO/RZX4awBJxvGqA84DLK/M8ZGXj3bTcuUwwYPBmKxz02GfuPnhO5n1qOYAxLtseIuDuO3cbtCqhHo/cNTyna8IYb+ZYMqZjveQV0DIyEcC9rDxBCmCU4L0CcO1H/J76hCLGFAIIwG63O3r1sOa92+1iPp/HZrOJl5eXwTOAJYrYfXC/3w9kBOlyOu5/RgRavQMt7Vj6Xzt36vhpJgOtFkyLwHJuquwa10C9grDHQ9BDQPRcjRTotsIubXbhc4fEdW4nQM6HN/+plVvvQZr4dvEHEfmLkEoKX6c7/nb09MHamCpZIu66cyrcc6Y5EYHzodVrxP/dp5YWu7lVTikRQFq8hBpGTMRvMoB7YLkjRiBz06vVDq8CCMBsNhuO8coB5OE2HkI92FtQChpsfR7q7T4XzpFW92oC5wLW/y1KvnR9T8Va3Cp8rpXUlM73toEbYLquFek695MG9/Fxde9j602uL6elil+X/bROEXA5mQhkz24S9HW0KvrScT1fs9zP9VxKVsmlPBMTPFqNJZVJpbRqhEDJACtQl87NzU1st9uYzWYHZAD3c0wBu+lblC/vU7Berw+8DUwG9vv94HVQmcsyzU0R4JpzoORRbT1+DoyeJmglAplV03KdU2YMp9xbhWDL8QwoU4vnIyMDWo+IQ+WuHR+dsyZ0ocA5IBHHmVTAq+COZ9MDLUSg17X1p6NHMJeO9fZRva/UZz7quXxkXhP6kMmqFq8A/8c3ywZY+8gn4t/4KMgakAL2DCgZgOXuyq1liojhHl62iHgpnY4okQznBWix7kve3zH4iHHTTQbcgM6sYT6WXee+Iw47Gj+EGjnQvPS4O38J6EDiwZXFDDCbVhcVFDenBUXe2lG0DBio7C3gwEa3PFHf8uVIQYa/TRGc0sdKRODSfXcMevrg39YPTkGtvU7tCzWFX8vHWcluKTSAIELEDmBJIRMGdvVzNL8qYienUBb2LqANIVt5KaHzCmRodfF/1T4+yjOQKfgSGeghB/xbG7VECDI2dopHoIX5ZUofilat7czyBkoBMtyxwXx1dQBYNt/j8uJreHtkN7h0SoHP1aYJkPdnBhF+JMZ4mrL/rUSgZomUhHmNOLfg3JbQhPPDyWc+1+oR4LQAJ6c1MBlgQgDPQEQM+wGwbGODiMsJeaRbuEMewZOAXQ2Rrso73pk1a5+ad0Dr/1X7flcAoSphbTzXmZyF7NIu5auoCbDPdsnUCIED7waoS/2ULCkbd4wZz6pFEStR4XKqqw+DmL0CPJ9WSv9vQK8QzY73egPOJYDOpdRL1lGJzH9VQfoV0dJXe+W1yiSVCZAjIALsJcDUgZufd2Vwu5viPih6js3isvESQ06PjSGXfkYGOH39/VXQvZpAlUxGBFoZZkTdgndlUULgypp5FfS60jUtZeFvVqb8AiL94J6alwAd2pEDlFejbHkvguw5af3ZK8Bl1IHFa3J1qU2pDbMB9Keh1n9a+novEbgk0RrjNXB1zDwVrccnXC+cgViaY2eiAGIAWcnyhHf803xc/jBW+FuXNTKgR5zXQYkAy04mFZmB9hUx+t0EmeLXnfYyS6On0Vwa/FBaSUGL0GyxTpywLnkDVOGjs7LLCsd5oLipAs0XafP8GKfJbabp1KZalNVn/7/yAPgMlJT9KV601vyc8M6QXctjKhuPtXwy0li6fsJvnKMvlAyR0rPvzTsjBJgOABHgZX+tU10s8yCTQAD4HqSNY/jvdodVQqDjstR3szLWrvlsjJomqBGBUjS6U7aZACg9fMfKSmXn/BWqHMd6BhwJyGIGsjI4QqBsmvNG/tjEIyLse8FLri1XX7X0HTQIMZsm+FtIQyvZbDnX6x3oya+3f7eOr5LCKBFPVTol13CW1oQyMkMuQ/b8ave4/ErXMynQc7zBUMmziLK2xCTNZr9XWkX4qQCVz6rnMj3WgsyTcA2ehVGrCfCdkQBlWmrhAi1MyuVb8gyUOmRJGY4hF/xfiQC73HXgqeudj+O71FmYGHAwDkfOYlUA/vMGRo6M8XW8DpdXNuhcntujIAsa+pOgguDS9R1DTsfeX0qzxdLn87VxpN6FCZdFaz8YY/ln6TuZr+v2VebotTwNmr2vJeK3XM0MJv6PjxoqSgScp7vWX79qX+72DOB3xHHgmfvG9SVW5/Li7x5kJCJz62jZaqTAWW8tHhItBwYABgTPcUWEZcRKCPg+uNs4WEaJhipzVugYGBzIqPe5FxvhXtSr5CH4qoOEMbZvnqrQx95zqrdiTBlqSt5NJzhy/yf0l2tD77POnlXrvXxfqS+wgcSGSUkOAjwtqgYWxwk4mYz/XA5AA58/wsj5TGI8igzw/9rHoccjoOecJV9LKxMuztrmczUB68hAiQho2rx6QIkAl0vZq5s64GAcJgTIWxW5WvYgJ3w/ewVwDbeRMnJ3XMv9lXEJYXBOxZ9dM5a4qFI/R/1LZNt5XDJC/tX70kfCGUg12dSKlut5/HO8lMovhb4t0G0ZjPrwckH1DHAeIAscuIh7VP5qW9Xqp7/H4rP692jPgFOALVZTi+vQdd6aWybzCJTK5NJVwpHBtUEtViDiMHiQFTWfZzasZXJ1ZyIQcfxeAR0QOqAycoJzHM2rbwqLOHz1KJe7ZYnQteNcBEAtLD7uLOReSz/r36V7es61tEOLR+Acgu6r9qXPRO05u75S6oc4lxENTsv1eXxny5LVwGHikMlGpMHTlRxIyL/f399jPp8feVcdKcn0Htcla6OWY1yP1v+XwElkILOCa+vpS25m/Hd5AuoyckLLMTrnGeBGzlzyeq92CtTZLSV0A6YW6KKWP3+YNHB9mQjwGl438LLlOhnZ4Puza/mZuxcS/Q2xBCW0KPGSIC0p+1qapWtrafXCjZsSSagRhIywuzz/Jox5Xq2ELpMDSlo1XScXM0KpXgKViSyvYIRksoiDAJkQcN+CfEQZdCUBeyAyQqAf9QiUPAR6ntNVQ6FGqi+F7qWFtU9EzoiyBkHa+t3LVktp8HF9aExGlJi4B4xzTIZU+WcDIusQ2k5uXt+VQYEBxAOD72UrPXPP6T0OWm+ep5vP5weBPi35/KloFdqtpKCUph5vuafnuhKUVONbPw7OI9JjFdXG15+ClmdYq3/P8x1LNrX/OoNI4TwDTl611gH3zmazgylQnGO5ygYqvwfBGT9az1ZvV6bDxpDhS2F0zADDWZelga/XujwygZgJnJow5fwzayNTtJkCr5Eid3/NEi+VR11z/O02NIo4nr/XPDAQnCDOniHnhWWMulERgiNns9mwJeg1C2qnjMYqRk6z5XyJvGqf6lHcYwV/K3HIrnUkwBFTvl/HZatym/AvTm0n7e+ZTNdxwue1vzrjqLTEWo0efTcLQz3M3G80oPD29tYSAp5KdWRA69eDUxR8dv7SMrTLM9AqIN11bBlkbj8n+DJBWFNYen3G4jLG5uqkabtOrlMDNeXfml9rPXuhA0pZOIOnAnT5JEhBxOE0Aa7juIhrhCNsYwlBj5J2RKDmYXL9uif/lvLX+mqJPChRBylUj5dzrWYkoJUcXDvp/EhccryVZHUmG7lMTkby/0y+lzxMDA4oxPVMCGCsMBHIYpu0fFrvkiHV2l+vod82k4GWAjth1ZIm31/76P1OoGRlcKxWz2f58HetrKX61lAiLTWviubV8hw0WDCiHtPA3gclBVwexC6wp+ArotSnGKXzJeWaCVS3dNfdx2VsrYv+zwhKqax8TsvCfQnnefrKeQv4/kzIttT5GgTrOXFpEu28AjVZySgZRa4PQ17oeeTtvAElWYhjWd2YGOA1xk7WwRvhVitoXVvBZeU66u/s2Edi1FsLzwUnYFzn4f+Ac0XWOm+rm4uPaX5a/uzemmKonc8IgVMYLWniGr6erTYOKMz2CuA88V5wjZsAeD4O6alb8FrROxB7hXUmXEoCVckA/y5ZUfpfr89IZek7G7ecD/LgyG4lBHxtKzlwZW1xqf5pBOESKCmkkrx0Mon7bsTh1GKPrMyCzZGmlq0E9QRwGjiv3ivON+v7QNbfSn0xk/VZnS+JUWSg5voeg4xdqiDUcqjb0ZWxNV/koUpL3Z58r36XCIX+13qxQKx1Ds1L80AHUyWsnR9EAK58dx3nCRKgKyeQHreXlunayYATePrbodWCcuk6Qer6Pu8oqc+95JrU363eqey46+NKBjS/m5ubg2VdaC/0T7besvI5LwGXa1L0eTv0yOia51R/KwHQfsvKH31Yv1vK5H6Xyqf3Z8ZNFsviruW69ih6/l069tkEtmuaIBuE7iFkjMnd51ilBqm58vAb/dTdU+oYrtxOMGv5HUvV7zFEwD30VsGd1U+tMVbYaDN24aMtSy8IKXkhWBHx2uCvtMdAj1JnlO4pEQzX/x05cMGhfL+SYbX8XfuPcUWWxrrr91oeJgN8L28E4/LEdZkAbi37V0atb5Zkydj0S54j/FaF7wis68N8LqI+NZnJXv0N1AwPnjrIwGWHvIw49p5q22tfxT2qd0oerxaycW50k4GSZaCuIb2XP5wG3weLEwFp8/n8iAxA0cxms+E3o1U48zHt1K7+eBAseGtEKCMBtUGGb0daHFAmJgHu3tvb24P24iU0+ly0ju7ZIg1c75YUZmTqmjCGBJTuy55viQA4IpztW8HpcwBUxOFYdd4C5J9Z2y2WiyuH+6/5oX+ApMIb5eqgxEKFqKvXn4oemVaTSRlayXDWd9FX+Vv7tfZ1TjOz4HugafI3K/+MCPD5iEOZyKQAx9kYLclmR5Kd0ndj7aNw1piBTKEqEeDrtTPd3d3FfD6Pu7u74TcCPqBgbm5ujtaMsnAoucpKZKBWN8fQStaKClzXNo4ZZwI8K2+N4eo97lp05sxC0/LoAMB/3dSIyca1koEeItDSztn/jAi4qQEVrCo8GTwvr8+oJlAcCXDXlMaIEgM3l8tl1DgVzqel/5XG2oQcrf28xQuREVg25HgqMSIOpgW4P7MhE3E4t6/fpXKpt5WP6zEnQ5E+G0ycnnpd3cZtbtqhh4iVZP4pnrEWnEQGtEPom/oiDgWSegaQBu4BAbi/v4/7+/tYLBZxf38/uLG3221sNpvhXn54mr4TFiUiUFKUej3yarFOHBFwpACdizulpp/VgYUsXP0cvc9MFnAMOiKGPQGyfPX56lbFTAZ0kPNLQ/40tPabEhFQxe8sLM3HWSXaH92YaBEmLh3+XVMY/B1x2OfYwsJHBb6Sb83beSuye1rr/NXQS071WMnDydeXPqr44dHVY06ORPjNz5wyLiHzuOqY0XHEv/VtrehPSgIgI/HR4OvSuOFy1BT/RxPck3cgVKuGI8wBVdJsaeBeeACWy2Usl8t4eHgYCMHNzU2s1+uIiOHtfK5sznIv1aUHjtC489xOmh+3U8TxewPQGZGeS0PTcgKP666bZzCR4ntarEgW5mqJIk6gRAau1TPQit4+k/UBPe/GFI8nJrylMmTPUJ+v8zy1jBXn7szKUzqHOqpRwOdVGTgC0EIIsnr8CRhDBGrQZ6LPJeunKsdBBubz+ZEBxL/1WbAhBMMGcF4jtvpZwWsbuLbIPAmcFpYigrC46Sxuu5KMa/Uit5zr1XctONkzgG8nwHjwoaG0AhwjsFwu4/HxMR4eHuLh4SGWy2Xc3d0dKB6QAkYWpFZjxQwVLjim306oatoZ21YWqh2RA1J0ILYweL6OvQIKHYyl4Bz+r8edVwA7eDEZwDVfnQxkqPWzHqHqSHUp6rrUn0segRohyJR+bUzMZr89VDWlrP2c+2SmuFsJgbv3T0KPou8hbLV+pn0XH15hpIRAgwVZgaMMMPB0VRPnr88zm47ie1rayZEIDjDk2Cee/uQy8RgorVA4h9K+FEaTgVLnUFdyxG9loJ4BdJrFYhGPj4/x9PQU3759GzwD2Oc+ImK73VrPQ2tZ8TsTNipUSoJT0y89YGWg3OnUNcpzZBHHlr3Wp+QJ4DR4xy0nBGpkykX/MsmDRwDfjvxdIxkYYz31pFkiAWolOWKQTREwuVKLqeQdaC23g44b9DtNmwlBS16OEJTK4NLKrKos72sVyB+Bktcmot2D5fpvRgjUja8GkDNiXDmzmJJWUqPnWO46Gc1TWfp22YhDg4h1G9ep1j+vpT92k4EW9x9/cFyVA65FsOByuYxv374NH5ABsMbdbhevr69dRMB1Pv3t6pf9L3W4bMDUro/wBEDJgeahcMIXSlo7dsaEXYd0c3GOCDAZiPAW5zV0eFVm50qv9xqnADNBm3kGlEgq0Y2oRzK7c1m5T20v1Ek9YPy7hXC3Kv/W9FquvxZcgryW8sr6KMsFVf4cBA4ywAqW6wDDgacEnJxiS9yRzFYvRxYrpcc0pgHHUA94MuANZdLA93DZevpbC3Fw9T2l/456N0HJynAWToRXVug89/f38fj4GN+/f48fP34MZGCxWERExHq9ju12G4vF4qBzwdpV11JmdWT1wW89VqpfSXC25JelHXFIDjKXa6ak9Z7Z7LebS5WKkgEto87zaV2YCCBegD/qQrtGz8ApaCWH+C4pfCXROKaeARY2SAOBpwC3dU9fbOmbThlk92kcjKbHabG3UMdkj5Bz9/L/r4weInAu0uCeMT83nR5gIgB5nXmK1ZLGdZeUE9p/kS/XUc8BKB8HWbPcVL3IYzDz1rnf7n9N7+p1YzBqmqAkALLrdbnGbDYbpgcWi8UQNPj09BSPj4/x+Pg4LCnc7/cHnSqDPpCSgi5ZriWi49Jy15Tuc50Ox7V+yjhxneusDOduY+bN/3usZA6gcUE1X0nonss7UIMjAXper2MrSoUVrKPMXcqkPVOsJcsjS4/LyCilo22M+jCZcR9X9qx+rj4tQvEUwfknwil8Pu6ILE9nsWdgsVgMxEDJbLa0lGVJpvhan6sb184rkBEB6Cc+xmXn//v9/sg7gDrz1MKYvub6dS2tsf169HbE7qMFYuXNwg0NzUGDT09P8ePHj/jx40d8//49lsvlgcD79evXwb4DiPCEa5qXhWg5HJhpOWKQEYmaNcR15esdnLeEB55zA2s+yrZdHln5XB3VUo34HS/glBAPCFeOaxW2vSRA2yrrZ1lfyQRpJlgxhabeHBZEJc9RS32dwnZ9IiMEOhZqbcrn0bd4DCpBcBjbn76q4j9HuXtIr7Z91m/ZO6tTBLpHDPdZNrh45ZFbfcRl0OklpyDHwtVXZST0C7xwOK6BhQz21PZOFdSurZHfMf2mawfC7Dg/RKxx5+ud0OOOA88A7y8AF9Nut4vtdjsEE/KSld1uN7A3N1fNDcPnnIJ03gHtZC2dTjsRK9kWKAnIrCMtj3a2kpfD1U29LkoOcIwHdC1o7U9BpiDd+dIxHC+RAhVGDBc/wp4fnVutCYQWD5jW1xECV1/k3xJImJEMV0YlMKd6B7TM14xWBTiG6Nb6sCOAGSHQd5cwNMYIH12S7AKnS4SA4Qy6Ut31Xj2m7wWBcn9/fx+MUug8NTCRXmmc8PFav9bftbr19OlmMuAq0ZpRiQi4YBNWTGpN4H7emZDLoYrezYujkUoEYgzcPH5m/amCLbl9S8fUe6DXtBAEdHAd/M7zwAMhIo5WDtTcV5+FsXm3DDj9nSnTkkJVJeiQzaXW8lVBwt8ujUxBZ3mcAyXyFNEehFUSgNn9pfT/BLQ+p1p/YDmG3yyz7+7ujnYgRDoaQwTlj+BwPY9vlW+OELt66DmVw/jm8zy+lMTy9ZCXWOmGumJKgD11kIlaj14LPyME58RZVhMoG2L2p4Fs7B7Ua9ntzxZOxO+HwcyTycBsNjuYt2GwwkWefE7nevRhZJ2u5AXg+/i/iwxXhZtBSYD+RpuBpZYCcVpdh+4aDRBkF59jxy11uzbUSJj+z5h/6bqMBGh/cGlqW2J+ktPOrI6sfCUi4AjBuaFt0OMGzYTln6rgM4wd03wue85KCDiOSw05NiQgC9QDoKuSWoheRL68MPOm6f2ZTMM3j5+MBEPGOi813pfjvAKarv7O6p4dOydGvahIj7cis/i1MViRqFLlOdXb29uBAKChMiXoGJl2KmVhrQNLlT6nz4NH2TLAxKlm/SEfPRYRRyTAkR9uA4fSHLQqeF1KmJGAr4SStZFd00Ic+JgjmCXSqX1RiXeJ+GUCpCTos09E3veyMmTXZ2VRgZmV/dzW06UIzkeitw4tzzs7x0qfiUC2Ay2/wIw/2KSs1Edbpwe4vLhPlbmWLSPanI/qPpbtqDMMU5af+K/9siXPz8DoAMKejpd1Ht27Wlklf3SJFb6ZjfF+/Jx3RBxEdWZK17mpWuvpvAEagOcCwiJ+kwEsWcEWmCr0WbDWlJYGHtY8BQ4atxBxHDDI7P4rE4HW59yq1PT/qcqG25Xbnv/rt/7O0EIE3BSYIiOfraS6Baco/LH3fDbUOHEWY+le97/nmZTIAMtwjhFwAaJKAkoElt3uEYeGDvJXo4f7p5Oz+qIkJbi1+BYuH8oIuc16CWXj3y0kl9Ov9dFL9OPROxBmbuCM4SmLYjapLqYWtoq00OgctOgs21ar25XbXeeEo3ZEJgT64g5tN8w9YQCol8MJ4lpgFg+eWhv0gp/1VycDNcFYI16tv8+J1udYU55OWZSIQItnQPPMyqPns7Gu+XA62be75k/BufpUjQBm16hBNpvNDqYMOOBOZUPr8sGIOCIEEXFEAtxqK1b0+k6PbAqXr9VycDuocmcSxAYcexOYGGX9mv+f6oEfi+5NhwDHUjOFpayJSQFWDWAFAa9P5QdZEhr8gLSDaFmUTUbkm0NkD2A2mx1Z6s6KVgaNZTb4Rh64VxkkW+FqDZYsNXVTgWwoMmHKdef7eDA7j4CzTPnezxLINWVQ8gA5xV47ll1TgrYf9wklfRropFMF2bNwHi+tu2sL9DO1rLgMOK5uUddvuZxZX9Kyc1m4nDVC8Lcje56KFhLA8gy/sxUENS+mehgB7VdQsBG/vbuz2ezgN6evHmTur+y14HycR0t1liMk3FZaX1c2lu1uzNW8P5fu2ye9qCiiLuh4PpzvUWbllGDE77cUbrdbG7HuHjY3mIs8dQ3qHhKXdQwyZsmdB+fYtQRGrMq3Vi4noDFwkKZ7EYjr1FguA4BQcLtlUy2Zcv1qAjoTmvo7U/y1+wG1nCJ+u0UzQsDpwaOkeZQs5Vp5eFxxvy0RAu2r/LxV+LopjprXgq+vEYESQfjKZCHzuIyFkyMZIVArWj0B/D/i0EPLeTAJUJkDoI8ogWX5orJGdYESA10iyHB9pIWMs85xYzTLT6+5lKLvSbP7Fcb4zlhkxOHDULbofrPwwhwM0uGlJ8okOb/9/nC1ABohm2tSNqfuKEbvAETHQz01wMZtJMMuJS4/z0mxAHVEQJ8BFLhODzjviT4HtAm3KdJDtCyuVYuO2yz7f01oea41hV8SqAwVZEoElBCrUOI+gvS172RlKFkeWdlZyGvMC/cZXgXEsS8K58Eo9ZusfCVPwFdW9jX0kABnjOiz1XP6cWm5qVyVPyWvLstr7q9uu3QeC7ge48JNISA/jWWYzX57ZFXWIX0XyJiRcCW6jiBncM+wpnt6MLbvd3sGaizSFUwHOz762tvtdnuwPBAPfLvdHi1FcVaEegbUK+CC6vCbLebSgNM5UxWMmDtDeTQ+wpEB1AcxEKzAUQf+1gHA7Y+8UX8se4mIg/dyOxbsniMLbh4supzwT0PLgM36SU1glwiBEgF4c1Sg6sZeDJ5icOVx1pQT7q4fc//mvo9xvN/vD5Za8StfdTohayvXHi04Bwm4ViIxtq9l99Sef0YaWpRdb7kyowRgDymu5yBrToenop3cZQOUSQCTWgV7IErxDjweatMkrg1cv2sh7844HIPR7ybAt1aWOwsqoC5EPAT+ZkIQ8Xt+6O3tLTabzREh4PRduVAWdWWXGtVdX6s/7lOvh3uFJwfZKDtFOyG2gNfkRsTB+76Z6JTKqBZkVg+Gax9+Tm45YQtaB8VHo4el96RRgyMEOJ4RXRXEJQXBfUqJp7P4mEiqQOXXjKMPRxzuzIYxjD6rhIAtL2cc9AJ5lr6R/ti0/xTUiEQL0ch+R+Qyo5Su0xvuuCsr73KrHk/96EuUQKTxjGF4Qe/wmNS6ujHLXmb+RnnUU9crKz7S49W9A2GJSWbWpaJk0UDpQQmCDIAssDuyxxV9DqGvFhGOKRlwSyaVKHCbqSLQgEI+59pMlQQrApRRvR6ljqXH3RywQ609r5EMOKGVKUxGTZCOydspSU2/ZplBWOr1GXlUQstkgAUp7xLqhO77+3vc3d0dePqYHGy326Fsrj+1egF4PNQIAd/jCNafoPBbrcJM0br/Jc9AlpeL52qBkgCVsZoexz1lY0M9Aei3i8XiaKoN94DMMgnISA4fZy+2xg843QgoaW1BVrZzydWTYwYyQsDXlSwadtXsdrtB8bObfLVaHXgHdE9rjaZuRSvrci4fftgqGLVjO6bq2gX10MGg7euUNeboSsFmXB+1GBluILJ3wF37t6DFivqIMmRkBX1BhaYjnm48az/lVT/YPpznYNljAUsLcT5MCmazWWy329jv9wfjyZGAHlLAdakRgR4CcC1k4RLlyMhtRgyye9h4wX9HCvS/S9P1RfxHn8E3xw9ouTh4UYks+q4SZPbAZiQkewY6dni5Ox/HMR1/JaXurtG8z9k3Rr+b4BRAgcNi4IbTVz6+v7/Her2O19fXWK/XAylgq0M7IZMCPpZFOnMdW+bElL2qws/iBHTeCvdyuhCoDNQBXhMHFu5a/1aSpPN1WWcrpadCRVn0V0CmaPVYSVC64yVLw31UgCBNJqQRh2QQY0gJgUvHfauHAFYVv0QM1hYLW9SFSf12u43NZhPr9fpgzCNtNz+btWPmRcmEN983FqW0vwpKfbP1XHadGmL8wTNWUqDfNSJXK7N7xmq8zWYzK3txrRpfGUHVcvGYwbQF38e6RslMDdou2blz4uSlhQ7OS6DgDoTdAzebzVFHeXt7GzwDq9UqttvtsMxQPQLIj4OrHHt0kfUKd4yFrypz1+myN3lxQJgbINxGrmOW2tQNFmXTXG9XD05Pf5fK6/DVPAeXtPwz64eRPWsmBi4dnkedzX5PMeF5s+WTCbYs5gVEYLlcxnK5PCAIPHWA8bjdbmO9Xg8knjdj4bggrXOPcHPCUIVnzfOXPdMs3c/AOfKt9d1WC93JBjW28BttBgKoMWNKeAF13fNxNf44f4DJJsev6HVZ7BrXRaGeX7QLlLx6A7itHLnISEGNAFyqP3ZPE7Qo+hK4s7AnAIILggLXwcoAGdBgJNegjpnxN+oCsJJvtfb4oTMRYJcUfjM5wHX8QDk+ggeCthVcUID+ViauA0ZdeNn0B99fsgpwX61jan7XhJIFVLJMMutJB7wKUNdemVeAlTk/e5e3rhRx5ed0FW5KSz0E9/f38fDwcEQOlsvlwRjCWH15eYnn5+f49evXwbjF9IFz9Y4hBNz2JZKgv2vpfmVkfbfUxx0RYBnn0o04NOzYszubzQYPLi8P1+ldt1W8M+D4epWduJevxXQzb4GMZ4t0uGy4BnXK2kjHCfQY0sK+OCDTq9VquIfbAeNbdZgzUDMicM6+ehbPgCMJKkzYItbBj0aMOAxEYTLAD2xsjADy1UhUZXncGR1LY6XmOgaEM4gAEwKtP89bKclRFs3HcY7Lr+3B93AeWV0y1svpcX7cBq6dWs9/FlrLUyMFY9Jsub51kKuXh71A6k3Q+VIuhxJBl8/d3V0sl8t4eHiIx8fH+PbtW3z79u0gZgUegfv7+2EKYb1eD2N5Pp8PAYVj0KLcxxIMl8dXglNc7hpHbGvHXboqk1iGQUnq2woRqKfTREoEVE464wZgLwOuxW+sauEAQ8hPjmvhtw26NoN8VG+vi5mBd+z19XXQDZgSZ13G5c8IyNh+2NuHu99ayL9LCoofCDMxdBAcw39YNnw9sze1amvgspQeLl/PHV+9C4ALEOT/8ADgN8+t6j7ZGZnhOV60CQd2aR2dpakDxZEnVf5cNvcbdeSBporeWaN8/7WiptQvVX61bDMPAfeFiN/PjoNR4a7k8QiSrVZIjeAgXZ7uWiwW8fDwEE9PT/Ht27f48eNH/PjxI75//x6LxSIi/l0Cu1qt4tevXwPp3mw2Q6yBjgFtC/0/1lNQuu+rKnqHlj5ZukbHrSMG+LDsAVgGsYWPfsuKDx+27lk+lDZ+UzKAb5Zp8J5xX4d3gI1Nlq2YdnYKOuL4zYc8FuABxpJFpA/Su16v4/7+Pp6fnwcPAabD4aUAuC7ah0uyJ9NtY/r3RWIGSlDhFvHbUse8Z8Sx60nZp7JEZarc0Vo8CDpVkCk3PqYDiBU2M0f2DLi0lGlHHM99uYBDgB98jT1zB8M5lFvr7urcC63XV0NNaWbkpxeOFJTKxGTUTXMBmQDX6zgtFv7chxeLxTA9ADLw3//+N/7zn/8MZGC73Q7W0NvbW6zX60FwOs9YrT+fU3GrgHW4VN6fjVbSUPMKuKk+yBnILJDSiLCeAZbnDs5Nnhk0/Hx0BQ0TEiYArH941YvuQIg0OBAcRGC5XB4F1SJdkIvVajXEzLBnAuMMMXLqjT613429d/QrjGsfBTM2QN0rd3d3R25pdjsBJQGSEQHnhnHpsPDUekApq/LXjVmYMbIgVK9HRBTZsJZDpycUPB1QagtOixVQJix5cDqS1NJ5r9kroChZS3qNu/cUQpB5CiKOnz8rb5xXoaJkAddrGSHs2PrBVBeTAJ4a+PHjR/znP/+J//73v3F/fx8REZvNZthvYLPZxPPz88FmRTp96MZhrQ3HtO+fpNgz1MZY1oczwssf7mcMNtqgeDm+Ba53nhooeXrhIeC0OS/+dvUDIVCvWOaa52WwulpLY7vQDhgXGA8gBGgjeBwQN4P4MbTl6+trRHjPrnqoub7O8MjkN7dJa7/vfmuhK5C6NfV/RAw7kbl5SQiICP8eaoYumdK0GCUruRYU4467iFElAypEQQo40ERJEZcRv7kOqphhdaGM6mIq1bsGJzBYGWnATompfxX0EJVLEAIdVyVSXSKEtX7MsTLOg6AWEPouLKCHh4eDaYJv377F9+/f48ePH7FcLiPi39iAiH9JwcvLy8HqA92ISxWNtltLO6rxoMfcdSWMKcM1IFPo2bUlwpt5BTQfbm9V2riu5NltkUs9Mgzl1aB0JgWs4EFONF6A0+GVaRkZeHx8jIeHh6GPg2SADGDVjWs/HeucP8rpxgbScn1zbJ/t9gwwAyl5AdT9oZ4BV3mOG3AWD6+Z5s7Ro+xcXRQqcPk6LhMEp36r0HOsWjuAzhdxWXDMxSjoIGRWrelyndCeLcisiRah26NorwEtCvYSdeJxpQKjJDwzJaqxHY64AS5wVIkuyC2vIIAgfHp6iuVyGfv9v+/X2O12QwAhLz3UPEr/UXfXTu5/i2fqFKV+jf24xYjJlHut7Wt5sfzPdgOEHuA4gYjDlQG1Z5KRDPznsvF/9mSy0anpgSxw+SKOvQJIC1NmCKL9/v17fP/+PZ6engYPGIjEer2O5+fnuL+/P1rurlMnHPOTkdFSHz4HaR09TVCzZNh15JgdKyt2r6i7smSJMUnghlYS4cAdhAkJzjnF636DDfIOV2oFscBGnbFXgttRURUAjqENskHLbZBNj2RtqWlw53LWl97TIpS/goUFnCL8e6xZHUdKtDUtjh9x5QWhzuqgJBDXMImF8uflg5geeHp6OvIMfPv2bSADd3d3w94gv379GjwDSpKdwsLvVguoFa0CteX+a0EmF1v6rSMB2bFaetn0AMteDt5zU5lA9txV/ujzwDGkxYGEGkDI02RcBpWxzlBkmQ9i/PT0FP/5z38G7xhW0Oz3+yFm4PHxcYipQXmRH+IVeLxnzyQjQ+dC12oCtY4BLrg+JEcEnBsbbAoNCQuDXzsJQahuG1agLl9Xhgi/zp6PuzqyxaRBJfjw/Ci3iypM7gDokNoxMmg7cJs78CAtQdtY21AJh04LuXbTMnwGPtKy6xmw6hFwfaP0AVxcAE/LabyATtExieX+DFLAsS+6i1tWJiblHCfAeSKq2nk4xrS5ticfa3keDtdGBFqgMq3kIXDXMPRZcx9CP+NpW5YfLM8yeZwZEk5uO8sZ3yrbmCTgOo0ZUEKgwbgs85A/CAHIMggBpgsWi8VAROAZwDQ5Lz3E8kOMAxebVUJJzoyRd6NiBkrEQAun0wM4plMJEBD4D2IQEcM3oAqmNliZNNTqxvfMZodLt1ho6twqhKW+6hVpo868rlW9Am7gZJ4Ct0wHx5FnRsQ0iIyP4T+3CxMB563IPAMZw75WZOV0x7X/n0NhZEQaAtcJdPRR3cZby6PBhRybw+um2SsAYcfEgK8DUVcyi2hqjRzPhCqPf62/9q3W9i4RgqzNvzqyflo63uIFYG+STvuy0sczzOQH/ruytD6HmlGjdcBzd1tfc99STwXGFPonG146TjiO5unpaVD+7+/v8f379yFmbLVaDTtzrlar4cNLG5Wo9Rh8p2LUi4pq0MGrQo7nkvgYCz0VDMqYEMzGngHtiCwAXQOqy5WZpM6n69SBxgyw5aN1YiLgSAB7BDQoMlPEuk4XvzPSw8KQy9USN1DyuDiBjeekwvgaBW9rny4JS06n1RPQcqznUyqbI4VMCvgYx73o5ioQhGw97Xa74d0DETEIPLhIsXso+qzrmzXDQutS++2gglWF7DX2zXMjIwDOU6D93RErNuSYILjn6MioGoyKTJ4pEdB7Wc6pJwHHXV58v+ouNcJ0KaLzEqOeUPqILcAunhhLNTKm+quFPI0xwrpjBmodqtTBlAiognDLQjJXPsAkwbmPeHrBNaJ6AwD1grDlwkJTAwVZYaKuGChuna1a2Jy/ehTwUTKFa/A7U9pcz5pSYsbPeSj5KAnkrG2/MnrrkfVLRfY88K0f9RRw32ytg3PdK7g/RcRR3+UtXN/ff79hFJ/1en1g+WSevEwJZW3VAifUHUnl/J0B02O5XitKY9ERgTEoxbLweVX+ShT0WTEhcPEmfFzLXvMG6281mFQnsZsffVw9YUzQZ7PjuDJeds5e5Bop0HY9d5/semuhDlj3nzuE/gdYyPHD4nknVBb/MaeiZXLWvzamulFd3bJj2tkcAcjmmbhMqIvu0c2ClgUlX6MC2V3H7dqCHiuMn5PLq5TvVyYEtfK21qf1OkcamACwEmbi2aJca9NkSBeCj5dc6SuJ+RzmPXEOy6nw0TeNMhnW+nGZa31qjCAskYNz5XGNcEQrM9gYmXWZkQmFKvnS8dp8uQt65Xtbyu6MLkCnH7ivsCEHEvD6+hqvr6/x/Pwcz8/P8fLychA4jnsh75Eme9yYCCiZ17GgRClDZui14KQXFbFVwb95tz19UJn1wVDLh4+jstl0gAo93F8jBOpBwIPDt9afy6QKORtYjgSokuVvnjpwqw3U+s9IQa9Cdp6F7Ds7l+X/FVBrr5J135s+H2t9No4Q8JSPs6gyYh5x+C4DkO/b29sD6wdKHXOemApAwC8E3+vra/z8+TN+/fo1CEwmBBpDwK7WzINSa9cW4lBS7hk5aBXAn4lWwpoRgpY0GGrsaV5qPGVK3h13hLVWNlWimZHCxlMJPHXMspi9Aa+vrwerbR4eHoZ9NjCGNpvNUB9Ml3GAJetJ5KfeAddnuZ6Znin9L6HbM+CIwM3NzVEQEq+7R6UgtLLO6JicU+xZRVnxu3QguFzdIg47OhMBrqum2fpwnKuX6+bIAk8RsPLX+AKnlEuDKiNkGu/gfru6aF2/Cnose1XWYwhOy/2OFLh+ox+eG3WWE4iw9jtcz9HMHLA7m/3r5lwul/H6+jp8I6BwNpvFdruN/X4/CMp//vkn/vnnn/j161e8vLwcvHpcPWOu/iUyi/bga1s9CTpWM09Mdu6z0GLptZTRyXD3aUmHlb0STXbl8zmd0m2JB2iJF3DPno/VCADfA08A8uK2v7m5ifV6fRAfwC+kQ/zMarU6WEGwXq/j169fwxQaCHE21s+J2thgdJMBdY/rzmWsPFmhsqXPS1FqbNAJusw1Wiq7dsheqKWiSlKVYmap67UshFTBswWlUwWqmN2gKdWVBzKuz5h7K1TZqYD5bKFaQg8xOCX9rI0ysHLCc9YpgoyUKZF2Y0an6fSZ397eHkU/857sNzc3g8WPt7SBCMB9irgBV9Zam5XIO7fNOQhBlsdno7fP1Yys1jHZS35dPqX2yww9lvUcaFiCXuNkVykdR0Ax1qC78AKiTImj72MTLhif2+02Xl5e4n//938HjxlPu41Bj5JvRTMZYOWuzAgRlDwHopY1b4WqyzZ4DjyzrpmtZUqqJDj421lOnL77ODaMdHiagMvLCr3WtnqvrjRwW3rWOoO2VS3IzLFpJh1MSDLB7gTunwYVkkpUe+5XcHtn3gjeXpWv0XuYQGSkkfPUNdhMKpAmXKCbzSZWq1U8Pj7Gzc3NgVX069ev+PnzZ/zzzz/x8+fPeH5+PggsdMtoleSeq32VeNfkjJKASwjdc0IJUXbMyb0xJD0jGmpU6PFe4839ZmT9pZZu7XodfxrfEpG/U+D5+Xl4tTfvOoitif/v//5vGBPwFMBblnns9Lm19v8xfbaZDDgPAKYDdI09kwAXQcqEANdog6sHAWWoBQKWBnvpuIsV4LrgWG3gMAFwGwhpXAKO6f2lsmubofxZsA7fj/P8fNzA1fQ4Tx74Ne+Dy/va4IQPD8TMgj+lPjrASxYuK02cx/SRS9O5aZnsRvg4HVzv3usOb8T7+/sQNPj8/BzL5fKIDMAjgOAq9hBkb4lziknPjSGXTrlz+i7tFk/DV0TWfnpcFa0SC4X2tzHjosWrkx3jmJcaep4rX8djzXll1+v1sNMgdiLEmMHYwDjgDwfW9njNzlE/RZdnALEBUI4uMtJtw4tCYlrAMVlnlSJf7VyuY+hx13mziE3tzPq+AfUIIH03TcBz/Gr98Jw8l40VtttMqNZRWFkpmXBtgGv1Gek9GGAlEqadL7vmK6G1vE5pnwrXb5kI8Lwr/nNsCVz9Li6kRjQifvcP3ciKhdrPnz+HbYqxoQqEGgcZYloBXgQmA5kXzx0/R7vWFErpnq/Wf4EWw6WXfDniyvPfNWOM8yn91jQ4bZa1QKv31RlMWdmUQDNJZk8tvGUILOR4GowbvNpbxwbGBHt7e/t7r+cgQ/c0QUYE1Hri35h3cZZlxO8HhIrom6JqcA3oOiYeLu++pspRSYBOFQDMRtn6x3/uLCgjK1TOlzuy20yI89RnoopfB6XCEYEsIhfPRWM8uM2zeemSpffRaGXLpwh9J9ROVSJaZkfymBCwkHbTaipE9Zt/sycg4t/NhKDssYwKgVO4j5cgghzgs9lsjt4Ox3WpPZ9T3KOqvLSf/mmegJp1XlLy+l+9Uvqt13NMS2Y4RZTfSZCVuXR/zWuh8qg0ttw5yD3ed4WvByFgoxjn0O8RO8NbEWdE4Bwegt50uj0DGi+gy+8AHmyq7HFcSQHfW1KCPZ1H2T0rdY1rmM1mR3ViksDlUaaqFhQTA/UM8KDhMmp6bhBx2+33+4N2VyXu7tM0tG56nbrgdFBlXoVrR62cToBk95Wsm548M3C/UBKm0wVKxjMhrH2Lx4uSCX4nPVYdcFxQRBwINf7NMS9MBDIr6FSlnLVxi9IvkYVrQ81jkSl3/e+Ia9ZOJa8Ay4dSXIqOldKz6IHWDzJNVzmoHMO9aqhmZIGNIn0B03a7PRoXIApMkN0eHmpUujKg3D1EuqcdT/IMsBJlC7NUMG4oThtQxuWUqmsQXK/IBg1v9qCBkbXpAf5WgcdCUD0DGSHgtJygxLfzBGj7omMjPdfWjggomVMvAOfPA4fbJRMu1wZXthq5yerTSgR6kBFZJQLah/ics84AtUQyFyt7B5AWb/7FpNRNaWkemq9eV2tDvca1Tyu+gsKvoUYIsnsi+qZAcF3mHWD55QwLlmU1d36WN5ddkT2/zADktFEm7svOqwawXIw4nDpQmYrxwCSZX5esekPJQNYeNYztz81kQGMDdC8BFEItk0wxsVLi4+x2VAvIPTBuAEA7ngov/c8P0ZVLLWUWYszy+KE7QcsCGvn0Do5sLhj15gHqluWU6sudX/cOZ9LC17Ii0rbiPK9F2F6LJ8NZWVqejNzim4WyuvWdoIcQijjewlr7KY6zp8Clh+s4bUeY+breTw9K7ddrVV0Lakpb+9LYdFrK4L6ZBLh+NIYIOBKsafCYyXSLTgkD3J9bSABDDTwmA6orWB8475h+WkixthPjFILcvZpA9xJwBeMCuUZVhauR+txQ2rjuwfI5V/n398MX8iiDVeXPD2s2mx0IOXV76ketI85Dy+HYKubnXf6K0uDOLFoXC8EuNacgmKCpO815CLLyfKa3oCfvnrI6BZOhJoxbrTT9Zu8UnpHWIbPWIw6fdRaHUiuTEhH9HkMAHCHIfjs4stV67VchCi1Q5cB1c30yuzbicMt1hZPJvWDZrPm79DLjgw0uNxXKxo0aUSx3XcyN1p+JsNaFP5hWyMZiSXa29MWah6SGUZsOKRFQC7KWuRIB3pIRgHDj9HHcpV+b80HHwv4GKnQ4fbWoWSjxSgEOlmLW5zoGB5S4wcYkJ+sYpWMtD1wJAE+VMLPXunPZ9vvD+bXS1IWW7bPIQG2QZOVr9SLUrLLW+vdabixI+MVeSEctIe6bToGr4tXy18rhfvM1bvorIwD626WXlaUmPNUTk5X5q8B5bErHav2sJqN4jxj2GqknFve05sv3cllKpELTZP2jRCDbmRZlzHbExLX41jwzYy2z/F2/57Sd7iqNTe3z2e8aRnsGuJH5geu3ixFwrI2tGSicLF1V3s5lrUxPXZ5abk7LNSQLXbbCdN20c7mygNYO6lgrjmv9SgzZwXk/mAhwoCQPGB3kaCMOmMHg4WemZWtVpp+BmuLm/64fRhwqjpqHoEQIekiA9kcGB/dFHLtFnUXSoghrisOVzR1rVfylMrWQ5BahqQIT951qXV0KvUSxNT1u6yx9114qK3nZuC5DVsPRGWyu3bV/15QaEwE1SllXMXjZtO6Ke3Nzc/DiPPakZfnzeZBvHncZ+S6RWy53q2LvvT6iM4BQFYoKOA24c+5KN0/Nr3BEBVynUUsG6eFbvQZcLoa7hn+rUILw5CkCnSbAOe3grXOx2kZZh1PrSuugebtBAeXPRMC1kfPCMMtlYcIEKyMt12h1OSWtz0Ov1f81YVoT4i1CPhMKOh5wjDfrwnnuxyXrZEz5+N5MYdfIgLs3I1m1Y2PQY0VdI7gvfxR54alPnX5FWVQOOOPHtXvmdXTPviTjtWxOb5WMGOSpUwMKJkEgAny9I8aaVm0sXhLdqwmcNwDn+aNvY+J7HKlwHTizympWl251rGCmywxQCQgzQY6W1qkCniLQcnEbMMlxZKdkSSsRKs3ZZekwCeBnhN+4jl3KSuic60u9MCijDrJrEbTnFpSt1mRGQntRIwboz2qpZK7Kmqep5NXIytZyXY0I1MpUa/Mx6V4rSn2p5d5T7s+QeQwA9UwCLfEGSFf7sCt7Ri7U2OIpYJXBPeC+mxEdldU65kp9Xwk6g8c8t/05+ni3Z0C9AnwOheX/GjDHRAD3ahwCW5mcJisYlz8aHkQA95YC8DQvPsdunowM8H8dCCqYmHyoN6UkcPl8ZnXxQHSkoEQC1FuAct7d3Q0DaD6fH3lBsqWUWVk/ylopoVSGU8p3ivXPwrTmZaiRSCacSsSUAJQslF5lkwkjZw21CENN351z+faQkRq+gqegZCid6iFQ403Tq6XtPAWu7O5abfeStzQriyMrfCzrO5mix7kSga55Q7O+nOHUPthzfzcZwG83TaD73Wu8gBIBdVdzXlAq/Jvv1TT5Qes7D7QjZYEv6jHgB68KUNeHahrKZLlMLLAdXCfNSACfZwasZARtzO3N8R/YVtaRovf39yFIUr0hSg7Qvo6YjH1D16XRKzAzdt6Stt7LaFH0mdBz5eG02CtQmyZwdSpZUiVFjmMlpZ/l5eDap0Sgrl2Zt2CMQs/uaVWa7j41YLJ0GCoHSmVyMoOfn8bAlNJlcsHy0B1nzxmPFa2b5q3nsnbj8pf6Y6nP1/qxEh091oKuAELddVCtWmxLrO5/VNRZqqzgMyGkljMaNWPFrXNArKD4QbFyR8fINovgYyXLipcLOpbrgr14f3gtW8ZQ0fbc6V2MhttSmsmBPjvUF6SAt9Xk3bUi/g1kYwJUeg6fiVOFrPa7VqEA9Cj8Uhola0MJo5sq0Pt0bDlB5ARNTWD1KP/Ss2khJZpOL+H4KiSiR9jrfRFlcsqyl2Ur31dLF3ByqiQvS8f3+/0RIakpPvYAq2HIY0JlrnoJSsS31IYlb0Krh0DzOXcfHUUGODaAO4sqkpKgYDKRMU1Oh5UczvG3S5sDqVQZ1zordwxdNuhc48565/z4v3ok3Ny6Ck5lra5zIk08C6TNngC8XZJ/uw8/Y4AJwXa7HV5Ji5dvbDabuLn5/X57lAdtULIOLo1LEZGaRaXHSx6ezIuQQYVCyaPk+qrzCnCdagK2pU1bBVbr88m8JzVi8pUUPKNW7lbiycd7x0LmESiN5xq5K02pQl7oM62Vv0a4OV0ti8p7Jc9IS+VuC6HBOfYKt04nlIj4udEdQKhvJkTh3Nw/V4grr+5qZk+4nu9TJZx5D3Dc7U+gKDE8zVP3Vmd3uBOqNasFabjgGO0sjnSUOpLmzc/t7u4u7u/vD96shW8QA7x8RuMJWLEzGViv1/H6+hovLy+xWq3i9fV1IAm6M+NnkYGWweMEjRJad73+bilLRDn2I7MwXFqlD6fL95S8B6XyKkmooZRuCTWhqiSgtRy9QvQrkIdWz0DJkh9LDtz/njbDfc7AU0LQW0bWQY5oqMxlAqAynvVBTx1LwY+1vuiMS0VpLI/BqJgBVv4uEDB7AA6qTFnxqTLG/6x8pbLjPt46GciIiHMXZY3tlAgTo9I8G/9msqM7H2aWnCuLBgpC0YMQ3N/fHxABJgTwDCj5wyDlN9GtVqshLbzNDp4Cfq0tSMG1ocXyyJ5bTWnp9b2okQIub81TVrvG5eHGcq1tHPFoVcJjCVYJ6klw5KY1nWtG1ley517rE1nfahkbjJaYAb0OdSnpDT7eMw45L5azTtk7r2+LktbyMSkoEfNz9LFTCELXDoRsJbaQAVWyzPLcvDS7ZdQi1wfDHQUdRyufuQpLLNm5U503IrPGdZChXdDZeP13KWBPCYG6qzh/jQ/QckGZQ9FDeS+Xy+E3ewrUm8CEAGViMvD8/BwPDw+xXC5jsVgM7+nG1MHd3V1st1vb5p+FVoVY+9+qtHqtUgX32x7F7sqg1rW7zp3rVQRc9p4yltLPFLpap25c9XgSvpLyb7HuSwQvu5bR69VT4l8yBJwcd8F/ei2X01nhLXBGIHtg1VPL95VIpk4Ba1xcRpTVONb/Cs43q1srusmAU+R8jWOcmeU9mx1GmHPD60Y+bne/jHWWGqFknbNrPusAtfSUCGR5KYHh85p3iQiUAKWu0wSLxSIeHx8H5b1cLgcisFgsju7RwFE8n81mE6+vr0dxBovFYiADGk9wLTjFPZpZWi6PLO+sHGMGvVOEzuJwBDZTqGOJh1O4vRZ4j5Jz6Z9i/Y+1qq4ZWRtmz1WJZyvGtpWLEVCvgCPD6q3e7w9fzsZpZLLWKf5aXdw1GbnOdAgr+ezj8r0kUe2aJojwCr8EV0ElBIDzCvBcfcb6WpR2j0DIULOo+Hg2LVBym2XejRrbVY8Me21YsS8Wi7i/vx9IwGKxiIeHhwPPwP39/UGwKMcVQOGDDGy324NzyAvegfv7+4EMvL6+Hu0N/pmoKfLseIkQ4D/3kV6h0nKfAkGjpXFZIhlO6dbqqdepMnbWjiuPG08lq8uV3d3v6vYnKHZGL6HNjLXsXGsZGJmsqsnNjBBge3R9M64LSFZioK56la8uGFANwawfO/JZqid7ex2JcG3VQky0DL0EmNHtGeDpgAi/DbDepwpfl/Hhm5d16Dp+t9WvwlnV5wJ3tFqddSmfQ6tXAMddWfQYe274w/ECUO5KCthrwMGEd3d3w3XYi2C/3x+RAQ42XC6XsVqtYrVaxWazGWIJ7u7umtr6M1BS7rVrs3ucUnOW+BiruXRfr0WdWeKthEDPqUCqeTUy40DTa/U6ZIIxs4D/FJJQUrjZsR7lr+m3yNmMBLo+p4aS9k83BapGF+SnO8b/WwgAexhKVnvNgHTXahmcweyISGtfHdOvm8kAZ6JuGl4R4JQfK1B1/ehvDhzMVg+0osZGAWWNXFb3jWtQXv7Pg0vdWKUyZiSmhQggLyh+3i+A/ysh0P8gCXoMHgSQgYgYlhiqV+Du7i7W6/UQN/D6+hqLxSKen5+vggyUPAJqJfHxHmtJ06sRgRYC0luuTLG2kgT3nd1fEzylPtxCXErtUyMQpXJ8VWR1K/WpiLL1nx1DWiy7S21eO+aIoRp5HCegOsPpHQUba05xMwHQoEElBTo9q0ShJtfdsRIRaDEGFUp49Xer7GomA9yAXAhtcMfknBWtFXSK31njQOZmZ5bZI8CdtZ8JRb7GrU5oIQGMVqap7arEgwP/MC3AXgB884eXG+r0gFuOiPoiGFKXIN7d3Q2BhavVKpbLZby+vsbd3V2sVqtqW1wSJQHprimd+6jyKZx3oMW6dnllngC9roVUtFoipetOIVyMFsXI12bH9Purgp+h69+1Y0Apuj+iPFXkrnHlZPLR2vdYNzh9pC76bHpAj/XC6S5HekpEwOXfOq7GlhtoJgN4PSqUwXw+P7J02EOgAoq3q3UouUBKHZTvrx13bA4dr6UcWiZFjQQ495PmW4u6dR4W5KcxAlDOIAT8ATlgT4DzGHAAIf6jzd7e3g48A7hmvV7b9F5fX6vtekm0WpGXUPq9CrClPDWvQslC7LEYWvLuVaAt9XZ59ZJspxxqn5byfxROLUdm3GSfrAxsZLWi5FFluHPcR1k26nEnvzldtyJAvQOOFHC5Ss9Ay5Jdr+dcf3MGt6an5xzp0mNn9wxwNDiC+rgDIdADx9iFAzJQU7T60JBOVjFWqsjXvVdb89QtiEuCqTRVkCHzgmhHzeqd1ZfbGmXDM9EdBKHsHx4eDj7sEXArBVwbo2z46LQQSACfv7m5OYhDwAqGa0TJQnK/+buETEH2EgMVOExqWywtTX+souY0S2PGCUhXl5Y6uPtO8S603FvL46PhylFq49J9wCUIr6LkSXAyNLse8kc9zSz3VaEzEeB4MyUBJbKA3/zt0DKux/SlEinQ9Fuuq6HLM7DdboeG2u12Rwp/v9/bKE8uZFbQWkVLFo6moQ8z2zlK9853ZSotN2SBVquH3qvlzFioWkVZkCC76nnTII4f0OBPpOk+eq0+O/ZE6EACIdMlh3h3wWdhjPWf9buWNDIh0MLc9XxmgWTHOA1HAlzfzfJ25zIF1XKdotTHannXrsksMYfa+WtFiXQpHMntIbYt4PRU5o0J7lb5yuMnW5quBqibKshIQM+cfWl8t5LLVkLv5EALQWh9dl1kIOLQK8AW6m63G4Q/n9OBng1k/q3z9zXm22Ktt6I1mLBWrlYrLCIsIwU0D20TFyeAFQD8wVQBBwXqskDdV0BfYsQEQZ8jPEOIPYiIgzTv7u4+/a2FmdJsvYfh+m6PZVCzvvl3i4eix2NRuk7r29pOSFMFV5Zvb5v0okSgWu67FtQUUa3Naoqmpf+Mab+xz5KDB5Ef0lNDLCOCbivhTOk7ApARST2fQRW1M1qd0Vf6D+j4aemvrc+imwzgYd3e3g5xBLACUQlYi7WOFeHnkEAw9Jha0QBb7e5BI1/H+ngZIKet6WTLT7h8rYREGSrnV1Mob29vQ1trIKEqX44V4BgBXVYI653JBKfDXgUuD3sReDoHfWC328VisTj4vlY4S7lmcbek13o9kFlqrYLblSMTmqV7ON+aQimlmykHHGtVZi7tjEyMbftS2tdEEDKUZK5e48is61etCqe1LD33Y8qRpwUUuqorU/Q1QoBjnL/+blHgNWOjpR9HtBkbrUT37J4Btuog6NkFzRkj0twpda4IP2BVylljZA9EXUI4l7E/wC1dGTPwT2HpTARqZEDzQNl5uiDbUwAf3jqYdxzkzYn0DYf6fLhcSkpATBBHgEDDz/YM9KBGZluVbKZYM69YbQxk/1vLcG5wO/R4FHo8KyXl7qwvd40bWy3CujQmPwtO6WTWqBpDWT86p1eGy5mlXZJzIAG4bjabDToF1j7HheG6Fss/0xGuTCVln9WnhRDwPb2GQlaec/TRLjKw3+8Pgu7YUuVGziLeVWnw/Dd3AL4Gv1FhddXXlo2MgRICLWNGLFrSHVM2bgduQ/bK6OZC6g1gIvDw8HCwkkCXBvK0gYs3cFMlTBZms9nQJzB45/P5lyIDGXqtcnc/p5FZ/OcUzr1W2jnyVmXfoogyRcxjOlP6Y0hQCwnn8n8WHOFpuacmb1qfcwuJ6k2j9Xo2Fl1wOF+v97SQgtLzz45xv1XCcw4y7khdjVRkx3oIRzMZ0AHJFim7f0EY1JIEiYiIo/uV3TJZYHCDuDke99ChjPjaMZ1ZBdc54xRKTLJFMfDmQjrX7zYQ0iV/TAbUC8CkA+cj4oC4oexan4jfm0ids73ODSc4s/9j4ax/JsSOEHD+XFZ3vHRtrR5jlYJLx9XDlblEfFhAM/l3gq1UJq1/TfFfoxcgIp/+6OmTNbLTcq2TTSq7e/J2JAPpsPXPhkcpnovTrXkDVEdk8quGGkHTdqmRENeWJR2g5T6l/3Z7BlAwjh3QSHKeIlBCoAqGP3hAUEi8dATpc1AIv8xIX2SEsnCD6TfXBeXjxiwpL7WQGS2D1nWCrAOgPVlZY65fPQH84e2Fdemgkq1MSWTPi61/TYPLjuejA/laMJYcRpRd95qurgLhZ5ntpIZ02LrRoKgesnBKfVuJgBoC2fRSRP2tnfoK84hjwZ2V0xEhbq9MIKtA/WyvQAljCEHN2s2QkVUnt8Zax0osSiSA68P1cqQAx/X5axotaLHQM4PClcudz/LL5Eum31rSZ3R7BlhBAPAOOJaYCQYWijxFAHcQ8mIF/f5+/DZD/IaQZLaHhhg7mHVdK89j4RjKx0wT4IeTsWp1uet1UBS85a+uHNCpgMfHx6N9BXANSASnhXrwlICuJOB8UU5HelAnFvTZ0s6Pght4joG7AdZiSbtBr8KSN4FyqzWYmHE/wrjiV3kr+dW+VxI0JSuuVK/S9TyW3XbY3Bc0HY0cR534JWXb7Ta2223sdjv70rJMuOqxTFg6BVar+0eihfwoUKcaYawpNyeT3LPMfrt8avVxHgJOo2RUcN1KY6JEArK+kNWnZUyNJRvc/rW0sj7e2n+7tiPGx7FBNPzt7e3B3A4/ELaAEBHP97BwQRpcKX6TIb/NkH9nDNE1DM+/8z2Zxc/3cuwAlxv/Wx4+W/5ISwUnK2dd/sdbBXOwIE8B8Ly/punq5bwAOv2Aa7i9OB32OoAcQJF9FhxbL1mBPMDdsywNfNeebrqGXx2tU2JKdKEMoRjR55Uk4L6S8quVWdspqzeTSF3JomSHxwi+1WuAMqNe2+021uv18L3ZbIa6Z/UtWUnZudp9tTa8JBzxboH23VL7lJTZGKXi7q8pXUfKmRAoVOY4uV/Kb8x5h9qzyfpfS3/VfFzapb7s/pfQ9aIiN0BYifE1TlEwScC+BABPN+B6zUstIyYDbCVlZS51eiBb/cBQq48FkrZLKX3tyM6CYsXKXhW22t1vd45JAZeR89dys8DntDgN1y5j2vWSaBFkjvG3Xq/38bPCa515/wf12rh9OVjpbbfb4Z0PIAQ4ht8Rv8ddzZ3OZS49t+x6JaruPRZuh0slma5Por4gAavVKl5fX4eXX4EYsWGgsUFIz/3OrkHdWsnfR6DHomztu2zUjYWSOwV7OzNS3Tom3fUthkX2bFvrrYSphKx+JeWe6SaVK847UyIWYzHqrYU9x9nNw/+Z8YEo8Hn2DvAcIggBpgxwHN8luDlKPlf67+qongGuc0sapcGrUyq6m6D+n81mR5H/Ggio7JvLjuehpA7nNI3MMlaFll37kRhjWZ2SFys9PCNM4/DW0JjOub+/P5h+iThUjGwl4wVQ2+02VqtVzOfzgxdA8ZRMycPlnqX2Dz2G/9zfeOqD41Q4poW9UzrlxOQS+WI6AHVcrVZxf38fLy8v8fLyEpvNZvjoGMsMgpLF1OJB+Uz0lKtkQWafnrT4eE2ethCClvy4HrX7eshTTx4lxe3uq6VfavtWIsDpuHR7+3M3GeBCugKyQsE1qhydgOLpBfY2sMWvAUUcJ8CuQifAsrK1sulM+WUCN5suyNIB1HXqovvd2wLV+uf7FNyBUE4XmMYKQd27Dhwkp3lkdf8oZAKjpUwZoXL9LCMCmBZ4eHiIp6eneHx8jKenp8FDwHPr6h14e3uLzWZzQAZWq5V9+ZOznpzHLauPkgD9n00fuc2sdMpAvQg83cXlUE/IarU68DS8vr4O6W02myPhWFMOX4kI9KJU/xIZyKzmmmLS67gMGSHQcvVa6prvGLKUtZOm50hxZsGXjJ8eEpalweWBXM3SHOMp6IoZcAXOFIsGfUR4UsBWAd/D3gSk7aYFVIllVnmpcbMOkt1bcnkz4XBeg3MiUz5KDLQj8wYeqI/OMyN9Fv78ngHUD2lqmfB7v98fLEm8BpQE3tj7+cPPQ4M82SsAUgAFylMFaDv0e7aSX19fD3aOZCLOddF927Ws/F/hhCPXj2MEeLkqSI++/dJthsXfSga0zrwqRr0JHESpciOrF/++ZiLQW7bMUGMFlpEBl042NkoyMFPQmcLstdL1mjEyNpMBLXlrm/TKD1ybERAHtfyzfuzOtZaryzPAc/5sKbAiwfmsk7HlD29AxG9iwIySBWJEpDECfA2g/5E2ExD9jfK5cnP5S4SBy555DUpQ7wWTLNSVPST8KmktN7cNlAoEqW7agbbJGKUqqIgYysHPE4qChQms42sIIGS4QZgJBb3WXafjAh/3vgidKoDVy2RLPQPq8UFe/Aw2m81R+bjv4H+rACsRPSYEvNW17mnBHgAlDkwGHAHidtEyo94cS8QEtWQJ93gGPpMsaPu7PqhkNFO0TmnwsZrVr4ZdSxwQy8DaWGO0WrktitS1m3vurV4GJ29L97Za6Vkaekyfox7j7x6C0r2aAO8jYAHDAzUTOGp9c0di1qrnIn4P+swjwOXLBkNm6WijOa+GPnxHcHRw9Cg+7ZDqMeF80T7uG/lCkPL/zWYTi8Vi+M7ctxDQvJQLComtV6TtArfYK8HxIZvNJh4eHprb5ZzIBhn3Oz6mgjXz8jiBzJ4UtpZZYTqFiHbTvoj2m8/nwzbg7kVS8/n84HlwnZlQ1siAaxeuW+b2dxteMSFwRIA9HJz/brc72BALbcAfXWmBdkddmWC4vpAJ0x4r8SNRqgeg/dbJDI7LUhmi9yvxdLIccB5DRzy4rFpuva9UV5eGXl9T8DinuiTzepbauKTIta/pR2NdHEnBGNB7dLpgLGb7a+npEyZMmDBhwoRPweeu95owYcKECRMmfDomMjBhwoQJEyb85ZjIwIQJEyZMmPCXYyIDEyZMmDBhwl+OiQxMmDBhwoQJfzkmMjBhwoQJEyb85ZjIwIQJEyZMmPCXYyIDEyZMmDBhwl+OiQxMmDBhwoQJfzn+H5TzTx6RFZp0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4yElEQVR4nO2d7XYbuY61IX/ITtJ9zpm5/4ubK5jp7nQS23Ks90feLT/a2mCVHKct24W1tFSqYpEgCQIb4IdW2+12WwsttNBCCy200Luls5dmYKGFFlpooYUWellawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXO6mJtwtVr9Sj5OjlarVZ2dndXZ2Vmdn5/vvler1UFb8NwmPeeH6fyMp9SuKlvf5+fnOx50f7Va7fi5uLjYfdbrdV1eXtbFxcXeeyrn+/fv9fDwUPf397vP9+/f6/7+vh4eHurh4eGgTk7b7bYeHh5qu93W9+/fd9/Mw9tEPPzP//zP/E54JjpGdkdp+UzXnj799g/7ln3KvuV11WN/pH7hM/+oL7r3u3owLdO4XHffo/Yibw8PDzuZ5MfrkdqAdemuU32eSi9xPttb1rsuH5R76S7ptPV6XVdXV3V5eVnX19e764uLi8k2Oj8/311vt9u9sqjfq2onj9+/f6+7u7u6ubmpr1+/7j63t7d1d3e305vSf0m3nxLN4W02GHjv1Ck9CRfvUZE/BQwkIEDjrzTMVwpUwuzGRETlS0HWM+XX1f9YgU+G45TJDeBLlF31oy+mgKdTJ0tUViPwIkPd5euyzPSed5eXA5XO8HfveRt4+l8FBBZ6PkogwI3zxcVFXV5eHgABOTsJCLhsiTabzV75BOCXl5c7Ptzx40f3Li8v6+bmpm5vb3f5fv/+fY+H10oLGAjkBqzzhtI1hdo9Owqoe0pelgukwEAigoA0OMSLfgvRVlX0HN2r97bh9dnZ2d5gSCAoGbW3QsnAio6p83MpkeSBV/VAr+Mx1SsBgJRPAgJuwAkGUjSpq9ux0YCpZwv9szQCAtJ1DgIYBVCaqkfA7JHKqmnQLB2ttNvtdi/yK327Xq937yj6ymirynkLgGABAwM6NrycQr9u7FP+Djw6ZMpQFkm/7+/v9+5rkCQwwG+PEig/eZWdx0nvVQP0/v6+zs/Ph+Hst0AjEPDUvOi9p89cUl6Uv9SXx0QdujQOZBmx6kBB+ozqkspegMDroykgoGjA5eVlXV1d1fX19Q4QKApAXUb95UCAINhlknqaOlKGnuWcnZ3Ver0+iNKmSOlrBwQLGJigqVAtnxEIcJ6+oy5sOwUaZIjJi0L/9Lgk4OSFg4dp+UxleP2cH/FxcXGxAwbKxyMhb4E6APAzwGCup949m6t0EghIhpZAwvPvIgPJMHcRhG4aomuH16hUF9qnTvZGQECRgevr6z0d5rqlW2tCom7S9/n5+V56BwZ0vqRHXTcnQPuaAcECBmbQnE6d8uKmwvAj5ff9+/e6uLhovW0aXSFkCbU89QRo+K7ydhAwCoFrMGswqUxNQzCE99pojuFP193zp5bHdp7ykkeheeXFPFNZzgfz7gz8qMypMhLAnZpm6NIcy8tCv56mgADn4gUABALW6/XOW6/qHZnRVBPli/e+f/9e5+fne8ZbC6B9EaPeTw5emmZ1ffxaaAEDP0FJuU6hxxQa9RAr0wgIUMAo2Cyn6odAr1arvfBYt/Cw6nDKwdc6dFMTiRcNSL3v0xZvhaYMfmdQR8AhkStN3etAYfotOUpgdRT18by6cP4xgIflKi96aCxrVLeU72tSuu+FOiDAEDwjAlwnoPn5qn0Q4NOZ6Z4oOTY+LgUMqmoPCBAwcK2AeHJyUPAaAcECBmbQlCL1Z1T2/DCMz3QiCpPfp5H1hYg+bcDoQNUPgMCB4crbAYB7ohRmTkE4L4mmPMlTppGh66ICVYfGyduRQCD1t8vblAHne11Ivivb803lJI9sLiWDQD4YolVZXobq/xpl6D2Sy2jSK9w6mHYNcKeAIo1pKsDXCyReCKar8hSoA1498/VPyksLC7fbbd3f39dms9mbqhVvzP/UaQEDA3Ih9lDRqINduSWj6MaEniAXq3TrD1yok9LW9QgQpDky8kpQwQHJ6IGUNfeOc3C8hsGQ6FhAkN7xPme7sm+T0af8JMCRwJ0D0DlKqQMgSfGm8lIeXZ06PlwmOW0wojmRkoX+GZoCAr59UACAUwLSP1wQSDAgeoqjkabbRk6N502dLCBzdXVVNzc3O/1Y9biY2/M9ZblcwEBDrsy4B9UVNSn97jz+RAQCXEFbtS9YvliRaWiM7+/vI1JVHj4QuJCGJEG/u7s7GJQ+VZAiIac8CKZobii8ixaMjCANfVW/YDWdOzCKGPAdljMCA8yTwJH5pHecn6mIRtcmKT8HGnMMwGuWtddMTwEC+jAa4PrF1wN4/x67JsmBdQeqq2q39mkE+rUFMUUHPDo3x5F8KVrAgJErsGR0kyeu305JAbuSS+VSKaeQFXnjlpiq2p0syN/ukZI/3RMQ0FyZ3uFWRAKNTqBTVOQUhf8Y6gBBMmyd4kjEvdLHtJODgqpDUOaLO8mHg5XuPuvl5Xr5U5EBz3+qvp6XP3vtMvWWqAPLrss4B88PIwIpsvnURcgOpDkuqg63HjrROZJjlaJm0sMeDWU9UmTvlGgBAw11Xs5cD/Fnn1OQaJhdyfJ0LC4Y9PMJuOI2Cb/fc0FO83YdEOra6NSE/1iaGyHo3psLCKYARMeD+tYNf/duiiakKEQCs0ke+WzE51PAoef52mXpLdEcgMiogHYPKBrA9QGuc3SvK2dE0p2ehwMLpktTsnzHdQDXKrjO1Vj08XKqgGABA6ARAOgUp1Pq6JGH7CEqDQaFp7T9RcJKL9D5c9DAgUgj7odzpPp59GAqLDsyPE8xoK+JRtGBLr3/TjLSKdnO267aP2kwydwUGKDyokwmnhIQ6Ph+qtLz8jo58zqekpJ9y/QUIOBRAaWp2l8QSF0159yWRCny2clwWjfl0xVOvh1R9aTjNQfgnwItYCDQCAi4ge8oecz+TGX5tfLWIhQHBOk9AgI+T5EBP3DDt9SQ0greZCy6Nnxr9NToQJeXvv3jCnUKnKaFSl2/6Tq9z/UB9GhII+M/AgKpnh1I9vI6vk9Zub51Go0Dd0YcCHj0sqoHAk6jsP6IfJ0TdaR4TlurkwPF8cKFrmlamZE/pTvF6MACBow6pTtSWt6hDgSmAERXHsNTOnSIAsuBpHx8xwBDx2ml/9ScmfOZzinQgOnCxm+NEiDoQMIIPEzJV/KwpuQyGd5UXoospOmFkSc1Bwx4XiMgMKf+vhj1lJTpQtlJ6dYKzPX2fb3Wc+gU38njY8t3SMkh0+/0UZ0TIHgN0YEFDPx/ciFLQtd5SLzulHEKDfv7I4F3D57fRNvJm5Oi18fLTSFghoz5jN++4GcU3n5rNAUI0vMpb59pdE2ZSN6MTwv4NfPqogrOXwJ1o3Rz+p0y4hGLNEaUb2qntC5iAQUvT64bGBFwMMDT/ZzUvzrg51gwMNrdNOKb44xgYLVa7UUplJcWFLrcpakCRgfcVpyK7C5gwKhTmKNQafLSqPS69/i+C2JV7V0n8JBW5CaD4wvC9JtCmkjPu2+l6YxQB4TeCnUgaqSsOiDggCAZQAcEVXXQh65gunwTuQfTpZujxEbvTgEBzyNFo0Ze1luVt1OiEdD1LYRcLJg8cM+H993D1r1R2ZQNGW3fnujvJcfOrxmZ8ikN5csdPAIE3J7o4PmUZHUBAzXPYxu968LDTu68HS/X8/IjhFMZHn7jIHIjP2drTlo009U5GaEU+vX33gPRY079NmXoR8rJyfvKwam/P0ee5yqoLlyf5Lwrl2lHEQYCFY6xEShY6J+hBAQSGKCu8unNqopronyFvsuSz/czHxnrzWZT9/f3B4ab5VSNFxnSAZpqi9VqtQMC3VSB+Evy/1K0gIH/T66cXfg6w92BAdIIjXaKz42D7jvPHHQeRRAiJR++NXBEydDw2/9AZLVaHaDvlxbwU6bktad5VCoRRmRSqJx5p2snKqIusuPXXZ5zgTPXmIzed1A9F0yegmJ9y9T1PfWmjL4iAtJR/nfsSQdS76Xtej5OEqiuqtYrd93n71XlSKzbhxQl5TZFAoJO33eA+iXo3YOBkefmApjSeT6dse885REocCAw8q66sqjk/YhgkgMNKuG0sCy1R7f6973RlKFMsuNyxr6k4XRQkDyd5DmJEsAbhdqnIjwdUPb8R3I+opGC9GcvrUzfIyWd2W0hlMNCDz45PVWH0wMOCHzaIOXjBwxVPUYLfFxw7Mmgd4CAPOk+QYfyZzrp3SSjvPeSMvyuwUAy3KPFKil9UnAjw94BDhdmF9YROdr1Va46lpgnB3ZRgbRFjd9T4TIi8PdAI+M2FxRMyVNVH2HpgEAXYZgb7mTe3dRWdz3iOfHUKUgvm2URZKTy3pMM/pPU6UOfGmBUwIGA6zk36kmGeU8gwqcPRPTat9vtzkO/uLjY/aV759iIOtnxw4lWq9VeVNQPMPKPT22dkpy+azBQdRhimlLQSVlTaY7myzvQQeTLHQFTXpSMOlEpF7fomS+emRK+OVMIx9BoLvit0QgATIHBKUAwVd4UEEh9mtZ6dHI8qkfHb5I5z38UmdB1AtxUqgv9eppyjEY7B0ZAIAECJ5cB6ku9N8W7yhwtmhZ1W66Vh/+tPNtDZ8JozLGOvqsgRQReCiC8WzAwRzGP3tFvUadI06BJQIDz/kkI/bwBGvuqOjgUg//R7Stfq/LgeSoA6ACQnvH7vVHnPSfFOAKio2kikqdzEOD9kYDsqD9T9Kor05VayndUlr+fogKnqFTfGiUgpm/XYb5IkFMBSd6ZHxdNV+U1KwlIyisnSe9pJ8GUTPM90ii6xXUPjA6sVqtdBELAgOsHuujAS8vruwQDjnDTnJSn696v2g/TJ4/HBw8HRBpAotECMT3n32bqnk8bpEH1VHLD4uV0A/g5yj41Ghnn5EXpem5kwOXFlSUpGdmqfXno5GBK0Ypvn84aAWdOR3ieCXTMlY0EyF25LvR8NAICrse6NQKjk1MlQwQNVflYbb5H54d9T53EA9bSXyAnOaLcTk2Zsj7U27p3f3+/+/MinjtAPjsA8BLA4N2BgYRq0yKVUXSA36JOofp7uk6DiWh5JAhK40I7OmAjhVqrcoSAdenARfo9UvJd+W+JkuJMynNOBIDXPEOi88IdkFYdAoGR4R15QIm/box0wFgkz6jja45Xn9rVFfQSHfg5mtJ9UyBgdKgQqdvOV7Uv2+pHToHy/BSXO4IBN8KsAz32REmfOpDmGgXWSXkzMuB8eL4vKbvvCgx0Xo6fk90Z/KS8n+qV+MCak340L0bD7BGBBA5Uz9HUgJ8R7kKcFH9S7O+NngICXCb56VZjq2/oAVXVHiA4hucOsM2Rz04WXPkyvXilkpwLGFP7et4LHU9d+7tMpylOBwL0+BOpv6WDeM0wP+VCc/V0oJRXmhJNTgvHm+eZHJ7OwUr18fZiG3GXAXlhW7yk7L4bMNABgRQV8HfSdQIEU9GERBIKLQJk+b7YhTz7QHNBGs3ZctCNwnP89hBbQuGjiMhbiwrMBXD6PvZDILBer2u9Xh+cMim5ub+/r/v7+1qtVrs/t0rexcjgJ2LakUKnokwLVbuxwXHDvKba0+9NRQcWmkcjICBKThRBQNo1wPcSJSNLMECSzMiAU3YIBHQveeBV+2cAJCDga65c/02RyyIjBSmq0UUE/kk5fhdgIBlTR7YuvF0+I6PflTv1LkNlupYQUEhJHq6t2kfHPjBIFDTnNYXsOo/PAUHnCb41IHAMPQUE6No9rvV6vRd+Vf9uNptdeVR+9EZGhtYBo3+n/ksy6XLlYKhLn0DBFHVAK9VpoWmaAgIJqHpUVXp0tBDaSf2kCJfuSbZdf1EeqSc9ojCnXH9X7+s5I6Oj6EC3GDtFCth+dM5OQV7fPBiYAwQ8KpAUYVLcnrZTuHNAhIeN9N4oP9ZDeTiSlbfIf91K7cLfEngHIg4IuqmCBALmAqi3TE8BBIwQ8Hx39Y1HgCgv7PeRMe6uPYzp6TzPro8TyP6ZA6rcc+qiAyn9QsdTJ6MOBJIuHQGCzrgmAywZ0mK8+/v7PblK0QDy7ry4XHtEi87UKDogo848Ex96TvvD6IBHCF4iOvBmwYAbpDQlkIRXRMGgcp5SqiyTv6nkmZ8LYFqYlaIDHJDkn4tmFGLTYRteRz8cQ/y4sIq/NCXgH6VNQOCtgIG59UggcAQC+F4CrQQESq85VZ4s6YDA+7Iqz1GmfvT6jGRd8pXAoE9DdTJN6gz7nHsL/Ty5zLozlZwqpasaA4Gpxcg+XclpTa7OZ35zI6is2wiMVO2PLx8XAicjOe+iA+KJ5b80aH2TYCAp3jQtkICAK8S5Rq1Tkp3Hl4wElWlSnsxPJK/RFTCNRdWj4ffy1A6pnmwPb5sEArzuXv+3rLRTf/PZqP87WUjrWRgdoKJMYGC73e6t6E7rSEgJCHTeifelRzNYb6ekgOeOKy8/Rbr+aY/qLVLSJwkU+JZsP6FP1OmKtECPxljUnUGQgIPXgfwnShGBLjqQiHX1NAkMjCIDL0lvCgwkAVZHdSCgE9iRd+uKKJXN+0SnrijJB3lTPu7V8X4Ke9FI0BhoDln1UpuQPyJgD4913mLX7p1RfC+U+nYKFNGQVu1Hs/yf35hOfStviauWuVJ7Ds9V0/PtXg8PCyfA6nx0RiYZjWTck2EZ1eMUlO2p0kge3fiPIqxpBwHb3Bcge4g+RQhczlxfc61AqlOqG+WRwKO7TtME1ON+b0QjHSkZTbL6T8jvmwEDcxCsbx9073dqnicJVufd8Rn58HQaONyS40ZegsB6kDrE6uUopMUyq/b/p5sHdPD0Ln17/boIit97y9QN8ATwptomAVfKBo935RQWZYynVOrjuwxYnvpxzsIrr1u6FjmwEajVtcu5e2ZdyHg0tZH4XSIFx1HnBCU9ym8HAnrf+4sGV99u1GlgE/gkEVT4VNUUSXZGgCDx3IEC580XEqY2ZcTuJeX1TYCBpKAYEUjo1b0MfivPkRFXGqLXDgx0vLlhdg/L55PEo4y6jLYDiKp9IVRejARwAFPA5VkKCKR/OWT7pTp39JYV8RQY7WTIDVlnbF12k5J1fpL8JVDndfA8U934ewoIdOV0Sr0L/brhH4GAheaR93kHbFNUwLcTjs4UoLPhIK/qcK0A3+tkKS3mYx34ntYZyGirTOo2ev4OBFK0ygEA854bJWD7Uq5fAri+ajDgguvzVymclUJNVYcnYXXK/GepC7l5OS54FDLxqdXi+qbC13t8l4OE9aH3qI8f4TmKAKQ+cUF+D0q7U6QdWCR10y8OApheYK2b0ql6/Je3qtqdRZAU8XORK2TKg6apBEy5+Cp5Rsnw+z1vr2VqYB6NdNkUIKBj5YcMqf9dB+la32nqsVsAyHxocDveO1Ar7548Oi8jnjtZShGJY6JstDu6n6IDv1qeXy0YSEAgrQlIv+lZ0fj7b3+HaK+b/yKNBGkEBDwPn68iANA3BdKjChQm1oFggSfZCQz4zgG2e0cjEPAWFPNU/d0IPiWPKWK/OYBTH7K/ND78Xb/m85/pq6SQPWpAQEBg0E0TTIEBggm2E58tNF8uKcfddKtPf408ePZj2vUyhycuuOvSeVTAHanV6nEHQMfDU+RlNEXRgVel9WjfS8nrqwMDqdMliGmv65TRdWNLMOCoOCk08ZJQnfKnUuOg6Tx1UlLwHqLSc9V95DmJB4IFrg/w/bpdeGyKRuDoLdFIMT0nUYnynyp9akdboWgIuXBU7zNCMJqTZ50o53PCoJ6OC2EdEKT6dp/EI3l7i3L2HPSUaEByjEa7sUidh90R8+lAdXJKPE3ntBEUjKIRzDPllRwe6mPm4YC1u06AIJX1K+lVgYEksBJGhqumpgtcgBluTZ2X5kR13wEBla4LnISQHy4GdIDC9x3h6r4UalpfkIgDgWWRzykBTG10zDvvjRhxSsqs88p1LbmUnKoPRzs+kjwQFHikifw5nx0wngN60pyvAwKNzQQ0kxFJQKDjf6EfNKevUjSHOtanB5IedXLd5WX5eEh8HjNF2xlvOnkjACCZFIjWeBMlGe1k1q9TeR0IS1Evv35uejVgwBttKnTl4SsKsL6Vp7wqGdWkSDsBoEJz4y2iUmeYimgyGQcP9/pZASIJbHemgCgtuJkbsuuez40UjPJ4TTSqb7rvBrqLJCRAQCPPo1llONP+ZypeN+iiNL+pcZIMrcaPZDBFyrxsjr+kfJ2nUQi4i1J5fumb7aD7b0EOj6Gp8TnyUl3HdkcN+7hgBGsUzfFrylXn8Sev3Smtm5oK43s5Dw8Pu/9A0H0fb125nhfr6XLeRWM6/n4VvQow0AEBX8DiHosLNU9w48pXhlgVLh8tZhFRidKokgePDjAkyvecfAAlj4wDjsI+8o5csNnGc1DqHMGcCw7eCk15yV1Ykf2VAEDV/g4PP+1spJg8GpH6VlNLIoFJlwsPDZN3pWcdCHinogjKh4sLPeKm706uk+eUPM9/wrt6rdTpTOpZbmslIHBnSPeqcpSKfU3DzjVP3n/kkWmS0ewin7w3B9BTxlW/kQPVRUY879TWXvZLyOirAANV+0CgW83qaXVNZeZnvFfVQSjIlWKHVqnM+Zv3kmCKJ5XLbS8ql6Fh5c1PCj2PaCpcdSy5wj3GGL5lmmrLUbu5Mk0fgskUYvXyXbZdfhmmZ7nkzc83SKFYglLmn66TZ+TXyUtyQ09KeSRQ8N7o2KiAvlPklVOyInd2SG4wvSyXD+p4UvK2CRxSOob7RxGE5HQ5v7Qt0skp8uEOlpMDLeaZHLAOwP4qoHDSYMAVg08H+LaWqowk9T73xfoRvjzvOoXZiWCd9A4HBoWReZBPGvuErt04pLxSaHdOW/o0iYTbvdOpsKxfO9/8/RYUcuqDZLT8wxBlekfkUYLUB8kgprCtrwWRrIzedYVGAzDaPpYUFL37UfjU65nabmp8kBy4vwW5+6coRQVc31Y99p9v12M+olHon2k6A+/9Tv2VvGmPfqYyO53U2Q/mx3Hketzz8bI73eBRZQe+o2jYc9HJgoFkvNLUAA/cSY2TlHEiCRc73JViUt7Kk2HRbj6tMwJcZJMWDqaBkKYMujZgvbs2Uzl+xn0SwtHvlOeIr9dEIwCke2mgs788XcqLbZ/avwMSU+SKrGpfwbkyrTo8ITO1gYf0U5leB8o5QWgHCqgwk4fkY4TK2r/fC03Jxwi8rlaHzhd1ZFVeqS+ifqKsdXKbpp+ULw1uF0HwKQdfgzIy2F00y8eJT41InnyqtgMgbOupyIDS/pPyepJgIAEBF0w3alPEcKbvy0+CkpCtBgifucL2v9Zkh7I+Pii43cu3ERLpkj/xQ166NQheD5Le65TyXA+MaV1xv3YlPEexdiAggbcpYDFVTvfeqJ07Hmhoqw6VI/lPYVk97yJk4ouKmXJNmXej/hTQMwcIvDdg0FEns93ZLKJRODxNS/nC05F+FdFBclDJd7bbx7l8lkcZc+A64rlrJ083mhaYmi7oHMSXAgJVJwgGOqWaFrEko5zCoO5pC8mpjC4c60LtK6qVd9onLcH0vKlU0wCjgkx8dPxI8Fer1cEWyfSut88coz0KoXVt7vm/JUqeVQIBHhngu93vUZmUPXoqCUCKRsrY35s79aR8q/ZXYDtvXo6n87lX1TNFAKae8Z7L5luUwY7mgFdezwGyoimD6vLV7UShgXXPW+VQVyegyLo4ICBY4PqB0ZTViDwq4U6e1ppNtVOqjz9LoOBXA4STAgNTQMAXsoi6kKoThcsXVo08anZMWqPQCQI/BCpJkN0jT6up0wAVL/qoXl4m8yKlSEAiGgwX0E7xzO2XU6eR4fbrUURgjsFPXgLJ25IKp2tvlxWPbikfhj4dlBLcpik1V46JV+e5A6GdAjwmyuTj0yMTb5nmAoFO1/qhQlPURRxTRJXbupXed6qov3R8tvSr92OarnBj70BhSsfPaTPe49bDqjoKEDCfNO5/tfF3Ogkw0AkndwBwj2tCqSkq4F4UDd/IgE3xmsJgFxcXe8Ir5ZrOg6dSZrnJo+vQsyv3xHsniFSQXK/g7ebC6IAg8Zn4eOvKt6pXrPSElM7bdATWlGZElJ3U5wSx5Ktqf+80zzLw/KmIXWkxTEtlnJSZj9fE7zFAIEUFnO+Ol/dMyQCNpgnm5OVyLvJ1Jx7ZTefD+NkpVdOedtVhtEzPUt93oF7UyZbrbSfy7Lq/4yH1Rxpnv5JeFAy44NDjIEqlN+7GPXlCCWHRSJ+dnR3s9+8anIIuSqBD/HLvNvNkJCKF3zqBIYrmgR9E3JyX9TBv4pM8jdCy3umM1+gdpn/r1ClUKsiRspnTpmlR58jzHvW/ZInjTudrTNWT9WJ5Xd26Zx59SGM51fcYWfUxnZ6/Nfk8ZmzqtzsayTiL3DN3HeTAgbqL07y+ING3h19cXOwdziad7RGr1N+6PxUN8PcSiOB9OmDefnL6RPrN3Ra+sJAAWu3K6zl9+Zzy+4+DgYTGkkeVvlV5Vw4jxUch5P7YqsP/zhal/PiMhp0dojLpIWk+3weQC64rcJ+f6rxHKmYvj15aAij0JgkO2AYjz8v7j/nyWr/nzs29BuoAwFOBwMjQpamA7rnnX1V7StUNuYdVnTfVlYqcsiWATV5ShIJ5diDA04wAfwLkiTr57QDCW6ZO37rj5XqYMkM95u+nPmBUQOe7uCylxeCMqpJXRrGoV1IUgHLmEVClSwY/jQl/Lr4km5wuUJ4cHz4Fl5wsfThWWY7X77npHwMDbsxGQCDNIVUdhhhdSbgB1dTCer2uy8vLg4NVkuLyPN1oEwG6svf3qDAZbmN6R67Ju3Q+fJW2/3ZhcSOsd/yPbph/at8OCDDfdO3pXjN1nrZHbHjtQKnzaryNPFo0NzIg4vw+gZ8+2lXj+XNMcExy8a6ecTzw/cTjHBDQPfN20XcHkr1dXYn+Uwr2VGkEZJPXPgUCOjAgh+z8/LzW63Wt1+sdMBjtCuOurNVqdeBpu5wlA+7pOp3ketkBgUdAKP/S76nuaQGkgwJff+afpEN+Ff1SMDDlRY4QKhu9atpbSHkKgV5eXu6Ej0iN/9THrU0uVAr/O5rUs5Gho6B1hjMtMPT6i7g1UnNT9Op5nLIjZNWDZTKtfzqlPgIAU/3yFshl2AFBAnOiUdskoJzCrk7uvSW5SWCARpLjgGCgA/GJF8ou1+Z4NMCVc2fwO0AwMt6dbE6999Zpjv51R4zTs4wIEQT4fxU4UDs/P9/pX4EBXUsnKz+9xxNZkz5KOrpq3zh3spXGRgcoOW3hY1TPLi4u9nQ3ATjH2FR0YLs93B6ZeNK9XwFkfwkY6BQIG5SfKSWahGHksRKN+jSBOiYdn8oFVOxgnw8SUfl2nebEzqfSTdEB5Z2QbRIe/xc7tnmKDjB955X5oOqEbwo0vCUwIEoy3M23Up702/NgPyVA4OMpGTvu83f59GgSyRWtePV5W482iDh2xQuVnsr4WUqAfCRXbFtv/1+lVE+NOt3U6V5GBiRTHq1Nc/9uuD06e3V1tfsQDEgvE5Te3t7u/eY0wTF1HoHZuW3GyAXBv+fJaYyqimDAn3t/jECby+xz07OBgU7xd5Vko3ahVlHyYFP5yoPKmKDA0W3VYzjKw6V+BnxCjTTkFAi2hxuDhHD1cYOdIiNV++Ff5j86uCVFGhyQ8H7nmVEg3ZDpOeud2uK1UpLxTqnSqxjl1b1LxevXPj7S2HKvxvlP8/yjvpZ8SbFRltKYJojgGhu9O6XUk9EnT4k64NrJ6FukUfu4zLq8JJnjNwGAgwGVLePNfAkGrq+vd2DAp2+rfjg0m82mqn7IymazmQR76s80z095IyAmdbLIseagPI1FjRHKup77lkOW7eOhA7odeH0ugPAsYCApo2M+DgocCIyMUwc6HBQwf73PEA87i8KVBMwVXNXjdIE6N6G4BASSkRd1c2BV+/9+mPJmWwi4uODOEaAu3DbnHR/Erx0MVGUZd6XhwLBTNil9B5DdY9P7SbklY+tRCsmqfidZFxEISMH7/D/bQnOhylfTU2wPPU/RJ7ZNuk++/JrfCbim6MxbowQIOiDbgVCXP4IAfuhkEAiov/kOpwuur6936wcYGZBztt1ua7PZHACNFNVS2V19kyPkaVOUjfqTv73dyOPZ2dleG7BPxGcC564L0vWvltefAgPJEFMxJiU55yOaClsngZey0u/UaU7eyC50NG4+J1RVOwEgINB9thP5dOUlIUmRggQoEv8Mz4ncuCQenJzfucBhlNdrBwIdCHAZJ3m0id+er2TWQax/mNZD+FP8k8hHOrHSZWVq7DgA9Pd9+oKAmHlxnUrV4R90eVlJLySQ0NE/oWRfko4BAS7PHv1JgIBrpnxqsqr2yhAgUFRAH5VPp8z/yfUpTgnHSkeSOcqB865rB+kpMkIgIHDAqATXbY34Zh+4c6eyEs8/I8tPBgOOktTwriSTcLnCSAqElfTnDgRSmhTGZN4yuN0f86RGdY+KQpA6hoqO7eHzqO6Vpfp4e3drDbR9sjMmeocgxAXOP94WCYil9kr1eG2UgFxnsEVUMLzXAQHJBg/VcmWtz+Xl5Z4RTCCE5N6xg8JkzNPYYZi4A4sjo5wMjEfIuDjWKU3JJbmcAq5v3fgn6kAs5SrpbpdDz4PGkPLOLYH+19f8OKioevxPAUUIqqbP2BhNOSV7wHeo46jXvf66z/by3TWSzfv7+73xpo/bAwcFCQS4Xv6V4PZoMEDl3gmGCxAb9ykVcQPoz/hJ5Mrq/v6+vn//Xvf397uP7yjoiIBA352CHbWZb+Xr1kNQ2DStwZ0NCXD4gHeh9uiDAy9HpGr7pyrZ1w4Iqg7XXrhicKXCOqeIlrd1OpCFe7O5I0b5jEKOSpMiT1SMKfTqwNOBQJIjAWved3I94GDAAXU3pjqgPgUG3gsQSONsSn7Vx6MIKvPRtRs76o6qOjCargspWyLxUfU49TBa1zKiVJ/tdrs3jdXZEF+nwwiHL0oXr8pfZcwBKs6vA+oO+PuYYb5PkfOjwECHMJNgJTTpTHaG3+8zopAGewIbyXNmwzoY0IcKysk9HV834Lx2lOqd5vsZOuaAk5D5AGG/jIARDTuVuNdB9XAhJ6VyUuTgNQMBUQeEXdar+qNQ/T2eg+F/xCUAcHV1tbcvOxlvysv9/f1eONKjA96fXZRJ3w7sRSkKMFp74GPUgSfXtmiMOv+donS+ExFo+L23SElfd6F+P+p9pEM6maAhUzoB2aurqwOj37W9g0zqrKmFp6mPE/9KR9Dhdanad8Y8KsCD7JLB9nFBvpJ+ZD/xfQcErGMHCJ5Cs8GAG5o5QKBDmV6ZVBafuzJgIztfPtAlQPSCHQxsNpuD/dWeh4MKldV5QKwHB5b44XkAbtA9L6Jnf9+3Q1Y9ziXTuydK5XsM0bJNU6iYvCZPdESvWemy7/TtbeVKLgHXDghopXUCBD63qvx9GsIBgXjgWRQuq5Q7jxiw3krrQCJNsU0p60QeqWAIdbt9nHdl+45A6UivPKcndYqUxqLL3dRCwJRfAsBVh46Y2wQBWt/VVXW4cPXh4cfugbu7u92HunlkK5Sfvh34eru4kU51SUCAunhqyszzVpkE6ikySzDAdmIf8Hmip8j0UWDAjbyvPk1haUdJIy8kVYYDOBlmpk8d4+iSYScBAn1PNZ4/74z36P3Oi/KOZrv4IEp/4iFj7mdhU7DYF2yDbktiEspuUCW+Pe1TDMVrIPadt5WDBo0JBwLabtVFBzx06lE3jb3k/RPodVEBPqt6lOO0RdBBJeXYDTfzS7LikRXx69dJR0wBAk+TxhjTvHZQ0I1BlxEaM+ruqv40PgFNhcU9mkBbIBnmiYM0nNQr1EH39/d1e3tbNzc3dXNzU7e3tzunJ/WjKMkc5THprSmi7UpTKWw3B8QdWFVbavymSIq3u8Cw3usA7XPQkyIDRH5smA65UPGMUH0HCnjN9x1RMb0bfxl7AgA/tY/gg+WRqOQ7BaVQfiIXWna4fvuCHq+bTx8k5UuFLSSqPNkfo5MXWaYbPK//SDF7f71WSm3RpfHfrjQ5NSCDz3UBvqebxr7qcbuo7stQOxjp+sjHo6clkCToJCBxoOFpUtt4e6hN9M2IABcUJsDFcdjJVno2uvdaAcGULLre9sWqSsM+cgOva3r6Hg32nQICAyLX34oGbLc/thLe3NzUt2/f6ubmZqenHQwc09cEBV076T71NmUzRQTc2U1lKh93zFSHEUChvHeO4lNkf0SzwUCaFnAg4ErAQyb00sVsqniqjBvg1Jiu+GTsdF/lc41AilQ4byNKXobz7e1I710kPlL4qfPM2R8p7DWXuojNyMCn5ymNaDSXfKo05Wnx/kh+XLFw33VaL+AfRtxY9sPDQ11eXu6MJiNDHVFOuiibiIo0Hc6V8phScMrP9QmBr8o6Pz/fXXsYOzkFXV2dh1GE6y2Qy607cq7Hq/aPVXfg6rJKGaZhZDSAZwmoDEaSqg4jlHd3d3V7e1u3t7e12WwOogIj3UTPOZGDglG7JTuXDq9ju6YpAU6HsA066uQ1fZKd+VkZPgoMJAWVgEBCfz437pVNkQWmmUL3CQjI8KtMhtLpEXeKfErAWHevP5Egw7rK3yMHROdsWwKaDgA5mifYcO9rRD4vy+vUTp0XmjzSLvLwmqhD6mwfb4OkfH2+luNI73bli3w8dm2eFOicfkhj2D0h79Mp+RLf/Ph8teRc444RkDTGEr9eX78e8fkaQcGUvCRA4PdE3jcetbq4uNhb30LZ5vQAF70yVE+dyOjl/f39DgwICDDqxEgW7Qn1LPU111eNiE4Y283rlMCBylVkl22R+kagoNOt/pnbz89FPwUGUqiEnddFBXxgUhFMoR+WoWumoSLx3QEURD5LUY0kYCQfXKI0V0WF1tU7RRK4aIt7V0l6j+FihuUc8SeD73Nenn/ywlK0IvWfy8BrpmTgq/ZljsCI7Z7GDe9V1Z7csjz39Pyafa980jxmB/YSkPCV/J1HNQLSU+3na42q9he/atww8qE8aEioA6aiHUmHpDSvERSQOlCaAICnl7HjTgAeH8zpLfYjgQJBKg05y6qqndHfbDZ7IKCLXLk9qXqcCq2qPRCQHEvPSzrRxy0BUZoeoF4Vnz59y/YWn/7fN91YTXaS/fkrZHQ2GEiN4ky50RgNTN5PIZwEBKbyYpmcQ5WBpNIVpXvpt8gHDTvd5zs56HzwpbokIKH6SGiTkmUb8dAhHwxE1lwz4W03alf9dqPEKEnnob52BVt1CHhY34T4OQdJSpE03xXCvpKxp0ww7DpqWypjH3cjeZKi4ry95+l1Ypt0ipjAiTw4COBv8ZSmQUZgVfnqu9MnKY/XSD4uvT+6fpGsuiFM/zjIqACjA1wA638+lICoZF5AwMFA4tEXPlfVTue5wRz1I2XQo9t6v1s06JE8b2+1pWzQ3d3djtdRm3BMdTqzcwzcXj6FjgYDHtZL3iXvi2k1dlIiIwH16xHSY0PSSzs7O9vtvU7vqz6pQxIlIEAe3KinMCfrRWXtIX4JvoCYt523CxdjOQJXXn6uwqjvElpNHnDylhNIfC00kjM9T0aP/an+czmoOvwLaeWpNAIAVD4kekeuQNUP9JxYTgLi7sV5+gQEWFfnj16Sl1W1b9QVCZEBoXea9IXaSrwQPLtCTAq7AwFvhRJY7QCa2jdFL9MUQFovQMPp0WOXE5bLXQR++JtPEfAjPUbb43p4Kirg+t71VwLv6aO0GrOqM//UixGFEU3pSwc7fOc56CgwoPAPB136pApQObEjlCah1lTRUSNRCRP1kUYdkqIcCdQkclCka9aXixldSeq5G12V20UqCHg0IPwAEYaP07kKqc9GQIiK1wcH5cLb8TUqXZdNl1Nee1sSEFQ9niDp5FMMVYdKmvcdRHT9qGdMk6JiHm3oDLDnyXRM73Vxmef7HBMuy3qXY8XzFM018M/hQZ0SdZ6ifndAwGWO38kpUH7dFDG/PZSeHBjKoz6js08cVJBPvc86usx08kIZdmeGETkP+zMto7YEAnJAdTzzVD/6OOjso+sf1ulnZHs2GOBiEBXsiqkz1CPD4oZM5IOb31MGufPUunzJ50gJpvIoBJ1Ccr7oySTemY6Gxg2FqJuKqKo9o89tleyz5EmlNp4Szq7dXxsQcEOfAI+oAz4EpB4KrzrcnTMycsn4pnI92sDfSbbpUXVh3JESdZKM0sBXHf7r22hqgvlyesD/AtanLar2w7Quc37tMvua5HNEaUw6GHBDqP73tktTUElOqX8o04w2iVzOOlBAveHOlcpP+tbB0UjuGBXz/qcss06uy7lYUHaAcqj3XY8oLx/HSa5ZF7cdzwlsZ4MBbkNJICApfDKannVgoAMCSUkldOuk93xO1nlxGoEOKvguX+c9CaYjaucnefhOHt6j4ncQ4Lwl6urN6E5SNI7i/fs1KlzVsVsrk4yzqKuzK0yf0kl93/HmyslBuiv0zsB3QLNq/8+sUtkpL8qJ7nFha1cXGibK2MXFxQF4cRl0EJSULdsqeVjUJa+ZvG0SIGC/Up5dXrq2pE6jDh/JtaKTI+chAdmq/TNZktF00E2QkhwWnyoQH1WPulbvKEJAI07ZUdTP9YODCU5/Oc0Fr8w/taPLwVxZPgoMpDmgkYeZkJue6TuFmLuKkRIASJ6CKAm40viH/Cc07Yag6tBQToEYveM8dHN7XnevoyN61rs7ZdAHeDJIrI+DjoROXS5GYPEUyQ1FklFvc12nfEhUCKP1AEl5USFWHf73gfqcc66UT6b3cph/10cJJHDMpukCtoX4dkAwGr9Vj56X8pAM0uPSc0a8pqIirkg53tO4P0Uajdfu46S2kaF2+VIa6hafuiJg5k4COpBKp/c2m80BMHFd4VEJ9T/37Cd5o1xwUWQynCkPj3BxlxblKzlvXr7r3/Qe31UEzKMgro9cVucA9Sk6amuhd15CjKLkgbiiddSqZ664RhXzxkxGnTwlA5iMsZfPBmZIzXn2uiYlS2H3MJOHjVVeNw1DIhLVe7qXTopL73ubJfDSCV4HEj2f10IJEBCVi7xdXYZo9KVcXP5TmQl4eHumaE+Sc4JV55HvuxJS2jlt5B6Wj5NR2SyPXhi9MXqy8rBkcORt8vhiAhQfjwkEJF6fqlhfgjpd2HnGVdmpSiQ9QoNIz7s7MGu73e62IArEEcDq2m2K2xfJr8pfrR4PpxLvPo48PC9eRR7xSrYsTWOQx5SvgwECDsno+fn5bvfEZrPZa2vffqhrr+sIEDyFjjqO2GmERjy9C2RShFX9whYvIwELL2Mk3N2zkWeUPMHOcFKReihZH68f60CD7oDGwYqjeffSR0Li/HjdEjDyb0fzrxUEuEz5tahrzwQsvU8JBJSXR1yUlyu3Tmmxn7spGYEQryvrk7wsT++GnEZfz72t3KBX7Z9/4e1LY+7GQnR5eblboJV2Cbku8rH2HJ7US9KUbhsBgaeMScpIMnAOeJ0XRnUcnHnUtquPDCAdngSQfex2sjtV36Tzuig4AYc7Cnrn/Py81uv13g4KHbSU+FIbu/FPn0622R5TNBsMdJ00hSiTYnSFWLVf8REQ6Dp8Tnidz0fAJdU3oUbPu+oQeRIhpvyUptuPPqpD4rcL0zK05uUkNOzebUqfQICDjwTkTpFSm6Z6J5nvQAA9JN/hobZKh/t0Csw9b/Y5pwbcu3dDnOpJ74tEJTfamis57uTXFxUqvwSAOS6Ut2SS40te4t3dXWwjKkrW863RSBYpj6l/OoAwCmX7GJcscqug0qnN/fRXecXcUig5TobWeePUBqNjI4OfALCDCaZJDiZ/06Z1YEDTYhyD+tZ/Mdzc3OwB9USMDPjvTncdK+uzwUBHHIQdUwojpZOcqh63vHHFsHvELIu/O4Mlnrr3R0Y3NeLchmW+3JZSNfa83DtMSnn0vngkevQ5XQpt6i9H2MxLPJC3LiLQIfVTpSll6iCSgGCkIPzI4XTioIggOSlxlV31GEak8k0gQEDAD8BKeZEPz0P3u37s5m29bWUMnBfx6YqY01x+uhvz02+1ReLVnYwRnTpomANck7FKIIFt7zKawJpHAGjYqn70yf39/d45BAQLCovzL4pl0D2yqbKSI6U6MNTvfeaLAHkOQNX+9Cvl1dsqrYNIR4qLN37Ozs52hzaxHQkG/v777z1Dzzbw38zXIwU/K7NHTRMcayRVcTaeGkWeEjvj7OzHaU3KNyE55TvFR+edPpWoTPy+Dy7yQOGbA0bckLIMD41RqEXJo3el7p4cB1NnBEc0RwhPVbmmPunAQDJwfCd5Cq4waNjTf05Q2bqBdM/Cv91jUz+710HZIVjo+pqK3/lJ/epeKA2M/7nNyGuVXKrdPYLAuqlOBEaUaQcC3T3l9Vqo00dsq9F4JiBwUNDJMfuw6vFAM07bUN4lhwQD+taZJx555VhLUUivE8cC+90jb25U2feURfLuwMijftxC6bpZ+QkQyO5ttz/+pfHLly+7NhRASusyWCcHAuz3Tt7n0LOsGeB3Uo4SDh5nSUXnIUYBAj2bQ6NKd1GLzvB2lAaTd4hTAgJdWnrwSuOKMin9lG8X0hURAHhYtVMc7Is5EYARQDtVGhn3zmAm0MCpAd9n70ZMeXR/keqKi9MCaetgVyfn1710j06Nxoyu3Ztbrfb/CpZKNf3T3Sji4G2aIiVU9pvNZqdI6QVSUXofs5zRmHptspvarpMDB2v8l0L96ZD/u6byc9DlxlLXBGs8aTA5IA4iHPCyXxkVqjp0lGg4fRwmIOCyWVUHU3xV+f9cEsCoql1bqh3VHjqm+O7u7uCfS8WLykq6Oenpn5HVo3YTzDXMYkodICHjOdf8rwA/oUlCw9/HUIoKzIlqJIXh+XQGYe58ascHn6U5eyLEVAcCB1+T4VMuHq1wYRoBAkfpXXuxTqeqSOcYoZEy9TwcGE55+d27Xh5lg8qOSpJbl1whdnVkVKBqfxuf06ivR0QdkD6jPhCl/0Shh8ijmy8uLnYeKkPILs/uQSXAcIpyOwKjfn0M4HLv3w0Y/3fA+4D/E6ByV6tV/MMi3+LMcaLfXAcgOdf0j+5Rh/nY8G18NOxdpKS779E8jr10oqxH5lQ3/vOjZFJyyzbwnUbKp4sE+GcU+Zqin4oMeEHOaAoxUbDoPbAh9c1/bxt5w3N47dK5p8Nr1sfr5eW4UNAA+z03kK60pchUb74/qqvaOg3+UXmdUfL39NvXBowAge6fomIlTQ2yUbs4cHDDlcgjQPqmZ+7kIExKiXPr7i2zD0ZgNZE/6+Q9rW9xvlVn9+yYV5Ijn6Olt8SpDoIO90i7yKW+58jmMQDonyLnaUpuu/5kJCtFBQQI6MBV7R9opqkC5SugyZNrqfvc4JFkN8ir8mPZ1EUcCwQckjfpVE5fpPYRUVaYl6+x0X1OxbkMpohKGstsO4KY5LRS33jkQHwdS08CA921yOdWKGQSNN1XehE7teoxapCM6JyQ6DH1SoYv1XWkWPVcikh10n3fF+7ojSiQ30TByetLCzNZpyR87t2nNvD26CIDqT27djwF6vqV9zqlmhB3Qu3ulczhqRvMDuaSl+LAwMmjE3MMuhtuPuf9DlC4EhXAZ/769vZ1HSLDovI2m82BQUlt74u7lC5FDH5GmZ4Csf785gJMX2PkbawpAUYDOLXrxpf/d6I8dSbBdrvdM4TkU0RDKgfIdaxPUerbZV9/vpb+14BO1giAu86k7ekAiQAB5dlBLO0YQVSKlrAvvX9TX3fTYcfI8dG7CVQwwyKOvH3+xcNPXDegPNVA6ajG5FEnQyTyBuw8WDaWe7vMiwLDQZbK8vfYZmnOnW3WeWEu/CQOdp9rYnqfZx4ZdC+X7TQFCE7N6B9LPgBTfZIh0ccXFXk/uhfi8qV0U+RgIEUKvF8YlvT6Uf5ctjnmR56mrzmoqoM94QS70glUpKn9qVjJm3tqKRKi8uglJoPAfmXZpw4KOtDqgIht6kaZEVxFBNL6LgI/jwpwqkBtTTnhv8YScLmBTaCaaWn8/X9XPEJGr10hfZ/OYLmuk3VfaZNzttlsWrkjwOLCQdfFaUvw3Kkd2g/qJLUZ6zBFT9pa6Mx4wVSKXETVbceoqp2i4gIgRQ6o5Lp5oqfUQd/J0DHNVDuMqPOsnI+590WcY3MvaOTdEPx0AMgHg0cOpkDEqVMyhskIzR1EI4XsSqXqcC7XwQOVrt71cTa6JtHAu9eQ+O/qR7lKkQ4Zeubtslb1OAVGgCBZ5jnuydnw8vzTTX8l5ZmMjj6nKtdzQCoNEdsy6SHOT3cgoOpxoSZlkACA3q2esxyV24XYfQo4RUG5E8G30zKd951Hnf1ZJ9MJ0HTgivWjXiYQUH84GOBfyc8l9ZnGEXn9GRk+GgwkT0bEgUYPmojfhbWqDtLqeVIEjvRZ9sjD7QzelKfreajROU80CgOLRz8r3t9h/TmQfWUt66/3pKxHaFJ1mHrmnlEyZvyd2nVOe54qdUbRjSiVRPLEUkiUadVfVBZaXKTyHKR2Uzs+HhmJImBPpPdGgJVEZdd50V15NAhU+B6xYERRv6U4lca9UkbAvI26NhsBQb13yuCA5Po1AQK1P+stB4zOm0/HcD2AiB6t8+H63b1/d+4IetkPes/PJ6BHzbSpPUhpqqHqx2r/FNXSmHPQkBaLMz/JrrcnwQ8BTeKf9ejq5BG3tHZglLfT0ScQJiDghkHMMCrAjxv81HGslCsgn6v0gZ/4Hnn8cwyXp+mMI8vkugdHrgRMfJ9tlPbqKt8OWLgCm2Pcu/bzvuF3aoPkqb0GMOCe4dSAmpPeKXkWXG3tkTKV04ErV6A+5SZ5GRlBevJpjYtTt2PG5aJ75iT+VqvVbi3B+fn57tAa5aUDbThdyJPsfHtlCiN7G/j3z3pVL0GJf5cz1zHUue6ESRZFbGePLHWG3PVa1eG2PwIJRhTIj8j7kV51mlblWPB+dL2perHenU4TfymakEAYdxDoN4Gw12lkf7xtE9hV2bQvx8rxUQsI6Z2K2DiOjhwE0NApz1RZjxCkPcOOcL3yfu2gwHn2BmZ+npYeV2cAaLiram8eK3kkDBkLCAhMMYLic7ReZgfUEqU2e4oiTIL3WiMDVdk4dO2YlN/IK09A2RUM5Zwy5+NL6XRN74Pvd8Zd/HQ0cgCcD/Lj7ZVAr+rk5DLMetCoyKvyg2wceI8U7Ws0/KP7SY+mNPpmGhpZGi7lJ7DmToPrSO9f/XZjzvLodIgfX/eUpgC83lXjSBf724E1nS6CcBH5UHmUVb0rYM9pF0W4WLbXv5vioB10vqkbngPQHjVNQNTlRsyVTloz4MjJjWKaLiDyTAowKSE39gmsuCKaExWYIves5naIh5p9BSrnVDsPa2qK4GeIQsyBV3UYJRi14SnQFDjqPp1n6fn5PB7TUb6Zd9X+VAB/T/E5Vde5ysHL1vdUe4kSWPB6p7L0W2VxGk4KU8Qz7x0MOCBIXtdbodQnbuTn9lvV/qp4P87Zp606YJnypGwnr747n4C63R00Bw0ij1p5tNR593GX2o4G2iMhtE+0bWlHhtbJ+NhOINXrynLc1tEWjvTWXLtwNBhQQ3inuCdEJtORrG48dI+RAG/0TiHz/Y5Sg3eRBP3u8nNBZEd5/mlOzcvojHkS+g5wUIl6uHmK5ghLUqZs+y6iMmrjU6Q0oJy66A6f++l+fMY+ckU1Mt5epvKfalfnMfUJjabLrJRZkiuN2cRD8rbSFB+3pLGNHAzoGY09jf/d3d3ewra3AgTmgD59J7lNuox6W22adLOH7JNhdkqOloOBNIVDD7ebtkpjSg5mAtdJ5rzdvF7MlxFeRjXStvizs8f/Ibi6uqoPHz7Uer2u1Wq1qzN5TNEr8qa6atxpzYzeYXQ6ORjKZ678zwYDvno9gQFHTnovMUqEI2bdc+K+0ERzQpRVfXSAz3+WvEN9QCRAQwOQQvzJg0oIk8/Z+aPQmigBEOXF7ynie45KT0UZd3XVdff72Dqw3hwX7GPKtdISAKdyHYRQ7p18PlPvpwiAj11XSr7l1xUyPRTyyHFPXqYWfvGZwAKVcvIu+Q94U2HlrmynU5DdTvd1zpDLR9Vhfzol4Co5uby8rKp9w1V1uCMmgU13inwtR5r3Fx+cPuC6ApXN6xEYoF1I9RfIJXhwPcC0KlPgiTwoKnB1dVXX19e7A5uqag+w0vGjjnBZc0eb0zfJ9nn/H0tHrxlgw5NZVcyJyEdIXpVRJ6V9ll6pTok5j4mPJAxzjaSj7SkvayqM5gDIBYzkgtl5biJGB5TePSRX6LyXvv091ie1Q6dAT9FDS8CxG1QOdhJY4hhxJTnydEW+vbDzdBKfPoWmewRm3dYuBy0k5UE59TbxBVv+3L3QRJ6v6xbRFBigYu1k19tdlPr61CgZqg7kesQyrSFwvaz3kjGlsVTeU4Cgu07jQXm5bqScetrVarUXcfZ6eV8m3amx4c6o857e5djQokGBgU+fPu3AlHZBrNfruru7O5gqd91OwKMjtlWe2wmCqORkzKWjIgO+BkCVkDCxscSUBqr+fOj79++7LVT0njxslD6p0fw6ecsdqXzv+AQEunm4JLgdCvUIhtfL2y+Fw5wvL8Pbx0NzzkdqJ2/3ueHBkfI9BUrG/2fyYX3pJXCtBwe82lGetvpYiojztZQ5VxgkN/4iKkvyrDI84pQAgXv6LHPqOk2lpY/Sqp7pvAXxyAWEx1IHDjoA4yDvVGVaNNIHei5507X0s0hGhue7qD9GoDeBT+dr1H5JF/n4ch2k8twu6X3pPZVP7znpWq7HYp28Lp1DqrwvLi52UwQfP36s9Xpd2+12r031x0Rpdw4BUQcIOJWuthp95sruUZEBzv0TuSePtmp/BT2VoEIlrCzRPvcO85OAQOfFpgHvAu08JyHmtb/jyNv5qxqfQeC8rVar3SKodMiLG5pk2LydOo+vW1dAIacnMGq7Lp9TBweiEcDxdPz2evmOGe8jrtBm6M8NP3+7Ykpt6jsSuKBJ97hHX8CdICXN4XbrHiTzBEAjgMi8uQjQ29/bwvPxNmeZbCcp0lHEknk40E0OwilQJ58j+aUDwPYREPA2E6nfXE+4XKrfuimirg6pfQlW3EnSb+pCheZ91xXzcdvE53SYlFbtkOqp+ul96nq3j1o3cH19XVWPAEvbYW9vb/fOc0jtlMCPeJgDBLzNp+ioBYScJhgVxEZSo0sR+IEiHkJ0xUFBSEDAB7wDBPLk95z/zqNP75F3FyzS1LQBeWZHM2zluwguLi4OTrsij9zPyjAwyx4pFvLOvLv28bZJffCaQYErsDTw3KN3wOyerXtXybC5UkrtnqIBGqPuZTioU5RAHwJAluFtQQPDNuC2Yb2bol1Upm48RkCAfcBrghKW5WV2jkPqU94/ZbntZJX6pKpfYOx6gYBNMssy3EimszGUj1PSATSyDlY8T11TvtO5/wQ6jGD7OCb51m+XZR+fHOs+hl0P6FP1Y8zd3t7W1dXVDgykP5fzsUM+uuvu8+yRgc7DTQaZv2nck2dLhalv9245MD3EyXKnKj3lIYze88GldyhgPA9hBCxSma7wPHJCYUkhPqWZ8oY6frwf2NYJuCRk7zS3X16KRgPI+7ZL74N4NE4ICJR2jpJJysbzoHL2w73Il/eFT00k5aFxSCWva73LI1cpG/735Gmawus0V148Xdf2DBF34Pw1Uwdi5+igqv3F3PSSuzA2wR/zH+mE5NBR7ufULcm560mvt49dyp7LofPFejgw6Man6ie7x7Hx8PBQt7e3e38AxXqQX9pSl1kB6a6Npvq7o9lgIIUPpdxotN2oswISsqTg5nj/iSfRHKOk6xG66vJxVOueDIFAV7aXx9/04BgCS5Ta1e87Jd66PMX3KL236ajdToWORdVM58a/Uwgil2MpCAICVwB+z4Gzh9FVnq7nHPDlRAPAunYKXQCApLJ9PZGiV/znUeXTyeOUse4if6xjMi6nJIfPSSPZTZQiLyKCAsoAr2lI9e1hd6ab4p1bCNN4oExy+s2nwjodxHGS6pr4dsBA6qJ4VY/Or/8bIQEzQQCdY9ZFlHRI1476/hlQcNQ0gUAAQy+qvM/5Vx2ewpcU3SgsOFIWo1BmupcAgTci042MuBuDqjrYaz0XlTON2kVKlVMpHchyoU1IvkPCTiNANlLCKY/XQEkGOkWUPBQqBAIyATvKcdrylg6RcoCcvhkWpXdOUECvQ/lW9SBl5J2xPTxaxQVc+p8F1UmLJL1t1Q70pJxGYIR5MC2Ve9evI8PhdX0tsuzGJBkE33rnkUDKmE8pJN3JNAS6TJd0qOvZuWNwBBSmyhzJdgIyTtR/HG8ORHga5t3d3W7918PDw25cJHsw6jevl4+Xs7Ozg/ML2DbHgIKj/puASq3qcUD631h6qN+VH9FkWiinvL18nwvXfaZJRsu/k2GnAvZ83fh7aHa1Wh10iCPrKVJ+vkiTg9bBFYkDtxt0HYDidQIBqQ393REyP6YdXoJGfI0AAYExyQ1uWgwrokKhHHl4n6CTuxGorB2odGBA6RWl07uSNzcQzNNl1P+enPOfqrsrNkUKfHcL+RtNBXZpXf7SdMRT6RRltwOprqNSHyadW7UPZin7HbF/PVKbnEDXkakuiQge3TB3IKSro5fVgRaP9HWOkWR6s9nsAQGCAZ6Y6YdiOa/en0yXKAEqb985NBsM8BAIvydE5ArPG06V9XuOWpXOFSqFwDsjGalR9MAb3IXDwYADgG5ONgn4HPLpgQQGuLUkIcRUvrcl24Keq6jrt0SpDzp0/tLUeRQ+cKaUkr+f7vlaDiqBqv2pqjQfmO6rDAIBpU/y6lMFnMbTfDAXonoo3+tEueTf3OrENd4jGPA1A+IjTaulcc5n/E5gwd8ZKVEHx+mZg5hTJQcBBIMdIEh1o9dflUPkLFOUjBpJ+aU1CD7uCFS8P313Gus7ahsaVUal9GEkiXVlWzKNABCd4bOzs7q7u9t9CAY03vSb93nwEm0Lx3Tir2u/Ofqro9lgIG0fpHLhQKbiUVox7MiNHk9SRB5WZdkdAEgerefrvx1RubdVVXHRB/MhMEhKvhNyvk8QwDUDylv9cExoN9XVlaoDrWRgUvuNEHNKeyqUEHQnG1X79fG6uQH3fnZwnPIXydvRdUqjfKmkXCF3nkZVHRj/pJApn5wK4JnrBAT8+Lj26JbLvo/rLgI4JT9z0qqOc4DAKclrR+wz39aapgZGOsONj9qRYCMRwa/LHe853/7bF6AyEpoiAqonQ/fMy8txG8XpDQeODkxUzzR+de/s7Kyurq7i/2NUVYweMEKQAJvq6A6GyvPIV/eZQ0eDAXZIigS40qPi9JCOV4Ih1w4Vdcb+KR7AiFyQfaARNVI5C9WxoxIaT4CB7eQH1pD8f7BpQFgen/OgiuR1Oojr+qmjDoA9BaE+NyVAxN/Js+o8qARy6GkkT5fvklJeI979PZ5boMiD+llyyAONGMlzT45Klfcl02k6gPd9nQLzdQO8Wv04T2O1Wh0cVsY2ZRRB9Z5qF3dC3PlICtKdFX7P7adfTR2on5LdZNScuuhUKpvPOx2U+COfiZfkYFGf8OPv026QBwdCDw8/jld2MOBg3eviEQmPPun35eXlnmGnrRAffmImx6XK8+gAxxLHOEFIJ+O/BAzwP8UTGEjeoZhzJonqfGuFE1HR2dnZHkIaGXlXPv7M86BC9zSO1MR7Z1gogB1vfJ7mPAmQWBcKK0NMRMdeDwk0+UkKWPmPvPspcsV6ytTJpH6TPJLSGZSUdhQRGI0VKiQfHwQE7GMpGo8uPDw87A47SeFJL1OkNuHUFSMFPq3FNA6kUz3duXByg+D1528HYiMgwKmTJKuuP05Vll1+p4yuKAEnEb1Vr7faTXJCgyR+fKrCeSPRy3cHi07WXODcTZGkum+3272odmfLpGtpnDebzQ5MqI56xr8wvrq6qvV6XVUVT0n0KHpnyNnu+k4y6zKR+rCjo8FAqkQnOCMgkAanKzD3rruB69QJz8iz6JSyvmksKNjdfFMaZKltJGydR842Soux9E2h8UHXCQ/zceXpead3E/hz3t3DOgVKYImKwyMrXd317fVzo6Ryujz4nP2WgCnzF5/0chgJYNqHh8d/9aM3MkfuU1RMCldTAzpERXuoCQa+f/9ed3d3B7IrJeyKT/wmY+X6wNuEead+UznqN157X546COC1t1/VeKrO27ZrX7aTG6bEC/nhlGcXafP7fs1+9rHk+ek3ZVX8pvTb7Xa3/sYXv/uH7/DjMqQxcXV1VR8/fqyPHz/Wp0+farvd1maz2Y0P6pgUyUpglm3f6TAHu0kuOjp6AaEj+WTEEqNuTBlS9MiACxtBQvKm5w7YJLRdOj1L+0AJXMTDUygZSfdwvIwUkUl8dwaY/eVelw86vkO0zvtJcL2Op65QR+2WDOZz1Mf7uduVwPJcudNT8A+jaTK6aaGv9yfbQO8nIK9xS8X34cOHvZPVxPv9/X19+/Ztdy0wooVVaYultwP5mWrXVKcRjYDAKcivGzx/ltpOU4O6nooUiChPumb/aB2TG1UH1M5vAtmJ3LGhTPo4TADDy+Vv/1Q9Lsb2LfK+2DeBKteLsmvr9bqur693QIBg4Pr6ehc18EXiyldt7rLMqEBaQ5BAwFwgUHUkGKiqAwDQIRhduyJJSJGfkacyEo7Oy+koGQJXfI40veO8bBrsOSCFwCqFpfVstVrtCetoTl+8O1HAlH/qwxEgSL8TEEiK4qUVaked58TfI+PiMlq1D147wOekdqIS57MkIyrDlQmBBr9TtCpF9rqxzPpp7cB6va5Pnz7V77//Xp8+fdr9OYvAwPfv3+vm5qZWq9XeAqrNZrO3kNHr27UTiXLlUbopeU156XnSQ6cgv51OS2OXPHvddI9OF/PmdlXJkj6jkwmr9qdbaTBH9SD/bsgkQ5zWUR5u7JIu05hSvdwmOc+eH41vakfWabVa7YEB/VnRx48fa7vd1t3d3QFo9mPLWccE2EfUAZ65gOCocwbYYSOP0Bny8KuMajrC1MtM+XLgHztIvYFSAybg0s1rVR23Ha+rW3rOBWIaiAIDvoJ3zmlz4jVFdeYAAt2bqqsbkQ5dnwq5AuB1MoxO3u6qsytbB4wdpTRUal6m9wWnhXzMpnIkax4STePLpwjkAf373/+uf//73/Xp06e6vr7eGZTNZlNfv36tqh9TjTc3N3th0s4wOHXt7yAlGbfRWEtKnfJ6CiBgRAlk0ghyKsnldCTbeodgIB2lzbRVj2u83Gh3INplXYbXHTCeepv0ieyBA0LX9yqPUwiaVlN6lpfm6Ok8ekTbgbJAwXa7rZubm7q+vt59rq6u9sCA+PPpCW+jFBGmTXzKFEHVkScQsvDOE0zGlQY2TQ04w918oZc3Z8B2gt7x6gbf+e6iA47iyH9VPgeAXo3fT3vVBQgkuMrPpzKYj3t+DgBS+/o996q8nt6Wo/Y+Feo8Ab92Oe9QdzIqVXnXiP9Wn7kSV9rVarVTkMo7GT399nBsN37S8zRn7HKqsbBer+vjx4/1+++/13/+85/67//+7/r999/r+vp6Ny5vb2/r4uKiNptNffnyZegA+JhPgGlKhlJ76705hv01gICu3dhmlNHkyaZ82CfujXM3WYqS6l3pLe1OYVmSHSfXSTTUHF8K33cyQP2U6pqibu5gMgTfjWleJz2SbElV7abU9NH2XI7/bho4AYNkg9M0wVy9OxsMcKsDUZh7T52BHRleIj5viLnGiw3i16N0fi91Kq/F88izS5TCvF4W5+iqHgeerjtEuFqtDhaluIJgHzn/nUFLXrIrHT5n/ZjnqUUGpgz5FBAgQEzv850EpEjJW6Ox9+1EMtIjZT8FdJySLLvi9LZgZEBg4L/+67/qX//6V11dXe28La0V+PLly26+lFGsFJVIUYw5skOFqHzcsKutUv5df3fG9FSIoG1udCDJImWGOoKLUj1C6mmVh+s7jjUHgj6lRXuQjLePT77vtoTEuqc2lO71qbW5wFDpdY7A7e1t3dzc7MYDxzS34nYOZuKR/KUxqb5yp3YOzQYDWjjioSMXws7YU4GmRkioyAEB06XGmLp+ioKpOvyfekfBXn+SnvnAHKFbbnfh/JyDIpXnntYoqqJ3KJxExcnIe106Y9kpWFfSL0UduJtC0AnY+neiKU83RYT0rfL87AD2mb8jXp33ZAC9L8nTCLhyLAsMfPr0qf71r3/Vf/7zn/rtt99qvV7XavX4p2SbzWa3lkBggG1CJez8HOuhex+zPT0/9kcnywQEL0kj4Jo+Tp2HqW95xARSBP/0yqWTurUDajP+twqdKPaF80o9lKatGLEi/yyb36yz8pNjK7nTOFPkNS0m9AX0DpyU383NTX358qX+/PPPur6+3sn/xcVF3dzc1Ldv33bbEn3Msi1lKznlknY7OKXI8LODAe2VHBlsERupU6R+wMQUEEiggOVxwDsYYKMnL0HkYSl9ex1IaQByfinx42Wy/vrtXiAHSAJe5McNENOnqEDnLc2hqXc6YPZS1IGAxFsnA1N16uTWBz/BYWcEHRBU7W+zFchkOdyup/s8aY0KLnmHjFa40tNHZwtoJ8Fvv/22+0hXbDab2m5/TBVo7pQrqcU7eelOhHuKd55AgQMub2sfW359yjQaizQofk/9QLBJmUlTlpRBUnJ20ljrjLr6gGX6wj+3Bcnh9IgC5ZzyxrHoO2667YYkRWTv7+/r7u6uvn79Wn/88ccODN/c3NTnz593JxN+/fq1Pn/+XDc3N7ty3HYIrCS973y43Uu2YK4TdhQYIEp0xkYeqHeWK5iEcPT+lLHp0BWFhumSkSYvVY/Cl7Y/Kg9f3Z+UKhEo8yf5e+w899xdEFTH1H6s+8jYjCI9ydvo+uQYUPASlJT7nChN54mNBpl7VKkNaci9v6sOd84kIMDQreTRDZyPUxpcP2jF24u8cl0K/6NAB6tw9fTl5WVV/VCUBAOaJ/VzCFz+2GbeJl1/uR5wSoAuAWHy9BrAQHJGOqIB8bYl2GTeySMm+VQAQ+HqU59eUN5Mn8r0cnxKjd8EqQQDHuFIADOB5Ln/taPyLy4u6tu3b7vxqQO+vn79Wn/99VddX19XVe3uff78ub59+1Z3d3d7oMTb18dtGq+dU7vdbg+c7hEdDQbEuDpNhqoTRqK15GkwXfJgk6IkpYHMe/weeesSHu795NGqVB4dWkz809PqyPkSShe5kmQd6QV6XqnNEsLsBkzXp1OAYKSQX5pGXv4chcp0SUGmCJdHBfQOAYETvS/vU4KZi4uLnbJNhsyNP3lUWh+/zL9qf+Egjx7mtB+PKtY0gcCKFkrx6GK2fQdUvE/cE2R/uLc6JYMjQMB0U/mdEo1AQQcEVD+CzaRLXOYlh1OODgHBFN/sB6+HjhF2vc2PzreQjEmOKEseFeV9nx7wSJW3IetPUEEg8OXLlx0YEGi/u7urb9++1devX/emDAiUXEf7X6C7YyGivUw6bkRHrRnYbh9XlfLAEO5LdXIPjIMueVc0ohJSVrCLJHTIqmo8SPiebzcR790cZzrCMuXH+jpP7vmQp867q9o/S57Kc0TKzz0vBwPpHVe+icekRLydX4KSJ+HPjuXZlaLudWCA7yVAkHhKXhOf06hytbfAgd53GU35JiWT2o8fj5YxfaeECDSSU8C8HETp2/UG6ykarcfo+EzpO+B7SuQe6xS/btQcPCaizLLc1Mdp3poRLN1346fyfTypz7u+Wq0eo7gCBFzw7qCT77Ecnz7zbdz+PsmBgNYHfPv2bQcGCFC4yNDtCHnhnx4RmHg767f3xy8BA+v1erewbbvd7q1cZAeSMTLjHf/9+/5fsSqt3lWefkLZyOiPaE76BAhIDgTSys7kSbhCcW+RKDMdOMMFLMxP377Q0Knz4v3TtYk/472kJE6Rjmmb9N5oUBGIpXDeVBmp/UaGzJWie9nJa058TIEdGd3v37/vPDP3FqUA+U9sUkr6O9ebm5vd37Z202ok8jvimXI4MmopeplkOJVz6kBA1AGB5LG7Q+VtV3UoG1NGxUFeMuiMYvLwInd6RNKFsjOd7vdIrqJWHVBP5ODdIwNpsbh4kbFWnSTz8v6vr693kTHKp4y91ta4s+l/ZtSt3Ri1yS8BA5oHTIafDIgxpvHQk/JQ4zlJqBwQ+PeUcLphTgM+CX3y0N3rEzBK3vSIEsJjuTTyKT2FqVvE05XbGaYp7ycZprnvd97vP01dNGPEN6/5SaHUFBWYAwKeamwkowy/so4pgubPeV9Er0P9qmgDFaSUlRSfQqJnZ2e7fyS8u7urz58/199//12fP3+ur1+/7oABFTPH3KityLvLknu5DgymZH+kJ06BUr10fyoi4PrUAV261nv87ohR1DTO6QCO9EACm6ov13P59LJ4HOWbxiX723cOOBCYArBsB0UqFCH48uVLrdfrg+lytovAsr4TEHAQUpWPndb1sXTUNIGvRPUGEmOucBwIiNKiFQcRzJeRCC7O64zRyDvnfd/m6IPNVzgzzJ4oCRs7noKmdDLs6lAPfboQjxChyJVgEhD2VVcnKpsuEpAGYue9/tOU+HXPc67X44pPefk6Eh+4U154UupdG69W+3OVBKepnE5WRuSyslqt9o4SVoiT86Lr9bq22x8LBqt+LJb666+/6n//93/r//7v/+qvv/6qL1++1M3NTd3d3e2Noyne2IYdiE99OgVUXaYdjL8WYt2pR9hmXRR3DiWwNhcsVO1P8fppf3rekQM111m6Vn6cwk4h+KQTU8Q3fRJP4ku2jI7u3d3dbluhr0Hju5pe0NhyIMAItANY2UV3AOZGJkWzwUCaB/IG8kWA9F5JDBtxlXJKw9885CUtnEsCNaUIqeSJ3PzAFQmxePHpAd1PbaFnDiqo0L2u6vA5XiYHQprDTe8nA52U4EhJjoxcl/9LUDIkx4ITBwTJs3aF7OU5JS/I700pXAJiLgIj3/T2eW9KEbvy438LMCLw+fPnXSh0u93W1dVVbbfb+vbtW33+/HkHBv7444/6/PnzHiDgfOhcGoElB1Tu9fO912r4q46b9poCut6ebK+R/hzxkDzXKVlVepEMO8vy9Wer1Wq3nk0fOXeawqJRpQ4ncGJ4noa9AwNddMqNscoVn1V1MKXrkQDnOTkLLsPij2P6GCBQdSQYSAW5h+KNxUGuCnAfJZ/xtxs1oloCBTbQnDCOl5VAAFG08iaSnONx+70EHlx5eZuSHA16u7mBYh184Y7n24EA52tkSL0/To3ckM+ZU+sMsSvKqsPFsN7PKR+mGylbb/MpEOPjUO84j2krWfIuJB8EAzc3N7tthX///Xd9+PChPnz4UOfn5zuFKzDw119/1Z9//ll//fXXbtpAUwZaZyCwncaJfo+8WrbNSAbVjvRUOQY64PuSNCdy4umPIZerTt4TD6OFmqldq2oPCNB+OKXIs0c7ZGNk6LkbTMZYMtt5/L6g2q9dd9IGjca0yhNfihZoGo3lEAwQRCQHo2tf3hffc6Y3RLPBQEJBCa34NyktytN9R35eaSoqN5rHAgLOPzkAcIPqC0dcQMgnv0kdEPDrKSTnBqEDNyqTgErpp3jwOqnOVJy+ViEp4mNR6a8kBzEdGOi8qq4ebHMN9q4vp4xYl2YKgM0BBg4IjqHkud3d3dXl5WXd3t7Wt2/f6suXL7t/Y9N0oiIDX7582Vs3oLUDX7582U01yBNyoN15+aOoy6g9qDwdCIz6Z047vxR1fHUGZPTuKK85QKCLjNKJS2DUdZePR3rzLo+r1WNInkBA/SxDK8NIHT6aCkjgwMvlTjfxNwIPinS4Uy0g4wZ8iodOB+tZWmswoqPAQGfMO8TiTHr42w2XK2cPYyYQMPW7q0PnJeo9R6QphHQMCOmMowOfEeKkMeO1iHXotnsqbMcFmGmwuzJxIJD4Su+eAjhwIOC/xd/I8Cfgq7yr9o8Pde/a3yFf3f3Ee1e3FLIUpfGa6tSVIXmRbErBaJqA/86m8wVubm5qu/3xL21//vnnLiqgiICmCeSxJWWdeGU7zjVkfM4+c3nV/QTgThUMjAC89FQ3rkd5kNIUk36P3uV7MpzpOG3xxChmIp6lQRmR7r64uKi7u7uD7a4pxE+dRpnmPbaVy6MDAE/rebje8Xai0U7RgASMvS6pn1PdR3T0moHV6vAsfDaGKzgXHvc0q2pvi6Hmlzivwv9FYFn6nZAU04mPKTDAMlKDOhBwQRkZu4TUUxpeJ6OgaxeuzkvqFHznDVMhOjgRoOsU5pw2eEmaaquRkvT+TqCI76b26IyOlzenD70+4mnES6JuSoHvcxxwFwG3cunf1zabzW4hocDAH3/8sQMDBAK+QyEpvTQmpgCbj3sSxznloGv/rl1fghJwrOpltarfanoseYi+K3vEN9eIpSiC6zOXAd+FRUPLrYquyyW7yWZRn3V2JLUF+U5luRHuHOkERjogwLbo2ljXHLNz9e5RkQGuhlTDcj6azDowIIMUhtVqtZtTkcD4H1ywPBeGOaEelUOvebXa/6c/CgmFzrecjEDAXDCQQEFSdAkQJBBAJU6hI0Cj8iOoGZHS0RCMlLF4mKrrS5AbzqqxcSalwUhQWzVeDe2GKZU1Uqpz0rui4zXlw5UXqfOAOGYVdqUMKt3379/r69evO3CvbVV//PFH/fnnnwcLB1MYM9U1ASc34lPK0x2UqWkCph15rC9NySGbMmZzycGxRy3nAAG2XQe4FX3y+8m4uUOmdJK5zkOuGp8dMxcI+Lvko1t7wLHjdow6NunNZCf8OukVr88cOgoM6MOteAz9O0NeCRo8R02aF9LKUJYrr4MdzZBi8i7SVIGDAZ8eUL5ckMLvLtzU1bnzDlMHdd6iK7EpEKBwNcsT33xfgMt5JVH58wSxOYJK/l8aFKS6JSQ9eo9pfJCn54l88HZKdY4n0NXLQUDyerfb/bBsUhqsG6eVOhCpaMHl5eWuDK0p+Pvvv+vvv//eRQR8LHm7jcZT5813ctYZrG5MpfRp2uefJncMptK69zwnouB5OFh2fSQaAeKkX2kQk7x6ntQjHk5nZCBFLlyWOoP8lP5NtsaBgIMhtx9pjYDLsesqr1vqk6fo3dlgQMxKsGh8WKgr2ITcR+EXdaoqQAPHTvTGfnh42KFDCk6itNeTdfQtHgIDUwZwSqlwQKV7qUOTwfBwLvuD0Q7lQVTK7Zl8t2sPgSHuf02oMwEB1uOpA+45iW2S+sHT8fcUoKh6VIY+cLv8kgek31OGMZVPRcpx6rKQ3iH/IsmUz/c6Dxq3Nzc3e0pcuw700VjyccRQZqq389tNUR6j+OakYz/MNcTPTVMgoHM02Nepv0dANOk4evEyau5lj6InnW7rwAXHiOvxziGZA5gc2NFOML+uLlOGf24+StfllerWvZ8cSaZ5djDAQ0KqHhdM0dB0BbPSNN5OHo70OQ83tux87mXtOsmJfEih3d7e7rwcAgGPCpA44NT5KRzFOrJdmA+/mXcn5CxP87eMGrC9yb/AFf88hus0CAR0rOzt7e3umhEUF9o09/ySYGBkzOe813mkSYmxf31MuLHWtciVVAc8k2JVP/OT6k0ePTrg45Lh1Q5YS660XUr8SHY4phIQ8Pp2fTIVFRhFAJJnmhR34ukUKQGnZFg6We3aMrXFCAS77Dh144Ry5X2jfOm0PGdkxvNJQNR5pgMqoo1J27aTA0DqjH9ysqYATudIznEoSEeDAT83wBffdR6XeyWpsehZ0YBxVWxqGPd2vWFTSFL8VtWe0dNJUAkIdAPFAUD6nwDn34XSgU763eUrw86/W05twejA5eXl7sN/lePRlooI6FhNnbfNed90OAb5VrtwgL8EdYqxA5r0rLuP5191CAhS3lVZRggePDzqfKffXX0TjRQXyQGBe2ucgqKccaqNU3kjo5948r7wMTdyLlK7s05TodlTpLnGIV1X9RHBlK6TIRrtqjoABEn2E3nIvqp2USguNiQ/LI+/Rx5455hV7RtN3veIWleX9K7zSx46UNPJYSp/CrC5zX12MODbf5yS4KSBNWpYCqYUDztlFPby0JIGDfeCUgnomx6MvN50FCQ7yQVU93ygutfHgyc0mFwBpg+F3RdwupHzNQNsdwGHy8vLurq6OvjwzzS22+0eGNCe8S9fvtTXr1/r27dve5EC1cdRvyvvl6AubO6UDI8DAqWbS5QLl1VdVx1OMSRQwTy9bk4pqpBCnEybAHNS+lWP6wgIYDheBCYdjM4xuD6Wun7RM+cj5TdHN7Fsv/caaeTxqp4cl50RT/X3PfYpQpBAd5Itl7Htdrv3h3GkNEVaVbMcjTQGqsaLaVleMrLU4QQ3aayznbxd5tDctN14m6KjwEAKY5B8EHcItUPzPHrSDZ0LLjuJCts9Lg8J0nMhGGA0wIGAh9jd6CdUlxRZQr3ell6fZJB0j3tq3WB5OzgQ+PDhQ11fX9eHDx/q6upqt09cizXVT5oL1kKwP//8cwccFCU4Ozvb7Rl3dM0+eylvKwGsOenY3vxO1BnYzpPTfR8D3bhycqXDiI5krVPGLsseOSNgJ5+eH/n3aEBSSHNC8yo38e7PGHHyaMoUpfHJd08RAHR6x8n1pn8nB2Z03ZHL7ggIuNyJ/P9pNOak79NCZy8njcvRuEr8eDuJ/9H0RDemWJfUF/7uz+jFNFb4+SWRAQ8Lpkp4pX1gJqDAhpQQ0LNI75KosLWAMAkGDb8rLl8sSLDQRQVYX/HHDnDkKoGl8vL3PF8a/Q4QCAARHPlUge5dXFzsAIBOjBMoEBhYr9e7RYiKDigy8OHDh93UgvaWq+zb29u9o2jJP9voJSiBK+dp5BWNPEtdjwydy41k1Mue0z4JBDt/c7aNqjyO66lyR7LvUwGj7VJe125sezkkeo4eueiU71MMvI/jU6ARYEny2gECzzPdm2o3evb6Tl56Gh8cAyLJjfLQgnJGzshP99ftzDsZxQTa5xp0bj3v3hM5b3wnjQ++l/TBFFilDfplkQFXHGzc0QKPqUHkAMG3MPEoym5gStFLybqA+HQAjX66l8KZU56e3xul4YBVfVUmvR73SLvIgJ5rzp+LCPlRRODjx4/16dOnHSC4vr7eTRUIEDA6cHd3V1+/ft3b4sl8VaamWBKw+VkE/DPk3t8xxjf1e6dURgDZqVM8o9/Mb6QMEo3Gobwwn6qgLHp/E9xO5T0FBvi7A13H1mv0nhTtCJAz75cGAi57PqaSIdHHo7Be5w7sMo3yrPq5bZa0IXPSSi59TVhVni5N75PX5Ig6kCex/fQstaNTJzcqrztlsMunKyvlz0h2imqP6KjIABvPha9TDGkuz40iK6OByjBnt4fUDac6brPZ7O6xgdI0QLdQcM5A89/d3HLyXtg+xwwuomaVSxAgz518aMeApgMUEWBkQCBAgECA4uHhYTctIF5pNFTuer3eLcD0dusG26lSUhbqyxR+HBm5qv1BPeVldaHW0T3nefQOQZ76Twra5ZRyLhmTvDG9R7u8Hux/jUn3fJJO6IyU55XKGY3dkcfo152H9k9TAqMENV5X9h+nco4B5S4LzHuKR7+fvh18klLEyh0iBwQsz8fs2dnZXp7JlnVjJ435Lvw+ArNySt1ojwDBHGJ7MurtTvsUHR0ZSA1Hg8iOmIu4vUMlVAypJHQo0rtUakzn6wPSKud01GXnrXidCQTSnx8dQ6x7EkSBK7Yddwdo3p9RAxlsXzCotPwIOEj5b7fb3bTBw8PD3j+AVf1A6Ov1eu8PZ3ytxWsAA8lTmgKCei99p0iEnifAzDLSdUdU2E4sO62l0ZjW9JobcY8ISC4INDmd54ZZ44py3MnACGRTL6QzD9zbSpG95K1RP00ZhVMglx3y7k7XyOMfGYjUZiJ3ckTJAM6RY/Iuvryss7PHo4aVlvaCU6RePh3KJBMOClJduzZP5GOHRpoymoDAFKU0BKvK3/XuMSDj6MhACvN4VMC9j45otN3Ld0GhoXfqwIaIkYGEnAg6Rsqd+T8VCLjQuVLjt6/Y9barejwvQEBARp5gQEpcz7mNkNsSFVlQWkZc9C3vXwPt/Py8rq6u9hYQ+hHOxwrlr6JR+ckjZJ9TEXWAQJRkpaMuzKlnTl0UqfPou3/kJPjpAEUHBLioywEUx6/GLJ93RjcZ/xGgcuDB8dt5W6md3RB04/9UiAZAv2lgWG8a1FRvl/lUFkn957KUykhgonueZDqBR8qdO5AOKLx99MzrnIDAHKLNS8CnA6udt+6OsPM/Am/M96lRgaojwIAKTsSKs3GIrpzcSxmhWCLSUcd1njxRk++JT59RXZOyIqWB58+nQs0SMg/DMg+uEeCCPoX7Zcxp8LlA0NH15eXl3u4CKX8h7MvLy6qqur293e28EC+KClAoGYF5acWa5KEjf0ZD6Z7zqCxXVolc7hM4dt6SF+V58dqBKYE2eU7TV86X8qt6BBlp7CskS8XIMwpGhtrHlz9LdR+N5Sndwzbx61MDAiIaUvWl+sK3ZEtXeMSAMuD1dKBFkoeeZM3fcRnS+JlrfDmNMCfCSjDY7QZjmlQ/5zvJCp9NgYnOU0/9IUpAII2XVEY33T2HjgIDzixppPS6Z0kZdu93ebgRZRh91JEpH7+eijgkSmhxRJzL8jKZFwd5OmSI6wXo/TMCoHRp4eF6va4PHz7sFhYquiAgdXt7W9vtdm+agIP+8vJyb4D5YJzbfi9NI/nQoB0ZbDdqnVfmRG/LxwHbTzyobxx8cE41KetOzqcUGsvn+gACBJEicJJRb5uk4DqQPWrrOcQ+c1DB517XkYE8Beo8XIIukYfWBRz4PfI8uxC6gIH3P/Wx0jkgnbuQkPVj3gRBqsd2u22jv3ONYueYjtYlpPqwT+Ya9REI6OSyahpwzKUngYGOKRdAMttR8orm5Ms8Pf804IlIuxAP63VMQ3b1PoZSZMKNCssjAOA6Ac75Kwrg0wG+nkDz/tfX1zswcHV1tStTR81qm6EiA/JUdZhSBwa6iM0/RXPK7YDjyEudeieFU5XO26Tzsmj4q/KuGp/br+q3XI0UvyiBESlc99aSAfc1BWm9T6ewUpsnnpQ36+RgTeV4n6U2TvXls1MGsskwjRwh9Z3axgFB0oGdkaFsOj96znNVpHv1h3Sp7Uf1lHOS+k8RyRQB9rxTpCKNv6lpvBSl8jY4xjA7ABgBCabvQM8xduzJYEDEhqzanzM5xjAeAwScjgk9pbLosSSFkt53z8vDch3icwFJfJMP8uuIUh451wv4GQA0/uSNzzwPfaQw9L3ZbOr6+ro+fvy4u69dBP7f9ByYpxAZcGWYBkznhXZAYGS4XD5I3u/dWgQvW8AgPXdA0Hky/m4XjUikvnQFynoQaOse3xkdEJS8sXSfz6fGfQeIOlnw+p46zYnuSG7cQXKdlzxwXSedOOXhVu0fL0zd4zIwMloOAuSYdAtJCQYSuW6lnFFuO30gcm89AY85xjgBgA4IJGM/BzTMoaN2E4iScUrkHeXv6/4cAzylrFKHOk15/SNj4QaBSlceubxkLzN18BRqnNMejA5wS6BPA7jxchCQdhMoD/Gncq6vr3eD8vLycregkIc2dac4vhQlQ5uU0KjNvQ19PpRpdK+TxcRLyu8YSkBgVBca7a68BD79fpe/e6EieoxT49CvE7EecxRgMojKp2o/kkD5P0WivHbOBY1DAp0EBW6U+L6oMzwjwFa1P6VAHqRLRmBG5Tr46+pPL1l1dOIYGFF6V6BDfCW9nvLpvHrPJ4X7Haj5Nes7Zec6OgoMjDwLpjsGLHjY38PhU9R5UuRHvPvJUQmgODCZAwR0LUPK+vmg8u2ZHZIbeaEilcnDgnxqwEnv+O4D7kBIfCgKcXV1tfM0rq+v905v1P8UODggKHhpSrJJpTFSIMzDgVZVvzsmlZvGUvo9Zwykd+byL0rTbxw7nac0mq7zo2ZdAR9Tt64ecxXeVHvouxtrp07sJ9c5BAMJMCYwUJVX36d8CTRIq9X+AlNNDThQHEVHSZyGFFDz+pM/56X7PddeueF1QJDSe5mpDZnH1OL2BAT83py6JJoNBrqwR9fInbLVb10TELjwdPc9X+cjCYne7wCBK4DEP9NxUPnefPHriDpts/PvDngQdOi57rthF09urFarwz8q0sFDPFiIRoJ86d2qHwPbz2/Q3xxrd4EAAYHBKdPIw0mDqwMFVYcgIH1PDdiU39z0c4h97WDAgYCnT2X5OgGFiFXP0fbgOdTNzybqvEEfy53ynAsMT4Ekt+qvZNxlsNkfDvD4Hil5nbyvj+sa8lX1Y2GpdigdO878uWQpOak+jpNTxDZI0QZ3Tt3753XHdyoz5UEbNWd6oPs9asM5dNQfFVXNPyJ1agC5UCWPNEULlF6UIhOexhvaG1zldYDA0/n6AEfbLCN1chpcyTvx+X2CD875+2LCOUDg48eP9dtvv9Vvv/22WzSokwi7CIHK1oDhIiCtEfDowGaz2f2+u7sbysSvIiqrp77vCpb3PTowl5IxktwnozvHY03lJwXPvNMURZpC6IAAx4OvD5BciBgW7sh1w6g+fC4ePO8OeKcoSKesT5Uom96uXj+1jQABF3ZOTbOO2oEghKBC+bF88kw+U7SW77Ms1q3zyqn/Et+junQAw43/XF7dDnTTxgkIsKwOADwHEKg6MjKwWuWVqt38aTfoEtMJEIiIApm2ixh4OR0IcCCQPDxP72CAEQ4KZtriMoXgCDBkvPntOwSYVqhfHn5Cw5pS0P8TEAwoOiAw0HkJzi/bS2BEkQKCgdvb27q5uWnz+pXUAS+nkaF1Q0F5p3LrFFPKz9N6JCz1YUrfKS6SR6o0ln0RViqj4595cW5Y5UkOqqoFBJ18dVEAbzfnY2TI+O5I2Xd64tTJAUFnTAgMJGe65wBRnxRJ1XdyoPy3Azh/Lxl18pAcLbcL5MunoLuxQj6Tge4MMcsj6CD44ce3OXYO4ggIeDs6Lz8rp0eDgeT9u+LydD5P2AmMe/yjsCCjBkkYE+ofkXvkXu9O+ZF4LGt3yBHz8PJ9SsBPj5PHz0gB3+diwrS1TP9ayA+PJVb+qoME1v/LwVfqkm+tmdB7AgPK/6WIA7WqDyPru4sUdYrBFQFpZGyTTBOMiZ8ROHB57cqhMdS46U4U9fpz+otgSPwRNLiCkjImmO6McjeH3FHyQtkmHL+MWnikx5Wyh39PGRC47KVIgXu0jN5st9sDQMCxkPpVzzp+En/sA5evpB9T3zFPByep/zuQnmRU6ZIHz3fYNt4OyYh7nlNAoMvH74/a/Cn0pN0EVf1Cu9RpVYeDvAMFo85LPFC5zfUmUid2QIfbYFSOgwZXbKOO9/L944beD+xIg1XfNMg8ZVDPBQZ4LgH7T2CGfUAvX+cLKOrhCodApqr2jj0eed2/mrqBkgCZvl1Zpb4SUam6rIkctE7xy7GUQEYaax0AToYtGdCqx1XfyUtM6ZVfchZSuhH5+gXWqzNOXkc3Au4dsm1H/Ll+e0n5nUMdICCNQJCAgK/2F82Z/uoMlssbHUN61STpQh577vo1AYE03dGth/F76a+JU0QtgSZvhykg4GDA+Uptl2zgc9KTXDUOEB9cc5B9BwQ8f382GpBd6LADAl2dunvp4BSSC9LUQkV+6FXR+BMg8Lvjmfn54UKKLHBNgfjTv0KqvQgGZPx1lgDPE3AvpOpxtwLzIrp/aRoZrJHh975yI+HKhfd8fHhZpM4IM++RUesUzJy2d2Ps/ebjVjyk6ILGQPcfIF6mKLVLZ4hYt6k+9YgAjSKjHWl8/UoF/KsoAQIfjwkMCDS59z4Firy8zoAlPd/pMY03HztuoEXJQPt4oux1QIBy2jlxzifrNwcIeDRgBKRSO3rbPwfNBgMjoXDFlDo35ad3qw63i4yMXkdJ6JISPBblJ4XNchII4D2lc++GHwq/0hAAcNGgLxBMCtUBARcZclDp8A7xRs9ekYGk0F1I9Zt14mC7vLyszWZzVLs/N7kMs09SmqmPAOIcrymV4coreTWJkjF1w+0goAvLk7rjZZVfUvY6TCa1pcsM32NbdL8dDCUnQZ5jmj/mO2rvrl1YR6Wf44ScMiVA4PcdDHSfqt54614ySq6TR/3vfSWAxu+UTxpLU+2Sogzpk3hLAIB8zQEDaaym9vJ7Xds+Bx0dGUjoWZVxT4Xe5pTCdIE7hjrk2QGBzgiIj7k8eGemv0FOxLI8EsA0usetizxhkKCAfFCJ+dSBjD2nAPyoYr3rgywBj6raAymcolBb+3qCU6EkC3OBACMubsAIilMUwRVtkgEq13TASdVh+NUNnYPSEUDWfRpMXWuhISnlRVnRewSUnSHwPug8vMSvjsJmSNkpTTu4lygeRkDx1GnEcwIGbrg6IODbmqv6qdaUZ/Lk3dCNgAbTdcSpupSHO2e8523h9Rnx5mPRowpTUYHUFlOA4LlBgOgo7TwaHAlFpbBmSu/vTSkB5j3K72dojmcmhad77GSviyNL/3+Arh7862GF+AkGZHj1bhJqlkte+TfDbrSp0Bm94OBWPbllUScZbrc/1iA42n8JmqvUj0nn/clnDLfzmmk90qNr70sBNp7T4As4k6J4CiBgREcAQIa2OyMijXtSUn5uiBMwnwPOGdZOBr7zFmkUOT3g6abq9hqIuqjTkZw+ScCAUQN3ELyNO+dw7hShg+5ROgKc1eoxOkTHMtkJRnG9XUay4u3o+rYDAwQFSUcfY/x/FRCoOnKaIFFXKb7jUwBd3gkETCmCEaU0HSJV+pEQ8l0PM7mBTF6jyuOg8m18yldgQdsBP336VNfX13sevoCCwIQrffFFBa907Dd57GdnZ3uLC6tqbwHhxcVF/MfC8/Pzvf81ODs72xkvr9dL0QjVe7qRDFBWuTjS15RIefoCSkZgCOp0WJRP0Ww2m7q5udltz9SfRlXVwVHPyftKwLUbszSMKUws/qemGtQOqe8p+ypzLjmvfs8BJ+videw85ASclNdroOQZd/f8OQ0rAYHaLEUNttvtgXxX5Xl9b1N/7mCD5fiYJBCo2j/QinLsPOm7kx+PbowMdQcA/Lr7jPojtc+vBAJVVavtry5hoYUWWmihhRY6aXqZuO1CCy200EILLXQytICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrn9P8A7WlupPOJjaEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0JUlEQVR4nO2d63YcO46sqZst23v3zPs/4fyaM90z25YlWTo/ekX5q1AAZJZKF3sX1qqVWZlMEiRBIAAymWePj4+P40QnOtGJTnSiE/1t6fytGTjRiU50ohOd6ERvSycwcKITnehEJzrR35xOYOBEJzrRiU50or85ncDAiU50ohOd6ER/czqBgROd6EQnOtGJ/uZ0AgMnOtGJTnSiE/3N6QQGTnSiE53oRCf6m9MJDJzoRCc60YlO9Deny9WEZ2dnL8nHuyLV9ezsbPc7Pz/f+6+fp/c8VstLP5apcx2rcvnMGGNcXFw8uU96eHhY5vPx8XE8Pj7unkn//Z5+Kuu//uu/lss7Fl1eXo4fP368ermpn1xuvL+rdOn4+Ph48LhMe40l+U0yVpGnSc+6XDw8PIyHh4cn5/pP+amOVX2OSRcXF+P+/v5Fy0j0K+vdVd59PFDXXV1djcvLy93v6upqXF1djYuLi3F5eTkuLi7G+fn5uLi4eJIv9dEY/9Z9GmPSi7wmenh4GPf39+P+/n7c3t7ufnd3d7vfjx8/xv39/fjx48f48ePHE1l9Dnm7deN8No4fHx/H+fn5kv5bBgN/F6oMc1LYPHoe6d7Z2dle57nyTUAgAQIaCpEbkjH2BT6Vz+cST2PsC9vDw8Mu/x8/fuzSnp+ft6Bii0F5CdoCeI5FM0PeyRjve1rPn3SoInJlUwGRqkzJFY+pzjqnsZf8SbYoS67UqnJ47aXoLcDkGP8eW8nIdOP0EDoGqKzA4KzcpPdk5GX8CQg+fPgwzs/Pd2AgtQXBpF+jztPzlD2dX15e7gAqjb3nSWena5+qjWZ917Ujn6/sy6r+O4GBRUoKskqXjn6/utaBEBr2yognIFB5aDPeda60Plh0TmGshPtYqPkQemlDkcpL/yvjngx9BRqqMnhtVlc3nqv5JprJe5cPZcjrPPOGkhJcrf+vRiv1mY3t1+JjNY9KzggEZOwJBC4vL3eRANeBs8il6OLiYjw8PIyLi4udU+N5iR/yQmAgUOEyfAgdSz89N2J2AgNjboyTR14Zzi3K0cv3aACPaZqgqkNKkxRtQpEreSdAwHOnJKRvSd3gO3RAV89Xht3vp1+6zzK8rMpD4D3e7/p6dnSaRbyqZ+X5pghBUuTHpPcij4fQc6aISKuG6Dnea5eOOla/i4uLCAI4LUDg1wEAGW4RjT7bUAAh8XZ5ebmXV4oOME/eq8Zaisbx3hY6Fgg+GAx0DLwGSj2EVj2clV/1LPNI5c6U5gwIJARL4kDx9QMkhrakeGceWVWnFYVyDMV1DNoC0pRuFuqryvDyKhDQ8diBhOo5B3sd+Ev9vQI8fPx3Y2LW5lWEwJ85lgHsvNOU5j3psJegQ9u0k8GVZzsgQDCgc9dnvr5kjH/3m6Z0UjTS0zIv16/k7eLiYlxdXe3l4zzo/3P14aHG3ctdkXPSsyMDMy/kV6CtIKF7plKKszQdMDg7O4thf5Er+Sqd0rrH5cg5zfuSuojA76I8V/t3C614CCynAwIzPtIce6IVee2e6cBSBx7Jpz/LPKvzxNMxDXgFnt4LHWpMVmRia3mHpFkBAlwcSENNgz/GU4/d1wp4+SrXx4jrWOc1LVJMwMINcqevlX/XV69FB4OB30Hhi2YexxaFOfOwu7w6D7A6ennJk3Lh7EKvuqcB0aHLhEIruXhLeTmk7Od4oZViqAa3t/GqEZr1Ca/N+mdLXY9tRLq8k4x1z62mX6EOtPwK5PJU6ZBjluXXkj50IECj71MCigjQY//x48ee0dd/9/orPt3h0TmjA4zIjjF2QEB1cRBAgMK3Y0SzMV0BuA6UJt2SdMyq7J7WDBSUvLLOK09eWxp0qWMTCmV5EkSunOUcK/PqphJWhET5VKCA9yTwabUtf115r0VbFV/lyW4tY/ZskhX3TipPZeZxrLT3Kujc0n6Jz24M+K8D1Fu82k5B/krkbbFSlwoUVm0y698ZOE5OAwFaBwQ8GuALB+mR0/j70XVOFRXwBX/iz4GA9K2Ol5eXe/UUqBjj6Yp9Rku97VYdps5xqK4/R85/ezCwosQ6BThThrPrW5Rpl6baZyAZLYIBCumKUnTBJSjgf38/XM+uDMrXpkOMQRcRYb5beFjJL4FBnac0zq+fpzpt5XUrkPJnk+Lluee/asTT/crIrchAZWzfGkwcC1Afoz+7+6ndeO5AoHpjgCv4fWpAx4eHhyfv9890TjWufvz4ERcQjjF2iwfHyK9vz9YIpAhBBeK3yNlLyOrRwUBSUG8xmA715iogkJTalry68pNRd8GtyuK9tGCQ7ymn1f4J2aYyuSgnzc9tGZTvmSo0/xJlrPx35ZXkhbRiRKu6JZmvnq/I22/VmM9A9aocbQUPW559K0qAf8sznSw/RzfP9B1BXQICaaGg0ng0gFMCAgIJDKxQF8WQjuTCakYOxnj6WrfWTVXOkMv5MXTiS+jVF40MbB3I74Uqw+zKUuRhsHRMeXv+nKfq8ksgwY0GiYabSJaodcUIehSg23WLikDpfwVyL+w5RqDqa54nb8WV5gwMiE8pMB5nfCW57uR8Vt8tINoNRSq3UtyVUt0CQA65/xb0XMA0e+4lgc4WIMBogHiiDMv4p2nJFVknP/7WFQ09Db+ecSDAiMEYY9zf38fXDj1ysDKGvL9X5PEYcnuUtwnGmKNPUZWuCzFVdMgzM6oUWafUVupd3e+Uv89Zda8Y+psHIh8o5MkX23QCm97jTUg45fHelOsqHdqvXZoZwKjAYwUEPE06suxZWVUZul8BvFmbrBhulZvA9SEKsqJUrpfp/fRWMnyMiMhWqtrH01TP+n/qrPTqIMFAteapWozn5Sbg5GOIZXRvEFT1GWPs6iKdd3V19QSocE1BR4n3Wfu/BB0lMrCF0eco2GM9s8XDqRTkTKF3CrkDHBUQqICB8+Pbc3pdK8PPMFlFDgTSdp8doHjPoIAG4Ll8HiKXCSR0QCCtC1k1pKtlVLJb5be13swnyTLLq0DAMfqrev65kaFj0xbwdShVsrNSpvfhKhC4vLzc020k6iWPZFagdcaLG39fmM20Th7NEiDQ908YvfD9M7bayS7SU+n159CzwcAxw6ov4elvyW8mWNV9V47VsQICs4hABwhIHsryvd8rOgQIJOPvUwbv2fiTZv3rNJPzQ8aBG+Hqx0VMKqvLM/GSAMMKGPBnO0Mxa58tim6FVp/r0vxqAFb0kjzOxkaSMZepbmpAv+4NqLQzoI6c16/GnfMxAwdjPF035WsJlEZHgQFNFyRAsGWK4C3oVd8m6DyUl26EmfI8FAj4vQoI6DwNHApmMvweQpuBAebNDwrNqHoLYSsQ+BUUKOkQ493J8sp9UTKiq0CgKrPLPwHSVG7H76rRrdK6DFWyw/FyTK+KfPg156G79jvRFvnvgF+SWemxKjrgUwPVXgHKR7pIbwC4Hkr8Oi/uVLmB5zhwGeQbVgICDw8Pu/qIvx8/fjwBH6leW2XrpWTx6GDgueh8a7ot3lx1PRlzPz9WyLBSvl1kgPfT4Bkjv0lANKs6VIPFFWMXUUhAgPfS+a9AaZA+p89Xn+1kwaNGzDe19Yr34ecdYHBKxtqf8fD+KnCa8X1seUp5/moyO8breZQrDlGS42pqwJ0b1yVJFzF/l/+k35yvCghUaxWSHtSzHiVQHQVUOIY7+7Ny/TX6+MUjA28V+jhE8SSPifeSknQFmMrzZ6vBImPfRQe42IZEYWbITGX6RhvVsWqXpDRXgcWvQofwOzOc1b3K808LSZm+46MCBMyjC+17fumZilZBBnntlLf/ryIEXuetuqYa57N0740qr/O1yuXRZdinBXg9rROoyvHoAUFB9ZE0UYqqOgjgeGM7cm8VGXal8y2KPYKryCx5TcBnRq/Rry8OBl66Elu9t5TWjSR/s2dX7vF+UvxErd36gLTYxgeh2sQHB0P9ElKF3JxPhsOEdEVp9673ThWvFcA7drkuTxUQ8KNHitxL6YCXG/NK7tO557MCaqo8El9dXlVar4ef89jRofL6nuX8tXjrQH4CtelTxNxieKUOlXxxrQA99EQ09jT+1ZsEKisBbE67Ml/Jo4MB6dq0kHAVaL8W/bY7EK56QKQEAiqPbEWRVukqQ0BQwOszXplPxTfT+MIWki8+rLbZPMSAvqV39dqgdLXfqimBNGUk8rDpjCq+kmH1a1vrtUJdZMDzrKYlZop0CzB4S7l8a9pS90qXeRoHBAQCvv7Jwd4Y44keq/h8fHzczct3xO8KJMPP/Cj/AhoqJ+Ur54ryxgWFbAc6Wak8b8eZDauiZVUeM/qlwcCqhzF7PhnWBAxIM49yhbdkFNwwjDH2pgVcoH3OyufRiGJ9kUziTQIkRMtog56tdjJM3ttKm7wlHYOnrp4V4Ev96NEBjw6l/GcbDB1KrqQ75cRx0o2XimYeZ8fHif5N1Zg7Zt7d/wRmfQrUQ/Qr+Yo6ndWRl5PS+5brY6ytx1F0lUAh1V16WREEH6+H9llnYw7J85cGA4leAgg4KFhByB1fKT8aAaavwmlufPnjNQmmDDgXs/j8l65JUCnozlfltbn39nehypAlOaoUpysSyoTPZ6bQ6FZAkAzIKsCuQG1Hhygol6djAYLZ87+SDL8mj0kPVMA2AQF66XRmfCdU0WxNAWU4yWAXNUhRTz5TLZ4m/fjxY283wlR/vgHhU7jHmDLYMo47+u3AwGwQd0Z9puAqEHCMwcj8uukBCROfS3P/nrfzy8UtY+y/jXB29vOVRAcPRMFblfNbKdaKt2Mq/NVIkQO3apoggUPmn6JAVV22ANUt97eMgaSwVsty+XUgnBRqksmZHFT33hIQrIytQ3h8Tp0qcCu90oHcyunxXVMdLMz0oQONjnx6yo3ozGv3L7r61KmAgKYQdM51DpRf1vk5ILcCBat5/tJgYKsyXzHmK16OC3LioZvHqZ7x6938lqNLoc4tg7xaY6BBOPM0q3muX8GbIm3leUXuOqPsgIAKMsljF+pkdMcBXsdLqk+VtjK2r0Vqky0RgmOGy996WmIr6J7l9Zz7TOeymyICnJ50vVk5PbzP5xOlTYB8rDCaWq2z8Ygrr69E3DwyofbwdkivR3YgdkufP1c2fmkwUNFMGXZKufutlOXXKVwcPETSW+rCPLkgRehT1/0b3yyf5900gfJmOcqv+0jRlrr8CuRt1Ckwv9b9VhYOpjUkbHf/kAtDklV7VyCuokqWu7p3eaV1JdV/PreqQFfq9KvRMcbOVvCa7ney7CDA37XXsSMadI6DLj297ee0E7131rlzjAgWvHyOZf9ugZ7VcVVefZys3luh3wIMVJ5dBwo65TwDBCmfGV8duFhZHJMUMoWXoSvOTfnPBZFUrU/g+SEL1X43xVxR1dfVVIADACpVBwRMx744Pz8f9/f3u3LVz2dnZ3EFNPnceu+QdNWzhxjyahwey2v+3cjbeZamy8fzcNmuFg0mEMD8ku5OYLkydJUhVlo+N9t8jfkdQsxTevni4mLc39/vtQ/BS6qTt8vMth1L7n8LMDDG046vGnSGcLeAgaSUSFUnurBXdZGnx3MXfkYD6LHLKPhnPxUxmJFHAfjt8BQV6PL8FZX0qsdaXdP1BApccfpio7Ozs70d2qpwqUdwuNizUjYVqFsx7s8BAC4DHrWalcuxJsDrR8//dwQIFXiaPXPo/cpQO3itfro/xv60AKe3SP49lVT+GFmnJCPr+srXA6zKdJJVX8Sr/56nj2HKftoP5q3otwADyYPm+RYgMIsOdPmSVoHBGOOJok/C4YDA0TKFNSna6pzzbVU9thj6zmj+yop5i8dcycqqXDFU2oEBGQYpWzeMVKpOrsRegzoA4PI7Rj09Uf2fAYDfBRzMjPfMq9xahstwinI5AOB916tj7BtS9okcHEbB+HYT06eFfkmW5QiRKllL5DJDEKr7rrN9kTfbztcNUC4PkdFjyfVvAQZSVKCiWaen5/1adc706Vpa4JKu+VTAGD9fsUl1ZXSAeXDDjE4JO9omavXoAhV6BQS6NvhVaNbHK2lWgYDn0ylc9TO9ivSeNEOi3ZznsYFAFb1IY4qUFFolsy7/CQisgIOU3+9AW4Dr1uuUz+7nkS2X8zHGE6PPcijbbjAdBHA6jDqMY8Dvp3pyvY3XO8kG06keK/sHVOOezyRdX9Gx5PaXBAM+6FefSco5/U/P+nml3JLgbQES1bOdUlyZ6/fnqEhJnEogAPB1B6m+75VemsfK6PNa9YzOk9fv+7h7mNHB2Rg/Q6sEABVoe4mIgIdOyUcF2CuvKMl+57GSDokO/G6goKNVIOD6zmU8TXmtAAFRFbU6Ozvb29SHC/tEPgbcECfDnspRvZS/g2eW24Fq1jOB3Q78u4yvyuBMv2+R5RcBA6sD8zn5zoS5UhQzhb2Ciqs0XUjdn6kWDXaKm1MEs/w78OB1SPmldQYpKrAFtLylkt0KHme0ks9M7sibr2QWMQSr71LwGQcEUp5VZOYlgYAoRSpIyQty6jw43Xd5/jsY8efQTGY7p2UGAroPrY3RT1mNsR+V5R4novRWQQLFM0BAcOKRiSryoONszLj8OQhO7ZjACNt9Roca/kRHBwOVF3SMgTpT6AkI8F7VCV4GG9ivV3x1BjLx4DyTksF3nhKYcSVLnnSPm9V42b7Y8P7+vowMsBxvC8/7d1TSnTxUQLPKx5UQ+1O7m9HzUn4exUleOPNNCm01hL5Kadorve6Y2i95R5XuSAAz5Z1CrccChO+BXqIuld70+f9qwaDLLcGah+I7D75zfkhcE+D5uQ4kUOV/pwQCZvo98eoOItsyTYF08j5zND2frXR0MPBSA24V1abjDJGtgISXUiCdUfF0Sdh8wSPJr1EAO+LgcjDgwEflVBGNX0HxHsLjCtCryCMsNOTupShvny4Y4+cX1Hxh6fn5+ZPXCrcCskPahEAgtY8iH+SXyvZ3B5CvTcmp2ZIm6UgCAV8n4G8PpG9qVEDAF/lJlviOftqTRXJegQA39uKVujSBUn+W+rAivu2lfLw9O1uTQIHr1gSCj0WvEhl4yfwq48/zFTDg6Zl/+lXe8VYB8JXjPFb5zxa4cIDRKKSB4fd8MHkYziMgM8T6XkBBVf5b8+Vy5MaSe5+7Qhbv6XPWKf/KwyF17dF5aKns9IZKpeBSiNZ5rPKip+X5zWSwihy8dzCyyuOK3Cd9x+sEoxUA8EWu1WZBHrXs1iIlcJDy8wWESdZVD3rjaQHjDFAk/S7S2gbKUwIPle1JQKAqq6JubM3oxSIDhzAzy28mwDMQkDyXmeHveOqUakWOrscYewPKeWKZRNacX3ZP0suazeF6XWSEVtYKzBSt7lU8vjWtRmZIzwUQFeAUJYBYpdU1bm7CRYRbwFgl88moV/m5DFf5ydNzGa7efOiAC5Wn9+cMsHb5/47UyUG65/rTIwD8PDGdmUTJYakiA2P89LRluBOPnmcFBETV9KuDUYKMdN/zI8DQ9eS0JaC1VZ90uvc5cvzibxMca5AlIFAZ/QQCunB6KmsGClyJubdc5TnG/qKwhLa7sqrBkQSCA64j9/zTIpxjKNO3VriHGP6X4qPzQukpUVE+PDyMu7u7PRm4v78f9/f35RsgFWBN19k+PNKDSmmdOiDAMUVZ4/RVUviVt6T0aQps1UOq2uZXo0McL29X160pEuBrBDxSVenLVX0k8g+pOXVvzLBc8uPTDcnIrwIBXfOFv9TPibdkV/jfAeysX4+l1971q4XVwNexM/6VMM8Mu+fN/zNet3SKgwMCAV9564teCAqSIvOQG68zfy9DCwjZFh3/Fb1HZfoWPK3IzCwdDfz9/f24vLx8EiVSX3MBaCqjWrSkciq+/BWsimYLvWZUKb0t7ehKdIz3KY/HoMpBOgQQ+DE5U+ntAZ8eoAxQTl1Wk45KpDyS85OmvaqoUgKJbrR1zx29Mfq1AiuRV1ECAA6Q3ZYkMPESMv2uwcDMy14FAB0Y8M5n/l7WjNfqWtd5Hlb1OSwSPcK0atX/+4CboWvPazZYK2BVeWcnejpHTWXpxH7RfKR/lZBvfFSUpopWFpIeSjNPfox5pK8CBSnP1ef/TtQ5Ul36DgT4GgF/gyCVkaKNaW1HRw4IqMe8PF87spKvznV0ML1VllKkb5Vmsr+S9lB612CgIwcBNPaV8CajnsKlKSKQDBxD6F2Hz0CNryFI/HleLNdXx6bnvG4pXYfYVyMfPrheyuBspdfmYxZVogzNPNjknajPGTlYUQwEnZ5nSpd4qe5RWc9AZAc0uzabKcUKEHRg/XejVVlPoKr6JVDAe2OsR4aSwU7RyopPX/i3CjpVTqXLU9l8zstP/HZrBpyvKjKg+ytRk2PSuwEDHiJJ95NwuqBWYIBG16mLDIxRb7GqZ+ixuwKaRRZ8QM2EoIoKEDknA18N1LReYNW4zAzG76hsVxRtApDdc107UTb5ISKtEUhbRfM5Kttq+qACs744apXSKvAEZMSn85wiUx1w4DjzMfx3AgEdVbJYyWoCAT41oIWDY+y/4ixyA8t2p1z4LoP8BkGSO9fjXocOWDgfVbrkHIq08FXylXTrlvyS07miE1avr9K7AAMctJ2HnhBqAgI8JmM8Q7BM70LukQAp5GSQvYPJv5cn4gDycthWBCHuZdHDF/m6A+ZZRTcIEpxPr5fzX/3/1WkW8Vgxmq7kXM4TkJ15M2mtANcIjFHvNEkwuoVm3o/yr66tRNWULh0TJVDg+XTyqvu/ktzOZG4VCHTRAC4a9LcHqt0BKz5cF1NGXY8dIpfMi2+sVJTkb0ubqqyKVpxbXXP7dwx9ugrkXxUMEMWne9U1Cmf6TjYXr1QAwMuYeTspT5F7YmdnZ7vXutw4676DlLQiV5QEgNc0bywPUTwpb3qNfJ5ghXl7fTxakHiq2m8F2f6u5KCPCrWTy5SPA1Iex8iGkdNFq2sEKrmbeU8rQMApyfWheVROQxcZSMr1WAr3NWhVqa88XwGBKrrafZ6446tqS3n/7tz4cw7cZlHTqr7+3ErEwOuVolwpzapMOxCoQP8KOD2GzL4aGNgqyAml+uKVpGwTEWF2Rl5p/b6vlHXDyVBXCtmm+uu+DLsLEL09v8edrri6PA2mlQHmfPl1BzakLQj5d6SZdzUDoJWCIxCo5LpSfpUHlniYTYHx6Pfc65qtm6nSeoSK5/5j+kRJwaZnqjx+N/ldcbJ0noBAtVbAz5UHI5aiJHuz7xYkeaEuTPq1i3zpGZYzkyPyz/+U+62LIV0vJH1xbHC6+vyLgYFKgXWgwJWYe//VGoCZt5Xyc28roWYJLD++McZ+ePP+/j6GfWXkaYCT4q3CZJwmmIEKPa97PufvHh35TeBl66KyvxNV3lX6JTmt8qgMn/pGYM89j5k3X42ppKzTIlR6bK7sZ/Li0ax0vzP+W4l1da9qi7J+j4DgOfqU55UMpmhril5qrUA3ReDfonDZ86gC1wj49CvP3UFa0Uedp67ykg1gXdI9yUn67PFqdKDSG4mPWZTgGHL7YmCgM2AddYKT3gyY5Z0U9Cya4FEBghDWT9vGChCItIVs8ur1bFLsusd8/FpXXzcgSQFX0wT+jvpzlPKMv9+NOlBA4OkKOCnmjjgmxtg3pgJ5TOsKykGKe2YkPUuZ0LnK4nRVAgaVgtoSCagAwkp0YCsQmPH93slBEK97Oh2raICvD7i8vNxbK5AiA2M8/diWl8s8+ROxr6WTJGf39/d7ebl+WxlHKSpAmU7gReQRDL+3EnFI/HpbvZX8veg0waqS83QuoOmrWO4FJIPZCX2nDD1/F37R5eXlkwgAvThREh5eZz2q6QLy6UpdlJRlUg5Ms+KdzSIT6Vr3/71RqkOilKYDmzPg6nKWvIMkt+SbRIDpwCDJu0+ZkbgWRfJ3f3+/J6fuAT4+1tsJO81kr3qmU5SuUKv1Eikf3X+vsjqTUdeHXRqdVzKb1gV4RLaSnRRCd8fu6upqBy5S1FUypy3R7+7udvdElTO12pZJ13btRRvh5SYQNuONQDWN+0rP+jHleSi9CBhYBQGe9hClOjN6zM8X6yWPjcqoy4vKj+WPkUOiJCknHr0+OvcBlebfHJlX6xb0HNuMUQF+iyDx45QENCn3342SAfcwq8stn6vySWmYlv0/xrpCdGU9xtiFevlT2sfHxx3QlYdGBS+55QZI3dRSmguuQOdMXjpDl+RxtV1+J1oFDUl+06ZCBAOzKQKW4aCTAODDhw/j4uJifPjwYZcnIwI/fvzYbbU9Rp7OfC4lo145iLNn1Sa+hbJPqakcBwIsn4aetuildem7+WqhG9oEBpJnVHmvCVS40q7ykpKVIqMgulKeCQ3zT//5pasZWlXZaR6Lz/oCR/LJa1TGvkahGnQVMq2iEqvA4lelpFSTnHVGnuTyXC0SHKP3Phw4Kj2VcpoCI6jT9Jd/MIaAwCNgXVQoyZt7e+m59L+qs8snfyuKdQuYeE2a6dXV6Jby6hyv2VqBLjLg/DL95eXluLq6GldXV+Pjx4+7CMHHjx936QUEfvz4Mb5//76TQU4X0HiueOApWubOXOX4qQ6JHJhLNzNa5gBhjKc6NP083WvQs8FAMgxVuuq6Cw4VVNrycow1z7NDvYl88YovqDo7OxtXV1d7SkXKdcZPtXbA73kebkgqASUQUD5pqoLl+MY1vkgn1akCAH6tAgfvkVaUqHvuq8C1UpYr5O1OcMF77tmneiXvzJW+nqEyS+sCvC0qSl7RCkCcjektwMCvzfI/tLzXpuRtpjQ8T56oh/4dBKRwPqMDDjRZ1hhjb+3B1dXV+PDhw/j48eMODOi/DLY+xHV7ezsuLi52gODu7m55LHF6yNuDwGBFr1btmcrkdBT/600zv8c04o188ehA9iXk8tlggIq+ayxXJH6+CgSq8KLyYN4J7TmvyVNJK0M5jyXB1uDwiIF+DibGeGq0q7ZyRe71SG0t3mnMU1uzzRIgqZS/P5PSeLr3qEhFKwMqKVRerzwsN96kGdjzPJMiT3R+fr6LNKUQpvOXxlfihUpKio1Hr5fSu4Jk/i5DFUjYEl2qjH8CUBVYSJGv9wgIVuW2k60kt5wO8AgSgQCnABglZX6SF0UDZPivr6935zqOMXZTAzL8kp+rq6snzhyNeuXdV6++VtGENA4SAEnjWfVWOZQ5X19DHtgHtBcOpA8BslvTHyUysHI9/a8Ekr8xniqGmcfKfD0awAZn53ChFPPmSlMv1ztvNTpQ3a+UmYgDgsLnz3sIduY1JD4Sj9UgYNlVFOC9KdNVmrWhy2+lcDtgxjxIKXTL9k6LTXlMQE9yLuWkfNKYcJ4TEOA2slRqXr8EULpo2azNVuVpBlhTnr+arHZjOaUhyJw5YR45YFrqWObl+VxdXY3r6+u936dPn/YAwRj/XqD6/fv38f379508EhiwHhXYmdWfRn6MvDPrqk1LeROcJPDhkYkZwE/6o6PnANejRAY6w191nns+LmSuWJMHzzJ0rVLI5NWNPr3opAxZJue0GC7Tc1xslertbUdyZZmeo/L26QUP76fFh+RVStypEtBUr1lEqKvvW9Oh/FQgNv1PbdkZua48B7Uu9zTOlUdOHrQ4i+kT8F5ZoNgp6WNTZ8ira0lJ6poD2uco1Leg2Rh0nZt0b1o4qP+cIkgeenqOkQVFAz59+jQ+f/48Pn36tAMD19fXu8jA7e3tuLm5Gd++fRtj/DtScHNzE20C67baVz4uktw6cf2Y55XS0l65jnZg6oCgciKq+lXyeyi92ALCyvgngawUKCuZPPMU0kuNV3V4ZfhTPlrI4h4U+Wb6WcckJct6yHsjufF3T4fAxr1BgotkyBl6W6EtdVW57406EFtFBFxuk3JNde2UFkFqUjIJDNDDUH8rTfe8l3l/f/9EzphmFs3aShVAeW7+M2PfKdQuj/dAs7FTybHXbUX3pkgBQ/6V908QwH0JFBX49OnT+PLly/jy5cv4/Pnz+Pz58+46wcDXr1/H5eW/zZLAgPLyMZdA76yNEiDYStU4ZwSZZSTnTWVTz6zqDn/uWHRUMFAhrg6R+jnzIXUIyXlYbaBKEbAsetdaYKfrCpW6ok0GlcKb6sZjx38yGB4x8TJoQMiPD5BZ2YfQSwnua9BMmbry7BC+50sgNlPOUsS+QUtShIpacdprjP3okCJcM0PpculRuZWwOpWvK+IUPvWyZzyleyS2dXIGeP4e5bPqn628dnLrhjzJX4rgEgzQYPP1QYIBAYI//vhjDxTobYLv37+PDx8+7GT07u5ufPv2bW+xK/k+BLglXe36lDLp5EAgPav7KUrH40pkYNbPx5Tbo60ZcOYrAFCBgKriqyCAvGyhZAh1ZLkUGnlTviqV4aStgur1dIPRpWc0wKMmyku8y5hIUDV33AnhiuI9tN7vlSqErmMHDFI7evusAucKJJAoB3rGwYCI00MrXpVH3RgpSHLn7eX1TYBghRc33DOZnPHzdyLXAym072uRaPBdh/M+FxkSEPjbAh8/ftxNE3z58mX8+eef488//9xFCMYY4/v37zt9dHd3N75+/bp7/TC96VB53F07uE5dmQKobFgH9Lkux6fvqjGwFQiIjiXTB4OBhHSS8fdjda1D7fpfGaDET8VvVx/O8zjyk3LVfy6gUjpXfF0n+XREFx3glAT/875/JEnX2S5cgCZQQAPifTnzzmbXfiXlO5ObJF/VwK2AQMrbgWQFoP2anicwvbq62vvwFX+kFPrv+ikBw276wAF2FRFwpaz8El8+TqqyZ6DBAcqvIp8rVAHYDlxyYWqaGnB97RsRcTqAoEBAgGCA0wV//PHH+PPPP8eXL192YODm5mYHBP7666/dxkQsV+fdmicnl8cEyFfa1dtPeVe6muMv2QfaiQoI8P9KXZ8jz5vAQEJBOrKREgLtwqjMqwrdsTErw5NQr/OktO5NpXmeRA4IqMTc0IqINM/OznZAgmX6QhMeWRe2jY5pnUDqH7bBDE13YCwp5DSgUh7vidworCiF7ldFBfx5UYqWUaEmJcjFXI+PP3cKvLi4GHd3d3s7t1EhCTCy7u7p89jxnWSP39Ho3iboAEFyCLxvKvDc9ZnzvQLW3zMl4JnSpHQOAlzuPBSf9LoDAU0HcNEgXyfUOa/5gsIx/i0TighoZ0KPCFRgpQKnnV708+5asmuuU0V0yNzWiFfuPbA1MtBFZZ8DcJfBQKXYEtr0TksRgDTweV4N9s6DrnhzRa00jASMsb8ZxBi195PS6Pnz85/ventZFaXOTQCG1ztifiq7Uv4VVTzP+mU1/WtS1/6dd5DAVAV0U7Qrkd/317KoAH3HNylS/R9j7CJCekaRAikbggKBTg/vpw9ieRuQ9y4a4MqZbSilR+8pyWU3befGfYvyq4DBc5XoS9JW4FLp6SSvlDOXwzH2nRCmkywKCOj1QN/MSpEBgQDloetcSyA5TNMCzqe/2upgc2s/Vrpc16rx7mOfRl8ypbVlSkfeyPPqT1Q5zUkeVtvj4MiAG6wkZI7iyHwy+DNlVA2MCvX6nFZCcD7vRFRHz0qN2i1ySqDClSHnkpSvb1fJ5zggOyOT2sPzItEYpF937z0qzUNpFhFwg7Q6WEUO5sZ4CgB4La3G9tXU2oTl7OxsBwBSv6jMu7u7EvSkDxIlovfi7efyovSVciUwEA9prEmZ6jnP06nymFK6rUb2rYlt0qVJ1yr97MZMANOdEM+LgIDTAArr03AzOkDQQLlW2L9yECvd/vDwMC4vL/e+ZrjF+fA6prdqOLWq8tVWGq9srzGegoGHh4fdGKQdcKet0zEVrdqDFdoUGfDG89BRFxUYY5QGR/eYd6WEqwHRARKiWxE7IiFKojYvh5QiFM6j18UVmis5Cs1WYntKGJWP11motTP6MyDQRWi8zPeoeLcMJg7O5BlUgzcBgerIUCuBQVroJXmmYpSHpXuPjz+/ua6o1VZKhqFrJ5Xrz1GmXU7HGKVS78b+ikx1Y5NRAeqAVQX6mpTkqjtPcpp0JB07PefOCZ+hMeeGQim0zykDRiCke+7v78ft7e3OYN7d3Y37+/u4Bsr1KPUj73lfJhCZQHpFCUTx6Lqajt7d3d0OsCebVun+ztlYjeq6TZvRMhhICs8RW1KQZH7mdbIxdL5CKX3iMxF5SSulXRAr488QERfnbTXolYCzLL/GSEQl9OKnqjcH3goQqEBBRTOv5i1oC+KeDdKVumlM+PwsAYEiAAqrevjVt4cd46fhpZJ0OXDw7UC8mz7q1rN4GZUcJGfCy1ZZnL44O9v/PkK1PqYjyl4ax+8RpM6okrdk0F0PdvJLfeFRAzfwWhR4fX09Pn/+/AQMEDzww0QMq+tbBA8PD+Pbt2/j9vZ23N7e7gCB62DyI53n0wZjzPXRTDenqK6OleNL2fKpZH6/hpEwt3uuS7wPu6jWc8Hs5shAAgLuHYnYkSki0IV0KhRcVbgbBE4pKpHmLDsl2QlbAhDPNYTd4PfBkp4jUpRA8p30zuh3def5ezP2x6akXGeyRnKP4vz8fM/Q6381TeDKtONH5P3K6QB+qIppnSQ7nAbr2ih5ckk/UFkSpHC6gNEC0WzKoFOS1bVDvan3TMkhot72tH50PU+55HoBThMIxFLGOUXAyABD59pT4Nu3b+P79++7xbDJaxYQoFEVEKBcHNKPDgJ0LTm8Xk/KN3nw6MD5+dM3C6r+Y711/lLyeTAYmIVJXbFUBicZkwoIVNeqBl01ZOy4BBDSs6yXiMpNbeIKdItH42VXwKYDSgmcaSDRy/LpAtZ3VQCpTCv0+la0ZRCtGP0ZkneiV6wxQyOfFkn5/cqrq8p1AJAAgYP1Sj7J/8q8feKLypW8SzmqjxykdIDAefZx4jJcAfT3IqfPocqQp6OMKoGBgwUHAh0Y0DllWc/yk8WKmmp6QHpIbxH89ddfTwCBIl9jjD2jL297jKd6tVvbVVGSS7aVt4dPHRBIcB2YvnRLeZb8OhB3m5WAQAdcE8hdpU3TBC4gLmCiZIAdDHjaCpk6JUO1Qh62SUoxRS28rEr4WAYVpurhwtmBjpV6VAa3Mw563kFABYYqg14JYXf+lsp2xu/segUAVmXP01Kh+EprD7NysWBqS/alG/sEAvy8miZz/glqu3HJ/10bu8KlcuMqcaWRV+WvR3I8JJlNxr8bO79LdKADBDMg62CBCwb5aiCnCfQ/gQFOEwgMaKvhMX5+oEhgQIBA0wXqC04HSLa1HmaM/SlaykrVl0zvxIWDvrjXAZJHB8bY37FWr/8KvCQdvqU/k9PFeh4KcjdFBhwIVErKvY0x6q1MXRi9ghUq8sp6A8y8eFeKjtCSgfQ8mJfKJwhICrRTunqei78qYEFhUr8otEpiONDbreoblbUiXFuE+a1pxTj5teRtpetjzAGqA+hqgRWnC7ieIJWX+tB/CQSQ35lMsl4pEnYoUeGqTTQWWU9/PZLGP1G6nuR51fC/B9mtKBn07udTBLw+xtO9LySj3EDIvz6YwADffjk/P9+tJ3h8fNx9ppjn379/H9++fdsBga9fv47v37/vpjKdV40R1mOMn/q3evWwoi4KkBzhSg+oHSWfaeGv8lh1AlP/zmQ8PTujzZEBCQgrTiYqhZSiAqkiFfMJYJCSwaR34flK6STvycvsyJ9J9UjeFJW4/rtRSQqakQcf1ELJqQ3pMareHhVgXqyL7juYm7XPr+BdpbbaolxnefGez716mNUVqIdw3QhKhrXYSorVj/SwXOY9JN8R5diBAdOw3bxtqrC1qPJ6OuLY7wBCAm1VlMD5fm/kQKZyoGik/L+T6yyPXvmiQQEAyS83H6IRJJiV3tHGWHd3d+Pm5mb3+/bt27i5uRlfv34dNzc3O9CQ+FJ+9O41pXR29nN3Tu4SWxlgz8fHYLVAvrIvqjMjA+mbITO+vM8EiDsH7VBaBgNpbsQ9lG5dwAwIOPFZH6zdoCUvEgw3nFVUwPP2chJQ8Homj3GFmNanNHxuid6RK9SqXFfeVT2TUFPxsL6dEp3V8T1Q1U4J7bun0Bkw9guNv3tYDLsKDLj3IfLokuTXF4IS5Pm5jwmfSlDeVdukqIArQx9rTJfaj+0tZZeUY3IqKnmqPKRD5fYtqfMCdUwAtbrGewm40fBxnYCmBvznUS3fmtj1ml4f1FsDt7e3OwDw/fv33VHnArKMehIM6D/rKrkf4+fY1DSTt6eDVPHs49enAZhXcs6YfwITctxWHWQHAvp/TBk+KDLgEYEKCMwiApVn5ca1M9C8Tg9hjP3NH9SR7sknpLaFEuBxxZPQnFN1X/xSQfK1GuXvA49ggnzSgHi/iQ8eyUcCeTz6efr/Xih5Un5/9nPvNnlWrlQ5LeBeFSNuVDaPj/uvDpI4/tK6AYIBRgfGGE+e0TXx37WPT4HNjLM/q+e4W6ePQ1f+nS6hsUh6I7Wbypile28gdkYzmVUaf8bBgaICaXpAUQG++uqfGWa/SufI0H///n0HBhQV4HUtIEyvGIpHn+8nGKANEEnek7xW4zktDkxGX+TG250B17lpS2Lxk5xLBwZe9nNoExgganJKhiUZGZIrVUeyKzQzoFI27t2O0X9speOhi1Dweqdoqo6kECcAozoJEBDNjvFzFy0KUVqxOsbYG2TJk/L/FSBw8PMrAICV+8nwr8hniiT4SmyGXn19AMugUmDbzto48cgIE8kB8hg5CpDyT+AhAVWWRcNPpZlkx6dJ9OO6mQqUVrK4RT7fExBY4aWT4QQIHPT5HDcBgU9rcVogRa74FginrOT1a61AAgiKIMimuBdMw6z7rE+Kruq5lA/HXIpeiSogkHSoeON0gQCAAJLWPdB2JmPvdXM9dAz9u2mawIVnFgWYGcIVADCLClC5UBgdAFTG148VaPH/Kw2evGTyyLzdqxmjBwSsm9JVqF/5rvZRGiBKm6IoqV5V+e+dZl6V91cHcvVMCrtS6XZhyDGeGjZ6/oxsJZly5UXP4jlhRh9TlFVPwzHq3lwav86viMBqjLG3DbPL4CoQr8DsewEBlW7sdGgnw25gHBwQxFJe08eGfNHrGE8jtAQGMvC+rsXXuDAioCkCGc/ktHg9xnjqFPFtlNSe1ULdFPWr+sTlUGnVnowMcNwy8kvdrh/HhvflMXXqQdsRj3EYEEiK1BuO+XdUebL0er3Bqg70/xVPqbyUTwdakqKpyuMAS0a5QoYV+RxxigokpUIiEq/qn+r+ltT1YWq3mTLtlLOHGnVMWwz7a4RJqTvJs1AfrG4exeePPde4hby9O6CudAQAVJruFbLdUjkdpXTvCRSQOp4qeZ1N+zhorKa5UuSAIJAGToaMYEBGPv0cIPjal87esF6qL22RvmHAnQDTMzTe/D/GT8Aw0wWqP6Nal5eXu3qoLdU2nAYTvyLdZ5u+FCDYvB0xmUzn6f8Y40njpU7w9Kt5d/eI1rpBNDPSYzwNhSYjnrw43e8AgVM3L0WqwmHVvBKf64jt5XlVnpeDQZeRtwYFiSrwk5B4l8cYT0PZbvjTroIzIMB2I5DjWwS+gJDpqn7WuEth/lQ3nT/XQHYOgOorotw5KNDrhmM83Vq70lOrwIBp3ovMJt2UHJcEAtyo+XmSX11Pq+gd6IocCOhcRtC/O5AAAa9Tvgli05gY42lfs15jjL0wfdLt/Oma0qX1PMx7BaARFAhQafog1U11qkDADBBsBQqbvlroBSTln5B1pQBmnlBlWBNxYFTpDh3YiT9unqE6UCg7o8h8Zx79FsWbFDoHTcVb5R2LqqmBDqm/N2V6CCVg4JSMTVorQFDQrT+ovAMauyqaU8kKFRyVj57tQAPz0PP87zz4tS1U8SGjlEivj3kfVTKrNBWQfW/y2rVrB2TdqDuYqsqpQETympOD6IaZr666x9/pEOXVvf7N/wQFrJNeLXT51/Pkn3Wi8a+AANvSwTvtgfdJ154OgKsxVIHyzkmf0aZpAhWQjMlqNGD284qxrM5gdoqoapStyio9w/dYD8lvtawu706JOYLtyuC11N7JIHWAQM/MeHwLWu2rFUBAolfhgMAXD3qINbVRUoBV2LSKCtBTS8qx8y4q8gWGHailDKZzAtZqnEtxsl38/XJu1sW2InWA4L3Tiv5LBp1gMOWVAEP1Y1lq3/Pz8ydGW+2+MqXlALfzcpPu8bUjysMdHcqQR5BYN6+nt+UMyOs82STXCWo/viHmC259uth5Y/s8h5bBACs38wZF7ICEOHnPy3Il5/cr/njsiGlWBlmFDqWUqKzTlqnJKJLXipcZCKAnxLlU8crFKVUenpe3IXnkYE+Dk3n6+VtRBW48Dc/TgFt5zpWpTxH4WgERDSL7Kik4Gnm2rxtan2fX5ie+V7qfO08qS3l1lMKo1Th3ohxVilTE3ecqA8AFWeSPURGXjfcgr6SZo5PSunH3cwJWEeXWv49BIOCA7OFh/5VVN+yUq8p7r6YfaBhlvNV/lR5SWTymtkzjPfHQTZOQXFe6/mTbCQToyKkU6my2G58XQFA7C4w9V4Y3TxNUCt+vJ+Qi4ao63zuXnoIritTRPPr1qh7eecw7pXFFlzwrB03OP9uL/MyUZZU2KTNX5J037+m9/arnuvxSnm+paFfathrgXr+UF5Uk5cSViT9bGdfUNw7IEp88kh8CAq+Hn1MBMQ8CkS2k5zi/2uUjRedjjfe1GIw8p8iA8/ErU5K7BACS8XdDyHZ14+vTW3ye8iGvX9e1W6ADsjHGk+cYMfB1IR7NYH+63ltZI9ONCx3d40/t5o5sR5RfjT2CczmQaue0uFHt5zoi6aVkE7fS5mmCDll5Z1Eh6n1Vf6+aFdVrJBIWKg33lrzyqSE8TerA6rnqnkhCwS9ndQPg8fExhnYTqKoEbeZdsTyvH+9VYblUXxfMLWCgyuetyPs1Kcd07r+UbozsaSUFR6XLfKv272S0MhAyqASs7tVRXqWcXIYcHHgbMmLQ8VSlTeQfKUrggfVjG7thYT2SPvA6JT321iC26uP0vwICKUKT0iYgkN4YUESAbef7Aui6OxTS8WlDoTQ22a8i6VN61WmsVIa1a9NKjmf62ctLclTpgxQxT3xL5gk2XI4rfma0GQzM0jiTqqTmSq+vr/feUaWAaetJCZk6WZXqvCEf0NW9VJcVlMeQYyU0VGCuRPnhDPKSylLdGUauFCjL4CBUWobu0nRLZ8BdkCvDvwoC3kqprsiu0s1AAfPjoGVYkXOOyeNICsKBI/srTR1QCbp35H2dFCDTMPRKT81BQJKh2bRBIi/XySMILvvORzeeE8iqwD71l4OG9wRm/Vpn3HXdvW33cGfrBMb42e56M8AdNl0bI39zRf9lyPltFOdfIKTaJIu6x6MMnpbk4yKBQT7rMlHpuupepXtmgIy2ykFuda2S01X9d/CagYoSEFBU4Pr6enz+/HnvC1eq+O3t7bi8vNztQKVQoMpzT8R5qnhdrZt4rzralSOpmkNKQKBCuR15/qlu1WYaPkiSIa+oAl8VCFjJ8z1QJxuV4a/ycKXr8u/5UaHquRQKFLnh68BYUkgJ3Ig8DEuijCaZ7wwkx19XN1f0BMIOCLaMl5lynD37HuV3Bngq2WP0lc4KzzmVtQoGCNLUj5WnnwCwA1jxN4swuZw7YK5shSgBTeXDaSbW2R27NDXMtOQ9gcqkH1I/OlhO/Vzpq5lNS7R5zUBXgCtI/TQ9IDDw5cuXXYRAFb65uXli9NRZREq6TqTGyidKiG8LUei0OYSHTVl/nWugsFPZRi44M/J01Twsr7vHVxn1Wf1Xn3mPinRGPqB4nfd5ze/P8pUHw3D8ytfUZrKx0t7uDfqzrkQpO66UOl6TAqJcrhLBA1/hJV8qb1XeqIj17HNAw2tRkku/z3QVGFUaXksRLAICf56RWgJJ6UPuFihim3vom89SXry+lFP/Vftr8DnPiwDeDbs7fozyJuPv5x5NmBHb36cJZtGB9OvAyIw2TRMkZJOQH4GA5p6ur6/Hly9fxp9//rkDA4oMaFpAUwTaUESGNw36Fa+EjbJCqcPHGE+EwqcMiCqTIp15z0lw0txeIjf8Su+IuULiMyHnNed9pozfq4IlJQCQEDfTJjTOEOwY/cJAhuJn5Tw+Pj4xwK5E07vYXjdOyVHxuedCpaPzbqzNDP3WaQTKLsG0g4pU3y5PT+OK05XnIcr0JWkGVCmDLosy/Eyfzr2vqPPV3npzgDKkfhAYcF3hoELX+fPXDsfY37DIjb5vUsTXCwkWU5s52GSESnLmY4FHzyNdc0ehM+beF8zDI8mVzvD+SvWe0UELCF2BUJAolFwnoIiAg4Exxm4VqtYMcA9qVlwgwQ2bo7IVWhnkRJGVUMw6kW3HfP0n8gG5okwTIGD5nUJPwiMeV3leeb669pbkBtgHMK9XP58icEUskpLSdI6/fuqLtFg+86RiUD+cn58/UWiUWX9vWmm2eNWzZ6rr1fRV9Yw7GQ6mx/gpz76hTQUOOtl3QJxAwRa98hI0K9vlMcmiG3s/d3kmqY393P/LQOu6jmms0NvXUcadmxPpp/UIaadCj7R5dMLrqfu+54anY9v7lN8MBLPOXEgsG6brihZ6etWDY9mdbx/n/Ln8rtDm7Yil1CqEov/8wAWjAv/4xz/Gly9fxsePH3eev75b7fNbjA48PDzsXsHwcg+p+NbB3Sm0Li+/NxOilN8Kr92UQQJNlWFfoS3t/CuQy6+O3fmsj9TmUlpJySqN72TWoXuWU4VK3WOvolEdqPPIQ6Ikl1W0wMFqRVR43Iilm5pww+I8prbTswkQKO0heuXYlHjjPTf8POd/pvd0bKPklWvtlhsupaUR7vQJx4DLH42+fre3t+PHjx97TiJ5oqxXMs72o6MkQH5I5CqBBYIG//muj9ogS7KtNC7rHplz3ZNssOumLXK76auFbBBnQIV6VEDfwf78+fP4448/xh9//DE+ffq0AwPqVH4K8+rq6ok3S6VEQCBg4sJ1yOCtBCnllxQhFVnlubhxXvViZmlc2EVpwCj9zPupjIfns8L3W4KHVWXug2v286kwKgqOFykwJ2064p6T86NzHquIAJUSFTt5EakvKac8JkXLEKyPjQoIeLks3+tLUMs1Fq7gHGwloOu8JfodQK3LZHLOZuSgSu16d3e36xfKq56hDk4RSP6nrna9JP3oXy7k0QEKZZU6Nck4gZ9HUhUl4DMaWw5E5Zz62HQAQJ1QbX9MMMA8xujX7XSggGVsle1lMMAKiQFWSkwI5XBfgevr6/Hp06fx6dOn3fnV1dWOeVXcjUyFeDw0sqXSxxr8EjofDJ7GX+07FKTMBjTTJD50fQUszXhMyNOveb+sKKS3oAplVz9/ll5X2juAJBmgUqMST+2VjDuVXhcdSGCOfIj4nCvVpGATrcp1MhZuXFjv9FwFSNKvI1egz1Gkr0EO4P1IWeIbAgkkkNjH/EgQ3yTQfiqUeRpVUZqmZDlK47sVEgw4CNC1JOt0EmdyyrZLUQLx5h8QcqfQwRa9e999lDuNOpDiepiqbxzws9zql3TyCm2aJlCFOIchcjCgbVe1pwA3G1I+Y4wnn7bsBnF1PSkON0aH5OlKwpUPy0ivSVFhV4u8KmNKgOHtPEb/wZhD61eR85iM1oryfI8KNlEHABK50k0rsWmgpPSSwWZevOYh0tvb272QKudTqSCd3LgnYFEBgG48rYLyLl1q6+RN6TgDKwkUbAULiYfXpAqEVkcHBU6ULQeTmsNW5FUAVe2bphX8XFQBtgRcNR4o3/5z/ZkcK/egeT3JrutXtgGBANsxtTGBQLftuEck0voi593/e/0cmLjO2SK3m8FARQQDDJN4hdWhOmdIqPOcn2NIVkBBVZ8KWLixTp6LK1jWvfOQnNcObVegYIVWFHh3v3p+a7TmrWklCuBp+b9L4yBPhjqBQoKBBLSpKN34uyev50ieJsmpy2cFGCsvNfV9p5w7b5VKzUO/HFPevr+S7G2lBAw6ufX/0leVXLrsqp3TZlpKkwACdWJyjHwRoP9PICBFvFJdV9enpDaR3OlZn+9nO6s9CATo+Oo/X49V3vywVqW7Z7o3ATJPs2UsHLRmIBEHtwsaF4fc3t6OMX4aNnk4VGodIHCFViH9pBCTchTPlaeTlLqjxaSQUri1AzveZo5aKaAvRa7wV4HALBrxqyrnylNNhnGM+hPSHkHSGJHyo2x4iJdl0XNyIJB4drmmoa+AAK+LKmUlRcj83DMZ4+c8K/NdVVSuqJlvBXo62qIgfyW5rQwCdQnlzg1m0tsdGFDabjrCwUBaAOhb0KfzCsSK0ny6xpLquKrXPC3bl+dcG8SIwNXV1V40XGCAYIs20Td1Ih8rtMWRmdEyGNCXzqjExMwYORykKYCbm5vxv//7v7u5mA8fPuwa6P7+ftzc3OwAgaNFf8eUwuGgQGWLVgCBrlXeTzXAHh4e9haT6LrPXzkgcB5cEDRQGXkYI+9yuNLpVH7MN7VDlX/F7+oAew/kdXaQVw2o1cHVebjq+5RGMuSfM01emHtOHh1QeVKEqa9d4VRgwNM5MKnGCeXYZSUB7o7ckDHvBLIrx4D5vXc53UKV0XLw5u1PvUKgyQ8N0TPW3LaDAZ8S014WvoJe/eMggLJMnU6dL/69fm60fQGgytUzSS5JBEv6n0Cw119HRcO5cP7Dhw+7a4+P//52g/KWbXQwJerWCpCP6p7aYQv43bSAUJmrQ32LXZE6lav+Rff39+Pjx497m6BwIwuhLUdGbvAPMf4zr7wy/CzT80seS3qu4sHBBI/kx4WzQ68etejqt0JJ6LwPtgjdW9Fs8KT01S8tFEyK2KeR0jSPFJ9AgK7p7RoaRZ92SgY2eUYECJWhrKYIWA9vr+Rh8sh8K9DglMK21RoIJ9c3CegfIqdvJdupPflf55UMS6507jpE7S+vVa8R8robLOoZLphj/lpwrrbnAkB/TdDBqOtMAgARo01VvSmbLp8zZ2h12pURAgECRQQEBuRIqx/u7+/33p4jEFiZjucx6SDWp3JCEi2DgQ8fPuwESxVwAeKArcIcP3782IEB7UCowV6FSRhWSQJTKbfuPCkMv54auTPCFQ+dR9J1lPNahW7pPZFPGgDutJWUhw++1E6JJ17vAMFbemXe136PBp4/b0//VfmwHCpc97rGGHufLvXVyFJobtQZIWM5VVhUgELjNbWJK1zlyxXPFSBQGaJUPq9XslKBj0Td2E+UZJr/E0/PAQ/HIpe1pJ8qsDrG/rbB3oepXnrdm8+r33hN/wUWuIUxn1GbpjUBHA802Kwn9ZfzXdkLr7f+szz2rcuqy7ZHdRNYESDg2gGCAbWtIjBpXx3Ww+3fjJJeqnR1RZsiA1WHEeW7wvNGvL+/3+0+SEAgxMgpCCo+VtB/pFkkYMWYVwCgMgBjjCdGlwNhtTNWKSnJahrBBaKK5pA6nmcGv7rWeS+vRWkA87+fVwBRtILi3QOWYvR0UtJaeEuAQCPqAEBKmf1Cr8kVoHvKDlScqlCpg6XqGZbvnpqer7x+TpGl6xVVQCOl0700Vt8SBJAqneUGIPUHIwN+XQZSfZFer3NQynZS9ErPyPkggBU/Pr0rcjArXjgFyw8IpTE1Rv7oVnKmWG+Xy06ePT2BOZ9VtIRvFAgMjDF2/xUZp51w6sCOaOakbKHNOxCO8TQElJTbGBndyOgrOqCf7vlCQiorgo1ZZGCFKmU/8wiJkr1tXKhfQrlQoCnolVCIn2oeaitVwpuud+DhNanjISnTQwaVxoJPc1GWU3SAzylSIA+K87AiB9rkveKbipjyye1R0xQGyevlCj8tHlM+VKi87uMlUZoyZJ3YBm4AZv3JMfTWYDXRjKcV2a0AYJVmjP3X7HQ/led9yLSpjEo/0FkhQElrAZSPy1QlQ5ymq4CAp2c+ytdBkzZk8jUOqpev/3l8fNx7yy5FBkjVlJ7SJxl3gLuFNn+oSEQDQ/TowjPG2AtP05ATDKiTuLDEjb/yTUBgdlypH+uZAIELiXeGK7UO9R1CLrgrnZ2ATvW8D/h0bwtxoL8HQNDRDPw5EEygUOTeiZSEf5KbIUGOJ8o452wrcMnrPsXBMce1CVrPo3zEm8awgxVX2k70BtmeusdoACkZk9SOK9dVroOkzuN35fke5dR5r/RTR6vGQTKYgAHlU+V6hIH8ugxW9Urh/25cVY4hefPyPLrmdUl8pfJdRtP3ckgcj4yacEynqC552eLIzOS9o2UwUAkTG7eb53CQQAUlYVM6bjZBJeZ5Hmr4x8iN6P+TERhjX/Hx1RAdqdx1fVXoKr46gXHiYCUiZlTgpRVfUspbkeqxaCsgPGaZVFr673OQup4Wznq4tAN0vubBX1vivC0VB8tWWQyFOtFT0rhVOf6fdZQXRRnvpqv4fFJyXei0owSCfxXg6rx3dWUkYDallYj9m9qE7eUAV7y5oacuZTQz9YHrVZZDWaKh79qJ/KWogpNPd+nodUwLIr0NHAy4U/EcSraKPK/mvwwGGCJxVOYgwMNFFTMPDw+7KQKRbz40UxQzopAkJdoZf0dtBAGr3qGM8EqHuPCvAgFXYj74E6JdUXjH8MzeE1HBrHpKzyGfFiAQSEqFUwW6pnw0dZAUiJ9z3pL3ZPA9KiD53GKY0//K01EabbTCNSscm1xToGvJKIgccK9S4q0CHK8hJx1VZXdGhABvNf9Knqr8vY18fYf6mNeUN6c4Xc93fe7AQ+Wsgj9GD3z8pTUHqS0Y3aLs3t3d7b6pQ0CQHDrKeiXbiSq9mmzZ7JlEy2BAXqXm9D2cn5SdM+wdyUWJXMHa5cG8qiPT8LmUj3dM6jB6O66MXfFR0AkEZp1SAYGKKo9N/BziDazw+V4N/Sq9BCDoFrjNgADPuRWqX/ephBWezs7Odt8AGePpJ2a57SxByBi1157GEkGApvzcuKtcjXMfmxX4T2N7hbyPK2Pf6ZD3SpU+20Lu5PD6KrksS+8oH58WYhvTHvBet3ZE6XhOUJmeS8ZRvwQMkqFP4JbRNQFdvSXgW4RXcpWcPu+LGThP8pvafIWWwYC+GqWG4McjfOvIVDgb7uzs7EljCsmmHacYoknXRBUA4X8/JlTF69xy0gdPhcKqPBOfCZFXaJLPV53M0NtKNCC1X9em1fUVIHYMw/scOoYSTVQZaAKAZPy9DdWvvM98k7eXwKmOvjc6FR3HW9cOLus+FaFy+H61v5cufcGtx11GfepC9SXfiU8Cjm4sEqR7e3cK8z2BgyS/lS5bNeru/CRZWiXXPTS2ic8x9nW6T6+uEPOtIgo05i5bblMcHHQR1vPz891UtiJxlHNGCxz8VPVYJdfVnRyv5r0MBm5vb3dAQEifO0r59EHFjKMwCqLud8rg0MFZNUgCAb4eQMeE3EguKF7PKlIx43PWmTRGVfvQQ+U1HV24kqGqzjshf6+UABv/H0IJDHnbJiCQQAANvzx2RgwcRFftT5l1hZ/mMBUlqCJank5K8MOHD7sfV0yP8W/5vL29LQGxpkFU/8pLq6YEZgrWwXfqJ/5/bwBgphNm7eEhacpAJfszIJCiKa6H0hhLXnY1LeyRg4pSFIL3vJ7Os4Nkr1tF5NU/rETgq2jYbFF8BYJcL8xk81D5XQYDvoOUzn1L1C4q4J2myul1KlZa+flWq12Fu0GTUKMPqIQmBQS4W1RHHBDuffmilcSnD8g00NPASSHlTpC7KEtn+Ls8PL8Orb8HSvx4/ySlQK9n5s1wAHu+Tp1sJa9EssJQpBQPpwBS3VxBp4+KuYInAEgRAW3BymiE8lG7UUYo675+wp0GHtM9fyUtyWHqr2QQ2d8zg/AWlIBABw6qPKqpgjH2+4N7XXRpBU6r8DuB5xi9U+FjJoEiOlmdAUzARHm7E+qyQ/7SWFe7yND7lxZ1fWagK51ePVPp7qr+K7RpmoDGm2BAR1d2yZCxsdnAadBJgHznvJmRS+RodNZAFJ7ZayCOMDlo/LXK5B0dYiw748NB6el9kDk65TXPt/tf0VYl9dpUeUYiVzRJ8RzTi3R+HFzqvnthGo+cj18pi2VKWVNOOT2WPsrCnz7Qwr0R1FY+VSHgQjDAH5U2DYrq5ga9A9jVvZlz8R5odcy4PDKy1OnYLeQG3r1uGks30p1RI8/+E//pI0luyLtyxuijfuQ3TZ11Bt0BDI8cW2OMPTBdyWdVRpra8DZMtCrXmxYQPj4+7kUCvOMqg87zyqBvEdQVw+o0Q2X+vOff8a7/sw19fIDMQIAr/Fm9tnozK6iyS+eDcDWftybvS+9T/++KlkbKDVbyrF2JMh8RvXIqCl+8SqLyZaRC4FzRNi7+JZD3flUZ7gExSkbj//Hjx/Hx48c9MKDIgANn335V5bKNOkpRxY6ouI9h6N9Sdr0uz8mnIncemN7HNo2/iECSTtAY44kzJ0rjI4EBpU2gnXLqfCZnK9kOr2cF9nVvFgl0e+Jjmz8vo/q/NR1pVWY2TROowxIY8AZbYY4KzjuHgz8JQTLIhwzYZJwTb1KGruQcAa5SJ5QVnyzvGJTASSVs1eD41agCAhUoWCH1f+WpJiBA8nCty1v3ipiHZQXY9Soi60SPJRngJP/0bDQ1ICBwfX09rq+vnwACTqlpDAkMiA/f88DbxXmjwq9opqhXKQGJ5xjhY9Bzyq+mDF1vOSBQvVN7+mJDbmglQOBpBRIYMVI5CRDQOHPqk/JIPZ1Ad4rYivy6eHL95lNKnaFmNMPLcv3iOiE5Viv6t3PEttjFTfsMpJ93QCW0ialkZFWWOlrCU4WfDvWGE3+JN/fWGDblc0nZd+iR56sDvTMqq0ZMA7IDAJ7/TCA7Je6I/r3QDAh0pH5IoVfvc3o4M0NGvmbl8zmCEY4hjU/uOZ8UzYyfMX6+naDFgh8/fhyfPn3aAwT8jjvXF5ydnY3v37/vRS8IBvh2QSdLTitTBStt+Hcg95LT2O8Mv6iSe+loyRoBLJ2qtFU3p5kZLWC6JI+ui/UM14907eHjLC1EdCdsRW5mujEBFgdEVZkv6YhtAgPeWWJqplRoWBOycyOrTknC4LRi3DuDS+VboU55Or4wSu3iea8ITQJGPkCrweltnoAAw8tC6q44kwdU8Zeuz9JTRt4DEOgAwBZjTJrNJVYhTPKk+65cU1m87v1IxUoZJjjtgDzLplxL/v177dfX1+PLly/j8+fPOzCgj5DxS3ZnZ2fj5uZmjDGevI99e3vbLpxkW6Sx5nKd+J+BXqVJ5++VnjOeZDB1LvIIQiWvPiWma3TiSHI+uOU1ZdbtSgdYZSv4I78+ZS2HsqoTHT7l7fltbWuvD7dz9qg60yaAcAilOq7QMhjwzKmIkkJNht9XI0vBeDiUldHAdsHZ6uEr34SGEwAQP4lvz79bK+CgqTOaHu2o8quAQLXIkUqyKqsCJ36eqGrflfq8FqX2SCB1Rt5mOk9zrl1EwKMJlH0pVx8PCRz6gkEqQPJJgL3V+1a+PhZ8ukCgQB8hOzs72+0wenFxMW5ubvY+W878xUsHUrz91FZbpgZWIggJLL9XWpHZJJseKVC67nnKexUdYP7UVQ8PD7uv96Vp1gRSaV+SDRHorPLy/Sw8suzt6LbC60m7N+sDAnP+0psGDgI6qmTT9a7zskKbPlSkozdMAgP+nD/L+UQZ3mSYOm/OqTKSnsYbjfny40lcPU2e01zPGE9Dwh5FcT6Tsa0U0MwYc4D5AE3zWDOQ4jx6mgq5J97eCzlw7X5biP2f7lWGjcrTv3aokGu1MZB7ywk8uFJ1ftJ7z85rikacn5/v1gdcX1+PP/74Y/zjH/8Yf/755/jy5csuOiCZvL+/H//85z/H169fx8ePH3dj3Y2Ae0wz2gIIVuXV89b5W5MbsBWwUoFVtX0y6MwzgVDqQHcuGB2g7iMQ0H1GBxwIkBcd3W7wrRZ+FZAGWLtqcmdN9/Q9Qp3acKVvdFQkgBttaY+e+/v78f3793F7ezu+f/++t1NhknnX5x7xSoDG+20LPRsMeJgu/djgSsdOrTzZ6r8oGayOkkFLyNaFja9LjfHzvVvm5x1QKabEa/I2q7qwnGTcfFGN6qNB6K868nyrF1RFEypQ91bkdX0OCHCFPMZ4ohhFHhlw4OwK2kHF2dnPqBPTMY3uURmO8TM068/PxoyPaS+XR3lnmi74xz/+Mf7jP/5jfP78eQcGHh8fx/fv38f9/f3uOkOxDgS4ZbJTmk7wNmMbOMjpPCmvXyXHr01Jx4zxVA49XZJl9ikNPKkCVXxGwLNK53qFUxIOBpSG22RX40WySSfNowOSIUUFUt+vRJFcB6/aFsnv3d3d+P79+26tjDYgur29Hd++fdvd03V/NZ/t6QDG9Szb6jlye9AnjFWgdxTPHQhU0wR8lhWn56N8qQyqEGxnTH0wJR65CIpggF4XEa+/aqkyaIBXPB0fQDPUT6qmB9hW5FvldSAqle/XqjTKcxXUvQZtAQCpjjPeD40KJCBYhWCd36TUGSEgDylMnIxwFxlwAK/xoujAf/zHf4z//M//HF++fBkfPnzYyf7Xr1/Ht2/f9tYTdHIq/kiV8Up1Yr23gtzV/n4PNIsKJCPiz3o9k15l26vv+CEipvMoFseAjGXawG21j9zpodOmcrTxltet2/PFefCIBSMX7giq3e7u7sbFxcVuHYzGCh2x29vbcXNzswMEAgNVdMTlme3gfeh2Y6sMHxQZcKOcBC4pXV9H4HmmfGioZ8KfzlfqRcSZkKdCURQQlZOEwhVq5411HbramQk9H0uZVaBklce39KoqqoDsLNJRUULj7rE6efid/5NXTiXrIIBhWU0rzIhySx7pobENklHVuLy8vNxbO6C3DKQAHx4edq8cuiEgKBEvPo9ahbOr+hxq/A8Bga9Bhyp3PZsMvoNRl+GZg9CBs0pu9dVKHelUVjoygXbXc25X9Dy/kMl8Un+n+qc5fwKBtJfC3d3djkfe01hQxODbt2/j5uZm3N7exkWFbINE3b0O5HS0eQFh1TlsTD/yuTT/SPIwFT33pEDHWJs/S/y7QAkASMExOpA8/FSe0nGu1wUw8boSGUjtWdWxotX52EMVq555D0pU1AHUjpLX7nXzvkoGturHNI87Ro4aiNwwcjxI5lz2WHeWn4jjLylmjhOu6E57D1xcXIy7u7u9nQmT4q7aSeTtktomAfBZVKADAM/1sl6Cko5YfW7lGW+r1O6S2ZmO4XNp2kvleV5JLxLo+rRSBVqSrDtgnEWaEhBwZ89BgcAAy1OkQlELRQf47QLlz/byNqmi4ax3em5VTpbBADu2UqiV4vF0Dgj86AaV0QEnN86zwe8g4Ozs6aJB/tdPaWcClOohBb4CWjollJRBakumofD7efp19VpVkIeAlNegDgDMQE9SpmmtQDJIXZ4+jztG/Y32DghI0WrMKGyaDHrKd0YcN74dsXYe9L0GNF3hwMGnCVmGtyHJr7uxUT23AFiVW4Hxt5bZVBcHqav5dHXp8ktOWNI1nh+nSUUeuZKer+okmacdoJzL22YdqpB+8uir9lU6nyZgBMvbJpUnAKDx+fDwsPdarQCB62AHHB2/7IPUx0ePDCQwkJCfjgkw8HymgDwS0IEBN3y8J3IjfXa2/xGi9KMHxLIY/kyd6Gsf9JwLO48zkMB6sNM1mNhOK5RAQldOast0bcb7W1ACnAmkkpLH7/WuwGEywjP+unUFbiTTWoExfn7VkOMhARbyWHlIiW+CcgcC7v0rj5kXR0pTcGwj76vkQaW27wBCkvP3BgjIl19L1Mn1jCo95FGsNB6q5ySrMoiUD+nSirgGRs/K0+5sAr35tC4myYg/T/mlDPtiR44zghA9py926tn0VUPnjWXMwO7MUTt6ZEA067wZqXIUDkYARA4w5JGkBR1EZF6WSPnQK0nrA+jV8E0HR2xEhr6ghLxz0KSBljy3SgFVoKoCXKsAY4WSIuoiAM8Rypeg1D5Onfxw4Hf1qAzSIZTmzR0kU9aSUaciHuPn1/3GGHvKJykYHVPf+3vTd3d34+bmZlxeXo67u7vd/gK3t7fjn//85/if//mf8X//93/j27dvuwVTyePxscR7FY+epvKkZoDA8/Q6vwUlWUo6opPrreOOuiV59+SN/IzxFLAyXVp0SGOf8u/6mMZZ8qb7Mt4pFJ/m5d3g+nQEwYEba7YX1+9ojBC86zoXDnI8kLcEjme6ZWvEiHTQpkOHUlJcHiIS0btOXzxjGqVzFMU8aTRp6D0awAWD9MgeHx/3EBw/VekhJBE7hPXx+2lgO/+8V6VN2zrPFIF7RBUl72mW71spUKdZlIqUvNEtQCiRG5pDvE16+Bo/FSCgYnRZoQdBoy6ZVn4+73t5efnkm+18j1qvTI0x9l4rvLm5Gf/zP/8z/t//+3/jX//61/j27dvu3Wp6XKyjh0dXPd0Z0O6oktf3FB0guSx3NAPu3fWVSGMyqH7dZZXedJWn+GZEQYafMii9rbQ0qv5JYRpy8cPxwHGRQIEbZwfsnNbwtTs+3SCeZEMYHUjRhy1OxqtEBpxmzHmDVWlkmMf4KYD0YtRhWkSiD7F4p3ReBA1mBQgYCeC7n0JwFCr3Zpx8QHGKhUpZ/M48ajdqXPyo+0TkvmaB+VDpVoqw8s6c74o837dSqFX7iaq6HMJ7l27Vk6vKT4BgjJ+ve/lq7THGzsBrjI3xdCOqrg+V7u7ubic3vuhW4+jbt2+7VwrHGDsP6F//+tf47//+7/Hf//3f45///Of466+/xs3NzRNva0tbdpGD1J+doe/Kc3l/D+SGId2nI+Pjf5UqZ0r5dlQZeurqFCXwtORFsqdpAr4CLlkk4CbYpXfvuptHBwMEBNU0gdeN45PRED5P4++vFqboxazPSd7PrwIGusEn6sJMJJ9bT1EAdo4LvIMBJwqTAwFfHa3yEpJLYSdHm10dE0p2Pqs26K4TECSPQeVyAQ/nkjswQIXog43/0/Pd/dekmXfv7bBq1Md4utp6y7NV2ooPV6T0asiHxglBg9L7FJcrSQ/Vq604HaA3CLghl7YbpiK8vb0d//d//zf+9a9/jX/+8597YEDvWXP8zmgr+FzxoFbyfCsg631wCM088GPUzXVaMvR0tCQjLp/JULMMd3DkpDkYEPFrux6CV3ks18eG7rmRdgc0RVK4xwDLFE9VVMABcgcGVqJDLwYGKqM78y7YeWLQX71zwfTVxipHeXCjCd2jEnXFkCIDBAZciEcjz3BOt7f0zJBQkFIHp+e2djaBAQ0TdwHzLW4rT6qLXLDcyuin+29JKdpSUcfzSn0SeEogrso/nfOZappA4clqumyM8UTGWU5SdgrPChDoc8TcVlgRAG07S0V9c3Mz/vrrr/G///u/46+//hrfvn3bW0mdInxdu3rbvLTn/taRga7sylt0GXVAwL49xthcAXMJECTPmun5n8aVzqGmDvx12sqIV2CDY8Ftil9L9wlsNBbd4fLogPhIaZzfqq9FlaOxKrvLYMA7rUIqqXAaez6v6+xECgo7lnm5B1R1LtPoOYICjxL4YkEpM0YD9BPfsw7qUN4qeWRgjP1dB71dCAA4d0VAUAlKQs6HCKbz/14AgdNL8uX1XgF2idzoOSBwwME+lAHX4lsCBcqwh+pdKUupcSU3y/3x48fedweoiPVe9devX3cRAW1RnEK3Sa66yI7XuzPeSY+9Z1ppC09Lw98BAjdeK3J5yHjpZDaBWhrf1EcOBnwaxPNTPgn8ipLtSHYlyY8DK9axqp/+k7fOWVwBArSbLOdFIgNVQ/p1R+9+X5UXeuI70anC6RWS5NUq34SAmQ+Npb9dwLzYSWnBYApvUjBdcFJ7VoPdwdDKYCXgEXGBJsNyiW+2mQ9IV9r8rXpO7wUMJMPC47HL8kFKSlNGz/FEOQZYNsebpycg0LWUr9JoLYC+RDjGv9cHcL2A6iQAoQWG2nWt+3IbqZKZTpbIf/JCK/31K1LSgyl6orRpmunQKEEFDByIeBoHKwkE6L/LK9OTuAUx73N+v5vKrWQ+nXdRkARSEwhIQINptoCBYzlbm7cjTtcSMwml08NQ52jBk9I6svIFS24gSS74vOZAhfnJm3ElLMXnUQFXXqkjKlSZOpbKKrXlrO29XcbIu4ZVA8KVgAYkIyAKw1Vht5kBqwbxa9PMqzqE1L6dQXtrg1N5ixUYZX0IWDQmtLugriv6kORI0QF9rY3RtpmSE1Vz3gI5nkcVNdC9rYDgvQBZ0YpzkECQ69h0jWX4+UwvjfF00WLSjy6PnTF2XaroFiNQlX5xp4b5rdDMWKc6VW3pOj8Z/lRvLzvVsbIRW0DCQQsIaThnii4ZOp+LlPdaeZ0EBWmhnJMvJEkdV3nfPi+UAAHzc4XlPEmpellVu3qe6RrLYfvoHuvvnqfmdHWPYEvP+AIXvg/r3lyaTiAlgPZeaJXX1G9pkFURKc/P01cKJ52nfNL1xFuqBw0/v78xxn5UiTJGUCkZ0aJC54vRAb1SmF7JZblVeznAX703S5OuzwDTW9HqGKJBTv/TtWTEdP25nmdqWy/LowKzaV+lkR3p1pgRFDyHd69DBWLcqfWogEcHEiBIv4qPVP5Wud0EBmaGLClXNQrv63yLgCWj5Z2fDLz4SN68ly8lpzAovRkudnLiPgiV0ufASwu//Hk/Z176z02Rzs7OniyETIPDwRW/x8A1BQ6AtGOWQrxKM3u9k+eVd/fSVAEx7/vOAHXXk/KsFmsl8qjCCmDUc0lmuEiWR+eX8pd4IBBQel3nAlS9dujvb4/xc0wpOkCg6dNtK8CHlMZzRytpWPfq/1vQip6sdKrayacD3DHrjLSOK3ykZ51PlpXukzpHiG9/UVbd0KbXAT1tVTc33lW9ErF90zRcihZ0oKBql8TzFj7HeGZkgL8KjbDjPUrg6VKlpahYlv93nsbIXlc1J8pyGcLUF6Y8KsBy/O0EtofyZrmdwKkeFbHeFRDi1IcDAgIFbrL04cOHHSiQUhcY0KpvfVjDP7BRbebh9T8Ulb8VzZTeSl+KuikEphljLaJQPe/9f3Z2Fj8Xy2c43tRPnVfMe0yf8tLzvvNbtU7AHYZEnr+uVUYn8V7VMemptyYf44m8/jOj3a0bkB7ppgxmlKaXSN0UQmfE3PHxc6Vx59MN6+pY9Pr4s4nHNP2i6yx/Ja8ZkErkdd6ic5+1HbEbaDJBSgZ7Jqx8RcqNPMOYzN/zED++sUPyZHUv7bLmX5WiAhRP9LapVMQ/eXLkzA6etQ3TKa+0xbIMftpkiR+T0RfmuPMiPTkBIn2D++bmZrcITPfVvlpXwHppcGiBz3ukCqk7yHXlpfOkXD3/2eIslTsDDq6gHRhWXlOl2DkOvJ4rirMzzvT608JbV47Mz/mUHCUFmrwpT9OdJw8x9fNb04ohYJrO2LjcJgDA+50jV5GXX0UDVvVCcnhS9Et8VlMjqT0qvpl21bAyna+LICCuPH7WdxWQdg7uah5HWTMwGzSuqJxccfiCJX9OAsH1BvROmK+8fVdIMlrusaT5cQcDlZeVlK48bRpqfx+2ahOvcwJGbA/++LEl/yATPzDDT85eX18/eXdcr4V9+/ZtfPz4cXz79m1cXV3t5ojT1qAUegddb0Er3tUYz+NvFhqdkRukWRmzCJLSOECpxhL7ioqL56QOKCQwMJtWSsrM+a1CygkIVE6JG/xfnbYqfD5H4+yAIAExj5isgIIKpIkISlaJgMDPZ7w4T2NkcOLj8dCoZho35MPHwKy9RLMo0auBATGTvJEO5aySKxISIwYU0DH258LG2F+soZ3O0lxlUlic2+ROg+IvKVX30piW37ROkYHZAFtB5AIbBAe+nwI/0cxPz15fX4/Pnz8/2U5WUYHr6+tdRIGgw6dRktfndX5rWg1LMs1reYY04M+lLQYiRd6q8y7v5P3w6GM6Kaw0flI5nQJN42mlPZIOew/AwduhUvorumRWhkcMVqJfKS8eV6NdolUAr/ue3p1C8cD2qSIAaUO2Q8iBpxv/Q5ykrl2SHNBuzWgzGEjMpGtpQOmYQASpAgM+IOiJUwAceXEvaF/8NsaIYCCFM8lHh+KS8MogJw+IHliiDnzQwDMq4NMFDg58WuHq6moHCpReUwUCAtyhUTycn5/vLa70nbX0u729jXV7LVrxHMbop7mq61uN9wxcbFXiyZs7JB9/tvKeugiZKzgHBCkakMYEI4+VIXRK+bk3y7pVICPpsNcCg1sotZt+W2SdEQE9uxUUJF7GWN+ZsCLX70n/HzKuEyBd5XdlvFMWExh5TrS0kluWR0d4NarxrMhAh0A7Bcof59vTszSWrJT+UxEmg00jX30dKh0TCJgRO8SFdoyfq7F9Xs6nN2bEAUJQoCmAi4uLve/Lq0zfZEl5OSj48OHDLtzPPNgfquPFxcW4vb3dgQC+ekkwxi/pvTY5WO28CAetlYFdNbyzfj2GkfE1A5SxFK2qeNyqpLppAiqhBNIrIDCjWfoKJLjRmgECpVkt96XIjXsCNe6YJFrxdGnoWWYFCjq9VXnd/j/1i+dTGd9O/pjGo7oJsFZ8klJ76LgCLhwIrJSZyvfzylGtousVbdbQh3hOei4BATdGXha30+UiRXplPgdPBe8NQiOfwpe8npRYElb/sR5VJMPzmIUiqdRp3H0dwMePH3f/+UWvMcbelAGBAwEC74lnDX6unyAY+PDhQ9yiWe15f38/vn///mZTBV1Uyo3DLA8/n9WpA8pdPp2R4uB2mdhCbkA6IDBb2Fjl6V7KiuLrIoezfury83PxVwGDXyEy4D/qkkr2OidujHoOXXqWOmGVz+p/Mo5eNnkX/wIJqi/rRp2ePGWV2/1PfNCGqZ1WgMoMdHQy7XZoBuoJAraMuTE2gAEaUxXM44w6hcxwT/Ji2JipMaoFJAkheXQgGfOEtnlOoaNwUpi6EGpHFdhy4XFQ4OsBeO4GI6UReNCiQoEBgjDPQ28jVN+nV53v7+/H169fn4C916LKmyd18uzK1b2m54Icb9+OHh/X9mug58YIWueVrHgzxzCQCWgrv5nnnvitKIGAxD/HccpjK/h4KUp8eP94tKADo6tlOvhUvq6rV/sq6cGqjelgsY4CIx61SOAzOXV862mM8eS/y0nS6wkQVTajA9or8uWAgEcvL9mzFXp27DYpSF5P1+gh8/VACpeH0lcoLd5jJ9D4+3SAh5IqxeBRDS7Yc9RIPlhe1UkdOvSBRh5kmD9+/PgkMsCNiXTU4sGPHz/uphMEApiH6iGh88WUyotvW6S9729vb3flvAd6rpe3EglbIZcZD/eLklJJeTmodkrPVuPTPc0uD8+PBl28SKHzteRqjPF8pU0ToKiM1Aog9LRvDQg6L9IdF/YZgeqWelf/3Sh6Oyf9O8ZcZtwApzLoCGr7etbL2yQ5eQkcuI1IPIsPX1DL8lN+no/X0436Ks1AIW3ai4MBF75kqHgkJYNfKUGVlc5FFHhvZF7zaYJUBuvk5c3qlCghUkesK5EWIt4kOIwO+KuDjAxwGkBg4OPHj+PTp0+7cwcDAjH39/fjw4cPe1MFBAMV/w8P/148+PXr19hGr0UEcvo/xmFzwZ3Mk5LyqJ7pxoCubeH1WIDHQ7Er0wUrbXMs45rGmI5b26CKAL0HIFDx4saHMrQSEev0bSrf01NuV522RF4P5qexo1eXdU6vnnxQx6Y1YDMDWfHB9mTkLaWtHEraKB0ru1XJNuvZ2ZaKh4o2TRN0KDMJ30q69Fz1bYHKcKbBwGeZhmgp7Ynuzznv5DtNTyR0yLJW37NOZXq4//z8fGf0P3z4MD59+rRn2AUG/HVDf63w48eP4/Pnz+PTp0+7fQfkxafNggQCtHCw+xrYjx8/xu3t7bi6unq2gToWrXiKq17pbHFetTCW/7sIwRg/lRs9/uTFVrxUhtGVi1MFAFweqBvIJ6MB+s+8KgO32vbO+ypIW6X3Iq+JktF2vZPkYcXZ8msJEHgfpvK2RnX8OkFGt04hyb5/rdAjA5XH3gEaybF4q+xGlf8qrfRJutZNc6/QpshA1VArIGCMfSWyOs9aGXO/77ykPBw5+b1Vo9wpKw8ROd+8lsrsyndAxlcHFYanQZeHn3YoJIhQdOD6+np35NbEfCPBAYXP23m7CwwkFP1axD7bouCTcaEB8z5RWaLOgCYePZ1HDjrQW/FOD6byciuvb8ariGtBGEkgAEgekcru+HdPPaWrvFl/frVubxkJWCHvS513U0jq384zVd6d4aGssH2TcTwEHKQylXdlgH3Kwg1y0r3M38+rayw/TZPomZVobxqPydPv7FKX9sXBgFPqaFdgh1A1uKuGTkJIcgEgKOgADoXRwYDOPTyl5zph9I5K9U15Jk+SGwjJmH/58mVn1LlugD9OIwg4fP78eZeHFLze5vB21XQDBxj3C1e9uU2xPnn72rTFO/J0W73DzvisGqZULo1romoR7Rjz8G03Tj06kIzQjE/x5dGBLcbhLbz0tyrXqYv2UJd4u1O/zKahlC4Zfx4TDzxnGTScFTCrZKgrz4FBZZSTDvZ6inyMdMa3AiWezgGUA7GurVfBwNZnOtoEBihsqXMdCFRK2MPdOiZKACDdI1Ud63l5Q5JP1o1CLn7d8FXhW1/QUXVWBwhE7t1z4eD19fX48uXL+OOPP8Yff/wxvnz5sgcGHBBwHwKtMeA0Az9ny2kbzredn58/2aaZfalnxxi76Yi3opki9HR+zSMLVT6pz9I9lyeeV+OmAyezsdcR+2mWd1UPJzf8lAmfUhhjLcLX3a8MTZVXpShXjOBr0ko/0ji6cVYeAgT67959R0k3ORDwfAkOGOZ3g3goKZ8UlUxTtOTb06zU1/93/M9kKLVdZ8i7fKpnD5Hbgz5U5IBA50xziFcl8tDrGOuDskN0DgQ64+wKj79VAJOATCov8VwBEpWrDYL4JoCMueb/P336tNs+mNsIE0jw1UK+XaAwmCsYImzuPMgBTz7HGHt7ILwlrcjjqrKaKYSu7M6gJ5DAMg/x8quxk/hw8EIZ4NsAq5TAkUcFKgDWUacPUt4V6Eh5zozBa5Lr0WQk3KD7NE3y3gnIUh7OQweekmHz/vMpzs4R6spV3j791UWMV0FA4mUmE2mMzvJlvdwuVM5jx8Os7FU9dZRXCx0pbqFqnmm2AMM9cuVVhWC6EJHn6R2dgACvkyoAkDo51S+BEEYj6MlzWkA/BwK+NbGiBAISSsP1A5o+UN/qDQJ+6vjDhw+7rxZyIyKvF3cy/PDhQ2z3l6aqX5MspD5P+a0YsC40614a03Zf46ymCirwUP13sOnjl3yzzG6qwp9N13hk9Om5nqJ7wc6HG9RkaDoj9VaAgLKWDG86p3fOuibPnR96q8qvyk3lJz7GWFuE6vnNbErKr5oS7nitwE5yEjtb5M9WlICATyV3jmqX1wpvFR0EBrrFTGll9Bj1RhM0/DxPK6qdZve7DmGZnj4pLj/38K6XV3Wsz105DyyDP3rvAgB//PHH+PPPP3c/AYJPnz7tvVboYEDRgPTzzYpUF4ID1V/A4u7ubvchKNaXpPRvQQkE8J4PtsqgHFr2DCRw+sY9N+fZF+QlHivl5crTFT3zSzzPQrIssxt77rHO8quoG/MVENian66/NRhwo06+EohxncW8lN6jQEkOdJyNhwpguSev57upXD5HXjxizPsdCJgZzOreijH2tkn9UIFyBwO+a+IKEFgBAavyfxAY6Aasd5h3kht8MethpFXFcyi/Pt2RyBV2AgIpf3r/PFaGMgk+y+HbAooGfP78+Uk04PPnz7s3CDjoJWhsfw9BpbI97K9ndF98CQzw888sd4z9d4TfiipQkJRF5TE7VVNibswTVUY45elKpQPCFQBg/TsvjfXScw5oq/KYnvdWlJYbqG68d56qrndedKdw39L4O6XIQGWYE88CXQQIHM/Vpm/eL5X33JWfAEyVfwUGHNSkKWQvMwGDxOMWY71FzrryUr7JPqQ26eqc0qW27ugorxYmqhqaHoFHAfy/K61URnVd9yrBOBRY6Nmk7JX31o8eUeC5HuHs7Gxv8R83CSIA4NsDjAh4FEIeJQ26fh7JkBHnwPM1B67wVXe2r9rqLSMD7hml+89R/kk5V0rLDb3vYKm2UlrypwhNZ5SrcGs1HZfGWLrmsjQbR56+AxMsl7yneW3Wa0YVkOsMf3X+lpRAY3KydM4jKQECkU9bpfI7gFABEwemVV46ztp8BRCsTGXN2mmWhvykZ9N/N/D+q4BAcgISTw68dO3oYGAVHVZefZVXFRVY8axmfFRISYpmBRDMyn+u8kjo14GAjG9aMyAAQBAgokLm5kHn5+dPthZ2w6E+8Plc8SdeUn2UP0Gf6vFeqerHSjHOKIUzPbqkNAIE1dbWIi3gY35ucHVeAQNRAuLV2F3Jt8qfMlhR16YVKHClVynHxGenkP13qP45FiU5cONf6WXWszIQnC5SW3uEKrWDG/UOYJEH58PT+9jjr7IRTgncdu1TXVv1zFef92M1JZDao+JhxtsWGd4EBjrmUid3SsAF7RAAUHUyr1frGxwQHDLoEyJPxjWhu2qA6ue7BqYvFHIBIPcTcD5Yvoej0rRFqp8PSn04xPNXX15cXIz7+/tdXbXx0FtS18euXCtEvTK4Urg1GfoEAggS3JipXVO/VQbbQZ6DFM7leh96vb1cylRqp659SOl5tl8ayz72t47fFSDAehwC9I9NrjfcqZoBAubj+bHejBZ2nmU1PlLZHahIOlL3fCymqWRd7+TI+Uj8dv8rWZul93ptAaKpjKq8FUd9RpvAQOow3meHd0I0xv4Wk939MfpFK1uuH5PEX1KIVJpdm43xFPlzrt7fAPAIQfoUsZ4b4+mXuBIQcD4qD8K9BZ67EfOIwltHBiplVHlcWwxL56HMjH86+rQMjbrqoD50IJqAgPezK1D2VQILK3k6OQCp2kZUyYWPLbWj8t2iF2bK8j0ZfdIM8CTZntUhrSNIdEh0Nhlb/+/GtDKcjAbwfuJnNfqUypoBAqctclQBywQ6ve4zW5vquEUOnI4CBlY8ri5fpUsAYaXhx+hDmZ52tZHIRwInlUfkvFRtVw305I3zGsGCG2ZuEESwkkBLVw75J3WDTny4QGoXw63e2zEpeQXJS+F5UpSdAer6kAbfQV5aL+B9SBCg61yfkYz2jJiXy0e65iH/lTLcm99qWHR0AEAQszK2V3h9j4CAbUdZSIacupSU2odHb2cvo8q3yr8ydil94inx5XXv+NlCx+zzzuj7/1nbpHsrDg2J7bZCm8FANR/jnTdTpKliDHG7Uen40jGFRpXf7FkeK54rfkVpwRQ9cc+/ynsWFaDRUBl6159f8CIPmmtmGzPkS6PlRAOldQIVwPHdvrQN8e3t7fj27duTvF+THAh1QK0CSLzHfDrPmgZMfcB+Jahj3i7b5FV9qjc3fJ8HN9o+dikj4tvlSuR9urLWxvnvqFNuHSCpAFBXnreht+3WKY+XJn6dz8f8GE/7huM58Z0MLh0KTkumKCCpK6MyeM4fx6HzWPFGfmayw7FU9Tnvdx539d/z8DaY3Uv90rVZItbTQdQqnT2+paSf6EQnOtGJTnSiN6e3XdF1ohOd6EQnOtGJ3pxOYOBEJzrRiU50or85ncDAiU50ohOd6ER/czqBgROd6EQnOtGJ/uZ0AgMnOtGJTnSiE/3N6QQGTnSiE53oRCf6m9MJDJzoRCc60YlO9DenExg40YlOdKITnehvTicwcKITnehEJzrR35z+Pz//i80PkuV+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABoOElEQVR4nO19aZNbOa4s5XIt3nqZmTsTMf///913u21XuTa9Dx0pp7ISC4+kkuwWIhQ6KwmSIJAAl7Nar9frcaYznelMZzrTmf629ObYDJzpTGc605nOdKbj0hkMnOlMZzrTmc70N6czGDjTmc50pjOd6W9OZzBwpjOd6UxnOtPfnM5g4ExnOtOZznSmvzmdwcCZznSmM53pTH9zOoOBM53pTGc605n+5nQGA2c605nOdKYz/c3pbffB1Wp1SD4ORqvVavO7uLgYb968efH/5s2bref0PTz79u3bcXl5Od6+fTsuLi42748xxnq9Hk9PT+Ph4WF8+/ZtPDw8jPv7+/H4+DgeHx/H09PTWK/X4/n5ueQT53of/+CXecc/aL1eb34uH01D64HTeH5+3pTv+fl58+M8+Dm8y/84/t///d9lDbkDXVxc2OsdmXbywPXn6sv9luY/yyefM69ZO7u0XDnRxs/PzxtZeHp62vxYJqL6U14reXHkrru0tXwuLz3O9mB7fHwM7x2KfkS9q20Q/VgeoUtVN0VymvWxjvzpz6XNuo5l3v0qPo5NHV7aYOBHpK5C7AgswID+kA6MZcbL09PT5tlIYN0/Hyv/fBwR8ooAh+swOK+EKOsEp9oxxnhdJcv1mBmrpWm780iG8XMght/n/oHnGRCuVqvx+Pi4UZodcBHxu16vX/zvq35c3ShpXzw1Wf1RyMm2A5WssyKHzAFsnOt1OFhO7zheMmDP5HhScIB32Mlj+f2RZOmnBQPa2FU0IBIOfdeBAhYIvON4wTORB5KBgAjYOHRbeVQOCTslXBnzTNBPuRN0jUwFsFw9uff5Wb3n2sKdO166QABKF/KKSAnklCM6nBZAAIMBBgFv3rzZAgL7MuiVEs3qXdslq+dOnzlTj1RnKah0/86x4bSc559F36o2zPqHi7A6e5DpW436al84dfopwYADAgwCupEB9Y5UsWLIANehGMcYL0Lm+OE5Z2gdCHDlifjtdpLn5+eNImeFjnN+3vEaKeEqJH7sTrHEMGXvZeBJDaKLBFVUyYjj0ckN5B1AAP/gC0NY8LJYxiDfkAtVgixDXNaqzmZpn8Y8ai+XzqGiFD8Tqew5PRpFMzWyyX2lMvxR1ECPHZ/4sc7jf/csn0fEkQqcn4Lu69BPCQbG+D62zqFRKMAKCOB9TgvnnIYCDQgBe/86rgTS0KxTTFHncvy6tJ2Bdt7SmzdvxtPTU6jwUY7KW2PBdx3gWAr1mIq8Mo5MlTLDdU3Lpa2y46JanB5klN/TMV1V0goclhrnJc+r3KsRyepkH/mf6S/KdFUVBXCGdQkQ6IIBlpXIiWJAoJEK1pecJvPgHKofBRD8dGDAIVIowayBlSLPwxk4FvLn5+cXAAQ8RNGCTMFnAMDx3IkOQDAhtGrEq7RdPXC6UVqn3hky6rRDBxApRZ6oO++CGscX5JSHCpQ/DXOy8mNP6uLiYgMe+cfyrWnPtP2+5aQCBtpWrt1+ZNk9FEVAIAIBOvzK74BmwEDFWwao8Q9eWPadI+jKqsPBnP6POGTwU4GBCAiwUWY0yO+BVDlyOJ09ZJ1FyumotxRNjqnKomVyQsl8q7GuogPsFWZoPcqjw/+pk3qYer37fpf2bRRVcek9/al3xtEAzfPp6enF/AKcA9xGc1eOrfQUjGq/ceA4u3embYqMo8oZdLDTg3hPdVNHhykvznnLZNHd56EuXNf5DJwnrqm8cISY8zp1QPDTgAEVShVGXgbIpJ4xriEdNvxPT0/j7du3GyXJM0pZgBQkqJDNlKkbGYg6gpZT73OaGiZ2PGedtSrjKQEEZzg7z3XSjZSPO3Z5RFEX99/l0wFJF6nCtdVqtZFx/HQs1Xl+Tml3vLgl1Ik8ZJEV7rPOQThVpX1syoCAkwn+8XtMTq/osfIQRSHV0EcgT6+N8X0SOIAA/6vuZeATkc7LOmVA8NOAgTFGCgIiAcS/M2Y6KWqM794SwqSPj49bgoU9BXhNquah+fOxKm316pwH7zqGAyW45oAPlz0yOFHdaVk67x+Dlhh2/HdAjmvfWYMVpa38uH99z3nrALDw8J+enl7IrLYlg+Ix8uWtWlcdpee8+BlAsatijQzKmV5SFwhEE7aZnOcfAQL+12PHI+vTjqOiaTtA4PpUFDXgZ34UQPBTgAE1mBkIyIStIvb0GRTgGsAAlKubOJjxoWWKyqcCyMcuNJWtw3URg6rzzHi5p6Bgl4IAd30JwOnIWuXpdwGWKixnnHk8022sooaRFTveQV4aGlalrvUQldEpb0ddQNUx8F15PEXFfQxyQIDbXkGAyk2lCzqAIHs/ux7dV+OskYQZQBD1uTF+DEDww4MBbZAIjVZIE6ReUSZ0DATY+GPnwWhXtiptfc5FCMbYnpug6eqs1tVq9SJKUSHtbj1FfHeuHYu6vFRet17fhwc7W09q9CI+VWbx73YR5HSx8x5POtTJgqocO/LtQGdH1majDRnQiIDLmbYpAgJRNED3c2FyzkgnQqDvRjSjr5wDpKBAhw4ywB0NRWs6pwYExvjBwUAHCKhC0OMOqXDq8AFPJEHYVaMDzLMKghOMSOBY6CpPNerArnxdA5QBhCrtUxH+TlkVYHUo83Y673I9ZVEZ9xwfu3bWiACIwYCLZPEua5qfez6qt6UKMOu3nShLJX+nIpOnTA70OgeF9bDTWc7Id354vkszgNwBAX0+Arsa8VDd7PJGdCDL81j0w4KBCAi4IYJIIS/xwFg5Pj4+vsgHivXx8dHu1e/yd4qcO5geZ/xlVL0fpZcJrPPu+N4pCXuHZutHDY1TZHxfzztGv5NvJReQTQYFbNB5iCBqLwyNsfcUKe990wyYZ7lzwNuld2j+f1RScKf6KXLAnCOmdaz7sexTprrvRDou0lu88orLpWABkVktt1u9cyo68ocFA2N4IJAtc1KjW3nEGg3gnfpYqQLtjbHtabECdry7/BVdRxOzlD/kzfd2AUDO6+woYVfGn5EiILCvNKt7lezycxyedDLC8oxrkHMmnlXNaWdzY5QOIROR3EX/+t7PKqO7UgYEOlEBpszQZ6AA7/J/xauj6F0HDjsyyrpf7QquR2XPIlXHpB8SDLAQug1+GJHhPwIEFTkPgqMD+iyDgDGGVbRcDuWnCwbcphaurK4cSk74uxGIzHh1rp0adYxs1qFnvZkZADBDqoCczGZemMtbPRsHBjIQyl6YIwU7/N4SEJEBAc2n6itL2+FnoAgAZFEBUAYCIkAQyWPEW3a/IqfLusDA8am6nKMI/Jz2o1NwnH5YMMBAQL8gOMbL0Ay/y/8dcmm5GfxOKTqB0bJouRwYcDwxb3pc0a6hqqqT8P+PRhlgq5B9pMBcGDLKuyObKjdRWrxvgLvv/pk0kuAUPQ8xZKAgkhnHW6d+MvlzQCaKrEV0Cgr6WOSMWgYEsqWDfFyBALf3RUad9pmJhup7WfoMjl3fRl3hWf450HRsefvhwIAKJD4YhLHMMV5646zQNGqANJWcokTDawh1vX75sReHbCOlG3U0F27jtLro2ZE+2znvpF8BhFOgGcCknbSjIKr0qjyr6y58q8fMi1M0s7KiY518Hf/RnhqzUQHNQwFZdD0CZx3woLxU/eFnJSdbrJtUR3WGZju/7vDAviM0Ubt2+jyusYPo+qmLEIAc2D6WrP0wYAAVy4LI+6wDDCA87wQMRhxj/AwMVMicB4Rj3MdxNiSQCTbn4xA4I0ukz/wsBQKuXBmPFe+zwOJHocygqXGrQACeWRrWrGS08jSitu4YZ+4/ei2S9yi9TP4rUgDggFr2Xid99/93ocqQMRiIPgXP5PSUUnQvAwCzgCBz9ipD74CoPhOVUyME6/X3PQvwnuqGYwKCHwIMKBBwcwS0klVRcVpVZ8+UCoMITkM9pKgTRErdRQV02KNTR8pXhypgMZO3M0JLeHpNqgx5ZPirTuvqxR275yM+VTmpEnaRgerYve+e0WvuN0P78vI6yrNS6NW7PztlQIB/nZ0Fx3ipU/RadI950H43AxyjsnF+7r+iqL9qmVQmHSCAHYmGGl5b7n4IMDDGSyDAEQEdl1GDzKSNFSlDfj5LR711HZqYFXINyWXIlNPLOsgSYBCl0UHpx0S3M5SBHme49dyVr2qn7Ni1owMis0AiU3wRLxlVHlFGs3LRfb4DhrN0lhqHn4EqIOCclGwvl1lnInPKNOqQRSE0rQw8qOzqLq38XOYc8jOuH2SOX5THsWTv5MEAVx6DAP4M6xgvjTE3TKVkI0MXXVNygqX5R2lGQq7HQJJu45iI70ghVj/Hs+O7Y/g4rX15grtSR1lFMtMBXxF1DG+UtgMB1XP8bKaoI3ARKSUFA7O0VA5mgEQG2GboZwcF3YhAtZcAKJKNSpYcT5FzFOUbpaV6lJ/XuS4Vrxmw0Hedtx/V7RjHnz9wsmCAG1DnCAAIcIhKtwSOPJZZbw7/DuG5tCPjqu9EhpUFf4zvexhkxiMrg+NvCUUgRfOOvMZd8t6Vso5VeYudCEFEGZio+M3ej56L0l+i5Dp1VqW7hCIPaalijJS3o6xcfxdQsCQioBTVW6WLFWhrnvxjnjMd43hlIMBLbt1y7S5w7fZtjQrwu0v1xb7oJMEAG8LVarW1fPDy8nJrGSGjO/0t8U6dh549++bNm80Ewooq4dI8ITQuIuA8+Q5qzc6VF03ToVrm1/HmIhnHoAoIqOE5BaqMtIsURIBhaf6crru3D8rAuFOI0fXZ/Cog6I5/JnKg3nniDgBkfR7njirHQPWL20eG72dOB5fDbQLEX57F82w7ZvVAViY+ZuOvvHGU4m8fGWBDyHMELi8vNz+3Jar72Eqm4N091yncu4rinJGcbcQsOqCKyf0iA5EBAffPvGf1ktWRy+tUQMEYtYfiFMGu50toxivhd2ZkbwmfhwICjpd9AxyXdkY/OxDgcwUC0bBApkv5fEnkSAGIDg3r5Gp2BiMw4CY6YmttAAEl50zuSwbV2eP0WZ9mYPwQdHJgYIzvQICHBQAEeOUAh3r4P0KeHe8v8q4zpak7TO0iOBpCcpShYfesvlPx5BR0BAAcGADCRnncGvXXpK4HWJEDR9lzLp+OooyMYjeP7jtZmygg1PdcX1oCgPU44smVrSvDFTkQ/TNT5siose2AgBmHo/Lk+ec2lXNRYW47lUtEE3h+2Rhj8/n5TE7cFttZv+D7OK5kXFcWIN9DgN+KTgYMaERAQQCAAEcE+DsACgSct6QVzELkjvlZ9cCRLqetm0os8Yh16WJGS8AAX0MZ3HF2LbuO9J3BOCVF2zEkEeiZBTYzQCDiJTp3eUWyXLU181Tl45TVjEF1BqmTr+bZSVuPK0dhNr8fiWaAQDQ/wBnITM+4+5ne0sgADLpOGsd/pGO1XDrhXO0Jl4fLzLzvAnz5fQUEmnc0NHxIOgkwoECAEaEbGlAQkAEBJVZceuyUNBrHfbTFlYP3O8gQHhtMBzbUs+4AC01fj6N66SjiCqlqR+m0xWvTEl6WGK3M2CwFAhVQcyBWn+t435Gym3lnBvhVntOuChj/mg/3N87rZ6YMCEQ/fi/SXzjPQG8ECByPbsKgThhHOtHOl87Iu3xgZ5AOR56dHFfA19kVvRc5G+BpjOPsPXASYGCM7YgA5gjoqgEHBPCp4Gp4wEUHovtRhTtjzKDANe5MR8IP41nIMwIqmbBmx45XvqakQMXlp/c6HsBr0UzeURtqe87klSlJzXeWz+qZbjtXsh/1nUz5dSnic4Y/l6ZLW8sS9adDK97XpghYshHif6e/XB+v/h0I0Geitsr6HfQk2wQFA3Ck2LBGZddf1/GaBZMRH7xXTlTu2T4wS0cHA9wgCgTc+JCLCGRAYBeKOgB4Wa1efqPACXFmlHGNowjRCoUZw1ohVvw7L8AZKz2vEPIsv69JETBy55mnpGl16iur21lAkFFUhowi3ioenYLKlFYEShyfSEfnnnTqrwMy+H3m6dRkdhdyQCADu7NGqAMGHCDQ9DN+oSNB0PlqB1wauJ71gwgIuXJX9VEZ7Kh8WTu8hjweFQwwEOBVAw4IoOEfHx9DMJDlw/+Oh46yHOO7UEbj+pE3XKFifU55dop6VkA0zcrQRXlEPDgjmSmB16Qs764h6RpCzm9Ju7GyUWWR8Qx+tAwVkOkAGpXDCBA50OlkpGOUOH1OIxp+y+rEAQx9xrVLpdhPnWaBgL4DqvQAnzvj7/Sf45GvOXnXL8TqMLFLE47V4+PjJh0efu3UDfPPfTOS/S5xvpkzqXrgEDJ5FDCAgvHEDl4+yB8eGmNsNTqGBRwQ6HhXXMkzM2eVMpScgQDl1XUa/joi8115blrO6l5U3srA6bUIvc7we0hamr9TkJER7Bj/LgiIrmWAIAMBTp4rsBa1JdKfqVMHtKLrbl34GC8BAK7tU7Yy5V7pg1OkWSDg5H1GD/BxBgb4eScDDgi6qADbBc7DGXB+j+UrciYzG6BgfRf9ovKWtckhgcAYRwADaowVCPCMUW1wnh8QjaWrwow6QbWW1vGt5BQmCy/z6PjVRkbEQTtlpDyj+u1QBAJcuRxpx47q7NhAYIYipZjV/ywgqPJ35ABXVN+d9s+AQAYCdqWsX7pxW1bqPPbLXybVesn4ne0/6gn+SDSrAzPdN0YvesTHDgRUbRMBVuhF/TosO4SRl8/69+LiYktmGBAwn84YO+dtX4DA1UOV/yFk8mhgQNeQZkDg8fFxMzzAhjVKn/85zwgIdMCApq/kjL6CgmwPbOTLUYEIIWZgZV9Gx92r0nKdeYavY1FU5kwOnCe0BATMAM8lQE/leR9AwHlRHZ702PVL3m1O+X58fLRlwXrxWfCl/ETlOmXZragCApWc6HklI0vAQNXPYPj53O026/SpPs+6n+VG33d15sp6CKPMbcR06G8XvBoY4EpVEMBbDI8xXgCBaGdBbXz+12PlYYnBjfJRwXc7YlUdI+q0rvNG5cv4dnnimiJPx6+m4eqW/52wdo3ZMSiTA2cUnNKLnuE83LE7nzVmmWJ3PDPvUX6HMIZOzt2SYoABXWrFPMHT0/HfWRAayfSPIrtK2hcjPdKNCGQyvRQMRLrLgRI1guxcRWF+lYHV6mXk1eWlslABJX5+l37C+THvWZ/eNyB4FTCgQED3EMA8gTG2J4ZkQADpaj7RefUsX8uAQAfFMijoggEnvNxpddKiE4JMMFSAFQBU72YCFwGxH9Wj6ihI/HcNKh9noHNGuURgN7rveI/4zvLp3svecUCANxsDGIDB17Xk6Fu8rwfXmSp1Z/C78vkjyXIkE874zwJH/tfn3Htdfcd8R8aZzxUMuHxYrzGQVN0agX2tO5YBJw+zADQiVy9qB/T5fdHBwYACAd5imDv+GP2IwAwIcHxEpMaxk0eGhPW+XuPjSOE4BZeVU8vjziMgwGVyZXFUAaiMn1OgyAPI0Dj+u0CgStu1sQK0TPYdCNB2cUpVjyMg0WnbKJ/seQcI9KM0AMA8RBh5eC6/CBR06UcFApHRd8BAKQOMWR1Hz3XkQPmPeFFA0AUdru9pHURggM85zUy/Zs/NEPgcw6+i2QcAAb1aZECBgA4NjLG9asCtH82QZKawMiU8xks0Fr2vlDXAbONEQEQbvNP4GfCIAECX566R+FEU6Bh5SJBpBghw2pECckAjUsSR7Ee/jH+Xn+OZ83LPRNcjJen4d5MGOUqg6eBLc7pBjFPqrr90gE3G+49ADhR0V0x1ZTw7z8CE8pdd4/QcEMh2nY1AAR+v19+3JM7ezZyCiF+8N2OwM93K7cj2sHImZ+hgYACFYdTPIED3mXaTBbNZog7tdXjKFLHynh1H7/KzkdGN3ulQp/EzMKA84noEChz/M4Ag6qynRpGBVYqUZGWw3b7vTia6y+U6IMApoaotnCHR69Hzldfo+izXD3+ZjvcZAeGZx8fH1ni3I9cXK0V66rI7hneOloLFTMajd9xxBZardnPpzQy9Rmlyvm4Zt/LogCbuVXLjdKzTw87+aF/UjbeqvjdLBwEDUSePlg/y0sFqM6FMuCvhqsBDll6F2tDY3Gj6P0aMGrPyOdoVCET8R/fdsZ5XAnlqSrWjMFE3DtRknjWnr56vM2Sq1KrtUDMZ5v+uZ1fVC6fZoRlPXPNxnj/mDjw+Pm6+OMdgQWU0k+efnSq5drKTAYGO7MwYZPDIvEakfcIBgSV6R/V1JS9OprplZaeQ0+rkw32C54253TgrcFLRXsGAChsDgaurq3F1dbX1GWJeL/r4+DgeHh7sFsPa0WfQLt7RYxXGyChH6eg5N5Z2DAYEUSecoY4X04kI8H0nSFm9ZbxEnfVUlXMFBJScAorkKlrGql4vlN1SYKvy2vHSZ/tW1fZaXzPKCWnDSeA64s/NIjIQyWYla536reru1CiShRkgsCQqoNfd8Uy9ZfKbRQSyfDRNlnvWz5lcVDLTiQ7MAgJ3rkNi1Rbds7QXMMDMMgiIVg1wYZ+fn7eAgO4m5fLB8SwYcI3aSbMCBdrAKgCr1Wpr9jPvhMVpRIJYlW9JNKBLEWiayWfGKLwWdZUk/p0SygCBAgHOI5q8hWuZ4ohAR0YdpZPJfpU+57MvmVM+dM11xJcDJPwfXeMy7Eu5viZFsuTkjymLBGQGPYsWZPWWyVyWXrcPVqS62eXX1fsRv528ldz1SGaz5ba76NqdwICCAP3uNIYE3GRBDAl0lw9WBrzLa1TBzuhFaaMckTGPIgHw/hQQaFgoyrtbzsw7qsCFAyURTx0l4TresWnG8HWUUGVUM+CRdV7t5Hp9BgRk/CrfVR5dbzDzgrJ6dc5AtmGXK1MlcxmYQPo/AiiYlT2mrO5xrlRdmwGeEalRy8BARh396XSl6mMQor667wGei3hSWWL5jPql4yuzU1m6XVoEBhSl8HCAThIECOD1wg4I4F4EBJxAR8qyKyiRBxYJAvPC18YYL4YI9H3wpY1cNV4FTCLjjXt6LTN8WZoVZWj3lJRqVFeurfDfUZIVwHBAShXeDP9dYx29r2l05ULTzzzEKF8uO/o97y/i5gJAb2QzyCN94HioSPXCKVNk+N0kVZDWXyXjS/uu628dkOJ4reS6coKy85ky6Ix+8LgPQFDxF+mVWfvnaAoMOBDAG4VgToBOEmRPGJ0eqwb4ewNZfnyNC+8q1AlThKDcc0oa1nVhXgABpKGbpHAHzdaLVgYlqiNHFRhwz7OS3kUhRmDrFMjVLyhSkB2P1OXDlCmBrsJz/9FxBEwjYBillym46JlKISnYckCA+wkih7zSaBZAOR6ckTgF0NqhSB9UBndWxrP62AXERiAg0+ddoBtdr0CBykTHKHd4c2nrtQ6Q5mv60/4+K8dtMKCIkzcHuby8HFdXV+P6+norIsCkSwd1+aAreMeAjdETXmdw9Tp3ikhoeM4DKy4oNNfYrPAyw868VR3avdehSjF2FH+VvnbqU1Gwrk27MtVNN2qrTj0sUXRdvvRaRzkfkhg0r1arzQRB1BEibTw+6vaiZ1mb4b/THpWSPgWqdEVULwoC9hURcHXaBbFRnspbxOuuFDmDY/Qjil2+NK8KFHQBgaY3U0dtMMCRAJ0cCCCAY10t8PDwsAUCdJ5AVOBKYbkKdf+cnoIAfV9//AxHOvRdh87GGC8AQAVsKjBwCEDA9aXASI27vvOjkavHDBB0DXQFLFQ2MtnVfKt27ZQleqaqCxfN2BfIw7sMCHD96enJTjaOdiTNjJ67lvGuSvk1QVKXKqBXgQA9drRP4Op4m2kvPa5AS2ZoI6M50+6qx7teeRYdiCIjVf5an0v75hQY0B0E8cOyQY0I8I6CWDGgUYFI8TkF5e5V4SQnNF1BZMOvS8RQJ0wO2Lgd0iohq4BA1dl2oQgQ4FyfnfEkjgkgtP6yOt23h65pRp11tn5UsWT9RJ+pnnPPVEBgCf9jvPwaG6ICGDbQe7oRWWRcMk9vRuGfOvDt6okZXZkZsyX8KZ8zaWdy1nmnMvaVMY7AsgMSLr2IIvnM3tfntd13AeltMMBGn0GA7ig4xvfJPgAA3759G/f391vLB6PvDVT/jrpKKTNskaCwUde14ioAbpOhivfO/erZmbrK0nVeKagy8ks67DFIO3amnPS9SGa6aXSUQ6euIuWjvERKzCmUjBxQYl7dx1O6ConTg16IlmSq0VJFyPN2InmMPLgugDoFyto6+td203qaaatdeI3OnUxneXd1ftZv1fh3AYErm0tvhjp9JuIpA8TMV0VtMHBzczPevXs3rq+vN6BA9w/XyYH39/ebf0QFsi2GuWDunitcBz05ip5xihIgh8EAiMc0XRrZ7OcuZYKO+yrQu9RBlnfkUXSfOwY5z2kJCIiMaNQpZ1G/1lMFwDpt7UDAkuddH8RvtVq9APcdr9ylx2VCRK3al8H1QdzP+l3VrtH5KdGMXB9CB1W8KY98XuXRMfgdgI08I1vh9Cfzr/k4+YgiDxHPDgS5Y9WjWT9AX4hW5VXUBgMfPnwYHz58GDc3NxsgANL5ADwUABCQzQDOEI5TQlnDRtcq8OGE1Rl9zkPv6woC9pyij2tkiirr6A7FdgCBq1e+5tbQZueVATsWAGCq6rHzfuc8k6XoXVCmqHYhVSAdQ8fPug/cIF3IM4/lZ/KT5an92vGtw3KO1478uuhAZkQ13WOSk6sKEGT9tkOHAgLdvtDNvxMdcIa7ozddmvx+B9zsUgbly9kxNyQ9w0cbDLx//358+PBhs2JgtVpthgEwFMCG3315UIUwMszRfQcEtAGjhqwUePTcEoJyZGXpAAHKpKSCGXVyV39ahu41ULSGtlKsx/b+O5Qpzcpr4Gv6jP47hVfJlVNY/F6E9LvyGim7CCS7bZR5rgxkBJHA1er7BMCu4awUn/b3ztarlYFxctwBBPvQC/sibf8M6HG5s74Z6dVd+HP6qtsfQPvQJ5nxn6Go31QOaic6oOnz9YgHvhbpnygdR20wwEME6PhPT0/j/v5+3N3dbYGBahmQo30a5O771XP8YQhQJEQu6hHVgfOoNW13vIvRr4AEUybgMyBgSajqEJSBACUtxxLA5ZThTPk7isLlk5XJtakqDE2P9xHBzH7+wNh6/f2Twg8PD1t56o6Bjjp1knmJMwBUZTmrV72+xHAcgpxhzWSu6pNR+q4PdA1K1D8y/bWLwY9AtFLHs1a+NZ/oXMFFhx/HU6QvXdqOB/yj77pt7zNqgwFEBMb47g0wEAAYUA+YC1B1QFCkvDiN6JwpQ1qzytkBAybMfsbz2U/5iZRU5cVEz0YKAkKiwusE3eWzNBpwbEXaNf4RMKuUWfeau8d16JRKVndZuq6ckcxEipuBACYJAxCgTzw/P4/7+/sXeY3xcpWA463r/eizTgY7chjpj6g+ovdemyr5ymS8k66LCsyWO9M7GTBeAjaYZ+0vmUy5OlrCt9aXk59OmTr9ItLvURnccYemVhOsVqutyYFYJYD/x8fHFAQ46iovvu6Ou+nquxFg6HYGp9Tx3wEFkQGq8o/QovKlyh15RwKDexEgiOqgo9SPCQoqhdmV1Y6Bj951z1Ty3+FJeYvSjQwftzmu8X4iWDHEe4iMsT1EgPSdbGegpnu9AgLuuShd90wEwhSgnQLNKvzI0PM9d/4aQGA2/eiaA9NdHt1xlX8ESg4BGrVMFRDRMnV5aoOBt2/fbi0VvLu720QGeK5AZOg6FAkqKEvPVVhUgVHjzYAX3RCF70WAwPHcKRuXp1sH2jlUuVXlc4DApetAVQQMjqVQI8MYtb97P1Mas+Vyhk7r1Bnsqkyde8iP01UQwR8e48+PX11dbT5GNsZfYODh4WELZGLYAOfRcMEsOOA0MjCg55Vc8r2ovg+l5LuUGdgZUMDpRf02KvtMHVR8MnXS7AIBJScHnb7s6tvlqfxEtmtf8uPaTMvnytKVi6ntiB8fHzdAAGAAEQH99HDUUbXSqkbMrnGajiow4YQlyodXE/BOhGP4CVNuwmQGNlxjRudRefSaA0Tup3kzgJgRpkxYj0md+suAAP61nqK6mfE8Na8IEETpzXitmYfI5eENxrCfCOYMXV5ebn297f7+flxcXGytKkBemPCXldcdZ3wr0HbPRBQZosgIZu8em7r9s5Jrfq4CBhkvjqcOj5pHBRorOeq8uxQYRLy7/toFod2yMEVyimNdVbB3MICQ4N3d3bi9vX0xYdAZGWUc5xXCUppFVU75ZOAE1zOPFkqSvSYWFCjBMbYnT1X14XjpKMmlSLMLCPAPwOPK0smrKsdr04x3E113HUwVgba3AoEZwBsBvEiBV2noOb/DkwYvLy/Hzc3N+PDhw3j//v149+7dBgyMMTb64OLi4sWXR1knRIY2AlpRuatjpcqYdQ1R1ygegipD66gLAPh5J1Mqz64eukBgH3o90osdI9wx9F0w4ABAVkfKY6dMXdJyR+3RoTYYeHh42GwepJsIZUosUopRYdwz+uyhqDIA/G0GNpTVUqrIiDqDEgkm0tF3qzrJ6rIDBiI+naJXI3hKAIA7q1LW7i4td79qhxnZzYA0/0dGtsuDU/qQ67dv347r6+vx7t278fHjx/Hp06fx/v37rT1GHh4ext3d3fj8+fNGD2ApMYYLsk25OsaiAkgdQx0Bpghk6bvHluWOod2Fvw5Q1WcdfxXPTDORB5d/paNm3p/Rfbim/a7SMRHI0nw7lEUGtC8fBAxgSKCziVDmDUeViHP3DW5Np0JYjqKGYgXI/2z8QRwZ4J0XkTbvmDbDX1c5OuNTGaRI6JkcINB39flICF3ap0QR8NFjvTarILO891EnM0owaxvtezxPAFGBjx8/jl9//XWz6RiGBTBnCGFJ3leEJxNnYFP7vAJKpOHKUSlfTa86jxyWUwG1M0Bg1gvNIjiVx+v4c+e7kMvHHc+mE12LzsfwspXJor6b5RHZvuj9Sp8dBAzwR4Z0S2ElJziR8WKGo33/8WwGMjoUKXv3MSL+x6xqDqGyAsMX1tgb0t96/f3bBRFfroNHwuGMVNToh+icSK/bBqcGCsbIIx8dWlKmyOB0KGvfSEFEQNopDawcuL6+3mw//uHDh/HLL79sfgAD6/V63N/fjy9fvowxtiOHDw8P4+rqKtxsDHk6AK688rc+MlBaRT1mqFLYr0mZgY30pB4for9HRifiy8lnt22yslc6Myv7TL1kQHRf9RzZp8jh5mP33MHBgG45yhkzk53O6IAAjK4KT/bDM1FlzuTv+HDP8KxqNfJu3JQpUo6RUKtwZ55OVc4O4FBeHd9RtIfPOxGd1yZVLHytegeUeZ3uOUeR8eq82yHXPhl450+SAwR8+vRp/PLLL+PXX38dv//++/j06dO4ubkZb9++Hc/Pz+Pbt2+bY0wq5j1HFNxrCJOPXZ9XIBC1UxYdqOpV9UfmIR+LKkPrKDIW+zZYFT/d/Kq6j/QXy5jq627+lb6qwEsnjxnwU70byfWs/VNqgwHeZtgZM868CifhnBsUyog9cBAbV93QaIw4VJIhRJxH265GIAG8Xl5ebj5gBB51y9bVajXu7+9fCGe0NfNsGbqkde3+I2UaHWf39JlTAQNLgEBGmQFZktYsqfGsvAgF6tz3Li4uxvX19WZYACDgt99+2/wABhAF+/bt20bGv3z5Mr58+bLZpfT+/n6zHFnBAPOvsjnG2Bpuc7OiFYx1wVp0LarDY4MA5iED86DIiC2lypFjviIeO6R9KLMVqsfYXvCxypSSOm9u0rduG9/p45FBzmTS0cwzEXCdBYDTYKBCzBlKxzsO2bldzvAeGgvv8L7omr7yFin9CF06o6kgAGuuebhgvV5vll6+fft2M5aqAAPK0Qma8hldU4HqoFZXpqyzaNtlERltgwwQHIMiQLUPZb8ECBzKyGRAIOIDw14YFvj06dP47bffxu+//z7+8Y9/bH6///77+Pjx42Y78sfHx/H27dvx9PQ0bm9vx83NzWaXUqw4cFG+iA/+5x0OMcTGcs+gIDL4fL+qCyfDu4K7fZIaVz2u+qAztlqP+O+UuQICTB2vuopcRDaDgSzbD906m2WQHcn1er2xafwNHbY3ChSy+ojKxuWL6qMCra6dnZw7x/hgYMDNFXBoOuqgzCCDgMvLy81OZ7xsjz+LzIXlQkbC5ITWXY9AARtKnljF32mAAKKOEC69vb3d/BA+RZo674KFJKIM3FRK0XUilI2jG0hLQRYrC/eRpS4gOCZFynQpdY1GBox3ebbDW/S+9r+rq6vx/v378euvv45//OMf45///Of417/+tQUEPn36NN69ezfevn071uv1Zgvib9++bW1KhI2JAOqdcQAP3bJlxu9QlOmv16RMbiOg4wxNJVsd4O50uPKnz1Vl0/NKXllu2XZAN+MYP9bpKJt+aZO/ssv/sDljjK2l447nqCwZIAA/SjN9RHX/Lv2jDQYUCLjCK4PKNJ5Dg/KmJpi4BCWCECE32qzB5Pwcv5VAA11CsAAEPn78OD58+DDevXs3bm5uNp4QwMCXL1/G58+fx+fPnzdl02EDnnmt3na302ldVx2JOwYDLrf8S6kTGeDzU4sOgDL5ieovk7t9RgT2XT8OiLEMIdJ1c3MzPn36NP75z3+O//znP+Pf//73+Pe//z3++c9/bgGBy8vLMcZf84dWq7+iAwDxrITZW1PQrnxF3lK0pXm3jjT9mfdPBQgg70hXjVEDP6bMS4/quaOTKjAQ2QxOzx0z6bAA6+Sbm5vNP/QxNsjS6C3bFN5an3883+X+/r4V3XDnmbzjWNOdMe6VE1jVqdLUpkOZculmrsMCUCRoUICBMcamwXgns8goOR4yIJARjKMCAijN3377bfz666+btdfv3r0bFxcX4/HxcXz9+nX88ccf4//+7//G//3f/22ViQ0yFCqHp9TwRIog6mx6zGk4IOAmd81QpYhOwfhHFIEoPtb2yMrTUXjVMzOkMsJ8uPZUuWIg8PHjx/H777+P//mf/xn//e9/x3//+98NGPjll1/G+/fvN9EvzBVAdIDBAIAvZJ5X4XAdMn9Q0I6qPh69497fBZSeghw7mckAdyRrCmwzsJU5F5lOygBHBRyy5zUaAADw8ePHjYMGfQx7wnO71uv1xqZg9cv9/f34+vXrVkQXG2l9+/bNziXQcjKP0f0KGLhyO10eOV+OZvVMGwxoxhkKdMqTn3fIDrOUoXTw7sxHjxw/UTm6FQVFxorzt99+23hNUJaXl5fj4eFh/Pnnn5tzHmaIgBQAgZbNAZgoOpCRdlRWzPv0eLTNI+V/bOqAgOha5VXx8WzdzrQn/p08ODlThYX+h74HgPvPf/5z/Pvf/x7/+c9/xn/+858X8wTwyfL1er0VFbi6uhrX19ebH4drOTrgZCQC9hnoj+qKZS37RfXk0qvyPDQ58M/kZG+mXNF7HV3fcbiydKJ3lQd2aAAIMLSFPTDYQYOThigBwACAAEDA3d3d+Pr161YkF88jMg1nLZNhrQ93H/LG8unK6/RmpT8j0Dari6bAgMskEgI9RqHYS2VAAAWCd9AQEYqdQUSVUo+8BuYToacPHz5sxlb/9a9/jd9++218/PhxAwbev3+/ESSsueYfRwI478xDUr4qo6TKluuEBZs/KuPSipRxxocKsx6fIlWgYOZ9vqadOaqPTsfNFKkqocwIamTu5uZmS6nih30FeJ7Aw8PDBgiwd4Z9CRQMMCDgUG1kACLDFnlbrn4z3dABABEdC8xqezuK9FeHKiDg+FEQmrWnyr5Lx72v73BUlYdsP3z4MH7//ffNPJfff/99/Prrr+Pjx4+boS1skvX09LT1ob2vX7+Oz58/jz/++ONFVFqHEnhlS1Y3fNx1JrTc3WfdexE/HZoCAxlC1GNFNNzobgIIfnh3vV7bmchZZVUKJiJVmJjFDOKVBNiV7Zdffhm//fbb+Mc//jE+ffo0Li8vN5MEv337Nm5vb8eXL1/G169ft5Qk9mu4urraAIBZr0UNS1RWfg5A482bN1ubI0WTBZW0vqNOzvmeCiCoFA1fdzTraWk+mVJUPh1Q0GPuRxUY0G2AV6vv465syN+/f7/58VwYKFOWGe63eB+rERCe5TFbXvLlPMXZenVKl4GA9g2V613B32tT5tzsUhYFAjMOlruW6QJ+Rm1BBAb4n5/XqNavv/46/vWvf9l5Ltg+GxMF7+/vt/Szfm8DjhqcNzisAAQdmdwHde1Wlveszm2DATe+7FAdKyzXMRUQ8MxPDudoIaDUIkWZUWYkcc7K002oUyEEKsXmLPCS7u/vNyEqBgFQkLx5EyYRsmF2vKo31fWq+HkFN26veAUnjiKwFz27FOm+FkVePZOTYX1uadkykOCiAfiPVr2wUXTGEO9hYhUvleWxfl5xovKggECHCXTyli5lZXnOPN6oviJyMrkU4J0KdepmiYGaAQIVOd2UybQCgcjp4zSczeChgl9++WUTIYCDxsO1DAYQFcCE9THGJmoAsHB3d7clw4gucIRg1thmz3edsCzdKBLR5XHqE8aR8c+8F2bWCYFOZnPG0PHS6QBdQVdvSpWfAzAaHr28vBzr9XorRKoTq/iH8BN2cGNFqYpcy+XKqOfaDlo23V+AAcI+FATTko6zb+oCqIg60ZhdAIHmkf3rsetrDGwV+HG4lZWr7pkBb4iVKZcxiu7p8i4GBVrGqAyz9acKMQLVPwoI6NCpRThUR7k+7yIDGRhwjic7ZtfX1+P9+/ebuQL8g9cPXjDnhee0jPH9g1u3t7cbkMDLxhXIKqBVynRyx8mq6til5xzcKk+lNhjgSRWVN6OM8L96M6vV9w2GxvC7DVaAICtwRwFEBpjvIx8OlarXo8Kt3hODAoSgVOFmfFVl0PrBv3qP+txqtXqRd4dmlNGMUB6aOh5TdK8Cmwoiu5GTii+9ryDBve/GOZ0iBrH3dH9/P25vb7c2/uFlWZyHi/JpxI/BQOQcKGlko2qbKCLScTBcekvByT4pMjigDm+HBuGq47N8VfbY0GqakU5yQ1WqX3UDIpW5McZmOOD29nazdwxHtTSyxfIblbGyJdl71fWOY6zpHCQyAMOloWwnrOyN6jUHCFB5vAkEbwCRVag2TseDi9LAz22so6TrVdmb4q2JIVQcJcBWrQ5MqLGJBCsrm/O8ojJXgE7zcEo3qyfH12tTpaCWkCtv5RGowqw6amUEorbTcwYFkUxAMX779m18/fp1E+m6v7+3YJ03IeO8kB8AAO85EIEBBgRsBDI51HPtuzoXpwuqu/X82hQZiX3Q0rQyWc6AQNT2qrd56DRKz0UWMPyKCa8OwOuuhTw/Rj9MF+lox7eTwWoHQ66vrh6tnIiOo6zUBgOXl5db3yXgzuUq2zGaKSJ4yLwOVHc97CJ8NVIZmlOBxnNu/B7XeYkKth/GutT7+/utvRF4NYIiVvWaXEdRZafHWl5neDSio2l1lV2kXCvBPEXqAsXsPErP3esAAafwIyURATpNA23PkbgMCHz58mWzlBBfH9SPdvE7WCHDvHBkTCMHWi4eJkS6q9VqM29I+2YERB2Y7wCBTFlyux2Lqv7k5Krz3ixFesLVjfKEawoA+Kfva1qcF8+3YnuBsX7eMlv16xjfwYLTW65/8DOQYQUJ4I+dxMh2ufpxZY+cCX4uckqWyG0bDFxfX28ZZ+6sHVQToUDeCxpGlD1sHGcGSM8rfty7kVBr+cAThO/29naM8ZdSQ2j14eFha/a+myjJCjYDA9qolRGL6iESDka5Y2wvPVytVqFijersUMpoH1Tx1EHufN6Rr049OAVUdWjtByqraDvlQfPiJVfYPRPfHMBWw+otsVJ14BfrwHl4jPsEkxoDAAE3c9vJIuogA6qVUqz6xrFpho9dee7036yunAHT5/Q3xtiSAXZcOE/oXwUAWBnAQBayyRMAORLNw2FIiwGG23ofETKAAu4TSJeXIwKQMIjheuA+rn3VOQ4R6OvagYqmIgNXV1dbQwVgrkJVDhEyGMAYJIMCBwIiIKDU8fr0+cqDwHO8VvX29nZcXl6O5+fncXFxsbnuwEA0z4DrIgIDOp+gEoSInAep19zchVk6FSXKFPHUkamZ8nTbQ5VhNy1VEE52QBoR0rKwF4NZ1re3t5uZ0w8PD1vLAzWSxR4Q+NHJtYiWoY/rR4gUbDMQUC8p8/z1mZm2QL1k0YNjUealdvSAe39p/WTU6T9O51SkbctgADoYGwZhTwyAAcivM9p4/+vXr+P29nbz6W3ob/5KLxtqHv7lj9XxJFuAi6g8EWBi0OCcA1enXaehQ1NzBvDTDsuFcqgPzLvxFzAMhcJAgBVNZ9yF88KznYrqCqcuT7m9vd2sBsB2xFB86ilFEw7Z4OOfgRaHeWc2JYq8wQiVL1F4rm5/JCDwGuS8o+rZCAS4KIDKkHuP/12evKwKX9tEX4QydRMCx9gG89iLg/cuYGAMT4k33VI+OCLgjHw2J4Df0WNXJzOye4pyzaTASa91aEl0ZCmI1nuq4xzIc1EB7CD4559/bj6vjb7y9PQUfvwOYAB7wQAU4KNyGAKDvIIYCPCExdVqtTV0VtWXk1OtSzc/T5/TCEN0v0NTYEC9W1Z0ESAA6bvaOCgEozHera/y2nfprFFkgI85nApEen19vdmQBROuXMhUQ6xqnPHPnhwrWwYEnShG5C06kOCu67tRm84YulOmGfR8LHJ1rUByDP/RqQoQo48BEKCvQ551CaLuQ8BRMOzD4SYbYyiNQT5HBcGP8qc/Bwjcu1lddumU5TsDjl2KDEv33QhYRbyqo8akQMDpOjdMiyECbDKkywl1B0zW4wASAAUAAxwh0EmM/LEkgALMd2O7xvWiwIbvI23OJ9K3qMtOnXefAU1tOsT7jGehPNxjlM9G0VUYIz/+QJF6AEydUApXoDZC9L4+x6sceAcrjKeCdzQo6keVp+YHZcogIRorZSAQjT25uomiNM6Q4B4j9AwMaN05wY3OX5MivvbBU0cJumOXTke5ZyDNRQaytMb47n1wv4OyBT+IfOG+mz8wxtjaJpaBAPcHfBVOx2jZA2M5Z8Ov5x1g3Kn7H5lmDEPnuSXREZZdJ8NOz2Z8u/ZWo8l6GJ79169fN4AAgPb5+XkzdMByjijYly9fxh9//LEBBPjsPOSUV7SxvuRVCAyWXR/U1TGqw/Xc1RNf43rN9KyCh4qmNx0CKODGiZQYP8PGUUON8A544qBD/sqPGvpZoePritxYcOAh8eYUWI/KwAbbKb9582azsZDbiY1J5wy4YQLmy0UIog7oAEEmGByZwLkiVQUKzENExwQCFVUAsfPeDLn0VZlG9zvRGgd6K9nX/uYMLdocgJ0jfSwv+N4BztkBuLy83HheDAru7++3gAAbAmcQZlcLcB1GpEr2R6MMiDvqPMP6I8qL0+vIMP9nNoPbmD1mHioAIOAQ/93d3Xj37t3WktjHx8fNP0+WZTDw//7f/xt//vnn+Pz589ZwAd5BudURg8zDJjobhHJCd2qfgq2JIgFuSK2iJU5PGwzwRiOqhHjZEv7VM9AwIxtR9r55eEArzBUsEryMMiFU5QLeMMYEAeJdrLRc+LALECiei5QM6seBAB1Lc0MFCggiEKDX+Vmes8CeoIIX5kfBWLeuT5G4vWeNQSSboG5EoBMZ4GsuKpAZ9YwPHRfVHytwBsqQXeSPpVcuHQAC9Je7u7sxxvetYBkIsD5wgKACAw4EdJwDvpcZt1OmzDmbSSM7d+Rk2NUhGznWRdyPIhkeY2z0Erx7/vHyQnZuOLKLVV+YfIhPzgMMIEIAwMq2D7pdeeJy6Dd2wIOLdqPfceTNUaVvI+M/I79tMMCMj7ENANSwYDYyiBWGTuZgIMBLFztzBVx0QI8jA+/Kp94Ho1D+BjaiA/oJVyxrgWFHGEknXDH/znBzXS5RSA7RZ/lwxAL3MP6ldVQZrkwoT4WyjoTzTr1XZXL1r8eaX5YGX1PlqmHHCDC6MnC+PFuaQ6BjvIwgAAwAIDJwVKXJygzXeDiC+5ou7+rOG3J16q53rmn7n5L87kqHBgVOhyFfV5+RrlYwADmBfnLG/evXr1tAAE6Y7kWAZ7ES4Y8//tjMPdCJhOwA6fJD3bYb+hTAF2VDpIL35NDIAJYjav/O6k6fcefd9p6KDKBTjvFy4htIGWaAwEYRz7jJgtVcAc1fQUAH9eNYlSq/zzzwrlYIM11fX2+NLek4u1s1EZUj4nNpx42iAPxzKxzGGBsgwJEB1BV+UWfWa6dEyt9SHpd6XfsCFhlFQIDv8TH3aeSj3xwAuGUZZ+POH9tS+UB6usMb6wF2BljhLgUC3fqq9ISW40eiqI8yZU7W0jz1WK9lujrSvfqcDhXw54jxYSJEcvlDRPwRIp5rgGgAzu/u7rZWEzAYAajQOXBjfN9AC7wCFIAHTMblMuIf8o+0eUWC68daX/ws/89QGwzoEgsmbnAoDlxnMODQDhSSWzngKqCL1J3iyyqq0+mZV0WG7NGwp6PKDcCi01hZo88QgxMO2fL+BwzqwD9Iw3kZr5znqQCCXUFA5GVm5MCYXq941QiXey5SqJUCYSDAXgry1fF+lx7LsQJgBtFqzJEf7utmZg4IdOp7F3nTese1U44MOH26zzSdrEZ9IXI4Mk9Xj52MOhnW6ADvNwBZvbu7Gzc3N1uGmCO7+GFpIs85YCDAnjw7UfhcPcuH7mUAfnmzIiXuJ5ici7T5GZQ5sl37aPspMKAd23WaMV4qQAcE3PyASvG5vKLnouddp1eBVQDjvHwtA6IGeI4nuLiZqQ7xuk7QMWQqJK5cGsLCMU9ujOrNrXBwPGgdq3wcW6EeMn/nRTrFmpGT+0h2Z9NS4j6nG4kxvzpBkNvUAQI8B3DB0TQebuOfAurZaADqPjNSM3Xl6v0UIgNLeXCG9xC0BAjweQUGmDQ68PXr1y3Dj3kDPMSF3Qahk2H8eVgAz+imd2OMjaOHoa37+/utMvDyey4PR2G1nvAc+gl08/39/RZg571rMlCwCy0GA8i8ElBGSiBeW8xeQtb5M/CRUWQo+ViNJhtMt2GQhkPRmE9Pf23hivriSS0KCLiRURe8eiEDBq6eVCG6Dsn863px9eicYnd1y+3D+VYK9tg023EyuQRVxqiKCmi6uwCo7F1Wbrypl3rk/GwG9iPvHWlC/vGvv+hbJMzDEu9nF3nj+j+23C7Vdbvkk+WZ1UkEAiKvOPuP8sY/5Is3y3p+/v4lQl7thTA8zx3AcC9kUyMCDpBGjuMYf/Un3pRP60V1rQ7Nus2R0Efd0vR9RQRAbTDgQorwGDHBQgmNkKXFxm8XcoJUdebIcKLiOUwafZIVeUAIIUQ8lqUTUpzS0wlg1XCJllHLw/dVEFUg3V4DMxTlG3kAx6QlICBTZBFF9RnVrfPeFAC79DW9DvhVYi8rGrJzESbmQY033oeCxVitzvxmQKBDBK7cXXLljtLqGNFjye4+gUhWhll51Xed8Y8iA46nKDoQvaORJ4TWoXsRFcAEQjasAAWQO8igDlkxyOX8ImIbwdEAdTJ1IzoGMbwnAgMYF5nWOoyoK0PTEwijjNmY6Vp5kBq52VCgO0a6/K/vsTJTnjqes37mEisIGMmh4cYYW7tjRZNSdFZqNHlSlWJURneeRQZwru9rG0dKWdt1qaC+NrEMZMZh1zw0nW6aSyIqXPcaHarS0L7oVvZoeJMV2xhjE05FP2BwwWu6OSTLP17CtXTCoNZHdHxq8jhDHSCZXeuku6tTEOmBCpBV96LnEbr/9u3bWK+/f4CIl3qP8V2PMeDl4QC3kk0dtIoXfg8GnqPMAAiwJ7w50nq93gwTcNk4mvHmzZsUjDAt0WGLVxMgQzUqTpmxQUFhnMfrQpL7oEwhZAaTQYECAd6bGo0NpahAAAqQvSCdNKVC6JRiFgHQsmq5Ouic0a+i4kw5O34yr/bUqDISDtTOpL0rzdS7O+Y5HyoL3A/dEIHKHE8Qjnhlr4Z3iuPlX24PeA3NztazA0LRc9mxK9O+ddIMdcBgxns33V2BgLvm8uhGDB1wdxE0tik8dyvb6VYnqyoQdY4vrkcyxunqjoQcOb+4uNiyIZjrcH9/v7UEnVcXZJGBfVEbDDDxhDOdiT7Gyz2mca0b+maq0HD0H72fRQac58OhH/4IC/YWwP4CaFB4OBx+YqUXGfwMCKhSdmXQsmZAwEUdkG4VtZlR0BHYe23aNRow0wEzA+2uzdZnh7csPxcVcgCSz9Ef0Ibq9YA3likoRR0iwBfieA94HSLIyun6dwaSo/7/I4AAJcfLvvpUBaKiZzuORqf/Ib1uedSBYQCq87oUTKiOi+auqdPonCbmB/nzB/1gF+DV47sJcDRhR1ar1WZZJA91ZNvZu/rjutHrFU1tOjTGd+OPf6AfrnRn3JhRNURRXmr4osbJQEXHm9br/KyO8yAy8O7du3FzczNubm7G9fX11q6DzG8kaG44wAmjq6euoXGk6YJ4oiALfQTeKqDQARanTh3vMnu+8tg5ra7C1PaYAdJs3LkPQ8Z1SAzHPK7ZUSxocx2f5TkC7jOxUZmcwee8uuWP0syuddrkNUj7eQfMLE17BhBkpGBK9UOVvtZ9pOd5Eqxz7pQn/Y/0m3sPx6o/x/hLX8IO8DH6GnYmHOP71t2INqOPATBgzkMXCGjdLaGpbxPgn5nUGZBjfA/XQCHgXGlGOJgH93z1fmZMXSfg6AcjOVaWHB3Ap4yB6nS5XgQEUE9ZnUT15KIEVR04QV6tVi+AwCxCd/nMGK5D0kyZZjtSFqlx6S1JvwMQupEN9Zh4rwkAAB4S4x0IkZcLs0bKlZ9jcMATFrtgMQNhEVjYB830sX1TpJ+0LnYFBRUgcPWbGV19b/Ze9Iwz5qvVauOEzQKbDGhENoOfVV2qyxHH+G74efUOp4v+9/z8/AIAvKbcTQ0TOCDgwAAQGn/Odww/sXDWu8E7mYcQNeIsOaPpJhQinAMFxwoU+bshAB7rcgrVlU+FMlIKLhLDRh/P6gSxbr0pknb3TgUMRBSBqSqywu9Wz3fTdXxF+auxdV5jZDTxz6FUneGs3xHhfqseP3tlGuJXpRnNg3GypPy/hne+q+E6JLk23mdUAMdZNEzPs35T9ZPIiYiOnczw/Sifjk6bcSw1X+hTjdhwnjxJ0dmBjL9MD1TlmqU2GOCQos62h0JRJnUyHhpNBVrf03MndF1lkSnsTDh47NMpMZSDhxFWq9VWWFXHU3WnQowx6d4CFXUVgHYSBQKY6AJEuitF3uGxFWlGHcWxLw8s8jAZlGTyGgEBALpMmUb58hwCBgHcb5GGAgGV3WqeCe5FQwMREIiuOYrKOkNOt5waqazs0sfUsHfKO+t5Ox4zedVrfM/dj/KZLVdGKlsKdh2hX3E0zC1hRD+OJjK+hi6dBgNs8BgcKEWVM8a2IDlA0ClwhjJnO4fm7yb1ubAmv89gh8d4WInC+DtFWjU0yhR5BM6YcFRC65yf5/+lisUBAXf/FKlSbBFgBVUG3EVzdiEFAvwf8VnVP9qeQa7yzSF/lWF+xilsvqdpRn2gK0PZ9UhPzMjjPtpsKe2S92yfyyIDuO/OK4+7inS588qxiGxF1t8yUOx4jsjl6aLI+OdhAt5gC8eYWwD7oitrdC+eqC4rPVVRGwxgMwREATgawAxEM+SV6ahhnLE7ZGfUdJEvz3lgb97tEYAdotRD4hCqrmnldJywR3xpHTkwpcadOzn/s1fJ6c7UW6W8TwUEKHjTsmaKLTOuUbtk3n5Wz5Xi5B8AgNvxzKXLaXAf5esuT8iJiwxEQwOahtMJSyIDHeDs+kRFlaI9Jh1K/80Yfnd9SXSAz/VYrzkgEPW7KP2Kov6W6WHnPPIEbCbuMw8PD+Py8nKzsgyft+dNh3jpOVamOZDtyqHHs7LcBgO8blMnN7BC4TAHK4tsfKTD9K4dYuZ9bmQYbN5LHUuivn37tvVVNzSo7ubGwEIBAPLr1EEluFpWBQRIA8p9jLE1+5XXkHMdzAhVVJZjeVZjePnKlNqMJ+PuZ4BA03d5VtEZBwgi+XbKTNuWgSnkV7dBZUPOeasCVIOv+sBt7jIDBNz1qsxOOUZt4ur+mLILyuSpqz8dqX7ANX2mOs6uOR46bVoBgUoeKqPoZCDjPXO6uE9xeuhDvKoGw3G8KRL6m26PHO2/0bEZlR5RWjxngAmMOcOnngA/H5G77woWpZMpclWczmDiOgMZXTN9e3u7tdXl9fX1WK+/bzjkvkfAM01nGpXLP+O58juIXMB4qKcYCbTLo+Phdg3ba1Km5CtA0FFkfD8CBJH8aZ5RdIz/XXtqmbSN1DCzkoK8fvv2bbNCBrLjZEKVowIBlnsXEZsBBI6yPqE8ujp16XRB1WtRZngq+cyoW8ZIrqLnI/6j67uAAT6u9GJkyPVeJxJQAXcXCX/z5s3WKjNdjg8QDtviluBG0YGOjHdoap+BTPGzF6CdHdv0ZgiPlRvfq3iaJW3cKrzKZYPSvLu722wegWgA1pACLOD72PwlLACmqjzdcs0CoejHYS4eMnDU9WBPUaEeI50uIJhNY4zxor0yoMFpcUSAP+v69evX8e7du3F9fb0JX47xPXo0xnfFphsRsSypLtBhhUy5zRqPiCJZ6xqBbnqvRdr2fN0dL6UKIOszfJ7xFvGa8Z8BgSjtjnOC8+o4oqgtmDRCgM2Q+EuHIGxO9PT0tHEmeZvuaK6aUuTIdGlqO2KXMchlzsyroXdAQBu+QxlSirwAPebIgIsSMKjB0AAUIb5OyFtKfvv2bQMGgPKA/LQutP46Sq9SmHyuEYAszcrDcgYJ9zI6tiJdQrPGx70feRnOcLu8M75cZEfziYwHjPRqtdoAAWwTfHNzswUE1uv1ZgMUgA+EOcf4vrOa6+s6r4aBSKTkszLvi5ynh/NTk9UOUHT/GXU8+woAuGsVKKjAQPRM9c5S6ra303UzgCDaAwHpYFXX09NfX2DU7evd3LJD0DQYwNgyPASQGtYxviuKMXwUIAMEEVWGvmOkIuOfCQbAAL6dPcbYAgcYb8c1VrD4SBEjPKSZ1YPWW1Tu7DruzRpsbkN+3xkxVaq7hKoOQZFMRAZ7HxTl01EiyktW53w/OmdiBTXG949qff36dfOtDTcMeHV1tenzOnwAZcXpQsnpT8GAq7dKxqu66xr0CBS4PI4NEjpgaQYI8Lnqvg4AcM+7/LWdZ/VZZg8yI30oivpk1t9Wq5ebInF6DAbwYS9ElCMgcAj92gYDCPXzNwk4TIlrmDDBX4vicOIY85GByCN11DV6CgJ4bwCnDHmCFa7Bq9IvTyH0ikmGQHlu9jXnkQGBpUJQdQ6+Fw2ZOCDQAV3Kx7EpAjxj5PWUeStLyIGDKD9+Zkne+p6m8fDwMFarv5YLf/ny5cUGYpwOhsYw+Yl3VeNhMK3X9Trf/33G0O27LVA2Te/Yxh+kxqd6LjrvUOY8dd6ZBXIVzxmIcOlXgCDr/7OkfbIDwF0/R5/hFQU8ebA7RLAPaoMBeMa8nJABAQrjNq9BgRApQMVVigBUKcNOozoky3slKEhwEyUfHx83KA9ojsHDev19YyFefYBhAtQhlCLeyUAAP8P1saTcep3rgYknjDnwVAEM58UeU7kuzXtGcS1Ne8bIZ8910kE76GqWMca4vb21YJCHBbBlsa4wQHgToIDTidZLd/u9+6/qQqkb/TlUlGgfFPX5jlwuqatd+2tHr2W8dWR5hmYAzRJyNkr1HnQ/7qH/wK7gGQYEbvVZh5clNAUGoEiYHCDAPv0aFoGiwL2I+SWep1IW9uJ/ngzFWwgz76z01uv1uLi42HhUrPiyWdQKBCIPSTtPhoirOoo6ttaNPod0FRREIcXKY1nq1R6CuiCm8kT2RV2gFD0X9Z2ozlW28HMhzDHGBgjw57r5s90AwGOMTeQM6ehqHM43K2f278qs5c/Oca3TrpmOek1ycumembne1akOfHQcgoiPWUA3U++d6ACoEzno5uf+mdxwMA+vYf7NGCPdhwbvZvzMXFea+jYBEuX5A2OMF5OLMiMFxYH02EteQpXBU89Wr+lSD/1IBCs2HSrgcuAZfo69If3n8kfo2R1H5e9c0x9/k4DDw6p4MPzD7zj+uDMs9eIOQTMd3/G9D2AwqzyrtEAuVJkpKH6Wh/A4be6PiH4BDADoI1KAd+HdsLfjwHA2Z2BXIKB0zGjUvsnJz67KPwP4XV46QMXxtcSo7YuczdhnRMDdZ73Iy7zRL+B4sf2IPuTVrZ/ZepwCA1ASPKkMhcLEIhgLnUvAjEFxoJB8rEZltmARCIhAgUYG+BqXG1ERGHRc53C/XucG1OecQqyAgNaBQ+hRRIQBAJeRwQ/KzFEdngcCHtTgK6iJAN6xQMGSjp51vCXliHiY9dCc8u0AAuU9azt+nr9oqDuOYiIhhzYxRwY/XMOcmWgiYQd4VfW+D+V+ynRoA9qJPOG5XYHxkntLKdKJem8pVYDIAQJezq1OJy/NjfYWiPLfhaZ2IOT1yWOMjSJgL8F5mbi2Xq+3JhYymEChnCGpChshW+cN63UXGUB59RsDDAZ4wxRuMLd8kilaXsll7VCEbiMwxIZfv1DHQAjv8KQWjiDwBLHMoHDbRp7ga1InEqDn+/JIO5GJWVDA5Dy1CBC48mZl0z0FYPSxBHGMsdks5c8//xyfP38ef/zxx+b48+fPmxU1bkJUVcf7BF4z7x1TVmdphtelhmM2Dz6e7Tv8/FLgkfW5SHfuA+BEoEABARxgBQPQmdFQcpb/rvI7NWeAfyAGBJhU5wo4xndAwWPzeIcrR0OXSpE3nEUFHCBgY+8AAefBS7I4lJOBASaui6jBNc8OCIrKydc1+pEBgSh9/GuUh+sGPDPqZRB57MiA6yyRoVwKCjIj3wUAS42ZUwiufK4MiGplfQTLZr9+/Tqur6838vP09DRub2/H7e3tBgB8/vx5fPnyZXz58mVrA5Wo30Tkoh77IE03u3/KVPG4D68xA5IZyF5af67uOyBhBgAcAhCMUUc9VE+7OsycKD3eJ4CdHibgjjzGd+XBhpy/aqjMMiBghKT5MDlB0PvRf2Qomb8oGuDKj4bS5VQon/P4tQ4YEESozwlpVu4K8HBkIBoacXUPcisMQBo+Vo+UAcExaFbZ7wMIZGC1y+PS5zRSoPfc9TH8xmKcDjbY+vPPPzfbFeM97L8BUAAQoLup6QZFmp/zsKLjTvkzqp45BUDQldPsXmRwOA9+LpIZHC8BGLP1GJXbgcNuv8uAgPIY8dstd9ZmkdPG71XRAH4u42mm3qe2I2ZDyB2awQC+3czfRB9jew6BGytxDeM85shoqhBEhlJBin6BkcGC5ufGcnT8v2pErcsMPHS8F1dGV+YoKsB1kvHsQELE02r1PeKDcp6CYgV/Tpk43maAgOahxx1A0EkvIgfCsmejc575z30OE53u7u42UQGAgefn5xf7avD+GhoVyPqIAufIUB1CnpyXFQHxn4kyHaO6Keon2btLqdPG+wICTEuA5ixgY1AQefiRTXH9dx/yuQgM8DI79u5hADhEHHmg7IlihjII6TlBrIwi/iMPOQMEOmlQz8GHG8/pjO9UjezKlZVXn6vAgHvWpRcpAMdrxB8DAd106hikimKGl8h4djxL/He8kVlyaWnZIhBdgZ8x/tpaG+2GSNjt7e1mVQFkir/boXtruM8d78PQKlDQazMUyfApgNcxPC8zYM/dV5CVvZcZoorX7PmorZyOUZl2Ms7HmfHvykik6zpy0a0DBfH8fKePajqdZyOanjPAgIANOM+4d5PV1uv1VjieDRXeZw9Vly9WRhP/2vg8Hs7HCgjcsIaOhWtUIPrP0HR1n8vUQbMR4HE/t7ui22gmK5dGCFy9RTyeIs14mxkiz/6r9pvttB2vpqNY3HsO1PKw2Nu3b7eGAcfYnkeTfZ0wUuBZObXvsOJc4sFl+WuddfN6bdoFCOhzTv6d7HSNm8vDvbsUtEXvd4x/p99Uhrjiewnorp7tOlJdPRbR1JwBZU4ZZYPEoAAhxfV6vQktAhgwQAAg4BnrunyP/5En/2dePwyfmyDoysnHCoScwozqpfpncl57ZlAy469AwRFP6Mzqgcuo7zPx3AJ9/5gKddeOsuSdSiFVisJ5b12aUUKOFADy7oJuKaqC5ejDRFwuPe7w6ABBt0274EDrfUn9H4qWAoGoDJ30XN+NdFf2XFf+svaMAME+IwGZnXF5d/qankdlzNKN6nLXiABoetOhyAiCKUQIeEdCNSJugiFWIQAQ8Ll63GxsNPyNa2z4V6uVncOgkQ2NQkSRAQYFEThQMNAFAnpeRQj4GbdZEspaee9M2WTByKgzeJsp82tTV8l0O2+U1j54U36WpNtR4u4dyMt6/X0CKAC+ylgFjEFLAI0ruwMAOOdnqzqLvMvOu6dG3XYdw4OdLK0KyHeiNLtSBgIi/dgFP87IZn2xk85Mnhlp3UdpdR3bjKbmDFT3VXlFywRZmfDYPBt2/DOggKFxXm42MRDhcQ1vjjG2dgQcYztEjnLxkIWGPrMhAmcMXcN2Qk8OMTpFqaBIr2mUQOucj3nDoa6CmAVAr0EZeKnAWWSQXFpVh9yXl9lNw5UtA0PuWTayPOk3inRUbd2pI83bGQJ9FvecnLo8K89xX97WrsRlmjE2Gc0CXZd/p+73TRF4y2QSFPHZrdvZyEDnXsWbPnPo+p2eQFg9kwmvehMZqeeuM94VGKgRZE+Zhyv4OvjlLZI5bV01wCHQKDKgZauMjTt2lCFCp/AY9Gi9RFEEgCeuFzeEoBETBQD6i/g/JnX50fqNAFwHEFR5R8qgC0gqcBbl31HkGRDoKMZOvVR8KCiIjjv5VMegfYC3Q9Ku/WrGWOm1yEHZlRR0OHnlf3UEI3l0QLHzz8dd+5X1RSWXZgcEatq71v3UBEJW7hWaZgUGRaJGF8/xxxqiMeeML/Zcu56Hkq6FB9/8c1GBDAh0ywBiZev41PF5PMMhfS2jO1ZAoPsEoL1wvlqttoxBNjyCdyJQcAyKgNhSw8PPVMcdivLK0ouUsTvPlFzGTwVOOjRTF7sAtEN5phUIOxbts6zd+nMGsQuWu3w4imyN/lyUU3VPFwBEvHTtTLdsUZpdvmbBb0Y7RQbUaGWVwKsNOD0sLYRA6XI+zV8Noj6HuQZMvH1y9K7ObeAJUAwE3BDBLsZODXSk+KNjfg91DL51h0UYfo2YRPWOXSXx//z8vPXRGQA5vAMecD5rhF6TZjts5pFXz3D6Hc/+EIYnUooZH/ugXcuiwMQBlQq8/GxUGapZymSvCwYjcNpt/xneIyCgOrRr2DM9pd56xm8GnjvU5VPv7Utf7DxMwB0xQtHswTohYuMVLXWr+EA+PMbNM+VhvGD8WGBg6JCXDg24r0hFXjGXtyIX1squa16ob97EST147SDoOFgipkMnyIfrHnWxXq+3Ps/s6gjH/D7zd6o0q4yy8+xeBQgyXmbrz8nnPqIDnagJ87Ck3buGPQMJHXIRhh+NdgVAzrNf+u4+IgKZPLm+p4DAvVOVqwICFV/u+demXeV3Ggw4o6dh+iqEop470tXNcfj+GC9BgRLzwzsIYjMkjIE7T5gNHs8LYCAQRQVcGSODrtdcZCBSqqrUkQ8PE/A52kXrhXch5FUWChq4k6NeGAwAHPE5L0Hj+mK+XpuqaMvSdGaiApr3DICY4SMrVwQEIg/bgXsHAqJzfqdTP5HSrq5n/DpyZaoM2rEUfdRW0fmu+cx48vsAf1l5NK1IV1a6kx3VLP8MCOg7S41uB4TP8rMvWrSawFW6Xut4ROwtorEyIVNDqMSNznMJVqvvk+FgqJRfNXgMCtwQgfO2lir4TJD53Qy9gl+XBq/WABhAZADRAR1GcPMJeKgAhp93mcPOc7rrnH7P4hRI6zTzgPcFApiqdCu+s/tLAEHXEKvRVG/c1avLLypTFHXg825bReAk4i86PjY5fbfEg1daAnr2AQCifDoykoEDvj5TP4cCWJpWJ91jylsbDLDBcojNNUzmsThjnDWi84z5n/lSJIh8OGwO0vC4myMQTRp05VJeso6SoVgtuz7vBBj8Mw+cru4M6QCBXud5Bev1elMf2Gtet5/FHvUMCBg8HIsyJVYBgpnjpZ25AhgVcMjkUSlSxF1Fn8l0FknI+HHljwAHnsk8+q6B6oCAUwAEY9SRnVOhXTznDmWOE/KP3svsi3t3NmIyy9Oh352haTDA4XdlMtr0BqTvID23ja6+N+s1cZQBeWokgnnGO271QPezq055OVCiPLuyLxE+B5ZAvNcCjL8a/cvLy3FxcTGurq7G1dXVePv27eafl2NqVADfuAcQ4I/TaLTglChqow4gqADejIeVeT2d+8gv87ai+/psB8jO1IfykaWV3auMfQQWXN7dqAA/e2oGF3QIvjL5z8DTLlGDzEhXTlX0fkfmozRm69XpjdeSmX2BrzYYYBCAf+18MO7OqKtn795xm+GMsb10TnmYJX53tVptbX2sYCCbLNiNCETGpooKOE8w8/zd++zps/G/vLwcl5eXW5ECPHN5eTmurq7G9fX1uLy8HNfX1xtAwDzxXAqOCPBX63Cdf8eiqsN0QJvei7xzTS9Kq0qX/901LVtnSa5TeC6tStFn4D3KL7pf1WllcPhd7d/a/6LyR1EBnB8LDGjexwAnGRDrGKIMXCzlJzvn60vabgbI83nU51+7rTJeMloEBpARV7Qa9QwM8DsMCJCPVjbGrV3hqnHoDO1px4rAQAcIaN10jYG7pnXHafFkzawuecyfIwAaGdDPGvPEQkQIAAw4QsDREwYEAALudyww0PUuIsoMsT43o0gqOXD3FBhExpupUlAznrLKWQROsvxmaJd207w7/fZUqTJqHd53rcMIELhrWZs5EBrVf5aHpud46OjtXWgfHvkhaElZp4YJYIgywx5FBhyA4PfG8LvmKQ9KuhRROz6DBVWW7tkKCLi8XNoVRQo28ra0/pwCYyDgQMDV1dXGqOs8AY4kMCBAJIHf5SEDBQQaHcAxvm1/LKoUfgXcKiAQvetkJEsnU6IODHAe0fUuVQqf04+G9lw9Z3XfqRNHnWc7xrMyXsfwxCvKHJzqvY4cZx7uTBtFsr8rzYC6TOaWtGm3HFXauwLcQ9AUGKiuOyDAXzZzBs6l3amkagki558BBPWyuygyAgYqaJFBgDBkoEApAwQMxtSY89AAfmz0eZiAryk4ACDg1QccTXl6enoxXHB7e7sBAnd3d2mdHopOSZGDnOEdI5YX10f4Hm841cl7hjIZ1UheZUhmjVfGc+V5ztIsUHwNUn20FAhEFEV0OoBA9U9GLhoQgc1OGk7/Ol72AeY6tm/XPKr89y3Tjqa+WsjKJzKaDgjgWAGBAomqABpBqMCFpqPj7TjvKgH1wqLO4njIPJAoKuDKEwGCCAjAq4chx/h/ZPQVAOC+ggrdvAn1+/j4uAEEt7e34/379+P29nYDDo5BURSloshTzDzI6trMfeaD29kBRrR/9Fw3L/Ue9dgBAY0MuPJxGVwkI6qXXYBLVL7Oc/r8qQHKTtRjjN0jWbtGl2bvz+TBbROBmuj9MXYzsrvSbB1UvO6jHFNgYIx8DK9bQH2uAwSqPPibBpk3xSCAAUoEbFRwnGGueIzqKlLqURmyOmejDYPNAABj/wwGeG4BG3sdQsBzDAo0DRAAwbdv38b19fXm/5iRgTF6Xg/uzaQ188wMkFDjWXknkGWd2+MAwWz5HRCo5DcrY+eZyghX9RLREqNxKrSE3wz8ZNc6Xvgsn5lDlNESILsL7RskdNObkc1D0PSmQ6xYIg83IrfVcERuYiAPOegwQWdDG+bPPR8Zf1a02Wx+TifK2ylQ5Y0pA14MGGC4AQQw6e/m5mZcX1+Pm5ubcXNzM66uruwXHLG0kOcU8O6E/HOTD3Fvvf5rLwIAEAYFNzc3WfMcjCogoJ1wVmnNdNwZhV4Bb5UZBgIRKOBrUT10jH9m0PWXUQaOIkDQBUpVHp28uUzHIJf3kihURs4IZeBxqcFdYqy7UduKtAwd52+ftMRegM9OGhHNPD8FBrpeana90wHddsWr1Wrr4zsOEGh6M14YH7O3xULj/vfhYWW8dXhdrVZbQAARAQUCiAzAeKOMGlVQr58BQ3TO3zlYr9cvJi+Cr2OTk42OkpoNRS7hSfnq8KHvoV3wrA4dZKQAk8FiBgTYMM8YqiVAQPNztMQz3ZfRORRV9TFDmT6OAOO+jGMlv4doBwcEus9mpI5Dh49ZckDsUBGtxdsRu+OMsucU6VfvKjiI3nU8r9d+rgCUXCSsms8Sb0GVqTMurhNmxoqVNjx2HhrQH4y9gh6dN1AZDwdKdMiACYDhGBQBAL7WiQgsUcSd/tF5BvLmjG4EECGz/B9F0BQEKBiIZCIDyA5Iz5Q5o6h/VNEEl7dGGTqe+M9OlU6eoQh8LQHXzjBWXnen3zqdO8vPrhQBi0MCAKaDa2cVAjUW0XBAdx/7pfvdR0iRlSIbffdz70d5dO47wVYlzdc5KqDbCbsVBQAKOgOcwQB7+5x/lxhggIfLy8stj/VYVEUF3HEGJLp57gqeHQjgyBg/FxndDFRGQMBFBzivqLyVd98FSB1jNGOwIiAT5dX1Jl+LDmF49DxyxjInTeV7l/4xQwricI15WqqbMxAxI78dcm0xW4f7oJ3AQMewzzY2KoLnB3BeVVqRx+4UmfKbed8OCGQeRFdJRREBzjfquHyuSlvH8tnY60oA9urVEGgemk+kYEHI7xSUKagbFXBKxqXjaBfPN4tK8Pc1uJ+w7Oj+GC5dLpsDA93hAcdn1D+WUhcQKF9LFf4pUaTP+P6uFBnzzFuuQGX1LHjPQGqnbBFo776b0a7yUfWXTEd0Ixr7jBgcJ25bEFcSfzXP3WdCx8kmH4KyZYWZgEb3K+M/CxwqT46VtjP4kTJXw4/0oiWFUfq6Y2Hk9XOep6Z4O0B1Kc+dtDuAQcGi/lw+DghUee8LCLh/zbPTt7JjR0vayfXJWWV7TNoXbxXoBS1x6mZ4WEpd/pfQPgFjZfzHmHM69gkExtgzGODwPnssUSVU45czlAEB5OUM1owRzvLeBRi4NBw5T10NtY75O2OOyABHCNTQuy2Moy2NdWjBeaSZHByTKu9En60okoNdyu4AAfKK6tVFsjq8zwIUveaOOyBgnzSrJLWO3Pmxad8gJYqmzJJGl9y9LErQiSB0qJKtCuQcKsrXoSgyo3RocLXzDoRKbHCzd6KlfUuoU3AFArpMkNNS5eXAgst7JjTVQZxRB1PDzsab9wJwHr7OKXCAgtPg1Qm6bJHz4DpDmJrrF/kci6oQXabU9P0sLReuZEDQMY6dvBQUaJ74nwEFmULtynzm2cwAjSqf6Fr3vktb60mPT4X2DQT2nY/TmV2+qnf2ZSz38d4+6BA2b2l5dooMZMv73LVoYuCuIaIsjShCsV5/n13dCYHyPackuv+ahwMiUQjXAQAY5evr680vWkGg2xLrkIDmoR8r0iWKCgYAAB4fH7fKcGqfLo5oqYJ0SkxBn/7zvSy9Sm46IKYysMwHz0lwgKMDfl19uHJn/a7qN1W+3Wfdf9V3j0n75qUDSJe839WpEdjNAGRnSKDDfyeScOxoppPBQ8njou2Io+vuPnuDbv8APZ8NzzMPMPAdvljZ8WeMNW02/tGHizrejGtAVYrRMABC+hoFYI8dhhobC7ndBxko8EeHeKkh8oShxzsAAZwOgwGU8fn5eVxcXIzHx8etaAPOj0FZ54mMXuf9DATgWqWwOgYxIwUaEY+Zl5v1w12V4dI+PRt9iK53wVanP58yVQbSyYmC012oaufukIQa4arv6jP7KsuxqSvjM/VV0fQwATdqNCTgogWuEA4VVpXQFTg+j/iBF3RxcbEFCCJeM0Dg3ouucVkdIGAQoEMCCgLYY3///v3GaLP3r8CAdxrUMP8YI/x4EQ8xuEmKqGsdcnh6ehpv3rw5mQiB86oj46fKM6KZ6AA/N+PNVhTx2vG49X0uR4cq77ADCrK66Cr8qv6yiID776Z7KOoYa9dmnXroeMZZXhVFQLdTplkQuS/a1UGN0uqmkdmQJQB5hvYSGWCaBQIcLXCeo0YT9JkIAPDzWegdBt7NIVAQwGPhXTDQIRcRiIAAh/oBAt69ezfev3+/+cHo89wBnRToxvpVeFFmJq6Pp6enzbkCGC4LQMApIO4svO5C4pkBj5TaEgXSrZuMX32uI5uZpzHDUwSGomiFi2Z0wYA73wedgny+NnXBLj8/xrKIUcfZ47RfGxDss/0rD56vR2Xs9tl90d4nEEa7AvJSPgcE3HmUPojzcTxGQMCVidNwUYssMjDbOM5T7AACjgpwyB5g4NOnT+P9+/fj+vo6nUTIdYL6ZKBzcXGxOQcP2DwI4f71er3x+BFd0T0MmH+NPhyDKuCo11z7ZO0WpZUBEE6TzzOeomvR+0r78DQyr786r2gpKOjkkRmkDOgdU3YrnrvvdEGYeye73nmmw1/nvSqtGRB7DHJ641SiUHuZQKgF1OtLdwncN7m9BmCwNDowxnZkQH8O3DC5a5nxcR2AjaqbL4Cx/Hfv3o0PHz6MDx8+jI8fP27AgBsC4GMGAE9PTxtPf7X66yuGj4+PL0ABIga6EoF5428U7CNyckjKDHPUhh1lxUabf5oO56v5Z7xWwMJFNaL83P1dKIum8HlHcVf8V3xEaUV5RwDwWDRTV7PU9Uq70QAHNjSPbjk6wKUD3COaBdD7pgxARc8fmnbeZyDaIbCzaqAzLBBRdzKaCgg3QLSaQN9nxenOOR89niFOjz1rXe7H0QEeJvj48eMGDETDAGr8Mfv/4eFhPDw8bPLHcMTDw8MWKHh+ft7MReBhAf1IEueL95+enhbVyyHJKa4Zr1ivRSDAAQLkif9InrL8nQdeeXrVcZa/U7Rdwxq9M+t1L2mfiE9nbE8pKrBvcmBxaZSgAhNV5GCM/vyBDj9Ru7k2n6HZSEVX/3f66WtGDXb+UBGoWmYYFU6f1a1rKwSXNZIOWfBXD6Pn1WiqkgYPTnFnyrUS+sjAKCiAkcYQQTRnACsEkCfG/+H9g0eAgPv7+3F/f78Z32cDD0Dw9PQ0Hh8fN18+5IgFeEK62DkS+eL9Y1KmzDqGNGsjPuY2c//KE8sZH+M+/2fynvHfNfxdxewMiKvLyOjjnpaniipk1zSPWTq1qAD4yMDWPmgfZayiAl2g7dKceSYCq1Ua++BlX7RPmZtJaxEYiBogYoANEijbnGgfCg+keTJowT02kDBe0dyAqGyVR9dRstEzCMXzJkAMBLCSAKsJrq6uXkQE+JzL//z8PB4eHsbd3d24v78fDw8PmzrCSgQAhsfHx3F/f78BAxgSAE/c4RmMIApxbDAwRh5Gj8jJemX03Q/3mCBniNK4iarR1tmdcwUWMwA2o12Vo4Io99/1CDnNiuclfB4bEDBVwODQbTgDqB04mKWlctbNs/LOu5GQijIwv9Rm7JKno9X6lCT9TGc605nOdKYzvTod95uyZzrTmc50pjOd6eh0BgNnOtOZznSmM/3N6QwGznSmM53pTGf6m9MZDJzpTGc605nO9DenMxg405nOdKYznelvTmcwcKYznelMZzrT35zOYOBMZzrTmc50pr85ncHAmc50pjOd6Ux/czqDgTOd6UxnOtOZ/ub0/wGbJPglwk1OUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkBElEQVR4nO19aXPcuM41O+3dzjJ35qn3//++W3VnEjvx7n4/TEE5fXywUFK724lQ1dVaKBIkQeAApKjVZrPZtIUWWmihhRZa6LelD/tmYKGFFlpooYUW2i8tYGChhRZaaKGFfnNawMBCCy200EIL/ea0gIGFFlpooYUW+s1pAQMLLbTQQgst9JvTAgYWWmihhRZa6DenBQwstNBCCy200G9OCxhYaKGFFlpood+cjqoJV6vVLvl4E/rw4UNbrVbDD88/fPgXF+F9u26/o6Ojtl6v29HR0fBbr9dtvV631lp7eXlpT09Pw+/5+Xn4f35+bpvNpr28vDTe58nO1f5P6hr2BfdLTz9ZWvzPnkde7WfnWDfm2/K9ubkp8zcXnZyctJeXF/e+8Za1P7cT/vC+yqu6txe3Hz632WzC/mE+TL5NRlF+1+v1cL+1NvTd8/PzcBz9LM3Ly8vwY3lQ/Km2iuqf1THKi/O0Y5Zhq39U7ocPH9rz83NYzi7okPVuhTfuc9S76/V6S/eiDo7K4fNobKkxijzwPxPKt+lxGyP882Qr4zGj7FlP19q91WoV6j+jMhh47xQJlKdgFChgMGCKtbU2KAtTkpnyqAiIN+Ay/qOyvHpW8litVtLQVQS/IpC7oN7BhOS1cwQG0Ghz20zhswcIeEDPgIHJsdHT09NW/7DxH8NvlfcovQJAFVk1qirkDJzsS3Z3TTieIzA7BpQoxwv/7afGEtIuDKkC3QhMWvu3z/Fc1Q0JASU7GArAVOW3opMVf56+9ui3AQOt+ShRpYnyaK0NwMB+9txms2lPT08STDw/P7sGwyNPmHrJE5ixFBmJCmD41YhBw5i6jn0OKVIOCtDic/YsyrI9i/yhknx5eXk1ZqqyrYjbIPMKp1LW5qhUf0WqgqWxbaAcKowMoEeeefyVaJsHbJTOR11ucm1kfEaAAMvj9qny6oGGyrip2I2e8ffLgwHscEapfG7pvR8qUwQDqFRfXl7aer3eAgTIi+p0VjiRMsRrymvtbRfP8zViXjKhVcrzPSnUqvetflNJyUIvefJi8suRLSvXIlmZPNi58pTVNQ9UKH4rwLcCDrLxw2kzI/Qe5HaXNFa3qCgA/+x+jzFlQ+c5H8gP3zcQq/g2+VaAAMc7Rn696SYcz8pTPyQH6d2AgWzAeukj466MdcWD9p6JFNMUzzgS2ihdhEYjgxMh7ih8rEBN1DaHRBl/FXli6m1jT2H0UgRkVWTg6empnJddU5EuU+qerGfyGhkDvl+VJwYjHvhW6d4jRbz31mtMO2Ryx1MD3ly9EcqSZ0QzHqN+RQDL8s3gVgECRQYeeH3YLnXgHDL7bsDA1IpmHeh1mnlNhhZxsQh7U7hYUC0qqVAWsuT6qPtK+Hnw2L0eb1QBm6x+7yEi0GNY5qiL116qr6YMcqWYcfEgEi6SYrnF5+1crS9A5aeMqxdV4rQVqrZJxTC+Z+OP5DkyWXSvN88oHcsbAgBvnQBT5ox4aXrJAKzJsrUNLmhE/nDMZI4XRx7mlq8ILI8t692AgTGkPJqK94z3cD7JlOXDw8NWGhOm5+fn9vj4OIACBgSVTqoopiwagbyp8BmX0eONRoPxUMNfWd0y9J55tCqvnohQ1m5TAYGniFvTb8BERp3lDsEyX/fq5IECr/7ecwv9pCxqMiaq0ls2e/s2jaqmBRQfnrPBoXelu3rJnjPZtXOObmF9eOrAFo5jWiYGzXNQj7PQozt+STCgAAArQe+f80FCIcW3BewfFauKEFgeFf5VfRSoUTyikmUgUomMqHsKQHjPYl296MQhUI9nxECSve6xxG3iDd4KAGGvLJqnbe2nDLPMKlnBPPkey5mSO+azUrcsgjKm3Sue8qHJaYU8QI91UnWfSjg+eI0AgwGUTw80MxBQ17jeVT5ZL+Gxp1Pt2AMEVs/WftqB1Wp7PYF6ndyjMfah93mPfkkwYKRCV6qjK4PCECq/PogK0sCAeh818hCVoHtGPot0cJ5RJCTz7rPr70Vp9hrXKJ9KZKkaPfHK6Cm/tdp6BvTINpuf+wlgVMBkF2XNPCVVpuLFAwMRKKh4d0qexxi2qjHxynlr6vHsMg8R/+fgy/49AMpgwOM3ApGeI+Ude0CzAvg8EGz37K0xXmewXq8lDxgxiEDZHNSjtz365cCAUoCRwewJs1jnYtiKwQCCgIpHntVFHWM91X2FfFV9eWCMNfiZkVL87ot6eMjaXJHn8ag0vRSVHUUtMBLw9PQ09BdHshRojYyl92PKvNI55KKnTbO0u/Cg34I8Q+f1id2rgDEvvwwI4GvXXHYUBYgA5ZhogAIFSi4RhOBzCvwgqVckmU/eh+DQnKlfCgwoIMDTA5XnkdiY4hwTgwPMBz2qLCqQ8dZzXxkwb+DzIFACWvGQPDT+HijyFDhNb75eW1fKzPLG55WiYqWFz3B0C/PxxhBPM5hMewvCWK4rgBGpAkjGkjcm1P97pKqum6McJSs8NdDa6/70jH0GCDiviDfuY6y3ysMAMjp3Nh2QjTG7b1MGWAbzrl7BnSJrc8nqLwMGUCDxP/JYsryQUJnxohAMvyrhxXzxObwWgQJPEDnPCOVHxol5ymiM8B0CQOgBTdV8MpoSvsu8topxRU8HpwDsnhfJUvyycsvAh+K92sYeVbzeCnnGYiGfePwowKiAgFFk+Pk+P6f+Pd4sjZINBuXKIcKNtEy/sw7maQ8sy+7Z9AGmNYDRG+XIyJPhnvHxS4ABhVD52Eh1QqRsPWXGUQLPyHoCyZ1XUfgZELD/MQp3l8rwkIBAxEtkXHsBJT4/1svtSevJqsmpRQPYW/PWtKCMYjo1lrD8MeNBKbKqgc4Arjd+f2WaCrgU8fhROtd7ZdAz+Apg4nV1P+u/HnnwokNMbMDxGueJQMGAAJ4r52+uSNTUPH4JMGDkeSkZRd4X5o2dxttUch4mFOrVEk+h4rPeeQQE+NxTCtmA8WissB26Ah6DqivgokIVQJgZ1AxwohFXwMTbORDTYT6Y1649m+ye8ZHdq8hulObQZXgKVXQf/3NEQL2tUgEACgSMIc/Qqntj80f5550JkVT7YIQAnUhLP4d8Tc3jXYOBCjqtKGsP7UaeeGu+Iu/p6MgbVccVQ6DuoXHwPDGmXgMZKfPo/nuhHjRf9Wqrz3jKrZK/KTJUtpEMeF6agQaeFvPK7u1v5GlsNMWjCmDwynwvcuvJ01jA6jkhpmvVMeso9TaAAgHqfjQ+1BhQsj1W91j+aPgVELB/bB8z/PaP+xFwHh7fY+i3jQwoI6mEkY0gHnNeUT4eOFDHrbVXO1shVQZp5vlXw2ZcrhpwavD1elFzeon7oIr3qYBAVdGq9uohpdyqAI53WGNwq0CtSsOgAK+r8cL59oJL5q2nzXoMoALJc3lrh0A9choRG//qGoEoMsDp+XrmYFTPI8r6WQEBNPpWnuIB0/PagUOTsXcLBlr72dgqRGX3W6vNN7Gx506OIgTeIFA0xlvyysE8I8XeU5ansJViVwiceTgEqhhu5elH3kVUf86Xn52DlAwq+bRyUaEpxaX4Xa1Wcp0An2PkgXlS7co89rRjlbxxkI1L7/93JtaLnt5VwLG1eK+ADBBUdbciT/Ywv14dqYCB5eONLUyPwFk5rh7/VedjCsB4l2DAE8xIyRmpqID62T1VNj/by3vF61b/iqLBUhWKzNu0elaAxlxeyK4o81Aj3iv9XfGIo/OsfI9nJTMqrwogtnQRuMDzquGMQLQCHB64qJDXjpU8fjUg0KsT1fOsZzkqwPl5x71goFqPTFcrfvBcGV3POCMQUGsHIofCszUKZPfYgTnoIMBA7yBXyDQLU0V5sTL1lBQ/a2VgeVyu+kV1q9CYqEPUxkqh/yqKECny7BV5yqQCzlRerHiicry8KwpxF951a35oMxtjURRFjVnPC8JrUXk9dYoM13uhTI6rcuPd45+nd5GPSPdFukaN0Qq/keFng8vlRgDA40V9j0MZeB7nHnCq8LBrOggw0AMEKu+0Zka3wouKAGRITQ2E6oeKIq/P/jMUXa2zx0+Ph1cxeodK1XoqWWCqGHIFBMa0k5K7CjCJjGsPKW+lNT8M7PFfoQpQGwOoPIr4P2R5rsrfmHyVk4SAgNNUiHUkX1fHnv7N6hd592PBJhNvTMTtgfXEcjnC0FvuLuggwECFrOEMAOC/NWzF6I4hVjqRMo+AgEKkqp6WhoXK4wnLVWkyby7z7NT5ISDZXso85oqSmFr+2LYaA0gUaBhTD6Wo2fuJPMEpxH0yJwD4lWjOcajGPEcFxgABjyIg5nnfHq/q+Ux/Z+Nb6Tm7Fk0TMJ8MpvmnylV8ZMR1rPbRbGBgl0YBgQCCAPVddu4wRmYqb3U8JbLgAYEeD94DBXi/6sVEoMW7/ysq2mokwDM4kXfdo5SqQKraB9mAj4AAl6/49Mrk/zFAoNon+6D3AnJbm4dX1oVZNIAdg4w/5XxUHJEoMtATGbGyFL8s99X0Y3S6HfOCwiwPZZ8qjkCVZgMDuwYCPD1gQEA1kDLGFbSk7nuG0jMMStA9BdnrcXoo16PMi/JQcsRbBUXz8SEDC689GYyxTPQoQqSxqB15qhyPjQSo/uNjlb4CAHqAT2QgpuQTjevest4jVUArHkdAYMy4ngMI9IIBzhfHXzQGVRpPX1TlhMclAwJFmY6vOAIVOshpAmwwBgC4TsD7JoCnACpIMzP+Fa+Jy/XyzUiBmOpzlTKjumL52bMRb4cMBFp77QXgteyZsQaXqRflex5SD18VYJr1MYMFBSir5LWB55VFdYnSWnoem54MvxdA4BkrlSbLQ+lJBQDG6CXlKHk8qnKV0VR6NnN+mB98lvVfBAgwX48i/szGGfFuoBUgMhcdFBjgDldrBHDOykOYkdGOFK4nQOpfkQIlmcfEisnz8ipKrXqP8x+DLivK81CAQOYBVAzjWE+I81AKtKftexV8hRT4i/jLvPaMpwpwzGSz2n69fLwX4+9R1Afe9QgEeK9tZ5EivqaAY+S0Yfke+PWoUkfFm+JJgQWVh5LXyKliMMDRgarTmbVDjywfFBhorb0SQm9aQCHMzcbf/ESVwZQZBQ8hK2DSCwqM+ONHFcWaCXM0iDwvqUIR6Do06uXNa/8KKIxIKetMXtX1qmJU95WCi6in7TI5yIBAFUj0ypuS1Ypxe49UkR++hrKORtibisXzqh6o6EHU/4qviDzj69WReVK6WoF3LCsz3hmotWscHVDftelxInrSGB0EGMAGqQABowwEeOXYs71K1CMFBKL8xiieTJiqXl1GPUr2V1KgSJGnhNeZKu3ueaMZLx5vFd57KPJmIsqUXiXPSL69vMbKoHrWM2qHCnTHAlKVj/rxOoHIMGZOWuRxRzxEDlEGOiNHjm2B2ZDMAHv1rfSFSqt0DNpD4y1qf0VjZGOnYKCCvBUirUQEvNX6PIijspm3yINSzyDfmbBH+U1VNGMiEEYZwFBleZ6V135zKa2xhAoKyTO0eOwBAe7zyHNQg7gHuKpzxWeWR0SZvGZGXI05T2FGgKiqVFW7Vvv3PRn8iHoBmyLVRgwEuExVvhdpybxu5iEDA1UdqnSUKkPxwN/y6CGvHZiviCf+iBE/sytZfbPIgIfE7d8awdtHQAkXf4nNUwoR9Qwo1SFR547tME+RRgZ3Cqn6e0LNSjtS9EqID4k8sJIBAS+f6F5FNqsGPQIGXvqpyiTyavDYM7R4z6tD1NY41hTwj4CrKsd75ncizyv1DLGRBwhUmgwIqDy88VcB1R5QzMbMZrPZmrvnexlVQGXEj6dr1HRBVs5Y2ikYUMgRK8No6OjoKJwaQOPv7ezX20BjDNQYj7eCbqMyKsLdWwY+w89OEbb36GUxKYVY6e8IXFaAUVRGBloqaav94gH3yBu0dJnCyry1yAgpwxLxHZE3Xn4F+VUUyWYFCER6VrVZBQjYs8gD86N4iPKL5CIbJzZ3//z8/CqPrIyI2JljO2j3+JsH+Cwfq3Pkr3fMv9k0gadQrQHw1UE1NWAAwH6RQlDlVPmcK33VQ/Y6jb0eT5i4zCpyVH3DZUeIPMq3MjjfmiJFiDTGSKuyxvDTU7YaT2OArcdbdr9aVqbI8Njb1MbKxB9/C94rm8vx0nD98N4hyK+iOfqbHbKKEebnvfZR+rmqQ1g2PCAS2QAkM7CsI7EM/ue26HHiuD4ZuK7wwvl7Y3+sczwZDPSgf76uPjbE3xrYbDbt+fm5vby8DP+eIugFAFEHeHWqKBi77w0go6ijqgZY8ZsNQKWglTD15JnlWx20u6TMq2XyPFTOE/+r1CNHmH+F/yhv7JcKkO4x/D3P89jzwIDxqTxMteq6ypei9xYd6O0b1eZ47AEBLA//M1lC4KY8eY8HxSPnicfVfkI5iQxtr7x7Bprvq/bygEKvAzYHTQYDqlIK1alO54WCNk2ACoCjASxYWF7v4OgJpSjB9drCjjNj7/HhHSueekGAB4J6yfMcvHapGNZdUeRVKDBUVUpZWUjVuldANJfnGdsqz1V+pspNBLCVM8BloB6we/yRl6piV+l44ZZK/17Jc3x6AECP4Y1AcmbkPJ4i/eqBEU821KuLmC/z4OlhNtrReIwMPF/nPvLWDnjtg+fVPpsEBrjSmYH0Bj5+Y4A9AAYDXFbUOd4AmFrnKK9MyCseXoQao7y4/KyumaBjnhWwVBHQQ6MqgOyth2eMlOzMaWgixR55JhUF3cOvp/CYT6UT8ONjmJ9dQ0BQAeWRnlJlZPV4T5SBAG9qRhleZXwr4z4CgcyjOo+o4nRF4JGBpzKgarxYmur4UaSe9Rw4O+a6ZdTD02gw0OPpMPpmBWDnDAQwEuCFAjODX71Wve51jmdUPOUb8a/KxvyjZ5RQRgYvU4wVvr3nK/U7BGJlyP2sqAKOqmWr47cwQpU+9e5liikDsnjsbTnO+W82/04ZKj7Zo+/tHx4jnjF4r1QBAkxoaJXR9WSHn+O0GV+KVNkRP1wGe/wGBBAQVPPB/wqv3jjrBd/8XHbeS2UwMEaRq45WIEAJEgOBnsFdNX5j6oDX2VBXO6HCQxWoZGV7qD0CEUrIqh60l+chUqT8I1KKzlNMEWjy+jQr154Z0yfMN+blUQYE8FpmRD2j5G05bnniyupICXvlZRQBo7HtvG9ScpYBARURwOsVkKTGhdIvzCc+z4YX81NRhyw6oAijBOoTxMxfBAQi/VEBmpG98vRFRbf26OCd7zOAFcgWCtp/tD4A85yLr+p/r/K2tFWDrMr17kflvJURVmUg/70gaVfkeT0qTa9hrnq/9h/J15zeaI+Mev0UyWdUbqbsvPZgHcHpUXkrQ6aUJJbtHTOP+5bXXZAHAhS48gCAArxem/WMCy/PqOysLA+EYH4mY7yw0CuzqtOy5xTQzMB49rxX5x7a6dsECv2jB8CVUlGBOQdmVeFHiFo9HynSDDmrcjiPKnl8ZIIbpfEQ+hi+5gBxc9EYQzdGFjMZ8vo7GvQev0qxM/+ZgvfynUJZW2fGaUz+SJW25PwiT+89kJK7Sjsrrz6T+8yA2/1egGr8z2UDvIhDa6+/CVPx9D0AFKWvgn5vDHrAVj3f225dYMDrTG+w47cGeGdBEw4z/K29BgRTlC8eR0pYKaXsuELsnahjvBZ18pgy+Rp7QkZjFN0YQdu3Qq0MOLtWBQXV6ECkhD2FXEX7VQNaUejMDx97Sr+nnKmyl5U51nBkQOw9Esuf9/EhIwYAUbuyfHqGsUce8FnMf8729wx5ZqxZ/iMnqjcywIT5evbK1jtk9eqh7jUDEWLCytrPXhnEVwfxzQGeEuANhXqNMPMWKeBI8Rl/UbnKKHAHVRRVj6GIeKkKgwc+FJ+ZoYvIQ7eHSFnbewBgDBCIZLqqcMZQFBmoyjwS8+YZhOhZVvqbzb+LBNfr9VYevNkY56V4qniXqvxfiSIgwG0VyQdTJCfq2YpcRbqTeYz6qbcPM5lSlMk+56/ARtYmHmjhfFU5+Hx1PE9eQOh5zzglcHx8PAAC3Efg+fl5AAC2qVDU0VW0rnjK6lGtczQ47BnlZfE9vp55eNnAixAt51H1Jj2e5/C+DokyUDglryoYiAxX76Bm8kBptR8j8KLkvQeQeuMdr3mOgseTl1c2niP9coggIdIVCAKinR1b6wcC/GwvfxXKZKKXKkAkMrSc1xjAMVaXejqJowMqvx5eu9cM8OA35szb57UBR0dHAxBAtI/7B+Dugp6xVBWtkNepSsEpRV0RIqVoleeD1zkPj7+IF5U/51FRhCqPMYP8EBWmUQTE7D8y0nZcVZQKAOBGJyqt8qSyfohku4d/lqUeLy47j8YEAgKbt+UNVlhXqE3IsH4VL61aT6NDBbJMHhiNvkKo2q3qvU7hM9Jrdj0CsZHTWOFf6UaVPuIPn4nGVMaLlw+OmcgpmEP3jl4zgB3JewfwdwZ4UyE1qLPysEHGEDa0+h+TX+VahTzh89rbM+KepxmVpdKPQb3Mz5h8dk0ZOMqewXN1nf+VN+ahfA/RV2Q1Aom7Iq9dKs9l5IFcZegjEBcZ/ayNPAOwT8rk15O9aI2A/SsDmxnUzAHx+PN4jvKvAoEemjJu5tBvkQ3hvs4AQaRLqjTqbQIlaLxYUAEBjgTgtwYy46WUQ8ZjhrSUkh2jSLOyMvIQJF+PBo5nnJTyVOeZYozQb3YcXXtr4vaMAGZWH5WnOveotz2icry6jFFakSH08qu2lZJ1+7cfl+F5+xXDoAyaAhu7Bk9jqdJ/Sg68NQJGUTSAj+28CuQyHtW5ykfJQcZnxEOlPC57rFx4QMrjrdLHESBQ4KGSL1LXmgF+9xcFTr05gI3LEQEEAyyYcwxMr0OrQECli8qaiyoeS2TgK4BkjLBkQKCax6FSBRRUgZW6N5anSB4qQC7KM1JMXtljZCBrFxz/Nj3AOxB6NGXsKeXJNNUozEFVQMeAkI+NsL0zUNBTPqbHfHrkVwE1xZOiXejhik3yQAuf98hQ5sj29Ek1XRcYwB8DAJ4qsIrja4MYCeidJogqWVVclTr2eIBj8468qwydZvx54Ceqy1Qjr9IfsuE3Ypm2a4qq3lnF8I0x3ll5EZjhvBQI9ihSZL1eWaWNOUKgnvXaowfIV/qh6gy8BfUYVJZpIwS1CgRgGpXn3Dx7FOm8yvEU3jy5mKP/e8e+Bwi84wyUZFQGA7w/gNo+FCvQWnvl9SsQoJRNpEQj4R3j6TBFyiYzrMxjxE/EY8afl2dm9L2ye5RdNe1U72LXVFV0SmHiPfV81keZF9rL9xhwUfV6jObyzBi8RB5rb95YRo/i9YDHviMCijL58dpXAQEjz9jMTRX9xFQ1/grgVspToHqXNMbRqtgs/I3Vs2UwgF8Tw3UBDATY+CMIwGuZN1LtlJ4BHz2Pg8UTKE/JKCGtePC7oMywVbzBiCpeJPNxSApVoWmkMWBT5e1Rr6c9N1W8+QgoZMYookjh4rjB7xDg/QgsRPlWogNqXB8agDVSfKofE7ab9++VMZY3j9+MxrR7pHN6QQBfZ90W6dIxctPrICB/OFYZEPTw0Q0GGAgYQNhsNlv7BDAAwHtZRMBr5CkhEM4HO5QRdQRGMn6583r4rEYHxlLF46lEMyrgp2J09kk9CikDdmNAwBQwpuTNU8IVb0lRpBwzBTUmYmL0/Pw8vD+tgJoyaJX6Haphn4M8MNA7xi2vsTxk+YwBBW9Bqq28c5Q5Po5Ap8qzQj2RAXV9Z2Ag+rKY95YA/qxyWMFIaCPkVSHvuUrZlTBT5OFk6DHjORMwr/xq/upalcexddq3MuZ+H6swPWKZUcZ6DkVcNeqZx5IBX+SJ20q1XUXpRWDZeLHPFEferQc+e2US+WW91AOe9kHsxEQy7UVTMK8pxG03d/6Wh5Kx3n5SbVblNRpDmeyNcQi8Mcb3lHPb61x2rRngXQQNwaP3r14ZVGieK6e8bK6oapCIWGDw2BMs9aydK2HPOtZTyB5vHj+cTnWyJygZVXhS5ag+jTzGfVIEAKN6VxWoApoqXUSeN+zxGRmsCEj3gEtlcLy0VYMcya6nwLjulTGjxnkPyOtN/5bkgQBl4Hp0Z1UHRM9F98YYbeQnu1YBqBkYUDxUAACDyqpNiKhiq+w6RtQUwM1o1AJCIzP2BgCenp7klIAxq9BjBZ31IhxFnpLOGspL02tQKoaTFSIfY1mZ4Y+E4JCV3C4p6+uK0vRAYq9CqvJWkc/oWuYhKEChxogyNCijGYiqnEcyPzUSED3T4xQcEkVAIGq/qtNQ1ROR7FTK8fLquZelGQsGonI8T3+X+lWBYBzD+OuNmHRNEyiDZ8bfgEAUDYgYq6SJaAziZKHw7mMapRAryjC7lylHLMt7tmo4IqPgnVfp0IGG10aR8fcAmf0reerlYwxfHg8ZkPbAZATUMRrI/G4224uF8X5FFirjgXlW0akxAEGVe0gAoGqMIyDQk9dc5OnQMXkoqvZTpNej9vIiT5lcMkiYo82zKCDf53pVeRj1oSI09tkGQr2NkaF0z5CpZyIE7AmEOo7Qrioz64SxQpI9EyHVClIcCwhUukNSqFP5i/ofjz0Z89o9U5QVhVfhQSmnaCzxj9cLcd3smwIGBHjvENMH2fiNiAG3AgO7pH3LM0dVox8+Y//VaAA/20MRqFRlV2RB6TI0elP589rM45PHdAUIeEA2qvcYUrLQA27LYACNP5+rbYWrzPdci0KJvXn1goEIJDAfPaG1SDlHghUBn6jMqoHp6cfeUOK+ifstGqishFVevYY+U5JYbrUfVF490akIBHz48GH44BgvHLYpwaenp/b09LSVNzoGHiCI5CKKGOzK+Kux3Dse3oqwn1gn9fI7po5VGff6WOnALP8M/CpStkIBAX7G49OuzensVY121alhQFChLjCAQADXCyggwOit4h1F6aJGiJR1JX0FAKBH5AlSxHsm8D0ITpXbYzQyA8dhJy80psCFqkelf3ZNXr/1gjdPqah7FX6q6avy79WtUk8FBGzh8PHxcTs5OdkCBK39GwV4enpqj4+P7f7+fgskePUaKw9jQXCFIpk9BCDg6azM6Hq6IeqXOYAo8xTp9Kq+yK5zHbxyPL2PQNPTe5wnlxnpxKw9IxvgtZUHdMZET7ojA629/r44fm40qojqlCkGoqpMPcVbBQOZ0ve8dtWBnlD0DL4s30xpZm3Fz1WUREX49gUGojZH6o1qRTKVPRudTyWlEJGitjAgYHuJWETg4uKinZycDIDAPkf+/PzcHh4e2sPDQ1utVu3h4WHIkz8vnLWXUrYVBR3JY/QfUSXyuC/KQEAUPaka58pYiPqUdSam8SKeHo9e23tjkOuDUSnO11bg8/M9OlTp/2oUganiFEbOGfO3MzBg/2o3QQUIooplA63agN6zUVqv7EiA+etfnM7awK7j/ClSVKeszp6xVc9VBnY0GBUIiPKNBr26vw+qALrsecwnUlqZQVZ5MnmGjOsTKV/Mi8vEc5wSsLUBR0dHAwC4uLho5+fn7ezsrB0fHw9g4OXlpd3d3bXv378P+TEIeHl5ebXWoNIXrMwVsPAiUWgAMkCh2pzzOwTifsbpAaYIEET5V8GW10ae/lTnEeCK5LkCOpBYB/PzY9oqAhBeZKBSRgUIKJCSAasKlcGAWivAgxQpYihTCJxODWq773WKKjtTqlw2f4hJraTmPDxQhKuse4SOy1B1iqiCNLPBpPKpgAJu630p1UxRRcBJpWe5rchwdJ356umzyDAwSPeUhj3P0YDj4+N2dnbWzs7O2tXVVbu8vGzn5+ft9PS0HR39qzqenp7a7e3tcG5vFrFM8FsGmUFD3aL0DdeB9RACAubjUIx7Dyk5y9oNr0XgCdPhv8eHd1415lm+kZHHc/5Mc/TGW2Qolax5PHKUoerwVNo9ep51UwWg9VIZDNgcIDcc/iKDzAo3Q3ych0rnnU8xtvzDHRfNG1KCZ+V6n2nGvRciPj2wEBmVrO0rlBkgz+hnZe0bCDAffIzXPCCg0kcIvTet6m/lHXt1yfrNu4YGeb1et5OTk3Z8fNyOjo7a6elpOz4+bpeXl+3i4qJ9+vSpXV1dDdEBM/739/ftx48fbb1eD0AA1wuYATaFbGWzAveMmj1r+dg17K9qX1QiA96z+yJP13ly5umXKXXKQK4Cx3wt0nXZ2OR7KLe8PT6Wy0DSI450I3hFqtgVz+HE5z1dOpVUnj15j5ommBrqiNJ7xz2hFiQFSrizlMeEPxQ4u2bK0AQQhckAwNPTU/vw4cOgHLNoCtczayuuVyW/zPMdQ5GyOATFiv3N8hUN3ipVZNMb/BWPYSyxTPM9jHgdHx+309PTdnJyMkQDzs7OBjDw+fPnLTCwXq/bZrNpDw8Pg4zf3d21+/v79vj4uKVMbXth5IU/ga4cAftOAQMCywudkKqiju5Vwd0+SDkqHhBE/RIBTcsXr1XasQIEVNpKXpyPKst+GMWyn123uvBXcvG6kUWyUI+rtuqhKTpZ5YX/3nNeW1dleBQY8BiZMnBYqCI+lJLrQfxRHh4QQGGzYwMHphgxImArrG1h1Wq1kts0G1+V9onqlaXBfDz0vgvitt0XRYCzx6C0Vg+7VvOpyC3ya//VchnsoDE22T49PW3n5+ft4uJiWB9wcXHRPn782C4vL9unT5/a5eVlOzs7aycnJ4ORvr+/b5vNZpguuL29bcfHx+4mZEqhGz+ttVcLugwUcHtE025qfEdtHem0qYBsKikQ5wEBdjS8duFr6rjCTwQEesYEP+MBCtTJJrv2lgsubrX7JiP22itHm+xnYNait1ZORUdndkgBjCg/r20qpPq3R4a7wQAec6U9QfOYiZAuIyf2AlSlM1LCpow/h59wDvXo6GhYRGULqUyR4bbMBgQeHh7a3d3dcM37bsMUdMiCG+WxT4N8CBQBATTwnNaoGqFi+VWegAdMez3YKC3zhEbYZPr4+Hgw/FdXV8M/H19cXAzrBVar1QAADBRY1OD09LQ9Pj62x8fHV22l/i2NjaP1et1eXl6GqQf8Bgqmrci8aofonuco7JsiEKCoEqHCvHtAj2e8Pd1dzauin01H27SWgViLZJk8W7TJIrQ2fYVRW7v28PDwKg3qVO/XWtsCHdye2K4qndc+Ff2i8phiG1vrAANYmLrOQqq88Aj5ecKgymYl4FU2amiPb77O3hOGUPE1K/NgHh8f29PTU7u/v293d3eDgru7u3slDAoteoooUgKZIYnq12NYer2IqoHbB0X1VvcqHo93zwMGERDB9IqUjFTAiQICZ2dnw1TAp0+fhv+PHz8OYMCiAijvj4+Pbb1et4eHh/b9+/dBGauFXAh+bUwwz8ab/T8/P2+9tWDPsVKOFkmqdoiiA5U83pIio2jEetFz1pA8mUO5qoyDCAh45UV18+pquhj1scnt5eXlAFZNBg2w4j4Y5qiZ8b+/vx+cNXPcLL2BgtbaK+eN9TZGs7BuVme1RbdnuFX7RBTpk14g2wUGmNSAUajIrnt54LESLOVNKM8C0/SUw9cQBKDiNBR6fn4+KEcTvNbaIESPj4/t7u5uCJuaAl2v10PEAKcUeD6r6nHyeQUVKoXiKYpMyfR4ZoeiXI16eanUoQfJR8p5LEUK2a7xRkKmUD9+/Ni+fPnS/vzzz/bHH3+0L1++tE+fPrVPnz4N0wYWCVutVoNHtV6vh6iAjQUL1Vq9eM4WlakpSwQIxuvR0VF7enoawMfYdvNAtjKahyirrfnGWdWhSpksRzpbOW6Kx0pkwPQtnmOeBi7xlVdzzC4vLwfwautbbMrAjLSBAYzYmrNmOvr29rY9PDwMES2OJODPZJblWLWhgV98i4VtZEXeojQqMjBGHiaBgQx9e95OhSLhr3pgfOwpyQyFIhDA0KkJ3tHR0ZbQ3d/fD6uxzbNh3nHVNd5nwxvVNQJiXttkYGBOAMB8HZqCrVLF2HB6dY2fYQNVUQgZXx7ItWMDpSbTplAtIvDHH3+0P//8cwADHz9+HKJgx8fHQ75PT09ttVq1x8fHIVxrETOTfRUhMOXIXhYDAiNUpCqvscTPZ/piX7IbecvMmxcVsPNeIMX3K45FRJgf61qlk/g+AgHTxSazX758aV++fBkWuZ6eng7TTeagGRC4u7trP378aLe3t+3Hjx/t+vq6/fjxY4gQWMTAQIHpagYEBgqUY4rjm/tEpZlD1lR/9eTV9aGiyNhYGsUIPpd1tidcClwogc/4iurGZfNWrBYRMMV5dXU1rMBerX56S7YJy/fv34f7BhosUoC7tq1Wq2HBlaqTJ2Sq3l4fZUpFCU4WkWGaw7vdBSk55HtjPCxlyL0BmAG3DMRl1zOQh2ONI11XV1ftP//5T/u///u/9v/+3/9rf/75Z/v8+fOweJCNu4Vbj46O2svLS7u9vW1XV1ft06dP7fv374Nivb+/H5SpgYeMOI23vkYBZ2xX1dZZuZV+e2tS41aRpw84H07TqzMjPlg/2zVlpPjHut/So21QUdpPnz61P//8s/3111/tjz/+2HoF1pw03CXz/v6+3d7etu/fv7ebm5t2c3PTzs/P27dv39rt7e0QLTD5ZR2t6q3akuXJ6uDtc8Fpoz7JIjpcflWGu8EAz494HmwknEqgIpTpDX5v8FZQMZap6oirnDEsZSFV9poMJeJ717xJkVrRavxZu3rKDOvR40HicfR9BTaQWRt75MlD9txbUuYRRnWInuvpGy8yMAZMRYqZFa7aVOji4mKIeOHPwq4W/kcZba1trTkwoPzx48f248eP4RVDBAOttVfKkMcDrhOwtlEfQ+t5I4f76lDksEKZPFRAQM/1SpkZZXmzTHqvmHIak117/dUA6H/+85/2119/tb/++muIaJ2fn7eTk5NXYMCiAjc3N+3bt2/t27dvQ2Tr+vp6eBtGvZVgeXEEi/fQUIRjRzkjkf1UbZilqdoKpC4wgMgmMxIV5BkhQi/PqgLgsrL7/GOlaQJ4eXk5LFgxBGrhUwt1onJDhWYKUSk2BAfc2WOUl/Icvbp6wskC5UUOFPUYyF0T1yHzkqKB5D07xfvk+xXj7l1ngOf1NStXA7unp6dbP4toIRjAjxThim4bFxgZsPDs4+Njyq8RTp+p9TSeHEY6aQwIGAvO5iQGjEiq3hWZzQjrHY2Xar6e06eAQCSv5phhdMCA7OfPn9uXL1/aH3/80T5//jxM4bb2rwzxFIE5cSbfBmxvbm6GcvHVxM1mM+wbY3myIxW1PQIBNc49B9C7b2mUXhsDBFqbITKgGO010kohcH7VMsYaHhZQDksZGDClZ16ThaNaa8OKVZtHxbkmfIXFPCZbIKWEv9cjx3r01lld8wSqJ2JwCEBAUQRaM35Vu1RQPKfLPLZsPFQArkeoeHFdjC105Z3c1Dg9Pj5um81mCwiYsrW5VwMB9/f3wxcNcYMXztOAMZ97i2w9cIBp7Pi9EveBHVfkdgqQ8WRMGbHqOPdAAcoi32vtZ0QTdTPrZdPNppNt3YCR6WVc/4IgF8eAlWF1Yn1tTh87xp7u9oB6T1QgyjtydHqoDAZ4MZAxgSEURZFxU+RFAtTgr3imzEfEI5+rV7BwYxZ779pWO7f2r+BY+pOTk8Hjt3eyTWEaWFiv16X51OqgVwbHy7sX4Ud5VPLfl1JWnvSUqFIEJqpeVFXZZvdRGWf9rMaEKVb00tAIo5fOQNEUqEXM8HUt/tnqbePDM+D2jjeeGz/R+gFumx5dgfU7VOCgQEEECOaIaLBsjZE9xb/ngOAxAgGTUwSvuAUxnuN1td6Aty62a6av+SNcLy8vA7A1UIr3Mwcuagtux4hQj+xKRrsjA8gMh8UzD8lDSEbKC+W8WZFMiRAoVItCaIoSv9qGUwQGBj58+DBMAWA0gJWTLaiy/4eHh3Z0dDSEUD0ePeWp6orlqYHH6fD5igJV7aX6rYJ2D4Wytu1RrFPrGQ12Vjrc11Ge9sPXsyzUihu1WH64kyYSvwJo62ksCvDx48chEoDztPf396211h4eHrZABsqat9MgggG8pmS14kxwGYdMCsgqynTvnPXM8qqMl8wWeGnVuckOrjuxHwICjDzgxkUmwzYtZuvFTNZMnlG32/NWvrIlUV2iMcv5cN6Vcnr1VmsjIgOMwjPDYNfxmDuf0afl76H/yoDO+IiIebRwEoeX1PvU2GH4GpfNT5nQ3d3dybCsaguPlFFQaSxfHAwKQGT9wgKJ+f8K1KMwp3icXttx20b5qTHlKU07xnArpzeFiq/HrlarYV2Azb/aZi6Wz4cPH15tXnR1dTUoUIsI3N3dDcbedia0iJhaDKjOs6gAg+9KH3l9E6V5S8qcpqphjpwuu6bqrsZ/pKOUjvCMeMSDHavV93hu6wEeHx+HVwUthG+hfd6m2GR4tVoNkQBeF2PTuvf39+3bt2/t+Ph42FeDZQ1tgGo3bhsbixWZqtoCTM9lVZ8tgwGbF8dpAe6wbLtFFAYM4ygvMhr0XOke4sZS/OEmF/hxIuQbec+8DkSiONdlStQE0VAnd6QHwDxvCOuD9Wrt53vbDAxUWUi9yFTxsC+q8lCtl5cmU6jZM2PaKFLyCAQzpcpgwN4AMLnEvkeFbWPBpr1w/QBGBW5vb1/l09pPfaK+isq6Bq/z9GQEBvg8km2vfQ8J8PYa4Wqe2fUe44J6Jcpf9RuXZ1NH/A0Y3F3QZMzWsth1m6o1fYv6vbXtVf6ttWHDOFxkiNvOoy2wyABvjMXgFuuv+skjbu9eUNALYrvAgFofgAbR83I8gfAQagYAvEGekVLKeO4pcg4/4aImU3D42VZcgIjemPrWAQpV1D5ZG0QolNtKIXyPlPBm3gHX4ZAUaWvTppZaew0kMzCW5TWWlOfFxHVShpQNPNbN5BO/zYFRQvyyoIGJ8/PzQTlfXV2129vbdnl5OYRakSdbkGWAJXp1EK/ztGTUF1k/eW13CNQDYDNdpp6ZQtn4VzqJn1NOmQI11uc4BYA7ChoQaK0NU7G2iPDx8XFrCgD3y7D8ESQgWPDsC2+XjWk9GTY5x023VPtN1U9jqXuawAatVRYbMosMZNQLBIwi7wivK68aX+czjxkNPM9ZohDiXD/zjdcMwVq+rGjtH+e1lLGuKLfMUBs/0Vshuxa6tyYPAGYGIVOoKg/1rDLW0bEy8nydf1GUrXKMP57u4oVYasoQF29ZxMumxHBnQgMEOK4UD54StnHKvDNlsjyXQXwrYnmreoyexz2WlIPhOSJYvkqP6bxdJjGN7SiIe1fgK4O27mWz2WzdxwgCglmTI4te4f/t7e3WXhkY1bJ6GRAwvoxntB8s4zzWlQ6K7KBqu7lkuQsMIHnGx7vWS14Fe/KLGgj5RyXIEQAEAChg+FU27EBW2FgeK1n78QpXvj+HQlODEKcLvDZ7TwrTIw9U4X2+HgEDbwAjqYHPxx4I8NJgOgUCsC89oOgpGgao6pVaXFyFypSdAl6giB/3YjBg3pW3M1tPe0fn3rVDp6q+iwzwHGVHeXqAQN3PPG7V1xh5Ql2MWwzf398PkQGb7zdDbusKTH5N15r8GgCwXWNtq2LbidDKUYCgtbb1dkFrbZhaQ/CC45kXxGMbYdsoENEjw73yXgYDOCfS2nbIAwtHA8MGsrXXyqxKnrBFir0XOJjxN0Hhd5wVMEBv3srHKQHlsTEQUJ7eWPKMCLZJhih3KXD7ItUekQLrea6aF16PjH1GSl6U3PT2Da5rQWNuP54iMMXGe3MgiLi4uGh3d3ft8vJyUKwMVNRrjGPrMJcHfKgUjd+q8d4Hec5i5Tkj7xPx+PVBdHSwnUzGcB2Y2SfcldB+Bgh4W20DBAgETI+jbUQggG+bsYOnQJHxjzriLWS5+9VC9iatYXBhGqMelU9k9HqiCpU0mZKOPCa+zwKJ8/3WDogM+b1XVJr4niy3iTewe0NEGTiI2qwigNXyD4k8L8oDllE++FwVTER5VakCBnrSo1ePHzKyuVb+8BBHE1D27c0C9N5sjw2cpzXCeWD1inIU2eAxi+nHUkU23pq8caacojmciTnyqkQquN+UrsMIlBll/sKgGWrcu8U2CbJrrbWtdVwGEOwthK9fv7avX7+2b9++tZubm/b9+/dX0wU4RWVyb2+FId/mTNraAhtbtmYG5VwthjVSADnTuWMjRF0LCNEgogJobXvPAYwIKCGtesC93r16TuVRyVPNS+LXr+7v74e6o6JU860YOlULCe2HoMCeZxSJ/3yc1c2LTvQSgrVIQR0KMZ9VkJPR3AZiLPhlmfFknvsflZYpHdxbw0L8NkXQ2k9F11rbehaVlsm2bRdr+w/Yp7s5msZfhvOiVR5YxzTqOGqXCu0TCKg+y9Lx+a759xwOL1qlwHjUpxipxaisRQZsXYAHiEx3t9YG27XZ/FxXYIYfwcD19fUQIcCtta0MGyd2zGu+cBoMeTZAgfdZtu0eA/fM6Zraz12fMGYAgIwyEGitvTqOvFQkb9BOqTALn1KOSnB50eD9/X27ubkZhMk2DsLwEy8YtPxxowr1+knENwt6xRv1jL8XhVDtW4maHDp5oKcCpLznGGxGeal2VnlXjVXUr3YtMqj4bjYunLLtsjEUip5Uaz+9M/4IEb4Wa3sP2JsFj4+Pw+uG+AqhjQEOwWJZDMqxHnhcAXu9AO8QZXsOB8oD8x6g6AFQaqypscA8R2RyZYYc3yCwvSwMECAPOEZ5j4qXl5+bCV1fX7dv3761r1+/tr///nsrOvDjxw85LlgHW0QMp9GUE2n54CJDixbwFATWHdvPG9vclr3gtwsMtPbzvUxDawwEFEOZ0YtQ/NyDUzWQZ+gQCODrKxYlsev4sQtTnNjhqj1UuRHPXhtEoMAoGoCqrRUAUIBA8ZMpmH2TJ6c9z2fPVgBaBSzgfQ+8KjDgyQgqQlNQuFMgh0IZ/Le2vcmLKWW7ZgrXphmMnp+fX4Vabew8PT0NUQjvM97Ke6qOHW4Dbt8xz++DsqhApge85yseZ4U3++djz/ky8gxWZNRWq9Xw9oDN8V9dXW19fAif51fCTafbIkEDAvYVw+vr62Exoa1zwS9v8vo5A8386i3yj3ngWjSOGqDjac8qABL1RcUmKCqDAQwNItJiRpgJVEARRd4WGqyMOB8mlQdvJsEr7NEbMlDA6K+1n/NRqlxUgPhDBenxq8CLqo9nLPAe70LHZal+4DIVH5zPeyTVrlkbcPrqdS6XQZlXJl7nX+TJecpY5dXaT6/cxu5q9TPiZfcQNFhkzPIzgGCv6uIXEFH2sByPH/yxhzfGWaikY91zCBTpwahvFeCPjMbU8auA61jCtkd5wy8Q2uI/e33V1rjwInB88+D+/n54c+Cff/4ZIgE3NzdbCwfVWwSePbNxwNMG1tYYBUBAjsDabAIaf46QVdurV267wAAbSRbOCHF7RnIK81wm56sUepYXAgJeKMmvteCCKRxYSoHY89bpHDLC+dKqV+7V2RvckbHw2sNTHqxcevI9BOqRtcjTVmmidlAGX13PZNaLCnhp+VhtsGJ8oLHHCBcCWgaxtliK839+fpYggMup/tRYqADVHtk8FOPf2viI3y7Ki9J78qgckoyi8YWG1Da2urm5aZeXl1s7BuKH4kxnW3pbMHhzc9Our6/b169ft6IBCBrUPgNmC9EeoB7HMWDrwZSDzPbAtu22tyKsLKuvZ1fmojIY6IkG2LkpNDXvx8ceeYYH8/CQsofuleAqIIDXWBgxb1wUiCEkfH8awQSjQJxzzdYSeIBLGXwemFwnTF/xhBhcqbbPPNpDpooRnpN65B+PvV/mjVm/89fevO21+a0ZXgxlMov583oi3MoVvST1mq7a4dMDARkgU239HmQwoyrQ3GU5Ku1cQICJ64LRgQ8fPgz7A1xfXw8f3TJQilFQjiTYMzYtcH19vbWvAK6LYZ2MNm21Wg0AGcGw3TMgcHJysjUGWvs5fYH7JHB0DV9fV4vao7bqpe41A16IpDUfqUYCmnm7nH9mZJThjxSBBwR4AyDe3AVRnyFRXE/Q2vbiD5xqUK/EKCCg6hp5oBFKR96jAdojUBlwwMHjlfeWVJG1MTxW2syLVKljr985bYWwPijX+BqhknlevW0yqgCs8cfbanN5xjdGHHgc8IZf0bRAbx9UydMh+yQPtHsAvWdc7mKcMjCISDkikaFDGbJp2+vr6y0P3OTo/v6+rdfrIZ0Bge/fvw+RAVwfgJ8rxoV9uMIfbSDqdYt+Pz8/D9FifOuA3xpr7d83aXAKDeuIYFk5pnNTGQzgjkrIcGZoLR2Th/C9f5VPVG40ODJDiYoSvyzIO7Phq1e2D7btMdBakwKDEQFbQMXoMwIEHmVAgKMC0SAdK3CsmPZt/I3YiEwZTJF8chpPYfNzUXojvFb1clnx28/k2cCrybIpJP6Eqy2cMuVrcmsKGT0wU4Cr1Uq+VsU7x/E4iKbLptAYWTwU+UViz7Oi6yptN6V9lL4ZQ1VQjXJpe1gYELC1ARYFuLi4GMAARwZub2+Hf3szweTQjLGVhXbPpglw3h/v2f4G/LouHuP6MltEiyCBo3I8Rd/TZlXqigzga0GKEaXIvEGtlOEcQMAjNYiUsURPCfcDMMN/cXHRLi8v28ePH9vV1dXwf35+PoR5bAGItRfPV+HiFFxdrRZSRfVQ1ysgQA1a7Bt7jl9rYYqM0tT+2gW9tXfHShqvjaVI4VYiB/asKSSUa/vxd91b236zxpQUvhpoSpM/A2vemMm9eV+4e5x67YoXKitQ0AuYq4T5HkJUQBHrMyPlZY/Nq/rMmPut1ceC6g+TDTP8pm8fHh6G9QAXFxft7Oxs2OzHAAF+g8DkkfUxAgA1Lezpxufn52Fs2biw8WbgG8ffarUaosq8GRK+zm6fFN8ldS8gjMI3TFVE76FZT6C5UdRgyHhTvOI/G9T1et1OTk7a+fl5u7q6ap8+fWofP34c/s/OzoYpgru7uyG0Y6FVQ6UmiGqLy8gTUm2RefdZtEDlxe3u9UGvIp7DuxtLUaSFFdKcPEZAKTLmvYAB+xmvKXlBkGtKyCJbFxcX7fz8vJ2dnb16TdYUpVr8ijJrkQIDCeh1qV3jcMpATQ1Yu3j1ziIzY2isd30IlIFB1o9TIyZTDVQvD8a/GWpztMyh4jUEBmrRuGJkivfMyKamEAggMDHZxz1n8DVd3FwO1xsYOFBgwICO2pBuF9S9ZoCpiuwqgxvT43N4nQ0VXufnPX69yICqD3pStqPa58+f2x9//NG+fPnSPn/+3D59+tROT0+HcNSHDx8GJIcCat4RbmJhHc91zQY131PGXOWh2o/ra8+a4PPiFSw/U5RjwdmclMketlU10pFRpDAr0R2PB89D9kCEp2wNFFhUwOT448ePw8ps+8Q2rh/geX0MpRoIsGcQPPA6Aw7Bem8NYD3UcbUde/r10A1/VK8p9YnkT8kROxs9VOEpG7e8wt+mss2A4hw9bvKjAKhat6XKtnbAuqOexAV/Jycnw1sA9paDTcWhgbcpBBvDNm7sVUkDDAcTGUCKOomNcuTtWno2XJ4xqw6CakRBPc/8YojIogNnZ2fDVIEBAtuu1Tz+m5ub1lp7hUj5dSwU5kgBcr2mGJRqRIHzq0QrPH4OXcHuksZ4PzyOqsaM5UfJk+WF3xGwKQJUQLYgENcKMJC1UOhmsxl241ytVluvTXn7anjGX0UGPQOF6T3K5D2T6/csu5FBQ8r0Rm80oOIoMI9VwvTmpJih50Wr+M0AfBb1u+WD52zjPHtjwBedSgQINlWMi8xx3QCuS2vt30iHgQZLy4t7K+0zBjh0fahI/XtI1PtxfsoIq+vMyxwDVHUwCgUjSAQF/CGX09PT1lobkKHlgTutGTBAJMoC6NWZBTMCYSq9twCFKVOqmZI8ZMWZKcTWYq9ol3XrUbaVMcLpjX+e/+RvZOCWqsYHLtayf9zJzWSZV3PbvKzt/c5fguPtibl+1XZT/ePpq6htvPv7pIi3HuOgjqOIVRXEZw6W1z/VPLK87dg8cDTMrbWS3mO749kh49Ubq1g+TqkfHR1tbXZ0cnLSHh8fh/FmfK5Wq6230tSXb3cJCLrBAB4r771KkQfDaVR5Pfkz7xzm8RQGe+2YHlGddZ6FivB5FQVA8l7TZOJoSdWQcV2y/DG98ioi2rfijEgpRJanyCsaI9+ZIfLSe54IK1YEklZO9JwCnfYceiD8zffN5uf3A3iqwACCpbFnDATb6m1bL4MLuHhDlwzUMHkAgM8r7b9rsDcnsSxMpQooqDzH/Nkx/nvpOb9KX0QOUlSHCPQofpE/z0mz+5zfarVyI2S2KZI3DpG/3sjMGOqaJuC54yh0511XDRshsYx6lYcCBnacPavyMB4wmoARBfSecJ7Uq8ecCqkXrGU8RIBNed0KzO2DIq8zUqi7MhCqzMpgZyCAP/aImLAPvBC9Ukp4bs978m67suEq77u7uyEawG/T2JQav06I9eX6q/6oRMo8ei8gYC7DzxRFULy2GevJZzx4hrYHUKjrmc736hkZ/ogPixBY3mrxov046pyB4l0BgdZGfLXQm7tgI+d5Yl4HVz3R3kHhCbmKDnD9VKjJ6mkdbEivtTa8OYBTAuxJKcVX8Yp6jBjerwhwlG7sQDxEBasAC9/v8SYj2tWg9SIDKoyoPC17DoEq/nBzFfXDPBhU2D3cVc2mChgE8NoDBXAyY1CV7Sm0b7Dgyawa31P5jLxQBvZ8P+I7o4puGaOfFM8eGOjlC/OLeFOv5Fqk4PT0dIiO2c61vRvRKT7GynwZDKhXGzhSgGFFI2+AI1WMoVE15MfHnnKLNuMxfjDUbwAAldzR0dHwrWt8d5VXUWftUgEISiHwvTFAIAuBRTypEN0Yxb1LqijNSnRoTD0y4OGliZ5tbXvzEwVwozxZlvGHK515tTUqOFRWlq8CywgC8BVDniKotnGvockA0r4NfkY85rO0kb6NdGNElUhWlkfGuyfnWT6V80hP9vDMRjcDMjzWbLzhGwUWUdtsNsNOibwbYgUQTKWuNQP4CoVdM0RjoIDDiZYOSSnmKhjw8kE+ubOy8tHTwh+G+E2p2TustkbAvodt5z9+/Gjfvn1r//3vf9t///vf9r///a99/fp1+BoW7t6m5nsVz5HwZoKvrtk5vgrmARVe86D6y+uH6PwQSNXdA1q7LF/xo4yWIgYCygtSC1ptYd8///zTrq6u2ufPn4fFTCbzZ2dnwzkafVylvdlsXkXOVqvVsCubAYNovYAXGcC6e7IWGYxej8/zrvYtu5GeY5DQq0czIx+BCTyP2igzmB7QUc9leak0mYPUM9YzuUJbYvYSF+De3t6+WhRoIMAiy/b1RPyEcvT6OddzLJXBgHq9IYoSeJ4KUo8AV9Enl8+8qJ/xr6IGxp/tBGXfv26tDZuqnJ2dDcrx7u6uXV9fb30W0xZP4eYWuGubUoSeUqxSlJ4NXmUweIohGmTvhZSs4j2jnjpmBp0VoOqTKeUzL/gKFQKCHz9+tOvr6/b3338PcozAwcY1z28iMGjt53bl+HaALTDE3d5wukBtxd1Tp560kWetxpjnyLw1VQ2iAk0VHcDHUTrvXmSUIrCmjj3KgEJUnhpT1bbxeGHdp8az9YE5lbb3DIJzczTNmcRFtwYG7u/vX60t2AV1gwE1LdBavCpeeZ3RcWu1QZh5pFXEl4XLDN2ZN7VarYZOsy9lWQebwvv69Wv7559/2j///NO+f/++NU+qvG1v8CqvfQqxJ4f1V2mj415e9q1YI+JBzHI01eOakyreMJaPY9Nk2Rb4ff36dXg1drXa3iTr06dPw8ZDuP0wAgEr035qy/Loo0Re22ZAs6d9PW82Mg6HIqvcNr1G0Z5X9akYPS9dBASivLzzXZA3ptX1CDBWoh6qfpivAXAjjBjc398PttRAOm7fnY2Vuah70yH1ZTKrMIa+vdClkQIC3CHKSI8x7l40oJofvyplnWvvjCJQsjkh/BIW7jrIi0KyyIC1Bf5nVBnEqn24jMhb9fqqysc+yWuX3uhTT/5MCnCofMYMfC+y0NrPsL0BWgO4BgrwE9yttSFawG8r8PhXZeB34XGaQG1eVPFkI3AQUdbWlfz2KcM9/I4F6vg819UDmWPGS1aXKkCZkxQgqD7jndu11rbHgxECAXMmeVE6TqkdVGRAGQncSzmiCBh40YCKoEWIPgMj3nUktXDQ6mzn+A1q87jwgxg2F+Qhdj7eFWUAITLmipTByQb2PhWqZwymKh+WwbGK0Wv/KrDAPBRQQ4CJC/xsHvP79+9bX960zU9aa4OywkXE9kOFZ/nbh7pa296BU32LQ7Vl5V+1n9dXWRtGQGPfQDbyPLNn+FrktWeGjaniVEXgzePfk4lK2jl06BhAkAEwG294jjYFd+3E6/j9hF0DgdY6P2FsjYQrjZE8Q+N5m/xMT0dgHpx3ZPB6Otr+EbHZNY4MtPYT7dnua+j9qI8RcR3mBgUVAJABpkrfReWM9ebmJDZceB3/5yhnbqoYw4qHgoDAvHz03u3rgmdnZ8O0gU0dtNa2dibEL3uuVj/nQDebf6egbHc1K5OnCbxFg9yWmexk8thDUyIPb0U9fFXSVgGC98/HTNyWFaMeOYtzU6+98fLwznHMIRiwa7Ymx75NYOlwwaE3XnZBXZEBVCKtbUcGMiYrSDK63iPcEdLNBIAVlAGB9Xo9fB3LIgC2zaTVDTcbsoVTBgjUoKig4F10PPYFgwEEeXzPM/qeEmaFsm8vS8kG3pua71tS5CFjGuaPQa4tYLLogO2maZEBlg2LgpkSw4iB6YG7u7st3aC+VOjpDBXRUNfUMz3k5bML+ZhKVc+4kk81OpDdm6s9xoybnmeqgL9qIzwdGEU/zHbiMW7U9fT0NDyDNsTblyYqcwp1RQaQVGMog4cGBT0IRE0K8VQHQMUrNUVlPKg0TDi3avexg8w7wm++I7JTO00xr6iQPO8vaousbRh8qQGtIgNeRCAzPpFR3HdkYAz11GVsGZHc8nlkIBV/qr947Blwtf0ycKzaWgFTYJgPggJ8V9rKxHlSDHuiYqy2nRojXK8xVAVx+waxSFN1gadjDpEi2VZpmSpAoAICPBCqyo4cPPbubZzxWEewUImiZVRNXwYD+G1mI6Ww2BPcbDbu2oKxlfI86Ehhes8pUGLAwcI1TLbXgv3wOQzz8A83alH1Z/6ZvOs9nhIDAA8QcH1be/36qMo7421f1AOusvuZERnjfVWe783PkxV+Bdj+ESjbx7gsAoAyYq8Q2oJDnkKwcngLVp4u4zp7bepFBrLrUV7qvOod7osqzlL0bBRh6QUIc7WPB+zQq+7NRx1747+nvt551i9mA+3fjLvZGOODQcNUENBLXZGBLLSndinE+yo9V7q118KqBnnWiT2CysbQPKbWtj+RaUYeowH8eqXVBQ0/7itg5XmDiVdnVxRApMDY2PMnMb3IgLoXKQAcdBmf+6apntEYIJDdq6aJwG6UzvoeFU5r7dUUFoL+zWYzvAlweXnZLi4u2vn5eTs/P28XFxft8vKynZ6etvPz87Zer4dPd+OmKfa1QtxNzcaFWhTVAxJU21WAXibDhwQEsvaZkm9V1rDcyGHha2wr5tANFaDOx0onVoF01YmIogZs6Nlpxn92ShkIKHsQ6YEe6l5A6KEUM5Dqc4uGiOw4MvJ8r8eLiwY5Nnp0rgjRm+LbjD+CCOxQtcFQRkrhq8FUUW7cBtE1dV8JbmYQPQN1KNSj7KsGag5jP2eeShFZehzLds0WyCJg5B3UeMrLZHq9XreHh4d2fX3drq+v27dv315tusWropUS84yN5/lx/avtW22zQwUFPWmj9prChzL+Kq2nyyMjVgWBVd3HfGX9j+d833uuSlyG4q8KCLKye/gqgwFcPKgAgc2j8zeY1XvI3BActoyQkGo4zpsNPR5HP/6OO5djqz+5XbDjeBMmBAi8cArriHnwtQhAREi4p+4q38gIqgHjeVZ2vi/FisavqmSMIkSu0vZ4Wz3lt+aHxe2eB8C47ijvLGO8QZGBgIeHh/b9+/d2cXGx9Vliex3RwMT379/b//73v2Eb7uvr63Z7ezusHfDGAJLiF2WsCjQrhiIqu/rMW5Eng5ln6I1HbtOeOkc6XfGZOQ8q72isZvf4ODL+VarKXQR2MU2kLz39v0uHqhsM4HyGMecZz+ibzJhuykBTeY8BBHg/AgWoLBm98XwoAoMM6SkUHYEArr/XJr0gAOvG5xWDWM3vPVAvzxU5nuqVZR7NGOXGEQPbTwOjec/Pz+3i4mLrq2v39/ft7Oxs2I/AwMA///zT/v777/b169f248ePYethNS0QeWE9dYjuTTXkhwAEPGK9N9c483Q13ovAR3Tu5Z9RJDt8zbMHnhGuyFFPOjzvAbX2XEX3z01drxaiMeOBXfVes3seWs1AgzKA6rqaK1+tVsM0B64HaK25wMADAup9UtVuyrhmACFqN3XOv2ytAFOGhN8bIOiJDlQV3Vx8ZWVVec6Unsrf8sbNiHCDLYsg4FcOb29v283NzfAKokUR7Nsd3759a9fX1+3Hjx/pDmqZ11hV2t7z1XSZp7wPemujoOqtPFf13FzkGc1qv3i6X42JyDhXQE10XaVjOe6R613LQfcOhBXvVhkmnC4Ya/AVeR0fXWcDr4AAvvIRAQGsj9qXPdt6mNOra9U28OrLdeaPTvHbHh7I83jyBta+EG5EFeOi6veWIADvMyBQ/0zYT149lXK3evImW621rS93npycDPsR4OZCthEXfmjl9vZ2+NBK5ix44Ee1Q8XDijxHdY3zjZ7ZN1WMV0SZrp2St/FXKSd6vuIEZdeULTBSesujKQAosnEe+LJ/T/fsAqx2f5vAyPNucetFNDbc4KwA7HU9pcCiivOg5c73vPwMCHBdkXgNgB0zQOCfusf1rFIVREWgQNXVq3MVEKi699ZtbkLPQN2L6lTJu4eP3ud6B3y1DriqmccEp7O3YQwI4LogG7O4gZFttnV/f7+1tzrLhAd2jO8M7CCw8/LhdL10iEDAyKvnmGfnJrYLU8pU9VJ1x2PPBnigssI/H/eQsmtKf/foy4pM98jEqG8TYCGKGTN80aD0OtdDSXyu0isw4N1Do8hTA0a80RIbdV4Mxd4PG8PsWNW5pzOzdsg8Si67Sr1exiFRBQjMzX+kyDwevGemgAXrN5QVrivK+Hq9bnd3d6/Gi0UFLKLg7bHheTlcH897ql7nPPnYS3PolOmC7F4kZ6ybPQPay2/E31ggra57YACvqXpG/PG1ufWAAgF2HI0VNYbnoDIYUEiLdxREBtFoGkWhd0/Qo4pngjC2kdTGOrxZEEYHrK68uJD5r3inEWH9PaDjAR6OinhrIXBDDARentJFg6LqxWn3SWOAFT9Xlak5jM/UQe55INk4s3PeGlXJDYJgWxeAewn0fG0tGrdKJr06Te2j3nzeiuYcPxmwGgM6ovEe9alHlXGXOTyeXqrq2zlJ1SUroydS4FFVjrumCdCQ8NsEzLSaH99sNjJUj3krg18RvikDNxN8nvdX1yM0lyG8CDFnXhHn54GF6Nj60/oW88Ky7dirayaw+1auVX7nrNdcdVbgWV1X4NOTSfUsyziCApQP9QwDYxwjCmBPAUZzekSqnH0DV0WRLhzLrycHWXljyrE8eyhyMtS/N05Qj1Z0164jAsibd39M+VPGRXdkQF1XIQ72HtDwqRXtXgQgUmReo/YYUJU3Er4twNfQ4+kFAhVSir2XqoKBgKC111sQI0jwtpX2ZGFXinsqVdvUi4rYPe+ZKXxV7mdeT+RVKG/a+hZlQa0tMFJA2PtZeo/nqE4ZsT6Yg6bw89Y0FQh4+jQDHhGIyMrMeFf8KOcxOmaelN6aYninUuaEjqEp8jpqzYBS+Opea21LubTWthYJekrGG9iqHKXUvGdQ8I0vPDZ+kXfP+2cgwM8qyoADkwdkKiiW06o2bq3JtwrsPhoH9PhwZzql9Jmn96BQM6pEoaZ4uj35Rrx4Cp5J3VcgOlK09gzLtQIhChAoI+TJr5KnCGRWxtehgtQqzcm/p0+rz2TUyyfzEEUBPDuC5C3sxrLmduam0luXPerVQr6G58pgoce52ejIQGs5GlcCohRK5Mnhs+z9Yjlo8CNQ4LWNKk/x7t1T+UWDL0P5mDd+VAaBAAM2y5cXTKr5YAZKzMshKN05vMfIMPdQRT7nKEeVa/kpIMDHSuF6eXoKPOMnMu5KjrgOql/VtV5AcQgyOydVxqE3PqptUQHNUZmVMREBAeVAVTzwuYFAL6hS0YwxeU2h7lcLlRfY82xr9deaojzsWBmbzCAaGSDA8j0gUAUDHqBR7TVWCWXenrrGAwi3i7Z76jVDrCeCAPsWNy4Wy9pkX9RbPoMx5S17eVc9rMjYv0V7ZaAgA3JVb9CTSc4jKs/jp6LsPfLKieryKxC3fdW7rxrsqcT9ko2TzIawThrrzPUQ64kIlEbXFPDF44r96KlTFxjoyTgzhorhHgUT8eQ1YpQfplFAINswKOJHURYVwOOqAuxB75YWd5nzBhROoSAYUJ9mxijCWP7mpspgz+SRwRQ/6z1j+VUNq1eGd61C0Rhg2VL37B+3F/fAUabMq+CQjU8GCNRzc9B7BgGRAffardo3WTqUjd4+qQACDwREsuyBAZX+EKjHmZiDRk0TVBpOeedscLkzMyHzlBWX5+Wz2Wy2vF9PSUdAQK0VqJCnsDIPper9RCgRByYqdNw4prX26tiexekE3LLWfvYRGgMJlobb61AVa48x8frKU0Jj+IhAh0cKbCs57ZXZnsiOl05FG8bk54EONnqezvkVPf8I5M2ZX9VRU2mj8ZWB1IrT1FuG58y9hZ6qRgXG0hTeR2865A2ySKFljGZIVp17A99TPHbdQ5aWJpsmiEgpIY9/D4wwso68LywHnzPj/+HDh2HXONtG1oDA0dHRFgg4OvpXJBAo2LPYNgYI7KM1j4+PwwdpVLRgs9kMeeyLVD9M8barZWR58BjxxlMFDHjy6Y0Tu1cBMyyXnvL3ymeg3msI1JjK2kQ9q5R+5ECoOr4VKb4r8lXtT0zby5cXbYj6paIbOX2lfHYG7RofV8DTlHapjAWvDnPQFGAxes0AH7cWK0j752PvnMucg1QZSkmi4PQIFOYTKZoMtETgQd1XAID/zbiv1+stMIBevxlrfA6fsesGCAwMHB0dtYeHh7Zardrj42Nbr9cDWODowD5pnzxkIMQz+tF4sXyVDPXWNZNpNVYVv1m+FbCU6ZEKRaDjvUUBqn051rhUnpvDcI0ZfxXA5133wBNfn6oXKu2S8YD57EtPde0zoAaYigREBt67X1EwYzwD77pnrNHgVxYNVgTBU/w9g1z9Z2UyODAAgAABjT5+wAj3n8cP01h68/jt4zWWFqMDR0dHAyCIPlTzFvQWA57L6eknPlb3+JPgVVJgoUqVsRzJN5aLY3YKT1W+xyhaDzgcAphtrY//XvDEpEBplveu+7cS6VDXKsY4ym8qEPLkUfGwy3ERUfcOhNE95blkCiS774WjmJ9KA6ooAJ8r48/AAMkWykXeTBQZUPXh9JESjYCVamcM+6NxVyAApxbsh1MGz8/PW9MM9rMP09g37G0twb6mCQ5FkbdWC6W25k8d8D/mi8dKxiIF6IFjft4D6Z4B6Gn7yBCrcjOHoULRuMRrU43BWOp1GFqbBmDYKfL6oHJvjmgCUhTtiZ6Zq2ykbLz08OHJ9lsBFaOuyMBqtdoyfsxQBAg4Hd+PwEEPj5XO95SX/fOCQe9NgjkFPctLAYLKs2jsMTJgUQEEBHbd1hIgaGBAsFqtBgPP0wrHx8cDGMA3D2w9wj5oilJ4y35WfdyrVMcYAyzDU04KeKpyM948r3GKR1Qpu6cdMwC/D0I9FbWVB2oqOkYdq/Nq/j3lRnq1UmevHAVOIzmcizyHc8587XwOHTXqQ0V8zY4jQMDpVJ7qvzesl1EWxlIRAnWOaXs7whP+DCF6gAD/ow2d7NiMNq4dsPt23Tx+O8YIgRl1u8758muH9rZBtkPjrihSjl60aCx5eXrKtSpDkWc21hOMAICSIY/PSvle+1YVfNROCiBzHlWvcmxUY5fkRWrmpDmMiddfVRmPZAvz95w4fi7S3VNp7qjHIdDkbxPYPe/n5VMBBXicGXGmKKyT1cfuV8rMFCXyo3ioCGg2SLjNFSBgg63WEbTWtiICFhXAyMDJyckQTXh5eRnAgOW1Xq+HxYX4WVubOtg3eco+61s8z/o5ymMqRUbNM4bV/CLyxrPKo6eNVTmYNgJBlt4zllE7HYqhr9Ic/I41YD16jQ3/lAhXVJ4CGFVgz/fHguldU4+cztG2k9YMsGGvehOex6rybU0DAdVQlVCnIoUgvYhBlZRHonjw7nnAQQ2sSBHifQ7no+G3LYjxnN8+ODo62gIDm82/0ygGGE5PT9vp6ekWGMB9CJ6enrracE7q6b9qH1WenaJglGLt5YvHl1KCKj0DS/U5bEs/to6eIVe8ZZEBL291HkUR1PEh0VS+5vRoo/b0dFVvlCAy+qpszy5E57ugucp8S+DavWYAz/keAwGlMCqG0TOEHl8VRNgLBKIf5qeACaeJvKqsjpkh8JT3arV65eGrVww51M9rBSwqcHJyMrxVcHx8PPBh0QGbHjg6OhreMrApguPj471GBioDs8e7mYunufJUY6qSJ4+bSJFGY4zTTDWqHsjvyUvlkfGFaQ4VDPSSZ0x7AEElfeRpK9BXBYEqf++eBy69Po0AY4W8qIiiuYz6LuVyVjDA6dW5BxaqPGRRgkjA2Dsw6gUCUZ28sjN+vLSZN4ievnorwAy6efSnp6fDsRl3e84Muy0SRI8fgQBHBowP+17BZrMZ8js9PR2iA/tSsKrvMopknfOu5FEti/NUEaBoLPHznmxW8vXWn0T1U+MqeiYaH5mSZ76jSMoYI/MrUWTQe4DBPqkC4j2jmwHVt5ADT46t/F1EAXryG7W8uwclTqGKN4//FWGPvCAuQ0UCMh6rAuZ5WFHbekoblbcZajPkaPR53p93I9xsNq+u43N2Hd8KwE9B806G+CbBer1+t4o38+KnKNOKZ6EAL8pxpGQwDw8U8bMMMrxfRFldmKLxWG0XlafKI3IIVHmHIrceXxX565XRikx5lBm87Nk5rvemrThiY/POyqnk+xYyOPldr0iJeMRe/ZgyvTyy4wp6rJSLeSqwoQBLr5cV3eeoAIf9DQTgb71eb20ghOsDjG9eQMhpVBtYJILPbY+BfW9DXKXI4EdeppKpXXphnhFQfFSUiBonEQjoiQioKMfYcY/58XhWaRT4qSrVQwUESD2GNQJhWZ5j+qsCCCpgprdsFYmqjIcoqjQnRZGyTOYynqZGF0ZNE3DDVTorM8JTog2egKl82cNSeVcQJCtN79ke5TPWoKCSxn0BTk5OhkV9CAI4IoBGXk0T8HO4gMwUrk0x2L9FBDBacIgKVVFFFj0DxOdeurEegiezkawwv1WPOgK9zJcde0BYpY/4jvLA8wqw9/jy0kZ5vTUZ33MZ6ehZ73ysw+aVlZ3jdfxX97LxkHnWbwn6xspWpf49+Xk0aZrA88KZekIdkZKqDOJMybFSyJQOP6tAgBLIzANihVxFdNzm6vsBvEmQAQO1kyAa9tbaq+gCv1poZTDhh4kQYDw/Pw//h0pjlN0URTylLA/sRgY+uo7HFe/f87Sy/0odvWuZI8B1UuO7WqZX7r6BbG/5Y52uOajqHGLase1btRVTypiD5ug/dW+qI400y3bEU5Sp929p+JnoHK8pD1sBgchj4LqpEGqlnvws56vSedeMeFthNODeWwMIBlar1Ssvv7W2FTXAaIAd82ePjU97m8AWFGK7GkA4ZOqR4akKdex4wWc94x8pVy+C5UW5Ij7UtTm9rKnGIXv+LT3CXRDW861AaYWmRrymUM9Y2DXNJfsVcB05sD00agfCyJv1lFQkvAoQ9FAmUF7jZr+Mb6OM50jZep6Wus/5ICDgjw7ZseLF7iGo4U2I1MZDuDMhrjMwMID8W55279DBQJUqMlYFdBXyxlFvfixn0djlsqyPK2XiOK6OC+ZBHavzjBT4j8qoHB8C7QLIVCK7WdqePDi9ks2pAKEKDJmXqTS3vPTUYwp1RwYqglENAakogAcWxlIGTjKKpgc4L6VAomhCxgOHbXFKQM3/cxpsW1vZb6//cf62VbAZeVv8h+mOjo7C/rdnNpuf33Sw3xiQNxd5ip37ohrpyfowyyszypX8Km05xrCq69nHuOaiyCPyeMvyysDAmLzfknZhWHr6cYx8j827YgsqeY3xnntBdsUpiK5lTqH3nLrfw0tE3WsGVNi88gwPxggoYCWnDAbV4MyT/ZvB4vucFvNho2CeMN5Tz3nkGQkFBI6Pj9vp6enWPD5OC/C+ArxxUBZBUMrTjIISWvvZR53sv7U27DmwL8K68PWob6ZEqzgfLqNXFrJ0GfBWkQHFY8RHNm4jPrMoQOV6D1WAXi8o2xcx/1Pkci5Ap3iamsd7oIzfLNKr8kD9gP2KeWXA3hvfPe076dXCyiDD895wza4HJxvcisfnnUeeRxV18uCyn9pAyH4ctrcwPxMacvy11rYW95knb68EmlE30IBpEUg9PDwM3yKwa3ZskYlDpCjSkfWnHWfRMR7gTMrrj4xZZERVXupX4TEDDCzXVYARkaf0enSIyk8BwqqeOkSg0OsxK+cEzxno9Uasej1rzzGcU2aia+peBpgrPGa8qDy89s7qwuO3h09F3WAgYjhCI4q5OVEhG3O+xsfGE3q0yuupKKQKeouMAfKEvHJEAIHA2dnZFhiw53G+nzcP4tf82NM3/myTIAMDrbVXew5w++G5AQEDA3jv0EjJBR9nHqynCFn2osiSyscrNxpfSkHbsQICCtj0KnbmS/1nShZ5iI49BVnN8z1SFnHJjHdPxKYHdE3R55W0Y+yDaodsPBl5oLsnGjAlWqPGyVjZHdN2ZTCgFIlXqKeQdkWeEkcl7IEFz1NCGuNRjBlMfE9tKGTTA/zevxE+gyv/vWkBNOA4N/z09NSOj4+HNwGenp6G7w4wcMIpAGxTvIf574MiJYHHlUFUQfwKCESAIDLiFWXE/5FhjwBBpZ4RH16UAdNUy+sZV2MBTJbvodAYz7vicVd0dWRc53To5spzihFVtIt6Vsut3FP8RWPQo1FgQBWqGIyo4iFj/lmlPEUbAQIGNTa37QEc5nEuJWrPKF45KqDWC7DSNyDA7aLK5AV/lg/uGohfILSNhDgfLF/14b7BgEdeZIDTVBB7JIP49gbfb+11G/bIkAdqPE8nqkel3MzIc9ko21XydI06r3puVQdlbmOya1KeZS+49TziOdthqqfrjUEP6FeujaFoXI3V/dF5ll5RNO496gIDnqGMGOFrniLJ8qoqkgwImCHDD+yY95spLRMmpfQyb7GK0JhXb2GggQLeDRAND4fzzSDbp4Txms3pWz3w7QIDAbiroIoOeIAR22JfVAWnGRDk9HyNDX4EBnjAzu2pK/7GKvrMELN8e8d8rUfBK9qVx8bl70t2eyMCUbtVgUGW/xiqjq9IVlhmKoCAy/FAT4X3ClVkeKrM7gqsdkcGql5UdJ/TRp0yptKVxsYV7shzjweTeS9KuXseil1DYII8MTBQgm7/Zqjx1T5cwGdePy/yw7xsvQC+HfD09DS0FU818KuEhxQJqCLtueTP8sp+mBb7gNuth/9KNKAnz4yy8lSaOQjlfYqBqo7hfZGKuPUY7J5+rFwbS1WbUMnHo8xIRv3da/Cz+70gzqOsPtn1HuBQBgMYQmalxkAhYjS67z0zFa3afd6HHz1cVacIWSpPiY1/JfzDbab2AOBNgDAagIsAVR9ZfvgsfnVws9Er/XGNAk4R4KuJqi2sHRggWGRhX8SAR4EaS+c9rygakAzkvAgB8mcyhiDM7kfGQBkA/OdftX49ZDxGCldFEry6efXweM8cEW98euM1KvOtKHOWsmeZOI+xXq86j54bW55HGWBDWYj0MKbxZGdsm42VGzVu8VyRx2NXe2/2DX0XWmihhRZaaKG90q+xR+xCCy200EILLTSaFjCw0EILLbTQQr85LWBgoYUWWmihhX5zWsDAQgsttNBCC/3mtICBhRZaaKGFFvrNaQEDCy200EILLfSb0wIGFlpooYUWWug3pwUMLLTQQgsttNBvTgsYWGihhRZaaKHfnP4/sepJoF97kUoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACam0lEQVR4nO2d6W4jSZKtjZQoUnsutXR1YzDv/yT3KQYYDNDATHdlplLiTom8PxLH+cWheZDKRaQqaQDBLcJXc7Nji3t0VqvVKo50pCMd6UhHOtJPS919N+BIRzrSkY50pCPtl45g4EhHOtKRjnSkn5yOYOBIRzrSkY50pJ+cjmDgSEc60pGOdKSfnI5g4EhHOtKRjnSkn5yOYOBIRzrSkY50pJ+cjmDgSEc60pGOdKSfnI5g4EhHOtKRjnSkn5xOd72w0+n8yHa8KtJYdDqd6Ha70e124/T0tLxOTk6i0+mU61arVSyXy/JarVblxd+Xy2WjDtbDsrwtJycncXp6Gv1+P/r9fpydnZU26J2kNg8Gg7i6uoq3b9/Gb7/9Fn/729/ijz/+iHfv3sX19XX0+/3odDrx+PgYDw8P8c9//jP+67/+K/77v/87/vzzzxiPxzGfz0u56sPp6WkMBoMYDAbR6/Wi2+3GfD6PyWQS/+///b/vPyFbqNvtbozb19K2dfCcenZdU7yu9rnter263W6DZ/137wP7Qv7L/neezq5pu5blPmdMtrU7o2wN7XLtPs5nO8rddnIZSZ7mSyR+q8njiP3M84+mXfq0Mxh4LdTpdFo7vsviqt2veyU8T05OiiLu9XrR6/Xi9PS0KJ/VahVPT0/x9PTUYLjnMBuFttqmF5le7Tg7OyuKWOAkIuLx8TEWi0XMZrN4fHws5Z2ensZ8Po/FYhHL5bK09/HxsfSFQIXg4/T0tDGe6mcGQtTG10rPUdzb5tfL2lZ2DRhmwCAri4BVc3dyclLmhGCACppKnWW3KXgKWBe2vM7r8euy8mtjVhu/beu49nvW5yMdDmXrx2Uh38XfmlcCAck78iCv/SsCgxr95cBARPsC3sUKaBMWRJtSiL1er1jkUr5SqC7k2gSqmDBDuW1ggKBEYODq6qpY5qvVKmazWTw8PMRsNitKOyJiPp/HdDqNyWQS4/E4RqNRnJ2dlf8iIhaLRQyHwxgOhzGfz2O1WpX+c6xOTk5iuVyW9i6Xy3h8fIyI2FAsL0nfWu/3UAi7WvHZ/7VXdj//4+8ErAKtAnvi2YhoCEiBWRKtLJLAou4hEKag1TXuEdN12RrU9fpcAz4OxHYBZhl97X1H+nFUWxt6pxx0wJt5vsRzj4+P8fj42OB557WfhRf+cmAgEya7WBHbSELWGU7C9ezsrIABtYGClIybWV3ZddnLhV3WpsFgEOfn53F5eVnAQLfbjclkUtolRp/P5zGbzWIymcRwOIzBYBAREdPptPRlNpvFeDyOu7u7GI/HsVwuS33ZePpia+vvodO3AIFdLP626zK3ZwYIeC0FH9/Fq+JTAgKWIwArIEd+3tZe9w5IwFLRZx6Bp6en6HQ6DZDKMlVnGxDIruV1X+OteY38+tppl/WWyUjKP762gQFfU5LZPyMg+MuBAafMimoTJDXKcgMypmtrg+pdLpeppc/r+U5vAevR/1kMWCBlMBjEcrmM2WxW7pPVdnJyEqvVKh4fH2M2m8VwOCxhg7Ozs2LdLxaL4jkYj8dlEfV6vcaiUpsk3BeLRQNxvwaX64/0Ajznmszq8XnmtdtAQ41vCQYE8vRZIaJtbeV1vt7UJg890Cvggtrj9L5etlEbyN5VqP8Mwv/Q6GuAAEMDBAMCuzJYJJ+k5OnBrFHmjdL3vyL9JcHANpeqC9NtsXwxE5mMbigKUzIbrZNakpZ/9jazXQQjVOzsG8vRAtG9dNd6u+fzeYxGo1itVjEcDkvew9PTUywWi1gsFsWdpvupoFSH6p3P59Htdhtu4hpYOhT6EWDFy3TBktXpfErPDwWbl8P58GRBglnOg4BcWwzV1wUTXXVvre/yLHj+DEECeT5L6KJXrM0rsQvVrLy/qoD/K5EDZAJlhgaycIHmfZuH0sOw/h/b8VfjmVcPBjLBWrOQsnh8RNO9WStXlrBcrJ4MJ/cqmU7lUXizrsxTkYEGMp12Dah+ulYzhs8Sr9zLIWt+MpnEYrGIiChuYioHjYEUCj0Dapva1ev1YrFYlOREeQn2Td/L5fcc4OAeHv5WAwMOBDwG6mXoWingLJvaQYDulaJmiMD5jmsjU9SibJeC6pDgFk+pXAp0hhS4hnbxLGVhgtp8/NUE+V+BaoYNf3MvWA0IcE1oDbhXgOWpfgeibeGCvxofvWowoEmkRUoGoSB0AeaCipmkmTeBYEAKVC52Wsy8h20TeT1uLbe5oyTo+/1+9Hq9co1bWyxT9TO/QWU5sFFfBATkDdCCOD09LSCGyFx98dwJgYz5fB7j8TgeHh6eP8nfgTKvSUS7V0XU5nLm55q1UPMCZDzG/3yXCEEYlbs++1ZS5nO0xUyzRKoacZ34Wso8RNzBoLUiTwRzEcRfyi9hrsHj42MjIbXNanOrriaoef8uwvxHeIyOtDtlQMDXCN/J93qvrWn3GvgWb12f7TRg2/z610ivEgxkFpEUkRQlESItH3dxkxEimrkBpNVqVQSzmEzl0YJWGQ5IXJDRfZ+FKdxTwTK1e4GghNa5+s+QwtPTU1xfXxflzP5k7n7VJyXhAtTzBE5OTuLs7Cxubm7i7du38fbt27i5uYlerxez2Sw+fPgQ//M///N9GeEbqQ0EtP3G/7IYvntlMhBQA50ZEPAzLDLQmyVzZha8eJHKX9tNNc/eTpXle7PdIxHRDGUJfKrObrfbSEp0QMxQhYCovEoOTH1+6HHLQg0cE62ZbaChzXtzpJehGhCorZ+I9bpT7pL+d5lKD0IGdEW75qy8VhAgenVgIEOGSpS7vLyM8/PzsseervT5fB7z+bwIJQpcMom253GPvSt6WbxZWEAMISHNcrS/n0qEQsszrgUUJHCpEAgI2E5a/AQGy+Uyrq+vY7lcxnQ6LVv+5DVQmaonYh0qmM/njf66u031DAaDuL29jT/++CP+8z//M/72t7/F5eVlzOfz+Oc//7nXcwbaEPzXCHvnQRdGbsFmQsyBhIMAB2u1BED9T94R+KXXiFZ6RPMAFr+WStoVLcGA6mX7s3M3PMzAsSPApldK52Io+VVhBJ83rsFs94LXm/1Wm2PO3ZF+PG0bZwcBEZtJpiQZa/yvLcy2XC4bhmAGGjMe+ivQqwIDFFJuJV9cXMTV1VVjf70mXUDAlSA9B/IY0M0ti1qxb13HBCsKpzYLg8BDvzkQoCuUDKd7pazpDZHAjYhGXJ7uVt2vMwh0Da/VNcpHEODRODCEkC2+k5OTGAwGcX19Hb/88kv87W9/i3/84x9xc3NTxu5///d/vys/7ErbhH32fVf3caY4s/8dOHg+S0TTqpaHS3OrewX09B/bTH50/vS+ujWeWUQZuTte/SQQdpAhJS7PA8GA72qQMHZPR00Q02LjmlI72oS498s9OJxDD+cd6eWozStA+UnKvGKSmyxX14okB7nbwL0PzkNtfNV236HRqwMDVIxSbhcXF3F5eRnX19dxcXFRLOaILxNAYKCT9jLhoTp88dOtqjL9UCHdK6JAjmjG7mXBuzeB9Wd9zpLJJEiJgFerVSwWi5hOpxER0e/3NyxVgRwSBbAfwOHtY1lqh8DA1dVVnJ+fx9nZWSP0oMOMXjtllmImIBwE0J2fCRqNUb/fj8Fg0DjESopN4FfAUHMtNzpfTO4kYBWveMJslmtSA1IZIHD+V7xfxPXgYbhMUHs4hB6pbNxrQjoDDNk1meDnXB3px1E2vi4H/SVyOZUBBHqx6GUS1eSce5/4/67Kvc37dEj0asAABassJx2sI4/AxcXFRohAQtQPQImIxul4EWul5slV9Cq4y5RC1RmHwjgiSps6nc5G3Vk/iWZltUtB1A79Ubtms1lENOP7bD+Ts9h3WnHcTsj20c2m+87OzuLy8rKEaiIiJpNJeSbBw8ND6fNrIEfztQWdhQR0fwbkmKtCYBXRTFJluItA1GPxmp/pdFp4lO58WTjkZ86/hKNbvlSAAq4Uju4h4DjpDAuCRc9/8ZDDarXa8NQREGhd8n7WWfNwZKDNFYkL/cwr8BqE+Wuk2rj6HNReIgcA2Xp0QJzxshtn3hbW59e0gYND9wpEvCIwELG2FmQdXV5exu3tbdze3sbV1VWxRKV0KWS1oJUUR2HI5LvFYlGEZ0SUuKVCDSzXLfssdlzLvo+IoozpcqcAZExVlrdeDGWoLvaFtFwuyzZABzNqt8az0+mULYZS5lo4DKHQwj07Oyvemaurq+j1evH4+BifP3+Ox8fHGA6H8eHDh3IC4iHQLsLdLcqMOMeZYslyADTHLowIdDnWEc1TI8lHy+WyeIGm02m6hVNWtax1kSfNkggSmb+SWWAcG+bk+Diz7QTnCkdpbNgWhbfUFq5Zz+dRm3z+/Pfs/8wSPIKBH0u7jmk2J1kZbeswuy4DEw4sWc82he4GxGujVwEG3Mrq9Xpxfn4e19fXJXP98vJyI+GPAoOIUe8e86cnQK53z2TeFl7wFy1DCXbez7r1n4cApBgEBOgmphciYtMKoxtXgICC+vT0NC4uLuLt27fx7t27Mh6j0ahY9RFri1QegF6v1wADNzc3cXNzE1dXVwVUjUajGI/HcX9/H58/fz4YMJAh/Yj6OQBu/btQypSihwY8AdSVre73HQOaW1rxisMTDHB3AHmBRCCQARaOARU6eUr80+aWzYQt1wPv4xbCLDlSdSnXxUMhyuehF8TnrGbp1T47CPC+HOnbqW0827wC2f0eKuK1HqaiPCS518CvrfFADWS+RkBw8GCAC5MuaYGBN2/eFDBAdymzkmezWePgGwcIqieiGVONWAs2uXBJLIPXuRLIMqZlBUkBcLeCJ5LpWQNyHTMWz1CFLEDV6wBCbZKXo9vtxvn5ebx79y7++OOP+PXXX0vewWg0is+fP5fyNUbn5+fx5s2bOD8/b1i9movLy8vo9/vx+PgY0+k0Hh4e4v7+PobDYQld7JNqVoYDAb0oHGqWhqjmGchAgeZYpPI1h8z/mEwmMZ1ONzw/8nJFRKM89oVKnt4gtk/1c3yY38D/VUbmfasp0NrvKtPzeBwEO/DRmtZaZ93ZoUWZEqgpA+eT2v9H+n6UraVtIKxmlPE/8YxA9S6ALgsZ/Cxzf9BgwK1r7l+Wkru4uIjr6+sYDAZFQCyXy/IAHp6Al1lOFPJ0ufM3Zm1L8DCuThJo8CfDRawFKZMJldxHQa3/1M+rq6u4vLwsORHMh1gsFoXpaZExr0JjpXGUO7nX68XV1VW8e/cufv/99/j73/9enkHw559/Fk+CFkW3242Li4u4vb2N6+vrhnfg4uIiLi4uiseCiWsUyodAbvlRsGSWCN2PLENUszZ4rYd9eHa66mD54luBKiWD8sFPeghVRJS58MQ8Eb0LahP3WdPid88RFb6SFtWnbMwcGGQ7A9wjpvoIqgWCyfN6jsZ0Oi3PyuCZHX7mx3Piv6895vtaKYvvZ+sw8wDwO+8lZet323w6CPgZ5v+gwUDEZtw1c7UqM17Kfzqdlv3J2iPPcEDE5hHBZLjMayBrnNaXLF0HGLRq9MAfCTFek+2vZjn0CDA5UvV7f9gnWaHZWEoZKVeAJxEyX4GWIwGKPA6ueOhxUdnn5+cNpbYPalP0bf8TABI0ZsT5cBc150l8zF0BWXhLYFOgVqCTc8IjffVfBgaYk6BruUVVCaauwD3uz3AC8xB0DV8qPwPDHrJTXwiy9b/q7Pf75X9fM3qwFoEr66iF9LJx4mfKhJ9BGRwCtXkDIvJ9/1kZvJ7v2X+1elhfW3v/KqDhoMGAAwHfV6+wgB6sM51OYzQaxWQyKQKUilpCKmJzJ0HEGgiw/ogoAo3KnQxJi6tNYTIjnEpYfWFuAsthfoBnhdO9ynMMVB6Vh9zKErIiPaRIjygejUaxWCzKdQ7CeJiTXovFoiQ56syBi4uLBoDaZ85Am7vxW+7PyqopIPds9fv9cq6D+EghnCxBjp4r8hxDObouAzwRze2j4mtex7XiFhmBgq6lS5XlE1jSU+Qg2wGrylIuwGw2a7Q3285L8ErX8ba53VUx7PL/kb6e6K3JPovalO42EFG7r3ZNG/8437QBk9dEBwsG6HLkuQJSohKg8/k8hsNhdDqdmM1mJb7K7VgqT9uTaCW5MItookjVIzAgBS9LRoJZRMVJ4LJarYpSZyxfYEChDSVDRUTjfAR6LNjuzA3LnRC6Txnb6hvvmc/ncXd314jzC0gIAEhx+XMH5H1RGz3ZUTkO2l2wT2oT/rsqhjYBlXkWxL88E0N5IJ7/od0l4inOgebadxfQ/e/Aj+1ypUulvVqtivImGKYFzm2xBBDOkw4EmAQo70YGuPmdFj/bzfM0CGp52ibDUhrLzA1dm9vnWpBHej5l498GBHZdj7uEF3ht9rsDjowf2u5pq/PQ6WDBQMR6cgUGJEx5sBDd61JM2Xn6En588EnEWqjSyqJg1bWqX4fpaC+1lC2tF1l9tKIV0+10OsV9LuUqAcjQBt3SshCZ3a0+Me6t3Ahalh4n9lCHvAX39/clTq1kNW3pWq1W5UwHnSPQ7/djNpvFcrls7G/XFkXlFAg8TKfT6Pf7P5xnnkO7WIO7WBsuxJgoyLyPm5ubMn48qpdtUVY93fb6nu0O4DHC9OLQKqe1LCWp/xhy8HAaFasAKssnGOZ5FO7JE8iQpZ95MQjIxZ8CRBpPrlHdq/UjoKSEQvWP5y7Uwjg+l65MjvT9KAN/mULn9108PLXXc9pSCw3s2h6/57UBgoMFA7SsuINACYNSSDyhrUZM3tK1UuI8iIfl8B5Zu9rBIDDAJwdK6XtymBhJAEAhAlrZsni0lW88HsdsNmscDCSBKG+C503I8prNZnF6etoIk9DNKwXvApLelKenp3KdYrWDwaA8hOjdu3dxenoao9GoAQi0Bez29rZ4CzRGfNLivuk5i5SAQAs8EzKcIylDebKurq7i7du38f79+7i5uSk7O7hFTmCPgI/bUeWNId/KembSHeuuAQ5ey10B3I7L/A+9CxST/3SfQlwaH10n74eDXbe46GGjh0HfXdDS86DnkjBMqCRZJhR6f/SZ5daUyaEkv75myoAAP7f9XyvPjbZs/nbxCO4iEzIF/9oBAOlgwUBEU2jJzar97BcXF8XFKquDrnR99vJkhctqpkXjzEMgogN1BAaUzS2Si5IKWiQ3uzKjudOAoMG9DW71ybUsMEQgJMUwnU5jMpmUsZOr2fMYGI+WEJcCF+g4OzsrzH1+fl6AwPv378sCHI1G0e12i0fm4eEhHh4eCqDRbolDsLK+daHW+kHvFR/j3Ov1yu6LX3/9NX7//fd48+ZNGf/RaBT39/cN4OaeKobJImJj3phjIpe5PFjyTnlSIb0XtPBdYVLJC6wo8dHDRfRIid+Y+BoRJYxHz5X6lPF8RNMTwVwF7sxQO2azWQyHwxgOhxvhQnkZuLNI8+l5Eny9ZuF+SFRT9Lta8DUPDj1cnvCa1bstPCgPVZv3iNf/lcJJBwkGskXJmL1Ou2Omvt55AEtE0+0fsY5xUjjofnoD6JXgXn8qSQlCCUq6mTzx6/T0tGwPpHCmNae8gfF4XNqq9kkQ9vv98gwGbf1jfNXDHxoDKRR5U1zYu8CnJarQBl8R6wQ0AqterxefP3+Ou7u7OD8/L20YjUZ7201Qi/t5fJD9bQMw+i/zXvFcBwHA29vbAqTevHlTkl2lrJTwKmVIcMB2c+uc5tw9P/RIiFfJF3qnghXvqiwCDXmbxBsqO9sJofZERPGk6ZhwKWta7cppcYBDj5bGV0qbnhN5BQSMdVgYwxQ8lyALSWReB1dQr13I75vagMDXlOFAgKBWlM2p/87/qPg9nywDBTWeeM0A8iDBAIlxy2zrlUAA3YEUZDwwR7FLHt0qwUPmciFPZmMMle5ZeShcmKpu3iPXLncXMONeykBlSAkopi+hpz7TKmOfiXIJGDhW3Iqpuvyo44gv4OLu7i7+9a9/FQ+CjhnWoUISsLIcn56eStLg58+f4//+7/9egGPqtGuOQPYeEel/nU6nAQRkCes7Q1k64jkiyu4NASeCAfdYkT+U5Mktsy5Uad3zUCLPOYloHpYlPpVAzCwsrkW66rVGGE5Q/7kDx70P5EW67cm7XOt6yVuo+t3Cd0uRoRLfgpgJeY8fH8MEP56yOH3mOeCuFgG/LDeGZdWARwb8WIa/vJ1t9NqAwUGDAU2IrKXRaFRi2Do0R9a5FDzPGKDrlWXSK+AIkAzFe5Q53+l0ijJXsh3djxRwEoyr1aocjqIYO92vEp4qm2CFTDmdTuPu7q70PSI/n4Bb1BwkjMfjRna3xlZu/oi11ejC9O7uLj5+/Bjn5+fR6XTKwS/D4TCm02kRyFIKDw8PxTswHA739gjjmpWfCZ82zwD/o0DiuQHcTSHLebFYxN3dXQFxy+WyPLzp7u6unM6oeXSepWLTNZxzjTfPchC/MBxFl7qDXk8IFD+IhzRWJycnhf/4Urm01rQ2Z7NZrFarcliQvANaq/QEuCBmfF/zpPUi78dkMineLsoBgme9q18ekqFFSF44goHvS7V1uE1ZZ55iegXc60NPrXt7WJ+Xq//dYyXy0LO3tWZAvAY6WDBAgcBTx4bDYUR82Q5HMCDFrAVPZcskwQzpqT6+e1vkaqSC515otY87GSKaDCImpZVPJa5EQrp+JbhXq1XZAqitlOyP8hI0JsyiZrKZFgl/9+cvZJnrEesscf5H4CTviLwfnz9/Lm2fTCbx6dOn78EaX0Vtbr1t97lbMxNKrnDpfhdP3t3dlbHhw4X4gCHPGXByS5ZZ9ppj1ekJhdyWyzkUjzFc4ACXa8WTJPnyxFkJz6enp5Icq7MsBAoErjOlQB6lp4R18nHOHir0F8GFg8E2r8BrEeiviTjf2wABQ7jZS2XsMk9Z2IKh4Yj1OnMPGY3GNq/ha6SDBQMiWgh+EImsaoIBKu1aBnHE5vGVWSxJJAbglih995ey6qlU3QUr68QFHN3B3AcuBmXiE5my2+02Hl7Ee9h23ZsloTEZrWYFUYi6VcxdEbIGGVPWeRCHRDXh0+YdcCDgcxzRPPRH/CmPD61TKigqqqw9fInonWAIimEvgUzPP/DyuA4EFLl+OC78nbxEUMgzNQQyBKAFgCaTSUko1Noi30c0Txel50rAJwtpubL3vBz+xzWdjTc9h0d6PmWhpm3Xb/MA+HoT1daJ/qu1S98JYsWz2Xpx2etGJe9R2a+Bfw4aDLg175NBdxCt4My9o/JEzqQZ09JNzjqp2GlF0IXLsghamPDHjGa6tdz1pXa4VeNAQNsu9QhhuYm73W4BUEysrI1p5hqlxahxV3Ilx45JZ1rIGpt9JRB+DbVZLVS0+p0Khi5tkeZ8PB4XwJgJrjaA4tdmc+ftlbDigVMUtlorbDv5gIqZ9erdvWACAnpXcp+2u0asFbxb8CqPhyxlY+CAWLkuLswj1iEUntVAS1DrkmObxYZfgzA/FMp4eNtvDgC4xuh5o1yM2MzpcJlca18N6JOHGDKqtbnGK68REBwsGMgEsN714qloEc2z8V3A0v2j35xxalaf18s6nVQ+wwlSpPpdoMFdTmR6Lgq1j/1T2/wJjm/evClZ1Np3LXDBPAIKPu93m1vUkbsrPFl/PPQmIlJwtk/K5o8Ll7/VhJb3361ld8d7whzLY8wza1eNt9nuiPW2O/9NdTHhioqV1r57H2quUvLQYrFoeCE6nfX2QiVRKrbPdhF8uFdE12ZrIUuc9MQyrl8BAioTB0UZIDjS7tSmONu+14CA5pGeR+a6RESDbzzfQ5StKdbtcj4iNr7rM3eecR07v9QAQa09h0AHCQbagIDeMzeRk8dFKSRriz7bs5oxccZstIQdYYo8X8GFF5Ov3COhe3StEqiurq7i9vY23r9/H+/evYuzs7NYLBYxHA4bwMJj/R7K8KQbusD0nVab4s/c/80dFcwu5zgdOql//h5RBwO0UmWpaj49DECl40Iwa4vGkwLIwWvbWtC8u8tV9Uc0rWHyMxWsh54IfjKwwu2sq9WqccgWQQm9VeR593BoLDMPjBQ6lYnnbrhVqTLY5sxL81r4dp+Uyeva5xq4phyiYZQ9AVbksrTT6TR2pJB8HbuniOskYp2PQ1motaN1zvLaQqxsz6F6CQ4SDIiyyZTA5aODs0lwIS7hl1lRZKC2xBQqNoYiuMUrq4duLHfP63/mNrhwp/VEj4D2sV9eXpbTAd+/fx9nZ2clwTKiedQsx071efyaiymzMAmYNHZaLBlSVl8OyTPgVBMcmTtR5MKN2zXlAeJ2Vj8Rj/Psbm6R87YrSt3H+XBLRHxZE8ZuKas+8SQVajYWNRCjcEC32y0eCE+2JJDMBKna42BKdWQWmYhjKiDl5ytQ4WdhsyNtp8xY47v/Vnsxx4UeAX9iLEl8o/kVsNT6clDJNrA+D/lxTbh3iUmtus71kRPlyaHSQYMBkRaqdhVIgMgCo+s9u5dCl/FPxkX5PxlBZbAuCToxBB8u5OCCCpLf3cKhYtaOACFTlq1Fwn3tAgQ6//7s7KyxnWs8HsfZ2VlMJpOGkPYzBphAmFlIGh+1hzkPHG/dw/FlqOS1UKb8XFm4VS+lReXLPAoeFETvE5WWexu8XgrQ2qErKrcWanLey6xlzZd4LvMOuFdM/2sbqwSodhOsVqti7bHNmTL20BrXOAU1gZe2PurhWNxhQ97OEiDp5cjac6Q1Zbym9wwUZIrfvQFUzu4ViNg8H0O/ufzJ1mjWDvIs+VC8wnVJGeZeVt3nCebbDIxD46mDBQMcMC1YKbCI2IjJZsqG4ICTSubwCXELjYJDbiEqVCpS3S9rKhMwTFai0pUwUwKVo9VOZ/1seD6nQQ8F4gOEdDQyT4vjiYJUTr4lkoqCY6LFI+tO7adw5jstSfb3UKi2EN2qrv1fA0viQe6dpyVB5euhomx83PuksaTwdODKPmSAgO5ND1vR+yZ+kDIXD4ncrUrwM5lMGudaqEzmq6g+DzHQC0dDgLzpfXPhLlDN9cQ20EPDVwYADk1o75ue4wHQ50z5E8j6TgF6CESa/zY54gq/9r8DC8lt8areJct9vbunQv8TwGayJPM4Hgp/HSwYiNjc4qOFrMFkPJxueAIDTpJnVIvIHDXXoRChiMKDcWLWV7M8vG+00qhks5itPAIKDeh1eXm5kdmv+/wQoawubnV0gau26DcuGo67K4esvkOmtvZxTGpKgrxKT4/e3cXN0Iq8LO6u5P8OvFivWyU1C8jbye2mBAEODt3KovBkG7RTYrFYFPDKJFJdw1M2PSxVAws13mRfZSSwLy4nWK+vg2xdHmlNmZXN33ldzQvAcyqYP5K55mlA+a4P1sNrvR3OM66cI9ZhBa4x8VYtbMqQcI1X2oCL66J989tBg4GITWEgpav/MneNK9eIaAAGv0e/+WQQCGiPMkMFVKS0+FwhUJiTOVyx6HoKXC4ggQFtIby5uYnb29u4vb2Nq6urRo4A+0p3G8vjQnVvBdGrI3yNjY+TFJJbo7zuEGiXRcgxENVce24VOM/WEgdpAYs/6JIkH3FeWCeFFxU2XZlufbnHzYErrWYH1g6a5bFSW7Rl0A9h0vjwhE0Pm/h46nM2XzUPCO9jbobvYsjmxOs70hdyAyN7Zde7J4ByzPMC3CMbERvy1XNGWEebZ6w2n+5l4JrROiK4yECI+pL95wCD5WSApK2tL0EHDQYo8Fy4auCy+E3m6pOgFTkK1f9eFoEArXq39P2z3jM3r+rP+quy3SrvdNZHsDoYkGeARxSL4XTwi05q45G5tJwUa43I3X9uMTno8ZBBBgj2CQbalPhzyshcj7UxqVmYPq7kFwoEL8PnheCtZi3xEB/uIlD5dMG78PX2Exxy/QgI0pPFJziqf37gkEJsruw5pvpd5XJsea2PJcGOwgZubXKdZPO6b+F8CJR5ArYBgswrRSDKnVMMCZBctrSBag+VZX1w+UV9ULvX9YeIXlLKcfZZ/FYLP/maOgQ+O2gwELEJCLjAXWHqumzQWZbIEWwNsVFQZkxFweMC2gGBC3VnQm+jFo2sez2lTbkCevkjjQkEuOtAWe30ejAzlh6SrG1uvRKxu3A9FDDwtQvNF2pmAblwyQCSC7CMzyicMv7NhDLvZZt8/N0t2+l0ynyTB3jmAN8jNhO2aPWRJyLWSaZ+73w+bxxBTD7Mxtf7xLHNXMYZ8JeF5uClBtI4rmzTIQjrfRFBnucx1UCBAwH3RHY6nY2tn7q3tn5EmULNcmcyqgEBgmSCRtatepbLZbmewIBlcdeBJ2dnbRLtExgcPBgQZUgxU+C7kLvKWYczHZVmxHqypNx1XURsCFEHCmSEbMJdyOozH4SjHQRKHtRrMBgURpW7nnUrYVDWPz0qcu8q6ZFt4bjQ6soUH8fP5yYTvq+RMqEX0RRQmusMRNYsUJWhd1eS5IttblFPxuK9Aoyy5vnZ15cD26wtEU3vA8dFvKZxUIiAT9mkN0k848Le8yjofnVh7aQxdxCb9Yn/H6k519kuK11DPnMw6oeo6R6Sy8U2vvM55P3eNsopv4fXe4Kgt8uBoQMjnr0iLzKNLN1HvnWZ6vXsgwdfDRgQ1RRPW7KaM6iY1O+j0mddHvtxq5qIz70ANVdvDQzoXW3U7gB5BM7PzzcAwcXFRUkedHctGZFxabpddUxubT85F13GwJmlte37a6E2BZ5Z51loKAuhsBz+Tp6mAvPDqDKB4R6A7Ahezjt5gwA3c8+SMu+ABKLeBUoJlP3oYY6B56L4eDEJUXXysKIaIMj4uE3J8B5v489C26x7JxpWDiD8sCC3jD0m77zGNjkIpoJ375Tfm3kTHNTuOh619UugnRmbnU7zTBbndY5Dm574UfSqwAAnvuZyydyWEiae1OQJI5woWhQSbJzE2osJWBko2UZEm9oWeH5+HldXVw1PgLYWChzolDeOk1ua7s3QFjAm8WQC0RfdrnOVzdtrJRd0DgYi8twW5wMvw8tmmVTi2el5nGddw9PaNKdsk7YVcveI/0+e53oTL3gf6GL1bad+dgU9TxHN9arP7JuuoVVJj4YoAwTZequB8DYl8rOQ8yMVunukIvJxdj4WLZfLhtL1ucpCAtl6Iw96OTUl7dfVZJP40OVUtuapN7I6FSZgLoRyCNxr6AauG48vxYMHDwZqCzWiGTogo1HAqAy6rPwxqyRODtGshBCVPYWb/5cpAUfPzryqj5m2/X6/5Afc3t4WMCAgIA9Br9cre7ipiCK+CGglHuqpj/IAkDFr1lXGpFx8bSCn5jl4LeSgMps7CpTMus7ck9l4ZBaq+CYLDZC3Mv6mwFosFmXvf0SULX5K5OMjlDOQm1nTAiERTRBAfmLeQWZxRjSPf1W5nhPA8XbAzzyXNh6uKfw2+lkAQZs3gHIroh5OpbLOrPCMyMsZGKiFG3eRR5Sp3k+S2s6cLg99Zd6Dmouf5EDZDQWCA41BJjNfggcPHgyIdhHEHpMiiiPKzXIFaBW5IKK1QouK12UWoVs33hdvIwW/2qozBa6urkqyoACAAMH5+Xlxm2r7FpOz3MJSP7jNi8+U98XFNtcYNLMYOD+vXaBmVgoVBYWZe65cifpnjo279OkViNg8S19l1TxeEV9csbPZLJ6emnvw+eAqt+ApmLyN2W8Mp+l3AmZmlKufy+U6EUv8TjDgIRZfjz4vfl0GYDIA22Zw/AzkynObrPT5d8OL5dCr2mY8MATJOZMc4nojn2ZANSIa68Xry/ojXuXayR4Yp3vo4q+BZbXDw9LOhwxDs4+sh+P9o+hVgQEKSA2qD1gNyXvSR0QTSEgYcluVM6/+rx3I4paUl8Oy+NkVjfrHpEF5AxgaUB7BYDCIiCgHvkjAUzgqiZDbu8bjcYzH44YyyIT+15AL5NcMBjgnDggiNoFAJjAzEFAjAgBXojXradtebQEAtYn84Hkv2XzR+mZ/nF94OJKPiStkT7yiZ4Drm6CCgLY2ljWwSiDCPuxCr5l/26gGBChnI3KLnL+zPMpll7lu1FG2ZmX7dS5rMwDhOsBlrvOsK+NsZ0FGNfDPdnhSLb0dfPe2qz1qowPdH0GvAgxwEP3oSlqrjqKygeM1PpHuXuckETRwq0im9J6j/Gp9YzKYtgcqN0Cf+WK+g6w+ghUdDTsajWI8HsdwOIzxeFy2esmTwHaRfHF5/xz0ZGPy2siFVgYIIvLtrFmf2wBBdq2DgozXHSBn5EDAwa/vdMnGIGungyG1pwaOCQJ0rcrn4UTsvwR1RJTjutkW57uaQtHnDAg4uPvZyPnbZWtEc4dLG9B3hUYl2/bKymd5zmvOX94fn/cMEGTtd9DL8ykyUjtquUGr1aqxdtvmIGIdbmOuz/c00trooMFAJohr7qvMClcZIme4DNll1n5ENBRt7Qz/mgJwZq79n3kIeMaADgvyV6/X27CkaPEpdDAcDuPh4SEeHh5iNBrFaDQqIQL2KUPtbYKyttg4Jq8dELig3CYs2d9tIKBmcYkYQsrap2v0Xfcybi8ir7cBgTbl6G1UHXL7kw8zAR8RxZPBpwgy70AJWOq3r2+FBd16qlmYHqZzi9cV01+ZMhnpXgG3xNv41Hndx7fmFSAIc3nrlK2zzEtW62NNVtf6w+tqIQ7xn+sLtkdtdDCT8Sl5NAO5XAM/gkcPGgyI6HLxpJZsUrOJo6LnbxJaFF5kSMXiI9YWlu+PziaHwrQNDJAR3N3rcWMCoex4Wfbz8fGxxIm1a+D+/j4+f/4c9/f3MRqNYjKZlPwCjo27B1l+bZFliq8mMF4bZaDUrYWacGEZu1I2TrUQhf4TSfBkcXa67zOLg31ta3MmPGnJsy1uvRHUEOwyxsx8AnkGtH+bViS/tyks75/HgGuWam0u/kpEvq55XNvAaqY8+bvLRtZHRburjKDSpULNZK3L3DYZ7HqBnzMwQw9CBgYoS92YyoCMt93H1MfzRwCCgwcDbZaZ/t/mXvJ4q8hj6tkkSTjxuswL4QI6YyCVsUsfPdbkxHBAxDo7XMpdngEdNqTQgLwC4/G4XM8+UemovT62dAXX+iTaJpwPlTIF4V6BiOclS9as7ZrQ3SUW6cDNlbzHVQl8a0DAvQ2imgeB7XXrJvPEPT2tj/jOyt8WH83WxTYwUJMNus5B1l/ZQyDZJT6iEeK8XfO0sCySr4saj2nMa/fssk6cfL1m92b3eGhA12deMwdO2Vg5z9fak4EZjofnFvia/t500GCgTQj7dXQZEv1TqWbCzJncEZ5bWbsotTaBysl3JnRXHQ8BoiCV4h8Oh8WlOp/P4+7urrj+BQj00qOK+ZAYzyD38Y6IjbBJtgBcsWQg6TUJ1m1Woy/uTGi2If5dvARejoSKMvOlULvdL4mm+o3hIW+f73JpE47ex0xB00phXWx/No4R60eQy+smbwFBiwMh/e67fraNnbdb7cna9hr59WtIspGeRgdIbn2TKC8yqo1fdl+bIZWVldVbW6PZmnSA79exTl/X1DWe2FsD9OxLNj5txiL1BP/bBpi/hg4WDHCysr2uIrphKJw6nU7jIB0K7Bq1WReZMK+1h23gfW11u1WilzwAVOiTyaSEL4bDYXQ6X45+leVPD4HOFdC93FPuQEDtz0CXgxb2iYspu75NaBwq+XxQQfqctlkstb47X7WVKR7gvUw02nbKWy1HoAZwCL6pmLP10NY3XptZnVTqDtp9a6GPRRYvzpS586cLdp/jzOv1VwIGlKvKReLY13i6Brra+HvbuIkP6SHYVU48B7DX2kGDS9dl1r3WQMZL7gl7zvhpHnh/1l6/TvS9PQQHCQYyIMCDVCi0pPQ1Yfov2x7DUEBEM/60q2DPJkVEINDWN5ZFhn16eipPHmT75AkYj8fR7/dLQtV0Oi2flSPAR8MKCEwmk0ZYgGCA483Pu1hHuzA75+o1CNUM3HmORkR7nLBWFoVJZgnxOpbNOHqns96XnLkxeQ93vfhjidU3rjUPUbmgyk4PJP+6tZIpWi+P/eNxru4B8PAGx73TWZ8vTwXl80HvmtrlsoYC2b0Sr5m8r34uRURsgK4sRMDy/LsDqBowdmXtZboSz4yMDIzW5BiNwdp4sGzmonh/vE9cyzUd0hbGjmjfvqhrMw/zrnJ6Vzo4MJAtUAEBxrUoXDzxiOV47J2CNKIZU3VmqbWL/7kA4gS1WSEOBuT2dcaXkh+NRmVHgfqpQzF4ipXyCAgCtKWQIQRammpLBmTYZjI3x64GBISc2wDDIVMGSj3/ZNvpjU4c45pQ1HVtQpiCi6cKam4JBNyyZxu0jmprS3VoLbEN7nXj+mJffU27YFb9/phh1e1HuPq46B4CAraTY6p2su/sG/uchRVfI1EWZonIETkA3QXsi/y6GhBwD5uvgTZgXKu/tp4yeVwLFXubtwGADFjUQMA2MBCxeShd1ldfQ6LvFTI4KDCQWRIOCNzKyLZbsTwCAgkn7g6ghdImSFieC2SR2qr/MlcmBZAvJj/GWDHg6XQanU6nAQboWqXg0j0CAsPhMIbDYQEDk8kkfXRsbWHXFoIzvI9RbQwPmTIg5J6BiDyunS12Ue33jChofOHXlJvmUycNKjzkTyJ0oExFmJ0QqL5qDHSWhVtUBAICqg4sve0ElAwB1hQw+5ApGgezXO/Z2DrvZ1662jp/jUQ5qtCA+pyt5+wlymSFPvN3Xcsx3gUM1JQyKVP42W81mUzrf5unuI2y/zNA4GXJUKqBikxO1EIKvOdbePWgwEDEZtJg2xnZmRUhyhS7AwkXMG2Tv03BZWXXlIsLHr38+dd6/KXapAOIlC/gyknX6imEyiEQGNABQ0oe5DYwp5rLN1s87J8DC/73WoRqJqg80ah27PTX1CNqs0z4n8c46aXwZ6fr99o81YR1Zv0QjLvwFRCIaPK+C7bM9S7F2+msn/zmBgEpU0y7KhaOhc+tA6DXBmYzcqXY6/UKGIjIgW0NEKi8mgKs1e1zmfFPBnR3ASMud2v9FlHmedk1EJTpEfaZY9JWho+R6wjmTtQMLA9TeojnW+TsQYIBBwI1a5qChZZGltSh+2gh7TJhLEf3++Sr3d4P/54JfqLHiChufgcsEV+8IAQDdLn6CYQKDcgzQCBAV7JbWiqPim8X5s6EscrbBqQOgbyN3hfOE4FAzTNQI44HeZOf2QYv3/mfMXAPC2RtqwlnXzNt3p9s7Khc6B1oGwcKZoaTKPgYxnAgmpXJNmVjnbVd19Erksmb10TkIYYGmHtFYOthmBrg9zHl76qvDWgSeNWMB/cO1eaNesLBOtsS0QwhUZa7HM/qqxk3Pia7yAD/379noMblgocJRN8KCA4KDLQBAf1PcmFVExSuKPlM9Tah4orehbH+y5R8piDY3tp39ne1ap713uv1YjqdRrfbjfl8XpQFj1DWPdPptHgDCAT4YJpaDJaLxpVKTci7Zdk2jodKmRCL2Ex2IxCo7dcX1firzSMgXtX8ch70myczZnXRde4gw4UyXf3kSYJRlcnPLryyMc36yXroWZB3QOUyqVAnErK8mnJS3eRtrs3sf/cUHDq/bqNamJWGkQNbX+PbjCN+zpR/DRjUAIEbXSrX+VivtkPovL1ZmMwBuf7XO9fiLmNB4v3Z9c6PvM/LYLszWZ2N4XPpYMBAbYJ924sL6Igmwqsx37aYo8oU1T57PJeMz7aQ+UhZKINtl8BzJX16elryByKi7DqQa5iLWpa/thTqlQEBdwWzbc8JoXCsfcwOnWoWjF7itcySqlkiLLtWl2ibRetzkCn3iOaxxV6m5x7oOoI3Asoa8BNPOCjg2O1qHXHslAPDMvm+XC6Ld4Brv2bpZUIzq9tlQk2RvTZ+pkeFuwYoWyg7MtlYA/3Z/75+CFbJp/45MyAIVvz6bJ2qf5onynqVk60H9oH8rjHy/8kH2e8ZvxDAt42v15+t7ey7zwv1znN59mDAQMSmS8uFlV9L1Mb7s8e5yiugz5lbVJ8za8JRI70XnsjX5jrmpGWKhIKOQpbKXl6NiDUY8FwDvbSVsPaAJY5DttAzFOr9yRRcbX4PlRyEan4zAeNAr8af/jkbq+y6zJ2q/yX8xOdufVDR01Iif2egxwFAFl4gUcjVeKhtrH08sv6zXZoP8m7WVhfO6rMTr88UBRVaDdgfGrmy9NCA83IW6oqoW/3+m9ft49Ymu7M2Z7+1vbwu1wdqawZaatc4z5Of2pRsTQZKdpOo9H1M+TvL5DrLPH70sLGO59BBgIEMVXp8i+RWCSePQIBPQpNA0T0CB1K+jugyC4JtdcASEY3Qg9/De/W5xqRExiIHGtkC8us8FuheDd7niz5bBLV5y1Apx47lHhpRqGRAMiIaAKzWJ1/EeidvbwMDbA/BCYGB8zYtZ7UjIn/aGpUl15v+y4QW25dZIxkQcB7P+F/eC33nVrdMuOu0Qo2BBGAtgTPj42zOeB8tZwLD1+AVyGRo5l2lV8C3xbryy6jNGNiVx/23zOAgaJXszsAA+6zPLnfZzoiorpmM191TsC1MyjXhQJXtrhmd2dg78GYd6jt1mO+W25X2DgZcUPi5Aq64KMB8wiKiCEk9zU8LgYMl4U5hUwshZBNKwOJhDPcwsJ819Jj9x61sEZuLmGPC0+gkNP0+t2RdkNfiVu4y3cZcmVXhZR4a+Zz2er0yt/TA+D16z6xRF86Z6zkDc9l94mm1azAYNHhbwFZKbLVaNR4TLOHjfeBacv6gUG0j9ovb8bxPtBK57lS/gxw/+EhhgogooTSGCjIFkM2Lt03X+dgTHL4GMBCxycdZmLUWLt0FCGT1ZSBA5OOe8XxmfGWyKqun5n3w+Yyo57dk8pr3ucXeJr9rslJ9yoBAlk/gdbvV7/Lbx4G6iuVso72DgYi6ZyBLkuLkZsjTwwsZs3CQ6FZxq1bvmVBkDE57sNuUnTM02+GMHhGNMRAJxGiBMyFILlQHCiIqllr7SM5Q/G3X+/WezdMhkAsW9wzUFInu3VauAwG3YBzo1u4nGBgMBgUMuHIUr/IhQOJT/Z4BAnqaCIBqXh7eWxOyWhPkUQcELEf9U79o/RPouucjE6bPIfcAqp0aQ7fgDpFqPNwGBNryK7zs2vc2xezy2kFwTeFm450pWi9DVnMmqykvRZlVXuszFTgVOv/3te1lZSBC97aBbgcEGRBQ+QQYNQOgjfYKBpyxiMgzV6HIvQPZIIvhuR8/IrYKu7a4UIZas2s5aZl3wAWhGNWRnsZDvyvmr4lmTgTLVxksn2VyIdQsqjbKLC4i56ycQwMCIgehLnBcIdT61OYVoEL03zPAy7Lp6To7O4t+v1/AgJJIF4tFuZ/CnvVIMKhP20I/7jUi4PBx0xr177VzCXzMCAb6/X4DBKudvvPF3fcu3GuCPqNszNQmjukhk8sM5ysHAjUPZuYt0Ge+67MrwkxROxjM5ET24r3byohoynPnQQdGJJdlNT51IFADOm30XMNC9TsYoE50udI2Rm10kJ4BMrT+yxBOZpVI6LmV5GgtQ2+8N3Md0h1LK7zmSspQoYMaAgEKT1fm6s9isWgsbk8OysiFG5WCE0FCtji9r23CYhvi3hdli9gXEcEhx6KtPH53EJYJUVrAJAomuqt1AmW/3y9hMFnN3l7xpoeanDLw6xY/nwvAdnk/M15wAZV52rQGBHo8X0N1Cwh3u82krBpYy8CBUzbPao/+17o/RPI5yAwpzyGqjVUGoDJZlv2Xgb5sffka22YV18qIiI36nDzUxL5lYbG2MVZ9Dgx87Pjd+crL4/ea8UnKDFG1S7+5vmrTC04vAgbaGuSM5AyTkSt3/u7uL+YfUDBygsmcnU6nsfCpqCWAaIllx5bugsqyPjoQcLeW6vdDZdg+3yfu4yvXrQtTfmaeAcezZkH499p8HwIYqCnuTEitVutTITXmXkZNSLqFRv7SNXoxdOPj6AKeIQMqLP0WEQ2lqfpq7kIKLffuiA8lVJibEhENEOoCL/Nytc1Jp9MpIYJer9cYJ1l4ng+TAVV/OZBzsJoBKAE0elTa2r8vqilKjrf656dl1tZvBuApP2ptqHkHIja9Fi4vyZs1GcF7WUbbuDhp/VKpuoepFhrzvtDzUhvfXYAAZULNY8G2ZO1zY5Dj3QaEnb4ZDOwq4H0R+n8ZOnPrUwtT8XHeu1wuYz6fpwifyVfZoq71wQGDI0xuAeQ9QmXsK+M4aq8LWzIrY65iAilzvbNcfab3wsc220fuc1KzJFgWGTijNivsUMiFFgWI5lZjye2YmWWUleseLpVbU1wZqMi8CjxTwq/lUb6MeXuc2C0MVwTiO+5IYPa/97ntBLtsbAhGHXjUqI13OG8ZCOAYZ+9qu/eXbT4EIJuReMy3UnM9+86BbeswA6y0Ph30+WtXMMCkbtbr4JJ99N1lbf1xvsg8UlxfvIYg0L0BWmuUu853tfHkb265t+lI/pbxtufmEOS8CBjIOtlGWaezxeYxOipeJutRKUpoCxDIgul2u9Hr9eLp6Wnj8A1vW1avC9KM+aSQNRGq2xcfBTiVv+4R8+leLmpdl8VSOWbZYSwqTwIvWxRuIdXAQBvaJGjJLI9DAgMRuVUTsRagOp+hdsqgv1xo+NYu97JwuyIFZeY1Uojo5OQkJpNJPD09FQuaQox18VAZHlXsRPDqIDOzhNgmlUsgrv6pPFr26hez9J0/1Q+3amshPAdytdCOGxfezkzpZ8L9UEi8woRBygfNTxYeqMnuzOXs1zkI9Twvnxf95hY9ZWU2J6rr5OSkkVzqxg/lGdsf0TxIy/uZeVHIP1zT4j0an+yjr/EMiLN/2xR1TYbqnWvWx5j9Ulh5F/pqMODo8TlUW8wujH0ANSn0DIgEBObzecNi16BxcXimrcqvMQ73bbJdVNq+cGpluyVEUCDyBCAyID0BHk8l07ly81eNtnkFOBc+h/rPFzPLPgRyQVUDA7SodF92f+13WjScP1dYUpZC+BHN3SoqXzyuOV8sFhv1sx0iB5Q+Dqxf/eee/l6vVz5TSetpifSe1IiKn8KX7VZZ/M8tWwdmGSDzV1ubCJxYngP6QyMHnQyDan5qR45n/Jopf+chL8N5nHObKUoSAWxWF+/nThqeG0NvDmUSx6HTWYd9uZ5qYQsZZJSTGdAkUGBZbr27LNUrMzC8Lo6H/mM/s3vZd/X3h4KBmiJoI6LyGjPqOg1iJuh0jQZYE8fYrgba4ybyDug+ZwQyobe9zSrxMZFL3vslxiAg8MnXGNEzkLl5dZ36y+ctcFFQQO46pxwP73M2fzW3XZtS2jdRkGaWuPe/DfxmQtQtYY1Rt7t+yJTPq4jXkkdpQVNhs3wKA5aXJZnys3hKn8Vbnc46lt/v90sZeqImr8+AKNtOF6sTQQaFMMdGv/t4tc2NU2Zt8R4HhgQxh0bkYfEx5UwG6H1t1tz7HJOMRx2MkN8jNhUv5Zorw5qMV7u0g0Y7TSKaXlYaSZlMpjeZgIWeOPE/Fbp7LHhUPHk9IloNzNqjxKlv2pR8Nu+13ykLdN2uya/f5BnYFQzUOsr73TJzpnLXkP6jJcuX6qVrRf9p4mhli6gcIpoPVHHLJxMQLhBrSkb951joPoYD2Ge3YGrM5uOeeSayuaDryf9zJeLCxOvxfum+Q6BMENZQdCZc+LvzrwtIP0BnufyyA4Rb9ah4O511QiG9CiIKLresPISmefJkp4ho1Kt14KCOfWViH9eYX59ZXxHrx2/X8nZYDtf/Nsu+Nh9twCcj1clQ3XNAxksR25Qpcsq7zAjI7vdEV84P50Ll1u73UAHry4yazGhwz5VCBNo9oyRZym4pOzcgVZ7WHH9jnVwTvIZl0svMa8n3WShN4yRD1XUc17Oup77M+Nb1KceWXpJMl7TRs8FAtug4sM8R+LUyVA4H2hmUioeD4QBA72IAd98QzXnSkOr2BLLMknTKXK8qm3VkcTRf4LqfCM9dmBny9IWsejP35zZwV+srrU4x+2vwDGRAwOeGC7U2Pg4A+C4r2IGG7q8dXx2xDhUxs54KPGITGNfaIL52QE3hxLBABgT8aO+MrzgedBv7jp5McbEM9dH51GVATam0yaQ2HvQ1ROW4q0D9keSKvCYzsz7WeNaVuXtLMwNEn92rxrn2ufQdUJnHLQOSOnFTW2qZEyF5LtlIcMs2ZDxdW3ciByVsV218HQAT+LfJEl1f8+Bk5O2n/PX7dvVqPQsM1BjKf8/QqE9+VoYLPV2ToTIKCbqdXMB4fIeDyAxpffZ2uiXFSczcQtk4dbvdRuiCAttdyZo4d60RCZOBffFnHgIqPW+fL8iawmP/fP7alGQbYNoHZUo/a3tmJdXuZTa3n7Gf1S1F5wqG8+MZ4qtVM+FQHiEHzbxP2w/1TiElAe3rl3ze7XYbJwJyvWTjKl6mV4T31kA9yyOApVcu43n+VxPWfh9/V7sza9rlwK4C9UdTDexQzmVgPFvnlEFMzlNfuWvFy1Y5BBT+zAyCTgKLrBz9r3vJw/1+f6N96q/Co2oviR45kesQPvQt0zU+7uQvrhMfb32PaMpflpuV5/Mnctmb8bUbv/55G30XzwArI9PVULgrVQcEmRLxgSG6pML0AfWF4QJBi0FML4aldU2rXu3MErxUHl1AEriePU2FQSancPZF3jYfHIPMk6F6OJa6xxVCNuYqJ3Mb+sL2OSQY2ye18Rev0bv6W7MSdA1PCMxc4eRNeaP0OwGB4vJ8rga9LgQBzJFxa02u1G63WwSpexjE59l2LfGwylLiVqYQVA/HjGBALl4Pe7E/LEd9VTvdOiWQ4biy/kzpZ+GzjFyeZDJuH5QpchoMLvd4rZfjSlz8wSOuI5oxco2r1+HWPJMJ6c3MZLTaRhnkQJT8Sy+krmV7Vb7H/X3uKCeZ+Kry3bMgIg+zrWyP5L3qYb/dk6VyeD0pA0z+O/UD825cl+xCX51AyMknCnHUxEbz94ypMyXixAF1l3iGnlSfEBIVLEkDSaSoMni9u2D1G8uTwHfXWDZ+RMHOgBR8Pv41BnK3WdbmDFhkAtTbq7J4TQZYasp2n2DA+crbSD4hZWg+AwLn5+dxfn5ehJfK9sdHCyBGrHmOoFCAQoJZbeLW2fl83iiTa02gU8JU9Xi2OS2jGi9lXgHf5ifS/wS16o8Eue6ngidvZwm9BFGeG1Pb8UJ5wj45INA9fNd1BAOZl2cf5HLDDQe9Z27vDEwwHu/Wt3jDt9c6IGAbXE4QSHBOHKA5yFQb3DsmcuuZss3rogeOgNIf6U5ecY+x6nE5QM+aG6bsX6azMhDbNn8ZENB3jrvq8fW4C+0MBlxZO7pkQ7IGa1BqZWagQKTfnSF8kL1OByZ+baYUO53mCYRU+G7teTtdIBMtZuPhC5sZwb4bgdeyLq+bfef4ZFYu++KALkOwGgcXPA78MmB3CJTxcMTmeHkIivfr3YHA5eVlXF5elucGSOnP5/OYTCYb4JXt0bw6CJAA0jZCAQGCgWyrqz7rfI2sTvaH1ozeKYgFbKWQ1RbfzuoygYpZY6kxIZAhUPdr+Zler5rCU51cnxkvOnjlO+fK190+KOtHGx8TdDn/OhBQpj6z9cV38/k8Tk5OYjabld/cuqX84rhJhnY66wOw9N3BRcTaSyYlSz5m/9zTIJ5hoq2+e+Ku6qkBG+cJ5sl4cq4/80ZlZzrGQbSDWNXnsjXTVWyj6y+OMQ20TM9l9NVggIteg54NghqZKYa2xcoBIhCQG0fkSp/3urWbITi3NKhsdT0FMxGh/nNUqvvFQAIHqtOBib/UXi4KF1AOMGiN1UAZx6ZG3i6V7daXjz3b4cJ13+QK0Pm4Nh8UGn6/xrrf7xcwcH19vbH9SaCAlm02Zn4Y1mq1Ksde614pUX1nmWobrdnFYhGz2SzOzs4KOPD587bRetJ4iKdVZ+aZkEL38WaZi8WivKjU1W6uJ18HfPd5cH738XWQ0EYuH1yOvDRlMrfNcCIP+1gRCDAePxgM4vLysoS4NB+np6cxnU4j4guPzufziNhMTCZQ4KO0dY3429unsnx9OSh3YEg9I3BA74HnYrE8335O3eLjTlBLXlWfOMZMePV2ulxxIOLykuVQB6lcJwe1Xv53BwMcILdkKcR8cbrVyN8yIFADDC5oskWQtbcNUXGS5dp3F9NqtSpKXe/qJ9tANyx/zwSQT1C2DzRTyhHNrYveVy44XzScu5pAzBhVv9fmyJE127NvQepUE6oRTSHlQIDkLnAJ0uvr67i8vGxkPCvmKmuaCjIbM9VH178EYeYNyBSX6hV46PV6MZ1OC6/T+0Svg+chdLvr8xA0Rtn1Dm6cLxkqm8/n6amOXN8ZX6scrydTHD6WXg7lk65z4nhqvex7N0EGYB08ZkqH93HHAMMD8gwoREWDh2VJmboxonrILwKRrhscjPo7+VK87zxRU3QOkLR+VJ57NSgbs/axbZnMdB1X88Blye3bFHVNd/l3Bwq1enahr/IMOCCgZyBrTM2SzwbfO6jriPp8qwYFp9pao0zJiXFXq1VjobE8AQH9z20c8lZQcGR9d3KrqwacCAC4L9zHTvOhReQ5CLVxYR0Zozo6zcppA3Q+7vugTJB6hj2FBkGYCwu3rJQvIFcrY5Tir8fHx5jNZoV/fa4j1lYwec/d41w7tTJUDuvUHGq96lqCC0/M47iJCAJc4RBMsz+6T54KB78EJ74Nkp/p9dD1WhO7CMBsrPx7plz3ybsZeN0VCHgZTBZknoBAgACBFPtqtdrw4kREcZH7FlcPz1BH6Dq2ifIikx3i4Yj6A4XYb82fg4fM01AD+byXstbHlJ4N3S/eJIj069hf10O1+c/0AikDwdSN3x0MsHHOnO5q9cZpwUbEhgCpoUXW59dS+brS2kaO9LKBdmDB+t0yd4bOXE41K8WtDXf9O7Futpt1qh2+tzazbHwRPUf4+Vi3jeE+QUBEPcTFRenCNBOoEc2dIJl1JTAgwCi3qxSh3OSZtygTHAIC3EfNPrmQpKeDHgLNvx57nK0VrSvW423klkbex1CHW4QOUCgkycu+dggC+J1jw7J3AQBt/7kFtosF96NpG++qnW79Oml+qPx5kA8z92nw9Hq9wq/kSz82mgpI7XZPpINM8mrEmo84z16vk/5nIiCVssp3kJuND19aP04OPNkOjRu9xN4uN85qgIAytM2I8+/Za1f6qjBBBgj8Or5T+WfuwV2UuFtn7hLSfxwEKvyMtiEq77dPjJiOL3c7U7ASJTsoydpZGxdnaPcAOCJnu13hUXhQqHo/2+a0bVwPgShIPfPYQUttEbmlIxCgrYB8yXMQsT7MZ7FYxHQ6jclkkvK86nP3K8GAt0cHmjBByxWx7le814Vlt/sllyADgVmcljkCKkdJj551T0XgYCcD454PRM8Z287y5bauzTmFam19tcmHQwIDLnvVRl/LNa+AEuLkBfBtrJ65Lw+A+IsWtsi/e9vZ5ojmyXsRzXwkylD32Pl4kAgGVKbzTm098zqXCdzt4uCW5IaZe998vZM3WV4NxLk+c+J6pA7LdFkbPRsMZECgbTE6uuHCbLOms87qfk6eu6d88bYxavaZbRO5+0u/0ULUQiIjqTyW40zlgGGbdeOLgyCF1r8vKPbPF3Ym9NwiyawofvYyavftgxwIuDs7IhcW3g+NMQ9XYca93nnWgMZ+NpvFcDgsvELrurbQ3eqRG91BtPMEBbr+YyjAwasDVJafKRm/TtamW4K6JttN4+uM64phFJZH0KByMtnha5d1unVaIzcq2qzTH00ZINDvbGMGBDIQS6+AeNXPtXAAQcCR7aWvyS0qf8o/hnpE+p/826YbvO8EmwLj7n3YhVQWvQltHuwaQFNbfEyyF9cUr9U6oJ7ztmafXyRMwA456qspE3bSkynaFI7K1MR4h1muo0BaHj5xuj6bAEdZujbzRPiioXvYBWPNkyJm63TWWxqznQK6lvfwf11D64xHYbr1y/HIxpTAggugNp4+fl5edu1LEYEblWCtPZmCygSx82ymtE5PT+Pp6amxbdAFVC08JJBI/mfoodPpbFhtLni9LFoOBAOsi31Q3TWBovGka5SCnuVl64xr0IU7ZQsFMserze3rwta9DrX55/rfZpX9aKrJx9pYOlAjEGA4h+EBAQGWpzIEBpgvFZEfB+1EmcO1RF7JPMW6xj0VLsO4LkSZ98THK7te5XqfXKnz+qwOgXeOkZ6kW5sn5pixrT7fmZdNOiYb60xet9GzwEAN/Xnj3bJWo4lyMgSb1eOL0RVhDXy4u7t2nfePLw00F4IrSkeM3icyjBZlbVEzKYf9dncrr9H9BCNa9D5mzmxqlwu+tjHZJuAzJMy69kEUhn7kaiZAXVFw3lxw+P5hbQdkbD47HChiM4aa8STriGi60r1NGQ+SP2mVeX8zYuJXVs+2Oa2t6ZqC1m+UFRk5mKZCYBupAH3deLtYXzbH++RftcllVxswp6yqAWF6tVQex8hBhH6nJe78m8252qGtuAQfHst3MECwSi8qwetqtWp4NGgYEbyQtzhe1BlOvi2cY+N1qJ7FYtHYvujjRVnsfCU+9Hn275yLTO9mPL6NdgYDNctS1BYLF3GRZ4ys37PFKCIDOCOKEVS2LxoKsTYrJesz3UUkb4sjRR5ARIbl/Vm2LRk+ayfb6uiQjFPLwtXvNRTpACD7XXXp3ceZVFN2L0GZdeQAyAGBt9utACXD8RAeWtiLxaJcP5/PYzqdlq11dP8TtHrdosxN3el0WpVU1id303Lu/eyC2jrP3PYSfC6wfGdG2/pyuZApPQcOXhblh+abiodjnxkUbeN4KJ6B2jpS33mP873/XgPzLEvEEAEVXQZGaGToXUCAYIAeUQdxDthFlIv+XAGGBrL15HJ/mzyiVyq71sG1+F1Jwu71cFnKdmRAzkEGdyfpnf871fRajb7KM5BV4kohszgyxeH/ZddTKWaL2S2frM1+rQsbt35qbWK5evHgC95LK5NWOxebhxJI2X7yrF+1dvq9WSZsxvAuADPA4OU4ys5oX2CAyoFux22hJ95LAap7KBwFCiI2Qd10Oo2Hh4eYTCaNrXnMrnceJjim+15tUuxfANU9Qb57pKZMKOR5/Cx5wIFmlrfAXQ4s2499dSKPukFAOZEBCh8v1k/r8uzsrNzLZMxMSGZKtXbtS5DzX1t4S9fr3e9lXlPEWq6Kl7I+ks9r51zwWvIYZR5DE2yD3ytSnTTA6BlgHo0DdZenNXCve3cBBbrWDSuOd81Q5LzUaBvo4xqnp7BmfOm/GpDJ6Nk5AzXL1KmGpLcpW1+MqlPvbS5vV1pebm2wM8Z0xs7ABs8aaBNMIlpjNfTN+mtCkGX7AvJyqKy2bV3MyIVvTUAKAHr/yaz7AgOqmxaS2syxyu5xQewCxi0mIXYpHu0gGI1GMR6PYzqdbgACz1j2cayB34ioAgLel4E49VntzY4Z1jUueDLF5GEQgpjayYvkcV9vfp33hfPjuxg410qW033z+Txdg9m63Se/ijKlLmozDniPZ+nrf/Kfy1QHATwwyufT5ySi+TwUgjICAXrIRMpPODk5aRxp7IBAnzMi7y6XzWRCeo/dg8E6fFw9fCh+FZ9ndfh6rIEtlpcZBOxXZrTVjG+OwS70VWAg+8zfdkHRbWgmW4wUGtsUlAs+TnabJcFF4gLHF6Pa6a4qd0F7n/l/DV1nr0wZsG0UynRX8/jNDEQ5w9Wsf9YX0VxwLKeGtDMh/5LEMWMcsK1dPkbqH2OZ3e76ICiBAY33bDaL0WhUgMBsNmsoW7pcI5rbrjKeFm+yPW4ZMGSk3zn/BC90b1Loe5iAlpaPgf4X+NF4uQWXJSFSyfO3zAhw4MD5qQEBfxKf1gYFdW0dZHO/D3KZRRnVRplicRmmeVksFsV697HW/+7hyTyW/K4625J2af2rr1SyNY8px0Z9ZZlUmgzTchx8/BzoZwDcd0DoMz0Guo5eDK7Hmv50nZaFcSRrfKwJCDKwvyt9U5hARFfONiSSTSDvqTU+K9MVuguMTGj44s6sBJXl6DpDahL+Yjxa51wYRJgZcfH5YvOydH3WH15LIc9Fov5m48A55jvHvLagHAxkQGFf5G1w4erzn/EHBZwvVglUKsHJZBIPDw/x8PDQ8Ahkc0KBlSl8tYFKjO5LEfmPwJa8oKQxxWrdDZy59NVPbjdjna7sxbcecnDytU8gnfFipnAoDLVW1UZtn5OFyOz4GqD1fu/iSv5R5Iq8Btz9eld+9J5kylPzH7FOZGbYSJ89XyAzvGr/aa4JmB0M6F3rjO0l73uSNMvP5Jz4leORJZ7WvmftcL524OU7NNqAAIEF250lQdITSADAftd0dRt9s2egpjRErgBcyLZRTXlkwruNOVXWLmDAy868CRFNcMJYDhWOC/msTRmCJENnbl6Wx/pUjj474vYy2uYjm0/W6agzE1gcQwnofVCN19zj07ZoONYSLn6uxHQ6Leh9NpvFeDyOh4eHGA6Hje1F7p51PlGbM8ugbc25IKCngoKFyb6dTqfhAna3repl392CIvh0wc/2ZsI741P1JVvHmVCVcFTfuGWOu0d0yh7byfBZDQzsE8hmfNAm6zIg0AYoKH+4tXm5XD9Lgs+TyIwVfymx1ceS7nR9FxHI0fPEeXfg68ZSWxiUPCi+d0Dg4+7eI/2efdZYqg7P2ck8YHzXf1yrDGs6cMkAh5edtbGNvko6b0Mbjm54n37PrBkqmEypsMya0HHhw/t8Mfi7o1tfUG2UCVEqkEwRs+6IaFiONe8Ax8CRvjO2C7CaECHVwJIjTZ8TKlW/f99gQG2SEla7JFyYPOXjnIEoX6gSnLpfRw+Px+MYj8clcZDlcH5FrMMBG9uia3lfzVIRT3a73ZLgGLHeDaFr/JhgkfpIq5qWioPZTOA5oFGdzksSvOxPzWOYgQMpfJ0O6acinp6exmAwSHnEwZjLqkzovgTVPAJuLKit2VqkCzwD/1oXChHpt/l8HrPZrDxPog0MsF0sl14GnXviSdQeb+dBSGq3+MX5U21R+2qgnvNLIKB3l2dehsZSbfDj3p2ox3xdex2Z3qLu0Pfs+STsUxZCyABujb6bdM4EWIbsvBM+oD5p2aREbB7A45MpAV9zC2eKMmJzy53u1TX+H/vo7lUynixGt348ycrdZ95/upD5H600jr+PlyPRbOxcoTvT1uqhdcZyJJT3JVB9H7UvEgp7V7qimvW1Wq0fNSwLSmBAWwq5hbAGxnz9qE4XGrze20cl4eVS2VM46975fF7u41j4+QxZAiZ5ydvpbc12yGSAyK/xcc/KlkXJA54oj3RKoo+x6ssMDZa9D/L+utcwC+fQys5i9RGbuRkeNlH+iLbE8vHZNdmk9mlMJe/EP1SibpyR1wjqmO+R7aoR+BbwIGDPxjIiGm0QIOaYcK17qMJ1hwNwl4+cQ+c7nw/VX5P7vh6oSzLZ0gZWMnr2OQNtxM76YQx+nTpTY2ZHsLsuxkxocMBYNy0cZwC3xrwMtckn2d05Yni3SlWvJ+hkLmPVlcWUvD+qwxVwxmAZkqx5dTIrxNtBAeTuPgKTlyafa7Y/Io8Zu8LxjGzdR0uKCXjcolcjzlvtumyctyF97xsTFNXOjD8imudSEMhqLjWe7j7V3MvNyf44cK+FwWoGQEY1MO98yDERMM1At4c4nitIfxRliqcGyrN1SABHUEwApHnQvErBTqfTGI/HG2CgZoCpbM0hZUkWMmoDdqyDCtjHQ795OKTWPg+RReSPkM/mIWsD+Tgrh4DZxyAjzo28KG5IZPotW5M+Ttvo2QmEbejDJ9gHjczhLixZzvo/onmsaVunHLW5slf9VHgeQuBnP5jGEanaVrPOvFwyiwtG379LJlX/yQQq3xe7uwFpnet3FyIcV0e4zmzsmytMt0b44Brf9rUPyhTpLkhen2tWFsGUW7y8T+SWHEGFW6PZonahl80D+8bfuH1RFoX4T210LxL7L9K14k0PsfjxyA5EnN8z69bb7oDIx8D5VPVI+XuZzqtqo89hbUxfkmrrsE0WOiggEFA59NLqXfKHXoHpdBqz2WzDI5AZBvqc8XI2ZzX5SaUqHqt5OR0w0Fr28ikTpThdvmZ9UFs5luQL8TN1GHkxA7+8xon3KcnXPZoEzmxvNqa70jedM+BClIzVZnl5DMtBRMY8WWKco0bVnVmiVMSOEiOayR+ygrxeAgmvl6iMk030TSbPwgKO/NRWBwNiSM9q90XmlhHBFRkum2O++xz6uwsff4CPj8s+KLNE3NWaKR0CAR7dqvnMFr0LXxF5ifXot0w4cM69XQQbVMru9mSdPufOU7qfbSGQ93Gie5a7aXRfRNPFy10NNXdzBnT8v+wl8KHyOSZ6J7DXWNJbkM3BNmvuR9I2IEBF4PeRX1gWiR4Bfdd5E8oXUPIr20ElvGsfaLg4X6ofao+DuohIAY17dWogQ6S66cXKQGZm6NbAgNa8y5ZMNmTA32Wr951rNOtjJq+/RuZ+9dbCDCFG1MMDdHMTNLggzqxITp53vGZ1UmBmli3bSVe+g4lOZx1XYp3OOGQutY8CKGLzMKDM7ZaBI7WZSqHmemefsjEVU/sRoBnqFPmid0HtY0ZA4AtnH+Qgsw3Q+oIjCPDdA344j99fi1u6xRSxGRP09vB6BykOrNm3bBwy5UC+U//UL1c4vM5zbBwgqwyBJ7cwa8LKgRLf/Rpeq3nhGlffMg+d15WNV1b3IZDPn7fXedx51JWrxk5hAb0Wi8WGYcCXK3f/TD7P+LLWtwzQsA30pjrIdcOHipX9JqB2vaB6fMy8P/xcowzMZaCTY6SXA/HaPLfVvQt9F89A5lZ0lFNDYBHrU9SI5EUUPG2MTWDBtujdF3uns3YhEt0RvRK0qPzsP9WbWd4cNwol9wyoT+prBgjcI0Em8fHIyL0amTD138mgWR1eBsMDzLjfN7GP3ucaGKAVkR2yw3kTbzj/R2zG4UXufnc3orefIICCi2uEHioH25xbWmiyjnmP+kePWU0Zb6PMOsosS5cPXgY/c51wPUpJeDmaA26f9N03zhcZMD4U8na5gqBsEW+RBwVsNd86Q0Begel0Wn5zOebKpyYbSLTipeAy4Exjwh8Nr3L0Lh4ViHEDkddGNHMDMk+Xg2svp0bkad+Z4HVwzPyd8qjNMMiMcqdaGW30zWAgi/tlSqz2nyuTzKoh4/IalcNtHnp3huOg0KrqdJrPbK8JBFeSKoeMTOHiLmj3ijiwYUyI1/r4OKrPQiZUAvR4tDE1+8m6fb45xg7waHG2tXmfRICj7w56MkBAPnKXtyibN9bj+RM1MJd5K1Qmn+aWecVq81wDEg7aMqHuLk4Cd+ffbZZfpjgy5btNeKoNvE+/u9dL93HnTnbAEnmZY+/j8ZLkliHbornOgECns/Zo6sX8Cc45k5hns1njoVqZ0tpF+Xt7ut31dtJMfjow1fbQs7Oz0kYqXYKL2nMKyBMOajJFr/qZ/Kz16Ftv9U5ZUJOPnKead4A6jTzoa4H83wYGsrnaRs/eTUALhJOhuJsrat2TfSbxd21JiWg/sS8r1yeX12eWjQSK9sC6y8d3B7SRC2JHwsxwzpA1Eyjdgnfm4P0SflIWWVtYxzYLNIvrkdFrSJRoXaEItUXjsS/aVVHxvXa/P1vAF7Fbq6IMSIrE8xTuDghquRgOxkXZbw4EHNBlPKPPFLhMutN4ZDztv7EdfOf4ZMKPn+URyMpvE/o1IEBDwMvdFwgQeVu8PZnHhrKEgEByutfrlXulaFerVdkSO5vNynY91aty26g2Vlx3DrxokOl7r9eLwWAQ5+fncXZ2FhFRchgIBCiTnNfJyxwPfXfw6yCdoJuhCM6HgxJvF/tZA7i+xijf2+RQBsro1cvK30Zf7RnQAKgRi8ViA6E7iXFdCNYG2CfILRDeo7I81pnVI8HrTE4GIpJzkEPGcivQXUYSOGJ4zyvImFv1cpE4AMiADY/c1P/ZDgbP5s6Efsa8ag/5gEJdFob+FyCoAbqXIlfaah/H3QWuzyN5zUM8utZDTD6GtZBJ26Kvfc8s9wywZRaTxsHXiPJeKNwIUDNhRgUiogJ28FnrQ+Yl2DY+4lO2kX3jGHjftm2RYz3k+5cm9pPKIuNjb7PzOI8VprGldcstzp6Up3L13V+ZV5Dr3q1m1R2RJzqfnJwU74DkqBNDPxlxHYq4dlUG1zzBkxt2vI+6xBOJawrb57RNUbP8TP67UeF8QaNiV0D7TScQanDEXHqRaUm1WGCGrDIl7APuws/BgN410bRc9Z8mn3U5imUdEbkQY9+8L7Si3GJ0geTvrIf9JoNoAXk73IJ14FFD2T52GYL1z95fbnvkGO6D2uYzswyJsjudzsZWJ74IFlROlsXOdaEYLtvnPJ8BFMZ/2afa6YGu1NUXhgxYHgG3W/tUKCIpFrmVBYjI39wtUxOArvgzEFoDxA7eKXc6nU5xdfs64Nx4+c7b++JbttGBt7fXDQfyssZJyYERX+ZFhzDpd99pkQGyrHwSf69d44ZHBsgIqrPxp0eXPMpyReJ1rVN6UrVedZ8DWa0P8i/1h4MD71MbQMjAMYEXy64pfdZdC1vuCmS/+tkEHHAtOjVYjXCl2QYGXKEQDev+iKaF74PtLkJHSj5BWTvblB7fnYhCM0XrC1btyxhjl3cXepmgVD95tng2dhkY0CKpjY1/V9+YtEQG9gX/kpQtBu8/f+cc6n7nQ46TxpX9dQEloZblTWwTGhQAUupc6B4zdaswc51LQCo8xgRJ9smT7Cicn56eytYzgQHPP8iAqGib9U/KjAuOWaakNFYOaFyx+Tz4etxVmP4ocoWhd/YtUyq8xpWEHt4kMKBkwWxsnPdp+DmA4hy4Ze5znClEV3pqL0k8KK+G5E3Gr96XzOPB9hH0MqxbAwKZrHfgW1P+2+aMMplrVuOrscjqIrjf1TP71ccROyjQAKojmZuUjOGMnFlH/I8ZsQ5EnCHZRgp0L5eD7Pe1AQLvv9rhgjibIFfiXp6X7f3iYuN3KmL1l1YZrTPvZxuz+vhkC5tKy+91MLYPypSI9zfjRQ8tsKyMZyOaCZvOB6zf+T+b82yM6RLX7x7GEGWAVL+rnVxbzr8cFxeyqpfxdxK9DNna43jWxiezOnlN9tnBGscms3w9Ryhbs5lseWnKwP+26yOaQJNzrvkSaPJkSpaR1Z3JTf7vHgLRtnF0EOGyzkNdEVHCkb5GSOQ/hgjI61k7dF02nqrLw08EA7v0mWNHcl3oBh+9wQw/61qN1w/zDLQhdCb+OYIhUnfiAGcWZE2YZ23bpWwpT17D+zMh3KasRbT6M4uTSrO2mNuUQgaE2B8tciYPOShpqyNTKKrH27xNGGVl7hMM1NrrC8yBW0T+LA23ALL7SSyTgsz5OJsPByB+f00xZoC0BlalLLI4r8bAf+fDY2o8mvGvt5Xv29aFqCb43Lpi+8iDNa8Av2fGyT7IFazap/dMHmZ8KODH73pnqMsBkK//mlHHazMLX/+z/byHia2ef0NLmG1nX9SP2rHANWOI69LLzixyBwI8fly/uazPxtLHju3Kfst4VLI/41PnmW301Z6BbDFpMkQEAm2L2RdtrZ6aAOR1NeBQs9Ao9L1dvL9NGNQEtzOAl1NbUDUlrf/4TuGeZe/zuppLyfuSeV2ysI8ThUCbe/ClyZPnXAjIinVlmfFeRN3iZvl+H0Fi9jvvF2Vj7PxaIxfstbr0vwtdn2sXkO4RaeuLj61fUwMzDg4yPsp4LltXzu9sD9emv2oGykuS+lYLadbalvU5oml9s39ZOIcKhcqNdbCdfo97B5mLw2ukbLMHYuk6xf3Vh0wp00tVA3dsq/+vdpKv/YRN1cmEzCwUq3aqPo6fA4K2Nd2m0/R9l1DcNvpuTy10AUty5smUuyupNuXOd5aTdbymgLOyvmVi2hal96X22ctrY16/j0AsQ501RFprd61PNWDHhe2WdDZnL0me+6AFQ9C0jXcc2GSKNptnv5fKJwtPkZxHduX9Np7MriMAyiw6B3YSNhnwz1zDLvRq/FBbWzUZwHY637UpTQcEbfJq38Q15TH6jD+d1/Sbgzz3AmXxb+e/Gq/5Nf5yPiewoPLXvv4aH5DoCW3bLpqNE18EKKqLCl+/sS8EwlndNX3igIDjsG1N1NYA546eyq8BBN8EBjIFQ0Dgk5ihcn3fplAjmm7PrC1kumxQM3eJt6+mFLy/ak+m9HitPnsdtbHT/zVPRqZ0+H+m2HSfx9syd6Df5+2qgSst6OzUQS2afYEB9wzoXZ8zazj7LqrxVia4Re42z4S3t9mFCK93QV1rW1vbawrTBbn/5pQp5ayOtna2AcjauszakM1l25jU1mwWm94HOU+RfI74+zZyK5iy2+W0l1lTUGoL2+XygGBafdKuBraNFr4sbiY6Svn5lkj32GXeah6Y5SBV7fMQoNrPA+ayfKxtYbwaQCBlOlNtz9ZsbQ6fK2+/KUygd05+TWDwnm3luuDJBLiuZWypJgBWq1WDAVhWG7jIfiM6d0FJQeTjQERZU+hS5LTw6a7b5Zjf2hhkY9oGWEiOWl0waA54fCjvreWKvBTx5D9frBHrsc0sLx8vku5zPuTeZd1LYUGlyWxlto3Cn0AiU7hOajvdwLV4Yk1o6Zput3kAC4Vht9vdCE15u7NQTAYyffzdwmkDIu4RyACSlM+29Z4J5+y3lyLnJbUnonlUe0TuNdV1BDcMKS6Xy41thaRsrdSAoX6jjOITTLP5U9skM7grbbX64pp/enoqT0+cTqcNBaxzLnx7L/uarXmOo9qREctwtzwBQ21MMoPO65acd/1EcNzG2xx7trlm5NXomzwDbg1m1pEjfpILXv+PCpa/UXiI0ejqYftYN4WLIykKnZpLLptoCiOPdemaWi4E33Wtt4n36pjOXq/XiPnxfpbjriIKkW63mwoAtteZL/vMRa/jQ3mqmBbsfD7f23HEvV6vEW9UHznX2al+Gk+30t0lToWZWUKyapjZTv7ldSxX/MekJLlTdX821ypD5O5fn9ts7aiNOrFuMBgUQEA3qoSxe36ybX219jiY0nh4vzKvC9dMZkE7ENAcirJyPFzSBrx+NHEPfAbmRBnI0nUcLxoaBAa+00Jl8p3jkSkn/q91cHp6Gv1+v8gslu+fI6IcWrZcftkSrTi9DrYSr/kZKlxb2Xjpt6yPy+VyY836u7vhWSd5hDqjrS3ed65BXyss23mf4+59Ujm78u9XgQGf9Oz59X4SG4WCexDYcJJbCuooBbCUY6fTabiJKDRdqJJ8Mfh9qlMCnQKDTKATs9SWiPWhP7ye4yfyhZsJcimCs7OzDevbF4QfhMF50+8eU+Pvfl47Fzfnlgt9MBg0wMBqtSr91150nlL3knRxcRER0XA9qm8R63PaHaxki8mtBB+HjOfkyqTAcgAR0RRWIp6zHxEbRxI7XzMRy49UFSgjuBWgy6wHgjwdDaux0HrQvOqsgexBQPSgqZ90/ZL//XwK8mfmfZJlq8OFXOZ43LcGKLzNmgdu39oXZQpe79m8cazbLEYqDU98Y1lZXQ4MOJ5uIDgYINF7JV6Qp2KxWESv1ytznIEBzjHHytvv/Ef5l7UrGwc/qyEzGAiWa+OZzY30gxt0+i8DE15uDRBuu1f0TWECKQZ/wlTtWfbOWHQ5arCzUIP+m8/nZbDFbFJCnU6nCKSITcGRPZREdUuoLZfLOD09jcFg0BB8sn6YMUpS3Ovi4iIGg0Fpo8rlkcS0ziM2t7H0er1iycq61kv16OEdGptaAo3+5zvnj0Sl4pYCreder1faMBgMSp/Pz8+L9RgRpe86nW46nZZzxl+aLi4uYrVaxWw2ayxEd/FngjUiNpQLLQIBUvGM+KbT6TR4S+5O8YHWDRV2RNMiZrZypuTl7ZAwV7kUwoPBoJwjIFergIn6RiAvEq9qjV1cXES/32+sWQG96XRaXpPJpIAfeYMcVKlvOsJcbXcvCwFvxJc1LT7T+fqLxSLG43GMx+PGnESswR/XnMbaQ1mySNl/Nzz2QeSHzEL367L17t5DAi0qNVdEVFwiyh2OK706BAPiRRlJrpz1G3kh4gt/yStAXvMjkzNFuYtSdEVLYy27NjOaMp2mfvGethCA6wPen/Ula5N7/WqAbht989ZCKgpZxgQHtCQ00S58iAq1mF0Az2azEqOk0tZrtVo16qNQ1H1iJAIO/a5BGwwGcXl5Gefn58Wimc1mMRqNYjqdFoHrVt5gMIirq6u4uLgoTMxngpNpiKI1Nt7m7JG59D4QcNDyzg6A0Ri6NeveBS4yxrjZNo3PxcVFXF9fx+XlZVxfX8f5+XljrKfTaYxGoxiPxzGZTMr9+6CLi4uNxU5Xf81iyUCpz52AgCxngkiNqcab8+IgmmDE9y4TrPg9tLL1v9pzcXERFxcXcXZ2Fk9PTzEajWIymTRirASgnshFr4fml2BASl8gYDQaxdnZWQEdvV6vtM1d1e6hUVvE4z6Wagv7FBGlnl6vF09PT41xFBDT+ut0OsWzxjBbxhu+XvcFZKmsMivd+TNTXHRBU+lk92SKh4orq88BtXhTOkFjzv5QIep3enEiomHYEARkRo9TphQzZc8xbXt3QJWVz/HVdbrPDUgfWxqLBBZeH0NeGRhgOzMeaaPvAncdIUqw0AWq+A+tF1q/UshSUnx0pSwrClQKvX6/X5SlFDWRqdoW0UzIITqUgLi6uorb29u4vLws9Q2Hw4Z17i4iWSyXl5dxdXUVvV6vCGm5MKVc2+KeWlQEA4wX+cISSJpMJjEejxtz4IwvSy0iSjkS7mwrQY57bM7OzuLq6irevHkTb9++jTdv3sSbN2/i+vo6Li4uikAejUYxHA4b8fDMyngpGgwGGx4YdwOz3/QauMufrkDyOueGQFbzITc2w0viaYE7WmtaL5oz8YLq0/phiEhzJMAm0Nbv98uRw6pP603KV6CaIFTrRH1jCEzjMZ/Pi+WntvX7/cbT7+hJiWiGa05OThrPNaA1KQ8ALU33DGitDAaDsu7VPnn0ptNpOV6W+RYRm4dH0TqNiIZi2we59R4RDR6seQcyQKB7s/esDL/OwYDf754rhQ0VOoxYA0HdJ/nDUB1DFvRWZof61Kze2n81ZZv1sQa0vHy39DMr3z0YrvjdM8j2RTSTcdkmhnlchj2Xvuk4Ym8EFRrjzOyQXI8e69d1Ekpy/T89PcVkMillqg4KDD2sQnVS0FDpKv5ExCaiq18KrtfrxXQ6Ld4BCVQfh06nE+fn50VQMVRAlyjRuSeaOarjNXRFq7/L5bJ4LCKiIGcJCCoyxuJUdr/fL14M9U9tlkLgYlytVtHv9+Pdu3fx22+/xa+//hq//fZbvH//Pm5vb0tcfjqdxqdPn+LPP/8sHoLpdLpXgSow4AKC7nyNU0TTamdc3q0EKnQqFwqTs7OzWK1WxToXMQeD+6vFm+Jj8b2yrKVsCQb0kmKXV+Dq6irOz8+j1+uVcJV4QetNivTi4qJ4N2r7vd0rUvMOMtlLipjZ66enpw0wwlCC5ILWNsMvahs9Bpqny8vLhlAlUJ5Op6U+H2d6I1WertP3mvfoJcjdv5nyVn/arHv+xrllmTUFy3l2vnBDkOEv8arAAK3fLHREGUFDpOYJ4Hyr/U6ZonePRE2Z+zW18dFvNPLcu5SNt7crmyf+loEBB4u1Oneh7wIGFNNkXDRDKFJQWsACA1Reg8Egrq+vS6xTQnC1Wp8ARcEjAUEm8f2mrL/bXT+L3WNPEoyXl5dxc3NTmHs6nZb2SgjTVROxzlinpZi5VFWPJ4/RFSYrUkJKwp3hCwET3SfgIoXOdkqZqM9SBkLvZKZOp1MWcMQaZKxWqzg/P49ffvkl/v73v8c//vGP+Pvf/x6//vprvHnzJgaDQTw+Psbnz5+LtTccDquJQy9JtDi0oAhclS8iIp9qjOlJoFCUsmBIgDxKZa81Q4HhSYsUKnypDApYeqDUNsb4ZUFrXWaJkm6J0xqPWIc6BCZcmbBtJycn0e/3i2teylhhLCYXapwlC+jxc0+DQI3CUBonXS/wrfGkV0BhKu540JphPFpluSHjAOilya1JvVNuZtdnYIDleFlt1zkv+vy7JSzQKh4lcBXIpbxZrVbF00PlqDlyOa16a+NFBUnFvCuYIUBRO7MES1e27rkR1UIE2bWZB0Jt8WRYvz5r23Pomx5h7JZOLXnQ3Y78zIGnNaaXGEXMQqFGIasyZemKxDwcXAqBLCGQfRRJ2En4sXzWsVgsijWo9jBHgole6oOYVAqdYRO1gde6ksiEPOvQHDiAcxBA4czwiubo8vIy3rx5E7/++mv88ccf8ccff8Svv/4at7e30ev1ym6B0WhU3NNy48oC3ydpwWsMuAgJYOk5chefxolhBF1Ly4cWpq4l77hAzYQ6vUfiPbriNUf0DIjfZH1RmKqdLhCp8OlG1zXy8HjGPnmX4TcPg7EugXuNgz6zD8yJoMtZSl/jozmhAle/2Tb9p5CdwB9DY+R9env2DWRdvrE/DGFR+WWWK8tzOexlU+HyJb6gwhS5LHGjjx42GWT00oq32WbfmeL6RvWIuBPEM/8zAOXrlfOueumGd89KBgKoqAlCKH85F9kc8OUyye/JvDgsK/Nk1OirwYC7LOQdyKwdF3ayVOhKEXMpIUn/uyUhRiJj0aVN1OltzhLj+P9isYjJZBJ3d3fF8tZvEhhEiQQVUvR6zefzhstVzO1bqSiApDA9RjibzYrSUS4Fy6Ng9jCIC+flcr1NZzwelzEkCpcVx3GjZcpthHTr0fvR7XYLGFBugic2vhQpTOHJkeIV5nWIOp1OuY/Wo1vCnAsKFkfybmm654wgOGLtJlWWteoiuKSy07xzy56AKftAgBAR5TrF/ieTyYZrdzqdxng8Lm0RzzKZNWIthDmeDsy5W0Xj6S5V90qIr+QF8DrJu14PrVWNq3a3KNGR4IFZ7Fov+/QMROQKm7xCWeaK313gtb5QUdKCVl0OznSNJ4NyvJ3ns7p9zTGcQCDOPjoA1ThwXbXNWwbCCQZ0DT1JmU5h+a50xdce/sjatA2sZfrWwYLf49fuQs8GA3TtRKwHnVme3E8uZETLgYrG4+ZSRs6UGhC3cjihbQkUvNe9GmrLbDaL+/v7eHx8jIeHh+JloAeBzMG2dDqdYh1rG517SRzlSggpzss9tYzzS3nzsCEqFV+MUkwEIhSIsvQi1iBOYxQRZfyJ2vX8cyJlhQI0luPxOD59+hQPDw8xm802rNt9ggElg/pDRcgTvtjJp+JjKQqOLRUbeVnvApYM3VAgyb3ObH21lUI5onmaIgU971HdVNj6X4qavEv+IIATPzpAFyAUf8jq41ZSAkOCEylfhl1coHOtiE81N1ovWgvc0cBdElQknGu1UUm38nYoD0FjK4OF87QPcjmWKVXvL2U0ZWhmVdKS5xywPnprPAHTDSQnV2Rsq3jD3fEEjM6fLFfAjf9TrrMejp1kGnWMe1Zd1mdAIAP1TgQB9Ih4G/mZdWWeAbbf28S2eRnb6FlgwIGAiBMrS5WTz1i/mIGChBaWM4C7bpgI1UYuNAlWsgFS+4fDYcxms4a7la4zXUdFwpijtlapzfSWSCFKkaqP3Kff7XY33GIsh6ibsV0X8hoDnzuOo96J9F2oqH7WoVjwcDiMiCiKYjgcxsePH+PTp09xf38fo9GoCGgHiS9JVErcA58lJYnI6xwHuvu4FgicdK+7BKls9F05IVdXV3F5eVksIyktrSPOZeYql9Iej8elXwIZUnS6JtumxfVGMCCe5TkcWqNPT09FKVPR+i4CKnZ6s9zC49hrXhy46HrdrzmV98LDIRwbgWp5BXhYkcZYwIZyzBXRS1Imb0n0UGaKj+3PgIT65aEWlR3RPC3TjRtXqmwTX/qdXrnMyCJwox6g8iXfyyvbVrfzg+Y4M6y8Hbw387JwfjIeodfWAQHlLOWIGyaql3Pin78HfZVnIKLJpGo8wYC7DsVIvJbxbpUjJpAVIoHGWC+VpSMzegk4gO5RYH/IAFJ2EoyeVKI+kZHVDhd0EU3LhxYcBTCtG7l06WYm0W3HzGq69+lh0TjKW8DQC/vN+dK7Fru2olHoDofD4i04OfmS6Pn58+f497//HZ8+fSpnDIxGo7K/XbsZXproDcqUoFvYEWvBpc+0KpS3kpF7nVwgu5XV7/fj+vo6bm9v4+rqqoQztIMmIjZirKyL60kKT+Cs0+nEbDZruPyzMfAkOt3j51nof3qGZPlI2Su3gGvNPWkiCmPVwzaqr56voPq0lZUnIIrnNfYMP9JzQfCs8njwjSvPfYEB9SObd7rQqVzYZipq9xKIh+kil+KKaObRUAa6Z4phHraPIVTxguSlg1KCGsp4Klr3MDDvh2EgvggGHMg7QHfPZ02/kGfZZwILzh3HmeMjeUI96vPuMomvmjfia+mbdhNkDeVi9uulXAgMxCwRze0kpYGnzS0/BAuc7BryJRolUxA0UPmybgKBbJFkiNwVK9tF0ENQogXBBJoM2dKSYq6BmJxgQL8JhGhspZC4YFS26iVlFthoNCphFCnG2WwWHz58iH/961/x4cOH4hUQeBiPx3vzDFAw0StABL5N6JO/CdTc0ld5ElQCUzyJTdvl+v1+Scp89+5d2R43n8/j/v6+0SbyKAU/3au0fqXY9JuEqQtKfo5Y8yLP9qDgpWeL61a/aWx9LWUelizHyMGKBDctxaenpxKK039Z2IcKkMqHD+ahZ0WAWetHlLlkX4pokWYWZJtXgMqJ7wSl5Evt1uC8qnwHIBngVR1uWUtGZN45AsdMGbNPklsER+IPgg0vKxs/tl3EsVSfaUD5uLpHK6L+CG96DPl/ZvHz94zv2rwJ2fW78u532fjNxriwdBAgFw1/99gslaj+02T4hJI5aQmIIckQGpjMrZTFqFwIOhqk5cOFwn6IfHGSsdROuYW52LjII6LhqnNhykWrsXP3HeulxeeKkeBF/8v6IxhYLr+4jpV4+eeff8aff/4Zo9GoEVaQC3cflHkFHGS1kcaPvE1FzTCX6tJvUv48g0KZ8TrF8f379/H+/fu4vLyMiIjJZNI4iOjs7KyhpPmsA3ql2EduYxUwyISuxkf8KqH9+Pi4ET4SXyinRPeqPveU+RpgvNnXAQWbymNSJ8ufzWZlqyG9F3RBOxiozb1bmhHNE0F5zT6I48O2ukeAcitTWG5IKE9Jh1MxaZQyVOuXIJOeNnoOMp5gcrTuESBQeeLVDHC4kqNiJhBXezNPiY8n3ynr2QaOvYg8pXFkO3zOfK6oX9gnv9aVu+uVDAx4G73cXeibwUA2mBSWuoYuGl3jwkZEpNftdotlQ2VMhnd3ugSCx/R5f+Ya8gWltut+LaYaIKihUmciDz34ZHPcWI766oI6E1aZmzPzmkSsnxeudjqjq63L5ZdY9mg0KgmPEV+EPEGC8gUkzN09/NKkMWQoheCRqN89I1lZEesFz10Abg13u90SBtBeeYECCeKbm5v45Zdf4pdffinHJo/H40ZcU23WzpbRaLQRLiMA4Mtd4c6X3i/xMUE6+Z08JH6npyUi3+suxeoCnPOTeSzcI/L4+FhyVrizhZYnlT3j21QOmWWne8UXbmDsg2qASe2kwuT1lDUEBgpNXVxcxO3tbbx9+zZubm4a50toTOTteXh4iOFwGMPhsAE8NaaUMWwfARx1BMGePyuDVAPsNS9mJns5ju4lYRluMDrPE5AxTJvlu3h7CIIoI2qGqRuUmmfWQaCdeQb4/iKegRpa1eJzpcrFKvejD6ZPBGOPQrRSVBFNxnCF5yixthXHgQAFhdpMD4Vb2zXh5YuU/dPvZBYfM/2vspz5a+5LBwBcAFyUPm/qm8ZU481DYFarL+EIbUHrdr9kl/uxy1SaumZflFnVFPpSvD6WmRKk8NA1sn7kZu501s8IuLq6Kkc3Z4Dg6uoq3r9/X8IEy+Uy+v1+RHyZG51cuFqtYjqdxv39fUSst+AScLHdrsDIby4s23grA5AO6l3A8d3bQ0Xj1h75xsuSElL9rpDkpaLlqvsJROQe1+8EInpXnR7O2Cc5GIjYfIKmrmO7qbj0jAmdsvru3bv45Zdf4s2bNwXcU6Erd+Xu7i4+fPgQEZvPzRD5rjBdN5/Py3ivVqtGeIC5Htn6y8AqZZ7WLfm55hHQ2PDlZdcUZ6Yf3AOTKXQBSgJ2lsO5oefEQW3miZGs5jh5+wlgdqHvGiYgUlRjM5eGu07ISEw2cQQkoaGOMo/A0bPHyFQe25gxhsp1i0LojJPA/jsYcK+AIzUHLRwjtZlj5jE6rz9DwnQR+n/87K+Tk5MCAqS0+FRCCV09gIhWqqxlnRWvfj09PcVgMNjKSz+CtoGBGj/w9wx4KfSl09a4cE9PT8tzHH755Zd4//593NzclMOYtO2P43t+fl7mUYJDwKDT6RSPwXw+L59JUnTiFQprril+J9DMwCuJAje7R2OS8VQmNDUv7mnTGpRCoxDk/CjfSKcLEpTzWt4v8NbpdDaErOcRMAS3b8qAgN59bFxh9Xq94gkQCHj37l0BoTc3NxuPqJYH5v7+Pj0dkF7FTIlKFkjpa36YL0Ag4zLOSf3JdAE9ZBkQoB6pgbo28OueiMyzkIUKaopY86M8jeyx7/Se1JQ5dYvLdP9/F/ohOQMEAfrfr9N3XeseAS+bk89J1WJl7FvEhUw3ZsR6QiR8atah/mtDnv57TfF63QQpLjTpxSCQ8JirrnFXEZmxzaPgdcmKpytbT4rjOfEaUz2yVswr1zjnS31sW+w/khgrJmgjUHIlFrF5uAnnh6er+fMopJSvr6/j3bt38euvv8b79+/L0x2ZD0BAy3MF9JwMJpV2u92YTqflOQI6DOvp6alxAqSEMC3pLHRHb5d7skQULBkQ4HUZ4CWvsSzmFHFcua7pfeAYaPwdsBOMqUwBBrVV5brcUFsI/l1e7YN8bWcvUQbCBFavr6/LyaF/+9vfyjHietIqn0oppT0ajRo7wCI2vZE6MTVz3dO7oLXhuRtt/eU6dEWc5ctkPEm+dSPVFSjXud/nSa5cP9mOMZWp/1erphdc8kNylom68pioLo1ljbYp/BcFAxGxMeCunGqM7GAgG0wxGkEGlaT+c4agsI3YjDFxkt1t6pa4Wy/bFibbz89tlpL6IfeRfncw4C45XedWXYZy/T8f99PT9WNir66uyv53gQGBEVlWROdC+zz/IEPRL00ZkKsBUwpSKg3xksZfW+8EnK6ursrRy/Kq6AmYChNcX18XoERLVIJXXjKNEy01xfHl7r28vCyn8jFZi2CSuSCy4NRXggNX9OqvyAESBSr/r708bOHxT40t214TYEyalVxRQhotfbWP811zH7MtbXJrH7QNCBD8Z+MuXr25uYlff/01/vGPf8R//Md/xO+//x7X19eNJ5hqfa9Wq3JWirx+bvzQG8j/qbjFdzTiCMjdyucaFbncZNkMRzDnKZN/9AT6fGaGgOY+IhoyV78xP0frNtNjNBBYl9YxH3+ucglUWaf3Sd9dj3wtr/6wx8jtYmHwuytcTYyjLipq/V5zqTu4yLwDEdFQvm4hqU1yj7Nv2xC699+Fo3sH2BYetMTyxJgRdSBABiFidwCg13K5LP1nXFHvfIY8EawSjLQYeRSx73hwT8FLEi3fiM0FQ0uwTQnJ4vf4qxIBCZr43/X1dXnMMx/NzZjpcrl5AJTqpRXU6XTKo3yfnp4a+Rqaa80vczgY96ZizHaTiFy56Dr3aPm1XgaJ97gFKCClNUBQIMVGMKpx0WmXmmfNKYFUpmi8XT4ODgj2Qds8A6KabFGIQLkrv/32W/zxxx/x+++/l62s4mt6BiTvxFtUvNpV5Kc+Zm50AgLJDdcBLsdqhg15iWW0eWRrhpHKUP2udNmu7D4PSakdBKqZPvPxZhJsRBRAL9nqxqKX1Wb46b0m05y+224Cfq8JFZ9ookFXFuwoEwYzwU1k6QhRKIyMw0lyZehtiogGENHvNfdN2yT5QqXXQuiSx62qTmbzu5VVQ8P+TgvXtyXyGika5Qj408do1YphmTxIIMA9zG3W3o+mNmDK91r7iOYd0UvQKh4rT4rGT6BBv8ntrwdRLZfLkh2vLYVyIVKZMddByYmr1ao8nlgHDVHhyZJiWESk6wQ2uEY5TgSV2fjUxiwDqNm9GldZp3wiY7aNludqKImSXoDa/BLcZzLL++O8sU/PgBshJDcy+FnrT4mqNzc3hU/fvn0bFxcXZWwkeziW2nXA3SzT6TQuLy9jOByWUFWWtMlxVHggYvPBblTqNaDjBpHfy7Hg/z5GBLF+r+sN/0/lqC+eOOtEDx9/I78TEPT7/eh01t5WhhLZZvaxDeiQduXd7+4ZyJShW8BEczVGZyzbiUqZaCtbyN4OfSbRhSO3K4GABBLdW7TaM4XsApSCj6+IKFsFxQRkjogosWQKOwIqt9QyAU60WrPcmTjIPdxU/hxbJrrIulU9/lx6urz3SZyPNuHqvzEzW2ieQODt27clL+Dq6qr0mdcTDDCWzS2P8g74+ft6DK94Tk/G1Jg+Pj4WwCaBIuuZrkwXMJ54la1b56fsc8TmzpgM3Pta1ToguOJjmjNgELHe9uaJlLRi1UfKGbUz4wknCuB9h7jUHpJbiJwP30ao8wTkvWLCqodt1Fd6wAQ4BXL5iOzMeo1ohgzUF8p78kkt+Y9AoGb9unfVP1O+ux4ivxMwsz56nj3bn3LYyeWdzw0f080Qn9aybx9v83y0gda9gAEKEH72mIvHeTLUo/J0vaz7iKYClHDRZ5Fb9yzTgYGUdMQahFDB02UpoKAynKGyMSBjORhg/7vddfKe4neyBDudTjmSlXVySxtdVhwLtZ/v6ieBARmUh7nwka8MXziil2LR4lF/JHiYDPeStG0x+Ly1/U/lfnl5Gbe3tyVJ8N27d41wAMfXQZGS/jRvPNBFOwYIBnjmf0TzeRXqI4WjeMYT8cjLDvIo9FzB0KqpeZYEDqU8KSwpC3j4kBQ/k1U1TvKsEJyKNCYaZ7WRp3B6kpn667yhNtcEr8ZjH5R5PPg5AwIMEdCLpXGl4omIDaCvuXMrljtn+KJXVW2qeZLYrwyMZtfUvJ/8LN6lTMqAq653b0M237rP8xSct72tmYHrOod6kTK50+kU+ct14vOscjIQ4Dz84mDAGZEdVWe9gVkM3hGgX58xmX9n7IrWMpU8LWIqL3ezEmzInUavhU+wv3QNy3KBTGIyj8ACz/Sn4udYqM2e+CjQQVe/z43nKehd5fHF5ECNWaZEKUhk8e1rayFRe23xeD+oFEUSsOqTtg5qm9abN2/KaW6cXwItPidAAI8eoul0Wu4Rr3FbpPpDi0rbwASw2SfnX4bc2E+BSh8bHx/yE5P+1H4eMUvXawY6Zf3LYlVmO8EAT23k2MlS5SONz87Oyjgwj4X74jW2kidqj8YyA/jOBy9J7s5mWzJAoO+cLyptKk2NUXY8sxQ1jQ+CLg/haF5qlr/Le1rXBCK1MWDfd73W5RMVtohyKwMjVKwONigjaADWyoponlngQFlywNdJbW3WZJne2e5d6LuAAUemZBBX3jW0knkG+J8Y0q19MnWGLiM2Y/XurVA5HgNyS4ExcQqMzOLJ+sVJp7KgF8Fdo2QifZZ3ogZ6tGClfPgi4sxe2Ry4p4f9Y981Vn7srqzofYKBbBFzbsi7IudJjavAwPX1dYnD3tzclPAAc1Sy7U8Cc3ycLl9MgI1oPj+DbRMIkALkAUSZhc8yCWIVWlBbVQaFu/iDoQ8H+QTKKoPjSDAh3hQIuL29LV4V7crg2fniI9X79PRUwABDUwQjOkJ3MpmU8cq8FVrP7iHYVYj+SKrJyxpIyfjZvUjL5bJ4GflY6YjmIW4OMl25cj6180D3qr3kKfXDkwhr4+wK1/WIKzr/zXlf13hIzOU8ZW7bWIs4vplnUcTcCSl49p9zxvCB1qfG08dGVPOetLWJ9M1gwBVdzTomUnTFnTF05hYR0V0jxcikDrZHjKoyMle57uMZ2WyXQIjKEpMImEiJS9Gyv1QAspY9bELU7YkjjsQ9HusLikCALlYyFhcw0b6XR8+C3LR0CfqJexLg7vLlg1D2QZ7xm6FzKgEKRPKw5kfgRlsveZCQC1NZ8xojzaseRvTx48f48OFD3N3dlYc7cTsWed3BicILDDFwB4HqzWKm7A89DloHtLBVL3koSwrVZ60p51NdQ57WeCr/4uLiouEyVT81h7q+2+2WcIzKl4AVEJhOpzEcDosnwQEarTHJEVqQoudYV9+bHLw6ZbKSAF0eFp7cqvHgaYDkk4g1b00mk3LSZUQ0ZCqBoQ67yk4hpeLX9zZvAJW6A3Yvz6/hddQdXEceRqhdy3EnYND48D7JdJ+zrE8RsfFQL2+fyqacVk5DBqAyIKDfsnyGjL4JDNQYkS81TMKRoCArLys7IjYEtcqMaHoOtLilECVwiJDFxFocFIBZPCgiSrxVwkftyFzAskKEvmmJZONGy94Foa7PxrSNgQQCtIdV1pa/3JPB5DP1TcKa2+L0vAjOz8nJSSMRjDFKhhdemjIrokYe3tG75l4JWdw1wJ0fBIEStgR8mrPxeByfPn2KP//8Mz58+BDD4bDx+F/GcWvWE0MEBAT0DDjYEy+JV3u9Xplv8a0sapVJdzrDSZ57oDCKgDM9MswnERE80BJSW2k4CLjogBbuphD1+/0iZPU4cFnBXqbmVb9z3Wk9inYVpj+SakCAnx0E8PkX4lV5rcQjygfyPCaNm3JVNAcsdzwex8XFRQEMCmdyvrM+tFm3WX9dF1BJc25cCdaud4CVGX9UojQUeJ8DglofXF5HrPNr+NLYcO3vOj5ttO1/0XcNExA9eQNoTWfunDZBnSUref1SbFJYQmqMkUtY0UKOiOIuc3cpESgVGYWFlytlqQWn8tV3ekrUdr27S0/KYxuC5oIgMBEYUFy1Fh6QAmQ56jNP2NORu+wP76EwopuXHoh9kdedeZs0lu7VoneE27T0gBeNHT0l7gXjjovHx8d4eHiIu7u7+PTpU3z+/DnG43GxFBjzzsAp1xJBhwCoWz6u3DjnUqbqK3c0cGcCw2sUjM6fBD2ql+CfYRK3iLw8/hcRpT0qWx4vtfX+/r48LltzIoVGg6CNRzLZtU0+vRRpTjNLmKFPhVV0AqaOHdbBWN1utzH24gPJCQ8jaMwFwmQM6KFZw+GwES4i3zu5t4B9I2X99LFwciOL17qc5H/03GZlZGGErA6vi+13b4f4WoCeTyHl+SOZPmJdbTKV1+1CXw0G2rwBbr1GxIZAy8ojqaOMgUuhcJJktXmOgic3MVGOSkpCQzF1HpXpLy0aucwiolE3lYBPuvookKDr6S3QO4UuEWiNoUWMN8mCVSY/s65pkakeASP9JyuOVtvp6Wnj5C2OFRcK20JLcl9ggJ6X2oKndUvekxUtj8f19XXJEdDxwgpT0ZXKuVLZsrRns1k8PDyU13A4bOzXpruVQjUTKLqGGfSZsMqUBxNF9S4PmOY6K4/11EJ+VAwkfVebNW4CNLJMeb/c2jzTIiKKctLr4uIiPn78WMpfLBaNRER5DrLwBcfluUL0JSkDApQZ8ghqp8v79+/Lcdi3t7eFX6kEBXQFBrS1TdaxDAMaDY+PX44Zfnh4aGwbdpnZ1g+918aZgIDKmLzousCvdeXMstVeH0e+q2yXiy7zWIeHLzJvmOqmV1r6Q3lE7il00OxjlYET/9xG3xwmoMWQJQ3SGq5RhnA4EXRh+eRT+bn73xE9y6LHQO10IcwJeHr6ctobH7fJRRjRPL2QAlN9VMyH40Fh7H0jgneQ4URLz0/H40NIyLxUCq6wBVg4ploEciPz0bVuEct6Y2LlvsAA3fMEiBHNrFvNGb00zHzniYK3t7fF0lK/qaQorPS/3K2KZT88PMRoNIrxeByTyaRxvGuWDEjlyBcBY0TzmQru/aGgc8Ac0QyHee4B14g/RKVmsWr8mbehenhGhQRgp9PZ2I2hvktocoulFNj19XUMBoNi1c5ms+LSVpt5Yh4BP3mV8iDzyhwicR0zp+Xm5qbhGdBx2PQ4UoZqnUc0jRz3WEoGeC6CG0CZ8o1ot1gzGeHKvwZ2XYmLyMMsI/MYuFFG+Sz5QU+CAwEv00EL20Re1Vgo7KewC8N/bfKf5P//UDDgXgGPJ7rgzzrBhd6GdN2ap6CT1SZUy/3drJvWjSsotlVWO2O2BAMSgF4elYGEdw2Z0V0a0QQDYjS3AOkKZps0VhLqPAyHCW7n5+dlvCQICVQEIuhGlXBhHJdu18lkUqwszQcXBe/niYr7oAz163f3YvnCYQyWgIAPd8msdcboNYdyr45Go7i/v4/7+/sCCGQFyOryecpcjG6R19YMgV62vth/WeY+fuqDBJQDfPKSe1s0jhSu6ofCEpPJpBG241Y4tWG5XJ/WOBqNSsjm4uKiXDcajYq1qrlR+3m0rs+11kCns37IU8T+8wVqylHvVFpac8xrUTjr+vo6Li8vGwmTEZvgTJ8jooApySX9l4V1KCe/xiplf2q/k+dqHpJsnGgEObH9VPjOG/QaZVa4jIisntoYMPdK4JbJrwIEDlwzkFXzCjyHng0GMhDAk5QoeDLB5ajQJzQrl3Fw/043oMAAmcaZNFtAEZvPVGdMLSIagpDZ3nQfRUQ5I56KxoFRdp+YUMyg+4QUs+QwAgG5TOUedOtV1pkS2tQ3CmlatFSC3M7FWKFbwmoPARrDFIdiYblHK7Nm264nf8ozIFBEdztjglJi4/E4Hh4e4vPnzyVfQGPJ8AtDACKuHfKAwJivRe4ioUCPiA0edY8R+6z+qR8E0p6jQB7iPSqLMX9dq2voVWT9uk73j0ajhkdQPKZ26fflclkUWq/XK7yr9UQPn8aL61yenH3ybY03M0Dga49HgdMjGvFl/gXmNRY6Dlv80O/3482bN4Vv9RoOhwXMMvG1Fs7K2p/1pw0M0FAh2KReoYHEl4C5W/FONL5Ey+X6qPqsrTUAwGv9P60L1amdLPqPYTPffpi1OavD27ALPQsM1ICAGFCKmpYErSJ3x/jka+IcXDCBizFC38/uYESDlQESH6CMgdk+WiUOCHStxkPvNTdum7UhplAymhhDC87dwZk1wLi2ABIto1q/tZhoTWrfvNo0nU5L0hAfWSxB7MefyoJW8uE+KHNdkofJC1yUmjfyD13kAnASsFTg3FGgMfv8+XPc39/H58+f4+7uLj5//hzD4bC4rlm3v1xJ0nXra8bXh5Jq1T6VqbFxVymBAsGCQkcat36/XxLNxP+05uny7Pf7jXVDICrePD09Lc8a4PyIx1WmwBNDVDc3NzEej8tvmpOLi4si0MfjcVFgk8kkIta7LSS/tM7VLo7VPogKJ2LzbAy9M0yQbXOmvKLlKze1LFsBCh701Ol0CiD4+PFjAbEfP36Mjx8/xsPDw8bcqt7My+Tv2WeSG1Vqv4c9Hcg6iMg8F66H2HZ6CQj03ZDNQA//47uIwF/5Avxv29k5NcrG+4eAARWeWUhcuGoUBY1b07TKnak97EDhwMQ438deS1RzBJm5XTO3EK1mMZ/ayUQkMQ2VcxanbRPAIlnu8g7IsiRKjNh86AUtArr2a4jTgVG2SHWfUOxkMonhcFji3XKHU/hKSbhVuitD/giSwqIgyCwHEa17eUQY4+ZBQdzapv8ZlxaAkvD89OlTEaYPDw8xnU43DruJ2ORZtZMvAgDu+qCnTEBMFrh4gMmfnjip8WF7uDblaer1eg1wRTBOQTeZTEryHhOipLgZfnKvgLuGda8sW82pgMD9/X1Mp9MCAOj6Zy4Cibtm1BeG5rZZXi9BNSXq40W5LL5mbob4iHOjg640Ds4L8hrc39/Hhw8f4s8//yw8LFCr3TBMds7GrObp0D38XFOkmfVP2eryzD3FrCMzSmUUsW4CqEyGuJFJi73mIaFh5wAiA6JsYxs/tnlj2mhnMJAxHXME6Ipxj4DHmTg5juTa6vf4bU3pqR0ZYiS1eQ2cSWj56KwBuu1rCFhES5OeAjIWryGA8B0O6ivj0hJyjMNOp9OIiOJelRKjS0/9ksAgeJHQkHB8eHgoltVoNIrHx+YDlqR02X9aozxW+SWJc1QTMKIsxOSgVu7mh4eHWK1WMRqNikLjdiDdP51O4+7uLj58+FAOGHp4eChepojNmLrqdWtO4+ouYX/xMdQ67ElARYl0LJ/jos90o/MaAhN9ZkhPfKijlvU/D7mRG94BgofRNH/MWdH6IKjVHIxGo2L1M8+IHkvf263/2B8Po+ybvA0uN92QygwBnjS4WCxiPB6XdcxdQwSPArICsXp9/PixeLkYKsg8T1n7+ZuDACpR/cYwr48BFfK2ccuUc41UH8Ng/I9tyH6v1cW2btMdbePH+mvAate+RnxFmMDRJ61xd60ya9ctcZFbH1nHacFlXgi6f9QOrzu7x4GAW+pss+6jNaS6nPEz0rhIMTExjH2kpSam8baybpZPEED3K8GArCaNlf6j2zkDaAIDSnijNRHxJatbCS+0pHnym8DJS5Msb19Y5EfyBV3E2T3aGcC8CSo68qLm4PPnz8WSuru7ayRgqm73HhHEaC5k6WqnB/My+ECaDAyIF9gPPxhL9XtYxYExZQAPtZKnSLzBkAI9K7ouUyDk/aen9QOdOCbiW5Ge6SBPi/iS99I4oZeN+UH0/rnnch9EPnKvAIEA20ivinhZPCtDYDablV0snU6nHBeuI7Ujvozpp0+f4t///nc5HOvu7q4kvmpbrCe6ZXLQjUD+nslB/RfRNPBqusG/Zwoy8w7XQIqXQf3g9endQY3XmfXP//f6M6r1NxvP54S4vipnwMGAYlOuhN0jQPJGO6qVcmKilj/BjNuP2Glm/ktgSCjwembQauGQ8bL4EpPlKFi5+LLM6WxcnCl5Pb+7gC6Td7r57AJmqK5Wa/f909NTWbQ+5gQf9DaQwebzefEIyLLkeQkSLPqPx53KMhkOh89ht+9Gcvtl6Fn/UTAsl8sN65Au1Ih1PFx95DMCXKlp7BSrJmgQT8nLpXbJKmfCqNrBxFkBAYEA/nZxcVGOSlY73IPEcyJUh37zsBT5miEKf5yt7tXYKDFPfKCdAwID4hHuuBD/6vRAWlrMIZC80DoWuNF4as34rgzNM3mBwNtB4L4AQZvV2EbO75oTjel0Oo3xeByz2azIUp5YKu/Xx48f49///nd8+PCh5LxwS6wMjAwIuNLKrGs3EB106jqtFV6TXesgKavHlfYuSjfrW1Y3+Yv8JPKwV3ZN1oda2/wa1r2tf05fHSbwrYRC7dya54uP5bA8uqgkZKj4mRinpDSP/6ksnwiCASr8DIjIFelWuK6j603ZyUxioeDJhFjGjJxE1qcx5f30YHjyDMtQv5kcR6WlvnjbfK4i1gBPloSfkidFcnZ2loIBXSPhsi9qWzyO3AkCtEtDVjYTVSPWwJNub3peOp1OUYDcGiorn/vCB4NBdDqdhodHAENjrLCA1gHbxTXj3gEpTFnwbkmKJHTdGiMw9xMu+UwBlaE+CJSrnMfHxxiPx43zGeg1Ut0aR+6sEViVh49rXGceENhwfjm33FOv/zgvrpxoJLw0ZUC2Bmpp5GRbACkbeMKdZKPmVnJwMpnE3d1dSRRUeIvAn/kfrtC45tQPH+OaTKz1MWIzoZD11SxlAkIn8gfXLY1HNzi9jtq7e3MdiLTJXRqELDdrg9dLI3NX3n0WGMiSVAQGuEWOTNiG3piAyMxn3y6o7XI6Y5uPLfWBpALlJEhAsq26j5YZFbqYR4JQbZNwkILLvAICRxJmnKRsEt1TQJdlGzmDcmuVP2vcFQAFq9fFeXSAp3pcuMhK8PghrcV9EEMfomwROX9yu6aeUCgeFCBdrVaNMZQFznwSgSJ5AZjh3+/34+bmJt6+fRuXl5fR7X7Zc6wdG8PhsORasC08Q8KBtOZfbt+rq6uym0NP+uNTBwUQqazpATk5OWkADtXlIF2eDSZSaizIM6PRqFyvNnAngF7qN+cjIhrKi8mzzKvQGGhuZPlq7lQ2Q2Q1waz790EEAzR4KFPo5RTo9zMVIprKQ32inBGwlRdROQXKFVJYQEaBgw3KN7bR62XftrnJ3WBRO7NcDjdYM0OK15IcELiRVTNseS8/ZzKdxmqbtc7yaorcx9gBX42X2+jZYYIsRKBF6hPA+5wx6A2QFSNFT1fn9fV1EcQ6Zcy3MFJxPT09FYCi5LaTk/UDdLrdbkPIrFZfXOkSdhFrYSYFGBENwKJytefa3bf0lGjLFPtNptWEu3u55ibKmEj3KTbLnRayfiTodW22HVRlSYlz6xbb3Ov1igXJ+Kxnq0uQkWf2QbQkM0DGMfVdGuLBt2/fxrt37+Ldu3dxe3tbeJVWlHZZKJzC0EFEFAUqENHtfnny3vv37+P333+PN2/elO11eqKh8gtWq1VRZloLPGSLVjO34l5cXMTNzU2cn59HRGycHCcPl8ZAR/gSDJydnTXWH70CXJsEAwSHyqsQAJpOp3F7e9vYFaQQChMc+YAcWvOUGQIkAkWaTyYurlar8rjkN2/eNLxj0+m08DIVWcT64C3N1T7IwYDIDR6FrbhDQG58Hg7GtS7gKnnGnB6GBFUeT8tUmWwP2+y/yyDIcqG4Jnkfc9FEBAQ+Lg4EdL1v0XNZUPMW0IuRvUiulHcpf9eynMirNPLcmPQx20ad1XOgw5GOdKQjHelIR/rL0X7g7pGOdKQjHelIRzoYOoKBIx3pSEc60pF+cjqCgSMd6UhHOtKRfnI6goEjHelIRzrSkX5yOoKBIx3pSEc60pF+cjqCgSMd6UhHOtKRfnI6goEjHelIRzrSkX5yOoKBIx3pSEc60pF+cjqCgSMd6UhHOtKRfnL6/+TL6Ngi7l4qAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZt0lEQVR4nO2d6XLjSpKsg9q3ks7SbTPv/zrzJtese+pUSSKphbw/yhz64PQEQG1Uz2GY0bgBuUZGeHgumK3X63XtZS972cte9rKXv60c7LoAe9nLXvayl73sZbeyBwN72cte9rKXvfzNZQ8G9rKXvexlL3v5m8seDOxlL3vZy1728jeXPRjYy172spe97OVvLnswsJe97GUve9nL31z2YGAve9nLXvayl7+57MHAXvayl73sZS9/czmaeuFsNvvIcjTzmHom0mw2iy+my9+m5O33Hxwc1Gw2q4ODg+51eHhYh4eH3XdeW1W1Wq026rNer2u1Wm18fn5+7n1P9WfdWJ6jo6M6Ojqq4+Pj7vPJyUmdnJzU6elpnZ2d1cXFRZ2dnXWv09PTOjk5qePj4zo+Pq7Dw8M6Ojrq6qN8VqtVPT8/18PDQz0+PtZyuexeDw8P3ftiseg+Pz8/98q8Xq/r/v6+/ud//mdSf76nHB8fx/bU5211e+r1Sf/4X9LLls56f7sOJt1jGv7bUHnZVq6/rvfSs7Ozszo5Oel+U37r9boeHx/r8fGxHh4eei/9rtfT01M9Pz/X8/NzrVar7uVjgmX0763f3yJqF2+LzxC3ZfptvV5HveI1LRlqkynttW2bbjO+vJ7p/jSOaH/9nXqdbK7rml6s6zZ+aJvvrd+GfpcM+Qj9zvEzJpPBwEfI1IYa64jk/IcAgec11kFuVNOLgIBCULBarXoGW52kz7pOdaZSturrIMSvYxmPj487YOBgQCDg8PCwN5BYh6rqBtDT01Nn4JOhFxhQ3kdHR3V2dtbowY+Vg4ODbjBQn94DBEwdyEOAYAoQaOke9U79NBUMtMpOgyndlPNpgVABAoFK6r0+Pz8/d/8dHh52IFOfaYy9POl9SKb0MR2q3zf222eJOzT+LnmLHg85ktfc79elNp5atik2m7roQVlqO+k17bH0UJ+HbO825R8r+9B9rd9ZJrZvqx/pW8ZkJ2BgDOlVTRuArUZNSJr/TSnHULrpxfs5UOmExuogBXYk5wqQ0qOh9LaT0T45Oanz8/O6urrqWANnAhiB6TeyFk9PT70I7unpqQME/J3gRnU6PDxstu9HSurn1+rX0H9Dvw0ZuW3zTteMGSH2w1jabB8Cg6rqHDd1nECDRjhFYq7LBDCtscUy08knw9iS1n9Tnd62Dve9JNVb31v/fRUZAm/bOMTWdS3Q7ECALFWymwS6qQyprd+zPq2yDeU3Zr+SzxiTV00TvCajVlqtNIaUnv+3FIK/pc9Tyj6mbHyJGk3swGq1qqenpzo8PBykbPi/o1Qv1xAgmc1mkca9vLys6+vrury87CI4XS+kLGdeVV2dmLbS9Rcj1aOjoy69FmPy2eL6u63eulNK6Y59b+nfFKczpH/qR71XbbID/NyKNiV0LmR49Js78FSWlLeulZ5THh4e6ujoqJf/er1uTrdtK1MAYMu57tLJbpv3ewGDMef30TI2Voac/5BtdEksgHTtLYCrNabfChpYlm3LMSZbMQNDhmpbmQIIKG6Ip6DD9L9/nlrOpHhDgIBKJOV6enqqqj5t7fmonq3pAi8P89N/CQhcXFzU1dVVXV1d1cXFRc/IKrpXpE8wQNCgfH3emC+PKAlOuI7gM2VbXWulMTaQp/4/FRQMgc/WmpXWNBXTHAIDYoHUX9RVZ3sEVqUz0u+jo6NOh7kGQEI9cZAmUVrOkPGVHJaDttfO9fpvuwQEU4Q6tK2zmEL1j+X7Vge17TiZCgLcH/j9LaH91T1TweRYvYaunyKpLNv2e5JXMQOvQUevvW4MgLBTXTHSdUMosWqY0mopWcs4Kz06QRk5pTc219NiBvTuwIRz/nLmWkSoqQEZY837L5fLWiwWHd0vJ8BFiIzavM5HR0edwWfkx4G0a2M6ZrTeooND140ZuZZOtnSM+sV1HgkUJvE1Ie6M1T7SgTR/L0cvIHlwcFDL5bKqqrd4kIu0CDKrMnPBNTUqA8tI1oygc+i7f54iu9bVt8q25X8rINjmmrHfxgAAPw8BgnQd8xCYHfMLQ4zUGEP+Gp85VbZx/lPz/tA1A1PnJ1u/jxnu1PFTkGKrrHpvAYLkfFOk5gzB8/NzPT4+dr8JEMjYMX9vE7VDS9lSnX11uYzo09NTLZfLLlrTToDFYlHz+bweHh7q6empo/ePj4+7hYZnZ2ddxKf/2FYaWKob54mH2vUryhQnP/Q7ZYjRahkv/z+xMAICQ9NTyp/5EgwQsFb19ZHllQ6yLu6kpU8CB1UvhlRAkf3PqYa0/kDjRPcKgLAsY3PSLUAwNof9Vefgh+Q1U1+UbZzLa9Mf+20IGLTGTevliwh9urPqxWbRfjJYk0h3vY2G2vsjgcC2MrVf3wwG3qqAQ+lMVVAat/TZO5xCgzK2kpSKxnSHykMDzvxJvbqhZLmYZyqLAxOPFKuqi/5//vxZj4+PndL71sCnp6de5H96etpbADmbzbrdBwmACEio/XzbzleQKY695bynplXVXt+SAFy6pqo2+tW3jnLxJ/WjtVjPQQD/0/w8oyWt/aDTZ52Vlvqa00Isy1jfKy/eLz0VmPa25fTbUNt7H/jnVnm+kkwBKl+hzEP2OoGVbQHMkONvvaqqYzWTD9BUlsAn06XeJZ8wpmdD9XgPcb2YAnSH5F3WDLxGXouc3Giqg9OCNkbIHinzRYOVzgUYKh/3cUqxnp6eegZbecvgSflYFgcE7hS4Ej+tEVD6dBiM0BaLRa1Wq5rP57Ver3vbAh8fH3tbu+jc0w4Btu/JyUnNZrM6Pj6ux8fHjTopDaeJP1PG5pDHnP+U/1tzeHx3cMp+bDFaDgTUt5q6oV5zixTPrKA4ECAo9esZpbdAKdMhKyTxNKXH1G2le3x83GtfMmlu+Byk8L+WDDFsfl36/SvLa6a/xu6d+v+210nGyrYtI+qvqsxAcQ2Upjb9PuU/BAI47qcEGVPq/BHyaczAFHFj2Rp86Vr+noBAipxkMH3PMyMYOSZFw6QyEwXpCpgcuChSzef6y2l1pT8UPXldqci+ipx5qe5V1U1TiP5fr9c9J00gwDJpB8TDw0MPWGnK4OTkpNbrdZ2cnGyg6HQWwS4XEE6lidN7a0DzPTmkFnBtRTEOAvTZD5Fq6bZ0We+cs3dxEJqAgI+vxCo4oHZWwhcAaoyobtTnqpcojveQrTg4OOjq02r3lkwBAq3fvoq8d9neCwhUTZvaTd+HPruTHhuLY5IY3eSPhsaGrhnKdyoISL9/5HTNkLwLGBhSgqrhhRaMnKbmRYNK53d6etpbKOcOkQ5wNpt1zjFF6l7uqrxA0a/lSmtnCLRHe4hK87qyzr5gjCCgqjbAx9DCMrWdaF7Wm4Za6Xj5VI7UNjL6mp7Qfw8PD5P6eFcyBASSwWoZsVaaycFy3p/z/1W1AQjSAVGSZKwIft2gESQ4K+YOPzEYSiOBWP6exhLPKdDY13dGdP5b1Qt494itNWaTjAGAbenrryDJBk+pw5jtdjv3mnIN/Tbls//WYgEk0g3ZeE5/8Tv1i9u6OUYJRF8r2wLOsT4Zy+u1974aDExFPlPTmIrqPUrWavnz8/M6Pz+vy8vLDhBwi9PDw0PN5/Oq6q+UVnrr9bp7p7Soe/+f71QqRk2cX22JGyJOg7ij9+mQ5GAcPPFzAml895XrdBK8l2XQoNK1YhdSVLlraTn9bcBAchxpLLDt2Ucp6vdouap6wKy1QLSqNiJ0/u+ggLqoeriD1/hxvVZeujfl3QILPLjIjbSAD6cBHLD6roNtZIph/k8DAhI6gveuw3tFsGPOv9U/rVdLCAj8nTrn+QyxddvWdyxAmHrvW5mCqbrwKjDwXor2msZ1IHB6etqdqqfX6elpxwqs1+tuLlun5MkIedpTB1MLMFDpqjaNZWIfXLH5nY6YToMUMRcn8jsdL5210vW8PPJLlDZBBuurtFK0enx83AMEX0Faxr/VF1PuGcsrgTUBAO7YcBDLtRrsF31P00zUvyEgMGW6hGnSgfvvnmdiB5QumTiJTw+wvXxqgeVzMJaM9n+qc/8M2cYGUw+nTgdMkaExNjTu0j1eRumbACglMU/MV+ONi6intMGUum57z2dMHez02QRThMZUncP98wICv//+e3egjvbSV9XGCWqSFl1PgzuEhhmh+NRCUlSnm5QP83Wjz+hR9eVq8gQGWnNidNZ+SA3L5VvVHCwIiPgOCRpvtpXWKziz8NlC5+G/6fMUIDAUzQxdx77SuhY9I+Li4qIuLi7q/Py8zs7OerrLo55VftWBNH9iA1J9GY1X5UOJ9LvrgdJLbSlR+mKHUhTP9JJwLYzqKZC0WCzq4OCgm3JSezDfbSOv97juK8lHlfk9nOE2eU35TeJBnNtjAlBnpVp5+ct1n7+9dnpqqgyNOf3/1v7YGgxsW6GxSqT/kpHlGgECgcvLy7q5ualv377V5eVlnZyc9Dpdc9dpVTuNZ6LUk9HyqH+MFqVho6NU5xGssCxkBMSAkBFIUSIlrQpXOZQOtwiSNZDjSs7RaWr9zwWcs9msm9vVb4+Pj3V8fNzUgY8WH8z+XwsMDEUt/t4CBWw3BwJisy4vLzswIEP1+PjY9YN0xZmAxAxQj1n3qv4zCnS/3+OggN/HGAUHfGSR/Dq2jTNQnBaZzX6xJOfn5zWfz+v+/r7u7+97eXF/+EdEbJ8RmQ3lPVS+FgidIrx+W4e2rQOaAqRbAH2ojnTILdZWOiRhtN/S3QQIPL9We2wDNltApnV9ql9Kc9v+2eoEwvdE3JKxwjoQILUqVkBRlRyRolGernd/f9/tpddiQqfrnZZn9Fv1cnhKerkiOpBR+uxw0ui8N00PyKlW5ekG5dUytgJQfNysb01LdLQDJLEuBDZV1dvuJjAgp6OFlH7PZwn74rUUchqwLYPgL/alpgPOz8/r27dvdXV1VTc3N91aF4IpbQdVFNza/aHyuA6pPDxMyJ0z60T9dCDM61s7XzQtx3xa16U8lbbKq7YVeL24uKhv3751gODu7q5ub2+7sa0jtdN4HDKOLcDn9+5ShsrgddumrG8BOe8FkFpAYEq+BLly+Bx3Xkbf9aS8XAf9P71ajMCYDk0Fc+n7FB+5bXmSfNihQ1OR9tAAdWMqQypaVcbh+vq6zs/PO8O3XC67l7a2LZfLXidrFwGNElkHHeHrOxKUJg0z53VlBH1l+FA7pMf9+sI9R6ZsJ2cxGGVxrYEWWZ6fn/cctxy26qU6MQ2CsdPT094aAAEOHltMB8ZpjF3IGHpPDtz/87QS8PJpGv4mXRIb8O3bt7q5uambm5u6vr6ui4uLTtekZ/r88PBQi8Wiql6cZdoGqM86Hvr4+Hhw2yqlBQTIPJD+V1m8nVlnby/qE9tIefBIa7b54eFhtxbo4ODX1kKBgb/++qu+f/9eP3/+7AF+BwRp2mSqbBthvae0pmWGHMYUUPAVQECSKc4r1bV1nV7sQ/6u/9y+Ut+TXdi2DbYFlFPSn6rTU/N9MxhoKV6qfDLErescCIgq5wN3zs/PuzUCVdVFU/P5vObzec9xCwykw1h8ikBG++LiontG+2z261Q0pq08PS06Ty4Gc1F7qA1IkdJx8nNKh5RXmqdl2gI7qpdEzlusidJgNM+TvPzIZYE1rQRfr9fdEczq5ylO6TNkLJJvoeoEHvjd59nV5kdHR90iQeovWS1ND3gEX/UyFSW2y3WuxfCobAQKQzI0l99iwVqghO3iO198/QgZt/V6XQ8PD3Vw8HIcsT4rADg9Pa31el3z+bz++uuv+n//7//Vv//97/rXv/7VjU3d25rWcGG9W1Tzf5p8BKPxnm2RxmH63fOmno8BJAcA+ux63HL2yTa8hoLfth+mpD/F524j77aAMIGC19BWEjewcjaXl5fd+gBtIVS0sFwuO2e9WCw6o6AXo/BEe8ogMVI/Pj6u8/PzOjg46HYlcJV2qqtPNdAgDzkeX5RH9Ko8xH602t8Vng97cQbh+fm5xw5wekV1ZV0IWtbrda9+Ssf7X2Uge/LZ0tLDqXrJwT80r+hz3r7uQwtAuYVQ1DrbR0+RpPP3l3RPjtIdLEGhA4wW+B5qO1KuvNb1umrz+Qd+lgLBri96JDDQNTwuW9MFx8fHHVsgsL1cLjcMfGsab0h2yQS8twzZ5V2UZWwMtoCAp6P/nTkZuoevMTDg4uVqMTa7lJbefhgz8BFok5KMq+hpLriSQZDBECvAh+7o1Dt1PIGAI0pfA8CHpFS9GDinXRXFyJjTGdApkG6q2jykR2CAwCHNXXn7j0WzrIsDliHj7FMgs9msOV8t4WDzQ5702qWMsVAJafu1vMenAnydBxcNCggkndVUgPRLU1uiwslyPTw8xC1Srif6PZXfxReLcnykxba+EMtBiAMBHxMEoJ4X188wTy68FDug4GCxWNTt7W337A2VmbswEnBvtQ3B31cx9C7bBlpfoR5DjnYqKBhy/lPBfmILhu7neK/afLxxStvT+Gi/yfxe29eTwQAzGKNmxowqZQjNMKrgosHz8/Nu3rqqesfe6lG8Wkw0hSrk4PdjdB8eHrpFc7PZrJuu4GA8PDysx8fHnlMnld7a1+/to9/IVCT0mtYHtMAAGYzlclmz2a+HDcnoHh4edhS15mSVntqQICQ5PDpDgilFtr497rNlavTA612G7k/twvbhEdm+/mS1WvWieumfouH7+/uO6eIzJKo2twWyL4aMaSq7bwnl1FNVf3EgxyxBre+caYEBLw/XCxC0V72MgcVi0a1L0fZLTXPpswCC2kljx8fVNvIVWIKxiPcznMxbZUrEn2zYVJDgQSSdt/6nTrsPGwMC6UVp6ci2tuc95LV5fNiagaFrXYY6goBAi7C4110RpxYJ+rwqHavKwMiDc9pyfDLG3EK3Xq87Z6k1BCoXF3tV9al1XetGmhF0KpdHTa7onCf2xXxKj0ZWoIg088HBr90BmnJZr9fdOomTk5O6v7/vHBaNuvpAUzTuTHgUMZ+MqKmHXUui+GggkrFwPXfjwzMheB6EACRZgfV63TksrdWQsSKLwkdMcycMy+F5+1RTivhdp9xJSy8FFgXyGFFRlA7BYetd7UUddz11wMNxqnZcrVZ1dnbWMSm6lkCM6SRWw/ufusH3/zT5agAhOfCWcx0DBK3xl1i61Aa+24DfvRzUg/T6aN34bP37kEOHtqWwWpI6W0bTo3g6HT5pryUOEkjdykBxvltpaX941cuhMFqnQHaAjsGPkVW6WmCn+5Svn7/ukZfKK2BC6lXtz3llGkL+fnh42G1xu7m5qcPDw1oul/Xjx4/6/v17/fXXX3V3d9c5LNVFIIcghGXnXvC7u7u6v7/vHNquJBn99N3voUHQ9a6XikoForQ4UwsuBdwUyUpvCAh9asWBgeuzn1mh8rhDlt6oPgkM+FQRHbMcLYEuF6jqXTrhgIRsBUX1axlsTh3I4bOPHh4e6uzsrGazWccIMvJj/7jB9/5vgRzWb5cyVoYEXD4KELzFQSVHP/Z/K2pPLwKBFhigEGROcfgJGLzFWU/pnwRSt5Wp93y5BYTpfhlKOf3Dw5ejJTXvqsiTDtzTqNo8Ilh5+pwinXNVdTS6VoVrB8Pj42O3il7zvwQDupaRopiH2WzW7Uog+EiP++V2LJVZTkhbISlyIqLpdR8XsWl1+83NTf355591dnZWDw8PdXl52XP28/m8d6QwHRjLXlUdtf3jx4/666+/6sePH/Xz58+6u7vr6vrZMsYEtKh/T0PvPkXELYPaGcBprKoXwyM95lZOrm2R7voaFpaTwNgNoPqI7JkDRQcDirZVTk7zqK+d+aJB9HMseEKmgwCNKaadDLePPa4F0LSBpguen587MJCivDHd8PevAAC2lRaYpUytVwLBns4U5zSU31RmYAggUP99utKZrhbQ87EwpDstYJD+37Y9WvKZ+vjuzMBbCt8yCHKei8Wi7u7uqqp6EQvnpJ0GZIenqYJUBm4/FFV6fHzcUeaz2aybsuCzDrgTgQ5XDkIGV8fzKi+xGVzsx/l1reSvqo7aF0Ohl6YjlAYXu8hgkg3RegjuuvByy6CzXPru5+frpQOefv78WT9//uwOhWHk9tniwE+/tYyZ/96KTLht8Orqqn777bfeThe1uyh/P6eCbJYDgao+a9UyeM46MRqnk3anLOEUg/LXIkV3kGQPaHC5sI9giOCVOyQETsVgeR953/H8AbXbfD7vAWxdV/VyABYBRRrzLUZgiCnYtSQwu42T3zafoTy2AQJjrIBf45/T9wQGEhOV1tio/EPTACyXT8+x7smuebt5ettKq/3eU0dfDQZcKYcYgdfQb4zMuahKDlXvMijL5bK3CIn5OqJzujSVhzQl995TKegQeEJgMkA0nuv1ukfN+uIxOgQ536r+QimdscDFlH5/qudqterYle/fv3eKfn9/XxcXFzWbzWo+n9f379+7193dXT0+PnZMBlfE+3ZE7ejQ9ABXwu/KuA45/CEd9TRaOstDnS4vL+vy8rIuLi66haUCroy2pbN6+emCEm7dTGdWePRDUKo6cQ2BLzLkosb1et1jKwQYuRhX93Ju/vT0tAND19fXdXl5WWdnZz3AO5/PezpBIMw6OCPC8cz6LhaLXhlYJ41JrkHw6Y0EAMYi3a8kn13ObcbKGBDYxtnL4af/Eyum/tf1HCuuS1XVA7eersSns2hTvV2GGJVdyDZ68qZHGA9F2GMy5T7OK85ms+4hJavVqouEq6pHuY7taU+dlCgon3fy1daMkt3xigaV8eHcpaIbnpKW2sZXc+uzR3x6qaycXmiBAR2epLabz+f1v//7v90c9+PjY93d3XX0Pqc/xBio/+XU0toNrYAnxbtr8QH7mujK29Wds++zH3J2XCzoTpy6R53QNFkrIhFzw8hHAJRGj6drii0SkFPfcYuu0vc6ix25vLys6+vrurm56R0G9vj4WD9+/OjyoO5w1wm3TnJdkLf3bDbrntsgEC52ggBFO4G03VjtyR0y3nauJ+zzXcuuyzAl/xYQSN9bjBsBgK8XI3BwUMvrhsqeonaCZQcgVS8nqbbSlW1P+Qy1R0teCyi2tWeUN00TvCXyT+IGWoNQDp4Uowxe1csRrQ4ElB7RHx32toOL9eXOA9KfWvWt/GjotOBJRlCO0x2lK5Svsmab0IEQDNFZ+ByajLLe7+7uNnYDKMLn8a5aF6F2pyPTyw96StHuLmQbBL/tQHT900tRvK9T8SiD/eZgwPtcO2hkrByMalrII2v1n1bik92p+rXt1Bd8+s4cRt1VL6v3aUi58+f09LSqfoEXAXnVV8CD54JQ11huvpNpo66rTQWSNc4Wi0WPRSTrpt9aBjwxi7uSoTJMjdo/OlrdxvGnexMI4Ktq85CrxAaQTW3pz5S8JdJz3xqdAi3+99b2fov+vSb/L/0IY3UiHahW4PM/RlxDKJ7z6LwvCaNw3ystI8znHjjlS+PJaFn3ks1IjAYRp98jqp5z+pwmINBRuSWkkckQpGjVt7JpYZryVPkJAnwx3FAbf5Yk5z/GELQGE6MJXScnIzZEzpjrLQQY1TeeTlX/CZj6j33vK+OrqreF7vn5uaP9W2DAWSyxDtwBIjBAPVCZCQTcWTsYopOWcMpPuuwnLbrxTsacn1UHrafRgWRVvxa03t7edu3oTMNUg7tLQDAl76nXOCOSGBL9/l7SAgke7ftOAN8VQ2fvDpxBH+tb9bITJvU7668xK/GpJd+Vo+8O7lM+UyT1zzYyxHRNkQ8DA2+hObxBZAzkbDSw/bAWGqaq2uhYKs3QATikinwPt9JkmeQESI2zDIp4eMpcAgFuUFn/quruJ3JVWqKFmR7LqndFZsyLVC0XL3LAqO7aHigwQHpXddL/uwYBlJbT539Dn1tpVr0sYhVrsl7/Ol9f0YQYGAEw9o/altNhEi9jcrDu9F2P+Dsdoa4hGOBR3orUdV1Vf7qChk710hSDrpNeSkepb9xV4UDYgUCr3T0ImM1+TX3oGQYCyNoKTB1P01ZfgQH4aJnqMLa131OupX63QIAvBkwLAtN0gC8Y5HhpAcpUXwaZsl8aoxovrbrrHubnaY/JLnXwXcDAe6HIVjpsXBknUkG8hiKkR/AgQyVDre8sgyIgniDI1drKj4vnePqhR4CKdmSAaBDd8coo0lgxWmRZCSp4oA0dHgcJt2QSXMnwkxJ2IMA5Mw0yAYCx9Ro+cD9bWoZtzOANRTT+v8CRni4oBssBnq7jwjYCT5VL6ZMWdaOmfPkSO6AI3uurd2cRSNkL0HIxKqMypc0xMJ/PO4OpsaCdLgcHB72tv2kawMdg6qfkyNgmGrfa3XF6elqr1apOTk7q8fGxmwYRqPZ09tKXBJyHrk1AtgUAHAi0AACffyLhmPCyOhDw6VW3oyqDxiIBstdD+i39Vx04JehsKHW0ZYPeQ94jnQ9jBt7CCgzd78DAlW0I9dGQqdN9DpFRMOc+9SI9z4VINMZ09gQtcvy+jVD3M9pPyqrvmm5whsBXVSfgIpDhYEDGmu2htqjqr7dQ/Tgt4LsgWH69dm1wWwNyKCL335JBq/qlT4vFomMFuKDTwRyNhRyYdNnBG8UjnalOzCOvpBsEgc5cOVVKcCPGS0yA2IHb29tup4tOt9RCVLaH9wEP5vK+cyCk/lTZWOb1+heNq/UD19fX9ePHjzo7O6vlcrmxQEzppX7/u4OF1FcuLSDA38bYAJ+SlQ1mXw05VAcCiTUbApTODriOaKwyPy4O59SgA5GWHnEcvkXew75+CBh4SxTYcuZ0uFOiCS8PlUt0oqLd5Hy5XZAAgE5xCARIEfhdikRjy/qorjSERMi6RkBEaShyr3p5zDCnOnSPDHZVbZTZDSnbdLVabbACTkOzn1Lf7JIZqGrPl7oMGTU3Zu5QFR347+xTpzOlA0qfc/J+LT8n5+jCeX13rjRQib1wo6ryae0Cn+Cp9RJHR0d1f3/fnVPBA7o0xcTtpjxi2ce0LxRL7alyCYjd399322XVtufn5x0wIKAn6HC9oP4nRm7X4rr8GWNrah6JEUhz/IkR4LsDgaH8OQ5cP9wmTQE2SVgOtr/semLoOB2b7Dzfv4J86QWEFHc4FNI8/M+Rnb7TYSYHyFXRvlYgdbornQMEfaYBJRBoKYoGjRwxlc6Vm4ON5XbkSSDiC3Na7a4Il/UnC0Bn4dRdMrJfWdwRENG3yk+Ap+/SKS7CJEOV2BICt3SNL34jC0Mwwghf6QnQcvqLZXcAqnHg/ad6+u4UAYXDw8OOaZrP592Jlz6F4DsHxtgC/ka94zj78eNHl/7t7W3d3Nx0p2nqHBICfJ/ScsDkOvF/XaaA5dZ/QyDAWYA09Sp95O4AydQytYKSNH41Fv36VCffbki7wK25SktAQFPRBLzJdqdAZRtJbMdrAOKHPpug6vWoNRniFBGlCNRpdYkbPFHrDhh84SCvEfVfVb3FSB5Z0biRQmKnt5CrI/6ktB4VEgT4kbCM8qSk6aW8lL4PbEa9LBfBGMvJ9vbvnynUpTFajv/7PbzPnYhH7olt4VSAG0HmTfqRQCAtCkxjREKnLn2mAdb1TNfL4u2oupJhchBzfHxcj4+PvXcxcNxBkLadMr3UL2wTll9tpDU88/m8fv782R0RXVXddAbbhNMgX5UJoHxk+abY7anMGW0xpwD85bbXy+M2Y4wpcLvYkm38Escsv6fxQsAscDwECqR7iaHapnyJcdjW9344MzBWKEdFbniTsWND0tEyEkqMgNLUvQQEyp/TCYym+BCWoeiXQqVUh/ucsNYu0DhLOKDcsOvgITl/HVGsQ4EcDGjxlo5C5ktTJiy309rehw4AWGaPWr+qYa3aNICJGaBMGWApmhYgoB44wEo6S+CY6HTdxyiawFA0vWh76oQWtg71j4NplYM0KQ20xhIPPVIEpTwdAHArZNKrlm1I9kDAhucY6AFSBDGtNRR7aUf9/JyYANorBwK0Rx6AOJD1qJl5Jxvv/Z90Y4qOp/fE1nm53N9I/xkQUM/IsjrTMBasJHkv+/ouYCAN1vT/2P36nAABv3tHV/XPn6aBdWclQ8a5WTfIVGJ/Fr0b6aF6ex2TI+CA8LaggdcJa3L6OgP+6uqq20pFMKDyq220zoBrHxxkyFC6A9C9qa+G6N23UF8fJUPO3gdjGphjuu5sCNuIEaikZWg9UmA6LAPBIvtSIM+fY8EjjTWP3zL+iflR/jRozJ865Hql69mePERJ6SdmgGXji8KojMBA7ISvuyE74EHJ31GSTk9x/okNYODigZWDATlMOcohFlFp+zgjUPappwQGhnyM8tF1aXujt4Pfp3Hh0yHpPgdCrxW/d8xWubwZDAw58veWxBDIuXP+u9VpFI98k7QMT3KCnq+Xm9fRgDKf9J3U6+npaXf2vc6/53eBBQctGmha7T3GbrhS+RytA7HkqHwQfjWGIBl/ZwaSDOn3UGTD9xbISMCA1ySdcyNM5ojTRgQDVS/TXdIPSYuiTwyRA3H979G6rz1gmmm8epspDebvdXc9EyjQ9c/Pz93OAtWTbUWwlvT0K+huqwzvYXfHgMCUFx1emmrV+hE+UdOj+qrNx8v7FKSDVF2T7JOPxW3bKQFjSQIsrfZwAFNVvQO2xvTuLf07VXff/KCiz5DkVLzTRbdX5Q70aFf/ewcleol5+v5xdSQdd0qP4lMFs1n/XANHlGIGzs/P6/r6uq6urrqn411eXnbsAJ9eqLy10ns2m3VTBK1pExrfxFR4m6fvQ2Dgq4uzBhJ3hAlgckAzKnUQ5MZC+XqeCTwlFqaVLkEkp5I0RvTOeU035qp7MnrU6zRVpDYQLZzKzfb0NJwOToacZU1RkfSf9/luDTqlFLH9X5UpYLfl5FvOLumfT1n6eS1V/ak0P5NFfeD96EDA7VFremAIEAw5Y93HqawEcH2sM/Dyx8y3ytUqx1RA8FpwuDUYGBsgrYIM0TTb5u1OmmcGVLXnuXWvBj4BhIQolIol467faQzV6QkMMA1d68yAn/WeKLWTk5O6vr6uP/74o3777be6ubmpb9++daDg/Py8Q9wcXNrOVVUdK8B24DybbytzcfA1NAAJMnj/V5TEDqQIWP/7vc4IkKp2FsUNqX4jmGiBKP7eitqcGfCFg6yH9C2t7JbhruoDndQOiRng3Hxaj8JIUMIpO+lxAtr6z/XL2yeBNuVT9bI7x9cOJAeya3nvMqSI08GQtz1tnLdZ0ke/p6q/Hkl2hHPrXMeSInoPYvTZA5LXMgLUK+kCgYj8RlVFG8m6ErBorLX6gYGY//dZshUYmFq496yEGzvPxxtTxoiH5dCIeBreoYoS9Dvz1pw78/G92F42d7JMk/P6VBwxBaLVdN76zc1N/eMf/6h//OMf9fvvv3eA4OrqqjcfzAOBdETu8/Nz74FEROKaV/WzD1ycReC2SYIKf7G9diFjkQABwBTQ6rrI9iJw9FX6ycgyTW9ftl+r7chMqU48P0IL6Tg3r3S9r0ntpsiH7eXRXYoa070tRoH3sb3oiBygeVsN9RHvkchAq4/YNh547Eo+Ku/EsujdI3wHjHTwU5wsdUw6R3DAo8yHonrXN46Nlt2RtABBS6dk7/U/T2DVtQQ1uo5AyQEX21P3eV287C1WzOtA+5X0fopsBQaSsXytjHVOq/KutEpLCtZSckY9YwpMMKDtSAIYNGBEtnpIERXbj3R1MOBRowYaf5fyaL2A2IE///yzAwRiBkTHavuWHtuqaQI5fZVVq631XAXf7sVB621N9sFBUWsg79KoDlFwQzLlel1DANDqdzk1GRzqJw2Rl5ft5+yC66XuU19XvRgz1zvpMB9VTGdMB53GDdvHmSPfrqpr3CE74HdHzukz1SXdJ3Fn1pqCSNftMjL7SBlzJnp3veKuJTJMjH6rNhlQjomDg4PumTIOGMUiud1hGpLUHy0Q4A516HMCBGKNCQKYZgukO2tCP0fmOp3hwXK17Kj+/wjd/FKHDqXOSUg10VMSR0h6T9FYuo/nCHD6QfPtfo8irAQG6CATGKja3DdNxKnruE1MW8T44raxquo9p0APzOGglfEnYOHDhlwRva1VxiEwkPp118Z1LP8pCLwVrbLvCArcwdMZOzhtlY+6onefl+ViLRovHoHNvMmI0QB6GaRH7iiHWB6PspWHjz2VX+dikDFg3bibZ7V6eVooHw7GMce+ckNPkKLrhoDFf4JMcfRj/ycb66ewOiMg++o6M2Q/lB+3Uyfb0RoLCSC0gADHc8unJB2R/iZfkMrDQDQxxEqf7KHy9QO15IPcTnyGTZ0MBj7DkLeoDgcEnBdlxE9RIzol1QIQerETdA9PVvN7ZVj9Max+LHGif1zc6Osztzhq6iA5eF3v+bDN3Pk4WGHkPwUM+L1+n7fzLoQGYdsyuDFJ0VNreoRtKVFf0UCQ4veX677yTHu2eQ6GG1uVkQu0mIck9a3v3XZ2zaMk/a+8JCwfDaHrDNfJ8LkgiqYEAObzed3e3tbt7W3HcHl6/K7xL2YhAXR/tXT5P0G2AQLOMnFLoJ+xkgBwCgicTXJAzDHgNmdonKa+nXJfq49T+nTCHKOt8kj3BViVXwLdqUwOCvy+KXV7q3390swAO8sjsuTcWpKMnv8/FOlIkkJIiRllM7pO9fN6uFHnd/2vQSmErs7XvLCMqBBton3Zpj7dwXbyAZbasgUCfKC6Mdi1pEGzLSPgzEBidzx9CecjWR6WK4EA6oR2Biiill44qCBIXK/XPf10MECdoDF3kKj/kzi92wLdBCua2lIZVEcyX9o1c3x83NVDQODHjx91enpaf/31V1X9WiRLMJ/KkCK4ISfxFfQ2yZjOjv2XdIy2ldMDLRBAYDllqtDBgPR+yOZI3Cm2xtyYU2wBgWS7WEaCXbZjy34QJKexoc9D22a5cH1q/V4rXwoMtCQprdNVktShCd057cl73PBNAQpiEIZAgD4TeR8eHvaOD3ZaNC3Y0cDTnLDKyHlPPprYAUqKWL28LSDQaq90ryv3RynxR0oaoIykeM1YGq6PVXnniwNg6YOc48XFRXfolKJn6YjAIV/SFa1l4DHaKgP1q+rlOQgcBy299jEjUXkkbvzkZMhmCNiongIC3759q7Ozs85Azufzuri46LZrqW6r1a8FaSqz582I1PvW1w6wfl9NXOem6iC/s96tXSjqI65pqepH884Q8r2Vpzvkqc48sQBTIudW/p5nKoffQ+fvPoVpOsOWxoeuJyj2seg2+6Ns6ZcFA6nj0tzee6B2R7KpE5PBay1MYh3csPg8L2l/n59z5CzAIZpUaR8dHXWPzRWVynUMWsvAyJB18bJJ3Ml73fTuA2Touq8urMdQBOWGZCyqSdeyX93YMFKTc9T5EtxFQgpdZ0rc39/X7e1t3d3dbeTlOz80F7pareKK/bG6DP3mrJQzVG5U05Qf21WAQXr/9PTUASSOGQp1XGlzLljihw+58/vKMjSuEsjUZwcCae0J2SK9D9lG1+tUlgSoXVq6NwQGhqQF6lOenl4CBQSNCdC32suZAel0Vf+BSM7ycWpxqL5vAQo7AQPbOAVvfCouI+UWLTgmVIBEe/E9zaV7nv6fX+d1YCSkSI8AoeqFdeBOAB7lmQavrp/P591LT4tLKFUOYcgQs37smzSwWvX/6pIAKHUvgYGh9RNDaVOI+Nle6lsdOPXnn3/Wn3/+WX/88UddX1/X+fl594jg5XJZd3d39ddff3URtEBgVW3oMfWbZfBytaI2Gp4UhUvIDni6alcBFO7E0SJBPfaYdX1+fu49/TAZ8FbZacRpjBPj+FFR2DbiZXjNOGo5Q9mN9FRLAgGuCeA6KNLf6TVUBkbCLlPAAK8bC1xaweRQnp5Pum9sLYHGlwNj3av7ycD4/UM2JclrdfZTwMBrnUDLIPtagTRHNZu9zEvRyalTaRDToio37m5ImRbLmkRRxhibIcNEp64oX0bx9va2jo+Pu6kARYVcVKh7dM7A7e1t/fz5s+7u7ur+/r7bRuhINVGkLUOUnGYCZF/JqLYkgRWvW2t9Cg2lLxblK/W55zd0nfr49PS0o8+/ffvWHTalfBaLRQ+4caujG3R30g4Gh9rKyz0mHFN+/LGXg0Zb7S6gTJAssKNFhPP5vDcFksAs8/A6ubPw8u9SWvoxZFtdrxPI5TMsaEMIBNK5GR5Q0CYOAUj+5u2cgirWfVtJfeltwDK38nc2wtMjk0TxrcZub2lbPG33dxo/KShr1T2Vd0g+FAxMLUSrsxIY8M5Vo6TTzDiAiGIl7uz9u9IfWluQAEGaPmg5BXaq11NOnXNFVb8iLZ0tcHp62hvMirI0TTCfz+v79+/173//u/7973/X9+/f6+fPnzWfz3uggIpKx54GRQulpgFB5f4qlGsyLi2QQwbHt+6RsUlnNCQGKem2C9uXYIPnR9zd3XVsgByqWIHv37/Xjx8/6sePH3V7e9tbOyBhHUhpttqk1W6p7HynvrNt1Fa8z8G4p0MHxvuk6+wDN+CpHpoaUXvou6YRvpLOVrUp/ynXMTKmk/HFqJxq8V1RY4cCtZw+PydQw9+TDAGLMZCUxpyPOw9mppTDp4t59oWulZ5POWtG93B6mICAgCOxIa0yT/XBVR8ABqZkPhQZp05jw3AgqwO3iUzUAYnCaSl5mj9s5Umkx9/SHu6qvlK54SEb8fj42N3/+PhY9/f3dX5+3lGnelStWIOHh4eONv7+/Xv961//qn/961/1/fv3uru761GsLeeleibU78hd/ZLmz9L3ryCpjIkRSE9aq9pkBZw+9YHvwJbgtmVIZVDEDOnZE8vlsn78+NFFDTp2+vb2tu7v7ztqXavrGS1r3HAVM4GHJEXPQ2A2GakkPpa8HR0QtMrE9HwtRMtppPpw2kBOUnO0iSX4THlNQOXfk/6JaSIQECtAHSaL5A4tRcnU+Zbz93Ydq2OL3Rm6NwFZz5d2mmtnlGcr6NF3XpumWN02JGBE4KXfyczQDqUA1Nsm6fgU/1j1yWsGtkGzrrjplLWW83bh/0L96khfNd0qFzsuIdmh9QyKyFp5aX80F0ep8zUAZ7NZ91kR4sXFRS2Xy94qc+Wl9QJyED9//uwWld3f33cHtbD9SPNzumAqO5AGnLfjV5GWcfLIiayAnnpHQ8lzJYYA5ViEkgwOAevT01PN5/MOWN7f3/dW0vMQHtHlabFo1QsDtVqtulXMvkDJjWkCedQbpZfGkUdMGoN0+hwniRngeOXvvN/va0XIDDL0G0Ge+t5B8leVKUDAbSm3Kicg4M8LSHrtDt2BgJcnOeZUfskQ85D6dqj+HlD6YlM/EZB6nJxqspkeLNJ+p7bzNFgO6q+DAeaXGLSW7o/Ju4KBMZQ25X42gCuwXm6Q3AA5svL8PeLwyFdpsOxsZBo/3ZccCR04nYijRi6A0m9O47aUTWlRwWezWecM5BwYKS4Wi25utYW6E+JPDEHqvxYY2HWENWbU3Wj64TdynKS7/eXt1IpmmFcqn7ejtgxK7/RZ/4km18I76heF0Q/zUjSs7xSW0+/zso9Fb8kAJkNJ49wapy1g6u+U9J/6ggt21XZfYapgahDl3xMQ4K4lTg1U9RmadHiaOyPmQRnT+/RKAcdr26cFBpJwbYTfMyXIbAGUoaBJ/7td1e+JOSQgSOXwdF8jbwIDY5mOgYNUsRShMTrzqQIXIv4EHNgBTum68XGqRp8Z3ejelpKrU5kn7yE9xWu4GJAdTJaEAOnk5KQbuEqXq7K1HZFbDOkoqIBqA35m24319VcDA8lppWu8z6h3OtTHo18HAWlw673l7FvlckDK6SKd9Z6iOBrvdGCJAxHlkfreAbr3I3WW7ZOMLL8ncJF+E9Bl2okVaAn1Ntkd13vfMTLVMXyUbBNI+echIMAzBKo213O4PiVbmwKlsXK1XlUZBLjdaTn+VP9Wnpx6HmpP1svLMeaUW/VpXd+ankhlVdk0th0sj5WrJa8CA9uCgCFQkCgNDtAhmrYqLyhRZEEjJnEg4J3rhp7zqiobFcNpIEb1TMcjSuan7wQyTId18nko5e+rVfWfokVGjv6oUB9QrYEiw8y2TH2aftslGPCyDDllglAaUV0raTEDVdvN27HPW//Rsco4cwWyz+m2mAoKF8x5Wd3pt76zXtQ91qcVWfscq+uHA9G0z1r6yN/H2juVI5UhgZ5dylRAMhUIaIumpp0IBKhPtG+etrfXUFn07vfS6dI2U5KPGPrs+Q3ZH+o0AS11eSwQUhmHpDXGPQj1tlDZaJOcOVA/zWazXtm3lQ9fQDgVODhiExCQAoumVYXpAEWfyGHKkPi8YNVwpyWjRUUkK8GGd0V+eHjoGdnWQ4tYJp82YN6z2ay3D5WHU1B55PTX63V3+IymBrjlamiR1dD0ike86f5W334VGer/VgShe9xQpoGXgAA/p/T9AVgUGgKKR/wpHy8TwV+KmJWf10NGsuUEBGSTEU/TAbpf/6XDVhIrpWeE+OI+L8uQ0fc2Yf3YBintXcmYDfOxmoBtCwjQjjoASIxAcuaSBAa9DZMeqd88SBprj1b7tPLkZy8zA7ahfBMoGAILQyAgfWda3p4cJ0dHR90OBp0jkoD5NsBgMhhIzmFogGwzeLzz5NQToq16eSZ21ctKfd6b6MyWKJ1ty0txRZbh0n9kEBxAsN4OBBQBqt4c2No9wC2Fyvf5+bn3aGLuGhgTGmRnQFTO5FSmDNBdS2tguOHkq6q/8FPt6NvYmI4+M/00B+hoP4lHAvqNeVGH9ZnTWDRU7pAd7LozdRDidZM4MGoZRublbeF73JUOzyGQAUx61zLISseNLMdhOhgpObzPlinAhr8nXeZCQQGBqv7WWD+HomWnUhmGAHACv/pc1Qd9vp6l5Zw9D88r5Z38goPAVB+mpf9cz4Ycr18/NEYcEEio71zc6mefyE61QOOYvIkZSEhwW/HOohL7li5SOXrRKNBZtqYGXBjRtCjNdL++D1GyCXW2oslkFPkgmpOTk+6c9ouLi/r27Vt3Rj0PDJFh0zoB33/Ndudnp8ZZLioYn/iWDEQyoF8NCFBnWgaUC6uqqscIeAQlSWCAzs9fHhEnxzN0D42AHlFMMEkZ0ms3dMzbdbPFtvl4aEmK0mazWW+cc4qPUwE0qv47+4D1S6KyCoDTOY2V/6uL63LrQKG0NkBggCCgJS0HSN1wpjeBQQltil83BOK9zv4b02+BWNWj5aipd0n33Ua6DibwOaUtHdirDrJPCdQzj23ZgXdfQDiEIIfScEDgwECSouxWXozsqsYPvpnynxrc5+mdZvKOSEyAXr5ynYPXH9xycXFR19fXdXV1VZeXlxvnsmuBWXJYbFPOwbaMPNtV9xGMebu0wAD/37WMsQO+NbSquvUVXHhJw+n3t2jmBDaUl8/dM12CRC4gVX4sm1gg6Xp6uaFIINENHPs+9aOzY0yrqg0CWB/pPdtDhlAPH2pFWMmYtwIA/icARQDcAu27kCngphVM8RwBTp8mIOBrn8YccHKcyX54f1cNH+HL+lCSXjmwSADD71FayWEPrbFp2cYxHUlAwIPKlI6PT7HE9CMOmvWe0p8iW4OBjzDoLSDgSuHIdUwY1fjgToxA2rqRUGerDokSSp3tiFkDl9S/P7hILx4u5JGUQAC3mHHXAB2SG3s/XY/XE7HrfhoAZ2fG2moXwn5p/d/SPQHQdECV3+sOW/ezr9NT4VxvOKCdznTQUvXLWT8+PnZzib5tlQCGOw1aDlPikQ/HDMuna1uRov/mTsJZAo4R5aEXo3m1LXU0RUY+Dh0AcQ3GVPvy2ZJ0OAVTXCMgO8F+IAswJbBKIH9sPA2J69tQkOZjw3/X/Zx2GHPcnl5rDKSApnVNq+3ovJUP6+t2xoVgwNfKKK2jo6PemFZ/DqWbZCswMNQYLXEU5ve2gEAyqERWyZAR1Sf0ScMyhHw9gk/1bKHHlgHyCNKjREX/cvZ0Kh4NspPVFqrXw8NDd9SwP8TFnTWduJ/jMOYknBnw9F2+inFtGZakf5IEBNL0gK9v8XZIU1/MR3rJ/lQ+nNOmk5ReKC038twzLv0gM6TphbH+cf133UhRj8rYGkND+fg4od7qs4NQGl1G/imKZVnFPrSMZ4pUv4K47RzbPkhn0Toi1+21A4FkB73PWuChJSwDnafXNdW9qnpjYSif9N82er+NDlDvWp+nsgpksFhvjXfZHgW0fqjXVNlqAeHQ920lKZBHTnSAdHyJinc0NoQ0W+VvAQE3aulzy6AO0U6sr6J9fz69HDXTkoF/eHjo/tfvOkuA5wm4gaYzYB4Ovqo2t9B5nT1iHTMYX0G8LA5AOS/PE+8c1NEZqQ39ZDeK/k9gwKNenmio/70MXOOhOhBQUFfEFlVtHn3qOupGnI6S41HlkgyBRx9LY/2SQIHTwQQBvIcRmLN1/j8jqFS2r6S3VdlGSfecDfBdA75LYIgRcIfuNpC66IHOEHjQvXz331mWIWfsOpnsNdN0+zXGFA59T+Vt/df6PJSG6y1tA4WLy2nDeNjdVHmXcwZaiDpdy9/c4Hi0LGOZaOekwIwE1BiuKG7kh8qbpio0sBg9ulNIzm+IiUiMiEemon/1+GJG5vqs/8UKcE67ahNJsk6pjemgnE5szTO36r1LZoB9kpyet7szAwkE6HPV5j5gd/Zyuj71w4VA7riVr6I4lkN1eXx87OkjgSP7uqrfl86C0HGyXbxubphVL59u02e2r9/rdG4LQDpQGQPmfq//TmG9PSKd4tR2JUNAwKcZq14WmHIsJ1aA6bOP2JfsEzKxvG8qIPBgLrESpP9b7cDP1I8EJhzEJpuQPqfyjwEKB0sOoMbACNuDwTDTqnphRDRdwB0H27ADH3IccVIw/06Fc0fo8+GtaMIZgtnsZe6PilTVp5D4+9TFhX6fA4yWEiWD5APJF/Oksnin6kAhLbjibwQCMhanp6e9sjoYYjTs87NpgdGQDCHhryLJ4KWpkqrNtne9TqDR86HB1lSQflMeOlWw6sWAV+V9wz52uHaEddP9UxyaA2bdwzl8jvE0dtwYs4xpnKSIk4a6Fcm2WDh+br18fHqbelkIlL6KOJAlq0ggQFvj2weT863aXNOUpv68nzwg8hd1JDnDBNI1btyWV+V1B14P/udrSsiipbZlO3j5POKeohsOCrYRBzCusyprVfVs2LbswJvWDNB4sNAto8jPSVlYEW6DITpUpJUUzPdWU6E9mlc5WkqRIhs2fJqq8E7TtRo4HHwqI59GuF7/evqcpgnokET7acsg1xf4vLPSlJPQ58PDw27O2I8j5v0EKK1IIvUp2+M/QaY4LK9votXdeLbyIjtweHjYRXDKjzrPuX59Z3TgkY/KpPTU71Uva0mSgfdpCtaBEYdH94pAqEPedrrfgXhqd2enyJa0pqj0mcKx5lMrHLMJzBOYJPZkFzI0rlogUzrARaRDgD6BQNcR6kVa26L0nEVg/6tMtGuqW/ItQ0wdp8+8Hq124r1uh1u+jXXmf54OZYwtaJXRr2uB1pSGn0Wj1zb2+F0OHeL7GPXBtFzxHAT4dpiq4RWXUlA2JNOXgXTlbhmdqjaj0KoXld2jES97MlZ0AMzv6OioWxCo+d/FYrGxvoCMg0CAMy1HR0fdiYRcbV5VGyxFelAJDZR/ZpTg7bNrIVhNL17HdvSpkVYU4846RaIpD/W1+ougQdNDHtG5MV2tVt1x3RxXBM4qr97l5DjOfGzSGHtfqz0IwiUE8A6oEyDgOiG2ndJ3hqBlGNmuPgZZ9taYZPmHIuPPkpajZLtxekCPuHZ74tuMvd4te6w8EhhIdp/jwUGe7iH76ekkf5DOjfEpUP5HcRDLsSpJTt2nxegrCAQIzNkGQ3pFFi0FikM+NJVV3wV4vO2nAoJXLSBMn4dQmTMGLYVxw+EGODlrd35uKKuq1ygsC43g8fHxxqItTyMpB0UdlZw8jWdqVw5e/U6jSeeu6zXAucZA13p/CBR4udfrdQ8QtICAG+A0qDxdlaflED9bvLxDYIC0qt+fgKbrskSOkrsBlDYNnZC9/mOkpfk/In2CDkav0hGuHfBxpWuZLyWxB77LREZd7dVqn1YAoPE3m802gADFo/yxCL0F9JIeEhBQL9g+zljsQlpRvJylbzder9dd4JBYAaU5xR5TB3Q9HZqDMjom3wWSIvqWrU75S8hKTWVtOCbdPrbsQtJH2Unl6/rjUyfp5T6CviGBW35mug5IWH7ajXcHA8rEP7shTYNmCNm2kDcrW/Vy1CIHqg/uFMHROcqAOigQrcZ5FoICUqhUPKZB1Ezg4Yi51TbJSCkt/i6HTVCQ1lW4ISTVe3Jy0kuPA9VPJEvKNGQY3Sh8NfH2pnOq6rNM+p7q5MaTbe36KZ15fHzs2ljrA3joEI0m5+PpwCmc0pFjZ5/JGHhUnRwrx6A7aY/MZAyrqqeLLdo0tZ3ema8DTLJ9Ph7dSKaX9x+vZ3/TuLacy1fQZ+qsdMYXDco5SC9abEoCaunFvEm1S9whO4Ak4KRe+3qYVLe0EFegWICAPoFt5Gn57+xj72+CVr+XDlnXciwxEqctGdLNoekGByr8jX5NupvA9xSwVPWGaQJXpqH7hpiB5CRVOSn2kLjhSAyB56HnvVPY6XxnRyQgIKEhTTQxo3q2Dcvng4hOxiMUGvkEiti2GjQalFR2UlVuOBKiTP0+pshfxZCORUM+6FvpJMNV1Z8j17USDVYa6oODgw1QkBgn33FAISDwNR5VL2ckrNfrJvPVYgJkhMUoaTzS+ScjrDTZvvxNn9meCZQxrSHxcbqtSP9pd7wMX0U4pn0rISPB1pkYTMNfSQ/kzH0Hk9pI01jsI4JIBipuCwgIqvrjxw/mYrnJDLD8KbqnU5d4FK/rEyhxQOB2jUyBO22Cy+SX3MYmfWsBAs+HLGHq5ynyJmZgG0Dg3z2aYmMTaQ0tHGlFBClyoHN2B6+tewn5TqFvvE2IYtmR7owkPgg5+DxaY9SmNLndRPXx8vAgHI8O6WjSf16/KX3+FcXLzgiEkbnE6840aDy9b1JEQt1zh35wcNBNG/i9pPFbzlLfV6tfi0dVF0030CEkJ+tlpv7xiGCPCHkvQQLL6m2agGSyA7o3RU0sSwu4j0liFmhUld7UqOqjxfWOrICfMpgW/Q45Sg8OqMccH3SUXNfExarS2VZUn+yw9zntFp1yYm+oI25T9ZsDmW3anMFZVQYDaUy6r3JWTte07vH0WsK6OzDf1k6/ihnwgZwybBnVsULKWBIFpmskVPYEAvg5AQ7O3XJFptLme0uokC1FVX09AqIjcWpMA42ILymg6s1HkbLMvr9ddUpOPwEm5av3MbSZInCmsStxg8o24XqKVn8n48m+ohHje0s/Se/JwZGWp0HUok9FYh6R6LvOHlBa1IcEbtgunmfrFDs3WGPjw0FBi0FJLBIdkJyTrvN5Y69TsgWt33g/QU0aC58p3iZ00JweIMPX6vOqzektD8qc3qdDVzlE1as8FN7nQJJMACPZ1hTDmJ2hnnsdqyoCauXvbcz3pIMEJP6uceZpsj8InsVsJHug9hgKYFlW3edg4DV6u/UCQjfu3mFpQPrAHHIQahAaOxc6MX5Pr6rNTmZHKarRw0poxFuSypQAASMMBwQe/ZGSTYOQA5Fbekg7+2IhsityIoocq/oUMttwyHm7YZckpO/37UpcX5NB1Up8MiRVmzsQkpNmPznLI6HD5sDl//4fKfr1et3rQx4jnNgGGRwZHxoed56MCglCPSr0hUpefrZ3aosW08V7PA1vd37X+KU4G8f0knGk3rLPW6Bkl0KH7TuEqvKx2WlM+zSAA9lWUFK1SbGz/ckUcHeDbKzuJ6hLfcK2djagFaSwDAmUK60Uiaeg0e2Z6x5BQKseBGW61x03/V3yGy6t3+gLGNRsAwq2niZwpaoaPvChVakkiT5JUYdTLu74ExBI6TIiIFIlZeyGSPf6b6orF37pWkf2zMefTqgBxFPqKIr+pGhSXgEaPlmPynx4+OtBNowk2D4slxtUL38CA0NGeAhcfIbQGKrdT05O6uzsrHvyo6jO5+fn7tAmGrChtJzdIUhwAMrHIPscvhtnghbl5wCABo37yn3xlt/v48r1zMFLVf9QK3/kLdNz/SC44HgiMCBQcH1RG7HdXTdbAUrLsPJ+ZwhSOb4KGHBnrX4jI9Ba/OtAgItX+V+LEajaXKzJKFbiwE33UV9aEa/qQgDhUwMJ/Lq99no5+0n777pLvReodp12YKDf2EZKV/3Ba5lOCpiTtHQ4ld8BzRR51ZoBdnLqeF0zxUHrOxuL39nALokRGBOWwZWVDehGi8BHyC4piFZ0q3yJRuNg9D3Cp6enPYDg0aXYErImihplDNwAcvDodzqqVEfmOaVdtwF9ny0cuA4Erq6uOjCg5z2oHas2I17XCQIAGmou7CJNKocq0KZXVX/tiKdb1Z+np9Cg0YkTROjlhsoBo35zEKB3jzzZLl625LwcXPN7VfXKoHdv86F5VbcH29qGMXDx2ZLGqNqD0TofX01mK90rh69gw3/ni+CRYJMsZFX/XAleK5G+84mqBAcuDNLY567nzNvrS730OnhAqfto1wmw9H/L77kv8F1aLWnpZUtn3R4lgONBw1R59TRBUrCEBllIvtxo+PWpg70xnFbxAeuIa2hgO2NA6sbz87nOtFc7AR8OmESn+X7h1AZEukSsGqTK0xGvp8HpB6cAOcjdafynitpNbX52dlYXFxd1eXnZ22pZlR/O5IaADBKjEAceDghkjGQcaRRpwGSoBQjdAZINaPW19EEPrEnRf6of7+cBMSqnz0dTT4eiTAegLIfGWlqI6NeP9TP7QOl7ZOn5pzZJUd8uJOkVQVM6G8SdnNtrriPy6UpODyj9BAZ8m3ZV/+maVS82k6xl2vLo/oAAmaxjy6Ylu1z1Yr+ot4lZ9rQkzk64DXdGS+Uks0GZakc9oEtC/0Y/6G0wNc+tFxCmVwIFKgTnSPid6Xrh/T8aB97PQf5e6J0OgZGUhAZbAyitMXAFT4rkzEDaiqOyJKQvJ75arer09LRbD+Dbv1juFN3qf6afjPW2bTimzJ8lrDfBgI50VpsxanCHlyI0gSpfQOigU/ly4J6ensZV37qeL9f5xLjRqfs2I5VToEDioNF3pegzy5f2rbPMVf0DZ1rTJcmo6x6OHY98Ut7e10yD4DmNUZdWoLJLSXZWutSK1qknfr/01Z9uyIWjZKPU9ukgMkbsuoe7WPRf6/wSDw5VL3fKVZsBlvIUC+bOUen5tFxLh50h4O8e8DIIYD95UOntQD84hb1yG+rfW2PF6zRF3gUMyNikBRtOzXgBHc24EXP6RQtPqvqOzn9r1aH13vrPy+UDKs2tef2cslI9SCn71sY0kJQeHZCOH63qo9+q6i0ya4Et1UcKr7UF7FuPkinJMXkb+LWfLWyzBASq+jQmgcBQfRgFy+EprwROea23m69P4L1iEiQtIyZJkbpAJ4GLO9ihA6foYFLU6e3BMUL9dAAi3ZQO+ir1Iaef2lZOv7UIeMjwtmSXgMABPNtberMNK0C7I4Ao9km/CRSQxqcTI0uk3xILQ53mWhkHmxQPGBMA8OtbIM+dsJe7JQmMCHhQ151VIxOQ9NzHkgMCb4/ki9z5t3Scn6fq+qvAgH932pS0uYwMI5Yh1JoAQaowURmPb2UDOOqcUpd0nZeTFJvPvTH/MRSp33moS1WfmuKiLQlXwB8d/TqOVMZUyrdYLLo0CJpa7eDz3gcHB12evlUxKW8LlRKM7BIMsN98SxbnMfVyo6r6SJxd4ZQNo+Sq/ly/gwUyDMlRDRkNB2gcPzT4NPwJEMhQL5fLWiwWTbYgLahkvqwXdd1BhU9B6R6BJEaZ0v+WAXcQwOkAB+DMk5Ickt6TQf5sSTay6uWZDS0g4PfzswM32TDqsY/5NNfuIEFOks6S9zqYTHXlu+6vykCADC5Z6KqXKQYvO9Mcy1vXyn+pbbSwkNMizmATVKeA2MF1AgKpPCxT+n3o+5C8aQGhR70eKbOzPMocQ6763BrQSouRLRuABqGFtvSZ5dP9STG8nlokpseGOhhQ2mwX/S8hFcxBJcXR6nbNLc9ms243gQY1jyJlpLVcLnu0IdvSET2NMfvJ1yK0IuUEAthu20Zj7ymMhrhbQ+1OMODzimNARm1KZozGlsZIQqPO92So5Kz9RcPo6XAMSfcEBC4uLjbWpKj+3u8sQ5r/TLSpfpeQpdI7jSDTkT46yyYdbLGLLaGdYjmH2EPWeZcAQJJsrfRRfZJ0lsGI64XbVdpbD8qG2sCdGJ2kr/3w+rjQDvnukqrx/naHrd+kZ62pgTGn63lLd1RHgR7t4NH1DgJYltRXqZ3YNhwvU6QVxAzJVmCgqj3APPKik9MiJCEpIrRkTNy4eScpXVKKBB2JmlG6/tnrkeqbVtzKoZydnXUOxh0AIx457Kr++QAso4wy5wEFBpbLZXfd8fFxZwgODw/r/Py8VwZGhMvlsruXBo7UMMvLKM/bvoVi2Vbe3rsCABTpHtkcUplqI27LHDIa/K424+4POkWnJlsgmMJ+ktHn4is3ap4m0+a8sBZNaveE9JH6pUWNjOxYlxZjx3qwXAS1Q4sdDw4OetGW0kqR3ZBRpMNPwJ9lGwK3rd8+W1LQVdV3dN6+rrfplfJwJ0yn3rKPLIvSoUPmPQy+Envh0xTuXGVP6Du8HFWbx8YnP0BQ5eXw9PSZwRaZLtabeXJNEEGBA4GhMtCfqd2GHD1tQfp/SLaaJmAHpxe3EHE1qjp4uVzWwcFBL9JkwRkRDKE0GoipEcJQZNpiAjxPj8ZUL54LQDCgOh0dHdXZ2Vn3P7fYyPjKINMpMTKnQ398fOzS1zSBGArWQe+cqyNLwCNF2YdVLyvJaSyHnJC3F9sp/f6ZQqdLMKR+eHh4iEDA60dj5umToWF0q3ZUH1N/XRjtkcYne7FcLjciDi+LykNwfn5+XldXV3V9fd1bL7FarWqxWNRsNqvFYrGxd52Sxrw7CeoJT8RU3dNUA/tHRt/BULqXjsHbgeBFaTpIGLIHX4kZ8Pamg3CQ5TaK7y5sOwYB1HPadUW/XOnvDJLyc+DoC/28fQkG0kJq2TA6cZaf+aVInnmwvK4Dfn0roEzBJ4UAlmk4CBgLWNU3iRnwoOGt8i5bCz2C90ib93DFO8Xv52/sFB/8rUh0zAkR4XmHJGPvzqTVmam9GJlVvSzsk5HX+2KxqMVi0Tv0RoZf1yl60+8arGIFtH6AYGU2m3XzwVV5u2CKUrnF0COqVru2ZJdRFo1pVX9B3sPDQy0Wi1oulzF61zsNo9pXRuv4+LjOz8/r4uKimzKSQ314eKj5fF6r1WrjsbIEXGkBoS+Ca63EbhlC1V16cHp62rED2k4p5oni41t65gygL5Skrqpsvoq7BQYETBITSACVjCLT0buCEJV9yLmnCDCVcRdCvaODrNrcLue6m5gAgTOJjrjWMeW6V3lzaoGAwNnPFNix7LPZr0WsrrOMeqlbemlscFGjfmuBnaQfyb75PT6OmEdLVBf3Nyqns4JjIID91fJ7LVDgerytvOoEQkerqePdkHK+nIN/SFqIyxs7OapU9qGINSmoRGVVxwodL5fLzqlrYNLwKE8//KWqukHltF/L0aYBrTLM5/OO+hVLIOBB5Or72mmYvU+VTzIuQ+2cJCnrZ4obRUabnH+fAuyozzSUanOBAe4YEPAQ6NNaDp8WUhmYB8dUqlNVf4cNDZD6++joqGNAlstlr2wPDw91e3tbd3d3dX9/34FROhmvs5+BoL4VsCB16kAhOXSff63Kzwdx+rclTk2zbUhR679kSB087FJ3ExhQGyZnQz13vZe4nkgHqUtj0zFMK4GtBByTfVM+BB3OUAnUcbymdSyJzeL4TWNJ9zng5Lq3Vnr6zdPSeKCfSqyAtykDa2ch0gJETp8k2UZv32XNQAvJp0I5SEgDPFUgpTdkuD2/ofowvVZ0wnwdMWog8Rx5tQsNXVX1ELjyTy+nTL295MgeHh7q/v6+l7c+azvZ2dlZBxzEMHDqwB2+139oOqbVB57mlL74aKEB1Hc/T6Bqs8yJGSCdSaNFQ8p21sunhgQGHHhp8Cs/P9iKukVRnm6oBCy0RkLPYnh4eKi7u7vuRTDgu3SUHo2qg1Q3qL6Ayg1aMqi+Et0jo6Fx7304m73MYXNspqiWZfJxsSsh4PToWO3rrIDK3HJ6FOrl8fHxxjQNhfbZAYh+Z7tKbxWgOMBjWlUvwZJvtRaI1jU+XeDtldrBg9VUL+kKnbDybLWpsw3evonFS2DA/SJtcApQ9f09dXNrMMACsCBOoTuSr6qe4XXAkAY9310SiHAn1Cr3UH1SZ3sZfaEI6VFXHBpsAgYpuLfJWL1dlK/me6uqTk9Pe4wAIwsqOo032yKBvGSE03fe0/r82ZIcFqWF0vXuaJ2O0KceZrNZ73wHTf1wLYjvC09ggPpAJ+bGzAGiyiI9pTN+enqqxWLRTRPIsKqMzgw40FD+BBzuIFK9WI5EaZORalH6vD5FrD5d6dEg2zEBYOXhtq3lGD9LPFL28UsHk6QFCOT4SPmrf1o2z/vP+5L6QNpfi6x9vr6qv55JfeX1VZTOxaUcY6y7U/Z01mmqhdMDysenIFp+zoGs5808nBFoAVoP/nyMpbp6279WXgUGVPCq/jYpdx787Io7hvynUoJTyvjWa1wICKpeojFXNM656joedMNBRIed5qpIbzrwUtSvdEn3pcg39YcbRwcEyXgOtWVypm9V1vcSDqIxQ+ovGSj2tejx9XpdDw8PPeMg5oZrQdLWQAoNBvVM6fqYk2F3Y0PAp+hvuVx2TJIiwTRl4esnqvqryxnNcRrKAUHSs7F2V7o0cAnAtQwvdxmxv71PU+DQAgS7ElLnbjeSc5laVtWT+kE6XteQfWiBWI9SHQicn5/32AHqttKVzUtTC8500V4mPXVd4ZjVO9ux1W7UH/dxCRQQYDmQToFeS4c9/xSUJfvsgGBbezsZDAwpoBeYSIv3pmjUDUViC5jmmCTD6r8NObP0H1Gap02Dp4HkSsKB9vDw0AECGvfj4+POKAut0/jKoHk51J5iBzS4CAwUkbriJ+Ucahc6dAdwydimqHoXkvIlQNN7C60zspjNNo+gfn5+7qJ/ivpCrICcrYRRSxpTSf85ZUBjQQNEECHHTTCgnS1Dp1fS4bMNWBZ38DzTouX0Ux19zCdalJKMaaK3abgFjt2QtoCAp7Er3eWC1QSoU3tuW1Y6Z673IHtJtohAz205QbO2OwsQiI2iXnDqrOplwTXHGBc8ihFw5im1B3WZAD4BQW9XtiHHuj47A6z2o83mK+nzFCCQxp3rsfvh1wKCrZgBDnA1SGvQ0lHQSA0N8m3YgBYL4f+/dnA7KlOdqWBjxkjXEU3rM7ehycDLQFPRU7mpjGpfDRguZFR5BQg49++gpdWG7ggYUeg+H1h0/rsGAirXEIp2ml338F5ue2LbqX3VDw581ZfpsJ2qzS1wKgfLIgNNQMzo1ynOdC8j/qenp+Yx2rrfoz325xQm0OvgfZGud9pzSGdSBE9JoFz1S+BG11GXd6mzEs51V22ucUpObKzsQ4ENKXsFL1rwKsftU1scT+y7g4ODOjk56Xax8NkYZFOrXub6dR+ZENaX9eTY8booD/4/ZPOSDWB7sx88KKPO6p3btj2YagEQLw/Td0DrbZ3S21a2ZgbcCST0z4I5apNQGRWFMNrg9UMAQmmNRRM+QKawDCoDB4fu9c5qCZ29zxdzv7c62kFAVf952K35uufn524Akarm/aR/vd3cCFORqdDuMKZMM0zpn48UXy/BwUO2KtWFOqsByejC1wF4Oyfnr7Rp+GQ80vwi700GUS8aoqr+0b9VLwaYO1n8IUtqF89XkZXrhq7n/QmAJweVorih673vXL84PabxQodCVoVl8H72PHYp1N00hhIYb/0vUZv54ldF3QIEZJMWi8XGUwdbzsfbMukFp9ik/wQDLDt9AvWQutMClwxEHbx62qmdPMJP40VlIAjgIthkD1kO/07fslqtutNlOQXm5eU9nu5UkPCqNQNuRIm407VEV7xGFSRVy3felwamzwlKQZLToTNw58ayMn/+Rpni1HyAcrsZ66yyKeo8OTnpMS98QA1p3ESt6rMrAqNUlcudiET3kRInna28nS6k0XHU7M7js4WOz4/KblGd3k5p25MbAz83gGnTyDkwoR4zPRc3Tl4ejkFfl6A0Ux5j7I1PR3hf+pSCl5OGimOZ7ewRpjuR5LQp/J/RIJ3elABgCNTuQpLzSACA762y0pE6wyXnLx3xHTC+piRF6l5GTpN55F+1eQqqxH1CWmQ7ZMMZIHkAxetoF31sVGUbyO20bLs09ljX1J8JhKTIX/U9OjqKgaLuS2Db+2ZItmIGPBpmYwoJCRlRWCH+po4kza3/3DGzYV3hnTLnvAr/98gm1dHvnzp1MQQkHPSkaPHk5KTbu63fGBVo3k7TDozOlQ+paKf2HV0zSnKlGULDHOSUFNnxO98/WwgEPDKsypQr9UROV1ue+BwIN5zONKjdEwPjgIIMkMrF8rijZT8SFDgwTIuZNGbFEqTxpDJW1UYejM6GwLHrEkGDt7/X2fUyRVEJSHm/0RH5VMyU6H9Xeut503G1AMEQeCGzlda9VPWnC/zlDtMBLfWT5RUgUGTrTjSxoapbWqSoPMhsUJQvbaBPVbfGqbebb+10ZqCluywL28sBTHLg9D2sg/wSbYmDa5bDv4/J1tMEqqAy9wblgFMFqjYjcxosIiqmv16vY2c7uHBj4Y7cV5Myf1JvzJed4em5wXIAMMWw+e+ig/TZKU2WV4DAB4ne9ZmLCKk0bLchY95CtkMy9P9UpXxv8ei+qiKT5QCG0YDObBBoE0Cr6uvAGGtEQ0ZnS70RoHaD745fC7QEVKj/DrCZjq7zlc8yctI/5qn68wmdzqgkveXcKY2YO62hyH8owkljTP1AZ6+XQDT3qrsD8zJMAQwfKW57WlH5GBDQNQ6MPfpW4MGo3Rm0BASkF9SdqurWqFRtjjvlwTb28eT66ayY61HaEeFpJyDg7aV0BQCo+w6iXiOu7xxL/vIxKfvg48nHOftqTCaDAc+UFZJzkqTI250xC8+Cc/9oy7A6TeNRa9XmXJo6tao2ysHImQiSv6fPTDspnXeCFFu/k77SgFEUwzan4+BCMCmyo3LvI0WA3h9cOZxADVfcE8xxADnwSfUeQs6fJTRYEq5g1uDi9WJqzs7OuvUdPCeiavNkvar2QkQ6ReljWhREB837PULhotOTk5MNMMCIKxktjlEHyvouAHR6errxdE7pEOtKPUxA3iNyjv2WY2c7bOuYaSOkx2JDOJbdtiXAsgtx29NaWKzPQ2WVDjkYINNIViBNCXi70EHRcfpUAJ+06vVLFL0HXt4vrIf7mgQE9Dmtd9K11BUCDgIBgQ+WvwUIWjrs/dQCwEpb7Up/MSQtUD0mW+8m4OeErnxwVW2uxHRHXLW5+4DIMok7QKdGvcGcFnNqVPly4YeDAw4Yp3LT9EQqMyNBDRLdT8Wm01D5eXphokVbyFo0ndeXjoPioGA2m/UG8tiAcmcowDKmxB8lQvNprp6OjfomQ6OV0Ofn53V2dtZz1A4E3HAxEnZn6+sX3Eiq3dR2bqAcCIgZ8HGQnK4DE5aJFDLzEBjw9NUOKXIk+EpO151vy3gyvdbvbmA5HjxN2g4CwSFAsCvxsezAUTJWTra9tv1x8aDy8i17tA3J5vo4SlNVso1O3SvvFJmrTtRp6r+DAQYqTNdtHgEVWYcEbgi8006isUg+2TvVie8sH9MjM01Q4+m9l36+aprAC8yGFYrxwrrhccdFw8mz05UG83WHnhw7r2VU5UZAovI7qNHBLIoq+E5Jv6U6eFmljM/Pz91THd34Hxwc9ChhOhbOZWvAEdlrNbAbUG45030qMw0Atykm8NQyTt5frQH/GdJyGO60yR6oXc/Ozury8rLbm686MXKS3lCn/DsXI/lLBo/tQ2pU7w4k+LRMlS3NjapO1M8ETrTdlWsjOA3htDIdBhdP0hA6OGj1TwsQef/xd/8v2ZcxYd/T8YyV+bPFnZwDzyRDoEGsFx0m7bgzSxwbfFE/E1BQegz+WB4FKxQ6ZJXZGQ0yEKTNVW8HfKwbQbyu9/ZJYJmgR/elNnM/ovLQJjiL7H3pQa3/576GdX2tnX3VoUOM8uRQSG/r96QgaaDS8VX1Fw26wfb7PAKh8F6CAf7PDvE6qCxqfDoA3aP3ND3BurDM+l1pc+5Z5fIV8ARKGsjHx8fd8+kZtepRyNoSpD7iQCAAYLl5YmFrkFBckRNwS4Pus4W6wHcHi3SMevSvju89PDzsjhwmCE75pPHAOdVkXBKIdp0QTdla/7Jer3trCKpezp+nYfdoTvUVC0DgSRDNeWWuMicYcGOl7z4Fl15sQ2/XFphLQIH6rDqr3E6zJzbF092l7vo4qhpepDsGYFxfPDCjk0s6LMbMzwJw/WI5hqJ0BwOcl5ftlr0jKGjZc/oet1cqi9twppEAOF9O17cWEKcAicCXn1uBlLMESYbAcqpjS7aeJpAhJH2RaMKqvhNOyNCVLzkWN3Y+kKnIraiPSNbzZz50DE498aQsX+HKDkvG0FF9UhimxXpL+Xm+vWhrDURFsCcnJx0wU37+eNokRLepLmxrom7vq6T4X03IAKSoko6RawXIVrH/vR9b0a2XgfqTykG2zMdFYrQ0LlkOAuyqtr6TBTk9Pe3qT1qUddZY0IOWfO95ilx4b1oR7+3lzi2BgSQerVVVz9m0GCqnY4f67zMl1Tm1UXp3Ub0Tg8lI2e0SHSunzpwtGhoHqSwOPKpejrzmePBpKrfPSs91JgUuzEufGRjonXV20M60/DA5AQLXc/dbfHd95DhlP6TrExj6FGZA7zI8LLAPbqLDhDzdAaaFKnpPHe8oPtEpuld5eiTs1wkIqPyc09WiI0VCdJ4cSJxPllK4g/VtgQ6GVCYq9eHhYZ2dndViseioaxk5riwXij49Pe2mCYSqqaBpH7rKnWguH1xpgCREusuIaqo4/S4goHUCZ2dnHZOyWq16EbMDCwq/u7Ohg5LOOYDVbwJgyRC6Xjsd2iqPS3KSKqv0X2tPdCqdwABpUpXJx3dr62UCnB7lOHhRmhS3AzzvgRGkj1eNeTfAbK9d6vBQ5DsEppKkQIx2rNU3bgMIHsVAOT2usjgDx2iY5aDQhp2entbFxUV3nLHf53kmWzrUpvwtldXb3PNvbcH0Rd6t/vTfWG7v31adVDZfED5U3yRbgYGWsecrOZiq/rZBj4yYlgrvnePTAI7ulIZEZfW5Wleaqs3pBs2leVnSFAdRIZ1s6zQ6BzFqV/+dorzl3PX4W38S3mKx6NgB5cnIT4bb2z31g4MVDmKW19uD0yC7jqpa0opKCQi4OE86RKfszknpVrVBkdpLwFJ64msHlBaBLI0fB79+V9+miMUjdi+7pqGUn+6nE5We6Wha6p07lKQ/ZA9S+7uT0G8tw6129X5lcMI6MZ1WUJD67isI2ZkWYJJwrPI36o/6QkEdnWoCAS37LtZSn9m/Kldrelj/aQE1bYuAgEDA1dVVBwaqqmcHPc+qza2SLkNByhAg4L0cW63zGNieSQj+kz31PMlitMqYApOpYPbVuwn4m1ec32n8Er2a0qYjr+rTfLw2Rd9MQ8rOqEziAILKSIcgulR5MRpyJaCCJCAwFqmlDpTicdASEPBJdN++favz8/PeHCjnTLkYkv97lJ9AC9u0hZYpnNJJBuozxQ/kcaPHaFIGKi2Qoq6p7mn6icL0CXbZ7q0tUhIf3H6dG/S0qC/pn9KhAZNu+RaxRIVSv/nOMlF/3VCyTbye6XNygGO6Sv3kzob/FCFwI7DxF3VrKHCj3aqqjX7xgIz3sz9p55VOsutiZlarVTdO3E8oT44FgYGLi4u6urqqi4uLDjDrCaG0ww5GqZ9ug3kN6+qBX2ICVCeOB4ESjrchppsiH+V9NSQKWh3wvRXIvvoRxiyEN7QrxdHRUc9IJAPpxkoO/Pn5uVMCVZbpe2cn9JkoNeafEK9QrwyjrnU0qM/+AI+EtCnJ6PF33uPInm2vwfDw8NA9q15zeTIMpEVd0lzYmHElZT0UlXgddiWk1lvRs4MXtZvAFh0JKXE6HDImVcM6xrKpLK25SZeW0VVdEjPAckjcyeh637LFCDJFPW740nUeCKR6DRmzlrFrRa1Kj87TGYKxPD2fXcgQO5LAgDsICm20wADB3ZCd0v0cOzwqXbbR9VJ5HB0d9VgAloWMR9UL48AzPrhAmhEyxyltpH73tV5JVxgIep1Z3qr+seM+3hxUEWx4up4f25+AzoOAFmBOIHFbnd16zYCjUDaWOy2Pzj2tluHk94ODl9P2HKW5QXIh5ar7PA2WWXl71JbmHBkdUTkcBKSoUNKKdloO1Tv6+fm5WyCowfj4+NhbDU5QxToOGdBUHs5Xq11cWLehen+2+KBixMABTH2hIdFaDNd36pwP0PX6ZdeN65rS0NjgvHYCBFV5jQbT9ekqZ6mSsXdjpPt865bnmYA7AYfXuZX/mG44AEjOLY3fdL+zBPqNRneXgLUlKVBoMSbettR7d76MYB00etpM08cG9VhO0e2sR7/OJlTlB3j5FkaCbS+HTkykrfNxzu8qW2rvVHfWn+3mayWmBICJ2WPAOgTIJD6dmNjvbWVrZsA7ugUEfGFVC9UnhsDfVWFXbH1OnUsFnM1eaNmUhnego9TZrP+kLKJjV7oEBFQGvfOV5p+H6GK+k8LlroGnp6cOEHBnQVLg1G5DiJQOwsGW0kp9uEsw4I7cGSWW32l1zZMn8KP0mA/BbIpGfbzQkKqNWV4yGq5/+t8jk5Y+JmOjPL3eGnMsCxc1+ly8O900Jt/D2SYw2zKiLl5etf+u9XNIaAtawD0BHOoXhYEav7fSTQBYDng2659AmVgft6f6je8Utx90+rPZrLd41T8nVjbN6U/RFfdfXiYCApYz2X61aeu7s5KpTXx8ETzpPb22kVc/tZAF0W8OCviq6jsPH8hjiMYrT6PL7ywPAYGQkyt3ix1QXgQRHvlS4ZwG9TIlAKB0+V7VPxCG97f6QeURINAASAfF+OKvtNAmKVJSsBYISO24S2Gftxxk1eZDRaQTWhylNJimAzfq6XrdP1pY9zuYpbOXYWjpAvtA1zkAdWPnup0AAdtCbeTHd7PeLKvaSEEAy6bPY8YpRWFDDqQFBFr3uf6m9xYwmOI8Pkrc3pFt8mtSkObC/1prrTxKdbtJ58z/qIde7pb94jjiOOTaqMVi0Y0XfZ/P57VYLLqXwIDP2ad1NJ43ddWDHWe03cbr/tTuPgZdt7zfCPiHhG3GgPe1IEDyKjAwlBkbjEZQUYZXdCwaTulLUuTdEnY4y5nSolLSUCfwMxR5OaIjECD95b+JoiUrwTq2nFpV/0RDARnVhQPZB03Vi/InZW4tFGRbUFypd80MeISVDGoaSGoj3ad3XzdBwJjWF/gKbr1729HBK8KmcaLear3BGKhNIICf3UARHJCVU90IBJgWx/3R0VHHVAhMqT5prLhhZFn0WeOJ97jejS3CHDKWLdvknz9bHIAnYJTAjf9PsMc01SfUuyEw4Gm0gkIH1CxDqpvqp8Dm/v6+Vqtfi1r17A2xAQQCAgOtaTHqJcdPmgbzoJQO2hk3rrUYYt9Sf6Zgi59T37JveH3S+U9jBpRZS9jgs1mfSqL46lgaGH5munwf60gXj1ZSub0TU6SgenkHJtSucvqLx2oSGPAkuLSQS22rBYt615wZlZK7MDiIiZrT4Ex1G1Iu/4+AQuIR8meKg4EE0Kr6R656hEAgoHcCWa4vYSQtwyFjRVamKq8JYRmdNWKZeW06gVPiYIIi/SYTwRMHCXq4I8OnXiSMxGQsve5usL1P2E9sEzoZ2pd0Hz/rnqk6nID/rmQMuAwBKm+3qhe95aJZ3q/f0mFVPm8vQOBONbUl0/Y6OVCXXVM/Pz4+dvf6Tip9lo65XSNgTfYnOXDVX2VlMODMQALeU/Ul+aIEegmoWkFrq+230d037yZgIVRAdgI7KNHfPj/qaTnlzt8kTq0OoU/Py1FsK32+SzhIUpTHvPx4YZ4DT0aAJ+ANgQENGBlYDgqeJ0CldbSc6pjaMTl730ngZfQIdcxhfaSojdkWjKrdqfs6EQl1MQFBd5qUk5OTXj+l1ceeXnLIBAc0wslJOjvn+kmGYTbrP3HOWSoHr/qNZaUOUUc9klNZWC6Kp5lAmWyK63ULuE+J1Kjn7qC+knB8qZ8dMLbuq9p8gmUaAx7NK1233yyHtx/LwbVLLIuucQCt4EZAQPemac4EMvVKQeVQ2zibkOwu85E4OKU4IPK+ov8iE+Flc/ulvJyVULoOKsZkazDglU1RZPpdlUpRmV5DyJ2N33K6CTz4NZ6PDxDvZDfKnpc7voTSGfn7OfB+zjb32eoz24n5a2DQ4GoujVsdRU9T2RKwSQjY+4pnhNNhsh/VFkToBwf9x1x/pvD5Dqqf2iZR4E79OxPl1HlLZ9lnos15AFTagaL7mC51IzluXU/GhyC8td5BQv30vBI4IHAlYNDjnZnvcrmsu7u7LhpVOyTbQEPJsZDOoXfDzFXiLm4rptoGv/criUf6XgfaCo7r5GTY9m6jHdS6PUySxpEfW9wKRnSNnL3/rnHDdBxY0wcMAYEEAulU2bYEuMyHtmEIjLZsxJC0+sr7ieV+i2wFBtyRtxx6S2GIZKVkNDTu8FRJOpdUcUZH6ZpkWFv5jIEB1cPzaym4BgWjK6305/Y/Rj9eRo/OOMgVbXKxoOqswzlYPy9b6t/ktH3vr8CMykUDoHZxJ8d9yZ8pjKoFonh6mgaWO0WJ7iGaZ7+2wCyvq6oeECCNPubMJL6GxBknj2CGIhnVS+kqDXf+HqFzKoQ6oVPjGK08PDx0IGCxWMTtismAOSjW8xL4CG/1CQExt9l6YDBmKBPgr9qMor+ScGzzvapv8w4OXo6qTaxdYu+8n1z3KSkgoM06PPx1qqt0gXPvyp/21f8j8HE2jesAEsvWYmrdpnudBPgVMDjA5lortov7lKHgVvbIhXVOutsCMemaoTK4vIoZSCCABqS1Z9oRo9PjnKuk4qqzeXhRkvV63aN/ExjwiMoNU+rkqv58GRVRByK18uTg4MDwyEv5K106GCmOU9AEVVW/BtHJyUmHnmnIHTwRfLCurAOvOTg46D3FTweBOKjhwjE/6GO5XE5TsncWAgGPWByE0TFKyChQEhDmb+m7nCe3ITl4cmdGypP5qtw8NpmANUXOPqbUJpyu4nimc/Tf2I4OBqteGBlnEHS9T7swLT4jQifR6eFcGhMCAZyC8C2SQ86P/ch3tqHK+1UZgpYkUOoOxr+z/hwDCehK0pgiQJRt0HMFfO2I+kvl1GfZeQYmPgWg/N1mD7WHj0sHBLS3BAQJuKd8W8xAYnISa+FAxsEQy+nBtpfB+31M3gQGfADz1YqWCBY8ulB0Q7Tjg5nPFyCtSgetwav7WA6f83RA4MjSy+MKOcQMsJ4y2qwzO5NKnTpPdWLUqo52irc1aFOaKZolwGCUdnZ2VldXV3Vzc9OdF06Wg+ifL7Wp5os/W1KbJAdAY+ZzcgKjNE50vgkEeLvSsdIAMo9EgZLqTyKAKXBGUOcnzfmKaBknP2jIgSrLqjxVD065qK81NmTs6eQ1ZeOG3IGzwMDl5WV9+/atrq6uOtCzXq97R3Hf3d3V3d1dpJGTA5HQCQ45u68oLUPvQJ9OpBU1Ux9pz1NQx3t8LRj7UP1HFtHXzcxm/QV6cpJK2xfaDoG6Vru0gIAHO6w/281BAMvAtpX+j0kqG1mN1ivZMbWZp6fPLX+Q5E0LCBMgoLOt2ow8k9IQDHgEXrW54tMjJ+VDZdJn7/AEBEi9Kz9HV1W1EWWR6qGxccTJyIgo2qloDQAHJEqzpUQy+ixfQrEadGwLloeRHX/TGofLy8v67bff6s8//6zffvutrq6ueuyAaFw9QImGeb1e13w+f52ivVFcX1qAKwHaqpfjVN0IeYTheUoHRdGyjZ2JUB/SifJ0tao+4GxF0VprojHECEuGOD15kyA1sWatNmW50x5vOWy1hfJIDkr14RPr9LhcAVHpW1V19dCjbauqq9/QNjDqgvcbDbqzfbuQFhhJYHOK4W85mZS+T4O5aLqNNp06zad/agpJU0aHh4edXqtvNFaSU2yNXXe+9AP+O8ef+yEPspg+7SiBpvQ9BZBsbxeyfLrG6+zggNc6m5Hy1fdtgOyr1gzwsyuCgwEKFyfpHlGcijCr+pG+Nwh/SwiNDe3OmUJjTaVOLwnT9ejcnXtSNLIARMRKk7RtGrCPj48ddaf7ZXCTsqZISHnpfjl/Hyj6TfO2Z2dndX19Xf/4xz/qv/7rv+of//hHXV9f1/n5eW8h5Gq16vb9Cv2rLLsGA+7E2b8e0VNn1EZqN6ZDBqEVWTJv6oKYIvUpnSr7Qc6V6xYcCNBpOjugtPUAJumkp+fsgI/h1I4cf9wl4VMUajs98lZ5Uk+Vt5yIP0ZadVR7qbzPz8/dSXQqF8cG9V1lHaJop0Z4nyG0e0ORsL9oqzyNVlocCw5Y3RZSrzhWHPAK2Okx4H692plrBLz9W0CAwQsBwFBg52xwWoir6xmgebBFwMv2YNmHHHFL/4b6mXVxEDcEGD+EGRgqAJ27RyfegTSyqbCJEWB+dGC8VoPAWQEfIFX9p2kdHBxs0F1SNJZRinB4eLixIId1JDPgA8rrorIkAEDAc3BwUA8PDz2gpEhvsVjUcrnsPdKYUw4tlOy0GdtPZVd0dnl5WX/88Uf985//rP/+7/+uf/7zn3V9fd09QIQOZj6fd2VhOXY1TcCokNMXdFJOJ9NoDa0joXAxk4TtIj0Qi7Jer3uL4pzJYeROI5miMAJN6pMDQt2n37lgjNNYLUCvcvKz8iQgJSBQm52cnPQML4Ei24oBBfV8Pp937cC+lZ4xDY4/lcnXE7mdSXQwP+9C1N+t/BMAcEdLMMD79E5d4nw/F4umYGq9Xm/YTLa/s1aym0xPupoeZcxyepmr2tuh9e4MAdsnBWutgJF6TXDOYK4VNNJ5s37Mg3m53U82PNl0b59WfkOy9YOK/DcOoqr+/CUdIKN5KjaRFyvkA5bKxko6LeTGmKKInpE5Da2Um+8qU6L0pdxE34yq9T2BEf6uiNrBAqM/1psHDWnh1HK57DED6gvmRzYjgRW1gdqDrIAeJXpzc1O//fZbt25AzozOhpQbnRUX5X2m0En7NiQZI7ZLArlqE++jFhvgBlmfk0EmsOUaAQIWXc/25PgS/Sqj6rqtfJw9YlkSsOXUVqoHy+cru91YehTmfUHmUO3BKZKnp6duzQDbTqyAO20fczxop8UW+HoKft6VtBg+OkXpJqdadQ9tqO7z8SoQwDNOBN4k7rhSsJVeBMHSo9Vq1T0ETPrrjt+DP+pIAgQqG+vs7LHGsj47kOE9DA4SoEp94f3i5aGwXCkA5Fgccuq0W8k+vTsYcMPFRvHo/fT0tKP33GAxemW0psHOCjEPj4Ac2Tpd04rQGEFUbZ7exDUFcnR651yn190NPf9XfjSoRNS6jpGL7nElFe3px3LyoCGVVenS4CVxikwORLsHtICLQEBTBLPZrGfU2a8acDIGp6enMf+PFi5C8kNLvP+p5wnAjA0sGhwaHv7Ol5wz2QlS3GxPN4LsL7IwDgrZv0n8P9dlLvzza3yRl6YiZLiZv35XlE6WxscOgZH0Xo8Td9aCdoXASWwHx48zGL4mg87ft7HtQpK9rdpcMe5Aserl1E8u9kxAl9udtY1TgEB5kxp3m0IwQHYhMUwpyPEA0G0/y8u6EqTSBhMU0j5L5wg2nf0isKU+UC8cZCcWIwWzLaZmrN6edgJNQ07/Q5kBKmhiB2azWU+x1GGa81YkK2NX9bK3NFEoQvBUHkeGut7pPe9sR3+6j9G0yu9G2BcdSsE4IFReCctJ48iBorZsMQ36n8e6Eggsl8u4yt0HI5Go2kj952UXkucioMvLy7q6uqrLy8tuUVAaKPxMZ8ZI8TOFCD/tdFCUKqGuy3F5RN9C6oxa3VgwfbUT24T66w6IwNCpfIFDOme9VKa0vS9Ru6qXR/XUXRo1d67UB28zOir9xnHj+sP+Ux+p/M46pqkCraXQanYGJBo/VS/ndbi+DIH8ryLef/osm8T+cmbQxzjXZgj8qY/9yF/l54AzTTOpPfXIY2e83Cn6Z5WZ9XUWxO2O6u0gQYBAaZElcjbBdTnpgrMiLHuyLZIhpqHl2Kc69dfKq3nbBATcyFa9OBVVhIuWdI87JBd1vEeaBAZUfkYaAhjsbIk7KTp1jwr08ujeqSemIyPJ07d0X9XmQR6MvJx+5e9kBUSRKk8OcCJ+Imitwk7rC1iew8PD3vYuAYHLy8tuIZcGOKNZRt6J8fhs8YiZFLwjeMp6ve71iQNij9arsnHW77reaVQKv3tER4PrDpy7D7R6n2BWusBjrt0RO63JF8uX2As/I97BKevGMaTfaXw1djzAUH6MDKuqB0LIBgjU61yMg4ODenx8rPv7+w26mk5C5RmKtj5LaBeHxhB1raq/qt7n9WknBPSvrq66sxxOT083gKbaTP2rsklokzmtqTG3XC67enBhpwNAvrhWh7bJ6+2MHttLv9EfpLNhPDBsgQAPmtJYlq3xII9rzVpCFmiIKZCka6bcl+RNk7hqKA1UGSNRb5oTchTvRllOo9VIjArUkck4Vr2ADTpz/adBzrLTSbDDtaecDjNRZ668rmAqJ/euaz5OEYsGkjunNH/JyIYGWPXj1IaM4fn5eTdAn5+fa7FY9KJ25qV0SHU7QyCAQUfEB4fo8Belr/rtSnyA+0vGUeDUxR12+t/ZKgesFP7HOVA3WtQx6Q2jdF0nh8bnuyd9Vjtoukb6yfUi+l336X+dcql24njnZ6f9xap4G8lIkoVQPXU/WSWCdoFQCR2HHNhqteoFELRDckYEVGxXMkbuLHYhnj/LNFa+BD6lfycnJ3V1ddVNAersEB3uVPWLzZ3P5z2nyz5kPgQcVS/BntYzJR+Q6uFBWALq7Bum6/fw3dkMjjn9T8ef8lXerDN3t+g+sg6ygQKr+t/LwP5lWRysJD1wad0zJFutGWhl6pHCYrHoDT41dOuJU0SACflVVS9Co6OSUjOK5srhqtypzmZ4BKQBQ2Aj+owIkHVnOo6eidAZpXEqhQtlCJT4hEICAI/CqGgnJyfdbzowSO0jQyon4myOjIbPwfo8n1iGxWJR9/f3XZm0hoHMQIqCP0s4wN3YkA0ig+S0MSlWpcPvVX2qtHXKpAwmF1gyHabn0RHPw5CzVB+k6Jz6zHMSql4iJJWBfZqMDKcXHJymaSLVk4bNGRQ6YNLZqjtBt36TXrIdnObX4241d63tlgL4ZIY4F640CQqUxy7BAKUFBAhs1U4MgrgzgO3y7du3+v333+v333+vm5ubjvWT/Vwul3V7e7thl9XudMhV+RAcjR/2WQJ7HmD5OjClX9XvG7fHbu/dgVJc59I10mMfqxzvDtLd2XPKmixhyk9lYX3chqXPb5U3L+/2jhQS5Fn5WiAlClMP0+EzqNmpVf3nDRBl0dhoUZoOtNDq18PDw5rP5x0a87lqb2SPjFVmUYc0tr5P1dkFBwccLAQ2iq610JJAQwMlsS1ytO7EGX1xoaOiIrWRtie6E3EwQOchwEWaWeyLpi3u7+87xkJrGAhSfLB8ptDRMIKgIWL/kH7W/UyLQkct3eMhWqJc6cg9glK6Pheq9FU+0ulPT792D6hPq/rPqkgMh8Atr1XeBEIJRDtl7tGdjzHVh6CUj6KlAVP70Aawb9QOHn0yotNY97KJCZMzfHp62frKJ3xKuLNH15O9+GxhxOoRc4oa6WQYuXJ6SEzfxcVF3dzc1B9//FF//PFHd5CYdPb5+bmbHqCtYcBFUKCyktEUPU59JxPmzl+2LwVoEjKXvkCR9lAyRMuzjZOkaQHqIadFOA3GtXAOElLZWmCL7e2AQGVXufx+vk+RrQ8dYqFJ0Tgg4L5gGSCBgeTMJKlTpGj67FSX5q9F5c/n8zo9Pe05JRpRR5xUREZ8bgBEPXobEBAwD19I5bSrHmurttC0AQ0dmQZdJ2DAyEZtJyetCJHtfXBw0AGK+/v7ms/nNZ/Pe4cW0Yg7oOATC9Wv8/m8fv78Wd+/f++BPNLb6lPuqf9MoU6pPAkgOnvglCKjrmRgCAbExnB1NssgcQDmJ3Ky/aSTBNxVL6fuuVFyoWNjpMY8qMtsm9Y17qCUntqh6sU4coeLfqdR1b0O1NkHHo250XTgJOZKafh2XI0Tt0G7YrGStAAA7aLEQS33+cu+iBW4uLiob9++1fX1dbdD6PLysjvRUQ7t8fGxzs/Pu3Yjy0D63/VG+sbxos+k7B08tAI0iutUSzerMhuQnKePadaPzDSZAE73MZDj4XBqRwfbSf9ZD59G93oke6V8Ur3HZKtpAs8soRlVQhFo1cvT6uQk/fnTXmjvYBoXntpG5eZcuZRfc1Wk2Rlpa1ELHQQRLuuseiWkqrrTgSfkLnEHT3Ajp6A6k2Jiu+s/j3RJoVa9TAtcXFzU4eFhLRaLur29rR8/ftTd3V0PVLD92U7OTMzn8y7C0pnwd3d3HRjQAjb1ofoxRaufIVwMxWiFonIyOufvKTJg+jyTQfOu/C7q1XWBrBijNrE5jIIJBJfLZc8hOsugCNeZDxpsv6eqv/Oiqj8dkgwu3x1Ik9Y/OjrqsVJMU+DT6Vf2ARkAjhWJOw9eu16/7MTh4ltfIa8ycX2P5L2o2NdIoov1Unsme6M2pE6K4dPuIDEC37596xYHy5aKSRKoFZvJnSnuxFlmtinfOXWWImAGOS12QPpA3ScD6NR6q135Sv7NtxbTnpENZP6aYvHpEr0TTMjW+9ZdAVmuwaKTZ72Ul9ulbWXrcwYSEGiBA3VwVX8bUuooRs16sXI+50UnTeOuhlXnckGhN6Yriq5zipYKSYPYklb9KARONLSay+X3hAgTEJDwNC8xNE79pae8JWVSv+mBMLe3t10fzOfzur297YCA6NflcrkRJVbtFgxokGrwqo9kUJz+q9rcGuhAgE6LT9e7vLzsVrDzuwMQOXi1vQxC2ucto6BIhY5UkR4Nsvo66aLy5XeyUYw4vE14T1U1AQEDATrlxNJw/YTagVGUyiq9c/vAqNSZOLJluobglmtyqCsql4//z5YhNsC/K6Chfkqf5PwFTHWImKYGBBY4vSsmlDrJ6QbaSupZYpc4djy4qapecMhpVtbT28XZHAKB1D5D7erO2/U02QBnkBhsENx4WzBdBrYEoavVqnfirNonRf387VPAADNtiaMVH0RuMFL6aiDR5URRjN6UHlkHBwg+j+90I+fWWb806PTuCidxpUj1cmercs1ms94+cS6+nJIejaIUh0yBKGWPknyBoFNfylvTAT9+/Kjz8/NepPfXX391YIBHIlP5Zex3NU3gVOXYtf6Z9ydkr8jr+vq6e7qeDK+2ZF5dXcVokyvXfZpBxl00tq7nq6p6C0SrqmOA1He6n1GlR3GtqCOBRAcNDgh0reaVxVY5aFcbsizSU55sSYDTitppiPWb14cRp0/p0ZGpnHRGu1oz4A7LwRoBLelvtS13AWn7ILcJixXgLiE5III1Pjzq5OSkY6Y4rqgHtP8JQLsjJSuQmFX3GSqbAEnLESYgS2EZqevO/DkYYP/QzznD0WLZOM7FICpgU3tobDw8PGzovOuI0k3tMBUgvPrZBC0DkigMUoMsXGIU3ChS4bwTZCiFNJUf/+fUhDMTboQlKYJN4MDL7o6ZdUpokvNnNEKMUnQdlYcgggPXjYQv+GF/cUGK14FgQKyAwMDR0VE3b/j4+NibcuDOCzoGKfKuDKqETsFpV/UPoyy2jQMBUfqkXDn3qmhLv+voZqZHB+qgV2Xh+g71qe/U4DZVRnGiwWU0uSiL4DHpMA0M35MItLCdla4AgepD3dd91HNOAzI6r9rc0aC+JABojYfkUDie6WTdibWiy8+S5BgdsCVnOZvNOtZIp4jqdX193b2024KPh2YaDgZOT097AQV1wwMwT6uqP+cu4Q4P3uv15ZiUPjkIYhv4bxS/P6UjHXQQQPDIV2K/3V8oLbWr+kdnYazXL+vsNH4TSBkStzNTZOvdBA4C+PtQpqq8HLc+O71PWop78NOgVOTDPceOpKWcrTUKHPRUTjcUXhdJihhZDgcBCeE5IFmtXp6hQMAgI+mMC/NpRXKk5nzOWOmz3QXEqn4NcK01mM1mNZ/PO5qQUwWkYDl3S+e2C3FdUHv4PCf7ipEWBy8X+AkIMMr67bffOuevKOzm5qZubm42wEBV9UAd+026XVW9KJ/z3WQVyCbIyOjag4ODWi6XnfOl8/SIUnm7EGwThCbQ5G2v/KiDGu+uG3JgflhWVX97sTNgic0biixbekJAwDE11aC+tyRAk8AAhdNXmiK4urrqwOrNzU23lfDq6mpjoSoBMR0WFyZLF33thsrGsVa1ObbcHnC9Vsuv+LvKyrl6bwcK68X0Cf48HTphbx/qIHd/UecdVPviQy7mFBjQOBGQ9noNiYOGbQDE1scRp6ghXSehMZUS+OpKGgc1jmgTn8Nyh05DwPlvOgCiVS+7OtjpGd7j0ZTfn2gvii8OTG3mjlmf2TaOtpNSS1yJnY1Q2+laKSYjALY7Dx/R88jFzGgNAiNXDrypFP1HiaN4j0Cq+oBKBsb7jedDcD2AVmHruQ2aKuC87PX1dbe908vmA1agSttjV6tVt2bj7u6u7u/vN6YJVFZu5fP5XBkYLfxivXUPy0WRgROYdGPjUTxF18vQSp9ZTtWBzzURbapxJ0eSAA0XLHq/Kx8fs5oKcACvz19FUnTMdwrb0x8ydn19Xb/99lt3rsBvv/1Wl5eXvQBBY12sk45xpiNX+wv4C3CqTD4Vk1gBlVXitn0MgLk/8nGVgq4UJZOO1336TWmkII6gk+tOOFWS+oWBo5gw9ZHsg5i/NCXxGvkwMDD0vzviqs29ylX9kwBZUC6m4CpsrTT2bXVjtAzLwmjaFZPImHOJZBT07pSP0uGaBgqduV4pehpiETh1oPbjdb4n16kuZy1Snr4FiU6PJ89RUZ0JcLrM22BX0wRqHz+oicyAtz+NAxdPSS+1LUuU68XFRccIaFW2wIJe2h2g/Kr6x2VLVwmm1JZ+hHRal0EHK52kbsoZPz+/HMlatTk1RCHo5nSTdCCxZhx/+p9Tb9xySPCvtlTb8QmFBCJqD04lqt6MFFVunwqhTfB1TBxHaax/trRYALfHHjg4GCAg0APH/vzzz27hKZ0ZQXFV9UAw9VdbXAVa6bzYxhIyw1WbB/4QtLNeqf7Mxz+7feRY8zZ1cMtyEgBRnH2iL/JFjx5gMF/3dTosa71e91gzF9qLlrSYuiHZes3A0H90BuxURgJyKnTkrIA6gA3FZ2GTppJR1+p1NTpBgEf3KgMNJqckeF9r1bEbidYUAKNxsR5OfTqI8jZQmsfHxx1i1WCnYxsDAwmokP5mW/NwIR4yREaB/efTDikKa7EmnyUOVFxXve19HlsAQI7927dvvUc5y+hqIZZWZqf5xqpNZspZJ5aJrM3x8XE3feAGgf3gkXvLqFS9jIfW4jwZfuXn6wM8PR8DKRKUHnPOVFQp98TLgCoflk99pf5NtDCpXNWDa5HIDjDd5IB2JS2DnhhF0s8CAxzXrsdnZ2e9dSVayLxer3tPfJTT5CI37VS6u7vr9JLOOAU9VfmZARqHTq8P1d//o53zMzcECH1RqMoqSl4iQMnAh/rFIFR6RT0joFE5OAXBca3+4Q6NbcFnYke2la2YgRYaSajbwYA/y1ooiqvo9R8XSXEhmqIZp57YIYywPDpIg4dzwFrBrPLpv8PDw1oul919jnhbUwjJQKW2430c1FIKMhe6RoNeK00T7VvVp4vJNDAdn//2/cTezh5RE0iJgvao0wfIZwpBYYtyVZ+TIVI9Dg4O6vT0tIv+tUiQ866c5/YtQtrNwQg19TkjDf0vHRXY0GmDOiODB3pVvSzgEkjW9lHSl4kqTQCk5dTZrox83ACybgQeHG9ioWgfZBNUV455tZmP8TRdx+kRpcP28alD1qs1pj9bhkAdnR+jYQYMXANEB+nTlslBV72s8+D41u93d3f18+fPTi/Zlm5vqza3ZdNX+OfUBvrsfeI2k3Zbwaf8g48Bnx7QeJcuykEzXwYSGluSZOf4XX5F5SbQV54OeJMOfIQ+vooZGEKqend6SAZAjS5q6uDgoJujUkfpmNWqFyMtytDXDLBxZMRZnqRcFN7LAUWjTcPDtPi9FR07IJFxIjDyzva5aqJJvbhokkDJ68WyJNTM6Exb4BTVsi0I3lhP7oX3erIcor+/irAtXT+8HX3hIFkUHjDEPdiMPDmlovSdLmTevrhRNO3FxUXHDnGBoJyaHBynE9gfboQligp9XFNP3KFqNwl1l3rqTkr3prFF3ZJuM08yWGzfqupOylQ7cNxxcTHblaBH6ft6B4Ijfd+FJBbEmUQf3z62OTXpjF4CREyr6sV+Kw0tHNa6mIuLi95BYxI6WLandFV1YZ+0bLUDAr27/eZ0rPRX+VHvvM4e+St9/e7TGw5+mVaaPmvViWxO6t+Wr2vZLQ9ytpGtmQH/7JVz1EJFJVrzeRpnFLilgvSeOzkpKgcHFwH656rqGXZ2BAecR3CM1DiQ0iByYdTJjvSImwaVaSbhAKAhY9vonXXyeWRnRuTsND+o8nIwqG+IujngScNL6Nx2LW5E2LfJiUnceflCKUYLAnkCunJwTEf5k46Vrmthlh+Io2iP7JXKorU0XMOhurmjJjBwvU3GtRXleXq+fobjyAGzHLam+eRkEngV81L1smCSe+I1LqWDWnehqTR/bgbb1J2+0nyLYX1vGWIGUjDDcU49l37qJEb9Tn32scu81e5idAiK2U5iU9nvZIQ9uEpggE6f7/6b6pmAgDtm5uPrsBJDpLq00khlFuhlGt6XrfroHr7SWivmmcCW25op8uYHFTkyo4NyqpH38F2SHAkRPR9E5IZJ8950UGxMRmaOIIWeufWrRfUQDJCpSPVJdVN7EWnTIHsbOmBKSujOjQbBnVqLAVH67CNeS0dP2p8IdQg572rxYNXmgjqnyln+loGV+EBtGTTWXVEr71efS+8Y0UpXdfSznHyqiztcp1oJ2mTwWlFHAkBJD3idxoPqozr5gkQH/840+HZU6rB2SHCBpMCB/js9Pe3a+OnpqXeEqxwg1xmx3gTgs9ks0sK7FI8I03+te2hH1NY8kplgPzF6VZt67UCBOqm1TWw7BwG0sRwPiYkZql9Vnr5SmX3qIznY1Mer1aqb7lTbuA0YYjI8kEzi5VZ5qKM+lZXyJBAgIHgNkH31oUNVmx3mUZVHX1xgIQPglOYQ67Ber7stdjQ2Bwe/zjZ3SqqqT4txlbZTvwIERNCKuqToXHGr9HzhiPJ0cYpWxpltxN0GvgCG7eYRKduMjoIRGsvAqK7VH1w0yHb2SJCD1acMqIg+oD5TBF5kqBy8ORhzp+cAgXVugWGlSyZBuqj+lyPy/fbqCxltRbPe5i0H4de4s1PZnD3w+/S9BSz1H3cK+PSI9MEp4xQwsL1oNwg4dB8XXilttZHW92h7pteX41Nt44weI8fE9n2W+FhqjaGhsaX+JCgS0HT9SQ5ZtltMC1kWLuh2m8T8fVw4iHamats60uFTH6U76ZyZVlSvtmLbcTy0ggGmwXprrKdxtF6vO3ZMuqvnu5Dh86mUITCSAMMUeRUzkIyhG0TfSkenLHqwdWKdDAyjcL2YF/MnbZhQF0GHGxW+3FjSQdKY8AAObnX0LVeOOGno3KB7HdyJS9lduRWtO/XvCwA9IqTSiMYmCElOJxlNByJVtXH/arXa2XHE0kHR6iozaWWVucVwsV25IIvrCNJOEW5NlZ74oiMaCI4TjxCG1sv4dwduPv8vPaBeq8yeFtOjUG8Jbp19qnqJtnSfG0b1i8qSDL9H81q7oekDtdn9/X09Pz9vHJnrOimQ6ABH/dACtp8piXVK4K0l7nw4NaPzAXz61dOlbVssFnV3d1e3t7e955LorBHZ86RX1GkCY2/jIUAgoR2iXZRtpw4xb42tljN11iOxnLrO7SnvY30S4yjdkp4eHBxsPAxOYIsLH1ssAYGMykT9nSJveoQxDUWat2H0TgMnhElDJ2EUykZuzb0wEvGFigl9SUl1r4yKwECK0Hi2AQ38yclJN6BYj6RgrIfPAzmjkkAAHYo/9dEjfg1wbgtUH2gOm4NH9fUImQ6R5RDDoj5VfmJsuKKeFCUXyn2mqAzax6u6SBwMMFrnqmzpieZL+dLWILaVdF36c39/3+kgDRPLSANDcQqXtOzj42O3W0H1SM7dF99xOsLXGbghZXtITzX2pFMSgkM6Xv3H8jMtthkBe2Jj9J9O2FP9tQhR6wR8h0eKUJ3JYXuTxdmFONXdMu7pPwc/So9rBjz4SOCCdlCOSrrsj4KmfaLOsm+TQ076Q2m1P3Ve9jdNT3u+7sBTmsybbIHq4+kl8UCJwYKYgNvb217bERC4rfdgTmVRXj52t5FXMwMeOTFC0ul1XBhF58pIxxkBGmOfz+fvblwY6fsToKSIR0dH3WONEzvANQlqTFK2VGb9pvprQFS9zP/Q4esz0SaNm8RRnQMBOhNHrARQbEePVklvOT3HPiKAq3rZV3x/f98DRwcHB91JZTK4BFgCAbtiBhgNu85xAJHVYtQpOppPJdS+eJ0tIDBA4FX1cuCRoiqtAfCHRbnB0XfqMXXI6XJ9d9aBkbfW1KivZNxvb297UR0NtObP9bvaS+2kzylabTFMVf2dCqqfpuS464QBRcuGqAxkQVpBiSQZcAccbD+26WeKMwP63GJp+NkDNYIzpk09YzuJ5dS1zlT5i3aSrEBVPmGQZU91cZ2ReLCkzwJ2qX009r3eQ4CA0TsBLW1oVW2kyzy9Hmpjtediseiuo02QneeCVwdPrAfz89+nytZgICF0Gk8/RpjzeXJoHhXRYHg0xj2YTs9Syf0oXbID6jw+VY8Nxns5tSFxA0SqTY/uFU12cHDQ2x+dFMTntWRwZXQIBAgGfLAlA6W2EPjhAOeAJkugdqiqDuCQ8hZNpecQ3N7edu2he+WQuOKbfaF+3oVwUAogOT3JgZp0jFsK+fQ26hkBlvqKlOqPHz9684G6htG4jJADYu/HquoZJxl9BxN8eBFB+nq9ruVyWT9//qzj4+MeIPD1O/7SeFmtVnV2dtYDMxI5mFa06UCBwFssAfNXPTUWFJX6ynFfE0J2gcybG05GmLJZZFh2Je5oOF5TBOi2WcCczJazLbSf1DG1J20VhWwDp3IJBljG5MD8M+vGOibbkRgw76/EskoSEEhAwq/nOPfpglRGpsdpZgIC/eYBZ1pE2CqbMwNV2wGCNzMDNFgEAqQiZRxl/IjSPBpLW9wY1bgRIcUl400DwQaiUxLSYhlUNxoyKpN31GKx2Bhg6hhOB3Agq95SHKFZtZEMIZWXgy0tWGwhXCkQV1n7tIfKyZXaRMFaj7BarWo+n9fPnz/r/v6+t/pbEeLx8XFdXFz0Im0ZGka9ny2qg+rHV9WmI6AeUQ/9NDfpZlV/PQa3s93f33fPFOA8IGlXRrcEJsr/+fm5N4Wl/FRmgmWJM3U85Uz6f39/v8HWiPaXbnBscSsunbjK7pEpx6CEBlTXej8JaFDH2V8EBBp3ct5aNKi2VjszMqWDS5E3RWN2W8r1vcSnCSQODFvMDAMd2tMUTOnYd6aj4KDF8uh6t09k3ySJEWg5sAQEPC1PN0XFnAbyNJI4I8T8kzh1r/Iwfy831wAwHWfLfRqY4vXflgVIsvWaAf/uUUxatEbUSIXgXC7Pw/dX2jvaWjDnBkvlJJUo50uH7EaKawlk8InqxAzIoLqhUsc6k6I2mc1eznfnZ0man+L7kHFyCou0lMpOxMn+1L0EJmqv+Xy+ET1KtBXHDb0zPrsQgqdEDfuiR1//QsaJLwe9nM5ZLBbdYqufP3/2wABBmVYRc0BzuqfqZeC7c5Uu06Ez0iMQ0MFI0jHtGJHuKX+tH2D+ysPHF0EB6X4H6WofASW1k0dzAp0+jcVIX2NAZ12ofXikLhdgKZ/EXri4Y2Ib7GqaoAUGqvrjq2UTOPY4bZd026d1q35N7WkdhrcfAxVGtgQDKgPHn9uwVjDj9Wi1jf/Pz6oP69XSgdbvuod9wfVvzhAwPQFVTeGlsst2JKYhMRAtIODsQALcQ/KqaQK9u7FXI3nmyUnIcJDC1JnkPJuc0wSOUAk+eK2MnNN83oj8jyBB3w8PDzcGieqoqI6LQqjoNIhyrGRDvH30eyt6ToiaZadTk2iAcqqGwIzzbEynRf/59qFWOZ3NGFtk89HCKDDRwfpOdon0OncLUMcS6PX1MO7M2EcyMGLLlE5L6HRZXjpiAoE0dcc8udNH40nMhTtQP9a2BcapiwQuZEK4PqEqL5LTy/WNY00nIBIMcEum1mdwOovlo61qOVMPEj5bHDDJtrBv3Nk6k+hrZBzwut2setFNB3VpbHNhM3cSKBCRePDlNi19Zjs4K8brk+NLjIJsLNttShmoHwmsDjEDAgRVL7aI4ITtyXwcFPh/LJuX2QHBFHlTqOaGX3Pf3tg+j1fVN75cre00rKYHfGuUswMJMEhoUFpozsEDB4xvO2Rkot98+xfLd3R01KPVSRGxs1p0JAeoO3z9RwCkdNUPDgCoPN6WXGdAZaJTE/BjmQgkkk4oatuFMPJ1J0eHTj3kjgGuE2ixX0mv1D6cBlN/EHwyOqcB9iibadGIO2BO5df/KivZLpX98PCwM+qJGXAglMpBfeL4EFtyd3fXsSScqnIhGEgsFhkClb2qOjDg235dXyUe8bvhpS7vStwBqFwahw4CfEEfFwR7oEI752PehdE/pxsdCKhPhsB/cugtYcDSKpvf79NWvM7tgIsDGGcFHKSyrg4I6DOUnreDs76eDn1oC7QyPf88NM1BefVTC1lYUudSUhbCG6zqZVASDHBOVuxAOu/daUhXbm9gj2ydJicIkPPXPSqrIiePnJ+enjYcCFdDHxwcdPNudBgsJ2lhVxZHty0KjAaYfURl5ndex2jSD2Bivg7A2I8eWcgwqS3k8HYhBAMUToPQ4enJbto5oN0CBASsZ9VLxJGYAM2BE5w5GGB6+s61KGx7nwJI02k+9aZ01AdiqwQeuPDTx6rrR4oq/T8fj9pa6frrux88upEOKepnhEUnyKkwP1NE6aoNfYy5o28xBLuQVBaPkhMbx7MEtGhVoJBOgqBW6Xm0yuhfU6Nal8F1MP4U1VbU7eL/ta71tmgxqc5w+rUMSKf0qwds/C1F8i7O6jBdZxc8PwemLfH68tqpuvvmQ4dcEYmifP5JQkTqkQVXaftjdNNCFoobMSJlvvuph1XVi969vKvVqiuT6pfmxVSn09PT3oBjhMeOZ3uRriZbobRbSNeBgA9wUohMv6p/WhzBmD+2WO3x9PTURX8a7AJJvhpZdSKi3xUYaLEtBFPa/aAthHpo0/X1dV1fX3ePe+VCPlJ4EoEK5rNerztd5xSC5u2ldwQtibEhCNADkghUOGWQttZJD3w8sHzO7DE9jsPEDHBrLscp2Q+CFoJxiS9O1DSX0vNx1+pXMo/Pz88dwOd1Xjb9rnIlG/PZ4valVW93WAJFi8WiW8Sqxw8T8Pl0QtVLkCMwod1SWv9ye3tbP3/+3FgL4wuTE32tegy1a7qvJbQ3DFBaEf8Ux+hpuY46q6wyJ4ftjKTS9GDa7QjbIaU71KZu898dDGiQupHS70LxY6grNS7Tk3NhFETjQ0PsDUnU5kiZSs/ogdSZHLkGkCLDi4uLXoRF6kcGXE5AEZbTb27MaGzIJJCN4Dvbj+3mdB/7Qm2hdH26hpFrooHJusxms97Rrxyw7niU72r1sotktXo5JvazhSCGg4bfBYb0mOJv377Vt2/fOjAgIFBVnd7c3993TpZgjfWv6jMEikzloAgQEqtA3Sdg0/kGPOdAYJUOnMZS5XawqLQ5ZhPA9Mg/AQLXd9oF6lIy2IlRUDsmxkuf9e50qoR5e7+7EDQTyO6KGRArkqI+glF3RoeHh53T/t///d+OEfD2UZ+fnZ31AjxNwRAIcJusTh/kgmLutkqAjf3ufTDUFwxIWjLGqhII+rUefFUNH5/OgI6M61D03qqn952zAq3Pnl5iPlXWqVNcs/UQ97CXvexlL3vZy17+z8vunsCxl73sZS972ctevoTswcBe9rKXvexlL39z2YOBvexlL3vZy17+5rIHA3vZy172spe9/M1lDwb2spe97GUve/mbyx4M7GUve9nLXvbyN5c9GNjLXvayl73s5W8uezCwl73sZS972cvfXPZgYC972cte9rKXv7n8f9hUo2KfLNnHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqUUlEQVR4nO1daXPcyI6s1i1Ltt/+/3+4sfFmPL4kteTeDxOgs1OZAEjJUssmIjrIJutAVaGALNTBzW63242VVlpppZVWWumPpaPXZmCllVZaaaWVVnpdWsHASiuttNJKK/3htIKBlVZaaaWVVvrDaQUDK6200korrfSH0woGVlpppZVWWukPpxUMrLTSSiuttNIfTisYWGmllVZaaaU/nFYwsNJKK6200kp/OJ10A242m1/Jxx9PUb947fwwDqfHz+PZycnJOD4+HsfHx1OYHz9+jIeHh/Hjx4/pF+dRZedSYZgfP37I/JCXv//+e27VPJlW2V3pOeg1zmf7k2QXy5rpQfX86Oio1JNBrNdcuzr9utvtpp/iHcOwXo1nXR6eizrpt8HASs9PzljjfRcIqGcsrK7TjDHG0dFjJ1EFCLijHR0dTeE6gGWllVZaSemyuHb0XwUAdrvdI52IV7zv6CnWhUrHbTYbqTNVvlnaL0krGHgFUggY75cCAfw5441gQOUboCA6BqcTz10HDiFfQcBKK61UkdNh/IwHMRiXCQck/IzDsVFWgECBiSx/fI/8Y3zMm8HIawGCFQy8MDkUydcK7SpBdKhYpYnvVHwXlj0Bzj2maP0MxkorrTTGY/3HRl89V/qmomq0j/qqCqd4x3cqHQYDP378mDyoPK2K/L6GrlzBwAtS5g7jawUCnJBXIEEBgWwKIAQTBdQhdZfmS82LrbTSSodNrJ+y0X/2HCkbgChSHgEXTvGL98p4q0FWhDs6OppAAN5jfq8FCFYw8IvJCVPmqncuszEeu6wcSq3ycwZarTNwKB4RL8ZXrjeV10orrfRnUGeQ0gUEc/Kq9KMLk3lE8T8a7Uy/VfpbAYGXBgQrGPhF5ATyKV6BICegbn7fhXHoWBl//o9AgDsEz4Mp3lb6Pckp67X9/1zqAAGcBsh2BmTpsV50uo8HPNVCPjTOLn8VT5EbyDlw8ZKAYAUDv4Ccoe+86yDfzMhnQtwZrSvBD3dW5mWIOTC1MGal35MyF6oKu64l+bPIGe24MghgIMDrB7K05u4EcGsAMr2IYVxeXePN8WMdgRvQvUQfWcHAM5MymNXVUeWimjPnhfduy6BCp0G4bTDiKW8AAgLF80ovR7+yzrsAdwytYFdg8HtT5RlFL0D3jAB2oWN6mU503soqHsZXPER8p6dVGkqX8wCKFxa+FCBYwcAzEgOADBhgHEVK6Bx1hMQZb+RPdcB4j/y4tFS6XP6V+jRnpNON8xzt4ICAU+DVtVJ0K0B4G1SN3uOKIIB3CXQAZaZX0LgrneRkiXUcy6TTawqY4DoqHhixzsXnPEhDYPASgGAFA89ASiCVklRhM3LzSi5cNX2g7iNdt3UnG8HNAQIrIJhH3bqaa/yf0gbZaC9rZwUAnCyqeApcrHQ4NAcEODDAcefoi0pndWRM/UfjWxn0DAyjkVf8BsV0LO84cN6C56YVDDyRMkTbVcSMNPmdAhQKKSN1O0R0TD6eGONkxp7zy4zESjU9Vz115HEpP13PAANUNdJSshXvVbwVGBwOdWQDZYHXA8zdIcC6Tg2C3Gge32WDqowcUFCggHl3o3oOi4AAvQM4TfurvAQrGFhITiHyOxcvG0Gz0C3xLqhOooAGovPj4+O9k7JCEBHZZqhWeRxW6tFz1JUDn0u8Ull6WfqVYqyml+aM4qoR4Uq/jjIvEd6zN4BBwRyZVHLFhrEjUxl4UHkpuYo0umCbeXZlG2Nfl0bYl1hHsIKBBTTHG9BNz438KzDwFIHAdAMI4ElZGMbF5Q6nPlY0Rr4C90+mp9aJi68U51PAQHcUWPUJBKlKXjhcJjcrOHh56gJO5RFQYCDLo2NwlTFX+ogHM9n0AObdIcUT63BnvDNgwOG5vzw3IFjBwEyqhP850uZnqjNUiloJpAqj8uNOhV/bcvwhiu2O7P5kegkQENdfBQY6ac4BFE+harS1yt7TqfIA4HPlFWAwENRpGwUe1Ki562Xq5MflxDwzfrJ7BCNuapXDRV5RTi7vc9EKBpqUCX/HPfQURdwNozpY5bZHg48C6D5pzJ1hzsFDK/1LcwxrNT2j4ldAwN27durwm43e1WjMKWqlBHmE1SHlNVjlcDllcuT0IeoIBgfxXo1u3ag8k1XWN0r/YH6cnsoLwzkPFvLrAEBFGcBwcqu8BE+lFQw0qKNkVaNlxjobzXd5cvxwp1D54Psw/GOM8fDwMHa73QQE0DOAblsEArgaODqO2hLzpyvjSvnMjaPCdY3/Em/BnLBVW1fvmWfl5lV9LnMHq2cr5VTJVQYCFAAY4/H2QCbWFRkwyEBBVR41Cs/Kqs5QQe9EB3ByWappggjDdfkrvAQrGCioY9CVIVZCVxn77ijQdbQKTWM+SnBQwNgbkLndMkSLCHaOMfndaG7Zn6OunOw6ecmUWQfIuDAdQFrllfGGwMAZnRUUzKfuICh75kjpybnti+8zEKDk3AEVDs8DGaULu3LE9YMDrSqeAlpBzwUIVjAgqDKqHWPtwrFAu5GO62CbjXe7VYrVKUFML0OqrozBE75DIMEd6q3SHGPXidcN7+TIxXsKkFAyUPGTKfSsbroK1RkCNvacP/cnV663Lpe/gipjr9515K4a8Dj5wSu2pQOVrq0zPeoI5Y/XT3H+Lh0nwyyDqn7ink+BRXqOcwhWMADUUcK/Mj8nTEqQlRGONDJAwfkqUMHP2KCj24p5DIHl8G8dDFTK4qXzVcCxCq+uTM49W8ml4iujTHG7/JWCrwx8BQjm8PynUMfYzxkcKXKgTb0bY+ytaWIwUHktkf/ql/E5xr5BZkCgwiO/DAjm9MFssIbxAqwskekVDIw+CFg6MlRp8DVzv1cGG/lw6XXQPYdnw57xlZXzdwADr02qXTO5dYa6mw8/64KBjiKa617tkJLRCgRwfObpVw8GDpGcfpkrW9komcOpaxaG37n3S4CAk2U0xnEI0Bj7gMDJDqfjPATsSXVlUQPA4CUOLVo9AwsoE+jM+GeNWuWllGsVLzO+8R8FIeucDvFXyJo9A+r4YlemJUj1UOiQjIKrx0xZs8x0y9MBjCq9bNTHxKMqVqJZeM4jAwRdfg6prV+aqsHG3LrpTAmgXsnSyJ5VA41MjjMD7t7jV1ydPCk5dICA03DpcTnwgLgg9KC4tBz90WCgQrsd6iLgDIFGOlkc/vhFvGeXPZ8giOF3u91eOixMndG7Kwe76ypD8pao28bPTW504cLw/dI2qMCEC8fK3/3PyAFZFY55qTxjS/j5U8gBASc3Xf0V7zJA0KGudwDzVuCy6lPunuWHdbKaMlD5OODqyhr5sOxiOmwblsr3HwkGMgWqwnYrtRol4y9T6i5eEBtdBATxU7sBME1Et0Eu/JzyKkBQ1c2fQK6u+F1WT3OAAN538+bwCvRloEA9Z8XGilAZaVXWrjwqoKzyUnz/qeBAyYsDA0uBceUlULxgPL7P8uG2Z7e+kjMHbIPUeSrxH/Upxu3qeORF6d7uabAIHJaAgj8ODCilphRi9r+bXlzd17kyV5TLizsHfsQi3PY80o9w8YwBBKanwjq+nNHPUPxbpOcAMkqJzk23O0qr+MjSyIxBBzhjHgq0Kn4cOJ4Dwh24YKXYravfRXYrwnbnTwl3gd8So+f6Qif9LF1OP56hW1/pvY7ereoEvzCowKwroxt8cd9Rn3pGHhAQRJnn0B8FBrJRzhKFX6WHjYNgQCnLiIONzz/FKxpv7NDcIRRaVGjY5Zd1Xu4o6kMbS0cUL0m/mr+5SrMK91TDlgEANzKs+g4DQQaXrOAyRTjHiKuwc40/x/vdAYECAs7gPRc5j+HSfLM2mvMuOwsl6w8YRt1XMuT0LQ/6sN8wLx0g36HfHgxUyqyrZIKUW6kCAw6N4jXuM0DAebCBx9X/Kj9nnDGsyy9DrlxmNABz0elr0aEBlblyyvE64Vh20Si4xaFO3pmc4ed3DvTObQ/nGejE4XjZs9+FMiAwx5hhGCVPnJbTkcgT8+lkxA1eHH+q/GoE3ylrRjhl0I3DfGHcCpxyWyLN2VnwW4KBCr11lFkXAWYjKH7nPAJuBBNhQrB43orT+fHjxzg+PrZ8K7TJvHI5s07NAILr5y0p0pf0XHRkSz3v8OeAKYfJftkoUSnvDCgq5T3G/vqU5wKMChAw729JJn81uXYfo29AXTglOxkPmH5FDhz8KnJ6mgdUcd3tdntTBh3KQJPiBeNxeLegsKLfDgw4dKmuVbwqH+xEKg3XsdSHfzh+NCLuHR3j8W4BVra4hkAJjuInQ+z8c16DTEG8pKF9Cr0En3OAgGoTfq7kp5LzyvizYcj4YPnDcAoE4EgHRy3qsJQOWHcju8yoZfH+BFJAXw0Gqn6cjVQ7Bj4DDZUxfE5vksuXdRrLtIurgLhKy5F6l+nXrJ9mpxYy/VZgoKMEOWyVVhArOqVIM3KjIk6PwyMgyFxkAQTwmnWUqiNj2fi4YgdCsAwO5Bw6uY72VJqj8CpgloVVV/XetW9lIPh5NkrLwDADApSvrIzqf+aVqhR4BWJ/N1IyogDeGPmCPNVP5upYxdccyrwClcGtgED8r7wgHcPOdaaAVhbf5V8NBDKwpei3AQOVIM6plEpxV4oza7S5bi1UmsyLAwRotJnnDO2jkeAfxs9AByLo31GZzqUuCHDyWoEBjs+KXb0fY/97FO7e9Sl2J6M8sIwpw83yjMC3Q5h3Vh+YrlLqXZDwu1FHd2XlV8atm+9cYt02Z/vznDasgGhn8NSh5+Ap0mGg4WwUryNw9GbAQFXZShnye1epLp0sr66iZuOYoTnHU5YGewp4H21WFhyRuR+CATybgBcIsuL9nZVpRZXsuP9dwJmBiTmgAI0/XvFe5YPvcBrLgVAkJb/qvPcOsbJUBi36RJd+Z7l1gBMpG2lXYTp5O3Co8mIgwPdV+o5nZThRd3VsBffFTr4uHRdWgXEeeGX5zAUqBw8GOgXBEYuL4xQGjxpUWPfOLbSag4AZ3bkwQRVixwM25iD3yvgcHx9P9w8PD/L0rd+NXL1VHbiTnjPQfGWj7WQzM/hdcIz5RHsrwnd8OlrH+KLC5R0wao6T+6jqL6rvx0iS20v1eZfX70YOVGaGM7tfovccaGNdqEDAnLyd3Che4n23PKpPYvrurAHmH/OsvA8ZsOBpWoz35sHAXCGbW3Cs3DmAQBnKjPeKh6AlXgNW+vFe7Zll9Ov4UMLEnoHj4+Px8PCw91511GyEeOi0pA074SoQoJ65Of0s/0pGs/Bh7PHMClzAyjyhXAVQVErYgYRIL8JkMpoBZ56+UOd6KAVcyervAA66curqt+sZ6Mgb17+SCwQC2fa4Kq85/dP1QwYfrBexLAqocN0peeySAkxZmQ8GDHSY6BjhrjLj+2oUPSdfpYwrhRzvqgbrkkPECp2y0uNnGU9cxqOjo9QzEMCgGiW/NUCwhCpZcGDAAQGleJwMOjejU0wqDyZW1hEuwjJARKAY8RVv1chc1aNKw/VBVuIMBLp5qLTfKlUA0bVJxxCr+mfD5fSP8/qoHVeYV0f/ZpT1J+aHy1od0sQfjYtycHmcHOK7LAzy+FR6NjCgmO0gbGcw5jSwQnSOOhXnBJsV81w+q7wzhebCVgKMLljHBytVVPjHx8fSMzDG/qldS5H7S1AHHHLYpXlk7xyAdMY97rNV/3w4ELpcOR18j3nzAsIgNWLDtFgu+BrhO25nzmMOkOd3DARUHVQA4XfwBgTN1YmZ94XTU/rHgVRV3w4IKMPp+kdFqk2r/ufKn+VbASKkrnxlgDeeVR6Cbj09GQxUjC5Nc27cDF25MMr90+GrQpEdqhq5Cp/xgbxgR+AO4JSASh8V/8PDwxhjPHIHM3F+r02VkXkqEKgAQRcMZO2MQC0DAxgfCZVsFzC4tFw9cH5j7AMLdpVyfDUS4nBZ/+nwngECzOOt0xLjyZQZUc6rmwe3P8sEAwiVjzK2mXey4jeTX37flY2ubp9Llb1bIr+LwUAmZBlymjM648qfI8xLDXP1vGuEOY5SNhymwz/WjTrjwLmhcMSn+KkIR3yRR3XUJXslDgUQjJGDxCXpqfZ04IrDO6OvQIHb8hn5OUOIRpnbHfNy8/q8fmCz2TwKW40wndu3S8pYVwBM3Tv63QEB32dUeQcwvSUgAP87EIBhFCDu6MxKRtgbVIXFcN1Ru6I5sqV0FfZr1ffn2ssxnugZwIZR75i6BshVrHr3HJ2VhaECAcyPEnBn7Hk07YAPl00ZBOaJhQH5wF0GqvMqtxw+H+PftQEPDw9jt9tNV1WHb4GeAgAqBVKBHyVDSwFBF2yxfGX9kOUgDP9ms9lbFxCE0wKxgj/S4a2nnX3irhxoFJQizsrP58WrdPH+rchxRnNlQxkUFU7dzwUFmJ8CA/Ff9Qc3COK0g7dqsJf1A05bDea4jzqeVB/MeFfxOB/mH/X+XECwCAxwo7gzrZ0CqjqbqlBnNFVlVGlmzzjtblpKsBWKqww9KlCVrwICTiCQD7eFS3VA/o8LBB8eHtKjlLvg6HejrrwoxeEUnTJ2fB5AEHt+ON9oO3dUtZKBeIZegTFGCgQwPoMClW8Ghl24LgDjdLK1DK4ufgfqAAKkDKhxeg4IZPGV8a9GthlQdunzs0xvz02TF9VW9eDktgs+na5Fm+HsYLfd22DANQwaJ2ZCxWdjmCnRyoh00A9XtGoMF68SDNWIzJMSEm48ZdTd9sDKI6D4dPwoMIBpBp+4TiC8A66eMtD1uynZDlXGv/PjOOwZ4LzQAxRtGPHUoVRBSjErUOIUuCMFgDE9vndpdIwa8qjCMRjCOvqdyIEl9W4M7xnkONWV04x32WAFryq/qm9gul3Dp/JEUFDFmaPLKjuVAQJXr0qnqmdz+JzlGcAGcq7KThpY+I6yQaHCNDIeMR0khTg5vuJJxe+McqKujo+Pp+154Up1rvaI495h3XB5lSCodsPwGEcZGfU9emxD565mXn8XMNAxRuqa/TpnCWCfwzSDsoOClMHrliN2lKjzJLgPV6N6fsb9SX36NQMRrqwdXpRucSO5tyS7c0DTGH03Nctb1t+Rsjbt1GumjxWfcd9tM9alLBNVvsijC+fkvSoH8xmkDtNyYbs0yzMwF6VhXE5LGWU2Hpxe16WiqAIBzIfbc53lr0ZqoUxPT0/H6enpBAbu7++nUTYraeXKVXXTATZx5YVnnBbGYePOB8KgIsX6wHpjQcW55LdMWR2rZ1lfqYAAh+UtgNg+KGtB6MGZY1AZYDAY2O12e2cJBA9j7Ct+fubkOgAlL1JFvjN9Ee/d6DMrc/RH9poo2X4LlBkSZ8zjfeUZUMbfGaRq9J8NWlSe6n3Vvqyr3eAwe8/pou3COsUfl7fD9xzgMiftrFxMs8BAdfAJh8/+q3dP7XAZ6MDKc+BFKed4V4028IcHshwdHY2Tk5Nxeno6zs7OJqVzd3c37u/vJxe88oY4Baf4yTqNMiKsXFU5gqr95ll9dDrbWyFXx8r48/9Of+iE77TtGI+9axUQU2dnMIAM2eUdCUpZYphs8R6XsTtyUoYiK2em0BEIsHGreDkkynSACzdGXrZKz2MaTl863an+d2xJh2dMj709GWVhXXxVP07vZWXpAAmVNvfbThqKFnsG3Ny1q0SVXhWG33c6pGsQ7igdZdzpNJwuK8/j4+NxdnY2zs7Oxvn5+dhsfo5E7u/vx3a7ncAAjqDjHp87kKD4yQxSBmzUc47nwJXKq9tuh07O+OMzBwRUGqw8layxcVQyi4dAufdY/27nT8Tl7w6oqYm4KmWDx1S7kykzUnXi6sAp4GrLI/cFfq/idxXqa9Fc/rq6rSPH8SzzBlRAAJ9XeVXEMprJoHvHsr3Ew1Dx69rAGfss/+fQs20wkJ2CxpXeFcwO4nMKszMijmcYt1rjoMrleFSKCdcHoEfg4uJi8gw8PDyMk5OTcXd3N23TChAQawniykChCwa4rNnhNIqizrgOuOxOYVSd8K2SAlt4jXsFDoLUiCWeuzwZCPKUjWsnpGxNgTL8fD/GT/CBo3B8d3JyMskxH02sqCPH/NwBT6zP7EwDbiuuN+XJeGtyrMBUVmd8X8kw58X33VG1o0xHzwUFGU+dtLveBPzfAQLOpnXzynTsEnldNE2gDKpjyik6NcJQyBLD4nPOjwWWwYnrDBjWlVul50bGAQYCBAQQOD8/fwQGTk5Oxv39/bi/v5/WEcT17u5uyld9uctRKLMx9gEcu5CdwHL9cjtlHgFMmw0Yt+NL0lNHdhxXyT4+7yhR7tRKeTuA7Z7jWRK8RoM/PsQ8hNxuNo8/VISELnX2MnCf5J0org6ULCr9gO+ULor6UOccMLk2dWsXXkt2O5QZzcqQczqqriujzDq84rM72lX5V3HngGPHlwvrbBK+79SDSkMBCpUH254lfDqaPU2gpgeQAaWkVBi+VqeTubzUe5UHlkEJeCUsyjhy2rhGAL0Bl5eX032U9eHhYQIC4QkIEHBzczM2m824vb2dFKkSNCcsY+zvCuARH6ZRCb4qO5bX1aVS9K+pULuAIAtTyVgGOJ+DuF7xJMDIT00txTs08mOMR2ABFwpmC2h5WiJ4Ul6AiOP2+GcDiMwIKEDgRlpOr2AcTnvJqO2tUEfGFaB1xrWjO1U4Z7SyflQZSKZMb3bat5JPLltWL5W96hh6fPdcHoGgJy8gdKiMmcuMvCtUF9WqylEVn6WXCdQYeiV0xEOghF6Bi4uLCQhcXFxMuwmCV54WCCBwfHw8vn79OgEG1yGc4Kh1CzjK6xwLy+/YXaxGZnz63KEp0AoQVHKm4iul6UCDys8pPJce9ifsbwwSMCwbTm7LMcYjrwC+53UH/D7CxPRB/Ody8K4UBCxV/cR/BqmYbsgg58N1x/+zA1t+R1LAKp4jKb3ZGazxc7QVmXFVcbj9K56xjHGdM0qvwqLMMRjIAIGyjS79Th1143cHQWM8cWuhyhyZUFdmrBIQzicz5Hjt8qnSZsWXpYHCEV6Bk5OTcX5+Ps7PzycwcH5+Pk5OTvZG7FiW+/v7cXNzM75+/Tp2u93kNXALNVVd8xoBBAI8X6xWhFdKgfnmNHH01/Vk/A7kFBb+z55XWwtVGqrfsHFVgFq1ndpJEOTOJmD3PLvVcXqAt+0hEMA0VJ06xav4CSDAOoDljw0FAvM5I8S3QnP7XSbPGKYasLH8VvzhtQMEmA82gvhTcTF+xlekx3yhR6qSDwXeOe/MDineOX1Xpq7szj6B0DWuqtTKdYIVUo26XR6cP/PJ7s6ndmqXT+SFCwcDBJyfn09egXgfv3C5Pjw8jLOzs7Hb7fY8BAweOp6WyqhUdVmVn0HHGOOREeI27SiFX01V/nM8B85LkF0xXPVz03EcP8h5ZDCtuKq1AWpuPftoEfYrlCW3E+aplOkdF5brKTMWb9nYzxn9MSmwhO+quHHt5O/6TxcEOJ4cEOjyonRh1ueqRehdUrocZbVT/w7odmwF05M/VJShMmSEmWQgoNLmX+aB4LicxpwOX7lpnPDGT+0iCBdqhIn3p6ene6Oo29vbcXp6Ok5OTmYJXlcwlcHGNFQ6LJjOEOEuCDROEVbNQ78Ezem0XcXqFBnnt0RhVEpnifKN/5EmeqniHRtu527ndHlkjbtjnB6opqpYn6hzAJDcWfFZur8TZeAU/2egam7dOIOd8Zil5cBANcplncb3zK/7z8+r/tw12Nn/CpAq+1rxrgBBh54EBqoMO54BvGchUMLB6bv8uwqhw3+WNirYMX6uyo5zBQIQjPHvVACHCaAQZw6Et0C59pkvhei5zCFk8bU5HrVVo4Ksc43xUwk7QzBXYRwCdRSre5eVF+VVgQj8r2QriPf8qz7FaaJ3AI/GRs8Upo1poOdA8YMeAN4miz/msTMqZyCgDEXVNsqgdJWr6x9vhZweRNnh+lEyqUavStar0agbgFT6vpMup5/px257qrpA4vU5EaYaUCKvnT7A6VTAagnonQ0GGHXMRd/8rjMKd0LnENOckUEmXKxsM6SN8/O4m+Dq6mqcnp7uGWCcSjg/P99z36r5Y+Qp6xSuvFEWtTNBhWNFge8RWMS7Svln9fzWKFMM2XNst44Ri3TQIGdKrHNKJK4jQcAZYVW7YVzl7Ym8EWQqWVCyO8cgo2zy7oFun1bpZvkrHXBoNJc/pcPcSLJjNCsd222bDhjIRs/q6tJX8ZfYEZevkysFmlxZOu8qEDxXZp/sGWDqFobvuwoyqAICKm/VWFV+GeiIK87rBxA4Pz8f7969G1dXV+P8/Hxst9vJIOOJhLGWID4vWyHiCkUqgeMtXRli5rQwPO4v573jmdKP++eYO34OmiNniiolOSd9FxbzwLl9tQbG7ePHtHB3Ca5XCTAQberWDkQeuFo/8o/n8Z8BAStypQeivPxOhWUenoNY/7j7Q6SlQMCF4Z/Sz5nB7vLE4K47ancA4znroUNKNjtAwKXTsZ2uPRzNKetiMKCMZIb6qobiArIBqlCQumfhdCNiFVfxhOFQkHHhYOwkCCBwfX09Li8vx3a7naYD4uyBAAN4yInaJ56hYsWTAwSuDPg/7h0C7+5wUG3xWmAgG008p5J3Iywk10ZOht2ivyCUEQQFPJUwxtiT0ViXEuHitEAF8vDK91huzq9DzrhUcl8pXzXCnTNSYiBwqJ4BNaiqwjrwifed/s1pPycQ4HzdIInTrEb4mY576mg96/OqTEvI2cnnoFlgwBnHylAFIfNZ47rO75BjpRDcCEOFn4O0GBDwlsKrq6vx4cOHcXl5OR4eHiYPAXoPjo6Oxna7HWOM6eAhPowo2/Kk+OBRk9rzPcbjBX2q3rDO0OhwZ+bwXI+H4hVgWjLqc8rSdc5u+gqcYR3jXD/3pSqPiBcegfiKZngG8MyLKA8CjFjvwlMJyFu8D56DXNsz/8rr0QXDnGbXWFTvDxkILKW5gwo1uFD3meyzfCr5VuGyZ5En62S2MVV5uoAjA1OVjGT9sxo8KB3l2qTKK6M2GFBAYC5iV4XiCnajKzWCwNGmEtIOasOyOcpQc/z4WwR46ND19fU4OjoaV1dX08g6FDu6ZhUYwC8acl0yPwwG2LsQYTrCw0g/0mJDEF4NZRS5DQ8REHQ6jpK9LB2WWwWe5/KhFCYrYN4iyAACgQBubw0e7+/vx8nJyZRmyGO8i+OycdopDhtCQBBx3dqB4J37FZcDQc/ckSem6wYxig+mzAC8RcrqwrVHlk7cd4BApkddnkvazQGPTrmYKnCpws/RKZj2UwcTT/UWLPYMjOGRVOUu4fRUHH6nUGQ1aqjQ1pyO7kAAClko3gAGoXgvLy/H2dnZGGPfID48PIzb29txd3e3p3C32+30iWMEC6gc2UDxIUMIlLI6wfSwbdWoTNW1MlCurt/iCMuNLvA9A1SkDBxxODXS4vBq9waGw9MFcdSOWwl5WguNL6YVHqDwCjAgVOdNYD2gZws9Cw4QYBkR2GAbZAMKvFd6StW/ak8E0W+J5hhzFzeTYzdSroCA4ov7TGZXnsK34sGFU3k7u6L6dCZbmSxlvFf8cfpPAa+LdhOoRsyMeYagOqPUeIYKboz+caORBlc6559VYAYEMAwCAV5DgLsK7u/vx+3t7TTyQqWJP1ZKzhjxKnHc2pcBpd1uJxU5hnMgAEeQTqkuEcqXoi5vCvip9o93mcFXYViGlXLBkXIAADXiZnDIIIC3GMZ7XCDIZeks1lOgaLP5+R2OMcYkz04fYF0wkM2UIOfJ8aKuXJtxWFWet0TOEFfhkSrw3jGmqi34eQYMVb/g/uHaidsx7iu+uwbchcls3VMps6fMzxJQ8OTdBJ3RzFxyhpbvnVB10o+wczqL62S8ZQuBAO4sCO/AdrsdNzc34+7ublKW6A1AdywresUbKni85/ZQHSYzcO7zsyod5y14a6OrijrGpJIpNaLgXxivkIFoT5zTx/vIH+UAtw+yVwDllHexdPtw5IX1stlsps8Ybzb7XoXIW+1+WKIsWfc4neG8K/hO9XFM5y3LcdaHnRFdklb2rAMEWB9l/SPjT+k19R7BRCe9qm9nQOipgCCTT6aqXziaBQayilvSWToN2+Eprhnq41FLlRdXYtVpIn1eO3B+fj6tHTg7O9sz7j9+/Bjb7Xbc3t6O29vbsd1ux3a73ZsecKNyzJM9Juo9knKBhqJGw6OOqXVoHetEGYm3Tt1yuJFBFkYpOwUOMCxv48S25isafwQBsYgw+EFwoc6MYFli+VInFoYsYR8MQNABTe65UnjZSJGfdaYBKkNxyOR4z3QaktNvWdynADrWt3OMWMegL+WrSucpegGfOw9X5THJ0ptLsz9UpJjpGHSF9Dh+p2LZ+LhGU4hfoVLHY4SJZ6qBOI1QtPzVwvidnJxMOwceHh6mbxB8//59fP/+ffIWVGAAy+N2EATxnnDHO6alto6puGigOocMvVXFGtRB5UtHBJl3AA0ng4LIEwEAgwBeIxDHYMdC1yBeG6AWsHamDHBhKfMYQAAXKrI8cflUPWG8IAQC7O3gszFYlhX4599bJmfIlU7kOnG6X+lQR2p07doxC5vxj88yYIjhFC8dQ1rpgoxf7BPuPtJwg4suqJtDs6cJnFF1RivixFWBABVWkRslqbjq3lW4ygfvVViVL3+k6PLycrx79268e/dunJ+fT4pwt9uN7XY7vn//Pr5+/Tq+fv06vn37Nr5//z6tI3AH+LDCy/b8K6WseI+0Is4Y+we7ZAu5nHKeoyhei1xnyzr6UkDQDcdAAOu2AgJ4ZgCCAZyuis9px9c04+NYu91ur70DCIS8hiGPPDND4cob8hhAgEFAAB8uozLcXAeuLnBxpFs34JQrprdkpPWSlBk8d1/1S66Hpf2YjbvTE3OMcPVO8a7kJa7cv5gnpStUvVQ2EO+Zn4qytDugpKLFnzCuMlMVp2juyAldkAqAOAXuEFZWBscH5h3p46LBULwIBq6ursZut5vWCSAY+Pz58/jy5cv49u3bNF3Aq66VAUdlFeXLRvVZWflUN9yeqJCqQvMORAXPb5GU7MxVjqwAO4p7jMfgF7fuYf58QiH+EJyGHL5792469Ork5GQCn3d3d488SUEBLsKoMh/xrhoM8LZBrJ+QQdwh4YAm58PlD57jqtYJKMDB5XqqIXxp6hh4B+DQYKvwrPe7oJfT7xCm7wC4CoN8q/K6cuEuHQdYqrpROlHVnwsXaaoBqwLEGB55mNMuSLPOGcAKCGLEVwlShHNIjPPECmAlko0QuuVxBo7LohpwjP3Fg26tQCjf+/v76WNBd3d3Exj48uXL+Pz58/j27du4ubmZpgkqA4t1rMqS1bGqQ17PoOoSw2McFNiM30OjalRY/TieStMRG8nKAO12uz0Dx2AQDaLazfLx48fx4cOHcXV1NS4uLqb1Are3t+Ph4WHvs9mYbqwlUTsBeIrKKXw0yNEHgrJDiarBhqqDyA/TxkW5Wb/C8jlgdGiUyVomi06P47MMCCidUgECzlvV+3MAMZYPl4fyrAavqixOB+NV2SPFB+vQDPSgLud3rvxz9e+i3QSqUiuhY6PFe4ld+q5BgtQCt7mKmVFWh7BMGRi4uLiYjh2ORo1thQgGYprg7u5u8h44A875c1mUcef4SDzS47TiPlvExuCKFcbSTv0SNKfTdBVV1nb8nI2v6i9Iyvjj80g31q/EB7M+fvw4Pn78OK6vr8fFxcVk5I+Pj8fd3d10IiEaf5xqUvP9aHy5L7q+jaAmnsW3ObKRjVLCXA8RBmWVP62drcVR/B6y7GY01xhUQECNll0aHT3KBpLbM65cJqYsL1V+1YeZbxwUdQarXHcZL2xnqrihax2Prrxz7NkYz/ShoqzDOLQzF7moylOje4fa5ubhSAksfq0QwUD84jPFsYUwFg1++/ZtWi8QXoG7u7u9uVqldHkUxPxXHgXXuTPPCyvPCghEmM6Cs0Mjpyy6QKCTflwzIIA/bJ8w4JgWxsddA/EdjOvr6/H+/fvx4cOHcX19vffp7N1uNy0mPD09nTxTWMZsVwmPoHmKy5Xf/Y9nDphyHA7HvFRAwCn1t0DPya8yzBW5OnNGTb1TAAAXv0ZcJ1NKPzkeVL7cHzEP5wXhMqm0u14EJcuso1V/QL6ycndlZNY0QYamHapHZjJE5PLEqyOuQGXsOmGqPBgI4DwqnjiIYCCUboxQbm5uJhCACwfVTgI1N4t5s+F2QqvQYtZZ8b9SnJVnAAkBwaEoWtWpqvCsNBT47NS9SnMO0OiMRgIQxCeywzNwfX09/fDMi/v7+8l7dXp6Oq0diHyqfujm47N6QQCBi1xZMStggXKOPKr1MrxF0oFbrld+fyiym9Gv4JH1JLflnDxdWNZteHAbfpgL25j1kVtw7fJVfcyBgY4dqvp+JUvKPlU6HfuLG/xlQIZp0QmEXCilJBVjijpKLyOslArNdo1ilR+P4pRnAM9/D6V2e3s7eQECCNzc3EyLBtWWQuRb5a3qTJU3/s8FQZy++2VpHpKHYClqVnWu0nIA1KH/yiMwRj4tNsYYJycne+nFL8AALmKNBYQxbXV09O+HshC83t3dTVtgI/+OvKBSxiuTkgWUeZxyQFCAvHQGEh0Q4OL+CbRE/2WU6fJOXLXeJUBBpKOmKrN2XmJ7GBQ4OcbydcrudrNkOqUDBOby5OhJXy1UxkqNupwwuEJ1kBjH7xQclWtlGNXIjxEsjtDVh4rCKzDGvwuY0CuAHoHYTui8Apx3hzL0if8ZSCnDpdqnAgLV/7dIWT0p1K/6hQMCTKr+VNgYUeP7AAIxRRBeAdxJEPP+m83mERjAnTEBCjBfNuZqUR4TyrNaW6AABAKBSqlnOqQDAjIAFu8PneYYANbl/EyFr0bbjiobwAMrPA8jdCj3td1uN02n4lZYBAacT8TFdPhZhGMPAddBx2ir9zxq53xVPCW31UCEdUKHFnkGkIFsNKMYVAq0mx+SU7Tc6KqDuBGcSl+9Z1DAhw2FZwC3YuHuga9fv05nCqipAWdske8MwDCfTqBZMPmgFm5LjP8WleUYucLsAkr8VUBSgQAGAqqNkFdUQPE/nrHXJZRpbG2N9QIKDISR3W63e4tdz8/Pp4WsOG/LCxRZllABu8XBXD5U3nHoEddl5Ks8ZlyfmL5bdKX6fgW234p8dygb1HFfxzhMc3S507GsR3FAFedgxBZYNNChL+PDbuqbLrgIFom9C8w/AwKMt2RQw3lw/bPeRd4qIMv6GkGACpPRrHMGsndVZ6q8BBhOFT4TJnzfyQPjK3DD6fGVy4mIlsHAbvdz9wBPD4Q7NoS6Gr3g8xBy5k+hQRQSZ8gRmSsFyvPCHeGc8+4lac4ISpECvuqdGwHgQilUcNkIGxVUeAN4FBQyiFtaY8EgAgLcSXB0dDTu7+/H9+/fJ0Bwc3OzN10QXgT8gmaXcDeCcufiAj8ezag+p3bIcF2yrOLCS9eWvEVS1f3vQsqIV3qTR8RK13f0rgLF2bbsALAMCB4eHsb9/f10iuvd3d24vb2dtmarT24jD6zTFJ9KzpTum2OkMQ7rChWO0+d2UPk5nipafOhQ9lMMqeeu4JlCVEKYgZCM5ihxFQbnuI6OjiZBDjAQSjt2EODOgfAMBKplY1ABA1VehfT5PY+snlJn+H8JEn1Ncuh5Lu88msr6A+ejRgTIn8tLjWg2m82eR+Dq6mq8f/9+2kUQ97ytML6kGWAAwSzO26LrHhUpGnXFN/f7kHF26cZz1SbqoCJUpnzYEKaBQMQpeNdWrhxvkSodzXWfDd5YdivjqPqGWh8Q22BxweuHDx/G+/fvH52NgXr127dv48uXL5PHNaZecZs2A1A0vkp24x5lCvtfBdxVPXN4nmpG6gyauX65rufq+WcHA8FoZ5TrwriRa8WTixuk3ENZ2TiNrNy8XiBQLHoGYpoABRYXDmb1hbzwboJu53Z1jUIe+72jvpzgd0AK19uhkjPY6t0YOeiqwDEDYSe3ip8MsPKZAgwCYvHg9fX1uLy83AMDDw8P4+vXr3sggBdx8WeT4563wbrRltIPmdvf9VtHqOCjjzBIU3XqqNMXD52UrGS60gEClZ4CZnjvPAloAGPRdejOmKKK0zLfv38//vOf/0w/nOI6Ovr3pMrv37+PT58+jb///nv8888/05ktuCYrvAUhuwgClJwxoSxhvGptlzLwHXlX75zu3e0ef4J+qa6dDQbYNa0MERMz3x39OsKG6SjTjAcmpWjxuesQ6OrCFbAxBRAfI4rzBXjxoPowkQI2jCa5/NXILKubEGxUvm6lrqrTrN4OjTo8OSU6xryFQKozo+HEdFgBY/4MAFmhum2E4WqNXyjUh4eHcXx8PC0gDG8Wf+GQXegBcAM8xjO1tW+Mxx8J4u2Cqj/x1kOsN67LUM5RHteOeK+AnFK4qj3eGnX7YBaG5Y71ZOYNiKuT381m/2yMAAbh4frPf/4z/ud//md8/Phxkt/T09Mxxhjfv38ff//99/jvf/87/vrrrwkQhKcg7m9ubsZ2u320QFt5jKq6CXCQlZ3Lr8Jn7YJ1FKSmajltTmOObZ39CWO+VgioY6SdUeZwqnBcETziV+GVQnEjB1VWLnMINI6kAjnGXBYeMsRAQLmyuHw8z6zcdMpIq3Iw8SiV00TeuuQA4yGTM+quDAoQVH0D4/LoRIHcMfbbnmUgwEAsuAoPAE4RXF9fT/OuMfrHrYXfv3+fvFkx6sr2eoccoIEPvjLPQPZcGZnIz+0owLABBJAndXCXU+LdwcIhUWVIssELhq0AjwIBaKQ6Ri3jhdNCfYrervfv34+PHz+O9+/fT96t29vb8fHjx0nuP336ND5//jw+f/48Pn36NK3dOjo6mj4Vj1/nVOTsF5fxObdLZ7qbAYGzgQ4UdGnRNIH6v4Qqg+zCY0d2ezeR74jrDK3rEA7kMO8hwKg4AwjEfCx+fwDPF3AnDrISiysaA+TDKTA3gnX1637ZHJlrO4WQ3xo5MJg9w2tGHZnnPJSLVX0L4+rqanz48GGac3337t04Ozvbyw93HrjpgXjGU0duNBR9qdoOyPUb/QZH9pxOlSYCgYjv+izmje9U/1Nx3wKxAWcAhOHcPQMB5ZF0+jfrJxE32piPjA7CM1zizIyY/jo/Px/39/eTpyu20uKHuNBDi3nHtEHwobxP1UDVlUt5UbG+kLL/qs3UoBhllgGvysPR4m8TKAX4nB0GFSXfV7zxPVeS6+hqhMz8OCFBJb3b/fxE8RhjfP369dGcFm4tZNeVE0AlfM54Y/nnGmIFAJxSrXh9Ch+/ipSMVCOjuFag2KWnZDn+IyllwPc4csczLcI7gAsIAxDESGq3+9fFj/OM7AVwh74EhZzilkN8x/OyFeFIkNOK/qS8DhlQ7Sh1Jrem6C2TG7Shjuga8mydUjYYUH0C2y7aLwx0DI7UlmsEBtfX11PeMdpH2d1sNtMR8DGthYRTBWogxnKA/KPsR38cY0xrrhDUKBCqZJXrnfNF4KXSwG2UDvhlNPs44kppZgxkyLyTv7tXAsr3ClFhfBYAjINhsdJVWWONAH598NOnT+O///3v5MIKz0DMYalTB7EMPCJ07imlfBXSZ6PuwI9StG6UpfJ7i6RAV/aLOByXSY2glFKt+EDlE/OruCWLP6GNW7MCpIa8xcpsXLuAaaNSdfyN8XNUj0YbwS2uK8D4qFADdLDCVfKGShzzQHmNOB0woAYJbxEMVAA1yOly9b9Ki5+hfqmACLZdhIsdALGtNRYA4porXGcVcsT9AL1k7969m+KgPATwUNu63cAKy8XTw2OM6ZPgAVCyqV9n0xwgUD9ed8S2aw6wXeQZmAsK1L0z3nM6YcXHU9LppM3lChT67du36fnd3d349OnT+L//+79pgcvXr18nYefFg0GRNy+w4bUCFWUKQaWRKVD1LKsjJZivTUrmlBJFw5sBAUzLvUdZciMNNTKolDE+RzcuvkdvVRzQMsaY5mOPjo72gGk2YlTtj1MISjnhzgNVX5hGyLmTFQTivNgV+XMjMlb2XP9zFOehEssPkjJ4XcODaag+1CVnFyKt7XY7nR3w9evX8e7du/H333/LQ4e+f/8+Tk5Oxs3NzaRX8TsvARZi+gAPtUIgEPKk6oeJ6wU9aGoLrDs/Zg7odDrDhYlwc2V50QmEjP6YSaX8FbOhpFg43QiZ03EV0zV8GanOpMIEr7F98MuXL+Pk5GR8//59/PjxY9zc3IxPnz6N//3f/x1//fXXtLI1kKrzCKBBilGaWiuQdVzFv0PAaKyyenLG3dVXd7Xua5MCAWrXxhi5V4RHDRhHKZoMAPLOnQiPiizAZCjROHgFP499cXExGftQTmF4x/h3Rfbnz5+nT2irE91QVoPYQ4XlQ4DLYBenHbi+ESAg8doBrDsFpFmXVLooe/4cA46XpEz/KV1bgeJKz3I9V7ofn7n59QCr4b2Kj7x9/fp1fP78efz111/j+vp6nJ6eTgMwPN0VF2mPMaaFiLg2IXQ26lQlL24wgF46BANYRvVT7cLtxuEy/anacgkt9gyM4edFMYwbTQbjKDhZoVUhq5FTpnDjeafDo5JWRiKmBr59+zb+/vvv8ePHj8ldFKj1r7/+Gp8+fRpfv361IzHOE921cR/GgOsQBTTrfFjPVYd1dZaFm9OmL0kdhcaGKUapFdBlcls/eVeGqhu3UCsIXeObzWY6Mvj79++T8sQ92/F1wsvLy0mpYp4xwvrrr7/2prACUPDXNHmLICrAKCPP/fKaGFU+BLpuKgynHzBdbk81oHB9gsFzBaYPnZboQY7fAQOqr8fzrl6J9wwkjo6Oxrdv3yY5CCDw+fPn8c8//4z//ve/0w6COCcjQHDsGAiZDVkJgHF2dja22+3eoVqOF64nZ29QVzMYiLxVmfFeAVIO42zpc9Hi44ifygQWvpOWQj6KJzUay9JwcTkPNhZxP8aYdg58+fJlnJ2dTa6nAANfv36VQAANA+fNRgm/TKcUYPCiVlTjvRstYf1w2R1ydR2F03ptMJC1K95nbewUHMuUSmuMx+fkuzZgxcjvgnBBVMyZhts0AEGAyN1uN66urh59/S08CnFwy6dPnyZ3K5+UiauvkZTyw/T5SFgFptU2NfQShEyjp4FPMHTKGwFIBZI7A4tDJae/OIwqb5YegzLsF3Ef7c1GVNWZ088skzc3N9P0UejRy8vLvamDOG9gt9tNW7RxHRaWg8EokzK8bsDFpDx5UR78BojKM9ORFRhQAMLVdYdmnzOg0DMzVSFQVyCn/FTndPx1yoD3DmkpYeDFW6joQ6n+888/k2sqEO3Nzc348uXL5IZll2sFQlSdZGic31fxOV/HV8WvkgWM+5wo9rnJIf4qjgrrFGl0ZuUaxfSQMA01YtlsNpOyxK2BuDNgt9uNm5ubvSOyYwQf38z4559/Hu12CdnFBVtZf4l3ag1MlEV5XrieVN0rjwAvGlR928kz9gNW9vhTgO3QyOlYNfhx9y5d1Sei7RAoh8F1IJfTjHjRfvEfQeTNzc0YYzz6tkscWRzHE48xHi3EHmN/YeoYY5r+UrKJ/CjZyOobbUN4y1CuWZ5Uvu4/8+NAL/Oc8evoWY4j5oJUHUgx31W8VcfMwmV5KGWuOhJvJYm87u7uxrdv38Zut3u0rQVdrplXgHnP0CSPyDjMnP/KmHE4VqRK4DidytC9FnF9O3AbxABKKUjVJ9CNzj/nFWDiulaKIub0b25uxmaz2VuQF/nf3t6O8/PzPQ/SdrvdAwOfP3+2x2XjQigc5SM/TslGWOw/uHsgAAu3kTIU6PpVixMdIMgAswL8zmAdKmWAIAtf6cSoE64fBHNOtrP1UEi8ayTAQFCAgViLFdNfcVBWxMM8QsbCUzbGvzLPa2Keu12jLMfHx+P+/n66Kt3Y1dMMCJgygOcAiKLFxxGzQsxGPZVyRaHtCO9cpD43/YywDlCx3t7ejs3m39Ww6I4NQY7tMs4r4BqRlZEyJsp4z3nHdaCMOD+rOrgKdwjkyuzKUHVCBwR4tMSjWlcv3H94ISLzFifvhZtUzbfHQtb4QNEY+2AgFhrimgHlcuU6QVdsPGfAhLygEcFtWRhGKecoJx9M44xNXHF0jM+YV4yrdNuhA4GgbJCGYfg+A/bszVGe0TF+TluhtwaBgsqTdRy2B8pcGNPwesX6GJ7zZ/5iuiziBxhwuriqr2xwxOUMftBeRDyWSyYF+F1YpZ+zMmQ0CwwwEFBIh5nP0GnFdCXQ2cjTVbYa7SuD0AUNYfBDIFgZx2gmVnurhU9Ynwod4pwTL8bCsmaKkesL66JjsLmtOR4+UwrntUFBZwTkDHoGBNx8IV55JNtRAjgidrsKMH3eNsWL7WJEha5dBAPx+/bt29hut+UCVybl6g+DgbKq1gpgvYeXIAxL8BpldOdyKJlz9evk1umLQ6bM+Hf1LqajFrCqb1WgZ2e3201z47zQFPWBA1/xDuUE5R9H1riGCr+bEe9xq1+cOxDbaREAs8fL1UlQ1mejn/E2RS6ns1FdHVwZ/KfKbxsMKKXHGTqU5wABVgYbYqeAOU9lVDHPbGSHcSpErcqKeaMyHuPxqWy4DaxCe1k+OFeq4vDIDEGGqg+nGJHYyCtQEbxxHoeqTJ08OmDI9Yr3zrXswIDKj9tBXZkPzAtd6CFrYdRjCouPZw3FiB/Q4s++BvGBQMwHvkcjzwAH32FaGFctSsStlA4IqPZinZTNa3Nfy0DCa1Mmvx0QoAyTAgS8iFkdUx1tFLJ3d3f3SK7RuGPeuAgxruwFRX6ZrwArcUUgEH0gvAfcJ3iqIAORbKdw+i9AgPLIqfpV/Rjzcv0crxynk1ZFi9cMMCPc6boMuHQrZY15OODABgzDs1JHdFmVDedMlfue0xzj5wKX7LRBZQScMsvcWwrgOOXHdYN1z+3BBkulp9rttZWpUnx4734uLv8YILu2YgOGihDjKkDL8oz5xCgsrniCWyjni4uLPTAQxhXPJsBT2tBNy0pO0W6323Md84iN+84YWlmi0WAg4LxqnEbcM6CugEDVr94SdQBBhGNQyz9laPGgnahrnKqKxX9oSJX+xTYLfYryogBxXBm0xHRZbOtWgAU9ArxLxbU791usW/TKsQ1hectso+vnmfHPaC4QGGPhVwuRoS4A4HdOIbuKwnAuHXymDFNVMRmqxgZGAIDPUFEpZZgtIFMLAl1ZXX1zPWXgjf87g1ShZebX8X6I5MCgAoZcH1W9IBCo3IYV8I10WWFgfrjAb7PZPwo1ZDMUNRtZPg0TCacVuJzIa3irwoWs6paBEaYV8TFctjaA64o9DtgO3O9UPatBQ6aQD40y3dWNy6AA/ytCjwGCwfAshVxWfSbIGU6lowI4Io+xfibkWq1rcCe+ZrI5xr5+xkWCcUWvF8o7b4PNyoRlU+84Xqc+59DiQ4cUGAhyxkcVQBksjBeV6hZSdQBEBlhU/hngQMUVxAoHw/J0gRP0rF6icyKiVvXE8boKQrVf1p6uLjPhe01woMCNMvysBDMQimmxjHPfmEOuHbEcLHuqTcIDgGUKd2bIME9fIRDgaQEsH5ed846RkgI8bvQXyjjKFGCA3biqXZxBd30N69oBs0phHwpVuovD8lUBAa4TbI/NZv/LkugeRyAXo/Mwzsxj/Lj9nTyrPoblCGMcMo2LVDPD7IAg5sm8YF4BBFB/RL0gIMLzNlS55uhHJ5esJ+bSLDCQVRQypJhRiCYDAs44LQEEKqwDAVXHCt5CwCsUmyk+VZ+Z0cK4XM+qYy81wHOFSbVNRyZeily+GQioZDQI28PJoePF1UmVX4ThfsIKDhVRjJwwHVydr4AALhDDcjJxumoxIZYLAQHGR2Wpdg5g/CBuN2dYOnWOV6xrvn9tUrwuDVvpDaxPdIfjqn1sS9enOD9On9ss3jE5GxSAIPIO/YxyoTxEnbpUa1SQbyxvlJm9chkQwDI4u9kh5m+uvl0MBuJ/ZYSV0nJh2WCqQs1B61UHiHv2OlSVyDyokYerq86Io9Nx2X2Lz7MO16G5gKJTX68FBBQ5Y5+VOeukrJQckO3wpagCW/GfZQsBKX62mAEprw9AIBBxFBDgo4lxpMRUeRrw/ABW3NUaAbd4U8k984Dtrdzhc/vOaxHLNL/je2Wk3a4VrH9cLMeL/8b4uTaK68u1fTU4wviqfyldqsCJk4lKx6l4nKYCBw6AON3PuocN+xxytrOiWZ8wrhjLMuZCxjNVmVme+N91cq4EpwC4AVQHUdQx9CqOEoZMKF29sFsOBZDRsOOD84l3qi6UAs4MEz9bItC/gjIlqf6P0etYVflVeoo3JfuduJwOtw+OTlD5Kl7V3Gfcx/ugGIExsDg6Onq0u4bTxefxU9vSMnll8Mv1x8oaw2SgAOkQ5LYip7MygMBhlD5kYLnb7Xt9ot3xrAhsRwUKI54z0J367gACpceUzu2S0t8Z+HK625WBed1s/PkWzgby+7l6d7ZnIBOqLEylaDNUyHGW8ovCrubG5iKpiFPx7/5n6BDrhedMEZFnKNd1GkdOKahwOG1Rpf/aCrUCMxyGOzwaMuysFXDFtCsQreI7sOvSUEYy2ghd8XhVLn2UO/xY0273c9EUjr7iP9bTGD/XDkTZePuVmldFcBFxs22ZlcHrADk2HKp/vrYMBzGvGXjPjBX/d2CAwR9PV8aivQx8IqnBkBo4qP7IYE6BP/yPaWUgicEC58uE/GE5WE+rNJyMKr3E/Ls0HX9zZXbRAkIkznSOADJxQ8+pUJWWEgZUSmpL2BxSwpMhtiyuE4gQskDlPA3AI6BIq2uoua6dUsDwrjxKAA9FiY5RuwSRsF5DAUYaeHVx8ereu46vlJorj3rG7cdz+pg/jz42m83efGsoe0W8IGuMny7auOInk8d4vP0qeMLFgqxgsS1YVjNyQKACZnjvwOMhURcEuHiKEOBFfeHCOQYCajcHTvvEs0wnuT6gwnSI294BJ87XAY4sH64jxbej4IGnu3DROPOT8Rzx59KTPmHsSAljVrFzRlOug2NamZJUe2jH0MegKv4yEOP+O1SK/HJHwXQUmMnAAMfPULgqk1J+ruNW+WVpvCQppYCkFBWXIwNs+HPx497JpwrbKYMCcrymBEcuSApcIkhw8+jZVwNRRllW+QjjMX6OJNXRxxFPASgVDuuE69rVLY++EMwcMggYI/cQuPB4VRT1zW0b7xAMIAhQ00qcZnew5HQivuuAHddnVb1V+gzjYhglLy4/lx7bo6hn5q+yqZ2Bm6PZhw7NCT8nLCNCdUVFo4TECQ4rJzXCVm5vzBfzV3lmQEfFCwFSox1nnDebzaNRWjyvDG9Hmar3zsipn6qPpwjnc1HwgAqKO6cbtaDM8HYlDJtti6pIKWjXHzhcBorHeHx+hQKYKi66/TksggB0B2MdxXkDfMYALwgMnnDhmevHrowKULt+lLWJUubKkBwqdXh0RjTr5+j+VtND8Q51bJDb0YFXx2dVVmUcOUzVfkr3Yrk6fVnJoasPlS/mnS3YZR6xHrIpmS49eZpgKTmUwwpQFUht5cqQPgMBJyDO0D+FXIOqPNRoJMrIK8Ez3rH8arSU8YZUGX3VybvI/7XIjRKQuI5CdnD+XNU3x3X5M7HcZ+8dry6+UsJIaPAxHIIJBk5htPmjNMFHAAGcSw5Dgvni1IIahTJxGbEvZABiSZswMDh0ynhVAwElN9iWlZ5QBnCMn4MqTIdBMsbne5VHxkf1jvurshMqjUqmKhA+xs++hfpbhWUwwukrOzgX6HZoERjIMsZK73RGBwCU4FSVqoTeGX7VEIovvucwzli6/BzSrJSgyi/rAEp4qjiOz6ycFe+HSFXnY3JrTDA9BqAVKFLyoeQd32dKugICGaHB56kElhkGAcE37hSI/ec40uGzBHhng+sXXM65ZcPwCuTxiMzl/RYAwRi53lWyw/09k7HMWGEaaASdt6yyCZx/1e9cmkr3q7y6wNHxMje8q9fgIesPHX6dHcpo1tZCTLyTSWUwFBBQYRTawvgqbgUCOCzedwSiMpCunEopufBVvq4M8X9OHXBbuV81ejtUYrlFDxEvfsI4GCYDlAwwMkOdAUsVvpKr7vOsbLxQMNpapY0HqnAf5rJHGrhAkM83YKPBfCo9wn2/q/SYTzVXi9dDJiVjrr4wDuufyuBUIAD/x7PM69OtW9WnXDspIKP4rOrDhenw6XhW4Z3Mcr05fc8ArLK1HZp9zsAYeeVkAtJtqMrIzlnc44RIhVO8KWFzBjIDTEqJYhhVbxkgcFMKqtzZyEopkQwMdICIokMYWXGduDpSxk0BAVWHXXmL8JhWBigxXKddMX2VZ4TFY1VxQRjOmWJ4JcNB3cWGOEWQyVZl2LgPuTCcNgMBBwZU+m+JnN7N6ovfx3/8dYArgoLK85Plj0BcgWzVXooP1y8UiOjocsVzNihgfZ71Xe4nVV0v8awpmgUGGBBkaDpDLpxuJ05XqeJ/5jUDJUhs3F35lKC7iuewzLfqgMg7Gw7kIwNpqgNl93MM01zU+1rEyoy9AhmwVPWhjIvKz7UTxlFy2VGYXVCgQA5ecbtYXFUZuR7QaxB5IFBAPsIrEPdK8TLAYDlydZKB+EpnYPtzvb1Vyowzy+QYtbsZQRPWEwM6lT+2qfMouvZT+k9tXwxeFDlgp/SvqoMKCGA6rEc6fdINMNRUWkdXO/67tGiaABsmnlXGE8NxmhxHKSIVJysso/8sfxS+DopVCqxTZgcaVCfF8mWjzQrlZulzmZBHxQsbEpXfHKX9UsRgoAICygi6VfmYB/cRBQoqPjOZw/sI6xQkXxl8qBGWMtLZCJ7LOcaYvADoYQgQ4KYCuB+xMcjqS9WPqzen3Lv1fojkBhFOz2VhM53H8sz3qs+M0dOnqhxZuEyWI38HcrJ3zIfKS5WF9TQT90GVnwICzjOQ2UrFU5cWfcLYHXyDVDW+ogoIqPCuM+B/ZUhdXkp4lbBxGo5X9S5Lj98rw5UJnLtyuEhbGQDmEw0PrhJ25VDlPDQw4LYIxhXv8aNUKm2Mi/FdJ+3IbCVjkQ4aXs4/qwsmB3jUT6UXPKsDjlwaShG6vtBVbpXCVmUO2XbKWsn6IZHSC3MGAHEf9aHScXXgdEglNxHXlQfTU7tVlKHm+NhHmIeMH04br2iwVTpZv3N12KmvOUCAy9Ol2ecMqNEAV1RVoC7jHTCRCYEzRk7RskuLFS/HdTxWipiFMjM0IfzKVaeMsVKiVR5ZWVyHU24/x9trK1Int0jK6GJdhns7U0IqnTk8YhqKlDJTfbCTRwXkWNlweyvFWfV9tVbGgSnFd6akFc8OvOC76F/ctpimk5lDoopHpXP4vdrbPgeMZTKTATOVttO38by7+8MZT5SDCO+AhuubaueN4wnrnO+z+E7HZLRUVttgwFUSF9AhMSQnGNhAPEpR4fF91ngqvcq974y+i5PxpYwQp5OhZN6uxWmwkDueEIx0wE3WSZUwuzboGKpfTRmYZWKAiGF5yonBVGaQMh4cqOwAC1UObudqEZYDi8hbZlh5q6BKgwEF1iXKJveL6ANu9M48OkNU9fXghcuonh8qOXnC9mXZ7QCxeMft5ABABsacDXFyzLyxrmP5UTaJ64FlHoEAypnTgZhHpr8zUjywzONango4uHrr0pM9A6hs3EKOMeaNWHifahZeGUAWWEa8SlBVGkp5OCFn4ezwheVznQZPvzs5OdkTQjyxLdJxHUx1DBRGZwxUZ2IB5qvr3K+tUB0QqAx4BriyNFAxKsU1tz44vDKOqr2rPLO+oAwp5oFyV/UrDh+7GOI/p4G6xX2XA/mvDFJm6PA/PkeF/BaJ5YEpqx8ME1cGw1znzjtU2Y8KCGAayBfqSaXHFA/qPaaT6TSmastkVj4VB2U+ylMNrp+LFnsGxhiPKg/DVALGpDog37vwSvHhO+Yja7S4V0YyQ7ycjhJ6PpoVw7NhdmmE8lQ8qfjIFytyxfuccmXv+d7l+dI01wB3QSzHmSv/c3lzSlWBtEyZuf6B6TnDGjKNYJuBFKapDEQYGJYblGnuQxzf9c+sv3LfyO6rgc5bINW347/apoxtyItIWd4qEKZ0K9sOx7NqDwccKl3NMsSy7GyIe4Z1VdkUDMu6WMXJZBvTek56kmdgjJ+uPnSxLO04WEkMDni0UPEYxPHmKlyHNp1yUcLu5vuVIlb1rIRQCQIidwyTgReuU/5GgwInfDSyqztVN69FlfFU4fHKz/G/khFMW7WDAm6VglDlyXhXcTkPJ4f4TE2pRRo4anYy6dJ2YR3vGXUAgUq3qyveimdAga2OjMY99wuMFz8e9KmtcJxe8MO60fVFflfpfS5TBgKzPDk9Z/MwXjVY5Xwy26HAwlybxdQFDbM8A9whEAiMMcbx8fEjF3/HWCimO0qREZ8DA8yvep8pDu4kzpCgoPMP42TKijtLVkcOLbKCzxQl8x7tpgiBgKuzjtJ9LWJQM0bPdcydUsmbU7ZIWE+8K4PzyYCWS1vxz+9dufDkM5YXt6A25MG50Z3hyfpoBhTQW6jS7QABR1hW9nbObYtDogwQKJl1gI4HeQoMKN3BgADjumkfDqeAL+sbBeqUzGb1w+lk/Mc1G6iqci2Ro26cpwCBMRZ+tZCVAYKC+KHrqTLyGdMdI5IJjQrDeVbKg4GAEkCuk1jwh/XDbjRG087YRNj7+/s93t0Kb1UuJgUEMqOAvMVCRixDxMHwDL4OBRCwAUfiZ8pQszLLFA4rLewX7qfiKarkVYV15QreMKxS8lz+Dp/Z+0g7A1JsyLC+FWBx9eLaFsuPc7VBPBI8FKrqi/93AIEyYPie5QDr3u0wUv0M33cAgRpQVVthMQ1O28mG4pUBIvPN6Ts7xHypPPl9psMVv08BBLPAgMssniMYUHPbca2YV++ckHLe3DiZgUXiSneV73hmcIT1wJ2vI7jIJwo+A4LKEHQUhupsWRnjHjujUuiuzV+anMF1Yd1/ljeWJwUSx8g7o0qT4zowF23gZLUCFgzYWCmpg08YCOBq5zl162TF/Ud+Vb0zn5wOy6KTB5RptZjs0Mj1f+SXDb5LIwvD4RmcZV5gjMM6j9uU9WSEQVnlRavqYCysD64LpzddWysQkMluPHP5Kv6UnLJcV9u5n0rP/m0CVhQoMIyEMuXAaap7zjPukU9liDIU7PLJGjBTLhW4UOVWebOLbozHngbVPjify3lFOFaw2UhIgSvm1QGt11KoisclvGQKJFMOqs7czx0gpJQI9iM2cgwseFpCGdXj4+NH4LNTH7xuIFOsWKaqLhmcB/jpyp16pxS7y/e15bZLWf934ZXeyfQQyzfr9Y4ORV75XrUFlgs9rJvNZjoIrNq9oMqn5Ir7EpfDGWy1pdaVwwEm1Q6d3RkVZeBM0eJvEwSpESErP4yvhJaVkiqIK7wywq5jqDJ0Kkzxwnk4paIAkasjByT4HuepMqPtDFWmiCNtngtzCp5BmNsGk/H6q0nJBiuyjLeqziIMX5VyYmOtDHMn/0iTecH0eO472kYBBnyWjfZduXn6g8vMCpPri8Oi4uQ4XaOn6hGvWXlYib+VBYRBDBIzoIRXjO/CZvcY1+k1zpd1WxB7adgzgGllstHRO46/eMd8su5Q5wB09YyykQoIcBk7NCfsrOOIMQNsNPxWeaZYlYHoMutABF47Fc3xOvxm6fI9xq3K11Vq3HHc2QQKbCkwlJUl3uOCIQYEzC8bOeQR478WZbyPkSvErFOr+lfpMB8MBDgNV1fctvEfPTmYLk6dKYXl8nEgl+Nw3SjvAOaPxt0BLM5XGTMHJFRaWXmV/nD95bWAbJew72eyjuH5HuvTGZ6qHhxA5ffIswNnCuBm+SuQizrT2QvXjzM+I013uBXLvCuryjPT03PkcG74RR8qiitXeHyMhD9KopBNJrSqkVAxIB8cTvGpyoIVlSn6SvhU2qqcKi1WdpmhQoXOW/tUOTBfRNQqDzZIvIhQpcnliE6IK747gOglSK0nCeK6c8SAQM1bdg0cy0WmcFme1JWfqd0sY3gjrBRaBf4cr1l5O8oyAyKcn6q7eKaMGRvLLB7TIYOBrI9lhj3i4lWl58pegUm8V+COf07O1Foat7tB7d5ivZcBEgU+VT0o2VXvMB73ZQc6FGU24rlo9oeKNpuNPBb34eFBfrc8Q0NImfFdGj9TmqrxHCDgOsj4wHCMaDv7UR0hL86oxztMl13Fikd8h+mixwddzMEPdjRMhz0Kc8v63MRt0UHtGJfDsBJy8bEDd+Smkn1VJgaTDAawryJAwzY6Ojra+7RwBma5HMrQMAhg8MprUrj+GNhkBsORM/aKd6czOgbxtUkZVyal81xaGL56P7d/s6HNdG1nWiYD1RmAfaoNwnS4fysQEPcOcGX1UYFhTktRt88sniZARsIbwGBAKc64qgp0FRn/K2SrlJm6cvwKDFSKHDsjhsG528yAK1LCUKFGZ9yQf36GxiLucSdIbGnELYRB0e4Rn0fL1ajkJYkNFPOUoXIMq0CdU8ZO3pkquWfjrFa5KzCA21uDoh1DJtkroACNU6RK4SogwH0CeY38on8wUFCyq+rJEbdNZeQViJmT36+kTH64TB294dq9AxoqUMvt5cKpX6bngxTQdDwu1T0dI4s8qKlRBaCw3rEfZP0v0wvxX5W10w5Bi8AAM4UAAM/LrxSjQ1RcCKe84+rABDZItUo7AwIqvioXPssUdzcdRaqekE8uG4/c44qj5AABJycn0w8F/P7+/hEg2O3+9QbFu81mszc9hIDA8f4apDpXJq94z7LGi2fnyHul8DLFoJQQt2u2LkEpCHX+AS4mVIqa+2jIEq9X6Cpj9moxZXWmFHf1H9sQ33P9vabcduvO6a94p8LgOwzLOnkODxzX6QLHMwLVjELWgtRUF4bF/JgH5kelwemhrPAWa0zP6b9K/yDfqt7Uf1fPXZq9myDuI2M3LVApRu5sChQoRaKETTWcM87OECjemW+VrgqHAIDn+JcQC5QDSQoQxD2mgfPIOHo8OzsbZ2dn4/z8fPoo0o8fP8Z2u508P9jmAQTu7u7G/f392G634/7+/hEQe0rZn4Oq/bnddu8AGyW/HUBYKSU2vMr9z/nyPZcPQUJsK8Q4YSjVtI8qB09PsFfAgRskBQgcoFBGj/lTCjnrT1gn1RTfoZEaBOA7DpPpzQwUdAEtPsvaj/npnFmB05qhczj/LF8VNiuDslsuDycrysap3TWZ3cvK4PLqgoNZngHVKXA0mDGiAEGlIDE88xHXzDhyGtyI7tfhwZVHgQ636vQ5ydWT2p4T4cIDgEDg8vJyXFxcTB6C3W7fA4D/w/ifnJyM29vbvXy7KPslKGtbB1rVCDuTUwWAeYTs8nXpuNFCpIcHWsX6DpfmGI9PGBxDryOJqR8EBPjeGVwuc6QfaSIvGJ7rA+VWASrVXx1QwX7I75zhUHVyiKRkI+qOAWKEz2SL01L5VXWRAYwsjlp75OKzQQ4g69z0lR5y+p/1ufJ2cX1nwDX4UaAA/3f47BLLf0ZPAgPxv1pJjfcVAHDMuwrM0mLe1X2WVgVaVL4sJPzf7R2teKuADhPnwe7QMPbxaeSTk5Nxeno6Tk5OJmBwenq6Z2wYBGy323F3d/coT94j/tpgQMmo6vR4r8CACsvk5IfbiflgftBoVjKhKJQO91dUXpwWKuLdbicNNdYL8oCKUNUbK8sI44A9lyOjjnyxYXBpLFG4v5I65cewYzyWGSVjma7OnjFPmFc2kMrSUjpqDL2LANOMMM6ToIBPhFNgwZVZ7cxRhGV1dc2AQIXh/13b5fjvys8iMICVjFMEGYNuRIFp81VVmBPiqvIxTdX4OC+KzzPQgmVz5Yh7N5WiGlcpTcVTBpAyQgCAQCBAQPw/PT19NPq8u7sbx8fHeyAgCBeSYhkqxPuapOpUzXlnIEDJKo8esrbrGvv4j/OqTvHwPCbPw+IW0CxvXi/AilHJICtrzDPmeVERZ7/MkGB+qg6UwYr3XQD91Cm+5yAuTzzLDCz/z/jvGotOXlm6GTBm0BqkPARY9kzXj+GnCBkIVEBGbdOtyh/vGZQosO/sGLcz8/uUtmOaDQYYUTFAcMRCoJCZuyo+Ik3Fn8pbGXq8d0ZLdUAGAspIqLLgDgvVqEph4SKuyiAp4VF1EekiEAivAM/7Hh8fj9PT0zHGmNzHCsjsdrtxf38/Tk9PJ5cwhud6fQ2qjK7q+E6BZenwPT5TilDVpxuhBFVz2KhgN5v9kyGxnHGNNuNFgwg4Npv9xaadNQHIOy74Uv1AAWUFKp6DKmOKuk2V7dBJgaNMvjLZfkrZXd/hNJ13OQg9S7xriQ0/G1/W+wosMc/MO/If+bM+V/wrflSeGT8OEDAp2zAHLMwGA3FVSqwLCDg9lUeWd4fHyM/F5Qbv5MOVXBmKDAg4gVSdJHPpKkGLMGjQWHHHPS4gxHsEDPged4wgLwEGYg2BAzmvSZ32YwCgFv9lI7QOYOD2RNngUYMiNvRZnjEaVzKnADrGw7aN8CELCAZQKWeLp9AzoAYVCFqYH2W8nAJ2hm6OMYyysMfw0KgyDJXedLJbAdMIs8TwcNujHDK/u91uD6yi3orwuK19jk3KZMcNuhAIuEXzyj6qcnXqqUtzjL6j2ScQLgEBYzxWWmp0xOHnUkeAFU+sEJ2S4TjK0GZGvkK/VdmiYyjFxcYZgQCuPHcgguNFHHaPxZqCMcajd/f39+P29nYPDBwCOcOvgByXWb3H+Gy4nSypfMf4ORJHINAFxGhc3bSBG1FH2U5OTqa0NpvN3lkhWIbgG4EhyxYDAuTj4eFhHB8fT1fuD1hPXAdONziF6xR59V+l/ZQ+eyjU1c9xRSOfySKHrXjA8Kp9o+/tdj8/mhUDEOQRvQTRRii3mS3h/DO5UeAI5QK30QehvLgp4SVAgHn8FbRomiAzlhyeOxfOwSnhcIpX8cHPMF4WH8PxgijViBwHf7iv2tXRXEWSGXsM4xQhj/L5xMgxfp4fELzjHHLExfMGIv2YNoiyx+/Hjx/TmgPc6vMrhbdL3GZqMRsrNQUUVJq8noOBISonljdccR+fplYja1YkCrxEe+AhUArMYBxcRIpHiTvFykBJydZut9vbORB1gNMPvF7BeUYwjUr+1a4HR6o+sF4dYD406hriipwRnKPfMZ4Lp4AAh8MwanEg9+WIw54B5Cn6gWpP7JscL/67RfMKeDgQoACBGlSo/OeQao+ujDzJM4DPFYqKe4XMWDhUY7AiU5Xj+Ogo8yAcBaIbSIWN/6gM48qC4Fa5OoDD/HNY7izcJsgTLg4MfpVQxw6BWBew2ezvNODw8R5BwxhjnJ+fj+12O87OzvZceicnJ3vz0a9BDASwTbBOMSySkjtuHzbuY+wv3GMjH/FwBOQUE/LBcovXuGfZ5UVPCPZw3UgcLMWAAAnrD9cPIAU4ZA+Dq0Nep6CMkdMNcwcllT5QOudQwQBTpfMcdUFFpou5T+G1SlvZCwXylG7PDG4mR2yUnZ2KewQGCAhUXmwHMmJAgOkom9ilTJ85ejIYYCadEkNXjzIKqhGZXEU9Z0dVhpsrlA1LKMX44egMwY9rGC6PEkol7Fh25Im3CeLoP1C0in90dDTFw7UCEY5X9nLZTk5Oxvn5+WTc8NTCasHbryYGBEFKgSglwoTKgUcwbOjHeHwwUNQdLrZUbkdXBlWW4CfSD56yuud1JQ8PD3vAOFNqIfs4pYQyxutLUIm68nH9xj23DxoDjOsABKfP1NU9h0rVgMPJlDJAWXiXd8fgZ4CMBzchf5n+zfhxacd/dcV03aAgAx5sIzk/5I3zUvGW0hIgMMaCEwjxxw2VdcQxxiOU5wQ20mYXbFBmOBXfGXDgRs0UnxPIrBMpl7QiZSiYRyyvAy2h3MMwh3EPwxSeABytYxyeXkAXG6JeVXfHx8fj7OxsbDababoAvQ+vDQjGeNwJeYGYkknVFpgGLvIMlzuOoHk+H43lGD8XIyEY4HbmfqNW8kd8Bnvo4UGwitMKuOUPV/4rT1mUE+vMeaBQVnj6QfUFpVSVco24qCOqsFiP+L6iQwECWZ3hfYdfZcTwHsMoygw7x+0MiDAO9oEMRDjDWrWxK2OlY9lOdJ5HOkoOMR8sL/e1JQBBgY2KFoMBZrJjlHe7n/NAzmXMleLCZUCCwzme479avNVpADSO7IJnHtRoRpUp64xK2WH6aNTjF4cHhdFD5R8L0BAA4FQDgwEsIx5NjGAgjjKOOgngsd1ux3a7Lev0V5OSWR61Y9hqFBPp4DPlvuf4bDDdfGdcsXPjlATG57lMBqvxP9o+1imEXPAcfvDCUwZogAMIIM+Zwuf5VBfWAQF8z/XDQJVpjgHjeEsU8q8gJ5NjPAYFGKdKz+nyJfx18poDIhSPGFaBY5R9xxODDySWlSwdTkuRG7wxIOB+i+8yUnWa1bOiNhhQq4uDUfWc3zODqjM7pcDpOIFySqN67wCBCod5ZgufFA+VQLlyMg8OZUanCEJDHyO5iBcKnj0A3AnwORp/fB7gQhmo2G4Yc9SvRUoOlihAZaBUOwXQUjKqPCss5wwg0ZBj24yxL4c81aBAdRh/XB8QbYhxsA0ZDCDgifjhHVA0xyvkFDPfZ7qB64CNCithTLOjV16T5ip5Ni4uPWd0MQ0XP/vv8sJnWZyOXXD/FT9Z26t+2NEXc2SEbR3mUbWVytMBv7kgdpFnAEktkqsENQME8R6vKl1V0DnIiFGXWo08BzlW73i0NadDq0ZXeeHcr9pOiO/GePyFO8zLoe6ol9gixusmeP9vHFt8dHT06p4BNMQK+HXlh+MFOEJDjMYya2c08vwM4/G0A7eX22cdhhr7aZQrQEK0D4O5uPKpkmOMR94A5LOiOYYlwjvly3pEASxOd66SdHwdCqnBwdy4mT7qpF3VTwa4Kv3qAGAGypWhr/h3ANKVr2Nbsjhz2kmlj/8rMNehRZ6BjLiAHeZwpBMK28XBTl+l3VHCVSNngCBLm0d0SlG7kY0ipeC4w3CeGW84XYN1obbMYJq4WwFHopEWgo0AAzFlgR8zemlSgC+ej6HdgiqsUzBxr7YVRX0HscF0xj8IR+RV+zKfqnxz5IZlIsriDC6CQRWGtz9mZVB1w2VDr8ccEFABkspYvTY5+VSy1DHUrEtVOl0gUOkwp7edrKo+6cpf3XfIDdgc0Mh4WAIYMn4z/fNUQDAbDGSkBEi9V8+jAKiwlxSoAwD4v0KDrNDcqmoHJtiNjkoV4znBd2nHc4zPcat0EBAwf6z8sQNzx0RljFMOeJBNfOI41i28JmEZnSzg/0qhOLDACnSz2V9kiPWPvzGGnFrIFt3htA22E75TSp755veZMcTdKeg1wCOtI398j/Hjvao/BUQZsHaVfQU6sJ07ffvQiHUW0hIjocKzPlH6WRkmfueIZU7pRObfAQR+pv5nZVcykBn0TrrdfFX+ru0U6HgKEBhjJhioUKIaXTiklKEsJVBu5KL46QofEiomTkst8MpGH6H8nQHtGBZHnAbH4+1/7P6t0kRFy+AM0wuDv9lsHq0/wLnjHz9+jO12O25vb18VDGDZGKgp2XEGIqhqL47Hbn5e6Bk7OTab/fUXu93PY57VQlXeuRCjbjz4J5NtZVwjXAbeY1oEDywKLxDuRAj+cQoFPR1cHpbvCqjw/+BtTvwIx8DgORT9S5ADAsqQsr7FQQ/+5/eYpnrHvFRGFNNgvpl/Fc/F53bvgBgFMFT6FZBWlAETxUcGCPhe5aPAWxcczF4zoConOqAzfE6YsBDItMvHkRL4KjyXi5Wmep8pKuYDy9tVKh2w43hAIxMGmXcKsGciDLgqH253G+Px0bdxJgEeMBM88BkF2+12OtTotQjXCsSVQcEY2sWO8eLedTY0+HiKI+aFn4nGL0XydyACVIZ3JUBBlCemYWKBZnxSOk6AVF4o7CcMdBk0ZMY32jvASPCCQBHrHsE0AmYmlsPglUGuawulaFUZMD+1eDgDHK9FGQ9OzypZdXXknrn46l2VVmVo+Yp9kdtGhVE8unU7zgBnfLnBQtU2mfxlOp3jc1/O5DxrZ0WzwEBlbDvIScVXDY5phnJVaXYBQEahEJwhYP4y9MbIDZVfF0hlZVSKkNPHrw3GL8KzAkY3P24FDOWuOinygjsVghAQRPl2u92rAwJWFlj38TzrlM5AshJGIBA/nA44Ozsb5+fn4/LyclxcXEzbMREEhHclPCt3d3dju90+OiUwgMLt7e0j+UCQFlQpJfyfgYG4ovyEpyDkxtVrVvfqPsri5F2VrQvCEXTwcy7ra1LX2GBd4yJW9sBkaUV+Dhg4fftUHcw6FHlwssm8OkDAecU1AwL4n/Uf89wtH5cF+VDvOM9fSbO/TYCMzWl814E7hpzntjEu8tFJSwmN+nF4DOvS5Y6i6osNCypFdA2rtDks/8I4owsawUAYehzFYx7o7sXvFozxc7U7G30sq3L5Ir2WQlVGRMmjUwwujjI+7P6Pcx7CwMdhUJeXl+Pq6mpcXV1Np0RiWigLOOLng5y22+2jLX24qJNH5EiZ8c3qUinD+OGi1MzA8voJzqMiFWaJXlLhHdA/ZFL6C9t8DiDAuE4XLaWqrh0v3bwdzyrNro7qAkuXXwXkVN9bUsdcP90+HTR747czdk7hOIWqmFeKBpVsxRdTpfycQLj0mMcuORDABl41JJZDAYAYTeKoMv4HEMAFfRFHKQ42MDjNgLyrdgv+eHphjJ9H7c7Za/6cVAGBzeaxx0SFyZ7xOoAAAXgKZHgFAgi8f/9+XF9fj9PT07Hb/ZxbR9rtdlM7IpiLg5zu7u6m9ox6xp0eDOLmKIgMQKjnAQa472ZxedsqXp1SZR2CcpzJp6MMWBwKdQc6GShDQNCRgzkjXxc/qDKIc9JyxG2ftWsH9M55N7eOOoBlTnz1fi6gWHwKjEJrmUFWyqFLGBeFGQW14kGN8CtA4NJTaSpF5Z4zCGDPh2vICMunA+K3EWKUGMY8vAMx5+9chzjaZOON6WE5+DAbJB6dKkP3UsRrA3gOn0kBtXjO79GtHwDg9PR0mgrgNQHhFfjw4cO4vr4e79+/n1zrt7e3Y7vdykWc8cEnnCKI8wHG2Adcag0Ayzp6HlD2uB6y/0xdhVb1jy4pcO/6W8YD/p/jJTlEinZHXcJeJ9Zbc4z2nPCOMA3Wy0vS6/DB+fB1br4oLx37p97Pka/Mk6FsYMaTo0VgQLkjMq9A3GeIyjWGUsAolK4Tq0ZwIMB1/goIqPIqJaTKwMaG60o1OgIBPj44RqXoKWDAgeFiGgDdyGFI0Bix23uM8QhEoOcA1w9EWnEU8Wt6BtQOgi4QcEAO6+b8/Hzv58DAxcXF5BV4//79uLq6GpvNZtzc3ExpK+9AgAD0CuCoPzw6Z2dn8qwI3iqKoFoBZawPdeX3rt6VbLM88k4LvEfe1aeR+b7iWbX7ksHAIRLqRbdFm9tkyYjU6WCmDIQpHef4YV3uwGRlBOcAAgeYlPxXIBqfORCkeHVxOvm5dDN6lvNhs8aK9x3kpYTW3SuUimk4gKKAgXreKTMKSGZklDLq1Am+ZyXpvifA4IJXiGNYPJ2OR1ebzWbyKoRhi50DMQrFOsW0GVi89jQBGpyoh8qoZbKHQOD8/HxcXFyMd+/eTdezs7NxcXGx5ykIz8H5+fm0VuDq6mpcXl5O9XV7e7s3/49rNsIYhtHH9sVdBQzo1J78GC1G+yMAwVGlq4esnhwA5bAstwEkecorKMqG1+A3yqWmevDe/VScSlkfKrEew+kCJNXG2eAHr5hXBQg4DfVc6XCn451twTJUxtM9x7w5XMfgZqChQxkgzXhmWpL3GAs+YYyZOYTm3lXpZ6iQK4OFRI303Qig6wFQfDAPqLhREap02bC48qPwsWHgT8ayAsUvFOKIktPhucMgXPHOPwQQASLih2sMxvg5TYBG5rXBQFBm1PCewdgY49H0y7t378b19fW4urqarrFDILZeRnjcRfDu3btxeXm556XhaRzcmhij/7u7u0n2Y1tf7Bw5Pz/fmyqItkelGu2NuwAYKM31DsQzBptq9B9hcXoFZTjqibfEPjw8TDsq4hreJh4FOz2C/CF1RqNvCRCM8RgcYf2gLuBBgKKs3bPw3XCoyx0wwP8Rh8FnvOdpNkUZEHCj946xz+pqrgypgavKv9Jd3Xw3u7cm5SuttNJKK6200rPS654Pu9JKK6200korvTqtYGCllVZaaaWV/nBawcBKK6200kor/eG0goGVVlpppZVW+sNpBQMrrbTSSiut9IfTCgZWWmmllVZa6Q+nFQystNJKK6200h9OKxhYaaWVVlpppT+cVjCw0korrbTSSn84/T+dHKPwnX3RoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbAElEQVR4nO1daXMbR88c6qBs+UxSz/v//2ESX7oo8/2QwhpsdwOY2ZVI2dtVLO4x92CABvba7Pf7fVuxYsWKFStW/LY4O3YDVqxYsWLFihXHxUoGVqxYsWLFit8cKxlYsWLFihUrfnOsZGDFihUrVqz4zbGSgRUrVqxYseI3x0oGVqxYsWLFit8cKxlYsWLFihUrfnOsZGDFihUrVqz4zXFRTbjZbJ6yHb8d/HjadnRM/VfyqW3Efr//6Yfn5/Sztda+fPnSXcZcrLK7Yi42m037/v37Uep9KViqrainzs7OpmOoy9TP8qh2eV1m20znsb5F/WQ69Pv37/Q46lmldyP4tFF/Hx8f07LKZGDF02O/3x8IPKJ3sUULyPYzwfOCisdUe6wfuH0MZbpixRJYX9T6A5EeinRCll4Zek8G8Lztn52dHZzz+/7f6y4zvLbN2l5x0LCPaOitfEUKTC9iGyoylzmF1XJaW8nASQGFq0IKqoyVsWefR0UB/ELJSEBvm1asWPHywLxRdq4HSjcZEUBjj3nUPmujtRO9ctY3pQcZgVCkwvbPzs5+cohYmdiOKiKdXcFKBp4QVQZduQSgQvxK8KohtNY4EWAkQQlXbz9XHBds7kcVyIoVo8h0lScCSkdGZMCn81COT+QQRe3Pjp2dnU0RACQEyhk7xjpcycBC6PGWcT8iBiPblXYwRmtCGi2gHoMeMfMVy2Du2GayNwIVch0ta8XpYc78VkkAc156nSiPSJbmyBmLjihSYITARyW+f/8uy5jTrt68KxlYCEsowCrTVPVjesU2/b8Kc7G8rEzVFhVGW7Esqgt+ybGvRIui6NKKl42liYA3/mo7cqawXI8oCqAuFahyMv3M9GuUvrU2Xf5o7ed7qkaJwKgtWsnAM2F0gnrzqWtQ7Jwd8/+43Vo9ZKXqWnF8jER2WP7qcXWutx2rDB0fSxE4DOnjZYAqEYiQ6R00/n4f01k7Kzq4ct47YP7mQexnhWxnyEgJw0oGFkCPoPRcBsD01XCYoUcQvNB5oURh7IkQrDg+llTkx8JKCI6LuUQS86LR9z922UC1JzvGzrN/FQW186jz2H5FPlGvtnYYGWitHVxG8JGCOTdmVrGSgSeEmggV0lKCj4ZahWBVOUzw1XUqTKeY8whWhf486CWAp0rwlrz3YEU/niIi4KMAGRHw+TNvOYpssnMsTe86YMbd9ln5SlfjJRMjAf7egpE12kviVjIwA5mxZ8d6vXufhi2SDChIlfBXtBAj4cz6vSr2p0HPuEYEtOKFLTWHPZ6UbZ8aWfmVscQ8YxnqcgB7fDBrQ3YpALcjssCOo3GPwHQk/isSYvk9EcDIQBSpraCafiUDg6h49XguMoy9i2+uomREgBGE7FKBWjTZpZEVz4vRsZ9DNBgybyWS45UQPA+WlBUW9kcS4PUh/vfeq1K5DFBB5bJDdDmDEYCIkPjIiREB28YynmodrGRgAHOJQDVvpT5fbiQgKEysjp6wbDVttX0r+pGN/6ghV/P0FN6ih5KpKPq0ytRxUY2C+oiAujegIoOV+a565Kr9qkyvw7y+rNzDkEUGEJ4UMJl/Cn26koGZqBAB3I/C/ZF3nREJNOg9177QaNt/xqwrEYMVy2GEPPamW7KOKipRJqVIe8O4KzjmRidxW0UEkBAYIr1RdXRY+iUiA8z4RxFTX05GSDC/bVt0oDX+2CHq27kyvpKBTizlyauyolCbP88iDbiYKnWpMBcrU10yeKrryiueBj0Edsmyq4juSYk8qyiCUPE6f2eMRpEUCbB/RgRU9CcyaJWwvf2rSwTZJaqorhGDmxESL+c4jvv9/uAGQvUqY5+31wlErGSgA5FxzbwsNOhMCKJ6K2QAwciBWqgsb3TdDRmyz8fav2Ie5nr72fmlyq+mr8iTun+F5e9p2xopOMQoEcBjERmIHhusGNoeMmD/yiPPIpeqLSoiUC1XtZcRARsfS2dEgH3sLXPGqrK+koEiRohAa9yz7oVigJFHr9ppC5PdwYsLya5Z9bDi1fA/DXq9mswIM4Ux1yhEaVmI1bfHp4vaXUmbYSUCPzA3IpA5KpmOGokERDI0GpaPEF3CwvIiEhFtR/aFvYsA2xb1tdrPlQwUkIXFKvlsvxoJYPlwcfl/vM5fKbe1n4Wpcq3N18fKW7E8ljTUkXdXyTNKjCMCknldlfIYsgjCKq851ByzSCM7r0iBMuJVMI+fHffHRqNHvWQ0041RWxXpUq8uziJmVaxkIIESnqrSqzLoSh3RwprLDiNPLfLsPJRQVpn6ikM8JwHojTD1lhGdr0TPKsquculgyQjDr4ARI2n/TH9FOi0yWiNz0GMAFVEZKcuDeeZKptBZYzoSHS37t3sGMmKVyXuElQy0sYVQKaMnDBWlzxi4T+dD/KoeC/+zSIO65jYSzqucX8HRQwQqGLlEFXmELE3VG/LblUgUtqEn8oVlL+FB/U6oODaZU4PIQunVdvU6GZn8sv1KG9VlhJ7xQEdLkQwfIRi5fyDCb00G5pCAqhdUjQJU28EMuKGyyIwImECZ0I0qycgDOBWFe0ptUeiVxdFyq15+dL5CBpSnEx1naXx5mEch8soYVBt/F0ROCJ6vGP9MJ0Tea9WYZTpGXY9n/WBpesgzIyXVaEFUhm8X+8cnDNh6WiMDCSqT3OP9ZPnmkglGACrkIrofwL/MQpXFogwshLWiD3MN+mi6KhGISIGae7Y/alSZUa7KO6ZRCjkiHkyhHkvWn5rI9hh0pneU4bdzyttlczwSoq8ci9qb9V/JQEY2ovTV9kaXvexfPXI4oqN/KzIQDUyVHfcq5pFJYXnZz6dhC9ADFx1TcL5MJBDKi1NKg0UkfmfyMNL3EZmpnu9RjqOeoP9Xx9i+LzdTur4Mpnyr60PVn9X7UpEZG78feacebMyVUa3IgCKoWd4ostSLqI+9l0ir9aN+jtYkbs+Jyv5SZGBJj4sN9hJEoId0sF/2ne+e8BlToJvNhl6L8nkZKfFtz9j5c+Mlhn17Za2aV8lir4dYbWdFMUVpesah18hnIetfHZW5G3FqlF5RaaO2ZfUpgunrVY5MpW2KLEdRV9WfXvIQleURXS7oKfeXIgMV9HhCuD+ioEeUTXWRYj3GKP1HLlQYzgsxY9JZP7AtPg2WfWwFO8qUR+p5qnxz0lQJQGX+q0SgOuZK9vx5tUYjwpsRU1VGJd9LRUWvVP4ZIiObRRCydti2igAoHYdEQLU5mussajWqW1hfIkLDnL9sLWbjjPhlyEBV0Kv7/lglrTofTRKrp6LQs9BplU1H27afCaCPVvjzngicAiF4SoyQgDmeP57HeaqS2UzZ9xAHBAsLKy8tM9iVNqgwdKa0o+O+7GNhybojw9grG6xtcy8F9tTJnJke9Hj0lXLUMZR1Vr669NDTr4yoVfDLkIEII0qt18hWvK/KdTJVthJeFDL87KVFCuzf51GKmY2RJyr2BsPoFaO+/l+dDPQycJ+HIZIZ5mVVZC/y8iueYGU9KK+MHff5mXxE/Wbjo4gH1tmDX01mq554xSjPqbtHLqtee+YgqXw96CHwXgdX8ikdn5FYVfZI1OKXJwMVIVTpo3RRelZPFEbLyow8eb9wvLH26fwLK5TCVG2KhI3Vbz9f/q9OBgwjpACxBAmtGHOWdpQE+OOKtPYY5yhcGtWZyXevcvRr91dAtL4j2VFjn+kwdBCyulkaX5ffjiIDkQw8BTIim7UnktNMjiOd09vvX5oMRIoSt7P82fGMTXvDGEFNbiWstdn8/K0BtVi8Ma+QAFzc2TfJe43aqWCuAWltXriUzX9kCHG7YtRxO8qbrQGl2KrGPyPJrO8j8xHle07DcUxkc8nkwKNK0ir6sad9vq6MCIyU68vHfBg9rZSXyXvWRpTFSp5KuzL8kmRgDgPNjGNFqbLymVAhKopPvZKStYWRgc1mM102iBaT6psnAb3fJD8WehUGygAatqjMOX2fQz5tWxnzSvqqUcB2VAgBpq0Y4IosRUq0B6cms8+NESKgyvDl9JJT22eRAEYG5iKLUFXXPsoq68NcGWMRhogQ/HaRgar3g8dYOnWsqmBZnco7GmGPds4vMv8mQdXe1trBKyyZgPuysQxFBjwhUO3PSMcpYGSR+vntyd9bV6Y0s//eNEqBM3mNolgo/+wfFZtSnqPGnRGPrLxRMvESweYa532psVA6ONLNHiq6qepRZfSuv0pkAGV6BNVx7qmjV5ZfPBlgqAhYz4Dif7R4FJTgMiOO6SMmyBipMlRM2WcEIPv5fmCb7f/UCYFi/soDmFvXXA/BI1KuVVJQnedojrEtjBCyPJlcVKIHbBxW9KFHl6n8+B8RS5YXwSIBPXqEldu7flUZlTGKCJVyEv2xTO7RJjDS2zOXRyUDqrO9wogGTx3LylbGueI9MUWoJjSarGhhsPaxxYECkYXZvGD6n7okkC1eVu9LQKWdz2V0IrmIDLv9M3mNzmXzreQG51cpMrYOMmWlzmfzpJTiS5HD50BE+uz86HjNWSNKf5yqPlHOXJaWHausI8yrCAFuV3D0yMCo4EQeUXS+91jVa7K0OEHKw/fpEZESVKSDfWvAzvnf9+/fD+4ZwHZ5Y2C/8/PzaRvbY2X6f6zXt/UU0bNoeslrVb4jWYxkPSMEjAzgeZvXjPxVyZ6S0awMkyGPOQapQjaiY6css0tB6bGe/FE+JcMebMwrJMDr0WpdUVuxLbY/h5Di9kgZfv1FbYryVvBkZGDOhHhEyjfylir1ZIo9UpxMySoigMpRncvay9ruvTZcMLiwvLFmaZjRMRJwcXFxQAaMVKi2YTtOXbEyA2bHe9i/KrNyLiO47Fhm6CtkIMuH7VJKBpWWHevxzLPxjRRcZnCyNihSc+qyWwHKEJvXHj0Z1aPKV2X6eYnIAMsXgXnOlfaPIFqjEcGM7ACWoUiJStPb9ychA0sRgd6yqsJdKReF2jylKFzeq/gMPQLOjICVkRnnijeXGQT2HuyRfj4neudjVCFkZWTyyQy2+s/IgD+nFHSVDFT6qWSYrYdoPioGPaovysOOV9v1ksHmHPerMp8Zr54yKv9LRWqWaLeVs4R+sLJwOyIFTy2bi5OBJQ0ygjGfbHsEkZKueEzogVeEmimmStuwfhWOmuOd+zrZ2wxfguc/B0t4F5F8KmNu2xEJmEMGojINEbnFcVHroRopYoae1cfqYm305SnDr/r2q8hzRZYYov736Pio/ChKyf6r7cEye9oXyQPK00hb/L/frpatxmLECUUsRgYiAal4F5XOKGVWqaOCOV7TSCgUBSHqi+of1ufvHVAKOFtkGEEww39+ft5aa+3x8fGAFFTeWxDV9xIwSgQq8hoZc/xH2cPLVlH6HrlqLVfOytCwMiKwdaTaE7VXkRHWZhZCXkKhnhKUDs7kYsQzz9ZHpGtYvVG+Hhlg9eG8R+1UbVkiQqDK6y2bpR+R4UUjAxEBqE5gZRAiIUfg5KuBjhQbIwajiLyb3nI8ogVUJQFsfLyRf3x8pASA3YvwK2DEq2Db6pwy3tG5jKCycnrkNlPaXnajSJ1S8hXZYzJYnYcsuhYZf7b9UslBJG8I1s/IKEZ19shYppdUpCc7xupTjluFDFfLHYUipq3pNcXqZ+3pkd/ZZKCidHoNfE/aLJ9Sriq/UqS9iCahOkEj5Cpa2FF4KgJGCjBq4Mv3YxcZi1NHrwGoKF+Vhhl3ny4y/hEhYP/VfvUYg16SUSWluF9ZN4wkR8fm9usUEbU70hu4XZmnHmAdkdet0KtPoghAVQ9nBHNJVAw8a/MSxHUWGVBKbNSwe0TGatTD6SEpTMH6sqOB9x8K8un8AmD5FbOL9pVgRNvM4Phtf555/nhZoOKNvTSMLqwq+ewlAyodu6E1awMDyklkLKvEmsl31dBU2+3T9swXIxtYbw9hPlVEcsZQmZce9EYdMl1SJQOVuauSwt5yFRTJZW1RhECNHXO+eudwkchAZDjnlJsdizqetSNS0kopY10VYVUTUhXETPhGiRfbjuYQCQ2+q8DyY3SgtZ+fQDglVLyopYxCJL9K3qpEwL8WOiIBoySHRXlUfRHh9ecV0ejxcqrGIcqvDFavoTg2MuLJ0jxlPytRyizq0Nsn00nVPmE7qjLk+6bskO87ps3sFSu3N4rB9iN0kQE2MfjIHaaLlMEoi3kqpcyITaWuSPkqb0htZ1BhL6xfCbcyOK39/N0BbBNGAzIBHTU8z4loPKtQRrH337YzeWSEoEoGrM92vipzigxkhiaCqp8pWTwflZnVHfVfHTt1ZEYz0mU9BiTSJ1jGKBnE7eo/zuuIYRyNVDF5rerG6ryw46zv1XIQQ5EBNB72YprME4kM1BzD0TuBGRmolOHPecXM0psnHT2O1+sF9Zzz7fRpI8Pj87HFGxEBDH1VWe0pQRHWyjhH/1H6yLAqQ8zmLVP8+JnrrE9s/qI6sNwobQXKC7OyszYwIhPV4fMfGz2ErUqeKjLMDE5WRuYVVxGtoaqM47rN2pH1t4JsLSmZrI6NIlasryPoJgOofPxraxVTY56FKlshYnm95SrFoJRqJIyeEJ2fnx+QgtZ+hMj9z8aDHYv6GzHpSOFli0r1tdqOyAvwZZyCckVUFGiFhKnxY2QgU26RDLJLA2r9Re2tpm9Nv23Sl+Hn1n8Zs6dNvfKBY1qJBmRt8elH27Uk5jgJVSPei7njV3HeKmuB6XXTq6w9VcyRlQy9hCDTrT5vRtAydF8mUESARQbmMu0lQtCRUu8VPLXvyYARgouL/4bWyMB+v2+73W56Rt///HP72O+sj0oQe8lAlLcS7o3axyIhLx2MROI5dRzPZSROlYvl+zT4HQlM49P5bxMYfBTL8piirRCJSHErmfKKEZUlyxeNVRRN8GmwXlbXiO56LvSu/QqW6ms0vgxMliOZV8aPzRca4Z4+oFz2wKdHecpkrGIPWPl4vIoyGciIgFck1QGvCsfIJColqfbxHFPcKJimFI0EnJ+ft4uLi3Z5eTltW57dbjf9jADY7+zs7KcX+Yz2G/sWEZ3KeFRYfJbnVyIC0bhFYxwZLoVqNA3lU12u8nl8hIFFtEwGzcvf7XahIvZr1QgwS5/JMxrxOeFvpnCjOkfyvgT0EIIeg90jxxnUOvL7GRmozOMc9K7naI1U1kH1mCJFvZh9mQAnyKfDxkXMXoEpBzsetTHbxmOsH9kxT4qMDFxeXrarq6t2eXnZLi4uJkLw/fv39vDwcEAKdrtdu7+/nyIGLGqgWKFilIoIYPvZeHhhZXWytFGal4Aq2++RnUjmmHFU5Vfq9vVHefw+kngjA/aGSU9IjQS0dni5ACOBJgP+DZgWRfDHWD/8mmZr3afrNUZZKFadw/qOJeNLGTIs0zByGSLbzxARrEyuVXo1V0joTm1OGUGoEoGl0RUZwGuU0Y2Drekbj/z5Hsy5LFBR5j3tYAvCvu53dXU1/S4vLyeF+PDwMP2MBFxeXh7s+4iBkQiMFlh9Nr4VQ8JIjepXRAaqXv6xBPo5EJFDfz6TxVFigOlQDswIs7pxDfsIlp0zebP52u12NNrA2smMv29zrzJmihPrj2RWKd6XgqckAiPpe8kYAucpIwS2r3Q0lhc5L8oW9UYPRsZgVPZGde3I3JTJACMCWCFbkBUvE8/hYDMvOPI01Pkqy0QFHwmjh5EBIwSvX79ur169aufn522/3x9EAh4eHtrd3V27v79vd3d3P5ECjBbgeFbCeZHHqPKPhPSrBG9EQI+NiDThMZVe5a8QuYzMKW8Ib6Ky9fr9+/d2fn7+07X/7D4ALM/nY+dZn71s4bb6ZwpckbEsjOrLw3GLdBk7/1zoMVKWPgKLrjDdm0VhevRr1diqeY3KGRmfuVGgSjQxcgQi3RvtPzW6IwOeCCDjz8hAVj5DlUxkXlhUxwjT88rNfma0fYTg1atXbbvdttbaT9GBu7u7dnd317bb7UQKLi4u2t3dXTs7O2sPDw8H9eFd2mwRVwnMKBlgxgkVyKm+YGgEzFgoRdjrJWREgJXLjBYqMZQPPyfn5+ft8fGxXVxc/CS7aNgtv0UQLFplx3x7/IulbNvfPJspbUUUovGpjDkrk7Ul8q6OGUnoIdcjeszSRuRnbj2KuLJ1wHRXpsNYdKBn3Nh6yYjlKDK5G5G1qE09bR6+gVAtxF4PtgcjgteLHoZoym+z2bTHx8fJm9/tdlM5RgrOz88n5fj4+HhACG5vb9vt7W27ublp3759o9djKwZWEQLWR0ayokXgy2fHGIv3/5j/FPAU7anIX+ThKKWEhAvnr+KpWJrz8/O22+0O8uNNwGbEHx8f074qsNdW48/qZ5ECvx0Zfj/mmdeH5fv8yuPs9T6XhKpbresej7VSd8/+SLmZE8MMt9pnxG80asDkpqe/aEd82UvJ0tL6axYZ8IiY/WjncSKqHmsEZpzYImKTycowb91urvI3CdpX/jabTdtut9P9A5bPogG3t7ft27dv0+OI+C4C88gqizEzQuyf9atSD/uZYWEycGpkYC6eqj+ZolcGL0vjyz07O5tI6+Pj48ETBco42g2GDJ6s4o2vmUwy5V3RGaiLIhmrRCeQkFXKfWr0GrPsnOpLJe9I+qrO7q2DlR/JUGXe2XZUb0TWo3aytvVGCJ5CHofIgD/GJqDX2Kj6UKHMZb2qPVVlgv+sTRcXF9O1/4eHh4kQnJ2dtaurq7bdbielutvt2t3dXbu5uZmIgN1P8PDwUCY4mI6x6x7Dn5ECRQR8Gsawj0kGnsq76yGhqCTV/ojxyYi4J2ueaPpwPl4CNLCbAn19/rKCRRIyRRxFCVQegyIrzJvz5yuKGgnBsbFUO0ZkSqXvIQ49OjtzOFvLDX2PI6rGlh3PCDo7rpxM1balIwe9GH4dsVIMeKwHVdaqvJ85DB7zsm2muJAd2mUCixCYcjw/P59uKtxut22z2Uxk4OLiYooUXFxcyMe2elh21UipMrI0CDV+VQ/xuaBkpze/khVDpAgio1+V4Spp9ceRcFgExxMB/5ih7yv72JRSwux4RTdUCUFVpjJ5xLSMwP6KyPo2eq4HkQOj9FdG0iJHNKp/CfKn1vZTOiB4rLJeIgxHBnorHm1oZKCemr1Hgq+UrT0B4JXgZrOZ3j9wfX3dttvtFKa1Jw1ubm7oc96qvt72srRKqWaGPGK7tn8KXpXB97U6jri4VboIavxUVCBS0mz8s7Zla868fe/5YxvwZmGTTZQRjBCwV2zjmERQ+bBfOHaMRPt8SrbVfJ9SlCBCZe1j/ytefK/x7yEaigiouhlh8/VWUSXblTLVWq6iV66ekqB2kYEIFaNeUQxVIY3asZQA9yoCZnD8i4jevHnT3r17166urlprrd3f30//eHOhv++AXYP1bWasWo2hMjxVjzcbo6p3dwz0GHa1H3k0ESrkooLq2mDjj/PEPDAjpEYSkCxgHYy0shsHsS0KWRo2jhWdgXLaQ85OJUqQOWIKlfbP0bmsPiwj0jVKdymnA+eGHWN6uzoGzMvP+ttD7kd14hJkLUJ3ZAAxl+mzelidfnuugekVkl5YW02Z+hcR2aOGFkWw//v7++mpAnv/gCcDrA5fV0YGVP7qcQRj5acWEaiix5OJyBJb/EyxLGlolLeL+5EiteP+9drsxWJm6D05YJcPWP2+nuz8iAxlMh8ZiSXzPAeqxHWp8iJEcxyRNKbbme6qtGWOzKi1oKJ6Ctk6n9PeqH50CufI6fDTBNggn055i7jNUAm7RPWPhHZ8vmzgVR2mGP0LhywS8P79+/bx48f24cOH9u7du4ObDFtr7eHhYXqi4OvXr+3m5qbd3t5OhIC9mtjq9D91Axj2T5Eh1Xfl7atwMeaz7VNSqB69npNSaBUwr4jV4Y9lP0uHc+CP4UuFbNsbfHthln1bwxME/44BQ+/X4TC/f+rE/6zdFYdBjVsEpfxReZ9KZGC07iwf699cIuDLxe3eNlbm2c/lHPKGeozVNaq/1BiwMVK2qUIIeu0gYtbTBKphqjEV4cG0FePci2qZKh0qcK9Mt9tte/XqVbu+vm5v3ryZftfX1+3Vq1fTUwP7/X66gdDeMXBzc9Pu7u6mpxDwuqvfjthrNk8qjBeRLKxT/Ufbp4pooeKxiAigQsFyVHpWLvv5sD2eU8Y0KxfJgH1Tw99A2Fr76aVDmR7ASwWGClmYY3wjJY6Gw59nhuSYBGBJzB3LEWMTzaEy8hm5xrWEsh61qScapNKPkIyoHiQBqo7K/C2hc4c+VKQqrRqIyv4IeghIa7nyUQLmJ85+9o737Xbbrq+v29u3b6eowNu3b6enCEyp2guHLBrw5cuX9vXr14OIACMErP3VRaf6GilQNYdKmTLiwvKfMtj4MOLElBNuqzKz46p+Rg6ifDY3+Kli27YPbPnIgN3g6t8gaO8i8F/Z9PDf0GDf06hGiSIDxMYLSQ/L5wlTBUzHvWRiMDey8Rx9Z6SZ1R2ds2NMZ0XOZo/hf0pC4Nt1DAzdM8BYtKFCBHoQGcGl6qsKe6TAzs7O2uXlZXv16lV78+ZNe//+ffvw4UP78OFDe//+fXvz5s1EBuzRQ//WwW/fvrWbmxtJBKqEQPUFDbVPi4ozM+iKIP2qUQJ/DolADyFQ9VS97cxz8vX68+qxQR8R8F/dtMdbrTxm+BkqZDxaQxX5UOSgOu5R3aNe2UtFVe4yKCchq5uRatY+dWyU5LAIUC8hsHJUOxWUE1Wpt6eOkfzDlwkqhAC3sTyWR012JQTUOwBVYWLlo6dmitTfK/Dhw4eDewWurq6m9wns9/uDlw75GwcZEahAjalt95THjHvm7b8EY9+LjBywY6hkMm9GyWGWjwHnAO8HQELgj/lPbhsZ8DJjN7y21g5ufrXz0VMETE7myE4kk5guk9uXjEqU77kIzdzoQ0QMWPm9azMyuso7j+xP1t/MvjD94PM9t4wOv3RoacYfebQZeo3lSJls3xMCf/Pg9fX1RAb++OOP9scff7QPHz5MNw7a2wW/f/8+RQnwE8ZMgaFxqLBrVM5RhEEpbNweVeIvTQEj4fPHWFrmaagIQlQWAyoNFbHx9XqiaoYejb9FBFprB9EDX6b/eqaXT/+2QSUjah31EvgoIlAhA9W6f4dIAG5Hx0bKxuO98l6JkCG8Ac08/UrUbilvnbWr0r+qIxyV0YshMoDIFnaFpc2ptxfKY2OLpdonU67+fQIfP35sf/zxR/vzzz/b+/fv22azmW4UNAWM7xWIohBKwFnUBvvK8o8oUfMAf0dEizkibnhMzRObw6yuzEP2jwtut9vpEoCRAPtZXh8RMOO/3+8PvmMQEVXfj4pCjpRs9fhIZEC163dARkxHCa+qA+upOjJR21n5KE/M4476VDm+NDJi85xtWYQM9E6o5TGwjlYZFOYfYZ+ohJXAoRJmdbF7Bz5+/Njev3/fWmvt8vKy3dzcTDdpmaL1jxDiJ2QjeMFBIfKKMLsRUXmePk/l0sWI13ss9LZRsfUeT0YZ+4wYZB4WiwqY0benBOznH0G1ywJm+A1+rvGNmuxLhllkgBEYv40KD2VRjeGI56nw0glB1aDjdiWfP9/jIEX7rB3RXI7Ms1+vbJsh6l+27uc4qFF7Mtlkurt3Pcy6Z8BXbMcqRrwyYEwZVNg921b1MmFFYlPpk1es9mihJwIfP36cPK63b9+2T58+TZ81tvItDMuIAGtDxKqZ58SMuFoorBxF2DKwck8VcxVltfyICDD4uWMeECvfiIARU/vZTaz4Pordbncgiz4y4G9oxfddWDp8ciAioNG+IqvRsWh9MkIfOSKnRmIjzzWCIlBR/qr+zHSicrT8Pv7Yuahc1q4I1XlV/apEQZhsqXHvbU+25rNjFTxpZCCbvCy8l5XD6lLsUimBSDgr7bKfXY/1Lxx68+ZNe/369cF34u3rhXbXNqtPGXPWFsvv3wTnhVMRATYmmLdCwFhe1ZdTIAQjiyciCVHeivHvIRss+sPmz5NTlMmrq6sDuTPjby/A8o8SesPvjb76boY/X4kiLSUPzOCounpl+ldHj3FCuas4V3579MfKRtnK9JjBf4MDy8N8qu9Rf5XdinQIA4tkVBztOSiTgYzhZ4oO0/tjaqAjJaKUuhKgTAlkZIAJnSleC8Wa93V9fT397DsEHt4z60El1DVivEfGK2vfqaGnXUuy7UqZGWm27YqyMfn17w6w6MD19XV7/fr1dKnAyr2/vz/4rHZrbXrtsK/fCAFrm9IP2ZrDsjL5Zv2NMNKGU0NlLfY4TFmebNwjLxnLUDpVGX58BbY/ZsDoVWvtJ+Lq0/o226VZBda3Sn+x38o2RgSHtYURgh705OmODPgG9gqTb9hcpp5NkBJA5l1ZeT39MYXrXzbkicDr16+nFw0hzHPC0KsaB8YKM/JifcIysD+YXwnzCDE4FYzKmFKeI4o3O45g8ohrj80dyqV9D8NegvX27dvpUoEp1dvb2+nNmHd3d5PiNZJgxOL79+8/vYkw6v8ogeohAj0KdlQmR+VnSYySFqUHn6otkTOoZNb+/fswPJm1fZsHewrL/jebzcFjr16Xos7z0dMoUtqj/yrEoVdWVZt6ZLGnntYGIgOZYLEG+IlhCo5t92BEOVTqigbRC64nA69fv54iBPaOd4Q9QeAf2WKsdi48iWBkAv/njBWmZfN8bIVaRTXC0bsWmEyyejKyivKN5eLrhf3jru/fv2+vXr2ajPvDw8NEBMzI397eTnWbjPrHCf3TB165+l+PYkVdUSFS0Zpn46nqznAKRKCCY0TlcH6r9eOc2c/rU5Pd7XZ7cEnVZNAeyTbyak+7+B9Gsfb7/cH3MNTc4lgyWY5klMn3HMdCRYTZupojA8P3DLDGKSKARqmKyFOOjikywCYpCxlFk+gV7na7bVdXV5PwGrNlZRoRwBuzsO1Ru6Of75v/j8atKkTV+WNCe2pKde7847EsTZR3TuTCl+ejAniJwN6K+fr16+lNmLe3t22z2UwE1ZM2M/z2Mxk10mDKVRGCbAwNVWPCxjOS37nylpG2U8NTEoLechVZY8f9pQH/9Is5Vf5V7q216V0tt7e37fLyciIFeM+K+rYL3uzq7yNQ0Y4sCmLIyGxFbrFebFcv+api9g2EyEiY8cUOsQ4iRjz3ymBHXklUPgqxV7omuEYI/OtcEfapYnz1MOsHay/rJ/ZZ9bNq3JBhq/nLgAJ8amQgiliNIhrfiDRnwPHzirS1dvBmQSOnRgLevn07vfPijz/+aNfX1+3s7Kzd39+3b9++Td8asDdjemXqIwOtHX790NJYG9SNhVGfsnGIIiL+mCKemc5h+xGROSUs1b4eEjY3n9JbnhBYNOvVq1ft3bt37d27d9O9LpvNZiKx9qVXe4OrPaJt8uof126tTbKNX8s0MF3n2z1nvCuOG9bVax/nykLXZQLczxax/TNjospVdbX2czSCKYpsoKuIvAITXn+JwATYEwFTpv5SgQmxvXrYv2jIyvWfBl4CfqwyMsAUdA9bjnBqZCBDpgQzGfHbIwSgtZ/Xije4ptSwLiMEPirw9u3bKTJwfX3dNptNu7u7a5vNpj08PExRrfv7+3ZxcdF2u91PLyfybbFrtQpe5ioRPi93qBhxOyLBUVn+/GjU8VSg2p/pZXZO6ddKXjuunKzK/GFUwL+8zd7iape3LEJ1e3s7feDNfvf39+3u7m4iBfYyN7w3y4it7Vv72eu0lSyy8VNj0dqPl3lldkrJ5qgN6yEwXZEBFQHIKlODyzzNiCjgIs8mh3m7CsrTQK/DlK2/PGChrNevX0+PDZqitpuuWvvv5qzPnz9PXyj89u3bwVcK1Y2EzLCwdrIxy/qK5WMZUXRHAb2rl4BInpTR8efZfm+eCttn6wgVqb9h8I8//mj/+9//2v/93/+1//u//2sfP35s19fXrbXWvn37Nl0uMEWK8+09LFPctgbscoERFCOy/j/zxpmcKBlT3pWSNSQjKL+ZbI46EqeAiJwqsDUwou9ZXlUOfo7b61Z7JPbjx4/TW1yvrq7afv/fEzBfvnxpnz59mn5en9qn4e/v79v9/T2NdnliYH2vfBwuGj//j2NRsS2q3F5ZHHE+ushAJGCswSMsx5fRMwBzGFXkcaBC9wKLb3bzd137rxJaP758+TJ9svjbt2/t7u7u4FXE+EIXbJM/5pkm9jUzKhXvITP22fGKcn8uVIkJI5EV5ajOMyXYszitTZnC8N7Vdrud3inw/v376XXY9n2Md+/ete12Oxl5/G6BybTdWGjn9/v9dDkBnyjY7Xbt4uLi4GkDT4bRIKs+sGN+TpjxyByCjIxU0TtvS+GpCEl1DqI0WfoqAcE8/tKrXeL63//+1/7888/25s2bdn5+3h4eHtrXr1/bp0+f2j///NP+/vvvKUJglw3sk/A3NzeTjrWfkWBrg/38PTDWnmoUKXJkFTHKxsjb1aptHJXV4ciAaoBqZJVtRQNaaV92TikHpvQVm8PHXvwz23Yjll3PspDr4+Nj+/TpU/v777/bP//80z59+tQ+f/7cvn79Ogkriwww4cF3FGSGt4dxsnlSx14aqt53pigzb6myyJkiYaQlIqX+vBEB//bLP//8s/3111/tr7/+mjwru0Tgx8OMth3zlwcuLy+ncxaiNXn2j4C11iYZ9mSByVcEZbiRCLD3dKCXV3VMeojyS0KVyFYJhyK2THbV2lC6lj1JYJe4fITrw4cP09dfv337NunUd+/eTRECi7xeXV21b9++TZe/LGJgNyD6NpnuZfcUZDYPweQ9WrtqbPz+HCJQledFbiD0GCECqPzYAOJAVRhV1I6oHObdmcLz17f8TS+t/bhHwG4StDCsef///PNP++eff9q///47kQEf2rKnDDwztX57BegVYWawmeAoIuHLycbxpULJlz9v/4wIKoXIjikDjlAES7UP68Gbr16/fj1dJrDPaBsR2G6302e08bFBX4f/wqF/9NCMPMqg3WPA3kdQVWTRGPl++jHwnhx6dRGeQpk+B5iXiOdxPyKtKl8UwVEkQxn6Kkzu7BKB3ZBthODjx4/tr7/+aq9fv26t/fdUwZcvX9q7d+/a9fV1++eff6bXvdsr3z9//ty22+2kj/2N3Ra18rJk/VBvKsR+sf5VHSY2/ooA+HSR/mJlVzF8meApF0hkwCoemFosWVRC1eeVEEYE/H9rPwiBPe5iny2+v79vnz9/PrjG9fXr1/b169eJrbIvwmE7PDHx/VJ9ZAtUkS+fv2esMlQ9j+dCxvSZjGVEIKsjWju946OUjX/JkEUHPnz4MF0eeP369SSPnsCajBiZsGurdk+MVz6+7f4+Av/zx/EV2X47UnRsrDzx9mTE16PIcRTdyqIBpxYtGGnLXCOdEdueMWK6xcsRe9eAkQJ7xftm89/1/VevXk33aV1dXU3yb0932e/r16+Tjrb67ZLBZrP56dIXvqnQkzA/JmosmUMVOaJRZLBKpFm5PRiKDLABUQ1Wg+LT4kBngpV5YFjGqCGyck1ATWiMEHjvyb8lq7U2XZO1u1tvb2/bly9f2ufPnw9uIrQnCxQRwJ+vo7X4XduZgmNjUxW2iDEjc60w2WOCKTlFNJesi53LxkoRXZNJf8+APZb1/v379u7du/bq1atJxrziNbnyRMB+eDc2klO7dODfQ+AVa+StK88TgffH4CUCfCVthQiocc2OnRKUcWZ6w6eZ06fMIcyirlFar28xCuqdMC8HRnBba9Nnuv37XowM4Avg8B4CAxJY5ZgxgsTKsH4qIurLxrWPdhHbkemK3nnuJgNKWfZ4N0r5svOV/BnrrbCrSFF4Q2xC6f/ZJYPWfrxpEJ+LtWdj/Q2E/k2EKAC4QOxn6aqGQwmXpcX/nghBNn/HVKq9jBoVqOpbr7GopI2IiVJC3jD7Nw5adODt27ft+vq6XV5eTiTVy5KXa3/H9Xa7/Ulhevlgb860mwyrqBgP/E4Ce5+B/aofSbL6IoWKc/2SsQQR8GUpHVstP4rO+LE2efU3WSMuLy/b+/fvJ5LrIwr2s8e+W/sRvbXHD/1Nr9lj3bgm8ZHB1n4mA5FMZtExHNceme1F9yeMVYUVI1JRykwg2HnVjijvCJgnZGEs+/deltWPb3SzZ2L9kwR23ZaNk99mRiBjmeo/EkgWJVBzmAmlynNqYGOkyICSPTUWmTHpGQ9Ulqw8C/N7QoCPvHoFiO8RMHl+fHyc0hp8pACfgPEvd2FfOlTyWV2n/louGxf//LhvA1PCat1Ecn7KYEY581w9eteyqj+bSxbRMsPrv9Ni/3aT3/39fbu5uZmewnr37t30emIP/7luvHxlETOr3xMBk2UfMavcL2Dlq23rnyfJfo2oMavaR59WzVnvXA5HBhhwoVVDdCP1Ks8taps6HiltpiT85DOF2lo7UJKPj4/t5uZm+llEgHlWrH680cUvwKoXxOqoEALsu1/Unlyo+fECe2zFqrx6RXIzWbc0vZETLAO3fbmKiHgvBOXQlKV5R/5SVmvtIJ2FUP2XDL3nZKTW7sa+vb09OGfK2z8Ng/8omz3jbO1RY4f1qboZEYiUfdTeU0XFKDAPXBFVRpAVycD9iqHDOfOXVu/v76dHB//+++/29u3b6Quwd3d37e3bt9NLiPxTAq39uHfG9KZ/PNa/Z8DqMl3MiGsEbwtYZNgTC182yheTSfxnemYpEmAokwEWplZGNPKCerzJ7NwSi7RXyP1xHI/Wfgi4CeZms5nuevXPwdq9BLY4/YtaWNsMKDD4OKI3IqwvFcGL+s3GIcpTNZZPiR4iojwthar3qNJlJFXNiR33xs8/HWAvEvKPVPn0Xrbw0pb3miy/7TMigG0wxW7tVIaX6QTsN/YfDbu/X2A0CqDG/qWQAI85jhGmwTGI9GRUpnKw/Nz5ywH2muzz8/PphkC7kdVe3Gb3wJjRb60dXG61KJmdt7z+hUT2LgJ76ZsfP9bmyGnAe3AM1jfbVpEH5UhXxpe1aQTdlwmYQPSyqcr5iLU/FZQnkbFcnHwTaFNWJsD2DKw9TugfJYyMgheSjA1GQlsp3/JFXkNU/0uF8oQqiAy9IsxzwAymV6im8Cy8+uXLl4OnAvAFV96wehJxd3c3KVAfUvVkwAy/1e2JAIsMKMKI2xgZYSQA91l9SsH2GMRjk9kKMlJeReRI2P+I7s/0G8ovXov//v2/VxB/+vTp4OkYuxfAXpftvXMrr7UfNxfauzjsd3V11W5ubqZ8/n4Xa1vVIfQ3kTNj7yNvLI2v028rIh2tqREMkQF8xlh1HjuiFlamIKrte4pFq8iBv/7jQ04mWHaT1vfv39vNzU37999/D142ZNEBf8+AH0dcfL49lbFZSkBY3agkXxoRiOQkiwKoPIocLkGU1RwwI35zc9O+fPnS/v333/bmzZvpo0S73W76WuHDw0P79u3b9FSL/9iLvfPCnnKx6IAnAowMVB7tGwGTdyRBjAz4dL49ePxXRbYme9YuOhc90bKIBCDR83Ls837//n26bGAvGLJHDO0DRva0gF0ew8u1Vq7JLL6vAsdCEUrUf+btK0Jr7fCP3frogLJbc9YL9qWKbjLABnEJhYdpRjzSSr7RwWLKDcOpNzc30w1YdsOKJwP//vvv9NZB/5UtVHjopar++n3VL+WxMowQsJeITE5YZCBKrwzWUuOjSJhXoGdnP75C+Pnz54Pnr/f7/0Kk19fXExm4u7ubbmq1d15YxMrf4GohVHzqhT0Ki1CeTzXqgqSYeU247fP6/18ZVV3RU5ZtRz9Ls4Qx87LcWjtwtOyNrp8/f55uivU3x9rlACMF7FHC/X4/vZrY3yeAbVAk1utZf0MrymUFI/Myh1BX0f3SoUxRjjY4EmQss2cweyepoqhMSO1RLBNWu8PV3uu+2fz3nfjb29vprYOMCGBkwPdRLUDsX0YKsJ/ZuKj8aJAynKoyrspQpvSeqj0VEueVmYX17fWrpgw3m83kVdkz2Xbpyi4j+J+PEPhHX/09CfjYVNZujCKytCjbjAiwcVDePxuv3wFVkuW3I88f9Y96vFm9S0LVi8eNDPh7TcybN4LqXyxk9xKYTPsXD9m/f9prs/nv08cm8xYB86QWn4hBwok61l/7twgZjuUoacaxycYQz404I0OPFvqKGYtiDc6Mk0LUqayzmQecMV9cAPgGQM9a7dhut2tfv349eKbV3zNgZAC/VGjtwResKCIwwsZxntQ4RoZIKWavGPzxU1fImefTU4Y6t8QYsKgA1mmfJDblbBEAu+HKFCcqWrs3wH7+UoG/RIAhea80WYgeZYAZG3+8Z9yUB4d1+2P+/1fGiOfJyvDzpR6jW4KMeRmyfTOsDw8PbbPZHDzKja8s9h+L8y8bMkK83W6nNwpaxMuIr+lhdjOstQsJqoX6fTvt3z6CZHmwTBwXJudKT2OabJx7Zb2LDLDKcJFVG1A1QJEXrMpRhkvVY8exXP+4CFNkJgx2DdaiAF4Y9vv99IUt875MAFVUgPWRsfE5EZMMUWTAzvt2sPlXCvmU0EM2ozFnSqOqGFFmWbtYvV6JmiIyRWcG38jAmzdv2qtXr9rl5WVr7fC12f7nLwv4mwYrEYDK+Yxw4U1WS0DpJlTKLw1MR+C5XqKVkQB8qqy1nx1D9Rw9k3MDkkp0Luy1wdYO/NImfn3TyIE/1lqbSLKRXf9kl4oMsDb749ZfaxvqArMTUfQks1tsPO2YchB7ZXrodcRMUSkmExn9CiGw8hWUwmTK1e97hYSevxlzL/z+ewRWhoW0/F2wPr/Va28g9NdhUfDU2OA/87zYeLHFpsaPjU00zlF5CqdABJQsVPJFeaJxq/SbKQG1NtQ84PVWH161kKq/89ry+ncE4Cta8f4AU2Z4I5RHpPCYMcZ++fzMyNh/9OQAG0umNDP9w7zfU4Nq82h+laaHDLTWDrxnJRMZefb7GIL3L85SPyQLVofJtRFff9mW3YjK4AmA7Vs/8PFCq5ORByQ+ihCw7Yjkjsjt7K8W9qBCBCJlW2E+bDB7ohXqkoDBC/Zms5kIgX9bG7bHv5aYvXoY+xN5Tll/evvM6s5QjQSoth0DGdHKlGhGkLJxiyIQKj8zliqP90Bw30L/5il5he6Nqzf+PmyKdWJbTPGzV7qydai82AjMU8O8ZnxYXraN/Yr2TxlKfnvkrXcORghHlM/LiNL3uB58tKC1dkBSbNvLu4862b9/N4cimVYftgflHI+z9emjJqx/PdtqDLNxVCiTAdV4NAxqobJ9LAsZPKLigTG2qdhz5efLt2+4e5baWvtJyLxSNgFj16VYu70wqz7atlKQDOx8Nt4KTMgyJXxsRHLpgXPOvHX1H9Xp9zPD79vi5VAZUMuLXrUpuYuLi7bb7abXsuLLUbxMMqWIffX9wmusTLbZP+srHvfpVfg2GlOsq+oxvQQiMKIjK2VGMocYcbZYfXguMoRqLbLy/CPeTJ+29kP2lXwxIqNIQcWGMSjd7OuNiIPf9+PTq3+HyQASgMwwVAw5Qyb0lh8nSg1GpnAVrA7zfnw9PoxqChUJAUYDlHHyrDYzuthmJjiZEKl+suOK9PUqhVPDiEcVebdMBivGqgeoeNBw7vf7SRliPh9eZQTCy66Hl3sfNUD575EP1n48z8hApVwsQ6Wv6JiXQBAMT9VWP47eK46ckmwtVcgG21ZGEp009pZYXKvRZSdGUNFQKxIV9U+NFxsj1YYo7wgxmRUZwOOqccqTUulHFGQvIcl+CH+dh10DQ0WKQhZ5W7jNzmUKT41JtF0d/6ycSrtOVZlGi7dnW3kQ2aKdMy6sXFPS3tD7Lw4aMcXrmpZXhTGN9BpQ1hkhUO3NCKs/5o1PRDQ8Iv2ypM55DlQIdsWhifqX5UPjqwhbZOCYYbI2s7YxHRXNO1trvt2ZM2oypur2dWB9igREBISNmx8Xn65i+FV72XGFrnsGkCmxziimFk0GNh49HjWB2C5Vvy8DPe8qe1QkwIMZ/+ju1Ggss3Osv2zc1ALtIRK/OiISoNJl5DEiApnRGTFKWA/eja++zMbKie4Gt+NMxpXBtryRwmP19cg95hudE5bv2CTB60VE5ESwckb7goSgAjXnPTZBtcX/43FfN7uuz+SFyZbqL9OxXg/4fU94WD8UefJ9iMZgSQxFBpghjjqlymPHlEEbbZsHKnP24SVU7nZzVNZ+di9AZTwsjb/uhEJc6WvvePWgl2EiIk/tORDVWyEBKs9SRqJqgJRRiNYLevo+KoDvtPB1IPHFMcR7YkxmmS7A8UKjFCl3tp4q8zki42o+5xjRU8IcIoBRgR5949NkXjrWx8rvJZZYHtZV+X8KRLbKUI0KROer814mA/goha+shwiwAVCDwiYwYljqPEIRABx4q1s97oT1ezLgj2fCbGnxSQWlMJ+CSVbPY/3HMvA96PFmWqstoKckAr4NmdJj+Xxak9+MBLfWfrqHQNWF8u5/LKpQ8QTZGlaypuan4hVHBkblPxUigP2utIvpszl1VggAkj5GYtV4s3lCO4DlzjGWPk0PEYjahdGCqK9ZfSN2dRTD9wxUGWEPkHVW68H8rDzfJsZOmfdi/+wYTqC6VhoRHqzDK9NIgFi/1HgoAasQrMqxlwBlmJZU/mo8mTKOjFmUvkICWV/9tvXbvy/DthkRiMivSqPWAPaLpektq9fTVFDj9tKQ9VURilGZZ04U1of1KB1cdUiU7FTKyMqunsvWZdVuVWwGrrWIJM9B93sGeir2gqeut0fGKhOw7FgkgCw/Xg5QCk8pwEp7lYJt7ceLNZBV+r5E/awKjW37snsXg6/7pZGEiBy2VvegUL4YWR4hs2zOIo9Q1aPItc9j59gTLEq2M/nP5MXXz/rDwPqiyo2gyFjWhlMhCBXZ7FmPUXlqnDyZ9B/t2e9/jo6yvH7f/9t2hTyytrL8ytnLoPR5RgCwLdg+1e5oO2rjkuiODETeVNVIZ2CKecRYRYLAFJcKkTJFqEgB1qPayZQpKm1/TVex4ooS652DUQEdMYAvGX49KEOM+z3jUzWAWH6lzf7SAX473qeNCEHlX2GOjFQiASN1norBH4WSx4hIqnMREVBkAB83ZO2L6kT9MULQI6Kn5AbHLYo8LA3U7ZHeYA7ekm1c9A2EVcWIYBPP0sxpExMkP7joFWG9ihCotjGvO/PoIoXKPNiK0I6QqOp5346snmMrWmwDjmWWXh3LjqOcoKJ7StmPyvPy5BW5j44xGY/IYZSGKT2l7KN1xcpQ61UpTgVcpxHZO2WweekxpFF6JAT+hWv4XYke/cHqV4SmAqVzo/p7EOWZo+uUPWBzurRMDn+oqBICYedUWjzOPJQeAYmMppWpFAnuMyKgzkdhsEi5MQPBDBj7V2VXzlXLiPKyRZwx3udEVrcazx5C4POoxcvaosZGtbk3+tKThq2HKhmICK2SCZU32q70E+fhKRTnc6G33ZF+zQy9QTlQ/jjbxiegKk4CpmPzxQg0a19EJir97RkjzLtEukwPKJnO7GJ1HBaJDFQV2ghL7y2vwmh9ukxwFEtjyorV3eO9Vxl5VJcqg5GNCNHYKoMWCeWxIwMM2XhG6RFqXpUhisYrU6BKOUZ5sB9ZWyLjrtJkeSvEMyMGrM2KxERtr6LHMDwVfBt62pIZzQho7JnxXwqoW6P24Db2pYcIRA4uHlfrFNs1Mk+qHoMi6Oy83+9tQxcZyAyRNSRTLCzfMdFDPJiSYcBFNNIGP97sa2GY185Fyj8iC/bfozwVKXpJnlg0RyjPWVrG3P15X4bax21sJ7ap1wNSbWdlZsY5UkyRsbZjvfoiajPmrZKCquf5kqDGe9QLrugyHGsc/4i8ZvKWGWpFNFEnVRw2VU81nyJSUZ6KrCtSoPRTrxwv/tXCjN0wwRhddBV2i78oX6SERrwMrNcmMLrjVpVh2+qDG0oJY5ooalA1/tkiYIrVnz82mCxkhoB5RxX5qyjdbNyXHDfWh4iMVEmAL1+dU2SxSsYrssuMkeoPtjsr+9Qw4qUrQmDlsfJRZrC81hp95wQjxUov+X/cZvki5xPTqH08Vkmv2od5mK2JyqsSYhzPqC3V84auewYiJZg1XnUgUpQjizDymhmqSqmHDKAAeMHw7cFPxEZtwW+J+3T+2+HMAEUL0O9XFT/uR4w/OvfcYCydHetZXHMNdS97Z22okglljNUcMWNaqQ/TqNcbY/0qvzqG7WZEIGt/NN+RoTwmqt6mR8XpqhgePI+fA97v9+lH2SKyWJGtXoJW0YfKUawQgmyMRmUH5VmdW0o2uy8TRN6EQpVFqfMVT8MfU8aY1YULXrEz5XGwOqK+tNYO3g2vFFom8FUm6etmZeIYsvqztkSsXbXpOaEIwJxFFOWveC12HrdH2lRZiyoiEMlEhRxGY5AZdCZzLI0aJ1V+pjjRIJySoV8CFTKrxjoqz+s+fAzbEwD2UTas289FRb9kqKwxBeXNs3+UJbZWmOOFMsfyM9sS9WVpvTqLDKARyJglW/RLLMSKImXKOxpcpRCzCWPlYt0jC0GNpaqXjYXVlRlpZNGsPHaceZyZQXwu+DnAbY9qOyNDhOOr5IXJiSJWmI6Vo5RQ1lem1DJCgHUoRPkrBBOVb5a3SkAzD/CpFe8Iqrqyst4iwuXTKOOP5SABqEaDMvmK2rwk2BpRjkOFHCEy4hrZGXYuqmd0bLofLVTKRbHNSpl+m+Wda0xUPaz9mdLGCYwMph3bbA5fztEafwyHbWOd+OGk7CMxvjz/X3kHvWpLRrowLRql54aaI8b4RzGSX3moPWQgWndZXsyHsp0ZcuXZYzpVRuQlqYhAhIjI9OKUogUjbWEyrdZuRKzwx76/0hq/Z4CVrWQX26zW5Oi8oC6KgLYOCYHSsaOORDReLM9TOVlP+jQB8xSzsiLFNqpw7T9ShMqrNSjliMciQsD6lfWNlY/3GTAiwBaa/7d7DBirjZRGJAMj/XsuVCMDhh6GrYxptV3sXx1j+ZUxVvOl5lYpcqa8sPwMFZKt2j5aZgU93vYxMGftKEKAaRBed6OOYLqsQgJYG6pk1bfpuYFkgLUjIuSIyIawcWTtyWzqKLpvIPQ3sPmGmXHx18Nx4FAIlKFW+aK2YTsjTxSJC7ZtdPHhJGbC7vNVyrUfMtRIiVeEJfPwsuNY1hJjuSS8LFbkA8exQnwiI1otLyICFdKiFL0qg7W/hwxgXYrAR2ON5UVjM8f7yspWOBYJqKBiIDMjxdaq3zYikN3n1EOEK2M61+iNyAqzC3PKjcpSDoTS6RmWkNPhpwlQwXgG6YmDv3bEjDbrSGScImarFH3FAKMgLGXQ5kxSJCTI3Kusku37hV5tk+WPlK5v57GVamRU2cLsQcT2VZpIPkfHaoRksLb6Y6NjosrN2pcdr67NSrpjy+QcMD0VIdNjzAFDUuDPsWNK9qvGu3JsSTASYPuZEZ9bb5UMKPTMfRVdZMB/nIJ5Gex6tjI0Fa+FCSdrl99mio8JcgQlFJHw9HqbvUCy5Y8twSDPz8/bZrNJb/zBNkXeph+/UyEEaq4iYx1BLWr2j/kiec7Wh09f8cRGlG3kTUYe58g8L0EIIiKflT+X9J8K2FrrcWxUWowK+LTRNuoAfxy38VhEqFl5KJdVmVfy4tf0HPmI1lFEop4bQ5cJ2LPufvC9smUGNFNwdi5jRtE+O95rMJUHl3l2HspIoKCp9lXGitWFx3GxqIXi31fAyq4uisyTeE5EfWbejVI6EfHBYxUDjf+qfRmZqniFkVHNFGi1PqXUK22s1hkpbp92RNYyfXQqqBJJf7zXqDFDjOVHxprVhbq44sip9CPIZDFqP+tr5oQp/a7sAHMsKv1ZCsP3DKCxNyPiGaSlb+3QmGRejxJEJhBVxROxsyyPmpyoLTYW/pyVod7WFbUvExCl8P05/8M6KvWo9jJhxvqXWMyjYCTVH6sY7khGlVJU5TICEK2JyjpRipTljQynkktFBJmCz4xVj+GOFHKUVrWDrfdTMvQKlbnPnJeMEOD8ZTopQ1RfRU56SapCJW8kK63Fn7ePjDqW4/Ow7ei870/vHFRQJgP4bnzFElHhKgURGW6WLxOIEQLg61KosjRfLgrIaGjf95mNr8Euxfh7NDzw8o7yHCIm79uunidWJMG3+xiIPBBDhZAx5cTm3B/3ZVQMdkQwVd8iUpDlZ+3OyB7mx7qUjqgQeiuzQmh6DJbaH9Utz4WqIcO0c9ucjW8VESmrGnvVjkqe0XHI5Mcfz9ZKRgZUPoYKWRvFMBnw3662RrbGvUL/nx23MthkVgUimggFpegi1obt8O2OjEM1MqCUq0rj//3YIUHz6bD9EenwBMC/SrkqyEsLby+U14T7SoGgAfHHIiLgy2fzEJEBbLc/ViEXeA5l1B9XSisieKqtzEBVETkI2D6237P+T5kILI2KAWFGOjM+0Rgx4uzbgmWzeqpz0EMAlL5n/a3ohB4Dr2xJlu8piUBrgy8dYh/LYcpk7iRnnioeiwZI1Z3lqTI3RmDQuKIQMMJQEWSm5LFuNDA+OpCV29oP8mfbrf0gfvYecv/viYGRncoYPzeY0e8lY5FRGu1rDxGI8mbeIa6piATgMUQkrz39qeoFRjR61nylzKj+l4CqDsE8rem1kenhCvHDdiEpzfIysHYo+UeZrxrUqP8V2VMEtUIUMlT0UQ+GXjpk20pBZI1SXinb7xHsivcQHcfBnWPEGLv05xgZYHVWlW2kfD0hMCApQGNyfn7ezs/Pp3Tn5+eTod/tdm2/37fdbtceHx+nn5ED60f0lsVjoUICPKpt7lm8I1DKNIoCsP2snT3ERhEQtT/i0TCFHinjJdbuS0Rk0DFN7xgx2fN19eRXRlnp4x5yM7q+sv70tKFi9LN5WMK5UOVFWPQTxqMLMRIEv1+tNyMpWcgnKytDhfUpMsDK8r9IoTJF4KMCrTX6WCgSgM1mMxGBi4uL6VhrP6ICj4+PbbfbtYeHh7bb7aafldfziOIxESkiv42Gr6dfihB5olaRSSwTIxdYfg/UOKCM9pJTRVYyme/xFLGNPXMTeZNzx/Spkem0pY0KK79KEti5aM6UIzUneqbGIyPQmXyocfD7Vdvy1HMWYYgMsDsrswWpGGE0kVWvxpfFDGbUlggjE6NYsD/PSIBfLLjtf/guB1auAY2ND/172PHz8/N2cXHRNptNu7i4mH6Xl5ft/Py8tdYOiMD9/X27uLhoDw8P7eHhYaoDLyFYu6JLFM+NaD7RyFaNQlVGMgKQtQnLYKQA2zWqWCLli/WrG4zZOlaklq3jqE89a5sZHF8n6/OpEAE2DiOe7FyHTc1lb/1ReyJHUM1VRFLRkVKGO5v3iAhEBBX7mNmVTDf1yLjqC0MXGUCBMOPE/pXR60VPx6uDPTfKoMrJ2LntZ4LCBNjGFV8L6ucC58enMe/+4uLnKY9IwNXVVbu8vJzy7ff/fa/cCMDd3V27v7+fiMH9/X3b7XYHEQS8r+C5EXnQuJiVsR1RvFg/tgHPWXm9/WqNR3x64B8N9uVHypKRTUVSIjn38o7nPPx5tn6ysas4IAxz9NdTIDNsSqYinVYlQKqOUSidnRl3tn6rpB3L6znGdH5FPnoJActbrWMUZTLAFl1k9Kuel6onO9ZzntXtt3sHMVo4lYWUAZWhN/5GCBgZUO2z9Bjyb60dkAS7THBxcdG22+1EBrbb7XTZwIy8pceXUJ2dnU2XDOz+AosknJpSbW3cQKhxz+RekZGoXEyH5eCTPliOGXk09Fi+L1sZVybv0U/lY31U/e3RK1Gbq/M8Ig9PjcpYMmKA+1Wjm4EZ5GoeNkfo4Hh5rBLuqHxshyrD/7PzWTsiUtpDBKrHo/3eue0iA+xRsujHGtuLSv6KAFQMOPNWlHek/tWxCFUC5D8AZSF3pXTNSPhr/0gGPBEwz9+iANvttm2324kM+EsFdp/A/f19u7u7O7jX4OHhYSIUu92unZ2dtYeHhymicAqozosybK3xyzq4n8mKagd6yFnbGBlg6f2XKtEj99uZ160Mv3oXCXMWKqh6XVmenjKitf8SwDz3EW+0WlcvIcjKi+rI2hERh6o9mtsH5aAxLGUjVTt60U0GsANKcaDgMcGpGMHehZyVM+oJWl78z0iA6rMyLmpM/IuFWms/3anv24M/M9b+cgBGBIw4IBkwQmBkwPLudjvqfbJxORX0KJYMbC7V3GLZTBYiT65CCPyY4/dBVJuU9x31CWXfSABLM2LIe1Edz5FyXwqYjERyE43Nc/Y78n69LKH9YOn8vkrL6lRlRG1mRCurJypPlVXJg5gj+2Uy4L1S3yAWBagOPJ5j25W8qk6lnNFYV9kiU4RZ+VgPU7IZOap4Ktgef1OgJwIY3vfnz87O2uXl5cHPogJ2qcDKvr+/PyAB/v6A1tpB2Wgsjo25ZHBOmUxhKVIRla3koHqTJpaHUQPfThYV8Nv+fRSMCFaUl5LtTOajc1ndEZbwdJdAj3KPDNVTeJ9YZyTTPW3N0qHMqP+ozdE+gyo7soOs/Eoa7GtWFmvrCIYjA74xlc6y8lBwsrxqgUbtiPIh+/THWR5GBiKvjXlbTPFXhJflZe1g3qIp7M1mcxAF8P/+MUK7edCiBLbt03oSYGkeHx/bfr9v5+fn030CnkDYo4fHgiJvKo0a39Z+likbE0O2UKO2MHnA+ioLPrthM5JzJASs/ern080hAphOHVPkyrfDwNa5HY/W86+EHoKhEOliZryjfZZfGcKozihv1I8eKHn1JDraz9pQJQlPga7IACJquFrAKn0PifBlZUSgB5GBrhgSlpa1a463w4yJIifYVv8WQvZ6aU8W/FMFPrJgXqBFAS4vL6eb06zdRgYuLy/bw8PDwU2Fx0A0JkrhRAYuysc8ImXIlZywYyq/ksfKkxvZ+uwFIwI9azEi+j5NZOwZovQRmf+V0dO/yAD2Gt9KuVn5bK2NEoKKTvZ1+jxsuyLz1egA60vveupJ3xUZyDqasXu2ndVp6SPvPlLEmFYp96WglI0S/KgNqj/MWKFhxxsMzcjb+dbaASnwP7yPQIX5rVy7x8D66C8bbLfb6eVEp3gDIVtwSs6yvGyOceFn6X1aPJbJdQTmqaj+YbsycjpnTUWkKfIOs/FgZVQU40skARlZzbzxig5a0hvN5gTPZ8Y+W4dZ/9iarRBTPMaiAmrd9Tq/VdnFPvfIc3dkoJcMMAOihDMaqEq9ygtnyBRKj3BECy0DMwTKOHjBZcYLCQG7aZB9wRDvH8CXDfmnBbDs79+/t4uLi0k+/OOH9n4BfxnhmIiMPO6jkVPl4TxUFFGktP0xvx8ZXS8PPiJQUUrYF2xLtCaRjNp5335Lj1+39MiI/lIYMfRLt+EpEekzjwqJWhKK1FXzjBCCnnZlRj4rA/fVOosMe8UhqGDOHA49WuiP9TQqY7A4MVE6bEemhJWSV55HptCzyVLCj+zRb88RAHyLoDfo/tq/igb4pwn8z0cJrK3+soBvt42bPYLob0o7NhFoTYcXERVPieVhxEAhIwlYFiMElg4/DOXb6c8rGasaPKXEFJGw7Uw5sv73IDIAWd965/+Uochr7/xGXnuUl+UbKcvy4TrNvH8mi5HzGbVLtVsR2QqRrvaX7TP0EJ8Kul86pPY9FHtT5SrDO2ehRoac1avyVxcRkgtmcJTx7xFOdQ6JgCcAZtB9HYrYYdTAe5vWF/9GQXvKxAz/5eVl2+/3Bx82wjE6JirtUIqtF4poVtro80cy7MkrKwPJQFRe1J5oPahXZKu8PWPKCFK2dqMysH42z8ohOQb8mCkHB8EcrEyvsjrnYkTO0NP32+of2xyRBlZn1B6WBvfV/TkVve7BbEeUf2nZXIQMVAxuxtx6ymWICAh6WJWyq0onYqp23itE7GN0jNUTtdff+GckwH7eY2fGw86z/NYvMyx2M6A9PWDkwBMJ36cKKXxKqIWEiz0y3lEaVjaDGncsA2U3kl9lzBgZYP3K2uwxQlSrZajy2HrqdQii8lWZp0JeW9P9YE4Iw4jX+ZxQshnNS+REjtSrzkW6e67Obi1e/889R8NkgJ2rKpQelloBE3aWJjpfQWRUIqaqBCr7x/aikmfp8XKBXRrwnj6Wi3X5n/f4FLHxRKO1drDtyzzWh4rYgmNEryLHFXlV5SgyUEG1TUxGcN4icnZsAzjX0LOyehyZaJ2+NERO2nMgM4YVkqMcvEr5WdvUfhYt6iUE0b7H0qStN/+sTxj3svQsrNXjZflyfdpMyY0wtaz+LIpQYZeR4mHGlxlmA75IyBth9DKRPPi8/tXFzNPE94n7xxN9PXM/ojMXNk6ZV1+RtSqR7ZHFTOYi2WXyE5EBRl6RJPi6srVQWU++nMiri8aKzZUqs0epVpX8sQlB7/rpccx610FvJChbd1k+Jbeq/LmoOHJ+u7J2o3TKQavYlgi96bvJgPKwestgCqDHa4oUgSqjxwsbmYBM8KveTJQODZvt+1AwevdIAGzfPz7IHif0LxhqrR3cOIj3AhgJYE8fVInYU4Et2l45YWWw7cz4qzGJFItqT5QXSQDmyxRrr9xaOyuEKVv7LH/VCLCyM9LDtj1eGhGIUCE5kU6v6mR1fK4+rZzzqJKirIxRctjT3wpxxrKX6J9hkcgAY+FKwfQIWYVRZuwsG7DM8PrtkToyIxLVZ1DGgCl7n2ezOfTK8Rh7H0Fr7eDmQIMnAUg87N8/kRBFJY6BjL1nc8sUWjanvr/skU6fJvJA2D622edH2fDHlYLJyG9FoUSeD5af6YxK2VmbMuLmt6M5PTYZqKBiGHoIHiuvun6V7hoZR0ZaKxjV+aycCoHuIczVNJHu8X1ZSq923TPAJhaNAqZjBr3qzUfsHstU7WR5mSKM+s2UatY/VVYEbKM/rgw5+4ywAV8y5C8d+G38SqHdZ2AwAmA3Cvr22b+/R2G73R48wWDvHjgVRIZIAedDyS8afPYaaE8G/IenlEHfbDb0POsPIwJVwtxjcH3f2cez2JruIVwVRM5Cr+FBXZORsVPDiB6K5jYro4oljRWWl/VxSa+5Ne3o9pQR2Q5V33OhKzKghCgy/qqcKBLAFAp6FRVvQpWF5c1BtYwqERhZOFG0xYw9vl1ws9kcbLPvD3gysd/vJ2PGoD6MZGUc8z0DqNyVd5wpGTaH3qh7AoBkDT8UhaTBXtXs2+oJgH+JE77nwfpRIbV+n5Ftldf3tTIurG4kOr7eKiFjzoc/n7W9h/iw9p4Ceshr1YHy+Z7CgLO29HjJS7cl6n+lPXOcPkyHNqqSn7U/sgMVLPI0gVWoDC9rbMXjqLLbSNGpxV/xlqJ6mDL17ff9jYyI344mzUcH0Oj4sVdj0tqhwfJvI7Q8eE8ApvdtQW/fRwbwKYZTUaZMBjKDiPOkSCyOq3oJ1Ha7/YmUtdYOLsvYeNlcGAnwj3R6YoCkAC/x+P4t5T1bf40kYj1MB6g1h+tdrSW1htl+1M9TkMVeVAhXhcBG8+DLWZoQqPoqeZguV7qX5cF0qv9V3Y3AtCirmbGOzkXtj9JWbC1i1j0DVqmKDDCFwJRvhRhUESkUltb/R+cU6ai0BcEiIL2Rikh4vDHxYX0kEN7oPz4+Tud2u930imH0dP3rhv144CULbMspvIGwKkc4LxFxY0SAfezJiICPwHhCxmTLz+HDw8P0jQcjBfa9h91ud/CJcSR4tl31iCvj4/PgUyXR+uslIzj2TOEpsh3pFYVTJQq9+mFOPf4fj7NzhohcqHrYsV6dX0mr9Lkvo2IzWJ295FWRNuVEZ8cYRmSliwwwBuTPVQQJEXlnGVmoIMqbKaYKWTAoQcaxYkaEjVvU7sgD8AYEhR2jCN7g4CLxEQJ8gyHzkP2+v3ZspOHh4WFxT6MHSjYrikfNnW37+wLwyQxPANg9FZ4MMNgcmPG/v79v9/f30+eh7+/v22bz32WGzWZzYPyN6Hmi4MuNxkF5Tb3rsZJnjlw8tYFkTsBLAOrRqA/ZGsjmp+JsKUOnZC5rkzqP/WZtYW1GI94rk2x9qDVTcYqZYxDZo4igVfsyFBmIWKJSur5xCowI+HIzhVLx1Hva0gMmhGoMkAh4b0oJxRyFid69b6d57Gps8IuF9nGi1v4z9EoWrFyLIhybDLQWeyPsOBp99VMfevKXTezGTIwMWP6oTfv9fiIDRiIeHh5+arMRAsvT2s9eu52LPBcGn4et0UhBVTz0qgPB1hiuEUXUIygvke0fA1W9WTmOGF2XvaSQ1dVjrCInqCKbESFYUjdVbVFmIz0JiIiAKi/Lg+i+gZAt4J6BVAMVEQE7psoZZXOsDZVjPeX1jo3/jxa5UnhZ1MDnVx+wMcNxeXnZWju8OdDyea/TtxUFF79hcMqoRAh8JACf7MDLAv4pDYwQ+I8/IeFiBOHx8fHgpVB3d3fTOX9/wG63O/hAVA+hzsAIgT8eIYs6ZPmqeZTuUO3OcApEwNrBEPV3xLtl/6zOanmZwa0c6yHxjCTa8SXISwRlkxT5xvp8ml6ZW0K3Dj1NYJVn3kJWhj9W9fyjwRqZ7EpZEaPEPEtMiqobvTtmyFtrPxmS1g4fD7T8eE+BF2Qz/L5MFFYkFRYpyD6KdAwoz7Uie5jW9qOogCcAtm3n/H0VeM+Alx/2jgY/5ngToRE0lBXbVjKPfVdjoTxmZmCZYqxAGaLMOcgQzX+UtteILA1mTBlxj6IsGbL0I3otc/jmtC1yeFRdah6VwVYktNJeJfeVccb/Udkbydf1NIHvZMY8MxZkqJAIRQSYYar0A9sQGffoX7Uz6of6sXJ8OyLPyIwSvkXQ0pjBsBvN7BibBytHKRxfLo6FlYmPyR2bDCj58Eay6o34H4sI2OWAq6urn6IC/h4BpdDQkPtn+D3h8GTAP2Xg7xHIvOBeLyRLh/rBjxvbzlDx4tmcqrWi1r4iuHbsmPKLdWNfUIf4fWZU2LFI9ueQDIZIj9l+jwFVZeBxXP+sDtbXSJd7eB0SyVcFzNGL8kZEvweb/TFp74oVK1asWLHi6DjOZ+RWrFixYsWKFSeDlQysWLFixYoVvzlWMrBixYoVK1b85ljJwIoVK1asWPGbYyUDK1asWLFixW+OlQysWLFixYoVvzlWMrBixYoVK1b85ljJwIoVK1asWPGbYyUDK1asWLFixW+O/wfe5/w0zJl5VwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrvUlEQVR4nO1d2XYbyY5MWbvs7tvz/584L9NtWwslmfNwT9DBUGDJIiXSbeKcOrXmjgQCyKXO1uv1epzoRCc60YlOdKLflj4dOgMnOtGJTnSiE53osHQCAyc60YlOdKIT/eZ0AgMnOtGJTnSiE/3mdAIDJzrRiU50ohP95nQCAyc60YlOdKIT/eZ0AgMnOtGJTnSiE/3mdAIDJzrRiU50ohP95nQCAyc60YlOdKIT/eZ00f3w7OzsPfPxIaRl4Puzs7PNvbvWg8NrPHrOwnbCa55A6/U6PFzZO2VBWMTz48ePrTj1HFGUh//93/9Nw70HXV9fv3nG+Yvq39U5h9V6mdm/q8MfGrfGn/HzzLOM57rniLe5DMxLEW9pGfle26ziaQ4X9ZGKt/n66enpTV2+N/0b5O57UlY/+6g716d/xX36Onlug4HfkWaAwFIg4dLU9DUuUAYGnOLolofDfvr0afz48WOTXkZ47wRypFg/mrLOjbJrHUTKrQuMKkLdfPr0aaueEC/qPwrbTSP7PuLf7FmUB6dMuY5BjrcUBLk4o3QqAKf9otOG2hYnOjxVILgLijNy/IjnTh78G+gEBhZQx0LKQIGLK4q/a8Wr1dXxDmR50HAR02edIVMgH0ndDstAICqzsyJnBYJr30+fPlkwsF6vt5RmFJfmL0qnm6fs2qWrabvnXLcgLZu2AT9zaURtVAGUWW/XMQDZ35G6PJs9i+LJeAT3lSz4NwGD3woMuMab6eQdQVmBAY4rSsPFw+E/ffrvVA8IUbxTQIAyVml2BGzE9JEV3QFCx0gVIOi6lMeYt1Ac33AbV3E5fq7qPxKkGeCNqCMMuU4dOOByOOssAiEZYOXvlgCBE70fzcpfd9/l1xkw64aSZoCBxvcr0G8FBpaSU+SRwsc1fwuqwEcXCOD6/Px84xWAdVl5BzQvHevX5TErUwWODk3dTrsEELjwUbpZnvh5xDddcBeFyYRrds7S6QAiPI8sfgfGurzjPAt4XrWjPj8Wfv23UbdeI/7k68zoct9E8UQeP3cof2Z8zHTs4OAEBhJyjMau3BkAEFmcEeNWQIDTgqu1qxxmrKFdBOOvAASiZ6DIFZgpwk5ZnaColGsmHKP8VulXCt+VXa8zivIzG1dVplkvH+LU/qj5Oha+/TfQUjCs7zNjowIHEZ+PEXsD3BCsAoPMIIjKeGzg4LcDAx3rPEKSEePx+66Qi5RSFHeU/xmh3HmW5VHrpCpfBpgOQUsBDchZr44qN7j7nj08ldDo1GdXwWZWUxZfBIqqvEWu2CytTv4cwI6+mRHKJ0CwnKp6q4B5ZCjxdefAsGomjzIQoOfsYIo8BlH5Dw0Ofjsw0KUZZnNKUpnLCaKusgBls8o5vWzuQCTUXfk5b1XHPWaBujTtCAw5Zb/UrQ3i9snq2gnG2XSqtnTEZXN8FYXJ4omEYQS0dgGVri0j4X1oofwr0WxbdAEArmcU/sy9pqVKnQFAdJ0BhIo64CD67r3otwMDEfKMGMcxUUaRoIwETdQ5svQc2ODrCAjodfbMKR/Nb8WolXA/BHU7YQQEcL2kbGopqIJFm6uydMAs4g8HTDSuSOjMKluXjgNFLm5XbzznRfOkcXf7YlZ2pwBO9JZ2BfJLAACuu0pez7h2z8d4O+Sqih2Kn4/oeQQMItkw453K5G3VLrMy97cDA6AICOjB3ziKLG0n0Jxwc3mKhF7mnqpAQEYZw0aWbzeeY6Iof05pRgqMv9Nws+WfqduI/zKB4HjI8V8EBBwgqvjdlScDlpUy7rRZ53lWJl6x8St7B2aAejeefYbNAADOekQKvaP0z8/Pt84OEIAqIOCO19fXrXvl546nQPsIP5up2318/9uCgTG8YKisr461H6XRQXIRcMAzRqDZGNZMPjIEq+VcajUeWsBquylVyraybiqgNxv3EooUcRZ/V/BE4FTfz/IKf5Ptp9ChDCBE7efyGwGeY6Ou4j1UHtz7DBg6EOAUvQMFfI4OByRAbOG/vr6GZ1b+nz59Gq+vr+P19XUT34xcjngu4sP3pt8KDETWT6X0NQ4HCDReTTN6z2llQtQxkoKDDAgg3koBVQLVIdkOzQCJfVMFBBxV4EDjU75w93pdAbRdKOPFDPhFcanHqQIR3f6k77ROOp6uGaEZ9aNfgQ7Vf2bTzngvAwFOsZ+fn1uFrgdb//rtxcXFFBhwIBGWv3oGEI/zEKi3ITO6dgUFs4aIo98KDDDNMPds5WZKd2mHVsG4JHwHDDDNurc0vV+BloAahMuAl4s7EohRPrpt1BEaS8GfK6cDng7szQizCBDgfgmgi+LXZxmQroDIe9OvAAC6HorICxBZ9gACOOM9KFLwDhi4HT5xz/319fV1nJ+fvzlr/nGGkmdgoCCiw0MqM7qgYKnccPTbgoExPFM6hKWNESkC/pavZ6zMWaHt4tR4XPkqhulY8r+KwmdaCl6WDAO4+KtzFe49iYUW85HjU72ugM0Y8WoYDRtZZ5w3l3bVJpFQroDGr+I52Bd1eG2mHzlejwAAAwEc/FypCwg4XQ6H5xiiwtkBgtfX13FxcbHlJWC5qnMK+DkDA/V2RTpH+e69ZcBvAwYyVBopykwxawPuU5hX1l7FJJnC2Qfa75AT4McgVHdB0jOubgfI3LmTJ+XNCNRldVzxUdZG2VDYLmnOgGyXXgQKojQdGOi26THSrEzZJZ7sm06fcrI28wIwGMCzjBwo4HxU4bN8M0BQXmMQoXMKeCghAgQOGMyC3JnyZPRbgIEMCKjrqCPAP9JKY3LIkvOUuWqrdDpCeDbPxyRMl7ThrHvbpbc0bQ7rAEAF7JYo6KosnK4KrspboHG5Z05pd/iT66LiwSw+B7KPHci+Z9gqTCVrHN9HwwHRgfF+dem7v12OsW3x62oB9hBEK1c6oAkA4OLiYqzX6xQQIC08Z0BQTZadAckun7P0rwYDkUB2QCACBBo2I6eMM2Hi4s2EuDKrAgBm9igOPUfC0XVkF29mdWk+D0Wubas6wjf7QOWOD12aHWsq41NHXbDnwmnbs3B1dVPdV/WAMM5iUsqAuobbB/99hAFwDGl30urIR73OgMDFxYUFABcXF5t3HJ/O/Ae5iYHc7qx8o30GcI14Ix7GPAKEY0Dw8vKytUW8Tj5kua3AgPUF821HR+h3s/SvBAORUOVrd9+1ZBxFSn9J42TWlot/RtHNKIeu8lEQ5JTCoYVpV4FW1m4UZtf86XUGAlwYVXzRWanjEVLg7MJVdaXAVa9xjlyoWVzR+4gyD4irxyzMe9NH9ZtOv8ieZ8YDA4Czs7NwKICVP84ABUzR2n7No1rebCzBfc+EeFgxOwveAR1V2gAU8BYAHLDnAGE1Pe4Pjv9meGLm238VGMgQq2tAxwzv0fk68aqQ7FpZkSLhZ5Ugc/lzSiirr8w1fEyUtUUHfGXhumAJ5HiSn0cAVeOMFHGmNDNgEPUPFnyzStLxtePxGc9AVO9ZvBU5QODSOAbK8jQDXipFX4VzxhWuo0mCDgSoN4ABgZaL88bKOuP1CBxoPA4UZPXC/SWaZKh7E/CcAlcOzX/F4/ugfw0YyJRixzJUK0qf47qTfhRv5ztcd1yj7lkEiDrEeegAgaXpfDTNdiRVQllbRPcIVwHOSqDyN5mFH5GGjeKJ+FP5QK14fqbXSp16nwFf+4jLUQQIjolmjIvZeDp9OeNbPhwIYDDAil/BAH+LNKBc4Yp3fOv4kecM4HtWvhEAcHIuA/fZJEO3WZGSAoKoz8+C8Q79K8BApBA7gnYMP06zVLlVzOPckB2rSeOpFEcUdonbNSpj5m49Rnovod4pb1a/GfDKgEwXnKoyX6LglG+jo8pXJ40KaFT8rHGBOuEcHRsgmOlfWd6XGA4Rb0LxV0CAlXw0JKDfcDpQ6Biz5/H6MbbbXRWrDg3oBEOEc2FdmAxI6SRDfqYggPtPpic0DKe3D/785cFApfAjyxZUKcHZDuLid9/PAIEoHUXh+g13jBnBWQm/JXk9JGkeZzpO5RWogJjG1bXosvQ7lKW1FAjwNQSmAwMz8XXfaR5cn+nUnROunXwfCz8vyUdmWXbizZQeK/6uNyBT/Lw/gP5TADzH8o69AyC18J13oOMZUCCJOJBuVT/wEigo4DDr9XpTBk5TwTuuXXjcOz6eMfJ+WTDgLJ8OCJhR7ku+dUKmo1wz4eQEmJa54xGo8pAxUyWknVI8FgEKikDMrKWl11F5lyjyDuKv4nWCpIojAjUREMCZAUGVn+g+AmuZp6HbtzRN19f2aV29J+3Sn5Yq++x7BQI6P8DtFZCBAf6xkKbTJVbocMvjOZ6BIs+Ac99zGAYSDhQwTzpQ8PLyMsYYm+cMRHgVgpar0i0ZIOjQLwcGImFcWcnduF3YCllX6TlXpcbVFfBZnh1zI30WrNnB+a2UnZZxRlF+JFWeAQdoQFm94+zKvUTJdDtyFV+m8JQq4OAUcsRLLt4oPY6nq9AddeKIgI6L53ejTt3oez53JghG1j/vIaBeAJ002JEfCk71GoQ0eNigG4ZBAC8nrAhlwuZFY/z0VDCoQl506CPzBHQAQYd+KTDgBPA+QEBFlZCJLPMorkgAV9eZF4DJjX9V1hvnr0uRwo8U5LGQ61izYSuwU7Wx1lHlEag8MzN5z/LbScOBSxdXVkeuH6hAy8BJ9jyzqlweOoL00GDhPfpQt4/qd3x0hgR4tYB6ABgAMLmld2NsA1B8h3v+uyDe6b8BFARAAUcggtNFmPPz802eNH9KGVBgMMFDBfxcy97h11kjBPTLgIEMAERAwFkz+o0SV3jHuukAkQxMdEFNdM2M4darZrNjK6bRunBC1ZUhqodjo9k8doFAlkYVdrYDd8rQ4SOlJcovAq0z6XCYpe7PLshTnlZhW6XzK1MEUKvvIyCg7n63SkBBwBhvN/8ZY1tpK+nvhFV54z2e81ABE1v6Kisj4wllxr4BIFj6jqL9DDhOxKtpMiBwshjhI76dlW9HDwYqAKCCpyM0IoUfVbjmJcqPfsPfRghOO0UVXySo3FlRdJSnpUgyAjPHSPtSujNAYDaOXRRwld4MUOtY5Y5/OvyQ8aIDTs46i0DCEt5zgMDl95CAYN99agYIOJlXzQ2I9g/A92O8/VEQiN3wDhC4vf/5OvIMKK/qmL8DAm6zIVju/IzBQQQ8tAwab6bTHFiN9NMufHrUYCACApHiBEUegYgilDXbCTNlGDVeVjZ8w/nkeCJBpc875cgEYhamG/8hQcIxAJQOmJjpzE5xRucszQgou3edPLh0K8rSyZT/bF11+tSx0T55t+KZKD3+bgYI4JsMCIzhvZVugp5ODGTPgCp9fcYykcsTDUFkINBNQnQbFLGHw+koBwoccHDzBypPwRI6WjDggIDOWlWBkwmKygvgvqnyo/cVyo7idPFEwrRyjUbxZ+QYKoqnQqd4PlsXH0X7FvpLQGNGs4AsUvoVX0YAclawOEVS8e1Sa3vm+26+jhkI7IuWyiO+Vjlc7SHAzzg+niTXAWXR/CcdLlBgkFn4rtyRBxVpu2eIW5c3VjsdapyR7O8ahVyGXegowUAEBBwYUMqETia4o3cdSyv7vlvOKA33vZapit+FdYzUVUQZAMgEyqFoppMrdfJdeUiyOCq+y0BepvwrYOmspawcznqrytlxuWdtEAnhKlzWrzpp/Fso47sM8Gf8FQEBls18j2cgtvgj/tBnDhBUR8fCR9mydxGpFyKjzMvh0tT6rpYaav6XAoOjBANjxAwYCbh9CXaXfnYfveN4MiGbhVVybix+VwGXTLhm9ZDlx+VBkfAhgYBSJYCqvDqPkr6L4nPonvNQAUD3XPtJBwxEfDDTTjPfd5V/lrcun2agvQt28W0HAB0jzco5d6/1mC0h5OEAXiHALnQdZ68UKJPzCowxxsvLy9a97isQyUqONypzh+dmvXeuzJwHlisKBHRlAcIyT6uumQUERwcGnHBzYICpgwIzIa3pdg6OIxL4lSJ2nTYSQF0rKVMCnI/KslriwnXCdkYAvxd1LBB+F7VLR/kzRXzh8pGBxg5/dfg1owiMMr9wH6vKEz1zSnbGOxABMVcWl88OMHFpHKMHYSlAqcI5/nGy2G0kdHZ2tjW7HvWYTayreE+VPVv/unqAw2VUeeQYEETGVxSPk7lZf3HyUvcwcEsNOSynk/XRjI4GDDgkqoznLJxIWGWoPlPm/I3rCB3hGsVXMQ6XC2enwJU5M2DTpUgoV51Gv9E4dPvQQ9Esiq/iUkQexdMtt+vUTtnPptGxtKv+EPUtVayOhyoAFYVTquo7Kou2lQMDEVDnvB2af5l2yUtVdxEQiAwzVugadzWznutVgQEDAVb62dLBjqGj6Wb1onzj9A2nF/FoJOM7cpzrhucnRF6Cbn9ydBRgIGI+NybFiG0MDwiqtKKzE7rV+9lyZvcog2vMrkXvBLpDlJ38dd9Hz4/Rmsqoah8HejIkXlk8eh3xWof3NKyjTJlXeeZ+1xE6mdXtvo3i1PtsE5eIKgDQ8RAcCy+/BxCIjAkFAPxM3zNFsmuMt8YBDyfgW+1j4DsHDPh9VrZu+zEoQRjkOQMEnAb3odn+wflmxY97nn+wb0BwUDDAlZa5oZgZx9geQ3IKcLYyuh1spnIzpBk9zyyQGUslQ+gO5XIYjT9Drhynu5/tiO9JVV4yJaXPOEwECpxg4DgrCzoSuFE5FCxEoMCl3+kvWrZM4C3pJxUgcNcVaRlngMAx0r6BgNarOyIgwGF1Rn3kytZ0sZPf2dnZZptel89ol8EIBDg+6ugD3ftAeTxaPhjxaiWnXf6dLmAg8J6A4GBgIGI6BQCRV0ALqTMulwCCSHjqORNO2X3VmWfi4jzp+8hSVSAQhe+Ak8x60286AOajaDYPUV3yu32kgzCZIJ4Jq/zM/SGzlLPyZmXLQEGn7btgV3nUUSaso/IfO+2776jSc+CzO3Ebyhyka++VEGfH+GGAoYCA3ytfVLKSn3XlLk/oi3gIZYrqyaVfAQIt0ywg6NJBwIBjQN3OsjNp0MX7Xp2bvRBqOSuCjJip0zAZUzum6ZY3AgKZ5Z8p+Qx4HYPSZ+oAmooqxV9ZtLOg1AnoTAhp2Gpt88w7LYt7F4XvgIyu4KoEPqdTPXf3x8a3H0kRmKwAJlvMbs296w+svDptr4CA01b5W7VhJs/gnYjqh68VrGR85/RGFobT4TCs+DU/UbpH7RnIgIDuXKVAoFPxs3mpnqkQqxjXMY1ez+Qrs7aUFKTouwwIdPIyS7+ScI3qolOGCInPKt/IWlNB7CwRvlYezPhCv6soqo8qfs6vi6vTp5yV5OLt5MN92/FIHILeK+2Ix9xeAi4fAAIODEd5Zle8y09EDDycHMvi3MWgYS8H6sZZ4pV3IIq/6o8uj8iXAoNIV3X7woeCgQwI6I8tqgmDkaXL9B7KThu5OrtyR1Qpj0qJK7Mpg2pHmhGYnG834SdivBkk/F40o6Dcu4pHugoqet7hwS7foJ3RRq7fRPFWyjmyQDh+F6aymjT+WUAdKQWWHdUa738zafky2eRAgda7U8SV/Btj282uw7rRMFhkxPC9lo/jUrc+X0fANKMlfZ31mCrqGYraUc9L0/kwMBAhT/2pBQ8RgHRryWrHqUr4u0rNkCXn2yn2iEFUiFVgwCnwqANoR8gUcgak3HdaFo5by61xzyDRj6KoXN3yz5BD5Vl9aLt109V2ZKslsioiZd0BtBwPx1cBQBeOv8mUSXS4OtC925WiJVmcpyz/x0pL+5sDWdk8AUeZUnXt2OVztb7dZkJRmbLyal5dWRhIK1ipVmQ5eeLkwVJAoLyf9VdNp0PvDgY4o27JoAIBgAEQM1y2/3QHCDhEHOVVn7tlNk6Icb61Q4wRu8mYGTV8prSUyZyAdnXkgAWX14ENLosDBC6uY6NKGETvMrCIs+OBDnEdup+XgOcduND+4RRnBgIisDtG/Lc1VcIZTy0B6S5P0YoiBQIMUtx3KtRnBfKx0Wx/c7Ktc2h6rr2drNClep265jkICgoimaV50DIqYMlkH88dcLsn8uTHTp93wLySJ1l8+h33V+VtF2dE7woGlKF0xyp3RMg/QqFRxWaM4fJY5T1DziA3i5Y7Q4Vc1+v1OD8/3xJwrAAyBa5l1/sKEER5WkqRAjpW6lgV0fOMzzrCWr9xY5JOESIdJ2xw7vA2g3P0U1bEHK/7UYwqZM6jgoZIoDvBxUJOx6+5njLjwIEpBbtL2uhXIVefXQCQgcpMJmmYrJ+AVOk6GRa9q+LStKu4z87++6dB1Uc6Tp+VpwtWOkChkvlRHrO8OHo3MBAJG54foH+5wvdq7XAn5/iXoHrXIfg+yruucoiE5hKFx2XTvRNYkOm3EZNEHScCAlm9VugyEvpKXaF7bNQBlLPhHTkF7hRblp8K0LByZf7WybvOQwdixfv6+vrmr3EMDPR7VshuiRbXA9eF8mdkCbk6UwUV8XdGvyLfRqTgoAMClCLA5+Kv8uDa26Xh4sj6ROXSV75ygAbxO+8AXytfRTw8Azw7gKBTvzP0LmAgAgI8SVDBgJIDAo75XNoZSJhFxwpk3H7cY4wtFJmtCVeXplo3LOB0OaNb3qhMFjFk1oG13jm865x85raq2uZXo0ywVR3O8eBMJ2VwCIrWZlfxKi8DyHK/1IP39wABAKzX//UIvLy8lKAA3+I7CFfwWMYvHV5CuTiPrh5dfangj77Pnn8ELTF6lGZBgFNGkSHilKrj0agMvCSR+T6SKRUQ6NRBpPw5HZa3Dly4OqsAAael7yvKdF5236W9g4FKker8AHzHCm+Mt2N91TyBqjNr3iLFr3l3cxs+ffr0Zo5Dd18E/ekG/3kL1/ieJ4SNEa8z5TQyRugIugrFus2dcI68Ar86MYDUZxlxe2RxZEAL9wwGo/AuT8zPzK+s+K+ursbl5eW4urqy/RNpgF9xBs/iYGAwxrAAAPcKhjNwqiC4W/9RPSDNmUmFh6YlgMDx3gwA4LTdfQcE6DM3DyXy8LDM1/QcuMkokmecnn7DsjCK09VfBgi0HLuSK1ekeyp6V8+AU6TqFdBKxFmBAKwLVToVEIg6Ak9M0rMCAc775eXlm3I4YOAYlAEAysTC9Pn5eby8vGyE5+vrazmLVVFypvDdN1FHj8KqgHFtdmy0VIEwZUqd08C1EwzKixx3JajYVRl5B/Q5p8e8fHl5uVH+V1dX4/r6eut8fn4+Li8vtzwDrOgdz+KsHgPE8fLysskLg3rwd9SPVRYwMEa+9LuIFx2o5ueZkjsG2oWPu8o/AwRdo8vFlxkvTr4xj+De5TGLP8pLR+bhuQ7bgthQcx67ChC4tDifs3yXlb/LL3sFA6psnUKNgIBS1zOAb6P8uPyxwlbl74YEYDlBgJ6fn29ZUQwUdBdFtawgLJ+fn8fz8/NYrVabg0EEBGq33vk6QrlcB8gTf5cBAQYEmqYDZpq/YxCqu4KCCBBwHUV16UAp7juW1xh+PgkDPAc6mK/hBcBxe3s7bm5uxs3Nzbi7uxtXV1fj5uZmw8fsGQCIxbFarTZ8/PT0tHm2Wq3eAAakr8MJ6Mtcd9q3uawsnOF90HcVKGBAwPFpnXcVxiEoM3qq55FRpLLYlb8C/JFijvKGuneWP8tL135ZvNFcFw5XAT8nRyPwhHrUdCJAMENdkFPlsUPvPkwQrRhwzKeWv4KAaOZylA+8V/e/ggKdB8BDAQwEICj5GR/8nMddQa+vrxsQ8PT0NJ6ensbj4+N4fHwcDw8Pm+9Xq9UmzMvLyzg/P98Iv2w+whjbbnxVUNGcA0ezTFtZtockp1gqcpZ2J40ZyoCV3ld5V7DhwDh49ObmZtze3o67u7vN8eXLlw04YB52YAA8DDALPgZPr1arzTv+jr1eOqmQ+3wEZCNlFAGATHG5uqtA7TGT8qpeO9mnwMDFydeVvNWzi5M9XAB1alkjHf0ZkbPO3XNXjszDyvE7UKgTCF0etIwad5Y3JlXsMwZM9H2lM0B7AwNq7ThLm63xMbYR/RhjS+nzma2IzKWoStB1CL5WQOCGA+A6vbm5GdfX15t7BQrX19cbK+vm5mbzDuVer/87L2C1Wm0AwP39/fj+/fv4/v37G08J502FaEZuIg6eo74Q9wzTalvzOaJjE6gzHasCSy5eFZ6VgNXnmSVbCQgV8srXPC8AQODLly+b488//xxfvnzZ4l8AWqTpvFpPT0/j4eHhzcHg4OnpacPHOpygdQ3+dbO3tT5VeUdAILLMqvdZe/0KFHkA3NCoUlY3Wr+ODzOQwRMGAQhc27JuYHLDsNVwaqbw+Rvub6xHHCDgoQKtazZYnRyJ0tZ8an46NAsiQB8ygZAPkAMB7uC5Alknz/KR5YnfsQV1fX1tlTwregUCd3d34/Pnz+Pu7m4DHgAI1uv1eHl52QjP79+/j2/fvm2+idAb8sbAiOtQr9X610mH7M7KFA3u9Rx1cg3rkP6hSDuSQ+NZOOa3LJ7oWfWN8nRH8fN11t90oiAPC3z+/Hl8+fJl/PXXX+M///nP+OOPP8bd3d24vb3dAr3MM/BuweqHVwv8/PXr1809zuhnT09PW2V2Y/cMBByfOcst8wZ0v3dy5dB8u5Qy/mA+0b6c9dcMMHHYSD4oH3eHQJVYjygoYIMH52gCdoe036thBVJAxd4tPUdpcDp8PQMCkJelIGIvYCCyuJXxxng78UeVfjY/wAlxZbIIBGTAQL0CUPYQiCxEAQbY0rq+vh63t7fjy5cv448//tgAgtvb2w0YGGOM5+fn8fDwMO7v7zfPUQZYW7Ca3MQoJp1ZDlLlr23k6i9jnKz+QBXKPXbqdBgu02wH5TjG8MCJz/gG5xneVo+cGyYAP8M78Mcff2yOz58/b4YL2DvAE/1g4cPLdX9/v+kP6EPIMy9FfH5+DifXOh6P6s+Bpw7AygAB1zm++ZV4WKkCiZHSHqNW/JxGlKZ7342Xw3IcuvqMrzlOVvgZAOi2bwRkUJcsb52MjLwCETiIZHWHdgGyex0mwDkTUmppAb3hHE0C0rQiEIBrNzcgEpR85mECFp58zQeGDuB6hbX1+fPnjUCFZ+D5+Xlrm0sISHgLHh8fx/X19QYUYPKVdlq3DIfP/Dx6VyHWrD653qM4fjXrKgJC7hrfK2UdVkFXRg4AuDFex99Ru/FwHXgWgADH7e3t5oDHKvIOYMIge74UKKAfPT4+tuoPzzuWlOOvyDOQeQCydjwmQFDxW1f+Kq9w/J26ydKP8oP4GEzPlGmMbSDgeF3ThD7hdwq2qz4PcrJzjHhSoitTVpeqy2YAQWZUzPLtzmDAMYRjQP0WlHVgXGtaWllRR3Djp24uA2+GVB3OytKhBFhW7BlYr3+6RXkWNltqbF1FnVbrTutIPQozky2ztowsiWMRlvsgroPIuqnCuzBOqUSAlt/PHEzgeRBP3s14lkEATyJkfgRg17kEHI4BtgKgaLmY1lcGcKv65zhmgICTL8cACJam7eQgz93SttG6yZRbdO/4MQMCrs9oeJXjbqgAcanHFOGc4u4AAm3/KIyGxzFjJFXxVnmL4u/yz96GCarDKbUIACDOqCO6xquAQOYV0LFVBwzcjm08TADhimu2rFiIZp4HFr4QwNr4OoFyDO8pUCDghKHWYYTUI6Xj4l4qyI+RojKPEY/18X2kVKJ3SJPTVn527zkcE4NJ7B3APMtgAENirNB1kyLEw5sKKcDWvDgFw8NgXNeZMq/aSdPKKAICUZv8KnxbyV+nTMfYBmhj5GCgo0CZVIZnYEzjivLtysDlx4TEzhwBB8qj8mSAQN+5+B1V7yrgH4GKJTy7ExhwiDBrQEcRAOD4I5TuBCODAM1LBQJ0JYHbXdCNwSoQUKGKvETpKOjgfEeCtbKqZoCAa9dMEWpavwJ1UDfIdT6nGJwQ0fScAImskggIdARvpLyUX3VSLDwCDAh0Ey1eEow2dyCVVwGx0tfhv6qumV9ZUUVC25U9AqmVgvtVQYDeV7IY8pgVDu5xrpT1LKkMyoy8DBC4f8IgTgBUt0KhKkMFBpBGFQ+eZwYBf7eUzzKed3mtaC/DBF0QECE1rqRPn35uBoLvKwGq6Ud5cf8ViDYOcsAg8gqohaVhkF8dmoh2NYQVFgEBV398HU0+dNfKmBk5RZjFd2xUAYJIQMzUi3sedfiKnyNA4ITKGNuzmBEXeJz3GACf8qZDCmLd/0MQN+/3ocsNeb6L22SI+yaEtlqpLEi5zA4UuDZdwocqY46Funlx4DWTjRlPu36OOPW7DjDoygqNi71hCgQYEIyxPaGadYeLV6kDArQ8GZ8wL0VAIAof6TmEcTohus6MFUd7HybQsW5uMKVMGaExAQ6qyu+iYWaiyFJ3e7Trd7rKgGdgq0fAMbTbytiN5zHxCgzUH5/1nbOIOoLSdfrsOjofI82An66lwLyZlX1W+bs0OR0VOtxnEDf4jcHA1dXVZvkrAwJsOKQ8yRMIMUQAMJABAbbqnUxwa7e5PBEocHUatc0sLx4z7zpyPOPkXsRTTkFXwN4pGeXryPqNQEAGYpiP3XyUMbyhCf7i3Spd/WX3rjwVKX8rOEF8EQB1ddmRVZFXoJv3xWCAGw/nKsOZonKFqFB6xkSRYAWqdB4DBw50h0FdQcACVddmO6GvwxSdDsvkOlU0Z6B6xnUcKb6MuSqQcCwUIWR93rV0qnQyioS3AudMcLv8M3/rdwwIeCMt9WypV0t5k9u9s/zXKafz8/NNGF5ZE8kRBwhc+fmcKSa9z+L9lSjiJSdTqnbkbzrkFFplvEWWryuTW/GlXmflBTUkXfwuX53vmLL4kb7mx8nrCvRy27h66vSPit7lR0VMKDx31EyIOKQ6Qx2Fyt/xeL5z47MLH+OtPGFQXa0sSF0eVEB28jrGtlcA9RINuWR1GAGCijoegSj+Y6FZZZ91MFfPGWUWXMUPVRuu1+stwcPkPGM4FOjyj4p0R8yOwndbj+vEWwwtsKWk1hsLsY4x4AAEt3VH4R8z3zrKjJ5sSEDbr7OfC9Jz1xxv1V5RfHwfgUHlXwYJyPPZ2fZPj/j/LsxjDhhF6TtS/o/K5RQ8g4LMmHJh35tH3w0MsMLSzh5NJlIBmwEGrizH7CoMMsSrk/bcJkQMAnjCIAtRnYmtHVGRukPsETBSqvYa0HrL6iBi/lmlv8Sq+GjKAEHHI4PrrhWlQiYCAfwsSpfvKyvMWYbO5aqrDLD6RZcFRq5WJ6h1bJeBBZd1jLfu3aguOyAuqjuun267HTMPK2WgwAE6kBpmkVzmdJRUzjq5rH0uM5JAOnykw7w82XqMsZkwCADA37M+cMMJWb70XSQ/Mmud5zW49DNDi59z/VYybBacjbHnHQj1GhlBJSBz1YEwmSJzyt4JbEVi/B13GAUAOgO7OtyqgDG2GYHrgWlGcYMypu7WMX/fFbZOwP5qVHWmCKwhbNZ5XV9wQCAaJuJw3KEjL5CmFZWB+VwPt7KFhbHOVdG0tawMOvjZDLHQywRx1E6OKjDr0uf7YyHHVxGwdPJYZYHK2ii96JnKYvettmUnXpACZ13tgrjVKwAZyfUDingZ6Su/usmIldxEuhy/AoJIaUdgIFPyu8rnvS8tVHIK2sUTCdgMqTpSAFDFowIyW/anyt5NAHQrAhTRuQ6qZciUNzOsMnX3cPUfodsKFVd0zKAhEqzcTk7QuevM4ukAAU5PO30XrGk86gVQfmVPlu6pwWVjoQrSnUPdwe8RRu9dGbTPRLxXtZO779SjKohj4+GKb7tAgIGmyoausub4I9lWyRDXjto/3FAUG1s8udUR/xirUybOszO+IuDCxP0GZdA5MtrXVbbgnWsfVf7aB2bk9V6HCSpmjFB9pBD5rNcar1aWggKtRDQMC2kHCNTyj2b+u/BcPiyz0jphYVkp7THGG2aK3E4zyF+p6hx8nyFVbp9jpq5AVcrqMouva8FxXLNlcPMEMlCreYmAvip//q2x/pUQAloP5vcx3m7r6hRDxZMVEFBliOuqbo8RCIAqvnV8FcmETLYirSwfrt7d8y7A0HTdpG8GA+yFcuVFPgAIxhhvhr5Ypir/R4AA5NLHc15Sq6A60oGq5Lk8+lzz70BBh/a6tJCvHRNlqKbT6TSMiz/r/C6+jsBUi6lSEjouyugbgtAJR7WaOJ+IN2PKCgR0BKG2w4wi17CaxjEJ1cpCUT7OQI8DSY66gKMCwC4dBwKYb3mnS8fPY7wdmsMz5lcof/y+GH8txIFfFq9Wq82fDfl/BW4PAldOBppZnUZ1pryucsD1AxWgxwgEHEjSto94SmUCA7IZAOraxH1f9Rl+n/XFzGjTPPAkwUhOZ4DAlbPiAQUCKjNYXnO+OrylvBjJZgcENI6K9v5vgugd7p2FjgKosncFc/cRANEOw9fMYDjrGKrbmx3EHSraYAUEYQohCiGJM6/PVuGI/GIiTMRE2sGjSUFOWbt4nWB05MK7Z8cmVJUqgBfVk/uOz1XcziKI2so9Y35m/uU/b+rumLz8FTzCyp77He8lwL/ffnh42Pyy+OvXr+Pbt2+b3xgDGDw+PlpQwP2F+Taqc67PiPddPXVAAdfjsfMoKAICGZDNDAVHzrp0sr5SmDN9xpVNvWhumADx83cvLy9W7uOeAQHqw83bqSgLkwGh6MhkO66jutP7SnYr7XWYwHUyJc1sBAL02yieqFJV2fO1xs1MEo3n6uQT/uPg+fn5eHx83Bq/4kmE6/V68+93/Pb18fFxy4p6enraCEkFAhnad9a/AwK7WLQZZcI5Y+Jjo8g64fegJfwaCWSe2+K+07RdWgpodXMs3WUQs7Ch6MF/Y/zXUsL79Xq9AQjg2fv7+/Ht27fN+evXr+Off/4Zf//99/j+/fv4/v37uL+/H/f391t8zgAYoFeBr+PVTEBG1xUgiNpzCf8fijKF4hSC47+OXMjqxSlxTlPjqGQAy2CcGRAoOAAgALFC52/47ACD7oIZkQJWDtPhHdZ1lfExxluvQMWnUbt1Ze/OYCCybJQJu8zQLSzfR+g4GgPlfEModyZD8darLj4Wnrz0hcHA/f39BgSwkNR5AyiXjl9xejrxJxKQXLdab9k5qvulwvqYAEEXCEWKmjtaxpdRnG6ZUSa4Xf4jy0eHCdykwJeXl42bH16n5+fncXl5uQkPngSAvb+/31j/OMMzAO8AewUQP0AwAC+8D26IIFPanbZx9ZjFrYI2iv8YKJOLlYyr+EnDdQFSZIl26jKL28lyXgLudiKE/D0//7nNNf+0yOkEVtAujxjjj+qso9RdmI4BoaR8WhnLs/y712ECJmcFZegx65RZuhEyzoDAGD/HR+Hah5CCsnfzA7gsPH7K27GuVqutbV1h+UH4Qijq+CmP32X1iry7euygTofmnVKJ8qBtlDFoJhyOid7TIuzUIZ7hXAlvreNM6TG/gkcfHx+3lg+C/3nTLOTv9fV1rFarzfAAjm/fvm0OAIFv3769Uf4YJmB+d8BX8875d8+jMC5sFiZTfF2F+JEU9dWIsjrs9sluHWSGQWZM6NnJcbX0nddgvV5vdriE1wBLDFWW6zX3Fc6nTtieoQgAdeu9+nYJoMjoXXcgzJBopMQyxtPCK+PwM73W/DCKfH5+HhcXFxu3Pyt/9QrA6l+tVuPi4mI8Pj5uXLGs7Pn/BmP8V+CqNwCCMRP2OsknsphmrfusvjJAoHUYKTUOu2+m3RdVZc/CRUAnqjdXj3qv/cX1n8wycLwKgAq+e3h4eAMCwPf8X40IDGB4QAEBvAI8/MVzZBzwrWRDpsy5LhScunpdSscKZDsgAGfHUxWpPF4KihR0ZWWIZJIz7M7OzkLvAPiLPQkaXl384HX2nunkwmw1QVbuXWipzKz6jqMP2Y44YwgQN5JbKsffRJQhZsQBtxEjz0+fPm0BAbamICwx8erp6cn+w+D6+npjFWGLYvYOQPBCUPJEKi5fVkbu2BFTOmXkBFqkBCul6NCzxhm9OxahWgml6NmSdDptinMFBDRejoP5gpU8gMDDw8MGmMJLAPf/zc3NeHh42AIDIIABDBNgqIA9BHiG1QQKABQIZJPX9iFEo7C78OOhgeyMByD7Zp/5makTlUfuHvIYFFnzmXdgjO0hW54bwHE8Pz9v0uDhBITX4QZntO1CkcHlAG5F/L3ywUyeF4EBZ4VWCoS/d/FEwlD3CugAg0iAwn3kLP7VarUFBBgE8Hat0SZD+HER/x9ehSsLYQUEGbPpfAYuZ6Q0VFlUKDwDA2p5qcXfyc+xAAHQLA9zOPUK7GIxRe8iHq7CKE/rjoJQ7k9PT3ZrbTdMgKEFzAcAKODr79+/v+Hr6FfG2s+zuulasRmY6tRnt81/BXLekkPlP6u7SOa4vS/cmefFuNVe4DkFGy5NeBjAo9AXiAv57VAFaCt+0veVbnXxLWnzvfy1sFIk0fMxtv/shAKwUkaj8L3mI2okFSos4M7Ozt5sAsSC9PLycjw9PYUbD+kyF/yjAGAAglbnDrC3QecOdBswE3hOIC4lRZxVmu+Vj32SUwBLlHkHwTuAFgGJLgDIQAuDAVg/POyFyYAAqvxLY+VV7is82TA6dEWMLh1E3jLwqnWj165+I77UZ1mdRs8qof4RVPFrBXiydxUtBbpKHV2h4/r8jOcLACzoUlr+BwbyDqPu06dPG2PP6SF4hnWy+Bg/JxDCewAvQWf1AagztIA8KQjISNvHtfVM20+DgcqSjFBcBAq0cOv19qQNFLgzq9Mpf37HYEMt7NfX13FxcbGZE6D/KHC7DzJD8jIu/qER/7yIx2rVSxCNqTpyG4dEQqEjCB2qdIoG5yjNYwYCXStwadxZJ8Y7FSIz/OzixTMnEHhYCvy9Wq3G9fX1eHh42Poxkf5kC32Whxzg+nfzAXj+y6w7lfOuyyxRHlef/F3GjxwmSjdqr+rZISjjXVd3eq98uqRcru5m44kUvv4fg2WsAgBePst/nUV+2MPLaUbp81wbrjPwFxuwWg9LyYH9zndMClqXAsApMJAhuuhQMDDG240anKLBO965yS1FcuQQk95Hs0ZfXl7eMN/Z2dmWR8AhVmz0AsHKwwTKsGN4QAAXqw4fuDJ3LS5uO3fN8UV1GzFZdq/PD0mZJRjVRUdBqAXrCHFFgEDjqeLvCAUAZ17Cx96o6Adcal2NMTYWvrr+2QOgvIrwEMxqXWk5OmXj8vG98p5OuHXk0ovaYKlg3TdV7d4BAtG7JfmIDLosXGVAVv+BcSCAjS7dhAh8G1nxkRE7xs/JuAyMufxaH/qM+2K3Lqv6dDrN6TamGd5tg4HM+lcE55SmggEmt/kInzVcxfgcRq/VooBwRty6HIXzzlYTf6/eAUwodNYXttAEs7KQVkDw/Py8+WYXi0uFX1QfmTXlLP2O5aXK8JioK8yqOumEzzpsJ+6s80dKEffs+sTKGef9Yv4GcVj+3wD4l89jbAMBKH6e88PXTM44UKqEX8SvmkaHjgUEVJT1L33ekZsRqVWtaahRp2HdfQUC2JhiAAt5qrtrMhgAAFblHrWrKmP0E+5L0TJD7S/6zgECrjfWqQw6uD47RkD3eUSLPAOocDd2ngECkKsg11jakVnBVIWuUFcECrji2UpygIYBARh4tVqNy8vLsVqttoAAbwPLDMqzvnW3ts66bFe2SPl3rAun9Lm+qrrPLO1jEKxLAIB7VgHQmXi77109qtDQA/0MfMTWPARx9NMXEOKIJrAiHzyeqkCga/1U9ZOVv4pLARX39areD0lV/62AwK5eAVX+2pZL+rbKUpahbDip/ORJrzc3N1uTtXWLbQwP8L4DAKmYSI733F94MiH4mlfYROUA2GXA0OFnrYsuCM1AwpJ2XuwZ0G0eM0CgSpUVLyY7OcsmQvXOXaJ51WvXOGrNcFw8fsnx8XiRAiPMOdDNiDBWi82MeHUBj8m6H7xEf3pDHlRBKAjSayanXBwYiIBARC4/Fbo9dsrqYImwxvNIkEYgK7LCIiDAY/8QcOh38IK59dgZKVhQAZhZkRUgrRTLEiHHvBj1n1+RXN67PNWpRydDHBjoxsVnEHQEgADPs8I9T3ZVIMBgAHGxXgEogMwFn3NenJebvd0MCjpljLwB7nu0lwszC7Iir0eXpsFANCzgQAFbHlyZLJDYiqgK5Biwsoo5XnetceHQlQZKKjgvLi62ZlEzGLi+vt7appjLAGZ1G7QAKPCkwmxM1OW3Y4lFXoEOGPhVBekMdcBQR4niO8Q109nVinXxuLYEIABPq0vz7Oxs4yXQMujcHnbB4j2/Y/CB91U/4jpxZePnfN0VfBH4j+THsVFm6DBFgGdfedDDKcaOFezi5PkAPAyA4VYeEuCDV24BPCAfkJ/QPZxnzqfyLfM8gwQYeo43Uec6hNABB65Pc3/O6rfLu11+2CsYUG8Bj0kqGODK0Up0hVY06lB+BQScguPw2iAuLpdnhGVLHmXnGdkYh1KBjHA6eZDHYhUEREqc8xwJv6gOsjgz61bradYC+RUoKkdkLXE4J6BnlZD7PuMHbW+EVze/xq2erzF+Dpe5OTP8HXvTKusoA/EqCDtekAgscDhXH5oHfXeM/OvyVxlJ/G5pmhGv82z7WS+Bm4DNq7GcR0APbKMNnoTcZIDLhhTzBRtZnD/wLw8nIIx+D2IPWdc74OrE8euStpsNt3jOgDv4XTR/gJXoTGUh/eg+EsZMGSjgxpi1HFSIgFkUCOAnMLoelocLeHY2r9Meo15SqOXke4douS52FXpRvPzuGAXrGDnvZHlWnnFxMG8sLX/Fg5FyjABt1e9YiELBw83KblOOWwW8Gzd1QAVn7XcqTLtg2PEhzhUQwFmFMcdzKOrIoayfL0nPHSrvkWbF55E8RZwAA1D6cP9Hyl/3x2CvVSaLWb7qfCw2Uhmo8D3HhfgZHCwFBJHccMCA69PRUnm+eM6AE4Bs8SoDsbsG7ko3uRBhUahIoM1Sx5rgfGteMtKOAKbjCVs4uB5AyqxuWCBCsxlzuI4ZWT2z9RsxWwQADi1MmZaW1Qk0dz0TfwbiMqXl8ub4mvugCkgXBgIV4XSp4Rhj638bPOnQTcLlfCpQYUWSldVZZt1D6yhrGwfqj5WickR5nuFJBwCcEajKKQIErt45Xl4pcHNzM+7u7t4cvJEbPAa8HHaMsTUkxfLXLYnlCdrr9U+DTPPH9YHvcB5j28utgEDjyoYKVNdpPWbel0ynzQCDKc9A1elYOLgC8xnXDCTYzaiVWRWIBYs+R3yVsOB01FLJOpNLW5EjDx+gvPwdI1RdsuU8AloeJRW2Wga9dghUO7jWFd/rtcvHocnxnoIjvXdgRjulgleNRzu5I/c8qv+qLp0V5zxzyl8cHt/zHu3cJzgfrs9HSj7qcxmPal/MZNC+yAnVQ1EHZFZ8oe2bpcXpZUBAAWCkrLJ0eAUBPAJfvnx5c8AroCCAlbT+gdb9OTOaoB0BY/Zqj/FzfxheOus8ZRw+mzeT8T/ajesV/ZXv3fdL+kUbDLhE1B2SzbbMGEWRKOKMkM4SUsHuBL1TBpEC5XBMjA55J6sxxta9c4NGwwAcb1Y+zaN2bGW4DgjQ+COl6BRWB0h9FHUE6hixUnbPOhaks4iidDNLK8pPFj8ra/XMqWJn9+gY23wMEKt9n8E7p5mVkc9R+Tjf7KXoWEVORnT5L+LxQ9Kufcf1wahfRmDZzbBnjxAmoHJdsTHk0sGB+QLX19fj7u5ufP78efzxxx/jzz//HP/5z3/GH3/8Mf74449xe3u7AQLs5WIrH5OxsXU2/qLJf9LkpdvqhY3yOMbYzB1Yr9dvJsYCjOjkWSezVS6ifpyc5vbS1WQREHDvujw8BQY4Y8woFRBgYkUfgYAx3k50ygqf5Xf2HX8z0xEdaGHUivKh4ygQ4HDR5BRedREpW2WqDAxEpEJarx0g4Dpw4Q9JDgRlSgs0k28HqjIgqWEVCLjnHctvRgi49DS/rh9wf1crUn/7inedOnfveAa4KrQKBETxV/XYje/YKDO4IlCQKWoFAjr/C2lhpn2UJsfL97ycEMMDAAJ//fXX+OuvvzaAAF4BtdBZsUc/1MJPtRgQ4PvIKzbG2Jowy8AZxHqQ67ajNxQIcH1rXfEQMnuSI5mB8ywPLxom6Cams45Bymg8Y5OZyo2JO8HF+XP3mWXl3s82bmS9MShgBe82sHDlUUWgYMlZZq4MM0yq4TUfjpwijOI6FHVAElPGZxyfIwekInBZAaYMVDkrwykzvXZxufsIBLo5Pspj0VygSPlofWTfZECg0x+iOI+Zun2oAwC7gECBAJ7xPBKcI5mmOkLjxRDB7e3txivwn//8Z/z111/jf/7nf7bAANLln2etVquNR4BBwPfv3zdAQH+oxbu78pg/D1XrKgIuK3+jHrTOpEEHBNwcOsQFg1LbDMds345o0V8LI8WFAqhbEoyiigzPeLhB9zPXwmaWT/SusqwiMMDXXStSBT/KwW5YblgHlsCIqCeE0QmaTgh2ysLfuzIoZcpSv9F6OCZyFuq+gYoDAi4feN+NU8O6tPhQvuOwPGF1xnrgtB3QV2GJvq/AVYEGwrp7Ho/luqiAgOsPnTaPQMaxUYfPsrBjxMBrDL8RDy8TZ0CA9fdnZ2cbYw5t58AAx4u9BBgMsGfgr7/+Gl++fNl4BX78+O+fN8cYY7VajfV6vTU0ACDw7du38f379w0oeHh4ePOLbVWy4FXM60I9aP0oTzG/VwpZjTukqxv06XwI18+je34+Q3v9a6HbyYwb33VM9gwwU7vxQlAGCiIlp8rJWQqurNG7yhJx3zr3Kq6dEteJObzpBeKdbXCnrDMhyudM6GQWx6EFasSveMdU5TUCV0qzArqKQ3m4o9DgWnS0FAi4fj2GX02ggl8nm2l8WboolzvrtYar6ND8WdE+AKvjxwhkartlu8qu1/EYuv6B1YELgIGbm5vx+fPn8eXLl/Hnn39uPAR//vnn+Pz587i8vBxjjM0WwwAdmCgIj8C3b982BwMB3eYd3gWtD+zKic3h2FBVA6wLLh0pEOA/NeoP7WAgo09HnodOv8hoamlhNLOUx5CyTs3MEwmOMbY9CJmw6HoG+H5WSDgBnAGByhrUcrIwdeVkwa55YpDRKcvsvQIoLQuuMysqi+ejKQIEY/Q6jev8EV/uQ4BrXJ14nYfAxYN3EbCOeNiBAZYLY2xPPlRXs24/rmlpHI4vHa/ti8feK96ltC8+GqMPmLhtWVHxn1t1rxQGDWhjTC7k4V41AnUlAU8i/PLly/j8+fO4u7vbWO08Vh4BgX/++WcLCGACIS8vBGBxRgzPgXCGA8v/qA511ZdO0B1jGwjwz5jYqMbqCKQHD3EE7Hbh1TYYcB2bjwgkaGY76eBbnZyoAo7j7aIhVk56zr53z6tvQIwCz868ByUDU8wELExRF+rKcvljZszKmt076wHfRYeL5xAUWbZjzAEfdw1igRcpO/22Y53PAEwVbCyQNM4uCMj6vU4mAz/C28dhYeVoH+Z0xng7oTYDm8izgp2sHiOQn9E+lfIu5JSAlr9Lrn8rEGALXn8pzHJZ1/XDwj47O9vyEHC8bhti3UuAf+4GvsDEwaenp/Hw8LAZFgAQwDWAAJYTIn86V2CMn6siGORAEbMRmwFphFG55/hRt+znP97CM4AyPz8/b+oYYEblV5TODLXBgAoB959pRSxs/bPSUrSkxFaGdl4WFJH1kNGsh2FWaERpom4yQDDG9p8SOT9gDHzLACHKPwMArr+oHE45qJCJrGNniWbxH4Kc8sR9lbes3ErO2pj1QszkKwOUmaCoQLP2Azf8p+mpt4+f89psN0FrDA8EorFnzqsCu075IoAVgbp/C0X1yHyE9tJfsrOXQEEgFC3+r4Kx/LOzsy2XvOMdx7dQxpgj8Pz8vJkUCADw9evX8fXr1/HPP/9sgMDXr1/H9+/fN/ME9O+vuoRbZaj2dd6PA8Qz/GeNH/ak6S+b8cOly8vLjcyHEQiw4jwDXG8dA8NRGwyo8ldAoGPhKAQqkGdeuorjyYPcGNwIPH7D7iLt/EuRvlOGnXCR1amgxhFPEmRia5/HjbheuR4437iPhluiTTAipOksCK33Y/MEZDQL7iIggHNVbqeoqu+zPEbCNHpXlSujzApy7R5Z/Cg7ywSXlqaraXfAUdW+rh05rJMnh+TpJUZItwyurmCs8Jg+Dv6jIMtsWNv4Qyss97Ozs/H4+DjG8P+ggULVSYDX19cb8Hh1dTXW6/VmSODr16/j77//Hn///ff4559/xtevX7fmCvDwgAIB5EMVO8tSHiLAmeW08qYDGHxmch42gAH1DiDdMcZmBQR74vZNU54BBQQ6Xqju6mosmyuKlSYrep0AhQrvCrwlpEIpUrYZCNB8sXdjjLE19uNc+Fp3LBAjt292z+RABJcnCst1775XxeGOQ1JkDVb54rbr8psDll1LX3mF30VhovfRO8fTGQ+p4HNjoPhGt3atyqqkyt/xT/TMlc+lG33n2vkYgYCTQS5MxnOOn1mWKxjQXQD1D6zwBqxWq/H4+PjGmIOSZSOF9wf49u3buL293VjFr6+v4+HhYQM4sHwQwwH/93//N/7+++8NGOD5Ac4jgHw6gjzEBls8Vo864X4CPo/+KKv1z3PD2MMGPcpeF95hEWnws2p+Hqc7ox+nwICbMMggQBN2Ln1UCBNbumw9KFJT64IbaReFs4syUC9ABAaQX55cxeVhgKP1qWhTn2n+O5aXeleQXiQIK6HN98cMBDLB+J5pgzodOHrnwmdAgL/JlEamVBUQ8IG+yWvM2aWaCUkllRGaNj+bAb5czgwQuXSOlbpAh59FdeaUF2SQTvC7u7uzPwga4+f4OjwCqvDVu4u0X15etpYEXl1dbZTy4+PjuLm52ex+CdBwf3+/NTTAwwI6WbADBLhO1DhDuXT4lkEvDxe4tJT/2DOgcyhgcAMQnZ2dbU3cVP0ya9BlNL2agIEA7x/ArgtWKtrBWfHhfoyfm1agQqGs4BngMSe1qndRPJWS0O+4PhwQ4HpQd06E1BgIOdDkrDK10Fx++azpReXvWM4uzciSO2ahqlQBnxmUHX2bWZ0zngB918lfBFTZ2uF4IuuDhR7PAxjjLWBAnB1A0CHkKQMELH+ismTtc6xUAcGofAr2qzTYYtXZ/vibIMAADxMADLCLm59p2vAKrFarcX9/vwECGG7AM4TFRkNYPQBAgI2FeA8BN87PdaKTVbmu2EvgwiCc43Oub+eB5aFw1RvuOuvXHUNghqbAgCO1YrnCuIJ4oga+5Q1JuGA8oYM7Mc+iBDLDtYICpO/yz+871mIllNX1g3pw9xE50MAoU1EoBHDXM6BlyZRQlLeobqM4OFxHEL0nqVKolEHGO1En1ecKGF1cmlZWRxlQc/UbWYmcN45H+09WTywwNT8KXNW70C1rdETl5XiXCNBjBQJVO+o30ffdfg5ZxZPa+NfCAASY7DbGT8UOIADljTkEsNLx7Rg/PQNPT0/j/v5+s9nP6+vreHp62ngKMNmUJyViFQEOBwaiPTZYh+gcFtQRfkaEPQf4Ha6VxxV4cPysD5x3Xdux4mHX/i7sDE9P/5tAr1FQzih/p9YBV8gY2/9HV4Z2M45VGDMoUECQCetKqVUWWyTw3XiOMkIHJHCa6nrlGayRa1VBQtdydLRESDqFuS8EuyQv2bkCNhEAiHgMZ6fElFx7ORCaKTGXZxX+Gpfrbw4MsBtTh/d0V0wFr3jmhrOq/sWWvTscwIyAkWsjB8qOkTIgoPf76F+oG54bxhsDYS8AeAcYDKxWq62JzqvVajO/4OrqasML7AXGcAAmJP748XNrYR2KYO8DAAFAAQ8PRBP3UD42UPmd3oO/o2EC1m+uPUA6MT4aTnYAg/+qyN9xfFm/mOGJnf5aqMLQTSBEgbRz8uoCuBq1wrmwzGRjjK2JHgACqIRsjChCyEsVnkN4M0BAy8oMqcKV0bUyojtHgCezKvh+pk4yBuxYJe9N2vm484zhLWMOG1HEY1G6LkyULitEjlfz0+HnCNBovrUdHU+rMcB1yPzpjAEOn/FEBxDwd3qtec3a8Bj4s0MZOHS80QFcLg0GBDrLHZMI7+7utsAAfsA2xk8vASYePj4+jsvLy61fDI/xc54B5g0gLEAE0mZljX8KABDwXwl5noBu+e54RmUsiA0s6Kmo37h+q23EFM2vQ/9gw/bs7GxTl7yFsgJ2lWlLadGPirhzs0tfUR+H0d2e1uufWz/ieoy3CI6VP9+reweCC3mIhALyoBa1diLOp0Ng2gjRDE/2nKgXxbnz8Z7nSHD9OZdUBAQiRq0s2qWCMbLIMgX0EVR1GAeg9pXuEoraJ2qzKA79LgIEypNqwfC7KH/Kg8qfFRDQ77M2USso4rOoH2tdcDoVuDsEZX01Aoh4NgvocdYlcPi7oG4MxLPk0c7Pz8+bJYj4nn8ZPMa2xwhbDEPOPT09bcAAL1vnIVIoSGwohNUDupLFGWPIJxtgGb9x/8iGe93E76iO+Zo9vqgnvGPg48rndNFSWvQL4+g5Mx8rLfd3KIQBE7FnQN02DD7cxCQQh+XweJdZR252fQQEdFVFRQpgZhpOrS6U201O4e81/l2UnArKKK4MIR/S8tIOA+qUSeOZoSzOqg4jANXlmSVCAdagSwv5ivaoyPJSPXNAwB0uvzNlzfKSCe5DgtkKCESyJOM9rbeOx4G9n7p7HhuGPCueZ8azZ2CMn8YOZD8rv4uLi/H8/Lw1PIVwCgh4i2FdPcD1xF5nBpNOn3F4Llc0+d3VF9cz4mX9oaQeAa4b/a+C5psNYa6rWbm78wTCjDjTjL7AFNzQfHbxKKLkdzirwFcvhSJGbXhtbITTDsGAIPMKaB6jCS2zhEaOAAEzuoKgLnWEyT7i+gjKBGXlDdhVCVSAoAtGZtF/5F2Iwmf8O0buxarCRvyp8ary1zlADugulUsqqPns8n5oHh4jH9bLvB4zcXMcfFbDjN+zscdy/uzsbGt3PTUKeXwfSg5DB7qmHmkhPA8HsMXsvAJqZKI82keU51AG5X3Ep8Zt5p1x79TI5R/RsSEND4gbAnFADnpslmcX/7XQZWaM3rIzhFNEGSlV9QI4RtUVCJrnSHlyxWUWCIMAd424sjpwz2fICV9OkxGvCrtIQETCtBImro2OSXBGpPxXtX1Fu1ilnXdZelXamUXrAC7umTKerfodP+Mf2HQAUtYuHYtd81R95/J9THzsLHbnHegCgeob9uyyssKMfuyGh+FLPONNeMYYG+8Bxv95QpzKJx5KdpP28C2+4/8hOEOL64W9uI5fq6ECVvy8tB2gYBdAwN5zTo/rXIcIFBgvleNMU2BAGbCyDFwFqyJnUDCG35sfxGFVSHFjZVZRZE3rd67MDrDospD1em1/xhIh6yoPnJbznESggN+5NHexGpQUCESg4JDCVQXAUuXPlCm/mTxF9520O22jIJx5hsd8XVwZwMVz5UkHKNB/1A2q+XTXWubonr93oMnVGQvLYwMAoEwmubJVsiUDSlz3ULKYwQ8LlWf+87I/jN0DFIyx/XdCAAL1+OjqKJQLkxLVWlaLmvWMlov5ewk5ueEAgPYDrdMobpRXwYwDA+xJcQBZ9V4GQhxNDxMoMo0qOasAbTgWFpp5F39lrSBc1PkZgKiFqGVWIMBxV8pAJzk6a6fTqBpv9H69XoeCmKnLIF1rKhPKUTk/kjJraR/56igpl+ZM3XCbzSoAjsMJzQiAc5rRXJyo/7t+0AUuLq9VGp3vHECYsaQPTTMGzBhvgVSX11nR6hbD4BUAAJ7zBVc2u7SRNgMBp9CdgZflzw0bs3J21y4e5jMFFUoZAMA98jGjhBUUIx/sZenkMQMEHZr2DPB5F3IeAkaFrLSz9DLLIQqr8evEQY1Pf9E8xjxI4Txl3oGsvMpwHYqssSWCImuPLPwxAIJdaFbp6LXzyLwHIMjCqaKdAYMZQI+GCpySVUWv3jLNawbSNc5uWRRA6TkKeyy8q/Ixsu6jZ/w8eoa24U1+MLt/jJ9L/K6urrbmXgEAqEubVyToXv5O2WVy1PEO8h95ThnQatwdHsv6igMimoZ6DCCPo3ICCDAwmAXHS3h2es6AkhMGVeWCHCDAWY9sTCYiZQTXOTj/+ozjyFYOOAarqFICKoBxjyOb0OXy5YRrp41cHjScU2zKA8ciTJW4PEtAbkcpV0qRn2kcTslGaWfEQhT5wcztqvycf+4jIBWIuuKA02arjt9F/Jldz/IUywMtr8ovfn+svAuaAasV/7Bi5w1+eHdA7AsAMMDh1MoHvwEMqNLXiXOOR5QUEIwx3sjnjs5wwCPysiCNiCfc1sVcJjxDnK4fcb5mKALtszQ9TMAdkTf+GWN7yWAUhxOMkUBkRbxer1P3S/bMKXLtCMxcmVtJG9jlvQIHTsC5dBQA8L0rc5RuJmwzyygSjKocIiGdAY+PJFdfEQiIAFJX6XcpqxttF/5mSWd3ggf9iSdqZcIzisOdXXgWvBGfLAEGS2jWs7CLgN0XOQPJyQKVjwpyOvyE+oVnAH8ghOJerVZbvzF25OZW8TJE7EioOmSM8WYOgSPVFWxta55QbgYazEMs93U4a6ZPcLpc17pqTsNUSlzbOvuO8zXLtzt7BtjacMqoQjkdMKBAIBLIncJH1rMCFZdvzacTjO57RsuRoMuIy82M07Hk9ayC1CmeKD4Xbya8O2X7CMr4JVL+1TP3vurUTokpMNuFqrTHGCEPdoQS53XWeunwCL937tEZ3nLvZizoX4kikMvvFMRrGDX2oKix3n+MnzsGPj09bf1S1wEU/t09AwN4CH78+DEuLi7CVQO8a23UZ0Bu8ivKwF5rDquAAPUQ7bOh5HRA5q3FZEud0waPgpuHhvyw10H1YAT8XD1VtPNqArYomLii3W9Now7P4R36zSw1/V6RsEOObha+Ptd8Ofd7hmC7Qq6iDPXrMw1XpZMBjCg+vnfC/phoHwI+4j3lM00vqy/3ntNzfD1DDvjpclrwJAscpczb1QVBWbkjYOm+ZfDa4TUHIroCMwPKH0GZ8lZ52KkLBwgiRYrVBKvVavNNtCkQ+Io9AA6U8HcKJtSz3JEnygtaD042q3Hm6sCtEuP4XJ1pPqFvAAR4hYX2N9y7LflRXw6wR8aa1mGHpoYJGACgEPxOM6NjSLtYyNwAFRBwLplsGQjKwuOpOON5NPHEAQO+128zYVgp9ajDZ8qk89yBrYi0w7mOG+X9UKQAEdRpB46Dz0oqVBwAmMnvkndRei5vyrssaNx47Sxw1bAR8K8Agct/J71dnrv+cYwAF6RKy/GgAwEaVvljvV5vWa7r9XrzFz+1+jFkAHnJaTmDUeW1c+07RZ6VnwmynHe2VTnsKJskzjoo0gf6DGXkvQkiSx8gytUX1y3KHAGBLE8ZTYMBHOr+0QzwBJEMCLhCRAVDWg7ZOiDgAAE3ZrYsKqtEZVQnvCIlmQnVSugpAo7i0TJEiiwSClHa7ll0uDQORVmnqQDBbP4rvunmL7IE+b4Tf6Z4cQYvO76v+mjGUxlgjOJ3AqyyhFxczkKM3nXiPhZyMk/fc79XmZEBAiaV4VgpABc/LHsoMShdTDRUmYw4tR0yA0T5ocsHUTxjeK/AGPkP5ThNDsN6htPiM5eR5QrXCfSpm2joKFrmy+lWzxxNgQF17yiC4hmkzEx6HXXEDLlHgoormQEANz6PA3GDaNpu6YnLSwQEIqXvQECk+PXedeZM0HF5ND5VcB2BkNVBBHiy/B8TZcBsJrwj146dtBwI6OQjSo+vI0UNIFABwYjPKgWdgcUq3grQavlmANevSh0Axu8ycK5GnsaF4YIx3rqz4SWAzOXVAogbk1ShYFUPRPyQAUfmj4gfuNyZ9xblYiDAQx9sdLHcj+rbpcF55fhwzfMCdEUE8se6l+tBdRaXO6rfiNpgQCuJr12lqLCJEH9HSSiDRvfMBO55FnfUabRRtTxdMODqSPNWWYgRKOpQ1ukdRaCjI9yzOA9BWpZd8tEFNV2+djwX8UHXKs6e6z0DgUy4aju7vhsB9qhfONJ4I+CuQKHTply+GfB7LBQp8l3ii9rdKT+eW8JG19nZ2cYjwPFiySArOcSp/xNgkDCTd1zzOSIHDjgu1nFuqEDnCiifRrI/4mkuA5Q817sCAz4YBLjhA6d/KmqDAV5+xONDSlzhnclyVadUYRORVroCgqXEHgAg5C4g4LK4BnFl6zJ0Zh1ofMpEY+QzcBEum+y5D8X6keQUWXbP5Oopex8947QiIBy1W1YuFVDVt9x2DiRGikGBIeJSl2cUNhNMFajQbyNgXcWNe5fPyLA5JurKCRcukh0aN0jBACv/aEKbxod3kDcMBtyfBlnWdPK45BueH6Z8F3kGNBzyjW+hGxwPOVnp+ho/4/kD/A75AOk8hl1A7hQY4N9SouK4gZEh17CqQLIGq4TxvsJkKwD0zCBHy5WBnggEOKGv+a46hGOUTLlETM7khkq0Hjod9dgEqnbSCOG7MBVp+CwuB1r1mwoAaJozda19MAIEyEemyPEtC1b9pgMGHDCKyp/Fn33H+c3iPDa+dRT1cebtyvjAfQcAsjyHHGG5hyEDR+v1emv5IIyqHz9+bP2WF5sZOas9uuaDPdZRP3KKHcSrGjgsz+4H8OUJthgCiebcIFz0TGWB1rmbSKj148D9EmqDAQCBzCsAUrfPLhalCgoVqu77SDHqfIIo70zcONlkyGylAOfFMbROGKmsouqIqAICETO77zjOCiQcmpyCAzmlvGta7ppJFXGW1wzcuXS65dD2ykApxxv1O32uddzp95WRoPFlh4s3SvtY+RaU9Vf3rMPTnTgh19SSZlDA5AABwAKHBRjgXQ7ZQ+AAe9UP9MxK3FnSDigooNAzK2nExZ5Wx7+VcYjvMWegAqxaJpRHh22WAIIpzwCvK+UKjpYidTurkgpuJ2QylKjvOZzmtQMMHCBgAFBNiOFyqKDPkDlfRyCCOyVPlHS0FDG6/Lv3fChiPSRVnSNTEp06i+oketeJy7V3J+0MgPC1a5tIsGaUgYPs3r1jnqnKUcmWqk1nQe+vTFrejgzi7928kqhuAAhYXrplg/AE6O95o/F8zXtWVk5Ph0P5j7Ld9nXl5iECxIm0ncc5403VLQyqXP3xRPmzs5/LJxVQzPLvoqWFM2GYOp3VMW4lIFx6LKSy4YBKKLCQiVZGZMMEqkgzqzBK35VR2yP79fMMRR1PV2pEyt896wrf96IMXIIi5djlvSg9F7aqj30o4+x7VaguHnfdARrunilSOHzfbadMuGZ5rOoM72br9qOJ8+fKvLQckQGmxPOL1HXOslEnmkNeMiDQ4WXOfxcM64S7zBPKs/I1jxnhGzaI2TjLlhviWuuTrXv+GyPy6QASe2t4Q6NZ8MQ0vR0xGMUVGsQKwyGVTEE4RsyYOgMp2YSKTJhoB4sAgQMDVXwOEHSFWbdhsyEc5EeRv4Z3dRcBgcha42eHFqoKCDoUCVsHcithtRRER2mp4pxNI2orl+9MMTulESmmrM9Heaz6rwraLA5XZy6flZL9aMpkIu7ddUYzhkhWX1DqrJBY2et/L3RCtjOwNJ+VEdpV5Bzn0vCaP+cpZ9mZ1aHKYC4r//VR84hwKqfZQ8F11i3bFBhAo3FGtFA641RBwVKKgED0bXTtFFeVLn9frSLQvKqAzToyM0wEKLQsjuncshS95rR0/GkM706Lyp/VbQaSPpIyha35izpwBgy0LSor28XP1AEELq8zQi3jW81LVCcdRTTb7yslVCly931l6UaA/dhoSf4iPp7hFZVNagkzIGDZU/U7NaRcHpe2w48fP9KhU61H5RHIPt49UOsRhypmzX8EBPisBhgmZroNiUDaBkuMD1AbDDDSU0symgHKgIDjYUXWURAZQykKcorHVXylpKLwFRDQPM+gtExIubBgIGYIfJcBAn2GdnAMzcvGuM2iOpypo48ix2tRXvQbFhispPSb6D56VnXWrL2WUgTgOmAtAjocLuJfp4ii/FXhOjwUtVVGDlQdErwqaf/rlDFrM/2G09E0ojpR2QOlyXJJ01YLGt92SMPiWaTEO6Cp4g+n86KJjgyGnJcjIu6HzkvL5YxAQVfHZDQFBpgZMkDgUB4Dg0iJuLCOnJJ1aUeKqnqWxdMRpJEg16V9URmyONxzbpMMEIxRd55siIEZ1jGvKn43pHIoipRYBgqcQuhaZU6xddp5FjR0vnVA1fG0y/cMZRbobFwqaF0ZOnmcBSLHCASYsvyp4dDh013TVOOB09Qx+2pfAiUNy+TkFHsCkA7LNg2bgRDmr2iCvLrxWd66dLM0IlCE59jUCcMuEShgmm37qQmEjljwYwJE9HtInFlhMJMxo8wKpQpcqMDLFLxez8SvHYJBQLShxUzncGemzDXmJtQwSNN03JJHMKHO/FUAAB6A68rNFP4omhXwWZvqeUl6Wv/ZdZdHukBWDxcms+aj6+yZ5lPBaJSuvo/ScLLFUbe9jg0IRPnLrHq8j2RqFb4Ky9/zt3woMMB9NkafpTejB1hZaj5Auk29i4ufq/zi99pPo/l0WZ45De6jPFzAQxYMCvZBi8EAMyaWQ+jSOwcIMmGQPXMUCQ4nEKo4nZCs4ok6F1vZDAbc/787+esojAhBV99FglU3lnLt78AB+ACgEMh6HxbKUnKKbUbgZ4q/UtaOR1hwuji0vaL3DuBmwDZTlBlp+TtAJUun4vVOHpfwU8dK0+tjoQiYglz7qDLvKtMojSg/7tB3iC8b/0a8FehR4ve8MoBn6bt8RXFwPlQ5I40ZiuLmMjK5ydsAAqg/t1xTaZaPp1cTcCKsCFBxCgZcuEwoZQjUvXeouYvwK4FVCQhF4e5wHgHnqu8KQU7boVFV+O7abcjB4XhPCT3rrFYGg9hN7Pn5eXP96dOnzfKhY6BdhH5HoEZCpgPoou/HePt/dc2XCi9+182rvsuEexXeUbe+l1iHTjlG6WUgvCs7DkXOao8oAwJRuWflkPMIIB4nC2HZ6gT0Ks1o+V8Gwt07zkvHyMEz3oo+Si97n4WJwnE+tP5APCyx63DsNBhwlYSzggF8w5RZK1FBHIMqQOgADUezFZcxY9QBHPO58mSMpghb08/W1DIBCDAg0Gsc2Hr64uJiXF5ebm1HzROFXl9fx/Pz83h6ehqPj4/j8fFxXFxcjKenp0UW3L6pA/oqvsmEb6bw3TmzUCJhr0KX42QBlilSzQenVSneDsjRvGo+om8j2oV3OnLgWBV+RRGPuGvHR/pe48b7paAA4VUOqhHJeYi8yVV5HDFw4O/VUzvG243aWAG7eXHVPIPKa5AZu5mudKv4zs7OtgBVVYcVLdpnIEo8UvB8xrVT3rPoSisxSitjnixNjjtCmXqOwICmp52x24CZQuJ3bl4CnvGW0toxPn36tLX19MXFxbi6uhpXV1fj+vp6XF5ejqurqy1E+vLyMp6ensbDw8O4vLwc5+fn4/Hx8U1eDzVnYIyedeTCjBGPrUaUWdIdq7qyPjS8xh8JFxWOeq99IeNrfa/hKqXjytGth9lvVXnOgISs/x8DOV6MAEIE0vg9wsz0DY03An06wU7fR4oM8UUrFGZJAYFbpcDpweCtLG+nmCviPhfJJ64XXsHh4trFOzC9z4BL1CGSrrJ371262pkrZOs6dLd8Y8SCMhPClfB06SwFQqr4mRQI6B8n+WdT7P5njwC8AVD+Nzc3m+P6+nqDqH/8+DGen5/H4+PjuLy8tMMOoGOcQKgdpyMEM3DQVaC4jvhX49bZyi5fHYoUR9bHMp7P4uJ8zQIxF6YKmwnBTHbMCO1joS4gdd+7/rCrvMzyFBlsnJ8ICHAYWMIMCCKAjHDaZ1g2umFPjoN3KdQ4ozx2eakqK5fHAQHtf64OZ4Hs1NJCnBU9aUYycJBdRwK7g3wjgLBLJ3YWDl93wAATx1XlcbYh8V00b0CtfQACnhOAA9b99fX1xitwe3u7Oa6vrzdLXX78+O/fxxgIaDlQFrdE55CUtcE+hH8FBnAfCRK+hwBYr9d2SCjrb1n+HCkQiPg7iiMDXlXa7tvqeVXWLhg/NoW/hDJZOUYOjPmbLs0CKd0DAO9d/Tt57gABp8NehGrDIRy8HJEtep3Ip7qtGjKY7ZOuPMir5kn7n9O9GraiRZ4Bd6+FXyKcxsiFRCSQcB8h1dlOHoEAl0+Xj6wMTiBqesoUVQeP8lZZ/DwvgI+rq6vNN9fX1+P6+nrc3NyMu7u7cXt7O66ursbFxcU4O/vvSgHEhY6q7b5e/3dOCQDEIUjbMwOps8LQCaRISUb5qtLmeFVZa/iOYotASaf/VQCH+x3Ori92wEhWL5HhEAnVKPy+jIdjIcd/2h4RLXmXxZ3JZY5zpt4hZ8bwy58z8KfxuEmJzg2vPFINA2gfXFLOKP9RP61AVUVTnoHO5IgIDOC9ZrCbUXwbWSeVEF0CCDTPWd4rAcl5ydKLwjpBHOVjjO09sxkMwNqHAldQgImC7BVgQHBzczOurq62hgl4HBBLChVBd8fQ3oOc8NH37tpRZIm4dDJlp9cdYVGBRJdGBmozHuVwnSNKu1ufkdLIypbFqYBEw3XrPeObY6GI1zLwORt/J/1IEav1yso8SqNr8ESgwKUNOZQtv8YcgaicDAQq/o6+rXhN44juK76e0a1jTIABXUXgKLN0+X0V1pGzhlx+OgIuir9DERipFHVWvm69aNzZ7lMgBgXsGWDrHwCA5wjgPV/f3NxswAO74C4uLsaPHz/G9fX1m7+QMRA41JyBGaW8lDoWSZReR9i6dJYCXL6u+oXynY65RmCgMgxcPirrdR/9t/p2FsR/BHVkIn/rQNqMfNtnv3BxOKVY1bHyPL5nUMArFhSA8Hs+dAVONjFPFTtPGIzyyIAgKntWb1qOWZrh20VgQJ85ZbwElWbK3jF29lzj7QCCTt5wrUKs2ma4AgFR2R34iNacZ+CAvQM8BMBKn5U/gwUMC2BeALv74VLj+QYABfASwFNwqDkDmZLuIHYN2+lglaCbBZ9LwnL4CKTytVPajqfdclkXhxOc2gcrkKz56bZR9GzGKsP3u8iNj6BKiboyZHwfGXNL0uf09NqBhIwPonjBf2r1Qy7x5kOw/Jlv+X8CCOd4F+9cGSI+rcAwl5HPWsao7C6eLK6MdgIDmqEsI91OVTFDZm1lz5aQIj53nVlOri6cIOTr6DxGfy8BhOOlM5w/nT+AoQA+q9cAcwR4so12FPU+ABjwsMEhqGMh7TNvkfDtUMZrWXpVnI4nu5ZjBASi7a2dII2WQznwW8kK9849W2KNRWnNCtZ9UaXo3b1r69myd8N0eNS1i7ZJFDZqV9cuCgiUl2Dd6z14Uy359Xp7syGn4LV8EQjIAEEFBBhou3Q0nqw+M5peTeCeZwXMEGZk2bvwHTDQFW6OIgHj7jPGxTnqkN2woGznOaZoe2EV3jqPwE0sVCDAyxDH8GNnSBuAgIHAsYCBqGMtIY1Lr2csyggA67uqg2fAeFZQ6Pe6g6YCTBALW46nq1AzxV21Y1XvXRDRzc9HUlV3HRkBWgJSl5JrK6dIHX84QN2pB53HhGf8jrdK17X7PLzJ+a3qqgsEZg3iDARk/WSW9gYGXGV1LbKoE1dIaCaP+6YOUzpA4PLjOnIGAqLhAHwXDVnooQDBHZx/tvTU+kP7ATSw1wGbdhyKIj7sdHJtg31biC5+p7i76Xb7wKzFmfFQB2BFVo9ezwi7Ctw5uZLJmCieQwMBkOMRJ1+UZhTRPvLm0te8dNu3Q2hjNojcLoSQVQwMxvj5MyOWbzzviXfXjfRcBQRcXbh6y/plBqbcd1V8SnsBA466VlEURwUKXHpVvEs7QseqQgNVln8Wxxj+XwH6rhu/ExqRoFflrww+ht9TgoUsgACDgZeXlzed9aPJgYEOL2QdtGupVd9G7ROl7cpSKTimjlXC8WreonzuQpXFWOXPGRTurN+6PLg0Dw0GIl6K+GXfbbJLHMqvERiI2sTxnIt7jO01+Lw5j3oFdA6A/r1QQcBSMJWBAkeddnPAKvvG3Ue0eOF3B8E72hWla1yz+e3mzcXfRXGqJPGsym8GBMZ4O29DlSuHiXbdGmP7/wPOi8BlgFWv+XFCWocRcABoXF5epuU/JsraOgJU7jqKw6Xj2r9rKWTv+doJ3YzP+XDbV1f56wpCFbjZ911DQwFB9EzzwWe9/mjqgMII6DtrtUPvUd6ormfT6sjRMba3Er64uNiE44msmDioYJH/t4OJ0JEBFJWzU/czgDoDAcrPS3l3yjPQ7YRKEaJzcXYBQFSRXCGVBeDyVwns6Bzlw+24NSPos+/UzcXfuvW0GM/XvQd4bgDCACHjHFmHfKzX6zcAg+cQHPLPhZngmWlzd63COLqP4ue6isBEJAxw3V22mQnTCOS4ISPe4hoEK0tXjWSWVQaaO3IhM0qWAgZ+rteHpIrPHDnrdKlF6ZRgpZwd37o8VPoF77m9sm/wnj0BAAMREOA86rBAtee/46MZnonkSxaHqz9+3gVOoL3tQOjuxxhvGq/T4BWKioRs1Ri7AJkqfZcXPmcKRBW4CncWuK7zZ3vWI4xOHowmDDIg4DwgXfYoIC4eN4ZCcIDjUEsLZyYCVcAvelcd/J2G0cl5LMjwLfOECitXvi7wyYBpVBYGAsqPLHijPKmQ0mtVwpnRkIEB/daVj+POZMkhaUagj5FbpxWoiu53pdn4MkUXtROfdZiAFf/r6+tmyWGUNnsHdM7AGG/7TcQvlbzp1oG7z75fwr87zxlwmQA5IMDfuI4eoZkIDeu3XcSbdTAnMCOBrt9z43cErK4CyPZzGMOvGnAbwbBCVjDAWxC7fxVwWTht7C+A+Bg8cP5duaOlZR9BXaFYAYHs7A4dgtF20oP/JjnG9iRStAXmYMCFyfs3ZBbgDACvlI/rP5ly1sMpX9QLv9drLUcFBPap0GYV8qFI68fV3dJ6OUQdzCg15imeH8CKH3wGz4DKboRFH4t2G6x0SEUZCM/4eAYQzNLUPgMRgkcmHLNFCtF1dKYIgUVAoFtJ+p2Ly113Gi/Lg+af3fFRvHjvhOYY8d8J3ZJB/j2xrhbQe6SrSBh54bh1aEHBH77PyvjepLtn7ioUmSIgoCCAvSjsNeG9GdwfJUEQTNjhcbVaba6fn583FpDb7THqa5Fi1vvMgtJwOr66pD5xrmTDUoqUSwZojpWyeq4AYSWvOuWO5GaHOI0sbAQIIv7l9zh4eID/o6LDXDhzP3J1yHKSrzu8P1NPS9poKb9OeQYqi0ArgRuKlVaF9pwC5LOmrXmsGiUDGJrOriAAYVVJKiNHDM3PWFnz5C1WHmdnZxuF4oYC2JKvNo1R0mEGKDRG41m9HAoMVNak48tuXiNhxkDA7enA/4HgHR8VEIAABFar1VitVuPp6Wlz/enTp7FarTZeAuRfBRrn2eXbgU6UwQEq1x85Pbe3RAauM8NB0+d3etb4OoaCE/jHCgayMvM3M8DXxdOtP8f7Fbl+VgGCKJ9ZGPAOfkesAERXGDDfRhMHXX66Snu2vNF9FH83jKNpz4BjwIzpKgUXkVZeVyl3URkrQb2O8tkpt8t3BARmyM3izkCAUzbYVhhHtJIgqztVaoij46o+RjDA146/M+Dm2lGVKG/TzBs58U+grq6uNj+A4smcaFcIpufn5/H09DSenp7G4+PjeHh4GI+PjxuAx/+FwKYqbovVqB6Qfy0HP2egUVljHdDh7t1zTd/lndsro0xBdurokKT8GeUtAgNL+mBU30v7c6cPufSiZxovf8uHziFwRoxre6dXXB6d7qnKWJXLyakOubxWNA0GKgFQ0VK0GT2rOkVHaEdAI7NUHJNow1VAIOsQoGyc2YEAPlgBQeFA6ThQENXfGD+XI6pbm8vCFiErn0OBAFCGsrP26AACJgcCdGtmVv56XF9f2+2fFQw8PDyM+/v7cXNzM+7v7zfxPz4+bgABlkRhBYdTopGw5fI53s36TKYwunyQ9btK2WdtHd13+/OhKeJL9x3OfK1hlaq6zdovM9Y4bk1jxvhiyvoqf8NAgL0DHAd/74YHuqCko4u6VPEtx1kBxC7vLppAGCXGFeeEh4IJh74cVUzYUaoaJgMDSzq+Q+CO2TqKZ4y3ew5EY81O6bD1qT8l4l8T63bDVT0zEFDLVd1sWtc8/n1IcnxcCVdHKsS0fRic8e+fb29vx+3t7bi7u9tc397eboE01y4ODNzf349v376N6+vr8e3bt3FxcbEZQsDQwRhjM+lwjG0riIFtRm5pqauDrH7cdQQcHMBAuh0h3BGGS62sQ1CkwDJFmQGaDBTM9AEXfjZcV2Y7XlFQEX2joODs7K13IJILDiRG+YvqvQLEFTh3NAMKuzQNBqIMuA4ZWRid+Gdon0DAla2Tv5k8OCAQIXVWNDoMwIrZKX79GyHe6X8H2MuADuOW0XTrj7/VLUGPhbLOk1mhTnhy+/AQDY6bm5txd3c3Pn/+PD5//jy+fPmyuQYoYK8AAwrEjzkDGCK4v78f379/H3d3dxuvwrdv38b9/f2WN+np6elNGXipVVYn2r+jNnf8wdcd8BA9R7pu/kEkgDPDJSsvp39oAKA0A1idceZoVvHvizIw0qXM0Kq+UWAM4n8SuN1WEUeUnwg0ZCC3us6oA4hm6Gx9bFx/ohOd6EQnOtGJPpQOs1n8iU50ohOd6EQnOho6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+czqBgROd6EQnOtGJfnM6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+czqBgROd6EQnOtGJfnM6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+c/p/spFj/PEy+LcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpDklEQVR4nO19e3PbOu80nebWtGnP+c37/b/iuTXXJvX7xzOrrjcLEJSU2GmNGY9kiSJBEgQWIEVtttvtth3pSEc60pGOdKTflk72zcCRjnSkIx3pSEfaLx3BwJGOdKQjHelIvzkdwcCRjnSkIx3pSL85HcHAkY50pCMd6Ui/OR3BwJGOdKQjHelIvzkdwcCRjnSkIx3pSL85HcHAkY50pCMd6Ui/OR3BwJGOdKQjHelIvzmdVhNuNpvX5ONgaLPZhL+Tk5MXafg5Po6Up2VH5ycnJ2E52+12+v348WPnP/+qvIze57w1Hf5vt9v2119/pWW8Bp2dnU38uTaYK9vV/boyOZkrN3PIleH4yGRMj1m7ahnueXes8j86/iK+K/U4OTlpT09PKX+vQScnJ2U5W5uyttxsNhNfVb0Q5b+kfsxHJe3IdaWonIiHKl+abkQX9PTZdrttm82m/fjxo5tXGQz8DtQDApGxxv9e3tV7DiBEoCHLzwlZZrR7fEak5UAAe+neilRx9dpgTr7unvvvjFavP9emHjgZkeuRstbMZ/Q/ZJJlU+XUyW0VqLwWvbZcaJuM8FDhLdNFEUUgYw4fGUicY3R74111S0Vulhj/SptUZfcIBorUGzBKIwPF/Xf39Od4e02l9RrC/VZU9WTcc63FbTxaV2eU3pIqZYI3J4PM/2g5rt7V/CIeo/9Z2RkwXOKlvQZFEb2oPnhm1NvN6v0abRL1dwYEquBgjeeURwckI77n6OBeBGXO+Bil3x4M9Lxwvu7+V7yoEWDgog89L7O1XWGMlFqkJEY8wajMSp77VqxKo/0SPTcKkKIowWu0T2X6Zg0+IrAV5ZV56JWyov89EFIp6z18ruU1pr2qz88B1Ug/dyrI6dyRiECUr6sL88jtHAFJJ8sOoM2lkWfn9k1rvzEYiJRzZoj1WqaEqp3Ry9/9srIj5R8JqfIyoih7ntR7MP4VA1EBSKPzlmsZ4IxcvebKqeZb4acHEkfyr+SVtWVlLCxRpPumNXieo7NG8450VZbe6cSIFzeu5owxt55FzxVk8rNVsKF8j95zaZk/LTuj3xYMgHpG0YECfW7JQMy89SjfzNuq0D6U3SEr2LUUaaX9nRKpeqxzPDGUWU3reOX/7lz/V/jUOo9Onyzps8jDc/+Zt0OkpXyNPL92G/T0W+YU6fM9h65qGDPjzz+93qOejGk9oijbCCBAPkcwMEg9g58952iuAq6QU1bZr1fmEu90Ls+HRHPD1L06VaI0kXeRea6OlwoPXHbES+V55zW5MjLvZIk8ZGNuBFBEeRwSVQzH3HxfI230nOuTTE5YH0eLtyv/3bOOokgA/7Aiv/q2Vm98c3lZ21Uoyn+Efksw4ASP71V/+uxSXqL8I++Mr0FYMxTrysW9uUrUGS3HaxXVvgZxO0Q8ZhEad87/Iy9Ty8naNvPCI3L8VMCfXs/GQ8RjL7JRGSMRv0uAdE9+VV4r5b8mSN4XReMhS1tNnz3vKDLkkVF3OhL3OZ1eq/AZgQDWre7c6V7NW2VrTX24Bqj47cBApPickGXkOpfzc+lduggxaxp3P0OxkVAq/6M0V1kemsdVoWr7uDapRA2cYXJljrT3EtDVA4URv5Fnp7xmvGWg8q1on4A1o9fiaw7wn5M2es7t2xIBAKR1oODk5GTH8LufKxcEjz8y9gwGeucRKHBAINLvri17NqHniFTotwEDPRDA5z2Uys/rea98d915eA4sOFQZRQEyIMB5OE+vSj0jtW/l7sjVLwJmS/jPjFsmOxl/fJ553VmeFV7m9tcIIFAQEcn5KNCcC3IPndao09J+nZs+k9HI8EfevgMLEQD48OHDi+eZTk5OdjbjiSIAz8/PoeF3vyhi4ChyClw76fUKIBjR578FGIiEU5VUZPSdILm8e4Mm6mRXvsvbdXQmaM6wOZ4iYxjx3isru3aIVGmDqJ+zdukpxblK1gHZiEbr43iMlI4adOUpGzOZEhxpp7UiXJlC/l2povMqz2eAUw26M+5ONysoYON/enpqnwdxRIL72Xn3P378mNJlQIABAz+Do0YM5rR7Jd0S2f2lwYBTKpnxjbYbjo69slqreTkZEHDPuM5WIYsQZpZHdn0JHYJyHfHyXdqq0YnqOgIao3xx7MlI1bPu8aH5Z9MII0aZI1jIv/K8A2FunI3w40BgFCH6lWmkrappIhDgDHnvp2VrJIHBAIMCTst84FoFDIAQJdAjjL8DCbiOo4vkOop0SEUW5+rbXxYMZN6FGl6+P2KU10LO0XVXh5FOjvKf601VIgc9wPOeKZpKcdM3a1FFuWbPrFFudK0HOiLQoM/O4ScbC1zGyFgcifIcEi0F2yMgbPSZzAGDIf/w4UP78OHDjlHP5vxBvI5AowFZVMDpd9xjMPD8/LwDEBUM48jGHs/oz61LQPlOf/Scimp/j8jGLwkGRgyS67gKEKiW3evUkbLnhjE1fc+g9eo0QoeiRHt8ZN7umuHjpe0RgYMl+VSAnKZTTzqiKIrVS1OhSn/MyXuNft4HZXzPcVxGQYBzuPg6AwAFAgAAOLJx75GbFlAeWnsZTYiA6mazac/Pz+3Dhw/TkacM9J7WWacPFBQwWFUgwGMqG1+joKBCvyQYYHJGV/9nxtiRC5dGIdS5ysjx0FPKvbycxzQSPh9VHIdGvbZaGv7uUdSfXFZ2X2k0FN6jqiz1gGMWEXBlzuFtjfxcemdQD1m2l/TtGvWK8sz0rC7yOz093QEF+M/GXUP2TAwauIwR/rnff/z4MRl7XmSIcwUJm82mPT097UQW8Ds5OWnPz887oECnDbRer+GEVOiXBgMZGh4BAlWFEYWRR/nL5mbnpKvw1gv59ijiYU1jupRGvOElZbi2HAUCVRpt34onHQFdpkiW5k4DVKgyTdN7vkrvITqwVHYz2elFBXogAOcKAjgigAjA2dnZzn8GB3gWYXvwHekrNuj4/DPuw+h++PBh5xz5j0z3wfAj79PT07bdbqfr4BdpYPwBCnjagHnj8pfIYDZ2I/qlwIATRD3vvdvaM7447tPAqfA7QKDnGpoaVYxL7iPNvtosGlSjntIanvio4Y4iFWtFd3oeso6jrA0ycBApp0q0oVfG3OcqeVXA9r7Ite2aeWf6JDtXmdG3BNTwn52dTQCAwQDno0ZdjSmIvfhoXGRjh0GHevmuPJTF5TMIwX9ECHCNpxGUd+XzrUDpq4IBh9jeoqwe2o0Qa/TsEi9ylBcdSHx0wjFi6CrPjfKfpTkUqrTPEmKDEXksS9orUriV/CpAzvEeRQaiOva8quh+lG+VRqYLKtdeW1bWJicPI+24BtCJQADrV50agOEHEOAfryFQPjV0Hk0dZFMKMNBIp6CD843C+JwXzvnI/LLB32w2OwsTOU8GMJVoNK4rzdHzrb0iGKh4XWsBBJd3ZGwrz84hJ6y47srMwupVUu+tF57mqECk+KNysmvVNjxkpRrRaD1fU8Zaq3kL2udZ+U75VKYI9Hlcz4xrFZj0eK3QGnm9R3kdpQrYd9fdMXKyHBDgtQEODGw2m50Q/vPzczs9PX3xGl9rL3cQBKkR59A+G3EHSDl8nwFdBhUaIQC/mh6AgPNUAOLAwogDF0WMM3o1MFBhYq43oHnoeYRQ9X8FsMwlh+z4XgQWIoU6aogcGHA8Kh9VY1YxklkbHCJlgzC632vnpTJWSZ/JR8Sfelg9HnS8RG3lns1CzhG/a0YJonIyft8zLWlDfl7/u+uqV90mQvraYBQZQDoGAlwGFvSBeM4e9dVwvjPkeIY98ajdGBQo8ZSzvrIY5R1FLLicCGxHPDqq6H+lV50mWCMElZEqmAwM6HmFIi9nTp3cs9o+GQiI2rJihHqKr5Jv9j8zNIdAVYNXyWdu+uozFcoUWNUbqLTJWuM3a7ee7KxlmCsh1hGA9B6I67HmGFc9GgEBfV0QPxcR0NcLtQwYXg6xc5iegQBHDXBP66CLCzOK2lCnCFz78auHfM558xQB1zsbCyqja4yXvS4gXHOaQA2+IqOKF1Plc4mSdOGbDL3O8armUqWcCuJcW5EvpbX5WBPkLOXNKQh3XFrGW8gW7kVKb9RIv3b690Bz+831VxQZUCDARl2NvC4ejKYG2OC39tNj5jn/yIOPdhAEjQABfc7VnzcQcm3EdWBAsN1up9cT3XqBCOhz3kpL7Nyrg4HXGFw9xBqBAcfLHP7c4FgaLciiED1AsMaAH8l3xLt7L8q1N8gccbrKlMioAhrt1yVG23mRFeCHcpeSA78ZMK56+qPKUYGUy/dXoFEd4mRCf87gIwKw2WxeRAAqQAD9oK/ygRQEuNX/2o/q0VfbSxf+RRGBqO0UyPB/rl9W10injl539K5fLXSC44AAp2fKGjd6Rp9bw+uaSyMeeAUI9eoT3csMaRThODRa0/PNaDQilQGOiAd+TsfDHHmLxgkrWpxXZbFnpEfqmqXJQPVazsF7oYonmUUEIiDgogE6FaBrBniXQfaemXTVvxJ7/zjqdsIRaWSB83SkXj/zy4sCde2AAyNqtxgE4BkXZeB7EY/vdppgDqlyY4HMgEBr4wuMsmuV6EC1vJ4nHXkrFQOrhsDlsaYCzAbTISvaqhcY9ftrR8BGeVNlonxH0wtR+lFeUUY1H23DKtDtAdRsTM5xBN4rjQCBSMbdL1oYyD9eB8DHaLthlUX18tXw67QAA4FIn0bgotp+2LiIpxy0LgpkNH99FnXQRZLaJlUAPEpvCgZGPFn3HJ87gXRCXEF/Ve919P6oMsl4jTw9LafnYfH/qLyoPdaIYhwyZTxWgeBcz7tXvst71NOL8snkAMdolbNGB6Kys+hRxkN2P8tXZTiS5bkg5D3QqDxHz6izNQIE+C2B1n7u+Mf6mj1iBZC6QJCjAAoO+EuCnJ+OL2dYIxnmNmC+EAVQIACAEAGOKN/s55w4kKtLJNM9ehMwECmoKup3RxZIFVYQN2LPE+r9n1NPRxFSHaXI41pbmTkFX817LSCxNvW8xiWAbgkyV+qBhOh+BRD0aC6IGMlvlJ85YycbJ5HyrHphh0xRu0Sy0XO4nL7N3g7Q9QIAAY7YaLrwvUYDsM0v9vwHCEBafiZqC+1v9xy3h4IUvoYoARYIuj0MMqoAgoj3Xj+PyO+bbTo0J402Pp+z8XdAADRXgWUKNRtAcyjzqDKD6kBNrxxFy3rUPKvt56IiDpHvm5y36Qab8yKWGrSIluRbVfpL8ssiRD2Pagkva1DmRWXnEVA4ZKrqU/2fAQE+770xoK8JuiiAI25/t7gPQODp6Wny/J+enl6sD0C6Ecp0ovLHMsFtwmsF+Dxb56DUAwPOmXV5LHHeFoOBpd50L19u9Nb8Zyhdo40M4BG+lwKBSues2Y6c59L0VWBwyMp0KT9R/79WHUfk0in7UdmMaG791pZj19bReHHtcYgAdQ2aCwR6aVW/ZkBAQUAGBKIV/Q508tsBiArw9Tk6P6IMEIA/yBvO3dw/6oFXCZEWgIWPXPfsx7y8hs6ZDQYqg29Jnqx03VSAXmOKQkAV4oYeQdJRPRxfqoh63l2Wn/NuqlQdRCPpHBD41RSv0mvUq6qs8V/Bs15jXrlflgDPkbB91TN0IdDeONE8XNmHCk5HKBrrI0AgAwUZCICuzbYVdpsFuT0BWC6jkLrb3lffGmCwwFGBzPtmquo9vRYBAr7uth3mPDJHqgcGlI+16NXXDIwyrAqMFwfquUNMfO7CmVoOzrXc7DgXDPTqHPHmjkzOWEfINtuuE/+jNs2uOf6d4Xkv5IxLZFB67VWliixlADUDBExRv/Tktjqesmt6LzJsWVh0jixlgCACsFl935pGjP9onpkuVCDAIEA3FdKF3GjHLHQPz1k/KczX2NgjMsDnKKtXTz6P9JyTrSpo4Pbi/LVNtE5uLGVgIALyPWesR6uCgUiBugEOitAo/isaZSCg5WgYhn8Rf5HhHQULLj9X11ElOkcJRMLMRwcGsn7KAEfW5yN874tGPc8owrM2ZaDQXa+CgV5ZjuZEoeamiZQczvFc1dvvjYcs7b5p6djp6RJ31HPWwW6/AH1FkEFA9vXAzean54w8np+fX4TWWZ+35qMEmqbXFtH9CuhUe4K6RkbctUFkoxxP3CeZg+WM/whwng0GIiOfKYrI8CmCUkTKgqcN04sAROX30DCnie5rmqw8Z0B6z0T58vOZ8LpISQQElpADOKNe5yFQ1Ee9ts76uUc9cFpV4Jo+AgLgO4ps9Cga96P9mwHIXls74z4CyjXfTBG/J/l1VAFuEYiE/lU9zE4ZG+7W4g/xKGkkgacLnA5TT9pNE1Q9+KgNKiA/kj1uQ7fnjeoIp4tV5nmHQtST9yOIQK6rW4WGwIAzNtEAViZ7hk8FMEKgOoCjxhypU0+ZusGidchAAa5nEQrXJj1yHhSfVyMCWu6o4qso47n9szZVeKgo0J5XmrWvu5aBU3fUdO65ihGoKJAIFK1pIJ389Iw0H8En8xyl1/tZuZlhOHQa6Z8ICKjR5ntM/EXBLBqAsvhTwtF6AUQN+I0BnSqIpgl64y0DshEQjWRHAQHvyeFsRqSPnY5UkNH76mE2Jno0HBmookwlVSAV4dM5Ka4gfxwi8oAz/nqG3p0vAQPcBnru+NN0VRQYlZMJmv6PBpLzkLN8orzeE/UMYQU4IB0/x9STST139yrpRwE019EpmAz89/LMyLVVBA4y0FDlywGAinE5dOrJptNr0MOsj51D5oyN7vqnbwyAH11sx/yAdLMh7CfArxTqQsKsntou+j8CB5nD5f7rM85muHIzIMtHjgxEuxNWxo2jVdcMVAdMDwS4hSpIi0ZQ5TbqeboOU/4cr1WlHJXpzis8Rs9UFHKlLMe7GxQV43fIirM6ONwAcwZx1HC49utFVqogNAOzzKsDNRkhfdX7yGS2MjYq+fJzGVDtlRVRz4D8ahQBARcdaG13XYCStpWCAvcRHkccDWAdr28PRHWp5O9kOhqjnL/aG7ZFVT0Z5RHVSZ9142wJkC2DATbGPUaj5zkfFj5GnfoNbI4KOONf9ZCrdeRne8a9qnw5fdZpWT0iw1ytVyYgGZjRa24AuTxdHX4XGmmTURDAaTIg0CvfGdxMEUZjo6I4KxTxM4eqOuFXl8le3+M8c3x0egCkhpj/O6Cp+8Q4fiI54sgA9I/79kBPX7u83f+eMXfPRvqYoyFZPi5CwBSNvx5vI/QmrxbqUZGnfvPavUHggIBbkTkaIUCezG+m/LReXCc913Ra5lxlx8+P1HVOej5qHi4kxfzxcUldD4kyRF5JP5ciRVfxPpCuAuQr+WteLtoQKcweVT0bHacZSI2UdJV+Fdllcv2sACACAiBdxNfaS12KXxQN4LLwX4EF9220yZCOD92jIMovM76ZI8f58TEaZ9Enid15xEsGdiI9NCLnq4CBalhCBU2/a63hKLewJPpQRY8nvp4Z+hHlHQ2orA2q1IsGsID0Orxyv4eGtUz+H6VxPL8nUmPTWl8pVIxp5llnfVABmcxLj7K+cWWp8orkryqXkeKq8BLxo3y5fnNA5nch15ZstB0giNYJqB7mey4v5YOvO8+ZPz7EZXGZrj5aXrTwruewROMyk+seKMieyfLp6VHVJ3P4GAIDox43iIXCrQk4Ozuzrw7ygNaNJvTdUocSwXPPwI3UN1PUa4AB7fDMcIxcq1DVcxu5VzUMr0lVBK5UMewj9zOqACYnCz350Px7ZUTyq8ZUja328xzD2wNBjrcMEKgRiagHwA4NMGQAsgIk3XUHCFSnub7NdDB0fs/r1QXiaryzxYKouwKBnuHmOmTGltuH16opuIj40vuZ7GZ8Kj+9sio6QWm1aYIMrbTWLBBARABggIkBAP/4gxSqjJwCqvBbaeDougKAKhjIDLhTsKx8HVrMlH2ksCt89Sjq930a/4wiJaHXe0Bg9H/1XrXdIiAQGd9ICeFeZHAVmPPzqhSdQnT1q8qY40Gv9cZ8No61XhkfhyTPI2M0MmwjP5DqWqeHKzxmryxqntHWw6wLq6SgxdmMCBT07kVlOV29BlUdgJFyy2AgylgFhhnFuQIB/szl2dnZdJ0FwYEAFw2I0NUoIKjW39Wd6whyoTHOS5GlU+ruyOkdgHDno2g0qnskeD2FEdX5ragyIEYAUs+4aH4ROIv6POLJof8e3+6+M7Juwy/ch2yr7Li94vWceY34cLz2gIADA2xANJ8leuKQgICjyAFx152RrwIB/bmoABv1TF+q7nRjhOWJP1OM+2tQFQxq+kyXubr3xrLLI8o7ymcpLfpQUaURe0AAawWY3HRAtFiwtXVAQK9Ro/tOcep/rheeceEzRr9uILq07r+2S/S860MFGM5gaXuM8LYPygxiZJh7+VUHYVXWXH84Q8b3qkDAAUenqNVja63trOVRwrjUd78rm8JU64E0Os6qgMx5ZtF5xue+ZXiE1Hi5c/zPgAHI6d1IF0dlRdfVsDpQibz1DQKnizjfCmX6z/GO+9DfbrqAZSqTyQpPFT3f47faFkOvFup5pugU+ek6AV0w2FrbWSxSFT4HCDLeszpkXggjWLcnAuqg30+IBFU9J/6vRqD3Xm4kMFG7qcfWAwTgyV2P2jcDbPugXvkjg6xKo8/32jcDBZnx5zxUriGn+PIcH7G4F2NWCQr78fFxAgFPT0/t+/fv9pvzGSBgvvV61l44Vtom8tZGxtahketXvaf3sx8ocihcNADn2t6uX5wu2mw2L6YGnp6e2tPT045NYH40T63vSPtVwCjK0TIYFGSGPgKiFcoAgfKo6SIb5GjVHQidoomAACuczWbzAgigMj0gUBmsVcVY+a8AQEENvw7JX+DiRTGsIFHv5+fnSVAUFFSVlQMTOvC0LaL2U6XsBD0yUkv66j1QBi6zNFWK+kivZf/dtWh8Yiyen5+3s7OzKWJ3enraLi4udsCAbjzz/Pw8Gf/v37+3h4eH9vj42B4fH9v3798nhe7Gt/IZKTmn0CIdwffwfNaeDgRmffAeqefkRICgtX5UAGlwjIAXp2ut7USNmFwkOFoA6urlaGR6sgquouci2QKtCQoiHpC2AnSYVt9nwBlOXTTInjQznO0boErE/Y/4cf+jQeGu4QfjHnlPfE/3TWA+dXvNp6en9uHDh+kaTyEwOGjt5Upbrh/KiVA3Uyaomm80ELM8oj5771Qx+kuAgFJm9FWZ9JQx0mJsMqC9uLhoZ2dn7fLysp2fn0/A4PLycgII/BwIIODp6ak9PDy0+/v7dnt72+7v7ydw8P379wkwROOZ+YtkRuvW0wdZGdperrxfSV7VqPVAQGu7bcpG2YGurCzNk/VSay/3AWAHiReMZ/VbQipXGSAAjz09EAFevZ8ZbCeLEYCIQG8PKDGt/jYBKxtWHgwEeGOh1mIQgApx5SLPoseT45HPez9Vnuw96T4J+pbE6enpTodwGAweFLwpgAIeNDpfm72uw8Bqs9lMEYcobTSw5ypCzfO9KteKkZ8LBCoGis97ioXzyO7x1BWv3zk/P28XFxcTELi8vGwXFxft4uKiffz4cQIH/AyPXcjw/f19u7m5aR8/fmx3d3ft9va2nZ2dtfv7+7bZbF6sLeiNZQU3maw6vRGBAW2vX5GcQa7oOSbXlj2A5XQsE+sl/Nf7LmrKfET1i14rzBwopIsMvyMHSh1AVXLgyYFdfSYbJ9oOEeio0KKvFrr7OLIBhQJRENBa2+nwDBAsNTAOAEQrqCMggDpwKPX8/PzFfCvfw30GBM/Pz5Pxv7+/b/f39xMv379/t0a818k8RdBrk0iw1lCMUZ/tk1z5amgiWsPzGKFMUak34UBD5AG6qSzIJwDA1dVVu7y83AEDV1dXE1CA3OMNIIDSp6enSY5vbm7af//9125ubtrFxUX79u3bFEl4fHycAEH2inDkpWagVv9XdESWZolSXZPWAizO6EcgoDWvc51hcgA5yw+6zS1IRRqOZDoggP9cfrSxEaeNaG4bR6CoJ498nfui55C5ds/GxQjAaW3FNQNO6SgQ0IVIjAB5FXJl8Lr/js/MwCvP7j57+1CEUKAIrfJbEVCySAelivtAvgip3tzctNPT0xe8bzabnXm1nlfKntqPH7ufAHWDGYOO72ftyO2dDR4HAg4BFESDMUtfAQvVPEdBReRtZG2v/HIUgIE4xiQM/8ePH9vl5WX79OnTdA4A8OnTpykN5BlRApSDKYKbm5v27du3KQ3S4bXhDx8+tIeHh/b09DTJJ8s5t7m2QyZv0evG7vgajsZr0hIe1DBXogJa/6x9XHmuXBDrMrdmQPUS8xMZXhchaM3vOoj7bsohAjA9UvmM9MzcfuzZQmcXemMmotW/WuhAQSRszjtQAUReoN5K+J7ws5F3HpO75uZVdW71/Py8bTabKR2HXpEWntTz8/MURkXkgF+pAa9QmtxuESrnZ0f6KzM6UbqIMkWs5++F1ooMRIO3cm0E4atCdqAWMgojf3V11T59+jT9rq6u2sePH9vHjx+n/wAFkGVEun78+NG+f//e7u7u2s3NTbu6utoZF6j79+/fJx5PTk7a4+Pjizr1ZMWB0cyQV8GAtl8VfL0FrVF+pAfVAWqt1o5M0AsuyuBAARwVfl6Nf8XpcHVp7adThOs81ToSPeVyelRxjLJ0o2VFwKWqWyKa9WqhuxcBAX19EIz3NixRD7ZnaEbqoHzyZ5J5IWAEBKAooRjh+W82m3Z2dtY+fvy4o2zxHx4S5le/ffvW/vvvv0lpojysyOb1A1VjjzbJAFavfaI2c2l6SPi9gwFQ5IGAMqWl6eYCjIqRcmORp64Q4YLXf3V11T5//rzzu7q6mgDA9fV1u7q6atfX1zsyj3Hy/Pw8RQV4HIA/LAJ7fHzc4efk5GRaN9PabmTLGewIAODoPNgKGNB2PVQZHZGbyCHS/1lEAEd3nhl8l7cDBFq3EZ3O+SoQUH4AAtb2zCu8ZjLL93vgxMmrgugoj5F6v9pXC1UowLCGpqvewGgjRgKaRQR07l9DqjDwmFvlOVaAh7Ozs515VvamPnz4MC0eBDhg7wrK0b1a01qbwERrfkDhulsskw1Obsul6PJXoZ7xd+lVRnv5VvN2/eL6LJJ5XsCLqBUiAp8/f25fvnxp19fX7cuXL+3z5887IOH6+rp9+vRpuo61AygbwBYKmd8u0DcNwBfG3OPj4wsQoOcZqBwBnBUg8N4pMtKq+yJPvjUPALSNHChw/5UiOXZgwOkjZ+i1Xll7RDyOysBc+YnaEXy5ds3ao1fOaL0WgwEnXFHoXZ/L0GjFk0U+0TUHAty5vvGgbwpAgcKww3PicCqM/fn5+Q5IYCAAY/709DRNG6DOeP3q+/fvL6Ilrb1cIOiAgSpTfkZBWQSusnZV6vXPr6RoW6uDogqgiv5nSkupB9507Q6msz5+/DhFAQACvnz50v7444/J6AMAfPnyZSdCwN8RgdxizQtvOoQjolz39/dpfRkYgNzuhZG3n7XRUo/pEKhi6LLneiCgtRgIaFtFxioiNWh6Xct0IFdBAI5uigCkkdRsHYHyFNWhdy3y2HE9yydL06MIaFTtaGsrv02ANA4QtBZ7tiNGJUurCqb6tgDzzaCAFwoyGAAA4PlWRAfOz8/b58+fp6kBXjwIYcRaALQnFhRiUSGU6vPzczs9PZ1CqW4xoQKAXljKGf4McVYFtAfgRoRy3+SUUMXrGc1fy6qUk5XrFChHvfitAfb8r6+v29evX6cIASID/P/z58/t8vLyhcLFepeHh4ed9TO6Zubi4qI9Pj62i4uLSRZ4gasuImRZ1brO8XxGnQy0IY6HKrs9kJA5QqoDKlEB3BvVI7gf/XeAQ/nUCIA6nErQt26qYI6zM8I/ylAgEMlSxa5WaQ4QaG3lfQYcCOA5QmWWqYdKnaHjspkHPncDIELInI6nDFjB8XQBgAFWYZ+dnbWLi4sJDEA56hsU7Flhr4FPnz61m5ubdnl52R4fH9v5+fnOHu9M/N+FVzkqMIcyb7MiyIeqOOfSqIF21FOUvTKrUTIn/7xWAHsHAMQCECBSwFMCHP1yQKC1lzsSOvDJ0QndiZQXePGCL9d+GQiIvM+onaI0PVB8qORAQKYDmTJ9m0UFejTi5GX1aM1v8+7Wo7X2cgrVAe6eHqsa/t64rgCBqEwGE5mT5XRz1YFmWvShIhy1Y9z3B9gAuvlu5wlElXFoOPL23dsDrKBYWfIaAd6MhRcDcmQAihPKE+k+f/48LThEGag3DHxrbVorgHx5pbZ7EyPzlBQQ8PVIyLgtRwduFIVY4r0dAjlgmdGolxmV5cpURZLl7bw/NsIcFbi+vm5//PFH++OPP9qXL1/a169f29evX6coAAMByKUDAiDINW89zHLonATdpRPvnjMgiAyXymzmnVaUflWZHwr1AEvm+FTk2umNKBrgno3AXHYtAjMs1woI2MnkKYCTk59vbbFscZQg46VqVDOZiGRUjXsFHLg2zWR8r5EBMOaiArxVL6dtzYe98b/qBeDoDH6EkN2iQf1mAu8TwMbarRfAfwYOFxcXO8rNDTAItNuUKVoUo22Adqx2PPcVP9NDrVUB5vs6kA5JoTpyMhr1wUhdnIF3ACAqyxnESpmsRLEIltcCAAjgTQEGoq3tGnm88aJ8YPdBbDesYMABgShqmMl6BGx77eGUZgSqMx72ST2enHzhvAcCtG2zto6M0hz5zOoBmeH82XFrre2ASRDrNERgMRXlyhjlU59Rpyo6Bzmg6vjo8ZWBsiVO2PCrhXrUQc1hQFxD5zrjXxV017hO8HXRYgQGWvv5eVblVxcPaliVf1hchXUDWKCFXdpaa9NiKnSimyvVXdmi12G4LVnp8n++pgM7GvCjBj6LCjCvrt8OkSIj/Zp8axl63ppXGFG7qpxjQSt2Evz8+XP7+vVr+7//+7/2//7f/5uiAyy7HM1C5Apj4/z8fCpru91O+wvc3d21+/v7ad0Lv02QyTJ4xpjL0mVrjLStHPU8WsdX9v8QqKcL9VyJdUAWUYyMThYt4nTVeugxigToAkKk511bXaQAxNGnzIBHxtvxz/eydHo/0r9uvEc6oZdXlWYtIHQK03kAEWqseIkOMUVoLgIFDhA470S9KFZ+vBMbFloBFPBmLVgwqDsS8iYbqDevuubvEvCrhUiPOrFw4zqEPGvjyPBHnpHmU/lfff4QFaqjyBBUB1kPAEWKQpUhn2dKKRuHvFaA17ggOoD1LQABDGBR1na7nT6mhTHImw3d3t62b9++tdvb2+ntAcg2QIGrq0YEIqNTBa2ZQo88Mj1GfBwaRbIS6WbXBiP6oQqO3HOZznb5qv7mKV2nw0GsI926gZOTkxey6HjKgKveH3EYtP0dueuRHczAx6tGBpgRPdcOdALIWw+DWfVeuaKurIpQuo5i/nRzIT7ydwd4TwEOqQIM8NatvBkL5mfZu9pu//cqIL8VgIWD2NOdlSgAgQNNLpoQLSKsRgDcgB01fKPPHSJFBpavVUCU5hXlnz1XURw9xa/zrQwOeMU/3njhzbfYWD89Pe3ID2QPYEAjArpXBteDxz3rBByjjcfwfGRctE1Unzg94ZybKL9Dpqj/szqP6IeMeg5b1SGogA11MBkM8MJTyLt+AdbZJFefSGYyitq6VyekdceonLk89mj2DoQREHCojefNW/upUKLKRwgsuqakQq6ImRfoqQelrxSqN4WpAd7DnT9WpBGH1toLJdva7pcL2Yvqzf+7geaeqSL+Sv69eyPCfOjklGjPAI3mr2U50DE3X2cQ9ANauqKfF/ty2Tzd9Pj4OIFP/BDVenh4aLe3t9O5frpY9x7gDYn4uySRgWKq9sManhKeW7P/51IEDjMg4GRLdYEDApE+jsCS5j/aXqPyzuCWo0tYMAiZ5be44JjhCGIQ0TOyzkmdW0/tw55T9RagdNECwsgTUWMIUk8gM3rIH1QBAY4UFIB4rQB/hIg/RqRvEvAPCwp5WoDXSLBHBsHkPQMgsAAE/HPeka4DUAAQeVPaDq49o3artG12bd8KtEoRAFBlOqLolqD23rMZoOCxyItTVb5ZXhmsonyVLwaumOZiIHt/fz9FuzDlpdNguM4RMP7x9+t7ynGURvpN23jflDlifI373jklERDo6eGMF0c9Q6f3nI5mvZZFEzgyoOsEGBAgLXQuRxegb7ldHc8VGXJ1UICh49s9E+WN/Ho0B8CWwUBVQbk00faiFWHUe9UOcQAAxPNQqiw1fOo2GuKvuPFuhbzgRSMD6nlxmJ9fy3LXXBhVFx1yOy8Z7Fmb9s6za4dIPQCgEaXW6opulJyC6FEGBNyaAf5ksb7BousBWA632+20pbAz5IgcMEDgczzDoABfL+SIWCS/Vaoo1CotAXNvQVEkyK2DYuq1bxYViMrMKIo24JrKPOsy1MPxGYF1XhyoCwUh21o2NoHj9QajfR8Zfi2ravirZWU0qp9mRQaqQoCwTWutOx+IZyJh5DRZ2drYrhx+q4GBQRQlADBghcqLBCPkrYaElW30XjZ7ZZwXv2nQo1Ehc0DN5ZWBgJ6RPGTFqjSq6HCunprmWSEn35mXkpUJuebpL56uYsPv+pMBAUL/9/f3k3FnsIBttF3kANEABRMOVKiOcPUeJc5Lz6M25/t6/pZUUegRIHSGdo6j4CIQ0X2lnp5g3lSmnVHW11LxqiE/wwu2deE17znAbctpeKdcpjkgQUlBAR8zyuxeT3arPM8CAxkyYeN1eno6LRjUgR69e68VAWVeU4S6skZWBaivGDIo0E++8joB9qr0lRcekGdnZ9M+7rw+QV/B5Hqqd8ZH3Oc2d/3glF/Utk44o/bUtFFb70uJVsgNsOh/VI8IEGTegXvetWdUrgOZ6hm63TP1TRd944YXvaonyKFVBq0sixGo5bUwLuql0S7nNFRJjb4DAZouamdNe2ik+sJ5yzwutV8yA4NnK2U5qrRrRI4vdoJYzgEGdJqA8+JxBdnbbrfT66xYD8M/B8h5PQLzUq0DX4uOLp9evsxLzynLaPWvFqKxoEB4TmfO4OZ8o2dVobJgsICAJyY0LN6nZk8G3o4bOCwUuMcKWfNvrU3C6/ZigALX12i0jhUEOYr8K+SMVAQenFHTtngPVOHXAafqs460PR3wde3qwAAfeRzqq61IA08Kss3TBRzmh4fPc/2ICGD9wP39fbu9vW03Nzft7u6u3dzctNvb23Z7e7uzsFD3I+hFD1176X9uO3U+NM1Iv+yDKuVq3ztDHYEfbgsnvxEIqPDswFd1TLW2u9U1A1d11qDjeco0IgWiALO4xovdOS8GADyWmOceuOKxxdEJft61hRr4Cs3RP0NrBrQgHXSoHBqYX+sYMVJZwygvEY8KBHrGFMJ2enraHh4e2sXFxc5X11gJYuqDPXrm8fn5eccDY49I25ERrs7jKrBgAOKiLFEbuvaMvNRMOHt5urxGlMC+KVKATFVD0kPwLj3uOSUaPe+iA3wfoXuE+G9vb6foFq9zQWQA3o/O98OQ8wZDvPMgPrCF9Pf39xMA+Pbt23R+f3+/80ZBZZpM28EZOU3rvGDVBVG7Zg7HIZH2eeStZ0BA29KBfZTl0illQCB7VvlnvcrXddEr9Cx0bI8UwLKjCN3NRx3vmYxUAIE6Snru8tb8erp0NCIAWhwZiAYgGFJjBmaZaW70TNlGgumuqXfFZWBFKYg9qMfHx3Z2djYZ/4eHhx0FeH9/PwkLrxlg4ANhY49ru93uKNdIGUbTKRpSVWWXhVYrQCBqQ5emBwIq6d6SVEHNASZzwGuWV0+Z6v8eONFxyF49z9lDnrEvBtYRAJDygkGAYAbFGAMMkp+enqa1BFhoiHKwKRGiBUjjpgicDnCGK2qjyOGIAAZT1oeHIsdMmYFw7eTahK9H+S0F8U73VHhXgKpTuPztGGyVzfWKQA2vUcHUrRp72C+dMtApCDctkXnyCgQiXdlzejVfzsPJcVV+F79aqIXy4NNQiD7bQ1Gcr5ZXUZLcqOwZ4DlWmPieOjx/ntfnjVm22+30uVbdzhj5n52dtYeHhxdRA3hbvAgL6DTzhpxS07UYPSA1SiNKoNc/h6hMKxQNLtxz5yBVpnMBSI8X1+YcPWIP//7+vl1cXLTb29udvTGQliNZPFWm2w4rGPj+/Xu7ubnZ2XfAAQcHgBUMoB4O0Eb6ogcGXNhXla/mPVehvgWp8cxkLAJXa1F1jChpFEO9/83m5X4wvN5K3/qqgGuMB/7pYkHYBehXjhLolPNoW2YGe06erg1V747onUVgwA0gp8C0Ar18cE2f6TWUDgrnTbCC4I7HDoGPj4874SgIJRr34eFh56MuPHeFjtFQPwhK0K3IZg8/aisd2BWPqkqZgDrq9Vklj31QLyoS1WkEpTsaHZhRuZlMqGxwOBQA9u7ubgIELNcc6cJ/jmLxtwf4B0CATYf0x0CAFxn2Fgu6Y2Z0MkAQtW2v7Q+BnC7Te0rcVg4MaZuOAFbVqSOeKBsv/rn9afQDcu71b37l2+1rA15Yt/LaFgcGTk5OpsWym81mSsNTvEuiSGyk8ctk+y1peM3AEsXeQ7CKbDJeIuSjSNM9G3kPWPCI53S3tfv7+/b58+edDYd4PwLs7+7AABAmlKyGTCPF5dpCgUNPkWakXkYvjQNYnCZSvocACDJZAWV1GhmskYxmylQVQmbIeqAARpajUaxcdc+Lp6ennS8WQuZ5TQA8fQYGMPjYlpijBTy9wLsNZsY/a2fXlnqMwID2a6ZnDkExK404VaPgKCprVAePOAMOELj1U/w7Ozvb2fcFu8J++vRpR3ZBrCd10Symgk9OTia5bO3llsettZ0p5TVI5SvSAT05jHTMXICxyg6E2X+9lzEdTSm4clvL57UdP47gBfG3A1hwsBDq27dv7Z9//pmEEVsR4/sFAAmYw2KFix+EDmAAC7IYFGg9NA9cc4tlMu9+RCiyNotAmFOuTikdGvUUHo5RPRx4cPm4AToHCKjijUABgwFe9Io0AKUPDw/T9tru88Uw4rp+hr3+x8fHdnNz82ILYt1+WBcKVsBrBKj0vAIEOB+np3oe76FQBgyytsnyGY0K6PXoWmQDFAToF2MRedX9Xviz8dfX19N3Y/hrm1xn1uUqsyjb6V4mTHlX5WGOM6ZRAjwfyWEEBJbQ7H0GVJFFPygXBwZwHfnwqxd8LxrkTpgzxO/qgY6GMKgiOzk5meZL//33353vEQAIXF9ft4eHh+lLhrpSG/ywYKo3pa9aZcaTpxJ6g5z7K0o3KkyHrCjXokipKi1pi6oHwGVV7/N4ACBg0vlT7IHBYIABAb8yqGsGONKlcuw+ZayyXfVAOb32TzUqUKGqx7tPivQpqAJk51LFEEVgqxcR4P0wdNdMgAFEA758+dL+/PPP9scff0w6l22GvknD0TGOjJ2fn794q4Dbll85dIsGuV0yYKTto0bf9Wfm/a9Ni3YgZK9VER7/mFwoJ0K6PSOm17IGc42NTnL7BUBZbjb/Wz/w+PhoF69cXV1NRv3u7m6KEOD9Vx4IvPMaK1AoV40SKDDiNowEc8Q4VdJFaZyScYp4tLy3ogi8MlU8V+SV/dc8R41NNh4iw8oKkSNevGD2/v5+8vQ/ffo0ySw/rwAWipW/O6DrCxQIVN8c4DpkkQ+tezUq4NqwCohfQ/nOIZbTrG3wX+vf0w+VekbRlcwxUQAAvRqtC8Drr4i+np+fv/hg3B9//NH+/PPP9ueff7bLy8tpAyKWW8i57oTLcnl2drazgFV1gXPOeFrB6WgllWcHbjNw5/LX9EvB62wwwOfRRifc8focmHZvHHD6nkfg8o141bKRH++P4NKz8DKCPT8/33nn+vHxsd3d3U0LDHVnQd59TbdoRR64zytadVD31gyMUM+ziK5lHsehAYGRaNFSpd+Ttzl8ZR6YpmMQoPLM1zlsCgPvQq2anmXVfYuAZZdlOZNPB46cYovAZ689IqoCgUOhipzwEeeZka7mrWlGAFUWEdBXBQEEeDoWP0zHfv78uV1fX7evX79OgIDf9mIAiwWCDw8P4U6vHJlwgAo7FWI6GXXi8aWAoCfPLjIQpetFBRyIcM/1aOgTxq4zXaei0VtrO8qFiZUWG2WuLFfGIc85g1jRHQBJ1TtDPfUDLAijQpD1s8b86iEvaMEHWxgYMGBQ76rnrTovsdoemUGP/mfHCkh4S8oGx9yoQJZH77qWlXlXrDDc8xhH/NP9NLBIkI07wqd3d3c7YABjvLXdNTS8t4BGAaCIeb0Cg9cKYJ0jI1lkYC3at+wqqQFW+dBxOOo1av4akciME5fTsxu6oyBHA66urtrV1dUUJdBFgxwlgPPFi2Y3m5+74HL9uQ347QWnr3g6DV+dxdsFOCKPzIY53aNtnEUZeo6D5j+it0DDkQEXFXCbQkTTBGBQPXKtRKX8OZQBE73mntUQEys6LLTiRYTcJjyIOB9WsryCmwWR24yFjvlXIBAJUM+b0jSjwOA9kUPVSnPrtZbHWfEccI3HFR8BCrbb7c4rhxzu53HL0314htO7KADGAMuiymQU7YsAz4jsOurlp22pZRyaTKtxZXJ883GJPEZgoGe0qlEBnoJ1n43nxYN8j9dwaZSZN37L+ORvDmh/YxqBQTWPK6Th+jlQoH2gji63s2tX7QtHS2V1CAxoB0eRgQwMgGHe9lFXx0fIvtcIkeekaTVd1TtWZYYje0LY2EVfM2RgwKRTBzrfykAjQv2unSKkGLWTKvAKKNDnM54OgZy34yjiP1KoPS8pu+fkKaPIcKnyUZCt62Lg4QAEPDw87Cx61Qgfy6XbQZDBhoLWqF4ZMHB1rrRLVM4cOiSQO1KHjO+RfDKDnuWljkhkL9xugjwtoGCADT9/ipudLQACbKKlUwMOSOk+B27tAa611l4AAwYT7OXjvtPDLOsOIGQLFbmdl4JlplmRATQcRwb0nVDeQEIbg0Ms0eciRyqGhq2mzwZLz/ihk9D52KwFK1fPzs7a3d3dzpQJn3PkBGXwYhddhMVeV6ZYtS2yQR8BgSVgoHJ/LU95Daqg8Urde0BgDsJ3lIG71l5ulRo9y6ABoVRWgnzO4JXD/tHugewRIR3OVcZcO0RAoAfy1zLaPc963xRFBFpbFs3Q/FSmox+ncREBNnYMBFTmdCOhq6ur9unTpxfTBAwIOPKqPGG6wE1JRGCGQUprbdLpPIXBhMXlLOdu/Rtfc5GBKEKAZ5fKXcVBBs1aMxChO97ClwEDKyI0cBYRyBQHeOlR1ZtQBesMpXuGhY3Ro4Ih1z76dUJe4e0WY6lxdoq/1yYMmNSr1PpFXv6c/hgRxtekaMDp9cgILPUu5zzvogCsQCJQp/LBfR7tT4Efv3rF5864OxDA9/lceXX1iOSyAgRcnargNQKBhyC3rfVBZgZioud7ZTnjrx62PhcBPc3DvUHAiwR1XQAWZOONAkwPQJe2FnvgykOvTcBja+3F1LfKMaJrrTULCNS+OFlnXqN+jnS+S7dE3876aiEK17CPKhA3V7PZbKxCwr05lBmwrC4VMKDP8WABIECdMA+rxt7tpuU+LcsLEnU+FmkiIOCQZsR7BgKc8l4aETgEcgh8aaQiUi6VfCMlwfzyuQMEStn7z5HB43P12lSOo+fxLHjogUPlScdgVD/lOTKCWVtWx8YST/u1ybUXzvmoVAUIDgCoZx21oyvDLRhkMACvH5GAT58+tevr63Z9fd0+f/48RQYAGjhKgPA9z9/zOixef5UZ4kivMr+cB47Q0xwx5ucrspMBE/CWRQm4XtF5hWZPEzi0qOdQEGgojQT03jeOKFMCI4arWmamGBgFYmAi6oGfRg04BIv22m63L9YJsHAxEFDwwzQHGVY9ryydM26RF/7W1POsWqsZGn3OGelK2RGPkSHKvC6nfHQsVMGfjusMEDDQ1+sYEzrvWRlvPY93lBwwiAzZSD5vRc5TV1raTtz3XK6Th6jfoa/c+Ijy4Ve0dYvhL1++tK9fv7YvX760q6ur6W0BXieAKWbe70LffMGGcQAGOrXl5FOBA78NxmsEWntpqCP5dZSBACe30Zh2ejaS84xmb0esHdxas8gRYRQ04FKDUAECGSJaMnAipcoGPVLIur/1dvtz7QRI1wiwYDpUGpHzUvlZHQA9g+by5TyzZ9bo87VIFZNTsJHRjfLT8941R4rmq4BO07KHwjzwz40ZBgPMB348djHGedOVXjsxVermFGHEs477aIxoG0f8Zvrl0GlEdqM24PHggGEGSpx+4PS6hgr/ecdBnirAXgJ4dVC/qYG+1Igqv5mF12Z563cGBeAzsyG6ngDEkWHVs65PKs6U00UYb276L/s/SsNvE0Q/BgRIy+esbLhxt9vt9L8SDlFFhetucV0PrVXSR/d7CoWNLitiXoiFTsY9XqFdfV0rIzVMyrMaE3eeGUp9U4TTOcN2KKCAqYLk5wKaEXCV9WnUDxUPQMEejhGw5XN9hYqBBq934cWwPaooRHc9k9VK2T3Dr2lGx9prURVQVvMa0R3Oo4/0epavTg/wOYAALyRElACbDH358qVdXFzsrA/QvVo4AoCNtPhDWfxxLX59mzfG0n0x2KagDgDHLPeZJ8+Ag4/cdnru8sG9zM4tpcUfKlLS+RM3wNRzATEgYCPJz0aegTZ6z6Bn55W6zvGgwScDHl19zYKuSvu1FJMai8jIjCikipJ4S1JvRz2g1+CzElHga8zDXJ7U+LMMVfJUhaTj7LUAXWb0VGFGHvCc9qoAqtb2Dwpay9c7jBj5KkiPnD4dO1EefM8tNudIAe8xwPsMABBcXFxMehPeP/Tk/f19+++//9rNzc2Lb2fwPhp4jj/AhSgBRwvYprAh1imwyP6pTXJtojIXtafLx9m7NWiV7YhbixuBGw3GDumZdAESOp6FV0Pl7ud47SGpESCg5+7niIGAtg/qrWgU1ys0AoIiigR1hN4CvMwlB26i6En2nCOVVb42kg/n5/IfeT4CpeClErlwss0RIZ0mGG2/aDyBXx7vasjWAHEuAuAckH3R3HGYyV1muHHuwLPeY+fNkVtDpmtR8D0MBQZYT8D7Dmw2u/vSbLf/Wy9we3vb/vvvv/bvv/9O39q4u7vbiQDw5m265btuIteaB9LOYHPdIznpjYleX+k1t0jXRblG5XbWq4WOaTDEYAAGnO+7MAd7ynjt0CkE/s+VVaUR8e9oLhCI0kagQIEA0kTG3kVJuE0yihRlDzhV6jhChwYGQK5/Rr2rpeUrzW2rSIm7vHtGmcFBZDB0YbArk2W2xxvfUxnXMY7joUWdDoHmAPkKOOZz9Dfvz69gkIGCGk0YfX3N2q0lACDgjxcBBEC2sOPrt2/f2r///tv++eefdnt7225vb6ePwLHRh/1hxwv3ojl5Z2OUnI3KPPeojaPxFL0qnMn/nLExe58BPjLTbp5RDTszyhEAbPSAiiKdW/HpKqsd0vMg1lYmDuQoLyzIukIbA00/MMOIuBrlGIkEzCF+NuLBKfN9UBWFHxplbVbx9jIFpmVEHrjmj2P0zZHoGv+ivFWfOGWMMeBk7EjjMh0BYxcZ4EWE0VsFrXmjpmBAt7DXyAEDCOhF2BUcseMrRwYiMMCR69ZeRrJZN2ud1B6tQREIcG0XgZS17doQGNCOirzg6Hkc8XN7OiONRhgihKZeM9L0eBoxliNKT8vI+Ig8Nvd6lvO21gqdOmUwkoemP1QFvYbxz7zbpTwwaMb/CiDI5JSpKvO9Ma3TBCqTLK8usqVjvQIGeK2N0xnM/xqRg0ORXweeWlvOXwQAIhDgFgBqvylQ1ClRNv7w/PEs+tp9UfPh4WEqE4sCMRVwd3fXbm5upjcGbm5uJjCAfDgyAOpNB6iNA28aXc2mcSuOELcV/5ii1x/dGOg5ixmVwQALgXtfnnfeQ+Vaay8Y1hXJqBg8YkQHePBzSMcpq8hLqnhPrb00yj1l6AZM7xqODkxl+YN40FTXEUQKkY2Oa8e5yueQAYHW0xkmTa/1qeTd2vw1Fy7cmOXb++/y6PHbA7mcLooOaDocnXzpeNFIIkcYFQhwWQ4A9MZ7Rockv1H7z33W5eV+bp5fd1ltrb0ACWzQOPzOuo/tB9LB0N/d3bWLi4v233//TV/Z/Pjx4/S12Lu7u/bff/+1v/76q/3999/tn3/+ad++fZvWC+jiQX5zABRFmDkSoToaEQT+cNwoOdCk3wPBNfDJm85hHGRR4lePDDAy1NAOf9DELSbJFBIah79X0BN0fTZTvm4AcPoRg8j1USUclafPcZhL31t1+bn6RFECrWPPyFXOM+NU5Rl5zjGQr02jA6haBzVOFblyZa1lkFTmM34jQMBjnI22eoBKKq9ajgPTOHd5uPE/QtG4YToUILCEegC2Bwb4xwv+eD4fRkzXALTWJsOpXjlkSYEAvH3eVfDp6WkCBx8+fJj+f/v2rf3999/t77//bn/99Vf7999/27dv36ZIAiIL+p0XdaYcX1iboI4tL37Xr9a6tXCav4sEowx1rnWKmb/jU1lA2LvuaBEYcPvwIy1XWpWQAwwwkHzUUAy+Jx1V0hnADBn3FHNFcTtvJULZenTklJsz/pkCHvF8nMHSulVDT2xYDzVKoIagAnzmgpio/ar5zjHa0fM9PnoeJ8ah80iq5GSt0raZvFXAamb8I4B0KDL7Fnw4h4lBAH9ZEK8AItSP+7jH3wsAGOAtgV3d+HPad3d3O7ofxv/s7KxtNpsJNHz79m1n4SBeK+TvuwBM8NsDalMiMMBRAa4P8tCvdlbbmQG0Ai1eTMlgYLvdThFzBilu7CyJDsyeJnBRgsjI9QZppBDcfgTcSDhqw0XlZDTnuSjCEBnXEVIAoFtgujRRPZRnpUzhOAM/EiE4BKU60g9r85pFoaL2rIK5rExO0xt/WTTAPe88m150IOM7AyC9vJx89Txil78ClX3L7Cgpz1WdlwFLXfTHXxfU1f7YHwCr/lv7+b2Vk5OTnYV8uqIf0WCsDcCzAAkcLQAYwNqAm5ubac0AAwEc+XPw7kNbUZ11vQCeYzCgixJHSB1HXUSIH9pBp1+c7VyiT1qbGRnQxtIKVRjRyiiI4IHJi5Faezl3ousLMmLUyWVVGpX5dV61Uy44Zu/junr3FOscrzK6X0k7AgYOVZFmSLp3bSlVolAVGgWoWR6Z7GY8Z8pmTtspHzoGXkumRoz+EmC/FkU89JyqqJ4RMFOdzjsFAgjwZ4R5oyCAAXj1bCdgmJ1xhaxxtABfcsVWxNvtdmc6Acebm5spssBffNUpAvbiVZexDcE5+OFINU8V8MJErkuVnD3gqTiOHCAizg732jI5BAYccokYy4yaPuOAABrBfeFQwQHKqQo9Gzc22D3DUPGgOR0P0jWAALeXRgciXrJr2fWMx8ozhwYIloKntSjrm7V4qIIAXOtFshQIQvFBUY7w0EsXrZzWMat89agSPesB+n1QBuzWNgYa8dFFgwAE+HIgogQAAjiHXAAMsNHkMqDbWY7Y6CIygKlogAG8TcBbDfOugrzJkAIBFxVA2/J6NbV3CgZYFqvTBD2Kps+VJ+2rjHpOCNOsbxPouRbeWozq0fH6toGWkYUdlQekdxWPeHTKxaXjwdhrWEXVro2i9ptjEJySGlVaS/JYyutb0cjAmZv/yLNrAIIoApB59T2jH1EGEkbziqIIWRTCjdMl0QjXRlGU5FBIdaS7l/Fd0Vt8zlEBnQ7gXQHxw2eGEc7nLYM5ZN/azw+ysU7VsDzAwNPT0851RAD02wM6HaC7CkbrBdRe6cI9XOM2dkBCxxbbr6o86Vt0yqPrI+27EUdQaQgMRB4Ch1c0feTZ46heNCgKYTlyUwTR4HFAQD0QRy6/EZQWRSeckHE7apuqkEXvy/YATnZf84u8sl59VcGu7cmMUgTQeoalx/sS46HtOcfT7eWv7R+NNwfMNS/InHpzrMRVLtWz13pGCtWNTdc+cw24tofqj95YeUvSPnO6xwEbRxHocnqNpwk4CvD58+fp64L4hgAWFv748WPy3hHqx9oBEIw9iL+ICH4QXQDBsOvaAIAOgAFe7Y/ndaGfAgPmi4mdTCe7FYe1d73nHMyVv1GdMvxtAjQgv/cPo8+vlESLNaJweTR/wltfYiUlAIiiKBdh4OsOyPRATQZUFJ25qZTN5ud7pLzBhOOLzyMhc6g2UrQqBBUPQilTHC7/CJAdAjnD+NblZ9fXMDpR3TJDout/3HogBQpY1NQb13PrgGME8pknrbOTy150wx0PiUaco1HZ3m63L9Z7qR5DZODy8rJ9+vSpff78uV1fX0+/q6urnajA7e1t22w2Uxif96RQkMev8vGXA5+ennaminGNpwD0bQX92mtvnQC3gaORNwWiRd8OYGj7s03F9Irao0yuI308MoUx60NFriOxwKO1ttN5ukAE1/gzkLxyUvPniumRG98pDH0FwwETBjXgFflFhk0Vkpal59xuaBdH2l4ROYTraNQzwD31IiPKFNSIQn5tilD62mUsNSBZHpknmNXLgWJn5DMA4ACsI5ZLHps65ecMbgSIIkAQgZQMvEftk/FVyWPf1PMyo7R8jXU0p4MTg4WCAANfv35tX758aX/88Ue7vr5uHz9+nPr54eGhtfY/O4DFf7qJD0eQttufnwVm/bHZbHbeQmBvn6cA+IuD7tPvyM/p3R4QrzgOagO4PAasmi/zo+sV0B5ss9Qe8tjMAPHqkQFmarP5uZUwe9TKgJunQYMBCSrDzjN3RyXtMPdmAysO7ij3il6EtPTowIAqqGywKkDQTo/IRQMqnd5THK6d1cBH/3v8HpJCVcU/CqhcmsiQZHVfIyoQebd8LwIC/GpgZGR1Wk95hx5w5MaUtnsEkl3bRIbaAdgKKIjG46GS00F6P6uDA/3VsQk5OTk5mdYPfPz4cVovAC9+u922x8fHacGhfpAI5zD0DEZ0mqm1tmP49RxGXwEAH0eop3vZZvWAudoV1y/O4WWnFP9ddCADxVF5GQ2DAffjuUPHCM/FMyjg6AKe1wpw+CRCd0oaEdC5KgUk7MFERtUBAKdglQeti5IqvEpkwD03R4lFgCdTkD1lE6U7JCAAGm27yLhUlKlLM1puZgAqPGcAgK9x2tbi8eQUUMRDFMUDRQa/B3YdwBhpn0OnuWNtRB84sOj40D5AWhh3lMsGn/cmAEDgXQnVTiBflAmj747Qlfxfr/coAqJ8j9sjC/k7uasCAgbUAFUcUXORARz5twTMzlpA6MBAtJpfFa5+fc8ZbL7OAEAVQwYMIkWGBsNUhSoeJ/A4ZgNGw6iZAoq8IW1XXOvlFdW98kxVgCLDWTVEhxYZcDSqQN352mVFQMCV2esL9ux6YACk42etevWeHzGCCgTm8uAiC5r/vojHj5OBOTxqv0YgAMaW5+vde/0c2gZI4P0Jzs/Pd94scHqcdb2G/sED0qnRd9Oso20SAVFtI/baeSF8j5DO6WCOurON1Lrxc1F0YI68zlozoAyyR80V0yOYdN8fcAtYQCw0GRBw+xdwiBM8o9GUj8gI63H0fU8u29WFy3aCPGJsorTOi3UK1IGj0bKWpl2btH7a53zM8qiWlZGWU2nfntdW9YRZYUSgoLX4+yKsAJEuas/qwqVM7jVP92x23/H+Hsm1BwMV0IhBqpYLHY9V+9jo5/b2tp2fn7fLy8tp4SDWjSH831rbeRMBYIA3H2LPV8scfUUw06+u3iqrKk+ZjeE8FRBUDbIaewYCXFY2Bed+cwHsomkCXOfwjjMs+mYBzrPwi6PKfLoqO31/1X0p0TW6Kt4sVDrS6CzsUXtGRriH4tVDyp5ToY0Agfs/lw5FIUcGbPSZpfVR4FXx7HHu7lfKU+XoogPKXySL1bUtI/fWkrVflZycRP3T0yG9cqCrEAnAFwWx8yC8fzh4+H7Ajx8/ptf9NpvNzoZFmCY4Pz+fnmNAoMYfUQek5fo6Yx45ilE76bN8zRE7v9ymbvogW/vG9xRI6LRBxDtTBAhGdFQZDFQz1s7gyle9BSZnqLnjWEHCwOt1PtdGzVY9474uoOp5Yqrkwb8iVoduq96OkvMUHG9ROiUVdhdFeE9UUaB8LwNNLt0IHyNKOurPEaWOo4JC/um4qXr4vRBpNg2mPw2DuroooFlTFh0Ir46XQ6KRNonkCf0BL/7x8XHnAzqIFjw/P+98dhivEKLfYcA/fPjQzs/PX3wvAMYeabGTIAMDBQNRXVWfZuTksmqfeJ1bFHmI7JXe4/w4ap05LGrbAE44UveqkQFVHlFlwLh71zNSTFpZzbuXjr11KDY+ulc+eGojmn6IFlPhWtbBmheHvlxUIFJwaoy07CxCkAmV8/6jPhgVKqdQ902RQnftkKVnmlOvaltmhpvvu0Hfq6uTOU2n48Lxzl5Mj3oAQHnKwFGkgB2Pjg8dT1n+h0qZfI7UwekJ7htsGsT3GCAADNze3k7fJuCP2sEu8HQB60DdK4DXITAgaG3coawY+GwcZFSZQojSOfmN9LXmjWc1qs12LSqrR0NggEPvHIKHV4HCHQM62CMl3KNIEUQDwy0gRKPzvBYj2CjP3hsCOv+FczeXFSnaqO2YpzU8FQcw8D8yMD0+M76rz7wWzfHg1yhnTp1dVCu6z0cHKNGXDgiwAuFFSzp/y/n1jLUjV3YEiCvGXOvq/kfPzXn2PVAEkkb6S/tns9ns7ADY2u7XBGGwsdsgPl6kHzXisDpAAn/0jsvmqQGU5fRlVqcR3RQZ0VFywCOzg635BaoZuOYongIBPo/0Ro+GPlTk5uGZ1Ajy+5+uM5WWDEod7Gzws45mjz9CkbofQhRiUgFz912UZEQ5KRCIkL0TtIwyZdmaVzZRvqPXfyXS/smiOqPk8tX8eiCO1/do3pqPM9JO3uZGBtw4UJnNFCPXS5+JZNjxFUXS1uizt6AsSlTtGz7PvFn3eh+8e/6M8fn5+c73ClTvad4OJOr+Acpr5kFXiPNy08PRvSiPyL71dCvKYGeTpwx4agZAQB1w5cFFg3tUBgMc+mFE58IS6FQGAjrw1yRtQD7CyCufI4szHOJT5cohrMjjUWGvCElE2uFz0/XK7UUQXB49A3XINOrxVtNXDYozsG56QNNm/cHXFKhyPThqhuuZrFY9EB0vDmA4wBHVpUJOTqN0EXheysNaVAFHLm2PFOyoh4p7/NlhdWpwDdMG+OTw2dnZBBKwsBARBX69EPmwvai8QdCan8bF/eqKfM0L+THB8GrbuLaMwLj7z+MO+eq8PwMEAAGAK0fcTqPRgSEwwECA95pW6hnGNahaUTRsZa4piw44AKAGPvL4I2CAexnflXuqPNcIVbfmlVDPW4qMxhI+Dpmi9q7I55oeZ8UzBm+tvQTD+lourkeyqvLWC9nqFFpvDDjjF4GHjEb6IYsM7IuUJ1xbU74UCPB13tK3td3IgPYHz/9fXFxMOpHBwNPT0/TFQf7gUBQB4LUFyq8afm6TLCKs9ay+Ko42yt4UiIx/1g94LnKimKcICLhFiKM0BAbwOgneK9VQivMAGNlFYSJHvU7pUYTyo/yQljciihod+evClt46gEyJRdd6Xv0oKMjCR6pwMsVYBQKVerwnysDWmlGCXl9G+fbyZFLDrEqkp+Q4fQREKiC4CiArirVKEd+HGBmIKOpvFz1yY9kR31PvkkGjI0QI1JNnMIDoAIAAFiG69QFOn/I55I8N/4ieicZXtkgc6SJAEJ1nbc75ot7R5l+RroE9WqJnh9YMAAjou/tcYQ0fsVD0vAHQnLCYQ/bggedXtE6czgl+tJjKAYFoCoDrO1ehjRpUl1av9f5HfGRpM6NwiJSBI72+1GMcBQH8n59z/eaMmvLP55wmOmr6jF9tmwgAR2A44nPkPnjv6ZYofQSA3XNvSa5PXZrW8nbR/JScrOF6FNHReW7t5x8//vcKIq7xVIFGB3QtggMFjm8AgkjPt7ZrvKP2dBECbg/dWhj/I7Dijo64DJ4q0DT4MR9Y4MnPv1lkQD/DG3nPziNwc5U9cuExdKTbAU07U98A6IWEFKUpZUCgBwaiQTjq9TH/ep4JghOw6DwCM/p/Lrg5BHJGdqR/HEiIQNhI+yiwXattXX4uvNjr+yhv9z8CAkvqlOUxJ18HCHC+JN81SA3XHACf5QuKZFf1GdJgHUGkQ/EM5rhxXV9LZDDAXyhUIKC2I+KV9b6SAgJui2zaW+0Hxkrk+DA/3IYR4b7z9lEmHHFcxxtArbXpk8cYy+ysjwCD4VcLueGUKUZJESDgSur5CC941v2ckct2WsN98I28EXZxvEcAIFoouUSpRwZGO9uFynoGzrUVG43K4IsE2Xm4+6S55Ws/Lnk+S+Paq9LGFUWTlcNhyUwpRTxnz4wY/7cwuBU5PLTIwAhV+y4ilSkHSlnXwRCpTDEQgBGDsdcNh/jH0QH+fkGlHhWg5EBCZBdY13N+bqO6yIF040/5y+yj8s12iqMheP7p6Wm2DAxFBrTBVEBGCs48CSYtS1d9KhBAx0AQIchZGImRp/P03VexRkNZWh/3v6pwFAi4X6/8HhjgdmvtZUiswqP+36d35c5BI3xFXmOvzZ1cZ8a0wmfVO4nGmo6tyPvMKHsm0g0ZuOBzBadZ/tHYmzO+9iWnr0GZkcKx0i78vE75Pj4+7qTjCAD2GcBz/KaAbizE59q3ymsEVqpAT//zTrNKzH8kT84mVoh55/z5yPuAcCSeowHQ+7wHQbQFQESzdiDU666COEYNUwUSkXftkCojUnxBi5/ljVUckm2t7QijO7rwFR9dPSLPvpcmajc+11+EfCNl31OWel83CcE5qIdw90ER4OFrPaOqlBkobe+orBHeI7CXyc0oMB9RqvpshY+Mn0iW3Lk+18u3Bypay/vlEIDsXBCOZ6M6ZO0REfeVzl1Df56fn09RAP4eDPQobzEcHbW8OcCumj7Sfdx2bIyjc7UrGTl5xDOcH+sAns6APt5utzv2ztmICi36aiGY55+b28lQnDtWy+VzNfy4zuEVbphoU4ksApBFAiKlFKFHvVehyDBAKCodH5XtFlPyAHD9Exm9Of352pSBr7fmca43o4rB1alicPW/61d3XuExo1EwwPd6ToceI356eb03ikA+/kf6FeduzGZlcDux8QEYYD0Cp8xt/a6fMNZrWpbWyx2ZV/aYM5rzFoLy0uMTfEWkfaALHbWNKpvozaFhMOAYZyOJNFBWzktWoat4Uz2emB/OQ8MqkQCBotcFK+sDKjy78jPF1aOegUA+rtyoPQAAWCh1hWvmkTnAsE+KlGVkeNYuy8laVd4joz9iHPU8em4JuXHO9zLPtMJvT9ZcegdSs/9Zfvsk5U+NupLKT3U8VvUs/2cdy18gxHUX3nb6032ESHme4/FGAMeBAOcgcnvpYnldL6A8jcqQ2hKsWcPPRbxdHtlYzGj4E8bRqw8uPTPDA8+d67Ojnoby416x0Dkfl5cz9lk0gJ/p8Zoh2lHKPN1e2tZezpExMHAGS9cLuDZAOqZqX74VOe8oo0zpVstz/7NxECk9Vgw9fnsGtjcGM3LGpdeuI8Y8erYn46N9VeVxnxQB1p6z4a5HYEz/VzxvdcBAJycnO1MA0Sp91h0MIDS/qC5LdKhzglT/ZRvQ9XhDHtmYyAAy21k4ZVio2Vp70aYOXM2hYTDQ2suw+ggzroEq6NV5ddzw+KnC7CFnpzzdzy0QzLyIDMFng7nSfiPGQSl6q4IHBU8TKIDSNQP6Y+AwF6G+BjmZcJ4OU3VgRcqzJ4M94+U8DtffcxRABkZG8otkH7y6/EfyG9EnvXQj5b5nioxvlk7lKpNdZ9RwrrpgiTPQ0yGZDoUeYsc1c6D0XOuogKW19gIE6VS1tg3np9eYNNqAqAlHT3R/B428zKEyGECBbo9/7bTKAEa6rNEq5MDEqAA6/rMfp8vKjPjIDHgVwbv8enXWdQV8ru+mMhCI6uZAEkJbKqC9Orw19eQsMkrVOmTGu/psdq7ps/pE95wsR0BjtN5LKQPYrszM08qedWW5//sGCxXgONJHmYGs5sVtwp4s2iuKPFbBSuWeS8vyoDbLrR3r1dfdU93mphV6fHJ6dWRdPlwPlme3pm2OvM5aQKjIqIJKnLF3g5gFZsSzZLTFDezSZM/yNb5eQdbufvZzfCz18hzpBz0wRcBTBW5XyV6YDMYfRww8nutiRH1IYKC1l6CPrzvKPKfMi88UeESZbPVA5xpeWY+/iC/lI+K3l382/l8DcIxGJN6KnGyqM6Wy4voA99QIzeEnu87lMyjglffMT1ZOZRwyuSlsBgQqP6z/9CuAP378/EJgRiOOcARw3f9IF2MdBk8V4H719faIhsCAGgguuDpfoaBAlVYkvFE+EZ963uukqFPmNGzPUOiAqZQzV7FHQIA/OpW9Y4s8nFHj94l5ExGODLCQZmW8BVW8xzlAIEpT8ep7ZVWvq4F1gCAyBCMepZ6PepDRM5Hxd07CCN9rGrxfjTJ5VeoZPO0/p9ecYe5RVO5I37u0zIPOwaMtdPGjGmb3P+LbtYeOzcgmcn781UIFA/pdiFE5nrVmgMmtqM+YyYyuo8jDiQCE/q+gtgwMaFmOv+ycjb8zqtEgcuVEYMIpzYjAB7aXPjk5mY4uSsAAQhfZ8FfKAAQeHh7CHcX2CQa4nSJ5PRSK+tIpw8zzU+KxNNe7joBuxENFB0TPa/4ZAMmAT6/MKm/vkVx7Vuo42m+R/tT35XmjHJeHi0Y6mY7kXOfxIwI/upme44Hr1gMGfJ7pFbV7zt5EjiLv+oh0+pGnOTQEBrQTOXSRAQJtmBFAEKGonodXyTtLk4GD1l56YO6eM9496g3WnkHQey5ExsYd24Xii5Q8ODiExlEE5As0yh8eOT09nT5AoqBg39STC73W67MMJK5BkcxVAF9kkJfw24uEuPIrPGRjK+NBjUMFiLxHioBN1pdRtKiST+R88TErT9OpMY0AQWRY5xKXEelB1nm4jqiAkto45dcZ+BHg5dLqYkJ+hv+7aYKqHgMNLSB0QCBSpiNggJ/JyCH/1uqCmHkLrvwRJdrzmCrE3k2l7F57ZcIDIHB+ft7Ozs52ogQ6UDSSsNlsQjDAnybFD4BgX9TzciLZdABUzzXPqM17z2R92fNuR4Br9r9CTr57nno0bl1a5SviMYpIzAEBaxie16K5PGXtnD0T9ZMbFw6AgdheaF4MCBwPai8cD1Wgjrl/Jo6AAgjwHv+8vkHfnNM0WWTA8e34dGlcm+mY48gAeGJQMErDCwizEI9rkCoYiCgy+i5kFCn0LM/sWfeMU0KKKjldNToQDdSeEnR10nbCgOD1AjD8Z2dn7fz8vJ2fn7/4KiWvLcA9/kgVwAAAAYz/w8NDOz8/3wEEvH/5vqmK3HsGb265GT+u/AzEjlAEVKsGNJPzClVAVGZgIiCi4CFzDrJrh05VEOruRxRFBaqyGqXjPJxcZzxH9qIqa/ycK4v122bz82uATG6jJByrEYE5Ni+zb/rqIo5cVhQdqFAZDDCayigCAT3GesgI10a9pOq9EYqUYgYMemAgKkPL0/wyBQ+C0OvUAIDAxcVFu7i4mAw+RwXwH2AB0QH0J75PjojAw8NDu7y8bA8PD+3+/n4n6nBIFBmLSHkwRf1YTTfK46gnv5S/EYDk5C/zIivkxrkbA8pTz5BF/L0ncu04qld6cjRHt0b3XXk63vhaxQ70yldwqPzgqKAAxjQCAlpGZvSdvZsrl+r9a10yfkZo+BPGIJ6LUcaYlqI8Lj/7nwlAj6rpozBNBQg4nlF2T1mOgAGXhwMCmB44Pz9vl5eX7eLiYjLcAAIcGcD9s7OznbAbLyIEAHh8fJyAwP39ffi1yLeiUZlYIwrQ2jxDEykB5qtiWHsedZQ+M6gsb9l7485bH6Gs/Opz0Vhbg79DJKcPMq+9tZp8jgAsBwhHgFdmYOfIBJ5zUxYMBjJHTefiXVSgFwHIQFJFFjUdXt3WNLj/ZtMETL3XDOeglQyVRgBA/0cC2EO8GTKrUOatj+SRof9IcKsGwnn9PG0AL56nBwAaPn78OIEIlOXAAKYJ8BwAxL5BgVJvEI965OrRjva5K2OuDOl5L5+5YEllPhqTmQHqGa4lxnq0XocIDEZkaa3yov89vRj199I+jtrAgRAXDWCvP7JLvCJfN03LFslru1SAQcVWabv05ED5G6VFbxNUnhmlSGmMKLXq9UzJZ9ccqsy89Yx6xl/L5fJdOr0OIwyvHkb94uKiXV5etsvLy2mqAGCAgQLAAKYSrq6u2vn5+bR2AK8OAgzc3t62h4eHKcrAiw73OVWwVNGP9KkO5Ej2XN9noCC611OykYxUn8H/7MfP45nIw8t4VppjCCNvywG1zOvUPPdJUTss4avnyWv5EU/uWHkePLwFAFMjH3nX+ASzW4ynu/tVDbv73+OVj1kbVcqu0uJPGEekzLnGee0BNtJQWZq5fC7xFLN7Dhy459kIbzabHUOvUQEXNdAFhhcXF9O0AqYTWvsZHcC6goeHh50yWss/EvUWlA2QTCay/ov6oQocel60lqPnr6FE5yqVDND08pyjODNwr0p0xOCMeLRvSSNAIAOSlXJcO0YUAUd37kj1QkUW+JryG9kajgrwm1DMp+6mCmCA/wpwexGCHv9V+1TRXS6PyNGMaPjVQl1g4RjNvAW9FlFVIbp850YkKsLvvKEeL07BuPSuLD1mYIDzhefO+wjAuOubAZlSYZDA5egmRbwIBxED3nDIveKzD3LKIqJM5pZSRbn3wEcl/5E6RErJyR//ehGfKNqg+XME4q0NcK/MfQOCDPy8FlX7IdK/I89rRInzzZyzCOw5Web1bdhHgL8GqLumQn8BQFTAQMRDxFNUx4hcnr08qnnPigyssTnEaGQgS1/1AJY2VsbLEm9kBCTNJY4IRD+3fkDfMNCtRAEMP3z40LbbbTs/P2+ttZ1tijGoDumNgtdUpNr/o33aAwojCtZ5aj3F5RRO1Qut0L4N6wi9J14jGq3DEjA2ovsi8JfZlJ5+d8aZwcBms9nZ80Q3JuKpAZ0uGFk3MJf/HlXBwBz9MwQGXEjH7YUcVWop4ncKrvLMkvugUS/RKWF3D/m5a+4Y3WdyGwaxF8dGXzcVcj+OIrT2c9AgAsDl6vQC70L4WkDnNajX3+5aJJeRV5z14RptFQGBLO+R8dCLoI16jEuNUOXaWnnvk5zj0Uvrnn1typyvSH7mOJcs2xkYgIH/8OGD3baYQQD+u539NM8MSGd107Sj8l8F8KtHBqLtZBkQRAVHRlHvR8+7dKOUAZQqrTGAqkY9mwpw563tflOAPXk29Fk0QAEBb1QEQYXH39rLLT7BA+fDCwn3TXOUegbQsvNK2W48jEwFjESeXMQqG4tqyHu/jLclUZIozwrNCVm/V+op/1FQkEU45/RlDxi4dCpDlfzVOOu91n6+msc7Dba2u0Cw90ZcBQS8prz1ohFzxtnwh4pYOKKGcsxUvfls0Ebe9giaXAMUVPnKqBd2HTFCfE29f90vQCMGCgh0UaGLBPFc2na7+zVCRv26t8EhTRP0qAJcK8/r4Ozlq8dRhePGnaOecVRZq4IeR1XPaR+UGbtDINd2ox6fy3NuHmumj8BGtRwXYchsAU8J8FoBBgCctgIGXLSgx7OmXSpvaznQiyIDIw0z4ulUBbUnaI5PR3OAQMXziVBaxaj3jlFEgBcO4pVCXUDI13nFPwYEwmSbze4HO3jQ6OZESK8LB8EfPru5b1K5WCITvQiBRnH0WY3iuPQ9hVSpp16P5LUHfrKoFOdf8aQyWpKu8qw6NEv5eG2K9CLqkfVplFfVaeFyenlrGfys47Xn+HF5zvBXytdrukZA01TkNxuLow7pXBmrgtiRfi6DAf2KU6RUuaOrpM9W07rrUUNXBv1SUMDXIsXaK6sCACIgoK8QwuDjlUD+4R72H3DTCFwOgwQAAsy98VsFQNQ8dcRRgn2QGqIRw+Tyirx87Rdcy35uTYeLxrjFTJyGj3o+h3ogoKqY55Y9YqTXMNpzlPpb06izxGld+lE9rXksMcwOEEQefgQ6o3Ho7EklelABANFzWb5ZHyhVInYj+utVIgNQSpV0Fco6OAMH0XN6jDwSx19vcKnQ9RRVBojmgAAcIxDQWvwqoVsIqAafDRfqgHk1tN/Jycm0+AZrAvg/p0X78PoB90nQt6aeFxJRpc+cwVSg5vZzQNQE990aDX4zQ9/Q0DaP6qP3I0XaI/awVCYjzyozsFVFWQE8VQCx1JvbB2mftdZejLmoHyvykZUbPTMiRwoiRgCsK0d1bA8wVO5FYCDiNbr/mvLkgMBasjm8ZiC7r95EVdFkYaNKtGCEqiGvKupV3t3RPePKUuVaiQa01nbWAuh6AN4KmI0S/1jBA/ThuhoyXl2L1wmRXkEFjvz8PqkiS0t5ZGPPbcwGX0GAfgSKP6eKNzHwKWj+JLTultZT+g5kRx5aZnw4vwwM8LWonZ3OcGUpVYB5ldbWMWvSqOHOHBDXtk7fVkn7rprWURUojvSV08FZPnMBU5RHj7covbMZel/BVVZ2ladZS7yrhVYBQWQ8K0a7QlHjRWkr1/i68lwFN6NRgtZeTgvAALO3z+sD+IfpAv7gkO4UCN7gdQIAaJg/aicFAGdnZxN/+wIDkfcyR75c3/DPgS2AMgAA7SPuE6zFwJQLvvuAD0Cdnp5On4RGpACvbTKY0zpmRrxKkXfI585Lco4CH3EeeZpLDXVPyY94dPukHviKDOWIJznH6M6lHqCrgsHMzjjd3wMEPSA72i6R3qlStS/ceBkpaxgMZB03t8JVr7rKS5Znjw933ku7hCKD5LxrvuYMjr4ayN8j0B++XAjjw4LEkQKNVmS7CG632x3QoFsW7wsMZIM/k4sKWIuAgL6uCfDl+gbffcA1niZANODs7Gz6EBTyeHh42Gnf1vy2z5FCq44z92x0fdSwOmCg5VRAQcWgLDFuhwgUFAxUHR6Xjz63VrtxHpk3no3BOVGgURCQ8TBCWd5rACzXHmvVZwgMOIFzQlMRxJ43XY0mVPPoeRojQMCVX6FeuZFnhHTqdesccwQQYIT4f/Y2gXobuvCPDaC7ztMFPL2wbxpVJiNpI0Dg1m6g7fHpaP5gFNKgzZ6fnycwcHt7u9N3ChCZKp8xzeQtSjOHIjlWOap4iZFxWCuKcGjEOjfqHx2vSpE+5GNGc4xYZviVMoDe0+NVuxEZ0MiGZXXK7EvUzk7G59gnV052PkJDawaya46JuZ5g1qGaJurcnscXoei5iFp5Gh1ATlh7lEUKXEhfX2HbbHZfDYTBzt4ccQpc/6Ms5Hl6evoCSL41sXKp8FFRLPo/6g8HBPijT/iKJKIDumaAgdvZ2Vm7v7+3ERo1CplCjhRRrz0iQ1w1Kpns9Mpm/iuGZi15mwP816YI9FWeq+oj1YMjzpnSkrZ3fVstv2oDXJ4RKJjb/1EeEWBz55xPBbj3zjMaBgMRinMMOoRUKUOfraRnJd876vNVD0kpMv5OWToF6K6zIodR2Ww208r9SJDcMxFC3G5/vq6GhYLb7e7KdSxKU4PG7cxGC4sJt9vtlI7Laq3t7Am+D2JjyW0SRS108HIbb7fbnQgI58n9oJ+CxvoAnh5AdMBFBvAmhnstE94/rxuoAGn3H9ecInXtEFEGwLmMDIw4XrNfVq4zCu48y2efIFZfI3VtzxuGOcDfWjylkOk1nPfqnxne3vNz21Z5zGQ0A6EVQMD1czYnsz0Rz9m1zJBnNox5Yr6rtNnuU9KPdKQjHelIRzrS3un97A97pCMd6UhHOtKRXoWOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35yOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35yOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnP4/pWCBUywt89kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import nibabel as nib\n", + "for i, real_batch in enumerate(dl):\n", + "\n", + " # real_batch = next(iter(dl))\n", + " imgs_real_batch = real_batch['target'].to(device)\n", + " print(imgs_real_batch.max())\n", + " print(imgs_real_batch.min())\n", + " with torch.no_grad():\n", + " imgs_fake_batch = model(imgs_real_batch)[0].clamp(-1, 1) \n", + "\n", + " img_real, img_fake = (imgs_real_batch + 1) / 2, (imgs_fake_batch + 1) / 2 # [-1, 1] -> [0, 1]\n", + " print(torch.mean(torch.square(img_real-img_fake)))\n", + " # print(mmssim(img_real, img_fake, normalize='relu'))\n", + "\n", + " target_img1 = img_real.squeeze(0).squeeze(0).detach().cpu().numpy()\n", + " nifti_img_t = nib.Nifti1Image(target_img1, affine = np.eye(4))\n", + " # nib.save(nifti_img_t, path_out/f'target_{i}.nii.gz') \n", + " \n", + " fake_img1 = img_fake.squeeze(0).squeeze(0).detach().cpu().numpy()\n", + " nifti_img_t = nib.Nifti1Image(fake_img1, affine = np.eye(4))\n", + " # nib.save(nifti_img_t, path_out/f'fake_{i}.nii.gz') \n", + "\n", + "\n", + " img = img_real[0, 0,:,:,:]\n", + " fake = img_fake[0, 0,:,:,:]\n", + "\n", + " img = img.cpu().numpy()\n", + " fake = fake.cpu().numpy()\n", + " fig, axs = plt.subplots(nrows=1, ncols=3)\n", + " for ax in axs:\n", + " ax.axis(\"off\")\n", + " ax = axs[0]\n", + " ax.imshow(img[..., img.shape[2] // 2], cmap=\"gray\")\n", + " ax = axs[1]\n", + " ax.imshow(img[:, img.shape[1] // 2, ...], cmap=\"gray\")\n", + " ax = axs[2]\n", + " ax.imshow(img[img.shape[0] // 2, ...], cmap=\"gray\")\n", + "\n", + " fig, axs = plt.subplots(nrows=1, ncols=3)\n", + " for ax in axs:\n", + " ax.axis(\"off\")\n", + " ax = axs[0]\n", + " ax.imshow(fake[..., fake.shape[2] // 2], cmap=\"gray\")\n", + " ax = axs[1]\n", + " ax.imshow(fake[:, fake.shape[1] // 2, ...], cmap=\"gray\")\n", + " ax = axs[2]\n", + " ax.imshow(fake[fake.shape[0] // 2, ...], cmap=\"gray\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.0005, device='cuda:0')\n" + ] + } + ], + "source": [ + "for img_real, img_fake in zip(imgs_real_batch, imgs_fake_batch):\n", + " img_real, img_fake = (img_real+1)/2, (img_fake+1)/2 # [-1, 1] -> [0, 1]\n", + " print(torch.mean(torch.square(img_real-img_fake)))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'dm' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# --------------- Start Calculation -----------------\u001b[39;00m\n\u001b[1;32m 2\u001b[0m mmssim_list, mse_list \u001b[38;5;241m=\u001b[39m [], []\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m real_batch \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[43mdm\u001b[49m):\n\u001b[1;32m 4\u001b[0m imgs_real_batch \u001b[38;5;241m=\u001b[39m real_batch[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m 6\u001b[0m imgs_real_batch \u001b[38;5;241m=\u001b[39m tF\u001b[38;5;241m.\u001b[39mnormalize(imgs_real_batch\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m255\u001b[39m, \u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;241m0.5\u001b[39m) \u001b[38;5;66;03m# [0, 255] -> [-1, 1]\u001b[39;00m\n", + "\u001b[0;31mNameError\u001b[0m: name 'dm' is not defined" + ] + } + ], + "source": [ + "# --------------- Start Calculation -----------------\n", + "mmssim_list, mse_list = [], []\n", + "for real_batch in tqdm(dm):\n", + " imgs_real_batch = real_batch[0].to(device)\n", + "\n", + " imgs_real_batch = tF.normalize(imgs_real_batch/255, 0.5, 0.5) # [0, 255] -> [-1, 1]\n", + " with torch.no_grad():\n", + " imgs_fake_batch = model(imgs_real_batch)[0].clamp(-1, 1) \n", + "\n", + " # -------------- LPIP -------------------\n", + " calc_lpips.update(imgs_real_batch, imgs_fake_batch) # expect input to be [-1, 1]\n", + "\n", + " # -------------- MS-SSIM + MSE -------------------\n", + " for img_real, img_fake in zip(imgs_real_batch, imgs_fake_batch):\n", + " img_real, img_fake = (img_real+1)/2, (img_fake+1)/2 # [-1, 1] -> [0, 1]\n", + " mmssim_list.append(mmssim(img_real[None], img_fake[None], normalize='relu')) \n", + " mse_list.append(torch.mean(torch.square(img_real-img_fake)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# -------------- Summary -------------------\n", + "mmssim_list = torch.stack(mmssim_list)\n", + "mse_list = torch.stack(mse_list)\n", + "\n", + "lpips = 1-calc_lpips.compute()\n", + "logger.info(f\"LPIPS Score: {lpips}\")\n", + "logger.info(f\"MS-SSIM: {torch.mean(mmssim_list)} ± {torch.std(mmssim_list)}\")\n", + "logger.info(f\"MSE: {torch.mean(mse_list)} ± {torch.std(mse_list)}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "n2n", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scripts/evaluate_latent_embedder.py b/scripts/evaluate_latent_embedder.py new file mode 100644 index 0000000..5aac53f --- /dev/null +++ b/scripts/evaluate_latent_embedder.py @@ -0,0 +1,137 @@ +from pathlib import Path +import logging +from datetime import datetime +from tqdm import tqdm + +import numpy as np +import torch +import torchvision.transforms.functional as tF +from torch.utils.data.dataloader import DataLoader +from torchvision.datasets import ImageFolder +from torch.utils.data import TensorDataset, Subset + +from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity as LPIPS +from torchmetrics.functional import multiscale_structural_similarity_index_measure as mmssim +from torchvision.transforms import RandomCrop, Compose, ToPILImage, Resize, ToTensor, Lambda + +from medical_diffusion.data.datamodules import SimpleDataModule +from medical_diffusion.data.datasets import NiftiPairImageGenerator +from medical_diffusion.models.embedders.latent_embedders import VQVAE +import argparse + +parser = argparse.ArgumentParser() +parser.add_argument('-i', '--inputfolder', type=str, default="/home/local/PARTNERS/rh384/data/Task107_hecktor2021/labelsTrain/") +parser.add_argument('-t', '--targetfolder', type=str, default="/home/local/PARTNERS/rh384/data/Task107_hecktor2021/imagesTrain/") +parser.add_argument('--savefolder', type=str, default="/home/local/PARTNERS/rh384/workspace/med-ddpm/results") +parser.add_argument('--input_size', type=int, default=128) +parser.add_argument('--depth_size', type=int, default=128) +parser.add_argument('--num_channels', type=int, default=64) +parser.add_argument('--num_res_blocks', type=int, default=1) +parser.add_argument('--num_class_labels', type=int, default=2) +parser.add_argument('--train_lr', type=float, default=1e-5) +parser.add_argument('--batchsize', type=int, default=1) +parser.add_argument('--epochs', type=int, default=500000) +parser.add_argument('--timesteps', type=int, default=250) +parser.add_argument('--save_and_sample_every', type=int, default=1000) +parser.add_argument('--with_condition', default='True', action='store_true') +parser.add_argument('-r', '--resume_weight', type=str, default="") +args = parser.parse_args() + +inputfolder = args.inputfolder +targetfolder = args.targetfolder +input_size = args.input_size +depth_size = args.depth_size +num_channels = args.num_channels +num_res_blocks = args.num_res_blocks +num_class_labels = args.num_class_labels +save_and_sample_every = args.save_and_sample_every +with_condition = args.with_condition +resume_weight = args.resume_weight +train_lr = args.train_lr + +transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + # Lambda(lambda t: (t * 2) - 1), + Lambda(lambda t: t.unsqueeze(0)), + Lambda(lambda t: t.transpose(3, 1)), +]) + +input_transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + # Lambda(lambda t: (t * 2) - 1), + Lambda(lambda t: t.permute(3, 0, 1, 2)), + Lambda(lambda t: t.transpose(3, 1)), +]) + +# ----------------Settings -------------- +batch_size = 1 +max_samples = None # set to None for all +target_class = None # None for no specific class +# path_out = Path.cwd()/'results'/'MSIvsMSS_2'/'metrics' +# path_out = Path.cwd()/'results'/'AIROGS'/'metrics' +path_out = Path.cwd()/'results'/'metrics' +path_out.mkdir(parents=True, exist_ok=True) +device = 'cuda' if torch.cuda.is_available() else 'cpu' + +# ----------------- Logging ----------- +current_time = datetime.now().strftime("%Y_%m_%d_%H%M%S") +logger = logging.getLogger() +logging.basicConfig(level=logging.INFO) +logger.addHandler(logging.FileHandler(path_out/f'metrics_{current_time}.log', 'w')) + + +# ---------------- Dataset/Dataloader ---------------- +dataset = NiftiPairImageGenerator( + inputfolder, + targetfolder, + input_size=input_size, + depth_size=depth_size, + transform=input_transform if with_condition else transform, + target_transform=transform, + full_channel_mask=True +) + + +dm = SimpleDataModule( + ds_train = dataset, + batch_size=1, + # num_workers=0, + pin_memory=True +) + +# --------------- Load Model ------------------ +model = VQVAE.load_from_checkpoint('/home/local/PARTNERS/rh384/runs/2023_12_27_171409/epoch=9-step=2000.ckpt') +model.to(device) + + +# ------------- Init Metrics ---------------------- +calc_lpips = LPIPS().to(device) + + +# --------------- Start Calculation ----------------- +mmssim_list, mse_list = [], [] +for real_batch in tqdm(dm): + imgs_real_batch = real_batch[0].to(device) + + imgs_real_batch = tF.normalize(imgs_real_batch/255, 0.5, 0.5) # [0, 255] -> [-1, 1] + with torch.no_grad(): + imgs_fake_batch = model(imgs_real_batch)[0].clamp(-1, 1) + + # -------------- LPIP ------------------- + calc_lpips.update(imgs_real_batch, imgs_fake_batch) # expect input to be [-1, 1] + + # -------------- MS-SSIM + MSE ------------------- + for img_real, img_fake in zip(imgs_real_batch, imgs_fake_batch): + img_real, img_fake = (img_real+1)/2, (img_fake+1)/2 # [-1, 1] -> [0, 1] + mmssim_list.append(mmssim(img_real[None], img_fake[None], normalize='relu')) + mse_list.append(torch.mean(torch.square(img_real-img_fake))) + + +# -------------- Summary ------------------- +mmssim_list = torch.stack(mmssim_list) +mse_list = torch.stack(mse_list) + +lpips = 1-calc_lpips.compute() +logger.info(f"LPIPS Score: {lpips}") +logger.info(f"MS-SSIM: {torch.mean(mmssim_list)} ± {torch.std(mmssim_list)}") +logger.info(f"MSE: {torch.mean(mse_list)} ± {torch.std(mse_list)}") \ No newline at end of file diff --git a/scripts/helpers/dump_discrimnator.py b/scripts/helpers/dump_discrimnator.py new file mode 100644 index 0000000..8ed1e69 --- /dev/null +++ b/scripts/helpers/dump_discrimnator.py @@ -0,0 +1,26 @@ +from pathlib import Path +import torch +from medical_diffusion.models.embedders.latent_embedders import VQVAE, VQGAN, VAE, VAEGAN +from pytorch_lightning.trainer import Trainer +from pytorch_lightning.callbacks import ModelCheckpoint + +path_root = Path('runs/2022_12_01_210017_patho_vaegan') + +# Load model +model = VAEGAN.load_from_checkpoint(path_root/'last.ckpt') +# model = torch.load(path_root/'last.ckpt') + + + +# Save model-part +# torch.save(model.vqvae, path_root/'last_vae.ckpt') # Not working +# ------ Ugly workaround ---------- +checkpointing = ModelCheckpoint() +trainer = Trainer(callbacks=[checkpointing]) +trainer.strategy._lightning_module = model.vqvae +trainer.model = model.vqvae +trainer.save_checkpoint(path_root/'last_vae.ckpt') +# ----------------- + +model = VAE.load_from_checkpoint(path_root/'last_vae.ckpt') +# model = torch.load(path_root/'last_vae.ckpt') # load_state_dict \ No newline at end of file diff --git a/scripts/helpers/export_example_gifs.py b/scripts/helpers/export_example_gifs.py new file mode 100644 index 0000000..0c75255 --- /dev/null +++ b/scripts/helpers/export_example_gifs.py @@ -0,0 +1,34 @@ + +from pathlib import Path +from PIL import Image +import numpy as np + + + +if __name__ == "__main__": + path_out = Path.cwd()/'media/' + path_out.mkdir(parents=True, exist_ok=True) + + # imgs = [] + # for img_i in range(50): + # for label_a, label_b, label_c in [('NRG', 'No_Cardiomegaly', 'nonMSIH'), ('RG', 'Cardiomegaly', 'MSIH')]: + # img_a = Image.open(f'/mnt/hdd/datasets/eye/AIROGS/data_generated_diffusion/{label_a}/fake_{img_i}.png').quantize(200, 0).convert('RGB') + # img_b = Image.open(f'/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/generated_diffusion2_150/{label_b}/fake_{img_i}.png').quantize(50, 0).convert('RGB') + # img_c = Image.open(f'/mnt/hdd/datasets/pathology/kather_msi_mss_2/synthetic_data/diffusion2_150/{label_c}/fake_{img_i}.png').resize((256, 256)).quantize(10, 0).convert('RGB') + + # img = Image.fromarray(np.concatenate([np.array(img_a), np.array(img_b), np.array(img_c)], axis=1), 'RGB').quantize(256, 1) + # imgs.append(img) + + # imgs[0].save(fp=path_out/f'animation.gif', format='GIF', append_images=imgs[1:], optimize=False, save_all=True, duration=500, loop=0) + + imgs = [] + path_root = Path('/mnt/hdd/datasets/pathology/kather_msi_mss_2/synthetic_data/diffusion2_150') + for img_i in range(50): + for path_label in path_root.iterdir(): + img = Image.open(path_label/f'fake_{img_i}.png').resize((256, 256)) + imgs.append(img) + + imgs[0].save(fp=path_out/f'animation_histo.gif', format='GIF', append_images=imgs[1:], optimize=False, save_all=True, duration=500, loop=0) + + + \ No newline at end of file diff --git a/scripts/helpers/export_random_images.py b/scripts/helpers/export_random_images.py new file mode 100644 index 0000000..de957da --- /dev/null +++ b/scripts/helpers/export_random_images.py @@ -0,0 +1,50 @@ +from pathlib import Path + +import torch +import numpy as np +from PIL import Image +from torchvision.utils import save_image + + + + + +# class_2 = 'RG' +# class_1 = 'NRG' +# path_out = Path().cwd()/'results'/'AIROGS'/'generated_images' +# path_root = Path('/mnt/hdd/datasets/eye/AIROGS/data_generated_diffusion/') +# path_root = Path('/mnt/hdd/datasets/eye/AIROGS/data_generated_stylegan3') +# path_root = Path('/mnt/hdd/datasets/eye/AIROGS/data_256x256_ref/') + +class_2 = 'Cardiomegaly' +class_1 = 'No_Cardiomegaly' +path_out = Path().cwd()/'results'/'CheXpert'/'generated_images' +path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/generated_diffusion3_150/') +# path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/generated_progan/') +# path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/reference/') + +# class_2 = 'MSIH' +# class_1 = 'nonMSIH' +# path_out = Path().cwd()/'results'/'MSIvsMSS_2'/'generated_images' +# path_root = Path('/mnt/hdd/datasets/pathology/kather_msi_mss_2/synthetic_data/diffusion2_150/') +# path_root = Path('/mnt/hdd/datasets/pathology/kather_msi_mss_2/synthetic_data/SYNTH-CRC-10K/') +# path_root = Path('/mnt/hdd/datasets/pathology/kather_msi_mss_2/train') + +num = 2 +np.random.seed(2) +a = np.random.randint(0, 1000) +b = np.random.randint(0, 1000) +print(a, b) + +path_out.mkdir(parents=True, exist_ok=True) +paths_class_1 = [path_img for n, path_img in enumerate((path_root/class_1).iterdir()) if a<=n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABtw0lEQVR4nO1965IbOY8s2321v33/9zy7M+6ru8+PjdSksjNBsKS25B0hQqG6sEiQBIEEyGJdfXx8fIwLXehCF7rQhS70r6Vvp2bgQhe60IUudKELnZYuYOBCF7rQhS50oX85XcDAhS50oQtd6EL/crqAgQtd6EIXutCF/uV0AQMXutCFLnShC/3L6QIGLnShC13oQhf6l9MFDFzoQhe60IUu9C+nCxi40IUudKELXehfTjfdhFdXV1/JxzKBn6urq3F1dTW+fftm//mH9G6fpbT3Etdby9Ty+Kf3V9qPefn4+Bjv7++7Y/5xWuWfeXXX9bn39/e9vF2ZicfEt6P/9//+X6z3V9F//vOf8fb2ZuuhMqLt5vq8OnfPVNfST+VmixytEspgfrXcJJvv7++7Y5cv58n5qJy5/FTuVU713z3Tvebk9urqatzc3IyfP3+uNegR6Obm5hOvzBdo695xMz2h11g+r6+vx/X19bi5uRk3Nzfj+vp6T/+BL/Ql99MYI8qLK3OMYXW6ludIZcXJT+r7LnEfcV1dma4/V8t347HSXS8vL9M822DgnCgp0xkg0OfH+KcxE0jQ9Elhq2Dy+Rhemafy+Pr7+/v49u3bTrDAZ6UYXDvpNQcieIB8+/bNtk3FM6dzyqUz+L+CWAFVPHapAhAVQEjAgJVZBSSvr6+X+Z71F+fHRrsCIU7xQUYddcHAr1+/9uQOx87Io1zIlf6DeLzM2sa1K5799euXrdtXkxvvymdHbx1SPh8zEGBAAFCghhl8Qz74HvpXdVIFmB0guL6+ntaVwSUba/B1CCDQPmJZxLGOjY7j1C27opU6/ZFgQCkZa6ecQYcaBOSRDK4CARwnvt31j4+PcX19vcfrr1+/2sqgKq8LfjR/POcGMF8/J2Lj5YChAy7uv6IOEEhgoAsEnNF29QSp8q28CK1HikywEcd9yKTKRKcN2UigXu/v7+P6+npP1jmdyh9fUxk8hrd3Spl2Rqo7zlKbpLRjeJlK+jU5W/xs5SWnstOYSHq9Q+BXZci1kcrMDDQ6g5v0a1ceZ7JX8bQVaPwxYEAFEv8dhavP47zjGXT5cPyMMT4h5RVywuk8sG5dUhSkIzD8TDo+Z3I8JgM+k690rZNXBwho2S5ygDRaH64rG1eXnqkLRPgfSh6hbI1ocd6OPwYBKtMABCgDz7I3h7z5WhWhWKEE9M+VDgVAszomWddoKMrnCI5OEyiPszGVoqvOweLrGiHiY41UOAOf6BCQmHT1LLI6oy4YqegoawYONQarCA//K4oY/87LPQbPXIYCgBm66wxEDmelNKuo0yHaZDSdsHaiAucQLUh10vMOEHDpO0Ah5an5jZGNf1o3oAbQyb22AxtTJ7sOFLDyZUOuoXxNq+QABStwVeYaPdCIh+a3Oq6dITjUuH41VWBldq73ZvVLAMABAfDmfqq/qqiDlsX33XTWGJ9lzoEClh9nI5hmDo/TbTrWtJwZEDjEJjneVvTvUSIDVUNuefaQ8ivly/8z/qr72sjpn/Ny16r7h1IV9lIeNHR3TOXXAUW/i1Zk0gG1Q/qpagdVYh151ucq4zvG5ykDd+wUuwMlYwzrtTvlq/WsvPZO21bPV3LufvpcipadA6BVOiY/FXjQY10wPQMCHBXgNBUvFcjuLKRVg6oAUgEBrlXyMzPSCQTg2WSYK+drhY4BXpfAQOX9baVjDbSkxFKZK9ddug76TlMEqnxWEVziacZPxcMh5c3yOrUidUBHwRIMGQ9evrfSP2kwc54pLzXqKRIzxr7nrGVoebz2RIFBRRWvMAqcXyVPbMg1mvDx8c8iPb3Oc838bOpX540mMJD+XTucgirP9SvL02ts/FNkIPWB+1URARed0sWzFfhdAf0zgNpxGqvxroBA862e3SJzh8jpcmTgVINiDD9F4Fbwp4HTaXQ9r5S64wXzqx0Em/J04VhN58BIx2C5+lTekuNTDSlfS/lXeX41cd1msuEQ/rE9w+TpzEL0Kk86F6+KsqqrGmbNN/GR6qKL/ZScwnXK0Rnq6jnlv1Kis4hAFxj8TlIekq7aKp/a99qWTtfyK4S6ODoBMV0r4Ph2gABljTF/s8WRW1/FRprfnNJxoWW4azOjzfwmoF7l0QUFx3DEDp4m2IJgtghuElCntJLyckqkw1eFYrU85bNTJ6ZZuNflkQYWaKV/DlWAWxHtV9IqP4ca/6RgnbxhoZxSuq7kAMJM9iq5n00VOD4x/jRCUCnWyvvn5471OmoCupWDoAr7XOlQ3hQAaN5s9PlVQhhqtBf3n+4roEBMy3KgY4xhAYfjf4w1WWGZ5ldSAQzS4kMHKNWBSGU5eaocUdcnX6lbDwYDxwhldIW5Msoun5lxd4NeFXeXN1ZyPDgc6YIWLoMXULn8tR4dRaVCpl5Ypw9dm2hUgK+lPE5NVaTHeWEOdPJzHcNf9ZPmhzTu3Wk12i4vzkPT8FsFKTzK8gcFiTxVNlcNtfMS2WDwNIEDE51w7szzV5lPnuXs/FSksnSMMeUcGfyrgXZrBkDavk7PV5EHdurGGJ8iEEr8muAW0MhlKjDla2k8d/JHniir0pWzKEGnPCf/XRk5i1cLV5C3Gv/qx8/os3wvGQEca9lOeLv8V0LrpjjcKzBu8VZFDuB0Ba56zpXtBPKYiuuU5ORo9t/Nl5Vskq0ka7oHQZJHeD26V0V6s4DzdrKJyIXKBwMIVtTMo1vQla4z/2n8MN9blKmO93OR1VOBkKRTdVoW7a2Ai/lP3m6VL8sdP4c83THTLPrFpG+wqCypLMx0ID/rjpGHszFVer3n6rdVz4/xm6YJUqOulIF/pyg7xrhKl5Cf8pyAgKJmR06JdeZ2K6pWb1fIdobgq3LdoNRrTuBPSVzHmbF20Y5EKlNb6upARJIpp9DceEiAAEDg5ubmk5HV+lagoqPE+Bpk0ckZRwbcdSa3i1vXw6+81C1e359Kaazy/UoWK11XgQI1UkmXa/RhjHoNikaamBetb2qHBEIZ7FTP67UERNSWIK2TRdcvFUBItKKT2mCgi8ASM8cAAvh3IEAVV6XMXVqmCtElQR5jROE9ZN5z5glpeU7IHTkEz/96POOharM/gbZ6AI5mMq/yx4ul3D+ncfmq964LrkDY7pcjAWx405RFAgasxFiB8vGKoV2R1SqfQ4z7uQKBFFKuqGP43THOVc+lqACXwf+cF8pnGXbTDmOMT9eTUe7IhAO5Wmf8a3Qq1XMmU1xf5rMCAFtA6LFAAOgspgm65IAB/+sxztNvRiky4AYFQqZuHi2RU8CuvrN8qvorIEiKtQIBK8h4q2D/bnIRjFlUwCnkMbaDHpWVGSDAM5we/06BuvwVtDkgoGWlMdPt4woUMT8VeE00Awazcrc6OaciHadd2esYDqcjk2FWnmbtmcpw0wOarqIkL0mmOW+OrDoHTsEL13c2FpIe4Wv875wpx/dXyuXRwcBWxVjlk4RUBXQGEiowcHVVf0hHhffbt88f69B8K6O6Ymxm3nq3zTWEp78Zz7O6zBTCOdCs/VIfMVBI/aR5Jm8O6d2aD5bpat40gV4+duMCPGDF9xj/G1lwr2ClspQ0VKvgk481rUvXoUqGu8/qtT+BKrC6NT/+x3HStyxPqQ9SX3Ty7Mqa6iyVuzFqQMA8uXVZro2UD5em0i/OudSIyTGcqa2ycXQwcCxBTfnMlNSqkpx5g/qszpupwq7m8b+CVtt6NnhTqK0qbwUwnCutyu0W9K4eAJN6/DNvLD3LeXBeY4xP4U9MEyCPY8ssgx7ma7ZQsKprMjSzyNlWucX5KeX3mEClqsdMV7p2ZENcvUboylFQ4KKrCsI7r6My6dsxri1YJnWtlRrqRJVDoOVxemeDTgVMz2aaIBnkDkpN6FLT87yUekt8TcvHv4IAAAH36U7NmwdIB91Xgp945GfHGJ92dHMDtgIDK0rXCbprh1OR62MdqNo/Lo9ZXbhfKyXCeaFfNCw/xud1KOl1QLxhwoqT82fZ5/Tc77xLoWs7PtaoRpqOSpsNJUDAXytMaw+UFzfGtpLmOQNiv4Mqo3LMMpye1TA+qAIBrh+Sbk51gfzqSn/8b92LYrZ/h8qjOo3gTXlNdajuV0DgFDrzqGBgq5B2nqsM/uyZ6ngMv/gtPcOeFqNZzXPmaSn/bn73EG9tJkhuwHYBAfNYpesOmq+mY5XbBWOOknelSpdlCyCTPX/25tnQJ14db6rokJ7/OR93XYk3mXHk+HF8KCBI5ICcyqO2cyevQ9KcmrYaECePyQEbY3ySP3U0OA3n73Spy1/HSJp2cucz0rHiHDiNpOG6OhQzEFClcQCgc+8r6WivFm4BAq4jqnO93jH0TvBUCbpjlwejZN59S6cK3PzTavtwNECvgdgwuGfBiyL4NOc2MwhaD+VtZZCcipKsKiCsBql7Fs+4vFNeeFYNaFrVz3wyKSDAuRpgHSfaZ24NQ/L2FKh++/ZtF4lK9XJ8gG/kzfn++vVrCRgkr5TLnsmgU/rnQF1eZs5RuuacLQdeQS4S4HSI0+kznZie1WjTMfQJjwEn0xyZcuO4AssrTlUa478TEJxkmqDrSeHfIfwZEKhAgOY3G/yMXHV1bVr1DYXMCrJLFZp00QKn1HHcMfROiW4x6DMv8hzAgJJD+27wV6B3BjA4f0fOE+Pd15iSUUvhT5VZ/JwcaNQB+V5d5cW12m7diBjqrff0WX4dEv+V1+SUqhvjrm9cm/xOZbyVZgCg66yx7nQyCapAAO6vlMXPQQZStEt124zcFMesLZKNWZGDlTZwcuZ0jx4fm377dsRdhKsC7BBl6uCEcpWPSlloXgoGODLg1gtsIa7z6pyYemLV2oBqICOv6rzDy8r130mVN5IAQbrmnktlVQq5ArCOT5ADhciHowNV3smjccpJy3Fhfkc6ttKiSDeuUz4d72mmbGf5/l8h156Vbq0Wr6rRV0eDj1cMsCMHeLUOx+wvbQNeSIh/rccxyq/0SsdGzUBrl8ezWUC4Qkkxz8iBhJnHoD+3oCbxsLqwBcrboV9ntF3+ztBXiw/d89V557mZYP9uOnbZFYLvPNdRKNx/Lr168AwAdJoA5zNQvOLddYx/yof54DU3sygER9vYW+vw6mTy/wolPZiupbonfefKW5GPFbAL6rwWOKP0fAXsq6kC1KELRKt25jL1muOzQ4fquaOCgVXjvPJ8EsCE9qtr7n7VKTowHIp2/HQoRQOQj3t3NuWjwEHbrIoIzNp29XpnwPxuWjHWTh6SYa687FnZXa+az/WDPjjmFfkzfqr8QSnyoGUz8VoV9wxAio6n9PqX48OVX9W1C3CrMXAO8nsoVbqt83Ok7eLAZpWf6tCkDys65HXuTvRB/7fokUQz0NCRu0NsLtPRwIDzVFK6Cl1VKLdT6eSVVukrr1ZXuXIIjZ/h49mq2sSzy4d5nAGB1Z/Wf4vxSG2w8uy5UvIenNejx0odoKx9ot7RTCYwRnidCi/Qcwac89H8KnCpvPC/Po90bo3A1dXV3oZdCkb0TQvdK2FVWbqxNnu203enpJle6aT/CiBQ5avpFVR3nDjty9W3r3h8rRjtmfy4+91IAZOW99VO1dHAwMpgmVVoJgyK0irlPBPoKm/Og98YSO/fdj0VkCr6yitDeuetJaWdDMAKj7P0Ha/rHJRpVymO8TmMyPw72XNKznlI+pzLx/GlRjWBw9TOXYOZFBh44/IxFqp9AKrrbl4a6aGkee+EWdukOmm6rid2ankFOX5XHZ4q7/RL66CSXnGGXPPSxdedvuzUSwHBCulGQ4kPLasD/BXgVM9Xcqft/FWA4Ld8tZDTpcbRtHzcUZgzZVvxBX6UF+WDN4BxQACKTH9a34pmyFZDYgmIdKIBDrysAIcVIFCBkq+mJKPdPjmmYeB2qBQXylRlpUAA5zDW/J7+GGO8vb2Nq6v/jRZwWuVnxdPHcUeB8rhJgEyBBaY5dHHiKhColGjSRy7tuVHSfbN07p4DAdWbBLP8Xb4ODHTkouOtj1FHe2b6f4y8kRdI1w3wepwEzEEduVI74kiBaiddlZ+jo08TpIZnBTMT5iSoSSnwc+mZiu8EAHDe2WSIDV56n18V0MoiGVXgutq12+nOKG8BAq7cGbD700nlbyaPTNX40GgTe01d+XAyxvI44zUBgY5cuTRVyFbHDf55B8SPj392RNSpAX62K/upXh2Qeu7gIJF66enfyR6fI91MD6S8XX7VmwrdcdUFCytUyUMHXM3yVgCjx5q+Ku/YMnmSHQgdcnFGWEFBla77Q5lbGrOqHxt/rSOn4Ty2AAE+Rx1YWTpDX3nFszY4VOCSoP/pdAgwcMrSGbskH+ldaxyrYXd7XegmRe65KnK0ZbGWo85YZEDO12b5pmt/omFXUgOc0szO3U9lcpavXkv5oQ/ZoZrlWxHr8y3PV3m6aEAl8/war1IHBKSIQbr3FTJ8FDBwaCc4T2GWtxNUBQ9JoFOeW4WKlbKLClQRgKrDZzQTVFXmFeqtQsLHoj9VCbPBmqH56nkmByKS91uF/dLuhW4ulK93QMSsrI5xTQA1lT3Lb4zPux2mvLv5/V+nLSAgrRmYgRCWX7c+gDdnc4DUkerO7n4DDlgngOOeTYAA5fGvWjszRl4zkGzOLOKa6BBZXwIDytRXeXyqFDveV1Kumqcjp6yckUbHOwXt1gfg+hjzKYFOh7vn3WryWV6zUPCxlOe5eGLcb19ZBg90ByCUutGErtyOsS9naYGh88wU0M7KcvK/Yoh5TwH1/GdRtmNFJRKdWl67dAwnzHnvasS1r/naDGhovmN8/g4Lro2RwW2nLomnLUCAn3VvsOieGC4y4MZ+0gv67AoAcLRF353FpkOrjHcFsYoO6HOV4VKD63jWRYMMBGZ16dQ9bRqDsvn9bVcvrdsxPKhkIM5Vmaa27no6DqByuvS8y6si9dI+Pj4+eSlVmRUgqLzqMfZBAfdjijTwcxoNc2lYEfK3B7gPcP7+/j5+/fq1B7Q5r0NJI2XnKrczULmal8pxBQScB5t4cUBgjLH3JtZsDOgeGc6YJjl0+eqr4bimdVFZ1/owAFCHSyMDXeejchhS9MAdO9oiK0tg4NwGS6fBOx3CP77Ox4oExxh7yDktGmRiJY28GFEmRauDSEPBqS1YWGdRgEP7thseOwUlz6YzYFQpdTz9Kq9jRl1cvUDu3X7Ip67iZiXGz/JzY/i1B5rGPY9rkHX1pnRcfXx87ABBIgfGVLE7uXdj/U+gQ/Vcx3irN6/yUf1zfg5QuLcImLT/qzFWAQImBz5c3TjfMcbeQtYEABiYu6k3bbdEs+gB8/jVMntQZGBVsTpynaI/Lk+fdWW7PB3vqU5K6GwoQ/XE2RtSz0g71AGCilR4ec5NhTOFtNQQuzomY121v6OVdv1d5AZWJa98T2Vwi5xXMs0A79u3b58+UDRTipqPAwWQDRemVUUz8+oTObnXvMAH5J7ln/nAOOKoAEfcuqRtgv8Emk8JWL+Kkuw6AOBeKxzD6/kEBKr8qsiA6rJEzEsV/ZqBgNniXE6ngFKN/9XV1W6LbAW7kNmO3lA5dCCgktFDZfcgMNBRrJ3n+bz6KTm0j19SlrPnqoZ2AssI1SlAfV55WGk7t6J6ZsC5LMfTSprZs1WU4U/0xsZYm8Lq9mkCnEqr4yq1P4zu+/v79JPATvEpdTy7qq/RppgmmI2l2RqG5BT8ifL21TTTsRVgZUpAgI2umx5QkIs+ZueFXyl1/KsuZnlknhwASLYEpLLtQDKAAO5BjpGG5VjTJlLjrw6Ms2mpbTS/Lm0GA1sBwFaqGoMFipWIhkj1Gfw7T96VgXT8qVhVgp1V0Sms5LxX9qYcVSBpRls9oQ6IODcvqyuvznvaUoZTrBWwVW/dKWMoGbd+gMnJFfLEJ4Gdl8xKq5JjnS7o5NEhHoPuLQiNDLABSV4U8zWTyXOS12OQOmvO4LMHr68AsufNbe3yVoPv8nXyivSqh7m89PaAcyZBLhKmYKSjozQagGvK69vb26c6deW/Y/wdrxX/3D9duV5+m2ALpYp0850NZLe4yYXMXb6svCrj7CIOqmzcs4ncnK67pgiagYgizq9cZZ1A2Er6U1EHUc+uOXmtZGvGT3eV9IxPpeRRuakpB5aTh1/J1pa6zMC9lp/ySKR5nxs4XaVKf3aoAqoOuDI4Zd2qBpfzc8ZfXyV0RlijA9XaFK6DAwQOlOh1rR94cOQ8fOaVy9XI26oDwrp+BnJXZLnLx5e+TbBi8FcoIST+aWQg5VMBAu0ckM77H6Jk0mKrMfaRefoSnXpLqkgPMdjHVJ7H7P+tlBRqN6S2xfCn/J18at/pM7O+TEBAn0e+ykMHCLg2PASEauQLdeD/LYrvTzb8q9QBs3p9Bgb0n50Qvs7G1oEAfY1VZV4X4uEZluW0NsAZdua3AwgqStEAAANE2ZRHAIIUHVAjr4Y/gQN9vvrfQl8GBragIieUHUoGsGPsnCHVcwUbUIBupfasvKpeCkRYUXK5s0/UJm/r36Qgj0VJFqvIwYwSOGAjyOPiGH2XwLGLqjlgkXjQulTtUCnfLiBjct7hSjutRrtOSV2QU7WhMzbu5942AWk0ANf4N8bn1wkTb2y8IIe6hgRpeJU/P8/5OhCQXm3sOHRuDQvbAUwPKKhmQKBjictzbZNAAZNzWpVWgUEbDKwa95W0XXSqlLz4BAaS0uhEBvDPSvXQsHwFRFA+r7pG26jHphGOChStAKVD7p8jJYU686K2lsPnXYPp1pM4D71Ds0gAX0f6JFur0wQz0LuiT2ZGZAvNImhbwMlXkNZzC2BSneqMf1qzovKi3jg8ef7X6YKKdzWyXGcGAm6aApTeWHB8aXt0ogP4Zz55Ee7b25uNeOiiQidrauNShCDZhw447I6Tk3ybgNMmdDrLzw3WlXDJTBlwGj1Xz62qX0XgUQ20Q45MbtEif5VuJTqyQit5ufY/B+U6Rn+ArCphVXwVKJh5yaxA0iJVleG0CNZ5z64NutEAJQ3nar3dnLMzKrh+dbW/IRHn42SqAvCH0LkAgi45edPz2U/XCqgcq2HlV2HTwsFEkDfoU+5zBarqeWt4Pn1invlAGmdrKh4VBKTxo4sIee1AWgfhDL+7l4CU2opDZPZonzDeCgT4WhcIcPpjU2WEEwBJ6beU68qp2jdFOPi8AjyrvHWow+upqdu+mrai1G+rsoHnoPR0Vbe+TTAzAkodfg71uh0gcGCIjdAYn+uItN3V2YfIeZXnudLMGZkZfb1Wza9XP/bC3bRB0ksqz/wP/hWkMjC4vr7eK5N50OsJEHCbaV9zREDf5GEDz9O3DGwY2FeRji4Y+EpZPBgMsHeyooQq1LMKLDoAInn+nXC6U1YqTAwKVpW/y8P9O/51rpn/k+C4eurxV9BXgLdVqsJtXWDrFK1e5/tdvlRJsFLkdOyljPHPeoOqfqBVg+rKd/kibZqGSFMJqhN08RWiAWq0WLF2FOUKID5n4w9yhmtLHk6XJVBwc3Pzyfjf3NxE46uRAZYplncGgG9vb3t88H3lfYx9MMD/eo3BjgKiilA+NsD69evXTj75eZZR8Mt14fxmOoPzm3n9lQx09Rnot0UGKiCQkFonr5RnRdWUQApDptXfju+V8HLVubMIwaweLipQGf9jKBjH57lSVd9uHdxgdWHEZDhnfZPkIz1T9Wl3XKgnpuUkcovL+Dqfq/HB+cfHhwUCHf4PpRW9cG7U0TPVD2kUCKj3rwaXfwwSOJ8x/JQWwuhq9BnocURI5RhlAJA43qppA3byHDFYAQjA7+3tbW9awMkHIgO4pw4l6uL0Bv9XQMDZh62y+ls+YdwBAlvK3PJ8Cle5e0ouKqCAQJXXimFMKNHxr5EAXoDTrXu6567NhCzl96cAg0ROXt11vraFuB/ZGLo0bKw1EqRGXBVyBT51vYCm63hRPK+P9MhXX08DpTZcadskv+duxGfEemXrs9p2CQTgeIx/5uD5H8aVowFsiJ0XDqoiX6pXcT/J9Bhjz+tHxIJ5wTUGBMof1zu9AshA4O3tbfevaXgqC3LOdeW1EEjnjH0FCFAe9+Mx5fu37TPA5wmVdpRpleZQZcz/el2vdYHIoYCAKRkIPV8BBe48XWMeO89UXuwpyJXfMTJb5ap6znkkHS8Fx3ptjHrPig51+6nbHp22q+rcpRQN0/tMx1ak50SuzTvAQBfaVUBADa+uGUB+aGM2fsnR4vl8BgIMIjlv5gk/PtcoBU9zOB5Zbhh0AwBcX1/vAQE8A0CjrxS6/Qa4/umYz911lOv6WMfcipwf5dsEnXuV0V9VtglMbOXV0RYE5qICfLzFqCRlyZGAbmRjlmbF86/unauS3WrU1cgkZXtIuZwGZTD4S5EA5m9WhyoqwEowUTXHyqFenGv9uIwUJXB8HzPdv5EqAJBkGX2tIXgGA2p43XoBNuga1VIQgj5UA606nqcDUP7t7e0eMGEwwPVgwMLevI5xBgKvr6+fPiAG3lA3zitNb/FaF+0HFwGoIgPVWN5KXxIZUGTCxwkUHBIVWFHylWFPSlURmstDle0Wo9FJo8q6WjiG665ehxjwlZBsB6Ccmg6JKHXyY1lgg+gUi4bZtX+xaFBBQSUHDiymsGhVHyg+J9tJLkGsIOExwUAkkJHAjlPe/Iy714kOnHO04FAZrZwmjQ7oGgEXBeCfM7TIV3Wnvi2ihl83FlLgwl4+A4Hb29tPAMVFEXTaALzhlUFenAswgIjA9fX1eHl52Wu7X79+jZubm/H29rbnoPHUGMas1ruaHqn+QR3ZXZHno36oqAIB+t/16Jlm3nWFeFUoO55Ul490zqhOEeCsTNfpCQ06BdgBAJ26On66z5yrYlXS9k2DT6mStxno1TnaxJeT2dW2T4sBNZ9qvcGhxoijAa59nUHXdTCHjNlUniv/nEHBKlUOl5NNNrpq9OF9AwBcXV3tXeOFeQ78ujLcmwJMary5/Jubm3F3dzfu7u72ogMcwUCZ7g0DjkhgKgByx9MDt7e34/X1dQcEuG6QUQa4DGoABHDf6fLkJDuAAErA4BDZPdqHimZe+wwIzCqjitf9NM8tBiylcygtpUmGJL1bqvXsXOsahBVvPYER3Ovy8acp0pnsdqgChMiLQVp63a7L18yL5/J0RTZHErQOTLz5C5TnDCglmbu6+ueLie4ZbTt4ZryASz39Lgju0IqjcApSnmayWTlcnXsaIXDRAbdyf4z665qqrzUqlACJRgNubm7G/f39uLu7Gw8PD7vogBp95KkggKMG7+/v4/X1de8Vwvf3990bA6+vr+P5+XlvDQL6BM/c3NzsgAHXm9cOcHtz2UlXOJtZ2clDQexRtiNOBjh5SyCnUJIimfFWoasKdGgDduqZ/rVeqS4dQIF/F0ZVz8kpyYqc4CU+Zte6pP3wO2m13ATIHPhMz1SyyAoF11V5VTyvDHg1civRITeWO2F9Jl5DAHnW/+76gRm5ce7ua4QggZtqnP5uUmMwS5euuz7VuXCm6lVCN03AebKOYeOnBlXHR1ocCIOPaMD9/f24v78f379/30UHdJEg8udrCgZg9PG2AADB6+vrLiLA0wpjjE9vGdzc3OyeU52MMcPRAwbaSVdwfzu7kWznVpldjgwkRvRaBQqYqvwqPpJS7jybEBj4WW1MF35MafCbGdYOSKqedTzNQEAHdK3ycs7U7edKwR4T5Fxdff7k6xj74Xv28nXekeviwq+p/5xH7GRIAYFSijgwP6rUrq4+RwzSK7PV67MrUYEOGD5Xmung2bP4d8+69QIuPJ/OOV/uC/2kr8qBghL84OnD+CsIABD4/v37LjrAUQtuKwbbPJ0xxth5/y8vL3t7Cdze3u6AAIMLTsOLCwEunF5I9lKjA258qIxWetil7cr38pqBmUek1xwi3VKeNrACAgcQtpTpEJjSFsDgeNk6qLdQQpbdumifVukdCDkX6shv9WwCAG6AzkAEK163ElufVxDAxwpodWqA7+mUAefNxOsa3PvhiRLIrLzvzrQJ14n5T+BmhbaA41NRkj2n9yp5T6BAZZzlMk0bdKa82PgxLy5//BIIuL+/Hw8PD+PHjx/jx48fu+gATxUAaOp4Y/r4+NgtDkSUAIZeI1aYOgAA0CkSRAe4TVGm7jGgsqxt1TH0x6bN0wSVonPHyctw96syHOJKCrqqy0xhzUIy50qpblvRItKnchy42FrOn0jJA3D/ClQVAHAo0oXiWbmN4b8Fz9RZoNWhFGVKaWeUpgg6eyJUhm6VjxkdMi12akqO0+xcQQDkUKMEvHIf/yB9xRSAjeWa+0e9aaRzrxBiuoBBAkAB1hAAEGC8aB0ZQH58fOy8f9QToX/wzusCFAAogOd1Exq5S/2E/0pvd/RtJQsd2vQ2QQcIjFEPppWB5ox91/iv8IrraR4xGcVumSv8MW1ZbKZAjK85wFOh0RVygODUlDxH18dK3XtV+zsQwKTzmBpyheHUTU3G2J/Dd15+xxNxpGsaXF0cVQqKjUyXOuUpUGE+3LPdab3q/rlQAp98P/1ceiU3daCr8lNkQF+dU/2T6uKuM0jQCMXt7e1uygCAADzxK4MaLePwPK7hGYwpgABEChQI8Lhl+Z6BgBmx/Fa6urJjfN6ho7xN0K2wCkGliCthTQKvx7PnDgUrM962GpkVHrpUoUxVnMf2iLqK53dQdzokydQMmHLbuX+n1PhcPY4xxk4RQTkxIMA1Vhp4rckZ/9QHqsyV9zR1gXtcVkqj7cXXdM2Ao9QPTr5mAHfmXVWg5hxoK38JFCi5uW8nuzqf7nR8l3fuM3jjt7e3e2tH9DfG2IECjhTc3d3txoZ+3p33EnD15rHFCwXd5kqVPK4Sj2FtpwoQHIuOPk0wS7NiZLsNnTzfDn8JSXUa26GzGcBxhqTzbIe4vapw7iwysIWHqi3PgdLUFP8rKFJyijSNiwQA3DVVsLwgCaRzjrwimY2/yi1HCzQ8Cqr2F+hSJ/JQyVXaC4Hzh/LmY82/05cV8E3g+FSkBkLvufNKBlMZK7zM8mQgqoZbz/kZ1YvoZ/04EH8jAPkgQoG1BLe3t+Pbt2/j9fV1l5754g20eIqDV/wDTGCdgIKApE+q9nV9w4sI+d4sMnBsQHCUVwu7aZMRnDWWy6dSzGkwJJ5UOA9t5DTNMKPEv3pVyqvWPRm+pPS2khNO5M386/G5UcUnG203tzmTLTX6OvfKYVZ9TUvJTQ/geIz98KT2gSqcMfzq/xUgoGl19zgun/ng9tiqV2ZgbGtk4NgK9iso1dldS/I8a/skF9x3qWwQe+J8nqJWKMPpN52q4IgBnuW1Bbe3t+Pq6p/pNY0OsM7nNQ/cLgAMaeFh9euQi6ityt8s/Up+R92B8ND0FdLtCLA+m0ACk1MEs+jArHFnPDrPpPJWWPF3OlaNvquLU4iV4Kih7/CgBumcAYGjCnSuyKTKoHuWlY32i/P0QVVIHemT8lVihc//bk7UpdNjzVuBUUq7Or6cbFagWJ+ZGbRzkNsKcLp/vVbJavLanZPE+TngyM9wNEqPuVwQDDdPOXDZXC6mBXiToFRXLlcjZGP8I5uOH97WWNtL6+jalJ/jiNZM16o+nulv156rdLQdCGfpKjSbBLpSoEmwV5Q2Nzh+6bwi1/Hu3Blfvn5MWkGoyl/3HiuNlbxOQUlWkueo8qnKKMkV96umcVu2cn6qdCrecb0bnk/z+m6hoCowBQJuLGmUgq91nt9C3IZfEfn6v0Aqi3xcgTFnwHHM35VQfYn7+pz7R1nKLyJg/Jqf6uRv376Nu7u78fLyMl5eXnb7BLy+vu5tPMRz/srXGP9sqqTt9fHx8WldD7dNingk0vG34lSxfM8Agsu/O9aWpglmaKY6r9LMUO2ML+avUtraqWMM26FJuc4iBi79DBBwHY7phXwl0HBlbRG+30WpDToeaAKUlUJVQKD5pZXITlaconHyOQNyborgWMTjil8VrEAFXx9j/lohgwl4j7xuwMmgAwSrAOFPARSV7ujKLDxnlhXWh3xP12yoPuW0MMh6vdK1Y/zjSfM3A1DP6+vr8fT0NJ6fn/f+8c0EpGOQwB/50nZxUx/MIyIQvF6Bdyvs2A/tk+SIzOS2AgSz/CtaXjNQKXpnzLv3nZBWYKHK1wEB3Vd6jH/C7xBubsAK7SWvw0UIHPLVtMcEAVxupfy7987NsG+h7sCojL+m0Wtj+KhAKsOVyaRy6F4X1HxZQSe5TYoe40AVDb+66Gj2lkEa82ltQlKoVQTH6Qeuy59i0BM5fTKrU5Lljh4fY38XSJzz/Ht6no0nL/xjsOG+vMl14zpgjQDzAj2OBYM/fvwYP3/+3On4j4+P3YI/bCkM463tc3t7O8bY/5CQ7jDIOxRyfgwIGBhoeyh1onng0Y1Jdy2134rcH3UBYVKS7rx7ryu8SMM/9/rLGJ+9EW5chKgSwusolyoioPx+BRCoyp15yS79Fv5cG50aWLi6VEab7zsjnp459Lrjm59JfdhVMprnGPvAOI1NN2WQXg9M43b1TYVVI155VshPj88ZKLh6dCJaerwFEDjHiEEB7rEcaBp82tf9OM+kf7AwUCMWAAp3d3fjr7/+Gnd3d7u8Xl9fx/39/W6qAVEBXVcAAIC1AcwzjD5AgPsxINAIs0biOjQz/no/OZYuzw592VcLK4HrKMeZ4nXPJhDgdowCoeN4DkyFPUUIcN81eGVEU4fOvK+KKk+/88wWmvHeAUS/k1bBSFKk7voYfhW0yiTfWyE29G5sVYMe5VeeRFohrteRl4KCCkA4frT8Ls10UFKmmobzUn1wCH+/g7o6tZLfjvxxdEB/Ov/Oi/A4MpCe12kEBRwgGOy0doA/TgTD/ePHj3F3d7e3myDKYNnlRYi3t7e7st/e3sbLy8t4enr69Ht+fv4EBHgRI9sKrkc6dn1WAdaZjB8iu8trBtz16lpSEqmMWT4dQWZF5D6ByYTOQ6eO8c8Xqfg+C6lTLq5zZp4J8+A6tEMVUOE07r86XqE/wbtaua5p3G9m2NXQpOeqscJtOptbBZCd1XEWPUhAgKfZUAf3UaWq7HS/IzuVs5HyUcWKNFW55y7LY8zBt5PVSo4ruXNRAehGbMRzdXX1ydgxIHDTBAwCnPOFYwANBx6Y7/f39/H09DQeHx93OxHe3NzsdDvLMdsDngZBWgUDj4+P4/HxcQ8QPD8/700/6Ce3U6RjlSog4GxKBRBmtAkMrCjXQ6510ifhTvtau60zOTzEP0alDu2NMTeweq1SNisgwJECAx1YK/xqvlXfV1ENpkPrd2xyHmLHuCcwl9Lqa3W6gjm9otUl9UhS3yZvoiLm3y161ChBRwFVYDSB7q5ydYa/AuUuzbmTA5p8z+nD6g0YJjb+MI4aEUA6bj9di6XTBBwxcMBC1yhon/EbDDz1gPxeX1/H33//PX78+DEeHh7G/f39bj0A7AHv4wFbgDIZOLy9vY3n5+fx+Pg4/v77792PQQEiBM/Pz3tTBeBfAQ/qeCzqjOVVuW6DAV6cgYJmlND87FonP2eA3AAAAsS3sPERC32zgHe4QrgJ56g3EKYKLsrWhp8Z0a+kSpFuAQSr6f4kmslSUqhIp8/wMcaNfupVQQEr0wrQuXMQK1L1otwcJitx5l2NvUbYxtiPFGg7OCWlY4XbXXVKFb2YOQ0doM39rVEVB57+BLBQgYD09gqec6RyhR/Ss8euYIANfzVFoJEBBYNKGvZnff34+LgDAdiB8OHhYe/rh9D/AAJ3d3fj7e1t3N3d7b2GCCP/9PQ0/v777/HXX3/tAAGiA/yGgi4krMB56js9VznU/nKRgQR+u7K7HBk4xLilZ9xAnJXhhJ8HgH7lCh+z0E9csqGHIEDpYUXqGPvel+sYBwT03NXHhXi07hh4TIqgjxGOSvl0QJ2jc1Gg3M9jzL1XlS2nZKtx4BQyX9fvn7v1LCxTqSw2aFj4OvM+3EKnalGfK1u/rFjJh3teAQIbmOTxoDw2QjNaMeZuTKc6nRM5MOpkVX9jzBdzMvjUqIAuNtXIgHr/avTdsZNNJuSFCAE7cC8vL+Px8XH3oSJ88ph1P67j2svLy+6f88cCQUQCfv78+WnNAE8RpDUQFRCvImDdiJ3TD4eA1zYYqF4TqkhRS0Xd+xUK5i9LOUAAYWDli47BZytVKfM9RcTKdzI0q8pkJQKT2qqjAJN3dgw6V4+qCzJTeFxXzbv8dOGd+8CJ2/DEjRUoX5Y5NYipD1VmNR/sC8DnesybuOBa9allpWT8eewx6GbDz8cqS9VaCZTrZNCNTZfmT40KJNnl9R4a0dE2SaCRr7PsM5DjZ9RIunVZKTKg7c5et3riCO0/Pz9/AgCIEvA5R4mxjoxfJ+TowM+fP8fj4+MeCHD7DGhEgOuQnLbV6GwCy3p/i05figwoknSFdMJ0nWeTx4V/J/x8TwGBggGdKoBA8bxSMgAABniOgUNSHk7BV+cVdaIC56LAztWjGqOWJ5arpFCZnFHn9SsOVGi6Mfb7VEO1FXX7Ww2t1oHBhoKY9B33GaEu/O0CBST6ISbmV4/df4pouXHlFOgsr3MnlVcnu9q3oNSHznsf4/M0iwJiGGvNowICncgAymM9yyDj5uZmvL6+7nn+iAZgOgH6360h4wWPr6+vuygATw1g+pinKxwgcOCVaWVsj+HBvsq2AgHVKTPa/DaB84icMZwNrlQxl8Yd80+/s81ggL99zVMFEISPj4/x9va2JyAMFCDMEEAoLzcQqjon5TQzmik82u3o3wEYZkr3nKiSowoEsGfFHq0aKH1GASbv1AdysjPrN1aayaPqkBoLBS16rOlBTrE5uehEOrrTAUhfAYIZP5XHda6AdgXEun7UvEAs1xwVgLPEeaT+SdEB1aMOCOhOgZon2wyOEEB3MyBgL/7l5WVvqlg/CqbrEThCoJsOAQC4twi4LjOQoOBfnYDUR87Yo0+26t2D3iZQNK3/K+QGXBLY2SDgwcBfueJ5I7du4ObmZifw3NAamkL+GioDddsgRQeS8toKBJBHCiml+ytU9d9quOqraCZjHSDARrDaepd/ukaAj6s2mSH7KhyZ8nIGnO/p9Ia2iwJgBTXqZerUgKat7itfbrqDpxBUntEeKW82dAAmrMNA5wxqmSpdmIBAigpo28BRgsFzuhfP8fP676IEaYpAtzxWAn94DjxeX1/vjDnWEyAq8PLysucgok2YP7f7oL5pxkBANx3i+us15l3TMBCoQAH6GukqPbsiu5vBwFcAAi6r4iEh4DHGnvJlZYwpAgACXd3NAvX8/PxpPpfBwBhjJxAODCD9Shu48I7e02vHpi6/W6MbpyLtI+ZV5SitOcG9ZNS0HDe3rnKZvDTm03lHY+zvAc//rGD4Ovh00wMMEHgcgX82JloH17Z8jDLV6CKd44lBQjc6kIy4u57KV8Om9TkXcvVRncjRUZZDpgqMQo74HX1dN8V5aJsxCNDzWWQgedAsE3wNeWJhIaIYAC9w8rCeIH0qXAEB/nVagH/u1Ug16smJS4Zfn1fSvkc6BrNb6KAdCBUQdCh5iVqJhOarn6JcVswcIdCpAqR7f3/fU97c4UCY/G4qvKJVD73THnz/dxpZRZmJTglatpBD0hWw1Pnx2YI5NWbqkXF57hnNyyF+fiZ5yCy7nI6fA3Ea9SbdsUY6dKrAKT3Ug9sA44frqW9DuGmD6t+1X9WeyZjC09R05yLHY9RTXA5spimdqg3Z62aDx86TtivyVsOuG7jh2IXO1Xgq+NVjBiVIf3V1tbfAD2Dg5uZmp8MVzGpkArofGyaxs4j7KdqRogJpyiBFBPRf5Vd12aEyuvlDRU6QHCpncoOQj2dKltOo4PM5DwAsFkFU4OHhYfceqnr/MPzwBlk5fHx87ATD8aZhH67vSnSgqv8KpbZXng4RolXjfyqFWskc/tnQ6ToT9iJmylQNP3tmStwXOk+Lf6co1KNKodaqHcbYf5MgGX7XJjh3XqFT7Oz5OZAyA8TMYwodV2MnKU1td/CXohXnRNpWMzAwxucpHc2HgdDV1ef1ALifQKMzYmkKIEUJQJUsOx65L9nA8/SBrtvRPuXxlYCM1gPnOu2hx8nAaxtpHVHPBAj4mH98vat3N79NoIZZC5xdc8LsytRzV2nlTT0YFxXAVAE3HDqfES7mjjDnxO+W6voB5vl3GL5uu/P1mZfk+uecvKJjkwKBFB1gwz6Gnxpw11k5zaILTlE4D8IBTyY1ZljF76YIcJ/rxXVQoM0hVm4v5tfxiTEDBa5RDR57DChQdmeqIFEFMqppgnMfA8qzi0gBADgQOyMX6VFdi9A8l6FGnQFc8nydgdWytQ/Aj0YKGAzozoU6baL6n/lSAOvq5gBPBX5SVEDLVkr6GvfScytyu+mrhW7AODSSPFGXXyorlc1ol5VtUuj8iiFvPsGCM8bYGX+UCSHCClXkA8FCR3aNbbdtVTG5Z9Tjce19KM3ySWCkq3BOTdrWbj8AN03AxlNl2qXhcKa2jXqnTkkeUj9V4qq8lU+tu9uvg6fe1LPWiAAbfjUMV1efpwjAkwMBuK4RAjXclfzp+NAQs467c5Pn5AwxaHNR0i11YAA3xj/GH1MG6DtOk+SXjSRHsyog0BkLLMe8xoF1IUAB9DbC/TrVOwMh6X6qQwI/s3sgp+dVHjv2okNH2YFQjX1lHPkZzUfvubROESdPq6oHgwVXBjr09fV1TxlytAFbFbuOmiG87nW9xwpShV4BAVPFT2XwV4HFDOGegpxXwW2Hc5UB5yWrUWcjq7Lp/l2/KC9JMSVyY8nJCfJ2XqKCmqur/S2UEVmrFlY6Zc8LbTmUyvwl4z5zIDiyAMOyogeYX+THwInzPAd5TrqS5VCPtwABbXcYfPQT8uQoKsgBuOQpc1nJ89f0jtx0Bsub2iEG3877d7yrDGh6l49GC1JEr9KZq5GAQ+igaQL+V0qRAX22Yxxdejfn48BK6mwHMJAnvzqi+1nr1EOaA50Nvpnxd23DhoUVvSpONS6crzM+TvF+hbCdSqG6tmYAxelc2ycPeozPO/ZpeQ4EOPmYhVqd16QGNc1zO1DAdXZTGbrrIGQf72kjSqBTBQABWLwF75E36vr4+NgB6URbZMXpm44RZCDAgMDpoN9NM0OuMut0oJLTxWPsy6Cm4akUZ0wZOGhZTpbdPc7P8VpdYx64Hg4UuMidK5vLcwa4E02o1gw4ANQl1tOrYC/RUfYZUOZAs8jATGhTOvZiGAE70vCrM5AMBFioNTQKhYjNLKDoeGe1GSWFnO67Oo/xeR6YBTq1uVOUCQSkdIlm90+lTBM5EMDHDhSwnDgD6iJUqQ/4mK915kpdXVLkY4z5mgEeA6gPQABHAzC9xlu64h7y4C1aee/4b9++jZeXl09KMPGkxNEDp4fcNEOXdO0CA4It+f0OqmSU9UEC9wkQjPF5tT7axE0JJL3ryuI+32oInX3R61oPBQW6RiaBgG5kznn2CoB4HYyrh+Yxcx661NHdoKVvE6RQ5xbqIvbOPTXo1fSBC1mpIfj4+Ii7GWKbyzS3POu4dC8ZI62jkosSaNpkgPCMKoZVQNARtlOGWZOh1PZSj4Hv8UIs95u1uzvv8s2AQSMAbMi4j5yRdYqPgQyH/Dn6pdNkvO4GYwJ156gAf1WO28YZJq4bh+i13xQUJBDQiQygvZxi5ihGF7D8LlIwhGMng0pqsCqdxUZ/jM+RqDQVlcrsGFfXn5V+4vyTXCVQUNV9BXSkurloAMu1kz1XpqMumFrRu0ufMHbz61wgDxz2ACrPJQmhO3bhHZ2vVWWuxHzNGtSBDFWY/NOQjTO8ia9UB653aic2EAlIOECgx4ln10adaw6InYKcgkx9y0aQ3yS4uvpnDh3HFfB0XkK67ygpiTH83gHc/zBmTqnqVJ+2AdcT9edPvuLV3IeHh70oAUem9Gty/GEwVYQfH59Xm7uFZaxEHSgCYEvG200pKnByxvXQBZzHoMow6JhPunkMH3Vy9WMgpO3gzlfbSB2yREn3JKoWGDpQUNV9a7+7cevWClSRmupat8wt1AYDUBBKbPzH8HOXTpidwXSovuNNOUCQvDXw7ECBlsUDS3+s/F3dXL00bcfb0CkRrcfMO6jaVY8d74k6A7XjnZ2SXJ+qLDE40DA6A8OO8tX77pzbNSmWTr3G2PeyZn2J9AxuuO78JbiHh4fx/fv33ZfgMF0ABcsfe8EHXxgMMAhnMOCUZQUKQOqh6rTdbPzNZFlB1ClopkdUz3H6asGaG6NpQZ6LCnSixUmHp6iOizi4azOHJfFR8X0oCEjj37V5Nc5BldPm8nL3uwChDQYw4JVpXqDHnaUIfcaQE5YEFNQIQ3mBnHfHr0O5hYA4RhnVVEMFOhwYYr63GMakBLgsDp8iXQIkVZRAy9U8Uj+eyutfIQfu2OjxdFDaeIjTsvF0VM1HKk/Kn+uj5PHjp54ueNBrnHcCOPoWAW/c9f379/Hjx4/x48ePHSiA9w/jzkDg6elpL3rAniFe8QLp9+EZuOtx1Zaz66wvNMLgnjtVhKAabzN9okCqAyhdhFONpy5a1XC7c+a6+l+dSr43m0LojDemYzgraoxd+WwbkbYDBNK1lMehOrgNBu7u7uxg1k7j9zydInI0Qy9OKB1VylmViXoOqlC1bB4cbhA6gMJl6/N8r6KZsdD253p0BiPfm6VPgvunAQH8q/FjEKA77nHI/Orqam+HSvXm+biroJw8uX4ZYz9a5JSQA6RpfjcBJAAEBgJYK/Dw8DB+/Pgx/uu//mv85z//GT9+/Bj39/e7rbr1m/CPj497URcoRywsdN6ZiwjoMVPyMl06TaM6hXVENa98KprxgzbifVCSMRojgx52dGaAQI85jxX9wHK9AggSWE7E9XH8JWAzyxPEOsABsurY0UwnH0MfL00TKJrWeTxeWc/TB1sRm5LzbPge//ia5t31blVpcvSAlSaIvXPnkWues/OV0OSplFUSUMfPuShUjQo4b1hBgAIBNm5Jvp38r7RB16NSD4cBoSr31A64nxbO8oZdOl3wn//8Z7eGYIx/PgX78vIyHh8fdx+MwWdk8eO9CpKsqzJNbeDqx6T944A58uBo2yERvWOT62f8Vw4QnzvD45wMBgC4lgABp1dy4CDd69LMnjDodECv61zqc9W5ymjV9l3746Itel/zW4kuKC1NEyiC5PBH+tCIixJUVDU6BI7D+cmYOiHokpap6wM4AsHn6q0nQNAlriv4Ui80UceQ/NtIvV83LeC+RQBQoECA5cJ548nLWeW5AqnVc4kvTYMoANJzvR1Y0rcKMHVwf3+/G6MAA8gX0wUAB9zGyZDxP46rRVgVaUTA9ZOGvdkwnhJsq9HuErcVO27JgDCIVAOv+htyoueOUuTB0Qr4nd3rGHpXv5VoxiwagPPqxzQ713szkLEyRpbeJnBhFTZ2ijCVuoKQhH+LYdUO4jlJHRxpsDhPUiMQTHo9heQ6HXUImDiEDgET5+BFMWlfscFjQ6fHuqrerRXo1pU98DHWvaJZf1RgowIEXA8YZ62nWzvBr9ryR8CwERc+DnN19b8Rw6enp/Hz589dZMHtzcD146kCXJ9FCLrt2LnHIOBcIgOOEpBixyEZDQcyXV1TVCBNG3T5dHx/BXXsiAInpRmY53atpgW6oID5TBGCWXuttufSPgO6j/MY+8iKd3pS0oZMwtlFhjPh0sVG1U8NNIMGLjd5lvqdb46SJKDg6qAgqELb3BZdWkGOldCtlDkLZf5OSv3Hxo2vq5fMgFgVp2ujqg23RgqOSVw/BbsMAHhfAd14CMcAA7xuAO35/v4+np6edlMJbrOimXwc01BU5bBXyLJyLlE254Co/mIQgGusD3GtijhoVMRFAVxUIBnSFVpt6y2OSxVtm4EFlxdHAxzgWvHind6Y3TuGfC6tGWDFB8OH36yx9LgCAoqIFBnByKY5IT3XHwMBt792IlYOaljGyJtYuMGWogYrBlMFUO/x8QwIVALYeUbTVKDnd1MFAFJUwIEAjgiwDKCO2JGSZWIFyR9Sv4+Pf15/c+sTdIy6aS5tG6wN4PUBmA7gVwvv7+93gOD29naMMT6BgcfHx92zvGFRWjPAzkVFlUGrnklj0o3HcwCyTJU+GcOP/So6oKDW1ZevV6BA25bvI02XZusC3ILRLQ6SPrPFwVIgUNm2BBC07K7+Tfp6VWaXv02Q1gQoU0jHIfkKLc0qlQb9DG1xOn1tiT9vyQMAih1z9moQVEEklN7x/o6lZLr5uHbqGnhXZrq+ytdXkwI5Ne48f+1AgNuEyPW19jnaO3lOSeY7CqnTtqzk3by51se1DZ+jLTi9epnsKb69vX3aujhFWLgMBljsALBu0TY45ljS9QOnkmOVH6ZuRAVtNjM8Cm71p9fVyCuffK2KHCAt0yFRs9QeaYzxdbfgMS00TOsFEhhI9s/xt3J8LIejDQZUoNQjdZ1XIZuKaWdk+XmNFrCBT53ACx01LaID1aCvAMAYa6/QdEBCQtAOyeJ6l5wHtFWI/gRAoH3W8fhwnQ0bGy1Nm1A55+9AAo71foe6axBWgIXKeGd/BX5G7wEIMCDQSBp45AXJpyYnK+dGOsaSo5SAAB/P6qdpkpFncJkiBq4sNbhOR+pzbhO8JOvOcdVx62SPnVpHCQRUhn/m/Hbtph4fAgTGWAQDY+x7+gkAMFBwC4FSJWYGasX7dWsDfv36tTP+/EEVfl3QeSnqEc7IRVD4nrvuSMtaXemaaCvqnOV1rsRKyIX6ec8ANy3AHq16vuy1MlUDXBWG8zA69ekuyO3kpcaP36DQyEn6cbuifI2mMV9ONzBfaRy5sbM6L628gB+eanHTPudCDoh1yUUE9Hr1bAKOCgAcUKjqoumSjqzqm8ahm1bo6q6ULhn8ChBofik6sOVaoq58tMHAGPs7KSk4wLEyy+crleqgVZB6SGnxoIITF01QT0BDpVCMSIsFhG5Qch4V35Vi07AbX6sEgYU9CX4XCHTLqco6NSXDpV4vGz/2inU6gQnz285TYzkcw0ercJ3/QU6RJi+r6uMU6kxtoa8Q6muXCSSzEdDpBf4lPsFrkqHZmOrqDO2rj4+PnfHncQnwfY4yXdHMULk0aIfZGFYA4TxulVu+Bkp6LqVZJQbpPB6rCADXo3uuberamp/p6uLutUQrIG+MDZEBHKcBy0xreGpWIWdUOuErp+gQCbi5udkZ/be3t0/RAgUC7NVgs5S0dbHzFJFPIucddUiBAPObhB7nswF+qIAlEKTXVj2Yr6DkyaoBVACgc+VVvom6QKCjrJJB1X7m5xIgYP5xzFETlXe30NJ5z04hJlLQy/qFAQDqo3LowFGHNAKhgGCM/meWfzelCA1oxXtEOtW77tnKuVD9pDLH9yt51PI6aZSn1IeqM5Ohr/RiAlQdMLBSjsu7SnsILUcGmAlXaQcSEopaJRZWdKaidzc1wFMC+JoagwRWKFAOHx8fdp7U/VYURVLUTJUXx/9qkFnIGRR0BnhFbqB18zoHJZqiPOjfdO/bt2/TrxNq6FGNS5dWwaGLGGiYOz3HYVgHAkB8fwZyeKxhLPInjN/e3uIeH0zO4IOYzxkIcOBZSQHIx8fHDvzz68HHmJo7JmmfdahyyHDuHAfn9XeAAPOKNnQOHssjrndAQipLz1ftTcdp5XNnC1M+M0Nf5d3NBzSL7jhqgwEFAokU1TtKjM48zG6UQKcF9Pvq+gMwSJ6MQ9+VovxKxeEiEJXxSQN8VaBmfZbAgh6fglK/4Z4aRwYKDiRo3niWgZijKiowRn8RLperz3TABObDdb0M/p0ixjhiQI2PEWGnQaz8h6y8vb2Nnz9/jp8/f47Hx8fx+Pg4np6exsvLyy4P5MlgqKtrEmkfd9Kj7wAEUBe0zyq4OxbN9Cj+ZzI3y985Dlv0QeKTDTzyZxlm2anq6shFhfU5jQa49JXTOjt2jvEWzz9dOySvLi1FBlBItfAHpILqUKHm2ynbPc9KFoIHpYX5XCgv/RodRw2Y9zTAXL0qflnJqRfn6q5IXK9VlNq84mtVyLisxHfF0ymIgYBGBdyxRgJWjQuX20mzZeAmz63LU+XlgTS6xgCAgQAWYH58fIyXl5dxdXW1S//4+Dj+53/+Z/z3f//3+Ouvv8bPnz/3AIHqELS3Gy8fHx+lUnfrF1zdXZvgHkcGcI8jSKeiyvNO6WdjuiqHy+s6ExVBL4MQbUHb89QMp00Rgmq9AYDFGHmKJzlQlYfPafR4BgRmOvWQyID2z1ZAsAwGlGGQC1u5sPUKJcPrPHGUg4VcEK63t7fdIr/X19dxe3u780gYCCAPN+iVdxeCZO9SFTWU2Ao5ZZh4Q7l4Rtu8Qvmdgd0BB+dMbm6bDYeLCLj1IcgLhHZWI4W8NFKgfTVGb5ql49mtAIGV+xgXGl1TUID1BDCi2IIYYOCvv/7a/R4fH8fz8/N4eXkZr6+vu7zH8CCZo3ZuoZcDnDyd0/UqMcYYEJw6MqCk49rJV/JwtxiLYwABzgd5cHtCdnhKBvVy0whMro+dXlOeZ1Pert1mxw5AdADZMSIDx9DHS9sR60I1/ONYQ2xocA0R8fMriJWPubMZCCDkD37Ah3o5aW0BI1WkY+DA3kylpBw5RYZ/bhe0DaNjRDjcavbUXg7VVu0K0r6ZRT8c8TOnighw+Wrk3WZSugakArAqA6xcthpo9mi4nFXvv6LkYXLeuuiQj914QDSAweivX7/G8/Pz+Pnz5/j77793UwX81UIeh44UPCnfuOYiAgnAa944/vj4sEAAIOWUkYGqzzQdH6+A+I6xnzkVVf6J2HFz0YMECGYgIZGOTx23XwkG3HNVvltA3CH6YSkyoN4nezju2hh+YRtXqhImHbCd6AI/z/OcTpFBmfE5CxvPaWJhFO6lNQa6OCoBBSc4fP1QA6pRAT3WwV8N9Fk5x+T7K8gtAJxFmxKYccpD16mokmHqtOcxUL7yC+IFhiiL66Bv4Hx8fHwaMzwN56ICuPf8/Dz+/vvv8ddff43//u//3h1j7QCiA7p2wAErbh/c6xqDWZSA20SBAEBkZ2vkc6HK2+X7nN6NY9XPDpQ4faJ8JP44T7Yj6gxhfQvfV5DgymA5cgDXGdnUVpWx5mdnz7h2cPe7OqAD4rq0tB2xHjMSByNuYIE4BOQMkBO2TqhPn1UhcQqbgQIDA5Sl96DgFATMIgIdIKAASM8dkFoxul1BOSQEqMfnBAoAAnQagNeOXF19/lrfGPXHolSunIw5JeFkYjUUOwuLgng8VnXQPFNaHjsAAxri/fXr13h5eRlPT087AICFhAABmG5w7cZlpXaqwFsijRToM86hwbhbneY7FlVy4Axzem5moFyb6vNbHYYqT+TBBh6EPgIo07UkFSBIkbqOIZ85atW1VUDgrq8CkSrvFVpeMzAbMBy6c0h7i5HQsO1WQ5MUNkcIGCGzF8SvTK2itnSchE3z4CmC7hwan+ugU0/AgYwVpH/uxPKZfm6rXf1egXoaLBtu2oCNpwOPScFubeev7Cv1mjg6MMawUQGAAawZ+Pvvv8fT09MOEOCVw9fX1wigEnDiOlZgjQ0GOy+VHuF0XaB0CpoZF9VXyZDwc04v6DVXVorsruhK1e8uMsCAYbaeYzb+KvC5FQTMril/1f2U/qv08HJkQBmBoUKaaprgkMF17MHoFJsDA6zo3c8RCxmX5crHMV9nqsJ0lVC4SIIep0GeBv1MEZwruahA9fYAKyVXNwaRbhEq+pY/6Q0Zw3ka2FUkacu1WeTKPe/GhZtmgxHHWzuo8+vr63h+fh6Pj4+fwABHB7CA8O3t7RP4drwl46KyycbfyTmcFCXVVSjrT5gm0PbZajA6gGCMHJVIdqICBlqOOi26CRSvodK3ClSXpqk7HpuVbq/GagdAVMeda10gdwza/DbBjDRSwNfG8J9ZZXINrwaNvWQewCqQqlxwrnOgDGqc8oPi081VFCyg7BQm5mMVKGfsZx7MjHSgaZsqbxUPLl0SUM7nlIBBDX6KFLhXDRkgjLEPBHQaiWXIAQJWSImc3LtnNDTaNfpqCHEO3qFksRYA/8/Pz3ttyeOPzxUMYHqAXynED2BCowwJaHcVoYabdc6ZDX2abnARoXMktJUDAk73zBwPvt51RGY6q9NvFSBAH7CsogydVhjDfxAsgYIka3yf65B0uKvnDASk610gMOuDWdlKm7YjVuIBVF1nYXODLHmyzIOWwcqt6qgECCAcDgzoDmq62FAXGKphUMHTujhydVRDnjxWjcAowsazoFl7O3Lo+9wjA8n4O5DKgIHTsRw5oAhD5vo9yYFTtHw/yc4YY3nKjfuZPSoY/G4eXJ/X19e99uF1BFgzACDAewzgdUKNOnAZXH8lN0dcyaSuVldHompH3DvVmoEuVcY6pe/mqWADlByErd6rjgPVVSy7fJ/XFmh+1TisIr5do79isN357PpK2mQ7utQGA+iENDeaCnYGCmn5mjNKinbdOYTg5uZmx48TUl4UhntQRvx6FIcscZ2Vmgtx8kIoFTLmIwlGQtPOgOvcJ0inZvCv3g0GEpeNX0L4SdEmJaGUwOLvIvbuFQzw3vt8rAsJmRyQxPUUCUjhb0fa3jOj2I3AOEWBtSivr6979WFDDQP/9PQ0Hh4extPT07i7uxu3t7d7eSqAxroBXSOgr+3y2GGFnozPiqeu3iKvYeLphFTmn0SH8u70UHWv0luHAATNl3U9AwEGARXPDhR0QYDqyZQ//+v9dN5pg9Xrh8jAUmRAB2xiQA3/GH1D0EFhShwuguC5tGys3Q9fH8QxDD6Mv4Y4eVtVVXJJwFxd+dyF5LieIPZgPz4+vyOtfcAgIAGVBLyUP8dr1TenprRgTKMBLjrApG2k8qRTR0g3hl/dnMiFOZmcUZx5rpyPKlAG65gm4MgX5Pvu7m73f3d3N25ubnb5oc48HgCk+Z9fJQTwdnpFjQm3ZYe0jbAYVOWWI2id/E5NbuyCkve+aiB0nCMfd87pk05I+qxTtj6XIp5j5Kkz5/joeWX4K6PesVOHGOitRr5jN5U2RwZUGXIDqjJbYUhpZpQSsbehCgfzmhw6hCJDOg13qofjogKriw2dwtPjWdvwv+6axuVwO+hA5TR83DH2SD/zSA8ZEIcSAyL343Z0XyacgSj9d6FJBQmJUj5aF9QHvHLYe0baF5Bfnk9ncOOAM+SMFTdPnegOhbqnB49HN1aPQRw50cVmuK6yeayyv5rcWB3j8zw/yBlrzSuN4Y4+SoBAy5jRLDKsEQLuY+27GQhI91L99P5XA4Excn9qGamtV8pf/mqhM64oNHWGXlPQUCnZGXFeSRkmQwvlhekBVnS89zqHOxUIMCBwyr9bn2RQZwPUKTidMtC9HpSf1P7dAVNNJczq8buIlUbyBCuDr/3rDJib+9YpBS7LHbuogIsAcD/rdq6OKiPnFuHq1BvX8e3tbdze3u6mU/As0sD48zjhdQKcJ/PWBUsuUuCMH+eFaQFupwrEnhK8JpqBbqUumN8yNo/ZdlsiP9yXnIfjo6vf9H6659I5/jv16diFTt7HkNflrxbywOV3i1No00UPUtoV9Dgj9fqYmA8YckwRcFiUAQEDASg5NggpIqB1XKlTuqberEv3/p73eHCCVBl+V6dEFRA4FSBgAFCBARDLh66TUSCgx/o8zjV//ncgOt3DOYMCpFVA0I3IcBmoC8uKG8scSeBpAl5noFNoOp3CgMD1QSJ3z7VxFcpepVOD2RVK/f4VEToHzrrG3aXjPFaMaQVMVgx9x/jOgMAWMLRS15msa9ouP5s+YcyKTj0kTa/Md7yjMfxiJ3d9hZh3ABldgQqPhj0bt0aAFV+1IVHHiCYlNVNczgvkiAEbM7fvPUj7dtXwdxTtzAB/JSUAoG8OOOPBBtC9KaJGLQFeFwXrgAC+xqAKfYtj/ZCSAjD39k5SwgipY04f13X8cLsxSOC3LHj9AcaNlu3Ov4q6MqjTMaecPki6r9NmLjpwLFCgxqkCAQ4wJB4cry59BUSUv5nRrwx8555eT3yu0KHlrtLyq4UOCPD12cDh+ytCWTUmlBKfOwPACguKDsoUCl1fJeS1A277VF0EhXKcQU1C0TGmnK8a+aotQAirOeLFhRrlqXj5Ck/jK8htMMRAYBbudJEAt9lQipAlIK3pUBaXzenZ8B4KrCrwzusGWI4xPYAvgfKCS9c+CqD4TZ2Kh6+WqbR2gOvC904p4zPnojKos/vJaPN1Z1zdvdWyUhm415kKcpSMsdPF7j8dp/uzsvVeAiudOqyQA0IzWt50aDZgZ4YkRQYSVZ4m/lnB8wIwHuBcvnr0rNwVCHDIM2025CIjW+vSJWcQ3BsEXEbFn4KFWT8reme+XFpN9zupmiKYAYEx/AevWAZYjvR5yKcbF0jj3o92oIGjAXw+Wyszk0vua51q4DqyE6ALCHE9TakoEGDgpE6F8twBQLMIGsugjo8kD6eOCDiaAdj0DMujO8a5UsfAVc9XeSSDj2szx2glvJ7AAB8no3wIGOwY+q15HhukLm1HvAUR4VlQigxsDYG5cwYGUFis3Fj5QrG5zYV4OoA3lkE+MyFbpQoRpvZ3g+bq6mrvFUMO44JS9ICnUFw0oQsAuvX7XaRK1B1rGkXXyeNVb5f/x/AL5CpPpWuAKhDgDJx7G4jLd30LYMDKF1MEqDOPaQcEtE2c8dc2cJQMhLvmIoVs/DmqoXm56ED3TY3fQZXOcQa2GncOaK2Cgm45Kb3qEhf67+q+xFcHDLg6bL1XURekH1LGFlqKDLCRcWG1tAnOLM/qehXaZqWHL9BxSJiVOwwbKxxd7KSvC7I3wxEAPA/S426n6QCcea0zwUf/oJ6zD3m4eXKe33XvgqMtVwVz1Zs5Jq28cqcGe4yxBwbdv+6il/LWcsbojRNWerpWIK0RcHlwWa6OIN3YBdMCoOvr6933CMAHl8HtmH7cDofqCiXXJrqJlE4Zcbuce3SgQ2zknbGdRQSOTU5fpChAOlfenTPpwETHiM88+GN5+KrfO470allbeW2DASgD3dBmi6d4yLycviIG3njjGAUGGhlgowejrxsIKQjYYgATdcJfOEZ6VpzptSgNf/J1VQxpYx19i2KMz2+SrCiPU0YDErl2c0qT682yUkUIHLmIgDPMbpqB/7lfVTGqwvxKYlCo1x0g0H9OW5HTL5VzwM9VeVbXdeGt02+nJNUP2v9MTq86o3oMnma02n4zQMDlal1SFEHvzRy7FV4TdRy46vlk2JXnlWhDouWvFiqKhlHRLSGxeh2gQQFAhcaZqtXRuMeGnwEAK3hVvuwBu5/Of1bIlmkmYB1v3wlAes4BIg2Jahocs8cEwraz/Fw1PcL1dQZsFn48BTk+1bNnY4YIAN4y0egAgGOnXBd5GOOwzW7e39/3okAKBp2BRlrlRSMOGJs6vrUcB3a4XXg8uWiAAwfaTx2wk+RNvX2+5kCxjq9zA7UrBiwBgGPUrftsKtcZ9m5eKbJwTPod/d4BBBXA0eOUZkZtMKCb1aiycGsBHAhw6G4WxtXBqivCYeSwt7yCAqYuEHC7CTI/jsfU8OleR3FVngxHPdiwp/bRaRS+jnJeXl7G7e3tuLm5GY+Pj+Pq6moXNeE2TMaff6cIRzriKFYCa85z5fUiDATcLnpcZ9CKVzALR2/xrLj+qc7uOQYEzpBoGn52BgS20KxNOwsBmVJ0DXX89u1bC9yditJ4U9Dkxuexedj6bJJn5+0nwODSuvtb+e8Y2FOAxK8qczkyAOPC23uq4tApBH7eHXeQLUg9WvzcmoE0J17NZbKXOIsKOGRb1aHbHvhPio/nPdEeNzc3nz60g/ZA28DI49rV1dVuJznQ09PTXgRBPSR4oVV0wAECGI9zIB3MOFfQADngKQG3sFSjCmpEK1JQ7AC1e6YydkwKBBTIrRJHITj/VF7y9pW2AMVqaoDbTiOYNzc3n/jmL59W0zWnpErfJAB+qEHc8pwa6apv032tq+px5F/d7/Cd2qort6vUsXfHpJXylsGA+yCOggA+H2N/Hm6Mzwpkpgh0fpsNIIMBPgdgAKmBdxujuHfHU1RAB15HGF19ExDQ9PxjQ89RERh2XMM5PiqDD8wAFODHiw5//vwZ+0nbREPDyVNBW50qMsCkRh7b1KonyABRd9LjqQH1ep3HrPV2UQA3aF17cRSHwa5Lm9YpOJDrysZ45qkCHfc8Hri/XVkMSBylMbQlKqJjk0HW29vb7iNLuMb9j75l3s8JyGqbaz+ewzgbI08X6rUOzymPMXwUwaVL519JCcwrH78bJDha3mcAxogX2TjjlUI4TN1V3h0g4N4kAOl+Aml6QD09Z9C0jisDj+tRGX5Oq2UqGIBBh4FnEHB7e7v73d3djYeHh3F/fz/u7+/37iFK8P7+Ph4eHuz0CvOA9tTNY3RaRSMEp1JSM8/ZyTBHBNzrpgwoFPiy8WGwvMKrMz7cLwkIuLqm8jt84T5/q0ABD3vg/IyjrlGtZMVNCyi/zkCibABAzRP5sXyznJ+SEghw4Lubn8s70Vcbq+RUufMqMpCiBEkuusT6PgHVykFMebpnU1uv8r5qo5Z2IFSPf5VRNuh8ruQWG7Ih5PC4LpxTHpx353YZTFsLV41eGfTV56pjBgAw/vD22cvnj8dwOgCAHz9+jB8/fozv37+P+/v78f37910+8Jh+/PjxaapFvVEYRDYCPA/Lc8Xchl3w95XEfDqPGWnG2H+l0EUFFBCxkZx5ubw9NHutmk7PdZqI5UOf0S2oAeR0vY+SAg6MM+Vf+WXnIK2BmK2NmFEFVKvIA/oc/y7qxQZFAcGpvTalCgyo56lOTQWYQKvGf2Z0Zp59SpeMe1VmxUvlqM6cWNbbHf1eXd8qT18ph5s+YbxCM2Awhkf6bptd91wlgLyQiZW6AwLVgkEtd8ZXB+UlcpEBVvYMAODh45pOkfA50v/48WP813/91w4UYNpgjLF7n1y/MAd+AAzQbph71amDm5sbu3jsVB4WA0W34E030cE1jiS5qAC3T8cbSErORQNcPitAIJXPAIHBvT7v8mcA7njvKstKj1SAMYElHq8pX1zHmgf+53bl9KeWW1DlkfK4q0CAnifPU/Nw1PFcfxdV0YJjUQIGXRuhNONtC+/dsitqgwFsMuIWDFVzk65iyaBXFVIvhRU8CwC8M/DBUQH9xkDaNKbyBJyBVt7x/CoQcGWg7mOMvamB+/v7ndePiICCKV1IeHt7Ox4eHvYAwf39/Q54vb6+7v65XZinb9++7e3J4Hbi47pDZnQe/VTEkQE+h3zjGk8D6Fa8KZqgRl3XysyoMpLcv27dwAyscjQEhgPHiT9dpKsAkyMAyN8pZgAtHqcK9h11ABaPLzdN4RQ2R0e4z7T/zgkQKLmIgDoh1bP8D+o8m+gYXi8/fwzjxvkxVeDB3dPjKnrg0iQ+qusp6uPoWG219NVCVlTuWAejU5o41go4z03vsQHWf+XFRQTYcLm3ChKinjU2K2NF11uRKp5VpQ+jjjUAWBSIdkM5usiQAQFPHTw8POwWU2FOGF9phGHnNri+vh5PT097AIuVpRpQBmSnVqisLHmtACIi4A//AI1Ir1MELN9jfN4dEP2nAERpFm3jMdEBFrpw1hHL1Wx9gj7DQIDLQz35n/Nz0yGqC9K4SwZiK+B2/cblo2/PFQhwvdVoqBGrjI2mqwCBGsrKYTqUku50ea+k5Xuu/u6ee5bLdWDM8TajmRO6YpO20FJkwDW4AwB8HddSRZwHnAQxERqcBy0bpbRQME0NzIScPXf14ithqAQshZz4Os/h68JBGHIWaE6HtAAD+mYBnnl7e9tFDzCd4hbJYZfC29vbvbUWCgZwfOhc8TGJI0hjjD0gANJIgMqGAgGXP/dFt+5unCCkrceOFCy4MD5vCIZzJo0wVeC7Agwov6q7e75j3JP3r7qmAjoAhOh/p7PU0Tk3Yj7RdlvAkQKBFc/2UDpGJGALvx1AkMCHez6VWQHc2XHiS+9XPHT7bWnNQDJqTjE6cJAUFZMzqklQUC6jeh68DgwoEEhzv4nYK1IPKdGsHh3istjr59cDtSzc1zcH3DU8g4gB/xApgGfMexcwCNDQOrc/QvHnQiw7lXd6CFUh+K8or1o7wIv79JqmA38MHlj2uCyXn4sC4PmOUV318hKpcdfrqAOAoFvUieNzAQNsrB0IcLJUOSPO+KkDszX6wvn+Lprp2hRtcsa2ymMVsHb6YHZN8+rQStsvgYFuoYmB7vypeheuLA3JchlslNJHZdzgSQPJAQB3XtV9dk/rW0UhHB/s3eE6jD5HAjgigB+vFP/169du+uD5+Xm3PgBG/9u3/311EZEBtzcDtzWmEla8468m9q5nfZLC+8fwZCqlokaWPW010nqcyBnpFBVwCwiTzOuznDfvTQCA2lFQClw6VE1NdChFNU9JlWfK/xq9qvonGZ8KEGzlle+dui2VZh73Cs2cyS3RjypCgPPqma6DC1qaJmDqzEt2yCk5Jm1EBQHqifActUYHqj0EUnhIPXL9Ke8wiBpm7LaDGnmd+1cAoLzwPRh7GHd4+goIeJ8BAAL80BbI8/7+3r6Ngbr++vVrBxQABJ6fnw82noeSi2aBJ57fH8NPY7l7zvg4JZz4mIX7OE89dkBAF7S6slIEj8vgejvjr68ZqoJyazFubm52OqQjCwzCHO9pDUICBI5Xdk5YFrhteDyfmlwEK+mxMf7pQ44g4Pos1K16cEYzIODSrEZMVz3iBIa+imYy4nia6YNkl1K6Li+Olt8mSIVVHavGnL0RVJCN/KxiKWznQtW6W5zuLFaF15h/9xvDe2SqqLTDHcJL5w6UOD74Oq8TUKOv6w3wQ9+yoocnh+jC9+/f96YMXl9fP00LPD8/774CibSIPpxKoaoxgbyBdHttpGW5gYzw64cqgzwHz8bFAWcXIZspX5UBLsvJoYIa/HN7uIjSLAKmgIfHD7ejRgZSGL6qL5O+FqkyxQaPjxUgKBDkdRVsWHk91KkXETrPHdfZ2Dtdxv2owDdFqLYAAkcub1c3pHU8pPNzoVk0WOtQPT+zQzM+ZgCxoqVNh7perqJt7WxVCDx3t7WzMWD1nwGCRgSSssS/KkT1xPU1K40G6MCreNf2cbxpBAD/fE0XDfKaAkQJ8DbBw8PD+P79+w4MXF3977cK1ABwVADTBgAEDAYQBeA0z8/Pu/xPBQYUBOiiugpx85oCtK9u3MPE61cUBDuelNwCPe4PFylI0QM1Glq+ylNl/F0UjPPl/DCOeVzgH0ZVwVClELmtHOBBel6zgOuzRZ5a5kxZ/25K/CjoSU6NAqLUL5rvjIcqzcz4VXnMAMFXkfa/41vtV2VonQOYqAJMq23pwECXlsBAh2H1uljZaBTApednQF0QooZfIwEKBphnFWZVhBoC1vC8y4cpDVYnKAogVOHjOaa0sFDfOnCvG+I3xtgBhvf39723CaBIrq+vx8vLy/j27dvuDQaeHkA0As/yAsVTeVfstWKjJDUYTg5dG/O0FHtbIM2b8+2MHy3PpVHgyunVc1ewAx5cRIDzcHl11vsof2ifWXQgAWEudzZNwEZO8+Y+S2DDRRCQ1ykBAfMzho828g8yqE6GA3fHrlcF1pyenfFwCBBITqhL1zGeXQ+ey1ylyjlJ/FRA5svAQNWZHe9XPaWkXCo0n65zWBd58KK2mSJ2/85DhkHktGmhUgUAHB8OhHA0gvcKcN6/Tg3gGPsRICrA0wO8iJCVBPhkj/ju7m48PT3tFhDyugKABwABfvUQBuCUYOD9/X0HBJzhH8N7vbr+Q+XfAQYtu/K++Dgt1HNrAtw15LeikKs20zzSFIcaXjW+XE/WGW7cVJ6hLnbURaBuagCy5/pNjQWDNgYU5wIGQCpTDIoS8OG6rhicrbzxuTtO15wB1/xW+dY89XonKlDl23kmgXK9r8eaJpWlgHALLX2oqOq41Elq9DldBQhm5TsvzgEB91NKytQpZ/6v+KzKrxBrQvG6m6Dz+vGdgfv7+0/AANfcfDBHPtjb53bEvZubm/H8/PzpTQJ4fcob2gnrCE5BrNRBXblzIKDy9J3BdONGjXYCAhr2r2SvUpIVCGB57IzJGfB1beYU7SwSM7vueFJDnspR3ngs6rN67RzIGUmuuzoWSlu89BXeNN9ZOnfv2GClAiMdQODayMmSe6Y6ntmkGd/Otmzpx+WvFs6o6kRGtIrGmVYiBqp8OsYf5Dyo5KGnAcV8qdKY8aNtpYPXRSTSFAB/ifDu7m5vLwD+wiPzyYoD5SH8z2AA9/gTyTyFwHsJoP84VP7r168db6ciVZJJuTvvQeWrQ5VR1TLcOpAUCdA8krJPNFMWGgFwBsWVp8pJr2vaZKDVSK0YYQUCTjk6sFDl5YDNOZHWkcczKC1WddSNHK3wtyUytUIzw1ld53uz8d2R6y00ixpoGRUQWNFRSktgYCtSY8XoAIFLX5EO8K1RAD5PQECjAaq4E18rSNOVyZEAGGj869cI9VVBBgLqofJaCufhOkAwxj+7DoIn3rIYr5ChPtitEkBA1yX8bnKGBkZP/x25NwiqQVfJCCjJYYoEuPsrUTUmHjfKNxt+F+VIwMB5g8w/r7VAnk7+Zoa6Uvbd+f5Z/knhnhupLtU1FEij/bpal1UDrrp9ZkRX81Pe9LxTnkszA8qzfBJvx45woNxjAoExFsBA1wOpUOmhjcKV7XjgswZKxjitpq6UMCueBE6QjgdlFXHgsr99+7b3XQHeQEhfFQQIUAXAQAAL/gAKtJ9g9OHNp6kK/kaBCj/mbPmjSackNhhoU/SBvlqozzkg0AWtM7mfGX29pu2r5SW5SnwncIAy1dvUcVB5Nl1D4ow5H3M+1Zqi1E8Apnw9lcVpzhkMMHEbaf1xrwsIugbV8bD6DMpL+c10Zcqv6uPEa5XeRQxduYfSjBcnl7MFyl1qg4FVRe5C61saq/IauOFmYdzUuQ4AuDcHVAk7jxsKR+fbHfJ0bcPl83SARgEeHh52mwjx64L8xoAzzLpNsEYIlB9sRsT8OCCA9QC8JuHj4+NTxOCUCtV5hzCmrj/5WPsxDT4nH86IglSuFPxxGq2LtmkV2XDt0AEzDAQc7/oqsKZjQ4RnxvCr99O4BqXFp6lftN8qgJ7ycwr33EhBANqUrzswAFIghzxXyl55ZpbPrAzHr3tGjztgIKWvAO2Ml47Nc/aB783AgD6zlY66ZsDNfR5CXSBQHbtBvwoEHKUFjK6zlC8VaAUC/PYAAwJ8QOj79++fAIEu2FMlOMbY25Xw5eVlbw+AMcZujwFtSzyLNEnBvL//786PAAp6/yvCZSuk8sQRgUrhO4OgyoJJZUiv63P6ZkAlhyo/swV/zGcFpJXQJql+7l5aW8P84xneiwCvfKphZ1nkNweYXzVGGIc45jHgAEFqL6dTTkErxmSM/b1NGCSoTLEMOWOX+r4q251XtKoPVI84vTIzjp3rh9Qp5V2BLWfUq/9k8w6lJTCwEh04RPG7julOC/B95sUBAlXYjmf2YhwKZP5Y6aRIhRNkBgG6Q6DuIOg2E2JPEjzxfL8CAjbeMOAvLy/j/v5+l58LNYJf8MhRA6TlBYW66O2UStXx4IDZyrNK2qdj+A//8HVebOkAAeeb+E8La/VYIxqrQIA9+wR2uF7cLsjT1QnRmRlvChZwjSMUujbByXEXEOhz50osx3zOMqjGvzKoX8XfsfJx4zb1YzKqmi7d0+ur9XB5dw3+7F6H9xU6amTg1J4fUxXaSVSl7yw66nge4A3/7scLBfnVwfT5YX5bAOXyVMDV1dVut0CNHOAYvN/d3e15eA7MMABAmpubm91iQX1r4dSrsZ33M+NHlU4XCPBi08rLZxlg0OSiCmzcEhjV88q4dpWf48EZD/DMPM7eSNDFpM74uzHnjLx+Lpun6SD7lQxsMRC/i7rlKyDgaxotcGCAjys9Xt2btWNyvJKHr2VV55W+So7hzBFw4yDx0iEHMvm6XktAYkWPrfC6CQxU3sRXA4JKEeP+rJNXQ1/pGt87BASwAdFFejxHX201zAoZihEAAB4ZwIAOCFUQ/EEk12bstYJ4sSB7u+dCrCyqwaRKpdOn3I/Vb4zPxl43e3IeN66rwVRlkVbTp/OqnZjXMcan9QHML/KEh+92N2SZ0jp2xw3zz//8ZVLww3uOYH2DlqfHTKcGAVso1aMCApVRdnq0o+MrkMl92QEd1TOdPDq6WMFBxUNFqbxuJGAGCviZr6BlMJA8ZAy6jjGu6NDKqkfnrs/Kr4Qo8TkDA24QqteIY91PgDcV4mhA+mohlKZGB9RYqBFDfgAPTnGDOB3+lRet+6neJuBFVTNS5eNIFai24dXV1V60xrUNg4C0SBD/bAQ5SoD7qyDAeeGuz7jM6l5SmgpsWcZUtnjcJBDK6VjG+cNZ19fXe5GAMcYOFOvzMxCi5f5J5PSTAgLuL6c3OR3OOa/fXQcuezZOk/7HcSIFG7P0nHfi1xn0ytlYlc0ZdftqCQzMVtQm5TFjyAluVWaVXlGXezbxMrvXuaak+TmUzkpSPX63doA3/2HlCp44TMqKUPsHhojLwHcEeDEi+HZKNK2VwDNsJE+1z4B6PFVfzoCg854cEFADqMaQf6x0U9uOkffQ5zpUht+t3AcpmF8hNjRoE5ZnBrYqs2gzbnONkrgoAkcEXl9f976Sid/Ly4sFPlUdlDqOwblTx6iuOHFdwzrLozo/Zt5baeYUaFpne5zXz9dnx1t53kKbtyOuhIEHH88fVzQbsCsNN1P2ie+UtgME0nnVTqpA1XDo3gH86qAzKNoGDArQVhx5YMWJHwABpx9jf2MnfUURCxDxxUJ82niMsQdwTrUDIdqW57S1rVYGPuer526zKDWE+r0JbWN4vAzoePFe5YHMpgU6hnFGKhcMRtmQcx3dB7M4esLPu8iZLgpEu7y9ve3kjv95bOGNEX1DofLAVB5+hyfs6NhApJtfAkEKBFK7zfLupk3pZtcU1LjzVZ4rB1OPk+dfRQUOAQEV392I7NKHivCfKu+UY7dis3SdRtV8ZuCFhVI9kI5xqECCQ4eavz7Pik+/MsivAHJ4lJUxFCS+HYDwKS8e5NeMoJDZq8KrgS40rIYKPLAnpl86ZDByym/Cg3/wxX2SZBfEspNkRqMoDLqcZ8w/blsY/qur/1349vHxsTfn7UAev9I6mx4Yo/7sstYd0QLXLlpvrrszEixzLsql0wgMJkBO9p6ensbT09MeaODNtLiN+cdyoPXfChCPTccse2ZsVLb1WNNUeczyr/LqRCZmx2PkOXqXJtHMyeR7ybA70PlVMrWljqCrj1NK+oUudKELXehCFzo5nXZ/2Atd6EIXutCFLnRyuoCBC13oQhe60IX+5XQBAxe60IUudKEL/cvpAgYudKELXehCF/qX0wUMXOhCF7rQhS70L6cLGLjQhS50oQtd6F9OFzBwoQtd6EIXutC/nC5g4EIXutCFLnShfzldwMCFLnShC13oQv9y+v8BKfddBLfAUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRRUlEQVR4nO2d6ZIbyY6lwVyYm6qqu+f9n3DMpu/VkmIuSs4P2Yn8eHjgEVRJydQtwowWZNDDFzgcOIAvsdput9s60YlOdKITnehE/1g6O3YFTnSiE53oRCc60XHpBAZOdKITnehEJ/qH0wkMnOhEJzrRiU70D6cTGDjRiU50ohOd6B9OJzBwohOd6EQnOtE/nE5g4EQnOtGJTnSifzidwMCJTnSiE53oRP9wOoGBE53oRCc60Yn+4XSxNOFqtfqV9TiYVqtVnZ2d1Wq1qvPz87q4uKiLi4s6Pz+vs7OzKQ3T++fs7KzOzs7q8vKyLi8v6/b2tq6vr+vq6qqur6/r8vJyyvv8/HwqS/lXVb28vNS3b9/q8fGxHh4e6vHxsZ6enmq73ZbOc1J5VVXb7XZ65tu3b/Xy8lIvLy87eT0/P0/X7XZb375922m72k0eiJQ/n+O9xAvmR1J6Pa86Mj9d2V6/sg/+7//9v4d19E+g9Xrdyq/fH8kM7+m7ZEgf52fqH/+4PFbV3nOpjkzjaTk2Li8v6+bmZpLvy8vLurj4PvRfXl7q+fm5NpvNJLuUTaVhmzQWeM/rL/nT2Hh+ft6R9Y4ot0qvcUE5TM9Rxr2vyHuXWZdntd3TbjabYd1/Bb213k3yTz15dXVVNzc3dXd3Vx8+fKgPHz7Uzc3NpCuraq/PpMuenp6m68PDw849pWW5rje9j1N6H4tsD+WJ+krk+XEMdeOaZcoGrdfrWq/XO+Ps8fGxvnz5Uh8/fqyPHz/W/f19bTabqf1Jj/5MWpLnYjDwnoid7B3vQsT0ow49Pz/fEeLHx8d6eXmpi4uLen5+rvPz8wkIUAlLQKWkJBSutJi3Ol/KUkTjcHZ2Vufn59PvBArYtrOzs506vLy8TM/zexoAfE519TrNfVQXXhMYOAalOvI/0hyA7NIqL/VVl39Xv6pXoDXiE4Eu+83LeXl5qdVqNcnMxcVFPT09TYqNzyXQqt+sm+T+27dv03hRPpQ/padB8HHi/HPDq3QORBPf/LunUTs6AJDA7SjP/1Qa6cyLi4u6vLys9Xpd19fXdXNzswMwCS7FU+m35+fn6fP09DSBQ30oIyyTjpfyc5nlMw5WacRVNz3jwNKdJxLLVX78rrEhOj8/r2/fvtXl5eWOvZBdeXx83HEEHZy4Dnkr+i3BQFVW1O61eTr33Ijo2Mnfvn2blK2+K60EVHlS8KnMhZJJ7GBXOskoSeFSATOd6qGBKMHUMxJ4DoaRZzZStn6/qzOv74WS0Zirow/I7nfnXdCod7LJZ5Ix93IdACifUZ9KMT0/P9fj4+NUnhRcVU2yK+XNNiSZoDwm78uNAZV94pVHspyPfj3UWHv/j0DBCQhkT5tgQJHTm5uburq6qvV6vWekpWscCPC3e8QOBC4uLvaMLA2oEyNTkk3lwXy8jwlcPVorcuBNIODj0uVdNoNgikCIOpv1emv67cCAK1U39H4/CbZ/5PVX1WT8XTgdrbpX48rOAQM72pVgUrr03mTQ3atifegduuEaIWKS1y0h1CSondGbe+6taGnZ7Cv30L0PlX6uLPcaRiDEjVaKMoi/STl5W0gCBLr//Pw8yaiUNkPxrhDZhlRHB8a6cnpgTvZ0pQwmviRg0eXp484BQJoy+KcDAX6nfhQgkFFjKFwAkc+nyIDLg3vE1LU05MmLTvJJ/UPdSIfJiaCFTmCS1xSNIzBwj5910jTL09PT9BFISlG6t5bD3woMdOg1GXwK1ggMMGwqA/j8/FxV+wLm4aeqfZTJCIMAhis6KqEUmnJlyHx1j6CEA4bRAzdmruC7qQz+XiqUKTrDso8ZLXCPfnQvgbcOFPCeD+Kl7f0R4+OeuCsmKkP+prJmZICG2z30VK7a516R6sN8PM9ONueIkTTSHK859pJBmQMB/ySAQFBPHam5cIIAX0uVnKOq/XVQ7n273LI8AoIupO5gm21hfj495vVlHozGajy7/DkQYbQgtVG2RmBKH9VN6Y8ZHfitwEDVsrC/36/aNey8isR8ek8ielBpbtTTquN9ntUVEj0or0cyVgQiHKi8l55TfgwBO7EuPwoI5ug9KNQRCEjp5oz7XJuSvDkg7KItXm4XdfH/HfD6wlpGBapqz5vxqQgHeayzz+NSEXKKYLQIlmM0RQOcJx1/uufI7xEQ+CdGCFJEiXKkqACNl4BBmi51z51RJwcDCQhQf6qsqt0p0KQjRdRdvpic9VWeSbdJ50nnK0+WTcMt0KCP1pnpo8iJ6kRQ9fj4OKUnL1Xnt5TB3wYMdFGBLvSflFhCkCIKUTIY8rh9/skVuithChznkqg83XPy8hMI8MgG1ygkYXej7krg4uJiEmpFRpYauhGNBu6xqTMmh3j1VIRV/WJVPuOgUJQUs18leyNZdrBIORS50vbV/oxuJX6wXwkM0tyrgwG2gW3Td9ahmz4j7xN5/WioOsDRgbT/VGAwp1N9akDfHVw6kHQebrfbnSkCLz+V7bqO5VT162x8XHDMdDzw8ZLAgIx1ctyUD9Mqr8vLywkwMzrg0yxyHql/3lrmfhswUDUGAb6wz4GAk5jOcGkCBO4NJTDAK9GhhNOnC1JddE3hVAERtdG3OpIfVbtel+fLKRDyxgWWYS9GRHxuqyP+/zt4WktBwJw8KU0ngw4EqACouDqPrWo/yuV8JYCkcq3al9dkvKt2pxg6o+uG2nfJpDneFL1iWzkWHUgukSNGDNJzHThNQOA/GQwcAgS4aFBbCBMQSIviumgk+z2BV358OkvfeSUQoO50B1H/y3hzTElPu5cu3chpg1QP8kF5euS2qibeCgxcXl7W09PTXuRhDvD+bPotwYCDAAcCpE7J03g7CKD3wPtcQV2Vt+LpvrYj8p7K033VV8JDo9tFM7zNXGSTvFFGH1L7+dvDcKqj6pTWQPg1KdnfnTqPXURj3gGBFBHo5IzXVBdXfB7Wd2BKJeaecfKYq17Boeb8ExB2wy1Zc4NASlNtHm5OlDz2xBte9RwBAtN6Xh3o+E+QYdIhQEDnCtzc3OzsIFAfPj4+Tn3jawOcbwnopnIZgbi8vJzSUi86qHWQ6XmT1Ledp685/IuLix35kb7l1lqXcYIBnacg+daUR1VNYEA7C1LU+C2BQNVvAga6iAA9nzT/ow4kuSBIuGi4UyjK0WQyvHxedXHDLqH1UBhX3qawlnudRJ0pMqI6+6DRdw+VJkPl5Xn6xCsHE++d5iIC3X/u2aR0LovuKSc+zRmgUX2Tp77dbndkytOwLDfSXl9OS9HTkvy6MksgueqVp5QdypiHmlMkhTQCYMqPxsL5nyKC/vt3kuml5DzrwMD19XXd3t7Wzc3N5M1KfzISxN8eFaADxKtvASQY8MOxuOWbbaCepQ6kjq3aX0Td6bKqXSdMdRUQ0DVFwZSHxpzv9hIfxGPtLugOHvK6/kp692DAFW4CBclQuafhQkQSEvTwv3eEG3UHIksMBxUiQ0/+PAWiU3LMJ3mhbpz9XuclJo8u9QfBVlLSv5sipaH1/kh9lJ4fGXnvt0OQ/xxoEUkpuqF1SlMNCQS791T1ut+bfZ8UIqeWOt55PqndCagmsJq8f9cNnid5lMaP8+N3p9QHc9751dXVzjSB5Ovbt2/TFrl0iI4MpcrwdU0EAox2+mp75cVIl2TLo2JsC3Wj+ttlzeXA+eQyJNmXzSA/6XitVqvpbA/V5+XlZVp4WfW6mPD6+rrdZfGWUYJ3Dwaq8gpXR32i1KFOnkZozwWk83AkyJzncuWq+npdHRR4G6tegQjr73NeHHiuxFyp++rdjjzNEmM+UuBOS4zZr6ClhnQpdV5o8lL8OV5ZP147he0eT5KlpJxElFEqUaZNQDCFdxlFcAXG/+gRJtCa6u1g1iMEVJAdUXmmEHICAGlL5X8KCKjqpwccDBAQEBj4lmqCgXR+APuN5XcgQL99oWLV/u4TRmhplBMQSG2f4w/JnUTqaR+HaivXaPGwL7ZfPFAEpuPhWwCBqncOBtywJo9clBRqQlUpnTqRyjwpH4848CxuEQfMyJvsgEwXskpRCyovF8IEDNxjY1uEmh2VdhGCVG8HAS7AxwIDVYcDAjfMyetMgEBX94r5DPMQucdL8nLS9xGQcJlinUjcRcL8KBvMh/lz3HBMiSjDSyMB7h11cpaUpfODVwcTHAsd//6TQYFPvfLT7UTRlCbBAKeKOm+b8+cEHQ4GfPGgyzv1n8u/A4FR1Ksqy2MC2C4DnR2SbBGkMA9O765Wq1qv1/X8/DwBgm4B7q+mdw0GqsY7CFwRuyFKnUgFQ8Xg84bukTB/Cqg6Xb8VZUjk3ph/p3dCZUqhVR24sIvKugvxOwhycJG+81nnW5emU9a8HouWAgKXHX+mM8pM7/xKRsnlk7xPnpsruVSnqv4dE55O5KFdksobAQHfNqg6pwOwPDrmdZwD40kxJl4m0OWAgBEcBwJdWb8rJR64F00Q4IZOxld881MFCQZ8UZ7z2IGHpgZYfgLb2q+/Wq3q6elpKsPD9aov69A5WnToknPJ3wngpDIJCASwef/l5WXnrIaqmoDA1dVVXH/RAZKfSb8NGKAAjebIRd1gToDB03QKyIUpKXnNKVEISJzb9KkOta8L6XeGmnNaRJRdmMwNCgcBB4crT8+HdRh5tbp6JOQYlIz7HEignCSlyispgYgEBtJv3kuGyn+n8hKg9DxoeOnZ0WsWdYab5emaZEd5zIEAAoHkGblMdXzytN5+AraRkv3dAcGcXPkiZH6v+t5+327HqQEufiYYoBzx4J1UfgeS6by4zKv8JE98nvrUQSnn7/lMZ/wpl8n5crmqqh1b4PIsEMSpgvV6vXdIE/vuV8njuwUDyTNKkQGn5PF3RiihrZFnm54jQFitXk8a9IHkHhPnwrp2p3o76mQUwsNLaW6ZXp7zkOVye83cVEEXElzSnt+FugiBGyG/Jq9T+VFpOADsDJz6NXk5GheUeVeUfMZD/0mRVdWeQurGiNrRHVTUUQIDDgrYRvLHIyYuz7x6WTRkBB7/SZTGtztXPFrYPfOq1/6nbmU0gNEBjwxU7S44HTluVfvRU+nSkRPiUVz+n+rieo4gx+0GvXPKqBw+lxu/qj7JOVytXrcbrlarHUBAvopvv1o+3yUYcEMymh6omo8CJI/Ov4+8Wn3vynBlRQF1b0kDb7vd7hjyzpB2Qkby8JSHdBMI6IyGz5X54PTphU749fzIazsWJU86ef8jcsXagYJUdurTBAS6fPzAk1Q3gkHJm3s7DPumelblKFnHC4Jgn+tN5Xj757x1BwIOBlK9UrvSljjfGtnx43eiJUBAc/NpikBy9PLy/TwBes8yhr6LgMaRcpHSMLyv39STHglW2X6egQ7scUCbgDL5QT6QlBejIWdnZ9O480OVHDB0YMcBwdnZ2VSG6qHdBT4VI2eTeupn07sDAymMswQI8NnOAI0MkkcJ3DAkEOAfN56OTCXkFCZ6UTSuMs7JGyUfCChS2Cyhav3uPDiWm6IHnpbbbDqeHxMMdINnqeFXHqNPFwFgWX514+cgMNV7BCDU536olb4zj+4kN69bF65PgN3r6bxYAtpTfUYyNcd3znmzPQ4Ekof3OwIA0WgMekTAV/W74fTIH/nIqQJONXk9knzIQLqspJNWPYpFIOBvQ3TyrbBuW3iPdeeaFyfKEddvObnMExBoAWZVTXrcd1PwRUa/EghUvUMwUDWOCFRlxarn0hxiUiZLqVOSVL4i1rELrVOQ2dkd6Ejtd1RLT7Dq9cAL5sG2C0QkniqftM1K6Vwg3Rh0ivxYyvWQcucMvRvYQ4BO8nxdvsjbFMFI+SyVZy7wSnkkZU+ll/pV/OmiB56v94XySPe9zUzvdRB5RCJRAvIdEPmdAUHVPiigIUy7BuYAgUgyov/cM/Y6uPGtqukkP/eYdXqr/qfnrnIdkHRgwE8T9DbMOXwjSjLTgV3eUz316mJ3vBi1YX/86ujAuwIDHQjwUFFVXrk5p7xH5fpvn3uip6R76hB2SvLEXWjSwKJRV1qf1yOK9YErQfH6JUrnZXeomnXnvJ9+J14eOqjeK7lMddGpqn6aYeR5d893z7qX3/Wx50W56pS2KzMHAnymAwJd+YkHPjYTkBjxNvXBKEoggLukH353SvrMHQk3OvTEfSGhEwEl9Yb3ofcVy9V/acpL8srT/px8KtTronwIBFRv1YHTFMlYdzox8dV573Ik/ezgjPf8TI5O5/wKIFD1zsBA1b7Xm3YPuPCR3IMYKcuu/IQWkwfhHcQ8kjL0dAQGnVCRJ3wPgfNG+Yzmk12ZOnBRvok/Pvg6SgbgVwnvzyQHjx2wVNpESwx68pqWGHVXBAlw6LsDQ91nSLyTjwQGUgjdgQA/c4Awjc05RUcQwjxGxNAy6zACQun/34lGPOnAbQICyQFzcudoBOi8DiQ3upIrrj3wiM9Ip/gUKXUs89acvQOetDZgpPfoINE2dLrQeeF8Zh7eF79Sl74bMOBC2s1hJeXD58WsZICT99LVJaVnvkm5Uxl6Xux0huhZVgIEHlpLq3+rXgfUer3eqYvP97Gumu+v2p1bVT2EnhP4GhnEJUrhPdMSQCBynoyMjJeh/0YDvFMgc2DLvSmBATfsqS1UxKP1AgQe/uwSYy3q1sd0PPG809hhFM29V29rGtej8n936nQtgYBHIqv21w4scQyoS/w01tFUqsrUokKCgs4B6+rAiCbLpP5TWpf/FJWg01T1ulZL//n46r4zSqH2an2D2uQLOjn+fzYweDdgoGr/zH9nRFJUIlfgyq9qPKiXKKzOy9FVSjaFc9ihHpJLgMDrJWTrKF4fpru4uJi2G1IBkk+ah+OVYIPlcACmqQ0SDQbDsb+DQu2iAkmmSFSK5Bf/9/bPRRfm6uNpqHh8PHg9kmH3eiYj2XnSIo9u0ZMjT7o2d9NTXrfEJ6Zz5e55u/4YtTHV5Xej5FwsAQJJh3o4fo4n3ZjhvaRXGAHonqd8aQrApzBVZ9oOP5yIC/OU3mXEibrS25MiaEkPcrxoOoTrvJQ2OcZ89mfL5dHBAIWOjfcjG6syciPj6F3oPw8vebmH1NHJFYivqCeS5QpZfyd41a4gkScUfOXDhYf6T+EuAYEEYNJ6h9GAW8ojgg4CNefPITw/BiVlmfoggbeRZys+d0bd83KjmuZa+Uwy8uma0izxkBMlMOHekXsxHc8931THLn2ql5Ss19XbeSgo+N1oBMQkT74+gLJe1W9bTv0y0hn0tP2EVo9+6h7zY908OiCDOpIN8cKnBeiJj9YK+PkEsi3U1TxrwSNmrIPLYHeeC/uomyr4maDg6GCgqnYazBdUpG13I+XVfVwhHWLoOhopkCQ0RHT6z7cFrlavRxvTABBE8OOoneWLPIriaNONkYSTbRp5diNBPMS4HINcHhwE+ACcUzYpb33vDDqfHXlykhVX1Oy/bozo/9EngbfUlq7tS4xpMk4dUOjychDCaxpnMkAOmBJoTXn/pxFlyrcXVu1GU6kTeK+beqTO02+Sr2VJhl1E3eSAmM9oRT7bJqJRplz4wXAK+XdggNMl3ZQtj0dOjkHiB/mnSK2n962fczuB/g4dFQywcwkE0na7ERBwYXLlnUDAnIHrlLsju5EC5OB5eXmZUKkjUxHRJPlDILBer2u9Xk98o+C50usE2nm83W53tuakcJfzgcR6OMLv8nkvlLxwX0TVTefMtaeLMiwllstpJSrpNFXm/T8yuLrOyXECKksUkSutlI+nPyS/dM/niEfGn/dS+e9RZkfU9XVVjsJKH/BAoar96ZV0LoVHIJf2LQ20gxCPBlBvLQHlLMu/s01qrx8V3IEBeumUO49ca6pqqdxQDukIqo7b7XZnWnjuZVB/h44GBhyhssEUAjeoCQTwewIEDgIO8fC8zksNgCNUzQulhZESMlFatOK8odF1FO8GnfzioRYcEKwjj5+l16U8dD/N9XZ8f29KdeS5e2iu8+ZHYKmLMjh1XlRVBgOikfchRUtgQMNNhdz1i7cp/Z4DBJ2hcNlIc8cjSmUlL1RpR0CgAwFdOb8rOTD18wXIP45951tag9E5Tknu0/qaNL48BM/ymBcNdwckuzUpacrCn/cxSz6yrQIGDlo6/Ud+cnqZ5VTVnm1MJ2UuAeVL6M3BgBtlCma3RiAZti5PXtP3Q1Elnxt18hwIUTsECFKIjErR3wSn+SjOnUnZMyJAvi1tJ4XST2RjHbo8Uqg1gbD3oly7vnLjnba1Vu0PPio2z08AzL0cR/Wu+FhX5eGy7KFFgoAOELC+SU679rGOI+8zpU+8dkPgUS4+NzfmUxtYl5HRf4/y+bMpAdTklPiajw4IuN7wclgWdTyNaKof81a+nNPX/0ojPaWo5gjA+rPb7fezXRgZ8GlXdxDSVJ+3MwEFfveIBe0CifqCgMDfhyAg8TNk903BQAIC7jkRBarRac7v0HKXgIDu2ZHyTMqrU1CcLnDPnoLI7XwuJBIAX0/hc0lMT+Gm4eeg8mNFHU0T0eu3e10JjPigOTYlOUiAYGRkOtCZ8qmqnfMhRJRzz6ubA6WMCCB03rfIDWwHXKhQKPNzXrjnPQLSbhS6vmAdunokuXIPNCler9eS9v4nkIOAFGEkCCAtAQIi8ZRl+LQv9X5XjkAAZTOBE9dbbIcb4K7Oro+VRweUNRWQiG0cjb1UH4ICjhE6FNwBNhfdO5SOEhlICDVNDfhLIJKgJlQ5Ys6cV6M8O++B9ZeBTPO23pkitYcLTqpez6Zm21UHosGnp6edRZYOCNxLd2FTuqrd9yeQvx5aZhnko59C5l4YeXdoKPhX0Mh4Ozh1ZdAZRX7c0KUBnWTPZTLJjdJV7S54Uj3SNlGS+ocKsgOuNIzdWOnqpzHh6RIQ8PJSuzpA0AEvl785EDDq4/8EcJDAWAIEDgY9j0Q0SB6h8sWJydh62dQP3PpM8mlQd2w6SkAgRTa68Uln5+zs9bj2lK/LV1cff55ePuU+RSwTIPi78vpmYCAp3tH0gL9ZrAMCLsBkpIODUecwz1SGmO7eWdXuCVSuWJOi5TyRl+Whet1/fn6ux8fHWq/XOwOMiwAdPElgHTGrHmxb4q/zTuTAoYvakAcq/1jUAYERAGCf8do97xGAzijOyWE3NeGKxwGpR5u8rg446Hml8rz9zK/jrZfd8at7XmnY3g6YdPk5JdCjMnRN7f/difynvuUZJSNDX1U7ei9N44yMvK8DE430MfnuEdAUiaRDwna787HEEenAr9qtaVrXpx5JZfmU5QS2WTbtgj48S8Z1lT4/K6p1lMiAo1Pu4aRRGU0PuIJIAICeShLibvBTSeq3Dw43Fm740vcEChQWYseqLm64lT7N97HunE9y3qv+7uWzjh4uTEJLHv9O1BmGBAiqMhBgXq74fG40eQ2dEaMc+f+U59S3qZ1u8N3IuiGcA8ps/9wzo7w6peteovJP3pfnp+soQtUBgLl2/E4y7nqIsuZnlNDQiNyIcirK+4b569mq2slfUUyW447HqG/lAbMfXD+6Ie7aovotlXUHJrqXAIwDApbX6dHOZqVPAgEuv38XFLwJGHDF60JJ79Y9VWeU55uUdGKm0nSeWWfEvSNdiXQey0jZEWQojzRvpXAQ0wihpny97vx/5D2xX6p21ykQmJGc70umAY6lVJOCdBCQFnWO6qt0yQNyQzw60jSBL5VPkFy1uzbE5YCGMLXbw+gOvJcqSObr97oP6+f887YyrzkQIJ6wXQ6gWd8ErpKDMfr+O1EHBDjN6OmrXscyTzJlfyQ95WVpPGlLNGWY+kT9xLB34nWSa1HSPSkN5S05iKwPvX+W3wFZ1o+6tEtLIJMiB8neKO/Ocfm7cvpLwYAPbkYCuvMEloAAkXeMK3n+5v2qXZToSDPlyXOk2UH6PWq318EVrw+y1Wo1DUTVj4PHQ2NeH5ahsJbueSRGz3u7ZWj83QTeToI49ldC8e9BoXaAIBkwEfnDPiQI4NTNSMm4kZLXlLwYlxf1Iw9N8edcIaTwbqd4qnbHwNL+mgMCKod5v7y8LsLytQQJBCSFT1lLoVqvG2XRx7i35z3I6qGU2iy++hY1yp2DJueXR5SqdmWIepxXAl6XfY+0kpI3z/usl0dx9X8XkdNzqU6Uya4uI1Di9U3/s45pLZzrGH5kE+aAwI/K7y8DA6yko1MiUyIvn3/uvIJOeB2Vpk/VvocgSt6zhC2haDeEXj9v/8hD131GSbigSlECXySo72lgOwAgb1J7mC9Bzxzy5qCiUnYg8F4U7BLj5emrdk/KTCDAF3RW7aP85FmpDPaJg1mRT1MREPgiwg6AeZ6r1Wv0gnJAGgHexFf+9nyS8U0gaiQvlP1OoXb9OlLSvyN17XG9yyvldRTddCCQDCLHAPuRcihyPcBpiOSUpPFEUJnAQuJPMuKpXE5LeDvIF28f68L/k/MneXWdrmc9Sqnoo/Sy/+9jkY7HIfRLwIAPxKRAuWjQgcBonYB/d6VIgSdSrdo39kkxO8Ik+kxCsQQMsH4kV/j+8iI3IpomqNoP5RMMcaDTUIk3XhciYkekc+QD3vnin/dEI2PlHrx4RhnmiZnOhwRoXYZ4Lw1q3uuiMlWvp6lxPQgVXAfmVC6nMRzEsFxX1qmeh8hO4ocb+SQ3/n+aHuG46nj4n0CdEXfdS73I6KAoee1Vu+AzAQONibRVsSofoKYyXFY8QjuKHnh79Z1147VraxpXjKSmchJY8IgadQb5woiAT/d6WW6/0g4Qfv6ufP90MOAVTCGqtE5g9FG+Xo6XR8a7UazKK7IpeF0ZFCwRjUbXCS48qQylo8HujJQLg1Clyqexn4uQdJ4hedpRUhpp0Kne7wkIjAyZyBWjA4H1ej0BAZ3kKCWSTm9keewb9Y9vvUreTsdDeRe+WpsgYIl8ev6juXof4x0AGKVLwJzfPfrFtnk0oFuLsFSO/d5cVOS9UKev9D05SGnnlsspdR0dtqp9L9h1CvP1iA3rpe8+DhktpnxqTZVvqRu1f0RJ1lmuTz/QIJO3ykt10ic5YAIC5+evhx0xfQIhGssO7pzfqqM7M4fI7k8FAx0QcDCQGjxC+szfv3eKhkCAyM2VqyuMToi6VbWdsUtCnvL2Aer1Fsl7539pq8sIDLgiGAlLMmSjAZY8yvcEAkipPSNDJr5eXV1N74fQwigacoIA7ztXzHzfhK+d4XPJgxBPJdcOCKjMqbyTgWcbOSa6aILzZgkwmDPOVFzcDusggPdT9HDOACTlvgQ0vEfq6uu89migOwJ0Jqg73TCpf1wuEpCmrk35ez2rdhfqsWwZZo8aOBEgcLosTQX4+BBRj+pZtk918qiz5JaAwB0ITvnqjBmNXcq62kCbmGTVHcwfBQCknwIGUmXp9aTV1lX9Voq5MroySVRsaQ6bQqAO8ZdmKK0LhA+GUZ3ZYUnhOwhIg1d1l8AJCOiTBDCBAaeO/yk8m4xD57G9RyBwqIFSGvXH9fV1XV1dTR8BAhpgP0iKhzuxb/jSKV3ZR+pPRn66aTMHBCpP+fh978OkLKmgU5nOt6WgKj0juXUQkOSH3ibHsId9O9lz4KMrvcD3JLOJRrLK7zTs3YJtypnuUQemaVSRe+8EAeK/n2bKLYaUB5c96kTdl0zQ0Lssu9zr+6HE6bbEb9o3Rkjcwz87O9uZSqx6nd4Vvzj1K6Kcu0yyX8mnrp2HyPTfBgPeuRTAtGDQhccHdpc/y1gKBHyQe1jRQypV+/NBfNbr5Z3gHkrqOAkpy2OZeoaGRuVIqJ6enur5+bmenp6mwUFU6wsFObDIn6rdrT7+XgIXQkZHUiTAPbauH49JnVHqBv3Z2Vmt1+u6vr6u29vburm5mYCBtkxtt9vpUCj2Od+dvlq9LrRar9d1dXVV19fXdX19PYGBqpryUn5VryeTJUNbtWvkExAgIBB1AJzGcg4IJJ5xLLlMs36k5OnPgQH/36N2Pv5FbJvk2UHBewUEc2PI+U1dkKYHCDirKspsp5dT9InA0nUt+79bX5BsiX6zT50XrrM5HghMPL2nJVGOEygij/mbUQ3ZP45v5S1AoykDtodgxNvq/OkivT8ix38LDKTO82kBGbWESA81HESNqexOOVW9hsPSGf7e2T/DcCVAwJCyC6+++4If/uenUyVKkQam90HFULSu+pBPjuQl+K6gU2Tg2EDAB08KsXXPCZhdX1/X3d1d/fnnn3V7e1u3t7cTGHh6eqqHh4fabDZ1cXFRDw8PdX5+Xk9PTxO4Uv8LBNze3tbd3V3d3NzU1dXVNPgFAgQEUri2owQEtB2pqlqPilE0tt2/j4BABxyW8HououTANaWhfLM+9BKVjsBLgICggHV8L8Bg1O/eV0nWOXZlGDXO9ZtTjsqLMiVSnjT0XSRGHjEjxR4hTYDN9XknO2wf+9mjqs4r6nvKlY83Ef9zoOl1S44GwZDq6mNDsjin4xOfvczk6M7RT4kMqEG+ypqnT0kJ0Wj4McNK13kHSbFQEBwFe6e6omAbdD+hxLlQkzObnTsaBN6mDugQKHgdyX/lR0GbEywOBL2wiFMPXs/UXtF7jQZU5chVkhEnpb26uqoPHz7Uf/3Xf9V///d/1x9//FFXV1e13W7r69ev9eXLl/ry5cteOJZvm9SUwO3tbX348KH++uuvuru7q6urq6r6rpw3m82k1NJBVHNtlKy5t6b2ywsRsKSCc6+ez40MeQISlNkEevWs6inwMjLqzN/bnerEPKiDqDMECJwP7wUEVC0DAuyjJONVr86E+CAgQN76GqQULaFMJQdHPNVv130jXZLkrTNoblg98sztsjzp1fOmg8i2q10EGckW+BhVfdM0jNebBzvp4+1KgIz8ct7r95tFBnzwc0qAC6OEDKt2twR1oWg1YhTCdFBA4Rf46BbspXwpBCmkmtJ19SY/5oCAeMKwHOvnYU7nS/LcnSepr/Rb7eQUgQO1qv5wD8/b7yceHYPIjwQEEmDUc3r28vKybm5u6q+//qr/83/+T/33f/933d7e1rdv3+r+/r7+/e9/x62Gm81mRylqikCRgT///HMCFQ8PD1X1XSYeHx9j/7nc6jf7iPWXYmL418OQlDW2Oxl0lpvKI09T+FakZ+kkUFewDAIOl3cnBxEeAfT2CQBIHjo5f0/goGo+GtBFYjySR50m/vo0akeMqqh85cNoKE877HQ6iXVn1EZ77at2+9KdQJXDhbfUsb7w7+LiYg8UqR5OBEcu/2wf+aIoqz9HXXRxcbED/n2RIttM3qWP6nEo/RAYoNJgOHq0/zoZGjKMeXYGrwvzekjcF8GIujAjO2juzHel76II5JEPkFQnls9pAHrrEhiCqK4vxItE3YAkf9KaAaFVf3GI18Hb9F6oU5adwuTA4rzfzc1N3d3d1V9//VX/8z//U3d3d7Xdbuvz588x0iAeamGh7yLgQkLxnNNqBHSkpBSqdhcxuSyr/5je8+BY7IAA06by6aGNPEB64fpdtWvMOZXl+RAUiJbKXKp7Mq7vSYZJqa4OcFwWqU8kJ50OEFBUH3V1cCBAWdHY0SJZ5cXpR4JktwEsQ/9pjRSnNqpeT0CkkefUL8eF0oknioaST+QvvXL+5/JNvc7y0zsNOrsmsKN0XEjuoNYXh3fg+BA5/luRAffI/SQqVj69dMgrmdCNI1f3OhwccNEdy+88DZbjypNlMq8UHXDlNDK46Z4QpH7T+LKNaVqFQuRIUoLEqQMHFPQWSN4+KoAu3ZL7b02HAgHK9OXl5bR7QAsJb25uplB/1e70DXlJj6CqdjykqldllOZpfSw4ubwxPcPB/uZKPqvv7FM3lIcYXRoEDwunPOiFu8fHOni7k1x6ei8r5TNqy3ulrq0d4B3JkPePEw1q+q08Unky8jz6WLyWnlutVntrylI/ceEtpzK51sGnoxkZ0FXlaK3Pt2/fXyUveaWsu/y4bVBbHSwTuPqYSzbJ+4IgnHzlf7Kn4oWD7h+V6YPBgAtdd6pg1SsTWfG0ToD5JjDgCHFOUVbtngSXohFO3jFpvtzBRKdAZYA5B5QGEp+j0hZv1dEMJ7Ecn15IPKHCZd/w/xQicyXNto8AT4roMM9jUFKUIyRN2XYPPm2VfXl5qdvb23p8fKynp6edK40cPZfn5+d6eHioy8vLqnqdniKP5xR5MnJUiC7vjM7x/zQeRaPoF4kKK0UGUt6qJ+/TwyKYqcoh2DlKspgcAx/P70V2O3K92RnkQ+RI+Yi8/9xBYlkpYuvhe3rg/F+r7buIJusgG6IdVfT4mY5RVtVbgF4Oq8agvrNt1HEekaV8M6LFZzgGmY+ItrGL0ojn+nhemuIQX/+ujC4GAz6o1Zl+eAq9T1Xct635YE6AQL998HujO8Sv7/LQXDGOBosrRhr0DhAwvdIQFKT6dt5QGmS+w4Bpk8J2IKXvDDnNtSXVNYGB0afrm7ekTjmyHUqXQK7kW/3CHRcaB35ugCIKUl6M+jw9PdVms5n68fn5eYruUFZFDiLdiLrHkcaEGzoqOAcDPgZ59e/pd9cHqU9YZ5cP6pDus6R+HRhIwOg9Rwo6HiZA4F6lE4FWByg9zE55o06ivqKhJBhgPly4SZCtNF5P5qnxox03PHtFz6o/NaWg9TLaybNer6vq+7j7+vXrlC45VHQmSR7JSGncIXXyqdgOkKe+FBDwPvg79EORATdOfo4AB5sAgB+d6wAglcNreo73q/aNqsp3rzah2i4P3qfycIOXlBKfFUByYXeFlyISBF6cOkjPsO2qj8p2L9D7aQRuuutSz+q90Mh4uGLl9Jf6TYb806dPtd1udxb/pV0YrjCenp52phG0LXG9Xk/RAW1JXCKvCbClNnsbCQpJc153ykttoxPgck6FLtJ4WK1epzY6AJlkrquf1y09v2TKMtXjranTjSMg4IvpnEbTgYxMSv49neskj0p4NDPJXlVNtoPeetX+DitONWh8bDabury8nOTGFw9qfD0+Pk5t0pZgRSKenp7qy5cvdXl5WU9PT3t8oAfOcd3ZjRSZUb5pLZpPJ/qhYRpPAjbima4pIq/Pj8jrQZEBV5QMoXKRW9XufKhHBTrDuRQoMK2+uwKm4XPU5Sv9q15RKw2jhyiTJ+U8SgNhDmx0Rp1bUuhhMk/ym/VQmzjAhJBduHnt2uVKmfXuvDXP471RApTpf6V5fHysL1++1Gq1qsfHx/r06dMk+09PT/X169f69OlT3d/f19evX2uz2dTDw0M9PDxMSkn56lyCzWYznTWgKQNGs5SecuXvIujakIyB+sePOPa+H0V1OmPkU12uNDWl4p4ivb5ESfaSoR/J2Ci6kNq2JM+3pE5nJiCQflft96nrgardEwh5Oqael55yg+31STt2FA1QGuXPRYbUz749fbt9PdyLY6Gq4iFtHEeXl5fTDh6d6yEwcHt7W5vNZu/QNU5JjCJo2+12j+dPT087DkRVPmI7nX/jtkDjhsBK/Ol2RlG3LZXhxWDAG+srolP4uQtFkuYaQK+o80D5nzPbvXciTT9b3oVASjMBAReKDpl3obrkiXCVawqdPj097Rx5mwCEhwh56AcX3aTFkok6lDlSqHrOfx9LsXYeImXM68++fnn5vtVvs9lU1fftgh8/ftwBwkrz9evX+vr16wQICAYYGaOy22w2eycRMorg8st2dAaU3oWuaie9eW/zyDPvAIGXpfLpAXrZnt5pTlfMpU1pkrwySkJ9QufgPQIC1znpwz6q2l/Q5k4PAZl0x9XV1aRD6Fg5/7rxzvKpx7VWQKdw0qEUSBBA1vjS9IDqojZRp3NnAtumrcEfPnyoq6urSR/e39/X58+f6+vXr9NaH/9wusHbrnapTQS8nBrkMcTU23SaO3kjmHbqgBdpaZRgMRjg/ERaJ+CFs9HJUHQC60qGaNG9feaXGJCMlPLzhWB6xg8+Yad2eXZtcs+8and/rHe8e0oUZgdWrI/zgatryQ8NHH+GoEFIugNfzodUB6blvWMq1QQI1E4S26OolsL59/f39fj4uBMa1bhQX2kuU54/FxSmA150YuFms5mmCggKfdEtFZE8EraD3pL+86v+8+fZd6M+p+z680mmvQ8cyCSnoRvn7nQw3xSxSG3w+jgY8HyXKtNfRQ6gOn3ZgYQk4zRA5DH1NVfxq2+TU5TGdXLmVLb0r+bwb25uduwJ72t+n2Dcy6dzmnbsVL2CAUUGNOUqMKIonY9fLTDUeSFyxrztvq2RU7nUI8lZJd/VN7Q7Im4LpTNHHrNMtn8JHQQG/GRBKkUO3i4SMBJWNxiehv91Rs2VWTe4uf3JD0YionRF+6Pk4R3xyRGze34SNvIyTX2w3kn5OujSc4xkOKU35aX+TOTpju1duTJi/fidRoFRIikIyYwbO+bNrU/uYXRHPCtywHHFMgQk9OmIY4D7mxOQdHBBfjgY6ACB8qH8kEceIXMP1XmtOrHubBfHI+vA78n4eV68Oi8Imt4DGHCjz/vdx58lib/O9wT+q/YXryl9ksVujNNY6cOogN73wXd2cH5fB3utVqtpfMmYb7fbnbUHfKW46lv1ar/ozGqKYr1e74GAzWZT9/f3dX9/P7Vjs9lMAN3HMXnkTpzqqTSMOjupvrI/fnAS25WAMnXYqE8SLQYD/tpW7hzoBjUrRYNOI0QD6ILvgIFCeoiRZr6+D5oKiwZXq7vZLjemVa+KiGmJEJPySV6UGxrm54hy1D73EHxxiddFis+nKAjwkpLw8skH8oZ0LKWaPCNelYbtdOOk/cgc8N4nfJ7baQkE0kJNgYe0GLfqNczIaQbVOY2BFFXiAl5fVJv6twMD/j/73MeTnznCyITXL4EVV3Zsm5dLfrgR74CsjwcpbOXfyfVbU9Id/O7tToCA47lqd72AA7yq/XB2AhvKR/mzPOcXI7w8v4OGn2d4yIu/uLiYvHEttpVccf0M59AJpjlmCGSYdr1eT2NQYEC7DARAPGo1cnZ9nLjzxS2WPCbZo3deJh03dwhpK5MtWkKLwQCRF6cGVKgvvmBFXXh9Pj0JGRF+Qrw+NSHmsbyubBceKS4qDw/bsJOURvmS8RIeCgb/I8LmQHVesGyWqXs+8J23voDRPVjntYTNef2jQIDPH4JOfxUlA+H/p3pKpn3QUilQIbIcRgnc43UlLDCgK8OdXo4oTbOl9tI74VX3HRR41GBOmSQQnw4gk7H1SJcDgVReAnQOCFL/sT0cb0mnJMPalf9WlAy8fneflJ7kek7pvf+7HUbsTxJ1sssOgYAMMMHAhw8f6u7uru7u7nbAgUL0j4+PdX9/326jo+wlHaaxyDeL0h5I/6dXkwuI86ycTpeSR9vt69qI1Wo1LSpMfcPpWeXrOubi4mInje/OY5TeQe0SOigyoC0gKphzIZwTGQEBD//Ta3CGpkZ4qDD9l57vtkJqvokrUav2B4yHD93rYNlaRMJ6uFEkkl6tVnuKs2p3VTaVOp9LgIJgwKMNrLMDty760IGBxIfkab4HQMA6JEWl3x2gcT5R7r2vCfh8u2HK30OCqocOnUoh/dUqH4xFpc70Ck+yDlQ0XZRgBAIT6E7jm/xIfF3iubhyd3Jw7uBGaXwspnoTpB3iWf0qch2afrtD0VGK2qb2ERBw+57rnI6fqSw9yxC9ogEfPnyoP//8sz58+DABgcvLy2kcEAQkgEtd5o4qwTjlXbqciyTZPj3rU32673oj2SNOQTN/B06KzkoXcEzyu/eBypGuVz7k908HA1qB6Yzix0N7bPwcGHDi4BaDnFxBOJO9TKJS3w2hbV0qyz0rnvKkD9vqIU1Pw99U3Kyb7w2m8ZdQCMHSG9Uz6h8CCxduCpiHrt3AufFxYZ8DAu8BBHj90n9V+54UQarz0MP/6mMOyqraWzTk48CVF/tecugGjfVjexh9Urt0TxGHxI/OaDp1nlinbDqgkBY+EUSPQKmT96kDPraL+kH3OgeEfUQAcUxKIEDfO53qhpnUjQmPiEq3U8foSlDpREDLRbHulAkQ3N3d1R9//DGBAelj7cLhEcRck8MxxL5X38mIC9A8Pj7Wer2exq503dXV1U4bOY2h3T4s7+XlZdouTB3q+kLjj33lY4YAxflH54+y4Ot0qHvY/kN08EGRAVXcBYWHpLBwD2N2IICDLQlWBxgSOUKlgRQQIBjgqXEy1g56ZISJBr3eVdk4SiF71ICRCO5qIPpNqFhba1wYXCA4FeP95ijZwYCfgkf03wECb3fqi2NRVy9972TUp1xowLmgj2BV4JXlqu9T2NynGAho6QV1oMWjBsk4S8YYivR0nZfYgQCvc+ftELQ4YE5X5dtF4pxG3q3zjnVwMOXtmwM7b0VevgOCJK/eF6KRjk1pCXyraufobBokB5Ui9aHPuVfVjp7ybYbSxZoa0OvBtW2Xi/wYPld9udVdu3l4wqDswNevX6djxLWIUW1S+/SCMoIKtkX3eP5LWqfFKUDyR44mzxLwiC29fOXlsqG1E8qDYGApkD1oNwEZzohA50nye0JEFBhHRSSiJke93UBnmqTcuZdVAME9dxpI97RdmfjgdHTIttG4iriGQc9ut9spEsDFm1rwkiIxGlzkOcsmEPBQm++lTZEBV8z83SnN96JQuz5xEMVzKDiHSO+G60LI54TgHagxTfIaRAQSaUpA392rSOm8nZ3yXqpAaHR8DZB7ad1aCVHnZSp/AhjqCwffpK7+cyCok5NjA9oOpCSd4/ynczECfQQR1PMus1W7hxMpPxowN2yuczgPz2e/ffs2RQO+fPlS//73v+v//b//V//617/q3//+d338+LE+ffpUnz9/3gEDcko1lS2Z0joBefVqozx/HQ6miITGO9tJh1F5MdrGcepyLd7ytwM2jwYzL/Ez2Rv2M7fH+2dppO2gQ4e8kj7XmCihWuWhewkIpIGutHPGxUGBnpUQJECg+8q/qqZV5K7s2TGjwZk+o3rLeDAdpy++ffu+L1YCSUDG+tCwUaGSr0mZJp53gMDr3eVFWopQfzZ1nh5/MzrDHTPcTqt2ppAc82X/uafRjQH+T+UtGazaPfKUbRP5AkNXAhw7rJdkJC0ATgCfz3ABLhc+cgyxra6cEsh0EODKsmtn0h3ezz4OHdyyXu8FCJC8LS7TVbtrjar2x/yoTxMYlfytVq+Lo+nluvNFAOt9J6OtcwNkkL98+TLtHDg/P59O+PzXv/5V//u//1v//ve/69OnTzsnfCpMf35+vgcE1K/u5KieMvI6C0Tg5Pb2dm/qzhebOxH8+H2XHRp4jjUCoxRpSTLa2RTXxUvl96B3E4xAgBv9TgF7hefKc6b4IGDZnidRlgRAxE7mgkJ6ygy3d0ZEAkAF6CidH/3vbfSQkHe0IjMKg/FlHWdnZ1OkgAPTDZAr3QQM5vqmE6xOqR4LAJCSAuV9GnduOeIWJvYd+5e7ULw8pu2Uc1XtyJlHpfRdXghBhvNcYNlBQAJnlBPJj5S9iEZ2BHo7IMCyR96J94fq6uOFXlI6Tpl1dSXo/TEHylmfufS/kuZArMvUIcqfeSVg4aF9Gq6q2gt7z4EqgQGWyf3/3759q6urq6qqCQz87//+b/3rX/+agIC2/eldINvtdgIDDw8POzqZoMSn2uQMKgpRtQvieRpoZ7982sMBmetaTiu6M8dIiUfavU+Tk+l1I9hIACbRYjBA9JKYmwZeJ2RsXIeevGHdM16uP6t7yWOlEeDZ2EKb9KzZrg6YJA+Rn7SyXwqf807doHc+E5yxbM7FUQEy6qE+JUp1/iQPK107INF5IcegxNeq/W2d7CvKgBMjA1X7B+mwXEUV+L+UmPrLDxty46Yyq3bfda4+7YxjouR1657k28eYgwBOuTloFkkBpnYkWZYcCmR5P0letW5GdfM2j4xSKpdpxA/VR/w4puyKRrqgql8M6/LjkQPJoAPflLeDOwGCboy43vcFpJL91Wo1ne653X5/8dfnz5+n6YHPnz/X/f39tM1Qc/VVNUUSCJDnAKjGm14k5GBRadw77/Rlkik5ltLvAkO+EJJTvj5VNwLxlFdOExC0zUWjd3iyKFW9rowmIGClRK405lB1919idMrXF/uNFEIq1/N05iWjsWQOhvkQCDhq1XffqqJIgAuoL9QUuq6qHe+R/zEEzPOyE8Aj/70f2C7vNwrxKBx5LEqDdol86tnED5chzn/qPvvdn9V9P3lQkQCXIcpDksdDAIHq0BlOGkXec8DkhikpThrTtIVW6aW8Eoiuqh3A7OMogaiO6CTwt4h9xajIMahzCJznzmeR89qfYRr2KYHwXLnufXoUTb85PlRXgYGqmqKcLy8vtdls6vPnz/Xp06f6+PHjtIDw4eFhZyGfG3EaQ5ddfpduJKDgGToc2zTUaQrNZYk7APTZbrc70QBOTbhd9fozL8+Xferjs4scdLQYDLAhKSrgKN7vJ4EdoVsygWlTg914UyEnzz0RFTbrQmXAfHxeTELjKz3pMfmeU/HRF9fo1Zzucak+brw5kDnA3bOVkErwKIRsr/dH6pNO+SdhdhT71sSQ3Ui5uyJxXqff/jx3F7gxTuNEypDvdGdZfDYNcrYnRa08GuSKq1M63l8+hlgf8pm8oKGQ/HMqgQad9eR0DRducv2ESAaEZdLY+3cP35IcBPgzx6BO77khSJ5kBxq16jylo97yBbX67nIh/iQ96ZE1gjee+ldV04FA3759q4eHh7q/v69Pnz7Vly9fpgWD3M7rOj7pILbH+Sc9K54wMkKPW3o5gQC2TXmRt7R/kl+eWeALtjuwwfxGpL5VmxV5XkKLwUC3a8A96k6ZEA12jUoCnfL0DiYjOP+jqysXKg9nvO555zuwIVEoVQ8Po9LDSeUpHz+a1lFv8r4p9KqHK21XcD4/5f3Q9Qf7xNOQbz4gjgUESJ23mAajwJLv0SeIYr8zykKv3hWWeyjavsSDr5Q3jSjr0IEZjs3UZw5Q5tLOjcPEW8ozx7uPw6TgOK59u23V62JMgiWu2aDR9jHm107BMgKjPBRZOwYlx2fk2LgOkAcs3lXtT43wGf7mjhpfnKd8knPngIL1JDiTvnt8fKztdjs5MwIDfA24G1FFGZivRztFHvVgtJT2gmBHddaZBNSXyREWQPGFgOQn9Yq+e91HY9L52EX+xHtGEpfQQdMECRW5oLpAiQl6JpEbHzaKiscHQ5cPn6+qPeVCo+zC4ws5knHzMjslxpAblXHnTbPj6FURDIifSfmqzeSTBpeHp9KAYhkOHtje9DulHz13DOqUkn6rH3hQir6L/LTNqlcDwjM3fNGh3kjo40PKSUpIeSpCpPolQ846a+uUK0Kmd/IxRE+i6/uUl7w5r1sCp4m8LNXBAQnLcx3QAdeOBx0g8PGQvr8lubeaAKUbYX82HQ3tz3mZ0lvagueAlXrFDZ87P4wA+RjUVkJGbAQQ+CZB11s+3emG2McA28/F4hzDad2L8mQdOA2gdry8vEyLEd3B0vSfdESKMpA6IOBOGO2q/3bbvIQWgwEqJRKF1LeapBBk51UnoJGiAXyOyiIxlyjQdw3oWQkWOzqFctSRBAaOirknlZEIpzRHxM5MA8wphao9jKf2vby8TAd18AAO8pr97CCF7WQUgmk9v87YHoN8gI88SQICDig+yzS8T4AlY3529n1NAN/b7uPD5ajqdTWz6pDAKdeBEKB4CDgpCypqD6m6jDvAU5pkXERuGLzN5DvDq5QftVF5uMJnhKBb3ExyXpPfHcA9Nvm2NjcKSU8SiOq+9J8MOhdMpzJlHK+urqZPmrLRjiYulqMnzjKcn9vtdgKxehEYQTUjA9JbNKT6zohcF2Z3gK/1AkqTgPp2u52iFqoL7YSe52+uZyAgSsacbRAlgDaKCrg8iwgEfjoYSJVixR0FporrGd1nGjcmVDJdYxKQoJJKpw6mUBcXJvH98771o+sERgM8vOlRCK+zK2/3/hIYSAab/E8C51tYOkU38vKppN3Qs387r+5YyrXzgJIMSrmIj+JZWmXNSI+HD3lOwdXVVd3e3tbd3d0UIWC/uIETEVxLWapObgh9/lH10Hhwfijfqt13KHTeeJIFllGVD1kh37owaJJ58VxTLr6IkKFWAoOl3laiziM7RKH+bEpTnARMXld+529NR/GUP4bEmVb85nHBOr9f/a2tfNrqJ2NdtR+WT4CUgFayXfUKqnnKoIwwnxUx9E4d7Q6KT/uQv2yPL0jXzhVNW2jKwvUpo4IOuqULVD+eG5JI9U3/dzaIel9tPVR2D44MuOA4+cCe8wY7AU7zYzT4rJMrYQIBvnuAoSIPv0upKCJAQEDBZVlVrwovzY3R66nKrw1NPOICHyJ856srPrVfxsy9ds+vCz2PgADBQOpLpuW990BJ2fM/DmIZo+RlcF80vWp9l/wpvKozzm9ubiYPq6omBeLeBuvjYNv/I3l/cuwkIM/v7POub/2ZNEaras8IVI23Xnb9JJ4QFDAS4lOXKQ//ThlN5LotRfbekqRbeAqmg33qilG7JJM3Nzd1c3OzAwj4kQHj+fwCsVW1M6f/5cuXOj8/n6KOItexqi8jar72RmmUP6cJOC4UKeMztA1JN3oInbqNkT4tSFUaLWpUBETjlSCEx/F7VE7OqPKU4yZ5JvE3gblHFNge5qvf3tZOJpwOOmcgGSZVYKkXmBQBIwE+GIlsOsPCZ4SieXQvw2M+/yaSUPr0QBJYEQcnjasEo4uSeAjeBzWNwFJSWi2qcjBBdEqUqnolEOB153VUDypbCvMh7fmZ1BmgbpCpLxmGrNrdIso+k9zQmGpqQGeeKzolMCD54FSAlKSDSJWtZwRS5rxhB9cuE6Il8sY+ZFrKP38ncEyFzv9SeJZXgVsPCXfrI9g/zCeVnZ5jG0fp34LU3/QwReIp9W/nqLnHTyNPZ0n6k/eVTuU8PT3VZrPZOT9D02EcK13/V73OxUvXMh0jA4w4uCNKuzDXR10a5qOyeeosgcvDw8OOTqATOed0+Zh38j50o676OUjQ+hrPwx2YJXQQGKh6PUecFeD/3sAu3JGMfWJSJ9QMVSuNAwEdM+xAQMqKc2DqWAcDvoKU5dFrY524mtwHRKe4CRA60JV4Qv5RedKjIdrX6ms3JvqeUDVp5F3P3TumUmU9dE39o6v3FUECD8QhL7mwSApXYECyyAWsDgZoxDjIlSeVigCB0lGpOVHmnZIH7VcHATT0lHOfFmC+7sW7x+Nt9QiTzxO78nUDzrKXAljWg1fx+xgkvtLDlK6hvnGdwDY4KT+XT8koZVXRLfWrFtMJCKgfBGb1W2XTg656lQXXtRxvKWJGcEFZpj7jVAApRYNdXj2KJeNPMMC3FLpcJuI4cF3DKAx5poij95/zNJXlwHWJ7JMOBgNUXCPyEGJScN5JpFFDHBBU7S56oeHzRYNcZMc6chESFyN1yrJrP5F6GqAeRmKevhJ2BAY4IBLw0ODQlcaEysOBgXubSyMCrFv6/h6I8phCmCK23RfscS2IL9ZUHspb87Oco00LwRyYeJ9U1Y7RZzuoTNRGPU/qZDb1d+p/lkkeijg1IB4of9YhRSdGckKeELiOwEAHCrqykmw7v44ly+5wcB0J13mk6SH+dlJe19fX00t6bm9vd9YHSGa5i+D5+bk2m82Uv3SVjkh3Q6kpV4I5RnZ8rl9p/Dwb1tudQEZIHBT4WFmtdt9DIj4QxFIH++6y0bQ3+e5GOckrn3F9TdvmTkrqzw5AjGyV00FbC51YeQqfvvtiDOZDRUzF7IrMO5UM7TwhKi0KgjrelbLKpOJPCkf10VVtd0U9591TaLzTkweVnmX9U7v4bBpcHg0YhZyTMHYena4OTg5BqD+byDP3BJLMUWblqXAhGz/cckV5pvdFr0v/KZ3XhfU9Ozub5imr9k8YXEIdCFf7qmpH0SVg6ORjXXWXoWK0jdf0TAJTSbZSPnP/uWx2itHrmdKOjMCvJgcEqp9kxHWig16Rt5Ng4I8//qgPHz5MkQKfNlCZT09Pk7yrrPV6PXnRlJ3n5+f6+vXr9BzHWtJFnLt3p4nGvAOaIuZPPnD8a9wyCuLRAYJPLrx2h5hyQ73v4MLXnAnIez9S/ueAQNLZ7lgspYMjA15ZV/ydt58UmSNYlUNklhB9BwLckLvH5IjQhZMIMBlER72sF6dRksFRHo76KDzMK4Xrnc+6x0gI5xTJQ0fjqq97gX4/0Uhxz3m7xyAaZ/aNqDMGAgIObCS3Uih3d3fTu9AZOWC/cErKFYm8Gt134LrZbPaAYgJwHDf+v8tO8ri7j/JT2+nds74eMaRh0LPcceD1cAPQ6YdkBEn0ttiXSVYpAy7X3u/HoORhkocOqlxOu/oLyN7e3taff/5Zf/31V93d3U2LXH1xIccD17/c3t7W/f39tP1PelSr8+UsKeSvBc6uozmNQCeTkRAfu+RFBwbEB56gyMWRakuSRTqJjAp49Mv7y22gj1mV4WOL/dxRskvMl/1+qOwetLWQRLTKa9X+OgCGbkYVpCfrgMCNoJMbd25N4illXh7ntLiLgPNVzmwaD3ld7n2xrgzjURjERwn8yCC7sXW0mw5U8m1n/uFUCMtKAIz35+51nt2xKA3QEXLmIOV8piuEq6urWq1WdX19XX/88Ufd3d1NIdZ00EsHwLiK+ezsbJJZLWRSPbRa25WVEz2sZOAcDBFkuJfpoJf/EWR5O0cKjUCA3g/zdnlnHcQf9lcCnyPAQCI/OzBwLFmmg+AOkvdVRy7zMrKMCvzxxx91e3u7c8CQ1saorO12uwcitJiQ5wE8PDxMxwlXvYba1R46TOfn55PsMw0BHdvABau0EeRX0tncIcG1EGorbQd1Z5oacEOrfnBwzCitgwraHpbXOYLuqBDk0m44QDwEFCwGAylE6l4wyQ07hdmJSo2dkeZZmJZomKF5lu3AgANC+QvF6qN9ren8aJWXQjGpA1U3CkNSulJuypfbVZRPMv6+NciFWu3nopy0LiIBD/Kd7fTvfo99OTK6b0VEz1TunRcsUvq0q8DPNb+9va2//vqr/vjjj50dBFQGDsQE1PjGNdaZEQP1vUAnQTbbpbI4BaD89FwCETT6UmhS/rqvetDL8kWRBMfeB1RiHK/u3ToY0D16ggIESdF5RCABXebd9f+PKNRfQZQ9XxxctT/tQz3oxoH9tl6v6+bmZlorkA5MEx+lA+W8KM12u905b0DA4P7+vlar1STfviNHV752WFMJjMZ5VMm9cgd/GiMOCFx38ncad4pmSC7cmeh47FMr6jOPzFKnuNOZ5NFBs39P8su6LaHFYIAr8hnG7JjJSro3rMZ5xQkaUqhHjfPfNILMr+p1vtzXL0gpSjn7vlZtaXEgkBSYt4VGROSHpDAPGnfuRGA438EAkTuVAfnAwSBjRDCQlGXyhkZgIF2Tt3pMhUowpoGdDEEyBrqqTYoeXV9fT/KpKYO7u7v6r//6r/rrr7+mBVkCeTykRR6UvCrlT6WhuqkMN0z87uBUbR71DceDj0t63VX76wI09tVufVc9efiMe7MCOKqj8vapO/2vfHQlIOgiLSIH6UnBOpG/KZJ0DJJOlazRA6wah62rdoEcDWBazEpS/1BvqJ+ZD5+j167Fhjc3N+3UpOt7B7iug9TOJPtqj/Q99VxqI22V2jvyzpPzqzxoE7mGyKOx6TA7jfkEWpfYTE9Pnv0yMEAAkOYJyVgKMJUQB7yU4NLwYmo0PaQurfJOHhOnB/jhgUMiR9npewICKocHGNHLojIk6pcypTD7vLcDAVe++k5B94hAopGh6ZQs83Qgl6JHb0WqTzJ++t0ZCradysXl6fz8+9Gtd3d30xzs7e1tXV5e1svL95PM7u/vd4yeDFvyODx64x6O2jMyVKOx5J668nblS9mmEWG99Z3gSF4j8+N6BgcEKouhYRLrQzDvvPMoicun88ANDkH3ewADPp6oO6peDyjj2PLf3k/Um4wYUgeJj9KNWiC4Wr2+7e/bt28738VPLq69vr6eziRw3eUgwttMY+26w9ffEOjQ0BLIO1jmbgyW7VFstomyL+LCWS5GpOcvPqboQBcN6IBAigp4uh+R14MjA/QKHLF3A5n36A2k/zvvbI46A5UMHj2PEVqjQUtK0Xng3ibb5lEG1lc8VWSAbaeyTgaK4W/3uuaAlfOD5eraeQ4dCPD/RK6kj0EOCnRP1xEYkFIZeZlSBjxxUGCg6vUVrfKafOrGlT5l0xe1qjwfO1QuSQkmnlTtK9vkIXdec3rOPVfJJiNVKaLn5E7EqB1z4IdXz8uBfmr3scincAgKqvZfSezP6Vl3HhSZ+vr16847M1SGjLzSKGyuOffr6+tpPZaHwqsyCKGx5Xw8DSPzcgeDzpIDUhpqB/6u8x1ouMwSLJN3vh6AesLXz0iXi9cCA97+pD9JycDP6aIfkdnFYMC3rvngpJApRNOBBEdjqdLqgG7w6p4rdnpsHmJ3D96FzwFAMgj07AgMSB4OY4dznpl5c7U5061Wqx2AwPCU81b88oGg9vOoYtaTafXdAYH3N4VQQCQZgg7pviV5/9Aj7gBjeq4DRP7bP5IxvYnty5cv04enrPme5vSeDDcM5HOaXiMlg+p9rXQsw0GvniMQTXxz46N7BAQieXQcA0lnEOi4AZkDBKyb89Dbmvr6mMS2UYcRELix6CJxkhVFq3i6oPipRXXaHqgdA9Lv2k2QFj8T7LpxT8e9CwynkDrlnUCAIJJrGzxCQi/f7QP5pPzdueN9/83ohH5zykz5axqabzVUHzBaPCJ3DMnzERA4BBD8LTAgYkN4FC4rQ1TIZxyNugHuQiWkJWE8GlwaawqHgwAaV/cW3FPy9tGge5iX7eN35uPKjXnQw/WV1SzD70lg3WNPBjsJGAejGwOGaFPbyNe3pgRSErH/EyDqgKcrOa0NODs7mxTdly9f6vPnz/Xp06f69OlTffz4sb58+VL39/c7fc0pK1ecncGjvCQgsMS7ZRsTKBC5p55C754nHQQ9Sz0gOeZ4S96RA32GYR0cpPapft24e49Atuvvqt2dBlX7Bzm5biO/9G6Bz58/7yz+fHp6moy8vFstCNRxvHKKFBLv6v3w8DCB3vv7++nDtxG6vKeXxFW9nnzrYFhEMENnlH2Z5IK8lDGn00d+ulwwcsD/Cf61VkgLKT0SMHJG2MduRykbc88upcVggMxKYECD2pUBw0CJhMyoBKgsRgBg9L/SaLCzPF0dmdHo+3bE1Cniif/nQufGsmr/jW5d3WmEva1auOLgy8sngNGgokDR45qj1MfOE+f5selH0HJqk4gAgC9s+fTp0zQ1IAOnOVX9LyDw8ePH+vz5c202mylsWfV67KkvZtWrVKv2I04eZqQxTwbP81Ba9/5JNKKJCFqVh757pDCVobHR6QmWk1Zie1TEeSIa9Wtq65Jow68kB6C8qv7iXdI79Lglr3x5m/SXjBd3Fai/tMtKnq3kybcekpTf58+fJ3n/8uXL9OY/AQEBDO7e8uPglf92u92JblKGvR+dbz7NVrUbwZVeY3SBgCA5Yxoz+s56aXqFrz326Qk35in6w7Y4EHC+/11n6+C3FkoIGB5i2MNDe0toabr0jM/buOeutC8vLzv7tlOIhkLehZKoWLl2INVPgCIpEzeaql9V7fBRinSUF5XBkiiJl09ARnLk6gqdBqkT5PdGI6WRIgIitU+D+vHxsb5+/VofP37c2ZtNL+vx8bHW63Vtt9/fhy6PiHux+VpU5k9vgnONznsPpTK6xHYlUJwUTppCEnlkzOdoxTsadClJz9v7gdMPnQGUnFHfpKmCzvM6xKhrTJA3xyAfS248CAJcD3FLtbavst/0e7vd7kwZuNcv8MvthZQnn2JV+s1mM4EBTomll8H5wroEBtRGB32Ud0aIVDcaYJHzinLl/7mO8IgEP6yDeMqXMc0BgQ68ds84/R1ZPeg4YjGY0wVinm/R4PfU0K4howGbGKWwkH4nMCAlS6PpK+urXldqMy8qhar9t7L5Fi2f9nDF5x4aV2KLX76LgXNi9OaYJ3mSqOsHtZP/uQDS2CTlzMHp9J5AgXvObvz5X3qWoLLqtS+5797B3fX1da1Wqx1vSP0rL0ggwc+BcO/XgRcNoGSKoDF5ijT6TNdFz5iHPEHJve+AodJ1nnIsdYY/8dxBAOuVjD5lknl0emVO3xxbfkfy6F6592PV69ZqgQGeT+JnBfj5Efpw3BMI0PC7Zy9DqIiYQK/LNl8HrCvn1dU+9T8jmy5vdEgJJJK+lAyLRyKl5Tot1aGLWrlOp57gGQtK20UyloBVBwJLdNdSGT44MsACPOzYefjdAJ0rw+8n71NCOdr6QeXGukpo3DhyfsoHlwyzLyRU/iOB8at7Hincqf9pZLo1AR11RsFBQAIK5FeHUpNiPrYSJS3xClO400PFNMAy8GdnZ/X58+f43vfn5+e6ubmp8/PzeFKbIgA6rU1ggR5u1f4x28n4Ve3PqxJkdm2mbJFPXhYjT/7sSJERfMwZftY1AYEECDoPq+vL7spy/fsxI13ULUn/OcDz56pedzLJYHMtyuXl5U566T9tC9SOge5sAsoOF8lqnYHWCygq4LLsER2Ry65kz8GwO6JcrKh8udaJ+ZNXLluS92Qj1F6OM7eFyo+gxh1F9que8753veQy4Om9jofI7Q8dR0yFmCqalJcL8xIUJPL86QkxTMZ7MrbsNDduc53QAYF0+IR79F5Gt9q+243gRpXPsb5zc/OuEH1awA1L8pYTjxKI8I/ndSyF2oGBuTZ2+dBASclK+X369GnyoBUq1TynpgWkHH3KQNGBJJt+bwS+lcbliH3hxtnzc29c/HJlzPGXeJjGke6zbYnH+n0IEHAv1q/pXtfvP6Krfjb5tBwNi0dAq3qQQ2/VwYHL9dnZ96O2xXe9zIdOlvSgvHUaVD/RldNcvl2QfcX82PaRfmSfM5LGyAB3aiViBIx8YMTCx4bIZc2dUAcCnoe3Uc8QaKt9Lo9Jny69l+igBYRkkJQd53Dcs3UP9xAw0AENF6C5zpjzqPksn3dvIM2T0pA7EBAv9Jt5+RaZRCP+OIpnHi7Yno/qTYWrZwQQltTJ+yLdOxSZ/ipKfOgGzVJAoHUcDJMKEHRgQF6T1g8IFPBEQi0UdDDodejqRkXmSszBqBuR1Wp3vj8ZWdcBTsm7WzLufPsXee118f9dH3R9S+XqQKgra4lM/EpKa3lEqS26r2eraqfPqJsYyaQRVSRLedBQuaNFcoAsEODy6MDT15x4H6b2u3yzXWzfarW/M8DzZFqti+J/dJxYvueVDLg7oh4hFvjy6Y6RnKZ0rFsa10vooHcTiAlSBGws52p8TzQBgRpF6pA8G610STCSshGjVAc/qUuKiluevHwuEPSIgC+cqnqdZ0rejMpUGgmp85ak+iaF5PVxvtLLVxkOlDzf5GkuUYSuSL2vDxHIt6JUp2RIRnUn8OUZApK7h4eHurq6msCXFgMqKsBpA64lSCufk0ffeRVpfQHHgtYVuNdOb2VkhDTu5QwsBSwprUcYPfLA+12+iU9+j160h2v58TFwTCBQtR8qpozyPw9Vp8hP2n0h/cRV/Jqqkn6R7FxeXu4Ydk6H8eOLBEc8daOnseIOjtIyD8kgnZt0HgfXuHme2+3rDgVt09b4Y1udHDg66F0ylav2MGrM8qj7HdQvcbSU51z0WHQQGPBBS+JqUjJyyWDqQIDKGv2f/lN9WG95crqnZ9wY0gDT806nL9KIJ+F1gUkLoAhWSCME7cqAfaM2cWGkDyY9Q6ETLfHseT+BvGMr0I7Iq26eT9/5DEl9ooEr5Xd5eVlfv36dUP7T01Pd399Pbzbcbl/fTsjjXbnHmkqIfe/RKpd5goe0ol4yzXrreVdiUqwEy8lT8bxGRDCSwrVukL3+3oepX7vfaazMzd16NLMr9y3IjaOPt26MuiPBtnFenTznPXnEAoVPT0/TgkJ/GY9PDUi+KdedLVC/+Lsp+NZOyjf54GsNfEcDI7k6WClNu0gP67RQ8UHj2+ueHIRkcFkX1imBNo4RH/e6xyhAJ48+Vn8JGOiQFZELUSeFTOkciZM6D8xBgRvH5PGSKBTupbqicBTohsM70j0Xtcs9K1c6jESQLyQJu3if6kRSmdrXzvA1BwDbnQBBAnqJOnQvHieltVQofzZRTvzjddR3Xqv6Oe7kfcn71zYtKUyPnLlS7rwQlUMjlqgDYx72ZBuSt+KHS/l/SxRMAjTig6dLY7bz1FUHly8Hdg4IXL+4DvApjblo5ltRqnvSoay7AzamcSfEy6AjcX9/Xy8v39cZSJZ9kTb7VQthfaEso1SJlB9P71N7zs7OpnUNaaGg919qG3dRuB1yWSMo0ivDU3QjRVlJCXCwnwhMlZei1yyLeTPyPJJHBwKj9RKkg8GAzyGlxvt/rjg6hTcy6snQdNMDrnAYHmV7qDwkTJ0CcmXj5XGNAJ/hmQVE4ErDK+tLz17Pce6LfaFO1/+Xl5c7+1o7ZeIRAyrEpcrPDT9/ex5LQMavIPEqKTGPDLii7a6pP7fb7bRDQF4UQRbDs+R/5zEl5U5QyzqNvC6vu7w+hfnFG/dW/EAr/se0pM6QOyhQfZwXancHVpif55NAdQIJLq9ebhrrx4oMkOYAAf/z9Ol3VU2GsqomeXDAqhcN+diRzuHzDgQ85J5AoupGw+Xt4jo1Aha2zWUuHRznQNYjs8r74eFh+t3ZA5H0pds+Pet1ZV94hLmL6G23r7simJc7nC7PPl00osVgYL1et/8tDel1CiSRP9t1iueVvAJX/pwLU0RAguZl8xlH2TQGDLnpuXTyGutJQ63nOOflEQQKLpU4Eabm9RihSMKQDJErxDnPiB7ZKMLhPH1rSjLQeYsOCHyQOYlXWnAlQJDeQukKkeWqjqkc1kXylJSfjy+P3lHB6Dvr56dppvGl/J13qmdXD4/C6H4yas6HDshyAXMHrEfymfqW7SbfjxXVSjo1jUvnGQEg28+zBOTty5j7ORmKcvn4IVjUOwoEHH2tQHISGfZ/fn6e6kV+q03Kl7LOxY4uc/5biyE7J8rXgbFOBB1+7kBHbG8C/t6XjIAwD9VPNiI5anP29lA6CAyk0Een4HyQ6l5SIqTkVXieo2dFjrxcmMl8MdhDhcl4sI7e4V7v0UAmDzhwCAQ4TeBKX6icA5xbfJwPiU8OXnRlGDaBmESjckbPvQV1xr+qr2NnjLp81fcKi3LLVfc8eU+ZE/l4Y14OCKj8uCI6ySZl3AEC60JZYnizAx1+rwP/ritcYXrEi/xLC9+YNoVsWecEAJ0cWMzprF9JI6+S310/OdHw+dw/X8HLBYMy7CLXi+fn53V9fV0vLy/TSZuuD11n0lPWf7oneaNsiggAudjRo8CsK8GwDCsNPxcWak2B0qv9TN/ZpZHN4v8JiKZ+miOCe+X/M+TzoFcYq5OJktxojBSFD/AO8buCFSVmO1p6eXnZEW4ZS6FeCoDKpwdOgeiAAOvrdVcdRkaGoET/aUtZ2oVAwEWlr7b51I2Hm1g26+c7HVxpEiBRAD3fRElQj6VQvf/YllGdUr07RVz1agDTIizy1+XFlZCIfdTJENOKklHsFJVHChwQe1ruAedY9/GvdMkYUBGODJfGq//n3ibHUufBJwN/SLpjya4D9qSfRpEUEp2I7i20BJlaGOheMaOQVbt9zcN+WBfKCGVfRprz4S63lB0BAu6M6EiypvqxvTpZkdMfik7QBvm4TWC96zel6aIDPE3R9XU39j3/ESBYqqtFB4EBAQFW1A1fVR8VILmQdEhJNPcflft2u907IMjniyn0HnHogADLYttTOGyEFL3uNM5uIFQfj2To6oaO9ek83Tl+kjqD44LWAYX34F0d2vaRwU/5MV/uS5b8EaA6SF7iUXR92UXa0hQQZbwD4zK0owice3ssby497zl53XwKjM9xSyMV6lxdRJ1Mi2hwPf1bk/ehAwP2Y+o3lx0HDvyfvNd/3GooYvSgqnZkm9taVU83pCqDBpD2hHWkPqNe4xHdyfEiKFX0SP9LrpIT6HosjSXyUnV2B3YkMxxjiohwi7s7c+Qn7ztQTORO34gOAgPa08kwnQqcU7Cpkx3ljxTQqFOUfwIVRHgOBjxN57HMGcFDiZ6kKKFpN0Du2aeoiO6nveqsL/mpfkiryNM1DZhOSFV35/lb0giIdICJzywxBuwL8ZSgjWNH5Xofuvy7QnLqwIA/R8Xoadkn6Rndn6OlBrkDOG7IUpled45beqeHeEOpjOQEHJMY+eC9pfUkr/07w/aet4yue+CMHJ2dndVms5mMvZ5xMKA2KJogQFe1a/DT1Noo2jnSOYo6aHqAdUqgSR++IyTp0g6AyfCqXM9faVxG9Zxf+R/7ziMNqf9dvyyhg3YTiDgnyYYmZUZa6inr6uFsKlqRKzMKlgwQ54f8FczM09Gd50+w4MaPaXhNfHCjz9/u9Xle5CWNTEL7RJTO265eSaEnAOS8HkUjEgB7SxpFeubSzhHbS56ltrrs6h63SPl/Xf4qg4o2pWG7loaTUx6p7t5GV4r67vVg2zqeuRJM88ga21WvawfStmZvh+fDceYgzsfoW1OnAwjwOuJYZlid8+488bIDow4WmFbb7+jsuZ4WPznlw8gA6+pTl8p7DmD697mx6zZAcsOzP7gbgvaEdoUOmpxRAp2uns5Hr4fbvKRnO0eG+R0CjA86jtgHCX+PQhHsoNSx3fwkn10KJBy1euf5Pml2cgrFcMX/Uk+B866p3g40XCF6WeS3Gw6GpJ0PHY/Sb6LlNEhZ95GAernuGRyDDgEDfKaq3+6aBhlBJZ9JnojzogNhrIuT0qaIg55LUYFRPyRZckBCA+l1c5lIHqfq4HLP/Dp+JcCp+V7uLujaNkcOxukAHIO6vk96Inm7Ip4OeHl5WQ8PDzuHBlE3p/am/tA8/8vLy84OmjTe1H/Uv4xMVO3rraSPxRNOOSSA2+kbThGrTAFJASSdCKr1Etvt67QzX+/MMaX1FSLuYEiktvoWcp9moa7togJsc3L4fjoYENEwcRCOjF+qVBLiOWMxh4S8nqyjL5jxfBzVpm0r6VlXcNwLmrxAKjw/b2Cu7TQsGogyBAmlOorsIgEuOEkhpMiDf/hch1SPQVQAh9Sr8wydZ1X7IWtelZfoRzwdlZHql5ShK0/J3YgPiWgQ1SafbpMSo4JPYID8TO13Jc/2+2lzHV/cy098TCCm40fnNb8luV7sogVVOfonPUOniH3BKSyu0h+NV/GDW6oZpZScKK1HOlUH2g0HBZRhN36Sle12uycz1Ne+AJUARAZcZTFawkWNsiGXl5e1Xq+nD8GUtmBSVlxWHVQnnqYoq+vXzqHrHLildNArjDm4JVRuEEiOWLowp39XB7tXkUiGUGl83yhPn+J/bJPn14VhvK5cLOaCr4UrzLNTKBRm8rdTnKqL7vOseQoN57xS5MYFLP1meSOPMeVNnh6CUH82uTdAmlN4XRiWBpLKieHDFIVSfVj2yBNztM9y0tRL8irYj6lNnTL1+nFM+VbWs7OzyRvS2BUPmGdHDlIcPPk5HrovOef95JQsMf7J+PC/YxCdFNYlORq6dhG+rs1XV1cTv7lgMOkr5z9ljdEd6R2PzFa9RgcSKKCucv2cIgIOwMkzefJc8Mi6PTw8TONBMsaFifpPZzJcX19PryrX9sztdjsBAYEC8onev/eFg9vkwOm/9H0poF9Ki8GAmMUwhXdIqtwoWlCVF5dR+DsU7B2vK42/kBwjA66sukHkZfmWRAEAP+FPA8Lr7EaW7Urek99L3gEHh9og0qDyPmNaAgAPQyVgx09Sjklp0WAeS6GOBk2Sq2SQRs9SGfm7K5jHEhBQtb8Y0SM1CXh4fimcSCXkbUzj18eeA2yCAV1dcTmPl3jaXZs6QJv+G+kdtrUDPuTRMYEsx47rBJIbFudzcmzoVHAfvYfIWYbXQ06PPHCXLQfKOpHVIxSpPQShlCHfAqh7vnaKY9BBOeVF4X3pTEZSVqvv2w8FAm5ubiZQoJcaVVU9PDzsOG/uACZgk+xDirqy/5Jedr7zeghgOCgyoMpKSBJaX5JPUjLs8HTqEjtez/iVZwms1+udwzV0ZdlcbORzNczbX8yhdvgij9RW/03hSN6lRwa8zT7l4Yo2IctOKSbh6/rLlULX7mT0HQC9NSUjWJWBpiuyOXIg2uXbAYtklNiPo4gOPbFR3iI9ozwkbwSwc3X07x5V8HQOFJLHTYPUtZVy6u3qFCQBwVLnguTG9RjU1Xc0pjmuCQb9Sn1LMMDwuXu0Dkz1rC9k5pRR1f6ZLzLojNSybn6P0Tb+J3lgFM7bmkCCy6e3Vc/7lJhvU0+gMfWB5+169VAg4HrfKem0OTp4moAn5DEEzcaOEI/ycs/EPahReIhX7yQZfoIAvmRDHcA5SHrRvveUkQYiS+9EggmGLb1Tk0CQiC59+oMgx6c7XPhGc6xJ2MjXDhyMfieBS+09FnlbRwbbQVhX705R+3M0usybkQPKlj7+ghSCOwJHUYoAsU0sI01NdaR6OsBk3T2ypzFMvjuwoZwJnHO/tdI4MPIpBJJ7+ixH/6c+p7ORxscxZVfkPK3an0ZKxkhEHnKBm4NERhTp8Cm/tOJf/SYZ5xRp1e66BH6kl0k0wtKDrJ/kjYchpW2zql+yMXTA9FvXLkoh/nGhqut+74Nk1Jkv8080p0M7IDynmxItBgMMobigjE5K0n0fkLqy46UQugYlry0ZbYEBjw4k70vt8bBYBwY4lSAh8COE3SA7b+YUi6PWDgwojYej2L5UXhcNINJNwpzq7/+7Mk6RgremOeSc5rWpKEd5pTAnDaby90Hp0wnikwNKfZIhTVGmFK3qvF719xwY4MFJrAcVqsaKl0sj4rLhZTsQUBqNUecrKTkQh8hdmjpU+e8BDKR6ddcECmVE1RYexONggHLooML7oNMf+s/PJ0hOJL1+tVX10cu+JGfb7XaSQ8pV0u0cmw4EeGV7UjSEb39VHTQ18vLyMu0+SHzvdLD34xwdAiR+BAhUHQgG0utXWRlvuBslUgov6r57NhqkybOiMuLLNwQCuNBJdXQA4ItGmC+FSb8pMAQEBAJ8La3zaURJgafoh+rjPHdDTyHv+oiUBIjgINXV0y3xqt+SEljRd58O8BCkaM5gktzzFk9kUOmpdLtbJPNUkqkdyajPeRp8No3f9IxCwZJ5KcJkoDzKpLw9bEoQK0cglZ3Gj8tpAm0dPzol2QGCY1OaJu3GI8e9vtOQKh+CRr7fwfPrDrxh3iNiH0uPSWZlQzhtIHnXlWF6GnwHwrzvUSQuWOwimG5APQry8PAw/X56etqJaPiLmdwujc4RSTrT06Tvfm+kx5fK8mIw8Pj4WA8PDztvi0qGvlOgI+WUUCzJw7cOCjgPlRYN0mvigRv8pDO1KVgqi9ER/1DBuUfjHkbqLP7HQSNyzyql7RSHX5d4PFQiDgiWCNihyPRXkYcDl6wH6Nq3pE2uDAheR2WRv1JiVbsGv6uDGz4qYKZhPt0z3halUWiWi8ao0JWne3806GmHC5WhR2RS3TyClQAuwW8ymskrJjkgOLYsc4wTsPgYTgZb7e1Ao/ohbYV1483nEr9d75D/0o08F4Mk0Kl8fDy43k/PS+eqDI7BNO4JkBwQ6D9OXz0+Pu5MOXO6gGPOd7UlfZL0uQO6LiLk9ee4dlrqyCwGA5vNZmfLSdeZLgAiGpWE6hPq03O8ukCI4YwGcIpAncaTpQgAPNKh+ninCBDo+9zzyROiMk9C6cqec2lC8LonBay8qIwdEHgUwwezD2QfGOyb9NF/o/5eik5/BXUgUuS8ckp1T5EtRpGqdg9YYVqVJ6BI/rBP2K+dYaIXlOpOBeWRpGRIvQz+r++aMxUgoFxS3t278ogA/1MdEx9Sm2jYOodiBHYdEHjb+f8xgQCVfdX+jhSm0zV9Os9UIC+t//Cpr6QTvJ5dGSJFJbidLxGdKz2/Xq/3xjF/ayxINj3aS6+ddSZA7QCrn6GgqwNJGX6PnI36IqXpZDn1O9P7FDr1zxwtBgOHAgEaNm7BU4W9gilE6ExLHpe+++JBnhLFThYQ0KtmacgpOGyPOpYCxwWHVMjkgfNCbfKQVZdGxPyenp5qu91Ob5F0gRwNSuU1Iq9fN+hTOS7oPxKq+lXkykOUPOj0rEen9Iz/HnkwVAY0kMkLHYEXes801pR1lllVO+Mv1cnbxvZ5XsqPcuA8dSNNhZfGhZ6bozStk5Su1zeRg2/mRx2wJK9fRYy6EOTTK+3aPgJ7AgGpH1I0i+PEI4+JEt9cP1D2XZarXuXx6upq0r0+TjnVRmBNIy/dn6YbHDQora4EK3xBFkGBbzt3Jy4B38QvfXwBrY8hf84jRQQDS4FA1Q+cQMgCHL10KJ0eTlXeNjei0TQBF/j5dIEWn0hQHIQ4o9lprJu/spmLKNMg4cpaL6tD10xLoXLF72iZ4WTVteOrD9AOWHVggILnHmZSKu+JurrNgQD/7rzyfmNaGmL9dm+Tfedl6F7K18cX69QZhLm2epu6eVq2N8kIvycd4e3vAGwqh99deSZg5W30Oibww7BuZ0zfipLzlZS8gwJdqXdGEVfK3pK2ds+THJyoDgLDSR79Ht8p4wbRgSyvBARcP+D2i7qcecpRTPznrjStdUig2mVWNsLbSXCV2pf0qzuSlP3OkZujg95N4APXUV0CAklhJCFIyqDzxhiG9bkZPzuaQnR5eTkt/hAaVNkeGajK8zH0vHxwOSDQfZEPsm4gpT2z3fMdOBvxNwkqDUEnSK5U9N0HvD9zbEr1Gw2U9F/iU9pXrXJGXpl7Xfze1cuVnI85B5nuNVb1Y8w9HV/dzXKdPG0CKryXDC2Nu+6nsc+xzjYxTeL5nAwmBar6LAErv5Lc4RClED552BkRB2N+leNDYNkB/dFYcnlNhtIdSE0fcHzwQKMUiSJ/aPwZBXY547Oa5iUv3UF0eWa0xknt8LFHhzQBDJbtfBmBAT6r6y8HA37anldY5IJLw90ZGKYTJUGjkeSH0QECBEYGJGh8oYnXh0KVDkBxIkhwo0CF7KvBk4elPJiPCy/rmxSX85R9w/Cn/nOA5mE0kg9C5pHQuXspx6QEUg4ZKOS/84lyLUVRtb9VyfMTkJJ8iLejejkQ8Lwl52yfeyQjIjj09Q4pdO4gwsvzSJt7MJ0HniIjPt5p/JNXNRclIE9HAOzY8utRyqQjqnqPkvdE6kvyjsT3nogHPv20lJKDqDZQprhDhXLljo7nR3uz3W53FoX7WgA3kDTcPj5Gds3BqfOJIKMz/KmsJR/xz5+fy3sJHRQZUGexce4ZjkL6VftbB1M5bqTcO6AC8ncOeLSAKMkFYeS9dXXzKQAp87Q/ms/xmkJxCQTot4duHVixLT6NkPL3ejpvnbwt4kMyDF6vdH1r6oCAe5g/QiNj0rWXSlAAguOmU9J8vvNWaYxd4XdtTAbF/xsZDxEBND1qKkrVI8mJGz2Vy+8OUpiH+KmpMh/fo/Z17T82ORhIoe6qflFf1253WPhMVe0sbuV/Ka3K76jzbAkIKLPUQwzDy7CT1N8qx3eI+cFdXq80hTci6T5OR6svHAhw552Dl6Qb56IBrAN5yPY4zY1Z0g9FBlKBqaPdiCktK+8eZzJMKUSrD8GAL+RQel8Qwh0ASalyX6rXSwCE6NkXD468QSmpTpk7kQc8X4D84/HQjoaZj5R1pwC67542GdPR9ALregyi3DiYVN1GIJXGm4OZXj3JAZKDv07mRB6CdJ5KpueAtRvSDvgSlHidEshl/Rn5Ex/dU9JWRFKKKnbtTcY//a807rQkcMz2sE7vjTSWU0Rg5GDRyIzGHUGjPy+5SBErGis3TimSQb3H+hH8EhSoD7lY2wEeeVH1ehZOt12cbfa2JJlLbZGdWa/X0/sJqnZ3P2jnmh/K55T4MeqrBJb9e8rjl0QGRkZEaTwaQCXnW4xIDKf7e7Gr8twm1wUQCFBAJFCjswVcsbknL1K+2+1259XNbIO/r4FtSIgu8cGjKx7tIP+55dGRMAeZ5+31pnLu0Kv3c9X+1I3ziWUdCwwwYuRAoGo8mNhPDJMTSHQAyOXJjaiPA8qVnmMEgXUaGQISZY71d4+Zfc2QLfs0ednMS2NSwJX5jTyYJG/OU8myQBDz4AIxtpl5Uh4TJcVMHo7AyK8kju+uDt7ezqvsgFcC/aK0wJUy5JGJZEQ96pXqSEPvZVJnCVxSzxMM+G6x0diQnM05ruSRogFXV1d1dXU1OQNK61EB8j3JVwIhzk9P1/HZ9RLvL6GDIgPKVJ6JK6RksL1Cbni8cZ3SdpTKaIBvJaQCl8fs5wJ0HjzLknBKiNnW5On5gUwUNLZzFBnwqIbzxweHKIXQOKUhr83zYDt8b29C8R1QcnDAezRCx6AkU2kukteq/emENNB8pTLT6bsrRkZuGPInGKaX0W1V4nfll+TKp0MciDI/yqjzi2PC+UvdwJM/VbdkqOm1ddEKKmQ3+h11Y6QDbSwzGam5534lSc8SAPlYGnmV3bjr2tQBiQQ+qSuUhoaVBpvggR+WRdmkLNOZo55nFFh63sPzqtcoMuaOli+G5bMXFxd1dXVV6/W61ut1nZ29viMhnWabHDCOr9QvLnMdEDikT5fQYjAg74pKQ/cSGPCweDrQh41g2F+H6ahT0vSEp+f5Ah6m9E5KCj8pOYICGVMRlbWfU+CKlemTQvUQdhdZYZ1Tx1Mpq0wpVK+XypUR6oQzgQKCCyr65MU6z45FDi6pGDjN4yDOwROfJREsjjxcpqUBdx6rz1KI3YEA5SkBuM4zV9sdFLuH5NNBKYK2Wu2u3/H3Z0hPPDw87Dyj8G8HZpJMJZqbphJ1YLYzmiND+xbE6SAaF159fHcG3SnJefI6E5ilbk/RAf32RYDSmaLOGXPAoecICPzlcx4d9SiD8qaR97ZR1pPDw3eK6H/X/z6mkl3xMhz4dvzsrh14S+3oaDEYWK/X9fj4uFPJNI+zZFB6RYkiidJorLhKmkCAIZurq6udBR1ElZwO8Po5ahVJYKQ0HTESbDB/kgt2AkLkGw8YYT39ORdIH6Qy1NxHyzYTeCTE7AbGvWEJbzKazt9jhVjnyneP2omALLXHvRpeR+QAxJ/Rbhd5O91ulC4S0JEDmpQf+9WvlDVdxR8/50P36AU5EPf2cgwpXYpAko9V+2sGUvRO6ZJT4e2jE+BlvTXRwFAnkp9LQUDnTaofEyjgfyKeOpnAJx1Ff9urA+Bk2JLOcx0t3cb1NR510HPkFdePiZ9MU7UbyXSbIPr27dtkD3Wybedwijrdz/+Zjjz1Z7pr4uUvAQMCADzY5kcUEg2Te/j8LaHyoyC5gEOf6+vrnQUdRGiO3Lr/eEAF60blQCXBMKeEXzzhlXxyJO1el66pA1V+iiSwzRJsz4fC7mBAfcpzvZmfG0160PyeDEcS6mOQD9DkjSbg0BkjUQJNc+MhjRv/7sY5GW+vY2pvilR0bfa+6/rMZdDHr8uXxrTAvR/W4uDEFbNk0OsukszqusQzdvDgnpY7DMcgGiQZMJdHH5dzRseNPfsrAQHPR31JYn/xQzCgiICv+0igIPHA7+m+y3TSNwIAruc9Kkr5oX5ww0pboDUKj4+PLRhY0i/iYwcmnOaAgK5LnbHFYOD6+rrOz893XuXohmQJKGDlxNx0giDzv7y8nJjPdw8IBOizXq+nzn16eqqq78z1txOmLSApMsD2KDrh26fS/lg9OxcVcJLSdCXtHUzUzVczU2EoIsDBzgHAEJv4IXTLAcOFML4yNwEDNyxqE9O/NdGTqspG3Xld9VpfAiT3VJJRPwQUpLqqHlSaXq/kiXkaN7AObGmofUw6X5wok76jJ0UguqiYg9UEkGg4usiAxqZv+2Ua90a7vnkPIIDluxPjfEvOR0duOBiNlbPl6dLzBAQs16O8lC3pZt+WPAIDDnKkt/Wb/V2126dJDrspXZVB4E3QwHaoDvwu3elbCZ1cf7q98E9HlIEOFPyyyIDAADuYhkLMTaCA3nOKCviOAAkljYvSauGGPowKaEEHO9ENP1ebJjBAkoLVfQm/Axq1XwPEPU56cu4pu7LlgUgsV50q/nPxJI26wJquVJLKzxdbbrffw9GXl5d7i3BU3uPjY4wQUBCTZ0E61DD+LKLSSNMinTfii7fonScDl9q3xBtI992IK03ie7co0sPlCWRKpn0qZI6oyJLiZ9s1HkdTMqpb2oa1xGirPKZPZXWym/L0Pj8GUY8QCKS+8vHnILJLy/5Li1W7Z6tqz7AnI5R0hJeT+oL870C3yxzz8HGegACnn5WGTi7b5U5fijYkO8L6pnYdMu46fqb/mWYJHTRNkOaUVBAXApFZVGbekKra8Sp8y4iuXJQkEKAIgUCADBwHAZEktxMKCOiUKt8OqPrRo6QCpeKk16vy5EX6ewIc8amNrsRdAEXkv4Moenmcg9VxnlLEZ2dnO7sv1D7xxXdd6PmLi4ud7Tqdl8c6ko6pUD3i0nkhIlc8I6/b2zUafN3gXzJYWWfKR9pyqnHYkWQ0PZ9ksQP3Sj+atpKiTGONYMHzPZR8HLKtvD8CsiLn9aHK+meS15s89boSuHq93Vjru4f0fV1UVdZLzIvlsjyf7tFVZVBXer5su/MjRY7SmHYQP4oIOD+ZXnml6C/XIDC/1B53JtJ1pD+S7XV96/kdQgdtLRwVJqPCzk0C7I3mYiMCAf6vNQIy+jT+fhBPCnGn8wU0ZdABARcqb2vaOumrtnn0cUK/fnVE6Vu2EhhTOg5s8ZPt4xSBeCkwwIiCVq9zYSR56Qc2eX+64fQFO8egpBwJ5pKhTyv93UuhYuraT2BMZdBRF64npfzdiHd8SG2nIWc92MYR7zql5OOe3n8CAp0yTTzysvSMt595uhFwo+iG0vM4Fnk/pHVNlAHnZQdo2HeuSx2gdeH3xBvWMwFfyhzTdMYzATnnh5fjxps8TIY3ySLBTDceO8fAx6UDy5EddVDnPHEQl8bdqH86WgwGhJIoPKqcOpaMVkVUORlhNi7NLbmxY0RACwQptOxETVk8PT3VZrOph4eHenh42PN4iQ7JaH6nx07Gs23+nLxxpqnaXS+QFPIS8rJ8YNC74+ldelGH6qB9stp5ocG02Wx2gEcaeC8vL3u8pKFXf7HNAhKr1euxocekzng5sS85/dV9HCAmsKjrKIzNOqoenWFyJaf/CcA435y8KI47lSfieB8BvzleOnhV3nN88LaqfqMoBvMb/e7K6vh+LEqyRiNHI5PAwKGGQXn4NmU+73m6zq/a3zbrfebAa6QXXX8moNPVdQmgVnoHA16ek9eDebMv2N6unv6seNYBDAcFypu6KtVtRIvBgLZRsECBgtVqtbM62DtZRokvj2AjeHgEG+2vJPY9q7rS0Gy323p4eKjNZrMHCLja0z2IzttxBDYy3hRaGWPd68LKPo3i9RHRUPv/yRhtt6/b0ri18PLysq6vr+v29rbW63VV1V70glMKbLv6Ubxkf6pOHASMzBwrKiBy48X6cAphbuD7vTSYU+ie6QmU2I9uVEcesMjzYN6Sc9/X7VMKynu12l1kmc644DN+yJencVl1I8LIQYpoUJGqfgRb5BvzcD53/URdxe8u96zLMSgBAQcEyTHRGHYnjfm6YzQyrglMpX5L/cCpTKXpxpzLFA1dqkfXv93V5bWbSurKSleW67LVUZeGfUqeJR3mMsBxcqjMLgYDm81mb3CoUEUFvHJKp+kDjx4QDHQCreeYl8/diDEEHo+PjxMQ4PQADZgPEg0yV4KsSwqpqm7+20GBRyMIbJKxlKLn1EvV64lZBEqMmMgQS0mq3hcXF3Vzc1MfPnyou7u7urq6qtVqVY+PjzvHyPpxuA4GuIaDxx+zT15eXqb/VUeBj7em5LlyIHoYO4FFPidyeU0KJ3nayRB5np237WX66m8qD897KY3C/yTuSvHoAo225J6AnQuvfqSONFrJU3UDOlLO7oUlwDin2H8VEaQl789BgupKQ+Jyz+8EZEmn0eiNpqBofHRNC0ap85iny5uH16UjE3jxcjtjPOr/BAC8XSk906VxQjk9xNFwQMC+TSAgAWbms4QOAgOc1/eGeKi/anc1s4yomOIon6EONoT36eFQaChUMli+cyC9jyB1KA2o31f73QPn1IAPPA/TkhhhSQNNipRgQgaA5yxoTQUBEfumqqY0t7e39eeff9Yff/xRt7e3dXb2/VQ4bcsUGHDe0FAqCsQ6cvBR+KlsRovafiV1noCIdfV7yQNIxtv7nUrcQ6ReDy9/CRDwqBWVrNIJqFG+PEw78ky4FqUD6/oQcKbIC2WSO3ySwUjKfNSHPgZJruTnlPXIeB2L5gzKnDFxB07f6ay4bq3a3fO+tP2qS/K2NR5E1Btu7ByIuW1IU0Nz7XdgruccXDgl0D4qKzkezoukQ/w/2jcHep1u6K5LaDEYeHh42PHwnejd+2p7NYZGhI3wyEBiFo2R7klo6BFzx0DaQTA6JUoCJ9Aiw8dtfNxH7SCESLwTiPSbne9pPIwqxaudFH6+Ave5Oq/W6/UUGfjrr7/q7u6uzs/P6+HhYZruuby8nKZTpCS6OrgSJR+9PcrjmJS8In0fKYMOCJBcfsl7j5qJXOl2Hg3T01tgP2hMyrgyD+5qUdqkbFlGCkd6XRi543ePFHCaiOAwgTDWSbwcGXC1Wff5rHtN6VmRe94Mxx9ziqszJJ0ckpIxdFlmexMg5vVH66zv7iw4EVS6c8h6jYynf7qoYJo+SfZgjjoAkPLr+m8EQPg9yXUCUp0+nqODwcDl5eWOchMx5O+es5jfNdg9G11dqNyLEBDQd3kbHhFIQKADA7oKvKgMrsBnNMLD5J5fUkhOCQz41i/yiWF3LQTU2gCGYkkCNHrm9va27u7upgWFapPAge/AUB+yLp0R9UH4HrwrL3+kXNPg6wZs5205CGB+Pt3G+iWjq2cTAPZIlSI1ng+BnHvzqV5LiHXys0IImNM0H8ez88HLIC9ozN14pf6i5+llJeXtOoeOyDEpAYBO4fv3LvLoYMBX9vv0Wce3Ll+Ctc5gVuXdUKxHF8lL45b5EFR0MsP8nH9pjHpZS4FAB2BGPO34lUABnYHuuTk6CAzIW9T5/2S8z/34wOwq551F75qM88Mdql4VnxbKyZPV4kGtG/AdBAmVpfq5F66QvATUV8wqOsDIgh/KkYSX/Er7v2XE6XlR+eqoaIIuCokrfipvtUn1PTs7q/v7+2mRIJX6JDRNhIdXH4xVxz10yL8fCgRGYK4rs5OpETD2tK7gXC7cy+8iMIxYpemFzoPqjK1Pf/h7CcQvepzkfScLneHqyNMTeDKCOeeJ8T+NZZeF90AjI5iMl/hD8E6gk0Dxj0QHkpHjb7cJrJ/uUV9Qh3oZSaao2xJQ9ra5vXIa9XkyxtRxCbg5T+b6cEn55Bv1Lu3nIXTQbgJ2Ag2MFFRnWEcNU14M9ZGh3vm+Qp+K7+Xl+9Y3AYHNZjNNE1BwOo+P97lIjqccKg23nSVPbLV6PTBI/6XFdiyT4IOK3ndU+MChIneFX7X/ik4CmarvJxLe3NzsgKzNZrPTvxcXF9M2RR/kbI8bF9Kxpgk645LkNQ1weieUmaQo50CAA4FO2ab5en8JkGRD/3ey2NVF31N6GhDP0+VLv30ajZ6ly0xyIqjYO3J5SwBYebhh4hw180sA6Oxs950o752SA8ZokPPZ5Y0gKIG5Dvz7853BI99H+tcNeNXuC4joFKpulGWfqvKolL6P2tK1z+ueog7OC8qyg+HU9g6ceJ064OC6K7W3o4PAgLxyV0aKFNDgqGEJBXkD3MAnw83/0mK07fb7egGFuH0XgXs4qbOTB8bQulbDs66eDwdg1etRwi4A3mkql+9e4IJFeoIeFk556QwBPqd+IpBSu9frdX348GFnfYSAEM8WcKEnT1MkgP1/LDDg5fpA8sFUlQ+aqsrzoaQk58m40UBxfYeXTSDgUR5frEe++9Y7yuXIuFE+R947iQCWJ2ay/719Do6WeDOstz/HuogUqUvAgHkmXeD5jgDKW1Dqs6RLHFSx3zuvnff8u5eV6uKy3AGCNOZcP3Aa0tcy+DtkaNyTU5KA3FJw4+SG1w23tzfVzSnxNNk9/VZeCRCnengZc7QYDKTz6jX4aeSkiKh0kvAlRvqhD+5tEgzQuHKtgC8cTCvjyWyRh9A9zJSQljOdc6Hezg58qGwabYZc3ftXng4OHPUKEHCtw3q9ruvr67q5udnLmxGAq6urnbMZ/IwIby8FVkpHgM3B3TFI/dEZfqdDvZ65/ORpeogyAQEZYTfarnBXq9W0bVPPse+9/G6e1O97yFF5u8GlfFEO9bzPE3MsS9YIWhwIJCCSPCeVxXY5dWNQ/6VnNT51PdYUV1U2ol06fRgJ8Hw6Q5HkIaWnfCYQ4ICgK4vgVR9tiRbR+XPw7P2VSPd9MXS3iyU967xN9qCrm+fRledgI4E1T+/lKp33xRzQER0EBnTVwJcyopHWPvSq8bacFGJJ6ahgyGgaGnU0PVg3RPx0KMsjAgwx8ZQ9ghBdPXwlSuEg94I0uMQXlqNnVA8abX5eXl6mNzXqGRn229vburq6qpubm+mjQ4d8+uH6+nqHn+mNXGyz0jooInicU2K/mmiY3Ouu2h1oHVofKbnRs6IEBBw4irgIUN4Sp6W22+3O2POIDOvgUQOXW31S2N/BML15rlfhOgECCfHGo20EoQIE6QAmkSvCpFeo9EXkWdcvTsloHZMcCHQGafRcxz8H8m5AqKPcOFGHjQCyntWV9XFdIp2X5vn9MwIaupe2s/4oEGAfeLpUP8+TvBwBU+cNn0mU+sHt01IZXgwGVHDVK3N56qAMwOPjY/SmvdFVeVW1hzNphMl4N77cLcAOJ3XC49538qyklLm635VxAjXsJCpI/dcJl8pLnht3N+g9DS8vL9OCP1fWV1dXdXd3V7e3t3V7e7vzyme+54GDUEZeERfuCXcARr6rLziA0uB4S3JPxmXOB6ooKcKk9AgsO6Xi/ehonmUnpVn1GvauqmlOW23zKTrlR8OZxkPn8TJPGnGPIhE0s+4qn+DanxcfJetubETUF/7bPSJvX+cEkO8ddfV5a3IAkKKFoqRT3PlJXi1/e36doR8ZY5Y9R9QpqT5d1KHLSzJF2fcpBjf2PtbYrhH4Yt2XREGTDKZxn9qUHBrqF++nQ4BA1QFgwAeblBELZtgyhfRG952Yjl5EQmL+Eh1XskvIvZ9u4ZDP37vxTAf+KH+1gfN3TmnwMWrh2wqvrq4mRfr09DRtE/RpBF8HoA/fAOnz/f5iIgeDPOVRoEDt4wmIhyLUn01uENL/S5WWaAnSX5KPnhf5dFBKU7VvLNm+znB5fqvV69kfLvs03GwfjRCVWOdp+VSU5+lbogicvZ1LaaQMvd+WKO5jym4CAt5HCdyk/vAP03WG3om8TeWOPN50n/lSv6d2jOSM/9GRom52MCE+0Ah3YCCRg4tDgICX0zkR6Z6H/jvANld/p4MiA6x4QuE0diIOfPeM/XmRKxJ2uK/i93B1Cicx37nO6hS7z5FW1RQdUb6jcwyo+NgOtp8ok8qaCxnl1cuQMzKgslU/ruxmfRhduL6+ntrFtKoD53f1rOr/8PCwF3bn9srUR8egpcrc+3/kUXXPucfWKceq/ZfBsAzfNcIwvo+prl6dMVS5Cah7WcqHnpaIfcupDUYK2F7yyNtetb/QM0VTEpDWPekfH+euOOeM0yHA7ldTAgIJWFX1utnzSTI+AgRLgcKIb6Oxozy9vA7UjYAKp9d0L00Zex26sqkDvCwHMO7AjYCRA6k5/ZRAmPfdHOCao8VgYDRQiOYc2SXlwu98zhuaiJ2agIHP23j9D2kvvZrz8/PJeGpfP7fhvLy8TIvsJHzseCpgn+dR+2mA2bG+o4HevD6s9+Pj41QWjbfC/VW10x4/P0EoWs8rvUBE1e7LjXxahsZAfaEdHsekNKCqxouDCEz1bFIY6dkU1hZ1Uydu6D1MzzR8Pnkbuvp4JBG8pzb4OJLR9wNpOM69Hp2ipHypHp132NUn1VvjK3l7yi8p+U73LAGSv5oSKPAzJqqycUmyLnIAtdTwpv+cbyOd67rejaO+j4B8B9Jd9gkG+GznpbN+XZoEBLxe/p2/PT/eG4F751HHp6SH5uigyMAI8XuFdd87wO/RqHfMIPPT7wQQ5gaF18kVor57mF3hdYbCq2pnOyNf7ZsEQQMwRRDohXFrIQ2/ewYe1r28vNwBJJzjZ19y3YHCxekEQxkfbiNVOk6PiF/e1/rvPbzCOKH8qmygqKA6han80nOUpRRu1/P+jNLT8+PUlZfDto0MqddL/dXNPad5SPUntxBqHLhxErD0nSUiAgHJjfhMYLDE6PAgLAGS1G/pe5ev8+8YlAyL+MPfI0OhZ/03ZasqL0bTM12+XseuDXNtZD6jtqS+dzDhjmmKSqrdzNPLdRlZAlRSH7GN1BcjQNDRqC5Oc3x3WgwGHF24ovPClyLuJHCu0JKnzzzSd/+dPAHVncqWi6b8vh9oobrxvgtDp5jJM18BLSXNeXoKkIw2PXIaDr1siP8puuDbDdmWhHLpjfp2R64r2G63dXFxsbfNS789OnRscs9EVzfanPrqQKmedQXbAYG5+pCUV8pX5Fty01hhn/kZBCncTKCdFE2KxHHHkdLwSHBFzjh/W1WTrBMQ6D/fEcBxk6YROUZo3Lp5Vn3nff7fKf23pjkAS/02aheflSyQpy7fpJHBcX1PwDVqQ2qHylIdO6/XAZGeY/8zMsDnOa7n6jfX/14Hv5fGbAfkEiBIctiBgaRnlsruwWAgoR0axvQc0WdHrojYoRSsUZlLESi/y/Dy40er0nuSgaO3TWETeHAlSuVKXmqOnwpQxl4eOKcffJX/09PTFDFQnZlW5V1dXU2vLr65uZk8/KraSduF+31FedXr9IUAB3nBNRzHVqbJCHTgUOk9XK9nFbVRf6VBPle+ruxvV3Cc++RvyplHxkagmfv6CdDcU/T6EgilNomfypPGWzLAd4UQPHr9lC/l0MEywYz6h2tx9Dx5w/xJI13z3sCA16HzSkfPiT/uEfN5fXxBp/7ndz7DPDyNp0//JRtBY54AgQNkB4JJp6lcl2u3a53xdZ51oMKBQNIBiUZAoPvf+ergZM4uihaDAS5G67wcek9M13mFc2CiQ6iuDLgX273xVJ4r3gQCuPqeHote2iOD/fDwMB1/nE46dKWtqwMCppXy8+2SblgTX9y72m6/vyhG2wvv7u6mHQgqI3mBzmPxif2uqQZ9V12l/N2Dfg8KtfMi54y4fnPwuyeV5m+Tp0a+0NDxeckz3xuhNJJ5936YjnkqvRsBAg+mH/WX84Tlp0Vb3JFCUOv9wbNJkkfrBsl1x8gj6gyUp50DBMegOS+Rspj+58fTLHWeRvxLRtx5loBDBwY6cE3d5MaWYF1pu6gA83U+jMCUAxHm4TLrBnkJEEj3Kfvdcwlk/XIwIKU/Gkz0lFzh6LuI4W+RFC3DhkSoLMvvibz8Dj0zPMoPQQD338uz4vZFrRMQIODZ/ayHh+E6osBznp0CzcWEfGMhdxx422W0dfgQt3Oprv5JqDvxWnmrfJ0xILCUBvixifLjXoArDh/IHdB0IuDzZ9zwqByNH9bNx4nXeS4iwHr4Gpaq1x0NLy8vOwtRvb00OgIXIgI/P4uCkSzu9iFRLwhI8KN7PrfNBbcj6gC0+O+RleSNHRvIklxW3bAnYFPVT+Om/HlV+mQQR1NMTDsCAsrH9QwdPNbHQQAdriUArjOciYdzoNjBaco38TXln4Af0y9tg5e7dHp2MRigonAPx8kFpWrX0xSaUh5LAYHIwzJeNr3tuXoprM+DUdIUgcrVC5vk6QgMcPGgh3KpQDmofECTv47ixUMZ9dvb27q5uZl2N/CdBh4SPTt7fYmMyud6Aq6TEG8UBfApEkYu9L+u7hl2fHxPROMquUpyPULuIoYeacir+lPzOoXLaQFdkzdHA8Z8PE0i1VV95ePK60dZZmie02KMUnAhLY+CdYPhxiRtFWY7OHbTy4Q8//Rb+Tmo6pT0McFAJ3vJoRoZsSQ//n8Cqd2z7jxU7R+97ekOdQzcgWR53u++Xonld05PAiqui/1ZJwcEKd8E0ObAQHeP5RIY+TRfAl8jOmiaQJWjEPJ3qkxCfGSQKCEfBwSkNLhTyN07l+V7iNENI98Ix/AmgcDT01NtNpvJ8/G2cJBwbcBc29N3bgcUEFB0gBEN9hWRtUL4UuCcVvApE19ISYPkdWVoWW3UjgbVQQDqmNQNjtQXI29blIBDAgDuSScwTTnxOXACFTfOXT7evmSAHXRyvHbE/pa8MF/JiHv1aSpB5Ato+Yz3g+RQfCJIcsCVjCE/rpjdu/Rn3gslZ8Lv87vGb7rfOSYjUFHVh+qr9h28OSDgnn9HXh71PHmQgLEbaNolfkbt7trg5TkIEE8oc10UinXWd+8r/592qwNsS2gxGOChIvQoUqEOAObCSCOB4xxtN8j9HstNEQLPP7WB9eJ8vTyW0Ut8Ul5pTYOH8VgXRSiS1841Db6+QQsDqUifnp4mxe3AgQsJGRXwMlkvta8bLDyFkocm/Q6UUHo32JMck0ZgwpUyw/ACwC67o+mGqn0DrzS+20BlUClyUWFSIJQBPps8Rio6GnU3Vl0ExoFA6gtXkgnIJH4lzyzVjWUdk0agxL1OT0NeEbDTSUqGNJU1MlakBLjdFnjdq/rF512+SeZGRtmfJZhwuUl6zcdFkhcnBxeU5w4MUJ7ZDh9nDow8guttXkIHaWhHf/TciUDJOH+GlJD/ITQarA4I/Dn3uJif7nOLlK5cIe1H9abpCwpPB2hcSNW5PHaY74p3ZSpDr+ekUDebTW02m3p4eJjK98gCB6ej5Y6vZ2dnO6vGvT6KLGgLIw82OgaxPaldHZrX94TI/XcHIvyZLh1lozOyno8bshTmp1Emqa8ZiUjURQqUJ/+b88xFo7HZUQcICKQcuHZlJ2Xv+b4HICDqDHRyXFK6qv7sehqQEaBIRB3qctDpXD03N3ZUZ7aN+RBEu2FOwCMZUgeQqf10lDog0PGI4zKBgBRp9fp1+kN18o+eT+nnaLF2pueiitBjpyEboS11sHsMSeE6cmU+6T+nOUDgypMAQANFXjXrnMKeMshetlPX+e71642DNKbyFvVOAK51UDtVz81mUx8/fqxPnz7V/f399DbJm5ub+vDhQ/3xxx9Vtbs9sKuvK3ePuIgX/J/nLnz79q2ur6/fXXTAB91IufKZQ/L3ZxLKT2kTqHZvzseO7pES2PZx7N8pj56GIHA07ZB4pTwJZJLx5mJdgQ5vq+sMBwQp9LwUhLwnUOCgn3wmoBN1nj4NGadZOO/egQHnIeuh/xxsKq1HS3nV95FO74Coy18XGejALB3VUbR2ZJTdoHtagiyPdM3VlzaU+ahsb0eaqknfR7TaHlvaT3SiE53oRCc60VHp/S3vPtGJTnSiE53oRG9KJzBwohOd6EQnOtE/nE5g4EQnOtGJTnSifzidwMCJTnSiE53oRP9wOoGBE53oRCc60Yn+4XQCAyc60YlOdKIT/cPpBAZOdKITnehEJ/qH0wkMnOhEJzrRiU70D6cTGDjRiU50ohOd6B9O/x8oRMo9iNIwwwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACBOklEQVR4nO29XZIjOY+0S2XlX9U7S5n9b+TbxthcdlemKivPxRxXPXI5QIbyR9nWgplMoQgGCYIg4AAZod3r6+vruNKVrnSlK13pSv9aurk0A1e60pWudKUrXemydAUDV7rSla50pSv9y+kKBq50pStd6UpX+pfTFQxc6UpXutKVrvQvpysYuNKVrnSlK13pX05XMHClK13pSle60r+crmDgSle60pWudKV/OV3BwJWudKUrXelK/3K6XS14c3MzLvF+ot1ud/jm5+bmJn7rQxLfFf9ed1W/Prvdbnz79u2k3a10c3OMxX7//t3y7de9bFVO11jGj73N6ndqtzt+fX09yOb19XX8z//8T1vfR9B///d/j1+/fh340Njd3t6O29vbw299i9fX19eDLNkP1XF7ezvu7u7G3d3deHh4GHd3d+P+/n7c3d0d6paOdGM3xjjokRP13+twXb29vT3R06S34t0/Nzc3RzIYY4yXl5eDHPj98vIyXl5exq9fv8bLy8vY7/fj169fY7/fj/1+fyjz69evw7Hzz9+uO79//z7c+/v370N7v3//jvX/+vXr6MN79Fu8c55Q7rvd7nBN5zi//9//+3/tGH4E/ec//zkZA8mIvLNfJD/nOkY90XXKg+ekP9L7+/v78fj4OP7rv/5r/PjxY3z//n08Pj6Ox8fH8f3798OcUN0aE43Xfr8fz8/P4/n5+aBHGmO3WdQVt5vfvn070W/qPMdSH+9XNf/Et/RRuv78/Dyenp7Gz58/x99//z1+/vw5np6ejuaAyrvuJdtb2WP99nHhuPs59vvm5mbc3t6O//3f/419Iy2DATX4WYCAA5MGLTnqpMgSJL9TW+cAgfcABCQqeQICPglSWZbz8zquQAHv6ahz+pXx2e124+XlZVr3R5AcpY41lu4Ik3FNhkh10Pk/Pj6Oh4eHw++7u7sjI+VyH+OPM0z6kxxUkq14oQGknibDQDAgPmW0HRDRkPFbhl0Gj0ZQRp3X5QRmuiaZ0ADLeaie+/v7I8eha8/PzwdnoLbVFx3P5O9ggON+CRKQFK9u8JMzYB/dDvr5CgQkICD9IBh4eHgYj4+PBzBAUKD5ICKA03ipToE4Ah/Xu9Qv6rnGvgMD/lvfBAlVkEaw+fT0dLAbLnPySLtHW0KbwPJuRyu7kORAvqnP+/3+hLdEm8DAZ1HXeT9fKTHLdQ6uEm5VtstIVAajc+ReruKjq7tCjFQ8yWGWXWC7XSaF5f3b67w0cdJ1+sTxpKyYFWO55HTdKH379m3KW+LLgckYOTNEIOCG0D+73e4oayEQwN+qk045GWc5YRlyGlICBM4LB0TVWDAbcHNzM15eXo50m/3lNQca6ve3b98OjshlV/Hhc3GW2fkokhyYFaj6W1HlSL0Mr1VzOoEDZqaoS9SJlFnyAKXqP/lLznI1gJGt9Hn18vIybm9vyz6v1O8+wG2yZOBtO9jvxrSztQno6vqq7m4GA52zJK06gZmz17E7/VQmHbvQU3tdfd62X08I1NtODiGheDp8jwRmcnKH4QCA/PoES4i0a3Mm0w4cXIIUXcqoK33vfU0pxDGOgRXLVw5cHzpn3UNyA9fJ6vX1tQQWjNgcHDAbwI9AAMEA+8+sCD88d3t7ezCk+/1+3NzcHL4FBAiwFPV1RACWgID0l9d4rwAEP9J/gQenZFQ53gI8l6CUUdL5yhGmsumeGXD3eewggHpGAOA207M9TJ3PgpP0LUpBEMmDsC6LKd2kvjowYrvUL2aI6Q8URBCErIKM2TxJviqB4Q5oOX1YZmCrE1gBBfydnHWlFKvocZVPRoTkwVN3K4gsKZwGMlFySvrmfQQAjKD8PrU3O+9tpkjCr1dj99kkQ64xkwwVMZI/1y9NJs8OuMPxFCUjJDrxBPi685zMPtk5vulDHnx5gB8uaZDo+N2Ay9DKUboepCinApterjKgAhTix/kUP79//z58e2aAgCDZhWQ8V0DMR9Nb5s659s/taspCUcc1v1LqnKl+Aku/lvqc7AjBYZq3pCoKdyDJ8prXzhPBpQNuZcqoh7QdDNDIaxqbaszcx3WgYAsQGOOLLBOsAoF03RUhObMKKeueKvVUAQu2RxTICNAd84xWJ2y1nqU6WE5KK16oxAlUVJORlCZWquM9AdhbScbf19SYHhwjp+yJrrtxJyhgtO3pd9ZfOUZ+PILqDGbiQXsBZssDygw4H1qbl85wY57aVVk5BTrhMcbBOaveBLhS31XGHZLqJwhISyKzIEHkESJ5udTyAGlmh0hut5JOVw6lsqfJ8bl+MzhSuwRtvgnUAUHVH0+vk98uIys5dBsPu0wIdVZtVsHA3d3d2O/34/b29pAxUx1ue5OPcn9TjZlTAknJ5l48M/DVqAMGFRDokFVaGyJxYJPzTdSBkKpPDjgqQJB+V0o547Eq/1Wcv5NHJaLdbneUzk7GMKHsynAlx+Vpw3SPGwKm40U8z/t8WcOjtu7DJQN3osyIKO2fDHOlrw4+Ge3rusbG60uZAspA9/myBT/csOh1pHaoJ18JEMwcwur9M7vSBWTUjbQnxcfPQYC+ualUS3dV9Ds7rpbeBA59f8AY4yQ76vepXupsJRufa5pvzKIJRLO+BMQ627sy/m6z/No/Bgx0HazOJWO8MlEqQMD7u4xAMryaIG7sfbPIVkDgv9Ogkk+lQh0UeIZAtMWwkyrQlHj/KkQwIMc2xjhK5Y1xGqlTz9yRVY43rcW7flTgU+2wvWqS65wbJD3JcH9/f/jwEUgHAkzxsj3xx8ibTwW4XvljYQ66drs/T3SQmFKW8WT7XbTk9as+Ra+UZ3L8Y4yT5QZGrjp3STBQRXpJDrOocHZfsoEOMtOSmMry6Q7JUlEyHaR0KD12l3h225mAgGcCkj53AVvSM7WTgDLb0JwS0NFSFJenPAjr7GR13bMIlV/w8VwFkRcDA1tBQAICHomtdtoNcAUy0m8HBH7/GMcK7OfG2LaXINXfEUFBAgTsf9XmOQ59hnAvSUzX+XlfDyeaH+PYWaWUXiKV4ThUY+h1MZL11Cp3YMsQS9YpSiEw8fcfMMLrNrimueWOMqWAPZOxSqzTQUbat7AS+XfzTXNDbXn7uv8r6HRl9EVdwFDZu0Qp2OmyS5wjfBRUTnGWvfFv6k4aOwFU7xcBASNxymo2b5MstWRAu+AAV1kBz1ZxQ6vbBGYKKv4qf9jRTE8quhgYWEG3s4FLhmrFodFgJKSVeKnqpINJER4VYFaXI+KOOtmltivkvUoVbysIdytCfW+a9V9RbwKUrhMJjLpB5EY13pvWs1kv20zOjk6Ju5/9RS1OaU2dH++vf9MJ830Cz8/PY7/fH164opfH6CU/ie8kXzp9viSI5/SioQTePCORZJH40bEyRXw5UcX/Z9OKPXRnSFlXUWLSaQIAnXedTfsx1DZlKb3kvPBlGAeVle5WWYHOrpyTzfE9ReLH5zLnveju7u4EBLiu8VMFuK63FeD7CFv65TIDXXlX2rRhaEY+YVZ4TG3z/Bh/Hh+seHClrnhwJfZsQpVGZZ2rSxLeT9U7A1SVwamup3Y+kzgB08TU5CVK17GijAoA+JqpSEZAEZJPftfZtJ+A/KtMSr+7sfZlC348otM9aSmJUQyNmz8ySRmvGD5+exQofirAluTC9kkOxHxOcDnAAXT6XJKqiNHBQgKvVT0dIK3sbAKQdIC73e4ACHwcXd4pUJrJmlkB8jyz/ysONIEOtsmMA0nLUloW0YuxCKQFjBJIXfVd7K8fV2W20KeDga2dTkY0oVNHVykCUR2dYqyiLgKCajMLaZYZSNmDdJ8r7AqgOJdmTn9W/isR5SsnL+NVPfcsXSMQS5FWQvaeIeBjjCkScxDyVvlVUZYDEPLg9zsw9H56ypdvl/NIr4qE0u8q3ZraSx+P7lVnkk9KX1dZma9Ild1LQU/nPJJOchnJNw4mMKj5xLbpSFUuZQI6MHeO80993EKc87QbVd273e4IECgI8KCh+zilTE/qz3vZ2mUwkIzLVibOQT8816HVyvl7nZVDWwEBHtWkDEGiyhC9NdrwbEFXZtWgrTj9LfRRKa2tPFDm7tzlRDiuboAEIJKsk+7xcTx/nwHvSVktZXd83VO6n7IViSd+0ouIOH9SalL98L6tOGUCqwp0VAbQ2+FacnL2XmZVfxMgrzJHlwID7M85zq/Sjaocx8qdmb+223WW+kJbnZbpZuPU6Qn1WnOFlOboueNH+9kFkg6c+GSBnsRhBm4GBnzee//TcaIt9vzLPE1QgY0Zap0tEZzr2CplTQPUDUgysomvWeYg8VDdq/sT6Dg35bnSj2RcvwJVhkjGS4hecpUDJ/E5+QQu/LPb7Y4Mo/MxxjjRZV0XeFDdbjASEEiRdpo7BARdVCJ+ecwIvYvMuWdA8qSBTssLaWc55UWHnBw1o80umvfI1OuogICDon8iVU7Fo21fduoyAmPkfVGuo26LWN7nRed0qa/kMfWH/HH+jnEaSM3AgvTA+862KCPPDvDJJcpgNgdZLsmio61B2JvAwJao7y3RYQcEHAy40vE8layK1LxfyZGwfi+feKjObQEAVbkqI5IMXmUkq3bTBK7uWeH9UhkCdyoiGXj+iY2PPbMEWrfmtzbMURfpOPmWtjH6FHmKFNL4MjOQnBedsrIC3LugejiXkrwc6PAZcW0i5D/P+T/QiTyyJB+SP+v2Y/0WaOAGQ/6TnF9zWfB3OmaGgQBB5S5J58ydLQ6kcrJVBlY64/aEupOcOudhsiv+2+twUOzn0m/O/yqbUJHfl9b4yZ8DAs1VBRy6Rr4qMOA+jNSVP5cunhlYpRThVEsEKu+/KwVdaTfxwO/UNkFHAiAddWXT5PLfq8sD1f2z747PVOZSQGCMPy880Xi50/cohs5TVIG9lK7WtbSvxGXjqXouDdCwkGcCYKZy/dlvXvdyaf5QRwkeHWwnZ+yO1aM91bnb/cmYMIXs0TmpAtVpx7au8TzbT/1L91cZikvRyhzq7IJf1+/qk14uxI9IY+ptzGxtcvheR4qaqznbfTtfiaoMAXlLekhAznt8SU72hDqXwL/XvYWqPq7WswwGUkMrjVSOcla+UlIasLRE4IPn68M+ud8yyWd9+UwDkkCAG7UqLbcKCFLZc3j8bEopa05IRr+KQKtn75Me+aNvKTXI+3VN5+jAaSRW1tj5PoG0Ycl5Zb/TXCYo8WUOUqrTP15e8lff6MwdYDBa57181DB9eyaA0X3KDrAdP3Zw8U+hFV6T4/RAy99bUQVhngUi2HNQTJmqzcr5+XISyZfyqv74/TrvQJFtVstLSafVRgKynO/KEqgetyNJDp+tcx/2r4XnlO067wiqGnRvu+PBUesMgKQoi2kf1anBTgrHfjoa7SbGClp0ZT1n00wFBP5JxtCJ6/i+dpiQOamLpjpQ6mBBwIDg1P9ESFGznkDwlKOcJ3m5ubk5eusgv/VGQs8K8NFCvoGQxD0UKUVeRfAeMVWy7AAm5cs5muYEgUgCAvykiL9yChVv/wTqbGkVZXcft3kijg1lSWCb2tVv1aW5wbo5n1yvvL6UJfC2XPe8H5QXHfUY+T0l7sR1TWCSfSTglzxpkxLvLtuO3I+dS5ufJlht9BzmKkc/yxbwOh1tyhCs8rHatqPelXZ8kAkKVp1SIqLahKSdKoP8ViDg/ZsBvY8mTVBf86QTqQCBbzRiP1Snbz7keb2OVYZALycZ4zRTwCUBRT5KMSryTZQyAyICEgIMzwSsgJ4UPVbzwsdeQCcBp7SskLIWTpJTygjoN51+2h+QwELKDJwDrN+DZvN+K4j137RvHQDg2FfvVKHzdJvGTEDizQEp9aiyH26bRbTJvNezUzzn/SAQ7oCBzvHeBC7oK1z+CayQv7faz9V7N2cG3guFVNQBghlY4DlHcmP060F+fzVYXDNL7XuayXmrjJwcxqrR6bIKpJmRrRTlPTICPg6XIo8ERZL3brc7pKr5/nydryIWHz86a7UlI5BAGo0rNxmKV2UD9vv9UaaJY7Pb7U5eL+xA1XlnuzT+yUASmFSZsWTgE6B0efm3R+6pv2Pk10i7Q3cgkMa/4qW6fgl66/xbKZMCHF+OdWBAfXE98zlPEOi8dY6SdTnA9D64Teaxj6/OdcEXA7WUPaqWwbwc+8esgH4zO+D9WwUC3Thv0Z9/1AbC7ptrpBxkCrzaN+DtVIitM7QVVW0kECJAMJMBaSWrMOPNjX91vuKB/HXKdymjSkdAgOLOerfbHQCBgIBHiVW9Y5z+j4GyA0wLUr7umP2PfPj+A/JD/ZVhdocuSr9X9aQCxR49VhmCKnDwqKpKw1byTh8HAyqvYy6xJB3v2v7I4GdGW9pOYM6vuaPksQOBanMqgWDiMfGc2qre4kkbOIviyXPVDueK6knZC13jPW4DaadXAzeXdZdRq/q5hVYARKJPBwOVgUg0K+dAQOdo3P3cSpuV8VshX5vc2rfOEFWTrEKp5InnO2NY1VFRMgSXzgQ4sb+etZH8ONbMtjAKpVPn8oAiVEf9IkYE3BSnuVDpmf/2e8lnp08eHfOcAHJ6uRDboz5X84PHDspnc7kCAKmcy8Cdv4M4jr33PwEL1bWFr4+kFXuZ7ITPxcp+cBx9PNP+KAeeswAhteVLWgnIsg9VsJOyUz4f/LePrYMPb1v3K8PBct3SrPcjZZVTdmDVhlZjW9n0GZ0FBlYcehdJVkx2ylpd97LizY16V/9swqzykgYhKUonm9k5ByXVJOnanUX/5wIBP+9o/FLk/XUnWslQ7w+onAcjiDH+pEN5XXVo7T+ltF3/3Kg5z75bO+lk4td/i7z/7mhdXima0ZwjrYJ+H6uOD5cbryfwwkc9WWf6rAL5fxLNAEACAmOME8efAIE73Fkg4+DRP85rmmtef9em+pGWh6sssQeSqa4UOJBn8pH6y6CB3w4IWJ/TR+jnl1km6JBcZ4SqevTNNeFKAdwYc2I4UnZeeX9liJIyVrx3QCtNmETJ8VVRj/e/Ol6hr+D4E3l06DKsDKYmqbIC7pjomB1YUH/S+nYHCP18MtzVOrg/biXj447T63dZ0cHyfQIEB2yDho6y3kIVgO0AwLltJSfC+f2VMgNO54CsZDOTXjkI0COFu91pliDVlwKrBBIrQEDSmKZlpE4WCRB4vZ0MPZBkdoDzuwMEr69/3hmS/Aj77HUmkDOjlQB9RpvAwLlIf3ZfZxATcnUUW4EDlVPEJqFXiqW6mHZKz9em/nk9Xj/TSrzHDXEiT4OxfJem6jIB5xo4R61vVcDPJDpgjwiTfjiISJGknF9lCGfOJBlhGgQaItVXRfgCoJwbqWzqO/uQ+PW5OMaf6JEfvfUwLatVDkk8aenF+XaeZ8Q2quXBLaDaj78abbGvBDwOAvQ77RWgHRTg5IZX6j9tnbfhbbnuk6SXokoXtvoXzg3x7c7f+yHiY7/kye9XnQTkuk97g3wecq7TP1S65/aG8qkC146+TGbAKSkqlSihzgoBMloZo57krFdrWPr26IcGz7MBntZ0njpAsJU8pUleeK4CQBU4WDV+Dg66+i9lUL1tX8sm4idKZ0ZA90m+crop68PxnC0HJMBLA8VX8/Jtf4yM1Z50i22M8We5Q4ZdeppApo8Xsxpc5lCZ1ZR6Bd7TuDg/Pp/S64RX+UmA2u/7yo5/jPcB4dR/2jU5ff7Vtf/ttdu/bv67na4yAsm2a2wICjheVVuiFDSmepO9YubD9YF2Yow/7+RwYMA6U4bO3yeSMnY+1gkAJX09R0e+FBhwZUjoNRmwdFwpZJciVRkiZH2nSEekwff3mifDJEVyQCCe3wIQ3KB16bWV40RVZFfV9dUMawI9q1FnpXu+hOQ6zHKMgqrIa4zTFKk7RAcDNBKpP/rNNfS0TulGNrXdyalbTkvyIq+aE5of1XsVOD8JTnSOL24ST579YT0uow48fzZVMnS+V6Jj77c7Y+pi9dbBtExA2+iOUDKvgiuVodPWbwfh6qt0xYGpt+v+w4mO2SN7XwpzH+JzgcCC4IVBBe0x/6dA99AncE4mv9CBIO/jKm1+HfFnUYqcqkhqjFND7RGWG+nUntfjE4FvikvLBfpeRa6JzgEEHl2l9meAIP0mbQUB+t4CND6KyIeDLy9DoMbImK8TTQAvAQAauSo1ypcFSbd87D0i1rF44T1y6MxqpE9Ka7psaIyVGWA0nnS7m2fJCdA5q84Euqpxrc6lMe6CgK8EAFZpFQTMftOWut1z/XRAQBs849N13+tJ2QHyTL2ls6YOJRCQAjo6Zc4btVFlk+nsNQelxx6A7Xb/t4H47u7u8K4Q2RG9jExz1fmuAIGP+3vq6cUzAx3y7T7VPVU9NGyklLqkw9d5bqRJE4BG1g2Krz1J8YggK+oMY+Vo3aBXkWI6rsgNz6oh/mpgYIy8YU7HqXxFCXxWx1UUlt70luSWonMdd8tgnSxSf11n2Y7/MdEMEBCAySAnx6M/ceFa7Gzer4AFUcpmzGS0Uu6rUwXQOruanHPKZG0BBLQdqU7qRrKvvkzAzJE7TfZR9XjWjXzJkXNfGYMB12MCEi65cV5yzrhc9vv9CRCg7ut80u8U0LwnXRwMpEF02gIAUjrIU4O8n/f5hBjjeO/AbLkg9c3Bh/O1pT6vm/V4JKcyFRjwOtLvVWPLe92xfAXDyont5/04ycnHyA1WAqEe6aie7lPJ2w0hPzPenahz1IvZ8oCMnu9d8HcfuBxcXg4IXl9fj/7VTeDGs3nJUVQgIY1FBQhWQMFXBQRb5ifvqZy/O3guFSTg6qCAPKXAIY1hemlVmlvUU+qHr9e7Tmi/A+cY7STb0+9Kl8mL7veMHTMGnGtuQwgE+BfoBCOV3lbjmsptAQ4XBwOkKrLy604pYvf7uszAFoPNR7fc2afswIy4luk88XrqP9tJ+wOSMav4OhcIVFFmOt8Bo88kAoMEmLwPaf0wOR3XORrYFBUnvsiTDIZ/tJGvMlhpnwEjDhkfj/5dHg48CAb2+33c0FhlDBwQ0DDrm5upOoCUwIDK81HPjqoxqNr6qoBgC1XAKmUBqmyA3s6Z9hXQhrI91wW3016+suNuX+nE3X7q28EL62K6P/Hrttf1sVq+u7u7O5q7mnOchzc3x0sGnuVbzRD4+Ha/Z3RxMNB1oIvk0j3VBOe5FOXNgIBvfhEvviHE13Ld+UkJklPfQpWj9yWKLkpnXVUblNGsbGo3AYJL0JZJ4gZz9R4/To7KAYETHeOW8dI5ptl1nk8CKJJSGepLejmPv8RHxk1/msQ/UPIMgevlLPJK8qxAVxUBUd4E2ZVObgHLl6Jz+VkFQ54FoJ2TE/V/1xQA8H/E9KCsAgMeZVNnHSzTgTvIJQDUNQcZqV9q14Gjykg33DfwftWhueVAWPPDAYj6wf0G/PgyBeeq6kj2uJoXW+hDwcCKQup79nkPXqpIaozjaNyBACMZRlSMRMY4dcwdH12fHJH6ckLKSPDeWaSbKDl/Xqucl393bV7K0FZgJPGa9nIw0kg6mfQqOZ4UYT8/Px/q5wZCf2yOdfObx9zsRUPv/U0ZARpakWcGfF3U+5XGfQaiWK6a6+4gfB7y/pW2ZkDEeX8vG/RRlHTCr/k5BwM6To6fWYHuQwDhPCUHO0Z+zNfBgI49y+Uvw3Ib5lkN8vX6+nq0KZgOOOkkQYUHhJrLOiYY2O/3R3onvtW2Z2B8HjE7wGCB/Xwvu3rxzABpBgQoJBfOOZOVg86B0blqLYsgoIuEvQ39TgbHf6flgeTMUjSWjlcMYRVxVf3weysgsNL2R9IW3Uhl01IQ++cAguOmPz5iZC0jcXt7O56fnw96x0igcrTVeBOAMCr2bEGK2Dyq6dpOewUqcpDqMmb7HYhN11PbXt/Kp5Ir9Z2/vxLR7nVAINlUj0i5N4Df/q4B/V323d3d0YfvJ/AMgctUvI8xjoIp59WXH1wXNIf8/RdjjCMHyyUQ6j0f+XO+CAKYYaBPIBhghkwARU8QqF611+27UGbCbYrPWZ1zHXiLnl4MDLjyeqTjkUCHzqtoYowcoaf1pcQPFTqVYVSVoi0fmK4ukQMUrotVZWfZgK1OmQrWodAEOKpJ/9VoJq/Uj2Q0eJ5AziNRptj3+/24u7s7Wn9XOlHjnV4uRGNIZ+jpd/+kueWySC/v8UiMcvP6On328pSXflf9So74HOBfAZeVufDVdFhjOpODj/0Yp87WHR5/EyAQCNzf3x8+d3d3h+/0lIH48PnT6ZXzxv5QNzVPBHx9HvreBzpUAW/aWHe8Dobu7u6O6tK84R4aBwLSby4bVICASx8MDqi7Hhx3v7fSMhh4a0MVVU5/ZmRmvKXUuisky23pmyt1OiZ1wIfn0oBX5NGRA5LkzM4BAa5s6Z6qrq0g5KOok6c7TiLyJDPvF+UvokO/ubk5GAh+KyNAY8XslEdB6Vi/k1P1/tMA+rxinf6be2DUz8pBV2C5Kkc5p3Hp5O5lfLwoq6pcpZcpwvpqgGCFqgArAQIHBvzNzIBAwMPDw3h4eDj8lrOsHpPlWPD4169fY4xT++RLZ2P8sXFcInLd5/0EOG7juTzgIEJ18s2LBDz0K79//z4AfH20P0f90py/vb092STLJ2n8GsG8ZwYqO+3Aewt9WGagYyRFxxUIWAUEY5yCgso5p0hFgnYQUd3XOcGKtvTF60zRnL4rvlYMX8V/Uq7qvLezIqfPJo/UzwW2HtGobo6t9GmMP/tKPAtwe3t7OJaB+f379yEaG2McZQYSEGCEpLbEj4ysfos8ShIlR8prnu2a6XJ1v9+n+VfpqJ9PvHm7la6fA1A/IgD6DHIZ89jBgO+JUTk6LAEBAYCHh4fx+Ph4+F0tFTgYcD3mTvqkI6xHPGnMmDXwlLrO+dKv6qKzZUDoWQFfDvG9B3p64Onp6TCXn5+fxxjjAHaqTACfJuCjtQwOqsA42bDq96oN/pA3EFZlq4h4y/kZVY7Tkam35UCA9xB9VvVtiSQcWXZ9ULTo1z3ycXBwDhCo+K+yA12957b7WUTUzXP8rkhjQhDpAJJ/uMMnTZgd8JSieFI0U20iJP+KPGgMxzh1ACrrYMCjLtXtyxNJvyp+Kr0c49hod8A7yXxljiW7kfjdSl8JFMx4SUCgygzoGh0c9YOOi2Dgx48f4/7+fnz//v1o34C/N2CM0ywNnX9aDnO+RZXuUb8T0ElLwb7nS3OZGRH1S2CnAgP7/f7oXvaby4MCVTqXlglSdkDfSa8JlCodX9Xdd80MbAUB/rvKCnTAgAKQkaZwPKpJ7zungfKISkaZPLuB7x4n9AmW2q4yGKmP6bcb7Q6cbDGKK8iyAiEVr5cmNzZuDFYdRwIS1DtlBDSp+WdBzA4oIvCdytXkTk486Z1AhYysXm7iT8YQ6Hr0T9mw/goMd8BUvHMZxgH2bMxSnbN7KbOuXHX9PYDER1Jn6CsAwPFPwNAdqRyjAMH379/H4+Pj4aNlAj7JQpknYEkwwA2A3bhWNpYBXAIC5CVlBlSnp+8FApj9YJ1jjMOTAS5D+RrNOe0R8jkvP8K3Evp8YpbAKYGEc4Hrm/cMUMjn3OtGqXL+7uAlLEZonNCMPvRdZQacHzeAHr1woGmMBQqc30423VLGbFDf00ixrg4EpGuVgV6J5D6DUpSxUl7HHjXxN8fJ+08nS8BI/U2bBLkpysFukrUbCtbNKCQ9E+6gyOvnb8mC1xIA8KcNPA0rcM0NVu4g0lxNPHZgxO/huWrcEyiYAYnPpJnzr47dznq0TP3mfQIDzAw8PDyM79+/H0DB/f19fHyP+u9OTh/fZFeBTudJ131sHOz4uwX0nQIoRunKCNzf3x+WQ9hHkcBAkrsHjHxJF+e6wIDq4jXOuzFOn2xKPobgm79n9KbMwFYjy/tmWQDvnDt6HcvQpcdEeL+nQBNPvmaVonxHuq7EySGMcfz3rF3al22JOGmoyBWSTobceetoFQRUv7+K4eyo0r+qLNcf0+YmlRNVDikZxU5enXP2usb48+Ih8iwjU+329nrpwKmr/O3Om4bPAdAYx69+TQ56C606RP6m0axsTcXPV9Hnc+0sj/mhnvg9vK61c+0T+PHjRwQDacnHnT9tpgNEAkPqdHL44o92dYz6xXFjnP7fhs8hAgGBAfX58fHxaC8E6/ElOp3XUqDq5FKBy0RAgfJRlts3E4qq5YOkByv0Jf61cJYR4PcY40hJlI6V0Rsjr8m74SV6SiBAgymA4S+E0TdTXJ5OJS9U6OQ0KiebIj6/L0VFWwzYStkKfZKHDpj80ygZTDeQM0fSgSrWn6IxGmlvW3XT6bI9B55y1g5oOjCQyJe6OE/48hfPhHgbLg930p7t86i2Gyvdx302MtjiYdXOVGU/k967fZepLwf4eb5fgI7xx48f48ePH+Px8TGmzyVHz566fvhjeP7+irSsy76kOcL+EKQ4CPe5w0cIlQFRFqQCA9yv42Ba/uH+/n68vLyM+/v7Ex+h8npZUQoUJBP2o8oos14HUTP69PcMdEiV15zcOXLySomkzFWqqXJaNCRqg3XwsQ8foIR82VcOIo/ZB10jufGqBt/PV8Z8FtGv0Gq9bljPUcyPoBUZVBHUGKf/u97VU9VJo+nr9wSOXVRHqhwvI65kHN2xV2DAIxHX39+//+/RKhpXGbaZwWL/OL9XbUFVn+apjDQjt5nNSd+X1lunVb632FrXUX+cUOvmBAL/+c9/xsPDw7i7uzuaF7SD0kFGyyIGNtpTQ0DrfRb5mI5x+m+I3PhIn0Hb7X4ivVjJ36nAeUMw4dkxzQPWpcyA/ruAZblMwM2F6otkSt2u5tdKtiDR2WBgS2NetjNy1eSvIjCmT/xta2Pk1FCKTngspeVakACBR2Q8V9XtgGCFuDSQ5JGyHFsc/nsYOc9OdJmBSxrUlehqphfdfVWbKzxUbdAopojB/ySIejjGabpUkbIMyhh//oLVjSJ/+9z0tWY3gN43j/orUt1KF8uw67fLJckmydR5T4bSwYgHHt7uZxPlOCuXzrk8Eij19wnQMQoMaGng+/fvh6WCh4eHoyyZB19j/AFnsmnUW26s5Xh2ANgp9UVZDWZ0HaB4vUrn+1KBP00gUsZ4jFMwoO/9fn/IDNzd3Z3MV4IBnfc/MKLu6jfH0m3subZ9Exg4B20kRZyh1ETVZPBBTs42GXr/LSHTGHXRuA+ovkk0nIxUOiNDeRBEpHuS8+3KOFUAa4Wqe1Jm4KtQMvQpkpoRJ2Rqg8dVOY5ritLVDg0GPzIMblyYSaKxYt3M1CTjncCA+PS+E6AQSFSZiiowcMeR5OeAiMeelfM2VtdX2W4FML46VbbVP2lpgKCATxAwba6lAv326LvTR1/SUrvdnBL/POZY8imGBAbIVyLVlf6PwUGS5qpAtYJGgidmBfTRE0S6zv8mSB8H8pKfjynnss+lraDg3ZcJyFBlGDtA4NRlBdJ5r4cGzz8qTyPITYhVBMEUU+f4fFlgJSuQnP+MunpdYaoyY7wvKHhr2Y+iKmqsyjh1AIyyVh00sLMd/aqTuuU7kRmF+5MI+qax9whIhpkOjw7V+8V+eN/IbwIlSc5pvqfrBEjiOYEXtuX8rwC2xEPi/dK6O3OUXUCVQAC/q6xAeuMgXzSkb4EBjUX1NMwYx5vu3Lk5/+KxkoH0Mb3Qh0sdY+RXhKd9JARG/CR/9fr6esiu8VFBggL/Lwc+2cO6Exjjo4i+REfwlOx7JdOO3h0MJIPRGeC3IO6VdN4MDDjYIBDgUkEq5xFV4skBwTn9fcs9riArmQK/b5UubTArSg7sHJky2k599Tqrie4ggLrokzytRdJ5+0f30Xm7w3R5pPupxwQNaRmuAsi83517MvQs5/YhbU7z40Sd00l6keyDg5uvQB2g6a5TnpXzTP9B4G8f5DH3akn3UnZAe0lmc8/1ZIw/bxt0HZDOsA9p86DI9djBcwIA5MV1hoBKYEBOX8fcL1BlArhXgOdeX//8u6ID8mTTqgBlhd78NMHWgaWQK8Q1Q8Gr5EajmthujEXfvv15UQuNl+8PcFDgxpAD2ZHKMrU7628yWrN+rtBKRORt+zl9vwXwvRdxUrjR7BwAHV2lJ8nR8eORQMoSJCDGSIt7Bei8PUsgfmj0/LGt5ABVN8+znPh0sMJP2pg1A/2+ISrJ0Xkdo/7jId3L5QY+aeSU9PUr6e6Kg1+pgx9GmfqdMgK+gY5r53zjIHVDYEA6R90Y4w9Q9TES+RzV/Ol8Q0qr06GzTvJH2Yxx+hfl3paDZBHb5TIA5ZQe7a1ACAGG/IHOV0Gsj/c54PXNmYHEiFMyCJUSzyLXboKme7egfDptKbAMCTcz0YB2ESKVrOsziY5Bk0DnV5YZnN4a0ZyjWA6G0vGlacXgc4wJAKUnus9/c4KnNdi0Sav6r/QxjnXCIx2dk9FwoK11Tq4Pi0cHOtxQ6EAggRUSnW0ac0ZwDoQEftVfRUTJuLuhXA1GJCf1MfWzAtRfNTPQ2R4dp490iDroywRy/HqPgAMClhWYkM3k2I1xPMcEYN2euQP2zJbbUNZJ3U5O1QFftycmAXvd43rgekRfwSWDDghUgQM3FOocdVHlKyCwEsw5fejriLc6Ag7+uY7jXFREHihwffN50jFOn1LoKKVXE9/8ZnkdcwJ5uzOjdY5Mzq3rrWPwUeSGpEL+KVMwxnFKvIt4U3RLg+MAgc9pi5ja7uYVozCPcDoQSkPGemV4HYhUERMNYRpzOnMaRX9mW21rfVR1VsYz9cuzC94PN+SJkpH96vqcxmWmg5K/7xdQNsCzA12Eq99jHDtxjq/+yY8A1PWWvNMHpLF3MMByIs5fzl2/30GE10F+O0fMunzZIi07+Lcy0T5n+K+GFYhgfym/LX70098zMEZtnLpJ1ymI11uhIq+/c3budFOafyUr4gavIxpxTtzUnzSB3sOQnZMFWLnnXHD3HtS1vQJY6TAJ7FSeUQkNVPWpNmuNkdPUNFZuuJgNEPm1tBzhgNfH0YEF+UiUQHG6N0X6LC9Qwd3WlRy9bgcy3Xh3ACf17dJU8VcBReqjZ2QqHUxZLJaTc9J5BwN09hoHnyt874XrYkfJ9vJcN+505uneSrbqizbwqp0KwLicKScvn8A4nbnmLeeAZ7Wc3gpa3w0MJIfXTbzKkYsoGP0mIJgBA88upPpSe2OMqMznpOgrxaloi8P0qHVLFP8exq2TXwfoLkWp7WqCdtkBv9ejEk3i5LTcEfqxSLrmyw9slw7Q+UrgIxkk8e/RtNenPlVgOxl91u9ZgQrIcE9DlxHwvpEPAmLuIE/2wsde31/B+ZOqYKKyf64vHmCklHrlzPhPfQKslTNMupki4s756jvNQfbNM1rUB98wysxAqq/SB+2jkW57f/hJywgu+9RX9td9jIPdmQ/1e/m9Qh+WGdiKwGdRvAOAlfarCHkW4Y9x/ChKleKpqEpb0dCmKIq8vpfjfCtaJJ1bzyVBQCLq0qqhcqrAqDt/zwx1US5TrGyHBto3M+52f96+KdL+A69blDbqeWRFHggmHAjwXpeffjMlnfosIgBPzsmNPSMnyovpVG6eZNuqw3n/arpa0YxP10GP6lNmipFsAm4EcKJZhJo2CHYBCh2j9Dxt/kzZM63TJ12tnnRhWemBL2Ps9/sDHw6sdexP1VQAhL+5EZj8JfBTzRWXd3W8Qh8CBjogsDrhqkyApze7utxwrVAHDPRxR0DqgAD5qSIwr2tl0jsfLi+e+7dS0hVPy51DCVDQmclpeWqVDpFpVvKq3240yLc7dgcgcpQc/+T4EyDwfricPNvmOqj2U0o5ZSs84uf/KfCjjVmvr69Hz5GLfy0xCCgQLLFPFRBYsS2fRS5b5ykBML/m4CqNg8s+AYFq/D3zUjl7OsEqC5ccpb+oyJ27+pbGme1z/4i+E6jnJkfen7IOkg0BQHoE2PvF6/6+EJef7yWgvF1nkw6s0ruAgcoYdEa2Uu5EHSDg9Y6/VMcKrZSbTdCU6q3qdZDwHvxtKf8egOEcEPYZtDr2SZcYCaRoyZ1Ml4pNxrlKJaa2aFjo7N34J51L6Ujvn9dXAXmC4w5IJIee9jD4junKKQkIyHjqHDepiT8BBz426ePgRpX9+grUgS3+Tn3Qh/J2+buOdrqUHDYdp59PETDHrnKY+uajtN7uGH9AYALZne/h/KvAn85rnjkocjBOMMA/76reIFqBILbPMXPgmnRXfJwDZN8MBlwBeTw7t1p/GqSqjJTSUyjVgHcR4xaa1eu/V2TAtVj95mTpeHajWPXpnL4Sof/TKMmJx+nDSMJ1mlF9ZZCSAaXh0DkaVI+g1B4NuJwiqYrg3IBWxijJy+sij+meBHxmc58yTcsEyqzc3d2dOBEBIjeoupaABiNKARnPFHwF6oCpjjtb60DMlwJ8Lwf3cfi4v77+eZeEwBXbTA7+169fY7/fj/1+f/LPlkmH2E56+2bKFiRAUwFifTuwdv1Q3dzwyOydjn0vjfhVn/f7/Xh+fh77/T6+MKwD6OSVc55y4v0OCrbq8Jv/m2AFDKTzq7QF5Xh6VELyya56xdOqo0ypmYrONSZcM+Xv96Kuv2OsPSGR6nLQNbv3M2nW3woAJAfF6ymKdqrAbDpf6brzVBku101e8zVJB3QroJvlk54QNFXZj/Rbdfnav4yxv9nNMwOiBJIZFFR2iX3txuYSVNmbDlQlPaXz942Bnp1KAI7t+Z9SaawYiDFCpkPsQAEBhP7kR/en13FTd1Omg7yLP/3mxlOOrQMgn3cq48Bf9Pv37yMQ8Pz8HPtA4FSNI+2LMgPeN/o2gtxORyp6U2ZgCwBIx6TKCVWTdNYWf/ugExi4AyM/qmvVEOx2x/9QSIc+xtoSgOog/1SYGS/eF/+dJsCKs3wrbQWB702pH0kHPSpPlECDgwevk0ZMKcTn5+fDvV2qlSnHKpLyvkhnPFXrkTOJhiX1mW2m+1VHklMFLCpQ4k6Mka3kkpYVHBSRz6pfKSPgc/9SunvOvKlkmL4TyK1sueulfnN/h+u6nLqcofSY+lz19fX19SjV7ql32knPDKR9DpyrM5vHeaX7PQvAbIH0R2BG4Ofnz58HQJAyHSm7Vvk+H09mFF1/K4DT0abXESdjugoC0ncSgP9O9XdrW2Oc7tqnUyZAoOAqgTm4+GgSL5VRTksFb4laVu7tAFNFLH9JENBRiqYrXea3n0vAgAaXZZkC5R+QcLzpyGVc3ICQj8rJUT88I1BFJBVg9Qg83dc5csrDZejHMtZehzIE+s8QAi1mAlPK9Obm5mjfQNU3l93WgOC9aWZ/KhucxoBPEijl7EtcySHTwTuIdcebwIDuqZy6v2J7jD9vKvQMgztTycAjdc4nB+xpn42IYIeyocMnOCAI0P2eGRAYcABUzUHqGpczPDPAvrIvnh1Y1d2zwcAWEMDjdC05DUdgFQhIk97PeySVgE0lsPeKjMeYv6uAjqMrkzIbrgiVAx/j/Qxb1V41/pcGBV12oAIEnuVJSwN+zo/ZvohGZ7/fH6X6eJ1p0xTlp8iCdbA8jW2KHFaMUxXJ616mX7t6eC7pi36nzAuNcDKIPkccXIxxvJRROdnu92fSlrYTIHBnmcBCaicBAb0Nb7/fH+rRI3hjjBN9pSP3VD+zBJwLzCL4R3NF94zRv+DLnbh0woMpOlv/5r2UrweaY4yjPggIVMsjbFuUshYVwCMY8rFP9nhGy2DAHVUHAsigM+vXqvPJ6VdAwOvq+PB7u+UBP+fXZqmY9wQSzm/nxDogUFGVqvLrs3rT9UuDgIoqAOBOKEUWLv8UUafI3B8pUv2eqaIjZ1qU1/hJS0l+P3lhuW5OpKyCO3B++P8dM5oZLMpfMlZKuhob9kMGnfWpbJUV0vGlMgFObs/Id5Vidz1OezaSvutetkUnfXd3d8hmiQ/3C9VOemYGGPUn4EDH798sK2fs2SH+Zt/oaF1XX19fD+WVFeA7C8YYJ3LjNc1J3ychMKA+OZDvxp3HCeQQFLyHjd2UGfAUnytguqerrzrXGelUhsLpePe1eOejM0qzslQyIspVQFDx3vHiKJZl3mrMZlG0gwM/95UoGXxeqz5dxOFGttNRPx7j1Mkmh+sRvV+n4fNsAH8zo5CifDpIv+b7DBIApgzSrn2vN+lHZxwre0BjrLbFs2cFKmfpOpF0+5JUzUEddyDA9bR7aqAaE0bucnKc87RbBA6M/HnOAYH/ZuTP5QVmD3y9nbZWH46dg05mlWg3abdXlwnYLjN5fJqAQCABe/HooJ7zi0sEGj89Slvpsb5XdXjzMkFSPJZJDVdGsXM2s3bS/dU5nmdK0aOxLeBlxeGtpmpWgQDLJ6WRnLr2tmQNunpmgMDL8vsSVOnKijH1SVg9c1wZ1k6HxzjdBJgcaEVpycANTcokpHq8/a4ONzaMxLzPvgSi8tT7ZBhZ3pdiKHtuHBzjNAJMDrQbG/brq5PLowKr3UuvKiDAzABT+lx2oc7QocuR+xKDZwY6gMDUegIBPmcq2fB31Ue3nQLQLlvKmzZPH89qpE2PXRBAXglifWyl975fgP3YSmeBgWoCUeBVBNJFnGyn4+MtlBwneZu12SkXyY1dR13ZmUPuzlcTZIuizIBMVf854OmjyB1+V8Yn/xjH/7xXGZRUnxN1jec8XalzNLBpjTN9fCnByzsl3XMgULW1OqadLognGknfL8H+sA8ViEt7Hypw5/dvnWsfTSvGvQKwu90uggCWZx1Orld02AJ5JN8fQEfI5+yT858Bg7RHpvJJ7Fs1rg4EUn3acCr50Tkzi0DefDnDgXkaO34n/U2AwN9K6FkL3bfF1m/aM+C7MNkJGp7ESCVwXvO6q/IVJYGwnpubm8PaaackFc0cSmUgO759rY5KQT5TXTR+jlR1vQM4b418qjq+mkGtyHXS1+MYUSWD64aBdYo4efW3sP5f8Hrmm45xt/uzpql63TjTWaflhBR5JKPEjVhehnVq7pBkiLg8IJ7c4EpH09KWt5OWNyonn8bRgxFFsinTwxRs4u0rUAWoXF/TC4a6Z/ATwB3jj8ySU9PYeGbH1/z9w7p83wAzCNRl6QBtWsr8+NsqU+bD++zzwstJZ6j39Buyt5Xusr+Uqdpzeet8Au6SNf1XBwLOoWUw0D0WpN/JGXkZJx8AL9ehP5Gnebq26EBXAEbiJ337cYr007lUjxu4ROyD928mhzG2bQh8K10aBFTyTA6eWQAaVr5pkHUQANJA0yDzRS/61odlPeqmIeqi/A5cO/HFPiSXizv+pCMpg5KMMY8Tfykj4I4jBRv8EAyn/lQgjc5B57yeLrL7aKpslPedeiQQm/54aGbzqmyTA02VpTP0jy8P+Lq5gwFe8+xYCix17P2a+Qsnt6OqgzqivnIpjJkBgoEqm9FlB9w3pesMyJmtYZYg9WWVzn4DoY59ks6izTQ4HUiYnXNSlDLjwaMAd55dxLsCcnTeFaeqU9St4836tJUSaDgnu/FPoRnI9PW4tMkqGRzfaOSggsaYQCCBAWYFxviTxvfUvNpV9sCNiYOHVbmIHDB34++yS+VpEJlurdLQ7kzoSPzbHUUHDNzhe2aDUSeN8qX0v5I9AZjvY/F/iaw2unb1V9kljhf10qN9B3N+3TMNFeijHDQ+dHgO6CpgQLnxXDVPkm2kzF13E2jxMfSMzArg9j5Qd7lcoPduUH8rW17Rpj0DM5pFmMmJ+sBV3xXqG6N+rKtCewmhcfAr/vmdjl1Bq9+JqmWBjyL11yfFCtCZyeqr0YpMK+eu45SCHGOcGNoKCHi0xmPdJz5odAlsmXnzPlVOuBurmRMY4zjrxrnDvul3mqOqM5Gfd+PqzqdzFNWHj4iRV9Wja/yoTZb7KlTZQdexpGcVMKioAwO67uX4ewsQSPd4vzU2nBOcc5xD/O4o6SDrTn1kEKky5Pc99MXnrYMTLhGkjYRbgcAYZ4KBqpHK8FRoNNW5Aghm1AmCRo2GgmhziyBn5aqMwFuJ61D69knJ6zNKypfKVPelsf8MULNCqV90cCm1reiKx57uJggl8vdsAJcIeMzsAxG9Lxkw+md/GAm406aROncckqw4dz017RFqkusKAOG5lSxHpfsJLNHhi2fuGUi24KtQsonkm0DA96V0WRun5Nxlb+jIpf9VRMz6Zn3SsQNPzo3KxlS+KQU45FvXOrDKdvmbmZG0J6Dzgzz2cUl9YT8oi2RzmPGu+KjozX9UlMr4IKQBT3V2Dtzvp0FOv1f6UCmdqOpHV/8K4k73bCGfpB5N6VqnmFtoFj2w3JYMw2dTBUg5keS8+bvTWf5OQMD3DfgeBBpqRuOMUPU+fp4npfFN+2gSpQhMdXJ+eLsuuyS3FTCw0hdvc0bOJ52/vtVvH//KYV5afysdTIDWAVraSOj1Ufc8euc1fVM/t9gZd3y73Z/szRjHWRuRA9oE+Dq77zbJAYHzRz47cqe7RR4OBNgm9ZM8OV8E5NozkO5fpTcvE8jYpOszEFA51w5ErDp+nufA0/FTyZKRqiZfd+4ttKKAneOvPiqzhY8ZD9X5SxvNFUoGKUWyXCLo9CxNThpiT9tWL35hHWkMNddS5JrmV4qWRTrnRtE31jL68znVZQMo08rBkpcKRDoYYRuvr69xR3UCfD7WvvzCaNcjvsTXJWmmux0A7cAZ5eC7/vlxZ+ORcaVztLnUc80xD8R8HCtblhx4yiSwTvHMJ+SSbN1pux6kDC0p2WD6LddHB+HeT93HjJbkV+3xWbX9m98z4JM2OYCZc++AgNeZkNMYpylanXNBOGCg0u12u6jc5KPiv+pbIipmKkdjN6vHswK+5tYBgZT1qK5tVaYZCub3Z9PMkXdGlM47/bELHV/lfCoDQ94qI5KcZBWtO1XGucrmeN0qS35ZLkWinpY+J1NG3tI5Gks6b81lRv8u7yQjzR/tzE7z7CuBgTFO08ySvT+t4lkB38tS2aPfv38fbd7U64gJDunAdC49Tkeexzi23cmeeXbAefQgKDk/gmHaVvct/puyTXpTAWtmUnxvhM+/BDIZAHgfKEs5ft3jmQFfYtxCm//CeOb4q2srQMDLp88YeWnA62a5ik8f7Cpl2vWHx12mYpUqQEDUnr47w185Au9bNfk6Xv8J5M7XJ7s7Nv/WBCQKZx2zNXI33LO5IANG/n2c01y5ufnzpzHUF9XJ+iudoPFktJxkSsd/ztp0Iuqgj5F4oRMiv9wDlOoZ4zQTQlmktV/POnwFos5UmSgCAge1Se+T7fKAg6loXec9/kSAePT552PDt/1R17lRjzzp28FyAtQs67KjDLu56j4ltcHfnT1WHQJT0lufb5y7lBWBKcetywys6u5mMLDawIrDn1EVFb0HEKiyAbP2nXwyqF0pt7eRMhos5xFjx1eaGCvKmLIBszbT/dXvrfV9NCU9SBNGYzfLDlAHHTBUj3GxPQdxOkcn7oDPwUD6rXrSmFcGfAYUPVNA2XXAZxUQsC6PEtOcTi8+qgyg806HkeqSnM/px0eRj5UDSdfZ+/v7+Phqyth0QIBLBMwOqJzLVed8SaEKsJi5IfgkcEi2MAE3kut/uk4eXJcdCHj7Tpx//PAdCfxw7HwMZUu4f8IBke7ho7DaU6TMFm3DlqzW5j8qqiLXSmhvPbfSkZTC9IFMGQCmvDrQktBkxcNMgRI4cFScIrEtWYEuS/CetKW+rwQMfCL6Rj/f5NctE3iZ3W53FI15REbqIpukjyxLQ0FH72WrSCZlDaqoS311Z0RH5IaV3x0l0LI6d7w8swZ+n4zkGMfrrXQCadNcxednUYqy+XuMcfIYYbVM4BmtWXZAshAg4LKCHJEHNA5cyWfnPzRG1N0ElPU7pcNlx6sxdKJjdRkkH+L2NO05c34SOKlAN8GQO3/6Kh1TBtJ9vnxoq85u3jPg57b8Pvc8iWtViSog4BEGDUtCYK60KyiRtDIQmkDigefciK8Y7goInGPYEhpP7TulyX5pINBlR9wopme00yYsGpK0tJCeJkjG1yNuTwOm8fa0aTeeCSjMZOX3pgg5GVHqsEdXqf4ZudOq0qkEAS4PBjFet9sFvvmuWu/9bGLErN8ci/TUAAGB7xkY4zQiTjrBqJZ/UKSyBKJ0VClIIblO6TjpOnlJMvE2CARUH50qv9ku524CA2n8O/vLfQP+4qUZUKnAMG1C0n1lB/StManAV6I3gQFn9K1gYGsZJzesOkf+UnTjhrIbjK7NjmYG20FOlSHg9S4L0JFHoTq3Up4y3GokLwUKOj2UfvgjWHyLW8oSjDFODEkCACnqUNvuYFUnIx8abQEFXSOAZao1Ob+07lrJxOcIf3vf2X/vUzWPZoAy3eMRrUdF1Tzw6JLn/dz9/f0RGPC160uSg4AxMlhyAJDekdHZuc6x6VjlEuBbAVE8nwKzTi8cFHvQU6XVOxDFzF8Csi4PggyCJu2rSMd89fIWe53mEec89x04MKddWKHNjxa6Y0jffs8YaxHjjGl3Qo6Wu0nr/NO40tjyfBVNzdpIfHf98XKf4TRnbbizP8f5b2nvo8kjAv8kh650f3L6vC8tJXhGoUrFkp8xTp8sScZf16irIjrGMf7oFCMFlu3WFJPMdF9y+ulcynCdAyiTUazaZoZC9Xs/XUavr//3PgetdSstznH4SuRAoFveciDQgYEx8pKk5CKZun4mx7m1PyvnRBpPOWWOL8c8ZYV93jpo9/EmEGCbDgSYWUp/WMR/4KyyBsnm+jx0sKvlAR9v7T9Y1d3NLx1KzPnv6t6VMikl5PfR6fN4tdM0VAlAiA9HrFV/tqRinOct5WYTrHLgSa4r/Prkegu9Rx3nUuewZEh9maB6QZCvvXpGIWUY0vJCZfwIBNxZz+aWG2Qd8xyNGduo6mfdKbPhtAL6dY4OZSUQqMowZeoZLGYPOJ9Tn5VmfXl5OdqU5fd+Js30hYCAzoyOgeVJKXvEsUhRL8+7PqeMTGqXZap9IH5f0qnEL226+yvKqwJOSd6eCXDZyNH7N/+pUcfMrjiIcCDluuyghvxJXznu3bxO9KZHC1cGbbWulaiYZZhWn+0jSFGKI8l0bSu4WKXVlGMFUnSNfCaFIRDoeJzJvDLWK0Z8pY3PoGQQHEXPoisHBQ4GCCYYrcnI0DiTDzdAdG5qKzkyjmvKltGw+D0eoetayjRofjmomoGD5IgI4qk/nUPpdMxll769DconzXWCgRSxfQVyQEv9JLgldRlPRZju7DT+AkVyXFV2KNGWYK3zJW6jUxYsnafuuaxcXq4j/GbbKSvw8vIy9vv9ATj5vzXu9/sTp5+yBWrTAVXS6THqFxDpexXIvtsGwlk0kCbTaqpw5oh4nDIFjg7HOM0KUGCqb1WIlbNN/HkftlIydgmdp77P6kz8J4exBQSwrkuRy8gBgGcEqnMppchyVWaA67gEEgkkiN8xckqfkzsZQuqujj1q9nHlHBCo9rnthtJluqpjBDp0xFVklBxyleXy5QGWk8zcocgJUub7/f7wL3CXBgMOjlzmvjyV9raMkZ/EIGlcGFR5/91RuS647alsUMq0JOfN8l4n+5Tsu44Jqn3O+l4B74frpOsgAaXvC/j169d4fn4+yRxQjuqDZ12SnndgV/XIDpGXlbkpWgYDEmI1EVODqw4pGb+t1GUHKmOWlNKNKakCCFXfVvo/A1EOXsh3yg54n1Yc94qyOLBxkLC1X59NbriSM+efCd3f35dOvlpacKPsBoi8zCIpGbExjo2veE9GyXWX64UcK+oNx7VaCnsLGEwRTWUryL+DgPT8uoMjH2cHU7xOOdM4v7y8jLu7u0M0d3t7e9hJf0miPoxxbNMEZpLujTHf1OfBD3Vot9vF5QE66DFOs0AOEl33Eg+uF7Ln3haJdjABFN3PTB4/OpfkkUBqtRcgfQgMuJlQvI4xjpYMZqAzgSQGwewTaXWuLoMBKdgWZsXIzBFUiHBWN1MjVfkqwkntMvqSMXVKmYQZrTjCTuHJe1pDdlQ7c9QrvHXZDq+/AojkrWvrs8iBADf68cPntAkKKkffLQ34WuQYpxGHyFPoBAUpQtSxvv1FJ7vd7uh4dZz8WuVAUhme8+UFBzLc4OSycFCQHtViZObjq/Y78gj39fV13N/fH63j/v79e9zf37f1fCR1wCkBAuoanTvXpVNErfnAY/+3TNXp+qx7HASkZSRvs+pz+jh55OzzhHwQvPtmQS2PSC7utBndy8H7XoC0X4AfB7Gct/yd+pX6nmwFxyBlGme0DAZub/8U3RLBb4kiViJYR3zp2M+lCI3CTFGSI0OV1bktKbiOUsTi/WH/9d1lB0hbQYHLoCqTjqs6L02eVXFQQGd/f39/eIvbw8PDUbYgLROkpQVOzMoAiarJ7saNmQE/ZiTnupBAiK+rdtG67vNz3THl7jL39Kr4SHJIusxruo9LG/x4FsP1ltEe5zMNPw34JWgFwHU74cc43ahGZ8d7qN9jjENGgHVqHTrplttd2UnaraRrqU+uNyzjMqneSqkx5VNBvoeHfFFWLi/qQwIC3TlfJnAwQCCSyLPySX6VHUnyqujsZYKugSr13tHMaa06lgoAVClbZgNoPISK/dEMRuZbQBHbq/o2c6qaXLPswEfTFoD3VciNjGcF7u/vx8PDwwEM6Pjbt2+H7EB6hPDbtz/PdruxcaPmBjtNah9jGtbUJzpzd2pj/NEZGqHO8ftvN+AdGODvtHHSwYDfw/mZsiOu9x4Jqu9p34NkQVlyMxwjZ+nEr1+/jjYSXoqcb9crpocdbNKxpeUVB08MfggSuF/AHTXPu76wvIMygRG1xTYrQCsiiJRuiKp55xk7yneWhfLlAXf6+/0+goC0tOUBpnhIJDm5jFx2BGKzLHNFmzIDbpSqCeLOMq2/i9w4raYyXRmr7woMUHFVjkq62+2OnjX29frkoElVCqzr2+zeyoh7dmALVUqYQN8KEPQ6aBwuBSDcMcswyNETBKR3u2vpgCCAgMLfR5AitLSfxR1j0n3qlvQiRepuwLeAwwqM+nzjt5MbJpe1zzfOF2YJ+OG8Sw7F7UrKviTDqHv1GOGvX78O897fE8F3DlyCUsqYsnV99P4qsGG2I+21kJ2jHqkNZQi47OMZNgcJAlis1+2B0wwQuFxcHq4P7AP1guvqXBpI7wdI4MCBgGcN/CkCLjckYOkgjLJIwQH9lMvvHBAgOgsMJOOUHL/KJ2fJDlROo3KWTp6OdPSX0KHuY6rSeSQinhHrqqjqwzkDmBCx17XihNN1d/oJEPjxV6bknGRIuTdA38oEOCig0eWmQhlktuGRkTvcCljRiXGeeTQ9Aw40lCk6q+Tkx5SdeEngoQLhlIn6K5ug3ylj4nOTMqBcU5sOCpKDlFGWo5fDG2Mc1nnv7u4Ojxl+BV2vgFbKSImYhk4ZAtXrNjfprBy721oCNtpX2U/PClEnBTDYR++r6/IYeZOtX0+ZKZ+bDga42a/LDHTLAszCeUbAQbDa5m8eS0bJ97qNcT3x4xltBgMuRCqbGndg0EUFHXVZAipRhQilnJ7a9cyAPtwwI4WQQhMYpOyAzifqBuMcIODtO/haqTcZty4LUAGGfwJJH9yBOxggCPAsQfp/As8MuOP0SMsdmEc9yYH7MpXr3Bh5PrnT5Dx1vWe9POY5BwPJWfB+d1p0CL5m6mNEwODHBAjObxofjovLh8afdkEGnE700kRZu0xnoCdFvPot4p4wtUNb6NkbbzcBPupyypy6LldzwwEoeWFfvV3PCvB+3iNQmN4NkABU9SRBl1XQMdtl3ysdc99SOX3PlFT3dLQMBu7u7k6MijrhyEXHHrlW59np5GRcwStExPKurOlNcCQuDahuGQylvNiHGW8VneP8V+r1+jtnPXP6FRDoxmgLj59NGm/fIyBHr42CdPwJMPhjSb6p0J25Oz7XHZ0jj260/J4UISfytKK+BaATb5Xs/DsBGe9PchZVn8b4E3WKN/9wTrtNIfC/ubk5yuKkF8pwbmu9l//K50DAHednktsayly659ko3ss+yGHp5Te65pkRtqdvyaQaVwIwkRy2j1f6zazDjDhP9JtzgrKiXAgiGblLNlr3T7v/05IBwUC1PKBxSLqdfnegQPNYv10Ob6WzlgkSGKhAQYcMdX8yDqQKILCNRFRSKq8DAlda7hUQsUwySmqvo1Vn2aWCHBmKj7TJh8c+USpAsOL4O6fW0aXAgqIevktAewW0X8AzBMwSdICA50QaExkbn+hpLEVuEHnsGSGV13kaLuoG2yeYSPOyGtfZHHVeWVeVNeR9KRrkHKTTo2PiJ23q1F4PByQaG71g6Pn5+WQcqzG5BBG0ya559KvrKu+2OTk1r5/EPvtTBN6+bJDGJq3Ly2bTdqqOtPnVZe4+Q21UvDtwciDgSwMEAQRMKiOd4TKCAwG/z0GKjyn9aDUWnKuuywnoVPKb0ab3DNCxp8bZqWS42LnU+U5wjCq2EhFiF82wbMV7Vf9HUdXnjsdVcJUAQbpelZsRHcnWe9+TOO6+TJAiR48q0hIDf9NxcXJyv0mVJaBs0iR3QOqUZKo6CNAFgMUDI41ufNkf/iaP3pdUhucdmHpZXx7wJUEadjokz+Tw5VEOBmT0OY7Pz89H8tCYydBfgigHl1XaMEnbmta+Of4pmOHjhJ6lYjSqY994qHZ3uz9LXAwO2RYDFZbz8R3jDxgRecYqkYNm9p2bAff7/SE7lDYEVlkBzw448GKbPu98DFIgNsY46bMDAs513ndOxmDTo4USMCMRX7cn6kvRs5MLpytXRbiVQ0yRBieQKAEYBw4V+FklN/wVsS8EXV1fqSQzh5Ec/WpmYGV80rlLR1buLBj9e3YgvYQofXwvCnXTDVkilnW9pm46wEgZNo+SRTTW3mZyBs6b3+P8qr0UyTjI8bSpG2ZGqpSf+qDfLgMaxfTCKH8sdIw/2UxlBW5vb8d+vz/UQ/nI0F8KyIpcJjyubMbr62t0Uu44mJ1Vv+X0RHLGnmXVOd9zsN/vD8e0twQGyUa7LWOmhtkGl0OSk4M6fdOpEwikpwQkn2rfhe8VqLIx4iMBBM4N9kHfyQ8QOFWAwGU/o7MyAwm5eEqyos4I6XqimVNRvanjyUimiKXjZaVvq5Sc5jn3+TmP1Px6cjyJhxUgMKvjks7fictD3PSXnhjwlwrxPgeTXHIaIxsiUQK90kMaR+ebBpjnUr3enmgGSvz+NLae6qezJyioMhp+PkVLidzoM7pPQJ/jS9DHcRJPd3d34/n5+WRzKIHAw8PDwaFekpJu6NuzAkw9C2x5VsCJ9pOOjG17Gc6BRMoMcKks2SXdz/nky1nsdwLAnU2lU602/yUgQPBQPUbo51MGhjw4IPBj8Une9fEsiT+F4bKqZFPR5j8qkvHSuS20YiC7e1Nm4FxylFUZp27ibGmrqmuFvJ/uGBgx+fJBJXMe+++O56196ADcZ5IMjW8i9Ei/cvYdOPDsUWUAqGcpmuG84jxjmRVacawVWFwZ9xSd8pofp766PGR8K4PmIIgy57hUmz+5yZNOTZkHply5bqzPpcGAiLL0wMcdYFoeIFBIRLuoMlz7lnzS8oDzyLFL+qZjgmGNC0GZ2zMH08nhMVJmPemRwAoIpM2CCQjwkUI+WuiggLywL7qPY5CAAfVTe8T027Nv59AmMMBjXw7oogmPEj6CxNMKJSDQRSzet2Scurbeg1YAQSrX8ZXQsx93fLxX3z6afL3fXyaUAEECBkxl+vWZs3ejJL6oi+6oRK5n3bhVxtn1hNmM9El1c76rXm8nUQcG3GCrv85L0u80HtX4MeOjeh3wqW4Z/oeHhy8HBipKoF6Oi3JO93W66ucdULpj1n4BnhPgmmVu6eg0T1T++fn5sFlX94xR66LPpwQE0pMABFC+abBaKiAYSKn/NLd8qcD9T5I77YbkxM3uXR0rtAwGOkqK5galMlRbaavTq6iaBKIVlCVF7MpVafkVmoGbKiJbXbLp6uUkr+pZGYOKx88kX9+XY/A9Av57FRTIwdCAJf1npDBGfqc606+eeheluZYA7CxycxBDI+Jg2XkkSU9XNtkl8JIMYoqinH8d+5ik376kI747MLDf7w/A8VIbCCuq5pKDTndK/u02UICR3yKlpmcpacqKwOHm5uZEjgQYGo+Xl5fD2x/5fhuOHTMOdJheN5dKEgDgxsEOCAgAEAjw3CoQSMsDnrVJTp2gh/ZDwIA2n/dv0duzwEBCmq58CfF7HaT3cBRVdkA8UBmppER1GnhHcDreQj75tvSjogRAfIlgxZGTx2QkVvmujPRXIoEAf9VwlUrmM9PVMoGfo0GqnLXPiyQv199Uxh3qGDmarqIMP+5+e7Tu7cr4e789ekx1V0Ak8Zjmno+Bg7QZIPAyapNA4P7+/ktkBrq5WYEoRsQJHOie5ERlFykX2k8C3pTGr6Lbql+6pic/+L8Q7BfPiZhh49KDR/DcKJiyAi6v9DRBt1kwAYGVcXXdTz6TWRLPEHCM0kbcVd3dDAY8skmIKAGBCuU7bY02V8jRY2X0uO6TEN85lO6rIivew/WzREz7+oTyNN0Wp+6GO/HV9e0rEh8t49qyrzH7UoK/odDfK0CwkJxlWsvUtVTWjYDOcbLzHtblTiDV7R+vq6pvjPkG2gSA3BglMML51RmvCnRyXgsQ+Dqyrvk+D82fX79+HWV3UsboUpkBl2u1XJLuq8Y41efOhue9XcnOnRLbUjpffKT/d5C8OW6KdrlU4Drj58g7l2+ZDXh6ejrZA0JAoPcDqL4qM0Af4aAgOfUK9Cbf0tleH0fPGqb7quC4ok1ggJOVAqcjXckCOLFDq2AgOb7ULtMs3AjDMgnIqJ8cKJbX9Yq8z11Zj/JXZJCAVTLI/rtzColmdfq1xPulMwZ08nqMUI8U8rFCfnsmIT1aqLVQd/pJDrO07hjHjxDRILOskxuhzvGyPOurdNzP83i1f2Oc7imqjtV/3y/h+3Moc+4HSVkd3xxIMOB80flLR/RWuq9GLkN34O44q8CmmrM+LiJP1atdB2Bel+9ZYRvKLDF4kcOlbsvX6L8i5HcE9lm3bLkc/s+fP4/eMuh7B1KkL0BQXae/kI50dnU1QvdyGqMUHBIMJcC+BRBsBgO+WzIZDY8qUgcTbc0KbEE9HDDWQ6VKUcpXpFWlWqVk9N+7/ksCAk0IrT96ajntAfBNh76HYLfbHeqTAaNRG2P+bnA6aNbDaElR1soaMetMRimVS/d4WS/f/U6RShcl0fBLFk4JLKclgGqJwMdSv5nyHmMcHEt6X8FXo9l8SrYsjRkjTM8OCCxJllxi9YCM4y6502Eyctc9DoIJ0H7/Pn50TtE87bXGUJkdykX2XGDg6enpaHlAzl5ZAa+bx9X+AJ1Tv2fg+hxKQaVk5cdOXaCc6Ow9A2KME7pzUo7uO1qJLt0oJB6JmCU4BwTdZJnxNOsDJ9uW/nc0M5YVJeO8Us6PvV+ktGRBIHApgJX+k4CPFnK/QFoySOccTFSbAceo0+NJhhVw8oiM5Z3S+FblKtK8IlCpylXztavf9Unnkg6NcfoXyWmfgAMAZgKYPbi/vz+yGwRhcjIEApfODCR5pOs6roBYB+5EycFwT5Lkw3p8iUBltZbPjYBcdiAP1DO9wMgjXQcX3E3vY6l2BRaen59P3idAZ185es8SeBn6wk6u1Vixn9Wc9fGnrChPlWU9W/zW2U8TrDiTijpDsYJmaIRX7/HlAh3rGoXYOdf3cmzJkZ5LK0DDgc+sXEUrwOmrEZ8k0LfW/vmuAX+NrS8d3Nwc/wmOO2UZP/3WtxsPv5acuxtu6i+pWx5wPhJfBHcVCPEoMRmb1IcEHCtglHj3NnRcZQF8L4e/NpoAUIaUbctp3d3djf1+f3Tfe2fjVmk2zyo9qQK0Sj987KmXTENXSz7MGnh07xkG1xXqkDYPKoDyvnJpQMAk1StHXr1YiHV1mwG9LAEBg81ZgOXAIY2Nj2eqR3LiMccn0btnBjSgHFgynwThm9yc4Rkg8Lp4nalYR/lO4le8qFyaSJWze6sT3LJe1O0b2DLoVfQu6ox2qnsVcbrxvjRx459nAegsdE37CLRuTDAgQDFGBlgVwvcsml/jJkHOLzpqHwPWN9PPquwKOEzrvbw+o9SuG119ujYcCOhTvUbaU/0Ee8rmUNZyDL6JVHrz1YhAMAGBLbbKbTp36Hs519cx/jxV4o6f/LjvcErr4f5b4yMePENHHunouVfAlwHc6YtfZgMIBggEVuzmTO7nXOcY6PdqnRWd9QZCT9+RkSo9Pksrsw1ScvIOBPx650w9GtI5N6acYI7i0u+qT2lgqnMVYnaizCvjmVK8q4pZgYMVw5/G6dKAoHvZkL/HnkBAH5Wh4RnjNOqvooiUWnQd8KiLRoeG1YkOoRsvBwOuow42eN3BZ2X80r2p3WRQ/d4OAHBTYHqttI+fj6P+jt0fM+bYKZLUevLz83OU/2dRcsqkBCjdlm0ht5OzIIXlxjh9qRWzBJXNSlkM1sHHDVU/N5OyXp+TGkcHA7O5mjIG+qwsH80CYOo5/aVfT0Q5rPidGW0CAzRWmow0JB5BpA46OHDHTHLFSQ6fKaJO0UhJaCvIiopdlZ3VncqtOks6hJQhqMaA4GklQ1EBJm+ro0sDAFLaPOYby5gdcGCg8y5H6gOjDv94epJO3h2xA7JOh3TeHajIjaQ7Ca+7ijRIDiR8LsyyFw4EEl+Jf+k2l3zSvg6O8W63i+NNO8FH4FSvg8RLLRGQknx43uX6HjxXdkCOm8tiJF0nwCU4SM5blAJL37PA8fOAkHzyj4b8iQAC0Qqwd0CBsiev7q9S9ibNQdZR/U4+w4NCtwV6RHOFlsFANeg+sGmdR9e521rHFVUbpnSti3ir836fynBg0lKBX6dMOgRWgYAEIFacJ9E5J4mMHmWagIFksAJOkmFe4fMrgQCRrye7Y+jWm7vHlioQ4CnJKg1JOctw+OT3sfJMGcv4c9y+zj8zSB0AmB3zd/pOziqddzknA5nGzLMDd3d3hyWe9GZJ2QHJ7Pfv30fr0L7P4FK0JcKrQGGXTnb7506Guk8AkOZ5AoMp2mfg1gECtpuywJU9Vzse1RMcJOCUQALLpMcHCVJc1okfp2SnJWOfD6onkcs8AYcZbQIDjtqSk6kcsyaZ6uk6TIPnbfj5Kn3qvMvY+roVB91RoKeHvE7RDHklA8p7Vvqgcj4hXKZ85IaK5rIQJSeffrPNir4iEBjj+N/Q6OCrbADfP6C9AnIa0iNucvLd1GOcpik9yvDyqjvVQ/l7altl3SBVEXqV8qwAtN9P3jpg4Pc5oKYRdhAu8vkuEJD2BlSPD3LsUwTpERXHQmBBz7Vfiirg5mCq60v65vUETtWOp6I9S9DpgQMJB9a+7Ka2OpuaxjLxlmw5ZekyTGC5upfAwPX4HKoyuqyzs69du+8OBroUSdcgnTY7m1KTLF8pTDpPQ5F4qVAs++Vvlkr9TSh3SzRVlfUJRyRcHScApesEBrzmsuBEFkhy4+192uLwvwo4SGvN/ix6yg74C2tSJJt2JnPNmcf8Z76OkoESpSiIhpB64PL3ues6Xs2bBAI6YJCoatv7StClb5/j6emAtC+AwMBBAdPXbjvYnsD2JcFAR2nOdrxWtiD9fgtPqo8Bn2wsZe8ZCGaSu/rIcwoYU7RPB65v2uYU+Xc+L9nKFZ+YQO/r6/FbG8UTdXUL2NB9Wx6L3ZQZqFAf13IS0ThxzUfRayXAzvGprDrtmYJZtJ2is2SoeN1lUUV4PE6Dl+SYDHhyvkkeKUtCYKBrzIysGDiPGFYyA6nOWdT50eRAgA6BRr+KLH1MaJzSx8s6aNC1FInxvuQ0KzCgfjG6SrpS8ZT0RXV0YLZzQJXcHIR0mSvWpUidgIBj5ssE/n4IgjzWSTtTgY9zI763UrIrs2+nyn66U91Ks3md+KGu6V7ZP/LHyNjrSfeLh/TOgxTYsUwFTtMngdoZVb6I49CBfF7nPWnJ18HelnHdDAYYqSQnnhQgOSUeJ2ezCgScXKgciBWAMHPkXnfKFlT3u9yqjMXq+Wot0CepO50Vx34ufZVsgFMy8l1WIBmbZERUht+kKpLwMfByKVXp5HMkgQPyfnt7e/QefueD+s/9JwkMpz5VMqj6X4FpUQWEU0YwgYKUFSAYYJ8dJLI8MxaXoCrQGOM4AnYeGR1WjoN1vIWoK5wr/OZcYgbAdbizqQ5MeW+yh8nRV6C2KuffCRh0lLLg1G3uw3D/wflLX6mxTpl1+lVmvWa06aVDFKKjGTKzglA5gF5XSnHqfEVVtOygwdsVzQbU61Z5BzSilaxB55Sr5YHunlVH/F6AYKvMLgUU3PE7IHAHQEczRk6r0wGuRhHp4+T3ptedjnGcTSI56NE3x1sbqRIAcT4qw+48eeo5ZSRSOx0RYCTH0S3vdMs9Hl11OnFzc3N4I94lKQGy5IwoG3fAvE7iUwErY0NdqgBwChh5L/lMtpr1dk63Ausqr7nqSwQsozaqedtlA3xeeoaDfKbv6rqOyZ//TvWw7bTk0tHZWu5p544xZ46b3nRNlISSDF76ndK/HkkknhzkVIY6tTkrV02KVdLkkew4wEl+q+tECRCsAgSOt4/9SoT32ZSchi8NJADqIJXvz096UgEFlfeXliTDlIx8cqCMADgHed2JIKEz6G7cOhCwxbl7/dQd6nfqD/n3OZ3AfgIQHikp6vcsSmprNbr6CEqg06+R2AeXZeW4RB4kERBXjt9tSQKJqotl3YZ5Gyrb2bO0xMN+6v5uzonPBN59PicgUOm/zjNj432sAt8xxtEyugedvr/A25UsZk/tkTa/Z6Bav+CGNXcws3q734kqxexQV1IUr9NBgZNPFMqBcqkULvHrQKbrv0dqKpscRcVzR8kprPDjdZwLfD6KfL+Ap4HdGVTj4Ok3kSZrciqVI/V1TNblhovHnd6zHa+PZR0USEaV8WCa1OvvsmszGTiffkyH4QAsrfE6aSwE+riPQNdFVSaBS0aXoBRMeH/1Vr7K6dPGsL4qI7C6fOBAoHKaogQMHBRU7STQoToJMtJ9LpN0rgICOtctXVQ8u/6TV8og6RfHJy2rkyobvBWkbwYDbEhMCAhUqXdnrHKiiSQoVwQHJCxPNJ+cbIVgq5RSJdi3OL1VtJacANPDVT2S7QqPyZmkjAGv+Tm/389dMjuQ3idAHUkgqDNmdOT+ilPWUTl1BwJVuWS8xuhBJHXb69exPzHD+yrw6P3p9Kpy/n7ejVz6TrLjPE3vlielxwq7MaKMpS+z/n4GJYDmtkpBGcsT+NHWug1MAKCyMVXQxfr4m9/u/BMAp13h+HifdMxI2NtOS3sJsCQQwDqcZkGP+xv6zzGO35yYwICPg6f8q7Y9WN8CZJfBgF4DydQHQcFutzvZnNSt9ayQK2MCAjTojPbc2FMoriBUFKaUZsgqReCrQMfvnWUFxHdSCFe8SgEqBa4mRXJu3bFT4u8S5FGe1oG56Sw9QeAGs5KNGzRfkqBeijqZr84XN44J1KTf/s4Epso5H7wOlSefDjpTm64vPq8Ismjc5dwqQCB7w7R/FdnTHrBd8e5jqHreasPeSp3T8XfsK7OT6qhA7xj1uyy8Difek8a3shcOCBJYS06d/oB10Ockcr1J1xIIWBnz5FtEyX/RT43xBxQ4T2m5xsFckr9nE7bY3mUwIKZ9cnpakQL3tGqXHXCaoVJXbhphCpyAgAOse9Nk74CAO9oEADry/lRAYIboODm8fu+jy8qV3CPIKmKdoWESkTx5uQSlx9D8/wn0TYfhUUTl6BK49Mjb7yHoTGuanf658UvHevkUyY2Sz02eY99SZML+qM5uLlUZQ90rfRHf5KdaHnC5JKJcfTOm3hap/yDQeyFS/ZcGtBVg5J8reRraqYvwJVs6Y9fBVHdlV2b6TLs3W9dmX92mJacpStmAxF8FAlZsudu55JecXz/HrIa3PePFQZSOV+TqtBkMnFTw/7/CkwbGU3YEB/yt+ggwvGPpnEcDu90uRnYe5SVHJ36ErisjXjm2lAFYzQ6sZgS2EieJy3aMYyDBY0fQbhyS03EDwGupv5egtEzg2QBPJyfj606MOuP/PSDyiNONJ/UtOUwed/JLRtnfSJj48UyeAxmWUySeQH0HTFKkWH1ryZHzVfJV+79+/YpzxoG/3yvQt9/vD/LhHxKlv7lN43FJUr+oa8wMjDGO7F01FytH1tmrFarsa1Wuyv6qDj/2jABBKgEpeXAgyWsr/LqcSB04EtFfcT55Xx20epDhMuna9PZXaNMyQRIKI4kx/jy2xGsdJaXU+URcApBgk1HnJ1Fyal3k4TzxmAaMCtoZkA7Bd4PXKWaaHOxrBTxSpJHkUU00ryM5Tp+on0kOBFLWyBG6O5QKCP369euQsvY/QxHRAFTr4VU2hnWk3wlkOHmK1flSu6zTHcPr6/EfxhAs+G/WV80B9t1lTkfGTAGdu85JdnTqCQzow/cM0Ok7EOC1S+quO0T+JiggQKIes46kQ36OYG8l01kFA+TRr7NNj+qT3nSRfwpqHAhVtitlsrxcmh/VskCilAlI5PNeY6tr1RMVXQad9m2FlsGAGvXK08tJZCDTxkIZFdEqEqXR9swAUzDpmWIpBwVKI+GKkwRfCVV1dxmCjtJkTFQpJu/rwM8YdXZHJOOp8fMo0dOsHQpPhuhSmYEqC1DtD2B/aHDHOH2ZSXr1cMoQ0JHK6BG4sU3KrxpnzoXqiYhE0h3XU54nmEkggZlA8piAPcECaQaWnedkLOnwpbfMcnnWRn+By8eyWKYaRwK3S5CDgE4WY5xmWnnfGKfjtDoWsun8nRxjZR/SsQMDzo0x8rJsAgRqM/UlgfgqW0VK2Qp3vhU4YR3dXOSxA1ie6/h031QFhTNaBgN3d3exYb3VTIzyGjcUjpEF47+riEjfvjmQywT+xrEVFCaDwI/zIQOp7wqNnUMus2oSkDwCcFmk5YfkMJwP9f/5+fkk9S1D4FFyZQBShHvJZQI+RcB3Czh6dsMhx+AOkteSA6lS7QSOYxyPISe9633KbKQljhUg4I7AI0kvz2spmtpKrM9BRQUa3VgyNc75yXG5u7s7GiP/10KVJSjg3gH9lwSjtM8md2CeqUqy4PKQKDkqb8d/p6g32cXEbzpP8vmm3ysZGPWF91T62+np7Hqibn4x8GR5XvN+Evx4MOrvNRHPXrfzlWzLCm3KDMiQpoaVglNnGAF1TnMGDtg+swGe6vWd4glRjnEc0aWPp3jVXop6yHOKAt9CnLypXWY+1Gc6B8pJ46UNcgkwaNz2+/14fn4e+/3+YBgTMOA9PCZKdxlcKtXqewbSGDpAFP9yDPv9/iRL8vr6evQnRL7nxBF+inAT+k+TPGU0uqcfnNxACJRUYIBAIAGlSmYpAnQAyXt9DFSeQYR+c6OcZyQ1V+TEv337Np6fn0/+q0B/bOQRKLMDru9q+xJUydiBActXjrVKt/PeKmImiN0aDCV9rJyw19nZDM4XymaVrzRfuOzA3ylLkH6nc1UApnZ8XGlf/JzT7e3tCbgWbQU6m94zoG/PDtBYKYJ05dGLPrrBqtDjGKevlE17A/y86uTHIzca8zS5hLTVN/Wp26m9CgxSpEZKWQIHADyW0eMmOQIE32RJJZVsnp+fx99//z2enp5OQAF3W+ub2QI3Qp7eulRmQO37xHO98E1Z0g8BJDkJltnv9yd65USnyvEjWKaecGJ7ZiAteThAZx0uA/LgUQN/u4FKsiTYSQ7f+aDxdftB8mwN61Fbu93uoI/qv0AA5UsQoL+qTsGCA8D9fv8l9gwkSoCyK0vyOcolBQ+YOI91r8uCcqzGP+mQk4/3VmJanHbV9S/JKrXbgQBeY99cX2f9SSAgAYKUIZC86JOq12avynXT64hTKlJGSlEhN9Pp+ipCqQbFjWgFBCoE5pkApgEJDCqDtjrIWzICHv1U9WrA+Wy4nD8fl0uPyX379u3oO/2BC1NbLy8v4+fPn+Px8fEIEBAUMEL2z93d3YkRcSW/FLmT1zFBAB2bHL0+kkGqg98aoxTdM2si2TPSkkHjfXTaDgB8mUCUIvXEWxWtkFI9lN0MCPEe/k7HPs+S3WC7ko2WIxPQcaAsUKCIigBIc412QjxcKjNAAOVjsXo/x4V2RoEOr3n9fi958voqSmDS+5coLd/5PX4/gYCuMzClX9LvDiAkoNpd5/3ihQEy+aQtcZvJYwIDzkMGpDr2zMYW2vSvhXRgydhxcqnzfLpA9cwESUpgQJkI/vZowlGXT/JqeaAzTilS6dJErngz6kDIGH/S/vwvdzp5/vaX6dzd3Y2Hh4fx8PBwdI1g4NevX+Pp6Wn8/fff46+//hp///33+Pnz53h6ejp8BPa4izkpNiegPpfKDPj4V8tDXCP+9evXEQjScdpb4mAggWaVdR3jNdZH3jnpExjnueS4E/mcTZGUxpDLf2nudqBiFsXqGuct7UxlNBO4dP0icNbc2O/3R9kBLqvJOWouMON1SSCbwFM1tgRDFQBPAJH1+Tx2Hli/18s2OxDYEe1452z9Hr++FTitUqfrlAvlm8CkB1M8p/uT7o8xok3gcrbztEKbwAAF7BN4jFPDxGjIGfK0y2zQOyDg9bnBSM8SOyCosgJedyXcCmF2tJI6Y/vq++3t7Xh4eBj39/eHj35zqUAGT+ceHx8PgICAQWP08vIynp6exl9//TUeHx8PgECg4O7u7pApqKJqV145WO7I/2wSfxx71wPfLOZgQGCo0hfOCX9nga9/qw3KydPtGm+tVwtYuXNNURc/VUTLuZyW/RKQIX+e8XFwpOPqnBPnlUdtfuz1OHgSqV96FwrH25fPuGzjMu74/kxyHjgWY5zuI9LYErCnOl2XfHxZVsCIAQ6fznB9TOOVKAHKWeaqu5ZkdU49Y5wu01btUMc5Jok3yjfN/QrIjZE30SvTRZ67cU+0DAYSY5qg7EwqI8Y9TTMbbC9H1OsdH+N0YJjG9L0B1V4BR8tqaxbZbjUWW9M5lJsGX0AgOXk3dvf39+P79++HDzMJ4kUOkKlULimIDyma1mgdufoTCIooPUv0WeRZIe4DkLNnFkPlVOb5+floD4WDHwJBOm8Hc+LFsxRpuUp16X6CqzGOnb4AiM/BlIV4fX09Wlt0EJuAgO5z3h3IJEfaRYrOAyMczmlG7nJwzldy4KpPTzwJFPuTBff394d55fLW70suE6w4IJHvR9F4+4uaHJxRb2ivq3Zky5NstgC/1T535WcZx2Rjq4xJlXHwoDPNq9V2VN73BCTwznlB3+dAVnrudVSZyETLYEATyNE6mSYxK8DfOnZQUBEHIWUeWEZ8uOFK2QA3IMmYqG4afPXb07czovOn8m7ZZ8Bd5FoHFQgQIGC0z02Dj4+P4/v37+PHjx/jx48f4/Hx8ZAuVT+0ZyBtSqOyUxkZ5aocHcV+vz/wfSkwoMmRMkMENcnhOTBITw04MKVjGeM0cmI7rocp0lcfHAgTDLjDZX2cJ+TXjQzP8ZqvKyfn604/GaSZntNGqG6fY1x7dTmSL9oXH+uXl5ejvTVq5+7u7sgRrkRpn00c1yqCpxzH+PMuGI/8VXaM+u2wnjFKvLiDrLJVfi5lXLsoPNGWpceks6mMg3dvo9L5VIbEbJzGjZsDE6W5StvO/TDSW9/Ds6q7mzIDNOZyCIl5ZgESyqQCzsCAiCkwBxOqM00UprHVh7RhzBW2Q6/p/EofyO8q0fGq/4rqtTzw+Ph4BAb80TMtK6issgPKJBAM3N/fHz1+5yhd9b28vMTNhKpHsmZm4P7+flPf34s44dKekQR0ky7xPi4r0HmmyLTapEXUT8Tv97vDrpy9+piABeuSgXNexzjdHa6yDsoJ8llHilornpyqdV8CbzfADt44j9lf56Mql+yJ7r0UuUxTwENATqcxxp+AwwFsctIExelJA/JTRdfpmGU/eu9Q1T/XQe8HgSjtnuuf30c7keqteGRGoCtPe8wNw75HLPVXAHiFlsHA8/Pz0eN1et5XneDzucm5jnG6T8DXVTtKGQE3XB4peERQRTTJOFQ8cIIl0sTzZRHy6YjYUTkBD/dJ+CNSdOwCA+lJC0eQXFqQ8xe/SpkTSPC+v/766xAh80PwpQ8j8TEutyOb2RyPzDkR3eC5TlXHCZjqO0W7SQ/dyfIc63T+1L7rcdLnBFYYaZAHr1fr7Ow3QT7T0n5tFSjPiHWPcfrudjfKVd89q8i54rJkhusSlDJBbuf8/BjHywWur9yDMkZ+CywBhPhIekGqnL+TR9spIHyLzqRshvPq8915lj4nQC9SnZ7u9zJu750Xtpn64jbd/2jt4eHhyL6pHfriFdoEBpiekEKpYY8Q3diqnDro5OjMBcI6iNhSPR71pQ2E3VMEbNP5p6HrlglSxOTIMfU/1SNl4JMBygp4ZoDpfRk6Tykpq6DsAJcKtLYqoKC6Vf+PHz/Gz58/D/sLmCFgSl3X9T3GuJhBlWzTUyTilY5Y/Xh6eho/f/4cP3/+PGyiJPihcZRB05s6xzjWIRrTZMRVzimBVk54j2RZlnW4U2QdK8ai47E7z3565O58uePx+eaRPvvBdjwSInhJ+xtEaYwUVEiHL0XJDkl/HbxLFjzPfmkPAZ8OSZG/Awg6Ro6D37+lT5XTX3VgXcahmjs+/xycsI+sl3PM5w/rc9Dt/LisPPvK/rj9dyDApS7uJ/Ll0BVaBgNSOjXQIVZ1OKF2dVJlPO3PQUjC0X1JgFJaCkOTecvTAyLPRDCNy0iK7YtPj45m5MqotvSd0v3MDPz48eMkxa+6CCT4WKLq4aNWWirw+tXGX3/9NX7+/Hny/gGBgKenp8NTB9IXTQ46ys8kAlff+Cb9ILDrgK0bSndsGvcEgjknRD6PdE7f1DdfLqqMCOsQ0TFwvZzHzAwwhfn79+/Dq30JMik7znEuv/E350MyUA5kPTPixpmyloNT9MSx8iyb+uV2SzaCa6+yHU9PT1HOn0HJAXmfPGpkEJCCNt2jOcAy+taYaQ4TZK1mATraEv3P7DSPU5ahc85jnPaBepf6R/1KtqHijXXznANjldvtjv+IT8u62vSq37Rl/n6UD1sm2O12B2BAcoFVRlNlOZGT4XLSoPhge4qdQiEQqCKyChCkgVmlrZPDkSmJBtLT/XTq+tCp0RhyL4EbXH+BjfpLQyOikdFz28wEfPv27WjTIP8u9pJ7BmTMmDnisUf7zHDwbXQOJkXuWCg37lmodC4ZMHeEmgP+AhO/P2XSXJ/TOe+Hg3ldZzm/b4W67MKMFy1V+n0VX2yPAJ2OMRlLzyZeKqs1xrFc2BfxziBNIFyOnkCYAYYoZYpEakPORt8EdQIMKu+UAqIOyLot9Ei7ygQQiLvsEhjXh3WSH+e5e3wyUZpbvFYt/9HfqIw/Lk7AR9kzG8BA7d0zAzKkznyFghKaTR1Ozj0NTmrDSRGNvpPxTwaZyuZRSfqd1ri831VWZEbuoHXsaX6l7LVfgCl/tc92tTTAlxRxOYAbCalwvjb18+fP8ddffx09mqcsgd5F8PPnz5MoTMsPlyAZe/HK9Bv3SzCd+vLycpT90HfakLMCFJMupEyAO2nqoO8F8bJd9ENH4NGxwBLXzGksSeSF0b7OM0NC8mXFrt7UxyozQMNKIEYnovNcB/cx5LjoOpe5LvUkTAVymLoXWPHHieUw/Bn0MepgZxZBOx+V3tGOM1PqdboTryLxxJvK+SOhnq1NYLGzzR6k7nanm4BJ7sNSsNpdp746GNjtdiUQcPsqO/X09HSkt++eGRACJVVI0KkaXKJUV8ZZCiml52nc0nPQXWSmNpNB5rWKN6JO8SCeVoCAKzFBga8X+cuGtJ7//fv3IwSrfo9x+q+FbEPnqz0QKsf9BnKUUj69ndABoeQhQHEJYjpbk4ZLJzJW3JGr9Viia3+EkvUzcpcx4bhXkbaupdQhf6fPbKmAfLpeu8MX7w4GHEDzd9XWW8mduv+u5pNHfJyHjGj5YcaHYJDp1kuCgUSUifrlgIA6wnNj1M+eV+Pnjkz1un677aej82tJZ1PA6BkpL+9LcglMcN6x75UuEcSonPOT+jALclnO/Z5f87pmS1x6D8rT09PJ/8m8OxhIadEODLjwOvTFAa0E6FTx4pOdO92TIRYlhafin0MeBVKpUrsiTw/7+wW4PKDono8Wyggqrac6ZRB8UjgvbIvXuDThYODvv/8+6qen4LkE8dkkg691ZfGy3+/H7e3tYT04PYJYbTb17FWKPtLk1e/K4CSD4rqo8VkBA6qbvJIn8UE9IaBlhi1lNUSVsXTnQSBaGfgkN7839SX1zftIAKBHSl9eXg7A8KuDgZTxoL565kv65XsH0sfJg6eq3Bj1f9A4APVrqX+pbAUAUzYg+Z6kIzNKPiu15fZaZdPcTMFYRZ6pk4w1L8Wjspg/f/48CmA+bANhGgwOnDpVPV6RBFtFOClLUCEyN7CMiP27opS2qVI2HMy0PlV98+MGsULeRPXaPELH728ffHx8PHoRkNKI7mjIrzuKBH50TksLvkTw9PR08py+AwGub302yeh7REjkXDlBrht7hikBO09zj5F3avt9ncNn6pey9A13qottdQ7cy40xjvroeyvYD0Z8u93x7mv1WU41ZSXYrhvH1BfnszrvQIAgTv1TJO0ZN19/JRi41GOxIu8js0++zOP3CAgzGBjjdAnX7ZADjlkQUQU2Dpw7WsmiVvdV9ljHDg7PaUPkc3WMnOl2nRalsfI2qqwFfa109e+//z55UyoDmRXa/N8E/E1hdw0mtMf6/KUKblg8JVW1kQCBG7kVUJCyAq7waZlCfHh6NWVVZhkCtS3j7zvA/Q+JfLc5o6k0KVK6VIpN48BlB1+P3O/3Jy8t8vSUr2VeglKK2KNed4L+NEr3BIrri4MfOUuWFcmIecSgc3wKhHKssgM+R8m3gxiPuHWO0TENStqIK3LjxnOSaRqPzkGkKDj10R2/LxH63E9gW7IeYxyNu6Ltcx3IW4nRYTV21Fnpws+fP4/mui8VqA6n5LwcEFSAuFrqSpuaRcmJb6FkS11O3j/6k8qOO6XoX/LkGj7r07H7kNQHBynuUzTOJNpbPeHlIGAWCJPetIjrjiZR6qiIUQWPeY1CqKKCMY5RLic/owJG5+wDjz1jUWUFEh9psnRLEx6xa2LICXPXPl82xA1/nOCpf0lWPtnZXuWoRJ6p0MZAByGMru7v7w+vOb4U0bj7UzGMFBNQ8KzAGMdreQlsjfFHzrM5QqfIJwVSxsDBgK8PcwxUB1OF1A+2y2ycy8ANDOcUybNmNPQug25DIfljelS2wOcg55qDAX+aSHVz/ChT1efZoUtmBhzodfrGc5QFM0lj1ClvXp9FriQHs7O+qD63CSuB3wp5tkM2jno3Rn7RUFUPZUN56lXAXfDoNprHDEbSPPX2HbDrke7qlemrtCkzkKgzdg4EHN3qPB8XYjQh6hSkasMdszvlBAgcBFQDSt5Vlz96lgCBy4yDS0XyNDF3/vsfEbmSMHXEF+SoXeeTH9ZHYOG8y2Gx3YeHh7Hf7w9LFk9PT0fvL1A24RKkCSZjoMfEqIf39/cHvXOH4pGtyrnxqKIqHicd9Dnkkf4KKKC+ymE6KObav/PlQMIBXQUEqjmjOsUL57TrmM77t8pxicKdF+9PmQGCAc8Q0ID7so6P/aX2DCRdStH1GOPEkVAGfDLJnXUCBJ5xciKYSBmBCkyI3w4wpMg9lU/Zh5QlYH3+WC55r+Srel0utM9VoOggyjNrHKPku2gbmN1UXcxeybYxG9iNodNm69wpBzvtxI668tARpevuePnNNmfplq4/bsh98Gd9SkCAg9qBKRINE9PEaXKqXhkrZlcY0VA+3759G8/Pzyf/SKh6+BiSOwZNYjoxOfjfv3+Px8fHk5cRcaPhpd4zIPLJx34yM+BjRzCXHD51WDK6uTn+g58KnOp+1s1jLZm5c1IbjCboYKWLfE6+W+4gkKBzkS7R0ZIERhh9JuJ8okw8MOD8dtDBb1LKDDgg4DmXu3hmpoJyVR2XIo6ryIGk+k850fZIvxlwdJkBzyK4/D2TpPIM5qplgy41X4GJmd9xuZBSG8lfdTpG2XEZ0DPHqpOy57xJgUYFBrxfsgf6zXnuOp5kOqN3CdV8oGcO2BVljLz2s0Jb0iBbKEXuPiEd7XlGIEXXKStQZSl8EjqKdYWTwfLMAGXk6/76eF/ZBp2XX2O/mAEg2ODvS5ADKOkfJykNYQKVycjQcVFOzBi4Ua5AoYNcl20yjKyLRoLRrNKG3MvhYMfrpA4TBLAPzkNa8lO9np51h0UZVLLy9K6IhpPzkEbWgXqaj+TL63Vd+Gxy3ezIgYx+M5hgZiYFI7vd7ii4oIMmmHCA58uJKZuj/rA9J4IaghbntQILLiM66QrUrJCDAPXdl2r17Zkln08JFHDs2B/6IAJn1/nKLq/Qp1vnjjF1mIOfEJLIjXWaKA5OqklQkVCvt8c2GU11Bo19TEaYlBTfz6W2PIr0SI8b+5ghSAi3AwPevnhU2ozvQXh+fj5kDS5BDqx8EokS2OooOZFUpgJ7PJcyU7M6adz8PKMFPmrkEXIFBigjz2SonOux5FwZbvGrT9KrNB8Iul32Dlx8bPnhY8YkghSXgxvgS1Ca41W5xCftqYOBMXJmimPojp8RMs8xQ8TrPJf0wvvk2SVfApjZbtehzvF3dfq8ZV+rTK3rXcpMuT6mPW4pOJAsvT1++3HV70SbHi2sUoAJQXeGNEVPrjApe8D7U/u8RsGcS27wxBsFnQbDHcDMqVRUTUznMSlO+nBDGJ8I4G9OvCqCSu2IZBT4pkQ+hngJovGj7rmOuM51kY07Pp5zx877mJXw8aVRdQBDnpLD9P4Q+PmH+ur16LfrdZVO9b5WhtKBi7fnDqECyRUI4LkUcXl/XKYiBiEpg3QJSnJJsh8j2+AEBlhfFXg4OFUd7uT10RgyKzDGOPldLb2uOnnW43M02fvUv6o+p8R3J+/fv38f7bHhPOyyVZ2OOjB1/tI89gBthTZlBlKEw2uuhMkZJ8NL1OOAYIUnKv2M73PIeWVb7ozf2paTo/KZw0ntU2HSa0u1QVHP41dGxr+ryJGA4OHh4YCML7nu6s4yRXy73enz8mNkY+pOjxv6PMOiOtSGX0t1pjEmqHOgR/kTDPijnrrWAeVUrxvd5CwoAwevzFDd3Pz58xvXMR8f2QY6Ywe4fu4cSjaoclqfSZXTd9k7eKIM5aiTM6vAgH9TNu70GSRSdtq4yKUj1lOBnIpSdoGbmX3sq36priSHZE8rnXK7r7mlOSfHX2UGkv1MQWwKyNwmeD8dnK/QJjDAQXQU0kXk6RyveQRRpZT8Pm97dn5mLLr2GCWkfnndVTuryubAi1Ej1+HdCYnXCqxV6VMqZ5VO00QWz0xz8fE7GYr7+/ujCXApMCCD4VkAOuXKOOhaMmBV2d3uz7PHY/yf7GU4abg4sTnG3k7lHHWf67ZHJL55kI5Z/PlxAhnuLF13aVD9SRdmQ/TNPnhfdY38JBBEPnwedTbKy0mu7qw4Lpcg8ebLXGMcv8V1ZisrZ+n2l/Un/SSgY71VRM6NtWMcb0xkOafZHoGK3EanrB77lICP15P0KwVFsoldRq4DArO2yGM17iyrJdvV/4TZtExQCZoOwjuWnKeY9ShMCsDzKboiueAqAJAcNsmVxCeJ+l7V721UBmqG7rWjvyujfsrgM203xjhy9O4E1QYdhS8VpGgkGVYqt7fp/Cdj9JnkYOTm5ubw7oMqEvLxZ9RLEMaXQCm7khxINfk9w0BA4Ps5KoPoc5BGSNGKG6BEbpRUN+VCGUgu9/f3h757dkD1sW3qiq/nM3vB/lB23J3tuumbtZS65X1JF6Wj6ZHdSwHZl5eXo5ceOSiU/ohPEXXPs0zVp7ON/DAwSdksglrx4S+Wc/Dc/SYfiSow4uRBZmqj09vK1+i6ZwNSRs5tQMrSzXyHz0P6KvpX2ajVJa7d6yUt9JWudKUrXelKV7o4XSb3daUrXelKV7rSlb4MXcHAla50pStd6Ur/crqCgStd6UpXutKV/uV0BQNXutKVrnSlK/3L6QoGrnSlK13pSlf6l9MVDFzpSle60pWu9C+nKxi40pWudKUrXelfTlcwcKUrXelKV7rSv5yuYOBKV7rSla50pX85/X9JYYHp8uQKPwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACD4UlEQVR4nO2d6ZIbx5KsA83eSUqUzhmbef/HG7O5RxLJ3gncHzKv/uDtkVWgSDa6iTCDAShU5RoZ4eG5YLXZbDZ1kIMc5CAHOchBflo5eu4CHOQgBznIQQ5ykOeVAxg4yEEOcpCDHOQnlwMYOMhBDnKQgxzkJ5cDGDjIQQ5ykIMc5CeXAxg4yEEOcpCDHOQnlwMYOMhBDnKQgxzkJ5cDGDjIQQ5ykIMc5CeXAxg4yEEOcpCDHOQnl+OlN65Wq+9Zjm8mKudqtXryOjo6at/1evPmzdZ31nuz2Wy9KPqu91F+/sx6vY510f16RmXSZz632Wzqy5cvT8ri93g7MY83b95sXZcoDeXB9/V6Xev1+km7dO30v//7v7Gu31P+53/+Z6ucfFdZq2pLT1wH1C6uA6meTOPNmzd1cnJS5+fndXp6Wufn53V2dlYnJyd1fHxcb968qaqqL1++1JcvX56UTcKyqG/W63Xd39/X3d1d3d3d1cPDw1RP1kufvR9ZH9Xx+Pi4jo+P6/T0tE5PT+vs7KwuLi7q4uJiqsPJyUm9efNmGivU6fV6XQ8PD3V7e1vX19f1+fPn+vTpU93c3NTDw8OU93q9nuo8OvfMx4i3udJRu6XnRzrZ5Z3syP/93/+15fxe8lLs7veQVHe/9k/ap7Phc9deoiypx2Iw8NLEK79arSaj5++8J72+RmhMPH0vkxyCP1tVW85f7/r9zZs3W8by+Pj4CSjRbzSelPV6/SR/ggLlKSN+dHRUDw8PUx5zSrYPxmzOeSfp9EB9VlXRcScnontVli9fvtSbN2+2HKF+Z9+m8jhAoUMkqPHyKA+9VqvV1ueqbQCY2uPNmzcTQBCYUVlYDgHV+/v7Oj4+rpOTk0lnHh4eprqt1+vp3g4Qe9ulPkzjNDn91OcJnKex+1qcwr7LrgCg+5yk8wmjexkEvHZ5dWDAHbxf/15AIKU5J8n4JkPk0WnKl8DARcZW0WBXFkWGKT/V7eHh4QkrkcpDZ/XcIkeZHDf7rGOQOmOkdkgGqdNBAYG7u7s6Pj6e0kl5uDNLLNdms6mjo6MWCDrDk3TAgQjzZHmUr5gDMQSr1WqKzu/u7qY8+MybN28mwCodIijodEVlG7FPXvYEAv4JcN0HHX7tMgcC5sbYErvbAb/EEDgI2Bdb9j3l1YGBbyFLgMAcYhwp04gtkPHuypDo+5ED4nVGYkzPo84UfSZjOgIoSZ5rMCVHIun6Yq5NuzS6ZwkE5AxldHz6h7qSHBtBgaYhVEc5ZomcNRkI5c0yOgPleXoU7qCEZXXA5dMbzgyQJUkgk0AutQvrkQy7A4gl+vkzGP99kCUgoBuTu4xRijt7DxL9vp8FELx6MOAd6e+dcelkzsl3RkfGjM6ektYHzMmSe5wGHoEXX0PB3+i4lBbTTmDH6//cYMBlZESW6MVchMr79Pry5csQ/FFHVHaW1+vCdQlMpyuPGKSvMaAqv6h+79+Hh4et+XuWQcwA8x7pY8p7NF79nk7fRuzHz2L090HmAhe+OyBIAGEXSQDby5D0q/vttcirBgNzCNAduxuSFPElJ58+d9do7PVZRl4RU1pomBaUqUxz5fGIx591x58GGBdqpXJ4Hl6PLur7EZJo8OQUnAXxKYAkri+uV0xLQCBF1am8TEMRvztQOVpdI7PgC0q97kdHR+3UEel5OXEBgbu7u8n5Cziqjvf39xMoSGyC5/E1hrXT8dFrlE73/jWO5iC9zLVnBwQYKPmL98/ZYv/NHfwcE/DaAcGrBANd5JMG/RLDQWq9c7wuowjEAYHy4LOdguu6wEMCLF3ZnHXwKYKUj5yAR3teZqbvA1jlHa1Z+J6SHHUSLqwbAUJP26PgXSJvOfMuXQIDRdd6+ZSOFnfSyXf0u08XpYWk7GsCgYeHh2ltCfMn6NHOBtWx0+k0pZB+8zZL0d3cWE5jdzTud+nHg/QyasME0N3hd7uykk6xL5eAwG7szoHI1wgIXiUYoHQUkEeB3vnJcY4i2/Ssf+a9DggU+XEhGO91paXRTBF4UtbVavVk0RrL5wCF79oGxsVhqY7dlrznYgWq5iM91wGV253B6HneQyPmUy4SbyeKbw8kM6B0ySpxG6PWJGj1fipfV3YX34r55cuXuru7m8rPvFku3Zu2DXZt2C3G9OdTBDdXj6XS2YpRuQ/SS9dmHQDQexpDPp4Se7qUEeru53WCW3/OfchrkVcLBkbsQNeZrnxcfNUZpQQiXMFHn71cPq+q39JzPoD42aMvRp9yGu6s6YAY2TEaHdWBjs+BhgOYHykjQJjuJSDQ/XxPkgwYz6zQ/n2dLeDtk8rhND8XH1Y9rheQrm42m+l7olaV5hywZZ5khuTcHZiIJSB48HMTvK0kWjzY6Yf07uHhoQXwSr9bfNh97gIAlwMQ2F06W8XPHQBIYLoDA9QJXyg8F92PwIA+89oIGLwGebVgYM7QukNwZaPzZIePjFFS7iTdYkEqXDefTEPP+nj+fj/LJaekdGS0NdfrW/G6wbBUliD17ynKOy2K9Hv4PaXj4qBhFyBAFkdpeJvTAW82m2lrnvpNeVVtnw/ROVbl0ekmGSv2OcFg0m0aZekT1xskERAgW+VlcVBE3Ux65brqhp33efkP8s9kDkwtcf7+uQMDDnLTFF/X5xxPnV33+7kLx/XttQCCVwsGRuLOslNKp82rMm3fpeVOn0aYDr0bRG60GcVLMTUAqradQee4xAp4BHl/f19V9cSQdwsGvV28zL4+gEb9R0s3YFO/LAUBep4sgoNAGjA+k6aHOO+u39gXVdsHESkdRtZ0vIzaJWJ73ChX1ROd9/prW6SEICSBAxrWBAjEJDANloMOXeXS1Afr6+1Bx8A+Upm8jAf55zICUl2ANOfwky3u7Krnw2vO/KSx3rEDbl+7gOi1AIKfCgx0CuS/y2l6B3fRjiu5o9iuHIzYu/J2kpy0K7orrxtGKXqaG3aKOpUlLUJTOVI5n2uwjBx9d+/S+9zIuVHhYj9eq3pcza+FgaTaCQoceHqeSpdlcB11PXRdT/Vi2oml0H1p/UJilQRGvC6JKXNd4mFXajc32myHzjiPdKAD0HPP/cyyKxBIAZMzaa4TCbx2LF6y6QkQ+L2JbfJxxzHqMhdQvAR5tWCgi6r1eRTN+feqp4upXKGSgo8Wj7nxG4k71IRQEwvBd0WgfGe9tOiMc70u3iabzSYCgrmyPqeMDP5SIDD3jEe1nPeuetwVoN8JCEY0JfOmrt3d3T0BHOm5JMm4JZDqawY8wuP0h+qi7wlwej6dA3BGgnXqaN1dpHMqvLaLXvxMsgsQ4OcOCDgg6MaWA9LU/yOn343dxGa5TswBAs/7JcmrBQOdLEGrnbhzc6Xy5+ns/d6RwqcyM183hvrM9JNwaxoXohEA+J/d8Fm2gyRF/j6YlpTte4oPTmdHdinbXJ8nHSEAIysg8aOkXb94nc6VAGMkHShwFqdbp6K83MCq/RSpMw3Vif9j4WmOqF+9axokrSdwlqGL6Lr+9++dAX+Jhv17Szde5q53ARP/+CqtiWIf/ZP+SOPX85Fed+tdOA3l8pIBwU8FBpICOFJdmo53dHLsiZ0YsQIJSNC5yKmMovGUpkd4vrjK2YBE5ep7h4hTxDZaPPYjZWnkuAQYdCAg5cN+k8NktFz16JAZ2bN/9XsXrfvCvlTWJJxWGv2vRWJ3aKxlvLWo0Z172rmy61hLU08d67SUKeiiyjSuD7ItqU26a3MvBwUOBroAg78tCeJYxhQQ6r7ENpENo+52rNtLBQQ/BRhITnakkFXbc+p8dsQsUOgIfKFUYgy8nL5QTw5itVptrSZXenPghAsGvZydpGg1RWi8NwGB52YGUjTR0b+MeP36UhahS7tbnEcgQN3QzoGq7fZP0ZRHOF6Ppc7X9dbr7gv//FRF3SMgsF6v6+Tk5MmOAEnXlm5wk9NOhpu/dfXrDH53/wEQPMqStljKDszZYEmyLbw+Z4f5uRvfTIf6wLEpIcCfAwQvSV49GFiCWDlfRZSYFtEpihpRzFQg/l0tV3anqQNeT8BA87YqExV3bg2BU7K7OAciY2+TZFCXRuI/Sjpjz3o5m7LE0Hhaup/C9mbEzPx87pzpcCshr71582Z6l+5WLT/cKS0s1TXpK+915sLrznUPPrb0N8ZkMZb8g6Y+E1wmFqQDBfyN1x0QzOnpvujxvkoX0CxhBfg+GmNLbUsC/bvWQd+XrOWaAwQviR14tWCgi+xGiJQyF9kmpd01Ak6OWpLKw2sCFzTUKf/RvGwnorTnoqddKNbnjK46g8+BOvp9CQjg91FkxMV2VfXEIDId6aAMjjMCeunMCNbVoxs60xRt+9qPzqizHs5S8J453WGdmIdTxZq+SgcueZ29Tqk9OiDwUgz2c8ouY3iJvd3FJnVl6AKyqmXAYQ7sj+pRNV4/wDxegn69SjBABVmCTP17VZ4rZZpu4JIToNL49AOdQVo0w3T52Skqn05Qmj5I0vn3naQdAV3U5WX1fPm+bwOC5R2VbZffuujVnbgzA7yXzjtF0DSqfmaEL9zk93SGxCgy5pjgSYcOAnioku4Xi/Xw8FD39/fTHxj5boI0Fng4E40uf9c/J1LmpqyWsAAu+6az+yYJ8CcgSX3p1ge4fWLfpTxGz3VOmLrBse/TdKn8KR1JWkj90uRVggGXOUDgRikBgS7qpYHpBkbn5F2hPTJkGUZRjFgBP8BFvyWFTul6+XaJojj45ur+o2VucHagRu+kvqvGEVKKSCXsh3RaoEfvjOLT9AL1OJ1syD7mHxY5EBhNLdCAO4hRfpoGUBlYj/v7+7q7u5vAgK53jBWBhb6rbVSGpLNkQZzxcKeSnnfH0aV/kLGkQMzXtzgQoN5KEqBNaTPPBAL1e2ez0mem6XUi2HX75uVk2vsYDLm8ejAwQqlJIZMkZJqu6fMc9StlkhNPAyEZ65Ez9rI7wEnMwBwD0IGBuTZIbbKvA6FjB/x6MlqjOnaRqEdIlNXqcU3GaKcAKfIloNOdowvnPRPj4DqcwKaffilWQMwAD7JieX0sClj4/x1wWoz/ZcAxtcSx6PtS2Ve9/dEyB+pHdtantRIjkAIhB3FdQNc9J/1YGsSw/OlepicbznTFMPj1uXT3RV4tGEhRdzI+3ZqBJel319JvaVGhqE5GSh0QSJKciX9m3cQcMIrS9+T0U/1Yx4Ss5wbrPsoSEOCAgDJnKF1cF5U+58Sr+nUrjLZ87tzffb1AKktVXlvibURDqGf4rO4jEBhNDaR1Bz7loGfv7u62GIrkJFySPu/yeV/1dV/E7V1nZ32xqwcm7MfE6qS0k646i5AWnY7sm5cn1dXLqfsJBGgvUh27PJ5bXi0YcEkKyh0EXxPJ+nOJkqcS+GptMgO6dwQAUlm7cvC6gx1nJiSjeeTOUXSGc5+AwCjvpayA7nVAkCKiDjR4vnToyuf+/n4LIPqagZS+60uaCpCxSlNFLE/q57RuhsZPr9VqtQUC+BfGq1X+++wueiQYWK/XkzPhs50DnzP4HQhI3w+SpbNBbmf5B13sQ0oCsZ1DTgFcAtA8j4WgMjEFc2O1qzdtPIEy00tAh+nsk779FGDADWg3TUCKZ5doby6qqtpWCiqqlGSJE5aycW7WB5YDBpaHe8MJBFzBPfqjkrtDWWp8lwKsHy1dmXwQ0wFKOh1xsMD+9X5m3242mwkIcP8+y5QMSlX+M630F8Isf2LDEuCUnvKUQV1n/ytPz9fHhOum69ZorCZH4uVYomcHQLBc5kBt6i8Hdnqn/ap6ZJKSuHNdwuoy4EqLZecWzTLvubZw20yQ4cHCXHr7oHOvHgx0UR070lclV+VIg44hKQVXUzMdp+PlyHmP799n2g4E5MwFKFL5JfzdWQB3LP6HNa7cHj06pde1n2TXqZhvJUsG9pJnWWfqgr4nRiDRiZ3zcp10mtOnj/wIYJZT6fg/H+p3Z48kCQw4gKCxd+CTDHXHdvm8rgMLtp+iTOXLY45Tu7rRT+19AAHzksZIp/NkunxqIAEBpcF/3qRQR6WX3NXiNtcBhr8ntmyOlZjTCa8/A4a5KQNP57n179WBgRSBdNc6g9dFciPDT1rM0+Ke/dEUgJTHhWsKeE67HL2DA6WntJwJ4Mpyp3IFCHyaY659HeE6w7I0YvuRwj5ditzn9CtJmrNn9E8qk2mnSDgZzarHVf/+m+sL03dwp3T4G+9lPm/evKmTk5M6PT2djL5+d9aNbeDtSD1Zr9dbTj7d4+NWkgBF99L9fHYk+6a3P0p2BQLdlI/0YBQMJFaW+ucggGl36xCkT2SsOnvcgUmXzmZ0wYB+64KK0X0/Wl4dGKh6StNSuk7we6QQc4u4UlTEkwar/j4xbqSIrkQewfNdRtOBgNedoIDPSwgCWH7Nz3bRk4sPYCm059sZ8eeW7zH4yCL52owUAdMQenn4rH73I4A7x+2MjgPOdPhRiu4d8ErHufJfkV/VIwCRHpL1oh56BEUgwDTUVow8Wa5dQIC38aj/f1YQ0EkXXI30hn3k05rJ+XkeHmTR+afPzg5I/7SGJU0duG12gKDPSUZBRLJ59CH7BgheFRhIiMw7pYsqKIzkEp3O59zQpAFBlCoH7n84RCNNhfZ7mA/f/bpHfV4WUcisS2It5trLI9o5BuQ1CZ1++o2ypD0645DYCN3vwMIBpYwkt+ZRRtE/jbB+dyNMI820VOfj4+O6v7/fagO1m09haYx0zMIcQ7ALG9C19+j6zyTJlvp7BwISWOsoc7cfFE4F+C4TThslPVWe3NniYEB2mNMUzt45GP8W7bqvgODVgIGkpKN7XBwBJmPiHcl0fVB4tLTZbLZWWlPxGEmzLBQvR+e4ZWA7hN6xD/reDczkkNzpC13z+z7JXHk64OMOmEatG9g+H65nvX29bxxoyVixfOlwKeXj7S8Hfnp6+oSqT31N3aEBTicQSufTAUque4ki7nRe7eSRHqM3th9l5Py7a0t++5lkFyCQbJ8zAhwj/ur+tErpSP80HaXDrdICRQIQ5e27Wzg16ltgyU5JCECdUUq2NLXlnPPfF3kVYGCkpOnFe/VZhqlbyMe8RuhYisuDU2TUHx4e6u7ubkrL/5GO0RyRtH6jwdQCM5aLtDDLlIyqAyanzrxtVa7kMJUuD8zpBs5zyNIBmICerruR8XTTeg9njTw9d5QpDTpZ9hkBQVpzwLrIoHq5GCFJPOrXugDq8who+3eW2acp/DnpkE9NqG14guFclO/657KUJTjItnRAIOlz1dMxwN9TkOI2WTb15ORk6+VnUvjx1VWP63Lu7++frBtYr9fTMdn39/dbz2mdga7RZia96fwK66x79X0f2YEXDwbm0CqVyj+7Yo7ePQ86Winr+fn59Do9PZ1+q6onQEDigEDihnPOQaV2Id3L5/SeaGbSsSyLnI6+u4wYlX0ytHMonvckALA0Lf4+agd3lilSIgXvoEDSMUV07tQFp1FlJPnM6elpnZ2dTTp9cnKy5Zy5jZBTWZ0D0DsXxLL8SoO7FDxdGvMRQ7CL7JN+Prd07ZgcXLKx3VoBPkfb1dnrBAbOzs4mYCpwqvdk56Sbp6enT9atCCTc3t7Wzc3NpGtkpdJiXZZfjK7sNKcUVKelNmIf5EWDAVcoV6YEBNI1pzl1/nnVdpSbWIDj4+M6Ozuri4uL+uWXX+rt27d1eXlZp6enW2zD7e3t9NnnRalUrBsVzZmCDiS4o06RV3olxCul5/GvNNBdPikdfX4uWZJ3xwA4SJDQCLjwGYKt5MiUr68JcarcjV3HCkg4n3p+fl5nZ2dP/kNARvHu7m6KiJSXgMC7d+/q3bt3dXZ2NuWl+29vb6f/HqCj9pMHHaizHon+F/Ole3mc8dfo0T4Z3Zcqc8FWAqoeGHRsAMFhsrFiqM7OziY9JmuV2E9OCXiwomOyr6+vtwAuQYSXsYvmCbA5NbgUEOyLvFgwkIBAUkqPkNO8PhXJDVBCe1zYcnp6Wufn5/XLL7/U77//Xr/99lu9fft2ixEQ8ry/v39iEL2cLjSUbgzpJDzC5PM0uPrDGEWDaR+6P8drXZ5qF7YZncG+AwHem1iYqp66S6AgMS9MiwuXmGZaU9D9luhWXfcI/+Liot6/f1+Xl5d1dnY26aeA6tXVVd3c3NTd3d1Un9PT07q8vKxff/21fvvtt7q8vJzYi9vb27q+vq7Pnz/Xp0+fthgG6ZRofZWFf7md2CgCX9XLx0THrnSSpgsOYOKpzDECDgTctna7PCTJjnCsJSaJ0wAOBggKFHjRqSeWk3lJhwUkdN0BRHcgkksCAXx9jf78aCDxIsFABwRcId1x+Xyor1Ct2t4Wpc5wMMATtU5OTuri4qLevn1bv/32W/373/+ud+/eTYb+5uamqmpiBkivKk0/7EdC5araXicwoki5eI0AQlMVPDN+bpV7xxBwTi0BArYXy/USJAECXu8GaAcknBXQS30gcMl7v0acESNYffv2bX348KF++eWXLebq4eGhrq+v6+PHj/Xx48f6/Pnz1H+np6f19u3b+vXXX+v333+vX375Zfr74Jubm/r06dN0ANDt7e1WVOURmQNeBwRcuCVmLk1LdZFlxzp8C3mNQGAEoLp7u8BrxAx4ZJ2AgKdN+ywAcHp6uvUSGNBn2X4HAu6cJev1epr+0kJv6S/PJlCa3dh3EO4BgOe9z7r04sDASDGTUejQrIMBHprCdOkwCQY4RSCDK6N7eXlZb968qbu7u61Imc6Yxi5F9FWPESeVkExFchy+it3RsD7TQfE+XvOIVuVwatoP/PB5tLTga9/F2Rde74yCt6WLb2Oq2t5alUCAO3gHubrGBVQyqJpnZXT/4cOHevfuXZ2cnNRq9Tdb9enTp2lB1ZcvXyZ2gGDi/fv39eHDhzo9Pa3NZlPX19fTDoXr6+v69OnTlg4RDDhwXeKIpGdkCjh1IBCSHBD7r2Nm/L6fSZYCgc52uu3131Maozw8kGOgxRdZAmcK3KGT6nfGouoxONKz+i7mlAtrfYp2pDNshzRdsEu0/6N180WBgZGDT+gvPe8Kpy0ruq792DI0ctzs1AQkmJYUk3T56O9cfb6s6m9F6CIkByd07B5huvNgHsqHTshBQhftchGYH3zE8u27se2c/tLfed/oHqUjI0PHORI/djUBAH9RH8VavX//vn799df68OFDvX37tk5OTmqz2dTNzU09PDxsjQMa/aOjowlUCOhWVZ2fn9fR0VHd3NzUX3/9tbWNlnUeLSh01sv1iEI2SkCA4IBjYYnj30UvX4Ief2tJUXsHAtKUIZ9lcJCYIrK1WgOgdzIAfCWgIOCoNAkcOxv78PAw2fu7u7u6vb2t29vbrTUwZDslIz3ztnJAsESeQ99eDBjYFQh0NJSUw7dOUZnouH1eV4bZT77yAUGEqrS4xcUHhRvSTnGIvrm+oTOi3m4JELDNEiuQxMFGWnOwr5LK5s5q17ToiLq0+DsBHgEdRX3FbYFpZwDFjwo+Pz+vi4uLevfuXb1//75++eWXuri4mAygGADXQZ9rlWG+uLiY0v/y5Uu9e/du2mnA6S62Taob20bOggwTy+Jsncaw9oZzzKW8D2zAbpJs7S5TA54WdTz9xmkBRv3aleXTAg4IpPNMk+OLQNr1S2zd3d1dXV9f19XVVZ2fnz9Z/0KZY5t28VH7JC8GDLjsAgR0f5qPktJp3kl0qVZI6+VbrzqUrPy5dUUrrrmFa7PZPFFQj67TAOJ3Im6mwbqm+5SPTzl0kVwnPoXQOT53gM8huwy8xAZQp8jA+LUl+ZFZ4Xd/znXA18b4Cmq/R9NYl5eXdXl5WW/fvq2Li4tpIeDd3V3d3d1Nz3jZfTcA2a/ValUXFxeTwaZR9oOP3ElTz5Q2I3+Cdh/f1N8uj9QH+2Z491VS8JBsbaLeU1rU3+Q0aY/p8GWTNf2q3/TZdc7zlI5wesGngqse/+vj5uamLi4u6uLiYlpIy4OK0mLfESBQPrLzHTuwC1vwveVFgYGvZQSIYklHyVDKSGq1M/efpq1TySA5ENCiKqWj9QO8l58T1UY6uYscGenTgHYHxHCwLI3m6fxGvzkgUpnFhjwXGPhWg60DBFU9M6DfXLzffH1KEuo72SiWi+thPMqSMT09Pa2q7cWykrTan3VSWWVcfXuXg4pkPLv24boHryfFp7U6Niv1z9fIvhjr7y2JEehYAbe9XXRclVlL/ZaCsvQSw0V2wLcUSsge+VSCA19NAwvYXlxc1PX19WT3yaBROp3zQMKBwFJ24DlAwosAA+48dwECVGhODUjB3r9/X+/fv5/2Ua/X6y3K6Pr6uq6vr+vm5ibO97vIgIpduLm5mcAAgQSjoES16ToXsSh9/a40+EqUWIdmU54jQOB94ajYjQNX9T4nGPiW0rEBzrAkx8TPjIr0mzti118vh/eJ6zr1ndGR1qJ0hlzX2HfcOqjnfUwRgI6i9dGOmOR0NF7Yrty10K1LmKvjSH4WAOAyBwLmpgiSM0z3yYkTCPBwK04HyEkTDDDSZ75Vj/+JIf3kVLDrqGy6psBUBrIDYow7JjXVm22p51LApPv2Qd9eBBioWjYP03WEO0strPrll1/qw4cP0yrri4uLWq/XdXNzM+2f/vTp04RAr6+v6+7u7kk0X/Vo5Hx6QItRnBb1+VGCgsQCVG2f0uYIlxGhp5V2EVBobKmYydl7O/Me9kUCAi8BDKQo3sVBp3/XNQcFrrOc++c9vtsgpctpBpadjEF6lmtW6OC7HR9aQ8PFVUxLZVRd5tovAV5fn8C2ovCQrBEQ+BrZB2P8nOJtvQQUpD5yRsDXt6QzWujoeaKgHLkctO7h2TAEhh5s8eXMFh002WJfnKi8tD4lCR2920FOBTpgmQOqPxok7D0YSI6/i6RH9xMMaGW0tlv993//d/3+++91eXlZm81m2nf9119/Tfuxafx4djWdsrZlcdEgdyMkZyilHhnS9DyVqRPSvB6dJ+PvQIAvBwJUZL/PWQEfkPssqU26+zj4u3ZzQCVJ00L8jX2daFaWgc+n9HjKoM4D2Gw2U/Tj02Ceh84VuL6+rrOzsynfRJ/yOe4qYZ38hE/+pusqi9ixBCwTA0PZl4hr32Wp7UxTBCkA43NytJxaEpOkXS5ahOpOvupv3eeuAq3tWq1WW3rgjJoDRb58saszaQIFPOaYW4ITCEptyWvOKiQgnHT1R+rwXoOBEVodMQOdskpBueXq999/r3/961/1X//1X/X27duqqrq6uqqLi4s6OTmpqkcnL4NZ9WjEqLxiBHjGgO6lQ+cUgcqVom1Gca5ISRgxMk8OjDSAUjqj373NkyN0EPAtorfnkET/LX1GnztAkJ7pQGN3b6cPZKk0XXV9fT3NgW42m631LNxf7WXR+perq6tpXc1qtWoXxo7qTN2h4da7xAF4AgIEG92YXyo/O3CYC7pG7TsXfKVzAgQEPnz4UO/fv5+2qlbVNM2q/vX/H6Bjdb3g2En/Vnh2dlZfvnyZAAFBhx9Gx3JrC2IH9tkO+ixRefmuslPvnlsH9xYMjNAqr3fPddeITLV4kCesbTab+vz58zRPxGNXr6+vp/3ZXKSiTpbRPDo62jrvnZF5ir68zB5JJxo1AQjSy56WDxoab0Zlc8qe2nYuMn4NRnYEwtJ97hC7NvBImH3ROXlGFGQn9Lv6V/S+gID0Wqf9pUWynNJSWkpDz0vP7u7u6vPnz9NZBT7lsEv/u66n+qdpgZF9eA16971lNKaXgCwHAFW1FWX7HwwxENM07a+//lqnp6dTtC+91eFXaTqWQQ5tq2/blr7zN9cxX1vA7Yy3t7cTG6ZnJEnHExio6ncWJHCc/MOP0OW9BAMd1eLX2XiOsCipcf1gFh3KUlVT9HN7e1ufPn3amqeS4pAZ0CAQGOBn36JChRRVJeNMxKhye510D6ljDQyVm4Z0xAbwu983iuhSP6VFXgkgvGRZCgj8mbnfuveqvD6DQMCjaemYnLXWumj/9Js3b6b/yBCT5cwAGS3ujLm6uqrVajUdsX13d1efPn2qz58/1+3t7RNA4LrFevA6dY/rENgGKQJTfRmJMm03tF16c/302mXk+Ef67kCAU55cyS8bq0XbCsIEBN6+fVtnZ2dV9cjCqo80V0+95poAggCuJ2HE7wBB1zk9wBMNtUbBt5Wz3hRnUN0/dW28b7KXYIDSNVwHBPTbyAHxmhRBaFW/39zcPFm5yoVZPhCkuDJs3FrI/wPgGexy4r5ewOeS1A68T8aSz9GQ0nG48SUg6Qxyh3QTIFB5k6K/ZiProGuOlfK+q3qM9Ltn+N1ZgarHk/tYBneIx8fH9fnz563/IxCQcDCgl/pR37XDhue1393d1dXVVX38+HFr+6wbZQe3LG9iqEZtwesce/osPWQE5v30M0vSR/99F8fFyFo2klS7Fv5dXl5OCwX1L5jv37+fTrXkkcC0i9IjAVj1b1W1gEA21n0D2VyeLlhVW4sZOSXs/+QpEM224lqskb9JtjTZy+diB/YWDIxYATe8bOy5KJQOkfP3b968mdDp7e3tkzkqKr2MnK8ZYGQkmotzslzFTWPlZ6z7FIBHSd4+Lh6FpZO0PGqfYwVSnqmMS9mZlyrJ6SenQ1GfVm0vHKRRS+J6oLz0jIyjoh8yS+xvrZMhGJDj9DUD0pUODGiLLNciaAsuI6kREHBWwMGM2sxtQFrMxm2Ozg6wnZcwND+7JJvbAQJeTwsFuS1Qh169e/eu3r59OwEA/YMmp1p9kWLV446WqtrSTeqUBzLOnmm64Pj4eGt7uMqrtP0fXXm2jADOzc1NHR8fTzvFuumxqnqihx1T4D7sRzh/l70DAyMQ0BnGueiMQjTJaIgdKOVjBxP1Stl8OxUjK4EBvahcVTW9s7y+s4AnsFG61eWpfVwxRwxKBwTmIoSlxvZnMrpuKGks2a+JBWIaTGtOnA5VVLNaPe7n1nWBWjl0GjXvL42Xu7u7qqrpXq454BbatJhLwukkv0Yg7KCY0R1f6bk5ff2Z9HBO5pzUEiBANkAL7rQlUE5fLICAwMXFxdZOLQZKPLadNpPrB9yJOk3v4NzZUd335s3ff/EthiBNqQoI8Fhk/f1xsvF8Vp/dr3Xt74GF1+t76u5egYE5hewi1IS+EqUvkcLxPAAtslqv19M86NXVVd3e3k5o9PT0dPpMo6vIjLsO/ChjRmm+kEXXq+rJ0Zr6rVMmFzoXsgICPN7eDixGzIq38+iZn8XgzrEBXEjlJ/XxeFRnbtLaEKUrI8Yoyhke3avyKW+BARnh+/v7JydkMh8J1xJIzwUAut0IqdxVtcWuJeDAxWgubDf2AaepDpJlrm06G5peDnK58l7AU9MDZAR4VsBqtXriQHmmBRlVMqlu0zllylMsdc2neelHVF6mU7W91mq1+vu/OWTP5fy5uFyHy2nMOShI7cty+HoXyo8CBHsFBqp2o6rSs04h+iK/qkc6iJ358ePHOj09rYeHh/rjjz/qjz/+qD///LOurq7q/v5+a1qgKkfZVJZkHBnJeIf63DHBwRIDR8BA5+KUrYMY5qtypQWMnbhB75zBkrRei3RAgFQ99ajbBeJOT33M/diiydn+pDbFaknXV6u/5zy5zkVOPUXfLCOnIVhO1zO1AbdupQiIUwRpERbvFdWre1nGlO4S1usgWeaCKtrX9E+DiqC1RkBsgA4Vkt3R3DtZAAZpPKdF7APXQ9Hp005KT1Re/2M5iXRC6SjYEyBR/lU1gQGyyhpTp6en9fHjxzo+Pt5aMO7rFxhMcSx17KAzG+yf76HLewMG5kDAHBhwBfZFLR5t6FCgm5ub+vTpU/35558TUv3zzz/rr7/+2mIHqJRpTr4zimkhIMXningtiRu11C4+958cNIGDHI+e0YDr1hCwjA4EfO3Bz2SAHYw6EJAxTKenVeWFo06NOsD16N3bXkyAIhmtGVB/y2ARQPh401hRX3JhVQKBBJpsmwQICEi76RJvG0aJkgTOl4ynn0XcRqTvHRvggIDRt+/L5x8NaZpA16RzdJAEAtJDAQJNuSof9r+EwRXLR6Do79J7OXSBBU5J+C6Do6O/Dz9SGfS8zqM5OTmZGAIBGYEd6nlqW+m/s8V6Vv3zvQHB3oCBqh4E0Oh1jeBAIDEEjHQ2m800X/rx48f6448/JqOmY4j1nwScE2W07xFZR6MnI8fom/VyeipFZK4UVdvIeOTIqYB81sELI0sHEzSyIxDQAZDXJNRLZwQIBgQEePrZqI35O/PqALIbF04VMJrhttiqp2da+DjTczJoTJ+7ZOYi+xGg9IjO7/E5V6bprFenqwfpZS74cruqaNtf6X8GyIZVPU4xEQg4INB0AYGydI4spoT6pbGXjsdWntqZQLBLoML1L8qLrIKe+/Lly/RfCgJCnz59mqac3R6T1ZC4bo9AwfdiBCR7AQY6lOpOtQMEbhCdHSAtI5Hi6TCV//znP1P0f3V1NbEC/KMhHYJBh0lGwMs/Ep8yoDPm/JGuKT/mw7T4LukYAUeqbEPmrXvlUNzJJxo2AYIfocjPKSmC8tPMOK+qtiboG7ECzIfvXoYkNLpiCNT/vCc9R8ZLUwsEL4ze0jSB67bS3aX86XcHn2nRVirHzyodKzDHAHQvHissJ8mFg/w/AR0zrKlLOVxfJOi2lNNdVRkoSjSG3HkTdNNuM5/7+/u6urqa/IVPE7hdd7+yXq+3FhaenZ3Vx48fn0wDcheNrjuA7/qs091vrdd7AQaqxosrknNNEVOXli/YEvK8v7+v6+vr+vPPP6f5nqqa5oK0ZUqAgFSphMaoql/8REUdvTPdbh5J76qfDwbe55+VFwGBhNGi0tZcbQIEnePvIsHXyAxQCAScsuSUFSMGF6fDeV156Fnv484w0PiRBu3GmEfY/JMWOnjSupw26MrAuvgYT8Ix5SCYIKdjViijNv+ZZSkgcJaVbGs6cVCH92iKQO2fFlfT1pHh4fY/2SHaUXeGuk87viTUfTK4Nzc3U9k5HuQfnPXS79w1sVqtnvyjotLyrYrr9eN0bJrq8H6pymeZfC8dfnYw0Dn1JdG1pzMHCiTqbLEC2md6fX1dVY+nBzogSNsBq7IhToCAv1Ex/BkOjpSXX6eDUdrOKvj8rSQhboICDiwpeGIHUnu8RsPb6WQyqmlls2SkMxwDvu5Fzzpt6tEy79N8qJw62Zqq2oqiJHS0CXgoLxpMtsUcOOH2ysQiuDH3vGncvc676N1r1NGRJPtKZ8+pAL/ercFynffpAq3W54I8Oso0teN9TlY0MaEsCxmsqu3/KHAGS886QKWOa6ywHQR6xPTd399PLIjql9Y+EAiM2IHv6fQ7eVYwkCKTBAJGUWbHGoyiDdFAdKIPDw/TcavcOsWz22XEqDyeNpGtrtGZUml5X3IYKWpn/dLgZVmSYfX2S+1D5oD3e3pLlJX3vHRmoEPvIxBLo5Kcd7elUJ8JKhi58LPe/Qx2lYd58TkadH12Z6tFUKoLaU9nG5TOHJBPa3lo7BPD5IwU244M1Uh+NsdfNR5zzgSMXn7CYDc1qft49LDO9tcUlfRKNoWnsiYh+9rpmq97kvOtenqYUGKwnAlhGyn9BAa0ZmCz2dTZ2dnk1Llt3Q+dc1CgMif2ag4UfEvQ8GxgYAQE5gCBGqBjATqRMiVjfXd3N9FZaXsJz8hWtOwGmnOYNFjJedKhp3L6vTLeDgQ0MIk2VR53GEulKyeBDtc7dGmkdF6ajJgAvY+AQHJidNA0TP58Wu/ijI8DUHfOzjCRLeDaBqZHipTnUzAPzvn6XK1TzVXb0x8eZVG3GLklcOAMSGK8lurZzwYOOpvbOX/qBw/NcmbAmUx3lufn51X1uFBZztKPZ6dQX0bTTwQpstu+hZD/ueFgwPVUebNtNB3A+9UeqqPqvV6vI6usczwcuNKP0J7ye/f+reVZwMAuQMArnYAAfxuBAhli/38AAgLd52iSVJFQnefBFbF8zo3+kvZJnU1AQOHATHk4BcW6p2tpzlrl4iBhP8yxDy8RDOxSXgcFlBTpSvzks6qnxkiSFo8yfYJP3uvRNFdbE0xI71yHmQ5/4znypGZlLCXOdnj7ODBiWzgImJPOniQj+r2M6j6K66YDgQ4ccD0AwcDI1ibHWVVbCwx1pksXradpAr7Yr5vN5sm2RT7LKS3PqzuMSOUV7U/mgTqpsvCEQi6e1LoJ7bxR3lxgqPcOFMwBgG+lxz8cDIzQ6RKH0Q1qfnZ0S+FCFHf6krS9hcojdsFpHikjUWha6ZzK3bWTi1PKVEynfEnBsv08uuyEaSbH7orr5XeU+5LAwJKyjsDsCBxQ3wlQva+qnkb2o88SBwQ8k10sgN5lmBiF02jR+BIMMHp3xo2O3IEomRHeS4MtGRk/tqPSnHu5gfXPr006HU5Ofw4U8H8HHKz6AjzZI5+O5UJTPcv/ClBfOBB0u5kofQcTTId2Xu/sfwcEuiYdT/7i9vZ269mTk5OttTOqG88Z8cWSrBuDqzn78b3YgR8KBjogsNQpzlU+AQs6bTai0/gejXiUorw115XK5kbYO51TBv68JEVOXn8aVNFjpHrZFl5GV0Yvi19THk4Fql2pwKk/urK8JlkKCPzl+6C5wI+SAGACYjSaDmIdkPoY4D0JuPrvabuU8j06ejzYSGCDbcGysNy8NieJtera2e/xPF4zIKgat00CAXyGQZWzA6TLedR21d96cHt7uwU0tRZL66+U38nJyVRWt8ceUCTg0tk12l3uevGpNN8hwRMMPaDjGOU4OT09naYIBDZWq9VW2zgTwmAuAQH2xY/Qzx8GBkYKOYeEPI3utyVKXrUdjbjj1/X0cqVzSVG3K40vgPG26aLxkWF2yp5lcWfR1SOtXWCZXHwRjCvzSxdvz05crzvK0Z9J44FRriRF1olBSCwUjWmaYpD+qI+Tbjj7xeccbNCBqIwyrDSwXgcHH3PtnsZ4akvXSQe6rxkAuDgoWgKa2L5+bsboYC21vXZspR0EPNRH4mDT7RPLyX5PQJfXyQrws/RDbLH0VfqjfKq2F/yqLlwDcHZ2Vuv1uq6vr+Px3jrO+Pj4eGIBGWR1QI2/qU7SXerwt9DnHwIG0mDlb0uMp8SN9By46CJtVzqPVPy39FI6VflvhjtxwMDnHRDsKonVSPVI7UGhsfb2lpJ2QICKq2deIkjYBRB0euxRCq/xOq8lQJFAKK95XyfnT92QQUoOfuSUPYpP5aKh22w2W/OunqazWelzMnJz4/4l6tu3lGRPd2kzfla/kQVQtKu99f7/BAQEZEz54pRqZ69SvRw0d7tK9N3zZV4aa27vCDY53dyxqqqLdqBpjQABAYEVpx46hsD7zAHAt5bvDgZSpTrHP/ed6aQ06fy9Q5NBpWHkudO++I8LpXw+leXyubSRMfJnXRxkOCpOayKoUP4aAYFk/EeAxPNMyvxaJNVnpH/8Xc8zgpARY78wCqJxogFyQ0Cj5HrpfezlIgCQYVU6Dkwc1Hjec2CA7eRGTIZxxLaNZGQfDoDgUUbOPrUT73EHJgCgfyS8uLiYttdxxwH1hnaWkbq/OJ/vesjxo2ko5kEdcrvnUbzGEsea3rlgkt+TnRXg1lTtly9fpgPquKWQY5L+SJ8Z/TsT9yP1+LuCgZHidSjUn/V0eM3Rm5/25gtbkjGkknGuPy04SQor5fTFNiwnV4xTaCzX66eHEPEZpZHmzJiW02U+qEb9NCeMJAlMEjPwmijYrwEEes6dNsGdz4+6UWKavqqfafrK/lROP2FNwjGQwIDf7+3idXQgo/L77gKf8yWg9DzndPng8Ldl1B5zICAFUgQEZ2dndXl5We/fv59eFxcXW/8/QAfshwoJFPg/vNJZJ6GdpnR2kHS+ytNF3rLZ9Bmc66c+s331zpM4r6+vt06t1RoJn/YgCCbTyjEkoZ/4nnb1u4GBpag9OfouvZGypnPgHdW5ESTNzdWsCbFKiRMzoE7lYRwqMzuaSNAVW+iS31Nbdu1Fg+wRIp/xwzlcPN8lhnYUiTGifW1G2/UwGaWqR+OoxVRsk0QjeloSOnuPthIQkCSGx52tL36lbvv9XZkkBL/peY4FijsEj+xS/RL44vsS4/magCuls7fOnqbfGVjxzICLi4t69+5d/frrr/Xhw4f68OFDvXv3buuMFjlA//c+6pacp+5x20f9d3BB28ngj2OPACCxuCmQ9L865u8S6pQ++xQBwYCOsfedBsmHKU0Fh/z+IpmBznGNXkvT9cZzJkBojttguJ+TCMsXiqhTOzDgwMCpdTnZREN5VO+G1SNDKgOnOHwwuzH16IlIUwcl+UDaxUk7DeefO3npQGAUPXW67FQlDZRYIE8vAQoZTo9ufDpAetYtFOzAZQcEOhDgjprXdxnLPs3FurG+BD3M38XbpZvKe62Of066QCrZVNpS/c/AxcVFvX37tt69e1e//PJLffjwof7973/X77//Xu/fv6/T09PabDZTdPz58+cnTo7MmK65+O8eiHGhrOolO+9ggGyvs1a6NwFTf572N4F2+Qz9C66mCLhYkkEkgzKyA5LEium57ynfFAyMgMAIjUo8GukQazodS38c4eiOaY+iaimqRyIOBAgGWDanMqVERJVJOrYiKTepV7aP7ulQMCkpljf1X6LiKJ6Pg4Iu3ZcMBiQJFCRWID3DdlV/dCBA93cRbqJKdT2BPj4jAOjX3fknHUjpsp4e8XR9nvRXzBjHT7c+R/d3YHgEBF47IBjpYAqoUnDl++MvLy8nIPD+/fv65Zdf6tdff53ef/3112k1/e3t7daJfcxftlUr6mW3q2pLbx0UJiDAPuRCvaqn2xMl0n2yuK7TnAKuegQkqhODMJ8Wub+/n6YGCAASgOmAmb4ThBAIdPr7LXT6m4EBd7Qc6EsYAQcCnjaBABd4pP/V9lXLrhiM3tXQPteeJKVDBVutVlMnVo0P9WF+jgSlDFpxWrXNPFT11K9HohSBnQQIdnHW3lb+3dP1QfSSpNPrkfP337t602kygkrATvfIkNG5u6OXDkofJYz+Kc44JOnGhQMZMm4EQlWPf1DUGTOCAK6DWMI6uP51upgAwWsHCFV9UOaAwO2qTtHTP/O9fft2WjhIkHB+fl6bzWY6W4D6cHNzs6UPZG5UDmd0CEo7cMd3Tp/RTqfpKR64pTRow5nfZrOZ7ncQoPyUP/+YKE1RyLYrLdp3XffxMRdsfEv5x2AgRUv8vBQE+OfEBpAJ6NYIpGjBkaIrSKpLkmRg3Hh7Os5O+LNUPH9OgMCZh1F5HVTNRXOpfp6WA6tU9+QsEgJ+ybJEn93opoGcIrWujd3oERT6+gG9RqcLJtqf1+ccbzKufLG8BDgOfn26LG1/ZR29jRyUd+LtSsf/2kBAp2O81ukvgQFtLM8Q0D8Q6qXf9YdER0dHdXZ2trUSn9sPla6zOr5OZc4Od3bPnbjbegmdPt+VdvccAzXmQQbDDzZKzJ73DxlfpcnpbYIm9tm31t1/BAZGUZN/X4Jq3BmuVqstEEAl9akBMgJu3Kq2qSNed+NGA5Hmk5K4Q+T8Jp8fMQUpHZalU1CXDmEvlcSeJAfhiuiAgFFxcngvQbryzum01z0Bos6JEsQlg6HfpGfUN93LuVk6Xu9bZ6T42Z2o358iSl13Ud4Ct56efqcRJbUqA616dCDU7U7qF9btNQGBJAkc6PPITvsUbDpwyMGDDhzSu0DE+fl5XV9fT4BANlt9qfMuSKOnOrjDlHROe2T/qEsOSpmX8uvYO+k0pzH8b4t9F0GqW+oHjWG3ESOb80/1+avBQKdIrmSj9y5Nn8dKp16Npgb0nugl7/wULVHxRoNoVBfPww2QKN1RdJnKlEQRFAcAAUkylimNxCbM5TtiE2hYlgLCfZekAwn5+xwgn6Vx8fZhH6j9ExjQnKv62Vcre7TDZ7tdB34vxccIx6qivRFgdFDrwIQLdf1wGKVNtsABA8ul9vK29DZ+TTIaWyNbne51QJD+GZVsz2q1mgDBarWaQIEWHn7+/HnrYCIBQs2xV23bareRWmPAvHkP+3auLVySLig9gk8H9g5kBQT8T+q8bckuJOFUoMa4gAHr9z10+B8zAzRucxFTej6l5UAgMQCknPygC87bqzF9EZ2DAFL8IyTn7IGXmfco3TQVQQfh81dkRagAaS2E6ktA0O05n4vOaaCp7Cwv22bOqPg2nZdkhLs6+XeCPBpItpvrqEdV1OWuLA5wBQRSP8/R5ykacsDhztqf57vu97HhZXDnzOvpEJoESlXfbpuvR3B6dzD+M8pcwEYQ0LEBVU/PYeFUju5P0wK0Iff393V1dfVkt1fqR4lvK2S52a++a0H648C1s10Oegg8fJuhT4WlKQK2s8qnZ1K+Gp/Ki23ogOBbAoOdwUBSno7G4GDU+wilssMIBBIY8AZivgQAWgnqzm00v0Sl9ajDnZoPomQovf38ABYadA4adx6uwHQ+3PmQGJGk9N4//pnSUcqevkeMdIK7TlnsiyTQmgxJoh0TwNW7dNtPcOtAhu9uqXr6nwOpTyUsW2K/+PtqtYrRS6eHo/71bbecq9XzDgRch31Blm8/pMH29mD5XiM7sCT44vjsbDavc52AqP8EBnSegBYOKh3m1Y0fXwemtKu2QahH6mRVWTcCRWdKffwR4HiQRZub2tF1n8Fnuj/t8OF4SHaaY8b9HRmZb6nHi8GAo8kuIpYko+SO39+5UPDNmzcTreRgwFESxekjX53pho+O2AGDg4QEBlJ7dIDIlVdKUrX9Ry4sY0qfZazaPqyFBtNRKQeSp6EyJoUdSRdlUDdYj5ci7K+qfjosGQeK2sLnXzmnenl5WZeXl9MCLa594SEufFVtRzxzdfEysW7eR842EMC6Hs6xTcqfdCrLLl11IMCI0xkFpjcHfFUfRXGvFRAskRR4uQ2X3T07O5t2ClxcXEwLA6seHaAODfr8+fNEa+vEvvX68RCejx8/1ufPn+vq6mp61z8XHh39veiQAQ11JQFMggmWXc+INdPzfn8KJiU+lpQu9YwgQuOiWzCYFvwSdDs7nQBaCny/h/4uBgNeEDrxzgFKRiDCoybfIcDFKV0HJgfmztHLRZS1Wq2mSKuLgI+O+nmeTpzSoqIlB8p25jWKTzt0zkf1Ss/ruaRMVFIHdKNyeRn0PtKLlySdIe3ArZ6h8eECKu7h5r7ti4uLiR2QQf38+XN9+vSpPn/+XFWPkZm3b9X2IlgZMIJBF95fte1wVQeJR1Jzukodk8NXOVyHfTtW2k8+iqrIALiedQEJAdxrBwfUU6fu2ZfcAaAthZeXl0/ObhEYuLq6quPj4/ry5ctE+4uRfXh4mA4g+vz589apfDc3NxNrq7UGaZoo6bfePcKXw2Vd6JQdCCRdqMq7quTsmafSq9pes6P0nBE4Ojqq+/v7rbzJEqc+0/bDxMil+/+JDu8MBpICdVGRCqh3N6SulAQDNJo+b5UaQ87ao4aq7ZX4CQky2vZnOxk5Ur/PadSO5vL2XCJqU+bPa142B0hJCKQ6YKfPI+Cn/Eb68RLEdTgBgwQK+DwBACnYt2/f1q+//lr/9V//Vb/99tvW0a4ypn/++efW3KoMrdOxvi6m6m+d4qEsKYImU5T0owPvI31lJEQjLUDg1Cydv+sJGRBGeinv9Dzr432XAoWXLt4mDk6THa/anpvmCYT83wHZri9fvtTt7W19+vSpNpu/zxdQwCZb9/DwsHU8rw7j0UI7sTVkSL1Pnfkh8+t6yGf0LvuTwEASB5hKR2BAZWVaVbUV9eu6M2Kyl67nDEYTI5lYAb2+JZBdDAY8Ku/oQafsvELeIURpnCLQb6kBlGbVU0PmDp2DXUrqq2NZdp8ySJIankaYnc60SGdJaND5nsQHrtdf6XUGzg20p+3XO3Dn9yYjnliZOYC1jzICAu5YUuRFpyx2QAe5vH37tt6/f1+///57/etf/6p//etf9f79+61ISZFX1WObcr62M2pV2+CW9KvK47rYAUXWYcSKULhmxxe4Egyz/J1+8B4HBOybji3QZ9aHz9IovzRQsDRwGAEB2V63067TbGc5+vX678WA3DJY9Whr+B8FtNEqkwMV9S11Xr979N3Vk1NavNZNDyS/wWiev7M8PGmR40rsCqcOuP2Xdde/LyqYJftMW+7txWvfSmcXgwFVPNEVHeXsRsQXjDhdk+hHiZRrRKvQmHWrkbnIhdGJOiOBDM+Dn3m/gwB/3g1hF1Gl62ROEpvBPJJRn+sjfu8YgcQEddFcAh4vzdBKOjCaAAF1N7WtAIH++e3Dhw/122+/1W+//VYfPnzYAgPr9bouLi6erLgWGLi9vd1y6upzOt5k5AgC3JHOgWAZ6/X6cbUzaUy/P/U9x6MDY4KEUdTeBQnMoysD66zvL1U352QJgO30twNQAgACpLLldMRV9WQxX4puJewnt9UUd6p6rrOZeh+BAY4dB82qe4rm6UNYdq2f4HbZ1J6y5/wPA47NBAT8lez01+ryzmAgdaIXxr+rgbqtgRI3KDJquqa5KRoNGkB2Jp1R1eO57SwL83eD1jnPUV2ZTifp925QsK1J35Ey1W/eZqn8rlx8lm2ZjKtHgglo0Og6I/PSDO7I6Y+iEjcSEo8ozs/P6927d9M/v/3yyy/17t27ury8rLOzs4lmJEWrdDRfe319vZVPisJ9ZbXSkNFxXez0Sukr2udvmtekcFx2ANrz1DudwByzlIzjiLFKz9GWvCTp9NB/X6q/yRZIp7xPHFxS93mf2t/tLts+7QCoepxK8mlL2vUU9KR2INhJ4zP9j0CyW6yr74TQNf01sz6zzQga6Ke0KJhtN+rXub7/GlkMBvSHEpRu8FAJGdFyLQAdG8WpmaptNEggwGcIAvSdqJHIsNvb7fM6MkyOFL2uBBBuZD3C8ajKnbLqo2upDclusG06JJqMr5ed9/lWmRQ1SBIj4O35vZT3e0kyos6KVD0FjB1Ylj7K4KxWfx/McnFxMf0nPFdta52M7uM4keG4vr6ujx8/blGVvrWUn12HHQSz3j4FxXFEIOBMl9JlZOOUq7ctaWoHG4lh66J8b/8EUJf2/UsDBUnYJnz3e2hf3EnyIB06em5xpeNM+ei3k5OTJ3ZbaWgdgfTF+1M64elWPdXBuSBuBIo6ptPBhKYB9CJwoI7f3d3Fs164RkLtwOkV5k8g1AUm3wrM7rRmQDJC23pn43UnBqboyQc9aUmdyOSO2Q1eR8u4cecgkKGjY6djTVFOcqQs0wgQUHE6ak5Cg8nFKVww6XuzO4opOTUad0fDjqiTjFiIJRHJvkuaR6WMxoKAgAweF0/JqFxcXEz7uXlKm8aO+lurtz9+/Li13SsBap828Pr4/SM2K4kDX45XvXsUp3ahPuu7ALLud5DNtB2ksL35e/fdJUV/rwEQSObGndsh1927u7sthyN7QzAwCgzdZsuXcEHh/f19nE6oegQfvn3P7Rrr6mViJM6yjew59ZTBLF/662b3G7SpvmVSbUCGV+9+kJOe975yEPwt9Hen3QSp4RJSp6N1EED0maYFktOtenRUbly6yMfRamfAOZ9Ew8pojoPDo6s5QMD8HBmzrbytPT3lRRDAP8boTmNj/R10sF5eTm+3ZGw7BXwthjRFTh2ocZ11WlN9pQNa9J/n0metJSAroHSOjo4mw8NzNxjNaXwlwCq9SKxaVZ6ec+PtztuddYpkEqPGAIHBgI/tUXt21/Wd7yNhHRJgX5rOPsso+q162h++CFBb4UR3V23/lwRtziia1m+cctB4cDDgDt7/AMhtt+uvykSm1x2vtwP1IKWfgIDazFkvjXkPAlQ/6b2fm6M1GJxaYDnZLl3glj4vlcVgIAGBFPExgk1TA6MIkRVNtDwHOiOPzkmzg/WcR0sqr6ZBOEWhznRD6VHRHPLuFI+/J1DBtlTnkqkQauegTP3i9GxnMN0JeHt6P3h5/bfXxgr4YqH07iBAfShAQFBwc3MzGcOq2pqDVF/rJSPhUYZHMDQaDpQTyO5AgOtqWnyltuCYShGYMw8Eu741KwnL1AGC9O51TMbRxx0jYF57KTIKTtJ9BLu+sLuqtmwOAZ7AAG2whPqotNMZE2QXZGs9qFytVk+O+GUefKeOM7rWCbQOVKm/I/+WFh8qDdlerRPgS4Cfuyl8vGpN0Hq93tqaqbZy5iWxAh7gfa2+LgYDydEk+lSIJ7ECCb1JiMyTc5Fx43Uphy/4SPOgnh6FCLCq6vT0dOponn7okYve3Zkn4+R183+a61gGR5tUej+r25/pwBcHwUg6RescC+vs5XkpYCAB3TlQ49cYifMejhMaExkU6ouMo0DD58+fp5PctGebz7CvFcmQ1VqttqfBXFK0nX5j21TVVmREAMR2UTsQ2Pr49JXjaay7oeucfqpjcvLp95TuPsrS8TRyHu7o3OlVbS9IJuXNNQN00gQALAN3FpF9TVO+7CuOFdY7TV2mMipvAWUfZ56vB0Ruz2R3Nf6UPo9l5sFKZD7UPkyPzHRiOVKAtjTA2hUYfBUYSIbHz3omveKnRHkn8F3Kp2sdLT9XSRpjdZrKz3eP/Pi8DPLp6enWyVFLG9ijJjdIPGXLtznSYHq9OEAJgtzIujFmGkujJW/LNJA8SmQaLNu+G1mPltL8XHpmdA9p2HSsNqMssQaiDG9uburq6qqurq7qr7/+qv/3//5f/fnnn/X58+e6vb3dOqktCQF2+u7irADnMrkYVMY1OXKBA3/Xb95O1F9OIwrISG+Yv4vr4lw9/ZkkL0FfR5ICAL5ooxnxjpgfsltyiH5aoHS76lH3GYl3gR7tEW0MbZgHpB5Fq4w+Xcp0WRYvB5mP7jn5BN6jtri7u6ubm5uJJRA4EKPnNj3ZGC+XMxddsJIA1K7yVWBAFVGHpHUB7mTppAgAEjggIOiUQzIyxDRCiX7iin4ats1mUycnJ1vMACOaTsnYUapHomj1mXO4BAWdjBwxFW3OwXPOydNO97Mt52RJ5LaPkgYZB6uka/sRWODqYy4SVPrcISC9EBj4/Plz/fXXX/Wf//yn/vOf/9Sff/5Znz59moxOMmCj+tEY7dKnpIWlr9JVj/Y5vl33vZ2o9xoPBAJVf08hiOlIkZqPbR9nI/vRGc19BgIjXeveqc8ezHEKLDkjOlrOg3MBYNX2fDt3YbFfPIDRfaN+YVlT8KT7HQh4H+qaA0uvJ30drwkMOXjwtQ8CSem0RZe5wCzVI/X/twCvi8GAbxNz5OU7Beh0R07AqZvECnAQuxIIjXYUT9dIKfqWkyR1Q3AjxR0pWjeY/BkODCm5DKLK4IPahW2boqFk/PQcAQHbaZeoqkP6+2xIR+JAINWvA6M0stKpjkEjvfnly5fp/weOjo6mUwV5/a+//qo//vij/vjjj/r48WNdXV3V7e1tPD8gya6RMnVBwjyc6lQerLfu7fTfwanap+pxOkFpkKZWWRwEONhgRDoHRF6qvi4R6jB10acDKOw3HXudAIHAgB8xrTUyvoXOy1VVT8aNdN/H3lwg4SAg9TnBiXTJg7uuHbizjNOzCRhxizenUKRrDpaZ5qgcHnzwlcZC+j6SnRYQpuj3y5cv017Lqm3GIDkzIriExvQ789Tn1WqbovRpAzcWft2NtqPDbm7GrxHljtpKn/mu8iUDrTZ1gMLfO2E7OjWstvMo18usdNJ1H1zJALPuc4N3nyUNNomPgRRxMdKSkPGSEbm7u5u2Ch4dHdXt7e3WgUM6WOjjx4/16dOnurq6quvr62mKQE6SrNuSqbEEZFMb8F1p+jaxUVuxfTpwzwiRTN16vZ4WfokV8PnhNGaTjPpviRF9DYAhgdw0Rjlt5ZGzb/Hjehe2EW27O2eWRUL22MvYAdkU+PG9C6Sogz41zGkNPkswwHVb6/V6AgEERjzAiAGfl58AQ206GosdIPB79H1Xnd15NwEjeBXm/v5+Gsxc6JOchC9GcUTHznIHxTn7ZOjcACYnmBpQ+dFgcw7XqSOnIlM7+eeRcxyhZzqa9JyDAF/ZqzaR0o/SSWUaRXSdQWEaL9GIuq4knemirDS1ID26ubl5slBI+nZ9fT2dHaA0FYFpjYCMjesjd8NwFbX0X/cuWbHPOlblRaisnxwH80vP0LDzHrbbqC841efllXQAfOTkR/ZgX2VXsM16ehQuoZP3HVRksWhrvB09OJNuq++8Tb0vfPo2BS+dTUllkRMmQJatcyDAsdwBAgFSbu3mtmGCAQa1TIftwt0T3HrofebtlQDBt9DXr9pamAZihzKpCFQkUi3ecKOK6Zklg4FKzwHvSFRlZdm0IESoj0aWnZQMzhwSTg6FL6fwdL+jZAcCBAM+yDabzUTDenv6564uCeSlNndmJDEI+ySjvul+83t87lV9J0ep40alX9xieHV1VZeXl3V+fj6dJ6B0xCJcX19Pc5F+8MrR0d/nEKxWqyfR22r1+I9oVbUFFCiuW8lZdyBYhlFG1iM7z8eBlE8rsH7JyEtkB5IT7wCA97czKSPg8JLEnQX7kNu8qzIbUPXYH2nxt3RD39mXBLpKxx0xgz7aK98e2wn9gPdnov6doWB0z+kpLzd1jpG7sx/Mx++lr2Bb836fUpiTXQDBUt1dDAYoHkmuVqvJ2MmACZXReaQpga7wzgroMw1HmvcZAQmncbUmgGWTodYeUVI+XVn5PgcCOkfiwCWh7cSapPJ0aJqok78lus3zSUbSXy4arAKF+25QU4Q4urdra9XZAQEBG1dk39zcTCcQaqEhgQV1kgcW+W6Uqv60RDpr9Te3W+lZiTsPP5CL9XH9ciNKcWAuIXuhNkrGsQNkDiiWijueBCxesjhQdaaRTs37kzaY/01DJsrZHp8uoyS7zzGRot6q7R0qEreVLLNf63yO7L8CJQenbEOK20Svu6YSCAgIhATSGdTO6doo2Fzy/BJZDAZSoYnkZeD4hwtdJJrQjxua9Jx+TxGy3qnMbpQJBLjVq+rRWPKAF9KyXXm9XdzhJgDAzxxgPlCZtqNLLwtpr4QSdY3t4bJEMd3ou2L6QEkR1z7JKNpfAgq8nnSsCRC4iC68ubmZGAEeR8xo3xcr+bau0RSQ06JOR/r0ngMB/ieGys0ofm7cdm2Z9Em2xMezp9fVN0Wk/pu+e/TfjZt9E9oEly7g6BjRqqf/c+LPO+vDZ6iDes4BAf0E65BsiEe7TMfr5Gml9Wbpmr4zzcRupLJ6ICz77YDKAUnVox3o6uHi7ZP877fSz53AQFJAdoKUwyvXnTGghqDDcEfPPCRdtJAMhw9mBwSKjsQudHS7FITAwxWU5eeAcaVLyNevJ0Vn3VkuvmvgjugmBwSsVwf6vD2p5EsUdp8l9UmKFHmvRyVVT0Ebjag+0xjoPl2/vb19cl5H1WO0zENeZIDTmEp1Yj1o6JQ/1/vQcfDlRll67ocbeR7efhLXF3feXaTKtKjHrptJX5nOEgCYbMg+S1cnj9hdbz2gko4x0qXOn5ycbO386py561myHXqG6Xtabueqtv2K73ZzO+Z1ZYQuXadN9XU9BL4S6pKeUduxDm6zNV7kG5JudTo7AgAjG7xE/hEzwAIQFUmJUsFSusmBuoIxv6ple6STYfeBMVJaV9Zk3FJ+Tll2A0X3evkoqZ7J+JMV8DKwXqMyJ0XvgFWnrJ3sozHtHP0IGLhBnXN6Pq0lJ+pnvT88PDz5N0+yZbrHjarSZlpuvDpHKlHfU4eSYaawbAISut49l2jjUVTE+5K406Bx7V4e1UmvOyeyr5J0t7sv6S+fcfAlh6Z+JRio2p5ulRMkq+BgS9fcTzCCZtqp7R2IpvGpYIz3pbQS89oBGgaJrEfnpDvh8x6Ise1THiN261vKzmBABdJ7Qt7+jBp2iUHifZ3SSnR/NzA6RNnVLxn35KhVb5/H4v2pPnqua4ORLFEAN+oc5KkPkjF19P41CPOf1OFHSRdBjSKT9CIY431VOTr2tSca7NqXncAA7/Mojr/TeKS5987I+mefrhKw8DHE9Fjnzhh3IMHHOalrZ+TSsz7WRkCAxt0dSgpMVM+l43TfpAOCqmdyTBICA9dHpp30Svrs9zsY0HUXjkVv/5F9VnR+cnIy7YpIwLkDgJzvT+ysjynfYdEFb9Q/jhWeZkiA5IDpR9jOnacJXJLj4CBesnAsOVBdT4PT82caDjC6+R81NCMZv5/vKV8qKhGeK3I3rdGl6+l00bmLU/26lwvF5trR0Wgy5iPAlgys5/Hc0jmk0Yu0ufTCj5B2xqkTbq+lwVU0Jr3kqm/XN58HdYOUwICDBx8rXfukscJ00rjX9xGD5+xc1fahYn4SIZ/zCL/7zPHnQIBjtvvMeu6LLA0ofEw7eEvt6g7QgQD1QL87g+o0/KiMzIvgIAVmvNdt0NHR0bTwVuNDeuIgmvV30Ks6KQ1d4zHMXPnv45dtQT31ctDOc92as3l8fU3guIveftVugi5DGUwZMq6MJs35LYWDl4bZHTwHPxGerquxE2J0oEDj4srO3zuQ4+LKnZAwr9EZcCFXkuSYfWA4AEiItHP6bmC8nJ7HPonXJQEZAgGuOPbjW91R0qgmJ6xrnPuXYVBkU1VbLMFm87gmhSyOxpZ0mvucqRve/qmvvD7sN+p1ciT6zcdfSsOBQNrWxbwcALjDTmCcdXQjzD7wtumYtJckbO9u7DmrmRgh2kkHVu7oKD6eUuCT7APtsEfSfr+PTy8zDwpKYyDperLdm81m66+IaR+5jZfXvS/4m+rG62rHBDY8vaWgYFfZiRnwweENKxBwdnb2ZJsUjV/V00UVKRp1tEjpkFIXmREUEPFSOjrVHUOiRGmcWcY0CKncqQ40qCyz2s0NKxFsSjdFOiyvAwFXRDfsXq6E4LsB8dyyJKpKQIAgN52A6Wl1dU3t5AuOXEi3en95Woxu3Eh3ebjBTvd19VEbONh1YKVyOQMhIMB0mDaFaxN4D/PuqGzdw3eWgXqu514DIHBWQDrMLdXc21/V66hs5misd3acztoDjGTnpRcS71eOT/3Xh7Y/0o7RiY+my7y9uDhyvV5vnTfDMwLo0BMD4TrFtTVkFaSTPMHQy5p081vKzsxANzhkNPmHLGdnZ5PS0WFRSVx5EtpMTtUN7+gPflyUD/9jWh2hDk8dkf5zgU6RzEdCy2qnuY4ksEqo1RVVdWL9HPVWbe8rTyDMEa7Tdh41Ewwxekh57LPQ+aeX6pmOTJV00S/T17X0XaJ2X61W0wllCfgmI0+n50yClye1QRLl7ZEXy1v1qFu+qjul3wF5b0PmIyDgZyN4vVR3lk0GV/d45O82bcTi7aN4e7p9pYMly6XffEthAkZsS0kHHnSf2/WRjlVtH9TDICuVSzp5enpa5+fndX5+Pm3Nle7zHA+dz8Hps6699Jnsq7bzdjsK3H+xjdTuPm68TRMz4Ol07f0tZDEY8DkjDigqGP+ZTYitquJWKDkfNvwIFLAs7qh9vpUN5wolZfB8uj+Y4GDyf2VUPn7QhKPjZLA42Phbane/14UGrYvQ9N0HpqNbH8g0nI7cHRB1e4m/B5LdVTrnxGsJ9PhnlxTZuBP3UyWdVaKB4/M8LKirE41NOra3e9bFDZbS52/KzyN0shuMnFIk2QEB1juVy1kAlkfi6zg8LY1TB6pK3x3OS5MOaFU9ZRy9Latqy4Z6ul1wk/SL4Eu2we+jT0nO1KfanFWSzyEg0BkdKoO266reOp9DdrADKfRVPNODhyOxbEmohwwoOHa4Fd/BAG2I+7TvoZs7g4GqpwrH0/z4EktQtU0VEgzIgSrdZFhdEjjgQKYkp5c6VI7MO8JBBzuWbeLt44pNI0Pj75GJ17lD/V6mpNRUICpcoltZ5gTAUr7MI72SYd8n8fL6bxSPcGicUlvxd08rMUx+tgDzTIbYjYOueSTvUW93jel2eTEqTzrE5x4eHrZOjuvKkdptpGvKJ0Vbru/OkqgOTtUmwKz3lwIKku1LNqx7VkL2hWl2Dk+SbBRpcF1nH7l9ZDrJ3ySQov6Vvzk9PZ2mC9S3vrgvtUv6rLL7AXR00Ol5fWcg6P6CY4cBpC8iVB2ZX9fX/1R2AgNdhKh5VEY/fliJnuO8yvHx8dZ+a+aVnNsScMBn3BhzbiZFLKTISVl5x49kzpm7dIBAL65tcCftxsyBC++jYXNj6HkmEOSGkQOGjicZTzcszyFu7OdeEu8L0avSoy6vbo4zXRN45nMcJ6kvEtggsOgoddXJ+1GS6sSy05B31KdAwGbzOFfsUV2nCx7NJ1YgARblz/ZR/ThNwrQ6Z8AyprH1nLJ0DHUOw6lptzmyD3RAnZ6THXUQO2dXqH/u9JQvnZ8DAk/PbbWeTX7J1+h4Ogwa9R8id3d3Txy0P8/fCQSqamuNBnVUz6QpWg8gfervW9vTxWBAq5x9IEkR6PTd+UhRTk5Otpyto3IqSBr87jAlLAujMpZF93F+jOXU7x2SdiPlTngOObu4c3Jl9J0OrKcrGsuTlNXbOCF/5p3KmRSPxmNJFPJcBtXbgp/nwEDVU2ORoklPvwOl1Et/Tn82xHaterrwU+LTAp4uxwINlvJwfU7i7BeNUMeMpMW5nla65jpa9bi9UNcZUSVn5XahAzeUZFNoy54byO4qHRBg9ElHS+BZ9ThVoFeaCuBY8bVNst+6j3qoa563Oz3aVu8X2j85bL1UlgSkE4tZtb0oW7aXlH36ozpv2zTVwfyc1VqtVlsLBRMQ8LbmOP4eshgM0JEzQk0GLlWGlKEQmlPujnZGgKBzwsnQqkxJHBB4WlL2FJVXZeOzlKlI+amsVGi2hT/vUYt/Z1v4eQNLHCHbwUFTigr9GQ6yfTGoqc7ddIfuH0mi7F2o73Nlc+BBcVaLhlRlkXiklwD0CMQmY+bRte7xrVuuCw6IuvR1nfvbyehVPR5o4/qX6kPj6ePHgTDL67qxL8zA1wptk5yP2tQdJ3+jE3f7RQbYddJ9wKhMAg98uaNOdvDo6GgrcldASpDs678SYHa7zW2JWjjI36mXDI7T9m4CWz6j8egnN3qbpTZxO/2tdHMxGDg9PZ2UiAv/PLpg56VBW/X0wAevXAcIaNDStaptpfdn9bsrF1/K37fbJAfIPL0tOuPCTnW06HV3B+oDwQ2gR0i6hwvXVAayAx1A8LL7YGcZO2ZgXwBAVQ8Ckj76NadEHUBUjYFltx2RY0VpdI6NQt2ggSM4SCummadfd11LQKkDpIl+TU6+A17ucLg7gXvFaUhZDrcNqa4Utw1e7tSm+yyp/BR3emSdfBuqnCxBUBovtCUOBvQs9drLQj/iAJP3MOp2cCbdoy3VroKqerKtUMK1I2oDMifr9XrrD8GYP8cAy0ZRO3kQQP2Vbe7+vIgMiF6dPn8LWQwGzs/PJ9pEnc5ogEpG2oaro7uDFHzwsbGTw0/Up0dTbpg4p5UiWp/b1PdkNNkhPrBYDtaP9WE+/plIUvemBVjO0vDlyqf7mU4yxqQH3dF0YID9w/p3TvE5JAGtJaCAkQ8PHRqBgBT9dyCBY0b6mrbIdu2Y2loGin1V9XQ7agLFet7L659ZL+qB1lMwnaOj7bMZ/LAmb7cUYcqW6HjZji1wYDAymp6/2x+ChX1nBkbjrAMF1Asfu6q3Ozp3/Pzs+k3nmZguAj2Bh7u7uzo5Odl6zn2G+iOxrxpLSkeAuNsWyOcIirRokEDEQQ0ZE6XFsev676yK0tRzXi5vd7cpS8X9xkh2YgYkVJ5R5E1HWbV93CKRKAtete24E9pnhyj/NL/KAc95TFcmSYoUaOBYFtJD/I2dOIookhGmIXbjSWEbc96JA40Ax+vBdkxTB67k7lhYB1fShG4Tcn4u8f5NoGAOIDjKVzodpef3cnywLxWR+fa4BCI4BtzwcnzS4JLNc5CrNOUE3HhJvB8duCYwkKZIki55mxFosk4eIbqDcNDX6YGep56OdGMfxcvV1T056qpHSpz2g6xhF7g5EFC6Se8daCTdZD87MKPuJjCgvOXEtaNA9/EgH93r4sCcY9TvSwGW6sp2ciAs4XowMQO0M15Opp92gbnsAgAoO+0mEOVPSlAd1EVNCRxwUBP9JAfNhvDoXL9r5XS31YnoS+XzP9FwcVSrdFypfdvKXFpEmCo7nZAUxIEAUTLntJwVkNDJk15Kjr4zgEvah5IirH2RZBj9nb9/rfFnO3N8JAe+a7kp1O37+/snhwKRpUs6kgAa03SwmspF8J7KSZ1m+uk+OmQHTl4nHweJBdD44a4Kr6fu62SfQcAu4rpPkNX1r9pXdpPz43TcVeP1FvwtMckMRKSrPkVL4f1kg3RdOiGwkmwjbSn9kAPlquyAXTwA4DUfA5vNZst/EjQnJop+zgPO1P5JlurwzucMkPpQQeRcdeIgV5dW1RMDlIwhG2ykBF4mRumdEqnzVWZ2AMulzywzB4uuJRDQ1cnLwDxpTNm2CayojAQCzJf5S3GkXET8Pig6ZNn1gdfNowE3LikKfS4ZgZ4EgpIekUFxcOUOX+LAz9udRsE/u3gbKqpwPZCT9HfXb5YxldvBzcjgdW3t7ZfyVh24LoB6TNrWx18HMgQIXAe7wOMlSOck5yTpuj6PzqRQZO1lSEDCmTN/hs+6zXL9VBlp08kOePmo9wQDuqerV5q6pj/RvWlqgo7egzf/Xel4n3j7uSR77S+2L9Pe1d7u9N8Eilq94AIHOg1K1EhC+KP002eKU4HsvKptqrEzpgQCjN6IIEk/egeScu2MEtFdBzJYRncM3nZE1ClNb1c6LUfSaU7aByCNxQh98rcOEPCe5zLAXq85p+/GUqJ6sr0cNHr/8rmubLrXpx+6Z9gXbFe+++cU9YzSdbDDz2kMdREmxyzHC4VrVdzAMuLzf43zHQzdeGc5vP/0PtL9lyhJf9M9ZE18nZXa3sEAWQPmo/tpv5Le0W47QGV6/A8FMhMUps1V//RVrtesV9pp4DrgrDR1iiwun+U9Xt6RT0i2yf2Tj+lOdgUEO4MBfZbIIGiBlf4wwucJkxEi+nNFTPcqP3YelTkhVUZaXf6pjkmIPp2m9PwTaKnadgxEnyyPl+P4+HiKANOA8AHpyJllIDvBMqZ8R0BAz9PI+iCgs9wHw7oEFHhbJJ1wx8hrbH86PabH576mDsm4evS7FHwlYzUCLqn86f7UZhozyof10T1+jeONxnsEBOamJTrw5zrxtX30IyX1VwdkfQymwM53oJBd5J/MiT5nm2mhrcSdKK+7zeB4Ulpim1erx1MEuylZHw8sX2qzZL+7vpfukkHxg4wcGCdQ5U7dgXzno1LZR6zA18pOhw5V5cjHTyD0Q4gkHgVtNo/zJ2nO3yWhfF1PDemUVYq4fJB0Rs47gQrpBikZo6SUbCMOCo+6OqPmg9OZEUqisL3uzhokh0PxQeTIWIZqVIcfIe7YO1CQ+mAX5zCqI4EC+4ZgQt8ZIetZgoBkqKq2+6gDjIkZSvcpX6d+3dAlQOn5s1xJTxMQdWaDICCNq2SAR6Jy8J3Ceu2TdM5tVM7OIcupVdVW9E+nJUcsYVDCdKSfsuleXgZtHgSxjAIB/PdbjR2xQ64Lzj7SyXb9SkDA8aZ6UJ+ceeOY6ICAnu2AAPNm+g7QunFAQEEhkE7fR7IYDHjn0WhyD3UyIDQGaeBX9TSQxI1IKo/f745f15mnS3Kmc9SqAyQqF9FpigxTOUfggPlW1TRflpwMFdLr4e3vAzgpK9Nyao/Ozo2DO4ofLd6WycF3QGC0q6OqN8Q+heJgjA5ewsWkVU/nYGmcfKz4gE9GcJf2d73zxawemSRDyHtluOiAOJZT2bg4sIsIu3HO/H2c+1hLgQT7dd8AwS7ijpIvOjBfb5UYI0bIdIzJ1ui7rx9jWryPuqH/GNAfEOn/bRTJ82+JuV4g1dsZJOqul4N6SNDAtT66d7XaPnnRdSTZSU513d3dbe1yUP1pLyTORPvix28lO00T0Ok7IkoN4iiMf/HrRlifHanzd9JOKR03zHOGItWxqp4YPpapM/5zICaVxQcJJXUyDZenM2IhWHb9niJHrsBVvRO1ldCoO1LVQc8ng/ujhPqZXoktSGh/V0kGgWxPly77Im2z7erId3+mAw+JFfOoRnrgoJJjwR1Exz4pfR9rCUBU1ZbhS1GfnvXdFEvFnZ/Xnfrw0mQEBBJQp/2VJP1nf7IveHhOYg8SGNa5NbI3Wneml/4BV/olR3p7ezuVgVR/YqQ6ACBJAZeXKTFgafwm3WNU//DwULe3t9O5GR5sqdwEJYkVSQCIffY1IGExGBCVLxqHcybKnErGAqf35Fg6p7IkSk8RgIMKT8vT66L0rnzsYK+LlzNRYylCVJpefrVZymtJBJMGAIXto990AEhnTDw9Akb2RwJqzykdICAAcEnlH9XJoyU3pt5nbD8ZIH1WW3IMMZ+Ro/L7R6DOy6324OFhfq8zVszTbYKnvVo9nv/hY5zl5A4atl83prxuHEN6fmRI3THuElD8SKF+dZLGrmyM9C0BPabv/ea/6zn1iduI1Wo1/RGX0mA+ZBc5TdDNyW82m0kn0y4EOvwEIjvbST0kk9YFDN7OSa90TforNkO7Yzjtxe3vbBufGkj292sBAGUxGKDjEhA4OTnZigJJY4wOOkniTAD/xc3RuoTIl9MMND5Oh7nhmkP8rmiJHZByJkXgc127UoHp8D2PtINB4hFkaicfvC5Kgydm8X5/KW2P8hIwe05j2g3iDggsLavftyR6ZPpsNwcBCQiksTRXXjnctOi1i5KS8U8gIYH1qopldX0my0gGQuVhWanrrne+3sh1z9snpcO6e7s6K7JPsgRge0Scdj/RtlT1u7KoG12ANnJYLFPVUycr/XefQjDqJwM6CHCnmECpxMGOXp1D5zNqDwLWFOXree6C8XE4aiMvw666uMu9OzEDNAxcKEgEXfWoHOpIDjB/T8pGNOgO0Slo5cfvNHKJVu9QLp9zNKl0Ka4IqaPc+HuUwrT0kpGj0Mj5YEoK2F13oUHxiNXLm5Q+DRLvs3TPj5TEAjgIcEDgupecI9/9vlFd3QDSEHJMSWjMukW2yTnTINMZjNgB76sEBnzFuNfXmQhGR2QElJbsSccoMB1n8qqe7pBJTESqY1duBwH7Cgaqlhv7BAgULFU9gi+2sfdzB5g7XXcgInGg4NMIukfHT4sBklPlugFPaykQmCuvysCXT3uw7Tj3n+yub4lNZXFwt6SN9VsCQrvKTswAG8sNGCPwhNbVoUmhNpvN1oFAIzomNQKf0+c5Z+hGX8+SjkxKNDKic/klg8221Hffw8s02M6MqPSsAyGCtF3EgQF3fehat3XHB+gSB/k9ZeT0SUWqbmz7NH0wV48USaUy6Tffo+ygdG47ncpLNk3PEphzXHTMgMomSaCaQGYJG8J0mB5ZtrTl1cs0mgbswFK3ONHFDa8zA0uA9Y+QJWwA79W76qCXj121nUfaErcF1OsUEXs+Xhamy3Q8EBIAoH0WGOh2lnj9Ux0k6TycxMBSB9z5UveSbyBYcD/a6ZXbn84n/lMAQNkJDHhlpBha7UknyoHKgqtypAn1jKSLVkbCxkvINt3vToGIkNSsl+VrDAPBE9PqouaEEh09J+TrA8pBkX/vnLlLooK9Dk47ev2eGwykbUAEAg7WvsbpUejs5wABjVGKhjvDpjQEyhPNWvUIcpnfaFxR/zrgkiI6lo3gYylTldqPoEHjlOCCDttZgc55OvOjNhLoJTPwnLr7teL1dgckB9WBQ9plHxMEyB4oMS8CAS9L1TYDw0CSZdH4lLijlnRbFVVu1ssda7KpKR/qtY/XEXOXWNU0pl3S+POXg7d/Ag52BgOiO/wfyny+WAfliDWg8+cCESqJ0zJO21Q9XQXtFfeoput8fpcBdUffLU5R2hRXEF5zp+IDIxlJR4b6zDwckXLdxGr19P/ImbbXgw5Ez7HvGGF6lOGGJPUb6/SjxYGAv/w39qWDVh9s3ndu+Ag22acUj46Ydsf0uIOWHmtcsSwat1oVzSjc83QGILUVwQfbhuWjU6UkfUz9xXrqOaWZxlrH2HVAwD8z/QQIvgYM7ou4/fSgIQGprp90jdPDKQ+yWAQdnlZi5Fy3CSrIlFHXqrYXVNJxV9XEmrm+ui4RBJDWZz5VT9d6sU4e2DK4JAgYtbmXP9kmr/Oo35fIYjBAqkaO/v7+fmvFOQuYoioZq5OTkycLEB2FefSaHLIrsSvvCNG6cXMHmZw9313YSckZeLuk51L6yWlJ1GbHx8eTEXNAlYAGB6uje/1etR0pcdWxb3HRMyMQ8JyRlbdfAmauq84MpPJ3kS6NEQFpAoMso6dLQ0Dn6A6bgJbl1phITIiXjeIRCduQQIBTLGxHjUuybUyni9a9PWgcFXwQmDoIdZtBIMbrKpODGBpl9qXafl8ktR+vdb87O+C/8RrHu49nB8/yDbIV7J+RvayqrV0DamfqqnTA/YTefYqNaUtcd5mexNlgn+N3RtfblPk6e8U8HLSm55mO7nFWz32Wl+1rZDEYuLu7iw6SSJEOndQKFwmp809PTydDQidMZfBB6I2Y2AN1+Egh/L2qthSA6M3RZIoEZeAc1bkQYc4BAEew3R9AcVAkIJAGM6N9/p6QO8uhOnC3SGJu2EcjA/WjxJ3kknLwPjqlDgCkvme/KDJ3Q+rPJCPRgW1+ZjvTGJNV8DHAqKuri+upAysBe40B7qohgHG2ivm4bhDIuDNgO6l+GrM+5+3TJqovFzImwOWn8aX891V8zPm7MwO67jbPwYPbQ7f96ns6Qqbpuug668CbrEGy+wQdaYogldm3LBK4sl2cFWAbVuWzDCTu0Dt74c+7/vtum7Te7lsDgsVg4ObmZotmZIeLIajaRm5E4KogByinFvzlTkhpy6C4AWWUkxy+X3ejzRWqfiqUO2+Wyzu/czQ0XF26bCulReOrtuMgosPxBZsdM0ADmmh+idN2ifb1tnTD4u/PIaM+4WeCUZe56YAuH40VjR06N2cKujZaEmmpD92Reb/SwEgHu8hE4vquNPQ/JP4Pm/x/9s5QunNgPZlfB0w8L0VO3KXgYCD1rzMj+syTPZcCyB8pu4Lr5NiTExqJ29FkCzT29Z5Wzjsj5WAl6Q3ZH1+RL3smXWbAUvV0EWnqUwKBtBAwtQ3tbPpNQhvugZfbet0v8KLvzoB8D31cDAZ0alL657CHh4d45oAbIXa+7jk6OtpiE3wBiUtS6HQfFVZGzylUlUGnWgkI0KCqAz0SkwNmJ45QoJeT85Jd1OEDj0qhNBXRrNfr9pAgCelQRlNp0UsCTYzslJbuVf0JBhPd+lzSOdyErHdJr5NkdKXrcsZKh2XwNp3TL49sPB3ew/TYh0uAbgLVbqTSCvVOCHD4XGIrfHy47rEO3Vjyermh51hy2UcwUJUXCVLPu0CLYL1qWyeq8uLKrg1cTwkG1C+09dR7TjUlsKLr7F/aFgJgpuG7AJx5YLl4v/sf6j3bWEIb50FPYlnpLzR22FcMENU2BKcjMJD84q6yExh48+bNk8MT9Do7O3sSITi6YuOzY9yBuCFLFU6VTchfCItRrqNMrX/QedFkBZLR0GfR91WPaypoeF1xmA4jel2Ts3V2QMpBiovppnbmoJRwsKrefp9Hq8xHyuuDWiLd0LYfInpvjx8tXd7pOuvfGQNv17m8fSon0fM00lwo5/l75MVnE5jo6uiSjAwNkEfbTGMJSPcIkEyWxhM/q0wd6ORnspW6lw4pRWIsi7d/Kvc+igMCXnNwkOynAz4HqUsiUbU1HbvakjQ3bRWBpE8tsB5uT72/pZcEBD5VTWfr406sgnyaAwGP1lm2UTm7dlIZHZB3ba62SVMrzNv7/2tkZzAg5O6IS8pHNJMclAYnT5XyaYVUWf+enKDnmSIYCRVA0wMCAxwQzD9FKJzT8gWQPuBU97RimShUSsJ8HEl7RNmBpuS0yAikAeBtRQZIixVpaKTQ9/f305nhZBG6vnoOcf1w8YiUxoARSnKyXf3Y/wQCzMupTz3n4Mwdn4MClj0ZD0YkSRIj1OmfxKNBd/R6pz5wsZbE50k92icAUJqeLvOqqq1pOe9LySjgSONr38SdPoFAqg/tEh2U13EUhboj4zNVteXENpunOwoYTBGEpHz0Wd/JOhP0VT3dkSaRzU1HWrudoiNWHmRjVQ62OW1cYpdUtqXCcd+BsaS3/0QWgwH+qYIjMq64pGJ6hK5CS5ESPc3o3QEA75+rPB2br1itelQagYDb29spok1ou2pbKfRdiJjlYzuxLKMIkwaQKJp5kSFI0TvTpWIyyqrKe3WVN1eKy5g4e0IGRvet1+u6ubmZBhCnk2QMUn//CKERTFF2MoJ859anzhBQOqaAjotMUtXjAtYEBtx5q/+4iDOVQX3kFLlfow7S8HTfvT7UE3fKbtD5uy/4I3vC8eBrYVLauuZl8z6ZY3GYdqcf+yhzgEDXHZjTprkOpYV5Dmi7KQW+0/E6+CMY0TPsO3fUbluVPsvvII7+xv2O9NbHXdqKKCGY9TKyPN52qf1H0tn3EcDr8l4iOx1HLCEVxGsJxVApnVbU73xeFSPiS0bAFYD5Kb10EIueIaXNtQKurFw/kIR7XB09JoVNIEADRd+Vnm9pUV20cCtRtV3+ZBLccDNvbfl0hkfrKsSeODD58uXLBAaOjo6me9frdd3d3UXF/pHifeGR74iN8bITrCa0733JfGlIycr4XGjV0/l9PuORddK3FGWncUidGwEBr4sb1RSRcdw6o+GSAEqXZzfuXeaisaV6+dz6+7VCQNCBGwIltxkEBOy71eqR3XXn736A44i2rruHZU5AgH1KsEP2LgWkVdvnA5BtY5n0TpaUgOn+/v6JDZljBjjGyQIuZQvYd2yTOSCwiywGA8yUFI/+cpIUItEin0mvqj7iIAIbRQQUoTqWTShPacnx397eTq+7u7sttEcj6saNAID5elt556jcXJSYopeqxwUjUiC1+cnJyfQf3wnkeF+xbD7AfJGN+lRt5uwA24r3Kpq7urqa9EALMu/u7urk5GTrL0d/tHRAgIaB4oDW06JxGrW1AwzlJzBAR+x0ZdU26PadNxKnal2fVF8abYLWpMMjZoNzrh27l+hjgp7UXg5sU75sJy9/Am2eRnJCLANp4c6Z7LOwPWh33YmkACDpltpJ7UIQoDxchzjVozTcSRN0eKBI3SHgdQeotCksq6fPdiGzp3oxbZZT7UObnYC3A3P+RpaDQMADbH5OIMZZks4GUXYBCIvBABtIEaGiVP3vdJpP5PPpXfenecju3/sSHSNF8BcN35cvX6aI9fb2tm5uburm5ma65sBlLnpx49UZDr/uiqp73JD795OTkzo7O6vz8/M6OzubdnDQufkAdeClduD0jpRSDl75cLpAzMDNzc30ByJnZ2fT/40LDEgfbm5uJuBwe3v7ZHHpj5QEymikRoOJz7tB9QEtSUCSkf3R0dEE9tJcpIRgoptSY98rHxofH1e+vSk5bqXNtmJaTJ8RXwJVPqfr7cR6JLqazzpzwnQ6IKNnPOr1bbNVT/+MzcfQS5BkL6u2+7prR6/niB1KOkb95vNdJO9Bk+fvINDHiE9j0Nb52E7Bmj67o/W+J+h1J+wO3sew38/72E4Mrv103sSMdGOKsitTsNhCEyFxVTELn9D53HcqKQ1Q90rRr0cXjGY5GLTA7fr6+gkQ6FgBGmwCDM5tMl838F2dPZ9Rm5+cnExO9vz8vC4uLp6AAW8P9hfvId2v6F3tr7zk4Hm0LRVUv11cXNTl5WWdnZ3VarWqq6urCaxcXV1NgOD6+rpOTk720qCmCFC6o0Wefr0qn1Ip6RwfDRWjrlG7OJjwsuo7xxAdH/PzvGhMCTyWRMWd0+FY5Jh2FiFF5olN8Hr6sz7+9Jyn5cDa1yeM5CWBgZGQEfTtdwRjVXnKSNeVln5LDJhETs9teLLjzrh6hO5jIQWYbg+T46RPYHCktlFZpCecDlG7aWqZbZgAg7e9t+8ICBC8eZ8R6KRg52tkMRjwKYBkCJJ0RoOfO0qRjdApkMQNAs8LEMsg2lrRrb77bgantLrIh9EujZKDgaqnkZbySfQQ0xEVLyCglxwylV9CAMHphPV6PTnnz58/T+1LUMN+diMgdkJTFW/fvq23b9/WxcVFHR0d1cXFxQRACAhUhn0xqIwgkqFXW3o0nga5y+ge6oY+09CMHL47M79Hzt7rqfvdeHI3C9P08jId101PM9kBgpPu3iU2Qc9pkTKBewICqR/c2flunkRFe1u+BOkiYbep/J8Z1b8DrVVZRzr77iv+JW7DydowWpYQbHjULlvjeeu3xCC7g/Zzc/S78vFTQ+mc/YA6r5fnLWH5HQTQRnTl63T0a0GAZGcw4NG7GkaO140rB34X+XcNR2TXVdQVt+op4vNzBPQ9nbHvactgdJSmRymkYf2d9UrGhc6JaFHOV9MDitwTRbtarbambsggrNfrur6+rqraOg+AhtV3X9AQcE5VDMXbt2/r8vJyKi9pWbZbVaa6f4QknUyRaVWOKl0SyNN1d0b+HA0kQSMj9znGyMuXjHYX2bEcjMS8Tq7XHsl0ZUtj2tvD2yZFbSqHhHPBZBz8vkTH6p7Ubvxdz/HVjeF9lw4Q0JnRFm42mydrJvTq2CsPbEbSAYKqbTvrC5dp+wkMqKOsFyNq+qfksOnQ/URWpe3/w6HnfHpAwjHnesp1B2pXBwJqH5aPB+K5Xn9L/VwMBvyPGqRMWkymwUSFonQG12mcxDq4onWGgPezo7kK3k9P7Aw309dvrJs7SyFRggE5vy5qmhM6Zzr409PTJ9E2kTXXFugZ0mxUMFdOpu2om+yB7hFToPorP2/vh4eHOj8/37kNfoRwQDFaXvqsG6XRvR6FemSegICXh0ZUaXH7I8GxM09O79IJUmhwaagSU0YDlSJzN+reTimK97xYX7Y326nbacH0HJApXZaL0Z6X/SWJ62YK4DRNSPvhi01djyRJ11Pk6jad5fN7RsBD5enylD0ncOT6KB/nm81mKygiM6AyaYz6sdZp+sEBD8EmQSwDJQ/oqIMqm9ZepSPkv6XsxAx4Y2ohmWSz2UxOxAs6QqlEdWwsPXd0dLS1itnT070y5K7scnxEV44WXTSQNEAICJzOdwZBZfB96cyLToHK6wNBA8SpfzIDPqiIZunY1S501lU1zedz22L6UyQyQFwj4v3mLyLg5xC2Db9XbRuSqqfRIoXOdE4SqE1lctrSnXmKaFkeljPppRtzrgznePF20jOjXULSbY1PH9Ns3/RbAgfeN4mFIDhwh522XDI9tp23K9NgWV8iEJAksCp7JftIcKoxKrtT9RSUKS1fjKoXnZbEWUKl4SCQ943W09DmVz3+l4R0UWVylod66dMl7mDVTjw/h3rTAQF+93Hi9VT9qLfOZhMMdMzAt5CdmAHOwWtlvgu3GUq6aD8ZYncwjFzlmCWJXtRA9qi0m3uhdIqn39R5nOeRJAfokQkBgbeHBqSDBhp6d6xpxSnLqbSJqgUQTk9Pn2wTY5TvKH29Xk+ASoaAjJBHhF5vGpfnEjeMevdFgu5cO71IxiM960bPQaF00efx58pAIOnguAMFEvUfx5/rkC8UdgPH5/h8iqrdGI+AgDtw2oE0/kdAwNvan/XPbpu+RwT2o4WBTdU2ELy/v5/u8fpSR5I993SVtvqA4yqBAd1PW9wFFkpD99B2Jd3wstB3daAvgW6uPaBNp4N38O5tn3Tc7RBBgAexnCZwhu1byk5gwAccB7/fq0FcVU+MEQecr/j3yCgNxoToJSwbkVTqeI+o/d0VUw7NpwnobMkMCKUSTY4cy4hK68rMAZCcDBeoKX1NB1Q9sgJv3ryZ/l+CtDDbWIsvVTefc+ZL4g7puYVtl3RXgNONIA1ScnbU2bQgcC4yJrskGbUXjY+zaBLXZZ+PZTtwDLoh5hhgXdQWnU4n8MNnPNrqGABPM7XLCAikoMG/e3++FiAgSQyBDg/TNTk+3Us9rnqM1BmgScSouR2VsA849uhTqJPK3xfvpWCJf+Ljde6AotvTBAQSk5F8Gl/JJrLcPibIUiv65+J2XyuQxtS3ksVg4OTk5AmiUqFoQKUUHLRu4Jx6YzTF7y5Umq5RqOhEWQIeVAC9PGKnkXUw0L1Ufm+HpXVzo161TWFr7cP19fXWoPRV+lR4ls2Nt54Tk8P1CE7PKX9NIQhg8ACkqnoSSZ6cnEzKfnp6OkUhP1o6A+WS9CI5QkbUyWG440150/mNBnZy5BIHBG6gXbcdcNLIM8phGTmevZ3cwHOBFN/VXnopTRpKXfP2YJ2UJsf+3CK/VG4K+9sdRAoWXrKw7mp30eMCvh0Ycqq8c4JV/RQZ3xMQUF9xCkD97YzQaIzSjo7yUnk61sLHl9/jbeHjx+2v8k5rW3xhu5+KmwKtby07gYHUmHS+OnZ2vV5vHZfLxU0eIadIxik838aRIiw3Yr5S1BcFeZ4OAjqqVfklB8DO9898T+IDTCJlUVTOnQFy4HLsXi5N4+gaBywXIHK3wvn5+da6D65olZPX4NSWR96rKQi2t/TjudYMdBHnCNyxv2kIqJvO+HT6oucc8NEZKr0UeaSjp1kGLy/zZH27CEjG3I2OnAWdONPifcxb+sA/tRrZDqXH9ySu36OAoEsngSWllRyFA6rXIKqLB3RuW2VHNa45Nenv/vnoaHt3kbctmTc5fQ8a3abr3e2/xgansvi+Wm3/ORx/T4482enR+oXUtvzuQZ0cvMaWX+M6hx8FBKp2XEDIOU1HeaqIMwNClJJEa7NTnTVg2mzApBDqLE4T+ErRDul3zoCAxg2HFKxzNqxTiupG4g4oOWUNNg0utmmKdjhI9Z0R/sXFxbQDgehcQEQ6oL7VGoOjo8dDXEiVix3gXubnkJRv18/+8r2/NCwpvURXJgAsnfBIoqqeGFU9w3fPV/lQDzyKZp4pcvPyVj0u0FL/pfpJHCwoHRpiB/xp2sDLlQCMfqeD8bq6pHHqRjZ9fm1AIPURHTSdlz6LGXTqnk7YAzxngGQzq7Zp+m4spbInURlYNg88XP/4rI9vzyuBhARmfY2Y1zutXXO/xjb/USBAsjMYkDNw9CyQoD+nIe0kZ+GL3nyw0bkzXb0Tqep3PstoSwpM5U7RPD+PnIMrqPLjmoC5zvNIhNIZ+VQuDkZf3EXHr2fkmLVtkEadv+lkQx1FrPrpOeUrxsHZDI8u9sWIjhyft6tHPVwjoucVMdOIeRojsKe0u/Ikp+vOncJ+cOZCaTr44DM+vtywHR0dbQH9paCuM24jithlzhh6Wm6QvZ30jAsN/r7o7fcUD7gS48OxrMBKtkZ67k7YI2wHtWKLlG/X7+6cVTYCFdWBdpAsGm2S7DQDIY79uTby9qF9S/rNe7lrwdkBvghqRyD1e8nO/03Azxw4Uhg2CB0Rr6XGTwirMyJLjMecc+6YgUTXJ+PuQMRfiS7iMwlcVG2f58ByMNLW9ID/RwGNYtX2HD6dPSN45ckzA/SZ7IBARGJn5GwI1vyozuc0sBzInbEnyKJDd1aI9wrgShwIpLxGLFLnaJOTc0fv16rGB8H4otLOcXfi5UzsAh1JF0n5OEp1T/kKgOuelF4CP+lZTz9FgK9JunHAgMrBgB+Ok4CATw3rHge2nC7mu1P3VeP5f6anfNL/tcgeMV+lnZguB0S6N7UPI/o0FUaQ6tMAIybAA+UfITuDAUb7NF4+0HUPG4qKkYxecqojp99dc2fM/NzgusNP0XiHIhOL4eiOvyc2wMuSjJMGnA4T0n8C8D8K5BSkbEqfIEJTAf5vh47eWT7lq37XfzpQiQkG/LUPgCAxA0k/2N8dHU594RRY58SXRD4+djoGgM9Rj1XWRIN2koAHI64uep4bj3zWjSQNOMc20xwBGAc7yal3QK+zOXyGfeu/vVZxG8Ugj46N08CyCzqwSDbGgYGAstt9ja/N5unxwx6IpWlY9wsJkKg+1DmxA8yrm9ryMZB02tejUdfd/vFz8hP0F8/BClTtAAaqntLCCUV79E5Q4OewV207wA4IJIPbUTvsQHdwXcTesQRMo3MQXtcOIbJdlL7aZs6AK+/j4+OJERAY0IK/qpq2CjFtTicITDDqJyr1XQiky4+OjrZoQiJmGmcOTDq6kZHfF1nqSNUfAkJVT/VxSX2TLjFCYjojEODRThIvj8ru7JQDN+pSGjue/pLx4Pd5WqO24jh0QKf6s+wJCHRG18GABzuvSUZ1I3PgQR2DIgKDBATESIpZkG76VILek62dA3EEDR7pq/wp+PN0aKcT+5DYgO5EWwKA9Oqc/3OwAZSdwIB3lq4lJOODXijQjZ1LokyYP50dZYQwfXC7sfPnmKZHzfzsho9KwbYYdTLLl+aJvawOCAQG1uv11nqNRDlVbVNquk766ujoaFJm1ZWDnYuIWH4uROSiTbbVPopHQLzOvqYu+G8OaPV8EvUvxwEdJw0YgUDKM0kHeFk2iTvK1A4JcCRxZiAZvAQEfGyk6Jzl0G/JUSTnlgDXnCRQ8BrFAYEDLAcFyVknUCB7Irvkc/kcU3Tg/n1kF6ueLnR15y+HniJ2CQMbTWc5k+X66jsBlgCBpdH/CHB/b/kqMMAjK+lc3fG5EUnGJok3lF/3yL3q0bhyUReRbZdvAgVuaOjw/F4qiJSEeVHZvMw+N80oPhk7/ca/MhYYkOJqLz8VT4dYUGlZfim1npWis+4czGIZNpvNBC6oC0zz9vZ2FuF/bxmBMJZZbZOmhkhXOtUocVZM4tGKPidKMYFfGdkummI9OyfbjbkUpVFcV7z+3b3JuTuboutsE3cAHTjn8/5Php3NSX2zJOp8Lr39EZIYAoIC2lv2VQIHAv/39/eTXRCb6DsQaEs4peCApCr/wZmD+E6/ObbnGCraLYKB5NA5ZuecfxeYdZ/T9x8hq81rhb0HOchBDnKQgxxkkTz/+bAHOchBDnKQgxzkWeUABg5ykIMc5CAH+cnlAAYOcpCDHOQgB/nJ5QAGDnKQgxzkIAf5yeUABg5ykIMc5CAH+cnlAAYOcpCDHOQgB/nJ5QAGDnKQgxzkIAf5yeUABg5ykIMc5CAH+cnlAAYOcpCDHOQgB/nJ5f8D68d0UkX0yJQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDMklEQVR4nO2d7XLdOLJlIZdlVfXtmPeY93+UeY2J+TddJdllzY8bW15naSfII8uWe1oZcYI8JIiPRCJzZwIEbx4fHx/XO73TO73TO73TO/3H0oe3rsA7vdM7vdM7vdM7vS29g4F3eqd3eqd3eqf/cHoHA+/0Tu/0Tu/0Tv/h9A4G3umd3umd3umd/sPpHQy80zu90zu90zv9h9M7GHind3qnd3qnd/oPp3cw8E7v9E7v9E7v9B9O72Dgnd7pnd7pnd7pP5w+nk344cOH9Zb7E93c3Dz9Pnz4cHHefjc3N0/PrbWe6v74+Pj0u6bMtdZTvinjt99+uyiPdSOlrK9fvx6W+eHDh4t6sy7O8/Hx8SnPx8fH9ffff1+U1+rQjuQH/ztty7vdu7m5ubjOPvg//+f/HHDg9el//s//uT5//nzBr7XWRb+ReP23335bv/3227q9vV23t7fr48ePT7/b29un+5Y9ysHHjx8v8mqyE0odv379+tQHf//99/r777+f7ll+8/xvv/1Wy0n5t7e3T9dcD/bR169f15cvX9bff/+9vnz5su7v79eXL1/W58+fn66lDhxn5BF5xba6jWlb8k0Zvsc68V6u5Tle//Lly1PapOM4af3NNvH6x48f1//6X//rVeTxGvrnP//5rO/Dw9TPck2ynFgvrrWe6bCm8yxPHz9+XHd3d+v29nb9/vvv6+7u7qK/PS6Yh8fcpHPYJusnEsvJGPj48eOFzJkn1MlTmRyHlB3KVGSWY+Tz58/r4eHh6Tyy6zZyLLf+pUyyz8y7XEtb3Z8fP35c//t//+8qH6TTYOAtyUJ6BghY4JqB2gECMr6VaQMwCR7zmgSTaUINFFBhR3gC0iI8E9CxsvAAbAPiiEc7amDmVwCT4RcNqNPlOg0rAUBAwKdPn56uf/jw4cnoUvn52OQmxH7Nb611YRAbmN2BgdSVIGYCA8k3Su7Lly/r4eFh/fbbb+uvv/5aHz58WF++fFm//fbbhczl9+nTpyf+EAzY2BIINHBPYx9FmnJ5/e+//14fP35cf//997q9vV0PDw9PCjn05cuXJ96Glx8/Pld7BmUToP/ZFH5wTOa6DQX1g+sfol4joPCR5digR54sV58+fbq4R+DJcTA5a3Ysmk6yzjJQMRBJmXl2l1/Glx0sHg1Ev3z58jTuI3eWowAB9iP19USTc+X+nGxVnuN42NEvDwaOPOR2zwx6yUBuA2oCGWtdojFen1Annz8bpWhlfv36tf73wIrRsVLZtdvnrV0Nubo9uz57CyKoM7UoT4v2OK8owGb0aXDtLTWvfK1LryEKh8qqyZIjEIloWGnTa6KxTrkfP358MqofPnx48m5ssANGeX2KnDB/j8946uGVwUCuRwEnTc6/fPmybm5unkVNbDToPTlCZLrGcfiRZK8y9WnOjakZnKbXzLMpT/+nPKZvmGeA999///3UZ02Hkv/p75y7jg0MU6fZ8ZrS5p4jcK1dBrCWz6RpPNz9t5y6raZJrzZHkPw/E5Fe60ow8DMGRRPqyQj7t0vrQbBDZhMI8P+m4EM21B7A7KAzKH7iSfKaAILbzYHGOlFpkiZ0ugMBO6DxFpRwMcNoVhrkNfuShnMy4nnu5ubmAhQwYrDLw8DVnkoUqRVP61t7SA7b03MjaGEfxsjao0/+jFLkuWk6xWDAHhi9f0ZEGAlImTEqMTyJVHAckHeMYBwBVOsG01mF+tpkw9EMwJnn2r1rQHrTtY5qpe+cb/qMTsnkrNmg8f4EBqb27wzhBC48NUCZbCBhsh/UI9M4Z/rUidd2bWzOYQM9Z3gVujoy8BIvb6rMZOR212yYna4xqdXjDLA5A0Co2A0IrABbp+2oKXsLNz21lq4BoF2as/3LvCbA4DxfIjuvQVYu7jvyhP8zhdAGcwMPNrJTyNIKggqSSolGLYopBm6SA9cjUxkO4frHsjMHz6gC6xrDbX4SdOTYxgWjHwE6CfdH0ToSwPUAuU9AkPz8Y/nk5ZEsHnl3P5tafV9aJ8tvu9Z+TZZdL4Ju1tO6wlGOlt4gYdeORs25mchTcI4IcDw2oEUeUc4I0AOGjnTzjo50dQNPZ+mnTBM0L7KluTbPJsikHXpuoRnWtXkOEzjwPHDI4asoIQtFI64HSB5t3v8aMi8smGcFckpHfp8BWz+LyEMrqubl8LnwnX1hRUZDGePpiICnDlImQYGVA70QhuYbGHAZnLunt26F3hb3ZV490wRcVxF5j7IMeW2F54pJzi+8TRvNl8+fP2/BWPjh6IvHZCIMu7HXpmCuMSqvTd9bLo1w02n+38CyI0gGskcGOcfwtYEF16MZWrbhjO7fRU0cgWAdGxBgJICRscY/A4DkQbkn6Gd7Gk391NJYh1xDP23NwI8YTGcGaQsxTWmmPBsAcLirpW1zX0lzpqMaym51d/4vDWleAwQmz6mFv96aOOBy7jnMNofM+WoP9Hin10R5eM7BS+PHNDGQBCz2YKgYbJC54DFvEuTIn40zyycY+fjx4zPQnDoYXLAtXBMQnrYxYVDU+MFz/giUrMgZicixATvea+PqLemasWQvPNfOOGINEPDnyFIjRkLT18yTb3O0OlG3Tt7v1C4a7Cn/SXb41o6nr7gQlc/k2sRXjg2m89qICaCeNe4Tn66JDvxQMDCFdqa0u45vnkH7vbReR9TKstA2lGyvtM3vT3QEBHbPTflauFrYyn3RjP8ECH4VAGDKAGdI3N7GWpc8P/I4KAtenb9bJ8BzrrymB8SyEkafjBjz9UJBv/FgD89TIFF8mRqwYSR4okJseVkR0RhbvpKHxzLLtpw6LZ8P2DO/OO1g7yznBAR59q3kuoFv1uc1om9tvDcgYDltfZUj5aYZNIMwp/GYnHR807cxrmcAAfu6LQ7k66xul9tLmiJU0blrPV+3RV6YB2f+t3vXyO0PBQNnKnKE/Hz9e4HAtfVpSmtHR55zzo8G8RR5aPm5vt+rIJiHz1l2u3dUt7cgT4XkWowa62YQxTnmGJmE0Q30mE+oGdK1nq92bvLiH4n5EFR4zp7TAwaXNORNSTMq0ox9yyt5NHDTxqvPeW0qj0CE6xdoyBnWtQc3yafnh3fK/mfR1P+k3bia9EEz/uS5ASOjPgawri/HFo0y5Y+y5z5m+a4j6Ux0tgE6y4SnBggK2pqB1J9TTuwjGv0GBlyftJfAqRl3OyLOx/3QeLOjF4EBVnQyCNfmNRmTI0GfmDIpV98/O8ibwnL+nlvehZGOjLbzMl173fco2GeeJb20z98aDJBo1ENn6pe5vyMFPXnFkdnWv00prrWeKRIrkZubm2cr+NumP+k3K7dJeebciw2tGOlZNcNCcOBISeN9AwhU1NwHwRsOtTlftst95OkERzzSd28lu6EjJ+UMWDjyqhsY20UH3JcTyNuRp0KZ1y4iceQpk74HyF0DBBv/uKBwsj+2Ha0tk75tckB5uKbtrxIZeI2BsjMuTcia8J2p40sEY8qb1+1pns2voWVfn3jCtBOq9H8DlbNkhWMQ9poI9bXJAzqDjsbR85/0OpoydLj/5uZm9KKb7Npw0wtvdT+KDGTlfwMFNLzcpbIBQo+tKDEvGAxxnjX5hqjoqRyp3LkeI3XhQtvHx8eLNwd2YLzxiX2dOjiNQ8Buy1tHBs7QkY6ajEj6Z4oITEaf+biMJvuOSoWanrNsNwDZdG+r08QDLu6zzFtmJrAVvTtdY34sxxEC1p9yT5quT23mM2fpKjAwKaTvoV0erYOn31E9zzJlhzAbcTBN+fFoYWE6AwOGkncGd0cuv4GABhZSv6lsGnmjUQMF5vcWZA+WA3Cq+44muTzzHBVuztd6vmlV0jdZtpINGPB6Ae55QGPr9jNvGgB7x3zWxnMyxp6KMCBqHl+LOiQvTgNwfpfzup4icB7tnOnbNMFbUhtXO9oZQt+z/BnwGvwSxLHvdtNJbTph0oNuh400n1+rR1DPtD+ySLmcyuQCPxr26OymU3nd0wR5zjp/Z+zPOlvW1dfYvtNgoGX4EuO01vWh5amjGiCYQixHA7s9N/0/M1flvNc65403BTzNNU1kNDqVP4GAM2R+s14GCm9N7P8dqJr6txlwK7wdOE2efj7Kliu0We4uj6Tx5kJ+m6Ap0Gk8+FXDGMespA6g4HwplV7zcpgX+cxydgaL9aWRnkL7O88pPPD6BpbRogG/SmTge0BAu9YM39lf0ltmznjyaYvvNwDB41rrWfQs47lFVdt45Dl1wg4YEAhQlzb9xroy4sixkmtn+rbpVdPOHlxja19lmuCloGBHzdCycyalm/q8tLwzx6NBx3pcY4gnsGBBbx53M/47msDR9wCERq8tFy+hySPOfyolK6hJYVnp5b7J/WQlutv8J8/Qi1lrPQuz+/1+LxpMHp8/f36aw/zw4cOzzXes3G9ubp7ewAjFA8/bDQ7pO0TKvG1U2Sa2tVGe9cpuLvRq+e9kgXm7LB69huBnk72/s7STxwYE2v8GAKZrjg64b9meIwPW6tIWLabPJ/AzAYGjsic92445dzSAbwBxzUCmvFj3BlKS7/f2/6tHBnaF/UiFT0ZZSBrye0n+Z6MeVm47moDAzvheQ61+BAT8v6vbNWDgbNj0WiH80WSvL9dSz3i+MZRr9dCm87RHSuPKiIn7oSlVr/afeD1tGpQdBgkM7JXbi3f+NOQGQbe3t+vx8fHpuwU5Mp09tNQ3PGiAoPUTV3F758FEKryI0Eem58JD5unzFmVgP/870mTMzvwij/a0c41prIt3hjNkz/xMW1wOx/ZOX091SFsc0Zrac03kKbzJa7okfsdhrb49/QQKGr2Grj0NBo4qc00+L31uAgY7auiOiprXXNZU54YIpzrbAL2WgZzqNAGARtcCggk0naUfCRp3FGVuA0/jd1ahrNVDyC3iQI/aYU97VC2k6vr4k8mcYmjfHnC4P21u0YwY/ORjTyfpuJo/deH3ARqxjCmUTJ7ydc4dGXyQ9zbkBOYt3ZnfW9BZ4N2eO2McbfzbNICNPut1po/aNY4353XEc+tf6vRriHLwPUQwwfpkrPnLmTxPHThOmw5n+36ULF79oaJU5ojx16Sdnm2G3wJ75L3t0lwDcIyWGypea/5yoKnNcfl8VxcepzSt/BZOPQIFHrRn6aWD9LUpHqAHIPssxidGPH3InQb5a57rzc1/b53LufoJcDoqEOO9U4CcTuA6g9vb23V3d/e0wRCBQcrN54g/fvy47u/vL4x78s+zySdpwpPINkPzeT2T7/t7h7kJBLVplvRT2/42daGnn1cLHS3wh48SUWiLDh1BMIB4DYPxmmSZOuNJNvCXY/s1j5+RgiPdmzUlR2DabQo1oJYxGYNJ4lg27aKjzNt7DUx6ciKW7TUGiaK5bIKIs3r2rC6e9PpEL5omOAsEzqQ9W9YZzyPUUOsklO36NECs2IyiGyBo/4MEXbfd3PNRm0kt7NV4shMSKxae/ztEA84S0bjlgf3qLYm5kIleZv43hdfkh5/6ncLoea6tD/jtt//+GNHd3d36/fffL7YfTh2/fv36tL8/67fWuvgGu99CoNee+qadPsbQrnW54LUZ/jZF4j7xOgrLLQGZpw4M1NZaF9+UZ/sbr12XtyQaCl+7Jo+WpyMA/HnqatKfJBrpyF3oyMkxODGQaKCEcjM5fv5P42uPnv99zkhVxiKvtVeTA4x5L6CAPwMC1vsl8uc8zsrKT/s2wRlqqDXHnVH2842BzQg2z3cqs+VjamiXXsVRuPGazpsQcDNmZ7yaphynEN+OrkG4P4taZIALe0hUNJkbDw8nZE+lwFX2MfbZ2Mjv5BNQTmDAEQzKPRW5owx8O8FlJT/OhTsq0cZYFg42Q+1xwzJZtkEAv4jI/mpjYRrD/k3fmafnZzDhtQIN3L0VvQb43unQ3fQAje9OP01jnrJjat598vG0lvvYhnPS06n/mWiEeeW8DTi8kZDlM3KcKTXrjRZpaaDA7d3Zr9aWV48MHCHo76UJvU4dMwGHqW6+Zu9g5xW2QdM2n2HeyeNsR7Q6T2h64v2EbPlMEzSe5/g9CmhSGq8tM2epgbImVxm0SccBbKLR4EY+lAcunrOnTA+f8/Ssr8sOuMjziQDc3d09iwxwqsKL5RgBcN5+PZGGIBGAlBGwRHBgQJ28aWSaF8qxOI2pyXg7pNz6ilMYjhC0/02GfnWy/jrSnw0Y8PVWrhfIuY9Nr7IO1qstItr0OdPZgJ5x2pw/y/daoVYHgiCvm9lF8FhnTxNkfEyfNqZeoi6wHbGudr9bv52lXyIycGTIc/0ICJwRBiOshjhbeWZuG3jJM3TkZU/t3YXmjjq4gQB6tp6uaDwhHYHAtzLwLyUOYnof9FwSFVjrMkRPAJDQIfM12qdxDO+pWOzNM/LgnQKb185yMtfPzYcY1t+NK8spgZMVDuttkLwbJ24vAUnS8ItxzsceP4GA3wgw0E8fN4/KvN0Bgl+Fmjd6dhw2/ZZ+yfX26moDAgQLZ+rhdE1/N4N8ZBNY90mftikLrz0IX2OsQ44AWH/sKLLMt2/ocOzAzI48bnONx924b/RiMLAr6NpKMH1DOo12QuX7Tpdy2m8qZ0dcLGMPtCmhM2XsBtdLpwh2/dWE/YxCPOpr9+2vQM0YeGCHdxnA6WOunHdYmUDAqJ+vtlkRhHieOclcd51TDhW2dx9MuW3xJA0pgXDWEITySiFf2WtGl/WfwMsECNg+zp+yv8ILh/gnJd36tS1Kszzsjm9N31OPZmj9Y1TAUwUNCLQITp73eQuFNwPYpsIaYGntYB6kNtVAnjbDap6RJvmwnrMdSD3sYLQyj3TmkSzs2jXRd0UGptCF75FeAiCuRUw+tk5Nfa00mmfMtLxOxUXPe8rnDO1Q9nQvBofzv2dAgOms8T+b56+mTE0cpPnPX9roldH04HP0/DzD3zF8nz59ujBgDcgeeau8R6XNNwG4ePDm5qZ62o0H09z5Wt8+bex7u/l2jzGSFb3BLPPk4j+DgIk3RyC8jc8GEN6awqMzRsE6YedQOH8aKBpdvpWyiwRYz/J8Z+B3zzAqkWtTXms9X8TX2hpidCD5OZ156H5oTgTvsV7R0S2KNkXVUu61svhS2f3uaYKXVPal5TSGNePU0lrwCAKaYpkQ7Y5sVCYPpYWmkjcNOtvjc96nIn0JCLiWjvJtyNvX34KmOUeG+0kxolkRzHnntS6nBhgx4CCPEsiq/4eHh2cb5thYG6Q2w0slcn9/v25vb5/eGPj69evTB4pYxufPny9+Dw8P6+Hh4amspP/y5ctTmnjuiWzc39+v+/v79fDw8PRKX9sYyGOoGVsCsQmQTK/98b89sdC1ToTHmfXCr0iTXmpGZfdzOhsuAgFfO1OXli+9/RD1Le+3aOgZ3lC/NkCaCBzbR8cuYL71f5O9yErGdAO6E298PflNdT/jcF9jn3+JNQONJgGa0NROwC20yX+t9azzeY/1mKgJmyMNVlIGBvb2otDtjTaAEmG18HlO+yx9j9IzCJiu/WyycbWS4G9S/DRABF4c7HmeitKGnHkxT08zEXgQoAZUZEHSx48fn54hsOD8ewOmBsEGkZwmyf0AhLYDoNuz1vNvarA/HHkI2AhIYVltXwADizOy7jHufuf1Xy1CEDpjAI7IOjL93e5T19ozX2vevyD3/Bx3xuTaBJbrZ32/vcUyrS2wQfYYDwim3Ho8eGzkWY4tyuUUHTa/vdaB/HZ0jW07C06vkYm1Xnk74h36eWn+TXBJU5gs1JDnWpfeNA0oFe+EZrMKmwq8IcQzCmoKM9GD5cBroCYCTU+phUmPBMgCdxZV7kCAB95bUPNIrWDOAALm50VGJg7mDx/+e7tgGric8xPDAYE0fgzNRxFmOiCe/d9//70eHh7Wn3/+ue7u7i5Cu5GJePT39/frr7/+Wn/99de6v79fnz9/vqhrFHbqmNDr4+Pj07UcHRGg/BF4JKpC2eQeAAEdqd+ff/759HNdA048dWAyyE87aBQoG/79qtR0rh2WnV72c9RrXgfANJw+cJRgrb4REe8xD79JYoPPccVFuLYDBis7st53+tRrrW8yYb5ZbtpY5f+k29XPgIA06V/WwWBhl/6IvnvNwEsN/URnUOmuk15SXkNwE7DggEjatZ5HA65RKDRUyS+KLOcxFNeGy5oXdo3SOwsI3I4GACbg86OptXXX55Oy4MBt0SaTo0NUHjSO5hsVTYw1wSrrvNa3byr8/fff6/7+/mKuNWXEkDavmwDJESVGMwhiCAyoCLkToRWs6802U6Gmnq4rNxVivzCMmzHEaZtMf6QuARL/DqDg2npMMtx0qX+851dGqfc8VTA5K85zeq10F+W9ps3tPHJox2qKBDnfNuYZceP0G8vOeD2yWck38mqnpBHr3kDLka6b6JeZJth5ameFZSc8YVozSCnD0YIcLcw2yNcAERp418/rBfI/0wAMCXvBmtGhQ10sZ0fMi0LX0rX8mnHz+c8mGl0P2MiRw4gk9rc9GZ6H5742RWpCkwLIMzG0NNYGeElDGeVq5RjAKDEaUUYGWOeUk7q0kD371eHUHZhnFC5leZqAgINAwNMS5FnOwydHCHKP/W1w4uNbg4JJ6fu8AQG3cRrLNOytr5phz7H1L8ucwAAjWNOzaTtlq42fszxxX3ts8xkDnQYGPn/+XD1/yo356PqE9xwPu/46Qy+R2Z8CBs5GEJpxnwaA00zMa970lE8L2UQA2qratI1GgHPSVkAsm/dMfCZKLUDgDC/bwGneJ687/Y5a+c2j+lXAwNTexpMGBCYPaq3nMmpZs7dPI8756+RLBZX/VIY0fgauj4+PF5sSsS423AQDbdxF4VEZt9+RF21Qb8XpqIAXOXqh5QRCpjq8JBq1k5VfjZrRO/PM5GhNzo/BQs65BoBpUo6NaQMDDVzTm+d8/lrzeLatsJx5vOS8ARG2M+1ilCt18v4glMVEo7hA2HkzrUEyQWCTv+la0/ln6FXWDLw2HYEA3z+qlw2ykReZbhDgsFkEI0RF6To3QbXhaBGCpGO9j4ypy7NHasV9rcBc29fNSLwlGNj1z8TbSTFagTFPGvizNCmK9ongtb556alHzg00qYi9TsLKznywofU0R/POJ88m5dm4pBxPEUyfId6BtomvLeJ3BiD8CnI70aT/mjzu8rChbl5/A8PNoLtvDTTWWk/Agc/kmo0xqekvrxUxQA7R8DfHsbVvimQQDGR6gK8Qs05fv/731t0BDNx1MD9GpzjV5agVbVTqvQMJL6Wrv1r4ksKPFOPO8DdqHT8JEslKIJ3ovBwS80YuTBvEGuXtOtpTbO1sfCUq5v1p3YCf5+DxivIp5PbSvm11b8e3JBupds/gzQaNRs2Kjh40n7ERbMoyada6BKxciNT43CINMZ4sh+85M48WOUjZ5ksAiN8e2PHO7XOYlGUZaBhsNFDrKYKJEl0jTXLQ6LWV7ktop9uOQECT42awHfmisXYUYPp0duTNETTnm70wJjBAYE25zn/LXwN4lLep/Qb5U/Qi52t9W0ybtS0EAwYrGS9HoMNrXCYHJuUTEDQ6k8Z0dWSgFTChsunaLu/dM1PDXuK1UtjW6iv1m4BQwD0XyfxzPzQtOOPzzeOhkZmAAMtlHlbwTYF+r5Jr0Qhef2slmjq4PuzHa+pIY2YwwPs5b8AhZbovGHFa61LprXX5uWHmEa/aysTlOdTaDHrzwKnYpvl70xkD5DbkyDJdxzyzi2CYt7t8Xxp1eGvaGfzpaKM/ecD+KqanBHItBj2fvKbnz/xZPkFG8qA8cPxQ/igfDSBOvGhgINdauwlS+N0Qf+sjU1qxI37DxtMIaWPW8USXJ08CjbWe74ni/j4DBNLms/L8qmsGrkEhTZin39n8dmmbkfIzFEijxQgG0ydE61CkqSnn1GES6CNyyMhh3COl95p0Nr+3UrKtzYzcTIaAhmuaJqAMMfrgqICVghUy50+/fv36BB75e3h4uJg6cqShtTvyYQXBOkZ2+TpUwMORXJFnZ8arPZ6m3KcpiKkvd+QoWAOpk84hz94SIFh3TDyeAIDTWD6t55qH7AhXjGY+jkVAQG+fAJdy77Kavqc8BHwmykNZbUeDzgkMsc78yFf71kcibI4IZMrg9vb22eJer3Nhu0L8QBrr5+kCO90c32z7S+lFYGBCpY3OAITmYe0U3FGZ9Nz9rI2o86LgW0iCYpNPgMAZOgtqjqIVBA4tPGVvzr/kcZaaYmRdjs53134mHSHknaHIcfJu13o+L9/6znlYAUeJPj4+XshwlA2jSPR2afC5gRGVSPO82D7zYvKmue9Bm1pgOw1UkhfD9lSYEyhuUZQdsG0GokUN2q+B87eW3R1NDo2vTSHqyCGNdAMJBgL5ffr0aX369Gn9/vvvF8aTebbxRLmfAC096Jubm4tp2FDkvQF5H91W6nka/xzv7u4utvfO3L/f2qEMkwhsmwyxvbElHz9+fIo4eOzkGefFfAwQrqEf/jbBWSOYtGd/fibkMO2kXKY6Tl4bFxCutZ68txa6pzKx8Q7xvlHuWXIeu81fjtDjUdmTgJ2t8zVy8Np0tuzJUJjs9dD4sUzLku/RQHtekjIRZZNnbYRjpHPfc7ZUwB4Pbaok+VGZcTpg8qrJ6wkQ7MDtBCxaBCSAgm2b6Cjq5n5u578SIGjAfNcHDcg6IuUwf4sSeP6cQCA/RgiiLz2WmmG2HqfsTeOXAG43xi2LU9szbUGQQ4ATe8IpucfHx3V3d/cULWjTUzswkOt8bZz15f8Gdpxf6sT8z+q/N9lnYGrIWQBg2oXRdoBgytNzaRSkoMNJubkMHneRimuVjT1CKzQbtVafs+WYLHT2wL63bT+CjgbEkYc4GYtJ7iIzlB97JTtvLWCTHgjL55xivIrHx28fTIr3wiiDwcHEg9BrTC81GTSQmYDXjrcTHY3LM2CP8v1SL+u1yGMt184ahgYEaBDXutxTxYDLXjQNJr3ngIG7u7uLKGrq6vFkEGCDF94HlLa0lomdo9PGpsel1zq0MZu6+Dl+iCwgIBGHLCKkwfd4+Pjx48U6AwODBpbc3wQBO9mY6IeCgYZe2/8J5R6BgOaFTGF7Gs6QBzsFtAkfB41DQslvrX0I0+lbBGGXPvnTo2N5TdCuMcxHCNaD7ijfXwEITDQpF4M38/GM8ZrIz02yz6iTf5wqyDPuE8rH5J0HdPjnqYCjtwdaHzdetbcjGM1ivk03NF59L0DZjdOXKtXXpO8ZPxMgsLOUo50eGkt7zvGe7+7u1h9//PH0CzjguoHoJU8tsX5Nv6T86GnKv/WyDT7zn64ZFLRjAx08eiolW3kTCGQtQeQ9oGCtdQEAkleuNcDU2sm6NUBwlk6DgWszPxpIO0E9++PzzDMCzgUZbQ5wYq472t6UlaKNRs6PjDufOZM26aPEea0p70npTQLzUoN+1lj+KrQbUI0c6mOfUTbcXvJgmoPn/wYUqAR34VT+N5CgImnAoIEAvy1ggz3JFOtvecxCsJSbthtssP1rPV9/0QwagRHB+q6fd/LKMfJS0PGaNIGjI0dq0pVMb4PD/57CCiC4u7tbd3d36/fff38CAv/4xz8uwEAARZOhtfaRROtRA2ICBIKDPNN0W6Jtpl378yyPPG9jNPsLcHEiowJ8PtcDCLh2gG3nVMjOYWvyflZ2X/0Txtco2SbYkxDvnjeiC5mJDYmu9dyY7phnIbWCn4z7ztCeBQJr9Q+tTJ7bUUj0WuM/KUXzsg2aXb4/i476tdV1Z+CP8m3KbQIEuca3U2x8nZflNYqDADYhx5ubmwtvba1v48FGm5v+2GBbthqIafXzBkoE7OYh5duGyV4gZfIaULDrw7P9+zNo0oNHenZytta6DP+7HOtUTxFwLt1g4I8//nhaN8D1LwSZXtPkN1gmYGYAHmCb/5y6NVFejpwUG2yX2+yDgROnDhIVYGSggR0CrlxjHxyB0gkgXEOnwcCEOl5aMJ+bUNkZgDB59SEKTBh81JYQwzVWuv5Ai1/DWqsLXjP8FIwzIIh527v0BkNHimyHfqd6TnXZGa6Xysdr0DV12LXFvI5X3SiKNkrK7x9bOSYdPWZ/JbDt0Jc51SjHNs/p98PJhwZMLM9r7be4tuE1Pyfgk3wnw5D7BgquQ6vjVOf/X2ny+nM80qu7/LxWIGsEGBHILxGDRAbWWlVm/XogdTMBHetC48howePjt8+4X0OTvrI+pcy1KBl5HD49Pj5eAAFGRFrkoTl0+d9AcJ5zX7f+P0uvsmbgyHNv16eogO+3xtOgn0VEu6hAjjuDyHtBujxOynNn/KeyjoiKknVvQt2QdugIbDTaeVgTEGj/fzY1NN/S+LeLFFkeec3P8pPA+SIff/72xNevXy8+2kMlRGX6+fPnC8/F3kSb03R9W7Ri8oDIpzO8blMFqRfHyCQ3u74xv027yEDTQbv+fCswu/MImzHf/T+jYyMvlh2uEcg6gX/84x/rv/7rv55+iQxw8570eTbkySuyfC2butyOm0FAIl0eo1w4a8BoGxKZJ0j3mOF3BdZaTwv8OF5onFvdYhsSJWhgOPllbHKcuI8tC01+v0dOXwUMvLQSZ5Cq0U8DBEdl2GuZBpc70fdyjEJuP3d2a8ekyNy57XytS4Axhd+OlOtLhcZ57YBHS/uW5D4I2j4ybu6LtqjH5VhR0Ijz63z39/dP4dQojYCB9jlfRwf4GWLXL2UbEJAXBAFWUmmD8+RzPPo8z1JGuaiM5ewiWTuvN/kxgsfw9xS52dWb4OStQICpGfkzzxxdD6+8MRbBI6MBv//++5Px/+c//7n++c9/rv/xP/7HxTQB38uPrObcICT8jpys1XffcxRgredOUfJk5I7pQhNw948gYZKj8DA8S36Pj48XQCDRAt5f63LNQMZ88spixBYhmfp1spdn6IdGBo7SHgGBKSrA/0eKnHlR+TuPpAlKo1D4mwMGA1MI9AwA8LnbvSMrcl5r+e7oJYJ0Jv9fQanaA3I7zxKNTPJp/co208v/7bffLr7IFzAQJZL3mfNMPKnPnz+vv/766wkYOOQaGUwdPYa8kUxrQwOQAUxUzF6A1cbzWblrXs4ZUEkDYcPtdUKNrDMsD78KALiWmh5t3r+fcURpBwQcDfjnP//5FBXI2wR8Rc87DFpPejHgWs8BHPvb/Rad3agZcKflegMCI0Z6j+SJxjvlfv369eltghj15Bv7Eh7wbYLkFZvDRYUER2cc4Wvpu94m2FVml97COqVNg9nwSZFTsHzvDNOogBhq+vr16xN6o5KOImYI9FogcI2x3hmidu1X8sLz/63rFGqK0j8vSLUMUc5swCIDCRtmZTHBZcBAvKi1vm1LSjljWu9/HlCQqQLXk14NQYHHDetsOgJObnvr9wawG+9aX5yZ6046v1UxyWCr77Ve1M+iXVTkzLO7/95DhUbNiwSzRoDrA/ibXivMMf3u9+m5ViZ1ZISn6VHrdutGkteNWObojWe6gYCF5RusEKDQkKetbeMm3s9znIrJmGZkgODkKDpgPv2UyMAOaZ55rg1oRwJ2kQESO7ldO8sQAgGWk/A/03gR2GsBgSboE08953pkgA2qGn+/l6a2v3Vk4OzAaF6V77d7BgK55vv0BriOIAqTYfQoKgMBf+I3Mul6Jj8qZI+7pvQmI+JFTDsQYEp7dtMBLG8C80dOBMtq8r+r865vfwW6Rh4n4BSKTHD1e4sI5DXCbChEYJBrAQH5GXRSDimPZ9tpUL4DOVPEh3JrMJr7lk8DARr+HEMx8sk/+fHVQgIg8p/TEeQdowStPz1mvxfY/pQdCKfO2wlr6MiQuNGeMzyipiw4NcDOD5MdQmI+r+EBH6HdVn/P9Z4ZFK9Rz19FUb6EzoIDRwd8bCAsxncCaPTuP3/+vNZaF0pirW9vreyAgBeust4EFc3TJtnbcfuYD6/xHtu21uUnwq10Ld9NFzgqcGRE0g6OiamO7dqO3hLMNtqBpV1dbYzDV66E5/dYsqMggQBBAPfv96eMU17T8dO42AHTJrsZZ2v1hagNoDe53snGZIQpl1y3Q/kzGGiAgH2Sn18P9nTdj5DHq8DA91ZgQqsNHJwhGuj8KBwO6+wWgVho1rr8mpTLIhjYKZWmZL7XgLKcyei/NN9ryQbx3wEg7Op6tu5WSDvPOvladhgVeHx8vFgsFOKbBJyi4tTUWs8/cBXyvOwRuE5ddx6Yx5zr5jp5YRbl18Y+nhA9KSpKKsUzlPJ2b0x4PJ0dxz+Ldp6wycZu0rcxMjHeU2SAUQFGAPyfn/6l/NmIUlfaqfL9qc0Eq47MJo+jtSMZF6yLpwhYduTOfE0e+aIt+eypgmb0Lf8ZA/mfqQLKvcfw5OBdK7M/bAFhQ64TE3aK55py6QHlf2gyyr7OZwwCyPB4P03BvQYAmIDSER3V42eRFdKvQE3GJiDq45QfjVoj90fbayBz/s3z8RsDDYSafI1TCFbUrnsUbK7FQLAfm2KfvGuDZfLE3imNFD0nXrvWKzpaCX4mKmAe/UxqejTnNlhn9KiBAAGAP87DnQab8aeR80JBk4Ewp7cIbpPW4KC1w4sP269NCbhOlmUDRoOT1MXTBmx78vGaAacJud7mq8HAWpf2aZKLa+hVtiNuCv/ICOyU7VFjbGioXFqnHSH/CRAk/DOF7F3WNV6ljcg0mI/q2O7xWkO5Lvs1wctLn/+R9L2K3MaKXkKMZyiGc63LVcYc6GtdThdw8Zvr6g1O7FVn8eEU/m+Rg4kMIg0MqATtmUyg2FMFrR70gpzn7e1t9SQpX14AxvZ6nDQA03TDryK/r1UPe6A5MjLgT7bT6POePz2c/Kf6O6LVolyOdLGvrm1jztnOaaog/3d5Oj/KiA3xBAbIKwOjJtOOInDhYQPlO11+ln7KmoEdMGgdY0+c1JDyBESshDzYG1JMfkZgLseCakXq81aO238Eqlp9z7TrbH5THUJngNvZvvvZtANrR3yj4uTreQSJrf9vbm7qamKjfs6zWm5Ttjc6YRjUXonrftR+lsVnpvutne18d833wo+1vn1x0R5VAyH2ktyP9N5oEI8cgl+ZmgMxRQUIAAhM+aU9fnwoPwOD9iaKjVrzxO3hBwR47UvezHIf2vt1+RwXU9t3cu1xYcB4NLXFPPPqMAGQ0zhPg6C1LqME3K+B0Y5Jz/r6NXL9atsRmybE5HvJ+2x+RwbT6wV4bQIAvkbBpvI467UftWk3aDNwTakT29PytEGZ6rvry/bsWYAw9c8uj7emM0pjrUuDzzSce5wWxhFA8H/Op8VxMWatz9u86OS1T4bcnhjbH4/EQMeKn+3I/RCBDz1LbpEceeWudMknhsJzpy0MzDbZmLi9zXg2Xjjvn00e19N1y68jWelLRgK8WNALB/mNgRbudl0YmXEfcE+MbKB1f3+/7u/vL8CAdTUBcNONO++a/Jmmi+wwTmtKGijhWIvn7ikTOwwGRgZJ5Bv7MK9k5rpB06Tzr5HdV/lQ0e5aAwXT75rypkESeuk8IQV4GmgT6mre4dn27ChC2EKeLntXvhHjS5XcZFjOXH9LOgJJZ+gakOfFb1QQXlhEBUsZzH+H20NRcruQLRVhM3gNbHjawYuXDASYlhsTtblpGhdOmySveExtAaH7Is/59d6pf86AIj/z1tR05E7vNqBgUMaV/+6TtrDQkRUTASJ56Q3a+K2N/Lydu4EAwUDrQ64/8Hoc/pI+vGnG2dMXfM/faxTWWhfgp/WL829vAzE60PQLXy8kOHc7fI3HM/Tq0wRn0esZmhqy89x295oBPQIGOzDQ0l9br++hSfHtjN4RIPBAO1JAvH6kSN9ase54YuPo8x2CJ79pPEOMBrSfVxqznvR8b25uLhRd6jdFFZqis6fjctieaexNa2iczm32FAlXnrs95EkDBDYWbgN5b0U5zSVPbXhLOiq/6Sdfn6an/AGraSqLAJbXLccsl4Cu/dpW7k1GJ5Aaoiy30H4DAnyOYHoHChLyT7s93l2epwHaWonGAwMZRnXafgOTTqMcnHWAvnsB4YSIzuTnwX3ktb7UuOwM/pS+XTvrVX+v90kh4PTAWh157hTajs4omqO0k7C9hhf+FrSLtpjXO7DEkGnu0UDSUHLNAD1l9v/Dw0OtKz0D85xe0wQIWN9WV/OiAQWXa8PUwA+NCetgZeeFVGf6KWXbk3MoN8DDY/tXI/PT5y19A58tEuDFrRNYPfplHUIDdzaw03ddLKM8tnZH7qapBYN6HhuoTP24WI+GO+V5miTtJQDy90McHWFEpAGB5li5X6Zxf0ZGGv3wbxO4874XbU+e+rXe+i4dFV7z/l6TWmcadDgMfBTN2NXzJbzfKaGdML5G2T+KmjfF8++VKxppXstAnpSyjVKUK/c9t7KbwKAVpa9PYCDlGqxP99g+nsejaQDorB4wgNo5CW0NRUBZrhsUUKkmryOw/zPpLJ+dzoBgmiYwMJvySV9OP8ovIzWTl90iBdOcPY1jk8f0bYt0NUDAtnEMEYjbq3eYnpGEm5tvEbtm9LOdePuuCLcXnzYRS73cR0eg/VpZftU1A7vzpmSbMt6VM+VJmrz66V6jawxc6nI2z+m/yZ7lWaIQ7Op5VkBe8oyfv5b/P4Imhdrk0qFIKqCEC7mYZ63LaA7Dzw5FN6+NgMAgwp69ZSjKKv+b0ec9e1yUdRtRGld67Wx34xXbaINhA+RnJ4PU+rOlY9h3rctPzzZvlWAgPPhVZHat5/I5Xd/9wtMWCfAUTDufprXaWgLKpMPj088hdF93/6z1HNxOuoky3via8zZNQCDAN13MD4MBfpr8/v7+4oujOXdkoPGI/Zvv48QucA1DcyTJo7My/KIdCM8w18I6IZqpE5uwT3nv6KWD+mzo8Br0ZZAxKeJWB147KuNMW1/L+5nq/xphq9ema8t3GDvXSDQ8BHBUojHyzTvjO90OszaPxcrCgIBKpIEBptnJSotS0BNivRqwaq9PttcFSU2RsVx7eWm32+EIwTTv2gxZ0ylnx9SPoFYf68DpGRpzLhjk2wM08Lt2tykD/ieITd84JN5C4c3w5lmCg6MIWOODQTnTGAQSHHLxat5gyfdpDI6SZ+rJr5H+9ddfT8eAAxp/8sPHtIt9bJ2SOpE3tC/X6rurIwNnPM4jIEAlMgGMBgZ2oayzdX1JW6kodkfXe6IJ3U5pprbSC/J8q9HilP9Z2vG4/Vq73kqh7uowgcUmYzGCvm4P2x64jXDObcBYZvrUnrwVZ5StVySzLhMv8r+NS0Y6koaedNrQDKmVJd8asFy30D6J3mGbS019/HzCue4Tf2aW5bsurwWYv4eODD+vN13pbYZt0NnW6cdnvD8Bow2WVYbDHSGYZPPx8fHJyFHW2fft2QZImcbg1eOU9Y8csPxsC04ek3eps8HAn3/++fQKJSMEnh4wyHe7Is9TnS0DLY8junoB4WSYWmXMOIOCo/x2QKB1CokD+aVGaGqf701ppnSu3/fUZ1eXCbBcQ87D9/4d6IwcTLJGrymGbRpwltFpnnsCTQ3I0fBSwXLhET1kK5PWb9M44z16Pa3+NiJ8ri0qozEyWCDAsOdPo9D4nftRlm1KJlM7qQeBjpU6Qf1bAwHX40gfTUCMUzR+VdAes0GnAZjz5HTBFP4nIOAHtxrIzbXp1bu1LoE0624n0zyibNC4st2UKW4aZKPLfB8fH9fDw8MTGIjxJwjwGwNp4xTdYv6ZFmg6ypHJSd+coVfZjngy/jsgYATXOm/37A4IvIReaiwnkDAZ62vLaEo6RBSbNBRet2nHq1avIyOQ42TcfhWwcFQX8piyNq2aXutS8TAf5mGDZ2XVDGPrIxuoSf5bH7RwvuvLfAx2Uk/m2cYKFbVDsKyLpzhubm4uDIeV5jSnOilQe3+cukn9PO/b+GBj81ayPIGBKQ3/t9cC24LBtZ5v3uPw/CSDnMKyN98MetLyGT7rCJfv+znqRRp7T/FRJzIP58f6M21kpvVBpge+fv36FBUICMhUAaMCjRdHMsBpGo7pFhV+KX33VwsnA34WCHxvHru62hD+rAG9G7xnOstpJhTPtB4M19DElykqsONjU9C/CigwWRZtpHfG3X38+Hi55S3DszQ8bQFdy/MIbB0RlSfnTXOP/UnFcmR8rIR35fuZFgoNGKBXaHAwAYAjoBvesv1tvreB3l+Fpv6w3PKcMuXdHu3Nm5qnbgBHY517Nzc3z+bDp3fnm/Gd7hkIsJ45Nh11pHttQwhis/7G9wwWCYAT8eCiQZ/vXh9sMkeP35GAgD060k1/XENXRQYmQ8T7FszJq/fz/N/Sn3l+V/cjBba7f005rS0vKaspK/cBhaNFV4jmdwa/nU/1OxLgXXm/kpINTfLlcLeNesgK1c94C972rQIbqdTr8fHxwlNv4KTVfadYWvtzfwLalKMofirCpiR3vzzDo0PGNAb0Fqmoj5Q/286pCIKf3VRO2vmWUS7XbdIJliFPDXjXQYPbtbqhtwHzWwIJ/d/c3DxbGDetkm/G32CvAT7zpfHI0bfGwwkItihE0njcE2gfgQFOjbSpj914bYCWbdrZR7brDL0YDOwM1bWGfOrY9v8askEMNeZYiR4Bn929SQjP1HetS8V8JirQ+O6Q2A4QJI3/M58z3mDL61cAAEf90Awrn7OS5QD14jimpRL2B2G8sIse3FqX85tUwJk/TLgwrxyRz1YcEz+sRCdlEqIsEAQ4hBqDzXs0AJ7rpDGwobHRmPrOIIX3077wK8esFJ90G9v9lmCAx5y73yyjlj8CUq/fmNpLUNY20eF4SF+f2URoigqsdbk25ggIuN58k+eMjLd2t+hqgCTvsS1cEOjXCr0N824ahOWxHQSxjBKYJ25Xs307ehEY2B0nQOC8WiWvBQVnDJQZ08o9yuva60e0U1pnyEiR81u7Ms7QBCJafkfo/VehI9mZjH6LCNzcPN9Ih3PSVLINCLQIQRsPTT6mscX6W46PQEILr+5kcRdeN38npW+vi2na++Y7hcl82jhI+9KX/NgR/79Uv/wM2ukf938DmC0y4DUwptZ3bR1AXtVcaz275z5t0wu+n/+mo8gW0zS743HW0hBQGhR4TLE9NPbcR4DgiDyZgA51iusaHWMdFX56gaH1+Bk6DQaMIHfG+uw5j762AxOks0b17KA+Ag1ngMyZ8qb7RH1N8XJQTKDCBvxaYEBEeWbqgM9M/9+SjvpxBwYyEL06nv1we3u71vrWX/xMLL8Al2MDB1Z2MewOZbdx6Pqk32hAE8WIPLjNE7gJUUG3KYI2p2vlz3OWG4Xa5lm58MrzrGw/Iw0hRwvSN+FrDKOnIpp3+FbUdOZaz8PIEwjIHhaMSnnNymToWqSGnr9lMWm9R4CjA7m+22ynRWN2xm2yK7uIl9sdQJl7lFU+bzBg3vgjTN5PYOpn16nV01OJk31sdvWIvgsMtEJbp0wddRYInAEFoZd4+HluSjMJ0Vkmh9qck5V4E+I2VcDoQKtfAwRuq2maKtg9x0FrA/SrAALzh2G3SZnSs/frWX6rwCCCPwOBu7u7JxCQcypmk3lLozp5XC38SDnweOKxzbmmfHv1kcE2dmJw8/41+8IgJ3OueS2L3hW9LLaX5bDtrBvvWx4yXZA8AwpyvwGPt6AJDBjMUeYMBqa3CKxvWAYBn39ZJ5ByY+DavgLN6ze4mPq3yRV1G+81uT4zLdD0ZKa2kkerx9QmvwXTIgOW2bPGnHXKNGGIzsNLo85XTRO00JzPX4JIXpNc5uQtWKE01Llry+7ehFx3HofRn4HAGbIgNOS7ixRM1ye6Vlm+hTyk3GnAWakyxG8j7bQ3NzcX869rrWc7vSUSECAQUNA+5Rv+2/PIkfJgkMi+aN4H7++Ar5+hUXA+XAOQ/PJM8o7S+vvvv58MsOea4yUSDBAUxPhMr7s1OZzGWgNvXINhXUAA9RY0GTLKQAMBlDGvUXH7k1+bGrNM0shxf4H0Y3sddDd14DS7iEDjTch6renzRu7zPEu5bxFags8GwqeISAPqu7amf5iWcptNtL58+XLBB57/EDCwM4j+f1SBHdq9lpr3s1Z/F5whRXvWO0PZ6n72+hE1D82Kn3QmlHlk8HfHa+rdeNauv5UyTdlnvIk2ReBrTZn6ukO07eeNW6xkpoVG9gaojAl8raxsOM/IWDvPf/Yxo1wcU/GyaPSt8AkG6CXaaLS6eNzQu6cyTxmeeuHUDxV3nkve146L16RJx05Ati0aZFTLDkaLTDrPtS4jU54mCK/YZ36jYDflkPNEu8jvZlPcH5Oj47EyASrn6TEy9b/HJGWPAGGa3gqfmy6fbJflN/nnnut8jcP24mkCV7Rda0YuxyMwYEW9o1bmpOTyn+GZJljtmaP2NlR21tC63u168mV5VmBT5zfBmADBVLezQOml4OJHk/lqo0BvyN7rpCjpmeXci7W4Hzz3hKe3tta30Hozfs2g78DNWv0rfhM/GtjgveaJuzz3e3jlPdTtaXH+2AYkBmKaUzZf3IadvN7cXK4hoIJlP7TQ669A5HF7K8X/uWD15ubbQtjk1cYAQSblgH0V3rC/WojcIM+hc/Zxi8iZ3O/NfuS8LS5d69tOhK0cyzf/t2hA6xePpwY+6KC2PNhePh8+2ilo7ThD3x0ZsMLfoa8dKGjXr2mQEZSVYohMn+bc1+qrrM9Qi1J8j+fdyAK2AwBMszP6070JGLmdPm//35ImOWsGnV4UledafYMeA4E2b9uAgEOxMYwhKzsbY6drbT0CBLnXFCrLpvdHspdpOaeiSji+gYG2Un0Ct00B78AM+ZL+8jOcJrBHPBmjt6IGTBllaq8SToCXunGKdJFotDm3vta66Me2i6TXBnChodcLEBAc6U1HAMinds5rO11HXpnv4YXl8CxZ/gnMXFZrR0BXwCxlmOP9h0QGJjDQGjc9dwQG2rX2/DV1tadt5Uikl/9nAM4Rk488kpDnXFnPI7IyvIaa8d8NvCMeTKDgJYDqR5Hr0jx8Ks8svrIB9+uD9rragkMq5tvb2xoBap7Gjo9n+Gnj14xllPoEBtZaFaT4OsvkuIqiIuBY63KHNUYAXqJkLY8T4Of4TxlRqvSy+PxbgoEjPWJA0N5UaYsHbew9FpjWxs8eaWhaVc/1A476MBrAvm8gtoFU/jeYPkN8c8a2hpGs8Gjix44Ivmx70la3j33LsZS0XC/A6bT0icfaGXrRNAELmTprBwDasT13rSFpEYEpH64bOBrsZ4zjNYrrjLcRBcr/DhkxvMbr7ec6Xqtoc2wAYAIUv1JUwAM9A83GOsqUStUL/uxB3d7ePuVHANF2HOSCwUle17oEAVT2VMI7GWwKJOdUYhkDRwqtrT9g/da6BBW8R5mgYkzo1rI8bUHsBViNrFjtKXIscBHW16+XGzgZhL21LLdxRqPeIlFN/rxuoAGKFkVIHdInlL0sWP369evF+/X5gh9fETVA8BsxlDM7J46UtSkj8mviI3nYpospQ7QRjFZYv03rAthX6S/WfXKcpuiNDXzGdKICrPu1MvvdOxC2/2cM/xkw0MptRAbsgMCZMhqamspvIaadEDbh9jnBSROSSWkfeVJnBaMZfN8/atOU11tRC3dygHLQcZrA72IzbTunoiXR2E3GLLyiorPHxL5vQKDl7TFhhcrrDVi6/rzuekRx8r/Hk0E467JbaBX+EkC4jpOe8XWGorkam2HW1J31fSvyOLPe8oLVgNqc7xa/8jXZaVMsG8DwKCvYGUXhu/XcO2L3mh3HRtp1RAQCLZo0rX3hMTKV8xYNIs+t61iXqR3UE6wHAbrTk5rdzfOMZk7rB47sAulFHyo6Y8DPpG/3ds+RjPgNAvi8Q4Z8zgN9Zwxt8BpiNe08ZiqnpjiZR4CC8z1CwGcRM+nMYJzyOQILb02UDSvF3Y5tjgwYQDSiMedceJ63p5G6sM/ojXF+kKv0WV6T3TYOqNjjdae8JjsGCo2v9kxYzpRuytvy5bpM/3fK1MCP9OnTpws+cu61AbyfRZOTQnlxRCD7V0xTBX42/6cogoFAIjSJ7kR3ea0AXxXl5lHeqthG9MipsUwaLBu4Wv9x3LGPbUOskx1J9hhiuXYSXAe31WOi2cCUT52VCHL6j1MF105xXTVN4BDgruI7gz5V7kyldwxrYVffD4PoZRil2YA1BWOPpCkvPvtSw3iU/tq8pjyOQMKOBwY67XhtXV+TJoPAo5UglWV71dBgYPrtjIk9hwxsDmgrql2b/E5yqwsNp71zKuUWjWjk6YoJKDdla2C2i3w4Pa+fiQ544WJ4/PHjx/X58+enazFqBhdt74afQZO3nP+RUb+6end393T9w4cPF5tbOQI2gWLyzECAMp2+45qAo534aMTZJnvijTw9QCB7FCVowJHlBSCY17xu+fVYItha65vshE8cV2z/GcBpQMB+MaBw/kf0KgsId2Cgpb8mzdn6EO23aQP+JwhoHf+zPNlpoDMS4FWm31vW9P818/7ViHPiTdHY6GagWUkYXJ4x1M3TZiQo6Ynmyc+vX7+u29vbZ1EGg5rQBNb5s/Lis5MSnWiqh0GTjYd5x7pFyTFKMnn9ra2+5nqyDml3DGCmDvIe/TRGfxY1oJP6ELRm7Qr3tki0gGDXgLbJuGU3Rj46qUVfCaSm10RbJMC6Y8fnXXSorR9oBneKQBFU8r8jAQYFLU+Cc9aRz7Odectm12aDFIKBLH7lx6PC42vk9mowQKadBQOTgT2qqO9PUwBUKjae7jCCgFafM5548355b9c2DrSXKBjX3crU9TR9r+HegQqHvn5lkGBFZHnydRuvBiDibbUoQsqksfezVMY0XGutCyVqYJDr/GjMWutC+VvumyFuICll8z+fawvSWp4E6xN4YJ4NRBEgNKDSxlMDHowEJkLohXN+TeutwQCJPOYbKn6lMNEAy8Ak0ymPchYj5OkB14Uy6I2F2kLByYYw3yZTaz1fm7LjVQMbrewz/eu8DEBIlmfnz2c8zluaxndHNQNimy04Q1eDgYZQXeCZwo+MpakJ4A4ITMomAs5wC4+TEX0LZcA2W5G67glFuZ8MVM6249pIwgQEGlj41ajJTFNGTGslFQNCY9LCiQ5lMt+mlLg7HtcOOCzrd+dphCdAkDY7GmGaDEh+jKKwPZHZthAz10OUzc+fPz8t7Gt95cgK85j6yaAk5aWvYkD9ClyTgZ9NDmnnyJA/p7Qc5l+rbxpHUBWeRDYYCYjuiEFqvMh97xPhNQKcZiD/PQ0zAQHSS+yMbQJ/Bgm7sLvHdSs3YK05b9QD4e80ncFrHmMBx4wQ2aE4E+Fb68oFhK3BPLLSphaC2T17tvObIt8NYDNnAjNNsbwGnTHIVmRTe+jhJB0HGssyODiio7T/ThEBK5X2O7pHsofsco6eX6uv1HcUgV5rDJVXDnMhkRX6JD9TZCzl7oBKM+gG6u1+AyUs3+Ni2jEuZTRF6TQ+UvHzXqYGbm9vn/gXPjua8yuQ+7Yt/OMUwsSnNtducBhecXFa0y/kFfcR4DoBG1K/45+6eDzmnHWnrsv/BlymfvPYIJ/oaBEQTN6/HS7fb6Am43c3leGxOMk09YPl/BoH8GowsENaLe3OuO/IjfBclc+pcM4ACaImH4/ax4HQDG7OWz5H/JqUZs7Diya8BAKND63OjSbhPhOG+xVpZ9joWR2Br2Zg17rcuY1y6Dp4YHMw80hDHQ+ZXhcVLl+JW+v4zRReSzoayOTBCEPSmjevBZrcR6QoZK6cvrmZt5edym/95uc57/09GyD9KGo8Z7+0H41jGweUx8iODWHO8+bBpFvCO4ILTw+kLBvqszp7rfVM1rn/RurCejmvyW6wHXae6LlT75JoR6a+I1DPHD/57L7i+W6Kb9rHZAL9jb4rMpDKHt3bRQUmgTgDJM4Y2PbMNUy6BlnxmSkfGuzUh8fdoGZaCmcQ9hTW4nqJXXvM7ymasPv/KyhNkweOjbDDrF6Y1TZiSZ/w1aymKDOYOdDp2XMwc9GaDb/XDLhtHz5cbuLDNlsuqFxaf7VxRYPTjDmBqsky535wGa679YjDusxzp0/YhtauEEPdbw0Gdv3DV8oaGLXxnADBWutiHESuHW1yZKCR9w8gD1MO5dHAYNenGRd5Ng4RdTr5w/wnANuAsNfm+NxA2fwgn/jti/ZGCqdj2EdpK/tvZw+iQwgOW5/v6EVrBvL/TCFWBJMn3e6xnEn4PLCtnBqCDXnu8VqgMNEOyDQg4A70ALXi9DwfjVvusy1JN/VXAwFnqQ3iXxUQNCVgIMAFWV6B7Ty8G+FkLJsBMrkP+Bw9H/9PHR8fH595SKFppTIVqHnFOu14mXxsnNdaz2QvSs/hYStSK/epDmeve8wzHaMj6f/b29v15cuX9enTp2cG6K2JQMB6xP0SPUQQml8ofDYwTtSJb1gwckA5N3+bh0t+e31L87pJUxrKSvImH9jGHKfxmfzW+gYGJzBFHlJ3Uxc7MsN6eetg86sBf44ft9XlNeB/hr77q4UOafDeVJkGKNogPgIC30NGj42OIhMT2TA2QNLKp9HJgMm5BzkXDFIQ17pU8i7nDCjY3dsZ/SPB+xH9eJY4+L2PQPugEH/0vggYAggcPdh5IzEuTBNiBIHeqfd3t9Lh2oK1vn09jvmGqFyohEjNO7PnaA++yV7K4zinEmuLnew9uW42cK7nTt+4rryWfrWy/9XWC6z1fKpnMgBpx5nX+hip4riwkeJ3OWjs2C/m2RT9sVxax7hs97FBdvJvTpbHZYtM0PhSx4Y/Tb6mqKuBmcvK/hasn8Ev+cD2t/zZd40vZ+hqMGDjPxn99n9nDChQa3UgYK8iTCLSnIzsS+i1jNfU9qaUDAh2QkVA0PL1c2eAifth1yYej+gtgQCjPTRq9AS5Y5uPBgHt/Cgq0MB0lHMQf6YJeG8yes6bHq49iqZk7LUxzwYkm0K1csqRbXAdyX+Ci0mBJ8/wmoatUZPfBnistwKmWOf0bQzqr0IEtZY3EuWHa0wIeNhv5LGnSGzcuYrddmDit2U211lX5+E2GKhl4RzrZhk1SPdYpHee6/zstnfnNNjJ+KXcJa1lO/Wexo/bzAiBQR+fm2Tgh0QGWNguGvA9KNpC5fz4n/MyvJY6+r7rzTzX+jbnepacb7vnMvi/KT/fO0uN5zSAu+fM7yk/Xm997/O3NP4mgywqeu/aNn31rW1N3CIF7r8pYhAlw8HswU+lTXDgdtGIN+B4La/syaUdVqwNbPK8gVtHWRhpSHszFlnm58+fnwwV+bJTyjT0uzFKByPOBevVgNzPogYG13q+fwLrR8MWIBMgwP9tuoBTO9ZJTS5aXVudGxhk3jTyNISUC6ZL+dk9skUf1rp8m6UBBeoqt53lTn3T/rep2clYT//5bFtPMIEt0zVyexUYyGAkIylQOyPwWoPpTHQg5TXAsKNrwQzT25AedYwRoQGBBZfUvD3TNBdMAOP6t7ZPAj8BgUZvDQwciiYYyI5tAQIEA/4CYVtbkPUFVjJU2u16eJaPvSRtiN5BlPikaHOkl2YPImPB3iDrmXpZTmnIOVftuf9miHOP6yvMR9bdACgLK6N7uHWw58AdaqV3Ns2VWza9NsOe7FsR+2onXyHz0psBcce65BkZS7/am6asum72iHmvAQGDZ8s3w/L2pD2GDGzWWhf5px99nbycnESfT0TZp+2xnrzWWW76l0DJxLF/LYg9DQaI0h22ODJM19DkrfI/EZOnCAwWDAiO6jq1yYqa6VP+GfJAthFx+GxH5MMZQfueqM3PzPO1qYEAf+mN27jy/256wGsFWJaVTVPUSZuQJA2yw6F+V/uov5tBX+v5lEmUf3s1i88RDDiaFaJ3SQNNvrfoStJQnuml5sd3s8MTAyS2wZ5dCw+bh+xTb/P6KxDlqYGAUPjvt1L8jQA6d+1ZG84dIGhebqtvAwMEkRkLqSOBJsth38YuTTwywJlo8ryZL6cVpmfpzXvst+NEnu5jOxsRADXds6NXiQw4JNJo8jAbKpvyoRCkU73Sl9eIOttgptGnwOfeRJz7afXbCZIHV467gb0LR7VzG4wzBrs9M+UzCfKvGiGgEaOi5zRBvvTm6MAOADAykPa1Pm7eRzNWnKZif3Ku1O/Ae34xZRo453r4YTDfxkLSJl17hY3kUC/L5fqL6SuQBgPeRIXz+p464dH8PTNdRuNze3v7xGfW81chyxavrfWt7S0S4M8Ir3UZXQglPQ1gIjSuR/IwAKUhbHrVRpt1b7LsfiSonjx7yu/OAPsVSOcTI2yeM73rN9kdA3uX1yIKbjN/thuTnTmi0xKewZAVpu3Vi5cY9um53fM0ujx3VKBRCw9aITblbUO/u8dnWyet9Xzf+ImaQLX5tVyfoh9NuM6gVA+Qs0DAvHgrILDWt3A2AUA+9UrDn/NmrPJWgT1Hh84nNE4ZaQPZPGqG2cY7Xj3rECPqsD89rLXWM1kP2Kf80EgQBLBM1nGKUJ2ZauGYiaGaALKNCEO0nm5gJKF5jknL970dickrdm9J1idt6okyxnfU2R5vF8y8CUbtoEwRAfYdn2ljfgeUrW8dpUr69HHKniK95FOri4GnAeUkL9TF08ZXni4zgGlTXDsdnOuRTwMn84V1vCZyf9U0ARvjsIy9HDZi19hmQBv5HpniqYAwzaGh3KfSIwqjcsl/E695ymQiDwKHkd3Om5vL6MZLp2Emj573eL2hTt9rZRzV4S2BwFrrQnnY0NPg04tg+N/G6+bm+R4DoSOFGGoAy2Ng4m1kNnW2obJnlbbzWRpMht+pVKgADYQamJ2AKNdnGEx5ASF5wTYEkPg1OUcIqNQpu23BHPVWIgOhZiTegiaDRMNkEMC+pOE3MJiAocvL/xaNIgigcd7puFzj+LDcWBYMgqnPrX9dXvJm/fmGgPva7XMdGII38HS/8cj6NrndyYDBLalFqqnPzurfq6YJKDRGkamAK0pB5f9c4/0JEPCevScygh7QDp0abRoE7BjOshqP3C6WkXxonKxQ+Tzb5/sTHSFM35uAwPdS489bKVTy0NMFO2+lTSu096zPGvEGtKyEXYdJjkJWwDEGO/AdI8F7CcF7bBBwcJqAkQLK/e55r8FwdIHGhQo77Y4nRqPW2rbW5RjNtRaiDviJ55s+yWejaVDfgposUTa8IG6tS13I9QHN6NnZSF5M7ymC1sc8PzI+lHv2t+8TXBrcNtDdHEafO+pjWdrpQYOSVobtBNvEtqVMghPqBJfnPGnrXIb1x6uDgXgfGZT8GlMGTEP4VFRWmA0InBGk1OOIrOANHFg/52dwwDTuIP9vACTpeB5qUY4819Aw6z212dSQqr2n9p/P7M5/ZUrf08P31IC9XUcJJgO41iXvLGsT8Gr3JqU2KSiWxfHWwICVrr1BTxEkTWury9mNxQlsTqCfYdOpveaxn29G4oxTkq8lxojyw0Uvjc59L5kPu/HNCEeOMTT+lDB5TRBIQ51nw8PGA8rrBGBbvSnva/V9Biaec1rO3q/bkTLyRg7v2ShP+s/tbZGUCRy0cUgQwKOnbpyGER/nOYE6j5EdXf02gdFkwMEUMj87Z7EzLE3hkAF+o2BH7szU0Rv4xGPgc1QsZ9vVhNYC7P8TICCfjqYzGk2Cvvt/NDj+HSiyOXm5Nvjsp+nXlA/506JHEzCgVxyajFczhlbG7VUrpvE4aeDkjIfHMpm367vLyzzLsYVRd8rZ46IZexqYBsY/fvz45AEHCES3ZZHoW9ARACd/GBliRKCN8V0+j4/f1lGstZ5eAeWiQ4Kkplcn77TVhZGXSR5DAa85MtrKZ/npZI4nggFPmex03M5hdRSAhtzAxiCABn5HHB8GWU2H5PpZQHD1mgFXIINlt/8AhcRKaSLf2xn6ptyap28DTCCR82lRSFN40/+JznhQZw17I3oFk4A19Lv7z+O/K9F4+s0AL2Jz+J8RglADTvRCmgIkTcbNhjVHjifWK0bMC/nWulwb0ICJ28Q1KsyL7eczEz94zQqYgJveDp+JV56jlbeNG/+z3GlMkldU7uy71JW7D75lZIDUjKr7mUd7vi0fEp/NFJQ94eh9O1HU8dStDbymLs0gTm32+OAi3ixsD6V+kSHrdcvUbhpopw8nfcm8eY/tfQn4jZy6vuE/n7PNO6KrtiNOoanQJHxJ35SQG2Cl4XuvQU3BWqgDBBwunepgJHw2UkAiH+nd8Jr/N6W+1uWq2TOAawIC19DZPjL/34IYEfB77hMImCIBROFpfxRuAwJu/xHPJlDAexw3Lov9MkUIXDdP45FvObbyjgCjPZYoXoML8tNz3HmOytKe1pnx2vjUeJWowFrf1lJcE2792WTeMWR9xBfzn/3lKErj3zSleVRf9+vu1T4DAN4jwDfo4xoTj2G2se1QOfG3RQCmHwEO28t7O6DrMskf9pMdQJZ1DV0NBlqYzWRAQNp51q8JAFxvKj3Wk++P7jzqs2W1DjgTcvVUQAMEO2oGJOffy1Mbn9SRZfk+nz1T/x9J9B74zYH2P8CwrXbfzaHn3HyYjLpBcHvW95qybICueRe7/zvg3sZ5yrBH3fjB9PYuw9fmNbEtGQte5OU2W9YbYKIeINDx8ymP60zegqb+Ns+4c2IDUMzLupAgoOnr8J1RgGzE5FcY6RxN8sp+bq86so4BAAQCBuyc8mMZaVNbZGleWv4n4MBrlElHNrwOgYab6Q0GJjDRxpXt7BSJOLv49cWRATPPgmbGTnPck6H6HgNmLyoK3Ogxgm7EGTqKbLi8I3SZtDTyzIMIdjKu1xCV2w7B8r7bMbWpgTrf9/lbAQK+DtgiA23tAOs8hds4YLllcPOg1uobs/AYmsAjQWL+r3W51XDyOxo/bo/fJKAsmgf2CFs9zaPk2Tz0Ztic1w4Q8f5UlxzN22n6w+D6rWS3jc/Q5G06MtCebcCJ+RoYNCeJawooG2utpxA9p7Mot4wI+IucIcuf9Q2Bu8FAxsnkJLX/HLvNiNvTb5t/sV8agHC/NHCwk2U748nLgICLFM/S1W8TOHTH8HSrvBuxo7MAYGeEcv+sEecUAfMzgPFzU13PTheYd1b0GQiJXvCZVqYX9rR6HAmbqaH6Cfi8Bnj5UZTFT974pu01YJAwRQU4oKcwHon9NoFVl8E+dNSKMkg5slK2ciMdybHzakT5bTKx1qqySWqhV54b1PJ4llpEgtEBttlt/xXAwHTd3ihfNd15mmfLicFP37WNifif53G2DLgydrgbIgHBWpfbWDO/5nS6H+1s0vDaC298MDBqnjuNLiNWrVwDYudnwNauma6JGp+lq/YZWOt52JBGwIaInd9eXWK+zO8llLzPzO01ZUSDGyPMyMAZQDPxiPdcbgMEbFMbAHm21asJ2KSkX6JYp7RH6PstgQLBQLYe5oeJPn36tD5+/Ph0jVMHfDc+7Wh8Y18mHY9MY2r5URmmP+khWckx+hUFZflxGc3ITf9Tb+/NMBlKl5n/jMCZV82zcp4NwPC51laCignkW1mTPzY2P5MmvbHW82mhtb4tnEu6SQew33YgP3maxy2ddZVBtIGLIwN8/c/9xAjukX7jveTLNwvYFgNR82Ay+tM15tUcBfdZA2ytb4/sT4vmrLWfzje9aM3AFD5rCtDXPGdvolF8CTBoSugsSHB96Y1ZOA2A2sBq/00O+yTv1LlFB6a27sgD56Wg65p++RWAwFrfPrIz7YDXztvHdNIWG5fQxF/KURusj4+X2+hOfW3jFmKEy7LKfI9kMXm5frw3Pd/4wXs+txe0e8ZydORANP5MbZjGk9O/9XbErd4xdgaLzQA5r8kB4XMN7P32228XWxPbY29ySh2ctIwMfP78+emcYILynDEYIxzQm09bu8y///57PTw8PP2S9igqwKOBAJ8N39s6ljxrfk79MRl7p3OkcBoHLwUEL5LwCN3ZhQk2mGutJwVoQ3pNHc4amTY/T+KbBDyy7m7Lrl6TIlrruTcUmjp5N2j5HPPm/wnFn637pJRbWdcamp9FDP+3jxHx54WFno9caz0zste0q3kxAXypa9Lt8rWB41gywEiaCchZ2fP6LtJjY9HSG+g0o8H5zqYrEo0gT3ZAeKd4nY752TMjb98a0Lb2tOkA69MzQGByEMyflEMZTfl5tY9RYO+wx34MGIiR5pQBnSCC27X6q655PnWK4f78+fP6888/LwBB25GRvLI+JYjf/c702wSULHft2hFg3l07S1dPE+xoUjRnr5/1Oltd2qBtkQunmYDADhCYfH9SWLuox5lowqQMWzrn7XKnc9d/Ku8I9JjeUpna+5/eJPDHigIQaGDX+rY4ykZrrXmAUhE0w3YNIPbzPO6mnXbEcG7zCFl2jmfBgBXcESBp0YipTsx7aquNXfqN+TVwkXtvOU1gclto/Hb91vTTpG8nw2MQwKON5uPj5TdgAhJSZuqcyAC99rW+rYMymG1rWdj39OQfHh7W/f39RYTARpxyORlk/tpWxgZd1uXTGDgzVTD1B6PdTNfqclYHvGjNwBS+dCP8LM93g/csKEh9rBQ5eClE/O/65DWi7EDmzZTYvhbR2AGGNnhae4OGvRHSjketXCvnZhwmcHAWMLCcnXJ/a48qdYhMeDrAhp+AIPfIRw9ir3xvhimyYq+g8aZ5xn7GHgbvcxrrGt7vwIDlwPlz3B1Ra5efn/LdGTrKIN8vZzk+TuCCRJ68JU1GhavR17r81O5kTCbA2tKu9W0dgkEtj9RZqRe/70AwkHQtMkA5axvd2ZmL4U97nW9AQMrwK39ctLgDAwYG7ZXCXb/l3Ia/9amfm6j1awMEZ+mqNQNWYG5Irk3PG50eGdEdNYNuo98AgRVMEFaUB7+50MCNAcFE5seUtvGV99jGaxVSU+q7+jZAcLacM//fSqG2VwkNCLiY0BECKjAqEIOho3FwNKVDpN+QP9O2cdc8DdO1fet2JY9ctz7Ygca1nm9yQ56Qp21M83nm7XA5pzCbgm2gl3Vo/HnLBYTN+NKT5RQLDXfuhdiuJh/Wd+RP8j8TEo9j9fj4+LTWwps3pc5cM0DDnDJZz5ubm/Xw8HDRj4nSJX3AQfJ8eHh4KsNbD7vNbTwxT/6n/HpscFxMht7lN5oiNJMedZ2uHeevsipm5+HwPgXBz12jpBoQMAhwRIDpnTZKyGnN+J0x23khRx2+UzRsj9PZILE95v9OiEwGBrx2lt7akyIxMsBvEHB64CgysNY3LyS8MECzQmH5ub/WPMjtaU1eQlMwqV/zPMiDVj69vsY7Kza3i23b/bfxjTInENqV76hFrnuFecZF+svrmzzm2C9uY+TmJZ7Wa9HOiFsWmsHe9UUzVDaIR2smCJZZBy74a7sE5h7XC9DIM39G5+ydZ6zkHtcGcK2A+9e8nCIDDQg4YhDiIklH8dienTxNY5H19pgkeHJbzuri02DAjLrWm7d3cMar3t3foaOj8lMHA4mgWqe1Qtl1pgfSteRB4Lo3PhL4pPym7JqR2AmevafvAWtvCQ6i0A0Ics4IgX/8CBZ53dpDhRXanSctFUz6I55UaJqOsLxN/csQrJWKj24fFY2vU+4aX5qRbzzZKU2W20B+7jejnXEbcBCg1WTZoIG8eKvIwAQweS80jbFJVo90sMPnaz3/5gXT01iv9Q2kJdrK6VvmPe0zQEPM1ftJb3CR+0nPiIOnB/jMdO7x2HYVNA+PnDv3QY6tH5lPdM9k+wxoyeOzdBoMsPEsrIVJkn4XCSCap1E7MlKsz8Sc5Mn8Wx2bZ2eavLiXGHqWcYS026rZFuWwIH39+vyDS5PxMu/MIwOCVs+dMvpVogM0+g0ItNcJCQY8vbXWusirRQfa/3ZsBjljx2FF3p8Um8djzr1fAe83GWhKrhlre0INLFi5OVLCthyNx2ncN344XRsvrMtk+AOm3oIaj45041r7V7gN8m3Uqd+Yzm+PUccyX/M5xtTGO3UjGKD8EbTd3Nys+/v7p/S3t7fP5IlTD+kzRgQ8RZC62cs2v9dazwC782I+tDmTExz+HDnGHDseu+Qhj21fiDN0GgxwwQQLc4FnCz5D13ijR4jMCvI1DFUbOA0x7+qTwegvz03Haaog7W9vRbBvLIxWjA4v7UAX67W7/taggFGBm5ubum6A0wcEDEeeL6l5DObxThmlTG4csysj/3nvCKQ2hRdy21xvKx0CoSg2R9wMnlo5U5n2NGlkCDSaoUx9GU5m2c0RyH/yn+16KzoCAG5Liy5Oz+30awNoITpv7COv06LRa3Lt8DvrY/BBA9f0PfudEYK2F8DRcQLDnhrgc+TT2QjBZKyt99fqW4av9fzbBAFfae/ZLQCuWjOwUyQTNeV01sgfCapRfVOMLXTYPBiXN7WPzKVwNCE6GsBH1KIDrPvj4+OF0WfefCuiIVbyjD/eb4BgR+4PX38rUGAgMBl1e7K51ohepBVgzm2ImjwQFDal2pRKk7EjOWsGc1J8pjY32jx484OgivJkj471m6IUU3mNJp40r9/8iYxwId5bgoGmc9l+y6oBWuq/iw7srjceWx+wPp5SiFEO/1okjUbMsmSQkPTcj4Dt9d4Gztttpi5nnVq7DHycXwNOZ+wceenogdNYT9gG2TE/U37oxdMEkwI5gzZDLw21k+hV5/81czZnPL3k28CG69KenfKePJOjOvPcg52eWAZMlOlRSOq16JoIws8gLhj0mgECgOYt7ojPNCXHcyu0RgYGoQnZN8Nu4NUMSQtxTgYn13bTgTmGFwFcGYtZWU4ZvBYgTorW0QJe41gIH6dXdUOctyaQ/hUiAxMd6bH0ndM0XT0BhPa/PU+5oE5iBNP5UR4tx9RZXDfAV34pA7ZRzYhb9ltk27JuA+w0lr+UcyQ3Lfzv6ZEQ9YB1uacG/DtDV4OBia4VtGsQy65OLrcx/1rjtAM7Z9K3tk3GfgcKplBYi2Ss9XwB1Fr7tu/ySrom5FPftftnvOwfTZ4WICDgvH8Lr05Koo2Hyag2Y2q+Nj5zDE2yw7J2/UVFaKXY6so6NuPoOgR4ekvkGF/vUEdiexnJs2En6LJXSC++ATETn6UhYX246dhr6KvXot04+p4xRmPy0mfdd5RD9xn1nHUo1yNYP3748N+7DhLsOVLRwG6boiNgODPF1o68f9aho2znWnMm2njb1ZN92ID9jl7l1ULOB3EuiQq2IcKGio4UIIn37ZnlWks7XTPj2hRAEwgjRt/3tVYHz/1zMLV7pJd6+2d5zbow7WT0nfdbU3tjwN8d8Ad4SB5UR6DYfT4NTOc38Wzy/BoYSHqn201tWYZdV4IBl83zKNbwlDqg1ZFj1h448/ciWoecWf8JDDfFa68y4+zz58/r8fFyB723ArJHdFQvG8VmcJp8NuDq/83wkxo4W2veRCr2oMkADTYXIp5dJ9auGwDvgOP3AIDWxnbNz5BPLt+2oOUxgaCJrtqB0AOUHefFDE3ozpZx5IEmbcqj10DFPnl+9ozJtK9fvz5bgeotKCcA4P9n6t+ICsiLAKeOvabTU/5OkG38d0DmTP9OBu1nUHtlkBsMZfqgTRs0avcnj2etHnonTcqVz7Z59jzTpokmpe4QKu81IMB27GQ+9YjMHnmvNuxrdUDP6xzPbD/PWXcbf06XtbIy1m9ubp69PfCW0wRHY4dt5iK9aW7bzzLN1MepB2WTOr/lG57nWTo1eW4CCq4f69AWIjYe0S7QSeU4YDln+DT9b+RICK/veDC1p103EHfddm0yXQUGyFheX2u/d8DuuZBBxGSorIg94LlQjGU7vBjiYPDWlAYBXmxyNHha3XdEo+Bjymmv57yEJqSbelrJNm+T6dv1Kf3PJk8TcM2Af35d0EDR85BHSsR0BOp2NClAjoEGRlu92/znpPDsQSVPGh16/4yy2KtvvDfAMeVaQFsDRA2wNuPQ+jnp+MZU2mR98rPJ/eux5t81uuGlY9Jga5obb84E+yvPnRkL6QvrRtbD3nYodmVyXs6CpiZPPD/jILB+bH+LYre+NNB2m9srsK8OBhy6SbjGSDQDh95tnmkdvwMXbXBTyTAKwLBv6pABn8Um9ETY8TH03NAiR4OEhmSbML8UHOw8fE7HkFp6AjC+VWBl0tY6NCM3eZq7tk5K7GfTtNOgr3nLYsv1zvOY2teQ+46saEMEypMSakayTTu5LJ7bs6ZHR7JHn6O3fJ5A185DZ55tzLNsG8EjHjMv9zMVqb3HtwKzU/+GWE9747lvXUwP+ayeopy3ejS93upqJ+IaUNzqymhPM6r5tW2a2a4jYLIDAo1ahMPjl+W2cW+HJHWd3lAyqLnGUV3rBWAglaSCodccpcdOYKMc0mRF2xRDO58Mfn5G/9xS1giR5acdzQgeEduye+asUXRIjc/vpgrWuuRjzrOAy2np6bWyKIiTB/arkw1JZMMbDXm6IM/m2PJpitqetLcJTppdfe2J7LyQjAXSLmrR5kdZpttO2WmAgsrNPOZbHEeGLWQgQO/cURuCHo9rAxvy3Q5FdFOr5xTK/RnUAOAUqWkesI2F9dQOyDe5adGpRkxrHdtkbZfXVLafsRzyng19jGoz8h4XpgmwH+n2Fl1oNm/3PPV0A2Dkq4HDEV01TcBBaq/SncU5ERt/X+N/MsedmWtHYMArxfNs83zD3LYuoHnpFr5rlUQTiLNp4+VPeXCQGRA0peA2WLHuvMkpUtAMXlNoP5OaQd8ZcH5/YK3LjVGynqSF3Sfl6nabRzuvIOcZ2NkRcQIhNASe2vBUV+uf5sHYkzmjMCeyoW7AgrqgUeNn68v0CUFtnvdUT8v/VwADE1H+LIcGPhMIbfrNZF5Hz9tRaM8d9SPrYT3Uyp/C6Q3YTjLtfjwar1O9ds+0tk3pJ/li37CPrXvI4wbepjY2uvoTxjk3g1uow0qElTIiMiBgY64BAokC0MtjfhwUk7I8M0h2iO4lICH1I+BydMDh3jNCNpEVJt/hJXiY2thAgX/2AK4JCb4m2ctr4eZQA0DNq58MWiuX/1lOM8jmG8u8ufm2oLSVlXSNdvXk867zWs/fe+b4YFov1j0TOWlzoJQXg9+W13TusGmezzjfRSu+F/T/CGpg22Cg9TPThahvz4JY53kkcwTTKbPphl3ezs8Rh7SLupF5tLE6GdSpzU02JgAZMmhqzzV5M8Bq9WWf7+o6RT8muvoTxqkgOyZggPMu0/wLKzYBgjDN25dOQMAh311UwAx1VCDtm3jQPKPW1kmBuGPMjyOKgnS9khd52f6nfQQB4QE9z/xaqI//2W4jWLaxGZmfRVb4BgUmG5VJ4U7yYs8k5Z1F6g2QWIm6vJbHBGp39Z2iJgaJzWPy9ADHoes5KeE213qGjoAa683XoBll2fH1rWQ3NLWP47jxea2+adWk786ErZvH7/SWjTw36RPSBBSa3bHRZzr+t66PvvP4cLkTH87Ig8EX87ejRJ7YXvk3jW3bEud/RFftM0AFFwAwobjpeTaYTPHUgBFUQMDNzc2zRV5ZCOZpgqboW+en/F1UoKE6RzyOkLLzm643xWhAlPs0Njn33Lf54cGRD3rwFwVDPplvaz1ftJLB6gH6lmBgmgsmsd+bMrUS4Y+DNHmZDCbyzFG9nQf7nmPPssf2WHn4GcvPziDvAL4BUON1G+vMJ3qF48v1PDKMVpysd/JjZIBlTxHMt6bd2HGf01kwoDxThiOzEzVQ0GSyPRPaGclryDwwCGljmPJiGW3lt/E41cPtIBCaiDrTcp36Wjc30OUo/auDAXr8aRwr73C8vSE2uP33u/RuHH9e9f3bb789fWEux+YJ87/fHGj7WE/KNHQ0WKa2ToLmjrOHmSN5bd7wwzvkR37JhwPjy5cv6/Pnz+vh4eHpaJ6QmsGhl0X+UCjPRD5+BJFnE0/Xeu6tZsA1JUIQ9fnz52fggLyzHJ31dkMNiKVuOy/KAKTlRyAwhfVtkCdg2NplkMhyp3P2VwybDTTrFiXpXwNoX758eaoLZTa6yv3HbV7fkiaHw/3s/uH4JO30TPI6s7+J63e2Ha7fWpcRTtMRGGK04MizpiNEvk08aZFX1qnZBo47AoLkN+XD/CLXk+PRxj2n1SbHZ6KrFxCSQUT4GbxBptzKM9fYaS3/JlDJv0UFuFqZ0wVmNgdEFCmVO7+lTcUdmqIFU0htakvu8fl2fa3nEYC11rOIiM/T9gCAbKrDz/Fy33gq0b/++mt9/vx5/fnnn0/nu8Vy4QuVERfeBSBOBuBnkr1FKoP8dsaUctKebUCgRQEaOJiIxrMpo8bLo/x21wwKQjSWnIOcAPLNzc2TwXUZZzwjOgcM5TMKZy+OCvPLly/r4eGhGnICYbaX+fvV4vTpW8qudZHHXa6HJvBucpvalGqet8E64+lO5dpg73h7BAJct/QV695AvPeUYTSlAeydYbWuY5/ZFkzPuw0GpM1GhTh9TtneTYU2etEOhDulc7RmYEJZudYMpMFAAwQ0hhTq/KgsYujsRUwomtS84slTOiIPKBv/nDfP3zzgeolPnz49TZ1kp727u7un65xvS/vv7+/XX3/9tf71r3+tP//8c93f3z8TQIbW/Cqpfy2cdeRd/CiKcrBxpkykLayrowHN409bmb8p/KbsT97EjiawPPG1ATUrKuabMUllPQEa52ePMvnm/xQZcH3yow6hM9HAAJUlozTpV+YffpAvWXSc6+2tkbcCA6m/+/6sA+I+T9rJ+WC/2EAZ6LsfzgJUg5vUqQGMKd+WH9e1MEp9NLWX5z1txGvX9D/znMZayDxv05HR0S2SwalglvPly5cfCwYcSuJ1G/Lcy2CjsXU4aMd4z3t7QxP/b8yNksgv3kMGfNLkGdb/Wrr2mV2khJ4ap0i8SU7OCQpyLSDg7u5u/fHHH0+AgMovkYF//etf6+7ubv3+++/rr7/+epo2mNBpM4zhJb3It1aoBoQtIsSB1sDCTpEE+Pg6jQuN0FqXgNOgkga5KcmX8JHgvI07T62xHqmbeWAjMykdtoXpDIo4fts4bJ6gwYDPWz4pI2OedZmmen4FolzRQ0+9J+/1yHlb63nkN3mH2FfunzNAgOfM13JtWW95t+mEpMvzdFaanuJYzfMsm+PXazAm4HXU/gkAkxoIaFEBjpXYP5bFcXVWX7zoQ0UTI6xkImBhsu+vtS6Qi88p3FwERyDge6yjPTfOjTMiEKXhQT8J3Vrn3uFsKPBo4Hgws/3eSY9767e3KpImQOAf//jHEyAwYLq/v1+///77uru7W3/++ef6888/18PDw9P6gXhcBAdNcVqIE7piWO5nU1MCqU/qyH7hva9fvz613YOShn1S1FY8lBt7D82baJ6ax8Y02A1Kmmft9Cl3AkYGQ61Pm/Lm/P8kB1R0nIKjUiOP3LYWzaHBb4CKHu9aq7bvjHf6I6l5901+cr6LGhiUGSDRqbOeprGk7Dfj2PTiLnrBNLYXblPuOy/LS65NgMAGM8+2Dbx2dSY/mh7wMzvATZtEIMAol5+P3mfe0evXrNN60T4Dvu4wBQXE0wVWaqksw1QOWTk6MP1nGfbsCAAMBOhBsMO+13jR+J9Bku35HIkAP378eLEewBsuNdBwd3e3/vGPf6z/+q//Wnd3d88WEz48PKy7u7t1d3e3/u///b/r06dP6/7+/gkQhIe3t7fPPGUr39Qh4Itzs29Fk2eQXwsrciAmqtQiAzQ4IRtTA4akac+QHCUwoLTs8xmW4XJ3xs3P2jDa80h+4UPzTGlUbYSasrcn2tqX+wT7bUGw68H/iVoaHKRfJ8DzVkT+NwO31sz/tS4dHBpd697Hx8fRI+Z5+n0HMHeyZsPe0hKgHPGm1bUZ6DP9mnxadIDHBvB5fVdXynmzW45ehBIlpt5nfhMI3tHV0wSukMM6MQZM25hiIWyhSobJc2wLIzhH6Y6Zwi72IHZ1TPtNZwz87nmnMxI3AGj76/stiik68OnTp/X7778/RQcoQPH4DSyymPD29nY9PDys33777WmaxcaSUZgAgfRRzt8yMsD55+bJN4+TU0xcQ0EjsfO2DQhyjfcIks7wJ4pzAgYsY8qvRZ+muk/eZ0tPxeZ7jPi1OuzK30USKHdcN8D+YTups9g301j/FcDAZNQaIKB8HOVpGbBOZhrKFB0+ji2Sn+d/p7cNSXrKiPPhtdYujimOU7f3bN+y/Y6OOI3L8rkdo9aX1KlurxeNZ7H4WutpDKzVHYUdvWjNABvYAEFrvAXDDbO3TzR4BApCYTDncG20vEDDDE/9kl/KPDPA+PwEFI7y4IBkhycaEC8/Rn63mDL3bm9vn7z+AIIY/rQzRtyva3769OkpOpA1BI6whLePj48XCvnjx4/r4eHhqZ+aB/0zqHm1k3e7e7atmUg+llWSxwbHxFqXc/dnlFOTVYd2LX/N+DICd2ScbThaHVxH8teevsv0dGKrEz14GvLmHVshNz5wjFEfpT9Tp18BEKzVo01ev3HGQTG1yAvPafw5fUNQepS3ZZ6y7jHTHEXbDo6dawye6+VxY1DSjLeBfc4nvbIDB8nPDohlmkAqujl6PXYg+Wbq0/U9ohdtOtTOU1mu+mXjGxigYScQsPEP2VBSEMIwenMPDw/r/v7+YuHgbl8B1peDYEJYRruph/mzIwujQU+8ey4EvL29Xb///vuzVw05NxtAkIhBW0eQ58M3Rgbu7u7Wv/71r4upAoIBriFgtCVTCvGmAwjiWb8FTcrOMud5Sr6qQ9RvINDk2+XSaycosvfluVAqFhvv5OkPcfHZdm5Zcx3Xej7/Gn40mpS6y+P/No6t9D3GzY8jA9icEN6zU5H2esx7IeJbkI1MIrAEBZMBJdFxm4Aj71nWHAGKnPDVcefR8t2V6f8tamNQN/GrrS0IH5xfC6fvjLjLSr6TfDajzH51dIDAKccPHz48AwK///77E7jKOoGXgKQXbUfciIUfIWkOPv5s2KZBHCKzvTbARoxrBlqoN/mZiS5vx+Cpsxuv+IxDe+YFDTsBgTdYyjnXEvCVS+aTxYJ87euPP/54ih5kiiBgKke/mhmAkB/T397ervv7+6cy3goMOCxs776FjblW4OHh4entCr7iQ8Qe3odan1oWrCyaZ5Hra11OwVlRWsE3HoTOpLFicjTN0RYSo2lWsPYsv379Nh/repEvOVrRtrq0n9tJxUkw4/RM+xZEndoMR+Q0OtNtbR7vZDzZL0d0baSE7Whe+c64Mwow5cv8GEHKdUakWjS52RtGBXK0TDqfKTqQ48Q3ggi3L/VpEeKc39zcrM+fPz/lZaf3DF09TTAJyxmkx+sNDDQvIMddgx4fL9+Xj5FiVCAbkXBRRpseaHVxvZowTWDoGjDhOjQQkM7nFAFDnX618Pb29lm0hRGHT58+PaH6TBUEbRJQcQEdF9TFUAYABEB486dEHt6CqEw4tUQjTv7EiDV5J8pvssNz/qeCohfVFJ+9CQOO6ddkl55c6uK2sNycW34JmPifbXAdXB6VcYsGsi7Ng7SRJnjbRQic5y4NQQ9l/a2mCRipYJ8kEuAoZwDjWusCZLn9BGPsxwBdA04DL9Ztx3tPfbW6HNEEcFwO60u5jJwF/HFMUKabzHocTrZoAgnO45q2sj0fPnzbP4a2IBFir9uijj7rhF0FBlooqKUjGf3tzkn2UhrKZ+ew8QQEjAhMyqN1gOs//TdNwtCQ8Y52Sp/TAFGm3oKY/5muAYIoDXu2XLDIfRm8X0PePGCZHlCfP39+WuTysylKoC0W5bWksTHw/B2947XWU9QjazBCkW3L2xmlYKVpoJn7BhWTbDW5JUhwdMLKb3d0PWxErAMcWp68d1Pz2PPs2ZX/9qxjJFjf3KN3Fa/rLcg8dpRr5wG2yICJni/ljlMD9nT5a1GTNv1EMHMGuBl4tnY1fZq6t2hAcwLNNwNRt3Nn8C2DTDtF76hH2Meh6NS8QUaHkLqWQID28KzsvmifgYmaIW0dZWoG3gOgGXEKJ8PXbWOhdOaEZKd6WrlNnhX/N2FwG1t5NN42xhQARga4JsDGn5EF/tq1eAUtcmBA5cjA/f3907QAw+UEand3d+vh4eFZ3/8MIoD5/PnzE29ynnZFIbZ3fL0AlQrFSjPnzSO3POzGBw0+FZqnkFpkwAq4EeW1Gf/JuE7REv4PL932ZtCctgGU1JOeZgMDZ+qfPAL+LK+OClyjUF+bCLyo9BMZMEAlsCUdOSB8PdCyG5p0c+6xnFw3KDiSR8sK+cD8KOtZO8E1LRwDrB/bxjwnXU77Y3BAmsAr002OL3nWonp8w8tf501bGA1PRJe7cZ6hVwEDZvRa82IiC1oz7PbEGhgg863A/SMQsPA2amh6ak8EvLXjbDmNvMmSpwy4z4DfHqB3zv9pAxUvpxgYJmT7YjCtKCOAfE2RyskI9a2mCdLe1JeAJzzJIrzIifcWaBGCJktWIm1Kicq0KQgq1jMAO2QgkPSNFy7P44tjxusEPB4pTwbRUXAxvNP1RAnsEbKOzTt1PVJfpnEfuQ/W+rY4k8DReuStyXLmfkh0anJ4dvmyT9Z6Pu251vN5bfMwz/F4FoxSrvmMZarZmMjR5GS18zy/1nMg5Pa186MI1FS2xy/lnZEpjg8Cf+rx9Pnj4+PTFG3WNnmN3Bk6DQZ2gkXFZq+AHkpTjPxPZG4DbsXjjuHGI7sQ7yS8TZAaTYp7x5eWBxU+eRMBoCA0MMBXShgh8BwsIw1WtAYFSU8+cW436WnoY0SJttOH2aSIdXsLyqs2Dcik/VxMxsWoNAwECms9V6JWhM0ToufKa42aMrFH5KgAz1veZ7yz5mHb827PTRTeclqA0YHwf6rLWs/XaFgXUGc075XRBOqY5BteGgi+dWSAZE859U17Mnf88ePHZ28X7HSbo52MSK21noGrs8bQnroNqx26tS4NfMp1PmyPDejRNO7U3pwf0VmA5bK88DfE6YzIr3UJAUGI00Jfvnx5Wqvlt75+SGTAGdoY2zugB5B0fqXKSschryn0t9ZzL8sAoL0x0EJaBgENWVrBOq2jAw0xtzJzNBCI1zrtJJgV/wn5J0pggUndiEYbz91njEiwzlRA4TVfR0x/Z441UwMEKW9BHDSOIH348OFpk5oooEQDsvbEGy2xb48MdqjJ+/R8y2u3doT33ZeWRY4fe+ksN0DwSJFM46KB5jYm6Ej4utNM+oO6o+kTRxT5Wl486fAzeoMh12sWYf0oshFqbU+7ItesM18/JTEi08jgynp3rXlOn2sxWsSHfdyiAs15aLq42RvTGcDt664vrxNUG2B7bUCAO20J60RQt9ZlpIIgguOAMn5/f7/+9a9/rX/9618X35Thl2fP0IsjAzuUxwYbZRoN8udVsUakzcvi4G/RgAYk+Dw7N2TFyHNHNyg0R3xzuqNIhKcIGB3gfgBcMGiv0GCGCtGLrli/PMdriTCs9e2DGgEhGYh8HS+LC71l5s8meoWODnAB2c3NzbNXJrn2xOCUgK7JB+XLXvYREYh5npSeQhSN9yBwf5MPycMAnqC2GVMD9CbPR15o8nM0wJ5jjhP4byCBdaROYDtSv8hjPGmCga9fv9YNtn4l4hi37sw4vL29vQDw1MsGjqQGHC0XTtsMjqcl/cw0DvLcly9fnuSEgIJjIukpy+bTpP9ZlzPX7TzaiXP9c86pWLaDMu16N+CbdkQW08/5lkyiAwSw4eEZOg0GnCmRnFdXO9TRUCyfbYOWv4kaGPCz9sRIO4+GoXqG0EkM8bR6NY+slW/Pz98Z8KK/NjVA48DyOFgZNiJwIhjiYOOmJrmeFfNUxNmzgNEBLmjhWoa3oHhKWS9gvjw+fvvMbiIDnHMLym59SqOb/OxtN7lP+ikaQK8qz9ngc92DAbjLbR60PQ3fC+2UacjeUM6tKBs1cNGMDpVna0czjFxpT57Giw4AyPgJP/zGzNlQ62vTjudOl3HncHL0xVrPHTU7QZPjxjJ2Oi358Pnd9PDkpDEf1jvgl2RQ6bo0Z4ftmdqQ8W2H4YhsO25ubp5e8fbYpHFvujvlNn3y+Pj47JVuOi6R+x8OBkgGAyF7RZOxvxYEhBoYcHlUFLuQ0BFR2U3C64HSBk2rBwWHrwoaFNDgN1Q/eUtfvnx5eg3l06dPTwbOgGDn1fEeAQEjEgmv/vXXX0+fQea2yX717mcRASeVZRTF169fn23NHANAEDV5FpM8WLFOxtaeRltk5EVEXh/iZyx7DQw0j59GtBlcEo1Ki6a1tKwfjY8jBa3u/N/aYADAPueYSFkBt4kQEQwQCH79+vXNXy1MvX3NfRaiXId3mRKZ5uAnvdS87mZIDbST3gv0DOxMrgfXltAwuw2N7IWbjhw2t20qg/Wwc0fQPtnEyJyj247qMDKXtG2tAHX62enZq8GAjSE9CzOdYcfJa9+tC5iYbuRqIDDlQ0M8Cf+k1NIhyYdeXvO+zipQggAuEPSniRuqTPiMbWs8YASDIVG+WrjWt/lD8stAimAkZXP6gMaTUwZBr29BlLXIsb1MDjYOThqXkD0W82nnUbFvTOFp+izXWp80aoafHoINpdOdAe678nf8p1Kzx9/a2YA1n/N4a2OunXOccLzQYE3K+a3IHnvzIDPuQknPBYWJEhD8cixPoIBTg96XYa3Labgz1ADBZMwdfufRgHonl5M92NmI/G/tagaWfGzre0iRWYLObIzHMZu0KZP9zOfpvFhWXh0MxPBMiq55Tlx1bYTeDOckTGfCjDxO1ASueddUFjGiOScPJi/rjJC1OvAVQXvU7f39KDCWR68ufE6YKucsK2CA6wOaMSAPaLTYR9O+Btws462IUYC0IcCAfCHqNsC1bOQa+dX62ODRRmvybKhYDB6tuFvfGcwYGDh9A7IGCizLwHlqA/sgPJjGdPhLkOW8PA7Dl10ovwED1tu6xyDgWgD0WmRemyxzkd0PHz48yTe3seXrh23qIORpn5TDY2TFTsTOC8/RfN3pR+tiH1m/XR48+tx6gMRFls2Z5NEggNHelOmIo19htQPi8crrnvIliE6bzk7PXrWA0EbclWtG0JEBLwzkuWlSHkcosKU7UlwtEuBISPMop7rvrlOR0zh7sWDCS201PhW2wYA9QHr1+V4A307gHgAUHCsEh6M9gDMYEnXw2w93d3eVHz+aOEjX+ha2ZGRlrUtjY746v5Z3UyQemA1Qc02KFQplwvtItDUiDQgk1E0w0GQm+Uyg1u1me1v7G5/Yzik9j03OHWWYxrSfa0bKoCxkXfeWkQHT1C4aLILHyE4AQKYN026PAfbpDrit1dcAtP+UNbdjepb6lpE7gg/ywA5KK4f5TTQBk6a3Q9YBjuyxnn5tmdvmMyLliFzq36JijuyxzT9kmiCM+h4wwJ+fJ2PtgSXtERCYlLc9AR6P8qKgJa9rQEHKagPVRw5e7y4Y4zB5hDm2FdRrradQVLYX5q99w+Dr16/PXj2y0m8Gw5sjBQz8/vvvW37/KGqeD/s27bFis1LktVxvXjpBhT0JGzE+bzDg9QFtXwG2hcom515AZ+XSjOQRAGK4dqcgzfMW6WB+fo59ZANIMHfkGFBGm37KkUC4ea5vQXZISA0I+DwRE+phro95fHx89tohDRnPJ6+4jSWuz2hAYEc02GkLQQmNP6MER/nl2VYXOz4htrPJbZNj2yxG1blAOa8u//XXXzU6YDDQbG8DAJaVVwcDDZGwsTknE/Jc0vCYNFRMYaTR266zXa8fQWe8ijNlNzBwtGCQXqH3/ufgN+giulzrm/BndX+MdV5FyQJDAg4i8MnrSt6ORKRN3CDpjz/+eGEPfB9Ng3QaPKEJPLawPYEc06VPvMMeXx3cgQFHhtyGtfq2vJ4WaAsC8+xZstJrnhB53hRrAz/uG/5/fLycMmD9oxeacdi1YQIETdYZUXoLMrjyz31pHezpv8lhs4FPFIHlENCS3+Q/AYcdPUfFnHfzZFtfuq8pGy2CPIH5xmsDHrbb8mu90vLOeOSmeHHA/A0djtMpMuD+83hg/1GXnKGrwACVTTP2IQtke9boJo1go9i5kzFqqMgGmkeXcdTmXZTC7eB1DzgjTK8O9/xSMwZM6w2BUheiS8873dzcPHt32nv2c9WrFZHbzBBV3iTg9pd5e+Hu7m798ccf6/7+/pDnP4KstNIOevA2XjRGVFJWDOxDf/QpfAoQSPnNK7HHv5sSSL0aILdCaesFSJNy8XiejDXPbdzpydmDsoy1/NxW15PnMUQ0SLnHMGrymmSbckF6q9diWSfKAI0V09oLbg5a42f4lunC7FFgapEwygd1rNeZNd46etbIbTYYbeldP4OiJs87MLBWf7V3IsoTxx+nBtobAA2458j+nhwV6qoPHz5cLBA/otNgIO9oO3yx1vM5RzIk96d0k2c2CUYT6KbonTbHiYkNdRNhTXU5A0hsPNhG3qNH7sHPMjmQ+f67DbJRecLHXFCU6EAiA5ku4BsCFLT0nw0OgcXZcPTPotQlr4fRM+Xrjk0mjLzdXx8+fHhaIJlX1HLfkbQGBNZaz/o7XlUWezEa5Lpa4bhPooB4z9TG4jQmqQSpHA1YeDTvOBZ83WRjQl3iaCPl0GFXgtQpyjcZ2vDvLShtIlnx+3+jyCvfUooO4C6m3tSMUzuWjxbGdv94wWqebWDbadzeFlXyeipv7nPG+Wv3G/Di9Ykvbcx7kSDXCfA7Ao2nlH0DbYMXpmfdzurdm8edBL3TO73TO73TO73T//f0dpNh7/RO7/RO7/RO7/RL0DsYeKd3eqd3eqd3+g+ndzDwTu/0Tu/0Tu/0H07vYOCd3umd3umd3uk/nN7BwDu90zu90zu90384vYOBd3qnd3qnd3qn/3B6BwPv9E7v9E7v9E7/4fQOBt7pnd7pnd7pnf7D6R0MvNM7vdM7vdM7/YfT/wNziANbz6AjDQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUtElEQVR4nO2daXIbSbNlHZxJ6auqfr2nt9a3m15LtyTOJPqH7CRPXngkQJVEQFVwMximzMgYPNyv3/DIXK3X63Ud5ShHOcpRjnKUf62c7LsCRznKUY5ylKMcZb9yBANHOcpRjnKUo/zL5QgGjnKUoxzlKEf5l8sRDBzlKEc5ylGO8i+XIxg4ylGOcpSjHOVfLkcwcJSjHOUoRznKv1yOYOAoRznKUY5ylH+5HMHAUY5ylKMc5Sj/cjnb9cDVavXTLuqyVqvV9PL3pc8uY/Q+uiblnJycDMvshHszbbsO/1E+71mW7/XUHc/nk5OTOj09Xbwe/5+dnU3npLy+vtbr6+t07V3agYzaQHkvLy/TO9fxuX79n//zf7Ze72fLf//3f9fz8/NUn9PT07q4uKjLy8u6uLios7OzWq/X9fT0VA8PD3V3d1ffvn2r+/v7enx8nNrjfqasqmrbe3Z2Vufn51P5HOdXVU3lcez5+Xmdn5/X2dlZXV5e1uXlZV1dXdXl5WWdnp7W6+trPT4+1uPjY93f39e3b9/q9va27u/v6+npqW3/6+trPT8/1/Pz8zRWjOfp6WlVVb28vMzOOT09ndr38vIyO59jU4+5VqfDZ2dnUz9U1VTe8/PzbG6hw56b6JbHgHf68vn5eWMcTk9P6+zsbDZ/OPfs7GzSAfTg4uKiTk5OJt1+enqa9d3//M//jJXsF8nPtLu/o3TtP94n7/2yS5/tDAZ+ptgYpVPs/s9jV6vVxnk+bts1XdZ7FKtzoKPfEmj4uh0QwPhinG1IRw4eI+f/7bizvRi5Ubt9fOfoshy3hXeuP3IS+xAcgHUAB7darSYHaWeJw+B3t+f5+XlyzEtCP42OMyDAEVJXQMD19XVdXV3VxcVFVVU9Pj5OdXh4eJhej4+Pk/NyXT1evBgj2ogOGShaF6xnz8/PdXZ2NgOAtMXgkOOraiobQMYxCQZOT0+n8pkHJycn9fr6WmdnZzOdo++63+hT14Wy/L/HAZDF9RJAUfejfJwsBXZHQPDzZS9goGrsnKs2QcFo4LcxDN15+VsX8W6TEXPRvbvM7hicAAbQBssRkqOb7vd0tKP62DHYmbstdug2upyTBrjrU/c/47gvg3p+ft7WE0fmtgIQHP2fnp5Ozm+b0F+01eNEeVVzPct+taOGKaAO1PHx8bEeHh4m9uLh4WGK2jNyNwC0ziTgfH193WAI3AfUx9dhXKlXAgqzAW4v5xssrdfryelX1XQubTdwcxsR67LbYfBmZ089YBjMNLiN1PMoHyf/dkZkH7I3MFA1d/YjpmB0jJ1NOtcfcfB53DbQkP+NaPdkM7KuGFleef7I8fs1qpvPzUgIo5rG28AC4+mIztEfvyUr4GPzmH1I1sviyBFGIKnth4eHKUrkuFGfj9iA9Xq9wdqkYzLg4hjXjTqwTPD4+LgRveK8lsaoqjYYqOwTi8EM7TCoMcgzaCLSz353/XIJADEoOD09nQAB5ydbk+MBEzQSgz+OY17ke7IOR/m1sgsQOLIDP1/2Cgaqxo49v1u6yLyTBBOj64++jxz5tvYs1cf1JuIyIBi1P9dKDQRGSwPp3O3kiZTSyJkVcISFYXT0l+fm2iznU96+Ju/z8/MwRyRfFqhjJGnnFDs2vjvq9zJQ138GEqbRcYTkNCQQIDK380pHi6TjH42LQSKfkzGiXnb62Rb6f0TrJ0joxmU09zieNuXYGtQZaPj61udkKxI0H+XXynvZgB9lD45j2cvewUDVOC/A0hnyn33dXR35qKxtklFhRvdd+7y+2+UFZPmdc0sGwVGp2YGuTbl+auOZ13Xd0mFUbeYffJTc39/PEsnoywRk7iciXvqJtvMdMcCyU+E3R5istY+YJM59enqqp6enOjs7q/v7+xkdDxhwfsOS5LKT60u78voe987RUpZBZSYHcnwCzhGQzLpaPGbO1XAeSDdfSBI8Pz+fsTCuR1XNxivZGeTIDPw6+RVLAkt2uvvvCBAOBAwgXRTfgYLud853Od153Tk+b+Tklq65DUSMnLwdUEbvPne0JJA0v3cemDHIOpDQVVWztVKX5/XpfLnNlJ1rw9vA00fK3d3dLGPffQ0jw7q8s+txIB34spN0X1qXvNYMuPCOjw6cUA6MBCACloVEQe8KsH4AvrockjzWzi9BsSN56uH5yTmU6fEfLX9Qvt9dv0wA9Ct3KJDcmWCg6jtIYKxJvgRM0Xduq8fQTBpj3+VRHOXnyI/ah6Xztv3XscFpV/+NcjBgwJMyB2abwqRRcDm7RvQZIaeBGF0zy0GWgIQdycjgVc23svl8U88u03VwBDtyXNR7RI2aqn56emqjUerdrac7wuyWJD5KHh8fJ5obR5nsyJJw/NnZ2cQOdGIq2tGrxWMCEDCA4xj609E5ffj09DTr5y4nIvU+t0NWvSU5Pj09behnggfK8oslAs+FZFLcZsrI5QeDGkBGLiPAQgAEUr9zzsMKmBno6oJwvc7x51w+ys+RXQO2Hzl/F2agAwWc+28EBAcDBiwdRdetdabYAI6y8j3QoyiF33YFEFmGDWnWawmBOkq04fOeaq8PJ/2aIKFbfnC9TWNTbtLEmV3d0bxch/VtG3onHO5rglE/2uG+tEOmv+kzO2Vntmf77cCSxh6BPGfod8sUlEsdO7BK3Z046HFKZ+6cDo+3j6cu3Oug2+nCeJ6cnExAwvpu9sH19/zLRL0O0CfI4ZoGULSLY5ybkX2ay0DZzw8PD7PlkWO0+OtkyXFvAwXduV3QN7J7fM7/MgD8t435QYGBJdRmWnIX1OcJnUaRY5O6rKoNw5VK1gGJURIe53Vr9q5HRkc2wL4JS9LO3XVN+XZsBH1jR9A5Brexi6YcVec2rmxXByA+UuzM1uv1dHOerDvHsGRgYMA4uD2+PwH/pcPvlnfS4eG40oE5ms3ERIvrkzcWMqWe4kTFBDSr1arOz88nmt3sFOdwQyaYCtqd7ffc9RZJJ0FyjJc73B/uuwTMyZxwHL8ZkOQccXvI1bCebrvh10dJ59h+Vxk57G2Rfef4R4FWltExwMnuWpZ80T9VDgoMVL1/EEYT1QY3X4n+Umm2KZnPzXJs0Gyw0nBlBMi1O4ZhCQBZur3XHTBw8phBQJc81QEKMw+O6nztDgTsa1J5PdttzN0ROM6np6e6urqqqpooZkfnlOOEQPdJF5H6+hyX+pK6UvUGWHKvuwGAQZ3H0eNlwMn1E3TACAACeF1eXm6AAec0eDcBwIl+B4jgxOlH8iceHh42+sVAOBNnzVxkrkV33wL6pFsmsGRfUmezXfuSQwAjP0O2Of5dQcLoNbpW1RgMZK5UMgL/JlBwcGCgajmhYxeFSkObv/mcHPwEAdsUbpuRzS2BaVgMCJxpnsfY8WaURR9ZubMfs+6ZIJbtsnR15lr+nGInu09mgH7wxAcMJTtAfe2U3Jaq+bjDMuAMM7pHsu3JXCUwsAEi+k7g5XsMLDFGnXAtlgOqapZk6dv0AhDsdO3UySeh787Pz9v+z+Uu50rgxL3V1uCI+hoIwNZ4fDqjb7A2cjzJoJgh6xIyj7K7LDn+XQHCyC6nXe+AUzp3v2ybOtags/H/VFBwkGDAksAA6RRgGwDonPkSqtwFEFi69ckEBRyXbaCtmSSGwuZE8R5vb41aouSznKqalcMxdnpZX9fTtHlKsh27JOr9KsmksKwz7fPOApwiOQDeA19V0+8jNgcZOWn3bceqGGQ5IS+NVv6O7nGNbpmC//Iui34ugu98mAwHdcu8AsrivBRH5y4XHcTpLq35GwhkwmYC4dHynW0D7Tk9/X4LaB8DwNmn7nZySHXZJl3w5c8j25vnjF5LNn7UT8nweYxzfqUO/ZNBwcGCgREISNlFSZbKcdS9i+KOEG1Gdkm/dgYIcXSDUcMYVb0ZT66BEeQY6t/1oR27qVjeobtHSj4CYnZiI8nJtS9mYOk2yO7TzEDHGdlQ2CnitOzwrSNmXzLaQPiNaJsonzE2EMgMfc7rHtLDu52pAYh1FsePc+/W4lMnzJ4AHqpqI6pP/en0wMBqVMecVwAS9+FIur7vyu9undzdV2Ofcij1WJL3Blfb7PPIpv8oGLDY5vqz7fBoKdQ6+E+QgwUDI9nGFCwpWRprznMk5t+z7Pwvf0tjVbWZuJcGMo+1EfWDa7JcMwI4Azsui0EAx9hhcIz3bi857qRMuwlox+mJtQ/JG+u4vx2JjqLNp6en2Z0ITYMbHIz6bKQ/AKpc58c5GsBR9zRYXa6HDaQj9w4gm5Z3+20cs0xfD/3swIB12aCHfAH6grZ28zUdsduf/W4j3f3ncnzNZAw8BtvG9iPkd3E4u4KAzqlbOmayY3u3BWjZb90c7OZUziuOG7EEv8v4bJODBgMjJ90NchdxIZ7UHG8l6mjaLN/vHUIc0fJZL0dcNog22o7Qun3ojiQtdnpdfbxuusQkpHHNfuj6hOPz3H0yAkgX3RkIcB9834PAupcZ+iyr+Il/OMXOMHQgkTF0ZL9er2fAhHP8u8EW5VgPzUI5cndd83wSAjt2yMAEga3gBj7oL8cbXHBdrlM1fx4E9YSZoH5++JHvd9H17VKUeHJyMrFn3XMSOI6yEugk8D3KpoyCM97Tkfu9698RC5VzaMkeLQUenT3vQDa6V7U532zf/imA4KDBQEpH1fK730fnbnNmHNdFJDng+V86xZGCYLDJwM5thJm0lXSro6u8ph0FzEH2TRfpWbq1fiSZhW4yHRqtWrUMBgACrjtJgVXzW9TSX09PT0Nq3ec5yvRxXOPh4aHu7u4mZ2zd9vinc696G0/Gg/FOVoC8BzvaLhJyXoQp9bxZkfXPxtIJsgYC2WaAFHVer79vZfSuBQAYfeQlEYMysxv0TTJtjEN3y+FdQCrt3herdeiOZgQEkglYeo3sGGWZMU3wkGA4r78kniu2Yc5fwc56bvxTGYKDBwPuaDsfR/uJ0nyuP++iNJ0TTCRoWUKiPsfX5juGzxRvTp7ca90pYnfdTHjrGJYEVd1SAZFpysjIbnt2wT6kG1PYkREtmO+cQz86kifPgPGy8Nvl5eXsHvk8cphr+Ol59BXj4XHKY5zX4OULnHKCSvrCN5fq5pZBo/vCBjOXn3Lbn2/xnNteV6u3nJgOLHVshJktO3yO5wZIOVcc6dH2DhR0ToryfndD/zNlNJc7u5rbZe3UO7Ys7ayDpxGzlfaVY3IX1BI76GO6YIuyvZXYduWfAAgOHgykpOFKoGAZKcI2h97Rpd05iX5HtGIHCrIMoqXRE/ayLMRb37w1saomZ41BtwMZIe0RM9A51O5uhSMqdzRGHykdpZxO1sAsHS9CP9uBOwrPMtPZ2dDQr3a6XIMx9f5837GP63YsGVE99TKrw3kdg4PjdN276NhOOJcGcpnLOskWxaT9KY+ojBsA8Z1jvCSDUU5Hb+n02H3Lux1+5yT2vdR1KLJkZ/2eAU13p033sZ16OvdkGPh9dOvoqprNbwN417+zg+izr8PLQMDBBPPqdwcEvwUYWHL625xMxxTkUoOVJAeyM5ipnCMw0EVXVnY7b6NYR1/n5+f1/Pw8RZXbJotllMdg6i37IR1LOnuOGxnVrm6HYEi7aM9OKlmQ7M901skcQFN7m13H0Dgq9Wd0ALED43+Xh96zpJCJf4ABMwOc53fXjfOTQgfkGExynuvhZYFcNqGPrHMs0aAzvq0y9y7wQ5mSeaA/eXiTbye8xE4lO2AWzPPabV7akfJvkS5S9ufOcTvvyYmsHdjqAo6UTn85r/MRWS//7qWlpaAqy8l8rfQfvysg+C3AwDbpHPboOIvXgXmNonikcyYZrfhYGxorbUaG+dhX33Xu/Px8ZnQNLNKg+Tcf4zqNJCenUXZOviUgkMfumxFgbOygOuBkx27HxzgmZZ6Ox9epmoMp3+aW3Ql+gl7qRNX8/gh5bc5x+yyOyPx8C5fvMqz31peOzs0+zEiwA4DWx+x/9NxsAP1lJsT924Gb19fXKfdi1Ias02iem9L+HQ37z5a0a/m5AwIGA5lDkrt2eLe9SDsyCq58zC6Boe21AYHBhOejQSLMrbcCZzt+V0DwW4KBLlLn95FCLA3MiA7O8vnsCbAkCTLSQFoBjTY7h/ry8vYoWztdDCaG1E8X7NZp6Z+cWB2qTnrV10sg4GM69N59/yhhwndLI+k4LAnu0vGboiaKNS2eFDZl8FCcx8fHGYhKvbLBHEUlZpksGZ3lky8tBjV2gskaJetjQGyg2o2z25/XRn8fHh5mN1FyvbK9HWvVgWHGgfelOo7a9Tsa9p8pnd6krrrfrHcjQGC9qtpMiLWk3uU522x7OnUHbmbyuna5bd6VYnBs+Z0BwW8DBkY0EP/lq5McnA6FJtLN3/yfDVyui+cShA2rxUo1WnN3G/3ZDAIPjiGy6pwceQmsi72Hvuc8r81uc/y7jsuvFjvEpaWUJSBJH1tWq9XU7w8PD9O5ThQEnLnf+M6DehwZOdrutpRSrpMPiaJT90znr1arab3e4JR68c5xuS2QdtjJotO5fj/Sv5EApABHGdXn8oyXDrzDgHq5Dwz+kj3pxAxbx6B8tByaM+kCo44VMINjVi4BeZaXwUd33a5OacsNALOOXqpAJ3Kp1HrUtSVzu7pAdMRyHKr8NmAgZZvzsXhAOkDg9wQBRrxdHTKi8/lVc4Ns6XILKNMPfcnIlPeMSv0a0aTeepY34un6KxW7WxJIytr92S1h7EMyaQlJZ7XUbvery8GR3d/fT2V6G5+BGs7XAG7ECJhyd4a9ExAdET89PW0wAe5/R2e0izYZRJrChU1x+721z0aV+hiUpm5w3Wxv6nwHguygYRIMaJxkmHfU7JZIzGRY6AMzML9bhPerpLNz7wECmadD/9sh5xKn31MMgBM4eJ6jC+gW+jDaoUAZzJXX1++7etLOMudSPzpm43cABb8lGMjOHU3WLrrPz51YsXO9tKPCTXF11/b5HbjonGWyBNlmAwGO7YBAomPOt4yWL7JPvEXM522btPtmBrg2D8dBck0+jZrPNfBJIYmtqmb3jnAZVZvJeRmp+trdOj9jTsSe65ZJjXOs7wWQ9ylAxxxhG7AkeHLk7nbANDla59hc403QAxsBiOrmnHXcxtiAZwl08lsundFfbo/7JJeK/m2S9nMJBIzAQIJwdMC6Yao+g7UMlizdvFyyM14esCPvWNQMxJhLXhJMO0EfJbuUzNW2eu5DfkswYBk5+3yNzuvO6YBAF6WM6rOUTW2qit8c6ee+fV+TpQhH6I7Y7Gw6Gi7b4t8tRszpjPIz37NfE53Tpn0IjoRJmvVJA5H/V82T9PhsI2e6nt0fp6ens0x8R/qOZA0a+e41fsbXfcrnBCsGHhlRW7f5ze1I6r1jj3KpiHq7n3AICdRdVy+rcZ+Gi4uLDRDEefQvuQUsyyR46VixkXOh3cm4ub93WVr4p8oSEMj8gFwCWAIC7n/T8p4HKRl4uI4J9BJ0Wyc7oJ020e3yHMwgKQPEqtrQRbd3qe6HIL8lGBgh9VTSziFlGSPE2wGBbeWkI+yMGobedFVVTdQnn61cNuY28N7nb+Rpp9Wh9px0I1ScW924vp1AR7Xz6tbr9iE2PiPg0jmhqpo54QQPufSAY0pA4WifMk2Fd8Azx8ZLPFn/pMuTPu0oVBxyLiu43abuKdNLAl6qMkjJB/7YOHss2CZ4cXFRNzc3dX19vXGnROs3iZfWQ98tkmPtBLrEXOunr2XjnUlih2S0f7V0OjYCAV0uQP7ncnxPBy8RYG9cdtXYRuX/HGPG1CyW6z0K1lzPbuwBzwlqc7eXEw0zcOwAQff7PuS3BANVvZLamGYUtUsZ73FaIyTpSZBGPSeRI9EEDQYE3n6WBtL/2WG5LzKBxwpvxsGGMh1P19ZuecTtpfx9gwGL65Bj1EWjHoeMytOwMB42ANaFdFQJDLPPzQhhcDpDi/N6eHiYJdd1/Z5LNgkGTOGaZbIRxMnSPupgySUO9yXt4D4IZgQ4z469Oz8lGZY0wEkFj+j/jtrtaOR/qoyAwIgJSAYggW3V/FbWVXNwnuV3tirHKevC/6+vb/kv3qZqfctg0fkKo7mSc9YvA1+3HZBKMLe01OG+3ico+G3BQNWYvrKCjBxa9zkHonNkGWVti+6s8Ols7QBcvh1KAgKO6RCmHVvVPMLvwEDVZtKO257ffV0Dja4vbZD3DQbSeSf6TyCVzEvmFlAm50Hp22ERkXbPOeD8bnyqNh02x/iOggaSJO2dnp5OgCAjeco1a5BlU8eqTWcJIFmtvq/vJ+AYtc+SkRrXddtN9Sf1710HvkeDx5Z2ur2dGPSkJI3t3/7JsgT+02Y5IXVky9L2Ie57Bzi+XncHS5eboGS1+p4UfXFxMVtGIjrvbHTaRX6nPt49syQGFNmPOZf9+9IY7AMU/PZgIB1y/uZju8+IDUgqXufI8jpJO42un0Ah0S+JKlmfkYyorrxGggGDjE55qQtiB5lr6V0/OYo0qNqXZD8kvWiw46g4x8EGLI0Tn+kj6EL3ZzIGVXODSx3yZjvn5+d1eXk5PdCHnIT1el2Pj4/TbgbXget4zBPcoLvcsthtTaNbVTPQ4Ig9lwK6eYFzpXzqRnkkYVKmt8nmzhkiP65FOU5kTAbNuRrpsHJ92TJiI/7J0tlWA4AEAxmEbRN0wM4yAy1fI4FtMhPMTWf4r1ar2b08PNZekshHfJuB8jzv2oZO22bTvnzlci7Hjfr/o3XutwMD6eg7pe0QWvfd0q3rMCAdyMjrdfRtGnmUcDSBXIYni+uSzrtrl+ub63Cp2CizDXUaU/dLUrVLYIn/t/X9R4mNmuszikQ7gNhFO9YdR5OUnbkdlDWisp2EBBA4Pf3+sKPr6+u6vr6enDc65UgGg0Z9krJ32x2FXVxcTHVOyQjN0RNG121N3bN0OuXvHosEAf5uY212pgN2RIldPg3fq2pqz78NACwFTmZx8k6C3XxKWaLF87icS3kLY9sv1yvtmsvJ52D4/7wGZaAHtqMASuwlQB+denl5meXepA567qVd72QbYPjZ8tuBgU6WIvfRdxvybROfwU8AkjevyGg8r51oNqNBroNys05MPTH8jsCQkaN3G0b9ktFROv38Pfumu37nIDOx7KPEkzjXK01Bb8tK99hQLud6cnunCGPunRgGiQZ5vHyDn6VoKEHn+fn5dE5S8iPhPDtGgyM71l0AHefRVupHf3nHDMlkZmusQ6b9XWbqls/JR8667R4HJ4yin5STYNBt+LdIBjx+zoUfub4t96JblqqaBxFd5G0qf+k6CdLZ/gewdbnWHetmsmcZ5BnAw/bxyjwU6pB9YH2yPaUOS/5n2/8/S/4RYKCTjOD5rWr7vvjufCsdBh8F6iJ9H1s1dyaJZu1wAQGsz/I/BjHvZud25GTpnJkp3HQSprRdLzvGjjHgXNchJ3auH3+kEBXgqDw2jsa9TbNjQAxmABc8ihiH5rv3WUe4Rq6ZO5r1mjhjjKGyIwUw4PTNCKBX1C93IfDuSB/WIa/lumR29sjQuc8MDBgHU//uBxIJ7Wzom6enpzo7O5tu4WwHngY2r2lQ4fZ3D5VCnOfBOf9kMNAFTRl5s/XT+p0OOgMXykg7mzpom+jX6Fq2fWZyPLbd9TwfmBP5OY/HtpthSvF/aecM9JMdcJ/tMka/GhD8NmBghApHx2b05SisW8PJc5fKMdXYJY9053drXFkfyhmta+MATk8370KXsuS0k8mwU8z+sbEfRWe5fJH9ZlptH2JHnICN/3OpICevx8flMRYnJydTNMIY+0Y6XvfOpQL+y6fvGajAFuAMAYteVkAfbbxYQjATxTh4DAEEbp8BKEsCjuw7AGCj7WsZcPnRxIAsG1M7Isrh+t0887h4qYLjqmq6g5wjSIMBj2Un+9LdXy1LQICxAQiQq5JJnwkAcfB878R2yM6f8i8vLyfw4cCoav5476qa3X2zs9G8DBQB7uhbMrUJjA3Y0++4LgkYkklI8Mr5HxX9L8lvAQbSyeRvPq6L5B0ZJX2VA7sEJFwGg2cKerVazfaQV/VPfUtnijLmuqwNqRUcw2XJ6MwO3L97svid/z3R7CQTKHSKawNstL5vQ0r/OarNcc8IN9G72RmPLc4DHeBzvhLYcZ00NiPjiTN8enqaASz+c55Jtme9Xs+cq3/nfO6oRjlZJyfyZRk2hhju1Hk/jbAr3+dQPsbz+fm57u/vpyxx7yRgHDp2IiNF07rpzBIAGvztW39/hYzsXgIBnLG3gHY35/KcqOq3brpfsT2ADTNDAAI/fpuyrH/+bjvbvVg+MMDPwIv6UNdk4zpWIXMJbA8SCOSywqHJbwEGUkaMQB7TUUCm49Np+bwEBL6uHb8NCsphp5tgwMqQBjABA9fq2IOObsrovnPkXDcftDEqZ2T8l8YjwQfl7dOoUhfXI/u6ajMCtGMxGGC8OcZ5A4j7NiOVHJ8R1egICzDAd4wc53QshvXETtMRvwEOWdE4bu/VdhksUTgSdyRJ9Fj1lhvgZS7qxov7JPDZa7j8d39/P1tmyCjQxh7AnOvBBhGeG/nEz24O/1OkAwL+bEed94LoKPtka9IBcpztCtdglwyv1J+0iWmLXa5Z2lwGSH3rxhfgkfrkZTLXiXM9Lw240/bna99MQMpvAwa6zhyBglRuKxTGbDQwu17HaLC7vhUhI8OqTYdptG2DNnolNdc58A4cdJJ1cwS9xAYsgTKDLt4PTfmRkR7YeWbU7feqN5bAwNNGwI7aYztK9MtIyxQl57MEge5YHxCzTYijchwfOmrwx2cbPhtA12u9Xk87HHxr4aq3nA1yEIimkiGhbRxT9cZaOH8ho0H6tkv8TMCQYwDYcNmpp/8UINDNV8/PdI4468yJyvMzcMoEac8jj4+BBmDAS2sjZiHt0Wj+GKQAlnP+uQ20N5fackdLLuMa0KbuuS5LfiWBfLb7I+S3AQO7yMhpVS2j4aXvSw7P0WZGnUk9peJ0MnIWTmbj8wgQdOv6XRtcB4y1fzNYGUW8o8naXX/fYGC0LNTRnY4iRvR9rg0yVicnJ/X4+Di9Z9b/Urk2YFXzMSBSz/9M//O7+/n19XWWrOrI3tej/h2QJkqzYTw5OZkiaaj/NL6ju7N5HKwXToQ0a2FWxH3meVD1dgvlTs88Lw10DAA8t7J/fmdZsmF5HG3OJS4ndOaSlI9z8JPr8LZpVfO8Dcowo4RwnnUiQVsHpA1sPJcyeLKOGxBwPHrFHOxyJsw4dfXoQMAuNvEjbeZvCQa6jk3UZ4O+S3npCDNyR5ISq5rf6S8pMtNtXMf3rKa+NmKmX22gulfmBLhN1C3bkZFRVb8M0IEAG3RLh9oTDOxqlH62dMs6mfiZn3NsUkdGbUmjwxhmFMD/S+X5GI+dIyGX34EMg1TGoFtD7/ZqE6XRh6+vr9P9BOiXx8fHid5frVZTFE95OHYzWkviuZuszBJQ8rujrCWHAajx+q5BDfX5p8qSs0qnXvXW5zmP7MQ7UJC6if6hiwkQPX52xJlnwvjuwlqkPU+7nu3IvAjvsEG/+d91RNw/HXvS1WGfwVLVbwgGlozwCBA4iktHN2IT8rgczPycjEAHBliPPT09na1PVs1p2USuVv4EA65j11d23HYko2WHBAkuK9s+6vcRCNsnGKjadPwJmCypNx07YOl0w+UkoMAQJEjyOHeMTdWbI8OJeQ3XY2egRzttpOw4eaVBd2T1+PhY6/W67u/v6+XlZUroMxjwkgV0L6DBOu92mrWwoXQE6uxuMwZmxKyDdmDWRzsnj4+p4Rz/bungd5HRnBsBgbRdGf0alOV9Vkyxm1kZ2Yqq+XMLuqAIB+wt1dmOJUDv331N6z3MgNuS86BqnrfDMpiBju1rzk90N4PUtLW7sAW/Sg4eDCRtyXunxEtsQSYOpTHJaxq15SRJ1FdVG//5+hybRjspf87xe9bLSp2RXE4M943bXvW2P5ffRhO2MxQuMxmOjOYOAfk6cvYk7KjFqjdHbUq9avvacXe3NDuulMy4zjXKjH5eXl5m1LsdF84TB8rvbo8/j8aUz3nPeS8jrNdv6/js/Xc/wiD4CYSPj4+zdflktEbzh35yP6CvZl6S5WC8UgepY/aDddpGfRQs/M7S9YfHv0vcM6DMOZFUf9qILKtq7gQZRz8CnHnTJXa6zmYvOlDPMV17DTI7NoD2Zh4B4Pb6+nraAslx5+fnsznhZS76Lu1rgtB9AYKDBwNV/d79BAAeVIysJ3dGrxkVV21Gd6b/u3fOQSjbxtP3BvCkSNDiKDAVngnH/3zHOKNI3WThM+f6PSO0DqW6LzracPQajeM+BOdhpsiRN2KAg6RuVG0CB34zA2QKcQQs3U8GAh4H67e3eZF4xZjk0/8oP+lNO26PK1sCDQQyIsoI3zdpsry8fL9ngsvJZS/LSC+sS3ZIrj99Y4aA/9JRGRC6r7t3Mw2/KxjYNt/SlmZEjKCbRLcJFEeAq7uOAxD3uZ8zUdWzAqN5YWfOPSsSEHZBkndLJGCxbV2tVlNSLPOKufD58+f69OlT3dzc1NevX+vr1691e3tbt7e3M33r9MlgqAtGPhoYHDQYGCHYLrLxpO9Q7TYg4PI755dgALGR4rrpaLKMdNouKw2r1167PbAnJyfTOi5i5L5arWZl5s1kuqWC7OuuL9xved5ovPZlUD3pECeQGaEjPtaO0bpF2aaZM0Lx8oLLMYjLYzEO1AlHf3V1NWVee0+2/+c/rsO2vG/fvk2RuRP+2MpVVa1xN6gl4sFA02/WafQ+nQZ9lX2dhrDrC8/bFNfZzoU2OBve88bZ4XmnxWRlfkcgMJIEtDnH04a6Lz12GZlXzZ1ox1567pycnGyASSc/M0a+NXdnr5lTvluhb0Wc+pxAgB0MVT0gpw88Dz23YAhubm5mDxFLZpAXYCXZgZwD+wAEBw0GLEvAwPSWE6GqNtfGbVw6J+ZI3BMj2YbOMPk3D2DnbBFHN7lG7DrlMoPrkfSmJ6WF33OZJNe73IZkS1wnK3Iad0fD+zam7qOM+r0UkBRhp2Md0Oz6p2pu3Py7WYEET47qzQiw9QpAABjInBTTta6foxnAoxknomu31YDFSVL8ZodAO/zZUZFBUAIv+qQDBYwZxtTHJ2inTV7bzrsMmuUwGPB7blHct/7+iHR9OQIC2ZcdO4CkPaiaAzr0iM9cx0xC1Xw7XtX8luGMkUFbBnQIdU2wwDWtC9TdoAEQMfIRgBZ07/T0dGLkqDcgwKxggmnaROBA2ckOWj5a7w4eDCSqG/3vwR4Z/g7p27n6ZSPbJZJgfPzZ/1F2t0TAfxjsnDQd0LDhRZxwiNI5ySb7qwNGI5AyMsyWjnrLiPcQDGk6bU/0fFnf0vB1gHC1mjMvKV1fdDrYGcqq2gADvFgSSMftiH29/r62f3d3N925LxP4qmpmbGm3QQn18PziGOcFjIBT6km+J1gagUtHUhZfy/3aAbzUCTsdR3AZhR6CHv9MSaCbQCBZom5+WNJRMxbJmGG/6F8HQblM45v9ZIIoYmfLdQEBlJG7F/LWx+i5gYgDqvPz8xlDwW8khDsATQY6dyB0uQOcN7L9u7ADPyPwOngwsItYsfk+Mrz8n+9WWBQEpfGaoxVmRO1Qptdj03BXba5loyz8NzJkXMsO3ZOH/7tzfN4uNKjPyX6umj8AyWxEp+z7EuqVrxFAdJsYA0cVPo7JvaRvVbXRb9YV60jn+LpcAd/UB8mHAL2+vk4U+P39/Ww5KaO7ZMm83xvAw3Xv7+/r/Px8Fi2NgJXb6wjy5eVlZhSzn/wi72ZUd37rgMLIoafBzq1rh6K7P0u2sQIdIOD/BA3d+HY22Mfbpla9BSbJtCVjaf0w84mgU7aB2FHnEFS9gVzb9Y6poA4nJyfT/Hl4eJg9o4E54gDIYNs5Dz4foNHpWAaW/P4j4/wj5x4sGMhJvcQK5H+mZ0flZjTD4CYrAJ2EYUTh0jhlHV1OTqCkslISaKCkPtYoerTWaVmKSv25M56JVjNCTkkHuw1w/GrJiLIDAwjj2jEE6IB1gfXyEZPSAac0sujYxcXFVC/fzSwNdjrcjKgcFTlLO+lb67n7o6uvgcXV1dUssnt9fW2zyel72mLWousfi+cn5fjdjsy/d2OfdH8C6aXcmV0A8+8mCQQyCS+XCTqgZz129O/yEsR6CYm54+t0jI+ZUKSLni1pwzz/0yZzTAZWvFdVPTw8bNwt0YmqlMl/19fXs6UnbqXt5YaRfhkQeK78iP6999yDBQOWRJtLUYgplW4dafSiHN+D21EY0d9ogBxJdpSajVK3tkUZHJ+O/fT0dHab1lzjtJJ1EU0HADoQM3LknaPIz9mnozI/WkY0m41KOm1v4/M4OAJN9qBrP/91a7E2mqb9kxJN6jQNNceZkvQ5HHdycjJLbjLbYebLwBN949zLy8tZAqLZgQQClFVVEyvhpax0vBndG4AxBz1m3fz3ODr65LspZwMBg6huDm1zQIcko0BqZPcSBAAODfqJ6rsclfzP0bcT+6wX2DRfn9+oK2PHzqmOMaB+Xc4Mkjrmd9gI29sEhQYR9gnn5+cT2EWn8SE3NzfTrpr7+/sJDCQj29lEM5lpt/8OKNgmBwkGOuVdorM6lGdjmmDAjjqV3QNuhXYEaOPrAc2IGeOMwqTDoU60iXIyF6CqNpzA6+vrxr3aXS590X3eBgY84UZ9aodiyYmXUfg+pGOPELfJgqO3M8ZAOcLh2KreIWYE5WP8m3XGGe4YIzvSh4eHjcfJ0kav9ec48LkTg0x0y/XjvLOzs7q6uqqq73co9FJXOl3rPomLuZSRTEGCbtch5zPtMZDBIFt/08hnAuFomYD6+f0QZVdj7+M7nbRDtZ1Mar17NxPg/7zcZMfLZ8rGlhoAUleO9Rjlbi3Aau6ysV/IjH7/nuDCc5/fLi4uJufup3M+Pz9PeTnUi3ny+fPnyU67vl2gmAHHR8vBgYFdUGxSWiiD0VZO6qoxTevyEgRkkknVPFK0I+7oJ4xfRox2AiitlZHrOLoz2GBC+PoGFCmds3O/+jiAy2o1v/uaJ0cHqpARE7Mv6a7fMRfJFBgEpDPN/nOE00WrgE1HUem8/ZhfHCd1ur+/nxk6bzG8urqaPQc+wXMHlLsIxTplx+o91jAJV1dXMwNuo01ZpkjJWUidRegP9D37lD5z/T22nAtY438Da6/j+omMBgW/Exh4z5wa2dOuj5O9sj0EhPqxw/nZS6t2eIDCqjc63KwAukV9O4DZ7WrJNnh++XwDavefgWPOXXSRKP/h4WECP9jCp6enSb+Rk5OTaTkhb5iUAVsCD4/rrsAgQfWPyEGBgW2MQLc0YKdU1d8IhzI7qpf/zAyg1N564uMSeLj8TjIKsjJgxLrjOYd3FHNEMY0i/ao+878DBGYifL7b4NdS1Dkai31ITpasS+oDYr0ikiE5KQHlaN3c+pXMAHrj9f0EAzhlMpIxvKzfv7y81M3NTVVt5qokm2SAY2bL4NbGFlD0+vp2IxfrlPWTsqm7X7ljwdKxWXb2vNOeBATJTiHMK+8YcN/m3e2S7TtUIPB3jP4osEJPnDdFnxsI+MmCbKnjTny+/4Xnh4Fh1dyW5bJE1fyGUdbdvNGV9TD9gsW6+fT0tAHo6ReulUytQQOAxkwxOuU2JWhOsGkQSsIjQZ7HyXbpV7MGBwMGRkCgiy7TsWzrnDwWVOqO9mRIVgAldaJY51hcL1Nsjpqq5vtyrWhcA0lkvE06pzs6D6Nqx+W+6AxhB4D43UraRZxG3x8to3Eb/ZbOu2MWrEdLDEiny4ijUO9598vr3s/PzxM1n0wG5bm/aYMNiw1prp937AjlOqHR9fb5NnD5LIKq+XLKLoJ+pr4ZhLiulL9arSZ2i7nmyDQBQbIhHTNwKPKzgEAuU5mlst4bfHoJgO9XV1d1c3NTNzc3G1tebfcSVLu/q95yUlwnIvAOpHbsY1Vt6LdtUCb85p0Hk2ngs+0wgMKO20tiPp9rXF1dzZbJ+Exi4pKv+5XOP+UgwEAHBJaMaNXYqef5Oak7R8znpJkcXZnCSWBiNGeFyu1irJW5vskCJOK1UnZi59xlqvrd/cPaGfVPA23Dy3e3tVPQBADd531IgoGMBtKwZNRkJ7ZkjLP97jv/b2dq+rOjFO2AaQu0JSwF9CT648gs6VLKcoTSjU0mYHnLa1eGk7AMCjg+cw+6vst+YWx8TRvvHDvXm3Xh09PTWUKl8xdyF063RHBIYOBHgEDaugQEdvr+3fYw1/99rgHB1dXVBhDA1jEWRMFemvX1Mz8BG2WdQtI3JKAeARGzu1y76g302uZyTAJjswier9n3tIUbhrHcx4vbdvv+A77uqNwODP9d2TsYWAICS6xAFwVnOduiajtd3rv1syUwgvFA4V0fl1VVLbJ1/exo7Ujy2qZ6XZd0vCNFYjIYxDBJ3Fd899KEJ7n7wgY0DetSfT5CMmdjpE9Vb/1tIDBKGLQkUEIfMortwF/2levgOmaUwjW9pEOU4tyFpFAzWuocqtvYJdj5eh3N7jXdjLK6uWkKt5uvXLcbQ/c5/ZTLWl4iSNbC7IbLSx3fp/xdRoD3BALd0oD1v1va8vnkqVxdXdXV1dU01gmscuz9Yuwok3wYP0I7t8d6flS95WeR4Je64c/Wd5x11Vsw5SAhx93gd3RM9n0uPWeSIz7CvsEv9Nog4Gc4/5S9gYGlxnRUyXvKtKHJ9cjOmKBYqeiJPEeObRRZoQRknnq/dQ4859gpJ63qyZWRN0qajiX7tIu2XGfa4/7s+j9BQUbFHRjYl3ROxA61ExunjiXpHJojEf7D0CaAy7VpX8NrlhkpJ4XK9Q0IWE6wHpsKRswkmdFyH/CfdwF0Yz7qS/dZl1NhQMMcyXwVR3S0wfOS/jUIcZTI3Rf9bAW3J+dLtmPfQOBnSKf/1qeOpu6AZAILR77cJyMB4YhxsWM30+CcBN97o1tCBTx6Ld91zt0rtmU5x/mewDdtG3XxEjBi++cyc6eat+l213IZ1PVX6+FewEA6lyUmYAQERsfznxVldL2lyL+LIJPStaJX9fvtrQhkl3ZJVY7KWE5wWfznSCYTUvzeRbt2gFYuU8AjRJ3STZCRYT0UMNABQz6P6pnndRGpdQAx++LlHp/jenQ0rI93hJUJim4nBtNRTkYW1n+XbQPkyCeXL7pIExrYiYeUk/OgS2z0UkdngDG+9CN95n529M8OBl5s/TIr0Dkp93n+9rtJN04JArYtfS3ZZMrymJqJ4d4S1qHRzg0HP+gmNtOJhN38w54aKF9cXNTDw8M05r7hVRf4cZ6BpOua9oL3tIGpL+im2wTQ6XInKNe+xbb6V4KCDwUDncPlfQkQ+PgltGoDageQETLHGhCMxIYyqdDOCWTdjXgxljZiprCr3p6i11Fs6USo12iJIA33iOnIPuuMQ5a7KxA4JPGE6v5z/RknpDOEfO5Ylqr5s9+fnp5m13JduA6G1XdrS5arM4Y2pjl/crnD9QYsV9XMOPNf6kmCXBtWHEBmbBuA2PBmprgZghGj5O+Z02HGjac0JiDw8xkSCFg/DlE8l98jqQ/JFnkpwMFC9+rKtZNGB7zVzvpF0pxBWSaXolP8fnp6Oi1DWH8ZP5L53DYc7ePjY93d3dXt7W09PDzMyvRNkJiD+AF0+OHhYcbopf+hzdQDofz1ej0DW1yH7cAZRCYIMEvsuZig5GfJXpmBJRDQGZ5U5FyHGgGDlC6CT0nHa1rXBpXByvNs4DiOyIjrAwYctXVMhlFz1nGpf90nqcQ+P52Tz0vH7+M7Y7Htv31JImu3ByGSdQazjWQaP0uWxTUTMKZhtVGhXDtxA9XUdbcjl3vSyDuxy/1A3R2Bcy3rAUtdXYRJmRh4ixO+fKx13REb67fWv07cdpxD5gUYCPgeB0uMgMv/naWzoV00PFoCQLp+6OyIkzQBXjhgfs9b8zpaB1AyB82Aelujl8bYqshYAhxcJ5bLTk5OWnYA4VzmPkwD/5nhs95jJ7wU4e/MOzN1AALP2WQjDHI8F9JWjMboR+TDwUAHBLqIZqTISfFYcRMIdMq9K+WbDEBukXJmrMWKnC/X3fcuWIqsAR++a5eNIIoNTZvKkg7E1/SxnTNPMNAdM5L8b99AgLYzqUfLR14Kol89qUfgcRvdSj0SICKpJ6bXM6rONfeOauzGvtP1ZLt8rq83At9ddO/cFyIkyjUDQz38nuDHxzoi9Fz0dsZ0+t269YgNeI8+H7KkTeyWBnI8M6ekmxsGqZSH47y/v5/GAiAAE+OlUS/TYDu9XNFtr/VYOxmbpDtT/NZHA4eqmq476qe82yzJfq6Dxb7BNwiz3lIn23LXl/PzwUkJ0kaAgLr/DP38MDCQHb9krEaAYIRm7eiWEr6QjLKNsLqIw+tIGelXvVH7lMH6GFndDw8Ps/q5Hjb8adCr5hFnghLqzqR0Ge4bt9k0cPbByECndE6vU8hdQMNHieuQyyEdM5Jon//cpy5rBBTQB8uIXbBxcVl2/uidI5vcGteViUHKeuU5dhzeapv3XMi2Guya0XAfem51zEyyMLmmysvA2KyAnU+Wv02n/ynswMiGjhgB6206+rStPh+anQideYDty3313f0zDNI5F3tohofzuQtm1Xx5NEEnda2qiVUwA2Hg67l/cnIyJfdV1bRl0ttQ0Unse+YWUI7nI3XJYDLZu7TVHkePbQcIfobshRmwco6MSx7fKXbV/Ba9/o1zkaWozv9n5FH1dr/4zllzbho8lMUD+PLysnGjC+re0cyI16RTedlPTTlL+3CZOC7TaNP1zygy+9OsQTrXkezbuHbXN0OQzEACgs7pe+L6P/eNxzcn9mi9FkDgenGNXHN3dGzw4eiIfcweZwOBpExzOW5bshnOBEPKNTHyBgAZqSeg7XJ4nDTr/jCA4t7wCeLc37vIvvX0R2UUzdvxjwCBf+u2E6ad5QUz4CTk19fXGSOQz6Xw+FjvOd/nsawAhe8gzdF4zjvk5ORkdqMuxPrkbYur1VsyL8c534F32uClqRGDZeBkW22WJgPb7pUMW/fb35EPAQNpANOx7zpREzSY2vJ71RhdJSvQ1cdRhSN9DI0ZAs53RIMx53wU1/f2TuPaOZoECnZUBgS87wIsdpVE7dmP1McIO8fHCrrvZQIk6+Q+w3GtVqvpxiI43qSrO73dBogSnKazzTKpU17X52bZu7AxCU4MpLv5RbmeE12bT09Pp+jNYJ+2JG3vSIlyaJOdhMFNUsGeX04O7Pp8JIego39XEqh3rw7kWZfzZmv+rTunqqa+T/0wi5k5AFX9A7wQAwrAADkrzE8zWxZ03wCU63gvv99Xq9XGczOS3aLtgB9sfIID2uZlgQy2OIb6OGl4CQxkGT9bfikYGCloR1F1FLPfU1KBdwEWGZHnfx0FxaB3W02cFJLlcd7r6+t0l6mzs7N6fHyc3VQjo600iiNlt4NwNnoyGEbcSEef5uesU/Yfv+eyRAcEuvL3JUbUvDt6p01dzocd8C4gdqm9ngfddruqt7sNeqyX+jgj79EYZlS2NHdsgOiHqs1bt3bOJenRBATZV1xjBGgNil2nTAwcMXjZV4egjz9DunFOAG8A6d1M2Brfhr37f6Qf9HVS736nHrA/GQmnL6h6y+gHCGDjkm3NdicY6EC89RJWgG2Mfv6C52Pm6WRugxPBnW/k5MMuGPADnnIejcAA8rOXCz6cGciXkdMuiN7nObpOp7rNECPueA+YDauZgbxdLOVZyarme74REg69xuvHbI6MGPWxQU5K1QxBlrULU7BNobKPcnmgM0iHKgkI+C2dqccdMOfINMebcvjuyLVjJzAW3fwYTfRddDwdsgEz9U4HkdFZV2++5/qob2WboMa3bs2liW5cur4EHOTygZ2OxzL7aUn+CaxASqdPyShlLoifhplBypIzMnDuAF5VtTbKrzzeZbP8g1PlxkLZ3m4e55zOMTZ7cXp6OnvQEn6J98z09zJGt1zhumR7OYbrPD8/T9sn7+7uZmzMkh7/TCBQ9QvBwBJC7ZSra1SnyF2n2tiMyumkoycTDPjdySOI19VAr65DF01ZSVk+MOL05DILkdEPZYG4nTi1S+QzQtZ+t8LZgb2n3EM3tOl4zb5gMHBq6JvX/lKSWaJMG8s0hIgdqVmBzmgabJrGNVD0+qd1xv9D72f0k4DYyV/WNebEEis0klwO6NgPHJOfIc81qJeTdBmz7N+PNKw/W5aCo9HnDgT4ZUAAW0lUnHqAoA+2gXxP/aYOMA08XjvrZfuatg2byE2pPA9to5BuDvt7B1gAGTw3gCRGbzUElHjbZN63ItmNkSSLxoOM/KCnzOlIps9tXQoe3iMfxgzsAgA64JCKm4jJA9w5QNM8nSPzNUeRXioV7z43oy8UirZQXk6i8/PzaU9pVc1AgA1uMgp+YYhHCp9i5RpNqC5iAuUuyRIYO1TGYFS/BAQ/sjRgQJl3lrQhXK/XU0a0HWCOp52zjaKNLcAU6hPdt+HiOEeE3a4BruV9+/xHWeg59aMfzKBllDpatkI8z4lcsQVm03AUd3d3G2u8nc1ZskO7sC6HLh0bsJQQio4ABhwZV82fAmjHWfVmywBktol5t8kul8S64GTTXL5gXHHK6KXn1pLkWDJfSHZdr9ezZyDc3d3Vy8v3m1eZGUDP7u7upkcWd2WnLbbN9PjYXxiM5ZbGXC5Mff1ZuvpLwMCIFcjfd2EDEs3yW1IxRpdV890BzlTm3YbdrAC/2WHugvY43/eipz7O9KbNDLSzvG0k3ZaO8kqGIFFh5+C6fs9+7F6j8pfYhxHQO3TpHEWCAf/PeqMlaW6LDUTnKDESHaiw4+W6ea7XfjEqLE9RfydHmhrOh6fYEN7d3VVVzfTZOuA7Z3Jetq8DUzboqcteusi68jttAex0wUI3rrYF3Vj9LvqKZH27gCqXiuhTP0Mln7SKDUwA6mAib9lre2sAl9EudcHOZaDlh/rktsJcukXfUtesk+lbeLhSzjsifl8PMOCtkoCKXKK25JJc1i/nLeCMXIm0O0s6+3fllzMDI0DQ0Ro+1ig2lcfnd47S/2eE7mt5UFx+Ijkj1bzJkOtvAAPSdPSet0KtersRRjqapIfSAeXaa0Zb/GblyTb5+ARV3Tr3iK7KaMTH/Az66ldI1ms0mQ2KbAxZ6/PjRzkecX8QrXvcHL36nDQWVTUzxpybSxc4ehs3DG23rst5bn86kHQIZq3sBGi3gTWMhNmGBLS0LcHASMfdBz43GTVHtJY0qiOwe0jyXmCSY9k5oqrN21+PWD/3r+2WQQK/Wz/5jjO3Pe+uYda2Y60SQANEMoGv8xdOAOYdoAEj52Rh75DocsY61mub/qQPrJqzsKvVagbO/OClPO9XyE8HA1ZE3vOFGM11x1qRLUmbdBR81eYSQZbTTZT834Yco5+Ghu0hGE3oLTsDJg8GO7e+UM8cfLMM29Cnjbf7xcd00rEOidJ9XBdt5bh5bPdtZDvAye/ZJ0sMifvIWe+r1WrDSaWMjGCu4fo9k/E8tvQx370lKh02euFEpxS3K5P+nC+QN5CxA6eNZsco22DJDrsD8gYN/O+8B98qliUMXjbo3fh30oGD30U6++nPHbC0ZICGg2X80AfbvAwiGCfbUjMCzpZPO+TgzWyD50vnB9ApR+8+n/87/wPQuLy8rOvr6+k+BL6FcgKA3LGS+jmSzu9Y35mXXkJ0e0eJhKPr/h0d/pCthR0QqBqvv7szHPn42C6qrXqjHa0UlMsA5OB0kXcnRGNGgkn5Up6pMVO6FicHOkLjWJTZBt9lbAMxFlNlOQYJBEY0d4IB/55j3KHlQzC0yQRYV3YFAhhGg8zUSaQzxkkROhL3WmtuOXTE3+ksukSZFxcXE3tB/TC07g8cQAogIu8E5xvI2HB7icLi5EIb2gQDnXj5AVBiWpaySOzyE+pyrEfO8BD08mdKF3wtBQJ2+taPZIK6QIFXsqI8jOfq6mpaB++Wd/2d+/XbnvBf1eY9VbL+6U86X+I5BkjxcwKsZwbBZps4Lu1DCrbB56Wt8VM285bGIzDzq/T1p4KBJTbA/21zEDmIqRSZRZ10o8vs2IAOEIxkG/JDrBw28MkQ2Gh3guH3uijHYlQz8qaPjFbdX1VvYMj91YGA7D+XY8OdzmhpUuzahx8paYh4T+fvvk5xn436I8X6kBR/3v7XSXOZ/W3aPXeRIAauCSa6iMNOlMjKkUs68ao38Or1fD/X3kDXZXfRO3XJuiVoTkfg9VzXK+0Iv/+TZcn2VvWO1EyA8wU63crAq+ptvLwrASBwdXU1Rd+j5R3Xm3qNfAQ7SjwPEJx2B65ziYC5xf/uCx62Zd1PRsAApAtm3U6PjZk6khT9MK3sj26e/qoA66eBgV2AgCUb0U1en5tMAOLkk86hmRFI58iLKC/LdsTSrY/uYlg8qCSEnJ+fbzh4K7gfmFH1fbI9Pj5uoMVOcuJmXRI4WbE7IDAqt3N+2yi0QwMEKUuMQNefI+q/i3YN2JIV8KS3UXUCoHXDtyKGJndCn/XN548AgevtyMfXIPqz7mJ4eT771dXVFAG635Jxyr7q6mQ991iYwaC+mcDmLb4GEScnJ22E9jvLiO1YshEW5j72xXdOtQ6PbJ4BLclvAABe3q7o65KkZyCSc896YbuILfPNeuxMk6nKKDt3KXCOwbfral22znl5zm0hiLD/oY18Zkvs3d3d7H4FbncCecZgSW9/lD346czAEiNQtbyDYAQIkFH06Q7PtUg7+9Hk98BbPCFy3Qgx/ZTolvrkEgDUbQILR1aZMNMBJAMl01HZT9n3HRvg5ZRRn/v8ztB0DMNozA5J3E9L7IClo+0pyw7VtB/ldEbI+pqG1Vu+MtPf937vDKHXa0eAnXp6q1hG4aen358Tj/PHcKHTmeUPxZrPrae/OJf3LlfC+s28M8uQy2Y28tTDtK/bfMj6aHkPk7HNhhpodcwSkiDY5yeIrZo/nt3Rdu5QyTX+s7Oz2Xp5Mhi0CSCQ28urarpPCwl31jPXwdc1AMUpV9UMUHZ2HDCKPjFvvHyRYuBse8B1YQUSCCRrOFoS/pnyU8DACATk5Osa4kEfsQLIyLEkdZNRiCNiC8fnLY39v6MPb2PJOnfUaxchGunmRPMWmqT+RxS+62oU3/VR9lVXbtf3S9G+y/ZxWY9DM8CdLjIe2wCM+6gDTlWbGfKpB44SfDtp3jGqJDoRdefWL2cfE73nkkLmq1jPiZa9z9vjaFqVeueNsaxbOH7WQe/u7qbn15+cnEz3PYAlM1jKHAn3qwEEQj1OTk5m660eR+qbkRv9sItOHpLeIjmeCQK6AAvbY8qccgCCIxvqu28mKBjNB9fPDp0xYFy8TS8ZMG+fdbsNOq+vr+vTp0+zJSyDauqXu2DQU8S6XbW5pGIg0CWAUz/bbso1eEUvYQa6XAG/d+Npn/qz9PNvg4GRUo6ceQ5qgoAlIDCSRLJdZIwyuPyM/hIU2HC4vFSARNzbWA0bbY4xlUvUh3L7iVmJ4ru+WPptKVrPMTHyN/uQoKDr/ywzP/8OsmTgqjbBqfsggVHqQ9Ubo4OjzP5MhsKA186cm5V0oJTzMzL3uul6/X1v9RJ49c1oHFE9PDzU7e1t3d7eToYtb9Xq+78DWjjfVKvnZYL31ept25VpYrZfGchkee4X70SycR7J7wAEeN8GCjjOtrZqfptp7xzIHSo4aeveEotrW4EeeYnLgSDX8TIDrFhVzeqWbe+Cmpy3OH7rJrkmDvCoN/p2c3NTVTU9ldB2cBQQ+Bh+S5AN8EjWLMFbN7YJCH6W/FJmgP9G51T1N2VAuoa6bA8g70vsQdUb8qUjzQxwTN5Ehutmua5zfs4B9ZYnR+FG7DZy1M3Km1ncWbf8nNI56gQ22WbecwLk5Mv3PD//+50kx9KgJ6lqS7Y3aUQDBY850QvruL4uS14JQDOfwMadZQSuBXBgLZdj7YgdXfk8lh2qvhvIL1++TJn8fO4e4JK3pOWa6He3ZGXBCQEoqJedkw2755Xp61xG9LVGNuOQZAQE8piRHe1AO3qXW+kQMykGEXzublbFeV3A4Lpx/snJybQD4ebmpj59+lSfPn2qq6urqqrZThHKcF3ScbqtzAEoeRgsA1ovV1GXi4uLCZTc3t7OKH3rNv3jZYZkAZJltj9IpqpjgZeCbJ87+r6L/C0wsIRYOgXNz4mCdgEC+X3JmaVYGW00UFTXZ9Reiwet++yB9k2HjAQTWdvJoHS+D3bmLLivUoE649YBpa6fsk+q+pvkdIAg+2zX8TlEGekzY4z+bNNdZAQIHI357meU9/r6Om0VNIVaVTNq1Y96xajjrL00AbWea/zoGW3KNhK5ETk9PT1NZT4+Ptbt7e3wccIsNQB+iNSJPLuolPZVzW9kY8DuOdExc0l9p75mRLkLsN6HbJtHnZ7angCGeOccA0fnRiEcv1qtZv2ODvhWxr63fjJU2NzcxgpLBSMAGPj8+XNdXV1NunJ6ejrpiJnctKFeFkD/uYMmesb8gjGgTNoE28Yyxrdv3+r//b//N4ECM2DMnVxC7nyaQVGCAepnwJBje5DMQDr3JTAwAgYjxTVS2oVp2CUy66KA9fotmctAwLdr7dBZChPFio9y+Rhedq4jIOCoDkVLBen6rvvcHdP9xzvG321IlqArw3LoIOA9IBLJdi8BK0dgVXMqswME1gszBLk2b2OT5aThceRzd3c36bsjZ8r99u1bff36dXLmHEOi69nZWV1fX0/XwbEndV9VG/WuegPDVW/OvXNA+SAk6sjxzA2PB9FltpvkMi8LdHPDunBIzt+yFFx13y22KzhUB1I4yLzDXtXbEkFnW7CRRPQwTWYJnP/B2FGGmR6zW1mGr2lg6KWuXCLjevf391X1pn9Ly7j0I8sD//nPf+rq6qpeXl7q69evdXV1VV++fKnb29spF+bk5GTaFuicMuZn1sl2w/7OOm9wkcsi6Qett38XHPwQGEjHkNH9yHkvOe0EAjZYLr9q89Gx2yiULLcz5DYYfO8oxPydiZTfV6v5w2ZcByNmt8tOICengUBOzKXIvDt+22+miY2Y/TJgyLqMoqtDM7QdIBiBpxFw5T8boFxGqKpZ9GvHyXkYEcaaXSeZZGcH7boYUMB8YQDNKnnbH9d5fX2tu7u7+vr1a93d3c3AAGv87Ca4urqaOV4cMZEUUZbbDmvw8vKykXfQOSLfCpYIj37mvMwQt2Og/TAVuXsjx5DrdDp7CPJe0DqKRlNPaCM6ayCQ89i2wdfBgVs38nkH9L/ZUXSKJR+Wq1zvpNDt9CnfCYLpeLkODxyy7XIZTqClPdfX1/X58+f6/PlzVdUssds7Xtbr9ZRP4CWvqjfGw6AmxXORenhO2Bbn+G7T0/fq8bvBgCuSjnoEBrYpsxUVZ+t3jnEdaChOKevgsn0NLwtQFtfyJHHbLDZAvDNgGNdu2aOqNpTV/xsdejmB37Kv3Ged09olUujKyTIMCJgIS0o2cq6HZFwtNnoGZQkWR9JNTBtdvmNgrde5xGBgCxhIw4JzTt3MZamkLrm+jQ5PIHx5eZk9npVyWEqoqlkEt16vZ4ld5ALc3Nxs3AeA8jCYS4DdxjB13tGsI37m09nZ2cwhvb5+v70sRtzMjKMxv0bje4i6677sbO0oQLKOOhI1bd3N2ZE9QVfRD+968ZZCyib/iURO9Khqft8OzwnruXfYWB9z/rqNDq4YZ5gukhZhpJws6/wYPzSJOvhumGajzFxZ3/wdcb9nAme2axdf+nf09V1gYMQIeBDzuM45jRBSp8jdMWlUXA8jyU6pMbi+jh2q15P4PyO5jjXg9fj4uNHmNPwonSMS0CDKZECQ0XsaNCvNknEYOf90fqN+dpndGHZONcfvUGUXEGMHnDRj1eYtSvktHQ36lLtX7ORtUMwSpJEw7elrOyeGGwVl9N2BTG/9os0Ahy9fvkwOHif7/Pz9Oe9VNd0bIZktL3OZ5ejq7n42aKKOtIv/nCCIIb++vq7VajW7E2Iut1GvLuI6ZD0dySg4y/V0L4tWbS7N+r8st2q8VIaecr//dNbsVkFfYH/4DBC9u7urm5ubCZze3NzU5eXlxnZD58d47d726fn5ub59+1Zfvnypb9++1e3t7RS5AyjQM64HcwebxfIaSwPeIWPH7WAumZXX1/5hXdv0bBvQy2OXbPIusjMY6BxvKhrii7tTRuXa6dpIjCZqLg04sWjUUSldZAyN6vVbG/9sr8vN5KcEFHzOyWen4YRBG8903AkCsn+68XJdc306+2UpunC9XY8EQN24J8tyCLKLbnAcfWn2B3FmsccmI9Kqt2gaJskvs0eZmY0DIzJer9ezSIZ6ML5Q+zhM3/bUwAJa9OrqatrXbQPHmLOE8OXLl6mORF+59ZW+SjbMy07eCWFmDrBMv7s/rI9cu6pmWxg532vSeTfHbl50cgjAwPOrkw4IJJ1tHUuA5blLv/u77bLtAKAvbxx0cXExOXH03DYRdgeQhtO9u7urq6ur+vTp08zxUlZVbdyl8OXlpe7u7urbt2+zG2FVfdeJ29vb+vLlS339+nVKooWRYMfC2dlZ3d7e1v/9v/+3vn79OrEXr6+v9e3btylngHwBzyMAhEG69RI77vltP5CSbGGO7zZ95fgf0dt3MwPpFLvkCGSEVHhP9Drap991nDvMGdGJijMqS9DSoTQfg3I5SnHGLIPn9dlMSvQkyvbkmrsTBzOBZDQmI8eeSpQJkQmqQPidcfE56fSQLmpYQrP7lgQw/n1bXembqvmSUTeuHSBI/cRIZ+KVtwoS0ef+fM6renuYlulT1uodlXDs6elp3dzc1F9//VV//PHHdJdBDLVvHEQEN9Jfr/dT99SPXJvN3Q9pyDjWDEpeFxaF/AAisY4BcV3S/uT4bAtkPlJG9sm/uT1LQMAOyTa0A/Wju0LS7/f397MdBTc3NxNIZSkHcJbAF130Lilskul79NmsK5H78/Pz5KhZikJHAApfv36dwMJq9bYDAiB9eXlZ6/V60nV0//b2dgIuThr0g7v8TIHUE8/7ESCwzlm3PX+ZFx7n/Oyx+1G93RkMpJN4D1LpnEJHX1lRjVCTxqKcqvnz012mqcSMlrd9TudN+3O9iu9VNRlKlDbPdf1Nb1I/jGjSuVYUR1w5mTOSHY1D14cGC/6e45trrCPwkTJyuockI93ugJaRvyPdnNzJ5uT4ZF/m3MhsbBsWb226vLycUZGwBja2GJX1ej0Z4pOTk7q6uqr//Oc/9V//9V/1559/zu4hgAGEYiVawxCaNfAcY52YrZBPT091eXk5AQqubQfjaCkBC+UDyjvWxWwXWzPX6/XsQTDdnd4MWJzj4bE7FECwTTrbakfeMa5Vb/bJtgV7kKCU/wywvETjmwbZPtrBc628fbABQ9rZ9Xo9Of+Hh4epPoCB29vbWeI2oJBt2X5+R1VNjvzs7Gx2W2COBxQAKNEj32LbwMDJfinO5Um/1IEIwDh1Ncvsseb9Z+no3wYDaSTT4OXxZhOSBRhR8Fzf5Znqcv0MBqreot8EBF29ErnZiRsM+KEsbHV5eXmZoV5HbmkwPXG8LEGyFufYSeRktdjZZC5D5lBkVJ9AwOPmOnPeaJtbB/beAxj3JUsgIJ0UESiT2WzRaAmkmwtIGuclQJdjZyOFvt7c3GxQ/Riqqu9R3s3NzeSwr66u6vPnz/XHH3/UX3/9VdfX13Vy8j1p8O7ubhZZXl1dTQYzlxucNMg9CFxvIkjv0baeGlSkTcmoPgEDx3rLGjdrInrk2nd3d7NcCpwM48L8c3245u+gw/6cDr0DtsnajECAASlicMn5LMWwzRCHzDjBYDFvyORPNoAbD3G/AeypwQOCbsFYObeAOuYuCesP8wfwi57g8GEtMj/AOzA62+t+sv3gs22Ldb8bz9F4JxAYve8qPwQG3NCu4Z0YCOTaaDp6rle1mfBXVTNnncbVFMuont3EcTRmFMxgUW/QKlupjFBdForrdX+vZZJok1nj7u90up3jySjVCuCIx7+7XCtmjq2P38YK+Hq55INsW/L4SBlNsoyqOkDguYAuu8xO3/KYjNyqxg96yvFizKFN6Vf2R0P151qmje2nT5/qjz/+qD///LP+/PPPurm5mZYYbm9vJ7ABncq93+1YbTTJt0mQT13v7u7q4uJiYhlyuaMzpgae7pNOjxKUV71tZQOAkIuDznOc53oyN8ihMgMZLXZBF98t6YQox7aZz4BL655Zqqrv+STo1u3t7QRKsU3eTeO7SebSDEDCr9VqNTECGYU7Z8HBm0FiZuqzDAszQPnoSAIB58EQvHGNJQBPm+hrAHqOm+s7KqOz0Z3N7gDArkD23WDAkk5nxAik4ctkqZER7RrkZQTXh/IxSu9lLCgjlyqsqLm1hHcbPh9PEkrVfD3Z23CgqUCoCYwSCDGJkC5KzzZ7fBIEuN2+XjqkNMiUt+RUPb4jI34IkrrQsVdVm+AKh0sZHTvg8Uvd5T0TBR39d2Vi0KATAaI3Nzcz4Jrg7/T0dFoW+Ouvv+p//+//Xf/rf/2v+vz58xSl4eDRCeha1vaJoL59+1bfvn2blg6I9uxEaPvz8/OU2W89SmNLH2cf+JW67nEAGLlcr+9aj93vdhKOVA+ZDbCk/na2YxTE+bN13vvjbVMceDCf806pt7e3s0DH4+6AIX/vAk6uYWBnQOCXx5Pr+NbYXtsf2UvrXNaVY/ExBlvoYRe8Zl871yePM+OI/8kAJF+2w38HtL57N0E2bNuxI0DQMQNGdbs6D9PbdpQjhJ/16iY9htP/Zb19bEbEUGG8bNAp06DICkQ5dhaOZGxoTfVTdsfWOKJKR+4lFTs0t300FqmASyj5kIxrZyRTTztdteSylMV9xbhVzaOuXIfl2ASVXCvnCRQ4xuPs7Gy27amqZoaP68FIffr0aaJiWR5IUO+lMfZkc/th9Pf8/HyKuLPP0jk7o79zBktRz2j8PFb0DQbUUWNS/3mdJXtwSJL6ug0IjJavRmVb1xhfxslr7lWbzAmA6vn5ue7u7iYwkMci1meABraXJD/aAghwxO4ymVNmLtjl4lwAn5t2L+ciNthtdGAAe0Y7c53fzEsGFMwN94VtEP1CHTpA4HHr2ID3AoN37SboCk+E1SmlFSwbZCNHB6aS+RqO/H1Ng4COBRhF0G4DCuQBNSigfqakHNUZTZoFgbq00/e1Ujk5nzognRHNdbAcm9Gr69ukFF3f0Xl5PUd07sdDMbAdal8CAmaB0rAmaPPvgMAs23klvhufAVcyRN2ySxrX9fp7sty3b99qtfrOYqGrZiCI9AAT3LOdiIrEQI6HHeAzuoyxtg7TF076S0aJsruIKvvPDIrnVuqVIyR0z2Nru+N+NtXd5cK4DX8n4vpVsmRjq8ZAwI4iQYMDGvSl6i1PJhMHGR9fFxAGy5TBRPqKZAecpHp7ezsFV4xR57Q9/8wKeVkLMOBlWfrOtzX2XHV97XNG7FXqUPbZNjvo8bBPo3znYfxsm7ozGOgcbH7uQEAqajqXpOTSMCwxBKnIgISsp/cv87+v2Tloo0BPCNCmqSKXZTBjlgBkjaFkDcxUZlKUXmd231kRs386h5/vI5rQQKBDxfRbLh/kWHlNjcl7CIAgx3sUUSUgcETbtcE6jf7k/LCB8bYmJ/vlWHgrmFmhXNelPDKrfYc+6mLK9+XlZdo29fDwMFG6HlvfOc466xuuZCY4dSVC43j2bfvuhgjGLR1U6qEfcpQRFPXGsecYUS+WVKreHIZvQpTM2SFIMiZVPQjoAFYGPKn3jFPqJ2PvfJgcG4Ibn0N5AE2OdzK1JZku6nJ+fj5tB/z06VNdX1/PwAnJiRmImQnyLhKYAe4J4IRX6g+b5sAwQb7P8VLK5eXlDFC6rQYdfk/hejm+1In2sXS4qy31vNomP+URxlx0CalaUWmcxZR41eY9AKyMDGau6WM4rPijbORRtJYOEAPj3zAsNn6Jwg04cnuN+4CJ4wmzLfJ232T/d8eNHDfnuTyvh1uyjV7S8Tt97jJHVPs+ZRsgsNHD4XbsAGIA2OmsHebIcGe04uQtvucT4swYrNfrKVluxEBUvWVgv7y8TMaSMn1f+ao3Q+TtVF2kRXSVTqaqZk4370aY+QBLRq6zKaZfk6r1WGew4TnhfveY/Iro6+/Iks5uC7yyLXZ0aQdhfbCHZnPMljJeBslevsKeZRY9knYHQf9w4Cxpffr0adoFw+ONYbS4B4ATBs0weJ3eAVrV3F7l3HS/uy851/MMUEHfdMFnOnK329fPMTe7nIBgyb6/R344Z8C/d4izAwTZqU5GsWSHpzJb8ZJe9HtXbw9ORlcYMwvlo9BGw0yUTCSxeC2TuhlBV9XMGHYRv9mS7CvaYSPYAalOYUYTE+OeYzHSgWQiRsZ45Ej3Jbsa+jSC+V9OfsayA6KezF7mqXqjYs1K2NGvVt/pf+6c5tupOsPb44jhcztcX0fElI8zoGw/stVgwPcN8LKWI3berdssR/Biq6GNps+j7wzQMorKfs7x8Pz1+Ked6gDriJnch2wDBLa9VXOQavtl+5fsU+6oSiCQ9fC1AHxVNd3vorPT3dhQntfgDRLRSZJgP3/+XKenp9MzNhzdMx+8e4SgjLqy5u8k3JR05hbT9Zn/4yUE+p+2W9K2ExRga8xO0y+wgJ0kCHgPKPihZxN0lNNIMZMVyApiGO2ATIMnKOgGLCkdO2A7X4OKjL5Mo9qQW7EYXEAASC3r1tE4OYlou8s3hTpiAGgT16HMjEgTUBgMeJxyXA1KkCWmonvns/vahv13kJz8I0DkCesoincmrfv09fV1454SnV6bMXAk4sioqqZMbo+xddbGlrp4zqFT5+fnE4Dg+oi3Y93d3dXt7e3EDFTVjBWgX3JvNp8dvfk2whnB0zfUmT7OYMHAlfecU6nbXMvsot+32Zx9yi62N+vcMX6038tOZjq7IK+bw/yfgUS3/ENdDARs92yrq76Pt7evVs3nADb77u5uZru7HQEGqsxBWK8MTD138nz3oeua/Zt9hQ/gPZngZNS4bgI1b2PPOnTX3VXexQzkoHYKaNQ5oqyyPDo+DUBGtkuTsusAd+7IAWZb+AzN5QEzyAEIsIULZGiklxPP322kMIhdRNNF8/TVEjgaAQGXk33i80coefRbKqPHlmt064aHJp1h9Xh4bK3DOdZOUsr+dw6Ln3zma6bY+eVx3RwxC5H9DgCn3nYUnoPoGM6fmwZ514LLpk8AH1679ZKC1+s9D3Zxuq5XOp+R8e8MbIJq2A0b5fx8SDLqq24+p53t2MW0BdneDhggad/RCQKnkU67fkuMZ7JeDuTS+Vrn3Vazbcw9z88ErOiWb1KVgAnx3OzEwXAuh5s9wJ9YL9FVX7cb427M3quzP8QM+Hs6/Pw8UloG1UbMk9kGzpM5r2nJKGJpkPI63rphpbJT9vWfnzcfMpMZqRldu56uYz6hsKN9kVQQl58RTV53KaLoxndJtilagoH3lr8vSXBLnRkfMzxdgmc6mqrNvBVfxyBplDdjnfTNUfjdYDJBAk7XANEGx0aX6J/7CtCWx8fH2X0FDALcR/nIZJIHYRPYgpiAKo1fOu5RvyXYsrMwe5fj6LLodwy+51cXKByidPPY9bWz5T/snZmSrtyu/5Gksw3KuG5VbYxB1juTFDtJe4luQZnnEymTcaia61eyrV6uQHfzccS5Ndh18/U41n7LjjzHhZd3CnRga2S3u376EfmhBEJXJrOIR5VNh54N2ObMMnJKQ5L0jo1fh5hQiMz+dnkGAtsAAc+ZBxC4zm6b61k1T65KhJzn2FG4b1xf19GOxO/bwMAouuiihhzj7nNmyh+qWKedvGcdcvKqnc9SVFXVsy2MLbqMLnopynMKx/z169d6fX2dqFH6lzrTFq7hffasOdrYcI+C29vbyeAloPDaqsGLDTlMgBO3fMtin4vNAHRQnkFKjkv2nedlGn2DHNO9jKFBm23AkqHdp3Tt744Z6VhVbbTTdhQwhE1kqcjr7JTX9Xc6uwS4aav5zuO1Pc/SDln/0bGvX79O5XM3TBgo617adztgB1y29052ZRnMN3pLW5h+BjDg8+xfkr1I+8gxaTNGY97Jj9jbH0ogtCIldWIHmJVyJ1JORvFJyWWUkEkvRvKOnkxXZb3TOTv5rlvSsLhcUClLBiP6jfNGipjbmvJ6S2JFTOBkitT/dbJkDHNMRudnfTOyPURAMDI8yT4lGDS9V1WTM6a81IWRZARqnWT80PXVajXtBPD9A6q+6yIJhQnKDQjMgLkPPH8TnNMfNuyOCFer1WQ4zSDkkzdNx2MkccZ8zkg0QT99htFmbPKmR8nycevmfOpi6sKhgYBOujm9RB/7HAMjJ6LZljqYQT+TrUrpWOA8tmNK0aW8XupX1fdxvr+/r69fv9Z6/X356uTkZAIHX758mT1UCzDgTH8747whFX3jnAMHb+n0DYr4TFsyn8zg1X2QjLDH0+dnQqUlg8QflZ3BQEa7NiBei0knslTRLmLnGkhGa47aklbsmAXKSNDQXZvOx1A5EZGbB5G84TIwRDZmGPE0SjZkBhDUkS1dloxAR5ITOY1656A64DWa1EtALctLhuJQwEDn/K1DXdTkc7MNjjgxPAj08xKoRK+4Hp/5b7VazZ7ghn55vzSRiB22s5fNYtigJICkXjaOtAPGgO2MySD4drS+2xvRt+uI0WTeOGO806kESzkeNtTUJ7eBei53gUJebwkcf6QsXde6mklmmaRWNU/qtf6ljUhWCBktWXY7MDg+I99ttij7mzJYblqtvjNh3OGwqqZlqG/fvtXXr18nhoD54T4xGMgnGuJwM7cFkJL9k76EvmDLo9vh5b2Hh4cN0OugmHpzLX6zz+j6KnXjvfZ2ZzDgvaQ2oBmJuGFdBVM6g8RnR+vdK9dYR2KkmWjO7cFgGWhw/W5A7Mir3iKWdCK5vmTFQpjMo6xfJnHnwEx5+ngbdn7PiC/Bm989Ph0QoIzsS/9u2ScY6HSr06nsk+zrFDM7BpEGsXn9qnmkxvhxTurlxcVF3dzcTA9t4XxTiZznLVJmz6yzTliyQRuxGV4qYwkjwQDGjvZ4d06us3pNFlYh15n57PmS/zmiss55mcDzyMsVdoI51rYvniuHKB0QYGyou6PMqk0GxHbFICptpfsibWTaJ+T19XWW39KV2QWXyHq9nj2Qy4+KZxmI7a5OcHWOj/O5bKsBGIABMwL+DqNFGw1wzeyx7NXdp4F7IXAOus//tNUJtbB/fDaL4LHjPYPv9+rsu8FAF0HtEpln5bYdl8AjmYFtYoeahpnr5rqXwYAjLCvQCBBwHS858FuiyWx3OiPLycnbg1QYbNfJx3lCjhxMjlEenwpup/MeZmA0JvuQ1L8EValfIxo9pYuikY5Sz+McabgefseQ8UQ461FGCTbiNtoeS2/rQ18pw2CoG//U+3QG6/V6ygEAuLgtVW9AAJ309f0aJdO6bl2/57ibmTs/P5/uzjjS6fX6bVeB+3KfQJZ65PyxDicg8Hw2GDA4yoAikwETiLk8s8FV862LLjej2aTV0Tv03Ddos+OkLMaPaz89PU0PzholqeKkDXTQZ+e1mDUyC2L9twO3/jPXuCkSTB4BwsPDQ1XVlPjIOBmcm7FD12EJsh9TD3hPQPAeeddTCzNySufeTZrOwecx2xxMHucGZ6Q9AhdWdKQDAx7cjGisuEk38tmTCAXy8Vw3v5uFsDGi30ylchzndoOfxrUzetv6No/rmIGUpfE7hOiqi4gcPRgIIgZN/g3Jietz8toJUG1cl/Z7cyzGpYvkHRFTnm+mhT5Cg+Zthavma8dcAwNmI8XLRhED57Lcl8kejMC/AYEjtM6hdU69Awh2Cp57bsuSXVsCHfuUdMDd56r+CXlV83lvSnzbNa3LBmVmI6pqNobdGHmeALhT/ynH+phgAFYAx+7xPT09nfIFnPDqZMFMFPdnru8+MyAw6MzcC+pvJi3Hh3sHdIyxZcQOZ8DXjfMu8q4EwlHkkE7Z53STDemcyeg3Z1p35XRZxV39ExmPjut+76IvK5EHBMSHk7CDR5w4BWjgWnm8UV+KIyd/TmS/BApc9ug6lg70jdBoZ2QPRejrpPaSyanaTC7NyeuErAR4XMt9YaNBtONnvXcshcvpkqwwxAkGAKTcVMjbsjKKsv6zZdHLD1mHzsAluGaNdpe1enTUa7gjZ+/+d71Tzx192lE4Iua7QV2O5b6lYyxGoJx5bJvlMbSNqprflyWd8a71SuYTANglvvHdS2kdOOZY52ZxHQPMZDHsyDsf5KDNQV3H4HUMlsFLgiPrLfWkTFgEQE2nX51j9/WSJfsZ8i4w0HWoJ68VszNg+XlbpMpxr6+vszUwOjUHrItmMxqr2sx8zWvT0Z4ooyRJBh5lyugQtsDHW3GdPMZ1EJTeE4J2JPBJxe5AwN+RDn1atgGIn624P1NOTk5mz29H15IS79ro/rBBSfDZLTs5ij89PZ0ewOIlgtQdJxaaAUidcLm0CwNmg9vdVIX6oZtEYy7bx/tz7sUm0uQucm5LR9P7P9qbOpx6nwxDggLPYR6La4dDQpe3kvl8g7xDkgzEqvqlkxEYN+hKnWW93eAQXTC44JqUZRvh6JtjcqwSeHRggHKq3gKfBOuck3avc+wpWef0JbbTGWDl1kvn48BGADD9RFDa7d09lO862Wf592Tpu7Ys2etO3r21cKRQo052hY3ousqOAAGdxKCkQiGjSTCq16geVW93zyJi94SwsUkqKOuRTttGjsjHZabD6ZxQttmKn8xAp9wj8YT2dTDo7reuvJEO8L6v6GoJqFCvbr21iy66SJ1rZJ/YuGYkkdGon8rWOVskWQYfk0tGCWgQR2JOevT91XESgGLf990MQuqqWQ4bt6o5cLauZlTGtXMMluyF65MMg+sH82Jnc3JyMq3p2sGZ8Tg0INs5PN8/ARkxMWmHvTPF42gAaWff2bjOftseIXZ+XqLzGLrvXWc7f+pi0GvxcoF1z/rka3bginPdljzf17A+Zz29HJHMGeXRduZyp3+np/Nn0aSMfMU2+VsPKuqAgCdj0odV7wMEGb07QnPEjLgT/duI7sqoy23BCObWm1HfZNJRTkIrVK6DJtrOdnspIsvs6p4gYKnuI0mjmn2VTqc7P8s6FKrVkhFK6pT1DlDUAYI0IIjBgPvRE9z9kxE9TyeEuTCQyOjIDpbvOIkl551Js5xLvSnTkRdtdg6Al71cDhG3cxQw1Alk879uvJhrHcPSORE7DMaQtWIbazvUpGIPCQykU6bPrA9mE9NRG9znWngCWOut54Yj1w5wpt1JvwAQte51+SpVb0mnRNYuz37F7DH9kH1gZ52OmHN8noMBCzqXx6PvCTqyX3I8s6+s40u28712fUnevUyQDsD0T0aBOfjbKp4TriuzE08CKynnZl3yGt3gLP2X4IXvaUwzSnfCSt5noKpmdB2SUX5OuEzMcb+N2uXj/F/HCLgfzAp0IG5kvG1gDkFsmDKK7La42bmM2pF9ieR45blOuKMcA4Grq6u6vr6u6+vraY+/+96G2Dpnw26A4Vtncw1vAzQr4vKr3nIi0GM7+fV6XZeXl9Px0PGvr9+XCLjvgGlez9FM5rIDS/qU3/jugMO7J6i/z/Gd4WA+EgTkksChgYGquf317hCD107cbyPWwDpO+amnHZBKp+Yx83ib+bI++ppeY7eeGQwY4NkWch3GOJNueTeIzSA17Rn/u/9yPNLG079p/6zbyZZZUu9yrnd93smuuvuu3QTIKHp3A7Iho8gpy+jKGyk2CuHJnggry0xGYReA0r1SqCOIjsnpu6SlcnV1zAmaDt8olPecdAmGlsCN27nL79247goEMur+KOn0qxtLR4IZ0Zhhyr7toiRLfncU19UVMMB2QoMBrmswaePTUZnQ45yP86d838wo9Ssp42xzPhfBSV84HLZvEaFzY60EydlXBicep1wO6PqaueKxMeDhdy8X4Dy8lnuoywRVmw6o6s2+JTtiO2rWwDbF7FdVDRka+gPnmE4p/QPlZvRvgNo5S9pGvglgMs9PJspOmLY6OTt30PiaKV1Aaf3O87uAj7pa78yCdfcP8Bgzj/ArZpdH9c767yI/BAY8OdMppcGgITawHXJcckZWPk9u1800e9c5ifryt+6apqCMaJ2wRTlphFjXMeKkzr5VZYdGXVaX5boLErRTS8fVHevPXeTvfhtJlu9+zLXvjxb3iSPJke7ZEXXGp6OXGfMRW4MkPZn9xC6Ai4uLyWHz8KCqN53BCXdRNWJW4OLioq6vr+vm5mYCGJeXl5OhzGSvjKRyvtqxV9VUlucidTEV7D3fGZFVzZNwuyh3NG8TsFFX6FxHpF3kR997DD3u+5SRfbTT9DzPYMO2zPbXLFIXKDkT346fsnIe2HZZt52PY8fo3BnPRQPdjhng2t1WYOus257LHF1yatrCru8NCJIVYR6ypIEPcM4RbcvndiCp7+7bjj3b5g92lR8CA8kSUFlnUiK7oOpRp+f/SNI1KFgCDiumjU5nYEaoMIEAUVQqw4jqqZpTTEm3uf+SnvUxSW+5jtuAVEoqfn7u+mOE/Jeu64h6nwa1AwGjSD+NAXqS65q5JEQ0aeCauuDrJX1PeaZOAQQ2pFWbSZvdEkFVbYCAz58/16dPnyYw4Fscv76+ztb/XbajGMo3KIZxoM5OaPSYUy60c7IRHhs/Mc7t9Tzo2LYEAx4rsrsN4t1XBgLOk9g3GOicEeI5mUGa+yADsDw/y039r5r3lyN9yrEO2hHnMhW6kkClAwVcJ7e20lberUv2RdlvDhyrqrXZthXuF/ep574Tbclv8HyhjZ5Xvs+H+4s2pXgedkniHs9uLHeRH3o2gS9spzuqXOeUliLUkRjd8p4RG9d0VO4BSWOHJIq0JBL2kwm76L2rc9d/SK5TW+EMYjqHnJPHv3H9PK87dhQpj5gfn7/NmHic9i1dW5PG9OTnHEc0eS8CM19+eexGIMD942z+0bjmeBhEdsYadgEm4Pr6emIaiOQxZK+vb8/g6KI+67ejPbfLa7/MjdwxY0rbdwTMdqUDywiJspEEeVVv8w7jCyvAuHnuuR2+O1y3Zv5Rss1upnRzNPXS9H53PSeopvNE3E+2sycnm/dpyPmVlHlev7NF1uust9uMztkXdeDCx/I5bVaCgqVrVb0Bg87JW5L1SEDSXfM9QCBlV9bgh8GA0XU6ng5JWUaOaySJHG04nZGa13UH8zkdUnYUCm0jaKSZUW63xYN6OiOU31NBEki5ze5b6toBjrx25/CXnHn32kW6a3VlLhmVj5KujR7LjPyrNnNjDAjclowWKN8gMvsiWYFc+8QA2KiYeeuMQ9bTCYKm5lO3s27kB1AHbpDidrkfMzkxmQX3A/XEYXSAx/riOeC5Qh/Y8bAcgOPu2D+DB/pulGeBfRkxfh8t26K9LvpPAJlAgN+s97sAgpw/9F/aOutIF7h1UblBd9pAwIb13XqZjjqPcd2zD8yguB7WZ8+bBFjWyQQDCXKte13+QsfIJOjvgkPrwq52HPmhZQI6q4t+/N+SpAFdum4aKwMAGzqui4M2zdg5IhStAwQGE14P7oxCF61bgai3IyK/vEa5TboJ3/VZF9Gn0uwCAmz8PTETCLgfR453n2DAkmDAupTZ6B2bwu/Wt0zeM2hLutnbqbzm6ciZh7PYKJEz0N1O2GDVywy+3/vz8/dnwTsqyVswE9lnVJa630UkCZg43yCGfskEKreDOUOdRrRvJ2YN0wG5PVmPXAZZrVbTtuJDAAO7GPZRkNUFcIiDH+sa7a+a32HPZbkcMy5cMynyfI1smOvB+VyfpR7bS9eL/2gPrNRSP3qe+vpuO/93LBV6lADe87Jj8HYN7Dx2I+c/kveAgnc9qMgX6JShau4IR8YD6Qxs95+jDxs71jx9wwoML463u40q1/EAJm3Gb0aN5+fnk+FyGXmP986xGgnyPbegIJ4E7zFCed1U3HRs24AAx1BGGgL6x+WOyj8UsdGwY+4Ypqp5hJHG0I6iu7c445fGtlsmYP5wLrfudXSFkUPnyNInkdBl+b4EVTXp2cPDw9RuJyiyq6DLYzDgyXbTF7QNnTN7BpB2vf34WGeLd4EFdci5gC1A3Ke+J0PeUMpja1DQ5Sl4yeAQZQTg83OOWzcvEyQbwGeEjP3K5RizCslWdbZpqU0GDslSeC+/fU4C0F0C06o3Z+26u03JANipm51LJi//T2bYkjrv9vwd/dsVOLwbDCTV5gslCLCz6CayZRSlW5FGUQ9JVo4iiMShsLimDQvHrlar2R3WXKeqt/3Vj4+PG8rPpLBDTOXPpYSkk+hPo9CREndRt6+XUUA6atcxFa67luvic1F0O8AEAr7+e9Dsr5RkBHznv8wFQNe75R6PT1KWnit2lL7eKMfF10E3/B0dd5Y1Bsjr9ZT7+vp20x9H8Myh6+vrCbB0Nx7KvIYOwHdUu3UCR/vw8FD39/fTy3Wv2kxMzn52JMj8S2fl5Z6lZRjOcVtHxpqx+52kA+Jul51r1ebN2UZ2pWqe48Q4G3g68k8GyXPFdcrAwvXEtvuVPiVtodlYswgjG2Rdta9xvc3+ZZ6XwYHnQbcc4HlI27OP7atGx/xseRcY8EAlINhG43VRUv7fKUI3wDZMRv8ocg6AjRr1RUn8IBb+49pu3+vr960gVTV7alaeM2JF7DxHzmOJSnf/uQ9zEiNJR2U9O6ed0hkUIlBHe3ZYHZ3V5VV8pGRfdUDAuSR2yPR7nu//LXlLVI5JVqADAgYD0J0nJ2+3ygWMMq4JJj2+NmBZRwAF14Jlc17Ay8vLLIInih+t11rvbYBzaxjMAADaUbznh9dd/TufHYF6XDobQb3StlgXHBEmIFitVu24fqRYJ/P3LoDymPi4DN4cRPHq9IXjXc4IOPl826DRckuCO49V1w6zvbYtGUx5TqW/cj24vm1bguJuC6D7JsXg+D3LwGnb0XWzOe+1pT+dGTBl3UW5u5bhxnTUUQ5SGvLR5M/PicYyaeX09HSiJVPhOjEFlA7ZZaNEGRl7LQmxA1rqCxTax9i5JBigrhh1yrDktfw5UXjWFWfTRf8Wt8FLK/sQ65GZALNK2SfZDzhOGwovXXGdHI8EYV2EXTWPxB3JQu/bEGVE7uvYAJmFcN0ACUTsd3d3tVqtpnEiv+Du7m56RKxvB+v2WA+89o/jv7+/ny0xWK87NsI3KTKjgWCLDAYy96LTTQcjjA9LAGYUcvljNF6HJMncWQeTnXN/4kyTGaGv7ITSNptdpd88NskSdeDBjI6/+3xsHe0z22S2zECmC4I6++OlrKraYJY4zwwwdcq6ZSBkH+Tx8flV87wN/jOgNYON7KKP77W3P437stJYRt87hqBzykxwJ1x1e76NcqGHXF5+dpLJLkDA79TfwMOsRIfgrBCcjxFakowWvXSRSlNVG+X7nBwDH+/PGUHlZ6+hjgyNy/g7610/QzzOuY5scGCddLvpa0eRHm+cq69BGdsiKNb3fVtgjy31T9Cd/Z9ttUHy3LEzBgxzLI81ZmkBR85z4g0ss6/MQgBGfb5BtIFz2gFHQmYquK7Hgt98M5sl+0Pb7fBTL2C8fH5Gu4cmI2Yg5671omq+vJXiMnD2eZzHcsk5ARIzQKMM7Ek6f8Cs6+tkT3S0qjYedFT1ZnNz+cpt5PhcKrROe57Yz1knEhR7Gdjnjcat8y27gNC87t+RncGAKY9EkNsq0SlR10grliOvHKx83OyorKRPcxKM6K7s3GQsEDMQWXeDha4vRg7Zv5vJGBkjAxVTbB0t+iNiNG6jzDWNikcIvKvPR0qCJo9NAsuchOmIfHxStx1T4+gpjR16zL5/37CHc6tqNueq+qgnmQhHJgkkMfCcCwPgPeOZk9ABgaynv8NmEOUDSgy8MpKHCcj5k8yL9ShZwRz3fE/D7P5jGyF9zjnU+RBlNOfszH1MggJsekrqtT8noB49QKtzfrnmji7mEkLaT7NdBgKAAfSrY0Q8d3IeoDs8B+T8/Hymi/f397OystxuPDr/4jHK/ndfjQCGy0+W4WfJzhqeAzmifap222LYORnOYZB4T8XrUBxlVs0NcCoC/+dWJl/fdbSzdTk2qF00YgOS90Bw9JEKk5ESRiopYursSdSxANtk2xgh3TVgLexElyi5fYkNSzJKvBxZdGB1xAxUbRoiPif45J3/z8/P6+bmpm5ubmbPCHBU0q11jtiAXA5wG+wA0WWvgSYISQOdzjlZj9EcIz+gar5Dh2PNoiTgoL9tvBNUJjBxn/h/G+DMNKdv0AN0PFmDfYttTToWfuv0wvbEOmDbsy2ypx+ow+np6eyJmgYDriPj7TV5g9yqmrEGqePr9Xq2NdY7T1jiokyCkw6oIh3gODs7m+7K6WtRX/dXnp//ZTCWQMxj14EByxIQyDG2P+3GbxfZGQx0SXldpdKZdRFw924AYeomgUAyAknN+PPoARC0wwlKFhvxEXJ2WenQDQJs8CjHCmXF6RyQ25gOYqScCa5GhozzmbAj5UynluUnGOhYln2KHYsBJXpmqj6Bm8cmmQU7DB/TtTkzmjFCfjKhHRFlr9frNir1WHiuGOy4bjZWUJ9EV+yksXAOfUef2egYUHSgwvqUlHKyMGlLuKb7eFtmeBdlJUuTCWA+L9ePE2Qdsnj+OnLE9vA9wWXObcS6gm5Rxmq1mj1VExCbANnHdy8HmNghR/7oVT4B00mojKeXwDK/YOSnPO+5OydzjfK7uUy90990wXJ3bve5alNfR2Pbnb8U1O0q7+K+sqFZma4hKeksfL4RakYHAIHcwuKB4FwMRiZ9ZDs6esrHdMguwU4qNPXiHYUzWiXacZRk8JRAh3MSkGWSoJGx6+HyR+ORgCaPGY2d9SAB4CEAgaqaTXqMF7R87rUHDKzX8x0nVTUbs+yHjDL9PQ1ut9TmOWXd5bdOV6rmd8QcJdFxTWf4Q7F2OwR4NxNQtZkI5qUE5l8yL6vVauYsRssx7lOOu7y8rNVqNW0RzpssdUbSxt7t8Vh0Osv8NuDJsg5BuqCB3z2HDQhwcKen8+dnZKDkMcg5nyzn2dlZXV1d1c3NzcZTL7soGRvOja5M79uxopMc+/j4OIH0qpp+Q/9op0Fe2p8EpdZtbAJLdV76TenmqQNGsxtZF/dpSgYZCeIzAE9QYElQ8B6A8FMWwjrjbzqoczQdqrEBtXNNI4Pk4Fi65JE8r0NmmZ3tOnSRhsukjIz6eLKbk0m2RUod8OA6Tk7JmyBlGdk+rpcTJfs8jQFKSR1yMiQS7qKAv4tcf1S8p54H9BDpAhJME9JW7tZXNdcnO7qcoKkzCSj5zFokZd/f38+WFzoDZqBowJlLZmmA7DgdeXX7/O2wzaZgjBlnMwu5XOa6mYUZLWNkJGtKGqfA9koHJACDZG84l+OxRZ2eut5Z/5wnhyid7tm+WVcT5HT6yXva7qo3++jvBqEc7+BsvV7P/mM80XPfHG69Xk9jfXZ2Vg8PD9MzNAgCzfgu9UnXP54XXuYgV8D91M3rqvmushGIz/ygbrz4z/4il70N3rtr/Wyb+rfBwCj6tDLZGHki2iCYFUjp0BVlLT0QIjtqiUoxeKE+WdcRrel+MBDwsgb1MTXtdoO2bSxtnL3UYLpslOCV9eqYB0un3GZYDELS6OR5aXC4bjdGHyF+WM+nT5+mCIAJmMwA/WuGILeV2vHSdtOGtNt9zbH0K1vuDATs7HGmyYhZMimvi4QNAhyJdUY983Fs6OkXGz3aRZ053jsk6O+sP3UcsYr0PXMTQPDy8jIxGr5roJk4IrwOHFHnTrp54fdDkHRs/r2Lyunf19f5lr8EY529rNq0DTBLOO3VajVLvOvKS3vA2HoHGLpVVRvBDnOzqma2DiYn52SKddSBgMEqc8L31/ByhV+ex+nr+Jz9mP2egWMGGdkPyYbluOd13wsU3r2bwNJREl3EOeokjGtGwZ3jzU7IsrvcANczo2XTriMWw4PHpMqoossST5CTZSf9aEPsdd800HZOgAEyth2ddcyA+zXXlalbOgu/UMguIsxx5XpdHfYhdvZ+Wp+dVkeHs0SQW4TQF+unI1brVUae1jsibPreoJCxr9p8SJjXRBM0InZiI0NvUGp9yyRdR3EJVhPgnpyczIAwzBjl0L8JVtw+92nV20ONaA866SUK+gPnkMsRtLGbG9bhzsgu2ZZ9StY7XwYEiO0qgMnlde00mACIUQbf/QTMLMtzhe8Gj9zmnURpzkXfUrcZa8+Ljll1/as2d0IYoDJ30Sm203ZgwDqY4+D37MPOHicAt78z++Wgd0lfu+vvqrvvBgPdJGawszJJOfu7FcMD7mztLtIZIT/K6hC8tyXZ0FjJ/XJEXDXfPcD37I+q+RYcBtAOIZ2Fo3QjRKJVjGrebtl7wC8vL2f3p3c7kTTWRE5dNJkUsicD4ANnQfTcjU8XCexLAAO+935ui6qqGfDxHfcyyQlhXNGV3FPM2Hd5HB4PjwHlckxn4AwoOa4zNvm9c5DolCPKEfA3iMWRGBxk33o5pnMUyQR0rEbVPJktxyODBIADdcukSrNsnJOJvdsc6qFJ1tc2zZQ9/WumkvdtoIBzcf5V8yVLcgG6xG5sX4LttHsIdcly7DcQg9mcR6576qiDpvV6Pdk57Krf0xGnLmRQ7DZ0fchnMwPJjDnAGOXJuF9GQO49dvddYKAzEo5AMurpKuNGdANrJ+Vowo4+6cYsxwPhqN6K6np1RiAzRW3MM9rPOtBPTjyz03A5CYScXU406/2vpuh8Qxhv4bKkscYwAzCSvs3kMmecO/nHDm4p8jwEccazDYENAyDLYAsDYQOQulW1yapYJ8wS2KHaQdkx20gZCCwZOr/7dwMSX596ok+Oxvivuy71xrFbb+xsvVzQzTf3ievKf+mEOxDg8xJwknDo47p62cFkgJPg6JDBQNUmIMjghjZ3S4Q+vwty8jgDLr4/Pz+3WwzRoaqa9TvzhDGxbXc+QLcElpJzy3UdBSdus5deEwhkXo0DSDPKHSBYkqxPBwQMAjwfEgCk3lL+e+XdYGBEO+ZgQWV2xjPPSyPSGZOq+eAhI0TEdRmwNEyUaSOfyw3ZySBcS4Kapbp27U7HBLX66dOnurm5qf/85z91c3MzZVb7rm53d3ezB79kMiF16aJhvwy6DDZ80xh+60AAOoFRHY31vsCBgc/IENrApQHoALBZAtrf7Srx9qTU9YzSqzaz4f2b9TcNHYK+d+U4EvKyBG3o2prX6hzpqA3u227udQ7Dzix3/NhhJMOWDtv6+PLyssEOeuxS6D+3f19goHMyo3mUYCCdyDbWNV9c2/pswJXX5pkt1nGDXo99lgvATHuZkXMXuGW/pH5RTp6XLLDZgVyCoryOzVrSjw4Ed+JgOlmI9L0jH5zXeq+9fddNh7pKJIXpScbvINPstFznSfTeKW066FFUukt7sm3ItoFN41u1efe5UcTGbwYnCQbIfP/zzz/rzz//rD/++KOur69rtVrVw8ND3d7e1rdv3+rq6moGCu7u7qZH39pQmyr1em4CAsbq4eFhyrQFFHRLCmmsHWFlH9NH+xCPSRqC09PTyYhVzR8wYkeXSzxVcx3n9466dqJdGiPOcZTMe863PKZqmR7l+Izy1+v1Rt6I25wGfRTlGdxUvelEl/2ckkAmQabZAM4H0Lo/GD/GcyQjx5HshB2SM+L3yQwkiEpJnayqSbeZn9xMJwMtzqe/fQ3Gzk44rwt4BnB5rpmFtMOnbOYU9To5OZk9ebMDwVVvT/Mk8OFalGNd92++btreLjcqE7M5n/5w3sBoPJZ+838OSMwIjJbERsxAynsYi3eBgZHjtdE0ckqE6XUjxI4qy3FSV05KR93dRO8cjwFN0mhdOZTVSRqxrH8aVQ9KZ2xPTk6mCJb9u58+faq//vqr/uu//qs+f/5cJycndXd3V1++fKmrq6u6vb2tu7u7urq6qm/fvk1l+YEymaDCNfI7yxCck4/a9RiS7GOmAWVOp9kZ4I+WUW4EfQVNaV1LB1e1eVvgdIYWGw2YKcpLZsEAICMgnB918rVGxs7/c3y234bw7OztHhb8bnoW8fGpI0SGDw8PG5GW1zqtA2YcMjCgvzH41AkbggFnScBMTkaPNtyMRTfPE1jRJuqyT3lPgNO1OZ156jjv2U7mfTroHCdobds+A7l86mM6U8+lDuCaNqc9BgOMNXqSYN79Yl10NN4BfjNt/k6dCBT4nj6q8005lunLtuXG7AICKOs9NvfdWwtduDvITg+xMXSHWqw8GS2ncaBTvMY5mqRZD461UzMy5Rzq0rEY+d0GJF9Jk/k8GAA7qdVqNbsBxs3NTf3xxx/1559/1l9//VV//PHHdAzXwJn7phxVb+tuZhucyOV65S4Gt62bjAZvdiQ27JllS98mEPwo6UBq1fxBPUQtjKlBLAlT1pss1+WnMUkdyXpYPAaOgO187ayWGK2OWUt9Z+wzSvN89HnWO+//pr+Ibkg0Y6kpWbU0ZtscAeNycXExzeM8Lp1h0sBO6s3xSaDEZ9qza3S1b/FYObp0220PsWu7OBfbBNtk6ypjZXDJsb7TpcfGeoi98pgYVGCHcrsv/7MjIW1r9o3BAOVaR7GnDhYNqlwfg4hM8nOZ6dfMyrkO3krYAYFuzN2m7r9d5IceYZy/u7OramNi2WB2HZQD16Enl4tsiz65fipAZ4gc4WXk5rKtUB0w4nxTUVYCO3A79tXq+17d//znP/XHH3/UH3/8McsXAKCYTvNkon2np6eT8+I471M3SuYYO3dPKoyFX8kIeFLTD92a7mi9/iOEpRGL65fOgfGyg0yHwrGc60gI3bETzzFIXfL1GQt2QfhmSc4ET2rThivHjTZbd9OZIo6g3FfMJbMK/AZdDMWayafoLvPB0Zh12FRz1tsG15Fignra5/csJwFPN7ft8PbNDGwTz7VkRLjJT9V8Z4btgSP1DjQuXa/TYeoBA+f7RfC7WTNuOWxg6aAs99tb30djxjhn/a3PDtQMTJi7XDu3GDqCd9+N+q9jPtIOUE6Cnfc49PeyAZZ3gQGv1+VFPfBVm2tySDrQjKa3OQ3OMdPQGdWsewIV/1dVs8jQk8mfq7bfhARlpl6cy1qYdwzg5FGKi4uLGRjgVp/r9XrKBSAvgKiWMskpuLi4mP2eSYKpxDbunqwWTzaQ+4iuy8lIn9jwfLRcXV3NAEq20Y7R9c9JmcJvmY1PmfQ/Tt2AoItKbKDQE26UhC5QP66JcWTd1obO7bLBcZv9/whUUybgkuuSa8H5dv6dke7YBq/X0q6qTbvh8fDWVwOCPC/1Nm2P9TIjvm1R8keJAxhLx2Tk8Z7r/GYgtZSY5+v4u0Eh9qQDXhzb5cvk8gV+xYGKGUcDTF6p6wYNGXCmjmffIBkgOHjF3naAwGDAc4zrW/+99JrS2RzbhuzbHJfu83tkZzAwGnAunpFg1Ztj3BUQJGIa1WOE9BK9Uw5Rev7u67tsyuJc2pX0tyeQDZt/s5EisvO98VEQ/vdT7FjHR9EeHx+nZEGvxZ6cvOUbfPr0aXJERMROGHp5eZnAhCcVfUCZaTwzygcQ2BAbqOU51GEfcnV1NbWdR+R2E9RJlBlxe4K7jaZF/T/lkRBqWt1LM52j5nwzA2Y3MuLJSLATGy4zFwmCRudWvUWB9CNPjDM7YKBJW2AzaDeSDFq3/Oe5xnX9SlaA8XAw0tkXjxF6C43t8TDg3YfYTnVOOT9b7CBTV5w/kfOyY1nsfAwIkA6EpV7zn52nj7ceeTksQaCdpNvUsUcGsh0g9u6r0fyxLcg8GL+n87ad8StZL49TLu1kO/2en/+u/K3bETsSWoosRmJknsmCu14/ldtGiAEZleuJhkGHGkpqq2MJfA2AAAPtdU0DAtPs0GNEXN3d2ox2c997othu22CyAs/Pz7P7E3jd3CDo9fU77ZtbPDsmh+UCMwvuJ863I/hI6W5oAuDJ8UjDYLCE0XSkVbWZyNeVSx/kfx2Fz7UAACNwzHhkvofnhdvidUifn8DAbfK16DevByN5PQywkzO9tOBjrVuex2kIaYMNcsfyIOn0M9/FbXZ7Egx0yxD7kI4h6MR91oHVUdlV86Uvt9nz2bIt4HK5nnt2oixt8t1bFKnHCJybyTNT56RS5nq2Ccm8Es9r7K7v5UJdEoRkFG+97thRA4ERw5BsRjf+PwsQvGs3gT93QCCj7SWnbqrURsJKNEK7vLvzUklcLgiY3zsltUP3ddMoZJTkyeD1LpfRGSMMJUAg7z9vyojr8e4XRvf8/Lyur68nVsG7Bkx5PT09TU7m/v5+BjAAC2ZHDAgsjJWXjpw8k5Numz78SgGswApUvTEcGaVbrPMdbZ1gpwNK2e7O0dlomLFIB5xilsYsVhooj2mnx/QD7UxA4PrY+G4bazsWg/LOwBngZj0NVP2b+y7HzgA5AVjuksn+R+yADiVnYFdAUFUbfWunnf3WLaPYgWe5yDaQlEtiPifthnXV+uhoP6/vMl0XB3IEeTnHkp3IDH6XlfkKyUSM5nOnZ1zPADeTBjuAsQswGI3TLvJDzyYYAYE0AN26CL9jYDJPwAbQ3y25Xp2IMa/riDSBgGXUeTnwLqdz/pRtJsDLAVYM2p9UPnf5y3IyUjEYuLq6qs+fP88eK+pciKqarRWenZ3NbreJYnrJADrY0afHnGjazqbry12U91dJN95mNZyljzGyLgN4bEg7MGCWy+NdVRNrhOT4dfVNA+l55v73ONhx+twu8jWAZ2xtMJM1SMPsecG5GXEne9AZwYy0fJyz+bsoPW0OkqxAPm8hgVoCggRVhwIGqnYDBB07YCfo9tKfucV2m+SczrnPfML+jpYjPM6ctxRQ5n+j6JzrUwfvpEqA/vz8PG3JNkhwO63rnVO2nensgO2n2YjMfcklgg4QuG45Jj8qP423TeORRqA7tkP1yTJ0jETVfEtHJnnRgRh4zumiNJdrQ9VROAYDjnhcv4w0rBidgaQMOxmvx+KwDAb8SGQm79nZ/Ol7gIGMAhzhYSRZe4WCrXoDAukscxxWq9X0v8cqx49x2od064d2FGY+zCQ56uY/nLqXDzy+Oebuh9zKyO8dbZ0OLo2A6wTrU/UG2qFJ+Y22WoftVBPkJoNF/6An6GoyDGkAHQlZt9IIpkF3nUaRUvaV51U3xqNncrhPO1u0Lfrdl6Sd7Bxnxw4kIKh625KXeV6ABYMk94ej9cwByPO7wCkdI79V9Ym9Br8uxwl9Lot5kEtz1ufX19cpKHJyYM6JJUk2IANAg64MvrC7yXCPWAGPa47135GdwQCRhyMMD25nvDjGMooYrAjdpLYiJhq10656UyJT7Ha2owjNymwQMOr4kYIsMQxLEbJRaWZNezcCbfLE9Z27PCk6YEIiGsrKmhj90zm2ROK0IfMJuglMffYVXd3f38/qYGbK7UNs8OjzdP42cllGMgTWExthL11lfkE61qRNqzapehsQjIpBssEN5Xg+jKjOjJYTMLsNTpJ0uc7G7uax53AX/WR7umiMd9e768sR0OoAF+1y3sm+5b1GPx146gsvAL3ZvqrN7eMOmgDG3Tp31Rxcdrahqgd7SAZXBhZpxzsnapvKy3MyafrUwbSdiINB/CC64gDK1zLQ6BIScwdBgoGl8V/SiW1ABtkZDLClyOuNIzpppBDuUDraRjcVkLKWkFlnxHOgTDUuOfARO4CYZXCdOtqqKy8NmcvMtTwQLQqDs7fjZy3c/fD8/P2Je0l3Jz3q8qiDI0lHaEa8Nrb+r1uTdR8ZrH20fPnyZYPJcV9bjOwNIB0R02+dLuScSN3o/sudH7nO7e2IrotZMWfWJ5vFCxYHEGnDh3Ccja6Nk0Eq1/CyE8tV/OY6dm33dUdgmd/Y/ZJAl89eF062xeM/iv4955mD2L1DkaWgJO1bB7ZsI0eO0qDUzts2OdmbDpAi6TBzPnTR75L/yODD18/yqjYTBK13Sctn3VM6nweoZx6TrwU7a+fv+Ws2wnqd/jM/d2Lf5N/eIzuDAWfZ8+5KJhqzJBrMCDYjrBFI8MDT2M6oJwr2gPj6dgwcm5OmU0h/7+j/rrxugrgfEig4aueVWe9p6Kve7vyWSW20O9dKYQIMSjKJxg4Lg28jjNEkKmQLZXetfcjXr19n9ODl5eWG87EhMQjyOp/X1Wl/timNJMdbb7pJjjiidZThxNIEmLn32v+73C4p0UyU62S9Mkg0GOBY08s5f+xklwIJM4M5NrYTCQYSsDBmucyR7EcyHQmyXH4ugX20vOfatlcW24h0zh07QB/Qb2Yk/T5y4K5L1oly055zTJaR42WQnvVxOS6bY30XxA4EWlxHl89n2wNsoJ/94qWIDkx3IN71WAIA3W/vdf4pP5Qz0CkE7zaGdkYdZTpqbCbabUNFHS1Nx/IfiXEJSjqUmW3NKAbJTFmXt1SW+wKlpt+cuWwlQ5m97uWoy1FBRr+O5kegpUPHdkpXV1dT3U5OTmZ3lQMoXF5ezvbEdxHGPuTu7m4WZdMu2uqotXOmBgfuR4PidIT8b+eXoMDv1lnGuzMMXkLq9j1bD5znYTBgw0p55EO4TlzXbXSd7LQfHh6m3wCugHAAauq256avl2MwYuk8Jh4bsyoZiRp0JBhIQJCsyT5kl+t3AGDkQGxPExC5Lwj+nHxtYJzsU5Y5sn9ZT58z+u725FwcvUbty6DV9R/Z0PzP9US/DAIyx4YcMD8F1uxaLkd3gGo0pj9T3v0IYwRnxH8ZJXVAICl9zuV4ys0INifwaJJ2aDWVp2ozCSVR72htKtFhshkdyBi1yxE7DslrcFwDR+uEGO5El7SYo0lfg2UBxiH7MpEp1waIXF1dzcYKMMBnJy9eX19PN0xiUni//D6Euze6D71WSNvsADoDkEbXc4AyfOOa1eo7Le8dHIxvOh0ifPrNVKOfPbFez+/IxthRL+chjBym25O6ahCfhjV13jpDmwwEnD3e5QJ4fpmdcnnMja6NjGXOLVPdOc/y1bED+b7PfBfLtmiwA0udU+2COP/vfrEk+M1x8bzIuZNAehQwbQM2rnMHBDnXY+6Aqxv/DmiimwmeHWDS1gQCtB978PDwsHFvl/cCgY+Qd4GBTkZRewcEcoC6cpjsZgcwoHZW7sSsW6JByk2FrXqjv0YOn/8S8XaOP88bHZsUmQ0p17FRu7y8nD1bmzIcda7X69nd7nJ9332akZ0NuseARMN0CmQeu548XMl3T8Qgc7fFfD7AR4kjT+diZNKO9/nS1lxmSUlDYUDBf070zBcgIB8tfX9/v2FkMkK3MXH7Oj2r6udq5+DtVLP9Hfj1mqdvGNPVIw23jS5igNQtC2TdO0Dg7zlGmahlG5Jr6AkaP1q2OYRRFJ6ROp+zTPRyxJikE7QNT2A3YhqWgiTXN9vatSvrjw3q+iKdel7LcynFwaDtrcuxnpkNoG/I3+KusTADeT+BXYDARwCDd4GBbnA8ye1QcRrdVhBH+3lOGicrkNfz7EQ9qB0dhDhaoU4JViiX6JH1eddxm/g818HvHTqljzGqUMA8/Q1lct6A28K97AEDIwNMHbJ+Vmx/T8TthyTxHVbg8+fPUwIZfetnMexD3E4beB7g4j43zW99SRbAZWeCkg2MKdfOQdLf3saJ82esHeV27araTMhLo9vNi9TDqvlOiKTaq96WKaifr5EO1XM3nTN1zLraYXv5o2tjOv20Gd0YpV3wb8kEGAgcAjMwkhEgyP86Z2tH7772O8d0rJN1o6o2bFoCgq5+nS1yHQ0yurZlXWECOvCe13U/+D/akn2U9epAN/r7+Pg4MQKwAgYCS+3eh7z72QTd74mg6KSOFajaRF1V86e1+XzK9M1wmNzeEjKiXOzoMkpOQ0udHCF1QMCOIZ0B//scR3LO/s4I31mpfAZd3t7eznIFyFTlenbIl5eXU7mOepAOJOGUTNsCahKcedmCa/NAHcAA/U1fs3ywT+kmrL+PItCRuB8dKeVn3w/CulE1f9phRq+MSQeO0wCl/qZTJFIxC2KDTRkwEF6iAJxUvW2Penh42AAt6TA7MLwUASZAcWJjJsTaGCfoMbhJp8/1MiHT/WHG6J8gI2dsZ9pFz3msAYGXWM0KGMglU5AMo6+zpBejOmc9PeZpo32c57fb3jnkLphLsf7YN7E8MGIEurrtAgp+FXB4130GqjYTOLLjEwwkK8DxlGElSarJzsgJTnaqbKOzMV+KePNOZLkXNB2GwUkaVzsUG66qt+WHzPynzpTptXzXk/f1el339/ezqOXp6WlyrqwnQ9N/+vRp2hPtOnV0lMGRny/g9VKSy+zcTU3Tpzc3N9MTF3kwkEEOyYX7EIyWI92q/mmDtMngNOlRl1vVg6uOgs7rmHo0G+V5lQl3SeGnbibr4KgdY8SSE0wIdYHBYU4AMFn2qXrbrWIQAFNkSfDrZMw0vNlXyZp5TnbLIB0gGNH6uQRpEJ/3Msjg4neWXQBBVb8cTPvNqlbVbE4h7nfvOEln7LKzfjme2+pssGFmIFmFtHud/1oCJK5fN7e8fRDnz0PhkhFwvbMvuvZuO+ZnyGr9u2v5UY5ylKMc5ShH+Vuyn/TuoxzlKEc5ylGOcjByBANHOcpRjnKUo/zL5QgGjnKUoxzlKEf5l8sRDBzlKEc5ylGO8i+XIxg4ylGOcpSjHOVfLkcwcJSjHOUoRznKv1yOYOAoRznKUY5ylH+5HMHAUY5ylKMc5Sj/cjmCgaMc5ShHOcpR/uXy/wGxq0cSKLtAYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB62klEQVR4nO2d7W4rOY+E5XzPGex17YXvHS125iRxEu+PF+U8rhQlte2kPRgTMNzuVkuURJFF6sOb3W63a1e60pWudKUrXelfSzdrM3ClK13pSle60pXWpSsYuNKVrnSlK13pX05XMHClK13pSle60r+crmDgSle60pWudKV/OV3BwJWudKUrXelK/3K6goErXelKV7rSlf7ldAUDV7rSla50pSv9y+kKBq50pStd6UpX+pfT3WzCzWbznXwclMFvv66eVTxWfPN+lc/oW7Tb7fafj4+PpnOcdG9U3xneZ86GUpvc3NwcfPs183ZevR6pLtV3dY/8/e///u+wHuem//7v/25///137A/V8/39vX18fMRPr+317OPjo/vciX3rfZPu3d7efpGRm5ubdnNzc3B9d3fXbm9v9783m82Xdz0fpb+9vd1fJ9put/u6st3e39/bdrttu92uvb29tY+Pj/b29rb/6Lfe83aRvKW22+12X2S2kmvyXeWXxpm3oa7Zbk9PT+1//ud/Yrt8J/3Xf/3Xvm3f398P2o31nZFRptlsNtM65RxUlXdK/srPddlM3muetedjMenTZGPSPX4nOW6ttbu7u/bXX38N+ZoGAz9BqjArnhqhZ8j9Ov0e5TECJT1ywUyDYIbn0f0qv6Qoec+NTgIDHx8f7ebm5oviZt/0+qrqv7UGoIwk68dnb29vpQF08rZTXjOK2ZUxvxMg0H3mrXR6VwZL6e7v7/fX/DBv9ifl4+7u7kv+TH9/f7+vs+p9e3vb3t/f2+3tbXt7e2ubzaZtt9t2d/cf1fLx8XEwBkZGiH1D8DbbXso/9afk2tMnwKW20Htrya7awIFAAvOjfFK+M+UvMdijsX4MIBlR1QaXoHtGAGimnUZpRdTXdFJeX1+neL0oMFAZyfTx9CMAcCwg8PTnQJvJaPb47N1PvPXayI2CD0iCgqX1GwG5tQbk3d3d3ji11tr7+/v+moNGHqyDKwcPSu9tqXRL+tCNmvJPAI/3k8GXZ58iA+QhgYEEGkiMFOkdtqHzJ0DAKILaqCfL3p69NkuUvEUHEHzO+wQF5Ofu7m6RQTwnKdriwIj9mIBWD3x9xzis9NgSb/3cPMw8+wmdlHTsuYBQIuqiJWX8KBiYMWj+PQIDI+N9yu/Eg6fzjvU8lgyGBE6celGGJW2T0PSssR/dS3VYMyxHQ9faJ8/kSUZLxv/29jYibb3rHqy+PTydQte858bXDR0Nr4MG3U9hfn3zfeelN3WUxkYlR7e3t/tvRVkUMWDkReCAbcbyXImN2pM8V6CBdXWq2lNtKiC1FhBwIh8jUDXKZzZSs4SnY56vTSN9fa78f7odlkZ0WjsjGDimsj0DnpTPjLGcuT/Kp+rA6v6xIbiKliJcb6vEnxtmBwOMCPSiAz3qpV9TKbh37VMg+v3x8fFl7YDSyLCJqpBcb7rBn6UoQK8OycOtgADn/uXpJhlxAyNZ4XNGPNK4JNhgGp/DVKg7ASldV2BgpNwqkMD6677n5aDJ73seP00zBtuB7pI8L91gOy0BMEvBzneDg6qs7yhnaZ5nAwPHGILRAE9GrOe9zOS5NH0vKlDll6793lLQ0sszpWE7tZbD2kxP5etgIUURjqG1lI4vBkv10NQBw9MCCQ4mlKfPh6dySSkyMEOcn5dxdnDjUwWs86jfledms9m3Aw0720BUAQvyoXal7Onj0wCcfqjatSd/sxEEz8MBjEeLUlTlpynplFmHpkenjMdTnb+luiQ5ZrO6vjLwS0DWDK0Z/TwH/cg0Qa/Tqjm+ZNBIKdTl6XtAIuXjec2G+E+NBCQagYWkKEeDrWqDKiIwAwR69b4Uz4Mhc/Hk0YEUDaCBcYPqxietK6g86FOJniyNr3YSbDaHiwFdLujpV+A1RTk87Wx9Zow6AUIqq3rP80j8JyCf1mr0DOylKPqRA+Tt5nU6ph6z43fJOD+HTjg2jxGQEp0KWJbk891Rghn6ETBwasfPeuW9Mo+JTrg3cyolnli3dD2bV++9SuH3AIE/74GmXr78vaZCpWdLfjQ1kLxenxagweL8N99JAMAXFo6AVeX9sb3V12nxoE8TJEPrADZ51iPlRm/eDbFIay+4HuPm5mYPJnpbMn3hYY+UZ9UPIyCQyqfMv729dcv/SUpOUDXGRpHKJeWRRnqml75ytnrU8+5PpWPaZek7yem9NPpWMHBOjzAJQyVQx4aQZkCHl0uFlSIJFR8jzz/dmxEgN9AjY+1KxOtxiUK7lDx07UZRhoRRg81mUxoghrL5u/JEmb+HwClPNGhuvJhfRZvN5gsYUDkK/6fzE1RX8u1TEaksghHnmdMNAgQEAO6Rq20SQNDvFNFQuR6ZSXVIfPYiAr36/xRVxv2n+foOXX5KnkvycPBU5dV7d/TOkqjVUhD0Uzr4W8DAqYJTGTHlTQU6+vZ3emWR95GAzHaQ8+HPZu+7EkvtUvHq1zORghlKdTsG9X83peiOjI9vfUvvekQkXfuqcxoSgoDWvnrhCZB5/vxNI6xtk/f39/uPT4u4F6760rj6tEACQ9XWPO2+4ALBUbumtqzWWLBNqrUBzo/3t1NVlyrPNRcQtnbY9ylCNON5zjgVp+ruc4OGGaduFKVIY7ZnY6q8R+mOsQkjWpKnv7NUD//4OQOpAyqll2gEAJbywd8+wHidBp3XISnxCmzwuiq34jPdP4ZmBGW2nBHwWhMcyNDQQ/RDXJiuZ0yqCJDIt6jpucsHzzrwfBLISIsEBQLu7u7aw8NDe3h4ODiBsLW2nwZRPrvd7mDbH+vNOpAIIpJR5BoGgordbndwvoMiFb42Q9809AQYylegRs+reX+2l9/3NmX/eP3Zb+c0ckuoigyMeJrVQcfSTB7nKme2nn6/0jm99jgFGCzRebNlztAS+9mjHwMD52B4Bgj0BslMOhr+6ncKpfe8n1H0oQcK0vNZGk0HpHS9vKr2qtrVwdJaClVEo0bvOHmwsyAzGRSu4ldeKkdAQHvzPbzNHQcudw4EPCqg62Swk4xWCq2KXPiYo7ee3qNRJhjZbDb7+jsYEHhpre3PJ1AaXjMS4yDAr52X3vuscwLnP03VeF0CUlx3LaVz1T3phSVl9Qy/U9JDozYbtWflwM5EvnqRCB9XKZ9RGRU/S/r8ok4gdOoZ76VAYJR/IgcC6f3U0D3PsQIAx6Styux5E6O0o7wTpX64JKInyt+KDsgQ8duNHdOJ+FsGOHmr9JZ9XjzNkY9W6dPYcSeBogLipedFsj4uX6Pyq3FDT15evAy/v+tlM0+2je77WgM997YeRQN47aDNF3umSN8aNDO2v4O+q96z+fYcqWPyq9JW/VwZ7YrP2XKXgrIZsFE9X1LO6mAgoa1j0FsFFmYoGeSloMINyEw51bPkkVQ8/YThnRX2U4DZd5L+TEdE79MNPRfWMZTtC/BEMkCpfaq97myXmTlw/SYASNMGXDjIPktbBFVfny7Q8wqApi2H5K+1dpAnpwwcTDE64uU4SErPK8OfPH1/RiDAa/Xl+/v7lPf3U9QbT7NK/1jddA461mBX/XhMvjM08qp7gMDfP6XsRL3+X2r4E50dDCw1or1np1TQQy/eWccCBzf8p4TdjhXkU95L4UZdV3SMoqkG0hqUwIB/2J+j7W6kahcBDdJmc3iYD6MDfjqeKM1/+/RA9WGfeiTDox+qQyJfTS8+yLeP0x6IrQAtQQHBVdVWVSQglc9niS+Cp83mc6qD6xQIBtegmfHX05VrAPORN6/7syCnAgEjx7CKiqW8ks1ZAgjWoF7bLaUfiwycM+TmRr7q8CpN5XX1vO8e3zPg4Jh8Z2j0fgWEZsFWBR4SHyn/lM9P0/v7+/4PiKTw9Ze6DKXTk64Mqqhqi8oIepjbv9k+veODacyrMnn6n/dBFQXhN9vJ10QkoKOIBPmg8Xx7e9tvL6ScOCBJbe3AgG3kvFQyprr6PyyynfkZGYOfJB9/Ti4jl2KkZqKEsyAnjYMZh6rScTPgYKlztKTdv6uPTrUl02DgXIJ2TB7Het8VIOgJZ+Up+6BcEhmYFWYHJFXnJkPgdfZ7S2h2IFTGsELYP+2diGT8db3b7fa/ewCH3qHSJnKgydX1ukeSoU3lpnlsffOUQS0WfHh42H9rN4EbXHnQPYXsBjr1ly9M9Lr6+gg3sDqoSfWvomxpIWJrbb8zIU0LiHyXAvNI0xfizUGSn8PwT6TvBgcjfTqiY9t16XszelTp3KH5DkpO0gigLKVj+mT1NQM9St7lOQZmL0Iwk66iWW97lp/vyGMG9c4Oih54uiTyrWyKCkjhu1fL90jJw1ee7+/v7e7ubm9QZhYBpjC4b/Fzb5xrBZQPPXlflEcjxz5N6wj4joOB9O999OSrtlI65ke+9Pe8+taiTm79ZDsl0KXfCagm0P7x8bEHTQKFm83m4C+XPfqyFiVHYhakfDf/P2XMq/eOjTZUNIrCnJr/qOxZ3Txzj9+zdNFgYC1KkQQ+0/fSCIHTkkGxNALh9xOKH0VOZspMCrgqZy0P6/39vW232/3vt7e3g+NlxZd7vprLTvPFs/3NNiEA0D0a+c1m8wWY8MMzBPiOA4bWvp40KMPNf2XkborEs8iBQ1q8eH9/HwEG5/rf3t726ze4joMGubUW25tl9qICNOjedwQvBG2Ud77DdllrzUCSM0Zb0ng9l9M0S7NOVXo2ymv2vWNoRi/O0DkAwhKHs3qnF+mYoWkw8J0o8ycFoEfuDZ8aKvJB4EqeaWY8+x4vsxGB5PV/R0jMy1mTqrUB+t1afRCNPG6nKiLiRtrv7Xafxw57Xm7QRT7t4ERjT4PqYe9qoWDqfwIMApWbm5v9nyD5mQfpfAOeqeCRDbYhd3hobt/Hjx/A5MRpHV9jwH5XfQWM9C6nktJC0UulKjqy9P1z8pLyXarn0/1ZMJGiylX6WQeJ6VMeI+rpjCX9ltp4pq4j+sdGBhKiG9FMOjcU1TtLDHMPFPT4WuJ9JsPrwjcCAhU4+A6w8JNEQ1Atvmvt69/Z8n5v/UCaFlCZlSxUwDBtR6zkxL3+m5ubuGtiJKuV7HgEwrcxChj4YUfurWsK4Pb2tm232/1iThnktIPAD2XyyIkDLuWV+s5BgfhqrX1ZTJja9FKmDJbQT0cHWjvfXL4/OxYUzHrRxxjjS5SHpfbQ6SLAwJIKHGP8K6+caarOXRKWmeFhNiLgAjcqKyFiD88vRbcjRNyjSxws1a6AEbnM8H5rh8aPHrq+k4H3fNPeeC+/knueF5BC+u7ly/B6NCEBIwdI/Pg6Bt+mpzaQYfcFlSqf0RKlobHWfQcE3h6KKKS2ZlspbWufZyKwPRw8rgkGTjXoo6mDcwGGnvE+1lmr8jwmv6TbqvtVVCClq34fS6fmo/ePAQVnBwPnDA2P8uoJeGV4K+PL/M4dapsFAtVgGPHVAywjnnt1XQJGqjTHgomfoqrtqzaX8asOxNFAdI83lVcZWueBfCTQoDJdCSidjLS298nAkh/+B0Diq9qN0NrhvwkSHLBs1oULCzmHr/wZOWC7MT/nhyCAWwhZL5KnV3nVboQ1zxlo7ThHZA1aCgp6944BADN8zVAVee4BgFkd53o93fPxOWsLXWcvkZOLiAyMKDVMDwSkez0QwDKo2HroamnH++9ThLtCuf6sJxzVd6+8Ubi54m/07neTHyQjXmWUuE+e9fDFfvr2ukhOuFfeDa4rtrT9MM2D+4D26QAeZiRjSX4TiEhGWe+lvfdufP2ZVuZr/YCAB4GMphNeX1+/nJRIPpU/1xCQf8+b74oHBzZsO65f8LHhUwSUgbXktxpLS/XHsfpmRs+N8p4BAb3fp+jMc/dbJa/JWM86WjPpl9Cx+ax6AuF351kBAe/QZOyqBq3Q6igMN+JlBvH5d+I1pe3Vx9+raPT+LF9rUDUnrbapws5ObuBpNBIlw8vyeivjW/v8AyCW6eF7RgTEiwwyeWB+MpZc0V9NF7D9ZGzJLwEBFxTSgxdPPB/h9fX1S76av99ut18WECa+ktfGhZNsM29TvkO5TLsPlO+a1AMAaezN6sxjgMWxeVQOVs/wz+rHUblKOyIf35XOTbynZ5VHn/Ijn8cCH9qypXn8oyIDrc0JuXtAyQj3OrjK89jnlfBXgp54PAZJKw9ejyID/F4SPSBdWmRgpFB4Qh3foaFnlMDDzlwjkIw08+CntUMgUgG51j4Nk/iUkZKx44E6rAPzvb+/P+BZaQSSdN+jFWn9QNp9wbUD7v0rMqAFhPyXxbu7u/by8tJeX1/b29tbu7u722//dLClOvc8MPGXFhRybBFseV85yFpLfkey62nPYdyXUKV3RumT/vK8RnWfAYvpd9WXlfOUAIGnWwoWejwkWpLPUn0tuggwMCu8xwpb8vq8Y2c931P47oGT6j0X0CSES/npGXy/XkLJgC3h67uIW8hktHyF+Waz+eL90UCyrfy3h9D1nfpaH198R0ogQOVyDYLSOZBhWbrm6X8CDtr37/Lg/OrkP/FLr59gwevHKQQBDnn/vuhQ4GG73R7k62clOCW5pSfvURO2rU8b9fJdOzLQo1PG14yhTUZ21hlxWarKSTrRZarS4SNDWcl3JU+9/Cr9OwILszSSxWSrCPhPAa0XAQZm0ewxqLfyCjzfUzptFqSMwETV0eLxGMOvd/ldXY++Ty1rLe9KBiWttHevr+I7nbCnPHjtzxO5wazAngOBxAujFb5TYLM5/Pvg+/v7CHi41oH3E49eN/KZDjqiJ5/WRCSvK3nq1cK+itzQ+986K0+V29t+eKqSPYVOLXfG0Tkmz5lnPYenMvy8TiCzx0PS7+7w9H7znZRXry1nHcp07xhd7uWy7Y7t74sAA8cQFYgrp1HjOoJzZVS9s+R+lWaUT4UMj0X/s8I7CwASL720KmtNonJPBunYA2WO6TMa2GqFPg1s8moYsfB1BSyDCyPpkVPRauU+83EP34FPAiwK79Ob1xqLlKfWD+x2u4MphbQ90dvF20qRnwQevK8qZcpnBAe6XjsyMKsDTjEGx4zTYxyU2ShAmqLqleN97GPHwZ3fT8CQNAMMTjHsx9A5gd7FgIFZw1EZo3Mby6W0pPxehOBcdfP2HAGeJch2ps0caKwJCDi/nrxqUhWZEdEQ+/O0ZkB5VoosRQMIBFyhqZxK8akMGlz2bdrFoIWEbCc3xmnlv/hUOm6n9FMEUx2XeNw9L468pDQ+vlw2q/fcWFwKqb17wGY2n3RdpWmt1tO9iEDvO4EB35aqaweHPZ2SvH+PWFF+q6k45qUy3ZFMz3r3qmcOfD1dBWhTvY+hiztnoGqcmfdo8JKSrAZ7epZoJNxLeZ5Jv3SQ6toFZyRQlWI+J/I8Z15Ly50BJN4GDqRIae868+H8PJW3z1FXRtLD4jMKwLfG6bvam696UI69rnwvyQzbYLvdHih1PWcZ4mu73e4jCgQj/O8Evc9PKj+1TdpaqPJHRrM3vteiGR56RudcZSYQMKOzk+HntQMBX5uStr6OSHxxG24FBFiPWfDnY+UY/VbJmOdbAdpzyuaPRAZOMfDpHRp9bzT3gGeU6Dk6caZeM6Bh1MmVIZlt1yptDzRVPFfp1jL6FXEBYWv9we7t7+sARtEEzuGn/Ej0zpO37L8pa86XTz2M1i9wbYGULcdU+nhdWTaNPXc2pL3+SqMthK+vr2273e53E6Q/NPI+ZH4EJeST7eu8+9hPwEN5VmWvSTNgxtNV+qKnl0aRgRnHKMlRBQIIBHzqKG1rZVmpfz8+/vPnVTyESvfTx4FsAtocJyNdNwsYPL+ldvIcoODbwMCMoVhqQGffmw2p+PNjeHPhTh1TDb5eGUnppt8s15+NBLZ6p+JhhmaV1E8SFb3zUJ1QJ2XjxsynCXqDl56xlBAVIM/El6Kh98JzANSXycj3vqlkNUcvmaDSpUfeW8uQVvdz4SLrwvMOqFTf39/3Rp8g4Pn5ub29vbXX19f2+vr6BQj4Akf2A3n0iEX1PAEAtvmof3+CqGMqch6XOBSjsnv3ZuSPdUigwBeq+i4Tnl9BQODRKhpwtovuERCo7/0fPAn2XZbdoFfgY6ZNZ/TxyMAfCxx6dDFrBiqaMa68N/L2K5Aw05lVBzkoqMrs5dsjBxk9FM78HMEmZTEy3ksAQUrL8teKGMjTbC33Rc/rc49FRkjGb2ZhGUGBRw6S4fFr8k2FyEN8Hh4e9t+jhVdcaU9jTW9a6ZPiq4Bj8tCZlgCHkYHtdru/9rMFqmmAqp3TPR8brvAJDNwI+PWlUdJJPY/ZqdIhnmbkuY4Ml749EkBZ9W2m/EdMAoMZ40d55IJWN/6SSS589Y/q7msOZngYGf9em84AgjQ2j5XVVcHAucIbI4PnaXrUAxkj5J2MdK+8CpBUvFd8zhj5qu5JsVcCOsqzymttkgdKRURK3heNt6+i53s8ldCNmBt8RgK22+0+D7Z1Mkyiim8a+eRV0eAzFKp7etd5SXKflKl7fGnHht73tQEEAbqmEva21jXvs429PH0TBDB/jzr4ugvvo7Vpxhs85/hLDsgMuHAHyQE1r/0jAJA+vtOkAtAcQ4q2sa81FrlegKdXMi3lIMmH24hjnbvUjiM6pzO3emRgiXCnNAn5937P8jNTXs+4Vr97KNGfj6Ib1fVS4fR8qjr26r0k/58m/9/6BGqWLEzyd1v7nKN2QODTAPQq/IQ8zuOTOPftHr8vuEpHAruMVHOh9ILEs79LpV6FZJWveE9l+iJBV77Jg58xRHxP7zIfTrtUwIP8s/w1qXIcZvVLokqPpN+zz3r5V8bfZbcCBPqb7J4RTQCQMqY+ZyRA03gEBZvN5+Jf5efRvZ59qOzQrCyP7NaM3VxKq4OBfwIdE8GoPOqeQZ2JIiRB8/LI8xJAwLxGUQaWkXhM9VkLEMgTcCAgfvgvd6KksPhM79PbrvrUFYq3g3vSbEeClEp5UlHymucMUMmRHwcfHm0gDx41UNt6mzE6kMBDT5mzDdxI07Cn6APr0osGMMJB7zGlSwDjJ+kYvXOqoRi9N9KHCQQk+fVoQAUGHh4e2u3tbbu/vz8At9UiWYJO/SYYkC4gGFCkgGsHBAhIHL89verPjtHFPWCe0s7c69FFgIFzG4lRdGC2Q06NMrC8Xhkz95LXX+U/8haS95nKm1UqFQiogMtPk++hJ0mhcHFda9mTae3wvwSUngYjrQtIz1h+ZWjcE99sNl/+EOj+/n7/eXx83K8doGIVD5vNJp73z7LIN+dyVUcaUzfwXM+g9+jJvb297curgBH54dqGnueeyMGEh4wTIPB74mNmvHwnjRyL0Tszv4/lJ0WOdO1y5ECWMu1y7esEKNM+JkhpYan6T2uHttvt/v8vPB0jWSSXgQSsVe9Z3ZrSJgBBgDuiU+T0IsDAMTSDlNLzhOrc+2DaKuxT0TGDbkaQlhrYpdGAKo+KEg89ELMmySOoFAcHPw0wjaMrIVKa304kA5qMqp6rPJZFBUqP6fb2dm/8Hx8f29PTU3t4ePgyRZC8bBLHRAJB/r8HldFMUxcEUvLAVHf3EN2YzHhgqY2dV31XQID1YBq9tzYYSHSucXUKSEhAgGPG5Yl/b+0yTcOfwAG/mWcakxXAdiCg3wKu1BEOBqsxMON4eXuNgMAowpjeOYc8XBQYWOJFzhhD/+3KxQ3rKZ6/5z/isepYR5q9d73cKu0IYMymT3x7Oy4Nhf0EccEblQYVhp65DKQ/5aGRlaLgboXeDgPvLwchukePXiQFyjnU+/v79vT0tP84GGit7UOju91uHwGRAaTyVrksx4GQiHnIsLtB9zULPPpY9ZSRVphWebHunMJJPPC38tWHi8d4zXQ0+OkkxksCAz62eg5P+j07Npfo4QTiKDdu7H1NCyMBPkVQpWFaGfPWPiN3Xl/1rXauaDurR7KUr3v+PaM/E6XyNku6vuqb5KwucVBnaXUw4B33nWX0jPTIa6qeVYZ5ZKRZpis43fNBX31ay8fF+hxtyrsHCI4FM5cGCKTgZ0Famu9maDOFIkW+6I332UfsP/eomcY9I24j1DXBgP4SmMaZ/0nAvOWpe9Sg542JCAaYXypDsuBGnmBA/6qY2o6y5F6fnvn8MO+xfg4YCAR64/FSZHmGZqKi/PbrGUpy7LLsu1oICtzgM1qQ7vn9FFVIkajWPsekwMDr62t7eXlp2+22PT8/78eZwGoPBPA5nQzKnUeVRmDBAWfVF+eMAiRaHQwsQTqzXnwS8vTtRmsJaq4GQzXQemCjF0pynkdAYKYevVCW8+HX/t6o/c6NXo8hThOQH58m4Dy4L06ix6y2lyfrc85sB3rbpEpmfIGUL6R6eHjYrw14eHhof/zxRwQDnOfXCX+utFWG/8WzFK3yur+/39/3qYdqLYZIdXcwJPr4+GgPDw/7Q4j0d8niS+96ewpE9HSA8tB7/vE6MJ36U7KxJo10UjJYI3I9uOT9HhBI6wJ6WwVp5FtrXwx+AhUExoyS+RbE1trBGNWBVs/Pz/tPivj5x3WxPowGUlYcEMzYlQRAeT+NMX/nVD27Ohho7Tzz21W+ve/WMsCojGMPBPCel8Hf3tHeib1OT/m7N0aSIj2lfRMoqADcCFSsRQIDbuD53AFBj1L/UCGyzVM0wD1tV0ittQNFyGjA09PTHgxwnQABAsEADZkbwPv7+z1I4HoFX5ugVdwua244E+BRfmx/994VGRA/2v/NqQGllXKn8vU6ctomUQIC7s2le5dCM0D9mPySXHu0j88SCCAQ8HUukk0CVnr3yo9ePkEBd8woPy6evb29bY+Pj1+mGFr7PHjs5eWl/f79+yCC5nWaaSPWXzIscvlJ61h6OjOVvRQQHkMXAQZm6TsMS6+hewg4fSdw4PM9yfA78qwAgZdVLaBZCgCWCtsSQb4EcgVfyRG9e6b3+fXWPtvABzpBGsvTffd2qEylCGlEpfQeHx/3YEC/Hx8f2x9//LEHBYoMSIGKP8oH5UxleLjfwQDnZVUXtgvXDbAtq7GRZFe80AB7mF9AKy3caq0+WlrkEYHK8LtMXCLN6sKkX1Ieo2s3lKk/PaTvIMABgUcAlK+DC0YFuHtGIJlg2HfUSHa1LuX5+Xm/VZHy1trXCGuPOKXgwNOjhJXOZ//wPc+rR6c4ek4XAQaOqcwxwCAhsqVlJ8Xmg2LEZ/KsKwRelZtAgYjeKa+rcsjPTP31zj8FFHhfV14gQ8/6piea3vf569YO25/3ZUx9axWnH9zDIijwUKgrXClIejw08ml+X2CAIc+0ilv3WT954L42hW3k/VB52ckIEFCwzV2m2b5KV4GCHiDo8XgJMl6NNx+3Pp4TEKjenU2bAEACAvLaOeVEQ+1RsqTj/NAh5ktgTHDMMjVd9Pr6uj+uW6SIAYGnR4sSKc8EkhhhTPo8RaCr8VK9y9+jfGbpIsAAqee5nbMM/z0CB654KjAgcmU8oiVAgPeqaQKfa63K4++q/pVX4UqnKmttRSrFX02b0Pg7mKP3y3Zm+yo/9p8Dgp6xdzBAgJBCqjT61TYs5UPFprl/1fnm5nMBIc8A8PlZ51Fp1IYywu7l+FoKleXz9BWo5rvkTe/5lI6PH8pl4sfvMZ8lAPknKNWr4q1nyCs9U+WfgIf3EwErZfbu7m5vmAVWe1EBb3OPNNzefm6lVUSA02UCAw4Ibm9v9wsHBWjV99pVIEDMI4m1fsVJ4yZFEvibgEBljpwp6hJ/luzWOeXz4sBAa6dVcsl7M6hqZICpvFvLJ6N5mZ5/pXgqZE8PkwOntcMTslKe56LkTflzfvv1T5LPK6d21qB1wyjyfq2iA/4OFxBW3pSMr68Z8B0E/Hg0wEGD8kqL725ubvZbrOTd06AnsFKtGXBPyAGoAwFu3fO0FRCgl882FYhLIWbvEz/uOIGBSzH8M3QMr0mfjECGXye9R1mWHLqx1lw+IwOUMUZkqNMYGfBdND5NIEDgW20l49o5sNvt9gtWX15evvxttk+buX6XzAkQ3NzctNfX19ba1//ISJ688q2csR5gSP1xLro4MDBTuZ6w+rXnd6xBcs/cFbzuVR66U9W5qUwRjb97kqPyllIP8fLe2l7/DLk3yAGWFvdUgO7h4WF/rXbvDW7l5V6UyxAVauVt9UKxvio7LSAUD1owqHu3t7cH/+pIvvTcPbjUrunYVpVNRe8gkfLsCwTT2gAHbj4l1lvI5feqBZDnDL2eSsmr5P2evlxiKGbHuwOCao1AMtIeGfApIQeHfO7rBPybQEP3VPbd3d3ecLf2eTy5wMB2u/0CVlVflc/pQ51P4AtjBQjYXq57lvbHT+rdiwADS9HNsSg+NWDyYJ0qREyFqXRVeVVEYIT4UhTCowJO9J7SfG5FSxSgRwVSdOCSqBpc6gcpAhkFerRScLvdbj9/ru/W+lNCVUQgGXCXKffQmU813eAevL+T5tXv7u4OvLIk5wQx3ufuvagtPFpFuU4y7sbYF0HqWdpSyKiGlzVLLsfJ+F4C/VQUQ2PD+yzJsq8PoJfOBbAEDa0dguoUKaqmxwgCqvMKCKhZjgw6/ynT/z5beb2+vh5EAbTzRe+77HNhIQ/SYt+leqaImpP6wgGi3z+WLgIMLKWRB10N4nMNICob99ZZpoemEyBIPFZAgCHkFBVwQeO1K/BTvJ8egLpUUJB4riIDvPaoD8ECve8KbKR5bSf3smgc3fN3AOBKz/dZk2elY5niiQbQ5dnrJYVK791D+8w3eeOMHHgfeH4sV3XhO5JzHiWcvP+0g8DHgoOcnzC6PSIvo3FVAd2ZtKncFAlwWaVR5voAhusTGEjODKeQWst/Fua6sAKq1TSQxpQiF09PT+3l5aU9Pj627XYby9Z0GqcSOH6qSKIbbb/HcaI2HjmlKW8+P8Xe/SPBQI++w+BXg4LlueKc9axH3lLlDSYBrEDAbH17aSvgUBk3967WBgic327tE41X8kIDoTUE8qJ7nrTypjFOYfeeN+PRgeTl+9oAyg1Dr6pLRZSjpGDdO6RBdg899Tm9Pk0DKAojo86pgUSeH4EAwYG+vb2UR4omVL+Zx9qyO0PHREGq6MooGkDw6fP2/HC7Kxfz6aMyW8t/Ga0y00FEDgoIAuTly4h7P4p353u73X5x4FjvzWZzMOWgKED1518cK5TT5M0nndqTz6pPT6GLAAOuRGYpIWF9+2cmrxnknRS+o1xXKhSCJXWpjEwvn0q4Rka7R5Vn4t6U3+e7qY4/RSOj6B4tSTwnj5YyIKPGOvY8K/d0EmioPCIHCEnGU1snXhKIoMJv7ev+fSpcGnO1jR/RSqVNz5KeEXn0BZysC9cE+FSY9+coStGjpYr4n0IzOijJLQGoTw342gB53FzRr4V8vlCWoLo3tZn0T5J/ySCnAVr76qwREAisvL6+xhA+idsJ2V6SS8odx4U7DwQEzCsBsp+SvYsAA6KEVkW9+0ko0u/q/R4YSfm7B3UuomL28lM0guRC54Zr5Hn1QpEsd6lgnvLuuSjVPYWBGZp2o+FhaaXVoHfv3I07vSkaenlL/rfDei9tG+Q3rz0PeSMJqLrCcf70zbbiH/0oX66+doVWtT/bw9tWfUKl61EdkRZwVTqgNwXk95znpLTXpp5B1LU/ay3L+mx5BAIud3d3d3vvX9v6PEJQnX/hhlJUORLuePRAnQDp6+vrvs0kr9SLBAUaP769kGW2lheJUzapf6kfqDMqQJDGjfLv6Wfy4W2Yfld0UWBgRlhHgj/rJfnzEep0o8y5VypUhoFaOx7VEXR4/ZzcE0oC6WnJmyvqngft19VAviRKdW7tcM+66l0pmh7oY984EEg7AZJxVzjUp4Jk2F0R+7nsPnXQkxPyrQ/3cfu6A5EUpfJieD99fBsfyyWQpiL1sD6BQXXEcFqg2Osn79809v33pcq2aKbes/n4J8kr59y1r9/BgNL4DheCPFHSIwkI9Eh96tNXAq8a7zL2KsMBzv39/T66IDnWwkHfrSLi/2pQ9lU2gXWKCKT6er+NHLY0tmfaTXRRYGApeYNWBpzpZxqmejcBAv5uLZ8+N9N5PV5mKIGA1r4iaVE1wI4FApdMPe9jBAKYhz6MIIyAZAIFKXJQyTKBgIMEjxp4JKJStiLyxXAp94JTeSrk6lEAV37Voj1vG40fem5StiqLlPqG0xA9wFzllfJ0D+2fQCOeXR8tlVs/9Ec7BvyPsrhGQGkFNjk14MYqyWdlFFO9lF4yqN86Q0PjR8QthD71IcOutUEag5y+cp657TgB4SRv7LMKvLONvO/83VNl9qLAwLGDsFKkS/Oo8k1zt1JkaVWs3k1rBbxzU/mzvCdFLCHnylxXym4MlddM2amP3LuuEOlaCrYHhNxIJcOQdgT4fYLBNPeejHnPOyBPDkJHZaRdAMyDdfa94Vr9rQgBZYnKXPeT/OmvYqtDXHz9gLxEjScpXQKC1OZS1L7+QenSu+mT2p5RikulpTojGY/kSCUg4OcHpH/M/PXr15edAw8PDwd9XvULZUn3fV1Bqk+qi8pgRICRN6Yh4NY0gQNZpmXUQfKajiWeoeSwpf7y66V2cjbt6mDgWOPP6/Ths155s0JGEMD5XA/J8jQ3kS8mqepNpVbNQVfUM/wjr3e2XZTO0W1655KiBm70eb9C5K4sdE+Garfb7Y3lzc3nqWQOtBxAJq/eFRWBg0cFqKD9gBUpYBlXemBpvpL5CARwEZgUnQx7Ap8uk5X8ORBhmxIM8C+HW/t6ohufMaLg/UpeEkhO0xcuHzP3f4Jc382OrcpJSb9d90jO/ERBbhV8enpqf/755/4IYE0T+EmD5Nu3pLZ2eDqkQvPsW77v4N11soiyl+RFv1trX84q0DQBwS2BJyPDfgJm0tOu8/ntTlsVIWG/z8iAg+MZWh0MHEvJo6Ly9YYXVYPfhcw9MAqAz++SZBgq8vCt7pHfChQQVFDpcoBVYdpeO47uV+GqFO7qlbUWQOCCoWqwtdYHj0lu3Otw4562D6apgeQpU7aSLBJU+HHE5NEBssjzkMLn0bEuez7eWBfJoVZwv76+7k920/tqR/JDY8H+Inj2seEgpwIE7uWlD+XYx6FHIS6VXNfN8Fo5O9Jx/BAI8CMA8OvXr4OFhFzTQgCovqRMUJdxjt7rwb72KTd+qy4O9KknU5+q3gICGhecTmAEQHpcH07ViTctYGyt7cfFzc3Nl62JBMDJeUs2LIHfUwHrPxYMiCplp2f8XpqfDxSuEWC+EgwKsv/20KUo5VXVR/mk35VH5ulGbVG14zm8/rW8K/colgwe9puUgYxEmg93ZeWKyz19BwTe/56mUogEDw4M6Rnvdrsvq5tHEaPNZnPAtyIi5FPlSOkJELhXxjyTkvP1CBVPHllw4MJx4eC58sQS6F2bkg5L19Vz3ktANwFNBwEJCPz69esgIvDr168DIKkPgaJvv0sGLQEAN/y+7ia1Q6qrOwTJCaiAt8sup5g0lmgfCJIp+6xv0tUOhJID07N1vTQjungw4EKevJ3KgPv7/tsFryoneXKufJQfEaiHVkd1TBEB8kWB8rk3n/9cQjOCM0qTBNaN7trelSv+NA/e2mH0hgNav4XmFQXyaaEkS0lmWHaKslRUyT7zSvP4jBq5Z8N2eXt72+9QUH78Mxd994AEDbbzvdl87sbx/qnCvanu3tYpP7ZFUsCet8vI2jLb2qGB60WxqveqvBLA9KhWOpzHDxbyyAD/apjyUx1Sxb/P9n/PJI++6j+dzJmmAVrLhxrRACf9lWyAnvnY9bLd+Fc2KUUBHJSm/ksOjb+7FBCsCgZORd49UMDfrdVrA6rGTsDCESLJPQ6i4IT2enWqgEB6zwHAUgU2gzKZ90j59u5fgmJt7SsocGPsIXF67Vw34Hule0ZL93q8+Htp+oD5VAYhecPJKBIIJEBBkJPqmH47Jf48nEvw5bwzupHKrHjxCJ3LoCvgS6XU58eOo6TbEhBIW1j9T4AcJPjfBisf9dvt7e3+T7JcrxIMUBZubm4OgIUDgBQx8DHhbeUyUq0hSe2TphrpVDBiwf8oUF3En/7QqBfJTXrd+7IHCI6hi48MVFQpxgQGfMAnL65CVBSKimT86Y0lZVzVoUcenlJ5GjTyTo+hWQ+LaYhee3Qphr+1+YWNjsg5IDebzzCj6q++Vth81M/J06jaPQGJJIcOYsiXyyRDtczP15iwXkyj9qmmLlxxeqSFc9I9oEQ+BL5ccVYh/8rwp76/ZBBAOofTxGv/+PSAe98EAvrwZEEuYuXiU4LlJCfii3qM/6DZ48dD8j1HzcnlK0WOlI/axfN1WRLveod/b0w+mUcCrBpjXlZP554L0K4GBmaND68rY5/u83lFCRSkvKt36TVRcTEy4POXnh+V5Kju/N0zav7c83Y+emUn6oWxLp1Gbedom8aHylPTAzOAoDKaCeiRj2pu23l140jjz2NZGd4nb/LaON8vJU+Ph8rKvUktvGJ9Kjl0RZdAmH880lYp8srb8zZMctBzEv5pcj6iBObSNAEBQDrx0oGAzhkQkGztc4tfb92Mdqz432kLWHj51fRA0l2VvqLMJOBJOZ8xxmmNkHjSb5LLKGXVPf8kq5WT84+KDCwFAqfmnZRSb5D3EKCMQpqzdw+kCq1WfH4HpboujQh4fq31F7h4fZVmLYXaq2Ovr0X0cOnpJGNDcODENL1IE/nqtVsCvemeKz33QujFEzx4iJYRAhHnTlmuFKCHXt2D//j42AOQ7XbbXl5e2uvr6/6j+yzTlafXkX12Cl0SEKBBmwHv1T3KBb3W5IX7NkGfOvDpBC44pLzw4B9NHfjfGfPvhLluQIA0AZNq6jS1T9LBKaIkntUuGscjeeI0AtuVoIskWRX4IIj1fkrRglGdj5HZHwcDI+Mz27nVh+nTvdb6ni07r4c0XTnRG9O9nldHIsDg91JDzQVbVTSgZ7j1Xi/sxPqk61TftZWpe5+sY+WVSzEoPe/zerf73FJHJcCFhRr48jB8NXS1Uppe0IxcMhxPz6a1zzCmFC69EvHEfdaKDHBVubw9BxD0ivRbbUDws9kcbqPiVIYf/ZoWPbJ//JQ5AgGmc/Ai/paMr58C7r2yZwDAbH78pCkCzdUzJE/DL3nsnYGhZ5J7Rs/Uxw8PD+39/T//IfD29rYHfwStHAvM18dBikq19lXXU/5S5El5cJ1Qcp7o8NFZ4Ds8M6Eqk2tifHqt19ez/b/ECftRMHAKEEgGPw0UR72VUeS1Rw3SPA/zccVEJcbfbjx6dSQv/E5eJPOnshNfVbRjxtPx8iuej/H4Lw0U6F66bu0TpLGO7JNU9zQv6gbf584ps+lZMl6pbMpua59zrly5r0OEFAEg8KQXJjAgr01HtDJ/GuI0hpTGoyRcVa486CWlUzTZP6nNZ6lqTz6/NDDbo8rZSc8SCGAY3CMDvnjQt5emvBy08p6PNZ/O4lRW+ltgAhDmyRMyOf2mcnwMU94IkHmmgHh3Pchy3SGQXLPO/o7XX/Xlx21bsh2Vw9azMyP6djCwhKmqgt4ZldClTqgUhXeMd/osmFCn0hDPKI+e9+1pHBD0jL747xn+nsKbAQspCtCLDKxNbszJs8/bV33CQa/fIlesRPhJabAMGn96XAlApI8DYSowKRuCi9YOvXKuIdChKHd3d+319XXPB1eJkxe2i/Lgc/HBD5W97olPX6iVAHg1LeMnuXkfuZySOF6OUaI/RdQ7/O08p3q4gXH9SZnzBXvujXvfV2s3kmwSeLAumi4iKFCUwLfEKr3rbY8YpL70kDz59vZyMOALXwkCOEVAgM02fXh4iCBIQFtjIE0ve3uy7ZxvB+azMv2tYGDpwEoCzOsk0CmP9HGicqga0AdM4pEeelL+M3VznpSvwsxSmEzHqEAFRiql59c97zjxmDy1SwMApNQOrbUvimMkf9637HO2v4cDk8JJ8pW8CoYe3fg7yOG7Cjtyvp91pFJKIX9OUUgxazFX4sXbTcqead2I0WgkT9LHegLwCdT6+PC0NP7e157nJcr1jH7ztP47gcy0b9+nf1z+aFxl2Gg0VZb61RcC0oD6CZb8+OJXjjmRFioSrKqvOV3GyIBHn7idNskkiWOeQNtljdMlaREmQZefIOuAWuWN5KP3u6JvAwOnIuyEYke/ex/nKRk0pvGIQ08R9wBAZYjSb3Z2epdlJ/SYeKi8o969ER89wNHLby2qQOOIOMh7fe0KyoGC5ksrw0SF4+sH0p7qXhSM8t5b3cw6SjGKH/GudwhoelEKb1cPQ7PuPQU3A8683VkXB16pv5wXBwcuA2uBgqpc12lJtzkAS7IiEODgwEFfApMOiuntUp5b+9xnz4WGNI6tfRpqgYHn5+f2+/fv9vz8vF9Yyikk14Piz6fYVD5l26e3yKt+u/x63QkG2E7Ji/fo4f39/R44cXxrfYWiEowyLKUkGz26yHMGUiUq49779EJGScl7ua7kEjJMCHVmAM90EOemeU9luPHp8VCBn8RrpRh7dRvl+U+jUT1TO1ZtmZ67opKCcOOdlIUvKnQwIfK8KkBLY6/3dJ+eUmvty/nrVKZeht9LcuXtU9WHi7S42Mu9/xElUJB4uWSqdFlq455e9KgAwWgF9jzf1r5GCOjdqpzW2oE37AcXMTogMCDA4EBSsuCAoLXDSBTL5lZHX6QnHUvZ9Wk65UceVL7P85PSmCcoYFSA4yo5ew5Ke04b+V0VDMwUXqVJgj76zKRvLR/nm4CHo2AfCD1jMFIkDmaWkBv80dqBnsHqKT4K0THAwAXzEqny7vmc5F4B03A+W99pIDs5YKUySB6bgwHf3qXrzWZzoKh8f3aa73ej6tEMV+okjo9kcKRM6eX4GEgGTEpzt/t6GiJB8uw4qvrbPWmm8bG/BlVylK5nDIQDAZ8mSEbQZdX5S9EBGiSWrzJ0eNHj4+MBAH17e2svLy97gMDzL9QfnOLyg4oc7FBelSfbhMBTdUvA28Fzay0CAY4jjSWPQrBN+c+QPnXneor9O0urgYFK6R2TzywQ6P2mEiMvvUFeAQEqiWrRiadNSs55dG+q4lGCPOsFiY8KsMzkURn2pEz5uwJpa1BqrzR4/R19J8NVgT9GaqQY5c2qr6ttRFRgNOD0pNy78o9kiQsde2Fg8UHZYl1kdKnYvC04V0sPK02xsXwuJlO90pZCpd/tdvvQKo2NjEQqrwe+e+PIZXgtcFuNvUr3jZ4nQJAWqno0qRq/aW2Mr4qXPDswIZC9v7/f9wejQS8vL3v51T0uQuUOhNbaFxnwdRDenpRV7abxMah6s47+XwuVbLmu5TioFmv6Oh53XB3opb5hn83K7lnBQGLomPdngcAIJBzLmxtjR2O+WGzGyCZQ4PdIKaSbaAkoSL+TkUzC5tQTsqqt1wIDIxoBFQ5GBwKj6MyIkvGX4a9OgqsOfeGfC7V2eJxrWgkt4+4GWMqRRuXm5qZtt9u9clQ6GWWvj0cz2G5qS29jLhCjseIzThOw/TlWkxPQi4I4JaC7FhhIZVcOBu+NwKwbS484KY2vNUm6i4v/1GcEawS+BMq+vsN1SmWEdSaBFhZycSGNu841EBCp1s5U03MEEWlNRBUp8T7y+w6IBfirXTFyHtSfHt2Y1cMjurg1Az2Ek4TxXAYmGeN0v1L+M8ZT3+TfvSYOVM+3Ip8+ILli8zUHiVLbjupEpZMG9KUBAQ/lJYWUIhwkKToN7tbqP5RiuVVenp97Dx4N4L/H6Z6IHj23hqW1B1KyPmXhxsC9brWPnxqnZ1JgetcPWUkGmvxzYZkAiPJTGVzU6Au9evI7AwaS4v1pqvirom8jXcH+7UUC2JY9o+d9qDl/PlO5rX3Vd/rNRXc8ZyB5vyqLUwpsEwIQRZQq++HjqxonqpdkIo2FEaW2Fwjw8wY4JlQXd0R6jhz7Z5bOBgYqb/CY9yuDXxnUhFZJvljEy3TPJvHvRnXGsPaAjcryAccy2Plp4aDzlUgDzSMXlTB5nUf9uKTel0SJpzSI/NtD55y3pAfkUwApepTan5ECjwCkxV1eF92jl5SMe1Lw5C15bFR8VIpSlipHbcH6cVGUf3vdOX/s/KWFaglgsD7p2tue442/Wf+1aDROeY99lfRjuu959gBt0lMaB4wSOXjjn/ikPr2/v9/zs9vt9msEUgQhAUjqROp4/fZpCwEGzdXzO0VJBARc/zqladzUf5vNZh+x0FhXG+o8Aj9MaQRKT5XRi4gMjIw807SW5/OIDN2QMm1qUCrWRDQE1bNq8CSQU9GM4V0CBJJQJqPk6LZSIp630qR2n63TT9CInwSOXHaqNpHcJGNNz9iNciULVK4eXp0FEkrDyEL1ZzOc708AhnnL4Cbe+f8BVL76jwMBKIV1Oe+bTjFkuzmo8Wkbj6glnZHGobdpGlcVcF6bqnr20vM9/lYUwKMrVaSF9wjQJB8il3+fJuCZAg8PDwfjSc+1nbDqB+pm954l20zr+TBMn05aFDD1w8JY7wQ+R31BPcDIBI9jTlMSnL7j+Kx0+BK+TgYDpyr7GSPaWr2gp0pXNUBqQAlRry6VZ96jShm1NneEaq8TEzCY8YQqw1d5G648vP3c0F4aEHCq6upper9JVGDJu0rhVubrkQQOfl906AvreqeoUeFwLjSBkWRIvT7i14F3qo+3M1eB8xhk/7hspX5K3mBqm9RvFaB1RyKluQRK7VKN26TnfDz3poC8rMqoUhapT5OOdCOnP6Z6eXk5WLy32Wz2/akzBnhk8Cy4p85KH+bh03IEA+kwoyovPWPdk15kH2g6Q6BEbSReBJgJBFh36uKe7RvRSWDgFGXv746McWtZkXunV42RjBY7Rb9TqGlpiD7V7dg6e/n0EmeBgF/PCEvyAiowNgIBlwgKWvtqDCrq9Z++qVR9S5b3c+Xpqz+pNOmRcwFTMoAKKZKPNAeapgtUj8ogOnDhVIkrXQfX8qxaOzwBLoWA2S+9fnNFnOQvyXBF/s4lgYDWlo2hxPsI/PmzKh/dZz9z90BrnxGBtBCOHr/vjpFMqgzN0xMQpCk4r5/zyogFgTkX64lo9LmToJoe8d+jNnN+2Re98Zr0SQK7M85ORRfxr4UjpEuaiQiMEH4CEM5PCpcmtDsysKk+o6iAlK2uWXYPCMyAgnRvRoioLAikKuCV2vQSFOzsQBn1pw/MyuNO76b+93l0N8BSjmnO3BUky5FS8wVRaV7YZYt14epwKtPkpbvC4pjxBVJJsXsfVAY/fXzKIClS7w/l3ZONS5DdY6hqp15dXQZ5z7/V31pASjnwdSJaS5J2mhAMSP8qf/2bob7TtJL62vuRoDq1h0cb9O1juTL8CQQkuU22Q/y01vYRCEYDPGojx8D7sLKpS8HBNBhYgjZGBj/d6wGCVCG/12uYCrE5KKgWoHBApDwT8OiBDRr76j0vK22nWuJNLaUZ5TgCH8ci1O+gBBbZRzPelAYmlRa9GU9XGX+FBb3sSrkQSLmirtJ73d349j5Jrn0RlhS2FkH5uhv/Tbl20ONpWF9vH5+frvqObe35eNtUZVOhXjoYSPqmB5Z47WsDkhfMb4I+nvkgPaUx4UA2TVVx3tzD8K19rh1I5wqwXyrDR52eogkCF/qzII6VFCHxMVeBd5/Km+k/7xu2x0gXV8+XOGGLIgPnVPBuvKvv2bJ7z5Ph9gGj95NQ9YzudysJ8k703fOaZvKs3umBqlF+x5T309STkZ7MjTwrjwwkVM95SU9bbWnq/S9B8u7pIfG38zxSaskgsgwCIY80UIlySmGmT9wok790JoJPmXA9QgWyZoCsPpcKBmbGZwKylMkkQ0m2Rd52dFBa+wS56nP2A6MFDo45BtTePmWm8tI+fJWVwKfy4DSGv/v6+nowZy8e078IpjHD7wQEHLiO7JGPV1+vUfWzXy+lxdMEzvwMJYXV+67eT0baBT6Vyfe9HszHG70qt5dXqgOVCj0keYeJf1Kl2Fi2Ky5P79epjaq29br0lGm6twSdfgelvvZnPXlOQIAeVTL0vnbA5+arMqu2pYJ0L8Tn4V3pVWCskhWuCE9toPpVfe1eFWVTRAXuofzWvv4bKP97ngDAlfAMcazznZEMrEGV7PGZpxftdrsvRj8BSg/ZezmVEeQzyiZD2kzHPk86Qfx45LMCda3VW8H5noMHXt/e3u7XL2g1v9pBkQLJnxt/5a1vApee4ec91ZmLhXt9wHxYTwft/D0ru9Ng4BgQkGgEBE4BGbrneaXG82s23Ewe6V6P92SEU5sSkPTmUnvGOD1n2RUqHdUl5dlrFwdTawKCRBUw8DT+XX1IyXjSCCUg5guJpJDkrfAvhPW8ta9HwsqYM7zamw6gB0KlrfZJxpo8e+TC01GmpfQoEzzYJUVSvL2S5yW+q36uFPMSR+TSiEArUeorB66tff0r72rdhb/XWtZRmj4SMGR0iMDBp0KT4XO9kYAQ83Yw6f1NuZcR5hQEjz7mWODfKFdjKRl78lz1X48qMJhsVHpvFJUjnW3NwMigzBj/HsqdKbeXl1MPXfEz6tQktBXq9fRLqGeAEihYSmkwVoZyaRmnAsjvJBqlnizNfDwiUHlbUjY+LeD/b86QpW93qsAG65XqmkAkw7Bvb29f0rj3TD7Eq/aJ+/yz6qmypIC9DJ7JnjxXGizt/eYxsx6Z4ZYtgQyO6TRee0Z1TRl2A5gMwpJ32J5+FoCDVs/L74lo6Gmc/aMFcP5OMqbeXyl87jLP9B4tYsSKEScHBEwjOdJzB9ZLdbEDIpXjdiZNpcyQy/USOstugu8AAqQ0UJOy5rUb38Rf1YEzyGspnQICWptbOObvOLkiHCmSHt8zgGCmrJ+gkZwlPikHfK+niBPArEChh2f9YCA/BMVPIkwgwXlKHkoyrp7elTHLEk8PDw8H/7amP0lKwISRBm6X9GkPKeW0DZL3ZVDcwKXr0Tj2fq1oTfldUr63e/LqK2M6ow9ElBFfFzLSU67TfG2B0rBcj2Kk6SWWz/5ktIzTs74WQcae4FXAlQdlVTt5KnvSc+JOdeQqmT5GXr/l0KFZIz+bR++9EVqeUdi8plCl+xUoSYZkRBRMV1iVYFRClfgmj8koHQNQkvAeI8Q/TaO+qbxFpnfj09rXVfO9tkjeri8UZHSAQMD/hlhpkycnPuiF9KacPH2SlQq4CBQIDPhiQrargIAULo16a5//T9/apwLXn82w3lS+vpuhAiSVbhiN1XM6BMdQVe4MmJ8BTK3l3VO+psll3GXEPf60iDCNLQJB5cNxR5CRgI33NeVdPPX0lI8RHqksudrtPo9HJiiopglUD/LjZVUAIU2h9PrVn51CZz10qGIuXVeDrId0eii+AgOzhsoN/sx7yXhU4CClmaWEJNP3DFBZAlj+CUb+GJqtVyWLUozVfv2UB5WwAwFOK/h9V3ZJwbuXz0WFyZNJ3tjsIjzyz+kMj1g4mJJiptJnneiF+foH32HhYVXNUeudNG3gXiTl4J8m5zOORyUnPs0k4toMgoWefHvZrqd8TUC6JrlhJY/kR32qaTSOScoPzxcQCGUdyQ8jBGnNAMHAaFxVdU5twPoSNFRtNWMve/d7dDQYWAoElgCC2XKT8a8odUZlWGd5GHnWSyIMDkJ85WoVEZjltfrNOqR6pDokz8DLSABkbXLjk57puqdMZ5SkvlM7eX6+zmAW0CZwTPmRp0NPZtR3yeNzmWO7pK2Q5K8qT4ovGR9fk0DFXm31Ul3v7u72K8ITiCJfvbZN76xNS3nxtvXr1toXOUyyX5WZvGF68kvrUek4phefikw5GBAfXIya+PUxQwDhQHa32+3/I4HnHjiATvYk6U+WKX4p02kb4lLAmpzREZ28gHAEAnh9DAio8pkBBWnAH2tUe/yNQEGiYyIEfNd57+XlXkQPlDBPf9fL9rSpzEtQoiIHXK1lhZ+AwAzodITveSc5dXnkyW085CctzErzlCPPvxchcGXJb7aX1yfN47bWvuxDZ3qG96X87u/v93UQCNBeb0UhXNFT4avdeIIbn7PdPJTsdUttsRYluRnx5P2UwFYl1726U77Vd7pOALbiQ32vsphXqjujUZqaUkSKdeE6AC0IZH3ouXs0wQ92o5FXVEB5cyz1QH9qk8rIp3wq/eEAyPtoKRBo7UyRgZnrc5NXeITCqg/Ted70gry8dJ3yqqgy0BTAFDat+B4pLgkPjYobxkRVm47qlJ6tpVQrD6fip2rLyqC7IWTI1d/3cmigOF/poX55vff39wfKyxWD+tYjS8yP/xyYFkUlkLjZHO6OqCIklCvJMOU4eT26zz+jSafMcSGj0+Pj4/6aipxtR4/OqQcKU9/9FKVx05NDB68+rVMBt5HRcR58SsnBhoBbBaxcv/LD+0qrA4G0WPXu7q49PT0dyGRrh4Y8nfPhYXx/T9c8DtijANWuGyd/7nZkRKkP9Vt5+9ijbWB7ztDRkYGeUp15durgSkKUKHm0yYhWnUYhnjGcM/VKQkEPJfHtfI54qfgQIEi8fxetpUhH5Y+Mfu9dz8fn/mQIN5vN3oDrt6etDg3yMqQIFD3QfT5T/3od3Fvi38dyPpRgwJWOlJGfhpgUcpJbXtPQe/2VjoZFbeVAwJW5FHlad8HrSpl6mxKcrUmz8sh0Xu/WDqcFSD3HSfclu0kXUuZ8XHnaBAh6deDaFAGCx8fH9vj4uF+rQtDBKTLvd0UK2J9VH3vETLJJgJvaysmfVel6OpvAYLerz9SYzTPRt4OBpQz1yJFcr/GZZkY5pXIqQJCE2NNW5HmkQdRavWYg1ZP5ehlV2aneqf2qd3rtv7bxT5R4WorQk8fkK/vde+aKbFHyMmjI5dXomcKhnBZwL+z19fXA0DGMmbZBpSN9GX1q7VA+xMvt7e0eSOha/LvCq7ZgVVEL/Ssd52fJjwyD+o2LwlSe2oOLwegR9xyInjxcokxX5B5la+2LUUy/E9FwcnFda19D7ipTPHjo3kEWHRPvDx9j3FHjEQLKBGVqu90e6FbJEbe3UhYIJlh/B/kE+8mm8J7nxd+Ubdab3y63fJb6XeXo98gekU5aM7AEEJC5JUq4V95S0FGBAk+TjH4PEKQ0nmf1LsushNCVbELsKb+Ztq4EpgI3SfBH+V8SjQZIz/BTwXrYzudgU/hchlCGk2F+fWQYffW8FI+DEJ6cpgNTVJb+Klbef296gB/yLNI7t7f/Ob6V9Rb4kWFmff2QFs7L8kPg4uWzzlKgCvsLNG02XyMWNE7V/LjyH9ESpfqdlByipAf58cWUSXYps54/o5YEX/xm1Giz2Rys6xjpicqOVKDbz+QQ2KMseV7Jceql47eDmd6Ubc+2cBrCdTopyWwCBJWd8TrN0qI1A7MDaRYkJCTzHVQJY9Vps3n2jPuSd3mPaVx4eob52Lar8uwBAfLk1xVVivinyevQA00VIHBDmMBAVS6VCdcJyMvVcwIC9yi8fI9GMA9OA2haoDo8hZ6Og1PllQCPhy6pNFmWRx6Ydrfb7Q1NtS3S24F9xJMG/eOn7FVeVlLQlyCzFQ8VcHUZ5HXy3Kv3kiHkWPfIgOfdW+PEdJK3BASYzmXet7OqLEap3HgLjCc5Yr3d+DsQ8Ht8z+uadGXSral9Upt8l0z+aGSg9+4schyl8bxmDD3fcSVRIbFzdojCwonnUbtUnoF/zxj5njKs0GwFsi5BifaoB+ZaGyva5FFVgCApAikUGd20v9nbnIZPUQCGUdM0gUcCqpC9K3hvD00FbLfb/T3Wmwu2WEfuze4tumLbCABo2oBApTIwVf/QY/W+Sc7IMY7B2lQBVpdDGmvK0khuCeASOEi6vOcgiE/lV4GzVDePuPE5QcVutzsAyvrc398fRMBUH443H68aEwQUPaCTniUwNWonUg+4nUtmz/LfBDNAYAk4SPcqYUnPkvFLA52N2StrJKxOI2Poec0uBvE8WE4FVmYBAXnnez1B84FwqYp0RvaqNG5YfH0Ar12pzgJkKp2k6Hy7YfJMfH6dK/JHu1Ic8LmcSFkKgKhNfIEW5ZF8pb3ZlBlvl8SzK2+fr/WIA+eiU0SnGre8vhRAWwHW1r7qKJe9JbLPNhKlqUvKUWuH+osRgaqsSt8RIKS6kQfKF+XUeU3lJz4IBlw+R2Agvcf06eMAy3nUFOBM1JHvOi3RyYunCdxTOZYSAh0Z+pmP8vPrpYaqAgJLgE9S7FU+Th7G8vwSgEkAwGnkmVX5e9olVBnHnybKQgWMUpvSiHiIspoqqAZxpdToFXv5Nzc3B4fu+OE6NNKsK+fsHSxQ6QhsVO3jytONAkP5fF/ePbcMuoL0Mipl21r+d8Ye0HDlTGCgvmEk5NKp0jXsHwc/pAQERZSf9J73ucuvTxn47hDvCxpiyZ36w+fMSQ4ymZ/rTBpypVEEluDW31GZfNeBOBff+jOflkjfLM/LTTrE+4fjhTrlFFocGXBlOUp/jrRLjQgVfHU9k39lwGf5G4GBXr0k3N7xI6p4rBBqBQ70TkUUYi/70qgCcbMy6cp2JBNUMHyvyr+1PMfoyjcZQv+4wWZ5KWTKQ31YZuIpRSTIiwDFDO9O7o2murpyT23HPiFI8/nlymBeMihIDoC+k4w6ONS32lT9lYgGcbPZHPSj8vF3CcJ8t4p2eCTQyjr0jDrlSkCT9ap4kuzvdofrWsSrype8JXDq218TGEhbZBOISPx6/Qm+e9FGJ89zCZ28gHD07BhDnn6zMUYfF4ieIa/KHxnvY8BOynsm/MN8ksfu/C1VcD2EeYqyHPH1U5TKrzxf/06h/xQhSHIokiLgnK3zk8BHaj+/50bZvRnVk9MaOvdAxPpIuSlvyYX/DwH/tZD/TcD6ttb2YVxXcq7wOW69Tgmk9ABs8nq9z2hgqKBTftWznyRGbUgjXah3d7vPBZoyjjJeag/myXLZ/n7dWv4TI7Ur161wPYsv+qumFshPAqFqE+blY49RhEr3Cgz4bhbJLH+rTgQDXBeTQAPzrqIE5I8yO7JFVVt5fUd0lnMGRuln0Ewv/2RMe3lXxjKVU/E+UsK98kd5H0sjLzy1yzFKbARsqJiqclI7ralQWf6ofx0IuDGp5qD926cPOKXgOwBIs5EbptWuBFfkNMwEBO6xKb3aiYpXYID1qXip2tYNPXnfbDYHSlg8c3dF8v5dH7hhSVvHqv7uGaK1gYBTAo4p2kGj7HKmyEDKx/WkA4EREFMEgCc/auGpjCLPftA7LEfGmQBCxlYhfspS2nXjvPeMb2/s0Jj7ttwqMpCmDthGKTLh+sf5SosIUx9wXCyR3bNFBtLzWcM3Mj7VdxoUKU9vvB7K9rxS4y8BOr26LKUeGuRgd6F2xe7UM+opv2MU5CUo1FTH1LejgajfzMO9IydXRpV8VgPeAUoygPQ8RFRK6juCAkYT3MPS+w6EuMebe72Vt95xYMG6MiTL9kzTAN5ezIfPegaLYCzN7bKPUr9cClU6yol1UntXhijlzTw83xEgUN4CBJIFTk9oeqrKV7LEaSwZX/InoEPDq/cdCLCeeu6G0/UljTyBAL8JXl2ufJqsB/J7IG8UfWRfe71maVFk4Bjj3hOs0fszFerxRUUjRVcZxKrcERgY8ddLl+aSq/fYyd7ZM2CAc2GJkpGqeBmBh5T3mgq1qnevn6vPTOiuqmvlUSde0xhq7WvUIM1DejoeM0xeGDYX+by/+o4RDQIAfjjHKeXrnpGHa8mTGycCC5dP1YcLH3ttSiDg5xH0DJzL+0/TaHyNgADbVIZzs9ns+7znEPXKZrsko0QDyKgAj4pO/zHB/NVnBAGUGwFQpSUgkOxUIIOyyugDvfoKBKTIQDL+jJT4mPLpiKQ7Kh1fgYGeLMzQt4ABpa9+j4Qs/e4pX5IrXIZIOWfpPPTCR+n+sdQzSlX6njepa4aoRe559Yx4b/B7380qyDUBQEWVkdVvH3j0xNMUAc/kX1r+zP3EV2tfQ7LsF1eAfsiQ3qdseF3ckHCawEEApzz0bmuf52dU4VnWQ3wQtDJaQF5bawfK1HdapP7j+PADilhmpYzXjmzNglVRAllujHztRCqz572SLxKdD0aePMrkBp7EyBL7UNMDPHlSnzTn73LMqToHiT5O+D8e6ZN2yHgEwBfL8p4D0CpaQNkXz76Woddfs/ppMRhgYUn4KmOX3uuhUv+uhL5CTcqfAz+VOfKIk9Gb9aJn8xtRT0n16q9293mpChTMGHmmSd/Oo1+vQTMDwmXLgRYHYhWqpxGkV8tverqpH7w/08EpXj6VOY+LpTeetvnJY6HCdtkSORjo8SNe5LXzBECl1ZikoZKCkwFgVKK1w4gDjQm9/Z6uYOSMesFX1XtfrB3ZEs2AgNa+7gLRN42nLyJN5eia8ss0SZf20voaGkUGHFDrffYxvXk943uMDFSREaUjHwICAi409jy1U+OH/5vhUxMeGfD7KYqX+sDbb0QcdxUgnKHFYCANijRYRr+rATYLBHoG0u85+k8GcJaqBp9RFucEFkvaxMOtrHMyRl7ODC8JEFwiUVGIvD0cXLmHWXmcDsKoHDn4PfTtNKP03XjqHhUUy+M8J7dFuQJ1PhJJGZOPZIC8LvzNqTtGBlr7NA5UlnpPivzj42N/1oKe+TZLggTlz8gZgUlqY/5eS64rOXAAtlR/0DhV/ZWAkJfnEYjktTpgcyOshYYqU/no/Zubmz0o2O12+wWw9LpVLkPy4smjYJzyItj0tQAEAx8fHweggPLl7ZpAEnni7xnnq7pOurpyyGboLNMEs4ZwKfXKq4xha4dz8VUkoIfMKsAzc++YulT3HMR4Gt4fTRNU71V1WiJIycD686WCeW7qgc/KYLmR9yko5atvKiApNb0rRcgFTz64OadKPkbKWuUng0+lL4+nmht1oidNL4tRDnpVntbzd+XJ9vbolV878JLBYLv5vxOSeKIbV55zzrgyfH79k5RksqefKjmvxib7OM1HKz/Kca8tXEaYv8rwtRscK8pbafg+68JnLLvyyBlt8GkCXScwoP/2EAjwUz2rCJ/zzLZxMKC0BO+pn7yPSD3ZmJXds60ZmEUkMwb02IGXULIaMIX+ejwmVOzP/V6P9/QOFdps3fjbFaV7PlTMRNo+2D1fF9Ie9UCSD+C1owber/QY3fj7tQw0lUlrnyHnFC3Qc16nUHYa4O5xyePQauzkAdFrSducuJCQitK9evFBxV55Nh4WVloq5spTInkbkRe1MacL1Bbk7fX19cv0hebFBRYYyfB1A17PS6AKqFZGQTTjcSYDw/wZeXJZUxnMj+OeBo2ywb5jNEByTf2sKIDvImBa8sHtibrP3952rjMJXgWcCQYEOn1BbmrrysY4EKjaNLUx8670hYO4JY7YIjCQQpuzRoOMzSIpv+cCy871EGOPf17PRAjIN+tSpa34d/IBTaXq95KwMY9UlvOsb1cuomOiAj1yQVxLyVb15bNKpniwkM+V39/fl3PmVERUVk5SdlKgSY7oiacwbGuHiswXQUn50qPh3KbzybZR3uKjGv/kVe8knnogJHlLVd8oHdtefcR+U3lcPc82S6DFx/faAKECAC7LzrO/L+qBgErPVPdoEFPZPkdOWdL6Fu5gSXbG5dQXH4rS9JjuKx93vviba2gUAfApgWp6oOfUsf+SDujJpNKz/sx3RmfPyu5JkYHKqM/k5QPPBTyhYT5P93uhcgKBCoiMgAnr7enOZUipTEeAwD3XVHfmR6oUSo9mANMlUpItl4XK8DgwqABCa4dAtBov9KZ5jyFTkhQIw6ouC25g3cD5OgJPRz6SbAuo8JreNPNJdXUl3QPgqe18XDP6oLT+XxGpD72fq98uy2vLdc9IJ0clvUs5lr6o8qYOScDWAUDlAXseKldTYcl+qC5JXxHY6j2eVeChe+Xr8ulTDwS9CcD6WQJpnKRpiwrQpLHHdA44PN0sOF0KYKfBAA3PyDsQucJK73q6Y6kCDMnbTgP+WGPmg3D0e6YeQrAJELBeHORV/j5gvQ9n+Ko8pn8KVV4Pn/t3MiZSZtwnrQ/fq/Li/da+esMecm/tc45WCtSjEBUlZZi8jQQQnKg8mY8WclFWHeSkLVhuVFKbsG9YF/32d1W277xQSNkjBQpT+z/DMTTu5a9JPf3UezYCuXqf30kGlhoivuPvbzafa0x6eo07Y0SSN6Xx6QiPCvh9vuP1IHj2aABBgNJR9rTGQXVIYIjXjFr4c1/kyzE30+Yuu7O2ZzEYcKN+rBGdHWQzCtznbxPS9bJGxnP2vvKqFJiDgqr8FO6vAIEjUBIFJg2MUT0qXl0JLG0Pfq9BNMiS2Z6HqHv0StNBO4wMVH1a5e33qbASUEgGvQLorR16FFR0zI9GugID9Hz8PRla8e1hVw+ver0SSBvJn8uhA2Of4hGf5F33CWhmePlpmgX56b0K3LpnXOXj8sffPT6X6Aqmp9NGQMAjs3tjKvE2AroONHxM0CB7/Wn7eF0ZbX/fo3eialrNeZ61n98KBmY6t8fcyFCOKAk5V4iKXxpSKooZhDVbH39eKebZDkkGg4Ls54n3eOJ7s2jRn52j7muTt2lrh/WsQEBr7QAE0MPkKXwVOHMQ1Ouvngc3GtDudSSvxL0RGmoHC6JUL9bFt6VxKk5lumJL/KX2mZW71G8CAppW8UOGuFKdkZaZtv5pmpWFNA49PeubokuSg2o9Veo/1+EVYBMgqyjpJN2jHqf3zfr1gIBfV/w64HYAnQAFt9h6m7AsBwG852MjbZHtTbepzB4wnKFpMMC9vxVDqfDUQS5AbqBmmE/INw1sF/CUdw+ULDVu1aCcrY8rYM6LpsUnLNc9TCp/CrErUPaj952Dt0qRp/qk+q1BSfn1jC6nBFyB+kJC3SeNwLBHgVzuU1+6UWe0K40DD98nL4reD70ile/eymbzOTev8LsWgnHPNmXKQ5yVriB/rJfzzXy40IuK0vNzJ0FtxDUGjBy4E7EmJRDAsVrpLH/P1xS5LCTHgf1Gne9eOt/x69QH/szL5PSFG3DVh6DA657yrMLsDnQ4BvQ7TVeIfzfISUdSNl0nk8fWPqMCPj2QgEBqz6X2inRUZECVTEipR5UiYCfzvt9Lq2DpwaV39OwUo55+p3qkPEbKpKqXSLwrtDnipRrYMzz3QFoCfT0eeuX8NKV2pcwlz5B9og//oIfRAl9wJaL8ETykhW5U1kmGSYlPyYjkhd9JQfGawMDvq7wky9QFXDXO51SCyXC4jFWeV2oH10VsE300ZnQtD1VlcUGbDMGMt/eTlECR31siL5Q1yUeKEqlNHTS6AWvtMCqUjFKlkx3o0dBTjhnJSXWrdJPz7eVRhryevpLfy0330hjpefcpCpFAOkEA8/ayUppZvT0NBmiIKCBeYIVUWztuQPWUUCIChNbyX0T6VEGlnEa89+rMvPxeVRdX8ExDg8zBkspmHZUPFWBPqad7HPwUuCR8PZCxFqU2pqFMRsR3DAgIEBDwSFRXoqLeOg9XyOk67Vxwo+B15H1vB+/X3qe1wwVbu91u7yXpmbdjMvoelaoMWHIsFJGYGTepD8V/WhvA9iWYSmNkLUpAQDQCa3pG2XPwqXx8eoB9S+NE+aAerYCe93cCvA7mKEucHk2gteonr1uKDCRdmqYE/D3nkQAmkbedA4MKLFQggP3quqayBzO0eJogGVFH9EsQdU+I9V0Nhh4RgabOHL3rA22ULlFVt4oXKjPx3trhMZ8SPhr2VA6NngMi5zkNaObLwe8Ggzz4u5dCroCoeHwawI2J7xpIf9DTWjvom9b6ANH5GSnSHq+Uc3q06i9OZXi0yBV/AgL65tSJy2xVh1E7VFTJp4PW5LE5EOBuAkYKlI/S8gz8EfhYmyonQOS8e+hd34wkKR3fYbsnByTpyJEun+HXx4F4Fb9ep0r3KZ2fdcA6cSrMjbCDAebrcuK8pDGW5DX1o9vTNN68ffRe0uGztPjQodbqP2JJDLhBSfkeg2bYyM5DlY8UBVdiV53h17MNO0rTGzS8T1Dgg8235SSBpKGmIqDwK0+PpHDwev0dWHm/+zfrtJa3laYBeN9D9zT4Pi3gIX+2nebSWdeeEe9dO7++d97zkrKhTPTa2wGAeyYk99J0b7M53PJYgdI0JnvjzuWGdfN0XMToY4fGX4dEpTKVD6cLEihag3qGstI1PSeEfax+VfQlje9kLHsGzY0i9U81Dnvk5ZGfdPAQ+aAxd6DrBpq/+VzPWB93wFLUz/mv2k7tI2BayZqPfdbHHZxe//foqMgAV+d6SK2HThKDvTQ9lNkj8UhKIa0RzQy8Kn267x1VhewT+uM7rAsHXyWcrsQpoE7sCxqVqg+Z37HA7ruJCsnBoQxtdX6AAMHDw0O7u7vbf+soVYUvWxuv16gAq0cjCFDSh2sVqGhdqSRF6Z6PhyXJO8dxih6oPglgsu17/TK6X+mM9M12cy+s2tooY8jthmzLVKefpMrYVQCr53iJPj4+F8W5cWa0yY2KG1TnR/Yh6SQHs3qe6lTVN42npCs9fQK5CQi4bPh4TmBGdWb55NMjKgkksR4OCLytejY0taVf92hRZKC1wznQ0XyeG79kMBKSSdcuRJWQVkYpebQe4ibvXp+RQVuK0h0UVPM9DmIqL94XBeldpRPpbO3KcHFgpHUGaaogAQhHrOJ/LUo8sL3cQ0/AgFECbmVlG6U60jAlJe6KuDd10fOu2DcprcqvPr32Sgp+SX9WhqBqM+eDbUm5pq7xtvS+THOxHhXiez4ldynkRrOnb31cJ/DHKRLmS+oZm8QT+4KLbJPckveq/KTP3cBW7zoYoO6bAQEEOq19PfBNZSSeK7vg+p5ASrKo57xX7Sjzfp/hwWkaDHgFliqFZBx4nzT6rfco6Lvd4TGVnra1+s8fXBBP9QS8k3k/tcGIKgTpaWS8NpvN/tv50j9vpS1ZHAAUbvc0U9uz3lU91wIDleFxw5HWBTgAoIdzCi8Vb5XBrwwdQ+dpmoAgI7XBiFeCgQpg0JOulHoyAj2DkJ6nsG9S6KlMKlhOO/ipjknR98LA300+5hIAH/WntxWnBjhd4GWOqNKZatsEDFx3JZ3iOtMNbdIvlRPo4M+NvQNE8e9tR74ckFbt5fqQ7cF7fg4Gx/Rms9mfksmoPNusAiJLadE0gSqSQhnJyJMqI1spgKQ0vEH5Lr1rb5zU0RXST4ZtCY3SV2CIHZsGS2u1UpIhu729PQhjM+zcWtv/C5c+Dgp4OIyvqqWAVuAqAYRLIFdG6Vlrh4CKOwceHh721wRcXl+1oQMkon7K6ch40UD5VEFSHDTITlR6aQsZo098PxlJbzOX56rvxaO3f+93ysOVubwlX5Wd2pbAT/wwAsRz8y8lGpA8PUbrKtBVGag0LcQ6VzIlPtKf9HCKiml96svlRWnEkz9Tnr7XP9UvyV2aCqDecnnxtmY0gOXyftLLqS4OBjgelCd58Ckb1UfvOyg4lY6aJhBTacHUTD49xivPoRLyqtyEJknVNMGIJ69DMux+PfvbDUVSyj6oZBxkrB4fH9vj4+MeFNzf3+/77O3trT0/P7ffv3+3v//+ew8Kttvt/t+5BBB4BKgbDBq6KqrgKDy1409SAqf8CDwxKvDw8HAABAiyXOGxb3yqhOVVXj/v94jeBN9jWzs//CZRgffahu3Tm7LoKSXqjyWKy8GygwEqyQSwVKav7dC3PlozoHUDHiJeU3bFR6Jj+WJkwKNJLK8yjrzvkSjylXR4krfR6YT6JhCpZG5Wvmbec8fXiaBMPPFbeSSnzuU3vev5Jt5Sv+mdJUDh6GkCejlJ+Tn1nonx3nVSqj4vmBRelWcyDlQ8vfr0BuaM4WP+HglI9fY6MmzNcPbT01P79etXe3p6ag8PD+3x8XEPBjabTdtut+3vv//eg4Hfv3+35+fn9vr62l5eXvaRA/5ndzWN4ArZUXZC25egUJMR9vUBajuBAU4X8FwB5Znkobo3MzAT6G2tPvykUrgzfLqCVhtxLPliRS/TjTD72z05jyi2Nv4TNFe4IipqN0Q0LjyW2PORgXl4eNiDYMmu+K3K/wlKfVg5HZUOZRvSeevNpSfj7HmStIWTDk0P7DIv9kulb9UOAnU954N1kcNajbtjgMSMLHhdPSqiOnFnmIA5pwwqIJLGCnnzsmdo0QmEzNwV/KiBZjyCkVC7Ip8tXwPePVpdJyHiu573DJjw8l0x+oBu7WsoqjL6fvjN3d1de3p6ak9PT+2PP/5of/zxxwEg0MB+f39vz8/P7a+//tp/np+fDz6cQlAItjLwfk+RBa/7EnT6XeRg0kGlTw9UZwokedMgTvVUOQzvJ2Ofprn0ns9tcs57tJI/1TtN8/Gac+UJjKZxyHpUYH5kwFI9XOF7O0juOM2V5DXl7TKQpgpSe61BPQckffhe0kcJvItYdyc6f87XsaCffaAyCBQ/Pj4OQJo7Imnaw/U7eXSAVU2Dsj3EJ/liXdM301ZTJOKFZyh4G4uSDaV+dTu2tB8WRQaS0kjRgUQjb9vLqABB+t2j5LEkw195N+TdeUgDIb2fjH8FctxD5ToAear0WBkVUGRAgOCPP/7Yp5Mn8PLy0v7888/2f//3f+3PP//cRwgUJfj777/b29vbwbQBDT3nnF0Jy1gkpSyDuQZVCpNTLT5FoHZ1I95aDvOxLAfLVeQqyVwVtqXnRaXHNnUlzz7wPz/xY0/Jv+SzilqxTRO57Pt9NxoqZwTs2V7JEFRgyL0ker6S4/v7+31kQIanAveXQpVTVAG1RGxP9rn3iRtJN6it5V1RlK9kzFw3JsCpMSi5Zb7URw6mvRy9p3qSd9YhOW7Mw8ex1yEBgapPUjt634go41U9T6HFawZ4nQZZhfRngICXk8r1MunJ+Ls9xeFp/L2qDj3qdeqo/g4GOF/tIEDhf+6Bf3x8bH/88Uf79evXHhBoykBTBbvdrr2+vrbfv3+3X79+tb/++qv9/fff+++///67PTw8tOfn5/2uA4IA/jc978nY8RAQDTj3ZNcglxt6Ij5F4NcOBjz8LnLj7XJazbW39imDVHSuQKT0HJToOcGZ9136+D8J9sB3UuBV2up3ZZx8fUMFyL2dkjHwcd4z4g4Gd7vdARCsANca5PKW2njG+LthUb78VGAw5e1y4O3keXOMUIY5jcO8eE+8EKhJ91DXKE/Wjfc47aPfAtneNnrP5YBjrmpfpqvaL7UP5doBvXjz355PclJnaHFkwKMBXETYAwR6f4a5kUKZQbxOvagAf3+XF1ABATdKEnjOW3P+2ueylVZTBL9+/Wp//vnnHhA8PT21x8fH/Uls2+12f0/fylMA4+Hhob28vBwYFX0UMdA3IwHulbhQ9xYJfSc5XzQ++k6r9KvQnhsc9zJcXrnWwMtwj8Xl06cP1JYJXLq371EA/617reWVy+pDV6yjtk5t72UwLQGBe2YeoqcHl4CAzw/3FKP6Q+/6rgJ9rw0GxOvS9qdMqY04ry+iTG02my/nxzCS0lp9gFsCuNXYYFjeefIx2Vo7iA4QWPicO5+5kXWdpDQeGUuRPeff+6QH1khpfFfA3Z0p3mMeIyAwa9MWRwa8M1NYkw3s6DMpVjZqD0g4GHDvawYZp9BKFQnwulf8zSCxNGiIgGU0ZPDl6ctoM0rAE/H0DqcGNGWgj4z9ZvOfRYT+xzfuET8+PraXl5eDxYRC4jynQM+1G4HPNXDp0VYHZnw3ufFnu3sEwKcK3Ei6B8FpEMqwKzTmRVBAXvQuZSJFEkg+fnTP67+EqnHK7x4oT7qiAgIJpLlSlzKuPK0ekE9lcq92a22/k+D+/n6vdB8fHw/y8bUwP0UJXFX6KunFlAffoRGWbMs402N2/czdGUrrfcx3aZA9H/2mQXfZTwBVv93m+Jik8ffoZfLu070qLd9RO4xsGXlipK6Kxuqb7chyXf5H5Ve0KDIg8ghAhfYdPSZvpkIvlZdFIRqBgMr4p3JG90g9QDCD4Gko9O3b2eTlczFgOivfpwoEADjNwONzxetud7jHmpGH5+fnPRhwz1ICqy2JWnCo9AQIRLkCO2uQ6ikjrG+2G0FYtTaDbcjQoct6BQZ4YJGeKw8HKS4fDh5a+6q4uBe75zVw/Hro08eUj7METDyU7PogzZkmEOCOA5W6r3egUk8KnvpJ9ZZCVfm6vr+/b9vttj08PHwBddvt9iBcvQbNRmXc6UqgjmnVRjI2HJ/eL+65M/8kE+o7Lkb06KHzzLwJBCT7yreK1iVQnJw6Oq4+9eaRKQcalFG2o5fpY8Dbh21EUKCIq0fzNLZTWSP5mAUFi3cTUAn6dIEPQr+XkKFTQjX+TgrbpemJhBT125VOQlYqsxpUI7SY0uuZCz9Xs8soKfQv465BwW1u8uT5jt5jVOHh4WHfVzT8jEL8+vVrv5CwN03gIODl5aX9/v27vby87NcbKM37+/seOIyA2XdRMjoOwhxkpQN+XH4Z7UhG1d93haD82C7cOqU0TE+D7pTmHCnf6Zvj2Y0I53PTrgXVxU/+pHJlfj3A3PN2nO9qzHJ8p/6nziKv+my326hce0b1u6lS8smh0nWvT/ntOkgRvdY+gWUCgw7+eiSjxvTU45wGS/Ub2Qmmdxmk3emV5WX2yvVoh/PiUxSpP9zj96gqAYCAsOelcjkWUrv06uK0GAywQXifFeZvR+sVoyOjq7zdeyHwSFQpEx/0vcacoVGDuyFyo8EpAl8ISDDgRoZGzI28Fg/y8CH2CxUhy5eXnxaiOQhQ9IHer96VxyVe1wq1qr5pXYZHVAiQtNZC9XMiGKbHwrYlsBC5IXeAQQChd9V/Di6YH+WcSpvgwMt1Re35Ukar6Qrnw+XbPWsHZk4O2uUhbTabvcHWfD5Bi9KzfRNwSE6M7itf/cMhx8waVOkpOj9eX33T8690sEBA0r0+XjnVxT6uwAgBZwKE8swVkagAIsdP5QlXelyyQ3647oD3KxtAOdTvihcCZ7W9ZEz3GQ2QbvVj4gkGKuDBdtT1KfK6CAwwtMgB5SiOSIz3EzJvrX1J16MeUqzQsn5Xn0oQKoAy8hSWAAqGwqT0Gb72EwWTEU87DpSeBlBgInmbjv7v7u6+hPoVMmXZLEO/FVVQdED9vRYYkLIhYPEpAr/mtAzBgMtOZdB6lAYrvTj3LkQ+8Kt7vM++ocFsrR2EHpO3rvqKJwcalVEnMHJPLEU0UplO1CHkY1bxiRe2jYyR8tRaAq5Yp7Fag6pIBa8rvZxkitetfa6X4NZV5at2aO2w3whUyQ/HBA2wR5WqcZP0srZ9JjDONMlAEwi09nVrXjL6rfWnentAgOR1pm0UX1x3pd++W6sCgz7WXU94m87QogWEPvh4L00TEI0mFOshHFFSGMnr4H02dmvtYDDPRAdSY1dGPynkBCJ6nUAvL839u5fPaQKPKHDOmwcPERBwmoAGXbz4GgSiVIIBHUwkQ09jyY9AAGXg9fW1bI+fIPdUE5Dizop0pDO9nRQN8MgAPfmR4eqBWT1nnslDk1FLRlsk74WLPDkW2VZ+7SBAvHr+XiY9Q0/vY5d19+iAT39Qwevd5D2xXizfx4Q7B1VU5adoVD86Vx4GT9+6lrG6vb092DEhGaDx1cJKGlmVwzFOHsk7+0rPCRT1zMPhAipaz+BRZ+XFHSSu49l+fvZJ8sC9nai/3HYw4uH9ofe4i4rvuJPlUQEH7vz2cVnZqaV01DkDvOcDrxcR6OVRhU51nUBAikj0UJ2oBwaYptfAyRvrlVcRDXNaSMgPDYvKTgfkpE8VuhVI8MWMEkYPZd3f3++nEbhIkXyJN7Wr1hqs5WEJqLJ9vd09gpKuXYZTZMxlld5YInpuPnaUt7wjV1IEhRwDDsB5f7PZ7JXPzc3nPDl5cZmmcvNyUl38vQSeq3c8X/3mamp6TvyksUzDJErOBHmhbLgXfCnkHmIyZD5NQDlUvT0i4OQ6Q/coXz2964bT+XSwI4fBQQIBi/NKEMF3ldbvOxhwUJnq4SDU25r94Y4t03ud0g6CiqcZ28Z2dx5HdLR2TtMGIp+HI7FCCdUk4+pebPJ0UqizQsYVEOC7zmeiGYCUQIUbCip1bkPziIFvdeM77jH6x9uE77f2uVDo/v7+IJpC9KwtV1ovoLUDRL5MT/DiYOEnie1EQMB7yQik52w/1U/3EuCi3LpHo28HBG7Q6elTZr2s5KHc3t627XZ70B5eP1fUyVhXgCYpKa9PqqenZRrP3w1+8tD4vu4tnUZgn/UAzBpUOSdsV/32dm+tXtGuKBG9dEZJRJWu6wG51HbJoFHWN5tNe319Peh3jkl/PwFBtz0OBqSnHEz22lu60Os5ki/qPJbNswQYEfD6VGOOPFYAeAkQaO1IMJAMuq49TW8awd9prd6mRO/HFZ+EiAs0XGCWAIFevStD6/lVbeXvEQhQ6Om9coEh6672dQWmfN0A+0DVgGcbJ/ROxCoQoB0Hz8/PBwtkXl5ehkrip4kG2c9UqM5cqHYCqM2pQHe73YF80ovy7VocAz6onVy2qLjYr+JP/Ood9RnHlKIBCr9KCVXKpwLI/jyBkmq6II27BJRYD2+DlI/XwY1BlT/JAWEaRz9JFQCoAD51btKzqR4ETQQFlW5MQFZ5VAasAmbMS3Io50KyKR2Y2oKym3Sw88O6Och0YnlpDUQCBd6+HK8VGKiAQNX+MxGCY3Tu0ScQVteevrWvwlY1XEKSVChJuThv1YKRKkxVNVhPQSdPjAgteT5LOiYhbJWpQUEk7fVxIXevwevO/EWOaCWsWk+gUwrv7+/3QEz/isiQ6pogQOSAkos1Ewjw6IArIyksb+/WDudw6ckwrSsupak8KZXpnozqoroJ7BB0uHFWGj+a2A0ty9R1zwtxvknJmPg4qUKv+viKcDc8Vag3AS7nv6d4mfcalMCUvmX42S9J1yRgkOpDOaycsmR0k05mX/jzNC3hRlV86Hc1TTMCA8yb+acoE9uB3x7d4rUDTpdTnyYQv7510GWs4ifJZ2XHltqdxbsJUkEJdSpthU5deCoAoN+uYEkJjXqn8bonLOQnefB+Paqz8vf8+K57+843BTcJZmutPHee7afyNf/m/alvX2egst/f//NXr/IsZXje3t7a79+/DxA9DybiPto1SIZ8s9kcRATSuQLeT953lYJIBsMNud5Lgz4BgUQsj/ym9SFSNA54fMFSNVdJZdlaOwANI6qAewJFrdWrtF3hJp2TwuLKMxkxpusp18pj/GlyWUxgxuvJ5/6sAhjeZynM7oc/MYyf+FW+/G6t7bduVrLkfV1FFSS31Ris8nW5Jn8+zt3wO6BgHp4/+4tAIH1XMtnTCQkI+WcWyE6DgZmBQSFwI6mVy5VB1PuubKnsKgPsgyXxPTOoKXyudCoe9Vt1djQ4Sz44Jdg++JTWvSCFf2l8OW+vdqo8U+dD3oHa2j1e8ff6+loaIfFP73MN4qE4ats0wJKSZTu7t5QMTMqjNzDVzpJxD1P3omEivs/ppd1ud7BtTMAnnR/hi/JStCBNj1Qh4YocCHg+Vb4JLCR5UntyPPrzngHyMthGaxDH1IhofDyKw3YlsKVOJlBQ+7HeApbKhzqGcpwiAT6N5oChilQk8OP1cc96pn8TIPf3fIrVZZfXHhFgvhozvrMtybHr4gQQko4R/8nezU5xnXV590hgq2kBv3YFWK0XYHnJ06gUSOqIhMZcePlxHt1TSTw6eYjTjacMOxeqSdETeapd5bVr25/ajUogIdFkbFwJ+QCiAdL2Qh5wxK1AqY/XIraXKxQdYqNnHx8f+3UarR1uG0p1UR+RXDlQPigznJbwXSM8X8JBo0AiFwLqmeqrfvI2kJKi0ldbyGgqLXnmWKN8eTsnpZ9A7263+3KUMt8RX712rRQk2ykBPPLHxa9pG+NalLz43n3+Vh+lNMzHnzGSxUOJ1FecckoAlh9ft+J6lbrJ61ABGv0mgE2yX/Wd+jsBRo0z5Ut9m9YOaMzofgVsKUupL0b2s2oPLyu1wwwtBgOOepyRCoWM0C2FtqI0RVDxIl4TCkvKYpYSuuWzHoIjfxQMGiPuPXUw0NonMCIY0HMCAYWE2WZcxMl2cKUto0YDRGXq0xEEM1U7rQkEVA83sq0dRmHUD4yAqF9aawfvV/XqKejWag/Ir3mPyoRRGe+/HoDm+1zv4FNw3v+JzwrEK4/UNu6pepu7opwxvhVwSHw7sKVxc96UxiNzaxCdD/Vfkqul4837Mjk8bBNGhJReQCGttfEF0K0dTq25bCT7oDLcqFaR1xk9zvq09nWNAu8RFBCs8l3KsJ47bwTXbn9SO/T4ToDA6+Fy/K2RgYTQPESTGOgpEZF7XgkA8PdsSL4nKCOg0uOZirYq1ztPSNinAHwbXzqIwuujtkqHWNBYu5A6MEp1E4/kWx96TwQOCkdrO6T+eIMD5qdJK/rTYHNQRlBLcECwpAHGKIPyTwqNBtoVamvtIC+1Ib355E1LufhcZU+OqVjdeyNAcAVCD4p5qN8ZCSO/Scl7PqeARG+XBD5cPySFrPu+fsLH4BrknvRIj1XkMjdqexoZN5IiAmM/p0R9zN00u93nwluvXwUQUqSV47NHbqP47df+W3ItSlFcAYPROOzxwPKq37S3KeLtZSxxbkmLwIAbNN7rkXeo7pEo8L1pgvSO8nMvd4bcO/DBlz4JoMwKp38SEGCn+ycpWApLmut1ReCIu8eryEGFh+akCPRHSzrNj+scjhXSUykZ7kRVFEnt6oBAiq3n2aj8CnRVMpZkPnkT7on35D+lqcqnjFTrfThmJPsVKGDbeH6pfRLIqkAR24H9w3eqttS1R7hcvteaJmB/sD7JeKZ3K4OXDG/Ko6cjCJQ55aS1BQkIpP7SbyeuRXAPXr8FmCULPR0z05fV+9QNLiOcYqxAedWOqR8qPlwvOV/+Xg98JDrLmoGqcVlR3xqSBI8hS1+U4u+wY6rQmdMoTc+7Sc8owN4GyahU96mMlCYZJvKTyAVD6d3jTPmrXDeabhTFa0L3/LOjX79+HQzYNU9wS/KhevqBQ60dHg4i5aZ3CByZf2vtSz/pHsscyWBPmUjWq3zYT+lZkg/edwM4wyvrlq579evxy7zS+PdxQM/dDSedEToNPUPHMmbDrN9J5N2dgqSfKhCU9EcCiUluU1sxBO5TcKkOVV+2lk+s9Guvv3vv7qQSSCR5ICXA6c/TdBbHi0dfOVaTM8C6pb6pxtgs9eyF09nPhyVymwnx8z6Vss9lkqqOrK57htnTs/NGCsPDVa5QR2AgKWe2TWqTCpz4oPF25Jy5eE+hJQpsdY8flaWpgaenp72CuL29bY+Pj+35+flgId4a1ANAfC6j4udVcKGe2lJt2JsSSwrB0/jznoGkIlQ78whXeWXiiXwQ5PjalHQAUZLTnox7eawnQaTa072rFIqvgFZPSVbjlV5mmotW+/r7VR//BDEiWIFaf0bDyXSuP6hT+CwBXlGlZ5n+4+Nzjl2k9QVO5IG86xnzpvHnNATzVf8SABBEVPdYDuvl0wNJX1dA2IFFpbcJOHv20t/Z7Q4XJDtvPHF1hqbBAP/rmoNKSp/eU68ylacv5pWfL34TUVArb1zXfr8HCDx/v66IBrUXaqQwVwMtKXDWk/mIXNn7GgPfduMC6Arf83bhUp3ZT/qzJJ0rwCkFpdf/GqxBOkJZvNAgat/9brc7MPT8cxSCqbSIkKv9W/uKxkcyxKhJD/TpeTKmamMuHCW5Ifd1KTwRrQIBfL8XWUrEd3tTYoncaeA15djHDdPRq1a0R+k47+sfpVkTyGo1f2tf60agkowzx32aUvLomMiBVwJ9/pv5aezwL9Z5pgfBCPV+Aihenkey0lhwkM/2cgPPOru+ZR6uh3mPOi/ZlApE+RSmj5/eGSDMr+rvJU7YZlfB6Ctd6UpXutKVrvSvoPUnw650pStd6UpXutKqdAUDV7rSla50pSv9y+kKBq50pStd6UpX+pfTFQxc6UpXutKVrvQvpysYuNKVrnSlK13pX05XMHClK13pSle60r+crmDgSle60pWudKV/OV3BwJWudKUrXelK/3K6goErXelKV7rSlf7l9P+EfEinadXwBgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4yElEQVR4nO2d7XYbuY61IX/ITtJ9zpm5/4ubK5jp7nQS23Ks90feLT/a2mCVHKct24W1tFSqYpEgCQIb4IdW2+12WwsttNBCCy200Luls5dmYKGFFlpooYUWellawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXNawMBCCy200EILvXO6mJtwtVr9Sj5OjlarVZ2dndXZ2Vmdn5/vvler1UFb8NwmPeeH6fyMp9SuKlvf5+fnOx50f7Va7fi5uLjYfdbrdV1eXtbFxcXeeyrn+/fv9fDwUPf397vP9+/f6/7+vh4eHurh4eGgTk7b7bYeHh5qu93W9+/fd9/Mw9tEPPzP//zP/E54JjpGdkdp+UzXnj799g/7ln3KvuV11WN/pH7hM/+oL7r3u3owLdO4XHffo/Yibw8PDzuZ5MfrkdqAdemuU32eSi9xPttb1rsuH5R76S7ptPV6XVdXV3V5eVnX19e764uLi8k2Oj8/311vt9u9sqjfq2onj9+/f6+7u7u6ubmpr1+/7j63t7d1d3e305vSf0m3nxLN4W02GHjv1Ck9CRfvUZE/BQwkIEDjrzTMVwpUwuzGRETlS0HWM+XX1f9YgU+G45TJDeBLlF31oy+mgKdTJ0tUViPwIkPd5euyzPSed5eXA5XO8HfveRt4+l8FBBZ6PkogwI3zxcVFXV5eHgABOTsJCLhsiTabzV75BOCXl5c7Ptzx40f3Li8v6+bmpm5vb3f5fv/+fY+H10oLGAjkBqzzhtI1hdo9Owqoe0pelgukwEAigoA0OMSLfgvRVlX0HN2r97bh9dnZ2d5gSCAoGbW3QsnAio6p83MpkeSBV/VAr+Mx1SsBgJRPAgJuwAkGUjSpq9ux0YCpZwv9szQCAtJ1DgIYBVCaqkfA7JHKqmnQLB2ttNvtdi/yK327Xq937yj6ymirynkLgGABAwM6NrycQr9u7FP+Djw6ZMpQFkm/7+/v9+5rkCQwwG+PEig/eZWdx0nvVQP0/v6+zs/Ph+Hst0AjEPDUvOi9p89cUl6Uv9SXx0QdujQOZBmx6kBB+ozqkspegMDroykgoGjA5eVlXV1d1fX19Q4QKApAXUb95UCAINhlknqaOlKGnuWcnZ3Ver0+iNKmSOlrBwQLGJigqVAtnxEIcJ6+oy5sOwUaZIjJi0L/9Lgk4OSFg4dp+UxleP2cH/FxcXGxAwbKxyMhb4E6APAzwGCup949m6t0EghIhpZAwvPvIgPJMHcRhG4aomuH16hUF9qnTvZGQECRgevr6z0d5rqlW2tCom7S9/n5+V56BwZ0vqRHXTcnQPuaAcECBmbQnE6d8uKmwvAj5ff9+/e6uLhovW0aXSFkCbU89QRo+K7ydhAwCoFrMGswqUxNQzCE99pojuFP193zp5bHdp7ykkeheeXFPFNZzgfz7gz8qMypMhLAnZpm6NIcy8tCv56mgADn4gUABALW6/XOW6/qHZnRVBPli/e+f/9e5+fne8ZbC6B9EaPeTw5emmZ1ffxaaAEDP0FJuU6hxxQa9RAr0wgIUMAo2Cyn6odAr1arvfBYt/Cw6nDKwdc6dFMTiRcNSL3v0xZvhaYMfmdQR8AhkStN3etAYfotOUpgdRT18by6cP4xgIflKi96aCxrVLeU72tSuu+FOiDAEDwjAlwnoPn5qn0Q4NOZ6Z4oOTY+LgUMqmoPCBAwcK2AeHJyUPAaAcECBmbQlCL1Z1T2/DCMz3QiCpPfp5H1hYg+bcDoQNUPgMCB4crbAYB7ohRmTkE4L4mmPMlTppGh66ICVYfGyduRQCD1t8vblAHne11Ivivb803lJI9sLiWDQD4YolVZXobq/xpl6D2Sy2jSK9w6mHYNcKeAIo1pKsDXCyReCKar8hSoA1498/VPyksLC7fbbd3f39dms9mbqhVvzP/UaQEDA3Ih9lDRqINduSWj6MaEniAXq3TrD1yok9LW9QgQpDky8kpQwQHJ6IGUNfeOc3C8hsGQ6FhAkN7xPme7sm+T0af8JMCRwJ0D0DlKqQMgSfGm8lIeXZ06PlwmOW0wojmRkoX+GZoCAr59UACAUwLSP1wQSDAgeoqjkabbRk6N502dLCBzdXVVNzc3O/1Y9biY2/M9ZblcwEBDrsy4B9UVNSn97jz+RAQCXEFbtS9YvliRaWiM7+/vI1JVHj4QuJCGJEG/u7s7GJQ+VZAiIac8CKZobii8ixaMjCANfVW/YDWdOzCKGPAdljMCA8yTwJH5pHecn6mIRtcmKT8HGnMMwGuWtddMTwEC+jAa4PrF1wN4/x67JsmBdQeqq2q39mkE+rUFMUUHPDo3x5F8KVrAgJErsGR0kyeu305JAbuSS+VSKaeQFXnjlpiq2p0syN/ukZI/3RMQ0FyZ3uFWRAKNTqBTVOQUhf8Y6gBBMmyd4kjEvdLHtJODgqpDUOaLO8mHg5XuPuvl5Xr5U5EBz3+qvp6XP3vtMvWWqAPLrss4B88PIwIpsvnURcgOpDkuqg63HjrROZJjlaJm0sMeDWU9UmTvlGgBAw11Xs5cD/Fnn1OQaJhdyfJ0LC4Y9PMJuOI2Cb/fc0FO83YdEOra6NSE/1iaGyHo3psLCKYARMeD+tYNf/duiiakKEQCs0ke+WzE51PAoef52mXpLdEcgMiogHYPKBrA9QGuc3SvK2dE0p2ehwMLpktTsnzHdQDXKrjO1Vj08XKqgGABA6ARAOgUp1Pq6JGH7CEqDQaFp7T9RcJKL9D5c9DAgUgj7odzpPp59GAqLDsyPE8xoK+JRtGBLr3/TjLSKdnO267aP2kwydwUGKDyokwmnhIQ6Ph+qtLz8jo58zqekpJ9y/QUIOBRAaWp2l8QSF0159yWRCny2clwWjfl0xVOvh1R9aTjNQfgnwItYCDQCAi4ge8oecz+TGX5tfLWIhQHBOk9AgI+T5EBP3DDt9SQ0greZCy6Nnxr9NToQJeXvv3jCnUKnKaFSl2/6Tq9z/UB9GhII+M/AgKpnh1I9vI6vk9Zub51Go0Dd0YcCHj0sqoHAk6jsP6IfJ0TdaR4TlurkwPF8cKFrmlamZE/pTvF6MACBow6pTtSWt6hDgSmAERXHsNTOnSIAsuBpHx8xwBDx2ml/9ScmfOZzinQgOnCxm+NEiDoQMIIPEzJV/KwpuQyGd5UXoospOmFkSc1Bwx4XiMgMKf+vhj1lJTpQtlJ6dYKzPX2fb3Wc+gU38njY8t3SMkh0+/0UZ0TIHgN0YEFDPx/ciFLQtd5SLzulHEKDfv7I4F3D57fRNvJm5Oi18fLTSFghoz5jN++4GcU3n5rNAUI0vMpb59pdE2ZSN6MTwv4NfPqogrOXwJ1o3Rz+p0y4hGLNEaUb2qntC5iAQUvT64bGBFwMMDT/ZzUvzrg51gwMNrdNOKb44xgYLVa7UUplJcWFLrcpakCRgfcVpyK7C5gwKhTmKNQafLSqPS69/i+C2JV7V0n8JBW5CaD4wvC9JtCmkjPu2+l6YxQB4TeCnUgaqSsOiDggCAZQAcEVXXQh65gunwTuQfTpZujxEbvTgEBzyNFo0Ze1luVt1OiEdD1LYRcLJg8cM+H993D1r1R2ZQNGW3fnujvJcfOrxmZ8ikN5csdPAIE3J7o4PmUZHUBAzXPYxu968LDTu68HS/X8/IjhFMZHn7jIHIjP2drTlo009U5GaEU+vX33gPRY079NmXoR8rJyfvKwam/P0ee5yqoLlyf5Lwrl2lHEQYCFY6xEShY6J+hBAQSGKCu8unNqopronyFvsuSz/czHxnrzWZT9/f3B4ab5VSNFxnSAZpqi9VqtQMC3VSB+Evy/1K0gIH/T66cXfg6w92BAdIIjXaKz42D7jvPHHQeRRAiJR++NXBEydDw2/9AZLVaHaDvlxbwU6bktad5VCoRRmRSqJx5p2snKqIusuPXXZ5zgTPXmIzed1A9F0yegmJ9y9T1PfWmjL4iAtJR/nfsSQdS76Xtej5OEqiuqtYrd93n71XlSKzbhxQl5TZFAoJO33eA+iXo3YOBkefmApjSeT6dse885REocCAw8q66sqjk/YhgkgMNKuG0sCy1R7f6973RlKFMsuNyxr6k4XRQkDyd5DmJEsAbhdqnIjwdUPb8R3I+opGC9GcvrUzfIyWd2W0hlMNCDz45PVWH0wMOCHzaIOXjBwxVPUYLfFxw7Mmgd4CAPOk+QYfyZzrp3SSjvPeSMvyuwUAy3KPFKil9UnAjw94BDhdmF9YROdr1Va46lpgnB3ZRgbRFjd9T4TIi8PdAI+M2FxRMyVNVH2HpgEAXYZgb7mTe3dRWdz3iOfHUKUgvm2URZKTy3pMM/pPU6UOfGmBUwIGA6zk36kmGeU8gwqcPRPTat9vtzkO/uLjY/aV759iIOtnxw4lWq9VeVNQPMPKPT22dkpy+azBQdRhimlLQSVlTaY7myzvQQeTLHQFTXpSMOlEpF7fomS+emRK+OVMIx9BoLvit0QgATIHBKUAwVd4UEEh9mtZ6dHI8qkfHb5I5z38UmdB1AtxUqgv9eppyjEY7B0ZAIAECJ5cB6ku9N8W7yhwtmhZ1W66Vh/+tPNtDZ8JozLGOvqsgRQReCiC8WzAwRzGP3tFvUadI06BJQIDz/kkI/bwBGvuqOjgUg//R7Stfq/LgeSoA6ACQnvH7vVHnPSfFOAKio2kikqdzEOD9kYDsqD9T9Kor05VayndUlr+fogKnqFTfGiUgpm/XYb5IkFMBSd6ZHxdNV+U1KwlIyisnSe9pJ8GUTPM90ii6xXUPjA6sVqtdBELAgOsHuujAS8vruwQDjnDTnJSn696v2g/TJ4/HBw8HRBpAotECMT3n32bqnk8bpEH1VHLD4uV0A/g5yj41Ghnn5EXpem5kwOXFlSUpGdmqfXno5GBK0Ypvn84aAWdOR3ieCXTMlY0EyF25LvR8NAICrse6NQKjk1MlQwQNVflYbb5H54d9T53EA9bSXyAnOaLcTk2Zsj7U27p3f3+/+/MinjtAPjsA8BLA4N2BgYRq0yKVUXSA36JOofp7uk6DiWh5JAhK40I7OmAjhVqrcoSAdenARfo9UvJd+W+JkuJMynNOBIDXPEOi88IdkFYdAoGR4R15QIm/box0wFgkz6jja45Xn9rVFfQSHfg5mtJ9UyBgdKgQqdvOV7Uv2+pHToHy/BSXO4IBN8KsAz32REmfOpDmGgXWSXkzMuB8eL4vKbvvCgx0Xo6fk90Z/KS8n+qV+MCak340L0bD7BGBBA5Uz9HUgJ8R7kKcFH9S7O+NngICXCb56VZjq2/oAVXVHiA4hucOsM2Rz04WXPkyvXilkpwLGFP7et4LHU9d+7tMpylOBwL0+BOpv6WDeM0wP+VCc/V0oJRXmhJNTgvHm+eZHJ7OwUr18fZiG3GXAXlhW7yk7L4bMNABgRQV8HfSdQIEU9GERBIKLQJk+b7YhTz7QHNBGs3ZctCNwnP89hBbQuGjiMhbiwrMBXD6PvZDILBer2u9Xh+cMim5ub+/r/v7+1qtVrs/t0rexcjgJ2LakUKnokwLVbuxwXHDvKba0+9NRQcWmkcjICBKThRBQNo1wPcSJSNLMECSzMiAU3YIBHQveeBV+2cAJCDga65c/02RyyIjBSmq0UUE/kk5fhdgIBlTR7YuvF0+I6PflTv1LkNlupYQUEhJHq6t2kfHPjBIFDTnNYXsOo/PAUHnCb41IHAMPQUE6No9rvV6vRd+Vf9uNptdeVR+9EZGhtYBo3+n/ksy6XLlYKhLn0DBFHVAK9VpoWmaAgIJqHpUVXp0tBDaSf2kCJfuSbZdf1EeqSc9ojCnXH9X7+s5I6Oj6EC3GDtFCth+dM5OQV7fPBiYAwQ8KpAUYVLcnrZTuHNAhIeN9N4oP9ZDeTiSlbfIf91K7cLfEngHIg4IuqmCBALmAqi3TE8BBIwQ8Hx39Y1HgCgv7PeRMe6uPYzp6TzPro8TyP6ZA6rcc+qiAyn9QsdTJ6MOBJIuHQGCzrgmAywZ0mK8+/v7PblK0QDy7ry4XHtEi87UKDogo848Ex96TvvD6IBHCF4iOvBmwYAbpDQlkIRXRMGgcp5SqiyTv6nkmZ8LYFqYlaIDHJDkn4tmFGLTYRteRz8cQ/y4sIq/NCXgH6VNQOCtgIG59UggcAQC+F4CrQQESq85VZ4s6YDA+7Iqz1GmfvT6jGRd8pXAoE9DdTJN6gz7nHsL/Ty5zLozlZwqpasaA4Gpxcg+XclpTa7OZ35zI6is2wiMVO2PLx8XAicjOe+iA+KJ5b80aH2TYCAp3jQtkICAK8S5Rq1Tkp3Hl4wElWlSnsxPJK/RFTCNRdWj4ffy1A6pnmwPb5sEArzuXv+3rLRTf/PZqP87WUjrWRgdoKJMYGC73e6t6E7rSEgJCHTeifelRzNYb6ekgOeOKy8/Rbr+aY/qLVLSJwkU+JZsP6FP1OmKtECPxljUnUGQgIPXgfwnShGBLjqQiHX1NAkMjCIDL0lvCgwkAVZHdSCgE9iRd+uKKJXN+0SnrijJB3lTPu7V8X4Ke9FI0BhoDln1UpuQPyJgD4913mLX7p1RfC+U+nYKFNGQVu1Hs/yf35hOfStviauWuVJ7Ds9V0/PtXg8PCyfA6nx0RiYZjWTck2EZ1eMUlO2p0kge3fiPIqxpBwHb3Bcge4g+RQhczlxfc61AqlOqG+WRwKO7TtME1ON+b0QjHSkZTbL6T8jvmwEDcxCsbx9073dqnicJVufd8Rn58HQaONyS40ZegsB6kDrE6uUopMUyq/b/p5sHdPD0Ln17/boIit97y9QN8ATwptomAVfKBo935RQWZYynVOrjuwxYnvpxzsIrr1u6FjmwEajVtcu5e2ZdyHg0tZH4XSIFx1HnBCU9ym8HAnrf+4sGV99u1GlgE/gkEVT4VNUUSXZGgCDx3IEC580XEqY2ZcTuJeX1TYCBpKAYEUjo1b0MfivPkRFXGqLXDgx0vLlhdg/L55PEo4y6jLYDiKp9IVRejARwAFPA5VkKCKR/OWT7pTp39JYV8RQY7WTIDVlnbF12k5J1fpL8JVDndfA8U934ewoIdOV0Sr0L/brhH4GAheaR93kHbFNUwLcTjs4UoLPhIK/qcK0A3+tkKS3mYx34ntYZyGirTOo2ev4OBFK0ygEA854bJWD7Uq5fAri+ajDgguvzVymclUJNVYcnYXXK/GepC7l5OS54FDLxqdXi+qbC13t8l4OE9aH3qI8f4TmKAKQ+cUF+D0q7U6QdWCR10y8OApheYK2b0ql6/Je3qtqdRZAU8XORK2TKg6apBEy5+Cp5Rsnw+z1vr2VqYB6NdNkUIKBj5YcMqf9dB+la32nqsVsAyHxocDveO1Ar7548Oi8jnjtZShGJY6JstDu6n6IDv1qeXy0YSEAgrQlIv+lZ0fj7b3+HaK+b/yKNBGkEBDwPn68iANA3BdKjChQm1oFggSfZCQz4zgG2e0cjEPAWFPNU/d0IPiWPKWK/OYBTH7K/ND78Xb/m85/pq6SQPWpAQEBg0E0TTIEBggm2E58tNF8uKcfddKtPf408ePZj2vUyhycuuOvSeVTAHanV6nEHQMfDU+RlNEXRgVel9WjfS8nrqwMDqdMliGmv65TRdWNLMOCoOCk08ZJQnfKnUuOg6Tx1UlLwHqLSc9V95DmJB4IFrg/w/bpdeGyKRuDoLdFIMT0nUYnynyp9akdboWgIuXBU7zNCMJqTZ50o53PCoJ6OC2EdEKT6dp/EI3l7i3L2HPSUaEByjEa7sUidh90R8+lAdXJKPE3ntBEUjKIRzDPllRwe6mPm4YC1u06AIJX1K+lVgYEksBJGhqumpgtcgBluTZ2X5kR13wEBla4LnISQHy4GdIDC9x3h6r4UalpfkIgDgWWRzykBTG10zDvvjRhxSsqs88p1LbmUnKoPRzs+kjwQFHikifw5nx0wngN60pyvAwKNzQQ0kxFJQKDjf6EfNKevUjSHOtanB5IedXLd5WX5eEh8HjNF2xlvOnkjACCZFIjWeBMlGe1k1q9TeR0IS1Evv35uejVgwBttKnTl4SsKsL6Vp7wqGdWkSDsBoEJz4y2iUmeYimgyGQcP9/pZASIJbHemgCgtuJkbsuuez40UjPJ4TTSqb7rvBrqLJCRAQCPPo1llONP+ZypeN+iiNL+pcZIMrcaPZDBFyrxsjr+kfJ2nUQi4i1J5fumb7aD7b0EOj6Gp8TnyUl3HdkcN+7hgBGsUzfFrylXn8Sev3Smtm5oK43s5Dw8Pu/9A0H0fb125nhfr6XLeRWM6/n4VvQow0AEBX8DiHosLNU9w48pXhlgVLh8tZhFRidKokgePDjAkyvecfAAlj4wDjsI+8o5csNnGc1DqHMGcCw7eCk15yV1Ykf2VAEDV/g4PP+1spJg8GpH6VlNLIoFJlwsPDZN3pWcdCHinogjKh4sLPeKm706uk+eUPM9/wrt6rdTpTOpZbmslIHBnSPeqcpSKfU3DzjVP3n/kkWmS0ewin7w3B9BTxlW/kQPVRUY879TWXvZLyOirAANV+0CgW83qaXVNZeZnvFfVQSjIlWKHVqnM+Zv3kmCKJ5XLbS8ql6Fh5c1PCj2PaCpcdSy5wj3GGL5lmmrLUbu5Mk0fgskUYvXyXbZdfhmmZ7nkzc83SKFYglLmn66TZ+TXyUtyQ09KeSRQ8N7o2KiAvlPklVOyInd2SG4wvSyXD+p4UvK2CRxSOob7RxGE5HQ5v7Qt0skp8uEOlpMDLeaZHLAOwP4qoHDSYMAVg08H+LaWqowk9T73xfoRvjzvOoXZiWCd9A4HBoWReZBPGvuErt04pLxSaHdOW/o0iYTbvdOpsKxfO9/8/RYUcuqDZLT8wxBlekfkUYLUB8kgprCtrwWRrIzedYVGAzDaPpYUFL37UfjU65nabmp8kBy4vwW5+6coRQVc31Y99p9v12M+olHon2k6A+/9Tv2VvGmPfqYyO53U2Q/mx3Hketzz8bI73eBRZQe+o2jYc9HJgoFkvNLUAA/cSY2TlHEiCRc73JViUt7Kk2HRbj6tMwJcZJMWDqaBkKYMujZgvbs2Uzl+xn0SwtHvlOeIr9dEIwCke2mgs788XcqLbZ/avwMSU+SKrGpfwbkyrTo8ITO1gYf0U5leB8o5QWgHCqgwk4fkY4TK2r/fC03Jxwi8rlaHzhd1ZFVeqS+ifqKsdXKbpp+ULw1uF0HwKQdfgzIy2F00y8eJT41InnyqtgMgbOupyIDS/pPyepJgIAEBF0w3alPEcKbvy0+CkpCtBgifucL2v9Zkh7I+Pii43cu3ERLpkj/xQ166NQheD5Le65TyXA+MaV1xv3YlPEexdiAggbcpYDFVTvfeqJ07Hmhoqw6VI/lPYVk97yJk4ouKmXJNmXej/hTQMwcIvDdg0FEns93ZLKJRODxNS/nC05F+FdFBclDJd7bbx7l8lkcZc+A64rlrJ083mhaYmi7oHMSXAgJVJwgGOqWaFrEko5zCoO5pC8mpjC4c60LtK6qVd9onLcH0vKlU0wCjgkx8dPxI8Fer1cEWyfSut88coz0KoXVt7vm/JUqeVQIBHhngu93vUZmUPXoqCUCKRsrY35s79aR8q/ZXYDtvXo6n87lX1TNFAKae8Z7L5luUwY7mgFdezwGyoimD6vLV7UShgXXPW+VQVyegyLo4ICBY4PqB0ZTViDwq4U6e1ppNtVOqjz9LoOBXA4STAgNTQMAXsoi6kKoThcsXVo08anZMWqPQCQI/BCpJkN0jT6up0wAVL/qoXl4m8yKlSEAiGgwX0E7xzO2XU6eR4fbrUURgjsFPXgLJ25IKp2tvlxWPbikfhj4dlBLcpik1V46JV+e5A6GdAjwmyuTj0yMTb5nmAoFO1/qhQlPURRxTRJXbupXed6qov3R8tvSr92OarnBj70BhSsfPaTPe49bDqjoKEDCfNO5/tfF3Ogkw0AkndwBwj2tCqSkq4F4UDd/IgE3xmsJgFxcXe8Ir5ZrOg6dSZrnJo+vQsyv3xHsniFSQXK/g7ebC6IAg8Zn4eOvKt6pXrPSElM7bdATWlGZElJ3U5wSx5Ktqf+80zzLw/KmIXWkxTEtlnJSZj9fE7zFAIEUFnO+Ol/dMyQCNpgnm5OVyLvJ1Jx7ZTefD+NkpVdOedtVhtEzPUt93oF7UyZbrbSfy7Lq/4yH1Rxpnv5JeFAy44NDjIEqlN+7GPXlCCWHRSJ+dnR3s9+8anIIuSqBD/HLvNvNkJCKF3zqBIYrmgR9E3JyX9TBv4pM8jdCy3umM1+gdpn/r1ClUKsiRspnTpmlR58jzHvW/ZInjTudrTNWT9WJ5Xd26Zx59SGM51fcYWfUxnZ6/Nfk8ZmzqtzsayTiL3DN3HeTAgbqL07y+ING3h19cXOwdziad7RGr1N+6PxUN8PcSiOB9OmDefnL6RPrN3Ra+sJAAWu3K6zl9+Zzy+4+DgYTGkkeVvlV5Vw4jxUch5P7YqsP/zhal/PiMhp0dojLpIWk+3weQC64rcJ+f6rxHKmYvj15aAij0JgkO2AYjz8v7j/nyWr/nzs29BuoAwFOBwMjQpamA7rnnX1V7StUNuYdVnTfVlYqcsiWATV5ShIJ5diDA04wAfwLkiTr57QDCW6ZO37rj5XqYMkM95u+nPmBUQOe7uCylxeCMqpJXRrGoV1IUgHLmEVClSwY/jQl/Lr4km5wuUJ4cHz4Fl5wsfThWWY7X77npHwMDbsxGQCDNIVUdhhhdSbgB1dTCer2uy8vLg4NVkuLyPN1oEwG6svf3qDAZbmN6R67Ju3Q+fJW2/3ZhcSOsd/yPbph/at8OCDDfdO3pXjN1nrZHbHjtQKnzaryNPFo0NzIg4vw+gZ8+2lXj+XNMcExy8a6ecTzw/cTjHBDQPfN20XcHkr1dXYn+Uwr2VGkEZJPXPgUCOjAgh+z8/LzW63Wt1+sdMBjtCuOurNVqdeBpu5wlA+7pOp3ketkBgUdAKP/S76nuaQGkgwJff+afpEN+Ff1SMDDlRY4QKhu9atpbSHkKgV5eXu6Ej0iN/9THrU0uVAr/O5rUs5Gho6B1hjMtMPT6i7g1UnNT9Op5nLIjZNWDZTKtfzqlPgIAU/3yFshl2AFBAnOiUdskoJzCrk7uvSW5SWCARpLjgGCgA/GJF8ou1+Z4NMCVc2fwO0AwMt6dbE6999Zpjv51R4zTs4wIEQT4fxU4UDs/P9/pX4EBXUsnKz+9xxNZkz5KOrpq3zh3spXGRgcoOW3hY1TPLi4u9nQ3ATjH2FR0YLs93B6ZeNK9XwFkfwkY6BQIG5SfKSWahGHksRKN+jSBOiYdn8oFVOxgnw8SUfl2nebEzqfSTdEB5Z2QbRIe/xc7tnmKDjB955X5oOqEbwo0vCUwIEoy3M23Up702/NgPyVA4OMpGTvu83f59GgSyRWtePV5W482iDh2xQuVnsr4WUqAfCRXbFtv/1+lVE+NOt3U6V5GBiRTHq1Nc/9uuD06e3V1tfsQDEgvE5Te3t7u/eY0wTF1HoHZuW3GyAXBv+fJaYyqimDAn3t/jECby+xz07OBgU7xd5Vko3ahVlHyYFP5yoPKmKDA0W3VYzjKw6V+BnxCjTTkFAi2hxuDhHD1cYOdIiNV++Ff5j86uCVFGhyQ8H7nmVEg3ZDpOeud2uK1UpLxTqnSqxjl1b1LxevXPj7S2HKvxvlP8/yjvpZ8SbFRltKYJojgGhu9O6XUk9EnT4k64NrJ6FukUfu4zLq8JJnjNwGAgwGVLePNfAkGrq+vd2DAp2+rfjg0m82mqn7IymazmQR76s80z095IyAmdbLIseagPI1FjRHKup77lkOW7eOhA7odeH0ugPAsYCApo2M+DgocCIyMUwc6HBQwf73PEA87i8KVBMwVXNXjdIE6N6G4BASSkRd1c2BV+/9+mPJmWwi4uODOEaAu3DbnHR/Erx0MVGUZd6XhwLBTNil9B5DdY9P7SbklY+tRCsmqfidZFxEISMH7/D/bQnOhylfTU2wPPU/RJ7ZNuk++/JrfCbim6MxbowQIOiDbgVCXP4IAfuhkEAiov/kOpwuur6936wcYGZBztt1ua7PZHACNFNVS2V19kyPkaVOUjfqTv73dyOPZ2dleG7BPxGcC564L0vWvltefAgPJEFMxJiU55yOaClsngZey0u/UaU7eyC50NG4+J1RVOwEgINB9thP5dOUlIUmRggQoEv8Mz4ncuCQenJzfucBhlNdrBwIdCHAZJ3m0id+er2TWQax/mNZD+FP8k8hHOrHSZWVq7DgA9Pd9+oKAmHlxnUrV4R90eVlJLySQ0NE/oWRfko4BAS7PHv1JgIBrpnxqsqr2yhAgUFRAH5VPp8z/yfUpTgnHSkeSOcqB865rB+kpMkIgIHDAqATXbY34Zh+4c6eyEs8/I8tPBgOOktTwriSTcLnCSAqElfTnDgRSmhTGZN4yuN0f86RGdY+KQpA6hoqO7eHzqO6Vpfp4e3drDbR9sjMmeocgxAXOP94WCYil9kr1eG2UgFxnsEVUMLzXAQHJBg/VcmWtz+Xl5Z4RTCCE5N6xg8JkzNPYYZi4A4sjo5wMjEfIuDjWKU3JJbmcAq5v3fgn6kAs5SrpbpdDz4PGkPLOLYH+19f8OKioevxPAUUIqqbP2BhNOSV7wHeo46jXvf66z/by3TWSzfv7+73xpo/bAwcFCQS4Xv6V4PZoMEDl3gmGCxAb9ykVcQPoz/hJ5Mrq/v6+vn//Xvf397uP7yjoiIBA352CHbWZb+Xr1kNQ2DStwZ0NCXD4gHeh9uiDAy9HpGr7pyrZ1w4Iqg7XXrhicKXCOqeIlrd1OpCFe7O5I0b5jEKOSpMiT1SMKfTqwNOBQJIjAWved3I94GDAAXU3pjqgPgUG3gsQSONsSn7Vx6MIKvPRtRs76o6qOjCargspWyLxUfU49TBa1zKiVJ/tdrs3jdXZEF+nwwiHL0oXr8pfZcwBKs6vA+oO+PuYYb5PkfOjwECHMJNgJTTpTHaG3+8zopAGewIbyXNmwzoY0IcKysk9HV834Lx2lOqd5vsZOuaAk5D5AGG/jIARDTuVuNdB9XAhJ6VyUuTgNQMBUQeEXdar+qNQ/T2eg+F/xCUAcHV1tbcvOxlvysv9/f1eONKjA96fXZRJ3w7sRSkKMFp74GPUgSfXtmiMOv+donS+ExFo+L23SElfd6F+P+p9pEM6maAhUzoB2aurqwOj37W9g0zqrKmFp6mPE/9KR9Dhdanad8Y8KsCD7JLB9nFBvpJ+ZD/xfQcErGMHCJ5Cs8GAG5o5QKBDmV6ZVBafuzJgIztfPtAlQPSCHQxsNpuD/dWeh4MKldV5QKwHB5b44XkAbtA9L6Jnf9+3Q1Y9ziXTuydK5XsM0bJNU6iYvCZPdESvWemy7/TtbeVKLgHXDghopXUCBD63qvx9GsIBgXjgWRQuq5Q7jxiw3krrQCJNsU0p60QeqWAIdbt9nHdl+45A6UivPKcndYqUxqLL3dRCwJRfAsBVh46Y2wQBWt/VVXW4cPXh4cfugbu7u92HunlkK5Sfvh34eru4kU51SUCAunhqyszzVpkE6ikySzDAdmIf8Hmip8j0UWDAjbyvPk1haUdJIy8kVYYDOBlmpk8d4+iSYScBAn1PNZ4/74z36P3Oi/KOZrv4IEp/4iFj7mdhU7DYF2yDbktiEspuUCW+Pe1TDMVrIPadt5WDBo0JBwLabtVFBzx06lE3jb3k/RPodVEBPqt6lOO0RdBBJeXYDTfzS7LikRXx69dJR0wBAk+TxhjTvHZQ0I1BlxEaM+ruqv40PgFNhcU9mkBbIBnmiYM0nNQr1EH39/d1e3tbNzc3dXNzU7e3tzunJ/WjKMkc5THprSmi7UpTKWw3B8QdWFVbavymSIq3u8Cw3usA7XPQkyIDRH5smA65UPGMUH0HCnjN9x1RMb0bfxl7AgA/tY/gg+WRqOQ7BaVQfiIXWna4fvuCHq+bTx8k5UuFLSSqPNkfo5MXWaYbPK//SDF7f71WSm3RpfHfrjQ5NSCDz3UBvqebxr7qcbuo7stQOxjp+sjHo6clkCToJCBxoOFpUtt4e6hN9M2IABcUJsDFcdjJVno2uvdaAcGULLre9sWqSsM+cgOva3r6Hg32nQICAyLX34oGbLc/thLe3NzUt2/f6ubmZqenHQwc09cEBV076T71NmUzRQTc2U1lKh93zFSHEUChvHeO4lNkf0SzwUCaFnAg4ErAQyb00sVsqniqjBvg1Jiu+GTsdF/lc41AilQ4byNKXobz7e1I710kPlL4qfPM2R8p7DWXuojNyMCn5ymNaDSXfKo05Wnx/kh+XLFw33VaL+AfRtxY9sPDQ11eXu6MJiNDHVFOuiibiIo0Hc6V8phScMrP9QmBr8o6Pz/fXXsYOzkFXV2dh1GE6y2Qy607cq7Hq/aPVXfg6rJKGaZhZDSAZwmoDEaSqg4jlHd3d3V7e1u3t7e12WwOogIj3UTPOZGDglG7JTuXDq9ju6YpAU6HsA066uQ1fZKd+VkZPgoMJAWVgEBCfz437pVNkQWmmUL3CQjI8KtMhtLpEXeKfErAWHevP5Egw7rK3yMHROdsWwKaDgA5mifYcO9rRD4vy+vUTp0XmjzSLvLwmqhD6mwfb4OkfH2+luNI73bli3w8dm2eFOicfkhj2D0h79Mp+RLf/Ph8teRc444RkDTGEr9eX78e8fkaQcGUvCRA4PdE3jcetbq4uNhb30LZ5vQAF70yVE+dyOjl/f39DgwICDDqxEgW7Qn1LPU111eNiE4Y283rlMCBylVkl22R+kagoNOt/pnbz89FPwUGUqiEnddFBXxgUhFMoR+WoWumoSLx3QEURD5LUY0kYCQfXKI0V0WF1tU7RRK4aIt7V0l6j+FihuUc8SeD73Nenn/ywlK0IvWfy8BrpmTgq/ZljsCI7Z7GDe9V1Z7csjz39Pyafa980jxmB/YSkPCV/J1HNQLSU+3na42q9he/atww8qE8aEioA6aiHUmHpDSvERSQOlCaAICnl7HjTgAeH8zpLfYjgQJBKg05y6qqndHfbDZ7IKCLXLk9qXqcCq2qPRCQHEvPSzrRxy0BUZoeoF4Vnz59y/YWn/7fN91YTXaS/fkrZHQ2GEiN4ky50RgNTN5PIZwEBKbyYpmcQ5WBpNIVpXvpt8gHDTvd5zs56HzwpbokIKH6SGiTkmUb8dAhHwxE1lwz4W03alf9dqPEKEnnob52BVt1CHhY34T4OQdJSpE03xXCvpKxp0ww7DpqWypjH3cjeZKi4ry95+l1Ypt0ipjAiTw4COBv8ZSmQUZgVfnqu9MnKY/XSD4uvT+6fpGsuiFM/zjIqACjA1wA638+lICoZF5AwMFA4tEXPlfVTue5wRz1I2XQo9t6v1s06JE8b2+1pWzQ3d3djtdRm3BMdTqzcwzcXj6FjgYDHtZL3iXvi2k1dlIiIwH16xHSY0PSSzs7O9vtvU7vqz6pQxIlIEAe3KinMCfrRWXtIX4JvoCYt523CxdjOQJXXn6uwqjvElpNHnDylhNIfC00kjM9T0aP/an+czmoOvwLaeWpNAIAVD4kekeuQNUP9JxYTgLi7sV5+gQEWFfnj16Sl1W1b9QVCZEBoXea9IXaSrwQPLtCTAq7AwFvhRJY7QCa2jdFL9MUQFovQMPp0WOXE5bLXQR++JtPEfAjPUbb43p4Kirg+t71VwLv6aO0GrOqM//UixGFEU3pSwc7fOc56CgwoPAPB136pApQObEjlCah1lTRUSNRCRP1kUYdkqIcCdQkclCka9aXixldSeq5G12V20UqCHg0IPwAEYaP07kKqc9GQIiK1wcH5cLb8TUqXZdNl1Nee1sSEFQ9niDp5FMMVYdKmvcdRHT9qGdMk6JiHm3oDLDnyXRM73Vxmef7HBMuy3qXY8XzFM018M/hQZ0SdZ6ifndAwGWO38kpUH7dFDG/PZSeHBjKoz6js08cVJBPvc86usx08kIZdmeGETkP+zMto7YEAnJAdTzzVD/6OOjso+sf1ulnZHs2GOBiEBXsiqkz1CPD4oZM5IOb31MGufPUunzJ50gJpvIoBJ1Ccr7oySTemY6Gxg2FqJuKqKo9o89tleyz5EmlNp4Szq7dXxsQcEOfAI+oAz4EpB4KrzrcnTMycsn4pnI92sDfSbbpUXVh3JESdZKM0sBXHf7r22hqgvlyesD/AtanLar2w7Quc37tMvua5HNEaUw6GHBDqP73tktTUElOqX8o04w2iVzOOlBAveHOlcpP+tbB0UjuGBXz/qcss06uy7lYUHaAcqj3XY8oLx/HSa5ZF7cdzwlsZ4MBbkNJICApfDKannVgoAMCSUkldOuk93xO1nlxGoEOKvguX+c9CaYjaucnefhOHt6j4ncQ4Lwl6urN6E5SNI7i/fs1KlzVsVsrk4yzqKuzK0yf0kl93/HmyslBuiv0zsB3QLNq/8+sUtkpL8qJ7nFha1cXGibK2MXFxQF4cRl0EJSULdsqeVjUJa+ZvG0SIGC/Up5dXrq2pE6jDh/JtaKTI+chAdmq/TNZktF00E2QkhwWnyoQH1WPulbvKEJAI07ZUdTP9YODCU5/Oc0Fr8w/taPLwVxZPgoMpDmgkYeZkJue6TuFmLuKkRIASJ6CKAm40viH/Cc07Yag6tBQToEYveM8dHN7XnevoyN61rs7ZdAHeDJIrI+DjoROXS5GYPEUyQ1FklFvc12nfEhUCKP1AEl5USFWHf73gfqcc66UT6b3cph/10cJJHDMpukCtoX4dkAwGr9Vj56X8pAM0uPSc0a8pqIirkg53tO4P0Uajdfu46S2kaF2+VIa6hafuiJg5k4COpBKp/c2m80BMHFd4VEJ9T/37Cd5o1xwUWQynCkPj3BxlxblKzlvXr7r3/Qe31UEzKMgro9cVucA9Sk6amuhd15CjKLkgbiiddSqZ664RhXzxkxGnTwlA5iMsZfPBmZIzXn2uiYlS2H3MJOHjVVeNw1DIhLVe7qXTopL73ubJfDSCV4HEj2f10IJEBCVi7xdXYZo9KVcXP5TmQl4eHumaE+Sc4JV55HvuxJS2jlt5B6Wj5NR2SyPXhi9MXqy8rBkcORt8vhiAhQfjwkEJF6fqlhfgjpd2HnGVdmpSiQ9QoNIz7s7MGu73e62IArEEcDq2m2K2xfJr8pfrR4PpxLvPo48PC9eRR7xSrYsTWOQx5SvgwECDsno+fn5bvfEZrPZa2vffqhrr+sIEDyFjjqO2GmERjy9C2RShFX9whYvIwELL2Mk3N2zkWeUPMHOcFKReihZH68f60CD7oDGwYqjeffSR0Li/HjdEjDyb0fzrxUEuEz5tahrzwQsvU8JBJSXR1yUlyu3Tmmxn7spGYEQryvrk7wsT++GnEZfz72t3KBX7Z9/4e1LY+7GQnR5eblboJV2Cbku8rH2HJ7US9KUbhsBgaeMScpIMnAOeJ0XRnUcnHnUtquPDCAdngSQfex2sjtV36Tzuig4AYc7Cnrn/Py81uv13g4KHbSU+FIbu/FPn0622R5TNBsMdJ00hSiTYnSFWLVf8REQ6Dp8Tnidz0fAJdU3oUbPu+oQeRIhpvyUptuPPqpD4rcL0zK05uUkNOzebUqfQICDjwTkTpFSm6Z6J5nvQAA9JN/hobZKh/t0Csw9b/Y5pwbcu3dDnOpJ74tEJTfamis57uTXFxUqvwSAOS6Ut2SS40te4t3dXWwjKkrW863RSBYpj6l/OoAwCmX7GJcscqug0qnN/fRXecXcUig5TobWeePUBqNjI4OfALCDCaZJDiZ/06Z1YEDTYhyD+tZ/Mdzc3OwB9USMDPjvTncdK+uzwUBHHIQdUwojpZOcqh63vHHFsHvELIu/O4Mlnrr3R0Y3NeLchmW+3JZSNfa83DtMSnn0vngkevQ5XQpt6i9H2MxLPJC3LiLQIfVTpSll6iCSgGCkIPzI4XTioIggOSlxlV31GEak8k0gQEDAD8BKeZEPz0P3u37s5m29bWUMnBfx6YqY01x+uhvz02+1ReLVnYwRnTpomANck7FKIIFt7zKawJpHAGjYqn70yf39/d45BAQLCovzL4pl0D2yqbKSI6U6MNTvfeaLAHkOQNX+9Cvl1dsqrYNIR4qLN37Ozs52hzaxHQkG/v777z1Dzzbw38zXIwU/K7NHTRMcayRVcTaeGkWeEjvj7OzHaU3KNyE55TvFR+edPpWoTPy+Dy7yQOGbA0bckLIMD41RqEXJo3el7p4cB1NnBEc0RwhPVbmmPunAQDJwfCd5Cq4waNjTf05Q2bqBdM/Cv91jUz+710HZIVjo+pqK3/lJ/epeKA2M/7nNyGuVXKrdPYLAuqlOBEaUaQcC3T3l9Vqo00dsq9F4JiBwUNDJMfuw6vFAM07bUN4lhwQD+taZJx555VhLUUivE8cC+90jb25U2feURfLuwMijftxC6bpZ+QkQyO5ttz/+pfHLly+7NhRASusyWCcHAuz3Tt7n0LOsGeB3Uo4SDh5nSUXnIUYBAj2bQ6NKd1GLzvB2lAaTd4hTAgJdWnrwSuOKMin9lG8X0hURAHhYtVMc7Is5EYARQDtVGhn3zmAm0MCpAd9n70ZMeXR/keqKi9MCaetgVyfn1710j06Nxoyu3Ztbrfb/CpZKNf3T3Sji4G2aIiVU9pvNZqdI6QVSUXofs5zRmHptspvarpMDB2v8l0L96ZD/u6byc9DlxlLXBGs8aTA5IA4iHPCyXxkVqjp0lGg4fRwmIOCyWVUHU3xV+f9cEsCoql1bqh3VHjqm+O7u7uCfS8WLykq6Oenpn5HVo3YTzDXMYkodICHjOdf8rwA/oUlCw9/HUIoKzIlqJIXh+XQGYe58ascHn6U5eyLEVAcCB1+T4VMuHq1wYRoBAkfpXXuxTqeqSOcYoZEy9TwcGE55+d27Xh5lg8qOSpJbl1whdnVkVKBqfxuf06ivR0QdkD6jPhCl/0Shh8ijmy8uLnYeKkPILs/uQSXAcIpyOwKjfn0M4HLv3w0Y/3fA+4D/E6ByV6tV/MMi3+LMcaLfXAcgOdf0j+5Rh/nY8G18NOxdpKS779E8jr10oqxH5lQ3/vOjZFJyyzbwnUbKp4sE+GcU+Zqin4oMeEHOaAoxUbDoPbAh9c1/bxt5w3N47dK5p8Nr1sfr5eW4UNAA+z03kK60pchUb74/qqvaOg3+UXmdUfL39NvXBowAge6fomIlTQ2yUbs4cHDDlcgjQPqmZ+7kIExKiXPr7i2zD0ZgNZE/6+Q9rW9xvlVn9+yYV5Ijn6Olt8SpDoIO90i7yKW+58jmMQDonyLnaUpuu/5kJCtFBQQI6MBV7R9opqkC5SugyZNrqfvc4JFkN8ir8mPZ1EUcCwQckjfpVE5fpPYRUVaYl6+x0X1OxbkMpohKGstsO4KY5LRS33jkQHwdS08CA921yOdWKGQSNN1XehE7teoxapCM6JyQ6DH1SoYv1XWkWPVcikh10n3fF+7ojSiQ30TByetLCzNZpyR87t2nNvD26CIDqT27djwF6vqV9zqlmhB3Qu3ulczhqRvMDuaSl+LAwMmjE3MMuhtuPuf9DlC4EhXAZ/769vZ1HSLDovI2m82BQUlt74u7lC5FDH5GmZ4Csf785gJMX2PkbawpAUYDOLXrxpf/d6I8dSbBdrvdM4TkU0RDKgfIdaxPUerbZV9/vpb+14BO1giAu86k7ekAiQAB5dlBLO0YQVSKlrAvvX9TX3fTYcfI8dG7CVQwwyKOvH3+xcNPXDegPNVA6ajG5FEnQyTyBuw8WDaWe7vMiwLDQZbK8vfYZmnOnW3WeWEu/CQOdp9rYnqfZx4ZdC+X7TQFCE7N6B9LPgBTfZIh0ccXFXk/uhfi8qV0U+RgIEUKvF8YlvT6Uf5ctjnmR56mrzmoqoM94QS70glUpKn9qVjJm3tqKRKi8uglJoPAfmXZpw4KOtDqgIht6kaZEVxFBNL6LgI/jwpwqkBtTTnhv8YScLmBTaCaaWn8/X9XPEJGr10hfZ/OYLmuk3VfaZNzttlsWrkjwOLCQdfFaUvw3Kkd2g/qJLUZ6zBFT9pa6Mx4wVSKXETVbceoqp2i4gIgRQ6o5Lp5oqfUQd/J0DHNVDuMqPOsnI+590WcY3MvaOTdEPx0AMgHg0cOpkDEqVMyhskIzR1EI4XsSqXqcC7XwQOVrt71cTa6JtHAu9eQ+O/qR7lKkQ4Zeubtslb1OAVGgCBZ5jnuydnw8vzTTX8l5ZmMjj6nKtdzQCoNEdsy6SHOT3cgoOpxoSZlkACA3q2esxyV24XYfQo4RUG5E8G30zKd951Hnf1ZJ9MJ0HTgivWjXiYQUH84GOBfyc8l9ZnGEXn9GRk+GgwkT0bEgUYPmojfhbWqDtLqeVIEjvRZ9sjD7QzelKfreajROU80CgOLRz8r3t9h/TmQfWUt66/3pKxHaFJ1mHrmnlEyZvyd2nVOe54qdUbRjSiVRPLEUkiUadVfVBZaXKTyHKR2Uzs+HhmJImBPpPdGgJVEZdd50V15NAhU+B6xYERRv6U4lca9UkbAvI26NhsBQb13yuCA5Po1AQK1P+stB4zOm0/HcD2AiB6t8+H63b1/d+4IetkPes/PJ6BHzbSpPUhpqqHqx2r/FNXSmHPQkBaLMz/JrrcnwQ8BTeKf9ejq5BG3tHZglLfT0ScQJiDghkHMMCrAjxv81HGslCsgn6v0gZ/4Hnn8cwyXp+mMI8vkugdHrgRMfJ9tlPbqKt8OWLgCm2Pcu/bzvuF3aoPkqb0GMOCe4dSAmpPeKXkWXG3tkTKV04ErV6A+5SZ5GRlBevJpjYtTt2PG5aJ75iT+VqvVbi3B+fn57tAa5aUDbThdyJPsfHtlCiN7G/j3z3pVL0GJf5cz1zHUue6ESRZFbGePLHWG3PVa1eG2PwIJRhTIj8j7kV51mlblWPB+dL2perHenU4TfymakEAYdxDoN4Gw12lkf7xtE9hV2bQvx8rxUQsI6Z2K2DiOjhwE0NApz1RZjxCkPcOOcL3yfu2gwHn2BmZ+npYeV2cAaLiram8eK3kkDBkLCAhMMYLic7ReZgfUEqU2e4oiTIL3WiMDVdk4dO2YlN/IK09A2RUM5Zwy5+NL6XRN74Pvd8Zd/HQ0cgCcD/Lj7ZVAr+rk5DLMetCoyKvyg2wceI8U7Ws0/KP7SY+mNPpmGhpZGi7lJ7DmToPrSO9f/XZjzvLodIgfX/eUpgC83lXjSBf724E1nS6CcBH5UHmUVb0rYM9pF0W4WLbXv5vioB10vqkbngPQHjVNQNTlRsyVTloz4MjJjWKaLiDyTAowKSE39gmsuCKaExWYIves5naIh5p9BSrnVDsPa2qK4GeIQsyBV3UYJRi14SnQFDjqPp1n6fn5PB7TUb6Zd9X+VAB/T/E5Vde5ysHL1vdUe4kSWPB6p7L0W2VxGk4KU8Qz7x0MOCBIXtdbodQnbuTn9lvV/qp4P87Zp606YJnypGwnr747n4C63R00Bw0ij1p5tNR593GX2o4G2iMhtE+0bWlHhtbJ+NhOINXrynLc1tEWjvTWXLtwNBhQQ3inuCdEJtORrG48dI+RAG/0TiHz/Y5Sg3eRBP3u8nNBZEd5/mlOzcvojHkS+g5wUIl6uHmK5ghLUqZs+y6iMmrjU6Q0oJy66A6f++l+fMY+ckU1Mt5epvKfalfnMfUJjabLrJRZkiuN2cRD8rbSFB+3pLGNHAzoGY09jf/d3d3ewra3AgTmgD59J7lNuox6W22adLOH7JNhdkqOloOBNIVDD7ebtkpjSg5mAtdJ5rzdvF7MlxFeRjXStvizs8f/Ibi6uqoPHz7Uer2u1Wq1qzN5TNEr8qa6atxpzYzeYXQ6ORjKZ678zwYDvno9gQFHTnovMUqEI2bdc+K+0ERzQpRVfXSAz3+WvEN9QCRAQwOQQvzJg0oIk8/Z+aPQmigBEOXF7ynie45KT0UZd3XVdff72Dqw3hwX7GPKtdISAKdyHYRQ7p18PlPvpwiAj11XSr7l1xUyPRTyyHFPXqYWfvGZwAKVcvIu+Q94U2HlrmynU5DdTvd1zpDLR9Vhfzol4Co5uby8rKp9w1V1uCMmgU13inwtR5r3Fx+cPuC6ApXN6xEYoF1I9RfIJXhwPcC0KlPgiTwoKnB1dVXX19e7A5uqag+w0vGjjnBZc0eb0zfJ9nn/H0tHrxlgw5NZVcyJyEdIXpVRJ6V9ll6pTok5j4mPJAxzjaSj7SkvayqM5gDIBYzkgtl5biJGB5TePSRX6LyXvv091ie1Q6dAT9FDS8CxG1QOdhJY4hhxJTnydEW+vbDzdBKfPoWmewRm3dYuBy0k5UE59TbxBVv+3L3QRJ6v6xbRFBigYu1k19tdlPr61CgZqg7kesQyrSFwvaz3kjGlsVTeU4Cgu07jQXm5bqScetrVarUXcfZ6eV8m3amx4c6o857e5djQokGBgU+fPu3AlHZBrNfruru7O5gqd91OwKMjtlWe2wmCqORkzKWjIgO+BkCVkDCxscSUBqr+fOj79++7LVT0njxslD6p0fw6ecsdqXzv+AQEunm4JLgdCvUIhtfL2y+Fw5wvL8Pbx0NzzkdqJ2/3ueHBkfI9BUrG/2fyYX3pJXCtBwe82lGetvpYiojztZQ5VxgkN/4iKkvyrDI84pQAgXv6LHPqOk2lpY/Sqp7pvAXxyAWEx1IHDjoA4yDvVGVaNNIHei5507X0s0hGhue7qD9GoDeBT+dr1H5JF/n4ch2k8twu6X3pPZVP7znpWq7HYp28Lp1DqrwvLi52UwQfP36s9Xpd2+12r031x0Rpdw4BUQcIOJWuthp95sruUZEBzv0TuSePtmp/BT2VoEIlrCzRPvcO85OAQOfFpgHvAu08JyHmtb/jyNv5qxqfQeC8rVar3SKodMiLG5pk2LydOo+vW1dAIacnMGq7Lp9TBweiEcDxdPz2evmOGe8jrtBm6M8NP3+7Ykpt6jsSuKBJ97hHX8CdICXN4XbrHiTzBEAjgMi8uQjQ29/bwvPxNmeZbCcp0lHEknk40E0OwilQJ58j+aUDwPYREPA2E6nfXE+4XKrfuimirg6pfQlW3EnSb+pCheZ91xXzcdvE53SYlFbtkOqp+ul96nq3j1o3cH19XVWPAEvbYW9vb/fOc0jtlMCPeJgDBLzNp+ioBYScJhgVxEZSo0sR+IEiHkJ0xUFBSEDAB7wDBPLk95z/zqNP75F3FyzS1LQBeWZHM2zluwguLi4OTrsij9zPyjAwyx4pFvLOvLv28bZJffCaQYErsDTw3KN3wOyerXtXybC5UkrtnqIBGqPuZTioU5RAHwJAluFtQQPDNuC2Yb2bol1Upm48RkCAfcBrghKW5WV2jkPqU94/ZbntZJX6pKpfYOx6gYBNMssy3EimszGUj1PSATSyDlY8T11TvtO5/wQ6jGD7OCb51m+XZR+fHOs+hl0P6FP1Y8zd3t7W1dXVDgykP5fzsUM+uuvu8+yRgc7DTQaZv2nck2dLhalv9245MD3EyXKnKj3lIYze88GldyhgPA9hBCxSma7wPHJCYUkhPqWZ8oY6frwf2NYJuCRk7zS3X16KRgPI+7ZL74N4NE4ICJR2jpJJysbzoHL2w73Il/eFT00k5aFxSCWva73LI1cpG/735Gmawus0V148Xdf2DBF34Pw1Uwdi5+igqv3F3PSSuzA2wR/zH+mE5NBR7ufULcm560mvt49dyp7LofPFejgw6Man6ie7x7Hx8PBQt7e3e38AxXqQX9pSl1kB6a6Npvq7o9lgIIUPpdxotN2oswISsqTg5nj/iSfRHKOk6xG66vJxVOueDIFAV7aXx9/04BgCS5Ta1e87Jd66PMX3KL236ajdToWORdVM58a/Uwgil2MpCAICVwB+z4Gzh9FVnq7nHPDlRAPAunYKXQCApLJ9PZGiV/znUeXTyeOUse4if6xjMi6nJIfPSSPZTZQiLyKCAsoAr2lI9e1hd6ab4p1bCNN4oExy+s2nwjodxHGS6pr4dsBA6qJ4VY/Or/8bIQEzQQCdY9ZFlHRI1476/hlQcNQ0gUAAQy+qvM/5Vx2ewpcU3SgsOFIWo1BmupcAgTci042MuBuDqjrYaz0XlTON2kVKlVMpHchyoU1IvkPCTiNANlLCKY/XQEkGOkWUPBQqBAIyATvKcdrylg6RcoCcvhkWpXdOUECvQ/lW9SBl5J2xPTxaxQVc+p8F1UmLJL1t1Q70pJxGYIR5MC2Ve9evI8PhdX0tsuzGJBkE33rnkUDKmE8pJN3JNAS6TJd0qOvZuWNwBBSmyhzJdgIyTtR/HG8ORHga5t3d3W7918PDw25cJHsw6jevl4+Xs7Ozg/ML2DbHgIKj/puASq3qcUD631h6qN+VH9FkWiinvL18nwvXfaZJRsu/k2GnAvZ83fh7aHa1Wh10iCPrKVJ+vkiTg9bBFYkDtxt0HYDidQIBqQ393REyP6YdXoJGfI0AAYExyQ1uWgwrokKhHHl4n6CTuxGorB2odGBA6RWl07uSNzcQzNNl1P+enPOfqrsrNkUKfHcL+RtNBXZpXf7SdMRT6RRltwOprqNSHyadW7UPZin7HbF/PVKbnEDXkakuiQge3TB3IKSro5fVgRaP9HWOkWR6s9nsAQGCAZ6Y6YdiOa/en0yXKAEqb985NBsM8BAIvydE5ArPG06V9XuOWpXOFSqFwDsjGalR9MAb3IXDwYADgG5ONgn4HPLpgQQGuLUkIcRUvrcl24Keq6jrt0SpDzp0/tLUeRQ+cKaUkr+f7vlaDiqBqv2pqjQfmO6rDAIBpU/y6lMFnMbTfDAXonoo3+tEueTf3OrENd4jGPA1A+IjTaulcc5n/E5gwd8ZKVEHx+mZg5hTJQcBBIMdIEh1o9dflUPkLFOUjBpJ+aU1CD7uCFS8P313Gus7ahsaVUal9GEkiXVlWzKNABCd4bOzs7q7u9t9CAY03vSb93nwEm0Lx3Tir2u/Ofqro9lgIG0fpHLhQKbiUVox7MiNHk9SRB5WZdkdAEgerefrvx1RubdVVXHRB/MhMEhKvhNyvk8QwDUDylv9cExoN9XVlaoDrWRgUvuNEHNKeyqUEHQnG1X79fG6uQH3fnZwnPIXydvRdUqjfKmkXCF3nkZVHRj/pJApn5wK4JnrBAT8+Lj26JbLvo/rLgI4JT9z0qqOc4DAKclrR+wz39aapgZGOsONj9qRYCMRwa/LHe853/7bF6AyEpoiAqonQ/fMy8txG8XpDQeODkxUzzR+de/s7Kyurq7i/2NUVYweMEKQAJvq6A6GyvPIV/eZQ0eDAXZIigS40qPi9JCOV4Ih1w4Vdcb+KR7AiFyQfaARNVI5C9WxoxIaT4CB7eQH1pD8f7BpQFgen/OgiuR1Oojr+qmjDoA9BaE+NyVAxN/Js+o8qARy6GkkT5fvklJeI979PZ5boMiD+llyyAONGMlzT45Klfcl02k6gPd9nQLzdQO8Wv04T2O1Wh0cVsY2ZRRB9Z5qF3dC3PlICtKdFX7P7adfTR2on5LdZNScuuhUKpvPOx2U+COfiZfkYFGf8OPv026QBwdCDw8/jld2MOBg3eviEQmPPun35eXlnmGnrRAffmImx6XK8+gAxxLHOEFIJ+O/BAzwP8UTGEjeoZhzJonqfGuFE1HR2dnZHkIaGXlXPv7M86BC9zSO1MR7Z1gogB1vfJ7mPAmQWBcKK0NMRMdeDwk0+UkKWPmPvPspcsV6ytTJpH6TPJLSGZSUdhQRGI0VKiQfHwQE7GMpGo8uPDw87A47SeFJL1OkNuHUFSMFPq3FNA6kUz3duXByg+D1528HYiMgwKmTJKuuP05Vll1+p4yuKAEnEb1Vr7faTXJCgyR+fKrCeSPRy3cHi07WXODcTZGkum+3272odmfLpGtpnDebzQ5MqI56xr8wvrq6qvV6XVUVT0n0KHpnyNnu+k4y6zKR+rCjo8FAqkQnOCMgkAanKzD3rruB69QJz8iz6JSyvmksKNjdfFMaZKltJGydR842Soux9E2h8UHXCQ/zceXpead3E/hz3t3DOgVKYImKwyMrXd317fVzo6Ryujz4nP2WgCnzF5/0chgJYNqHh8d/9aM3MkfuU1RMCldTAzpERXuoCQa+f/9ed3d3B7IrJeyKT/wmY+X6wNuEead+UznqN157X546COC1t1/VeKrO27ZrX7aTG6bEC/nhlGcXafP7fs1+9rHk+ek3ZVX8pvTb7Xa3/sYXv/uH7/DjMqQxcXV1VR8/fqyPHz/Wp0+farvd1maz2Y0P6pgUyUpglm3f6TAHu0kuOjp6AaEj+WTEEqNuTBlS9MiACxtBQvKm5w7YJLRdOj1L+0AJXMTDUygZSfdwvIwUkUl8dwaY/eVelw86vkO0zvtJcL2Op65QR+2WDOZz1Mf7uduVwPJcudNT8A+jaTK6aaGv9yfbQO8nIK9xS8X34cOHvZPVxPv9/X19+/Ztdy0wooVVaYultwP5mWrXVKcRjYDAKcivGzx/ltpOU4O6nooUiChPumb/aB2TG1UH1M5vAtmJ3LGhTPo4TADDy+Vv/1Q9Lsb2LfK+2DeBKteLsmvr9bqur693QIBg4Pr6ehc18EXiyldt7rLMqEBaQ5BAwFwgUHUkGKiqAwDQIRhduyJJSJGfkacyEo7Oy+koGQJXfI40veO8bBrsOSCFwCqFpfVstVrtCetoTl+8O1HAlH/qwxEgSL8TEEiK4qUVaked58TfI+PiMlq1D147wOekdqIS57MkIyrDlQmBBr9TtCpF9rqxzPpp7cB6va5Pnz7V77//Xp8+fdr9OYvAwPfv3+vm5qZWq9XeAqrNZrO3kNHr27UTiXLlUbopeU156XnSQ6cgv51OS2OXPHvddI9OF/PmdlXJkj6jkwmr9qdbaTBH9SD/bsgkQ5zWUR5u7JIu05hSvdwmOc+eH41vakfWabVa7YEB/VnRx48fa7vd1t3d3QFo9mPLWccE2EfUAZ65gOCocwbYYSOP0Bny8KuMajrC1MtM+XLgHztIvYFSAybg0s1rVR23Ha+rW3rOBWIaiAIDvoJ3zmlz4jVFdeYAAt2bqqsbkQ5dnwq5AuB1MoxO3u6qsytbB4wdpTRUal6m9wWnhXzMpnIkax4STePLpwjkAf373/+uf//73/Xp06e6vr7eGZTNZlNfv36tqh9TjTc3N3th0s4wOHXt7yAlGbfRWEtKnfJ6CiBgRAlk0ghyKsnldCTbeodgIB2lzbRVj2u83Gh3INplXYbXHTCeepv0ieyBA0LX9yqPUwiaVlN6lpfm6Ok8ekTbgbJAwXa7rZubm7q+vt59rq6u9sCA+PPpCW+jFBGmTXzKFEHVkScQsvDOE0zGlQY2TQ04w918oZc3Z8B2gt7x6gbf+e6iA47iyH9VPgeAXo3fT3vVBQgkuMrPpzKYj3t+DgBS+/o996q8nt6Wo/Y+Feo8Ab92Oe9QdzIqVXnXiP9Wn7kSV9rVarVTkMo7GT399nBsN37S8zRn7HKqsbBer+vjx4/1+++/13/+85/67//+7/r999/r+vp6Ny5vb2/r4uKiNptNffnyZegA+JhPgGlKhlJ76705hv01gICu3dhmlNHkyaZ82CfujXM3WYqS6l3pLe1OYVmSHSfXSTTUHF8K33cyQP2U6pqibu5gMgTfjWleJz2SbElV7abU9NH2XI7/bho4AYNkg9M0wVy9OxsMcKsDUZh7T52BHRleIj5viLnGiw3i16N0fi91Kq/F88izS5TCvF4W5+iqHgeerjtEuFqtDhaluIJgHzn/nUFLXrIrHT5n/ZjnqUUGpgz5FBAgQEzv850EpEjJW6Ox9+1EMtIjZT8FdJySLLvi9LZgZEBg4L/+67/qX//6V11dXe28La0V+PLly26+lFGsFJVIUYw5skOFqHzcsKutUv5df3fG9FSIoG1udCDJImWGOoKLUj1C6mmVh+s7jjUHgj6lRXuQjLePT77vtoTEuqc2lO71qbW5wFDpdY7A7e1t3dzc7MYDxzS34nYOZuKR/KUxqb5yp3YOzQYDWjjioSMXws7YU4GmRkioyAEB06XGmLp+ioKpOvyfekfBXn+SnvnAHKFbbnfh/JyDIpXnntYoqqJ3KJxExcnIe106Y9kpWFfSL0UduJtC0AnY+neiKU83RYT0rfL87AD2mb8jXp33ZAC9L8nTCLhyLAsMfPr0qf71r3/Vf/7zn/rtt99qvV7XavX4p2SbzWa3lkBggG1CJez8HOuhex+zPT0/9kcnywQEL0kj4Jo+Tp2HqW95xARSBP/0yqWTurUDajP+twqdKPaF80o9lKatGLEi/yyb36yz8pNjK7nTOFPkNS0m9AX0DpyU383NTX358qX+/PPPur6+3sn/xcVF3dzc1Ldv33bbEn3Msi1lKznlknY7OKXI8LODAe2VHBlsERupU6R+wMQUEEiggOVxwDsYYKMnL0HkYSl9ex1IaQByfinx42Wy/vrtXiAHSAJe5McNENOnqEDnLc2hqXc6YPZS1IGAxFsnA1N16uTWBz/BYWcEHRBU7W+zFchkOdyup/s8aY0KLnmHjFa40tNHZwtoJ8Fvv/22+0hXbDab2m5/TBVo7pQrqcU7eelOhHuKd55AgQMub2sfW359yjQaizQofk/9QLBJmUlTlpRBUnJ20ljrjLr6gGX6wj+3Bcnh9IgC5ZzyxrHoO2667YYkRWTv7+/r7u6uvn79Wn/88ccODN/c3NTnz593JxN+/fq1Pn/+XDc3N7ty3HYIrCS973y43Uu2YK4TdhQYIEp0xkYeqHeWK5iEcPT+lLHp0BWFhumSkSYvVY/Cl7Y/Kg9f3Z+UKhEo8yf5e+w899xdEFTH1H6s+8jYjCI9ydvo+uQYUPASlJT7nChN54mNBpl7VKkNaci9v6sOd84kIMDQreTRDZyPUxpcP2jF24u8cl0K/6NAB6tw9fTl5WVV/VCUBAOaJ/VzCFz+2GbeJl1/uR5wSoAuAWHy9BrAQHJGOqIB8bYl2GTeySMm+VQAQ+HqU59eUN5Mn8r0cnxKjd8EqQQDHuFIADOB5Ln/taPyLy4u6tu3b7vxqQO+vn79Wn/99VddX19XVe3uff78ub59+1Z3d3d7oMTb18dtGq+dU7vdbg+c7hEdDQbEuDpNhqoTRqK15GkwXfJgk6IkpYHMe/weeesSHu795NGqVB4dWkz809PqyPkSShe5kmQd6QV6XqnNEsLsBkzXp1OAYKSQX5pGXv4chcp0SUGmCJdHBfQOAYETvS/vU4KZi4uLnbJNhsyNP3lUWh+/zL9qf+Egjx7mtB+PKtY0gcCKFkrx6GK2fQdUvE/cE2R/uLc6JYMjQMB0U/mdEo1AQQcEVD+CzaRLXOYlh1OODgHBFN/sB6+HjhF2vc2PzreQjEmOKEseFeV9nx7wSJW3IetPUEEg8OXLlx0YEGi/u7urb9++1devX/emDAiUXEf7X6C7YyGivUw6bkRHrRnYbh9XlfLAEO5LdXIPjIMueVc0ohJSVrCLJHTIqmo8SPiebzcR790cZzrCMuXH+jpP7vmQp867q9o/S57Kc0TKzz0vBwPpHVe+icekRLydX4KSJ+HPjuXZlaLudWCA7yVAkHhKXhOf06hytbfAgd53GU35JiWT2o8fj5YxfaeECDSSU8C8HETp2/UG6ykarcfo+EzpO+B7SuQe6xS/btQcPCaizLLc1Mdp3poRLN1346fyfTypz7u+Wq0eo7gCBFzw7qCT77Ecnz7zbdz+PsmBgNYHfPv2bQcGCFC4yNDtCHnhnx4RmHg767f3xy8BA+v1erewbbvd7q1cZAeSMTLjHf/9+/5fsSqt3lWefkLZyOiPaE76BAhIDgTSys7kSbhCcW+RKDMdOMMFLMxP377Q0Knz4v3TtYk/472kJE6Rjmmb9N5oUBGIpXDeVBmp/UaGzJWie9nJa058TIEdGd3v37/vPDP3FqUA+U9sUkr6O9ebm5vd37Z202ok8jvimXI4MmopeplkOJVz6kBA1AGB5LG7Q+VtV3UoG1NGxUFeMuiMYvLwInd6RNKFsjOd7vdIrqJWHVBP5ODdIwNpsbh4kbFWnSTz8v6vr693kTHKp4y91ta4s+l/ZtSt3Ri1yS8BA5oHTIafDIgxpvHQk/JQ4zlJqBwQ+PeUcLphTgM+CX3y0N3rEzBK3vSIEsJjuTTyKT2FqVvE05XbGaYp7ycZprnvd97vP01dNGPEN6/5SaHUFBWYAwKeamwkowy/so4pgubPeV9Er0P9qmgDFaSUlRSfQqJnZ2e7fyS8u7urz58/199//12fP3+ur1+/7oABFTPH3KityLvLknu5DgymZH+kJ06BUr10fyoi4PrUAV261nv87ohR1DTO6QCO9EACm6ov13P59LJ4HOWbxiX723cOOBCYArBsB0UqFCH48uVLrdfrg+lytovAsr4TEHAQUpWPndb1sXTUNIGvRPUGEmOucBwIiNKiFQcRzJeRCC7O64zRyDvnfd/m6IPNVzgzzJ4oCRs7noKmdDLs6lAPfboQjxChyJVgEhD2VVcnKpsuEpAGYue9/tOU+HXPc67X44pPefk6Eh+4U154UupdG69W+3OVBKepnE5WRuSyslqt9o4SVoiT86Lr9bq22x8LBqt+LJb666+/6n//93/r//7v/+qvv/6qL1++1M3NTd3d3e2Noyne2IYdiE99OgVUXaYdjL8WYt2pR9hmXRR3DiWwNhcsVO1P8fppf3rekQM111m6Vn6cwk4h+KQTU8Q3fRJP4ku2jI7u3d3dbluhr0Hju5pe0NhyIMAItANY2UV3AOZGJkWzwUCaB/IG8kWA9F5JDBtxlXJKw9885CUtnEsCNaUIqeSJ3PzAFQmxePHpAd1PbaFnDiqo0L2u6vA5XiYHQprDTe8nA52U4EhJjoxcl/9LUDIkx4ITBwTJs3aF7OU5JS/I700pXAJiLgIj3/T2eW9KEbvy438LMCLw+fPnXSh0u93W1dVVbbfb+vbtW33+/HkHBv7444/6/PnzHiDgfOhcGoElB1Tu9fO912r4q46b9poCut6ebK+R/hzxkDzXKVlVepEMO8vy9Wer1Wq3nk0fOXeawqJRpQ4ncGJ4noa9AwNddMqNscoVn1V1MKXrkQDnOTkLLsPij2P6GCBQdSQYSAW5h+KNxUGuCnAfJZ/xtxs1oloCBTbQnDCOl5VAAFG08iaSnONx+70EHlx5eZuSHA16u7mBYh184Y7n24EA52tkSL0/To3ckM+ZU+sMsSvKqsPFsN7PKR+mGylbb/MpEOPjUO84j2krWfIuJB8EAzc3N7tthX///Xd9+PChPnz4UOfn5zuFKzDw119/1Z9//ll//fXXbtpAUwZaZyCwncaJfo+8WrbNSAbVjvRUOQY64PuSNCdy4umPIZerTt4TD6OFmqldq2oPCNB+OKXIs0c7ZGNk6LkbTMZYMtt5/L6g2q9dd9IGjca0yhNfihZoGo3lEAwQRCQHo2tf3hffc6Y3RLPBQEJBCa34NyktytN9R35eaSoqN5rHAgLOPzkAcIPqC0dcQMgnv0kdEPDrKSTnBqEDNyqTgErpp3jwOqnOVJy+ViEp4mNR6a8kBzEdGOi8qq4ebHMN9q4vp4xYl2YKgM0BBg4IjqHkud3d3dXl5WXd3t7Wt2/f6suXL7t/Y9N0oiIDX7582Vs3oLUDX7582U01yBNyoN15+aOoy6g9qDwdCIz6Z047vxR1fHUGZPTuKK85QKCLjNKJS2DUdZePR3rzLo+r1WNInkBA/SxDK8NIHT6aCkjgwMvlTjfxNwIPinS4Uy0g4wZ8iodOB+tZWmswoqPAQGfMO8TiTHr42w2XK2cPYyYQMPW7q0PnJeo9R6QphHQMCOmMowOfEeKkMeO1iHXotnsqbMcFmGmwuzJxIJD4Su+eAjhwIOC/xd/I8Cfgq7yr9o8Pde/a3yFf3f3Ee1e3FLIUpfGa6tSVIXmRbErBaJqA/86m8wVubm5qu/3xL21//vnnLiqgiICmCeSxJWWdeGU7zjVkfM4+c3nV/QTgThUMjAC89FQ3rkd5kNIUk36P3uV7MpzpOG3xxChmIp6lQRmR7r64uKi7u7uD7a4pxE+dRpnmPbaVy6MDAE/rebje8Xai0U7RgASMvS6pn1PdR3T0moHV6vAsfDaGKzgXHvc0q2pvi6Hmlzivwv9FYFn6nZAU04mPKTDAMlKDOhBwQRkZu4TUUxpeJ6OgaxeuzkvqFHznDVMhOjgRoOsU5pw2eEmaaquRkvT+TqCI76b26IyOlzenD70+4mnES6JuSoHvcxxwFwG3cunf1zabzW4hocDAH3/8sQMDBAK+QyEpvTQmpgCbj3sSxznloGv/rl1fghJwrOpltarfanoseYi+K3vEN9eIpSiC6zOXAd+FRUPLrYquyyW7yWZRn3V2JLUF+U5luRHuHOkERjogwLbo2ljXHLNz9e5RkQGuhlTDcj6azDowIIMUhtVqtZtTkcD4H1ywPBeGOaEelUOvebXa/6c/CgmFzrecjEDAXDCQQEFSdAkQJBBAJU6hI0Cj8iOoGZHS0RCMlLF4mKrrS5AbzqqxcSalwUhQWzVeDe2GKZU1Uqpz0rui4zXlw5UXqfOAOGYVdqUMKt3379/r69evO3CvbVV//PFH/fnnnwcLB1MYM9U1ASc34lPK0x2UqWkCph15rC9NySGbMmZzycGxRy3nAAG2XQe4FX3y+8m4uUOmdJK5zkOuGp8dMxcI+Lvko1t7wLHjdow6NunNZCf8OukVr88cOgoM6MOteAz9O0NeCRo8R02aF9LKUJYrr4MdzZBi8i7SVIGDAZ8eUL5ckMLvLtzU1bnzDlMHdd6iK7EpEKBwNcsT33xfgMt5JVH58wSxOYJK/l8aFKS6JSQ9eo9pfJCn54l88HZKdY4n0NXLQUDyerfb/bBsUhqsG6eVOhCpaMHl5eWuDK0p+Pvvv+vvv//eRQR8LHm7jcZT5813ctYZrG5MpfRp2uefJncMptK69zwnouB5OFh2fSQaAeKkX2kQk7x6ntQjHk5nZCBFLlyWOoP8lP5NtsaBgIMhtx9pjYDLsesqr1vqk6fo3dlgQMxKsGh8WKgr2ITcR+EXdaoqQAPHTvTGfnh42KFDCk6itNeTdfQtHgIDUwZwSqlwQKV7qUOTwfBwLvuD0Q7lQVTK7Zl8t2sPgSHuf02oMwEB1uOpA+45iW2S+sHT8fcUoKh6VIY+cLv8kgek31OGMZVPRcpx6rKQ3iH/IsmUz/c6Dxq3Nzc3e0pcuw700VjyccRQZqq389tNUR6j+OakYz/MNcTPTVMgoHM02Nepv0dANOk4evEyau5lj6InnW7rwAXHiOvxziGZA5gc2NFOML+uLlOGf24+StfllerWvZ8cSaZ5djDAQ0KqHhdM0dB0BbPSNN5OHo70OQ83tux87mXtOsmJfEih3d7e7rwcAgGPCpA44NT5KRzFOrJdmA+/mXcn5CxP87eMGrC9yb/AFf88hus0CAR0rOzt7e3umhEUF9o09/ySYGBkzOe813mkSYmxf31MuLHWtciVVAc8k2JVP/OT6k0ePTrg45Lh1Q5YS660XUr8SHY4phIQ8Pp2fTIVFRhFAJJnmhR34ukUKQGnZFg6We3aMrXFCAS77Dh144Ry5X2jfOm0PGdkxvNJQNR5pgMqoo1J27aTA0DqjH9ysqYATudIznEoSEeDAT83wBffdR6XeyWpsehZ0YBxVWxqGPd2vWFTSFL8VtWe0dNJUAkIdAPFAUD6nwDn34XSgU763eUrw86/W05twejA5eXl7sN/lePRlooI6FhNnbfNed90OAb5VrtwgL8EdYqxA5r0rLuP5191CAhS3lVZRggePDzqfKffXX0TjRQXyQGBe2ucgqKccaqNU3kjo5948r7wMTdyLlK7s05TodlTpLnGIV1X9RHBlK6TIRrtqjoABEn2E3nIvqp2USguNiQ/LI+/Rx5455hV7RtN3veIWleX9K7zSx46UNPJYSp/CrC5zX12MODbf5yS4KSBNWpYCqYUDztlFPby0JIGDfeCUgnomx6MvN50FCQ7yQVU93ygutfHgyc0mFwBpg+F3RdwupHzNQNsdwGHy8vLurq6OvjwzzS22+0eGNCe8S9fvtTXr1/r27dve5EC1cdRvyvvl6AubO6UDI8DAqWbS5QLl1VdVx1OMSRQwTy9bk4pqpBCnEybAHNS+lWP6wgIYDheBCYdjM4xuD6Wun7RM+cj5TdHN7Fsv/caaeTxqp4cl50RT/X3PfYpQpBAd5Itl7Htdrv3h3GkNEVaVbMcjTQGqsaLaVleMrLU4QQ3aayznbxd5tDctN14m6KjwEAKY5B8EHcItUPzPHrSDZ0LLjuJCts9Lg8J0nMhGGA0wIGAh9jd6CdUlxRZQr3ell6fZJB0j3tq3WB5OzgQ+PDhQ11fX9eHDx/q6upqt09cizXVT5oL1kKwP//8cwccFCU4Ozvb7Rl3dM0+eylvKwGsOenY3vxO1BnYzpPTfR8D3bhycqXDiI5krVPGLsseOSNgJ5+eH/n3aEBSSHNC8yo38e7PGHHyaMoUpfHJd08RAHR6x8n1pn8nB2Z03ZHL7ggIuNyJ/P9pNOak79NCZy8njcvRuEr8eDuJ/9H0RDemWJfUF/7uz+jFNFb4+SWRAQ8Lpkp4pX1gJqDAhpQQ0LNI75KosLWAMAkGDb8rLl8sSLDQRQVYX/HHDnDkKoGl8vL3PF8a/Q4QCAARHPlUge5dXFzsAIBOjBMoEBhYr9e7RYiKDigy8OHDh93UgvaWq+zb29u9o2jJP9voJSiBK+dp5BWNPEtdjwydy41k1Mue0z4JBDt/c7aNqjyO66lyR7LvUwGj7VJe125sezkkeo4eueiU71MMvI/jU6ARYEny2gECzzPdm2o3evb6Tl56Gh8cAyLJjfLQgnJGzshP99ftzDsZxQTa5xp0bj3v3hM5b3wnjQ++l/TBFFilDfplkQFXHGzc0QKPqUHkAMG3MPEoym5gStFLybqA+HQAjX66l8KZU56e3xul4YBVfVUmvR73SLvIgJ5rzp+LCPlRRODjx4/16dOnHSC4vr7eTRUIEDA6cHd3V1+/ft3b4sl8VaamWBKw+VkE/DPk3t8xxjf1e6dURgDZqVM8o9/Mb6QMEo3Gobwwn6qgLHp/E9xO5T0FBvi7A13H1mv0nhTtCJAz75cGAi57PqaSIdHHo7Be5w7sMo3yrPq5bZa0IXPSSi59TVhVni5N75PX5Ig6kCex/fQstaNTJzcqrztlsMunKyvlz0h2imqP6KjIABvPha9TDGkuz40iK6OByjBnt4fUDac6brPZ7O6xgdI0QLdQcM5A89/d3HLyXtg+xwwuomaVSxAgz518aMeApgMUEWBkQCBAgECA4uHhYTctIF5pNFTuer3eLcD0dusG26lSUhbqyxR+HBm5qv1BPeVldaHW0T3nefQOQZ76Twra5ZRyLhmTvDG9R7u8Hux/jUn3fJJO6IyU55XKGY3dkcfo152H9k9TAqMENV5X9h+nco4B5S4LzHuKR7+fvh18klLEyh0iBwQsz8fs2dnZXp7JlnVjJ435Lvw+ArNySt1ojwDBHGJ7MurtTvsUHR0ZSA1Hg8iOmIu4vUMlVAypJHQo0rtUakzn6wPSKud01GXnrXidCQTSnx8dQ6x7EkSBK7Yddwdo3p9RAxlsXzCotPwIOEj5b7fb3bTBw8PD3j+AVf1A6Ov1eu8PZ3ytxWsAA8lTmgKCei99p0iEnifAzDLSdUdU2E4sO62l0ZjW9JobcY8ISC4INDmd54ZZ44py3MnACGRTL6QzD9zbSpG95K1RP00ZhVMglx3y7k7XyOMfGYjUZiJ3ckTJAM6RY/Iuvryss7PHo4aVlvaCU6RePh3KJBMOClJduzZP5GOHRpoymoDAFKU0BKvK3/XuMSDj6MhACvN4VMC9j45otN3Ld0GhoXfqwIaIkYGEnAg6Rsqd+T8VCLjQuVLjt6/Y9barejwvQEBARp5gQEpcz7mNkNsSFVlQWkZc9C3vXwPt/Py8rq6u9hYQ+hHOxwrlr6JR+ckjZJ9TEXWAQJRkpaMuzKlnTl0UqfPou3/kJPjpAEUHBLioywEUx6/GLJ93RjcZ/xGgcuDB8dt5W6md3RB04/9UiAZAv2lgWG8a1FRvl/lUFkn957KUykhgonueZDqBR8qdO5AOKLx99MzrnIDAHKLNS8CnA6udt+6OsPM/Am/M96lRgaojwIAKTsSKs3GIrpzcSxmhWCLSUcd1njxRk++JT59RXZOyIqWB58+nQs0SMg/DMg+uEeCCPoX7Zcxp8LlA0NH15eXl3u4CKX8h7MvLy6qqur293e28EC+KClAoGYF5acWa5KEjf0ZD6Z7zqCxXVolc7hM4dt6SF+V58dqBKYE2eU7TV86X8qt6BBlp7CskS8XIMwpGhtrHlz9LdR+N5Sndwzbx61MDAiIaUvWl+sK3ZEtXeMSAMuD1dKBFkoeeZM3fcRnS+JlrfDmNMCfCSjDY7QZjmlQ/5zvJCp9NgYnOU0/9IUpAII2XVEY33T2HjgIDzixppPS6Z0kZdu93ebgRZRh91JEpH7+eijgkSmhxRJzL8jKZFwd5OmSI6wXo/TMCoHRp4eF6va4PHz7sFhYquiAgdXt7W9vtdm+agIP+8vJyb4D5YJzbfi9NI/nQoB0ZbDdqnVfmRG/LxwHbTzyobxx8cE41KetOzqcUGsvn+gACBJEicJJRb5uk4DqQPWrrOcQ+c1DB517XkYE8Beo8XIIukYfWBRz4PfI8uxC6gIH3P/Wx0jkgnbuQkPVj3gRBqsd2u22jv3ONYueYjtYlpPqwT+Ya9REI6OSyahpwzKUngYGOKRdAMttR8orm5Ms8Pf804IlIuxAP63VMQ3b1PoZSZMKNCssjAOA6Ac75Kwrg0wG+nkDz/tfX1zswcHV1tStTR81qm6EiA/JUdZhSBwa6iM0/RXPK7YDjyEudeieFU5XO26Tzsmj4q/KuGp/br+q3XI0UvyiBESlc99aSAfc1BWm9T6ewUpsnnpQ36+RgTeV4n6U2TvXls1MGsskwjRwh9Z3axgFB0oGdkaFsOj96znNVpHv1h3Sp7Uf1lHOS+k8RyRQB9rxTpCKNv6lpvBSl8jY4xjA7ABgBCabvQM8xduzJYEDEhqzanzM5xjAeAwScjgk9pbLosSSFkt53z8vDch3icwFJfJMP8uuIUh451wv4GQA0/uSNzzwPfaQw9L3ZbOr6+ro+fvy4u69dBP7f9ByYpxAZcGWYBkznhXZAYGS4XD5I3u/dWgQvW8AgPXdA0Hky/m4XjUikvnQFynoQaOse3xkdEJS8sXSfz6fGfQeIOlnw+p46zYnuSG7cQXKdlzxwXSedOOXhVu0fL0zd4zIwMloOAuSYdAtJCQYSuW6lnFFuO30gcm89AY85xjgBgA4IJGM/BzTMoaN2E4iScUrkHeXv6/4cAzylrFKHOk15/SNj4QaBSlceubxkLzN18BRqnNMejA5wS6BPA7jxchCQdhMoD/Gncq6vr3eD8vLycregkIc2dac4vhQlQ5uU0KjNvQ19PpRpdK+TxcRLyu8YSkBgVBca7a68BD79fpe/e6EieoxT49CvE7EecxRgMojKp2o/kkD5P0WivHbOBY1DAp0EBW6U+L6oMzwjwFa1P6VAHqRLRmBG5Tr46+pPL1l1dOIYGFF6V6BDfCW9nvLpvHrPJ4X7Haj5Nes7Zec6OgoMjDwLpjsGLHjY38PhU9R5UuRHvPvJUQmgODCZAwR0LUPK+vmg8u2ZHZIbeaEilcnDgnxqwEnv+O4D7kBIfCgKcXV1tfM0rq+v905v1P8UODggKHhpSrJJpTFSIMzDgVZVvzsmlZvGUvo9Zwykd+byL0rTbxw7nac0mq7zo2ZdAR9Tt64ecxXeVHvouxtrp07sJ9c5BAMJMCYwUJVX36d8CTRIq9X+AlNNDThQHEVHSZyGFFDz+pM/56X7PddeueF1QJDSe5mpDZnH1OL2BAT83py6JJoNBrqwR9fInbLVb10TELjwdPc9X+cjCYne7wCBK4DEP9NxUPnefPHriDpts/PvDngQdOi57rthF09urFarwz8q0sFDPFiIRoJ86d2qHwPbz2/Q3xxrd4EAAYHBKdPIw0mDqwMFVYcgIH1PDdiU39z0c4h97WDAgYCnT2X5OgGFiFXP0fbgOdTNzybqvEEfy53ynAsMT4Ekt+qvZNxlsNkfDvD4Hil5nbyvj+sa8lX1Y2GpdigdO878uWQpOak+jpNTxDZI0QZ3Tt3753XHdyoz5UEbNWd6oPs9asM5dNQfFVXNPyJ1agC5UCWPNEULlF6UIhOexhvaG1zldYDA0/n6AEfbLCN1chpcyTvx+X2CD875+2LCOUDg48eP9dtvv9Vvv/22WzSokwi7CIHK1oDhIiCtEfDowGaz2f2+u7sbysSvIiqrp77vCpb3PTowl5IxktwnozvHY03lJwXPvNMURZpC6IAAx4OvD5BciBgW7sh1w6g+fC4ePO8OeKcoSKesT5Uom96uXj+1jQABF3ZOTbOO2oEghKBC+bF88kw+U7SW77Ms1q3zyqn/Et+junQAw43/XF7dDnTTxgkIsKwOADwHEKg6MjKwWuWVqt38aTfoEtMJEIiIApm2ixh4OR0IcCCQPDxP72CAEQ4KZtriMoXgCDBkvPntOwSYVqhfHn5Cw5pS0P8TEAwoOiAw0HkJzi/bS2BEkQKCgdvb27q5uWnz+pXUAS+nkaF1Q0F5p3LrFFPKz9N6JCz1YUrfKS6SR6o0ln0RViqj4595cW5Y5UkOqqoFBJ18dVEAbzfnY2TI+O5I2Xd64tTJAUFnTAgMJGe65wBRnxRJ1XdyoPy3Azh/Lxl18pAcLbcL5MunoLuxQj6Tge4MMcsj6CD44ce3OXYO4ggIeDs6Lz8rp0eDgeT9u+LydD5P2AmMe/yjsCCjBkkYE+ofkXvkXu9O+ZF4LGt3yBHz8PJ9SsBPj5PHz0gB3+diwrS1TP9ayA+PJVb+qoME1v/LwVfqkm+tmdB7AgPK/6WIA7WqDyPru4sUdYrBFQFpZGyTTBOMiZ8ROHB57cqhMdS46U4U9fpz+otgSPwRNLiCkjImmO6McjeH3FHyQtkmHL+MWnikx5Wyh39PGRC47KVIgXu0jN5st9sDQMCxkPpVzzp+En/sA5evpB9T3zFPByep/zuQnmRU6ZIHz3fYNt4OyYh7nlNAoMvH74/a/Cn0pN0EVf1Cu9RpVYeDvAMFo85LPFC5zfUmUid2QIfbYFSOgwZXbKOO9/L944beD+xIg1XfNMg8ZVDPBQZ4LgH7T2CGfUAvX+cLKOrhCodApqr2jj0eed2/mrqBkgCZvl1Zpb4SUam6rIkctE7xy7GUQEYaax0AToYtGdCqx1XfyUtM6ZVfchZSuhH5+gXWqzNOXkc3Au4dsm1H/Ll+e0n5nUMdICCNQJCAgK/2F82Z/uoMlssbHUN61STpQh577vo1AYE03dGth/F76a+JU0QtgSZvhykg4GDA+Uptl2zgc9KTXDUOEB9cc5B9BwQ8f382GpBd6LADAl2dunvp4BSSC9LUQkV+6FXR+BMg8Lvjmfn54UKKLHBNgfjTv0KqvQgGZPx1lgDPE3AvpOpxtwLzIrp/aRoZrJHh975yI+HKhfd8fHhZpM4IM++RUesUzJy2d2Ps/ebjVjyk6ILGQPcfIF6mKLVLZ4hYt6k+9YgAjSKjHWl8/UoF/KsoAQIfjwkMCDS59z4Firy8zoAlPd/pMY03HztuoEXJQPt4oux1QIBy2jlxzifrNwcIeDRgBKRSO3rbPwfNBgMjoXDFlDo35ad3qw63i4yMXkdJ6JISPBblJ4XNchII4D2lc++GHwq/0hAAcNGgLxBMCtUBARcZclDp8A7xRs9ekYGk0F1I9Zt14mC7vLyszWZzVLs/N7kMs09SmqmPAOIcrymV4coreTWJkjF1w+0goAvLk7rjZZVfUvY6TCa1pcsM32NbdL8dDCUnQZ5jmj/mO2rvrl1YR6Wf44ScMiVA4PcdDHSfqt54614ySq6TR/3vfSWAxu+UTxpLU+2Sogzpk3hLAIB8zQEDaaym9vJ7Xds+Bx0dGUjoWZVxT4Xe5pTCdIE7hjrk2QGBzgiIj7k8eGemv0FOxLI8EsA0usetizxhkKCAfFCJ+dSBjD2nAPyoYr3rgywBj6raAymcolBb+3qCU6EkC3OBACMubsAIilMUwRVtkgEq13TASdVh+NUNnYPSEUDWfRpMXWuhISnlRVnRewSUnSHwPug8vMSvjsJmSNkpTTu4lygeRkDx1GnEcwIGbrg6IODbmqv6qdaUZ/Lk3dCNgAbTdcSpupSHO2e8523h9Rnx5mPRowpTUYHUFlOA4LlBgOgo7TwaHAlFpbBmSu/vTSkB5j3K72dojmcmhad77GSviyNL/3+Arh7862GF+AkGZHj1bhJqlkte+TfDbrSp0Bm94OBWPbllUScZbrc/1iA42n8JmqvUj0nn/clnDLfzmmk90qNr70sBNp7T4As4k6J4CiBgREcAQIa2OyMijXtSUn5uiBMwnwPOGdZOBr7zFmkUOT3g6abq9hqIuqjTkZw+ScCAUQN3ELyNO+dw7hShg+5ROgKc1eoxOkTHMtkJRnG9XUay4u3o+rYDAwQFSUcfY/x/FRCoOnKaIFFXKb7jUwBd3gkETCmCEaU0HSJV+pEQ8l0PM7mBTF6jyuOg8m18yldgQdsBP336VNfX13sevoCCwIQrffFFBa907Dd57GdnZ3uLC6tqbwHhxcVF/MfC8/Pzvf81ODs72xkvr9dL0QjVe7qRDFBWuTjS15RIefoCSkZgCOp0WJRP0Ww2m7q5udltz9SfRlXVwVHPyftKwLUbszSMKUws/qemGtQOqe8p+ypzLjmvfs8BJ+videw85ASclNdroOQZd/f8OQ0rAYHaLEUNttvtgXxX5Xl9b1N/7mCD5fiYJBCo2j/QinLsPOm7kx+PbowMdQcA/Lr7jPojtc+vBAJVVavtry5hoYUWWmihhRY6aXqZuO1CCy200EILLXQytICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrntICBhRZaaKGFFnrn9P8A7WlupPOJjaEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCA0lEQVR4nO292XIbyZKtHaA4SVXVT9Dv/2jn3B7rvUviKP4XbQv6sLjcIxIiCe6/4GawTGRGxujDco/IyN3Ly8vLONOZznSmM53pTP9Yujh1Bc50pjOd6UxnOtNp6QwGznSmM53pTGf6h9MZDJzpTGc605nO9A+nMxg405nOdKYznekfTmcwcKYznelMZzrTP5zOYOBMZzrTmc50pn84ncHAmc50pjOd6Uz/cDqDgTOd6UxnOtOZ/uF0uZrw4uJi/KftT7Tb7V4ddV5dXz3vrlXPpvRel+5el0bEMarOU15VH4kuLi7Gz58/98eqXB69/J8/f47/83/+T6z3e9J///d/j8fHx/Hz5899vV5eXso+HCO3R+TjcXFxse+36lz/9RtjjC9fvozdbjcuLy8P0n758mV8+fJlXFxcjMvLy4Nz5uF8xfawnU9PT+Pnz5/j+fn54Jz/n56exvPz836cfPzGGPvxV9tZnte/usf2qw/Yl6z/8/PzvlzVl+eeJvEl81O7/Fi1mXW+vLw8Ce/+13/9135s1GaR+lXtS/zc8XmS9U5Xdj+N6+Xl5bi8vBxXV1fj6upq3N7ejtvb2/H169fx7du3g9+ff/45/vzzz/Ht27dxc3Mzvn79Om5ubvbPXl1d7fO6uLjYywXrRb5O/O18w3SPj4/7o3iH8iW5Uz+L356ensbDw8O4u7sb//73v8fff/998Pv+/fv48ePHuLu7Gw8PD/tyfAzJe66bku5O9oO6jLLJdlxeXo7/+3//75TXlsHAfwqtGPvq+DugYOWZCgz8znlFnTFL+SXl7enJbKmsnz9/7oXGaaXO70USFv0qw96BJwcQlUJM/8cYB0pM5w4GpIB47cuXL+Pq6mqvCKWgmE/iKSqaL1++jJ8/f47Hx8dxcXExnp+fx5cvX8bz8/P+/8XFxXh6ehpjjAPlxL6gsWVb9d/rpaOuU7GyD3WPZby8vIzLy8u98lTap6en/Tn5zZ/3cVSbmT/7KY279+cpKPVXAn4VHyeD73npP+/N0pLHVU/xpwy4gMCff/45/vjjjwPjr/9//PHH+Pbt27i+vh43Nzfj+vp6DwJcJlK7HdimcweRfl0/lqNyBW50T/k8PDyM6+vrfR1p1Ck71ANKyzTix0pvqm+r8eT5ly9fDoCB8nx4eIj5Om0CA12FPwNVQIDXZmChe+Z3gED1/Op5+i9KilBjVY1Z5TGQ8Tz9KiWjtDWPt6Tk8XWePs8p1DzX0YU9jTH7lOfV+DjocmChNMk4JCOx2+32HrTSPD097Y2o+EYAoTIsqV+9zAQEKrBUtUVKkgBAEYQxxnh6ejroxw4UEICpbYxyqSw9lyIiMgKnIHqubvTHyKDVKfEtyf97egJh6pVKbuSNXl9fx8iAAMG3b9/G169fx9evX/eRAAJeL5/1k0F1b5+GPkULaLB1XWMr4Onl/fz5cw8I3IA7CCKAcN73vNO5p0kymHS3eJQ6pQLIFW2ODFQG6bPQsYa8Sr/l+dXzrr6rzyYvPSnCpLCr8md1PZZUj1OBASkB1WXlOMZ6iLUCA+l/VWYynMkrmk0RuJFkROLl5WVvVGkQ6bGoPvrPZx0oep1ULwcE3hcVEGCe+v/8/DwuLy/3ilt94kTwoHa6QnewQyPHiEHi1VPxbjVl4wDb+VbXOh5m+pSmy5ukfpchvL6+3gMBgQAdFQnQlIDSMvJFfUEjp/IVricgeH5+Ho+PjxEIOAhQfgTIjH5Rbigz4hECCI8gXF9fvwIhCcx4pHErpWerfN8NDJAqdKp7MwF6T2CxAgqYbsX4e/p07MpO96tnqnTuIVZp3PiNUU8VJKaqxiaN6am8plWiMhkjj3nVpyuAgEZxjB4E6BoNZvKe/Rnnx2Rcff6d63yk1KQ8CQC8rgQBqS87UOPAaAYCvI0kD/FTYbNtK/KldjEfennMj2V/Fqp0xjHGftUIzfQfASuN4fX19YHx15QAIwECAvSgWT8atZeXl/0UlkcFZNRTVIDXqnUiYxzqL0aZBID1PKNHdDAIgggEbm5uXq1l8b70dSCsV3pm9p92d6sD9iaRgU5ZnoI6w79idDuw0D03q1NVzkq+rjyrMpjeIwRbxs6ZaNXgpymBzzJNULW/An68n55LzydvmOmrsLnPKxIQVORG3Nuh/mY4XPnOxqJTUOSrirdS/yQQUckq81F9HeTonsAN69gBXweGW/rio6kyyFW/+VisyPwKj/uRUSBfI6ApAF8X8PXr13F7e7sHDA4EZGTJb5JdTWsRCLi372sGOD2QjCzBhhvQ3e7XmpTdbrefmlJ6ljvGa0Bwe3sbo0zsQ0UmPILFKYVuPFK+v0NvuoBwFpL+TLRaRzKMnuO1rfkcUw9fQJKu0WtimpUFKqQtXn4XSnUAcEqFmtrkCpTnSeg60OQ8kZ79nZCg8pn1ZQcWqZjSQqct9XBllObfVz1Wr3vioSpUzntpYeCsTP1Pv9lzH0lbnK2kq9IzDmJTnh1o4+JWAgEZ/j///HP89ddf46+//noFBAQCRPTGZSQ9JM+3XdLiv2qRYMc7JOc1j4ARzDpwkFEnIGCdBGSqclnH9wCnq+k3g4HEXJ1R8HSVEl6hqqNmSqe7P/NMttaP55XXWQkZKYWWdb3yFhTWckAwxiFI+B1aNfjp3imnE1aB6gywdWNYLSBM99OaAE4z6LkEBNmeMX5FI9KcPqMBLOfl5de8OnmjAxTd9ZVnKllLsqI2MrSvus/CqKt6ZQYM/PopiPLjfVPpwySPnZHpAEFKy6kBAQF/XVBAQODg5uZm3NzcvAIC8vp9Sovz+r7Yj6/oeXTApxBmQJ985895CL/qD5cz9YsD1NS/Ah2MQszGtSMf8y06/03WDCSPqEtf/d9S5qw+OnaGd3avS9/VYWZQ/P+q4nVjw+spIqD/K0zkSH1GlQfmqJnXTwUGyJsdSFNa9puD2Mrj9bHx6QKW370Z4AbdvQ/3+mZgNslAZXy5qNCVlBvhjhfZp6kPUv06GXAQ4wCMfZP4rJpuod6qjP8WGXov6pyrGc0AWDd143n4GgGfGvjrr7/Gf/3Xf+0BgaYIuGeA6i3Dq3zHOHyt1KMAPu/vYMAjX/S0vR2JfGGhR8+cJ9h/XJR7dXUV855FBlIdWW7Hh8kJY3+u0m+Bgapiq0Z+NYKwQitAYGbUV4x9Su90TP1FM2W6lRwgdFTdrxRlOlYg4dRUeXzJSFUGV9ecn9JrdCIpUP6vQAEVA41c+u91Zf28zUmhdWAuKS/njbSQUNfZbzq6h7/q5VAhuxFIbUveGMEC76cQchUtOBW9VdmVszaLFiTD528MaG3AX3/9dbBG4Pb2dtzc3OzfElB55C/KIMcwTQlwnH1cEqhNMpbkfIzDd/TH+AUO0mZP1Kl8s0Vg9fLy8oDXCDK87xPPVrqqGytPewyIfZdNhyoFtVJJdshWo9wZ/8oTrMBDl666V/33e1VdqgVnXr8UDq6iAymvihJg6Ay/Hz8zEOBR58korYICUVoVr+t+9PszcDojjXu14FBGmMo8hSRTnu6t+Kt6bBvfiPCNkDztiry54q0Uvde7Mg5eD7af13ReKeNTUPJwu/pUfTBziDoniudaJ8B9BL5+/bp/a8BfG+QmWckDlpHU+Mk48rW89P4/zxOoVhl+j6T8fdpCcsJyNe/P/uDbO+RvyYrqwfUMLDudextW1vUkh+UYevcdCKuKzbyDYxvknltibM//WKNfpUv1qe6JukWClRFJNEOQTDejyuBXxvUzgwEJ+YpgieglzPggGWLeq6IDqWyWl6IDkh036mmxaOdN8Zx9k4yvX6ei1bnvL+DbuVay4MCMR3qJ6hv36CuFmdqTgDPTpHyO1UVvQZVMsb5d3Zm+A1CeX+LfND3AzYT0Py0U9PHzFfMOBjw64O1Lej4BTt++mP2qfLUz5+Pj4/4+p8loyFN9ExDVnhbcwfDy8nLPq9fX16/q4fVL/99Tt747GHA0RaoAwRbhc2PfgYGqDny+StsBhipNhcy3AIcEBFz4GWoSHTM/z2cqj/8YMLCirN6TGK5LADGN/Rh1dKq6ngAbgUC1KJT11LN6t36MQ0CgvQKoAGcKpVpRzTpWcpgMKu/T6BMgHDutVYEX//8W60/cAPL4GaICLL/iwxVa0acdcCIQ+PLly37rYAECTQfc3t7uowa+eVCqi6aOxvgFOgkG0pSPG3+vo993IM78ZOS/fPkyHh8fD8D/ly9f9nsb8DnWRcCcG1kRaEpW2Xf+3RFGPlhG0qfH8GFlYxN9yLcJHD39rnGoDOYKGEj5VEZ/peyVZ2aUFGfyHjsgIUrAoEKZpCpUNQMCsyOV7KmIkQFfOT/jE3o2NL5VmxwIpHN/jn1FQ8/NgaRwqnC20nft30KzNSb0uGZyxvUFVRrWk7+0QjzRFqWncfSIR5fHqQAB5WnmTCUdu1UHJmPK7Xb17YCrq6v9GwK85tEAj9o4AGM7CVpTtIf1olF1I0uAWoEB/fTRIYIXrROgzCaASLCTQCoBi9eV6wp8Qy1eZ57JCXxLvfphHyp6K6SdDPcWIJAEinnM0pOSIHaKzoVV1+gRJlr1shwIpH5eAQKdV9ah1eraFkX9XsS+0Virbt3YezQhheKdVnlARANPo865Vm3JqxXZ4hkprQrwuReUwuxKx2eolJx8yiOVy1Cwgxj1kfe1gwAHA/rvG9CovLQQy+vlfe4KlvzgPH9KWlX6le6q+Nuv+9SPfvwS4dXV1X4BoX9YiPlzTLwO3u9pgaADd49SMASfPublu3um/CVTBAOMGLh+SHLm6T0dIwEy8twNVMCAzznvOjh6DwfrU3610NFtorcGAivXVvJxJVel4TUXIg8td3lWCi8xVUWdF/g7ipDG75SAICkWHf23wnuJZko1GR3/Tw86AZGufTOwrXpUIMAXF/KZqo3dfOwYh/PDaoeDAuVXAVeCgKpdVZ+k84rPffxXyjglzZyPpGcSL1WyQCBA4ysgoKgAjTCNKb8uSdCd6lZ52eLLMQ6371YdCEz0mWOG41M0zqMPWi8g3tSHofx5AW/VS0eCXsqOy5n3rcCAAALr6M94eaLZ+Kc8O/qUYGC1gd7BqyCgyjvln2gFlXXAoCMHAg4KVP4YawvbVmg2/7o1MuB0DGO+JdGQeB1XjImnp+C7B7ySt5fRAYIOULmS8PI678L7ZCXKwXPf6IjK1kEH+8anPUTVnDF//oll/7HM1TUFHUDdAqg/EyXd0+mi7joXDfIzw1ogKD7QZ31fXl4Otu51YEkgWUVryC+KhKkuBCLc2tgjA5eXl/u8vAzyGAGttjB+fHw8+PIggbLypMwpUpWiBuoP3wTJAZc/IznSQsS03snBRmrvFvo0YGDFuOpYodmUFzspKcvUqX79GGDBc68jFSPTkDG6d9eZT/osqxhn1SP3yED3zOyeyL2BU5IjePKCz2eLqnZ2htOfH6NfK8Axqp73/x3P+zU3ZpxOIIDhc85HVXucN9mHbojTNIb3CRWtRwNo7OWd8Vrq0xVykNuB3lPRVn3j19x4JIdijNeRGuojggGtFZBXrucE1KiPPMxOnUZvmMDaeVLRAUUEbm5u9h870s6GBAOcHlB9fJpJ46t7BDz+u76+PogIcFqOnjp5U6Q+rj6WpHZTZ7OvVAblrLJhFQ9skYdlMLDiDa/SlnwqdFsZ2dRZfp4UbWVseW2LEegGqCq7MiAOHqhsqxC/KzMq+JU1CJ0xXKGtAOo9Kc1dUogocEwzxuuP4rhXICXmaSvwqWMFELxspkuRIh75rANBKq4E2lj/VBeWybr4nKzSsb+976WAnWiI+VqZ5lbTK2ZdXVejA5+dVmRpBgi6PPweeco3GdKWwpwa0PjIC5YxFjDgpkNjvI4KaJy4xz/ljXXpogOMIlAuWQbltwKTzt8K6bOelCvVWzJQtY3lpfZJpxAIvLz82sRot9vFfFg25fDdwMAx5Ch0q1FIQKACA5XxTeV33pgr6VWj1pW/QsmDXDHaW/Lv8kxAY9afXZpEpwIFFNxKMBwkiUeqefvfaUuVV+V1+8po94AcyCjPFe+2Aj0i8UOKVPk1fwWSAMQpeame3r0vEoFNBWAST6d0fu0zAdkZdeAggYGuzQ4E0noBhs/V9x7elyzpeS/L3wrh82O8/mQ1+Y0bHvkixrSAT/UjqOQ1eu0OBLj2QL8UQXL+8uiS2pj0D8tUX2lRoz/LdnmfpTFN5x39NhiovKCqYqt5+v8KGHRAwDvK67kiSCndFu94BlQ6cg+qU4qpbEeKvFcRESppJRw7A1ufjRzUdOPqgrzKA10kplLMlQfOOdH0KhXrxqmiquxqjDqPugICusZNkWbk/emgLSnBDtClfLdQ9dyx+b01VSByxdD7/aS3kzHkqn2fR1cejOaQJ+RRc+wcOHoeBKOsN9cCEJQ4QPH6aA3Aw8PDqykD/9Sxe+3sAwKKJDuUN4848FriZ+977r3AyITuV9HHyhZ/aGTgPRX/DASIKsOXFH5l6D3f1NF+3pF7P6v9lLymNMCzOjggqJSF95GvO6jK78CUP3NKgOD1mF3XvTTeldGqwtLylBJVUxMJCHgkwK+ltlBxHWOcVcdEDgRUPvvBvXzyIYGu1y15WsfS1qmCY0Hfe9NMdmYOzOyZCnT63gI0vGO8lgfy7vPz88GHezjN1RHfTOBzFRhmvpJHGfmHh4f9zxfyKSogMKAj+ybJnKdRuewPjxikha5pmoJjRyDgaxXc3nXO3yp9mgWEospgVfdIyUCuGOSE9FYAQdeGmXBSkW6lYxRWV5fOaK/0+Uq6Y9v6FuTKyoWGSkx1pSLyxYdV3lwIxXyrMD6jBh1fdgDApwm28KfO2UYZaV8M5R4fr3maMX5FtdgvJH+O/SpDUt0n/Y43nzw1ledlfhZQ4LQKyDuATj5yY0sP3DcVGuPX/hVOep5b/NLD9TqIkpylKTE3xAz/Kxrw+Pg47u7uxv39/Xh4eBiPj4+vFhAyWuAL/VTG5eXl3hizPs4f/O+RAK458DroeY5PWi/BNiYg4mOf6tXRMhjolEuFSH7XM3SlxWspryTYv0NbjOJKvXhvZgjIRBW5IepQ5mr/K81sznf2/NZ7H0UVIJil17mO6bfb/dpGmHPtqQ+l1JiOZaW5WylnHplujNf79Ct0S6M/xi/DzciGFF6KdLAe7jHReFKJOhDwtiWj65RAS4rueNs0Tmn9gz/Lfvf6kFdOQVtAnj/D/5XDU4FNX1Xv/DbG65X6bgy5pbbSdU4BDSBX3JNSVI5fFnx8fBzPz8/7qYHv37+Pu7u78fj4GCMDyVsnGOD6HC3kE6jg2Khe1dsu/snl9L0Ntk/jQz3MSFqyDyv6rKPfjgx0BtiFaItQOQPzv+eRQEgKn8zKIqN7ObN8uvql6x4ZSG3qynQgQEoLpzoBJLlCrcLfW6hq40cSjVSqTxpvPzqfdACQ5XpZTj4Gnvdq/63M9af8pYS1yyHH3qMb1eJF1o2LtZSH18WPlFmWWW2xvEIz5ZgAHe/xeGpa0V+V3unyI5j0eXi9Wsf9BMY4NMQe/lbe4g2lJZBUuTySF3yaycvhOgACPr/3+Pg4fvz4Me7v78fd3d2B5z/GoYFmeWybtyfJonv4jDqICG4oHytTBypfwIDrClb49M0jAxXRYHWRgRXUUimrxOw+GOnc/yfln4SlMxhd3bu0bhQ8MsD7YkLOgzFNh5b9PgVlNl8nplN6BwSqm+qy6l17PU9BVGRbnqGy6Xgy8WMay+p6NR2xAlz8ftUOlkMQ4ORjrOc8jOygQG135Z08x1Smt6WTzxlITUCaoV2PWHj5bwGC34pmumgGRiuQSyPnQMC/O+CAgPmnDXVo2CRD4u/d7nB/lDF+bdnLOqYpMBnRp6encX9/f9A+RQQIBjhNwMWCY9Qr/Nkm7yf1VWVz3PP3n193IJDGnmsHUp7ejhUHJNG7RQYqIU7UMfbMyG6lGQDoPDE3fKttdKO52obVKYIqPQ1QBQQqo0Kj4f+PNeq/O3ZvQVvAH//PnktERZUAGsEVn/E8Voj8kDxd1pVjWQHwNP7+48pyvs3goVIHBKmuXX8eEyFIgIrnPg3WgcXPAGLTtTR+pE7vcJx90x1uKsTNfJQn+9a9W+btgNKntXSfa1BYL46JA4GHh4cxxqFccdGggMH9/f0eHKRpgq6/E+/rzQKvY+qbykgnw19NJXLKzqdyXMbTNNgMhJPeZQHhsUq/UkyVQl5VnG9hhGbGgvWunnGFPKNq/la0AgSqtrvHwLS61wEAT5vq9FkoRTGqNrniXAG7rhS6KIwAgI8Pr0lZUEl2bVOeyWOo6qx6p3ZJufu73owIpA/DiF+urq4OQIAv1EoKKq1RWFlE6G1N40UPz+/9/4FWASnTEwho/Pj6oACBIgIsx41zmt+nsWcdFCXgNdWla5eMt4y9y8jLy69tf7mtMIGA7nt9XS+7vqYB5jbaXr8qIsZ+IWiqdAvzVpm+EZFAFPv3dxy1Md4QDKgiWw1vxaiOvGb5vqeAr3iLb+FZJqDgYeQVSvNwY9RTJqleCRB0dUjex2dUugQFqa5+bcv4kRjyT8+58d8qNw5wqHhVpnv3Xm+mk/GtvPg0TSBA4CFkn99VeYwYeFtWphIqqoBAAmXH8uRn5OWOZvyUIgP+Hr9v8TvGIRBwD5s8mabHxvj1lonAJT/N7YaSBlY7G+rtBJXrAFpggMBBoCCtGVAdCV68nzwiRtvkcpeAQNUmXx9Q6QH2k0cEqsiD31uhN1szoPOtz/I8RQOOybcrr/qt1nHl2D07xuvFg5xz7RapbAEEHWBRfrxWecmzfJw+q9L0iEA3VrzW8Wj37Bh5akB1Sc9QWVRAYoXcC/MpAZal+3yToPL0CAZ8Exrf9EV5JvkiMGB9j6VOLrwv2acOIkjuhX12mukw93b95xsL+dcImT/7jefeVwQF+i/QKT3nr+gxL/8vA686CKjwPiNRXENAgMA8WUfvI9bbDTJ1uOtQB0xco5D6jX1UOWySMX0EyqdtmNexumMTGEjI6S0EpTPSFZN3IRbPm8eO0kC44k5Cxf8zWgECnWGSIq2MONuyCnLSf11zg0LFOxub1eufhX4HzM6InpL6lVNAfk35J8BZyQgVI//7lrAklal3qQUGdI95jTEOPEiek4+VR1KUbAt3ofMQrK5TsTn/6TwBvcrAp6hE+n0WSiCdR79XtXuM1x9GU3/654nTboPKg3Puybv1cmVs3UB1YDoBV0aZ0v8xfr3OSEBAIMApAtbFo68pssoIisL2HjHwbxaoTm7sZ7Yr6W7VibIsYOBvFlRTxjP6rcjAqjJcQa3HAIG3ql9Xxswwr4KAWR0TSHByg1wBgm7O+nfqtzJdIPpMCrWjynNNYI/36Nms9skYv8bmGOCR5jN5XUqSCnI2Dh5xIqCg4qJCZLiU882sq+fvINLTdPVM/cs2zvp/ZVwqQPBZAELFL96X3i8yLInHNS5py+HqLREe6WWnI8skIKgATaVLCZJ94x3dZzSKUQIHAgkMUHZ8Qy3KliIaHi2hDHZgreKjxNtuB+g4+NbjHhE41h5tAgMpKnBswZ1S4/1Uh7fyhitK+cwAi88hzerA9FuiAy7o9MAq5H0MeZgu1Z+Gx+vW5fHR1HlLoqq//diBvzQ/moiAYAbc3kK+qnqSh1QvKss0TeAGRN4Sy+EUgMu0FLrupWjArP5ONFD6v0JsZwUETk2dgUn9lp7x/ufPdxlkpEfPcY6dgMBfKeyAh/IRzyWg6XaAekTliVim8y9//jEilk05VFm+QFCAV0a42hKZfett8zpXeqEDfAQCAiUavy6ytcVGb54m+J20iWEr43oMJaHxfLuy3NDO2pUMu6dJlBhf1wkKnIiGPVQ66+8ZrTJNBcbStQQQTkFpvFd4bgXU/Q6xz6mcnBJIrng6zY9XvKnx8VC8nvVQqhQj1w6kyEgyBuRT7/MEGj3P5CG5kaMRqPp7du0zAYExspe9ynuVzktAwIEd9UzyvD1SwAiC18F1SwdO0s95xadJWZ8EBvw/ifyUIm+UR99fw8+57oay6I5T6psU2aI90H9GBtg/jL519qujoyIDM2Zcub8FCFQe5sy7S/+TUZhRZyjdsM/IBaECBak/drvdwQraFUAwa1c69/9Jufo1MrYfld+pAEFnDKs0Pi48T1MEFbBcodW0zmdethuyKjRbGWOCAl73fkgbDrnSq/oyhUPd0HufcJMX1pueUqWbvE+cJz2q4GmTt3UK6uSn0p3VGPhbAw4IfLdB9U8FBMbYvli2AihJH3o9vL0+feFAIE0TsB4OYtN4e/8RUF1dXcX1CKqLy+esbyjfXr7a69EdyV8CBKu8+26RgerZDggkRJMa9BaCWRmILc9vue4KOaV3pZvyduTpgGCVKuXnlBa/bCmHdT8VvUXZzr/Vtc6zrTx/gkD+mHcCJnxGZXMsXanMeLbjOyrsznNjPZKhFbnRf3l5eeVdsf5atEUwPMbr7bMTJUDg96h7kh76bOSGMrXfdY6Pmb8Zwrlwz0/9TB5zAOBhd8+rMvoE2b5Sn2Xql4CsRwf8WwD8ecTLpy9SP3v9OLXy8+fhAlzl40DZ83eeU318fKv6dDJ5DIB9968WJnTjis3TvKUgVqCjqt+Mktdblav0/M9B31q25/MWyisJdpUmAYGt6POUtNLfHb/wnMY4lUFvW8TzpNCqMLcrQ41D9c6xj5PSzXgsgQa2k3LbRUNSfVnPi4tf6waScvMoF68zesGxSLvJed/wuKXOnyEy0NGq4aDx0HSADJwbZlEH6hwApJ0ElZcb+QQoZ7p65hi6Z07j38mW59P1o/ru+fl5/6qfgAEBiNYZsI9Udtr9UoBhi03w+6kvV/IRvSkYSA1JDOlgQPdd6I6JCqTyuv9eb6dk/HnOOZyuHzpl7J5O9ypYV85qpKBC9ymdjv/JIMDpWBCW+MUVludbATbnB48aUIFUC5/SmNCDW+G9qt40+uk/2+1eWfLEEp8lcMX2j5G/J5DAwUyG09GvJeP/WcBA4rMVHZaAAKcKBArSfgJV21km56+rMv3oICABkgRKEiVw58AlgQSvs7fX2+5tUv9dX1+Pl5dfHyZKAHSMsd80yRfXemRrJqepHxgNcEBd6adEb/IJ48SkOnYgoKsojTCvrdRhhoyOQU2sU/W/oy6dh0TZziScfq7/nmeqv46zRVYJLHTlzf5/FuoMd7re8W/y+tNaihl1fDQzclJEVCxpDJOCcPlLQKCSU+cFKlyGSz0ty1K7Pfyv8lyxyxPzV6toRBJQokx1QCD176mpGqM0hjM9LCPGHQAZ+uYzVZ9w3DjV42WN8XqBWwIkrAP3NXBeWAEGosrIqu5VhE55V7qR9a+2cXYQzEiB8tB9lb0y1dW1VW1ysMzrK/QmOxD6eWLYmYJZETw3lKncJCAsl9e8/rP2VeRKdzUvok4+Wy3G8Xm7pPAqD8vLTP+raMEMeHT5z9J/BK1EMVb4IPHyGIdTPu7Jbq1nAnUSaHoVesebipP5kFxReJ39GqcgvF8q3vBoQHqly4+prqxLAjMpIpAUovLq+HHV2zwlJd3WpfNrCQT4XgKVHu4iArpPHcajg2YafQERAhIaWZcvUhWpWI3ekCc6G5TWFzAPTrdw/wFND0gGXD65+6KfrxBthACGLyhMDswKbY4MVINfGWRXoJWXUYXoPJ3Xh/+rH++n81mbZ4JI4hxayiuRlBrDVyqvU75+LdWFafx6Cp15WUxXKVZ6C+n5U9Os76tnUoiwErCVyEyqC5Vg4rGK75xnWF8Pg874KvEr6zbGr53PvAwCAc6Z+gp/9pnSsC5U6D7VcXFxsZ+bFQhSHRwA6L/vaOi6owMjFYg4BVXjn3RYZZD5GqjvGkm+WzUaXgePFFTAWecqm28z+Ap9Pivq9BDJjXiaSkp9xfLIi2xn0gk+9UGgQAdNz5Iv/ZsDiV/VJq97GgtOGVRpK9r8NoEr/s4Id8Y5GZqZ91l1AuvhdZ0BhFl7U95eP1e2vpFKGhw3FhSkKjLgz20Nl1XpZ0AgXV9J+xlpRUh83BPadoXr+XflM3037514jgvvPEzrMuSggJv9JMXoH5ChghZPO1j3Vdsrny/2stV+3leejAT4osPUT+neSqTLeXgFCH8kJd2VdLD+65gMFMPyyeiO8Ro8VUCB9iD9fCqi2rTHN/AhSPHx6XRSBe6cz3iPbdP9tPkQ71OvOuByfne5pS4WfxLQcgz1fIoaiwh8UwR+lTZFBhKzzRQmjZwaJ+oMy0p9eEz19Gu/AwaqvFVnDaoLzcy4OzhwwzCb2+8oRQ+6qQbPtxNA3qdCWK3bR1MXuVgBma5YkxJN/ZnyFLnX5ArSn/EoTOKTTlkSFFS87/kzOkBwKXJjr2vs2+SlU8l7ZICgQKFUggOCGvcA05RCB4QrOuaZ96BVHcX/BKrkK0YFfNOoLr+qHi4jlAcHIb42QO/n8wuJV1dXe8AivhkjgzVR5UGn9El/d1E5jwykMt0AKz9OtfkUgGzCbrfbr4Ehv6UogOeReF39xQjalmjPZjDATqnmJyrju+JlVmV315LiTvUhs64gpgQG/FlXzDPD797arC5ucNO9RLP56lleKx6un2955jMQ+zSBBU+bZOAYAOQ8SYXN6/TMHcRWwFRUgbcOAPk6BPUJAQHzTuCy87JZLvte5wkUjDEOvB5fEzDrh1S3zrh4P52aKl26kt6BQPLAk6FLvMb7XhbP/a2AFBHQFIGDAZ8uoGwRIHo9EkB1Xk9Gkf2k/yT/sqbXh/d8aoBA9/r6+hUPM1LgThsjGKvrjnzM1Q9cWzCjZTBAhUD0l5h1BgRcGJOQrlIHBLp7x+TPYyI3KIwUEDD4vRVaNbgr+SYEOkvrYCSBk89M1bil62xzxTtbpweqcglSpUxcYVPAfdFXMq6JVuQr8QMNdWprih51ZaT+lvJzJeh5p7UBnkcqQ+N2rDNyaqr0lrfXeUr85F8hTIDAy/NjBeIYNUpAgCvuyd+MBvCbCL7xUbIN5I3ZtKnnVfGGt41AVO1L8u7tpZeuuvkaAaWnY0je55Sc2shpAtaDAMMXFHIMV2gzGFgx/DOD2yH1FVox0Cv1TPWqylkBA8ojAYKZ5/kWtHX1+gq58Iu8PZWH1f3/aOr63wWM584z/r8CV8kj5jmVJ0FAdV55c1V5nYeu8Ut8SeO/KivMpzL46qOkkBOooOwwXEvD71EMvqa4wm9Vms8Cdld1RnJ8fOEgAYHup6hTOmr8fJy5z4AvAkzl878+lywwUE2PVSv7Z/qOfFEBxdS2NO6zstjnHShmZEB9z4iYL8xl3Tw/BxQp6vwukYGkjCrF1CmQ3xGwpFCTEHRGvFJYFWqs8tlCVGrMw988cEFIdVwtz2lLyMlJ9agATQrffQZFKlodv8Q7/Hm4PHkUM6K3v9vtDpS0K21XpHy+6u8KXHdgLYEEAoXZa09Vn/BaesMhybMrQZ8W0DGBMyrEaswrB6Tqx89AMyfG06X5+mrhnnu8qTw3LiLlozQeCSAPy/Dz2s3NzQEYSG3kOhGPAqQxZxvYlo7IawQE5IFuDBJ/su+ZziMDko2fP38erB9Qm3zNAp9ze+Ll6RrfwOloU2TAQzjeOUm4dO7hv5nyctoCBDql7nml/FM5WxT/ahTAgcDMYM3AQSW0W2hriLdD0/9p5ONW8VWlQD107eRKmoafr1lJOdJj4kKvyriN8XoBVdfW6loVfmYf8Z5PTSWl6V4aPSiRlJx79UzPKQUPi+oZRQdUrivUSmd1dIwT8Ba0tVznVV+h76F8B6fV2KX60JN34HpxcbEHAAIDXCPg0wQ+tUljmIx9ioKldKt6lYvxUhkVsZ/djrkuoI4g6GWkgG/g+EJf/ReoYLlsu09Nr05Hb4oMOHojmhdVocn0uoU/m2gGAnSs0O0sD693l+53AEE1l5/aUAlGevaYUKhHCbpQaZVfMhDpyLxOqVC78jsA6f/TOFWvrvncHSNBVJ5UigkUpHUClCN/p5+7+fkY+DWXSW9LpUgcGDEc2SnfDihXUQP2WzLuBBryIr3uyZNkX3b8qvadgliPZAArvUdPnQb64uJiz1cp0sU2p5A90wvQip+dbwUANCWQFg3qnG2kQZRRZFuT7k7hcPZFes6JtorPOQD2MghMCbTEN9ojQ+3g67famEtrDJ6eng7SUNbJ+87H+p8cwjcHA0lBunfvK4t1zmsVCOgUdXdk3bacV+XMyq3SJ6VL8vAulTvRevVsFfonVWmqiM0sP/cQRZ2S/0+MELgCpOHx/yQHVB718vGkUtIvAQLOpzoQcADCRUpu/GhUK2U6M3LpflKuKWrIuojII65LKrDNhVn6MQrgz2qsPMTr/dNFJJnnaqTvvaiKWPGc+iPxMCNMnkdH1Zim6QcHtdfX13s+1nl6g0BgQDzL3Sufnp725YqfGfbWcx5NYj2TXiVvOC+wLvqvvDrdl/pbHzQiqGFkgO2UDDMioKkDnzpzo+8yXclfR0ftM8ACqADTFEA6rpbn5yvH6udtWBWE1bSp3qIqIpAMTFWWGCsZ3Eqhcyx8YQrTpCPrUoGCSslXdfkM1AHBGc9Uaz+2lF0t6qLy9FXWSRnTc1Le9JhdQab+9wV6YxwCz/SMyumMMJUn5zf96PmS31L0SXWmB8hvFcij8kgBw7GVEUwG1++fijo91Ok+Xxeg/vAIrxs55tlNJ4iHFW0Q7woA3N7e7q/d3t4epPHI1xi/ePrp6Wn/Y5kpTO42R+QGmu2qZIJz+JIfpnPeIZDgNeWhvlV+AjEJDKievh+HftT/yTlkHcjzq9scj3HktwnYmWxY5/nPhKkTxKSYea9T5um5DhUnr2WFthiGBAAq1Kn7VX92QEBUKXeP2lR5kDldoFJ5Xb0/K82A5Bhr4baKj31OlsDAFxBSoSYwQEXCvEmzSJzqp7w8zOjeBcnnnblCPQFclu/HCqgTENA70kJK0tPT06v1Bjyvykl9wf9+/5SU9Bf723/Va36eX8XTnpevD9B1Tgn47+bmZn8uYMDFhJyuEJDjzpdex9Ruj5CJOO4pkuVOke4nsEpgkcbEnWGBGn646OXl5WAPAk6BCPQ8PT29kmWmF6WIhU99sb9WaRMYcOORIgJbowCd4ff7s2udMu+U/Eq9xsiC815zidXUwAo5WNO5/+fRnxVRMDpQspLXKWnFAPg98k5l4GhQu7KSsuZ5mlfVwqok9I74uRLZ69R5TjpyAZPKTAozTaHoN8avbxjo+c6LSTKZ5jyr/lca9iOv6Vxelb926D+2+bOBASfyhP8INlNkoANEzNfBhvOsT2vJ4AsIOBhIUwTkNYbKRdRTXp/K7iRPnX02xmse0X1GsliHrs9Yrtepmh5IiwS9DObB6JeOyu8YW5Zoc2QgCZH/VikNUrreAQT9947swEHXOdW9Cl06Q/0ObVE4lSE7Bgh0AK4DAkyzJa/PRJ2Ar/DMrE1UbB4d0H9/JcvBgCtH9wxE9CzcEFcGmcomGUof9w4MpL6qIhI8dyVPg0T+c0X78nL4loEUPEFBAgJJVtVOKv7PwK9Jr/k9jolHmsQ7yeOseD+NMXmUQICRgNvb2z0gIBjQNAHXwnCtgOpzcXERQ+kilV0BOuXDc8oOyyIvOWBwOzYDAyyPbxU4QPDveGhKJOXrPO794fVNtBXALoOBCvlUhmZWqaqiCSUlEDATEP9fKfUVY+5AQAPgjCxyBk71SnXfQr8DBJzR09Hr6Gh7NQ8q889KiT9mitLTdJEcPceyCAQYbq/eBxe/cd7bFxd5WJI8SuUpogfs8+quiNlmGhiPDLgH3/Vn6lcfB7Xh6elpXF1dvVKubri8zWxXV58EAiod85FU6T7/zSJPSa92ZbEPmb+vcZHRFxC4vb3dXyMY8MWDfDtNY8r+Jyjgdefv6tfpc09HD53rcFaIPKb6elmM5iUgkAy66ufrBCjHrnN+F7y+yTRBZ0gSHSNkK4CgMvyV8iZVYciqzGM8Byp0hn1cyY+RPzL0u1SN1Wz8EqOu5t09cwpyUKNrq3zIMDrJBVbXqFTdi3avKy0sTPmK5IX4p313u93BYtPZeLhRSZEHNw40NvTG+cwMaLJMfx/eZUFtVNrHx8dxcXExHh8f92DBya8xSkADRABUgfpTgoGkxxIYIE/5uQPZWTkcY98QixEBgoBv376VkYG0aJD14eLAMf6XVx4fHw9An8jtDh0dggWOq4NgBwIXFxcHnvuMHDxWdongQq8NskwBAtfHSqN+d7Degbqt9lh01ALCipKB7Ix3SpfQaRKIdD77jZHD/attW7nmCqUijywkpprVx9Eh0bPydeY+BgystGV2fgx4ekui8Dol45zC3ylPEefwHTBUnnQFAqiAK37twJcUORVieoaKWOVQwVKRUv48ZJxejVXZblydz32KhPkxLy0u8+2ZOT70ughQ2F7JSwKFbL+P+anBQKXrUjTA+ye99tnll/LmFASnCG5ubsa3b9/Gt2/fxtevX1+9QcDFgj59wXoQuNHzlcG8uroqgabGXnxCPhjj0CATBPA6I0szMFBFjpK9YhmSyeq1SQcpBAEzXdTVc5WOAgNpUFafmQGCGSionlup68r9SkmIkucwMxQVaeBdaSlPMvxsGmOFgStPrTLgW2iWx6mBQKpD4sXEd3qWimeM1+sBxshAwAFG2leAypIbxNDQVbwpxS0F6sbbDbzao3x9Pp1G0/ulmtbQKv/Et9xAheRGpmo7lbxPn6R2jvE6KpAiK7vd7mABl4/jZwADKtvHgQA2jYl/h6AyJBXf87kxfr1B4m+8yPuvpggYDUjf2SCvUp8SdMpjT5ENOlLiNf5ofBMQYHSIBpn5e3ld36mvmJ76wl8ddGNPmeCbFZoO9Ndqx/gF5h2kbOXZo/cZUGPYsFSBSrl62qpjkyCs5r9aVpXOqZpa8HDiVsNHxexlrIToUz0TOPDwWpdfNZ5d2rdK99bkRt0NItO54nTBddQ/RgYFXjY9LfesPfTudUo8kJRaGjNXEh4t4P3q4yneN5UXyva7Yk910ZGRAfcc6a0pzKq6co0EowHdmgmnFFnzsUvj+lHkfOj6zg0n+Vf19jyqclK+HPP0vYwEZP3n4CTVySM5u91uv2sf5aySDfKIfnpW/9P0gEcPko4kEVg7wHJwqvQEBD4Ouu/rf/jjpkXiV91jHq5rtqx9GONIMJC816S0KqPbXe9AgT+/QkSONLiOSjuqQrXKv/vf1SOFMbe0j+NRDT7DY6v1noGFCvBUeW5FqG9NHlJM456UYKVA/fkECioQ4PsJ+E5tyetVmR4CdVDQRQ44FiuKopNN76/0LPvi5eVw0xT1ldKpP2hwZOBUd+9zjqn6Re9xc12AytbzKbLndXU91BmH96YVIOCgIE0V+DhVMpGchdR+Bwup3NXpNlEC1Rx7f57AU8aSYECAQM95dECeuvJgW1cAQeoHjpOIUwXerz4lILvAawTLKts32yIvO9innelo04eK2AGqxOzcmbkz6jMgUCkeP86MzyogSG3+HUoKbQYM3oIo+GTyFYPe5bf63Fu351iqgGXiycrYJUDhfKLrGlNXhiksmDwm5xUZOoKCpLw6eUmAoQIR3TOJkmeUogHMi56mf5iJUQo3/npG5/ppH3gBZCnHpBBlIFxvJUN0KjAg6vSpG+TER3yOvCtdWOmIlXr5j3VIQETlejt8asLlsooMSBZkIL395L+0I5/6gPKkviAlXmC/JsBDR81BVooCiI8JDPhdA+WT1gR147NCmyMDaR7Rz/nfO2v1uZRPul/deytAkOozE5QtiiN5mR7S7Ly4VFaKBriwH1PX/1TqjL3OkwKr+KmKMCTFkAQ9lUfgkATYpwQcEBxDCUjwf8VHanvlMTqpjZ7WpxxSn9GASbFKObJPGU2QEmX9FCbmWw8E4+rjtH7is4FZnSf+8j7x50SzqF3FVyvGhUaL+YkHKm/fQTVD4X5UGsoBAU43deQkXvG+0XkCAckZSO1IU3LJCZDRl6GXjCs64FNiBK7VlsNbpwo2RwZciXrHcJCr9BVDVcq3AwIrz1WeTZqjn6EsHV1hqhyV5YPg5TgltJ7SVP9XAEPH8B2tCP8sry3exkdR5T05IKCnWIE1D3FSASSh9zcJklEUkdeo/HRe9W11zacY5G17pCHxsHjfDabP9+pI3ks8uqIHXG8kgKV+Vb/4givKpQCA10fGhYu3tnrK70WpH9gX/vYAeaqSX/YJDYfGswN6NNRdvjJUitpw6sfboTIoA1qY6iCZYEar8v31xJneYlluw0SJZ6t+SeCL9SIYSA6Bn6c1BD795feTrXvzaYLKuCcgwGeq56oB65TDiqFO565YEyDw645AZ9QBAS+nynMFECjdVkqRgZkBSYK3UoZf+wxeFWlm/N1jGeP12IgYynYj7gDBf8mwJaCcDHeaKvBnaYw7Yh40ks4LLispsuB95/xcgVafCkg/EsesU6JqEw2ORzcJanTOa6ekNKbkWV/Mp7UXad3JGK8dA4Kj5OQQIOiYolcpcpVANMff8/BIGWXC20LvmOUnsJyAM/mpc7xSevaPA3+2Tc+Ql9g+TgOonooOsN6+mRh51WWAPKyyVz9WdNSagTHGK+FJ1Clc3ff0pJkhqQBA+r8lXw7wVmXQeehu4Om5pHqthng8OsFjRSvpVgx5FwnYks97EnkueSDupfvCJ1IX4XGwe3FxuELevzuQVmd7dKCKPLEcB+UVoJiNNZVcZYAdTCY+Skp+jAwIqGx9gSG9HSpIKkXvbwdXlDG+1+2AhmDEZd9fP/xISk6UGwLnIX4AiPwhSoZOeXoEx41M9XOjzKgAbYXzBSM3BMMcQ6VVOuUtntFiwcfHx/1RPy4mTFE05VsBpyQT8u59jJIDkeRSP/KndEUFfgloBBBUj86uJl1Q0TIYSGEjVbIqzEGAe19ecVIyIF051f/0THWtUqZuwFcpedkEBLvd7iCkmerieW2JCmypa0Vd5GeMbCCqfE5NlVCm8KqDAfZlCi/TIEvQ6bn5B1z4frau+4eJXGnTYLFsjwok/pERngECnif+TfdpnLvoFw29AwIaDyo5T6MV4lLufIXMDZnKcg9NR00H8B6nCBji3vIp2LekTsHLgPhbKuTjRB5xEQ8lXU658NcFHXhVBtvbQBBDIOLh7GRYBQA09k9PT+Ph4WE8PDyMx8fHg6PuKa3zPuuRwL94yfmri4at2ELxN/lc0yEEUuRFLiRk9ID2Q/XlIlrdX6Hf2mdgjNrrqxRu13GufFYMyAxUeDqnhFadaT39Svhwi/HzcFcnxE7JMOno4SkK/iz/VTSZPI7PRjSqbjATEOD70CI3KiTvcyrHaoMhvlIoIHB9fX0wVhJwVyTyopLHmiJ47ANep8J2D6jry3S/Avvs66oeqjeVL+e6WT/u3vbw8HCwoYx7fN53TjT+Sse1EFyx3UWEPoqSTqUhS7szjvGaB6qxSOXxTQ/++IGiFNFynmL93Wb4FINPf+lZggBGBO7u7g6AgM6VlnyuvBgRcLl3vlOo3V9DVF7pnJRAg2SZPCae43QBXy/kIkOld8fF1/Lo+RXaHBmgF8JOrbwlKshVMNAZq8rbSEzmafzc0zgQqBQAFZd7OczvWEBQ/V+lVCcKIuuX6nkMEOiur+b3XuQAoOJNBwKuGKpxHiO/PcD5W3lU2qrVN2Hh8yL3HujZdmPn4Jbh9DH6aF5FlWyx7ZShFOFQuRUgYDkekaICdABQRTFc8bLdBMsEBFUU8NQ8LHLelcH2RahcqKfnxsiAvwIYvieGf5iIOxBy2otjTyDiPM6xS9MLY4wDI04g+Pj4OJ6fn8fj4+O4u7s7AAK+6ZDLri/0k9F0EMX6k5w3dUxyRd6s9GKSnQSsU5qkv/QNj1RmR0ctIGRBLnBMXyncziC7MkheXVe3LcQOZ53JEJWnxfoeS1WbPNw6awPrlRSA17Oq97FA6rNGBCqq+DLxaTKs3g+u5BgdSDu1uXdFRcq8q9B0NSZeX+cD1jfxHoFDUmBUeN2Ys+9mUQbVj56Oy3MFBtyDrPQPAVtat0BgkMBCBfg/mlxPjXEY6vZwN/u/WvdQ5SWe9KktfpjIP0hEzzrxoYNC/RiZ0ThyC2uNMYEAf/f393swIBBAwKiy2Sec1lDZKbrBPvR6V+1TnuLZChB4xIBj7OSAm2PFiALz3hrV2rSAkCjajRWVhDMXleMYr5EZO2uGxN6aqrpWSulYBdG1wdcR+DVdnylg9wCp0FI+ieFJK0CA7fus5IbBf9WYp/6b5c/Vz0LqDgj4SVeCBIIBAgEPb/o4sx7+X3J5cXHxyiAkJa3/blx1X3JPRZfq4ArT8/H8xYdVXzsY8DlcUTLqrsArgOd9W4GpU5DX3fVq4mdSArJ05gQmyIu+zkUgQB8k4nUtWnSjrnJYpsj5mGNM4rhreojTAQIDHhEQb3i/0A6pPh7NI0hRW6o+ZF96WztZWSE+L6LNYpuYJvHxjDaBAXUQAYFXvEKarDjvpfBdFZJd9Wa3tEfnM6/Qy0rlOjLr6FiA44CLRGVWKUUHAu9RR68vj6ekhOqlJMY45FdddyPhkZgEIKhcfc6Vc636T6+uGxfW1eXDweQYrxVVNQauuCtPW1R5G6kfEgmYpLJndfS+ScZcgIUREF7jvGpqH/Pp2vuRlMai6m/XpdRzdNqSDkwLXgUA9GVC/ZhGRnSMw9cVaSRZF+r49GlfPsO1AgQB/hNYIFhMMlkBTwcLu93u4A0U52mXmWq8vJxZtGzlR4DDNzI47pXTUNGmrxZS4GYrFF2ZaiAcLIzx+j1npfHw0bE0Q/iVcFFYxvgVaqMyS0rkreqZogNdO5iu66+V/qyAD4XZlU1lPE4NCCpF6YrCeZZ974qUSmWMw6/5+ZsEKTLg575gzuuewEkaA39+1i88pnvMm32VgDPryJ+vc1BeyWNMPFTdq8bSiZ6Ze3Zqj+5xzPn/s0S+vJ/9FUJ3ZLxPHDAxD0YHZOgJBP74449XnyoWGKBBcgOeokBMq/NUT+XF1wc5PcCFg3zLxI2mPGeVJ4eWBjPxUOUYkqrIR3JqEy9zvYT/OOVR7TrqPKo0W23n5mkC75TUgYlhfWFLypvKllMSzHe1YSshPgqMe4Wpnr7ymKBgC/maACpM1d0BQec1UWlW49T1wWoEwMfYx6LLayZQH0Eu8OnnESw9N0aOtuh6UibkKXlbvjmMGzwpAMmAh00JPipZSF6YjtW852r/pb4kAOJ/8gONrSvCrh2p/myj1y0ZwaqdPp4eCdjtXu9qdypKOrYDAf6s50Mdy58AqiIC3759G9++fRt//vnn+Ouvv8Yff/xxsGZA6WlcGRmo5syT5+w6hVMDaa2Av0ZIMKByCXIYSpdM+tQTx7uqf4qeOT+mKDEd3hXDzzoR5HAs6cQ4b1CXrNCmyACjAj5dkISRnlIHBtRR3EhCgkjUrnwrJJauzQwdw6spTCzyuddEVFRe/go4oRJK16u2JCasGMDrssXjSeW7wk+A4DMp0uRF03N0g+n5OE/oekXJUyOpPH2b3JUDFQDz6LwR/ugRs42VIkv3vd6V4a0cA/U5jS8NMMvzsUn96YBmZqyTIep0SJpuO9U0wWws9D/1QRepdODLKBantLhWQMCAawb0zBiHq/31X6vbPXJQATzyKBcMaq2A/nPBoKIC7j2rnTT67K/0KvHV1dUrZ8zzdhnpHELKb2q38ifAIfARyFF6RqQJBJWn+l1t2KJ7N79NoHMCAg+HUAGm97e9kuwk32yBi54SIEjez7HUoeokWBX683qkOqXogKc/1oim8mYgYoWq+iQA8NkoGQ830tUYVMqYc4vuYXn4lvmmuVF6azTgaR8Ap2TMldaBRfq5EvY83AAnA3XMWKR82aYKYFbRrxQCX+HJin872f9ISnxKY+5pRTPHQOkdFPi6gbReQGsGxOdVf2ucxH+73e5VvRyw0in0aID//HPFNJgvL7+m85JHrc15Hh4eDmwM2/Ty8hLz574DCcjyup8ngJGiIL57ovOg2uFtY1RAfb9Cm8DAy8thGDqh9DEOwQBRl8/LstNUcQcCHn2g56ZnWT9XKluoGtAxRlSavJ+emVHyOGZeSAWC9GyV/liw1CnT3+nrU9DMk6RQSynMFOkYeZqAaJ3GVQLP8XPedj7jeceffmSZrsgSEPAwJKNmlUFiPyRa6T/2U5dH6o/kYc7K9z6b1evUQMD/k7/GyJuj6bqDIz8SyPq+AnzrxRe/6rp0O8fBo63VGLh3nULmyeAzApEMKvNVG3WfU9LKw9fr+Fs9rB+PydB7W9nfLmOuF1wO/ZrLp8bY+YP2UoBnhTYvIKxQCI080WZ6/7XKm8zLo0cIOLeXjOJbGSnWwct4a6oUPREr+87rwjomxe75VvmkenR1nuVXlfvRtNqmylP1fJhfFV1QfhoPCSblgMpT/3V04KnrzvM0WBx//7nS9OgAn5+RGyW1qQNb3k9suxvcBHrTmKwAkdSeFNX7rNSB2BlYr9JRl3LNB7cbdpBAHe7Pa3yYhvqzAt+JP33enOsBZkA2yUL6OSBQn8gIk+9cjnz+nsBjBfgkByHJbQIBlAv2qdtVAQJfd9fRJjDAgjnAvm9AWiOQ5uHHyLt8paOX+d6GWeWSsZIHxWvvXa8qatB5Li4YTm/p3a+Aj1OQe0K8LnKB5tjP5o0TXzvC5+pqEb0Veg+sj9KpHikCljyNZPxdaSYg6O3Skca/u576uKon26a6OT96Xb3+3i5XpglcVdT1x6miA1UEJvFcIp/i6CINGkMadHfiKudLZXkeBNfuWHXANQHZzqhSB3v9Ul8qjfLe7Xb7LYxT5Nq99S0AmrI9AycVsGGb3C76OYmAe0abwUCKDoicedJ2q97JnodThyzJXM6kq54g66JykuJPXsYW47q1PhV1Sikh41S3DgAcGxVI/bM1z/ck965SndyTYVSmokoYabzS1IDGoXqroBs7D7268pgBgQogdlEPl21/lZJpSK7w3JCr/m6oE1joDEi1JoKAQfkkBTuT61NTB7wq+Urt8PFZiegwrzSWIupiB46eV2cUuzJm/9lfqS48ZzkCBALrTMO2OQ87WPXy2XddvzJv0sVFfo3dZTVNx1DPrNBRkQEqPnotDgSqqACZhl6XhzNmRkuox5Hv7wgzO4+G0w1CZyCqzvfrFMzfNZgzIFDVZwYOvIwt/2fPfxR1AI0GP82tjvF67lzXqijDGGNvhLRQyQ2+VloTeKaQeQrJ8hk3lu4VuxLnf/c6Z/2Upv2qxcG/E8lLgKXyoBIQSEp6S/mfAbySusgM7zM9j74njKf19rJ/fW5ec/eVg1d5uBWAkywkEMe6jLE+hknPevSD/C4+JWhM+r0Ctbyn8qk/PDLg9irpFB/zVK8E4hwcaLpghY7eZ8AV5RiH0wP+LjWVghtwNdIHfSta90Hgc84gKwab515nnxPzdQ0z8rCbX2f9Z3mu9k0q71jqxqYag1PSLDJQhdh2uxwpUp5jvFa2rmAuLi72kQHdk4y4gnfgkRSu82LlHSUQ63WvohleFxp/n0vWOacF9Zy/p+9KVMpfHlllRPyc0Q4ZFl/clRZlJbD8GfizomTw6ViRHIzxec+v+q9+9nf7uQVw0ulj/Hq10AFEWsDaLWh1w1rJrNc79Qenq51/k3y57XG+rcBmZeCZBwG17GAlVy8vh29CUJeoPq47eM1fQVyhoyIDTikqoN9utzt4x9RRHylV2tP4YKU8yBhpUDqklAwAFcgsZNzdZzrWpxusFQHwvuiUmxtpB1BvpRgTCDtlZMD/JyVThTVdYbjxFo9X/Msw5Bi/ALFHHxghUHlUYokclLrxkGLw8aCc+DWuAWI+VFq+i6JHB9RO1tNDmUmhpkgAjb+DAHqw3ZSI95e3P/Fmdf0jqSq/8nQrwFDpGjeEjAb4tr93d3evdLkiXGMcvjJHMKB9ADR+/CXDT0++aiv7Rv8ZWXB+9YWRHuVy+XWP33nKdW4C0CQacfZ94v00Poyapz7jcyt2NdGmVwtTQ+kdeafr6JWk0lLjxhivECLf46yMbDLAxwjxaoelaQkeU6iXz6Znjq1LRavtdyCwSsmrIoMmJfu7bXoLqupAgawUqBt/AoAUzRH/UpB1rfp0MZUewYH60ceUz7Duu93u4DOmulaFXFfAo0f9KOsCBdxbQf2purvRovLrDDkNvxt/T+OrspNiXdULDq5WQ60fTZ2Rr47OAx5h4ep9bfur1wnl4FFH8xrBgCIMBAOKAvnYsZ9ZLwJaLr4lUX41Nae8/JVJ/jxq4Pml/uHP06gPRAmoOf/R9jEKwHsaN/bxTJel6MWMNr9ayOMYh1EBdrIrB4U43LAnwScQ8I6vIgJVXbdS5Rkmb0JHVxxj5O1iaVRSGV5+14bf9VgSEJgBg6rMyrA4KDiVl0UAl6IC9O5phKtQoodjk0dPkEBgMMbYv9ssfpdcJCDCOrs3QwUjOeG40si6zFb8rPqmdrJsfnWRcu/eqfpR8i+59iiBE436ChBIIebEA0le1V+pL5T+1BEC1sX5TPf8fsdParOPOx02XyegaQJ38DglRkAhvn98fCwBHuuedI/kIkXtqnzIv11UgDzt/cC+cAPr9ohGnPziQCH9VG/m2elLggJGBFN9ttIyGHBBSQqRoRn3bqgIWPExXq8mdkSW0v8uVcCG55UC9dAsn/OowYpnfIzX4XmveEFUAjPDL3J0uhUQbCnrvSnVwZWp87fOxxgHSsP53/Mh0WvoBP/nz597L8sF2mUsARTmo8jAz5+H24cTbPucpB8d3EquNS1QzcN63768vOzLJghKY+JGnf9dR6Tr1bgnEMA60AtlyFfpT8W/s3aNkSOOSb/5s6kvx3j9yWDf9Y/jyrFM6wB4zvydv5OBVBm87gbPp8B8zDwy4GtdnG+9TT4GCRjMDK/rCQEc8p+DJdrQFUCa5GUrMFgGA6o4USGBQLcowyvtDWAZCZG9JSUlr7awTan+PkXAKQF6d2kaoapLRVuVjysyv5aUfQILog5oVPQZvKdEFS9SSMd4verYQ/i8x/SV4k2GLo2TiMZZhrOrswMRekoqg/+plAkMqKRdJrw8Rfx09HArFRe9zARgKIeufN2zYvuO4bM0NtU4uEHZsiL7rSkpc/Ks/nfHKl9R4hePChAUMOIl4Kl8UmSA3jvLdkNPfqtAJesoY++yQnBUrRnowECKGnnfVZEo15euN9xmUF5c9hlR88iz8qjG9BjavIDQO8eVZbeQyhucOtSPb0lJoClYnXeX2lyFHX2KIAGIGa1408lQk9lc2bqxT0ye8t4CCD4jdQpH4+er4dNrsSlCkAAjr1eA2EFZh+JTfVU31ivJl5Sz0nnIPclekoNqzUB61ZBtU74yEB4pTP1UgbdjyHl/9j8991mmCVIdHBSu6BdGgzxv8YWH/LmgkDwrPhzjdWSAfEhAxXLJv4nHvd6McKUPEJGfCQa6yDUXzDJ6R2CgvKvIFXmdpLb49B77L4EBRvd8TJOeqOq2hTZHBtRAnneDlyrsIaO08KdqzLFTBM5wbAePHjlwxEhDL6/BmUX3lM6fqSj11xZAwLp6RGCFEqrtnk33qjZUhu4jqQICEtZqbwz3askfzDsBZTdsDgTGOFxo13m+rLN7NSzH5YxenpSMl5UMRAL63lcJGKgtepaKW+1VdMJ5VSBB5bNvK6o8fJGvz6DcVs8T5M/y/wiivtR5ig6s5EGD4bqLP4KA+/v7g4V2MsqSDeXHD+uwvux717OJ5/y+1tnotTvylNrhtoWyW8lxkunkcbtdckDtRp1RNsqs2xTWW7bQpwjYR5XTnMDcVloGA8noOTN6A1Ilk0dC4mC8hRBWAuNoy1GrhzRTHqxjYqat3s2x3lBlbHh/tS+T4nWGS/c6WgE170kVAKCA+jFFAhwEJCPMMp2SIuJ15q08GAXgj0aY3vYYh2/tuGfGIxfpJo/GFbefU1Gln2ScmytVCjmFUEVcfOyGnLrIQRV5maAjjVMCzw4ITkE03Kx3FXrneTJqnlc1jhcXF/tIgPPZ8/PzfpqIzzMqwDdo6Ei5rI1Rr3ngf757T6Op1xplVL1tHZjv+pv/KUMOmDwywPqLbwi6kgNB4Oz5cLy9fK6XEABjVMb5YkabwEDVEDIf04gZk3fiC0uowD6KZgaqM/yaz3GAlIxDCkOStnrfXd1doFTHlciEyus8sQTinA+Ssj1lVCAZNoa0Gf7WcYwMArx/vQz+57krIwINKiuClE55OVDwMqiE5bF9+fLl1WYwlD2PWiSlzPpV4VcahwpUeB+xDzlXKmJ4WHVlnR0ISAkz72TkvT+rKYNT8W8qd0VHpoic9LAToyUXFxf78LTWB9D719sBnFZjmZwq8DaQX66urg5C8iqbURzySRorpq/6xaNojG5QNyUZ87A77Vi1FoJTDkmPJvugc486sAzKqr+Cn5xsB44rtOltAg5QKtSjAv48B82VFTunE7y3DtlVdU6KiuUn5ZGUCT2Sit7LYHodPWrRlUejkOq2Wtcuj48iN2yVgSe5N+z5ed7HkHssNKaepysl70saYz6TlAZ/BPAcqw6IeN84GGDf0OvxtuqeA2nn2628O0uTrq/k959ABEI+zrrvOpvTMo+Pj2OMMR4eHl7xYgIDDv46j5kL+V5eXg5eP9c150mVq6POyXP6XxleB64JnDN/yooML7+YyAWS3k6vX4qC0w7S2PPnoN3TEHBRzr28d4kMOLoUWnOkvqLI1BErXq+HPrcalK0hPveMK2U4AwRVO1gvpw5IdfdT/irD+29Gjpa7/k5G6TOSGxkqJf20oQp30aMH4UZS514OKfVNMqK73e5AuXpEwr0GKhD3/thWB6JJMblX7UDJifV2UMAjlbp+Xr/UZ93YqfzE15UXlsahSluN1ylpBfiINH7URx4yrqaEeF39K6NEftJnuAlcCSbJp8pbv8vLy4NoMA21nqFO9Shzqnc1xcBz7oSb7pNnWZ7bsgSw2JYEilxuXWYFNPznRj/Jvht9B/tbeXfTAsI0SByYRI60kgGZAYMVYXAFl+ruHUSPZJUcKFDhzgABy91ipFdAQGJcr5d7WF6nihyZ+zjOkOgKsPgISoaFHm3lOehZHhN1oI1l+8+nCCogwLcClKeUtnvkVOBqK70vpuU5PT3PQ/l43RMo4Jin17g8nw5YMW+f9voIOiUgSB5ll1b97l5jihKM8XpemmOvPQUIErTpkI8l80jgVHpHU3C6l7z2MX7p0MrYiSp5TRG3xNvsA5Y1s2cOeggI3HDzx7IIBB4eHl4Bgg4IEGx43d89MlBRFTIcYz5XPqMVoXdh8WeI1roIwUpdO4/CAUDnubyVMquAgK4pDYFc17YxRlnHqr4pTTKKnwEIUHFwEZMrt+RBMJ8ZrbQ1gZKUj3sUvpMhFZ57M8mgqv2V9+DG2fmiigw4MOAzqrd+XFC4BWQpnXtiCeStRsK87Z+RKn5yA5iIBpQAgffZX5y2eX5+Hg8PDwf/XW58DGkoxdOcPvKxpOylSBf7gFEFz4dGP/Gky5jrZ4KPTh47xzbddyOudLrG7Zq1j0OKEHCawvPlWPq1LbR5O+JVZaAflVdFRPwzQea9zhClulMB/fyZN3VxosJciV64V1Sleyvq+jYZMb92TB2TEHTnp1aybLvGnyvy5TXzKP5dHa/Uj1U9+L8CqK6w6e3xeeUhYCCih14pT0aOKuBQ1TnJuntoLPPy8vLgU86ed1Kqfj31Z2rDKhjzcxmCMV4bic6ReE9a5b80VrMo3hiv90Bx3cuogPRaAgNpLHVdutbBm/hWi1s5/++h+8oIezSv+p/4LvEZQTKBTkfJRngEgRszjTEOjDw/COWAwBcrOiCgrfHIz1ae3fQJY/euXLHyXmUgKkO/qng7hk2eThXySR1VDXwXNkpEQMD6vpd3TI+IlObgVt4/9bGoxubU3v4qJSXEPlO/JYWRlNwK8JzVhUQF5BGqLjqTvJ9k2CpAMDtnGfzvSlY/X609xq+FjWOMvfezsjeCK/6qzzvQNdMprkuY3nnkVLy+wmsdeBNRB3leupfScDw4TVUZWgcC4mnqUPFQWjQ3Rv6uS+Jh8h35b7fbvVrg6FFUbx+NqK67TDmI5hg4MU++GqujZIH7ONzd3R18JXIGCpR/Ajc+niu0CQyk0KovfOKmI260q8q54iU6nynWxDRVGlc8VWRA91PIk/3h9SOTdIoo9U0qI1HXHyseTGLmVIcVr8Kvzby4U1FlNP01oJV8jiX2ZeJD3qv6s5Of5J0lr4HPkFdc4TngFyUdoM8Y39zcHLx/TgOvNvqKaEYLUjtnxl8KVrJYgdZK5pwSGErXP4pUdxkRH8MKCCQnxI90WlJ4Wfc0PUAQRxlK0QGmcf2re5oa4E9p6LR4W2gnlJd/mTBN+7EO5Aka7THGnl+Zv79Kzl8VDeDUHutL8EPjf39/f/B/toYg6edj7coYvzFNoE7uwkWJiLI7VK+07t3yOp9xJStyr54ggMqSystBQtWmBFocEDht8bArYKN8afxTWV0UZQslQNB5bN7npyYHmX7u6ZjGDTfT0dB6HikvN3rOr/RWnGQQ+BlXyRuVqvLUQq3KiOjocjtT9gQDcgT09UJ95pbKl0ZGXhA9HU0fVGDGFV3ivZXrFRDogPGpgUAi6mC/NsbrV2Xd+LmcOjDwvmJ+1HPiBd8y16NrCXCqz9MrdN7nu91uz/MeFWC+4kcBUwEEOgAkGmxGRpQX7U6aetB5AmfMi2/e8Z6AAKcI+J+ywuiAAwE6rVyTcAzPLoMBoi2+guURgY6SN50oIXxnkiqvDhTw+apcH3SVRXLvn6CAdasorXvojLTPAamNYjICgmT8iX6ZX+XpV/VaAS187rMoUfcmqLCS8qI3wTY4SOyiIjPjmspJfDvGOPAsHMhKWXq7JBsOmik3LM+VvHv/HhamPhAA8G/eK2+FSat3qDlv/PLy8soLU/08AsD+Vxne5uRMcHwYWeB1ke7NIm7vTcn7c2PrIW3RbMpF+XC/AR05x009o/QVH4tPyKcch2oxnPNmZwtYFwLUFB1IQJPnfr/qf7bD+zTZIq4X8GtaH6CoAL8MyYWFjAwwgpGcBwd4W2gZDPiqa1+A1XW406p36grAAUA3neAKjkfmz3JSWoaSlW9VrtevUkTeD51HSCIo4IBXEYIk+B34qICBX0teRpV+5d5HUyUkCSAwvSsmGqWujDQmXMNRgU4n5w+GL+ldpx/5xedk6V3Q4Cc5JzjgFwwvLi7G9fX1uLm5OXAM6IHd3NyMh4eHcXV1td/m1g2anuGR+fhYMc3KYuXUj+rL1L/qr1PSTHYc0I4xNwRJ9zg/el4eRXBnSHVJzpMbX507EKDO7Nrucujg1dex+TN0iHyqwufkExAgSFSbUruVxsurwACvJ/Ds/cl6df21QpvAgG/UkgCBKlQZDXYokWgX+nd0Ppurd/K0roBccae5Jveo6FGkgehAAGkVCJDIhCoreS+uQKuyZ0a9Mv68V+XviuOU5IDVqeLVzrATELCtSkvPyEO4ouTFexksm56JQu2uYHWvmvJymdDRFatCrykyyDUDDgaozKVgtVCKOoM8654i+S7NGfs4uYymdMnL1LUVef1oSkbUdRfHtOJv8kXqS3rxBKtdeXyOef38ebifQLIHHurmuHcRZG+r/9I9N8b0sN3g+k6DrvuSA+l6NgEtlsspAE4JPDw87BcW6sh6ukywT94icrVpmoDhQVcIrIxXNJEGiiFBD7cngy+F5QMgb6cL9/FIRtF/P6/ue3TCw3YrUwQc0Cp9ZTwr469nXOl1+VRAoAMAFbnAsD6npBkIGCP3kRvxrr+qMez4v6pD8mA8WuEKTkfPo5NFBzlVZICgn+BA1wQGrq6u9lMGlFMpMwIBX1egutIj04/9k4y5jl2kcCulaOcpKMlh1SeUtcQHlWep+3QyCGRd77LPOXZ61nWgg7sE+jw64M5O4tUEBDwN20uQzPA7v87ooMBX8s9sW9KfDkC8PF8wmIAA5YI80EVQkpPa0aa3CfhxirR2QJWshKgaNJ8LrECBI0YHALzWlc3wpH70iFRWqvPveLdJaSdE2ZWVhFTXXYg6omFLRu536DMAgIq8Xh3adh6piIrQ+3HV0+yUva5xbN27qn4VaHTFntrs/1O0wCMEuk4lpYVmjCqmqAAVZgID7JNkIHhM11xXeLoxXk/VUPeciiq9kdqTQAD7Uf2re3SsqE/9TRs3Ph6B4X3lobxnYDVNFYjSePJ/dd9l0V/L6zb6oUH2+foEpLzMLiKgoy8QdHDC9IxUOCWdvxUEiDZNEwgQeERAC4ZUMaEYrxA7ykGAN2SMHP5PzyRQ4NQBASk6KcC0P/1qx3o4Kh29risggPd+x9Cmvt5SfpVn8ko+C1XeQ1JSfGaMsQQGlEcyXs7DFVBmeNTzpIcjnkweh6Js9OJWZGyMcbCC2gEFn2N/SA9cX1+P3W73CiCwDQ4U3PNOIEbns0gT82D/bKHKefF+OhWlMXGjU+la94oroMh9BNL6C3dAlLfGkvxT1Z/GNOmdiu+8Hjo6D7G9aoP+uzGmUeZ8vXvw1et8Vf2T3k/TEQQEXCzI9A6Ok8OSwNMxDuxmMLDb7V6FDTkXSiarDJcrqBTi6xqQQELKN7VBZXnZVHReJ/2fdaozo18TJSCQ8ma6FWVUpfH+qPpvZtDTPQIBAj2nJDwfRZ0HQUqKVuk7QCAlW0UHxpiPn99Pip9el4y/AwHyLQ28Kwld09ilPpKiUduqSBwBtU8DvLy8HOyOSIWZlKJ7YlX9nNie5C3PADj7xv/Ppv7ekxKAdW+aoJG6jel1PsY4iAwkHfPz58/9K58+Baz7Sp+iAh2wq9rANP5WA+2JA71kgN2DVp6dIdaPfEmj3M3Zsx6pbT4t4QsI0+ZCLLOKkhH8euTmGF27edMhfgFKgk+hoVIUEa27p6N9ypmW6dJ/pWOj/T7JvbwxXkcI2Ba+GuXEcFs6JzO7sCb0zmNHEojUxs7QESClV7YcPK3UJQEIBwSz5z6S1N5qjUVSrA4E0/kYr1dK85iEt6KkaCoviUpbQEAGV+ldLpM3ReNBeZBMCkykfuT72ZIZRgUkV2oXpxmSwfL2ciy8DR0o87xm1MnSGK9fJz0VsV5uaHSeeNONbBWd1Fhr3DWtw9da6Swkb5z6xHVLMpapLaoLy+L0LR0OvbKnDyqR/z2ykYxxMsi65/3l0W7qjQoEOJhICxaTwfcx8r5LfEFg5lPlq8Bgc2RAA+MetQZWg8ZKOXL1c48KqHE08I76yZRSNlVUQPl3QMCVYiIyA41/BQrISOk5Ho/xPFypVkCBfef9xP8UwIoSM7qxqpjvGLT6FsT5T0Z+9EuL5HwqzBfFUSmRXMmKHLnPyL2kina73Xh4eNifk59UXypGygJlWDI0xjh4L1r8USksKUnKE3WE9wGVoYdnGS4lyGL/sd3k9wpI6Zzh8aofq3E4FYj1enibkqPB+iaD4M8oLaeXGHUS8BvjdQg6RQRc11SGUnyg/B8fH/dpWBeCT9oMBxWUS5XtoNnBwPPz88G2v6xDchDUPtfzFRCoAEFapJh2GaTdSADO+1f9oPFzGzOj3/5q4Yw4oKy0e/5KO8brqQYHEy4QXgbLFpG5HAykVwlF7GwNpurvDFGBgiq9rq8SgVOKAFSek4OkZCAcxTu5IkhGMY1jevajiUCPhp1z12mqiNe4sNTBU2WAeEwKNEUcEi+JXl5eSk+Vu7TJsDs/pKgAATK9d8qfP0sQrSgCAYGus2+4nsD7nvzh/9M4crxIlefmbygwv1ROVd4pyAG+GwYameS1dwBIafQMASR1sKdNQNjrleSCelR8ozZ4mex7l086mW4L5IT6XhcOBjQl4GH65O2ntld92QGfCiBUUYGUJ8ltJHlGgErpVmgZDDiy5KAn1F6Flfzcn1M5lQfLdBRSjxiIqNhduHktzY0lwRNj8b4rbgcFTFMN7LHk/ZumEtxQuzAqvYcE/ef3PP8uKsA6fjRR6buSSdSBg0Rsc1IkKf+kaFNUKfU9vWa2gbwmZejAj+32cL48MIICPkNlrBByWtzkBpTlOOCnckyKkH2W+tyvuyeXFG0aA3qdFXg6BbEPkrFx0KN6jzFejY3zI/WziDqdOjylJfk9gt+kSwhgyNceFajAgHTY1dXVgSctr5h5sDyG59MbBOQR76fUBzOd533r45HAR5J/5wP2rzvBqpc7pDNaBgMMV3pH+38vnEzlxj39Z75qMK/rmhrNtN4hzJ+/McZBRKACAgQAaSCZ1r04P5+l87pXCs/r6YbfPUI3+Fx1zvs+JivkwrBFOD6SPBqUQKFHCtL1MV6/418BPv1SfyYQnRQB0/z8+fPgzR16VTTmLC9FIMgjrCO9Ml5nBM09ug7YJkfA26rz7nmvO9uUlHRSpq7kk6OSwKLrnY+mBIKSUeX4r65zqOS8AgkpX+pNB4HMjzxzcXGx30JbzyUgwDwTHwoIXF1dvQIDPnZaB5C2wuaz5Muk23SkrnTHl+2uzp3/k+GvAByP6jvnf47Du4ABZfrw8LCvKPceYOcnT93P3fhwnoPXmacLsF8nOcL36QBX/ipX+ToQoPLjQM2UOq87WksD5UzoA686VwKqvuS5yqb3k0AADV2iSoFwPKigkzB9NDnoo+frXmsCAQ52Rc4DCekzrQNX9hnzSKDAwbZ7wD7nq/wdHIzxCyA44GD4lWkr74V1JyXwW3nozh80BKnOVeQrURoDlsNzgiAHAl0ZH0XOF268GNGpdAoNlwPaqkz/XwHb6nnX0wSwmtoSyK3GliCc63uenp72gECRgmpHXPaZ7/NfRY4SJUDAes54xvtUz7sD4DJWyYzKcT3BdJ0+Jy2DASE5DRwHl3OMHvpcRSXecQkYUBn7IDij8rzaW8CVC4VE5RAQUPiSd5863xW3p68GtuoX5lspefcGPR83/JXyWKXkOVXXTkEEqg5cCRJ8LQH5OQl4Z+xcACkX5Gflo+vOJwS7DKcSGDq407OpzvQkHBArH8qeZDvxbOW5OHBOX2Tz97fHGK88MyeOWVL2ib+Sgqdx8T6gY8A0q3rsPciBNevieomgX8QwcgJb/J+8+qo+VR4pPXlW/DHG/47P1dXVQZ40spQ/jwxwqkpgwF93V7/R8KfpLdfpY7z+Lk1lXxIQqPrBwTT7WHbGAUGSN/ZPNX5bo7ybwQAVkgTaV1+zMqmTydhd5X0QmBdDmU6OJl2BuPCTqMz5iskK8zitKJBjFY23x9tMIXJl2YGAVA7JjcwWMOOK5qNI5fpeGVxoVEUECB7GOBTIBAzGOIwuKZ0rt/RcBRz9vteFyk58wPK4FsTly3mHexfomcfHx3Fx8ev1W59r1ZaqmsLQ++mqx48fP8bff/89vn//Pu7u7l4BApblb0+ovyiz/uov+93BkfSRR0g8SsS+8fMxfn0S+qPJDa/zgs65lwONv+tM76Mx+u3QGYlkfVK9XNeIN32BIMHL5eXlnr8SQBY5GOCrj/L2U2SA5RKIiM/IFw6Yktx0uk95dGD5LYjjpfFR/3OsaatXaDMYkLALfelcO4w5ICDRG02IJT2XogN+PVFlIJMCJOOKeZ1xGFryujEPr3snaJ7HKlVoT0ZO587AZBxe57gcUy4peQ3d9Y8gAiO22dF8mhZIiF/9pTb5j/s5eD2qPCvFUv13T0t1UuiV3j6f8fqkCIKUtK949lekfBHW3d3dwZy1jPuPHz/Gv/71r/H3338ffJ1NwMe9P6+TrqeFiOwLJx9btd/3YCDIYD+seHvvTZUs0cDJIesiJCnPxJ+6TiBAXet7AHid9LyvMfN6kZddLjw/5amfg9LHx8fydWAHJQTbqb/Ib2ns3Xn1qIOfu5fv19jW6j/rVtkL1+mMnL85GFBnqgCif83faFDcKKly7jGxkd1/KQzvIA+HkRKDJYSnfKjwuG0llV4XEfBwcho0CkU3sJViYzl+j+XT21X7XMFxRS4NChVL5emSWd1L6KI1q0z51sTIgL9CxzlIeh9ucBIlw56Mj/4n4MB+SREVB43J06LgS0mm12SddxxgS8Z8WoX9ojowYvb09DTu7+/3Hykib//8+XPc3d2Nf//73+Nf//rX+Ne//jW+f/9+AAo8GlD1r4+P8le9E5BjuzxPtpOLiJMROCUgIFH2aOAYFeK4jXEYERjjl1Gn5yuqgALLJ28yX3fcqnF1YvQh2QuRxlfpPTLAvULIJ5QTjxIw79R/zhPU3Q7KUhmcZk6yvIWU3nULQRr5vLK3FR31NgErIWDgO5C5sLFBjsRmVKWpDGMCAB1zU7AqIMCBTlSFgVfa5qiO97aQAxJXBlIAfqSSIBCgkUn/HRB4m9L1U5BvOjTz0OlpO2InedvcWPLeGK95seqnirye9ErGGAdRAdGMH1kf9+zk2YtPuD2th2Gfn5/34V5Xknd3d+PHjx/j3//+9/j3v/99AAb8dS72I+uX9IrXlekd/CZQ4eAi9dtnAAGuM6mvkqFL/UdHxI3JjP9cP1Huxxiv8vIxqPQbdWbVRj7PtsmJ4W6Zioz51I975/6b8Uj6sY4eHfBjihCkn/e3E8vlGLKd3fjNaNNEmGfKSIEayymEJGSsvMiZJHkwVVq/7opX13wAdU4EV301imsHKuIcaUccRBqDWfvYJm+rgx/Wh/cTEJDxZ93IZIwqeN3ZBqd0fStQeitSXVYUvAt4ApIu2Km8MV63N4GPrr7kWVes4kXWl14T5a6SA7+m9QIcfwGCx8fHV3OxY/yvbCoi6OuFJFf39/fj7u5u/P333+Pvv/8ed3d3+x93gONcLuvNdjpfbfG2XM4qQFhFED8T0UDS4CRAQPJ2zvQV80vnzgvKl0BR5SY9T33CZzieDjx2u18OKMGkdBwBI/ndowEOUggQK/5ww0vvuwICFUjwBbSdU8i2Ud6ZvuLVdwEDzNiZSMZSSM3BgCrOYwcCEgpyRZCMaAUC/FmuZnUgkL4cVSl/DtQsCpH6zQWmogSoUp+RmXVffUcgQMXqxoZ9o/pyKkHpHNToejVGq0z5HuR9szJWIq93FX5LfU5KnqcrQ+blY+Pkq8iVhxvtTgknwC5Q64aG64bUfvGTfq4Utbjw/v5+v4BQIODh4eFAmVf8UYFg9d/M0/IxqkDaqnL9SJrVgcBUY+WedgKzq+UoH/KzR0GpS5RW96txSzqadeuOypeRMJ0LBPianRRpoBPEuiTjXzkSznNu7LtrFXl/ubNWgYXfpU1gQAOe0JWMoQ+KRwnIiKuhuK1zHylPDhaFJy2ESkAgKazE3Cpry+CsgoDEBDx3Rk7omEYmjSOVi8938UgUnxhUdaKRmnkh70UEPw5QHTyRUj/xnpPyqjwzX0ejc/Yn53I9rZfPPlWZ7PMECHwc1D569Qz1u9xo1ToNA/uV3hDXEzw+Pu6BAL8Qp6gb20ue6WQjAdAOCJCqvJPhOiWITeSGx0G+A0SRojxOnZNF759pUoRQR8o7db47E26UO173upL/mVeK5rneS+33fvJ2VXrY2+H2woGAL8pN/V71g/RDp3N/hzZ9qKhCWxp0RgQ4AL6gg8TnOmPhnV4ZYkfGychxwBIYkMFL3lGqlxuBDom7R+jUASRHq7qWDBwXxLFvpPQroXDFz75QXykdjRinjDxPgpNTUPL8OkNDAOB96GlcmCmwboQT4idfqx8pax0AJRAf4xdPcQGpezmej7ePPOBAgOOt8rxvqAD52iF/vj98F3ljvt5e1SGFXFN/eX7VdeqNt1a4W8lBDo2ejw/HKE0TOU+Okaf+qjr4ePM/+4085YDAbYbKnRnCVJcOsFVgIFGyJTy+vLze4dZlmDKR7IzblM7RSP2QxtD7UeXP8qpoGQzQa0mGmx6Kr2bXdb6rmxgyKegkBHxOaRyROikPDohHARwMOICoPBjWwZnc+1Bpu/nzmUfEvNhu9bm/YsM+qMqg8vA+UV/pjRGtWFd7NeYVYpVROnVkgGBJpHoRJFFQKyUiHtE5lQbHtwMezi8OqlfQP+umenCVOAEB+78CaSrXPU8aGraf88c6Uq74IZj7+/tXnpHSufF1gJ921qvAg3vH3keenyvmBHAqQ/LR5G1xQOBpOwDoQHRWrvPrGPl1VV13J0nXkrx5HZLcpTFQntV6LuZdOUAduZ5fIY5FBQ68fIJ35zfnS4475fjl5eWArwkYVmhzZMAZofOW/T8RqJ9X3peOSs/yPFLREcEAw91SXtW0gHss3rYthjs936VNRGPmewoIsPHNjioEzvQCDUpPsMRPzWru9+Hh4cDA8JeE7tTeFdsqPvPX50RuQDolQyGjACaAlkKPyfOmcXS+Z9868Fr1dFm+95GDByooPueGmnLCz7IKBCgawKhAWgnv48U6MPLk/Zf6Ksktx6iKZFV0KiBLcgNBfuHXIz0t211NFayWn/S180Olczw9xzKBZjeMnTPj9/1/B+i8HMoLwYDn4c6d64zEn1UEjMDJ2yUDryl4GvkV/l0FspsjAxURvaiCRII8siH0PHzhiwt4h3IqT5vpaeQIBlbWB6gO3icdJcOfnjnW6/D8+Q49PxmblPlutzsADdo4isher34JBOgVsbu7u3F5eXmwk5z6k/3mY3UqUOBC1i0G8tCn3/e0Vd/SkPo580g8RZCldLruHsFMKWzx/rq2JCNMufbQp0fWklHu+N4NHw04PSjdr2S2yrvzmpQH+eDUYCB5i4ziCBDo6M8cq2Nm8+db6l9RpSOT/nT7wGsz49/VIUVVvEwa9q7Oqd/djvE56twUAdNzvicMozvJKSCQWaHNkQEHBI4EyTDJ89IzBAIMN6bBd1CQyNGuCzCNVTq6h1spsIoqb2uFnJG2PCdvjgs2r6+vx83NzcGukCRuziHQcHV1NW5ubvaAQqBJ87x3d3fj+/fv4/r6elxdXUVA4IaBjH1qZdqRA9HKAxBVSqYy/r5WxkOpKoPnruidKBce8vX8EvhJcnoMVXJRzUV7O3V0IFblLx4jMTqxhTyyQl515+VYY/oW5BE3BzP+ijDBn4PPdL2izsHyaJrzk8ohbe3HLcbMjXe6N+OPCrC6XkjTSW6MK3BRyaj+e91dhggCuK6ooi1yffSaARHnikWdglHH+irY1MFjvEZUWwTen3GDn34VsmM/bCn/mDBONbhSUGl6YLfb7Q379fX1uL293QMChsTFTAQBV1dX4/r6ev8Ts/G1sB8/fuzvK/3379/H1dXVuL+/f/Vqpvf9bvfrVaCPJvewicCTV7FCHVjg9SQHHQ8nI+reQopyJK9lhfcIJpiP7mkMmT89dM/Ln636w9uZjBbHJoEmpk/1T+An9Qv5Qu1KUZBTUDJyyQt0WdOR5x5BIg9V7Us85JGzjs8qILhSzux65UH7vSpt127lRX5OIHRGK/bDZdjv+TgTODtQ/B1aBgNcCJIQpqOkahBVeQq5AEFC/bPIABWFK8yUh28g5ECgmnc7ho7xtiqB74SC6wRksG9ubsbt7e1+i1gpOHmpNOo6Z/oxxn6tgMDAzc3NuL6+PliP8OPHj7Hb7cbd3d2+vuxv1dtB5KnJgdpsrNzYJC9sqyH2sn2xFT3+pNwqz9bL7zysaq2OZMLfIOC6C44p5SeBCG9v6ifm5XVUHmkqkUenqizl5TrMleuxEZO3Igc3zoceFSG/JHCYojJj9G85pT5IeVbrCBL4Su3snMeuLrqe8mDfJePvoLSqW5WnU9ePqc6pDV4Gy/e1M6y/g4atIGFTZCBVolv1nMKTKQzYDcJbRwbGGK+AgAuPnuXR+6LzVLZSav9sEGXU9SMYkNGWcedCQk0pEDTc3NyMy8vL8e3btz0wUD8pMqAoA/eNoKe32+3G/f39vt6c+qEiPwUlJdEpOL+2anCcF/yat9+NOvNnKJDt0PHl5XAapjK67l0nwFItbiQg4MIzyT0jeqxDkqfUX9QdneJymZ8pOc/bvSu2czZGatcpKfFf6uM0XZJ4krpbz6lPZ06d80oy1N6nlY5ku3xMmb4Dsskwd6Agja+DhBUjmvqF17d47TP7sWpfku1KEbqKNm065B4LO6ATNj7fMYkzxbFAwDuD5/5/CxDoDIor1k65sG1bKc1Fa+6fxv329vYVGFDaL1++7AGD0l9fX4+vX7+O29vb/aJDvRqmj9BwHQIXKHIHut1ut1946Mbj2FXMb0GdIa/m+jug54aVYMuPYxxuD00FRkPIKSDxoxsyB7azdiaF6zKo+leLHHVUmZwa9MV83nfVryIHOZ2cpHom4z4DJeyLyvCcihwAiHw9Q9VfCQgwP+pxjzS5YUv6W/f133+VbG1pd7IlLJdOqdJV8l559e7UJt7y+ui5ioekQ7fwUwVq/NzblOzXVj7eHBnQubyCruOT8UzGMnXkW6PxzvNeKSuh3qR4qrZ52R5OWm0768GIwOXl5d5YCwzQ6+frg4oMEBAIPNze3u7fKpBnyt3jbm9vx9evX/d5Kw/tO//ly5eDNQQCYNpL/JQkgZGQcmGlG0UacXrvyqd7LvFACqH6mDsQVjrKmY6cZ/R6JfCQKClx7y9FBtgXKlOL1li+9410BctkvjxP4DxFU1xhU/nyfLc73AeDfVON0WcDA2PUYXUd3Vlyw0D+Y1/oP9OR/xIwrnRdAlYuD5QR/0qkaKXvK4eLwM/BklMqx8EFAa/r7MppqGQhgTXyNterMFqmZxPg8Px+F8xu3o6Yu6Op8BWFo+d1TKFJnW8BAp2gpChAtSjKhem9qFLUCd17OE9EYWJUQPP+NPI+x+9rC3xagesGpEyfn5/H169fx8PDw/j69ev49u3bHhTo9z//8z974KG95wUI9N75e/ZrR8nAOs9RYVLJVHzhQueKofOCXJElVO+fJK3mIjvD7/dSlCoBge7tBYGAi4uLg68YJmMsfiPgldGnsWZdqp0Xvc7+342Zj0PVJtWhiyBwU6RTkvMf1zultU9j/NLZ5LdkQJx3fCtzHdOXaB0QqBzeT4afbXHD5wbQgauuuRdMPu1sU2cwU5SB6d2JSO1nXnzeeVR19j5L5ABwdn2lraTNrpqYi+iLjWBHOvJJA3oMdYKZgMCqIFfIygWiAjOVMBxL1WIelZ3eBpBh5wJBhvP1dgHvK+SvhYjKkx6yNpH5888/x48fP8Yff/wx/vrrr/HXX3+N//mf/xnfvn0b/+///b9xdXW1/zIdNyvS1rOnoFSuv5Hh/+nVuGFOBsenA5zHq0hUJdgk8lr1HrLqQyIvV1GqxLupDQnkpGgIZSgBcN950Pf6SPvrj1F7VLrHXSaVfzIwCXCnPvE+PiWQdQPHcWRUQ46ab0Y0xiFvJHDAfiN5VCfxtu6JHBg77yReTEDbjWaVt677OLsTwGtV+f6cy7y32euRIok6J8BIeTm5HHgd07Wk61Z5d/PbBGxMCrMqrVdkxTiyYdV6gZniHOO18vdnK1TVkSvFxFS8Vimb2WCl+x7aG2MceGQ04r6RkN9jGgIBhu8YdeDW0sorgRF+f+Lq6mr8+PFjv1vh/f39uL+/b/v3PSktqErClPrZFZGjfIJhrbVICnPGg8kAkdK9jpcqwNEpQ9U5Lf5MfaK2V2mkM/yV5Mo7rMqTkV9pv/Jn+axnkkvnBxoBnZ9qvYsbFl3Tj4s7uaW6ZJXTYW48lRfHfIzXQMmNue51HnECARUxMpP0KwEL+SM5Y1tBW6W/Kde652V7G71/2DbJQdIDVXudHxn9SbscujxwKnGFNu8zkJhTBScF4wCiqtgqEEieQpcfO81DaD64jrpZ73RMQuBU1XMF1Iho9GmktT6Ac/4+l6/QvQy/gwLl41ECLgxU2T9//twbfl93wHxvb2/H9+/f95+sfXh4GN+/f3+TaMkxROVG/knTLzNKXgrzTsqF5z7WlXdDeam81G7/Aaab8WgiKrFK6Xeg15Wi8pLR2e3qfSd8Co9tYXu5DsDbnuS4Al0zj4rK96Op4hs3AoyuaH0OQYFkeIzxir9EKTROo8gxXQEDPK94UOVUkR+WSZlNhjl5zqvkctMBi9RunxbU89ILnC6rgHqye5z60TXu9FrxbtW2jo5aQFhFBNIz6pRuPpPXZkBgJQySOpegoHtmK9EAOMKt0pNWQufOfGlfAb4ZwKkCBwFaD+BTA/5xI6JdCiA9LQIHKgyCj5ubm3F3d9duZf1RpPoTtXPTK44fQ4t61vNyD3SMcWDsOoNOqjzl6nwGMN2IpjZUCo8gl/3BSIGPJdewJMDg7eOX9VxWuqhB6o8xXivR1F73rqq+4z1eO9UUV6IEBMTLCQhwT/s0vUnQVzk9ItcJlaH3+yldkgkHBmxvpVtTvpWB7eSQaeg88pecxgReOhuQyiWPOQhgPaqFtsyL9djiCBy1ZoBUhf4SWndKqFTXZ0CgUtJdmpkieAvq5iK9fitEz2qMX9MDDNGn1wn1ZkGKCFQAYDYnqFCXlL+DAUYsBES0S+Ex3ul7Eb1eeqx8QybtrJn41T2WKsJEcq/GaevUkl/rgEAVJfGyCeS9H9xo7HavX6FKfJSeIzm4WpVLgrHUP+yDFGVMxsPH/ZSvxbIeXmcaEkYGJIs6V19rD5ExXk/3JH1deb9+3fPz6IKPdwKmfl15ccxYh2onzDH6aTmW6fVIgNLzcIOfooz+bCpD/2n8VXdule9TAh4p6MrbQpv3GSB14R8fMFEFAHSvamAS4ioPHvlclccMzXVouWr/73oSab7O5/p9t0FNEwgQ6Oj7AvjeADLkMw9VgEHeoaYNPP+bm5v964d6VfGUYIDGYhWxi18qQ0M+c8U3mzLwvFyOHGikZ0gsP3kvPBfIqTwbRgO8jp03kpS/6ub9zTqov3zO2NvfyaiMhI9x1+fpRwDiAOFUW2mrLn7u4ExgTGDAo3tKx8he0oGVUfZ0ogQQCAb8mcpJYn97HcgbDghSJKHrv9V0NLhdHknuqnyTR199F8cX2rKP0kZkqY5y3lbp6MhABwRYMRdSVdLTbkU0swiA5915BIlpnZLxP8bApXbOABUNtrx7AQGuE+DUAN8iSACAew8wzJvmvlK99IwrcNWX6xCqRWYfRclAp/lH8Qnbk1C48ysVr9qflGsy/B0PuXdcKZpKga8qdJbHo9qmZzQFQoPiadk3vo7oGNmZAfWKaNylUFPolW2uxnhLlOKtiX1YAT22R54kP88ucNBtCb6VV3g/RRQrIFuV6+Dar7EfJLsEk1VdkzGfGe5kH+gcrPBxAs4+TmpL+qQ3IwMORD3PmS1eBQRH7QLTFZ4a7965K9eUB4+upDpj3z1fIb2KMVJEgMcVWlXQzJdoniF9GVdFAfi+f1rMl7YO9mkBggN6+AQgFDZOW6i+nI5IkQq9pniqdQPkj05x+DNjHIKBCpGnaQcq3RRG1ZEee4okpLUuM8NUKcCKkux4XZIxJnhyGUz9S6PMuU8a6a59VXu8/lSmVLZebgJ57oUp/9+N9B1LrmursVXdd7vd/guikleuGWB6evAV0NX/ahrB65kiEl7fxEfp6BEyyg1ljNEszzt57TNHx+XX+4ttTfqEdk71o2En3wmwMY0fHYw6L1YRe43FKpBdBgPuAXhBLjzeMf6BIN3jsSuzM+zdNb8+K3OM7MGsRkS8vt15yp+r97k+QCBAm/78+eef448//hh//vnn+Pbt2x4QuDFPi7q8X1wB0PN3oa4M2cvLy7i+vn4VzVA5p9y4hbygc82njjFeCbYE36NalbFyb42KiWPgkQNe4+6MyRC599DxlN+bRR+qfBK54VHb3bBKqdIAufeTPG72i4OLylDRSXAgkH5eX1fOHsn0fvpIUn+kaCrP1dfy/gUCHh8f9yDcAWdlwJIuYP6aInS9oHLpKDh/ONFQV23kdS5U1bNc6+N9l3S/p/H0x0Sw3A5yxX+S4RQJ8EiWA+WKUsRCdd8Sld0MBsSY9ILYIT6oCe2kQa6InezMuiVCsBUE8P+WiEBSVtV9z4/Gggbdtxmm1+07DHq4LtXPDRwReAIAnUGh8uZ79lvn9T6SHElTAH/+/Hmwt0ICAd4WvTZEwXPlyCiMX6vAAJUCQ71Mk/g6KdaOOpDj5wJQBFMvL788RzcEpGSQ3fhWfZzATzLmcjpcAfscbAUGkh5J9fkocj7s0o3xGrTKG2VUT+kop1XbE0/r+TF+7c7oxp86aKY3O2Pn+pLAR/VJb/BUjmqVf5ee/ZkAFPtK7Uk/58N0j/3h8pLsBfvXHbTOEUx0VGRAFXHm8U50xC7mdOKA8L/OK+PlSsHzq46JKiCwSpWySvcTucHw0D23//3jjz/20QC+QaDIABmB5ROQeaiLgEDPce95D/FzzDhuSnt1dbVXRNrG+FQbD/HNgAQEdHTvgv2S+IsGUkadZTDCw7UbAk6+fiN52dq58eHhYf+dCFcqid8SUPc0ft3bpXa7l+/RFd9/pAOiyVgpzxko6RS6AyPyuoMDltuBAu+LU1GKlOh6F/Fjm7nxUzLcSa+O8ToirHS+gU7nYdNIproyD4LBqn3penKCqr5JeTDK5fWgrUsgR2Pj9q4Cpu75O69SJnxMWCbPfXqG/TGzPaJlMKBGiKhUExPpP+9Vc67VtZVGzIDAlrxEW8NEnfFfKdfLk7HwVwfTWwNcJ5DeEJh56PQ86CmIMZXfGIdzd51Qsf56u0BvGJyCXCmN8To86cLjnkIyupXAqe81Jtyl0Rd2clqH9ZHi0Hviu93/fg0yEadgqMTY1g4YJ09IdUnzsgQICQi4zLiRTgA/3UvjmMaEfebelDsiCSSofcnpoOd8Ctri2YnYbkWUkpfo8px4R+l43dfFiC+en5/3ry4ySqh2pNd1E9AR31V9vhWodbq4i164x71SrtqndQBpy22PCoxxaF8drHr+lD3KXBUZfvPIgHv0CQw4ueDymqerKjyLClTlVWk66qIDHdNU9ZiV5cIioaX36G8OpLcHfNdAD097lMARPaMF6RVDCmyKELhxFG9orcPj4+N+YeEpyOf+SR494Tk9UgquiDu6qZ/5qqWmd/hFSf8mBIHCGL8W2WkV+P39/Xh8fCyNLD32Spl7+1bkI8kkvaNkuNNriw40EkjxNCTPq/OEeZ5Crd52BxP+vJdxCmLkrvPyHEyxzf5BKebtfNUBMo8qKHIoeac8pKkJPcudI8d4DTRZXgcMOyNImfBIhT/P9J6WdUq85w5GAqjc/8GBQHI0UjSyG4uqTezjFdo8TUB0mO5X5MizCtd2zycBTULu+c3y7lAhzysg4EKahHYGIsjYAgLcYTBtLORAoAIDlcCnOia0KSXPe8yHJEHSzwHNKUh9QEBLJSKiUlrxlthHvusiX/v03SHTq6BSkJoKEBC4v78fP378OIjQpP6nHKx4VZ1MrAJf8pH6Ny1YmhlW9SOnH5SOitg9dK6hSG1zA+mKt2u/66et3vlbUZJjN06VEeDPN4Ua49eCwirKm2Rb5V1cXBysH+HUmMpitIiylsafwJbj5+slGA6nfvKwOduTeJ795WPtaSp9uQLM2P8OBNKbK6lffGx9vZH0rPPBVqd4ExhwBO4dMHu++z9GHW1IZVXgYGsH/C4Q8LJWzpVf5elooAkIOC3AjYV8Z8FqoZqH+lwpSogVVuQWva6QXSm5sFCgKbCnerVQoXYZSfIPlZbakpA12zNGftdZkQFGcfxTz1zn4Z+MltLQlx7v7+/H33//vb+v8r5//37gAUr5EsSw/ulHqsLCIgcfSfaSsU5U8XzV5+6hVd6xj6ufj5G/U1Klqfrio0ntZUhekTwZShr1Dhjo3KNc8vBJaYxVvss5eZDn+hGIpPqpPE+b+NUdjZnjk6I/akdXH6WhB+8gk/3EfvX06X5aTD/jNToDPhXsjo344+LiopxedFoGA9z4IAljZ3xnCkKd4Iq3myJI6N8Zp0JbW67NwIDXebV8R3oMwRMM8N399Mlhn+OnFyCGcIRLhlVd9N+jAqoLhZRoPYW7NJ56tenh4WE8PDyMHz9+xD58b1I7n56eDlbtjjFeedse1kxKhEKmtwA0Xg6yNIa+8FP/tVOjeOD5+fmgv6Qg7+/vD8CUgJs+E813lZO8+DjNKAGdBC49klQZIvdW0v9KliojzzAszzlfq3QM0UpGxhivZMFl1nXTR5MW4D4+PpZATOTAW/99h1B6lfqf8nSAzyMjmNUCWf8cepI1l7FKnyuN82ByfFIbqj5jnZLudm9e15wPnR/Ji/pV+wy48+T5Osjh2GlTNwcD5IVVMLB7ORWXn+lMZzrTmc50pk9Bp42BnelMZzrTmc50ppPTGQyc6UxnOtOZzvQPpzMYONOZznSmM53pH05nMHCmM53pTGc60z+czmDgTGc605nOdKZ/OJ3BwJnOdKYznelM/3A6g4EznelMZzrTmf7hdAYDZzrTmc50pjP9w+kMBs50pjOd6Uxn+ofT/wdUgow8CZ+ahQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqUUlEQVR4nO1daXPcyI6s1i1Ltt/+/3+4sfFmPL4kteTeDxOgs1OZAEjJUssmIjrIJutAVaGALNTBzW63242VVlpppZVWWumPpaPXZmCllVZaaaWVVnpdWsHASiuttNJKK/3htIKBlVZaaaWVVvrDaQUDK6200korrfSH0woGVlpppZVWWukPpxUMrLTSSiuttNIfTisYWGmllVZaaaU/nFYwsNJKK6200kp/OJ10A242m1/Jxx9PUb947fwwDqfHz+PZycnJOD4+HsfHx1OYHz9+jIeHh/Hjx4/pF+dRZedSYZgfP37I/JCXv//+e27VPJlW2V3pOeg1zmf7k2QXy5rpQfX86Oio1JNBrNdcuzr9utvtpp/iHcOwXo1nXR6eizrpt8HASs9PzljjfRcIqGcsrK7TjDHG0dFjJ1EFCLijHR0dTeE6gGWllVZaSemyuHb0XwUAdrvdI52IV7zv6CnWhUrHbTYbqTNVvlnaL0krGHgFUggY75cCAfw5441gQOUboCA6BqcTz10HDiFfQcBKK61UkdNh/IwHMRiXCQck/IzDsVFWgECBiSx/fI/8Y3zMm8HIawGCFQy8MDkUydcK7SpBdKhYpYnvVHwXlj0Bzj2maP0MxkorrTTGY/3HRl89V/qmomq0j/qqCqd4x3cqHQYDP378mDyoPK2K/L6GrlzBwAtS5g7jawUCnJBXIEEBgWwKIAQTBdQhdZfmS82LrbTSSodNrJ+y0X/2HCkbgChSHgEXTvGL98p4q0FWhDs6OppAAN5jfq8FCFYw8IvJCVPmqncuszEeu6wcSq3ycwZarTNwKB4RL8ZXrjeV10orrfRnUGeQ0gUEc/Kq9KMLk3lE8T8a7Uy/VfpbAYGXBgQrGPhF5ATyKV6BICegbn7fhXHoWBl//o9AgDsEz4Mp3lb6Pckp67X9/1zqAAGcBsh2BmTpsV50uo8HPNVCPjTOLn8VT5EbyDlw8ZKAYAUDv4Ccoe+86yDfzMhnQtwZrSvBD3dW5mWIOTC1MGal35MyF6oKu64l+bPIGe24MghgIMDrB7K05u4EcGsAMr2IYVxeXePN8WMdgRvQvUQfWcHAM5MymNXVUeWimjPnhfduy6BCp0G4bTDiKW8AAgLF80ovR7+yzrsAdwytYFdg8HtT5RlFL0D3jAB2oWN6mU503soqHsZXPER8p6dVGkqX8wCKFxa+FCBYwcAzEgOADBhgHEVK6Bx1hMQZb+RPdcB4j/y4tFS6XP6V+jRnpNON8xzt4ICAU+DVtVJ0K0B4G1SN3uOKIIB3CXQAZaZX0LgrneRkiXUcy6TTawqY4DoqHhixzsXnPEhDYPASgGAFA89ASiCVklRhM3LzSi5cNX2g7iNdt3UnG8HNAQIrIJhH3bqaa/yf0gbZaC9rZwUAnCyqeApcrHQ4NAcEODDAcefoi0pndWRM/UfjWxn0DAyjkVf8BsV0LO84cN6C56YVDDyRMkTbVcSMNPmdAhQKKSN1O0R0TD6eGONkxp7zy4zESjU9Vz115HEpP13PAANUNdJSshXvVbwVGBwOdWQDZYHXA8zdIcC6Tg2C3Gge32WDqowcUFCggHl3o3oOi4AAvQM4TfurvAQrGFhITiHyOxcvG0Gz0C3xLqhOooAGovPj4+O9k7JCEBHZZqhWeRxW6tFz1JUDn0u8Ull6WfqVYqyml+aM4qoR4Uq/jjIvEd6zN4BBwRyZVHLFhrEjUxl4UHkpuYo0umCbeXZlG2Nfl0bYl1hHsIKBBTTHG9BNz438KzDwFIHAdAMI4ElZGMbF5Q6nPlY0Rr4C90+mp9aJi68U51PAQHcUWPUJBKlKXjhcJjcrOHh56gJO5RFQYCDLo2NwlTFX+ogHM9n0AObdIcUT63BnvDNgwOG5vzw3IFjBwEyqhP850uZnqjNUiloJpAqj8uNOhV/bcvwhiu2O7P5kegkQENdfBQY6ac4BFE+harS1yt7TqfIA4HPlFWAwENRpGwUe1Ki562Xq5MflxDwzfrJ7BCNuapXDRV5RTi7vc9EKBpqUCX/HPfQURdwNozpY5bZHg48C6D5pzJ1hzsFDK/1LcwxrNT2j4ldAwN27durwm43e1WjMKWqlBHmE1SHlNVjlcDllcuT0IeoIBgfxXo1u3ag8k1XWN0r/YH6cnsoLwzkPFvLrAEBFGcBwcqu8BE+lFQw0qKNkVaNlxjobzXd5cvxwp1D54Psw/GOM8fDwMHa73QQE0DOAblsEArgaODqO2hLzpyvjSvnMjaPCdY3/Em/BnLBVW1fvmWfl5lV9LnMHq2cr5VTJVQYCFAAY4/H2QCbWFRkwyEBBVR41Cs/Kqs5QQe9EB3ByWappggjDdfkrvAQrGCioY9CVIVZCVxn77ijQdbQKTWM+SnBQwNgbkLndMkSLCHaOMfndaG7Zn6OunOw6ecmUWQfIuDAdQFrllfGGwMAZnRUUzKfuICh75kjpybnti+8zEKDk3AEVDs8DGaULu3LE9YMDrSqeAlpBzwUIVjAgqDKqHWPtwrFAu5GO62CbjXe7VYrVKUFML0OqrozBE75DIMEd6q3SHGPXidcN7+TIxXsKkFAyUPGTKfSsbroK1RkCNvacP/cnV663Lpe/gipjr9515K4a8Dj5wSu2pQOVrq0zPeoI5Y/XT3H+Lh0nwyyDqn7ink+BRXqOcwhWMADUUcK/Mj8nTEqQlRGONDJAwfkqUMHP2KCj24p5DIHl8G8dDFTK4qXzVcCxCq+uTM49W8ml4iujTHG7/JWCrwx8BQjm8PynUMfYzxkcKXKgTb0bY+ytaWIwUHktkf/ql/E5xr5BZkCgwiO/DAjm9MFssIbxAqwskekVDIw+CFg6MlRp8DVzv1cGG/lw6XXQPYdnw57xlZXzdwADr02qXTO5dYa6mw8/64KBjiKa617tkJLRCgRwfObpVw8GDpGcfpkrW9komcOpaxaG37n3S4CAk2U0xnEI0Bj7gMDJDqfjPATsSXVlUQPA4CUOLVo9AwsoE+jM+GeNWuWllGsVLzO+8R8FIeucDvFXyJo9A+r4YlemJUj1UOiQjIKrx0xZs8x0y9MBjCq9bNTHxKMqVqJZeM4jAwRdfg6prV+aqsHG3LrpTAmgXsnSyJ5VA41MjjMD7t7jV1ydPCk5dICA03DpcTnwgLgg9KC4tBz90WCgQrsd6iLgDIFGOlkc/vhFvGeXPZ8giOF3u91eOixMndG7Kwe76ypD8pao28bPTW504cLw/dI2qMCEC8fK3/3PyAFZFY55qTxjS/j5U8gBASc3Xf0V7zJA0KGudwDzVuCy6lPunuWHdbKaMlD5OODqyhr5sOxiOmwblsr3HwkGMgWqwnYrtRol4y9T6i5eEBtdBATxU7sBME1Et0Eu/JzyKkBQ1c2fQK6u+F1WT3OAAN538+bwCvRloEA9Z8XGilAZaVXWrjwqoKzyUnz/qeBAyYsDA0uBceUlULxgPL7P8uG2Z7e+kjMHbIPUeSrxH/Upxu3qeORF6d7uabAIHJaAgj8ODCilphRi9r+bXlzd17kyV5TLizsHfsQi3PY80o9w8YwBBKanwjq+nNHPUPxbpOcAMkqJzk23O0qr+MjSyIxBBzhjHgq0Kn4cOJ4Dwh24YKXYravfRXYrwnbnTwl3gd8So+f6Qif9LF1OP56hW1/pvY7ereoEvzCowKwroxt8cd9Rn3pGHhAQRJnn0B8FBrJRzhKFX6WHjYNgQCnLiIONzz/FKxpv7NDcIRRaVGjY5Zd1Xu4o6kMbS0cUL0m/mr+5SrMK91TDlgEANzKs+g4DQQaXrOAyRTjHiKuwc40/x/vdAYECAs7gPRc5j+HSfLM2mvMuOwsl6w8YRt1XMuT0LQ/6sN8wLx0g36HfHgxUyqyrZIKUW6kCAw6N4jXuM0DAebCBx9X/Kj9nnDGsyy9DrlxmNABz0elr0aEBlblyyvE64Vh20Si4xaFO3pmc4ed3DvTObQ/nGejE4XjZs9+FMiAwx5hhGCVPnJbTkcgT8+lkxA1eHH+q/GoE3ylrRjhl0I3DfGHcCpxyWyLN2VnwW4KBCr11lFkXAWYjKH7nPAJuBBNhQrB43orT+fHjxzg+PrZ8K7TJvHI5s07NAILr5y0p0pf0XHRkSz3v8OeAKYfJftkoUSnvDCgq5T3G/vqU5wKMChAw729JJn81uXYfo29AXTglOxkPmH5FDhz8KnJ6mgdUcd3tdntTBh3KQJPiBeNxeLegsKLfDgw4dKmuVbwqH+xEKg3XsdSHfzh+NCLuHR3j8W4BVra4hkAJjuInQ+z8c16DTEG8pKF9Cr0En3OAgGoTfq7kp5LzyvizYcj4YPnDcAoE4EgHRy3qsJQOWHcju8yoZfH+BFJAXw0Gqn6cjVQ7Bj4DDZUxfE5vksuXdRrLtIurgLhKy5F6l+nXrJ9mpxYy/VZgoKMEOWyVVhArOqVIM3KjIk6PwyMgyFxkAQTwmnWUqiNj2fi4YgdCsAwO5Bw6uY72VJqj8CpgloVVV/XetW9lIPh5NkrLwDADApSvrIzqf+aVqhR4BWJ/N1IyogDeGPmCPNVP5upYxdccyrwClcGtgED8r7wgHcPOdaaAVhbf5V8NBDKwpei3AQOVIM6plEpxV4oza7S5bi1UmsyLAwRotJnnDO2jkeAfxs9AByLo31GZzqUuCHDyWoEBjs+KXb0fY/97FO7e9Sl2J6M8sIwpw83yjMC3Q5h3Vh+YrlLqXZDwu1FHd2XlV8atm+9cYt02Z/vznDasgGhn8NSh5+Ap0mGg4WwUryNw9GbAQFXZShnye1epLp0sr66iZuOYoTnHU5YGewp4H21WFhyRuR+CATybgBcIsuL9nZVpRZXsuP9dwJmBiTmgAI0/XvFe5YPvcBrLgVAkJb/qvPcOsbJUBi36RJd+Z7l1gBMpG2lXYTp5O3Co8mIgwPdV+o5nZThRd3VsBffFTr4uHRdWgXEeeGX5zAUqBw8GOgXBEYuL4xQGjxpUWPfOLbSag4AZ3bkwQRVixwM25iD3yvgcHx9P9w8PD/L0rd+NXL1VHbiTnjPQfGWj7WQzM/hdcIz5RHsrwnd8OlrH+KLC5R0wao6T+6jqL6rvx0iS20v1eZfX70YOVGaGM7tfovccaGNdqEDAnLyd3Che4n23PKpPYvrurAHmH/OsvA8ZsOBpWoz35sHAXCGbW3Cs3DmAQBnKjPeKh6AlXgNW+vFe7Zll9Ov4UMLEnoHj4+Px8PCw91511GyEeOi0pA074SoQoJ65Of0s/0pGs/Bh7PHMClzAyjyhXAVQVErYgYRIL8JkMpoBZ56+UOd6KAVcyervAA66curqt+sZ6Mgb17+SCwQC2fa4Kq85/dP1QwYfrBexLAqocN0peeySAkxZmQ8GDHSY6BjhrjLj+2oUPSdfpYwrhRzvqgbrkkPECp2y0uNnGU9cxqOjo9QzEMCgGiW/NUCwhCpZcGDAAQGleJwMOjejU0wqDyZW1hEuwjJARKAY8RVv1chc1aNKw/VBVuIMBLp5qLTfKlUA0bVJxxCr+mfD5fSP8/qoHVeYV0f/ZpT1J+aHy1od0sQfjYtycHmcHOK7LAzy+FR6NjCgmO0gbGcw5jSwQnSOOhXnBJsV81w+q7wzhebCVgKMLljHBytVVPjHx8fSMzDG/qldS5H7S1AHHHLYpXlk7xyAdMY97rNV/3w4ELpcOR18j3nzAsIgNWLDtFgu+BrhO25nzmMOkOd3DARUHVQA4XfwBgTN1YmZ94XTU/rHgVRV3w4IKMPp+kdFqk2r/ufKn+VbASKkrnxlgDeeVR6Cbj09GQxUjC5Nc27cDF25MMr90+GrQpEdqhq5Cp/xgbxgR+AO4JSASh8V/8PDwxhjPHIHM3F+r02VkXkqEKgAQRcMZO2MQC0DAxgfCZVsFzC4tFw9cH5j7AMLdpVyfDUS4nBZ/+nwngECzOOt0xLjyZQZUc6rmwe3P8sEAwiVjzK2mXey4jeTX37flY2ubp9Llb1bIr+LwUAmZBlymjM648qfI8xLDXP1vGuEOY5SNhymwz/WjTrjwLmhcMSn+KkIR3yRR3XUJXslDgUQjJGDxCXpqfZ04IrDO6OvQIHb8hn5OUOIRpnbHfNy8/q8fmCz2TwKW40wndu3S8pYVwBM3Tv63QEB32dUeQcwvSUgAP87EIBhFCDu6MxKRtgbVIXFcN1Ru6I5sqV0FfZr1ffn2ssxnugZwIZR75i6BshVrHr3HJ2VhaECAcyPEnBn7Hk07YAPl00ZBOaJhQH5wF0GqvMqtxw+H+PftQEPDw9jt9tNV1WHb4GeAgAqBVKBHyVDSwFBF2yxfGX9kOUgDP9ms9lbFxCE0wKxgj/S4a2nnX3irhxoFJQizsrP58WrdPH+rchxRnNlQxkUFU7dzwUFmJ8CA/Ff9Qc3COK0g7dqsJf1A05bDea4jzqeVB/MeFfxOB/mH/X+XECwCAxwo7gzrZ0CqjqbqlBnNFVlVGlmzzjtblpKsBWKqww9KlCVrwICTiCQD7eFS3VA/o8LBB8eHtKjlLvg6HejrrwoxeEUnTJ2fB5AEHt+ON9oO3dUtZKBeIZegTFGCgQwPoMClW8Ghl24LgDjdLK1DK4ufgfqAAKkDKhxeg4IZPGV8a9GthlQdunzs0xvz02TF9VW9eDktgs+na5Fm+HsYLfd22DANQwaJ2ZCxWdjmCnRyoh00A9XtGoMF68SDNWIzJMSEm48ZdTd9sDKI6D4dPwoMIBpBp+4TiC8A66eMtD1uynZDlXGv/PjOOwZ4LzQAxRtGPHUoVRBSjErUOIUuCMFgDE9vndpdIwa8qjCMRjCOvqdyIEl9W4M7xnkONWV04x32WAFryq/qm9gul3Dp/JEUFDFmaPLKjuVAQJXr0qnqmdz+JzlGcAGcq7KThpY+I6yQaHCNDIeMR0khTg5vuJJxe+McqKujo+Pp+154Up1rvaI495h3XB5lSCodsPwGEcZGfU9emxD565mXn8XMNAxRuqa/TpnCWCfwzSDsoOClMHrliN2lKjzJLgPV6N6fsb9SX36NQMRrqwdXpRucSO5tyS7c0DTGH03Nctb1t+Rsjbt1GumjxWfcd9tM9alLBNVvsijC+fkvSoH8xmkDtNyYbs0yzMwF6VhXE5LGWU2Hpxe16WiqAIBzIfbc53lr0ZqoUxPT0/H6enpBAbu7++nUTYraeXKVXXTATZx5YVnnBbGYePOB8KgIsX6wHpjQcW55LdMWR2rZ1lfqYAAh+UtgNg+KGtB6MGZY1AZYDAY2O12e2cJBA9j7Ct+fubkOgAlL1JFvjN9Ee/d6DMrc/RH9poo2X4LlBkSZ8zjfeUZUMbfGaRq9J8NWlSe6n3Vvqyr3eAwe8/pou3COsUfl7fD9xzgMiftrFxMs8BAdfAJh8/+q3dP7XAZ6MDKc+BFKed4V4028IcHshwdHY2Tk5Nxeno6zs7OJqVzd3c37u/vJxe88oY4Baf4yTqNMiKsXFU5gqr95ll9dDrbWyFXx8r48/9Of+iE77TtGI+9axUQU2dnMIAM2eUdCUpZYphs8R6XsTtyUoYiK2em0BEIsHGreDkkynSACzdGXrZKz2MaTl863an+d2xJh2dMj709GWVhXXxVP07vZWXpAAmVNvfbThqKFnsG3Ny1q0SVXhWG33c6pGsQ7igdZdzpNJwuK8/j4+NxdnY2zs7Oxvn5+dhsfo5E7u/vx3a7ncAAjqDjHp87kKD4yQxSBmzUc47nwJXKq9tuh07O+OMzBwRUGqw8layxcVQyi4dAufdY/27nT8Tl7w6oqYm4KmWDx1S7kykzUnXi6sAp4GrLI/cFfq/idxXqa9Fc/rq6rSPH8SzzBlRAAJ9XeVXEMprJoHvHsr3Ew1Dx69rAGfss/+fQs20wkJ2CxpXeFcwO4nMKszMijmcYt1rjoMrleFSKCdcHoEfg4uJi8gw8PDyMk5OTcXd3N23TChAQawniykChCwa4rNnhNIqizrgOuOxOYVSd8K2SAlt4jXsFDoLUiCWeuzwZCPKUjWsnpGxNgTL8fD/GT/CBo3B8d3JyMskxH02sqCPH/NwBT6zP7EwDbiuuN+XJeGtyrMBUVmd8X8kw58X33VG1o0xHzwUFGU+dtLveBPzfAQLOpnXzynTsEnldNE2gDKpjyik6NcJQyBLD4nPOjwWWwYnrDBjWlVul50bGAQYCBAQQOD8/fwQGTk5Oxv39/bi/v5/WEcT17u5uyld9uctRKLMx9gEcu5CdwHL9cjtlHgFMmw0Yt+NL0lNHdhxXyT4+7yhR7tRKeTuA7Z7jWRK8RoM/PsQ8hNxuNo8/VISELnX2MnCf5J0org6ULCr9gO+ULor6UOccMLk2dWsXXkt2O5QZzcqQczqqriujzDq84rM72lX5V3HngGPHlwvrbBK+79SDSkMBCpUH254lfDqaPU2gpgeQAaWkVBi+VqeTubzUe5UHlkEJeCUsyjhy2rhGAL0Bl5eX032U9eHhYQIC4QkIEHBzczM2m824vb2dFKkSNCcsY+zvCuARH6ZRCb4qO5bX1aVS9K+pULuAIAtTyVgGOJ+DuF7xJMDIT00txTs08mOMR2ABFwpmC2h5WiJ4Ul6AiOP2+GcDiMwIKEDgRlpOr2AcTnvJqO2tUEfGFaB1xrWjO1U4Z7SyflQZSKZMb3bat5JPLltWL5W96hh6fPdcHoGgJy8gdKiMmcuMvCtUF9WqylEVn6WXCdQYeiV0xEOghF6Bi4uLCQhcXFxMuwmCV54WCCBwfHw8vn79OgEG1yGc4Kh1CzjK6xwLy+/YXaxGZnz63KEp0AoQVHKm4iul6UCDys8pPJce9ifsbwwSMCwbTm7LMcYjrwC+53UH/D7CxPRB/Ody8K4UBCxV/cR/BqmYbsgg58N1x/+zA1t+R1LAKp4jKb3ZGazxc7QVmXFVcbj9K56xjHGdM0qvwqLMMRjIAIGyjS79Th1143cHQWM8cWuhyhyZUFdmrBIQzicz5Hjt8qnSZsWXpYHCEV6Bk5OTcX5+Ps7PzycwcH5+Pk5OTvZG7FiW+/v7cXNzM75+/Tp2u93kNXALNVVd8xoBBAI8X6xWhFdKgfnmNHH01/Vk/A7kFBb+z55XWwtVGqrfsHFVgFq1ndpJEOTOJmD3PLvVcXqAt+0hEMA0VJ06xav4CSDAOoDljw0FAvM5I8S3QnP7XSbPGKYasLH8VvzhtQMEmA82gvhTcTF+xlekx3yhR6qSDwXeOe/MDineOX1Xpq7szj6B0DWuqtTKdYIVUo26XR6cP/PJ7s6ndmqXT+SFCwcDBJyfn09egXgfv3C5Pjw8jLOzs7Hb7fY8BAweOp6WyqhUdVmVn0HHGOOREeI27SiFX01V/nM8B85LkF0xXPVz03EcP8h5ZDCtuKq1AWpuPftoEfYrlCW3E+aplOkdF5brKTMWb9nYzxn9MSmwhO+quHHt5O/6TxcEOJ4cEOjyonRh1ueqRehdUrocZbVT/w7odmwF05M/VJShMmSEmWQgoNLmX+aB4LicxpwOX7lpnPDGT+0iCBdqhIn3p6ene6Oo29vbcXp6Ok5OTmYJXlcwlcHGNFQ6LJjOEOEuCDROEVbNQ78Ezem0XcXqFBnnt0RhVEpnifKN/5EmeqniHRtu527ndHlkjbtjnB6opqpYn6hzAJDcWfFZur8TZeAU/2egam7dOIOd8Zil5cBANcplncb3zK/7z8+r/tw12Nn/CpAq+1rxrgBBh54EBqoMO54BvGchUMLB6bv8uwqhw3+WNirYMX6uyo5zBQIQjPHvVACHCaAQZw6Et0C59pkvhei5zCFk8bU5HrVVo4Ksc43xUwk7QzBXYRwCdRSre5eVF+VVgQj8r2QriPf8qz7FaaJ3AI/GRs8Upo1poOdA8YMeAN4miz/msTMqZyCgDEXVNsqgdJWr6x9vhZweRNnh+lEyqUavStar0agbgFT6vpMup5/px257qrpA4vU5EaYaUCKvnT7A6VTAagnonQ0GGHXMRd/8rjMKd0LnENOckUEmXKxsM6SN8/O4m+Dq6mqcnp7uGWCcSjg/P99z36r5Y+Qp6xSuvFEWtTNBhWNFge8RWMS7Svln9fzWKFMM2XNst44Ri3TQIGdKrHNKJK4jQcAZYVW7YVzl7Ym8EWQqWVCyO8cgo2zy7oFun1bpZvkrHXBoNJc/pcPcSLJjNCsd222bDhjIRs/q6tJX8ZfYEZevkysFmlxZOu8qEDxXZp/sGWDqFobvuwoyqAICKm/VWFV+GeiIK87rBxA4Pz8f7969G1dXV+P8/Hxst9vJIOOJhLGWID4vWyHiCkUqgeMtXRli5rQwPO4v573jmdKP++eYO34OmiNniiolOSd9FxbzwLl9tQbG7ePHtHB3Ca5XCTAQberWDkQeuFo/8o/n8Z8BAStypQeivPxOhWUenoNY/7j7Q6SlQMCF4Z/Sz5nB7vLE4K47ancA4znroUNKNjtAwKXTsZ2uPRzNKetiMKCMZIb6qobiArIBqlCQumfhdCNiFVfxhOFQkHHhYOwkCCBwfX09Li8vx3a7naYD4uyBAAN4yInaJ56hYsWTAwSuDPg/7h0C7+5wUG3xWmAgG008p5J3Iywk10ZOht2ivyCUEQQFPJUwxtiT0ViXEuHitEAF8vDK91huzq9DzrhUcl8pXzXCnTNSYiBwqJ4BNaiqwjrwifed/s1pPycQ4HzdIInTrEb4mY576mg96/OqTEvI2cnnoFlgwBnHylAFIfNZ47rO75BjpRDcCEOFn4O0GBDwlsKrq6vx4cOHcXl5OR4eHiYPAXoPjo6Oxna7HWOM6eAhPowo2/Kk+OBRk9rzPcbjBX2q3rDO0OhwZ+bwXI+H4hVgWjLqc8rSdc5u+gqcYR3jXD/3pSqPiBcegfiKZngG8MyLKA8CjFjvwlMJyFu8D56DXNsz/8rr0QXDnGbXWFTvDxkILKW5gwo1uFD3meyzfCr5VuGyZ5En62S2MVV5uoAjA1OVjGT9sxo8KB3l2qTKK6M2GFBAYC5iV4XiCnajKzWCwNGmEtIOasOyOcpQc/z4WwR46ND19fU4OjoaV1dX08g6FDu6ZhUYwC8acl0yPwwG2LsQYTrCw0g/0mJDEF4NZRS5DQ8REHQ6jpK9LB2WWwWe5/KhFCYrYN4iyAACgQBubw0e7+/vx8nJyZRmyGO8i+OycdopDhtCQBBx3dqB4J37FZcDQc/ckSem6wYxig+mzAC8RcrqwrVHlk7cd4BApkddnkvazQGPTrmYKnCpws/RKZj2UwcTT/UWLPYMjOGRVOUu4fRUHH6nUGQ1aqjQ1pyO7kAAClko3gAGoXgvLy/H2dnZGGPfID48PIzb29txd3e3p3C32+30iWMEC6gc2UDxIUMIlLI6wfSwbdWoTNW1MlCurt/iCMuNLvA9A1SkDBxxODXS4vBq9waGw9MFcdSOWwl5WguNL6YVHqDwCjAgVOdNYD2gZws9Cw4QYBkR2GAbZAMKvFd6StW/ak8E0W+J5hhzFzeTYzdSroCA4ov7TGZXnsK34sGFU3k7u6L6dCZbmSxlvFf8cfpPAa+LdhOoRsyMeYagOqPUeIYKboz+caORBlc6559VYAYEMAwCAV5DgLsK7u/vx+3t7TTyQqWJP1ZKzhjxKnHc2pcBpd1uJxU5hnMgAEeQTqkuEcqXoi5vCvip9o93mcFXYViGlXLBkXIAADXiZnDIIIC3GMZ7XCDIZeks1lOgaLP5+R2OMcYkz04fYF0wkM2UIOfJ8aKuXJtxWFWet0TOEFfhkSrw3jGmqi34eQYMVb/g/uHaidsx7iu+uwbchcls3VMps6fMzxJQ8OTdBJ3RzFxyhpbvnVB10o+wczqL62S8ZQuBAO4sCO/AdrsdNzc34+7ublKW6A1AdywresUbKni85/ZQHSYzcO7zsyod5y14a6OrijrGpJIpNaLgXxivkIFoT5zTx/vIH+UAtw+yVwDllHexdPtw5IX1stlsps8Ybzb7XoXIW+1+WKIsWfc4neG8K/hO9XFM5y3LcdaHnRFdklb2rAMEWB9l/SPjT+k19R7BRCe9qm9nQOipgCCTT6aqXziaBQayilvSWToN2+Eprhnq41FLlRdXYtVpIn1eO3B+fj6tHTg7O9sz7j9+/Bjb7Xbc3t6O29vbsd1ux3a73ZsecKNyzJM9Juo9knKBhqJGw6OOqXVoHetEGYm3Tt1yuJFBFkYpOwUOMCxv48S25isafwQBsYgw+EFwoc6MYFli+VInFoYsYR8MQNABTe65UnjZSJGfdaYBKkNxyOR4z3QaktNvWdynADrWt3OMWMegL+WrSucpegGfOw9X5THJ0ptLsz9UpJjpGHSF9Dh+p2LZ+LhGU4hfoVLHY4SJZ6qBOI1QtPzVwvidnJxMOwceHh6mbxB8//59fP/+ffIWVGAAy+N2EATxnnDHO6alto6puGigOocMvVXFGtRB5UtHBJl3AA0ng4LIEwEAgwBeIxDHYMdC1yBeG6AWsHamDHBhKfMYQAAXKrI8cflUPWG8IAQC7O3gszFYlhX4599bJmfIlU7kOnG6X+lQR2p07doxC5vxj88yYIjhFC8dQ1rpgoxf7BPuPtJwg4suqJtDs6cJnFF1RivixFWBABVWkRslqbjq3lW4ygfvVViVL3+k6PLycrx79268e/dunJ+fT4pwt9uN7XY7vn//Pr5+/Tq+fv06vn37Nr5//z6tI3AH+LDCy/b8K6WseI+0Is4Y+we7ZAu5nHKeoyhei1xnyzr6UkDQDcdAAOu2AgJ4ZgCCAZyuis9px9c04+NYu91ur70DCIS8hiGPPDND4cob8hhAgEFAAB8uozLcXAeuLnBxpFs34JQrprdkpPWSlBk8d1/1S66Hpf2YjbvTE3OMcPVO8a7kJa7cv5gnpStUvVQ2EO+Zn4qytDugpKLFnzCuMlMVp2juyAldkAqAOAXuEFZWBscH5h3p46LBULwIBq6ursZut5vWCSAY+Pz58/jy5cv49u3bNF3Aq66VAUdlFeXLRvVZWflUN9yeqJCqQvMORAXPb5GU7MxVjqwAO4p7jMfgF7fuYf58QiH+EJyGHL5792469Ork5GQCn3d3d488SUEBLsKoMh/xrhoM8LZBrJ+QQdwh4YAm58PlD57jqtYJKMDB5XqqIXxp6hh4B+DQYKvwrPe7oJfT7xCm7wC4CoN8q/K6cuEuHQdYqrpROlHVnwsXaaoBqwLEGB55mNMuSLPOGcAKCGLEVwlShHNIjPPECmAlko0QuuVxBo7LohpwjP3Fg26tQCjf+/v76WNBd3d3Exj48uXL+Pz58/j27du4ubmZpgkqA4t1rMqS1bGqQ17PoOoSw2McFNiM30OjalRY/TieStMRG8nKAO12uz0Dx2AQDaLazfLx48fx4cOHcXV1NS4uLqb1Are3t+Ph4WHvs9mYbqwlUTsBeIrKKXw0yNEHgrJDiarBhqqDyA/TxkW5Wb/C8jlgdGiUyVomi06P47MMCCidUgECzlvV+3MAMZYPl4fyrAavqixOB+NV2SPFB+vQDPSgLud3rvxz9e+i3QSqUiuhY6PFe4ld+q5BgtQCt7mKmVFWh7BMGRi4uLiYjh2ORo1thQgGYprg7u5u8h44A875c1mUcef4SDzS47TiPlvExuCKFcbSTv0SNKfTdBVV1nb8nI2v6i9Iyvjj80g31q/EB7M+fvw4Pn78OK6vr8fFxcVk5I+Pj8fd3d10IiEaf5xqUvP9aHy5L7q+jaAmnsW3ObKRjVLCXA8RBmWVP62drcVR/B6y7GY01xhUQECNll0aHT3KBpLbM65cJqYsL1V+1YeZbxwUdQarXHcZL2xnqrihax2Prrxz7NkYz/ShoqzDOLQzF7moylOje4fa5ubhSAksfq0QwUD84jPFsYUwFg1++/ZtWi8QXoG7u7u9uVqldHkUxPxXHgXXuTPPCyvPCghEmM6Cs0Mjpyy6QKCTflwzIIA/bJ8w4JgWxsddA/EdjOvr6/H+/fvx4cOHcX19vffp7N1uNy0mPD09nTxTWMZsVwmPoHmKy5Xf/Y9nDphyHA7HvFRAwCn1t0DPya8yzBW5OnNGTb1TAAAXv0ZcJ1NKPzkeVL7cHzEP5wXhMqm0u14EJcuso1V/QL6ycndlZNY0QYamHapHZjJE5PLEqyOuQGXsOmGqPBgI4DwqnjiIYCCUboxQbm5uJhCACwfVTgI1N4t5s+F2QqvQYtZZ8b9SnJVnAAkBwaEoWtWpqvCsNBT47NS9SnMO0OiMRgIQxCeywzNwfX09/fDMi/v7+8l7dXp6Oq0diHyqfujm47N6QQCBi1xZMStggXKOPKr1MrxF0oFbrld+fyiym9Gv4JH1JLflnDxdWNZteHAbfpgL25j1kVtw7fJVfcyBgY4dqvp+JUvKPlU6HfuLG/xlQIZp0QmEXCilJBVjijpKLyOslArNdo1ilR+P4pRnAM9/D6V2e3s7eQECCNzc3EyLBtWWQuRb5a3qTJU3/s8FQZy++2VpHpKHYClqVnWu0nIA1KH/yiMwRj4tNsYYJycne+nFL8AALmKNBYQxbXV09O+HshC83t3dTVtgI/+OvKBSxiuTkgWUeZxyQFCAvHQGEh0Q4OL+CbRE/2WU6fJOXLXeJUBBpKOmKrN2XmJ7GBQ4OcbydcrudrNkOqUDBOby5OhJXy1UxkqNupwwuEJ1kBjH7xQclWtlGNXIjxEsjtDVh4rCKzDGvwuY0CuAHoHYTui8Apx3hzL0if8ZSCnDpdqnAgLV/7dIWT0p1K/6hQMCTKr+VNgYUeP7AAIxRRBeAdxJEPP+m83mERjAnTEBCjBfNuZqUR4TyrNaW6AABAKBSqlnOqQDAjIAFu8PneYYANbl/EyFr0bbjiobwAMrPA8jdCj3td1uN02n4lZYBAacT8TFdPhZhGMPAddBx2ir9zxq53xVPCW31UCEdUKHFnkGkIFsNKMYVAq0mx+SU7Tc6KqDuBGcSl+9Z1DAhw2FZwC3YuHuga9fv05nCqipAWdske8MwDCfTqBZMPmgFm5LjP8WleUYucLsAkr8VUBSgQAGAqqNkFdUQPE/nrHXJZRpbG2N9QIKDISR3W63e4tdz8/Pp4WsOG/LCxRZllABu8XBXD5U3nHoEddl5Ks8ZlyfmL5bdKX6fgW234p8dygb1HFfxzhMc3S507GsR3FAFedgxBZYNNChL+PDbuqbLrgIFom9C8w/AwKMt2RQw3lw/bPeRd4qIMv6GkGACpPRrHMGsndVZ6q8BBhOFT4TJnzfyQPjK3DD6fGVy4mIlsHAbvdz9wBPD4Q7NoS6Gr3g8xBy5k+hQRQSZ8gRmSsFyvPCHeGc8+4lac4ISpECvuqdGwHgQilUcNkIGxVUeAN4FBQyiFtaY8EgAgLcSXB0dDTu7+/H9+/fJ0Bwc3OzN10QXgT8gmaXcDeCcufiAj8ezag+p3bIcF2yrOLCS9eWvEVS1f3vQsqIV3qTR8RK13f0rgLF2bbsALAMCB4eHsb9/f10iuvd3d24vb2dtmarT24jD6zTFJ9KzpTum2OkMQ7rChWO0+d2UPk5nipafOhQ9lMMqeeu4JlCVEKYgZCM5ihxFQbnuI6OjiZBDjAQSjt2EODOgfAMBKplY1ABA1VehfT5PY+snlJn+H8JEn1Ncuh5Lu88msr6A+ejRgTIn8tLjWg2m82eR+Dq6mq8f/9+2kUQ97ytML6kGWAAwSzO26LrHhUpGnXFN/f7kHF26cZz1SbqoCJUpnzYEKaBQMQpeNdWrhxvkSodzXWfDd5YdivjqPqGWh8Q22BxweuHDx/G+/fvH52NgXr127dv48uXL5PHNaZecZs2A1A0vkp24x5lCvtfBdxVPXN4nmpG6gyauX65rufq+WcHA8FoZ5TrwriRa8WTixuk3ENZ2TiNrNy8XiBQLHoGYpoABRYXDmb1hbzwboJu53Z1jUIe+72jvpzgd0AK19uhkjPY6t0YOeiqwDEDYSe3ip8MsPKZAgwCYvHg9fX1uLy83AMDDw8P4+vXr3sggBdx8WeT4563wbrRltIPmdvf9VtHqOCjjzBIU3XqqNMXD52UrGS60gEClZ4CZnjvPAloAGPRdejOmKKK0zLfv38//vOf/0w/nOI6Ovr3pMrv37+PT58+jb///nv8888/05ktuCYrvAUhuwgClJwxoSxhvGptlzLwHXlX75zu3e0ef4J+qa6dDQbYNa0MERMz3x39OsKG6SjTjAcmpWjxuesQ6OrCFbAxBRAfI4rzBXjxoPowkQI2jCa5/NXILKubEGxUvm6lrqrTrN4OjTo8OSU6xryFQKozo+HEdFgBY/4MAFmhum2E4WqNXyjUh4eHcXx8PC0gDG8Wf+GQXegBcAM8xjO1tW+Mxx8J4u2Cqj/x1kOsN67LUM5RHteOeK+AnFK4qj3eGnX7YBaG5Y71ZOYNiKuT381m/2yMAAbh4frPf/4z/ud//md8/Phxkt/T09Mxxhjfv38ff//99/jvf/87/vrrrwkQhKcg7m9ubsZ2u320QFt5jKq6CXCQlZ3Lr8Jn7YJ1FKSmajltTmOObZ39CWO+VgioY6SdUeZwqnBcETziV+GVQnEjB1VWLnMINI6kAjnGXBYeMsRAQLmyuHw8z6zcdMpIq3Iw8SiV00TeuuQA4yGTM+quDAoQVH0D4/LoRIHcMfbbnmUgwEAsuAoPAE4RXF9fT/OuMfrHrYXfv3+fvFkx6sr2eoccoIEPvjLPQPZcGZnIz+0owLABBJAndXCXU+LdwcIhUWVIssELhq0AjwIBaKQ6Ri3jhdNCfYrervfv34+PHz+O9+/fT96t29vb8fHjx0nuP336ND5//jw+f/48Pn36NK3dOjo6mj4Vj1/nVOTsF5fxObdLZ7qbAYGzgQ4UdGnRNIH6v4Qqg+zCY0d2ezeR74jrDK3rEA7kMO8hwKg4AwjEfCx+fwDPF3AnDrISiysaA+TDKTA3gnX1637ZHJlrO4WQ3xo5MJg9w2tGHZnnPJSLVX0L4+rqanz48GGac3337t04Ozvbyw93HrjpgXjGU0duNBR9qdoOyPUb/QZH9pxOlSYCgYjv+izmje9U/1Nx3wKxAWcAhOHcPQMB5ZF0+jfrJxE32piPjA7CM1zizIyY/jo/Px/39/eTpyu20uKHuNBDi3nHtEHwobxP1UDVlUt5UbG+kLL/qs3UoBhllgGvysPR4m8TKAX4nB0GFSXfV7zxPVeS6+hqhMz8OCFBJb3b/fxE8RhjfP369dGcFm4tZNeVE0AlfM54Y/nnGmIFAJxSrXh9Ch+/ipSMVCOjuFag2KWnZDn+IyllwPc4csczLcI7gAsIAxDESGq3+9fFj/OM7AVwh74EhZzilkN8x/OyFeFIkNOK/qS8DhlQ7Sh1Jrem6C2TG7Shjuga8mydUjYYUH0C2y7aLwx0DI7UlmsEBtfX11PeMdpH2d1sNtMR8DGthYRTBWogxnKA/KPsR38cY0xrrhDUKBCqZJXrnfNF4KXSwG2UDvhlNPs44kppZgxkyLyTv7tXAsr3ClFhfBYAjINhsdJVWWONAH598NOnT+O///3v5MIKz0DMYalTB7EMPCJ07imlfBXSZ6PuwI9StG6UpfJ7i6RAV/aLOByXSY2glFKt+EDlE/OruCWLP6GNW7MCpIa8xcpsXLuAaaNSdfyN8XNUj0YbwS2uK8D4qFADdLDCVfKGShzzQHmNOB0woAYJbxEMVAA1yOly9b9Ki5+hfqmACLZdhIsdALGtNRYA4porXGcVcsT9AL1k7969m+KgPATwUNu63cAKy8XTw2OM6ZPgAVCyqV9n0xwgUD9ed8S2aw6wXeQZmAsK1L0z3nM6YcXHU9LppM3lChT67du36fnd3d349OnT+L//+79pgcvXr18nYefFg0GRNy+w4bUCFWUKQaWRKVD1LKsjJZivTUrmlBJFw5sBAUzLvUdZciMNNTKolDE+RzcuvkdvVRzQMsaY5mOPjo72gGk2YlTtj1MISjnhzgNVX5hGyLmTFQTivNgV+XMjMlb2XP9zFOehEssPkjJ4XcODaag+1CVnFyKt7XY7nR3w9evX8e7du/H333/LQ4e+f/8+Tk5Oxs3NzaRX8TsvARZi+gAPtUIgEPKk6oeJ6wU9aGoLrDs/Zg7odDrDhYlwc2V50QmEjP6YSaX8FbOhpFg43QiZ03EV0zV8GanOpMIEr7F98MuXL+Pk5GR8//59/PjxY9zc3IxPnz6N//3f/x1//fXXtLI1kKrzCKBBilGaWiuQdVzFv0PAaKyyenLG3dVXd7Xua5MCAWrXxhi5V4RHDRhHKZoMAPLOnQiPiizAZCjROHgFP499cXExGftQTmF4x/h3Rfbnz5+nT2irE91QVoPYQ4XlQ4DLYBenHbi+ESAg8doBrDsFpFmXVLooe/4cA46XpEz/KV1bgeJKz3I9V7ofn7n59QCr4b2Kj7x9/fp1fP78efz111/j+vp6nJ6eTgMwPN0VF2mPMaaFiLg2IXQ26lQlL24wgF46BANYRvVT7cLtxuEy/anacgkt9gyM4edFMYwbTQbjKDhZoVUhq5FTpnDjeafDo5JWRiKmBr59+zb+/vvv8ePHj8ldFKj1r7/+Gp8+fRpfv361IzHOE921cR/GgOsQBTTrfFjPVYd1dZaFm9OmL0kdhcaGKUapFdBlcls/eVeGqhu3UCsIXeObzWY6Mvj79++T8sQ92/F1wsvLy0mpYp4xwvrrr7/2prACUPDXNHmLICrAKCPP/fKaGFU+BLpuKgynHzBdbk81oHB9gsFzBaYPnZboQY7fAQOqr8fzrl6J9wwkjo6Oxrdv3yY5CCDw+fPn8c8//4z//ve/0w6COCcjQHDsGAiZDVkJgHF2dja22+3eoVqOF64nZ29QVzMYiLxVmfFeAVIO42zpc9Hi44ifygQWvpOWQj6KJzUay9JwcTkPNhZxP8aYdg58+fJlnJ2dTa6nAANfv36VQAANA+fNRgm/TKcUYPCiVlTjvRstYf1w2R1ydR2F03ptMJC1K95nbewUHMuUSmuMx+fkuzZgxcjvgnBBVMyZhts0AEGAyN1uN66urh59/S08CnFwy6dPnyZ3K5+UiauvkZTyw/T5SFgFptU2NfQShEyjp4FPMHTKGwFIBZI7A4tDJae/OIwqb5YegzLsF3Ef7c1GVNWZ088skzc3N9P0UejRy8vLvamDOG9gt9tNW7RxHRaWg8EokzK8bsDFpDx5UR78BojKM9ORFRhQAMLVdYdmnzOg0DMzVSFQVyCn/FTndPx1yoD3DmkpYeDFW6joQ6n+888/k2sqEO3Nzc348uXL5IZll2sFQlSdZGic31fxOV/HV8WvkgWM+5wo9rnJIf4qjgrrFGl0ZuUaxfSQMA01YtlsNpOyxK2BuDNgt9uNm5ubvSOyYwQf38z4559/Hu12CdnFBVtZf4l3ag1MlEV5XrieVN0rjwAvGlR928kz9gNW9vhTgO3QyOlYNfhx9y5d1Sei7RAoh8F1IJfTjHjRfvEfQeTNzc0YYzz6tkscWRzHE48xHi3EHmN/YeoYY5r+UrKJ/CjZyOobbUN4y1CuWZ5Uvu4/8+NAL/Oc8evoWY4j5oJUHUgx31W8VcfMwmV5KGWuOhJvJYm87u7uxrdv38Zut3u0rQVdrplXgHnP0CSPyDjMnP/KmHE4VqRK4DidytC9FnF9O3AbxABKKUjVJ9CNzj/nFWDiulaKIub0b25uxmaz2VuQF/nf3t6O8/PzPQ/SdrvdAwOfP3+2x2XjQigc5SM/TslGWOw/uHsgAAu3kTIU6PpVixMdIMgAswL8zmAdKmWAIAtf6cSoE64fBHNOtrP1UEi8ayTAQFCAgViLFdNfcVBWxMM8QsbCUzbGvzLPa2Keu12jLMfHx+P+/n66Kt3Y1dMMCJgygOcAiKLFxxGzQsxGPZVyRaHtCO9cpD43/YywDlCx3t7ejs3m39Ww6I4NQY7tMs4r4BqRlZEyJsp4z3nHdaCMOD+rOrgKdwjkyuzKUHVCBwR4tMSjWlcv3H94ISLzFifvhZtUzbfHQtb4QNEY+2AgFhrimgHlcuU6QVdsPGfAhLygEcFtWRhGKecoJx9M44xNXHF0jM+YV4yrdNuhA4GgbJCGYfg+A/bszVGe0TF+TluhtwaBgsqTdRy2B8pcGNPwesX6GJ7zZ/5iuiziBxhwuriqr2xwxOUMftBeRDyWSyYF+F1YpZ+zMmQ0CwwwEFBIh5nP0GnFdCXQ2cjTVbYa7SuD0AUNYfBDIFgZx2gmVnurhU9Ynwod4pwTL8bCsmaKkesL66JjsLmtOR4+UwrntUFBZwTkDHoGBNx8IV55JNtRAjgidrsKMH3eNsWL7WJEha5dBAPx+/bt29hut+UCVybl6g+DgbKq1gpgvYeXIAxL8BpldOdyKJlz9evk1umLQ6bM+Hf1LqajFrCqb1WgZ2e3201z47zQFPWBA1/xDuUE5R9H1riGCr+bEe9xq1+cOxDbaREAs8fL1UlQ1mejn/E2RS6ns1FdHVwZ/KfKbxsMKKXHGTqU5wABVgYbYqeAOU9lVDHPbGSHcSpErcqKeaMyHuPxqWy4DaxCe1k+OFeq4vDIDEGGqg+nGJHYyCtQEbxxHoeqTJ08OmDI9Yr3zrXswIDKj9tBXZkPzAtd6CFrYdRjCouPZw3FiB/Q4s++BvGBQMwHvkcjzwAH32FaGFctSsStlA4IqPZinZTNa3Nfy0DCa1Mmvx0QoAyTAgS8iFkdUx1tFLJ3d3f3SK7RuGPeuAgxruwFRX6ZrwArcUUgEH0gvAfcJ3iqIAORbKdw+i9AgPLIqfpV/Rjzcv0crxynk1ZFi9cMMCPc6boMuHQrZY15OODABgzDs1JHdFmVDedMlfue0xzj5wKX7LRBZQScMsvcWwrgOOXHdYN1z+3BBkulp9rttZWpUnx4734uLv8YILu2YgOGihDjKkDL8oz5xCgsrniCWyjni4uLPTAQxhXPJsBT2tBNy0pO0W6323Md84iN+84YWlmi0WAg4LxqnEbcM6CugEDVr94SdQBBhGNQyz9laPGgnahrnKqKxX9oSJX+xTYLfYryogBxXBm0xHRZbOtWgAU9ArxLxbU791usW/TKsQ1hectso+vnmfHPaC4QGGPhVwuRoS4A4HdOIbuKwnAuHXymDFNVMRmqxgZGAIDPUFEpZZgtIFMLAl1ZXX1zPWXgjf87g1ShZebX8X6I5MCgAoZcH1W9IBCo3IYV8I10WWFgfrjAb7PZPwo1ZDMUNRtZPg0TCacVuJzIa3irwoWs6paBEaYV8TFctjaA64o9DtgO3O9UPatBQ6aQD40y3dWNy6AA/ytCjwGCwfAshVxWfSbIGU6lowI4Io+xfibkWq1rcCe+ZrI5xr5+xkWCcUWvF8o7b4PNyoRlU+84Xqc+59DiQ4cUGAhyxkcVQBksjBeV6hZSdQBEBlhU/hngQMUVxAoHw/J0gRP0rF6icyKiVvXE8boKQrVf1p6uLjPhe01woMCNMvysBDMQimmxjHPfmEOuHbEcLHuqTcIDgGUKd2bIME9fIRDgaQEsH5ed846RkgI8bvQXyjjKFGCA3biqXZxBd30N69oBs0phHwpVuovD8lUBAa4TbI/NZv/LkugeRyAXo/Mwzsxj/Lj9nTyrPoblCGMcMo2LVDPD7IAg5sm8YF4BBFB/RL0gIMLzNlS55uhHJ5esJ+bSLDCQVRQypJhRiCYDAs44LQEEKqwDAVXHCt5CwCsUmyk+VZ+Z0cK4XM+qYy81wHOFSbVNRyZeily+GQioZDQI28PJoePF1UmVX4ThfsIKDhVRjJwwHVydr4AALhDDcjJxumoxIZYLAQHGR2Wpdg5g/CBuN2dYOnWOV6xrvn9tUrwuDVvpDaxPdIfjqn1sS9enOD9On9ss3jE5GxSAIPIO/YxyoTxEnbpUa1SQbyxvlJm9chkQwDI4u9kh5m+uvl0MBuJ/ZYSV0nJh2WCqQs1B61UHiHv2OlSVyDyokYerq86Io9Nx2X2Lz7MO16G5gKJTX68FBBQ5Y5+VOeukrJQckO3wpagCW/GfZQsBKX62mAEprw9AIBBxFBDgo4lxpMRUeRrw/ABW3NUaAbd4U8k984Dtrdzhc/vOaxHLNL/je2Wk3a4VrH9cLMeL/8b4uTaK68u1fTU4wviqfyldqsCJk4lKx6l4nKYCBw6AON3PuocN+xxytrOiWZ8wrhjLMuZCxjNVmVme+N91cq4EpwC4AVQHUdQx9CqOEoZMKF29sFsOBZDRsOOD84l3qi6UAs4MEz9bItC/gjIlqf6P0etYVflVeoo3JfuduJwOtw+OTlD5Kl7V3Gfcx/ugGIExsDg6Onq0u4bTxefxU9vSMnll8Mv1x8oaw2SgAOkQ5LYip7MygMBhlD5kYLnb7Xt9ot3xrAhsRwUKI54z0J367gACpceUzu2S0t8Z+HK625WBed1s/PkWzgby+7l6d7ZnIBOqLEylaDNUyHGW8ovCrubG5iKpiFPx7/5n6BDrhedMEZFnKNd1GkdOKahwOG1Rpf/aCrUCMxyGOzwaMuysFXDFtCsQreI7sOvSUEYy2ghd8XhVLn2UO/xY0273c9EUjr7iP9bTGD/XDkTZePuVmldFcBFxs22ZlcHrADk2HKp/vrYMBzGvGXjPjBX/d2CAwR9PV8aivQx8IqnBkBo4qP7IYE6BP/yPaWUgicEC58uE/GE5WE+rNJyMKr3E/Ls0HX9zZXbRAkIkznSOADJxQ8+pUJWWEgZUSmpL2BxSwpMhtiyuE4gQskDlPA3AI6BIq2uoua6dUsDwrjxKAA9FiY5RuwSRsF5DAUYaeHVx8ereu46vlJorj3rG7cdz+pg/jz42m83efGsoe0W8IGuMny7auOInk8d4vP0qeMLFgqxgsS1YVjNyQKACZnjvwOMhURcEuHiKEOBFfeHCOQYCajcHTvvEs0wnuT6gwnSI294BJ87XAY4sH64jxbej4IGnu3DROPOT8Rzx59KTPmHsSAljVrFzRlOug2NamZJUe2jH0MegKv4yEOP+O1SK/HJHwXQUmMnAAMfPULgqk1J+ruNW+WVpvCQppYCkFBWXIwNs+HPx497JpwrbKYMCcrymBEcuSApcIkhw8+jZVwNRRllW+QjjMX6OJNXRxxFPASgVDuuE69rVLY++EMwcMggYI/cQuPB4VRT1zW0b7xAMIAhQ00qcZnew5HQivuuAHddnVb1V+gzjYhglLy4/lx7bo6hn5q+yqZ2Bm6PZhw7NCT8nLCNCdUVFo4TECQ4rJzXCVm5vzBfzV3lmQEfFCwFSox1nnDebzaNRWjyvDG9Hmar3zsipn6qPpwjnc1HwgAqKO6cbtaDM8HYlDJtti6pIKWjXHzhcBorHeHx+hQKYKi66/TksggB0B2MdxXkDfMYALwgMnnDhmevHrowKULt+lLWJUubKkBwqdXh0RjTr5+j+VtND8Q51bJDb0YFXx2dVVmUcOUzVfkr3Yrk6fVnJoasPlS/mnS3YZR6xHrIpmS49eZpgKTmUwwpQFUht5cqQPgMBJyDO0D+FXIOqPNRoJMrIK8Ez3rH8arSU8YZUGX3VybvI/7XIjRKQuI5CdnD+XNU3x3X5M7HcZ+8dry6+UsJIaPAxHIIJBk5htPmjNMFHAAGcSw5Dgvni1IIahTJxGbEvZABiSZswMDh0ynhVAwElN9iWlZ5QBnCMn4MqTIdBMsbne5VHxkf1jvurshMqjUqmKhA+xs++hfpbhWUwwukrOzgX6HZoERjIMsZK73RGBwCU4FSVqoTeGX7VEIovvucwzli6/BzSrJSgyi/rAEp4qjiOz6ycFe+HSFXnY3JrTDA9BqAVKFLyoeQd32dKugICGaHB56kElhkGAcE37hSI/ec40uGzBHhng+sXXM65ZcPwCuTxiMzl/RYAwRi53lWyw/09k7HMWGEaaASdt6yyCZx/1e9cmkr3q7y6wNHxMje8q9fgIesPHX6dHcpo1tZCTLyTSWUwFBBQYRTawvgqbgUCOCzedwSiMpCunEopufBVvq4M8X9OHXBbuV81ejtUYrlFDxEvfsI4GCYDlAwwMkOdAUsVvpKr7vOsbLxQMNpapY0HqnAf5rJHGrhAkM83YKPBfCo9wn2/q/SYTzVXi9dDJiVjrr4wDuufyuBUIAD/x7PM69OtW9WnXDspIKP4rOrDhenw6XhW4Z3Mcr05fc8ArLK1HZp9zsAYeeVkAtJtqMrIzlnc44RIhVO8KWFzBjIDTEqJYhhVbxkgcFMKqtzZyEopkQwMdICIokMYWXGduDpSxk0BAVWHXXmL8JhWBigxXKddMX2VZ4TFY1VxQRjOmWJ4JcNB3cWGOEWQyVZl2LgPuTCcNgMBBwZU+m+JnN7N6ovfx3/8dYArgoLK85Plj0BcgWzVXooP1y8UiOjocsVzNihgfZ71Xe4nVV0v8awpmgUGGBBkaDpDLpxuJ05XqeJ/5jUDJUhs3F35lKC7iuewzLfqgMg7Gw7kIwNpqgNl93MM01zU+1rEyoy9AhmwVPWhjIvKz7UTxlFy2VGYXVCgQA5ecbtYXFUZuR7QaxB5IFBAPsIrEPdK8TLAYDlydZKB+EpnYPtzvb1Vyowzy+QYtbsZQRPWEwM6lT+2qfMouvZT+k9tXwxeFDlgp/SvqoMKCGA6rEc6fdINMNRUWkdXO/67tGiaABsmnlXGE8NxmhxHKSIVJysso/8sfxS+DopVCqxTZgcaVCfF8mWjzQrlZulzmZBHxQsbEpXfHKX9UsRgoAICygi6VfmYB/cRBQoqPjOZw/sI6xQkXxl8qBGWMtLZCJ7LOcaYvADoYQgQ4KYCuB+xMcjqS9WPqzen3Lv1fojkBhFOz2VhM53H8sz3qs+M0dOnqhxZuEyWI38HcrJ3zIfKS5WF9TQT90GVnwICzjOQ2UrFU5cWfcLYHXyDVDW+ogoIqPCuM+B/ZUhdXkp4lbBxGo5X9S5Lj98rw5UJnLtyuEhbGQDmEw0PrhJ25VDlPDQw4LYIxhXv8aNUKm2Mi/FdJ+3IbCVjkQ4aXs4/qwsmB3jUT6UXPKsDjlwaShG6vtBVbpXCVmUO2XbKWsn6IZHSC3MGAHEf9aHScXXgdEglNxHXlQfTU7tVlKHm+NhHmIeMH04br2iwVTpZv3N12KmvOUCAy9Ol2ecMqNEAV1RVoC7jHTCRCYEzRk7RskuLFS/HdTxWipiFMjM0IfzKVaeMsVKiVR5ZWVyHU24/x9trK1Int0jK6GJdhns7U0IqnTk8YhqKlDJTfbCTRwXkWNlweyvFWfV9tVbGgSnFd6akFc8OvOC76F/ctpimk5lDoopHpXP4vdrbPgeMZTKTATOVttO38by7+8MZT5SDCO+AhuubaueN4wnrnO+z+E7HZLRUVttgwFUSF9AhMSQnGNhAPEpR4fF91ngqvcq974y+i5PxpYwQp5OhZN6uxWmwkDueEIx0wE3WSZUwuzboGKpfTRmYZWKAiGF5yonBVGaQMh4cqOwAC1UObudqEZYDi8hbZlh5q6BKgwEF1iXKJveL6ANu9M48OkNU9fXghcuonh8qOXnC9mXZ7QCxeMft5ABABsacDXFyzLyxrmP5UTaJ64FlHoEAypnTgZhHpr8zUjywzONango4uHrr0pM9A6hs3EKOMeaNWHifahZeGUAWWEa8SlBVGkp5OCFn4ezwheVznQZPvzs5OdkTQjyxLdJxHUx1DBRGZwxUZ2IB5qvr3K+tUB0QqAx4BriyNFAxKsU1tz44vDKOqr2rPLO+oAwp5oFyV/UrDh+7GOI/p4G6xX2XA/mvDFJm6PA/PkeF/BaJ5YEpqx8ME1cGw1znzjtU2Y8KCGAayBfqSaXHFA/qPaaT6TSmastkVj4VB2U+ylMNrp+LFnsGxhiPKg/DVALGpDog37vwSvHhO+Yja7S4V0YyQ7ycjhJ6PpoVw7NhdmmE8lQ8qfjIFytyxfuccmXv+d7l+dI01wB3QSzHmSv/c3lzSlWBtEyZuf6B6TnDGjKNYJuBFKapDEQYGJYblGnuQxzf9c+sv3LfyO6rgc5bINW347/apoxtyItIWd4qEKZ0K9sOx7NqDwccKl3NMsSy7GyIe4Z1VdkUDMu6WMXJZBvTek56kmdgjJ+uPnSxLO04WEkMDni0UPEYxPHmKlyHNp1yUcLu5vuVIlb1rIRQCQIidwyTgReuU/5GgwInfDSyqztVN69FlfFU4fHKz/G/khFMW7WDAm6VglDlyXhXcTkPJ4f4TE2pRRo4anYy6dJ2YR3vGXUAgUq3qyveimdAga2OjMY99wuMFz8e9KmtcJxe8MO60fVFflfpfS5TBgKzPDk9Z/MwXjVY5Xwy26HAwlybxdQFDbM8A9whEAiMMcbx8fEjF3/HWCimO0qREZ8DA8yvep8pDu4kzpCgoPMP42TKijtLVkcOLbKCzxQl8x7tpgiBgKuzjtJ9LWJQM0bPdcydUsmbU7ZIWE+8K4PzyYCWS1vxz+9dufDkM5YXt6A25MG50Z3hyfpoBhTQW6jS7QABR1hW9nbObYtDogwQKJl1gI4HeQoMKN3BgADjumkfDqeAL+sbBeqUzGb1w+lk/Mc1G6iqci2Ro26cpwCBMRZ+tZCVAYKC+KHrqTLyGdMdI5IJjQrDeVbKg4GAEkCuk1jwh/XDbjRG087YRNj7+/s93t0Kb1UuJgUEMqOAvMVCRixDxMHwDL4OBRCwAUfiZ8pQszLLFA4rLewX7qfiKarkVYV15QreMKxS8lz+Dp/Z+0g7A1JsyLC+FWBx9eLaFsuPc7VBPBI8FKrqi/93AIEyYPie5QDr3u0wUv0M33cAgRpQVVthMQ1O28mG4pUBIvPN6Ts7xHypPPl9psMVv08BBLPAgMssniMYUHPbca2YV++ckHLe3DiZgUXiSneV73hmcIT1wJ2vI7jIJwo+A4LKEHQUhupsWRnjHjujUuiuzV+anMF1Yd1/ljeWJwUSx8g7o0qT4zowF23gZLUCFgzYWCmpg08YCOBq5zl162TF/Ud+Vb0zn5wOy6KTB5RptZjs0Mj1f+SXDb5LIwvD4RmcZV5gjMM6j9uU9WSEQVnlRavqYCysD64LpzddWysQkMluPHP5Kv6UnLJcV9u5n0rP/m0CVhQoMIyEMuXAaap7zjPukU9liDIU7PLJGjBTLhW4UOVWebOLbozHngbVPjify3lFOFaw2UhIgSvm1QGt11KoisclvGQKJFMOqs7czx0gpJQI9iM2cgwseFpCGdXj4+NH4LNTH7xuIFOsWKaqLhmcB/jpyp16pxS7y/e15bZLWf934ZXeyfQQyzfr9Y4ORV75XrUFlgs9rJvNZjoIrNq9oMqn5Ir7EpfDGWy1pdaVwwEm1Q6d3RkVZeBM0eJvEwSpESErP4yvhJaVkiqIK7wywq5jqDJ0Kkzxwnk4paIAkasjByT4HuepMqPtDFWmiCNtngtzCp5BmNsGk/H6q0nJBiuyjLeqziIMX5VyYmOtDHMn/0iTecH0eO472kYBBnyWjfZduXn6g8vMCpPri8Oi4uQ4XaOn6hGvWXlYib+VBYRBDBIzoIRXjO/CZvcY1+k1zpd1WxB7adgzgGllstHRO46/eMd8su5Q5wB09YyykQoIcBk7NCfsrOOIMQNsNPxWeaZYlYHoMutABF47Fc3xOvxm6fI9xq3K11Vq3HHc2QQKbCkwlJUl3uOCIQYEzC8bOeQR478WZbyPkSvErFOr+lfpMB8MBDgNV1fctvEfPTmYLk6dKYXl8nEgl+Nw3SjvAOaPxt0BLM5XGTMHJFRaWXmV/nD95bWAbJew72eyjuH5HuvTGZ6qHhxA5ffIswNnCuBm+SuQizrT2QvXjzM+I013uBXLvCuryjPT03PkcG74RR8qiitXeHyMhD9KopBNJrSqkVAxIB8cTvGpyoIVlSn6SvhU2qqcKi1WdpmhQoXOW/tUOTBfRNQqDzZIvIhQpcnliE6IK747gOglSK0nCeK6c8SAQM1bdg0cy0WmcFme1JWfqd0sY3gjrBRaBf4cr1l5O8oyAyKcn6q7eKaMGRvLLB7TIYOBrI9lhj3i4lWl58pegUm8V+COf07O1Foat7tB7d5ivZcBEgU+VT0o2VXvMB73ZQc6FGU24rlo9oeKNpuNPBb34eFBfrc8Q0NImfFdGj9TmqrxHCDgOsj4wHCMaDv7UR0hL86oxztMl13Fikd8h+mixwddzMEPdjRMhz0Kc8v63MRt0UHtGJfDsBJy8bEDd+Smkn1VJgaTDAawryJAwzY6Ojra+7RwBma5HMrQMAhg8MprUrj+GNhkBsORM/aKd6czOgbxtUkZVyal81xaGL56P7d/s6HNdG1nWiYD1RmAfaoNwnS4fysQEPcOcGX1UYFhTktRt88sniZARsIbwGBAKc64qgp0FRn/K2SrlJm6cvwKDFSKHDsjhsG528yAK1LCUKFGZ9yQf36GxiLucSdIbGnELYRB0e4Rn0fL1ajkJYkNFPOUoXIMq0CdU8ZO3pkquWfjrFa5KzCA21uDoh1DJtkroACNU6RK4SogwH0CeY38on8wUFCyq+rJEbdNZeQViJmT36+kTH64TB294dq9AxoqUMvt5cKpX6bngxTQdDwu1T0dI4s8qKlRBaCw3rEfZP0v0wvxX5W10w5Bi8AAM4UAAM/LrxSjQ1RcCKe84+rABDZItUo7AwIqvioXPssUdzcdRaqekE8uG4/c44qj5AABJycn0w8F/P7+/hEg2O3+9QbFu81mszc9hIDA8f4apDpXJq94z7LGi2fnyHul8DLFoJQQt2u2LkEpCHX+AS4mVIqa+2jIEq9X6Cpj9moxZXWmFHf1H9sQ33P9vabcduvO6a94p8LgOwzLOnkODxzX6QLHMwLVjELWgtRUF4bF/JgH5kelwemhrPAWa0zP6b9K/yDfqt7Uf1fPXZq9myDuI2M3LVApRu5sChQoRaKETTWcM87OECjemW+VrgqHAIDn+JcQC5QDSQoQxD2mgfPIOHo8OzsbZ2dn4/z8fPoo0o8fP8Z2u508P9jmAQTu7u7G/f392G634/7+/hEQe0rZn4Oq/bnddu8AGyW/HUBYKSU2vMr9z/nyPZcPQUJsK8Q4YSjVtI8qB09PsFfAgRskBQgcoFBGj/lTCjnrT1gn1RTfoZEaBOA7DpPpzQwUdAEtPsvaj/npnFmB05qhczj/LF8VNiuDslsuDycrysap3TWZ3cvK4PLqgoNZngHVKXA0mDGiAEGlIDE88xHXzDhyGtyI7tfhwZVHgQ636vQ5ydWT2p4T4cIDgEDg8vJyXFxcTB6C3W7fA4D/w/ifnJyM29vbvXy7KPslKGtbB1rVCDuTUwWAeYTs8nXpuNFCpIcHWsX6DpfmGI9PGBxDryOJqR8EBPjeGVwuc6QfaSIvGJ7rA+VWASrVXx1QwX7I75zhUHVyiKRkI+qOAWKEz2SL01L5VXWRAYwsjlp75OKzQQ4g69z0lR5y+p/1ufJ2cX1nwDX4UaAA/3f47BLLf0ZPAgPxv1pJjfcVAHDMuwrM0mLe1X2WVgVaVL4sJPzf7R2teKuADhPnwe7QMPbxaeSTk5Nxeno6Tk5OJmBwenq6Z2wYBGy323F3d/coT94j/tpgQMmo6vR4r8CACsvk5IfbiflgftBoVjKhKJQO91dUXpwWKuLdbicNNdYL8oCKUNUbK8sI44A9lyOjjnyxYXBpLFG4v5I65cewYzyWGSVjma7OnjFPmFc2kMrSUjpqDL2LANOMMM6ToIBPhFNgwZVZ7cxRhGV1dc2AQIXh/13b5fjvys8iMICVjFMEGYNuRIFp81VVmBPiqvIxTdX4OC+KzzPQgmVz5Yh7N5WiGlcpTcVTBpAyQgCAQCBAQPw/PT19NPq8u7sbx8fHeyAgCBeSYhkqxPuapOpUzXlnIEDJKo8esrbrGvv4j/OqTvHwPCbPw+IW0CxvXi/AilHJICtrzDPmeVERZ7/MkGB+qg6UwYr3XQD91Cm+5yAuTzzLDCz/z/jvGotOXlm6GTBm0BqkPARY9kzXj+GnCBkIVEBGbdOtyh/vGZQosO/sGLcz8/uUtmOaDQYYUTFAcMRCoJCZuyo+Ik3Fn8pbGXq8d0ZLdUAGAspIqLLgDgvVqEph4SKuyiAp4VF1EekiEAivAM/7Hh8fj9PT0zHGmNzHCsjsdrtxf38/Tk9PJ5cwhud6fQ2qjK7q+E6BZenwPT5TilDVpxuhBFVz2KhgN5v9kyGxnHGNNuNFgwg4Npv9xaadNQHIOy74Uv1AAWUFKp6DKmOKuk2V7dBJgaNMvjLZfkrZXd/hNJ13OQg9S7xriQ0/G1/W+wosMc/MO/If+bM+V/wrflSeGT8OEDAp2zAHLMwGA3FVSqwLCDg9lUeWd4fHyM/F5Qbv5MOVXBmKDAg4gVSdJHPpKkGLMGjQWHHHPS4gxHsEDPged4wgLwEGYg2BAzmvSZ32YwCgFv9lI7QOYOD2RNngUYMiNvRZnjEaVzKnADrGw7aN8CELCAZQKWeLp9AzoAYVCFqYH2W8nAJ2hm6OMYyysMfw0KgyDJXedLJbAdMIs8TwcNujHDK/u91uD6yi3orwuK19jk3KZMcNuhAIuEXzyj6qcnXqqUtzjL6j2ScQLgEBYzxWWmp0xOHnUkeAFU+sEJ2S4TjK0GZGvkK/VdmiYyjFxcYZgQCuPHcgguNFHHaPxZqCMcajd/f39+P29nYPDBwCOcOvgByXWb3H+Gy4nSypfMf4ORJHINAFxGhc3bSBG1FH2U5OTqa0NpvN3lkhWIbgG4EhyxYDAuTj4eFhHB8fT1fuD1hPXAdONziF6xR59V+l/ZQ+eyjU1c9xRSOfySKHrXjA8Kp9o+/tdj8/mhUDEOQRvQTRRii3mS3h/DO5UeAI5QK30QehvLgp4SVAgHn8FbRomiAzlhyeOxfOwSnhcIpX8cHPMF4WH8PxgijViBwHf7iv2tXRXEWSGXsM4xQhj/L5xMgxfp4fELzjHHLExfMGIv2YNoiyx+/Hjx/TmgPc6vMrhbdL3GZqMRsrNQUUVJq8noOBISonljdccR+fplYja1YkCrxEe+AhUArMYBxcRIpHiTvFykBJydZut9vbORB1gNMPvF7BeUYwjUr+1a4HR6o+sF4dYD406hriipwRnKPfMZ4Lp4AAh8MwanEg9+WIw54B5Cn6gWpP7JscL/67RfMKeDgQoACBGlSo/OeQao+ujDzJM4DPFYqKe4XMWDhUY7AiU5Xj+Ogo8yAcBaIbSIWN/6gM48qC4Fa5OoDD/HNY7izcJsgTLg4MfpVQxw6BWBew2ezvNODw8R5BwxhjnJ+fj+12O87OzvZceicnJ3vz0a9BDASwTbBOMSySkjtuHzbuY+wv3GMjH/FwBOQUE/LBcovXuGfZ5UVPCPZw3UgcLMWAAAnrD9cPIAU4ZA+Dq0Nep6CMkdMNcwcllT5QOudQwQBTpfMcdUFFpou5T+G1SlvZCwXylG7PDG4mR2yUnZ2KewQGCAhUXmwHMmJAgOkom9ilTJ85ejIYYCadEkNXjzIKqhGZXEU9Z0dVhpsrlA1LKMX44egMwY9rGC6PEkol7Fh25Im3CeLoP1C0in90dDTFw7UCEY5X9nLZTk5Oxvn5+WTc8NTCasHbryYGBEFKgSglwoTKgUcwbOjHeHwwUNQdLrZUbkdXBlWW4CfSD56yuud1JQ8PD3vAOFNqIfs4pYQyxutLUIm68nH9xj23DxoDjOsABKfP1NU9h0rVgMPJlDJAWXiXd8fgZ4CMBzchf5n+zfhxacd/dcV03aAgAx5sIzk/5I3zUvGW0hIgMMaCEwjxxw2VdcQxxiOU5wQ20mYXbFBmOBXfGXDgRs0UnxPIrBMpl7QiZSiYRyyvAy2h3MMwh3EPwxSeABytYxyeXkAXG6JeVXfHx8fj7OxsbDababoAvQ+vDQjGeNwJeYGYkknVFpgGLvIMlzuOoHk+H43lGD8XIyEY4HbmfqNW8kd8Bnvo4UGwitMKuOUPV/4rT1mUE+vMeaBQVnj6QfUFpVSVco24qCOqsFiP+L6iQwECWZ3hfYdfZcTwHsMoygw7x+0MiDAO9oEMRDjDWrWxK2OlY9lOdJ5HOkoOMR8sL/e1JQBBgY2KFoMBZrJjlHe7n/NAzmXMleLCZUCCwzme479avNVpADSO7IJnHtRoRpUp64xK2WH6aNTjF4cHhdFD5R8L0BAA4FQDgwEsIx5NjGAgjjKOOgngsd1ux3a7Lev0V5OSWR61Y9hqFBPp4DPlvuf4bDDdfGdcsXPjlATG57lMBqvxP9o+1imEXPAcfvDCUwZogAMIIM+Zwuf5VBfWAQF8z/XDQJVpjgHjeEsU8q8gJ5NjPAYFGKdKz+nyJfx18poDIhSPGFaBY5R9xxODDySWlSwdTkuRG7wxIOB+i+8yUnWa1bOiNhhQq4uDUfWc3zODqjM7pcDpOIFySqN67wCBCod5ZgufFA+VQLlyMg8OZUanCEJDHyO5iBcKnj0A3AnwORp/fB7gQhmo2G4Yc9SvRUoOlihAZaBUOwXQUjKqPCss5wwg0ZBj24yxL4c81aBAdRh/XB8QbYhxsA0ZDCDgifjhHVA0xyvkFDPfZ7qB64CNCithTLOjV16T5ip5Ni4uPWd0MQ0XP/vv8sJnWZyOXXD/FT9Z26t+2NEXc2SEbR3mUbWVytMBv7kgdpFnAEktkqsENQME8R6vKl1V0DnIiFGXWo08BzlW73i0NadDq0ZXeeHcr9pOiO/GePyFO8zLoe6ol9gixusmeP9vHFt8dHT06p4BNMQK+HXlh+MFOEJDjMYya2c08vwM4/G0A7eX22cdhhr7aZQrQEK0D4O5uPKpkmOMR94A5LOiOYYlwjvly3pEASxOd66SdHwdCqnBwdy4mT7qpF3VTwa4Kv3qAGAGypWhr/h3ANKVr2Nbsjhz2kmlj/8rMNehRZ6BjLiAHeZwpBMK28XBTl+l3VHCVSNngCBLm0d0SlG7kY0ipeC4w3CeGW84XYN1obbMYJq4WwFHopEWgo0AAzFlgR8zemlSgC+ej6HdgiqsUzBxr7YVRX0HscF0xj8IR+RV+zKfqnxz5IZlIsriDC6CQRWGtz9mZVB1w2VDr8ccEFABkspYvTY5+VSy1DHUrEtVOl0gUOkwp7edrKo+6cpf3XfIDdgc0Mh4WAIYMn4z/fNUQDAbDGSkBEi9V8+jAKiwlxSoAwD4v0KDrNDcqmoHJtiNjkoV4znBd2nHc4zPcat0EBAwf6z8sQNzx0RljFMOeJBNfOI41i28JmEZnSzg/0qhOLDACnSz2V9kiPWPvzGGnFrIFt3htA22E75TSp755veZMcTdKeg1wCOtI398j/Hjvao/BUQZsHaVfQU6sJ07ffvQiHUW0hIjocKzPlH6WRkmfueIZU7pRObfAQR+pv5nZVcykBn0TrrdfFX+ru0U6HgKEBhjJhioUKIaXTiklKEsJVBu5KL46QofEiomTkst8MpGH6H8nQHtGBZHnAbH4+1/7P6t0kRFy+AM0wuDv9lsHq0/wLnjHz9+jO12O25vb18VDGDZGKgp2XEGIqhqL47Hbn5e6Bk7OTab/fUXu93PY57VQlXeuRCjbjz4J5NtZVwjXAbeY1oEDywKLxDuRAj+cQoFPR1cHpbvCqjw/+BtTvwIx8DgORT9S5ADAsqQsr7FQQ/+5/eYpnrHvFRGFNNgvpl/Fc/F53bvgBgFMFT6FZBWlAETxUcGCPhe5aPAWxcczF4zoConOqAzfE6YsBDItMvHkRL4KjyXi5Wmep8pKuYDy9tVKh2w43hAIxMGmXcKsGciDLgqH253G+Px0bdxJgEeMBM88BkF2+12OtTotQjXCsSVQcEY2sWO8eLedTY0+HiKI+aFn4nGL0XydyACVIZ3JUBBlCemYWKBZnxSOk6AVF4o7CcMdBk0ZMY32jvASPCCQBHrHsE0AmYmlsPglUGuawulaFUZMD+1eDgDHK9FGQ9OzypZdXXknrn46l2VVmVo+Yp9kdtGhVE8unU7zgBnfLnBQtU2mfxlOp3jc1/O5DxrZ0WzwEBlbDvIScVXDY5phnJVaXYBQEahEJwhYP4y9MbIDZVfF0hlZVSKkNPHrw3GL8KzAkY3P24FDOWuOinygjsVghAQRPl2u92rAwJWFlj38TzrlM5AshJGIBA/nA44Ozsb5+fn4/LyclxcXEzbMREEhHclPCt3d3dju90+OiUwgMLt7e0j+UCQFlQpJfyfgYG4ovyEpyDkxtVrVvfqPsri5F2VrQvCEXTwcy7ra1LX2GBd4yJW9sBkaUV+Dhg4fftUHcw6FHlwssm8OkDAecU1AwL4n/Uf89wtH5cF+VDvOM9fSbO/TYCMzWl814E7hpzntjEu8tFJSwmN+nF4DOvS5Y6i6osNCypFdA2rtDks/8I4owsawUAYehzFYx7o7sXvFozxc7U7G30sq3L5Ir2WQlVGRMmjUwwujjI+7P6Pcx7CwMdhUJeXl+Pq6mpcXV1Np0RiWigLOOLng5y22+2jLX24qJNH5EiZ8c3qUinD+OGi1MzA8voJzqMiFWaJXlLhHdA/ZFL6C9t8DiDAuE4XLaWqrh0v3bwdzyrNro7qAkuXXwXkVN9bUsdcP90+HTR747czdk7hOIWqmFeKBpVsxRdTpfycQLj0mMcuORDABl41JJZDAYAYTeKoMv4HEMAFfRFHKQ42MDjNgLyrdgv+eHphjJ9H7c7Za/6cVAGBzeaxx0SFyZ7xOoAAAXgKZHgFAgi8f/9+XF9fj9PT07Hb/ZxbR9rtdlM7IpiLg5zu7u6m9ox6xp0eDOLmKIgMQKjnAQa472ZxedsqXp1SZR2CcpzJp6MMWBwKdQc6GShDQNCRgzkjXxc/qDKIc9JyxG2ftWsH9M55N7eOOoBlTnz1fi6gWHwKjEJrmUFWyqFLGBeFGQW14kGN8CtA4NJTaSpF5Z4zCGDPh2vICMunA+K3EWKUGMY8vAMx5+9chzjaZOON6WE5+DAbJB6dKkP3UsRrA3gOn0kBtXjO79GtHwDg9PR0mgrgNQHhFfjw4cO4vr4e79+/n1zrt7e3Y7vdykWc8cEnnCKI8wHG2Adcag0Ayzp6HlD2uB6y/0xdhVb1jy4pcO/6W8YD/p/jJTlEinZHXcJeJ9Zbc4z2nPCOMA3Wy0vS6/DB+fB1br4oLx37p97Pka/Mk6FsYMaTo0VgQLkjMq9A3GeIyjWGUsAolK4Tq0ZwIMB1/goIqPIqJaTKwMaG60o1OgIBPj44RqXoKWDAgeFiGgDdyGFI0Bix23uM8QhEoOcA1w9EWnEU8Wt6BtQOgi4QcEAO6+b8/Hzv58DAxcXF5BV4//79uLq6GpvNZtzc3ExpK+9AgAD0CuCoPzw6Z2dn8qwI3iqKoFoBZawPdeX3rt6VbLM88k4LvEfe1aeR+b7iWbX7ksHAIRLqRbdFm9tkyYjU6WCmDIQpHef4YV3uwGRlBOcAAgeYlPxXIBqfORCkeHVxOvm5dDN6lvNhs8aK9x3kpYTW3SuUimk4gKKAgXreKTMKSGZklDLq1Am+ZyXpvifA4IJXiGNYPJ2OR1ebzWbyKoRhi50DMQrFOsW0GVi89jQBGpyoh8qoZbKHQOD8/HxcXFyMd+/eTdezs7NxcXGx5ykIz8H5+fm0VuDq6mpcXl5O9XV7e7s3/49rNsIYhtHH9sVdBQzo1J78GC1G+yMAwVGlq4esnhwA5bAstwEkecorKMqG1+A3yqWmevDe/VScSlkfKrEew+kCJNXG2eAHr5hXBQg4DfVc6XCn451twTJUxtM9x7w5XMfgZqChQxkgzXhmWpL3GAs+YYyZOYTm3lXpZ6iQK4OFRI303Qig6wFQfDAPqLhREap02bC48qPwsWHgT8ayAsUvFOKIktPhucMgXPHOPwQQASLih2sMxvg5TYBG5rXBQFBm1PCewdgY49H0y7t378b19fW4urqarrFDILZeRnjcRfDu3btxeXm556XhaRzcmhij/7u7u0n2Y1tf7Bw5Pz/fmyqItkelGu2NuwAYKM31DsQzBptq9B9hcXoFZTjqibfEPjw8TDsq4hreJh4FOz2C/CF1RqNvCRCM8RgcYf2gLuBBgKKs3bPw3XCoyx0wwP8Rh8FnvOdpNkUZEHCj946xz+pqrgypgavKv9Jd3Xw3u7cm5SuttNJKK6200rPS654Pu9JKK6200korvTqtYGCllVZaaaWV/nBawcBKK6200kor/eG0goGVVlpppZVW+sNpBQMrrbTSSiut9IfTCgZWWmmllVZa6Q+nFQystNJKK6200h9OKxhYaaWVVlpppT+cVjCw0korrbTSSn84/T+dHKPwnX3RoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABz70lEQVR4nO1d6ZLbTI6E+nb7+Cbm/R9tX2I3xna3+tofEymnUgkUilK3ZFsZoSBFFusiCkigiuTq7e3tLc4444wzzjjjjL8WF8euwBlnnHHGGWeccVycycAZZ5xxxhln/OU4k4EzzjjjjDPO+MtxJgNnnHHGGWec8ZfjTAbOOOOMM8444y/HmQycccYZZ5xxxl+OMxk444wzzjjjjL8cZzJwxhlnnHHGGX85rroJLy4u4m94P9Fqtdps9XdxcbH1u7y83Dl2cXGxSc/5AdyHb29vW+mQ52q1isvLy7i6utps8bu4+C9/u7i4iNfX14iIeH19jdfX13h7e9vKH+czaF1G6d31yIPr4sp+e3uL5+fn+J//+Z+pMg6Bm5ubeHl52dT1I+RY77seVznj/e7PXePKYJnM8kE6wN0/yBhvs33IBve5/ufjeozLdfjIe4hx+fj4+O5lKi4vLyMidsY2sFqtyr7I5HAGLo+RfPN/yJ/qTui36+vrHT3Hv9vbW3scupL7gOWM5VJ/Ly8v8fLyEq+vr/H8/LzZx39s9Yfr+HqVdye/I5leKs+ZTPD24uIi1uv1MK82GUDmfyohyJR0lwjgP9JyXgwWjowwuPJZcSshyPKBIsnqwAof9XZCmxEaLfvl5WWTB5OVqi4fCcjvIRRkVcbouBus+M/KE+e6ZEDzzgit5svAeb53UHDoP5Y73l+tVpt9Vsach+bFafUY2qE6Z+Yectrquuwcyp8lyoeCa78zuIcqa7YuCufgqJ7ED0b9+vo6JQLZeXa8uGzer+4Z6zqQChj2i4uLeHl5SccP/wexwLWjPtH9qm8rua3Gh6Iru1NkoFv474LuoKoUb/U/Yle5jpRbJix6ThWmEgO+xqWHUge4fqP+QL5s8DsCeQpykymPffPqnHekrZKdTv4ZEcjSuvqwHAAst5xOZYyJgJahhp3LzIy+EjZVhJVizPrI7VfpHI4pu87bfE9CW6Gr/9WAKgnAtiIC19fXmx8IAEcE1OEAtK+ckeU+ZFIxGkvuuIvGjrx/p9tn0ldw466DaTIQcTgmyqiM4Cxm6pcpTt3XY9l/VbD4f3l5uWGr2s4ZhQVGzP8roqFwRp/rWwmgXpsJsLJyF4k4Fjpe4mxe3TQjEuAM6kyaKl+GelRZWzQKgGsdAdCysv7teuoOI+/9vXAswxtxXBLi0CFejgTolCf2sykA/t3c3Gzy0YiAOiQzukadqNXqV2SLj3GbKsLtiOuxsES/TU8T7INDMPh90fG2sB0p7OyXhWAjYsd4u3pp2NjlzQBTRmiLoYQjW/vh2K0zGEposqmKjLUfCx3j9xHlZUbbXZ+dy9J05FVlk8mly//t7c0SWYRTI34pnpGynMWIOLiIQycvvja7bnT+T0OnnSP9rXLGawM4CqDRgJubm43Xj3Mw/ryeYLVabXSd1om32b7WV2UC9a76BO16fn7eknVHRGbJwFJSy2NkHyyKDCzFsVlTlwjosUyZ6n+3gNDNwTJcaDQDr0ngtCABl5eX8fLy0mpTdoyVPwDFz2w5Mw4VATg1L+fQyO5fZiBVEY2M/6jsERlQWXVyqmBiCMKpUwhMCiADs2TQrRlwRCCbcuj0T/V/lP6UcKi6HTIfRwTcvP/Nzc0WGeApAI4g4McEQPWeLgrkqCT23TRBxJjYsBzzeicn086IuwjwqA95262ry2Opnv1QMnBsdLwBVdAMp7x1n9NlClbro8qOvS5A57XYKDMJyMhHtdgGUA8faTAYNO9M4WcM91gK9lRISDd0t5QUdPJ3clot7tSoAGTNyb7KTsfrHt2bpfOmS7HUO3tvZAR+aV3fgwi4pwWur683BIAJgT4VoAsMdTF2xLZOg8HXFf0R+ZMrI2Q6C/W4urpK18hUhOOjZWrpvZ0iAzNhudH1Gap8P6pDMwWHbeZhcchVjS8Mp/Yhh1g5f74ue2qBPXQN17OCz1inDhYXEdB+6Qh4tZbgT0R3LLj7kHnxmZfv8qyugSypd9WNDrD3j3u4Wu3OraJcjiQ4D02fNmBwVIDbNyNn7vyMrtIxccoRgn2g43jkKCAtp1GdpWsEQARub283BADEQL1/5/lDXvixYDg9fM49Vp05O1X7+N5rWtXLOJaNO9RTp25PWQcueppgKfYdWCNPo0o/6zXx/8wLyhS4zsM6EuWIACtnXTCjZIDzy4y8khGXTleH84BgQsFpO9MBS+fN3gtdr3yEWcOv/0fyUykY/p/VxREBF1XKiKurt5MTt1bEjQMXocpIAPa5XNeHTr4PHYn6U0mAQ7etSgAyEsBPAtzd3cXt7e1WhABetltbhWNs/B1ZYXKpU6OaF/+H48Q6imV5ZEuyaC/rcqeTdUF1prOrsrNyOc0++naaDJwiY+7UpUsEMuXrIgAcysK+LnDhPCJ25987dXBrBThkj3viGLK2nYXGGXYmKYCbxqi2WraSno9GFi58z/rMjJMRGciuya5XeWG5ZBLAslqtGUAeuMeYKsDWXcsRK1a83Ddc/0NFA94Lp0JqD42Zdjn9lK0PuLm5iZubmy0ywOsDMn2gC1NxjPUP6xonS5X+1QgX6yZ48a5cbn+2yFDL1umKagzg+lk5y8j7Ehz10cJDeWvvAaecdYGgeu2ZoGdCqwpwtVptLaBxb9zitxBGxM7KVt4HOBTn6lUNAK7r7KKwrK2nhiVRoxFceqdMR8f4nMvXkQBHWFkG3JRBBlaekA0mAoge6WJCXUTolGoGF8IeyY/mecrydigco40ZEeB3AnBU4O7ubmdqADKiDgYwijqqkdV6RYR9DNHlgcgCRyR0kSyvyeK8kObqyptRFwHL0un4Psa9PeoCwlMhAplCzn6sRPGfhS/Cv9qVQ6TsbakAu3x12oDzvri42FpAyIPJeW2Vcs0WIALsZWPg8FYHNl9zqqjksCOj+xCJjBDwdRUBqLy16qeynIFJgCMCUJyqMN00AvLrGO5MRo9FLE9FVx0LTgfy2gCeBri9vd2sE0BUgPWY60vVW2zssy3XjbdcliMESgZ4UaxbC8PRCtRR11e5RbiqKzPd6GRa6/sRWEQGTtmjn8VI0TrjrwqXr4uoFw+yotTy2XNTYuAMgBMSDtVDqB0Tdwy7sw4ARp/3MyJw6iRghEPIuJMv3Xfeefbf1SlL66aysmmCCvxEAc+78jRARgAyYjOaI9XowLFx7DocQ+c63cREQBcK3t3dbcgAIgMgAtBrKuuuXzO9lJFD5M3rF1arX1FW1JmBPDUygP9cT5ZzlMkyn0GnNLTs6jptI46/53j4qx4tVDhh5/3M+KvhZ2Or57uDWEmFU+j4KePU+TPeMiFwiwUdW2VoWRGxtYJXiQALajdM9jcgkzWXrooIcBqXJ08L6PFKhjNUUSaOGGj9Ts2Y/65wU4yz10fsR2w7RMBFA9wagU49lAxUJICdJ40I8HsLtFzWWc/Pz5trQAww3fr29rYVOWA96qYpUG7Wjmxf25a1uTq/LxaTgT8tOlARgIoY4PpqUckhBmTErmJQgWLDrNB3F7hoQGa8ORLAJIAjA5qXIxinZhRGMtyV8X3GQhYdyDzqTFb5PEcD1GuamSKI8N8jwL6+30JJZ6W0qnExmh742wjGvnpjyfXOOdL1UbxQEJEBfalQ5sg4eWKoHtMIJ8s4r6ly06p4e6GWpdMETAJWq1U8PT3F5eXl1gJp10+QeSXg1fTGSD+OZJydzUPhr44MKCpFO1K8mTfH6XhqQOfIHByj5lARDDFeuoHz6s3xNSPFq2SDw2lMChwRGLVnyeLD90ZF1GaUaEYIOkQhO58RAT6vHpIqbn2KgNe0jDw1F/5no89EYKS4WP7+JkN+bHRkLwtLY589XiUCt7e3WwsF8a0B9pAjvCOTGUz+uUdTWbb5lcVubRVPt3IeEb8WB2ZEHHWodLUacF5P49qk1+q0bjdK8B740PcMnAIy7yubW2UBc/NSOi/LUQJ3IzNvatSv2WBRr12fuXWP6uhWV35zmSywLy8vm299uykCV98/Ed0xoOkyUjk67/adtwZl5BQjv+CF61ZNEUTsvnRI27VarTYyocrf1dsR0/eQFc17X6X6u+q9TvQrInbuicpYNjUAIoAfv1EQ+WdGXaOTajTVqeEfT0MoGWCiq09S6biDseff8/Pz1nk4OlmY37WNxwPrUL0uGwfZFIK7d4fCXxUZyLy/TNGqgVdDz/vVtgIr40oxu7yqhTUZMiLA5bvFjfsim744Jj7CGOl+li5LnxEDlUcmqHxe99VDGt1jlkl9xwCn4UiB1nvUv1kaPc7/R/euingtwbFk9yNJTCZjHSKAiIC+FE2JAIxfx9NWGeZ1APqaY16kyG1RGXcEnGUZMs6RUNXzjNH7M1B3vMrYrati3aiEOcN7yOMf8dKhLjohW0Zm3DOjnREEsE9l3q4s9fS47hlz5Dz1kRdXljJafvRR02VMmI+7AeGE9dTIALBEJrppnHev/7P0Ll93nd63rByGk+GsTN7XRwo5AjBDghmHlotTlbNThNND/FMi4BYMwkN3XrfqCmwzneTqAV2oLzXiNxs6YuvKUf3M5b6+vm7eGcBTBCgb6wlAfDWigTwUGmXWqC73W5fcvgf+2siAiwLoj9NleQCsXN0AY8HkOdiMIHQVKw9afYOWQgV/CTps1aU5xfUCh0ZG8PRYhyzwsRmZzAid5q0LSivviaHTSVo3jhBk7e94Pnw+23f/s2O/K96rHSOy6bxxJQRMBHg9CurM3xFQ3VDJGMs5vGolJExEQAa4rGzRnxtnILVqqDEVCq8eaXlBbUYE1NtnR41/aguOiaN9wthhaThxST0yxTuqF7M5Vmr6sorK81dl5tLNtgUMNlvRP1LAWbSDB5WSiWML7zEwG12KOGwUbWS03eOjOMbPU7OsaNTK5a1KVo9z+VpfVu6dMY58+ZpTUJZ/AjJZ1HvP01AuNM9PC+i0ACOLLlbyxoQE5fCUAH/8iKMSbMBVF476wRlrTBnwegQdX8AoSuBIFv8OKeM6/rv4sNcRV9d0K3xoZaBeTVamhnRwXG82WKRjv1UYifNw13H5o/AuL1qBkI0iBho6y1bP7kMAqhW5fyp4gC8lBCOPONs62dT1KaiTWwDl6qvenQsBazrnFXba24VLv1SfuPF6SCK3BO9NgjISAOOYRQX4UT4gW4DsyEBWF7dOgR9f1B+/nh26jsvXqJKLsnH9OBrCZICnxjQKxosDR1Om0MlcBkcHlAzr/ixm5PfD3kD4O7B6Fh4lALx1oVIXTlpSPrZaBydsDMd0kR9PIQD8JIO73tXL1fNPNvCZnL+HoXBl8TE9X9Utm7eM2H6bGiu1iF/t0VXcfKyKDiwd467dHWRyuRTOO9uHyJ0asigkb9Vz5Rf36LdSqogAjqkec9BvZei0AB5b5J8uHGSnx90vbaOm4fl8EBwlA/r6bW2zRgeyJyjQVoxFXeDrSOpH2M+/Ys1AJvRZuojtudZKmB0R0BBsxNirzrwxJR9VJCMjBLwKnAUrG8z66CCvgsXjix0WrO34HQghYwnhnblmRMAyY68EQYlqxO4LoNgLYYXkynJTCUjH32ln2WC4x6g4D96O+scZaD2f/XdYIoO/m9yOkIXkmQiwAYR3npEANzXE5xWOTKN8F4XA0wpKAvhlQqyjM/njNmp9kdY9PaMv7dInZ7hNPB64nS5al00VLA3zc1ncv908/mgyoMKG7YglAspssx/fbL0ZGRtmA89EgOvDyls9eyU4FZiF6lQHytE6qdLW52y1n1x+vzNG/Toik/zfyVmWdlR+Fj1gYsCeTYR/phvkgM9X0QOUxdsMGvbk8cB1rfJyRKBj7EdpRuf/NMMPZPJaEQEYZf1yKoyjkkGOMDknyukPHiNYLKhRAP0MMr8vA3niRWiojy4g1EcOAZVVJcvuHTPOZmh53FYlJEzC3VMGSvYzmdTxmdmEroPyV72OOFPGVaer4ccxIFtM6FZ1Z+F+VuAOqsid4GZeJP8cY3YLDnlAvb6+bl4qowMuy2fUjlPGEhIAOONZEU1naB2z1+tcXVgh64dXuDwcd2lYmTAh4DKqcaDEMYMqu6p/sn6ZIQiu/N9BFg+JrK8dEWDvnL10jgo4x4cdFhehcp4614EJCB5d5Dcb4jzkEjoNeun5+Xmjq56fn7eMK78VkA0yylU96Rb5afTWEXO0OdOHjhhw3wNu/GVEytWFj//VkYGKLWlkQNM76A1x6ZUAuP/7gAmEDkj1tty1TqhcnbgcFmolMo7U/O7Yl9x2GLlGCdQ7m6mHRgX4mEYI2PBnxFNlKLu3bnqI6w1vi4mqts3V2dUH13SNf0fx/W1EwCGLCHAUgBcLOpLLoXKNbqrsZH2eRSP48UX+DDLLzPPz8w4RABlgQloZfK0z0nLdNCLAb5HNCIH2FfZZZ2r/c72yqMKM7M7qsz+ODFRsaYmyd4rK/dd5NPauND+3sETZqssTYFKgoX8ty4XqOA+Xns9ryI2FVPN04IFwSsj661DRroyEOuPfhavfiARyHZQ8jCJSo7pkZIHbzITAkRdOl+WTnVsqU3qtI1SHKOeU4IimEgJdJ+CmBiJ2H191uk7Jg4sKqDFUEsJEgAkJPH+QgKenp80+tihXy9Kx52SxGrOufYpsWsSNGSUDHO3Ntty2qi6zcruYDBxKaR4KmcEebbvIwjWjpwYyL8pBCYBbGMbKFYZaP7ahTLRTvoZ4HQng4x0iwPU9JWT1ea96VvlmCseRBZfPElIBsKxlC1hn8tJFVa49TqHNlFspSuTlvLPsHJ/X/d8JI+KkW953Tw9kXx0EMM3E+scRAtVBfC4rFx8fQjSAIwI8LfD09LT54f/b26+FzwB78tx+R4aZoDiyy+NEdb+bEnHrsaryeFvJrSPV+2KKDCwt+D3Y9UihOxZXnVtSdpbPTJ7Z4kHNI4smrFa7L5NR5TZipxqSUmKAa/Qpgmygaz+4kNex8NFEoKpHVRfnneh/vl4XNrmFTlA6lazu0w9OqWXt6CiyavpgiU7pENfZa46FrP0z/cL3RB+h08gAwPdEHQI2sJlOceXqI4vurYbQRZgKWK/XGyKwXq+3SALrJTaaTAJQNkMXE+r4Gjl+FarpVEcIECXQKEwnIrAUbTKwT8GHGlAdRd4x+Eu8k4xQsIJVReu8fBxnFo1rdd8Jn4bxeapAQ0ycjr16zYvPu6iAvodb88366xQV6b5sesabrdJ06lEZaqewMjjC6eZCOb2Dejns7WR1VTlQj8YpbYbziHBc9zNPapSn5n+KclthhtApmdT5eo0KsOywYecyVJfx/agiFSyDSj5YD4IEYHrg6ekpHh8fLRlQZ8d55Np+p9N1nHT6VjFaN+EIkiMklWx30E1/0DUD3Y7KBvjSMkZKcylGXhkrUhYaN4AUPHiw1WN6ves3JhlZSMoNyixawJEAvi5bN5ApXWc0T0XJZkZnRlay9nXzcDLrfnrOXVtFBXThE2+dzLr6O2PeaZdTbM6IV/tVXbROqjSr9Nm53wmzetMZObeAzxGBiPwjPHxOp570OMsiSACmBPgxRl78+vr6ujH8FRnQKUxum0YoUA+VT+eodYm3TpVx+12ExOlz1AG6VcteGhXr4KBkoBv6Y4zSjwz7DCvWeiwlISPlPCrXDRwcZ+9+tFIfws6flOXr1GhngqnRA358kF+3ySG4EcE4ZVSGZh9iWsnDjFIZlVnl050e4Hp21guwzGTEkLdV3ZEuIx5KGly+mULU45XidPn/LjLcRebIsOHRKQJeMMj9xzoKeUJ3sPFmQwvo6n2U68p3EQE2/iAAPFXAeorbrmSA66dGl69BmH7WmeF8Mv2Yya2rFxOCLhFYGkX48AWEHYOenZ+9tusBZAOl+gEaUq0Uq9ZDBwjSsMC665ks6KKdTICzeX4+zgtvmGG7aIAjA9rfKoynomhnPM995dwZ5hn5Wmr8+Zw7VpGDbvvcNEE3j066LOrE5zoKb5TmVOSyi6V9rAZHowJMAHgsa+hdw/Cr1a/HDHmxXhZtYhnMyIe+4XK9Xu9EA5gM8NQmG1BEH1z52l6tJ+fHjpLrkwpOXzod1NELM3I/K9d7vXSIK7VEaXaVUUfRjM5lSr5TZpW3rvQfheqdALmoQMYqXdgN5zPy4+bMqrpwWc6YOyLgyl0qF++NrqwcQqb5+EjWXHqV0w4xqPJWoghSma0TUFlQsjgTGajQ0SOjqEOlKCvlmRGNU0FH8Wu6ilBWJEDXOQE65pGXRgo4Sqnher5OpykcAeF3CDw+Pu4QAOzjkcIsMpBFC/hFRBmYkOixDG6dAl/r9rl+3E+O5OPaTN8vxd7TBDMVyZRedSzbn8FsZ80obUAfU3EL9ZyA6HV8PBuYej7LI8PIkPPAZxKTkYBRWadICBRL5EzDiy5PZ7idt595Apx3p15IoyHZWU+ckXmFVfnVeefxKwlWxZddeyhF+LvIaQaWEde/TrbUIOu0Je/rfedQuiMEer4aX0oEWNfw0wP8w9oBfscA6yfOE29GBAHQ1xYrmFRUDl2mD0dOVib/2h9MZhwZ07Gy71g4yJqBrpF350ZKuKOkZ0OAlbe1j1HIbo4KkObP12dzbu5aJgGZl5c9PZDBkY5D4dQ8rn1xqMjBaKw40hCxG4Z13mCGbO43Azw17PNxTTeCM/R6bqT4OM1sJEDB4/RUCQHaM0MI3f/KK+d0+s4IBUcy8T/il0zy9FHHuVKnA3nA81cigB+IgEaqXJuR9urqaufTwy7CpfpbpyKckR5FyKrxkhECd3/eQ5fuRQY6ii373zW6M8I/o4hGHlnljany4AGhYSkcR3qntEAAND9XJq7htFrHWQPOgxDXj/oyU8Ba11PDoZS9k99KZhzRdEa+K49urUoHrCxVXiuynT1t4tqJ7cgDqsrM8q2M/gwB+F2QEaHutbyf/ThypGtAAOdx85ondUbwn6cNsnplkVN+wyCmBZgI8I/JKnB5ebl5G+Fqtdp8nAtEQBdKc7t0ATVHFHgMdKJmI8Lsxgr6T38z8j2b/mALCDPjPqs0R+UwOt7ASDFnzMul0bJhxHlQVAKh4Tad9+f8KswsOuQ0vO0QhhHLraBE5U9S0hUJ7hh39ca6P0DnXxWOGHQiRxmhcFEtlO8MFYeGdf5Uw55qyPX/aIGiylhFDjLlmJHq3wWjejvZy6YGRvqHw/8Ru9OZOIa0Wd3cNboGBW8VBAnQbxAoEYD8oExeEwBZ4nUIiBA8Pz9v+kTTVfuoq3sPC/cDjjtnUK8BKhv1Xrr0IF8tzAZqpSBdes7b5TPqhI43y/XQOlWEoCqTB5BLr54V0vFAguDq2wT1moi59QJZGMqlYWGtFEKmPPV4RgqPhUPUoWpTV76WEgElj1l73BRARQBYeWbyi63KcUdOsroqAeAIGY7pnLNbnHUIb+kU5POQcLrXEQFHrpDe9ZN6/jgGqNypDGSODHv1yI9fOcyLBUEMICfYd5EBt16Af8/Pz5s6gzi8vr7uTEXoFAH2UVf+z/I7IgDZuOD+clECzcddP4upNxC6wZ0Z9+q8btUDVUHssKlMIVR16ihszQNlMQlAWseSI7YHy8yNcm3MlPWIMVaM1R135VfI7umfhOzedcaAS4cfkz83h6sKlPddlMApeQ3p4hr24iK8jFXeNBtnt8+klXWIjnmWYRc5QBrkmS3S6mA0Vn4njIyJ/txaAb5HEb+8f7doEOlYz3EdlIiOoosw4iyLTBD4RUNsnPnniEDEdmSAw/48/cAyiTwcGdDoAE8ljKICM9Dx6QiApqkI3IysT5MBrVRlPJ0SzPLWQd9RSFkeeu2ozk5Ju2u1bi4sqcq1QhYBGIXpuBzMg7l0o7y4vBGTjYiddleYvX8fgX1Dwd3rK7nKjL+bOoion9VGvlVdnQenssnypPnzdVlb1Thz3V1UQtujhp//K9nGeWz5GLdXdcE+SvIUUZEAdzwjBm5M63oQPs76hxcvc1olgdk0ExtpzO3zNWyQmQzAcKOevLBVDSmTDZCg5+fnzeOUjuAoEVFCoPLKpGAmKsD7zmZxREAXa7r7tq88LyYDmXLLCAEw8ug7Xi7ydQO82s/qX9U9O+egA4qVoJs71euyyAK3wzFvHOd6jphpxtiXMlrUx+V56ugaeP0/I1fV+KkUNZfrCICru8qRkhgN9TqFtEQOVqvVVmgWdebynAFR5ebIgbav0jNOh2T6oop6/M6o5Epli+8P4KaSVM9k/cl6ajS23FoBGGN9YgBPDbiIAJNHrjdvNTLA7VCj+vq6/Qrk6k2s3F9aBxfhcqjs4oj4jeS8izYZYBbllFZFCLjCjjUtHZCOaHSUdsfYVzegYzwYKpSujsAMIRgNzhHUs+LjFWbbv+91pwCWrawdHSLgxoyOHVXWWXQgQzWtcEiw8ue5fQ7NOtlkY4764rhuIeMOPGWQ6YJMlrtj5djEYJ/ylQA4HQ1U5K9yQCJ8BKgjcy4SyuF8RwbYGI/eBsjyw5EH7QPkxXL49va2QwZ4oWAWCeC2jRxfPj7qL2ermMRX8t4d/9NkwCk0RxQUjvHr+S60M/S4KsIRGciu75IEvT6iZ/g7cAwdUAGYmaLg9BhMKsx6DPVfqpx+Z29rXwLQIQYRsfXtdkcKFDqH3p2e6iKbn+f2a1puH5MCLT9TYFxmFjl04/hQHtKpodMWp/Mc0czIAMONeQ2jR3gSN3JkXFlurYD+NBTviICrN08RcHpMAwAanUK5TAZcGQodK1X6GQcM7cG2mh5YKvttMoDXVjq2qUrLsXTcBA2hZJjpHBfmzAx7ZehdepeXnq/q59Lso4yZlfNrP3UV76i8kSfg8CcpWEaHmc/AGXwXDXD7/B+owq0adRrBeW9L8lYZQR7uozAago6oV0Grx6kEGFtHPjhdpiy5rK6eObbcd+XT6btsPUpEbpCcTs0ikozu9ADK4PvLUQFEA5QQOCJQheGZkGq/cJ31A0mIJriXGnVl4T2cJiYCjvyOiEKFKTJwdXWVEoFMGfFNUwbvBlnV2AxdozxSfqNrM1at/1Wxcz4VZpki96Nj5apcszyq6RqHStC6obHfFU7ZOtlwijgjALOfFHaoCDGg0aoRCUAaR5b0cVYlAMinK1sueuAcB8irIwLOCWFZzfSNa8cpEIAuKn1UySeQhbmzPLUvO/qQ4Ywz7isTASUHo6kBjaJyPXnKAIZeSYjmhXQclZghBE5Pal9389GfjslqmqCLNhnAd6aVDGQKa8aYzZ7LmK2ec0qiQwgqg695qoJlha4h38p7ywS86ocsIqBh2BnyM4NK+H5XRVqd7xABJQCOPGe/iNgiBlyeUyi6kC5TzhH+C4YObnqrQ8R1PGhdnfJisJJ1beFFbqMx4crPZLXqs24fnApGJMAZk1FkQKHRgWqdAOQY+9BvuI+6D2PP+zDG+I+68dSAq6vmzeVj6uDp6Wkr0sr1Z+PvPoLk2qlTdiPMRKWye6jpqv0RpiMDVTTA3SDs8w/HtdE4PjPwsrSONc0iY9Os+JQYZD81FFw3FnYWWkC/rMXtYaFHGW6awJECNip6rOoTF7EZXXeq5GAkG5WxUDhSgB8/yrRarba+FuciA/C8VVZYNtTzdusGHAFwBl/bMYKLMiwdZ9wu9v40T35BjF7Pfe6IdaYcM9J/KvLaVeYjoqp6J9MFo8geG04mBBmZyvQO8lUDz4sHIQ84FrH7qKLTYQDXjUkBryOATCk5YvLBEYGs3/l/teZlCZzMar/yOFkaJVi8ZiBi14i41ZX84/Ojjs0aMzNYdYAshQ6siDERYGXPJAppI7YX3vCLN5TJZu0CmBBk6ZxRQxkVm3VpsnxPRYEqKqM3I0duX5WtbtnIMyFgmcC+5pURAWfwHGkFulGBDrK8ZqbDFNwWDueuVquNsgY5wopyJgV8D1mOnZzO4hTIQSWnmTxWvwg/bh0hcIacr8lkjclsZrw4LxcZYK88whOBKhKEa1ie8CIiZ7s0H62X1mEJtO+6cqV9iP3q+lmCPvU0Qcby+OZpCAdbFx3gNFljZs65hjsl6ZR7xWxHYAXJRABTK9fX15t9Vmws8PwYCw8KJlCVEOp8GbeBw3lOEHmwdfIHsvvY2T8VLDGOmdeVrQdQmXAk8erqv0OxGmdKqJk0Rvh3wmcGewY6rljWuT9c/TtlMRHQ8GxEbLxE9JXKVBahdHVWD+pPQGb0O+tOKiLg/rOR5ekCjWSx7Du5U9vgvPBKj1REAPt6z5V8oN5Z/2g5FRHgdiuZOqQOdPlXec8QjmkywFD2xspK02E7qti+nosjA26bpXUs1sGFx1joLy4u4vr6Om5ubna2rLz4YxyPj48bQgCvCGxWmeDIcLPSzPqkg0OGufa9tx+Nyuty6wKUCIyiRV0yAGXJihhpmRC4qQXO07VrBL5vKusZCXBkwZXLeiEbc2gX0vLcLOeBfY66ZdEsLrPjcbv/Hw0lMFl9MmJQ6bSMCFRpnSwoAdYxkN1f1mlqR5yzOXKMOG8uk6MEqDdHKPTazvQp2oj3FPDag5EhnokKcH58P/clAIypNxAC7OEzk1fPvyIFnXKWYEQGqjQjKMPEMWaY8P5g/G9vb+P29jY+ffoUd3d3cXNzsxksr6+vm1dt/vz5My4vL+Ph4SEuLi42z8CyADvvf5+QFerPWz1eXdPN4xQ9sNE97xCBjAA4IsA/EAFECfCLyEm3GjbInZsyGBlhThMx/1GqbIoM/3k6sRp3SgaQhld6s9FHP/BbDvk8K+NMMWfb3wmVbI6IwHuSGpV/flxPtxE+2uWOdzBKV+nuTt4u/4pssvwpkZsByycTgC7hmMH0VwsdEchuqLu2QqY4MkZZXe+Oz+SfgW+ERgdws0AIbm9v4+7uLj59+hRfvnyJ+/v7uLu7i+vr642wMBHQ/CNi681ZKJPRJQW6mOYQcOGvQzDh94a73x3ZyYiAO+ciAkwCHCFwBhRji+vh1pWMDG82RcAKZhQCRT4ZEXDkyNUB0Pl99trw/njsc74aGcA5jTC4/ZEjcioymqGSU/dzEZsqj6UGS8eBkgImbg6sP1z4n4/t6wAhjyxaoXVyUCMNMEFw17h8O1FTJgHvRWinyEAWttGoQNcgOOWVbRUzbGuGDHQZdlYGRwYQEfj27Vt8/fo1vn79Gp8+fdqQgZeXl1iv13FzcxOr1WrreVomWhG7z2GrwaiEcAYdhj2T7tSwDxHIFK0qXKd8de0A//QpHZZtNXD62tQI/3IeHK/GEedTybZ6Jnx9Fg7mftFrVYmqrCDSxl+i03JdnbjfVXFqHqqHOM2pyq6iksuOTHI+M23mPLgcfSqGf1qmgwvL77tYb4SOIUZe0LOoF9qqETu9rtO/rh6demn9sjp0MB0ZANT4V0Qg64hRpUeEoLqRVcdW5bj9btlQ9lg0eHd3F1++fIkvX77EP//8E//88098+fJliww8PDxYMsCfy0TeOg/K9VdBrfqN26CLPR2yBaGcT7V/Cgp2aR0yJVvt8zFdG5BFCFxkQKMCqL8SgkxWcaxSxqysupEBHMO+e2yyMkBKKDXsGbEbEVMdg/LZ6OvPhVe1XY4o/A6o7uXop3m4EDqQ6WhH+nDveUqAZcTVuaN/FJUO1Hrqf21/dd8ru6N1cNNSI6Lg8s0Ia3YfMiKrY62DqQWEmvmogTPTAvifGebO9aM0HYLgynVCozedfyAC9/f38fnz5/j27Vv861//in//+9/x7du3uLu7i4uLi80Uwe3tbUSE/UoWh027bFRDqFXfZF5lBhfi0v0qzTGQKTqcy/47464/JQN8DRtJjgAgDZ9nL5oNPU8faSh1dP+cV+ZCtbqgSvtCIxRcliMCWXsqkoN8dXoAircyaB3j58Ywy8SxZTSDMw7appmf5on/zqvMytFzLMvZ/0y/zOqfbl9x/k72qymLUf7oJ3bQuN+UKFT9u9RB6U4TzJQxHRngTmSvxFVs6UDLjPTstVle7vyIhLhjqqT0cUI8PXB7exv39/fx5cuX+PbtW3z69CkuLy/j+fl5QwTW63V8//49fvz4EQ8PD7Fer6cEdolgVR59xdjVMLk88P8Qg/w9UZEENu5s1B054LQRv97L4eZP+fFCXi/gHs9CX/NYUyXkZB7H9N0gGXnMonoR/gNYSnxWq9XO+zS0bO1zJQWIpOi7BUCK+PFCPlcZf9VHmW5SYrKvDnsPZLosM/wZiaruRyZLKtuQVyffXC6XV/Vl5kjgOiYNzjOv+izT7dpWlW8HN33B+j+b2nL9m/XDjK1zxCDLe4Splw5F/HpjVDbwskpXqG5Ydn2nw2ZIRVZml4ywQoSy57UDWEh4f38f9/f3cXl5GU9PT7Fa/fe1mP/5z382iwvZWCxhsF04w6DzdkwKdCqoO1Vw6oQAcPLsCIGLDGQG2BEGVwaHV3lAcwSAPXReUe8UTVaug7uvzji6McH11z5QY6RlKSlAnhwNwZSIM2rVfXTTB05Z6hiojOKpISMBlZzp9RUR0HIidh8jZHLmomO4vipXz/G2mhKoCIHqzSwqoGOuI1vY4gVG/FhhtuV6jzCrM11/6vjtYNGaAS20O0izvDQfPa5pl+Q9ykPr370GW3g1iAqAALjt7e3txiN8fX3dOufIQJcQOEVXoSOYnfm5UZ6nSgjcPXYEQL14pxAj/DyqC5Vmcq77blpA68eKhuvhIhkqH5w3G2SGEoVRnbmsWb3gdIC2UdNcXFxsvYOB83KEwLWvq6RPBSPdlBEDl75rmHk86LjQyIDKAudRkbBRm3VKAYSg6qNqjOt+RD86wItcNUrlynf3ovLkK7mckdUZ2Z5+zwDfENwgVDwLW0bU4VhsM0KgabuNmzXo3WsithkyD47Ly8ut6QEmAJg6wALCiNgiELrYTI0LFJ9rw8zActepcj0EToUEjAZERQSc4nMebxYa5f0soqB1GSktLptfyKN154WJeKkRwNMPGLduaojJAv5rG7NICJMTQF/8wvnolIH+V7C+qfTHiJRkkZBTQaU3sV8Z/qrtnXJYVlXXuciAi3KN9G8HjhB02sJf2OQx5/azfB0p5cgAyuFjGjXg/J0n7wgB71dTebhe6/+ukQG+uRwKifg1mLN5H97qMTeQq8HL2259Z9J0iADXU9kxG37+8SuJwWzZ83TGRuviPLhRv8+A21YJa9fIRhx/zrWjPDKDlnlCmSJRpTgK1ztyMdMmHZMw/ro+AWWx0ccTKzx2ndJRZePa7vrOGSgoSJ0uqNrl8nbX6X3gaZaI8ee8fyc4eckIEe/ruAay6I/mq7qOiQHLmlszMqMzXJ1nCEFE/vbNjAg4EsOEE/3EkQG0O5suAFzkAKj6JCMBHX086m/G9NME3NDRfE8GJ6yd0KKSgA4p6JAArdMMuL76/nleSMhrCdCX3Xbg+OiNXB0Co4PfDXqkz95toPOMbjtTt2NCZc4ZNlV23EecR8TuJ4izaEJX3ipPQP9ztInljxcpAnhShaNAKl+shEZy59qctTOTLfWgOoYN+WmEAHXWfJkMMVx0QM8fA5mC1//O6FZ96GQvM8QayVISUBGBrCxXtjOkvNV73oFeo+SG65kteNV2QD50ioAjEA6uLUrAdPwxmDyPxuMSeV30OmLtUNzITiXdtZpPRQTYgxkZIC07m5fpgIWP64pzOkiYBOAYyuQPsPDjhE9PT1svG+L+3OflG5lXij7hQeemCFSBVgbfzYOdMhHQ/5k88v2OWP7Rn5n6uD5WIs7jSeWQySgrOng2eIxvvV7HarXaPMrH5bqpg8yQ6PjmvtPrWSnqOHQKT/WGO5YZPvXssntWRcFODZn+rNrZNcqMLDrGY8JFzRxRjvALUtVA6hZ5qg1wcDpd9V9G2LU8rgOTYi5fIwP6RBCDoweuHdw3FSmo4HRwV0ctXjOgDctCfnq9M6SjMCryZeWhKzS1U6s2uONOgLJr3SDguX/+KBF+PH+LOuK73SAC+I+XD2XeG6537WHDnQ3Iql1M7BwJ0GuVjOl+VtZHYtR2Nf7VFEFE/VVAHif4OYyIs9aL7wvyV4XKssiLWPl7GBG/ogKQu4uLi82TLRcXFxtSgHuvC/RcG91PjZOTkU7kIeuPiF8KVs9rPdXT5Pa5e+MIzLHRNebaB9X4z/LNDL7qO31MVsmAK8s5DAyc16kr1Wsdg5mRAI6iKSFw/cVymkWXImJnzQCD7aYrpzNVMIq6Vvp4hOlpAhTgFkhoxTrKNiJ2nk/mhrEXw0RA95Gey61CMIqKQWVtwtYNFs0LRh1G//X1NR4fH+Ph4WHzw1cLlRigndWz/wz1WtVgcZ34uD4jy+VUnpzrL1Xyp6BMAUeAnOFVxRGxSxIdEZ1RvLi3atwdmAjo4jrU1T3SisWrAMimI/Ks7Jzccz+oJ+giZXw9l+EeWeWIWEfWWWaxj/vnvKMZj6nrYHwUHLF2P3duBupAZERApwiwKFplkqH62pWJdCibZSJi99HnTuSUjby+I8FFNFyfsUzqYkAGkxhs+cNbTLCZnGcR7tmoAK6ZIQHANBkAEbi6utppmBbuDKYTLr5B3CB+NW/EL4PK5AML8bKQSwcurS7+UCFfrVZb7JgZJrcBdYZxx8uEXl5eNmTg58+fGzLw+Pi4iRZkbDC70SrIjgRw3TIDn20rI6EsnfM8JUKQEbuud+swI2tVfVy+Smj5XmjdIYf6bgt8DwP3giMCEdvrB1gJs0FgrywjTjyGO6RGSYi2uRM10PuZRahGRKA7xj4arh6ZEXKEQNM7j511nY4J3bq1ApiGGo2XrN/d+gAch35nWWDDD9nNIhFoM8snkwBeT8PpsjqOZDLTnXiRFve3ro9x/TWC07N6rotFLx1iIgC4Z30jdo2nMkwmB479ohPZc3KDnDs664gZsqAMmfNgoVKCw+BQ7Hq9jsfHx831z8/PO1GB9Xq9WT8AIedf1haur57XQc7nO4KiITHt56w+wD6G8lDIlCe2lXHLBqsjT9jPvCs93lWYnLe776gvK2l9vFW/lBnxSz7dUxLqaVdt0sfMXGQgW7SHrVsnk4VFR8iIaBU6re7vsUmBI7DYz/STS5/B6TrVbS4awIulR2SgMqJKCjPv36VTj13L0PawHVqtVhsiE7G7gJCjDpAZ9fq1nWwfke7t7W3zZk0mLkoGXN9UeroiAkswvWaAiYBj5c6TUc+Ff8zS+CZwyBqEoCp3hEwINT/AsU2NFHDboIzRJi4DCni9Xm+16efPn5tXEHN0AJEBTCeo8Gd1zgzMSCF0GSinzTwMpD21MCujIgIVAYjYfY//EqKTecGjECHXieuoawV4zQrecYGPYbFcY5xB1p6fn+Pq6qqsC5OlKpqi45nbyItkEZHg43reRRCyPuqiIq8474zKMaH3Xs9VpGCUJ+87J0dD6vpitGxNDcCGFVAdUoX6+fpKdpA2s0MuspFNU3O98MMYcnXT/+qQscOo0QFOX+U9sneOwHZlt00GoCQAbgjmRDQ6wEZSw5gQJp1rivCrLNF5Gk7KwHUdKQxmV6OOUy8J7VRmzG2Bsl2v1xtBXa/XmykCkAElAkoGtE0qbIoqdKZ9wkRj1P4sPyVsnfDmRyNTojOEIOLXYHYRgmxwI+wZsRt6HHnBLPdqmFm5KdnW91vgPmPNj16rodnMyDjj74wAoAY9U+b4n3mE+F9h5ElVYGV6SmS2GjtdEqDOjF6rkSF3fzUSoCQhGzu4f1l0zOlfjrRqJIC/6sqLrdV54vLcmofMIeU6w751nSq0A2OMHSi2YxG76w9mjf/StA6LFxDixvJ8PldGWSYTAX4Jj94EGM+I7QUnTngq7NsxQKbsXehX6wVhxVQBFlyCDPz8+XNDArB4UL9YqNMEWWSg6wkwKjLlkLF9nFNCoDglhZoZOed5LyExbnqmImcRfuFPRsDxX0P1zvPJDHVFfrKx5vpHSTBHHiJiR0FXxADpK68P0LnjTtRg9l5WkbiPgMpDJsOZ7GZ5KliX6RoufWrARQ1GZCBiV18o+eC681w++gBywJEs/PickkeuD793g9/Hwd47AJmCYa/6j8vjMcrrcNBfrCdH0YGMlDq5qP53sJgMRMTWnCIPZk7DHc8hTCUDaCjyhPF8fX3dzLew4MCD4WjEIY0R2sTenxIDVYZaFis1fo8AogS8aDAjAlxv9SZHgqOeJMOF1LqeF/eRizAoRl7ve8MZQWy7StT1t5tK0nNqvDgSgHyZ8FaRhohtb4mVJoc7XZRKy1NlyXkqgWGlqEq8Uv4sY9V0QBYh4HojP617RgCcvCkBUWj/6/6x4OQxI62V7AAqy6y/dDEdEwE1om6dABt250BynZhA6GvYYS+co8g//ez71dXVVkQVYw71UhLAY0fHCxvqimiiP5nQ8KJ6EAC9RxrlWyJ7S4x+hukFhBG/BjfCisyIAJ4i4HCl/njhIA90Dq+g/Mq4Ac6AzsAZVF0YyHAKEMLIAosXu0DAQAKwcHC9Xm9ND2TKEFtHCDrey2w0YIRMGJ33d+zIQIQP5c8YOAYrO1Y4ztPhNMr08ePHjbJ683+uu4Y91cOBPGXh1ezeuHOOCHMbFWq8XYRA+8L9zzArV6pknQI+RWSGviK33XxVdjmcrvLlok4afVK5cIST84Yt0Cdi8BRMRGwezYY+xRY/fnSbCQHKVOKsbWE4Tz8jW7qvRELvH/rHOZcoW8lTJqua1qXvjo9FLx1CB7ktw0UFeHETbgYah5XNzObwnyMDbFRdpwPK3vSYplUljbLAOLkvVAGyML29vW29VXC9Xm+uR378jgF9vwCz2o5C5HnezDvL2szl8Bbn+fosGqFpMxJwLDKgrJuP8xb7OjCzPJiUQQZ5y1EAGF1MrSE/Ts+y7+qiREKVNCt01B1RKVZsqig1b/WkOPrmFpNxSBdwnpT+nNwxOXGRAAW3oytn2fnfhRRELFvropEsJq0u/K9PDnAkgI2/i4y6euI/ymPZ1UWvd3d38fnz542diPhFBtiR4iexqjVXXGee/nDTEShLDTu3ScFpRgZY8xtNFfCxGSM/QwQiJiMDqjBQEASKFxmi87OoAD9NgEaywsJNcPNRGl7hznXTBEuUBXd+daMdo+T5KxABLB4EGQCbBQnorBfIwMbjUHDKHFsVTE13amQgIjf4SjAr4xvh55Az5QAoaVB51XqxrGn9dBzw9ADCqlq2zq2rwdV6c4iTxycTBDcdof2AvJTYOpLrCDA7Go5E6LV8f3SfkZHDU4TWVftZDUhFCKqokzo2PF1QPRI+o3u0DPbQmQTc39/H58+f4+vXr1vvyHh9fd1aeI0nsPhJLH48m1/ahvJdNIOJLORKSXCGTAd2+sLdO9eXGgXgMtQezRIAxvRXC7lQrjS/IZDP603XlacR26ss9VWN3EG4jhWTMrYqnDJC1dnZ/LDWU8kAv2iIlRuYLE8PVARA68/RE/UmO+3kuuoxLqO6nv9rBEG9uWMSAYb2T+ZRjYw9I4vIgPi5x3Gdonb3UccRK+BsRbfWTYmsuz9cbwX3jRIBHc9qoLmdLgqgr93WiAAf4ycNXMQgI6BZW50S/R0IgiKT4dk8OEqAe+0iBBkhGeUf4WWWI8cgA1+/fo1//vknvnz5Ere3txs99/T0tCEAeCz79vZ258VtPG2gXji2Gtlw+qorXxppG0W0nO3jMZPJZqVH3fkZWZgiA9yAiO1Vk45JufdXqyfBpMD9V4+NjwHcma5uatjdcdfO0X8WJoYqO0wX4FoIKS+EYaVYwSnYfRXYPobaDRY9fwqRAYZTnhkh4P1RXyuD562bUuB8dXohIy0aKcseaY3YjgIgD51HdeOR50hRZ0QJXAhZxyzSZqTRTQ84IqAKF23ifc7bpR/JQaV0u07EMTBDYF201KVjXaby5mSFr3feq8LJGssTvqdxe3sbnz59ii9fvsS3b9/i06dPG3nCNAFIAN6hgYgz9jnqiqcNuL6uDUqW0a7R9FVGPB1JqO4T16Gr450943xmMEUGuGBWHCACbJCdQVd2ifMR2wsqMiWlRABKiwXYfRWKb3IG19k6oPSY9oWyZiYETJQQNeA1Ai5021VqyFNDzg4zAlJNj3BeIwJzKnCGfkQC8J+3FdSwQyY5OoDxonXDOeeBcJ00xKlRAzb6SgaQp1PKvM8Em8utvEW0Hx59JYM6fRCx/bSAPmaYEQKngLmcjKBmcITgmOiOVyfHEduesKbVNI5wVsedE8Q6jnW6lq3yCjniKYPb29u4v7+P+/v7zdoyrLfCWgKecr65uYmfP3/G9fX11sJs6FknCzptx8erSACnyaaxRkAkHP3i7s1SUrqExLbJQOZFM9gwR9Rz2Wzg+ZgTahciZRKCNEpM0InOE5sBe3bcNm6DbgEmBMgLawZACNzbBj/SI+E+Obbyey9kbLzrXXUA+YvYDTO6uXk+z1DPnQ24EgENu3IalJtNUSgR4AWMaAfLhpIBjvgpAUY+lVfKytMRgSx6oNdqfpUSV7LwO8HdP0cAADXWmsZFoDS9iwrwtXp9pUeyMZaRDo4Y8Ou0+V0BOM5r025ubjaLs7FeSwkBj6lMRjIjX0UFWHYdec362JFvdb6XyOuMLWmTAQ1z6uN2Oug7itQJkwq4sicWRsfquHM17ahOzoPIrnED0oXRkA8LkD4fq9MEXULg5phHXo2my/rGCZ8e6wrosb2syjNxBDQjBwxVtAArAI2sjOqn3pqLDDgiwFtcy4o+M4LcVibRIAXYIv1ohbkaArxGXJ0EroeSJueBubpnJMBhllyzvB6bMLhx6Y7jWJY++5+lqZy0EYnge1TV3+XBhpfJ38XFxWYhIUcDsJhR37rpXpLkHqflCB0bdHbisqktJrJOXh0JcDrBbVlfjhy1Q8noVGRAw+4M7RAc07BnhI8AvL297TxWWClnNvRcVjZNgDJwzA32JYOfFbSGvgCNVOiLM7KoQNVutJ3/a2huxNKztjJByEieeq/VnCTqc2wywDKTETgnc7imyhtggsYeMn9wS398DRt15K/EQM+p3HG7OAKReUBMMDgNHvVlMoC02TPaq9X2a8ndfXek23ldTuFypMNFAfQ3C0c80I5TQyarHQLAuoPlZJZ8AE6PYpsRvOw+60uFeHoNT6whOoDIgEastH2r1WrzpU5+l8tqtdqSJ41EcdTKOWuOvHRkT53ZLDrA9VeMypiV/ykyoIZn5lod6IAavMr4KVzHqSFDXdkQOMbauXmj9jlBwA2G4PGHYfRXGWdek6H1yQRlpMC0T7Ct2GxV5tJ6vDeUGHWMf5XXCErKIG/ch+x54znqp6enrfdZRPzq++xdFxVxRjlurKrno+QOBp/l2b14hskAK3qWe4YqUK6fTg9wnh+NY0cEFB3j0IWSRgfX/q5nykSAHTKtO+SPF1k/Pj7G9fV1/PjxY+u9NEpwLy8v4/b2NiJiR4eycdZ3Dmh9VA7dj1/UVRED5NeRX2fn+F5k0W7t49H9mpHjqWkCLoQ7U5UAwJ76y8vLRvlhH9d2jZYaLz6vhpIjAChLIxtMCpTNurY6cNv1OH6q5Nw7tZksufZz27VfGNwH3J6sDc6j0O3b2+67tBXa505Qj0kKnMecedWuvzvklMH3ASQQ8o/jOAYPPCK2XhCE62CYedxkbQQqeXLejObB44T/Z3m5cp2XX3mGfD36MMsrIzmufofAKZADdw8yeWR55mOaTyXX7n6NDBBDHSHIM1+LPHm6a7Va7ZBN1qWICvB6MZBU/bknXlA36GJsmZgwUXGG3/3vgG0VtrqgmJ1YXKO2qTL0mU0aYXqagI1M9xod1DhXsaiqIVUkwBECl1aVnRIDVyaHU/m/DjpHBFCWvi7TRUuQPhv43P/ZfZi9V5qXM/pVdETzUQNzTGWqBs4Rg4wIzJAAZ1SVgOIY8lcvCuCIAEhEZhyrNmu9uA4dpTFLhPVY5jUpCdDV3pUC1jqM+uEQsndMIpvBGXRH7iO8LKv8u/GdEcouVL5h+JzsVH2Mx7Hv7+/j9vZ288bN19fXLZ3a0aNsl6CjlQi4SIDKWtYvzp45PVIRAz7nyNsMOeiiTQYQphwNvgwZMUCjM5a1ZKC7CIJ6eqqk1eNSz06NBufZbTsTBH1d5kghu7aMymdCMEqfTRWw8P2uUGXJJE63Ed6D4uMMjVA5sIFDOZUngfM8TrKfGlBXb65D1T/8XwkM58HjlMcvn3M/R0BUuTqnga9zZKijH2a9q1PGTIQgIo8SzBJdvo9dxwDXsuer5CAjeLyPl7c9PDzE3d3d1ndtML1QvcmVxxHO6XStfv2Q0zv7ldW1A6dns+ir2hyWYyfD1bkKU+8Z4IrOMOVMMWjDO96Kzp9rJzEyI4p8UKbLgx+twn81GM7j1HK4D3SNQCasVfu5bR3MEIJufgxXzy6D/kio518RgYwEuL7Lpk0qYKBC9nQLWUHeGiHAYkScc8ZBw6Lu/qv3oZGkjBA4Aw6wkXaExRlwJQsZOVgqT5UCrRyKU5DbEbLxnMmzEt3RtGPELnEbkVmU8/a2Pb0Io8pjkI1tJjfw/h8eHuL+/j7u7u42awmQL3/AiF9JzOsGdCoAW56y5QiDi8Sxfub6dZCtvcocMB2f3Hc4PyIGM5h+zwAbF8dOmempMmLFBu9MX8ajjL8zUN1UAadRQsB1d/MzDI0MuGe7M5bNfRYR5eJB9X74+tkbrPdmlslrXlovlyYjMaegUB0RUEIQsUsA1aA6b1sJ5wjwhhQ8mJkc6A/rC3gMcRtdPfkYp2M5Ua/PhSi1vuolKql1Rt4pfTX0jhTwtoORYswIge6fMrr1q4huNx++z073u/Saf9a3vKZLF+tBZyIqwG8eRHQA5JkNu77uHVMJ+ji3WyOA/Jw9Qvt5W/V7JVcuAqDRAUfMXb7VtouDfZugUojs6ShUmWTeMxukQysF1L9qoy5u0cVn+ogV30iU777BzfNdaC+u137i+o5QEQKXh/PAXPmcvyMvIyJ3DLDh1x/fX5XnzBByvp02ou9VHvh6N3a4zlBaFxf/fUwR57HFwsMsesX94DwL7iP26LreY+YxZdEvNfjuuPPKnHfmkB3vkIBTRkX0sM8RL9w7J998baabmbhqf6s8u3rxvcrIKut91pH81dfHx8f4+fPn5gkD/PCEDRtwfjrBfcCICQEeXXTR2kpmHTHokAPnrDqHIiMGjtQfKlIwTQYyT8SxGW5YxO4qZvXKOY1C2VSHcXGnuOiAyz9rM9rLiwd5qx4XhJNXzzIzZUbqnirANTPIvHLUK4sQVMbf1ccZMEcETiVKkEUF9J5G5OsFRhhFBzJipvucnscKxgu/yAd151XVqnSzX8RuyN71C0fuUIauuWAoGeCxoMrUEQLkgXNu9TmX49qh/T6rGDXtqRAFZwjcef2vpLCzXoAjwNhnOWN0CJmLCLCsQtbwdA1kXskAXiiEaQIsJOQ8eU0AruU1BYgWoJynp6cto492VtEtJah8fNQvwKyj4ciAyrYjBF20yQAzTX5kIyK2PAkIkOsIVm7cGM7HKY6sPlo3JiKOmLj1AxXxiPjFqPn5an50BecwwFB/vhHcbn3ZEM9PsUA6Zcn11Zvs0rh2aYRABTjLk49VJICPdev13lDPVyM6TOqQfhaZElA5c8QM12ZTOavVaisawPXE10I5b96y4dZ2sqwi3Irxm/WDEgqGKkoc42gXh4B5XGgaJgKjMVGho5CdY3FKqIy/k1l3/yN60a6IfPrIPaKNNHq91pP3VTesVr8eoYU+xTs38J0BvFoYOhivHoYO1rEDmVECoNME7IhlkSnV0RVB4HbNyJLeM50iwJaNvPuvRGCmDm0yoK8gVTLAg5mZPisXkAA2erge0Jui57ljWDgjdgkAK1slCZxf1mEaHsWN4j7AvJWGnbk/sM3WDKiC5DY7IdN9PabGRRmi3he9Psu7I/AZEcjy/Qg4z5gJUaUks/DpqLwMfC+UmEFOOarFxBmyy4sJsa/tca8rZsPASt3VTevMCidrlyOELDeqG2aMOvI8BDpKstMvpwIlaNCNEduvptY2ZNGs6h5rdLFj+Cpy7HS3ThtcXFxs6Vl++RW/bVDb6BwwjgZkUwKoX+XUaL+NdEIGvgej6CL3IROpQ5HYNhlgr5hvTMR2aIZ/HLZkBTwiA3zepXGdph1Sef4MvtksTBqK1bevcT+wUGo7WBlm6yBcfWaFy+XlBq6Sler6TpmZ8l+a53uBjT57IDinBNLB9Zkqhswrwr3QgcyKAKFYDs8zeYZi44iAtkfHAHuHGlLVKQgen1x3vqdV9MSR1azPcE73dbxXY8X1tyJTlHofkJfTG6cUMVAvUb1uJoUq37pO4O3tbetYRgJUj+Ba3i41hu56Hgsw/lg46xwydcSQB3v2ukiQnTDVXU5G9Tjq7o4dol+0HS5a4KIEmR3sYCoy4N7/zOe5oxH60cq4jnbTBHy+GohuMOhUQDaFgDTK/N0aAdd2jgwwE2eFxqQGQsnKXRUiruNtB2w0GErK9oGyZiAbSDh3bK9KvSbeZyWiCgXISJszXi6diwRw3XBOBzjLKBt1neZQY6kEIIsMYHt1dbX1FkSuO48dN05cH2u/oZ+4z3h/NC3g8ujoBTb2qHtl5E/J6AOOtGg/O5nmfZVzvm4GLJccWcwMntY7O69kk6eN3JMzHO3SaT6VQ5YxJgDOxqi8ZvWsyD8f25cIjFARgqxuFRaTAfY0qkaj07nyqCgzHj6mA77yDBiZsddj7jpWdEoE+MtYEEBWskwY1KNRIXQRD1zTDRO9B5zSGSFj1Hqvjk0InDelXlIWSnVGJCMCmta1mSMBzjNFGowrbFWpcTRg5D2jDDUI2h9MVpS4KJnO2uf6z720xa2XcWSB+4XzXAo1FNX/U4Eaez6WEQO9R5Xnz+2uIgD4MSGoDKOOC1euXufImRujHCHQY1oWk01nX1jWskiWG/POiavyGcHp/pHN0v19MDVNoPM1eiOwyMl5hwr1fvh4xtYcsuOOEPC+WzuA40oEuL08NaDzstoGRAEyMuC8ShZqJlKH9lhU0XMfcP9wucckK/vAsWbnNWXGrep7lU+V+45x4bEAOUI+GmXjukJGVK4yRTeSIVWq7HG4iIbzQDISn9VRp82qCIL288yYcPexYxxPCaPIgEZqqqiAy1eR3Vdc4/RXZ78qI6sbl8eypzaIzzGxrWQqq1Mma11y4PJzkduqf7LruH94nFbtGWExGcBPBRThRg57ZhXT0KjeMHSAGs6RQUJ+SgjcdAHyx39mm7o+gFewMhHgG4K6Zh+7AEHgtrLSVIGq2uqUcbUoKPPsuF8yknQo9nksOO+h4zVlcB6RetMzRED/Iy/0O3vUEb/exPn8/BxXV1epQVUywWWpB67twb4bcxomZlnXxVpuLGRP0rjyHBHQ+jmozI6UJY/jLnF4b1QRgcwIuv8Ru15/l9g7gqv95Ix6V1+49JB/fT+NOnZqZ9x0QWa8szZm7a76a5YIZHK7RMdWunkmv6lpAihSVabOALGyqCqoAuDYFs/vVNCBPyIEOkiYDPBUCD/SwvOvKJOVWPZmKzX8yrQ7YKWF/0ymnFCoAuD+4X0lSu7c74pKaTrvSWVSoR6DM1zddRruPBOCDOv1erOv03fI8+Xlv194g2J9enraIXdKVlVWeYEV11ejVizzavR1TGBc4DodF1lEgOvRUebav44YdO5Rlf9HQsdsJs+chuUbx6q2aHQKOoHlGscyPe486VEfV17zSPeoU+rIgNYrkwVXL5VDF9WtpgUyIlA5u5WsV9iHtE5FBuAtKyFQz5qNrYabswY6z18VgfMQRqEePa8DBseY6LhPYSIiwO13YSh9D7Yq1E5UA30JJc5kpmprB2wsND8tUwlCN0pwalGESmm6tjEcEdrXS8wIWoSfq8/ATxbgp2/C5Dw1MsBkWyMLnUW8OMYvecGLXviFMfp8t4uYqULsjJVZGXP3zUVlThFZFIt1F/47T3qmXaw7MZb5fmTrCnhf9S+PIyf/GekekT52hJC3jvcsryxPV38XXXDXZu3XOjgikJECV4eMiHXb5zD90iHHvABl+B2MOivzEPRarie2b29vO3OwLh0bd10j4L6NrXXnG6fvEeA+wTWZMXCemfOSMpbf8Y6yY6pgsusqzHpbHwWWV37cSteH6LQR0uFYNp2ihKFaYNedRsiiE6vV9vqBi4sLSwb4XmgkDMczOeMfRwAyMBHg57jde+CZbGQKrwuWf91fglMjsRF+XGI/G9cZOcjap14y7oW+gVIdE5dfpptd9MwhizBk1+h44jGpHv+S6KZGFaqIQIcIVHYt2+f07ufqy9d0MTVNkGFUQU5XefLMjDjfEREYGUE2TjyAmAS4KQFEAfi9ChgArMSg3Njj0agAwxkRZ9QdEZhB5iHw4OY6sZFzW30yRJWvkgBVMseCElhdhMfbiLBhUuTjoiVvb9tv4AQcKarIIKeJ2J2Xj4idNxEiWpdFBtRrUqWsZICv4/GWGR827tmPxwg/NqZTELztjO8lGBEw9TRPBTp+3Y+NvkYIFE6n4r8aekeOI2JH5jPvPmtLldZd59rjHFOV/6xuI6hsZn2mx7SsDhGAbtX9LkmuSEEXiz5U5CqvC4YidiMFXUZYwbHR0cB1IaSI2JpnrV4k5IgA2qcfunARAfXokVcW/lFS5Fh2tiZDr+OBofvcb/pY5KhPq4GbKdRjEwL1ljQq5OCmazgPDqW66SeXn57L+kXvM/9X5cMGF29ty4ioKiFHBnAe9XMEkvPThYP6AS6dKqu8oFnFrfKmJFXTdnFKZBZbNX56ropKjYwSg3WVM24ZWcB5TevOd0iB1mcUHXHpRiRF5YbTVMS046SOnFm1pUw+HEl2fePScfqubZ0mA2gcKxsNEToCUEUEgI43MGqYGjknLPxzrxbWxwdVsNQbcl8edIxOjYmGcll5cx8ijdbDKeYRXITA9SEEtKMEnTLOBtgxUEUFIrZf2RrhQ+uswLK1FE6ZaN/ofRv1r4s2OOLI8og3tjFB4fS8VXnNoOuEOE/+4JZOFegCQlcP7rslHpyiIqFdo67j7VhyXI1XJWiaZhQF4fug+UK+9X7wsYp4aFmu3o4oKHT86Fb1vbvOEZqsfrrvjHvE7hMuznZVxMv9V1KQ2UPVAXpM69DF1JoB10inBBwBGFXOPVPv0mZeGM65cBELECs1ty6Anxrgxyf5ZrHydfOi2TyrRgR0AaLu62BVRr1UcWZesPMyRnPGIyKwRBEfGi6ciq0+HcLpI3495+9IQIR/m+WhAULAkSmWQYzB7Hsh+I+8mHjyf24T2oOtW4CIfNng83fj+YkaJh9uekDrq/XO+nXU52o8dJ/LySJapwSVZRcRcOPbGbFRCFof6wNUj+FYp+4oryLQ2XVOv48ISXc8OkKg/ZORg1E6dQ5d/hkRcAZ+1I6lhKBNBjRjHuC8Wli9DK2IGkI+Nqr4KOynCktZYxYR0GgAp8nCorwy2n0Xm+FIgK4XcHOpVb/sq7Cc0uCIjytH96uBe0pwoUUmhVlkIGL7daggodm0QWZIKhnl44xRaJM9AdSPv2AYEVv11nlIJQTISxUv11Uf4cK1kF0lAu7niG6XCHD7Vf4qucu8Si5HowDvReyWwNW/Qwi0nUoEqmgM6yzWXVlkoOOYdAhDBqfXVT6re6b6luFsm6JDBEZpdNuJFnTgxscS2Z0iA1pp9grwOFHXW9V0rkEjhajCrp6fKl33nYFsWoA9Rh48Oi+6Xq93HpviwYKBUg0cDpk6lqlCNhNm1v7B1oV80VacRx10P/OERwr1mJEB9SLwc5GBiN3vWeC6fQxEtS5hFjz+9EMuEbvRBJYjjSzweZWRiF/jRqdOUA4IsRIMjQAw1MCNQrkV3H2pSGxWF/VYM+/1I5ERmYwAOLKZhbozEsbXrFarnQhBFhlw+tjlyfrEEbMqD9Xtblo4kzlFFQ3gYyPvv2PUO/+5fNX/SzFzbZsM6HwfPA1+jEijAhWyyMAI6mXhGHsvOijUG3SRAV0fgPbyUwHr9ToeHx9jvV5vSACeo0aYVAWMB2xGCFCOKuuR18RKsGNoK6KkRkBJAe93vGI+NlPH9wIbHfxXuWBvF+fYu+Z8VA6rewQwKeRrOT9HuhhMULCPqQyOTvFrWisywHLGfcX9xT+uM+rATgGIgU4R6EJFVVKVc+CUdqXkMrl25zlfJ8enACUAmV7jtA4sAyMPlJ0Y7OO/9lF2TOsPzE4vaB7a/iytcywzedJ6dYw+X+P0tYsMZMQsK1vlXe9VNR46Y4UxTQbcXGM2RaA3moV6iRfgBEyVFrw95/3ykwNMCDREjC0vkHx9fY31eh0PDw8bEsBEgF8zrGVyqE37hAenmx7oomtwHdMGdLDrIFcjgXZVCvQUlKsqD/2Kn1Om2T1wA8wNZP3f7QOWw5FCZSKAazAmuU1MBnjdixJ8hvYN95umzR4nRL78pc4MLt/38MgdOdDzx4wEZBgRghHByYwSGxzOA9dyhID/O8eG9aim0/wBTaf2Q0maOi1aRhVNdsbVXZN56o5AufMVKXAkQ+tYHXtPtMkAs3pl+47duP+KihWOWB8bpUzRMyFAWhdNiNhWmOpBwct5fHxMiQAep+S2QVlj3hnEQMFEoFLQVT9U4IGj13eujdieO+cBrKF0bhMbqex+fiRUmagi7XiGM/2+FBnLV8LqZOr19dWudVHZrmSNp8Y4koZ8eAxpvhxJY/2gi2+1XhmhGnlGiioqUMmgyiqXf0yC0DH82fjDtmOwInLD7SICboogIwocdcv6P4uCOTnujL2Ox1xFo/j8yOMfEYHRUwIjr7/CIWVzigwoEVCFAnQrB6/GMVMWPhZAfdQPgMFjcsD/kScTBoUqNV0lXREBDZu7QcD9wv9ZWN4byqhdpAD9DGSL6NDPbnDp4D8FMgCMDEbE9vsFZhVQhA+FqlyM4Aw0juu0Biti1Nd5TM4wu/GbEUj2FJFW83BhVO0fxZI1AzquOvdV26P10vH6EeSvCx1L7NwAlWNWhbuRJnPQMll0kQH857UmLK/clhFG48VFdQHuC5XxUeSvIqddIlD1uZKAY5POiIVkQAnAaBBXDczOOZbJ6TsDX9M4BYeycCPYs9HFgrpGwC0aRJ1VWWaDImPwS6YKFFwPbrsz0GzkWTG7fuP+4n334qKuIX1PcN1dZGhJ/SqPtXPv0C9MOKrrVVGzTKEtGKO4X6xgMm9FZRfQiIPKBk9BYOsUnPaNQ0WUtc/0Ot7OwOkPlKFye0wFrciiAwznmGXRAB2fTh61LJUXkBKWCzX82blRW7N6jtJnyHSrs2cd++aIwCg6oOV1xspHEIXppwmcoKmicIa707FuEcyMJ+WYoQoUvF41WhzpcM9Mu3et61zorOFzXtWICKiBHyFL21m4owOc81QiwOSBiUWmdD8abu5bp5MifslDVtdqQGb3TRWh+99BplB5tbfOvarHrd6KKj7kzVMQbByUxGjEMPM6s+MzSm6JEeH/nXGTnTuW7FbG3x2rDF3l7Tqd69K6OvDY52tVdzuiUbWFZa16HX4FbaeTS97qeMiiAs7gd6MDzpEYyfVHENIpMuCMl0K9SlzbgXocjhk6weBzOuBZIKH8oTw5LdrEEQEmABwRQOSgE95HuSNl4pRy1UczXjcbEF1joX2MdJxe2+OIAAY5n+N2cb4fDW2vaz+2zng6eWcj2BnMGamdJZCaJ48FvhdoUydMOaoLX8vlOZl1BqdDdiBr+5AFpOf9pX37EZ7YLJaQVEcCKu8TcE5Aln9FApRcu6hCVX/Ui2XQ1UudEFfP7H/VR278ZAa/SwRmyMBH6sxF3yZQsCLl/+p9VzeLUTFVeC06P8XX8Hn303O4/u3tbSsqoNMEGhHQG+gMCy/Ach4Le2FYQzEzf5opcDdFwITIeZJctq4L0LSdgaD5jd5m+N5whoIJT2bcXRgQ6R0yuVAPKiJ/pat66g4jZT1LNNy91jU4Tha0TrP32Rle1SFMfjuKcxQdWFqvY0GJq5LyUSjbecWMLCrbAetiRwLUyWCM6uTIRkZkNT9tc+X18zWalzPqlf7LiHdFBrQ+LP8fRQj2IgMsnBp6x3EmADOEYARliEoKXLg3U2y47vX1dcvwZ2sDEEFw+erncDUUzWWy8ef8Rn2ThYvxH1slPvpoJfefGixd96AeIfoAWx0wfI87HsYpYokhyBRMNaD1/mVEgO8lzuk95uMMjXzgP8at3ncljlwOfwbayYiGg1UWMvlWIpxFKXTcunzc9neE3susT7JjWVhc81N9mvWZu17vrZKAKspQ3RuWIyaDS9AlDy5KMIoOvAcRcCS4286lBHbq2wRucLFHq+eZuUZs31wmD3xOG6ZGKmL7sT1VllVYWtMy2MC56QBdKMg3C+FTVpar1WrrRUZXV1db5eIa7TttvyLrDz6nHhy/WIm/veDqgzZmniuXr4ss3ZMVWf//DnDy49ZRdKdC3osUOcKg+zwW2avUuinBABmA3DA5QL6KTBk5Q8HHtS6Zd1kpTu2TkSHt4pRlNxtvowgWoPq5iohkOon1ha43Uc++C402VAbU/XcymkVJMiPO/90jgh0iMMI+0Sdtm+7P5D1NBtSziNj+/jugA9lFCJwC6Aw6J1gskF0weWAPlwkAEwSky5QPKyBuD/qHvWuUDUIA8E107NUZZzXc6B9dKwClzopdjQWEmgehm1bhKAoet2Tg9bhM2E5RoXJbGTwdUIHbpl52lX6U16w3MNPHLkqQRSDY+GdRCJZZ5OeiBOr1u8hBRu5ZTjUyMDL8h/Am91HYh0DlMOjxTHc4qD6pjLbLi69Xna/HqusVOgYyIgAduhQqu9jn/+wcZVMGGcngdK7MrE6VzHbIcJa+wjQZYEKQVUANv0uXDWiXl7tu32kGBXvE/MIU/sBKx+Nlj9tFC7RdoxulZSoxQN9phILrcHV1FdfX13FzcxPX19ebbzFwnUB6uJ3cBn5bI/oFRGCkPDRCdCqo+l6nbjL5dQTZkWM3DpiMVeMDaY8B5325urJu4PdSMCnIQp+OKAB6vBsZcP//BGSkICJf+IbrXD/plCNf24GbslQSoGu49HoGrwtAfhy15GgBp9F+4O0Io4jALBFQh26Jl851c3Yj+89jccahiJgkAwwN5WUDVOHmDF04R8EdOtPAKk+uB5MBeL1qIKuoAENDrqM6aUTFsUxnWLJQPoMVNEgBEwKNDHC5/IlnJhBvb28bIvDw8LAlgFxnfEVP31x4Cpjx+pkYZCTARcw0H0ZFBE4RrNh0DDjjzcoaxwGnMzKo86HlqT74HfpyBpW+g5HMvFu3ZWRGZsYrRT14OkBJGxvwqg7IK2L3ewdq+FmGkHemLyuj3fmP8pYQgSXY18PnfGaumVpAyMYNhWjov4PMMGTCOWJDGUbGJwsHKRHQn2NdnTrpoMXWvcUxG9SMyvAgvMvrBW5ubuL29jaur6830wXMxLnMLKoAhv709BSPj49xfX1t8+B2oL9OcSFhV5Yyb5XPjdas6AKtruHqTKHBaLqyFI5sVmBlywsDXfms9LHPBkuJU9X/fL6jM/4GOD0EqLHK7pPqMHUqug6X04FqsHUagcvRejHc1CeTCp3ecm13nvksEVAHKSMF/B/7brsE+1w7g8VPE6ggaqNdBwFLPcRDeJYjwXBGWKMCGSEAVDFzfmgHk42I2Np37FKnB7gsBc/1q0G/vb2Nm5ubrYWEzLC5/rju9vZ2QyKg2BEVuL6+3gk7clsRHXh7e9trbu8QcErCeRUMNn6azi1060YG+PoRqXSebzXXmkUdZqIzWmdnfLKwPOrGUwTYR4RFIylMFjNC5dpc3bdRmi728fLeG9o2ZwRHyKYHuuRdPX/dR14ueujWfjE46sDkBeNSSYHqcmfQZ4mAe1vnUiIw4zS6/ujm867TBFllss7RYzPeiHbePoPZ3YjqpuvNd4NrH2/ElcX1YiFWYcumB3jAAKvVykYF7u7utsgAIgg8sEAibm5u4ubmJu7u7uLu7i5ub293yMDNzc3Oi29QN6wn4K8/HgtOplw4W9My2MDyvHjmoSkyxdeRJzWKUIDO8DtSkhEKZwA6hMb9V6+fZQl9XHn4LDsR248oZ+gYLLc4dIRDeHSHQte4Zx5xxO4CzBHpjOgtPmSdqNMFGhXQNU4ow83/q4OhJILT8LSEevGjD8CNiMDIedR+53x5q/uHQKWnqvucYXqaAOh0KNKxga1QkYDu4Kw6YERUsnIyZcuLA9nLdsrY9Y0+p58RJ61Tpqz1EUIlAZ8+fYpPnz7F7e3txvPXyADIwdXV1eY6XIvoQETEer2Onz9/bogFgCkW7iM8cnjMaQJVFhwSxc8ZZzVy2ToBZ8y0fLdfpXNQIsBe+Gr16xFWfhcAtzPrh1EZkC+VbTUy3IdO+XO/6dMXnBfa4M5rf3UVHt+fWafkWHBE1TkmGREYGX/VuV057dRZDT07MSwX6ty4CFT21deqfzInj9NVNkvzwDmnlx1Z69oq9eLdPcnOHxKLIgNa2cyI8Xm9rso3u74awKzcqzSsWDhtljcrMRZg/PglQ/CCsnZlAqrRAH2e1dWH/7PyZkKAhYLOw+f6soHAcUwPgEDc399vogoREU9PTxtygMGthAL5Pz09pZ9v/iiwDHF9uwPLGTP1dN2g3SeKpOD7zHXCPeRHWDOjrcRP+4Cvc0TARSJUKQIu6uCmAEZrLdwLzRjdPuYx795zAjiDekxi4Ax9VZ+RY5Ndq5555XxE7L5cSiMCSAPwVwwj8scaM+KihIDlmOUa56qvczqDvmSaQPcruL5XncH9wfXT/Sx/RzC6sjv9bQLHfrIO5WPdDqsiDpxvRB6pUFTzq9hmHp+7Uc5z4scIWWGq8PFUgPt1+igzMlwXEAF49/f39xvDjtA+K3vky9c7MnB3d7cJ/T8+Psbt7e3OQkT0weXlZTw+Psbl5eUmYnAsoH9ZGWWeiUKjAt17xFs3wGeIghIBlTXdYh/lOG+D6wIw0XV5u37hccRtgpxgn9utL9ziOnaJgabtwCnHjAicAhnQOjg9rNEBvS6TPafLnbPRlVdcr4QA1+kjhjqVEJG/ywB580e59Jzai2zKlfuqG+F2tk333X+FOgojg73EmcgiDiNMk4GIfM49m1PBse7AdTdA64D/GaNiZOHQiHHIUPN0oVn1xPgmcN4dIuAEjtuaDVgmAjw9gIgAjDrIgHp86FslA/wDGYBCxhQBrud3MiBvTFcce72AKgv2JCrjk7F5l3ZUh1lo/h2lPIoI8LFMllieHClgcCifr2XCxQo7i6pwHd2YzOrfDfm7vDKDeEpkIKtXRej4GmydLOn1Wb905FzL4HuiBICPZcSBoWQdYzaLNqpdcpHWbmRAr9MyNI8unK3gvJdiJhKgmJ4m0AGiXv8+REA7NZvPYaj3s4RJ4XreZvO+rCg1PK/eGLeLDQ8bfteHVf2yc+yN8/QApgXYoDMZ0JAeTzHwdXi0kNcIgAhExNariXEfQASur6933lD4kciMfceoZ2S3Qiariu4aCqc0u9fxFmWy4UZ9We5ddMFNPWQkyZXPpKCKwmk9Nb8liq6bl/P4jk0EtB6OrGSkMTvmSMQSb9IZcXetEgCV5ywyp3XRSIJ+fVbH3SgygG0nOqD/9yECiox8je7jobEoMuD+Z4qvO5iqm1OV4QSpYpcVVFGqYGfGn5WdU5jO8FfvFkAblL2rcldlfXFxsbVWgAkAe/aY51eDAEXNLyaC8ecXEIEE8NQAf/KZQ8OoD15OdAyg39kz0X01XLiuI7tLvNOI/qNcHeWsnrvz4jOiCyWrZBdpdTqJ66V9pH2pUQI+z1MMvO/6g/PgPukqRzU82ifaJrd/DHTIwJI8DzkWq6gDQ4159T/Lz13j0quTxdN7jqwzgeA8smNLkEVi3DkHR14rQjuLaTKQzZkuVYjIm7fu/ChvFpIlwu4US4cIsNIceU5KAEbeJguIDhL21JQI6FMAmPP/9OlT3N3dbXn0XNeXl5et9w/wy4lABLBVpf709BSfP3/eIQP6xsNjQ6cIKm87kyE1cu4837N9IwRVNENJaEZKR+UrEeDIkSMCej0TLvX4kQb9zeRDFeMoisPlaP9l8836n4kFRyoYGSk4JhwZcPelQ5JGOjJzRFxZ2fUuLe498qyMO8sKl5VNLWR6VSOvo0iA5sHpnK3qyIaTZVf3DJXRP5RstslA1YF6fh9UawQqsMJaynrZ29XjyFPXCXDZlVA64eyGnStSoo8T6qOETAgQIUCYn++jDjpegwBSwIYdA9o9Mghicnd3Fw8PD/Hw8BA/f/6Mu7u7ibtxODhvkiMFfC+0LfsMtO6YqMruel0OqtCxdZ68eu1KBPRdEi60X8FFC5QooHyntDPj7wiz9qcS9IrIaf/s64Xvi1FkYGSoZ+vdla8Rgc3KZYPv7hfLCetONf6OUKLcTK+ObFh2jM9VbcuwbxTmo2Rvmgyo8oyYmzfpev+crqNUVThGrDeriwvdqNFnwcy8MMdO9YdzWeTDzaFhq9EJjgp8+vQpPn/+HJ8/f46vX7/G58+f4/7+Pu7v7zfrBRAJcJEe5yXiiQH+YBH3M7cLCte99fDYYEOG1ez6KWx3jft8aQfdiNlIubp5fPXYtW4uT/W8+B5qpMnJuzOUeu+Z8GZ94QgB6udIfRYRcNMLTFzcfXXGQz1IDSsfMzKQkYAOMkLQiQqoHpypb4SfBkPeVVTAyaXT73wsg0YFUD/VzyObltmM6j5k0YDO9ZWNGtmtpaRlSjtnnVYpu44g7UMuInKDjHNunpAFXpVKlo87zmEvPob6sxHpEgH1aFxkgKcG8OM1Apga+Pz5c3z58mVDCPD6YHx10JE7JQIafeCQ/+vr69Z0ws3NzYaM/PjxYxMZ+P79+9EiAw58/137GRkRyP5H7M5B4nxWRkYGOT82mFloW9MxnBelxljTuzbwz5Fc1x8VslBpZci6uqFyDJyBcPU4JlROXT3VcLrr9diSenD+Gu5XOHlWXemmDdxUgaZd4mmPxmwWkVYZUShh1WMVMmIxa9RH46F7vxetGeD/Ll0V6tdrRiRg6fRD5Wk5pT2CU7IQTKeUM09j1H8s/I4E4ByMNBtr9x0C90QA8oj478uDdM5Z2+F+6A/UF0SA685kBfU7Jl5fX7dIDJQQ2qPeyhIwweRyca4DDYlWxozlSSNYWd0yuRrVBeU4mX59fd0hTZmjoNMDFbjOo3UaI7g6qefoFPQpkQNgnzrtG7auMKpXRggi/CJwjR6MoHJycbH9KXJX3xERmOnrJX2b2dFO2RkRWFL3RU8TjNiUW6Sjlc8MKGNpeLVaNLQP1FA4Ia7moLIbUyn/LDwMAwuvnN8pwE8QKBFgMpAZDIW799ofqAvqyYSFX3t8TOj0DqDeyQwhYOXDZI3vtX61T6+vvFfUtYpaqRzOeOO6BoWjQUowMtl+e9udRsmIgPaVvqeADYU6Bagnp+e+7hILbkOnn45NBlQ+tA0V8XN54fyoDI7YuH1Xn4jxfciMf3WcHS9HDlx0qUsks3bM4hD6rSKm740pMqCeLo7zNmL8mOGICOxruDOjPapDBQ2ZVvlj2wknV1BFjTrw1IASAbx6GIafP0jkvHOuGzNo9vZcGJgHGLacN2SFFfwhCNkSuGiLRgJ0mqCK9vB/5KVwijVTFtnxbM0I58vofP+D82ECxEQC7eS3amq7XX+ox53V05EnNfLa3owE4D9HYyr9k9Vp5tgxgfu1JGLh2l+Fufm/Sz/ShSM40u1IAY7xNILTY5UxdnJ6KI96Fu4+8Jhy9aiigy6frLwKi54mcESgMwA1H5zvMnt3wzMvzuWVRTSyulYDhQW2auMMEWCDwcZfn2BgIoApAd4yAajKgRHgxWJs8J+fnzcvE8LbBXEOg1EXmam3BiCfYyDzqjkSgPOZPGVKpKP82Pi6enSvd+iOHYUjAnqe3ybJ5TlZrnSAi364L11q37uxiTKYlPIC0Gxs8TjMHBpOd0okoHP/90EVFeD/6nUD+5B8RyiQP85B7+HbBBoN4oWFWftG2OfaDkbEIyMDnLZLCDjPGez1BkJslwrDUqXK6IZzRx1TEYEKIxLk+idj2mr82VDzD/PzMP54pwCTAQ4tqyKs+gB1xSOD+MjQzc3N1uuGI7ZfSMPlONbOUxQfDb2XmVFmcqByld1nN93A5WZlu/JRhxlkUSlNw1GcLCSryCIRMwRe88qiHSNdoOPp7e1ti6zgv0YNuL5KBFgBu7FROQqnhJFXPLqWtxH51K6LGByqnhUpyEjAaA3SzD37yOmgzJuvyMBMXy+V2+mnCQ4JvgFL5vWzxXYZsqhAxdpGqDwSd8x5SeoxOSKgbwAEGeCvEfKrhtVIwTPHdIF7AyLqjHAzXi8ML0wVBKIV6s1x+tfX161FhMdGZfw4RN2NHgE6lcNTPFx2V061Dnxcz6un6+rJX17jumTTI84bdBEv1w9ZJMT1B593bWVwVAAvyAIBYCLn+o0JBPJQJeyiBacQJeB7wVMEKpedCIIzMi4SgHNaPl/DeYzq3gXfO5YP/mIhZBcyUE0LV+PY3e8ZZGR5dIyPd4hAp1yXRzc/YDoywCHVJR14qMV8qIuuTHWobpIqUa5nlpcbOFV5bk5az7uwPc/z67QA1gnw2wb5y4JsfKEEn5+ft5RJth4AddQpAu5nrav2z/X19dbAXeq5HArOI8+MkN7fiqWz4ePpFl6Mx1Mpri+cLCqpcp9j5esrYqD9oNEPDrfzx1/cYr5q7OoCTZ6CcO8ucNNLVSSFCSZ/CwM/vP0SMqvjjglwRgZmFehHoDt2Rs5HZpg7xtwRAk0zqvusDmAZVcIHWcF+Nf2cEdoO9o0YOGdxlgjwuFgSjeli728THMqwR/h3po8wIgSZotVjLl9XJ75+BirU2FdPkhf7rVYrSwL0mwP6ZUIcU0UKMqBK9enpKdbrdazX6828PuaMI349KXB3d7dRtGyQnALHfdHpilOAKjZdM1BBvVl+PbM+RslPUmSfjMaWjT+v2eB7xIQOxo4XDTJpyLxGJQE838r5al84ZcUKSkksZJnfh8H9wTLuyLBGE7h/0A8st+v1Oh4fH2O9Xm+uQf9VOiHzst3+saAeeeaMOAM9U/9Kh2Zla/RglP/IkdI8HGnVscvrXzhf1nPOax5F3mbJ06htmveIDGg5lbObyfIMpsiAFu4WEjm4RTuHBAuEq0cW3tTjTuCX1NeFPzNvkgkBK081JvrBIRh9fnQQ0wS6ZoAXWKmnBMXKyhR9cHl5Gev1enO9GjJci0cKuY1PT08bj40XHx4D7n6onKgXkl3vDJ8u5OQPPOn3HXSqAPKI/kFfgQCgHx8fHzcGEIQAxM2FxrWNrOjdfKt6W0ywcd71q3r5SoD4Nda8pkVJQRZB0SdUVGbxquuHh4f48eNHPD4+xsPDw+b9Gbju7W375WJO+e6rTN8LanBnoxjOs+8gM/ZKTty+1su1YQk0epV9xhhlqePn7FB1z/X4rGde1Uvz7pAjTV9FuGb7eGqawHXmPkY+q+ySvEbXVCTApVF0hcDNk+J4FuoZrQ/gjw/hGwOYEgAR4CcK2DNFu3TO2HlYUKI80EAOmKDwi3uQjxo5KGs2aMd6miDC3z81ejqfrt50RgTwJUhM0ejLnrDGg58KYTCx4vA37snj42P8/Pkznp6edgwdvF+OEqgc65xqB5nXpH3JRhsLTVluWXZBWPXjVUoKXIQMJIWnBEAE/vOf/8SPHz/i5uYmfvz4EZeXl/H4+LjJAzKNPoBBUi9T0fF2PwKVUcav8lYzR4fzR9oM2XXV8cqzXRLuzsiIqwfbpIwsc14Orrwsjebl5MqVlRluN8ay67IIwywhmH600DEsZajVjeF0Lv8KM4baeUWjsJC7tiMQQLagsVpMxmQhIwJubQDIgHuvAM/jswJkUsAelpt3xbVQovoVQ9zTl5eXLaUOMBng/I8NlQWdDmLPGP95m0Vt+MuQ/GEojtbwy5dUob++vm5NBSBS8/Pnz/j582dcXl5uPgOtsqSDXmVW2+KIaUUWOH+n0GG8eVEr5JYXt/LHsvQ9GI4UoI95KgNyhAjA9+/f4/7+Pv7v//5v57FajWKx4ciUq8rJKRGCiG0D6IxAx6A7wzMyGqN+0POd+swCZejUAUPXiThnbwkx6KDbj/vC3Xtnk9+NDLASZaZVsa4sD63gPkSgOqfeUVWPLAzq2F4VRuYtznF4uSIFqgRdZABEAIqVQ9L4aRns4aLdHI7WhYLPz89bAy8itowfvzUO6bnsiF/TBDpdcExkpFDT6P3l9RvuiQ589wHfgMB/kALcPzZSqjjV60VU4Pv37/H9+/cNGQPRe3h42LqOZYzXQDBUPt2cfdZnClyj0wC8nuXm5mYjr9wf+hisypYumkW/gQw8PT1tiNKPHz/if//3fzdjQccQ7jdPw1RtnFWgH4GMpDgyEOHve3ZejXZmxE+BECkcqZlZF6bIjHkVdenk0YkQjOBkNDP++uveu0VvIMxYCKBKJyMBEctfWNHt0FE0oCpfvcYREVAjz8fVW9eoAKfT+VZ9hFCVqi5cy7xGHSA8B8skD8ccGYACR/9wdIA/Z8xz3iAExyIDLI9vb/UnbJVEsdHLojWfP3+Ob9++xdevX+Pr169bH4biBZ2InLh7hHugUQF40nxv2SvihYa6kNaNSZ2Xx7mR16d9olEs9Ad/NhskgAnS/f39hjBwpGn0Q9sgT4+Pj/Hjx4/4/v37Vv9qdEGdGI0QcBtddOAUjSCAcVwZ++pYp31LQ/uH6rdsHY9b18Lo6HdG5uhpflXf6tjTbZa2qlN3eoDP6X4Xi6YJsB0tDNTV7EvRJRMa6hyFgw61oK1iji4cm5ECNepKBniqgMOtrJQ1POpIXKcdnAdHAB4fHzfGCec5OoABimvg5UKJHwNuQDm4AaoEza3f+Oeffza/L1++bH6fP3+OT58+pS+DQv7ax4gKwNtVowYPGQQLZAskB++RcMTVyaMSDO4PHttuKoGnkJgc4Yd++PLly9ZntHmagEkBH4dc39zcbIgpkwHkw5EvlXGWQ35ENvOenK45ZqSA61cZKm2Di1Jyej43iipk/93+e5Cnbt7ucVKgYxyr/p2JDuB4V25GeWeRnExG9X4ePDLw/Py8WbnJg06f3VVUXlgXGRkYERDFaN1CBni0Lrzv5py1DGaIVYjWrcDW1ensVbJniPKUDPD9UvLG0wQ63aOkj43O4+OjJQscBodsgAw8Pj7G9+/f231+SMCL0D7Q8xG/7iOmPPgeqgcMI/fPP//Ev/71r010gD1hGHT2cB0Z4Cka9YZBENCPT09PcXNzE+v1eotcuggQyx0vhMQLW5CuIgHIA14ogLI5OgCSBELE0RJEBeDFq9Fnub+4uNiE/VFP1TU3Nzfx/Py8FYnAEzGONGDNBe65EgInG5Uj8hHgccnRQ4046gLXjgGt2taJLnSJQoWRp6wy1803u4dL7ueSe69ljuowctJ4DHI+lT3Gtd3Fw6u3Y9LeM84444wzzjjj6Fj+4fYzzjjjjDPOOOOPwJkMnHHGGWecccZfjjMZOOOMM84444y/HGcycMYZZ5xxxhl/Oc5k4IwzzjjjjDP+cpzJwBlnnHHGGWf85TiTgTPOOOOMM874y3EmA2ecccYZZ5zxl+NMBs4444wzzjjjL8f/A28BGGapqCvkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ9ElEQVR4nO2d63Ibya6lQcoiJdn7Nr/m/d9uImbOObu7LZG6cX50rNJXiwtJ0m1L9DYRweCtKhOJRAILyEstdrvdri50oQtd6EIXutAvS8uPZuBCF7rQhS50oQt9LF3AwIUudKELXehCvzhdwMCFLnShC13oQr84XcDAhS50oQtd6EK/OF3AwIUudKELXehCvzhdwMCFLnShC13oQr84XcDAhS50oQtd6EK/OF3AwIUudKELXehCvzh9OvbCxWLxI/k4qn6++NtyuazlcllXV1d1dXVVnz59mr4vFova7Xb1+vpaLy8vpTOW/N7lcrnXRl67XC7r06dPdX19XdfX11PZvPbl5aVeX1/r9fV1j//dble73a4Wi8XEo17itarq5eWlnp+f6/n5OZbBOsSz+ND/ouVyOfEvGVTVHo9qf+JVbVcd5E/Xvb6+Tp/16tr/f/7P/8kd/APpf//v/13X19eTvMWP9OHq6qpWq1Wt1+vYt1W1J+tPnz7V1dVV1Af15/X1da1Wq7q+vq7FYlGvr6/1/PxcT09P9fT0VM/Pz1M/SP4u39VqVf/85z/rH//4R11fX9fj42N9/fq17u/va7PZ1Ovr66RP3s8qly/JYLVa1Wq1qqurq3p9fa3tdlvb7bZeXl4mHV2tVnVzc1Pr9bpWq1Utl8t6fX2tp6enenx8nF5qC3VG5LokXtUfPkZ1re59enqqzWZT9/f3td1u6/X1daaLT09PdX9/Xw8PD7XZbGq73e6N28ViUS8vL7XZbGqz2dTT09PMFqgu8uu/V1VtNptv1sFvpY+2u99Kzjdtt+uk7LZe/n9VRXtLuy7d8brYr4mv1O/+mfe5naN+cPxL1zXm9F308vIyjfXHx8dpzNNPuV39K3TM/UeDgY+kNCBonJPy8B5dU1UzQ3looDnwqPpTqDR8IjqXZBRFdNYiAQJ3JrqWvC+Xy9rtdjPnTR5Iul7lJBDQ8Sle5QDcYHudrrTnZMTUDu8vtkWDUAOYfVE17385dr1LzryOn3Xd09NTbbfbyYE+PT1N5UkHBBioY9vttjabzQwouKGQE086oPrVZpWx3W73gCT1mu9y4lVV6/V6MmKPj4+Tg9W90lHVpbodBCcDT8AqMCCZPT4+Tv9Tpmwzx43K0Ttl5kTZeR9eDmk9jTogoHEl+0YwwIDMg74UqPG79M3JHbWX6zYgAQUPPPlfByBFHHtXV1etHqUg9yN07uzBgHeGI0xXruTc9F3XjBTHDYF3lIwLDZ9+dwVxPnSNUCGdMx2Cl93JxNEr2+L80himjIhHlOR5VJcrbnKG5OsjSI6y6m2Asq/khJ1ShoDE6ISZmqqa6SXrlkNnZoB9Tv0Q6JPDlc7wP77o8F2HHFA+PT3N+l9jQ/wqmmE7l8tlXV9fT/wKUHz69Km22+3Ubhk+AQY5bGYmPCsgeXgblRkQIHIgSlnRLjh5EJD6NY1Z/nehw9TJj5khBwBdZrIrk7os8Ef9Vxmpfu/75Hjd6dNejgBBqp+AXWOPNt/9mOyTXu+pd2cPBpxSJsBfjrI6VJecqO5hfeywqpoZfn12h+KRJZ2qIhd3SEojOcjgvSMky/pp2FJE747KZawXsx2MgJNSp3JG39+L5Fyq5lEGHbC+M23v/ZCoizI9uub1biAoR08PyuFeXV1NU0fkkXqj/1K2gmVKFmqfpjJWq9UEArpojBkCZrR4H6cTOP3BMUH9I2AlSFIGg9MRaRpOcqFT4djSPZ1D6PqR7b7QYTpkS3xaIGUDTiHpGcF0VY7Uu/Go63mdg0L3Oel+z8DxP72o6y6fri3k50cDg7MGA8kYuWIlIODvIzBwCEmm76neqprN9aQsBdEr614sFvX8/DwZV7Z9pOAuIyJLttWvd1m5gibkrciOdTqSTURl7jIdP5ooE0aQog4cVs0jB/YXnS3/c/J+5roW/ab3zlA9Pz9PmQHqtfSFDjD1aRe9ENit1+u6u7ubrW9wsCdZSBfEw3q9nvEiECk+fE6XfEq/VCezJsyi6DdNn7iMXIe739wepEiO/XKh46gD/g7AaDMFBkfAmTqna33sfQuQYB2pLXTItJVu1wWuOQb57va782kqm7ZouVy2038/gs4WDBwSGhXqEAhIykIlS4YzKVdCtoyuFdE4GEhlMkrTIi4BAl0rZdD1jjqprCTPUEixmMUYRUaOVnnNCP13NELl70FE7u6QXA8YrVP+dI5p4KpMGgelsEVKk+uzon0aN8pbIIwZAaXXXQd3u92kR6TOGKl/r6+v6+bmpr58+VJ/+9vf6vr6eqpTkTjbq+idfakFiZyGk9NmdkDylWy48JJTBlxcJVCQFq6qHeKlWx9waL1ACg4ov+6+C/1JIyCgdw9A3FY7+Zh0x+x2yceg83MqYEhgJrXX7bQDiWPrUjnJplAGP1IPzxIMHEKZadVpp2QpSu6AgUeQyXgqpUpDJmWQcfeUtOp9fn5uAcHz8/NkNJn2paFzhJzaKEpzpH4fy/VBJ/5JroicA5Mi8zo32B8dbbkT4cDjeg6Cs3QvKQGx5fLPOXmRdEXOl0CAOwqqahZlkCcHgx0o41ST8+wGlUDgH//4R/3973+v6+vren19neboubagqiaAIF0RELi+vq71ej3pg3YmcJeD5Km6q2qWKSGwphP3rIIyDWoL+0DXEzSwrKQPXodfw/cLvVGng/6ebM8h+1U1z+gRuPNejosEAqryAsRDAG8EBjpnn8Zb8j9OtJ1dmWz7j9LFswMDKYp0ZeqmBtJvIo8MvY7kyPRZxnu9XtfNzU3d3NxMBl7Xyvh35Y8AioMBEnlg2pZy8XaO0HZqt5yNHKGULmUYWI/TIYX9yMyAZwS8n9l+OWhG8WyvZPzp06c9IFFVs7S3XtQXpkdZtqJm3SsH6hkLr4/tpD5Q5x2YCdBKp29vb+vu7q5Wq9VMF2lQGaELtGjbobZmyrCpDXLylLVPQVTVbFGh+qAz4Mmxe1/qu4Ndfx3KGrDsC40pBVkpte6ffbrN+4/3OChwMJ8CEL/P6/HfR0AgTQ8mMOm2X9eSWFdn+30a9kcCgrMCA52y6H0EBPTOjIGTGyCvtxOwIq71el1fvnypu7u7yVG8vr5Oi5ucVB53DiSFYNQkBXD+6ThGiDrNpSXD59uv/Hd3fh3vyZD6gHZ5fARRrtQDtY3z8XJidPq8j05ZuuGZlqq3bW7qf64JIQgTLyxDkTNBGYGC9sozzc52st0u9wSgea3avFqtqupNf6WnBChcya/zA8Q3pwI0Llm/2ioetP4g6aMbdZEbS12r9zTVlRzIBQycRiNg3zlit0d+rQcb7Bf3CWnaL9VPXUtgMN3bEe15KjOV4e3t6kmAqJuO/FF0VmCgKg/6lBXw6zqgQIVh2snrY6qGvymFuVqt6vb2tj5//lyfP3+enIX2QMtwMRIRydl4pM3/9c5oio6GPDmlcn0gOCAhjwkcUNl9ikKUULb/x88pmnsP8kjDowv1z3L55zY+AoHVajVdJ+fOPuY6gKq5nFWO6la0mwwi+0oOjJkEnzrgCnpfK+B91Rk46oZW7HPcSfdVH4ENZapsAcGRAA0P1eLUgMYbAZF2NDgY0NRFqju1SX1CwEYdp04fmh7o6vmVKelTCt6SLU9O0cGc25WRbfH60zSE3+v2uWvDqL5TwIRf29nozqe5zfpRdDZgoENzqZNHgIFCZNlVNUuBu3KywwgCmEq9u7uru7u7urm5qeVyOS2yYjlOXVTt6WF1ODMEnlZO5JGP2puyI6qHc9D8z+WQEPSxYKAbFB9BDgZddzwKVZqcL+8DXy1PhyO5Pj8/762WJz9Vb31FB+nZFv3PukeGktkjzyI5WNY94l3ZhlQmV/JTdo+Pj/Xw8DCBouvr6715fWUHqmqWVXt6epoAx2KxmKYLVIaceoomCSQSuNLnLpI7pI8XELBPo8jZrzkERlOZXfSu/w7V1wEBlpeCm5ET7/hPNt35TS8HP2zHyK/p+4/Sy7MAAyMh6LMbML+X3xMRYXVggYrEI1tvbm7q8+fPdXNzMy2WqsqnCZJfz0SofJ5GRUflETSNnjsj8u9zxCJGvnJajO5Y/7Gf+Vs3aI+JCN6bDhmSlA1h+tq3+EgXdW0CfZ3D1Xf9p0V26hMds8vyRiCY7WOWiQ7Rd934VsBujDHyZ2SutvtCvefn5ymbou2QkoXrvQNgAiMBgtT+Tp7H6kEHBEaG9qP19xzoGCDg13ZRL/9LwUcCuV39dP6jKdTOZh0KXBJo6Oro7u/sZBdgsQ6+fqQefjgYSM4yvVJmwO87VA9X/zMF43OZSmlycZXAAPdhe3StMuhYmO4V0RD6lhTdw7ki/ncM8PEymGLliW0OSMhfkh//I8p2pO2A6xQj8iMotc/nyT1q0P9c3Ml+ZNskV9bFaDgdrsPrPLug9QB+SiX1lOTli9y5EhToty4DwrUjBAPUR8mLRyw/Pj5OzzHQ9IN49myY2pyAv+TmUwvqkwTARtNQnYPx35LBvQCBb88IjOx41XyNSxdJe/3+OWW7GCB1Zet3b4PbONajskcAYqQvx9yXeHoP+nAwUJWzAEmBvBM6waZFRZx7p4FWNFP1tjBEC5nW6/W0ylrTA4pulDb1dKj4cmNP4jymIqNDbSGoSOhXDszXKsjoMqqj0+uifu+bhGATGHA5dKj3I8jRut7ZFrZXMpXsCBYpD0aoIhoOLu5jnVX726dUlwABwQAduj57/zhwdEDgjt9PgqN8fJ7e9UV6peOGdWywDiEiQFEdhyLzBASoR5KNA9xRn6co7VT6aED7s5ADAn12O+5gnJ+TvnVAw8FsZ2+OzQqMdEX2gIGlyO1glwlIn50/l1vKDiTQ+lfpQ8GAC6RDkKNUZhKqG0Q/oIUdqXnJqjeD5WsFbm9vZwZOBpAnpREUeMfxN0Y0NPJ8ME2a63eDn9rtTtkj0RHyTo6yU97unuRgU7nvTceg/9R3VfMo3kGryLMCvqCPusAMgPeTPvvTy1iG66qvJSAfBGW83j9LL6XX0nHuGkhtlmPWdIC2BD49Pe2dSiiZUM56Z9QvGfj1apem79KU14hSHx5zvbf7V6RD7e/+d3vuTpvjYGQ/PBjh/WmnCvUhBWPH0Ai0qn4+AbVq/zh4Bx0jAHIIQLgt/hGA4CwyA1V5JeUhUNBFqiICAO2r9kfYKsqjouo6Hi7kT5Xzx7hyNXVCr5wfTShXPPG7k4MZRubii+XoMw2wR2fu2P1etoH/pUVdhxzsR4EBkvNAPr29ND5MoVe9LeLju0iObLmc70aQ8XJeWA4jjBSp09H7w36oRwSWLvukR0rn8wFF5EN8E6TwuQE8TlvjxZ/GyTbImHKMSXaSL4GT67B2GKhdmsrpDP8oyko6caE/6VuAkNs/BwMue/aj25BUpt490+CZ2dGam0Sp3ztb3YEP8p500WVzqP5Ut//3vfT1bMAAOy0pTve77mEZvnhKRkdpfkYccs48uU33UNlUrh4co2ejbzab2TkDKisZYhpZN+CMJrvOZTSn8ggE3CmRxI8fAONOvKu/U3gqaMpopCmb9yaXv4Ma/eZ6xfYwopZ+MYL36aLd7s/dII+PjxMoEA8OCGi4WEYXTXiqX/Wpj5lRSOlYlacyXl5e6uHhYXqkMR25yqB+ch0Bp8o8kmfkRl2V/DQuuSiXeuyf9Z0A3wGUy6oDAUk/kt58pN7+TOSypc1Op8WKUjTs/Xio/3itPh8q49j2pLZV7T8anMTx3Olk4t0d+yHd/d6g9WzAQNfBXWaA3/1+n7OW4VEkJefJ/2XE6GzVqTJGVTU9TlYvLZ7iegPx4J2o7Wj6Xw6jav/oWa7CdoDB6Mnn3/ielI5OgODJo6T03qFQR/oiv/ajDWvKYlTNj1XmgEsDnffo5XP7VW87AgQGquY6oYWoKovHWKc66QBT5M0+cH1wI+J6mZw0nzfgbU27C1zOI6PG6Ti1iRk7Tl9IPv6IY44FXe/9yHHdgYARAP7V6VvHa+rrY0CA18uMWrL/38J7cqidnewAjvSLgVfS95H9cB47h594+VG6ejZgYESuCPpNL6Y7eX3V+Hx9OlLWpbIYdes3zwrwkat8yFCnsD4oSJq2YHrU2+tlMY2bBpgrlu4hGODgS6k7kWcHEhAjKEjp6o+g5KySY/D/3An6QkBS0tHX1z9X2uuzHDkduozG1dXVtGgwGZaqt2cc6FHDvkvF5zJ9ysGNs7ffo2z1t3YF8MmBAgWql+8E0A52qRMusy6ly3HYpX4T6fd0KNOFxvQtYzU5rpTJHdmppPsJUBziLwUzHfjo2uB8kwgEOJb8fs8Q8DqOAy8nrTlK+v49dfnDwYA7+PR/Ml76L82hV81T6rrX94oTNDipLM1FKloXGHh4eJgWEfJQk2OIOxtY32Lxtuda/Op65y2BIjohyaCTKf/3aJ6ZgmPRbRrM3bUfQR1fHd+eFfKDiKrmOwU8ApXO+DoO3SswwDUr6n9mGZgZ0nSD7lMdvJbZAmYcOFY6QJD0yNfIMBvg7ffpNE2daX5fYEJ1OdiSnFQ2p0LIj4NNytXbI3DdRaaH6AIcxuQ604EABwL6rHv03W1EBwb4nxPtFnUsrU1gvSmb64EMxxszq4kngllvt7e1AwSdnf8RevlhYCB1+ujaEfqnAB2luQKx42jU02IPGSkZwZeXlwgE2LGdctLgJ4DDNDyjfW8jlVHfO0rz9YyWEojhwEjzYin1nPpnNF3w3tQZH/7mxFSgHNty+bZwrepNb9iPvuVIgECOmqBBjs4j8q7P3Mj4/9IZ7nrhdbzf7+WiRweC3c6CFNVXvZ3NoN8FIDSOJBem+XU/z93gAsPr6+tZVkJ95OM5RWBq28iOiCeXz4WOp+REXUdSRiAFJKkct9ddpoC6xGm8ZJMSiKGepIx0Ve0BAh9nXYCWAM8hOXQy/t529UPAQEI7/l+6tqqisUzld2jSnT4jNZVP56E91DJEWiPw+Pg4m2f1uph2VT3i2/d2Mwrt2tY5MB4g5E5bDiGdXqjUdJfylqy6OfE0QFI/dsr/3jQyBP47dYxb2BRhcnGdtoXSUKlcOj6XX+IroX/qo/TDdVa/cV2Mg2SCPNYnnvlO/uXMRQns8jkA4ldnATw9PU3AkxmWtCaGvKo92uLraypG87V+DgTX1hwTYX00eP1ZyMd7ct4jW93pO+0Jy/JgSkQQ6MCaWYGO98RLAgVV+xkwBw0itoPj+JDfIi+dvPj9e+rqu4OB5Dj0PYGE5HSc1NF0vLzeV1yLOgRHB0tA8PT0NIEBpvNT2tWRqNYU8OAYVxb/nMhTU1zU5YpPQJCUm8rsEZ/K1jVp22KntF0K7KOMrDv50TX+G6cK1H8uKzofym+x2D90h+Uq2q7KixUdRHAOUnz4iYKKtHV/2gvthtQdPA2p7uMYItGIy9lr1T+30WpBperXlkvxdn19vWfstcNA17jB52/Jfoh8+/ChYMLpAg56Sk60myJINj8FUCzXwUDVfvZXRL1I0wPOT9cWjRmCbV4jHn3cuP0nT8foXApYumCNfHwvUPDhhw6lQTxCli7QFA07CnTBenl0zOpQj4Zl5DTvqbpkfBmRsV7dz8WFHrH53OmoY+k86FDS8bUkOgmCJCqrSHJnBCeZ+IBNxGmXU4zuj6QECJLzrZpnRlL/8PQ/Xa/P3E3CfqB+KGJmSpzOWo5UETCfUEieVG86RdANFcEroxTfRsh1BrqumzMVsa16J98qU7qqTAH7Qr9zPUSql+Um55GyXZJV56gcaCS6AII5dQAgRfK6nu/67H3s5R9K24vc+fsaAfKZ+j21xQM2Zm5T1tkBdAJKnvngvSzDM22jflCZf1VHP3SawH/rFKtDVZ3T038SpJykO30iPNUtw+Gd4vOVMjzaFqXz2KvmiuOOn85e/NGp09gmw+73cMGZZwVSasoXI476xyNdlcvy+Zvz7Ir80ZmB0f8jJ0BdYN+6LAW4CLyq5vpV9XagDvsnRefq4wQUuObDQZ2fRSF9phMVENCx2wIxPF0zrYkh4BRQoL7Sufu4cWCpurigVpkDRnLcSumAm9ew3kNGVPd6X6fPF5pTcuhyng7kRq+qvI6F31O0LXIQegwQcP3pnDfX3lTND7VSWQ6iGZRV1d74TuCDoKTLaJzSL39Fb98VDHRRoncCX2mOsmqe9nQUSaOr96urq8mIUjmcLy42cSfg4EEGar1ez/aNM0PhoMTnOokm04FBKY2WwEMCAp41OdQPlIH3TwdIfIC6gp+q0D+CPOI/xugnxK+pAjnfJCcBRJ6sJ13g/nz2n+SbIhGVS2PruqZ0fAK46guP0rRFkcdtLxaLacGsds0wS6CxwakAgg/va7aZUx0pqqKcKRfPevn4JBBYLBYRVCfnMBoDH62v50wpUKBuJjDAe/2/dF03bZV+r5r7AjpW1su6fCt6CipV7qHr3IfwGn7u9C0FhikzkHTye2QDSB+SGfBotWq8WET3dGX5tYxiCAT8uelVbycQVu2ju+TQdC2jFRl+ZhRUtsplZOaO2+UgcuV3XmgcU0bAo3ca5GSIk8KSvw6l03gzwlN7zsW4so0jnhx88SVAmdKgjBhWq1Wt1+spY6Sje6v2jzKuGmdspGeMjln/KJogkBBpUZ6evXF3dzd70iAj9e12u3fSIDNSHs2P0rUES76+gfJWuZIVDzpy4Ms2Vu0b7FGUdQgUX2hOCQg4UE1gL8mda13ooEkExF1gk76rjhH46xws60wZMRKn3pzHqvm6rMSz26Pk/N/Tdp7NOQPdfF7VOI3LKFTkn3e73QQIqmq2CKxq/wETinrc8SY+HOWykxkteXSVUl6usDSy5NP5cN4SMvZyv4XII6MxH3iOqPnbR5MPQB+oSZ8IEKVHNGDed/rv06dP02OvtS3V04JuUBwAsiydMZDO/CcQFb+MWjiV5RkBglmPxqWvbvg946W6fSErr6Oz6HbUcCy5/NN0A685ZDjd1hB0XGhOh8ZrstvdWo90r0BzN/2jPud3D7acX3e+LI9jrtuJwrJH13GqgDrrAN9llexzB2ySHf3R9OFgoGo/dZiAwAj9uVFMjlYdyHtd+QgAaOA8EmfdnRFyw+xAgKCBL86Dqc5UbgJArmBsI6dFeA2v5Tv/0++vr/N1F1xF7+WdSzbgEB3ik/pHJysZKMNUtQ/K+EwMOUPvb9XBMSDSNQIDOsefUwV0uvqeUvir1WqWrVBZq9UqGn3XSRl7PyuB44VZA6b1XY8IKtyQ6hoHWBxLLIv9pGsEoClLpoh9d80FEGRKgIDycjDQTQ/wPi64lh46GJAuEDir35y/RMn5Vu0fDJbKcBDg5Va9rYfqMq3pfuepq5vlJLDR8eUg4lvobHYTjKYGDkW6NNbpfwcCLIcdS0VIkTa/09DRGPPaBC5S+319RHL2ndHqZEQ5UFmZreA9Xr4rLRWSYIDGl3LxMs7J4I6iHoIb78cU8bpuMZqu+lNGmo/XgiR3RNwH73rqERQdufjkHL4cMvtFTv/z5891d3dX6/V65oir5rsAkl7Ieet3fed2Qp4l4FNtidzZu9GTLNQ2/q5X2lKbnLzkKEDroO49I7D/BBrZ7pQZIJgkEJU+czssbSkzXFVvZ0YckwlSeQy8CBKTTXUb7zrHYNO/p3JOIfKSgEP6/3vq7YftJnDFSdGSiB3kQuD1nJsUMQ2ZSB3php51M21Kx+8Lm9yZenSUAItvp5IR9zmqBGZG8u3kTHJ+0hoFvktOHBh+Dr7P5Y4c73tR6v9vAQQODBwIMnplel0GkKuTSZoqkA74oGc0pUyDHPrLy8v0/ANuR2RqX/20Xq9n6wOY1leb2TbVTyCpKQqmhVUXAYnrvcruxrXe3VBTJi6LBNJ0r58HIT44v82tYrzuAgz2KdkUl133X1XtAVplqTRNJeBKu0f7xAfLcVdMyhZ4oKPfRT49lAIhjm/qjwdYKXBVHSM5Jr6cFw/C/Pv3pg89jrhzVBzEfg+v6TqCCur3MxPA7SIppUmg0HUyFYc8uXOlYlfVzKDyMKJDz2UfRVk+MFnXCAUf+93b4tvnHOhQBh9pXEftGAECj5A9HcprqTsO5pTWZ/RDvdGhVl2alY5QYOD29raurq5mJ2Q6uPN+oGMVz+KTY8PbmsAJ+1bjh4txE5CkvDTeqEP8TH6Wy+UEpjQ9Qr1yh+BTLdyKqexANyYu9Ead/e1sjQMB6pAvthagFaglqNR209fX171puKq5w6Xd8XGVQMGpbU9BGG03x5L7CK97ZGtcfvyPIN3HogNe/3wKfcgJhK4sCQj4PR1RWLxfdchp+Tw856nYmV22Qf97yl3lpY6X4fSIKAEB8iIlTweodLIRLylF58S5qBQB+n0dCmaqtUO4dArnGG0lQJDAJadyGB1Xvc0R6vunT5/iXDmjUhlFTqlIlskA8T7tApDObLfbPeDCjJP6Qcdpc4W2PnPaQG1UmToPwPvQdVjtphNI2TqVyV0+nNP3KQyCoOVyOXsstNpFZ+JAWCBDbfJs5K9OadwnMJqcvcvRbTszWpzm4tZbnTQpPZXdow2ko3XeRLwutaVrB+/365NN5zgmgE4He3WyPkS0n+53Uvu/R0brw6cJvFOSU2F6xMkRYDLAUjDvLCpWmudmpOURV1rR7fPHVB7+lwZSp7DOT6JDc2AexTtvLivWlSJEypkLfRKgYv912Y5zpJQVoOMjGPApA4JDzzr5PCRT3qpL/4k4NcPoyhdVERD645KVgZDDpaGhnklPVBczaDwvQDISeSTI7/yfMuHJir4mglMq+n+9Xk/yYCaCOu9j0HlT+9O02a9I7lgcuCVQ4NNEXTaL+p3OIBAxMHGwUVV7YykFK1wjQ3uTou7OTnqZx8pO/oBtcV/Dz53PSsAk+UO9jxz/twCDs5gm6FCaK4fuc3LBUQicg6/aP5bV070EAP696u1YWVcWR6wJGXZtcETrSkID5+DEyz90Hf8nPzTaDnw80hOfnp5NGZLU/vemrh+Ovdcjbjkn0WhKR4vqJDsdZ+2O1XnyVfM0vt08uvSZ2SamYMULAYA+a7rA9/4zClIdBD88DtsNtXhTOWojMxLSt6urq7q5uambm5vZyW58dLQ7kATCJFN3UJIhHyzVZbx+ZUpAwB30SBdd3uk/ZpwcgKQ+4DocX6A7Ag4Mblg/s5kJXPi14kHfyT+nzATqmXnzDOwoeO0AAPV61G9/NTvw4ccRJyVyAek/Tx9W7T8a0pGt/tO1Mj5KT3bleYRXNY/AGfU4gND9fm/qUJ9n5yJF32fr7XFKQKYj8s72pOkWDXrJiinwY5HuOVPSmXSNiODIdYtp7t3uLTXP9QECBL5YSu8e0fDhVr7uQLzLgTJlT0PsxpJGk4CA0yA0iKqbuilwoWOLeTCQeHcnzjoJxq+urqZFZYyyaFzJM+vmjoYEBmiwHRD8LDr6UZQCNgcEKdImcbyoTIJJ1tPZLemBr81JdSfb3Tl46b3q4HXc7kgQIF6kaxqfyqQR9LoOsz3u/JPv8/HyIwHrhz610CPlLjPA736dC3CUOVBHSaG7MtkBKQ3rRCToW2R4r9epaxiNUwHI+6hdqtuzHCkrQMcgotFkeVXzFe6ejnN+XVF/5kgr6aLrmeTB6JcGRM5qs9lMRiwdR+zOOekcs1E0RtIfGiStzia488hc74zqdR0zC6rPIzutI/CXRzFpXPF3N6pcaOkLEukQHFARoKgd6g8HvKP09oX+pC5goy1w2bnN5v0EYp7pSTbRgxH2pa7p+s8BZGpTVU1TX5xuIxBIY875le65XPgfpw5oewnEU5aAbU329XvTu4EBR5f8ne8pynQnKvLvI4fZRbIy5h0a9Y53peW1nVFh+Uwb6TduS6ShTw4oKY0oTSc4OTrWZw5QPxVP13TtGyHb9PncqGtXZ+z4H1epV80Pd3p9fa3tdjsZHYE+32rKAc+BT0NI+XOuXLrjmQEubkqgWvV4VK0yuC5BbaFDFtDhi87Z9TaBa/GVzjZI/cL6+X1kRNlX6i+1M6Wxz1lP35s8YEsvkds39bfk64ulCcp0n6+r4RjgUfKjAEm8cNF4AgQqn4doOcjgdKDrr65zh68XpwwI8AlcKSeXI3lMvq/rL8roVH1+9wcVOcIUJWfN//x/v9YVNzlw3qPOYJTrvNBQ8zt58DRXVe0ZmKr5AT1pDoh18jefq+r4Eo0ASjew6cBY1whodIibg43yPlah35uSQfG+IwhzlC5DJ8MnGb28/PnAH90rx0o5s25G6NRnP4dCUTGNrjs3RjUpsmYU7U8oVJ06GIbz909PT/X4+BgzAjxoaDTmHFAvl8vpfr0zsnIwX7U/Xaf2pq2NAjw+ZUKZ/sqZgRTEpO+0EwmksSwCKzlGbi30qFv37nZvmbOqtzNYqt5AdrI9Dv48gCOP/Ex7LFAqnshz1fypheJHZXl2gNlB6qV45cFJfN6G8zf6/CPoXcBAcj4dunRn7/+70BwMeBqGCkSlkcOj8VWZiXhvmv+pmm8tU0Tl804jxz2iDjz4e3LG/M0dt/jTOw0q66bjodxUTupLXk9UfS50yAl00Q/BpK9j0bvAgAa8jgHWgT90ZJ4VIBBgSpvRk/PuUzxumF5fX/ccvzICj4+P9fj4OC0ulBHm6XAEItvtdrrHgUAX2XjWQyQ+9JREZVoIqhwICKx0+ui/q/2aSlEbL1MFPR2y2Z299MidICItbJUT1pjiA7DU1+v1ul5eXqY+dx9B3XKeEkhwh84xJ3IwwHJTMOeAQPdprHKsawuuAklfs0C9dXkmP3HMNcfQu04TcPCleaN0D8k70+9zVErUx3ulgF09VfvON0VY/J6iGd8z7Q7bOy5NDXSyOXSP7iPfrvTdGgjyq3LZ3rSH3stUXZTROWYGSJSXv+t/OWQaCREdr0CAomnpI+dMKSMnN07MHPg1zosbIPUlHTlT+o+Pj7XZbCaQUFUTCBAgEHgmeCCw8JQ8+U4ggONFZT48PExjk46bxptAwNssGj3QiCCrWwlPo/yfTsdmBRzwcjzz987OMygicUz5o7E1Vrj9liBP96Vsa7KhtJUECOTx9fXt+Su+boZtTSCIUyHi3W0u/Ydv9/YA7pA+ngoUDtG7ZwbSPB0pGYxjkHun1DJiFMoole68MLpK4KUDFT6IyI8UzhVU5ZFPd6IJdDhSdh6TMlAuaVELv5Nvr8/LZArXeTpn4+qySu/sLw5mptJZnnTj06dPUwTtTqxqPtXg9yuNrsjcdYyZBW57ZD8ul38e1KPoW9MMrjd8roBOgXt8fJy1j4v3uGhwt9vtLTz0qJ26pnZwsaDWV6gsgis6CDeAdCT+ICWOBxl8/ef2hdefs65+L+psZrJdnb3m9QRZOivC0+k8KZMgVaCSwRVtD8vhFlny4M7V28hAhu8Oqn09Cf1ACgLIJ6dDqubndjgAcT0b2XBe86N09YeDgaRgo/ScG7v03l3vaPUYQJBQGMumopBnd4iHUo4JReu+5IDJHx1IN8fZKYQDCyquy4iRmJfnq3NTfUTBqd/PhUYAkNd0L0WunG4a3cvtdymdqTHhmQWf3vKtsL6ASfczZS/Qol0NygrofoEQZhDEM7cLMuPDRYe6jqDZ28E2OmDU78ykcAqP8qUzFy8+9y+DrOkuGnLV6e9ucy5A4DQwoPsYxSdgyAWC1DUBTN8NUrVvN/nZAW3XJto2+gLppsYI1594kJTsHgGOyA8l86CR46Gqpt0MDDboiwiO0qvT1W/R4w9ZM0AjQEqOnNd+i2PRvR4FVe0fvOP3Vb0ZIBoxkn7z1BjbRMVPkSGvJW9pbor8n0KOOj3KdJBBXqmUI146pKv/zgkQVPUZC++z1G4ZEHd2Pkg5Z60IiE7NAUGa3+TnbvGVHyZE8KfMgBy3jCL54HHCnjljZO7TAWlM02G7UUxg0evig2iol3QQHGesm/PTXP9CQJDG7CHj+p9Ena1L17lcTwEFnBpgNC6SXnERXbKXjN6lHwSqIo6JDvTJ9jETR53xRyr79Ibzxaydy831tmq+s0wAX2Xp2m6MdXRIb4+1uz8UDHTGIjUwGWQ615ERYX2M+hjNMC3P+kbI81ghcsA4qnTF7pyLt118u0P1evXe8Z+ccyozRcu8ngi1+z/RsW3+KOr4GgEBEQ2VL0pinzCNLePhDrcDq7rfx48iMIII376ksnxOlcZP+iojyOjJ28H2KSrn9Ee3W4JldLpEWai94oVZOd6XpiEoD+4fJ//KhNDJcX73XHX1e9AhpzJ6pcwn+9PlxusESn2tFXegSD9pq7kmgBkkboflf24Hkz52xF003FrLbboEAdotxEPFkkw90GIgwYyEnz1yDHX6+i06/EPAQEJj6aVrksPyMrr0+AjlOhqkIWNd+nwIgSVlJ/DgYPF5Ls6XJb5HdfEeKb6IAyW1gYZTZdGgenTM37t2J15VRooqu4HykdQ5I79GlIygp/w6w8MU+Ha7rcViMXPENIzdwGYUo3P6uUjJ52NJjEYY8fiWRT38qNux4MT1Azzil3zrtwRU6IRdxq5H+o+AyadSSB6tkXyM/ipbDEf2M9nRTkbU2ao5IOAUGn93neTaG7cRBNh+GJCu9wOnUtZWei7gmgCpiO28vr6uu7u7urm5me0A2u12EwjYbDYTj4+Pj7N6vWyX8WLxdgBR0r1OZimYc/ordva7g4EOCKQ0UxJAKo8R9yi6Zb0pZc+6vAyv0/lzheP/Mqo+T0bDRuUXuRIcA0boeMgTUXFSrqr54kQ6f8qhm8ZIAIM8ebmM2Lrpjo+mYxxeVU7X0bAoVcn5d9ZBg+ZOzedGOQ58sRuBwO3t7bRIidsYfS8/x5wvkOIuARFX6icdogx8q2Ga4pBeSl/diagsjR8HCLxO/NMZpTUYVftZNf/fsyP/6WDgW/TcbXfntPyzAIFntEgEvwnQcbqI00ZpAWBHAoQCBA5UCTZE2sp4e3tbX758qc+fP89Asna9aKw/PT3F6TXV4f6Q9YinxFcaK+n9e9J3BQMJCBD9pLmnqtywpIisY+TIvS6RBO3RdLrXo/uq+apREYEA58l8TpgLaFSX0kRsl7f9kLKnz4eoAwJJ+dwB+ncfxDTSh6K3c6Iuakq63KH5bn0H5+m1Sr8bC0nGi8Vi9ujiz58/193d3eS49XhhX2dC2XMcErhyLLgTZmqeqXiRoiLpHgFJAr4dICQ/Ajgqn9f4+gb2A407MyQCIy4bgQvVqfUc6rNz1tXvRV3glmx3ArKJCAjk8LRILjlLX5isz50u05b4Z5L7AB9vrtO07Z8+faqbm5v629/+Vv/85z/r8+fPk8PfbDb1xx9/TPrMaTIH/d4ula/6k3/qXiP6Xrr6zWCgQ5pUGl+h6YpV1c/Z0xnTyXad7zw4GFCns2wK2jMK4p/RtvOXjGta3MUozY0t266yRNyKpmmOxE8HBFS3z9OliPgY5XNHpd/8Po8WjlXqjyaXSQcEPMWfUpwiGjHpDLcoUed0vfPBbMCXL1/qy5cvMzDw8PAwO/yH8lbddHx6KXXK/wkMuCvA9+0rI6LoSDrInQweiV9fX+/pIPnSEwvdmUsmPACJfGmnhHjS/b6oy8GAeCIw+k+kDujq/RDodSfqOu/liHxRnP8vki4wcKKdpB4kAJCAgN7ZzrRF3LMWum69XteXL1/qn//8Z/3jH/+o1WpVLy8vdX9/X6vVaqZ/u91u2rHjdtCzdF6nf06y6exmsrl/hb57ZsAdsQOB0YCjo0toLikVFcgRrMpMSsv6+LsDgtRRvCa1U5QGTQIV6T92tD/gIgECJ8kpOWbWMRrgJFfUrp3JmfG6cyTvW72n/vVMl0cvNFJ+1Kgcpe+nZnbIDR4jlbu7u/r8+XN9/vy5bm9vJ8f58vJSq9Vq70mIqlMpTTm/9Xo9AQLVKYDCOgkG6GRpBAm2CRoSyCax7Vq0xdMZ5dhJy+VyMsqsV+cTcA6Zukyg5WDc1050uvuz0rcAgfSqylk/jo+URWUQdoxdpb1Sf6ZFhp3Nol0WMfhJIIdnBwigrlaruru7q3/+85/1v/7X/6qbm5t6fX2t+/v7Wq/Xs2BSeqmDuDjOHYBSHhpf7k/cdh+i7wUIvhsYOAYIjKJRUQcEUn2dkyUJnXZGyst08qkBR5QOVvQ5LQYboWK/TsoiZSO6dHTr5fEzDbfLOgGBkXwS3wQmBAKpr8+ZUluTHvNUNJIGvUfPXQbLnZaXKVnKWPFcd05JVdVkvLhAlYcB6eAglkmDSCNVNU/bCwxwC5UfnuQAnLrWZbPoSNxmECh4lsEzFtvtdvaUxgT2k2Ognvt9/8k0AgLdq2oedLleu+0XyaGnIE9EIEwbwR04h6YICKydD9dFgWPuxiEvGme3t7f1+fPn+vvf/17/+te/6u7urna7Xd3f388eXqQx9enTp9psNtOhXhp/lN0oKCXPsvedj/pRevrDwIAbG5E7qy7VlLIII+Hy/qqaRQ+uSH6t85ZS+eqc5IQPdZDXfQxRIeRoVZdTcjoeHaWsAD/7oPK2JaOQshVdmae2/z0pATKRnFKaBnLk75Gng1XeK0P59PQ0GRNGNCNdTVuxFF3TWBMIdtMI7HPpNtuqun2qwCNvT8FSpnpPOirnz0gz6QkXRhLQ+Fn3aQ2OZNQFJN7fp0Rl50w+jrtrfIwnQN/ZEZYxukc6RJuRArhks9j3CQT4WHF76NkE8i1wT8CttTl3d3f15cuX+sc//lFfvnypqqrb29tJZ/34ZLY7rfXqAg69U3+9TX4/9fR76et3AQMdEPAB2DmjrpzO8Xlnd4Ocq1WpRJ3iJpDBaYmU2hq1x//vokS1QfWJPPLu6nSw4c6J7U590DnrLkIQyubUDMscvc6NKJc02LosFRfJuby9r1LUqnv5RD1mBlymcsbaouhOT9kB8eBz555CTynXLhJxeYkXZs0ESPi79MTvpVyknz4NwYyJOwXvJ6Z79b8WrI3Av7fTX+eor8dSBwRo+7qX/h8BgFTGoXq77K3XMXL63X3Oq48fgZGq+RNgyRszA6vVagYKPn/+XMvlclqno+2FOtWTT+/0cTySiXTVM2M+HT7qN7bxr+jsDwEDyfiJYb77/V1Ddc8hh+oOy6Mkv9Yd40jpGKn7Na5YJHfYiV/9n8pj3Q5SnHc38vwvtbvrD6fUh26UEx/nDAI6SqDAo3oRp55Gjkbk84Jy2j7VpHr1Lplqj7MvbKUhkzHzfdhqWzK0bLveOW/p/ep7wxeLxazOrr/9HtUlIKCnFqYxSx4Wi8Xe9IGvefBMhvetG1e3Xd34/tloFFUea3f52cEV9TYtEBe5fEluI92OHTO2jrXH/r+3pZu60hRdVdXd3d30ur29nc4j4OFYTmmMS1e19ifpoOt94vt7AIGqbwQDnWJ5VsCRi95TZ7EzRg71WHLFckGNnFlykvrMAzGS0tJIuxH2rVZsv/OQeHae+FsX8YkkXwdVhwZOIgclui9FoD8TIEhAIBnJbtonTQWQ3DAn8KRyKFc5TK2ap8HVVjxFGNoCpSyB7pcxS+OVus2dJwQEfgSsH23MzIR4oZy8XGbCdrs/FwFqPpfy8gyIyqKu8VqOMWZsvJ/0zrUYAjSekv7ZKAEe/pecn18nGgUw1CHOwdOG8/oEBHynUxc00Z6SNw9uUn+RJw/6OrDLE0MV8dPxcmeOL6ZOdsGjfH3WDhsGFpwu04vBqIOA7wEEqr4BDByjWG50OnTJMtLWQzX2UHo9IVGv7xTkyGvc8TGqSx2fDH4yXJovTbx2kVySAweJFDkheMrUgZA7wU4GnTPTZ0ZjCYQdCzbem7x9Tod+l/46GGC/+DjoIgj+xz7XY345vpLRZSRTVbVarabfeWoh59ur5mcEpNMEecCQP2VO7eeT2rSAiosaJQePkpR21Ulu5I9TAJSL+GEmwsGN+pZ88uAlbif0I25HNuNnoA4I8HOX8RLRLiR74an1FBlTL0m0DwkQpHt0H3noHLvXT9vrNpXTb9vttu7v7+vr16/122+/1b///e/6/PlzLRaLCezycd8EEQTMyS/Qz9FmiD8/yVM+QmAgTZE5IPgrwOBoMNB1MBvYLRo8RA4iRJ0joZKkeqSoPAGL5bljJaDhb8lJqkOkRDIwLJtKmqYqjpGPAw7/rDJShJ+mRFQvr/N92CIHAYzkHOAx8mMKuQN950wJ9DjPPijlXJiml5wpN95Ph+jb2gik3dCQJ+orjQUjdT/LwI2/fldfCXCkw1PEg04b5GppzwaqfhlZP1hGPOq+3W43M67L5XLay02goa2QHrn5WFYd/mRFRlcOMgQu+HTJnzE7kOx0AoyM6FPU3NlVf18u37ar+up8EYMeOsqUzazK06SkBK51X5cd0P8EpBxbWgPw9evXWq1W9V//9V+1Xq8nMP3w8FA3Nze1WCzq6empvn79Wvf399O6gc1mMxsb6awNH4fSbbWJu350DQ9vSoEd5fBXgEDViZkBN5JUKEfyTonJzkg5yqNRSimtU5xMGuSco3FBJ3IHLTSoE8yq5ltjfO6W7eBnRvZMWXGxmngWEEnAwpXCET4/u3x5j78nZeTLpwfIj4Otc6Y0gLnVTobEF6ylqMgdPqMpf/mhOuxzOTfvg6q3VflVNYuCq2oW/atdfJqfIuHNZlMPDw+TQUuGVkaTW6cYGYp3PvRI44BAgQZZgPb19XUaP3L6mnqQUeYCRaZv03ZO36POszrUB/pM+XN3gvT43EGsUwcIOA6PtbupTH13fdYWTw9GqH+Lxdu5/B4ouX3UuEq+g/aIPoG2ZwQKvF7ptrYOEqhut9v67bff6u7ubgK52+22/vjjj/r3v/9df/zxxwwc+M6dJDcfD/SfDrY6Gz2ibwEGJ2UGXKGOAQJJGCyPijlqSJeySgLyyF+/uRKM0iqjAVX15oyF3LpztNPTtcjPiH8CAY/EKSeWkQY2y/T2ejs7EDGSjTsnv5b9fO7kcpZTcmOn/hFRL9hOOhee/OcnAnKLE8GADFxVTU7Qs28EA+RbDo1gU2VpykHlKzKis3f9EeBV9mC3+/PktdVqtbeISlkJ3ScedFIgZabPdABcza2yFcH7vK5HlQ5KUyTKiIsZO89wdlHouZOD/mRvR84lBQepTL9W46WzMQ7EqNush9nPjj9m2TxA6wIStsfvUabp4eFhKvvl5c/nEXz9+rW+fPky6bWyA7///nv99ttv9fXr11l2wEEq7XJ6T+S+Ksnze2UFqk4AAxLOISAgRkeN9Y7kZ3fiiQ6h9a4sR77+Wyp/5Oh0Hw82ouFlZJfmjz39LlnwrGtXWEfulCXbL/70rrqSDHgP23ZI1g4Ekqw6wHfuxEEm5ySH5Gl7kRs0GUa1nY4/7ZHnGKMcdQ31TI9P5TXiQfUr3U6+3FEyMpKjT+lyXevROLMjHqlRt19eXibwo3KpDwQuygLo3SOmBMbYB8kZdNf4de4sk8M7VxoBdx+HnJIdOZpDgRJtSnfNKDomEKO9EyDwdVVePnXM9TtNH+lz15/S8YeHh6p6W1QrQKBpAy3m/eOPP+r333+fsgI+TUAZSRbiS+PCs8cMBhOoTfQ9wOpJYMCVydcKdA6FRKNBI6j/iMYT0am5UlIhfBB3QMD/1z2jqF3ENQm73XxPNct0J+HOeUS8v+MlycvLdT5oBJOsDsmgyzCk6IE687MRnXpKgyawV/X2qGCm0Dk9wLGT9NbT2B79Cmgq5eoGRGW8vLxM9fMaGiEu9lO6NC2m0zW6X/UqdaoXdYeZlBGAZcqan4+xKW6bEh0am13f/2yUwGQahylw07Wn1CNi5tOBQAJtDh7ZD57pSvd2ZUjnExgYZQpYt6arOJ6en5/r4eFh9qRQLTb8448/pik27YrxKSbPKHq2j9MKnsFieYm+V9bqaDDgq6XTokExNkqFuDHgu/7vMgREjOKpar5lxe93h5YER8PghsozBnpnirV7Kleqo2oOaFTvsTsLunKT0Uz9cCgrQHAzAkOpb70Mj0Z+NuPq0T0Xm9HY+HtVTU7SwUCSB8EZt9dxrPE5AryHkb0cu1bwKxvhz2Tn6mk/T90X3Xl2yncHiDxap0x2u90euFAbKGu3I77C38e45KusAxdfej/yPneGI0Or+76XwX1vcnDgoKkLghLg78olMUskXUu2q5N5Z7dHPHD+ndE4I3CVyd86+yYHzezs6+ufU2n+2HAuINRY4lSx6x6zYpKBr3/htHLKDvwoXTwpM+ARTUqniZIDErlipsHrDp3vuobRhyt41TxiTh2flMSjddUzirSV7qGx6uokoFEbUzSTnHm6Jl3fDaIUDVGOHPz+eweovH9d+Uc6cs7k7aZjrnprtwZu0mEZKl8c5DpPA6BxpjL0XWX5HLlIhldb9ARQdWLabrebMhusl8CA8/Ed8BRfVbU35VE13wVDY5aiQy+XcuEKb04ZuEyVNZGx7nY0MUIbOYGf1ek7dSCA8knAPkXQqWzWQXnTBtOROXD0a0SHMsPePvLD7AB9g/6XjSZgST5APPpOGK321/++1Zagmu3hlKJAugMBgQFOER87TfC9wOpJmQHOc3o0XtVHoDQinhkYdboDAkbBfh/nwYjIGEGRV/LL646JilMdPkDEU1V+gqB+Z7Sm37p6O1Di/7miE9BQsTrQkgZZBwgSTykK+Vmiq86Ids6+6m2+s2o/ovEyEmiWE1cZij4IwBUBM7rwcSfHLjCg31QWI2KOFyduexKYUN3+ZEPO68sI+9Y/bhnsZMHvcuziRQsU+aCm9Xo906fX19fpyXG+fVI0mk7oIq8RsD9XcluUxqPsjtumVE4qK5XnNtezSXS4bo8cECTQnPpC7VCARV4FonlfBzToI5L9l07SpqdMmgMf1zWCFE4RMKvgUwMdEPAA7q/SyWCARoSdfwgIsAGpsxmZixIQUBlersriVhRGJ46GRSO01YGV5GyToaETTAiZbeQ0QQI8SaaHsgfHGrCUMWA7OzDgYIrEPk6Zj3MmOks3SJQVDdloQOpaGgH2t3RUW/rkOOWIOeaWy+VklFKGxvXMH2vM6E2L+TTPzzHousuohzwxaq96e6AQpyHkDNL6ojRuOLWgeqtqL+rXeNd9zIyoLqZsKRv1B9vEjAh1P42Nc6UEBNxhU/7JjicHzO/J3rFfJUfqHX/r7I3z44CbUX+63u0UQa30j3PzHAvSN96nqF76vN1uZ77Hp+koQ/HGcSgioJeOE1RwmiBlBZKMvgcoOHk3QcoGOIJJUagznqItRsj8jcZ2hNSpDDS+XKk8Mt6uVKPshQ8IziuniIupHwcr3l7nR787711E7vJ1+Sf5+ZRKN+h1LflPICLVcc6ZAQKwFPF46o4oPg1abjklGFJk631C46mohnPs/I0r8j0bxuhd9blx9/Up3Kmg+zmtwejFjyFWe9iGZOzdOdBQ67sDYr4LeHANhj9dUf3CF4293hmtqq98bptAoIvMzo2OAQLHBAjHAALavbQzwRfWSseYRev4r9p/jkfKLnp72Ea3yxqjnGpjO8kTpxG67Bllxff0PwGBZwa4TsCnVVIA7OCo80269hS9PfmcAW/gITDg9/tLlBqv8kfRuyu6Bj9XT3fgQ2XQEfiAoiH3AeVggEaUhs3nxZhSVtspB7afEWCSsfdNAjEylDSMKarXexpUHBQcXCzTU9cpk3HuxHazzXI0VfvPWncSENB1BKfSNekHZSzyyJpz5eST/SSwoK1P0n83iOoPZvlWq9We05XjXSwW08pp7aHmvCj1TIuuklNVu1wONLieTvWok88/8MyTIjtlBpR21XSD7lEWRHWovwgIDtmqc6Rktyi7FBy4oxmVy7LZbyxXY4E6wD7lOOCuEx9DDmA6W55snd9PcMwMMaNvyYL2mCDd5dMFpiPA5VMHboO74Njlot/Jo+uoA6Zj7e7JmQEXSsoCuAPoFNUjTY8kEiXH50Yx1cUyU8eyfBKRXIoY9Z+fYJYGHq93VJfaLqXpHKyXzYHnbXGlcVl4eUlR2V/eDldG1fGzRFUkGhkfgLvdboqQPa2u7EFVzZxl1fwYazlu3Utnp8N+5Niur6+nMwXEA+vxLYoynoxCBCIEaHa73aSnAg8OBnSAkHjWVEB3ZC+Nqs95dkauA+eSeXJmDopol5TK9ewAswCSg/OTxt/PAgSckp11Z3PMmBz1D6d8qmrm5OkTUhBBG0RQQN7TZ+qF+xC98x7ymPTQs7WegXZ7muTmPoZtVR0j+XJsEqwQNHu7VD59iq5xf3EKfdOzCdxxjIAAmXelTMqWGuDKQVTqK4u9PufZee1I/3sHMPJnxzM74FHeofZ1/6WB0aFUfU6oVve7PMhfAnlOHcpMRtOB4ikI9aNoBCSr3lKfygpIvuxzRh0+MPXZ5/DllFUm51m1gpnZGEZdql/OXdMSWnBI8pMw5fQVeYlHZQaUjmckrro8rckIvNsb7eA0RVL8ziOgJUPPKLBcbq307IAcTyLK3AHxzwRmHfCPwEC6t2psf1MgpHscDIpSoKJ7qefOW8oW8V4GXd01stPePrWRO3iSz3Jb6qBRMuG7PusejVvnj0CKOxR8qqCz/ykzwCBM9yQQ1NHJYMCV5Zgo26NoN7LH1t8Zk4RSE6XIuotaeD3LlKH1uSSeW+/brFSWz6Mdgx51XReBk1dGn7rPgZcvsFT9yVkf+i7q+KKMfzaDmqKPqvlc6Ovr6+yEQcqTUY+T0pZ0bNwmV/WmL4puebyv3yvHToDw9PQ0c/IEGovFW5pWGS3+5wcjCSCwTo07znu6wWWfc12C5OxEkEOg77sUPELksxDk/Debzewkw5FNSICY//9MlABBmvemwzi2TI4Hz35Sjj7Vyc+yZT7llaaUE4Bx/dR1noYnSEj2k0CBWT7aqg5AJed+yFZSbp5F3u12s/Ht6wYoE6+X/6U+PsX2flNmIDU2IaukREm4MqTqtFRG1+BRuWkO61S0nzqDRlL/ESSkFE5ClO6gu0hK5TtqZbTI34lk3YC7fDigqTge2XPAHSO/BLp+BsNKffUttKJR9MRrOLCfn5/3HLpIdWn3AKcC+PKFfz6+VLan791Icx82F+6JJ98t5M5f1/lqceo/jbFHVi4/tY36yGyfnIXWbBAkyKhKR5+fn2uz2dR6vd57DgRlkPrBx0iyaedK3l/HThEciiY7cEy7QfuaHGVK07t+OKWsUdV8Rwl1l/bR73OwxyBM5dDGEbiIj9EuiEOBLYNWAQE9fEvBhHbjpMya+xLKzPvJ6RTdPemphV75aLAkBRqlqqh0LLdTFL0nB3cI7R9Lo7pd+K68/u5lpM6V0omo3F6vrtXnlNHw7IdHCJ65SABPg0OH2JCvUWr1mIjjnChFDRq8Ljd3dopak6FgWt7v9/pp5LwvaARTZsnHYtLP7j8CWPLihj7xS6fw9PQ0m+7wFdo+LmX4qMsc25Q9t14yC3dzc1N3d3eTQdUDZPgURX+RtxSBdY7oXCnZkS4I64CABwX+8kwNdT8BAqbK+VvVW6TOa9yG0SFX1ex6B+v63/Vd1AEUPleDNo1AmXw4kNT1DnDJK+uTPfGHcEl3BXh9e2HnwxJgSzweq8cnP8KYgyRFfhReWvzjAhO5cnXRJMt3Xpie7QwY30mjKKFDwXSyfp+ja83nJvROmVTNn3xI+eieNPfpUT4Nr+p3hyJjrPs9ciMYIKVIOSmtG5Rzi7A6h8yo1NPlVXNHVvX2SGCPPPRZr7TIlM7RDZ3uZxQsZ8brd7vdbM7e+1blqB9Yv8ri/xyDnmXgf5KZom4dDqTyuOuAqViV43qkstzo637eKzne3d3Vv/71r8nAbrfb+ve//z0DA5SjAxLXXdbt9u5nIAcCKfPTBW98T2V1MnEgkGwPy/e+py8Y2fuq2gN4DtQd7KgMLc7T76qTuq/MEom2MmVuCUZUJvXWxz/tiQCB2rDdbqdjjblImdvRvY0elIgXyu5Yu3vy1kKPatJcnCPJQ2kUR180SCNeXHGPbUcHNEblV83PX/drOOA8yhAQ0MIr55lgwiOnxJcrMgdX4ptIWOkogSbJQakyl6XzQVTPa5KTcFn+DEaVA1dpPF8gSBS+2+2iAUlGQKlBLdqr2gdhHNxVtWdIZVzZJ3S6DgR1H+dXZZB0vcYcpzE4PdFNtzlQlH5xRwWNmesMjVzKTIgIbDh+V6tVff78uf71r3/V7e1trdfrur+/r//5n/+p//7v/57k7GV5FJiCgJ9FX6v2o/kuih+l86vGQIDfST5FSf1wUNzZbNcLb1vih+NwlKlg/QS1tLkawykid7tG3skDKfm+BGL0rq29yhRst9spw3Yo000fwgDUMx7H0DedM+CfGW1SMbs5V28IFcRTHRz8Xr9HcRSCorUEYKqy0o0EJ4VxdMwjLxO6pQHmvFSKipKDdVklw+WG1MtVX2iFOOVEUKBXcuojuXSUeDkXSrzQONGRe1TJfvZT66TzzCzwyF5GBlXzLJBHU+JFkf9isZgiXupLyiSxLWncJP2jjtFwJnKD+/o6f6wzpzp8HtaBi2dFyAd1k4BMCwM/f/5cf//73+tvf/tbXV9f1++//17/9V//VV++fKnb29vZkyb9gKikC6Po+WegQ4FYB9w78J6CP+lkJ7cUVPC72/s0Fj3K5bWu02yrR/EM/FKEn/yYHy/sh8U5OEr8yy85z349wQFtBnftSN4dEHDfwHafAgj+0jSBI+409zYCA8fUl1Cv6u7AAKcJPGo75PQT8XoaJ/HRRUpOnSwSMOnmig4NZn3Xu0cJkhO31ThqH6Wk1A7/rfue+DsHojHjZ4InTg9wUHE6ig5TwJAA4ObmZvrsC/O8L1W+ZwM0Xy7d5vG/IvLROQTXpy765qFK6bwEGkjKgFsuu+hb+pYAs0exDgRoUxRRaTHWzc1Nvby81N3dXX358qW+fPkyPc9AfcfzBhi5SsbskySvcye3uV1WYBTt+nd3+Aq0uOhO5R+iUX0j4ND1A+0RF656ffQj6b+q+SFdaYy6PNIOjY5HBwLuR/1aZg0URMreuEwoJ/kfL/9Y23vybgKPnkREZSKPYKoOb/vrUuOsM6VcFEm5UDzSGLXPheYOo2r/MBkqoYzKoTpdwZkxcPJIdJTeS+g+yUt8O4IftX9ExyrguQGCRNQZ6a+nFKve9MDT+wKmAgIEA5KPr9XgfKPLkilMz0LoneBRBq0DiiSmIP14ZX4mL9zumI5jTvOVfgKnZCq5eQTLKC7tovC+YMDgOwj8XpcLx53anRzAz6K7BAQEcAkIjMZ3sgXUU5GvpRF1GQV91jXp2uQvmJVjWa43if8U6Ixkous8sGVZ3m5/SVb0E7rfg4xEvsZrdDiTt1P8MityDB0NBoia6FhcyO4MuFCpan8aQPfSkHhZdGKJBxpRzQd1qSqnkdK4IJOxS4rcodDuXXxTiY4h59XR56EoYVRPGhRet/qSdaUyyd+5koMnOhQaVfYP+8+nBfTyPdEiOXmWl+YymemSQXBD4UZIlLJLrtc8qIfRvZ8gKN51TDLvSUCGPOge8cYphGRYBahdHvxfj4/158lz4ZVnWjon5mPuZwQCos4+pxT5sZTsFseAy9aznx7s0CE777KFtPcOnl2/XGdSmanNGjM+HeDg1X0PdZYRe9V+5ni3eztDwO2KP1LcwYyDEG+Xt8UDiVP19yQwIIHIYB6K/jgIO8PkUY2Xkxw+HZuDj84hJaKgOsG5ARe/3fSD76Comi+kouHx9K0rIa8RL3TALk/vG/+eIrjk7Bk1pEiCMiM/Hmn9LOTtYYTvsvPTBfU/twwJCBDEOkB08Oe654ZKjtHPHiARVFS9Pb/dATtBRtXbMwV0Yh+fMVD1ZgTp2HmN5KU1KZKLAwzXEwf24pmgnnJRBmO5XNbDw0N9/fq1fv/99/rtt99qsVjUZrOp33//vb5+/VoPDw/T0cvij04jZSJ0jgH1wo3yudIhJ9BFwCTqaBcMkVJ03jmvzmbpd9pEj/69fo4b9Wmyaan9fr+DAH/eiPd/ApZVb4eRqU2+jme1Wk3jgucMaLykNrpMOx/pMiXPXV8nOhkMMDJxNE9iqpVEI0Mg4MaHDXNAwMVVzl/KCHSDZISk/H7Wk1JMUqoUCdKJ0JEw8umi7/TZQQTlxLpdcRWNqr/88bYJFIh/L8cNgCNTzyycGo28N5F3Rt4eAXhbdN3NzU2t1+u9w0TkZOjcqDMeWaex4SBsBCISyFD7RBzL6v/NZlP39/d7kbX3uz+bYLlcTlMivqK56i3zQMes9RPu7GVD6GQ47j26XS6Xk0FVluD//t//W//93/9df/zxx3QuwdXV1cQfAZLkLYCRbIB0+2cAuM53AvOH7iclIOC/udPqUvh+L+vj79Ir3zFDckfu9ojkfor3EgikKS/aULbRx6KPMfHNNSrKMHKNi9a0VFVtt9tZ27ho8ZDu0W643qYAt6OTwACNJRHcIUfmka+n5JKT9PS7l8vO90ibfGo1Jl8sy+9JYIGfaaDl5NNg46Bw9Fk1nz5hPYzmiTZTxxL5qS1KRdEguLFlxMm2OHpmW+Q4knMhAPOBkvrnXInAk6uBnSRvnh6mbIAcXdX+ljieE0ADxIGcBj5BMNeoJMPM8qT/KsPrYWbg/v6+fv/999psNjOAyP5klK97P336VDc3NzO7IN3VdfrMujmHqrJpOL0P5LSli/z8+vpav/32W2232/p//+//1f/8z//U169f6+npqRaLRa3X66qq6Vhi6qXkoPr07v19zrrb2Sx+55jsIky/N9kC/+7OitM7Ht277fCslfsFjTHqLftOOtCBj5Rh8KmAtBCWPB67UNAzop5dECj99OlT3d7e1t3dXd3d3U3PENlsNhN/3OZIQMB+S/1EXjxQPYZO3lqowclO6gCBGldVcaWxGpKcUNcAGg91JgcvlZFOT4PckZwPJP/dowj9z2jaFxWq4/mdCifHqgGjOSWtHGW0mACB2kk5+er3Lj1M2XEwEJCliIDpW/HPa1wH2K8JQJwzdcCQaW39prQfdwtQ7xjtEkxRJ+Rs9M6+Y5ZHwMMPQpL8meYkqCYA4bjSuHl8fJxS65vNZjYF4EbH1wkotU6wrPr0BEGOFfHZAUY6ZLaVRlLjS+3Zbre1Xq/r6elpmjYQX0rDrlarvXSwshbcaeO7NMTjOYMB0SnjzPs2fe6cj+uEOx3ZBz6Dg/cyKGNASVuqPmYwJ73m2NHOBo5Lr4tHWqcpW/HtoIZjMTlVl08HCHgvjyNWZkDPHlE9BAPM0iW7nICf/mN24Bg6CQw4AhtVklI/yWnw2tTYQ7xUzaNwN9baq6l3H9hdGxwYqKP9CEsaMxo5OXsqL5VCxoxAQOV4epj3eTqTCutyGSmwojxPmyUU7oBAfLA8R68JDJyzQXUAIFkyyiegrHo7MldOy4GA67sDNPYPnS+dver0V4qqPGqXA6ROEhCoP/SUv+12W9vtdsY/KfVxVU1pdn2mzFgXxwrHIvVDMqUMvH0Oth4eHqbxpHZo/K3X69l6Aa15cHAvuft0p+o+Z911SoGUg9uq+boAfub/qQwnyYj/MSul+3xXk2csWB5BsgJQOlv9z6g7EdsmfWH51GlmEhy0eHmexUi2turNLxCsa5pNfon3E+QccyRxBwrY7h8CBkapiaq8/5wGwI1Ip3jJCarMLm07GrRMOYqXVIbzzjpdGVM5MlhVb86+48ffBRyEdHl0cSJXVk9nOZpMyuvGPdXBvkqD3h0/yQHBsemq96YEALjyt+oN3KlfuHCQYEDXSlaelh6R1+H6nsCeDI0v/lsul7OoqqpmOwBUnuplBD8yPozQZDRVv+7lAt+q/dM5U+RJuRMgyDn7tNZut5vaoxSrfudUnJyJ0sr6n1MvjGJ1L7MfPu7Plahzvng0gV23xa4XohEIcAAh8OlBAMuWznCqyIMu8iOn2TlmOu/kd6jXng1gG6vmWwC9LpfxyI9QJvILm82mHh4epixiGr8EASxH7Ut2dtQ3p9DRYCBF4p5WSShFxBR950CouKTOMPk1PphZfof0/H7yQmft7SevDkbc6FHJfQD4IioqdOLF7/OUG9ueFrzpf7Y59UECah0CHvWP9/m5kmTKbT9aB0BUz0HM6JVAk1MCHr3rc9ffvD/xyPKY/ueLRpIAldMIKq+q9tYupLHdGRyW49kxOlwaeS/Xsx8q26ei3Fmk+VQ6BcorjSlN06n/mPkTT4wUz508wnS+R2DAnbV/1nfWpfc0vtUPfmqrZ0ZpV93Guj1P7SR4JAgloGDEnfjsdMTrciDQ2TQf58pYMbMoAH57e1uLxaLu7+9n02o+VlLkT3Lb0PXbiE4+dIiCEVOjFJoGGA2pAwKWn5SRjZHzS1GEo0BPi9JQOHJLAnMnTB6SsZZ8vIyEkJPBEi+UKSMx1p+AAOWa5sTcCLjSJSVL7esGQaeko3s+mhiRSK80p6edAXKiTG8KCGi9gP6jXqjfCATYlw4EaWA7/dL/bjh9akJ6w0jNF0mJuObFgaXzyt+oQ+Tf76P+UdcIbLlYUE4jyZKAQL8zq0Hb4NeqrR4gXF9f1263m2xUAgI/wzRBygwwfZ7sje5Ldth14Jho07MNVfPpRZLALO2jiDrlNoz3i0+NR/JMIOHrojownrIPrt8OVLr2S3/Ejy8SfHx8rNvb27q6uprW6/jWRt2b7GgaS37PKSD25EcY09iIRgPFI2JmEFhmVV7Ap+80xHSkdIh0fj636JEFDZM7XC9/tKK0c/4ycl5nGmypHMpVvI4QrMqgQyAaToAkoU8OfHfg/C2hT/3m0Yc7xHMj9rNS/toZwJMDpWuaEtD1eldZcmaMHmigPYIVudFJc/fsn5Q29DJpiD26SjLg8acss0vF0tB69ooRW6ffdN406OSZqXpvM8Ev28V+4HUkjmtlhGSr2F8/Q2aA45J28BCQSY6lat9ucxzz3pEt4uJZ10muA3B7q2u54DzZjuQXHGCIFw+MdI2DTAfmCeg6wKQMR2NYL60beHx8rM1mU8vlsh4fH+uPP/6IgMDtbAcWOjBwrO6etLXQER4d8aG5Fn5OzsI7xBvinc6ULg2HgAA7341bItabUvDkP5XHCIeRieTChVBsj8rnrguPXLrMBRXZMyIeLabrulSXG1r/zyOJUX/SgJxjZqBqf+GazgmQo6dT4CIonjboGRo3PARqSQ7u6CjfFA2Qd12ntKyu028d4BOxTSmjpvuYjSPfNF50sAQIbsBYJ8caV/Vznph6y/aqrYzSOGbI62Lx9mRGZXEIIvRMef3eZe/OmdzxuV1O7fDxLv114OUOltT950CNIJY6xe3QiS/aOrc9DNh0raa+uKBW9xxjh/y6btywbQ7+Ra6nGltPT0/18PAwgQGdpOmHfrl8nY/OBlf1We9ER4MBph7VQFVCx0cHpvskCN1Hh+FG1F8ePTCNx1XHBAKql53i35OgWaZnHPyAHjducg40YgmRJ9DU8eiGiAon8lSVZwREowg/vRzNkufO6Xu7qJSdE/xoIgBk/3k2SLqoKQG/3gdf6isSDTbT9P5O3Wc6NEXRNDRe9273th3PI3XXRS5GdCerd99lQX3zcTYyqh6RKcuiQ5xU9na7bTNLHsV1gYRAHrcVqk3c1pumhUbR9blQN5ZFxzqF5IT5u5P3Ke2/6wIXyepd44d6rzHJ+10X3TZyp4AvxKMtd4c5ynCwPm+f6ueaG89QqU7KSgGf1hHIv/hWQt6j9xGv9JkEXt8dDHBBlAtGiJurr6tqr0Oc8VSO/tNvBAMOEKQwowHL9KIjRBKNu7Yjqd1a5VnVZwUcoIgnGqrUKT5Q9Fm8+zUeBZESCmdbTwUAyaB0RsYNPPsjAbBzIgdyBAKUIZ0w1wq4UWGEzUHJNKYct1a4634H29RLfwhP4pWLBD0zRkOoNnEMVdW0k2G3ezutUvcTBFDnGfk4oE2y1lgkaGKGcb1e193d3XRqoLYKSlYeTPi4ct2XfWIWTlsgtQtC1+p/2S6285yJOnRojKZIMo1N2oWUfie5w3KemKFUeQICVftTs17fCAgSUPMI7G4tjLdLlL57Gx1Ie2B2KOjRfxxb/iwQ1teB0C47wEwhMxfH0EnTBBI6HWzVn6iax7BWzQXLhnfzHd5oDnKmZTmH5e/JSXMQKG3mxkSDXSvI+QAJGSApGdvOVKSnmsnDSJFpOCmfhETTvaIuY+HkwMKBQAIEiW9/T86Tipn6/hyIDtdf1B86Pk4l0LnrWo+m2McpKqYc+Z11c5cDQYmvoBY5GFCky4jGsw6qV9GbIrdObt6OBERpBxw00SCnKQkecOaZQwdYXJPELKIDJ7XPQQRBnA6C0f3HRI4fReSrA/Z01HSG7rh5T6JkX7vvrIcv2mIBAl1Ph131lulKh9V55pX2j+vFOB2VgIC3qbNRDhTUXvddIxDmIJlZKF/Y6gHWiNwHsR2nBGAnLSCUIZHhowNcrVbT8YpVNSHuzph4Y6pqD30zavGOUGeLLyqNlzVyVjS0q9VqNn9FB6kDSTyD4cBC5Gkp8qL3lBWgrEfk9x+K1lPavwMEXo5/9vYQ8CRk6+DhXCjpgB9440CP7579SaS+FRBl5C2ZM+Lo+pJg2FfdU1c6MCZAyzK5ALJqP/un/92Zqx469DQ1UTWfFnMjx0iKMpHMuHWwan/xse5ZrVbT/8zQKZuiNhJ0aEx7Jubl5WW6h6c5HmPHzoG6ccwgJulYSuvrewIVXqc7ssQX31kntx86YPCpL7VFL/3OAGwUeHhwmGyzy5KZr9H1XX2dHNKYoRyPLd+n6ZN9P4a+eTeBKlgulxMQEBhghLPdbvecZEpdpHSfRwO8RorCd198VzVfuEdj4JGDL1hyo6prq2oWZemaY5CcR4n8jd9PiUJ84B8aiEk5EoJXWV5uUu6RM3LgdC7k0VKKIvW7jI0/54IOzMv2aICL1Vi3PhM8dsCKlMAgiWl3rnVJ0VUCbB5tC8yw3cw6+IJDAgi2052+R2kqT8cJdyeHsizaHM/0MJOSZORBA0EE6z33aYKq/czAoUxsGo8+lXQMJZvTOUH/7mCLZw/QpruNlM50jjq1qaMRUBEw7dqZxn7Hg99HkOVAiADZA1n+L53vFtsmgN7RN50zoO+KHNbr9fTwhevr6ynC4LnRjH7ccSaj6HUn5eKUBaN4gghOK7BDmEqkwWDZnn5hGmvkfKsOR/aqx/kalUfH7212WXXofaQYnWPryvZBlKKDlC05F6JhZHYgLVb1ufKRcaHuecTlOkhH49klNxSu4+ovbuFSeSqL2TyVqfcO9FEe/N/7frfbzR5GRAPNMejkusisiByAFgzSGXA8ky/JlTo3sgE+tyuZ7Xa7CQTosCn9/zNlBkb24dSy+J6yO91vTtRXLz8tUtX/3lccs/ruIDTZKNbBdo1kw7GV2lM1P6lSwDsFUSyzs8NpnDm/eqccuHYoBX4/DAzQ4BAIfP78eQID2hqR5vocibP8hPxH36vmC/qE4j216xEc28AXsw6O2lj/IbTlaC5dO4rmPKp0pM8BQl5Gikfj0Ml1FOnqPQECV9Zj5tbOhZgZoB5Ib6krohEYIGB0GXVzshxbQvn6XS+m8Kvmu3votBgVy1A+Pj7u9ZkcLdccqAxmRLzPGIkxM8dtx+xr3u9glhEXf1dWQHO+Di5p9Mir+CIxaPCnwfkCT8lutVrNxhQXGf4M5LqRHDDp2N84LtwmJuA3AswJlCbA6fwT5DKbpPtcZ7ssrIOANKY5DZ2u97Zq7Kbrk3M+xlG7bfU6PQBw0PPDwAANJ5+8dHd3N2UGZFz0JCYaWXYEVzoe6yQ8KuuQa1p8RHLAwOirc6xenxth/Z7Qb0KfbIMPME/3cO7UF2MStDivCQh0PPB+Glv/3xGrt7kDFF1a8iPIQY2DAW4VFPm0kJdH8KD/3ZE5IKADE9hIuwSYhtf9zGLRGDLNLePQGUjpk8YMtwumZ2OwbdxKxTpooNK44LRe6hMHGczYpGxDF40SOItfP/vdgbTqSnr6rdH1exL59uCh6i2K9oxBB1bdCbNvR46edAgQ0CeM7FhXVhcgpjLS2OPUEnWWZXGKj8QxSiCg715n9xKPznOSAXnustZO3x0MsFIuzNEuAq6u7hAkDS/nhkREtGxc6iQnGkMaVPLEttDxcnBI8L5vWvzxMAuWp/875y8eSamTuBBG0QyNdwICqXy2ZwQaKDsa5GMpgYGOziEz4I6EESEXmom6qMmdkA9QAgIeBLTb7ab9+26ceI/Gl/p+s9nM0uEJwIoPrX+pmhtG8UanTPJ5cc8mecQpI+nlOCiq2n94E/mR3LmrYbd724et+vkfnV035vi7+GV2gDrLnSJ+P7MV506SFfvY57xPcVK6jxGo9y3tY0fpen7vbFNXDrOoiR+20c8A8DGhQJURtq4jeE0gQ7qTAjkPHo+Vtd4dLIhHjgf2CXnsAsARHQ0G1GAutuNKYzpILQASEqfhcwaJpGRw9DtPpWKq1pWP6VXnL229SsiWg8cHkhsezmPSQDGq8blN/+wGzAGKlEEpUDqAjlxxOoWgced9Xn7nCFkHXw78vM3HRhM/mhwErFarurm5mV7Sa/a3L8JTHzs6T2Cg6s/HCTNF7eNhuXw7uGe5XE5bXKlvitall9I9Gbmrq6tpSxwd6uPj414WjgZPCyPFj/jUGFbfUnep69JPj2ZSf1NGGqOr1arW6/WUzaABlyNmcMD6HZAwy0HjnvR9FH155HUuutsR5e32qMvAJifllLJn+u7jQZ/5zrqcN7+my7yRj64f3PHq1WVSVeZoYajrOIGxxqEHtskZJz1Lcu9sbwcY+NkDC+f5GDoaDPCwFe6lf3n583QwRkCPj491f38/Ha3oi4x8vk6CpaGiA/HFfVQ8OlDyp0yFlNc7SfeIPNLhVkXy7kCEg44DR+TKlgYFwYPzxoHoytUNwKRwKsuv4X2MvjoDzwg23dsZznMwpjQockYCAprmurm5mUCo64Mi47Sg0BcDErhKPzhtllKWzEaJP4KOJEMOfvEjI7Xb7aYz0PlseUYSul/rCpRO19jloUisf5SZSgCRY0JZD8leQEA8pdPY/BHLjPZUDxcEU9aSreTiUZvzzQxgshXnSl1buJ7DbaxsY3LO+t/XVlEWo0CvAwT+WXYmRcMdAGCWyutwP9M5XtbH+1hWByTYfsnVfUKiQ+U5iB6NscSnr4n5IWCAIICHCwkM7Ha76alMz8/P01OYZIjSvKd3ZIrc/bOvitbvTI/qBEHO/brRVH1JIRK/jFRI+o2GjFuyus4lIJIcZYy9/Kq5s2WmwK9z5N2l7jolo6w7kMHr9LlD7nQK57A9i0CADun29nZyTNxCypRyipIIgJjBorGpepuz1nkVNDweYVHOrIu7XnjgkcqQ4356eprq5klsaZeBdFbkc+t0tg4mfbyOXuJV7VAW5vb2djp2WG1IsiA4YLTHPuWaD5eRxqjrAceH+kQ2S3JwAPyzEG0e28Bx2tkH9luXIWH/jBxP+s3lmQIPvrutWyzedquxb6UfKehM4GIkB7elI8ftux5YlztwLzP9n+TnMtJ/krt8F/XWfd6ITsoM8EluMkyvr6/TcaE0QEpPsmO6VI2TOtfRJhul+2gotYYhPeSEAktOkOSAQGV0aNZ50//sZBlejzR1H1dEHzI8alenoK68rqCHgECiNCA8g5PuORcjyoHJNQKcHhAQEOiUHsiQSs80Djybo3o8giJQTKltleGRiOoV0PXsl5w7pw80/qrmhoLZBY+wachTu/nqDCMdMnlzAHh1dTVbeKxpmeRIGLmKJ/Im2fpaJaazJQPen4IRyZvPLdD0yrHG9L2pG1s+ztU2BiepX1P5Cdzznbp6CAzQViTHrGvdXvF3BnAeuLCtycaOZJcCnmRDnS9e1wEBD0g7+3wMdYDOgUB3xPGITgIDBAKa36t6S8Fx4D09PU0ggYOPHePzlyQ2QECDOxK4TsCfP8+1DK4cPriJgNlpSZnSfSJGd/ouJyBHz05zWTB6SakqtpuDy6O1jpKCd7IfZRxcBg5MaIhSfR9BHEC+VoDz1QlASq8dPKxWq8kRb7fb2ep7Om99p05pwHZ6T+MqvWRWwBfrMtvAzBn1xEE4U4pMx7PNnglRuZwS03XMiviOCI7zq6urSeYEVRwbdPbiSQGGZKd6lf1br9czACY+Ve7j42Ntt9tp8aY7I7dduo7TJOdExwKBDsTrPTnFFDn72K+aL2g+VJfz1kXNvNZ/94woQQDbnOb5eY2DB6+3C6RIIzDgxDE3urbrI//d/ZWPHc9qH0vfBAb4yFYaOZ9vZ5qRSsNGJWLZKdVBwyN+aNQZsfGV0BLn451oGP2e7nq1zdE4ja+jaFcsj1j0e3LGJEfMJFfCFB10hmE0MNjGpOjd7+9NDgSoN3JKHv16H2kKSlmExWJRDw8P0wE50hXpJwFDAqTMFDDVXvUGsMW3pi64QLaqJqCS0uviO4E2H6c+xhwIEAwsl/NHJVO+I0Dg2RWm8QWqFI1T18WvR+sqm31XtZ9lUWBCMOCpb/Hg2Ztz0N1vpUOAwAER7/PgSPqbApjRGKc98vdT2sF3B6KHABDfmS1SWSn4Sp9JCQz4f6ksj9RHekXQw3anhaBc8JvWShxDJ+0mYEqOC3Oq3iKNx8fHmfNN6NHRnSg5OimhOk2RAI2KDDQNDB0uQYCDAdWp/cWexeC0QnLe7BD9R2Vk+pXzz95BQr1c5MSyO4Tng9mR9giNOsr0ex2VHksOFqp6APUe1Dkqptv1fzJwfj+3/UkvqaM0pnTmiuo9IhfRcfq+Zzl/P7vA31NWwed7adyll0m3OQeven3aLGUiqvYX9NL5cqdPVU12Qw7b9e9Q2pcOnQ6LIEJAQ6BJ8qG9IEjyqPKjdPdbqXOQVfNxz2h7BOIJdFXGyAnyt2QvRzbU/+/4d1Dg1zpQ8DrUr97+9N611eWdfnebkqjzLe4raYfUFykAd/09hk46dCilXcQYo4tu8YIjJTZ8NNikjJwmUKTGFcnKWLAOOnVPHakcLqDya2nwSCPnpntoqA91DtvIOsRTV1+K6lOmQYZcPNAg0On4PY5G9Xuqy9vDPqY83pvcIRMI+CKzZOSq3vRC6FvXcbeMZKxBqbold/Ggo24lH+m1UuicitMUAMfUYrGYndLnUaxn0TiHXrVvECkn3eMgYmS86XQdNLFNvhVT44Jg4PHxcSYX1qNyxYvq4DQMjT/tkU+HOPjz3QOq71vA8LlQF40mIDAqg+CquycBikO8jb6rTL0fut6dPnW5C4RYzqh+Hy8OQHRtssUEsx11vHmZDurVL9Rxn7I/RX9PfoSxtvj44GZq3ucuO0DwLeSGgesFmK1I0USH9In8/JQyGlkfAO6gPUqjgeK77qXjkbOQ0/WV33Iuy+Xbjgo33v6biI4szQd7ujQBAYK/pLwps0DZkrf3Js8GeEaADoFE+b+8/LlrRg7s+vq6qmq2cpdjhM6M0XTV2yO/dY2e56GpBWW6bm5uarlczg4pcj4JUNzoeDaExpL6pja680967Nk1An6Pyrizh+cI6FoCAe46krOm4V0u5+swGIhwqkFls47O5nTZN/WLZEB79jMQ5eYv9q0ykMeMX13nKWoPFpwPlpH6IQHT5Fg9kNR1TilQcT7StamcFMyl//23rt5DdjBlFViu2+mqt8XuHsCOMsIdnQQGjhkQNBxdBOzIiXTIYVAwbtzTAHAB+ct58xWZ3u5D0xp0zLyvk5+MjcrrDJIPZkf2HsExwyBHo3JZhytZivypfGlQsv1sryv/R4GBbq2AnAsjVMqRzly6oTS2HL6n5AkICL68/XJu+iy5Cwww08WMRZpPJzjgtlZOaXB8iG+ejUBd835yEJ2musQHwTof9uPPS+BiSmZXWA9thfqDfLKvEijhZ7dJaexzLDAjwzHzs5EDtqr5wl8/d8EBkkfBacwnAOl1J6efgiwPQlKZvNd5Il/dfekev591j9rvdbm9TJT+O8QzdbPqbUymcwW+BQhUnfgIYzHKtDWNFAc0I+BURvddJEViypJGmoeK8BrPSDhKSoDADV1aVEUj2hFTmN6WEZCio/YyEqLntZShz1NTkbUn1wf4aMAklE2eDimcl/dR0RWBABfBKqvkKXQOvKurq73IkOl6lU+nqnKYkSH59I/WqywWb7sG2DcesbscVR4zVb7nXjwyTU5+nS+2QeQgpGqePaFs1G5uB1S79L8veiK5o6C+sr9G03Uc476oivLvIi8BpqrayxqdO7nzTY6ZQVU3nt1ZO7kT9GCJ/ZPqcMCXyksA1UFOCjzcfh3roF0fyGvKDnQgOtnRU4PfVFfVfCusA+lTQYDopGcTkHmPUvxwoVGjVF5KezhRoAQBREkUEJ0/76eQJMQEDDqE5Qixk89Ifl004opP+dKAp7LSYEmy8cM5XN40kCP0Sxm6fFN5LPdYxf/elKYJ9LRNHj8sfh2F+0FSrn9cXJu2J3pqPwE76bejfwJQ9bUAiu51EKLfxasbVX6nsWP/dNkzdybiK5WjDMl2u63VajXJSmNM0wNadMx7E4CkveBY4Voi1SvyHRM0lOxnBhcMcAheflbimJXsk7769YcoRbPpO8scAYLOPiwWb0/ypD30xawsq6tfn48hAl3qt4+JZLtHTv8QKEny1Mt9WPJXXs+x7T0pM+BRKx0oDxhKxkXf2fHJaY3QlBsfkZSbhjMhXL274+d0QEqzkO9vQXYjJadBY7QvciPp2QD/TKX0ejoEK7mkger3SX4uCwcQLNPb8t7ExYKav+a8vOayHRDQkXI1NbMG1GWuute1ajcXp1GeHbB1Y0eiTJkZ03/UWx9XnUFzB0ojk4xR0g+RDKfAwGazmR2tvNvtZtMDdLbUq5G+OE+k5XI5K5cZCi+DfUznSOBMMHgudChid3J7x8yQ2qsXgw23MyMbonpom1OQkKJX6paXzTFHMEDdph4k59fV6fWT6G/UNh8HSSap/kPBpLejs9kEAynjldp5LJ38oCIR0/HdXuWq+fwUf/MIJRmAZORosGUwubguRTQJCDBVSaHqmqQYnZIJhNCg87PK9N0QHrH5IS2Uw+vrn9sqme5PxtL58PekWJRPMvQ+f8Z2J7kkZfwW5fxexKkBTg8IDHBbaSLvT89quWHlFBplTSOme0TUI0WkkpkfJpIWkKazNfSd5WvMsK89g+HjgaBFZbl8kpHT4kDKhMeYu5M+pCNdPR61eQqVWUtRmmJU5sjtEZ/Fck50CiBgNMnpL63jEFhTYNU5Tf6WHCADMv1+TCTszt3tkPqnav+Y90MOcOQkkw3rQMVI1pTFKBhLQWVXLm0N+eH4PLRO4BS7+80aTqPSHVrSpZ+6qLOqT7f7FAAVWwpIg+hOPQEVlt1NDaSO6pSKhpNtUTluxFMKl9f7fCb5pbF3mSZAwGjW70uggPWSD48Udc1HOvtDRBDABXo6G3+5XO4d2iOjmKIcXeNZAr9e5DqeDIfGE4lggA8cklOTceT2OvLnEZSnWJlCp2PWzgTpmBxnio5Vr+uweNBWQX3XQUy73W5qj2+NTMCMetjJlkZS8lIdPMyIxphTPT7dIofZ9es5EMf9oesYAMm5EpzyRRvo1Dk9d3DH8uZldNd7P7CvjomI/f/Otlftn3bYtWXUxg5MHAJxKVjW9Q4EPCswqv8QnbSbQO90RHSkXeWMTpwSaNDvfr1H9ERMLy8ve1vFXEgjpfF7nBdel8oRv4yCaMA4/88pgZFSpPSYUqBcuc3IivLsMgzuvEcDiQrpZaZsgcubdZ9iFL4n8XRKzw5oi99isZgch9rAnQA0jupnydJBYxqcBE26hw/S0hhStMb7tQd/s9lMfc/sA+tTap6GQsR0J0E8T+jjoWEEt1yr42Wp/bpGRMBBgK57fT7f7QRB6SHHo98EQNQWvTglIR651oOZAvF2zgDXaeR4REz9CwAr66H/HAx4HQ5ovZ7ERwpmkhPl+Er9K11MU3EJRCbgmNrB+tPL5ZHKOeTgj+HJf6ft1zVpemAECE6ho8GAttiQqarxo0zZSFeAFE25sKkY7GylysUTDapvB3Nj3kUh+i9lN3wejOV5+arbwQyNqB/T6qldKpaul4NQVCgloHxl6OgkPLugqQaCAufVI38OZtWRImZXUrZFA/kjiFsKtX4gnTXg6WrqQopUq+aLm3RdkkMCZqqL0wCKRjkWWJ4vGlou3/bfyxEq0u8AOoEOI2kBAj+RUNvseJKgy8AdK/mWvhE0VPWL+5Iuim+Vk6J12QatRxAQUJt4+uBisZitFWGGUXLRPW4XfgZKzknyY9uWy+XMXvlY7wI52oZjgEBylEk/ne9Uvk8ZsG3qQ92rd9q7zs+oHLepyUfxftfZBHRcLv6/Z6v4Ylbg2MzAt4CCo8HA4+PjxKgPzo4RDiwHAg4GONi8IZ7y9msoSEZ2rJvO3gWapglYrs9ROS8kDjh9VxtlTNORzl30RDAg8ukG3sOMQzf9oHKVrUhRZIrIaMhdWSVfGV5fTMr2vjf5av906iCdqvTF+zg5LAdFHpnTsXpZjNCVxqZx9ixPGitygPrs5xuwDzk2fGw6OKaOEawmQ+zG3tO3ao/0gvz4GQO6j8Q2+DZO9hXHtE9/CCSpfJ3xwLKlC5yW4ULHn5Vcnupf2XTajqr9YMBt8zGOxu195yA7kDUCMjyau+oN7HP9mBPHNXnpMgRsa2cPeJ10h7+PKNlXl5n3wY8EAlUnggFPW6hiMkqDwmuIOpmS80VUjKTcCJC8LDok54ERkEdXfnpTAgNy6N6BCRk7QNK9BALcSy5yBO58EDio3VJ8AoAUvaXoXs6aaWcHbamtBDZ8FkTVn8b9+vp6ls5mf37kimwCUI9c3dGwL9iHVfMpGZKu49PuOFjd6Ol3Xs8ohJG/+pcOjPUzyvdIlqvjq2pvVT3Hpve5rvNzDzhFJ370zqyRG0iXK6PUDgz4uJCO6/Xy8jKBODeOLF9ggGlwlSd50tgyo0A9/pnIHRjlK71XtsR3pfg9+szoO0XGndOn/eG1rsvJQRMci1eWz7Hd2U/2eccjx4I7er/ey3LgPXLICXQ5Xy4v97P0Vd/q/J1OAgO+Yrqq9phKxpKC8tQHqRtwut4dHKM9IXoCAvInPlImwNvQGfqqfmUt6+Nvu91uSvHrd7aFv3Xl83cOWk0JSFG4CMpTTRosdIIeNam8JHuXt54JofR71Z86ov+5f9wjj/cmyUQgzFfGy7CliFSUognNpbtR9AxUVT7Qx4EAIwKW53WRV4+I9chdAhiVlRyveBo5O44LZq3ULtfdFKW4zqtej76cD5ennP7z8/Okd1U1zXu70WR2hkA9BSuUoa9jcN5/NiIwYHupT930H+/neKnaz4z5Z46h5OSq9rdP87PqZQbM6+D9aey48+1k4wFTqss/61oCDtr+jhIg6MaKA9UEBBKwOpVOWjMgBhjlcRB5ytGNBCNcb2gyRm4c+Z3AoivTEVUyCH5tR46y/T9/pc7lwjAZNtbph8l4HQQBKkuZAsqCWQh955G0r6+vsxTocjlflJjayjYICOjQHh2b+/z8XOv1uh4eHmqz2UyRlWdc3pvYfgICgqOq/eOlPapl5C5wwWN+E7Akqe8YmdPZqL/4RD/XD13LMcPMAI08nR6dnE9d+PgVr2l6TkSdIyBn2zhVwSCAYMqjPhpBnw4hnzxvQ+VT9q5vbjj5u8on8BDf1JOfkRwEiKgXDno9UHG5OZg6lE1IgICf6US77AQzWyLZvs5/sG+9XNezBFa9LS4DkuR0ikN2ANIFiNRLz36NQMqpdBIYSINCHdGdM5CcN9EXjRgR2qFI2aNe/ZYcvhvpQ6mWhCRTlKjP/tLvul/GS4YsRYmqgwY4oVwZX8qM9XEqwvfX02nzkbGfPn3aWzjmbVXmQWBAJ/gJEGhQ6kz99Xo9PT+eB1J9BHGxoE9RiW86SToBDsSqtzP3JVvpXBqoTnR4dJoOLjyLQxJPyuJID7gd0Otn+wQI/H/y7vzSSFOG3GXg5xxwPKSpKn32e71+OiuVTbmwDO+Hqmwg+Z8HIwkI0Mb8J5A7deqiKNlA2gKSZ7PSu9dNO9+BBb+fgIABlV/HfmVbRtlJ8qLrkrN1pz/KNiSH7e3u5MByumx2J+NvpaPBgAahFIcDqlt8pxdBBDuEA5CD2w0HqRMeO98BQTd323WY10OeHP2xnmRIyQtPMvN0K+UmOZAcDHjUJL7k9OWUdbCOIvjF4s/pFG1VW61W07tSzC5Ttk3gQiDg7u5umi6o+nOq4ObmZirft3l9BPmcd9W+kdNqespRnzUQOd3Aw4rkYNM6AY9OEi2Xy9luB44P6o9Pl4l3AQKmx6vmD6giEKAxFY3S4sw4pZev2enWnrixY5aFmTL2i0dabKPu8S2NJM9KpHIkJ9XF8c77f1ZKMtVn6UHXN7zWHZDu66JTD1SSve2yTynCJgiUrpHHFDWzvbpPAYATsxTJL7A9LNf9A69PPqFrb5pGc33/kVnWkx9hTEpCdQeqSCcZg4TMVQa/e/rE53u5StidfUrderbAHd4htOago4sE/Z7d7m1roJxLQsEJENAopQGt8uSo5az57mBgvV7XZrOpm5ub2R57H1wymFVvj9+9u7ubgMDd3d3sCXvc2iVAsNls6v7+fiijH0V0rj7v5uBot9vNFiKpTewbZQWurq6mtm42m9l2Pjee7sD5u0/vUP/pWBUlM7OkNvHkQNdn6V134l8XvVS9ASkHAMy26FpukVR53LqZojnaC7cBBN9qL7fFVtWkZ5Ih61UgQofj4JwLaNMunC4o+ZnJwZVTCoQ49aQyuuiZ5biOpXGRAjuvx4GcE8epZ4F1j9tPDwjIt/Pv8uvGi7e1u9ZfDjjJf7d74HsDgpNOIKRwffCm+UAHA16OlIzRDBtLAXGg0mDyiWdpJ4Erhi/ucgG7AfL2JwPqIIKfWQ5TnqN6FClJRjJq3GLo27eUvr67u6vb29v6/PnzDAjwefIvLy/T70rl+3Y08evRpACHZxyUHWDmQ/dtt9t6eHior1+/HlayH0AEiw64rq+vp/ZLBpKxHH/VPJXPKPL5+bk2m019/fo1Zlbc6fsUGZ0ewZgbT3eU+k8y5uJAz064vrMcvTPKFvmaAM8GcCwyO0EwIN3kYj4aYM9q6HoSx65nNZ6enmbTBOrTqjd7oHUxLE9TZWwLpz3c+aRU+s9Erveup9QvZpSon+obt4Eps5Dqcl1m0JPAMm2yg2CCCukf60jOmN/pk0a8p2u8XM8KdA7bARZtQgqUExD4UVmBqhOfWpgcYUqVVM2ReRI2wQQNlgyTjLKcCxdPMVJglK53j9yTIRmlXRwRdo7bf2dH63uHaj3CZ9vcIXGu3s/n5iBer9f15cuX+vLlywwMaMqAc9ySBx2hy0HXcM6faxJ4kp8AgUAHQcHj42M9PDzU77//vqcH70HdiXxVtedI3TEJAHFhn4wSZahpkFGUxPHgUQnl6/+5vjpIIP/Sce6sqZrrXYpkdI2uI5gnEE3z6OInzdUn4M0ok8bbozhvv6+TEfAQIOD6AZVPx8byBKIeHx8nHWYGRONE4+Kjprh+NCVnLhtMfezS53TYulfv7rS6sSGir/CgTkT98iCuKzeBAQZafo/LYgQaXCYJCLh8HAikKSyCgDT2fwQgOOlBRY7oRCmCF3ln6Tc6HkeMHOwsM219SZGTG0oayW9NtTg6Zf2OEFOGgHzpM4EUfyPw8chMUY/kQ5R7c3NTnz9/nl4EAzJ4fgTuy8vbo2T9ufKUoYyiiJEUFyqyTrXj+fm57u/v6/b29ihZf28S30oHK1Jk5C+nz7apvz017mlkAQXql6fqqQdpDtozQT4Xyv3uDmLZT3p33fY1AK6X7gDoWD0LIFL5nMoYyV9yYGYlAaBkdHm/l0MSr5KZj1cS+4YglwtLlX3Ufvyfndxxum1iMObZLJ/uof1LARABnygFR+xLfyAUD9Ty4FF8Jzuexl3Ssc4HOJ8EDYcAQAcuDgEBD1yZ9Us25XvTSZkBZgeqMiggMTLh9RSiGzhHainS9ojEO8MjJs6n6j7yNBIu6+Yef5UzSt0kw1k1j3w0+ERcCEWDzMjM65CD0loBOmS+6zO3wyk6enh4qIeHh1mq2/lnJCwDkNLIWlPA3Qv6/BGUUvRMV/v/7vwJeJhWXiwWtV6vp0jXp1yYlqfeehTDAZ4cnBsH1zsHBV15KQul8mnw1adc6S8+UzTWyZk8cJqFByGNIjrxLNlxKkDj0cEK7ZSPU4IPgtm09ZT1/6eTZEVAwMV5PN9CpP5j4JYcrcp1x6r/E2hNQDmNFepCZ3+7qHw0Bv1al5XexRfBd9dWr7sDAszwvScQqDoBDPgeeRIRpaevKaDkXBjRpAhbAqMBTk6WAuOCKhpRzyAcE4nofxpJdqCvdUj3khiFudGk8joIoBPytsuAaf7ez9/XNkBlCxi1a/Gbythut7OFaky7av5fTk+8+rY91S3g8fr69syEjyBH4eo39Q0XBPrWQ39RB/lZbeYDf9RHBE5uABK49sjJMwFd2tAdtcpJANLrSY6b6XKfYkmRDdso3ik76SMXm3LfuEeSBFLixwGc72hIjibZLd6v/pe+ug37FSgBAgFmyb9qf36cwR7LcKfoTjkFcSRuoa3a34adwCj/FyXd7HxIup/ZOl5D8J0y0/RhXn/igb6K036jYPN700mZAZ9noQA0z81OowFxpOXRjK6joGiUXXgk3c8MgEdTLtSEYg9R6mACoFF0kz4fqivt5SYY4FHAy+Vy5tAoQy36u7u7qy9fvtTt7e1sK+DDw8PMyMpREojIODB9Ln1Q+XSWMv46JU73fxQ5AidRdlwg6PP77mgkh/V6PXOKnnkgD34deWBf8n939k5uWEmuM6eSytZ48nI5baKxWvU2JeNTDjyfgdFkaotkprLp9L1slykXU/rCSQcCfJKl0tSM9ugM/9PIMyhV+9M6IspZfXAINHWRclVeN+UBZWcvGTix3JQ5oE/xscyyyHNqBz+77+pAPfU3BSVqs08LHNo90IGhv0JHgwENCO98MemD2+cvNWjTvS5IGhlPy1KIAhzu+JkVGAk1lad3Kru/fPCMQEBSvqr+AIyEYGlMxZMTgRNJslfko/UEAgNafMX5YoEBX12th+lwusXTrT7YmWr+yBXZnkGqelsH4+thCFrduLDt7BPX06qaoXtPcVfNjaFnfjh23NGSRgaT1AGClOVj1C590LhK9xMMUIailDlyGYuPp6enCWTrv6r5WREOqnQdT0nVuRHcSinyMeVbJRnIsP5fgTpA0L30fwKqzBQkYOxla6zxPBaWmWwfy/EMkEfoKSpneWk6ItnuEThPsklAQOWkjACz5QlsHAIu30onbS1MlFJwVfMVkSIO4tQId34CBIya3DBzRXyHrrpUlOr0tniUIX5TxNeV7cpOY5wGBtvdgQAubKIsksxdoRaLxewMAj5PgKCK2R0OHLXd07UJhPjK/aurq1qv1x+Wdu2iFw0yTaWwL3m9ZCjglMASo2fqo+Qrp5miFM5bMy1Po/Hy8nYuBY0Ex1cCWwQvBCEj8vMmfCyrvV6OR+0OZNh+OV21zbOKjLzEs48H8kagIl3l8zE8Sqzaj9xUrtuPqtpb2PafTA4IPPrupmxTqvxYICDSWoUUdCXg0PFAkOxAINlilpWyALzOX1X7hyclEOJAQPrF8z/StGBy/scEAKfSSYcOpe8atK4wKZr2DIBH4B5lpkVzEqLeFQEQDHTbMZIAHQnyWk9XufKxvPTZo5hRB9KQejpOxtNBkYMS9kdajVpVM6MnR6RtgS8vL9OqeJe3gADnfnU/U8PqE+1OkJNVduIjiAvkPDW/WCz29CX1L52TdIr6utvtpoOL9JJe6n4HeuxvTvF4Xyrz4IaC03Y8zIr36j8aJTpyvXv2huVwt0Cn83TyzrtnTHi//hcA0X3dAkzf+sfDlHxxpTJZXdqb16ou6QOBCNv1n0CdLfRr1OeSS+dc/T7/PAr8OBZ0rQcj+uwZNupxCjA7O+z1aSwfE3E7CEht8Damewli006hQ0HmiMdvpZOOI3ZyhhOi6q6tmivEaNEWHTOBgITIlGBKsbA+vXcgIKFAts0BQZq+cBl1Skuk7SCoM6AuOw0OR6YuI0ZKPHZX8uS8vzsjRcX6jQ6F0SojYg6Q3W73YUCg6g1oqZ0JwDqKpz7KUbvzkXGSo+CuDIEhyjKt2idAoH5Tj8mj7hWxH0RdtoB1Si4ENN0ZBapfZSSAK1lQpg5wff2CxhczWZKvZ5c8o6L73ZmzTDfa7gS4k0YHciljRhBGB3WONHLIx9AIHDC4YH2e+tbvKXVO0OoAkvePiBE9dSJR+j1NEbDsRIcAsL7TVo/8oWTjYLebyk5gwHn7nvRNua80OFwI7vR5n3cWDWRaI1C1/ywEDWYa5y4jIGVn5xJdpnSMriPvVGiP4j197wrRKTDLYtTjYCAprCNnLn5jvzCDcn9/X4vFYnYqm3jjwi7yvtvtZgvFOMcukMbDWTxqrarZDob3puSEqmrKbDBNr4VkBGjqYwKrzWYzGUiVrd0WAgKqQ3ITYOJuDfW1HhHujl7vo6iFOiRiNO/9yfHGaR+NKRl/ZoQ45SO5dZGPjxHu1nCjTuedslkcu3RMLk833D5G3V6pPi6gfXl5mZ2kyUzNdrs9rGhnQl1gQnIAkBwf/+OUVMoMsF/d/rH/PEg4tV1V++s36I888yU6lJ0dReK8z/n2KQACVOeNwNWDVup3AhPO64+gb5om6JhNv7vwPCrTNVVjpJiyAkyHsxNSmqXj36MHvbvy+H902DSujKgcjMiAidyZp6iLyJP/V80P7HAA4QOdzwpQBDQa0GnOjf3FyEvy9oVmHg3y+fPvSQRYVftggCc0cosZgam3U/JUpqSqJuciZ6b/CGjTGhrPRLiB0bWuw25wfdw4GFA5jOJ9x4inL/nwJd3vUb944zqHpNsenS2Xy71MSMrqsd009LxHxHSyrkmyqXo7btuDFZ3TwV00vwqlLAH1SGPfz+momu8wOBTV0nZ0oMQBHOtJ9/h1oi6gks76YtFj/AHLZru9ffzegYAUjB4CBD+CTgYDjnJciF0Kpuu8UeRbNX9+NdOXPiXwrWmWpADppf8SEEjzpKNsQyKfoySA4BQCr3eg4fL0umT8VE5aoDlCz8peaAAT6Xo79bucJrdBvjcpOmVKXr9/+vRp9pwFndXgq/vptNxxqTw6UPalz+PTyHmqntkh9ovqcVDsYJaL4LTYUXV3howZELVVfadnN7CtNI4iRkD6rvapLgezCfjqXjoLgjE6CZclQTkjRWYGkj2QLJWd8cXLBPj/SZR0YnQtwQD7y4MQRsi838ujk/TrEtDowGaawkntoq33lL37MpaTgGwq28vl2PSsQOerugD2PeikaQJPZ7gAU7Svzx3adIVkudraxIiM74dAQEJazgMdqnjtInQawhS9pToY0XVKpLZWvTlopmXlzPTUQW/3iJLR7oyteE1AiYPbnRTv4Xw0efUI7j3J0/3ugHk6I/ebS3YJ0Vftgz+PbKtqpsMETrrPU/XkMT34yY0sdcBBndrukW2aMtHv4uX19bWur68nUMGMj+uU+pWZD/It4tih03Dw4+OEwIp8u4OnE/KAQ30g2dLhM+1M26P7/pOOI3ZKgIC/JftMgCtyQFc1P76Y17GezibQ0Xugk6Z9OOZoz1iXrnP/lTLJKavl01xe3mg3wDF1fiQQqPqGNQPemITKRB04qBo7ZyFAN3oc/D4nOnKMXV0dzx0QSOiQzn5UHmXgEXKKcLRwabFYzE5ucwdLA+ypfF+UmUAM534TaEmAS7JwYEEHxjrUXx8FBjiY+ZJMHQQwK6B+6VaYe/+nCKFq7mR0neSoxWu73duuC/GlLA7nyRkhMWLziF1yV4YgLchVecw66fNut5vAjKLmzshyNwDBCUEidcKzLpR9yjSxraw3/Z8CFfGgd9XVgT+tfeH3c6Xk0P/q/d1vVfMDmar2F7em4G8UTTtgYJm0nbRTdMoJGIg8aHHfRR3xoJA2nyDd7SPHEW1lAgPp92MC1/egkx9h7AMuIfAEArromd9p6GQYPSolddFxMlbOQ3Lio6jfQYG3x42+DyYHGORP9zK97Fv8ODUhI6U5V+4A4HWe5aAhpgFMclos3uZK5cQUzbqM9V07EtQGnubmj5F9T2IE6Ol4HjbD/tW1juLZVupq1f7T9rp1Fc6bnKHXLf5Eup8AsOsH8fH8/DzLOvA/lcNto0y1qzzxJR0QL7QFKi/JiQDL65H8uvUJlKFHUJ3DYhaFQFn9QyDA9SEqS/3KjMe5rxv4qw4kBQK0k27v0qJN/e+6k/xB8iPJGaf7pY8ODNP9aYouReWpTvcDDgQoi3TSbef0OyDwUSBA9E1gwBsq6qJLR3TeeL5r4DnqY0d7mtMRagcgDoEEOk5PCSUQoEhN36l4Xi+RJXnwCJLRH+egtWPCU92M4ggIujkuGWMeC0snQx4VEclYMw1HeUs2iZfX19cJ5HyUQZVT9R0a4o8LyRg98omGdGY8IIcZDwEzZXV8nYFHLNS1BDDT+OK00W63m/qnu1aLNtP4IZBWP+o3jgGeKUFHyywHyxF/mn7RMzGU2fKXZE0gKfAh+XKM+HfJzrNYdOa6TnrKY4i5eJI2iDTKgP4nkdvvFDjR9nmWym2Pv7MM2giCgQTwSLS7/j/vJ1/J+VbtT3klMMByCOZpOwgGUn0OotPnj6aTzhnoEHrVfNFbotRY7wSPoFxQ6qDOWDItTYVNCt6BhTRH5EY0GW2XD+9hSt7nm1zG/MwdAA8PD1VV0ypnRo5Mb8oYOopl+/w8A8pKDkTIe7vd7g0+tk2OT78royAw0/X9e5JvV+XA9PTe1dXV9KwBybZq/1RFziXrs2RB/aJT8e14rmfSe+1KqJovHFQ/EaQIZIg3OWqVTcDnvKU+1e8Oflar1cSfpg10PXdOqJ03Nzd1d3dXf//73+tvf/tb3dzcTHx49CYQoHI0VqhHMrqUCYlAuHMUkjUzQjzASDwkgParEfspBU76zSNvyo5ZLhGBKB3vIRvB/91uJjDQAQ9e484+lcH/0q416uexmQDn+aPto+jkNQPHdFrKAozIO86zDirLU5jewQ4GnGcqcjIoDgRoqE+VBY2jZxi8Tg2iZOAICJheZZpTKWaeuUD508CmeXE6D82fCyTonVFZJ6+rq6vpQCNdl05BfG/ioKcR84hdqX86fC6mW6/X0+9aZc9TBqvmuqaol6nqZIDcKDJT4bqv65n18ShYoIZGebfbzYxZ0jWVQ2AuuXQg1o0bQcjNzU3d3t7W3d3dBGDo8GmUmRW4urqanR0ive7qd6PtUxDkrRvXBFSuO25PfhVyu8nfSL4olutTeL0v/HOH7PUlp574Szx19t8DPr28PNZNoJjeffpB9/wsIEB00tbCY5nXdUx9kzyNQ0royu/xzkppa5+/5b28h87SlcUNKtvEd0ZVHem6tIhOgEDOw6dBfE5K9wgQKJLXIjPd40BgvV5PW+fciaitAhgcyIyK5VBIq9VqFs2SZ90jUPORRAcnSoCVg7/qre8U2WuV/fPzc11fX9f9/f3e+hXpksBEipJoQKh3zgeNqEcmyk7wkdK+3oTjhGsNOBXGTICDDwIIytDlxno4XtV23xpGMHp9fT3Tbe1g4IOLVAazg7qedZFv2iLx5X2gd2ZN+L+A1LnTscHXqZR0ib+PHCBlyj6gfjCjxvKS30jtO5S98UjfMz9p2ox64NnDQ7sGKJ/UrnMDAaK/BAZSGunQ9SMg0ClVR6ksKQxTkqmDpJgOOFJ2gOl9zqnSQIo86qJxkiFzvhnp+aprR8cq01Oeul7rLXzFr9Lfmmaomj+QRhkDLqhTuljrCzj/TL7VbgEIpnRlSD26e0+iYydR/gR+4lkr6DX4JXelzOWoNEUgZ8cFi5IvI9Kq+V5+B4JJR6rma2qYBSIYoL7pHtXpYEX1cDElwQBBLtdFsBzKko5X16RpBJGDHwYP1HsCe95DY06gwiOEfdyqP/Sbn8dAOdMZ/Axg4D2cjAMD9jkzMex/6QD1m3rugVnnO5I95/8sg7ymQC/pDtuY+HcgwOsSEBi9nyN905qBqjEaS0LRPSnl+S3UOcruWvHiStWlrfRiSr1qnl5OZVTlo4cZTVEGDpBYpx+LmjIgBAY+fydHIEPMyFQGTk7cj0F2mXDhnEdwitzkIP3AHtb3EaR2eoSgF2WsPlWWRW1Tm6kLVTW7jwBA1/B3ykpgw/XPX1XzTBszNP6kTpGuc1CRxiLXBfiuCpbnzp2OW8BYvAoQ+vHC1HtP0RJs+SJbAVwCZF3jOuvpWpHAF9expGwdx7TaoQzMheZEYJUCIgZNClA8kPGtzYcAAevm7+SD2Tb+71kJlpX0m7beFwM7EHCeus/H0CjI/pF08gmEI+ebhOxoXL8fW076zA51ZOeReceTPjPlmIyjVhvTEXPLXVJYXkuSwVTUTaOnulkv1wQkB6s2sF1u9PSdCq42KJrc7XZTapkvAoauD3ygudEmOe/vRYrgU1TiTo3O2tPhzr8bBV2TgIbqZGpRqXBRMoYOOtmfyWCqLSO953V+vRtW8qHf2G7XA/Lpzw3xI7AZoTvI3O12E/j0+X0CCi6GZVkaC+LZnZN45zgk+ONY0hHTF9qnBAj0G/XBx59H7SOibnqdXgb9QPqffFfNz0yg4+8yAZ758HanOk6hbw2Ovwd98yOMnWmPQDrBjKJ0luW/8XcRIwuv30FB4tsdqYyLnC8dcYp+qECegmV9h5RCbeDKbR6PKz581bk7eqaNabyenp5qs9nU/f39VBaNrwwgQYQiJt/amBZZMXqmbLgjZLn8uEcYc/El36V7aQ7QnbTaSfD59PRUDw8P00OLaPQ4B+9p7GSIOsfu2RWm7Ak41BbW6WsUqIt08IzaEzhJoDeNVzfa1CnnT2W4jvk4SsCS7faHS0mmvviwk6+IY0u8O38XyjQCBFVzkJXAgGxvogRSvd7kL5LdTVF8Z8vdJvgYTWWxnm+lv3LvX6WTdxO44P3zoXtJh4xfV7cTjQujC3daHmEkJEsQ4GfU0+DTUNCxqu5kHBmBiBemmLVi/fb2dlqFzWNyGbkyVay6tAVxs9nMtmHd39/Xb7/9Ni3007oBpmSZdeDKbwGJzWYzS2snx6JFgnxQj675yGcTCMhwMR8HuSJ0Hh2cpngcLGiXhw7LqXp78iOnXiQrbpHzhZjurCRTT5lX7Y8RpWCr/uwXn15yAOnGj4bOxwf7uxt/0l+CagcEzIrpWkXdenHaKgFq8uuAgE/F5EJa1ZOOFFYZzFZ4RoER4oV6ckfsvzHocwdMwKz7CQS5psDfqQv8rXP8vMYze917GpveviSHRMcEhx9Fi925cnahC13oQhe60IXehT4mVLvQhS50oQtd6EJnQxcwcKELXehCF7rQL04XMHChC13oQhe60C9OFzBwoQtd6EIXutAvThcwcKELXehCF7rQL04XMHChC13oQhe60C9OFzBwoQtd6EIXutAvThcwcKELXehCF7rQL04XMHChC13oQhe60C9O/x8QyVbaMmGygQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB97klEQVR4nO2d63Ljuo6F6aTTSe95nnn/eaOZX2d3O7f5cWo5n5cXQMq5ODPbqHJJligSJEFgAaSo3evr6+u40pWudKUrXelK/1i6uTQDV7rSla50pStd6bJ0BQNXutKVrnSlK/3D6QoGrnSlK13pSlf6h9MVDFzpSle60pWu9A+nKxi40pWudKUrXekfTlcwcKUrXelKV7rSP5yuYOBKV7rSla50pX84XcHAla50pStd6Ur/cPqxmvDm5mZcYn+i3W53ON7c3Izdbnf007V0j/T6+nrEP89ZRvrd3Nwc5e9ljTEO15y8zV5eXk7S3NzUmMzTsx6zY8XDrB+rdkrlrPIg+p//+Z+27M+g//zP/xy/f/+O925vbw/9Rt7V7q+vr+P5+Tn2m/qfeVA2fvz4cXLt9vb28FP5P378OBx1fnt7O+7u7sbt7e24v78/uaefZFMy9PLyMl5eXo765vn5+cAj81aeNzc3R3UgsR851lgnplXZOjIPHyNK9/z8PJ6eno5+uqa2T7+np6fD84+Pj2O/38d8mFcln6nuvHZ7ezv+67/+6yTNZ9OvX7/G09PTUZvudrvx+vp61J66rnNRNQ5df7kOTGmrZ10eKJ+Ss58/f57ImmQ28e1yMsa/Zdt1pY9B8jLTqxojkot0VNvrGvtB18cYJ3LK/65PWC/+UprULpWsJruotvnv//7vsi1Ey2Dgq2nFQHdgoMpTDavzajB43i7wXuYYtVGnIekENJHSU7kzv3MBQXePeVRt1l1bLecrScZXpD7rjKAG+u3tbQQDuqc8XDnSSCutrumcIEDKkv+lSKVM/ac8xhgnxpIKRuXyWSlq1kF111E/V95UvnyOitLbzMeLG/anp6ex3++P/tPoK28pWhr8x8fHcXNzM56eng7n+s/zBGTJn+rqbVHplM8m8aK2pO5Zfb6qwwwAVOk6w0P5dlkVuO3ApFMF2hyoqT2Snq76LsmUgPPLy8shX527bAuQiQeCAD2n/+xDrxfrlNpgZs+6er6+vo6np6f4vNO3BAOpw7v7SahnQpbyTwNgVj4NQIfaZrxURCUgkqDN+GR5nbF2/tzAd0LagQOW7+dfSfSoUn9RsYr/l5eX8ePHjyOvNnm6eiaBw0758jn+3PNnREAKlUb8x48fJ8bYAYHqTk/NjwQulcHswDHbWgrQPR8HTeT3x48f4/Hxcdze3h558jT8Ot7d3R2U9o8fPw4Gf4wx9vv9iXJkeQJ46ufK2NBLWwG6n0VsT1Knu0izMZ9ATzfWvSzKV7pOB+b5+fkE3IxxrM+cZ9dDXj5llmOX8uzje6WNHMxWzoDzPrNdiZIcOljonK/q2aSDO9oEBj5zUMwUZ3W9QqsiChGpQ8sredMjcg+wq9vWNmT4l4LA68y3M+QrCmMGAFbqsVLmV5IMCfusMuC85wMwGQ72RSd7KbyZ+NCRYCB5WfTo9QyjAe7FKO8UGSAgcAXiYGCMcQQe+IwUPn8VGHBA8Pz8fDDsKcQvkPDjx4/x/Px85O0rnzSlIOPP/mObpD5JXpvy+WpyuVsdT1v1tI/nBOir/55PAoqUf3/ep7USMPCyKPN+XQbapxXeo4uUJ+vDqBv5rOyHnnGblPTtTP8mu8b0qnvSWxVtjgxsbdCZQemupUZN11Ma5lE19jlEhT3GMRCo1g2McTzv5YKQeHJDRGFkfaooQULUXp6Xu+L9d0Jbnaf6fSVxrtiBmxs0N/zdoKoAawKGkk0a72TwO+89AQGG9xWq9P6u5nOVN6cg/Fn2J/nm3K+eoSFPoII8sBx6cvx5iF+AIAGRBAYIMNjvGi/eVpWHWnmFX0UVaFkF5P6MjlW+opnRH+M0wsafTwkQNHs57ol3RkwgwB0lggMa3wTuWb+qDD+6/Lju1X/qC+qCpEs6PZ1sYfrf2ZwtoPAi0wQV81uMhTdG1ThVY7wXGLiwzKIDKrMKK3XPjLFdIVXG+7MolXcp4+/kHo/mAEUODtwDSMqKRCVQ3acxlaJMnr+mATgd4GDB50RJ7rkwTZp+8LKUNz16NyDkg2FanlNuXWFWvCt6wLJ5nXX0Ma5pA0ZLNM2jvlNf0nilULD3d4oifBXNDLZf6/Ra9ewMtCf9yp8b/PSr+lvHBAR8KsGf5zimzvG+7hwU1w0kjms6Yh4VSGO/sztb9H/Kb4sMbKEvBwPvBQKVUM7yOKeBUiiG5Epe18Y4Nd4raDTRCvpPAKPy5t8DDrpnObC/G6VQ4hjjYHio7NOKXkYVUn76rznRRG5Q6T1xoaCvC/BV/64Uq36lJ6P/9Oh96qEDA863T0+oDejhd2DlHMW14smSKmDGeqW+9ikWXbukXHf6bdXAd8+kthVVniufcxDgspfyIjkI47UZLx7BE1/Je6dsU8ar/vWowAoodCfC24F5dFHbNJ5XqQJdMzoLDCQm3ztYZoaXtDooKhSYrq/k6YMyKXh6YZ03OSMXmGo6QOTlzQa3X9MzCUQkwewG5qxOX02aV3bvksabCiz1L+vm4KsjKodk/PlLIICvGCYgQC/Iy/WIh/Jimff394ejwADzTvl6dMKBg9JxXFTztzPPdEWmErhy/pkP5//p8em/Ig167lLrBVao83RT2mpMd/p3BQj4kaBRlFbVs4wUISDYTACD0QEHBGwPlevyzbJYNx1TFIDXmb+3T4oWJGBR2dOVceDpnZ8tOvcsMNAZE6fuXnWd17rz5H10la8QLvPzfLwcF3x/xWrFMK4akyqM5ve7vGeGnWlS+q107nNfRSmEqLllN6zuMYrc8KU0YxwvuHMvm6FsGWNfG6D77mm7gnQlJ3KlxqkGXzegYwIbLj8pDVf+89cZegIl/U+6hWWQp9QPvN4pUJYpUMgID8vlVMdXE+tReekzg+DkhqLLN/Vf0o0OBJg/jWLqk6TfvM7dFBzJ1xI4AO3K8WmJal1CciK0lkXgRGmqqSkCafK3xSkmdeB6lTaBgVkhFZrpKpfSVEh0lleVvyv3mTEkD65cXMCqOlO4ZkZ9xn9FlTDNAEFXRmqjWfupDN1LqJzHryYaptvb28OCMrUHF96l/pGCc+XA+8kg0+inNQK+PkDRAd1Pc67uqUoJpbZ14OrAR7+np6ejVfocM2lOnaQ8tXDw8fHxaLMgN8q+QRP7xzcM8rcK+C64v3boGxSxD9xYpQVnyrfa0+CSYEA0G0fnGhPPNzldPK9+bGN56wngeb1S2/KZtOYgAciUblZ2+q/nUiSA5yla64CAvEr/p7ZL/HQ6tSNPuwoO3r1moEMiK0KZ0iThdKGr5qhmZZ6Dnl3gttZR5er5yuB06wyq5xKI6gCBn6+Qg4lKSLu2uBQQGON4TpKDmFMrut7Jg68NceWUFIMAgU8P0PhzlzaBgbS7ICkZiSoM72NHaRnO9XQy4vRslB+VjANdGlD30Ctlzjq55y8jrWt+j4Y7jZ/UDrMpN2/jS64Z6Mqd8dSBg5nhr+4l/euyRLn3MbPCN4kGvprGcxAwizRVbeHhex1nUQEHBl2EgHyk64m26thz9fwyGFjNNCkppy2GYQWZUuC8AaoGosKr0OO5BsyjAl1EwOd1x8iLDy+ljFbJ21XXPM0liH2x2+2OXlPjgKSBYGgvzUUmIJDqy7B82iuAUYFq/wDKiPNYefHkjWldLj0P55/nKdxLg+2bBbln4t458/L9CRgZICBgNMDT8n6KSnid2A6kNNXxndYNdDqr+y9KzlY66jzpWp8W8AhWZ6BnPDqoTTpe5JEmtxep7l27JCdqFhXwPPzZMd4WF7stqyK2DpJXeN9yPdG3eZtgdr8CAvylPFLIhek6QLCFz2pwrgAB59c9l1lUweuzhd4DMqryUltfkqTQNbcnIKDpAUYFfBqIRK/a5S4hfHlHCQT4K4PVdwcIVngu5bI1wpMUbRpHyStK6ybooacNh7x8N77u4fO7BI+Pj3E9AkP5LLtap5DawYl8EJyMMQ78XIoqg+G0RR46IFCBgS4ioPse1dIYYBnOR+VAVEbePX/f74Jpxuidq8QTnTKWmaIGzJNp6Gx4u1bjziOtHb+foVvfDQZmHsXK9VnaTiCTEksG/iMarxLmynhszZs8p1CmDBpp69RCpzDck6uOnr7K2+t0KeKcrysUnXuIT+fulVSKJ0UGfKEeFaUf07VUlofmV6kDz2yX1AYEIhUgoIeewIDyqcAAowoCAg4uEgBIaxOUZ2ofj4ZwisHzVb0EQP6vUaWvtj7PMVDpYn/DxHX0Kp8dYHAQ4EAkgVnpQY+gJflnNJD60/nz6ICvD0hRBAfzFQBPICWBwRkoYL6reuLD1gx0HX6uMeiEL4GBLeUkpeRlu/KqlAs9Sw/FzhYeVQLsyrfq2Fm0IPHr5921Lk2V73cjKn0Ncv0ou4oU6J4GtdpXawxEes7bP4VS0/XU95Xn4bQq66oDIyI3N2+7+wmkcFElow6srxtMLhr88+fP2O/3hy8Hqr3d83l9Pd5A6PX19ZCHntciRAKCBAS4aDBtYcy0yuvx8fEIvDiQ8SkH8bdljH00rcqE0iR9nAxuJ3Mum50j5mmSXJMqJyWlS/XzcirHUOQAcBbir5yyNIWQnk9RhO6X8qqc7Jkjd66tHeOdYCChl4+m1HidQPK5lYY7x7sSJc/R01eC57z7c0xXCeDq9IHnXdV/a2SguvbdSMpexj8ZdSmeHz/ehgT71ecsK+XVKVFdY7miBDyr0GCSQRn5ROTBFyZ6/SjP9KSYlt40vWeG+alAU115zmf988XpM8Yqs3qV0b1+7yPO/7uhYKSDrzJ+pzUDokp/rThm3TGBgu7nHntHLqNJd6WprDS2OnAyo61OFCnpZ04t+PUt0QEnjwp4nxP8vRcQLIOBznCuCN9KWqbxzva51E4AqDxTWNARoCsnNjD50bmHb7cI4Rj1HNgYIxr+FK5y8LUSRfBr3f10nBn+VY/kq4mGQ0CAbU650OJCpeVAfnl5OYCFBEJpNJMSmw18lwnKvsuag4eq71VXLlZMuw9qbN3d3R3xzHxkEBn50meH5dGzrVl+UvDi39slef9pnQA9+Gp9QbWegV9B5E9RCUY3LrlmoJOVztmZjbWVaG7363jrynID3BnkVb3q/DDyNMbb4j2P1M42hktR3hQtS/zMdOWqXqyMfeegnUtnvU2wpYNmz1RoxpVfhwRdGLoGmglYKjchYCloepK8x8UjSRGKXPHSa00LWJxP1Vf8eZoOJCShnYG+9wjfpaIINPacP3SQOMY4WlzYKcykENPCKd/cR8ZdHwWqAK0DYMoc68XNTqq673a7k+8PcAdC/QgWSFxzoTKrccRxonokQE8lp75hmzJiQOPuew04bw5eeS+1TUrvkQaW8dVUtfMs6umy2xkUd368bEZAK/1bRaUqr7UaWx6Bc37GyG8QpGiX80FnwKexGPnZoufoqLHtPXrWTUukMmdg7zPoS94mWDG+OncB09FXV7txTkjLPSf3ipO324EFKWQq+zHekCg7PXnzXt8U+krRCt2bzXV5ucpjJSSWIgDV0c9TPqtew1eQPD3JC8PgDAX7LoT0atXf2qCHoUHmR283GRhXRjQ6Y7x50iqvet1Qad3YpT5SHXyHQ77O6G83sAx9hZAAV2Un46w2pcL2NyVEkk0HUj6G3TNLXr+iA/L4+YyvD3DeHQSwHnyz4BK04umLqEMqI8+0nfNTXU862vWyl1mBsaQPVW66Tp3vU1CJfy9LMsExnsaTP+uyJ7kY4xgss64rRtvbOvH7Hidsix4++9sEH63sZ6i0ErgKRepaZcA6tFYJO69RYTsPCRBUgt+1Y2XYRTMDTyFfud7RChD4rsRB7H3hikt9q2e0lTD7vpoL7CgBVN4j6OU3BNyAU96YFxWTKyPJqed1d3dXRgYoy4qWqDxNpVRTda6cdZ68N0U2Os/OAQEVM/lSWvfKKuXsytdBBsu9pMy7s+DnK8+mvLo0nfFnPyUZ6PKunIUkRw4O3Al0PZyixUrnQN0Xyfq4Zn0TEKxk6jOMtgMWl4P35E06OzIwU4CpAjM6B53qvsjDVTTM7ChHh2zc2SBQfvwugfKkwWB5K/WfCZIrAJZLSpGABCy68t8r7J3ivQSJn2TA5QWO8fZGAUl97R7Abvf2pgGNCT1fKSo3LGn+ken9uwEEBm7ExhhHXqxHDCSTCQyk7ZA5hhw4MUpXAQH/nwB1AmNVGvVR1XYppO8Rlxk5sPgOIOBcqsZaNwY7nTvGOOlvGmDqQupEpXNb4ORy1AEDySbXbbk8Kr2Ieo+AQDKic+qFaqdBN8IroCzd72TdowJVHinPVPaqDH/INEFl7FNlthqFDgR4fh424jXOm3seXbmJhzRlobKSwHTEjnewUvHlz/u9ZGDc0HeAoAIC76FLKtY02MiTT+fc3NwcwsqeT/ISpEQIBF5f316hI5AQ8OCX9RiSJr8CBJzb55cFxzh+dVDhcfeMxWPa3ChthOSeu9opeV+dAlpRlKxvN+aqMlLEwIGD9znz0NFB3XcBBTSopMrA6N6qnk3t24Ez6TyfwpVsjHE8p9/xlc7TtEMCCgmcJICp/xzjbE+NHTqGjIYxrTt7zHfF2WJdXW87T6LUl58li+8CA2lgiSoB6NLx/6zcLcKeGj4ZTgqLp0/nfs3zGaOfr08Ks5qzYvqtlJSiziuFtxIlqMpKdA7fH0XuRXLwMSowxnG/cqHcbrc7ApQ68rqUoRv1KgpA/kgCAowO3N/fj4eHh6OpAubJVfJpMx6CC/9GAj+X7OsSxP/qmzyp3VPYXdRN1fl5AgDJ+DsQSO1cgYNqiuBSYKCiVaA1y4PnMzBGI+zrQDxyOkZ2xMbI0aYxRowqJJDANDOZlPw6ICA//laB0jKip3RJV/i5X/N0rh/83NuoAn7pemVfV+jTFhCmynSMdYLYIaXKQPo1GmUqbVeqLJ+CmgZOmt9kfSsjnAxIWoCS/ndC8vp6vId68o5mCo7XV0DAikDOrn8FpbIJDJKseXifSkVE+fApBN2fha2ZlrsP+rcLNK9PMKB8JYvet15m5/kqvwq8V/3nU3Pe7hXo0nX/MmF6PZB1ra45f+wrjddOXnlMoOPSlPpipuzPcSB8PMzWCfiUqZdXGVFfK6K0nIqtnK9O/3r9Zw6KZJEySRDvz+g+v3EiflOUkW/8sN9YZuKt43v13ha5/dS3Cc4RRFKFTj3NGKf7Vac0PK/Qmv5T2B19dsovUTLaKt9BwHuUTlL6MyBQgYOtAMDvbQEJn02VFzjG6eIiGo8KNFF2ZIidOi8qfYeg+naBgIB+etZBBj0gGj3y54rceSBvDlJZ3vPz89jv9ye8SinSgBIIpFBtBRQqT5XtXo0X1ZN1d+9UfHbA+7vQbLyt6LtVSkCAckNd6FNLnV7011XFl17N9nl/Hr2OnqaSEbXPrL7K3w203+PundTfdASUjiDB+8OnGVRH10UVOaCY1XdVpj9sB8Jz0iUhnv1m+XU8+RxPZbhYHhFvEj6RvPLkrdCr1HMzoJS8T5bl6ZIC1vUZCGCe6Voq16kzuCvPfyalOjp5v64q4BXvxBVr8rj4Wp/vCcB386mEJHO+JbA2/5HXLR5ub2/H4+PjkfGWIeY0A9cNvL6+Hr2KR9nyOqpt3FPnMwQaqodeCxTvOk9bDKcNhpSOY4A80MurNiRK45Vj4T1OzUdRkstOJzJ98rB1rH4EAL7eRDKS3nJxqgA1Ha0x8j4dlY0Y4/TDYRyLKpP/U/t0bSYbIeNO+8H1AS5TBAeMCjA6UPXHVh3pNshl5NtEBjpytLQinDNjfw4PFbJ2dJr4HuPUwFBhSlBE9LLSwK7eZe6AgfPh17YCgY8i5qm6XhIMdMqgUgr+v5uf9LBpV1alcPX635bXCblzHn/cuU/8cSEjQ5vii146y6zep/a60AgzEiCFKCXp7ZOmBljXtN6g86AqOXOQzGNXxnch8uL60ynJdnJkkq5LkawZGOhAcRe9YbTBAfIsAuvgOtmHqv/c6Hc8+xSzG3fJtcC3t7lfU/6UPc9zxv9n0JeAgZkXvJqHo72tz5MqQ5CUPAWWz9DQ0bPwd58/ilL5fkzKswMEKR8/F6V23xIt+G5gYIza4+NArQz4GONEaVWhToIEnc+mCKiA9Szl6+npafz58+dwVGTAPWqVqdDl8/PzuLu7O6q/FJredPAy1RZUoOnnCtmBi6fj2PFowqqhTwDBx0Aan2m8zsbKJamLDFT/Z2lnEYFuGinJZ0dpnHRggDIyRq/Dee42gjJbrevx9nHgpfpTVmnAfQtuBwFaXyBKa1nI+0zeKll4j5xuAgPvLWwl/3TuZc4GhBOVWSIKA5W38uWKWXVoQsK+4MSF41zqIhNeVlKC4qFTcDMgUFES4O+gOEle1+Rl8797BcmL8ekjz7t6F7/zwFzO/FW+MY4/EuSf/OXX/viBn9fXt/lI0m63G4+Pj4fpA7bBy8vLSZg2tU9lUNL4pWw6GEjy55GW5Pkl3nwMVLw4QPCpgu8izzO9W7VJMoxuQBMIcEPtQKCaImD/pHJZNvOXsXXdywhqpbudaPAFcCX7r6/5I2XuGFZevANJgWvVhWtmOF5FBAS73e5oCoHttwoMeM/7+hx9vjkycK5Rqwxi6og0eCtFtFJuR1UkYIxxovCrFbNUZj7XyGPH7woS5DHd8/xS2yW+VnlI5c0E9tKKVDz4QElGLhEBgH7uDaXFUZWX43m7wk3lSZkR8GnunCDAgYB7K+RNnsvt7fHni9kmHtL39QXpFcauLZPsVcbb9YFHVXwx4hZy4OCRgu8EBJxWHbJKryY9uwIKPArgH7jqgNoY4wQwOOBNIID13aJTPaI1xikQTelndRCY8OiAT1dQNv0DV3wDgWDCAQHr7kafdXPAlWRjdXxc/NsEK/crRZMaJOXdKXoXQA6GMcYJck3eko7VYr7EY4XYOx5T3Tz05Tx9JBCoeEgDLOV3ScXqINLbpPOUqLxcKfoAVl4JOLgCFHk5rmDosfrCOS264+JBBwP0OKp665oWEJJn9e/Ly8vJ2gQu7HPPuuoDv1eBCLUR207pKkBQlZuMfQVkvhsQ6DzDjvx+Ak+VzFfTV5ILrmupdBTLo0yn6JePJfYnHa205iMZS97z6Cifd+ProJgRNcoReXFQJQCg57QAV3VOQIDjzOszc2SY7j10sQWEiSqjVykxCoIadKuX4OU7Ih7jFBAk3nyFMq+PkeelZkSDka5VIIDnFYD6CCDw/4E6oJWOfIYKlOTyUwEGVyJUiiIqwjGONxdKn951j53bqpK8z7lw0CMTTJMWLCYQkqISrvS8bF834LR1fCflzwWOBFdddGPmMX4mdeM0gfDV/5UDlNYIcHMqXy9QgQGXf0XPKF96XteV1oEA9WiK3qS2IQiWwU1gIvHs45t2xnX9zc3Nife/2+0Ob+2wLKbTWCO/HGsOcpg37604lKt0UTDgyjApzdQRRFMOAirPYDbnlIBAFxWgYKkMeh/+ZgA72wFCohS66tI7HzpP17dSp2Aqof2OlJRpCs+5NzDG8SIi9+7dg6YS8newk9KsAKUvAFQaXyvA/8lLr+osoEC5dNnnuJKHw3KqVxr1c9mp2ptEeUrG3HVBAmzMh23rBt/1QqeDviMlozajCog6EKwWtCotwUEK9VOGPJ0/W9WtW9zZAQMfVwQFCezp6MDGwbCPb4X9X15eDt8N0ZgVIFB5P378OAEE4tNB8oo99D5NOniLbv4yMJAGVDXIXFhTXumYogMc8C4AWgTCaytAgESlrU7nQhLmvUqd0e9AD6m6n4xDl57CxLK/q3LsaObhpQGYQGKVRyWrDmIpMymaxGcdcNIYu/F3RekGmav5PZ2Ha10pOhDRL73O6EDEwU/yZrpjGg/eV65MHZj7eodurcCK5/kdqQLtndPlOi9ND/jrrp6Gz3t0IelTBx4V+JP3nLx69puuJYfPwaOPs2SAPTog4jSVZIf3Ba4dQHuUOfHIMVkBgdTfK6BgVVdvAgPnGrfU8E5JCSfw4P+J/mXgUyg9ecZ61svh3BaP7tknpEog4OU5WKmiFbzu6clDAkMzWkGKrlT53CoYSXleiipZcq/BeaRhTD+m8by9DCoKV3D+k5F3Zc68lGa/3x9t2pOMnYO4m5uboykBroiuxqAbVRpXLmCsPG7l594VPTD1gdqnCmOzLdkfSamy7KqPZlTV5yup8voqWtHPCRCojWevuvKLmlxHUAEFec0pAuE6dIxxMhZ4zcFAirSqvRgN8MiA92maIqj0BmV51THz6QTdE8ioyp6VkdKdo6cvPk3QeQkr5GETAoI0gJk+gYdV6kKOPoUwxrHRqEBR8qRSeubt5ax4NJ1wuZJ0nhPvqwJ3aUCQvA8dO6/QKYFSL0vXHcC5h8pQv/8IRpifr+b3fQU86kAlSOWvvNJiSB+X5L3ioYrAMS8HHGyvmSdEpV9NEypdGpO65gssK49xC2C4BHXO1SqlKAGP1WK/FEX4+fPnuL29Pdo6m9MKniedHIJNAgE5YupHd/4kv1VfCQQofz7PaFKKECR55PMiRgy8bL/ugEBjm1MG7jw7H50uJo86X6WzwMCWArYgVKavOmOVOiPpjb1iAJgnPXH/zbwIn5pI1A3yrR7KCqqcGb4ZONE1HWfG8pJE/jpQQ+XoyktpqaRECVhSLlQ+jSgNuuYZHx8fj8aCFEUKd/PHKYN0VL3Eh3sl3i5U2F4OeRAY8PGbvHS2n7f9qqwkL8pBgtedazBYro//7ySvH2HsdfR+rdqQC/zSglKPIPj3M/RRLQcEDjjGGEdjIS0+daJBVz0I/Kr2ovH3KQceU1t16wbcA+can4rS64ZaT8Dolke5vM4z3c36rNDmTYc+Il0SQj6X0Ngsz5m37QNeitwFhN5UVc5HbFCSlGHq7OT5pLqtUBKoLUSe07PfGQQ4zXjrwGjqbxrNMY63LVU69yp49PA/16jIm1L+lfJ0Y00FmQAQgYDfS3V2wJFAiBsW5it5JlDwNnUwWXk+3k9diNfz7MB/JRffWZadOn1atae3YTU1JllkxECf2BYAeHh4GA8PD4f/HnmikZMBVHRM/HANlvNajaGZnqymGcY43Qo+ya6u83mOS0/HtnWZJHBhXm6vKnn28ZP+e/1n9KHTBO9BsY5gkzKurotc4bnQVF4rFab/JJgp1Ft5aUmAvczOGG/xpMRTGhxJCZ5DDgJW+vm7AoPUHpUhGiMr0uQR+DPupTD/NMXE65Qj94SkQD2i4KFvgoExTiNSlGuCT28rKi/y6YsWqUx9URgNwBjH3hPz78C195X3h+fn9Uj9nH7eX1UffzV18tald6rGr4M4Gn8a8rTQlJ/Z/vXr1+EnQKDIwBjjRI8qGsYy9vv9gVfXxT6dM4uU+nRxFTVLa4YqUOUgnnlrTPmbOt7mXFumZ6QzfB0F6++2YwYKUtkVbV5AWGW8WqCnq4x/Ol/5iU8duwHvabgwiUpKi5bGePsQEedJO8FcbZdzFI6DgJnycuPkRmAGUvxZltUBm0srVTcgiY+Ot2RkWCfPk8pFA9w9dOXLc18cmgCFe+ZJtl1ZVSBHfKX6OiUwQO/N53STB6frUpb05FKdPMrhdar4rvrLea2e/w7GX7R17Gx1yNzYVwtk/efTCAID9/f349evX+M//uM/xl9//TUeHh7G3d3didfON1H8TS2BBC9b/FLGVqe5vP9dn/tGQVWbOrjwBaxcHKwxcnPz9tljpdX/1F8+XcBomoMW6uIO1K/QuyMDW4VPz1QN4Xmek/8KuZLyqQEqL3o9AgI+F5mUXqIqlLWV9/ca2IQyZ2X6s36vAlzv4fMjqEP89HI6mfRnq/9sU5epqjyfh03bu7o3U00XcB1CihB4+FLX0phz5e08EAwkgEggxPx4P405Tj84CPC27v5XxIVjnVPxHcj75bPGkfc5QQL/c02BQACBwMPDw/j169f466+/DoDg58+fR3KvaQF9XIvAkWCX5Y3xtlGP677Es9fHwYDK8Z0AGUkT+ZhJMpveEGI9+Eaayxnr5TqUoKAC9ZWDsZU2gwHvAP/fUVKk7xmIXXpv2Mqb8DREiI44Re4ZKb3Xs1K2Xj7zrdYqzKjyAL0MUkKSSan7MyvUeayXoFm9SKmOMzmt8kxy5IrV38vmHKvLAxVNN1WQ1hJ4f7tH5uf0wuiBMY8utE9QxDx5zmfIrwON1XHGsaa2fH19PQl9p7708qiQZ+Hor6Bzxo+3N8+9/ulV6urnbxE4GGB04NevX0ebdL28vIz9fn94NVHXKNcMuVMvVjrJgbYfHUj7GKI+5/x9arc0JlPkgYBDkQ6tB+ICYXes+OP0QaV3ZnptVWd/+tsE1TNJMD+K3Cimc6JRdqIvEBnjbZAkYLHaASv12wIEqJw6YXoPJU/EwcP/BfLVy+y7JCuz3xjH8ss2Ydu4QuI1V2CdkSL59UqxSaH6lIMUzG53+lrWbBwmQMM2SwbTp0nS3OwWSgBA45agg+V0deoAh8vJpamSh+6+G4sK8LnnyugUZdW3KvaNiRwYJDCgELnk1t9akPHk+BC/FRh0sKI6OBigkU5jNum3bspEz7gd8ejDfr+PQGKMt8gAx6rXh4BAZX40vfttgmQwZnlUSm8mzDNKg7ibV5WQkDe+9sH1Amk+NylANwa8liIE3rlJ2SUl7XNXzKO6lqIAnsa9tUQrSvY7kbcfjeJs2iYBBvbNGPUiJpXbeTOrZTr485CkhyYrEJP46AyAy6dPE+i/lHeSjcp7Yfs4f8kjYrtTmbMeBGAE976RkYd+Z3ro0rQK0qq0DljdwNN4Vq8UVoDAXy3UmwUCBA8PD4dNh8Z4e7WOr9J6VMyjOklOUj18KiMBVoHl1O+UGdfB6SjS+PSx6TsQet8wvUclCArIa6XHK7C0ap8/5G2C2eBJQujPnTMAO6DQRQdSWuYnBKl9pceoPfGK0twsqQIBfp5oKwBjOdX/c2i1fb8TpcGUBii9CJ+/9ufoXafyqLDci+ne466Uuv+cT/+f6pm8qRRmdaWj9TNSVHylML3Hn6hSZqntUjt25O2tNvIQt8K1jJqkvL4r8K346a77jzLInQVdPtNzPr3loICvGipqwPasNrpy3rwfExgQj9zgqAIDDiJ5b4zjVwfJj79FwTEyxikYUFlsP480KY1kkhECXefPnYMKBJxLy2Dg3MFQoW0HCOdSQkJVmmT09ZwrWKHEMU7D96vzh+9VIFVUYIU8CsLrn0WziMIlieCrGzxJVtKP8ps83+StuaJzQOAKJ/FOD8cXPCUgkIBP8njcm3JlJ/LV0gIB4q+bKljxaCrAVTkUqa09HQ0Yx3QyQok+Stl+Bs2cjSq993l1nP04XSCjz28Z8HyM0/fxE39ucFOEy/uN0YwKDPhCcHnhHCepjATYxzhec8NxqLIYUR5jHEXS5Gw+Pz+Pu7u7w39OnXCsVyBFdfkIGf3U7Yi7gewVOgf5rwxkR/YOCHTuijaRgwLnK92f8dWlOZeS8U8eTpeuiyQkZJ3Ovwu54egiSmOcAoHZPhJVWSnP2b0ZX/Q8aJR9nYCui1w2U5g8GQEq5DGOPzdMICD++BouZS55ZAz/pvZwxUx+dc7pBPHJo78uzPCz5qY9/+9KlUOV7ulaZTw9UpKiAxV4pZHs1g0oKsB9BtI4SACQYINgMtWf0wyVDFOnM/yuc64LU76MOOhYRe84NcfxqLJfXl4Oxl9GX9cUpeJ1jW9GCNK02Ufq208DAx0QSKHIBAyqPP18hY9K4bri8bAqPQmfKjjHKKze74DHVnqvse6AwZY0l6KkRIiwE6X5eH6u1MN2SaYqZcp0ac6f40JlMb2HGV2BKB+loSKhUWcdkqHhGOV1PZcMaDLkSqttV5mXe4pdn/gYdL7Sc9whznUOie3CNv6uVOnHGWBwQ9u9xZIAAEEAIwPpy4bMOzljLs/Ot/pbfej6mYDW659kt2pDT8t6EiTxtV+f5uD+MwIC4k/XaPDZ5mo/XedUgdJz3KXI5EfQ5gWElSGYNborlwQCZlSFPM9pmBQZ8HAM53BYXlWGI8tUr1lIh0jzHEDgg22LUktRgZVnUxr3Snj8DpTAaiIPx7uxHiMDtxWQ60aUSoPyKIPPVwj1lUIeub8Ay+umIzy0mgyDz617WxEk0cPyeU22UzLGHp1zQFGt23BQQ49PYMg9QaZNDoPTdwIGSaYq+e10Jvs/GbwOcCRwIKNWgQAu3vPPbxPUshz27Ux3prp72V6eiACXRvr29vZoysPHiEhROY1N1VvjWflJfyhfAgBGDjhVoOiNj5EE8r2vt8jt5shAJSDV+UwppnuzslcAQQr1zwxwohnQSflX4ayEajt+XHGxHHqCXm7nuXcCcm4EIQmjt9t3UqYiGrgx3njXgK02OeGzbmA8fz96mJAKUiF2Ljxyj9WVqXZx03llLFM0Ttc7Q8928JB81RarSsgjK6n8CjTwPI0Bnrsu8JBxxVv1/FdSMuY8n4EBT+MgkFMFKRLgvPh6FHc2XDdxr4Dn5+ex3++PfgSx9K5dNlK7jHH68ThvNwLZxPsYxxEGto1PewgMeJSPQF2ynxYAEjzxvpdLIKCpBAfIjBB8lJ79tG8TpEHdeUmiVYPdDQCmT0JFhOmGzBta6VNoeKYkUv7Vsx85LcDy0yCp0vr9FcGqFL+37yqg+gxaAZqi5JnSm7i7uyvr6/KfFK8vOqKR19asUhBC/+7ZpI2FKp66sK/Xu1ppTa8pKdWqzRnW9/J9yqTrDx6Vd0qXwNcssuB5fzdKOrVzstKzBAI0PAIB/plhEXVhms6q7kuWBFAZ2dKug3///ff4/fv3+P379/jz589RlIueuxs/70eVKVnTT+PMF7d2b9qkaQ9/M8KnB5gPxxCn9nhMlEAB25kLCxm5piPTyc0qfdjbBC6QleCeO03gBtrzrnhNyo333OjrmLz4LtpQeRE+uKqBq+cYeko8p/+zNOd6+StptzxzSUBQ8ZCMuN/nQE1pRETqnbwrreRMnhEjBlyJ3CnlpCA7SgaS9fR1EQQwUrgJZLIt2T4ORhyYEIB7u6WojXtBDs6Tt9rRbF75u9Cq81PdY5v7vHeKBFCuZOCSweccuaJU+mmrYcnV09PT2O/3BxCgHyMEHs73Mnkc4/QroT5F4Q6Yj5sE4PV8WhDp0x++PkBtx3FcRSSqPnRHQvnzzQdG8tx+nSvPn7KAsEOwqyAgVax7tjLYLuDV/2Q8KXRuCGYgQJSu+xxnypfeIz0z8rTVy6mE5VzP6Dt7VCT2wYqH6ZRkjv+pHKiENOfoxpBluZJzOUyyuKXd5SW5d6V7/C/+uC6CypFeCX98o4BtRT45x+qKugJoVf+kNkoRAPG2BRwk+r8AFpy8fWlcFBFwo6m2S1NHbpi7aav9fn8AAmP8u79l7D0ywKiA8mDejBBUwEBlcEqLQFyUxpmDdeXjr0bqPyN7Hp0gz1wPUf18HJIf9iPfqPCpOtqF94KCD910KHlYq8Z/jL4S1bMJFKTwSQUEUplu6BMoGKOfb+x4TlEHpddg5PM+QMnTFq/Q+ZuRK/Rz8v4OgIEGYyZHSV5dqTJdMmz0ugQKmC6Fx5PBSkbVIwHuKSkNFTHJx4aDA28DjxJUfFDmqaS8rcST81XpB2/7amynMZvOvXznkeXOgOOlaEWXMq0DAY/SjJHlgH1aAQGdOxjQ63iSAxl7RQb+/PlziAoIDHhEoIoQ6J7LHced14/1cf3scskIA9+OSMCpi4zs9/uTz42nKb6qzwgCvC5JR80iDjP68K8WVoBAxwQMkgFZqcCWAZpQ06ycJDwVAGC66n/iKUUeKkCwJe8Zbx/9zHcEAaTK40/X3FMY43jHNHoHs/yI9F3uU1TADVcyfK4Q/b3+Gblc6zyNV5VFz97zcjDifFfgyvlxooIXf1yHMANuno8/U61ZSDrtu8jzVp2X5Dmt9GckIJXFtndDrXMawt+/f48xxkE2CQYECHTubxZ4GemNgxTuJ/DhuE3t1smjA3em5fgTAFC0QwBH5wIEHvno1vuk/nJ+VqbQ+H9Vdt/1amEnODMFsFpe9xNVg7rKc4zTyIAoNRzDMsojpdvicZMHlbE6f+lKfGv5q3SuEnxP23wGefgz8eRyTaUiL4fX/EeZrF7XcgU8xvF77U70QjqqFF2amlCZThXITXOxTjQkKbrhY43eDgEQV5GnSAnzJChQ+hn5M6vAvuPlu1MyLknHqE8ILJWOIMABK6cKZPxUxuvr6+ENF77x4m8UCEh00xAOPCowUMl+iuC5Pq+ibB59fX19jWsg/v777yNgwNd++daPAx+PVKR6aAzyLYTX1+MFxluNv9PmBYQV+kgVmRnyGfPeSLyeDOkWminZDhTM0s86I0UkdrvdkZJM0QHnZQvvq9QZyMT3VgB0KaLMrcgbvSgadt/tjF4IQ5Mepkz1r+S78kjcKHk0oRujlRGgp0OeRHqOEQK2kdfFy3elVj3rwEcGSMqOi6cI7nz+VGk9kuBTF1VbM303xr6KqnGTdGhKm4yKRwcIBKhHvb+4yp2GjOsG9OGhP3/+HO3T4tMI/lqh756ZgEACDEn209hzMMRIF/8T5EjO/C0bgh9FA/hmhH4CC1xTkSIgaewwAkB9wmk72guOH9dxq7r3U3cgdOO/5dkuj5RnN3BXFPHWEKvnsRUAsNO2tM9neigfnfd39abokeq/yA0s71PuktftsurTCp0x5hxo8hikqHxxXwI5NK4sJ40Zelu6xroT6HABFZWrt01qDwcyCUhUit69Ne+TKr+KaNz4qdzKabkkJX6S0vfzMcaJ4VuZT+e0JY2O9wVlh16/ZGSMcRRlkBHkfDojApJ/5u0RAck/0ya5qvqQAIjgkPPzaZri6enpkNbXB+z3+0NEQFMfigroR7DkUwQ+5ed972OdwI7gtZLZLTL8LjCQlGQ3iLZc70DAlgpWhjqBAC+roy2RgJX8ZmXNlB0NAa+9xyDPQE4qc5bfpanjNSkSV6w8TwbRowUzci/FeaXHXs2V39ycftI3RSl4z/PyeciKvP1SVK7SBxV4phy58ffxSSOlNpOxca/J+Vqpn9fjO5LCw2PkqVs3Ih4R6KZ7xjgGBF0kigbZvfnd7jji4Avt+OaAG3hfL1C9cki58WnABBbd+KuOvCY50n89x82LHAwoEsBoh08JsA4EAYk8iuWAxQG4/icHc4uz+a59BjpPoFKqCcmnPFfycQU3xnGEwBuGVBnUrhFTCOYc2gI6umfT9eQhrPBd3et4rQAK2z15319NFSjqZLoCnV09khdLLyTltcoDB33HBz159yBS/3lYlG2V5CjVwzdaSfxX0xQkL9/rRWXO9AzxUmEmTyvRTCd9N+rq4SCRUwKVdzlGPdVKg8//KVpAA87+ojFkuDx5xu6dd4DBjWkyrh7h4Bz7GOPwoSpvH+bJ6Q6CAU0DcI2AT3143ROg8v7TuUcsuGaA11P/n6N3PwwMdIZ7JS9eXwUUn0GdF96Bi4q6tF6fypv8bCX1XnAzRvZQvK0urWyrvnNZ7WQ35ce6u3clxePt4YM+KWvm7d6y91lliD0v8jijCoBX7UPFRGOw2715iWw3tiPrlaICK/ys6A1fu9C1G+kjxsg5NAOnTMP/bvQZFahW2BMQpChKigq5UeMcO71pf7UuRQDU78n4O2h1w1+NbU1ViCcCSH1DYLfbHaIZVZtwF0DfV4FrBHidoMnHrvPv4X71T4rsKJ1PeSSZ+JTIAAuozqsBWA2w6v/KwCalRS8Mgzolj2cLudFzWgEAn0mdYd5S13OATyr3O9OK4a+82qQs0zX9OuXsbxzwyE19Vuqwtc9UDscMDfkYx/OtPr4T0bBUUTg/p4KkgUkKkgAi6RulofL3MLEMQCrjO8luJXtdtImyxrA3dx88Rxcl75sGzr3219fTnQqrVwVTHn69I28PB+iUcbUVwYuPo9fXt+mn/X5/VJf0wTABgG5aIwF59iUBaooCUH59rQB/nx4ZSHMZvK9jGlgpnedfpa+ujXHqTashOlDgIGCrQe9oi1JObcB6dYYqzfFW5+ca6Bl4Y/ul846nr6QVg1+BTO+HlFcybBUPUsT88Zvw/rZCx5+3bVW2Qow0nFSMHNeMZLAd+FzFTyp3S3o9M8apzKrdGIJWOnm6Uri+/oJgI0VfXIe4wq6mLr6CVuSW/ZqAgGRM1/QZadZ7Zmgr8qiOG27+n+0XQIPJBbUrbV/pu8QrI3XiR3nQNsiOcLzI2KfNhrx+3VsDiX/qdAcE7DvyXYGCWVsk2gQGZoa9Oq7k7eldAfu1Kg+dJzTIgUOaddLMKHZ1WCWPbni5XfhuhRJarAy47q0Yf16flXcpMOCG1etBhZO8HL+fiIZVeTM/5emvM1URgqrtO2+w48/TUZ54TlAwG4+r1I1b1stDqZ0hcMPHtyxYR0YFPMpSjeNLyWlFiZ8ElmZgoNpJj85Tx0MCTpVMJJDgYyGR93llBwj4lF9aN1bJj6IBNKRchMs82VZpIyR+V6Ez/slR8nbzaJruUw+pXJ8m0O9c+V0GA66gOqPXAYbumhv9hHLcyHBRSMWTG9JV41VR5fl21zpaiQIoXw91fTQlIz8DT0nI03OXphXA0xktei2UPRoYX6TkIE997ZsSpaiA2tVDjKyHg93EsxSdKzY+x/JSe+i5bke3mSJn2VXbkiemnXlWage+K64QL/P39Rle/4rP7yTLlYOS5pfTtJRHnFJdq2hQ0qudjh/jGGCnCIID7pX6d+2hCJIDHicfz3wVkp4303v4n1MfXidvT/KUIrtsV+kOHVknn/pRud4OW2V2GQykedOqsFXQUKWpkG4CCFvK8UYmzQzDDPxUBnAVcTM9r3m7f5RSmnn2nrYrdzWMdymF6n2TELT3YdVvNE4+oGVs0iBnf/KTsfwQin8UhYosLUCq5iK9nl5H3Ve4mOkS0FRbzMYg28fb1OW48hzFQ+orB8MJuDDdjx8/jr749vr69rbBy8vLAYDRKKT2viQQ6HQLr7HuvqcAv43BvhR18lrp4gSeSA4A1J4J2DpASLJR1TsRx2G6JyJA9g8kpak6ggGCgiQ7XpcV/t0O0LHgFMHr6/GrtKoH02/R76J3gYGOZoY0Hbtfx1cqp+KFZY3x/lXC7+VthaiQzuFXRoUeQHX+/5HoIfAa7+ncPSIPobtik9KgAhvjOAzpSoEK27+I5mHcVA/y2XkYogrosv+TwZmNzVRO4neMDIoTEHBlxrb2MK7Xg8QFV7xGMCClL8Dw48ePk+1evU2+mlZ0WiUXaUvsMU4/k05DwvzSWOh+nVw4gNXcewK2HC+VbHK8VW2UxkZncB1wEzhRDrtf6iOXI46J5JQqDfn3NubbDQQJysOnxldo85qBREkJ+HmnZLbwQJqFr0hqVC5CSlGC5DFW5Xf/PYS2Wp9VRdshTjc8H2Hot3hIl/amnAhkCYo6hZpCrq6MlE+SfwKJSlFXCwjlyY3RrxFhvjSqCdw4Pzx2sjQD6GwDGtDUpmw7HT2i4UqN7UCeeU7jpvJ8a12SFLfaniFeggXn5btQkttqeqDaMdLz8WkTHtNYSG/A+C8BgGT4/f8YdVSgAgSJPFTPtLvd8RQzp5B1XfXyxYzOu5dV9RPPfZyKt1Q/7z/upeGvb3o/V5GVRO8GA8nj9AaYXfMKV0onPdfxS2Kjcf6FaSsg4HXvAIJT8ka30CzU5efnKK1VhTfzxhJfSbgvSeK983qk4DiP7/I4xjhSIryWgFsykpV3RT49n/S8KzOmYbpqDDNvnbvypGH2NN6+DkbGODbY3m4Oxr3ddE1hfypl1l9l8Y0DTg+oDhr/6le/xle6XL99NXW6h/c7eapAkeeZwEF6ljxV0QH3Umc/BwJOyWnrziuPO5FHGQgKEqWpudRGCZi7x56u+bPM08F9klfnfdXubAYDXeVX8uiOs+dW7s2UXooIrOa/xZgr7+QRVeBjC3lIreqXrddXaAYEKjq3rh9NDvKSQq32cXdPVtdSvqlM/l8BBRWfDgbIH8vzfJ3c+03AMHln/nMAkYwY9QfBOevQgQHVR9cI6nWuvHXO/uORxt/7XPdYdmUYvpIqmerkl4BH1DluHs3yH8nl1PNPQOD19fUw5+7eNp9NdU6Gc9ZHbpA9f4JIf8YjaSxvq75zkExwoGMHPJNuUV/764ad/evorE2H3MvpOnAGADrF3AljCmvNgIDzpU5YASMz5V6RCygV3jkdlhS2C6kL7Aoqfg+9ByB+FSXZ5b0qOkADInL51zEZwEph8tkxThfnMa80n+vb7rpxTQaCeSYlPFNyHCs0+G7oPU1qs05n+LNdmWwTtSM9LtVf19yzojLVoix/C+HSlOSnAwIM5VeGPFE1VbDybHJMZlEALcDT811bs38rIEFe0jnzSfxX12ikKz4T0CZw4X1OUydb6fkSnHB6wKczpBfcLqzq4bO2I3bFqIZaAQF+7b0Go3veO8jXDTBN1dGJ/4pWGp4RgwoUpHwcbfvgmwGBr1JqSRYuTRosbmCoQDV/zAV9nL93gEDy8SDvxxWAjAzfVab35PLnhs8VgHgiD1QcXkcR5ceVXOUB+1jqDBR5Z/vPyupk1ccK66Y6M2RKUrvpqLcoBAJE8lh5vQtdfwUlYOX/kxwzAlJNEySd7Xk6H3qu8vppAGnwfQV+td1wKq8j7x8fQwKBVZ7p3qqudz68nfVf44wyy2tKm6YcxU8CfK4HUmRgix4++6uFCX1tBQTnotAk3O75JKXt3lOaV3FPZqVROySaSAOFddG1ZLi6cs4BAt/B2/lKcsOhaymEPAuxVvmPcSyDySvjeQfiKs8jARjJiW+mQwDA+XoaRXrQW9rQQQrbQPxQlh10VAZ2Bo4TAPBr1VQIX6Nk+2uqQGncuLGcS1BVdjIOaWdLb6Oknz3qpGv8Mf0Yx+0noKs+Zh/4R3t8d74ECrcaZhFBBfVn5ZykevN/ZbeSjk1gmcA8GXbfTVN1qOyh942vEeCOhFujAmNsAAPeuLzuzFYK0NPMyumIaRwI+Mpvn2tiHlw0VA26c4kC4OeVwkvP65xKtIoKMP1WEEA+t1I3gC+pTJ2cT3pQigTc3d2Nnz9/HiIEd3d35ZSByx7BA5Xczc3NQWEyPM3vnguE0Gtg3xJosH9dqTCdyiYfPj8ppS6eeV9E79vBgBtMBzx83iMgM13Ce0mmkxL3OjO06s9SmTMaoNcNE2+XJtetBAK+rTV1YRqDfr8ykGMcL86T8dF2vGpLbtTjYEEAIO3WR/JI1oySLkztRZnu8q9AadLdySayPWdyU4F/pw4IU6foXDLfvVXjdFZkwI2bM8zrHRDYAhIqPlguhShFCsY4nsfRO5qcI6wWFaYpB+ejUmxVh0s50sD4fz1fraRdoS698+7lrlDVZ2kwfRciL9UugB5ydVK/dGHI1J70iJIn6rLjSl/eFyMX/naMjwWRv6tPBeIfREp8bJUJBx0VgPW8ExhROrbHGG8LBr2eUpwOAlId9/v9kS5QJEGG69KyWwFsBwL8n/RfB2RT1CfpIRl0fqyHfcxIEKcGKiBQgcDKiXBvelUuq7ao7JC3lXvtpM7BYxT43IWorhe8/zl9mPhdobPAQGXYqmszhjqQ4FRFARjSYkPRe2EeaijNEUow3TimuSDmkagCBfpfgSnlW9XbB06nYJPntZW2KP/07HeiGQKXvAgMeIg1KUcaJBJlhlNSNPgVIKDXRd5ZpntwBCtUeEzjHnCn8BMgYT3Ts85T1W4e4eL1pOA5Dqu22O1OP2LkERbxpjxl7HlNuuDu7u5kR7ktnupnk+u7tFeFZHmM+bSqO1Aqg+SyeXPz708As11l9JlPAgQJALNMN2IzXeJ6z6dgnWb9mYCA55emNvy+ZJjjr4qI+bioohzkT7Ke1hE5eF6hsxcQJiQ0M+YVApulrZ710C0FPM330vBXZbsH7kpQ1z+T2DZbPTJSErxZe1chtnSvy2d27SupGlhVu1DB+lsFTm6M9bzurSgyKlmCUipaksskjTvLTUa+MuReJ//fjTm2g597WxCE0+DvdrsIgCqZo7GXUpRBcl3h/HsdVYYihTrKWFVTiF9N3r80AB7J8ohWGtdJXiqdyP7x55Q/F7CpbAJfbt3LZ6p6elmVLCQgIL7H6HfP9TGQ5CU9uwUczhwAd95mIMD5TJEOjotPnSZgwe95dgs4SOVWg15AIK0dIGLi/BYVS4oQJDD0nrBPVy/+90GwBRg4aFs15u8BOwkkfjeqjJ0UaoouVUqhUqIeck3kSoyKwvs/If3kqfg4Wo0QzXj1tqmicExP/qoIivMgXlfAKfNlFIA8vby8HOkB5e38vb6+HiICBANp2u6rqdJz0nEy/h4ZUBoHi94vnXyKCAQeHx/HGP+eWtGzaitfpyDyKQH3fpN+VbpVndTp4lSOUwUE/JmUT+KPY5tvTlQfNUrtk3hkdI/XJA9PT0+xPjM6Gwx0VDU6O7Yy6rM8q4gEG6MCBBQIeiivr28bmIxRLzhcJQpvBSqqTkrXKZwVkubAdx48nxX+ybOfz8j76D3RjY+iCgDQcLih6yICVb5p3jWlS2HC9GNa8pL6qDK4nddRyZr/dy/UpyGcN1ek5NeNcGUQVG6S4wRyUuSHzzOsqqPzwjlxhsS7dQefSalNHLz6gkEHOgSU0nnJYCdiGzFy8/j4eNQHBE6aYvO21XGl73h9qw6udC+vz9b6iJL8VkBVxHB/Mv6KjvBeNebdDrlTQGBAG6gy0vip6F3bEVeGuTv6+UeQeycOBNJcjp6jh+/GtkPM/izTJ4Hp6p8QO/9Xc2gJAKRyK4RZ1Y1pzjXg1YC8BFXGL4GAtCNdB+Dck0gRgWp6IZ0nj8DzozchSopXaTtgwjaQwmIaHd3QuMFJbxmk6RIpYp0rrFxFMFwpuse4EpkT2Pc8pJB3u93Bm3IFzvfhL0kug+w39g3leIzTUPzMuCaQShnSdc5Lj3EcGaChrSIPnaOSogKrNsP5T7K1klcFZpNO9HZguxF4cn8FbaudvpSZ6kS9kGTBdRnH32r0+kM+VLTSYd19N56dAXPBdG+kAgTMw18npGLzhuuUQMdnMobJAKzM53DqggulOOi2CPoq+SDaohATCLiUQnXZ5WBJr2Rp4yHOwaZ8RNz4h/LmkQZfg8A2oseaBr/kp1NKIl6nnFdghsbD5VHPcPMlB99M1wEPn8OU/Kqu/jYD65PAAJ/TUTpiJfqgZ/SKJ8G1e26XItaXbU+59U2y5JmPMdo2paHvyqXn6cDC85qBxgoYJ9npeHYv2seM8iVfzCfJCZ+jbKYx421Q8cn1QAQCjECN0W9ulQAaedH49VeXk2PR0SYw4AVU3g3/pzTpXpXPVlLDaMAQoY7x1ujpYyRKxyhB1/EzoDC7luakEsjxCITnxYG6tf0SQq+udQaoyzcBg0uRAwHuK/Dz589xf38/7u/vjwBBAhIcA/yl97apvPlzYzrG8WuHY5x6/C4vXTuvyivbxPNzw18BAT+m6RJdc6WuY4pOJF2TDBXbxsOjCQzoyIiGFPTj4+O4v78/KPGnp6ejtw8uSS5rvskQQ/Q0MN73ukcP3z1cJzeiDuRUvu6LL/Kd1mC4jOga76V2qK51INmfc6BA/duN+1RGigoQCFQbL/lUXspXPLEcpyoKs0rLEp7QxooxrADDSge/p2JsGA14eiUijzQkmqE1N9RdPiwnzVsl1OqAQN4e1znMUPUKP1uAgefjVCnvS5MrHnrt/u13ejhuSBwMMArgZXCRF/Nkf9Eo0pP3tkuRq+7nCxMrRUJFnNoqRTxc1miYE0jx/w4+EgBi3qyvzrkynW3OetIoJl6UVgsI7+/vT7bR3e/3Jzx9FaV2TUBL131alABLxLav1kd5H7J/vB/c83YDm4w860GnLQFJ54lveLAuHDe8n+rHe97WCbTMogCSxyoikLZm1tHL5zl58rITbbUDok1gYKvBFFXKYCvDaTCLNx6TEiMyZdk0CP5mAfmdhVxmgOA9wMb5ZeSCEYEVIfABnv4ng5+eXy3nuxDljn2uKICiAtx90L0sKg9XWA4MvJwEMhwMqC+TkUv1mXlDHa++KC4BP9WZ9eK1xEsFjtKUFg0KIwdObhD1u7m5Ocy/uoFRPjIW1W5s8o4TIKS3ewmqQFUCm1V/uufphmWmMzi9Q0PpIGO3e1t7wWuS6WToqbtdbnQ91UmAI+kvl58KXCRZWKEVwE0goOkAv89pqJl9Uf3Oub+qizeDATLO/47GxJz/75jeSt6xFDgKnitwethUtpXBXaUUddhCCY1WVCFs74fqPN1TPlsM+Sxq8lF9/VHkSpRrBPhjyDXJkHuiY4wTuaNyo8J2w+l9QiXj/ePTBq5E9J/bC3va5LlX4zQBnAQ8vU7kR/89KlHxUOkJ1z/KU+NUWwhz33u2ZUVeT4K31P9fTQkwjTFOdByPPi49ClDVJ+kfth1D1WMcRwwkr3RO1PYeKUhAoLquZ1QGgYhHl5JR7YBA0k8ETD7+eGSkLb0u6OtOfOMlBxNeRuqbpLP9+XPp7AWELnAdEKgMgldqC808NL9OHhOfSRm+l3zgdNQZbecrRQf8QzXJuCclfS4IUB4r174bqb8VFdBaAX6TgN8jGKMPyaVIwBinr+Px7ZakZFzR0Ph1fKSx6NR5/a5Ufdwmjy6l62TW+UjKbzY22R56TvwrbMxpM1e2FS+pPAJGTsd9NXVyp/pwXr57nsCQBpyG0TdY4j2PqtLjp8zSoHdtLN4TEPA68R7XJFRguGorr1PXXmqPVJcUCUgRAZ8e8OccrHa2wkFZl/Ych+zsBYSrIY2E7v36VkO0xXBvNew0rJVnkq7xOMZ5awoSOYBJdU9AyJ//aCPdKanvCAjcsHlk4OfPn+Ph4eGwkJAbt3Ty7p5GFRnw6+61UpEoX48OjHE6j6hrPFZ8kqe0KMllh0qT55W8VYa8G+uVQ+GgSfyk9iDRQHkIewbsmDZFGL8LeV96/xAAiXyqgADM9Z0DgOr/GOPECalAQMe797UDBD7L4+vr6xFoYN1Jqf9W5FC/ZKh97NLj97UBlfGvIlcpCuH193UGyt/bagt9yKuF3TM8pvNuYLric6FPec74qRCTBr3Kcu/bFfCWenZhn64OHHhedprKWO0jb9evMN6XVKacT+Vc8O3t7SES4EffOKVavOP18lcHHQh4Hg4EXG4SiEiylRSLRxXIL4F9pcQdbPLcFXmiykgl8nJZZopKuCfqPLNMyngVWUk/yQ2jPV9NqQ9JSfek5/m/6gO1M+WQ+zPISPt/j9bMwKnLEnn3vWFS/yaQxzdIqj5mG8zO9T85wPzPKQCfGvA9BRIoqCIbPo69DqvyuEXvblozMMt8NVqwhbqBkIxpUlZVI/rrhV3IdEazdFyfkJCeqELiM2XgUwUzXr8qUvCVgKMiV+5cMMg1Amk3NxofHXnuxpVyN8ZbuNO9TPdk0v73Hl1S/hUlAMvoBhV3p+BS+7lydo9U5afnvA19CoR19zZwvUNZ2gKEKzDPsb/b7Y6Aoi8kvDQ5KONxjH6xXWVgSB6Glk7ROOBHiAgauFZAfVLJUwVuXMa8bqmerB/LTWDHI0XJy09tkNYNME0FAqpzPb8FCHBnXKbtnIJzaJOEV2G696DWGVXIf2Z8adT9eR80WuDy+voWdqJgc+OWVb69Dqu8uzHp8vNrs+fGOEWZ50YJPO1MJlZ4+yyih+ebsxAMaHqAgCC1k4hAzWVMaSsFx0Evz4HeA+erCSK4ECsBAw8PuwEmb5XidBmoPDlX0D4+OhBPQDAjl61k1GhkaBi8X1xm+YzeGpDxlyHk+/LfgQhA/ZoTw8fVUeROCHWf+rdyVtgvBA5pg7fU51v0DnnV2KAOT/m5l6/6JwOva2kdlsvbbJ2A36vK7cABn+kcSe1j4DpgNYqw+W2CFDavBv+q8vcOTB5Sp1hWr5N3KrUEcqpnE38fRRXPM56ct5WBNRuQ3r8p36qsCtFfitjfUh6+mC8ZPDcArhBoAKtx4NfSO8VSGPIC/E0GH/geKaq85e4ZlU/DOUbe0ITTLKktO4PLNqgUYNf+3gZeT18jkNqLACjx5YZFwOD5+Xnc3d2N/X5/schANZYdiG3NL017uVfMsU8Q4OsG9KyH1Omp89z7kw4ay3TZTWCTslLpNOeFfDA/N8idHNOwC9D7lF+1uVBqe3cyWI6vB6hoRVY6OnuaIHV+5SnOmN3CtBsmF0ylqYw7DegYx2FCKhYaAnWEK9qKyE83P+eU0N45tMXDHyPPm1XHLTx8F2KfMuzLNwcYEeC6Acq9ezVu6D38lwY9Sa/C6dkxxiYPlOFSB4Wezj0nlumK2Xmm0U600tfds53eqIAE29pXaVfvbidnhWkoF8rv+fl5/Pz5c1q/z6LE86qeIGBLiwSTfLp+px5lJIz3NS5o6BkJ0LoDfe1QZfm0Gf/7uPNrCSj7eKTMyGCTZ59WTbasG8c08ClKwO8P0KD7eHJ94cCcAD05HJ7PuXTWPgNiwBuqEk5/Jt1LXqeubzEsqSMpNF6GC6JPLSRh68iNfGf0E51jRGf5bRWQVUBQ9dlWHj+bvJ/9LQJuNnR/fz8eHh4O9zrvlLJGBE9D4krAifIpxUGv1xUUFYkrqQ6opsiAK3Pl4YDHlbaercZMAkzsB48uJt3inqeDAff4nFxZpugfwYD3LxX73d3du5TsR1Hl3JCqtmAbOM3q5iBB5ao9q4jpzc2/N4QSwFW0hTI1xvHbAzT8LmsOGDwd04soL5yucJuQogM+blOaagEhf/wIVjLYHeAgsJ05liuOakebIwM6d8Q4Mzpb781AAL0hDt4xTtFz5zUxnQuJh+GppDyvlfm7itR2aTB5fTqq0K5TMu7noMpzgMYlyAGff+CF3ybg7/7+/uSjK2NkJJ9Cg/SQun6hoWPYXvlKmW5p65mSpBFMbzHQMKdxkQCC0jsAmP1PRw9Lk6/068gNB41/chyo3B8fHw/bFF+CtvR5ipKu6iK1Cfudxp66yAGsynZdynUDlDPJNPP3Mepyx2k9jWGC0CTvPE+RYgfAFRBw+eN1nxpwPTCLFiZ+HOQmYML6MU9GybbS2QsI2dlj5MZ2coETrRiV6j4buTP6Y9QhWAoVFR4HBo9CtonO8YBnwGcLUdl1nn265jytlrcl/SXIIwJcPMh9BRwMMDpAMDDGqWF6enoaj4+PB2XAkCjJjRdBLY2RKx6mX61zMuLOi3t3LvPMT3mkvKv6+bUO+HteVIiMuFR5etnMLxnJxLsDvp8/f46np6dxd3d3wvelaOYcbDEESbZS3g4ItDCQ1+ktS6boietZjyS5TKWogMphJErj0tuFQKWKWiTZEb+sCw0z25U2h+DRgUAXHaTupJyn8lN/6b/r4JRmhZbBAEM5nA+aecwk94ArcKC03X8RlSnLd68sed+VQvMyva5efsffCq08+5GA4Z9GDFP6tsOMAjgY+PXr12EnQm5CNMYpWn98fBw/fvw4gAJ6JO5pV4M2edkiVw6uYJ0qefFrVMyukDydK9sKCFTh1RQKZZqkHHlMK6VT/bg2gmPW24Rvi9BDpWHQFwt9z/2volld3YiOcRq57eQkleGySlmuAAHz5zSXfg6O2fapLkqjI6MBXMxKh9TbQby4g1iByOSZS+48He85GGC9OR78mGzm1jHk5ADFwURHm8GAVjsno0tkTQbc4HceK9MkZeihJXpVztPt7e1hMHsoyknXKWwKZ22NgHg9t1AFgtL1qt1S2ZXH5mm3osrZ/e8AYNSvKSKg9QK/fv0aDw8Ph5+u39/fl68aOhjY7/eHlef6yt1utxt//vw5GNM0MP27Bb7QsQqdVm3r4ftKdtLzaW2BnqHS5XW2Bz0mUZI93ks8Ms8x3pScFJyX7+OB+igZq9SmDjy498QlIwMrzhKvp/TeDimNG6kEPBMgSAbXefSPwFGnenr1y9PT02E8aHwIfFCmfJ1BZWuSt99dc6OevHUaXI8IuMfv7VMBlDRFobJISVcTCKQ0HW1eM5CAQHoPn8LhHeLXWJktxoMejRrbeSIQ8DlD1UH3dN0RrkdAOqCTaIbMzpnnSwKfQlEJ9VbHWd+cQ1v79DNISsQBgBYLahtiLiLUT+sKuH5A9RLJ8+G+AG6kpBwkX5QJKrq08VFlvEjJg+P4IC/Of2es9dwqGFFeafz7ufJOvBFYcHy7h57AS+cRc7ynNQ9S5ARh3yEyUIEm11ciztWTqmlUXpP8UJ972bzmU00ivsHAfkyy4949+4kRCEaGBBRotMknjbTvCOiRi+6NFPewK7DAKIHfJ98dEGP7cpMiv5fySfZ2FkkjvettAhpdD01RISSF5EfdWyE3MPzfGZ+qURwIMDpAqsI7PmjcUFQ8UHmTF93z8rxeFbJcAQAfZegrujQAIP38+XPc3Nwcvj+gn0cDdE0ggZ8zfnh4OPlegejl5d/fu7+7uxt///13BAXycrg1qWTOQQAXNvr0hNNK3yXjXZ0nSkbTy3YPih59JXfkje3RKc0KODvIT+PMHYCO1C/sk0uQj+Ouv1eB99bx7tGApJe87WkLpFP1al+SRwIH3tM4cvlivr7GQEcCSP5WwEH6uW7ldQEItZeDAW/7zi448GD6mY3xvu3W0Dm9622CFIIjdZ7BVoFcFfLkFfGaC7bzMms88pGiBOQl8Vfd0/PO/6zeFJzqvo6fYfRXnrs0MBAQ8EWC1aeLfU0BpwscJLpHcHd3d1BA9PjTOhsqMKb1c3rmLNeVwIrMVN5ylWeiFFVIHlUFShM/ni4pVJ8i8Oe9Xl7f5HWmtlB/+ZbElyBvw45WxtmqYVDZyjfpTc/X00nm9XphFxkQOVigPuTP+/X19TWu66HB15HGX+dc+Ef589A/6+tySnlVGoLh6o0U9m8a0xUQ2NKXK7QZDBDx6b9COZ0hrZRCuraC2leJgkNBrcp0ZOqI0+vf1Tl1rF9nPuJV933tQiIamFVaiQp0fbWVVj2WzyIZeHn7igD89ddfJ2sEBBR8j3rOHyfjyVC+L3bSkd4PFatvjcxNkHyR2xh5lb2I112Ok1y7YiV13rXf1/+kEF2WmBedCQeu7o1VPDl1skYePC/e8yjhd/g2ASnV0cdZ6h//XzkTyft3/Uk9tdudLijUmi1/NdZl0XW0RwY8PJ/qQ0fPwQANPs/9OAMDSS557gsNU6Ss4jv1C9u4S1+Ry/iMNoMBNzw0WFuNxcxTPpeIQHlNjeODRtd9qoMegnt2em6MeTShG3QiDr40SJzcy/R7lRc2a+vVvlhRxCl8eAmiofXXBv1jRX6kUXbjTINHD36McQIEXl5eDpuuCPgpXYpOqCwPi0tO6WXMIlJOlfEXP8lguvJ2njw6kMAAy3fZcDDgQMC9LK8LDVA1bjpZdM+TfK5E6D6LZmB99brTeyIEYxyDBOlInWssUHd6uzIPN+LVtNjMSAqIez19WoBy6m8DpNB/JY8dCKj+69hF4Kr7MxtS6fxV2vQ2QSqwCpOTtnqXM09yZbCTPxeQLg8KJKMdNPgMeYkqQDBDhl5u4i3NiQkEsFyG06p8da3ykGbU9UvXnrNnP5M4NcCpgupLhRUY8HUAY+S+lEeUogXe3re3tycgQJEJpl8J349Re/fe3x0gcPLxyzzdWFdTBRV/Kd/kUfn/5Nmzbm54/HrVBhXPl4xsid4Lps+pQzL+uu5rBnTuUwVu9PlMkm+WozS+gPP29nbs9/sjw0wgTt6T91+9BcD8EjAQTwkUpAhGFR0QuayRb6ZJ13nP+5aOYrJ/iZbBQOWJ0jCegzZd0VRGsTL0Er7OmHp5CYlVdfbGXjWe3XRJxeOMHBQ4GFGenRdXKcyVOs2MfSrnO5AMLBcG8s2Bau2AIgi+qn+MU/l1b5ILmxjqpHere930APvLn+2iQ9V0WEor8j5Lht/r4ErRPSgfb5RRlakjox2d4mU+bqwqg+N9xWfJD0PF30F+Z+PI+8gjJR15v3i5VXqWUU1f0tuXbaCOGuN011b90t4BBAQuCzrXeGB/uzHvPH83+AkUJMNfRQbYbpWBr0CCp1u9rjYTOOrGu9NZmw4l5ZI8aDLjhicZpS3kxrTzQNXg7m1vKX+WJqHCTjh4dH6TovQQGAcOp2rSgKu8KfKTwNQKYFmNFFxSsfpiQQ/7a+GRLxykcfYV9VIQXIxExeEhbRpvka8vcCWmZ9y72ALiXPar1dxMr2MF2JNSrLZg7RQdZZqK2MvR/Q5Y6F4CyVW7JJDgfcfIzneh1A7iveLTgVS67mWMkSMBnV5wQMJ0tAvSXa6TKfOeLz1/9bPWJHBKzdc1JMOuez5eHdDy3I0+83dZT8a+av+KqnTVmE+O85b1ZGd9tXAmiKuFe16VQRIRbDAM5btgrRixGRDohN07uAplpme7ctK8mYelXdD5aieBQFrb4ApwCyBLwKUCMZ7XJYHAGGPc3d2dRAX0dgCjANV7/SL2K8OO6Vd58VJq7NsENDqjnIyxSP2pMcK83cDyGp/3/114k3z4vCt5ZnnJWMx44PUkr8np8OdTHZw31mdrtPMzqBtLW3RX0ge8nkBWxc+qp6n07qR4NEc8OVjgPU49+fQb1yk4qB7j9NsDXRTLwWAFEFg/3me5MzonIrBC5zrYZ+0zQK/Ff0qbogMzmg1aVpJhKPLEcwEFKpAknCpjpUO3NHQHDDzP6hrbNEUHGBlQW/smUClCs8J7pVxX63POs59BvgiQ4XuuEUiLDDlNoLrQKEmJuWdMQ5LGic/BjnHqxdMjcRBIcgXtSpdjMwEBykR6/SmBEAcpqd4JyJBcLpLhS2V1Muy6KW28M0b+sFjVT5eW367ObJcKjJO4+DTpg/Q/RQcqXpIDx6N4cOPv48mJ09EEuIpYdxEvGn/xmYCB3yPfGodso/Sc19XbtUtD8naswNwWQDijs/cZEBM+t0PvhxVOzHlFZsbKkbzn7wOfRlHpec6wVwpDzih5M8kj8vp1HTVTXJ6Wr6wxfKb/PuC2UOWFJT4rQPMehPtRpFB8MvYOFNJqfsqJ+ji9u5w2Nam8II4XRrlIyTut2j0ZN//vBqPzdNL/CgyQ14/o7zQOCWLca/Q68/lkHAiamUZ6S8cV4/p/hTxSVZFHi1I0JwEkOlhVGQ5Sxzh+dXCM+k0C6jjlU60NUbok1wnA+v0q3O/XtkaEV4GAqJLbLk2i1SmuTQsIReyMVLEO1dDAJM/gXBTOfOkFuyeXnttaDqmbLkjkbZMUWxU+9jkx1VPGjiDMowPvoY7n9F/kbX4pDytt5OPGnnP3fp1gYIy3KQIHBdUUwRjHSi55oCQCDh6ZnwMJelYiAmClqYx/8uB4P3nmPPp8f8ojkfPixqgbuzTiXdmpnTm2HOylfvqutDqV4dMBjBCMkRdLzxyzCij4fX+OZTLE79GCVJ7qK31H3tlXVXTKDbJHBpiuGgsraf0+y9xKrN97p+I7+pCdNGik2EEr0QGRey2zZygcPDooYON5dKNDkiuUUCOpym/m/Sdvh21MLya1L9dVJG/NPUVvb1e+nTKu8vX77wF67yWPCqQ3CDgtwFcKuclQZVzHON2Od4x6RX/VDlRMaQ2CG3q+fujleduzDF5neX7f+aqMbud1drJGqkCG51lFBjwvluk/gj4HA6zTdwYDHcBySh57qtcWw1GRAwK/5zxRV7G/Kt0p/UcQweusI+WgihJ03r3znwDv7Jn3AgGR62WCIRF1/jn0bjDAziB6cSOV1g4kA7FqNBIqVMdImMSTo30dt4APUkKMK1GBilbDOCzPqVOQ1SCfXfdjyjvRue36WZQ+V+wfKUpTBw4GXLYcFLgXTUOTyKNK/h6075bmRo2gw5ViGkcVECCQqUKkncLz8jov3vPtDFCVL/NK+oP1Uxr1g9aMpNdFCXp0/TsCgRWisXW9XB3HyBGCjiiXvEY+/Jr/94hAck6YziOjDh5SmQ42KxDgAL+abkg2gMeqrjNyfTGbImR5dBjPAQSbpwm6wenKz8PVaRHEquB13oJ7/Yl3zi95+P0cqgTiXCSY+GFbuyGqyvAFQqtls0xdc0Cwmsd70nwGMSLQAYJq10HxTsPcGYrKe2U7Up593cHLy8vR1APHjI8zKkKCEc3FVvdp/MUDQ87uJadwfqor69tRMtozIE3AI6qUpxsRRQG4aNSngbiHPtcazUDdV1FncJIB7finY5Z0c/JwK0eu0+EzEEl91kUExsh7Sfg0g+eRogDkJb3OynRd5ID5vCei0q0JmzkTrmfoIGy1QZsWELJwD+skgJCQZ0J1juI7QawUjTpqpWGdZz3Po5MrycprYtoVSvxWA0/HWf5JOae66l7y4CsAUKWt0nwHoufPLxTyq4SzaYLd7m3TE26/2gECHSvvVcRIQLUYkd6qlJ8MOd8m0Y+AxceZK0j/uXH2aQKOVR/7CWincl2Wk6Hw9qNhq/RB6g+2mYM96gXu96C2UF9f6quFFXm/uKdfkdrHvza7Zcx6WH+md8Wvjq5j/Pn3OmmVXmKapLM8QsB7Y2Rg46D5vVTJc6oTpwoSkFPfrvK1aZpghgST8U8VYlqmqQDBCgJVnolnKhGGBhPwELnnpGvJoxJvFXJcFW4XZHp21aCrlGjVFx11fVDxW/HBa7PB+dk0+zZBmibwELLOU3+7V+3Gi8ZYz0oRKxLw+PgYwYDus0x6/uRHni/luwMDfJ6y7T+WzbLcOFNmVX/Ph3k5aEiGX22va+wT1svbl/e5PoAfhWJbMY+Xl7fvSCiS8BGK/iPIx5DAon8UyNNWTtoYxwuR+d/bdStvft3bMEUE0jQB0xCsrXxJ0vVyinIlEFAZeb9/rlxUtorH9IyX52ON42+rvj1rzYAPVHojnk7XfT9/DuSVBnXlwXMifIYDyZuHdd2zp5ekb87zIxbJQ3L+qhASaUUIKOgOJhK4cGRfofTk3c2UfvV8V8eqfpcKtUqh8yNEvpcADYR/jIieYvKgE3hln7qCVgjajS8jBOnDKe4B+jUqecm7r21QncgPZT8pxU4meM3rndKwfAcVDhjEf5L5CkT4f7UFpwfSvhPVuOI0zXci9glBXUonYnSXRpevJ1fj2x053qcxT1Q5JLQLHG98joDEIwqprgm8VNGnBAQqEOD3t8hEAjekGQgY463NUzSAz567XmCMM8CAK/bX1+PwJYmC59MCPuXgiKYygH6k0tP1tJOc/1KdSK780p7VDiiY/r3EDk8oPRkgFwQPvTlgcUM046US5MpArEZEPpuSwe++Ulh9h4Ch47SXgCiBVjd0jCxVX1XjAkI9JwXJMgkAEgCu5Jv5VB8X6pRf+nhZ5Vml6IZHLtRePK7K0UxG3TNmlEFtytD5GG/7UySdcUlyvSMZqdppZYx3NGt/N9T+7IpuSWVxOoLX3FFixMB5cVDrclj9d/46kDCrk+ts8sx6VOSOrPLpDP+WiI7oXW8TVIompfNzjxSwYsnQeT5UdAwBEgikkKkLAD0ibiIjRd0Z/QQKeExtkEL9oi0GtEL8Kiu9h0tg0YGvivcOkbOcKt2lPCyXg/QRIAefyTA+Pj4e/Z6eng5H319gjFMPSu3uexOkSEBSUlwUuNu9rWHwKICDAQJlkoOSBBbTufLyD8ok5ST+HUyzjRw48Zyy5f+9TiseFtMmIOJtyfb8TpQiVZom8CkAUdJjK3qX1MkSjytEoJCMufhPU6N6Vn3kIMHrybZIQCDRCiBO6dN/Apbu+S3AdzWivkpnTxOwIPdAPa2jGDfqNEwpjZMPVCl4DuQUHRC5R0xvL00R8BnWW1QpUL9WAYIVIWC4uhIqBwGOrB3AuCHwn/fzqqAmI0Kj9NXksuDKPhHbRzKy3+/H4+Pj4UhQwIV+3m4M9VN5V1sYJ/lkfhxP+lQyjVY1VVCBgTHeIl+VB896ubKmXKcoiI8jkis0frbZDT3rwvTkyevpBj+R7iW94oDqUpTAaZKRMerdRlcMw1bnLjkcpKrdvI+T0fd7PrYcHFayVbUZKYGDc41u9Rzr6NGBFXJwsUKrzuUYHxAZcOVTzV2NcfqRHQ5Sb5hUWVdqyQNK0QFXCFRO9NRoHDnAKk9N/3n0c7WTrq9ECLbSFmXlYIBGicBA/G5Blv5M1Q5fTR4pqqIbrmzVVjL2+/1+CghEVMga+GrfFBXw8j3KQD6p+FwWBRTSM8kouuc0AwPJE088ebv6+aqHlMAldYdvPkOqAFBqa48Q+PFSsusy4Lxr8aA7JBW/aSrXy6jCz52OqfREZbSSA+lGv9KXdIhSFMT59zGSQELS5wkwVLrD26B6tgIEXZ9VkR4v32mrzJ4NBhISG6MWXnYUjxqIHiFIwqIjFwzyxzlfjxSIXzeCDLG5YXSBSIop1bVqk1nnpKiK/6+8vOTdpP9jHIcYU0RE5zMvrgJvFZhYRbMfTfzQkPPGTxBzYR95lrEnECAwSGDAozIezuWbApTDDoD5GNI19S+jR6qjy0kyBmO8rRmgcdD/ZAQSKEiRg+oZ/k8eYfI+2S4EN4wmJuDPtlCduI+AAFSV/6WnCRykJtBajU3vp1kUs6JZiFt8nEPJ6HeGNzlXFR/JceO9xHcFBHhM8uXlJ1uhPuCiYo6xlTpVeb9Xv27aZ8AXqaTBtzLgmYYorppKYFrl44DAVwn7WgEqAo8GJIMoSuiR17uO9/p2oMDvuTH39vPBmaIlPm3i7cD6p1favP4rVEVQvP2+kvh2gPqXdd7v94fB6ShcEYHn5+fx58+fE0Dw58+f8fj4eLRmIBkkGiGWXb01IEpt7yFhHalEU8jbvS3l5ePCy/V+oyJjNJDX6Sw4uK7GP+vj3qHLbtI9Ho2hA6AxwHvUabN2v2RkoIpmOECg7qwWFCYA7yBojNPtbleBQKcrXO4qo7/iLaf0Xk4CUM5nF+EV6dkEUBMvXnaiSt9Xad2ZndFWvT3Gxh0IOejYAb7DYPJcUn4iKgR/d9SNnNLsdqe7it3c3MTXw8SHGojKmMawigjMaHUAOCVPz/8nI8/P8CbQ4B/m4StVlVF8fHw8Mnb0mM8x4pXSuhTRK398fIxgUemkiJheoMEjAvv9/mjXwDGON7nx8v03WzewQsmYqR5exwTW+RwjdKn8ykNM12lYqCO656o8krJ2LzE5Eirzx48fR1EPbwsCQG//1G6XIq9/1e+elvLtVLX5ap0rA5ooAQKl39LGetbHrZfNvlzVY7NIgtcjAQu/1kWWHPhUDsAWPZxke0abIgNkmA2vOSsPjRIgVB3tijiV24EAggH+2AAUhmpjF0YEZkq4Csuw3u81fqkzGQFxz59HphE40jv1bBuCARm5379/j9+/f594rV7H9J/11iD0hZiXoOSVE1yJnp+fT75F8Pz8fPD8afz5NgENOge0y2AiHxfu6VGZJbliJIAKMRlEUZp/TJ6TG+Ddbnc0zgk43AlICsi9odQOnfdV8SS+KqNGGdZrpJpr//nz59F4ImCoeP1KqiIDlTx5pCXdZ9SE10XVlINTF8VdoWrKU7SSL21SqncCAu6o6BrzWAEQaRyRume93lVdK949n8SLrq/aomUw4J62GJNQaSEPt2/l9VQJ5jNG7SG74vZ9xekNe1qGQatwuO5VnZ8Gw1ZvOSlzF2KPinCw0LvnO/E+JbDb7Y7epZfC4yY7DIm/vLytkv/9+/f4+++/x+/fvw9Gj+FvV5RO3qdugC9F4uHx8fFIjl0pPj09HUVdJBMuL1w4qCkE1q+aopLRqkKEDp4Tny5DVGJpZT2PncInJYOr/6wH05M/3u+iXEkhpvpVdfY0VT3oOLgxfXp6Orru0yVbFepnUAUEKg+Sz+nouoag0fPx6Z7Ej/KQPFdO3zntlvRtFz1Ncsp7K6H7DhhXVDmD3bMuzxorM8DV9bnyGeP0lX3em9EyGBCaJoMqSB6VFKd7Dh1qF/lOVK440s8XCfKcRMPk0QH9rwydKz6nhNQ7xZXIhdjbi4CA++hzfQSjJL63/t3d3eGjPPf39wfAxmiJogL/+te/TqID3FinG1Csi4OvP3/+TNvhM0l1YGRA57e3t+Px8fHAt+SIhiGBSAEC33gohehFjJbMPN/krfAoksxz/tvLTAacAM/BnkckmI+XqXoSDDiAEVXTM+TLj1Sclex1Y851Cnnm2Kq87tUw62dQqhf5nBkspXFQVoWvU4SmcoYSwGC0wPve8/S+T8DReWOZKbzO9krjpvOy30PvzWsLOBcxKpDasovIJzo7MjBTJkLcRI+zyIDfo5H3nwYw/5PUuPROXakTICQw4ArOKXV+JxDuQXl70Ltz4tw/99lXNIbTIw4E7u7uxsPDw/jrr78OX+ijB0cwcH9/f4gOaHEcIwNOyQsl+JL3rK//XYIIeuT5CwQwirTb7Y6mEFRfyg/BEWXePX43pCTJm8td8gCTZ8N+oOyLf4E9erepTTxvHp0f8c3yXNkQ0Fe/FQWVgICoe7YCBHRMfMz5VJEDspTfV1PiqavrGP077pRLl6UxThcv85qe990aO0Dgz1fRIr+2SgkA8F7SXR/Rn1UeW6LGCbh35XAMup2k7p3xmGhzZMALlELTAh2vBJ9ReqeEaoh6ZiDAw58JCDgI4L0EVsS/e0Xuxa94KqynAwFH0MmTcq9fnj6jA4wSEAxoeuCvv/4af/311/j169e4v78/5Kl22O/34++//z76iA+nC9xD4zGFxAkyuFr/EuRG2yME5J2ImjLrclIZKfdCqigVgYAP9gS0KzCWjByBCJ9NYN7bx++xHJbndVo18AkEe5qOjzSuOkVPkM12EVjS+BrjbV1U9bs0OS/OE403jbLOU99R/zjY030nL6Pr+0q3ez6e1p+rHDLSChBIIGqL8U756P9KPjOnMgEb70vmw7fqeN3fiFuhTZEBIks2tH4acEqn6QMa6KRInLyiHgpP8+TKi4KfgEDy8FJIVHy4AfwoROnGP5XNOrqnz6mCm5vjtyiYVmDg169fB0Dw8PBwaFMBtsfHxyOAIWDA1fKqexXmFb/KU6H0379/XzTUKnKZlQzIy/FXz6o8mEb1pSHxPGiU3bA4AOF+COmjJMmQOnBO/Ps4SUq6Aur0BNP9FB1y+dji7SWAvEKV0U7ja/X57wIGEtjr+Krq6n2cPPJKPjyPJGNKm2QpyWYlr1XZ6b/Xy0Fuup6e87pU9VgBqM4v61jpwg7we35jHO+sKr3hY1R6boU2gYExjhWbh0ilFGmQqxBzhebZYDSEKVrgCi55fjJIXBCXdnyjoGxBuolo4GeUFCnBDqMB8vTv7+8Pc/8CAfw+e/o6n557eHgYv379OlpIqDbRFALXGPz58+foM7re/qkuBBiPj4/j7u5uuT0+g8gX5UPGVx5iQt8MMftR/SNDrmMCdZR3N07iI7UPQ+8JVKfxwIhZFUFzmffpPPKbptCYj9e/an+XcQcNSUlXXrDnT55Xx12afkxOAdv9klRFLKhjfTp3Nu5cnhgdcHlOEQECae5tkEBGFSXogIeeo8x4vVL9KlDHOnuZaXpjlmdHKeIxy9PvJeDkMstN1fy5LTp306uFHLRUIHd3d0eDaLfbncyrOjqh8kselQTNlVnyOpQHFwjy3XBf7NVt9FIZODZs1dBVuKcDGlVkgG3BkL9/fjftuqiFhvoJPBAMKAogenn59057ih7861//Gn///fcBDAhAUcAdGDIvrhcYYxxtZPTV5ICVCpDTBVrnkrx6yRXBhE8fUHm68SUvHZheHbycHlAejNx5ea7gZh5wAgeVh8H5SveAHKz4lEYay5VRT0rOQQB/4snBWNXWDpCkUwiGv5pc/3i9KUMubw4wu+hSityqrwQM0jQEwS5Xsq94+ilKkOpd5eUgkG1UTQ1U/bjavx2gqHjkMeXl+SUdUAEARswpG4yEr+rdsz9hzP/uses6O0YLyBzN+cB0Y5+MfmpEGiBf8Z3WC7i3w07z88RHagunSuGw4ypPqooKEAj8/Pnz5O2Bm5u8gJDTC4oS6Hnx8/z8PH79+nWYUhAYUBumuqjdXUlpIZsUhNYOXILouSalKUrGUs85gPQ0NIRSmvTqqTxdnhhtqMBA550rH/8Ggxvj9IzIy6axkcfHNtQzVfvRgCh92gHQnQy2ZzLOBANs82SEmJ+3CxUqpx/ZzqrrJcFA0pfqE0WldM42obzRkPuOi6nPZNjTcYw6zE25TrLa6c8u0uj3k+ymUPrMwM6I7chrCWB62Uq7Anact1Q/jhefLueYoLPru8nOaBkMcOWoExXfGKfv7qbBmgxlZYRFaWqBxkcL4bq9BNwL6xRsBwTeQ1Rqfs3BSFoHwJ/vPZBeLZThdyDBDVfUvszj7u7uZM8BpXOvxAEaV+6/vLyMP3/+XOz1QvH99PR0FMWqDF7qG9aZ9Wbd/dlKdlP5qzKp5xO5wXCvrzKU/qzz6PwqjUcKKgXlSpwRjQTAUnskfUI+k2JOoLvjkYbWXx/9LtMEOrr8EBSMcWpcaeTZb6le/qYApwIEGGZUOTmJKiNZPeugMPGzeq2iNNYqkFMBbcp7AjIOVsmfAwq1PaeDHcRq3KS1ciu0DAYYQmXlKYiqXEJTft2VZlKoSVHxR+PEwcuG8HAuldkqWqzQncomJaWeQI8DArarvPsq1K+fjDnTEQzonOsMeK6pAkYHNLXy8PBw2G9AmxKlV+zYrmwTbmzENQyXIBlGyQzlkYqvAn16jiBAssfrypNhcz0vPjheUqSBskJvvVKulCPWQX2ajLLnVwEDXetAThpDNNopZOwrnT3/BEKYdjZu/T773fNT+4tXKlJuLPUdwMAYeW0U98tg5EttyvlkH6djjMM0mZ6Rrld+bHfX/54n+SQPq86Uy16VXwcCP5qqKEC63jmOKfLRgYsEBBh19PZxIMvzFVoGA/v9/mTOXlRtopIqXYVddE5invQWHICkTWE4UJIHpvzJx2eQl8VBVQkCQ5j0+n1BINcNpGkDgYpqfQHzV/31nK8/cJDlb2dQ4Fy5qpwqsvTZJHkTrwRd4jsBNBo0AgDKkW84VAFBBwG+kNXzdXDcKZgKwLiMJYBOHp3v7ufPVm04xrExSsDYvdgVQM1rDqaq8U3joX5lHjKE2iSr+iLlpcjbxSMCentLxIgfwbnWyihPXSdxjPCo8wTgKkrymQxpkh2R+F514L6KXHad/87JUHoHWR7FkvHnFNcYx/qpenPOHbWOlsGAdmhLlaPHxP+ihOLSgK2uSelyALiXVe0lsCUM6+T19M56fa3njiql5Cg7lUkB0M/n+x8eHo6AgEcGfBMiX3HK+vG10UogtUuf0iYjpX5i/WkwLzWQ5flQcbqR5wAb4zSsz0Hl5/SEK4NJ+XWQ2hmvMeav47KvOk8sAdJ0PwGU1CaetooiMBrDZ6Tgqei9DVWm90/ix/vJy6G3q4iVy4T0CD9K9Z0iA2Mc14tvwrAuuq/xynasdE/VtsrH+0n5MRpxDvF55t2Bg0RbdPtqfuKP/50qsLMaFUkRA+Xh62qcP/Vzmhqns7ZCm8CAOqdjjP+dYb+e0vnzHpplNICGRoNYRyraytNInbDiifHcFSx5T+cVAKDRpQHXFAH3C3h4eDi8BpjWDHBRlG9IxPCSyqwWcrmiv7m5Odq21xW6rjHM6p/8vQQ5WK28TPfUHczw+QpxyzMT2KBx84iW58G21lHKtwrN0vtzkJbmMlPdPVrlAFj8d4umKmK+s3Rs+/S+tE9P+rPuACgdQao8aC025uu5qt93AgOdIXFQwOkC6RACSi5o1TVvZwcE3u6UMXrqDviYPtXD29PBip4hv+8FHVvkdwVUbAEBiW/qzpRf1/e+fktfnWUEd+ubMJumCUiV8ZghzkSuCJLSTWBA12X8GRpJYKDiZQUUeCdXddp6nQOLUwT0+Dnv79MEvj6AUwwryJJtVPHElcR6xuf/3XAmMHCpVwu5gJA8MApDw+1tQrka47TdknJ0QEHFTeCh/+4Nuey5UXUl6/LJ5zvAzTR+zyNrPGc6B40pYlSRe4W65s+pj0jertIR7kAwnfrJF9tSzqVcKbcrxuGzKelW141c7Kf2qt7iYHukttUzBFfUKQ4sOj5XiXx4CP49QGAFkI5x6rwlQ+oOIXn1uqdost/zyE1VHoGXeJOx52fV+QYd1/LNaNMCQinMbsBX9yrv3MNRvE6lmYx/FSXoIgIkCnMV4hwjd7QLV/IoU7mpnSogwGmB9EYAowAr83jJKLEd+Hzi7/HxMabxvuS3DvQlRP2/BGlBlAaIPCL3nj3CoSOnnbwNx3jbKdPBMM8TqE0DVc+kzWOSsuG9dF1jNgFjJ/cKdXRjn9InoJlkiu2tNO4h6V6nxBLI8ogLvWX2l/jg2Lm7uzsYOA+7Kip6Ser63+vs22zreYEgvemjZ8c4XmTrIJdlSsemCIEDA/at/n9UW4iSZ/36+hqve3onB/KerosEVPcqqnjgdYG4xI/sXXqFPi1OXqFN0wQSmDFOFZALg6O6KlTrirXyoNLCKz9WQIDlkRxxVYo8UQUuZmV7vi6o/iqh/9i2yetn57OvqNy0RTSFhnONlafnCsCBoQa/TxP8+fPngFwvQX/+/DkoQU5zSFb03Q2CgTGOkbiH27x/d7u8wlckg0IZ1nkHxPx/JZedMfUxlRSEy6oD9q1gIsl5qldFFYhmffhzZ8HBAMEC+fEo2hjHwE3PXhIMVABAfaNx5298sb35GprGAuvsOwgm/UWAoHOPMCQv9xxA4IY0hd/FF8shfzSm7shW46DiwSMW5MN1uNKvjDMn5qX+9Cg8x2S1ToAyu9rmy2BghjJYsAsiByzTOuJxYEAl5GinC2HOvArxyfMVIOAKKUUyVnnwgeobBfkiwNSeCUSp3dQPFArftYpH57dra/Yz8yAgofe7de7qo+n19W1HLi6W5H3xzz4UJS+e8sywKQ0+28TbgUaGIFryINDmypfpndjfzov3YeX9zECu/iejkZ5zcFTl45EqzzcZJh/37jAQmL68vJRrVmgoyY/rlkuQj+ExsiPmwHKM/jsEXEOgtAIElDWWoZ/rIrWd8uHUWwIEqgPJDRcBhefl/DkI5rG6v5Uq3r0eFS8rUa80risgSEeYawR83VPnQDhtAgPJYJBBMu9eUvK4qs5MgKACAKvG36lTqj7wKOC670Y4/VJes7JoZP3nzxHx+sAn3wQDaetiDSwZSyqXCnV2azPcCM3Q8GeT2oELx9hOouRdqx1p4JVnZVClWNlnbqjYNhyw1RsfrshTHcUzx0mKqFXyWVFKW9XdFXaqh0eYWAfXI8yrAgJVXRkN8Kke8uWerNcx1fMrKUXgRK4veX2M493rSJJ1es8u3yqbfeIyQAAt3hwEuExXdXRZ9Oiy0vl58uCpqwl6lIbt6LJ8bvSCeXi/pP9OLuOVvaBt5BqtyhaurrXYvB1xVTkvPHkFXLm6BRDQ4KTG7BrWvSmeb0FNLuCk9xi5StiTAkhhenrlNPwpTyJJX308xtte5vpVazAS8EhlpumMS5F7/fKi+JZMAquMxIyxNo+oZ90zcBlOEQGP2CRA6AbTjWQCZp7G80ly49dSXanok8Ha7d52TeOqfcqtt29Sis4LZbICBQ4MpDRTG6ofnCcauEtT1+9JJxEQjDGOdq8b463vKoOdDKsb40q3JvLowKyO7oRVxPId0KdnK8BT8bbCd2UXXX962kTJoPs9l30H+szjwyMDUqA06pVxqOZ3ZkJb3aMCV7oVUOCAgPx0oZ6KKhCQ8tf9StHOyBUqjaovHORucy4EXje1pwOChJITEPD2royLRzikiC5B7jkICDCqkjyudO7zk/rvazm8PUUy+hwLSq9pAa4NSYYz9SnPfdw4ICAvOlZeH/P3sZPGEAFO6n+dJ3Cj58Wvy3NqT68nlWJSkOq7VKbySorfX8H7KvK+SX2ve1V9vT4ete3GZQJlnROl+zTkbuATT6xvlWeV1vVwctoSYElrDZifqGqfJItur5K9TLo05ZPuu751+U/PfnhkIAmcKxsWPgtxVBWs7lflVgbJz0mdYKWyO7DQdWqV9yr4cMWaQIDP11f8uffEaQCGtDnoO2GvvDEqICn+nz9/jv1+f7HtiN3IM+Sv6QMa9gQKZMST0dORabw/UvsKFHiUh31arRnx+skjWpGt98pjdfTIVQI0BAWpnTl1ouvuWVEOVRYXv4mqSJmXqXJTu1QG4quIawZcDjyCMsbp2ovd7t/RrwQImH9l8Gi82S8VIPRxoTzS2Jrp4RQJnT3D/ko7XyaAUDlsXTSI47iKUtFuzQy2n/N+xWeVlzuSHw4GHE2nEL5ISKhDsZ6P7qfz5OFUv1le+l8p/HStSr+qIFYAhY7p3BWAAwF2dgWKkhHvVrSTXCl6CNY3exJ/2uHt5eVl/Pz5czw8PCy110cTN1/RAGVUQPxW7VApMgcQbuQIqtwLcWJf+tRP4ikBgnSuftIzK8YxjRcnV0wun0lG9fpeBWCrSJQMFkOvukaDTwPg42imRB2EsD/Zf5cgle8GsXK4dPQxOsZ84x32Idu+iwak8cG+qZ5L19nOFRBIYyy1AXnhsy4L1Zh02VJenjfzqX6dzUqyyTIr4MVzz0PttSUiu2mfgfTeo4fwnVLIpuu8LnIwAwUpbz7vlJQ7G74bdMx3pZNTno4sE1UDTZ6tnhc/MnR8/vn5+WhlOhVyZ3j4X4rWDYsviOtexeqU0GfT6+vr0eYxu91u/P79+9AuroRc+XbGwL3gNE222+1O+kZ8JU/af/6Mgxt6IP5qnb96y3I9Xx6dkkJOICD9uDkW5Y2UIo00ahwr6RoXvPraGO3MlqJYeraK0KhNL0HizR0DEQ0ZjQB3INW+H3d3d4cjd8pkOV20j1QZqKQ3O6NOGUhAQNe7/6nNeD7z8GfpXCb92sqvslkzsMp2JLiijtE1BzZq31W9u3vtXIUrXelKV7rSla70/54uF/u60pWudKUrXelK34KuYOBKV7rSla50pX84XcHAla50pStd6Ur/cLqCgStd6UpXutKV/uF0BQNXutKVrnSlK/3D6QoGrnSlK13pSlf6h9MVDFzpSle60pWu9A+nKxi40pWudKUrXekfTlcwcKUrXelKV7rSP5z+F0aeLaBRNjTlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/lUlEQVR4nO2d6XIkOa6sKZWkWrtnOe//iGfmnumttOb9MeZZX7ocICNVpdRMJ8zSIjIWEgRBwAEyIi52u91unOlMZzrTmc50pj8tXZ6agTOd6UxnOtOZznRaOoOBM53pTGc605n+5HQGA2c605nOdKYz/cnpDAbOdKYznelMZ/qT0xkMnOlMZzrTmc70J6czGDjTmc50pjOd6U9OZzBwpjOd6UxnOtOfnM5g4ExnOtOZznSmPzldrV54cXGxdP7i4mJcXl7ut/q9e/fu4D/P8x79SLvdrvzpvPPCMt+9ezcuLi7G1dXVuLq62td7dXU13r17t+dN55wPHfN28pokn91uN56envbbp6en8fj4uN/XucfHxzHG2B9jm6v/LhvdT3n48S3EMvhzflJ9fi/3//nPf27m5aXkfZP60Pvdf16OH0s67/ouPRRVfer6Sj1N48PJx9z19fW4vr7e67fK05a672NS9YoPlnNxcTF2u914eHgYDw8P4/b2dtze3o6vX7+Ou7u7cXd3N+7v78f9/f14fHwcj4+Pz8YqZfH4+Lgviz+OEbZxjG+6zTHFsaY6tZ/GX6XT7J/dbjfu7u5auf8ImvX19yjbx4HbR9dB6Qz1mbJSn6kPKNeq7tTWytZyrPJ/1T5dQ2KfU0d0jrox8zez9viYp7woN9dd19MZD4lU94oPWAYDqxWvdDLPy0hWBnOM8ayjKlCQyqZh43lXDtXz9PRUKs4YWfGqAat6yJ/z+vT0NN69ezceHx/311cd151PICEdJyUZ6HoZ+sTD1pdWvrWXXO52uwMjttImXZPuWzXYquNYAy9dSaS+9DHFseWgR9e7TmsMUHdY7tPT07Pxu9vtxtXV1Xh8fBw3NzfPQI6uTWOWcnEjr7GhOhLRQLqDv7y83I8tlu2OPvGUbMt/C3VAgE6/AgK0HS7Lqp7q2AoYECUgIB78Po7NmR2kzne+a2YvJAvahjTuWb6Xtdvtnsl3pe6X0ncBA51zTOcqBXS0KfJOTWjJlSEZFhrMxJ/qoSHxMnmObUht1TGV6zy5QXbjqXqkoCtKkDIFJAcA3v4OjHRtSwpd8fXWaMWhp4Ht97FvZ2WRaIxUTgJqvLczkBxLGk9d5o11y3HSKLqRf3p62mcHEl/6XV1dPXMSKr8CBE6dUfY2kKjHaex5Wav8/DdQBwRojz0z5SBgjJzBZD0eDM0AgF8ncrArSsFbN0ZVFnXD63BgsFKmkzvw1LbKNxDg0Dck+/M96btlBipH5+f531OSTFWSdrvdPkLwsgkKEi/urN1xu5HjORkukkdRipQqQFBF1wmNsg4eq/53NDvfAZdj6Uei1pdQN3CTHlTXVQYh6TaJIFORvV/jxytAUOlaAgI07A76WJ50ONVzcXFxkGLXVMHDw8PBtAVTm8kh0ClUzoP7vL4CxNW0GIly9KhvlmF0Gf+3Eu1klxWY2U8dnwUwW2VaAQFRCt5mZblOyL84IOA1Y6xlBjpKtiMBgurHer63vX0xGOicfmpEaqCnn1J2gMYpCYKDmXX6PGilTDRqTlRGj96pQN5eGiny5ynUl9JsXYFTBdi2KNaKIs6yBa9FzmuF1EWJTw7YKjJIYNivTdkEp1l2zP93QMDroA4yC1Dp6hjfxpCcw/39fczkab744eEhpt8pP/13R95ltdgGXyvQ6X2l797elHXxMv7TKdnmWUaAa0QSpYxmN61zLM8zclDQRfAp0EqAgDKinZ0BnQ4srNgQ1elAoSrre9B3myaYgQAd9/PeeF/EJ/LFdTJiEoZH8Z7G9ywEUa7KrIhlqxzNY4o3tovkDtoNb4qQZpQWPHl5r0UVOCNPVdT1mrRi4GcDON1XAUzeo/an63wqSttKR6X3NBQqx38ycE40morwVX7KtOlan37Qvs5zCk+AwBeRpUzAbMvrKyCgrGGna1VfeV0rgO2/gVzPPCvAbWXXqnK5XaHvaR/S1MEYh0GdSGNEeuXrt1hmB+pnlGSSsioOnDnOU0b4ewKCF4GBZBS3/pIR40+kAS9HLKOoX2VoK0Dg5ArkiwZpiHVM/MzS9jSENLZu1HRtVVbn/L0MJ0ZvzLD8GakbxMkpzKKLqkyPgN0gVNmqCgx7hoq6nMr08SN98TlTRuO6JqX7xxgH6eI0plQPAUDSeZfRCihmWWnl9wwMVw7Mwcd/KxDwYEz7DgR8mqCyi6Kkhx2lLNAWYD5rn8p0QNBN547xDdBySjqVsUJbgZBnpmh7fOqiAgTar87N6LtME6SI5lhQwH1HpEzjMCOQsgYiN46dca86mgBAhljleIqMncFzyVjNjGVn4DyrUGULnOhI9F/3kWcq6FuI7F9Cjrj93Bj1lEbS01SO30diJC9KTrsyqAmIpoxCpd+V0XUjksBANSY8y+b1pgxAkhV1izyI38QXf54VqOrp6q+uOSbCfavkbWHf0d76WgGdSzZgFdyKvJ81LpODm4GDKqruAPSKfBwQcHxw+sHlsaojs+xX4qe6330F7zvGXn/3aQJ3vNXWfyyL0wVEnYyGONdTGYRKSStHKEqK5iCAVEU7lXPnPdWx6v50je/zP9vIwbuayZgZzP90mjktR+h07B1Y4n360QiOkSO1GZ/UwyodKuJ58sNyWL473ARWVa4ogQEfzwmcs14vP+0T9PPdAx1gdlmwnq6vSSt9859GKQjzRwcTUE12gGU4SCWxn3w8jHG4xmBmm9I1Xm/XZ7PAgICAbfXgq7o/jYPOnnYgy4OSzkccA05IR4OByqB1gMAVUB1IhXRU6i+24Jw9AUBS1oRc0/HUKYzC3Ei44lWpG3f4K8CA24T8ZrSCPB0YJJ5WFXcrf6emZPB1nNvqXm39RyPXjYl0fUfUQxGjINcjguSLi4tnT+C4gUv1uzHi2HJdfXh4KI2iKAH4ChCk9lNmXIvgDr7iX3Ws6rTbj0pn/lNoZqNXp2nT1JGDCdr0MZ73n4OAZDsrYNCBBc/eqs+q6bWZrKirqS4H2S7fRG4vusiebfB9goI0dXCsLf4hawa2TBX4c9BURH/UMAl+jG/pTwk4GSO/x9uRgID2qeCpnWOMg0UoTluBQIWMVw3SKhBI11TRWVWe35t+b42SsefW9/2YD+ox8grmSudpFLntyOtxo0Z9SnoufRXffo0DFm2ZDfGsCNuR5OPO1A0az+923yL9lIngY4sdGEgAZoteOt8q87+Fkv1K9nqMcdC/Sc5jfFtYenV1dWDPWR/HCW3biuOlo3M7nYjZ4xVAUPkDjoVEruOUWzdd52/hTCCYZfLeCmxQdi+xtz/kpUM65ormQnLF9McLHaGqE7n62VdLVwM3AYSkmC7MhCIJWpJjddSr693Jd9mEVCeNsyPIWTv8WOWAVgHAFqV7C4AgDeytfNHJqK/kHLv0v0fENJAEB7w38aZrq7cQVvrDcUdjOcbzxxgd5PB/OucOugKRNM6sn/LkPSniJyhYSft7m7aC07egty+l5KxmgIDkT2l4cORZAc/k8jXSrN/tmGcDEpjtbFpyvC8FcUkeogq8sP3uH/SeDg8MU0CQ7EHFT2rrMbr7Q15H7D86Th4TJZBAIEDhVmgsoSknR4NVNF/NP5Hv1A4aWi4+SSmxCiCskg8o7TswqAbQDPVy6/vp2rdMM6PgUWV3T4o6k6P3AU6nz58MhBbGVvLsQG7H6xjPFzDqHgJuByEeVXPfwYAcNLfJwYt8Co7HEmBzR+4gwJ286/ZWIJB04D9BzytKtth/rke0U2M8B5qpPH8xUUphJ5uVbDjHFa9LUfRq38zsQDd9kMqiTFyGDgqenp6eAYExDjMMPj5ngJn3uhy2yEX0Xd9AqO0qKEiK2HXIsY7TIxHn2zt2jDoySwPKO50Rn/OenLbzOpsm6DIOnQGjc/oeyFn1zZTuGMX8nkQQmRzUikx8gIoqGbusacz0Y6TQ9bs7ch1z/pwn3/Ith8y++QeQZn1FUCDn//DwsN+qLbNV/tVUR1VfAibJybvs030uuy7q1DX/aUSeK1tcgYEx1t5iyswA9WgGqnm/1+nA2s91Ni9NCXuEntpb+Yjdbhd9kupXQJmAgAfACRRXdoVt8/urMfBS8PrdMwPaViDA95MC8mMoJBqgNMhX+fNo3p1suq9SMnY4lYJvstJ9fHY1TSWoHVsAgfNYrVngvTNiW1LUnP53vJ46qlI/VOh6RhWQ7O6vrqUj9dcAV0aBGSfqm68AZzlsnxs9/q6vrw/KTu1IBotZAb11UG8m1DG1j23eEn05mK6mBSq9TtmBdG5Gp9bfl1Cyw+lNlSk7VP2n7rnDSzbbHbrKSODbX4BVAZRk61JgWYGCFXCg+lK7aM87UJF8Itua/FgCcfyv4IC+IwGOFRtN+q7vGeB/KiAVkQ1K94/x3AjoPFOQfLyIc4iJrxlKZJ3unKs2p4GkjtR/dpTeWJgAQaKEmFk/96t0W4UWk2Kna1YBwYoxPiVdXf1bzR1J+0Cc9Xna30oOCJySwUrHfIxxHUH6pobuoUPwt8yl9lbRo4OBu7u7/auKHx4e9lMfHJ8JgK049ZRh4z1JB1MmoMokJPIMz1vR5VVyPXEQmL5C6HYg9Y07/wQKXMdnnzGu+K/kTrvKvp+BgGT3Z2NN+3zjLO05x7Fnib0uZja8HauBHK8XICBwSrZ8lY4CA+7wqWwJCKRj3mAZjIeHh/2x5Mzo+P175U5K1ySFcR5StL7Sfg6wKqrn8dk0QaKVdF1qhxuzFYdGYz+rqwMCiU5lUK+vr/f7XPBGfVqlJMMEPP1HciDiepfGCMdOelucGzGNCTdyDgaur6/3++TPwQDTwGzD4+PjuL+/H5eXl/vMgDIFAgocsz4VRyeRQMwsQ+b7KRvA/j5GB7fq+ampAwL+uuGUWRrjudx9iqmaXnIQwKCto84vpPalzMGWzADlVN3PazgdoKxXBbq7NnomWn4jgU7qnQMzAgL5F163EuA4bQYDVWSSfp1BFNFx8fEhGb2EVt24uKFR3UJvCUkemzKkHLztag8zBN6hiecuUnRK6c6Uhkv8rhyvIv8kI7arKn8l8vvR9P79+z0vNFTaqn2reuDGYuWXDA3rrNKRs3FFw0ye1Cc+JlJkqKkC52m1/ZwOoExUfvcEQDLqyXGkDM4KCFj5VcT6/lMyAzMgQBDgj257lpTkAZUDgDSlQyDYZQXS2OA5v4/fDnCdWJ0aSHU4D8z4Uke5ELBa+KtpQO1XAWYCH5VvSnaHQaiu9/pWdfdFmQEpmCtcMlqk5PiEIN2QuTIIZfqWjebiDqbnOUfLcrdEhpUs0v+ElDsQM+s0b18V9RwbAVX1dUCgu8+vO5VBff/+/V6fmFVSFkq8bZWbO/oKAHeA2MEi7/G0YxpjXrfK8ewQAUMFLlwOHIcaZ6kePjstXmQwCcLpGBwEMyPoaylSv7gsCXzSuEggZLWvO7D7ligBAYKy9CEinRdJV1aCCsnQwVtl31IZVQq/AsdPT/9ele/95wDAj7HsFeJ1klHl8KsMAcfESnaXQGBFN90P874OgFS0CQwktOlRxgwI0MFLURhZMB3jzlv7NCr+SlIqggMBGrOUyk8gpQMmidwpp+h/9XWqFWDxexxQJENXGbSkdN4Gp2SIVwDAqQyqMgMEAlVkw+Ok5Iz4SyuIWZ7f42VXsqGxTuCiAh8sWwZe/KV26FrqJ2XiDoble9QvYsQpuSuS4fhVeXoSIfGfokuPZAlc/L4EQliH7q+M8KmA7CpVupGyAswOJJu2Mua933nc+5fU6R/PsW+ptwSWDiC8vFRvaof/d3uf6hnjebC5QhUIrcZu4tGvT5mJMbYDgqPAANHIKhBIKInpfEdiNCS8pwMCOj/G8/UCHlW7UrpCcyueUuTtSim+HBlrfUP1OtUk6xlgqaIe5z31QXWuav+MKifaGdjXIq0ZUL+McZhOS+lR7++qHR6BJefs14u6/vCyWYfOuQFx4OGGIBlCB8ia67+/vy8BQUUOavifdWjM0PCSn052lYFOIMCBePX7byMHASkjQHstYr+QKiCpe7ifbJR4cnLnn/STOlxlDPy+1ejfqQPlXg+DAC4mrK5X+WP0U7ld8JT4k0w8MyBy/9TRMhhwpFn9OqMhRdE5Om4KyDvT50O0n465U6rKreYl/R4RV47S2LBsHpfz56NXAgJc+JiyApUyu+NPho7tSJQGewICqZxqAL51g0oHqugz6awjbAcE3Oq8j4vksGbyYX92wECUps58bFX97Pr79PQ07u/v9+f1NIBAAfW0y0K403cZ+Hm2V4DA7/NpEk/HVjYmge0ZACA48fKqut4KUcZJJ6sFp74glM7WgzNuxzh8Bbzu97cV+v0Vv2mqQOTyJ4+iKurn/Yl4ToGBB63pKZuUbV5xuinA4zkCeOljlblge5PdOoaOBgPVauZqMHXl+kK/tKVydlEvow2fC1tJl7jRV3tkiJhmpsHVQKhAQAICBCQOkqp0bAICnvrsnHjVH8eAgFkZM6PwWrQySJPBS+3p7uf40PEuq0BK/e91VNETHauDZNcL6Z0AAMcJ3xdwd3f37NHAJK8UENAe+IrzFNG7Q0hAonIWSRY+LtIUWurPBN7eMghI5LrIjAA/AKenR9yRuTPSca4voJwoX9cTlcd9/ee0WhX8VADAF8tWNAsI/ZxnjSuASKftU3gzPrqyknOf2Q73QzNeOtoMBqQQVXQlWo0WhUj1NjYaz6ozxpivePVru2i7Ko+kR6YS77yXYICAoAICx0TVK9kB53OGmjtH5/fTSKfI+S1mChLCTs6gAmCpnCpLMIty0jEa2CoqSPcmA5z4F+h23hjZCCTwxykDj0qYBWBQoMcVBfDdRmzRDwcJ1bivfh1Q7ox9B4jfEjlg0n6VEUifhk/OiFTZ+CorkPiaAYHOSaf2kjenzpavBISesU7j2QHBDFiqnG6NgUBAAvBVoKe6ZrZnhTaBAU+FUqESqiZVDonnOD+ZsgPpvo68Tl6f5uNTmbqf2QuufKaRlfFx55+mBpw8YmKnzqL5GRhYKYP73qcc0A4EKh7fEiggACM4I49uTJOT9jZ10SX/z1C+R1jUpQRkaVjGGAdv+0v8pszabrfb36djenkQMwSUl0dONO6cj9ZLh9IctcvH0/msJzkSyjCN4dk4cL2t+sTB2VukykE5EFBWQEDAH9keo56PdydOcgDgcvTskAM79yEiL6dy4MkesS2818ezU4qsCcz9XjredK/7HfmBi4uLg3HH+6T/blPdPpA3t1svAQVHvWdgFqnPIi5eJ0dPZeyeAnChVMifQKICE7w+AQUhNXYOO1TnnDd3/h5dquyExikrHeN1LitX2Bklp52uccX3uWAdX3F0pyY+vUGgxn5xHWV7fFCSEnJfGYRdhFo5cOqz7vc5/aqelCpXRk7n/dXCDgRYJ8ukvmu88i2EdEQ04D5etE4hOfVkZDUO0viibJ2qKccO3L01QFA5JgcEnBqogIDIx3Zy5KIU4VKPvb7qaRsn74+UQU0giPW/lOiX6J+qulO7KMunp6f9WFAg6f6I02UuA+r3ajDJ+1dlsnmagFQhlorJjmhoPPJwp8y6RWleiMCi4iM51GpKoQIrDk6881TPLB2nY26AZkqeAALlNNt3Pt2w+H4iR8reV99roB5DDgASEBAlVJ62FVioruFxp1WwwfIcsKa5Wh8TvI6Rhf4zShfx3QQz/aFj8OkrpVPdjug+ggEuXhSl8ZPa6rrbOfgk4wrYVTbhNSmNvQ4IVOu6SC6fVA6dOXWxc2i8V0DQ+95lSt2mPqVALjnpzr7M/FAHTliX88828VFNX1uh6TbJ5uHhYX+v9ikDUQqUuza4HNIURkVHvXTIB7kP7sRgGkxu3BgJqywakTGeP1ucBjsN5VZA4G2YKYm/iMUV1x171Tld5OODiDKnkSRoSsa6GjCVU3TD4ICAzqVD+6em+/v7A0dHwJbanpzDDGEnB+LgwK9N+5Kpzx+mKGWMenFUNyb4RIUDApYjvbq+vo5tcKPN42OMg+m0NM0gvlSGMhIEaq7rfKqHx1130/xrpaOUsYMl8XtqMNCNrQoEeB9vBQKc4qGjkawEstO8P4GA294OBDhfDk5ZRpqzdz1NoDjJ03nwcxwjKUiS7Dn9wfp1jo7fbfoM6Kp+n/pwcoC4apc3gwEKnUbLz4updFznUgQpSvOTCY3y2gpVjTGWAIHK8GtmgIB1e/TiBqwrj+1N4IeAwtN0yfg5n9WAqUBAijoSuk+GeRWNvgb5ux0qOZA6IOCD+VgglPrJwTGNhBssz5hVU2EOoJPj1D6jG5adwJIyLEzvO7kh8zFMMMBpNS/Po3/KiAsjJZOUFUjGkc4tjX3edyrqbBZ/fGTQHyEUua2uskC+DsTBAAGgHJyDLt5bZSVEDgQ60C4dcltT2e2Vpw+o56u2awbC1GbJayYD96V+XnJKPtNl4EBlhV6UGXDmViKnzum6oibn7wJNQCRFIESPyZmJVtqSKJXpIKCK6Hifl9Uppzq7cgIkN4pd+1yhVp3eKt+vTYw2OyA0Rp0V4PUVQFpxGhy8ST7UF4IAHpeBTXqV2laBBx7zaIZtc4OSonmtL6iMlwx7lVniFE7VRxxPaSx1QEDlJDBAIOB6y35+S+Q6SMfvkarz79Gl6wPLp4Mbo1547ZkfOsMuCHNe2B8p88TyOU3rjtSDFB5P45R1dz7KgY07XQIDXjcDAsnXeVbYg1uWU4FYbmd09CeMPdrUMTJC5+sMJwPqnZCce5q7Yd0edcgpK3pIDrdSdG+r73tbSK6MbthTnUmpO77YjtTh39sZVwjc+WB/vwVAICeVonvtu5PugIMP/pSOnQHdKjvBulMkzAW1MwdV6ZEv/OKz52mumc5A5T49Pe1BwN3d3cFTCGyDyyE5Exp+khyJy4LjaIxvzkH1ORio+sX5rMb1Csh7TXIg4E7IFw2KkuPVPq+r0t4efEgfeV8qw8EI+zJlKrrxwWtpZ5JfqDIClf/w6Tn6nRQUOWiu7ILX7/YlgRbKR3x5QFv53mNp0wJCp87gJweanEk32FKHsUynarpACFIrnFMHeT2pnBlKdIV32STkV7XB+fGBTKpQcEUzR+1y9gF3DJ0SFHi0yUHdOWN3KKKV1GBVdqpL+1X/ae7dF62uOCsHORcXh99iV9u04v/9+/f7TxvzkTRGd4rglRW4vb0dt7e3e1Cg891iJ7bdr3MQ4A6ezoQgwJ1VMt76X0WC5IH7bwUMpDb5Y4Suk2PkIMnL9fa7g2P9Y/z7632aguMjqp2zZF3s2xXb2FGK+D3LwevYFgekdMBVHQ6QUkDgPEmnWcfT09PBR70qkFABVp1LtNXmHvXSoS3kCC6Vl5DaS2kVEHSRipM/y+3nuiioO9chPL+uQvfH0AwQ0JEw3TtGXtjyVsmjTo9USKtZAQcAHgnwHv5355z6O0UOukdGV4alGkPsM5Yj/nSeq8Vvbm7G+/fvx83Nzbi5uRnX19d7UOCryQUG7u7uDkCDHITWEXh7qjSziMCW9qYak6l/3E5Vx1JfOAA8NQiogiT1mb9LoMrmjDH2/aZ9tTNlI1N9ItpO6aMcG52uO0lvk/pAPBEYeBY49Ukad77Y3Pu+mibw9QlJ31J5XE/hgIdbyVjj9vHxcf/NlDG+rbvgK7f53+VfBRoe6G2xy0eBgarhiUFnzJUizSvNGlJFqAlhshwHBGM8fwSECJH3qmN83tKdhPOXjF/lzCtD6YrpvG1F0T64KjDCwe1O5xggcCrAUDldtcnbnxzDGM9lUI0H182U4k58Vej/8vLyIP0u3aXOORChQZU+p/PeLjkVAQK+I8BlR2IZeoTKX2fM9LLLhnJIKWUn6r4DV6ckU4/O+KOdeksglzJmdsrBGKcJRHS6KTPA4w6eJatkC3Rex8mrX+vgzoGfeCQoSL5jBgZ8TDhY9gyR2p7GfqVPbJvztdJ/etuuAky1PWXEOvtegVieW6VlMJDSIF5xxayuS4aVCNfLckNBYdPY+Tnuu5EgIOD8q9eXUpy+9kDC5txURY42U+Tn1zpPScYpczBzaA7SXFapDirmW4iYtlAHeJy6weV674MuGawx6kdEO36ScWJ72KYUgVXRA+9xIjD3eqiHmgZgWUp18j49wsjXeKd+6IxWykCJBz4l4i8roqySHHhf9Q0G3r8VcH9vor10IOCZATpqEe2JO/sUXCX9S4FcF/j4Ykb3HXSCKsudY6KUfk+ZCOkyAQHL6Gwnj80CH5a9Agi0ZV+KVz4dVk0LV2At8bgFEBwNBjrywahjCRD4vMsYzxeYVAOxSuWnDmS9/mZDjwRSKk2ZASE6d9hd2jkdq4BAal9SyqquGapVWypAQJ51Tcp4qBxvIwf8FlT6I4nAbYzngyWBx4oqEOB9mp6tVl1JRlV/pD6nofNjXVTtmR7PJrgMmL5lez2C5NQR50W9vN3u20p/H5/8n9rAuvkmSYEC8uVtcZtF/h0IOK8+1XJKor3s1gl4cJL6jA4+6fMYh3aSNoP8eIBEXfAIXte7rWUWgH1YgWyW6w7VQUECCE4dQKU/II/JHldlJ/1xMEV/5M6+olV7/0PAgCM7r6hzLOm8ozemd9wBriBzj5aqtPsYh98aYBTVOeAEBBJVGQvyqToqVE2eV4GA3+PHKZ8ZECBxSmSmcFuQ6GsRAWKSS0dVxkmUBqRf54as0wmWK2LfX1xcPDPsOs4xRN1KfIyR06x8G+But9tH94zWaCBTOzSmPdLz9qc2q31+nCAgffsjRbyqg33ijjFNY3gfnDorMEbODKRfWrtEG+LjoAICDmydF+6nYCFFvnwToYjgMIGAVK8DguT0JYtqqmBGDgb87aWuM96mFfLAwMtxflb4fQlt/lDRjJGKodX0CRXL76kGe/rv1yW+OEXg1yYHnASeomUfaIwKGW2QvN0zp52oishILp9OXg76kqPreHkrxJXzbnCq9lQOO8mkG4je3zSSjD6937zfWY9HeN24oG46cEgrzhVpjzGeAQEaQ5ev6vMIX+ODoLsa16lP3Hl36f2qH7ryWEYFnE8NBtz5sv98wSD73Z2/76uNK3bDefGMQuJTfHjAx8DCwQjL83KT0/SXGnld/F+BcQcw5EfjIf0or5kz9/ocHNM3sJxZALMit1V68bcJKsZ4X7o2lZ2UeRUpdQ2vhKkopIrWViilzdmxDgRIHvHxeJWa7zII2q6ixAQ0ZuDDB3DiIf0/JTjw1DUBASkBS3cQomRMK4DhTtEHv09jJErAg8adwNaNHvXH06k0lCrn4uLiWcqS2QIarBSReqTnRo9giO1Luq26GaH5L6X4vb/YVw4sXKZpDLwFQOB20tPfbjvHeJ4VcB1atXtJnzyrmr4lQZ6pJ3TmLvuqXrfTHvGLLwKEbqqgyhokvddjs3d3d/v6/SVbCQxxW41vv/by8rLMvFX3uv2nPFf7+Oj3DFRRy6zBW+qq0u0rUVRS/jTA3SiR3NFXyLJqZ+XQ07VVVELDzHteGrU4MicfK32VIjhtk27wmtcmBwNV9Fih+4rvynGkMnjMdaFy9Mm48B5Gt774yOu9urp6Zph9ioAO1+vx7zuoXIGJ6+vrZ2nYyvGkMeROmXrtmYAEBjr7k6K9FDU7dU7qFFQBAs8KEAhUUyGrY9KdKJ05neZutzuw1+SXvPl/HWN9qZ1+3uXhAMPv94WEXF9xeXl58FVNyu7+/n7c39+Pr1+/RsCbQGxy7gwCvH2dH3KZJkq62dmmil780iF3AiuGMXVgx3RCShKQpx7ZOZWRJR+6vlNQ/XdF7Ijn05ybK5GOeUbk6enpYK0CDbFfP+t4N9Tpnq6vunuTnFd04zWITs/lOEZtVNyJaJ/UHa90hIaA5Sc5JcPIcgkIyK9f75kAj4TG+LZegPKponDKVe8W8JSteEnTGJQvZeYpbR3neoHETzXV4uVXgULHE7enINeBLtoVSWZ0WD5FMKtP+9Sd6qmvKthJvOncGPlFPslZV2A9lS1ePOr3aRW9XEu/lCW7v78ff/zxxx5MJ4DlvFSgzbPQ3u6np8P3NrgvSLaZ+52vW6EXf7VwJaoRs8ngVuXPKKXnUxmdgVhB/NV5DjBP884csxthz34QLVIBJTf+93IrYzYb/H59R5VDTNHWKY2oyAccnbDIDYfLxJ2TthyE7CMuUGUZ5En1puiC17lx4f1jfIucCSBlVCpjy7LG+PaWRuo1F03JGbP9MrAPDw97Y+pR6kx+JKZm/b4q09cBqbTv4GQ2Pk6tw9533o+JJMNKdrrGnYnbZp/n93cX8LpUJvnhPgGJ2uNPRvCdCZxe8HJdr9if5I8ZAIKADx8+jA8fPoz3798fZLd2u38vnr29vR03NzcH45TrBtz2+/is/F164mOMb1MPHL9u65lF8LLpe2ifVuhFXy3sBiA7u0JKVOiLi/x5VjeUXbQ1a3SlqKx7hjp1D5Gb8+dOPjnP5AAS/w4Q0v9uOmUGdlJ9biATX12bVgz1a1IyEt7PCQyw/Z56rcYB+2Rl3s9Rv8s+OfFkSMgjH/fqskbeppRSdkBAcjChshzssi46fJch2+/6VGUXXA5pm8rtxlpX9muT2870TL3zyDUW1dqIzo6O8Twd7+ND9bG/GayQJ9Xv0SvrYqSu12JfX1/vX3zlYEBl8skSbUkOot69e7cHAh8/fhyfPn0anz59Gh8/ftzXJVJWQPb1/v5+3N3djZubm3F/f78fZ8n2VrJ1MFV90pjyo7/xN49Wsq9AX0ebpgkqRJ+uS2goAQIXkChFSgklefmJjxlC6hBtQqPigQauiwbdoPmcbNpP7eoAga7rAMyMXFZsf6dcnfN/K2BAlAZeFTmn+ylvysT1Mg3YijeXi48h568CBMxSEeA6UHE+ExBw4zpznjT2nWFyYNXpxNa5UrW5AgUJdOi+ziD79a9JrpfV9ID4q2xPJ+tqTIyRHylPAcOMfIwkMM7vY/AnJ822arpIc/o6LpvoY0Bt0U9A4/3793tQ8PHjx3124Onpadzd3e0d/u3t7QEvPmUyI17HAJiAPclG/cYFvX5dGge6l9sZveirhTPl0n76pXTnGPmNeiRGwTyme1W2G6ctCKkipl8TKPA3GuoeRkIpBXoMpcFUAaXk1FfK90gi3ZsirlM6/kQeVbo+JGfLwZmcqMgBgfaTM/f6ea07qsTbGM9f4MJrUrtpbJStcCeSgIB4oV75S47GeP46b5dLJyeWlQycZ78kFwIcytfrn4EAJ++rBCJfmxwM+FSMAzJtUzZgVo9odQrW99M1qa/ZLtbJqP39+/fjw4cP4+PHj/uPZ3E8aoU//7Pt1F9F3zwu2enV2x8/ftxnBxTQaa2Wpgr4nQ4HZinLW9kZP1dlYdgm8dJlCNI42EJHrxkQ4x1CdCEkw9jVkQaj0J/XQ1To9ZLnRB3viS9Hbiki83t8u/royIz3Ci06vy91zh0oSP+r3ymoimp9MPGcD9xUJsv1qSLpY9LFhNxXAAHnEQkIqmyBl82pLQcDKY3MdqSxqG2VSUlydznxPoFpPm5GfeM4IyCY6V/qL/JPXir7dCowkEBAmiLogMD3HnvsjyRj6hqPE4gm+14Bgg8fPozr6+v9fY+Pj+Pu7m7sdruDdSwEs3yyhqBZjt71UPVyfcButzv4ENfs9cqUD+WQ/CCvdbAu8OLlqm0cw8nuH2vvl8FA5Zi7QbLi+F1gXl+FLFNd3K+yA9V9CWnP6lkhdxg+CFY7zSMqKpvIEeoKEOK1K8ChA3//KVQ5+TRQta2ATQIEDiSqQZvqIC/OE6MpdxD+bLXXQeNRgVWVW2XtEnWG0OWS7qWx1gfEfI5Z9+uphapdbMusrxL/qa8q+/RaxD7lSnjqgki80jZUANOp6q/k1Hgds0puk7zf5YgrQDDGNzus9QNK5TN9z5disd0CCQRDcvT+cS//uiYX0Oq67leRT82N8e1tt9X9zC74Ggddm0Aep5/JM/t5Cyg4KjPgg6VyJFuEOIsiWG9XxmxdQVUe+UuI24/z2mQ8HYzwWIpkOvLBqW1nZHntVsVIgKAzJO5Aj0WmP4rcMVc8VlEmB11ydm5IfVFXp/vJUVXAYYxvIIAGIy2wch7cqCeDpDpn88Sp3YrYJANOmdDQkTjtRh3lOOFTEtpq0ViXoq3Am8vYKclmJUj4UUSwN/v+QPUEgagCmCzDwRQdvo7zfFpg6k7Vv3HhzpIk5602cuU/+5rrBAQCbm9vx/39/V4/VL7K8ekvTRF8/fp1fPjwYdzc3IyLi4txfX09drtdfIx1RZfcZ6Sx49NrkrX4TFPOKttl75mCY3V1MxjolMiNbAICRDpMPx47d554035yyIkvdQwNExXJy+f1njbi9VzVXcnO60uyoAJ2UxAVeKqMeKXU7D8HFF07/NxbBAQdpSgyGVe/xuWQIrHVPhij/qIg2yJd82jR63MQlwADHSv1mVFKJSMaJhkyRjGSmzt91U/jrPHqkZ22epSLmYTEo/Oa+qvqO8rpLeivA4GUGaDj60CrU9JbOibqvq5NL6RK7zMg/0p/i+jAOluX/IYDFK3w1+/29nbvxGnDLy8vx83NzcE5jSGB6TG+ZacuLi7G/f39+P3338ft7e24u7t79l2MjgiGKQv3G2lsKfshsMxHOqt+5jR1ZY9mtAkMJKeWDIN3Jo2MR9+MDr4XpWghAQUHAhxgIpXDaMkBAN9e5VkFvpCF8z0ECjR63VSAD+6XAKgVI+Hgzq+ZgYG3YlATeVRbtbWLMDsE3pWXtiwzOXAaER6jTlb94WPQ3wUg45ecDqclkm66Q5i9KjgZqouLvKLaIyR/IYvSzmxbFSFVeuiynl3/2pSyAuxvzwZU0esYOTMgYrDhDpe2mjrN+jwbJNJxgkHZPfUX9UXOms/yK/JXebe3t+P29nb88ccf4+vXr+OPP/4Yv//++/j69ev+6QLPAuh9GHTonnK/v78/WJ/w+Pg4/vjjj/Hrr7/u67q7uzt4G2eSodpJ0ONgntMhrq8EBDc3N/unGjhmUx9VWb/VTMHmzICnEF2JZmDA5+ZTFOT1Oc2cYAUEvE535kmQrD9FTzSi3lmSjwCBAwUtlOoGkY5X16V2at8N3RYDVxnImaK5waki49cmB6085n3Ge5JOO6UIppN74oXlzH7dQjKWJfKXrjjwZbl86YvrdCUXZQYUqcnwKiL0lxU5n+m4DFyKwFJGQ8CgeuTS66r62Q3qSoT9I8ntZhVROq9JZ11P3d55xM6pmjT20/RZss3pvRfsX+mMfpoW+Pr16wFQHWPsnyL4/fff9yBAjlrO2jMDDgYSgHp8fNxPFwgMPD097cHGL7/8ss8ScCqCQJd9IRmn6TGdSwsT3dkL3HCcc7yRh2pq8LtnBlIU4kY0oVJHturYVI5TBRRS5C/qELH23ZB2RpX3k3dmA9iZJA6WlP1g1oGpOG+Pz8WttFHbThFSlNs5xsqQEHika6ro67UoReFbjXsHgqr9VV54bwWgU0ZA5LpD0Cv9pNFJn5J1MFBNP4h3toMZsMvLb49yOY8diO/sgO7v2udjTOUxmu0Mo59LDvYUVOmA0yxz5YCSx/xaz/iMUX8wjfZJ/538/SuqT0CRjvr+/n7c3t4e6B6fMBEYUMTuYCCtGWDWyIGAHKpeMKTFitIZfZfg999/32cf0pTBio5Qb7ke4t27d/tHGr1v9Y4DjUv2C9sgOSZ9+O5gQI1J0f0Yz192IXJkm+bnV+tW+RV1xl73OyDxbUVpvseBgCMznxIgH556034FdLrOrSIe/t/qCCtQUF3HdnmqdgZKfjRVhn2lbSvZkJW6ZzQDAjruJJ1J/e9Gx7MCCSQnsMG6KQ8a25T9SPpaAYIEBjy48EVs4otZtiRPj15ZBmWW+uqUQGCMnBkgb2PkT7uLEjjvgJdnSZTV4bhmvbyHx8j/GOPZ2immtwUi7+7unvkYAQDpmMDA169fx2+//XYABpTC97dlKnjb7Xb7pwroSDUN8fXr14MXHAno6JymJ7Q+gW8f7PqPbRIQ59MS+vH7CCLVf319vf/v0yha58CvKL4KGNA2pQ/JBIWR0upbDOpLokoKVoOgAgJdZsCjkWSsnU/vBA0oboV8ve5k8Kqyt0TeXWSaqHOIHlmQ51Xjc2rqMh5bgIDLtQJfLq+ZXqUUsSiBR1/cytXYAgYVSGO7mc6tZJHa5LwyKpvJLe0zCnJZiuQoUmZAbRQPFSBwnlw2p84MjPG8Tc5XFQAlkOdblkFHeXHxbeFmdW1HtHOcrlH2yMt2Pp+enp59NljO+Y8//jgAApwiIF8Ess67HKvKpEMWGJBDVsqegCNlw91f+NMRcv56o6FerKSXK/kLlm5vb5+BAS2cvL6+ftZmyfqHggFVxAZzsEnIK5kBpyqy1bmESNP9zqf/5/wpB9pKpsKvSYNDfHYdQAcvmaTrfQD5vFsVCW0h8jwz9lVdjvg1kN4yCBCttrk6lozxisNx+REw+4IxHScPkq8bPQeRnhmQvnukJ+PBPvSFr0kGjOC69iaqohhPg9JBpchTfGvfQamO8XzKErFvtO3s0msQHYk75M7gV4C8GpPe97Q7KfPU9bPbkjQ9kLa8h5kJRfO73W4/DXB7e7sHBFztf39/f6BHrrfkn1E2Xy5EvyCd83cS+Joulp36zt+boJcp6c2Hnz592j/eqOtVv0CK2q+pFAIU8UY5/1AwkBAQt9VgTFHNSrnszFmD3DmyHPGWfmOMpUyFp+cobOeTiNnnqcibTxUkedIIepSzwmt3HQ1hZfgqp5iMC3lzA5L657VoVndnNDunwbIdFKSB6E7Gx4YAANP5XWo/6ZRIWYHq628eLXN+mORgnvX48d1ud7CwyheiufF0MODX8wkFBwIuV+kbjT+n4BIIIAhK+tEB5NeiaupGlDImKWCrMrmkBDAZua/KIoEHlc86tPUXSaldioAZPPnjhJzDT6v8fc0I5XVxcbEHvARcCXTRhqdx7TJ3IC8gQAAgEPD58+fx+fPn8enTp32GQOP04eFh/wllTlnoJ5Cvl3Up45LG24yOegNhIjeeLhgXGssl447kfOHKCg9u/N3odkCgqysNFvJKogGUYVMZfh8Xhmhui+2nAnqENEPobH9HDgh0H3mhE0gGyg2wX3Mqw5r4cUNfAZyqrDEymHJHw/NeTgcEaKDSIr5qvCRD5MaOBpep0rTy3x2/jjHTx+wAAYEvckogQHz4+wk8DdvNi6f+S+O4AgNVhE09maXDfxRVWQFSkouDAPajk9sSyYSPbqYxkQCi7q/sKEEAs1NchCc9vL+/34NY6pYAgUCB9tmXzlNqq85zwWs39isQQADhY1qOmkBAAEDbL1++jJ9++ml8+fLl4FsM4u3XX38dY4xxe3s7fv/99/Hp06fx+++/H3wvgdlDyWE1kBYdlRngrzJyIs4hOmPJYKbUjpOvzE/o0ykh5G5gVMSoV/uXl5fPnsclL53jJu+cLvCIxqMmN5AeJYo85ecOX/em44nPmUNP150qIyByMKB9Rufpet9PVAGB5FyqMh2o6j8d+Rj1UzQJgLuBEnkmgGlSPu+dynTnQqPngCCl+l0eCRwkHSc/Sb+YjWI7Z5lIZuQS4GDfrgYk35sqRzyzc35vAhO8n3qlaxXAJEBBgOT2mv997FG/2QfiRyBEekm+pQe+gK4DAqnd0o0UoLksXVZebppedllxrYAAAUEAf8oOSIZaVMm3JKYPJvnTGp6pXqFNmYEODLgjpMBcoCJ3mhUgSOg0KZzXQ6RLfrpOTu124spYdkKVnk8dUjkgGR8CA6LoBAYITNzQzRTBZbVCnYPsnOGpQIE7kK3OflZu0qHVtlYGk0ZTP9cLLyNFN+5gx3ieEZBBZXbAwQC3nLbQdIRPF6xE3pSTA970uFYa/3Qm/N8BvMSHjx/dc2ogm9LWiZIzSgDOKbXPbbjbef0nKEiLN3W967VfQ1tGe8+1BAlk+guEXA6eCXY90bYCBa573BIAkz+SA3utG+AXGT99+jS+fPkyfv755/Hly5eD1yJLJt16kdTn7jtmuiN60SeMtfUOcAbFlEc27GDe3ylYpVy6d1Y+iQagal91r0cKPmgqQOLXuvzUVm3dAehevnWKjr+awnCn0yl+x5tf68fd8FdO4FTEwdsBQMpoK1CqDG+6jv/9HDMCvIa8dQBHcve1AAkMpAVSFYCV7snw6Dlw8pqAfpLnbHx63SkoYHl8wU3i3Y9VAN75PBVVepRk5mM92ciKUt9cXFwcyNKBgI6Rx/QOGfLA4/QNOqd6HdRRhwQUBVqrjGiyfd5mB8guDxKBAN+/wHZWAJbXMFMgYKAnC/Q0wxjjYM0Mn2TwdTkdaN4CaDevGfBB3Q06P7fqqN0ZpSiJvzGeTx3QMbHjnI8ECJJRqAYJ59bGeA4SUvtY58wx+UBTu3xKwVeSVinlDggkQMD9bg7Kjb5PYVT3nYood8q4A0lOK+3xerZEaHK21HMfN2lspOs8AqehSaukE4gQebaC0RwjNLcVMwA6ozTux/hmkPkBo6pOl6+2L9GDH0lJXyqQ5vfQIa7YJZcX7Yv6eIzDrw/6dIzrYgritgCciscuxc+6uCYsZa+7Ovw6Tp/QFqcxVwVGLid/ckj8PT097b+14G9Y9McouR7HaSUwEW1eM+ACqxxZF3W5oKl0nhHwMjlH4o8I+mCWUKW8WhyVHGIVFXTI08tKg6OiBAhUxoxodLXvW6dkMNLAJx9JRqzH+54y76LB16ZuoKR9v8cH8azsNADdEM4i1yq6kxH2jNhsDPB+Hq8ek1K5fpxOgcBU/z2L0YEB8UN+03U07v7ol8ogcNE4T1NlDnJd5hXQfctU6VICBWPMwTyvcTDbBTGM/l0nO5u4aiMSuCX5FISDEZ2TXnfjMZHGkdruU0uUH/2OT39p64tmBWZ1/9evX8evv/46fv311/HLL7/sX7KUvsGQMnlb6ahpgplxrQwmBVWV5SjTtw4E+O5qKn2KgHRcUT35csPnvLqzpmJU/PN/h0ZXOzHJryIfpJw7WjF6FU/kIRnaCgmfkr4nIJmV4UbSHWT18/Mij4RTdsYNvkfqimZ0HyN/12tGP+Ilpd0TMSvgMiO/VeZtBqz8SQve72NRYz6B+aqelA14K7pcjU0f2yJGxB0A7exACvYkTw983OkmMJDKEXmafoscnAfWn+p2QKB9Rvsqy/lM44ABLuWg6TQ+HaEnIPxthl+/fj3wQ3o98i+//DL+3//7f+Nf//rX/vsIehuiv18gZTLS8YpevGZg5ZrKiVURVxI4DaKE7e9RJxJUB3HFtDqG5zukmc5pcKQ5qe6FSqljfGphtdNU5jGIcMUA+LVVVOFOb2bUT0UdbymK93uPOaeyfevp0spQC/QyE+YA1tuQHKKX7XLgfYpyPJOQImkHD9zv5Fmlp7vMBGXAN7RxbtUBAkFQMuodUUbMpLwFSrxQTmMc6nRlk6oMIuup7ESyC6rX9TbZRbchnplatWfJZ/j4StMTzHRIdzzaF0+uzysBL4PPy8vLPRDgWw61kPDXX3/dZxD4gSR9jOmXX34Z//jHP8Y//vGP8X//93/7DAHfr1ABqdUstWjzh4pmQknR4gyZd4Ylda6jPn9Ri8+9qMP19Sfx6G/A0j3cspNTFOfTFUlJGEW7weLW5dMNCh88brS6yD5FQOkeDvxUTurr5HSrMl6LXFZdBMr+rdqf2uxl6Zw7/mSkXG/cqToQrsjHKMFAGqdpnQ3vo05178lIBreSWwK+VSBAR0Ig4M9V64UsHpXpP41lNT5mWYFT6a8AmqiSmy+21r1bQXhnH6rzTpWee1n6731TgRQfA9WYcSCUQLnqpl1mar/KFHdAq+LbAbcHrY+P//5iIsEtwcA///nP8b//+7/jn//85/jXv/71DAz4VxrJ4xYQuwwGkvHqIgI3LLNosTKOaZuAgQMCIj2iP3+lr/ibpUJ94F1cHM5fpi/BJaRZyULHuyjEB6XLt3LqMurp/i1G7hjE3h17LepAirb+0/FOTkmepOSAKyDghkLkAJlEPfEpMhoDN6LJcOq4Z644hlZkmGTkMpTxpb7zhSly/gIgBAQc55wy6ewE52RZR8VrNVZOTckupHasAMeKpPMeBCVetkSdLI/Bi+vGzHlVfqc6VvmRxJOmCRKPrvMVkNd9KaPENsqJ6wuMHz582Nf/+Pi4Xzj4yy+/jP/7v/87mCr47bff9q9hTh9mYr9s0YFNmQFHNVUKRrQCBFaABcvwziEfMhRuGPnyCr3ekh/KkGJXq6fJs78m1tcueOSTDGySiQOB5ISqFKvflwabyzHxsEpE1MnhJZqlJX8krWYE2H/pOpXhIGE1UvL6kuFy+XEayCOWWZsrR+GZtSqCTGCA/CRQ4Dxo2wHclHlwh50eWXMDn2yDylL5Gu8MGHSt/yTDUwLZMdajuzRNcAwlW069r3SL13aBDW3TlrZ1fsfXSFTjSWWJD7aXbe5sKO9x30fZUGYCCAIC/MaA3iYovggSfvvtt/Hrr7+Of/3rX88+2aw1A/xaocAv27lKy2DAXzRCY+KUnJMLUMwmhFVFQpXRlZNWhsAf06gMHs+tGHSCDtbDL11REWSEZMCrAdRF7RUA4DYBAd7vRjLtvzT6WTE+pzaqTgkIuAH5npEiy03GpALAdF6rxnMGBGZP46h+6Q/BwGwefVVW1NfErzvk1C8uU/2YNucrltV2TiMQFLAszsWfKjtQTSGy3V36fLXcJAOnBAI4PqgTtOEpOq5sTppG4rhk5tf9h+p12VTySE+tOfDeYhtdFtQtTllzIaHeLKj1AgpeBRQECPgkgQMBD2LV5q2gYPM0AY3HGBkZdYtBEpJjeV6fU1osQUXx7IAMWeJRaZlu8LixcQXsVjjrXk1TzDIPPmjSIPL9FYPMdvsv3bfVaVdGiAMhnT8lOQioHOLMAb/ESTgPOqZyaUTGyO+CT/wmY8gtwSxBdALfzgd/CWSmrfPH8lVW0o00dcfxzPvIh4w47YuAAJ1TBUBcft8DLH8PqpznFhCQ+uul/LiecMzIqTrYSDaclNZA+NosD0iTTzrG5khXVrMXya46mPG3fcrZy+HzK4VPT0/7by7ovKYFEhDwdSQ+NbgaQBwFBlLkXgGBCsl2yI7kkbYbLAcC/EkBHRik6CDVXbU/GVMdVz1VVC5jNEPIFVUDaiUrUGUIthoHj2r9vwyx9/2pwAAzM0TsBAFuWAhkquiG1zmtRFozouNNSD9FxTyepiGot/40Dst2Pjy64THXu7R1/hiBcYqAQH2McQCgCQT8vfXOi/fRFt1LfJ4aDMzq3wIEVqYtV8t1oHhx8e0xVvXjS7JZYzx/TNADUmYLZmCZfHdt0lb+o7rO9S3ZXens5eW3z4Lf3d2N6+vr/Vbn01SCFgvycUL/sBjJX4K3qvtHLSBMaL0DAqJZZ26lBCh8ISE7h45cawa8HWwvBepOw5EpzyWHO5vvXZ0HXrn+mKwA/1fZgeR8qkGY7jsVGKCTF3HKh/u6ntd5BMp9Xe/AxwGR39tR1X/Om7eFush+0X+uwk8/nyZxRyvH7S9TSQYw6acbJgIzTtn5293cYQkIpMyAZy/GGAeLH1fI9fzUVPGdprW6MpKN7sqflcU+YtkKtJgNrQCst8WJ7aseWXQ5dA5wxYamgKYrh8c4TigrtkU6fn9/v/dXPtY0naAnCwQCuGAwfUNEYMynClZo86OFFDiZZ8NnUQG3/jigqGuEO2f/bjuVZoxv73h2g9cNok7JmFJN0VclM7Z7hRw8UDlV/wxcVECgAwZJFqlN/ylggEiZfZmAKcnb7UBgyz5pRfY+Z8loOfGZQCnHFXXfr1EZKWNHfhjp8b3wMl5sE+0D60hggH3U6ZNPG6TMAHlVVKatf3MhOUP281sFAlv5qoDAFkeRKOmonJGAgDulBAo4/rxtCegmPffsQDfutE97mqYtVsC7B32uc16vgxvyrmurrzNqnDkQ8Da5vFf1ZVNmgOTCWzFwbmwSsqOzc0eYUropwvE1A2McflylUhaVmRyH8zkDEr69vOyfVkj18nil3J4C9/OrQKCLPL0tx4KBKt32o4kDwnleAaOpDzqAl7IH6VxF5KfrDwLT1exVBSjYVtdzd47aukz8hV7e1m7cdAZcda1mz5imJiigMa2mN9i+mV6/Jq3oTbpH2woIrAYGMwfLvmFmIM1fc6xR3/Tf5Z5AbcrKJpC72uYua7tCBMYrgGCMbwtbPbDz+6m/HAddn0lffkhmIFFCRTxeITVXKu98NSR1UFKaBCwIBjzi6BxWcgxUZj9HNMiyXfmoKBUqZ9nujHSM5ScAoHPkbRUIzCgZ9mQwna9TG1KlnclLcphjPJcFr08AwffpDBMl3WeZOuaAIEX1bhhn44166vrnc4+qy3WJMvK5+Yp4je9zbKQUdpqGqAwcz/t+ZVSTQV0Fua9Fq+OT11J++u+ye6k90LWySwxKaAOY1UqRPvW70uN0bZo2cHDhbaeDTnJKMhS5jUjy45hgtiyBziRH51e8JZ1OuivZu59YoU2ZgU6R2NDkHLh16himg3QDx1S9X5s6NA14prO4qNDJ1zV4h11eXj4zqDqfFlyRH5fPbvftBRgcYMnppPYmZalQZDfwk1OZganqWAVcXoPccYsf709RB0AdEEjeTJf6vRygHs34MZ/K6iKlBIa9H1xfuGUER31jFo3ycSfq86PUO92TjK2X6V9O9HR+F2V52bwuGdEEApJeduDqFNTZ0AoA6FgFDJLtXgEEM1kQHDBLuwIEXN9dzyvwUD1pQBsq3jSOu7an9ru9pU51drUCsgkodH2YrvP6GIxINqt2d9OaAWcuDSY3Wt1AEsMpPV6hMoIAUTfI2WEsy42yFIRRpF9PPjg/pvs8cpdh8vSkKw/b7Q7fFdr/d0Zx9kvy9fam/4k6QPcWDGnKDrj+zcrwvifA8IGuexwIuOO/uLg4WOfihjIZQPLjsk1Ak5GQrncQTGDg0RXHkTvlBAAqPUzHNB78USmNmc5QVwYzAQLu8zqW7XJNzukU1NU9G/9dX3RgwOuv9K0b8z7VlYBAKr8CArM+6ABFBUZdh5NMEvl91KeZPUn1Jn3ckuJn2WM8BwUrdPRXCysgUBmrFLWnNOuWeWUXloQqg6Jyq3SgG1xmBpKzdt5kPLWf5ERj1wEBDg6V6SCAWYs0j30MpcHdRSHd8cqQzO770dTV6yDRr/epG07ZOAhgdsAHYgKgfHulP/MvAJPGlEftpGTIEvCT7viTASkroPbSaKWx51t3+n6tyvLFUcwMEBA4PyyvAwIVEE6gOMm5k/cpaebg/NgqCKgCFR7r5JFAQNLprc7e206H1/WlH++CxgrUJqrqvbzs14e5rnZjRG3gsQ6kpPtXaTMYqBiq0N0YefGhL5rQPd4BjiArnuh4pWjprWkqhwOdKdJqqqACKTT6XSTlyuZUDQY6/cSb2iCZSglXkHxSuLT1chxtUq4dncqgOnDqBrwbMu3vdoeLNX0/laX7KiBwcfEtK8Av8XFLPSVVfdC1z/uJek89rqYIWF6lx6nuyhlxbBLErxjmLtqb1e/8ez/xV8n/tSg5s4rcqVQAqNtuoSSTym66819ZI1DZHpXnGS+/30EnZePZ5HTNTCZVRoHtZVDq5emeavor0ay/kl9e7dvNYIADhwap6lCdqxgXAJhdm+7VlkaFghWPVUROA506L7W944fKp61HK6k8Gl+CJMqTL65IDsnbxPtVJmVWgYRqW7Wfg7NC5jPZ/WiiDNL0CqnSRd7DvqL8q8yAfg4APDOQQIDLTfrs6xWqKGYleiEIV7kJ2DLl7uQZFK/bAUAqW/sz8Lxi4JKzoxwSuHUQ8NYyAyv2p0t5zwBACg628ODgwO3PKhBIbWOfs7+ow+ke7VN/u18lq8STy7zTV9Iq4P0etAXkbQIDVWq6QnU6l4gGbQYIPKpiXQ4EZinOxDMdKOubAQLnNyHPSrE6IEBZ+39PU2ufc76V3N2RzABBVU5qS0Kkuu7UhlR9vNsdLsxcIcrZyxzjMLom+HTwUE0L8EVABAMVOeBMYJzXVlFLMpaMptxIzYydy3MGBPwaL5v7Pm5FtEerRs/b7sfSeo1TZQXIX0cVyEqAIG2rMpOsOqrGSqIOCCQbXtlQ8cixzb7UPZ594toUfruiklniJYEHb2N1L8tYAR8sb3bNFgBA2rSA0FG1b49ZbONlugFNZVdCpiFOdXh7VlBpolk7vT433KkcAovKsfJ/AgcEBBoQ/qZFGe5OeVdl4Yid5bgROSUo8CkpHZtF1aLqvDsRZmzGOIxg5FT85VgEBOLL5Zb2U3vIF7eJb4/QKiDuho/HVvszOXDnk0Cku8fboOiwskkzh8bzHnQQCJwaEKySZwI657biVBJw1L5sTqp/Vj7r8WAo6W8CkyLpB8ezjyPPABAUpCg96b23U9ek12mvkMuqAjyVna0CMr92FRxsygzQaLghSujOialIlunOyv+nNwd6+Sk9lpxvUphkAL1DqfgVgNjtvs0rswNSlJ/uZyemCMqv9XY8Pj6Oq6urvcJz0NJoMp3N8ny/U750zA3GMdHFjyDV7VE8KUW2W8r28r1eZgUSIKhS0W7MnTdGRsmwprbqPDMSK9FYFQHNZOP9X02viA8+6cDpriQbB8G8r8tkuoPTcQIAl+VbpirF3WUGOkpgfowcFPr1DFLUR112bYw+m0wn645b18uxc10Vy/RFpf6rHHkFoir7vCXjmCjZ3AQEEq1eV9FmMCCq0tHd3L+jyKQMHIA+b+evG/ZnWDu+ZXCq6QYRO7pylvzvkU7VGR0A4sAZ4/nHQ5ynSvESOJCs+I7w5GAqZ10ZFpcP/78FAFCRgygen4GfBGZ1L9tMPZ9lBfyRQq9vJbrnrwIWCUzqR35TfzvQrvjx/wQoNGrcp0xZH19SU+mcO3x9BMb58Dcjkj/nneP6LervGPWryDvQNhu7pCoYSDJLoIGy5vRTFdRoW2UE1FaVJ8dPks6oPrfv5MdBhY4lOToPSZ4rAIJtcJo58BU77XQMMDhqAaEoGcXZPaQKDfpxN3Y0op4x8KidA0f3p7S9K2s1T9lRQq26n4Omk6E7/eo/6+SWdfrTBz5IV8kdg9f3EjT62sRoXVHkGM8BWCeflJ6votdq0aC/Sz05ny6y1XmOiRTpuzGs5OHXJBBQAUgfc0nP3ZH4WJPDeHp62me33Cl537jB83UzupbjIPFBHhPvW8bKj6YU9GwdiyvOJ+lyAvvqJ27ZlylDoGtVXpriSvUSCFSAp5reSXbU91lXBQDYlnSclAK47vqq3aIVB/+S7MDmrxay0mOoAwAsmwYtzeP5LxljLsaiYWEq0gc90aLznAZJZSjSHKe3ubqnUlid47bjQbwzW+CDtLqetNvtDlbtVmCiMiLuLF6bPJpxQJB0JN1flePk+kgg4Hq9Bel7+QkgV69kZVvcsTvY82s8ciIf4q0CBN4GN1YO1gkEmBWgzul4Gr8O8nhcZSSQ0gH0/0SqIvEt9yfHwmO8xrcOBLxc/nfycbiikzzOF8Cla6pAq7Op1T3pWr+P51eBZZLLDMy/lI76UFE1WGZOyR1CmlLoAAdBgiNAj1L8HipwByB0zYxcqTt0WTlJ3ef/qXCri1M65fG5187YpRSkI3l3IrM2vlWSLDx6dOOVwIHaypT2GPnd6x65J0edAFqaBvJsAst1MOD10Ii68+9SpzSWHGf+EqwuU0i94phM7fbzLEN8se/IQwV00xSPZwirLM9/CjhYjThfEj0SEFdjnsepZ8wIuTPtpqq8nBQcsX/9qTK3XRVAYDnengQEUpY0yarbn1F3bcpsHduvY2wAA90ja2P8m+nqsS13vFV2IN1TZQC8vOr+FLFUc7SiGXpLzoEGtAIG7KyEjj0yW80MrPBcGeokf88OCJSklGAaXKncU2YGkoNwx+EpTMqgG2QOkvWfjwqmqQERy62+i0EiEHBAMMuY0RHzzX7UW34alfqXeOCPsvIsH52sg4LkwDlWHAB08nGd9jHvoNbXF/CeFKj8J9Cq89jSrtT/ngWoQIEDvmRD0vQO73ddTGBBZY9RP5ad2rQa4ac2bc0OrDrqKqgkpb5czSZUtOnRwgQIVBkXdFD4FRDolHEFLLBuIktHouSfRvQlyF/K7YrgURfPeT1JiXU8ZQM6xVuJBDhVMIuEEq8qQw7DFXDmNPT/lOQ66JGlgwAdSxGQ61YCAlrgSiDAqavKgLgz9f7Rf193wHak+yqjKJ3jq4A5L0uj4/pTjeeUsfM+SNMBdDDuSPxbBT4ukv65LaocF/k+JXB1mjnvDrQlSsC2A7sdTz4uOtmKP9blYCFN72jrOlG118czy3HeuZ0Rg7EUpCV5bCnf6Vg+U1+u3rsMBrhy3yvyNOsY82h9Ro486WiZBqoiOt67khb3Y106npGQg6GkJKJZit8zADPF47ZDppQVV2mvgjSieLVTK7f5KFdHb8W4OtBkZOogYPaCopSOT0CgGzvcihhlE2gQ0JHPY4kZH305kN8JcIOb+OFxycSfXJHeOa8+jy8do04ncOC2QG1JaVt3DKrTaWvAcipKukpyAJcotauK7KtzKzzS/rKfHTQkoMDjlT5WlPrfy/VjXVkVAE2gpCuzuy71W+IzyYltTfJbpU1gQOSGYIznSsqI6nso0xjj4L+Ah382WPyxLBmiKspecaQiF7A76MppV5TKSshdvHQgIxlvnVc7CGY6YOCU+tABQWWITm1UHQB0xlAgYAZsUyTO6F/3dfPXCfixPpY7xjdHxgiEMpeR9SxdujaNAQIBz3KRF3fenpWTnvn/BGJUDkFDJR//Aih5T3JM4yFFbxUIeAugIMmvCgqqiLCyQV27kpyOJQcFYxwGT3RibmupC1XA1QV7KzJZmR7we6sgbfVe1Zv6xgGI87vq4LeAnjGOWEA4c0y6plKmVcbowFJ6WkRDJIW5urp6poDiyb+dToNI/jsjnqhSjC4F58dT2pqG3CMlv8/rcwNCVO7AgP3L/6nNjLL4oo+3TOrTysB5Vim9ZpjXiqonBFx/XI7SRe27cWMUTv7oZNOnicUTyyaYTs7SjU8V9SQ5+lQF20tQQL2rnLHrrvpD9xMIqP0dAK+ip0Quc98/JW2xpalPE3nGJNVX6bz/n+k+7YyuH2McZJA8W8C2VGBvlVLEPMba2jCOBd86by4Xp618Vzz9qOs3rRlIFaxU5sowRv3ijOqcFIcGkCnDBATkqB4eHg4MC7+drmhjtQ3VOfKeAEG6PpWXFjVReWUEubDK662QdipP17gjShmP1F7d3y3SOTXNFoNV00x+Lt2XjCqdn8skGTbKV5G9AwF3qKqf48H1UFsad3f6Kw5D+1yo6C9Lcvk4AEnOxUFAl/niGK+mCY5xFKm9BAJd1PnalGwQ9cf7VvukFWDTZVC832bOjwGIjwnpTbVwNkXTqT0MHFNbVsltHOusAKgHXsnuzsZZ6rctVPXx1rI2vXTInUhCTqtMVKl0KgtThjrHwc/orQMCvmhLQIBzpKkjVtJQiWZz6J2C+uIxtVX8uNIRFDANlxQk1ZuyAlU7CD78GnekbwUIiI4x6nS6YzzXBz/vxOkTUTIyFa+UJV+a49f6Yj+uZUgOjc41tdkzIywnPbnQyUDtZFmU3WxbRXRVZiBFs12EK97Zl87DWwIEomp8uby87VVQ47KajWEHin4s8SX7nQKO7j5uU0BJ3qvAy/e7YCfZvAoIpPI72VX2ubqefea2v+rbY23vMhiYAYEZAyvK68rqneudJMPHRUF0jA8PD+Pq6uoAeaZ0IxGe6vW6RKuGoQMEXkYaTNU0RVIM1pUUpeJfZVROjsCL9SelryLptwYKElUAZ4zn6XfqZDKIHbgaI6c+SbrH36KXpgi0z8yBv5JVPx9H1H32v+sTp0HSuxIS2KgcuMolQOqybR71Uve4XbVBq5ScypYI80dS5dz8GpdVchYVKPDxPQNsFQ8sK2Uhx9j2zpoUNBI4p0cTEzhIQKA7NgMCbj+93uRjttCKo/c+PoaWwUACAdX/FUrXeUM6QzHGeJYipSGT0aLC6DoHBDSOK4b6GEoRv++nBUtUdjpaRo0JNZN/V/aKZtekgeMZAfFcpdZPRa4HokpfK0CQIvMqxenAVnzwvxu4jih7Bx++dSCQ0paMepKOqG8dDOhYWi9QRS+upwnwf0+H7mVTZqSUNeE6pLeiw8fyUgGCjrpIe4UHd9JjHGZ5OWbSi77IN8vUveSNUwQOPL3c5PS7aSZ3/rMpKba7CsYqG+3k43Ul4n8pINg8TbAVCFRpm9Q4GpX0KmERO9udONObvI4K7lGR+Cd6qzo8zT+vCr7LAJDHChQQ7FA5SZXys50dgKjK667vAEHF2ymoamtyzGOMaFCOjWpmdSXdp9FUXxKQunNN96fMQNILL5N6mcBF9Y4Db2sy0mN8m0JRHbq+symsZyU6dfmK0hhOfFPeaS3Pa9BLgFK6p7K7Vd2017N7eK07fn/c9FiQ5ePP+8mnIByUkNfVJ1K2rEthvQlYaL+i1f5Z1YUtct40TbAFCHQKpuuTgtERpn3nyTtejt6VIxkcZQWI/mgcvfOk1F2EMTNSdJb6n0CAXzfGoaLtdruDxz1TnR4BcmpEx4lkVwFCqlM8p8zByiD4kVTVm9qb+pG648+pd/pc8VABAdd3zsczknID67zwmqRT7Gs3dN62BASS7vIej/Zd1rzPo0gfi0leKRNSgQdu03qARD7OVqKyH0UrdTsoq+6pHLvOpeMzwMRyU+TfpdArULYSLRMEUOeYOeN/lp3AcOf0PfBa4W827dDZWB9DXZ0dbQXMmzIDWzIApOTQXGHdcFVfX6sUyMvVvdpPkZH/uFKZaLFrkyu9zqV6eb4yVAn8JGCg434PZUCjykcqq/SwlJ7z056W7owD5aBoqkoDvjZV0b0TnZPLvdLdVMfKOeqHR/OqN+lQlXHhdRWo9nuSYfLrKz2WjlTGK0X6LD9lOqSrvt9Rp5tpfJGPJMvkRN4CzRxI+o3xXPc6+9055uqcxoxklwKmZMc7cJIo2f4ERByAOFVAgLpaBb+833ny9qQxVgUFfs+qI5/54lXZjrHx0cI0F1ylYdIc+W53uDgpGREaLzeM3rhVx1SlSd1g6Z5KIVhWlS7WuUoRSStIPDl7j9LSl+qY/SAQ0NMTHAgcENfX123arJO3gITeB/FW3kHQGUUfkJUR0/4MEHj5IteJBATSK4vTnLbzn/rGx06lj52xp87x+mqsJ332aEtt6JxPAucroMApAQG3Bektk28NEMzG3xg9GEjXrtLMxopmgROdnE8VrGZVvX71kaZwZlkB3ut2j9F/FSwlSn4gBR4VmHBa6TMfs6tgeUZHv3RIQtrSgWPUb89KTt4H85Z6WK4bYo9EHBBUiwm9LPHC6YiOkuHr7nEDVn2h7vr6+uATueJJRvT+/v5gm6ZHOCi6wZCQrc6nt8etvq74RxJBbAdyCPSqj9ikucCOeC31JAEBB3VJX1S/GzSdZ/+L5xXZJ2DudXs5rGuWPfAx5mXwetdDB7AOZtn+rn3abnU2p6RZJElK4K3i3+0t5dJlB9LxGV+uHxXYTQFkOufnCTQ8S1Hx7ZE6bVmVGfC6nJcV8OHHvE2VLLceP4Y2gQEx6527Gjn6sSTYjrrrZpF4SgdWCqDzfoxlddHQjDrwkIARncXV1dWz3/X19bi6unoGBpgVuL+/3ztrf50rlZUggfuUmYOAhK7Ta6JPZVipu+QjAT13Fvq/JSpdbSdBXnp+P2WzyJc7igR6PZPVZQgqQ+4RT5JF5UyoMylV2mUGpE/UWQdBK1GzqGo7QR7l+lYAQQU+UyZHWwYSyYbxulRGdSyVtTI2yI9shD9h4Lo246Wima6nYLDKCHcRfQdQVD7r4fEELjoAUwGAVO+xtAkM0FimqGqMHh1VURnvpVBmkfOxRIPjkVtnbHxhzNYVxt6ehGj130kO4vr6eu/8b25uDv5XYOD+/n4PHPjmRfHgBjsNEDpQXk9Q4XOFDghOCQZcV1P6OuneiqHb6vxlFNN0DzNAJBqklJ1g/6R7u+hlBhA6IC1yx+L2oAKSXr+PO31S2cFmAhjuKNluXVuN2S6KPCUgoNOo5O7EDMGxfHfRJ//Psoa6x8GixmD61oVPa80CL9d51/WUFU6U2tWBzRWA7WV5PaTO180AdEergczmaYIxDtM+zBTsds9fKVpFkSRGMCyP2xkK47EORbmzp/MTLxWi84j+JWCF6SzxLGPlHc/pADn19+/fj+vr6wNAoOvEt5z+u3fvxv39/b4snaN83Oh0WYLqp9c+k5TilbM7BTHyc/KIOuna96AKCKRpH/UTidMtM53zjMBM7lVGwWklwk9ratI9HDtcZMqx6a+ATQCuIgdAK+8OSNmB2T0/mhKY6gIlz2oxM7DqFFKZ6V63GTymffLq9pnp/Ko9qxnYChCkc85/167q+lS+X5/8YAWYXkJd0LJFdzc9TaAGrxolMqStOyFRMtT8Ih55EK3Unxy7Ozw5R4+IuzIdEHhkP4v02WZex7KJqDlNIADgW0aUDgZ0ztcMVLKkLGiMGalRblw8qDaxr9K0wWuSGyCnDpDSkWwh9ivrT0CA2QGXner1BZnf00FV+uvRkoN5Nzbd9FcVYTE17KAhAYFVItAm2E/pcacECE5FlVNi+xKtRJov1SEHGi4z148UdBwzNZAyJMmevpRmUX2VheiAwEyXumA2Xev+iPdukcEmMDCjajDrf5Xi61JaDgRWO7wCAYmfBAJSW2aRVjKoXOm6cl9Cse44Li8v43qBq6urg4FFMKWfvsfg7RrjcGGPAyauP+BUA4972tsd4KkAQXJo/J+u9wHJTNiMKhDgmQGCAPUhswOsXyBc9XOqo2v3Cs80aIzW3KCll7R4u5OTqQxUN3Z9LHo5nolMxpD/CfYEqjyKVhvUtlNlAxK50531a+VUk4P2elj2zL6mY6uBVFfWjFI/+1TDGC/rQwcuVf2eJVjh1+l76dpLyvkubyDUfoq89T85YZE7Q58i4HaGgqnINCrd4iOen2UFVG6avkiKmAzPKlUpZTn9zsFIlp6C1v00Ch6V0rByCkALEbVPYOD1OG+nNKwpre26Sx1zSulNXluBVLadfTTG4VMEDqC0L95XItmV9nc0i84cHHqZFRCY1ZccMuvsqOqPDhB0vBIU+z1vjXz8VgBrJTvA/12k+SPJg6XKxuraijhN5YEZ6ZisT5UV2BqBO20BXNX936OflsEAo8nK8fs5nvd9J0/TulKSaDTH+PbZX49G6Oh9fju1ReTC7dJUvNfnS2X8Z+3piIO8M5aVw5FcCRYoAwcDDlyYFdBCxPv7+3F/f7+/R08qpA/YeMr7FOSfsE79PUZOcXuGQ05H+xUIGOP5+wN4jPtJJ1KacQs5XyvXdxF7Gud+nveler2trtsviZ5mgMB5rTJ1HlQcO0X0vaiLwFedgMvEbazOVeWlLM+KjVw5t0KVI69kQzA9xnhm0yq7v5W2gF/SVoCmrf+qe1jPlkBiMxggY2M8f5tTd82M3BgxWqpeyMIGUygJCGi+OwEWbll34r2a56IBTpFmZyw9Iqycv0dnbpw9EqdDZpt4fZUZUJsECFL0KkfLaQLPDJwyK6A2uDNL/Zr0zgGNwJ3rGstg21deJOTl7Ha7g2ucd7bJ73Oafb8itT1RCgJ4vUf63ZSfjwOX+9Y1EasZAl7v04863vXrKSk56g4IVPx2ACJlBGaAI0XHFVCY2QLPBlQZigooUw8I+PhdhHS/TxNvBQkdKFiVY+XcKzDg130P2vTVwoTQKoO0FQjQ2CZjTINaORoJ3AVIIMDpgo4qw03wk9pAZRY/nupKmYxUN4ltUaQuwynA42UkcMVne3kt5e1tclDjsquAzFsAAmN8W60+xvPslNqXdMyf/WcZlVPUPsvSNySqeUxOoYkXl3mammP9lU536VHSSj85IJDRpQxXy90SSaZrWVeasqnKcMfkWUb28amzAk7VGEzjcWv2IJXl5XR8VQCg4l916T4GT9rv+Kv8C0GEA74EpjogvZUIXhKl9qcyZmBghd9jbPAmMNBFRM54Oi9KETcZZ0qb+zTULKvixREfswSJJ+ctdV6VLSAPfHbW29jNn3uU5HUzK+BgwJ8QoBIQpPAa8sXr3HGmY56NYFl3d3fPeOf2tcmfSPGIz0GmT3dUi81odDwrxLJ4XOSy4ItYKqPimaDUl0k3Kf9uTHr7eH+XIfOIjmV4W2aRYUUJcDhgZx/4+EvZGs/4eNtWeH4N6pyIO9TKmR9DCVB0fZmieKfknAgC+JEtL2sF2BL4c5q0GlMOcDtbdYw8u3v8XHL2CezP7OkKmE70oszAMSQB+KD26NQjtLTQiuRzwsl5ds6wapsbtQrNpWu78pJz8IHi/z074JkBtj9NoTiQSnz5MbZXg+vq6iqCw4uLi3F/fz+ur68P+D01GBgjv6zHnUXSO9c5Go4u+qkMD/lxcqPFDJLAbNJvN2iJZudThNUBC/GoVCzLYRRG3et4Y3mVnlSAhWOKjiWd9yksB8B+z6mzAq5PlBXHlQOCFbk7VZH9Sl9WIKGSX+Jd91Z6NwsyRW7jVhZwz8bQMfLkvbO6Ey88twoEXkJHfagoOZSUSu6MbyrbDTAft+Jxj1S5JT8rhpMGuOs0dxyqo2sXr0/THcngONhJxiCBHGYIUqRaGUinJE+1d7f79riiIlh/XFQp8bcAABJVqWyP5tM0lVMyTpUhrqbYeNydlJeRAEFVvrdP5a8C+hk4Js8JIOicU5IL9auqMzmq5MATYE+O37MCyYGl7N4piTZ4jHqqYMVxzaLcJMOk26kvUtnOq9u+TmfSGoEV3quswKwOJ297Os/tS2hLBiCd60DjjDaBgTHq+W4JXYZKgkuP6aR7PQOQgAAHMPnioHUEKUep4+mxRvGQeEtyUNvSFEXlOLpIJBk1OiG/h1Gu1kNQZuTv6urqWRkJ+FDxkhKSfz6RoFccMyrTNSxLx98CdVGjZwZ0jRuClBkRcQwIOPk57TswlYzSgkNOdzm4dfJpEfZ7Z9BSWzpaMYAdkNL4rZzcVnLd9rGT1h3pujGeP1XhQOcU5Ly5Q06O153Ciky767psA+XosvMyk6Ojbvr6Hm2PCS7oGxIY6Pq0A0NVXTNKU1HJb7H+2bGK72N0dxkMpNfkckvDVgGDLipLL9Ths/HVY1iVwrlwGUm5k6JBYptElRPz7ALblJyvO+KUOfEMAh0U75VsOV2guXo5ab1PQM6oMoQsLxHlo36sfux38q0XJJ2aEop30MX+ZtSqdjHrRKBJOREI+Bv7KkfO8SPi/em+1G+eWfI2jNGv9ue57kVZHSVnm8bvanmkZJR97FaAIO3regYvyYmcmnwapAKiW4CAn+f/LtvgTjzJnWUkPqpsgV+zJVL2tvmWgCP1bxewJPC1qh8pSNySqVNdVZ9Wcl4FgmNsBAMpimYD0wInMVOl3Nzx8Wt81RQBBSBn2CHaZIDdkfsUyIoRS46C9yQZkapFKwQFfLugL6BU+10ej4+PB28nVOreHZ7LkjzperVNdcvJq6896tR9WlcwxtjXfyrqDKS3yfuKOuEggJG6iNfyDZA6xnI7hyzePJPF+qqMQHLCvL6a6mMZzocT9T1FUR0/usavm027VXx3ZXrdnBpwfmls2WdvIaPVOX9uXc+/F6Vx4/V4fcm+pP8zB3dsZiDxkmwVf1ud84+mro4ZGKyuqWjTh4o8YvJBpAEtg0UgwKhRRITuQICZAb5xj41Uw/mMezLoKfoS0QAl5EbjkYwC28r7PcL0+jmYfIDpXgEhyiOBIUas+jDQ1dXVeHx8HNfX1wcGzutKRo8AqnKiFbpmPb5qu4oyfzTx62hOKYpne3if5O3rUXSOxkRlug50Bp2yTsDSHXCXzeG9bqxXnNssku8yHKorAZLkrPmf7fbpgzHyAkVmoVhWxTf7SWWlqI/lvIbh76gDX27fxvgx/H5vgOFlV/sVEJg5uiQLd/7Vz+9bcbwz2nI9gelKud3/VdqUGRClQS4mGC0mUOADlj9Fs4yEfc2A6uHg8LldkqNLH1AdwtXW0+veXkXBbpgdEDgwSuld3kdAwKkSbwufJhAvXPGv8jRtwPrYl9V8qYgRNKczEiDgFIfAzM3NzTgFMYPkfHq26927d+Ph4WG/1oIymK3mZ5mqawZOdY/Is1PJ2VdAIDl/6mBl3FwmXpY7Vm9/0v0EALpUPv8TZCXaEq17vzgfDv6cUnr3Ncn72e1ZCrBegyfWdYyT87JS+dV2dl93PGUEXNcZ+FQgkW1ZabvrHo9VfFfjpGtfd2xGR4OByvGyAUpX0xiTksPzKQJmBqoIqRLaStop3SfeqCgpMyAZeCq4iiYYVSf+dD/LpnyY/WD7PXLylxBJrgmsVAa5+q8MUHUv1ydcXl6Om5ubcXNzM96/fz/ev3//rL2vQR5hElSKbzlt6izBm8hBgFNlHNxwSo7J2XfOTnV2zpdtZP3J6acy6LyTM5TBpCNNWSfykfSF12xJz6b7nVgeeRujBkIVrz8yIp5RqrsCAjw/RnZWnYN1SgFBxVuXkUj1k7fUN5Wt7gDB7L/XKfvqU4EVbx2ldic9cz1P/ZD6rdK/GWDZAgqOAgOiKlImk+rMZFDUAf7VPc8KVO8QT4PWhVtFLk7VmgaPatRmZjoYVXdAoIrydH1lwBnZ8z45L5e7ZwOY2nal6xQ+RXa+RsCzC6pbWZ7379+PDx8+jA8fPozPnz/Hen400amnCJHXUWfVVgdeVZSgLWVSvbBI1AECXuPHvIyq/NS+6n7vU8/+qAzqGx8zTTzPQEBHlPdLwEKXaSBv7CuukVnNQvwI4nh2EFA59AQ8vcx0H+/f4ty3AKXEW2WDOud+TLYgRfwMFGjX/LoOWFSU6u6AmZfP/aqerq+39s3RYMAdhZhg1EWnSedPgXs6mVGwBmSVHndj4W/jcwMyS8tU5ECgI5eLd5b23cD50xqUE6dS2BYd81csc47cDSHLfAm5srLf3717t88IfPjwYXz69Gl8+vRpfPny5UV1Hkua3mAfJGfFNvnc9Bj5Pf9+n6+TSDrTObekmyvrApyPdH8HGtzgsMzKiBEIe/kdP1W7fDyvOK3Eu5fZgTi2Q23QmHoLgMCdfoqU3XFvjb5FFWhNwGCmF7zObV8aDwkQrIIEPzbLEDil/p1lBlYcbcVnBTASpXGZQM2M1xVaBgPdinAx5Yt/iLJ1PKXf/RFCnUuPE3Jw6+ev4+W5NHg6wYlSR3s6SeWtRi26LhmmhPSTE6c8+Hy/l1MBi8pwusHhfYkvIl0a04uLi3F9fR2BwE8//bQkpx9FBAKUA//7ExtpmsAjYAKz9OPg57jw8ZJAIrMt3g7t87/zSmJ97D9mTZx8vHTjpjPeK4ZToHb2OXHPRjnAU1uTrUj6TfBGW0Xn9pLMxEsogQHuJyeYnE3qv3R9BQhX+ExghDSLoqsodwYKtgCBSn89MzDjVzx58NvVU/meymZ7famsWd0rY0+0DAZubm5aB+goxffp4B0UpCyAdwwHNTMADw8Pz34EB92HidyIutDckNMouOF2B6n7Re6w/XE0L6dy5nQ+TM8qmkk0G4SUrUcarliJLwdy19fX48OHD+Pjx4/j48eP4/Pnz+Pz588nywxQlzxyH6N+Dl3n0gIulTvGN6DMJz64FfnbIcd4/v6LlM1KEX0FaJzP9Nij9JQAjsYwARbyozKONbxOdPwEBEkm3lcpayYj7YDAP8NOG5XWRJ16imCMbXJ+idOsHPfMIaa6qrK2OKaqTDpU36quLXrX1VedZ70cNwkQOf9b+FiVfRfcdeU7bQIDROxCztVq3DRo09sEPVPgSsjBTADw+Pg47u/vx8PDw7i/v9/vExDoMTvdlwYF63NgktBYAgBj5FRTVwbJF7hV11JmMmxcJV8pj0cUvj6CRpOGMiFOBwvM7Iwx9k8NEAzo9+HDh8jfj6YEWNL88Bj9y0EqA6o+qaa5KNOHh4dn5c/WAviWfe1rEkhuEDydr/8qg6lx6pUbuQ68rLTHdaqbviNoYRkJdBHA+Nol1uey6JzaqQGB26xkw3gtnVhyTivRZwrqqmur/909yYE7v1Xb/P4ZIEhOfWW8dFTxmeryvtgKiFbqmQGg7w4G9Mifz8m7E2MUNsZ49lQAB281p8pGENULABAIVJkBAYFZdkA80mG4caFAq3SuzhHcfC+iTOl0Hx4eypflMNr3jIpHiMnJc9vx5HPWWjQo5//hw4fx/v37cXNzc7I3EPJJFXfUKSsgqpwdiUDAF8LqPKevmMHxrAAjVAcn1X8eI8+rDs4NJ0GAR+SkY9LmDCJmBpFTjamtkpUHF2qnbJSDGH4dUm3WNo0hl8MpqIq2uyxA+r/qFFR+2k//07nZNe6sK9lXVAGClXtX2rESrSegucXRp7LdBh9zL2lLn2/KDCiqUYQj4qDzaClFTVwX4EaJ8+pMHToQkMMXKPCpAzpBCcXRFB2AR3VqgxtZAoGEOJNxYSSWOq0CDgQB4tWjJHfGad0EZZPAQKqXW7/WgYmOaeGgQICAgN6EeKqXDrkM+RKrDgwo68X0fsrU+KOxnnlQWWM8/4CWT+0QRHufe2Rd9R3HUso4VeTOz6cRZtRFRpVzURvTepwq0+a2xd9D4qDLwa5nBjxD+ZaIWaUx8iJB/ud91X/eu+p0Ztd14GErdcFhskkdEOgc9DEOd8ZTd0/HxyoIqJx7BQR+CBjgC2t2u2/vu9e+P3OcBqtHYiIaLzoyzh+mzAAzFMoKJGdYRb7aT0alMwrVQqREdICMdtyRumOqgADvo9y1rz6hDLWVjHzgJBDD/x69kn+mbblwUEBAWQFGy69N7rBdP93h0sCkdRTJKXs/0SmPceiQqoxVxVcCpyI3fO7odrvn7zNIY9BTrWPkxxs7pz5LVXb3CnQRHCQjWdkWvSQqBRUuR0/9OyDo+H5t8rEnYv953700O7DF8W+9t+PB+3ur7LdkUPwabn2/u74Lprp7yXNHaVwmm8JzCfyu0KbXEWvBmoxMhTzo+CvD41EIDdnDw8N+n85MAIAggNH/GPVKfSd2qBsXd9ZdVJTmHh34eJ1eXueQqzKlIHJw7uTd6TBrQgdOI5nq5XHx7o5BchMQ4LsFND1wSjCQ2qTj2npkSMPCyJWRvOuOy4X9kBa9embAx03KVLF8knRcTlSONUXZlRHrjHTKFlTGd5aNoFzJM8GtO3XP4FTBBsvX+GCWRPYrySLp+SmBgKgCUgmw+33c+n5XXyIHH9X5lbJXHNVqeSvg5RhA0PFRHVsFFFt4q/yZO/6XZgc2f8JYgy+dryJNMXVxcbGf53YG3bmnyNZ/Hvl3vHuqjYbfI4O0KMtTriqzS90mo+epUJ13Q0e+/NFLGkulsB10SSbugLTWgHLwfnMgI2Oq44xkJa8uK3DqaQIfMNXctTt/9jGv5z2ezVF92lKHua7FgawDMl+I6JEsydfsEGhXr8pOwMKzAg6MHBSkceXj0I85uB1jHDhs7lfGdbZN9c0AYQKBCfi+Nq04S+9DyrwCBJ0TStlLrzfJeLUtKyBlBjxS2d11STfS+Uo/untmx6vrOgBXUZLhym+FlsFANaBFKRKg4+CCHr/WI9nqp2iKmYOuTkYpflzXetq4e86cTrCa/2e97lQV+bghlfFPH2fyNzFy4RMzA1WKM2UI+EKilBUgIKFcaSR47bt37/bO/+PHj8+AAAHBKUhtp3z8+wMpdcz2Uo+SAx/jUN4EY2mRa8oKiFy2KY3tDkA/8s3rEvhJxHHl0w2p3s65Ejg7JQDFvuA+yccV5eYG0qcIO6Po/S8eVf+pgKwD10qWpC6S7K5xeRKQdWCKfTdzfFsyA6lt6fyqs+uur4DlCm8rfbJCXf/wmOu59tOU+BbZLFtnzse70aFzG2M8MyYdUx6xcc7fj8mA0pC6waFzrQxLMq78XzmFNFhEPNc5VedLx7qfnAI/RyyZ+DU6XjmLyiiSX08Fp+skG2UFODUgIKC1AqfODAhIjjEO9Jdt8og6RYTJWYioqzyWwAB12stRPSkN7vpJR8oxovLVlpnB9HGS5JeyEVXkKN58usAduYNu9kE1XZB40zW0P8woMqBw/edYqbInl5f1Ozx+NKW+cafscq7KWTleAYAECCpg4OeOBQJetuun17elvFR+tyVV9rMCa4lSZO/H07W8pypnBnwrWgYDd3d3zwydV1qdp2MnpQbwuupY9aEfRd5pntDBgDpODrbqRNabiPclQMD6VI4bUmYDrq+vD37uTJkZUDnMILD8tGjOnX4CAN4/6VE4gi7J0Pn2j06dCgyIf0XkDgZENADd9JMbHjpgGmZmtJgRcDmyD/1JhwQIqL8iz6LxSYiZQ6Uz7Jw4KfFA6upL9XNBMoFMlYXhcWW8KIu0cDa9a8THL9uXwOFrU3LOosTvisxdp9VOymYVDPC/ByGpvs7ZzSJslp+AAPnYSt6mip8ZVTLged+uAoOVcyl4W23HMhj4+vXrvnBvWErHJSfijenARcoqJKDgDU9AgGWwDTRCblidL48uOkoRZKVsMr7++WZ3ppxCEF/JWeipD88m6P7KUbtBpqw9qkqgZxbNblHK701dVOnTUCJ36nTirlPSc7+H9/K8dDQBqtTvBHbap0zFk08/VIaUROere6Q/GkMVsN0SBSWn6pkCXkv5OIBieeSD49TXylSZAZG3kfKiHXltYoZkpQ86ULDiNN1Jr4IBH9+ub8n5V/Wl+9nWBARWqAMd3p7qOgdO6Zy3y+vfCgi6+/ya1J5VILsJDFRG3Z0/nYkfT9ukuElhHAh49OKp947SwHJeUn2pbpbjyL06znvoDDS/TqctkCBnwEHKMq6vrw8cExf26TPCjN4dCNCxuKNk6pkydpA1i2BOQanP5EzoPMZ4/r0H6jB1maQ+6CJv9R2vkczp+FM2pcvyqM+0FiWNtco5kH+BFJWz2+0OFtImUODUjQ/eQx3xJ1pSOe7IHaiKJAe+eZQvIZvx5sBWxysg9RrELA95mIEyZkQrh+JOrdrnMQehHVhIcps57krW1bFVUNCBE92fbFbn3FP5KwArHUtgYAsg4D77QbZjhZbBwO3tbRnlVc4yDV5SJeB0vAICFSIa4/mirOo6r4P16PiKIfE0fKqjiqhTFMhsQAJhIk6PqHyVQTCgn087cHCrvXxiQ1vWtzJPOUPZr0XdAGMqWg5d8q50WverTYx4Xfe6LFG1PsSnChwQ0BHQkfu6CPFcRVQ85ls3LF2GR9dXOsG6XN+p4wkQEKzxf7IxfG+DTw8QDFT2hQBFMl2d6vhRJL78kVbvR98n8fq0dXms/K/0oNKRRJ39n93v7fagxJ2kO/VOVltoBkY6p52uWQUDVdnuV34IGLi7uztwdqpYzKSUasWwR/QvJZXtUb4b5goZVtMC6b+TRxRp2oHX6pwbRu27gUxIPHU+U/wqW1kFBwH+tkX2oxtgGVKWzSh4hphJpwIElcFkWy8uLvZZAersTA/Up09PT3G+f4zD9znw172V09G9R9FsBzMbntp3mac+oNPjNFRy4hUQ4Hw8p0LIDwHqu3fvDnTy+vq61EV/+ZiDVU3xsK9W3kjqcvE+S9M/r00EKd6fle1M+l45Ef666Lo6nwAAjyXHPovinc8VwLNSrvPidrTjgfszB985+463DkzMqALcW9ZqbXqagNFOMqra75ynkxuh1CkuaB/QlbJUqU1GS4xoZER0nGi8Mh4qX45ARo+giW11QEA+aXDpNBitedpUZbHDGXn5gkSuS3DjKx4dCPi8d1JQKmMHdk5ByZC6/jI9Tkr6xjIEAjjwfJ1HWg/gUwLsZ9bt/LsMxbteyCXH3o0j6h11tpObp6WpjzKydFx8m6DqEgDQUyZ6KRVfWZ3GDJ27P5mhj5Td398/60svx9/46PL1/lWbT/UkwRj9FKpsV+rrFRDoYIAZsipj4GAtAQCCAAcEW4DAShsqJ74VGPjxCji4XGZtWQECHXkQyHa5nN1v0B6t0DIYEAqX40wRggMCb1TaH+N5xOzlpv1E7lzdYfM68Uvh0lj4YiOPuFROSuE6Dx2l65PB59whQYEMAsuQMvjTCCkjwPYnwJGAB+WYIl7KRddQNq9NCWCxLexjkve/lzlG/SQI37HA9y4wS8PpGhpgPnVA2YtnRuNPT0/j7u7uwGG6EUvjMfWbO/wEWFkuHbXAAKNpOgxlBCQLPYaqD1oJEKRsFcGpHP/d3d24v78ft7e34/b2dnz9+vUgq+GZgE4eKbp9K0QHLfLxWmVEfcv9NOapW5XeOFWAwR1VIufFj6e6ZmV1ICCdW43Gt4KBVRCQ/NJWHeyAwA/JDFRGkecJCEgyDKmRM6e5KhiPdrqyeW1KH87WCIzx/GuMblATqJHBpKFUStV509b5Ixigg+bcPxEhwUAy+k4OCGgUUqRIMMRFkHJyNzc3m5Xye5PqTSn8MfrXTVdRJKcFJGO+iplvY/z8+fPBZ5z9mw3ir3pBEUEq+0Yf6ZJOKHtXOW3xry2nK/wDS90YIh9y0peXl/utshOs8+rqav9Sqk+fPj37SS7+1Izqk2wEBAQC/vjjj/HHH3+M33777UDH2becTqiCDUZdHiWfkjzI0na3+/aq5QrM+LGqH9l2H/Ou/zNHWWUF0v+ZI3Xa6gu6aLrin2Ukpz8DAytAoeqPiueuDyhPX3Cssf3dwcBLUHNaYDVGnhpIRnpVOWgIuykClk+Q47+qTgcCaf498U1AkAZtlSFJoKQz7g4GKv66/kzXEQDwyQc5Njk5vn1Q17J9r02st3IG/n+2RoQyvrm5GZ8+fdo7fDq8z58/jy9fvozPnz/vQYF/0VHgUI7Of+kVxnKMt7e3Y4yxj5pX9E9yYF/y14FGOgxmy5x4TKDww4cP48uXL/ufZPL58+c9IPCnXEQEA8wG/P777+OXX37ZA4kOkKucWeS74kBei5I+kncBAgL01HbP+mjrsqiyA36evHUyTICA58kHaSbz1D4n2lnW6+V3AMf/zxxzVZ7zTHl0AJXHqvKT7a/WF3W0DAa4MM4Fy9Skou1VWgECK5H6CqVpDEUNjLiq7IZPB3SOluSOm/s+gD29vtKZM2VYyb6QR9ZPWfnUgwCA0r36edS7OmXyo4g6OXP2vMazASqL6zHUdjl+/ejsfv755/HTTz/tnR5f2SwwoHT/169f9z85PQECLpq7v7/fO0y9WjllXzoD5XpTre53B+HypJ4l2SkrIBn99NNP48uXL/ut5JL0RqQIXwBJWQHqWzXlwT70RwwdFHgkfWpiv6WonfKn0+UYZjl0zvqfqAMFnSOtola/pgMCqdyKx+548ifuuzoeZrQCEJynBNqST51lJVxfOY49sFxt26avFqa5VqVL6UQ9CveU32yQ+apg1nUspQWOBAFMJaa2+wBLq/1XyTMA7vhdYXQtKf33X8pUJGVyxSI/lB2jYZ8P99cRc2oiDcDXJMqA0zQVIk/rAwTUHAh8+PBhfPr06cC5acv9n3/++WC6QDKTjB4fH8ft7e2zrzyqTn6xk9+3eHx8HDc3N+Pu7m5vCNL6jFX9UXu7LNIsYqPOKiugKQKCpZQx0bSSp/w1Rh8eHvaAgF/FZCbB28Kx4BmWFACkMX1KYODy7tZBEMRzO0ZuF8kddAcIKh4r3UjZgS3UZRcuLvJbIlOg2U0VdY7TZeL3ulw8AEx2vgqSErjw/piVy7JW/eamzEBinFGCjJOY3poW9lQYH5faCgQIRBy8sEzPDOi6FFU4COgi9+R0vTw3nAkUzAaP81JlAwiCWJcrnCNmKleKIpUmT18qdNmfCgw4zXTJZcB9LoRzIPDzzz/vswA6pozATz/9tE+FEzBdX1/vnZTGDfVS/OgaOsjdbncABDrdoTFL4zIZMj/PaJpRqhP1hl+zlMPXFArXUfCbFj5dIRIQUpu5MNYNv49XgipOu6THDo91WD+CkgMa4zBLQH2ogAD7fhZkpMi9+rnNTvyvBIArMuiOVYDA21Wdq+rx+ro2aj+V7za6AgOsxwM133ffkQD7lidhjloz4ChLDVNnOPqioFaUIgGBWUfqWvGn4wlF87llGl/yKnK05Q6S5VaoMfHKjkzKkcCD+PHjCQx4fQkhJqCUFg76mg/Ww/S0v0JXvCXD8Zr0EkCiez0jIucmR//zzz+Pv/zlL+Mvf/nLHgQw+lUaXNEsI1rxVq318AV5ul6PEvp0lf/0zLzrQ8qQyYmwzxMQIJhOAFLAKWVR0meuCS79jZvsv8fHx2ffwPD1BQQC/sjn169fDwDB5eXlfgqGlLKgp6LOEfl0TdoSCHiEnUBBBRASEGAwSH5X5XUMUKjuISBI4OEYmvE2s/f+qyJ43uOAoCqbdZCq9WUzOvqbsp5WI2ohIOgUOREVyR2T02yAdOWnFGFCse60eYx1VUDAO8qVoXPgzrMPXAcSXHjlmRw35ho4rIMGPn38pUrDdchUdWqB283NzfNOeSVyYzZGP+9IAHZxcbF3VEx5CwT87W9/G3/9618PMgNKf3/+/DlmTAiQkq5XxoTGnQ4/RcICEmM8jxI4Fjj14Lx5JoB9yv+Upxx79Rgh3zdAvtmetN5EU5L+yKzf6496EjBpLcaWDNxWh/W9aQYIOBZTdMlt9xOl/2n8cJzzf8V3BUa+FxEQOM2CkQpgOK34sgQA0qI+BtapDpd3Isk0TYF0gbTT5kcLkxPxqC8Bgi31pFRkNZdfdXCnDDS8/inkiqoo2+XhPFD5Wc6WgVABoRQBVqtIV1LjDpCohJJ1dQ3v5wuqdFyR2CnJdSpRAn/KgNC5aXrg559/Hn/961/H3/72t/G3v/1tvzbgy5cvB87P09laA6DxwblwPlLomTEf3OQ3ZWh0P528ZCH9d8OsLEUCkr7vOkJgygWmCQQQsFZGj4CX/FxdXY3Hx8eYReF6Fl+QSKOsJzFYV5Ltlkj3tagDBZQptzqfQFA1fdABAuejywjP2lI54q3BpO6r7N2Kk03BIO+lXpC3BKa2AgEfV86v88G+9XZ2vjPRppcOsQGibs4oTRnoOkdwKRrRtprLT3U7Uk28pmwAr+dz6anNqY6Uvtd5lucDLsnGHbOulTxpRD0KdIVzcFV9yEbtSYooR3NxcfHsmwV8E5zmrtlPzDTc3d2Nv//978/65TUoDbLKELBPOB2itDZXxf/1r38df//738f//M//7DMDerpAjk/9IqfvPAgs8YU6eqkOnyJILyOiIyav+miVzt/d3Y0xnj9OO8Y4AGnUExqryglQR6SPPp2iX1rsJ0DiPwcoPpU2xoif+vZ3GWixpjIyzMJ529ge6sMWg/ojyZ2785oCD9pZ/ncgoGvcWbl9cqDR2dnEX8VvBQhY7wogcBmk+mf9za3vez2JbwcCstE8LqqybzMgMOPtGDBwsXtrkPdMZzrTmc50pjO9Kp3mLTBnOtOZznSmM53pzdAZDJzpTGc605nO9CenMxg405nOdKYznelPTmcwcKYznelMZzrTn5zOYOBMZzrTmc50pj85ncHAmc50pjOd6Ux/cjqDgTOd6UxnOtOZ/uR0BgNnOtOZznSmM/3J6QwGznSmM53pTGf6k9P/Bw+xeHk5nbSiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3D0lEQVR4nO2dXXbkuo6saZftcnWPp+c/hB7KfTn7lMs/5ftwVmR9GQ6AlJx2evdOrJVLSokiQRIEAiBFXb2+vr6OC13oQhe60IUu9I+l63MzcKELXehCF7rQhc5LFzBwoQtd6EIXutA/nC5g4EIXutCFLnShfzhdwMCFLnShC13oQv9wuoCBC13oQhe60IX+4XQBAxe60IUudKEL/cPpAgYudKELXehCF/qH0wUMXOhCF7rQhS70D6eb1YTX19fjHPsTXV1dHY7+u76+jkc+JxLvVR38uVQey+WPZXu5K3R9/QeTzZ4X/79//z78f319Hb9//27r6Nc8rfLhz59L59WR56zT//t//6+t30fQ//zP/4zHx8dDm40x2v5iHa6ursa3b9/Gzc1N/H379u2o/5iH8r+5uRnX19fj9vb2zbM3Nzdv+Eh9oT4mf3rG5ZFy+e3bt6Pf1dXVER+3t7eHtOzDl5eX8fz8PJ6fn8fT09N4eno6/H95eTn6PT8/H+o7xji0yfX19dE5+VJ9JLdPT0/j9+/fR/k/Pz+P379/H/4rva4z/dPT0xue+CyfSW2odvz9+/cb2fj27du4vb0d//u//7tV9N5Nd3d35dieyW5HfLY6r55xXSi5SrqQ55VuTnyntNXzaRx3tmAPpTEoeaIc+zVep15lntX/rZT6Z4z/tMW///3v6fPLYECFfBYgcCFYBQJ7DbI3ZCrXjT8V7nsBASkZF5IUFgVUikz3O1oBAimN6qXzBDA8zRh/2nHG10eR+urm5ubAg/rs27dvbwAWSenu7u7Gt2/fxt3d3Rujznw8DxlDGRTl4c8nMJAAH/+PMd6MBwIA1lvXHAjonvpT5cjIPj4+jpeXl/Hr168DICBQkJF+eXk51EHgJwECygeV57dv346MdwU4WJ6Oz8/P4/b29gBaXl5exvX19Xh+fj600RhjPD8/H8ZWMqoOBkhfYaPWDghs4W/VwFbPdQ7SHkfN67AFqKR81cczXUyd2RF1IHWs6kV5TOT62et6Ctmq2lZjZoU2gYHPopkAVIKbntvT0DRkFX8u9AQEzovzMBNACY/XRSTBciXmg6Eqp+ItCZKENQltMvxpQOv6uRQq24H9pJ/uu6FwZeZGTdd03evIcjyi4IaY/e1gzMFA6tcUGVDkgZGN29vbQ9kEBgQDMsCPj4/j27dvB6P67du3AyBQGfLoKXscE1UEzUGswKL4ZhlUunr227dv4+Xl5VCGg03lRQOvZ9Q3iSqwsKpQT01dROg9eVZjnf9FHcDvDHunO2b8qYzqXFSBt1kbzRwu8pGisUwzqxvbwZ+v8kl1ndmlxNsW2gwGVgVxL1JN17pzBwIuoC6QK4KZBCvlq+NsqoBlvr6+To11x5fqUAEC1tEF3svrvAtXAF0bVoP2qxBDdd++fRtjHPffzc1/hkECO2pDGn33hGRoVJaIRtm9cnrr7jmRDw9L6jzxymgHfzT8jEo4GFDe8vi/fft2AARjjPH4+HgEisQ3PW7V2z1Gf0bESIT6R1EGphdA4TkBgIMlbx/m7+1Lfh147R2rH0FJT37GWNOYn3n2ujfzyGfl8L/ynIGCipdELqtjHPdvMqje/yvyQJlKOpP5rzhTHaX7Wx3iD4sMbBWGKn1n5Ks0CU1VxmuVr874pzlRlT3GODLa5Ksjjw6sUgd6urBYxV8FBFI5Kwj4HPTy8nIExgigZEArmSAYoFFLBtdJ+aaogPK5vb09kiX3RsYYb+YeRS7TCs+TJ/00vaGfT1cwssFpAEUD3Lg7EFAY3+vOn48T1UGyTiOvPMb4jyEnKKCXL49dfHtbyfhzLBIsODh0+iog4KPH0szA+3nq3+rennIqSt4xy6kcMtelCXSkssbYJwOdXvQyV5ypFRlwvfvhkYHEwHsFdQYEquuraNWpCtPMBNc9OA8dy7AkPqWc2F6zOSuuDagMxUod05zVCq0Cgcr4p0FwDvKowBhvp3p0LVEHBGhMfWqHBpAG2cP3HRgQ727EaOAIOnxKQt7//f39EQ+8J0CifAUGGAnwelXtrF8CD+laJR/Kh4Zf7SvwQV4IBpSW0bME6pMHSHDB9t8DzD+LTg2+U39Uxv+UoOAjdEUHAhL5+HOdmaJyHa3oQNehHSDoyllJ19G7wcBHAYE9ecyUlM5PUQ4NSAIJY/wRJF5nlEDKbhUQrFAKMfv5CrlAvgf0nRsQeCiZXjCNF8mRevUT0VC5l+Jz52mFPYGkKyIu0KvAgEcEGAW4u7s7gIC0ANIjA6yDQMjNzc0hUuDghIbUZcaBQGUwOA6Up8/RpqOfd33U5cX7KQKjdROfTXucnS15bvHcq+erfvUyZnXZcn1Pe6w+00XgklyulNul5f0EHt5rY1ef/5ILCDuqBHll0CRPwJ+hV8P7rrzlgaU5ZBFXmHeAoKPKI+nC/arDKeY7XVDHWF8cVLX3ZxMN2tXVn4VqBGvV+gpeT68JMQ83fi4rPrXgEYakAFSG5rwTsCWgIBCQ4f/+/fu4v78/nBMMcN2CvGtFBnzBJEGHjwVNJSRj2hkN8U+ZFeDQ+Eljh9MMjATweUY1HBgwykJeBWi4YPCcsrtSdjf+VjzhpP9IlWHvfu4szWiLcXfZ2fqM/q8CweRgdaAz6cZVu1TxvkUGvQ9X2/ZsYGA15KH/SRD93qzSK53TlV0JeyX4qx1YRQc+OjS5VcmtpN8quJ9BCcn7SvbuWfYDDcjLy8vhdUUtuKsiM26w6InT2DmAWo3OXF1dvQEXAgXfv38fd3d34/7+ftzd3b0BJwSN4kF1Ub34Y13ccCcQ5Xyyvip3Nu48csDohPJI0ykEUEnZM62vOfA8vgqtGPkxsi7b+gyvJ8C78n+W7x5+tlLlbbunXwGBz1g74lGB98jcqoyQzgYGOqPcVcQRTxUh6EKEq1QJchL6VAeRGx33Siu+VgRwFgat8qhCrVU+VVhVVEUNUprPpspLdSXvC9teX1/fgD6XCUYAEjDlOY0RDS/XM/gaEcoOF9cRSFxdXb0J/TM64GsFksfv/Usv3dc40OgmnlJkoOsXf64y4CqPmxBxsSP3PVAkReVUc78CPDo6yNDzXwkMVONqNjbTtRVjnIx6AmsJCGwpZwttjTzM8mLEyWWX4zDxzDGUjmPsM+zuvO6VwdXnvuw0QWVMqHz52yIUqx6uH7soQHqedUieE4VrtnZA9ythrf47zYx64j8dlWZGX0GJureagOIYbyNODgZc8XElOmVRZbmCpDftmwLpp/xEbgjTXOb19fXRYkAZ/vv7+/H9+/fDNMH379/fLHZ0MKD8uNiVRrICNlzg59GUqu7sH7U1ARLbuwL3HiWgIU/PsG0r0OEA+TO8woo+Yvx0Tk6XrgIC3S/lW10jzaKiKW+fpl0pL+lLl3+/7s+l+la60nU1yZ/x51IdTul0bQIDe0IPiVby2CN43uDvQVMdLyQq+uo597YcEKy0B72cVUqGo4sCVPedKgAyE9xTyM4eEq9cBHZ1dXUU3te1ZByTx+NrARIwdeDQzb9TtmioZWR13/tU+XAPgWqhoO+VwPqpXPalyru9vT0yllpPwHZwWU/TBZXS1HPu/aetjwlMmIZRAY9ckKcUOXNAQVCgtOcGtSvjK1Hq5y3p9uph7+tVouyv1ovPpXtb26oz2A4ImN6Nf2XcVx2xz6bNkYH3AoK9z7oSrpRvF5pZbeRk/B2BpvszVLpVKFapKtejCKuAYC8PLhvvDZOdirQYjO+cu+Ln63NjZCVI4939XBm6wfdzes0ubzLIvnBujGMwoFcW+asiEczD1y+M8ceQq93YTk9PT3F7YfLE1/OqBVd8jvmnvQLS9wV8W2Ia8OTdu/x16wq+2pqB1XGajNMsbWc4Kz2YwG4CzFt0fQIBq89X0Vp30FJ+LosExlUUIEVnHURv6af30HtssdOuaYJTRQhWqVLMlfBVyO4UEQOWL6JSnIX7U72Yz3tCkh5pSHXsAIGnqe7PKKHiz5QXp27NgBYBJqJMudF2YMDNi1xOU34pncszeVdbunyo7PS2QqegeZ0r7lXO6+ufKRL1odoqgQEabvLJetDYUjYSOHNjz3sEBQIfbsArYhrfjCoBCPJ2bkp1S+Nq9VqXJoHSrb8x5m9DJY++c25WeGbaWZ6Sw+Txp2vMn3KcAEHSgx29xy6dgjZ/qGgvzTojpa2UZ0KjVTl7GjehxVnd9cxWpVHNT20lF+COX1eaXu4KiKjuk5+9oc1TEwe0FLt2zqPnmdYHjJE/huIgswoVav6chkzluhfq7eW/BAQcoPjYYF6+GY/yYJ39/Pfv/7ySye8AEGwkfmmcCTaUlq8Mvr6+Hi0A1FcSFYXQFwk9QuBfK3x8fDy6xvTdebrn/dJ9hOYzqQP5W/Poriedy//VuafvqPLak9HteF9JP+OnM/7JQUu6dgUQiN7jYH0kfcoCwvcagRUEujpQVtBaNTBccab5YdKKEPn/90QHUp1m+W0BBatAoOLtXJS8RnrznC922ZqF8Wmo/b14KgU9I5nhMUUElJ75qS+rdQf+WeU0XaDn/FsBKez/+vp6SCejfXt7O56fn48+spQMQJJDp1lonvm4585+9QiB7rlhd1mo1gk4+FqJOHwUnaLcZBRn58kZqvTeKgBwkixXNHP0mG5WrxVy/ctxR56rZztAMMZ8+mbVdn0Uffq3CTp0R8VXoc5uXmql8wkEOl4q5OvKm0ThTkIzUyoufCmPWdhtBiiSUq28/lk0wHl3kFUZxc8mKnZuJqMtbWkUSDS+fl3kHiQBI5UZ3ybpQFXqA7YnDXACBWnNABWU8pKh9PFWKWAZV30m2LdhTkrPKQH4pDSrZ5W3e/TaOpkRgWpBoaYYPBrg6dhP5wQD7zUAW8acp00Gv9LHTL9CBG0Cmx0fpFMZ/4oSIKii1zp3u1Kdi/b06eoze6OwJ/s2QTICKW2iVQ89GeeUzvNNXosPsg58JAWvo8/NitIGNBSMLjogqgx/ascqPz6zVyBXBSv1x17BPCURDLBv3UP0LX/Vr6JKIYo6j0nn1SuFWgDobZcUpXvy3FeAHyDi2wT8IJIDBV9voOuKBijMz9D9y8vL+PXr17i9vT18w0B5O7/pDQbVrzO0vE8g5d68e/viLz2jemwBuucCAqegFKlK5GN3BQhUOjjRSrQz5ZHG10p5fGZL2dTP4tt5YH6dnq1AkvfJCn2GDJ4kMrDSMSuo3/+vCmGVN+dqvZw0MCqwobwSKZ/V0H5SfhUg2GpET7X+oIoQ7OHpK5C8RMmDh6PZ125gaAjpxbjx8bzYp+5pXF9fH7xXvrZHEJKMlQMByaQbWm4ExHC5gwHx6d8pkMfPMjkVkRZQEhATRPn11D4O1BJ5e6RQP9844LSBRwbYbykikCIDX2HNwB5ie86Mbad3Xe66CClppd04rip+u7K6qYbqfhfFpbOQ1gUkPVu1owOD5Dh/tKFf1dknAQMz72+LAVlBqFXailbmzSvA4crOhXK1bqnDt8xPdQLfRRgq4dW9FCXpeF7p668GHugV+qAcYxy9N1+BtWQQ2KYCBC6fek4f+lFfuFHTz4GAfml+Xzwnz9tB8OPj47i5uXmTn7YTTnXmT/sYPD09He1jwM2O1I4VgPF1CldXf/ZR8G2OK8WfIgXeN+l6igw4oPC++Cq012DsGXsuv1t/pJW5dqar+E3yUE0VrBA9f40BXSe/rJfLGHVqig7omOwZjxU46PToTBb26tyTfbXwMwdP18jdM8mQdWjUy0kCXxlHtseWtqGQrAp8mmJIQur57EWpHSD4SkqUlIyGPOgEBmTASTJeleJLdedueyyL+/z7xkLkWc/pmAAB5+59qoGRC+4RoLzS9Al5Z91ZvspNmxolMFCtZaB3RkCQFKrapJomIKhJxidND3TyOgO+n0krfCSgu5r3it6rIgPuqCTHZeadux739A4EKp3dUefFV+fUGStTsX50494dyWNHe8HhjD5kAaELY+qE9+ZPWgEE3tgJHFQKaEYUEEeXeymVvwII/JzPzYRoBmBcaGdt9FWAQWdQGFImGEjKSAsOlZdet6NSc5KRZFvIkGpBnowkPQ2VKfLIgC8W7DYCUh1l/KngVS7D5re3t4c6SZb8dUE38jynoXVe/S0EKkSWw2iB95v6qNqgqDP49PpdPlNU4KtFCZy3rXpiCzkQcEBAWd3jqXdG3ctlGZV+rgDHCl/+rINkOgHuVLjjVTmQrof9yPzS9VXaC2I/7G2CBAC6im0V6s4w+XOziMCWBvdO/Ky5RDcMohQRSG2/up4gKUj/n4BV94yunVupahBz8MozZ51eX18PYf0x/mO8n56e3hjblTAoy/RyPYTtc6ferwzt+8eDdO5EQyl5pVJ1D1u80YAzH1d0CZjQA6/SqC5Kp37w6ID3C9uL19n+vLZi4NO92Tj4ipQifXuJhiwBAgcCKw5ZKiNRigx1ZXRTqNW6gGpqwsuQHPFtID2vseTTsswrgV4HCMl59uvJAV6Naq3K7pf9UFFCV/6r0ld5jfE2MrBSFvNJneZ5+/lKPT28WSFtR9Pd3BWJypO0Vcj0TGrnWej1XAqVgzghdX6zgERlp3MaGnpJJOZ/fX19+NLf9+/fx9XVn9X72jzHw/s3NzdvFKBT8jrSuGAbsH/0k9dzfX19WA/w69evN2BA7aRX+LQQT3kkb5GRAQICTb9QobrH6SDAIwd+rrSJZuuFUrvuGcsfSSvgZFUHprxdjnheTQ10aztm6wCqNq2cnu7+CgDpxmhKV0UGeM/Tu8OV7IgDA147N304GNgTskgKjoJXIdVOcTovia8KDHTIM9V3jPd//zqBglRPCqjX57O8m1Xjf04wQMPl7SRj+Pv37wMwoFGgNy0jlO7RuCkPPUNPlV44f+TX+zjJutKksZHagIoqLWIUqR7ki9dIXD+go08nJN44VaA2cxBQtRPXQeyhZPD2gOL/a5T0StKFCQjMogNVGL4iz9/lutLJna2p+Ep8E9AqYkV54BoXB/++riBFBfzc+ZwBho+QzS8RGagEL3kcncJLeXpHVI3bKa6rq7c7tjkPKVy5haiQWS4V5Woebnz44ZgqbOrENqvSeNl+Xh0/mzxcrLqxvdmf/nVDhb79jQGPCig/KgjPw+e4PS++uudKplKAHq1gv3UhTPe6lf76+vpo+2Hxp1f3uNcA65N+4kdz+Q5AOFXD/PlTNIJRCV/HkMayFDOnHhJA9eed/q8DA5eLZPh9XUqKmuk/86nIZdn7j+k6INABkKqOzqODd/a3xpLknPkwGsCorEdokz1xQOC2ZEadTHpbrNiOMT4BDFSMzBBcBQgqg51orxFKnZfueznu3aV8O/5mUwQzcm+vO1Y8rlIXDfhqYKADad4e9OxJlMXkQTEPB5/0Zrnr3Rj1R5SoZPmfClnlydgmw5/WlOg6DakUHsv3uXv/LkAyopWxTffS2PbnPELAvky6gK9wilJ6bw8H0myX1M/npi0Kv5PXlM6BAPuHspc2XCO49TwTdbphBQSkvFO6qi85PZeiF543AXdVPwcVFRiYGXR3YPfS6vNfZpogDexVAFCBgqpBed3zcO/fIwL+6paeHaP/ylVV5wQk3CBx8VdaJOaUogPJK9M5jx2vTOf/U75fBQwwvO0DdIzjtwJ0n/xzUR0B1xh/5sWVt2imBOlZcQdBvbcvWWN+1ZhIZXc/8e3g0fNKUQN64ywrld0B4vQM29SNs09bJCBCL83l1MdmpTMq+sqRgdV6dACi07sJsBEIUJaZZiWimfSf0yoI8DJT2hS54JSV55X6XWOF8sapRuXJaJTLZPrx/jnk7WzTBBVISOhpBgT2UMrHkbC/NuVAgXXhIr4x5hsGzaYTfO55Bqo4qJIR9p/f93wqqnjYAgo+mxwM6KhzGTn1fWqr2RzlqtLjc5QtAYK7u7s3i/ccyFLpelqXY8oNw/4+hUSD721H2SIgSCF6r6MDFh8/3dhm26Vf4pVli6iIXcHPwIvK/7vSTC69/anj/MdNrnicAQLng+3JaOhe3ZPKTWX7PQc6iU+NH71WLJ45jry+ukZAwKmESuYJwvW/ig58hEx+mTUDSWnofJZ+a1mVMqjmyPy8QqT0Wqp5LSqlFIai8k7rBRwUuPev5zy0mgycnufRz7e0ZwdCtuZ7SkrzfeKn8j598RyNb5q2InVymQwjXw9UZICG29vRFXeSYfGq9JTdq6urIzDw+vp6eDuA5emcMuRtVU0XOFURDY/SbBnb8sj439dhcJ1H8s5W6SsAgq36bkUOdb4CCDogkKYPxqhBtE+JVgAvkefptiIBA7/uALkCLZRP/8iZnucrsQSWab2Kt3U1HnT+mfShYGCP8HYNtZeHzqveAgQUvmVnMbRc1TuhPwqYyl9dfJgExqcFkgLvDP+K4K0g1K+gNBNV4T4i9plRW5HL1PeVh0X58o8WcZogfYqXijMpXq1+Zvm+IFCgVfn7h5oSAPCFg2Mcv7Zagc4qvN+NjQ5o8aj6pfGz0keJvqocn5K8fROodFlNgCABA+ZDSiBAR58eXdVJomqaogMLXocEBlK9xhhHbx5xK256/753BvNOcp5sSWqH6vqsjTo6W2QgDWodZ8wT3c/SVA3J89QhjpAdQYpmRtyFVVStPBXPLpRpYZvX0SMBVWQg5TGjSlgrqso7B5EXInf1rbdXMropyjGTU4/qVIaPoIBfH6Sn5R/hSSHxzlBWnod+fOPEASXL9ZX8CYSm9h/jeMpB/K0A4DQ+t1ACNVUkqJLb9zgk76UtY2gVoPr/FA2gE5TeJkhG0oGBl8WprwoIJL1WUQrxpwiAAxSdc0dMXnfe9AbN9fX10dtGGgs6p3PByADX/1QRgqRT3NZ9pD49CxioAEBCpisGvxoAatwOEHhZLvhpICjPSkjJ14rRSHw5yWj5AqmkwKqpgc44d5ENv7+1HluiDx9BXm/1CT3bag6cyoRgMHkhyov/k2wnZbMSmUhGbYw/oU6+58/IAOtBnjswWRn6mREl+Xj28r19fSxWQN2f9TJ8jPAZRigSrynvlP4r0oqeWdG5BAK+a+QsOuCAoWo/yvIYx2sGHARUUw2kNN4oU1U9Fe1l1Nd118vLy+EtFf20aZh2JpU+IeC9ujqODOgaHZAk42yDz5S/s4ABGmkfgJUC8EbxhusGApVvV54vEnTUWK0XmNVzCyXPSUiTQsf0nLudAYFVr560tQ7Kww3wV6AEELe2lysZAkQnzmHTo6YyrMAseeMrifwksQPE37//820BPZuMa1KuNPJ8719l+329XugRgo46oOsGpJpW0Y99MwMLqa7pWtXvX0V2E6V6+72UtvtVMkODn6IE6VoitrFH5pjG+7mqv7fBCgggeNbv6urqcCRof319Pex54ftgCBSIZ45NjW2BhzHGYSEi66ZzjvkVEFDpnL10cjDwXnRa/fhsJeQrZboCcWEiCHCErPsutGPkz6aKKiOeQrPkL4EJFxQ+U00LrACB6l4FpPjMSr6p3z6LaEBIbBMenWdGAyogoPQi92qS1y1DSo+D30pguJHv+DNM+fr6epBNhTH5bQGFNSXXUubk1cvXMXn+BJ4VaGSbJSXMcSVl+Pv373F3d/cGYLD+lbwRiPjY813iVFYli5/piW2lPc6FqKtvBQS4s2QCAJIjGtIE7MQ7+8/XkBDQsi+r/vD6VNEkH6uUPV+no/oyncp2MPDr16/x9PQ0bm5uxuPj48HoOwgYYxxFBphn4nUGBBwAnBIQfIm3CUSV8Z89s7WMJFiOZJPCp3BXlKYOZvP9aZBQmUq40gKbFKJ145+M4Co5OJml+6rEfvPBxOtUTg7uVua3GcVJ8/rM041dtasfjTUNtfKTsedeCPoqopQPAQ15pfcz48v5J78V2JwBBP13o5PC1BWA7/raqVsXUPH91WU70Qzs6HxmQD0dDWX1tlWKDHibE+gmR00gcYy8+Y/y4LGqgwNSLtq9u7s72t/j7u7uTVR4jHEAAgIB+oYHHQ2ldfAqfeDTBZ3juxodWNXPK3RSMLDFcCeh9LSzNCv8zBrIBT4hWwqWG1gJNK/xnALi5IaHaYiUHTF6Wela5/FW9J7oAMuYgZFzU1Jyq7LlnowDNAcOVT+5Afb5SPa7gwEBApUj+ZSSk5HWNfHILYYp2/qUshZJEXBwt0GvfwIErHMyLMmDG+PPZ51vb28Pdby7uxvPz89HQIHvbbvi922gZ/3I+nS0Ve98FK3ykXSpH6sxwHtJF/p5BeDYzw6q9Z/yx6iAGziNB69bx3cCBL62hnt7fP/+fdzc3Izv378fogR6q2eMP9Gzx8fH8fDwcLQ5mOsBAmcefX0E61yBXNf/yZGdgdpV/ftuMJAMld+vrlUGP11fpeSRbUFPXfluuKsFVWPkhWQkHxzpwytcJ+DX+GyaGtC9dH0r7QURfu9coIBKya/7MQ3IRGzPWcSgAkxuUBWCvLr6E3qVbDBMSQMtuZE3k6a5+GVE/fSMlDHzfXp6OpLtBAaS3G/pX1fUimaknxucKhpGz8u9tRmtRAn+DrRHbyajmgwqgaT3i4fXExhQnwi0CdD5VI54St5xB2wS0GT0wKMD3PlTgOD79+/j7u7uECXgFJwiA3d3d4eIAseQ+Pj169cY4+3+JirXjX+yew4AOjt2Kvl8FxiYKc2OyRVk6kbZn0/3XDEnRZzud15sMtxUlFTonkdnKBJiZv28fCrOxEsFClK5XkZVd+enUrBfNQqwQrN2Evk00pa8E3hU/+mn8CM9hzHG0YeBfPEeFyz5GzAEA+7JcfzwtcUU+k/emmQwTWtUz/A5tqF4p2Gp5qoFBuhNqm/039+k8Cm61X77KiDgFHwkXZ0cMf+f9LRHBrpXD6W3kqMi4rVunUDVHgK3M1CjH9c6eHTgx48fB0AgUKB6EAyozmOMwz3Sr1+/Dp/qZt3JVwUKeH0rwH4PSDjrmoHO6M8qkgwa55hmlFCWez8eXk3enC9wosKjsnIij5XhrowuB5c/X0UHqjaYDbyuvao0p4hGfARtBa2VAe1AcJLL5EH7fDzD8u7Vymv3yIAAhIieMxUzFyTSaxO/BLU8pwJje7jyruqXjADz8XllThP4Su/b29sj4H1zc3M03pLRGuM4JMv2SH2d9MBXAQSJkpfs9/xc/zvny/VxNd+eztO0AqMBCQykKdHZOoGOZ/a9Rwb8jQhNB9zd3Y37+/vx48ePcX9/f/iv6QAB5sfHx8M1vrXjkQ2vH8dBBwQcBKT/HinwvvXrqzL8qWsGUppOaPeSTxU4JSOYlBo7jXO0VN7+ChZpxgPPCSCqdnAg4GsNXAi8jCQ8CaFXREFMeXQA4CsAgzTIkueg63zOPSKeM98ZEHWjmcCb8lA70zgng82pKa4LoCdUrYWR3Lo8uQfvSokymKIDTJPkwvtB+yO8vLwclPPz8/MBHDw+Ph5FOxgpm1GlNN1L2zq18BnUKf09efl5km0a0+oVQobZGcnx8ZRkm4DSpz3JU+qLZPQd/PFaAgqpDjL+9/f347//+78PwEB1k2w+PDy8AZYC5Q5+OUY45cs1Bg5oO1CgNpzJxl46KRhwxFIJbIVIPS+ee6ivGwy+UKVSukwvz5+do/3aWRaVeQUEug6aGY20TmCF0j4DTu8Rnhk/CYh8BQAg6vhLfNLo6z8Nq466R9Tv6zlcKYpclrSByRjHHxWiTJI/51fEFct63pU97zm4dEDiRlO8OzjxNx1UD4HpNPY8/zRdwIgBFbOHYdlePj9btVWSBecxPfPVaOZUJV1beaX0oJPx9O9oEAw4oHCwSsdKU1qur/3c+U9H5VfZFeeL45nRgR8/fhx+//Vf/3VYNyAdr2k8rhV4eXkZj4+Phzr62KDcKi9GsTm2qj6pQADrP7O7M/qQyEAHAvz/DN0TYMwqWYXeO6Wv+5wScJ4oRO7Z6fl0XOHR63l1Nf9UMQdYp8Aqb6zK86PpqwADUTXwXI6rOWfKZjLYqTw+68aUskUe6KlXANefITjlGwUzUDTG8RsyVPA+n5uiFLonPipQSrDlcu+h527tgHuizN/L64g6hrrmq4GAGbDxeldjrgIB7JP0hoD3D9/Rp6yojKTvUiSAPFVGrQIAVVuoTObZyaNAwe3t7dFiwtvb2wMY4Hj8/fv3YWHvw8PDwfBzvw5Nebmssg06HbSFuv5eod1gYCaUVfpK4SaEU+W7ZaDOPMAxjl8HU2ezE/m+aZofXaU0MNLzXRTEjbvzkOq4wuNMcaTzVfpqIGCMXtFUg7FTNul6dc09cZcpn3+sQvE+1eD8eDQgRZwqA0iF7h5VB7QTHy7rXgflyXU3M1n0eumXAJkDrzRF8xVlVPQeQJLGbgUAfBrAz7WYLoE0vf3iMkYP2AEleXJPebUtlO8YtaGXLDIt20F1UoRDiwcFCLQ+RYtsuQOh0t7d3Y2np6fDmgJtSFRNz6nOjF75NJXbyb0yuio/m8DAXqFMQrgVDXXgwWk2wLvogBPfbR7jODw645VlrQIBz2NWT56vRgG6Mh1Jb+3zLlJxLnKPI93nMT3b/e/ydG/AlWUyrDxnPikalNKKqITIi4Ntb5dqvHqaBEhm/Z9AhF9P5O34HgOZynmPzP+dKMlyMlgVIEgRmrRwUCRgy9cHVSajVytyWVGli50XGV5vD9bF3y64v78/LCAUoKDRT1MlqX24iNdBQOUcOxAguK7a5z2g4ST7DKzc98pViqYDCVsBxBjroXF6Ke6ZEbFt9SLe0zlVeLoDIu+lmWFcpc4QfAWqPNsqnZPL3yydG+ZKfsnHqlHmgiQP6+p8jPzZ2DGOvTGXV/KcvP2qDZPC8nS+iCr1A/li21W0MjYq4JFA46x/P5q26I/V8enylCIDBAUpeuAyVoGBMY7lZpXHLY5N1UcuC0qntSZsCwcE9Pj1JotklW8UdK9VErhW9qzqk5X2eo9tSbQMBvag5arSOiZl1+XlnsEKGKjIlZUvetKiD6ZldKCrL8vQdZ8jSh74lgFDryx5Zyz/FLS3nb8KeZsQ2LmB0jnfGOGzep7GQ+3j86GJqDATCJl56j73TzDAuVwqKKVT/qwT1wg4D+S1SuPtWwEtlsXFVSnMW8mwA4Ikl7N+dT5S+s77+gqUdOrsftKhaapF/30RYYrO+PNpXCT+0hqYSr62AIMK4Omc4JPX/O0CrRsQGOCasuoNijHyGoak2ytns+qvzracSlY/bJ+BqmIJKflz1bUKPY2R55xmjZSUMD0WrRsQQu6UYTICVdlbjHUSshXyMj5DqaWBmLysc9LKoFmJELgcdkakk3UePS2NpBQGw4su62nhXRovPk+fpg9SG6jMynjOxlkCCTOqZKYCTB5+9mcSYO7q8BVkdg/RuIyxb72A9B4XBtLwVSBkBtT83IEAZcyfSfmQXAe7bEtPu+5m3X0PAr4Rk6IfPra9DVyHdzJV6YSU7tQ6ffOagWRAZwMmKcMZ6pmhJDYwFWLnmVUDPgmlo1sqzaTsq7KZh+5Xnev1YboOiHwGeT/7oO6AwLkVauVhVEbK0zp5qN/JQSpXKfuPH0pJ84/ixeVCUQt6Fd2rXi7jfGtBoCC1mbcXoxD0/DxawfoTyFblj/FncS5f16UH6ferfvJx0y3UTAuBHdh5nl+JVo2Hp63AQKVbqWNdlro+6AAB+8TzYzmdPu/+6xrr40BD7eCvTfo44vhw+fE9P1wfdvXwcVTZObb/SlvwmVXaHBlYKWAVOW7Nx1HtbKDSECePzYmCow6VwpJXtNVDZ95pEeHsGdWjyqvycFI+/2SqPBL2s/9IFXBlntWApJy6x+U/3fOyPP8ZuHaFP0aOmiUAWwGBBPh8zp//k6L1NQidYaioMlLJI6vmsau6bX1D6KOpi1TMgECnN2dz/3yDSnyk8eJ60nVkJUvVFKcv0PZzN4qVrvMxN8YfMOCv8XaG3OVGz3NrcN8enDK04lx0/cVfqj+fe6/z9WE7EFYVm1HX4SuoqEqTAAEbj/dcQWhXtxkgSMiv48fJ5562tNkKsW235Neh0lnZMwD2GeRKTddmbZHaIRlbpvc83RAy9OjhSH01Tc/QaFYex5axlernBrk7Ji89tVUCI254fK41AV6es6wEgtJ8trdNNW457llmkpvPJo6fWR9397s+6SIECRBUhpzbtqdn3KPWq3pbwIFT1y/sdwIe8pG2A/efpowfHx8Pv1+/fh1+vO7b1FdjbIWSvunq/15dezIwsIJYq5+nHWM+GGWUmUfXMLN7DhIkgFIgnC9K81LdorEkzNUA36LUZ4OkU/SpzA5sdXytCuBexPpeSn3vbePGoKI0MCsZ9vlW/4CQL/YjSFCa1MeuaHhdcpqmoxzoUonTu0tto/xdUXNaLbVRCj9XSo15pvKZNuXhhr9b8EZeklPw1cnbsuI5gVc3+vzvxH74/fvPZmhp7CTZcS/cDaV75x3gSHxV+s/n56+urg5ghR69XhN0A//w8DDu7u4O7fL09DT+/e9/j3//+9/j58+f4+fPn4fzh4eH8fj4eMiP3xAR4HHg7GOKder6r0rX0ao8f8oCQj9PKIeDMBlnHdWoae6yMv4qu2v0hGbHOAYdvp5ANDPIp57vP7WXspJfUpJde5O+qnKt+FptXzc2BI80PGn3Nm7p6nP9BA5SqGOMN0rF+ZUxZ3opM5fplXlzHV1BO0+pzZIR4rGiysin/9fXbxcLsi/c0CVeJNeVV7VXAX8GrUQCeJ6iNPSYlcapGucJJBJQitzQOwhIUw5J1hJPVZ/56+Fj/JEXgQECgYeHh/Hw8DB+/vx5AOWKCNzc3Iynp6fx119/jX/961/jX//61/jrr78OgODh4WH8+vXrAAR8uoDHtLFWNTVFcEoZ7fTwe+jkYKBDqDOqvGXdc2GigR5j24r+GR8JHKg8DpgudFOhWZ2nzk3/Wc5qXfbUu+OrqsfK9XNTp+R13nmublD8GSrb7p6ODgocEHD6gLLkwMPHAuvaRc5oyF0Be1qCWX/O5/hdZjqvPE2DrQCB1L7JuCevl981qKInib6aXFfgqEqbgEDV/hUg2EIJJKRfBwYSKHDqorEci9wwyOf7FQX4+fPn+Ouvvw47KSr/x8fHAyj497//fQADAgQCEYoscHfCBAqUr9drRcaq6MAMyK7Sh+8zkKIAK5SMMYUlGeROOJyvWePTCLPTZoDAO9eVpZdBw8swHJW5t8cpqAIdqQ4dDx3g+UrEulRAoPNkfT2HnvVwZDXAO0DgbxhQYbvBciUqhUPeJUcOXMgflZNfJ++urJPSTm3sR//x+kxmOpDA/hJPAlE6vr7++XCRjg4IfBw6fVW5Jq0AJwIDgs4qIuD1TjLlxPZLsuPesctkAgJd9DXV36N0Kld9/vT0dJia05SAxp7SPj09jZ8/fx7AgCIBf/311/jrr7+OpgkIBLigkNG3WUTA7QwdgDSm+BzT75XVk0QGqsF/KkpAgGFA5yMpqNVySGxYFzpOUaR8OkXrlIwyy0jGYIVmQGK1bVKUoBLir0qr8piUpitQBwEEoxwDad4ygQyCAr4SWI0nyYBCnb6taxXF0LPMp2qbznubRQNIqQ2Sfpj9T/PaCbjJ+3cD6K8rEigQMHiYezZ2z0XJKHRpKBceGejyYL0TMK50VzLuTJPat4o4rYIzl2fqT5bBtQNPT0/j169f4+fPnwdHTF8hfHh4GN+/fx9XV1cHMKBIANcPcKrg8fHxDShwEO3yVMmX6w3XL153AoI99C4wkJRAUmLVr6KqQgn5EBRUim51IFcGj3kk9NnlX3lczHfWee815u/Ji0bkvQDvlADxFOVX/LiMVuHtlfqkD7pwj4G0zwC9enoqSakJELhceSSj8jBE7hl6SDPNd7r8pnHvHnnVfslIVH3FevnaIdXDgbR2FU35kYevZvRFM+NfyXYCTOwLB2tjvNVrNMYVoB0jR0WTsXdvvwICDgpInfF0XaV8BQrl6btsXl39+faAAMLd3d3hORl8HvXTwkNOEfC1w25KpKJqXHld9X/F2exo96ZDFRDgtfR/VSE7zZAPQyoOGtK1vVShT1GKCPizqU7K08NbK+Gx99ZllsYFr8rjqyrSSslXSF1E5Uml53mkMnQuL4QGlQqCR34Qi+sC/BUoX/z0+Ph4pGAcDPgisfRL4yq1DxV3kosOGHQGi9cq0OLGTMZfEQHVw6OGOr68vIy7u7sjo+ORxlVj+1mU2iK1Teo/AgFOCyQP3/OhQb+9vS1BANuZ8uBt3M39J2Pn9Vtpp0RddODp6ekoUvL6+noYV5o6kFxp/YCPO76BwIiAAEFV9z2RY5cFH4NbAEKizWsGqs7qBnAlpExbKZT0S7zNhGiGrLtnu7Les9imKyuBro5OBXJEM0Xzd6NOblwevX/dsHikQEaJCkf33BCLOPidDyoo7t0/xjgCCPTW+a0Br4t78yvjyhVUlTaNVf2vwAfLcAPCfPV82laZbcXX3aRkU8Qg7bWf+ubvKOsVoEp94NMtqzrM+8THAskjAR2t6K7OsK30l0cHxPPT09PhnFNviuBJZgQUHIwTHOi6XickGGBUzevd1d+NfdJTlfO72jaid3/C2I1sYnhF+cwUzEo+szyr6MCehqtISoj5dfmna4wOrBriUyuw9wKABC7OqWRTHyQDpPtpfrpSfJQpjxS4l5QiCX4tLcBKIVPPW9co62kMuIF3D1rl6h4jAfxfgQv3HBMo8TGS5lRX18Z4X1xfX79ZVJmMYWqfSpGeO+qV9OwsXQI+SX61hkLnAlCMmqRykh5OBq/yfFUO5cqp0qedrk+kZyQXPmWke1ovkLYEZ2ROkQWl970FlMY3VuJW2sp3hdx+UVY7oLRFj2+KDKyCAabvDPgWgV4BGVVe3ngdpcarwjGJZ3khLsC6t4W8809JW3jpyu7A1d+BkjGgMfONg5jOqYquVKBgFj6t5ks9TQIVXT1ZB12X0iMYUl6SZ26ClECFzruIiLeH/yfv6dmOkn7gfwd4qa2cr3MC2DHqiKunSf9nOpjt616lT392/ImqPnVw+1794DpntY/Un6rb8/PzETDg4sL0loVP6fnmRb5O4Pn5+QgEqB24qLCro3j2aw5YV8b7Cr0LDLgi9eMsfWdUmaYCAumZNH+fhOeUhtZ5qYzC7J7XYaYETkV7AFL3bBLkr0ydrNKIUIHyGYakfYB37eYG0I0W8+d/8qFV0Q5Wt4BoD8OTd/HHBWWdIvOFap1B9/wSINgKWpP36esBKt3xlWkFCFS6k33hizjHeDtN4M6PjgkIVpGA6s0TpiMw2BMF6tol1UvEVfm+oVdqKz7nU3OMEmiagUDA9xlYAfhd/Xx8J3uyByiNcWIwUIGDzph3wuzpUxluRP1/Us5daKVSoonHijQAxzgGJLPnHQR06feAjo82zp9Rxh6qBs6MfJrAFazS6D9DrJ6W/ejK1HnlPKXKSEaWCkvKphpn1fMJ5JCXMbI3RwBTtXfKn8+rjj4VQk9qFoFQPpoaSHwkEOVhcx+fewHJqalq3y59kj2vaxWxubp6+9p0BdLSdd3z/53M76VVIOD1ubr681aB85nGCPOhp+9ev28ylNYMrERGOl1F+5Vs4nva9l1rBnwArRrzytBWec5+Y/QhRaZ1IODnXZ39/koYrZoLS+lYxiroSNdWBGIlnXsISXn8HcjlrVJq3fPV/3RvRSZdWVQRhaTA/ec7FfI5KjS/lgyil5vqW3keaseZ0fH09Cb9Qy++1kJ50ttPP1f+HKvOU6p7iiSei7bqgqqfU1TAifqxGhdVW1SAIT3bteeKzkz8d/qYgICghwZe7UPZoqxwka4DA48A0PinaEAVIaCN6ur+EfK4DAbSAOKxOk+CtwIGUroZEHDFNGvQlK57xtOmebXUmf5xj66+FaXpD12nR+h8rFCVdsZbV8ZXAwozgy9K9XRjldYQjDHefLGNaw58m+EUQncFzusu806c43ejyC8mVuH7NF6UB+91gDmBGjf2vqGS7nGVtn/sRfe7KAHLozeWPitLHqv2XB2X56Sqvxw4pqiAaMWhcdDmxtBlNfWR5+d5d1Nsqw5VIl+vIGJUiRElRQzSmGOkSnnNIgPeVl5/b589evNU4GAzGJgZzw4cuHCk/55XBwbIV2UMkxexEqbplJ6Te9BdvivX0gBlOtapEyxXkro2C+vxegWaqvSz/M5NlefiMrUS2ucqbM97BoIr3mhQ1VdbwotuIN0rTBv/0Bv08Zam3hLRs+qMAT2zMf4spkorsfnzvtrSBjwKHD0/P7/Z/4FlpD44B62AEjf0symhmRxW5MasGu+dHiIlT7miFUCwBTA4MBjjDxDwyIA/46CIQIBj1X9eZ1Gyq0zrtsXtIMfve2jzNMGqQXOlUl2rymG6FSDgSip5y++lZHglIGm+f0YVEFhRAB4R8DabCV06rvK6RfBOJajvoU5uqznzBKSqvBl+5IBlZECGUu8v++6D2uDEdyB0Je95yqCJ6KlVxtjnUPWcj7E0xVAZk2QgUpvz1SoqUy684gptHh0o6LUtf6/bIwL8jKyHbQlOXLmyj0+tS7ZSZWATny7XDhBEdPCcCIqSJ+zbOadn+d+NZFow+lE6YpYvgV+KHrAOTJ+Aur8psDLdkcB4cjD9XiWze9tx8wLCGTqvDFknvFWapJzGODaYvE7+OiRZNd4qou1oxYOu8vZw25Zn/fqqAV5NVwmby4R73l+FnDc3/Elx8toMCLtMJdnlZ4r9C4UsJykg5/vq6uoIDOg5viLohoH8V2PD07L8BA48Df8nWUgeE412Mvo09L6GwNvc+8XPvc+SDvpKcivq9EoCag7mlI7HGQk0ss3Z7gypVx70rE6n1FEpf+cjyX21niRNe5Fv1tNlclYu7ZM7Hiv/P0JG37UDYZXG03e/lHf17BhvlVXy6BwQ8PUrPleFtxJvTt5JjBBUXnn3/CnJDRPL9DTVf12rzjuF7/SRdV2l5O2lMCo97zRdQHIQymMFNPjpYu5y5sBAPDMP5uWfOU4GsjMMSufeseZPk6Ec43g/gi4Ckdo//dL8vnv/3Y5ubKcki6kdHCBVdf1IxXsqqkCAH1fWBszIoyvVeqUxMvjjdc/Xn0uUHLwuquF5V8SomOtxN8Ser0CRAxsHC6SZru3q47o92b29MvvuTYdSunTO/1uAQCq7AgKpXAmQOrdaqFI1cMXDGNnIdR6X83cOI3kK5faVleMKeb9Wc6ppjjVN41SyqZ8MPQ2+AwLdo+KmkVa5nPu/ubk5Cl26QuqMHJ+RMpNsuCHlf0bnKsNajQsqSPFRLfbzNQPpVcN07rx7O6T+1jmNQmcIzkEzPTEDBEzHulEWxvijp6gz2U/sL5bloIDPJUDg17p6zUCZX58BhuQYUG5Se1T5OkBwGe+Ibc2yKz55LR1Je2T35GCAjKTB2OU5M8IU7BQhILlwJgCSeK7SVnV3IaooRQ58YPrKXJELDctNvFS0FQisgJVTgIuPps5I8b6Mrc/zp08Kp4iUg1C+deAgIJWTwC2NlSJcXPhGBeSeiNeVQFiKjAufdJ1y5ooyGdQUQfEpjzRPn4yMryHwLyWmkHXX586v2pD/pSscEHx1SvrV+4T3nZLRkg66uro6MlJstzGOP6SV2sw947RegNT1J8duNf3bhfOrOirv6tos7xlRnrooCqN7ndx9dKRqExjwELgz1hl2//Fe9Qyv+TxuOicR1VKwqUyr0FUCADPlsNJB5EM8pvwrlJrKSnVYRdAr/KZjld9MUM8FGipv3qcG0px+mt932aOCctmkoXfDz/urrxumKIYrseQd6/r19XV85cmBhXtyzI91d1BTAa/kKXr5vp+7tnj1qQP3NmmMxJcMl6Y1aPjZ5voQlNqF9fxo5XsKmgE0vu1CmgF9tatHCnRUZCBFIAgAHbw5KOwiqRUoJY8p2uQ8JPLxWlEHBLw+zvsMrDo5KEj2dcVBEz9bAe27dyCsCkxGvwIEfKbLfwYiPKSTDIBv35r4np2Psc8z93I8FKVrp5jf28pP4m8lTQo5+v1zUwVkXYlW3nraKyAZbCqGCig7UGC+DgYIZt0AS05UL5VHI84ydc09bW6dqv8KA4tSPbhBy8vLy2HKIk0dsC7JkKvc5DmmZ5jfGG+nAjmGlM6BN/n0fiEo4L1zUVd2BwQSaF0hjw4IqBEEOG9uVGeRn9SXriuqKIDzmspcoS7SvMIDx73rAL8/xvE+JO4UMgqj8UobRj1QGXqO8z3yuhkMzATTzysAkMBAem6Mt50mYigshW3VoAyv8tgZsZX2mHnoTt6hysdDVF3ISuTIMynL2XXndwvy9HoxD147pxIVVeF3f+Xv5ubm8Mrf3d3d+P79+/j+/fvRa3/+6h/D4ZRNGlfO7VMGxshz/UpH/sVjZQzTnLrz4vJCxcwV/bw3xp+d19iO9Lyp5AhQKMPkYSarzrPzmsarK1ryn8Y5QYaDjdRe55LjFX3bAYJZHhXJEKkd1ecib8sENti+aVfJBPJWDTl5cODo/Im2tkMFnpKT0zkHfCbZMf5nVMBBQSrTAZhTZ4+cTrJmoAIBfqyQdvc80zvaVQO6chYxtHV1dXXYaIQKukJqFXWhq+rc2y0ZygoA7DHOFc0Aixus/yuU5I2/blFf2jkw9WclP/TmPRqg/QW8bOXJKa3b29tDOQQFY4yD10blq3q6gRT5PK9PE/j2qnxGeTsfY4w315Jno/9OyZNM0wIct55ncjTIv5fnR/LlIe1z0GxMum5kVIA6crUc5TnG8ZQqrys9eUuAm7JEUJcA2Bj963defuI/AQHKibdhZ5N8DK9EB5iW+fq1Tr8SFKzQilyuyu4uMJAa1c87z78y+Cm9C7Ono3JO4Vs2RIoMKE01tyai5zPrqMrLc4HsvGeG6jqazU11vFWD5j3UebjnIvZzus7pAF8n4CHXMY6nATgHzT5zBc3ykhfhypsRLT6XlH1SQMyfRrJSfipT9XNlzfZLBj3xSD7JAz0dlpmiewz9J/4r/cI24Xjld+y97lX0oZtW/Axy0JLayNvd95vYWh77mM6UyAEnI7SexkGAg6xKn6brq/pkli4B9nSv4iOR6xgflyld6hu3F3yukvek47bq3t2RgZkhr65VYCE1SlIOuu7lJAScyqbSTojXqeqYjmZpVzzvag4rpdsSWqtoRWEkIJO8qioCcS5gwFB+ZzyoSOnFdzJMQ88FdPpVbwpQiTNfyjO9DW4wpEjBGMdgUCF+yp8rEwcPlVFVeraZG/wKAFShahqtFKlI/cL8k/y4IhfPAv2aQiG5kWK0hfeU11eIDIiSLKb2d/lajRB4uZwiYJRAiy+pDwj0dI0G30FABwS28upRgWRw2RbJrujeSnnp3MtKwCA9n3RS0utb5HCPvO7agXCL8Z/luZc6pU6ih0WFUjX4e8gFcA8gWGkT8u7eAvvoVAosgQC/XwGBU0UcTkHJqFGROghIrxc6Sb68HOaXlHSKNiQvnIbb8yI4UHQrzeu6LCQQQJkSiOGYoSJNUx8dGFAeDsrckCRDpmcrJZ/qobI6sP/4+Hg09XJ3d3cAEeLJP3D0FakCaARiM6qMmwMrN94EWkqT8k7TLacAArO+qYw95SVNMc903V5eK0oAfqVtEi9J76/q3k3fJkgZdwVVYcWE2pJx9Hl0N0qdMXWlQKXmXpfK6ohIuaNUt4pHkqN4CmwCOC7oyTtK7e7/VwHLlkGQvNJzK9TUXlSgMvzaETCtE0htkQAy86v2FHAZkALwdkoGLYEZPU+QKN48epOiBQ6k3RB3kYCV1yXH+GM8lJ/CzvqvNDI8OrJuqV9T33o7CjhpTQbbN31rnmDM2/+rUAICs4hiNaZ57rpR7Zl0nwCT+irJtY6rOrQi5zdFfTqdlvRqOmdZ5DXpta31qfLg/W66zsdwlc8eZ/BdkQHe20uVUe+o88ZcafI8eUGiVVBQ0QoIqPhKdaiEVNeo+B3wONKcgbEVgeqUS1fPc4MAkRsMGi/fIZALB92LTwrDlXJakLgKCpxfyblknnOvjA7QoJK/BJ4TECLoSArd5bGKdjgQIMjQUfxzDwD90vQFxyvzSPx6JMXblPvpi9R+es3S27mKCp2LvM6prdhfPiWj66Sk9ygTaf1FymvFqJL26H/x5HJZRYIIajiuOh2b+FypSxdN6PJwe1SB+BV968dVHfyubxNQ2XehCb9XGat05ByVLyKqeHQigkzhdfLnnUL+q+uz8me8UhgTEJjVtwM9iZKRWEGsFc2e/QqUDIy/PeBfEOQ2weyTMfJXMRNg4HUHFux3KWx/5bVa1ObKP4EBLtRTfvx5JIIG1Megyyd/sw2THIRL5vSj0ZXB9ymGVZDOdCwvLahLoMf7zfcc+GzqgLq3k8tfN02wRZe5jqiAQQUWZnXZCwhWqdOpXdRvdaFjogoUzBZLcqz62O9AgQOAPfSuHQh1ncyIEkOJ4QrNOPJjvhXy8/+uxHi9UupVQ6Zw0YxWBLwyDh0QUNoUFaCCdYPvlNo70d7B+lXAgRsAtR+9d/+ssPYX6BQtwSk9Y3rH6euEbuzlkVaKqVMADgqUPv2vjDHzqyJ/1a+aKvCIAcv2uhAIVcZNdUnGuRrXSndzc3MEjLyNqXi5mND5OxdV488BQYrGpPn6LUQwqPYVSGJESURdXMlTKuPU5HzoGvueAJFp3Y5tBQIiPcMoE/NN50zD5xwU+HOJ3Nme0TIYqEIpW7xCpu0MVRKi2f+KZ/cUeJ1GNRlDF4QO7KQ6zHhzoCIBrvZNEFVrBvwnPjteOiBQ1XdVuN6DUj+SCLzS/gL8JYUxRr+X+Rg52pMMMAe7v+6a7muOlnVJ9evkORkGB5eefwJTbow4HeBAQW0tY84xVXmwCQy7kdO5RyaYp491HrlWJI1zr/+5iOO4A2eVjt5j0CjfKp8AmNeUriojGeet1OnvMf4Y95TegXzVr0nnz6IovF6lrY6pvTxyV/2f0Vb9uxkMJEb2hCccEIxRM+/olChVjdSFxCQ0W0N+CQjM6rgCApQuCWd17nm4UqsW0qQ21n+/53WvaK+BPzcwcG+WEQHtNsgdB29vb0swxh3vaBx93YFvXkSjxYHNj8Ak4CEwkMKGXj9SpYT4DCN+XjemG+PY0M+OyWPlGNe5Tw3w+cRfyqfy7l5f/7xlwTTii5EARWhubm6OPt50zqiAk9ezAgCkVT2WDOQMBOiaRyc9T5Wf0syIBr/q50pP6l4FDDpKdq5LyzbmWykpKtCBgDGOdyZdBQGVzl+lXdMEFSB4D7mCcGDg12fgY49XWkUBnEedJ6+po5lwJu+qQvor5e1F4Hv7cqVPzkGUV7a77wToWxFr0yHlIZJyooKjIay8ZypTD41XA1iKNm3n6ulWPEYeK15nhsKf4/WK+IzGDj8S5PsoKGLABZTeTmkMer93Mul9I3nwj5l5NOYrkPdpBVrdmMzqwf50A18Bg5Re17Ya/lWqogO877IxAwKpjVadwTQdQ1mu8neb4r/Uh572VLQpMjDGW9RI6jp9ljZ5NCtCNIsK7OVva14dMvV0FRDYil738FwhR7+2B0x5Oe/N51SUZE9tru8RMDKg6IDvu885QOWj9kxt6oPeB/nv37+PNm7h8973BAFUCG4IZEQ9PypqV6Se1j3uCvh2oCD93LD4mxLc24A/3WdkzxVhJdOubEVsC8mBogSMDujeuagCZt4PTsmIpWt8lgbd/1cgIKUfY7wBBe+hBGCSoZ/d38KHG14eK54qA16BsZR/9at4m9EW/btrmoChemeyY2oPrYIC9xRmnv2pyHmrhNL/u8F3UHBqNE2lngZpp0RX8+7KOTcgYPsyKuAfJ+JP4W034MpvZdopKQONH27YorTu0dDwVQrCFTqfde9Rz3F+1RV8l28qY4z8ymG6pnpSAXKnx+p5X8+QAFjXD+lZlwcdtX6AwOrc8jtG1iUJkJFokPR/jAz8dEwGvgMBnLNXPrxPvezRg9W6+j0HtZVeG6NfI0CqogK659f8WY51jumUtwMAXuP1GTCY0Zb0u7YjZieciik3ICyXHUFhrYCCdxg9Ku+oblrA+Zhdr+Z8Pa0b/GQAKkp8ppBxMu7u5VVex1YjvpLm1OBmC3komPsA6O0BvknA+z4lIEpKLfUdlYQWADK9jlTWHRhgnvrP+W09p34mCJACpZFjGzFP8uCyk2S+AgO+q6MrVYXj1d4cq/LUXfmzbXnuuiKlS5FEAaO7u7tDegIHRmPOTQ4AVnRF5XkyT/ZtAgQVCGAaTnl5Hg4InKro7oouTesJmN+Kc5UM8Qq5seezHslLz6T83iNr73G8Nq8ZYBjoI+fRtnSe/qeBvsWYzeoz8zxSmoRS/T8Fe4U8/ER6rzB1VIGHWZpzk5RB2gxIAICv//E8KZLkleo6I2j8cY0ASc+7URUlwOHnXCAnpUvjzmtedjLQqf28fn6/img5OGCdOWYdSPgiRkZUvO1S23j7y1gpr2rXRG/fFS/2HLQFFNBIOah0sMf8fYoggQCPCrgOpr1g3olH0iw9r69GYxMRUOu/O4nV+KiAgEdjktNZHT3/1YhA5+Ctyu/maYIKELjHueIJdkwmT9bzpnfGMKKHI5PxZAfN6r0KelZCUbqflPoqpbAp83qP8nKEnM5VTvfsVyIamrQzYLVLoJ6hwaYsuTftZSXP3mVWRkpynZTibDwxf99PP/UbjZyHznnNFb7OK8Dt+TKqksK53mbqG5WtH4FO5fFXoJTt8vz8fPQ5XeWna77TIOtzzsiWl7+iZ5IRmRmgmZ7tQACjAi4/CSQ4T85DyiPRitdflelGPgGBlbwSEOiMfJdXZ/w7Z+wUunfzAkIy4YORSmGFKsO1YigJFvYMVlcWyeBX4UmSC+sseuBe3ymUjBTmKu0RnFn/ruR5ToVKI3h9ff3mdT9GDwgcWG96mPSExugXFEm++EtpE88+bcC6pOcS0KQH5UrZx6CMIonp9yg3lsWj2lk8pYiAe25bIgPkwduAgGUG+D8yAjqjVY8wPeOgMBkp6tFEPiXbTQ2ktQb+f5UcWKT9PrroAeuTvHIHlekDXw4WPH8HDhUo2BMV6GhFJvbo+M1gQCE2vhdN72KVCTcsydCsGI9VZJgGyCxfplsJ4W8BQeLFFa94PaXhdIXA84RGZ6h0tY/fG6U4FTkQqL4doDUCvmZgjOP96zm37eFFlieidyrglvqYnjOBqI8Nz98VkoeFK6DLo18nVZ4S6+DgnLykdRJsU95T+3sZSrtnelK8XF39eZ2RRo7g7u8S8dqiHypPk/crkOWevv+vIgZ+L8l7ks2qDP8qok9LdZEhj2DPIgEzEJDyWQECSb+u6Nw9ujflM6NdkYEOEKwWXhkKKj4qmC5CkIR5NlhWQ0FJyPYY6hQFYJvy/kd40C5QWz28vzNJacjYKALgP58q4HcJZNj8IzYECWO8BbU0ljRKYxwviPWQtN+bUQXuvO/Ij09XkH+lpTJN0UA/T9e87l1Uw9c6yAAoYuAAKdXN20uARGVzaoA6JvHcAaqvSO8dqyu61GW0iwLMIgLOL9Nyu+MZKHZnbdZfyXDPnq2AQHp2BgQq2+fjdgbiTkm7pwmkGL0h6N0kSspG51V6BwRdI5AvdkgVEeh43QIEPsKAbyFXwhWqdEGrjMapBO3c7SJiZEAef7Vo0AGC2tM9XYb93YixXMotlabSpXBnMmzVGOiAQAUGunBrkvPZGKzGqY9Dtofa7vn5+agtqRPYb6leLDMZCd5zHtwgpOkQAb2vAga68ZQ89L18J7npppgqQJDm/JNRFfkUBD9Qp/y8DdJXJTlmSZ03P2sLHVNkoTLgK8Y9jdMuzdY8VnXwrlcL9V9om51ED2ALzSqSPI5T0kr48b3ldmCiEvQVfoiOK8Pu17t0/9eIRsWNv3+dMEUKKOM0/B4ZcGPW9bf4ch4rpSZK/UPFv+rpUHY6IJiiEzT8TF8peRlaKnoqUQEsgqwKULmn6d6htyPBgK5xQSJBAKcS2Hb+6ua5aEU3pAht55hV/TrTU0qT/o/x9u0Cl5kqMstIwBjjAAgcGIi6PveyWM8U1q/aJ4EFBxHVuT+T6ux5rgCIj6DNnzD2tQOvr39eT/LIQKeExph7/QkIzMiRKxU4+WHoU+WmKY+95NMq4ufUlObl2AfJmMyMyykoGZlzRQmkmPgBIt9sSHsN6D53IRzjrZfrEQKCY6atvFXPb7ZqfeYVeL4kl/0EOHSsAGFn+Ks01dws07M901SE89gpbYK+VFfqJUYPRZXR+CpgQLQ6jjoPNaWtdIaXWwGAbmFhKi/JRFo4WIEUH1sJ4FYRCR23TBOQb6ZzIOBpU9snAN7J2HuAweozy2BAr/woY742NMY4GshpuiAh1tRReyIK7q0lQyyiYnRAIPIFTFVeHaXwlCupLqyma++lylCsAIQ9gpeU77lAgEhvCBAAfP/+/QAA7u/vx/39/QEA8KjIwBh/ZM3BwMvLy3h6enrz6hrHBL/clyJASWGsRAX8nj/TKfbqnudJhekgRlS9ccAQb6qPRwecUtnkn+cCAlVkQHzqw0Sum7wOfMX03DL8Hlodx5XRZR4OCESVPhvj7dcP9Xzijc/4mha3MV5+xbNfo8xVoMSfqexY0qMzO9Hp2i0Aorq2l5bBAMM+FfKqjKwzXHmNHRqdkRrO0zsvjh4rQKA8PSTlda1oNu1AVO3KpjOgVGpVeGvWZi54fn3G8xb6CkpUUwC+3bBAACMBBAWKFJAIBGS8tEL927dv4/n5+Y1xU7tJwaXQJv8nmavAXAfyRDSSrtS6SMQMzKWIQwVy+N/5pmKu0rGMxDfb1wGp7nHMdW2p9tH3CQQevjJ5P6U25b103kUGEsj06WEHAGr7Wci8ApVO6gd3/tIbWSzHZcz7PkWE/H81/VJFv5JRr8bobPx21NlYXV/VwZvBwBjHBlaF8ZUddpZ/o71TQjMvpnrOyVGjSPz5wseqXBcSpkufea3KS/nNVt7OIgQzoNH9r66tUPfcrG/OBQzk4cv4//jxY/zXf/3X4b8AgH+oSD/KnxQK1wgoIqDoAMECPZsx3r4SlYyjAwS/xvRd9GBWTlJASaGl8jgOWDfyyDyTQk6K0w2aynEDn655BED9xXb0OnjZMiy3t7eHfnZA+HekFeDvALACBG78k66qdDDLTjrMDb3II7oz46qjAwBGsisj7+dpPHhkYwYEZmV4Xlv0cxoje/T75gWE1SuF6boQedWpzDtViPf17IxcSJPAJVCTqJv37xDXakewzl2EICnJLeXs4U187QUNKa9zERcD+ueK0+JB36qY/aJBz7lkRQRE/BKh+o5RNV7XwPdX3/yNgzHquX7KQ4o0eBrWw8t4fX09UrbVvGgyzolHtpfq6dc9uuDUOQKVXCVjxAhBag/XQd4G56Qt42fFUHbPus6ZOQA04H59hdcqP44ZBwIaL5UOJxDgrpwdCOYxTfOmKYIqYpDavQMF79HpqZ9mUb1EmxcQChCw0QgEHAQ4IJCy6QDBXvKQUVIyLjwzQCBy8NOhsJW6pPk0ejEdsmZfbG2z7pnOK1ihznCdClTsIYIARgN+/Phx+DE6wHUDBAOMbj0/Px/Gga+U98gZd89zw6m8Z1NFMwNMI+55k6gQK6DA8LKX49OEJK8f8/RrBAgOZlaMfhUdEKk/kkdJ/tkWzovGoDaZ+rtS54FWzsYWHeCGfxbV7Lxjzy+tGxhjHPrEPwEukmzxtVVO7Tm4rUCAX09pE7D0tCv13wrcZrRVj+/+hDGvu4F0Q5sYqgDBXlpBQTNAUKVnGemNg5RutSNo9D1CkqIForQWInmFyTv0Os6Q/ykM+TkjA/Lyaehl/NMUAa9pTwJ66nzdqQpD+2tylB2RG7LKsM3a3/teR/LdRba6yIDkT0qX9UwgOPGmfOlNORhYyaurN8nH02z9TgLXajutG+jmpb8CeR8mo9YZJgd/7/FQE/iqeHU+k3NEAOqgQGPNo24E7T5tVxngWZt5NKADAVU+KU3HE+/tdf5W6V2fME6hoc7Iv0fQVil5NB2xTmPMv9wm6tJ3nZa8Zw+LzVYve/7X13++TcBzT1+hdDcQs2teD6/Pihf3meTTA3p90BcUJjBwe3t7BKqkYLhGhv2YwoY+JvbK/wzwJjCRDCYjdokfn9e/urp6E/1T3mm8Jc/IQUCKDHT1Yd2rNphFJSolzufT7yu/TdC1XwJaVd39/kqEh5R0RGXoO2CWnCMHApoiIG/+JgjljUDAv0HQRQR4LwGBmYGfpVt53mlVh3d5VLQLDKRC0sriLq8VxF49S3L06OH1yltJEY0ZT8lApvQrQID5VP87Yh38OVdmSUB8oFXXmGcCMit8bkn/EZQMP0EB7/viQYKBMd4qK85Las2BSPeSEuy8NG/rDnit0qpXkbySZHAqgOnpK2OV8q547EBOAukJmKgPfNvoGcitog9fjbppRaeZHuK1SjfMDE5qs1Vdz7q4TeHmQ7rP/+KpA59K0+ltv98BgWqsdmN8i6GejV0fH7PxVNEyGEiFp4FCI8Vzn0d9T7kzone9ipSY90qUoDKaojTgKh5kVNIHWsibL8503n3OOClMAoSKqkE/8xYST35+DlK4VxECLRrk/xQhUGRAecjLGGMcvatOL9s9yq3h2nTuIKwa/MmrS+/uV7LYGX96RwkI+LP+c0VM/rt2qcB8km2+Wkhevd5st+4+gcVXnCaoxrBHQKq0lZMwy5+0xfgkx6fSIQ4ICAQ4BedTEZSjFIGqADnPK2DB/x3YTflusXnVONhjN7fo3mUwkCqfBnXHlIdVX19rz7oKhygvnzNiGJMAJHm0VOCOPGdG0s+T4PD6FmEQXw4MSFdXfxZwEmRxULCdvZ4+tZPK53k30Ks+33r9o4k7DnbTAw4E7u/vj94xp2GlkpHM+ToC0Uq90/qPBLQ7oqy5weyUmF/TL32DIYETPesGn4qUK7o9H+e7qgevzSgZNdc96TzJOdde/B0oOV6Vl+9U6XQHgUmnbqUOrEgPMqLDbYk5LeoOjhvv9GXRMfbtNDgbQ04polIBM39mdl613V7aBQYSyu8ao7teoaqZcPA/G5pGkAbQ8+9oj3B3wiNKwsf68FryTLwtvV4eSaAS5arcrp5bAQGpM4DnjA58+/Zt3N7eHo78OiHXE3BXQi4gJBj4/fv3eHx8PDJ0nHvXtWqMVIBSoHaM+n19grukAJmvy0CluFxxurFmXdyIu0JinRnGlUJO+Sd+WN90rQKlPu2X8mSbpPaizAsEfAUw0I27GUBy498ZparMZNSYZkU3bNGp1OeS9wQEvO6dHk76txqPKU0HBrbSlvZYAQHkbS9fm6YJvEFX54C6twpWjYQLh55Ni1S4L3Z6JnW6K6bZfBLTSGHyfpWPE4U90cp1GgmflvHoB1eKV4DL673qlX0lAEASEEjrBLjPgF495NoBBwNcnaw1AlxpP8bbLXTHqI11+l/JjAPfmdEj0aAzfVJu/CVg4JTkiXl6e3jaCvS4XPt1tcmMaNyrMr2tGH2r6v3ZlIzQXmNEWgUGKxGFzsnbog/cwRvjrW6fefY6bp0aSHno+J5276IDq45WAmjVc1tBwa41A2RqS2Ea2ETwGqRVZySluQIIqijCXvLOSvNy+r8KBFbKHONPVICgQULO6RFXeOKBAMDb3n/pDZEtCHbL/88irRlwT48RGO1Bn869fZJhYv+kr6uN8VaZzEJ97CNXih4FYp5JJj3U7zxVii9FBVzJMN8KoFSKNPGffkqboiOp3WaUogPOo/r/q4CBMfYbf/cuE8jfkneXl5e7wntn7Cj7Pg6qMmZrdVaMfzqv7u0hb/NZHyV+OyC/lc9NbxOcAoWO0e/bX4VEttAMhSYQ8p76pWmBCiw4H+R5BlikwCrD4QYiGYwuj0Qzj6CqT7p2LjDgOwv6NAF3IKw8UPHf1WELQJ4ZRJ3zp/I90uNTFUkRpk8sexn8n+ZJaRRd1gkG9vZzejYBA4Hj1D88VjLrYMrHrLd/FdU8N63wVBmcPd7pR/C4ykcCwysAzcdkF9lyfhOorurU2azKyFd6XPm5bPO5bgzvpU2RgT2DPBn396Dbvc94KJ7X96L+Ton6/Y4/efh6ht78KrKuqFskueKZ6t5MUSTgsXLvM8hBAN8i8DUEyfOviAZS7zKnrU87r9rz05Ht7QOf7embG3le5C+BgWraIPFdzfXzetVm7sVV7VrJPKMuDgYcrFbGhLz4s2wLRXW+Ahhgu24lNyAJ1Lus7QUEe56pZDzlzf7qIgMdrUxxzfjpgEBHXRvP5DWVVfVTskmrfbM5MuBvBFTH9B4/8/J83uuls3zlr2sytFUDbynbDb7PqSrNTKg6tKijgwJ6gN28clor4EAsCWSq68zL8jpV184FBMYYh3Bver3Qv02QphGYj2TLF28SGHQ/H5yroINpdc4j07kBJ1hJXoU/04EBpk3P+Th0Ba52dN7JC8nbn9M4qd3cq/d2Zj7+vPSRv0Wx8lGyjybvsz36MYH6PREC1wt6JvG6lcf0vIMGpUvTw55XxU8lv6t1WAUATF/p0j1g7xT8OW3+NgH/0/Ck95lnlBa3VQDCn+NA9jn1am6Y+bqCE602ogtPpyhFsw5PAIDXuvbg/vd+1LoCtlmlEJKCXhXUPWDhM4gLBf2VQgEDfqjI5aiSFRk5N/T8TwM8UzpVP3gfVOeVQffIAKkDA+Jd96vIgI6SUwcCaku2WffGhJPnk8a1G4LK00qAQvT795/dJZ+eng5l+mZS56DOU/T2570qL3c+Zs9UZVcGvEqfePD7bjRneRMcJD3pMsLIj5ednLhTA500zmdAuCq30it7aNc0AY2LrhMcJGZTXqlBZmF7VyKuELofy2VUwsvz0CmPNPpJOSZlWZF7JlSaLD8NnJSXRwXSfgRpcM2QvqdNZc/qeU7iVwgdDPgbBowSkCojKKPp0wRueFOb89cZMPdqk5fk/LF8goFOXtNWrQnkeHmJUvSEcuwyyTbqgA91zdXV1bi5uSmVJtuH7acokc5FCTBvAcOfTUmGVqc8t0QK9vC1kqYDv7NnXCdWgKAytsmI+vkWoLNKXueZvt1K7wEFmz5URGPSRQWkOERpMd17GjhFBDSwU6jXDayDAFeip+CvUiJbOp2GfEUp0aN1JU5Pzzfh4JxoBWgqgLNFWZ5LqVI2PAIgw+DrBdQuNO5PT09Hv+fn58N9huFFnQJyUOnPpLbqInAVCE8GneWQR/ecfJwkL94NifKhLDrIJTDXL8mRG39f8Onj2xW88+Y/jwTpM9Ti5+Xl5bAd9Vejqq4OZFJbrNAMFFQAtkrreTMPpvG2TvXqeJ7dm7UT0yTZPhW5zFf16tr4lCBljI3TBAQAZMSveZTgPYv0Ol4qIJBAARvdlW/X0bx/6jp0ZfqiQieCM/dmRPQMlR+P+smjoHdRIfDK8+rq4uj9s4mbC/GXPlnMVxBVd3rF7vknzyJdc+PvgKxS6qKZ15eAxxjH+wu4Z8+8eUxyJ5moIkw02gkMiKpogX7JQ3RQ0AF9Ptvl6TwTcMjZ8V1NvwJ1hoF98h4wUBmg1JZpTM/KYr92xr7rtwqMVFGljo8tvJ+SZpGBqt/2gLsV2rzPgBshXqMgJs90pQIzg1uF/WT802ti7u3RuK80tgMI5ycJdCeonXEkCJi1AZV2GgTe/r5pjtJynwIpwg61rg52ns+M2UeSt00CiWOMI/lQO41xvPPg09PT4cgIgY6KFviUQVLMNNQsn5TA1KpHpueZb5I9jmV/VmPbAZDzLmPpbZsAgZfBulP2JDOSV33DvhsjCfiImHdybCqv9JzUGYnO4CdQegpKRvlU+ab2r+pfAQLJTLUmhXnwuIe/U1EFenitcjK831ciKBXt2nSIgMCjBKTOiO4tl8qMHS4gwBAiX0Hq+HHlvMJ3h0Ddm07P7RWspLipcJPypYJ0g/X8/HzwgBy4bQUBSlOBgXN5V2nRmcuGeGU0RaT2kvF/fHx88yMwkPGqBnA1LVOlJ82UWyUflEkHrf6Me+teLpWwz8+mqADLJ69Vu6ewv/dn1QZsY4IsdwYYHdP/rl3PSW78/B7bNUUHmFY0M0Bb+ErXUzl78tsCCFIb8boD7xmY2qOjOV6YR9XGM0A14/OUtHsHQl/8w4ZLHs8pgAGjATpyDpgbybh38vr69lvWzutWPtNUSCcEe4GAG3nWS+S75km5kUeBAXqx/On+e/qrE9pzgQGCQx49ZF0pjKenp/Hy8nJk9B0MEGC5B828SAkQJKDAfiDPqX8c5HDMJMOu/0k2VX6a5qu8kgoMeBtUwMABRAIqichPtaeC2kcguKvzrO++AnWg0Q1b1d5Mk/qJz3SGf2uUIMngSrpUtpfP6ACBAJ+r2qQCBFt1tgOzjlbTbQEFnUNa0cl3IPQGTuG69MzM+KQ1AjR8vqNctWhwjPHGC66Ud3p2hVwwZ/nQk68WXulcyl711zMOitQeBEOvr68Hw+Vhbl1Pi+G83xN6H6P+VoPSnEuhOgBIRooy4J6xLxx0MJAWFFYeSBWBcR7GyIsC+RaPromurv58zEX/U6RoBgbcKFCxckowheETICCfXm+Wq/8VEEhEGRWYpQxX5O2ib1CktRVfDQy4IVvhrwMLq9fS/Znnm+gUQICU6kZAMEb+8mAHCk5BM73p9yrAUumLGc9bAdomMJCUUBqwZN7TM79VStMDVDr8TzBApe5KlHORUiAz4NIJ7evr2+2NZ3VaIRn+ajW86ulf4eO782wLhrtp2HT+69evQ6SA7dTxz/s+R85751KolWERfzIcerdc92TYExhQW/369euo/WjslQ/LWUX3ySut0ioNx4kvAnQPx8GBG2Nvv63KPnn0K2NrRS94RNL7kaAslaEoiQOvJLtVhOGziSDVwaoDKz7TyU8F6v1/ynuF9jwze7YCJJRznrv+mQEBHy97+Ur5bG3HDgh8hDzu3o5Yg92/EEhvZAYIeL0yOMwvLRbkrnJaDc7IQKWIfaB3ngSNaaUYEyBI+XTtyWPy9tP2uQ6C9PU9pWceGhzyoBQNkFH79evXeHh4GL9+/RpPT09vlOMY9QJPN/5JsZ5LoSajz9/t7e14enoaYxx7Op4+LSB8fHw8AlBJ5tPgZT8rHZ8Z421bd8q7MvIpGsI6pvQeMfG6JC+GnpiMdfL6vT5u5FyHrCz2JKgXEOB0l8pKgET50INUn1NH7NlU7aOoMmrJIPIZHrcAvK1GfeYBd+lmZc0iEV2dOuO6UqbLs6dJoCuBuJVol/9cD1djv7NRM9q8z4AzQtqKepje59+VH5VmigDQSKb5YA7+NE/uc71eH1ec7Iwtc+opErAiGFSOAgUy9ul1Sn6alxECHUVSmDJsDw8P4+HhYfz111/j4eHh4OWuePoJLMiYEnyci15fXw/9/Pj4OG5vbw9GnHKiDWwcPDw+Ph4iBJxiEZCiHFWGn0CRnh3LcwPqdUhHnVcGvlN2SfZS/9Ig+rbGrEcFbslb5Xk5EEjAgM/IgLOvKGsE/CzTIy56TjpD15ICPjelvq0opUuAc1Vnr6Tfcm8GCtL1DgBUAMjBQwWgKuOazrdSx5en6UDeTBYrW7VKm/cZIPNkku+wjzGOFuiM8XYLyCQMbjDdM0hRAe4aJ0DAMn0qoAMCVISej9e9oxQd8Dyq51IUREb97u5u3N/fH22vK5CgdiEYYKRE1xQhkMITIHh4eBg/f/4c9/f3h+gAvd20piKBANaXnvU5wQCNhGRBYX61OcEA+U8y44CAv0RdtKgCDoyuedoZIND/yvtJSq3ikSDQI2w0tJWCSx79LCKmI8eC8zPGnx0TOTXgHr1P28nYX19fH6YO9UYNo4RfDQiIkgw4KFt53o1k91zKtwKtKU13bUt0INmP1D9M040ZT9/xU0W1PI/ZmEzP8r7/qHcrRyPxvQogSMtggO/4JkZceXHDDhHn+khMk6IBbhw1DcCQOdcJuPKgInMPp9qzncZ7JTRVGUXP0+s7G2iqu2+Wo7r7YkoHAwQSeo79JAUqMPDjx4+jqQJ6vOmLfKneanNFFxROPyf5nLIMOhdi+kZArDefcVDAOWpXVj5d5oOUUYLKU+nmDNnu1Qd1yIuHKgl+EtDj2OGaCLaRyMcrfyyrO3evRjwIsCWA5AqTY53tQf1AvlN49ZzTWk6Vwa7kZsWDTUZ1xUPvgFxHVdoZmKjA8srz/mwHkD2vWSQgAYF0P/G6AgR8zK9SAkCrtGmagIXRsEkJuQLTABYomIXV6RXomCICfHvAQ+AM+7oy6yICjqypfBheTKtTWecVqiIQIoZFfe0Aw/6+pwLXTvB3e3s77u/vx/39/fj+/fsbgCYv+eHh4QAGHh4eDlMIvkrejYC3Aw0o59W3TKucmhwMCAjwNUytKKfnybo4iHRZ4rgQSakkxaT7Cf1TdtP1ZAB4pCF+fX09jFGG3lU++VB+LKdamJcUlaKDzu8Y+bVBJ+cxKVOus6DxZ3+wTb2+3HBL7bsl8ncuSgZ8KyBIHu1e7341bD4DAlvKd36rvlpJ58A48bQaaeF51Q8drzpWwL8CLz6W3iO7m8EAjaaY1yDnnLS/x+tRAuXljU2FoZA2Db+/SugL5NxrSSBAoV9XtqJOAKtQakWuqDtKbeGGnmsGvA0YOfCP8fz48WP8+PFj3N/fH+23LjCgqYL7+/vx8+fP8fPnz8NKeTeEnYCqzh6OVxj2XOTz3gIDjCQlQEtjw+kmN5h6PuVThRT9XjKgfIblpXI1dhT2dhJI2AIGWPcETGigXC94mQQF7lxURoq8ai2AG0OCAQdmTM9XLhUdYDSFvHSA5dxUGQoCMfbrXmOxx3hvzbc6d0pAqHtmDxDwZzvA6vmma1XZKb8V47+HtuSzCwykeTh5VSRGB2bhC3aAhxiT4fP/NG5UBq7EXVl4VGAmZKvUCUqXd7U2gvP+/oW9q6uro+kABwLag19g4O7u7khBa92A0umnNww41842q4w7w8rPz89vpiY+m9K0kerz7du3wyuFrhzEb1Vfyaqe6+b4k5JY8RpYVgKslUz5OE3eSiq/U0xVmhXvyZW+A5KZIahkx8e5zslnlbdHKnwRczWt+RWIAIBy6M6HA50qr1Wj7Om2GqzOC9+TT2dL+D+BiWpMJb46QN+Bg0RJFzioS2PN6zSLDHT2NtGuDxUxDOgDWZECX5DDilbEwckQuIMBXfM5STaiGyT/wlyl5PZ6A3sMXYqC6Jq/Mqn5fn9LgO1BgOBvWjiQ4GJLrppXBMGnCqhsKbDer+pvvpKnhXnnBAMEjOSZ3q8PLAcDVCjqK8m5xka3RoBHnVfz6W7AGYFL7d8pMtWBRoOUFHSnJBOxfagj/Lk0VVAps85DT+DEqSvX1yDpXH3+/Px8tLbgFF7aKcjlx0EBp0UcCCSQMANzM33YGaEVr31V1854WAHT4m3G1xaQsgIEUpvzXiXHrnOcV/9VQOBDwAALdW/fdz2jsqVynYEBLogjCPBIgMp0YSQI0CI4GbRqhXxCjfy/hbpO8EFABc/68+0IBwR8rZALCB0AMKLgwEJTBWn1vBYTcu+BtG6A5/zPaRn2lfI+B3n0SIDFeaSiIMDxNSbqW586qQDSGG8XpKnvlZbnuq9jtWYgjScZujHeLswdYxxC4wl8qN6sH/u32mGR5dJpINDVmHZA5eeiBKJcoVZtwvsirnUgGEhOAXl4ff3zWuo5qDPGDgSoe93oVUCAR6XzcldBYGd0Eqjbo19Tvs5vxYcDIj2X9P2szVO9u/pX7ZTAwAzcdmPH8/gwMEDyAU8Ph4rNlVaFoByxc65cq+mp1LvQr++ux3B3BwT8x6iDz8FyEDrNhDG1q8pLEQGG/WnoxR8VrgMAKmKCLUYX3Ej++PHj0G7ce59TLf6xI/4I2iQL6o9zUKfUCGjcsFbAZ4zjvqxCygJ8Y4xoTAQIlB955IJYX/DJMSUgwjIpFy4jrpRT2ziQUbkcFwT84tPHT6I0xqgzmK6jSul5fbyfvNxKmSYQdG5yYz7G26lY1oeOxhjvC+t3eq7KN/HLvPz5mTFPeSTeKmBZ1WEV9Gy5XpVRAYcqn1TPNIar8fAhYEAVInNUZNXbBnoueT7e+L6BDt+dT+sDlD+9WgIAbZ7DqQKfJnBKje+DaqUjU/4u9GxHXyORXiX09QIEAUwn8DBba8GpGPGkhZ6+OJPRAYVQtUg0DSJef3l5OfB1DkpInkpfUwRMP8YxUHCPuJpC8PwFsFI6V+JjrG1T7XLlhpvjT+Mlhe1nBrGLePjaCLUh11DoP6dgKkXlzgKPlRKvePM2Snmkuoh3dyy6PSQ+mhzkJN3DiAd/BJuiyjhXRofHU9Vny72q/xNVbdQ9vwKQkt7ojGwCO17eDJikPGf9spVPp01ggOfVIO4qQepeqeNzKQJAHjjfrRXxAgNpamAGBJLH4mFXn/pg53cd4J2d5jF9rv/79++H1wIV3hc4ck8/vVKY1gxoMeL379+PFiGqPtqlj7xwC14HR3qO0x4eiRD4OAfJq5OsOMLWDoMuk1zz4u+tU/67QVgZVJVPr135efsyKsVFbpqb99caKyOvMp1WlYXLKgEB5ccjGR45Sc5BojSWfKwxreuGBCgISDRlQu+ar5MSCJwrqiWqAA2naz06wHZfMcJs2y1AYOYcrZY/K2NFlqvrlQzNyvRjkq3quS4CMiubaRzkpXpU4Hh1bI+xAQxo4Khw9wy8YCoLR0OrDTLGsTLRf1Zcg9WjAQQB6T150gw5qj48r6YISFU5NCQ+vUJAQE9fewRw8R+Nra8V8OhKZRx8EebV1X/eTBCfqW9d6NQWbtgSIDgH0aDLw2N9VJcEBjw6wGdlQCpl4c/6uBnjTzRsjD8yRkBQeRWdAve66+jylgAQ03o/e7t5nQkIWB/yybL5nxEFz9fbnDw6vzx3fr3cMcZ4fHw8AgjqL+5Yeu4dNBN5W6XpgjGOP12ttFvKGKOfP0/HKt17yPuxAhwdQOiembVRMqxVvVzWk91bBQSeTwKE3a/j02lTZIDzZiyoUnSJWT7L9PQUOGi/fft2mIemh6fy+AleznEzrJ3mfEWr6LLystxDYp1ZV+/8hE4rQMDXA+/u7uI6AH+bgHPF5DspeabRudqbhlztp//KJ63Ed+VaycdnkHimHKpuLoPOu9L6eoExjr1MluV5cJEhnxc5iPa+4DnzoAGVYe8UlBtmAoPEy1aqDK97ru6xer10TLojyZf+J9n26UrvH0WrvL/TbpNfkdg2DghE3r+rhm3mQa/ISqX/thBlYmb09+br17r7W0GA/lfgKcl5ynsrEOjyS7QpMlAJlXvcSdBmxiBFGuix0SujguUud77YLa30Jn8zgWLI2ztWxtKjBd3ASeWpk1lW9Wogv0uQntH0ga8FSN7WilATnKgMRYgEDjgF4H3kiznPpVBTqJSL4AgQKM9pmkBEEMW+9UHf/SqFLVlKiwCVL/lIMs66O3WRItZNgMnr53ymNqnyrO4nchl1w8frHh6VLLIfGclJ0R4BA64/4u/c5GArASkHYKlPVo2ET+04HzNjyucSKFjhIRlA1n0LKOjSbgEEXb6U8QTkXTeMkb9OWrUj+XL7m6YIPgQMaNEYSZXw988r6pijwpES4uIjPq9B7HvEp/UBaa6WZY5Rr9j0a75mwKdCUp22UFpIyJX/fEuAwuaRAs8rgQEPgYtoUCjU5Mn7mcaf3jUV7jm9K8kQ6+seFKehyHfl2dNYj/FWCXhal10RF/aROKXCPiCpHEbVOgPq5aS1HzSa9OAT2HFKY2Al+uBGzdMkxen1JXDjNe1aSMPIRcl3d3fj9+/fR4tyf//+fXAs+GrtOcjlaWbQWHdGiirdl/KgvDlo3Woone8OOHT8OK1GGrZGN7r6VQY6HR1wd06CrrnT0vE8AwJ7aBkMUIn6dQ/FV9ShIVEKbdMIc8AnQJCmBaoGqsI6Po/PY8qHkYuq3qnMynD7q5XplUHy7FMCaWFi+iVDRp4rQ6W2J3FNiTwrruOQcj0HySgQrLiHyOvcP4DPuvyyHXkc408/V9EGDngCFQEuEfuaitrBoIMOKguV41Qp2pSO1EUHdE3pXA5XvLnk3STw6fVN0zpJN11f/+dNGEWzpEf4CWvfp+QrTBPQsCUjR+/Tp0dmICKBQi+3SzOjSv4SH528+TgQGK7qktrK/8/qwTJTW7mcu871yECaxiJ4I5+JxzQ+ErjYCgo2RQbEIGk2J+8VcGQ/Rv5wTxJgR0NJYXuUIjXKqhdPtEaD4TQDQP7flWn678adc/euVCncahdXHFKA3l86p7B2ikB5yQClUHYCaudcka23I/QmxBh/jBgjKmo/lyOPDIxxLBvV4Ge6BAjG+NOeOndZ8z5h+vR2Rpri6MYDAX4ywDMw7V4Przu/MzDAZ5KCq8KgDrg8osP/Y4zDFJfvlUEwwCmur/A2wRhvDUJlnD28vwrAkj5JQGCWlz+/CgTSdeej4n3F6FfttWI0V4EAZdx3laXOcGcqAYVVIFBFBiqeK3r3mgEfeIlcOXkepAqF8hmfD5TXVimv1CgJzc0GjYfTqdTTlMSsfjyvDD3biZ3s7eRhbs7t0+AnYNF9AMbrmdqWeXbz2+cighOBAH2SW1NSIgeZMgwJDIxxvOCSez/oHsv3NhVxesfve78QdGhhLeXB66LnaCSdf9YpKZrV6Ta/RqMukONjsVLIrhwToHI9kMCAOw4Eq1wUq/8VmD33J7hXyNuQYHWMPFWTjJuOyRHwdOm5NE4Sf51uWNEbSa7ITwIFCZxs1VGVHeE4pn7159whTlHDyoZU91ds3ow2TROwIWl8umkCH9RcsKPrTmkuk/mxMbvFUxUl45/KI4rjHK7Xx5VupTRTu/A8DRxvP68H06gtGAnge+id96odDVXvpBB9dfVKJMYHyzmIA04GgV/2owz64GSd0ts0DtwUMaFx9nx4TmUmPhSlEK/dtrluTL2uOqadNysjXoHearwm4nyzyzopgfDqGTduupeUKvWCyyhlUXm/vLwcbc/tEYXVen8FcvlIbVs5SG5AKx05ixRU1yqDvfJ8qg+vV/Xw8xVQNOPJzx0IOECnvaQ8c3xVetT1k9sGnqf2PHlkIKEZXWcYtaqAo/iUl6gDA3rO80g0Q71VNIBKR8JDDzIZvY4ogN5GFXjieTKw1cJAGi7Wl4Zdn+/1uTb3KrnjoH/oqQpLca3D7e3tQTb0waJzEo3DLE0apLrP/nNAQUNDAy/SfcnYGOMookJF0i1QdJ7pdSR5IO+V4khKx41tR2mKj/VIayxckbKdUpsnmilInatPfcGleNc9tQVloJOZr0A08Lw2RtaDCZwlY7dydN1ReaXeh6v6M1Gqr9eN6U5BVftQ3tN2+Q4EOH2Volhp7Hl/VUfWO/Hd0eY1A6oUK+gDhwwlL94Viw/2FbSWBnpChzxWUYBOwVLJJxCTyk7nXicHCBUwSBEBevjpefKsowMB36fg9fX1KEzq/eoeVyWsWgB3e3t78EbV9+dcke1z8Iz6OFX1q2S3KrO65oDBp238GxzpmwIqm9EEr0OqS8VzNx5F9HBS+NPHmCtJBwP+c/LxzWhD5zlWCtXHh9efUZ2VZz6LOg+aVKVxg5gMKK+77mSaqq9dn6162pWun4G/pN9nz3VlJp6rOnRyLqK8Jse5AgMr+mYriPqwyEAKd86MvAMH3usqN6tEp/CqfJIwd/kLBKhj2RYViEn3OpopGvLpHqSXxX5xwX98fBw3NzdHK+u5TuH19TUaTdbJ+9+jJFdXf+bP+S2Cc4MBUmVAx8jzruk683ZPXuXReHof0qglw+gG0uXbw93k05VKFYpMdU+ggWU6COiAgAOetLbE65oUtEdgCF4VAXOglaYU2B9sKze2rCM3OzsHuRGujKeTy2tloDugscfAr/CW0laGeavhW+Up2YSUrkpTOZbkl1PidKYcCMycrMrOdO28UienTWCgMu4CBLrGo5h3JcXryXC6IfMG8Dz8GqkTakeW/pzSVOH8ap4n5eF1npEbGP/RECShdCMtIJDeAOHiKlesbrh8MR3bRkBAz3A64lzelUdQxIsbt1kfpz5j2yRg4FNLycMSjymfxIuek1wyLRWPhx99fUtn/Ku+4vUEptKUgK4nIEAw6vmpf8gzd8asxhv5d1DEelaAyD/eVdX1M8j1R6UXZ88n8ucT4Oh08CrvVdnd/xWqDHJ1vzLiVT7JNlTjV1RFnXxMJh1cAYDKPnbk426FNm865MzLMMwWBlZggM+wEpXAp/POCPt/5kdFTg+hAwjMj3XtOlNEI9GBgmQQVA49bA8/cZEfvV/xJyXHbxdob3aVw4WEMuYi5sO6uydWrdI+Z6jVQ3FjHHuRlE/d03MVMlc63w/CDaHqnsYFDadP37ihdO+5k5Pfv4/31+dmXDNl04GBlXUBCcRK7lhP1peL98iTeEm7ivo8q8aAe198G4S6Sjzq65uqmy8Ae35+Hg8PD1MZ+wiagdFT0IrXXPV3BWBXjHsqpwLcPK4Y8or/xOMMmKS8nYfK3nDcJ4DOH9NXbVFRxfMWkHX1+lESdqELXehCF7rQhf4WdJ7Y14UudKELXehCF/oydAEDF7rQhS50oQv9w+kCBi50oQtd6EIX+ofTBQxc6EIXutCFLvQPpwsYuNCFLnShC13oH04XMHChC13oQhe60D+cLmDgQhe60IUudKF/OF3AwIUudKELXehC/3C6gIELXehCF7rQhf7h9P8B+ENjoNYIVhgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJC0lEQVR4nO293XYbObJtDcmWZbu6v/0A5/3f6lyfF+iu0p8tfRc1Fj05tYBMusuiehdjDA6SyUwgAARWrAggk1cvLy8v4yIXuchFLnKRi/xt5frcClzkIhe5yEUucpHzyoUMXOQiF7nIRS7yN5cLGbjIRS5ykYtc5G8uFzJwkYtc5CIXucjfXC5k4CIXuchFLnKRv7lcyMBFLnKRi1zkIn9zuZCBi1zkIhe5yEX+5nIhAxe5yEUucpGL/M3l494Tr66ufqUer+q5urp69fn6+vrV+4cPH45e19fXh995/RhjzJ6vlN993YcPH8bV1dXh/ePHj4fy/VvqzneXlfpfXl7G8/PzeHl5Gd+/fz8cy+fv37+PMcZ4fn4+erf++ZzfWxn8PGv/KeMaXffoxXPz+eXlZfy///f/dtf3V8n/+T//5+h7xifjxXGl/fjcvD5+/Dhubm7Gx48fx8ePH8ft7e349OnTuLm5OTr+8ePHg11EOP7Pz8+H1/fv38f379/Ht2/fxrdv346+Z1w5D6KHbT+2mPpvbm7G7e3t+PLly/j8+fO4vb0dt7e3R7pRl9T7/fv3o2PR6+npaTw9PR2+sw22Cbcr7zk3NuF28cX55DnF+fT8/HzUd66PbWLbqM+3b9/GGOOVfvn8f//v//3VpvpK3gp3t8RYzDEj9vlFO8tnYynnG+sa4xhPiInt5WssW/jvvs75xFXaULMn2os/sy1bOv3Vsqee3WTgHBKg8Hcf31MO35tcXV2N5+fn8eHDhzHGD2JAgM15W8LJkrLG+NOIczyfY0Q+xrJiVJ4wLy8v4/r6+uh8ttlGxwk1EzouS5twKwNvhOAcwrrTh2mL+z3vAak9Zc4m/vfv31/ZK/sg9pXPJiD8Tv1NNvkyEPtlsE7ZdMqsw+0l+IZIbPV3I/Yci0b6m/O3eD7k1UgCCU0jYZ4fe+fL30G2AjOS6kYEPn78+IoApKwxxsGWcuxUnOCYUfz9Z8bShCCStgeDcywYYvLC8jyf38tDgN81GfhPZcs4KHsAhxPgZySOe0UUWDbPpdHQkbFcv/+MkW1NmJlzn5GD90AGKM0m6Awj7FuDl68zMSDB+/bt28HpsmzbgO3CxIDRT4umeJy/O2tgB9/aQp1y/ocPHw4Eh3VY75nMoi/384wcreT6+vooG2ZnHxLAzEGLKm2js+N/J7HdkqAxG0DHbzLqLOoYr4OORi5/NivSxtC/rc7ZU64J84wItDreqy3915GBVVZglQGw4zLQzJzBGKMCr8uaOQdH+jP9ci7BeIxjx5/fA8wtW+B3AnbK3avPrL153yIAs/PeWtrY7QUa9lsjaxmH79+/jw8fPhyRsZwfB9oiLNpfHFpIBM9xKtQO2GPOFDvPowOk7fKY2582v7y8jI8fP1ZbZ5aKbZoJ7dBZAGc99gptzUseWeLgEsye6N8E/O8kq2xAnHsjBM5KkeQ540WhPYyxxnrKLDvacK6Ndwtqmn6tX6wrcbnNvVbve8kO/NeRAUuLzGbn+X3m/CntHC4nbKX4W/qrkYZZfY0U5J3G9+HDh4ND4jt1nhGCPcZ4SuS/hyS8pawA5VRSQPaf79+/fx8fP348fLaTnwFhAJV1XF1dHZGCvH/79u0QOcV2G/lzWRE6fJdve6RtxFZIQL0cQlCL/g0MGzHN+2zPRhMCb8Ygurmds8wAyUDKoE7sm78jEYhwHPki4Wz7BEwGTiF2zEhRD5PsnMvfbBuRhrUNu9rvs2CCdsy5YD+wJ1PxHgjBfy0ZsPOZOdd2/hivO7+x0K0145RD5xtxhNh0scHMyAEdSsrOb9FzRghsbGSt1GEVze2ZRHuPnUM4WcfoKb4tmfUjHY8BL5mCjx9/TDMCo9ftZxFThMsPLI8yi6iZwUhZ/r3pYMLS+iTn0f5JRF1eI7xtnwBtkgDLaIzrsiQCq2WCtjwQXWaO/9xA/dbSiGUbK74aEeAG0DFOy7A0O3YgQ9z1b/w+w7ctv7GamyYBjRw3od29BxIQeddkYMbIKI0QWFaR6R5H0M7hGleAMAafz80omoPcStu7fjp5OvdGBLyO1UhB6rSjsQM0eeLnGRl4D4RgthZJR9fsikDAaMXjlcjd8vLy55LOt2/fDhFSyjOQstzsM4iDm5G6fG8v60EiQHDzuDSn3EiT63t6enoFmCEE3ltgYhBHsoogeX1bj7Xz910R/JyxajbtNqyw43+rNOLWMgPOEDhbwOUEBzUrUjCzA9bPeUlSvgp6HDzREZ/ilFc+w7rNxPWfqsOvkHdNBsZ4bYRNSATspPM73zlgLSOQc1o9/M2RSgzSGQEP8iptxPKsi8GYjsKZgeb8uRGNrHZPtqAx6y2W3b6fQ+JYI0xP53c6vQj7It/TD3TW/J0kLd+zhMDlJUda1DXXcRwNoi4nn9t7yvj27VttU17RJZkM39aXcwj8JA5PT09jjHHkbJt928EwQ2IyyldzUi8vL0eO386fGwbz7rKpV7PVcxLZt5aZ899LBEwiuWmwYciWHm3JqOGZX1uk4Orq6ihoW+nU8Hd2non1lrTs1Lls7V2Sga1OpzRnM4tw+f2UOrZklppandckht8cVxOSGS8VkLBwMqRME4E2cXj9qQZqIM+xc4gdbo7Rqfh3Ej3bC4+5nSQAbHvGKACU97Y+GmmRdMtyxIF7VzfbHV3iJHmMdpHbwJgNiLMe40da1sCf8ljujMC7PS0SpH1Gb5O4nEdnP8sKeF9BIwJNLkSgL+PMSOFK9vQlycPW3Qcpk88B4LvH20EQ56+d8qqPHBTOzvEcmJGK90II3iUZsJySHViRgL3itCjZ8BaJaBtH6FhX9fF76ooBn0JemJlwlsCOP3qRLfO82b4Ht9HHPPHPCapcs2/i8aYdecxa1ontstNJuVv2m7La5jaSPepJUP7w4cO4ubk5em+p95mu+b0tcfFecTpmR+dZElkRBPdvA0gCdIv4nCkx6PvWQY9HIwJtXDzO/1uljYWzAHsyARQ62L37BWhT7WFTlJDTl5eXQ5bO794X0siBP1v3lTSbYIDGdvkcvrNvzkkI3i0ZWIHnFqC2AWnXN5BukZiPNwbcUq883qLj5nAcLW61tdWzMmS2IeC6Ig8+123YkpYheGuZbYBbyUxX9q03jTZpkYGdEtdUvf49i2AdkX369Kk++XA2j1bzpNXBpxWyHVl+YMTIthFoDbgEPBNH9gFBPfWY1DD65/UmBx7XLZx5byTgrwh2WnkrImBbMyFw/6XPx/ixt2oLi7eIwIp02F62sgO+zvq2ZVTLjOS6bbahVUCwNzvxq+TdkgGLO3EPIdgqz0IHzJSkDZLXZ+DIfmdOs32fgTSlpZIbCbCxtzotdvjsi0YIeI3lvQFnhLeBbskpY8bUNbMqkaurqxopE7gYded3g1nK4j4BgnKyAXkU8uwhQxZG2mOMozXe2bqwoydnCGZ9bGdPItzsPe1va/124CQbJh4maytSOiP574UUNNL2VxOCGRFoSwKz5YHoxCzTFt7m3fXG7h2Ysf0ce+PWLDuQ77EzZxN87owQzOzJ7V3Nw5RhQvXWdvdfQQb2koA95zgb4FcjBI2ZOvVlAyXArtLsZsYr1tjSbVskYI8DbPq8vLxeIjBhoA659j2ApqVlWWb906LV1maTP9pB7IW76QlccW5x5CQV1M9kwC/fxtXIQJPo4k2QAX0+PMag34CLfUXdV7Znm3Fmy1kS9odJjpcSuFeA+szEzpA6MlP2v02Mq3uIwNYSgbHPtuIl0FXWrumSMqi/bcWRPQmhbdMkwC+KSYWzAqdkP1o5LuutCcG7JwNtohoUZ+e347Py22eTgBUp4GDSGNuOVUf6rbzWtubwZ6yX0qLbLXCLETYycyqD3QLjXy2NRLl9lD0TkFExo2RH/tfX169uZeNSkO/FbnZq26Ojzv6ALBPMduanHL5H6Jijk//LoKXn6bibTYUQtTpdRjvW0v9pF/XIeX7UMDMLsyhuBtR7MmFvKb9Kh1VQNFsaoE20O3EaiU7/Evvo8GbtdZBm2/Y8blkiYnTenT0iSX9+fj5k9NKOVf/PCIE/EyesB+36XEHVuyYDBq8GZjNS4DLa+bPy7JCdrhpjnvbxYPO2tq2U0l6D+9mlgQa6LjN60LBJCHi3wh4Ga+dxDkk72vMZxphnPPZMShMBE77Uw9v6Yk+54yDPIWi2aTLa7hpY7RVwe9pvzd63/nXRt+61ZQ07Fe+xmNlLc+JeJuD5qycNMs07IwL8TFLQbu383yIzB0z78NiRALQlpYhxKCRgjB+ReMusbWG45wLtmBmjlOU56c+xCWIaM0rZC8Ps3Z5loxkhSBvYTyQCbc6+JTl412SAYqboY3z3NbPvLK8B4kyHdo93xGmvWapqpVcDwFO+tzosjb03nWaTjJN3DxF4L+JIYosQrGSW5nRmyEBpMIzTIeFkWtQO2kSA5IDp21zLMnxOW4fluSTAjMD9d8F0timDz0xg37a0rQG7bQBr48NIzn+vbL32SMOSn7GNt5K/ylHQGTUSMCMCxEJnayhcZsrvvCOANtayprZZB2WeRyQCLQjiixtg6ZzHGAcb8rIU8XHWn+0Y29qIzWw834IQvHsysGKLM2IwGwhf186jATVC0NL4jrZsKC8vPx48w3qa0IFcXR0/4nWM7Q0xW06+1WeZMVuvb6+A9j0RAU5A98+KSM0cUCvbdjMbCzP9XJPnAozxOuvUnu5mItCiM9snCQPLbHUSdB19Pz4+Hl5PT09HETiJi/uOmymZxvWLY0MiYMLAZQT+ERFJgEmK27jCiv8G+auJQCMEbZmgZQRo1ysCtQrSaIctE2AiwAAt400SmsjfGUraWZazgrfNLpgx4LGftZVZcDvLDryFvHsy4LTg3t8opw6YAZ2prDGODXYFMGTCiUadQmOdkXbLmh3vnuyAxdc3MXv18ZYVcB0GbR47h8z2UTQSMHPgfB/jR7vTFwQROsaWPSExSV9bR4Nsi47ozKmfxycRnEHdWQS3ta2pPj09VSLALENsJPZiUG/jY/swOfB7Psfxh6TkM5cuvATmz+yDpgcJ+LlkL9btkT2B04oUNCLgsjP2Edtau2tlVWe73vXN2hgx/hGPV/1yfX1diWyOzex3Fs03PJyRKn7/1dmBd08GIi26mzmu/LZ6d9kEdUY1s/NptFwPY/2rAbd4PSrf/W6HsifdbWc2A7ZMjpmeW2C0RTbORQjY3lnKcPXbqr/GGIdbBE0C+J2O/2eE9pt6TQZXUdTMGa/6w+eFDDAdT4Ic0pHznXKdyR6gS3l08AFk/vlQWxrwHKHYqXkJh3WfW/5KQkBpNmJH7eWkrfJ8np36GK+fJ8AlCW9WjF21LOwqsJl9J9m8uvpxC/AYr/cT8a6gBGr+w68W9KwIbjvf7ZqV86vkXZMBgoQjq1MmRiMEzWBZj7MBLs9rVSESXBtr5fPdx7d054SkjqvvlhWoEQh/FnhmmYFzStuvMcsW8PPWsg5JIPcG8E+LOBZt2Wmmw6zfWFYjK6vIzQDTHku8hwx4c17LlEWvDx8+HP6zoNVhEtNsJ68QgWzG5H4F30nAJQjrOOt3OgP20YoQvrX8p3Npi+jPCAHxx/rMSJY/c59BywCYAPBultkdMj8rtLeXlx/LuMF8EnoSXT99M3bBucR39lPeV0TAvq35vF+Fp++aDFBalL3VOY1p2aD2kAKe6zXzmYE0Jj3Ts6WIaQSObOz0eWxGCk4xoL8iAjk3AaBs7WCnmCzMJnckNvHhw49/JxzjByEgkO6pm2PGTJP14Lg6SrJt5DeWxVdbv7cwMne9bRnABOj5+flw90TaZlIzy1xQJy5dhAj4vwh8zZbMgJt1vRcy8FeJnf7slXMtdJIRY17eTQJWZKBlB9qemDHmhLnJjAwSK91mZmWTIbAe2XzILCDx1gHGFulOGcR/l/OrCMG7IgN7HdAsQ7DH4c8+U8wQuYTgdLCfsmWCcqpTbSSA2QYaHsE8v1Mf/2HRHvkrsgPvTbbSvHuiRkffOT7G8eQkIaBj4hjNys/vcZazaGLP0gDrcWqVRMJ3A7Rohf2Y42xLy0ZwmeD5+Xnc3NwcHHfaxvau7MykxX88tIcINEdCWS0RpY7/dmnOfS8hGON1kNOCHtshnX4jBbOsgAnBGPP/OJgReJNVtz3fOeeItRn7tmfB9Sdj1Y5TJxMB6jojYA1nGkn4T+VdkYExXhunpTkoG/esrBkJsEHTOcycfFtbJEA23Vs6dfXdejramjmH6GTjIRBvkQO3m/X9t0lSvZRGGCnee0Fi1q7hb9++fTtKa7ZNUrnedsRlJ5OJOCWOh6MvRzZep6XN+DZBR+gsYzYvZ8fZf0nBcs2VZHdGBDhmLUNAUuBzPHa245zvugzaXHb43yQNG9s429ZmWU+W2fYF8OFaeabG7JbFdjxCXJpF4JSWtWrE0BmqMX7Yk8mA55PnZY7PHL+PG6dtq/78q7IE744MnCp28M2w/fsY85RWE0YvTI95zXQrGzBjqASrLSfFe3MNji8vr5+xzTUt3qVgZ0dhlEpj+28kAmOMGtVx/GfEsxGCFYnLuXR4tEeTxpZpSjqSZCDkIjaY1CTBKRtfqeuMDAS8sv6fDYHOSnHHNsuYESLaCvfPMPrjRq2flRVJaETXWRmTAF/vOfW/gQzMcLKRxlkU3AgBI+pVWbyt1U+29OcQBtocddgaD9tk8wWW5qidGTBOMLuWc2a2tYWhM/1mY2BCsCp7r7wbMtCMtDHU1XcDZOvgNqg5zvO2AMsMciUt7U49HHFaHzNOvjcHM2sDn6KVa/YQAh/fY9zvSdhG9rlBzNd4fPc6MT+GOM66kUj/2VEikThNjusY40D4nCXibmtGVwRhRlN8ZkBIQeyT+jB1yuiOYgfsdC3FZN3yM/bUMgIm5ukrL7HNANtO4b3Z+c9EhCsSsOd2UwqDIteRd5btDYF+ToYJQNMjJDa23PCJsvWALbePcz7lc7nL1yXjRRxpeL3CSgeFttPZHGnj/zM2cdSen77yF8kqsufvPMdGbXBvBOBU509pznvr/AhTwM043fY22TjgMRySDBoUI3xOnj2GsyI5s3W7mZ7nlDaxZqRyjGMgSL85QzCrw8DCSDzRvR/n3DJMjjgMikyfxmmnDY0IpD7qw2WC7Phn9M95RvBmP7WlDH6ereW3FO8qauJ4eB63iIyfTepmRGBGCN6b0Gb36Nfs3o76FEKwhZW+NvWlrtn/abRAjnab35ySZ5tanW4P7TfvJtnEU/ZBsm8k49Gfc9v4soro3XfG74bDv4IQvAsy4M5rndnIQDNqs7TIzzj/lqLyBFkxaBvCrN2zzzOW2VKibwlc/w2ASZmNS6SBlz8baPbWawcYR77qM6cpsyyQ6N3PszAp8FwwoPkWvJY5MYBvEYvZnwStCEH04bt1cTu9/DDrxz3Oa4sMUE4JFt6j7MFMp8NbMLJHHCw1+8w/bIYYkMxuBUCz9vG9ZTxc7swWXW/rO2bLsozHpTqWtZU5ZtAQ3UkEZj7nryYE74IMRFZEwJ+dDfD9qI0QNKHR7lkXZDTHqDu6uT2sh/owwnIUtkUEGgngMQPyXmHWYOucU+W9E4YmLV036xvuE7BsESZHLY1gBhRcR4uGnDGzHisSF8Buf4AUm21khc8fyG8mDDOHu3LEnmNMEc+yBa3/Z2T8v80uT3WULcCwQ2up+RaItfotMwfV8Lr9GVbD4xnusV1uq+trmY7VctaqP0kEnp+fD++0eZfJ7IaPs4+YcfDeDPftX22/ZycDzfH581ZWoKW8xjhmpHs6raV/T2HGLeJ0G7Yc/8qZNIPzhOF3Pwhjlkr19xl4bsmKZc+OnUtWWR/3ZcRZAp6fiJ+bFWcO3tJIcJzyzB5W5WQuzMiky2BdJgGzfy8c4097yubD7D1oGQDa7l5yav3Srtm4nBLFbkVWs/P/W8WYSRtp2dQWkKWcSIu0mzgIsoP2xsFmn1tZG+q2Ijwrkm2n3IKAzO/oG2d9Chmw/qk7722JYGbffzUpOCsZaCx3y8CaUZsINBAlAFhW4Nr0jLR1/2b8/u6y/Zv1MpjyUZh28DRyOrVmiGbGNq6taGorynxPsgfg3N88NhtPlp00Ia+ZgWYDrZzH7JYjmxmZbHqZNNImTBzStjj/m5ubQyo3r4x9eyQw/6tgBoazPm39z3ePX3TlKxIAbZEjo6y0va3LEpz/KqD9K+QUYtiuM2auMgK2pRbYjDGmhNX1E5dnhKC1aW/7aNPUc9Ye9kubN07R5zuX6Fbzi3X4KZYt8MqxFRGgnf4Km3yXmQGLHdOK/XmZINePsf3XkzNjmckMjL0EsIdFt6xE9KSxef119nS9ljVwuavvPyONwb8nomCwiDgdF7HedDzeSMdJzYndXtTFwOg6aD9td/QM7EwE+WLd/rfEEIBPnz4dEYKAIG2K+wWyVOBnOjSy5fGYETKPB8eB7UjfuO+JGyZbjsI4lo0AbM3f9yjNOTa8bGRgjHlgk/IitmvXx3r9V9suq8keDNnyH+08Olgff3l5vaGQpCMPF3t+/vOBWp5rEQZuxodGOtsSQYRlrObVz+Lt2cjAnsm1mpAGQYNmG9yt8me6zVgxz20TbIzjh8E0Y9gCTkZiAV4fa9JA1VkC6kDQNXmhUXrisIxVpuCchKDZSt4jLcOSCUmAa5FUc7wrwuoyY7OrDV0GVV9jYsIMkttoIpCxyTpuSAAzAznPpMcbCP13xo6sWH87j22YzZPV2JIYcEOWgTXn+vHip2LFe5VTSIBtsgU2LfNE8TW015TRiIeDNuPR1rjnc8Ob5nhnZXAeuF7jWnDBDwBrWJ46cptxy9I2Eptzm303P8E+mNnwlpyFDLij7Cxn17CxvH5mXDNp4GLGuzJ+M9p2L3ZL7aZuO+aVA/XO7BAALhv8zDqsIzwL+yHfVyA5IwSekOcQO1OPdaQRo6QGZ+DWnDDFdkEdmCb1hqotQkCAz/nUmePbbDjlc055p7dvJ2x9wzF2VoBlz2ysRaSz8k26LOnntN8EoJFab/y0na+IyFvKFqa1c7cI6SrTxD0kzd7H6A6Q9dGWc9cA6+bcYXmNCMycHUllrom98T3Ssh28tvW3A6romLt80ubVWOR6953JNcmGhUEGv1v3n5V3mxlgJ/m9GeCKtc6iDHf6iljsZcSzCI9gmohkNpBtYL0mRSIwIzZbZe6VVb/m/b0SAQvHlrJy5jm/OWvLzD5bVMRzUleAkunURixXhICOmYARfZveLsfRItvW7C2OY/aEQYO2HZY/u0+5PyHZCP+BEMf1Z0FyZtPvUVYBDe3cTrgRzbae782jMzLgOdM2o7bNim7HLDBZtW+GncFYX8ffGcy1Olp/k/h++HD8RE0Gbr6G5dMPNHtjO1hOI7NNR+p/iu2+ORkwCK4c+R4n2aIG18NookU3BtatTENjkG0Cem0sdWVgTUxm8leAUZs41H8lji5b5LQC0fcAps2R7mm7x9OOemW3Bh7aV45vnZ/6ZpHcGH0pitFVzm/LHq6vzZuc4zVRRoA3NzeHY23cfcxziLuzDaDRI86fD0ziuQR3z6vmcJqNGiveKxk4lQh4gzXt15E/nXh7MFDqj1NsGzZZTsNCOtBZVM3zIiGVzW+0edSwqZFP6jXzS/Yzeb4A8Z32FVuNzslCsT7Or1zb2theJNhsVyMfe+RsywQzIN4D0GO8jvA50M2xbkV+qdupNJ9jMNnrUFIO01dux5Y4umL5e8qgrixrVu4YxwSGRm6wnJGCyDkBtbHzPePW0vpcQ59FOc3J2OHSgVOc6Wkp15babW1m9GBCuop8bN/MODAbld+SBr6+vj7KSNBeuM5Kac4r5ybyouNpDzhyeXyPbbcM2srxvycysApG+Lv70tmAlhXYIgJ5kZRGBxI0Z2iiQ8sK2PnPsKfhWnPk7dwtbKZ9OPjzcZ7PdicTRgJrwsC28eFE0dfElWSabclx6sj5nfJmhGCPvCkZsFIrBjaTmZNhx7fJ09aVKDaIRgjI1rb+pYp6kh02wNkiF/8pcWrXuY9NCKiLj7u97TcfO6ecQpQcITAbQALgPQBjvO6nmWN3ZO8J7H4loLfnt7c6SY7zuZEAZ0mcKYutsw7uDYgDSflx5gbDLZtIW15eXg4gS7AjGfCeGY7XLAWdtq1s9D0Sgb3SiEBbtlwtEfi/Az59+jRub28P2YHcXppgxmSgEd/r6+sDUdwisLN2RVI+sYoRMnHNTrzpNfvcfEGuJzF9eXkZT09Pr+agCQHtKHch8Hfq6O8kAiYBJvgeg1Nt983IQGOvjQisZKtxdvr+bYtl0ijaphlGGUz5pPw4/faUON5rmmingVMjBL8SkBqT5Hcbpp8kNyNATedzAWvGLGO7ihpoEwYF/rEKnXImXsrmX/TSKZNMGIhnwjnS0rwEolnmJvq11KOjC4qB0dERCUA+00nY7mcAnTZw7dZg2Qg0yUDT03W1SKqN/ez39yBbOm0RAmKbMS+fmR24ubk53GbqZQIv21CMpX6KZbP5vRmDvfsKmpM3Gdr7sn6xvWy2PYXgzDAietPWiVccs+hgMsQ6TrXhN88MuEEGGQobtOroFYvPsbY8kOPUpa2lzcCFDDXv+StYAlYzIr4I2itxG2aOd09Zq98JsI6sUv4symp6nRtUOQ6OJCke2+bA+b2tobaIswGSN2wZTFr6u+mTctoYtOzEHjJO+zGoNrvhXCEZ9l8tu4+NBU1//vFLa1uTmZ4h8EzVzvrEup5Lmo16PPO+RQRW2EYicHV1dXR7aSMDCYgS3ORee+s1I7BbZDw6ObNkUri6lvXO9t14LnlerfQOEXp8fHyVsZvhi/1ZI72tzcZh+xSSgsiphOBNyIANtU26lUOZTQCfP1sDb0YTY246Wk+WyU73YBF8kw7ixOO5Th+xrW6XDWFVhvvTTLOVOZNGPlzve3H4K+EyTZuQzRnNIieDiMGhZUkIjIySHJERbEkyrJNJgecH5wJTudZn5YhZ5xhjCqZ26Gx3i2rYDvd9s/3V5rMmjeBk2SG/xw7yHtLCtnP9dg+5fkux/a4IgR2xidsYr2+V5ljzoVM3NzdHOBbb4ro3dTQh8HzJnNwTGM6O5TpjeepjNq9lBVKnCf7WEkvk+fnPR3Lf3t4ePZujBRH5/47sHcic5N8yt/83IW7ZTo0/q/7bkl9OBpqDdaRAw7aT9e8sdyZkVi2CIIC2ctqxVWrKdWSwGRmxzSudZmWbBLSNWiyL16/a0MpoDp4gaYe3YuinstNfIemv5pB8jGJH1ZwwiSHHiv3piMNr/3SMBpstcRuiRyL0tJ1/IsTrol+u9dwhWBpYGyFakcP0V/Qb4wdRa9eEsDvFnbGkEyJQGmNeXl6Onj/A28GIO9bVWZX3JA0PTQLs1Oj8ZsQqtmAn2FLhqWOVecp5Jmhux2wObvUBz3cfcElv1g/tGveb/6eDmYMx/sT7h4eH8fnz5/H58+dxe3s7bm9vxx9//HHIqnz8+HE8Pj6Ox8fHAyHgknNsLXYXISkd43WQ3DDdpGBvn77pngFOUg/kVmbA5fBzMzRHsSyLKeOtyGhVpt+5bmY2ZxYe/fk+qy/l+bnvjQjk3JnMCATb3SL+lgWxY6FznNV9DvEGzkiLkrwGbYfNtgY4WTbXzPMbr2tRhu14RlBWkZF1y/mxyzwqmGOTuvmHViSe7qeAYaLB1d8ae+45M2N74TsJTUvj5m9i/UwDOzn3C/vKgUZ0a4+Pfc8ys51GDGaZAIt/d5npF2dXac8muRQTzpXQbvLZmQjrNnPkJvHt+kaivHeC2ZL0xePj47i7uxt//PHH+Pr16/j999/H77//fiAHnz59Gvf39+Ph4eHofzy4ITYk14HZDI9n2ZMt3zqTX0oGVobaDHFL6RkpmEkzuoAMJ7s7ls7SnerU/OydD7zgRCSjzPdZPxhQ06afBSgSFpMCt2kPGaAY2FP2ewDUNm4REoJ8528URzh0LKxr1V6ClskAy5yR3ln7/J3jRbBhxO+sjQkNyZ5B6+bm5jDWe5bB0l7az6xNzamRCDRbNaDbET0///irWbf96urqEKk5Cju37Z4ijQjYdk7JOm3ZcbCLRJfO1E6XS1exEW88nOFKpAVTs2xInHiWOFaZtxmJIqG4ubk5OHZG/GP8yA7c3d2Nr1+/Hl5fvnw5XPP777+P+/v7cX9/f/i3z2QJkr2LLZo80y45j9x3M9zeI2++ZyDf875H2RUQsqwWlTbQ4KRnypHpXTM0ludIqg0KhdFmotQ9k3LLAZ8iDUBNBFZkwMfH6JEFx8ApxHNJGyOCBm3HNjmzW0egjUyspBFjRzizrASFTs0v2rN/ox7MkPn6JiQPsemmF98J3CSKJhGNLJAQcI06ukdPOqfU1Zwgx7qRYWYq9o7nOWQWZM2yr00yFhz/U5YCWefqIUNjvN487Yxd6+/YC7Fk5bivrq4OBID/s9GWtRrGuS9NLEII8sozGJ6fn8fj4+O4v78fX758OSIC3Iz5xx9/jJubm6MMQf4CvPkF9n/zbxw3koafsd9fRgZmxsjvdjQ+NivXMpvo+TxbD+ckoJEmEtpKb83AckZyHA21VJX1TL2tPLPmJl5/YtvZlq1oiBMx7Whtdqp3q6/eQlaO0M53ls1w+nNl2zy+Igl0ei6nRTkNYFlOA1uTgqYvlztYJsGHKUz+6QpTz400uR7fUjVrA8eKfR/gnUWLM/K0GhsTkwak/42koBHKvbIaj1YPI/CWlqdN5hWcTX3EkJTbgg+2yftJSErohEn8SQZMfNyvzjrwgUy3t7fjy5cvh6dvJjvw5cuXo+UB9gd1e3h4GA8PDwe9n56eXvmAZAtWOML5ZBI980VNfgkZaODmRjoiyGe+t7L21OvJvOqQmdNqUe2WUyN4Um86EEainLBNSAIaIZgZBvvRbLIB8B4ixvGaEYG0tRGAxmrfSmaTfWUTlJk92+nYyZn8WRdGp3Sqdn6OuGhHLNNrkAQ7iu0x3z22JkbU3bcNcoMmnT/bxTJIRlOXHQ/1dgRocuqx8pxyhJolg+gwI0vN3t+DNNtrzsskZ6sts6zAzFGOMY6IgP/tMkQzY5u0uOeFMzyzaJ0kwATAm1ypS3RsdXoJzcTHOmQeZrng9vb2QFJDAtotmZzP7V9BOT7Ri3Y6s/VmAyYFe+QvJwNNQQoZYL7PotEm7TpHCukQRqnuSF7vnea5ziyS77P2Nsdux2/AbA5jJWyfSUf0z3mtrNnyx6p9K13Yvx4TAu25QLWthfOdMuv7Zs8cewJwAzLXwRQ70965xlHEp0+fDqBnu3R7SAr8T4Jsh/+RLtcH2PgoYINj+pXkOe8mRQYp260zGh4r6u6okI929Zh4vjlYSN3/bTIjoY0I5LwZEZhh1oyUua44RhIBR+Qhi8m2NvuNNPwxcZ3t+PeGQW/4Y1YtuB87b/93YSJI4so5lOh/jHH0COccbyRiiwxwLhNXGqZvEYGzkIEZU2lg6M+nEoIW1c6iVr5cN6OzpD/HeL3+2BjZGGtHP/udejVpA25wpY5NJzvl5vRWmYGVbiyD+ubdRKARl7cUOpdMMDoStmGMTgY94excXl5+7H7P+ZE2yVlupJGBGbBskYBsiDMZi/7ttrG03VFJe8Ic+3aM42UER2B2RE4DR0cCsUmB+yjjtyLFOT/fMzYcZ+rEz7N58Z5kiwy0W+n+ivpcdntAkTfYPT8/v0qDZ2w5XsY4t6URgejAbAQdLv9sifMw8yS3++W3+AHaQFt6y2+pPzhgXdhnjaS0JUDqtyej03zuqWP+l5GBBppNPLG2vvs3R580qABR9GB2wGVzotMpcD10xqTH+GGkAU2nbxnxmwSs+oXOwk6cxxr42aE1nWeg7nNXnz1hzVip9x7y86vFROD6+vpo8ptExqk52p1NMk72CMmbswaxuRCIFtUaPEgG2KYxxhFAcZkghIB6rgDUZbc/BmoZtRyn43U72M6U7boclZHIrDI2tLcZ+XbfWdfU0eo5JVB5K7Gt2EE6it4qq2V2/DvrcCROB8cd9yEDzAqM8QN3296srXZxuaxlBEhOuIHPNp5bbiPEVROB6Oo7ADL3jP3erJj28K6E29vb8fnz5/H777/X5xeQrDT8PCVDsEf+EjLQiEBzArOJxnc6ldaIFSG4urp6ZXQsJ6BBPQL6fCpUzp05w5yXgc/vjeV5kjVn7TaxHSQ4jFibA2H/kQgReFfSymrjsBrPVta5gZSO0pMjoMRJyHEboxMa2xQnYcolGfD1Y/xwhKmbzi/nc40xDi06jzFeOVVne1IOU+stlUpnmfICRgY/AqDv9Wd9JDRcCjGZbfdbe+wcrVtaH+ezl+IM0D6f5OK9ZQeMSexr9rmPWRp54hxoZdsW2/8XcB29kYExjudcsDSYlbpn5IMOl8TFvsfX5mVCOMtM2OZi6x8/fjzs/uftgWkPgwL7qDHGYUml3ZHgZxeEfOQ4M9cz25i99sh/TAZmRGDmSCgrtt8+r6LndHZSm43ZMgNg5sd6WrSW4yknRp7jNrpGCNgOAzfXMJl6ZTqUqe2tAXaK2H04k72EgNmA9+DwV7JFBuioAk6zVLMBhzIjwUwVtrHjzmpuGHK5JIJebvD5zlSM8dpOvdGJjtHRUIuIohfTv15+YFRGMsDNZa6Pc6CR/kZ2/HmWWp3Zacad5J473d+TNMdnIsDo1M7OjtdltjJWG/NMBuLgbm9vj+7DT/2xc24k3HLmbcmDOMm2kGC0oMkZYma6bOM5J/ZAcpwnCj4+Ph7mD+vifLu9vT0iYM5gMCtAInB/f3/U/sz5Zv9s65uTgRUR2HLop5bP600KnIJ0ep3ltaUClksHF4kBcjBZptm1U3UGWYLiLBvQJrCjlibunzF+pJFTv9tuY9kiAuzL904Exjgmj6tlkpCtPNjmZ8XEYUYCohttwe8eJwLNKiLiNWxfi+4I7pQsNTAyISlg2Yx8SDhYds7hOmjmrsmAM2ckA03czkbYZlkTOo8c83/PvzexbZEQbBHWMdakiKSC2aM4+Xx2VoBkgOeOMQ7p+OwdMDbGDpzBMpY6mKPdPT8/H+rjXPj48eOrQJD2xqWwtizG7C7nQYjA/f39UfY2n5lBu76+Pjyoy7pxvqb+p6en8fDwcMiusJ9Wc2DLF6/kp8nAHiJwyiSanTsjFRRH2K0DZsww1/Oz28L0/Exs2H6lXg6my2MWgEZj0tMMwgTJ6SkSgl/tvGf1nIs0GDgsdiR7+oljMiuLtjDG69vbXFZ7UW/bZuowCeCxvGI3jLjayzrarmfkJte19eS8uCxikpx2ct8Ax8Bj0TCmOcJ8dqaB5bCv4jjG+PEfIw4O3ovMCIHHMu8z++d1dMRxRNzE+vnz5yPn3zIDJAQhmBmD/MNhHrLT/MjMLm0rnCPOKnlpgyR6jPEqyjfRjR2m30IQYyMfP348EAHfQpl+jD0zc8FAg34hmYA8e2C2ydC3ZbZ5Qbs4xXZ/igxsEQED4qlOoBEA12nZk/6mk801jQi0a52SdX0G9xxj1qJFJhbquEWqDJRcavCr6bxX3isYniKNMIZ4+UE4Hic7ZGZqvMbPvuIYGsxYFq8NMDRSwHoM/sxaBZAcbY8xXjkK1ptXIy+u2/YZwHPmgVFmyjQRYJ+4X1hvyp8tlbW+dh2NFDIy87ps2xNxLlnh7SxTFFllE1m2s0fc6JYn6vkf+kwOvEzAuTLbQU/7pM3YVrhZln++Fd0Z9JAMkKxmjoUAeBnMf+p1ff3jgUDX19dHTwukfsykUV/+MRH1enl5GZ8+fRrfv//5N8jMpsyyIrmOGETMacFsm8dNTiYDe4hAm6R7HNGMBOx9jTF/BCmdOTtwTxS4BQZ0xlybvr6+Pvp71Jxj8D21bpZhEjKLMmeRcRsb981q/LZ0txM7hzSnTnLIVya1ow72a0iEHb/bOCOtJhY8TkLXxpL1mggw3R2dvf7pqMK3LrWIPce5jOC2OZVKp8LsiEnEjNxTrDNJ2+pc93s7NzbAzIqBeysr+NayIgFNZhjhMWF2JI49JCCP101mgE/W4/6Bdp99+j5ZAdoEyUDLrLJdsWlH9RyrT58+vSIDcaa5NmU1IuBNsrE3R+W23cylECBmdNudOOn3RipmGeamQ8Nqj+neIPAkMvAzRGBPeas68nmro2w4ThHS4AL67siVjg0QYlxkpTlOwLbRzBzzltCgXBcdzGyHeX7fI3syJu3cMbbXJc8lZtAzUsbP3NTH+34ZndKmZo7K4z0bF+piIhASQhBPpOB6c34AxLcZkjAEyNo+F89Db0pMmx2hcd1+jz3MSBT7mMcbEfa17ItZnSbqBl9GWueUhr0cI+JipJF89gXXt8f4QfgS7YcI/Pbbb+O3334bX79+PVom+PDhw6t332LIDBUjXmcGuMnW7YresVOm9fPvf2OMVyn46HVzczOenp6OyHTIQNb9Z7cMsu7ZnORG24eHh6NMBK+3kCisgjb2ife35LPt82d88m4ysJcINIfZPu8pf4zX9w2bDDSDynuud4qfws6cObUmZNcx0pTntda9kY+BrGUOzDAdZdpwfR5JUK7LsdX4bBECtoXA/LNE8a+WU9qZd0bZdJbMDIxx7JTdz83+29heXV3VsSXocBMe50RAsDl7p1i9dBThHCIpoGNnW6mDoxQfY7aDSxYpI++pj5u9PLc9VrN5QrAMBszGnXU1539u26UeeTcONvxoJIh9wLnKfmZW4OvXr+O3334b//znPysZoI04S5Bd8rFdnz+Lhmk/xDeTgIeHh6M7WzjGmRc5N3YbW+A9/L5FkPPE5JqOn/sMHh8fx8PDw1Hmo2GAydr3798P+wT450Veqoj+7R8NU1azWRPElZycGfgZIrA3QnRZs7RRywp4LdSA1YCiARl1sW5NGqh6oPy7646+swltwCOD3CIFs37OubO+2ZLWtlk/vgcyQNkCezpi3t759PR0ZG+JrHi9HWAbQ/7G+rkJKedxh3N+90a/lOFdyZ4jXO5w6nKMHw7B0RsBzn3m/shvbDufH+AoKFmNBl4kCK3NHCcTApbt+ZhjLCf9zojwVPz6VbIC+ZbBGaMHYcYq2kvsJ448RCBk4B//+MeBDDDCtw3MbgOkHpwrud5EMudnPnGN39E8s7Nj/Dm+3hxI8t6IhfcLmAx46TeOOQ789vZ23N/f17nieU7JfoHff/99/P777+OPP/4Y9/f34+Hh4ZD14LxiX0eMJzz3FDkpM7CXBDSZOeNW9srp73mtwD4GtnLae9qTa/PO1DzBbFYe0700YpKTWSQ5IwIW1ps6CAwmApF2jOf686zOFimeS9pY7LFnRtjcEU+gsANjJExS0UgawdBEL6+AFMdwqz+dzpylNpkliC7MQvBWLerdCGlzniY/XLJYZQjiyNvcZrnN/kxIOdZNt/Sx+4fjdi5pGOnv7JfIDBMo7EMSL67/f/78+fDnO/wnPjt76hFdooPT775jZIYPnBN03nl8cL4HczP3nHJn2j96tTsIPCdMlqNryEVID28DZMaE7fB45njIwN3d3fjXv/51IAX39/cHwmOsaXawsp+9uPsfk4HWyDSU7z4+m6zOAHgZwE40jJDXjvF6J7SN3searnvFEfbWRGT9TIty2SG/bzl765y2uI2+xssnW20nwDawXen3HsjATJo900bo6BpYsByWN8YPO6Bj8XMOSCIa+aODCogS/JpY36Y3nWDOz1xim5xVIFGlAyV45pzoSaBujzZOPzGdPwsU2L7WZo8tyzUhoKOhg7DTWmXZziENK+1k2udcm3cGLjnmtL+fFcE7AZr9sb+CZY7AG8my/sQmjkfGh6RyNkar4MmZgxURMNGlXSVTkPZxOYQ6NAwnGbi/vz8iAiEDnC/uKy+pNXkzMkDF2MD2meVslbtaArDz9zVjvN7stwcktmSPA4xz33MuQZPvmaBO/TB6S3uje+rMebPx8SRzupT1tYna2mXgbqThPQHpGHNiSxuiBLycGRjjuJ+4b4BOdIxxBDZ0vtGHtwylTkc2MzLgMSYAtXpnwrINoCQxJimug31Km8v5LbvicZm1y/U3YrZH7CTSv+5rZnTOLTO7XWEw9WY6nsfyTkz1rX2NdLjOOKbYSvAlDs9R+CxQ5OeUO9vxb1z055SR85xta+W1bFfK4VxIn/B677GhrbpNJAOPj4+HJYK7u7vDMkF0zHUNu1cY+0vIgMFnZYAzpXIOr90iASYDzTBXRID1pY4M5gx0Wuf5WAPjGVtu183I1Bh9DcjEhZE/y/HamM+J8TYDmo3hFgmgeJzfExFogDFzQK1tJAQNLHKdQdfOOddkTB2dRUwI0p+29UZ8uWzlqILLEnws7BjHe1dmc7wRAUcv0Y/6mgzwPGZIWr2NnDSgnY1dE2dd+O5U8znt+BS73SItjQi03ygmmLMsS+ujZAa4zj9bMnM5+czNerQ3kmovLbNv6MDzeWvMV32SecvMX9rDJd8x1st1JCXJDjw8PBwtEXhJxXrtCWj/cjKw5cAoe1lKIwImAPwexsqO2NPQGWA7Cvc5ra0zAtCyFTNxRiPvW7qzTjqUdj7ZcECZm2DY5r2kYCWtve+FCDS74/E2FjNH2ICRIOA6Ii0tvkVac10jA1dXV0eg3IRgSRtlG19eXo7sKb85G8d2mAw8PT29alf0a/qYpEZC1O1kTB4I2gR59iHnhesxmWsZjvdEBiJbhGDP9Q6gVvZussT/oGB62uPqzIQzA404tjK2HDdte0YGaJcc69WthBEv4dFeElSxnXl33VwaoX3leJYDshnx4eHhKHvS9DKGOPBqeLcl/xEZaGkdX7P6bCBeEQGuw9h4DVZ7SYKvnenpSdNSau3+7Fzbyvc5rJcG7GudiqYYQBkBrogPr93TR27Hqrz3AKKRFYDumTwmAARLRwTNOQUonAloAM3znFVoIDhrU8tSjPHnPMmz0ukcTcw5B1s/MN1pQsE6DVZuP+cUwdsOgnWulhn2OhuW08a2gfE5ZEYEeGwls6VVX0uSxRT2w8PDYQy/f3/9z7Dsp+bQvVOftmJSYbLnZwq066+vr189u8Btsi58NTLLudD0yx00zuTattj2bAgk+WTmI210fzUxnns82vGV/BQZsKyIQDNcv8/AJwPs5YFZ/e6MVSfwt73ZgS2dqetssrXv1NlEwHXSocwAigBnBt/OWTnuUxlmK+/cgLoC0GabkZatsSMk06cT8mQ0qFCHbNZydqyRXANW9LQ9r/qC7UjZHJ9G0N2mBtyzOee+zjm8b5ov6+Q+z3v0cD80cmRnxbZ7XBsRmAHyr5aVze4hAWOss5fMFtlhZuf+w8PDIQj59u3bq6dKNhJAyZj5wVeNzLT55TS+5wAfe+2gzGNtMuA9ITNsj34mS172ss3QXuPoudzBjEd7vsAYr5cCGk41YnyqnPzQIYsNoDk+RwrNoNtgnkIEWKejZjtSHxtjTghaFqBN0BkpYBmryeu05xg/1qKs50rYxrBXlpnjli1Daoa4Mrj3QgQiKxJAWWWdKA2wMlZjHKfoGVm3yN5/6ENA4nhvzTWTz9lcJPA6Op6dP4uq3ccGU7Yh5Zgw+8X20TlwB7ltmhmQRsKj98z2edx98l7sd/Wi0GbYr1sbr8f40Rd+uE/6N1kwOttcZ33z3vqQGD8jEiZoJqxj/PivDd7S56xUbGV214iJgB+iZEJMcuNbZZllijgz4QyBMyazuZh+854393kbjz1yMhmYDZrPNQlorL2RARquG+i6PLEJOp4kzUEaNO10PWHcllbf7FbIBlLsSwMcHYvXh2ZyigHMHMuMFMwMb4sQrOzkrWRFQm0nIVPNhu1EAwi+/9/jxsjMesVOGN043Wn93ZZmhx6fdi5BepZpMuA3YG/zu7WBEZqjrrSdQOj5QEAlyNv5eQ6zjJl92CG+JzK7lwhwbPNOp0sywHId5ZPocm09fcs/4mm24HJpQ9aJx6l3HvDV2uPvziY3IjDG8VMEibfGb95Smf9X4BxnABA900ex80bY7ei99MdxzJykryLh/RVy0hMI7UCa45g5+hkZmEUIHninSVv9ARle14wxa16NGHiiuG0raW1e3QWRNjSjpUNJefncgIlstEU1ZtarNrTPW99nekWfc8vMuXss2hgbQHMuI9YcswMf4/Wf3TRAu76+PkQh7YEubfMfPzeg93uzY88NS3PCBi63swH0GK//VZMRGG/Nct1OweZzxEs0JB/ua+rqDOKq7eckslskwJ/z3dlK20jOb6SJmMGU+NXV1ZG9c3xokxzHRj78PAvOjZSfOvIeZ2sCMbN924v3GxBTxxivnriZf2cMOWA5IUeuh087zNLKysYsK/9JfKIv9Lz9WVv9qb8wtjQi0Jx8A2I3uBkmCUGOkV2RSVHIeFOPAYcko4GGU2v+ndJYct5X7bMTJwu1bq6P/ZLPdPxOOVlWBGfvb+6XGVk5l5wKqBQ73sgWGTD5a+uZrLcBdpsrnlczcrMCCH9eObvmkNln1mNFBny7I1POzgyw3tmYWc8QgK152mQ1v84pDVtbfxDrbINxZjyHMgtSPBa2Ba6JR0fXEeftdliPHIvDty45x3jGNsaGiENtLZ96cL6RnOZpgvn3RTp+L+UmoFzh9cp2Wz+0MYqvin9oATL77FQie/J/EzRnl8//CRlYAbPBy42fMfyUQ+c6xo/ntufa6OVBnIG2pU0Y6+1+mh034zOhMCjzu++lze9tHWsPYP5VjPM9yApMWzvd77brnMco5vv3H3/IknQqAYZ7AhwB51iAzSR5S/89RMDjt8rw8RyCPsGURNsOyLcEs+wZEWiZAd89k7oIvO5HBxAm4FtiR3TOzED0abZgTB1jTgRih7ST9FMjk5EZptkuIh7zWXBnp9dIdNqe3/nEQUb3bNuM2NhuGTzSBvnExRCB/OHSGD8IbZ434vpWZHVGyKkXyS8JCG//XZGC/8ROfyozMGM9MyM1GWjXtM60k58tEeS3Rla2InpusCO4eII1YZ1kzXmxXTFAGiWl6c3J6g1Tqb+l9FKe2T1lRoB8DnVj/xJwZ9f52LkAda8TbdflfQYyY4y6eTCEgA4+INNS52P0NPseZ9/aGD1mJLVllWZtbPc7ex5zXwT1Z6QYG3D6OssEBDz2Z35rxHY2N5vQ/jhP2f73Jo2MzgjijAg44+R5bQdMmQU0DfOCWTnn6qo/C8OOOdeREM72lDRSSsLtvsk51J2fWbb3C/APmRiZGzPbPHP/zH7j9ZFmh84Y55hJQdr0M1j7H99NsEUCGvNcAZudorMAjV25DJIIOmMOJsHYhOBUMQHg5pRInltNkGM7Zmkd9pOJkoHaAGcWH2EfXF39eCIhjYiAwclvvRsxJPtnuTMb+tUyA80VEWjXtign7+ynXMesE1OP3IDF61lfA/z8vkdXj9tstzLHhY6b88PXtD7xnT8G8mRKGFHe3Ny8An/b/tPT0+HPkkgG2vdVH62isvcsM0dvUuDlJf/zpPdSRVbZgb14xGUD6208aG3L8ehJEs32t+cUpBySHs9t2rjro722LB43D7LPuNTFz+2WQ84/XtPawjZxvG5ubsbT09OrcUi2JO1oQeNeOZkMNGa1Yq0zljZja3TULSJtQuDz9QY7MiwSAWYF7LjoOE00ci7XjnMNBz9AyIlL/Xm/qyOWGWHKu3dXkxxYPEnTB/k8c+6u27/tcarnkpmDnaUk81vEWa18Zz+nLAIAgfnTp0+Hf3zjX5zaUW8R5i2nZhAc4/V/sTcn2uYv6/G42/E7EzAjMw18CcLNZqkDdQ6JJQDOoip+Zn87gntv0vq0RcwcEzu1tmQzI6CNCNBeZqS+BQs57uyAnb/rDibZpvLo7JbRaZkESyNVzFA1Ww5xb3OpPbyI88zH/d8XKavZnolUbJyBG4V3e/DaU+Sk/yZoys6ApAFBrtuSPZOyRddMVaWM1O8lhzGOlwis4yxDwc+sKwSDTC2DHcbWNpBZfxKSxoDdTyYGniizPrPRkAiwrCYkX419U5rhvrXMbJXH2pqj09mMnCPsK7YzwJL/hv/y5cv48uVLXYP0I1Gp86y+fG6gTpvPebxNzA9Kib52NI0YNqLUXnvGIvXxboJkC1jPHqLpeTJzWARf9vmKOJ9TmpOfOb9VhNv2C9B2TATSP3Z2Yxz/IRczR8wQOPvT5iDbxzn48vJyRBRyztPT09FmPepuwtNsd9ZHJiUmFGxf+iHPYMiDmfi3ynT2fnhTe/LhKrO18rEU+7+fkd1kwKmSvWRgr8wacOpk9KSmATt9HnF6xc6QRsEIhym2/J7PHz58ONyDHkO3sbaIr0V+1nfWJ7M+bOBuEuAIa8byVzq99/SrbdYR0RZY2NExmh/jByhlzfH29nZ8+fJlfP36dfzjH/8YX79+PWxKSn/xT1za40c5wU24ZhE7z3F6kmDWiIQJK+0m/cDzZ9F17KnpwjrZ57l9y/bYnjdAYUaM56Us62g9ZkSA7+cSk7SWdWnYyz51+pz9YEdkIsAnEI4xjjbBOuNEG40OceycI7EzO/M2Jz3eKZdj1vYYeNxynMsnXkqZ4bIj+Th3vvtRwp5rPK/9H8KKJEVMqqgjn+T5s9mBk8iAwagBKRswYzCRVQaA0WfqWokjNAII0/c8f9VRBmSKiQCzAwTvTJjr6+tXxMBgs7ed1sMPzhjj9VhxPNzGGA+XTHj+jEBRGvA2ORewzkhAA9OWYm23ZoX4MSLK+Z8+fTpkA0IE/vnPf47ffvttfP78edzc3Bxs9Onpadzf37+a4M1Z0VZIENhGR3gN5Pk41Jlzbq8WfdNeaPNt3jdHPMaxw5vZzvPz82EZIdk2OwXW5c/MtLEv2ppts/9zyWwsmrPg+NF2s2k1v5PEOkOUvuHTB3Pt8/Pz0QbY1o928A44gn/R10TNwRX3ERhz2ebZkgP7cbYngE/9pM9h2/jdmQGTAb7n3D1ZgfSN/QM/c8k6wrlBW2Af75G/ZJmgMdXGzqxcyoyxOOq0k5k5NUoAx+eEORkctzqqpXGcMRjjx5IDiUDOcWaBYNn6qEVl/M2Eo+17MCHbGosAO5dO9ogdDo/z/VSW+leL+7sRgXYrIB86wrE0OGUcbm9vx+3t7YEMhAj8z//8z/jHP/4xPn/+fACfRAwE5Tjp1GEwMOPnb3QSY/wgDbZ7gni7NYxlsU+oQ3QzYWx2RnBN3XZCHI/oyM8k2myPI6SZsG62dTVXnZU5hzQiMEbfc2WbtsNz2yh05sGSx8fHozqT9k9ZsUMuF1AnBhm2zbTNJMLtMUlMuYym92YG8jvnNB/0Zd+QPmqbBLMEQHLQ9hDwr5uZFSAZaCSpzeuMk8lbAs20kf0zm5NNfooMUFkPsjfHNTFrYWpjpryPNRDYm3WwrNbGHZ1xMjodQ+bGc/K5kQWLCYbFEz/OO+c2ouQJkjYxqmOWgJP0Z+ScTn8ldKYzImAANRkwYPAulCwNfP78eXz+/Hl8/fp1/Pbbb+Of//zn+P/+v/9v/POf/xxfvnw57I5/enoaf/zxx2FCt39RY30Z70YODCAEmdkrQmeezwEX9p2jOBILkz07nHbNLCpvBGgmXqfeEtp4ruN+H7e5Oau3FJM8Yu0MJ+MU+EjdHBvjeO8EidcYPwhoHrNLfHh6ejp6PC/JBTHYTj/HrXfDbdYZEuAlBRO6FRlopKFlBmZz23PQRNrkgK+2nDBbVvF8tB36O8/Nxkrax88sFfz0Xxg3YDVJ2BJ2NBswxutd65GWAmpAlPJdX0tRrcpqsuXMG1naE8E0gpHjroNp/aSIrPus32LQTi3N9Fr1xwqo3wspWJEAggkdv+83JtCM8ePedwJWgJd7BUgG/ud//ueIDCQF+/378V/FjnEcnRDsnFZke2aOgu3MmNv28+S3iJ23+9N1eM4xEnc5JgQrJ84yeH67O8LlWE86GfaLcSjRW645d2bA0aHnXMtukAz4dlanvXmMZT48PByNVZzc1hMNxxiH/R/Rt+HqFlnNvMq5DlLs5NPuGUnKOb5zwHN7FVXPCC3fuV8gywXMDPA6kvwsZ6ed9Fe0A+qXzbchBCxnZi8zOZkMEICopEkAFZgpkwbZAXJyUtqEsIE5gk9ZTIHPDNisk3U0ZsYBoiE2AjBLX+0VttvGStY8A262r01OMvo9wOfxnU2kxv7PIStC4AxAAJTHHCkzHZfvzgx8+fJl/Pbbb+Mf//jHgQx8/fp13NzcHMD2+vrPXdJ3d3cH0jHG6+iNbSDweXNYhNfk3NQ7xnFEFRDxhjLbN1Ot3tDGsabDNvA10kBH7utWt3G1SMtjTjxiH/GZBwFV/iGP++SUTONfKcaT5rTa+TMywDb7NrX0n/9wJ0Tg06dPh+c+0O6My+m/fKfTazbF9vmVMmL3bWnJG3wbqZ3ZcfNpxEj/xnJdB205tst9A/6HwxbstYyZ22VSHTJAQuClgj1yEhkgE1w5vpk0J8yIlinKPdFIvrfGMtWSzuLk8URiOWShs7ax/QRWG3faPSvHALkno+Ky2YctM2BCQCBgX5B1ur5muK38lfGdixDMiMBsWYAPByLwsb/sIPgsgbxyO2EIQTYRxinf39+P5+fncXd39yr9yoneSIB1b4Qgbb++vj5kI66urg6gwd3P7ZZD1+U6Q6SiH69llGRCwD6cndd2Y/vFv4FtO+OJVWyP+6kBd4hAu6/9LaVlBqh3+p24YyKQZYJgRfrLzsUOiucmAg2pbHtpaKcsz87YNmtSQD+TucAsZsuENGJqAmoM5pLoqWKiQlllDfxymenz2OoWnjtzGHK/5b+anHQ3gVlYjkdBs6VVI/ib165nsmrUFgPKYKSTHDGk41onGmRMgtrtZ43xrvRaEQGDG/WKMTC1RHGZs3ZuZRW2xMTiFEb6q6URgUYG+JelzhZw/0YAhuPx4cOHw22DzA60V8jA8/PzURZiBfysJ8SDpMWRgzMAuT5EIO1ztE0Qiy50Luwz2nvKJ/hzTq+WCxh9O83qdVcSAd7u5U2viY6igwkU9Sb5eHx8PCJLJAXnEOOH7SKO2mL7pv3SqabtIWPux+vr66Pb5dKv2UxIZ0QikGtTF4kCXyaye3HTfeNr7Hxpc9Epdpd2eQ7xLgm2w9kFvii0dy9nOfpP9oX91kiD95GlD0ncmUHZE1xGTiIDZHWt8eyA5tS3HBPFzmTlTPk+q4vHDLaeaEwXuW6n7MxozZRbOspRkZlka2Njojb86PCfSOvnRvJS7ymE4VzSgMYZnbbu6PGNcAxTPjMJbYnBmQU6x3w2UaGTdaRnMuCyIwHrtCdRRxyA224Aog0bAN0u9lHaw+iGetnOOQd8nzZv5XIGgw5sZZskUs5qRLeQpBCPDx8+HOo8l3C+c267rRz3Zu+5pqWySajsfGgTLy8vhwwTdSPhcqbXjtSEYOb4W4bAdmYctP2ZHBtfr66ujm75ZpYr53P/iHUzdqyIfBOTgdSbORp7ZLDoLC79Mjd9Rj8G2luymww4ZUrQdGcbkDww7oitjnIZq+s5YVaM2scCWowmHC37/MYSc52N3WvOnpgENDqaU4QEapVh4fjsrecUvX5W/18ljhxWTj+yh1TRTuwgnbL0/cbPz8/j/v5+PDw8HEW5nMiJvEI2SAL4aGPOQ9pvxFmn1ZyIUzDwOAprEZHB1/PPGQJ/5u+NEGw5rNkcb3p7U2hS0TOAP5fMHB0/t7nmvjDZIrmaLRON0aN7kkpuXm5EgHjPttiuZm0fY/7Y4tZW4h/LnmUK0sYQv5YdyNxkG4j5zHLw4T/GnPxmIsdx9LIgNwXSv3g8jEHZ9/FLMgNOmyY1FWNhuo9gYufEgWsZAUsjEu2clbhDmgE29m1i0K43OzVwhnEygmL5TA+NMV6x0FOkkbD2mUSA7H3LiZvI0Zjb9/dCCDxZOE523MwKuV+aHXL8bWeZCyEBf/zxx1Fkfn9/P37//fdxd3d3WL9PPSGnibBJBLynIXXPHGLaQ3EUxmijzVXLFrD7c9pMQL66ev2UQva5HZQB3Pr4d4Kns3dMr+a86GKCk70d55LZOOzFRgYaviXOe0ZIzui4iOlOu7s+O7hTAkASWhMIZxJ4nctoZMh3oHB+0ZGmfGcHiHs5n7v5s6xkIkCsabpFP5Kq1EvSYd9gHGK9xI+9spsMBHxub2+P1ijGGEcglndO+KQz7Kxmstd4fM7WOkkbBIK/maTXZ1yGI33r2waIE4x9xH+kctpzJi3C8vF2Td63sgMuz8fcH1v6rpzLr5RGBDxhG8GLbE2qFcl7fHw8OP3n5+fx8PBwcIIPDw/jX//617i7uzs8jtjZgTF+rAsyxc1oKcR8pXezjYw/7WdG5vg77cpgN0a/rSwvRj6NCLSNhHQ+JF0kQdbdDqRFTy17lwiRep17zwA/bzn/iCPhMcar29xmD8LJ9XTGjqptMytbaWPT2tNwrwUcJt6sj+ez7zgnSTJzjclAyieJ8PltidE254wGg0sTXPbBjGjHL5GsWJgZ4LzckpPIQEtNpvI0ImmNNMgKM4L5KyNH1uG06EyYEpplBPYKJ5+zIimfzsgMMZHQjB27LtYZnT1hG1FyOZyw7bo2yWcSff/Kcf0rxE5g9n0WcbBNPifHKBnLx8fH8ccffxxSqQ8PDwdH+fz8PB4fH8fd3d34/fffx/39/WF3PAEnk7ktz/EctpUgTp0cGTk6nO38p0NoRN3gPMY4Wo9vYrtinSYAjQhwL4LtmHoZsJ3azStluh3pJ5L1t5TZOJu4zhxk9E+/+jY33lHiJYIxfvTznnmd+oh/e4lDrmN2wvZH52bHn/NMBEg2aPN8uFfOMzZQR2cGGiHg7X0tGzkT+0eKx74RgBlmPD8/H/nmLTl5mYAPYUnnm9Hx1oY08GcIQDP+yH/icNpEahmBLWfqVFqO8T5dOlqCeIRA5AnQNn80nUwEOKkbePt6Gjsn7lbmYPWbj58rKzBG/99yT9JmC83p+1ibqCECd3d3B5t/eHg4mjc87+Hh4UAGZuuTtlGTxlkEOcbrv13lu1+2HUZNDdjdP22phDqbaJNEm4gYfJuzZjksi+PjvQDOruT7y8vL0Xh6g+W5xBFlhPg6i5iDzbG3lhWgY6RjDgaReKVcioMvj4U/z2yCtpy2zAKUmYM1ObCemQu8eyblcTOho3GTzVl2oO05YXs4l5qsMufRgXcPzfRi/+0JjMc4gQxwvZKZgTisVNoc5KnSGN/snFMJRjqGqUaX2/QguaHQIfO2LaZ7YgA2duqUfjPozJhgfmMklQlvZ55z6UxcfiMEPNeTuGUtVsTjnJJ+5SRydiDOpoHqGK8BuZEHRpHpn2/fvo37+/t6CyDPd/oyQiA2mNmGco7JAq9xXSYFvJZOmBFZe7mfHMHb7q1fbJfOw+PHOmYEaXabYXueBMeE8zP9mL/f5eattxbamfcd0R5bfzArwKfh8dbM2YNwSAhmDsqYwOg++pGI5jPHnLjK8jgmfq3I/JZ4TuRz+i57I2bE1voxu+g7h4gzLZDY6kuOXz7ndmASY2I252wj7Cs5aZmAEyiT8/r6x/9Mc3DJTCgzx+7fZh3HMptD3SuzqGuMnoZ3Ha2TySxtXEnXtDRu9DAzH2O8+kwd7cBDBLwRaCVmvS1DYEPNu8nFbMwacXhLaelhT1I7q9lnrg3yt4wRI7Hcs85IdGZvjoxdPtfac02LFFI3wde357Vd5LOd5MwAbsmq79zelhHIb6k7wO+yOYY5N+1uZaYdfKBU3gneLZKm3ZxD2F4SAhM2Lx/RgTArlL0pzEIxgGC91qOJiecYP55NwM+pn0/Jc/Q9y+o4e9Xm05bDdQBk3IvP4mfbsfvD2aW0y8t6xJqZng2rmUVg+xnYMENA3dq825KfIgNpcIwxRuc0CBXc66xX53nyj7F/x78Hgawt1zaA5mAQbDkhKTyXhCjARn1NfnyNwZ910HFzPYvHeC6l9W8rb0YIeI3bYTk3ERjj9QbCFelcTf6ZE+K5JFUhyra/RkQi7NOrq6ujx7ryHNbDaMkRMsnA7OWsQOojEbV9uk3Nlps0ELZ9sR6TT0dhdpAkQZzDucYZThIpzuuALm3nHML+bQ+XGuOH02RfjDGO+sEZKI59ymop5VVkSzuPriQpOUan2aL6CMnwy8vLEZEgwQshYDY151P/LQJLImKS3cisbd1kYLY/xb6G32eYasJsMpR34hH7upG0LTmZDIRhk40YbNmJcWx7I4s9A0hpjpPSNlsx2jBIR0wE+DjMq6vX/+PeruOL4GLHvkecSmuRuo+1iIvC81oZBOtWxgzw2/G97fwVcioR8eTi5J8RizYOTFfbmbayrG/08NIPQZMbEqlLALTtDXAZHt+mJyPkVVTW7HNr7Flv5rOJfQA6jo+3B3Je0fkxFU0y4MDGmbeQK7f1HDKzvejJ8WlkIWTSD3BqpKnVaVyMcFyZEWCf0z/MbruLE6dt0yFz2cyYmqxY67NVENPI5kw8JxxQjjFeZQVMAPidy360dfsEZ0joU0ygM+4ss+m7JSdtIOQjSam4IwQ2eBUhUNiIPVkElpv63IEmASYE1NdGz85P1BAJWOxhXQZGA52NduXcedwEiwbCqMvXzHSkfk2n5jDa9wh/b6TpLYWAPiOuefexfPaEbpHNrN8Ilnagvtc9dheba2W1z+3paSYAM1LHdrK9dDSZJ47uGImu7GUlra9n4o2AeRE3/CIZMBHgXQ/Ospj8nENmYzHG8X8vNMKStpMU8hHOxAcSYI5Bi2pzTV7MLtgGo+ds7rFu4xbb2LIIfBpiE5NCzgET3i07bbozI+VH0nMZnWPHOZtzMibX19dT8tMyaGlH20/DMdsrJ28gJAtJAwyWK6f+VzsEGokNx+C2IgSt81YZDbPhJjOHaja4Ank79Vk9s2NbZZjd7yEEvG5GArb0e0tpEaxfJgd7XgY1O1zfZcPlouhl4HNmyVFOAwWSzJYdsJj0ODJu4N0inhZ1zMiq6264wSDC5+e4xzDfma1M/Wx7HD8f1hTw5hh5bwlf5xJH6gZ//pZ3EoG8fH/9rK855sZISvqZ40ZCcH19PX0iH6Xt2WAdbe6xzSyPyxYhPW532toI/Sx49RxgH48xDvshTPjdr9xbxzZyvmfcfLyNUzLWtolZO1ZyMhkgM21MOsrwfSYzoBqjO1kDXrvOn9sywSwC8gARnHMsulF/6trYGBlvazMnrHd0r9b+M4FW/WwiwDIaUTOJ4GczUtbNzx6LLTLzq6WBUQOUmY1EfB5tkUtIJk2t3+i0Vgze53o9MC+uobuOpnsDEOoxi+Zm829mNy6/zTkTAl7j8t3vLtfn8xzfUdCyGnG2zkBsRaG/Uhp5oniTZYQYMgs2WEfr0zYvWj0N/xjt8iE4rDO2y3GwmNA0Up9rgzfRiXslGhFif858mAkS5zyXYdoyiLMCscNc73GiLzEZ8Fzm3gFj8c/IbjLw+fPncXt7e8Q8U3HbMDfLCsxYqYVlNWlO0N9bRGh2bfbGshjR5fcPH378+UMjAdYhoEuDpv6coFkbJjHIue4vZmDyfa8RtD5tjn81TtS/OUz2oXV9a6HTYTqPa6xcKmrOZSbs/zFGnQtjrCdoIye5xpmDl5eXKSHIb43MOPImsATQSGiaA2hgQ/2aszGAZS7kPQAYQPP5FEeJrV8bmDPKdTo3Nhr7zPyOTjc3N+Pp6elsZKBFl7RLj9UYx85ljNfBhoMS9jPH3FmRRkQcuZrcps5mj7m+BXkktdQ95MJ2MMuM8ZZKP08h9TgT5PnPrABt5vv37+Px8XGMMcbT09PRXXaeN8SfHGMW5Pn5x63pM0KQ45lfudXQhMHLLXv9wklkIP+LPcY4erDOKgXExhKImqJ0GmRuNFwb26w+ThoDvEmCIw3qZVAx0WmOzobt6M56MyPAyTpzxpxQTCs3J9BIlb/PiICPtX7JsS1itrKNXy2r3b4kBYwWm03PInr3tcX2QYAg+DiyH+N4rDhnMua0p1lUYuAhSEW3Ztd2PNGBUZcJS7Mh6hPCkvrS/8xUNNvJnLA+dBZtvs/S/o38c0yi083Nzfj8+fM0KPnVYnzicQtJDc9pBKCV5UwNX4yI98xljj3tJc5zjGNb8r4tYzLnXbvNttmF76Txshnr8n/vtL0xnA/Pz88HAjDGGA8PD68IA/s3ZfA7+5lzvAWWnE/Nl/LdfbvXdneTga9fvx7W5aLw4+NjdXxUpjXCRGDl8NpvdIA8d4zXtx+S1bZNHb6+iR2+HawN0eexLY0MEFRNBNh+s2GXw6gxdy/wft8VU2wO3+fNGGZjwfzN4/XW0py/N6DxNrO9QNScfLMF2yrBIHW1neAzAHBUl7EOKXMKnOnVRFb5ztRkixgbIDFj1RxVfnM/2EY+fPjwak25OXyWwffUY+LsSMzg3sTXMlPBNr+1cAxmeEUSQOdrMtDGpH1vc5jj1oKOld4mjI+Pj6+yS7w1MvOF7TUBYLnMPKS8HJ/9F4EJTsbcfwTGu1Xi+GMP+ZfDkALPX/dFymGWg2OUNmduNBz2Z2OCMyKnkNjdZODLly8HZ5qJwc0aUYSA0qKHlYOZKe5I1uLIlESAg5DPYxyDcitvJrOsgMGkgf4s2mS9JgJMf3lCRq6urg4bWHyMyxrs41mfNhJiaRGViQoZ9BbI/2pxVigTm1GgHxJiIdhy/dPj7ePN7ukMHYEY1OzkOPmpJ6ObttHX95fHERs4WCfbQeAd48ejemfOoZGIZldtbNLXdkjWi9KIAB+QxoxAzl+NjQnBucgAdbK4L72rv9kfM04kgq18B0ye422sPReoq8lzjhPnmGlmAOdyYouz3/2MDZIhjm/6KctAnkd+HsUYP7ICY4xDQOz6beueqw4wuf+OTxclwWtiEs/vjeCvZDcZuL29PaT3onxjYxwsAldjpm4UxQC4ciR0QI0IEHxJDpqc4gRTJwe1Of7UbTJA4yQAEngMiC6D1zbAYhqYx1gv2z5joa39sxcBhPrNooi3kEbGWgp5BboEtFnaPd/jQFdOsL18DoGac8428OHDjyfs3d7eHt0CHDKQpw+yPhIb71HxmNGxtHFl+r2Bfst8ed43G/McY/802/OykG/fdADSMnDsuziDc0tzrhTud+DcnuHvHmxd6WCZkWJeFxu7uvrxT63RjzjJKDpjEGfZCDTtKfbeImTaCHHQhNjzivp4/pN8sIwEwqyX/cgALfsFjJ/u99b/zI7k8y8lA9kv0J5a1V7MCOyJ/ilb6eSZQRooWzaA0deMxW7pwInmQbbT8b/NsX6neahLSzO5fNZpw9oSj8veJQHqM5v4OYf908D8rcQRtyMPkiyPDx0gx5zOhxM+5VNYhpcLmu3NouOU4euZ3eAT9ujQGlCzTI63iT7PIeFvY+w+NFAbqNgmSq4j0WhtN5lrL46NnUYLXqwH39+DzOZtImXaqc+JeHxc/sqJrPpihQkuf4w/N95lTExmOIYkAi24csbASwS0nZTD1LyXDb99+3a0OY/COmZ/B+2M+AwfU799kvuTc4Gkli/uO2sZkS056QmEVMiVmxWl0/Y4/1V0OkY3vgag/s0OIMf4+8xgf0Zcrnem8vMYx481jlNpuru85rQiLy8v0z9WsdPamtTtGuqzuj5tMak5h3hc/FvLGozxOjsV8STkb06dk+w5Gm6TOux+RggcabS9EPzc6vYrYOssRHR0fzQ7yrVM+VKiQ1uOaFGuy/cxZgAJ5OwTz7fWByY4q7E9txAf2J9jHN/NMpv7xtlV+ZHYx+w82m1kCx8aOY6DNVGn425ZAZMB+qLmEBsZ4Fxy/Sw/7/y3Ub74B1BtvX5G+vk953kM95Arzi/2617ZTQa4GY0M3+mVlhHYO6FsHGMcP5FtZlyrTpxJ6+y9us4mlcGrkQLvyjUgMspiuTMjpT5h1+5HE41TxBHkrAw7s/cknkiridUcjz9TOP4GFJ/HFCSv5fhnXNv48xoTTDpJputbH7TIzefP5lGLSkl8aAN2GHbEfKaGy3a/p45GrkmCmNKlk/A4zN6tH29Jey/ijArb6MxA+oCBW+vnRubaWLdjTUzaqDc/x3cY4/hqdwLZzmdkIO8RkgxnDNy3LDOb51Pew8PD+OOPPw6v+/v7I0Lw9PRUM05tTq5khltud3SnzqvMW5PdZICd5Vs2vFtz71IAz51FCC3KGGPuzGd1MQo3iK0YV3Sgjv7M81d6OFVrAuB0usHZLzvqtuxhInB9fbwnocmsL5pe/I3tafIeoiw7qAh1d7+TmNr58p3gRULACWrQSTSU8ct7s++2JGF9A/jtbgJGvpYtYHd7Z45iRtxnEXebQ61dtn1HiO35AbN6TU4MoMa4/O3vOYVEknON2JS57fVwZxHYbjsTkqhVn0WIWW3uz+zFRIbjzXGdZQW4IdT94ayA92BlHuahPSaAmS8Z+9vb28Nmw+fnPzcPPjw8jLu7u/Gvf/1r/Pvf/x6///77+OOPP8bDw8Phvx8cpa98TPrfx3gdybDLapkBE5Et2U0GUhHXR1paxA6Ujdkqf29EyUyA66BBc2LkOyPv5jxjWNGJ+qX8GXFJOs2kYGtwDaLUMeXy+GxdyZ+dYViJyQP7gn3SrkkbV4ThnGLHPItUYyPs36ur4/v/HcG0aNWbEQnEYxz/Ic7Ly8vRJj5mdlhuIyq0t7Qldwo8Pj4efuf6ZvvL4pYmj8xIx8y+G8mytHNoP42A0en7uRDOxtiZsY2e2zlmJ+C/fX54eJgb2C+W1p9ek46QEIxx7CRMCGbBF52r+7FFpGOMV7Y7C4xMwJr+bS5x6SuOnPt9TOq8ebDhq7MH8WkPDw/j/v5+3N3dHZ6vw6cGZpng7u5u/P777+Pf//73+Pe//z3u7u4OGQL+RfQsO2sbTPnsC5Pj6J5jrZxVNmIlu8lAOoBrJSsyQIfbHBKNaRWphI3ZAbbzHXUR3McYR7cKGeRaOstO0Gx2psNq8tDBRjjQs0Hf62RnxGMmbUli1uY9Mju/sdm3khmLdlqYwNIIwBivH2DF3xsxGKMDr51Qyn55+fEHJmMcPyejtSvjFUB7fHw8inoIkO0fDNvOY+pJXUyc2RY7DgJcs92Z/bNeOwU/GIZ7BNI/jpDaXibX73kdx/Dw8HC0PnwOSVuCXWyD09y0I2f/SIj4W5unqcdONvbJOwJ4nTGVWOI5R9t09ExiTLLH/5OIPrETz6ek6TP+kTZn49dubm7G3d3duL29Hbe3t9PNuN+/fz8iDVkquLu7OxCBZAeC9TPsb/PFfZrzPSc8hqtAdY/sJgOzjRLp9NnEZ8TpNBUbYpmxSpKDlYPixEh5Afkcd6RHfVr9Le3SJiO/k4Xm84w1z6Iw12cdHOHZOFo9jr5aim+PmJW26MsE462FRMy34ORlIjbGfGmmOa0IQW+M11EqJ2scdI4xSxQhEFhcLzMAKc+/mRTwtxmImBS1CDx9S1CmeFd/+pd1tkiIRMB/P9z+XyDtI768vPz4K1/W7fE2eR9j1HXnt5SsV8dG6fzGeL1niXbnwGSGEWP0Rw1Hgpse62av1MWY6Mg9nxtRy9iT+L28vBxuMQxpZgBGomGyy7Y03/T4+Hio5/7+/sjObm5uXs0lksT7+/txf3//ar8AbdnOewsPZwGh55Hb1jB/L67vJgNJfzAFwg2FrHhPVqB9X6W1Ux6/z8QEYOaMZs53lpZdCR18QImTJrqk3L3O1842aWDWRUY8M4i0ywZKwjIT/sZ6x3j95CtGie9FSAQSVWRcAhj5TNtpa9Oz6DZl0ily/ZXA16JxR9Ikj2O8Xnpq0QXB0A6Ddc6cwx6Aav3gyHp1/SwjkLVhkh9mBRil+UEw7GPqYWJnx8f+9ZIO6z7n5kHOJ5PJCLHRwVLOm2UGXMYWJrFvZ2PN34x9dtS89c9E0Juh+ZvbsJcMzNpH2/afWfmPlLgnIVmFx8fHV7cypk8dyVsHk23bZoSZgdm4sK9OxeDdZODu7u6I+bTNEYyAc2yM9dPueN4Yx+ugY/QdqI6u3bmeHBFHf+781LuaECYW/s7sgzMZZMCzZwG0jIejp9VE2AvoM7Lj7wSI1i8Ep/QFbaNFuW8tAXOzbDvkgE/OYVTa7CTvjj5JBJxqdao+xywmkhEDQSMCsRHbcosSt8gj9WnzhqBngtvmaCM0tnkTMT4/IQ9U8l0D6ce0x5mcFmWZ2DDaSp/wccnnEBJJbgzMbz53jNdZSjoKZmcpHhcvi7EsY56XDWY4QULq9fpGBjwXiaHGMGcdZstDTa9ZNoo2mDpcD/eVNPKRclt/N+dPEsprZ/7KbWiEfC8p2E0Gwn4aEdhq+Ez2ON0A9IwU7CmPgJDvLU0YaeyqgVX0aNfTeLaiLpfHctjW9Hmrz1FA6xeCr6OpHGd/RchIbYQGGYPQnojzV0scRQgYyUEi0kQEEU9QZ2P4znFh9ob9PAMrA2HqZpaBx2fjRSKwIm3UZS8BaMLfVktf7Be+s74cswPyPgGnbrlXIOSHUT3HL+PUxpaEIuelP31nyFsLx6kReOrcAokxxisCsJekN+I5w3cutc30bJH77J8EWQ/tYYYlzbb9mW31+fYptJ+GtyYEXGpzOygp0wGDX41grzI3LSvQgu2VnLRnYPa/0C1ataIUO78WxTeG08pdAZGjATO95txoQHsi7Z+Rxu5mxCTSnECu2yIauaYx6hapWUeDJieUI1BGuUxXn5MQxDZDCEiEOMYzkLSd2MF7bJghY18ZDBnJ5pyZEDxc5mzS85oZMW3XNrts+syO8d3g63NNqD1PvZOcURuddNpKcud17hZl2bZfXl6O/ic+r72A+ldL5pj/4jm/UVqQRNsynvp8ZlT36ubyZoFR7Jw2z++zPSbMBsyCzz16NttM39KX0WYbRjYSwTntNpgYuGwSnUZ6TKC35mLDkr3Ye1JmgCxoNjjs+DgKSxrkzRA24pYWauIoxR3tf6SbObbGLlu6O9J0ctqRr1Y/67bBzOqekR/rxXf3V9q2KscA3fRmRBU9M8G9Dnwu4SQNWWEUYzDYEjv25pA9lg1ADCIhts0OHanQplbzMGPWyE/0nDmARhCoF52IozF+nxGNRsK25swso2dgdVu9j8J1pP9nD7dpGzjfQqh/2rWlS8swuq+dafVtqnt0avXa/nkNs4iMpJ3Otx/IJkrrNsPala8gCfUcbBjA8leEwn3X5qXtLefRbjPGttuVNAKWNp4iu8kAb9UwoDBV5WiJxseOIJi06MMDujJQg+QYP1Lb3ATifzFrxto2eXHymLE1R0t9nLIk0KR+blyztMnbHIId9MqAmBloEUPrX7ePurhORmjvgRB4Td6p15kTo12PcUyiGNFwnXCLwc8ii/xOgIrdZq74dse8uCnSBNbr6g3sWvqR4NfaMMYPksV+aDqkbmcA3R9Nh61+tJgUuK0cJ9ssMYplbM2nXym21VkmdIWPe+a4y3TGa3Ye66ZjNB7RLmYbaZsTSzDXSKzHz0TVdsJ34jrn8Naeitmc4PuMoDibRR/ijHXsMfh5ithf7bXd3WSAneWoJZXmvQFdhCw8722ysdPTIBOE1sHu0Paf9QTIMY7XCLmOa6C2Xg28qBcJgJ+bbjLCvnA/tMgzn91+tifgZ2MyCWhMuv2W6zIe1m0mK6b+FsK2sk/4/+QEDUcNYxxvbM3xEGTeynaKTnaa0Y/jyv0HtFufx1SyMx3e70A7nTl960kxSU9/cDd120jFOnk9270FXCbnXCZw1EhCEAeR9s7qW83vc8iK+LRzx9iOCFfRM/sqZfH7Vv1x/LY32omdsX2FneWMsEdMBFrmhPXN5rnn/IxsUlq/mAzYH7BvQ+bpr0j+GSja9xHTggFs6x6boewmA3b8KxLgAY/y7qgc56Rs7I7XOJvQ0oh8hQDMsgJmiIz4qAsHwUIDYSThdSAvVRCYKFsA4CwDI5hcFyPi0+08Npy4+ewxtzTHkPrahNsTlZxDPI4GJk5CA1LI4szx7XUi6bc23rahdotjfndqcRaRpN2njA11M0E3MfJmqpnj5nx3Nmk2xx21tkitRZnEH15HoS3YDloQ8JbSyF2kOfU9RGAWXJkIWGaONtfmHJNYls35xTa5DSQCxOY4S8/RtCe/28YcmAb3ZoRgqx+ZbaN9tnlLItBsn/O12Xsj7DNsbj56r5z0J902yvaiYmwIDYydYpLAQWrMvXVkynRqr2UE2vJA2xXa2GH0Sn2unwPqTU7NCNx3BKDG8p3x8MYqMsi0IfdJhzmSAJC159w2MWPwDSSsu9ffnFk5l9BxttQvJ5GXbRzdEDjYXtbVxP3nqGiWJSCJ5GcuxTDaTRtZDsln5uOKdJowtHnO9ocQkBS0CKUBYNqS49anjVXK5lyyPi3q5Fi4zJktt81hbyXNWY7RbYxzjWPv8/l5NadXc7aRsXwPXnBeRDeORdtTNptrxGjiKp2xSSQj5tjD1dXVgag0ItQwq5F0EiPWN8Z4hf3NB7T+nskWabfOHr+9wclJf1TEAZ6x1aZAY0WzzuEA79mA2CLwfJ8RAYJiXg3cCQB2/k0nM7s2EdNHHLy2o9WpMEdQIQJtxzPbkcxAi8rogEgKmCWIDo5+Z87C4PszDPWvFjtJR9kRA1mEJKsRghX4OjpxWS8vL692WDsTFfCi8w+YxalH5ywVsG4S5LRzReZpD5wvBnTaDO+35p/EsJ0mApknJjNsg4V6mAjk5f0crJ+EmvPSbWvE4hzi7EQjSsRMnu8ofxZYzcig63PAQztxObEP4wDnTWufryc+NzJgZ+tMAQOZp6enQz0p3/Valy3sIoZ4idrLeq2NW3Nxj3C8m1/eW9bJ/1poJWaMtU3yMY4f38oJ6QGaGUmkpV5MBAz8HpTG/r1xMG3hxGoExm1vBkDwp1OYAY/bzTaTDGQJhGUyTReHEodho4kT8Ya/dh7H3jZgInOqMf4q8Z/bzPaOkAxFDBptz0yLHOj8mKLnMUdOdqApj1kBbqZ6efmxQXCmy2yPisnbFgixXe4bg/XsFmSWNSMC7U4Ak2Q7IBM0vkzUmOZubWJbMibnJAO0s5bdIAmYkZtZ2n+M0/dFENtmRGDmXI0Ve3UxVgfLSI4dWDasDvYan2ft5By22J8kGCNGm6BQj9gZ2zULMtxn9iur+XLK+J5EBlaDRaFDIfgZFPco2piw373swBS6meMYPzqPT8Diy4OQa5kaav2Tc1sbUt/Ly8th8loXRjTNKVAXgqkB38sDedH4opcZOzfF+WEavMZZAhpmG79zEoLYRJ5tT2LgCHGM43SrwaRNUot3/eeYU/UmGrQT1s80eoT2bjshGDlbxih/Rr5ZB9/ZPyGbJE8Es62ny40xXmUxTAScLZmllWdEwFkJjosjZreRds8xeWthX7CtnP8k8WP08aL9MGjI+VuOw46OskUE8tljamyjtEAxYxwssw22sWXdq+zuKeTEGQk/mKotEbMdY4xKBGizY8wDYuMt8dt9e4rsJgONfUbsmJ+fn6fpSk68xixXjmVWdyZFi/oM+CYCq9Rmyudk2su22A47XzN460PgWxmpAT/sNKBqsuC2sX8J4vyL6jDpgOHKaayOOwJ7S4kd+Ol1JpKcrATctMEZEArtmpHu1dXx361GbPeN7dNWoisJXHOyJgNtIxP1C7i2+dfKTX+S5DR7dlSd/qNDsaM2QHKZK2VzrFpWgHV6HufukcxpY1EbmxkJeStx+/yUzDH+JFWOlhlwpBzjFs9ZYatT73S2JrSsr7WD9sVzGjnbk811BrT5FuvnuWN7d99RR+rm5UZnA0xMjLcMQNkezxnPSY/rKlu5x1dFTtpAOIvKCS4EHF43izLSoLzPnA0HqKViHCHP0sAeBBIBPxEudbGNkVmWgGk5g9es7RnQ1YaltH/VP5yo0SPtZXq5jUXK5n96f/r06egx1NkcFn3a2BHk0/4ZqXkr4XJKsgNeQ49kLOgwGmGlsB/tPNuSBPsmxNnLE9SnOX/Wx4zbCpTa3JxliSLt+hwf40+7SbYl4mje0T77JmWTCMShMRpv5Ix40eYPbdKOb09Q4szEOcSRtG0gyywhBJyDK+E4erz5ez7b6Y0xDtH21vxIO2a/cSyiA4O8OF6Ovcea19hZtgyTbdJ6mZzw3XvUTLZNotw3weTn5+dDwBU/5CxXm5MsM+e05d+Vz21yEhlg5zQSMMa+JyZZZo11usckhGkaAj5JAYVEwBmB2b9nUS9HFOxwfiZpWQmjUBq4DYBgn7pan9kJpMwQgbTB4J62JDPx+Ph4+JfK/J3nw8PDYemB4OiJ5+i6fX5raWSgpcxbtNDAq7Fuf3aKno6PhNEbGeMYVwSjHfPmJR/jNdaXEVcbJ5fHYyGQXpaL2JmxfxLNtmjPerXMim2rLRGkr717PJJy6RRmjuMcwnbNsgN2pn4keKQFJC0SNs7awREzSJhNNJvwnJapGuP17dkz58pskKN26udlYEbgJI1uPz870mdWYEYETFyd2Zj5ohURaIGz9xxwntk2VnLScwbcYXQ6VGBmEDlOljhjZDbIBiYkAlwmcNqIzMmpcGcFyKponBGu0TG6i468zmzYg9tSOy0t5DFoTstOPr/xFrPo742WjPKenp4OJODu7m7c3t4eEYL0mcePtkE9yVzPmR1wSi8gY73HGLV/m8zI4Biv11gNbIlm7LyTceL6r4nbihRYv5nNeOwYrRCsPR9CatJXfH4HN+2y7bSBjAXrjoMLGeVx7nuZkQGTGa+9Zrw9lsnKpNyWtm3R+FuKiUlrW+yJbWSWwETGWRY7Wp+7p+0OjizRLfbd/EbLbFk32jkxk8tJxv3gPaNwLw2nPNaTslp2jHOWmEvsZ9aERNP71Khby0YZi0yCZ4T7l5GB1X3DJgbu2Nlni8sJOBJIIiQDifj8ZyYRltGiEJOB6JJ6LN60w9u8LDMml2OzzwTggFabmB50R2Zpf/T+8OHDYd2c5CmT59u3bwcycHt7eyAEnz59Gg8PD+Ph4eFVtOTxNQHI+efahEXdIhxfAqtZOIEnwnO2sj9NBztl6sRxJGg72piV2xxHvjOiaxEwjzmD0MhN5mhsqm1mdVuIISYk3h/A9O+ePk0ZLrs5xNg6ycD3798PS2J+eNK5MgMeJzqUm5ubMcaPND4JQSM/P1MvP+edwQbFNuPP1Mu2byIwI4AO1FgWnWTevTcsjpf7szi+LNtEvRGDpmOEPqv5nRaMconYfdQCrkYe2Pf2hSs5iQy0ScxKVymjLRIQhdvgxxnSGBnhJe3b0pSOfrxRY2udfqa3J98KsEwE6PgdRVvSnj0kytEiy8gY8b/hkzJP/43xpwE/PDyM29vbw+vu7m58+vRp3N/fH/YQsE0eZxonjfycZKA5QKbmcw7PnRFbOheDY7ODlGVwmJFr69UipRbNsX0zJ8KIjMd9LdvdCAH1apm5fKdTN7mx3swiBEv2RjUpx/NrjHE0R0k2ss5OMhBnEYdBonQOmWUGxnhNboOhxOIt22zSiCJxlTbfHFDeW0Blsp1zV2SgzZ+mL8cpdhxHmyDG6fiGB9GZRKCRgWbHnjuca/Y9Xr5omNBIqLHXQWLLJu6Rk/61cCaOAGgQnkQtOmuOi+c7mkh93jDYGBodkdcU2zEaaJtA/G6CMmuTdTJBMbMjaJJgzQbcY9CiqfQXMymfP38+kIIY+7dv38bnz5+PyMDt7e34/PnzuLu7OwDljJG26DT9v7KhXymejFzicTYqfU3AXZGDMV6nBBvxGOM1KNLeSG7HmO9B8ARvk3323fMyzreV1QDFLxJzzsO8Mu68s4jz19Fds/8taWUYKyIss0W5tNPZPqK3FjrC2G10+/Tp09EYPD+/3tTMu4D2CPs+9dIGYjerQK9h0cxp5vxZBE69xhivCAGJI8+bjaeXgUzQOf+sT5sPvLaRloaHJgP5vEUC9ogxre2dm8lJZKCloKnEGP0eVgKsAdEsa5YaMvtprM0GwejUTIyEYHZLYQNaphZnk6D1Cz/PUjxOA3FS8vpZhOi+NBASsEMI4uxDCF5eXsbT09P4/PnzYRPhly9fxt3d3fjy5ct4eHh41WdMa82IQNJi5xA7ZkYC7Cs7ETqolDPGfM+Lo6E4TPbPXmI3+30WndApc154PZ9lB9hzHdtFMGmZiVxLkhm74hzLX8+S1LJNjRSM0UG/ySpwaHOA18TRZUyfn5+P/qrdt3mdQ1qUHn0YCWccSIBsZySlq4At13JpicdTV66PzDCHGGVdcp5tmjpSD2flbD8sf7YcPBvTmQ4rIuDIv5FSjt1sWcD4f4rsIfF75CQyQKBxBTa8RgrMKA2eTIs2Bt+u9bl8hW21jRo2CqbfXD4nhiNA6u5BoDEkCnOfcaK3rEnrp+YIuEbL424LQfvm5uYQ9d/e3o6bm5txdXV1lC7N/oG8Z03VGZUZCWBq7lxkoOnFceREGuPYjtIf+Z1j3wAlfR2g4mZL2rfnBTc0rpaL6LztrLNkluWfkLy8k6AwmqLuzlZ4U6DtO6n21P309HSwL9qGnRfb1Mg/xccc8fO4AZV9bjLH9jJoaHcZ/SxQ/6diZ9OWObN3wGSnkU5Ks/sxXi8DcHkvfW9HPHOkV1c/Np3OnFIrxzq1oJBzk2NP/G8Ol2M+64+ZU20YYaJGUkDbcnaA39lW91MLoLNMbT/VAoe9chIZyJo8J6MVdQMY3dKAZo69GTSvdyflPGcD2uRZpYscUQS8U643vjiDQGDmYNJAHflvRRs2Tt8+5jodHTpjkN9IBrJcEEKQCNHrpyEGJlMzx08WnGjrXMsEtgW2MREOo2aDThxZPqdM2kFsO+906HGWY/xwQBGOVeyWf60c8RzxElnGMs7/8+fP48uXL+PLly9HZICOxUDHDbsmkC0D9/LyclR/UteeT3S+jtoNuhQ7gvRzE8/L1Ecb8PxlmcaFVTr5rYU2FVtydo77BYi56X/eodKEeM7MWa5hYEUCSNs1dhurUv6s7jb+cazOijjz4yxP3nlN8x/E98yBRrKpN+2HBKCRAfsijpmXBtwHLYPjuzLyG+eYg8G9spsMZAPGzc3NYeBbtB6hcbBhJAUURraWRjwiBu/W8bMNG45cCD7RdYvNGkxnOu4R1uV0b777PxdIRNoDblKm7yQgGSAhSJQxy6i0v6r1Tl0/SIO/nUMIogHFfG+kzkSQKe6W/kv/MgvkyekJzInO822HFNtaxpPZntvb2/Hly5fx9evX8fXr1wMZSNaH6Uo745aqbOSD+qR/nClqbaCDcp/PiICPtb5qDp71+VziTwCddhqbNrk9h5CwxOE1HAuBpEOMrfMJhS1gy/mNEPB32nb0ME6N8TrDRAwyYWhtpaPl+NDRRgfiNOdpdKYOduj2UXyCq0mBr4te1s06tuDUxynGh1nQnXFguzmuM4K1kpPuJmCnxdhapY7q05CVU5wB4OoaGyudk0mBd7XvWQt0R3JgnBGYPXDFbTFgpdyW0reTz+1bJARxBnTujRDEyJk2TjqZESUjSBu8MykEUT6oKBmELCnknQ9LeUtJOs2TPO3w+qczMitHtQK3nGvn18gay50RArP+2AX3fvDFu0boxAMe0YF7YJq+0ZnnRjeSnZkDj6TP7STSjwZy9yEjQjpnAm+LGgOYjaQYN0iATYbPIc48cc4RG66ursbt7W0NtFZiGydZchaJ0TWXtYgXJMGZZ5xjszrz7oibwVx0oZ75TCJPgkA8ph1Q74a5nqes0/jnLA1tzZkV7w8wWeG7P0cYhM9IPM/bG4zuRmcONtOeqdTCAZ85eEbePxM923ia42/rM60ukxkbiEGf6bgW2ThTsarfDNDLAP6rYjq0/N42A3ofwfX19SF6zHl8aIwzDs64tFeAKY8v/uOPP6bOrhnsW0iiokTDHLe2Fk6ZRZwmcLne6cU2VszotDnSHGLEujvT4/v9U3ZAiRE8HaqzfGwn20Wbenn5sWdgC9xTnp+XMYtgZhE9nUBLx+YckwEuD9kmjRW+Hz2ZrnOJiQvHn3u5mNVif9lRUxoBpoMhDoxxfBsu8TE25qcjNt/giJ5tZEbABK+R5Th4EnrPY7eJdmRn7Hk8IwKrLLP1brjZfKCDEAbbTRfepbNy/Htx96fIAJm5WTqlNYTltXNnx9sgu7O9w93rRbOo3IaTdzt8Ajp/o6TjrRNJQMtImATMyAB1YGTIVD8fuet0dLIDfEa/14N5jfdKuI0BTz7JkO1PVJG6zyHRM+0iOXDbW6RrQuVIp41ZS6+zv1fkw5+tB8tuD5AymYuzZpTV1l8jDZRMbpxenaVTDbiOjE4ZQwJywwunXj1GvtbXEORNBM61+TVCrOMeKDutRLxj/FgeYxBiJzrDsZwTbG8RqElH9jK4jBnB9lwzETBus26X6bnB39MGj3XaxOvphO1rHNQ5Y9pIAOt1G5yVaO/pZ5Nbzm8uUbI/Wf8eOSlvy9QKO5mdaslvzdiabEXNLdqks20DMmPGLLdFfiswtBOl7gRhG491YJu8/kbHQhA2MfGzA7JGbKCIkTmSbOzdfd/GiWAyxo+HtpAcmNGeQwj0IQEkWoka805h+9NOOxmPjaMLZwU44amj6xvj9Q5j12OiyL7m2vcY45UdzmzekTXbGf25QzxRioGoRUB2TDPyz/Yn2k0f2Zm43hk+NUCmcyDYt+jvHOLouRECz8HYZ2xgRsD4nyW0Hf82C/ZatsBYku/ci+R54iDJmN5shMeYGTHRtu3QZhKosFxm+zgGre9JtLgZ0A6fdsv3Js4SzIga9W2+l0Rg736XkxdxzQzJHh058py9ZKBJDIesl/o0JrkiAZEWDeUzWWZ7mTCk/U4ncZmipabyzjVZR5g85rrp1LiTPNGi+yt12FlzgrVIsY0hSV5ShN47YedwDjHAhAzQmXJd1BOS4Oq0YiOFBCcTOI41ZUaYaPPOCpAMEgTjBOKoeczR8xij2jPBiDqyz9hm3kJpMsD6OJcNku4Ll9e+8/oGtqw/LwcTznqRwJ+bDIzR76jickHGL6SMd6N4KSWSKJ4kjs6QkXOIsgnZGK/vjhnjeH9ZyxaZTPJ32wvHxk49xxhA0Sbb+ek3OlJnl5gNZT+GIJosznyNyzhFMh7N51lfHouu+c3LgSs56Y+KOPDNCKKMlW3gYmcz6zTWQ0Jgdpi6Zt99LjMWBuYWrXvdvkVieZkImASwbawvTmcP8eB5zhBwIyH7ihO+rYm5HTMHQf3pONt5dsTnEuqQvuaETiSU/mFb7EBav3vvwRh9w+mMQDZ5eXk5Wgt1RoDZBtoioyoe4xiY1Ji00xGkv3KN2311dXW4WyFlt4ibNtUyeKnX48ZyZ0HFjBDQqdEZNWfDOulIz227Y7zOEESnp6enozGOLfM6O6mQXqb1OS4kbCQCjLKNvytCQFuIrTYnR52p+0wcNHlfS9rFJW3WQfujbTKjRP1ne7/2Bpt7CAFJQK6b+Vm+22b5/ksyA9yEM8axY5+xdYOoP2859VWapImZ/irqaGvYjAYJlKtNfJykTjUaVFqf0HBNlmZkhb8158QoneOzcu5bk8/9bEBnf5upZvngnEInlf0CIQHO2MzsrtmDiRfra+R4pR/FduFMBAmBx5lgTIfAOmIDnrtsJ+e6iQnnAp0riTDfaf/Zx0AH3Zy9iaz7y/3LKHfWvytS0a45V0bL0uzo6urq6J8e4+BN8ikZP2/4I/ls0sam6RjdnE1J5oK42chzay+zAzmX15sQkCCxftqns2TGxmbTfDW8JIFImZxHrb+anpxTs2t8vX3NL88MkDWtJmiu4eDRGTHqsDg1+TMyM7DZsRYZtUjMm6hMBDwgqzQR62zp/JU00pDyrPuqT5pzaNGxI1kDvtcmW3R4LjLA/jXLNxFwtNEIFzfuZTMm057sozhm98teJ8P6TQTaskzKdNTdnCbTyyvik3medhvoSBy+fft21DdPT0+HJxOmHyLpEwcELYKzjjO7jd7Mgs0ImiM3ttuylyT/ajEh4PJMgrWZg23kkv2b5TI/s8Ayc27EexICEj5uKDZmRbcWqLh+tsllGasYITfMcmaAdpS2vLy8HC0JsI3u5zGOnzsyI00mp1vE2L619X/D3V9CBsY4fuY6v1NhT/hmVGSGYxxnCFpD97DG6ENgZ4rIRjxjmf7sLAAnVUvXWCfW7/bMAM7GsEo18xobg39jPY6EmV1oZIKTK0DUiIB1omGeQ2x/ZtPuB/YB+6ItxZgMpHwCj/8SN3VvyYyItFcjpXsyArYjAxxT7OlLvnwt+9JkwdFOm5MNOONA+G+ZjbDyLgqSgTZ3aQcR2vvPBiFvIY0QZH5xXIgxzdGlzzIujEhZDjF9FglbvxaxJmvhrEAjBbNgJOVH90auU/dsI2iL8NPm1keug0sEOW9FVlv/eE5ynFoG2VkwX+u5bkKwR04mAxFGAzYIO700ypvk7CB5/aozm5ObpcNiNNw44nOoGz83Y6V4Ujr6S/nNWFqbeJ5BlY6qTfhMuBg8JxX1JUAQIFM271X3+NCRcbKvDG6L5b+FmHg1G2iEyLfrtac38s4NAgc3nbmPmr3OIrkVEWjZKb/aHoExjqNnXm9Cl7njMQ+QJvIf48ffX/P/KxIZsp9Tf+psUaF1yvx1/7Fs6sm2uZ9moL2HoL0XaXqTKK1eYxzjEl8mwJz/W9mApmPGxeU0p8uxGqM/lZZ+I+P88ePHw4Pm7MC9CXQrgLEfSF+RZFPyW8uW5DvrsY06SzXDqBUZ4LEZIdgjJ5MBshd+trP0ALaXHa4b1DrCndAYKw097yQElqaLP6cOtncWeadMT0zrvEdIaOyc2qaxRKIeF0Z2uW4WyXm/AdueutyPJB8e4xmZeiuxLbbj+T4jBHH4eT4D/xAoYzLG8W7lxuxNGm23/EyS5j0ss/INCDPAYeRM8PT84y7yvPhUvvRBQD8PoMrTKL3ZynPT9tdIaOqcOXEKnYTHtI15ykp7TwXQcwsJWnP4MyJgHGNmIFG8x4LZ4FbOTLdc64AnZaRMEwJmEXIO28nMgAM+knIvD/BpgLNAku0h1s+CTvslB04kAp7/KwxgnTMfyM8zQrBHfvr5sO6sxuDSIE5yRzR2EnRaaUg6e0YSZoSAesRgXIYjhkZQ7ARp2BSndxqrtrE2YZ8xIuXzBHxrFzMDW8yaa4JkyBRmIai/Myw2XhIBR7GrzUm/WhpZaUA5Rk9xp9/cJpO8VUTiB/7kutaftsMZoSLw5LsBgfW4fTzeyErOJ5jyHy1jm7FpPr2Pz/q3g6YeHBfv1RjjOPp0P7eIybbs9vr8tum39cN7k4ydHQIxZkYE8tmEgJvEQwSNZ7QZBhYUn8tAqsksEGtZBGNe9OV5HMPYrMeaNuT5T7w2UbT9NCJNstEyEXTSM/tqZJ/n78kOnBJ87iYDq6jZgzX7TiJgoGMHtChi1kB3DAeREQh/c3ToSMRiUIzus0wDy2X/WXdnF5oz5Rp1ni7Ider0KclADHhGBpz2jaMj6WC/2SGZyM0yPyQEvP/5raVFHQQVyyy6JrgQJElYmT5vf97kvh/j2PHnO3+LToymCVA8Z+YkWZ7nhglqAz0CWh49zScfpi8ZhfnpbNSFtj+zHTqRl5eXV8sksdM4A/eR+9AZPRM36r6K3t6TNELA4/zM/hzjODDJK/3DzYjGO+I55wLtlmM767tGYnINybvJXMYx/89AQmysJ8ljlqot2ZEc8XPOs90YF2bHZmTgZ2xrRghMBoxbe2Q3OreHRNgInNJxNNaiHRpmAy4zOA/mSmjENpJTBoAA00jADMhb5sAOhOczgqbTb48apuMmcGad2ut00e3q6urwPHnvjuU5BIlGnvaSgLTp3GRgjNf/BOkow5PXTtbn+FkTYxw7wxAA/u2zJ7+JM48zExVJ6pS21HTMMYrnph2vy6GzzHUB4DwKt93ayOsYjbntjWzOcGFld55HltTrvsxY8g+J+AdFfszse5dGDBopoPMzEWS/8rv7nwQt5Xo8x9gmBf49Y+TMK38f4/gvx9sc4hygHbYIe4blLCfnN+dvn+Ton0TA/mxFBppN/wwZ2OvrdqNzNgk1BfdkDfydjaOB2pD5PkuzWAcKGawdNutKhEGh8TUwIIMc4/Vjaq2PJyKBO5PO/yKYPxQKGciGNe5251PE4nBYt9kvMw4EQBrq9+/fXz3JkOW0aJsOlmQg9ZyTDJAQ0IFzHL5///NZ9PmNjj2blNJ3vsNkjNeRZnMqEc8JH48YvFLHjKj4vNYPHp/8RoldN1KQ82NLHvsZsUi5ltZeZlsMviawvGb2e6uHAM2lDY/deycCdvhjHJOoGTng9xUpaDhOPOB3O+Vc40yjHZSjcOIqPzPAG+P1Y5RbAMZ+odgWV8SykYrZO+1wtnnQ5Hg2P04lBDNSsEdOJgMrMejSeMaY7+K1MefVIosw+TFes7aAU+tQMl1fl3NohC2FTJ1toJwMre3RN2UE7NhfcdD8G9oQgJAB7vZ3xoXASZ3tGEgIPn36NO7u7sb9/f3ROm9eJAQNcNKfJlpsP+s6h8wyFwQf7rXIdzo6O722tp1rbbf53siTyzYwp8y82+ETbGYkIOJMDceRtsi5QntlWyIeY2cKaA/sX75TrD/nPJ3zbA02x3m9y2d7UjaXc7is0wKP9ygzJ29C0ByxCYFJwSzQayTQkTs/N1ylre0Rk4q2PGAs4meTFf7eHG/KtL147u15mSik7z0eDlSs1x4SwN/3ytXLqVdc5CIXuchFLnKR/1Wyj45d5CIXuchFLnKR/7VyIQMXuchFLnKRi/zN5UIGLnKRi1zkIhf5m8uFDFzkIhe5yEUu8jeXCxm4yEUucpGLXORvLhcycJGLXOQiF7nI31wuZOAiF7nIRS5ykb+5XMjARS5ykYtc5CJ/c7mQgYtc5CIXuchF/uby/wNTMI0oT04yoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACC9UlEQVR4nO3923Idu85ljdKelg9z1SvVq/+PVBcVUd+0JVvaFyu63NTUwcwhy5bWXkLEiMyRBxIEQaADZGa+u7u7u1tv9EZv9EZv9EZv9F9L71+agTd6ozd6ozd6ozd6WXoDA2/0Rm/0Rm/0Rv/l9AYG3uiN3uiN3uiN/svpDQy80Ru90Ru90Rv9l9MbGHijN3qjN3qjN/ovpzcw8EZv9EZv9EZv9F9Ob2Dgjd7ojd7ojd7ov5zewMAbvdEbvdEbvdF/OX04e+H79+/XS7yf6N27d/X3/v37+n+iiffcM5XNfV/X7v8VCo/k1cfcjkv+T/s+5nbsrr3kmrXW+j//5/88Ova76X//7/+9vn//vtb6tx6/f/9vDPzXX3+t9+/fr6urq/tzafvd3d39L//d73/99df97+rqav3111/rw4cP93WknrXWur29XT9+/Ljf3t3drdvb23V7e3u/b73LL3Xw2Pv379eHDx/uz4Uvlu360uYPHz6sq6ur9fHjx/Xp06f16dOn9eXLl3V1dbU+ffp034bwfXt7u75//76ur6/Xjx8/1s3Nzf3v27dv9+dynnVHbpQ95ZZ2ZUtZff/+/cHPsiPl2M3Nzf11+YXX9Kf1O305jd8c///+v//vMsV7Bvr8+fMDHeGYsr42msZ0jjV7Znva9D599uHDh/Xp06f18ePH9eHDh/Xx48cHv6urq3s9fffu3X0fRKfSP+nvtJF9bNvHtnCsrLXu6/nw4cODMZpxnnHqMZX72NbwEZ2jnn/79m19/fp1/fPPP/fbjIXv37+vm5ub+/axTbYp7KfJxru/+J8yYR9FHpHB//2//7eWSToNBl4LEJgcdXPQZ/i2AHdgwzzxP4lO4BJqBi7bs478zH4ziL6WA+Lo2lzTjrE8t+9P0V9//XXolHJsAgO3t7cPDEacsX/NuTXnbIdpMEAdpDElAMgvhi8Giw78x48fD9of4BLH//nz5/Xly5f15cuXe3CQOtLuu7u7e4caQ/ft27d1fX29Pn78uG5ubu6NpJ02iY6ktSNtCO8GIGybKUb7r7/+ur/e45D9ad2knvDYzpn+CQpPNvqTc19rdprt2mbPjmyfdS+/AICAA/7cF+zT9+/fr+/fv9/3nQGB7Z/5N0jOOMn/AABvOfYzhgwGwmvGVkB0ygjlWo758MfxsAMEbJv70H25C0bZjgDkM3QaDPxpOhp8O+X28easjsjObIooeIyD5kz5l5AV5Mz9RwCi1bE7ZrBgfo4AxEsRHdOOLw4iD9oGTG0caWRiYELfv3+/d1h0mDQSU8QTA5dyWWcMcXh+//79fbkpIwY2RjK/RG0BBzHcNKRxvLnn+/fvD0CPAZAjc5OjSgOatda6ubl5MLaur68fyIhGOMTMDR0PjW6yQ+5zXtsA+UvqMkEjabJ/pB04P3tfeCCQnqg5rJax5dgKYE0b229HtLm59q+//nrAc3PA/gWMW1Y7u8kxurMPua7pl+toIKGBg9afDvZyXxuHjS4CA5c61EvLPjo2oaGGjtZ6iM5aB08Agvc3BW/o/GiaYmob5Unje5avBhAaAHoKmJh4bjw0hXX7XoriiJsjyUClo83xUMuYOAPgSOPq6upBeenb8BBQEMM1GQEbVaY0p8yY6d27d+vHjx8PnDe3jOyYSqVx/PHjxwMwQOdvYJLswYcPHx6lepnhSDkENCTWm8yM+yHX3d3dPQBfdCbhlYafRNmmn3JN6nmprFaLinO8OQY7hMkG5thU7hSJT8dDdI7OtK71M9NknU9f5xyn0KboOQDAU9h07g0E5BwBA8viWLIznabyomPJdORnoP8cPnQHUC8NAEmnwcCR43wuagDADt/byRieFfyRM9sBlcmB8P4/RdMg/h087AxNc57e/5MUwxKHECNgY7CLZOIM7Dg85eBo10bww4cPNUPAOiw/r0HYAWCnKVkGnTCnNQIAnAJlFJgUfNLvXssQkMPjngZZaz0AEk43W97pswCZNsYp37V+ptXdP3QOHhOTjSE/LwVqGeHlf7uG+7+SzWht3wVEdvy76dQdGQwfZQZYD/uGEX7Ka1mAjH07+mTU8p/rXtgHbQxkP4Bg55eOZLG7Zlde+JxA3Y5e1TTBWccxAQIeuwQEtP2JH9Y1GajGq/lpqbhL6ahMHvsVxBhq8pn2fd1LkuevGfUREIScNgw1Z5z/Oc8UeEu30xgFEBAMNONlo9KcE50ijbIzT54myLRAwADPs/0TAKEcrq+vHxjKZGQYBXrtA+U1tXci9kdrP6NU92+uZVQZPj2/+1JZAdJk8+w4dpH7UxyMnX8DAvy/1hwgTfaKW+rKJVM2zBxNjtBlh2eD8bQn/z122S5OlyXTF10mEKY8juzvBP4mf+Rz4fVSelVggPQr6Pao3KkeRwsTWJiIxnNnQF4qymg0peB2NIGA3XVnyv1dFKfkCJE8ZSA7pRiio+Jiwjj1q6urMa1ph0SwwbS0fwYILa3pBYgpj4sdE/0YDHjtAEGMp00sBxs7R3I0tIy+vIKbWxtagyITARsNPcsw7442mfFhnbzutYCB1qbp2M7GHEWWZ8bpBApM4YMAy3rrvpuyZByzTOkf2WZOF7kv23G3heCCes+MWMZO7EibLsj4vcQOHvXV2fvO0KsFAw3xtIhkh5yekio5qpsDoCHhkNOXU+eEt6aorV0TPbWtZ+jI4DTgtLv3TxPBAAcneZvS69mecTTtF/LKYzpEGsY8AsfsgbME5i0GKcc81881BswCZNW3V387M5B6p2mKtX4643fv3t0vAEz7vIDTKfxJv3gt6+d5XmdjG9k2oGIwOIH+9MFL0m5ct+NHNoC2Ygfsm0PM8ckWU2eow3HgDUxmv60ZIBH8NVvj9nAMGmDQmTf9I9CwLKzPnu7iWqBWx9Sfu36b+my6NvVc4hNeHAycQbse+LvfWj2NfVS/y5iu9QA4WjPQnHxTsijnWucikUui8Z0C/S4A0ep5KbIxT5t3UbedQtu30WkG8N27d/fGwcaV5dGB8ckDG9C1fuoUMxkTb8yG2Gi9f//+wRMQfm9BazPnVT1m7ORbZsX/HQG27MhURgPrPE5ZtIg/5Ixey8y8VHZgyoqQJrs3jbnJXtFB5rz3vWYmuuKFuXTwIepypsj8yOjt7e32EVJOB3B/ItZnkNccdXP+az1+pwPXHXBsBUhPoId1s31H2Y1pPO7afSk9CQz87sjvrGCaQcr5s86yoeOzfOz45/bM+SNjMxkFH5v+PyWyaEZmd99EO7D0J4iPlMXZJmJlGrs9UcD9nHfEkQH//fv32sYYLC7Ko/NnWYymw2v4cz84gmrPPXselAaQ0Q8N9N3d3SPwspu+cNTPNnERlq81gDeY4j0N9DASpVx2IO3M9B3lwba+FO0CpsnuHQVZR0CKZKdpu+u1NZQ1dZd94cdqDf4mW+EM2A4Eer8Bz9xvO+kyXFfG6t3d3YMpttvb2weLhA2Ocx+DD/qZnZ75urP29KzuPgkMHCHPS+gssGjOv6UPXXZDv23QGFCYH+47tXmpHAxIzkYdDeT4GPvG27XmBUbT8Ut4me59aTDAOcO1Hj8r/e7du/v0PNPS1DFeOznViRhJTanJyPP9+/f3K/ZzndPdzTBlS0NJp+6sALMAjuhb+t5Om8dCeVFQ7vez446wfb+dNeUboOOpihw/SuUTnLT+sTynOeY/TZH32bFj2+Z7zzhObinvpsOTPrcsjNdh7MDeWg+zqu432v7oAQF70+E44OYDJsCZa3dTCmutR+MroMD6H7kcAbAdNdthW/AU0HDRGwh/xQGSzjiabCcQYGUgnyznLCo6AiWXRgaOzHx8Or8rq0X5ZzMBR/wfyepXwMFLUwZinFN0hvPccZ5c0LbWwwVvk9Fa66HhXGte/Eb9zf/86NDy/P4UEduB+Zp2rZ09qUX7DQC0ulxHZOx7eLw5D9flaDLHeG+iL97n7AX5ZF2W01FU9pI0GfUjY3/GZtsxeX8Ci86kNf2fnH+bBgo1EGCAYp1rQKCB9AaczWuj3bjhNU1ekx97KhgInbnvErt8UWbg0ujR9CsAIvfvUKkRn2lyphNfPLcbSL7nqUDgjDHaAYHdfX+CXisgYETSnFEGLVN8jDpDBA12kDEmuznMBmabcSPZOZ6N6LI1wPFq/qm+qY2um3I5AihTpD05CTv0NgYC6lzXWv0FMQY7O5lPGY2XIuvtc4y1CSw0kGdHRznvdMkybHPoE28uk/VwYaz12+A8fBoQGkBO+s7xbZ7aGpT2Y0aAALT5r2ZLn+JvL9GRX1pAaKZ/1dlP1BDVboqgRRZTxMx2TP93NLXdi0O8fwQUWObZDn0Njvg1AgKCAToB/l9r3b/45u7urjr1OJ6kwLMNgMi9pJYZyHYyrryOTqlF26zzDGiYnDXroaEyP5aH2zOVTafg8WDn215Ny+ubzZkAjHl0pqCNW/KTue32KuM/Rc1h/Go5a81TpK1PaXPXevhOjSnLxDLcPwYI1msDR0+bcez4UVhPHRzJrK1p8VhKuXxMl/enrTk+Tbu1n0EH++ES39pswyX2+NmeJnguINCijmwbEJiQXugMGGgCM6DgfBOjzGakreAu+2yUsePp6Jqj6ycFPOLlUoAyRR5/khxhNlSe63htBjbvo8MkMPC8fq5f6/GbzZL+b/PgfHFK5iA5zXHUPrbLgGBy1ms9XPTF+U/LqznvdoyO3QvFmsFN+9p3G/z1RbbBU0D+2mG+iMf7rcvZ0kG5vLMfe3lumoDd7vrp2qNyms7wOB3wBCAIJg0saTvdH14rwvFnu09HT1119mIHTrnlcetkuy/8t3uPAAGvc3unPjlDO3t8toxfBgMtGrmEoac4lwlZTbw9FzXliNK3a8+CgB1Qmep+Sjnt+FNkdEk5jmpeghjZ2dgF0PlxOdKku45w6Aypl0dGptXjudmcN9Cg8QsZoDo9bkdt2dDBc+3ERA0ceE7YQML3NhlNsprAbbuPESb7JDIiGcT4/0vTkY1d6zy4PwMwpkh2mhJqYz0ZNAZIAW/c7upf62dmoC0QJHB11sB05DQNFvl/ypp5TBnYZHtmquAMn7+LfhkMPDXaOzK4Rqm7n+ms46TiThmGycjQmEzR5VmiQlxi/KZjR9fzf1PCiY+zhua1EQcodab1sY2/1xqQEkXz3raYjY8YhQeXRyPLdGQc8u3t7f1jf7nekQh1runfrq/p/JKNcIaAZTMiv7u7u4/E7Ui5T9BkPnOOj3t6isD6x3v5audkA7jls+t0VJSFswpuz2ugM4BgR2fARMsETAvoyFco+r7Wz6yYx0Tknf8po9mXBj6YISAwcHaA5fM+1pnxZT9AO861RvYB1u02rp0dYB3Nrv6qrX2Kjvz2lw7toqpLGW5pqefgy/sNNU/Hp7KnxVK7exooYX1UnOnY0TmXPYGPXwF5O0DxEmS073Pct+Naqz+KuDNEDaQ2w8LyPP96e3t7/wig57FDjrxbJJ76Ur5/bcptR+bFRjAOmVE1eXIdnIqJYeaWMnOEOQGvHe+NGsjzdMVLgYEztua5yp6CLzszR+ek9LHlZYfP846YQ36ngDNlfL7f62744qzdmGfddOyTo/Y7Pwx2DXwiT44zln3EY/MHpsleX6obTwYDv+qMz5Y9IUJed+R4puiY5y30nXM+U8+R8ZgWoDSntau7AYHncMKT89zx4f3XAgha6j7HY7gyTUBnHOPQUsqkyfHHcLx79+4+Fd/S7e3VpTF67Vnl1OcPAU1zsA2wkNfcy7FGediw7YwYy3UdLfLj8TanH9CVNrX1Oc4oOCtg597qT1kEM5xGeQ3TBM/l+N1vk031cWe2qKs73iYgYKdsftP3dPAGBQTlKcf8mTiG+Lru8EW7QJvhLJaP+YNHln0bO/y1AJD/d1mE56Ang4Ez0ePu/HSuOX3+n4AAnXYT7JFDdT3t+FEbzji/5lTogHbgY1KI5wYCpF/JEriMlwIGdkRNt5iKJwjYIfy2oKmVT2NCZ0vHRqPmx5fi9G1I8x70OK4W0bjcaeX15NybrHbyZXbFUVZzArzf9WbLdgSkODvR/rs+bpvR9rQA57NfyzQB6YwN3TmY3X3ZWuedDeNYaLbtDBBoOrfW4/l/6rJ5cSaAetteldwif7bH/X13d/fo+NH0xlrrAUhhtmsCBKyv2ZAz9FR7/eLfJjiiyUB5u3Oevu/MAGmGnfttvQCpKdTuHivbDtFemrE4ot+FNHd1/Elye+wUOEAJBOIQuMLf84+7jMGZOmiI3r9//+DtgCF+EZFZAEY3zGSkvOhUjCbLpuE7mu5gO1MPsxn8tfFKeU1GbidLrsvgmE772iegLX/+91oBZxrIV0v7vhaKPC5xGlOAdeaXe9LX1qeWdVrrHJDifU2nWjaAet10j48WWm525O/ePcwENLmeBYQZh3H+fGqIxw1KaNMnn/Y79fC3goFdVEkj8Kvln436Wad5mxS//XZG7xIn3Tq/gQjy29Bsk8MUDfn8c9JzApQ/TS2qpQP23He2LTpoAMD3NIOw1noQvRM4xInFObW59jbvOq0XaFEdo7tmjGOE7TAjH76KuC06bGOGuhLHvtZPvWY5qYNjt6Vrp19bU+FIjyCQZb9kZuDIxvnatfb2dXfMNm7SHzrjNj/f7NSOB9vU6TXZLTPQwAjBpXnIeLEOcLyxPVy420BBa6ezvWzDLjuwC/ieal/PXv8sLx06c810raP0XZlH97eyfH9TzjMDpgGHtfrc/6VkwNIAwUTNAbVzPvZcdAmYew0ggfpoh50f58/pBPnM/9E6AtfJyJ11cIHgWo8zBIlYbm//vbo/qey1Hi6YI68sqzl8668BsA0xpxYsv/Dletr4YR0+x77hGgECDoMerrPI/a6P13NcGfhRnlzl3rINf5ImmZ29j/93wc/ut7vH/U15h47sWQOhGRvWLWcGqK8NCDdqUTmPr/Xw8dxMT9GR09lHNj6WsZMy0waW3UAB+WRfOgDkdb7vEgAZ+iUwcImCHl3blP5IOY/qmJy8jcZRfUbJNqRnhU4lMG/uaA+gp3Quy91lBna85P8RUHvNFKPe2jlF9O2cU/UNbIWsOyYatvx3BOSIawcUDQBYZozl1dXV6KwnmbA9blfLHOzIY9xlOmJb6/ECrYCAnOMb4fgLSIkxT5/t2u31BgaML0XT2D8j77R5Zzsn20sH20BlnJ/tYbNdIU655Rwdeq7xGCAob1ksOuMjQMBsnYF67uf6FOspzxG4eozmPrc5ZH3nOGD/mdr4bP8NIo7oxR4tPHvfzjkfld1SQTYIrmeq0wPGPPyKo27HmvGZ6mr/d9mAneIcHT8DCJ4KXH430XmHR0fs3DIyJTWdODK0dMyZ40z0//Hjx3V1dfXox8wAX9LSInAbQBtwGlgaTWc+/vrrr/u6+fv48eMDmXGfKWPWN4FKyyV8GJTZOeeefCqaxnnSX/cDr2MdXHfgjMCkB3+anjKumlya/eN/yopOuYGBab6+gdZW79F0wPRmwdzb/AH12w6WcqRO0YlHFxm4tXOh5nipM3zNee5lOx2oEKjwPpb/O+hVP1p4FgA0pDSVeVSX6208mBcq4VEEwfNTGuupUcgOBBwpkw23931s1/+u608o8hG1AZbjXFDmiCHz1DFKccwZzLm2rXIPvX///sHKdDtLR6DZhi++Ejcv0Pn+/fu6vr5e3759W9fX1/dz3AYAcdYkgiFHjtZxOoLIJ22wLjTH0qLEFnHGYLJv6KTziWk+5+3HCSMDR527cco6+Drk1zBFQJ53Mub+UQZhsncGkHTCBob5XV1dPYjeQ3S06S/rIIGc0/1TdoxgoLVjOmfeqPfUNQcG1tG1+svmWuaITp5rafxzdoC8mcjzBHB+hX7ro4WXXGeagEDr4Fy/EwaFyGOub63+rOqkgBN5kVWr81Kn35x9c7S/G1VeCgReAxjgQCOln+mMGaW6H12OZdEiZ9blQe9yWsaJ4IDAIM+/O3olQOFK/Jw7AnltHBi4Onqjg2A5npNvoINgoDkVz7Hmv/niFIENbbaRh1O5JPb5a9DdRs0ZtOO+Zzpmh8t+iaM2EMicvhd5Unez9RqblgUg+CBAmMYGqWUHJj8RPj02z/gQAgHeTxlMQVmzIdbFiY+nOvtL7nlVjxZOTncCALxvMs5H9XnbjBXLnKJ5dxY7+DkNSSuvOV7/n4zaGXlZThMdAYGXMqjN+eb45KAdHdKhhY7modd6mA5t0Yb1i/Vnnx/dubm5WdfX1w/2CQpsYFM3o2GPpfz3Yi3zkzIsS8tsAjyujw6Hb5GjLJKZeffu3T0YoiNpcmx2g6BgirrI62ucJphocngt8Nmda9kBg4AAgWQF0m8hypFg1HUSAHiqwWsFSPw/BVNtjJHIj8vguSn4yzhwtoPE6UbrlNcjNP9mQJVjtFntml+hVzFNsEOs/N8EZkWbjHM7vjMezZg8R5ufAlrI79TxEwjguXav5XLk3M7S5DBegiandAnFoNhgngFIzRA75Un9tVOKs+e785kZYJRztq1H/UwnaCA06VEDAN56XNnh0HinXR8+fLifCkn7DQjYJ4xODez9C3FdhheKvlYwcHacTsHUFPz48b0GBPJ79+7doznx6ImBAPtk92iigV7KPiOLqS05Fx7jqFNni9rDJ58kYDQ/BVY5zwWvzmZx4aFtCnmxXbAsdrb9UnqVCwh3iGkqf0JKdnQ+fikAmPi5tDMmHhs5qpvqnEDAGV6OHMMZp9d4uISP30UtJRjaObC11iMdYBTluUPLiOXx4y0+bz4YNdDAtjlyzpMbHE86zBcpMYLhF+bskP1olT8m5P/MEnDFf+OPDodz1cwM3N39e90A38NgMMA+siHni18yn9uixpbZ+E+mSwIgOysvdL26unq02JWyJVj0tJUdfAMD5JHjrE3V7drb2sK2Rye8Vihbp+0Zye/qt+N+9+7dg7VCIY4h8sk6U96urWd086gM0kVg4JKCc/2lNN0zKUu7nkb0jOJMA4Tln2nLLm31FKPiOba2OneK0tp17fpL+mgqg+dbNsARw58mgoEmi+aUTXSsXtTEe1MuHS7Pk6fIhA413zBgWc4E+OMoLWKhzAkwOJ/OSGQaX/zPKCc8ZRFjFjJmCqMt6FvrMSDwgj87B75dsWUCJlvQAIFBoBdctj5v8nhpOhMccf/M1uAxsjMQ+Pjx4/rw4cP69OnTA1AW8qLL6FbK8/TD9CQI76Ue25Y4qPI0WVvgSL3L/Rw3bVznvp39NBho2ScCgbyDgJkuts/gw7aL54+Ayhl60TUDRw7egz1E4YRo1M4K5AyoSNlWEPPDVc52fHY2U3smPkJEjzsFbfztzu0GI+vYgYoJAEwR958kO3jz39qf8547NsU5+nnjRB4EEJaHP4hDMMB+nlbLt8jY8+fkO9fZ+TIVyymBPGbYZNKebuBHfSYw4I+5GBC01O5aa93c3DwytgRTDcRRJjbQBB7+SJXLeE1gwHw0Z9TO72yrnSgfd/306dP6/Pnz+vTp0/ry5cv98YAC6491nOUzG9CeRGiOnseoOzsbyj72AkfyRJrS/rG5LsO60sab5RLnbyCQF485O+A+O+PfLvF/povBwHMNiqmcHRCYFLkJLVuiseYE7PDbIDkacGfa2gDM1PazZa41O9jp+KX87xwl9yfn/xrAgIlOjQPQUfUlfBMQrvVwtbSdFfWOz/cb3OY6PjZIw+10Op2dAcEUVbBOGt6AEpYfx53z3759u88OfP369f4/wYEj/5RBkMFUNEEBed/x28b0BAwoQx93Ga8BADBaJZ0BtKZmP51OT19kG8f/6dOne2DADEGLfkPMoFHPOQVBnTC4o/NPpo2ZtPyPnNY6fv12ePQCvuh3jvtDYpRbiFNp7q+2MJFrYBoQsA1ifxkITD5lCtLO0It+m2BCuc3Ju8FHCJnKwdToVJ/rbXVPjtHO76k0yWtCe2ed1KX3tHrtRFjWxNtrBQOhFl0QIPAtY+1jONPAj6z4yuGU7/rs1H2c9fldBYxYCAYMYh2hkAyIch0zHR8+fHj0HgV/4c9rB378+Pn5YNYbJ8P/kW/SpZTFjx8/Hkw9tMxD6mUb3T+UIaeNHDhMZbw23V1rP4U5BUpTwNPWCxgMfP78+T5LkGmCPHpIfWO9fDSx1RNylsy6FIfNdS3RF1IDA86eRedvbm7u74uOs4wGBDx1m/LWegym379//+Az4wQzBgLhmTbI9e8Cv2bLLqXfCgaO0OqRU5/K2JXLDjKisgHwYKFCn3m+tRmb1H0Jz0f0VCCQeqcI4qgM9o+Rqct4zYZz4omDztEvB6Mdi7NNcdLUN+oO1wGEqGfUr+ivI3u2gQa8gd5dVEunz3Fh8MM51yzcYz0xaHxRj9+DQMMeYkSelzkRVBhctYWJDWBOKdbImMAsoIn9cFZnXoLO2o7pul2Q00CApwoyXUBAkCmDRPjWY74nYK3HmVdntag76e9kmMIvx5vn2G2rp4zbWj/fCZBPgK/1E4BHH1t0ziwI22PbkGkAApd2nnUaKOXclNGebLqDth2IML2KNQMevLv/DSxYEdZaD1AWr50ACMtpQKBRiwobEHgqxbjvyj7T0ZcoRMo0CLi07NeUFeDAdnsanz5GR5Rr8p8GweXTWXvePtdkLpzyThTRjE3jbSL2jcEEtzE6PEZjROPECLs9PUAefSz8xrAyUuL1AQl0FC7b5TszcRaYNv18LSBgrXNA4GiMTmU259wia64TcIYggMBp+ek9AebBj4uGn90XMHf2zODGUwRrPR4zjNI5zkkEyPnvMltmLOcyZlxX9p0lmHSXbZ/2LeOzuvFiYGCK+Heg4GyZvIeGzkI26ltrft+1qUXIO8M8DYqngIdLDdhTMgtnDcylIOMlqTnso8jQKcAMdM5XrvWwf6M3fByJkQ3rZUTFumPMqIPObDWicWc9BgUGChkbBh80TuHHUU5z1JblEVG+79//fH0z65nKacCgjUdHU05t/yfQblz6XAt6vO9gik6UbxpMhoCAINmCZA78cqIGcr3NC6XCS44boBzplNvAttiOR7/Yfmaw7COSaXB5HA+c2khWjIAnQODq6up+vE1ZgZblYmBAWbWswFPpRcBAc/hnQMBuwLa0nyMfG2TXRSDQ5obWelp0bmPPTvO8k2k63iK+Zox/RTnsPHfG+KiclyTL46gtLfpsc9R24KFmaNda9yn3GJ/oZcAFy0xkbKfF8nOdjQSBrAFEA5K536nbGGGnTbOfNQE28pYf5X5W5gYxre2Ts2n1emy8tE4+lXY2cHL23k5Bk4MjPwLI9wt8/PjxfrqAWQJ/ZIvO0r+k6Nf62R8ZF1ln0wAw9dXtp6OeMgPRiXfv3j346JXroVzCk502xwsjf65n4LRHpgg4ZnJ9pg4y9rid2rADB5fSaTBwaSVPYaqBgl1ZZ+owIGgLM9Z6mPbhPfwfBbwkmnfE2PYvja6bYb8ECDzFEFLpWhkTD6+FzL+Pk28OwpbG9nPrrU/Y75RLBn4MjIEAy6Sjp05Ohp77dIoxxo147zTn3oAsI3lG7o7SHaHvxuxOf9p0XZN7y1KQ57b+gPez7LZ9STprBycwOtlW/hxR8wkDZgvyRMHnz5/Xv/71r/upAwICOkM+ZcIPbaVf/CKo7AcUh48G+NZ6aKvbOwZ2eu4AkWU6W+KIPvdxaiBrZnIuPGdtTfQwtiByZUaEGbkWHJ9x/pf64NNg4FdRR6Odoh4BgcaTnfhaDxdMEWWFGEW1BTCtztTV9n+FzpRhp9uM1a6cyeg1chun64/4fi75PJXO1m0Z2qG2VDRXsWfLgZroY61/y8Grof1SnN2g576dI41hc9hsE8dW61+D3pQZ4EKZTPLdRVjtZ5m7H47WCzA6MyBY62eEOS1IDLXpjpfU3bM294y9PFN2AwZtHYGfNPj7778fZAnyHoG1/j0n//Xr1wff1bi+vl63t7f3TvNoWpY23Hqc4+Tbjy9Sx47AQANGzJB4ymCt9SArkAW3LTNgW3J1dbVub28fAIKcNxg4CiB/1c7+8WmCFtXsfqEWMRgdZf8p8/DkpUUhrC91MYV1Jh16pv6nOq6ja1z27h47/jN8vSYDOtGRrk3OeNefzgB4G32aQFyuo3NKvazDRpo6FwdNahFUjtHQOVtmIB5DmejMETh/jozsbKcsWeOZMmTWofWl5c9UNMtJWQQNBhvTuH9JeoqRb3qcrX90mO08nR8/XczpAk8ZZKrg7u7n56dpVwKAQ+4H8s2pVAPdENvghYzO4jnt3vbp7LNIkk9OMEuw1rrPdvi12tQ5fx7bU5CcQuB7DggKTM3/ZX/ShYl+GxhwxNHIA7oZXqLAZvBoGNu6AZbxVJBwRM0JhA/y1e4zkNgNehu23W+q61faF2p90YDAawEGRw6dcrs0EnP/Ggi4z5ohcFSy1nr0zD11m+nUpuvhi/VRzxz1ue3OMkztN98xlIl4/Fhhe/HMLvVqgHKUXZgcYMpq0yB0eFzM5r58KR3+XUBkkqmdWfolzj1gIIsH8+OLiQIGmNa3k6P8GwiYeG0BivWE7TEgyHhwRspjg3rKrzR6LQKzH8kIsM6AAWakaAv8ToWM9QCpjMsjGzaNmUvoj75ngArg41OENqEh7nvBhQ0xDZIRU1I0T6XmFFN2+JgAwSUGZrr2TxupIwf/WgGByeDlCGjxPg5oGzVuc7yhdZbn/84yGcjS4OX/ro1OmTO6aulIHud4JChpwGY3ddCm4ywDg/rJCed+zw1nnxkBZyY4L5tMB9dwNHm+Bt09Y9iPAO+UHTAY43+Cg/bVQq4RsOO1Q+J4ogOcXiS1G2c8ln0DQ4JO9q2nJAjICYpyb9o4PT6Z+8hD+Pr+/fv6+PHjg0coPZ11e/vzxV7ZJ3D19PYuaGmB2ln6bWDgSHmbQk6g4IyS2/HagDbDnrK5iCuRTavXhprHmtNgPbusxCUOs0XgU/ueCjaO7psA0H8KEJhoAgRM3zdqgMDnsu+oqIFeO+5fzWhNes/oxREIAQKNURtTLteONSCChro5CmYwmlEjz4xSmZ5lepUGNG3gGo2cT1ZgJ7vflVU8Iupks4NHdrY5TRIdf4uK+SRB+2hRMgJ+PTGzTlNgZ9vZwHnua7z7GsuFekhn3aYJmBlwRsCPTRJ4TnIMEQREdlw86OmHKeNFQO6x4XH0VEDwW8DATml3zn7aHlEDBD4/OdHU4zJ2UZwNF+to5TY5uLyJr11ZO3puB3wWIOza9FKgYIokdjxN4KpFnJOh9jymo64WYbCu1NPqb3U2HtwPNJJ+OY+NzjTXan5aZsBEIOTIjDy0pyoa4LCRPJou4LhmFtE8WXZtXP9JOmMDjwImX2cZ0vEzIm4L55wG9/9d3zaA7eNn5WB7zevsTPnKZJZ1d3f3wKETJLd1Eg0MeOrC4yPraG5ubu4zBFxsmACU+0eA4AwZPJyhZwcDTwECO2Bwto6p0U0RTTvUz/R+lLetIGd9jYfw7fOXGJrnQoCX0nMAgddOBgwTNedsJ7nWQ513CrGlUicwYACSY54aa3W3NtrZp6wYRaY5U5YjJ8rCQKBFes0BtamCyHFaXGaiTHdlkyIzt/Wo319al+3wdnb2TFlOh3N/t3reafgjm9vmxacvW04Blctux3e+hHqx49XAsj09sQMDfm9CFg3y3QsGXny0MPss3+tcWjDZZDXJaUe/7T0Dvs8N2YGAqS7fb7IAWlTnY0f12fgTCDRkuzMajnB8jMfd1nad0fGvGKzp/qcCgUvKeEkyCHD0Pe3zfsput2DUddJgrrXu09WOyEOejoouOsU9OQpH/wQlHDs2diyTYIJjwLzuxnuLdCjHZCxyjhkMl8OyHUXR8ds5pNy00+sG/lPoErts2dHxMCPgDEHOGyiGqAdcGLvWwyc7+I6BPHXSAMHUxh1Yn8BAm8sn35wmW+vx3L+dt9P6kx2PDNqaCzp9A44sQvSCyzPrBpp/uYSeLTOwQ6pTR136cz2763bUjDn/J1Ky8WBk5me3J7AxyehIsVtbp3Kfi3agg3UfAYejTMlL0RmwmH3OWzO6OaLJmbBOZpgCON+/f39vJKwXdL5uixcbnqE4AEYdzAxw7QzTrGxj6m2LCD1lsDNa03FmPigHGmquHWjRK8ctbQMBG9cNGIQ1wPYa6Yzdo03x9JUdHWXqaSzKg44913ts0fFnvwEBTzGR3yNbE923Y6dsog8BALk3i0h5XwMUlFWTC3WMCwKdXXF2sAGC2AGeZ7asTdc9B/32BYTNsB05/EuoOfPdtQ198rijA6aBci0N4SWZgZAHTANNPN7aO22PZPAc1OT3msnyXWvvPFt7nDr3vp2FB257A2CMSfTm0qjUzqrxlXJ5ju9ld3us61xYRmPXyNc525DHzTj/SoPnMiIjyis8eY61pVcZ7TWe0y98faxl8dJAYAoodsGXjzUQ5YWY/kohf3Z6jPKvr6/v7yfPAbp0/hMgmEAk22DnP41f288JWFs2EwAgaPK6Co9fyihgqemnsw8GG8kKEJATzHh8TXTmGtKzTxM0g9Sc/REA2KWLdsd2UchOOFNkOBmCHRDYdYCVMdcfteMMGd0+l5M2z5eU+5R2PDd58JMMqOI8GcGfLZvU9KaBRYNNl3UG3B5d26IlEyMbOlk6VDvqlEVjlvoaGPBiMxvd9t/tYtRlY9rK4LwrZc51A9xO8n8pwHtkB1swRXsyOTlPARCg0eGlvDi3m5ub9e3bt0ffK7i5uVnv37+//1Jf7uVnrvNr6wU83bRbl9Vkc7afprHGKSfrUgNTdtBsR5sGa33IugkUCCA4ldXs0VEQeom9/m3TBA3BWkBNUEfGb63HqdgjweeaI+VxlD0NtGyfkg3w/2nQHpVjJ9Z4POtUXP5kgM4CgmbEzc+fpAZEzc8kQ5LnHc/0V8qigVvr4Tv0GQHYaVHWNFgs187SAKPpsgGo2+ty2jhh2UzR5lo6XKZYWxo6keUEBrJuILJqc67MGDjid3/QEE/A5MhW/Qlqesv/TQebTWlObDct4PUkyQjc3NzcO//r6+t1fX29Pn78uK6vrx9lhe7u7u6v+/btW/1dX18/eGMlHattLfcNHgLwWiZ3ol0At/MBjuYdvTc74qcnpgxI+oqAgFMH5Hdnq1Leb8kMXEJHjs6D7KhRuW5y1md4aY6sKcBaD7+5bifB6yale07DwXRzq4tkGT2VLukP7792mgCo27P7+d5pYFJ/fE+2ns/mvrMLk141AMF6drxPZRp4NP7cThsqpv4NBKY3ujWD2uZIk71o6VfLhA6qybGN70uA/u+kS+pnvzedshPzKvn29sGUx6cBkubPgrfr6+tH0wkBvv4eAX+cLkhGoT1Z4P5ogMH6Zl0KYGB77KCPAFXK5PnWX9OP59m3XhfD9gTM5o2E01SBbfAORE70279NMDn/nSNvDs1AgMcu4aUNrmnAtdWbZ1HnVP9TaEo5T3U0Xp/isCcFewoSfU6AdCk1BxFqetXum5xp2889dPashwatOVbXxciV/Ky1fyy2Ob8mizPRsI1aA8cE0DZau1S0MwNeiJb558jMdATYyD/7oMnmLAh8aTrLjx1jWzBoUDUtpmR2gGCAr+Ll9Mzd3d0jIJB7+cv0AeuyvtFp+5sTaecE5nMdwUDK4f+QA68GQviUyvTIpKdDvE8wwjax7/xEjzNwBAWT/Tpr9//YGwgvHVBunAfz7xqcFlxDYWdp4nHnnHzMxu/SSOF3RjZH5f/uvrqUdrxMRr9d7+mCswCogYPdYr42X8lzvt6GcRfZpn4DAQOOaQy2ttr45nhLSSeS5LG1fi6qNAhv3w1o7TOY4foA3ud73IbXBAKeEvRwn30bB9OmBKxjqbs9KdIeF/T3NO7u7qrzb0DAH6OyE/Yj3XyKhuBzyqbxCRK2jeU1AGRe0vbUmXsJitqiSf8MHtwu8881A8wmtjHK+y7Rm2cBAy3y2DHUjGQrc4pKj5yoDYDLa8Iz+dqjAXnW8Z0BAJfQzhkfAYFJ7mfunWjqN+//SWptIcibgKsdcYugLS87ZBpGG5oWqRrx03g3AOBHoxixsPxWtttMZzEtotrRNPaZlm6PZwUcNNBjA2j5Tc49cqE83P+7drxGQLDWbD92doVy9TSAdZv12flnQRvBQPt9//79vl/yxAGzAlkn0ByidbWtI0j9lkvWkvD+XO9HH3nvTpcIRpihMnCI809bsx7C4IdtdoZgWrDM6QI+cutpSPufS/X2WcDAUcTF/TOIxdcclZFti5wciZ1xdhbwjp4q/OnanSztcKYIx+XwuqcABJMdfjvvsl7aqDbZtYF/KRiagEZ7ln2thx/Lyf+1HhpsA4AWvTXH6PlWGs3WxtTbokePFdexA0H+tTn9tJ2PuHmKwFkTG+02b0ybkPaw7eyv9+/f10c+Sa8BCISeYl8aqHGfuGzqTmTEx+SmlDgzA+kbOsI4R2YUWNZaDzOhdpK8htH0WuvBOGmAJdmn5juiFykj5bl9WeRIvUpb+ahlgAAXSX779u3RGokGBKyfAQLJnNl+ccFkA/iXBHUXgYEzDjz7Rz/fY4c1ObYjnvzfxpfAgDQZ9R1NZe348bGzA3wXxbdrrAhTW3aAYkds++REX5MhJTUHZmqRk+dTJ/lTFgSjzhDQYXlhlyNoPpcf/tZ6GDnHQDLKcpbMzpgAYAICiYjIc5ObAcWuXX4rW6YNOK/77t27B08DGOQ0ANT6sfWFU61OIac9DiJeiib5s58mm2lg1vQu97QIPM60OS5mEHItU/aOjBktBwjc3Nw8Anr5JcvAeskH5RNdyceArq6u7vnKm/9axstyZvo/ICC60MZ+AwPfvn1bX79+Xf/88889EGCGxICovYWRfZbgIhkv99uk/5fo7cWZgSNj3wbOdOzM/wlMWJGdAiLRIHoAsb6zDpPXX9qu1r6pPvM5dXgrl47a5R5lRaZ2/ErW4DUYVBOddAOz2W9Gk33hfdIEFlsdBABZbOctx4DTjIlmci7bZjhb23YgZ/fKY45JyjOGO44khp1ySr3h20DKTslvraP8mWbdjZl2zTRX+1rpTLBke2mQuetv6tEEAmxb2Fe5vs2jxxlyeoALCNm3jPLX6t/DYHudSucjpgSc0xoJys2ZDo4/krMH19fX6+vXr/dZgQAAv3hp0mlnB9o4ZRaD2RHr8SV0MRjYOe1sjxz5pIDNwDTnvwMC7lxmBRgNXJJ9uFQuu3Kmc0dR9uSImxxz/JIU0Y7OymUyuq/BsIYXLyYz7UABj03ggHJn9DFlF9r8eX6fPn2qYCD1JrqIESFIcHp1cnaJPJwy9hhlOnKSVZMTZU1ATmPNqKj1W4tUaTxb+wwwWKfHhvuzOcnnGkuX0mQvGzkbsNbDDBflwK3b6Yjf/eTjPM+ynBmgE2zz5i0zwcyAr2uOM32ctLpBjKfe4lAtP8o+5U1TShyHzAAQDGSdBNvtrIDXTYS4/qWtEWpjrgWDR3TRGwht6HjOzFyixC7D909AoCm4FZtvcWrTBaadA7OjndD4dP9Re9t9O352nX2p8ToDhgxSKIcGYl4DCAg1RxaeL+2rnbOwU7J8qLtMlTMbkFfD5vWwTKu7XhpE8slpBIIWXue2NPDDelhm7qWBsj5kP4ZyMlABRTG8TNPakfh/ym6AomUccoz942iUGQfrwEvR3d3D11VfMl6bjXRZdCzOArXpHs/552kPgr4fP348mDfnC4amx++maQpPDTmlbj4boImu5ppMIxg4WSZcwNcCNQLytM/ZAAIgPj3hdjhL1cBsfBrtCYF2AzVn6MlrBi6JCtywXfkNDLQfr9mlezKInEbdAQHvu507o3aGput24IL1nqFm+J8LOBgUTrJypPLSBpXUoqgjUEuDStq1a0qrrvXTEe+AAB/BY+ROINNk6zpdf65npOzshvvQkVH+81ErbhswaGP4/fufr7FlBEZHY8PKRWtTijX1TBHfRC1D8tK6e2n91tkco/7SnjGzFEAQWWbxIL+25+8MZF47djYZKafKnS43GGB0HOdKR8tz1GkCSeqfna4zAtQNOtbUl+9pMC0fyr0EotNjhFM2i5mOqc9ddxYUclzl+jbGz9r3i79NYKd7BhR4ME3RxyVgwOnXkKOXneGeHNlEU2ag7TcDNCG2XwURjc+mCEftvQRsNMVrEWrbvhaadLMdn+bVz2acXG+ifC8S9LQAgYCBHX9tWsDGhmOiOYQGkHZt8rUtS8DpBYOJOB3Kgzy0aYHWthj81rdui8/TnkxTJS+pt0fAs43Z1q7d46nU31Z/+ifBlOe+8yriOKj0I8FAe68AwdzUr1O/t2ml8EkAnBcjmRowzzhhBE6AMQWc4S+yPAKt5K/xYr5SLvvS4M2/SwO8tZ4wTdCc2bR/qZNrYOASMijYzZPS8Oyi3DNCbY5wus7X2OFM1FJHE2/NYEz8TjQZGZ+fwE+77ykK+hzUDPvuPw1pe90tt6zjjA64rmQFmA34+PHjo1fD2mnbUe6iEEZG5s8GpjkL8j21JWXFKE7Zgffv39+noZvuMwPSIijTZFDZh209AY1rrp+mTC4Byb+DprqngKQBHOqw3/AYx8u6sk16nHqWPuQTAnGKzDRlQV0DApw68hoEOtbduoLJvpO4ENJTRJxCYnmRVe6hLF2f77XOtvUslHvTaduV8JRz4SvAZ7cm6BK6GAywosmp+ZqdYTkCAs1It/pMFM4ZBHaGdu0lNZDRzpMmI5wyduDG19rZ22BM4OApCtRA1XTdSxnUs/rj/jUwoFFlJOt7zgJDThOkTD9iR0fKnwGA05It5Rqi06PxXuvheoBL5MtUM8vh+bUez4laVox4aOia4ZxsErM1BgQt++HU+Us6/qfSGTBLYOm58bUeOkf2kR21578zfZBrI+8zkX/TbdbJvjcQoD4wC9WAza5fLTcCRY5961uONX0mtawi7zfQaLY76964gDAy9tTIkS2e6DQYaHNNR8bO/5tBPgIFISvLjx8/7qOZXGtnOQmkGZXd9b7vjONr+9M5K9rEGxXG0yBnshxTfx1lAdp1ra5L6vzTtHPQzZDmF2O6090Yv52j4ct1/NGetmDQgGMyyFmMtXtUaa2HTnatx6/9Da/h/QgctrUTlrOnJSgbGmwaxuh5c1bus2xpVD1O0na3n8ftdFpdL6nHlwD15miif9RJXu+6DNj8wqH8uF4g/W2dnVbSOytgZ8++MFCd2t3a4TZNfUl9duaIDpd10QnzOHXI0zQEZnd3dw8i/slG8VxkTHCQqbZ27yV0ERiYGD5jaHfHj8DBRBTQFMlM6aSjKJnlT3SmXbv2tPlnK1Rb+xCDN0Vf7ZhBA8uazu3IqNzHzMdL0xEQpRGdwJkjlJxnH0WGBBMZtFwUGOfPqYH8AgYcedCA2ig3QEDdD780cH4jm1PmbNslcp6o6bLvu729fbBGgs76KWQ9ndYdmC/au519eS00AVluPUWwVl9TZB2PzAwy/vrrr0dggE7z9va2Lhh0Cp2gIPc5W3AUfdOe055NgJQ2i5mkXGswxf2QH020jkzTMwliE9Ayq8E+aOAi70zI+oyMF/Nv2ZyhizMDlxh2Xnt076VOiMrHfRPTg82g2GGeEVxTvMZfqytkeXqQsmM5MM9mO1zO5Oh3ZR711yVZgEt150+RwR+NT0t1xijmXhqDBjDa9II/2MN1An7m3/yQp/aYHdO3uT9bOgmuDl+rvzLZNGWQGqilDMjDZLRswPmoYXPeBqAGdGzT5DxadHoE8F+azgB29klbhGo5uX+aY2JqP2sGonfMBnCKyw6fddjxe59t4dbHWv9PMkn9Bjt0vtYXH2c9zm6xbzgWOP7juAPGswaDwLPxnbKmKQxPFUxl7OhJawZIuwh7V46N5q7TG7WI9kz00Bx/Q2C+5kzb3J7WLhvKteaXJu2MGUGODSMV3m2x0u6AzSVtfs1ZAc/Jkacd3+67qS00ho6uaQT8CV8CgezzUabwF8PTgCcNdev3qT124p5Lbqn2qf3UnTa3OsnRxpjp/AAVzytTtpFvHNRRhorn7JymMZO6zkZXv4vOjFnbHTsKj4On8GBn2kByW2/QpgKObNhEloPb7+xea7PbYVDBjMFaP1P1zA5E9/gEDXmx8/ZiZP9ybfNjPJ+6bGuc4bC8juiXwMAEBCZGGpNHRvfIEDMjsDNWzfE3pzABgzPtcTlTlsBor+1P16/1GAi0wTSV4z5rx47qd3n/CTQZDu43Y+IBnOvXevzCHkcYHOjNOHsO0YsT1zqXWk/dExie9M3y2ZENo+UVWdn4mseJbJwzlWFn7XbZLnkc0BGxPE8/2Cnk2GsAs2sdp36tc23hoNPcl05/NNkxW2VAOTncqWzv+x7qYPNHucbjmURn2cYMnS3r8ZRsjjUwyjY0O5BMTe7PNvy1CH/X327vbwcDKbRFm1OFU3QwMT85/rON2Q1eIjWXadTNtj3VGFwSabf9hkx3A2qKCFPm1E+OMp7q3JtutP3XQA0UtF+LLgwIdnrc5gs9WG0sPA+51k9daIDCDiDXZ0sj5qj9jIxsjCeZ7RZaUreakXNmgDy0rEADboyKWgTrOqZsAHlq8nhNtNNb692vZATWevwmy/bcv6PSqb/DO6+Zslu+35GzgeduPNrGEbyznSk351kHQQ/rTNt5H30NgQCnCSiTXMvpB7e/+VLbAQJctv+ILn7p0HRu5wiOfm7kmXIuoR1/U9vORsu/y0gcOeYzA8fl8d7nAAD/CQYzNBkIn5+id94z6Y8HpkHELkvQDDgHc6IHGs7b29t1dXW11lr3WxoEGiRmLI7Goo3dJM/Gux1PM7Sk6CyfB/e9DQhETjTCBAS2E9N4abzx/teUHSDZNmY79Qe3R2S5EAQ408KsQCt/im6tm9lOWQHSEQAgDw0EMfp2diT3Eth4nYvBLdtN/hvfHOOTLq718AVdO5/HPmcdrP+sfX/SNEErfGcgzwCBqbydENY6Z7jMR5QgxoeKQTob3R8BFRt1R5dn6JI0G/nbHbfD+VVw8Fpp6hcbUb4J0Av9/Lgfy81/RmE5zmNO6U18UqeTLk9akQ6Nb3zL/V60ZVCQMls9diaTTkzAqbWRRnOt/t5/rhPIOdc7vXwoMs64Im9xUtkSKLD/0/7WFztD/CfoqP6jvuC7BdjXoZ2Naxkd61TWCzDiDV8powGCBgAIDPnfkbYzVK19DSy19u1kYL59nQGXgYWBDUEFM3muK8T3PuwAH8sj6J/KnejirxaamvM4CwSs6Lv9ds8ZIGCUxHs9f3SkNEe8tfPPTbv1Aub3OZy62zLVNV3/GmhnUK1XGVRe8JeFfgQEuT7pvjimtR5OEbx79+7B+wT8dsFmvJnyZ2QWapmuPEnAzEAMa4s0Ui7fbWBn3lKNZ8GA+Qvobn3Adk3XsF5GZI0Hzsd6rE9ZBPaBQYenbv4UnRlPjX+CW79sqDnRBkSna9bq6wEme8Trs8/jLs/3tECt6WADoby2gaHJbhMMh5cWLEYPDXYNZHe61NoeXggI6MvYJmbIOK4Nfo/oNBhgBD2RHXNzlEf3Hh03EPD5lhbiMRuF3QKttWaQYLTmY75/yg6wfiPLaUHYNNjO0m5QhhdfY9B3tr4jsPanqLWj6U6AAF8AxFX+/KY5DW7Ko1P1Ii5/pdDpxWYQcj5lNYPB6IAvHKKhau3mc8/kuY0Py2lyEC36btEg+yX3ELh4/plRqB9XO3JyjNoIJOj4Uz4j3GnK4bWQHdxOx+w0cz91ZwJ2tqnNRkWGLcjiry0KZV+2zNHUbo5Bt+0S2TWgMNktgxra7BbJ87qURz8aXWxg00Co+VXKgR8vyphv/nCiX84MmMkd00fHWpm+Z6LW6HZ9ixKsvLv7WzunNtgIM4WTDmb0slb/BO40MOxAJvTte6Y2HbXd1xzRpBcvRTsDwOg/YODTp0/r8+fP68uXLw8+IUyHGSd9e3v74KNDBAMBCQQKjmamDAGdJPWnGTC/TtbrBdqCprSH9RHcTLrOcuw0LOOj7JHHDscyeXekyPSrnQvvTZkxvAQG/PEZ8BwjHy9JR7aVfeppLQKDtR6Cx50d5joVErMuaz12+M1hWh/btOcZGTegZx1stnwKrNhmZvxyziDFcmA9tOksnyDIgDx6l3KipwTJvN73po9zPZ9uCE9n7e6zgAEyeNbBT8fO3GMlntI+0/0UHu/3+oEpK+Byd8JuCk9l5mMpVuZL6CgNN/F1BB7O1GsUvNbLO34SjQP5ZV/QeQcQ8M2Abc3AWg/fQjZlA2igmbrluwW4NsHOOTT1Ua7js/n+wAuj6QYmKAfKzPsm6t2R4bGjcNv8n5GXQQB/E2A2ECD4WesnEHdk2pzXJRHWc9IE0JtDnNa7OHK2jbYjtV09M5bTN0yJxxH63C4gcXDG4+SlgaApW3zGtk2PD4ff6JDXM6zVXw1P3nm9s1nUe7e/gWQ6fepleGtZhrO2/dmeJsj27P4Okbq+JpgzPB6BD6dBiQRbx56tg7Rzxuz8KDL3G++53lmHHb9nELivm8o7auNrAgEmg6SmYzGgnz59evBCIGYGWMYU3besAIGAf+3eZtxcVwBlzjHq5ToBg76nGHxeN43jdo1535U1paCn6NNG1jLi2osGQgwokh3IK1/bFxb/JO1smNsZoMNMh/VyZ3NNbWq4BRHMpkyAzlmE1ia2h1MOOe+AqQEi2i3eE9rd6wwX5UAHfRRINR8x2WC32bIIzw5kPF6iA+GTIOGs7j7LAkIyd2a/GYRW5o4oTM+1T2U4dZJf5gq5+Opsu5/CM8lKb3Aw1UtFPwIAduztnqkNl4ACk5X3pagZoDao/GbAAAJ+SXACA5Mzz72M2s7+WuqT/GY/Hyq5ubl5oDtHRqkZ0dZPO73xOOSWEdXRmN/1HfuwZQSOsgN2aCw74z4ggHoQCiB4KZoA1FoPndu0BsTXTdQCDGdm2j3ODPG6owxO+GVqO3y0l/nYSRLMTu2LHjrwa2PJUwXU3dZWAtYzZLBrHTY13xl5MQOQvuZrjs3zET0ZDEzO/uic72/UEPykoD62AwE5x2kCorKWojorhx2/zYD6WhrRMw7Ysj3T4R7oZ1DjEYA4S79y769SMybpdzpfPznQPhzkct+9e7ho0OlalhtH43onIBDDRP69SMm/9ia4tX4uLmwGccpC2JBMGaBd9HVGf+w8pmvsVPxBJi8sdH+z39f6OU1wdXW1bm5u7t/VsNZ6AAbWejlAcGRnDeiiMy3Snca61y/Zph05FGZn2pqn9qlit4M2mNe4TNp4jjfrnJ15AIHrZf1tKoVltHZnzOV/27Iur0+jvk6goOlA5MTMALMDAQq/bc3AhFDPAoNdGTtqndGyAbl24rf9b8bOKPJMFN3+TxF7U7TWRhtYgxfeN5XZ+G5g64gaiNjV43svqeu56ciQcp41CwezeDCAwM41A5dOm4aJ6wIyUJlhMCCgMbJhouxtsKbxRz7X+rcza5Gfy/R9E3ncsGzqpPfdB2zXWv2bCDauLaLy41tT+eGDKVk7+ru7u/Xx48dH/fxS1MZOAzgtM2AdCbmf1vr5WfgcZ6Q+8WTHFrL9nLICa3XwuMtIGAw0/eW1tD9Nbq28HRgIAAhv9Bee0trJKzLP9mgqxe1x39s/eG3cEV28ZmAyqpc6/zNAYCeQtR5/l4Cp9jMOr4GDpFomB93uPapnR0ftt0HzCtOdU94BgpR/KR9nI/wdyPnTFNmZFzrjOP/8vnz5sr58+XIPDKznNKaMNDMwuShwcvrJQhBENANOh90it7POgnO3lo3LoJM9AsY7Y0MHNfG2K4tGNnP5yQJwn5mDNvcaHphVSLaEEXSmWpiFYAr7JWjnzAzmpuxSyglNekBKFuuIt2zpeOjYXHfTX9swP63g7AB5tv7a7k32p/HGcslbnH50hv0RPWS509MD5I2gImA9ejd9oIu6QLDGwCRAgJ+dPkMXf8LYQsv2CBS0e55CFq4BgY/lv+fOUhYF53UDBBUTHYGNFo21e3cGPbzSqNMx7Jzu5MQb2j0iK+WZe18aCIQH6x0dMqcGPn369OCxQr6QZ5IvDcdufcAU+VNXaeDtyFs0TkPFFcbUDYNjAhnLx3WwzbsIz3o61cWxSpm1cRmKceSTEW2fRrTJk+2gUWcbYw/yu729fTRl8BLUxnfa5WyU91lGtlxcGkp7c08WUUb3aEdbWQ4aJp6PnDOnLXzOZL0iEGzXkYcju5Uxmro9hdBAAsfIlCVogJf3GEiRnC2hLQ6ooI+4BMSe1nKvpA4j2TYnf9QhprNRZ6MzIMHUnGsDAHZ+l9Cu7myp0Lvrdw74iMddX5wp51ci/JcGBM3hxmDmyYHPnz+vT58+rS9fvqy///57ffny5X6aII6dRH3jNMG7dz+/Ie8pBG5TBqPQHz9+rJubm/vzKcPR19TPO4NpvZ762cdZN6NlnpvGDOumgTcgaPXTAcXhJBuQSCxvXMzWddt4k+LY8jimp2WOZP0SNPWX9csLUN0e9yOdj3XUQIAL53J8F4ywLG45HdGAqAOpppNNPk6N73hL+/zEiZ0t7yXgdnq+ycwZApYfObYsiscYifaB/Rl75jqePTPgxUytgyem/X8CAk0pfpWOkGkzFk6zTIp4hCyna9u+564mQ5nzzg40fi6Ro3maAJF14DUZy4ncNgIBZgH+1//6X+vLly/rX//61/rXv/71AAy0ecS1fr40hEaZiDyGZgfGbIB2sud0hyMc6kOuY/004pcCXhtKGtzs2+gYhHgKZAcKWCfBEqcG7NRYR8u6TEAsYOLbt29rrccr4HPstZF1wBkW61gAkzMo2QYYUdd2U0TWh+Z0ohdNX5vuZr/xzzIbETyeyeqmLus09dNjjRk4ttvTB5ZBGzc+57awTZYR63FWsMn6DP1SZsBMnT33VKdlwEAkxvkTD4ZmIGwUmGbydIHr3PE7Of3ddbsIpt3XABl5O0LDz0k7efyJ+i8lDuqAAa4R+Ne//rX+/vvv9fnz5/X333/fTxNMEUzKoW4RDFA+XiDE6CEZAadGM9B5rEXoDeDSGXJuvEW9Z3TbPIQ8T0zZtLpcJ/+nnGZApyiJcuP4fvfu3YNn7XPeEVVARnhhtiFO9KWmChpAtDNNJoDOio/IUf4GUi57rYffbrDjM0CbInD2K6Nvt8HTYTzP3w4AsG1tjDZ5tuPMehhYmzzGKDM6bcvLutwAwkTtmubjPN1z1g7/MhhgZZdGolbwp4CCiRcrVo55HsXlBAi0c9M97VgDPO0+K1oDBkbo7dwECCY+nxLRG4js9l8jEFjrYWaAjxAGDGSKINvpOwIuy0aN19pgsQxPE/CdAYns7TBdJg3wNN0VI9fS/M1htyjOMjwyYJeMn6l9NJRsLyM3ZxjiIO0YOW2T8gjG0h+ciggYeMp4+Z1kZxlQ6imPtR4CSK+1MHGNBN+/4GmBd+9+vt+CmQQDleybb7elAYG1Hr46eaKmM/nRNrWx43K4up/yI7Cd9N59wnIpP+6TL5aTbTs+1ct+b7boiE6DgSDsMG8iKjNNDdo5rgYU7Gi4P6FPpwutZEaBPN9S8ebzCATsjk/zaXb25pf8nZHTjp9pUPjcGWPYBv9rIPY/pwiSGcj6AAOCgAFG/nbCdDauy87EhoiAINfFUNPY2mg3h24DYCfpCM7j1QargYEjkJpjlrszcu3XyPpnsMN6WL+BQFtUFznwE7yRbcAA++MlwUADaSEGOM0ZT+DKT4mEso4iwMLz3+6ryMY2h33eHDTJbfJ4ZdY357k1sKbcskqfbfc29zZddJTdovsj8jhvfFgejXaRPseaA5MdkCL9Mhigc5qQ05FzaEZyEjSBQwMHOT6hT6MlpsNidBlV0QC5/sbbpbRz2u58t5vnGhA4UtbJ2bfIcXc9+Thq00sQ+5yr/b1mIL88Tsg3ENKBsFynZGmEWxQWJ2+KweHKbDooG3emeltaPXUZpESPk/5t5bstXD9joz2BYY+39jSFx2LrN+t5iyCdGWB9fqrDr5WO8+ciMr68iGDupanJnm1m22kzDAKS9Wh2mu8aoO4GUDZZMEVuPUq5zF42+2C9S7l+IsJtz70sh/aKjyh6LDrIa3YufHhazOPuiFh2mzJg+dO0RLaUVZNJ5JZynx0MXF1dPejMtR6+GIKo8UwKca05KvXx5nhsJCYyisz+zgE7Cmngwwp9ifPbTVMctcWZCp+/RDGn/TPAoJV3BvS9BNGp8RFCZgMIBggK8m2CGLy0IX3IJw1oWG5vb++fWafjYcRuQx3H1PSzTVPs2tqmC6i77VjIc6UEJjHsIY8HjjdHK37Cwg6egJt82ia4fT7O+vKip/QTF4SmzkwThK84DP5eCty2vraMGwDj/cwEOF0dGRoI8Bl1T5s6aPOiQwZY7D+CivBtXWMbDXSmdjogNBhg/RxffrY/5EdVHQgTIHrqhVuObV5rcOZ+nnwnx1jLEjQf90cyA2xkmIwAG2pzA61QbdDzup2ji4FtUwVrPX5JBYXJrAAjsWb4iW5/xTgYBXrwhtcdqrNBTF94gEzGpMl5Bwa83+iMk3oJ4tRAIv0sHOTbBp0V+PLly73zsNO34zFQjIPJz3O5NEQpk4ZmrccGgk6SYy/3U1eiz55S8DjjWLZjNW/Us2awWoSe4/7xnt3Ybk4hPDuD537xFyH54SmWlWmB1sf5ZU3BS5MdInXbGSr3NR0c+5CAgLpgh7XWY1tLQEH9jhPmwssG4FLmUQTL9jYnZ9tCf2Sg7XpDzYa24MvO3CDL5U3BMftlZztp45vtYfvbWHt2MMBnntPooMlGHOARxORsmoEyNUfH/WlrnlrE5RRtyw7s6FeBATt0AjSsyzzRQFh2Z6LJ1h/T+aOyJsPeyv1TlP70AIkRJSBrURevpQ5xYZrb6EHrND6NCQ33rg1nABXrpRFjJDaVn3N2si1ibwbddTUwQP4pN5YzOfi1+pvzOFbZV5kGMgik44zD4mK4gIP8rq+vX0x32U7u++drqGOeRsr5bNPHDECsp4ymGW1zeoWgIDrS9JXgg/oUAOv6m95bL5osOMY4NWCA01L+zFg48Mp5ypdZpLNTB+6ndo7BBe0O5R3+3FcNNO3oojcQGp3wrX25Zq3Hb4HifU8BArw+5U77IRsmLhzynBr5JhBwOS77LO2iHtY7tacBm4l8XZNTixTb/yP+2znXMQGzP0mRrZ1EosRkAnLM+3QiHmg0QC3iYgRlIGLdovF0KjXXGdzRINkBZH/Xxza6HuPkj0an6URzWNyfjLr7Ke33vQ2AZEvgwTUC7HNmCihrZgQSQfr3UpmBSY7WPcrGjtyObq35TX28n5ne6ZqUlbGR+/jce67PdXasXqTHLG3a5rZOoJGySVm2sw2Ysr0kT2kZRBhkWDahyS7vZNrIgWor0/7jt2QGaCyYukiFRFMT0mmGyOcnMpho55pD5zVWAhujneM6kyXYEXk/cpITsGnXUOZNCc+g1DOg7CnREdHtS0VXRslxDnEQTiH7F/BAw0A94gI7gl6m6p3etMONrKjDARftLWe8h/e2KMM6YEDRruF1bTuBATuutbox9zWNH/cdx4sdG+XLtQkEX+SDxjTOi4CBADAfLXptRH0iGQTSwWT/rC1zwDZNDzFjQH68IDbXRYei53TwzNKmnc32Nb026JyCu6ltzSftAhlnCJrcyV/axjIN5Fl3tvZrzt7xHpZxFgisdeGHiozo0hAzZiE0xHQWBNgA0Im2OhsoaERDYOH+DnLZbssR+Rr2RRugRw54Uljz+isAYPr/p4lGs6WRmRngHDMBA6cJ1noIjlOmP5zTMgI24NaDFkFzzByBgbbeIDLY9QOv9xSDo852XwMMvp8gwLyxn1Kux/BkP5qTp7xpPybH9u7du0eAIPpxfX39S0HA76Ima8rIC9kuIcp+yiLYEcepm0f3r1+ARSfnfm9+wtMI7Osjm8a+txP2/loPdbbpPsedM3K76YKj/mg66mm8I3BOmZ+hiz9U1AwF0cqUVjpi+iw1J9oQku+Z+DHPzhRMayIu4bf9dxumtQITKt4Z4TYgmkHluSNQcJZsrF8SBIQiQ4KAGHpHge1Lg3x8cHr1cAaqIyFOpXHB1bQupEXUpJ1B2qUpU7b/5z7qVHjnOV7feLFxMo/v3j38qugRpb/oiHbBBAHHDggwtUv5sk/T38wa/aodeCo1UGcH6+vtQC6Zw04Z1o1m15ujN2jiWoyU3SJc63z6n845IMEvQkqfpXz7BkbtLXr3caf80z7K0GNtKnty6N5v49c8+D6DbJb1FNv9LO/YbBW3KYS15pRlytk5+N3+pZFoU+JfdVzMNjz1XvLmTnY2g9c+B12iQJOT2gGyXwWCT6UYGEZ9jAL55ra1eroxeuJtHAefv849fI0tMwb8rdUjXjvPnfHfAYEJAHCcTY6Whjv/rdsTOPCxo+t2AYSjPrdxNx4cvfH9CiZmeQgEAhBfglpfErhYT33v2THXABp1Y631CBBNgcpaD4Obm5ubB+PAkTzvY5syZvhkAgFCHG9AY8abQTQ/cOWFfhMQcJs5bnKOjt9j2wBs6geWlf9HwN7gmtc3QHbWR1w0TXBEu3T1meNWjiaEXRk7Q8l9o9HJefv4zsmfTcVc6rwnYEAQYwUwoGo0GYpmvKf7zx5/6exADEQyAVwYSDDgFwiF2AcGBD4XucapRPeurq5qtOFFhyH2qafmTI7KHIkdZZbCb5yqDR+PeTqNvLd+Nsg+66Ds+CbwxGsiN4M5188ypgAkkSmzSS9F5LEBghZI5L6Jcm+7z0THbjva9LbpXB6l5dSDp5cNVJl1yz1cD/Lhw4d7sJAfwUZ4v7399zs/8mRI9vkNitvb2/uXgXk8tvYQOPC/AcGRX7jUNpIvyjr9Y8B2CSB8NjAwGYgjhWwOPvdNin2pANkhjv7Wevg9At/H45Pyt/tsmKe2PsVRTusEGk1gLHRWUS7tR9/7koAgYIBTAAYBkxOxY/AiwhgmDjpGNjGA/E+io5sAwTRn32Q6RWo7+be07RTR+7j5OzM+3BYDrxYETGDADp31tixOkw+BDq/1kwivhRoI9ZsVc92ujLXmsWlnxv6mfkd2UzBCcEzHZVDA+1I+1xYECHAs3tzcPHqpFMdyePA7PwIKnDFgVuDMtJABAI+FDBAoF++38nd2NbJjH7SpxWfPDJB2zijM766ZInofOwMAGvonL22+KIpGtPtUmuZBjwDBZMiP0PrO8bY1Dk3xmrHd0a+ef2mKQc+LhNqbBp0lCICwoeHb67iIsEXIfArg7u7fz6/nTZ4hDuQYPRLT2kcA0I6bvPg8acrokb+JDDba/CW3zWlMZfK/sx2ugw5l14deU+ByUrbXl7RXSP8JMtgxQF3r3Md8GF2z3Ola2kY6Y/LVAIUjaoOBbPnkgbMBLo/jh+tvYmOZIXDfxrHT+QcQ8LFRZui4dfvcNw00TDZ2kndsyJTen4JJyqdlEXe+sdFFCwjZMUf0lHlzg4KdIXtqVE261ImdaRPlY0DQrs11O0TfDBevO4qsGj1HtuASOkK5v5MYOf3111+P3ipIA8Josj2axn0bMBoyZg5yjR8RNIjY0XRNW0ey1qoLFJuhJjWwOEUxBrbWxTaG7WSeYiNct+sPAGCUz5/7bicPRqEvOU1gMiBo7Tob3ebalMtj7mMea/Iz0Eu0zeiemTQDswQzzdZxWoLtzvx/Fvb6xWCcJsjrwTlFwHUEDB7P6OeZwGqyxx4vDVR7TO/4YLlnpicaPXmawEj/dxv6s1FEeKJQaOTCb1akhp7TWXFATvP5l5BR+VOote1XQcN/CiXNy9cO+1PFfBWxHzH0PhcbMnKa+tYOyesJDCCazOn0fcz7JPJk4NAyVhM1h9HKbgB+iuo9NqYIzOVN/FC2LaPTgABtg8GN++ylqYEugleeb7K6tK61jm3PmSwj5UdZM+tFXWw6RNvNtQEcQ55Wo3NP9O8fP1ftrIAzA7to/6zeWi5tGnoHCFoGYeqjs4Fh6EnvGTDtENSlDF3CT0udTUQw4FRUznP7XDw+V3mToWzZh6leA552XYvszrbhKK31q5mcp5JfJtO+Upg3DnKRof8TDIQIhm2U45hynmsLmiEJqHAkHlmmDtMlTv0p1CJG1rvW4xcL7XStBRLPoSttrp9TBnScaz18DJRbA4GU+VqIzsI69xQd2EWSZ0CQ5ef+DZ8cA+7fBmqaQ6au+8kQjrvUnwyJP0mdrZ8sMBjY2cEJmJOfJo9GU7+dmZJ3BqfxcIaeBAaOHO8093HkLHj9TqGn6CTEjmGHtgUxpEmZz1AbUE81zJRPa99kjJ2B8ECZ+GrOZNpv5e34ew3ENwy21w5zvQBfT8zPGH/69OnRI4h0ZtZJR5Q0XjY0nO/Lz8dTRnOcOddoN9YuAcDWRwPxNtVlYz7Vzaiv2ZZdu3OeCzydzcmCUfKdstpLmtym1zZNsNbDAGiSv6n1RctaPiUL0gBeqyPkLyG6busF20eHb9vO65rj5xhrjxd6DE46R1nuHPaRT7BfdTbgqT7E2YQzdJGGh9ndXNQuJdIaORmqI0fSMgM7aukjCql15pTG2dEOPZ4hz7GlbU4FWYEaKLgEADTnvwMHjXz8d0SpTyFmBuzo+fNXC5014NMENhiO6Nf6qZcxGP7FwURueUELM1d2mhOdiVrOTIv5+BT12djswMbuWAMMjALbfa470Xv7OiEzAyyf/cVy6VwDIl7qhUONDAKeE3BPwQfrJg+mlulpQLnxvgOz+fEaP8Hj9TjhJ2sE7OiTMTAoaJmBs4CgyWmy//ZftNsOumMHms42euqU1pMWELbBSAdkZlojQzYuR41tCtkUq6HllD9F/pOByPZ3OTcCE8qh8d6ipmwNbnYD22UdGYJd3RP9TpldQgQCTP8zQ7ADCHEqiRIZxbTBTjDVZLSLAGyAYgSaoW11T9Gf+3py+GfAwKQrkwNnlGfeJ75Yx5SCZUaAIIDTOwEIKSsLxdJHfKyYgDrO5ePHj4+M/Z+ms46fMmt9ajB4JlA5yha4jFaf/YOzAS6fDpCBm/Uy/T9lELgokIsEeYzjq704iLLcySuBWst0NFBPXXMgZwAwgaadPT4DtEynwcCR4rQObmi+Nfgo6ml1tfp2ZGW2kre1BNnGYLhjQ22KYGeoGx8sg/upt/Hv7EDunfriKNLnNW3b6JLI5DmjmEvITsJTA22hIFPM5N3GJFHHtBAp9zLanOj9+/fr5ubmQR3sW/edDWGoAYLJwU+GiudaeaHmfKZtAzW7sltdBvoBA/6wFLMDAXBx6nYEDYhHvre3t48eB30NNIEx0i6ibYGQ7Y/HvgMOL9iLvrZ67WSPombz2pwix0V7TDzjMC888th0loD1NQDb2hRenD2i/HZT02xvAwH8n0x1C0KOArkzdNE0gZ22HbujHW6n7zGfbcQlgzEKTKWjojr93uhopSf5a2nYqR3TufDCKYJphSj3OfhyjxVmAgIGAebLgOA/lfI4oR2GP1TU3j/w6dOn+5Q+nUnkMkW2dFghR3js7yb//PjBmZbqn8AAyU4/W46Tdr7t817KYQIXaesUHRmAmG/Kbq31IEvTXg7U3irp6DR9mTFm48v6X3Lx4FNByNmU8o7sWGmjqHdHOkm5sxz2La9vYKBR+q/xST78I58GAgav1lUSsxG7bHizFdxvgVzuY/s5PprPmQLk35IZaOjKlU6oxVFMQ0HNaTWahLrWwzRR9on8baR3jtztaYBgraeDAhs/DoqAEc6F0WDxHoIsfg6U5y8BArzuLDWQxOMvCSYcLXrxoFed+zE0to0ZAb7AJM8xt/e3c2DnWI5zmq0B6kbNke7GBNswGTYSDVsDCK6HPDSD2spqfExjlQvD4gC47iKZgfStPzaVaykn2oHYpwQsrPelwcBRVNqO2TkaiF1CU5ZgCiCOAp/J6XOMTADb900pdNphgwLq3gRQm51OeZOMzB+BdniabDf9hwF3swXR07u7u0eZS/q2KXM40Wkw4DRKqFXUFua1juIxI8WdUk2GcoqyziIj3tu2jAx5zA5vmkvmNdN/O/3J0LcpC6fsbODOtN8Rnw39GbDW2nyWh99Bfta8PXNuoDiljtfqgIBvNXPduT+UuvgjNYOV8dc+dtR0aIoSdg54V2bOT+WZZ8us7dvwNf7NJ6N99qWnCKY3DtLRr/XTDlGu4Sf1TS/CeQ1EnbQdmuz0GecwZSaPzp0pk3oSe8dzR+CV5/1UAttHEMAAdtJVg4ccZ5kk2sHJD4ZX6lCzO9mfxkT+G7iyLm69tukMnQYDk5Aa0yQ7z1xvAOCo+tLB1xYLNmFR+M4QOAPg7Q4Q7NrdyMav/Xd72OHNkTDl2Xh3vZTRzsFP/Bxddylo+F1EJ0In4TRyi0LXeqj7ccwGAXzDGQ0awdTuMbYct7FqY87HDaRdNvXcdbdymwOfshW+vtEOYJhsHNMfDQC0JwgaGODjoIm+aEzv7u7un+RwP4WHM7z/aZpA1W6K4Gw7bGvaOVOzt7SBDhId+CSr6bImMBDHSGBBWxrZHL1d0FkDg9kpu8VjbWy47W0KeAo+W7tzD1+lb7nkuikY2NFFYIBKxv0WubIhdox2wM2hTUo7KZcbT4PuiCBK1PjeIV7XPWUIdvy3c02ZPFgi/132g22fIrsjOnL8zdmfpdeQGfB76+1oLFs75dvb2wfOP79v377dg4G0NTqXuiKv6ROqjmIMQvwLfyFHGwY1vIbkKKyBg8kB7IIE/rfxbLpjENCyAdMiz7Yg1P2bcZ8+yPGWPSOga+PtpelofE/8Uh9aervZxKMyp2scOJFHAmWCrrNZGPqJlkmdHPt0bDpnvun/TA4oqUMt8+3xupOlZRc74frtB9Z6/CXDiZ78Jo0pet5dv9bjBQ90dKQpCpmctVHpZFjaNmWHv11a5QgQ/Ap5MFOxG19tOuZM2Y3If9v3tl33WolAgJEinUSbJ/d8Kz91GkBwfX394GcwkNdeu6/49IGnGVivH4ea0p1rPZw6OhPNWWcJPC8BszmW6ZMj0NLKb2UaEHCBoN8yaHDgNQXMDsSY3tzcjJkzAoTXrNvUgx2dtc8mA0seO6LoUqvbNr9lkFt5LNdk++S6PG5ybgK0viY0ybFNxQQUMBiYQJazMMyUNJrOERTsAjvTxWDATjfkTp+i5F2WoJGv3UUUKcfzJi0lTOPAejyXyPKfyyi4HR5krV62y4PTbW8KMDlxX2MFakDgKSDgJY0qP14yTbE048D/ccSM6jldcH19ff/K07UeLnKKU2JZ/Goav7HORwunyGU6zkfoQoxMTJOR5r2mdt7R0s7ouhzLicep9+/fv3+0SDAZAU8dTOsK+Eriu7u7dX19va6urtbNzc0YhU1A/DUQ5d4CKlKzYQaPBMXTWN05oPDi+yfgF728ZBqGwdGZdQsNQFhvj+ryvsn21u0jTW2lfQ/5kXbytcsaPNXWPvnbBKyQwjhCoLvyG12iZDzPqMJTBYwcSFM6ZUKKLTX6q9mBkFO7+U28Oy11CZ0BDg0IrDUPdNNzyeUpZB0IPw0A2PmH6MCvr6/Xt2/f1rdv39Y///yzvn37dg8Gcl/qzBfVPCfJb6wHDHDqIHyZvzaFwGtoLG303K8tqmz9OTn1o0jLZbc6jupres9f+rcZRwchHPstQOFX7JiNeM0LCENnxmGblnXAsfvPewgcTFOwY1AVfXUg1vqSNrCVMZFtd/abHvu+ZuObb2v1N9Dlc1PgR+K0VuwIf5O/naaCdnQRGGgdwXNhkEbIynd3d/eI0R1S24GMJnBHE1O60FmBlB2jcHd3V+d1JyN8JLsjmhTKA27n7HkuxixtYhRwxIcHSuiMoc91T8ke/C7ytFADhtQN88usQBw3f3zEkHpEgOaomZkBfz3NsvWxlh1I2dEXvup4ihba/Y18/EiPJt525XJMhVd+mpaAgB+M8vTPu3fvHqwXIBAkIGDd7ANmdmzXXitFds2Zp72c9qAe0QHbnnLf4MD3T2RdcSaANqI9GWB+7Evya4vqjvS6nZuANvk40oUjOfKaZpeaP0y92XL60uD2bObDdBoMeACt9e+O9aeAGZmwEc0QTVMGJjZ6QkE0GNy2VcXN4Jt2C7zIU0OVE/8TTajQ1/h8m9JoIMB9ZGogq0WCR0QEb8T+lIzFc1F77rw9auiFZzY8TMf6K2jcT3sb2I3h8jTB9fX1fRkmDvwGyGjco/d5xDHZiQYI3CaS+6r13Rm9sEGeItimbzZ8DZT4x0Wg1EUa+B3wpvOcMgkvTWyLAdVRlMp9Os/m7CmTRm2M0N5PMqOu2aa3jKjv4X1TcNrqavWZ7x0QaDy2tk1tIG/OCpzJEtCmkLedjd71n+mibxOY2mMdzA4wvdbS/Cz3zHxX6mznWjbAER/rolLEiNNAHwGBXdqI5ME6XXNkbG38I2siZrePj6/s5Oy+ZVsbMNhFfTs0/lJgoGUEnDUKCGiyivN3FoCRffSHBonp57UeZwWYXcjiwymCPsoM0PGF/+/fvz9KpdtBTiA3xPHF/2d4M5+t/Gn8eNzx8TDXnXO5L7xy3UDuDTDO+OHbHQMm7u7u7td4OJp+bdTG5BRZt6BtclRP4cNku92uOUrDW3/5wp30IcdaAwfmZZJFo0tlceSfaF/IJ3Vtogk0sJxfsbGnwQC/+mU02J6fTpQyzbdZGZtD8vUT0fE7K0CD3xAjDQKjEE4X2LA1/o5oZ0x2bWsK7mMeCB8+fHjw3PSRIXO/NXS8M+4NtDw1kvwd1FaZO0s0Ocq7u7sHjp9TA+1b6NMYWeunrrWfnTLv3Tnc/Oc0UCLZTBUwS8dym7OdwIAfu3S2o2UvzD95aW1k5EO+nL1o5dspxHGwHcmYpC4DCeoGg5qXpGl8UZ6Uzy6j4yytHdOlbbUdmuhMoJOtbYeddovs6UMaTwY8qYNZPKfhL2nLEbWMyySTs+Xvsuq0+Zfwe1FmoKEXNsDKSOG2yHRqAKMb39OUlykup4IDCqxIzRhy3jBGwo92NbrE2Z65vt3fDDXlEESaNgaIEcTtBm6uOVon0aLIyQmYLgVQz0XTs+kEAiFGm3FOWRyYdL4BAacM1upAgH3Y9M7yNj+ULZ0cj9kIZDw6anSZOzDSMg6UWwMpjfcJBPi/QUb2p6zJVCbLckRpm0WZMXPUHjt9KWrj3/LZ8TkFBZOzsK10JjL3+tg0xpvPsK6kLB5nP+Xczo7Y37Adzijw2ru7uwfBq7PeLJ9EoH3U9knWqWPnxDPd53pbXfmx3DP0JDBgpMPov63Ip0B5Lzt9h8I9t0WecqwtBJtSM+lkAoBkAgwGHJGcoXbdpQDAbW3EqQ87tmbYpxcthb/IJCvbDYjaandHfA0gpK6XAgP54FD7FoH10fobeQQI5MkB73PxII1J/ke+zDJQ15xhCD/ZUnYNdNFZR98nPWzgx1F4KDqV9kxGj2smDDZS5k6fz0ROR2Qbkn1m+GgTck+2lheBwUtSA5Qel3x0lTRF02v1wKpNkdH2T4DgEmrApIGuXUbBQSXHbcsQ7Byyxy3L8vTGjkeDoja11qYIDKonHh0UNOBr3i4Bsxe9ZyDCaoM1yKohvF1KI0Ql3BmCFs219QHMBqRsCo9AwGsFci788N6J/0aXgAeiVsphklVLdztiI0UWfvkKr7+9vX3wqJtT4Q0kNcA0ofczzwX/DsoXCQ0KpqcH2Pd5giDO/+vXr/fyyeOF1J21fhonfunQALRlYJyqdxYr+zYIHGdcJ9IMIIEPAYB54vXRDwIClm2eGtmAeZ91MYqfMgIto0N5MGLbRfvJolEmzfC+NDWAtdbPR86ymj62d3LSdpRnHNWUmfUUW6Mjux5+zsh5l4VoTjzXHznD6Jyzqi1odRv4v8lpkovbS/nsQIHtrnkhqEuZvwUMhBkbGQ44IikOtClNFeLgbY0MMbqlMu6cY/huGYH288CbOucp0cvuXnemj7Od79//+yUsbLMXSrI8p8gbsPvx48f6+vXr+vr16/3rdbPKvWVNpuxJQ+859xIUkJi31/GlNQRffjQwbeV7BSKbrB/49u3bo4i6gR7rqAFT+sHOOPJs46cBL2YFHNE0YJx9g4RmrOJw7AToRO1IW6bjiAw2LDs6dPaf+SCgzq+BQM4d20a8VDZroiZbPoPe+tfUAHDIeuboM3J1pjj3UieOsgasa7KHR7IgAGcqnRmR1l7yz/8GS22awCB057taOxqIXevhGwcpU9pTZ95yTcq0f/z+/fv92qEjuujbBCYLKYIxOuH17nxvmyOxsjk70KYEHCVzkHtBGI8dGbCJ7yarCQDtlJyDiBELy2mvZaWBbL8PHz7cR8S5j1mCGJWvX7+u//mf/3kQAfsXg8D3MZDPKUvwUoa1ASYCofBJoMMnBzIdEJnwUUC+G2Cth3rRUpUBApHL1dXVA0dm8NpAaQMMOT4BAY+L6Jn7LtSm+xq1CKXpQdrWHI3Hg9vh7ElLYTeQ35w59T+ySBaRCy5Tzlrr0Zco/yS57w0EfDz/2c+hFp3vgIGBJq93BoJ6PgGR5mB3mYPmeLlPIEhnSFnw/hZ5cyzYP93d/cyG+TrzSVBicG0+XN4OEPGe1tcGywZkWUx+hi4GA05fW0jODqz1MIVjJbAAooBObRgAtAzBlC6noW9ztg0IGHk1OoOuPSB3KLHJJ8ci1wCBz58/P/h2u51/2s+oOCnyT58+3R+LHO/u/r1q/uvXr+vLly/3gIDz4l+/fr1Xrtvbn49pMUJJH1qWAQ8vQa3/b25u1l9//XW/pWOMM2hrBbL1NEramX5iyp2PLXKsNPAW3W/OPrxR5jzPjAOvaRmI7DOdyB/LZYRn/jnGWPdEuwjQ49lREfWMTwXkPN/b0L7z8O7du0eZIaaTmXrnVGHk9FJkQDhlQezkmu1ptmgKWqxj1AM68TZ1kHtapGvnGTtlmhw0ebecHKUzsJpAq/cbgCA/TU4pg1vKjdc66p/Om4e2za+9HyU2/dmnCdzAFhGYQTdmuvboGMtgqtNIyIBhQtM0HAQCMerNmE1K0cDMdK/PTQpNBSYlwo9jj3NnZoByYGr16upqffnyZX3+/Hl9/vz5wVfewsf379/vX7H75cuX9c8//zyYNvj48WM1tE4PHy08/NMUx/7t27cHIJKycmrQnyaepk/Y/rV+fhTJxtvTA81h08kxJegovYGBtCGpxhZRhjzG+CgdQY2jT86jtrHmsUNHbh5MR+Oe59NOy4NPfRCsEQx8+PBh3dzcPMiqZfrj6urqQZkToH8pavYsaWDat7V6MNH6iNc0QOfrOV5yX65vqXcCrQkQ+D47yGZjW7TdZJTrmIJf6zGodhDYQNMRmGD2yzKmn2oOn+2efCtlShk7sDM/k/81XQwGWInPrfV4fnutn2sHJoPUUlohpqNynw2Rjxm4xCC0Z8OtDBxQpgZc2jXs1On6sx0UYro/nZ+PtlARLP9EP58+fVp///33/e/Tp0/3gCD9lMxAsg4sm+sRuNDSUUr6LPKmk3spMJB3LvBtcjZ4Hz9+fGAwAyDi+PMNgoABPnFBZ0PAlnPpMxvYBqSsr5EndalF/CEavqOo0REcU6w01s040tC06Ir/p6iL5dEWsI4GlnItwXuArBfAchon/RPdz9TZjx8/7qdraLBp3F8DGFjrsR2mbPymUWab6Oi9rouOPXRknwhyCUZZNx12c4LTFAH3ec0ZvsIb25s+NYDkNJJ1lTa8BX6U3w5k5RqDM/s1l9+Cak4Fhy9mixPYcUxcQqfBAAfGhOCIWsJwGsGOaFG+hcEy/d9CnOa9HJXe3d09iBZsbBwJkS513jvaKZfJaPrdu3cPHo+Lw6YMnHrOtMLff/+9/vWvf61//etf68uXL4/uDRhgtoFZhtDuMbLIPNvI+/r6+sUMatY5RB7hjfwzwqKeMNLkFAEjT7arOWHqlyPpteaoONc52m7HHBE0IGqgSGPu1dec7jC/k2F2pBRyZsNThOGfjrcBCbatPfHBKS1mdrzKPJmBAAHKMwaWAKK14SWJ+uSnfZLdSDuSXbTToxydNfC0LoGhHZsdYM4RfOW4p794boqWG7VAiyDH/clteJtsF+9tQSr/c2xwv/HbnH/Ocfx7gS7tb/qY8qMfIHDiW0/P6u5FYCAMtMa2eaBmfFJGiwZYDxucMll2O05qRqQpQM7vaIfYLA+DpqnsphR2KqmHiDCROtcAOEWUa5lCyvRAAMHff/99H/2nrh8/fqxPnz49mOMmD6m/gSkjZQKBzMu/NBgIcqYuhNLuECNRziH7d3Nz86CupJ3Xeqyraz02MO4r6n+MMo01owLrC8Ef58T57YUYEI5JOmXz/f79z28bTJkCkjMFE7UxRfkY0Hrc0Tm1N0R6qiA8R6bO6FDHzzqlP03NabktkTnHvh0ho2JnYBhBO4gL0Y67j6lDKSOOOve4D59b3mcidcqh8W/+nCGivKfpvBboOoDOufQXbQHHAbMAlC2zAhmr1PkWGEx0GgxwwVWjFukQJVIgHvgUlOfJj+7x1h3mNDUN+S4KafU3xDY59UvSWq6LBjF18LHApPf5izJQ1u2Ruk+fPq0vX76sv//+e33+/Pm+3BiFLC6kI8l9nz59up+XpaJNBirG+Pr6+vTjLb+D0vdGzkyR/vjxY338+PFBf9nYGvzQ6WWQux4vROM2+3HQPMZ9ovwJYLK/+Rgp0+EfP3589BRJ2p7o2s6V7WfKfTK21ou1HhtTO3aOKT7t4Y9LpXwCpAkIeKog/cG0ueuMzOgscv1LP1HAfepifslsGfgQBOZ+T9sRHLNPCf4ayJucbYhgdq2+8I3lTNmBVs9kV9sY8ThtWWETbe9Oz3fZ5NxHnzaBXuq5gzH2X+7lPcnkrvVvP00ZNMAz0WkLfX19fc/o3d3do+daLSgKI8cMCkyXHp/IaI0ryakINvRWditv9g0KQoyy6BBY5tn2sJyURSQYI8/V0c6+pL8MHPISnmQHqGw3Nzf3juPjx4/r8+fP9+Ah8+Y2RHQAXtGd9Po0qP4Eff369UGaLZkULh7NvvuTKWg+bknAQ7SfuWdSUH4MttOFzUg2oOnrQ07tT4CAi+bIA+fiY7wbUM9/OvnIibzR4R6Rx1FrOwF99IgZnuhb1nT8888/NTOQCLVlBJLxchAzRX1/ilofZH8Cq54WCQjkfZHNu3fv1s3NzYPpLcuZUzKhFkGbbwOB79+/16fAqP87G9EyTga1znaZ/wamWrROu9uyv+Gjgd/d2LWMCEgJfp0Z4Ke885/BXtoZHxfbm3Fwhi4CAxlI7FRHGRRYQ2GOntaa00RU/PznimYSDZMHSnucsDkyO+zJODdjmeNWECvnEdFIEz06emG0lxQ3U/FWtJYyDijgc9ffv3+/L5NAwO8eaKCK8+yM0jKP+VIGNVEdI5Gk1Jwq5aCjHlk/pmigUcqmI7XTySOb6WNPT5B/px/p1JzR4ZMnBIQ0yqyHmQG/dCr97rR0++V86/Pm+KmvNIKUYXvun7w548d+ckbD7Uj5vo/nXpIYYNmBps/9uHSujT6EqE8tMuaXHUm0v9Z9l9GAIp0rHb/1Ydf+Vu/RfS0DYh/g+7mGxufJC4FBC45bltfTXg3IN4DP//7sOvXV4Pj6+rrKxnRxZiBGxKkMGpcIxx3hzmcaLgpGJW/klFPInUKUO837HqV5TG1wtGvOOold27xPpTE4CDpsqXiDASunzzf+OWd1dXX14F38BgUxzLkuzjXHX4JsyJNCje768UrqMtvFhVrRLTr6RFlpb4uAuNCIhqOBOFKi2hbBrPXwc73Uhyn96OwEKaAy4Ci8cjFajGQDBWkHwTC3OW+yE8+YTvYlP9qPRLm7r0na6NMZOFhoQOYlwcDOyRnYGIwbHKXPWIadUurMtbQ3Xjuy1uUvEmO/GhSEmOE8IgNj1tPk1LIpdvYELTnXwA3rYXs87rlPG+7gLuPWmQFO5Rrwpxyuz+JU2W/NDGRQOI3RImV3BoVmlBiajB3LmwxJti1i9UKiyWETjLh9aTevc/SyI08/uJ0NKXLRl+fv8759PgbY2pNUYft6n1/CEqfDudvclzUDAQMcVFTEAIG0I2j1JcGA05oxOExlrrUetJ3XO4vkzBf7NGXSePq6Bn5prHMfDRHHWa5pIJHrRDytZEOz1sOV33QcbdFn6qTsmK2z0+ZY89hxO1rUZODiiN06SAeY49G78JEMTNLjjroIdFLu2ejquanZqSaDgNis7frw4cO6vr6+f2KCTpeO0JkUZzLpbM7w5vPUY4NBgsocC3+8n+W1TMNa6wFQZTtybAIC+ZkvUgPt3rdOE7h7zYAzO6mjBWoum/caMPNdKMwKnAWyp8EA51QT+bARdvBsPFNcHGgtBcP7E0lNzjPEzosRoDHw4GEWodGUnXAnNWqpoynFxfIjj6YoLcXfFgZy5bAHDR8VNC90KIycPn78+GCgBox43jy6QaOaOlJWeH0J4nSAZX53d3cPXNZa921mlsSGw9kBGzP3YXNwjo4MBlgOr6VjZHajAQKnF000lg0km+c2HgxwTG18T+C/gXQb3xaxZ8sFg54WnIKAJjtGgVwb8hrIEW/LDnDR7sePH++/nxFw52m96DKJtoD10nHShjf9ct9OgIB1huzUW7aAY9pjcMoUTxkjlp2gyOPPRB5JBgIT0LXzb2MsbbPuh+ec//r16/1L4viyuCwKPkOnwYAXkdjYTdmBXWTf0iq5hnW4nIAEl9uQIAe005CkFq1k6zZNEcvEz1Sn6yY1g84FhIn0udgvq+E9AOzYPFXSnEDmDa+uru77LG9vy5bGJ1EW2x4jSgf1EpQ0MzMV7N+rq6sHq7FDBK5chEYjzEG51sNFTNS/lEcj05wiDWX4jNwcPfBag/LpPRHk3XrX9HPS/TZmbbh4jNcckccLeaaTaga+ZQmo5+lHtody5ZQRHedLZQaafbGcnQXlYu8snnWgQCBFm04HOK2CnwDjRLSTu0CqOS3a9EYGGS1ydxDYAEArk37oyKHap02Of5KT+9Plhu/wYh34+vXr+n//7//dr+36+vXro6dpjugiMNAa4oYeAQKe88rSBgJy7kwEMgECotpGzdilXv9vnb1LlzUgQGVrDoFKFIPulC8BABcCRlliGIzO46CjJFPmIm1MBiLtZ5bCWYHIOIbJEekZR/A7iJmi6FLk2pxJ2s5BR2oOL0TDx2vX6hF47je4znlHFnTwdPI+lj4K2GE5DQizrJRn0OAxyjYYGE/ZsRzj1uX5HP87C9giPAcBDAYMWNn+BBmvNTPQwFVrb8D5169f76/no8cGTiFPl9DRGgCzf3YOfq3HmbJL2nrmHPlkHZPtbfyFPH4nYsbC/iFlngECBHMEYh7Pzf/e3d3d2/Bv376t//mf/1n//PPPfWYg0wTPnhlokQTPhXlGPiEKjEAgEVPSMqQplXREVFoaCUcZJDrm6Ud+TB6g3k6Og+XRqNOYBwhw7p7vFXDmIOR+oNIlKvDiSl5Lo08nRDD048eP+yyBQUimlM4Ort9JjAo9YCOzSUe8bzqjO5MhnJwy9yNr9wFBwVqPx1giQxoj17mLwO0AIkcDbNZH/aPzdnkeg0dAIeU0kMXIna+K5mI6Lg6M3rINlI0XadLBvgQRwDX9yTE6+Pfv39+PyQAcL4p1pMzFaFzQlrqnlPrk5Exnssbh5YxMdkTdcXaWQJ9rYjxGpwCXZXvdHI+1csyjgW30udmOlMPMJXWT6wSSFcjvCKyFLvo2wc4Y7gwiHQ0bFSESjVNhG51JMxnFuqzJoWfbDPHk2Bz1edt+E6qlcsVR8fEwL/bzc6lsixWwRaRG905Hp2+SYYix9CKr9vXDGKNW15+mpgtxDM4MOLpYaz14VLKtRG71cXBT521cY6g97dUi/rUeLnCcMgTZMgr2NJl5DTnNnrSzHyc1GEhZHEe0CZF1k5X7yP3Edll/CQa4ktqZgZb1abxQbuyjl3y0cAciqbPUtZy7u7t7NBYt27Tbj6t5yoR6lLLNWwuajgJDt9U2mzbfx23nEpi2cs1T02Hut/Jbez0WOR5DUxD6/v37e/tKwDYFEs6AcY3It2/fHuxnTJydnn3SVwt9fIqO3Kg4PQ62tfqjJJPTnzIUdMr5T6WlsZ2UIP+tBA01uk4OFA6YllZjXTR2zehPiwetgGwbjSCNWJy7z9PIE9xNMo7isu/9iEwbIGciiN9B1AmmRtPXlhWnCNb6+dXDtvbERoV1pozoHvWHaUZm1rKloc31fiKgrQlIO9uvRfxOlVMX/Kga72dfur/JB2VkIOTrGl90dCRe54WDHANsD8vy2M1xLyCkLF6C6IxDDdCRT8ux6YbLsk617MBa/V0hDmLId+iSzECzvbl+5yeafSE4IViyDzgCNU2vee1RMGsARt9HHswHn8BpvqWt3fLC2bN00Ttip4FuOmMod9MKueap5OiitaOh2ua4/BhW441OxtHTLno0qAixTgOC5vwTvaTdbSV1yktan8+hcm6Rc/+MrmzALafwkceZsprZIOEliEbEgI68p728b+pbDsoQHf9aPx9p5H0NJDFFm2Psc6Y0bcxT5hQtkle/ja9lQtxORh9T/5OHZuANSOj83QfhM7w05+UolcawZQMaCKTTTBsaGMj2pRYQhl+DdNovtiHXst20ww0IxDZw+iljtkX6/t/0ehdVO4tFfqLnBjFt3Jp2AWvunfyNp4dCUxaJ1M4b7LZgNTT5o9TP485KejqMmSyvCTmi02DAhn+nHLmmHf/dNEW1OfdUokH24GoGlIZslxVgtMSBx8Fl5+H22EA68mf9fCQx6SSn+VNmyx4cydjTKvy91PcJCKqawVqrR9PuQ4Oi5tjiFHlPiH3Mvs1xr/3YZWlIjqINWmgcnAlqEbcjS2ZEKFMD1rUez5l63waZRpKAtDmx1jdsmw1lM7z5z3HnTEHL/LWI+E+QAUC2k2zYZtqTBiRoo2lzOD241j5KTn9PL6Gbgr7mkDkWJxBCORwdbz7IAcnOvoY4ptMO12fbSCfcbOdZJ811DWs9/Gw3bRKBgH3QWXoSGJgi/oYCd9SUcrruiLczjXZdRmfeb8jVA8sZgPbjvUfU0kY7ReW15J3GPDwk3d1+fkUt25byWnTBa2hU2ouNXmpFtkEJ5cX/zZi4b52FCbHtXtyXstb66fS4jsaR36RD5omGjDzRILSFdM4OuGyDgZQZHabsLLNJZzl2AgiclbCsuLWDnzJw0/GdAY4cc43H/e3t7Ys/TTABguw3MDABibUer/OgLgUMHM1hv3v383sDzA5Elgye6NSYSbKtpbPNcfaJz5MMkFrZLDdbBwaWe3TI43nSKQeDTQc9rn0/ecv1OefxSZvkgDRyOUPPlhkw2dG7rETaaeAu/ZPyJr4mJ3VEDZmeadeUAmrGm3ydBQTkraF2Ht+BBSvjWj+/585pgnw/gHOEEz9UStfDgc93IgQMvOS8q9F/AMtRn7cBneM2Wmn7lNFpoI1EI7kjggHzScDClCFfUduc5VSO291ka/3kMZabNtq4u6yjoMM8HskrZeVeAi8DIteT7WtYQHhGL9b6uZCw2SqXmf3IJLY5gMCgmdcbODBLEPnSZuVe2zBSmxpgNN+eWAntgALvZTtagJCyLS/b+ZYZnDLEXrN2lGmafIXvPQLF0xhqdFHedufMWoTQAEE7TgWcaBqwDcWbrwYWnkJtYNlRWGF+hTzomG53ynsHCIga379/fz+fTzCQpxbay4FYbos8GhLNdERAQNK4L0EGODRwbCsXGLU0n/W4GRVmBprR24G5I6BHp7ADpdbHZqBa5NzKbtFP07G0zfrqa9r/aXzSqTU74r6gc+L/8M91F1MbJqB1Nq373GQdCz8NWLJtaUOzWbTBPGcQ1sBuzlO2TKNbrre3Pz/+FdAw3dPGaJOF+WWg0/qvlWUQ0AAo/ZLH/y7yn37kvY3fHZDxveTD470BmTN08STuDqlP15MZRwU0gE8ZcLt7mtDP8HhENrw+9qsggBTH6kd+2up9GoHG81rrQbq4/a6urh4NfJOdye3t7YMFKzEUeR1qQ8d/krIIb62Hxt4vZeJnuSODXJ+20VCECAI470+D6bn0lGFD1EBdG+STbtupTREDzzHqncDeBDZDNPK7aykTO5QWDAQQ2HA2A8j+aE5m4p3tY/8aoL0EpW2UTUv/OnL1/WeJOu/Aremn5RI9CI/v379/tPbA75WhDhyV39proEh9sU5NbUgZTXa0X9weOX8DgTa28r+11QEA+ZquJzEwOUPPBgZ2DtcdEMWa5o1+deDZUWd/57CbsjNN1urw7wihsY0Z4HbeTptO0Wbqy8t9cr2/WNZeKsS0sbMDua4tBGObAjziKL2Ku+nJS6Vaw2cejwvlPQ7v3v18S18MEt/Ytls4uNZPwMYXQRFQrLV/s5nXGXi9BbdtGsJ65tX17ZGjALOmt2ljyGOUYCcAiOtO2poJ19UA5fTUBhfCTk/tELS1R2fzNID7jmMnC1zZtoypl3qaIOt8npsIdFpq3jRlBrjNPgFx05fI2osPPRXqetfq/qdlP5rDbM4yx1ukfomz5yLbdn7nEwxATQY7OeapNrch8j5rd9/dPWcY+0Zv9EZv9EZv9Eb/cXQuf/BGb/RGb/RGb/RG/39Lb2Dgjd7ojd7ojd7ov5zewMAbvdEbvdEbvdF/Ob2BgTd6ozd6ozd6o/9yegMDb/RGb/RGb/RG/+X0Bgbe6I3e6I3e6I3+y+kNDLzRG73RG73RG/2X0xsYeKM3eqM3eqM3+i+nNzDwRm/0Rm/0Rm/0X07/PxfI+jhrURq2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0p0lEQVR4nO29aXYbSdK0G5RITd3V1ftf3buC/rpKpYmkxPujr0EPjOYekeAAsAQ7BycTOcTo4W7uEZl5cXd3dzfOOOOMM84444xfFq+OXYAzzjjjjDPOOOO4OJOBM84444wzzvjFcSYDZ5xxxhlnnPGL40wGzjjjjDPOOOMXx5kMnHHGGWecccYvjjMZOOOMM84444xfHGcycMYZZ5xxxhm/OM5k4IwzzjjjjDN+cVyuXnhxcbHpPP9rvzvWXVOdX0mr+7169Wp6jfDq1au2HCvnmS9/l5eX4/Xr1+Pq6mpcXV2Ny8vL8fbt293+mzdvdueurq7G69ev99K7u7sb379/Hz9+/Bi3t7fj5uZm3Nzc7O3z2O3t7e56/e7u7sbd3d10//v372OMsXdc/7nVcUHH/+///u9e/z01fv/999gvqgPLx3dwdbKZrlmRpZmMej7q5yp/lpv95T+W1+Xf80noziVZ8Hw9b+bpfUIZY528LH6v9tkmSsN/VXulOmv7559/lm3wVJjp3edEpUOlj/RL+nOMemyt6OFObirZpUymfnfdV8mBn0vylOT0lN7nt1KWZTKwkpkPag5OGa3qWLpGWB0QVT5b0mBavE9CJaPvZfvx48d49epVLL8Lb0V89Hv9+vXevpMHH3RUfkm5JqPuWyrgZPDdcB5CBF7a4KjuqeT8MfLaQgSYvre5p5nKyWOS3y33pzKnYytjgve9evVq/PjxI57v8kwyWhn9FSNwxk9U/dTpJcJlIBn22a8jAZUMXlxcjO/fv9+TK+rKigQm8sL7ElHx+14SHo0MjPFwQjDDyjUp/VQ2HduS3sXFxT2lS4F0wsDjr1+/julXCpj3a7/7nzxEJwHOYr9//75n/HVO6XSkYCsRODYoa4fcUw32lTSd7FbXcLslIrCCKi0nBAkqy2ycJmXr4yftp7IyrRV4eyTy23mCqR236qe/K7zP3EB3ZKCTz87Yz0gA7yeoTyU/r1+/3ukyv68iLjrn49aJBH/dfS8Bj0oGxlgnBGPc9zhWogRVnkqvKgev82v9XFWnxG4TAaCX1ZGRBL+muicpvR8/fuyF/79//35vOoDnSAg6Y38oEUjlPQZm8rTa98SWfp2l0aWzQgRSeH6V6FZgvpLnLQaxGi9j3CfASYGncqQy839l5BMJ4PVV2i9NmT8lEiFIU5+Vp+x6P6Xl969GAlzXCq9fv971vwiBtokMuC3q2iKdX7n3lPHoZGCMNULA/YocHJpv6tSHGv/uGEmBQvyJEBxaJ+7TGKs8bvy/f/8+bm5u9v7zd3t7u0cEunUAj0EEjg2Xr0PvVxp+bCu8HFvkY4UIdPlW6W25p7tOHr2O+firvLwEjw4kvcL9ighU52Zt8BBd9HeBEzM31B4RoMGu9L7LQpWGp9dFAaprlA6JgO7jVNRM56d28Z/u0fnu/lPEk5CBMeqBuxIZqPa3eGFp/ynrRqFS3R4TNPrMU8dl5PXTYkInAtUUQUcEmL+XaYZTGRSd8d1Sts57rAjnjPCuGp2OCHTXObYQY11/KLl1D869xi2o+qky9hUBeCgh/FWQPPhVIqD70thIEQHdK2dqlTSuyJLSrYiAy2RlQ3g+5dHZrJcgP09GBsaYh+9TZKC65iH58Jrq/q0KriIo3fqAMXpPKJWLRlmeEvMmGeATBNfX13vkgNMFrhRXiICX6yXBiUBH2HzgzjztjnCmCECStWQgKwXkRIDnO4O3hWysEu8tSERgNhZkFLgOwcs6Iwd+7RZC8KtHBcbIHnAy4jOj2qWpNC4vL+PUQ8JK//n0E/Xy5eXluL29LRd9r4xr1qFL46UQgiclA8IsSlApTe0zjRWjXqXJvLuydUaiIwKrSCya+Wsrgyxjn4wPyQCJACMF3PdHbB4LDA+fGjomr/2taa0O7i1ykuQwGUC2sxs+XjfLg9iiqGb1cVlYiQgk2ZmVycdKaocZaSD+bsa/0nlb7tW+E4Bq4aCnkXSlp0ci4D+vR5qC6vqRkYWOEIwxn+rsbJS39UuMEDwLGRij995XjPeqUt3S+CkCMSMCM1SPHlb3alB4udzQp/Rp1N34+zsFaEhcaR6KLcJ9zEHgspD6M9WlM7ArRKJSDMwzeVRVnlU0oLq+wwoB7pBIUSIr3cLDjgB4Wm7YKyKQogJVu7wUJb0VlVHeen8VCeDjzjOSp7z9CQCmyfQ0TaBtKpeTYZc3XSvjnzz429vbXXq3t7cxvSoikI4lR+2lEYJnIwPCjDnxGl23xRurPPhZmToSwPL6eVfmvp/umZWF8/oXFxd78/quxH3xoKID1dMDCc6e/X9XVmFFsZ8aIajwGAM2yVTyWLYYSqbt25U2rvKs2oWyvBLJ6sq9IvfarkyBrJABJ0qHkuC/W8RgBTMSUD05kOAevqer/04E+EgrIwJCkhVfyM1xyLJeXl5Go189zppsUEUEEmZ27hTw7GRAqBqUx4RKOa94U37/oSx5BfTaq/1ZuowIiMHqeBVBkMFnFMAfp9L1zNtXfvuxVawSgWMJ/6rnuyp3PL/1XFKeK2VLEYDHbM+OqHTe/YwQzlCRgBnh2UIIVtrJFfRLJQCrOnHl/kQIZlMDKa3VSAMJgD9FwPVSqpNHjXh9V2cvt4+tQ4x11e6ez0Ns0VPjaGRAqLz4rqFmnbU1JLOl8z0a4Mp9qxJJQsmogAjB69ev77FWN/r+noHEnB3do2Bde3SeYCIgxyQDT6HYZ579Sr6rCoRb30//K8yiFelYFQr2PB+yXsQVu7aPTQhWSNRLJQGPiaTfVohAIlKdvkxjqBoTJALMiw6RT6Ey0pkiDVo/4Dpwi5FejXjp2lMmBEcnA0TXUCsGvjPq6b7kCa6W0bHCkhP7Tem7oU1RhrTynwsE01MDzKMrZ4eZJ3hqRKBDRURnSAY1GUye21ou3z+UAGzFChF4LFB2+T/Jj59fJQG8hmn5/t8FFZncillUYEaGKxKg6zkVkNKhcffHm11mtE99eXHx83FYb5OLi/1HDRWdoIxsJQVMu8JWPfPcOAkywM46xKNnOjxXpXVoh3gZHwupHu7Ve11IGBRJ4GBxUpHSS6iMT7doJ6U5U8TPjdTGXahwdn93bPXalF8XFXis9kvjzfOeEYFDSNSsTB0ZqAhAurcjA78CHkoAVn66fiU9kgeXqy660L38bFZPyqZHDXRcRMHXSq3Ua6sTmeqX9o+JkyADY9SEYBYpcDw0OlCB5fHyzlAtSqHwpfUAulfXdKRBW58iqMKvK49ypQU2hwrtMRVyF4akPPH/apqdsZwdSzLk+W8lApU8pzG1RZY9BOt5PfajpSvG3s+la3WM2zPuw8cIf+nJgURaUxrVGoAx9mVKMkhvXqAeql6SVqEjBV5mlUn3MDrQEQC3SWksJT1zKiRAOBkyMMYaIRijZ2azRj/UqM/S8Te0pTe26VgiAZ0X5uEuJwpOBPj0AIkBB5O3F9Os2Lfn+1JQtavLwXPl62WY3VMZs63RqY4Q8PwMaeGpH6/ynpVvZtxXruEx7a/iUI/v74AUAZhNCSSZrNJwWSEoT+k9Gsmp2aKHnGwwT5XHicAWdERA51n+mU07Bk6KDIwxJwSVEhvjPimohDcRgZWOSESgy5uLVLw86XEbbTtBTERg5glVrx4WZoMv7SckouXpnhpS//m550Qnk4cap60km0qzyjMtPE0RLs9za7kfgwzov8p6CP7OxCAZcNdDXn9vWz/vUYUx8rcECDo9nU7qkEgGCQb3O53k7dBdp7QqBzO1T0UKjomTIwNjbCcESRDTfvr/WOUcI3/dbcUj8lCaD8aUJue5OmHyc9XASow7KdMZUnlORdi3wuvSyWWXxlOVLZWz6rNO+VSkliux02rtlEYlj5UXlGRtFSt5+f8ZKfg7G/2EyognPbSiZ3h9p8MqrEQFUtk7oqGPFHVRqxWi0XnzSS94eVaOHVNXniQZGGM9ZClsIQCJRCQ2vFI2F4Y0PTArN8tDQlDN02mQiBAov6TovJyJdXObFu1sxaqSPhWs9jm3K0TgsZDySjJctW8iAhXBTvlqv5OFlPeq7MzkomrjJO+HRiF+ZVS6r5KtJCeH6NwO1D/04NNiwC4NnedHirxe1WPYq21SjauqLLzX7z8mTpYMEJ3SdUFO13VKNA2E6ljaXynjKphvihI4GXDFx+O+CCfBB9lToArbPie2hIi7yMYstPdYxKBLO3ldXRpVZGOWv+q4Qm5TXluJAGW3kpNZ/rrmFBTrS0ClK122tkQFE7Y4R8rPiQDlyR+57nTzqkwmGWaa3Zh3PVwR61ne1b3PhRdBBgQqs06Q+T9d49tEDCql+xSeII2/1yUtvmEUggMlzbdVmIX8tgpkWpSzktdzoouccL8jBFU6Oj6Ty5kR79Cl4RGgGaqyerRgjPveWLpH2Nr/q9GMyuOaYfWeQ4zf3wmdUyTQAUmg3nCZ0HP8h8h+esSa6Wp/5gB14/ah0wRMt4oMbEn7GHhRZMDhxnuFgc4iA93/7reSj5d7S/3G+DnvRo+NAqS3FnoeK1GCh2LlEZ9jRgYOUUIdIdiiCHhNZ9C79qnu8xX8naJeJbXJ0+kIQTcXm/bTdV1U4BAC4PettK3/Xy3/S0TlDPkxoWqLpN9SWyWZ2goSDe+jJKOdTkrXrfRxqmcqy5bIgOd9LGJw0mSg817GyAY9CadjCyHgsWqBH9PyF2zwvCtTzvXPvK+UdyIFymeViWqbHhfb+kyvUIV+j6lQt4TI/X+n3Gbpr8rmFmMlcJW2v8vCFWZFSrv0HYeGWVfuWZERymyX5iGGpirbr4IZEUgEya+pfm6oV/pxhirdLjLF/CpZrtYNzAx8Nd6qsiQciwQIJ00GiFmocOatVyHiigB0x2fK3e/lO7CrR6/G+Ll6WyE1Z4ueJ+9T2knINZ2Q2ozt6fdX6c0GxSkYf+IQItBFBdzLGWM+JVXJy0zJdt5URyCdIFby35VfmJFy7+tujFb3Mo2uXTsdsMXAVATvV8RMLl3WXa609T6kA0FdsroAsILbgi3TWFvynI3xZJNSe63m7ek9tzyePBnoGJf+81c9wjIz2J2hd688pedTFNV3CPg2Lz4Dm5i5znG+rapHarcVeNty0FbvGkiGkukkpXAK5MDl51BFtIIt5HHmVSfCoGPJk/H/nZFcOd6VtzLiVTRihkr5rijbLp/qnkMiGi8dla7xY45q3CdCIJ0hHca0uwWACf4YdbIBiWiMsb/YcIUsbnmT5sxwd+O2gl/7nHJ58mRgjMMWAVUKrLs+kYqkzCsWWg0u3dNFBfzNgExTAyu9hTCl54/jrGBF8Dqj7oag+h0TD/EaZ0a1yqNTvId4pzNvpSpDl+5KGixfighwW5H3lTKldt5K2vxe92SP5XmdKmZEYGs7OSHwR6DdmPsxL9sWA9mF/6tpWp1PsrKab8IhOq/TDU+NF0EGiJnn0DHbhC4KkPY939RpldBVjFbnEyHwqQPClTGnAxIh2CJgni7z20IaTk3hHuKtVh5AlZbLYLe/1TB1UZkur+p+L/cqKrmalSURBVfAsz5aka0tHlgVHdhKQl4CXE8eMh48LUdyAlzX+f9ZX1avwH6ofpHMpXU3K/exDFujTN34PEQ3PBQvhgysRgeqezuWV0UFJKj63GbCjMmtEJYqxKUBo7LoTVqsl397gHVNz+YmVITCz6V7qvSSB3kqxGDFu68G5czz3+rRPoQIpLRm+XQeObG6KtvvXSUn3saze3Xe4bKV6rfibVVpP8RYvhR0dZzp3RXna5UQzHRsCuFXxCDJM8vqzl01JvSbGeZECJLeWyWwrnOeQ3e+GDKwiqQUkiFKgueEwN+r7Z01e08/hTy9n9vBUJXSJ1Hwb25zbr8yuPqvgVSd9whAde1KVKD7f0roBllHCHjNoSTgoai86UNJM+9zWec7JFaJ1Gp7PEVbbYkKVMefuz+fA270VyMDFQneQgJW4GMsPTbbvc9kVuZVVLpSZVD6KU9tO925QlafMyIg/O3IgLDqlSbPjkQgvfRH6FbvzzzIDlx4wzm3dJ9HBlyIq3KMsS+g/ravtM/70r6ne2pEICm/VULAY55eIgWVt7ziaT03KiKQvCvJYTL6iYhvqc/MIPn/lXFd3T9LZwuheYlYqVslq90YqO59iHFWPiQLVZTgELmr0lg5Pka/jmarLnRi8JzRgRdLBlYVR9cZyVA6EXCPvnrUbsUAa7ohRRm6uvhcGQXGPXqCC3eqPNK3CO7u7n/hsGKtHVM+JXTKb6UOKSrg+0kpCivtU5GPRGBS+dO5ClVd9PRKlaavXUkvPFrxvP3YFiLQoUontW33/+9q/DvyuuKobHFqHlLGmb7uCIGjc+hm5XHi28mM68rOiUr/j61XXyQZqASy8x68kWcenkcGhPTo3WqZmW6qT0LFNAVFD5Ii83YiOeA9Mv5VNCCFtyrjeOqkQJh5tCv3VorV02ceVRmSp808fD/dfyhmBjmtuk7nJEdJFg416B5V8bRSu62QsW5M+TUvnRhUJFLHVuvX6c7qWv/fzd379ZXB5/kZUvrdVC3L6mM7yWKFLaTA65N063NEB14cGagENzVWFaZJwuzG3yMDSs/3aUBnQjbGT0HkQkBPO3mDzIv1rATODT/hUwoiAiQESfE6OiL2klANxNTflSfVeUyzgbyirB/DI5spk0RGkvKu7tUCV49WrciSyteVbYaVdulIrssAFf/fiRBUv9m9no5fU42JdN0Y/cLsh+oTX5S40n/+YiROibHcK7ZmCxEgXBet3PNYeDFkIBnwmdLtIgNMx0nA5eXlvSmC9BwqsUIE/NrEOJk2pxV4vfYrIenCUd42TgSqdxRUg2pFUI9NFEiiKmxpz1leK2nymu5YUkaz1dcpz/RY1qwsaQFtdb/Gx+3tbVumjhBVpKlSrFW5mR7vS0q6In6HyPkpopMl78+HEoLqPurZRARWFwWOcX+dU0JHBKqxU+l2byuX0UP1cMJKuis65VC8GDIwRvaK0qCtBnxHBLRa//Xr1/eiArquWxjI/U5xyuAyMlB5YyQpIijOFjvl7Mb9x48f4/v373tTCxURmKXPsldKd4tXeCqovMXq2qo/KlKQyB+v831X2u5NJUWaFAY9dio2zy8tIJwtpmU6r1+/3n07fvUx1Rk6ueru6e59KfL4ECQZSkSgIgVbyELKO+UzRr12KslyijCtkIYVIsBzGpPU81V0QNeukoKtSGk9VV7EiyADSXArQ+vb1KjOVLWlkCbF56H3RBB8aoEv1ZDhvby8bBWxl88jFbrH83ZFV3n7IgO+biApShou364o5FMhBLPowCEGKg3KLp0VItApXypPV6Rc2Fc9eeIKzJWqp8/7KH8iskqL77/Yso6GmJGujmB2ffpYxPSlkYcVIpB06YocruZNuK6dEcvkZLhsJR1aYTZtkPR8Rwh0jxOEygk4FKu69jFw0mSgMkJJiL0zfPC7cNPgcmrg8vLyXnh+jLxqOi1OcfZLiAhwXqpS2iQoaTEj68a5Lg2a9JSAogKqTyIKD8Gpel6UjUQOeR23q2kzrYrRryjUmXeWSGOCrxPh/5TeShmE9KSBogHMb9WLWVGeqd9WIwO833XCqpyu9t+poDLoHRHoyGNKc2ZUK12d5Lp7dFrwJ6ZSv+l+OWqzsiV4mXg8Gf90TPAx4Lq7u9b3Z+ceAydJBjqlWDHeMXJEoIsMOFPVNIEM8Bj7gioPKC2UElxRs2zqQL5HgPd4+dKCxiQgCZWx716msSpclaL1Y6cCRgW2MvctRiD1S0dEkwyv5slrfE2LE1kZbC/jqhef2igRZcnoyuNeSpft5EpyFrXytL0/U2RghVi8JMM/Q6czK0KZjGgnn1Va/t+jAn6skscVvV7l2Z1ntCBF1VIEmLq5ihik8rshP0WcFBmoSIC2bsATZkSAabn3/fr1611kgGFRGdCLi/8tkBIhICNkukJaVOiCQeFzdrxCfAg3/LNFgSrjyuIylp3//XxnXI81CBgdmS303BoVmBGKFeXksp7KkzyPMfIrrBMBSfv04CuPnLK5ukjWFeYMFSmoyuX16NrY67caEdhKzk4FM8PfGa+OtKbzszJov3KQOj1OzJ5MSSSf8jorK/V4WreQ5D6RA5WrehdNp7tTHdJ/tzeP6XSdBBlYJQFJOCvjlDyNlG5FCLQ/xk+jKvgbAisG7Mc9KqDrFGlQ53YKq/Jq3POfhdOoqMmAZ8qyIgCnSAIItg8H7hZPYiX97p5OGW9tI5V9ZqRn5JREsJIZrnORrFaPra6Uww0/5b5TmJ5OdT4RgJRmNTZW83opmBGBRAq2kIHUThXZSAtUK/iaJmGVzFHHOjlIOtpJgRZ6890ZNPxe1kqP+m8m414PXfvUhOBoZKBipZWxnwmnsCoozuouLv63UO/y8nJcXV3tRQZevXp1jxAwLTcESQHzOBU5BZDeq+/7y1z489B/NxVAgRURURm03xGS5LWl6ym4x4bXge0+Rq3M0nbFa+1IKP9XynmWtj+NMgvLd2sMdIx9TxnQNcrDFyqyrBUxqNrQ85nVfUWWVklsh5dKCCpd2cnZilxuvS8ddwO6EqGT3p3BDaSXcaaHvCzUDz41rPJUUV9tqZu9TBUp8PGXjP5TEoKjkIFK0VYkwI/xuODGqDKGScAVBeBCPUUH2PDO/LwcTgIqYzNTMC5MGky3t7e7MuhcehwwgXVVfX78+LHz+EhQGL1wcsC2TcK/pZ7PhdWBsiqHK4RA5w5tg+q+rek5EfC5fh2nBzSrk0cjKtk7pA6d8pulsYVYVGlV+uYlojLm3Gfb+jVuyLv26AhEus9lqDKayr9ycFI9PB8+6ZL2vYzpaQKPFOg6L4O2rlMrZynVIcl9de4xCcGzkoFV418NTm69MWYKuhJWPialzk9zXEnQqlWwlSeWFHM1YJxZkozovz8i6BEK3/qz5inqoGv1rLin6wKf9lNbHVOxevldyY0x95BSmpTFLm8ftH5/VQbCF111SNGoND/r86Mrq7oFKvP0XPgqKsNUEYFuvOj4jBin+/1cZ8hOEa6rOh3rcELgRGALMUr3V/mlRwVnztyK8evG2gpBJwlI7ejrrDgO0hRBIgSrRCCVtyIED8WzkYEVApAGYNdxlYfq+Xa/MfJbqdw7Z9p8PM9ReWI+oPwNXGnwJEJAZUciUC0SdMHWj3VJH5/xRZKpnat2p8E9BSSS5Md1rpMT3ePtMatnUmAczElePN3OqAsdCegMgaefCEG6n/L/GAopKbaKpPFcZ0A87cpAML2XRgQqJPndch8dIx0fo5/GqcaN9rs1LtR1nq7vVyS7Qkc0q0cRlW56qoD15XVu8GeEIOnNirBsiRQcgicnA9UASwRgZRB6Q60qglVFLwOr/zp2e3u795x+yq/y/JlHumb2dMQYmXh4ZKCrv7NZCY4vJGTaHjpOwrbqha0w8qfErH1mSANvJW0vQ5dXejfFjBz4dVTkFcnwp0d8IWB6QoFpbsHKIsOKBCQS1xm4meGr+s7b9aWRgNQ2KwTQ76/SqJ5Y8WMp74pEdlMEs3rOznd190WFujYRApddN/y+aNCvTYTAHbeu7knfVITA8z0Ej04GvBMqEsD9FRJAJIOUjnd5Vene3d3dWyx4e3u7Z3idMCQlvRIhWCEPSSG6kHl0oEJSzE4U/BjZcBUZYDm7/n+scNZDUBkdH3SVYnsoqfDr9fNXtB5ikKi8JW+JYFApzcrfyWZ13cqir+p+oVJ0lb5Yla2O1HmaHG8vDSuGsbqH91X97uPfyYNvHdXjd9x3guoRq1n/dUiRhYqkJIJAHUnZT8af9fEoQarratm1rzI+VE4fjQykQdRtq33hMQdgEnIek3F3L1jl4Hl+2a+q98ragCpCwGt8m4xx1U7p+IrAdWx4JZ9jRwA6pLJtKW8iP8IKoXWZV5+nF11VpHBFceg+fs9Ccs37PSpUrX9hmf14F9ZNCqoyDEnJd31zKFmaeVtV2qdOCCryyvNb00nrp8aYEzUnpF17HqqnVsZZytONPvd1biVd6u2VhdYeGWBevtaAZe2ikZW9PJQYPAoZ6Az76rlD0QnVLH/dpw7iF/w8D37gx5Fe0doRgaqciahsMcJj7L95kGVP9/Ee5UWS082VdYbx1JEGziop8AGb6u59mX70mviOC56jsaqMuKAnQ3Rveo01FVHnvVek1M+zLCq32sOPe/toe3d3d+9tnivKzOWvIseVwqyuSWTxlJFkttJ1jsqznpEB3ZvIwBj7+tB141ZvuBpfM/AaTgGQEKh8HFcVCac8Vx/9oo6sCIHnzzKutEVHAPzYVjyIDFSGdrbv9xKPGfZgXunHPPXpVZ83YnjHFbK2M0PShaS8fZiujnMr454MQiIIUvocvJXgrXi7s355CLE7BlZIQBrQPC6skgBGBLTPj1FVMpiMeFV+z0/HxvipHBMh2EIEeMxDqkluK3nydBLZrOTOicBMZ9AgJGVa4ZRJQdJrM0LQyS7lsJLHMfKHrqi/VhYKrvRZhcoApvqmhYsaT1xDoLKndNwpSqQglcfr2tmhLdMFhNvNQ+znJjLQGfMkiDPBXGWthwhLVR7/sTNJCMa4v1o6KSjmVxl9R1rAkgahCwvzpYBVwuhGbGWeLp1LXliHl0YIVpAMTmdMVojBxcV9D776SBYVly9YqgZ/kh+mmbw095JczrvV4LquiygJNDAumxybSZZdgW4hBF3fpbHm154SVmVudv+MtCbDXsmBPyXl96Q2PtQAej1m8DUIrksTKXDZSF8HZUQsESVOAbiu9nsqJ2+1js8SGZjNZ6+Qg+56geypixIkI8brhSTkqTxMj950J6jV/Gc3IChs/injMcbe/DHL6sSFZaQwJriS9vomAfa6d0q2MkTEQzyAYyLJXZI3Z/xEpaB9fPjCq2SEZ23I6xgKldzpp/OcHmN5XZmxrKuRJW8DT8+PraabCMIs/yq9pKN0TVLYp4YkU5WO7epdOSOKWo1xf40J05z1r/TUQw3/IUhlTPKd1g+kurhuT6Saet+JAN/hwvOpv5IeXSEGh0QHlslAp8x4je8nw5z2vQIdIVhVOh0R8LL7ohIi5UelyPNpPjXVn3NVevERvUP3GJWPv5ZY5ymEbLPZAKyMPj1FTpNUHtgqc30JSHVJkaFZGt3v0PJUY09l4vhJxJHrYm5vb/eOpfx8Gix5SySTs3bplKvOp+mLRCariFV1bUdmU7ueKgEYYy0qkK6b3UNS4HpojGzkmI8bSsHXu8ymOR9Dn3Tywjxo9H36ltel411EQMd9LOqRbY4t/RIJTcdX6rsVmyIDWxVadU2VTjL+HbtJ16b0k6CTHAiVcKb8PcSk+9PA8TryuHt7LKdHCFhHenfMT9ckIqJrfIqBdeIx7VcEIGFVER0DK/KRMCNCTPsh6XOVMV+VOqsTFZEUTpWXIgFcEKufw+XJ5d2nMlSXFVIwqxPhbd6RsmqsdueZb0WyThEzwkkDo+srx2ZVZxKUu9laE13HPP26Ttc/BFWdK8PLfScCTnZ8/FXRAurdiggw/coOdjqk6p9VbCIDlWe94rETnYJUpb0BOmLgDUHlVc3DJ+H2NL1OlcIkfHWqysOtFD3XKKQog9eDZMMJTVqRrXtW3jtPg0DjpO0KKfA+dcF+CXhMAjNTsATD+zLoJIEz+DhJZNGNPx+VdW/cIwL+pIPSY/5OLrs26c5zm+q5Vd/MkHTRKctu0pkd+UwylK5J+rKKDHD+P02XOlHkffSM3VCmfk/pE4dMPWzxuFUuto+fYzk7IkCi72vGUpopWpLKXMnrFoK1TAYkFKngbhy2DqDUGatEwMmDjrlQJ0LwGIqfnZxCqqyfGwGVXYq5CsdXgz9FazSA+TGNtJiLZfdoQBURWCUCVduegmLtFGdX5pWoQGX0fct7xsgLh2TQWY4Vj9sVoysiGX4nBp42FVWKPOl/ynuVGMzgY34LEeC9ne5IBIDpP5aeeCx0sjaT5Sq91bT8Oy4r5by7u9sz/mPcJweSsSS7TKtCilCtokq7GrtuQxwunxxXuj45gTpfETcnBSmK4XZyCxEYYwMZuLy8jILmA98LVFWMQs1tgle0M5bJMPrcV7ViewuqyAHbJ82vMnLAsr5+/Xrc3t6WpMuNEutLIVVf+He4heodCmk/kQIvD+s2U0bHVKpVeTrlt2J4khxT/vgbo/8ORVKG3YB2ZcKogMrii2HVx9wmMsB6UKaoHKv50TEO89YI7w9Xfoekt+W853VKhECoiCdlsSJBvk3EiOerefSVMo4x7hECIX0DJd0/y0P1dJJROZJMN7VbujZFl9P1HAMk0PrqLHV1py+rOvp/r+ehsrs5MsDEaTCS4Upw492FPPxYIgTpOlfEJAQp3DlGZmletqR8K09RytLJwRg/CQEZohZ0ca6YUQOV1xW45ylioYUqiTwobd+uEIGVdk9E5qHG4THQGf9qwKwSgU7mOo8iTVdx7YCXpWp7P94tZKLxTxEpb6u7u7t7YWLuM/+Vfk5jPiERgqrOSSHPdFJlBKvrj42OcK7I8iyt7n7qsC3EiPbBP4g2xv6H0rrIwGx8uh2SfFTy6PUhaUlkKX3dNo1l1ovERCAhcPswQ0VqqshAdU+Fg8iAwA5IFeoG/YpCSCShYno6XynmV6/2X+ySkAhBSt9X9GvrTMwHXEprjLEjBooOCCICElAKeArxuvDKuKs9Upv5WoWOaFVwZZrIwBahfw6sKMGqTRIJcMJ5eXm5+/kbBh1VW/vxzvh144xKkSSPJMAjA95nrlw5VlKIN2E291vNIXcyVWFGFiqcIgkgHkJoV+pWpbFiAIUq9O1O4xj/izhLhyVS1oXkWT//5DrtUkc0UsRujP01MrwntUPXLj6mPFK4BbP+o31cvYfYRAYSa97KRreSg0rppYHOjkpkQHXwldqu5Koy6DoKMBVX8ra9Y8gYvR6MAOh/Cve7lzeLlPhcr+dd3Zf+e/snwsP9jrw9F7xcVVkFH8Bd9IdEgMb/zZs34/LyclxdXY2rq6v2OwGMynjEh+VI7dgZ4tTmK/3QyYrqzvxn5dgKtasvsEpjvyrXqneU+lXHT4kYJJmt5FnwiF6XbqWbqaso850u935yw9yB+pGRVBpev/7u7m4XbXViUE1BVIY8TRl00RCPylRtoWsZyUlRHd3TOQL8/5gyuvmlQ16YWUNUxCEZFVdC1T7/+wDxhpYgSUmz06m8qHw6YuJeC1fFzpRVql9SuiQms+iKe3iEl3UFswG+ms6KQX1OJFlKbe99uBqBEhGQ8b+6uhpv377dbRkhULpSVpoiUiQoee2US5e3FI5UOVV+3jMztElGWV/BdUJVDp9e7JSmRxy8b1If8ZoKFVGo7neZPUXZrUjAGLUOqtJlmm60uI6JXm2aJhrj/rdOKnlV2SqZovOWSIg7RYyQ6hz3Xd87CWAb8JoOmuYgkkPp9axI2Aph2iqTqzp700uHEtxD9OsrD34LUoP5OVdYEqIUFXDF4+FOKj3Pm/X1F0jwfNVRK+Ehzhl7myWFpf3Z/Jjyn5GMdNwHtPKsiCCv8XIfC0l5rijRitBKrkgEFBF49+7dePv27Xjz5s149+7dePPmze56pSnjf3NzM25vb8ft7e24ubm5NwUkWfN+9P5I3nki3byeSPcmo8MxltBF1zpZqYi6l2NmqFf0izshvs/tKclu9RMq/ZDSY7opokqDmXRoGjvy0klix8jymoyxlylN75J0ilBzq37k49QekRWqKEcn304Aki6tiFa1gHyVFCT57PJN11R4EBmojAEVUNdIlWLesnUWx0anQPmxMfbfPOXhpJQu66StOrb6eBDryjQZXvZneZWPt3UnHKtztslr06CqlDAH9qqirRTrsdDJXcJKRMDXCWg6gETgw4cPOzIgpab0FRW4ubkZ19fX4+bmZrduhJECLgatFKxHDVLdeb2v4ta9HfGhwahkYSvJZLlSWZMR8fy8zNXYSWPIZdXPpTyeE5VRmY3FjgSsEgGf/iKZraZa2ZYpIuCOV9W/1IuMqqmsdH60CJbjoIsKdFhx1lRfJ2Fdf3i/ub73812UcktEbAs2kwEWslJKfl2Vlv8/hAQkdkXh1jWuyMbY/+qUr3RlHokFqr5c8OdTBom1eRm3KtvUlm7IV4WySocgCejC0Z6eK9JTUKhJkXZlr+53IpAiA4wIaHt1dbWnzDQ9IGX3+vXrcXNzEwkqI1gdIdAxXcc6OLlLUS2GV5UWPbIqvOqyt+KxpPBwtZCsIx8pvw6uoypCcAqyO0YdFeC5hBU5puHnf8q0L4R1r5ky44a3IqeMxiSjyLGlbXKYRCgkx4wGqIzVOpyurdhe3T1bCIHXMf3ndiZzs/MrZSE2kwFXOj5QDgndpcHvefq2UvAU1O56ogq5SvB88aSYqBZ9JULgiibl7wNRg4Akhm1ZGS3l494jSYJ7fVUbOxKDr65N5TslherbLYOFsuVEwEmAogJOCLiIUP3Ed0u4h6Zpg4QuAuWkgPc4ifD3pFeRgerRKqEjBWm8MQ/CCbp/1IXYEnmq5NDHqad3CrIrJJ2XMBvnlLFEakVcJddXV1d7njrzlj6kkzTG2ncqWC7te7mcjDBvGXk9rqetQvEMyacIAfs5Ha/a1tvdpw2qKQmvN4mQ24guYpXSSjZiq8w+aJpAhfCQzKHppeMzL6EbGF4uH/RMk53prNk7lkpK14oQaED4EwY09BJYNzC+4nwGV2ps/y606gahCtWprZwIVLIwK9cpRAZ8O2tntlUiAsmD4rHk3ShNeuVs2+vr692+GyaWabXeAqNfHlatvCcfB5V8OvmsyuDHV0goCfXMAM5Ig19XKd5TI7L+4/GV+8fYfzSukmOR2MvLyx2plSw7ARxjf31TWrlPPeg60cvHNQm+GJdkhGlrDCmi5osJnQT4f67LoSOVkBYLVvCxVBG0Sr+uEIJEAlajEwkHkYFKST3WoJkZm06RkJWlTvbFG54OBdJX0TItzuXe3t7u0uOrXl2Bk2Qw/1WF2yk6z0/HDm1HHadwzRRyVbaq7M+Jrg4cSPzP8+y7SpEy3O/hTCog94z1KWs9sqpr6d2wzO7RJEPofeueu4wsp7bSehKvu5dfqOaGHVVUwJV8MiiMXlQGvEJl1B+iPJ8DFYFNclwZWV7rUwMpGsDIlsgA30CrvO7u7u69F6XSyZ2HTjnTGPLIhD8NpjSoL/mtDe9v5qt96urqFcFs26QXdE+HGaGc9a338WOTAOHgyIAbiqSQVgt4SDjJ95lXWhgopHlKNXxatEJCwPLyjYEMX4lw8CckVsmB4IPV65oUGeueXj/sUwRVW3cKnOc7MnDKSnWM9YhSuqdSpIzy+KODXCA4xs/3Rni+STGuvF+Ciq0iGol4Mj0+n61jiUistNUqIfDyJINHOdW40SeXnRCw3BVhnili7qd0j4nKWHTXuxOSyKxHsUgESAhEBJxQ0lOuDKgb4I5wMoLmkQGPTGh8eb2dMAo+fcE1BtLj/j0X3uu6m/KbIiaOKiri6c3IQMJjyegyGUioDPQY8zUDrnwSw6+YWDrn91E5+nyQhx/dA6KXx4UzKqeE6fLycjdPxcGmleBU2CqXe41ev6TAuzZUHTjHumroiG7OrOtL76tEDo8dFXB0ZGYWzuPgdyLAdGX4b25udvLCx1zZx6mNvA+VhitYV4iSAy+ve/VUTp4G0REBliVF43zsJbmv5DzJuqY5XNmnNTFbZK5ydLh/LEJQkdckH15uXldFBPg+jHfv3t2LDMgrd93rZEx5VAQwEQGm51OoviaHTteM3FWOj8ogHanxpHJ3hKBCRbSrtQmpXEwrpftQ2VsdCwe/dKgqIAdodT89iNR5W0mA30sD6deQPZLteh5JMDnwqNQTM+SrgKkwnVE6tghA8l7owXvdU+iM226/G8gvEVvJkitXX/SZCJJkgFNKut5Xb7t3X5VPyoxG3PtfoPwmeROh4EIr3rtCAkhomK7qlPRGVdaOZFJhJ2PgyjeNjc6od+Nuq6w8NmZEQMcSIeCPOqsiBE4Ekkc+xv7XBrnoszKiyTNOxo/l8x8dMo9SUpd7+Zi/0tC0AHWiPx6u/cp5c33u9sGnbj0C1zkebJ+Hyt7q/QevGeiuk4KpkBYyEYkUdHlWBiwRgjRNoH2/1wWT1/siwhSaGuOnQfAFisdACi3TCHlozAfSGNlr4rlThCvFQ+9L6VRrTMbYn9O/u7vbhSNl0BV1Ul703t0YVwuSqoiCT3P54kXv92oON0HXa8wwsuARgtSmnkciKjonEiUoEuftwDZyuUxwr5ZbluEUo1qJBPg1fr1Hs3zBoE8NcOGe96kbXgd14er8O8tKmeCYqIhpqjvHle6nwfenYypZ6Oqp6zzKl/rECUFHBJwA+9RHlUdXxhU86GmC1FCVEkhYCZfwf/IcVtJypueGTgu3pKCVXjJ0EiIXAN3L9DumPEM1YBLx8cHn3r8re19EUw3cWTSgavNOOZ0CDi1PRQT8Y0TuxYyRx4WH9JWH+oKKWNtKiegaJ7H+jLjnneSDZWF9JSf0evgWTk5TVREqltOVvo9vhm7pgY6x/zgv28E90OSJpbE1c3COJcMVCfVrkoGg3vS29kV6b9++vff0gGRZcOOkdNQ/JByUY95bkViWN0VrnfRx8Z87Od5uBKPCvG6MfQePxHILvA+STq7K6+VhedNvBV00zLF5zYB3lBuGLXMts+srxk74INf1VYSAnpaUzY8fP59VVUhXgs5Oqzrsx48f4+rqapee7usW12ypD8/5cTf6TMNX1nLgcOWtf7qY7TQTJLZ1J6DHVKhPASk8euB65TDfNEi4x0aDLVlhX3CBalKQ/O/ExMPAXLjoMqGyJG/ZjTSnvxIRIAlIBkH30mjwGOtFI8ewrkBCoDGe5DGRZk8r4dSiAsKMGPh1PuXpi/MYHeCbMn1qdIz7fShIh15dXe0e89Pxy8vL3SJa180pDO96zKNYY/yceru9vd3tOzzilBweyrl/5XWmt+nskahWjpUb8a4sFQHgmPX0KkK4KsebyEAXPmSmh3jDlaGYEYFq34XYIwS6hkIk4fJ6ant1dRWZJxmxzlG4VtvDO9vrRmY5u78aUCQDJAxk7VTCrL/gZUsCt0XpngpWyzlTrm54mXZ1nyJSfILg+/fv4/r6es/Tp/Jk/6hMaUV29VgW+9hljmPADTPlhCux05ztGHmKjOmzbNU0AyNyagNP14mO92vlXVXXnxI6AtDdQ92Upgj06mz9ODXgBsfJBeVKuuTm5mZ8+/btnrwpDembhOQ9azxQn+kcX9vtU5mUa8oU76887MqAOrHgmKD8J93r+fsx5uuErpLZVTx6ZKCbv3EDtlrQxGJW4APXO9UVloOCwxWkLkQpz7u7u3tCwbx5riM4laFlGM7LO1NYzkwTo/breS3v7wiA/68IwanCB7KQ5MaVcPK8/M2DaeUz05VS1tys7hljnwzI06LSZTiWaXJtQCICXh4psMrAMLLlhICK3ccP67gyTeDHuc+oBYl8tR6pIgPq887T0jW8Pu0/N7YSAN3DeysiIPkjEUgLBn2tgE8vUHa/ffs2rq+vx+fPn8enT5/GGPtecTJmqT9k7HU/9TIjm5oucP3PceLGOU0vpCkMlzuHCJDypGOZdOsqEfF9bx/VyfN4qA7evGYgDWQqiq7xCF7n91b383zF8lmmWWOPsa/Q0sBL7I6P2kgg3PiuIOVF4eVxlqWDCzK3h8K9tjHue24UxlMjBWkwdYQg7et/8o74SmI9nuULr9guupdRAYUZ6WX5kwB6OZHSlJww0qB0/UVINBCp75ywSLmxXN4WJK2MhB3SP0nudS71AaN7MkYr3pMT5USgvV2OjY6Qpmt5j0eiqtcNp3UCahP95/3v37/f/d68ebOTl+vr6/Hly5fx119/3Vt/5c6JtzWnmThd5tOYJAE+RZDWLrjHTrJxd3e327qBZZre7tSpndx7JJbjl/tVP2rf2zCta6hk9dEjA1SAY9x/lILG3Y125R2MUYcTlWdVwY4IUKk5Y/T/LCPZaAVNFbhgeKiqKncSrJVBPlNyVRruGUiQqExTvq6APBqUPL+Z4tzq4TwVKpkUUlTAlTHbVQaYi7DkYSk/KgNGFPh2N/fC2Pau5HR8jH0yoIVh3Hoo1/tMiikpVR57zP7jGHWl5mXj9QSjBq4cE8lzz4p5cx62K+9zI43n2XUusykykN6amZ6aooyJMHz48GH84x//GP/85z/HP//5z/H27dudrHz79m18/vx5RxD0fQ3N7UvHeiSZfcj1IR5+96lO17s+TtxOUc49DU8rta/rfW8nN8xM050CJ6Mzve7tRB38GPK5ac0AjXYyZhUh4DUOZ21Vnnd3919iQlRGP3mv1f0M0VM4+LphldUjGv4aYi9TVTdX/KlNZswvpct01HZuwMj63XNm+bqwbjU9dAoeVYckHz7gExlI13BO3z/uQiNMxeDt6eTWlQO9PM+f87d8fayOe7jUXyGbyIrKenl5eW8aLXlPW8BxxmMJntfM++mMJ8vOtEjQkmI9dVkmEglIa0mcBNCYuWxeXFzs5Pr9+/fjw4cP47fffhu///77+O2338b79+93ZODr16/j3bt3e+Tg69ev4/r6eo8QcHpJIFmVt650XCcnIjBGXouSyK/LPaMPrPcMuj69/ZWy69GoJINV3iS3Tg78modg05oBNnAVdnZCsMJkdX063oVSKtCgdQ3s5fE6ufCRZXoUwENBndLyCIuOs311zL3FrsOrNpXyZWRARkULwCrl7kTA+3VG0E5BkSYZTMa9IgHs906e3QMjGZBS83Dh3d3d3tyoFrHKe/L2Uz4kpHyaofrkrO5NY8M9JuH169e7Tyy7/M/6dTZeqScS0rh3pepIoVNHR/h4zSnI7Ri5fEKKfvg9JAT+40JBJ/0uz5oC+/Dhw/jnP/85fv/9993vw4cP49Wr/7159evXr7tHrL99+zY+ffo03r17t0cIJNve9x61GWP/6RpOC7gBpz6iE9QZ6DHyY37e/gluzFN9dNxJQLVPB6WKbFU66lkjA2kuplKyW1bRdwZax1jRLaGRKhLAY26YfXAkgfVOS8Ll+VEhU4lzUHJwMi+1qTPcVJ+K5Cidqk5S9lW6LNdKv54a3Ninc9VASwqZA9hDjS4jgnsjTpx17ubmZveTN+VjgDLKZ8b5RAOjAp4vlUjyVMb4uZ5GhMD7fIXsJTJDzOSI5aq8qkNA/eH9rrHi4/wloCME6XsrLp98akPXavpL0wO//fbb+Ne//rVHBi4uLnYLXscY4+bmZnz+/Hm8f/9+9xlv5s++dAeLOk9wLz6RV0Z1mQ5RyVOKMFRty7ScrDo4vhIJ0H2Ur8pudagiDKncFTaTAUYG3EtQB3JBnrCFFLAjpLg8rJTIyNYB6yu0OVC4z7DrSsO68aW3QlKg/D1c59ME2qawGtuDSEySazI49VFFUlLaVRu7MD5EKB8bnXHf+hOkjPi8s4w3n7OWLMio39zc7C2AUlpSEPKabm9vx/X19e56VxgkAnxEMb09Tt6WRyBUPiefBAmBTw/y+lVy2MmsX+NpV0p1Cyr5TJ4W2+VYsutIJFP/3fj7j9e5LmObU7bevXs33r17N96/f79bJ/Cvf/1r7/fu3btxcXExbm5udqSAjywyYuXTlI4UMapC+nS8qHPT/9SGnfyQGK2g04tdVKCLSmyFE4qt2EQGuBiJho2LGcb4qUC2Mvg0VcBIAMOjnucqlHYiAv7d+erNciqXlIZPGTAMdne3v9bByQW3HCxKy+tXrVx1wXdP0gf5GPuLpioywP9p2sfDXJWneUzvyhUltyRLHiZN9wmqt4z/t2/f9l4e9OPHj90iQicDTgioJDgt5YuvvE8pt3yiwT/7qvLwHRpj/OwbHa8ibvrv7xJQuioPZdX/JyNWyWwaU+7xdf8rdHJKUC48SvDcSE7PGPttt0JgU+RR6aS2uLy83CMB+ikqoMWDHz58GG/evNmV4+bm5t4CRepP/fjkQCJmPj3gxtT1IOVQ5HcFhzgs1fjw45TPbmog1b8jF379Y8nmMhnwENMY9xe6efiRDI7KYebR+jFXLE4MZt5oGhgpIpCEmHO/bqxZ/6RsvV14D8vghIN1Vn76+h2FSaDC8uNUkiQFnk/yDivjz/TT1tu/8maeC+zrmdFfIQJqIxns6+vre4b35uZmRwYoHwz/+9ctXXmIFNCTZ50oP+m1sowOMNpA4kJ5lJLuPJXkuak8Y+y/t4PKftb3iQisGP2ZV5XGwwoJqLanjE5+E7w9dC0XC/7222+7aIAiA//4xz/Gv/71rx0RYNifMst27ogKy6NtJwM+faD0x8iLU9k+q6jabBVJT84IQVXWJMO+X2FLnTeRAbK8Me6HctQRnCZQOJrXJeaT5rCqilUGZsbgu4FekQKfa6s8eBoG/sRyFaLl4Ky8Uxotpe0DhcY/CUUlgN7m6jP2jbczpzmYtue3omSPgS2Gf8XLGuNnP8jAX19f781ZUk7GGPc8/evr653iTAY4KUSvi8skpwo4T6t5XD0H/u3bt90q7y9fvoyrq6t7K75JeAiP3nHxqcY9v9ExxrYpBN6T6p+U7GraK8rXo47HJgMpXydXbvipQ7o03CmTrtP6gN9++238+9//3j018I9//GN8+PBh936Bq6urnX5TdOzr16+77devX+O0WEJH8lwOfOpVmBnwzuB6Ou4IzOxS58n7WHBj7uPby+qO2lNFBzaTAV+AwkIq9OMv8JHH3EUEOlQRBQ5YdUjVMSk/Dh7O1/M/n9mmspUSVrpUtF+/ft3dr3lflT8ZlVQu1kkDgGX2F3GkgUahqcJrqT1Xjju77dr72F5VpTi3EgDBPffb29vx7du3PfLknjfXAig6oP/+WFPXXpzHJInlNIGiA5q31TcTGB2Qsv706dN48+bN+PTp0/j27dvetER6XLYqH8eiK2onlTMkItDdS0Ou+3muMgJVe7PcxyYDs7xnspumdToiwKcG/vWvf41///vf49///vcuIiCSKSKgCJdk6a+//hp//fXX+PTp0/jy5cv4/PnzvbUvXgYnvn6Mx0lCu3aqDGXV18IKEehsTOWUcd+jAjNUzpe2XVm2yO0yGfBXm6Y5VGelPM959OShpkafCYzurZRPgof4Xen7wkESAQ0UKVn/wIxew5naR21AMLTm9SIonEkppoGUPMsqSjAjFLPyVedckR6bFDw21Db0+sfYf0sl5YOLDfkIYVLOladCQkm5YJSAsqrV3IwOyIv78uXL3iuUFR3gI2Ccypj1vxvPLYuJKZ8pOpDgyt+9++r6GelyMvAYXtehSGOnOua6LOlTbnmvZEdyo/UBv//++44M+Ns1RS5l9P/666/x8ePH8eeff46PHz+Ov/76axcp8BcPUaZmEaBUlzHW33I70ztuC3SscwYSUiRD20SAtqIjEB3pXdW7m8iADCPD2GPsv4RHUOXTHLvOd0gGzc8LlUdQIQ2iMX4uKkxKloNEoTKFYaX4vn79uvcIDctaedH0MvUjK63KzTbifmfoK5LgbTcT2FUFnTysU8MsCpDAaRqRAfWZjml6zNeViAR0UwTumfhUDqNsuo4RAn4rQS+J0Tvk7+7udpEMkQGN7c+fP+8RAl/f0MkFjTGjAyQEKrcb6+Q9zTzD1I8sR3ISViIvOp9I1zFQGXcfW+kndIZHMuayw6cHFBXgdwgkz3rj4MePH8fHjx/HH3/8Mf7444/x559/jk+fPu3JFMmAyxLLWOmXNPWRCIHu5zRu176eh453fb6qR1nXGaF+LMzsRoXNkQHOlysTGjFBDURhcwVWITGs1PCORAoqsAxSpBxIXNRHT4uraMWUFbbX/CuF8O5u/9sFaVGlDAOJk8pIIz8TpCoasPqfW29HF+zUnrw/EYFTJQSHwkkBvWj3LJzwybj6UwJJyfFlUWmgkxAookWZFXnV2P3x48cuisUIl+6RN6dpr5ubm3ZxIY3uxcXF3tMJvnU4WX2oB0VD7nmuyB9JwDEjAoIbpVSHGRkY4z65Ylp8ikokUhHQDx8+7OSHawQUYfry5cv49OnTjggoKqDIAMmAPxlTET7vNx9LHsp3pCnNWV9WbTyzKTMioONOeFOZKifVz6f7SMaTPlnBMhmgx0uvxQdPYlbubXcNqy2NlM+PbwUbimA9KGiMfIgQvHnzZu85299++223mlZk4PPnz7sBQ6+RP9adc6z+2JZ37swYqz6r7dERA7+WWz/elWGmxJ4LTqi8ban4Z96AruF9igyQ9KV0GBpNz0qPcf/RKEYBKC8pmuDTBYwO6B3yIha3t7fj/fv3u2MkEf6BI40DPtHC9vD1QB4JmPWNt0kliwmzdQJcy5D6xY1+FRU4hciAH6t0rCN54u70qP8pA3xnhYik+l9TTZ8/fx5//vnn+OOPP8Z///vfHSlIZIBEIOky7zfWrZrLTwS5Ms7cevsQiWBIjpLuTPlwfOt/J9eVw5QiPEl3dTrsSSIDXDTnLISNzAVuDq90MjIpCpAY2IwVOhtLg4fC5O9QkLckpuwrbBUdePXq1U65cnU1F4tpMMjwq6zypBz+gpckiMnrpvLj/9TGFSlYbdMVnAIhSDKWCEF1vVApnTHuvzY3pbdCvgg/z/n35F1IbvlkAWVX3t0YYyevWi8gw0CDQEMhWWN0w+uyxfirfk5sPG3C25/jv1r8KgfF+yR5/qcWFRhjPi9eRQVUV04x+X3ScZIZ/k+RLW21SFoRgY8fP47//ve/O1LANQNfvnzZiwz4wtSqPqw/dbLqkt75QlSEwO1Vap/U92msp3GQznfRV68724D/k45yIpDOM90ZNpMBNnwaxBzgjhQyTN6v/08Nrf1qHUJiwiyHl8u9ICcD8q58ha3IwM3NzXjz5s2ONXPFttYS6PEzEiXt+8dj0rvgE8Nnu5LcsC27aEwiBQ7mOYtOpHtPQbl2UQG/bgtpobeewuGzNhWS8maEQJEHkk2PRFSRAb48htNa375925sDVj5O9lNEw2Vs5pGmaYAuSrJVXioi4IQgtbnyOwU5dVTkZCUqMJPj5BBRtrjQlB6uiICiAf/v//2/8d///ncXGfj48eNuvcCXL1/2pgjcQKayOhHxaLRHb7uoiJNm/v/x48duPFU2Rvf4fmWr/D/HT6W/O4fJCUE67vc5EXh0MsAX4jBTCg5XSPvckFcwDc4Vz4n3rRIBz9uNvjNq95BEBjhN8Pvvv+9CrxcXF+P6+nrc3d3tvtqlx7u4Wpusm0rcCYGOq73pCboxZgRA7SAjUpGAFNXpSBdRkTRv+5TnsRRtpyzStd39aeCyXv6YYOf90+gT9LIlH5JZloffC6BMp8iAfvq0rPKg0vfHCvXiJK4TSqF8ygRJiupCo0/j3xGBpDOcqM0iK34P1y35/adIBMboIwOVTPJYdb8bRf306KnWArx582b8+PFj71HCr1+/jr/++mv88ccf4z//+c/4z3/+s4sMkAjIEfr27dveGplURzdqKSJQkQMfG9yyri5fXn+dS0S3ko2kl53oprzZXx3R87p43jPv/0nIQAqlSHj4TnYqE66W9gIqzWRUEhFgo81CZ0qD9yZlmgYOowL+3C3fwKX/fBWnvtjFRzAr4sFyUuGLENAYeL2SQLkH5FvO43avNE6kKp33AZXK5fdu8bifCquEoPqNcT8smYxSIrQufx5an6XpYVKXAS4ClNw6KfVFYDL2vq2mBCuvh29KlBL0pyZIDNg2MyKg49QBq7JUeUweLejkeItCfQp4HXjMPcCurJURJAn4+vXr3joBOTiXl/8zFXoS5dOnT+PPP//cEQGtE9D7BZwIpGjAGPc/FMe60PvXeT+X6p/ax+tOQkr9mcarHCzvC8F1ptu0yjl1IrBVxli3amxsSXOZDBAUIM6LV8+SbgktV968G5PO6Pi93E+EYIyfc1B8Vpsvb9EjWvzpsay0+K/yblxgnQTJSEhZpWs74dL1FODUnoSHcD3tFDbriAC3qe+eG5VRn7Hpjgike5MHoq36VWkoH04LuCxUoIFVOpzW8tcSS075RsSq3rM8ufUf36NAz8iJQPXCLMqQy5yvR+hkanbclecpw8d/UvRVfd2YjpGfapEOZ+RS115fX493797tvS+DjxPqUUKPCOhJFH+XBsvs5NbHWCIBaey5TKfrqBc5HqUnKwNKA1s5WryW/6lXt8KJazc2XTYqwjjDMhlQo6lynBIgGWA0oPJAq/QJb+iO4XehcO2nkBLz8vnWNOeqH1/1qnJ6mzgpYrkpWF4v1ScpP6JilMrDp1NSmp0H0Xm7NHKVN+VE4JiKN5GAyqPy42luMsE9Zm8n73ePLnj7pPb/8ePHbmrA+9HfQOhTA3w/CI02x6wbbd/e3d3tRf4SGfBogEcM0tSC17+qewWO5xXyuUUeT4XMziIjHWn1a6nDNR1EAqBzmi7QNKfu4zQCpwa4Rip9f4PlYh1S2D/99/to4P3NnGwHgTpQupcR2MoRdV09+6829jafyVznPM3unTk2K1gmA5zbk6Hn1EBSEqkSbDieo/HSOQqoV3DLYNaWil2Gn2w4RQX44hY9PUAiIAXp7+bmm9y40KsazG4cvO06YU3/H2J801SBEwDuV6RlhXg8B5LBT97ACmkQKq+gI0i6zhl/Zej8fsmbp+lTWnzzIOVVeckAaGGX5JWkvpryS4Y+TRXMXq5Ukc1D4KHdJGvV+pkVHFt2q/9bFL0bKsoB9Zh+NPiMKP348b+PcOm7Fnp88MuXL/fkyL+2KfnjWqi0KHCM/Ue8V+rJPDwCIbiN2eqkXFxc7KZbuVW7eB4s1yE49N5DZWSZDOijOykyUL3LfJXNdIx3jP35UScMhP9PzDMJGYmBwql8JIsv3tBLWpQ/GbReyclwmQZI9RlalrVixE8NX0dQKc5EBHiuwimFY7uIQEUWXEkJXPMiOCnwvFe8TLaxR8dcfii3SWZFBlRuySsfD/v8+fNOoUupJ8XO1ygnr9/JgBOBFClMsrFiuKuxnsBw8yohmOmkY8MVPpHm0wXX31r4fHt7Oy4vL3df4OQCaulM3cuvX/r3B/wRavW5L/Dj/xUiMOsDkYzVKE6KTFUOD8vL6NzFxc8XbPGlXCuoiMjK/TPZp9w+CRngh1goFP7u8lUiIDBS4Mytu34GV+T+IaL0vW0tnKF3lRSr2KAGhebP/vzzz70PdZAx68M0zpS1dZbsbbAabu+MtHtQnHP29q8iOJ4m23u1jMdCRQSS4knKtAvtu9xzm2RZIUumr+s779nrI1nmtwgUFSB5VX/zZTGSU8lsIrL+lIGTAhl5kgHpBj82axPKjod3CW9j3l+16yHwCM4pYlYunxKVfEkWxvj5ymjqR66hUjoeFebXWT2SxCejxsivrFf53XtP4zTB9agbc9dFlY1KxzvH0vPld3eUXiJiM924qje3ONlPQga+fPmyl2jyCFYq0yk4GsKVqQFndrx2jPtrAaQ4GQngY1j+KJaeGNDTA+/evdv7FsH37993oTKRAb50Q4qV0QEXNEYn0oIf1i0JeGoTCrbaMilQEoCkfCtC4IZ/i6d7LBxKBKqwc4IrktQ3Ka3Un7NxwvJziotrBnxdi8K7nz9/3pEAfljm48eP96IEfHtcIgVOBipywKlDwSNj3LItkgNQEdRECKooVzWVmQzWsWS3G1/V8crwMiqgc+naKkSv+1Nk2GWB7dtN3VR1SfJQQW3ENQFpHHn5/T9JQSqn6wW/rvsYn+vKzsHy/coBScecfDwZGXAjpQqninshq3noan5lFgGoBucKEXBCwFAr3yvAuVd6WFxg44q18rCoSFU+JwJk4T4AU9ul9vCwV6Xo2E7pnPIV8an6IwmqG8RT8KpS6KwjArOoQEp7S1ncaBGpndN1jqS8OXcvIqCogP/S8+G+ECw9LdBtKwXLelZ1cwOVpkzYrx0hEDolvEVxPje8fgn0iPWfY1j1k9eu/uzgzhkNfVoP4gRLfZGMVIdVZ8P7T3n52GKZ069a16W0/I2wdKTYViIj+k/dWdUn6XS22ap+SaT1ScjA169f781FEaokK67jbsyqY2OsvezG0/UGqIiAf4LZIwTyrPTjs9kSBk6PeLhVHhWVKeddNWgoYF7mKhTtIayqvdwgV4aFc2xj7DNXDRApEV7nCqfqp85DPgU4KeCx58TMIFagl+dP9XBhIL9FwKiAflwAxtXgjGaRDCR5nBGCJAdsZ/dOqz7w1zHrWspkRQi83SqcKhkYo46Opvqz7t+/f997QdWrV6/23mcizJyv1Peug9NY32L8We4tjkQihTTATlBTdCBFr5wEjHH/xXf6Oenx8vA/7aMbfS9/hy5qtCW6MsYBCwjdo0rs2xuG802VMK8IYmX8BZVnhQjov5MCn0rwwaKPteiLXVKk8rjkWaWFV2TheqEH264K6yQm2Q3CRBQ8L/aRRwJ0HVfN+j0dEnFJff9c0IDzwVFFAVLUhOlov5PZriyCG8QtaSh/f5JFsqjXZDNsqdXhjARwOqD6fLF7+czf5S9tq2kqb4MOSW49vZT2qoHbWp7nQqcLXB69LiRZKVw+xr5hm+niZKwq0C5U+1Vb01HZQgh4vzx06jYRAo8I6DjrpjKm/GdjNfVZtR7OScFsPPGelcjJFmwiAx7a5pbn7u72Pw7ihmiLUVghD1QUNO4K6/tX2PhBIv/xHPOTwpWHxIWDVKxcVJPeOaByutdSCcisbaqpmhk8iqOfPzbD7SrDF7oQ8XPC27YjAJ2CYghQeC6CIwXJNk2PgX38+HHvS5pfv37d9Z/eHMcf1whwwaATWVee7iV229RWVH70CFP7uyJdXUNQeUcdMXFddQpIEQGhirwIbCcPd6sdSQbosGyVdbY3I5+VA5nqkrzkVYPHvnP5SFMC/Lld8cWAVTmSHCYZYr0py27YU318n3hMOV0mAwwrkXXpmLasoBu9FC3oKuPeRQeVy9cFkBAwDO9f52KeDL/yFZ2qixTrly9f9j7M4V/oSm9jHOOnsNLAJEVZtQkV7YqhrZSeC6japSIE3g/VnKx7gqrvsSIDCYkIOii7nZfpUa/Vem5l9WxLEgGF/0UEROr0nQyRCD4Cy7UDXCdQrQ73KQI3IjIkyctaiQxV7UDdkto/pe1Ewz2olXKsXv/UcDKTyuJepR8f46dx9iifzul6jvFkjLpIRYoA6H8iBB0x8OhAyjuhap8ZEfC1E05OPWrqhLjTxS5/1KW0gx6l8TrN5Halvzo8ChngC0187o/zzTR8ZFwuqCtIwsbHBZ0UsFw+D8QyKewqJctFg1K0mn/Vc9r+Fi5/2RCFLikmKtNUrqRUmabOsS1W4YSOfZGIQErfp1I8KqR6HStCsGL4O1QDKxm4rYRgC9R+GotatyJSqvfHawpLr8xW/+h6TimIwPKlMb5K3JVoUoJOBHhtJafuvdObHGO+jsLHhZ/rCMEMpxQlcIJSGTz/73UgEfD+IKH1c5Wnm/rQy+1PSbnD2I3JNJY6JykRJurLRASc1KY8vC2TDvZ2TG3h/70vnXB4Gzw1Kd38BkIO7tevX+99elceCMND2roAkpFJUP3lQs46O2PE6QA+UiWiksrEBhcREAngu7ilXPmxDnpkepJAYVcq1BRGUj1oOHmMgsK24n4X2nKll4Tb4REbEQEtPKJx9/Zj3vQ2nABtIXuPjSQ3K0qebZsUTlKiW8o0g6dJQnB9fT3G2P+2+83Nzfj8+fP4888/915FrHu5yJAvH+LCQ0UD+OKgFGbluFH/sp9dTl1Je1uuGmxPs2r/VeLnirnyso8BN7rJMPHa1Mac4quiJKvtya3vV9cyAqBpXOnklT6atX1FwJPzNCMCXR6uyzkefExU+sAjsanutH0VQSOSvPr9K1gmAyyUM3YnBDLsQhWKTwKucx4+Z8iW4DoBvjWLiwPTffRGpMC0LmKMn29qk/fP93Pz5S2+Qpvv5k7hYycg6vjb29s42Ly99J/Hq7ptgQ/e5Fk48eiiBF005LmRlFdXljR4qqhGImzs81k+naeTtt4PvP729nYXJRAR4KuIxxg7pcVphvS8uBt+PlJIBVi9XKgiAqnOHlHUNRzzrrRXjJfSce9zxZilvjgG0hir5MbHrI55Otym9uR9ybGoDI/DFwtWawgq0A6kfmQ5q32PVHnEyu/zOtMe8TztRoqAdW0xxv2pgqr+uqcjBKtkaYbNXy2sDJAUzBg/K+4L9TycrGvkiSZvV3l2rN8XDPIVmrNQI8tOhcm1Aq5Qf/z4sVOiui49m00PyzuSkQDVh48eJg+U6Thc2FJbd+s0nLD587EaRN6e1boB3Xt3d3cvYnQKkEytKBb+9+s7w+dkqipHd9xlX2V+9erVHgkf4+c0wOfPn3cRAb5lU/CwPo28G3TVzacLqATTdFhnrJMxY16UE9cDqWwrJGw1QpDKmvTPc0HjMsnBDEluhKr9eV8i8lXfSUd431X6YhWzqKeDZaeRdvlM61rG2G8X1qeKCnhkoLJhCSJI0rWsn0dyvH6pzp0Tt4JlMpAK5YZsjP8pJAoE3xediMFKB3mj+kIURgfSvFRVH2d/CpHyc56KMvjHOvzZbr5TwMOszCMxTJIC95J4bapDeiLB7+fCFF/U6e0oXF5els+Np3Kk/2lq6NiYGV/tpwGYxoAbJk/LSZ2jOl+RAUF9KGKqY5Lf6+vrPZKcPCpXlhUJ5zn3hLqV2TMDwzao2pvH/Lnwimwwn/Sf+qjDrA+eA53xTHo1XZP2K/2S5NBJxCwq4Vv9OF3RhckTKJfJAWHZXeeuEoFU39QeTEfbGRFw3U+Z9ynwKopVkTQfU1tJo7BMBshcHCsMyDuQXr2MhjxIhysHX4nKRSqdkDNvv06d6fk4yVBaHm7li4X42uEUOnLFROGpVk17fdi23s4uUMpPg5Hzd7peZIcD2D1B9Q+JC5EGaTewnhuu3PWbRQc6RdkZJGJV+c7y9UEvJeJvlRMpn0XIKuVFpPBqNUdaEYFOQblSSx5l1Xcrbe/ttmqAEpl5btA7dKKW6pHIZSdj3fGZM5VA50blpt5hRFhGORHVVEZdM7M3lAcnAyQKTh7G2Hdg6KR52ildpl+1DXVshUQEmL+2K17/k5ABeftJWNTxvhpe16jxOP/jg51CMiuHe7IpxM2yepmdnLhCowHn9cmzojfWCR2FhO0mA0vBS8zQDYCD17Nd2L78TyOhhZZ8yoJKn/PDnPZw5cRydP1zTCSjkZj1iiHYYoxWBuUKo09Ekotwxxh7If2VKJkjjc2OBLAss32ham9GPNJ6gUOIgLebozOgK2k/Jdh3nHpbMQSE98GqPLi3WnmtSpvl8kiAvowoMEReEfItDofrSI0N1+sd+aVT5jKT0qiIQEdkKttX3evY0v9PQgbIaKoOGiN/p0A/f8bVjRPv8X0a5OodAcqfnlIqC+91BeCPBHr9iVXmyfr54K4GZTJY3X+m59vUDv52Rp9bVl3UHgo9+xQIBwfr517p6vqNp0DFsCti0P3nsWSMZsp25qXNBm+SWfdgSDLHqMOqfkzykpQTp4hWI1ddvRKpca/HlWs1BZHyX40EnApJrZAifJUhcL1ZybKP1y4dliERAS8bCd0Y92XFp5GT0WVZmfYYIzqcjmSsnQR04yyNAU83EY2UbiIFXdrdvX6uIwQ69yRk4M2bN9HgKWMvaGeUpazYyclYuhD6EwJu1GW8xtgPQzGtNKVAT8eNIDvaowmsD9uj66BEBFZIgQtcxTyTMWYbclqAP36DQXnwxUtanOavqfUBpzzSi59OZQGhG5RkYKv7ZlghAVsGvaedvBWON74fQnASlsi2E/Pkqa20UdeW3E/XMSpAeWZfpWhEVb5kqFaIgV+/RaE+NlwfJrIjeP287Vb0k+e7GhXwdNWX6WU+KstsfVel42ZwWfF9laNCIs9Vel0UmnWeLYBMZNfTdb3vMu7YKrubyAAfI6oKQEgx8dvWabrAB6oLCL15GhcnAwyTupIc4+dTB8lLdUFmSJQKSEgdmjxfHzxet5VwOolANS/lHt6rV6/2HrFU211cXOyO60kJfalRT00oT0UE+BglF0r6dxfUh/6YJx/3PDYqY5quc2wZeCvKjce6/Gb5uPHi6mT979L2KALnNiskDzEZiqTEdJx1oZKm4UnKcIsXxfs7QpAM7SkQgmSgV7Ei16xzynuFDFRperSKbSnbQBsww8o17O+kM5O8jTHujZfk4FaEILWB6+iOfDCPFP3q+sz7b1WPJCyTAXl5ehENFUzqAIGEgIxQCofG0YmBrnVSQO+TSoNpeiM5oSBTG+P+S46UnofEhVTuJFjJSPv96b/KkISaAuL3iPDoc8weAaCR5hca9Vy67ucCSX9jnQhBeu3yxcXFHgkQySDReG4kJZrY96rS3+JldqRg5qmlPD1NloOGdKZ8KIdcHNoZHMoqvXjO/XIczTyXlfPd/4SKtFf9XSERgmPA2+gQ2UlpEqsRgW66KZVL95Gc8pzLWzeN2I2nVAafYuKx1HYrMuGOcCI9Xblm15AMrE6J+fhZdWwSNpEBZu4r/yvmNMbYEwYZeBpG/3gGj7thp7H3QarjFFrf97UGKR0dFxnwiIjykiD7G7WUH+FEgPu6fiaIHpoS/PFNev3y/PXz/2/fvt39dI4Llfhq5rdv3+4MvV7VzGkDlYGfgva0j4Hk2YxRK7BDjLPLUNWXzKsawA8xPEyr896c2LrhSwuddK3DCYGOOSlIZZu1k4/T6pfqWP338hzT85/B5aWqe3Vvul//Z2TIna9ktL2fU/7urLkdWZH3lekE5p9sUzrudWZ+hE/Rrnj6nvdKX632rd/bHXtyMuCesoyUmOAY9x+T80ZMwsFO53nBhUGKiOeZBgc8CQHL5A3vLFJ1U509sjHG/psXPcy6dX1AdU7lYHm9jgrRy/DTEMswy2P36ADJgNpfawb46CHXbujnZODdu3e7vBkdOEWsGgVXeskDTtd7Pt1ATUZyxStK6PKh0Wc+XXSgUpYa8xoDTry6tLj167bUd0V50jA9JgF7SqyQAToCbMfKqCRSVBHZRAR4nn3O9NOYYlmVlo+lCqtrCypC4OWqjLny4WOPLP8qCajK2BnuVUKwEh1Zudax6WmCHz9+7EiBG3opEUYD3CDzWhXUG9fD7x0ZuLu7ix82cU+H9yah9dCMh4L8OtXNiQg9dJ7z6xIqRcay8Vr95ys+KzJA75zkIEULuNhPdWWERtESKiBez6gE89axY2B1QKwOvCRXSam5rCVPfcVQbqlDQqXE3IvXFKArTDf8/kgYiUBaKDWrY0UIZmSrU6zV9TMvzZXwilf3lFDfUP9QHyW4cewMS0cIvA0rL95tQVUW5ie5WZXrjgx0+elYiggku5LsUSIVxFb9UpVxlQB0sqvtIfpi03sGGJ73FZJeYBlECnPylBJRSF58Uiy6X2VzL6fy9NjonBv3hSaqZ1rlqTyc9FCBOjtWm7BOqwtLvEyE8vdFex6qp4dO45/WFqiMHLB8rJB49erVHklkvh51eKlIXuuqZyV0pHY1ErDVe64U4Rj77/YQEaD8VgpShEBpkwhQ5qtxX0UFqnqncZzIfjrftUt1PBGCUyADSR8RNLT6r+0qqUlt79GBMfaNpM6nhdYsW/d/Vh7vT5+qWEFH8ipy2q0z0DVbjG/VDlV7JMdjS3pb5HbzGwipQDhoLi4u7j1DSlQd1oVrBD6eWDW6DFHyLlID0cv1961zvwKFiIOiqocv7vLpEaIyIF0UxVfwuyFO0wHy4kkA/JPPXNSpNy1ywaDKof/+qKKTjmPgUKY8w8zY+f4srdX7Z8azQjIg9OxTxK5a1KU83ShIZtwwVfViXbr6uEfMxYozT2rWJlU+naf2XKjKQ0LgcsjyVkahI7DdsTH2I7DeB94fs7ZbadskK+kJmVkenaH09pu1aUVSqvwrp7T7LyTHwdvbic6TRwa0TUKpc75ytKqQw9mPe/k03kzP06qUlw8gEgG+XS99dtjL4aBySqCX7U8epGs9D2fcvijSiQDD//wxCuBEgO8F0M/LrjT5DgYREZEBpuPTDsd8tDApPzdCFbYa3XS9D9qK7Vd5rOQ9W4/i+apNOAWUyMGMEOia9F6Pzsh4H3SeH9uPx9wT7vo46aBkvE6JEKTIQCpb1QaHeIip3zr5q4x/lWdHUGZl2joWu3y3tMmMTFX3VHK2itV292OHEILNZEAZSSilPPiY0Rj7ngMFWed0zB9HIlyouYDPFc8YP+fm08C/u7v/oRMRAb1KmI8/EjTQyVizfJ2h9ycwXMlW96Yy0QtLjwr6lACf9ff3LdBYa5+DLhEOteWrV6/2PtfMMm35cNRTwheidl7pjJ1vJQ5duklBbEl/S5t2Ro3jUkQgGd1ZuSoSVF3rdajkhNG1Slek4x0ZENzTqojAoQvHHgonQB1J8bp4OsLMq01ykq71NWPehl2dfH9mKJX/qoyt5Ml0/X/VlhXxWjW+TLMjCCskoOvrQ8jHQd8moHKlV8wV9VyMRGFWGiQUHOz+qF3ydmh4Ly5+vuWw8mB4D6cEGBXwY278Ly5+esArSsWJgRSt0uT/5BElIsR2GWPciwZwfQAXBtL7p8Llj4RAdR3jZzRDP+VHr9E/YKT0Ul7HQPKgBJWV/yvDza1fn5STH+s8ui1wpejjJBEQN3ipbpRhjUVXXlvLWR1z2UukgGAZpGN4TumsED6/z42Dk4CZcXtKzLy/6poqjS39WRlCX4OSiNSWcnXXz4z1FqT6pDRnxtTbb6vx7XRMVZZZfTqyv4qD3wLDgnIQq2CukGjQ0kAjEVBaVBb+SKDgaSUPQcc9IpDIQbU4j4SnMxaerwZPt2iwOufrNAi+XCi9SEiEgNGAziA7KWCfqk0ZRdD8vwiCP/Koc6dABoRuwCTDnc4nQ18NWJdXD/muKE1X5L5N+1WdKuNcER2W25/aWfGUq/J09eiiSMqXW3cmUp2rPuOWx1P/HJMMdAR0JkOrnmdlfCr9zPNc1OgRgpRXKp8btq5sMyKwxShvSaPT8YkgVPd3pKPqA88zyWnKb4veXSYDvmDDC1ANUK+AlAg9Sd8qPVaIHmsiBj6/mdirLw7kbzbgSQiqxnUjyuuqRYMkAB4V6NYVqC0UvvcFe74GwIUiCZIr50qgGfkhgXCPyhchHpsMEDOFkRTwisH3e9mOLj+VQkh94v/VrmPsf8nT+5gRuyS/JIGehpN87jshqPSBl9nr0a3x6Ygr20DXpmk3z7dD5eUeiwgILi8qj68lGqOfh+/GtK51sqqfOzXKX/e5c+dl2EoIOiQ5mqW9ev1qWmnsVu3rmN1bEQQvQyWj7oA9Ohm4vb2NbJIFWFk46PNeHh1w0PD7HHQKJ3r6zJfs1YlA5+lQsfm+6rji2aR2S23kx3ScSoHz+9XrhpORoKE+RNGRnOm/2sT7lOdPjQikgdQZH55L9enq5/d2hDKRA08nyVsiyLrO1wEQKQI3xj6x5Xn99zZjebz/Z+3DenNsUeZXiHrVl52XlY4lYnZqhGCMHIEVunomw+OEQPtO7l1Pum5NOmVl7M/6V1vKfnJwtqKzabNrdf2qjPKaGXGoHAWlUd3LNqJuWMEyGbi5uSnZ/Kyz3BBRgJJH6XCFx4p6+v7zFwjpPyMTK53CeqZFkslgEMyP1zBtMu9ZmdjhjBD4AkEqdW/n1fnQzshzP12nelbTPM8BVxipPbp7iBnZS3Vkv5M86X8a9Om/tm68+Uvk298M6PV0QjDbZ10lsx459Hp2YP2V/uo0RGpPvyblw2PcTyTxFIiA6zluXY9V9VNayfi7kWJazMfbMzl4SW49/y119zaoyIDXZ5bPCklJaaf91fRX65/aP+2n9nYisFrPZTJwfX29Uzi+wnhVgVSGyNlnVUHtd4ynysNJQSICKx3lyrCrK8uUUM3DdaDi58JARgj8SQEnY0onCVQiMRXbV9qulPweGq5TQCKeaQpnjLq/9b+6Vvn4ebazEwLf93STMlRayVjrf1rM69d0spzePFcpmFS2LajqzvN3d/efQlJ5nbhX6SdS4O1zioRA+2P8LJ8b6A6V8ff9ZIDS/SmyW/UBy7+VEFS/qo4raR6CGQlI5DOVze+d2YvK+Hue7iR07eTYRAb8gzwkB37MDYAEgIvR0pxT5bEmhTVGvUbAIxDOcLeA5U0GwcvCPB5biShv/z6AvingkQEXBra1v36WebDsMxYq8K10Hh3YIpRPCcqACIDKSiXDgTwr92PUKykYH+SEP/VBGXTyx37xdFx+O0Kgcjh5H2P/XRvuMGzxhKrjM/JRkbmV/Fy+q98xkMaQyFCn07ryJoPWkQL2pZ+jLGw18Ctl5fUrZKAypI9h/FevZ5mdPPm1lXx1urfTxU4GtpDxTdMEVKD+TnztjzHKwpA0uEC7wNGT15bGeIz7Hks1n+XMlee3YGV+VVAdkiBQwNQmSr+Ce0CKDIgI8MkCX1vh9XUlktg/970dVQ43oLpexkC/rXNXT4XKq/Epp0SgLi7uf4tilpfy8GMzVMrDDbW2/IhUMvYeyVNavCaRgES+BRIL6gWlx7p3yjQZoGqqMB1bIR2VIub+KZMBjyA6ARLogDih7drA287TZN5Jl3XTja63qvxT2j4WZ2OUaVXl3YqncGBW5Wt2nY9njwhsmSIYY+PTBFKcBD1/eSosmHcm32FO4+Rhv8oAMV+m7fcrDaZF8ByPVR69e0mp8dlWOp8iIV4P5uHnCRl5nxrw9QLJuCWm3y360bWdQDobVT5JYI9NBATv70RqvE5j5DC0G0FiRd4SXInzeGL9/nSNk+9Eljlmte1IQOo7jmURJF+fUC1a9DUUqZ3SPT5WqI+6RZmuU3g/83WdcwpkIEVaEhmgzLhMJlLQEQX/n/LWdSuGimCeHVFJ91VEwNOt8nwsrJbXnQ/efwgZqPL2SPzW6QFhmQwkhuqojFmqSCpsmtdPjZkM0Bj787BV41XGv7snkZAuFOOvZaYS5n4iGH5dyleKllMFaXqmEgjVmz8+bkmPr4MbDPWFh49T2z83KjnoPA8aGxK6NB3U5Zm8t4SOCIxxP+LWLRTV9RxDbkyZbjL+/jQK0+eLf9QmPk2Q6qL8CCfJSXZSe1SkOsFJOeuyQgSOJbvpk9CpH1M0hvK3pfzdta4/mX5l0JIMJFJQ3eP73u+zKVknHk7qu3sPxawNt5IBT9N1luuGRIBnWCYDFxc/w5H6n8IQHFgrcIM+xv7A9Tf+JUVAI6QyKB1uvVHTmoVZWZ0AVIJOQiAvioOWdU8emLN7XZNeJTxjy674tC8SoKiPf3yIbcU0K+NJI0oo38dm6Iei8po6z0PXql+SYnZsXZuiMjjYx1wr4ETAjX8qz8xoOkFIka8x9gmvIgBuaKtypLQ4JnWfRxYqZ2MFKm9VjooU8NwxQLJegTLLqKt7p5WnOkYdZue55M2n7Zb+ccOcxmNVrjGybk8GNhEC3vcQVGl0unAr0azGkfd9kulHJwMKQ4sU+HPmypwhpRS688I7GaAS8PsTI6agswwdSxyjJgJVA3rI2I/pP5k563F5eblL3++hJ5bK6tdWZGAVbFv/UJNIS7UAkAqnIgIsz1aBfAokJTjzIrr2ZH1XIgO8LyF5yknWKyJQvTHSx4TSZp6Uac+zKrMTIY5Tjw4kVGmKULCc3m9bDY1AssJjvk1K+lhEYIwRiQBllOVMJCzVjek4Zsa8IwEp3ZRv5bSsEIlEWlaNakcCVvPdgkQEtK3IwKxePN85L9S7T0IGtGWo2gs/xv23FQopjMFKJQPjBtaV1kzAUyfOiIDKSjj7SkQg3UfFXgkgPbtUToGLA50QVHWu2DXb9Pb2dvd5Yq8HBx9DwYkIdOz9mAp1jFpZpf9CZ8xmde5QEVwe8z5LT/LwzZJJGajdfWGZ6pYWQybZ9rJ5yJ3RAaXt5e88z6pdfPqgMl4Pwcy4HZsQpMWfrieFjmTNsCrPaRx1hniL97taVqVLMtR52u6Y+HHWJY2j7v8WOMFMZT0k/SQfY/yMKj06GUgKiqC36YXSPfSSO4+j+18J7FY23xEBz59eT/LGk5cluFFNLL4KxbqnRk+wehvjyqCWgLAsTu6UvrcLIzkpvxlTPTaqMlTt5UomEaHu/tV8uvHgfcyoXHqSxcvPeqS8vA4u1w4SAl88KNze3raPNKb0uymOalxT8TFNT4fkaOXX5fmcoI7iMddBXl8nCbM6JqRxnNq1S4vjppuiok6ZwYnALM2u7Drux1Kes2tmZda2kq8tjsUKaXkyMlCBHe0D815m/79n6wLSMcxk6Jg37+sE3Y1/h6QUlTc9cSoeJwBpkCYh6shAuo4vFvInCBIhSG0mpcg1AhcXF+Pbt2+7a/XeAtZDyj4pHYZ3PXrAvI8BKo+Eyhh6Gg8p/6pHnI6l8lWK1cdEmv9OCp6EYwXpOn09VOCCVI69NB3RtS3LX43fdJ75MErCbZf3FgP1VEhEQD/2G8s5K29FGogkc51BrP5TzzuRTnmmsrkO6QhJVY/qXh6v4Ok/NhmY3bOatufzZGRAHXpx8fNd576iOCki4fXr17vvG/hKe3VE+vKde5ypIdIg9znSFWwhAUlQ3ajPwv7pvm6giADoY0TpmwTpPQOprPxMs4fxJUBcJ8J6pz5iHvzssRO+Y6EiYrPtimKdGY1k2MfI3ziYwaNQXhYqAI4nN8QeZdiy/sTbh/XwNUMqg8tBFSnwcVx5xmnrZfOoH9vHHQe/X/d1JPI54G3Acqs9txKCGUH3/vU0Xed2afmUUZXmSrl9rFUEpBob3karxrhzMGeoSNQWQ5/ktCJFvOdJyYAy8EfnEgOnoaECc5boFeT9SekkBZq8n6pxeJzwNGn8q0eseK22XTlT2N0VKr0zHzyvXr3aEQF9ppg/frlQxICKmfWnouZjhf6f5IJ1r7wLtnVHbp4TlZJ0pdSRgc7Qd9f4+dl0m8pblZ9G1ZUBDS/7siq3tukFYr4uJ7ULZUFTWFqM6l9KrNaNUE942dK1Ps59rHfGy9vG9Qbb89gyK5BIUWdSR2pL3SEcWg/XO1WZOuPmDobrM/aTk+kVEu77q/3n11SkwuVsqyHv0nYkW1iVp8uHZaWeX8Gmlw6x8aRERA54zjOnly4FwXcKUNHRkAiJDHhHcnD71t9myHQZoRijfxvbbM6L16Vy+o/3pTpyy9cOy+i/e/duvH37drx//373e/fu3Xjz5s2eV682kNJmXyi0e3l5uSMB3CovkoIO1Zx6av9jIimmmceSjGEXfUnTSN0Uki+Yc1D5V+Fjf1S0Im0sn5fL0/V73Ui4TEmWJEe3t7f3CLnnobKKuDqBTfWt1vskMqA0WA53OlSX5IkdE06uNY59y3Nbxl4yWEk/8bz6x/U15VnlIVlhmika6nmtGHXCr0/lruqc2qAiAlvzru7Zmn+6p7MxFQlP2EQGxhh70wNpuqBibBrYJAK6phJaF5qKCFBh6BgVIhtK6TIP1Yv/EymoQJacIh6sSzfn6UaGTw5oeuDNmze7qADJwIcPH8b79+93EQIabinkMfY/Re1ekodPvS/SNAn7oWKnnSF4TiRjnvp4hRQkssj70vRKZ+T9zZxdW1HueR3DgilEKPJOWfXpOsqGwEhEkk8aKU5RaHt1dbVXp2TYGY26vb3d2/fzJE2rHpTLpqA0uvF9TNCoEuqvGSEY4z7pdOPmeXROC/N3kJwlQ+jHVYdq6ivp6a5vq3v4f2YYZzqsKgPTZlm3ytVK/l3ez0IG1HFOACphVSG9oq502GBp2oHKJ3mlOpeMfiILafGSw42d38e0XXlygWRFClaUlurFtQCcEnj37t149+7dXlRAZEDfKqCCvr6+Hnd3d7vHB0nQ/BsKyVDyKYZk2Ch8/pOXuBquek5UXklFCLxdqt8Y919b7WCbyVCTNFfy4fLIQe/rBNinkklGwbQvb3513YDqRELAsiRCkuTe5YayQiKgx195jU9BdEo7HXNjmch6p9+eC6kMJGdj/KyDrx+ovNOKEPC//5hemkZK96a6MK1qXVFn1FO+3i6+73Wuyt7Vv9LbVXvPxlDXPh0RSKTjEBLh2EQG6P3T0HQer1c0ec4uFDpWeV8prdTpVIZePl4/C32n+x3Obmk0HCseDQ3L5eXlXkSAUwI+RSAyQIMvIywCx0iL8mWYloafIV8KVtXenH7Quwu076vNnxsVQRtjvpYg/WgQ/SVA2ld7pnzV7skL1nlXkCSfNObsw+p+yjDHrPa17QhzIkmqK/Pkz6MMhJefxp7GnzLEn7ehh64rZVh5jYyasJ+2eniPjY6UpCmE1E9KJ209Pd0nOU8GkBEJv9fLXh2rIlXVeJmV3cu4QgzTdtWods7DQ8qzkn9HZDydFWx6z0CFZCASGF3QVmlzwNHw+xy858n7FCGoGLP+O7utvFzm4/XwtqECoRJyRVIRAbaPP0fOtQKKCJAI8JjWC3j4l0Sg8v5o0KlUK0LFtpIxu7m52fvx2LEiA518Usl28utEwN8GqDbnEx0pmuKyQU/48vLynke9MpiTvLohTvKQDCKnEkg89NIxb4vO8Ag+N+xE2clkihDc3NyM6+vre+TSf7qfzspMBqr+9jY+NjpCQLgx79JL6buBc6LojhTv41QX9V8nx5X8qgwzo9fVz2Us5ZHOz0gA2ycRglSWVIdUp61EIKW7pZ2EzWTAlYR7E90gotIlI3Sj6Z6XkwEKSvLWGLLnUw9eF1dI3KZwYTrPiAZDvSqL5+ksnul7pykNrhnwaQI+RSCD5GHpKpTtwpz6zwe+EzISgdvb23F9fT2+ffu2RwL0quNjRwZU5urYqlesdmAUQCSAT3JUhEB5MiLgnjDJQPqAF8udDASv87qJGN7e3u4ZeU7/VYo/EXLCX1OeoicdIXVCwAjT9fX17ifZclm7vr7eIxPSNZVSrOTZoy6nAjdwfnzVOPE+gddSTzmJd31KXaf2c9Kr6ypHqzPUlUGvrk3jokvfj1cGOOnJJMcdgeGxGfmojiWs1rPDMhnwBXZj3H+kUMc6hUECwS3h3rsbN78vEQJ5WUlRpgHC66gEXPkmMqDysGz+qlfWxwlBiijwPk4ViBDwMcK0yr9iht5ObFtfG+BvO0zeHD23b9++7X7uxR17zUBFAtgf3jc0/ASNmRMBPtqpvuGTHZQLhsVJCNSubhhp5HSNDLh75k6Mx+gJgZT+5eXlnsFRfas2ZXsxbMyIiZMkfxdGmv5T/b5//36PCEi+vn37Nr5+/bq3f3V1dU/uGDEgKkNJp4XbU8GMBFK3zMhAdW/n4fI6lYNbEgNtGWHs6kQiltYlVMaRbUIkW9Q5BJ0n3dkbnqfMpP6Z/dJ1Vbn9+IyEdNj8bYKuMDSK9IQFX3OQ0iDSeoGkgCQ4nLvkuVkj0tjTi0j7XlbVRd5UuiYZlDTY2PneblKsJAEyNmxXeZoEvUy2jc/1vnr1au+JBX9nAb1b5UVl/e3bt/Hly5cdIWBUICnj50bqNydmiQRQ6SbipPZRu2mqhhGb6tFMjwy40e/mzEkE1LZcWJeQCIGuFRFwRaw2qLxob19GTiRDKYrF6RUfIx41ubm5GV+/ft2Rzq9fv+7kTb/Pnz/vzjFScHFxsXuKhsasgsvDKREBoivf1rJ73yb9TKJHI+hpeOSCY23FyDkx8HG7lRCsoEpL6TkRoDOQnKSUnuv3FSJQlSmVPf3fIrsXd6cq6WecccYZZ5xxxrNg7UXkZ5xxxhlnnHHG3xZnMnDGGWecccYZvzjOZOCMM84444wzfnGcycAZZ5xxxhln/OI4k4EzzjjjjDPO+MVxJgNnnHHGGWec8YvjTAbOOOOMM8444xfHmQycccYZZ5xxxi+OMxk444wzzjjjjF8c/x/gMK4d4BMDlQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8XklEQVR4nO2d23IkN4+tKbWkPtj+vd//AffcTszY7pZKh33hWNVfLS2AzNKh5O1CREVmZTJJkASBBZDJvHh6enoaZzrTmc50pjOd6V9Ll6dm4ExnOtOZznSmM52WzmDgTGc605nOdKZ/OZ3BwJnOdKYznelM/3I6g4EznelMZzrTmf7ldAYDZzrTmc50pjP9y+kMBs50pjOd6Uxn+pfTGQyc6UxnOtOZzvQvpzMYONOZznSmM53pX05XqwkvLi7eko9XJ/HLo1+r0s2e23L08y08eH3SM07aQ4p7SXX7SiX+Oj5mZXT3Hh8fx3/913+VvLwV/f777+Px8XE8PT1F/lI9vc38f9V/sz5PfX15efms/fW7vLwcl5d/Y/ZPnz7tn+Mzuq//rCPr/fj4uP/xv6djfXVUvpUMro6X2TPe5uTd+XR+KzlPabq6ktjG//3f/x3zf0v69ddfx/39/Xh8fBwPDw8HPFI22E8k9pmOTOvpk0yxLMrr5eXl+PTp0/7+p0+fxuXl5bi6uhqfPn0a19fX4/Pnz+Pr16/j69ev49u3b+Pbt2/jt99+G7/88sv4/fffx3/+85/xyy+/jK9fv+6PNzc34+bmZnz+/Hmfx6dPn/b5iqfHx8dxf38/drvduLu7G7vdbux2u/Hw8DDu7+/H/f39/vzx8XF/Xz8+c39/H8ff09PTuLy8jHKoPB8eHvb53N7ePvv9+PFj7Ha7/ZE861x8Pjw8HIxL1bPTxY+Pj/s+eHp62veD+unq6mr83//7f6eytgwG/gnkimaLMlo9vjTNFnCxyicpKbjZJpMJCIwx9gqBRMFkWi9PA0nnlTC/J80MGakDA1v7fnbdjb9fkwJ0MMD+0XPOs5TKw8PDQdnsF/VpMrA8zsZOkqNUd6fEO/nXszqvwID3kwOZ6jwBncTLKUj9TKPkxkqU+E9jj4aeMtT1nYMB/nj/6upq/xMQ+PXXX8evv/46fvvtt/Gf//zn4Py3334bv/322z7tly9fxs3Nzbi+vj7Ij+XSGNPw07DrvwCD0vG+QILkqmo7tpfL3vX19R4M3N/fj+vr6z2Qubu7G7e3t+Pm5mbc3t6OT58+jbu7u3F3d3fQthqjBB3ss0+fPsV+1jXpBcoH22q3203lbIz/D8BANQD8vFJKMyN1LBCont8CBDrleyxVHkSiapDMyJWUyv0n7Xxdtc/MIPpxSx96WoKDzvC7Qvc8Hh4exqdPnw6OnmaMHAWgYkr9l4xoAgWJPKKRSPyyjgQJFS8r5xV1UaD3JhkaGQwHdGP0/TIDC911z4/nbP803hkZ+PLly97z//XXXw8AgX7X19fjy5cv4/r6eg8ACEA8suUgQEbWwYDaL0ULBAaSI+NjILWDXxNgv76+PoggKKKjcafz+/v7g/Z3oFE5JBU/lBGPqq3Qq4MBCtaK8k+KJgnXisCuKOXO6G55rssv5b+qUFaUVXd/pshXFcQW6vrZBfMUxAHv1PXbSrqqn7eCvg5QznjrnhOQeHx8LI9JVpIyXAG6HtkgpUhT4lnppMSurq4OFBp5T+RjyOuQdE3SOZ7nKYjjxnVrBbpTHp3s+P0K4HWkaYKrq6u9Z6ypAYEAGX5FCr59+7aPBuhZTgWo7gqdizd5+x4RYGTAzx0AyEh7mxEQeCRmjENd4u2vKROl90gejzTU4oWRAZXV9akT02t8bNG7m8DAVsOxJf1W4ZspzMqgJxDQpV85zniYXR/j5SDA0yVFvhIVWOFD6ar/K+fvSZVC7YBhRasgcpY/DWb16/KgkvH/SiNlQ6P/WlTVI/Hn/Kd8WBeRlGul+KjwlFcybF35FX3UKNYxQHGMbWsKUt5Vf3N6QCFyjwQQBOia1gZcX1+PT58+HRjOMQ4NmwABPW0adq4B8GiBTxn4zw26RwlYZ5VPgJCMveqjuXsBA93nc1wjUPVP6ssEBAnmu6hRRf+oBYQvASMd2Jgpbafkeaf7q9e35O//6W0dE9Zf8YrSMyv/q+N70yxywaNf7669JRgYI3vSabrAgQHL6jzoFWLfuZHdAk55dPJ6rOSXAO/KcxU47sBzx/t7UCc/KY0/695tSj+TUb8uECCj50Dg27dv49dffx2///77ARD45ZdfxpcvX8bnz5/Hzc3NgcwypO3hby6uY6j/4eHhYD0AIwJ3d3cH8/m+CFV1IVCu1hBwHPFZjwawbVg3rvtwMMA83ZPvogNOL5XRf/yaAVKnfFfup/8zw14d/dlZyL4DFxW5saDAblGSrvArxMm03XnKd0u46rUplTtT/MkQHCMLqcz3Miyu+Bia5DEpospb8ro4naKOfr5Vzro6H5Pfa1IyxrznbT3TKdV5l458+CJCRQS4APDr16/jP//5z/jPf/4zfv/99z0Q+Pbt236BIKcDZIylu/jWhKICd3d3z6ICfs4FgwIFnFLo9JCupUWqY4xnz6u9rq+vn4EAtdenT5/G4+PjuL6+3teDeas+BDjM3yMXPO90tF9bld9/FBh4bSWzgqxZbuUd8brnuYLku8HOZ5PH6Py4J+iGLHnxM49vpiRnylT/T6lUV2Wn64Mtaap7Lgdb+anu+9sFiRwYkCpgtIVW2sFpFt2QUpRnlfLdarircaDjKeXUaYWXlfGZ9IDrpxmI1Y9RAS38+/Lly/jtt9/2EYHffvtt/P777+P//J//swcCX79+HZ8/f94vDqQ3njx0GVBfLJiiAjKq6VoXGUuOjoNlfyWXYODh4WFfH48S+OJfb3PVj0BA1x3I83oHZry/vY4d/SPAwKpCXDHEnXLv0nR8dOnSQPTzlLYjKcfZMyuKcubpMs2K8a/uSbhPQRWKXhkwCfBV4K/Ka0t5Xflj/Ox7Ks+XAmRXULrm/U9+ttShIt8rweuS+u3y8vLgbYiO0tioPK30bPf/vYjKnzxU4CiRr9ugc7EFrKr9Zfi0UJAAQFMCenXw999/34MFrQ9QXWRgFcInyRA6CPBogJ5PRps8sy2TUSXwIIggwKDnrnZVWQIEbEPuD3J1dXXwvOfrUQH2d6U7Z85XtQ6hon8EGJgZvHStAgIrXnhVbsXHarrquVm+7GgiZ9Ex6wZmimQ1GuDXKs/zI9CKZ8nrFbnCTP/TvU4m3SDL2HNlva+yl2FUONLJPRk+yzZJCrIzhl07ViBiRqxfB8yqvQYqr4neZgKovN61wUeQ55lMJn0xRtZPfo+GI4Eyerl6Y0BrBLSRkKYG9LaAfnpd0F8P5d4XrJ/u0WimxX8iAqM03pJ8eJRM+TFKkcCHAzIC2aurq/31tG7AHQqCDZYv8nquOlRezir9I8DAChBIyrX6X+V7jLfX8beV9615iFYEJIGVYxVcFQWYAYFTKtRVgLY1fQUEZgAgPet5VP9J1YY9XXoayARGHaR2oNTBTDImXj7zUDpfTe71prclIzID0ikP1s/TV4D+1HK7IourQLfrx5TW289fH9Srg9xESK8N/vLLL/tFgmmh4MXFRYzyEAykKQDnkx4424ztQsOq+3rPX/d2u92zZ/01RupabTh0f3+/BwKSUb1JQF799UiPQjCN7rMt2F+rcrGF/hFgIFHnfVWAwJ/zvFYU80t5Fbmy6RTVMbSiwFwBrDxTeVTp+FGoGzhddKYyihVVclQBgXSf5fp/jw7Qo0tvDajePveoezz6eVc/57sCAtVbAt4GWwBNtbq6i2qs0EvA8VvSCsB2WSGt6EBvO7/vr8txwaCmCPjT+gDtIqi25W91fQsNJg2i5F0AQGCy0qN8nnlzUSKn37RxkNL7NsEXFxdjt9vt28ZBinj0Ovt+DIwOiCfvl6urq2djedVWbZHrDw8GZpXugECngLv8V+5t5Xk1v+TJbKFKuW9RdF3aSul2gODUHpaHCBN1XpQDgYTSK9lKnnKSxwpwePicawZ8iiAp+S3rNCrFMfMau/FFotE/BghU9FZy9RHAwWt4gN7mnl8lmzJofHNAEQFFBfyn1wb1tgDroHzTWPSxlmSXBpYgg0bWp5rSK4HumWs/AvErA512vXTj7nXz6QG2ucaqxi3fxhDY0NoIvmHg2yZ3gMD7cwstg4FKSejea3izVf7pWjqqM7o0K2XN6vLadZ15jTp25a4a/q1gYeZRdoCA199CPlbpNTxGGsTOi5/llc5TXiwrzad3oEH/mW+ak2T9jqVVIKCypXDHeL6wzddEiHceE98VqEp0bF1PDWTHWHNmKuA90yk8+uuD3B3w+vr62TbD+vG1QRlK9+jHeL4NNXffY73lJVO3sw6+jsE3+nGd6dEJvY6orYz1DQAZ4ip6UfVDajcRt9XmRkSMtjw8PIzPnz/v+dPUhHbg9HGxIpNb5PZVNh16L0W/CgS2eixVukqpdINT9zsFlQZs5YXO+H+NSEDKrzP2Kf9ZZGBVeN+KZmWvGPXKQ055zPJyT6nKX9fTYkJ/Nk0TdEe/lqI+nROQyqp4TiCGrwx6eqX1hV7kdYVW0s0A0akjBJVO6/hKz6RzT5MMGsPaCQgoGsCFgupPTmNRBtiXldFl/Sgn5IuvOPKbBilK4N69NibSB4U4vna73UF+KpdRuGoazPuBbe1t7lEXf+NAwMTboxurxzpfH3qaYBYK6X5K489UeVX3twCJ1QE4y7+qT0er3m9Syg5CZt5VVfZHpZWIRQfWUpslSn0768OuH1IaJ/e2Z0SF5uCiAhMzGU11Upo0zVFtzSpePB9d3yqPqwa+A/xdmlNTN0Y7XZb0EfsoRQT49gA3F+LHhdzoknzRqhaCsiw+o7pxWsANv9YkCKTomqIEHkkgGFC4Xp8Y5sZAd3d3B3mQX68Dx4EDaqd0/+LiYh+RUDt79EJgQEDh4uLiYI1CivZ5uSv0JmAgKdOtg6lSrDznz0NPKY+unJVnvBNXyRU+n3eDtAUA6JlVIFA9twIAZpEC/5+M2jFo9bVoC1qegYKOtoDT1+J71me+illUrSfo5NxlledJCQkAjHH4OV6Vn14nlBJUmvRzz8iV7GsZ848CAnx8ruhUH3szByXpVO0nQCDgUwIXFxd7L1t96m8Q0HjqHq8LjPpY08JAlcOtj7VIkVEJ/tRu3o70uPl9BK4h+PLlyz5qIKAwxs9vCXgbClzsdrt934hn3zI5baes/H2x5s3Nzf4ZLSRkXdL/FKVboVcDAx0S1XmlZFfy7oBAur9KlVe8WscVfqtnV+uUFllRoa4iQVe4W41T5cWu5H9qIKBjJ4dVO3b17Ghr/ZOsJNmmPMxClVv49v5L9zswcGy5/hz7qwIBMy9sxViSTy/X63AqWgGSK7p3i47QjwZJGwfx9/nz5z2402t58qZl1CizCQyM8fxLfuSBhp1A4JdfftnvaCgwIKPOPQ24Ul8/XyCoufrb29v9FIjO9VlkAlo33GpbRg5UrkAOt0jmB5R8p0TVn+sIbm5uDrZUFrEeyRHT+eoi4k0LCCuhS4NnJqBVmu6ZhFwTGHC+Z/nyfzf4toTkXkpU9rw2U1DdfY9CpOueTypzRUme0vg7pbqsGgtSBWIrELkVcFX9M0Z+P39lzrIjKaoKBHh7deA1Pe/14nREmtqgslZ0gP9nxn8LVWBnFiH7CJRAZuK5Apeexg22v/7m0wP0xNWvMpi+1kDGUqHwi4ufb8FUkSryI6+cz/tiRr3hIDDANQtj/N3XvkuhAwMHIZwiUTuM8XPMEEwIDKlMvZnATzHzg0kOBHxTJYIN1tGNOqNn4oPHrfSq0wSvaQCScU4AICkk0Yph7BD0lvokXjpF3SnWasDq/FiFVRmaysjp2kzZ/xMoGbktbVgZfN5P11aM9UxZMy8PvSbQSKXq9UtrA9j/FUis5HRljHTARuXomKYAeKzyryJ8XXSnSvuRqWvvSpf5eZeeRpwfIZLHzG2F/e0PtSNfuXt6enoGZJWW/Z32EZCsazW97jlvMphc7Mf8U0heR/+i4RjjAAwp7y5CJUDNvQp0zjbyDyx5RMAXJwoAcXMjX1MgnhOo3yrTLwIDlXF5beoUUVJIbIBj0XL33/OtDMExVCn4ipJ3Rx67ulR8U8iVT0rj5ynfj6xgt0YJvN6r+a+mZ1qmT+FVeR0Ex1RmaV7Ty0jXqshA4s95pBxW7Sm5ckOS0mydGvi3URrb7uTMnBNfoOcLB/n2gECB5tnd6Kv/ub9AxesY45khdDAgwOGGmvd80SDzlje+2+3G7e3tgQGmt06PPRlkfltA192LV36UZ04h6D7LqbZZTu0gHvQcpyA4HpN+WtU9LwIDW8OgL6FVr6TzKDrvzvPsDPyKMnqNtvFXrVaoM1gz8Ja8pUQzLy39f09ZSZQASgUiVw29y8MMNHY88VoFBHSdQCB5XXpuZa6Q6VYBUcrD86IceltdXDx/jVCUvMUEAl4DELi8z9J+BHIAW+mtdEwGgs93UQFNFXDBnfqxA5Dsd49epfl8PcMV9imSRX45NiQ3mqO/vb3d/2T0GTHgp46Vxhf0yTNnnVkP1sf5EGBifbmg0IGA8mL0QqDn6upqPwWhxYRpioNysoVePE2QhHMlHakzWjMD7fknpbF1IFfldUj3GCM4y2MrEFihWVukfqy8wy3G89RAoDNMXo+uvrO+7KIoK3x21wkKfFEpPe1ZmfQoWPck7zMPM/Exi0p0gCABk60RnNeglyjVU9FMj3oalyv+GBkgECAYGOOnxyu9e3FxEdd6eMicRnuMn/PfY4w9EOD1BGYkDyyLhvb29nZ8//59//ogpwQIBnjO6MEY45lnLn5FFVDtAAMjA76vQDoXH+oTBxep/GOA86tsOsQCtw6eFSBA5ecAwctOYcTK2/X8ukGzAioSbyugIZXvr1ylzqXApXonSvVICpkImOjW89nS36cCBFRU6d4YtUfDdBU4XAUUHSXeXEH7T2moGGnodZ6mklK6rn98HI5Rf1yI7VFNA4i6aYLuue7/S3XRRwIAx44Z12MJ7LE/uYEPQYCiAlygN8ZPEMDtc0Xu1UsG2b56nobS63t5eXnw/QDX8zSuAg18hU9g4MePHweRAf8mgX8IidEBtZEWMl5eXh6U51NZuuZGmgbepwjIO9OS2DdsO+bZ2cYVevdNhypDPUb2PqoFg12+yUjNjHkHBvx/ZQRnCNz/z+qUqFOy5CsZtg4IJEPBOUEaFS/LefuoVMnADLDpWtVvlaKd5deRe9z+zIo8E6DMAMEYz0EgQXAFzP2NBsoLeZ4B9FVPpgO9nt9WsPpRqernzpFJsur5sQ+7BYPcWIjevRtURnxkrPT+vtfDPWDdp2MiUOGfM6bB12ZFKpe7Ct7d3Y3v37/vowMpMpBW8vN6amefWnPjnb5G6AAmgQKPDIzxc4yqbR0MqC1S224Fki9+tfCl1CneSuEk3nQ8xhtYQdHpuWRwV43AVuM/Rv4WfTpWeSRQQKNP3txQJIDgZVTK96Mp5q490v/Vvkp5zOq8kncCBRwXfs/7zvuQeYyRtzdWHfSfkYgqOsHn0lxqJa/JE1LZ/Pl9Hp3fY/RAFSX6aFTJA+9RhlkvH+O+EE9RgA4IjDGeGVSG+UUMwTs/3k8EAtyrwBcMKg29eMmOf2tAYIBrBpSe4XoaYTfYIrWRt7F+/HIh83BDr+cSAJCRr/pc7fD4+Phs/QCjCiIC+RV6tWmC2bPJcPr/DgR4pZJyWFG8VX4VEKg8m64e6d5WSp4/+aiU4YzHVe840TFK8iMrVadOyXqaJEMVpTZ3D9avy6tKz3fA3A1rAnVjHIZl0xqCVH8afR1Xpgp07tNM5MOvJyDgvM2AwIrsufF0nk8NDJKh5/VKDiugq3ucHtAGNwID/KWpgTEOP+ub5q2VvpqmqvipQEACm3p9T+UzKsANfgQGfJMfgphuypUgSNMETMcogoMKpaV3P3PaSD6Wn56eDiI5qofACNP7OJzR0dMEq5GCFQ9bxwQEkveTBv1reGDdM93g6srorvlA9rSzFeEzILDKY5XOB/Fqn5On1wRIx5Lkw41v5wkmQ51oFRR0YHhWTgc6qzK6vKRQ2Lf+VbXkuVFZ6xm/pmekDC8uLvYK1+WZCtSfTdcrWnl+pc2OGU8fhVa8QB+LvlhQAECRAe7q51EB9rHzoHOPDiUexhgH8kM58wiBQLJC43d3dwegUlMHBAO3t7f7/wkM0HgnZ5NjgTzLO6chFqX5/GSjkvxXOp+RWU6fsD04dju7UdHRYGArEFgR0goIpGdnnsCWsrd4ypXhnpWTyquAgCNRUfLexngdxeXKRP/TQrNj8v0IlLw/Xu8o9dvMSFfyWAGTY0DXiveapg2enn7u6qY+5SrupLy7hYzcbY1AQPlV4U/WozomI53GQAUE0v+q/ESnjg6skMtjxbM7XFwp728QfP78ef/+PvNzA+ftnoyR/ycPAqfMx20By9V0gPKlF64IgIy/wMDd3V18nY/v61PXOq/c82CMMa6vr8cY42D/AdZTPDkocPL2q4AAj5wqUL3Vjw48tuiSk361kALsAKACAluUQ1LW/qv4qfhdOZ8pFueF11MolijVw200Bsn4HGuM3Qio3K1GqsrzI9EM+Pm11IezulUA5FgQUPFbAZA0PeD1ocKqPCKPBrjnpjwkM/rNFp+yjVYN74rhT9Gf5AFWz2/h560pea9b9VVyuHxrX370h1EBGnr+Ep9+TGCARi55zl5XXzDn3vHDw8NBFIBRghQVGKP+iJdIgIntzXaopjAINggGkuxVACq1hdpKCwn1ASOuJ+DaLm/Hjt4MDKx4WjynguF/Uhrkfp7yXuGH+biS7vLr0lTUgYDKAPFYCZXXZQW8eHiuKrvyLvVLCv4jRQVm1PVf1y5bKbXJCiBI02Xiw5+l4ff+qr4JoPRU/Dy6EZG3xCPTURb4frZCqsrrmHBm4n1LuhXwsDX/96BjwLXrMfahRwUECLijnwNFGru0YVDSBzLaY9RvL1XOEeWJ6wSUp9YM6J5/BIg7DKb3+mftzTZjtEvlc00DwQnbiMDjWAcpjSuBgsfHx/23C8STyttSxrt+myAp3LRwJBkmD0lVXsFWpd5R8t6UTxJcnXcKpWsD/ud9KuskmIkq3rYAgcSnz3M5j+TJ+funAIMxMtjzX4rijLEWkna56oCTy4Yb5cSzDL/Lzqyu5N0XHnZ8pOks/pcCp/x2sutys9Kmx9BHMvaJVvhbdSJ4nQv0PCLAL//RECdjRx6TXvZV7p2BchvA8cVytYugQCXfaPAoQAICKZSe2oxrFtTGjJC6DeBYTj9G3So7UPVhSicwwPUCnCrwPpnRm37CON2rUKrPQbqRqcDArMyZUnfqQivJIFRGl/lV9yoFW4EYhl7dq0rtUrWB8qrqOaOufv8kmhnjDgjMQOcWQMBnHCSsksuDP+8RgQRe3Fty5cTxmdYNMG/Wn1+c8/BlkmPmkdqyUrZeF89zRp2TcSo6dnwm2eUaAd9ciBsM8Q2CMX7Oy8sI0zNmmVWbVXppjOcAIAFdlsfV+cyfHwBKHwRKQMDHi+Staj/xy8W2Yzx/FdL7jOWS9zRuurb0NhRg4QJQ1kvg5U3BwIo3w3Q8d4XaRQS2DsyE0tK1RJU3u1LfhOxmCLgDAclQq5MZAu7CwR0A8XaZUdf+lUGr0n4kquRz9kwnU6tGyNuqAgKdwnD5WZW/xIvIQQMVJMui0tb1bk0AgQBBwGysVfK0AhpWqYvknZqqsdzJK59hPxEMcEqAUwM+PcCpAZ//rkCdRxDdiKXo1kpUmFEBf92RCwu5UHC32+2f5WI+Pas6ijfKaZJNyq+McTfN4XVgXo+Pj+WrueSvAsNsT/+IEWm2eFf0Kl8tXL23BQiIOi9ga7nOA9OvAoUqX9aBwtrxtxoZ0HPVgKPweoiWBqICCB11gKwCApUiPxUYWJXTCkC6zMzyXKEOWG7JO4UWu7nQLiI0G1eVnMrzr8BpAgKeN1dkkxceyZ/yq6bLkmwmqq6/BFy8BaUxleSR9z2K4xGBlQWD9MS58M4NEmXO5Y+AMkWAfXx5nzMioDlx6lfu+MdogO82WE0PsB6qCyNYvi7A06ttVS8ZZq+bnnU5r8Cog5VKJhIYSNGbGW0GAzNFVSnMBAL8XOQd1gGBLZ7oSxX6at1X8iUirECBE4VQYSpXpJUnucpXKq8SypmydIV6KjCwSpWiFXXgoMtTz84iaSSXCY0VHsknFamH3plneqajBF6dHyq79JxfIyCQ/PprjkxLQ5hWpTtVwDXdmwGJLs/3ohmQcX45btk/vmDw5ubmWTSgAmRpweAseiNKht8NaAUKHIRIttN7/TJ+BAJcX+DyQ/4dsLhz1dky1sP365jJZ7eWx9dkVPnQjvpmRFuci01goMs0GR33DlyhpfBmJdQdgt/KcwIJK7RFmVdULRJJQMAHpitTCRJXaL/UAKf270BAFzlQ+R/Jw1qVYb+2ImepXWZURZ3o8VbGye/PPIlZfao6JpmcKbqq/mltA691ex1wDHRev7cL0zjPaUz7+PmIQMAp6TTXuzQW/tN1N8ZjPP/wzrEOmet7twGpH2jUxAvzoNH2KED13QFStWZFvF9eXj57E4LPcg2G/xgF6WyYl02Z8zZPY0DPpG2c3b529OLtiFdAQDU3lCIC3gCrCrZCbv4/8ZioQr2V4K8YXUfIvLaVvDyfs91Kq1GALUDgo1OSga3g8hiwVRk397jGyGtDdI3nuv+aVAFTl1n3IP0ayfPxN2S8/DFqULAid90435LPR6GZnkv3CAQICGjMPBLlBsivbSU3UOSlm7ryqQnKPXmqAIH/Uv4EFk5uTL2NHWBxAyBtSKSy6awluyd+eK56cWwl4KS8EyBY1QuvsmagMrodAPA5dlaeVCFRlkt+KNCJp4rvRJVXkYDCa0QNqnJ5XcckuFs6PuU5xvNVujyv+PHzKs0/lSq5roBB6j8/X5WVDiwqn9n0jQOLpJBWy62ieMpf17tVzGntC3WBL0TsphB4XKEVr7/ru1NQpV+r8HpK61MEOvdQ/RjPvdGqL9MYGCNPR7mBciCS9qxwXjQFkIwh3+Xn2oCu76rxw/p1ulbPp6kC1os8pWmBNH4d3NBJIIBxcF219QptniZww9gBgcQUhdgbIDVIxYf/74DBKhiolGjK3wFBmlty8oUpujbG4bujHTipPHfxwo7vgMEKCKjAx4pyPLUCXSHvwwQyk/J1L8rzI1UGZ5UkVw8PD3tPg4pI1AFBKg6mcSVBeafCcX4SUYH5f17v8lD5NP7dWNcx1X1ru7Pv3wrkH0MOlhIAkkzyP/Uvjb//qJfdCDsPq/xWupfliS8PtZMPyYCH6ZOXnbzoFGnq5FeUxoi3MdtZ99Smj4+PB2BAY1bXKl3qIDiNJ0+rhZSVzRUYWaFN0wRJSbKhKsXpAudC5wgoIbsKmSYeZ7/07JZrFVURC5Ibf6Xn9aSAZp57oiT8HQjQ9Q4MHGvYZij9n0JJlmbeR8qD55WH5+Ooo2OmCFaBaCfPrrSqa2lKgMZc/LAsBwX+XDLYW0CARwn8WpX2PalyYjq9Rr3bRQMuLi6eGeCKB57PwJLLND1/57O6LlJEYIxDGU88KU2na1wnzpxQfn5Zaxf4JoP3gYMd8Z/4W9HB/M/xqjGT1kA4EFiV3c1goBJIN/5+LRk3D4c4EPDyK88t8bMCCLbW3YkGkgZdVClwCpanX4kwbPXSE7+z0HIy/i816Fvb/TVpxcNLSk3HpOA8/+p/pzhXiXLhRtyVp5c7k0tXsjTSLosVwEyAgEcvww27552u8zmmcSDgBsvbJbXTRweryYlZAQTpQ0TcfljU1T2Vnf4nUEsPeYzD1/Q4jsg/5SmBIaZP/ezGNsnwGH00VPdkyGnLfFdF98YFApRHBZS5lmDLK4As2+slXhWhSLq+omUw4AZ9FQDo6F6mhxGrwbgCAvz4lmAggRryyDSzTnBlXoVwOUhWqYsIdIMgXfvoinKFUp+vKNhqisv7XJRArOedyk/jiGncgCeg2Rk85rUilw469KwrrdWIVTLiFSBgfp42KXgHW6uy6uOq0jUvAXEvpWN0VQoV+9QAPzglcqfGdfcKTw4E0oI2nyZIP+Yl3kgenfB7ro997LmspIhtl6cT21o69urqb/OqPRJUjo8/TSusAoJu7c/FxcUejKj8NwMDW5Qlf503Ohu8LwUEaYrCBSOdV/kzbRosiddUp874b5nvWqUEBFb74DXonwQokhGfRbq25Md8XUa7MTXL95g2lhzoeSqYatrKn+dxhRzk+Dwwd5hL40QKketwZtGuiu/q3kcAwWz/JENObox9MyG+SUA5Zn1dxvV/Bvgqu6ByOTWh/3qdsZP3rbLX8Zau61jJmrePP+ftrfTK6+bmZtzd3T2LCDw+Ph58gVFHbnW86tkzvfgi6FqhTWAgKSyee+Ow0UQeGUi/RJ5PBwBm/yvUv+oBVGlS6HE1rw7t6f6xxCiMX3O+ed/53Op5/dMpgVqXoZW207UEMBxk+FhyxZiAyBZKHlVSOCk6kIhGmc+u8FGR149Gv1o/oHRd26/21UeiSu9VadU2NLbcbdDBwUyWK0CQ+ijZBIKQtOLe1wz4FzDTseI1XRcvbB+lY1pFnVb0m/PDOqUFf4xocUEkdb9kWTzw64ySfaVNOoDPcq+Orq2clsGAv4Li4KBCXh5qpmGqgMDWzqgUdXWv4tMFIeWzSjNll8qpOvolNFOAWwDL1nI+ClUAq0vPczfKCVBu4SXJrXtSXhZXDVe0WscVfulxExRUaRN5Gx0T3fK+8DzckCXng0edJ33zUWW401suSz41wO8OVN8gmEWe2P8MgxP0MQ8HABcXFwflORCoosnkQfIzRi/nyUj6mFIe7umnKeuq7Vl3tYVvmJXm7Lk7IceWIgJKy68RclM5X7yY6uqg4E3AADvPw0zqsMr4rEYCOnTq/30g8H6ldBPKrKhDpsfQFm9oi/GalUWBrBRfCn8lHpNn2ZX9T6FVmVmVm+ShpPKqOdMEDDqP271kkYNc563rq9kalvQ/eWGk5NF7/qleeo78Jk+1q4+Pg9QOHw0YzHSfzh1YygCnrYf9GwTV8y53bBuVT+OTogEEJtW7+NW0APWN68Oqv1K7sK70sHmUsaWMOSBIdk95pmkR5cUw/eXl5R4QcPGgzgUiFD3gegOve5IPXdMCQtVthTaDgTSv496/M8xoQBURWEEw3tE6bgUFnmclcDMwsAJkEiXF3CnYMdbXDKzwtFXhJZTelV+leSmYektK4GuV3zQOunSuWOg9+TVOG8x4cC+EdUjG0tNX/EthVcad+bOeiQ89U4WbnfieNonTF7O5bOdjNkY+EiDoAGjStzSAfJMgrR+QkUp6zsuV0XddyWd8emK2Va/bFPLgbTDrI69/4on1ok1SXSTjbs98rM6it5UjISAgY89ogK7xqMiA+CIg7oC60gmQMJrQ0SYwIGXFSqZOSULagYCuUbceUyfwyHM3ypUg+jEZ887oVnm6l10JWIVqO2K7J36OAV783xn9lejBe9PM6FTGLCnGMZ57lrPrnjdBgYBAAgVdCJey569hpf5P7UAFk8CEk3uTDBfrP5WPy6zKr8L9VZmMJlDh8flkMGY6JzktH4lmDkj1jH6zbxC4rp45KK6vqJv0cyBAw5/+M59EM0coecp0Wjme+IzLu+TXx46DqwoMVGP706dP+y8p+meg7+/vDz6mpO2Mq694rvaT8lDZK3T0q4Vu5Cuvn+krJOso0yvmx8pQeWd0QIDnlWGbgYqZQWQ+leeZjA3P0yBJgyMpuDSAtoAWp0phd+0we/Y9aMYb081kKLVzB2wroEqFkRSlBnSlKNPiOb8mr0bpX4O4lsDrJz543tFqtIvGn8/QA+KiLOctGYsE6LvyPyq5LFGeKiDgnmQHBDkNwGt61j3uaoMjf4shrUFTnmM87zOuman6N401ji3y7naLAJYRAZbvr0l2doXgQ+fpw0laGyCgIFmWARePXn86AJVO8nac0VHfJqDy84USac5lK1OiY4CA/5+Bg84jr4AAO2Cljp2RIKW5qMRvR11EYIXnBIh4rwJsfs+V7Sk9LpbfIXqe+7XKg+yAQCIHAa68fdqgy4cKYYw6/N4BwMoYJ9Au8jcM3DirjulNAyc3TDymyIfu8yudnEZICjLVq7ruxubUkQLyknSfyy0NVbfGS88kJ41jmf89SkWDlzz+ZPB93QD5ZH0SgPOxW7VHBbR1nbZLoXjXl5w+IJgh/yvE8cgxKx4kuwIAbF/d5+ZQknf2H/vpJbQJDCShcaSzVTmOUStoP18FA6uAId1fEUJ/vvNEqmfIT5f/CrniXgUCW/OfKcdTG/3XJu+bGXDic36e5DMpak4bjHEIENm/CQAkPqjQKs9vddrJ5TR5VD4eUgSrAsfd2PQoAEOpHqlwhVoZ+ArEVs9+JKpkiKF6GVrKl+rkxt77SQbKV6+nSADBRwUGrq+vSyBAGU/tnQC6eEy6VNcSwKZBlvx4Pf01P7Vn9WEn58fHtE8N0EYqIrDb7Z5FAtkvLt989ZBj6iURwM2RATf4CQys0MwArhh6/u+EogMRqdzOi/Q8PoKiIM8VENgKBqgIXTl2+W8p4xRURTfGyNGkLp909PyqvOlZVN5Tktunp5+v6CXDtmrcZ5SUcicTigLwvHo2tZEreSeuvCYgcM/V106sgCavV8XjR6MEBLiAL63xYv2ow1l3tmnS6QQCAq2cAvCPINFD98hF4s9BpANlpmNkIqW9vr6OYEDGlMCh0pNdtINEj508uNHmT1MEbIO7u7s9DwQSY/x8u0DTC+yTd4sMEKX4giNHO6TKeFeUjPbMmFdAIAnZysBOiI9UrYR+bSPo87Nefkc+4GdGK/Vb51WxnH8iKBB1wCAdvX4r9a3k05VLeltna1268efTCErL6zMwkcBUBw5mz5JHnxZjnh4R8HUCKTrg5c3AnbffayjYl9KKviSITG8PpOgSnQf2N0Gm9HsCZ8nQV5EBGv7qv4MVXnNPmwac3jTbQv9vbm6eGW/VSQv3VGcBAraP81pNuaRxp3bVqn7mzfHGV/+oU9SHimJweoLA/zWiAmNsBAOsSAp5zAbO6sD0dMl76EBD9xNVBt6pGghdw6/UbVXRryrpRBUQqDx8f3ZFGb4k+vCe1NWlA5A8kioQ1Bm8Dpx6ZMAN5Ja+72TF7836+DUNYucYEAhU6RwIOLhR+3l0YIw5iNF/lrc6Bt6SVKd03Y1f8sK9zh52pmFSXnzFjm3hYMsBCEPpab1AZ7TZXwSpOs7WHzBCwGuKDCgfgR+OK04T0NiyTTwq4ccEIrzt3HEQH3rNkM41jb/q6vwRyFROyRa9cRQYqH4dVYr1mMHWAYGU1q9XBn6lvOQZr9IqAEg061Qaj+4tglmEwJ9ZAQ1Vvi9pq1NT8k4TVZ54ZfiTEpP35quvWTaNnP/nOdOP8fxrgVv7hMZCRMNdTQ/QM/LnyEtqL/cASfKy9DwXYKU+YAichrDTWx4Je8m4fSm5rvM2c0+7CmW74XAwkACQ/x4fHw/m4HXkroZcG6CjePWfG3fW12UpgYz0doK3CcGA6nV/fz92u91eJjRvz3GTwIDz6/Kc6uFtymvi5eLi57oCghO2o0flWR5fQ6ycvxV60QLCGSUElQx5embl+eoZR5quaKqyV8g7lf/TvdW6JRT/Et6SEVv18lN+s2eqcqq2eU+iIegAYwpHpvSqh3tZzI/nnTJJCjwZQ29nlp0WGYkcKPg1b5tUFwKLl8hpAgeel4d9vT707KQE+RrWGKOMHlxeXh7osI5oeE8JCNzA0Gum/GiXQd9y2I0WDbv+0/DqPsFVtVBT5fK7BwIDDOEnuVQdqukCGmYCZYIRGkt+8IigW9MElA2+Xnl9fT3u7+8P3txh6F31dLDBdhWvlFfJjGTTnU0vg68W+vSK71jY2RXKt08BzWgTGKgMeTe43CC/FAx0+VfEwcx5+NUBvmLIZkqjq0vnCSWqohge/pLgpkWFK7SSNhn+zts6NVXeaAUoq7qsgmIvS4qtev/bF1WtGK9k8EmaC63eQjhG7hKI3SLHfM5fMeNiLy9bbeivYfl0gepKb9ijBDSMbOtVwPCelOSIRleGmN8g8Dc9dGRExUn32WZJDl2eHYRwrULSP6kePh4JBjgVQYPJiATHLfniOH58fDxYPKi2oLfN/+TFwcoMOCf5dQCgcegOA9cLcM1BejuHZbHfvM1ntAwGOkPuwKACAJXy9XJm5y+hFBlYyZtCQCPr12deol9zIasMfccT83JA8Fbk9fxoytPJwVrVL0lmRa5Qec3TetlUFCL3iDwiUY2bKjJVlc08qCgow5QdKarZuKh4P5YEBGgEvN7ikx6TjB55cW/Uwd1s3LLM19I9xxDlxmWW4XI3lny1UORe/0w/+AJmti/Lrj6CJB4cYFHOPDqQQKLq4WCAANrfnOAzbDfVXeNAOwD6dJr/T7/qPmWqmjbgvTHGfufBpBMk68nu6Nrq9wc62gwGOsVDBekDKCnYFUCwkj6VmRQmOzmF3mZlzKjyIlfz7EKwCWSktFSSY4xngMXzO6a+symBj0qprhVw9fSzCEinHKj43HNK3s5Mzh2UJKX+UkA4ixy8BAgkwJuAUgJEaTzJuPirhr7gMPE443mm896aKsOTvEgaxcqTTVNb0ouuM3Sdq+yVnka8AgTiw8GAT3VUb9RwysgjISr34uLnK44ui5eXlwcb9pBULz3rYXv/7/rB/3dRGNWV11yOxYtAgX5cTKj/KssjWxUoWB2Xm8FA5xF3CjE15muSK+4OGIxxuEq/ezaVUymHrYqjigIk3r29u/ITeuRzlQF/7T5JvJ+akrFPg/yYPD0PV0ydwUsRoi70z/Lc8LOcKmz5kr5Oxt95cUrjLbVRpWxdmYok7x6xq45bwMBLAPNrEUGZiG3DqRUHmm6g/O0v5cVjKt/TOdB1kOsb9Pj0Cw2kv4pID5+hfwcKAgEsn2mZP9tAawO8vXxhHsGAt33XV6JunY7uiycBVp8qcBDESA15rXjaKr+bvk0gcpReGRqnCgysGNG3GpC+avUlVNXB24lRiqQ8Uzi7G7yVwiexjTs+Pe/XMOSnDrWOUUeb+H9mLLsoSKcsefTFVQko85kZIGDZPkYTn0p37DoSBwL+GmSSz6enpwOlXLVzBaKYTuOmam+2g6dLdT+1XK4Qx26SrWSE/W2U9CaFl0GqjA0BgBssj1LISHMhG8tVGkUTqqkOpq/GVpLDytYoL5bnAEmr+9kWK1HQJIMc+/5smhao2pbRrzQGRMdGAzdFBlQRdog3VBpcLlQdmpnxcKxR6oR/y6JCzycNrORtzwCBnztVfLkX6PPBOjoQ6FDvKrjbMl2Q2um9yOWmMiSVcR5jbTokybgbtM74U2GQz1mZWykpZjcWJOffeR7jEBT4c5VyqqIIosqQp3alNyj+fZqgesOAiw0r+ihRLdbd3yJwYzrG4ar1FBlQvoncSLlRosF3EKDrDuaoW5Se/Pux489BgXhOxHpTN4pPGlgCcUYMCKrIV3ImfZw4X7zf/Tg1wIWPTPMa6wXGOAIM0JA5IBjj+WpR78jq+lY+tpDzNwMvs/IrY5/SVGVXSHwLpYGWeHxNmuX7EZRmR25gXBY72VzpowpUcPCSkkFT/1Wgala3Y/qABlLlp2hgKs+jH56m4ispc38mlVG9YrUyFcA0Pl66fj8VVe2ZwvN6vY8etQyavz3B/BI4YDl8U8F/vmiQYCDVwfMlmPF1B+pz8pemG3TdAR3Hk79KSTBIAC6D618YVFsSJCRyOWJfVXo/rRfg1AXXNyi9vz3jQH0louh0FBjw82SM/Nn0S/kzn45mYa7Zs6vpZ97NCm+z6QNfvEPBWeFztbzVfDrluAVoHAu43oIqheRIO8lomqLpwrYpT0f7aaqgigp52WP8fF2QlBb8pRAx65TKSX3vRpn8sn4kHzupbqnO4tm9dgIWD7XOpj08Qlbx89HIDYna2ue801y9Xr8kJV2RdLq/kVABAnnx/johZd/bXPzL8N/c3Ox/usbnZXz1yh/BzRhjb7hdX3IhNR0xjgNGMFRXvfOvfFmu68hklKu25XNJT1xdXR2U60CE3ynwSJfrLpZHsNPRMhhw5cPGr4xGpyhnA3HmFaXnZ8ZnBgIcXblHMcb6F+MqvitK0wUznn3NwQovPjhXlaMbwJRHZWiOiXq8NnWykcJznnZlmoDPMGzti4MIAnjdy3NvyM9X6uv5UUYqeemMNsEIx7NPE/jYSXw7wCGP7t1oXCgdlaN7aiuydmp53EIzr51etofy+SpdAo8+LcVn/S0BGm168wzrJ1AofeHRjC9fvoybm5vx+fPn8fnz54PpAvfqBWy4v0Qy0N5mkj2de3uKnzHGARCQfOmLgm6MfbHuFgeMfDL8T0eBekFtp4jA4+PjPnLg+sUN/8orwqJNCwjTfF0KfTvKTIDAG0V5scG2hqQrZeTX/OiKrgMsMwAw87y6OhFlUtg6T815oUJ15T8rP/Uly+r6ZFbvU1LnBbt8Vn1Pg+VtU+XhGwk5IOA4YJnsh8Rz9Z8KctZXVVQh0SwaQANQASkPW1bgjJ6bAwo3AFKM/OBMtT7GowKJUh+fWp45Z52AAD12yhV1SCIBuGSEZPwJAD5//jyur6/Hly9f9sb7+vp6b8QZSXBZZl8zDK78v379us/H90eQF+yAOIHBFIlwUJH0Whqb/mGg3W530CcsZ+aEcawnYJecEfJCo6+IAOvLPNRerPeqDG+aJnAv1AWUaVnZBAiSwnXvyyvC/yvephv9dG0VCHSNuqXBRVX96O3z/ypQIgA41kCz/l07OB/JG015nJq8ftVP5CDJ6+XPcKzQc/aoQ4oIsEzO8zr/PPI6efRFcv78MdQpsK7tnKeKB/LPMe7TAMnwd5EpPpfSpH5NeZyaUtun1/KUlueuQ3R0ICBPXyCA3rt+yaufvWsv3j1/5sFFh09PT3Gqg9MGXPWfjLKPw2SLaEjpfT88PBxEInzb66pMr7c/4+mcVuwm25Jg4enpaR818DE3o81rBpxZAgSPDiTBdcNLSgrLhYoKz2nFk+K1LREBf84VbVKAW/nScwkQqKwqP1FSdmyzysglnpLR2eo1fSQg4PVfAQKiGbDqAEEaxImfyrDNBrTyI0BPXosUf9rNrIp4pagADY6Dm9Qunl9Vl9U6jnHYLgQGq1EA53FlzJ6KqsgADYL30xj13hKej34CAowGyEgzIiAwoMiA0sigJpllHRzIcIrD+0Cergwzz/U/RYN0TrvDqS3/cetf8S4g4HViPTl2UvSCPKhP3KlOMuyynMCrgwJ+ffEYvbt5moAhFFVaDK2GQJLCFSrTuRqqq1TlMR1DM6CS+PHzymOuUPkKVd5RxV9FzsOx1OXzknq+JSWQM0PeoqpPu7xZhkcD9OOgTe3EULjP+1YAN4ECjdsKwPI8LUp0gON1G+MwDOqh2tdYU5O8LF8/sFoW67UVMJyCZrJLIED96sY3RbPG+Pm+vQMBgQFFAL58+XIQDRAYYPoxfob1PZRegW7yruf1jIz+brcbt7e3+/PdbrcHAwIElbeeQv8+PSJeuN+A2ofRAj3vfVIZcoLVKkLhaxEc4HoExMeCR4dcbt4kMqBK+CpGFZwWcjgAIDJzhtWouq5OUGXc43E61tAl416Fbl1xVvtFJ++5UiZueGj4fWCTtig+L29m4FbzcepAQvXMe1Jn2CqjrDRdP/rz7i1TaTO9y5mPA46p5GV1fFZ8V/I+C9/7gkEf2w6mVTbHhhvxpMC7yAHJPcGXyPEsQvaS/F9KycFyIEDAmSjJNvvQ3/en8dd8PiMDus91Bdr21+VUZTn/Lvvuccv43d3djbu7u7Hb7fbnAgUCAlozQp2rstlGekvh6elnKN2jSD4mkn5wg89rVYSK8u1jxD9f7AsYfW0Ep0bYl3QwVHb1QapER0cG1JiJvNMdhSk/UQqDJxBQRQp8MKd7M3IgUD2TAIGHMI/1Ol7DWHYG2YHFDKhUfM7KSYPr1EBAlBRS+o2xNq9cPZ8iAh7SJXl4MXka5EPkdeBYoEfCsetgdoz8qqK3WRVmTWBAdRE/DpxJ/F+FfJ3c6CRw4OHXZKhUv25crOqQtyb2A+f5k9ymqRKXG3qUXIwoY//169fx7du3PTBI8/uKCsgQ+ep1ykAC4kwjoy4jdn9/P25vb8dutxs/fvw4AAP+q4j1U73VLqq/DKzSJHKj7t6/H13mVFfaMIIBToE4EGA99WaD0qhtufcA8ybvM9q8gJAhx6RAmZYKhPtIi9yIOgjwxnMvI6H6xLeO5JMKOSm0FL2YhVm93MRbpVSq617PjliOt8dW473KX8ortcVqHm9BM3C22q4pjzQG+D8tHEzK0g1iZcgc5TuwYX4EqzLIHSDo2sWBQCrbDVICVV4Wx35q81mUILVflS6dp//icytYfkvytqZcJR01Rj2tyHz8y398Q+Dz58/j69ev+58AAQGAAIHrQY9uiWdf5EhjKBmlARQAuL293QMDjwp4ZID1VNRDbcMPGiVPnry7wXdjn0L4Pna7iNvFxU8PXoZeURD+7u7unkUICGjIK20SpxdXaPMCQioCLlhwI+/ehC8QSXOLKbxCL0fPJUDAtB2tonyGrfTf28FRHr2ezvNw4JTIwchLFVJlqJNidIW+Ikwz8PMRFKrIjfZq+tm12fMpXOfgV/+r98NpdN0797qpP6iUNGYJGJwHkgPkBKar9knGlHVxA14BgCR/qwpuRqtA4LXKewlV8pqudQAsAQv95xoCXzvw7du3g9cM+VrjGIefB9Y1GXsHzZI5gQA3ig4GOF2w2+2eLSJM7SG7c319PR4eHsb19XWczhY/Pua0x4DACI0zFy9Wc/7JufXxrHIeHh4OgI/qrnIZKRhjPKsH+5GvRfp6io6WwQAbz6cMpFDcMPI3iwyoEkSW3DQjlX+M8Z8p8QR6Eq+pHWblrBrGY4BA5/mw/BXBcHBVAYkq36R80vX3JFdGycjNwEHq35RvRT4vyiibyAc7weWsH3wBLp8jv1JWVMqrskEiT6vPVrxvGcdb+ExTBCmPBFiOaZPXJpfPMZ6vxRKt6gD/L0OSfpwK4FsFmiZQOgee+kneE9i9u7vbG0ONAw+J0zByioDRAe9bjkf1//X19YGc+rgVDwQC4ietVfA3GWicOWbTdJ9HHAgGZPwdgChNklsH6R4ZmEXNRJvAgApXoe5ZuILlOgGGh5JAegiTFU1KM/HUDdzOWHk6CZGH1lTvMQ5XbPvHUBIanBmaVBbTu5FZ7WBvt5couNlzVd5bIgxvSW4U/f8WcqPsXoB7RCLtP06ZZt9SGfm1VB8P9yq95JDKVnLNcUU+VmVqSxuJVEa6prqsAILX4Gk1ny1p34oS2ExTTh2vDmJd7qu1M2ldAbce5rbBkqMqSiUiMFM9JOucIpDRZTSARtgX1ylv1tPtjcasPGYHWAS2vvugQvUyzC7LLMN1LkGCgwCVpTp73dQGap8KzLAtGYGXLlihzWDASYWSgTQ14G8SiKicJBRUVl6Og5HklfqgSN6UgMyx9WX5nJv16Qw+I6q8x+R5pvtJ4F7D2M48omT8+FzX7h9Bqfp5UoDdsy5nHZigkU0LnOgxJc+J5XVKXvLnUTeRZGW32x28RkWlwX7nc6wHy/N2qSjJkY/tDuR3dV+hJI9dvlV9TgkKKgNdOVZVHik/79c0DlbLqHj2qVN6ywKnuueL5WR8ExDgOT1t51lGV/ZFuppjks6ae+tVmQ6e3dt3WeP1tObAX5dMZRG8uy11QLCi15yOAgPJIOq/Ck9fsXLG3KhReBK6TOUdG+JU+a6EO4DgjepREZEjXwqNK2zPswIOPkATIHhtcmNVef3p6Hmke+9NaYBsGSyr6VzR8XyMnwZWfetIXkfvW746pHFFr803bVE+VIZUjlR8Agisq2TsGGPAdhgjT7Ml2iLPKfSfpgVmMvrRSbpvJrOpXpU+TcT26X5eFj1e8pzI+8WNdjKInBogaPAwPeusfOmkXVz8/LYBeXCeuA4grQ3opp6q6SgCAoKA9MaAAxACAdqbBFLpnBI8rtCLIgOOTnSevl6le5VSqIQ1gYCKlzHqgd4J6lYQ4Nc8zOsgJRntlTxnA7jzGOnZzci9045Hltsdk5d5KnIluoKYt/Lsis0BgK4rHacKUttXIUhe43oc/2oc86FS89eXxKuUB5VW10Yr112uErDv2rkDRiltkkMChFmfnlpOK6q8eXdAVvvEz92rpWH2xXEyxny1nHIzA1wJsOm5CgQkr7yaIvBoA4FU8ta5/4fakSF8GWOXoyRPKzLqXj7HZpoG8WdcVzgoIPjmOF6ho8GAe4wqkG8X+KYYXok0RUBKRnQlOtBFCtJg6ML2nafuSorpnffk4SeeVu91dZwptc7wVJQ8fh2TApgZs/ek5FE5IFiJejAvz6Nq0yQDlDffzGdFbvWfY4tRgjQVd3l5efB1NA+TUpZVnzQmVygBAvLsniqBwZZoF/WPG5kqOuDnW6MepyLKSCVrbhB0nhwXyq0behmoZKgkQ7vd7tlUlxsx8lCBtTHGgYHX3LzK55sDyZBWeQoUiK/UZh6hc0CkZ318jDHfDZZ1d0qAgiAkRQL08/J1f6szm+jFkQEefa1AtUMWEdvMA2H+1T1XMBRQJwcMSUjcQNDAJ2PCuagtyizVq5qfTVMOrPux5R1DM+OfFMEpyfssec9MV3k3ycOdgQAidEYDqICSfHmZPtjJg14F+/z58z5CwHykVLmdqwCBjxkq8plspbHQgV33ZscYB4BjRZaTd0fFyEVZrsyTwXCH5tSy6pQAbDJgNG5Kq6PLVeoretoCANz57+rqai83zIfrTqq5bifvCwcg/rz3JY1m8tLZTox8sZ34CWCPDDBdt0AxUaWnUz96/7mD5ZGzyl5V97bSixcQiiRwvlc2Fy1V5N70Sgixy2eM3gtdUerVc6641QmO2txQz4BHVw55nSnMY5TZaru9tLxTKtoVw1UBmvR8Ok8keZZCorLwTYFSFMzz5hgTCBAQ0N7x/JSslIoUu0C6FDsNheSW735Xa1x8vQMNfYpMkJ+K3LBX3n2KushY8L7z7dc5/lxBvxZwfi2q+KEhUZ/5p4QrgMk8dKQBFiC4u7vbr0uhrFC2aTzp6Y9xCPicZ91Pxk8kQK0jeWZUOPVvkikB6wQGyAfBDPP3tlX5HEvS03zdV2OW/6toT6pHd8+nA1anxkhHgYGEPscYB9EARQeqEEpC6inMlyqU1hCsritwY+5rHqjQqvSOjuVlSbiurq724TTVqyL3Sh3d639SgFUdZwLQKcuZUK7k+1G9K/Zp58lWg2jmXXkeIipO/V+ROypbrwfBAHeKEyCgx/bw8PDs/WUelb++2c79PRJAcVlJ48SfISCYtVkFBHwMuBFzjyqBuxXZ5Biagb33Ipdhkdc3jeNOznWUnPh7/lrpfnV1Ne7u7g5k2KeV6MV7f3i5DgZSfalLRV1k1Ps4gR6PIMtgJ9lKHrvzKP4TcO+mhlmGxrkih27HKI9+ZOQx1XWLU/2itwlcAahz0lqBZMwS6kpHr6j/dzQ2AwR+9EHmQMBfj+Q8r/MiwfVvN6TOemuqBiFpxRvi4EoDo/Oome+pQEKaJ+2Uo1MCEFU+KQ96bcpvdu5vBrA83yFOe8d/+/Ztv0scvbj7+/txc3Mzfvz4sX9P3F9HFI/+GqSDSx8vHOPp9WEaKb7yRG9vtjahAgLJ65uBggrI8L+PhRlIfmtaBZ3pmWPADA0JwQDXCSgCMMbhIrYOiFEP8Kc+7AyXy5WuMZKsPKqxTYdLJPlzft3jpt6j/PoY1dFtHt8ESm3t35kQb+m1ZK9LBXLS9EZHy2CgqjgrwAqnDqlCfmkAp/mSLZTKXzHu5J/Kkq9vUREmAXYkOzMYrqxSdMCp8lzpHazM+XYoOqWr0lQIOinX96ZO8YtWQMsMCGwlGn7vcwKIFEWg58RpAv0YKr6/v9+nu729PdgNlGsRXMGM8fOdZcoJy0/gwPUEFX5q/85gsS9mEbbOGyVV/dYZkVPJL9umCysTdOm/t2ulD1Lb6cdIwe3t7V4mFUUgL27YPYrk4y0ZLffGqWfT2GPd9J8y49HArs10zdvf9Vn3vJ9X02wiRgJ82s7LcaeMYMPBLPtwdSHwJjDglamUgVc2eQpvQRQc59V5ro4OGKg0+U53mmslCRCkhYXemWPMAUFHKe/KgKc2q3g4lSf/2uRgoLrWPcv/3TOr7ZYUNxUolR+JXrjvDMcoAWVUC1wFZnn88ePHngcdnf+0Gjsp465tfGy+hFJUgJSuO9CrACLvOf+nptTWY6w5Sq6X3bukY6O29XfgFR1QZMDXg9FoJaM9M3L+v6tbBSA5/pyPbux3/ds5QsnRcRvJtpUtIFB6fPx7nQfvVdPrDrIqJ6xyqjtaBgMJ6aniPiVQPS+G00Am0y81QtVcvc+/+tHrwp9Cs/6mhId5SFxH4O2gMmd1TSAsGe0KECQFXJWbUPD/D4BgZsi69DPFofadgdAZTxVRdvyDMtwelh+U+fr168FWsQ8Pf3+k5e7ubtzc3Izb29uDbWUJPio+XS74mwGBl9KKDK6ERGf9upL+vWk2BjuD5gbfKUXD3KPkDnmKIjkQcN1E3eNyQj7doKbIQNcmXncHEZU8r/a5l5FAivPqY0M/B1m+puz6+noPuLRlubcf+4jTe65/2IaMvMxo05oBn2tJxE6nx0MmGUoiCEhM+9TCFs8ihWhckVNoOW3AFdvci1s/Gn8NlqpNBAponNMgr6YHqnxTfbcYpBl13qKn6f5zMHwUqkBhSpcU2hiH+wbwXpLRBET9+grPkklNEVxdXR2sGfj1118P1g1IJrR4UAsHf/z4Mb58+TK+f/++BwRpt1D/qhzbJE2rsV3UFp1HVlG1Tig5EzMnogM5Cdh9NErt13mPYxwadzdoNNg8diCAsu1AoDKYAg8+HetGvAKiqf4E33KCPHzO88o4JzAr4tqWLmqhsukQiif2Eeur9v306dM+euyRGB+HHbkz7dGAN4sMqOPYAWoUjw4kxEjjT6Z9QHfzWlVj+HlHaV7Tw68MpfqXu/iRjqenv9+vvb6+PshPH5fwNlQ7usBRiBJ53SqvhVsks76+wGQrdR5KBQhY3muAk2MpeRJ+P8mrG6/OiLuCS2WQ3JB2vPO1LsknXylkRODr16/j27dv+6kCfUqW74wLDOjrcz4nm3h2Rcs2YFtw3RAjVq68va3cEPP/zEDzfhchqOqm8v4J5MYlAawZIHdPlufqT4IAGjL1ZQUEmVdytjwMTjlJMsZ6rzo6HO/Oi4MAgWtdc0fNZcvtTWpPAQOWLb3sberGP/GZqLOR7kC/CRgY4+9V8jTmDgy65ysg4I28gtC3GLQ0cHSkwDoQoOGXwuW3vAkGbm9vD0Js7r2MMfZelgRAaWbC7VMNyrMyPgQZjC6seD2V0XfA5kJWXWOep4wMVEqvGnidYRzjcNostb8T+y8BC7/OtwmS8fWIldYLKDqgqQKBAUYGfvz4MW5ubp59i977kOUquuX19L7lCnPKv89huix1Hsyq7LpSTkZv1jcfNTrgIXb2Db9Y6XrC68K2ruRW/apXTfWcRwp87LhMu4fsRs+jGwQzXVTSQbsDC48UVRE8Rn+ZpotYpzEiOyAAIODu45U86ZxrfypnkPl0/elji/dXaPOaAQcCahB2emfcKiBQAQU943lsISJjR41OqosGmBQtV2v7e9y73W5cXFwc7MCVwIAGFN/j9mmDFSS44sVwcK4AgmMN9SkN/Cq5kpt54uk8/Xeq+qXKM0UXPJ8ZPwQG3HNAUwXX19d7xX57eztub2+fLYLlbnPVV9M49juSDCcgUI3n1K4rcrqqI6p+S/3lij/lfSpyDzsZHZGDMxINHcP/SpuAE8PbHsbmuRtJ/mj4OHWQwLCuucNEXcmyUh+zjt5OKlu6ns5TilJxQyv3vjmOJfscL943qodHAhw0+SL2xFuKXPgYefW3CTy8zcp6p7Di1dwfz2eDrfJWt5ILzAzUKBTLVdr0uNgeY4xxc3OzV6j8mIciAlyAw04lICCtGn2mJbpm3Wbo0AcygZO3WRUVqKgDOe9JVBo8upczo6S8WAaP1fNVOlcOXmZXN01nSU61PfHl5eV+w5gE2u/v78ePHz/G7e3twbfkfZ95V8KkFBGirHATI17fMqdJHlbSJUrhbOf/I1IXHaLhGKMGMVWbuwGTseOctq6n9SUORmjoaNwEKKQXPfqVzlVn8kqA4AAi6Xjn04GKgwFuQaz6dFPUnP5ldFjtzAWXqV+q/lY7c0q5cxbJv9rjTdYMjJFXn1bEDkoeMs89KjDjIZ2/Jv8U4jRNoGscRGP8DQb0oQ3fW3uMw7cLJKQOCFYAwBjPUbQLiv53r4UlD61T6k4JFPDIcle8yvemSgE5sBrjuGkpUvL2qyhBBygqAJJeM9Q0l/hPRkCRrW/fvo27u7txf39/cJTiTnORfj4zPjySl+7oETbXEdV5ojS2ViIdK+neirpoCvudnrSO3ZSMiEbVz7lfimSFxpygQHtl0ECKJ027Pj39DKUz3zHqjcHc2fQpDn9VL40dB8AeYVEb0nBrioTyWoXp2XYEUqwHDbqDheRgsS0qm+BjiHmqnCQ7FR21A2EyEmScnVIxkgDCrLzZtaQMOuOajG8CAlw7oNCrkB7Rn9Joxy5+JY5EQdd/8rrina562h5eokCveFkpAuDCWwG0BApOQV7PZEyT7HqaMXo5rZ5N/ZqAQPKGZlEI93T8TRiucJZMs9/u7+/3Cwn14+uK/hlbKbkVGZCcJa+FHlj6rQCBVSW3CrA971MDgVnZbtzSc95PKcStdAQDes2NRkw6TsaGskUD7fwlPkQ0kHSSHBBUdWIo3b1n6lXqYV8rwNfENSVwcfH3InDKbTW+pf9p6HVOsOLp+TVGjgW3q6qDO7P+c3DB6P0KvfirhZ2CSgKiiuhYTRv4vfQ8qUrr0wDkMymJpFz5PrfPeY3x/G2KToFX/Cf+lLYzZpUh8WmHVYPs/bYFLHxkWjGkyQCPcWjcunY8BvwkGfQ+7YyZe1IuC64MvL7Jw/Twc/L6klFOxjpFA6QM/b4b/5lno7p4dO0Y2hr1eC+iLkzhag/R06g7pedphP2nyIDy0utwMsLkMVECKSIBDu8zynyli5zPNLVWje80fUEwQONNeRevLnNpvKlN0xoMgaq0LoevdDooSMQx4kCA7bRKm8CAV8oRmB9nlJRIxfyxg1zPeniKnVYhVve2qlWfPlhdAXpHJcXnZfv5qsdJgyal4MKrYwIavMf0/xSjv5WSF9F5+J0cVsCzKnOFZvKTfvwkrPKgh5+O/jYBlWyn1CvPROWme/51werI/GckmVX7r+iLlOYlPLwFrZSd+objPjlm/J+mCsb4Ke+cLki8VPxVbSiDSIPLewSqnp9HpTTmXFYJYGjwV8CA6sxx5lG1MQ63nefbAgS75JPtLTCgN3z0to+PUweDPrbcgXYwoLQrtBkMrMz58JiQi3sDLkypkjw/BhhQ+CsUmcJHXETIKQLlSb62KIyXKpctUwpb+KjQd7rWKXGnysC+Jx3LQwJMibq5Pd1PinmFL05HaZGf9gv48ePH+P79+/5c3x8Y46fCkvLR+EnGn4DRFabOKzmvlJIvHKz0QEVuwDpiPxG4eVh8pj+SbJ+K+Bng5GyICIJcttI4TWDf+0w0izKyjaopCO2CyTwqmUoRLl6nDBEA8JgMv8uyzrmAUMBY5Ywx9lMmLtt8PdyNtEfdqK8fHx/3i3QFAr5///4MGPDtHgL9BBa8D1O/z2gZDLAyPgeSqEIoSTCT4e9C3ceGA9lIM+XroScKEPnRLwEWr68jPbaD1/EYYh9JIH1wdq+ZJOGZAZ10vWrfUytW0cxrT3K2InuMNHXlVB6PX1Nalyl6+r7y3xevuvJUnpTvDphUilk8Mt/kDbmBqeS/AgUzhZYiXx3AWNUbXeTsPYntxb4lsHNyh6xzoih73peiTm9Iz3QAcYxx4ETKQK6Ewl2npWkNynMy+JzeJQhxHa+8GVG9vPz7rbIExlTHSv+Lf2939SVBPQFAesWXawvS+gLqCe+fV48MqAF1Ts+aBtINSWoI9wpYCU8/E5aKXMEq1JP4FDmq7KYG1MmuZCvFmbyUim/l1VEyPH6tamuVkwCb95+n9V/VliuA6xTEwUPycDiVi9rO+7czULrftUEKhSaQ7QaB35vXhlffv38ff/zxx/jll1/2Hthutxs3NzfP8k+elAMEBwu8vgIQK8PjQCCBAn9+1s6qV+Upr9JMpk9BCQwICHDdRZKzJKuuaxnBpQ6hcXH5V97MZ6ZbaRwJBBIg4BgVP14vr2OaDuAGcmmaQPx4e5OHpN/1fNWmlLlqnwdu96yIgKYJfD2BT+slUJLkdqv+3QQG1OjeMKTOmPC6ewudV7CVKiWcAEIStGre2IW0U4YsgwLfKRxH6eJnCyUwxWPFi/MzU/gVeR4zw/neNIsKjFEv6vO2rbxGrzcVrocLHRBQabqS0TwrFYl+3Gb4x48fB6HPFKrkFqzOuytpD027ItJzW6iSrdSmM+/cI3T01rzfVvlkmbMo6FtSJV9uGKp1HQmAVf3GnVH5jNrCX4+TLFaRA+pK9k3V964b6amzHzvZmTl0DnxZVgdQlL/bwTHqtTGV8+VgIEUHBPYF/pTWx6SDt6o9V2hzZODi4ufufMlTosLzRqViI8NOXQVmlWNZyfvjOQc5QY4jzCRgYxy+41opDBeQBHwqA8p7VbSB83JJsa9SQpgVSk73ZvmeMkpQGZPUXpU3ssXDZF46T+Uxrd/38jT3f3l5+Sx8SEAgMKC1LU9PT3tPTAChqr/z4zKbgGSSb+bj17qogJ/7tZU+YMg35bM6Jj4KeB3jUIfIkLhRoQ6qxirzcNLz3GTKp2r9vyICAl0duJvpCIGNNDWnNEyrc+dFz7kOT5Ftb9sEslzuU/28jnqGmxd5GYzyENRzisCnB1wOqvHA6M0WWgYD3D5SBVXzji/x8mfpOm+sow7dM2SUQlAr5GiNwuD3lD4puTSoKm9JzxIZUshdeKo2SkDA73XPpf+Vl3IqWjGCHVUGpgNglZGnnCXg4fkojRsAeg2cOlDIkdEBjwSk15uYn//8NSjKOI2Orw2g7KVIYAIUCSR4XzjR+0zkRsTpo0WwRA7G2JbeH/5c1ReVF+9GXf917sSIgC8sF11cPH9zoKqnjuxL6bQOVHRTJG6fUiSOIIDjIr3+19k2HxeV/mff+UJCH9MJoDigExB6qY5bBgMMLVKxcGBWDGz1qt6KHDFV0xyVIpNQix4fH595ZvwpzJMWfFRtwjAxefI60PDz/0uVmSPwystYyeeU0YBEVUhc505ukFNeK+2x2n/puQ7cSWH4FIFPE+iDRjTe2oL4+/fvB28iuPymBYoV0CUw8NcH0+JZB8c0UqlfVsL1PgYcWGwZHy9Vrq9FDgjYB9RLLi86usyMUX/AyBdJ+7h3sCvj6gBjBnBX6jpGXgwpqq4lz5gG2yPXbEtfj5Pkv9ODyfDzvy8E9EgAbQbtDvNjWa5PVvRKRUdFBhIgmIUcV+iYAbtKjgzTAinnxYVDITF6da6I9TEYD/twAHd1ZN4kR+js+Mq79OdT+I31XaVjAMEpPS43EJ3SlCwQlLEvmP5YA8GQpv5XnpPzR6Ww2+32UwIy+PwKoYCC7mvq4PHxcf/sn3/+Of73f/93/PHHH+PPP/8cf/755/jrr7/2AIHAoAufusFypZ481QoU8LjVkfB+XskrKdGU5pTk7Uvvke/JuyFwEDnGeGZUxsjTBGMcjh0a2RRB5f1OJ3WGtHOWnBfp8eTA6L9H1Ti2aWx9jp7624GAyzjrRP5T9IavCnKvAQcCsyicypIdY3t7+67q3k2RgWr1MWnLKl4p2hmzs7Ch+KvSpOiFAwKuD1A+3oFSiKyjwMDt7e3+vPoCXELjztesDVSfLcboNSIGXX5piiKVeWpAQNKgSkCB6auIgP9/i7qpbBlw8SqFJZnVimkd9exutxtfv3492E5bY263243v37+Pv/76a/z555/jjz/+GH/88cceBEiOucJZZdO48JrSuPGhN8qx7GDhWABQtRupAoPp/0eJCKj8ZGgICGRIuJaL6f255N264dQ1/889Vnx1fuWVz6gC5LznpDLJs9eTMug8UnZ9WiDN3TMSlkBWulf1VYoEyLYkEJDagWOFgIDt4+NwRpvfJhjj0MtmI/tXqJwJKjciU3+mMl68X4EOCmEy9v7j+6c0AOogV64cDA8PD3sAQK+KHpVvGlEpvS660pHag0LRkS8CqvJ0SqEnR+rJg6jyeE9aAUP0GiRbW6NdlUcjSq9fVaCD9PDw8GzMsDwpm7u7u/HXX3+N//mf/xnfvn3bf7lQm2UpQkDZ1VTBX3/9tY8I/PXXX8+mCbSS2b1+KlXKeIoCuNL3+7P2TeRy6esSKm+TAGBm/D8CIBCpHvQuFRnQOQ1eWtPhhlJluAHhIrwxDp0yRaCcTzpZj4+PZTrWR3knZ6LSRSrH9y9gngQzDlZ036O/6T3/yit3uXb9LuKYcE+fedP4eztVbeZtkvTJq4MB72hfmenv4nvDibjoZFYeUZ0qV0UiVnjm8x7ycrS42+32aYTWbm9vD0IxBAOce/XIQFKiTitGyNO6R9PRMYid5AKVDGxldDuA9x6Uwpt+nqaPZvmRCFJT/67Md3fE9SqSPV+IJOP+559/7j+5TSCgL26O8XO9i0Dr9+/f99NdmuZKc6XVorQ0fVBNCyRAnHRFohlA8/aXUTqV7L0GOYhi+/In8h1Sx8hrBPgM9UlaR6U0HmrXuPYwtfJK442yw3rpPNkQ5aEjF30zDwIXyoo7Xvrv8/YVEHAwy3MHXH5N5bPPfBrB1+B43X18sD6sN9upszeJNoEBHtWovO+dnwagGpghngocpLIcFDiaJK1GBkjqJOXJOSQ9w872d7wJBFJYzpWfC6wPxK3G29ucgs82n0UHnLooQBqwCSicysNifdNP/FXPjrEWuu4GnoO9BOg6wEQFLKJ3yHCjwCk/Y6yvEPq3230XNO6RThnWq40OAjpAoPQVKGC78eiKm+3nslY9uwIuOjBdOQ/vTZURpRHRlBGJ416ecYrGJtJYYZsyapDOJZ/Up8k+ePSS8sDoJmWU/Cbv3nkiYNE1ry/b0acJBIJTJEDnx1xzcKbyEwjwMeTjTterevH/Ki2DAe94R2IiNwavZQRUZuV5rQABbkdJxezoUqT/HilQe1CZclrAkZ7nnTqL4R2PsKT6zdqqyp9tw4HSGbLKSOm6H9MzpwQDXfl+rUpXyZ0/u5KuKn82iAkIOP44Z8pFg1w4qMWDHvbtFKJ7+kkZUYlVSm0FBHQgys+rhVLeNuTRFfRK5OeU8toR+1pTAwRrWujMtGw73VuRVR/XutZRFXUjpXC5Oylu2FJeDw8/vyOg+5S75Jw4qFJb+uJJr1N1nXaR9oX6VdcFyBKoSXUmIEs2xAFb4nUVEGwCA070cGhUvKJJwc4QeUcEIM4XG8QjAhcXFweAIEUXiFK1cOv+/j6iUQlyUqKVgquUkqO8zmupqAJn7J9OAVQAZKsCrQzZKb0rP742P51XP0Y/TVAprTGeG0COuTHGAeikxyiQyrcMLi9/fpSF4JMeSlrAVBn0Tjn5vU6JHUtJ3hPR0+xkoZp62wrw3opoXLSOhOsEnCqZ4v1uanK1fWeUPF4ZRnfyOp7VT9zrhjKqPCTDnC5xcMjzJOteptszAqoEzBmFlR1RfV3mkpPoAJz3PZLCthBPns8KLYMBCR2NJJlbUbCc5/GQ1arnxaNQcEozxvPXIaUQyUcSdtUngQApTqUTWKgEatYRydB6FGZGs3QOCHRthoIrwLJSXooUfEQwQGCYQq2sezdlsDrgjn3OFTN5YGTAp98UQtabBKwv+4dKsfLyK749jw4IdCBgKwBeBQJpjFWeq45uJF/DKL6EaBjco5bh03XK9Rg18HEj9Frjs/JsuRCW8sdoKMeb8+X62uuifHWPZbtxTeDVx4A7ty5LBGdXV1d7G6lxyMXnBAUema7q7fzSvug+x5Hy8bG1CmQ3gYExnr/W9vT098pSD3+kyun5Y1B2UoRJeGnoxxgHQMDBgdK5wdfRQ5T0otI1956q6EBFx0QDxphHWZRvWjOwEinYWrYDAaX7qGDAr4+Rd6OkN7ClXzvvaysl8EAPi97T/f39HgDrTRgfH+Qref5VRCDJeVKws/UCXqeXGKa0PkZ5eX6p/5PxZPpTkhsGta0An+/7ojSsmzsD6cjyOuDP+yzL9afKZUTDbYMWx7rdcP44/aFrHYjXs+kNCgKFLtLsjk3Fn8qlriVAT0A8TZ+40Vf7uLOZogD8f4y+XQYDT09Pey+DKElI5PHxcf/akoetHKGtUFJWom7rSz1LpZiOFQhwL8aNfTL6Xq/kSZHHaoCtKKXuXsqL52mAOZ/eJonfTsj8GQeCpyBH9AkEUB5cmaR8PErwErAwRjbyrxGapqfuis9lKXntrjzT/RRNSHV6DWCcFKjz6gZQ56QE/Drn4jX64iXkBpTRHwE/l2s+RzrWIUugzT1tAg4CEIEAAtcKuClfrwej0i5j3i4OcNMaLpG/jlmR65FU9wrYErQQGFD2vO887y7qxjZSGVtpGQwIvbGTGM72RmDF2UhKv0ozo1c9QwXvxyq/ystPUwDJW+LxpcrjGCDQKTWlV38oXOfKzhXqMdGKBAiOQaqvST7gHHiJVtrQ049xOFVG+fdnVvJ1wKH8fWrAicaeoWOldwV8rBeejIkDqxR5qgzrrPxVAEzeujb3MeXRkvTsqWQ3yWKKEFDH0ROfgaAx8rqrGeB3YnnUnxxvMspjjGdefgKm5J/Gl7JLne17xhB0+Noa1s8/vOd8pB/Lps1INsLryamCmdGuAMbMhjrwX6FNCwi9EdWAXEHPcLxHEdy7rqiaw1sZkErjbw6kQT/G86hFtYDKO7lrJ6eEclcAUapv1QYuzN20ig8wXZuBnCSIqR4JCHS8vzVxAIoPB4mO0vksydvSjT9BQccP83BK8rE6sAX0xnjuzVfhUPekUp5OLgtqg9mU0yzdjLp2TR5pAgdK4+Olk9NTAlkSx5X01cXFxbNFam5olMb7V/2xCn79WfdMefRpCU4R6HnVx8dN5UgQDHjE6/Ly5yZJDozUNg5SxvgJnJMOSJEvXU9TYG5HHECkdk3jb2ZnmFbt5/1dRegq2vw2gSsUR2BiKu3s11WwQrEqc9Wg+JyMK17993CLAACBDa9XQOC9DF3VNqvP0ojRgHF6J0U1VqIgDg44kI/l+bWJ/ZTOE1WgSeTAgPeTsVvxcJO3viWSpvRJQVQA4BjD7P3L/1TEKouGwSMnFQ8O3vy6k8pwvmbgo4oGVW33npQ82TT+XEd5G2wBnrrufLAs6lOuF5NhFc/+6h//e3luK8Z4/ml59RUjAe7wuRPqzpy3iT7ilaIKfJ794fZDx2oToRTi3zqu2S9pTKRrW+R205qB1Im8rwYgSvWOYYN46FOUEPuKMuCzVHaV4vNohYMBjwroGZVDmoWXva14TPlVdavK5vWE9DVAU5TAUTkVhAM+XWO6hPZfw6i9FiUPowrjp2dXyyBtDdF5Pltlw8nHq7wptUEFDFbL2xIhcwX4GoY1eZBdRMDBicv7rJxj+/OtyD1IN1w69/VVVZ+lccxxQz1AI+vEaQL3zPWsFrb6c87DGIcRaZXpkQECAPat2xzXSwkwOCBxe+WgyHntIsoJHHg+lEk6FnKwFX2nTUrTDYyCV5v6OS2DATVA9f/p6Wm/kEVAIK3eV9pKmCogMAut8p4/l55JIR3/vGSKCLiRo3LteDyFIUx8+Lu3bFtSEnpGfrw9HCAkY3EqMDBGDsu5MdgKFmZRApIrupnBrTyz6hrTdyFDBwUpPZ9LCprlplBkdf4adAxw6Z5f0SsflTiG6ZGPcfguuvTvTIYSgE+vAc7IZZGGy4GaR7GcRwcDDgoqEOCUnDmPErOuvJ7AQGoHB2QOBHzdQjU2Kn2sKG4ay+m5avxWtAkMUNGLQRcgRga8EyvqGuZYz2xWVtoj2sEA0ZyeZTtUSinV19Nu6aQVr8Tz3+rR+CByMMDoSUK1Ekx/15f5nzIyoGO1tqIyhtU17z+fHuiePbYOnZFN4zABmqR0HcxWZcyoMxTHRgVm4D8BEy93a74fnTwaQAOVdOksAsIxrPz5bGUABUJEMvKMwtAoSu4qY0YZrKIOCRTwntfXdbeDAfLgQFF149oAjyx7G0sHqg4pIsA1c4ygMB/2h/Ii2PMpgKpvt8j55m8TiFwQde7KlRVyFJ4GckqTkGMyXLreCZU6S8cqGpCiAl17rNzr5nBSVMPbI+Wb1kikiArLqLxkfhfdhfrx8fBb3GqvNCgZnmU51Suh70Fd23VpqjyoaHg9LdJK7fFWtAoyZwZidu81KLVfR5UsU5kng0UF6uV2Eb2ZcXoP4rhPfdYBgsfHx3F9fX3g2VOvJjntooTpWY8CEBC4faiiiolSu7vhZ4SrAkAJNHuko4seJ+Oe6u55sg+SAyod6nUmP+Rdmxopndersy2rDuGmTxhTqVVeijcEd13q8l0hR5Qkj0I4uGCYqIoIJCDg9euMxxblWRmTLZSAQLWvgqdPz+hNECoYtZOAAD9iw/UV9BIqpX0qheqDbNbeW+aHV6Igs/xW22VFZryvPe3W610Zek56ga+rSh58/FVekFM1TVNFXFaiGEl/OCCgwTylzDq5R+x1ToBA51yEx7opD46PqmyRe6i0Ce60UYf4/LfzM8ZzcN7ZGKav5Ejlu81yHZgcXbZj+khXak8v13+Vg5kcOUbWU/4cWwTDbB931Ga0CQw4mvKQSeW1+6BiI3aMVgLK1aurXrsjNSI0fma4m9NxAeJRP5avPJPyrPhcIR9MKlvGXB6+tqB1ECDFLSCgvev5iVu188PDw/5rdvzE7e3t7QFP3Gp01hfvTWyjMXL7vQTYVWXyPIFXkYcDV/OtogCuJCtAWKVfIY4n6gVuN+sOBHno6jmLhr2mTHnksZteOSU5AFC7sk25boCAQER5V56V0+R6N8ld5SR1RF3pH85ifVz/sv0duKZnZkbQowt83sGAh/lp55x3f55UAQHypPFDp4zjhQCnaqNjx8cyGPDV6AkQJEYotEnQKsOtex1irRq9Uq6O0Ni51eDx//6jcCc+t0Q+xC+Fvaq/o1IOMH6xjhtqKB8NQt3Xt+71yVuWTSDw/fv3PeBIAKNC4Wz/U5APOF1LHmcXJk38Vwa54oHt8tL2mNVrBgoSOPI8nNgWDq5p/KmY3EhRXqo6efkzwJL60kn80Xt1A8vjFpD2HsS2d+PNTaa04jwZncqbZV46Z0RBtBJBok7wMlMa9kUCHam8Lu9qXHGsMsLhsuw2It3nOKp49zJdj3C8MB8fK6xvWr/goOFYnbtpzYB3jCsAT6sKJ6WVmE2AgdecKiXtg5rXeS91eBcR6EBAAgNUfFxYtwIQXHBdYYt8c6Xr6+u9Ub+5uTn4dC15J2i4ubkZX7582f/4gQ19nvn79+/jzz//3AMIz0tTBuqvj6A8VykpqnT+GmCGxodKQte3TFE4jxUI4P90TlDgeRHkJSAgA5TqJbnXfCdBQFJaCQCwjhVgc6/RpyTYzl37Jl10TH+8JiVD53pKbaq2Frkn6oCdZbhsO1BM1AFhtxeuV52vBM7VB8ngV/qwililtHwmRYxTZCA9S55n172NWBcHKJzO4ljV/bRQsSpjhTZFBsY4DAdzjrCrfPL0Kw/JDaALXBU68ntVWjaiD6wEBEgJEHl9XfG4YlqhFKr0eTeidnr68vLl6Sv0z3AcIwJKIyDw9evXvbEXGLi9vR1//fXXHlgQBFxeXo7b29txeXm5V/gJDFTC+t60quDTIEpKc4z16IDSzs6P4UvUAQGlTece6WG+NOIEBt4erhM4bTCLDMyihluUWqLu+Rko+Sjk8kJj515i5SgRCD49PcVpnTEO3wpLMuH5EVSu9lsCAR6NSeF8pkuAg9GpKoLdRQC9HT0qwHK76YuqziR+5ZD7B3gfqjy+5Zb4JP+Vvqpo89sEPti7qYJqYFMhVwrRG5qUnlmJHqQGXIkKrJIPggR42DadcUyAwIkDQsbdvf2bm5uD6QIBB0UOHAh8+/ZtvwL58fFx3N3djR8/fozPnz/v1yCQRyFpEZGsG4pTeVmrA2LGX5K7rYYjyUJVRnp25VpFrN+srp3yr7zLNOdOQOA6YIvR2EppnCXlmOrxEakDjtRl7s26TktAkNdXnZb0LI17BT6TrhBRn6UoU4pg8TnqeA+/61p6vqOZ7qiiV6vP6zl/3kEO24QOuANqd7q2RGmPXjPQecdj9HN8K0ah8sDG6N8n9udc+GY/pq0UH+u3Sp3ynJF48IjAxcXFPiLgYX/+BBR8saCAwNevX/dAwMHAbrcb379/H58/fz6YPuCOjRXg8vp+hMjAjGZGqRrcWzxKl6uZrM14rNZB+JxvGo9bZTh5HD736c/4hjgsdwbmV8inA6r/LHc1349AswgSjX8V4qZsudFJ7cV76brnk9YQJWdGRszBSqVjfYq0i2CltkkRJ+cpPbcKvB2U8L979snZTGW7XfC2c/Iogtd51Rk6ap8BnyaovjPNyqV8tpAjHl7389cwOp1n1AmAK/hqDjPdJ1UDSc/oXJ6+e/z0/AUGePRowNevX8cvv/yyBwPia7fb7aMC3L3QAZS3SVqvoVd0TkFbjfWWe6uANw1wnh8zNtK0gPJKirp7piL31KrIRpoupJ6gp6bxXCn0agxXc8UdIHAvKxGjnD72toRa34Mqg0IQoP860ujSWPv0YwUWHQB4Pv5/Nj1VyVznVLKsFOWa9Xc15hJfbJdqbVwCQA4GZgAgTT8ob5dJvqnl0SD9mIaysEKbdyCspgmS8U+eCIkN3xFDz7PpgFnUwDsoddZWSt6SU+W16Fr3jB8lhAr9X11d7Q2/jD3/KzqgBYXX19fj69ev4/Pnz/towLdv3w7AgFYjPzw87KcJvnz5so8s8AMhnz59Gn/88ce4uroa379/H7vd7mAhjnj3/cjfi7ookyuIZFR98Ppznr6iJO8r3me1ziHJhdejoxQ+7dIlUjlu8JWv5CgpSZ+268BBUuROySh4HatnfWx9FJpFBdhOyTtkhMDlw9vLdZN/aM6NfGWoVUZyXioDmiJKCbx4nmwD558ylaalyCtfi3Y7l4CwyksAxctPtmY1QuBtltJ7OcfSpn0GxsiKKQ2embHj/WrXto68UVdBgP+vOmeF1AncWa8SHNFsnYAoeVkkDlgBAi4KlNEnIOA0wufPn8fXr1/3EQJNG2jhIacKGEXgWwrKX/cFCH78+LHflEhtpI2LTkE0BKqT2o7kRovKopOPFD51ImCcjQentHNjZ9Rmxkxj2NOlsd1FVDpA7cbFP6usshwIrBpvJyrgDnBX4+8jAQBSFaWo+pmGwacMfKpAxzT/zDIdRCRjnIA0+zLpsspzJhBI4IOOSGob5u22hQDD+fFICUFU4rECPCxL9U/95BEd3psBdKbjGEpRhlXZPmqaoPJYRVs9FCcOaOXzFqE6CqWXwbqlehAEpE6vlE81H8Rn0j1P4wDADb0bdy4W5KuEvOZrDiTcT09P48uXL+Pu7u7Zc1pv8OXLl/1Uws3Nzbi9vR273W4PCsbIRu09yfuX/e7KLCkMKRenSv7HWPdIX5PcgKfQd1pMxeu8lwBB8kyYv6gaIw4Eqv9VnVKdCSi6XfI6x6MqYyWC8xZU6b3kWfKXtlZ3WXT958aMelwRwMrD9/TJY67KdvkhH7N+9/qzHB/D7uWL/K0JRgRcf1d2oQIDTKM3AZLxrr4s6CAhPe/rLyqwP6PN0wQ+d0Hj5opla94zr/oYciGpzrfmKaGRII1xuKmLC1GFEjsekuCO8XztgK8b8EWFAgJp/wFHwfT2KPCKFKgO3HrYBU/l397ejru7u4O5t1OQe6OshwygBr/+y5gkEJyomiaoFt6+FSUPZoznb/AkOU1hzhm/VWStkmsPTeta9b8aA6msFBEYYzwLAc94/GiU2oBGpnK6kqFwouHmtE1Ko/Mq7E+qjJFHk9wrToA0RdWSB1xFQ/xV8sQXQW8V0fIylQ8jFS7f1CnkVcT6+1hyJ1V69/Hx8WALfdUx6ZktDtjRkQEHAd5AvM6Kv4Q6Q+oe9zGUFD8NYifcRJSVFzUDAp336ADA9wnwjYM0DcAwvsL6XEhIIXYwd3Hxc56f9yXoHpXgmwp//fXX+Ouvv8aPHz/2gOCl/XMssY987rSjVcN9DApPeVT0Wu3mXvkYhwbfX/8jX1X9ulCoP0/FlvYdSBtzbWnXFFEUeXkpGujtof/JQ3wv6iIDCdjQYHEnQv7cYfM2Xmnz5PlXYMX59kjQ/f19/H7CGIfrP+T4uKFO+dNIsl0qQJT+b9EPyT6OMZ6BUAdB/vEi1oNtwLrtdrtnzzKdiNMqK7R5RddMkMjIFlpB6Z1BmRlaCsKsrK3RDTc2K2lX+Kh48K2Er6+vn837M5TPdQB8zZA7E3Z8ekhQSpcRCBpEXtcagpW2eS9KXrIbphWPlNT15Uq9X6NtkjIQuYLtiMo9AYREHqJlWT6HPHu+4nHl+apuNOjUBZ3eYJpTRRESMHEg03nbMhZuhN14zaKQTJscJX+2Ok/gKvHk5Uv3MwqbQB+jIe51JwDM5x1IeFTFZYP5+PkY49nzusYP5REUeGQ29a9/ZI/8pjarQFmiTWDAUfcMvXsjk5KxJqVBvRUIrA5gegrO+6whqewqqvjplHfiMU0JpN0Efa0A9xtIxpsDVELG0Cq3H9aaAJ2nvMgXAcepFKooKRz3FI+hTgaOjQZ1VLVjqlvFV1euR/y6tlkB1itzmLN2WJWd5DBUzyZPrAMTpyQ3/m68k9FxjzK9Ar5FR/oaAp0nXelAtDPYDK+ntAKlDgy4fopE41h5204OUvif55VdSCDH83CgkQx7Ah7ej3pG4IDpvS22OOWb3ybQuRomDb6OATeMp/QWHdVVYKBCwmP0myspbx1nde2mXQgGdOSKfk4XEAgwfD8DAlrs5x8i8jCejHv10SK+vcBvGXwE70ok5ej0ElBwDG2NQDAtn01t6+HbLWVUUQUvL5Xd1Sl5nq5LJGMcM1siNJy3rXhMSjvlpeOp9FQyjjqqXuk3xvN32KtnX8qb+Kt0YRWVYhTOIwWpDAEA7m3jQN7rm2SzMuT+XPXfxx/vVw6Wrrknr/8OFJi/gwTPo3IwCNpWaPMCQhayJSSu/9XAWlHCXmaniCqhSMKfhLcDA+LFr1W0dcC5R8eFglwvwJX/jAj4HD6Ntr+Wk4TXfyQZUD1/fX39DK16BOM15tTfgihz3uYrER9Xcv68l7WVp1VyJe88rebpHtcYz8O9rmCTB6O8qDzpmXaAwMt1w14RjULSCXo+hY4r7/EjOCwdzfo1hfj5bKcfEwBhFI1TamMc7nbJ6y4fkgWS61hNTUmXsAyX6TSF6W2U2i39dw/eDXTSCaqPgxo9x4V9igD4NAGPCdj5ZkOUYR9zagfq+VV9sgwG2BAuYG6kqxC/D8JUGc/f89hCjhpXn/FjBQI6Xp0c7VEgPS92qox/mgrg64C+EZAbeS/PB5IvUOyEiM/4StoUrfAdDE9ByYsgbV3jkqgCuTx2XlP6n2gruKzyTIrNF5Gu5JX4YZRLSp1voHi6Kh8aBU9fpaVRcF3TAQHycSyYe21yZyMZ0+7ZMX46E8zPjXUVRSClnSQZYXOdIkqy39WB8kGjz1f+VCfKWZJbyoLLRSXf1G8OOpiGOpP8OqAgAEiL/9KXEpWHG3+WoXZ03qiP3ywykJipBpSn90ry3hiHQn7sHLxfr44VbYkG8LhKHQL3gatQPL9GyM1/uI2w3hSopgEolO4JM60GVwIPzr/zrh0ORfy6oQbhqcBABcCSp0MZ7LzklF9Hncx0wCt53snrmvGwVVZXqIoKkFJYeGYIPLzP+nagIOkkV6q65v+ZR9JPp4wOdB58dd8pGWpvBw8/03gqjbxz/mcZNJSiru1SnTgumR9/miogKEjgNrUjowsVeV2SHFf1c09fm69x3xUHDMnjZ0RhNtbcfrwpGEgDTOc6Vo3LkIk/w/xXlEUVVTiWHEXqmIy031uhDix5GZyLV0fydT2fGtB/n7dXufyRB77uImG/v7/fgwXmcX19vedtjLw6XHyOMfaAhFsg8/wU5N6BE5WP/iut910aXF3EYeaVJ3mqFKkU2Kr8ez+xnG4qYIWqsd4BLy87eadOlWfX8dXpqZUIpeuyTre9B6n9OJ7dy1U6kUf6PCKg55JRcsOj57iDqPJhCLsbByzTj14v5l/p24uLiwN74uNyBkZcLsS7e+XOo9dF/Pmz3AeAkQDfqt2dNZbniwRTG/DoUdqtTusmMEAvStfSeXrWK5rSrnhh6dkZWvajDwgqpXRe8TSjmcJknuq87k0B7iPA/QS4iZBHBDSANWBSnWTMCRJc+F2ZpLpxEyPmoUFwKu9qtR8JdNx7YEQlkc/NdxEA3vNXO30MuLHi+CE4WInOpXpUHtLM8FZ88ZqT6n/MdJ+X7d5aR1Tus2mCpEP8/L2JBof8uBHqdKTnp2OqP69xj/7U5oyw3d/f7xcLM3zNMUXA0DmFiZL3z/YZI4PsVVmpnAbVgfdS1Eo80vn1NwZ8SoD1JnXGXyQHjevBHABWeSXatGZARx9IHl5ycoQ18/wrRVQ9mwTM7/F/RSse0lZA0OVBz1ydyZ0DBQbSdsICAdxAKC3WIyigp8g2ERjQYOMHSggW3MtQXspDg12vHmpA3N/fj7u7u5PtQDhGPV9IuXElRoOZPlrCvKmoknHnke3nH4Nh2jEOw7P0IhyYr4ZlV8k9JpepqpwqfM82okeVaLY+QDxRyXfgpPJGkzKujqcmN/rJK03kHn9y4Oh9uh73rXnZ7spP/aXo4NPT4ZQgQUFnAL2+yWlj3UkrujtRl0+yJemotGojGn7+FH11e+ntzv9dG7kdURuTrwpAJdo8TeBhNin4TgGtKqeO8RUvpaMKYKyCg45WFjel/BwI6MdFgYwKcEMhRQP0DQF65SIHbD6IqfCvr6/H09PTwd4AAiNKxz0D3CvRffdmNUd2d3d3sg8VEag4VX1MhcM2VH4JFHiZ7I+E2j2klzxgV+JUqs6Xnlkd/CvpKqO4AgSSx1dFXBJPiT9O4dAwpfHNaEAygl39nE4FClJEzo1EAgq8LgPl0wVucNwYjXEY8fJzyWC1Za+eT3Xi+GK+lVwkAKB0KoNRNgf7lY7megPXEcnod2CBNlKGXyCA/z0q4HytyKQ7F963bMtVJ2wZDHiYXxVIKDvRaroKEFQex+yc1EUJEsoSVcpa97ZQypdH//KgogLV1IAMti8YofHQgCD6p0ASsQuIaLGL2ougxcvgUe0kMHFzczN2u92+Dqeg5JWM0e/Q101ZJUWpdG7kqajYfim0R3IQ4H3HxaDq20RUrrNo17EGb+bBVGWmaEhSwP4cZVvPJlnewn9VzoyftyaG5+mhiyf/iVx+dK6Fdx0lwOmy7vLKdlIkzdNKL9B+uIOS8mS+PNJxqV5h9vqzfKVVRMMdGQdN5KUClAnAM1rgkRr2Y+oHAl4HylwjMKv/Cm2KDIxxCApYmKOZ1xw8M49j9V7Flytz0szYVw29qhxpQHwfAd8/wIEApwdSuNl5kTJIYGCMvw2WUKwWwPggcJTtg4XeqgMcDbr3JrZL1V/uOaUoQMorhb0dELBfdfSdJJ1ckXAVtxStIi3inQYyjUP3rl5zOmErJUOxojMcADjArzz+Fc8/RRc+AskgsG9pHDza1OkBN3huuFZ40fhQ+2sK8v7+/lm5nH50YEUjPNv22j1fHz/dImryXgEOjWP99J/TJMm2VBEyd5QULfD2TlOL4sf1r9JRv7DuVbutRmSXtbM62qcJKjDgFawGpSstKmIKbnp+KxAgeeNXkYEqPLVKlQCqnq4M03cHGCngwH96etp3NPuGH/PwPpBAcoUqF6Lc398/exfWV8ZWCNQ/mqHpAUUZ7u7ujm7HlxIHpfqk8qrSAK2MF42+dmr0tzL0nICArwvxhZ8eEaDhT6FdjxykupNS383arhoDrhSrcc72YMSkAwOzCKH3J2WUMs5zV9T+S+3j5b4nPTw8jNvb24P5Zl9dTsPAdUa+50cyHGwzb0uOE5L++zdILi8v9+XwuhYVehiffHgfOLnT5ICa0VGS58tj0vU+/hyUe75pXYDWR2nhNKdJE/ByfaP70rvS9a5zfFO5BPwvLy+X9e7F00eEwmc605nOdKYznend6OXbrp3pTGc605nOdKZ/NJ3BwJnOdKYznelM/3I6g4EznelMZzrTmf7ldAYDZzrTmc50pjP9y+kMBs50pjOd6Uxn+pfTGQyc6UxnOtOZzvQvpzMYONOZznSmM53pX05nMHCmM53pTGc607+czmDgTGc605nOdKZ/Of0/7n3MFK4RTQsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu9UlEQVR4nO1d2XbruK6EMzrD3n3O/3/hfbvdO6PtxPehbymlcgGknMlJhLW8JEsUJ4FAAQSpxXa73cZMM80000wzzfRj6eizKzDTTDPNNNNMM30uzWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44zWBgpplmmmmmmX44nfQmXCwW71mPL0OLxWL4HR0d7RyRhkn3dcLzmp/mm53jGBFxfHwci8Vi56j0/Pxsf0zZs2jD09NTbLfb2G638fz8PJxzG7mt7vx//ud/Gj389nTovJvVr+IRva7pI/J3UZXN/93zrffM1LOfmfKQy783r/emz6jDofNuL7l2ZPx9dHQUR0dHcXx8HCcnJ6Pf8fHxcJ+J5RJfc2mQ7vn5OZ6enmKz2YxkIss3lnP8+2rUU+duMDDTLtPiGh9BPcK3Z6Bvt1tbXkSMQEEGFlp1AcMfHR0N6VxbWEjrQOEyWmBgpo8jvN/etNk18KAj3HPlKChxIGVqPWf6epQBzswQAhBQMID/CgZYwet1PQdYgOJHuU9PTyNAcHR0NNxneefy/i40g4FX0FQg0EtO+FYCWVGy1k/TqHB2KFv/Zwi515r7joPnPSnjrYhdXsj+T+nzir8UFFRHzbP6n5W1T/1n+hrkgAAbMQoG+AdAwF7YiBiUNgwa5hsocJZ1mdHD9WGgAEAQ8SILQd+JR2cw0EmVq3afvNz5a5/J0ug5phOenp52rDVWCoqmK1dZpfi/04A5NNL3lVnfPc8rOcu+Fwj00qz0vzc52dMCAhkYQFqeztxut3F8fDwoaZbNuIfziBfgAPmH+1w/9sZyfngeYOG7gdYZDHRQ5kKdCgR6lHUrHSPcKeUz4sWxAgQRsYOAs/ndXvoug+ZQKAMCEbki76Usr8oDoWXsM02RgYzvJHR/ClVAIAMBGRjgtFoGeAX31BvAxGlYHnId1Sug9F0BwQwGOilDilOe56M717ydSy27r+QsPk3PAIFJ/ztvQKVsKotypvenKYq89by7Xnkj9gEhTunPgOBrUybbFARwQCDfU28AgwAn15j3FBRoGpVTWr8Ib7jo9MN3AwQzGGhQ5RVoKeksr5ZXoPpFxAghOw+BBtI4i43nxTiNmw/LvACVcndK4qsPlveifYFSBSYzgdmTjzvXulZ13ufdt/KaAcHXIceXVVyAAgH9qXzNDB3lC2foZPVV+VoFI4K+GyCYwUBBmWXeCwIqIOHOs2WEPCh4vixbNbBYLEbM3FLkbtBUgYEVMp+F9ttTxVdO8Op5RJ8Fn5VX1UXvOaHYA3Yqz8V3ELQ/hTKACtnF3oAMDLCF3gM4M8oMG46B4qPzGrjgbG6TxlNxfl+NZjCQUAYEWGFP9Qxwfi5vHQwMBhgIOLQc8YJUMVA4HsCRgoAe61QtTx0AfMyUw0zTyfFYBiozD4ETVi2gp+TAA/633nnFAw6o6LMzPx0uOX5gmcaKX1cHsIwDqWEEUotdqYp34usKCrJpUNTFtYvJGVNfjWYwUFBLUVeCtzfPDGhoWS0gAFKm1OCYCM+oGlzorLIeBYNBlXkLZuon118ZKKh+Sir4egRXFQ/CdXmNsq4U/gwAvg6pTMuCAnWpoONXp/jV6InwIADXHRBQeVWNCQdK+B7XS8v+SjSDAUMtlJt5B0AtpuoFANV1JWf1qXcgW4GgAl0BQatvUG41RTAL837qBZX6P+MrTp+BNyXn5s8sp6qOLUFbPefq7dLM9LmUgVMXG6BAANcjcpd8L01RxjpVwM84EKr7E2TG1VcGBDMYSMgJVze3lYGBbJ4+U/AOFESMgwUzQnlZsAzyw/0sP542cAGGPVQJ6dkz4Knql8rC13fDxwysVtM6fGRFXln8DpRU3gEXGzDT96DM2NGVA7pKIDNypoLPbNqTFTpvUITzDBjrWMBzGc86T0UGZg+RZjDQICdgM+9ARL2kygGBDFxEhA0WzAaFC4pBWtxDfm7ezdW3NxqX+ym79xUGwyFQBb7c+6/+O/7MQKsqfiY3VdSqQ+t9V+Nk6hTGTJ9HGRDVFQEKBPS8yluJjSVV+LyJEBOMJbXw4TlV3m+BXg7O5jZ/RRAAmsGAkApTHLOfut7ZouL/OM9WCag3gAV4a3pABbqLGzg6Ohp23GIvQdUHjKY5L0eKslXpzF6B6bRvn7UAQcSu69/xEVM1VZDVE+md63QKQPxKAvUnUcsjpYBAf8qTkC2VbKqeq+oWMZaPDAA2m01ExAgYMLH80rEFAMBg2pX7FQyiGQwYUksq8wo4az5zs3Je1aCYAgSUWPByPdj175Q1p9d+ACBw99xzfL2yJmf6lzLw6e5X15iqPldLSgFcJbA0X+VrTZfxmkvD1/mo12c6TOoFAQ6YMvUCgUxOoi64xrJru3358urJyUlsNpsh7Waz2QGurenOzDh08VZfARDMYICosqh6fnjOeQaqwRKRI94ewe8+t8n3AQhw5AHC9XUDsSXUGTBkO37N9Dqa0oc6b9kDDHA+VVAp32d5OeDYU94hC86fTpVCrABBxcstIKCAwq1E0GtqyGy329hsNsNvvV7vyMOnp6chLT+XGUBZPzh+P2RAMIMBIRVwU8FAlieOU9xlTtCCwFAuVkDBCAjTBD27a7VAQEUzAHg9aR/29KkKLHfem5fmm9Wp4lEtT70HfD+LE+g5n+ljKTMK9vEI9MzNs6LX7Ytd/EFWPuTi09PTAAQeHh5GAKKaMsjOM33BBpJ6Sg+Rf2cw8P/kXmSl8FsCNRswOmj4WvZc5jLVb3MzEGBwwO3hZ6vI2J42cv6Zd2CmadSjVHGeAQZ+J84z4MBBDx+451qKvspfLa0qj5kOj3qNpAoMZCucWE66pYkMAE5OTlIQ4IIUn5+fY71ex2azidPT07i/v0+nYyFbuV69ngFcBx06IJjBQPQFCmYvWv9nL7p6nlcNKOkcqttZy00TOACBNGB89RDogJnSd5xH77MzTScHSp0QU3qLKRsVcD1eAZTt8lIQ0Eo30+dTZeQ45Z8pWX33DAr4d3JyMuxJwHsTMAA4OTkZleUAAe9ngPJWq9VoF0SuG8tS5sGWXFevgMrDQwYEMxj4f2oBAnfPPa/XWAjzswAA7KJicgrV7aClcQIOCPB1gADUg8EBkwsa7FXyGSBwec40pl6lXQGAzBPQmvaphJPj5SqvVr1623lIwnKmF+rxBjjvqlI2hcVA4OzsLE5PT4f/uKcylMuArEG609PTARRE/CvLkC/S6lbFOPYo7cor0BqPh0I/Hgw4RqyUfw8wcPm7fJSZQexyB9MoEKi23cxIkW5PvfFcxGz1HyJlwLVF2ft3VnoGBLJ8q/9Znq18Zvp8cu+/8gq0+FFlEZ6F5X9ychLn5+dxdnY2AgT6eeOM1EOB56H8N5vN4FVAfSL+BQVYdVB9kTDTCeoVcHKzFZD4GfTjwUCEn/tsId8pwlfTMyNr9Cuj0Yix+8wpYgcCelGnE8bVsxkQOBRm/k70lm793rQuKKqqi7N4cMzAacs6rKYO1Lsx893HkZMTzhOQBQ1WspKteQYCy+Vy+J2ensbZ2dlOfEDEiyUPJQ6CHGUZyx4FgAOkfXp6GoILAQZwzLytXH+nRxgQqBF3aLw8gwEi91L5P89JOQbPrO4MRCgg4LTMHC4ojz0HWVt6FQpPFXC5Lk5B7+l55TmYvQrvR1NAass7tA8IyeZUe/PLQIDzUHG+hyBEfxK1AEDvKgIljgU4PT2N5XIZFxcXw+/8/HzHso94UeKbzWaQL1Dg4A/ISlxDORExeAYUUDA44CkD1x9swDnln52DDoWHfzQYUIXtrlWKnNNXApafcd/0ZkAANKp5uC8KOkCg9cna1qIsYJGPet89r/0wU5syF2LLsmrluU8+4MnK/a98UU0x9NazV9G/NyCYebb2lmYR/g4UgFiZcx4KBC4vL+Py8jKur68HMKAe1PV6PfAnQAGAAdcTcQOstHklAvIDAGAvATYkiqg9VRUQ4OerqYPPpB8NBiL6pwgyxMvUAgIa7epiBvCfAQEfHSCIiNJLoJTNtWVKXhk5o8o6rK7P9C/tMzWQ8VtPPhkAZmCr86W9MQEur1adsrlZl2fr2lvQDATqeXH9JLEaOE5OKhDANczpn5+fD0Dg+vo6fv36FVdXV0PMABtM6/V65M7fbDbx+Pg4AISIGAIGkf/p6Wk8PT0NAYUoG0AASw4xVQBgsVqtIiL3iLaAgI6fQwQEPx4MKLVAAM9VOSuc8+H8GADw86yYWwF66vZC3ttt/oEOrktFFXNm0wWZYnADZhas+1Gm3PVaT5oqf72WgQAHEHBdlX4FAHoUf1Xn9wYEM7/ukpNluuRPV0fpCiLlWbbQsXIAgODq6iqurq7i+vo6zs7O4vj4OLbb7bCNMCz2zWYTq9UqHh8f4/HxMVar1QgMPD8/j+oJDwSmCLjc5XI5bEi0Wq3i9PR0NAWBKQNHLD8VCGhAIfJSD+B7e7oq+rFgoLKoKhDQ4xXQ+26LTChvTqcrBjR4JWMSrYtD3440v32BQOUyzsqaaXqAnwKDXi+A83S5vFzdMjDA5/xrCbPXCD1+5r2F5j5emu9Gjs9YfrES190BMxnp8nZgAIGDFxcXsVwu4+zsLBaLxSAT4RWA0n58fIyHh4d4fHwcrPqIl5gAKPbT09PhGa0vykcdzs/PY7VaDd4CNwa0fRnP6MoC7k8HoD9DXv5YMBDRDuzrBQLIS885PaNpTc/EuwlG7G6A0Vq/X7nltBxn+YF6mTEDArPyr6nioczibwGCXnBQ1UW9Q1yOTh/05NsCja+hz7SivjspLzoe42kB3bxHg/w4LxAHUPMqAqwcgELGKgKWhQACDALwg+JGeev1emTpoxzes4A9FAANvKQReXIdsj7r6VM3Xj+bl38kGKi8AvsCAUWFPJ2gebgBw4ymPzB/T5scEMnS98YA9KwCmD0C/dSjrHsUfgUC3LuvnmFerAAk8nFegWoKwZE+p2mnWk1vDQ7mKa5/yfGhykmVmUqZDGE5xYBApx8Wi8VoXp+9AfhhisCtJmBAgGBCBgS8DJEBAad7enoapW3xGvONTqPp7xC8Az8SDES0Vwr0AgHOD6RxAFnMAYiVbgYIOJ2Wh3sMMnTQ4hnkwQGKupdBiwlbil8txxkQ/Eu9IMD9z/i08hS0/mdlZYQ524ixZ0k9CZXyryiztqr4gI8Qmj+NfzODp5KTuooApEvuXJ4cf+DyQz5PT0+j2AAGAvjx/D7acXx8vAMEsBUxr1DguigYQP3g6q+MM2fps8LX6wwIqrTvTT8ODFTWUgYAnAXVspbVUtcjK+mIXUWqngEWughOQb04ctWV5+rOgh3XHOP1RLuq4p+9BGOaCgIqoJoBAfe+W3mAMk9AphQAPFnQq4XPlF1znoFWH/1UHvoMUlmC815w2ZN/Jn/ZUMFaf/YG3N/fx/39/QACVqvVaFlhxIuM5c8VMxA4OzuL9Xptg7o5yBBHxCK02tnjuVIAwP38WTz+o8BAr5B0LjD8n1IO5+OOTOwV0Lkptb74HHm5KFUV+FyvbF4Yxx6lr8f3nB/+zlQpcj7v+WXPOi9CxH7fi1BrprXXhPLTPvyg1tIMDD6GHE/pPZ0iArFHs7VKynlf2RuAFQO3t7dxd3cXNzc3cXd3F3d3d4OnYL1ej4walAnPwMnJySh2AOeYBoh4+SaCThdwXAHXcwqY5fYqKHDA4KP5/EeBgQg/7+VQaXYe8eKS791Rj5WwY3pVrFUAoebLKBhHJzi5HkgHD8HT09Nw7GlXZfFnnoFZcHvKrC8c9/nxsy6fiP4VJyC2nHSqAOcZ9b77TKhOEYgzSHgdTbHu1bMDflDDRac5VQ7pVCaeAxBAnACUPwDB3d3d4BlAxL8aSs/Pz7HZbAZAAGUPLwNAgY6XLHZgs9mMxoLrD25r1c+ZZ0Cf/yie/jFgQIWtgoDMgnKDAy/HKU4nZMFcGlToBOiUeVWdKnD1ZI8Bp+c0qIvO9VX11HKqes/C2ZPzyLxGyfeki4hUmLm6Ib3mhyMAZERYZaDlZ9ZOr2v1tWBhpj5y4JRJvZd495hLZ7nhpjnVI6WKELsLIviPpwdub29HKwjgvmfgAYJb//j4OFarVRwdHY3iBR4fH4cVXrxXC2IHeJqAV0xgmrXi5YxXcc+N2wwEuPtvTT8GDETsL0j1GlMWGIMjf5QITASCNQ7qCd6L8Ja51k0Fr4sT4HlfrTe3SyNolaGrKYVZSHty72sfXqye07RV+dl1BQKq+Hm3TOWnCC/0HN9UQGEqzeDgY0g9AhEv/MJf/UPaiF0DBdfAP0jLKwcQLwAAAPc+7nFcActiLhMWPaYb3GoF5T/wtwICxCBkY8uRGxM6NlSOZ+OE2/aW9CPAgKLcnl9PnnhZzhvgAlL0U8VIp5GprTk2pMGRGYSDCVWBO9DAdeRpA9TNAQIuV8vvqfNPI+33ltVVpauUeC8Q6Ck7wgMBBwoynkEZKswyvskAwj40A4LplAFURzqNqXKB03E8ATyqldXM+cL1z0sD4QlQAKAGiBo+8DKw1Q8wEBFxfn6eegfcTosoO+O1Cvjyfe3rliesdW9f+hFgICIPznL3p+SZWTNQsBqLAGbLFL5Dtkw6L8VlqyfAuW81eFGjwpHGBRjy9QxJzwJ4OmWWPv5PzUufyxT6a+vsvEzKC5lXwIFKbcNrgcHMj29HzlDSeAGkY3LTmi5fF5gHgMnfDOCPCFXyEWXxUkB4B1Ce7msAkMIrs5Ce07ip5B5AoPXMnu0FBW/N398eDDihmAleR07htcpTZgEDIWIV6RRRt1zrOrDcNR4IXP+srq5dDAzYDewATy8zzkJ5l5xgbFH1PjWf13gFeoj5hPnITT85QMBtUSWTXdunjjPvTaMpfNkCA0iDe07xOaMJpF8RhFJnWZeVhyPkF5flpgtgPLF3AEAA8pu9BDpVkPFrj+x0noHs2Sqf19C3BwMR0+ZYI/waaLa0K+WalcuMzvltNpudMrPlhZquKntfcl4B5z2Y6fXUo9hdWmd9Z2C1BXYrUp7X/5l3i8tWRaCAQNvWanPV7o90qX43yvhG5aYj9K0CwEpRs3XORzamWJnzlAH4rmcFC+cRMZ4ugFJHEKGuasCzWk/+LoOT21X7lSrPgPbXe/PwjwADETVzt4Slupz0niuLkS4zWib0dIMhBQLOc5BZ9Sif68LHXnIWnvNE6LlrX9ZXP4V6vTWt5/QeH1serIoHM9INXPZZWdKyglqWJ57Raz1l99yb6YXcu8iMKVCl9F2+bCDB8maXPfMpBwg64wj5uLozYMymC1wgIeeJfFmOqxfDGZcKVpFPy8rP+u4jePdbgwH3olQptgSRujSrJXctZZsJYl2XmzE96pTlqQPWLQnLGM7Vlc8rj0ALBPSUN1NOGeB04PC1HqLsPSko0Gc0iKuXsvpmngcHqqYI3Jl2qfIKOLlZGTVV3pxPtrEPW97Ik40lBgZZma5OyINXvmCZIeqBpYcREaenpyO5qR9TOjk52THgQDwWnO7QerXex0d5B74tGOhh5hZzg5yQzYL/WIhNdaf3upX0XK1/blflFVAh3nL7cpnqsch+3K6fLqQz78DU967PsNCpPAOuHppfxQMcWJXl64BB5TUCZVadWqA9AjFLMwOFmnpBQS8gYEXI8oiD9/BFQv2SIOfH8QJumkCnNbN6cSA1PATYphg7FPLn5rkeHPfFSwyxqoDjEpzX5L0Mo7fM69uBAbWCVemrcqwYvMd7EDFGbswUjEYxv8TpQVUsgg4o5xrGT91YCg60zhUQyAS481S0gIBem2k6tdzfaoWoUI54iQHQ+zhvrWRh7wDn6/KYAgq5Pk7583mmbGbe2o8qAKD/1ajgdNX742fZwnZfBuT8t9vtoLA5eJCXFLpVT8oXKtchk4+Pj4f8sRERwMBi8e/0BZ5TbwZ7B5AXt7nHW+XGaEXvzePfBgyo4p6i/CtQoP95uR4ThJ4uv8NGP7wTlqt3T5u4LE2j8Qk45zbw84yqnYu3h/FU4HMAzQwGPoYyhZkpVRf3UoFAdVHCsmrVqQUSNX0vzYr/fegtvAIRuYJzgIB/vPc/iKcFGBQwIFCecvyf1Y8BBZfDW7Nr7JXWmeMPtN+4zK/At18eDGQgwP0yYODm1jkvkLqNnFCEUoRLlZEjQIEKY9RB/3P++oxrO6NabqurI9cV58qsrWjdSuG7e/MqhBfqsQQi+uZh3Xn1XBX74cBAy+OQ5THFU5R5DVz+M70NVbJT/08BBK4c/NhYYUtbZTDLTgYDWFEAMODiBxQcu7axTOIyTk5Ohv+ZnGZjS72x6omo+DUDCNU4fk9Q8S5gwDFJ1cCpjXMCcCoTOyDggIGWUdVZUSeegWIHKHDCmBkN93n/6wyUaNvdLodaRyBqLLfpUdYV0q6Evqb5yZT1Ya9QzdJWvM/UspiycVk959K7PCuvQAYgXT2y+s00jZwnQP9PVf4OKKpHYLFYjKYE2IBhRZcBAZ0myORWL79CDnL+HMAYsRsrwysPKiBVee0UuLT68SN4/E3AQGad8H8nmHDkzmkhpay8jHHdf5e+WiaSURVhr8GE/LWrbKogqyfKcnVSj4I+x14K/I/YFby9Vnv1Hl2+OOcphJl2KeO3jB9bIFdJhVFWh8rNW9VTn8+UeY9n4LVAMks789+/lMnrHrlX8VfrmcXCxzWxnETeDgSoV8BNS6I8p3SzerOM5i8YIj1iA7bb7SBv1TuADYi0fO1nPWb9lo3F9/QUvAoMZAIiazinyQZ8JZD0f6bY9VqWPps2UHKCtEJ3nJ6XsuDcfSpYgYlOETCQ6AEpXA83J6wbG+1DLQGu9+Zpgn8pA8i41gIFGhyarXmeWqcWUFBgys9FjKedeoWUAoIpP33e/Z+pTU7GTjGM9F0wLzHPaqQ+Gyys5CNewABvQ6zxA9nSPtc21w4ul+MFWN6enp4OeXP9NE8GCW4c9ehE7dNeANACFr20FxjIlHDV4EzJuo11MmHoytd6aHlVWgcIXHlaZ84LitsBAvUOcBBhyyWPfLle2aYYoFY0OAvrloLOAiWr/PV6ZQn+NKqEQwZcM+WvQEBdrVPqwe9Zx4qORcd/zN8s3HUMVkCj4qUZCLwtZTIuk+HZsxF1wHEGKNQryla5GlH8cSL+QJEzaFwdsnojLcpSo43r9fz8PAAEBg6uvS5mAMTyPBtrWl8FV3qetXPfcdANBioAwJ1YKWWtLHeOKipXtvtfAYKeerNgzYgtbDdfj7n9SnEq6MkEIzwIPZS9/N5o74r2teIds85C+oVagDPjTbdaRK0tpeod6vJAXhqV1Qnp3HjMpsx4zGSeJB7/fGReegswWQnSn0qZTOR7Siq/KuXEYFZ5FUoYW7JzDBPAAD5VrCsJGBS4OrRAMdcdQADESh/8yzKe6zEFgDAQyEABt8WB8l5QsA+fTwIDTlCpxcKNqJDmdrsddYgO/qoe2bUWEFDBqi5WJVbcCgjcQFFQkKVzpMGDetTlLq917XPeU57rZUBl5FkIv1Bmkem4Yp51y7EgXNnaYv5Dv7tVKRlfViBV68fkoq+Rn8at6JEDWrmu+8iGmc9yagHRVlpVUnyN0zrdwEAAz8PyVq8AK1x4BPBzAKDnnWt7wVt8BChBnqgL9htA/RgosOFW6TtOw3qvSt+j+Kv2Tn1mEhio3JWM+BwjOQbiDuGBz2k0HyZnYWdAoOen9avKqsqtQJESM4cj1IWFLVtbOlC1br0ImfPo6QttQ2YtzALaj4EMEGTTAPq5VQgotdR17XREHmTqxmvLM5B50fjrlpw33KwVoa4aV8N1coDA8ZYbD3r/p/MjqJJJ1f2IXD4rL1cGERRrxNgrAMX89PS04xlQa3yfd+m8ThgrABzsHVCgy+BVvVwRu596b/VTBnYzXp0CkKdQNxjIrGlnXWcdEDF+EWwtABAgjaPWwHflul+LSTNy80HcbrW6tU+qsrLBonmylZXll3k6UE6l4N1A4/eSgZZW26b083eiaiwocOwBAvxTt6taN7jmys/4v3pPCjxU6OE/PGRIo6RjBsIV1p/WwU0ROFeqtmMGBG3KjKKpBg2nUZ2gMjfi5b2rcuegPg4g1KWEmcxvEctNnqZ26SBn3fSwggHtjyxfBwbUmHKANwPsb8nLrwIDPa52kFqKTqi4uUWmFurXdPxfLS83AFqk6VSgaps4jbPCXP760tXFy6CJy+E6KBBx5ajSV8Wv5Jg+a4/WcQYC7akB5k/dRRLKX/dxx/2IsXCK8AGBEW13v5tGcsCB+dsBgogYgQI874IQAWLceGTLyymBChRU8qJXlnwXynjRpXMKqyd/BQI6ReBkG8sK8K9bOcA7Dva0A2XwecUzOj2FIG/Ux8XK8HPM3y4GQevsxn7F2x/Bp5OnCVRYtebc3VHPkT8DhdegoarDnfJ2jJIBEVbulVB1ddFrvYT6qdvXAQNXjqJaDWLh61oun+tKBKWqP6eAru9AGUhy11RwaowAgADv4c7TBBEvy574nWsgKrv4s5UpGYhzQID/a9nqJuUNZ9xUA380JmJ3JYHOsWaC0smGSl58lKA9dMpAQCYz9TkFtE5OqvJdLBaj6QHePwDeAJ0eyNzvGWWAAMTTWJw3Tw2wJ7YaK84zpmlbvMh1Vnma8flb8fBkz4ADAs6FonMpqkCyAfsWCsMxdTaVoR3d63WoLB33DDNS1s5swHG9HChw7VHwwvfBtM4KdIqemb56p67uPw0ERPRNDTgBmgUJAggwGHCrCNilyTzCniLnwtW6srB25NymmgcDVi5X6w9iIMDEbXLjpmXxabuy+v5kQDDVeMrycB4BXbfP70bjQtgj4M6d19J5XNXLWemVio+1vNbusciPp3MVYFR92/IMaBvfmm/fZJpAK+9ce1PczHq9BRJailWFXoW4tCx+nqO3+ZgJ1oxU0Lasseqlu/pm3ouqLORVLWtUIDDTLmVAoLKgnCcAChMAQL0CrEyVBzJvjysX15wFru5Tpip2hOvjgADaw7JDXbFOflRlZ6Bg5tM+Uj51Fn2VPuNnzitiF9xF7K4mYc+ABsOCnGwDOQXsjBaV25kcVz3B6blMtImNLXjo4GlwuozHjAJYVz4/85Y0GQzwS3dMokCAgz5wPyJX1r0KNSs7yztjbNehbF3r4HBAoEKXTGytqdJVgccWnYIHRcMtBcRCFgOElyqyq67ql+xeiylngbxLTohqoCADAI4X0LGnYy7iRcByec47oPXBs69tm/7n9qFdzJduxUHmrVosFjvtAznBPfPfLjnZkcnLlkx2vMXv3PGrvlsAAAUFLSBQAQ7mBQYh3FYHADSNlpn95/ZBpmYBvVmfVkBE+xDp38pLMHmfAQcC2Fpk5a/n+kymxPR/D0DI8suARuVtcECAmdwBAWd5OzTqmIH7TduOMhTogDLmdnVF/RgIZK5XrX8PsznPUDWl8N2oBcrcTy0pBQIaK4C0IA260jGopECS+eKt3k/Gq9o3zJ8KRLk+zjuAdNn1GQS0qSVfe8CAM5gyEBARI7nDgID5uMXDKI8BZbbEFrLOyWIGoplc1bQ93gTlP3g5OL9eqpT9W/P4Xp4BJh3E1Y/JdYgyZ5VG6/AahnblOyAAJlfmUyDA7W2tBuA2aLS0C0TpGcA4KlrHdXgGuH4MOFAfrR+XkQlmPq/e/3ejFrDVexUgcEsJAQjUNYnjdrtNo665zFb9WPHu6yGYIuycRcc/91EalOG8jpxXr7D87rzZQxlYrdK755xVrfkoCMA1ni7AfSWWvww63NhAXrDOM2Or1daWp8B5PliJ45pOj1TEvKt5cTkZ7cPTr9qBUAt3FqW77gSnYy6+36qb1oWvvyUQ4ICYLF8VUCC3GqBKn/UBP++EvjK45gO0jLwwFTGFuO7adlYmGV/8FMp43f2U17J9BSJ2vXG6AYqCUC5bvVlTSHmXqQUgMlCIeqHNaM/Z2dmOt0Of10AtFaB67uo0U5syw0zljQKCzIDUd9ojK5zngT1mJydjdQY+Ojk5GZXjlHsvqWx1gbwog79U22uU7gNme9O1aJJnoAUEqsHeAgJOiWn6nhfnEFQvKKiAAIQxf+taPQKYf8+sq8ozgLq7OunzU/uE0azWt5rDcqBKmVQZUfngp3gGmJTfsnGjvIZz5TX8d8qbrWkEKrn6aBlqkWv67fYlECoTnioAkTe/+ymGA4MgtOn09HTUNsdHCgg4315QMNM0yoAsK2ukY1Llz14AlZcKLFQuO6+ZTqExUHZjw3nauK585HpEjIEAjyfw4snJyfAlRN1MqxeIOJnL97R+r6G9tiPmRmSWLAsCVdCZwnVCc0qH9aTPEK6e84tl160ulYkYu7i4/cpcLFhd3SvLys1Vcb6tNmpZSpk3B/8dINDyfqqgrfjVAYLs5zxRvC4fPNASohHeG6BCWnld40k0XcWDeN7VSZ/LjAet58nJyQACIFgzcKlBtqCvzpMfCWD0vTjDCnVq8fBiMY5XYv5UIOBiyrSsiPHydo2vYUDAfMbTTNlKKedR4/o5/eKANRtbami9xhuR9UsG4velV3kGlFm4w1QIcoWdgKo8D5o/8mGqOrjX1aIvmuel1F2LlwumQZBIhoRZ4KIMrd++c7TOKlJEiaMGZrm6OiGtfeX+M/jT+281CL4KOWWbCU8+uvRqeTj3qpbNR/Y0LBaLwZ3qgCm7VTW/nqW0DIwdIABlSgfjDsAEgABjL/M89fDXVwUGbwEIKlldKf4M+ONcgar+B/jkqUmmDAg4AMr6ggNs8XMeNPYM6FQEK36NUQHP4XrFWzp+2aNWTav1kPNOvBft5RlopYOL0Vmb/GJ1tzUd0G7AZ2VmxM/1digLJnZJKQJFnuv1evSfBXTmauJgkmwFgoIIZiz+7zwQSMMCPgtw5J8K2x7QBeZ3Sp/ByHcEA05QOjDc+3PggEm9SMo/eBc8nnTawa0w4XfoyAVucR5cJxaoKuwZlPJP+4/lAoNxpMfYcYCiGueqWN9C0X4EfVQ9XZ+qLMj4VmOqGHSq18ktrWbeY0XKvMe8cHZ2Fufn53F+fj6sutFVDDpOnPeDP0iEIFytY+W54D7h+rdAxKHRJDDgzl0aZ10yQ+lAB+MoolPrJxsMagm5wa6MzZQpvojxNMHp6ekIgeLZ4+PjWK1WO+iSy2fljbpklrljPO4bMLsGTbHS5b0EIESdZVn9sn52faWCQT0gX21gTKUWEMgsJwVQGQBgnmDhpZHXLER1bpXHm4IB5OHePdJzHpoXnmeBylsMZ+Pu+fnf9eUY/5xOFQwrGgdAGXhqOehbJwcOGRC8d90URLm+a411tthxTQNeIZPwjjMjQ6fKXPwMDDN4BAAGeFqNx5QzzNQbsF6vh99qtRrVr9djy21l3uTx2CIngyud9ZbUDQYivMs/e7HqCWBhlS2hYmKrAULPDQwnPCtQANJ7uObaxACGA1bw0nmZnoIXjtrXMphY4DuBzICi8pKgLE7nQIcGZbWAANfdkQIB9nr0DIKvSKrAnWJXN6cDCK5PmZfUc4QpqWzZnROo4Fu3GqYC3CzwNR+O5EadofwhVFerVUTECCAzMET7M++Y9mPmMdG+z8Y3X2ul+UmkY1u9LRG7QNcBXAWM/H4Xi8XAuyyj2OOpSt9twMWeAZ4iYMCo/OD4BrJvs9nEarWKx8fHeHx8jKOjo4FvUb/KM6Dlsd7jdPu+F34f7t5b0SQwUJEKRlQUTIAOYobRrVZBrKh4BycFBFM6uEJaajk4YvTLH4qJGH8DGwCAy1PrTcvIAq9wjdvp9jcA4XrLpZV9NrSHKgZ01q1acN+FKmvJ/VSZ6Q+kfINn2GWpLk1+f8ynEIywms7Ozobxp4rTTTlofhin5+fno7HLXrL1ej0IVd5QiMuAlQjlAMqAYwX4q/eTebdUfnwVL8FnkgO8CgSch0CVMO+doq50NhAxJXt6errDb26LbgYeOtZ4PLClHvHvWAJo1S2y2SBVQOCMRQeWMvDKpAq/8gxUvPlavn01GFBLmo9AVeoVUHTHYADKlDvxNTs4KaJyHayeAZ2fV7crI1/OjyOf8Z/nylgwRuzuIZ+5a7lP2dPgLHWeQtCjDoKMeV6rtJ2i/M7egZalmgGDCiAxD/AnUfUDLmxxK39qtDXHu+iUnMaMcBuOjo4Gt+zp6Wksl0trlT09PcXj4+MIIMAFq4CHeRI8ygK38lDhfvUf9XfPOa/ATwcEPWM+AwQOFOgybBC/a6SDnmAgwPEAy+VyxH9Q/rqc0ClonuJ1AeDPz8+xXq/j4eFhZ2zw+OP0rA8cqGde1jGfkeO3bAz0goOpNBkMOAWkTMLX1X2pIIBRXsRLZ+PZXovV1VPRVUvAcD0zUubn8lj4gonQJqTReX697ty1LMBY2XNdUa/KCncxBgzUsmmATHH1CmAFil+d9lX+bsrA5ZcBAfY68QoWHSPIn8cZC1IGZ+zNclMOi8VLrACAAH4Q1rCoNpvNcB4RQx1Xq9VIwFZTR+ifTOBNFagufwcIsnTfhbJ+q667ce8UXzUeVEZC+bP7fbFYjIAAAMByuYyLi4uB13Rbbp3qcvKd80YeDIrhzTo/Px/FG/AUNcYZ6qz9pmOaedyNeyblc9eO7Npb0yQwkCmLiN35JL4e8WK1KAjAS2BLIiJKpVYJh8zlwtey+rv6ZsR1w8vmpVAsVNEWCHb9dCenq0ALCyiUzfPznMYdW+0Gs7oBpeQ8LO6/1umrk+NtnO/7Y9Ioe7aWVXFD6KBvmQfZI8DClKeZIl4ABvMlgwueC2aLjQU1ph8QCIh8ETfAwpvbwvE2rk96xutrSMfTd1L+LXK8l8lbvqcgt/IIaH7OWga/AGwyb11cXMTV1VVcXl4OeoIVNvjDxc+g3KenpwGgQt8g4BDAeLPZxP39/Y7HYLvdDkGwyF/HPOsI5V8NcOVnMr2l1CNf34pv9w4gdIyk1xlF6VyQggJ+jl1JSurGdJ3VAgSu3toG92LVlapCmN2zGv2tFj2ugZEzVOj6ukX6LlpAAPXg6YyKsj6vvDCfKWxZubxH3g4U8LlaB5VgVVJvkq6ZdnXhlS/L5TIuLy8Hl75aahzPosKOiUEB8oXAPj8/H8AAeGmz2QxTBhpZzvXWJWYAB5oOddD2TiEFyF+B3rqers8yHn4NsFXZg2kknPO7ZEUNvrq6uhr9zs/Pd/Z3AZ9poLnqD4yZxWIxlHNxcTHE0jw/P8dyuRwZpXiOwQCusdWPNrr4AI6fwP+WbK70gNJb88bkpYUtMKCklgUHhKigUJenizBWpVN1ZvY/q7MT2pq3Wm3KEAACDBSwFSUEJlM1DeL6nOulLquWcHTzszp3rKs60G5uPwOknv7uYeyvQE7Y8f+eXwUKIvqXH2nZPOfKIAA/zLtCEUKorVYrCwTc2FOgASvr4uIijo6OhiWE8AjoHC+PFwhXBqBQGCyQ3TvIhKpT8tym78CD+1AlFzIgq2kqRV/xuuYDzyPf4z0DAAaur6/j169f8evXr7i6utqZfkLgH/5jOorjy9TIiYghkJZB8mKxiIeHh1H8C5ezXq9HMVZVu7ldKFfjJyog0EM96fYBvJM3HVJEB3JRyPyMAgFeF6oD1ilvd10b3FJInKYS5plAZrdUNlfLbWIhfXy8uz81BgWjZq2P1o371rWjFajCgADPc0CMA03qNs4ATMsL85UpE4b6nvS6AwLqWtX7LvDK1UWf4Tl9WFQQphcXF6MlsBCeGEPgzcybxuNGgQdHYT89PcX5+Xk8Pj4O3ggF/dyX+iEZ1CFTSty/ysu4x887cKDlfCc+VerlWwcKsusR9QereurBMoe9ApeXlwMI+Ouvv+L3799xdXU1GClQzo+Pj4PihxdqtVrFer0ejBRY/UdHR7FcLkfxCefn58O4ODk5idVqNQBmHicAtvAOVB5m7RuW77jn9MCh0ORPGOucI4gHFZQFOoijPwEKOBoUz2RLplT5VMpGrdDsHP8zNMzMqs+4ID8wGZcD4Qj3KQso9ixkyBvlMyO9homYWd20gIIEtIOF7qG4/j+LHAjLAAHfYwWmP7WcHXiIGH87gKeiFovFAARgVcGy+v37d1xfXw/WOxQ/1lMzEAApIKg8dihf54x1FQMHf3E7dNqCzxWEan+7nyr4KdbXofPzW9TPGUHZPU3neDlid18LTR+xa4Qxr7OHiUHs79+/46+//orLy8tBscMbsF6vI2IMDh4fH3fAwHa7jdPT050gQIyX6+vrODs7G0AsL4eF9+Hh4WEEPpQ3uX08ZtkLywZh5X1+Db1WPneDAVbezmrh+fTMfc6ggIEABBLP+fC5CqOskb0gANf2QbX8PFszPEDAUFC0LKjAZGBuVSQ8aPierpFV4V3VNWuzY9pq2sL1o7PADl2oTqVMgGYgLgMCDhDo7nq6gxqPJbwfWNIsjJ0whWX1+/fvWC6XwzTVarUaBewCGIAcGFBQoIGO3GZezqXxQdi6G4DA8QlPX+l9p2z0x5RNG/wE70Cm6LWvWoAgkynMnw4kuLSspCNixCfq1QKoBZDFFCsUKmQpvAI4sgcgIuL8/HzHsldPWkQMHl0GzLe3t3F5eRn39/fDqhgHnHv7h/tzKu9yvr38O4W3J3sGWImz8oB1wZYmz5VkFhALG43c5DXUriMi+qItK8pepkZyO2KhpS+YXe4oB22CdcSgwLnvHRDIBpqW5RiGyYEAzUM9PRU5cHJIQvYt6pEJ1Gyg67MsHNh9yMAgIkb3NE+H/tXNen19PbKuAAYi/rWoIIw3m008PDyMyuJgRRcfwkBd93JHfRj8O88AL49UAq9qPErGgy2B6vLHcy2eOCT+fW+qgINLlyk0dy/CT89CYYN/MZcPYMu/iBgAAfgVUwQAuJgmAF9BV6leAYFPl8vliM9Xq1Xc39/H5eXlEGjIu3dye8CnTpa7PuQx73i3x7Cb6t1qjQnQZDCADsQ15z5Ua1l3f1ImQWfi5eo2uT0Ndp6AKQNZBU81Z+vKcGUqWna/FjOowojwn451fYLrfNRns75UAVwJ5RbTZsDto+gtgYBTOC1F5ARnxEu0sSpSfsblxfegYDn4igEBAgjPz88jIgaBBVDAwo0FHI9lnS5gQKAeA9RPwQDHDkA4s/xg3mJ+4WWUyn+VQmqRgoIeK+urUgZQs2stUu+M5sd8rNc1jW5Ch7gy3tQK+7aoxwhglL8rgGkCEHiN9You/YaOOjs7G/Yc4I8f6c6EKB/eOTXmmKe13zKe5T7JpiC0P9+aTyctLcSLU5c1uw4Xi5cPUgA4MChwQIAFjFofbwUIKoCwDxBgq4nTZ4zAaZkhHINwen3erRN3c/oQbECsjFy1LVn7uG+4bVqnykXF9/cRPJ9NlcXkBJy7VuWTkXq/MutC12frZi28FwDGmQYo6hjUccfWD3vsVLAqEOD943X10MnJyTDvizK0rahTy0DoBQOOD787AHDXlSd7eXTq+HUyjJWnizMBf6hXWeURe6YYEPBqAsg/Tas/XU7NY0uN14iXVQYR+V4CAAUKOpyBx17klmcBNNU70EOTYgag0KHg4W5UMAClwy9Z1xk7a4MFDkjd162GsrDIwIKzoJE38s/yYaGpyk6fYVcolLYyhBuQWfsUnXKduR3aXwoIWgJTB556CNz5VIb9CpQJRPdzaTJSRQ8BwCBT3ZnIV4GA7jLIuwKqezPjY7awOE5H0ypo0LHLBgC8Fev1egcQYBWDjh+MKf7PFiAL9spI6OlzTpt5CfjaV6fMuNgnHzYEI8Ze4+wZ7k8nB3VqLGI8tcpTAvoDCACfsCGk3gPEFjw8PMT9/X3c398PfInpBs5PY2OY92D0AtQqYOdnmDB2GRTp2GRAUBldjme1z3tpsmcAyp7nONEpvJEOKsRTBPqiWbhkg7uHWHm3PAGqzFhIoI4QSrreWcvJVgloWdxWFUQ6sPheRqwc1Evh6ot34yK4I3a/tohrzjvg6LsIzIwyAKACDWn5OZADjOhfHjM6FQRQzSCb92TnNdrq2tQd1VgwOveqKt2IGIIV1UpXUID2YswgQlvdvnAF80Yuynv8X70Q+lEwfUeO1LOi7wTPf0ce7rX2WzLH3VcAoF7VKV4XVvxYIYBIftxDVD9+iBNQK5/rx3yP/O7v7+P29nbYaGi73Q5xXA8PD3FzcxN3d3dxf38/WrLIgEOnGthTAHmL/9z+KlZI+wPPV+/oLXl20j4DDAR4j3N2/TgU6KYHXEOcYmTUxHm3vAOaJjsHodOVuVnw4IioVq6bghFXpt5Xiw/9mAkvptYgdi79aqqAmY/b2mOBfWchqsI0AwLq5anAmYLGzWYz8qapGzXihVcgvFC2zs3rSh1W2GwZ4cfLphgQoAy1jFi48u5vXCf2VEEIL5fLuL+/j7Ozs+GLhlxHlMlCVAGBeigyMODkSou+AtjtrUPV3haP9jyrhPei3i2V18z7nJZBKhQ2gGNExGq1GlYN3N7exu3t7Y6yVn7EOGIgABDA23I/PT0N3oHn5+ehjL///jv+/vvv+Oeff+Lu7i4eHh5GoABlsUEGQKG8qEYgx925PlbPIPo448O38g5M/lARD3gGBGqdcuPZO4BrmicLV+4o/v51psQqpVWR8xqol8JZ94vFYhDgyvBaxyxvJ8haCJBdyAq8mBwjIb1GfisIcG12wtWBnte+j0OhjD/53AGBLB1IgYB6jHhQa6Apb4TCqw40AIuBNxQpr82GAM2EWxYvgLzcXC0v2WIAc3Z2FpvNZohZYA8BpgpYKbAwZyCg9cj4kY/7kObxVflXyfEzn1dyOcuPAZ8G9akyZIXJ6ViWAgQoSMS3LaCo7+/v4+bmJv78+RM3NzcDHyswRT3g9Xp8fIy7u7uRzMZ4uLy8HPhwvV7H3d1d3NzcxP/+7//GP//8M5SDfQzA+0xom4IBbi/3qfMIQD4zof+cPOE0b0F7f8LYWUQgHrAs0NRy4LyyNccgDgyplE6Wh3osnNDIUCyO+KEd7sWpQmViZsV/rh8DK34GAIDrXYEOR8yk7lkwrLO6WmU4MKR98ZXBQUR7qmCKdyBijPQhiBjo6Q95qpXBG/xkXgGUw+uxnfuTFa4KeecV0L1BUCce409PT0Mg493d3c6nZDl/zkvrkvEcvx8+TiGVC472BRhvRe8xdhyvOr6tFBHqhvfPnke8P/SrguHj4+Ph89bOowRlzRsOPTw8xN3dXdze3sb9/f0I1PL0Fs/Z4xPFnD/nhc2GOO3d3V38+fMn/v7777i5uRn2GeCNh9A2eFwxbZzFToDA99qfCjC0DxVk6Tt6LYjtBgOuAK6cuteZsjlV3GM0yZZQZWn31m9qpzmFznsD6ByOs/wcIHDAopcculbGyNZsI63WR6/ty0AOmGmeXwkIqNWUHXvAAKeN2OUHtuDVSnZgQN2wGCe6dE839IKQxBwrhKcGDGbviIW4i8rWFQVc581mM9p3nrcvVgXgYgIy3skAfTbmM/rOXgDnAej9qfGGn5vfjhivJMN/yEw2cFQ+qPxkPnh8fNxR1Bz8B/c9ryJg4wl6RT+hzZ6Im5ubOD8/H3gAUxWYUri9vbUeCAU17HFlT6y+B+g1Nsr4PvifQQAbCy1D9jU0CQywUODBz412cQOVQFSliDxU4KGDOeioR8loXXjwZx0bMd5hjctz1jyXkR2zuc4eYgZnYubjOnO5Sir8uH7Vcy4fHHsAwZS8D4neCgiAMkCQgQLeFQ28gzHGQAABhPoRsIg8eFCtekfM9xxA5bwDaBsLQl7t4OIaqrGnPJSBM31frs8zQKB5OfnwHUl5lJW+AgH17roYMO4rtpShKHEd5AwVKHz+0BU8SBxYCMXM013sOY4Yx2Mh2h/AGKAC01aYmsA44bwBPAA63GoblaEsq7keVZ9zPpyv8wxk6R3fTuHhbjDAczGnp6ejynLjVBloA1Tw7KsgswGbWQZVx3E9s3Yz0gQCZjdnZX2wou2xeBxVDKdAZapCbz1XMSuffycw4CysTPG7//ockw5UHey4d3T0sgXrYrEYlDsEMn+hELsP8r4CABLqkXLWdwUIdC5WYwbc7m6oP5Q/gwGNIUIZbkw4IFCNNaekKqoMhJ7nP4Lectwwn6n3KQMAeo0BgXp3oPx49RK3w/Hadvuy+yw2pcLnr8ErvLwQYIE/WKQ6B2Ww6x3l4Ln7+/udr+ZywCEH3OoqmowYBCBPjvFh4M/AHvXjfnIBmU6+cPteQ5M8AxiwHP3Mg4YbysSV1garoNIlGy6v1yAgfaaqIwjTBCD2Uqg7iM8zZYl2ZoBA6wGmUk9Alr4CGdrmqnztE5c+8wpo274SEAD1Kn1Or+eZ8qrePd61U0YQwLykkD9OdHV1FcvlchCi2+12CNZDuVw+W/OuHuA9ntPnn5vr53rqXiO8kUu1M2nWt26MsfBX+VARy60WEPgK/Ovam/VbBQoUAPBSct4ISHlbeUiXMWfGC/gMYABBg8wfDERd3IrKdC4XYAF6S9vDYCabCuuZ2q14jqe/eSw6sKQ/NrKrMcL57EOTwABeFvYXRwNRSX4BKnycdczzS3ihfHSID8e3RkWar7NwmYG1DhUQAHBQ68dZQ64dLPAyJZFZd07I67MatOjSaFnufwYGvoIgjcjbrMJzHytVx0MLiLl+RH7qFeDvEFxfX8f5+fkAXmEZ4QNBmcLQtoHgDWMBmQlkx+OcvwMBrlyeJnRjX488HjS/ysrn6xWAOBQPwb7k5JSCNVaQ6gnAu+IP1TkwoHKMQRqusZxyMpX3bgGvMBjAkadxdXpAy+Upbc0fz+hUq/6Un7U8va79DwDPbUJ5uiMornNf65hysRha5lS5O2maAEder85AQAc4CA3R+f6I2NnARF+4c82gPKf8MkWV/a9IOz97trJa2MXD+VSAoKIedMp1YjcVX9f/3J98vo915IDAVwEEEXlcgN7n/+48u6/vKCPXZxAOcL0jUv/q6moAA/AMPD8/D19xw5cJ3ft3IIdps9kMQowtJz3yD/XPPAkOMKBt4FnmnZ4+zgQ2AwLXdn0fX135Z6RAADLbbQHMHhsHCDIZX3l11RugiswBSCWnR6AY2WBCGcjLBVi7vLkNamDp+HH9oP3NCl37GHXUKTMHmJyOgG5BWdoWrkcPTQ4gZLc+F8buQNdJzv3CDWfFr25HfSGqYLXx7lqllPYZ+M4SqRSBAxatulTWClOrbZqHQ6EMHlhIOlCgZWUo9CsBgh4eqNK0lJWmdYM1ey6zsjHe9CNFAAMcTc0WX1Yn947ZwnNjkxU+xjU2iYmIYX6WVzG4DY5YIfMY7+nPVv/qPe1TfUbTfAdgUAEBAEuATN7xkmU7K7aIlyVybMCx4tVx76zYHhDB5OINwJ/ZSgc1vnrvu/fPxlMm893UMfc5f/iI+435zoEB1241PpmqceBo0g6E2XVuJAMCN4fE259y4wEO1BugwCMidoSFQ/6ZIqo6x1krXCa3lQdLhQ57rP6sfVqHLP+qnB7hr33HfZt5YJzAdML7KwABJmc5Z//1vVc80JvvFFAREalgh/DGPCnGIr8P5TEHBjg+RsemWv0AAtvtyzznarWKu7u7YRkYb96CL8zpnC+eb3nBMpoyxrlMd96T53vSvuVmfKRgEnKbPyLlZBzLdDyvMmKxeNmMjfe3iNgFAurGx73KW8BtaBlJ7p5T9KpftNysrAoIuHTa524TPjaMuZ8wJc/AQGMxMjA/BRC8yaZDTiCpOyTiJcKUmQ6VzpY4OeXsXlRmmbbAQEtZMuMz8+ugyKwqdTuB1NsBNN1Swo5cO5EXC3Rtm/YB0gDdu8HuytDzHgv3kEjrrQDPvd8MFFQDsuI1V74jx889/ar8qJYHCLzIQhLvnj0BbpoAcQmYl8UyLYAB3kKW14c7wI+69IyBrP1T+a0SnD3A7JBJ5ZnKawaR6gXgWAL1DkSM5Rf4Q+fhmVrvhfnUEesNtdQVpKDtPQCzpSM0X61PiyodErEbwMjAjMcvfvxOOW8HbHtobzCQuXW0saz0wWjqFWABw7EInB9Tpnj5vPIS6LOcpwpiDWbhZSItIOCEbiVslFl7mdf913a5ch26xDmje1dXR6ivq/ehA4Ge/y3rvWXVVx6CHiDFPKXWOQfysYJlhe3m7zUWJrPMXNmIsublXhEvfPX09DRsA8sffwEQ4GWJKDsDzBlloKiX35zAnCpED4GycepAqwICnh7IvAPOWxCxO/2JvJ3Mzfp0qheIYwQyIK1TYvpOGaCzsdMD3qdQZagxEEBQPgM0yGHE7Oj7c4CA613pUEd7gQEU4lyHrAyYKfjl6ABmoaWDGh2EdNVAdcoxY0pnBXJHu2VQfE/RGJeXCe4qVmAqZeDHgYCKGTLrX8GJ3ufnszowun+N2/e9qLLuM89Adq2lzKvye59x40U/y4o9QADm4JbnXQd5wyHl2Yhddyp7BXR6gNdjw0IET2C9OLaPxRayHEOQrd3uBQL7goCfRE6+sTHDUe4MDljeqXeAlU9EDJb3VAOG86iAcHXfeQU4f+ShVrgafQoIppIacigX40a9bepdUW8B6x7Wqw4QoK0OCPSOib3AAKwBoJajo5dvOnMHsELUORIgIE7jkBMEUeZyUupRthkQUEbHNR4Y/JwrVxU/W1HMFHhG68PHypMxBXn39EPEy4Bgr0AFCHQgc53w3vBfmf+QKAMCGSio0nCerTI1XQUOVBFjfp6V7dnZWUT8G7QHAfLw8DB85Y13a8u8BCDlU7xPLp8/AoOxjD0NkAabu/z582cUO8BfmtMliT1jvOeaE4QK3nvpq4OMyuiJiJGi15UEml6VqsrMiF1Xf8srCoKMqd6b1snJMR2TOqYcKFBAAFJvAbcZeSix8uZx46aEuQzUA/XTvq1+zqsxhW8ngQFVdrw7Gt/nmAGek+JGApFut9s4PT0dmAVAAQKNBQZ3NMpz1oEjJ6z5x4Edrs7qKuM+UYst8wooUKj6WQeSO2bXplCmlBThuwGD605pMEjoBXIfSVm7s1/PoJxaZiWsmBRcKhD48+dPLJfLWCz+3Xp1uVwOVgO76WGZ63fg1bvnPDsMyhkM4HPEES8gBHVGOewZQBChgpLtdvf7Gi2lX40LB1RVyPN1BxyqehwyOZ7mc72mFjV7iJxS0piBVr/1gDwFASyDMiDAbco2r8r6Bu+bvc5Z/VnpK+DRcrgvkCf0JHuUOT2PLX6Oy+b/vYBgKk3egRDCQJEHrrNSZZeTKlh+KbBo8FJPTk5GLk0IjsViMepYXpKhzJG5Sdwg0LmzrL7uxSsQYBQIAaeuIu5P7kOmCvC8hXByVrobgHgn/M55DbgDBmBuBgKHTK8FAZXw6X1XiubdOfiKP6bCUeD4/Cr2W99ut8Ne7vAO6HfgeXyxp0AFpG4+pO1+enoalkyBz/WjL9jn3YGRDPhW/ajKJnu3zmLS+zif8s4OhRzvOZnI55ksY/DHsgAeQ5ef5qNGT2uNv76D1lQDyyEFMz2gXPPh/1o2AyKuZ3ad+5CnyZ+fn0fec6Rl6hkHWu8KEGTPZzQZDKg3gO/jxesuVovFYidiVZeqnJ2djebqVSFDcB0dvezXrh3ELp6sM1XIs+WvgECBjbZVgYDbH4F/rk8j8qAtdp1mbVLGyK5pH/BRXX44d9MFml8WhMhxI9rez6asnzIQ4ACBe4YpU14OvevAdciexxcsch4/z8//biyE7xLwGnAoZFjlHEfAsQS6/zrzHANxrRc8FfpRJfZg8CoCt81rNWZbIFjHSA8w4GuZAqrex6FSS1FkytsFCz89PY2mSDGeVf44GYM02QZTrq7OG8nyg8tS+Y1rmq8jJ7O0bFbqTi66tiqAZmDlDFf0C/qUx4MD5EwtWaSypYe6wQDmOyB4GBQwM2FgK5OwwtXPrUIJ86dNwYh8383no0xm1Epx8rP6U0DA60H1BTKjQIDqtqxT5kGzqQQFBBk5lFsxgg4qnOvgcNc0H9Qrm0LYB7V/FLkBlQGBlpcgog14WvcdWGCh4gY/QMLDw0Msl8vhs68QQojqx4+j+RHE53iX64v2c5CvThmgfxgMZJsO8Z7yFX/ztR7vgI57ZwwoTyqvuzIOkXeVlDf4PAMDMN5YpkNB4X2jj7R/XZ+ozMs8A5Xi5neigAHP6vM61ZHRvnFL4A/mH73GxONGx69T3Cz33aZNLZDrrk0FsJM9AygIzMGKGIyVzf0tFovhq1TYOY0/b4r7yIvd99lcEQdpqGvdDWy3uxaOupbWLaXhMlCms3R4EyWth5ujc8pfAYUDNpmlw/9VobnruMZt5HQVCKiI63jIAtUN0ineAc4nEwz7EvODWufsLbi8vBxWFPCSXp5ayLwBzkrXd87LflEunmUBjTTI05WXgQ7X9qofVWDqNUdqpDDoYrm2j0D9bKpAgMocBXURMXqX2Q99owBYLWS2cLWO6mbHsWV8qPEyVaaot9LdZ97PLGyWuwraszK1zwG03HvIxmIGCloyqIcmfZtAB4sqYu1kCAxGh5jbPDs7GwkDWOOVsuLGsgLm/FuWeAUGUCbqoF4Bng91QICDsfilat0z60NBgAIBZsyWGyhTvgoI+L+6w7i9IOdOA7W8H4dEmdBU92MmVHvATY9HR+uUKTzmaQYEPD212WwGcK2benH0PytmBgEOUGftAvDHqiInLBlk8Dfnsz0Oqn7M/jtFtK8FhbHZAhOHRFmbcKz4FX3F/AQ3OLvD2XuQySQ86xQpX2PZUylmNxYcOOfrveTkVC8vIq1OFTBV+TCQZlmqBqFeb+UbMTYQ8X8KD08CAw4E9LhdIBQiYucrZ0BY+kJxDV9f4wYCUMDLgPo5QcYv3k0LqOBHOpTFpMytngAHBlAXtb4r74D+HDM4b0A2+N2RlZ6CHQe+lCoQ4ATyoXgGtN9wVEDQAgP6XERuuWbXKyCnlof2MbvrIVxWq9UQL+D2PwcgqIBrBvSc8EYdYU0iD86Ly1DvQwYedVy4c/6vXoEey4mPaAeOGAOZV+4QqUcecDpWOmygOHnOXl9+JmJswSJfXOcyuG8jXgwt8FTLcOF2uTYztd5/T/peYn3YIu4bZ1QxUG7V6z34cfKHihgQtEhfAAMCbjS/dBZiES+xBqxUARLc3LwDASxYdQMNZbhWu/W6ujyzoCi0E7+Wd8BZPNq3PVartjFTaCAMfH5/meJ3Av3QhaZSBQSy6Sl3BFXvMCtflVGW3lkR7BkAOHZbgaul7pb0ZeMHpF4jB2h4rCBvHJ3HK+uPqq+4TxUsuOuZonF58vhkQPAVvF5uXCugZdJ2sVcA8QLIC9O/urKIFX724/GAeiAvBzK1Tcpn+3gF2JjUa61xqvlrXVu80WtcOrCrBm6vfO2RJ0qT9xlQBO4UngoN7jy15NkagZByHzpaLBY7ka0qVJx7iimbA+OXxFYSo7Ws7eqmrVygDulq/1b/8YwqLz3n9rJw0LKdV4DvtZYEKWV9lLX3oymz6B0QcCtiXF4RtUdA+yRTTAoIsnyhpLR8AFE37YXnIl48Ctm0WgU+2RuYtYXzVi9A5WLWfphCWZ5OGGaxH5xeAftXAri9RoIzcFg+8H4RKueQD8tAlpPuPbtpAlbQTqEqP1R8kfGiu6bXnaxWL+lU0NGbLlP4VT494GUfnt17O+Lqx0hPBxsLCzARKg6FyqsIlPEACrKXqvUEqbB3ChRAxLlrdL8A9ggwCOA2OUXoBKC7rn3H/1VJqfXqYgJwrkGSKhwxl9U7CLmvFQgcEmVtqIBABhgj8rlqNxbc4NUB65B8xRsRMbLQeA4/i7VBXgzyHJjOCPlmLmWdIuA+0DGRCeoWIOixeBwgcPk4BemUp1t2dwjUArcZEOD2Ok8fW/8cyA35pvmox0k9T+p9YD6qjCN3zXnqKl5Bu/jY4nMnR3HMQEE2xjNCv3AaDracIj/1HWc6pkXdYMAJGJ0XZMHKCp4FgboLuQOgWPVzmg7Fq8Lja5li5ZfplgzqSgitJ5jeBQ221mjjmClZPdc5JceQ2jeOefXIis9Zj2wRoE/Veuh1mR4aIIhoW04OECjvsTJSxZNZRpyG65L9d6BAnwdh7Ln0LGyz9+YEUAZkme8c+Ob267HqC25zCxC8liolyp4XJ88OnVr87XjJeQSh/CNeVpFwoOF2O14fr6tSWooX77c1RcCkY5EDVyvA7ix/lw75OO+beln1WQU9znvGAABHDSRkQPVaz5QDBhV1gwFVPiBG/mAWpMM9DRhk11NEDDszOc+As2BZkWeubiXkwSBFBSXqxPVlJtcArCoiO0NnblBqGrQD9XUeDgUAGbMy+IGS0x0itVwAo4jxVpp4XzpgeCAcotCsLAcV+g4YROzuZe5AgPtxGq0LCwt3n8mBBM4je37KVE9llXCfMFDU8rLphpZXQOtRtalFmRB8Dbh4L2DylqR1zEBAxG4fs+IEIOD3DY8TG3DIk+Wkgr8eclMIXEfc43Y4gyjzVPF5C4xGvEyR6PWMVP4xUGbFzwAA8jQznJGXypLePp0KBCImegZYOPILA4NExAgQ8Dyl22Qk4sUbwPmB8XTTHw3+Y4bI0CXqysorAzXq9lcwwFuo9ngEnLDnOqkwZeSIOisTZCCoBTD4GQUEXEenPHSDKQYq7BFyzx4SOOD+ceAss6IY3GaAs8croOmd0HOWsbOSM96qysv6wt13noEI7+Z19eA29NQva1Mm1LJ8tO966JB4tJec4sdR+VfvOcoApk73sEGAscDGoIuZyt6HXme5Ur0/ncLLQLt6dCoPgSuv0inaL07uQyZiWjsiLBBA2eyFdoCqxaf83vfh6b3AgGMqXVevYIBdhkzKZFAwmUeAgUC1IZEylFOcLHgYDHCwjJsacFHZ2QvU8itAwkgcLntFtFz3CgRwW3mgMKDSQE0oOy2H3wsDBmXkxWIxALuWa+6zyAlJPe+lzBPQg+Z7hGOrbi3F2qr71Px0Gs4pJOc1wr0ewKF5Z6BEy+U8tVx3zNrbAnGHRj1GAB/1foQHcQoAtBwoWwYC6hntnU5kctMGTr7jWE158hHnrfHVkqnKGwoKtN5qPLCH1X30jr0rlaeZ6+1AN6fp5eW9wEA1f4KKqcuIG+SEMCsZtjhwnzc4cQFezmXp2pANDn4RquizTYUciqs63lmeapk74emAjWNaHUTcVjdNwFMxIAAxeGcYyQKc8KendYkn3h/okKcPWoR+ZwHF7cl+SvsAjVad9FqVvifPFlUWt15TQKDPun7qAQEtYdcDFpRUkFag7tApAwCVYnO8xF4BnqqE0ncWvcaCvWV7+FynB1imsXzHcnTdYrmaNqtiEMADmVfQKWyVgzrV6vpfwVVLtrwlTQYDisAc8siildVyUCtU5/C5bBbMvEbVfbkqo5ZQYMsXRwcM2IvAjFApA2fRa92RF59rX2ie6B9tnzI1o+jqK5JoFxiX26xeAe0n3keC+7VCrodCTgGwQOwFAT2AUM97PBW9AOCtPQJVfXSqKmK89FFdoVOBSQYCMkDC5bj6VooP/zPheyi8O1XGMW9lBpy+G+4PnvuOeLGEnUULOcF5ZHWu3hWTmw5FnqyTFBCwLOXvZmRluRgE7ccMwFYeYfbytoAA8mRDmqfWcf+9eHESGFCrHKSCMiOn9CN23SVKPPXAyhfgoHrJGbkXy8qX52/UC6DxAT1WoYIB3RgGCoddb5wHKyYmBVR6T6cE+OuR/BVJFuZu/o9BACtKBgz6ZUldKfKWFvJU6ilb24bnHK84EDgVBPB5JrQzJVb9d+Wo9eyEdkvpan1wzuOXedXNjXI9pgIXrrv2YUup9JTRAnqfSfuAgIx/WqRgYLF4+WKlU2TOkNqX3JRANl5YnvKH5UDsaea4NCYGGhp7wPzmDDKNi3BpkA8byBUwYdlSyZcpfdz7/ietJuCOVwTGjVBkFuFd2A7xMWkHszJ0ARgVqZDHNT4qqNF5G50PU8RW9ZmCAHbbcz9k6JL70A0Q/u/iLAAI8FEofCgKYAD1wIDO3H7cV0iDwMqTk5N4fHzcEULOtXho5IAA6pwpY+YDR5WVll3LBKFT7HpelZuBGlyv2pAJYAYCziKDBw9lMQ+0AE0mDypA0KIqTQYAqvH9UZTVuwUAKj7DefUeeCzw1KEbE1OmB1SeZW1UnaHXta06VYCywJ8ZqWe1ZZw6Sz2bDlUPN9cpK0P1TOZ5dvXg+z2Am2kSGECDGEGho92csc4dKiljabBFdg3Uw1T6ojTQUfN2gl5filMAzjpxwtOBqmx6xLWV2+j6j8tlEKDeAHz3nvd0QD4a7+H6drsdf5VutVrF3d3dpGmbQyE3sLfb7Y6QcM9lgxD3W4qf77WAgbOqqwGflZeBgOxdq9DVOB31DDAQ4HXUGnfBZSpIyECOA2i9fOb6XctSXsjq8lHUapuTrRkocHnpmGZ+YmMO46Jl1fKxRc7TOeW53nKc1a687nhZybnvnS5QfmK5ivKY3LhogYHetk+RwZO+TaDE1oCSgoDKckZeOGaAIGMcvtdjfWgHZwq4shQy5a9tY+Hp1vizUOX68eY/1WBWQj/oR5hOT0/j7Owszs/Ph09HwzMAsKADX/N1rjNMDzw8POzsDVEpv8+gSoE4pa7zpY6qQdmj7FtHV2cV2q7MShGwlZ7xvuajYDZizBNq9egUAXvx3BhXUMDXXN9k11wevXznvAGfCQSmkAMADhAoOUtSeYtlOfdnpcineAlaoFvry0BWp3S5HbzSC89OfZ/IB/pCzzMwrXm4/2ivehXUKMmMjuw65/0ungFVpI4RlElUkVUV4/nyihzDZJ4Bro/LV70G7n5P+S6NggE3OHWaAEe3wY+2wXkF9Jy9AicnJ3F2djYCBOfn56O4AXbpMjGYYcGPWIHHx8fhA1OuH1arVXffvQdlStmRQ/VOUWXPZGU7BT/1mJXtlGGlDDKlVwF25WXwitaRvYE6jcdyoRqT2ndZnfQ8S1uR6wutxyGCAtcu964dv/UqrSwN8uxV+FUZyAd8pYYQxwBwOgYCAJ0KZnijO41h6q0rx0Lo0nOkqYzJqX2iCr4VN9DizSkyd/KHinB0Lnr8Z2Gg7m2HkhQh4ToDECZuYAUEMrRUtStL5/Ku0rHwdF4B/RAO2qkKnuukbc0sIhba8ArAA8CAAOe69TMT15/TgQfW6/UAKlz9tE6HRD1KdqoSaPFEdq3nWHml+H8LDLBSgABW75fjYz1X/nXtdyBB+duV2wIm7r+WX727Cvx/Nc9ABjDddaZM7mUy2oHKFhhzlAEC5KV8rvWH7GH+YeMp4sXNrpvdVTE+2ifsAdCVZJyfPrdvP+Ba9WuVNfVdMHWDAZ7D4EJZaFYoSSkTbNrQKegzEyY9HeQsQid0MyDg0LgTpJmAzkhBlSvbeQUWi8WgoKHIESMAENACA4vFOAARaRkMwDPAyJ55BPV/fHzc2ebzIynra/ceHBDIBNNr6rEPIND68dEpAp5+U2GLd8jj1wlq/HTqiacJKiWubdi3/6oxpvfdfwUdPYDgsykzOhxVIInzc0c9d/zueGOKnM0UGniK9zJRLxLyZ2+BAgG9B/nkvALarxgHOm/PefCUhPMoZ+e91AICLv9WORmfO5rkGUAnsDXhBlwLFPR0oHvezS+5ue0WZUyrYCKzOpxScAJJFTMvf3FWVaueFcrPntVpAvYILJfLwWOgQaGoPwIdASLQhoiXJTu6uoSfZa8Ipgs+m5ygdO8yo30F9FtRBWxwZN7S6R0QW1fs9sSR8+N9PZRXeFw4y2pK/TMF7RTdFHCtAMBZv72C+CuSytmWdekMKwcKFJRyOi2/Khe82AMIuDydOuXAcPC1Bn67d79YvOyLoc/rXjPah1k/TyHtm9fwIPf/FFk1+RPGLDh6hGZ2LQsSrPIACKnckj2ehKpTs85TJa/kAuYYDOhSwqzejGAr0JHVhS03Bh88TbBcLmO5XI6WFropAn729PR0lB71Axhgqx/t5aWMZ2dn8fDwsNNvH0kO3GWWZcXbU4BDRVMGqpalCpLTcJvUmmfKgm5ZyCoP854UVeR1y0Pgrvc8w+1zQY0Zaf5OOTqr9RBAQA+fOF6oFFarbS3lXtXRgYdM2SEd15+Vsosl0HIZAIA0yK+KF2BPptsO2G21PJUvesd5BQiytFqG8su7eAa4IH5hEf0WeqasNV6Aj0zsyuE5deRRAYV9B3amgFUIZYBAXapM7G5SxlXUW9VPBSaXCWXNXgEOIMRKAhUAeBZ7EuB53ZOAvQtQFuxNABA4Ozub3PfvRRkQyMCBe35KWRWxpeOOU/KsgIC69FE2lwe+Y35zStcBAba+WBjjXtYGbbNampreTbvhekY8HaJ1bllhhwAIesnJzsoroIq7BwT0AMDMC+P6mN83+HSKx5f5Tf/reVZf9zx7AxgI6LNZnziFnHlNXN+0wICW5QBZVqajSTsQasZOgeP+PpGmnA+OmUJkUMDP4qMaru5T4hkyYawC1f1H/RwgcC9LhacToj2KSYO8WDnzHgNZvICWh+c5PQAEv2f2DuAZ9gicn5/H/f19nJ+fd/X/W1NmWbaUy1uBAUc9Cn9q2RUwVd5g4uh+DcxyeThQy+PWbaGa1TMDQZml6X4OhGudOICxEqxTBPBHkrP2MutPlRr3Y/VeQNl4mVpf/Z/9nCJzXiw3VnBN5/EdQMjqqXrMbUvP6Spgy+c6fvRa1l+tOmt5LT7t5ePJ2xGr0nut0s/utWIGMhTE/8HEWR0rBlfrxFmOTsDqy2dBxRGzbuVEFZzSqrPOz6NcXgWg3yTgZYVO8DpXP478/jHPx/PKHLTIz30WZUpe32uv8JsiHN9bqWSAVc9du5FG52izPgI5oVZZZ1Wdlfec1chps3fk/us4ZppqfX02tYCjtoWBHe5zOqV9AG5vn7WsXpWRTOoBdnmrh5XLbOkoBQ8ckKjTA67Nqif03IHfnj7ia1qeK78FdFvUDQY4SIwHL74ONTXqv7pe5TWlHOfN6EVRPVabCiQnNDX4RadXkMYxcVWWeknU+mMQoOfZ5kcuPwYCvFERxw0ADLDlyFMFDCg+myrlr0ome/e9QlOB5NS89hHOrfq4PPHOHAhw1ptOI0SM94HPxpiLb9H6OUvWPePAzlvQVwUEGRBQb0iPcmldd9Z8q849aZAfTxMwvzm+c3nweQ8QcMqfjbMWYORrzJ9qsGZgXOvt8u2hVt1aNPmrhTiPGCtmgIKMWsGBWboeBJul0SCoqi6uboq0Wi848yYwQud6ZVZUNV+WTUMAAEAJawAhu/A1joGnCVghwt2v0wTYYAht5U0/uK/0uwgnJ5NDVN6FpgCBt1DWvVZYT5nIr7dsXv3Dq0AcINW66jmPJ3euAVzaLj1XsK4Wno6FKe3O6v6VPAG95OSQUzCZZQvK3lNVZtWH+4DmTKGrlyOizceVnHfeAP7v5HGr/3CvpSda/VCV0fNesvffoslggCujXoEKsfJ/PmYvrBqsPSCCrWR1gWb10nwzBOxetIttYCZ3sQxatjJd5nVQEMCKF9Y84gHcksbsxx6BLF4ALn8FA9wfXE/1THwm9Qonp5TfwnqaOsA1DxWafK5glxUt7vOnvzNwniljHT8MdHUsO0sJpEYF87OWqZZZBpKdYlKlwfm7cd9SaocEHDJ+UAXA05JZ37RAaWZ4OaMnq+e+7creFbcrwm/n6+qs1xwQcGAgq8u+5PjpNflVenIK6J0EBhxzuGtcwZbQcc+0gIIjZXD1CmRz9Pqs5qMMqsCCLX5lzimUvTS1pKCsWdni6LYe5o8R6eZC/OO8dUkhliJiOSLvNqjonAXE0dFRrFarHe/DVyPH81UaBx5b+bQASGZpKM8wDzLv4z3zNJXmr0qYicdTJeQzwcMAk/mWeZHHJWJROIirAlVO+et9J9x7QcAUpfbRxDLKKcQeZVB5xCr57hSb4/MWMND6KsBh3qi8rDivAILGF/QAgaquLWqN1aovkK5S+Djqr7d+oMmfMM7uuWvb7UsUL1e450Xp9QzNZo1mrwDITW/onFAPOU9DD2XK0OXh0rJHQAMGGQwAAGjQH3+dMAMEms/5+Xksl8u4uLgYwAAvLdT3xXtQaP0+2zPQSyyMehS4klPa+K9p9B1U+Vb3sjrjP0/ltLxxWbCUgmytD6fVaSeOI3GeKuYnbPuKnePwLfoMFGTGhaZpCcwMjL/Gansvyt7zFCWQ8XbGh608M77XPFW5V/VyQMBNQSnf8rNu6pnTa6zAFJDY2zdaV+et6dFBGRBu/Xro1ZO4Llq5etGV2w/UGqTuf4a6WNBCUelz+w72FkBR6t2sifNUN74KU1jwcOkDBPCyPuchaIEBnhqAV+Di4mLYZwD9ttlshvqenJyM3MhfCQzou2SBhvNeqykjJyAdMHtt/UGZFdXyDFTjE3WtlvBq2xgEMI8yH7OyBwDYbDaxXq9jvV7bLWG5nhk43ddy+mpeAZzz9YymeKgc8GqRyl7Nx3kxKjnM75jlSzb9m833Z//1GdeerJ+z+vaAds57H2oB3Q8HAyBlKMc8fC3zAFTXsjSuwdzZlZB19XQDgvPoWaXwGiGT7QGvSwL1h82B+Fw3GYIwrmII+FsEeA6A4OzsbGgDAwG8U+xBwMsNXbzJIVDvYMk8X9X96nkFYPqL2AXZyqcq8DIFroFXDhRMIZ0WqgAOeEk/n628CJ4BT+Gz2KvVKtbrdTw+PsZqtRrtM8+gwG0Mw2BFLb5eINAD8A+BeuVn5bGqeLhlnCHvLJ8MFGTKjNNpPQAK+PPYDC7cWOBpLy1rijdA+6oHFLhnXR4tMOTK6wEDPfUETf6EMYgHmgYr4TqOzh3TqmQPczpXS/VMlWcGAPhaFjcxhTJrSstSQKCxAO6DQ7yRkE4VaAwBW2aseLg8jR3ADwpFXXR4TsETzveJpXgv0gGpgzN7x44vqrT6nPYzAyb22jgAxcJLP6fKX1RD2h4hwPmzlcV1zcY+kwtmZZ5dLpdxeXkZl5eXcXFxEZeXlwO4xL4V2+021ut1rFareHx8HP0eHh4GLwHavF6vh2kFBgoAojg/Ojqy29Fm71ytt6zNn00VYGFFgPeSyU0HDCrF465rPnxNjaiI2JEfLYWsQADfL0C+mcXvFH6lOKu2ZNSrx1oGKde/pdQdQOtpV0WTvloY4T8ZrNYHAwEcKybS/KrrGbNm+boBUFl6Tmi7//qcvpwqDsABCjfHCsEKRcHKHPP3anGpstdPF7NS12BCtRT5mlNQ2+129FGRk5OTHXTPaQ9pO2KQ8pPjrV5rpxr4LW+Pm8bRbaIh2NiNzlb0ZrMZKUF+zvGb8iHzOJdXCUbHHwwEwJdXV1dxfX0dv379iuvr67i6uhqAAaaenp///ST2w8PD6AcwAE8BgwJMIQBEsAcBsQatgLAK9EwRpp9FTq5l9WbLlI+ufzJjq6f/Mn4D8VJ08JkrM7Oq3coY5lnOdwoIyOrPlOmuKYAi69d9wIB73v1v0SQwwAhMo+izaH1WjvyilBx6dHVgwesUfwvRZ/8rENACBCib66euWSYXZ6FlRrwoEJ0aABDgI394SJcV6vPsEVC0rkzo3GsVMYDYbreDclD38qGSU5wg5hHlF+Vf5h03BcMAT+M7XGwH3oWCAChJKExWgtvt7vbcFV9zH6A8fmcVgFcgwG26vLyMq6ur+PXrV/znP/+J379/x/X1dVxfXw8eAoyX1WoV9/f38fj4GPf39yNA8Pj4OIohgOJnTwLOdaoBBE+BCypzyvTQAQHXu1dJuXtO6SgQdEqpZWRxumpcuXeixPII3h6VKc4jraAga6+2wY2LHut+CvUAAa2ngoJWm94FDETsunwZFHDBrbkYRnnIh/N3xGU4i4UVsHuu55gJy2w+l+vDSjBDia32ujKdha9z+Tynzwpf3f1u10FmILU69T+eQ1rdhz5rc/VeP4J6ym4BARwdGOD+1G2ZNd7DfbsBYA4//vgTK3ZWclCYd3d3cXd3F8fHx4NCPDo6GlnGIK1jBmwj2uu3uW/QXl3eisDT6+vr+P37d/z111/x119/xe/fv+PXr19xdXUVy+VysBSh1B0QYM8AewP0GQAjnmLg98c7zlXt+krUAgU9z7PBx6Ce02h5mQFWjSUmBgFZfto+DSLUdKr8nS6aAgSqek0h92wPAGgpeXfsNd6YusEAXJAqQCo05zwB+vJxTQWrIwUkDAoyNxOoBQRQrhOWVXCXtlOP2vZK+btrzrJXQMBTBG5fAf1x/6GuyjxsxULIc/vxHH/vuzcY5zOpev9OeLn7DARalj+/O52mYUAHlznPo7vPRSOg7uHhIe7v7+P29nbwBHE9VqtVLBaLUZBnxO50j45n5gkHbjO+dp4BtBExApgmACBgMICVKJgmuLy8HMAAlD6vKlAw8PDwMICi+/v74Xd3dzf6sBYAEvqF4yMOlWen0FSltd2OP+IU4afAWmVkHgRN2wLbLn+XR+ZpZFlcKVlXrl7LAIGWp2ncvYxaHoGWVyA77gMIJoEBdAYUSoRXZq5wBgGwApy1nFmQYNqIsfsK+bJXIAMDzpOg91oWnqsjK0JXH6foXbv5mk4RsFLRAMFsZQEUUvYNAgwcBKNB4ajA5/byXJ0+rxHdrbnaj6IpHgln9atQUCCgAXP6dUgFa/jBmwM3+uXl5QAOGAxA+EH5AQjc3NzEP//8M4r/YJ7m+oKYfxnwMrnpgQoMRMSoD9TjsVwuRzED/MM0AcDAZrOJ8/PzkYsfIACeKA4gBHiA4r+9vR1+Nzc3sVwu48+fP0M7Hx4ehjpDpvG7/YqAwFnpPW1BOgVE7I2q5HE1rvA8W+dOeavi5vy1PC6XDUCd6uT8phgoPYaBAxOZoq7eQaW4pwABd39fY2wyGOC14hrRGVEHk/R4BTgvkGNWvqZWrnuR1TSE80xk1h4DIdB2O/7cJYCAgoFeUADBpQJWNxJy67VZKVRAAEoblj0U+WKxSJX68/PzzieMkZdT/uibQ/EWZF4BVf7Zsw4IsNtfAzxZEeJc7yHCHmCAA0N5kyhYw3CH39zcjKxqFWT8rnncZWBAxxATC5mpYAAxA/q7uLgYPCGYJoiI4XPYZ2dnIwCgbl/wLjwl8JLc3NzEzc1N/PnzJ/78+RN///23DZZFe5BfJrg/m2enUo8ScsBBZSnzeYSPtaoAARtEylds1KFOTpE5QODq4fjVxT9V1AICU6iHj3rAgKbrySvLu4cmg4Hn5+edrWUdKACp4m5ZzE7RwpOgHoGI3WVQjlm4DL5Wlc+Wubp+szpqBLdSVkfnsmWXK8//MwDQumX56zUFAhwfADCga7kBdNbr9fBtAjff7Mp97eB6T6r4pUrP0wBs6UPBQcHDImZAoBs5OSDACiwiBs/A4+Nj3N7eDukx9lRx4hgRwxI81DsDAxG78QJ8rfIOaGyLbonNbeclsPBgAQygPicnJ4MrPxNmaDe8JewR+Oeff4Y+509uc5vYYmWZ9NUAQMRuzIAzyrJnHCBQYBAxll8tzwDyZ+PPgQAcW0qwZ1xWClTbrM/2kJPr1X+uh74PB4Cqfqja48rL6ltRNxhYr9eDVY4jBnG21anOMTvKFHNEbuVXXgQ8x9czz0NWduYVUAsjYuxq5wHkrCitq/MMIG8O/nMgQHdv4zZUzKV11h/6T/uO25ZtKKQAgQdB9aGmz6CsLpWQYyWq6+ih1KHY4Qb//ft3/P79ezQN4FaCuOBP9Cf6nKcNImIAZ3CT39/fx3K5HNzn6t0B8fSXjlGdykOf4KixBNw36hngpYXqxUIbtH4s/LFUFf+Zz7g+T09PsVqtRt4G/tQ2AK7uRaCglxWKWs9fjVSJ9noKsh/npd4VfidMHJDIRqHKol5ruAd8cJ7uvIeqvtI6Z22onu3NowU89FrWf73t7gYDUBQQEiwsVKC0kJd7qe5Z9gggjU4zVHnptV5QwGCALRVWgC5vjt7O5sgyUouNBTaX7bwBbn4XCkRddZomY0KOITg+Ph4sMNyHoOa+YUAAYr7hKaaPpopfQIrgOS17bnQdPYAAz4Vz5Pxff/0V19fXI0Wlm0fxTnwM8NTi4XJXq9WOlwFBd2dnZ7Fer4f3pN+MYNDJ0wQYc8wPCvAV7DJw5v7RKSwuB8/Duq+EogPrPJafn58HxY9ymd+en5+HQEPdh4D3ZOB3/VUBgPK368OqbRUocOOD3wGPEZACAVe/TEFmbVJyXoFWO6dQpcgro6snD83PpW21pwIEU2jyNAEERlYgK1hWiC2l7YQ1o85svsnlleVZudKzaQJWzOo1QB1hKaNeSFu9TBWwisC5bCfkFLDwIHWMVll0mQXA9WYLind1U2uKAQqmlAAaDskzANK+4LaoYOQ+h0cAyhjTAQwC/vOf/ww/gAG1kt0ukKiXgjN2/Ssw0ZiSh4eHIX88Ax5gxa3gzQkoBQCqGLh/slUsDAR4igrjhr8bokKVxwPu65jkaTz1nmw2m2G1AZYc6uoE9ewxfSVwkClPV/9er4EDBC1Qnf3X+lUGyb7klHKrDq389NgDBrI69ACBrF5TAEFP25gm7TOQoU6lqQAgS+s8CmzBVM9yecy81RSBpmeB4xQwiKdKQNkUh0Pq3DYuX6crdNpCwUALeWt/cZ9wf+I/16cnT7Y2URcW8ocIBpgqK8QpX91mF2Dg9+/fAwj473//O3gGMBWQbfoE0IVzVsC4x8s4Ua8stoR5JLP4smkCtuC5PqzQdQxwm1zgKrcHbUHddOwof3Ge7J3U8clAAGVhI6Obm5thQyOsVlitVkN8Ahsd3AdfjSo+1nSgnrZyvsxPaoipV5TjMlw5+4ABZzROARK97zWz1vcFA25Mufx76lgBniltBE3edEjJWZV4+U7RIo3mUREEnhNClbWvabLn9FkFBNpOzUsHVWYFI10VvaygwLl03TSGO+f8tJ08WDG9gWssdLMvHbo6u/ZmA+UjqVcwqqDDs84jwAGDmCIAEMCmOvhhPT223XWrMdTzwvP9DBJ4C17eb5+BCr+79Xo9UnIKOPEsznWcZXyq3rrsp33M31KA4lavFYMGLo8tf3hBImIAPhpDs91uhxUYd3d3cXNzk3oHOAC4ZTF/BcqMjp70mUXqxkfErvLn/DhNJRMzMMDeiCr/Kr/qPU6xtHuAQAZIXgMCpoKbffn21WAgYqwon56e4uTkZKgUXMXIw7nz9WUrqtQyMms+qxunycpxClMD5Li+7tyVq+doa/YJWAc62NpWpe+8B/pfFYACBbWINEDOBS26KQoWFmwB8qqEz6SpoED7362h56129Yftdnl6QJUeB7JpcBt7BbhP9ZO+LDjVKucYlymeGQUQ3D+cRvvJ8QWe0xUs7I1wvMPt5radnp6OpkwgXzSmB/EIWIFxfX0dt7e3I0DA0ynsqXgL4XoINMXC7kmfeR0yb0Dr+QwMtMrLAAuft95hz7V9PQMZmKjya9Wt5/5reHXSVwtd8B4rNghNHaQZA3BeGTmG4rKRpsonAwRV3nyf80Z8AL9EteI0H1c3DY6s6pEdVfGzZegAgiru7XY7Uk7I0wUtslWmykYFOQMA/iY9Txl8JIH/KsHi7isQqOIE1BPAywl5aRsUIqxWtvTd8kAVMtyvsGw1liBiF1iycs94TqcKuH8qC0u9WepRQH1550A3/4//upyV64dgVvTN0dG/q3xwzjyJPmbPAIOBh4eHuLi4GPgT3oHPBq0fSZks5jHhxgfOlb9wHjEOKnR8oXVQBZrpDNQ1U/Y9CrfXEp8KBnqenwoAehT8WwDWxfYrw96ZZppppplmmunVdPifkZtppplmmmmmmd6VZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+cZjAw00wzzTTTTD+c/g8VqZPjcxQLUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABug0lEQVR4nO196XIbS84sqF1ezvne/wHvC8zY2ijx/phIOplKoFBNyqRsZgSDze7qWlFAAlXdXG02m02cccYZZ5xxxhl/LS6OXYEzzjjjjDPOOOO4OJOBM84444wzzvjLcSYDZ5xxxhlnnPGX40wGzjjjjDPOOOMvx5kMnHHGGWecccZfjjMZOOOMM84444y/HGcycMYZZ5xxxhl/Oc5k4IwzzjjjjDP+clx1E65Wq4+sx0kBbeVvd85d04+ez9Lhc3FxkZ6PiO13Nh6bzaY9Vtn7pt7e3nZ+uzJxL6fdbDY7Hy3j7e0t/t//+3+tuh0St7e38fb2tlOX2XdtZeOv1zt5zFxfUk4nrbYfv7PyRrKd5a+yoHLhrmn93HFW/9G57HqVdrVaxeXlZTw/P5f5fQRubm62sqvzkvve1X+JznbyzTqJy724uNh+0EeXl5dxdXUVt7e3cXNzE7e3t3F7exv39/dxc3MTNzc3cXV1FVdXV9v0XI6W7dqN8/p5fX3dpn99fY31eh3r9TpeXl7i+fl5e8zf/Hl9fd3ey33u9Jr2+Yysdc47VDqfr2M8gMvLy3h4eBjm3yYDfwNGxt9NlJGB12tV2pHi5UHOBOMQxqJrlDabTVxeXlpiELFLTE6JTHYnYGUYq3TV+SXnqr6bJSGsOEYGZAnJdcadz2fljq7NpM2IDV/j6yynmifOO4P0O4D+VZLflaPq/KjM6poSAhj3q6uruL6+jpubm7i7u9t+QAaur6/j8vIyLi4u4vLysiQzozriPicLWsfLy8t4e3uLy8vLeH193SEy+ACszzTvrFw3x1x9Gc5xc2Vl0LTal6jfer0u8wHOZECgE86RgiydKke95n5r2ZkCVnY+Agu31hfoRgYyVEZGBVNZ9THglOpHljV7bh9SMCpHr+kYdQkOX8+Ig+ZXyQafc99838wxl5u1n891yMoxwB4vUBkQ/u2MwxKMdB6MKTx9kAFEBW5vb+P6+npLGJAeOoGjdpX37dr4+voaEf/TWciHPXxECHDO6TauT0Z6u1GAfWVnKcmtyu7WaYoMnNpE2RdOAVZej97jzmleLs9OmtG9auwh5Hx+xtBk5914j8hCJienIDsZe67SZuc6hrpjZEdpZg11lX9lPEf3dq9neaux53OdNDOEIKtbVa+qjacgu8DSusx4nZqu0k+IDFxdXW29f3w4GgAiEPFLh2g4XpfzXH2UOOA+JgRMBpRggLjwedSLz202m7i4uNhGCHBuJHP7RrdGY5NFr6o0HUxHBn6HV/W7UQk8/3b3ZL9dGV3ywFEAjQgoCQA6JIDX5CphYWPvDAkmCJ/LcEqKNFu2mFWM3XtmiUCVviIbHeXg0v/usWEjn5GA7HiGEOC+rA56vUMiTgksw1lUZ+m4Oplzxl+jASADTAAQDcCHdRQbbzXiEbnBUzLApIIjA0wQHCHQ9mDvAu9h4HJmDG4mP91IVQbNd4Z0dPDXLxMcyiubDT/rBHPnHBHoCqWSAEd4MiBkxnkrO9byO0sLxyIFyvYZmULN8sk82lH67j1cr9Fxde5Q0DY7OGPN9+9T9pJ0h5KzUyGxjBFhHEV7ugS1igSwAWUiwCQAx1dXVzvyw548h+7ZmLu56hwy1k0gAfgNAsDEQMeTScDb29vO0oWrBxOVjLhWqIz5EgKX6YWlcnvSTxPs0zmHRMeAHqqM7HwWEViaTyZ8fJ4JAM7jHEcHGMrAO3X7aFRylJEEhU74kYft0me/ZwjGvuB6jtqe1dndox4bvt25LI+qbtl9VRt+BxH5Xeg6KZVR6ciWIwJ8zCSAPxwB4CcFOPzuPHY11kwWFOoMKRngPQFKMrCJzkUhkDfyVDIAnefKHumBY2EJOTjZyMDv6tQszOa8dodZ5Z0xbQ6/rVarnZ222VMEKoQuDe+UdY8IVW1SYrAElfL/nRh5TBk6nvhSjx+/HcMfnZtF1fcjJTbyHpF/19hkipTrWUUbuMxD4KMiC4dCFnHpKPzMUI2IXiZ/SgoQEcA3HinEOd6cpxv81uv1jsFG2WqIgSoyqtEBJh+8TKDRB+S72WzSyIAub7j+7eAj5TibKzME5WTJwO/yIrsKrJt2aR10oqEsJgVZvbK6cT5KCtw9qhCYPa9Wq3h9fd0+mqP38EabfcNfh4YSkpkx75wf5VfdM/p2eXTl0I1D5cl06qn5ZwapSz6yqMi+MjNz/6gfjk1iswheF9UYjoieIwAcDcBSAAgA7xXgzYLQJYgGYJe/Xnft5s3Rbh4omXDLBUwClHiw3uK2OjLA9VGMyOtHw+m5TH4cTpYM/G6op+Ouj+5XdAxPNUG7SwMjha55ZspBGTD6BBPm4uJihwhkyJTr7yJ4I3T6Kxu7inln3tVIDioicAhSwHWYUVhV2Zp3dm4Usq5CrI64zJa1pN1VvU8R2pf75KHn1EHhjYP8red1LrjH/fCb6+4iAlmUgM87Q+9eHKSPMbo+4CUD/o1zbom0krNqXD5SzkZzUHEmAwL10vmzBC7kVn100kXUpIDX9Tmt5rda/Vp66Ly8SJ8DZhaO6AC+O0aj65H/bjhDXmE2nTPenWud46oujoyMvPVRPTv1V+PdLTcjVJxXdeygynA2WqD5HBsdxyIzcFlebu52dZPuF2AiwPnqHoH1er1D7NSQA27cWA9FzDlMI4KBtvG+KJTBUQOuRxVlq2TapdsHhyCEbTJwqsp8H8x6rCNPsZOP60dHOpSlZgLlJoNORp3IfN0Rg4wEaPk6mV09eEIcU35m5bfjBR+iPSNlzccdooA6ZkSga5w7BEDLrH6PkCkzV/dK8S4tf1S3UyEESzEaP75ekQEXFeDNguzEQIcwEdDNfqw79B0EIyfDvVgt29gMjMLmWT/wvgJdVkC+H42PlsOpyMCsF3XKOFQbqnwOZQDdpOgIhdtww8Kd1ZGJQrU+piE5vnZKYNLSHY+OrGuazAiP8hjJUHUuu94dA+fBzBKBCvuGrjv3fyQRODaWkKrR0oz+dt+OBPAx9gQgIsA6RfcO6SOELgrA5eNxP3VIAH2niuop/p3JbKbXNDrgPtxHHfKaXV+CzClUzC6LRSxcJvgTowQRh1kicGmz/lLBwnG2a1bvzbzxkQFxad1+gUyQeN1NX/E5Yt6nimyMOpEA57l2ynLkoVuvqj4zGBmOjAh0IwT71CPLy4WPlywFzNTlM2Oke9w3jh0p4AgB0qmXznuL3LsEqrow+L9PXHtYhylx4M3Oo7miRIbb415VrMsGwGwkrsIo6tCdg93y/8o9A86z6hjfKl2lzDLFr4peJ5Rbf3P5uvq5txiOlgo4Dzb2rs1uUn8GJZoRKL02IgbZ/TyuGTuviMASou28hUwJdY1/ds793heZIa8I75KIAd//N6DqP/e7coacjlDHhR0DLtstEUT46Ju+ByXTP5oex6jD1dVVrNfrLWnRJ6E4epA9pYBjfeRQiQO3ZQkyHeGOK+yrfxeRgb9lMs1ghmBkEQH10isvf58lG2wC5PyysvAEAU8GzSui55l9JrnZN/pVLRN0iMDS8rO89Jqmx3HHY9TyXH4znpEjTi7fkYy5SMEoHdf5T8TStjmCwBGBTC7ckqE+54/zDCYbSg46pE5lB/9MGPHr7YK6NOD2W+kGQrdckNXlEM5Q5WyOxlLrMFuf6T8qOiUsMYiZ0a4G2qXP6jKqb2bc8c3vyN7HQ3SKHVA27e7lyAArYSYEXWEbGZSPBuo8O9G6BrkTAWLsY/wdeeTz2T3Z8o2bQ928dVwz4z3CSJ6qvGaiH6Py/0TMyJXqQT2n193SYlYHJQmO7DHpYHReeMZz7/X1dRsZQD1RlpIC1Es3L2YRFfdxZLuS2ezaiFgvwcy90xsIT40QLEVmoPYhBFm6aqK553P1ZUGATiYHt9TQqR+n5YntmPnM8sCpyMtH12M2/32MvyOvS4ijUzyORFYe2BLsE+LXOvzpWNrH2RgucZxGRADGntfnId8VEeW8dJMiw/15ENeLnRREBNiJYYdnvV5vCYPrF44GdPpCCQG3X+/l+ldpjoXpZYJ9FcEhsUQBZuedZ9T1iHCceVlZeap4eUJE9J+hBUbLCy69khJg9DYwZfqnjpHcVtGB6r4uqnL1ejdiUF3r1tfJaibfo7xdG0ZeUkUss4iB+z1K67ysmTE9NfIx8jy7eWQks0se2Ajr20kj6ieSnP7J9klpeVxfjVji3Secr0YGXISg6if9dh/Ny42R2omZ5awlzvgMcf5r9gxkSi+bANUkGRlbxyrdfSywek7RNbzK3rkMnXTZhkJlyTM4ddmojMFHG16XdnRvRzarfJwHwssmWXRgaX0jev3YUYgziiwryx3rOSYtfwKWGg39ncmcAsbVGb6KCLD+4cioLpGyzLAT4pwX1FMjA1kdXVu0npvNZueb61T1zYgIfxSWlvnXPVrYMfAdItBtv0vnSIGLCuC4M7DVEwJuc05GEljwRzt5uf5VGLDqi1PDUkIAVIa0k+cM6egSAlzLwrVV3qNrFbrRgWOjQxSOjX0I58x9I90X8d4Is77g62w8Gaqb3EuLMuPKebJ+dO8W4HpwZDOLgHb6heutdXP43bK/T1l/xaOFM8osU4IVcYjYf9A5T35+9xD5aVv4t2tPViYmTvXCkFGdTgnZEsCxyO6IiESMQ/QZ+czClVn66ndVD0cAOnLcWR7I0h8KFSk4Jj5CFkfkL/s4466he93bxHm7aICSgdVq9W6fwGq1evc/Bqx72VPHkkVExHq93i5f8LsR2NGpnK5uv2R5VHMvu34sLCYDnzk6EDG/rsbHKgC41ll3yvIGlPVmDHnUjmp8qk2Fo/XZJdCdup8BI+MLHHIO7JuXkye+pmvrM2uSHUKwJBLQla8qqvE7cCoKewlGzk+m3yLeP/KX6SP3zL46Sm6PAP7bAEsDIAZcjob71ZC6fx1kx2Wz2eyQgA6cAXfEiNuWPcJY5as4Jjn44yMDjtnpb+cdj9ixmxhQWNlapZbt6qHXFM5rgvBreM0pd2Xprl8idv9WVN8yqOVXmN0EeerYd+8A36/HnIdTRpzHqEwnSyyfrHS6UYcqjWKmbXyPHlfkdB+lqX04s1xzCljS9koXqLywnuPNxawrYIT5WXwlBbpUoGSAowF4xbHTR6zj3BxSQqJG2jldnQ2EWbSgIlDZXO3gmKTzjycDs8gEsfoAHTKQvVwDwMRRb5qFt7Puq8Ql4tfyQ7afQOvM5bm2ufZ9Jiyp7yHb6JSKXnOyksmOuxe/HQHoRoE6ZKATDThkpEDh2jhKP/P7M2KWtGYGTkP3Tv44NM+koMqPSQGIAOs/Xd8HVL86Hcn7n3iZwOUzQ07V4OuGQr6WEUyV00xmHUmfIanduQD8NWQgU7RVeqes9fGXjAx0lgwcQ47YDbW50JhDJugcMWBBqkgJt4H/WQyvFdXzVRtP+Q+MIsaTa8ZjrNJm981Obv09Iqn823nrI0/beTuuDTPnZ9PNyM2SMk/Z8FeGe6ZfsnF0hpo/CNvzuj6H9GcMFese3jOQbX7OHgt0jgvAaXA/Ry70HPelOj+jFxDxsoTOOU4zAyUJWR9+BP5oMpAJfpUmy6dSsiMcMuSYCZe+YtgBk0HPVYTGLRNU3qUr81TB7ZghBN1r7rpTGIzZelQh+FlZV+Xl6ujKV2V6aHSU6j6EYUS0Txk6Nh0nRI+ztO4RZEcE3BICG/zV6n9LAPh2Tw/oY4VoC8gAE4KI92v/Tv5HbeW0GRFwaTlflh0mCKNxqNJ1ScQh7UrEH0wGVPCr31Ueypp5kigDxHcWHcjK5c0uq9VqJzy2VMG6PQSuXRkcU+ZoQzfEjPJGaf5UVJ51RiyzscnIrJNtR2Bd2RE5KarqzqiM6T6e0Udhxpv9LKiIX3ZtpBv4494DkO05Yj2ZEQGNNjhHJcI7HKqXXLoREc7mhYsIjJyfzlztkIQODpWPwx9LBhxmPCWnqJUI8EcFJiMFmYJ2z7/yelQXLlTNu215E47Ll6MBrj3V3xWzUfhTlKxDt21ZmhFR7dzfJQGslLO2RNTvlncbU4GRB9Uhgk65zXhHo+MKn1lGRySvew9fq3Qde/ocwndEQGWPNwe6xwkZmfHlRwtdKL/zV+o6d7Ld/45oZL81X9WDerwvPoos/5FkoMOKO/c7oc4ULN9TEYKRx8aTi4W0EyFQ1oh7sIEGZeruX64L7wXgCecIApfL/TATqjsV/A7yMiIBzmOrZMXdx/IZETvK1nleuuHK1RXX9aUumofrw1HUwCnMj1KirnzGKcpop+371jsjAbpvIHu6AHAbkzUvRAfcPiltr+oxp1P13QOcTs87IoDrI1Iwig5ofyLtSH4/Ur5n8UeSgS4qA5ApWF1Dc8qPPfGKRXI5fK877+qOdGgHCzOzduz05bwvLi62BIHzRB0w0XSCZEsHrl5nvIcjp04eHAFwXr+m5WP24jJCwYqrqisTDCfP/Acxo/ydbB+bCGTXTklZfwScnlNj7vRfxP/kS+e7u1eJgC4R4D416C7qpA5Kpod0KdOR2+o6ynPfVV9m8j6S807+Lr9DOjF7kQFu1Kkof1Vgem50rzJHnRA6WZzCjogdQoDzmVHHNTba/ASAu8fdz3XRZ3I5MoDJxGUhr+y9Aq6vuMyOIJ+yUq1kZEZ+svNOLrP7nXGvjLmTSQ3nMnHlcei8TVIjCrqkwC9bUUOfkV4ty3npmee+rxydshweEpXMZQ6JIwAupJ9FRjWiUO0TcM6UOhssB2z8+T0oTAhYvzmgXkiLNjonTI0u14vPZX0/S2w76XnMDm13/5jIQGaUu4QgS+9YcTYpePCcl6RMsFovy1hxJeQqHOz5r1arHYFXZc73MCFQBj6D3+HhHQIzRGCWGGQKuTLuVVlKDioioN+6JyViV06rt8gxIGvu2W3Op0OAZryjTAYPJVunLKMdVMTKfes5J1Od/SYAp3XLDI4MIB817HyejzUdkwJXN44QqNFH3ZCO30cw2iSdHVdgA34IWeuOSxd/DBlgzLKljDVXE8RFBjDI7CVlrFMnjkK97ooIRPh/2+JrXCfOi9ugkQElA65+HZJwSpGjGXTrPBMh6+TpSEP3kxEBfSZcFdJm8+uVrSyXakBAApCnLjVx3jNKz8lX5hllUYSuJ+bG4JBK+qORGXM+pySrysfpNg7hc1r0E0cUtWwXlVInSutVveBMHSQmALqpEMi8d24r8kJ7QQS6MlR57hx5cPXI8sjGbolczt5zMDLQEb7fjYoRZ+kzw+82xES8N7ooA6Eot0vbkYJMQeHbvQBDjQ8fZ08nsDJ3WK/XsV6v35EAtwbXCWllbTsFjCa0gzP4mZypsu3ClZF5e67ukKlRZEDJK+BkMiO4WZ2WEoLKG3O/94WbT5+BEIwwI6MsM5UuYh3CMoB7+bqWoUsPmndEvnmZ4fYJVJEB1Vlavns3i0YJKhnJdKA6B2rYl8hZR4dkOrqDvchA18ieCirPjSdBV3lnSwQj74Xvx7WsnqOIwAx4QnOeKAtvF+QIQcfzd21w1z+LnFSYbUNG1iJyo9855+AiTLrvZTSWmodGsJjcIl94Z4fCjAJb4r3NlH1sYlA5Eowl0TclAi4y4PaLaF3ckhNvLkQadpD4ugv7c75qjKsoQBYR4PoqKdZ/SNTlAvX2u/Lm7lN70SXN3bGtIhEjHCQycIpRAcbMRFHlrZECTcMYeUwsjJ1zqHfXE+uCIxb6+CJCb7pBZxafwfhn7VqiWAFHkDsKvYqyZOlVPjm9emKcJms3y7e7T/NfQlLV8+uQzUORg8+OfeeTk8ksMqByxeOkesMRSDe+/BgzE0h1PpQEuPHUdK4sBzb0aBv+5hh1Z4Kg5Dfz/jMbqNEBTeeIwD4GXfOYwUH3DOyjRE8NnXbo5HJKHMKVEQD8duVpFMHt1s7q6iaogjeA6eOE7n8IHFMf4TOQgo9CpnwV6jF8BBFxsucUuiMWfOzksItKbjJvr3NvhX3JwWchFzPjoUQgI5UR+YZm1mfsWOAbOgRPLPH9Ku9KBvi89v8oKlARVOSl+wWurq5ivV7vbCjU307mZzx6ndcz0dau/O0rqwchA6ek7DPlp1iidHUdvgv1sLI1WSdszKZ5sDOFXCl1l54NPD9JACLgXupRMdy/DSM562I2MtAtj5Ul8h4pzQi/wTXb/3IK464ymclrdd+p4qPIYYcMANqfvDQQ8etfC9mwgziOyABfd5GiTuRIZbrytB0pYKOvJID7q1OfKjqwNMr6O2R0mgycwsRXZASgquvsNWfsnFDjWBk1h6F482E1AVUAedOXrslp3TPiwY/zcDvY+9cIwGiyuj5zE/BPBBvZjtEekaiRnHXrwmASmykVt+HUba7i6MCoLlV5WRqWr0zWDq0YPwMh2BfOMdAP7x3QeyLeE0smBfqWU/X4ORTvxjvz+DNdPCIPHFmo+oMjA7qPAaQAThHP8xlyOXKYKkcgq/dHzItpMnBqyr1LBDJF3WHGTtgwEdSjd0TAPaKj//rlQkjqibkNXJUXWa0bu7bxsoB7pDA7dnBG7zMhk/OR/HeMu/PUDlVfHENO9O2TnEa9KX1cTOuu8qc7yp0XpZ4ol99RrlkbPwIZgf1TyILqOKf3dJxYJnRZifvJveWUdY/Ww8mrg4vEVk4XEwEluE4u+ZgJgb6YKLu/0nMdG7RU7j9CJv+o9wxUA+3SdaDeCytaZsYM9zgMP8OtIVg3WXANZTqh5+/q0TD3KGQ2+bpGfuae2XS/G5UHMTLmiq4Hj7Qdr7+TZ6ZooKirXeFcH0dws+UxN8+yndgcUXCEydW9uq712Fe2tC2nIqsjz7Y6Ht0/coTY6VFkMqFRKI1oZq+tzoxopaeq6FN2nzpgei/2CvATD4gQ6EvcWI6dU6aE18l8RpBdnTOMIiBdWf7UZKBibKNJ1CEMGZOMyMO5VcezQXZeO/JwYMatkQMwWddOJR7q1eF+x9Sd97gEHYN3yuh4+7PoKPlu3VTp6nem0FmZOuWW3a8yqlEB904CRwpGbdb6zCi2UzLovwtd0ui83UPPzyx072Sx0ptVvbL7+Jwjt+7JCdzHSwNsxJUEuGOtgyMEnYjprOweauwWkYFTUOyVUT9E/ZyBZAHBOb3H7bjv1mdEJFg5Q3DdEwZq/KGA3XIF5/kR4Enwtylnxj4EYsT8HanM7tdxcE8UsHenj2EpUeQ8KhKAe/UbZWWks1KWShT0nkxxj6Ak6bMjM/hdB2oGo8ev3Vh1dEN2j+rcGbKoBEF1qvab08GZLciIwMipcFHD36U3F5GBY08SJ8Rdj38WlafulGR1j2JUP73u3mrYfd6b06P+v2sMf7dQnzoyAuu8tYqoZedVLrnv1YAzWKbdDusMjgREvH/xjKuDRhU4rTPwHSwlAS6fPw1Otg4VHRjdn9kNHaORQXRG35GDrH7aZjbwcJpGy2Ja79nIgGv3KM+sPofSq/PPycVxJ0nFZp1i7eQ1gosSVNf0g/PZer8ez5IKlwdw6LEaEbCZup0KjiXPFRFYkr7yxvDtHvNyipW/Ab03q6OGYVnBumiVpndt6c77Q+AzkoDMyLrfFRHIoksKfYSZf2fRgaqO7pqLJGW6txsVcEsE/BTFSG65zXo8aiund2PRRadfl+DTPFpYTf5Zw7RUkUCZOo+JDXjFTHVtle9luA2BM2HOSmC4zRcXv14nm3l4LuQ7Kv9vRRW+dqgUQ6a0MyXOebp6uXV/9VScTLPc4h4n5+wBuXCrbmTkKBc+VejV9V3mRbprM/gshKBbz4xMdUhB5SVn+S0hBIyMoOJ45Ehp/ll7cc497q1EFdc7S6tOLrWuKpdOdjMskekRpsjAPuzFodOYTJi6BGDE0Fyejq1lg69KMjPsGDze3AU4Y8/ljcK0KBvffF9Hyc4qvtEkyAT1TyEJI2Lq0vG5kbx1SYD7VE8NRPhQfcSup6eEN3unBbfJEUZ+rpzzQV1d3Soj7uSqSwhwndv+WbCEmFR6MpMdXMs2HWd1Qhp+Yqoyvvr4asSujtRyMsPvoE4M5+M8f84X53g5ltvgdPDI+Rs5B/x7RGaX2tSu/LTJwKxAdtY9lpCLEQHoKI/s90h5R+SM2T1vrXCbpbL0SFcpTuTDTDl7Vhzf+ugP7uc2uP7J6jkiBp8B1UTLiM1svhm53Mfo6zHnPQP14liu9VrWF5myBPTpFHz0RTWcXtuiOsWRhowIaB5/Aka6MCMEIyLpZEyhafHelKurq51jDbNrnhnhy8avMx9HjtMoP+4TvDtBn9bi/S7Q1e6D+mw27/8dFGVlba9IRNaOffTVhzxaOKuMOvlkgj8yRlkeWT6Z8Dt2qyQhIwEcghrVEXAeG9/jGCl+a6gXJKAiFvp7yQ5d1HOf8OwpYaRsu/frucqgZ5+I9+udEb9eXuXCmWo03e5+5/llc0DHcrR8xOV3wqtMUjXvpTLljI1ry2dDJlvZOSdPI12q8uTO4xoMJ46vrq62cpmtyTPwHD/y5wiW00+qA1UfumUzLdNtYHXEiY0+11frmH20XtljtUwqFEuJ0QxO5j0DHXZbpevci+OKJWs6d97tNkUaDoeycQbDZMPMBt8pPdxbwW0IQ968/LBarXYeE9P6scHIBCxj3IdQ2n8qVI4cAdBvd5+ey4x4xHui6sZCr0f4t2K6dMBo6cD1AS8ZaDr1oJzhGnlOLtTqCMCfIp+VYa9054w+dbKQRRHY+EOeMiKg4+QcqooMjJwvB0dElBBgqUDLX6/XO/ey/kQbsuhAFg0e9X+lT92c3kemD7JnoBvGWFLODBlwSxMzRCAjAFn9dJlA61hFAriubtMW7q/6VicECx4rQI0KsDDiG39SxOeqqIBTsHztM5GCQ8umkx9HCjSEWsmhKmK+5tZ4OT3kwW0MBKoIg4JlfaTY3B4GNvZ44xuMAWROCYRrz6yMfQZZPDQq2ayIBL7Z8VECACCN/v+KynlGSrLwNv9m3RbhnSQXDZgB6suyyC8g4v8w4DJUnypZ6ZCxLHrlSK6mPxQ+/F8Ls2vdeyrBrbyd6t4uEdDjLBoQsfs/2Pzayqwuug6VbTyEUDqw0ca3K9cpZKTXSEBH2LQMZfQuv1Gex8AShTHKqyKcTkFCiWqaCL9EpDLH5WRrvKpwnRw7xe/y4vyyfS+Z4sc1Je3r9dquvSohyNqzFJ+BHGT9n/0eGf2KZDLcPhJHQPGb9wmwLHXLy8ZBveuIfG8T6z/9dpE0ByYEmCsXF//7MyMsY7hN4AyeF1xnZ9gru5bJZ1dmZ+X7QzYQdgS4ylOFe5Qu8071d0UG9L5MAeO3C8VGREkIWAl3N7mMNho64121odrboGtZh1SUp650lyKTEyUBjghgjdVdByoCOjsnnUeNby5XowSAKmOWJX5SgPN2eby9vcXV1ZUls/pxc7QyHBVGYdbPgGrMKx2bkcROeWzUs6UklmHeOMj7CBzY2GtEUh2JTP85eVbSXJFbpIHBdg7Yer3e5u2WC3gPwWq12hIHrg/XL5uL2rbKxvH5Sg91cbA9A7MMtnNPl01mnTpixBkpyIwpBGVUd6Sb2X3vlgkYo0fEKowEYpZ9qiBXk/SUIwMOXWXbIQEqUxoRqEiBKrNq70gWvnX11+iRyjqUvSp9XhfFb51/WV5aB5WdbE7yMlmHnB6awJ4aKiW/RO8psiVJpIeR5/Hh/FiO+TeXp/pA9YQ7x4Z1pPe4LK3fKOrG+wRg0NXo6z4B/mMj3SPGGyLx7ebM0iWuQ8v6oj0DFZvR87PHeq4iAiMSgONKQXcIQVU/9yw1hEiVuBNS/O5gFC5Tj5LJiyuH83GTzJWDPNw159lpnn8CKrLoPhkBgLLk4whvRNVbcZGgmbpzvqzMs3pw6FRlehQF099MAHhNlj9uH8KfbuyXICMFFeHrgg0mZIONfMRuFEkjXKp/WGdn461tmR1vp2OrJY5M9+reltVqtX0UFtc1ssX9jL905kdncU2JAH87zPTBPnNk0TLBDAmozlVGtirLdaAbEHx3yUBVd07vlCUbfwiOrvk7weyAjWrlIfITBFrvTt7Iv5qgWflugmtkYPRkxDExGo+RTLhz1R4BKFR+Ltt55YA+NQJwOL0Lt9dA68f1B5zR1w2prs80H1WyGXnSpQJt54xnpfiTSEWmV1XX8TfDeZxMEFlm+cOyykQg4ldoXvNlvQJdo4ZX66HyVUUFuGwnV+4c7tGyWYfDsGMDIY41agbdv1qttmk5msZld+R3tDzQPd/BwZcJOgLpjmcVWla+K7NLBqo0ToGy8EX4JwoU/OQA0mRLAPx7NBmq/uc6ZtjHUDuW75YITkkB7yNr7v6RYcsiArrOqvIW8UuuWCm6OePapPlUSwrq2bGMq0Ibwe0rUBlU5c0kIOvPKlQ6E4nidlXnTgWzZDXTZZ28OE+WhcvLy7i6utoSWCfHXJ7Knhp+nOf0LpLKsu/mHeCW2kbv4eDNu1xnV9/X19ftRkIcY/MrRwE4goD9BZldGS2DHep8B4siA1Vo3gmju67HMxiRh1ljX5WTCTegpICFZ6Q8OwSoM+Aq4CroPBFYqWs7eG1uCZzB53OnEBlYInMjolVN9owYOGXKESfNX/8/YtQWJZycL5/nOulvnatIo2uhDNYNXE9HPJiccLnuyYLKG+Qy94kWVFiqqz4Cmf5S2dN7qt/VNZbXq6uruL6+3iEGmScOsGHlR5gj8ieg3G+nT100ItN97pijHNx/7NjA0PNHSQBvKnQ6HxsQXZQgI6Rdg38o2Vz8noGOMFZEgH9nRrGa0B0ioHVxk6Sbf4fEdI0dh/Nd6JO/Nd9On7Cwd5cllhhqXWJw0YGsTZ8Fo35TuRiRAPW+lRQo8YTS4A1JfM2BFWSHMDC6XrUjj2q0QQi0vtmyAtcLMjSav4dcT/2M8hmRkwO+Xh1n9yhRBRHAR6MEGRHAx3nOKAv6Qg0xgHNV5EjnWETs1IvnhS5/ZPKl0QAYfpzDPOD72PCjzlrvDKMIqpLfQ2IqMjAiAC5dx4hWDGgWIzIwm6/m4zyuJWAlydB+cBPC1a86d2ihYTjPLTs+FkZGYEQs+XhEMjNCoASNQ6tMBNQjdxtS0Z7sD4ScwlEDXMkxG+EKI6VWpVEvjyMmulbcmbdMrKvvETRd977fhVEf4DuTS82Dz2ekVZcHmAzc3Nzs7HtxxhTGH/lxZEllm3UJjmFccQ73qqfv6q7zjvtF/ztB515EbOuOSACIwHq93rZJHzXEOc5DI16YfxVBqCJeHyGni8gAfo++lxhfh5mQSIcMzOY1c08GpxxZOHQwl3jqjqx8FBFwguciBJz2mEq1Y/BH57M+rQiBW7qpSIEjiBkhGLVVZUH/bGUWlUGpgHBqlqfz9ri8ag4DleEfKVG+36U5NrpkKEuT6WT+6NsDORqAb44M3NzcbL9BFnR8NpvN1pt29gM6jp8o4YgiR8Jc1EnnFH7zi4+U6Oh9/K0RNdQf0QN+QgCEQAmGIwesy9fr9Y4+zPQ/18GNJ8trJtuzaJMBt4ao3xkxGKFaO9drM2TACX51TwZWqk7Bj+pStacbOh15gDMRC17DW4JqeSAjAlkbjomuPGRy7xSc+ziFwd5UFRmICPuYEofRFd1lAgcN1bq+YFnl40oZcV4aFdO+5AiBelRqbCpkpECVKK59NnT0WkbeHPFio8phdEQBYPz1A6LA+bFXD+PIOgoeNxOBiF3ddH19vbOkoOPlHs1VYhDxfi8Vz0ONIiguLy9tRIDnosvb6XgXQXUkmK+zzGaE91Cyu4gMOIOr5zuowiCap4O7VpGTQ8EpSFZcjJGRBzpE4COUV2asZ4lCZfxPjQRkqORpSV6qLPQ5flZoOM6Mu3uErwr9VySxsyR3iKUClKVpUCeOcrhlguyTKcFqOaAiKqN2zd57SHQJK5+r9LL7uOiULg3A6IMQ3N7ebqMD2FDINsK9cAfXEXK/urqyywJKDF5fX61dwHxB+Ty/OMrm2h/xK1LG6dQm8RKH7t9hEl+NjyMDjhQ4W5ERgRGWyGubDLASi1gWhs4M/SFCdI6odOvZ6eB9287t6g6olpf9VobL3w7qzeEc93snUtH56D2fFUouRwq2+nBkQDcPamRAlQYrpc1mkz4h4AhBxPt/WNNy2ONnhe7mpYsQaLqRMeN9D8gD5/RbDYX2j1PmlT5xdf0MMjoiAnzOyR4bfUdWdWkAhv/29nbnw8sFumeAI4+QJTx3z+vl+Ob7ADbGfA1pMYc4MlHtX8j6jqHjDxKOOiBSgKhG1sc855TsAFgygO5Vwq92Ueup9tPNuxl5bpMBCAhjhqGMJuYsMgPZJQPdeqhSZa9m1P5M2Thl7/qmQwL4fKYQMrCQI20WAtb6donAKSrXjpKo5Cg7lykFVrRVSFMfKXTyUBlaVu5VlAHelhJURjZf9x3PKiSLvlDSk320DzpGf9SHVd+fIip5dOeUELiXCbGB5acHsCygTxQ4MoAnCLjfuS4a/WF5ZfKJkDzy5HYzGbi+vt7Z48B5ZNFK1VOoM6flPmO5VCLlZIqXPLJ3r/A3H/PSGB8rZh3LCtORgazgpUpjCaupjN6IBGj6LlSBVfezUVUDmxGiWeWjyzZZNMCRDxZSFj4+x8ye61cZf7cb+DNgZlz5WBVcRQqycxG7m5tG9VJ5wv1cF90YBfA48R4ElRHd8JcpHK4/7uvON573Ove1X9h7wofnV4XPIoMjVDqvc6+TP73GxJUNPZMCJgq8jHB1dWXLVAMbsbsxEMb75ubmHUHebP635+Dl5WV7HPFrTPnpBq4HR9lYJ6nhB9ngCITqME7H96q+1X1YWgb+mAvLC/iwoee8kSf6chQJ0HSVk5lhas+A2xE8KqhbmapxONZrepwRgA6BqZSdKn0Xfs8GYGYw3ICP0EnjhGfEUN0SQUZiMsbLx4dir0tQydHoPr2nMvrO+HMkKdszwPkysj5Ffqw4uFwl7qqwcJwtBemyApTVyNBnBjpbruJ7tQ+qCIGeQ/8o8elgxgk5Bpxc4HyWXu/NPlVEQKMDOOZlASUF3H8YHyUDTDqYZGDZgZcp3t7e4uXlJZ6ennY27iE/pFOiwvIP3cTGnI0/QvXY5Mj5s95kYqGOgPYh5gz3Kc6BNDlHSkm12p/MPqgMZ9dGWLxngAvKmAqja9hmPOSKEMzc7zyTbAJm5QAuIsDHjKVhn0q5ZlDv3UUHsnqpUXJMm69leRxTyXZI2UhWKgU8UrpufRb3dpec9Jjz4GiAelgRu2FQLcvJgMM+/dcB8nfko+pfXHf1GxHzGbJ+bIx0D6er+s5FBfhatqzFewmYIOAYUE9bPdzNZrP16G9ubuLu7i7u7u529iJABp6fn+Px8TGen5/j+fl5hxTwPgGOErDso2yNeOIJAb6GYzWo3FdMDLit2A8BMsD7Crj/mCjwEwk8T51sVyTgELY3YjIyoBs/gMoIaGWdsc489BnlM8OeO/nhN3t2ukavHlSmeGYVDpOrkQFCPbK+cHnoWDmCwNdxnJECTavlaJ2OhZk6VOQyM0h8nUP/Tl5guPmepW3gXdWstHmZAN6Rhju7BgYYyXG1hOFIrCOJLlqRKcjRPOkoz07bj00YZgmAnssIQcT7dwvoI4ZsZLOogHq8KBdhcdQB10Ai7u/v4/7+Pr5+/Rr39/dbUoC58fj4GI+Pj/Hw8BCPj4/bKAGe8Y+IHQ+cIwtMtLEcoERF9+mM+p1lR/st+2Cu6xKBbowF0UA/uggYrrl67mt7psmA8wZdJd0EHf0eeaTunuzcDEZ5skLL1mMjdtdMXdgnC8vquSosO4oKuHvY6PM5ZsSVl1+dd9dGxODUoQYyM/xVGudpQW5YSahSzp7gyPoP+eiaKT58P9ed9w3wjn5uSwe8XMEbT7O8qnxVHlnp6lIB5z2qq7atE8k8FYzal/VvJo98neWSZRXnVZYyEsCyps4EZEzrhiWH29vbuL+/j2/fvsWXL1/i69evcXd3tyUXj4+P8fPnz51IxNPTUzw/P0eEf5MrExJHdrm9kAPnDHF+rp/ZQWQb4XSA9q9Lz3qf51VFdlE/rpcS4O5cXvSegZGyz5hLNjCjfEYe8iyWhET5twvrMgNVEoB6atsyocuUKvJ0hGDUDxwu45AZb6Bxu15H41pFBj4DnOHX75ERqhQvKwP9zfcCFSFQqOLONlJxqBZjy0TB/TUx8ue+cH03Gncm8bzxiuvC9WN5dCRWy+X+y/SO1uezEQJGh1h1CKqTXyUDTADc0wNKCCLC6j82dBGxI7NYJvjy5Ut8+/ZtSwqur69jtVrF4+PjNuIFqO5CvvpnQCy/ukzA/zXAv/EOBO5L9tizedsZK+17JQfcNs6f+5P7QOvovjVthem/MGbvL9upqRXkznDHVTkzjanqzKgGMauXMwrqecHb4j7Qt8d16/iRcFGB0XjycScCcEpKNlP6boz1eyQHI8Ovhn4WVT+yQkEIV/9AJiK2a5oY49Vq9S4awOTUkQBHfpnsOoWl91btZyLqCAHnxR9VitxnbtxHBOCU5Daib3Q6cpiR2Ij3yzkc3tYwvEYUkJfTFchPZYWXHxAdQGTgy5cvcXNzE6vVavuHQNhI+PLysv2onDDhVMKtOg7GH3nhqQVeSuN+USAPjibwHgl9URLry9GYOOKjcsDHFRHoyA+w6C+MHbPWSlSNzjpB2UxmmCqv3Z3rGuERQeF0WXSAFSqHYjnsw8Lm2oZ+yZQzr3Vp+e7YPe7iogFIUxGxU1OWh8ASZdtVshHv34uONKqAWVmqV6X1hKLmcCteDsPeW8T/PKbn5+eduYU1V1bSLFMZUWKojGeGAeCwJ36jPvg9muvZuHBa/q31Vh3jCMWpy7gbi0oO9XzE7lsgM29VlwiUKKhB0nFkHaNjo4SAn1TAZ7VabV8DzASEy1TDq3KIb7UniALohw08zz3Vty7CwESW+4HHohozp9M1EsybMR1U5t0cyDAdGehOFieIzCZZKNyEjvj1PKoOJNfBNX62nlWdXX35PhcSYw8MkQFNM9ufDDX6OvmVqEBpOyHVzYMjMoBz2Se75xRQTQqnQLp5OhJQKU7GaLKyfLDR5mgAdmPjw69nXa1W8fLy8u6lYVxP/Y/5UXsZumdgFAVz5WRRplE9KkeE8x4RAr12SshkJ5M51QH6cU6M5pHlpffCGHJfsofMRlJlWNvB4HyzVxFzeUw4HBFkMqCRARAAJgQM1d3IOyJ27lNCwHpVl14V0BP6xs/KDlU6Yym5ndozwKyEJ2A2WDjWTRPMMjNh32w228c00ME4r8aH73FKYh+oUdV2MSnQTU68RBARO8d8D9e1Y4QcoZhF5oV1ogKjPj1Evx8aWR+NDHE2GfVed1yRgJl6MwHF/MEHBODr16/x9evXnegAvPCXl5cdkpopqWw/CiPzTBz5VLjzLlrlvqv+Gekhdz5TmKcouxkq+ctkltM4p6FjiDAuDBcuZ6+Zwc4Jh9WxFBAR2+f+8QQBQvm8zu88c6e/uN5aJv81MeeD+/hY5ZeXGjSy4PZgOZulNkDHkDcQVmQgI1sfFhlQD7OCMkt4Mhzu4Y0TChAA7qzK42CFMDOhq0mUpck28GEyQeB4iYCJgApVRQSUMCkB0eMq0qK/VQEvVYKfRXmO0GHduN4lF9rfGirv1ovHF0QAr4e9u7vbrrni0Sx+CczT09M7RciKCiR2tGEwYve/BHRJzC2T4Rjg80pE9o0szShIPv8RTsRHQo1C94P07j6NMPJ3xO4aORv8iF+RKidfGnaP2P0XzpeXl3h+fo6np6etbD0/P29tw9PTU/z48SMeHh62TxHw2j5795nh5fFUMqDEBdcARAbYc0fe7l6uC58fRU7VqdTIRjaOVURM2z7C1J6BWYOhREDXfpgURLz/d6fV6te6uSqbQ2Ck9NXoVxNKB4UVJF/Db1WgS4lA14AxVJnzuey3y6OSh1NXqCN0FWtGICPeR1xYHvT3yCtXIsD/Hofd2NiAhee0MQb4dzhWUNgzwIRcCaqWrwrGyXBGAgCd49mSFfefHmudMlnLCLG255ThxqFKW31038qoPBcxhEPGUVAca8RJo7qcNzbs4aVCeCHPy8vLzgvuEC14eHiIHz9+xNPT0w4p4PC+lsdt4N9KCLIlDYZGN3Q+uYiFRj+cI632zOlzHS+2F2p7HNHtYioy4CquHjnOO0G8uLjY2enMhg3582BxYypvaqlHMRNC0VBtZYy1P6Awef1J83XnHBHISEPWPoYyZ03jJsIShVkp5lNCNnYz92bXdKwcEVClymkdeJ+AEoGvX7/GP//8844MYAOW2zDFu7E77XUGVAlBpoxcGS5CAFRy54iJU4Zd2f3sxGBEAjKHoUM01It2jgmXoaFx9qbVoby8vIzHx8cdWX14eNghqBw5YCIAMsBPAjABcc4Kl8/Egb/VYLsQvhp4XcJgguGIQUY4XIStGt/Kfmm7O1i0TMAFZApVd6TqiyrcEgGzSzQIebmGV0ZNz40w62E7Q80Cz+yNFSIvGfAyQpZ3p/xqwqPcTCk74az67zMoTYVT9k4RzijXkeJVjNbiuR5ZREojA/xY1tevX+P79+/x7du3uLu723mS4OHhYUsGoFzxDRnU6JQa9azf9DzqXxEMnbdVhMrlr8ZfyUGVD+fxWdAlnuqkuPMaHeC9XAw2mrr2z/3PjktmjJWgwfDymL69ve0QA1yDoWUCADl2TwFoVCAjA7jO7yZQ7z1z2jRSwssDHB1wpIP7tCLKPO4dXXMIeZ5+moArmrEPFkBeItA3Vjm2xYLDRCCrA+5VOOOm91XfbgJqGyPyVwHrhkKNDCgLdITHRQj4PLcvU46ub1y46qNxbOU7MmL8+xAfzkvB4x3xfhkhqw9HBvgpAhCB//u//4vv379vyQAvB7y8vGxf4MJzUD0856FXfbfZ/PpHQefRII8RMm9J02R1qAy8M3SfGZnM6b4S/p1FGx1YHmHkdBOqyjYbWv7wkhHLC+6J+PUeDF4eQFounw0uPwWgBhhtwHc2/kpIXUSAf7u28d4Jd56jArqHQO+tSEGlZ7J5MYvp9wy4NUEX0uD1SCUELiqQITNcLgxURQk67XPKXNdVmUk7Vs2TYrX69UZCZdOoF/ehGnwlKXye2X028IdSeqxoK6XL6bX8JcL50ciY9yGR9RUmP56Y6e4XwDsE9M1t//77b/z777/xzz//7JABbMZ6fn7evt/98fExbm5utn/8go1b2MHdUS6s2BE+7vSdGgktK1OOS2XZtSczDk7OO/J+DCgJcB+9pumZQDjHDLoXMoIXV7lIgtoC1c/QgyhTDSTKQNuQh4bfsxC8RgUy8DzrOEVqU3Rfgu4HULKgkQBHPBTcR5mOwkcdwX0wFRlwXi/OswHU/QH6L1caFUBnMjSMUjVUQz/8nbXBeXA8OfSJB2Xbep/mz3VQNs79hH7kCIHek0E9zNVq90VF2cScxRJydUoKVCeNXsP3aOJl3limcDn/LPoD4LwLTSIfJQS3t7dbMvD9+/f4559/tmTg4uIi1ut1PD4+xuvr6/YpAzyB4KID6tmzXFV9m8lx5ulkRKCDkRJ16TPj3ynn2HLsdIs6K5kcZo9wV+PJxoqNNBt7RyBU77nIAJMrNZR4yZDqGmwMdMZfDbHrOyUvKpPaJ+ykqZyiTUwEuC2aTvXuyI5xmTqv3IfbqMeujSMseukQs5KIXWOMa6M/tgCYVKjHzI/i7WvIeLDdsWsnRwN0ANzanOaHdB1iAqHl8w5KGDRKo0KvbHTGsDtBywSuuvcUMCICfG72o3mqYmQiAHl/fX3dbuzDbn+VH76Px+Hi4iJ9mgCPF65Wq62n//LyYt9QqP/97hQM2uD6kNNn+19UAeoxK9QszYycdq4tIQenBkdK+TsjAlnEUcGGGh8lBAxeBnBjCaONKBTrKZTjbApvDFQiwIZZ66Lty+YrX3f2YIkeq/bLZMiM+ogQqE7eR+/utWeAK8RGSZcFODrAUQEYwJGx3AczeTCR4eiGrsVVLE2jJhG/Jo9GBbKwFg+wq796mSAFzvPUydnth5FX+BkVKIPHbJ+P5pHBGXtHrly/s8KHTLpXEbPBZ1lENIA3HWL/AEcHRh699h3/hgLmHef6PSKih5apbA5l5OAUZVrlwclgRQQyh0ajTlqeevf8zhcsbXF+KstK4pCWlwsifFSY79dNeUwE8K1zhc9l9iWrt/ZDdk69ftd/VV5aj4xoow0zhEDz6cr1IjKg69ysDCJ+/b+0/sGFbhzEwPJvxszk1E6pOoePs4k1IgU6+bhvVKHqYCqYPaMfR2134TeNEnA6njxLcSgG+rvRkQX8zs51SEEXzkBlyhXHqEu2BMd/UsTEk+eg/pERzmFzFstHt8/4nJJi3n3O7cS5fT0od35EtmbyUWN2ilDdpcsGEf6x5A5xVQOskZ9q+SEjA05PaySBZYOXB1y9uC5cDuqmjplrK5er9e6QBJxXeeb5VOlKt8yGtui9S/RNF9NkQIXBXXdLBLyexWk5HBKxaxgrOLbvBC27t/ro2q+uxem6nAu9OaVetQ+/9bzrY26HWyboKlmu60cY99E4HAOVsa/OzQCKAWOhSwScbkReNSTL8ueibzgXsftXsfoXtPpXtAjzs8IdyQQ7BVy3KuLF3zielTs3n3De/c4IeEXMuZxTJr0qq/rtiACThAysp5gEcJhfPXDtLzXWqmedbuR7ERnQSAAveWZ14TIzLx/XNO+sL/TcEtlVOH2kziSPKZN17ct9sSgykDFMVlL8CBQrHl1bysjBqHxNN1Kqs+1jAsCvUWZiwyFW1F8FsxMR4G/nMWbgCaZ7Caq2aR4VE9X67qO4jw1n8Pl45uOQGSLu345HrOMIedRomy6/8Rs+UR+kwXLC/f19PD4+xt3dXTw9PcXt7e32uW312rP+0vq5MCbDKXF3zP2S9VHmwSn20QMZqTg2svHga+zMsIEGHDlgcN9mRBZyXRl2pAPYacnkhPUgCGX2wh4+1jwz2XH9Aeirhl1/cLmuz7QNFUZ6OPud6SEdhyW2sE0GeLCVAHDF2ENhMgBlpQYHg5m9wzkbgErwqrqPkBkIXjJggqARj0zhO4HSb9eOUb2ZKY4IAXttmSfBfaWTQtvymZAR2CVGX+9zqKIDnAenifB/CIZjJaHs1VeP7CqZ1UgBk1ougz18NvxOZrpwSt2lye6dhTPsnTqeKioS60ik09UZMt3EG/yQjskGl+3y5HtcJFPLj3j/x0daP2eAuY9wnqMHFQlXo6/6zi23duozcuYc6eb+RR7ZmGbjyem78jz1ngEWJn2dMCqZPU7Ia+7cQGWyqixV8UBJuU6oBlMJgXZ4ptic4eD6anQAbUM4zTFhrYc7Rjplem5cgIr1q5DxZjF8Z2xSyVlW388Ap0hH6UcEoeoHhFjxiNbb29s2jB/xPmSL8dAoWWbM8VSBzjXUfbPZxM3NTdzf32+jAvjoRkImA85Y894YbrcqbjYgGu7V9V6nVDMi3YEaLDfvNV2Wz6nIt8pcl7RqWzkt6zBNz+OwWq22+pb/z0L7Vt8cWPVfZZhVFnjpSkkKoEQE1zlCxmU7HZbJn/aJ1kU/eBcDyzg7e1W7HTngMcwicJnOnpXhRY8WslFnA8SGUb+5AdkEdUoAZTjjpRPaKQKXn0ur6RzbYyFwTDhLO2KyGbQd2k7Uo+PtODglk9VtRhmfihIFVOY6yrVDFCLyPSEMVqr4QxZNzwosU3QaFeANuSwTGmJFG7P9L9oeZ3xHnh8rPy4X9VHlqYrXldkhARk5UyJd3X9q8pqhkk8nr/w7c96cQwTo2LIRZ10M2eaXBlV9n80Z1bsauq/IhTpq+tSXpq90u7vGxxWRxXlOo+3M2uCuKwlw110+HVKmaJMBVSQaImJFpf9OyIPkGB6/97paEmBhRlod7CWMSKH5sSLLBsx9c107xkVDaCg/u08jAaMyKmPIxyNCMNO3SmCOBTdGnTEZKVmgM9HVI9JJy+POr65WRTgiLTxPHHlwc9jVuYIaCo4GYL7oP8mp4nRKlfN2pLyCGqEZPTByJI6FSrfgt+obNfCZ81aNv851doKYYHIZnJajS5ksuTI6jlPWPnz0HQuu3IwI6Dn+rXM3c/hwX/bWQZffDGadlS72IgP60bVMXU9HQ1iRzEBZEh+z0Rl1gCpWLUPPO3an57hcHmjnBY7q5EjBoVEtFWT14t/7EINTRGVc+brDyABVE9+9rIf3F+iYaD05Hf8XAYhHppCZiFceFyt/TafhXLc8wGXwN+7n75FsOVLk5j0b9g46+RybzDIyWR3pMtbFLkKk90MvOEPHS6G4jyMFOO/0aaZb+ZybLy4Prbu+UTPrv6psfLNR5+uOQLgIGM537B3SOLLF9dYogdMHSzFFBlAZXSvncxcXv16K4hRoNeGVRWm4VDsB4HJ04i7pnIwQVCQiExC9VxVfJSA8GV2ZSzESGr2esfVsDEfHx0LlXbm0HYWrcO3UpS0mewivOjmAMsvmCCJq+CtX/Bd8xK9HwPgNckowMs/GgZfGRh4U0mR7BipPS/uxIzezzsBnQya3S/Nh4znynFV2Wb8y+cWxEoJu/Ufyl81ZyKSLQvN1nV+VDqhskyMDavA1mjeKCnTklUlC1gacWzoHFkUGdAcykwJmZvoMPiue7I8mnKHJiAEfZ55ZJoCq7JVJKvOq8gDUS3KMOmLu3eyshLl9mHi6qYvhJoITqhlUXps7PlVkhr4a6+r3iITiuhp/EALnxTAp1lC8/iUx/usd8sHet/urV1ZaqswcscU1bo9TjC4/t2eA+2hEILvylCnBfaIGx4Ya0kovuTZxJGBEatW4s1MD2eV8eZmW5d8t32r++K3zBvd3+oMNv9sHkUUmOo4Y16UiApnOz+zZqNxRnbKIwG+NDHDYnx8f1ChBROwc8+TjTnLfEbsKEPdlHVRNfqAiCM4QOEJQwZEWbqcq3yqPLpT1OuyzxKBtch6gpj1ldDx7lyaLCmSMfARH5lCGk43MkHI0AETg8fExfv78uVVMeKLg7e1tSxSenp52/hPeKTDUc0T21DNS4qJ5czu0DCdDVflduGjhEmJxatGGisBy9MltDMzW0TkKyc4V/9Ylg4hfr592UYNO/RUVGXTzEvWCU+TIAfLQvJng4B5uO6dV3Y7zKvu67KZy7uQ6s3GdeeHQ0UUOU2RAn23WR5J0kLgTnGJjY6mbjXAfY2T43aR1XkF1XOWvcAwaH7RHox8qUPuAQ3KoD7PzrK6d8jOhm/XWTgldr1/PZR7GEgLgzgM6JixL6/U6np+f4/Hx8d3jhfzWwefn5+2fEcEoPD8/x3/+85/473//Gz9//ozHx8d4fn7eRhec8WZZQX3520UtOD+e37pnQA1K1m+ja9n3UlSRnWOhI3vcfpY1jE9GAPheJqSIVo3GaLVavYtyAS6iqXrKGcoRIXXExu19yIg8txll6Z8wuYiGzgn+6BJY9tZELpPr4bDU4coc3w7aZODm5mYnKuD+AhVQhqUKTxWF7jSO8IyJBd1tJJxtvMJFBxgqFBpyz7wk/XB+Gao6oK58zhGCDErSVMirduv9Ll89t8+YfAQyzz9LmynkUf5aFsCKko/xG+B3FOiSAN4rgH8t/PHjR1xfX2+VEcjA6+trPD09xc+fP+Pnz5/x8PCwJQNPT087hFzlG3BKW0n9KDrgiMBHGtwZbz7zZk8tIhBROz8cFVBSUM1Dvo6xw56TzGlAGs2T5wrfq/rM6Q7X/1neavx1s7p75FbL5rm9Xq+397n32KiOVLl2un+kH2fkq3LeuB1KBGbkt00Grq+vUzLglCoMpTItVSbupRIOFfvXkJEOfOb5ZcZACYGGmtAmDX0q0dE1WtRd73P9Bqix4D7A5NW9AUrOlHEvicDote49p0IE1Cg7z999XB56LmPimaeZjVtEpJsJn56edjwt5Meysdlstq8YZjLw/PwcP378iP/+97/x48ePLTF4fHzcLh3wvgKWVzXcLkSK6AXLPb985XcRATWAOKdQncBpHbE+BUI7ihBoXdlhYcCI828GdAd0w+Xl5dZQIk8sGVf1ZB2qUYfM82bZ4m9tq/4rI29Yz56Q4I3YSo7wDZkd2SNc44iX2/vWjcJ2ZEs30Ff3KrntzrWpDYTuGeWRB8u/ncfMv3WwtIE60bV+WXQgm+wOSiz4vCoQZZCqHJkYsKfEdVKhc+GkjDSgXjzpnXLgOquA6PWPwjGVqY57ZrBn8qt+87lR9CFj8hoRu7y83D4twH8+xP87gL8uhsJmMvDz58+t4YfxZ8PtIkQ8N7m+6h1lHpFuoFIiUM3F0bhUumAEd19GJPYp5yOgMqz14ugAr/Hj/Mh7VKPNbx+ETOGY81A95Orm6tzRxTh2ywL8Zlv3WGEW/mdC4PQr2qIREifDld3S9qizh/5355FnR/5YLlR+u1j8aKEjAhkbVyXjQuauYZkhi8jDJiOvwHmImfegv5ltsyDhfmWGbgnEKd0Rc3RQApBFCDRvDV+pAnftHuF3EYpDQMe9Ew3IvLJOGXqOwbKk53AcEdtXGWs9VQlirReRAYw/9hogEsCPIjJRdY8fspxGvI8y6YtVXPrsmL9HfeXmNZOJfeSuQw6OTWar39yvWt9MZ0F2MgOmcuiWZbkM10fO6LtoBa5n3m+1JMDRAV4m4KiAkiAmRtpe9JO+QyGzEY4ca9tdfzg4fZ0ZdNVJFWnoyu7UfxNopo5t8XGmSJxSOCRUQVSkYHTdCW5mwDVcxMKnHpfLZ4nSqdroPDout2P4XV+O2K8qoxlD+lHQyeMMfHad8+DvQ4CVI8tLxG70B6FaVw9Wguv1eocMbDabWK/X2ycOHh4edpYG+MkCF+p0hBUkAHXlqBfSuqcH+P4ZOJni83rMGMmq5ufum/WwPgKVPGZQIsBGsHIYlIy6ecHEQOWkWkLgfDWdOphcrkakmRzrMkHVV+qF4x5+GoHJUqYLtI8zdOUGMpYRAgZIf+W8oOwZ2Z0iAwAPOj97qnCsKTNEWsYIblkgY5bOyOog6+OQykS1kyPev0wCa074dhur2INySwZVX6jS0on39la/d8Dlp+Qsw4wiHhGt3w2tq5vkTuFV6TplZlB5ZOXI9ewoGTWySgYiYvskAiIEIAaPj4/bCAEvG1TejoZLWZaZUGgdHRFWnTJr7EZ9gzyc18/p9LeWfczIgCr8jjxqJIDhdIi7P+KXd82/9VFCRwDcsiXKHvVjNQ+xTMF6mR9vzwy3jr8ztko8OBrC35medGTXnXP9zWQ3IwQRv+ybOlgZWZklsW0ywJ0S8Z51OqjCqF59il2c1b8SziLLQztS316l7FT3S3DbInYfUXGPUrHnxB/ndXH4jutwCM+EyUgXmbfEOLbX1EFl5JUEVkRgpGj4vFOE+s3Ilg0qsAxiSQCPFnIeiASAFOBpAt5DwCQWebuoAJMElXElCI5oZoQga1smg/tEGwAlipyfjtcxUXmnSgyyaGZGejLHTJcH4GzweR2DyonJ8s/IDutnjQo4QqD94MjoaD6pXsgiDRlmdKuWC1SEYJSHI77durfJAIwZCwMX5CYUUK2lOG+AO6LaWFEhm+T4zROHCQH/zv7YBeWjXmrsWUkyAcoiA9pXOkGcMnX9nIXn+LqSugqOlGgdKoV+bAUKVArPGfuKDHTzjsgJgBoYzteFUEcRAs7r5eVl++4BTsOPJ3I0QPcOOJKqxNcRAkcONCJQzf0OKZg1zJWh5+uVkTw2Ech0VyajDhgPGOCI90+huHuQHn3glrScwWVDr22o9IUzxDD2+hi7WxZwY+yIdYdEZnM962uVb7YNXSLC5XQIQeakVLajQpsMYM2Sw0SVAKphUgPIDeGoAE9UjhDwfRAoRxRUiWodlcToa5X1/xX07Yqs6NTTVzKg7c6UJde/mkicLoPzDnhCL0GlSLv3ud/HQGbgRwpWj7t92UnnFCS/GS3i1yOHHI5nAw5jj5cSMaHke3h/wMvLy45HrxEB3Mvn+DfL+OjlQpxnZXyy/uD7NK8s30rpZ16U1qdyco6FjNjO3Jc5W5lDwVErtyyAOkDXKPHI5pQ6lkwEoHf5xVrqmLn6KvHhtrtoBp+v9HJmfLNzS5CR0MqhcfcvwTQZiHhvUB2cd6ssh0NQIAR8XvcA8DcazGlUiej6OQsarjsioCyU26JhURf+R3uVMFTKEOdZgWfrfhmYCGg/MLHS7yyvTCi5Dcf2nLroTNbRJB8ZqH2QTXSMAT/37WQMZABEVsmAyqKLXOn+H26bIwF8nBGKighkyq6Sqez+ahwqme0o32PL+Eh2dd6rvDpvHddVJ2savl/hvGE26FqG08ejcpAfO2b4zbpZIxMshy5yy3XmdNXyltbpowiis2+V/Dm7uATTZMAZaMees2UEBgYVA8GEAHlE/NoYxywOeW82m3cRBVdORLwTpOzvlpUAsLChfPa0WAmirRpByIRN+yVj1lnb3HkV1M1ms0OwtI9Z2FSBjMiIU6SfBTypM/bfIU4zhGDG4+Q0+CCCxuSc0/JfIqsMqDdfLVfNeNtZGpXvSsF2oXlrHar6RvSMvMr9MWWbDZyej8iJgL4dkAkB0jM4rSMNo/pBv8GBgc5xsotrSlJUz+pcdBsGeZMj61gGX9PXLKtOZ32te9xQHjtWqAsbb7epvrtEMINMXy2V2zYZYO+hEg4Op7t0zrChkzkaUK2X8DXNJ0vv1qDgRWGXqnubonpH7FnpkoASBgf16riMbn/xNdePFTnAuCjxyrwnpxg7JMHho5j0IaD96Ni/6wMgO3blLPU4oUQzQhDxS6m5V8UqSeVjreOobiNSsI8BrTxRbkdFOmYwGpNTkNtq3rGsVvqC79UQvubLBjqrDx87sgHHBoYfssuEAXVlJ8iVoW3kvQNcZ60v5Nv9Bwf3g3PccF51eVceZpyEfZA5NLOY2kAYETuMzlVK15/Us8qEzOXHwuSWGFw6zktZsxIA/tMl90geK0z85kenNPTvBt1dn1Fc3eUCZfpuzwZPJh0ntCUz+hVJGCnvU0CXvLhJNTv5q/KXEgG+h7852sNzrGpvRgQyQ5PV0ynQ0Txw55wMZWVWRGCmPyvZ1uNTw6heziCy0ec0nSiA6gU+r+vzjmzw/U73cN4sm9kmR/WGM1lXx02Xdbmebom3IsyuLYpDkEjO35GS7MN90q1HmwxEvF/3V4OsRt4JBF/PNqvgXrePAKjy0ZCZRgT0Xxd5jZUFgD1nZZN6zMLCQuXuV4V2SDhPFn3AxILPdTzZDiGo6uJ+nwJGk2ZkUN1YHnJcXd+yEo7YJYyvr//7kyJV+mowVR41fwclxu4bx1nfuDKcfGXpHRHI+n5G3j4DKagIE0h+5hm6vQC4L7vmyudjJ1Oqf1Bnt1dBSQTOsQ52kVhdjuA6OEPORCB794sjmS5f7QeHSu9VJF3B9s6NNTt42u9L5HZqmUAr5NZmGLyew78ZXHEWGH3vAO6voASAPWFEBGD8QQD4b5jRhkzh6B4BVoza9hGrzJThoQzmPuEi3K/1rqIGpx4ZcHDKdUQIRm2qri8xMFqnipzwsa4Nq2JxMsvpGTondL+BKtV90ZkHmfKu0CWxmv7YcCQccEYgQ+atz6BaynXLlmy4+DwvGfC9unT59va23RjLe2HUsXEE1BEBfbGWLpkpXJ44v0TmO31eEVyXH/cz7u3oDMX0noFZVGyfoWx8tXr/yGEVkonwBCDi12YajgS4Z1czAqB/6OI+mTJGHpnw8MAtmZx6L3sImo6VAE8kvteNs54fGdBszI8dGXDkhsd63/rOGHhF5fF1FbcaOCbiLNsucsXpNeLHxxnx5ePKy+oabXcuu7c6PzuG3SjX70LlSLDjo8jGEL91/iMSW/WZI1Lq2WsdnG5zZAKyAaOvcwCEgPPRd2mwfOqygD5Wy5HfLNrF9UK6zMHTNEuR5evgogOO/B+cDGQGyxUOOO9EQ0Q8oMwi9dt1Cu8R4ImhJEA3ECpZYGCwmUniBS0cFcA37nFKUteh+FvP7aNsmF2jP/SarunpsTuXRQcqgc2uHZsIoA6HqAdHSA6FUV5qUFkZu/nFO5xVNjN51Uiepu/U1xFDJSiH6LeMgC7NK6vnR4z1DBypYhJ7KHSWCSBf2J/Cnr3OLU4HI8/58KZCho6D+4Y9wJIYZJZ1N79em/W3+1v5kaOpZWfLF1md0b8jZ1bLQz86HYx0bCe5/5bouWkykG020cbyRMJ5fuxJf2feJ5dbGTJn+Pk3Ig1MAlgQVJBUiJggOAFaqixde2cGEvVwGyBxrvIk3AufGM6IaL/xRKg8q2MSgiUeYnafTnynCA5dnwqsGDHv3DsDNCqg801DvgxVZGo4XVlL0I2SfaRxPhRhOQRG9XD91DHsWVluLNn7RBpe34cxcvqZiSrkkz1aJre6Pwxp8JfJ0MFXV1c7S8hcrlsWcJEB3Ujo+sEZd9b/+o6ZQ0QEOMLAv7lf0L88V/QpDSYMB48MoDLZZOVB1gYCTAQAfomKA0cL+BzXCef4/QFMOJgYcN2UGSIKwITA/aMb7tf2uXU01w8zRCGLXrjISpaO89fwIPorY8faZ9xvHLUZMeNTiAwA2icq0526znjL2f1ZnapzXDYrVDXmfG9GAlxkAPdW66da/+p4KVk6FGaUYYVjye9oXs325z5EIWI3+lQtRajDdXFxsf0rblx3jza7yIO+Ywb6GKSAy4OOVmdOCYLT5xkJ1LnjogN63tmXLqq0rs+hw9FvTNxm0CYD1U5VVEi9Ja5wRG74NWTvvBY2stnygHr/uE/rrYSFBUwFiKMC2aC6KEgFDUtmfZpFYbqKiSeYri+5P4YaKQqMCS+TdAgB2jjzj4qHhIu6uLCmg/MSXFSgq6BH5XTP8Tcr6AxOKXG9s8hARioi5l+kUvVLNg+6Sm2pN1/ddwoRAp4/XWKjS0cOqhtw3CXCXA7qxXmyruZjliEQAqcPeY5xOezlX19f270ETpfDyetEBrSd3F419hUB4L6eWSbg8p38qc1zfcTj0ZXhqciAomqgO+8iA86jqZiUE1yNCDgykNURLFLZJIeVdH0J9yqB6UwmVTCZV5oRgQwsEFm5ug/DbRjKoj/adrB89IvunziEF/NRWEIKOui0j41vN09HCPCNiQ9iB1nlcXQkQM+rUlfiHeFfmKXoGNBOVITPZ3NG89zHeH8GUqBGMiLvu1nDM5JHlilHNlzEke9jMsq/kcYRAa4bG11sAsfSA+t5JQxumVcNeKajlPRzel0uZh2YYUTQKjgd5fQ0+nIJpvYMOEM1CovrJGYvRpWYwiktrYu+lpIjAZlxZlanTwu45YFsoJ0n5ZT36Leed17ZUqgQcRnqGYJQaT+iXdxv2kdsiJw8HFOhquHHh9vo5Kbq/31JTmXktd5ZGdqv+uhVVe9unR0pUKjRHrVrhNH8WBJ54evab1rvzEs9BlxkYEmEheGMiAMbfdbZSgiQFhjtN9G6jOrBS76sg7J/0MV1Fw3I1vmzbyXA7PS4/WP6u2qPS1MRbu2nrJ87feqwV2RA0Qm5qFDrpOS0OiAAGzRtNHu8+K0eEgaSjVq2NMADrsTGdboadF3XqQSlYnwOGj3I9k8ocI4VPdbmLi5+vY/BMe7NZhMvLy/x9PRk1+Wq0NsSRnwIqLwoIegSSacwZo2rQ6bAdZ646xgXHtOKTOq860SgXDQP5zG/+NiV6drE10YKrDKC2Th1+7QiB6cQEWBCMErr2oFjRtdYqDxxfhqB0ns4PXv/zrHL6qMRBN5cyFEwp6dYn7OOUo8+4v2fdKFslIs6u+PMaWU4Ga0i69pmHUfX7+yQuTJHWEQGXJjIQTtpdE+HUSo7jdhlrRG7r05WRcQRARcNUBKgA47y1PjiW8PsSkS4Pq59s1EBLYsnhv57Xaao+a9Cr6+vty9l4j9wQhteX1/j6ekpHh8f4/HxMZ6enuL5+fkdKXA4NhnAcffjkHno1XWtQ3VfNe4qg3rNyZ2bU5zO5ZkZfyazFSFw9XJezsjD17nr6jS65vIdGc1jEwAGkwH9ZOn1eMYojAgoE09XJsrTiNJq9etpAc7XkUjWmc5RZB2ue8S4f3j5l6MCTATYE+f2ZN7+LJFQaN9y+zMnWKMwTqdn/0w7g+lHCwGe9Bo+0Wt8j65l4psFSKEKi8Oh3AFMFLJ8OOzPxp9ZpJIAJ5RKAOBZw7g6Za2RCTayWT9n4H7UJyYuLi7i5uZm56VKuIeBumIN7ubmJu7u7uLm5iZubm6257ie6/U6fvz4ET9//owfP37Ew8PDDjHI+l+90N8JNvDq/Vf7S5xxGxm2JZOQ8+m2g38zYWPZc3Ko+1zwXSkRDQczqVePj+ekzutsLrk2zvbNPtAogcNHll+hQwCAkZOFseDfbERHfcB5Maq+YW8eGwb1b7g1DyUDXG91+nBd5RokAOk4KsDes+tbrRtsm9oETZe1RYnVjKPBddLonxJibscSQjv1BsJMyevmMQULKQZT13wAp2wr5hkR1qi6emp4ifcL6DVtS+ZdMhHQfz/UPmCmp17WzOBlRpXrwf+9wCF/bQMiADc3N3F/fx/39/dxd3cX9/f3cXt7u80j4n+T4vn5Oe7v7+M///nPTiQB5T49Pb2bbGDkp/I0QScawATKKdlDeI8d45/VW8kfk5xs34eDa0eVXucah21BBHQ5jMkDe2+cj9ZTyYnqn26kwZFyVtCdyMXs/PxIjHSjS18tHan+BTSdG5uR3tYylBCwsXVzT+cdG0GWJdVt6v3zEma20VkdWJbfbJmA0zJQJ5XhrF1KctAu1j0uMoB2O6KkhKqDRcsEPJFdKIXTdPIZhY+dUdbBd4rCRS+q74wI4P5MKesfILnJxYIIpbkEPKmdUWAvHx+OHDCQ9vr6Om5vb+PLly/x7du3+PLlS3z58iXu7u62Bj8itksE//3vf+Pu7m5LFpgQXFxcbJcMeGyYqR8DlbfpiEAWIdCJzucOUcfRvHFKhs/ry7cifIQA9Xb5K5wS22w27zaN8lhrxIDbx5+KADgPK6tjdww6RCDrm2Nitj6aXiM6Llrg+pDnAsuUI5pV/6vBYq9eP5U9yOqqsgl9y86IRnpdBDuzaVU0wDmmCo3kjmzfSBdk+mlE/iss+m8CbUiHLTlUjJXLGUUG3H1aRzb6Lkqgg87lqgJmQ6whZl4ucP0FZlzVu5pgLpLiiMDt7e32wxELzvPi4mIn/devX+P79+/x/fv3+Pr16zY6gPtBBhA9uLm52ZIB9lCfnp7e7dxFBOazwxmR2clXGS7nkfGHz0VEKoMaLUDaUduyeuB+VYKZAVciwPd06lCRtxnD2IkMnDJYJyypK8uoi84h70oXs2xFeCKgztmoPpxOl+4yg4ZzfF8WtVO9rr+RTnXziAhkNknrqXPOtcnZNW2Tu1/HYYSufpr+C+OI92H/UTTAhTtUCJ2QZMiUWkZIlLQ4YqAey8hrYqHlPz1yu/ixPyBj3wqewC4qonViMoDlAaz/w5jzZkImM1dXV1vS8O3bt/j333/j+/fv2wjB3d3dOzLABAH15aczoHR4IyY2Fx4LTqGqYVDoNfebz8/Uw6E73jx+OMcEgD8RXmmMZFDnmHr3rLj0BVZZeFMjeFmfuONOxMQp1066zwA2Qp36VxGPGfKqY1ERTJSZEQM1csiHX3rWIQWcnyMEqtfhjDhjrvVzEYAlpJbh2sH9l7XD6aYRoR/ZsAptMuAq7KIFgHrGVSMydqfHygzdPW7g+JyGi7rMzymoihzoALpB5QgB19HtgXDCxDtpOdyvkQEsFbAB56WN29vbuLu7i2/fvsX379/jn3/+iW/fvsXXr1+3SwVMBngjCx4vxFMFz8/PW+OPesEIHDsyoGOgE8cpO1ZwasxmlGp1TzbOXAetm3r//JvlT4lAVucqQofrSghc2zJDwPVx/a75uLqMdEzlTer9n4kUZERWocs5nf7g3xo5UEOvxyPZ4nmjUF3H6dzeokwuR0RAlwg0Ksv6Hn1cLX2PiADspM5doDOPXLuzflaZyJzbDqYiA5WRdaiU5UgpunOjSTGKDGj+GdsehYD09xKj4OoB6FJAVgc2AiADIAL4RjhfHxWE0eAowtevX9997u/vt2Tg7e0tbm5utmOA0P/Ly8vO44URES8vLzvhuWp55KPBSm+JQVAWD7BhyzxYLsN5/iNPTb0k5/3zuFZPtGRQIjAiDI4UKVmqIgdKtJTsd+ud9WUnv2xMXJpjkoZRHZQoRvhHQCPyp0JG0SpdhkJelaHiscicSOgULQuyonl2oEbQEQIXFcjymYkA6P1Z36M/1EldWp5zaF17R1i8gXDWYO6bZ0RtJLOIxYisOIJRpcf3KFzzUcAk5GUJEAEYdiYCuravhoMJBDYOfvnyZUsGODKw2Wy2jxqy8OnbvS4uLuL5+XnnL5+zf0X8XXBl8xIVK4jRUw9OvtUAZemzuZF5vRkZgLHHxk19FXfEfq8/zeDWWxWs7PSc816rCFgXrHwrw5Y5BPyb23ZsQsB1dnWr+q4a/9G6v9YhK2NEBEbOG+5RUsBLq1nZjJGHrJEBN55c/5nx1vayDuFzlc0ACXIRSFzHN48dyBaWZ6t+GWFqmYAHNjO+DlmoiO/dhxV18nNMrzPhWRFn4Emq4S/8ZoPJwql1xTn3uI1OPJACeP1MCHS5oCIDTCI4HY6xQXCz2WyNevUaZxgpfqRn9O+UH4lKPiHXqrwypZdN1n1RkQgea/7mfSCsJLhtQCbjULzcPi1/5CXpNQ1Ts96AHGVRBq6DW2aoPGRt64wTosajKut3w9UjI48sn2wskGYmWqTkahTBytANs7s9LipDWZSH7RJ7xrw3jN8XwN9cdseRzPYp4FuJAfp9ZKuyvtHlQR5HR7YyeR5hrz0DDhWjQT6KGSLQCe1wuq7HnxkCHQR+dIsf2VNlpHsUeGCUEFTLGMyclVny64N5mYAJATYRsrHnyALakRkWbifK5MnGx/hcXV3Fw8PDzlsJjxkZyJQpKwB8OgrPhWEPZUCcp6XLAkwKWAacLHL7XH21zA4qpe681oxk8xg4OH2T1XVpezpRwWOSAu1Hdsp0bVgJXUVaZ/rIefgcVRsZam5H5kSy4eS8XVRRda0aPB0vdrygoxRd++ba5+qmhMzdp9GKDhFQ0s/3qi5Wp3OEqUcLs4FkJq5CUXWyCkimNLr1UyIwghsobQNHBthAztRFQ+lMCCrWr3VBX6mxVqOtnj2/c4DfO8D5MLFBOfD8MRmZ2F1eXsbt7W3c39/H8/NzPD09bTcRIr+np6d4eXmJl5eX7eQ+JWjfuvFwYW2+VnnBWZmaD8NFg5wicKRU1yVRb/Uaq/Jn4WTdeSY6xw8pC6OondZVP6P6dAjDR4ENfeUBMlhnuetOf2VEEmVFvHdINArq7uHflQxAv3BZ3AZNy0aXv9k4Vq8f1vKd555h5JAiP37LbMR7XTKSPx4TfTU8L7vxcqw6ZpmNcZjeMzAy2IdSMhlm10F5EkF5OgXJa8cZEXDeGQ+QCrwyNX7TYeVdZd4hjAAEg6MBuk8A7wLgtwliuYDrz+1D5ICvaVu4Hth4yP8XvtlstvXiJwweHx+nx/qjkJEAbieH9jDGLmytXstoCSGLnPE1HXOWM10q0P0CWkZniY7LdxGokWJ3Ea6szJm+2Ww276IwbBwyZZoR7K5R10jhKWBEapzcaaSAz6uMdOFC6526OwPoSAzLn244HkW9+He2HOvqwBGOTuQpK5uBucuESYnIyBFGm/UtsiyXTIKWkgBg+qVDIzKgyASm2xkOFRHokASn2J3HpooY5zRC4MJWzFj1BTwQVqTne100QOsEIsCbB0EIQAD4w48ZwtjruhyzT5TLUQ1tJwQUZX758mVLdiDAP3/+fLfn4NhQJT8yLjMewyxUfhwJwG9HBNxaIrepQmY8WSFnCpCPR95epeRG4HZkZEzLrLBE/k6JEES8jwjwJyLeyQLOqR5RVIbQEUQ3L7KoghonvQ914/8tUEIwqr+LDGShczXgVYRDIxPO2WPZZyciy1PLHc0R5Jn9542205HFDha9dGhfdPNxg58tN3TycYYgK4u9ZvYCXaQgU0xOAHniuoFy3lrEr9A8ynSbBvX9AvqB5691dv3EJEaNFvoRGxDxJALaxU8pPD4+xsPDQ0T4f/c6BlgOMi8rIn/2PjOkM6SB81YvjUOBauz5m+VPZTUzpBwZc/OAwePtwEpwFO3aB2qQnYF252b01aitpwb2gC8uLrabQDMnZ59ynHFj49wZb2dM+Rv11T8y4hdZOdnmfNVAOyKg73ZBfshDI3UjIuDaxnOS02RkyUGXb53O5nrwkogjYB0serRQMWJtS+DyW7LBI8vTLReocKgiZu9ZP3yfDoBTlNlAZV4ivvnvhXmjIC8ROAKADzx6AHXiSa4TKfOY+fEZKCNEC/B5eHiIq6v/idkpvXQoIwRZyA84hNFwRMAZfj12kQG3Z4CVJcYPihZ5VUY78yzd8QhIXy3vZd6Thr6rPQ9K9PVa97d60R+h25YiiwrwuEb8ejxW+07H0BnBUVvdMsFIHlTWHBHQ9MhPyYFLy/mrs6WRgqx8JTYaGdPyqyWxLCqgr4NX2dL9Bar7cd6Rnez3h5CBkZBkxnuErqeiGye07FnljE5mheMiBc7wu5Ctq28l7CyQLiqBPNgoKBFQMqBPDXBafh5dy3NrxMwu0UfcJm4b9hug7vz+A36V8cvLy2BUfi+UEHB4nI2OU4CK7vIU8pwhAY4QOJl0kQGVcR7PzMPmb+4n13/Vb84Teeg7HCq9UtU5My6qAHWuZWkdIdC6nwK0zkwGcA59zPKm8qnr5CAQAP/O2j/jmDlPXuuj+UKmq4hi5mRl4fyKLHIbswh05tC5fFmHODnSYyUGztHkvPnR7uzPmNy9GaYiA7MTw601uTQKV0YleJVX58B58wYlQBWr27Slilnr2iEnSghY+SNPfqYcfyoE718fG2QSoPsCuExHPtTTVBLBjyRyn+vLj1xdEMY8JhlwniP/Vq+LjSh/Ms+2kvOKZEbEOwOPc0if7SHg/LiOrn4aBeO2jZARCydHztvSdvO5Tvnw8JwXqISO7+kQgcxAuHlzKmByhG/sKMc1fhxYl50i3nvALjIK7NMXlXfNwJxTg5zNKzXwGRngOoxsRLZ8qvdqfiyPyAdwNrOKCPB9/I17+P0u/M1Pqs1GBIDpZYKRhzAy4hWTmsW+efFAjbw2NsoR7wmC1kkVHRME7S9njLVM/ndBLAd8+fIl7u/vt08LKBFAWbpXIZsQauycZ1q1Vf+9EGnW6/XO3oFjoZITVq4ZEdAJyorVGWcgI5duqcn9r0BmZCvlxXB1YlKXhTXRNtw7mm/cPlZ4KkOO3Lh8uH748GNU/HSOynaHGHT1Rtf5+Qhk3icbPSZDTNo4zBzx/q+sOTqAPFnvaP/oua6hd21yferm0YhAZIRgSf0cIdFIhitrtEyguoX70TkYTMzci5Ig93gFPN7nwtEBbX8Hey8TOEbO6Z0SyQiCO1eRjyy/GShzc4pYJ5X+dtB+ydbsHBHglwHpEwPuSQF+JJCNMJQm/30wGxeuIysQfpugPoLI9ec+ZAMAQ4NQ1vPz83YZ45SgcseKVQlQ5nlnxk1/q0LWRwMzQ6l15cgFn4fSYGWaKTLNs7P0USkWnguq0CuSq2THkRaWYyhCffulRpx02VH70RnYU/L8GW650ZElNui6dKSRK5YdJai8YY/Tctlu3ig0zUh+UBe3JJfZABABfWdLx75k9chsSUY43IZEzgtt0L0PGj1gVHVgEszy7x5bxz1dMnuQDYSuAaqsXBq+3h2wJWx0yUTnNbPMa3RhrKwsrasjH1CYFxe/9gfwK4OZBCAqoISAlQArUtTNnUf5WN/XHaz4ZO8f0Ly0Xbx/4FiovBqAxxNjnBnKESnIvH/3fgBnHLWe/Nw0DIQaNqeoKyVZQckH5+XWX1FnjDHawvKsb0tkGdN8nMHT11/j3zIvLy933nUBVJ6i+33MCEAF7pOsfyJ2SRA+7rcuEUGedK8BwPqk00dOdpAPyy/rEXxz/p2IVVbWSOdXUY+MiFft5G9tA0fhcJ37oaojt5NfWKfLA0wElmKxds6YEjBSPCPFXF2rmNOhUK1VKZPlyZLVjRm325/AypE3CvJfE2d/PuSeGGDjwnVXTwsCdHHx6/EkDSeqEuJJnL0vgYG66Oax34UOEXDXnHF1ylANPht4NnxsEJUMOC+Ixwtyg8kPdB/X1PZXSj2LKFTrskpqK1nWFyU5YsV9i3Kw7wTRpqenp7i6uorHx8d4enra3sttdX9Zm8nCZyEHDDeuTABYLynZxDH0kkYV4MmyPhkZRv6dhc/VyDti40iBKxP6K4t+VfsOXBSiKofzd+W5vkH/alSgikJw/Tj6ERE7xt8RAe4TrkMHi95AyMrCKQZlfqP8kBff7/DRJGB28jt26+rDjFjLcZEB9/ig+/MhfXRQd/HzxOa6OUHS0LUzbiAMynRxzJNChfGYZGApKhnmCIAae4wBn+NrbAz1NaMoV0kb+h6Al8DpR6jmGMuxeliZkcTSEPeHk2MlrNwnVWRAjYT+ZfbT01M8Pj7atFgWy5YMHCk4RePPUSDAGU/+zWOpXmgWZWDS6Z7z18f71KlxfezqqEa+MsJd6DwYreHzOfdb65Sl5XnK9dC6MeFiEpAtg7BB54ggPvqaZbbD2hczMr3oDYSVhxAx/8rK6v5uvY4JXj7gcwBPOhcZUKOr+wT4kz0+qLv/eZmBDT0LDQvW29vbzjKBPiXAxifz3FgWOD3uOWZkANDIDmN0ThUpR3XUA8Z/QOAvn/EN0qZjw0qfFcDLy8t2fdBFDXDM3kBHATjyrucVPNbaJxoNQNtBADK51aWnigygP0AGHh8ft/3qlqDW6/U7b7aKDGQ4JknQcD5+cwQgIo+gqs6pyAAjIwS4Rw0aymKg3IwosG2o+pjrz+WN7q2MYYcYqK6uSHdFyvC7Gxlg/cwEICJ2iICOfRbJ/JDIQEUE3Jp4JxTCeev91fXR+S5Gnl/EPKHRQXKRAi2fjQKTAf7TIfUuWaG6qAJ7oKpslRRExHbDIK/JXl9f72xa4XqzEVLWinAurh9boVZyUk0mvq7tcJ6wPuoJYqAGkI2meku8Qe7i4iJeXl62fcxyyQYcH0bmeehvR2Y5f5enO5e9B4P3u/BTL7rpNas7xgX9AjLA/7XhFHfWLlzPSIF61qfgcPCSCn8ctN7cD9yfzknhvta0ro/Yu3ekg/PV9qhOytrN3wxHdEZj5QhQJiMzTqnmz1C9oaRA6+1eqcy6WqMAXA5HBNimdNAmA7w2rJVir0S9k480AjOsvmOQeHBcWIfX/Tk/ZauO2bnBUw9Tjbx6VUwO3ACrUcY5ZcG8CQsGG/UBCQARwO+bm5stWeCwNk92JgMc0mVP7piownqqGFXhsueu98GwZ6+Edks5bgmH9wOwfKmHoM8Y805iha4T6zUgI/UOjmRUL8Tip2BgwF10gOur44K6rdfreH5+3tkbw+dZtnWO8Pi5sWTd1XVGPhocKXJEYERoOL2Ta6TRCCUvDfITLxFepqrQuus7vrcbMVRHRkPp7jl7bacb18rj1zZkMtSJVLh+z+rDTlbldGu7XQS3a4NXm1OgvWecccYZZ5xxxtGw/+6NM84444wzzjjjU+NMBs4444wzzjjjL8eZDJxxxhlnnHHGX44zGTjjjDPOOOOMvxxnMnDGGWecccYZfznOZOCMM84444wz/nKcycAZZ5xxxhln/OU4k4EzzjjjjDPO+MtxJgNnnHHGGWec8Zfj/wP8tXGC8GWKAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABe8ElEQVR4nO1d/3LjOM6EM3Gc7M5u3fs/2b3Fd3c7PxLbib8/plpptxsgZTsTO2FXuSRLFEVSINAAKWqx2+12MTAwMDAwMPBpcfPeBRgYGBgYGBh4XwwyMDAwMDAw8MkxyMDAwMDAwMAnxyADAwMDAwMDnxyDDAwMDAwMDHxyDDIwMDAwMDDwyTHIwMDAwMDAwCfHIAMDAwMDAwOfHLe9CReLxVuW49MC7cpbd8ylwe/m5iZubm6mfT4H7Ha76Yf/WTmyn57Xa7N6oHxfvnyJf//73ye32VwM2R04B95jfbYhux5Zu4w19Dx62qWbDAycH8d0dDW8maFWIsDIBKMiAu5eDpz3breLxWIRLy8vs+s5MDAwkDkd7n/Eof5x+wMegwxcIVqGmsGRgDkdoocQZPfS/YgYhGBgYKAbzunh47p1uifTeYMYeAwy8E7IQuvZsV6vveocup+Vy90Tww9aTs53sViUUYhBCAYGBipkkc/e6CQPh+rQKM47HTkwyMBVwIXH1EifEhlw17mxf/c/A+41xjwHBgZa6HF+VNe1yMDLy8vetsdh+cwYZOAd0GsgK5asHYM994j542VVKE7vX5UVnW2QgIGBgRZ6SYBOkNZIpTo9Ly8v0w/ns2gB4zMTg0EGLgxVFEBJgHuDIGI/GgA4Ia+GJ3pwc+PfTB3DAQMDAxV6h0H5TSTsV9FQjgbg9/z8bKMEGi347EMIgwxcIJyQt5hyZsRbQwOtMTjOh8+DCLhrlSRkrzMODAx8LswZDmDjDzLApMDNk3JE4ObmZiIENzc3B4QAzstnJwWDDFwwqghANl/ArR/gjmVkoDUel80fyEgJE4ERMRgY+JxokYAs4gkCwD+c//Lli9U3z8/P05YJBZMEN4+gGkb4DKRgkIF3QDWmXrFkjQq0wEQgG/9vddKesqNMERFfvnzZy2+QgYGBz4teEpDpOSUD+F+RgS9fvsTz8/PBvRwZ0DkFTBKQ32dZr2CQgQuB89CzjuKMdSWkbk5ARgjmDh/weXRON5kRnW5gYOBzoBoKUIPfIgRMDBaLRdze/jJdTAjYoDtdlpEB3q+GEYCPSggGGXgnZNGBLFSmZEDzyqBpXafk43yNIxGal5aNCQGAzvn8/NxqloGBgQ8ARwRaxj5L54YHIuJA1zAJeH5+ntJtt9sDMqBzC/g/DylUr2Z/NFIwyMAFoWccrfLWqzcGeD9j6nwuK19V9oy0aOccGBj4mHAORebYqLefzYlyaV0U8suXL5NRv729je12O+kcEAX2/B0p4NcRQSBwPSNbs+CaMcjAOyMzzBpKc0MDEX1RgRYJ6BkamLOIkJaTO+HAwMDHRKZnXLjfGXhHCPj6jAioroHzcXt7O+kcDf9XREDfRkD+OmTw0QjBIAMXgowI6D5QTWpxnUPvwa8GOqLhwvyn1m9gYODjoXI63DoB2WuCrONU9/EE5YwIcHkQJQAQ/td5ABUJ0OFNFyX4KEQgYpCBd4ML32PfhdNY8KtFhcBUtZNkrJvzzTqYY79Iw7NxucNpvT5SpxkYGPiFKurYeiMgGyKIONRFPFGwIgJaLpAIbHnsXwnBdrvdeyWxmuP0EScVDjLwDsjC8o4NMylgVK++OGOeRR0iDjuX3osNvgPP4OVOotGFgYGBj4MsElARAf61Qv6qD/WeveXDvAHVX9BJTABYj7l7qYPzkaIEgwxcAKpQvuskbqyqNabv8o847HDaAfDebiX4LpzG7/oi/bV3loGBgV9QfZK9KQDDf3t72yQDnB/gdFLEfMPrIgk8bAACUE0Y1Hp/tGGDQQZ+MzKjnEUE1EgzEXDeuhNad+8ITwRcVAHgSYCaDvfFWwMcYhuTBwcGPg4qIuAmB/KQABOB29vbMiLA92LMWQSoFUFQPRwR05sIIAsoe4WPQAgGGfiNyAx0Nu6WRQbw/xihc8a/d5gA551hx3yBiJhCbpz+WjvIwMDAKzLnxZEBJQGcllcqVYeH75OVoVefqPMEOB3HBp/3syWKtYzXPo9gkIF3QkUCHCkAWt8eyLz7ViQi4vDjQ7ifRgSQrvL2+ZWea+sUAwMDh6j0lX5V0L1FUA0pOL3VWxaFRg4cIWDnhfNk3aZ1ccjmIWTnLxmDDPwmVFGBjACoAYcw86/1nQN3r2rhDiUCuAdPrgGqDlJFEQYGBq4Ljgg44+9+WQRyjvGPqL+UytBliXsIAfQbv8KI4zxMoI6XK8e1fs9gkIF3QCsq4IgAEwLNywl61nldyK4iExUhcGXK8sqIw8DAwHUgIwJu3QBHCIAsdF+hetNK8wYR2G63e5MCnZ5yhMDdp5oArbqWFzTicl06Bhn4DZgzHJCdy67n/LN7aedBx9V78uuKmUd/ilGf6wkMDAy8Pyp95dYOyML/WUifDbJLk01K1G8WIL/n5+d4fn6O7XYbm80mttvtNKGZx/+VSKDMPH8A99RhBdcevGIhExBHRi4Rgwy8MeYSAceqNT++hhf60Xu5MN3t7e00i1fzV6F1ixtpnQYGBj4uKhKgxtl57HwNg0kAjKcSAs5HX01cLpfx5cuXuLu7Owjjgwis1+t4enqKp6enWCwWsd1uD+4dEQf3Zr2K16qdIVc9zEQA+/x6Ne59qRhk4A3RIgJzxtwi/GQVntzH980YvHZiNehuAoxbSIgJDN/XEQieTDgwMHAd0L7thgecXlG9UA1H6rcD1CnSdQrgzCyXy1gul3F3dzedQ/7Pz8+x2WxivV5P5Xp6eoqImFYZxL0dIdA6V4QGOk+jA66el/4tg0EG3hiuQ1WkgDsWPHigGq/n0FdEHHRMRw5YwN33B7LhAiU5uJ8rJxYtGhgYuB5wH6+ilu6bAxGvE/BUp7CeYH2lYXuOYi6Xy2nfkQHsc5Rhs9nE09PTpE+5LIgQ8CeL8V/nD3B0gMvN8whaxp3nIVwyIRhk4I3QIgHZOD4TAV6UA4aZV8uK2A/t84JDWUjPjem5iIMb68J9leW7sUFm3wMDA9eDKqLZG82M2Df8Sgrcf+gRNvqr1eqADGCYAKRACcFut4vtdhvL5dI6TRERm81munc2XKFtoMOxDBc14OEIJT6XiEEG3gA9wwPOWHNIjAUf+fFYFNgth6dYyLhTcid24Ton3IAyYpdW81SigLIPDAxcBzIS0EsIsmEBBQ8psBN0d3c3GXkeCuAfHwMZgL7ESqhsgPWzxezwsJPjdBUbdDc0izbjdJyWIwNIe2mkYJCBM6OXCLhwG3cEnegXEdPrMrieZ8lGHL4648a5XAdtCaUucdzbDvpa4sDAwGXDOQpVVED1G19TkQLVKewAgQisVqtpX4c2nV4DmUB0Aen5q4QZEXBl4nyRTodDtQxuLRjXRpdGBCIGGTgrWuG1rFNpNAAsVyMDGH//8uXLRArw44kxKIML3SlaQtmKGijbdfnOIREDvxf6bC5RSQ38XrScGHcO1+F89jVCDdfjHJMAJQMI96t+4U8NPz8/T8bZzYdCVJXD97vdLtbr9R4p4EgFt0fE4XwHeP09OpRtw6VGBwYZOAP4QWPbSwg43LVcLqcxstVqNUUGMAGGQ18qYBGvQh+xP0zgxrNcOAyCyZNneBUv7tC4nvOpvP/esOHA+TE3ouNwSUpr4G1QRQUqQhDh3zLilU4VbBDZAbq/v9+LCCD0HxGTMWcDzBOnOVoBnXp3d7c3NMCEgPPSCGsWHcjOc57V4kSXPHdgkIETkREAHNOOoxEB/DA0wISAx8BgmHmYQMuAL20BzHJZeN0kwOw9WiYEDAg1f5ToLRYqGjgOPQSgJ002RHRpimzgNPRGNbOwN+fD1/Ak6Oy+iALgh/86BwDe/2az2ZucBwOvYCfr/v5+L3rA5EDnEjCxydpH5w3o3Co3ZOsiJJcUHRhk4Ej0RgOUUSsJQGSAJ89kK2yxIGUrW7nwPHdGNeIMNwYWEQev1rgIAYM7E86P1wvfFsca/9Z1qqwGOfi46NFlGQlweelbTHqPiJiGB+7v76dfFRHAioIY/4/49WZAZpg16oprsTCRLlmcEQLUh/UmkxHcVyMW3B74XWp0YJCBmVC22Ptzk28cIdB7uHsjPxhp7ggVu404fE1QoUMFLrKQkQ8uA/Ko6jNwGnrb1Xlvc/NwyAjiwHWh8oBbJKBnvFydGR0iXa1W8fDwsDdEwBEBvCq4Xq+nxYQQHYiIg4mB7g0olANvJ2w2m1itVrHZbGKz2RxEF7L5A9xG/ObA3DbhsvVc8zswyMAMzIkGZGE27gi85Xw5ZOWMscuf4cLyOuaVQV9PVOiCQq4D8eQajgiM4YLzoEUWe647lRCoEtSIwSUot4F+qE5zxxk6Rs59X9O5tf5BBHSIAHOl+Hr24tfrdazX6703qb58+ZIOUe52uyk/3FcXLLq9vZ3y4/A/tlWbHEMELnGIIGKQgS70dI5jowPMMrGvY2H6RgF771kIX6GzeHvZqyp8jkYoeeGyO8Y8cBoqL2XOtRnBPAaZYrs0RTfg0YoKaJqInAhqiBxroqg+YF2YvUEVEXvhfEQE8L0BzCGIeB3G5AnTXH6d8Iz78jcOVJfyNUpyeuTaTSREn3CE+RL6yyADDVRK1HWaVnQgGyaAMMCw4lVB9rQBVsCLxcJez3BzDHom+znCw+nmLCQ0iMHx6CUBPW1cEQF3vSovVWhZOs3vvRXdQA7VVXqMwTLgxsj5Yz1It91u97x9fsuAVxPk+VE8wQ9LC4MIYN4A9A9IgTpWXH6OUOLeIALL5XLKk+vp5kRV8wI4jdt37d6T7ndhkIECzvi7re5neSgJUIFFZ4rY/7CF+4gGRwd4q4Kor8603ovVsbJsCIOjGEjHnUYJ0MB89Bj8OSTrGAKhRIDhyEHl+eixgfdFJg/ux3CEgIcK4MwAWBeFFwFCHmq42cAjGgACgLkCGON3rzRnZcdaBUxUOUKgkdqWo8O6tUUOtH0vtQ+8OxmolNF7NlovEYDAVWFxjRDovAEARpYNN7/zH+EFH6tuKSCwvIQxh8oygVeS4/7rrNqI/Y+TuNcaR3SgjRapdGnO1a4tGeY0PdGBihTo8YH3QWb8WzKlzxc/GP2I1y8EPj8/T5EB1pdqSKGbMDygEQGOClRkwNUL8xYcIVBdjPNMaFRPc5mzKEnvkCyX/T37xLuQgR5llo1LvTUyQ1gZNFaQVV46VMD7AC9+4SYeZpMR+etcAC/DyR/mgJA7QsBGnOcq4Dg6gM5V4Hy4jLoa2ECOql+8JQHg/FyIX+9bDR24/LJ+PIjB+8HJU4sUuDFuFxnAXCd2ZNg4Ig0MOhwWfitgu93uEQFMGuRXA5Ff9p0AJQP8xhZPDlSnDOc5ogqozkR5lRQoIXBteGl4czLQq+BU6JxX4f6fE73RgAzZhBC+Xo255uuYMhtnnuyCa3kSDueFDsdtCUOuk2+QlxIBnYwT8dohlGHzEIMSgR5v4zPD9YWevlKh6ivOSDs5dPdS2c6GC/j61jyCrL8PnB+Z9zwnOqBDBbpSKeuu29tbG56HfuJoAvSIThjE8ACTAeDm5ubAi3f12O1eP6fOQxWqjzmiqsOqbv5ARgQ4Tc8QwnvjTchArzKryAC2WejkHA3bQ1RaRMB5RqoYXd4VIciWxoRA8apeIAe8YiHSKttmo82EQA19NisXabO2z4jAiArk6JG5Sk4ZLjLVIgScX2Wwe7x4RxK0zL3HqvsMnBeV3DlSoHqZDb9ey4aayQGIgJIB5A8igPkBIAD4QRcy8dAoA+sf6CAs6d4y0Din9+L2QToXGcC5Oc+gsne/A2clAyoIeoy32TGAG5YZqENP41Usdw5Rad3fEQE+17qXMkq3gA+vmAXDy984QBrkg86H93GZEGjZ0YFankELnM+ARy8RqMhAj3Ft9Y+5Xnwveo29S9db9oF5yAy9++/QctA0P6TDUum73evbBRgOABnA9byuAEcCWO/xsERE7L3FgH1MXMQPEQkuL7cLys6vSbuhAkeOWhGBa4gOnI0MsDA5AasUWosMzAl3tsrYOj6HBLwlXPhJiYGG3nj4AOmy5wLoMSUCOnGGy8Xlc2886L0GXtEiAq3ogF5b9ZFeo6p9yZECTV/91zJqGkc+BiH4/VBZbBEB7FdpXAgehhpEAAYexp8jDUoCmAywLuShSfXSlVRwOhAHrQf0KJeF71dFB+bYLG3/S5Dxs5ABNTjOCPUYYkbFrHobuiIg1fH3NmAs1Doxj49Xoame9sqUb0YENH8uK9K4yThcr4F8HB7bKkoAnMP4Ozhy3UskenBs9GLgbZBFoFoEUJ+ZHseWJw+qzoCRz8iA04F8L4DnK3C+vEAa7sMRVi5z5TCxns36YqZvj4kIvFd/OJkMqDDprPdjQsUsTM4z5nNVw/UI91sY/l6vTuG8bTBcngWLsBoLOa/IhXTMppVA4H6MzIhraE5/Lr3Layj8mni2ogVAr0eu93mr9j8m36w8IzrwdnARWz6u6YAsYuTOq8F0hpK9bTbSrJd4joA6IhlU76ieAkGIiIM3r7K24TqyUW+dz9opO8ft9V44a2SA39fU1+CcMLmKq4F3ht8xzewhcRmr81q2uWh5c+6+mTfvwmL6Xi3YNMbB8OogxsQ4/MZf53JRByYa3El05qx+T1w7aVVHzW8gjwbMiQRkfai6n0vzHtEw1891f+D34FS96CJKVb7qxS8Wi72vFOJ4y1bgHkpIWJfq8ASIB098ZNtVef/ZvbWM1yi/J5EBFw3ICAHgDHjFkjISwD8+n5WTtw4V42tdq+3hfhmYzbo5AnwMM3O1vdfrdUTE3uIeMN5YvEMX6+AIgY67aX3ds2oZE5Rf6/aZkXn+x0SQeo71luVU9EbnPvvzf0/0RgHUw69IqBrh7J4VWM8BTATmyozTT+y0sG5FGZ39UmKg+bv/LjpwLN6DEB9FBliweDhA34N3s9Idw8qMEP6fQghcJ2CBV/R4TNkxJkctUsDl1jA8dwQ3LwCvzTCen5+nVwvRFvz5T/12t3rp/HqOhtA0XdZGrvNw3XRW7mdCRgSyY5VH5fZ77vsWmEuWnewMkvB7ofrIEbYe+eNjFdnInCKNUroIKeupuWRZnRi1F7w2Ci/cpq9Fo+w9UYprluXZZCAjAvrLQsbHhDVbngfnmykct+X7K+nIypLtq0GshkkADlOhHOytK4tF+TDGxnmi47iVtHQWrpuYWLF8bhN0IK0T15/b1e1/NvQa/ZayOwcR6D2W3be6tpdc95ad0w3ScDyOJYSt9s50bhUp6CW5rKN6yuEmEboZ/uoEZREBfNYY59wQZ9Yfe6IDlZ15Lzk/OjKgEQE1fgwXYlZvVw1RJcAaJegpr8uzN4TJ17e8OkeQssiAPngWXi0Tk4TFYrG34haOc7if20jnHSi5QJ69bcih/4jDjxkpi+7t1B8RvR7zMfnOac8Wme29NoP2Xy1bj2EfBv9tMYcIaoSg5Yw53cZp+H8WMeb9XqdR7+UmEbIO1LrhetbZ1by3OVGBHiJcOaG/uz/MIgMa8nHRgIwIYN8RAj5fGWz8bwlmds7l1xJkvbYiBkoGuJ2q6EDGPLlMSgYcIUDZNcxfheNcm2TgqMBut9v7dkFW7jFM8IoqKnBsfq0oVnXfuaSgBdfXtYynKLdBFk5HzzNnHdjjlbccN0b1lpGLivY4fS6yq5OvseWlkbO+w7ZN9be2S7a9Rhw1TDCXEETkEy0qZdYjuC5KkLGs6npNk7FbFQp33JEC3uo9dM5AJlDcWQD9Brerj0YI2Ejrgh2YadsiYTivUYGI19XAuIN8RiLg5PcUo+sUdI8inrt1efRAiT7v65spKqcjUvA2yHRp67m2Ij2af8uJijhcBI2hThHrdA35676+HcDXgADw2wTZK9EuMsD7KtfaNq1jl45uMtAiAK3x8YhDEqBkoDLY7ph6H+5h9SrO6p5zSEBFBDhPDmdx+bOyuIgKT/rjLxFmcIqZ83Cv3PC1DC67Y//8kQ/+JPNnQYvI9hjinrx70zr55eMu3zn/Xb9rDXtlpF37bPV/oB89cjMnKqDXYKs6gXWgK4c6RWywVVdxmTg99JGSAugfJgdaFtVLbON4nwmLtlFFCBTcVpdEgk8eJuglAhUqL16VlhNWRwTmMrPsAfUYf22PjBBo3bSsvcbSEYLFYrG35nf2SqeO3y8Wi73vFkTEXiiNr3edhlm/qwPf97OQgRapfSvD37pfRmh1PytrdSzikOxDcWrki9O7fjcIwXlQkdBzwUUE+F49pNfpbtVxrEec46SGGtHJxWIxfZRts9lMhp3LzpEEhps/wISnMug9pIDbqZccvyVmRQawzQxgLxlwRlvPq8JxwqQNXpECTe/q1jo/hwTo/4hDrz2bocrvwPKvqq8uqqGT+zT8xvnAk2dS0ZoPwO2SvT2C+zoi8VGh7VApw17ScAyJcHk5458RA3dtT5lUibNH5kjBIARvDyeTx+jrKk89lulMl7fz/nlV1Ux+HCEAEYBDg7TQaYig4jgMPC+oFhF7kQGQCaTF9Sq354wOvAdmRwawrX4Vss5f3SfzqjlPbFuEoCpXVWcuTw8p0PZwcwVcGaqyViyUGS7fVz2xLApxc3NjhxqUwLh66X/tFHOjNNeKXiKQpdM0LWM9t1xVfr37FaGIOJyfAiUOJR2RT5ptEQJXr48uU+dCJTPVuR6vVnWge73a5Qv54Kgky0wWIVCdxnWADKlDdXNzM63Sijz4OyogHNomIBD62WOOEmRtNEc21Sa+h2yftM5ApRQ4bXa9q3TLwGbIQk34fyqcQq8IQVb/Ux90r0FQwsH3UyXMHYe/exDhjb0jAjqW5sr4mRR3ixhk+5l8VXM0esvTIic9JMCRApYJVrRKApzH5CJVqth7ycFAjWPkpiefjBAoKVCACMDr1jkDHB1wjkWvkweCwcf4VWw+xnlyZABpeSKh6ws95AnpVD9n8v275P7oyIAem/s/Iw+VQPH12jhZNMARglan6D1fKUjNQwXP5VeFl1Qp6v3dPbMIhPPKuHzoOPpmAb+yyPfmj3/wcMNnQlbfyuC7/YpgOjlTtDzpnnJVhMSRAP7PoVe9jyOk2fBR5iWpYhwEwWNu/8t0iGtv3nf62v1Yh7MxRd5MGPXtgQg/3MjyUfUH6CTg5eVlb0iVowMsZyzzvOXoa9XOlWyqzncy/rtl++hvE/QIW0vh9JIBNxs/M/LaiL3KcU69XJ16hIMFuWfYgO+jaXQf+XG+mobbxk3402iAjp85goK5BZyvDjM4w/CRMIcQV4TAGd5j39g5tvyZTGu5s3kyLFcsQyibQzVcMAjBaThHn8v0pNPXvBy9rvGvBlnlA2AvPZNnRwTcpOlsSAqfTEb4H+n5firT/J/Tsv7jsmVth3vx+Soipnm+Fc721ULe9uwzywJazFLv2cOeXGO7clVl7sm/RQQqzL3O3bNVN70uIg46g3prTAo4Pzb4Wgb8EFrjdv+oZCCDypMjxLpVEpCRYkeOq8gYp2uVV/POCIimd/NLIl6jTixrikEIrgPumWdEoDV3wBnEiDiYzMdgm6E6yckt8u2dwJy9McX6TCMD2j+OtUtVlOB34OSvFs7dZxbnQopOuPhBQ9Hxu6SVwXfl6C2vHssYanZdhtaESIdMOTtD4vJ1Y3bcqeDVa6RA50CowWcjoJ2E88MQwkfDHILJ/7M2VQXKirWakBXhX8tSUtCrpLhsVbpsjgyet1sNM2sbVdpzQ6WDELwtMiKgUQD+2M/t7e3BPCOA9b8+O3VQGM6JVNuiRBl5LRb7rx32EAXVZyizIwV8T0dYGUp09bhL85byfXJkoKX8+LhWmsMt+K8KUA1OxOFDrYw00IoMtAhBhblEoCIQrYft2Kjz0nEvvU7LouQqYr8DZkZL80M51ODjGWKS0EdC9dwro1oRASXDqmjdcFDE/itZEYehVibScwhBBteX9Vp+7iAFuI7HcVH/bD0CvWdFbAYh2EdrCLJCRWQzWb25uZkIAP8ivPeuDqF7ywkyrfKmerSlW7k93OvbCheZ47cK3HCBu1dP+zpCgDS/KwI2iwxkhciMg+4zG9MfzqlQOe8T2zne5rEd4tg83JiRY7AARzr0npqXtncmyJxWy8DQ2bxM3JSIaQfn+rqO/FGHCVxdtJ5OmfYQASUBUK63t7+6a/XtCTw7fi9aJ0adokzUa+GxXy0X+rMCRIC3DPW+kJe7P+/zfQch+IW3IgLYKlmFzm59vA5QHZiVBfop61ut+zAJ6HVKHOmBnPMQKzu0p6yn4qIIrWGEc+IskYHMW+Q02bU6RKAK0JGB7XY7KRENGUX0v8LWGqM5tiNpuEsNgFvQh5Uj6lSV45iy8X01asD3Yq9NDZR7xq3FQJDPRxkmmCvjjij3EAEo1tvb2z1vSz0IndOhk6b4+eqzcTKWeSmcjoeQWsNz3HdBDlB39vrc61/cFyqlOAhAH3o81cqRYx0GeWX5VDIQUS9KFvH6PN18ACUhzuHg8p0DfC+OBgBZ1Mqdd86dO6dl77FN55b3s8wZcB6kpnHH2fuEgLFwKbtkI4VvTQNskLKG1X0uR29dK1TDFTCkvGXwO7etslXsF+d5EiDnxcyenx8zZ0eIOH3mselCM3hXuGdc7hpQybLuO+XkiLMjBUoIlBi7e2dK1MERAzd+2QrHc1RAo0BMALCP17kWi8VE6JEXZncDzgucoyAHOcjRazQzIsByykSW9bY6PVUEgJ8VG3w3RODkqocIuHK00mta7WsARwbmDMtwf8v0vMrzW8r12eYMOA/IwYWNYZwgTCxULFBs5CJib2lJzo+P6b1bx9zDbHk/GdnQ+vGkGhyPeH3vFQQne5c2KwOHqFQpc6fRDsT30Hy5DEpcstfG+FOhutW2uSb0eFO879rW9Q+nYLNfNnemBVVU/B/HUBZVNi3jqtfwhCoNx2rZQQwAlrGMFPB5Jgg9yvQzISOMx+SREYFsSMtNeFXwHAEX2dJoUBURAOYYYa5fdq32V95nOcf11XBBSwZb51WO34oYdJMBVSiMSuHp9QoWmru7u7i9vY3lcnkwgRCVZwKA8A0LTG9DzW3EzBhXUQeXh04EQxtwCNWFR6u81eAzMgXMnVvz0PpyOhzTIRpHAjhacI3RgV5vg/cdIXDXZQrWvZ7FY7QKbmP85y2na/2fSwicQlUiqmkzz4xlhAktfk4Z8v7v8JyuDU4+s//Z9e7H8gidVr1RoHLCBpOfbzZvyoGjBy1naS5YJ8J5wz6iFUwE+JVD1K9FpHEt788lBVXex+CsEwidgeM07jomAsvlMpbL5V50QNlYROx50MhjToPMNeBz8nFRCq6n7vM1KuC4VvN0AuGiAsgTRMNNEMw8OOeRaV3h8VeRACYB16SkW8bc/Xfb1o+HbFgu9LxC25RlSBWT+/E1LFcto6rndahAvaas3ZRc8hgtEwF37Ryjn/WZj4o5ctubxslnNlTA8wZAFBisD1iGIqKpdwC2K3xtRgjc5FaVIb2Oy440Nzc3e8NbXB/X546Rvd60b0F6z7LoUMRhSDwiDhrThYNABPgHQsAKQz9ywnmoQjkWLSXTMo5KDlS4IGAaGWBl6gx668GzYVfwfAtXl4y06dgdkzKNQoBw6BwBZ6iuGZV3dQwRUCWroVc3pKOKkBVRi3Q5IoD9ihCo/Dmvx6XN+ouSBv3PRAD77v6tbfasqja6ZlTy2Eqvx7Pn4Eirm+uFX8S+LlEiyedbz4SvUahd0PpVUQMmC6zrWBeyg6ZDAKz7VJZ7IwKVY6l1eqvowGwywAXVDsoCwkBh1cCARS6Xy7i7u4v7+/tYrVYHUQGEZXgGM64/l4GpPPtTr3cdKuJwMox6RD1DBS0CoxMJAf4gUTYxzXUMzlOjAUwKrt3wK3qJQEsJt4iAiwwA3O5MuJSAaTrtqw4ZIeBy9xpYRyKzttA2mYtM9lsKUg3FR4aT1TnXZj8QACYE+iosG0U2nBrJqsqWEQW9zuk6zbOa9Orq7dqBnVpM/AaJ1whBJWfuf0UEXBnPKbtHRQZ6O5mOveAYGhVGvyIDLy+/XiWcM3u0pSDO0YiZh6VpKuOQCVvEvDX9K6HjcrKQoi156wxedm9HBPgLY9esYHsMP++7rTN0mXflIgMZsdYoGRMCnMe2ihBkx5UQcHonC5ArVrBI20MKMAarbarQvpuRFT7e28/PrVTfAy39Ul1X/TSNklYYfWw1OsA2gNuYbUJVTr1Gj/H/jBQ4mdZ8MlKgsqv94vb29oCQ6/oDlddfpXF1fUscNWdAK+oUj46FMjNkpXd7ext3d3exWq2m33K5PBAiN5s6oh0GyxQc/+9VGK12qc67Nmpdh/q6mamuI6lCVKFSxeuiA5kR0qEB5K9E4CNGBYAWEciOtQiBjr3yeUYPEdC2n6tMqv7Sc52bg+JCuFU+50RGYD4yjiUG7ppKdnWtAR4q4HUxoHugbyL8WyKAixq0SK7qeoWbN6DX9/xX3ch9MCMCWZlPjQxo+U6V61lvE/AN2bjz/mKx/yU7nSinZABvEOhYE4SoYpBO+fZOQuF6zUVPVMBdw8paX61iQXBRgZZ3mp1zAsYGhTuQRgv0+eGcGnyVAdcexyijS0ClWKtn00MEmBDoMb2vPkc3gfAYj6Ly+nvrotfzcJ4eU7gQcI/i1HJWUYMs/WdF9qxbUYFKjrO3CQAYSl5YTecxORKgQ1+cH1CF+3FcCWrm9FTtw8A9OTKgc3jYCa48/4wsOLyl3M6ODPBPJy+5BmdlxxVRZqljpchD759B5yNEHLLPlhLIFCP/d0x1DtBO1SQT7mjaiZxQcnupwVBCAPAiR1++fIntdjutfxDxOvlT7+kEGfX6yOghpJn3wGkrIqAKKssnKx8/m17D2FNfp/y5bJXXX3lrlVLsjdZl6QYhqOEMvzufpWeZdctns04HMh1RRQJcuoj9D92hfFk9eZ8nCjKRyUh4lh/uCz0L545/bCd5/leGrO6/S06PnjPAFc0qr7+Ifa9BZ5xyA/d2VjxEhKLYALbeZuBznB9vOQ2OnUoEuI34nNaJz/HklIi+7xygHbhNXN1BCLLJhoxjjFPvNdcEVTJz9vl/5o31htU1TybF+gzcfqvMjgjoPBNHULN6O7DuUJyiCD+7wa+IGMMZej3O/1Wvu2MgCYvF/keBdNiTy9pTTrYN6ggBTBCUtCwWi70hjNbwqN5ftzrMBzLkIgSc/yVEAhRHv1qYEQI1ctzg+I+tKhc3Cxr/FZkHpUYT5yE8fB+cwz2UAFTEoQrJZoy7mu/gogCZgddr9W0ADk8xEXChNiZM1diutp12aoT91Bh9BDglwNvWfqVcNU0vCWDi6xSsM/7OOFZeofMCneLMvDOnoOfgGAPx2QlAxHwSoP8zmXXn1aAqSeDjWWTAHWd9DmeFdZirnyMHvN5BtaBXRdxdudRWYKgAW56LpW8X8PM5p6yeKvsnvU2gwwZVyM4ZQn4YnHcW3mbhitj/PC6v6+8YGM94Rho+z/taHi13LxFgxdkzLuwIAeerx7TDuXZEnkoKWqHdHoXiOpGTgWMMwSXAKYgeRXFOtDp3pcTwfNzwQS+0n87xpAAmC+fw9LXvVvlm5z4jYWgZ+yxd9uOhxIwQuDwzcOif9SCH4OHoaL00HyUivBBS9tGvOe3I99GhAmzhHDFx1z6p939PuTwpMoBtLyHI/qMxs2hAJohQDCw8fC0bwJYn5eqGezul06OkXQjJhaa4DVjh6SQ91JnbJGJ/iEXryel13kEvG1ZUHVKJ37H3eC9UcjqHHMytq0Zy3CQ8zdvJtJNvRwpaZc76XIsQZP2X9+foCO4PLWJepWVkw2XXjN5oAMMRgpYMADrUi301smoIOV/OS4coObQe8fr2DOqa1QVwEQH38TvV6VWUQnUuT5iHfmY9D1LQIgTufj0yeW657SYD1cPsQSas1WQLvT8/QGZ+nBfS7nav3y7Q0HalDNTwqyfSqrcKjK7OpWRA2wJhJjU2bMwZTAQ0Xy5/FW3h9lU4YqLXYoiAj+n+NaAy/BWBys4rHHHmXyti48rK3lREWHIwxwtx/Twbb1UygPycnDqFmxGGnnrjevd/DBe04Qx9ZvyVEGavwbJM6rGqf6i8ch/AbH21ERU0OsHfu+G1DwAXxueycRtwndg5AxnQ6IAOr+Eert/MwalEwuHkTxgfQwwc8JA5tNJTMWfMdKJgRgJcGXS/t3HVSPBsWv0aYzU8wp7hYrGY3s3V8XjUSzsg9gE1DsywNR8Vdr6+esZ8rWt7bZ9LR0Z6M8XW2jIyEsDKgscc9XmwDFSEgMuM39zhAd26UKu2ET9/lTUlAtwnq7JlslPVae7xz4LK0PcSAj6mwwM9M/M5H0cCnLHGVueVVbqMF7VzX8FlnYtXA6vyuvZjEp9Fgd0yxdwnHXF+D1I7mwz0Cg+DGywTEFYO/P4p/mdDEC5M2BoGaEGJQOvBuIcK4ebVuZidRhyOOaHcXH+dC5HVjdmqloMNDu7rkD0frXMPseL8roEIVIZclYFus2sYLuLEz52PsTy5aIESAmfsde6JKjAui0MWBWNS4Lws7q9Iz+taYOsmC88ZxuBjVX1GlOAXegx76ziD15KpXg13Qzu8ddepDouov8OhNgBlUjLA37tBns/Pz3sr3GrUqkd3qaHXyAhHKRwh4Ptxu/1uQnB0ZEArpOPWc8CKUT1L9mY5nMPhGc5Hj82tU4upIZ0776AsEULKHnNWd64Lh+IzuOgACx8m4zjFy4LpogOcn3p1nIfOF7gmIqD/tfwtIlARXe30TNBclKAVkXHek5MdDU26snA5XXvgfirDHC7mezIJ4U+Ocx2Z9Gu/njt8wG3o4BTtZ0DLsGeGnq/nLet31vkZiWhBI4lKMNVZUk/ekWqUCzIKInB3d7cnqzqfzEU1tR17o5zcXto+6I+cVu2HIwC/Q26PIgOqILWyEX3vqjN7AnScE0qDV3ji/7iGt4Aqn6o8lXfhjH/VHm5MFYKOpZa5rVTxa+iJFToTAihehRvX4nEsFvqKyPA5x8Sz7bXCGf5sPyMClazovioyln3eMhmrypVFzrSPtpSMyoRTsm4OTMS+t6XyzMrc/e+JOPWSS0cosrw/A0HoIbKVUXeOwhwS4HSE2gsNtTMZUCKgUVQuF4gqEwHWuxG/5HS73R5EL13/6AWXmYf5MtLkyLnKamabqv5+LM4WGWAyoMTAIQsh46EDEIDtdnvwIZxsDDwzTlXEoMc49kLbwi3VqV68jqW6tyU0bVZebVf8RyfitmgRATVg7MXNUeLXgjmEAPtOjvk82kvZf/Zz0QEdLmg9c9wD8sNKRMuRtYH2bfa28MMxVbLb7TbW6/XeMdyvIgIuOpDVV+vJ9anq6BTpZyQEut9zfSb7Tt9nzzLL142547lkXnvE64RVJa1MXN2QFgy2q1dVVk3j7s2kpXeYQI29O/6WOGkCIdDLDvUabDXU6MKJ8Dawz1+JwjW8jfDGv0fJ9DR8pkS1LdwEGx5v47yYSbJH1wMlIBGHEwl1QaOMHHF4mY+hrErIeB/Avc9Brt4SLZntIQFZHs7j1v9KANRjwGRCVw6NqjHZUyKg+WahyowI8PjrcrmM+/v7yeOCsmXivl6vp/IxQQCUCCghcO3lngOXX899RoMfUROnOTqar3HGz50DWKcx8eslB63yV9eyJ67GmGWA9VXV/7XN3LHdbv/tNV4fAbaLdbvq1ozI8/5bE4PZHyrCfo9R1croebdQBdIzEdhut7HZbCaFwue4LJlx4zSZ4uBzlUKp6sPHOHzq3stWlsqKG4Za26UHmaHgPNWTd8+yGnLRju3aXT1Zd59LRY9nkB1X+WrVuYoOROy/b63DQipzOmGQr+X0TsYzonNzc7NHBPCpcf5hPDbiFyFZr9fx9PQ0RQzQh0Hmud5ZVKBFCHpQkTP3bD4iWTjG+PO1Ti6wr4RA76HRTtbZTBLYQGpkjKHywsMErfofA61rpsPVhqnt43KqjGdth7TI3xGCc8vr7MhAZURagDKrGpHzzbwHN1zQKisD92VG1lKSVV35gfJwgCMCbNzdnIHMO2NWWZVDy9Qqe+bVaztoZ1bhdvethmWuCRnxc8+M02ekgA2diwpoXi6UyUSL5YhfZcIxJdpZVEhljYkAk4CvX7/GH3/8EX/88cd0DB+52mw28fT0FD9//ozlcjmVAWSAowMZEWqhh7BnaCnQnj5zrcgMTstg6vlsiJcB+YK+ViOuWy6Pi4wiHzaunCfrTHZ2HMFGfnpfV2d2rrI5DcDz83NsNptYLpex2Wzi9vY2np6epjQYNlMdr22mmGP4TyEIs79aiJu5xu65NmLfa3RKkPPWB89CwQ84u38VNXCEwJVXH0ZmHHhuAM+4dq9i6cQ/p+y1bKysM8+9JTjaEdmocxp3nfs56CQjLuMlwT3H7FxPPs6QtDpnpbQcQeV81VNZLF6HFQCELjUy5OrKefL8gNVqFXd3d/Hw8BBfv36Nr1+/xl9//RV//vlnfP36NR4eHibDv16v4/HxMb59+xbL5XKqw2azic1mszd8kEUCeglBhurZ9T6bc3tdvxuZwXHQNnH5sAOT5ec8e9XbTodH7JPWm5ubg9VS9TqNKEH/oswgxEyMeYVaLZOLROH+qsdvbm7sIkY8JABSvF6vp6G0x8fHiSCgHZkcI4/qGfVEB46V3ZPmDPR4nBH7XypUQqFGjKH/9X6OCLgyZV5QRL7AhSrLikFn3hRPXtFlO9XwZ+Gu1kNFx8s+cezq1vLutd7ceeDlcX6cHkoA9boGhdpDAqrogMujIpCZXLvnoMMtTAB0CAmypZEBNvA6r4DLx3nzLOzVajVFAr5+/Rp///339AMpWK1Wsdvt4unpKX78+BGr1Wp6jXW9XsfPnz8nZYg3Dfin7ZRFVTK49JmXr2k+AiGYQ14j/ERLHNdnw86O0zGsHyL2I1UcFeL5XmzMUQ7IJpMPdw/oLpZf6Bqnk3A9v4WA/yiLkgJ18GDQIdc6iVYJAYjv4+Nj/PjxI75//x4/fvyIHz9+xHK5jMfHx6n/bjabvTKrXXNOag8hmIuTJxA6o84GhCcRKZynq0qTFV5PBed2YM2Tl5iMaM+65+GAjAjoa1jqGSnYc++pC69YhxULXcd0nUi9Ua4Tn9MOr2yaO52SgktEryzpf1WG7hhQGZwe71UJqPYDJrS4B88rQP/j/0wItExuaGC1WsVqtYr7+/uJDPz111/x999/x7/+9a+JEDAZwLABIgI/f/6M79+/H8zs5ihF5W0e26crg+fSu/PXRAhacA6NthFvlezyfzbWTjfgOC/qo8bXOUAuqqh6yDkxbn4VPG88Q9VrPJdFI51cTx4m4z5xd3c3/UCUUE5Mon18fIzv37/HP//8E//880/c3d3F9+/fD1ZCVKdYdSqX663k8eQPFfF/JQIwCJlxgIeJSruVp9irYeWmSzxqg7kyOrSUcjZ5jzsGL9HqfjrWxNdqVEPbkEkBR1r4WrBqnGNB4vJzXrrv6t4DNlxZO10yMs++Sl9FBVzeTjaz/632BNyEJhx3JCAi/xwswMNbmCwIIvDw8BB//PHHNDSAyMC//vWv+Ouvv+L+/n4iAxgy2G638fj4OClBXRaWSYmSSYeqTZz3VF0/JyJwTYSgJV9z8mDdywROhwo0hA/sdrs9IsDpsjlfSnhZ56nuwnnYFsg7h96Rj0an2Wi7qADKgv4AMvDw8BD39/exWq3i4eFh6h+Qa5QJE2lBBv74449YrVbTegfcRmiTXnKMMh5DlCucPTKQpYl4ndzBx3RCEYei9MfeBPIDVBngmCMt7hqGMjM9B+jbENnQgK7j3hJ0N56WzY1gNumUq07M5Hzc88o6Y9aGelyVevUs3gst463HeiICzhhlsnYOhe2ud+WL8J/6dvXhkCh+FSFAhODvv/+eyMDPnz8nj+zp6Sm+ffsW9/f3ByFVJTJcB+17c2UoIwKqQOcQgmvEXDlzOpePu4mDatC5zdT4c1QABlP1kNNvHHFw90HZGDx+j/88l4Z1rX6XgHUgRwYwbwZDZg8PDxM5uLu721tZ9uXlZZo3gD7AdgBl4DflMnLsnpMeP4e8vsmcAR3n1PRQRup5QzA4QsAPRIlH5uW0GrIHVTr3SmRGBjidlssJOtdNGSvXMWPVSgQc09R20dCa1l3nNBwjeJesWFukj49lpEDTqZfhOm+L/Wf9SM9V3jTLBOSBh8LYY9LVBXnOgJIBEAKQApABnieAuQPIRyfY4t1ryKi2l9apx4BrWr1ujtfvnuMlwslfS0Zb16tuYwOpDo0jA+rc6DwBnbekcDrS6TyAh0ZdOXX4F/nwz7UFiDTW1sBwGfoASAEILw8XPD8/x9PTU3z9+nXv9VtEJEAWlsvlNLGW9bWTYW6bcxPWsyw6pOxOmZV2Un5ovFgJP2xe1cwxVrA89XI4fzWKFTScnqXh+7M3xWSAowHKRrUdOITG42vcFty+lVeOtnDl1Tpy++g+t5mSMqcc3bFLVZ6tMrrzzktqKVikbRmTihA4hatGTQlDRjq4T3IfwXE3XwAKUMkAK0MoxNVqNd1zs9kcEAGNCqinqcpP2yBrl6wNte2rSFVFlK8dPTKKrfuxI+NW8YvYH7Z0Mqtvg6ku07kGDEc2VH4Xi9e3aFj38w8kmMunbybo/CpuA36zxhHjh4eHPdKLfDabTXz79m169RaTC5+enqbJhTyPxumXFonNiO5cnGWYQMGC48ZH+IGqsMC7iNj/MhYeCMDzDZhhsmJhY1YRAhVwTasKk38ZGXDjagzUlUlANq7GHUjzQLv2RAnYQ+RnhfPqnanBUQ8zIwGaD5fxPTHHO9LjGSGo8qs8zh4yEeGJAPZZAbIiy+7JBM8RO/7CJg8XsALULX6r1WryeHCd9gfVCc74uPpn7arpMyKhkQE9luXv/l8ysvbIDL07r2SN88qIZeatO+9bf3ptRRRcOhzT4S/IIqCvcmv5kJcjO2gTXnwLkwgh/3/++efBcMFu92sY4P7+PhaL16EzTKj9/v373uRD95sbzToFZ4sMABmrVHbHhg4Pjx8wDL+yJX6oLFROMLMJhj1wBMENCygZqIgAG0TtFDyuhuhARKSEwIXj+DhHCdiQs/Hg80x4uNyqPPGMeavn9dwlwtVBz7m0lQFiVCy+dT8804wIADwPwCljyL8LP7q0PLSln3/luQO88iBPCkQ+2k7O8GTDHxVaBKt1nWtnlu+e+1wanDxmht79eP6G288InEKNFjtomeFHOt5XI59FBrTOfH8mBXwtv7rI9+H82PHJHF11BHVuDQ8XoH9uNpv4/v37FElz/cdFBrRub0kMuslAJgQ4p/turIkVU8Th62kKNlCsQBA94C+j8YPHQ8A59oac0lRGqCFUvkdGBPQdXDw4dAjN30VHmARU0QA9rmE2Njxo94jXcTMtIz8zfpbcXpymtQQo5439944MtIyFpnFK1eWVGRm37YHm5yICbrigVT83f0QJChNuNhbuDRldcAVKGK9qYZEhfsecSa8Of/W2TZbekVFHYFvXcpu4/WtBZfir4xohzPS+I3NKYHGsNUSraBEBjYC6/oi0OtcpIyMqA+qgqWyrXLMuxTAx/mcTyx0B0OFZRg8ROEVWT44MqOBEHAoKjJAao4jDMX42/Bzm4Tyxjw9B4CGzUeSwERu1ihBk9dNy6YxoJT7OO1fiw2xZIyU9D1MNv0YKuH1RTjUoLnR2DJzRUy/hvckAozLw2gmVEGReUXbsmDpzezmSi0l6Sg4yUu6iAqpwMk/dGQ8ACnO9XsfLy8s0afDHjx/TIkNYhQ0KVIlwTxuo/GQeW0YIuD1a7a5E+VJktoVMlisi4HQY/+f8cLy6r0MrktPzXDJU0SXuHyxrSh64jE4/w/jjexuPj49TFODu7m6S7/V6PQ0RQK8uFou9Zbh54SUdZs2GabXfviVmkwGnGLIHWjFNvUYnAqrw4liWr275NSouD+cD9DBXMD4lBS4/Z/gcw+VjSg4q9BoaZclzPcpqjC4rE9/PEYJLQ0uJunTuP6BEDFs1Mtm1nC57bqzYqvy4DkoIqjk0WgcuB0exNptNPD4+Tvd6enqK79+/x7dv3+Kff/6ZVl37+fNnPD097b1CpeS3V04q4pl5U9i2yIeSh95+cilwxDUjANUP178FnGNWyWILPWSEnU2N+jqgTJBzJgI8H0ZXJ0REDcPcIANMkEEeQA5UjjP7+Dswiwy0BI0VT8Q+O+uBjqFXDYNjHG1QTwmr8ekriGqkNISv42MaNmVSoAslqSKrCEBPGIzhlKRLq/VTxabPxCk7ZcnOM2t5bHr82A5/Tjhl15JPlfsMGRHAtqcfOEKgz43HNRWO6Oq8HSbFWZSMjT+HTKEYMREq4tfbA7vdblpg6L///e+04tq3b9+mKIEqQddG2hZZdCBrM8C1NY8Fu/yyaMDv8szeAi0i4I4BHOmEPFQRpDltpMSLt1WonMul+THUFqhez0gByoQhaF5JEAsG8dAwhgSYCCBCEBHTXAEmx4iYMSl29VBy9tYyOGvOALaZMDGgRBaL18VwMrCx0AiBGi0XaWBloFsdRmCliHRKDDgPnVDl5gko1KPuMfq9nrPmw2Aj0mN4ss7tjJpel3lyjmi4dJcARwicd1WlzYwTb/l4LyHg/FkRs8FyClr7opIAlX8lBNwXkY7XWoeH9P3799jtfq0ngOG6nz9/TmTg//7v//ZIAQ8ZIE+VI9cGVftwHSvM8bIceb42OF1YOW8Zya2Mfw9abcf3ZwKg1+ncJe4fLXIO+8OTbNlmOTKMOoP88jwxHk5RG4j0eEMAwwzfvn3b6w8gBOv1em9Z5ur5ZJGrc2IWGXDjSnwsYt/QYcy/mp0JVEwQ10Lp6GQ9bjwXJUBZWBFymVjQAK2fIwPMZLkeWm6+B89tQBrezj3Hz0eNTdVpMmWX3asVzq2Mfqbwfxe07s6wV9dU5OAtDYZGFVQh9kYIsrFT9Y6U1CkR+Pnz57R4ysvLy7RgCjwofK3wf//73x4hwGtUT09Pe2vBV96+tkNvWrTPHALAdVfF+1EIAR93BseljTiMCmQkNGsjdYBa5cW+i1pljp/z7rm/IOQPna1RgqzMwGaziZubmykS5ur88vIyDZvxq4Xr9Tq+f/8e//3vf+M///lP/O9//4tv375N5BhRMr5nRdTYzjqcIquz3ybg8Ei2XjVPnEOoHtCwCEMfgioAEIKIOCAm6gFpiBPX85KPmUJlsuPWEeB7anndfnbMedUubeVBMRyT7Emrx/leXCYuB5c/IwZZPd8Lx3iQjqW7tOc0HCqLTlZVbne715U7NVqnfaN6G4SfFYgAlNyPHz8i4vWbA3iFarfbTccQEmVS8M8//0xDBZvN5ui3CeailxBwX8nKM5dcXCO0HZxOjXjVj/z8KtnndBU5yAhA9b91XOcLgATguE6i5vo4W8V9kX/oIzxEgOPfv3+f+sJ//vOf+Pbt2xQdQH/gelTRgbdENxlgo6+vR7iVqTjMqELWamT1qPFDZEDfa+YysiFUdqXlYGPH5zIiwO9ha9nZ41cCw3VyaTIS5MLxmtaF8bIoi5s1jPbhrcIZ+x5mqgTmEggBMFe5O0Kg589FBFx0x0UHsshApkig4HTiFuQKfQr/MYHq6elpknsoPbfS2uPjY/z8+XP6ZCt+mDeAOQPoK73txW2r7Vx5vu58q731+DVGB1T/9F7DW/VUHRnFOZVBF0WcMyTq2ruaZFg5ZRUJ4P6gddb76rAZiDIiXYiK8YeIXl5epogaJtV++/Ytvn37NkXKODrAZc6iN4qWAzoHs8gAT5ZwIfNsIh6/a98z3o3rectgssAGTVke358nGmaG2A0NZO+EKllRkuEMvyMFWd2Q1r1yyIrRtWFmILiOvJwyb7kt3JsY/P+aFGTLkFfXVOfmtMEcw1SRZVbO+lOCp4ouG1bAPTiaBkX39PQ0KVWEQZkIQOlhohX/QA7weqESgTmEQNuIz7WUpsvH/f9IUEeiZYT5mohXp0IjvRGvbV7pZzagWh5HDjLbUOlLTp8RZCUESi6dM8ZtoNFR7iMgwhhCg53gfsH9AG8V4M0Cnkyb6Wz+r8/Utdex6CYDFRHQSRURuceqqDoyG2z9uqGSgWy5SZRFx0f1PxtJRwRcOCmLBOjKW5wmE/gsX20H134Mx3K5E8Dw67Nz1zrWj+PqOaGcldK+NJxSvsxYZ+d78nIhWk4D7129NFeO3vZneeM8cXyz2UzpNpvNQRQQShFkAD9+/xpEgL8Op3XrNVjnIqE9wwLuOVwyWI5cm/aQATaaETGta6ERKdbHuIbbykUHsG0RgRYxYDhD74gvp8N+ZjNUNheLxVRfdQL5DRv+KiHsAH+HgH84zgsXtVA9u3PI6Cwy4IYG1KBE+HXuFTA0/CAzgQVDVSHEvQCnAFmw+BwvDIH/OlGQl4nkMkIIXDTAfZ4zE3RXD06rQy2uDfl6Vz9Op88riwqgHOhMLuLgQtBaNlVO70UOVBbfshyndkolWRkhZOWmkQGOVKni1egU58+KlNsI8uwIMa85wCsP8muEbqGVY9ppjhw5strKU+VV010LlJTzT429QuuuMqHr/0ccfjGQy+Hkj/9n+tBdo7LTeiZOh/XCOVMczmc7gNcPsxU5scaGkgA3mVbr6frJW5HTWWSAPWc3cdCRAA1bslLTSIJ60nodkwKcY5KQverH+TFASLDFOKh+blUJhwoEtjweyuHQiumiHK6TuPK76zUq4+CGQJTIOW8UbcNhYY609ITStQ6Xhl7DkV07p15V/o4I8JAAe+1QyipvPLTD/ZG9GaTjY0gDsCcEIsDywaRXV1ljJccf39J7uP9Ve6nR7mnTU3CN0QFASYAzNgpHBFjvtr6Doc9Ky6I6LitzpSs1X5TTDZFldUR5e8F562R0tT3s1O12u6kvIEIGwox+owTdOcRzZe9YWZ09Z0AJABshNe7OQClZYAXswup6HdJVBqk1RKGCC+84IzsMVqBuvXXed2TAtaurQ2s4IWtXV388Bx0K4eiA5sNEQKMDXEY2UNfkPfVgTp1anbeVTxYRYKgMu0gZ8tJ+GrFvwCGfbPQ5fArZRd9QcsD5MCFQ+e+NBmRt5oyT0x0VepWjOizXhKwtesiA1tu1rxLTLEqg+qFV5t+BYwiAQuuHPoahNOc0at/QFTjVRlQEjvN9K8yODODhVwZYx6Fb3roLo7uGwH01xM/GFkJaQcNbbNC4DJhEx2QFDxPsDlsspqLRAa4X1wNbZbTHPOyMCLjwOEdCeJgA4Gei0QBNVxGyTDF9JJyjo7ICzjwhJcKARsY4vfNUsHU/gMkfttvtdnrWHJlQAqzDAVmUL2sDZ/j5OiVK5yKfWbThWqMCgBrzqp2rZwMZ463OJeAV+HrhyF5EewVCLR9fy1BHi52iViQ1A8s0E4TMAUXf5EiZEgE3dNciBW+BWZEB14AsSOx9avpWCIcbN/Mo1MPlcuG6OfXBFgsSaQhVOxNYHkgAP2j+6qBTstrhsvZAB2FD68634Mgakym3eBLKGfH6eVw3RID9rN1dJ7xWhXoOKCkDVL6QxpGMjIRDTvm5QKbds1WPXYkzywmesRoUzoNlXpVcq16V56/XZd6qtnHV5qfI4DVFvbTtXNQpq08vqWfDD3JQDdNG5CsJOqeCCQF0Ufbcq3tyfo4IKFl2ZVVkwyR8PzbsSpqd0c+iBIy31qGzIgNOITnhaRECvk47azYTn9O2mJ0qosxYsffLs6Z5tSoc44fpmJ6+P83khu/LitZN8sv2qzav4J4PkypdzZGNPLxCBv7rDGN3z2oc8RrQaucekjPHu2mlcYaZyQDSVMTdeSKcf8S+nLYIhRIBrovuZ2Rojqda5dejm/Q61/bXRF5dfSoDXqXjfq9t6YZLNa9jIjbO+eH7Q9702zIKZ2tYhtlY45i7vyMcVb0BRxBcFCHLL4sGMCmo5PIcMjubDODGEftsiw2Ljrc75aTzDlSQ1LNmaH7coEogqocERot84O07pcuTRZgA4BwTGS4P1xFeGwuja0/uAPz1xYytZgrAPafWglFcd2wdIdBnp6FmZ4zmKIlzo+fe5yrfnHo7Q9gCZNQpjYqI6bCV8z4gp44M8D016tXTDtm5HmPGyCIFnF/mbFTkI4tcXBM5aKEiAbzvCIHuq/HUIU8cBzJ9jrS86BXSKykA6c3Kn5EC3dfrHKrogLM1Ll+VNeTJ5EMJhvbLHqJ1DvmcNUyArTY2RwF0lnqLBAAsEBw+0kbhsgBqiPghVQ9Ur3eejYZ6EAFQIlCxP2WlvO9e78M5JQLVA1fiwVDFzpMldaiAoyJs9JUkoa48iUi911PnQrwFKtKEffecdD/Lu1IMDNe5qzbK2lANPMqoHlTmbbjysrxwtKEy+qzoqvJm18+pM9dJZd4RATXqWb7OgH0WZO0Wse8IqnGN2I+wRnjveQ555PxZt7IMOrugcqT2R887otJDXhyx1vN6L9bjWRkcsrL3XDsXR0UGMkJQLUKEdIA77kJAFevjNPyAlHW5yR2cByswnojFRGC32+0tEKFjry3hZGOsW11TXiMDqpR75kbos4Lhx9oJeH2SF8rQtru5eZ1AyVENflYor4sOaFtckpJteQWapic90qmhrzryMV61Xuc8Kc6D71URAiYCnAd7M4A7xgrbKcieuvW2c+vazLChLNw2lyabp6AiVnOuz4y/6l/Nl3Uw/4/IJ4q6fDK50uuz8mf/Nc8s0upQ3Vd1nzpGEfuOLvLLnA+VTy2ryvA5MOtDRW7JWjw0HXtueVFcGa3k3MqpIcM+8u7tCDyZiklA9tqgIwIoT2UIVNFiqwaUO0FVB2bmarT5HkwKmBC4+RGs7PHWBd6nBUnBf5xjQ1DV+3ejMgzZc+p5fmr0e0gA53GuTtyjvBwRyDwaJQA4rrKVEYK5yNqpkvtKxrLn/VEMfguV/umVTdYbEf6tMCVYfCwjAZnR5GNaTn1+x8jYnDJW93BRAU2rfQL1UlukwwUOGfF6C5meHRmoJmro60wKNdQAV6wKt1dwnu1utztgYxn4ntkEKSYFHDlwId/M4GhUoKfT9hhRVwZ9NogC3N7e7i2w5MgADD4mCr68vH4oSheaYaHmoQUul+7/bvQQAWXlmi7L17V9dW1vaLDar5B55S0ykF0DOJldLF7n3aBfQ4bQNpUX09O2SpwqI1QRP/7P130WknAMsvbMdLxry0ynO6OJe1T9tHXvlg3JyogyVfkeA9b56mhx38j6ukYZWtGsY2X66MhANVGjZcC0wZ1n4SrDZCK7ByslDv87qKKDcc+22TGnqJznknktmXBn7aDnnNfm7gvjj6ECfG6ToxJcT60jkyK3zgKiA0iDex8T7XkLtDrdOfJuHeOOXBm5VlnnksSeyICWyxlwJ9MgjnxePZ5e41uld8qwRe5c/T4bWu3SgnrrTl85w6563slbpbfcvTMoAeC3D6oyunK6smpe6rhWDgGghICNvNrOlsy/hRzPXmegIgH4H+GNYVaBbJjAkQYIEN8rY/9VVGDO8IGDeyCV0uSycls6qKKumCz20S68xX0RDeD5And3d3vEgOcrcBlcCIyjAliLfrlcTmtwQz5AKN4bGQnTNL3gTlyFq1vXZ4QxK2dm+FShuPv1RASqcimUwOsbL5nScv/VC+qFU5rHGryPiBbpndNGPWmP8arV2Dly0EN8uT/qUIQSggxVWdXoOyIwB606ZU6l61PnIgez3yZAJTQS4NBiV5p3RM0m+TVAncw01xtwzLGFXoXjysDGX5WfTpBBmXiIwhGkyrPT+2KY4O7ubu+HyIDO+cjqvNvtf5wGX+zCV7seHx+nT95iMuYpneac6DWwx+SZHXPe9ZwyVqQlIwLHKocWqcgcAJzjaMCceveQD72X88Sq51sRoI+Aqt+6/XOhJ3LZo/NVNzI54DcVMgeQdXnvJGvncLXIgpIAV39XbmcLewh6T1/OyjBXtrvJQEQ+bwBohbuzhq4ma+hDjnhtbPZAq1DTOZgT8uaQaCV0jrQouBPAm4rYbytsmRBo9MRNxGHFzl9kXC6XU2QA0QF9xZCfrX6PAmXjr9Phe9085LBer/eGDN4zSqAKkbfnyl/3e0lplldVzl6iUBlZ9dxbeVXoVb4VsrL2KskeEtWjVD8KOVBUz/dc0LY7ViaUHGS6jYFjunx8xKF8agSglzg4IpANebO8OQdXh2ArUjDXoeDr5lwze5iAb8Tn3HGgN5zuXkdhj0PL49DDVAF+sG7BIActD8+g1zq1BJjLoOV0hMCVqSIbOL9YLKZhAhACjQ6410KZJDBZwFABogI/f/7cezMB6b98+TJ92vMShgzmGtiWh9zaMlw43BnjuWSlSpcpg6pelSepoVygeq5zFNIxEQL3/xxRkmtB5gDwf01ftXGrrZy+mUMCMs/eyRTbg5bziTT6Pn8rWlANbagRzogAp9dyO3KgXwxtkYJT5HdOf5o1gTDCzxE4B8t0ryy5+zhB53kKip4xIl0CWR8SlwHl4n29h5ZTO1AVsswmqTiykREQNsiICGAfkQEmBDivxp/XJkAaCDW+071er6e5BzovAvlgZcf3JgMoW0+aijDwvpPHY/vDsde3CMHce7cMRsThe9pOTjXvU4YM2EOs7nEMIfjIZCGiX66q9gXYwJ1KAjJCgDLo/4qwsz7Wbxn0EsLKadV9jeRyeRwhYEIB5xP7GSGoyvYWmE0GGK15A1wBJyhKMDgPXYs6S8tlaIV93MPV8Xl9OK1y68Ou6qVelrbN3PBVZpxgjNm7R0SAhwp4X40/kwCkhcEHGbi/v4/Hx8cpPZcZ98ZcAqzYeG2ovK1q3yGLDrxFmd09oBRZ6Weeo/5cftn8leo5txRzL1mrjldE7hijcI1wz7XCqbI4hwhU99EhX40YMDQ/56w5xzLCO149cEZao8R8b9SB68e/7FPG74FuMpAxM/efj/dUTBWORgQi9oWEjZ2iR0FV3nf2+WONQjBJUcFy5axeacmIR6VguW21bLif+w6BDhU4MsDGnyMJbPTxOqEe41fMODIAob8mOGN/ChmIqN+yObchZPnUrfMCM0LZY0h6oASkVzcgbXZdpjta95kTin0L0vbW6Hl2GXqfaatPzyECnKcLr/fkq8ZfbUk1LNBLiDQapsdxX53rpo5nz2q2Ws5jCENv2lkTCBUqbD0TiaqCuTEgCEO1xoHLlxusGpfHef6fGWctj4tcIB3KyWPwXDctR0sQHLTtmQAoGYDxd5EBHgbQKAIIA7+KGBHTgkQcLWCBRplub28nMqAfPHoPVB0+84h7juM/b7N7niMiUHm/2VYjT07esrpmxED7ShXCVwIypw0cKXDns/9ctjkkYOAXsojQHJyDUDmyq9CoAOD2XZ/g+2RkJJMhkACd7I50rCcdCdA+WRHac8vurMhARHsyx9yZxVkISD1wHMsEIHtoLlLQG4bP6uK8wUypVmXuiUpo+7j24ntlUQD8VqvV3pwBnlgI4637mn6xWExkgL80xvMCUJblcnkxkYEqPK6oiMDciIC7p/PWW3BG3hHROWSAt1nevRGCrLysYOdGBrI8e847hT2XEPQ+m0tCDzFinEpOKwKocwwqB46vfXnZfzUvy1+PtZ6Vc/q0nMfAEYKIQwcX93RRgYpQV8d7y9VCNxnQsZzegrS8BoXmzwKhnjCXzV3rysLp3bnqPg7VvVtEQCcuZvlnM3D5GL/2ycsN89oCq9Vq2mKfowJMJnRSIRODxeLX2wk8a1cjAyjH09PT3gee3gPOE21FCLA9BxnIPGJHTioF6bZ83pUNYGKbkQN3r5YMu/+OBGTpWjrhWCPVQwQyw+DKcG2E4HfAOVdz3iyrSETr2LFl1CisixYg0tl67lXEGX1GndEsKuAiw+7+bymH3WRgu91OXqFTbpkHriESgJljxgAzIehlcO7emUFCfbIJJxncJJHWxEo2/hpaZ8Pg2LXmyUMRNzc3e/MAVqtV3N/f7xn/+/v76Vj2WiGTABgEHYKI2P+SpXYuRAVWq9W7k4EWMsM+lww4ZAYX17q+VBlnV96WAuXJpBrha7VJC6pQXT49dexFRiyyY71E4LNgjrGFjGRes3v26hG763snG1YGOYussWFVo68heXVSVd/2RkwyIqkkX38VEdDre3AqaZ01TMDjMPyQ9YFkY+KMytutjivmGJiKCGALQoD0PWEth0w43PiRtlHFrvGfPTYd69dIAPaZCDAZ4HkNbPzVM+T7cRm4boh2oDwgA0x4LgFZu7pzvXkoKkPE2558MyIwtyzHwkUvzkkEMgLkyHGWTvNRw68/d99LktFjkRmRXgLr8qoMOrcnG9SIV4ehmrjH5csi0GxrOP+MCPC7/Dpjn9eUyUi66uIsup3JiyMylRxqfj3Ph/tXVZZedJMB/q79YvFrzBiLyTB6vHCc4/Fmx/grxtqCPoRe0qAeVUuI3fnqXo6VavlU8LUdnMeOML4bEgABYCKAuQM87s9EQyc/Zt5zRMRyuYyXl5fJ8CMPvFJ4aVGBHuMyh5ErnALQ49l9W+er56D3V8Xs5LkVudAxXyDLRxWUQpVXywPsQUWyKgLgiEOV/zUjk3UnQ2grfU6V7GhkFHnObVe2Mdjq/V00lvPUT8+jfFlkQMutZeG85wx5t+racy5D1m9O6Uezhglubm4mZd9aljdTMiyAqjSUFR7b4L2dHFDh4obWumXEonUfJUi9pEm9Pw758qJCbmVBNvwcDQARWK1W9iNFHAXgMvAxHtrhqMT9/f3UpphXwEspvwe0Pjim27kEoDJm6pVm5WqVuypvlV4VREQ+mbbl3bSInF7vJoypMXb/td/PeR6Zoe8hBpmu+ggkoAcVccvmLGVEIOJw9cBsWFcJhCOULn+WFRetYCJQRQay8rSGRE4x3nosO9eTjyPep8jsrAmEPOEt4jVMnH1Ix0EFC40MZVwJD5clA7M+54XzvTk/xwqdcsjCY3OiFa3IgraReur6GuDNzc1EBHSSIP93W54DwO3ExEPLr2Xd7XZ7rzDi/+3t7cGciPdGRnJayIyVEoHW9hQDX6Vz7VsZed067yIj7Q56XvtTRURaXnuFlmGvtq32aR27BPQ8GwYT4yzip/nOmTMAcOS3Rze6YQiNEnC5XLSKywO9gyFK/ul13DZaXqcbq3pX6InquSif8/6zczh/jLzOigxwBfCwVUE648ihZmWNPFTAeWeoKqmGX0mBQqMSmpfmVwlErxKrjD+XqyIC/AaA+/iQkgDsa+QAbxwoMeNn4YQTWzVUIAQgGRg+uERFmkUGsjo7Rq77SOu2eu8ehczo8a5wvx4PtzKK7vm7smkb6pCSI/5aZtdPW157dr5FBjRNdV2r/T4KqueqOrk3/A9kzlcv0O/4raUIv7AQPz83b0Cdksq4MpQ8ODuQ6URXd6TJdMAc+ctI+7HyOnvOQFYQwBWEIwl4kDpfgMfJM2+0N1ypDywLC1WTGN1D530lGXOZors376OtIsIOCcDg8tsDzvO/v7/fIwW85sByudzz/pWFg4FzWfXZaFr+JDKne09Uxpe3DnM7mDNaWRl4kqYqu1b5nBxmUauqbJkR5P7tlKVuQSp1PovWx/UXF8LV8d3KaKuS7yUEc0jTNUAJaqvsFRF2Mqc6erd7ffvqVLhJg7gndFJrLpXqf/2pvs6iHdkx17+cjDlCgONMZLgtOc0cmTsXEYiYGRkAIASu4g540EwKtIFbQqWN3jtUwP8ZYJxqgOdECLQcVQdUj0kNq76OyGnctwJ4hUC8FQDDr/MC+DivJMivD2aKXocmeFIhtxmTgWuAtn9GQN1/pK86niosNfxod36bg9O1CIoqPETu9OubvN/atsAGgAkN6qNrVXBEC3VjZGO8GJLUiWA8/psZ+t76ZoRA2yz7f2lo6WI97/p6S+6ya6sJfRVYHhwJUeMfceiUKlRfKxFQ3V0NSWt6HOOt7mfQts9+c/PC/U8lAhFHkAE0KoxA1tEBJgF4+4AjARGvD+yYUGgmgMoSM7DX4sL+rj5MGuYyY1WkGUnIhgdg5Nmws6HXH79FoIsM8XwB1I3fRYdi58iDRhOgrFFONoI9UaNLQEsBVrKQKWGNAKAt+Vny4k5MEIDMeKrR3G638eXLl4kQYLJvS/aPAdeLCU32YzlDW2h9UE4QgO12O4314m2U7Xa7t6w10qoS7IkMKC5VLs8B1LmScefJuuPZNUwSe9AiAZomos/4toaftC9k5VXbkt37GLmpiMCxBv3YqIJi1jBBxGsjq5eoYzgMNRRuDEiNMSOLCjiW5vLQdMo+uRyu/KzEUE80PLNXZq1cJjb23GaOEGQL/fB3AnSdAF5PwL1RoBEB9e61nHx/HX64u7vbe3aoN3tvXB9uj3MbpnOhN8LVgvOY8Az1C5Du2xAqC9x2Gg1Am282m+nH1+pkqVYYs6qLIzZONpmscr00CuVIIuQHRADGH7/1ej39uDz4GqYjBW6bPbePTAgY3FYsXz0yUUWt+JiLqrRkDPm7e7f0u0vba/y5Pr12hK891ghrv+Lj7l7unlW6YzCbDABggmrctIJMFDQawOeBnuhAFhmoQnute3A53JitCqwLR6ny1vxVmTpCwGFVN0mQvXw3MZA9+GxoQImAhkwdEeC5BzwfgA2Trieg7ZHN3XgvOCU1lxg4eednqus/6I+/GsnPXju7iwZst9sDA4k84D0jD+5vVT2dYsqiASybOkdF5U5lj/NmkoM6gQw8PT3F4+Pj3qeyb25uJpKgz26OctQ2ZqXuzl0yesqnRKAnalBBozy9xpHtAOvVimhoRFrrVf3nPPg/b3vycoRnLhGojHxvXiqn5yIEs14tBBAZYCPSIgSs1JQQsHHqnTcwNzrg6qLjUVyGTFhdeXjyUxWSUoXaIgT6XQC3hkBGBPi4U8YovysvyqCrGj48PEwTF1mJa+hW24jHeN8DqvC0Iynb7oXzmrGvxlIXfOI5HfyKp/NUuJ01IqBDPQA/T0TiWs/AEQFAh63cipdY4ZIJazZHxRFSjgyA5IAM/PjxI37+/Lk33FD1R/x3Bsp5VZkhO6eyvQRkhCAzoPq/1Udc3ll+gCMCjmig/EwIeolAVlaHnghmRSSd565ydCxx5TwVPW1R4SgywDdzhMCNCcHAqgeu/yul7Do7tseEoB0pcPd2xpvrD2PHdXXlmTNMwFsmBKyAW0RAvzaoCwwpGUAd+JkoMcjIwM3NzUF0gD0PHRr63XBKySnGStk5ssvkjUkAtxcvBf3w8GAndep8AS43G0oQgeVyGev1eo9Y6xg8xt2xQFhVNxeiVeXMZNbJY7XktS59rUYd9eQhgvV6HY+PjwfXMqnQcvLcJnVgMhLgjn00QuDqz9vKY+U89BigHntmmFqG2ckh8nbPKssH9ihiPwp9LLK+WZUpa/Oe8vfinHJ5NBlQYwLgwXE4PcKHJ9UD1zB9VYZTiYDm6wgBKys10no9lC5HCRQVCXDnOHSsClg/Tcxj0Dpeq14Z2o2NOU/iREdiw64RCzae3F54jhoROMdzOidahl/P6z4bRjZQNzc3B/M77u/v448//oiHhwfrPeukTNyfjTtPrkNUgJUdRw1QHjxjLB2OPLnPOW+sIgRcV0cKmBhw/XS+ivvgFdcTdeT2YdnT/sJQQsptqnXKjP5HIACAi3jgOLbVBO6ItpHK+navw+XuxTrGDQ9wmiwPjSRkYH3o8snKWXnpWZtX0ZjWfTPSoQTvGMz6UFFLoaMgTAic0tVjKiRvYTSUJSqyzsCKB0aVDTjyw0QmDBW47zbgGtzHzU3QrXqfGqpVxawKms8jLyUCPHt7sVjEcrmcynd7exubzWbvGwNMArh8KuTXoFB7owIR+fNQ4sWRGhAB/EAIOIwOI4nyuIgNvzXAzxHH+f54TogGsJy6NxYyedR9R1IrgqD7+tZEJptMetz1aHMlFfyM+Fsq1RhzRgxw7tLlt4XMKEW86jyd/K1yrumRrooWI727lv+3IgUuSpOhMqAZIXiL5+sijnwuM97OTvLxjMzp/2PrNJsMRPQZazUOEB4VAI0iHBPKUUOvRp3z5FfnqnpodEDH3fWeCMXOiQ5UdcG9uUNyhIAVa7ZVBcpCpR4YCEHErw8PgdRAafNEN66HGi5Aw2LXFBVQqHF00ZrslU6QgT///DMeHh6mYQImAjrswlv22pwH7Awlh+CdR5ZFqLRvujZS45+F/V1+LBOaN+fhomAcidEf1xX7+vphNnTXSwCO0Uu/ExqSVmOUGRQQgYwM8DE2qPxsuc0q3ermYkG+cY9WhAJ9gsvSQxAqQ9pjDxyZUOLu8szKX0UHepwT1a8totCDxe7aqe/AwMDAwMDASXi/GV0DAwMDAwMDF4FBBgYGBgYGBj45BhkYGBgYGBj45BhkYGBgYGBg4JNjkIGBgYGBgYFPjkEGBgYGBgYGPjkGGRgYGBgYGPjkGGRgYGBgYGDgk2OQgYGBgYGBgU+O/wfHZv6+8O7vIQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7y0lEQVR4nO2dWXMbO7KEQZlaLHtm/v8fvO8z40UiZek+TCT9MZkFoKmF9DmsCAabvWAtVGUl0ODq5eXlpV3kIhe5yEUucpG/rVydugAXuchFLnKRi1zktHIBAxe5yEUucpGL/M3lAgYucpGLXOQiF/mbywUMXOQiF7nIRS7yN5cLGLjIRS5ykYtc5G8uFzBwkYtc5CIXucjfXC5g4CIXuchFLnKRv7lcwMBFLnKRi1zkIn9zWc/eeHV11f6k/YlWq9XesX5fXV3tfuuY5/icRPWu6u95eZ78zbz5+fTpU1uv13u/dZ/noXI8Pz/vfr+8vLTn5+fdcbqeyqg2UT767aK0qvx0nee8vZ6fn9v//d//xTZ8T7m5uWm/fv2KZRpJrw+TDqXv9KzO8T7dq3Oef0+oo+wLfZJ+VDrRq+OoTN73Kb9jvqvP0uupzSphG3z69Kn9/Pmze/97yO3t7UH/eflaG9eF4n3t9k+66Pr66dOnnZ26ublpt7e37e7urn358qXd39+3+/v7dnd3125ubtr19XVbr9dttVq15+fn9uvXr/br16+23W533zr/9PS0K7/rVqVrag+lsd1u29PT015evNfrSRv3/Py8N/bW63Vbr9e7Otze3u7ZZj2z3W7bw8ND+/nzZ/v582d7eHhoj4+P7eHhoW02m7bdbnf1/fXrV7SN1Xic6T9/Ptka+ZJv374N050GAyzEuYGCSmEqA+dKsQQMVErr+fk9Vf7JEQgI6LuXjwaF0qIz8OsuCRj5farvp0+fDtK6urray/vXr1+7c73++GhJTq/Xj5QRGHBgV4HM6nl/ls/NlI91dBBIMCCDVwGCnoPw+vTK5eCQeYwAQu94xvHPggHWuWfLWMdKp99bPn361Fpr7devXwe6RJnVk1mblK4JCFxfX7ebm5sdEPj69Wv78uVL+/LlS/v8+fMOLMimPT097T5XV1cH3wo0E1jzPqr6wQOanr3rtYeP4/V63T59+tSur6/b9fX1rj9eXl7a09NT+/Tp00Hw5PVQOxKYp0/lX935876kE+w7lXNGFoEBl5ECvhdomFH82Xu8AflsKv8IeMwIO1S/iU6r+9zRJqfsv6kUqcw9IMA8iK4JNvib+TK/pcj3I+SjgckxOrukjOwn14fKibh+JUA8oyOpHIygpA/Ui945v87yVvlV4mCnl2d6tmcLPkIU6cqJVH2Qyup183rz2d5zTJv6QHBAZylGQM8yimfkXgE31t3r6Gk6AK6EQMDrVj379PS0V1dnyHReDML19XV7enpq6/V6jw3Qx+3ljH6n8xVoqtKY1d3FzIArxsz97yHHIGH+rgykH1eDqcpjlCYloeEqXSrgCBAQAPBcEjfyTp8xn5m28HIlUPDRMmJ0elI5y+Q007endSwISVM3EoKz1vbb2QGa51+1y0hnZsuRAGLSnRmg8BpJdZ+RjwaNLpWNSA6gchpVW1fAMLW5AwBNBdzc3OyO5RSlH7I/coxOl/u0hyRNbyaWx6cmmV7SUXf8updTCt5OBD/OjK1Wq7Zer9vz83O7vr7eTXmonpy2cHDMfvB+SX1S/WY/vTboWswMvMaYfqT0Ih7vZKK9Y8u7FPi8ZdRRRWOsc48Z0LN+v6YGmGavDFU93hMUzsoMcD3megKVSc+W5pWAYPWsszV+jmmOnHAaJzx2qpXPU//8Wrq/KkMFWkbtNgLqBBjU81M7/FnpBS2S0TirgpVe2nKEmkt3NoCsAPXDmQCnyT3vFLE7c0CHnxiCXnukNVZ+Dyl16rycu9LWdIHA0d3d3UFbK32xIF6mHjBPejn7O42vGZkGA1WkkzI/tYwMt39mKdAl+SaDk1DgiAKScM53lL87cS+bS2IH3KBzzcCnT592c5i8v0K85yLHGP6e0Tw2nbcW6fBbzmuzL1NElO5tbWwLejpfAYWUdrI9qY1nnONMmU8NGJKzXgqseiCvOvYFzmQF7u7u2u3t7Y4R4BonAgFG7q0d9gnXsviiZEXtdKwSj+x7ukAA4YuJOW60loFtsFrl9VtqG7ECLPfz8/OOGViv13ugRvVlvVnmGcY11fe1OvqqNQPnaPBbexujP5POa+rvYMGNpNNcPZpYMjIYDijcyPN3WjCoZypgMoPOTyEV1XpsWl43fhKqT4Pd+94XgfJ+9tfI+fl5RjaVJMDjjmEWMDsN69GYR3W8l99+3iWd976Yea533znoMHVixAykiDMFIZ52dZ6OkIyA3iS4vb3dAYMKCIg2T4yAggrmKV0lkKCzp05JUr1TgNLaPnDwMlHIEKicYgY8TQECpsupAk0lML8EwHqMQS8YT8+k9hnJq8DAnySOdP3Ta9jZSHdkaNKgZtnSh9MXs52agIO/PpOeScZ+JuJMg3NklE8lS4DiaADq98yH96bnZsBeVUbVyaeJlrAFVdk4jdZ744SsEQ22G2Xd3/s9quuMM+D5lEZ1nefPgRE4Bqw42GytZk1SXd1Z8ZVCgQC9QihAIN1QmmmBoLOUCfx6vZSOMwRpTPkbMLy/tbaL1L0NegsIW2t70x9MX1G/21XWV29RJEBEIORtQJnRQQYix8o0GDiHgTEjyanPGGq/n+KDg+d6jV8h9V5evTr1DLwPCE9bUeVI2dJCl+otAT5zqlev3kJGQLB3/yi9mTxmpXrjRGmqf6q3CZIjZ5n8FUJFe/6OdWtZT5ZI5ZBdx5LDS45uCbXqTmcE2k9p92aNuzsUnmd9RnXy/hcbcHd3t/t8/vx5Bwg0PcDXAx0ISAQUHfzKqTIaJ7j89evX3tRna+3AAUtXqbdMy5kxzv97/V1YL5Vdx3ToerOA0wT6pPUS+h6NoREb6Lo6y365/OWZgREQoPLz/kq8IxP1OULj+iaS9ns0ADzC8nRYTz92xoN5+jwZn6VD8XJVc3tM89zYgNdI6sueI/Hr1TOeHh09+1yi+/1aAi/6JCNKnfPzDgIcDKSxoXwIVGeddHVPr22PkZ5xrPpP3+cSAM2A1Nnnk61LNlGMgE8TcAHhev3bhVRBinTJz1PfX17+9z78drvdu+YBEEGN66wzvRwz2hNgu93u6iS9laOW+KJy5Uu94NhKY5H12Ww2O3Yg+QuWdaTzSxiApePnjwIDI4RE6Sm6OpqKww51o5cM++jDexNSn4nWRvVzSYPBpxmoSD5402pwLhRcQjknQ3ouhrVn5Jc6gNnowvt6pv+dCXCQV4E+1oNRkRu+BAb4GYEBGjMHAWQnErCkHnqaXt8euPa6JvFrDsp6wPrcpDemUj39N/UvPe/20XfiIwjwdQKSFGxIl5P9ba3t5tfl1Dk/72wYy0nWKjFYKtvT01PbbDbt06dPbbPZ7AEInz4g6+AsA8ePB0Fqk5eXl723LG5ubkqGgGPIJYHq1G9sF392ifxRYGB2kPacrztLosvKSVcdxU/q5PTsDBhwIyVjq2sz7eJOx8+1Vi9KVN6+UDCxIn81NmDGuc/oYc/RL3E2aWqAQmPl1CsdMhdicSEiI5NZMFD1vzt+BwE9Y9XTHwcFS6VykA5az12HK70ZAaHqXAKm6ve0YJDbDFMnJIkGV/v6pj1Mo7W2t9huvV637Xa700PXIQcrZDG04RF1VWk/Pj62zWaz+2YeiSlz36A6aSxpukD563m24c3NTXt8fNybTtG9tLGJraoA83vJHwUGRtIDAd6xCRT4fa3lOXh1kC9q8WPeyzKlsnLxCQ14b66/qrvn79d6zsXrkNKtpgqUn4OGU8ts5Pdax13luySNFMFyYR71h7rpEQwNjOsa+8gXllZAwCMuznMSCFRTBL11JUv1ZDQWjknzXIUO9dhpi8rm6NuBYJoa8I90j3aA7FCazmLa3KBIuqHo+fr6ekfnK6p2hkyOVWXhHggOXAkGHh4edh8BA+Wr9va2S9OtfGMgMXNeJpVLbxYQqDvI9nHVY8tc0vnZsbAIDByrjB8hPbTrQMCdcrqvR8VKGdSxklH7JODh94+o/CSk9wUidJ4Kl8rCNqPSpNcHk6MnEEgsQXV8LjLS54rKZptVnxmAxuPeWoFeeg5evX4O7thnvN+BAOdhHWysVr+nkAgEdOwLGF/T9zMsQtKzY87x9znauqQHs2yhzlf2LwEBggFdk75pDtxBAfMSkPU8lC739uerhNvttt3c3LTtdntQZ+qkIm53vNTJl5eX3Z8KPTw8tB8/frQfP360h4eH9unTp/b4+Lhbn5V0wseUAIbawH0LxwGBz83Nze5ZZwXcRicA4P1Y6W0FyEdy1B8VnZskR6fvngOuHCSjIP/3wNbaXiemdKroOJWjmu8dLRRjmpyP84WHSWG9nVLdvOw+DaLfaQrhHJ0+pXKsMw58BhATECSpAKCEfa9r7OMqvbQxCvVZi6acyXHASzpztTp8m4Bgx1mxaqpi1FY9cd3yT7q3+p3OOxjuGdpTy0j3UoSp4zT+3eYlx+rRbWv7gYfyZH84SKwibn8bQWnznwhbOwTIKmua1uDUger79PS0+4fB79+/t2/fvrXv37/v8ue/C9K+SVz3X15edoyFAxW1B8GAgE3KQ8cV8Kf+p8BtVh9G8pebJkjOtpoOSM/quLW2FyF5hwvhpY0zdDwCAj1gIqkW4jAPDkoHBBy8qpPQutefeVSigcpIoAcEzoFN6g2I9yhfFXn18k7lIChgHyeppraUtgyP+tfZHC9rAgbUJWc0fN7U9VppevTYk2NYpVFfz0oVYJyL9Oo5KnvVz84E6H8H0hoB2T8JAWZr+06xtcM9+bVAUGwDjwkg9ElsGcvO6Qc/1muLm82m/fz5s3379q19/vy53d3d7e59eHg4+LthrrNRHRkMcc1AsuWcKlCbpp0KWT8HBUlm9PgYff1jwUBP4ankBAQEBlU6rmBpvpSRkdChFI5ReQUGvIypHAnd04CneX8+IyX1yI/fUkKPOt3Ru+K2tr+Tl7Mg5xpVUXrsQBICL95XDboq/aV5trb/XxMeRbhUDBBBAPs0RXPOCPg/0REMS7RSmnn59wx9WelQr51m0xzJ0qjrFJL0asZ5JH2hbeNiwQQGJKLHHajRJnpwQn1lJEwbcnt7u9M1bnHM8rGu7qzdbuvtB9VBjvvh4aF9//69/ec//2n//ve/2+3tbfv3v//dvn//vltHoNcA0xsADqo1DrS/AKdECGTIrrDsOq5sRU8X1d6pf48Jcv5IMFANhgoE+HEvWpvNX51EesuvV+m/RZRBB052gKxBFVkm5UvOI4GZSnpG/ByjqrdIw9us+vTy7bEDI+YgieuAl5nMjzvpnqNhfRgZLelvT6uSiibluKvA84y8BXPwUTLSIb/mTrrXF9IH3z+ATlQL9Fr7HYxoLwBKApWculTgpKDp+vr6gEpfrVa7DY6+fPnS7u7uytcY9f4+pxJa+72Sn6v5v3792m5ubnZl//Hjx27jJAJgfbbb7e5Ng9VqFdctcBqWbS5WVvcSrDgY0LECNwfTM/r4lizBHwUGepXyqHvW6TvFzTkwd55pUPI8N7JwR9pavTugX5upb4oAnb1QGr7+wP93oIcue/InMABJjkHNvUh/qWPz9q4i5nQfnbBPA/kYaC3TtYzsKz3UNJKOZaSYtsrmzBunzfybRm/EFLhjG0mVTpXmbLrnIjP2IYHHZA+5RoDOk68OihVI60Uk1bHn1drvKUqCSObrgODr16/t/v4+shOa///582d7fHw82O7XwYnqJNZBOr3dbvfsIxcUPj4+7q2Ncl/R2m9gxOAwre8hwyYAQDaZTG4CvCOb5dfZ97M6/keBgSRpgCTFT8DADS0721d6VtGKxCnRCgD0orZKZpxXAhPVs+5IKlnqMN8rjbeWY8rUM7w6ngGkFRhs7XDqgX3HdR69wZ3WDnj+6n8ZI74Vw/FSjRvWz9eY+Hn/Tu3XY9aqNqme8WNv27+yeBtU+pkAgb89IAfMKDfZyJ44ECWlvtlsdsCR65nIDPzzn/9sX79+3TEEel6bB728vOzWArS2/zbTarXaAwiKzPndWttNCzAq5/oYTmlQh51N4/8YaKwyDbWHzq/X6x0g0PggGKgChUqPKyDg13ryx4OB1voUrTeIO3dHtnSUNJBOC6V1AbrOxXnJML9lvZk2z42ecyDw1mWr8j0H8ahpViq9mkkj6V0PXKa8HRwk4+GLQ5NTIEtANkvXj5W36t/EjryH/AkAYbZNe5Gg6ypZHKfU+cqfU/MO6Fz3PO/kOK+urnbRNCNu2c2bm5t2d3fX7u/v29evX9u//vWvdnt7u9NTLTwUja989PZBa22n/58+fdqb92+t7S2GfH5+bpvNpm02mz1mjfaRC6b1cfaXfqO1/TVZPvYEBJSOrzWr2NoRi/YW8pcAA5IqKpNUUQWvy0A6O9Da4Tv/Th8pb1cC0mwpgk8DqCdLpxT8HndmFavA8vVQKdP3tpgt23tKr9wzrMuMpDQqvaj0sKeflR4vMQwOcJNUdP1S8HKMVHmn75lnR2nNlKNiLz5SKp2odDdFhgkIJFaA7+3rHi5crvqjp4/8DwABDAcCAgNas/D58+d2f3/f7u/vd3P7mruXyFGLHVB0TjZALMRms9mxC1oMe39/3zabTXt4eNizu6w3/4ZZTtwZEn2rTtxhMIEBOX62uRaik1n2AJbHPYbgWDD9R4GB1Lh+vNTIuYHjh4yAR9LODjhVKiEQSO+Be5o9OjVJmptK4og3PVsxJV7GPyGickl9PWPol4KsmWeq66Pnqqmd0ZTWUpmdQloy/o6REYirzvV0tvfcMeU4pSS9S6xA+jgr4HsJ+KJBt406R31L9iNdd2fFRYx8i+Hu7m43x//y8rKb3395edlF/Frsp2Pa0NXqf2sFHh4e9rZSVr1vb293DIRH/1ykeHNzs7chUrLRrC/fkmBbtnb4Bkd6y4D3JwawYgleO/b+KDCQxKPcxAi0Vq9yZ8PyXi4e1LkEHFqro/k0f6tjia/s7xkerjdgRJ/y8Drpuj7ebqwTUW76UP4EcNCLnpY849d7ulfpYWuHawNmykBD0FvJ3xOneP2bC58IghMz5Aur/B6dn10VzXIlZ55+p3Il6UVH5667S6XHzvVYAXeUZDL5ChzFo98EuHr2SGxA2vKYznu1Wu3tE6AdBH/8+LFbQJg2KNI0gZz6ZrPZ1fHm5mb3fX9/v/c6Ibcvvr293T3vO86mLYxlzwUaUj+QOUhgwHWSDEpiCXqyRL//WDDgSjZriCtJhiUBAJcEBOhseZyYARrbxEL4uQoIVGlL/LlqamCp8VbaS6O4U0pPL5YyAQkU9O6fzScZTvYd7+lF8bMsQU8nlM4SxsEXDjoA6unMSJ9G9/bOJWfpZZtJ76OlaveebjkQcEaAzEC1p4qDPbd3CZR65OqMAG0RI2S+zujv6wsMiNZ/eHhoj4+Pe386pIhcawaurq52fxJEYMGFjZpK0J8x3d7etsfHx723KvS8mAHpNTecc/8hQK3pgB4Q0v8vJDDgrMp72to/Fgy0Vs+F9QxWUlSmpXucHXCDOzO3z3RnmQE3SCO6thJ3GJUD8xWvEo/2XEHTM39VGTnxXhv30qrSS2lV+fSE85dJtylO/VL3+SzBq2+rmsZE5ZiqNwxckt4x7cqxz8q563ACKLOALAUAo3UCKaiYZf+S8/d+5+6Amgrg+gCtEdBGQa3t/wWx/mxIIECRvyJ63U/7SbCjckiXdS8dsz5iBR4fH9vNzc0eGGAeGgdsL2cQ+KouyyBGgMxAYtsICLy9qROvGRMnBwPulGefSU4tnadUQIDXq3Mz86hevrTKP83xM/p349tansPlqvGUZnIYiRVwENSTvzLVOtI/1yfXsVkHnfLjsRvQGXFA6QuQkriu+b3UkZ5D7kX3+nbnPwJXPUo00dIz0VICsLN1+RPF29inB/zjTKPEKfCZfBMIoFPWVIAicS0Y1BbBepVQ+w7IuZLuFxggK5D+onu1WsV60n7ybQM9n/4AielUwVGlZ2nawNtGoEELDD0odYf/WiDscnIw0NqyhQ/J4fecPxupQtej/AkIZiQZMQnnZUedqXMe5beWFzRWTqVXxpmI3xXvmKmEP1W8DWeBqN+fjlMe1TE3/tG3S3otqepLroXhNeXrzIAD0tT/ml9WGglw6Jy/0uhSlT8ZwvTskuM/SVJ7VcCv0tXq4+JtlAKXVC63U84IkJa/ubnZAQGBAW521NrvHQcVpWuNAMGA2IPW2p6zXq1Wu02EOBUikLBarfb+PIhlTsyJ9gdwx+9jT+Vme9D2Kx+xEvwPBeXPNFPQlmxTdW1GTgYGjilsT7krY7xk0Kcy0QjOpMsOS44/GVY+SyVIDv2YdusJy8JFX/6HGqrTbHtWEd+fLO7Uk+PncdVXDghGfZqYnurZCriyj3Wf+laRi5fRX6dKupJ0ItH/vnaA50aAgL/fQhJAeutx9dZSOfvR/T0g4OsEfJ5+JCOm1PP1PQ20wZDeGuD2xyqDNhniWgGuGeA+AQSu7txZVzECyktAwtkBf9uCzAB3DKTzlqTFupXtZztp0SPTVD69YDcFdrP9KPlwMHDsoJuJ0HoGuLVMNY7u5W+/XomvynYlSMY6GdVZpEfKi/lXz/pcsisxka2uJVZkJjo7dyMrGZV31nF7mq9Jz0HoaD2M58vIxI1TAgJ8zsGD8ieY8PlN6soILLNOI0DAZ6upgd61UVux7un6uelwjwlI96TAiUyTB1N6ZokjqdrJHR3fFBAQ8IWDsl16ffDx8bH9/PmzBANiBriAkGtbHBCpnPofgdbabs2Bg1UCCQIKgmTvDx9rae2O38c+INhwhoDpLumbGZkGA+cwIJLC+u8kFWKaBQTuXFur3yLw66JOHd1VNO9SUZr8K01Pixt99JA/HUQCJzTy1XdVvj9FZso7imQdWMy2gc8p8tvpxRQltHbIZPG305dOdbKs1QI/1olMUqUzVT2dAiXVyrT8w/q6cUy6vdSpsS1Y11NKLyhIti85PzIAWt1OKr4n7iBdetGunvGFg7e3tzswIEAgMNBa2zECz8/Pu1cI9anAgHRVtpDrCLxMspnX19e7Z7h9McvugEBz+mxfpptYMKZZLbQVEOCOhOzHBFx5fCxYkHw4M3CMc6By+6dKe6YxlpRlxlETAFSRmV+blRmaiHlIpPQCBMlpSLg63Dfh8Hx7v89d3hOgLKHnqjL0DHzKr7V9dmikaymS93tkjFLdJGQGEjDwOVMepznnHkuQgNaMHi7R1XTvqYHsKNDxaylQYvSvMc/V7bNlYJ8moOhRuJybTw1wvQD/rphBCzcT+vbtW/v27Vv7/v37DhgIEOg+n+by7X1VZrYHHb9snjvxqg0FDF5eXvbO+xoZjs/ZviSYT8Gu97eDjtl+dTnJmoGZAldI19FYcpC9Ad8zNF6+3jM9STQro7OUXlqXMMpDzxEQeP5KU4CgooBVNg4IBwV8pmrn1LfnCBaWMABuYHluNp8ZnUwMlINbGS6VhVNSFTvkoC+tG3Dx1c8S1x0ZXP+wzMwjtQPbkluB+z0jsD8LwiTnqJc9cZ2rQIC+fY2Arw1whonsDNvS9UR2ogIJvXL4YrwEBETZ//r1qz0+Prb//Oc/7T//+c8eIHh4eNi9VeDMwGq12s27O52vMvK4YkfoZ6qplKpv2Ka6xvGZxrXKQaBBm9CzrWl8LB0PJwEDsyBAv3tAoHI6o0ZYYsx7z1TUsC/84OBJjr+K6kdSPZcGZwIEukYWgNGd8hg5/14E1jPg5yZvEQkucVQeTbHfHAC4Po0YKGeMlB/LUTlpf07MQwIS/u3XK/FptaXGy+WvCgSSTo5saAID/q69287Kfsr5t1bvYun629rhPDg/YghYppeX/60TUFm04+B///vf9t///vcADHABoZef5SGlr3bg3gP8e2Rntly/vd5+za+zfZQ+9Z7PqWw+hSbGwb97kgKYkZyMGVgSlc0wAko3HXuaVRkSQzBjoDzfKjJLwECSKN2lbMESYUSZQABZAd0/4/iTU6meO6XMGtgqCujpYZJZXUq6407do3MHeBWokFSGJEUZNEzOFiQGQN+kbWf63ylWGrxjopzXyoyNOjfpgQB/c8ADAAI3TikmhqC1Q1DgkbZHsiyXbwIkEKD/FpDebTabvamBHz9+7O06qE2HKnqf42G73e45f/2FslPybA/WOUXmrJdPU0h8XPJcZW+8D9PUQ8UE6PgYOYt9BiQjVmAEBGaZgWqQ9yJ/P+6J35ccvOfbU5oZceee0kgMhg9uZwEqRmBWPL8/RZZEY28NCJhuYnh6xsTFdSgBgQTukjNwsKp703oBXp8dizR8bth7acyO+55UxvQUQGSJVPaxBwQ8MiV4k2Pju/oEZT2WieAxrQdxMML21l8QKwDRWwRkA7T7oKYH9LZBBQb0rSkH/tkQf3OMVPrM4xTw9ILTarxWOpUCX4IV3jcaW0tA7Vm8WujRV0JePTAwilg9qpuREeoapVPd1wMGCRB4/pXMgoYqP5bZ6eFjxSPNczGoSxy9X6P+zeqVt0NPUl8TALy87P8rWxrwPTCayuXHLj29TKxAmmZyGa2h8UjoLWWW2ToHIOD2bmT8HRD4a3G8t7Xfaz7kNFvb3zyK+VZ9rWeYrkfcyXYrb7ECuv/5+X8LCB8eHnaLB8UOcMdBAgF/a8ABrH/4HLdg9iDIn+sBgdcGPA7Wku97T/kwMDALAljpCh1JeoP4rSUZXJa99xylxxgkhmCGHUiLdvy8tzGvV+VOA2O2bd+7P5bKkoE04+yXAoLW5kFBogFbq/+qmNHYzJqTnjOs6pbuTVGUR1Mj8Tw4PeCg5xjHPNPW6fhcJelhAgH69kVwDgpa+x2Z8493elFsFTR49FsFdUrDgQBZAYEBThNwx0HuLUCd47hwZ56YAX2oX/5JDEGvX3rjrrrGcb1arfbW5yT7ncbsa/X3VWDA0VR1PZ3rAYFKwZOMDJvOVca8Kud7CBXW86bR02Ktnnh7JCfv4GmWWlZ53lpOZWxHA6XXJt5XKRI4ZvDreq+8HuG0drjBVE96UXeiVP0eSRp7dPaJmavmlD0Pb18yH35fFQx4O6W2+xMc/RKp7JkvEExz9N6GBAIEBIm5TEBg1L8sD32GthRWntpXQGDg8fHxYMGgXjfkmiZ+KA5SE5ugb5XRFw1Sx2dYGT9XLfZLCwGT3+O23f55a51+FRiYBQEVWtR3UpjK8PbyraRnxKv0k8EcobFZw5+oyMqgeTkrFkDXEgAYpTFiWGZWrv6Jxrbq03Sfvmf0s5dWa22oV7wvjSW+FdLa/jxvtWg15b9Ef73cPFetGXBmie1VTT24JIPZK3+KDpfU508Td/z6Tn/Oo/NJHwgEuHDNxRmfKkrmuEhrFeSEN5tNa+237ZLDFgsgVoD/UthbK1DpO526swLcApgsgusv65e+VQ9vE5+K5RhIon7iNAY3rhvJKEip5E2YgZkC9UDAEiPrxiYZn1GZR3kl8NKrtz83Y4CWdlRr/X8j1Dk6/B5gSGXwduRAm41iZw3xuUsP0Or3DCAYpevn0vUKhL51funeaq1AT2ZYJXcOvmpavzle0jgb6VvSSz47U59zkdRXroecGnB2wM+7JPCvdEmTpzJ52v76Hssoh7zdbncAwM9rASEXDTor4FG8hE6TekF/Qaev/NO0Q7KBVQBBqp9gKjEW1Xjy6YIZwJx0+xhZBAZmnH86TkZzCQBo7bAjliIkpu/pJuPi+VblqsrZK7vnK5mlgGeAQO/eUblmAdbI4ffa8lykMrD67unpW+ff2txi0dZ+Tys5O8C1J7OSppxc2HeJOq30ZQSMR3WVQaTDcONHPZsFDEvB6jnqbmuZWSUDkN4kSIuGWzv8TxVJZZMczCkvbSTkf/BDECLHq7l/6RLBgP6cSNMJZAOWrE2hblbrB9SGDghGIqdPJ65+4XcqE0GWJAExB1Oel9fTz8/aq1f9N8GMIW3tMBqtgIFLciSzYKBqgNnOSjITeVT3e6fPlrcnvSjf27RCmES/1apZp9lS2f9KrMCMLAEI1eDsDdpZ4OlOz+n3GSaKgMIdrS9KdMObIrPXCu0GF1Gl78Qc/BV1LwVYft0dxwgIeLoS1xmPXHlN33yHnzsMOiDwsnMLdK0X0EcAQG8PeNSe9G40BerMAD9+T68PUtu7s3a2i+kTCPTW3qT03eZUwGDpeHg1M7AkmuoBBv2ejayPKd8MAOhROMfILMWUIp5jZPTmwaicfm40P/ia9P90GfXV7HjhtSV9nxy2R3WVOHtEIDELRJJu90BjT2bBRLIRfwfwmXStsrE+VZA2HFKa1bqA3j1Mw6citMWw2AEdky0gMGAeivwJCHguOe9j27K13682+tbKZB9SPr0x6/2wWv1+ZbMqg373gkf1nc77+oEUGCyVo5iBdDwCAZXxo/Roa7+n+j0q+6yMovwlac5QqBVCnwEIHJhVWlW5pIwJcc+UO5VlKYtzCulF5b1neqBylEYPmM4AAd6TVnovAYK+CybpYdcjN4hJR3S+V/aepIWCPE5rCHos1Oh6VcZj7MuppQIEvniwWmBcOVba3mS3lSZZATl7bTfMvyfm9QRK5Ii56t83B/Io3svm46Aar7R16X8WnIXQ85wWSOsU5Khba3t/qax0U7Tu4ymtlan6OAVr1OMl+r8IDFTGbwYI9IzByPH22IKlMhv19MrTa2BXOD/uAYBRnWbXFKS0e8Ky9crwVkb3lLIUGFa6m5x5dQ/BXAIUPUCQDF5PZnRIIqNFA6d7lgDL0fyqt1FySiyP0lytVjtDymio0rnqd9Wuf4Lu9vTLr49AQTVF4P3f2n7kSptDnVHa/GdC/3dC/jWxFjHqfs/HpyvTIsGKUp8ZoxJP7+rqqj09Pe3S41oCt4k9p+zt6KyKO28/HtlfAo5Kr71NlgSu02Ag0YfJkI2AQBVJzBz3ziVZavh70ivTyKjMRNjeaT4IPf0UxXEhC8um9Fo7NLjOBqSVtJy37Rnhczaq7y3ef348Giet1f8VT0kLRqtn0/Pp2gjwECQslZkxmGyLz7fym+VhG9JAjiKjpMO9+08plV5V91b61lr9D5bcfnjUBkwzAQH/XF9fH/xVsexUxTq5PUrz+qPyeXvxOTp9tQuZAgciTMuBANkAfw1wtfr9tkQ1JcO6JHaMUwQsZ3pmifN3eRMw0DN0Ol85wuQoq45+zSB1g5d+89vz7A2QpR3Qu58GrrqeAAB/t3b4nrmDApbFUWmK9HwguVQAoffMR8kxBr6n68lBpT5L+paiil5/O7hLac8AgV4aSR9piEaggBR+WjTl5XTnVLWd+k3AWEbWQYADAj3P41lQcM5S9VGlh/5XxU7Nt9afntF17ys5J04JfPr0aY8RIDNwd3e3WzfA9QIenac/t5ppCx5zkWJqH6ZPMEAQ4msUKtDoDpr3OIPhGxtVztzFFyOO2IEK5M7I0WDAFTAde2GScziFw+iBgur+GSCQjGqq22wHKb0eA5AQZxVVsQ+9TqOor1dHr1/6XZ37KFmKlo9B2D2n6gCgtba3iCptBuNp87u6l22c5oNTH0hX5HQTuHAnwvTdAad83en7b5/+krHWPdp8xe+pQIG3kZ9ne3rdzgkg9ICSjnkuOW5/LtWZaXm6TI9ggIDA2YC7u7t2d3fXPn/+vGMFrq+v99YukI7XJjtPT09l/WjXfKw50PSxRkmsJ39zrYLrgaY56LeUl69rYDkT2NG5BBC8z5QvWYdkv11flujxUWAgDTb/XTn7ihGoCl0hwCSuIGmgJOCS7u+le4xjTwamyi/l3QMAPhCqaz6f1dp4vjfVg2WbkXMxrJWk9p/VlepcckSVsa4Wd0mctZmR3niiPvfGgJeJxz369OXl5cBxVyDgGGaAUS3rW4GBHlDluDwnEDAjlX0joKucYjX+k/5xvUF6dfDm5qbd3t7uGAEBAX04RcByMSofjTU/Pxp/6beDAEXrdMittbhwUe2gdKTfaluBGKWj33TSLr6It1enNA5nfM+sf2ptIRhw6rmSimLuAYBRxJnQYMpvFKlXjZqMyKwsuX9kjCm+boBKyTRmgIH6zxeKURxtVvInGcyevLXxT2A0/eaGMOk7pSsD5mCO0Y3yoDhLdAzj4UJH3tpvPa0ACxed6dsBQRXBkUr2MmgLWd1L8cjM+0LnR/1/TgDhLYz/iA10gEewqujUXyHkhwBAAOH29nb3jI+Hl5eXnTNmvgnApDro3t6iVweFjN45n099e3p6Ooj+vTwENASuXEwoPUyvF/I+Cccr7TXXdsz+V8FS3X0VM9DaXIQ/AwSS9FDTyLhViCqd6yGthC6XACE/P+tsXYGZZ1ooqHsSYHCEumQhWC+q6p2bSevUUjE1fq4CjZX0Ihufv/X/m2f67vA5uBMA5HmWwQ3ODMBmuT0NGqpkEypWgNd0zue1vYwsNw2+nuVcrDv+ykiy7tX5cwEBSd9GAY2Dtdb6gM2ZAT7PftK0QAIDmhoQCHBAIEaBTlMRNoGGAN5oLU1v7M4CXg9+PGhVuj7VwsBKbcrXBznV4OORgIP9Ua3dIOD2MTiyRUv1d9GrhWmugoOmcvAjRzjj9Gd/j9Jdiq7dMBxjJJY4Swc5FeJ1p+9ld8BQpcX+dMObBkpVHw6kimGYafuPlErvKgP7WkDgvwkMEjvgYIARMo0qddINfg9EJ6lYtt5iRAcGLs4M6JgAKUVdLuntGj9XAQLvs8qGnbP0QKY7cbavO7ReMJDYLTlsAgLR/lwfQACgj+8vkOyNA5uqXDP+Y+YabZTrbQIZbD9nCshsOIOX1gnoo7ZIfsmdvs4ROMwCniVy1B8VOQDoOYolEXHlsFOlq07uAYBk8GfKlJz0uRgPj5bcgFf0K7/p+H3QjRag9drhXNpoVkbRluvMyHhVeusgQABAc6o0PG6wSD+2tr+hCfOQwVHknDY+YZ2XttNs347WCPiaCUlK39fNpNe4KoagqkeVF6+fg8yCVQcBPalYJrafzklXubMgnb6Dgbu7u4PNhghgmX+yPSPAssQZJr1KY8HLoGdTWzoAlw3lvz6q7SRiA3QvgXCaRvBx5vrdKx/rPTtWjwID7vx70eDSgXYsIHAF9rRmjEMl7BQHB0k+2gm6kUzXWjucRtD11rJhqAACr43uq545J5nVmUqPkkFJaXo0zHxIo3JDFvXf09PTXtTfWp4qcObAo/YUxfvURZKUPvOpnhkBAW9vtpnKr3wZTfWAQBoLSt/HseeX5JzA/xL9bG28PXnF4HEai9MDfGXQgYAAAFkBvUEg3aYjVP7HTlsyMFti0+mv+OdeqR1a+w24PehyhkEAnAsI+d8L6/V6754Ro5bK4nZn1ibNyCIw4A1QsQNLZOTkR6CBv6vnjm0kKmx1PJLkNI9RYJeKVnUjr3MJJHi5Zpx/YnrSc+diPGekxygtAZHpuUSH65grs9M/u9HYyflRhzxvN1gyNDJK7iBkkEbAliCS4oudvDxMl2sD/Lpf8/LrHn9Xm+kkRiCVozd2OS79+mvG6msk2a5k26hrFdtSpS/h/T4twA2FCALu7+93rxCKGfCdB12nZ8pDsDdiO6r26Emyb2zfNI6qNAQqWtt/Q0C7Gv769WsHBLjAME3lMFjrLSTk9aQfDnRnZBoMVEzAe4GApb9HxxUgmBn0nl4VXcxGxRUQOMbgpLqmNQYuvmAlGftE51UgwK/3mIRzk+T03bCOEHgPQKxW+/8gR+fP4/SOP1ck+/oQ70OXZFAq4//a9ku/nQngeogKJHn5yVjpPp1L9GrqB/7ujXePNM9JZ1Mbu7462HTGZ2QP0jl/hVAOXwDg/v6+ff78ebefgECAv0rY2qGNSbrg5dVvZ8t6bZTScf2aBUlsx16AxPsdhFOH/cPnHOj7mPV7EyDwOizR4aOmCWYzXYJK07klgCE5+t611uZXnVZ59liC5BgrEMFzySCys6uB7ZSrzh0jvamCETOQvv8kqZx5DwxUQEDtz7UA/reuOtY1pcO2dp2WEfDrSb+rbWZ7wGA0JnoBgJe1MsrJ2Oq3hIsjfcGVt4ezAt4vVVk9gkrU87nocWXjUvty3trthYPIBNr8PwfICogFuL+/b1++fNkBAq4P8NcIpa9cbe/rXBJAFKWuclJ/U/l7YzO1BfNPvqNnQ90mairLrxGosU9YP+kbGTD2Fb974CPVd1Z/X8UM+DXJrFGpHH/vudEzS65X5a/uq8pVGY6qI2ZASKWYaWDrHr+Pzyaw0ossKybIr6X7U35/glSGYwQGqntbayUj4Bu3OCsgw9nrIwKDXn1a2zcaPp3A8s8CyORIKa6DMnRJlxNI8MinqtdMOavfszq6xKB+lLiuVUxW6ueeveOUjXRU6wS4YJBAQGDAp7ta+02hEwjQRvg51oEfThuwHsn5J2BBoT3r2XlPu2q3ROerbnL2XJtAgONl9i23WztkDXpAQB+f9piRNwEDI3mNc+89cwwYcBk55mTkWtuPrHpO/7XidegBA9+0Jhn2aoGZU65et55BHDEDS4z3qWTk3EfRR7qfHzp+LsYiM6BBL0PioKK1dmB4vA9Zh9baQVr87dIzoEyP3700+Nuj/9RWVZk86uf5nqQ+qgKXHmvH+04tlb61dtjWfj2lpW8+4xG+Lx7kmgFNFWiKgOloIZ1Eup3+BMjL5cyAdEAL8+iDXO997I3awcfOCCRQHJB4HThevUzOAngd/LVhSm+K4FhdPRoM8JwXJBnWUSGXopgKCLxVw7i4wvkcVqUob5FnOq6AQY/uJd3ai7gcGCQZAQBnDc7FmCZx/fFBmxxaDwx4lDYCAmQPGLH4TmOt/V5YJdEzvpkP6+YggL+VBu/1Zz09gkMyE9UUAMuVjHPPWPd0p2cDeh9Pn8+PQMFHy6zNTMGBP+/OiU6QztdZK/75ELcf5uZCYgZYBjl92pPKd+g57kWgRXceFSvSZr2YTsWSvIdU4yHpt8rqtkLne/qmez1gq/Ten52Ro94mqArr3zNg4DXOu2e4qmNKos5HZUtpJYTnRmwmuh7VPdUpAQFeo/g8W7UwLdVd587BQL6FzDqPFG31nuc5GVdSrgkI+F7y3i9Mj1MHaY8Bd77qL59y6L2Omgwon2U9KyBCIFBFrCmCdR1jnflhVMjjijbtAQ6JA4E/Qd9T3dhOEneYOue6moBAYgX8T4lub2/3/jFQuuLgVZIYZo+axR6kchM0uB5X9tD7fmnfjp5P/iIxAYkhcJCmenrQVtnlGf0eySJmYOS4KyAwi1ZmKpKo5xng4cZxlN8ICGhwUek92vK53FGUk8reO5ee4yBwSayAG/jKuKr8zJcG0w3nORvSqk1nP54Gz/sGQpVxJRiQQWitHbw7zz719qxeLZJQR/U8nSujtJRGxYbpmcQujdiByjZU9fBoi8/xmPVJ7eYOo9Ll6topZcYBuOOZsaWpn3xNi/8lcdpkSOdpd/iqnc4TADgQICDh8yqbykqQIB30oCe1zazdT+1etWdl+6o8VEe2dwK4rdV/IDfDxvv4mZU3eZsgFYxKpvP89uP0u7Wabq4c5rEgo8qXBiI52h4I6NVndrC6jKYOes9XTt6BQHJ4PcfveaYI69RSlWEJABilRaSv3zSy/gZB2lugtfl/M/N+rOh+Tj/QeFZM36wz8U2Q/FnWK00XuFS6kt6cSDIDMpJOnjOYrexdAgK9fuu9guqvtiZGIG01zM/Nzc2B463mtB20cbwQ1OijDbfW6/XBq3lL27EaI97Wx9gs5uFrBRj9+xsSus8BtpehV1/X81SukRy9HXGvQDNGdWljzzihKm13UEpvSVl6Day60Yg7LVsxGr38PVpZrX7/v4Afz8qskXNKOgGCqqy9c6eQZOj1XX08yqr02JE+mYEe7VqtvNY3wadH9K3tLyRkO7vTldBAMw+eoyRnLUkGy/t6xjmxrP4803eWzY0u24RTdt6fbNMRazcLfj9Skg0dAaARG8n1KtxumH9EVP1DoW8u1NrvPpHD49sJaTwlHdDUk55fr9e7fxHk4kP2IccOz6Xz3kYsW68tJSP6nulq7KYPdyIkMOIbBVdXv9cJ8Nj70cu9JOiULAYDPYOfOvo1YCANyJHhqBxsNdC9DjP1d8Pb2r4hcoOte1MkNgIElAQOmH/P+CoPz9+ZDC+PG+VE8THtHmA4B2BAcb3xubxKd3v90Noh5arjRMVSh2aAB40HnbmXuRJnCXjO26VygNRvf6YSB5b+fMUUJCPuZXBw4Pd6P1fjfTQNdkqpggna2SXi45p6SWfv/0DIjYW4+JULqqu8qrx53XfqW6/Xe/8AqA8XJFbTDwQMBMHuo3pgQMIxp+eSzWX6yl/t8+vXr7izok8TsA698ZzK4WVforuL/rXQK9y7twIInlYlI6Q+W9YKvLzWWdH4MnKrNo1w6nw2P2cEWmsHx8rHIz0faCkSrOamvK4eSTmYYrs6Oj9HSUCgBwj8mV56aaDT2Pac9kz7uX4zuqpoUPaVr3OppgtGNGxy4EvGOGXGpjBfldcBgM7xf+a9LZaMu3NgBlLw4w6ttcOFgyOb7TqadsQkA8APdxicbVvPS3aNz7nuy/Hrm0BBtkvneM2fZRskJ+9jh9e8Xg5IU39JL33Brre5g4GZoC61cwIDS9mBxWBgFJUn1FdRhtUgqyKvnmEcAY7ZBpnt9ArwEP05Zen18XSWSAIELKsDCD6ncnh7jgwe63uMkTymnu8tblTToHKZRduVUanGQ0Vr9qJCSgIaPnZkqGhEK0Oc3lZgmqM2cN2r7h9R2TNt7RRqZW8qW9Lr51MzAz1A4zpW2T13gPpO1HWa0uL0gO+NQUnRrUe5HG8jVsOdv7MDCQyQRZAdJJBgnl5/llPHM+NPz/q4Uv5cG0S/4DanArren+l3ZbdmbfSiaYKZDHodnhQzGT/vgBFgeK+B6kbAwY3OtXa4GYx3ZM9xVsbG51Wr3zqu7kn5KX3+5nHV/pVxTPU7h6jKpTd4Kn1N8hYOwoGuGzY3KnLkqU4jEJPGFPP3RYssXzJKPelFTJX+ODXK8zMyKl8Csqls6ficZEZne07WHR7v90WEfKMgAYEEOD0yd9tBVoD9Xen1KOJPH+kr32hQ+bz+XOMz8lHpvNsT6THpe5WF0wXV9ATbowKsDnz9WS/nrJ1azAxwMDni471JYVOh0qAbOZEZIOAd9RaDOkXaEnY+y+XTBKNysqw9AMA8PA0vp7dxouJSBMjnEx3L66P6nZNRrZynGwPX61kA4HX1dlWkwPv56ZV7pi4S6oCDChquHguQyl9JNTYoyXZIX/1a0tcqzZn7KiDg6Xj5ZtL+SHGnQVvDqF/CAEXPJTul9AQEuHjQF7wyrZeX3//alyh8ij9H/5Dq58AigQE/Xq1WB5sc6dh9Ftc8JBCtOjENltM/HFPetgQCyT/Sf7gk5ssDT0/L23MkR08TVNFhQpwpoqZ4pLrUecxW1p/psRszwvo4ynXHSUUbMR1LhI4lASCvpxv8FM0vkWQ4XTjoTyEjlJyAgKRyCr26+DUaOjqumbaWEegBaS+/G31GRD2Do2eXsADML5WNY5tUamUH3trpJoCX8pgBCOcgbl/dqcmxtZZfQ/ZxyHRSer7vQAIEHlBowd/T09PevHnyDyMgXq0L0DUd01E6uKwcrepHMOCSwKv3B+uRQL2mjLWVclX31AZq555z57h3W7vErxy1gFBSDaqkYPpHNkZEEr464fSo8qETq5zqkgHbMzpOE3oklyQhskTnpOdcZtiApVIBkDRV4PfMRFy9NJaCu/eW3iCsJBkDH2gzkfGx5a3O03hUlCOlmofs9X8lrpOjfla+ToFSx6txTz1MDsKdRbIN5+bYZ6QCqe64KwdfBW+VQ2IA53tjOBBQuomyf3p62n08Sp8BBKqjnktsUUpPzzkA8T0xWE8HA56Xn0+ghe3hzIC/PZQ+3v5JfysQwDo7w7ZE118FBlJhWSEqESsu8UaTYhFl0Tiwk1MUnM69Vo4x9j7o9P1WTpHgZKkD6i0g1HVnD/jcX028r2ZAQc/Izoq3f3Jufj2VWb8dCCRQoDR8SiAxSLOSIhqvJ/OvggoBAhpt18MUAfXaZMag/mnidpbv8furqv4cn2/t0CEmpyob7qyubDX7gaBAIEAMge7Vs84Y0QfoODGYyW75NQePbC/+7rECHIO9cZGCCj6n+nGqIAED317ZHbvEpwboE3U/v5fY7XcDA2mzlaRQPsekjRikbKqQV5iDfQYEOLpbUr9qemMkFVKtypGMpRtKpZfyqQytxIGAfrMP+IzfV0lyaucuaRCna63lfknPORVeRbIVWGxtf9MW6XhvUCcj79dc3qJ/3HmkKTPVtQI1LqvV6oBJU7ulleO9Orkeshw9QHKuMgIyCfxVOtva4e6QvUiZovanc1fbEgD4J0XZPbuqsvrYIdiQXgiEeP7VFAXr6CCK+ei3t7GXMQFilVlO/urqareDIqdd0hoLjvkKbPNb90qHvZ9nAcGrFxCqsdjA1d7WNBpsdCoMz0sZlK9Ygx46rGTmehW90MizLd5aKiDwFuIoezQ9sFTcMJyr+MDqffhMa+P5Y9cRDkgJddfT8/HB+0kdprL58cjpOjjV8agfKxCQwIBP+/XKVTme1F5eR4KDkV2oxnjK+xzBQXIOvcVvSZyWTjrvQqfl7K0+CQzQsTL/1n73DbfndR32SJ+vCHL/AfoR9ydsNwcC/H8Q1VP3+mvhKlNlPzjOCYS1GNOdvtJjHbgrIaeZuXagYgWYbwpAR/Lq/ybwRtZHjIA2qUiNTqcvA8XIid9ahDGKVJ01qO5h+r26tVZT8WkAsaN66wXcCKeyLIkEvIxVGyVj6XOtjsb9WTf6vO5OLN13KkltPgMGZvRlVpfckNMYKy99XI994Pfy9eccwCtfLk7kWPbpOW+z1trB/LHuTQwUA4CRuA5VeulBQQIdPbBUASHVY5bR+ChJ/bT0OT4/A4xb+92u2+12z+nwGsFACvCYjwd6CXh5YOjMAM9XbxboWrWmIv19uMpFAM52qMYxv1s7XO8gQOD3VXqs+vr0QRKOKd/DwAPZnhz93wTJWKkARF2+gQUroPmkVDnSpZwuSA6pck4UL68rXxoUqd4pEvI0mE4V0flzzDMZ+9G5txa1VaKZeiDgTxDvX/ZV6v+kXykimDXQKS/qn0fEEk0TVQ5OZUwgrHLCBNhuQPiMgwDdS0qZ12m8aWB7oKAyiGwP2oBZ+rPXVun8OUsKPigjRsOBXZoicNDkawFa+70vhVP37qxbO9wuW/k7C8Y8PWLmb9cF35nQFyxWgNf118eB2rLyBZWdqI6Tjezpub+GqP7zgDn5SrX7Et1eNE2QKlMhSt/AgmsGkgN3SqPnrHvl6gGV9PySPFMHJ2rIKRqeG4EST/+9JeVDhfuTnHxPKsebzvGZUXqj+yQc6Brsvv5lVg9psL2PPDqmnnmUnkBHoiGZb29+mUaIQNKjSKWle6u2StEn09e1Kp2eJGBwzqAggdcK3KTn0vN+7EL9oENllJroekbmvD+BgVR+d+wVO8CyqSyu0/JFjJATIEjjSOMz6ZYHAj4mU1vzN9uyYj18yiD9vwHHU/KhS2z40TsQVg2jxtdv7ezkjcVn1PCzFPuss+pd7xlcR2IjqVBbqocb/rcUTzNF9b1nnX15i7IkQPbRkgxfBWITQOilSWMwEndq/E76yHM0WomVUjoeZTgwICio2ojfXADlY9wXYLHPZchZD0aKrP+ozSQOLLw90zNJ3nMMvofMOG6Jg0w+Tx1Kzri1w0XdfCPA82itlRQ9A59U9qTDaeMiBxvsc9enZOsIABKz7O1Af1QxA8lHpKBCeubTaD5WnH0hGOBuhSn693onID+r50f/ayEdLY0EjYVHDtwcR41Eg+EVqCjLVJ7ZslfOKaE6XlsCCirn0yvHknrMUoE8dtTItk6UcFW/XvThUejouVOIO/tE1/tA97bTeabHY4+cmbcbwVG/c1w52NbzzjjQ8LnRISvhfe6RRorsfDOaihlQeUnZ9owTo7keK9CTWeDP+wkMzhkgVLaE0mNEHQQkwOsRufYJ2Gw2O50i5a/7OXVAR00GwYNBZxrcyfvaAwcZiQVwp8jxp3p72/Aep9Wps1Vf9OwH6+fBrgNnTbGw3hpjCRywvExX52f8lctRrxYmp8cIIW1OoYqrsPzt6R8jvedHxncWFFRpe6e7sfVzbnSSk3GplEgAi4Z2hop18JXqPHKIEq9PZVRPZWjdWc98WtvfRlRSgbhUt0T9aaAzPTp8L7OXu/qDGKXlebhTpR56vyZgqGs0rnxjSB89r76X0aKD1//Sk371/BwIeLu7M/BrPZnRv3Ngslwq++TOlEKH4IyAg1I6YAG4p6entt1u9/RSfyfMvF233VE7c5bGjD/nbAMBQTUlkFgIXxzIa/RXHH+JSauCpcS0eBtLXl5+vzbv5x0EsO7X19cHQFrgS+DAy+XTCLN6fNSrhfzWsRsKRgwSdmCi/Di4HSm6UWNjVmX1Y/12qqh6tqJjKR8d8ToI6EUzI+MocXTpNFNr/SmHCiDo2qkjrhkwwPta688Buvi9VV0TPd/a/iZSleG/uro62AWODph0o4NC5kv9Z7ncoTq4YzloTBMYUBoEBA42qjK4TXBn49dGzAH1LzEA584KsGzJkUu8/s4oudNiGt7GemtAn8fHx/b8/Lz3Rpg78tR/ut5a2/MF3hcOJBIz4E4y+Qwf0wKgDla8HdQWye454Kp0JPVPBdgJ5jluE6jiPdvtdpcOp224jqD6npFpMEBk55VXxMJ/uJLiSNww+UAfOdVeJyjd0WBOxr1X3+QoErjogQpHpT2nmtp4RpwenG0H5Um6qbXDv0cm4qzyT8yEl+3UgCDpLq+7zJSZRpWDP0UA7rR1XtFYMvpMh+fTpjDqA+6B7nVWZO79xPq6Ydf49h1FNeZ9K1eugtbmMCq364o7iJ64kZyVGf3z8ZOi7VNJcjTu1JNdorNLgIDCCJU65FMCnBJyx5+YnJkx70Ei30ogfZ6mIVwXWFemy/bQfanden3udtP7gJvC6bfbBo4P5pn2aCCQ0dodjScywlUgl9YX9OQoMODKKePEv7gkncnB5YbQUb4qyIbi9xJJijjbMN7xPE9FqAahOsWpprcyMEqXUeVSoaKybA4QdDxb9jTAKtD0EeJOP32qeylJdxJgTPdKx6kTieLTsx5R+zU3Nm58CeLYb6LqWUan6x38EQz4zqL6zXrKmLHsMmSyFb5WyKdOqsh/9O19M5Ilen0KcTDHc60drsB3vUugoYpYPTL/9Gn/z3VaO3xNsAeaRgCM9t6DQ99Z0NkCPse6Kh06Upfky1J7et28PhVI09j0cwSlstuaeuF44u6Ecubr9XqvPOqHNIWZfNCMLJomSCBAH20w5MyAIyDvSEeFr3H+KmclHnmn5yoF5iDyQenomSiQEZGns7T8I3kNMGDeVRnSeQc75yoVCKiAix+31t+JsupTNyqMpugE2fbulDkWvI29DIy6dd3PkzrU2O2xVQIDYv4SIFDZVC8HAj61xYgtAbLXOmhP49hxxf44pbjOOl3v9skdf88xSTw4kyMSKFA6jLD1HMvJ85XN4PUU7XtZeK61tneOedMWe3l6497LlQLVEdvh/ZGAgtLg1sRqY//oPO9VOXRM/5LscFXXJNNggBRI+iQg4DsOJiSYqJ6qofWdHM9SEDDr8Bj9s2OdJtL11Wp1EPVUHZUG0RKjpXRHCHypLDHEzL8CBG9h3F8jx4CcJEv0iGxK2taUQJJUnjtvAsnZKLine3QQvhkL7+e51Wq1G9sJDBD8Pj//nnPebDY746W0dU/PKLM+M0Cz0q23GhtvObZeI95mvXIlZ+RMpgNd11fOOSdwlyQxYvz288qb6TJ9j8zdMffqX7VDT+8ciMzaLQflzNN9iINg/7hv4Sfd66DApwlmZdE0AVFp2mWQOw0mCt1ZgNbGdJ+nQSOqNHtl5jOVAowiddXZByKBAMvDuRo3rvpOlNOoHqlsSWYNYIpWj5WegTg1DZsMQzKsyWG7vi11DKTqOD0mHaCjZPTMc6IRR6xZKlvSPX0rupCkKItgX+yfj3XuOOj0stLlO+IjXZcezYL+HtjstQmlYoTeGmi/VpYEDZVu98CVB2xpFzx3RMxvKYuSovFefXzashqv7vy9DqkcFRNQlaU3thwIOFtc6SX7qAICTDOxA95es2zxIjAgh+jzhR41EAj4H0ZwXkiK4+cqZEglljK4Ylc07iwQSODDkTWBQRooMoiqW2vLXvfolWlkDJYCgZGDSc8ce/5c2IHep7V6cVHPmFCcsZFRdXpeQIGDXc9wvl73Kg0HXgQWyj+xTu5odZ87Puq2xrj+Y0QMIIGBysRX0jabzZ4B5KKwnjF8Cx3xdI5x5g7iTzlVkIDrMc+3tr9JltfJHWIF7lprB0DS8+G9ySZVIDSlVzkz72fVja8Melm8rpr+kP6y3vruAYNZUJbAZeWfEoNBO8E1PhUQ4PVZfZkGA2mBA9cJ3Nzc7K5JpGykI9UgfuwGzp0mO94rVwGA9Ht0f3XOz3uHVcyADCrnhnsAZqYOvD8xMK3Vq3kT7cZjR8a8Xg0In/qoHNOpGQJJDwj4Kn2fApqR5DioA3rfuLX9hVuk+ZgnaT9Ga14n9rkDZxoMH49pjlF6q4XBt7e37e7ubm+8KwAgWNlut3tgWee1WvoYx0xxHfJ543RPJd5m1Zipzn2kuJ3psZmjZyuRvaWz0TSWzistBjzKw6Xn8EeRN/NX+lzHkKJ3Bm2cc3cbSRbr6urq4O+Q+SEwcqee6khg3vNzPTuZ7MfI/r6FbZ0GAzc3N3vTAjQKOvY1AtvtdtfILDi/2TiVOAryBVZ+3Eunur8CDUSnq9X+pi98zcajL5+/UdtJsRg1jcpRlam1FgcM6+lRaspzBM4cGLhUin0M+/Ae4g7O6Tc/544/RRipLnQmrt+elo4JBPQtI6tojO8MExQkOp19VRmsVF6CITIC6/V6BwQ+f/7c7u7u9sCAtht3IMDIqwKsoz6b0Rc5K392ST5ved97SGJrknNPY99tHm1A0qMEeuk8WY7EKvFb55m/zo36lrbepyMYJHr6aZy7vfQpXB37nga0Y8lps3347ZG7yuasSwIFTDPlmwI2L4fKsFSOAgOcFmCEwNXCrf2OgNzxVWxAEneySpcN/5bR/8x97OAZSpnK3AM0lThK9mueRjIK/NY9/kwCZhUQSPfwOA2eU4MBB4/eR6QWdY73tpYZlzSQCQhEs7rzpzF1RkJ5ykhpJ7JkPBwI9IBKTwiOCAQE+MkOeACg+qk82sqW+snykY71V8Zmy8u2Gt2fxs7MGFTaSyLxt5Skg5XDTjrJdSg8r2OOa5+Lr5xUZRNZvp4suU5b2XOEfFZ6XL3RxmkA6mba+MeF+usgg7ry9PS081P0f3o27Svg+fMvoVmmZKudnT1GFk0T+BoBAoHr6+tdwyylA1MUSulReL1BOhP9V+LRPpF4QuW9KJiIlSicUp1neZLIsXj0P4sMq0HlRiLVrXL4vftOITQQiQnwt19mdKxH5bm+Mqpv7RAk8x45RLECMipMwx2nl6EqI8cZDUkFdtQemioQIBAY4GuFqrO2sKUe0gCn7WX17U6oAqhvJT5dl+yD9+dHi7MCKcip7FoVtLAuvo6lkl5knPKsfi8VB+wVK+D5+T43dMhkOSR0uHS8tKsO1jme2HYqIxdfSpj/drvdgea0l4IDlBEQeq0sYgbSWgFnBVThtC2qpKrQSMmWRtTHKGKFxFmGKq9RB6XBq2dGTEZKh+KKe4z0nDzvWQoC/PijhYbQ5xXTe72zupUYk9by1A+BQqIpHRBI1x0A8FUv1q/Ke0bYdx59Vu9BE1Q5O+fRl4ydG8AUDXm5+AZGa8fvQlgJ2QzVO42l1zq115SPQGAUlEiccXJ7NqsnzmRVeSUQ7W2ZyleVuyqL9K2yLQ6c6IM86GS5UvTtZaJj9/pWDtqZMeWldTQcC/7taxb4cZDg7XCMTIMBOXzuJUAgkFY5JwcxkkR7UGbQ/IyMGAUqgL5HiupRTKUcTscxjWPq47RzDzEfK6ofPzrv1/mMp3EKcQNBZkAAt5pjdGE/t3aoj6mOKYIgM0DGgNuQKm0Nft9nnYAkRfcOnnt6SaPfa0d9+zoKtgujGxq87Xa7+zAaYnDgBpplS/p0DGtQgfEECHTPKcEAv6nLlFQ+OumkHy4Cn+zLRHFT73yl/xL740481TuVcaTLHOtpmiqBCXe6Op8AjsCFrnGsJtBT5a8x0QPHfk7Hyvctbe6rwQDpVUdZXgkvuNPPfp4VGoGESpbM9aUooOcYVB436lXk4gMl/fbjynB7mXrTDLOMwSgKqsBAjx1IdftoceOQpgicVqyMFw0iI/RKL0ft7hG55+O6z8iFa0lcl2aMAPuK6xloGEeAntdoxAgCaOwIEmgXeu3n7EAqT7IZS9hDtUECT0si6bcWZ7J6+kngkKbFEghycUDGvlG+rhM9W9UDVJVdcqDJe6ug09NwRsRBjdfR9Uwfn8pLjEBKi9dSm0n3N5vNHkCu1hAQBKS02CaVXx3J4gWE/P8BKpkbEKIfHZP68AE+EuXhjjfJEsqdaffQac9RVpFhz3h5uj2UnKQydiwLB0BVxwRAqvzSuRkgcGqpQIAAQPovDReCgNYO9/N3GUXZ6R72E6O0RBMqOqEkOpJpV7rpBt/zqspwdXW1G9/aW0Cfx8fH3bEMHQ0eox6Ww9u+Z/T8nvTMjL7zvmoq8pTMgEf3TldX02Dp+ZFQxx38U1dSO40AVLJxPSBQBWUEr0m8Lbw+Xh53sg7AaTu5L4HbhJQGr3mwKNC83W73WDRnB9KnAtFug5cEz4u2I/Y5Q1ZSBWTFWOCegxg5oV4EMCuzUXFrh6/YVEbdO9sNq6fdizBmjc2S58kWjCIlRpncE2HGsacBlsp2KoNKZoDTAr57pq5TEgjoMSfsex1Xm6akKI/5cZGggwbtSLha/X7dtQdiHKx7JCEdSaCe0fzT09Puz44YUREEPDw87AECRT5u8Gj0epKCBy8j752RFHWyrY+1M28t6tfEClQsoF9PQKAXzbsjlPgr4mo3bobFNKpxkgITZwMYUTuYGfVxDzx5/VgfXaO/YjoCIXxLJoENtdMIWNFnEjT33jIgQ8AxkRYULwUEi94mSEiLDp+LhEgFjujGmc7VPbO0/2tQvQ8o5en7ClQDLC2q4jkHUqOyHNNujkhn5oJ1LONDGnwEDCpAUDESHyk0Cr4Qi4yA3pmnqOyzb8jQkXibpwiup6eMwEhR8sO3FJJOJt1xgM32YDtV6XETmpeX/7F/AgH6/Pjxo/38+XP3m8CABs/LNgoMPLCo6tdLJ11zZ3EugMCdI8GB26jkAOkIk12S0Pmx3p6/jh2o8re3pTv1BAQ8YBiBmh6g8HR4f2IDWNaK2UhMQWo/j+A9beqr7nHmzMcIQQCfY35Mk2AjBaeVLNqOWJFTimQS2k+N39rvSM0V05VW59jp3gneMZWDnqmfKyANbmXAR0bDr3NALDE6syjPpwZUVgKCYxwzy11dr4zwKYFAa/1pAr4uy/5VPQV2afDYF7PMl+tOMnYURVuiJZWvR+9cbJjyccMwGzl7nmQHxCJIdwUGBAjSFIEvGFS7Ko9KR6oyJ/aNhvw1kvT8lDpcOUO/5jIqs7etfus59RH3j+Ex+68Cvp4fy5X6neCB9zKIcoCTQKv7KJbZpzlSW7n99HS8zXxcpikwbzNnBzSWelMDaQoh9UcCOyOZBgOp8hIvLAutynljzjg1BwQ6djkWADAv/53YgHTf0nxYp3T+tbKEBfDznCpI37pviYIl5/fRwv7zqS4aGR63tm+8nCId6XTPSDOP3n1Km4BA+fv4E7BxVsKNhRsuCWleGrXK0LEdfL0AF0Tpuweclkbxql8V5fbSGt1P/WYbnkp3E1vjUwbcDyKxOsnWuJNzZ8IgoheIOT3NNqNuj9gapuk2o8dcOSPi+SSdX61+vw3A13gZpFWRf+XQfXwQ8DKK9zRfXn6vq6ucfQqsfSwlJoDPzsg0GHADQgVJBU+opVcwV9KlEcwxgzUhbnf+Tu2mvNzwskxej4r1qACBG/0Z0UBM6LoqS7q+tE2rQX9OzICvfeGGQymacUagGpDeNyNQVgnzZxoCBIzadMw5fNVT15MRY92qvCV6juCe/ZxWRG82mwMmILXTbDTv48PHlRvzXn3+RKGzq6YDKvbS28BBbIos9dsZJi+Lg1R/LgU+Xi+mOTrn49iDNNdnp89T3cV0VCCJxwlIVyDAaf0qACY7oE9608YBQRWEsG56Jq0nSLIYDLCTJT0kU4GAKkqW9Bwk71kq7tAT3USkzW/P05Ulld2PZbBbO5x/WsIQVGCJiN4HxxJ0vuQ3y9Mb+KeMrmRAEjDgOYoPvN6AfCtxPZI+KOrn4k626Xq93kuDYDCl68Jzfp2AQA5A5RIY0DSBLyB2o+hlqaQC2G60ZwBANb1HSaD4mHH51pKiZAcA/p0iY+pS0t907GmlMew2nEGTfvfszggwOxDwDa84fl2odyxfcp4qY3LaFRMwAgJpyjwxF8np+3d17HU5ZqxJFk0TeMOyMt4oPYqCTpHKlBD+EjpwVrHcKPiUgNNunnaK7L1unqf/Zv3d+IykMvJVnm8liel4z/zeSqRbzggQBDgr4JFTJRXinxU96yDVDYej+x5AExCQ8aahU9ouydAng0ewqXJxXQDfHBi9MfCWIGqJJDuRHP7Scfme4o6PC7odBFRg3XWL11KkmQCZ2zpS0nqGgcjINjA6Zzmd/XAQrzbwV4JZL/ohsntM28vPOuh+ls0dMv/xkExYmvv3fmA5EwNAoMB7WR5KxRrM6u8iZqA6z4rwXBI3Tj1AkO5xcRSajtMzHDxOOREEpAWTXp4KWXuePafR67CE9JKCqMyMBDjQUmQ0KhcHdwIuydn02IFTCIGdTxNw06xK2KdO36X+cHbG+yIZSzemLmkb4lRGZzlmpirUdwk0aCEjwYDyae0QDLgxmxU3kj2jJ0nsW7onAZ0EfE7JAFRC3VU9/b802N9eV9ll2gaPLiUObP05nWMETWcqPScYfS2QckDAV4J991AKHSzHDfWsYjlcEnjyKF7Hzgy4rSAYYdpMhzYmlSG1aQIAS8fhNBjQQgunH1s7nD+tIg+P/N3ZkxJyNFoZtdEgl6TBktYHpDk4PeeomQ7aEaOkF0l751b0lEsvaqWys838uGIo3Pm7g+f3iAWp6v3R4rsM6hVC9neKgtjOlfMfAQJJpb/evkkHVqvf/1ug9/z9eX27HveiXfYlx7XWBega/5FQzxEMpL0DeoarF8FWMuOkvY0rJjDlW9mic5DEbBEg+DRmsi+0u9XHdd+du+7Rb+9nB3SeRmJaejaEdsyBAD9qD5ZDH38bx8EOy02b7vbP73cw4EyY//a8XZRuBSAqvaB4/83kS1k0TcAIXt+VIXQHzvekRw7TgQPvqwYyhYqXDIHS17HPG1fRRE8xdL0yvsp/pmMqtE7FSOkQyc/KCL1XYCuBwpm8TiFkBQQItJNmtXAwGcpkDHSv04ytHc5P6lo6PxJG+vonQy+n2AenjanP1Xhy9ke0Kp99efnfvxJy+3EZL99caIkRHF1L7Txj5Cp70VpmBhwQ8N6l4+qtxIOYBAiS/tJhMx23JYxGXRIgoO7quBeAsQ8IfN2W8hnaFgIBvgYsIKBj12sCFwICZ9ccKPGcjy1vLzr9dK43DhIw0rOsg7ePnq0Y29SHs3Z6Ggww4zQ/Uz0zEmcDmG4alOlZSgIC7vgrAFABATaoN64r0KiuS6jIpc52JARBS5/pKV5PF966DsdI2nUw7ab58vKyR8cfE8G2djgN4NEGHYvazvWNx0rj+fk5LhRkPXk+6ZuPjxQVVUJ2Qs9qamCz2bSHh4eD1wrTGqJqLFVt6ff6M2nsHQOK9e3tekqmgDaLu2RKhzmm6TwEDBlxttYO2r4CAi6JPSBo1LFH9u6Y/ZqOJd7WDN58zQ//KM/BDtNx36X6zIDJCgD4cdo10MFAxZ6w7in4YFtUQJXAJ4GZGVm0ZiABAi8UlSPRz5IZR+8NUUmaAqhYAKHItBq1BwLYuL76c2ZAjcBTMno8n+5lOZUH+0YGoSqPnh0pWTqXHArLwrQ9z4+WBPYq9seF+uSRTk8IALwdmcYScChHrDl8AQM5Z/aBR3P6VMAgGWE/lnPhNRo9jQ0aseR0qOv8XYk7Ij9Okliy1Od+T3L8S/rorcUZAUbFnO5q7beNciecwNOo7Xs6zmiadiBNY7EOngbLyTzpxHitAgay4UyTecyAeuaXIn3VOe0DMAIEPf/gANeduPcdbbACF7/uMqu7i5mBhGwSanyriHA0EEdAgNdICzva1kd15bd3lI4dCMw4CtZlxqC9lXhb+Hn+rqLJaqpnBHSqvD5SCPzU5ypTQurJgLkTmdVxRvd6VunRgDN/B8JqfxkAGt7VatW22+2O2VBkS1CQgHFymDT0LKPrOMfBCBCwzWi8ZvXGy5fKe4ywH5LRPSdxR8iV9LzHN7rpSYrMkzCaZl7UFeXnG1+5fyCgdF3nOEnglW3AD6etkh9K+XjQUgFO6bE7aWe63B/4p3LuqSwJ9LIN1LYenKf+fBdmwN9vZuHYSezIFNmnCNJ/M9qUYXPnVKXLxTSk0RxF+jGpNjq+hAx71CfLkuTYKKPXqZVR9SiYkaADn1F5EyuggZ2iqaqcpxB3/Iy2Zp/3KIOSAJTEHW4CBa2No2QaPOmntiJure2OfWyyXKkdeI26kTYqcZBNI8hFhFWAwHSWOCtPZwSie+L6n+yH53fOwCA5ag9eeqCLOjVbz177VLrFcnh5eqyU182DmsT2VMFq5Yy9Xu7klzr/xB64k2fdU3kEqnVc9U0vYEm/e7KIGVDi6mh/bU2dk55NTn1GCAh4jt+t5XUBRI6KCBMYoCF0JKlPon8qgzd6VY1lPhX96NJTUAn7N4GzBAp6kfZHCcvtc+bJkPQAkNLoDVC/liJwj3r8ed7X2u/5ehrYdOzl9CjLmQICd0ZXdDL6OKB0MMBvfzVqqSQgkMbmEiEQSDaEIlDQ2uG78KcQd06t7Y8pH79+rzthB0WSnk7zHpanGk/ULbZl8hGefy96ny1rAgIpyve0e7/9+Z7j98WDBNgjPe75BfbdW/qPaTDAvy5t7XD+kIYzRVI95FdFW6641f0JCNDRp/klTg8oDTc6/toU91lPjIDSkeFO5e4ZsBnj9prOrwzAqAyVQ0znWMZziajcMbtBcV1L0Qdfre31AQc58/Bnen2QIiqxAQIESpPTAbqH6fQcv/LwaM5pWJ+jdDAgo0cgkCIir9+SNnytpPZO4yEB2nMA7e6cJG5T6HT1qUS6VOliOu+ggyxSBQK4P0UFkhP4U7tX0Xov0k8R/FJA0GMIXL/Th+kwePR6Vn4u+Rba1jQ+XjNmFk8TEBCoUF6IqrNGBfVBVzmTap0AWQCfT/K/qiUQYJkZ+fOPVggKqAgUlsUNLjsx1VPnlrZRaisHYIzoaPxfXg7fqx4BmB4g8DSr8p1aOMArmpEr8+WE1acEvb6IJ42H1H4zzoVGkc/O1o/O3a/T+UvUFhUgqF7LkrFL+w34Tmz+6hTzr5zaW0kCeWmseN49FucjpHI4dLK+wp2L2hIQJcCtnFEqhwsBgQNKnWMefMaP+Ts5YI+0dU79SMfbW8zn35Vz13H1R0LU8ZSWB4yu87zWA2VsG4r7FweLFetQySJmQAmTMuOAYgGdMnpvcYeXpgIcLKj87BzfVlX/yKbzyYgpndb2d+JysJKijqUyMkru9N3ZzbA1qaykTVnPVK5TR1EuVSTAc6ldZJQIBNSmFTh4j7orKvc6MfriOQdoPUND0Orgg+2UmC4avMoY+n2ern7zu5Ieuzgr1bjQbwIeOphTThOwfejItE7EAxkHBQ5G2c889gBmpjzJvjlrle5P9iLpXeW03WFzLPSeS2u+HCCMniO40F8PV28QVEBY38faTQcS+vY1O8xvJIvBgKMvBwPeGXrGIwKXGSXUfYniTM6/2qmLZeDe0r9+/WqPj48HYMAjHhc6DdJhHp1xwFQOJEWWS8TZAH2cHZEQvKzX64P+SQrqg47KqPZIz52KHaAOkup2A+bl9AjS55F1jUIHorw93aXSo7iXyoixYPmpozTketbtQTKaBFx824BpLBUHq67POpcAXtW3Os8xQN1I4/4jJAFZti/vSc7Iy032JwVr7Od0TZLGOtuUY8CnlzxdBwg+zkbOWn6I4IDXaLtHLAGv6Q0dZ7vIHM8CgRStu93UMQNL9pn3A9P1NDzwmZGjwYDmm3y3My8kC19F1bzmFWstvz3gQMA/vjjQy+lGSiiP/83O6QGCBi+bR5YqpyNlb49ZSe02cjJeFjIhvTb1siUl9CiEc4Y6TuzCqcAARTpLh9daXrHrwIr3uMHyAcw0UmQ0K9UUAQGng0rvR48G9XwS6SvBbLUGJoFCnxt1W+DP6p6q3g6EOKZYd6Xli5qVBh1/Ygec2dNzrsMfLd7PXDfCiJj2TM9VfdzTw2oM8JmXl/2pQHc8KqcDbgcNVd4EYq3t/2MnHTGdpNtzn9olKKhAQPqjIQcTyfk7OOgxAokNcP1Pv5N9mfEj7wIGiOxpGBPi80r3QAClYgc8faf50+B2hUuAxBH1drs9YAbY0XzWnQhXetOA0pCyDDNGstcX/rsaXGwbnyLRPdXzaU61tbY3SLjhjQZoihrei0KfkcpQsh8q4+jsgdqRxi5FPlxL0Et7Rqpxobq5waXhJWghWBuBAeXH+dhUDx9LDg5UxsQKzOoD8/X+cCbGJelwjx1gemQFZvvqrYX96e0rnfNzKRql0/StrJMkG+qSgKrbRjlWz7/HEhCwM50KEKgszpy4Q/aPon6/rt+aAkhvylQsgbMBvUC4B9b8mKCQ1yogvTTgbO2IPypqbf/9VWUuYYG9oGqQpAgJgeq3S8UOVIObabmBIhBQp5IVYGezPDT0yVBwTtmNSUXpUAikKnG03gMEPPZISOWV+PSCnJvS4LqKzWaz1878v3uer9rpo8SpMxpFF9dLGhrVSyBAaadpn4q+TvlQKtaHZXbWiQZA+nZ1lfcLGAkBANOuAHYCAyPAOyOVw6iieJ3zesxE9g4QmP4pgWxr++3MIMP1q2JlCAaVnuuV+rtnR7xM1TnaWQIqT4eOXM/xWGkmEKDARkEa+1+Ou4rgqwg//R0xj3tgwEGwj4GlQCD50EoPda/G/LG6evQfFR1jZCQ+B0IZKaIb0xTFJCBA55qUi/upJyBQobAqavFIMSnCbBs6y+LflbFkO/irlckpOYPgz9DhPz4+ts1ms1uHsNlsdulx7/pUrlOLtyHFnV2KIiVylO6gmY7SqOj+JCla6tWD0SPnhFvL0wIVWJf4xl26l4CQac0yXW7gK6kYKf2m42D9X15eDpgQBwtJBxOg8LRn+u09hW1Lh+fnnJXpCes2w0hK0tj2siYHKB1ygKk0pbfe9wI+AgGyyc420CH7FO8IDPQcfXrO71WeiXWcBQK8nu73ILxKy9t0VncXgQEVKEkv6neE7lFZz0lwYPJe/jkF1wPwXldwDpTk8EdAwNNjfbxtuI98ciJexkpxZiWxI/r4vuZ07gkwVH8TKiOw3W7bw8ND+/nz596ixMpJeN+dSiqHVQmdjuu26szznBYSGKyc2jHSa7+KJaoijcr4C8iqPzk1KPD6nv3otqICUR59+u9emhwrCXgQ1J+DOKtFhsr/kc/BQC8CJQggoOK3hPrUS9PZJJbF7XiaguL/DJBN0LjS1IDbedpg2Xdf9zXDAiT6fwQIyMp42zPgS0FI5QvSb5+aTn1UfWZkMRhwReg5So/aeezUFZ9j2skYcAAnpZDhogKrjOxgVxJOFSSkXZWZeei6rxlwB+9RUoUge6xAJQ4G+A9f+pcvAgIChpubm7Zer9vNzc3ufp2TkdxsNu3Hjx/t+/fv7fr6+gAM6D6PUJY44reUKl9H0EvFdVxOVGC3x/yMAHAl1EEyAXyWQDsZnhHoZPTGaK0aqyxTb4wslR7Nz4jWy+f9PQPKqv44dqrlPaSKuNkObi/ckVBvWjtkPpzJqdo0lY3PsAyM6h0oOIvJtqYdl4P3oFI23afynBnwv9Z25997Y8DZAwaInh7bsALeadyl9mWfpufoRyXVWJmRxWCAA96drMusMakGao+O8gaS0/V0dF9aMEIwoOMEAPhJiEx5LjWAPqiXOH1HhHT8+tzc3Ox9rq+v2+3t7QEY4H+D39zctNvb24PP9fX1brA+PDy0b9++7dJUemQYOJcm3TiG8Xgrob6QVtQ1N3xueBPQTYBUuk59dBnpSRrk/lxigVrb/z+OFCEf0wcO9FzX6ZglrL+ze3qmMmQsv469/uxPOgKdG9VjlrFJgc5HCp2rf9K9dEi0ye54CfZ8HHh0z7ZKAMHPJaDCbwYPHI86z3LrHl9zwCicbAIdc2Xf5QfURnLw/E7rCRxM8JPWa7BNk3A8+niowAHbIAE9/XYWYUamwQCRpDIhEGClvbBVhEwjkpysNw7T9bnQ1WqfMtM1Kqd3dPpdOQDWKxnCnvRQn+ozG7Wl/PXtgCA5dmcGODVwc3PT7u7u2t3dXbu9vW2fP3/ee04D9eHhYccaiDFg/tfX1wf0WmXAPlJcnxIY6A3I1I8popxhBkbSi7IT7d3aIRCo9NIZHK+LM0vSkypfOhGKIjafx69ASQIcVV3cQQmEedulZ1RmgjbZFKd46WBOISPb0drhNImDAt3jgIBpcWqEDq1qUz6f2APZT9c1ZwWSvZedIavgQRPtNtlmMgM9R04gkBgBBwTOAiQgMDPeU/BX9TOv+Tj1MeHty/6cndabBgPeqe6YfbCkqMnF0T3PuRAFkYZK6enYB4c6r9pe0tmAlC7rl6KMUcMn5JhAQVWnBATojAUE5NQ/f/68O767u9ub/ycYEGtwd3fX7u/vD54lGHh8fNydJ+sgoPHw8FDO151KUvRTfXgfga5fo7gOUKdnHYmPoxlEX819uy7SMHD88p6ebiXHnAKE5LgFjnRPcjpOFzPvVGfWiUFFYiFTdJTSnTXOpxAPElL5/Z5UB9dL2lOBNmcGKKkdK9BMIEKwTV3UOdkiRvoqQ7UJ0Xq93lvfwrJX0T5ZhsoHVM6fdiD5iao/KG4bVI4kKSDV+R7ryPHzLsyAMpoVFYIK5yiSlXLKQ+INle5Lg9g7zNEkFYb39gaS2sA/I6k63x2M5+1Im/V2w61BQ6f++fPndn9/v3PuAgOk6TTwKjAgQCAw8Pz8vFtD4Fs9c9pBGzf5Lo6nEhot14nK2fecP9Ot8qki1EoqILhk3M1GAZXQSDvjkxw1z1VRbBrjBARpoyAvU6qbg4LW5v6C2NPx/pqxAx8p7oQSG6L7kg1x20tRGp4WA66kU5VOJtvFZ9L0lsCAvlv7Pc2kerPOzubQvzCwSgv/nBlw35Aif7cTZF1m/EUCBH6tN8Znggln3AgE3o0ZSNGFf/fEQQCRnX5XqJeSlN6dbAIDBADq/IT0mJ9HXOlTRVgjSfVIIIC/mRcNttP9AgL39/c7p+7z+/6c7iMQ+Pz58w5EvLy8tPV6HaMvte/V1VV7eHjYYx42m81ZLMQaIXl9V/rTAwbVuKho8dlyzqD7xArwmcRWVNFy+k7sAK/TqJHlY5TpmzOlMrC8Lgws0r1s46WsjMqbfp8aENB2qa25QJnymjI74BhR+h7xe76p7em8PfIXMCQo0HlNF/haH6XHe2nbneb3wI/AwM+nYCHZ6dm2roDuyD6k6w4iWAZnBN4cDCRhRZzKYcF6zp0IlNJjCEhfJQDgv4kC+d3r7FTXHhBIDmAkI2Vaggjp0BMzIMdOR85n9SaBnuVH0wCO3lV2DjoBLbXBZrPZo/1OJUuNYw8YeOTZWnaIdHZL6z9iFZLDThE968MyeCQlSWm440+sGMsrh0/b0Nr/9Fl/rqO8qjGXAozelAb1sgcKEruQQI3klDrr4s5agMAdggcyVRsyXbIDZEh4rWIlmY6kYigYMDiIoE0nQGBeBD8MLPms26RqPRinAKtzPfZwpBs9RmbmepJ0vweIlKur+bdhFoEBGrjqWOiOkirrFUgVrCShpPRaxwgQpI9LDwS4sXTDQkcwMu5LxQ023wbgegF+CAZYRq4b8FcK9dE9re3vVsiBp1d4pLCaSiCrcK5CI6jfklG501jwaSFPn1Lpeho31DE5Ak7XpD03vF4yqqnOei5NETDtGWZAZUx1JRiZMYasSwLcnk4COWzTNE57cirddafaM/wJQFGSM0/BGh0dgQCB3Yw+u21lW+s3I3+fMqCTV55ybnpOew9Qn0j5c6F4YoHpG1R22jSvR2KQe8BgFhD0JKVNEDTS31mwcRQz4NEODcBMdE0ZRcejirAj1OEsR0X/zwxuR8BuZNP8V2v7O7g5rcoIjc4j5VlFOkzbXyXU6n+9EcAI//b2NoIBlV0LAJmm3hjgfgIyDnyTgG0up6Rnn56edmmfQhzl6+OGLQEANwQ9kOq62hvobxlxJmBKHfSycKy6E6Xz5/qS3tsEPHYwwPZzcCI9YhtVzqXnBFvbXyvgAUpqL7aDX/MynBrEenSdHGRPKpDg/dljDSqn07vmvmAEHKrnvPzJZlKn0tsA3CbdwYDO+zivAkY+t9SPHHO9kqrdj7Uti14t9EHWc+6jORCX19w/wwzomYQK9Z3E65icvJ9PwgHNsleDoWoTOTHm49MEFd0vMOD1UxqcMiAo4M6F+otX7kzo5WF66/W6bbfbnWM5hdDpJOcu3eE91WIiikfDGhe+A2GKxLm6PpU3SXL2vnmUR/Asa3KSFW3uaSRGgM9X7EcC0X6vG/ZZwJ7GJtP0Y6WptkgAIxn6nn34KEnOsWI73iPvHqjy8um3f/w52QiuI0mRNvvV+4/P+fO+h0BF+ycnn+6pAkvVZakPUz58fknQ6kHACHiNZNECwoTM0t4BuoeFGkVI1X3qdBd3rgmx9QCC51HVtzeHmpD1CGm79KZbZhSMHzlu31uAgMApfraHG3myBgQDrf3eNpSKqPZdrVa7cug/DB4fH9vt7e2wPd5LfGD7amXqTm+hUQ+oJUOm81WZqrSSyHn1ojFnoiTUKaVFA+IGmh/fUjtRyxzvCURUes5nHeD7ORpOMgqpnl6n1CeVbdF1Gue3ZHKWSKqjfnvfpHt6QQ6lCrjobF3vkh11p8/fzgQ5UOPcNhlIgYUei0WQQP3zvCog4GsR9J38hbehg4LUjiPxwJTfnofno3K4vrLOM3LU2wStHVLhFO8APddDLsmIKu1k+HyQesMlpJier+qaov6lkmhQL2MydtXvVL5eZJ8+cuZJ8STpWgINBCBiI7Ttp+5lmU7FDGiwy6CoX2gceE7PeNvMOAY6O4kDJuqVO+ieJIPv9aTD9GvKY6ljq8YfjaG3WwL3acyncSzplZN91tohIGAfVGChSpf9rujylEJ98X4liyPxe2Yi1iU2zu2A29p0zIg75a/0HJw7q8f8emVL9r+yaQ5CEwDo2eJUl6qOvTL3JAVqSR+YXuX7Klm8A2Fr9cpcXfOCV4AgOXJWpofcea93cAIFfn8l7mj56bECnkev/KMy6Nk08DX45dgVgXPzH9+G2DcGUhmcOiMT4JFdAkgEIFq4SN1Yr9ft8fGxbbfbkzIDjGq8zqITk/FaYhQoCRBUEQvTnAVLjNqTJCdYOV2P5MgYELww8kogd0aSXXAWrLIdjBTTuHMHVT2veyrn4syi2uBUe2SkcejMjQMCtgEB08ihLQ16kuOtAgsde9lYt1QugleyBA4GvVzVpwICM7rMe0asLaUqZxWgjkCP+yBKehtidpweBQZ6ykOHz8Htzj45//TtqD49U4EKyZIOn5UUlbhRd0PLcwmNVuIOmBRh+l8BbQrEPyfi3D8HmQwdo/3U5gkMqBxaJHhzc7OnfKvVam8B4c3NzVFt/Vpxp+xAIEUeNBy8P4nr7UdFks/P+38JK6pzBoSyrGTfmE5r++soNJ5T+qnNqihrJCmiOTZY0P0pQOi1kY+PU7IDbnvd7jowpPNn/zkoqMBkBQpmHLD/TsFYAgS0meyv1Wq1x+qxPoltdr2rQEDlK1IdRn3fY5t6/sjbKQUqLhXjx2MPcD6EGUiSIh8WNgGBiiL06KMXpaV0lzTEa8SjkiV5zoKA1vYX5VVvEXABodgAXwTojp2blyRD4FGInmGURkchoHJ9fb3bhfD6+ro9Pj5Ot8tbCo1YGnT+Hq76r2Kb+O3PVPm/lVRTBck4+vURWGb0nYxmj7lwQ6tzMzKi7quyumOpyuVAoNeX3ufcofQUQvAv8SDDgbza0zd50rMpsKOwXb2N6JT9mdmgKwVJGota0yRdpF0iWGU9PV0PFB3k9/rTWaOepKko16V0zPKqLNW2+N5OFPWD0va9c6jLM3LUdsSMiB1lJyTI4yoiTmh9FvVXA3xp9H2M0U4Dp5fHjKT75MQrEMCPTwvwz4m4it2px94AIRAhimd0rbxUDm1JvNls2s+fP3dTFB8trlvODgjIVFGBTyPM6uWszFCOHHNu/B0g0HBXAJzHBHQETGm6YAmVrOfZtjTi3uakf0ftkoKF6r5kI6o2oRH1DcrOQQhmJYm9602/pDbr9avai/3mgKCy/84yJv9AHfSxRt3UWPTgI6U3M55SG1bB51LfMAoOWEY6bzrzqi0Ts0Lb5CzImzMDThHzfOrgpYNn6TPJ6VcGe7ZTe/SYDwA3nklmIqqREO37Pwymvxx2IMB3xVO9KpDkQIHrA9wI6Dc3LxIroDcJenPc7y1E0Oo3zgGrXE6jukOQvAb0pWdn9Z7pVgyBR849B0hRenzeozIvP89VY48OhO1Lh0Wn5UCmJ6N2S0bXDa2nwb4eUbYfIYycnQ1hXZaAtCQJlCWAmOzfsW2TwDd1kFMECjgSm+dAJzlT16VZJq/yI8p3pv6Vf0wBh5/3qWi3AWQFHAD07HuSxZsOJSTG41Sh1uoNgdg4KU2XXkclY0fQkI57wkHWAwQj8Xu8g3VcLRj06YG0j4D/3TBBgEfyKlOFHhlt+iJBj+65KyEN569fv3ZA4Pr6+tXG6rUiB+R74wsYqI6t7aNsOodKZ3yAput0ci6zhqqaO+6BAh+TVT2o6/z3uFQGXxOT9IhjzCluvtHCe9MucF4HpuPH1f0OArwtks3wSO2UzABtEAGt12Vpen7cOydxPU422O9Nizc9Tc+TgFHHXNvE+9KOqKnvRn6lx54kEKxjZ19G+bjfq8alL5ZNm9kRtCdAsER3p8GA3st28UavBm7vWmqMWQNZofxeWjMi5UhoMKF0f9af4Xd6PlFedOZcEOgggH9IpM2F5Lg5t+8K4nt2e9mpjFUkynv57XOV+hvjUwj7kgAuvdfMPneGQPe1drio04GXD2Q+k8rn7e8GLOljAgPJySVHreeogyqzorBKpL9u/NwxJUOW2sXbgo4ufSrwQRanclYVwOsBitng4b1EfcQ/J3I9lVNIjlHHxwoDIKadfle2hMKyuz+gfqQpAZ2T3eKWxcnGjXxTKhPr3asHn3VAkABQBQQ41+/pJiDANqcdV2DDP12qfFSSxcyAO1+vTM/hJwOXIgmlPSqHp+Hn/ZznM6O4nqdTyTOSFuwkCoj3V9Q7QQC/+YdCXChIhWGkJKXheZVDuwY+Pj7u7TKosrnB8bbhb983/xRCfVUkkdga/ytd11t3ZPqtOrKtdJ/fq7S9fJXzZp/xWlU//U6RcA+MOThVGxGE6LhaOEWjzDqm3Sqpo+5oaMD5D6MyeJUhdYPo7ZPaq2IF0ueUovz5971itCTr9XoPyCV7y+8EIh0gVuVw4Mxrfl9Ko2pPt4scFwIG3rcp2KI/8vRTfdwnVL8rcN/TD68vgesM6KTt4FRJa2331/C08Qk0z8g0GHBjwkpwu0evfA8U+Hm/P5XBj0dAoHpe0qOtPD+iVE+jJwlZp8jL1wfoW6yA/wGRHwsQ+F8Ms42kJFIiBwMvL/tbDQuEbLfbPYdJB0FH4QOSKPVUwrxT5J/6bwT6yATofxu03bPaTtedXXFnmYwCWRu2pRsO/lZ5HSjT+LA9WAYHPHQq+jMYATxdoxFOQED6Kz369OnT3jQW/wuDbeNgSDbGDR//HOvXr19tu93ufku39YyiSda3YlRcekzGe4vrrs6lyPfp6WnvXyGrdCqZqWPlAKv00yLDZHMpspfJMadoO0Xj7hCTjIBM9UwCBM4O0A46g6Z7e+A8MbIebFEPaMsdCL0LGNA3nb7/KYTfz98jlLgk2j5GRkpIcUDgHdpLc9ZwpMiRBlTOl28F+DbDvmjQo1OVmYOERtLBwGq1atvttm02m7Zer9tms9nlncCAt4ny5J+EVDTYqUTGRgOV5VIbVGXVAFVbsH+8L5wlSIwBy8TxROdHx+cOgPPslaSxK3HWisCV93KdQIoeq+mTtAeGT2VVC10dCMnJ67PZbNrT09NuY6uHh4ed7m63292HaaoN3Ri70+H3qcX7TGOQzIDa/enp6YCBS/VIAUqPEUgRux/38koyAwj4rfwE7DRFMLOGJeWdfFSK1JlONX1WlZVpO3Oneib7yd8e1BHcJ9vgb7+8+TSBb+fKQrmBqiR1/lsBgWoAzyK+Kk1X9hnnnyKvkTgSJJVKEFC9TkijynUCKg+V2h21rxrfbrcHWxgrbY8Kvc4SgoBTv5qVkDmjD4KC0dSNL+Zcr9c756ZFnOqjtJDT0b7EB7YiXDk8Rr+6h84sMVZKVwYn9QHbwdtG1z29xHLwGQEl7pApBkvrWvjnWWwr/4Mk6a3qrg/fVPn582d7eHjYfT88POz+E+Ph4WFXPrUBDTbzeI2teC9JzoIAME3N9Zz6SCqwl+7RMc8n8fZWPXrPVPlIz8lQMU1nLGclOf4RoHBJDMWS55LN6ZXVgUCyt2qrGVkEBlgQjzQTDZnEEdZsoyWlWzql0CvbDGvgaJiKWhnimUHJzmLEmXYY9E2F0nbDpKrdqKbI0g0OI1/lXTEEreV+cLrqlMZ1ieGpAAEZAe8POjo6O03ZCBBUi+jYN3L8dHhyeoqACRJWq1XbbDbt5eXlYDHoa0TtoDapQEKaCuHrr2Kwvnz50r58+dK+fv26t+CVU1wOntg+AgNsDwGAb9++7b5//PjRvn//vgMFSocG05mZxApQJ0a6854ip+e2RL9ZH14ng1cJ+3iJJJqcxykgc73xsjplnhyYR/4pvcoHUT8dCFb1d+eegEe6358hgOG4eX5+3tWdCyF7eThr4XbWbe4sEGhtARhwWiMhqCUoKkUcPfHr3qG979k8Egvg13vl6wECdzJSBNWF7+9zqoARKB1QOvbth9PK4l70qLKQimU0xmg/0dxKS47JpwdOxQ5UxouRon5XgCDR3opsv3z50v7xj3+0L1++HDg5n7qpFhLK4ZECV2QrpycH+PDw0NbrdXt4eNirh9I8NipkG7R2uGeBn+N0CtuL7SRW4MuXL+2f//xn++c//7kDBWqvL1++HCyAZT3k9AiK1CY/fvxoX79+bd++fdubOvv+/fvea7CcfknOcxTIvKZNXyOyt5VjoCMRMEjrOnrpt9YObEXFDjAgqiJaPuvsKkEBI/m0uFh1cZ2kPvo5ggKOCY+U2a4ss8roNo763WvTxEIyP5ZZknaKZL4sG1lcFwcK8iOzujsNBjabzR6Co5FnREKnQGGFqoqka72oPiH6EQswCxy87Pp2Q1INCD/HgeGLtEhXk1JmZJ6mAJJj47u4VDiyAJyH9jl9DgifJri5udnbCTHRcnzn1UHFz58/yzZ+b0lg1Q2WtysXcVLf6ew+f/7cvn792v7xj38cAAKyA3rGDbQbL7aXKPAfP3606+vr9v3797179b8PrB/b3Vm7asFSL+LxqL/XPjpWOtKd29vbdn9/375+/dq+fv3a/vWvf+3aS6Dg8+fPOyZBusX2eX5+3mMECAb++9//7p7TWg09J90mS8A2dHYsOcIlQc5bi9ZJuH3k9+Pj40HgQBvC+yXJPiepwGuyQUmqINEZrKp92ZfUt6STlQ2mk/QImvnT/lW+LLWB38Pghx/dxzcJWL7ULp4+y88FtPq93W730mbQOZLVy6n4r4tc5CIXuchFLnIWcpr9YS9ykYtc5CIXucjZyAUMXOQiF7nIRS7yN5cLGLjIRS5ykYtc5G8uFzBwkYtc5CIXucjfXC5g4CIXuchFLnKRv7lcwMBFLnKRi1zkIn9zuYCBi1zkIhe5yEX+5nIBAxe5yEUucpGL/M3lAgYucpGLXOQiF/mby/8DcrsnPcqqufAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwmklEQVR4nO2963YbObI0CsmiJNs90z37/V/re5GZaVt3nh9zggoGIxJZFCVSNmMtLhaLKFwTmZEJVNXFer1ejzPOOOOMM84447fF5bErcMYZZ5xxxhlnHBdnMnDGGWecccYZvznOZOCMM84444wzfnOcycAZZ5xxxhln/OY4k4EzzjjjjDPO+M1xJgNnnHHGGWec8ZvjTAbOOOOMM8444zfHmQycccYZZ5xxxm+Oq27Ci4uL96zHu+Hi4mJcXFyMy8vLzefLly/j8vJy6zzSoZ3c3tmxu3aWzxhjXF5e2vMV+BlRLy8vMR3ydnXlNNw/euzKRpnr9Xrr9wyoz//7f/+vlf6Q+Pbt2xhjt5+5L92zt6rxdOPt/sPvqiy+fvZJ9WFZSmOH8cL3y8vLeH5+3hwjDT6ujiiL5w7mE3865aMMLY/PV//zf5q2Sr+0DPy+u7vbadd747PqXcDNEdUzrIOrc5yP5t9BR8b4o7LK88TNFzdvTuWZfp16tMnAZ0QiAqy8KuMHqBAhLR9zme4/NcJ6Tq+t2gR8+fIlpluKl5eXTT9UBl5JgE4qV0/kfyxgLFBHVix67tBQo+1kZml+jthh/FwZaKMSuUoRKrif9LqXl5fNeRzP2phkPRn1Wb30WMe2mlOVkThjf1QGfEYOOkSYy5hBdUC33mP8T19DrnGMb+TN11a/Txm/LBlwwsREQAkBIymEJYOahFSJgEunirIr8OyRdY0vl4FrdMJxf7w1MnAMVEZiRsAOTRKccugYzo6BHSMrvSWG3+WXfmv+fFxFR1JZqY7p2kMpWiUeh8z7d4TTb47IOmO/5Pp90B1nJfCdOi4hHaeGX5YMAJ3oAKNSonpuKdPUOi29bowemeB0rv7sRSrwn6bnY/49MwLA8/OzLe+jwJP0UF665jVGLwJQEcDueQcdO5bPKqyZjC7LTiIAakRBKr98+RKjY9W8mdVLiZ2eW6KEq0jDmRAcDikSUH1wnV7P59+CzjjPjD/rE51zSyJTp4JfkgxUQsZRgS9fvux4h/B29w0dVoqew1+AM8rO207XpgnCCpTDuKlMVtxavkYBXKTglKFE4NCTdF9SoOiSxAoYD5ACJW4dr7vqE2fcNW/ta3zv09dVZKDKr0sQKsKxL8n43ZF00lLj7/LYBxpxcuddG3Qud+r5meXklyQDCo0O6LEaheRxdAa68o5ZeKrNg27zXyIU+tsZarRvZriTwq2WBpLCPMQkPhS6kz1dm4xbIhhcpkYjHGblp3yq/q4I3SxK8BZwdIDl+C3GuXNdSre0PefIwGGhBh/n+D89p+m66MiVO57VX495D0HljH226MAvTQYS+1RSwEgGMSmnSghSBMB5+Vpvhe72R35pz0Pa1OU8/NT+RAJcf2hep0oG0vg4qHffJQQun0Q8uv2k0Qc35tW1+kmEwJWX2uTKGeM1EuXI5xLisQ9JqWTybODfH0ujAvof/56hSxYTwVvqJCgxgC7WyCvn85kIwS9NBhgzgdOBUhaZFBIGHIKBdM7gII2LECg43Mv1xdIGvjUPNvzPz887x0iPdNpWLhvnsN6vRkT7Svu7c+4jUCmJruc+M/icTo9dPu7aDjr1cNe4qMDsdsKkFFMZqa6uLvvk171m34hCVYdTVuKngooA8G9O+xYSsGS8l4yl6sUUtUhkBtd+NkLwy5GBGQPl7xlYcemxy0cVa1L6jhRwHmNs3zbIRpyJgMuDDb+7JQZpscGLz3H5OAYRcPfXumtQB2XJLt1HQcfDHS8xfFVUoCrD5VN941p3TafN+F4SFVhCYLgsRyw/UvG5+ldGYSmZOqOPblQg6Wh3fow60rOUEHTrzdc5x46dL6fLK6fg1PDLkQFgpmBZgGaDowqm8jTTx9UvGQgn2I516u+ZUldCgDo4UuDa3zEenfoeCzqOM2PdgTOWnfwqb0mPZ3l0FaEjtx3ZnpGdVKara+ecU6LVHH2rJ3jG25E8/qUkQJEMaiICbyEBySGYEflEBjTPU5fDX4oMdIQOSIqwMuAKJ6CdfHidv3o2gApntRar13Fon791WcLtJ+AHaqD8JQr31AR/ZuA07ZLoAI5nafk4eUKza2f5q+KpFKiedwSvMsip/5wxV8I0I50VweqQ9qqd1e8z9sMsEsBpOroZqMbcyes+49shutpOrlenHa4tp6Yjx/iFyIATNvdEqzGy0njr4FSRAX7CH+B+6+Y+vnf84uJ/SwAw6O55AdXOf3cHAy8XANyXSgwYHZKQvNdjY6mRS2lTGndOFUZ1a+g+6IyHnqsUaKePHMl2xjx5gE6xVpEBvbbTrm4bHQ6lG34HzOTePVlQ0yg6Y/wWMsD17Mg3n+sSeq7PKROCX4YMjLH7zPT03oExvKJLnvzSQZtFFxyTdvWBEWZj/OXLl81GMA37o+xkvPEwGFcHfcymiw7MFHnXEH00tA7OgOF8NWbdSMAsTcczmik2ZxwdugoyRQb0Oi13Sb3SuVkkAeVomZ15WRnzQxiRM/6HmedffRwq4leRgLfqICffTFJdGiY7Kbo7K+8U8EuQAWWf7lMJ4EcPhotW4Ntt+mMg/O+IwBjbEQVAn6eQXmLEx85j7bBfrccpIpGDFC5cQgJcvjiefVi5MUHF9fsSAtfmt2IWGdBjQOXqrW1y+ezjOSp5XxI9+J3RkfH0roEOIaiOZyTurWPo5NjJJ7fBOVFap+T8HRufngwoCXBvUEvRgW7+KfTJafRbDb0++tgJkApYpayqDX8KXaJI7bi8vNx5bLCSEp0UiYknZX+KcCQAvysPBZiNgzOIM4XYUXRJntO1lZc8kw0tN5W1JB9Xh2qOLfH6uK1dMjBLf4ZHhwQs0cGzcT5kJKeSQxxrOjef+YmfTl9qmadICD41GVDBS4SgYqdV3mP4UHjl7cxYsYbpuX4w8F++fNm5PRCCBlSCw/Xj/QUXFxdbSwUKjUK4uw/csxT0N9fxFIS8i25oupsX0qtnod9KsDgPFy1Q2U0GumPYnOKr0EkzI4PdPlxK3Pf1/Pl3N6pwRk1y05Ne9bkpjKqP9yEATve8JUKQ5oojAvrtDL8jBPvW8RD41GRgjG2vGy8g4hcRJdaqSjkNAA8qGz4un+uhxMRFJmCMXf0gVCAEWg7Kr+4o4AnHUQEVQM2zgt5TqwZnFiX4LMrUkb0l3nIyrBUhcPlVBt3JciJjbly0XJbtBFXeHQ/PtQvf2l9cvhLxbr5J+bs+nJGBKu0Zu2TWPSHVkQEn+53+7Rr/btql+Supd7KZiIAj752yPhqflgwkAz/bK6BCyfmpYWOPVx/UwteN4TcvcoTi6upqi6CkBwbh8/z8PK6urjZGH3cRMEFIXlf1VsIx8psJVWnq2pdGGSrMJs6vBmfIGM6Tdx49f9wDnlLZjghonqk+Kvtaf5bT2Y5wzdv1hTuXZFn7qko3Qzc6kOpzxv+gY66EYBaRdej2dyLbWj8liDMZcvm7OYM83PypiICr70ymuT4fgU9LBhiOnVbnkiBVHi8POP7nsi8uLraM/8XFxbi6utoiBkl5unrglr8xdm8vrAR2jN33GLhyqhfZJAFkg4A8qknZmbi/EhxJ1P+TYkpENJFPPdfxdDWPVL67riLVFRHo1CelnaVJRCelS2WcSUEfjgi4JdnOXq239PPMwaiM/hJC4MrkslUfj7EbRdX2O0dppnM/Qg4/JRmYKaVZRIDD6Aw2vjwIToErGeBIgL4/QL8rr53bCGBZQT1+fkEGC6Lrh0QKuI0gArPoQ6prZXh+ZXSiAqoA0vc+UYHZeUcmVDlp+Srj+O4QglS3tyq0juHv/O4SgTO2MSMC1T4thiOd++gOJQTJSXLzr2Nkq3mshMDV3c2NTnTiWPiUZABwBCARARjRJKDID2lYSNXoqlLiSYDlAEcCkBbosFsOOzEp4P8cEdAyq0nJ0Q5+cuFbBdZNyl8NTiElj8Ida7qq3zvKsfqtykvrzbKA/1XpVYTbtbmj9FM70zWOtJyN+vuikoGKEFQEcSYTHd2R5purvyPt1Vx0/830NV+rn6Tvu3PivWX605GBZOhZKFVAMQDOQDpwp3OIHjv8OZTOdQAR0AhBFYlwIakkhNwOGG0sJzgljfZXcEQADzXq4i0G7HdEChPODNwYtWevZeh1LEOqqNVbqyIDVeStqou2Kcl+yqPbR12leSYMPVREgJdGqz1R1Vh1dEflOM2cqll+lbc+iz5w37j/HGGekZVj4dORAUANnhrhFK6qIgOcN8A7rUEEnMerdzHwfgGF88IUvC6v5/VuAyY4/ME5FWbd9wAi4CIF+K76a6acuY6nDlfPrqwsSaOKI13nPHOXpzOynC4Zb74G1zm5TGSC55S2p+Pxub5w9aqIQEf+OjhHF3bRIQLu2S4VQdy3Xx155P+68zRFE7Su7lwy+o58q8OY5PsUiMAYn5AMqFBWH/WOKyM5U64ajmfFo+XxUgGXg3z425ECXqZQQWGScHV1tTNBqqUJlANCoW3VejnlWhm2ZASSAftM6CqaZHBnxrjK25GAmZfh8qhC+yzjiRC5T4dcdyMXszQVETjj/dAhAuqAOZk41Dglw5/Ou/ngrpkZZqeTZ2TekYJ98voIfCoywIpQDb97voAaZKe8OmF0XMdRATbiLjqhBnmMVwHgjXqOEMzqiLyVsWq/6IS8uLjYlMn1wLIAPvt4+r+iQk5GdYmxTEZ4Cbng/F3ayjvB92xTl/5Wglq1b5ZXqttbZSZFQxRuDlZ5zfL7XaCyl/YIqN7jZVGNLnbIawezSIDLO6V3hADHXO+O4U7tS2Q+XdPJ99D4VGRgjF2l5MJUSgQgnI4cOHDH81v9cB3/BlThV3sSUIYSAgXycIqZv7mu2naGe0QmkxF33CUDM+wz4U8ZM+PoFGiXDCB/LctBlVW3nmPsvj5b663jn8hNqr96RC68Omt3Vwlq2krZzvLtKvlfGc54JSIw2zSY8n6vOrvflZyO4TcMqpx0Q/o8b5RIaL8uiUy8Nz4NGUgK1ilZVcBjZEOpAuDeAojrOJSqoXyUwb8d1CvHOWfwmXA4Ba59w+10G3hwvUYHgCWRgSXM/HdQpDMiMDOgM+NYXVN5WxUR4DwR+YJ8ufFPeeF6QEkn6ukUoKuzO9dR1pq+i1mE4XeQX0YlOx2ii2tn/dYlBUvzmf1OeaTQvdalSyYT+XWkYEn+74VPQwbG8IQgKSe+prrVj9Ot1+ud9XQVDA3Pa93SsoN63GOMrdA80jAJwLF7l4ATplkomOuiv1Uh8rnU3s4k7ZKGzwz1QBIR0I12Y2SvVfNUuLClq1dFBPQaJgQdMoBrqvakNmk7Ulu1fRUp6MpbRXA76X43zEiBk6VEsLqGemnfLyWXXIYjApV+czKY6j+T333I63vhU5CBrgBWcMsHwOw2uq4Aa7iMoRGBznuvncJ30QJuH87vY4CrSMBSJOb7mbCUyGj/V+R1VmYykJUCq+qh+bi648PymRS5yiArUd5f467Vtro0zrDPCMUhvapTUM7HQCXDHf2rBo6NYkUKXD1m5Kyrl7tw86hLHLtpnLwnOf9oGfwUZIBRCUDqPFXIKUQ6G4DZHQicxtVLIwIaLUiejSMAziNcOhne6tnPjIv7PnXsG8lwRGyJF+X6OhlHp7Dcda5MtzlVZUqXC1Jbq/NKCLp9WhECradLV0VKusr1TAT2jwTwGLjokitPj5f0/z5ylf5P5HqGbtpku2YEd5867YOTJwNdgWTB67xIxyF1dtrdXxliXW5Q4z/G2HrsL8pHPro8wAqa72LgsjuhUl0CYbg+XUIEKkP2WciAQ8cgOoM8k1sXmqzKUaPnvvkaLdPJMUfIVL5T26s+0ltwq9sV9drU/iUhXL2mOv8RCvaz4BBEQI/xu4oKOIPYHWe97hBIcypFbqvfVRlj7L7l0OX/kYTgpMnAUhLAHvYMXWGb3ZZYsTvkr0/2e35+3grDujqwZ8YEgQmAEgTeZ8D16oT/Xd865emu0+PZ96+AjiEHVNHq+UNMcKfM+XdFBNweGoVGtwDdLIj+YBKAN27qsy06fcd5zs6567T+7tzvjooIuDsFnA52UJnRMVA51Tp1xrxDMqt2pyhbijTNSEFnKSMRd84jlfeehOBkyUASyoqdstGDQuJd/4Ce7+4Z0LqMse2d64DqEwK5fu5FNK5d+lvfYKiEQBWwlpfKTuUtIQBOsJ3n+aujG1rfZ1Inz4X/1znSIQJdQqBzhjcbahQAv/G0zIoQuHZyHzkFvQSVMk9G4XdAIgLumQJ8HqgMYXVOdciMTKfxcHZA/5tFkThNmlfOO9d6Ve3X9qIMFx2YyeN7yedJkoGKnbrPTJjGGDvKqnqFr4ObDHwOv8fYDpXqUgDKqlDt9gb4P15SeH5+3nqhEZeJiATa6YhCQpcAdMfjVDEjP3wueTVj7CrJNJmVwGqZ3UiX1im1YXa7bcpD50ciAUzCQUpZ6VXK25U5a29SxklpV2NVKfpfERURSDrWOWOdyKOWWxFANchL5wDXi891SUFVbiKkKXLm2qP1VD3SmSPvIZ8nRwYcY6wIgWOzDFVYMJaHMlZJyVbCkfJRhex2bDvo7YwuKoBvLFOgT3S5YjaxnQLh9i+p96lgZkBx7BRhIkZVmzseVEcBJiPnxkX/U2Kp0S5Vqs7gcxnutx5rnbneSbniuPIMZ/JahV2rfH4XQlDpWfdYdWdwl5SXZDsZ2hmZc/lw2s617ppZWR0iy+1NeXbIwEfI58mRgTF6JCCFsVyHamg9DUqKCrDyY68H/3WNdTXoakjSpsWqnNQWRAXGGOPp6WkrSjB70FBncigRUHJyyugQAT7nyGe1nqrQif3WybyEaOm4KClAGkd4QKRnBEAVdyIrQFLU+y4FLIlwufJ+BwIwhiePjgik6Ou+fbSEuLn/OtB6dupdXdOFm9NdIsDHjsR8hEyeFBlQhVoRAj5fKWIeDL1lqiMk+hhiEAImBlrWrI1jbHtMfM55aVwGL0VUYMHUdyEoEUiPH64UuxIvV2/Xl6eEzoSv2lp9V8SgM7GrunWM6XtAvfxD4b28nkoJLzEsvxo5UFnu6ltFWqLplL8v2UtlpTydYU2o0rAsVVEsV5fukofK60eTgpMiA4DzvtT4z9axGDByTArcU/30GlW6HPrEcoN6R5ye4bwy/nbnqrVcLUuXBLjOMyJQbShEfZIQL41YfAYkZeCIQEcmNb9Eslz56XgMvxFrCTTipQSXlRHL/yxPd5ygsrXkGv6Na91/bi5XuuJXRiICVcRVI6GKpX2WjCrqNXOqKmOa6tWRr66RZsfJ3RqYylgSHUikIMn3IXAyZCB5YJW35QwqwMYRRrsbvmavmhUkjsfYJgQqGCiXFSgLC4RH11adh5mWQbiubPQ5T32KHBMB3jfQUfSV0UE9uX2MU4sIdJEMO9qrYVQ2ojNSMPMUOoSga+AAJsF8rKFMdxcOyxJvinVEwR3PFH+KQHXDupqf9oszDKlevyoSEZiRApXdbp91nIuZl/8WB8MRgCX5OWOMb3XAKhvkzs8ITdIP70kIToYMAIkEuI1QgFMoSdlV5TqwghxjN7zPzxDQ9xY4IsBlqQFx/83CdezdpTsXeKMgRwLSEoH28yx8psfpARqnpng7BnSM7aWB2XvckZ6v43NLsOTabv48lhzd0rxmd9s4EsBjrMeuvkpCkHapcnOKc2ZMuqHXU5PZfeFkyZGAyuma5b+EJDjihv+4zO4cndWN8+6krdqfImVvdXqcLnVLc/vMkQ5OggwkduqYaRrYKmyoUYG0BpbyQ55MAnDM91A76EAioqCDzPVxmwfTejxHGC4uLsbT01N5Xze+08bBpJwVTGQ4f+dBdCIPx4LWWZUBb6ZiAqCfSp4q2aiu0/+UOGo7kGf6j+cCokgqu9wfuj8lEQB8V+mq8VfC6cg9l8XXafscCUjeFR//KkbfIZHUigSw/pkZZKczuLw0bs7ILi3zUEjOGPcD1xP100+1GVvzSE4X12OMeq9Ol9R2cFQykBRvCo1XwpEEqRIqVnYoP4XN3TIBvCsoVyUdVWTAKa0OSeE8cA2Xq+TEhXyXwHkJs3HgYzUQnwGOCFxdXY2rq6vNsRIBN+4VYIyRvpJXF3VIUANehfyRH48Rt0U9ezeW3QiCgyMBXTjlmQx7SjvDZ5HXDpyudXo3ze8U5emQt+RMcH1Suqoth4YadtapDNb1vOyK6/C/EgLnwGpblCC4iLReeyhCcDQykIRzRgiAxKL0Nw+qY39jzJmXelQ8SGNsb/RzgwTBSHVM0LKYfWqkAwaF26t1dp6BTliXxnkLCt5XkYzHqUYHAFUEl5eXGxKwWq22vq+urjZEgfuk8p75GOM1kwsn/454VIqAFUo6z0QghW/dGDoF19l/UkX2FI5QLFF6b7n2s0N1odO1aY6zEdNzWkYybB09nb7dNakOFWbpnc7TvnFzh6Nr0Mv4OFLg6jQjBOpoKtGuxmUpjkIG1DB1hXOM+YYrNvBVuirk6jbgKQHg67FWX4WLu4OFwUZ5/A2PX+vCbUtEgOvN5AC/OV1FCCroBsrPCJZDRAFWq9W4vr7e+uYlA/QLK4PkRXPf6tP5OlC5dtemvJz88nlVeC5N8nJcGftEg2b5A10vaEYyfgdUxF7ntupaPU79nnTDzLB3CcC+6I6x6jw+dnodehNzmJdlcY7thi4dsBF3fevKc1GCQ8rwh5MB7uwUDWCCsJQQpEHt1o3LUOXJ5fIDWPA/H7u8lNV1gHS6tpsiJkp2WIAcEag2N7r+5HNs/Pmc1v8zKF1tHy8NXF9fj5ubm3F9fb0hA1gq4H7mkCGP+Ri7SybPz8/j6uqqXFd3e0ecLHfWFNFGVxYTTI7w6F0Dro4JXO4hieHME3IGDMdJFj+DfO4DpxvU803RV7fk4n5X5aVzS9M6LDXy7prK6UmP6ta81OjjenYIxvB60bVJ5TuRJNdXbsyW4EPJgBpPJ5RKBoAZAWBhZian3g4rtepZA9qhSaHx+mryxvF/1+vReqrB4R3gKRrB7XdLBbq0oJPckSlXji5ZJGX9GSIFqigRFUBE4Pb2dtzc3GyRAfQdSADvIVECwATBTdpqIrt9A8jH3UWC//k7tbkivbP8kgJfSh6qelYKHf//qgb9rXCGrvowOuORdITmV8lTyrta3tlnzDv2g22Pc0w1LyUDuoeAy1CCUBECbp/Tv7M5sQ+OFhlIREAjAowUQnGMboxdz0rXaVS5ddZ2nJFLRAR1cAxx5gVqGZwGBgfrVThOZWp/MhFwyt8RAf6vqp8TzM9GBDgqsFqtxu3t7dYHZIDHg8kAjgEmAkzooDCenp42+ThipvVMcORD/3fXcN4a8erCLSlUZXXByjZh1q7fkSi4+fwWElDp3CrPmSxVY5ccC5xL/yejn8Bzn9M6YqNp2AnE3Nb5DF2wXm8/BybZFEcItA0VMdiXHB+FDDgCgJBrMogpLyUWzOSQhrFU2elyAc5pPcbY9aoSEVgCzs+tybNhV1R7BrjeqnBnY5CUxax9p6iUnVfAhABLA7e3t+Pr168bMqBLBCAC/GZIXSJYr9db74aA0kAeGAeVuWpJyC07zQxhIglLiIfOr04YdAbnDc2IwFvKc+X+CnDzmOV7H6PNeet80Xzd8hYj7SvhzbD8P+unZDhd+7UvUnvwrW1QOLuCtMnQPz09beWh+wmS3M0IjrbxEPL7YWSgUroaFWCo954Y6hhjKw83+BzOGWN3Bzyv8fIxrlUl7Qwtt4+NdDKgiX12SJGG+StGrMsFXD9dQuA6cN2rEJeLLmi6U1e46APcMqh7BvBBZABg465yhP+RBunwwB98+HpHQKs643vWvy4Sxt98XMkS95Ued+G8HpUhJ1PoH+0nvW6fOvwK0DFxn1kEFqh0CueDvDqvxNZx498aWWS9w/okEQRnqPlbocubTv86UqDpUC+tZyLKgNMTWkaClrOP/Cs+hAw4QXSRgRkR4GNNy+Gb1JG65u6ET3eCY8D4SYNcL1XGTlC0L7jOmibtXHVI57UsZa7cVzwxKw9UmS/az6hCd+ncKUDlk7/52QL6Qb9CCfCjqVlOWa6enp42ZODx8XFDBvhhUR1CwGl4yUHHiNO76zWC4dI65eqMTupbd6y/Zx4ep1GZZVLL1+oYOIWZjMrMcztFOOOnRlk/CZXzonpcH8alup3Bjhh/1Ki69jiDW/VD5VRVRr5DbDVv9IkSFW4z4OxHitYh78oZ5m+V4SX40MhAIgKJQSoSU9VyxvBPTwNg2F25EM5EBJQMoEz9VBsOuUxmdkwOqqWOVHfXFxoN4E2TvAnR9R2n60wQtOezoiKY+r+ON/rZsXvIEIgYjP/l5eXmm9ccmZC6PSZMBC4uXh8rzEtgaXNomleOFLi+ScYkGXNnYGckOYHzUyKW6pOUo86/GZH9bHDyqf2UxsKRQZcfEwF+EBc7d7zJdoyxpUtxzARPdSOge5w4asBwSxTaTkcEdFlO286/9Vijy7hLCP/zHOd2cRsqmav+U+L6Fhl+dzLgBNKRgJmCqDwboPKU1ZvAuTQZ3IDxWrCrj+brBIeXJuDVqdFxmxBdvzjigPPsMTlSAMwm03q9Lj3PJUL32ZQsk0JHBHmcK+I2xtjpQ/5G5IFvSUxEFGXz5iTkze/G4PGDHLhx0/ZU0QE16Dqvnfc9U6RLgXK4XW7Nlstfokw/KxJZcx9Or6i8bdbd/JufzlmRgdTP7JyxEXXyotEBju4mAlDdXaY2oQtXFs8RrT+ACCDaorZiRty1fBy7vl0q0+9KBlSAqqgA0led0VUgs4F1m7O4fI4KKAFIZECFYBbCSkRkSXSg01ZHBLieFQvmtqiirYiaw2dTtOzJwBDzJkEdJ3xzn/JYu1uNIP/6WmnInXpRyEc9ATb2HC0AeHkI+bOMOrlOEYSkoPm3/q/XVER3BvUemeS493Gkumu903z+TCTB9XNFCBRJ37rreVlAX9qFJTTW72zEQVzH2H63yhhj52VvjBQd0DorCdDlCo4aV946Qx2uBCUF1TU855bqU1fmW/N5NzLghIcFxgnnISddmsTKnJgZqiAkZcmC6JigC9ssRWcZYAmcIVq6SQ3HjsHP+voU4frWjTOv84PZQ4lAeela6Rj5jWNcPuaEkk4mAExEOMJQbUxCvXic0tKB6wOtq+svlm810OlbCdSM7Cqq5Ri0EXVj4pPak/I5ddllLCUB2s6Z85J0eaXf+ZjzYhkew3v2eqznVK4VXDeNUGg65Md5Yj53ZUBlGpgtr6oc7xtxRR2cnC8hs+9CBpyQVBEBhlb8LZPSGb1Z57g9Bt2y9Lir4Jih8rnqoUh6baX0AHihro4d4sJ9OSMEqmRO1cNKY8VGGN8gAlAsLONjDCvfrOwQYWE448bKCWU/Pj5uNiCiXL1tieHGSZeOKrI5m4eVvGu++ruzjpvWcF0a9jiRr5KCBCbtpyifXSRS1iUEnfwhQ0xiNTrA/ykpTk6Inp/JBc8rJ5e4fnZ3A0f/mCR3nSRGkumuQ5giErOxUf39lujAwclAYou601SFU5Why9eV0TW4iXWqh8JCOVMieuwm2xJiwOwUyi2RJj7n1r0cqdlHyB14srEQa5/MxvRU4IgAe5YgAtj9r7LHpM2RXeSDdDDiySviOnBEgIkA0j89Pe0oUVWuvDyA/918qjyKSt47Bgf10P9SBKzqG5VzkCyQAF4iSd6Za2vqg1MmCt1x4fPdfNOHdWb6D6iWgaoly1RfNthJbpE3E4C0b0CjaPh/5tWnPnOEg22hfrid+pySWaSA5VPnVZq7FQ5KBhIR0PCRGjjnGXXK6JACVozqaVedpAo1Xbe0PirwGExW6LMXEnE+XJZjlexh4hx/p3M6PlyumyhKDDiPpNSPiS4542cDgBDwpFePRid+KovHhPNCel6i0PdSoF4akdDd2e6Y28+eSyXvfE0yONoG1MuVy212Croq2ylbkKXLy8utBzlpf1fyzYqVz7v0p4bK8Dt9NGuL5uGiXbphMJE6F/VMXnCSE82PSYDTRY50uv/wW0kAl+vmg5NV7iclH5DR1Wq10SP4XF1djYeHhw3ZZ0LAe4iSjVS5nclxhYORgbcSgRkB0G8XXaiuTwPIgHDpbVrcrhSWckJWtQXgzV9MBHRA1fi7aAArfvVsUZYTMvzHZbnxqIhRZ+3xVLwrHVc+5vawQQYRYLmDbLNh5/NIC89V5Z/H2P0HWcQSAT5s/GcGXNur5EVJhn4rkXBzT/uuUsb4X3/PjJUL+QJYPkG/PD4+bvJBFCaFa1WROpyK3CpcfWfj8xYiwCQAMu50H8CODjslHaM2ho8aORJQyb8b91m0lOfgDNx+FwFnOcVDxZgMPD4+jvv7+82x7k/ipUrWSU7vuqWYoy0TOOFx7BHgxjkjq9/6SUoHClOFqFJMGp7n27X05TNaH+QzUypos0I9PxfSYgFILyfiNTC0yX04YuDQWU7QdjhScapKVKF96WQU+wV43CHbq9Vqcx1kXl9kBDl6efnffcg8qXlcAaTFsWP6Oq76P4MjOjhOUSqdk07m3XyaGRpNO7uejYG7bY3rfXV1tSFrnJe2oeONan/w9aeGZPCVfC4hAhwB4H53txDyOzpmxJJJQQp7A2pIXR3TPgSW7ZmThbqxPqzGWuVL5ZMfSobfSlw52ggy8PDwMB4fHzffIAb45miBknWenxq5XTInD0IGnBC6J1FVREBDcsrYExFQIUz1G2P+EBmNDOh3paw4f4ZTPk7JYqDdTlslATjnQqZqKPhZ+Cz0Woe3oNr0cshyDoFKprgvtU85HM2TGQ8Y4bFkMsBKCePBZADXqCK9uLjYCXlzXRxhm3k83C4lBJBBNydddGAfZePqmq7X28JYwUK/ABiPVIYeaxTMbVybRbqODUekZp9Ofo4IwKA5MpD0uwu9c5RyZnCTTmVDV0XFWLYdEXDLADPi6PoKv9kJwFtO8cbT1Wq1FSUEIXh6ehoPDw+bD0gBPnd3d1uRAyUETp+zU4u6dWX4zWTAGWglBCqMjggkhVMRARee4tAUs0tXD2WPOIdr+TvtN3D5cl3SWroqW1zv9gsoCXBKGXAhOb1HvYoK7IvK6J+qQmVUihOTF0QAUQKE8ZQMsGJQJaC3ETr5dXsEeEw1uqPylfpbvQaWcedtuDGtCIHOPSX13J/qLfH8SkQAilWXYHSZQEk+oBsLtV8SMThVdAhAlwiwblUioESMo16V/htje68GE4EUHUhLA/w/ZJivd6FxJiRKBHgeaD26uhHEn/tptVptvcfk5uZmXF9fb0UI2DFANOD+/n7zubu7Gw8PD+Pm5mbc3d2Nq6urLUKgpODiYvtOGnzUXszwJjLAyqCKCPDEHaOOClRlJQHvNFaJBEN3k3KbAFUenB/XQRkaIzFZFlr+rSRA61YJN0+4QxCB2RidWgSggvZlpTTVo2RSoOt5DFaoyJcjP66/eGz0PJfnojuz/occsaxwvVBnNze1Xyoy6uDy0PM4hlyz9wkvC0rVkSyQASUpOj+1fDX++l316bHgxkMNc9KR2pZEBNy7OJgUqA5yeoVlkuW6258u8olynX7VMtVQIs9ZVGoG7WvuM7zUDG851Tedqsw+PT3tkIC7u7vN58ePH5sXo4EQ8F4CF2lxTmMHb44MaDRACYEKZeWBuEproyoS4Dx4rqPLI7WJla1ez+fcxGSly+cc0lpXRQJQviMELv80KTnfCh1Df2oK06EiASofKrPslesSgRJFNyeQN34rgWDihjLH2N47wPXBNdUylJ5jWcH1Llzaya/qw9myHZedZJxDrviwUmXFivFQ54MJxcPDw1ad+UmSLhKoBujU4Po+EYJKZ6pBY08Xr+/G8eXl5VbIm8kk952G3pUI8O8ljgnXXccrkWpGIgIVYazO8/XYO4TXnX/79m3rc3Nzs5FFdtAQGUB04O7ubtzf34+fP3+OHz9+bI3BarXapAUp0LrB9kBul+jlvcmAY5RMBDiUp5XtRARmQqx5KvN16TtKSuugx8oIndGYGehuuerh8KRNZMSFy1IZSxRd1/N3/X+KypRREUVWYEwGVqvVjvF2nqaSAbdUhAnMLF/nR5ovPPHZkKnspfmQ0i/pL0cElnoliQTo66M55KpkQMnD/f39eHx83ApxQ/kCjhBoX45xOmQ3GfOKEFR5ab/za7vx4dd28z6YMV6jVvgw2WI4IjBDcu7YyLn2pSiEXoN+Urnn9iU9qQQKsoeIwLdv38Yff/wx/vjjj/Ht27cNkdWlAmwWVEKAqMC3b9/Gf/7zn3F9fT1+/Pgxfv78uYkksBxze5UQdOfgYjKgHamMMkUFUijTCYXreAc0lsOeKkBvncQqGDrZXPqkVN1E4PRMLvhWKrdW1xnkpf+nZRGg05dp7E6NECTPSmVWv9krnxFb1/ZkeN166ow0J4M/I6POw3L/oT5u7LifVCe4fBJ4PrExh+G/vb3d+tzc3GyRAQ633tzc7OzKZgW7Wq3Gz58/d8YZ7XdE4JTkN5GwSob5WjWGrF94zRskgPv8+vp6Z9mLiZjeEjfG2CEEjOS9a3Q0QaNbOkcc+VC516UplOn2GswIAfrr69ev4/v37+Mf//jH+Mc//rEhBEoGmEQxIcCGQZCB//73v1tjsFqtxo8fP3acbXZYZrKQsIgMOAaqoSXntapicwquEuKEFBFghY0NWxjkKlrh2qu/2dNj7wTlcVpnRBy0vzDh+IUf3K9666EuNaR2dCYX/+4QgpSnlnkKynQMv+ykCoGRZJc38Ci5U+OPbxe6c9EFHLu645vJuAtzc326Hr9Lq/XlfuM6VQTZlcP9DqKr662sXNm7Ug9LlSl/4EUh7Mo66v7+foyxa7RUoXI7TwlLSYHKvUZiEAEACcAY3N7ebpYJ3PIM+hqRl4uLi82zHvRdBAmsy9mhS8tbqT26SVRJARtjXAMoCXFOmvY9lgcgtyAC//znPzfff/zxx8aQcxv0gWb67AFEBlju3V1KvJ+IlyHejQyoAWQjpUTAhc9nxwmOkanhh6GHADlhglCqIClU+SmbRD+wQXYKswOnUN1Hd1dznVy0Ia0/L0HXgOj4OOV5CopU69NVoGPsLhVURFaNnOanhAJKVUmFIyxjbL8KmeXGeX0obxYhwP9LIz+OWAGVd+dILxugP/74Y3z//n18//5941l9//59fP36deOhYs7ruis/uOXx8XETcv358+dWVIHH5uHhwSpQfFJ05CPh5OGtRAAkDAQABg1r3gh3c2SADaU+oht5ghBgTRv7OdyejDG2I28stxjjJFvQ8/zkTTd3nbPEefB1bvnBOZHoOyaxkFdEBf7666/xj3/8Y3z//n3c3NxslaF7j9igPz8/b+4mUJnlOnEeuoF2KREYYwEZwGDzoGtkgM/zYLwV3cmYogNjbCvMWShKwy88kZIHhP+cd8b10Gu4zIoIgNy4+rJh6fSPQ9pMVkV0XB+471OBM15uAuH/MV7HX8mWyxvfLk/1/vGp9gm4OcabhvC/W/PUvQka+dH/tQ2oUwcuqlTJAEe4Li8vN0rv69evG48KXhX//vr168a7Ys+U783mUDVIwt3d3fj777833i2gpGxGCE4JjnwmvaTfLFMcCeD1bt38xhsHQV71XR0PDw/RGPFLtVgnO2cmkQBuh5JcfT6L27Og+XNkl88hfSKy3Ne6VwCEgOX227dv4/r6etN2EFgdE5T78vKyiSRcXV1tXQfDz0sKvGzmdFhXD7fJgHr9ulGQDZdjfQ6Ouc7SdZGMG5+DUuEJhf9cR2p4Hv9jALuDoOc7EQEVGICZr77kgsmPMuTUZ4zZ8kbVtlMjAoxKkSbvopMfzw/1Pt2Y8ZMiO5EBlY/KI5pBCYMjskuMIM+LGRHgD5QeQqx//PHH+PPPP8eff/45/vrrr/HXX3+NP//8c0MGWDkyEcBmQQ69Qun+/Plz3N7ebt1CzF4Ye2XOmO3Tv4eEkwUnvxWx5Q8TAV6agfFHdAa/sWkTABFzsu2MEYBb4vT2WoaL+rqIAZfLMss63eWt+Y2xHR1wJMGNB4gA9gtcX19viBRHCP7444+N3ELOHh8fN2TK6aD1er0VDUB/836C29vbzTMIZkTg4GRgtVpZhcSEgCuUlMjM6HcmYbeBSgh0sDVCgHqnHaxj5IdiXFxsP8ZYlWsK1XIkRfuVhcSBDTx/KwlAWr4utY/TOG+2g2QEuksP7wk3bh25S33Ak84RAY1AaT6OCFT5OQVftbWKqjmyzMRA278EWibXH+1BmFXXW//888/xr3/9a/zf//3f+Ne//jX+/PPP8c9//nPc3NxslCOvrUIpwthAeULxYs0bc5SXEXitVtt9KmSAkYiA/kZavob1NYe4mQhgeYaXCRBRgc5EvwJp2cxFYcZ4jRJUeg1l6bdGoap83H88H1L0gdO5+VPJMBMC7keQ94eHB/s0Wx3LMbYjfw8PDxtSC3nWB3Al8tfFIjKQPJ8UokqM0SE1ZKasq4EcY5RMLxl2hpIFvs6ViafToeyqnpyPLgOkOrlwdYoEaHr87i4nKBnYF0x2joGkHLuy1ZlQLo9Ze6slGFf3LklJpMspIA63aqi1mw/qoXKa+u3i4vWRzXpvNsjAX3/9tSEEf/3112bddYyxUar39/dbfa3eJkgD9hqMMXZu48I3Rzgxb3XJ4Jhwyt45ZkmGlQjwpjc1YLxhE14t61PdpIcPynN6lXUJ6uE2bqKuaoxdKF+hUQGOns3AEYnZxkHtT42woD/xfXt7O8YYmxeO8VKfOl3Ik8t/fn7e7OmobvPk+s3OObTJAFi5G+xkrFKlMLjV/06x6v+Ael+oh/5WQdK8q05Tz0bLY7bHStRtnpmVkaIB7lrnwfOxLhssJQOqXCsFf8pwk9rJV5JrZxSc9+8iO2PUXgijE7VxaRP5c9fzHOB6scLViFPKW1GRb+1nfrgNyADWW0EGsEzw/fv3zQZgbPjjhw3xEiVH215eXjYPfHl5edlEEnB3wd3d3bi+vt68RlafY8+E4BhIMuiIQNLLnF6flKehbRzrk/PGeHUyuA7IT+vIOox1j5IHhxTRRf77Rhid3XEkg+uddDGTAkeweDMm7xfg/Hi5UGUMv/mZD44EVHK5VG7bZOD29narA5yhxbF+tJFIVzWg+gCdDhlj9+EVLKwapneGAP/x/9oHrEB4swx76yjPCZ6Wp+tkKY0z+ChP67CEDFSRhWQwEyo2/9FIky4RAndNIpTOO0tl8Sct5SiB03FhxZr2hTjy4toC4+oMifOuOA+dXzMlyncf8XMFQAYQHcAGQtynfXFxsQntsyJluUfoFuvi6/V6E9XE/oEfP36Mv//+e0MGfv78uaVkmSA5A/LR0PmmBMAt0yKtXuOiMXznBogAe6Bj5OdqYDwBkCk1eviP5RXp3FM2WWfonWAqW7z3ptOXqJMeO72M//k/tRdMCPTBV+jD9Xq984wG3hTIeeozBDhv93wBrucSZ0KxKDKgioSN0Rh5l3Vi16niFQmYGdGUr16rbFnZrNZXb5/h/F5eXsZqtdoo08vLy633qEMQEMasBE6FstoY45Q/t5+JwSwcXV2fyEh1vaY9hf0CjCRjVWjQ5cF54dgRTQDnXBQHc2Vm9Nmz4rT6nHIlruk3roHC5dsXUQ5+J9nRMpNi5X7mjWy8iQ1haoRacXsV2s07qvkuAkDnKkjB9+/fx99//70Vwv3x48fG8Dmj6kjdMZBk1UUG+JoxXsebnzCo/c3r2/BmOSLAhos3XioJc0QX165Wq81xIt5jeOPMy1dOD6ZoJs9LJ7sqp0o4lOjqmMzGS+uY5rPOf8BFfHQZ2OmMfbB4AyEXxgojeQH8zeDG6zUzJT2bmNX/GsLl2yK5nFQHTTvG6+BAyLG5htkvh7mckdX+wLU8MbgN+8IJjBuH5K3O+t6N56lA5UeNuSonVaxL+t3lCYObJqtGc9jzTR/eDY/rUl2YnLCXwmUiL1zDRnZGCGb9ob/16Xf8CFzsYOeQKD9TgF/mghe48DxxZF7D4/xUN31OikYHjinHTk6VcM6iWu5RwxzKdk94HOP1rg1suFQioFECjOsYr/KEcvn9EdyuMXafdaERTrTPbb5Deo2Ocj4VZksEaqhZ36tx1wcx4cFWLy+vD8fipzXyfHNEJkULHSlzjt4S2V10ayEaxYzThSXVaCTm5wxNRQRSo9SLdv8nVp2MPLdRQ3KsoNAHmDRoy8vLy8ab6aCKCmgbqjyTMWM4w79U2Tl2zmXyGH8GQoDjigwokjeieUFG2PN2ebFBZxLAk55vg2M5mMm+i4IpuWHiyf2gt4TtO54aXnWEXOflGK/hZX6728+fPzcfkAEOOfMcxHmUrSFdfhPiqUUGKsKqdU2RGF1OUFKAZQN+CdQY2w8WYkOm0SkuF7LO48rjy+OsdQWcXXByx/LL0em0ZObKUePP/cY6WY01kxV+3oXKKK6H/PLDsUCuUDZHcLlsti9OBzBJ2DcqMMYbXlSUQsnoSO5onkwplOGEwl0POC/NkZMEZrHKsJUUsGC7dZsxXtfKxth+1KRTus7LZ3KkbFhJQuorVXrVQzjG8OtmHVTXJWE8NiGoynfy1amvTl6dlDon1GviazlPZf/qSahHkuYgfzMR4G+WTSUDWk++ZXaGROA1wufIOfcF2v/y8rKJCOCFLVj/v7+/3xiLq6urjdF6fHzcGLj1er1RvkxclSAl439s+QUcYXW/AdVpHCHgl0FpFAbjzXdf8OtzIROs69WYOqcr9a/KVEVuOQ3LqVs6mxlHRwi4TfztInJKBCCTiLCs1+vNC4UgvyAF3J9cH4686/KMuyWWScFbCEGbDLgKO2WoHqIOvJICB75GDan+7hiiThmOEGhEQN/prRMHihQhsRnrHWN35ywbfCYFzLi13domXl5I0MnCZGQpErHbl2wcGpV3tQTK4HFOFQQbbjW2FXguYYJzXqwQOHKQ8oVcM3nV912wvLAXxvXhvTCuP7hvq3qokdL02n4oWZwDAeC7ATgyMMYYV1dXG+MFzxcEjJXw7JYzlZO3eFyHgiMoTrcmsJfOmyyViKG/+SmO3G/cd5AdRL1UHpbON+fRc9/ruDknk0mBWz6rdBETAvxWZ4yJv5IBPO0Sy+rYKzHG622tkEMmpygDeaJ8HQOOKjg90CVBDovIgBIC3bCkcALgmIsSCJfPGL27B5znwgxSy9QyVHA1KqBhRQwinirF62JdY+OWBjQqwMfVhhYlAh1igP5YahzTNY5gnIpnNcOMpLKBdB4CH2NMsSObr2MWz14HX6+fFBVQQqBRAfaA3bcqPhwzaeB5ywZAy8T/Sfmn82yAWAFiaeL5+XkTFcDdAHx7IO4w4HnKXu8Y/1PGuI6VajesfCy8JUqh0Y/k9LD3i2/3Aii2Azq/ecd/akPHQeHfGi3tIBnELiFw+Wn/8Dzll2GBCMAOgZSCGPCSiy71ffnyZaM3UFd+vwa/uljJQCI+S9AmAymcUYVFuSMZqggZTpEtQRIaV6YKh4KVmm50wtobs0YoI32AUKd+MyThdWEzJQIur30EphPp4LTHjAYokqfCclrJA6eFh61hOzZgHDXSNUf1/N1by9zv5A04aFRAo19MCFheeDPSGNsyhfzSvgFdAtBzCp6HHPVAOBUeFYwMlC0iAiAGd3d34+HhYYvAKHG/uPjfZki8FhbXsWJ2487jf0wkfVgZOA3LsxwoKWOCOcawss37BZA/6qROh5tPTufrbw31u9A/p3PLxWqntJ+6cO3B3OX5//T0tIkIwEmETOM5FiAHGtnjNrDOQLl48iBk3i0z6NJNsq0ztMkA1j20c11nJ4/QVfa9PEftCA7nciiGJ0nqRGbQvFSgg6hhNy5b66TtdksEGglJxpUVLytEpO8oEs2/Cj/O2D2P/ylA29IxTg7sQakHf39/P66vr8fd3d3WmOKtZEmpsAHUcCA/cx8GSyd/NyoAQ86/9RhzA5EAyBKHgPV/9IvrW6eo0QcaaoUXxZuveMMlLxM4MoB9A5A/3bwGz4zfE//3339viIRTqtynpyTPTvc68qoh70SCWRaBtD6NsmZRSpZzDWNj/iRbkIiA06Oos9qZ1FeaVpHIBWSQ578+Evvvv//e9Ad0Aj+4idvOwEZztBFLzM/Pz+P+/n7897//3cgrk18sj7llAtcXM7TJAG6XqzKHkDmjVXnlfL2C82IP3CEJDytx90FnQtk5MuPCa1AyfD33A5CUYmof8uDJ5iaehmOVNMyMduUFuTxmhO0tLPy9UbUFMuC8JZce6fR+d+weHmObCPAb37g8KGENxyoR4LCgEloHjgK4+uO3poNMcxuTJ8nXOVlzS3pQhEwmmAzxBkFec0U0AqFYvq0Q6XUvgNYfY8JlYLkBEYKkWE9RntVwJn2aDATLEOSY9R6TI950yXpRN1+nSIMupyE/jXBxv7Mu1z0sXA9ua+ojdz5Ftqq8mAig3SADP3/+3FwPecZrs3nfCtcXeUBHQF9gfoC8/ve//x3//ve/x7///e+tzbPVBsJ9ZHbRnoHEQLUDnQJRQVHSoOyVoQZzVk9No4xOGTIGhddMUxsrT9vBhU4VSTjxX3Vt8tqr/Bxz7pYxm3SnqDiryEBX6bOixMZADuPf399vkU4oBN6p7ZSlIwNKDPTeZJbxrsejYM+/moduXqa5O8Yu8eW5jvnl+g9GGgoU6/wIya7X660QKXvz3Ie6DssE7Pn59Z0GvBERpMt5sMcmBB1CX5EBl173u2AMeFxVzgCNguptmWNs62iO/OhtcUwAEhFQ0qPH3DZuc+XoLPnN7eA0LE9fvnwZd3d3m/ZDHu/u7rZe/+yWbfjOjsfHx00UETrk7u5u/Oc//xn//ve/N9EB7HnBHHDRl6oPEtpkIAmdKgX9jLH9HAAdLB5E54G4RiWDpILE6Vn5Ve1L5bnrkC6FFt0Dilz0gZGWC1QBaz/wxskZsXDt5fokT1CPK2HTsty4fiRS+V0mrYSRPaqHh4cdD/Tx8XHc3NxssX2uAytmJhR8X7fbOZyU9AzcRp2HyZCw0uogpeO7KpiMf/nyZWuHNUL//Dx83Y2tryrm/uDfaigRqQHpwHfama15HBOOqClcHdn5QZgbRpiJGIwQE0P2yCEDXH5aMmXCnKICTAj4W3U36/OqnZ1+YHmvogLVtdqnLMNwBlBnlmuQJt2Dxn2I92OANEBe7+7uNlEBXtoCKeZIi5PXJbK713MGZsoDjVUFjM5iw9Ux9JrODdAYu8sEDPaCeMLPJn418SoP2+3YrZ4+x21SQoD/E5npKutUrpbPqCIhbgw0Tz53TDLgoCSIzzN4XPAbcgOFypsGWQFiExsvK6FMJgPsIfOmrW5UYNZO9szHeJ2LLg/ee8Lt5//cNZxW5yS+YZS473ivwI8fP7YME/oQmxvdnRXcBvU0dTmG11vxSbdonQIRALoerPZF9UhhljFe8mQ9hXL0HAgub9DkclAXvTNGN9DpeHEbnJyxU1Tp0nRO5bOjk1CeOmbcn4+Pj1tzivcS6aOu2R58+fK/x3E/PDxsLSeCUGCZgPcL8FM3dWnrLWiTAe385NGjkaz8dDMds071WNSw7esBOYXOStGRgaXlaN2YBDkywH3k2pUIgQphZVj3VWCV15H+70QGTkWZJlSKYwwv96oINCqgSoKVAcs35sHLy8tW2Lt6bOkSEq0EmPfbqJxoFI8VFt8u62Q+Hae+Rf9gqQAKk5+CB4X49PS09dZB7hudg5hbrFt0KUb7Vz1TRwROSYZTf7M+VnlVXcd9ADIGGV6tVjvtVSLAhow9XiUiuhThyJwjdYkEoD0aJd1Hd88iBekajgzyNy8DMgnCcy8qMsB3vnAeIAN///33+M9//rN1R0EiAm+R2UVkwHWgho50HcmtlfKtGWO8Co5uDtQoQgVVco4JVt61C71y25IRZC+KmR6Hh50hcHVXIWcSUC1xJGLREYikXDqo2DnqcKroKhNVFuxh80YiDpOqMnh6etra1c75KXHQ2wzxX5r0Samx0nSkgKEklfNkcp/WhZ1sOyWbjPfl5eW4v78fP3782IoIwFDd3t5uFCXO82ZBboObq2wEnYfK+wxOKRowhp+f1TzVumM80X5eLkD/MlnFNbo0yWSRdR0TYZSvEQiVa9RFicBMz8/IZiJEHfAcmelBnVtoD+cFG+ee6YGPRleQhvUHomUcGeD9Mbosxv2wFHuRAR0UJgH82kZeK4WiYW8InYhzTihmDXNem4tgjLE94CmCwO3StmpfqIIECYBid6+ddIQntZWZqEY2nODiv0ownMLU/5aiy9CPpWRTm9WgpmsdmBBAEbBnA2XAZKBaKoDSVC/Kea3ahu6YaVqWYX05DY8p2uNINh+76x2ZVwN1cXGxdUum3rLFb9Hj/uL+QT103vKcUe9Y9c4pkQCGk90ZMeD5r+3+8uXLxltdrVbj/v5+ywGp3uCoUU71ht0yhFsq0ChXNwK8xIt/CyGYlYn2slPA+aDN7jkfajscsYI+4IcZ8X6BdBfBW9AmA8oamTEqGeB3YfNmIAw6du4+P7/eNgTloF6XGwQHd57PLQkpuagHh4JUgYLl4SmEug6sE8sBk0GFkdm58/J0QnJeFRFgg+Ta7QxnIhAVoTo1BdtRJjNvjPv54mL7zX7r9XoTEXCPr3YbCVl5cOhaN7SpwuRoRLddrIw4kqXrlZBntNPJpBID/tYoBBME1Jk9e6TBDm2QgG/fvm3IAJ7khrQc4k9ECfVgT5SJgOsjrecpybGTTT6uIgNYmsGygN4Fg+vX6/XOWxw1AoC0HN3laIN+qo2aFRGooqEqb1q3txCClBf6km0a2yr8xjxHRKsiVtq/GhnT22nd0wcPoYMXkwFWBGgU74jEazD5jVisZJ6enja3UeB2FvYIeEDYQDL7X0II+D9myy6tDpjuf4DiZJKD9o0xtkKZzIw1OqCTiicDt5nPJeOskQ8lBNw2XDMzIl1PE3mcOtSL0UmJc5xejxMx1bGDIWUjpMtFY+yOL5NI9V6T55SWjlh+ebxVCUF++TW+kCnUm5UUrkUdKyWkc5gJAv+vu84RGr25udnc+ofX6yI6oIpTPV9n/Dl/NmKJ1PC5JdGX90SS31Q3pwuQFhveXF/yxleWW30YFQN9zc+L4Efo8h4Nlp8OEXDjog6mc25m/cj9xOd0CcylQTkw/Bwd5OU2RAdwrc4nPs9lQ1b57he9zZgjhlUbu7K7aJmAn6LEjbm6uho3Nzdb78dGdICNJToOHgegHi83gDuLFQuu0zp2hcHl70iAPuecP7xTfIyxeVAKRwVwa0matN3wGNJqVMCRB/xm46/HwKGM+SmTAiV4iQjMvjk/gMdijLGlFLBUwMZ1jFdFpp5A+kYaVwdVzKps8M1enr6+d7VabdblWb40qsXXzzZ+qUHl27Gc/LGhgI5YrVYbg4LHurrbtJgwcVQl3aVRKVI1/qcSGaiIgKurOgm4FvLp5gH6//r6euO0pRcaqfFk54fvDmEiwDKTjJhr98ywMUnpGr5uukS4cR6yrRttUS/oaKf/U74aKeQ+dMss+7ZN0SYDUGo8gGg4lgb4c319vXl4CASU2Y8L0SmYYfFvIE3YxOar3xgsJQH4BgEA4QEZ4GUQvGGNN+bwZHKMdB9o2GqMXVLBxg//85KMKo1ZXSoBU+XezfOjkBToIcgAgHaztwMvWscLSoPBnraGTzuTPpFbJqK8tMXRPMxZJu5YO1aSjN3RLtwLIqGKWWUP/aVtQ1m68xzziR/gxFEW9K2Gnnmd2j2vgcOsKic6tvsq2ENCZZcND+DC5WNsv2MCfcPkGGnRJ+gf1V+OgCj54idnOkPW0QuzZVXuE76mSwiWjGdyVJlkYQlGHVt1QLSunA/mjvanbr6siNSMOFXYe88AGqdKhY0mjCGu46WFfYCOdYavYvOq+LUOujbG67xKBJTwIB366Pn5eeveUrfj1qGrcJTxJ8apjBbKWFk0L/lo/lqnThv0+BQIAStOJkjO2DtZ0TQOjgy4NMk7YIWgIWyXn7YB57itTAhYFnkXM0e9eL6C1OI6LgPrze62R13a4znLsocyGNxORFNgkPgWRH3ineahRg3hVt3EpmQAYN3hfn80nHyqZ+/mW9W/Tg8+Pz+Pm5ubrX7TvQNcnxSN0dsW0efdPkz7BNJ4c52UELixrJDSKiHA/yzvLhI7xthyBHnZgctkYuDIwGxZpeOwzLCYDLCiYQ+aowEuhM6hIZ6APHF1YqawY0UI+HhmyLAcwAqUb/Vg71+XCngZhO/D5YiA7hUA1CvivlBvykHXyFI7dV0ahID7UJUJ12eJQLExTNGBY3lXs4iAptNrXNp03Rh+LwHCiEkO1RBWRhNKKJFMrbPzJpkgMPHFufV6vUV0XR1UWToFnGRTlbfOASZEvCGTly50qYD73nm5TrlqtNPV9RQiA0k2k9EDXNQOfeLkdoyxFRVg4qV94MiA82j5NjjV/28Fk2k1uEoU9LrZEq2OuyMEyN+RgjHGls7FbZ2pLF4aVPlMcoryk55dQmQXLRMAvFOSDSeTADaC3DidoCog3AnaWR2wgeRBUY+Jw17sMfF6avXRXdioe1pjU7DyUu9cvXRn9DUvFQAIIa9f6d0byJejBFye9qsr1xn/mfB+NLpEIKVfSoqQh4YRHVy4kPOqFICGRF2b2JuryAHkFq9bHeP10cE8b7V+mMuIinEfpHYmRew8HyhghLYxb523peHWpHNwnEir6+tjyXJHTsd41QGoq2ubOld8Fwz+ZxJQbXzmPsZ1GCNdplFDNwNHNdVBYgeH2+6cm+RM8f+ubxhKajWdLh+wjPO8Z33s9LyL4iSSqvre2YZKLyQsJgMaGeANdc4ThpBUD1TRCeqUymzQ0OhEBPCtH0cElBDwxGBvivuBJyMrWf2NtqjCwnnOw3l/VftSJIDbqoRgKZSoMFybTgHJ0HeuS+ln7cP4VPLKRlENzsxrYWOoShJ5pzIBnRe8a5z/Z2WvBhVyzUpeoxrOyCtSJATl6Rxye3A4L9YXaoxUTk9JVjtIpHYWGRhjV66UEHDf6E74lE4/VX+neipY91WEgPvARQkYeh07QUwmZv3IeaclPBcd4PJTGwDMQSbDugRSOW/7oE0GqnA6G0xmZkwEsLOe37aE5w0og0RDO6wtKQQ1ALrG5tZOeQnARTl4AJMn3B0UFwZiwVfB5m+n0JU08DotEwAVLE7r2tYxmqoYXF8c07tC+bO2qHHkY8e8q35KbXUEl8vW/1yEBh4HPBv1Dseod0EjLT7qJXOb1+v1jqeodxgo8WcZqJY/Uv9UaVCeGrGUF77V8Hdl0Xlix0Ly/mYGTP9Df+B6vgMGJE83DfK1PD5pvNP48/eMILJ+4vYm2Wbj684roPdmelCRzmv0gKMDSgSY7ChpYF2NOa5tUlJwCPlcTAYuLvJjFFUpcOiIiYB7PKVTSimUqL/V8Dslq0SG103dRipeP0XbebJg/Rescr1+3fCkaz4VHCFA21Fnp/i1XSxUS42uMxCuv9UAdj6MYylUFxmYpdWoQKd/dXI6ZVz1SfLy1APAmEMe3TomrmPix0tx6uXr3QEa7eK54u6QUeNQGQGGm+PqQfJ1Ln01npVBnOHYBNZBZXE2p1IfalTK3Sfv9riow6YRIS1L0dHp3FauL5/DddV8dktkri4w2FzurC3uvI6JOnapbvj98vL6jBJ2AFP5PIaHkNNFby2EUsCxKkhUjPcBPD8/b93nm+6X1Mao0CxprHagRgVUuekGQfaEOLTPJIDX13jyMNlRcqNQw4pjjl6oYeE2zoR9CWZGXA2Suy7lcwpe1QzO6LtzOF/lA6hCSQbb5efIAKdVIlDND/bSmAToZi88BAwRJb6W5TJFS5J3CLgoQWprle6tJLOaL278ji2/qb5LSK6CxxVyhGWBtDzpvH43JimC4eqg16qMo11KCKqlMe2LtOcBaVPEVNPqcWqP6g8HbgPqx3fysKPpiB/6PzkQ+2DRQ4ccYCTZaxlj9+EJ6U1saWLroCSDuARsZPGtSwW63IG2KBt29zvzPbZKCLQtM6HDb1aGOgGqDYpp7U6JV2XEE7g+MxJxKpgpqCoSUOWZjDngCF+qhyN+SgTcb5UP/g/fGiFgIgCyrmk5vXr7M890RgT03CxknAiBEtUZZvWeEbNThxKEDklksufGBml1CdfNe+3fND7JwHJd8LsiBBw+5zmr+7Uccb24eH3mRyLqHUJfoUqPKADqrsu/bn9ANWZvxaLIgILZCT9IhcOR6n1waBJ5jOHDpWnXsaZfCiwRMCFwz+JG/dbr1yUApOF7sJEWzxhAdEAJDwumfiph5P9074K7RgmAbshkUuAMeocMpA+XA3SN63ujIgSJDHQIgSKRuiX14XyUALj/quUC/o83/YEIaMifI1643t3u1EG13ye1swOnL1L/uTTOaCbPcGnd3gvd+cM6pUNYAe4DPjfG7kOxdL6r8XZlpz6syK9CCQHSOSdpjO29bpwH8tbl11SnRF4qIF8nTy6ix/pGyRQ7d7qR8FBYFBlgj3oMv7mNBUZDkqxQ3NKAiwbo2tZSuI11yEtv/1NPm9sBgPTo9egPkAFdJnBlLDE6adMMgxV1IgS8LJPYpjNmM4baUejHIgPJ6OvvJeOh+S9VEFUdZ9drmSobOi+RFhE8npdMCJA/HjfMXle1pLekr1g/4PcsKqCGxv3X7dNO+pnxOib2mUNLr2F50nGq5v2+87tDEgCOEMxkwd2Giv/5LqtU70q3OaKp/+kc1TZoe7QtfNcX73dj0npInbp4A6E+3nSMXSM0xqs3gXO4W8ApkzF2owGVt6zXdOA2oOA3CxGTFcBFMTiCwBOH75bQZRBOD0aKT1JA+ls3eGkoSfudFbiG+dLkriYnj4vL4zOhIgLVBNc8+NuNX0WUZjKs13I56smxLOGbdydDkUDB8MtqlExo1MtFB5bCEQEll65/qr6vjHunv12EQL9PAVrPWVrum9R/M+g4dZ2G1Icz7zu1RdOpA8oGlZ0u/h7DPxXTIcnlTC+68wwlBGibswNIo/PTyXyS06Wktk0G8BIetxkDBSYioMZ0X8wMpdbJ7dh0eepg6zq/rplWkQT3qk7UgQeWJ6yy8KpNWm8ofIANv673JmXcUcqOCMyURDX5PxKqHLXvu0SAjztGvKPsOnnNwP3OynGM7Yei6P8vL/4Z9S8v/9vVrETDyRKQ9ILWkWVvyW3EzhhW83ofr4kV9Kmg6tOUtpLRivjO9CS+k4GsSFTVr7N5koiFIx3qZWub0l4tlj9Hdpxe7I4LX8fL6shDx0HnnOuPDiFcWs82Gbi5udmpxMyYOGa070Sr8mVjrHV0BiDVHxGMMcaOgdW665IJgLAr3zLJ9QAZ4Cc68j3TM2OqAqIhPSUCiMg4ElD162ycOkTCTeBjIClA9R5mREDPv0d7Zl4Il81p9SFS+uhTtwSHb5ZjyAkrVpTFS31LIgQsf0kWnYLWuupxRUC6XlFFPk6JFDiwQ8BYQiD4mk55s9/OYHcwIwouL40KJCKi13DelR5jmU316TgFfHx5ebkVpcOyM47dI4t1qTrNOycHWocKi8iAhiM5AtApEI12BpKZfDeEw+dSR/Bvx3y5HfzsAP6fw6OcF7PNMV4jIu6VnUin6z74DbhQktZFFSILMStyt96H3/ytgp0mVUUWukbhGHDejyMGY+w+xVGNLuexb120TvvmgTrxGiKD5RIyBxLKnokCc0yfHwKFNSMEUHhq/N0x8kW5/K3t5fmb5jPy02uSvOqypPOuT4UUzNqiaZO8VtGBTvS00veu37QPK8Ltxr7qfzasnB5jqv+PsX2nG8tyJbOunYmEpvQoW6+D48jPGBhj+6FIjpxU/fIhkQE0iJ+qxJsc2KOuKpoIQDX4M0FMja423jERwC2FfKskEx7UTz1LpIWxdi/oUHbHeTCzdbtMXZ25T1y0Q/ulIljoIzYsSghmCrESuGNFBLh8JQTu2G02VUPRLW/2n37vmyfq5cYW48l7BuB9jLH7KNoxthWle7AQy7duCE7giBXqxdeoodF2a98746XjhnI7/ed0D8/rY8svoEYTn6QzVS/ouW40IOmAfUjSTL+7c85BYwKvxp/bpY8Chkykl1Xx78reJLLliI2ru6bh+qm9wtyZbcDnumm9Olj0bgKtMHYhdwgAYxYRYONVCVyHeWqHuF2oyMu1gxmk5qN5rdevtyCCCLjnDSThSkyT6+IUf2oTzvPOWVbC7GmoYnGThL8dZl70sZRq8sYrksCTNnlkmg5pO7KYrmEDxHknLw//JdlIL6wC0rPp9bHDY7wSBShSvU0YULKq30oEKoPDcH3B5HUJ0lxTR2VGoo+NmVeN84lMpTnpxieRuH2RjCj/TkQAddTxAeHlZVgXPdXogO6xmpEBV/80N7nspF85Mql6ip3MWf2Srutg8QZCVVDwNFghJbiIAF87Rl7bxLFTlPiv6gDduKdr/s674aiAPi9APxgU92S3zhMXXV+5Y7Rb+0t3mzJxQ/gJbdTlHqTjc12GzOOSxsa146Mxm6jKxtEOlVdcN2uLKuJZfziPKXkfXA8ta4zdx6xq25gQqOHmqIAjvI4QVB6WejKJCCT5Un3DBABt7Bhrt5SA63mcdT6lJZhjoeqv2fzEcQWVh2ocl8KRXgdHcFJ6Ny4cAUNkjK9Pd1s5I+tI6myuVu3gc1p3vm3dkQGeb9U47Ktn22SAlYJ6lLxswGGarsJE/koCdIJWxsYxIvfNRMB1OCtUbhuH+fVaVhxQlIkQzMI8S41OUpC4jlkxxsiRAD6Pczo5ZgrRjY1jrR+NZEhZjqE0quuS7GleLo/OWC6BKxPjw2uk6R3q7IkgOqBLBEwqGcmz4v1DLN/8PSOdnN71M85rOHVp3/Kc5bniCME+hu+9UZEnh64e0fyXOgYoq/N/Gt9UP1ffyvnjb20Xy+/M205lV/pbSXFnrFAvZ5sceanyZpvXld9FDx3i9z9rJfm5yvxMAa4YMPP+1RtTw+Y6QCMD1U5x/e0YsAqMC4cmQsEfJQKsNGcRAtf+Svi1/QwXIeC8VRBVmLukzLUhKfePhmP3Ks+ujiyvaXKlCfmWts8mcSqTnzLIG6hgRNWbxpjyQ07c80Q0PSsoJdE8f1L4FW2olLBGJVxEgPe4uP7QaxlpqZJJ9Czi+ZFwpEn/d8dVfkpYk/F347cvZkZqSf6O7KK+jgxDbtXApshARbDSfyrf2ib0tZaptonbonOq20dd2V38OGI2SLwuA3DjNcTGQpd2P2Pi4Zg3P7HBQj7a2LQUgDTutZzIC3njmEMzqvQAN2h8nSMCnTBPMiJKDDpRD6TnSc1lcJ9jgrAS5XKd4nD1PCVwHXVi8iTEbyWnY+Q7XN6qFLUumucShc4fZyiRF0eI2PDh/MXF633QSZ7UQOiaphLeStHODByDCau2VaGbCzuEgMlwSn8sJIKu41tdr/rKXTcbpyUGsvPbtXF2juvvvGhHYjVNhwQ4uez2dfWtebCT5XSpkmxXx7fq4MVvLWSjA2GsvPDHx8cxxvY6JTrCEQU+p4RAvXmtG39zmPPy8nJnZzS3B/k5IVFPn8OcXB7noff5JyLgHrqi7QGY0KiC5raqN+c8/zF2b7/i/90O3KQ0FNofri3Hgk4+NogwKm53ukKjCjPFkPKaKQyXt1NK/M0K0EUDdFc1e8BJ5ljuFCzLLPM4x9+dyIDroxSh4P8ZSmS5HXxO25p00TEJwUx20txMmBm1NC7uvKtrlyTM0mtdZ+c1csdz20FJaiKtrrxZnbVds3mtJCARJK4fflfkaYlcjPHGyAAMLBtaGF9OB0IwxvbDfJQQoAEautMQN85xnXAtT2T+4M2E/K2GEvkyIXDePa5x4AFjJagKMd1mVfU5968734kOQLkpAXAeUVUnbbNTWo4YHAPVWPEHxiLtHXB90iUEVb2S4pnlzZPeeb+OLKhxq+4E4vFLMoV6pLCrzidnWPQ4QeuubdPzaIMjeU5/OCKlx8dGZYz3yUudN+ccdWXckcoOaZil75TL9WeZSJED/SRve5/5vaQNnH8lY0vqta+s7hUZYIM0xqux/vLly9Zb0HhHMh7og4Hie/nV+I+xPTHd5rYU7sN5fZcC3kzIrx7WyAAbbPXoHx8fy/C+CpwSApzX748iAmrQ1Ntb4mFUQpkE8VSU6Ri7TJs9fWdcxpgTgjQ5U35aj0pGXL5ar1n7mPSpUdVol44lk/9UHht890lKeNZGlsmZEXG/lQSp4UD7U6TglDcRjpFJ1Gy+af+wbnZ5LyFts/K0nl3j2SGL3BbnaTsCWsml9kcHS3RdJ/+OTmA7ti8Wk4Exdm/TW6/XW8aXvW988FIUGFdWwGkNWxvJE7qqF0cDQARATDgqoA9UQRm8+Y+jA6zctPx9jJ0SgWRQtS+6REBDwgodPywNzDyhDmk4JeOf6sIKiskA/1fl6Say9ss+jP8tXkmnzDH8LWR6Tsk5n1PZYuLLty12wq9dIpXaleZLarMafkeQ9P9jynNF+JJX7foq6U3nQafrKqOzlIB0HY9unu68q3MiA3zOpe+UreSVz8/yqs65ujiSXBHkGRYvEzDUY7i42N7JrJ4sIgS4B5SJQbolkQkCRwj4HOfP+wPY+GukQic+FBY/RhjRACYHSOuEDeFlVaK6Fqn9x+1kuH0CavDTsV6L/kIeSagQ5cE9r/yf5p8mg/bLKRGDt2CmLCuvqTMxZ0ppSf1YRnWcXDo26lou5GKMV7nS9BoxWxoNSMqwKztdQoC6Abx8oIRgyVLZR6DydmfHDiofjhCkPJI8zTCTyaXEt1NXRxQcIeC0HfnUdih5dUjEpTqejWlnjDpYRAY45AikTTYsXBcXF+Ph4WHLg+WdyxqqdeVWSwVKPng5AE9O5IiAhkg5pF/dDuiiAlx+JRCJFMwUjpv8auRx7MhCSq/gvuX7zpEXHzvl7uqblNdHY+mkWIJk7FIdOso2kQKXp17XUUiztqg8OoPJdWJiUJGA1KZ9yI7qlw7RcnnpfgL+fUpEgNEhpQlL5+vMCKZ6zeqgROCQ87PT/i4ZqPLbd75VhGAfMoA8XZp3iQzwhjfehAaPm9klGx31Jjk6wGSAH1jC0HW7pKx4kyBHA1arVblpkAdGNwy6ZwO4ycQkiT1y55kzeYLi5LTcJuflO4XIRECXcLh8vt5NehAifVASR3F0DLRPXHTiFCIDlSez1LPBt07SynBzHXQMK2WTFLy7Tj0UHivn+SJfNeYzuDRdj6XyihSHkptKmWq/qLNzKnB94c4lGZwZNP3N53V+d4yfyqfLw6Wr8uucT/XWNPiujO9Mblx5b5HZbvkzXeDGs4M2GUDIXN9/zuF33WCEc6iohvFBCHit2jV2jN37LBkod7VabcgASACTAdQZefCb2zhv/nSiAtUE4YHScL2e0zwTqdBjJgW8T4IJgnpRWgaTAbxPQR+lzLeM8TWJnLnjYyB5N9rHaqRdPlV4PJHF94CTN1XkqA+fS2vjHYX8Fg9I67Ukj0OhMk7ujgOX9hRReZp6rL95XPCZjXM3ApDG2snEDI5EV2ldGkfe3bFLO6tPhdRfVd9U9enWZel8W0QGcIugGhUNyasnC8Ok3itHCqpwOSth3pDEHjHKByEACbi+vh6Xl5db71ZYr9db6/9cjt4a5R4S5LzqChwteXnZfpASL5ewEDsCwGVyviBlTLTQfpxDOh4j3TsBgoQ3LoIUMDngKA5HNrgPkKdu1DwWGWC4yIojBgpWGEoAdL28UhRVGQkzRcD5JUKgSz4J1TycGQgnv65enD5FOPT3W0lB8pi5jGoT4amB+1eN2hLD5jxb5+nqea2H5ln91rJn49I5l/Kfne8a5/eCcyJmRKCKAjCWzpk2GXh4eLAVd4ZYnz3ApIEryeQAHniCel8suGwAmQQgSsBlq2fL6+O6C9rthHYhRTzyMnkW/Ft37esDlRwDriaE9iX6gKMkuoeC765g4vby8rL1tsXHx8fx8PCwQwr4CYs8Nlxfzl/ffvfRcAYoEYHkNbNsQA6UJOqEPgQhUGXdbSNf6wxxhbQPSNMwdK3dyadrV+qnWR0TCXLpnIHEtfrbtfuUlg0q0uqIAY6BmWHmYyUc1VimPDvpuP5VvQ6BLkE6BmblJrJSzaMlWBQZYCUI5aib9lyInpcPsPmIiYGSBZzXRuvEZs84kYDVarVliBLpYGOfFD1HJ3jDYAeoqyobEAL23gDeqJWUnpKhq6urcX19Pa6vr8dqtdoc4zwTBTXSMHoPDw9b0QEQgvv7+51nLrjlk+pujmNgH8PDEy/dKlctEczkQscwQTfrdequ7WCylwgrzqGstO+H/9NzkF+OLugemVS3ql1VGx0J0v8qw+gM6ikZf8DJQMcop4hI6rd9yFnl3c/6vRq/pPP2MXyHNvCOGHUJ7JK6dNIeijAtemshwsR8z/0mo/9f6a9Wq/H4+DhWq9XmvdK8eY+FkzcGOvZZhUCQhkPjGgnQ8DSHtXk/AO8L0GUBJgCz/knn9Fr15lVxAo44OA9bCcH19fW4ubkZ19fX4/b2dkMI+KPjwhsaQQRACh4eHjYfEAT3eGWui4tIHHvPQCfCkq7V6JAjiUvK5fLfOpk1upHq0lGozltOZervJMtLIiEu/6UeKf/nCIFLWy3Hzcp6T6R6a/+wNz8jQZp/hWr8K5LhPO/kjaeoVSWzVSRohiVGuSIpzlZ1Zb0rTxXROjT2eoXxGNuh9DHGZtc5CMDj4+MmSgBPVL1QKFXtVLfhTIWf0+omRhxzHqgrb4qDYeM1cWfglgwGR0C479TrR9pZ3hyF4DzX6/XG09boDAjB7e3tuL29HTc3N5uPIwQuOqD9AzJwf3+/tVyATYVM8FyECOeOgTSZ029On0iA2yfA+S2NGnXSJ3k5ZBh1ll8ymolAOEW5Tx2qPDAOri4atUnjpFGTQ3lbh4aTZXamOtdUeauxrebOTH8l46+GP0UKtB46LkuN5L4GuOtEVOdmhIjLXTqmXQI/wyIywOvbY3hCAFIAj/D6+no8PT1tbWhLHj8rDrcDntO4jYjpOQJjjK1d8url8oOGXCh437BhElr2orhdaeCZEGh0wG0cRGSAyQCTAiUD7k4LJQRMBrBcwOQJwgsywHsXjk0GxtgvlKZ3DqTjQzP3jsfu/nfzpcrzLfXR8zxvdbnAKXGnA1x+qTxVljh2RECPNQ+tB+d3CqgIzRi7nvVb6+4M79Lr3XH6b2lZs7RLogNLkYz/jKx28k1EoEO6UgQl1clhERnQ3edjvO5AB0AGHh4extXV1dZ96+5uA+TNZSBf98KYRASYPKhnB+PmDBtIAULivGwAw+jg6pfAilGXAqroAwuDWyLQ6IhGBmD8NUKwWq0237qhEOU6QgAicH9/vxNJgQDyRk5HCI4BN8mc0eB+ZiKg6fR8t/yqTsn7GaNnmBwJcKTgEJiRg0QIxqg9vaUKzHmJ7rs7ZlXU5VjEIBFPJyPvQWCS4a30VTru9H+KFqSogJtXh8BM/joym/JIdZxFQN6boLa189XV1UZROlKAcDGOscfg6elpEx3gzWTO80+3vLGxV2+DDbYyKn5WOq+DMyFgIsBkANchX4YTWF3fV0XcGURngLQczT9FBfiTlgr4DhB8uG0w9BxNARnQOwtAjpgM6IbF1Wo17YP3QMWa3bi4jW77EoFUjvMA3H+uLcloOU8Fvw+NTp7Ou6mum9V5ZoD4d2VEXf6prseODnD99fORdUhRHZxzx/vkvzStM5rviRQZqNIBHR2QzrnrD429IgMu1A/jwQ1QQsAhaQ7pV94+/w/Pk3fy8+2L3GnwbNfr9dYeAV4eYCLgjFs16SoD4zbKOcFRIuO+9RoG79hnA6xRAUcENHyPc/qURn5PA4gAiAH3F+rDBMOVcyx0jYtL81Zll8qdGf0lcGTg0JEBt3kV58fYfZiWLoOl6Ii2Q487SrGK4HQM6CkSAUDbwM4Qp2EsiRR0PNpEolL56Vyn/BkSIajySYZ4di7VUfX5EvJdkeQqMvDeOJh2ZkLAwD348JyZEKjB13vfmTB0iALXQ5cHqgfpuKgAG2qFU34KJzyXl5dbt6lx383IB+fBZCotDbgPjLM+f0BvP9S3OaIPb25uLBngsVYywBsJj0UGKuWmhiJFDWbjUinLSunMPGb3vyot/W+mjJYYu4qo6IY7t1EWMlvNlW552mfcHv1eQgY6BOBYxKAiAtXdRfsa4srb5Tp1854Zt2REO8QxpZ2lSXLUuXZm9Ku6pPISEXiLzC2JtgCL3k2g99+jUDVmbEj5Fj4sNWBfgTP4SgjcMS8jcGSA68O3CnJkwD1iV19P7Nb0x3gdNN4vwJPSQfcIMFwUAPnz9Vw+95MSAd04iKiAPluAl2uYFIAw8DIO+hKbQLk89BtHaTiNewjVMZCMBxQr3w7HcAYkGfuOd8VlzwiBKgjXJofKEx9jv2dkjLH7iGy3fwXn9fbCjoFxbRhjd/7NFHlFBJJy5X0ivG8m1eMj4YgAvpd6t4o0LpUMOblJeozrU8nzEq86taFzbZIdR+aX1HMm391xSuSpqvshsegJhLrzPk0wvVeewaRAJyCiCBBCfYKhRgJmSxZMRNwjdWHkHBFIiiYJi5u0bGgqcJmd9Lo8wPsF+MNLB3rfvyMD7NVzv4LAcb/jzhKQASYojgikEPNHgScRf6un5RTdLCrQRZKft3o9S69hQlBdm/JRYjCrA0cHOvXTfGbKz6VxREAJoVO2ydAeiwygbBcZ6MjmrP+cIesa1Qod2Xbp90Gn7m6+VZ54l9xXhOojZaaqexeLyIALqfMSAHuIHD6GAON5/NhMCA8b3yAYjp0rMcAxfnOnYNK46IB7EyHfSrgEGhWolE0nrwSNCFxcXGwZdjb8bgc/G2TOR58UqJEDNZKqfDB2Y7zuKdGlgVMlAjjmcWeZ0jQuT/zPxy6NQpVPV3EuNaKuTCBFnxx4vjkioNGvWXQgtTMRcG3XEi+pExkYY3cDcKduH4lEbpIHu7Sf+Fo9nsnnociypk8GzkUuEiFIc8wRgH3qWP23NP+K0FZpDqVb22Tg/v5+y7DyUsEYY0tZvLy8jKurq53/1WgnZo70/BIfflsis/cx/HPS1+v11lv2EhFwEQ533O3wFGpk0sHg3xUZYUPFhp2fuKib9dTg64ejA/reAg7poz0gcKgnP9pZly3S445PBUoExtjuY63zElKQ0szqM0vX9ZKXwhnCjsLTO37cBkJGtXegIlWp/H0Ue2UgO5GDj4bWN0UJEiFYIjPJy3X16WBGSJden/6r6l0Rde3b1FdvjVq4vGcGfgkORQgWv5vAPaEPk5yfiOeUp67zs6FQbwPQ9Vx+6BGXzYOOiYIPkxe+y4BvHayWBxKU4HA9K+wzodQz4ygB3r+gxl+NMUcYlBQ48oDrQMqYPCA/HnN98iDv7TgmEXATUaMFahA7E9R597N67Fv/ffLopq2IgEYCnNHhtG6nu4sU8LVKBLperRrrJaTTpUnRgVMgsdwvrFuraFQitg4zD3spKsPMSN5/Z8z3qavKU+d3lZf7XlI+Q3VUJ10H3b5pkwFdV9fJrgzVNYY9WzZsjhg48ARAGudNKyFgEuBu5Ut5cL0VThAqRcmRD42CJDjFpIRA38WgxpyNvkYXXDRAN3Cu1+utJSBdruDzvIFQ93Mw+ToGWJGiPgDvX1EFypgRgqrs2TGXkby9Wd77pIOMdRSaRgL4Gq2v/sfnkU8iBTNPP5EA/d+RPv52ZRxKAR8SqvccIUj6R89329GVqxkZnunypdfhvyUGuPLCOc8lxH4JOgQgkTsda3etluW+O9iLDHDBLkTvKoxKsbfIt7B11pWTd6fCDgPP32qM9Txfm6B15W/uD7epkb/1bgxtm4L7WMkT/1YSoMqZDblGEpQUOA+Dlya4Xly+y2PWr++NZGCqY21/Ry5mdVh6TarPvmUyZiSA/1/i8XT3CyDtGLukYIy8yavTxg6h0DL4Oj1G2mPAOVjQX24TKMZLz6c7pPatU1XPDpYa8UQ0Z3l15ntXXrr1rq6tjHqHGFR1egsRGGPhcwag9HWCd0LjSMtGZQzvYYyxu4dAUbEl9f6d4Qc4rfMcFC6CwQaW26nlaBlMShI4H81fSUCKAmh6DfmnqIL2w8XF67KA/s8bEXl80fZDs+190ZmQWlencPX/mbHexwPqGsAlfbuEBCzNe1ZukgMlBSg3EYFZndRzrJS9GtuEY5JZlI/6J0Kg7dbrq7zdNSndrI4OzjmapUvnO7LQIQGaf0cWNE2HsCYkR7RyUA9BkBIWPYEQk9mtk3cqoV6zrkeykOM3OjntaEc6YJ+1f06fPERVLqi7euPqVTOYEGh0wG22UiOsJKpaClA4AqGRASYDXC8mAchLhVJJiU6qYytT5+lVnkA1sVPkwM2BJUasKnuJZ5yQDL2ed3m7CKBbHuxCyaTz1PR3ty+VAPDvLrok4SOgssqEgD+AjiuucdEB7Vcta4lx1Ov3IcD8/77yPvOwq3K77a7KTvVOTogjAkvawDLOtinZgoTF7yZwcEbIeRxaaafw+DZEp8Cd4VQkrzt5JW7TU9VOZ3zZY071QZ30lsYEHVjUgb1vDvlr3ZRQ8P+ct7ZLlaeO1ZcvX3YmjesTHk/0wylhpgg7qBTfEpY+M3T7MP1OeUuXAxTqsS65zh1rHZ3XWvVPIgBJ36T56nTPsTGLDnDbASb2Y9TLBc6QV46XntMx0DyBmXxXpDRhiTGdEUltU+onzZfT7zuXnMxV8wPfjgS8GxmYPUFO17VdZdWoMdho8IYu/B4js1sua9ZxyJfz13ROAaU8NdKhUALghLSKCrDBrx4YxOcrIdG6ufq6ickRCTcBHBtVBXQshdox8B1FWOXPeeDcEjLA6d6qGBPSbvmlSgPt1Dt9UAbSdObtoWXCEQAe15nn6s4vJTrvARcdYD3GhEBJAeYnkDZMa//gWvzfqSOu0WMl3Zw3w9kO/U/rkwhLGrek42ZtcGVoG5N8pf7jMesQAacP+OP2sXVld1FkICEpLP1Wo6QVrTz+GUPtKhhXt4oYVNfMvJX1evvlTZ2ogEYb8Ds9KVA/6a4AgDdQ8jMX8EkhY9TN1VkFEW2v+uaU0J24MzhW3iUEM1lKaT8KbHBU2aVNw3rMv/V8mvtLlJnLV/OpDF4nn2NDowPuThhHSvVTGckZIZ45XCkykOS2ItAzopoM9lIiz78rEpDqUMkXp0vG37VpVraSAI30LsWiPQMd45eMyCwc2VWaVflaF6TTaAC+8dTDalczt2FGAjQkDsPLj+3luqnHpERAnw7o3kPArwpWQpD2ZOAhTC60//LyslmGqPo5KZs0FqfgXc1QeYuMpNxcn1T7OBTqtS8hy11wdADjPRtrLZ9Dz3qNRgT0N39rvl3MlKgieWqVvKoxPAXZddEB9C/ruS4hQB5VGUvrh/JcZGDmTfN/XTKgZR8Cs/Z3jPQ+kQFO13VoVcc4fXPwyAArKjWI7PnqNTMPyXW8pmfPnderHdggpx3MnKeuf1eeL9ffKcGLi4ute+k5MpCiArq8cnFxsfXsgMvLy53XEruXEbkXEukGIuzDwAOkWJmgfnhREV/v1qJcH2h/6OcQxuwtSGy9YvMOiQjMmHoimbiev7ks9gBVWXT6VOtbEYIKyKOzZwffMyJQldUdCz7uks5KFly+pwSWVSUCY+wu7QGJuFf9kMpXOKKVyIGmqRyOmZORsC+hmaEy6qnNnKaKDOxDBFTfJNvcwaJbC6tdimkizVCxefbkVfgTOF2VJ9qj4bVK0bk7BZgEcD3HeA3Ju4cdJYKCPQL60h8QgK9fv45v376Nr1+/bh3jP44ScESGiYm+yRGvJMZbCzW6oEsO+tAo3aSEtuvnmEq1oxxmSrDKmyelew9ERQoqz5zJo3u9tsqbu56/2aArIeC6OMy8aaBaNnCKKq1nO5KWFCiOK2XbQaXsTwGuP1RvqZfNqPS3+93V6ZXXr+c1TQVHkmde98wod5yZGVKZ2l/8e/Zx+aZ6OxLgIsGzPBmLnzPASo07wU1AFdik7Fw5SK+hL6c4uRx+XLFbGtBB4iWCZNi4XnwNrsN/ukmKFbkzhpwfjKwuC3BE4Nu3bxvj//379w0Z4POIELARQj05asFlohx88FtfdYxv9Cfqi7FSwX95edl6K+SxFOqMCOgk7igonYx6q6bb9OkiLfiNfLVeureD37ehMoYoV2fvjRKArte/DyrPT6HRjw7BUT3TqY8zVg6nQgIU3T5yhn+Jt31IQtWFq++Sa7uEo0v+k7y5vBL5eQ8ioHqIfy+dE2OMcbE+VWk/44wzzjjjjDM+BL1HB55xxhlnnHHGGb8szmTgjDPOOOOMM35znMnAGWecccYZZ/zmOJOBM84444wzzvjNcSYDZ5xxxhlnnPGb40wGzjjjjDPOOOM3x5kMnHHGGWecccZvjjMZOOOMM84444zfHGcycMYZZ5xxxhm/Of4/HckHaI4QL6MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAJ0lEQVR4nO2dyZIkOY606ZGxZtbf/Qbz/q81tznMYZbqroz9P7So5+caCpDmGRkeNeUQcXFbSRAEAQVIM9u9vr6+jjOd6UxnOtOZzvSXpYtTM3CmM53pTGc605lOS2cwcKYznelMZzrTX5zOYOBMZzrTmc50pr84ncHAmc50pjOd6Ux/cTqDgTOd6UxnOtOZ/uJ0BgNnOtOZznSmM/3F6QwGznSmM53pTGf6i9MZDJzpTGc605nO9Beny9ULd7vdr+Tj3Un88p9t8PPVPV0Z1f2z81W51X7HfyK9R8rfJ+X7qV2+PavD63t9fR273W6/TXp5eRn/8R//UZb5q+jf/u3fxuPj43h+fo58pXa6DF9eXt5c7zK7uLh4869tXZv2u9/l5eX48uXL2O1248uXLwfnqCesl214eXkZLy8v4/n5eTw9Pe1/Oqbjuk7tZHvFJ9tP/nlMvHbtZlna5jHy8PLyMl5fX8fz8/MBzzqm/nR+Uz+yXO37/dQN8nt5eTn+/d//PdbxK+nu7m7fdvErYn9r3CXy4yqjuz7Znk7fpJNfvnzZ6+zV1dW4vr4et7e34/b2dtzc3Izb29txd3c3bm9vx7dv38bXr1/H3d3d/tzt7e24vr4eV1dX+9/19fX48uXLgf6rz6S/j4+P4+npaa8f+rn++zjQver/ZHtJrjOs8/HxcTw+Po6Hh4eDbe0/PDy8qVv3qSyOw2THfXyLJ/UB+0L7X758Gf/5n/8Z20NaBgN/Bqoc7wwQ+PXpf/X+ip+q7AQAEjjoeCK5AvG/47Gr14ll+Xb3Qksa/I8k8SQjomPe9grg7Ha7N2AgySs5aR7XNs/R0evfnf7V1dX+OA1xBwhoKGSsVMaXL1/2RlH36Bq1uXOw3gZvh/jncb/PdevLly8HsqfRfX5+3vcB+4qgMzlzbuve5+fnvR6oTNdh9nMq6yPp4uLioN0+Pt2x+7hMfDuwI3V2bwYG1PeXl5fj8vJyDwTk8On8CQa+fv06rq6u9kDg+vp6Dyio9w5+CAg6sCvnSsetbepZkucYh7op2UnfLi8v9+VdXl7uAYycv/YfHh7GxcXFHnyonNfX1wN9TOOjA22vr68HdkHHaQeenp7i/U7/p8CAaMVpdkCgKnN2T9dps/sqRTimvveiYwygDygChMq5/GpyA1+1K8nWQVQHniogwO3EW9WnGtReb8UHAYLI73fHSUNIx6N7ZxE3DY9H/wkAuc6mczTM5EdGbbfbjaenpz2oYZkdgHl5eYltdDmkzNGpwIAcDfkb4xDYkipAO8aa4+e9DoYcMEmeCSAom3J9fX0Q9d/d3e0BALd17dXV1R4IuD5TbxmNMyp3h8+Im7LUdpKT6lK9AslJxpSl2v3ly5cDnXp+ft4DJJUtcC5ArnL9N6OU/SVYptxm9KcBA6uOz41kdczL7Ixt+l/dXqmLVCH9rjw/7grRGTn9HwMsqiiMfPj2KUgRAGmmJ+Q96Y2jcD9epclZj6f80zRAmmrQdaybx9yxjvEvR8qpBxkhGjGRO8tKbt4GRodVlsTLTKCKvDsgkQEXEJDh1fXcT1M7qj9lFCpDfEr9TY5qjB99NEv5/wp+Eqhg/19dXb2ZEri7uztw/po2uLm52U8DXF5evgEAcqaUg6f9CQZ8OoDAQGV1aXjtS/e8zdQN1wu3Az7+xxjj8fHxoB7yowxEAmI87nZXx3gdeV/V3c1g4KOUboU6h9gBgc6Jz/a3bM/OrZCns2dldkCgMx5VqnSFv9l2d+wjSIOt6t9OXyrjl+5JAID/3KYTTs6/AgRpqoDnyMcYb+fMnT/OwSZKOlMBgQ4ApamFJLtEHpkx7clzfj+BgbfHpxzoXE+Vweqosx2rdmVmG7qyfVw4AOAaAWYCmAUQMBAA8LUABKXqB0bXY/wYy4z8uW4grQngNIHKqDJBydGq3Q4UqT/aT0CY8nNwzXUvCfAlXlaoAjodbQIDfxYgkI51DtX3qzLekyo+SDMFqPjsMgKz+lZpxdk7Wj0lGKhkQAOUdKAChDyWHF0FDCpnzLR6pRsVYEhpet3r880VraYkZ86DvCa+u/FZTWkIrGhboIdp/zSlUaVzt9Ips1qVXUo2bYz1KbGuL5PuO3AmENBcuQMBrgkQEBAI0DoY571awKrInmsBFFV7JoCL8wgaUubHZTQDggkMiFLGazamVZ9nPzy71fVlKpflrOr8n+5pgi18dA5/lapB45F02t5SrkdfXX28rjIEs7q9ri2UnH51zWcAA13dHhWOMWJ/d8fljHRNOsZ9ltftOzF9r+urH9utNvrKfH+CwIkyoVMmP7yWbUztnTnnVEd3L895ut/LrM539RwTXf0KWgkc/Nqt57q66Ni47UBAIIAZgW/fvr3JCPiaAHd8nsL3xX8OCPx4upZPkJAqEFnZLy/j6uqqBASclks6yrZpPYEDFgcBW3Ryq7/blBnYmqr4FdRFuZUid7Tl2s5ha7tz2FVUpP/O0HfXdvw7j7N2puvTNb7dAYQ0iD6SZAgcuSea9ZFfk9YC6DgpzfszwtL9syg68cZyOv47R+jZk5U6nZLzT5Gl8+WOhvcz8tdiwTTuk1Hnvs77vW6k9e+yOiWQ3XrNLBtAcoC7kv0hGCAQ4HTAt2/f9j8BAS0OdACoKQABSvHBTIA/Nkgnz3+CXU/BJ/vD6J2Awe+rynl9fT14ekakfbY3BXjkk+1mkDKjlOXY4tdEf6ppghUDPgME3fZMgDNnm67dKrPVOlaBWYp4Z7QSOc2AwmfKDJBm0XSimYHsdCA5ugRK3Jh4ve4Qdc9KxOzRf4qO6EzdsVbgpAMsFUiqHPkM/NBo6/HA1P5k9FOWIoEDj8oo/1Pq7s/W3elm6o8q+CAI0Op4PRKoLIAyAvxxWkAkJ3hxcREffWMmK70/QA7UnX7Sd9dfz0RoO2XNWAdBwRiHC1EvLv71CDCJdb68vLyJ/h3oJP3jkySiBN7YLv//JWDgM1IFBDqFTve+R/1br1sBDB1q39rZXaSzBShU5XyWaMrJBxhJDiE5YxFlTkfs/Vcd40LCqgznlylzPv8v46nnm3kP6x1jHBg2RjgulxlYqACgrvM5fEY1KfJ0uXJe1Otk6tjbQuPsToB9vdvtDhaPedt1PEWBM/D7q6mqt4rw07GkG7P2uJ2pwIDWCAgMcFpAawT0lAB1gIv69IidR+jS/fQSIR/LDqopj0qfOT242+3iY6riUf8kX6OjcrkgMgVDAgau0+TVAUOyX6s6uXrdnwYMzBxe5fSr7ereLfXOMg7V/+z+jhIQWO3sBCA6YzcrtwIC1X2fBRxspQqJjzEHAtquXr6j/bTA0Cnpsv86okFPBl7ggkbZDR3LcmMoUNAB8cSny8N1PLUj7YuntLaCdfE8pyGov5UD+Wh6L4OfZLZif7zPCAa0BoDvD0jrA/iEwBhj/0hoyuAQILozTmBAALlz/kk+DvyoEzxHHpjOH+PQ6fPJFY4NXpsidwfpfs4Ba2pL6rNj6E8DBhKtGp0VZ1yVfez52XXHdphTpxhbnHl1rLtmKxg4FXGwVYCv43lLXyWHT8OQ5sZJ5JNpe2YBZEjp2JlBEHnksdJHDhKr89xnmj+9UTE95dC1nUbd+fZ0rWcDksH0tlSAoOPrlDrtEbq3bWbHqgCgqof36l8gIL1mmJkAvjsgpeZFjMKTXlB3u2xABzS5XYEBgQzPsnFajtc6UJRsnp+f4zQBgSblyOwAswQEHJy6SFmB9/JRomUwkBTIO/q9HFxVTzq2EilVYCCVf0wbfqb8rfXNrl+N8DunP7u+u3arwn4EORjwwUnHkPonRcUa5DNDvAoExI8bD4/OaYw63t1Zpmi345vlJ7l4JsQdxywSVRmJb/LpEdwY2xY7HksroPgjiABpBlorWrE5nZP1xwj5tkB+V0DHdD2BKsGMQKJ019PzY7wFAywn8bjb7faL9TqQwfZyzp7TFDrHNxR6FK+xmYAixznfkkl+KNOrq6s4VgUSJKs0NijXn6WfygykAfPexr9T5BkQmDnpqrwt/FTnOwCz5d5VeW6J6GfHVq6f1edGbFbXr6QUOY7xVn94TNvdwj7fFiVH6Sn0VKbzywVzBAZ0ijS4KVNTGSwaJQdGfk1FdPy8Nk0veMCw8rREMsKrlBznyv2J51NTZ1dX7cPs/k7/6bh8vQA/KsRHBuncuGZGRJAp3WZ7U58ne6/6qpcXJcCpOvj2QgcDaQ1DB6YJnNK4eH398XZMOXcHWZwKeX5+HtfX12/WDFB2rNfbxjavBgFHPU3wqzMBq3wk5VhdxVyV2V37s8YhDepqoDs/FcrdEtHPrk/njrn/I0DiVkqDWYafA5e6zW3qlwayUPsY42Bb91R8ODlf4kcgQAustGhQvNFokn+PoHmsM2qeYu/0nYaGgIL/5E3XqG10EomHFBnytbIzcJAA0KpRXCnro6gCcTNaAQ8VGKZDS1kBZQYEBPQmQdcJ6qqXL5nqiYKke2m86p8fMeKXEvn+AgJwtpu6ya8JildmCxxgdJm4tE3eKzvvUzAvLy/j5uZmL0uOYy6EXQmytujt0ZmBjzLunbP0KCNFeJ2T97L9fBf9pf2VSDO1o9pnm1aiKP6vkEdPKZpKdWyt55jr35M08BmxjJH7jH0+ywqQugWELCc5KL+3moKowGT6rwzpxcXFPgoZY7xZIe1z8LrHy6GzSDz6egcdT+1k3SrDo8O0yMrP+f2eYXH6LJH/KrltqPivbEqySR45u80hEOB3B/S2QU4LjPFD9tIrnzIg3wTVKYPltkk/PaZInrTtoMDvpQ4pK3B5eTkeHh72UwOPj48H4KaywQlkUBfT2KjapXHpeiyeWHZqi5eb9GBGR72B8COAQKfQK78VXrtBsrKfjh8rmw4EzJBod0zHK+MxAwBe9mpmIdVzKqJzmWW1PDPAyDbd5w66cpyJGAWLZIRoTGaZlSrad4ea6nZyPfT2EFQwFZt0U0Ze6dEE3lN62J8j1y99750vmvE2e1vJw+pYcL35aKrG/Gw8zRxXutZtDYGAQACnBuR0xxh7x8oslUfVfNEWgRr7JGXJxhhvMgDih58NdjDg7fUMhHRTPPB1xgIJKo8L+5TNIElnK4DMVyP7Y5L+fQ1OIygLozUEbn9nernF7m5aQPiRBt1TSzMwkBBuVS5JBoD/6dpVp5n45fGV69We1P6K76p9rDc5Mh5P7a/kk+o+1nD9akpgQHQMGNIvtcv7b7ZIzvtAj115nzHC6vSflBb/sTwZL7XFp0D8HtbjvFTZj91ut6+nAhqV3qTIyH9+z4zSWEkZiVODgI4qvVvNFJDURuqB7uECN2UCHBCoXvWR0u26V/2ubJSn8H0VfwLXLMu/iqi1C3TcBCkOhAmwHXBeXV3tp+MEMgQKVIaDYJIcu0Aux1L6gJKAgU/nSX6S2dXV1QGAUP+oji2+qaMPebSwcxor93I7GcHK+Y6xPW3e8dfxTZ46cuNftc+PVXV27ZuljZLjr7aTEd2aCTgVKKDjYLs4B1jJncd9sR7TgZyGqIgRrPYpS9XVRbDS+Znep7pZhv9zsRSBAa+jIUyvU3a9oHFjJJhAJq9ntM9j7MckE+9LtplzrJVcPivNAgr24wog6LZpU/1RQq4TILgTYCPo4+Nz7Ju0GM+BF/WaKX89LeBz7HLc6ZsHjOZVl2cHHPSxfC7u0/XJxzi4YCZE5wgACATEmy8UVJv12CJf28zpvfcCBL8cDMwUeeXeyvkng01yB1Y5QzeqWwxralcytuna1L6qXWludUZbQE2nTBykx2ZLTklVpOfOI/VNMiyJ0vRA4sH3Z9MB1HuCABobzo92QE3ZAPKosnS9v3xIuubvD3B+xhgHZR8TrTs4UpleVlV2AjC63rMd/1epsi/p3+9zXfNHCQUEdMzBsZy92yodT2NNY8DfkUG98n51wELnreMcX8wu+U9TAql8tZ/z+eKF5auddOa73eEjkwRM6W2KnomjDHW9ePBxktZjsKzVsfhuYGCro18tb+Yok/NOUSy3OyfZDRiV0aHzan+VZgBnVi/57K7tAEGlQBUo6PjqyvsocuOzhdLgmwEDkjsgNyK8Jk11EfxWK6d1jjx6up9968BBRotggUQAkgCBO95q/QL1oAIAHmVRPp0zP0bHdM//BaDg+r0KBNwmEAj4Nwi4VkA65PpCPRzjEEz7XDv7lel8B5vJUfrUQQLDLy//elpAkbjXIwfuDpr1pPcACNzQFzj4YDaEdXlGIL1kyAOu3W637wfd51N67pe4v+qL3jUzUDnKdH7mmJ1WQIDKrcCAO6iq/urcFsc2k0Wi9wBUNPqzOo6tr8sOVMbmvcHie9GsL5mCSxGqztFIOHkU5HUn2XgGoPvpevKbyve+9+OJ95TxqIBAAh9OBCoODroMQJXpmKVIV0BrBZxPCWBXaWW8rdg6Ol8HAXpqgECADjFNwYn8bZnu/OigNZ4cDPCRXW9PstHMBugdAvf39/tzDjrlnHUtn36hPKhrbL/qZbvTdw7Sx5YcnPBfxzk1J344LZmCnWPs7buBAUf8FUOVQSV5Z684lCrSYJldVL9S1yxyrhztMcCA5AtVKpoZsM5QkFaMIOvaAuhOQd4XFXnmw1H/LCNAI1EBg64MT7GSfy5aYpaAoEH1841nidg+ThF4tJGAHsGH7k9OIGUIeO0McPv6Cx0jX100f4wjr4KMzwAKUiCTrnFeKzmn/Q4QcG7e1wvQ8dGpy/kzavfMmH+ER/LnAkAn1zM5dS9TIODx8XGfIfDUPH98jwVtgZwvn/QROSBwHj3T5VkBroPpgDHfNcLsQGVPUuA9o1+6ZmDVqaR9d9BprYDX0xnsLQ75mGi2Q6sr16efiE6iSjsnhZzV68e07c7PB7DTZzCWHVE2K4Budl2SDY2EHPIYPxzgzHl5lE3jzAVUnCbgugH22xg/Hn+iUXWHyp9HX7xnjLGvc7f78dpXghHKl21w2RLYeN9UekSe0/bPUiUX5/sUlGS7AvirbQe6BJn68eVCfHzP0/GKpn2+PUXylKFH5jzG6zSmEsikM0/ZBj3qKDCg9wgQfHhmgvdy/GrqQ9fovI858sDx7qDDpwjSNJgHWhp3r6+vB+8Joew8c7GVjgIDPxvpVmW5IjgI8DlVL2fFKSWDVZXftTFFTX5PZxi97goIiGYIuXJuVf0+8NK17sQquW9FoKcg1zP+i6rzCZgyTU7D6vuquyNG2ane1BY3kAQEKovbbCOv00+PhPHRMOqcFlKlxVq+iJCrrx2IVW1LusZ2bKUZ6Oto1ZZ8Fqrsxop+04FrfpyPEvr0wBiHqXh3xr6okE7KI9mkHw6eq3l9rcwXYFDZBCgEA8oMMINAp+1A2sEJgbUHAdQxleVZiPTeDF7j2YHUfzomwKb6ZnZ5lU7+1cLOSbqxqRrnhnFWX4X+eX4rv6vnEx/VNYkSEu3aT0edUGOlNO5YOOCSsTzW8H4EufFxWVQyen3NbyFcqUtGapWSPlYg0ceDO3jy4Pf5XCOvY7RDAzXGOMgK+MItggFFUTJ2lHun45UDJg9b9IvlrfSD9JxTLJ8F5K7alC3lObD1pwa0WFCAQNkgd/KM7hMR4M2IEbjz6X3C6QnPCvA5/i4zQP3kv7ZpH5jt8CweXxFMPpLDr6YoKFPVIRmwXs9S6FjXB6u0GQy44FaU0gdx5TxdSR0IeF2p87g/4y055JlzXmlHd391ziPsqq3JGVfG6mcMhu5nP5/aKP4spcioO9cZo6SnXqZTBdR8wB/bnuqcjJnPM3J9ACNw7ft6Ap9TJhDgWgLNr1aPQlEOKSJabbOPAZa16oTSuOXvM+p8pat+TWejqRfqKwIBvVxIGaExDuVKZ6dzY7xNdRNUVuNtCxD2jAFBN4EA3ySobw/ovMpx3l2WDnAJGEkEDnTsMyDgWQlfi5Ayeu4j+TInZgmOsf0f+p6BtM/j7vxnQKAyMFW9SblWeH6Pc35NBUJWyxkjL8bk/RUgqrIEHb9V5N+V81kMaRV1ku8u3eaUDMZMzl6fk+s9HW0HNHgsZY10jbIcbCeNjRw462NZvnAxgQG2NRk5Gj+Wm+ZKt9AMCKxkJdL/Z6CfBfRdedQ1rhPwRYO0AV1UK5KO+TkHvW7nZ3J3IPD4+HgwxjQ1wFf/Cgg8PDyMMcbBCv4EFgVqOa7T+CPI9fcJeFYqgYEKjJA4JsmLpgh0r8C5yj0WxG7+NsHM0czur8pMqIcdQaqAwAwQvBd1gGb13hVQ4Pd1Hbw1K+L3roKCmVFN4OFn0Op7kg8Ul+kMIHU66mVVQDWV7wY6nfcoIZVd8TzGYcROQ6WyZaT8DYleDoGAAwIHFzSYDgJmupxkye1O1g4MZuQA5rNTB+ZdvxO5DrM/lSHw6SDV6wvw2Mckf3EVAaXz7in41P8EAVoroHNj/Og7ZgX0e3h4ePO2P6+DfCU58aevGWr8JF5SVkB1pzUCq1MpGmOcjtNbCj3rt1WXf+lXC1ei6M64+txMioRXGpyMbfptaYOXuYUSAHAeHAR55DpDgMlgVNsr/FbbM6N+agAgqgzoDKhUuuLRu65NTiql46v6XJ4r0wYdgJDeeN+PMQ6iCc4/JoDtY5QLCl0O4pvRj8rqjN7K+Y5mGQLxlcivW7Utv5rYDz8L2JP+7na7g8cI1a9aNEg+UmYgyZlOn/0vHXNdov4lAKltOWF+btiv4Yt9+J4Bzus7gCGQZXqe4yplBzhVoX2fJkiLBCsd7frY+ROw51NDqisBlBU6yQLCCghU6wTcwKaBmqKYVNcKzaLD9O/bzpOXkQDBGPlZbKFqT/EmA1bxkZzFFqoikUTVdZ8NGIhmYJHXOEh1vXJ9XUX8Xbk8170OODljGs0kf0Z9HrG4gdc/+SEfbD/lwDEro7XbHX6vgFkKl1kFtpIMZzTrjxSVfgZg8LM2jffS5nLNgL9qWGX7e/3p4NLCtQqAuY1LdqLKOugpFXe+zpvWBmgaQUCgAy/+YiQ5WvKvcSfnW4Fg8Uo5+SOE1Cc6d51LvkDyE1i/vLzcgyPJheCe+rq6DumXgIGZI3BldsG6IR7jcFCmyKWr5xhKkWQCMat1eYTF+7Tv81V+jZTR+WLZyWh1ACbtp6xEui5lGk5tNN+TXBddT7m4yp3uMXJg5EQeqm3yxX5woyMwmQwwr1FZPK7tCrwmh8T2Ozhwh+/88p/kYDjRz+qeg5c/C1WggDJP4JJTA+kpkTEOZcJn4z3r0xFBH/ubqe40Zgg+CCIJBmQz+VIf/vyTwSxbslH5Pr7SVJjLnGPQeRePBDfeNwTVKbvi9Wlb8qN8mB1IoHpG7woGqoHaOVOPMDq0m8DACi/JeVfl854qou4MI8tyR1ld7+2uFqyQr0omKxkSP+btnClR1U6e/+zgoAOR2k96ql9aaNQ5sYpoRHxdgP/ScR6r2pT63uf39e8gQIbMdTTxUVEFQrvrORY8AtS/z8mmyM8BjfOUHFDa/gxUAcPq2sre+uustU5AmQEHAv7qXE93VzyKXI4EdullVyQutnt6ehoXFxcHupDACvnlvoNN/TsoSbZA/6q/Al8zSmO0GkednfX+JLCjr2C2b0a/9ENFHZJiYxLyElXOf2b8KgDi26ojlc06qvZVYMDvTRkGpl71XxlXd9ZEyhVVxmOLUUnlJdDk+wlMbanrvWlr/4kSkFsxeGMcGks3oOprzlF2fPtY4bSB9pkFqMYM2yGSMeRjV1Wbju1POoBV+bGOFX0XVcavA9Sfmao2r4Axt7MOAjgtwG9dMLJ1MEBAICKAcPlyPcCWNqZMjZybX0+gwimMBBRZVpqaI68VkHa5HmNHu+1EKQjUfZ4lILhZpZ8GAyuVVQg1TQ2M8dYYpch3ZjyqY2m7cwazdvlgZCRY1VtlAhwU6D5v826328+hCRHruiozcEz7nFL5PmgqIMD2fTTNHD6PJ7DaOeIOVFZZgWQ4O8ebps/IWwJpXdsq4+VGnDxWZYo8BeupX46Jzvj6Ai6Wo32n5JhSliO1aQXYnpq6gETU9VEFBLhGQI8QUi7qx7QIzimtL9mSpvb+9wWFngFK9ztYcYCQskvcvri42ANiyW+32715lM/te7IRxwDl1CbpYHVeJLCc3u2xSj8FBlYMq/4rIDAzaFuAwCqvx0Y3M3KnLkpzQcnQjzHeOJgELjwz0M29vWf7KnJQkKKDU9J7gL3KEad6tL2l/ex/f47fwUcyPrq3MsAJuI7xdpWyqMoqdJTay3Er46628HEoLuBKkZsiHud1FnWmfuhsgYPwz6THFTCbXed6W2UGqqkjnx5gPSqftAoCUltSwECAUC1adDDgQIaL+Nw+ep+nsirf4+PK9103U5s7ebH+GRj0xx232r1NYGBW6AwE0ID5tihlA/z4sfx2AuratoLMUzk0gul8BQx4j+Q0xuHjhTrOY77/XlT1wUqW5rMYUlFlJH2/0+GKPPqsKE0NdLKszvE4Ze1jp3J40rfqOlIHcHXeDW0i138BWuq42kMg7NsJYCTaqn+fTWeTI1mxw0l/HQhwP4HbrX3p5Hqe+O7alByyZ5jSo6u+viFtk2+CUZUp3eQahSSTBMopa4Jc1j3TM47fGbii3U/1rtLmlw5152YgwAXnxtWN6ZZ0R4fwK6RUKSKNq/PX7Xc8dcfGeLt61PlLMqiQ9dZVpKRVZ/QzWZrPQklPq5/f55R0N0VSupdRLw2V318B4tfXH9ND+vE+1t09paJ/1xsfn5XeuyF1WejeFI2xnIoXpozTVAPJDff/RapsSurbBAQ4ZcAvUc7s8Rj9NF/VH5VvSMHODID6WOj8BcePrxugnjuI9mmKFGylNhJksRxOdXgbOztCPr2t1VhzmW4NDt9lmmAGAjogQCM2czArSLUDAjMQUNWZBgg7Y1XYHfliFtal836MRH4qlD6jLU5/JQr+LEChc+wk70vfdvS/Si7DZLg9Tevnk+Hb7XYHjrgDIfz3MlWOqALrFU8dAE2g2vvCpydoiKXPeqZ6jLFfVc53xrPcjqcK7Fb8fTYd5vZMF90GEwT4cS8nATrf98xUql+UfID7Br+u0z/qCff56ONqIMkIXGOB+sfjbJscfcp0U94qg9sVH+RF2w5wOzvBqcLOpiT66TcQVo6XQkmvLfVOrgbpSocmQ5+AQAIBHTrryKMjKlFVrlNaLOXbrK9Di6k9jho7JfR6/NxqJuAzAoOErFf4VL+68fJ3+Ke1GivE+3yBFI2HP1+tY+LDdb8Cbm5kk65uBbkpgzHG27UulY75VIHqrfROxlfX8dE0AQbKi8Y8gbHVdr4H4D+GkhPu/nmd22BfQOj9X4Hh5MRWM5Du7Kmz7g8SMBAf3meVfdS2P0q4OjZpZxlZJz2h7N0+ME0vPZVT9yc2xjicAq4CLQIFypb86Kc++5BpAneubmSSEU2GK6VyknHp+PGIIKHoBAYqIDADOh1iTeV0xytAwGOuBFUE2FEXJa04/60Dasvxj6IKEJK6/mc5KYXJ/iGyr9pNUOHG2udxkwPTnGYylgkczAA429TpetIJl48flwPnNVwf4M+O0+lz8SANnK6j0/JHq3icsqwi3+rcz0y9/QzREXW6WzkFD8aSba7qdXL9qNLQvC45dgcp5JXO032Ggxb2iS941HUux4p8vPCncVal3JO9YFbA3/JJcrvh1E0VdNk4goJV2gQGKoXzjkxZAO9M/VcLPGZRbzpWAZYOEKTyKuMpqrIYMmozoDDG4eBIc7WV83Zg0PGUkKZfvwUQVGX9WahyANx3PXfEn57r9zqoww7u/Fr2kf/Yxzqm6JcR9Ezf/EMzVWauGrvpEUrqISMxN24VmFT5uj49G+0yYLQlUCAwXQGBChBUffHZ9TsB1Aq8Vtks73/KvbKxFUiqdNABQYr+6Rvo/LlNXl3vKhCZdM31RuddFpwSYMbq8fHxALhI570O6V/Fj+v2TN+2ZGA4jrYEb6JlMJBSEgll+nEHAcngJcG4U/Zzvl05/g4QOFVRTnWM93g5nYGuAACPpxTeGNue3U38VY5+9Tq/ZgX4fDaqjOcKuHUjPJOTR0baduSeMmjpXrZhFaym768nMEDn6oYz1eVGx513xR+jLLcNlGnloHiMwEjlduCXZXT6y74+JUDYOr6oO/qXc+UjhJShz707GNY1M5vm9/l4cl+RQAp59IwGx4EHKMmnuBNO45XjjO31clOdrscVkJaTdt5p4xNQTfz6tsuc/NC+rNBmMNB1sAMAH1Azh9NRGryVo674dEO+UneqwylFFQnYpM4e4+1UAY+xnC0LokiehqoUvCuzokox/8xU6bhHLG4gk8NxcqdPQ63V3Xzsy7MSrs8qc4zDF/t0fehj0Z14WuPTGWLVvTqWVG5l0LXvho58vL4efvQo8Tcbs94W78tjI6z3pGTP/Hx1LXVI/04VEHAgqv5yG0T7yGtdb1yfXMd8amxlnZl41q/6PDGj62pMUg4sg2sPeL1kRzmoXV2AQDly7FxeXu4z48m+bAGl4sN5nNEmMOBRSzIWM6dbobcOhYk6IOADJQ2iakDNKNXrVHVUhe5m5Y0xfxnFyvHZQpstZTmtyPEzZQ9W+j4Z2ypLQCPj/1WZ1FcCAX8RjPb1KVkHIjSO0jE3ei775CTdMI3x46MvBKSzxadbdZs8ajsFDcxMuF2hAR7jMJPAlxq5ga14/gzO3ynZrQ4UUD/Sy6v4QaIxDt+GWdVN6hwhfQCdugPYxFf1G+Nw0SF5pV6mQCcBFJLrnhN9VQIMPNZNDzgY8EWJPg48AOS45ph2u+LtSeCvo2UwUEULHWoT8/r3KYEtQIDUAYHZdtfxrmwd+FilFC2uRJBj5I/JpDKr42nOeRUIOFUyW6FTG9djAaD3OZ/XX3V0vC4ZyPQ2OH8znH9WlgNddbBvPQpKWQxRtfakigB5jbeV16WxU42xLnKbAXkecwCQynOaZQY+C63qHPVD+uVfJazk6RlKP08984xBChRnP88EOKjwp2U4ptyeEeQ5z5Xt1v2pvJX+GONtar4CBarP5ZjkWwHvSqcdhDloWaVNYGAlOkloW/8dEPDrSR0Krv4rELDFqa+Aga0GwxViBQhofzUNXGUDKiBQGcRVh+d1/dkp6Q4jqSSXi4uL1hHJsOmfUwJ8T7y/L55ZAo9Kxnj7MSTxyr5lvaQ07sg7dTQZlxkA92upL+RR8pF96MYd20dZuxHUNt8i54uT3SDPorpT0FYQ0AEBThnoutS3FWBwuTjIS9MAXif3q6kAbrONIrdbaZ0Kr/f2eFtUxtZMLAEBswMJ9PCe19cfUxo+Lpx31k99n9EvBwN8WYWjtZlzX8kGrGYEuJ0Md3VNVQ7RYTqfrk/7PxNl83jncNzRzOpMzroDX0kG5K8DIi7HqpzPQAmVV78xDqcBkmNj6o+UUqc00FdXV+Pq6mr/CVluuxFPztyNWXoiJ+l4iqoYlXRjwOXlgYG3W/Wl7IT3g4MCnnM+EwBg/SxbfHpaeQbKT00dX4lv7xc5YHfKXnYHCihf2nsHA3T2ymjR8SeAQJ68v52fCih65suzG8w2uA5ID/wjRtymv/N9lUFeKx/Ee6jnfP+Axi8BrD6exGm7FRvL7OEKHZ0ZSM5o5ugrZF4xWxmk7rgr1cyo6XhlEKpytgKAlfaN8fZDRU6ODjvnLKrk3KHd2bYb06requyPpBlQTL+U1iRt6fdk4Jj+Fwi4uroaNzc3B8DA53hJnHbzL8u50xMf1FsCHO13kQedL+VEOeo6N34z2RCsuONOfaXzXLCVZOMycPJr0lg5NVDYUj91VwFcis5ZrhxplV6mbSKAdAfodfviWAcGM4AyxqFe0BG6fhP8+c+DWPaxTy94ps2zFj5dx3v95WCemXp6enrzVUEd09jTeh1mDsYYB4Bgpg+eHVvNJhz1NMEYhxG/rwWYrV6vBlrVSDcG1X1JEfw+v6dzal5Xxd/WjIDzlebNnCei8q6DV9YWOD+r16X2uxH/GXD0q8gdTnU+gQAd533p4yiJPCJJEZPAgEBAAgMeddOY+CNJ7oTT3L9nf6p+9fsIHlIal4aT5z2S7/SE0YwMLFOwycGzTjoH8XrMOHZ5H5N2fS/q9NYBkrb9ccI01bRSB/WX11T9z4ifQIQLYf18snmdDyFfVRtoUxOg19hRND7GoS9jn3Pc+toGZha8P3wtASN/tVHrXHScT8jsdrvx+Pi4zyQk+Xj707F3zwx4hURWKT3ZRaGV4iXqnH91Pt0/KyvxNCv7Z6jiy0GXA4CtDjdlafx82ncHz/8tbfwM4EDt9zZ0gFJE5+Q67FFElwmhkaJx1rTA9fX1uL293YMBAQJPoaoeRRC73W48PT1FA8RoassHfJLOeFvUfkVdlPFWSsCdBrkCWzKairCYuSAomEVGqd+qjMpnowQIPL3v+6IEmLxs3t+BKne+zEoI8DoI8PceiJJvoZ12Z92NYzpwtsGDV40dpu3ZNp/acLBbkeqmrvp0l44re0By3SX498AvgYQtersZDBCxeXpxNTVXOd3uuk4RkzFxo74aHazw6lFwOrZSnoMAb0t1z0oHd9es3l8Bgp8p9xTkTm0GbpL+jHGYGk0OJhlPbvsLVdxYchGhfp6h0BhT6lHtUgTt7eYCu8R3NV5WyfvcpwjSdUlP0vis+ig5b0Z/uieBAl+TUAUvFe+noJk9Y9upc+7ExsgRtR9L9ojXOMhwPpgB8AWy1TSBiP6E9TnwTvw7LwQnlAkdJ0G1InROh6j96VHIJDPZCP4Y8auN+j0/P4/Ly8s9oL+4uNhvq60pEFGdnE74WT3dBAbYiAQGqgi0Q50s2493zjwdc8PmgyihW5ZVCbO71u/ryvE20ikxolk1fpxTTXVWSrRKFRDw+qp+P7URFSX98wxBpSvp3i7S5D00GtVz1QQF6RFDGSLnXf++qKjSd9cX8susE7fTQquZXD0y5/1pCsvl7FHiGIfRUOJFtscNss5RfowyfQqhAo1VW09J3sdVit7BAeWo+ym75FDTOT/mwCOBgaTrXC9APWGE7FkAOuIZb5xm43We0dY442u1vQ4HXUmWPrZo37U2gOU/Pz8fOHSfguRUBsdw0vOf1dFlMJBAQAICKw5gBg5mDj/d1wkiddIqX12ZYxw6lVXnl4CPjjPNm+45hipnPSt/BgRm/5+REgjgdgUkRcesydB2itxkPNMjhb5egAaExsCdmjt1OXaV5R/tSQbWH5NcJc8MUPfcmDl4SSlj8eM2htMlbpwJRmTg2T7KwkGKyAHBZwADHii4nnpkLmfY2cgZyKscXIq8PernegFmBjxDIGJm2bMFzhv/fRogZeNUJnVSmQHpA+fuU70OBFy/XYYCNAIzDopT4Cc5CAAoSyE9ZoZB9byX3d0EBtJCwYT6O1pxyum67r6ZQfdz70UJGW4BBynyZufyuhVeVuqblZfasgIgjgUcH0XeNzy+CgRI1HsZGzceVX2K3HxKID1FQKMzxg9H5w7d6yQg0H3a5iIl8Z5WQjswTZHyTHaqQ/KqMhRcIOWy9zFFu5Oe7e6yBF0klcbtyrj6leSyTOdSxklOUtel6QHKoyo/8cPymb3yd2cwQ6EpLy6K5RQBdcPHlc6zbv5znDiYvLq6enPOA1muN/HMAMed94fOV3ZP6X9ey3vYpoeHh1KnqzEkAFPRVr3dBAbYkJQN6BBcdWwrbQUC1WCqBkciv3YF+CSH7oZF+0zL6t8jGZZTdfKKXLc66hXgwO0KyLwnCDuGVgaGo35RchIEwJVzo6H21CjXCmjBoD9NkKKmtGrZdbyKOLytKwvrUiQjHa0e69tClXF3oy4+JD99vfHp6Wk8Pj5GO0Bjz7KYzfTPI/t0iehU+lvV6w4uRecVCEjOVmV6liXVKefvP58ScIDAa9jXY4y9I6az9vZ7FiJNBfhYSFkDjlvO2ae1b5JXGlcEFAkAj/EvQMDr/d7d7sdaBS+P4I51uG2qbC6zHyt09NMEiTpkWTnlCnn7tR06Tse9Xp3vkHAaOIlmhiJlBxJ/fh0VrkpddnxUx2aU5F/xnQBAt81jp4ywnFwHOfB87tPJHaT+faCyPBpKOX05/tvb23F7ezu+fv365pFCAm7VxeiFwDy1jY7OoyIZIkVwjJBYTtL3FI3642tVdsHlk2Sfojw57ouLf31SllGhl+2ySKlfTrNU954azCYHwONJ9h6duxwdJCRZi7pgT3rDKa7uDZr+BMEYb18yxSDT5V9NMzgYSO1SRC2S09UKfvKRwABlwbHgc/xsi45VDpzjTIBA45Ht4XhIjr3qt0qvK9oMBpLznVWYEFsqszqWhFnx1DnmMd6mxmZ8VMR0Y6prtRNSFFcdS+V62pOD55hof8u1FSJN+x0/H0mULfXSB57rkqeYVRYHO51n0l8ZLgGAu7u78f/+3/8bv/322/j27du4vb09AAKqy520jifD5XVSL3yKgQZYpLrc6CVQXoEClyGBi+SgMtyRubNIBpzpZ/HrUZkMp2fbumyB2zTK7pS6WwVRKevkDtjvG+PtuOxss65XJmiMtyDuy5cvB1NcDmjpwB3AEaxRFwkMVGcCHpqCYJlsoztlb5PAAD/OldanjDEO9MmdOfWbILiyJ7peIIT9yXEhfiT7FJykzOQxtAwGKodcOcCkZJ3CVXWuHDuGtvJSkUc/VXpphTx9dwxv1T1bDFoVZVbX+H6XaTgFJcdcAQJ3Tt5+BwJcjJbqTelbGTOfHri5uTkwmnLcSb+qbAHb24Eapg892qjAAQ1zapMbM/FAR5scmv5TNMs2X1z867Grq6ur8fr6un+bm2dzPCpiKlr1+8LC3W53sI5Ccto6hn8FVUAs6WzVD1W5MxAgYnkOBLpXaye+CHQJct3hEVxzWs1f2c31NZ5JI9hgmTqvrEB6gydBgYMU7lOGKXvi40H1c1tPGhAEqO0OKFTWe4PUzWDgmGizMgQrdXbXrzrLLvpO51boVxgIR5JbiIOKAKVy2iu8rwCBGQj4LNTpDwdZZxxTqtn7y6NjbTsAUGbg7u5ufPv2bXz79m3c3Ny8SXvTSemY/1J2qmqHRy0e/bvRkZFi+x3U+Nwx62dGIk1pUTbpWwweTSniJ5/qjyQHBzo0/r4mI63Ufq/g41hKQVhyyg7OZlkBDzpoD+lkqGOe0aGTlnMmwPV+dYDn4NXLZsTsa2z01k5OHYg4/842uBykT9KJBAb487GocnzMEOSwPQ4aKAeCWb51U2VJ7z0TTPmsTiFUtBkMuKNxh1o5hBUUuoVxv3Z2LxWvmyogVdfM5lRXeNhKFfhIaHTmlH+V0z51BFVR0r0qykooPhH7MgEBprKZAvc5T0+r+hSBDBYNB42dy9v58Xb4UwRp8RPPe9nuBPwxSE9jcrwlYJKcmAAFoz3+OzDi42EyoP6CF04vqM1yAuKTj24pw3BqovNMNs+BQdJjkQOy1C+eBpdT1v1VvdQDf4EWF/4lUKsy/S2SYxzqCMeIMmnMPrANjOy7NQBqi3QmgQBf2OgAoOonzxonOyR9lb5zzUACe+Kb2zM9XfF1Y2z8NoGoahgFkYxsBwaSI1l1+FuBgagCIN5Wv4fO/1gH2IGfjv9V2XldK8dW5fZZnf6MZgDAI3qCX1GKMFguB25ydOmlK8wa+BQB06peb2qXiIaXBl3XzUC7t4nluvGv5oPJJ42p1+NZlN3ucIW4y1jlSnZy6po+eH5+HldXV+Px8XG/cn232x08dTDGOLjXgYBnY05Flc1Meks9cyefMjM8RyfHfvIMAvsqgVzP8KRpn6pOghDxykcU/Q2dyj4wM6D79TIfRvSUndtf8ecAgLwmXzajLsWf+jBdT5knEMV+/BnalBlghURCvGbG0AwQrNy79VwiKnnlmLtjchKrUfgxcqERrtL+W8gVqeJ1qyz9fj/22YxqAgIJ5ZNcblV6nceqKNozATzGaHiMcWDYE1+61gFDGp8p9ett4zypy6KKBMV/ZfDHePsWQcrI28RyPLvBMhTlX15e7p24QIHo8fHxoP1pUaQvXvPMwErW76PI9dQdMsHAGHkFvI6PcfiCG5eHA0oHHQkQJj48K+DtES90diKfIuC/A23PWKcxrDpZP8EyZeDOV/sr+uB10B6QlzHGAehXn3qGQPrIjI34Se1Mej6jTWCAQk7GonOqM2PrjVlpSOes07mqwzueV/hbcXLJiFd8jnGY4j0WcHU0k/GxgODPRB7pJOcj4iBMxoBpTRrBlAJP0b47P/K3mubzspJTTvt+r8Yx29qlLiuDLwfrZVXk9sNtBmXiQI7ypTNnOpV8XFz8eEzL7ZLzusL7r6YqA7Xb/XjkTqCAzoPPsLMskmdFPCBxPSZ4TU8QVGtHqvqTT/H6fTqKukbnV8338xsEiQfnRX1+jB3kGNK+2xmel0wd2PraAY1b9W03VmQztujt5jUDPgeS0jy8PgGAZKy8LtEKMFh1fivXeXTD49VaAee3M7YrdYu8c71+b5sb71VlrtCl85La1IGTU2YCnNLA9FQ+DU/qC97neunlecRfvWnQox2mOzXwxZPmVGkMuNpf91F/aSS9PzivmmQ1xo+Xpsi4+3oHN9IOQJhyTePdgU4aT5R/SpF65sR/upYGVnXpGKcMdL34PyUw9nHsQKxat1GNf48ak3MSEXQ4CFCK3rcTGCAfrmsE3wlQ0vn72gO1hTaXUwR6bJDTDqpL//ylzATHU6dbbIdnKJJ+qu0a43T8cv4CCMpKeDaAAIPBCDN+bO+MlsFAtaCGFToamv1EidmtDamQZaIKGKSIw8+PkVP2s+hhhbduYaM7ez/n+1uzCStgyWVcof3PBAJEFZKWXGlYGR3RyXpmgDri5XFg80VDt7e3By8a8pcQyZhwAVwi1uXGx/ke4+2iqhXQTkOY0rIVEBAvrLvLdLE+GjI5a5brxt4BjY9dgQA6JP1XawUo091udwAgTkmdrqmdnCKYAYExDqdICCpVngMA6alemKVt6XJazKcMBcn7yDNO7CM/Tn1hxM8sgOuI67tH6vq5fWMWifV2gVECV2mceR+xHwkOKEf9C6RrX/exT71NM9r00qHk0CsEugIGeE9CY3684iltp/3qHh9kVXagE+wsHZN4qcDGr6KZYjiY4z/L0LVVGV25pyCPmkk0CoxodJwpZ6LvMQ4zAjrepVL9kSg+ksVFUOKRH+EhwHDDxvYlJ+ztphHtMlkpCpVx9hfLMDpR3azXMxjsF+8jd8QiGny9KObx8XG/7SvC1a4ZsFJbHYxvmeL4VaQ2+Hj0SJl9Q92dEfVL+w5k6fD57z/qAvknuPU2VE6T/DjA45f+xjjMfiUg4JkQ1+sxDl/m40DSHyes+sjH0szuJUCXePBrHdi6P/Us8qrt3ZQZqN6LTqa9oQk8bHW0oiq6PtbRUGlTlOfXeAq+4m8L76L3bFOlLLNsQcVDBdqc/NzW7M6vpCoN6oORzn2MEaMC3k8074a0W2SVnr92hyiDlpy1A0c3Qmov3zboeuvp1VkWwkGTR6XiiXV7KpR1+7ZHruKXGQqfC2Y7PGXsZVegwMc6QcGppwmSY6F9qhbqbeXZdZnTXHwvhjJad3d3+8zA3d3duLm5OdBj9Yf3ldfJfx5nOWO8fQQ2lU8w2GWNCKS87Q5UFAQcI1PxmQLdzo66r3RZEbi67qas0LtnBhwluYFIqUo2KKWA3MDyfkfEFcpa6aAtkakLuOIx1e3tn6WM3ovnFUqgoAIEM5DX3S/eV459FFXA1PWSjjlRBXZUxxh5wVPKDqQvFDJyJiBQ5Etg4OtHHEzwn07Z/3VvBXC7MZfkqeMEHzSsaTEbz3WgWG3kgjBGgS6bCnCQUrtpzwQGT0XJbriz8G13ELPyPaPFqS1/QRZ/PKevA6pPXl5exuPj48H+GBnUcN+jcMnebTEzRNQJgmiCEAJ9zsmrbLfpMzs4IwekHqAR5DhocT2u+o39J8AtOiaTtek9A2lOW53rKR83tuoICrWaYnBaQVMrlJx4Ql7izZ12x68DIpXlvFfGjgrjAORYSjyRL+dxC71Hf3wkrYKAzoAmOY4xynLSQkK+oc0BAR0TF0DpR6c3Rr3Ik/qTHK0DQ8pkjMMMmFOVgXBDNwO8NHY+paDzlHG6lw5gxYB2VNmE9wblx1DlQD3C5fmKvE85FqSvBKzMBHz9+nV8/fp1DwY0PXB3dzcuLy/38n96ehoPDw9v+tMBmb4Pweu+fPly8OEg55WA0qcDuFgwrRXwjB3Bsme2EvBPP7anCoIqoDvGeAMCeB/P+1oaH7cqnwtgef0KHfXSISdFAm4o3egSwfIaMv1eA8+NSZdlcN4SEKDh96inS7GStrQtAa8ths4dfnIAM4Ob2j8DZp8RICSAWoGCMd5+hGoGHisD7QsIGWnpxzUD0iVGPTKsnBen86v4q/hlFJSuY/tFNGi633mgLLjPIMGddkrrS7cq3eQ5f8ugePdHBlM5rMv55bim3E5JSa7c1k+0EllSX6vFgvqapn6//fbbHgxwDYHkLgcv/SU/lLVkm+bjmUnyez0LQJDs2QEHq5ymc5DgOpMcf5qW8HFQ3Uc5kARq6PR9PY9Pe7hM1IbX19cDICUZvzsYUCetkjtXV1ZuMyXnSGqLc6mQmfhZ4Vn/HiU6UElOYaWeBISc32MAUVKyjofk1GfGk/fOyv5M5JGr62QCq6+vrweORfeSlOlKq+w9E6AI6uvXr3sgwFXZfIwoTQ8kMCCeZgAt6bOO+3yuO2e/P20T/Lgx5SLI19fX/VsAOye/Gs24kR7jcDFZZUTTtIDuoZ5U2dCPJueJmdZqjngG+AhyOK2lBYPKBui7Gfy6prIDXDx4cfGvz0o/PDzs5fb09LR/6VPiic7K+55OjDpPJ5weH0zZIskqBW+Uqca8dLV6PXECAtXPp0eoYxwjbAfbWQGdZAcEeHRO7eD0QUebpwm6yIiKRoNBo5mcTAIBjhrdSXYO51hnlAAMzzE64v+M3sM5vnc9MydyLCjp6js1JT3trqEMvK+lGzTGKSqXoWWGwL+2xsEvA6pV8vrXz40qeazGB8cXxysN4Bbny7ejyTjRSc3k4UaUxtXrGyNnaKqo0duufRpSv8YdvsvjM+lu+omSo+H9rs+yyf7KX64FIBj429/+Nn777bc9oOX3AcYY4/7+fu/wHh4e9q+CJqW+oW6SpCeKlN0RpqcG3FGr7TrGdQICMJqaoAypMxx/PmXnYJPOXPup3Wy/T3Vo//Hx8c3TEb6g2HWAn/ReBdWiTQsINUj40hNG9byWAmcaloxz0NEwUDmqVIs7saT4x1AV4XdZgSq1SAWfZS0oTx1LHVm1eYz8eV2/rpMN5Tq7rmqT02cxpL5fgb50T4q+OqdHUvl8uZBPDQj4JsPjhm6Mtzogh+58JTDjY5CGj2Dcx6ITn1JQ+d3Y8ak3bXMMkDzCSu32Y6yvo5SBqIzmZ8kOjPF2vQB1WOQAalYWbbNnteTsv337Nn777bd9doAZLj1SSGcqB+t1JF2S7iXeEwiYTQl4il1tfX5+Ll9TrWyV97PKJjj3celrE3zqqrPhnhnwIMDXDHmGhH05xtgDOtqKLfZ383sGEmpOUZMUgW8uS3PxKSvAjAAzBSlSSMpVnZu1i9sUMPmgUeUqbd3rlPhzQ+3tdMBVlVlFUhUQqK7t+FW7qutmMp4Bi4+iNC2QHgessgX8F9HguYNNDpHAkNHNw8PDGGPs06z39/fj/v5+PDw87PdlgFI/cPx14CQ5No018ZQid56jwZUMZMw4vjl+HVh4GWoHt1PkTzuwAlq9vDQ+Pjt1GQH2cwoAKgDpRP3Xr3uSQNkBTXEpwqY+O9hlYOc8J0c6ywLQCfu0AH/0Q6zTZfz6+vpm/KtsZuv8vRbJOScg68e9nwg2CAhYH9dgkHf1IfXFA+0V2vyhIlVMh+joNIEBf5kLBcRomo5Q9fo1fmw18q3IjZ2OpTYTHOh6Cn815cq6ne/UBj/mysd2+HG/Zit1YOfYMj+SXD88YkkgVddW/Ul9FlVZhjEO57CVypP+yFDJkLrBoTN1XqiDbF86X4F59q+Xz6iH44TOn1mNNMYr2XM9hhtz1ZcMKsll4uXynkqGn5k8q5KyLKTKFrhO6N+DIIJkz2T5Gwg1RcCUu38/IGWE3BYloNZlARwMJKfc2azKD/maF5VZTQ8kYJGAQAUCtE9n7xkQridIfpC+VWNR6yNcJ2a0KTPgRGMoI5EMLX+pDN3vxopp9wQKUlr+PUiAxHn0+tjWqu6UBejqlQwdbHQOn8aOx/18Uty0naIuByOVkU5yWI3gfjW5blJ/qycJRA4GaVBWQADfmMeFXxq82k5PDlTkddLoekbLo2lSMmo6zrHHa2mAdZz/5Ik6VEW27sSTAfWpkKSP1dhI/LnOi1jGbBrhV9MsIyBKGdREVXaWY6N6kZGIcq3AtWcbBBQrPVHfp0yAZwhc/xQxJ/Ao3uhf0hMMBAMOHqtFvCkz2/0IeD2rUT0doWN+P30Q2ylZaqys+p4xNoKBpGSqiKiKyrCaFUgRi8rqAICnSGcOZ4twUls9K6LjqXNUX1UW/xOPDgjSdSnS6SKrRAkkuOOoypgZXLXxlEDA9dINqzvVyvC7M9J21TdMm15fX4/7+/t9/a+vrwfv+1e9mitUdqBKRer6atDzHMdM5QCd98r5pPHrxjlFRdxOBjJNJ3hfdA65K8sdiK7vqAPRpyDviwQ+V/l1B1L1L897n8k5Mv2eAAV1PPWp9tk/LN+fFuB1Pq2gbddx6r+AgAPPl5cfiwtZjvPkQCAB0qTzFRAg2FjNfqRxS3vtLwdcpc2ZATXSnbLIgUB6XzUbMMbbb8N3AGDLwFwFB76/YuwTGDl2qmCVVtqejPDqvVV5HRCpjH51zymoi668fz2y3NqPHtkodfr9+/eDaP3p6Wk/NrSwSVGOv3efEVGKaJxfRkMi1u1rHdwBJ6rOy5jJ2HvU5c45rfz2hWBdhqsDXi77KpLsAPpncPwVVZmBzuY42KXdmo3RBNwYJRPISt6sM7222rMXBAhVVsDT8tKzCnxSDp4ydyCgujl20phyHaJ8XF4rxHZXYyPptfoukWd71J53f7RwpZGeVvJUE4mKs1rPqqCrQS1jon8ZRr838UWi0yc48jrdKG6pY5XccPogW1HQmRGkEU7RRyXrlbI/gtQ3TOvTSNKhiTza8D5zY5ocoAymAMH9/f0Y4wcY0CIrrWYeYxw4sfT5VW8XqdI/Bz7sGwLylOFK20lvxadAQad/q/pf6bO3N0VXyaDSqTlVBnaFz4+g1JfkuQJKXkYCwe7wHaBxVbsWtdG2jzHeOOcEvmU3twABrqRn37FPPcpnewlU6fDZbrcPXlbSPe8X9kFlL9h2Jwde7AuvW77HQRXH9zE6uzkzQAYccarDtfjEpwf83srIeconpQq3oLAtREF22Qxtd1mD9yAHHVX7KwPcRUG8d8Uwd8eq+hKQ+Gjy9GWaByV/VWTqQIC6rft87pt6r2ifq60ZPek6jxp8sVKqLy1o7HSVkYPk4Zm+pF+SA3WSkY0bI55jliNF8B79pfrdZiQHlhZ76ceyaLC76PrUYDY5FqcUbFTbBMEefUp+XMzqj9YRDEjvvD/p+KpshnhwvXDwRj61zYxP0gvKzMtwe+SZA5epj8cUyCYbSgetexKAn6X0k/6ldlTXrvqjoxYQdg6QBlfZAVfIYwZX5fyTEiSERh6r6E7nKoPq16huzvn6VEHVEe+ZHXDjOXPcFS+nNnq/ijjXT+fnfU1yWXD+nYsOCQhc1z3S0bPNMriaJuB4UR3sE6b4yW8yMMkoeYTGe/0851T17+lTtTWlgV12lWMQmHCA4dGTAw5tpwiqWmzm/doBvG5N0ikp2QnPdnRAUJTWzIgoS65dESgQiHUAfHNzs79Hj8OmxXZ0pv5fZXS8/5L/8ECzIgIJyYLBVmWvZ4EVefDrHMT7OFA2TYv+KNuVAI0ZPdZ/jC3f9GihRyYkrhVw1Ehjlho0xo8XTDA6qDIEVZTA8jpaiYRntGosUsdsBQIpGqrQcNX+ahCxzGOyA+m8RymnBhl03py2ol4SvdNg8P5kVH0KrOsXRcd8RzpBRFrB7YDFI1jW5Ybeeaex0L4/HpwMjIPfVB5lRjCeIvcUsacV0y5Ld350Gu5QfK1F1z/+qlq20XXglJSiR8ldL5sZ40dw4uR6OsaPp1mYkufCPX/G/vHxcVxdXe0fj2V5Dhw8Q5OcfjW14zbEdTAB3iQv/yd457kEEKnHY8yfKOmAuM7rGgfY0kHP0FRrO8RPen9CAs0rtHnNQBogNCwStj9JoAinQodjjDdAYAUEVBHxigAcTTu5UXYePGJj6nTm8P14cjgVORBxhaYhFs3k0dWbkO0q+eA6BfGxQepoN9CSY6Djn/WTZwj8U6t83Mpf+OKg+hjwSv1zPaZR0jUJwHD6QD+eq6JLH5Mp5VtFfqQ07n07AYEEKCqj6OPfAxeCpFNS5xDYhhXQ4o7WZZbm7H11Px+P1X16QZYDAp86SE4q6UfVbupcWjnv4yXpKctOOux8rVBVvnwfx4TblwQEKr5JVWDo/blCm8BAiozomDyKSQzzn9kAHlNjkrBUHstlPceSp9hSall8uKGvDHbKGvxsRiLxXaW3RI5wV3k4BgSc2mgmYoqfEfgY2dhru5JtBSIoL+nxbrc7eA7aU6NjjIPHr/gYlnTLX+3qawhUj/qZhjL1h2cN2K5kiNN/B6YY9SSH7mM5RTI+xh1cUN5+bZdmTrx2oFDtfe9xu4U8S7PKTzW95OSyZcSubECVzeF9miLgrwIFVRaA7VUbkq7zeBdsUFc9m8fA1TN8LK8b6yuUAkPaZIGDYx4JTPLjOEhTZRUtgwEqVDKOlXFQo1cHsOqaTRGksjpKKDANEA42KgyP8/EpdyS6nu1ZdaazbEK6nihzRWkTLx8VuZ/KoDqwS/3PqJkySvOwlY77PnWVkSbfQEjZO8L3dC/BJcEC26V0YxUZ+XHynAyvt5PlVQCa17Jt/KU0f4r8V8D+1vFCqpzkZ1or4HL3oGxGs2sSUPNsi5y/noyR3nF6RZmB79+/j+/fvx9kCfhkjD95UIE22jVtV5mAjqr33fiUYcoOuMNOOpECwdRHlY0Y4/BpnJVFziyv8qkOpGe0aQGho+j070aBICKh9ir1x0ZVcyBbHOxWorL42whp0BmNVREUHUGi5HC28DkDBGMcKl91jRvLVRDTlfEZKDnx5Cyra8c4zHyt9hENpZel85zzE6Vn9b3vOBaoq66PjHw4NjmOUtTpEbxHYil6qYzzVpDr8upAwEzXqjFZXUNZ+5TBZyKPbnUs9YtnBtQeZqCoTx79c73Aw8NDfNGQnj4QGOC3NZQZSPZe5fB/jHq9BsfMav+nqcHqX3z4+KjIne3MbrAO+gWu+9A0YtWfHR9d8DyjTZkBGQn+p8Uq6jBmBaRk/p9QqM6lhmqf/07HAIAqlSakxk5R22m0fTDxDYVdlLE6B+2Urq+mMpw65UgD7L2c+6lAAo28z5/TCGibUbeo6icCZJ8yogP1qF/ORkbXQcHLy7/eiMay3DDwnPMmEMB3xTOi87rSY39pbLINXo47U+8DBygi2ooqo5Bopscad/7vPK+MvZUI/FdRAl+V7lZtSfaHj6Q6CHh8fBz39/fj5uZmPDw8jO/fvx88LSOgwH0BAIEBnyLosjwVsORKe44pXjOLzDsw4NspUE2yXG0L6/WxR50iEPDrU7BCHzibclsFs5unCTjgHW1TMUViugMCKUvA+x0IzJxKpxyrTpdzSN6RXWqJ7aXxqaYk0vZW8simyhK40fbtVeoGwmfLCohS//tAHePtNwhS+1z/nbrsQXLmIgfampOl7viLkVL5zGhdXl4efDLZP8aiel9eXg7mhjUe00pwrzttu7ES8BGIdpkSDCX9rdraRWV+3MFyshMuF7bhFORtpK7yGv6LqpS2/tkn7COBgaenp/Hw8DD++OOPg/55fn7ef+aYYEAAQj9/moD8kmf/cYyxjxgk+hgjCHdKYIA8cExwDPq++yvxRHvgACOd977rHH+nn0kvPbvO62e0aQGhRwVMc0hoPM7BlwCAz09VKY4qM1CRK9HKP50CV3TLiDKqEo9cVdsZIk/7klYjjllmgdcRQTvISmAqOagk484BdH1SDdKPIgew3t/qazoNbx+Ng4gZgQ4ciAeVlYxRBzB5n0BmKpv8KyOgT9HqJ30maQzybW8EAHzEzPXJDWMylKojgVOe94ivctgECx548CU4dC6UpfPjUTVBta49Fa0Y8pnudc5Dui690vTnly9fxv39/cFiW+nI/f39uLq6OniXv3RFGQEBS2YFkuOvnphJfZ/u53jmdaS0ViCVN8Z4A1zUNo7flD2gLqXAgny6Ps7shu7negm3C+LFxxEB1IyWwYBSSlU6vcoMiCohJmPC61M5HSXE6cfJbzIEOu4f2xAgEJ96lSzbxowAU1zuRJzfRB6hrLQ7fRCExrMqyxWICrcCDriforUZYPiV5AaD/V3pc+WASBzoJDdi0g3JP00/sEx3RkznpjTpbrfbG2YHOAIEt7e34+bmZg8S2M8CAHqG3EG6okTps49ftVG8cjw4UNI58ejg1eXtTqHSOZdHNe6TzFmWA5RU56koOcC0HsSjwtSeFBAwO6C3DAoQqB+ULfDgSE5HoDG95yGBcB3n/4rDTGl+PyfqwIAApOTjwMp1gHbewYDbTNbtsqb8KSP2jeuzX0M7TV58enpVfzdlBggIEpNigMSIyjs4OQ9S5YRmVDlYBwJ+jsrlBpVp1jF+IEhXHLaTL+ZIPFV8uhNOjsjbkVC1T1PQuCZeVmTtBvOzGMpVYvRNwMcISEQHR133DJlTp1tcf5KMY2XgnKcqEnGd9e/QX19f7wGBylEWgCu+mRXQ3O/l5eVBtOcGkT9GUx1AZ1SY7EkCAbpvVkfS/+pxyyTnatydgrx9DgI8GCPfFThQP0l/vP+UEdI3NQQSZAtd9rwnRdjUTwZXbJcDx0oG3nYuKvRx44/mOjGblDJzHPMJ2NIpJ8DPdiSH7lF9ZZ8TOSCnzLvyEm1+zwAVyFFnh7jJXPpPg65riEdfM0oG2o9zMNFJyLBSeZmyUdv0djnyrHnfLUbFeU2OvWoDowPyxrJT+TrnWQGed0poNkVuW/rpVxDbVTlqN6jUWa66HuPtI34sv6qfBizt87oOBOg6L1vOQY7eQcDNzc24vb3dTxcoOyDjJUNCIMB5YBnMx8fHcXFxsf+4Ep+qcefc9XvlaN34zowZ62MmjsTsQ+pDL+8zAlzql4NZAkJdm7a1TxmkyJLTRurvMX5MBTw8PMTIXpkDPjpIB8spAd3nfqTSGx53AC050NmTJwfLFVjwlD7LkB1IAJRy9mg9AWTK2MdbcuDJLqQx4vem4KWjo75NwMYnqhwv70vOozIAVTR6jKNxBE0l9cHF1dj6eUpJwtYrOh3hVY/BbAUHVGo/x7Zx242gR1OuNIlPUVJulsFt75fPAgi47YAvZQbG+CFHZrh03MtN91bgg3wkoFABggp4ENBQr6WzBAfapnGWQSIw8I/SVJGVAK8bbMrvGHJdq8gBVlWW8/OZIv+KuvY7qOTxqqyuHtZHQEDnxpX9tG26Nzk0On3do+kIAbjVjE0CzumJL9UhJ17piO6njXXb5U8zcDqF1/l9CQioHq7J8Uc500vFvI9ojxIoYPtX6Wgw4OTpHjH3M4Ovckor95GHCpwkxeocBacJCAT8Ov6YXnrPiMPbVCHiLqXdgQAHDImqbACPnRoEkLyfPaomIGBmwI3MsQ4kgQAHpg4WOqoAhJfvwFaAQPueFSAY0HSCR468xw1jRQ6GPWpJxq9zhoxY5Ww88kzgKmXZyFc3hj6aKuA9xlswOUbOgqzUwQwYwYA/Pu32jbzwPvLqjn63+7EQ1jMIadpC97C9Xh7BJ/van9d38EQwoH2XjRx1NaXh/sblqp+ucRDgr3tmlsDlkPqNfGp7t6vXh1W06UNF/p+cqCPUY6NhURoAydGsIGOSDyJvg7crDQCmjYiW01yZR5Zb202qFLc77tmBVAcV22V8DJBZdWqnIHfCqX953RiHLwNKuq0B6M7Hx0zioeKPoIRl0IAmXnVv5UCULZCzp9GSYZGRlKHy9LDqqFKdzDbwnAMBXueZNf0qXafDdifPtR50PEleSU7p+EeTR+wOoETUJdqkLfy7jvE9AuKBY8X1ueozRtwaI6mPmW1leYlHtZXk0wAqy9cTuI33rCDH2Ovr637xrAC12kP9Inlb0qO0fEpH03H+qWh/pDc9nu864QBKx1ZoU2bA00MUnEc5Y/z8IzneGEdhFdGhsYx0n9qTMgD+JIGOsfyLi4v9wir9qwyPbGaIvUoLzSg5BPK3BYAk45OOOY8pekn9cCqqpgCSgfBr1CYBPb0gxOdeEyAe4y1S1zZT9FvkQ3m6cU5glmX7Opjr6+v9OTc8Gg9KF+sFMrrXo8BZJO/kbUjTWl5eZRN4v45X4z3xVx0/NdHYd7JNYInOu7MBdFx0LHpaiuAt6Tn7hLpApyrbKJIzla1MKXfVm3S56y9eK93Q8ZQl4HTZ5eXlgfMXmNDPAWay2cyWpTGh8cQf39RIQOBTz3qTYwcEPEh490cLvSOqKKqLrGbl+4DmuS1GZox+qqBTIkaInj7m3BMNl4OIyhCP8XZlb8dPNYCZKnsvJ9vJNsn+MxrOiphCrKJw9iVl6hF/ikJZTwICHU9+XaXr3ueVYXP9TavOmRnQ2gG1lVE8HyfU0wSUj/j0lKdHMZ4VSI8npozBCrjwc+4kksFMmbEKIFT99VHkkbNH1CQGY5WOcp/Onc7e/3k9HasoTbXouIMzjiEPOKgTBM8OCDwY7YJTjhPy42PHaTaukmx4L9uQ5OPv7yAQ8KyBZ9w4tiQf/TPbtlVnl8GAZwU8ze5UpaKdKmc2Q/Wp3M5haVtzYynF6lkBX0BY8UpDPsbbwZHuS2ixIi9fvPt+hVKr/8RHygRUPFdZAqf3AizHEg0j+71Kt7rR4H18soByJKXoXMerc+xLEvWWmQTdwyjenXn66dEwGhiCWdUlIPD6+rp/lIxycYfETInz7m2krN3Yss8czKdosIoQq2NuP8h/dd+pgMAYdTaOgIrOcIw8LZjK2O0OX2KlfS+L16cMWnKojFBd330MVf3iQM51RPrv49r5qjKAKVDjNxTStBV59LqS3XRQo7IJngUE+HPwzHs8MyDenVZ9sGgTGFBUkOZgjh0w7xVhVuVIiVOmoIo6HAl6G6vU6KwtSVlSJ87aovs4iH0wpAioG3CprqptW/uMfJ+KkrGY7YuS05ZjZlRVldG13891ekE+3VjJ0UtXLy8vDz4uQ1CrfT0B4yuxHRC58UpRi0f/yZjqfhpEGl6PDivAnEAF5cK2uFNxw+5ydhuR6jsVuXOswGyiLpCSzLi6n5Qyop4ZqPqky2R426r0tvch17JUTyGkDIEfZ/vHGAdZrbS4rwII0m2XrYNhBhAsX9MCKSvgX3t0IDAD4FtoGQwQCCRAIEbIHAd2RUSxr69vXwHKTlxx+FsopYK4RoDPbBMMVEDAO8gHwcwQrTrcrqNTpONZgWpwJrDS1ZOMiyujg7BTUuWo9Z+yRfwf48ciQva1R0n6T9ESjQd1lqur/VqVJ1n6uyx0XvOUHmUo+ri+vt4bnfv7+4NsgHSc4MbnPJNj7Zx/FVmla7y9aZ9ydLtQyVv1Uf+7OdSqrFMDgk4+q+M1BQdqF4EA7Zx0aoy3a2NY9hhvpw50nfPXtcP9h1/LtQYs24GCZwLEk1Ny0HTSctQcVxUgUHneRso/gQECAgKQBJAJOrqAgX27SpvWDHSAoCJXJgkopWrTeV7DVOGW9GBqi29TcTwzwAyB1+Ud7NFaekykAgEVSCBV2QCmo1juipHw/xnY6e73458BCFCXXK9WwKrfRxAwA6msS+VJfwkkmPJMfUC91CI+LmZyA6jMgJ4A+PLlyz4jwOs0vcDFXOLVDVNlBN1gyWhVY8HHBQ2jZJXAkPdJFyhUep0iuFSmqJtS+khK8pbc+Kx+d/8YeTpnjPEGCIhkY2THJR+3/Q6CdZ/rxQqgSVkdjhnpaFWmyPuS9lLXeTqeDvnh4WE/huisU6bAx0ACXhXoSFm25E9SH86c/ooPEB2dGfA1AwlNi3wgM53nc1tpgFdziRUwSAqReBCleaSZgU+DUqlaT5lKCbwTvZ40SH2AJADQGYEVSrx0SnRKx/4rKLXVQYAbEkYl0skKWHgfM/omAE7OVcTs2ZcvX/aOk+WTZ188yHdg8J6Xl5f9NwuYKZBea5Wz9HolG+BO3h0+91WPjidDynHucuWxBACSMfX/ym6lAOCU5ECLesKImde7zXHZinSvrkmvq6adZHbFfYDb+ETUbdkwt+VVENKBUAcGrjtuY9W2lE3Tlxc9Q6AnLKqpMcra+dRP+l4tFExAoPMh7rcox1UguykzkObPq872jqrKHONHRoBpUjYoAQOPtLxcCoj/XADpi6IqROqGORk4PifqyuMdS/6T3Kr9ChDMjFpFnSHl8RXn30XIpya2kw6YxlXRNJ21Z40q5y3j6Gl+p3Qf9cB1Lcle/a4MQbpGr5Clc3cjLSP0/fv3/euJeb3qFxjQ1+hSCtOjnjT3mtYVVIYvjQ2CmBQw0FgmEODGOZHbH5EHDx9JVaBD+XJBdGVXKj1LGVhmh0R8rE77LI+23NfTzKjyJcnBJ7BAuVTHq/HILICn7bnmxtcQVHqbQArPJd/B8cIvg3KcCDh3OkzbcYy+bn6aYIxDJ75loCTj6oa3G5Bj/OhUXldF8yma0L3kgxkPzw74oHGURyTpL4zokGPitzu+1eF3g3Br6r4b1AmMVP1wKrDgeieeUsTRleFA1JE3oyuS2u/gi7qVgEAqg2NGxkVgxFO1Msyqw6cFXl5eDqYSfCyr/MfHx/HHH3+M+/v7fZbAfwINKRvgWQECB44lRpsOgn0MVk4yGcwZCEh2glGw9k9ByUGmTAxBYhegjXG4MI/2SPfqPLMBvm7AMwPJprNe9susfb7vzt/72AEm+UjAkW2XfjOA4z+33Y57PyRg7PrNcykb4ECg8xddxL/iZ5w2v2egyg54p/KYo1Z3/AlkVJE/66FxFk+MusiHHL6yAXyJkE99iOTsd7vdwXwmXxJxf38/vn//Pv7444/x/fv3g2dGXVF1P6lz8lW7nTxTkO6nXDvHnu5L1zlvq7yegrqUpUeObhxfXl72C/aqdnrULUp967ouHjyrkCIi/WQ0yJNHETJk+va8dPT3338/eB0xP8Dl41q8aLpAqdPv37/vgYGO+7wq9T9NDbjRS22mzFYyYJWRZj93WQdtO3hMAO9U5M5Gzm+3O/yMta5N97McypSZAZ9y4GOn2k/2fRXYcvvl5e3XJF0//F6NA30oy9+WyHcB0K4RSDOY87UB/uIfd9gEAARXSX8dmHrUn9qpNlbUAYGq7hkdNU1AolLoPBveOfotdSf0ruOdsU8gxudS+REitkGdRWNExbm/v3/zowJRUaqBUR2rKMmhkhnLXjGmXeT0s3RKY5qmtQgQPZL2l00loEkd96iRupjaXcm/WjdDZ0kDTEPnQFcLDPVeAens7e1t/PiWA2YH83LoAhgCA/72NE976t8XXEk2HjEmuXIasZJjZfS2jBVtz8DbqchBlOyLwCoDqIrfChBzzp5TDwSgaWpS+wQCyRZX0T3b4WCAjpf1cFs/ggGOFbfn3m6NkQ4IdJmrmV1LIKCaMnOZpDHheu42PQGRVX979IeKvLMdUZNJIk06b93nkRGPV/XxuEcOXo7OMxsgo8nzNH504lI0ZgUcELgxdCCQOpeUoqFO7hrAK1RlYFjmTGE6MMYyu8FxKoMqQydjlqaEXA/4oxNiZKF9RmceiZBSHSKPfpLRrMrS/XQMKYJUtsBftZ3AgE8bSIerx62q+VSuL6ChYzurrJmPf3d2lK87lVTfSlaA5KDoFFTVTyDAgIXOnPJhdmOWIVT5HoTR5jgIVv+wbyp75/qgfR87rvfUR7U5PQ6pez0AcJ6YGUjvz0jjlzqoY7QBSa4JCDnIJ0++7WOmCyz9+KyfSctggAKmkug/OaeUBagGsTfwmOyB7nclldKk7ICnRVU3jZicOhebpA9LzIDAKppMyDtRctBJJmMcfs7Tsx0O0H6GnPfPQMnps9+TvlT7PD7G29SjZxESH+TFyfugGvxcIzDG2y/DeRk0Pg6MKzDgY4NRfrUuhnOr/oIhj/QcDFREu9ORlyuivJMTc8CXgN2piXzQntDxS47pxUFehvbdXiainZnZnKou9rU/zjrG27UOnnpnP9HJK1DzYFDXVUCAwJFANoEAjmnPMpA/B/QiBxBOacz7drInFR1rg5fBgM8hOVFYibk071btrzglN1KqJ9XPNQHdu9qpOGrv4+PjwTEuLEmpUQIBR4Kpk11OPFdFmFsMVAIWleOf1Zf6NylepYynMqwEQqnfaThodBIwmBlDZmG6fkvOLY2HzhjQSAocyAmrPtWRgCGzYzqefiQ69pQJEF+Mahj9ObBJerKifzTCKdKq9M8zmGMcPjbtcvvZx3bfi5ItUWZA8vfMQNJB2uHK3jitBhzVteob8alHY71fPSvgzp02PPWx6vDx7PLzOghyPZvkayF0r6+NcPDo19I/ul1JGQXPGlTjZ4VWr10GA3rRCZGd/rVwRbQ1yvQOmpEj+wqk+KBmelSG0NOi4sMN2uvra0wpCRwwSmIZqY0zOcwG6Vak7pFRBwhm9aX96vpkiE5BNAw0/DrugGCMt1G8KAEmv8YjNY9IE8AYo3/cdBYZ0ClSf9XfvvpbfKanEFwePu/KyJ9AwNcF0AHQyKb2zgwW5deNKzf4LqMEyAgSeW4lG/GR5Dbp4uLHi4A4nvmGSgc+BLvSDZ6fEW1JkmfFt3gXz27zOzCQ+E5jhdkG77sErH2sMBs80x3eK0dPQKaFjQQDLu/KBifAovb5+OGYqIK5VVoGAxrs7PDX1x8vQHGA4I2bzV04EOiiKu5X2QBRFQVywSAjIOdBnaw5V88EeLo0IdAt0c8KHWOgHBCksujEf4URPKVhpVPjv97I10XFSTdSWxwApdRzkq1HITzm6ciqvhSR6H4aqzF+TDEwxcoyHRCMcbia3I2ng+MECPjzds8iU5dVkl+X6ZJsKQ/Pmnj6mc7nlJSAoIMyB37a5ztVtJ/Wbq2Oy2Nk4c6WMte5ZJuSrjPC9vPyRf5kGOtJuqf2J7A60wF31CR9CtlticqrsgT0lT72vR3eJs+Wb+2vTWDAGZCB4UsvEmOprNRoUQcaZojUka4bd4EAXVNFG+KNjt4XSzFlOkvfrDjZKtqm0iRkniKYFQeWgEHi0Z3czHhUQOhUYMAjYOoDdSBFSXTiLi8HfRVgnR3T/WnwV5TAcAI8nP5S2c4vjZrK46JIyYHXcoz4mEi/1YAgtVO8VtkB3l85EZ1nFpNBguuBO4Itmc5fRXSelZMdY+z7XbbZye1Il5HSv8u/ynSl+3WtgKPu8axAahsBOcEAgaXsrwd3DgZ8vOperrdx55rAsu6n7HwcJnkzY+iAxcunDBPoSEDa5aX/1UzBpmkCf4zQO49RBFOk3tBOARMlByiqDLk7S2YGdrvdwTva2cEpxZmiHi4UZIclFN+1qTo+AwMrcqJ8qLQeERAdk2/nYWbIZ9ecCgy4k9SxNGiTjnXlpsFbbc/63I1Ll1HieGPZqQ3USRqTBBKclwQ6qOe+4CoZN5WVxv2KXMQPj810jWWkttFAe/Tm11BvPgM52E6Ro/hfWUjo5BEmHzvsiI6dYPLi4sf3NMYY+4iZ2YxUlnilDacuSQ4MRtOTMC4rPyYZud4mH0Y7V4H3LUA++cdVWumTLeVuepogzTuyo9kpyahSWVfAgBsDR7QdANA+AYobNCktO5apT7XZpwMoi5ReWmlPFTF7m5Ix7hyWZwkSKCDC1jlHuglF+z+3K+CQjPFHU4ou6Ay4jqRD+CvUyUFUAQYHlEneVZ8n8FvpyYrxIqioyAGBg+lkgJO8qvMp6pkZwFQeAQmPVSDbgcAq8PhVlNqbMgP8VcEYMwayYccCHc8G00k6mJSf4OK/qq/GGAe8sf8duEn/qnUuzq/XJ7uX/IbL0v2HymTZKTD0p2ickn52gYAfey+7ummagB3vL9PRNley+ipdOl0ffHxOc0vjkoOcbTsvPiXgQMAfn2Knq6wtWYFZtiABgASCeF86xvq076kqPpdOg5siyQQKKkfTte+jKYGBytG5oaoiWi+/uk7lJOPXOePZvkesKfuVnF2lu6lNMxCn9lSRjhtG3tNNXyVeKh1PZSc+VU6qrwMC1T0fST7OXG+qn8izg7K3Y6xlWFg/sw7OD+tQ2R5Act/rTmVyCoS2S/qpbV846LpYTVEJDKj8qt+THiQbmfyHrvGxUMmtIoIGDzo6e7ZKm146VBm13W53sFjCUXwybA4iOvKGVlkCd/7irVIy5yetA0g/llM5yZ+lCgjwvB9L7eW1JAcFkp2UWP3m17FPZ4bEncUpoytRQv8zWp3SStfR+VZjgU4zgc3UBvazv0QpGQc3PF6vl8852DH6RyErGSawXD1tk9pIXrp0aoqseH8FpPy6KkJOY+qzUAUE/CkDd4xbiPerPwgOSBpXdM7kiwDB+4E2xQGQ35dkQKDifVaBAfHstiqBgUr/yUPlN/w658v1lwCOi3cp9+T/foY2TROwATzuUVQFClKZ3kEUindIKqND7mlwu5FVBxLVqQP5PYIK1W0BAMc4w2T4uk6vZJ2MQWUAueZDclG/eGYnRbpVO04FBtyhpVcQdzp2DG3JAKTpAc9aVWV3jrgymgl8kCSXWfRYjV3KliAoRbReL8s+pi+2jM9kO9zxHcvHryJ3mDrmzodp9GP5J9hzufC9My6/MQ51IQEG8U9H7PUm/fA2u1yof96WpAPkrwIS6ViSk9qvgJL71TQC5UfnrnbQj3KhI+3ve4HVTd8mUOX+T4bYYDkVnXfl6ZCa19sZvdmcFxXFlYlozqcJKkPNctN2x++MqvtSG/1YlUHxsukceZyokz/1I5VcskmDrgIwWyOS9yIOKJ8mqAb/FnIDyDJovFepGmNO1TjyOpPOJ6PU8e1GKBH1KBmoNJarcnl/yvY5sZwOPCXSedfP5Hg/E3EMJqD13jynDEHKTHIM8GVY7h/SvfqveGeAKXJg0umHtt1Oqmzy4Xzx2orS+PK30YqHqo0EAc6f2peyJN4OlrVCm8GAGuINcoTijmeMH88qrxrbWQSsaygkKlnlfIjUmBUgINB1PrBmA2zWthXH0BnT6phPlSSHn4wrt9U/1aOTei6di3tcxh5Neb2nIM6lUx5pfvgYEOcDt0pXi1aNdKUrrh8rYMaNoWcJxHt1/4xv55Uy3QoCq/pTe2kHHMh4WVV2wwGJR9bVvackByp0sO5ofuW4c90Z4y2grCjp8dYyGOitUAKfKwspK5CRgiEHA8zy+dozL5/jxR+J5pQt13o5D54FXrVpy2CAaKxC3q+v9Yss3In44N0SWTs6VNmcnlA9fh87itMBBAZbQMCWiLKLbDrqFrO4gfTod4xDEOZv4PMPN40x9k9O6M2K+h7DxcW/Xs+swUclr2RC3k5lUH2aoJpjSwNbx1P0LOJcJetjpNH1uWcUaBSSk+PPH6WqDKr4SfqcABKzJz6NUoENAnK3AQ5GGCmmf/KWgJu3kfXNgAjl4XaNzoXnTpXVSvJOMnObJsfjT3il6HfL2PSInvIfIy9W9CxTaqPzVF1DGfA/0UqGiOV2fZz4r8YCx1na7srhtImcPvlywFdlJVUHp/tmtAkMeAeTGe8cV9Ix3n4TO80Xidwo+DVpHqqaL/Jy03yOz+2kNpE6NJvq/FmqHKxH9snJj3G4yEyPgfIztldXV+Pq6mqvPPw0LT/RfHFxsf8mA3lhP382otP0KQJ/FXVyOJ1R6aIFX/3Me90Buf5qm2+MczDgjpJtY9+rHtVBR+xjsQIC1dSSt8PHkepR3YqMyAvLc6Po7e14kMydqJfJjrhDS/d9Ft12eYvU5yvENxEmB1IFU9WxirppALdPHINsl09N6N9/vC/Z7ZmPqc477yma574Hka57le1I4DWtEeC49fp9OqFqV0WbwAAZoZHztKgbUu373E6aN6pohioTOHAicKkWeKT6HLBUUVIXMf0MIHh5OXy1KOtNQIAO3h0gv9FwfX29BwG3t7fj5uZmz6vAwPfv38cff/wx/vjjjzdOgu9e6CIx8Xkqg6pB5avufSFh1ZcJzZP8PtcDd8puKFK6j/LyN8ypTO/X5MwrI+YgRWXq/pRxWAHajEoFAsQ//9VejyTJo2csKj5mRl/ld4GHAxfqMzMEpyR3ktQRbbstS1krn2/mvU7ubBy0baVkO336ODk4v98Bgm+7TiQdofP2tvv1K2Ag3b8lO5Fk4/6DQGDGN8tcoU1gYIzDlyxUgyWhtoo6B5HS/H5uy+B34+vTBlSaLSmtLQOk6yy/PykhB7c7AgEBOnm9TEcDTlmB6+vr/XW3t7d7MHB1dbU3DAIC//znP/fleATJ71JsjaA/ijjoK50k0vbz1T3sn6TzqjcZKTkd1z/dx1fJutEf49Bxs2/SR5d4H2XBcesRWvq6Z9VON1QCr9p2B6T2cHwmQOVOoQMDaewkSkFDda/KTbp9Sup0iGAg2RqCsC59nOQys3PJQc8oZeUqSvqcfEQFClaoyrxU8pyBge4cAecYhwF38luyC8yqVTbkGNoMBkgueFHXodWcU3XtMecqchSYgEACAxWPK0rPAZiM1ioxO5DqYNpfTl7/PnWga25ubsbNzc0bMCBD8f3794NjHjlq2oBvZkwOQrQlxfie5FGwO3FRGtyeESN59FoBAufF9YHAmkCLg931h/3Ae1g/eR/j7bw69X0F0KY2sr8dbFWgKzmtdG0n287uOA+ShZyn81aBv1MC2IoS4N6SvXC5cJEaHVNlbzog4OBtJr/VMZPqSddynHCaiudn5XO88B5td2W4Ts0CSrVH45Lblf+RvdD2bD3AFnCwDAY4f+GUjKT+O+S0KjC/byvRGPo+QUACA26EK8O11Xh05awSnZEcvTICNzc3B2CAP57/+vXruLu7Gzc3N+Pr16/j+vp6r5QOBpwcifI1pz5YaYg/mvxFN8lAJIC6YtDcEK8YQG5LLmnKzA2bn/MsAAEA62J7xLOOe8bBZVG1wfXdt71Nci4OdhygV+ROwPnRNcx6jDEOFtF1tsYB12cDA5WDEnHqVv/Pz89vPi/v5CCgmuqrdMIBWyp7RY6dvLuslI6PMd7oUeVc35tYfmpDqtuDpLQGgOWLONXOICIFulv1d9OjhRQ6mUwd0yH9ilJk6eePobSIo/slnladt+9XKcxO+ZMMk7MiuvcpAk4DaGpAWQFNDdzd3Y27u7s9IPj69eu4vb09AAMCB5SdGx7ypWkD51XG6dTkQKBKUybnUxlKL7tzrJ5Nk0NOU22eReA5Gdr0G2McLM7yMjrj6JFz+p85So/cpKP8eI1k//r6+mZNRHJ83jfkSbpIx0bgMXOkqX2UR5UB/Sjy/kv92GU43a4RqPl6L52fUaUnOucOfBUUJEq6V4GPMX4AT75JNfmVLWOb97hOdmNi5scSyN8aKLotZju2TB1seh2xGHLkXw2WlTmkClXNgMEqrU4nrNZRIdMZqtsCKvx8ivw4p0snTyCgqN6fHri6ujoAAt++fRvfvn3bgwFlgW5vb/dgoDIQrg/8AArpM4CBysGNcTgnTUfqOskPreg8ZaCy3CHq/s4R06EReCWg0IGBFeNUZb68TdQ5N+oV0GFGgJGM6vVpOkY3KofyogxT5sN54eNYbF8C++Tdy2Kdp9ZdkTsS18/kGHTMP2ct4vhNdijJo+qDat91NukbaTZF5GVwrKjd3o5ke3mu8mVprFTgkbzPFvcl5+0+z+uULnoGKAVnW/3m5mmCLp3Jxvh2R52BnN3n5OWsID43kOl8NYgqo7vCa3c+DTg3+MoGcGpA8/9cA0AwILAgIPD169fx22+/7bfv7u72n3d+fHzcl8NFifxp2uHh4WE8Pz/v/914vry8HDyOeApiPyedcwe76kzdyM2csQ9Yzme7o0zGnf2fePb6u5RhAi2z/zHyu0I8QPDMBD9YVmWZfFEU+SS/3GcGRcYypU89YiY5r0lOp6Tk+H2f/972BOYJAvz4GG/7OO3znko/qKd+bbqPPDgA0DUJDOx2P55YYdtSJqUCBV1w6+DUr/E1Fj5l6vq36vdWfczP0k9NExABVcyupJx8XmfmnEVbAQSNUEqfpXK3ABpSBUJWyqscERVRA0JoX06fjloZgouLi3F9fb2fRtBaAQIAgYK7u7uDRYTKHHA64e7ubj/N8PXr1/GPf/xjfP/+ff8ugoeHhwPEKiQ7m7/8VeQpU5GipdUUZsru0Nh5xJIiZ90jojPzbFi6nlGCg0Q3uCvUgQTWKf5Vjy9upCx4Ljl2tc0zix7Bu0zIVwVQyKsDBcqU7fI2ukyOCVTei7Y4ATr/MX6sl0i2zh3lKi+u707J4VflpHu9rx0I+Fc51W5vVwK5lS6JCChXM8pVuz3r5Xzof9XnJV1lv9LWOq3q0E9PE7CjvPIZE5UzTlSh21k9Xfqnuj6hxmOQWZUu6q6vZFdFg4z29XSAfh7N65rb29sDEKDpAR2/vr4+eEHUw8PD+Pbt2/jb3/42/v73v4+///3v429/+9v4r//6r/Hf//3f43/+53/G77//Pv7xj3+M33//fVxeXo6np6f9ewi+fPmyf4PhKcidivqTj7/xPQ4u4wrBcyw4IHBKC5mSkeCvMkrJ4HYGujrWjT3KSzz4t0a6jAPrrQysZE9j5lF8yjR4m+gA6Qh43EGKAwPRLCP0GchBo/+7PLoMgQM4P+fOn1MNVX/wXm47WPb2EGxukUUX2Hk7U2bAAaja5lm6VGYKCrxM6qLzy4xY18YEZh3MORDY6n+ODtU6hLXqdNM+EbpTBwi20kqGYLUcEdt9LLLceo8GaEoTK3NwcXGxBwNaB+CLC33Aa6rg9fV17yh1Pcvn+wxkKL5//z4eHh7G4+PjHhScMjPgL1lhSpiDklFUMmQsg9t8z0PqR3eayeB42byP16XI38FEVZ5fkyITv5ftZzscfMxkVLWX5aVMCMmnHhKxPDeiCWCn9Qmkn7EN70HuUGbXpns9C1M5cQcYfo7OjqCgs/cJpHqUSxn72g3XkfT5Yx/H+lVyIa34Kuo/76EsqqmLNAVTgQMS63LgUK0ZqPheBVdHv3RIx7rBVKVJRS6sDghUZXiq0svnPUnw3nldZDUT6ixSIk8rEZXI54TlrJUZkCPm1ACdPdcQ8F+PFFZPHtARffnyZTw+Ph6AC2USfI0Cpw30OuMVY/arKEVNPr/nTq1KWZJStobnxnj7MiPPEAiAVE5Lg76LmFw/2d5VYF5FyRUw8rK7aQrXXdbJsrjNDATlSZ6dV8ouRXtjvH28OGUNk7PaCu7fm6gjnQ0hv5wmYBkVpX5N9VRTUTPQWrWnAoj+kR6fmnL/M8ZhtonOdmZ/urH1M3bLZeo6WQEYEq/1D+pVYF51b5ny2BSqJRTv50QdEPAB9jMDzpWvqnOFtna8d7Kjx1RW1WlUdB1L93Gw8KNDac0A3yfAqQPtdxmCMQ5BiLIMdJZ8sRHfgsdvHhBUnHJFNp3Pbnf4aVUakAowpH7xPvPFQvqvonGVMUYeU1W0kNpG3jodTIaoKrt6DbLKTuBAwGVl7jhRSqV2bed9VTvTcW+7TzPwehngz0YJtLjcXJ60NaRqKrWaunSwp2MzEEAA6D6hqieBTtXlba4Cv8rudjLkMfLo/6kN3fh3wOL2x/n1qQEu0K6yAuyH1W9WHPUJY3ZaMmJkpDJGHRDwe1aMyWywVsbBaTX6mvFVKWHFgwbpGG9RdYpk+d6A9OigZwn85+l9Dnr2ifrYH0va7XZxioBA4ffffz9IoZ0KDCRgxSgrgQFdV4EzUXIe1HsvU/ekcljGCs2uS6DAHcWsPB4jiBL5+gqP9nWfG/XK+LOuLcC8I/VxBYLY90lHV23Hr6BZpoPXJECg9nGVPW3Nav2eBfPjutb59ePkc4y331gQuQ1MDth9TwciEyh1570CBjq585rUBwkIpGPkT//UV66v8fPkbev6i6MncTnwVzIFY8yBQDXg3CD9DHlZbuyrutxwVf+rdc+cDCnN5zsA8KcF0qOAPEfgQGcu3tw4qn59R7taL6Dj//u//7uvQwP7lJkBNyrp3LE0c2xOs4U9ib9kJJLTnZVV8ZEMNv/9GIEqbQF/XLOSFqe5HWA9Pp1SGWSWx/tUvnhNKeXKAThPBBKnJufTQULXJt2/qu/VOqYqcndQ0MnMdc7/k112UFk5/gowsQxvR+KvAgXOI4M4v57pfwekCTD4vd4urhvgOVICbCu0eZrA54V8Oy3woWB9u2qQ15sMUUdpEKwYls5RdMqbUGfH1wx8JB4ICPxFQ5oSqKYLdDyBgPR4HeXlL46Rw+fLeZ6fn8fj4+MeKPgng8f4vJ+Bnelfp3t0aquAwCMbyjZFOm4AK75ct2bGWcfSdAjbxHHr96fx4XP32mY9/lpVN/RVliH1lbffZSiDrPSqtpMhTmlmnv+zUKeLLi+3xVtBZaUHBCosu8oCJL5Zjjs318muj3wMVcDXHa3rgOxkklPl4B0YzH7OUwcSNI5oSyi76kVTiZbBQDIEiaoOcWGwzMoYVwbAjV5Xhp+rAEDXvmTY0vmOujZ0gECd647c5+vTB2uIEHkurQXwX5Vi8iiP2YnLy8s3axF8PcGpiIYopTZdVjpXlePnuX6g0ksvW8CJxHlQlcuyEqhNZXVt6IwiHbfGbIrGKpn4cWYPPTM0A+NpHrsDBTqv+2g8BQQEBjxVS546kPDRlPRx1Ra7LFN5Hbgkcfy48ydgTWBuZh+pF5X94/jsXl89a3uqQ8eo+5xWcV66sjzdT11zMMrzPlXpDp9tddsg2+MZZF/UO6NlMMB0oDM1Q84cdAl5k1ZRjMqYHUuAowMOqyBgxmcCGN5eIkyvg6iOUwF8V4CeCNBKfmUG0lMBaQAToFX94FGrH9fjgi8vL+Pr168HDsDbfkowMMbb+UkaFg4m0sq8WxUV8ZyDjnR/ikJ1TI9nqh0r48b7nDqZom0/7zxwDLMvu3H48tJ/bTPJiLbBddazMB2ffoy/FP2J31TGZ3gdcee4kz3Vtvqqyv556jndQ8fOvkngmFOGXk9qU+cHVD6/a7ECdLlNoM5zLiseY6RNvjm+UzBQgQC1X9nTNKYqINDJz9tKG6NAb5WOXjOQmKscbprn6CKczvgmpZmBgqRsiVaAwBawskJeJgFAWp3PjABT/xyAlfOXEXx6ejoYKDpOxfR3D+j6hOL1NMPd3d2eB76qmFmDU1LXf5RPRV3KzVc5e5TkUyYpUhMfzo+A1MvLyx4U0HhU7Vk97oaXYzBFeBUQSJGgoqwq2kx2oDPaaX0Sy+K+O39GZZUMK+N76mkCdxgVcBNVoDSVmcogcCYI0Lkx3r4bosqOpfoTAEvXsx2st7L7ySmyTm6zDAdUlHUFWLydDgRoT6l3Scc8Y+4grWsrbYkDsST7ijZNEyTFccG5YHid/pMRSEAg7Se+0rkKRVf03k6+AkZd/VJezrcTCPARQWYDUkreo02BAKJ1ggMHA3zKgE5MA9O/QCe+r6+v94ZX5aZvFXwk+ceTPGLRdtJZlyUHoBsqoXDvQ07FcD+l8Tg26MD0Aie+6pkRR0XJSXbk8qBhosGiLBkVyRnIiZC/5BDcpiQg4DbAAUEKPJJhdyCQ2pOAwEzGv5LcaflxbR8T/PD6lbolAz3zP8bbheTs+5Qx4ILkLTyKqkxdyjKRpJszkMJ62EaCML+PQGWMt0DUQanrXRoHSd+cVwYWtNFb1gmQNq8ZcMZX0hjVuSrN5NvvQZXirSjWe1JqMx2MPzJ4cXHx5rPEnC7wXwUK6PglDyqoK7v2+VKcFP2yb8X/9fX1QfnSk18hzxUSv0ThOu7OQscrXaTzp3zd6XOBJbM3fGGUzvuLeAgEHh8f98BLg1ygjkaoipb5P6MUrSX5JPnOyk3RpNc5c2LUTd5PfllfisjcOFeAkMdPpbep7ipC5T+3KQOCV8pI13mbE/BTIKD9BGT5ueq0JsbLTf2q48mpVy8MUxnH9tcs8Kz8gutvejHQ09NT6y+r4HVlPNAO+euitwCuTWsGyGCV0khUCZbI82cccDU4qrorSg7gGL5mRjilwOgYuNqfUwP+FkEu1uteHkRn7IbAX6jiES+jVzokH8CKBvjKYQcDpyJG355qTORRJe/1xUjaJgjwxZ3en/5SJpZP0Pb09DTu7+/H09PT/g2Q7Jcxxr7/vD9mY6BzMskhSmaVrviai5TKpYNJBm+FTx2TU/LINWUFUn2ewp3RMVHse5A7RO+T1O/eftcF7qe2u87LAad3TOjHLJWD72qtUDePv2pvaav8eEWVv0lyTfsVeKGzZ5DFqT2fDkh183yVVeNYc1vt5fySBYTO6Bg/5pD9vC8862il41eBxs86f24fAwhWkJzvu8P1pwbk9NNrhTlNkIDAGD/kL6WU43p+fj749vsY4yBqlWMXT76OgIaGKWK9i4DKL2R8Cqq+b+8DiAY09bnPh7K/vnz5ss/MpG9A8Jz+03sYlA14fHwcDw8P45///Od4fHwcl5eX4/7+ft83Dw8Pe74YeWif51LElfrCQUC6xqeLaIh9f9bfs7HSGWzan+QwEzD4GdtwyqwWdTW1pXKIHJMeiTLFnDIAY/yQsYAXnbdnDlLmh68Qdh2pnF8V2butTHqX2pBkmWQmnlJ2ZOa/kg9yPa2yUc7f6+vhh/VSIKL2URbpA1LiezUQ++nMABuaridtGZCVUszu6fZFK6hvKxDoIrIu4nHH4u8P4BQAwQCnBNJiQleWMQ5XSrty6vqnp6e981QfpHluRmeJ5CSvr6/H09PTfs77FMQvMKZBqnZIP+mcKccuivEMDr/94P1GAKdPTI8x9nLS9xy+f/8+rq+vxx9//PGmPxWFdMYqjdWOXD5JVl2U0WVaOuqMf1VeNdar6QJ/PIvn6YTc7pwKBDg5EPDoNoGzjlwnVuxyAhMaPzznLypLeuOOTf3U8Z5AhfZn8+TJnjvQ9/rpmFNGpQLVCYS6riVZiq9VkMzMjAc1LHvV7i6DAc1T+jyTKk+pj8Rctc3rO+oc/rGRZwUGVoxCV38CA0mZORDkfP1tgnQi/tjgGD8Ama8JcL7p4FUGo2Z+9MiRLJ1fImYAfAEheftoUjseHx8PHAMRNQeUDzBdR5lxSkDHn56extXV1b7ei4uLPaDTJ6MJENSnMvQCAt+/fx/fv3/fZ1g0TUAZ6/f4+Dju7+/H/f19NDwr0f5sfKbI0Z0PZcOoU1Q5/Eqn0jhxoKL2ccEq933KxdcOcE6XsvLsxxjjZLr7/Pw8Hh4e3vDuNiUFE9oW8PS+mQV0Y9RBWYpK2f98KsqnFlkG61d9Xj/Jx6PzkHglwGcZVSTN+wgo/RoHmxqrnBbQ9sPDw94ursiX5TIjSfDD9Udp2nOr7u5ej/WgZzrTmc50pjOd6f8EnfYtMGc605nOdKYznenkdAYDZzrTmc50pjP9xekMBs50pjOd6Uxn+ovTGQyc6UxnOtOZzvQXpzMYONOZznSmM53pL05nMHCmM53pTGc601+czmDgTGc605nOdKa/OJ3BwJnOdKYznelMf3E6g4EznelMZzrTmf7i9P8BMESXsTCh9oAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrjElEQVR4nO1d23bbSJJM3WW73T37sv//cbvPO7Nu27prH2aDDoYisgoUZVES4hwegiBQ16zMyKxC4ejx8fGxVqxYsWLFihUfFsevXYAVK1asWLFixetiJQMrVqxYsWLFB8dKBlasWLFixYoPjpUMrFixYsWKFR8cKxlYsWLFihUrPjhWMrBixYoVK1Z8cKxkYMWKFStWrPjgWMnAihUrVqxY8cFxOnvh0dHRS5bjt4LrcnR0tPmtx+mepXnM/q/l0mNXVvc5Pj621zk8Pj4W9p3CsZ6brWv3jc9//dd/DdPbN/7zP//Tntd6dxj11yy6/uPz3XFVPeljrsvDw8PW8cPDw+ZY+3i2v1mu+BvH+O3aJeXnypPaSfPWfLp6cbpd/VLeOP7v//5ve+9L4j3o3U4fsPykMZGuYbA8qczz7yTv733vvZn6TZOB94THx8cnigS/9b+q/RMB5KPX8jlXjpl8E9HRsmn+rjyjss9e/9pw/a3fTinsu27arzpAExnkcuM8DL5DMoRduTh9V65EYlz5RnnOlGvUZy69XZT9TJt396/o0ZFfJpMjUuDIA8ORgfv7+617O/LJ6XxUfEgyULWtuBwR2NUY71IOvVfLpmXpWPRsfqnsLi/1rHb1kg9hoGkZZrzHZCA7QqfX4r8Z+XKkcLbtuuu6/EZkeNaLS+kvISddXVI/7RLp6H53966YQyICTABOTk6eRJhmyQD3WSIC9/f3W2XCNXpul7H23vBhyYBixsj9DnLwHHSKOdUvGbldSdGMwTkEzHgFSwz7KK9E9vZR7hGcF6X/dfKfFPkMCej+67wz17ZoM9eesySA66zHS8q/Yhk0GsCfRAj4PidzPGUEo98Rgaqn0UAlBx+ZEHxoMpA8b4d9GMSXhDM2OMb/I+XMaTmvd+a+dM1bGmCuLZ4bPUrRHkdAlqSf2p+VqeaVZEWhCjmFdDVNLVfy2vV/vm826uKUu7vWlXOGHL8VmT00pKiAGveTk5NpMpAIAa5LJJdlSdfTIA0X/fxoff+hyYBixrCNMIoupPx2SdNFAvYlyEkJO5Ixg0MbWKmNknF+jpHu8tN8lpCOjkggT86787b1mhllnIhAB0cMOm++6w+Xpt631PN3aaRrV8zBkcru42SwanshoZICRAJOTk42+T4+Pm79ZqA/XVSAjz9Sv394MjCKDrjzTqny+dG5XdNxxr+ri2O7S+CUfVKyM4r8LUEjKp2MpHtnziWiMUM8UvumKID7X8/zcYoMzEQFkMfsp6uPS9e1Q9fGo3T1/pUI7I4uKqBPojgioDpOCYKbojo6OqqTk5MtQjCKRgEgBDpuPhoh+PBkwKGLEDjPK6G7l/NZQgoSOiKg+Y3S7rz/2bIemjLdtQwdGdwlKpJIGpMAPl4agdAyjoxh6kenyN0n5d3J3y5kYFauXV26azXvVJZDkOG3gC6ilB5NdVEBhP85rYTj4+N6eHjYpPnw8LAJ/TsicHR09GQRIe4HPmJ/r2SgniqapR70CLNKc1/5jhSZU6pLyzijaPmcG5S/C6N+nQkNLomsdN6EK8tsBCcRrq5dO0/aXeu8/hkiACWc4AgAVoCP6jAzLvWaEWFzxETPr5iHiyolQtA9Uli1HQnQtNOaAb2W81T9lZ4mcDL8kaIDKxn4f6gSHoVRR3DKyKW/D0EbCWxnDFwUoPOGR8YqGdLXHEyzebswIe7XvpuJCu1KLp8TIZpNu+uTZPiThwaFPCIEnO+sR85lGvVjIjD8n+adohRc3hU9HAFTAsCLBHnhIF9T9XRKgNE9wZKiA1W5D5kEVD2NDuh1710WVjJg0Cn7WUPgvvWapHhmDO8sRko25ZnyTiRB7+3y+t1YEkbuogRL+2em/Vz5ZomGIyyJxI7C8V0EYNbbXoJklLvrXZndsdanyz9FKFZSMIZrfyYB+AYR0G83NbCECIyeJOB0MT6UqFRtr9NRQqv68D3LwUoGBPswwFV9ZGAkUPsqg0v3OXmqEXQK+BAHS2cg07kZUqOkaZYYLCFQXTqzcIQmpf0cIpCiAjOGviMqTtHjfDJIWi9NJ0UEUlsdoly/FhLxqnq64j8RALd+YCkRmNFXGiVQPD4+bv2n0QFHNJbKwqzef22sZGDPmFVOI0/O3Ydz+4oW7IrZ/A9F+JPRT4PeHbuISRdFSb87Q+XKuaSvXTlmSZ4z+rNEYLRWwB13/3deedfWrk9de3REYI0IeKS+74iAmyJIUYElSIZ9pg5ddIDTRcRIySfS4d+jPN3xIcrVSgb2iFlFqkQgGRROSxXbDOnQ/HA885+Wb5TuIWPkDevvFB2Y7TfXH04mXLozUSM+nole6H1aTi5fkrOlBDCVrYvGjK4dRVFcu3ZlGxGBLq2PhI4I8LEjAqOdBqvmvPwOMNw4dqSSx2oiE0xqdf2B5sdpJnR12iXC8NJYycBCjAaGKn3nfXYeJl/rjExnYJZ6kVwmrZsjCaP0D024gc4Qaph/NNAdIXBInnYih4kQjPrE1a8jaSMPL5GC2b7tDC7y6dpwRAy6kK3LT9Po3ty4Yh5OrjtCACLA/3ey3ekafnQQv3GfEgM25Jym2zPDyb2LDszoiRldfGiEYCUDe8ASTzApQxfi5HQSC+/y0jwd3MBLA3PGq1PFmgzbayAN2pHH6dJZogQSEVASMuNxqFGcLXNHYDqi0pWhO9/JAefb5THqEyXWbAzcSnL+vyMDbrx+VCR5xveIBKQ1Ag7JQeH+xL3OW9e+ddECHXMdEWB07y94jowcknytZGCATlBmjHcSsBETdmkkYuDu4XMzwtYZiu4eZc1LjdTvwJKyqGfr0nDkzaH7vyMELt8UpUhpj+TVlQPK2pVraXlSO7o0Ux2csXd58n/w5FjRc3mUCLi6zPTtR0XSSWlagN89kHSYGnYXxuf3CDjnhQ0/XlCUZE91FqYC8IIjrqcrg+adrn9rWMmAYIYlJiXrDHWXRqd0OjKgZeiUfJe3Ktvu+o7UpHO7erH7RmdE8OkM3q7GwkVV1KNgjDymDjMyyOVx13TylYznEpLiypvQyabrj3S/uy5FBLqyrOgjoB0p6JwZh0QOjo6ebhgEpKgP/hvpzqTbWE8qidCx/daxkoFJJKHpBoi7znk7yZgnBa+YMeZ8vER4Zw0WyqHHswr3JaFhwlFUBufdsSoEd57TnTWMThZGYcik1Dpi0OU/o6hn0BGgJWm4fuqUsCr/RBIcsVGC9h6V/VJ0RjORgEQInrNIkKMCWi6O+OA7EVfNXzcb4i2M9beWhdPeRb4PESsZGCAxyvR7Rvniv84ouXxdOTrv05VPvcMZozVjJJzx70KxvxPdJiJV815quh/nGY7wdQbd3Z/SdmVOJGBUt0QcWFFqObkuMwq+I6upbqN8tE9G0Rtn/PcR4fiIcERAScHSdQIzWLrdtRIBlgnd7AiEwJGCEVl+L3KykoEGnSelvzsSkDxzVbAj498pXqc8ZxTtjDJfUg4ujx6/1qBJhmLWe3ftOuvljIiAM3Z6vcsreW2uj0aklL9VcbutWhPRZHC9Hx8frUfF93VkyqWZZH3WwCcysKRvPxpSnysRcERhF4wIHl/jSID270ifO0LdkQFHNp5bx9fESgb+H6o8ZwU4Kd2RAlZBSsrdfS8xbjOGIA2y5yrFQ4kMJKOw1MNVAzXyeN11KZKT8kv5JHmdJWzuOrfTG+qs3tOSsmM1uEYZUhukc7t4ZYkczJKHFV7WHBFQUqDeN5Ce23dwus79Vl3jDDV7+25XwkTYHRkYRQZncGjytpIBwhISgOv5W4/d79F1M0rdkYLnCJZLb1S+JXhtQpDydYa5ap7IOe91Jo1UvllZ4XOdvIyMaUcENCKgJCDN46qX/vDwUCcnJ1tzuo4YdKRAr0ukbGT4+bgbO4empF8Ds+RYowBddGBJu450RtenGuXRKBUTAk7DkQhXT/5vFB14S7K0koHazcDpvU5QltzbpeEUZAo/j0Jrs4Zu5vq3ghnPY8ZwJqO9hBB07enSH6UxGxGYJQIa1j05OdmUjacKlDi7l8ao4Qf4/JIx45R7Rwhw3n13xyvGcB5zRwxwz0w7z/bZ7PUqM0xwcY1+uno6+Utle0v48GQgsT9Vduk+PV6ap+bt/k9QBfjWhfGl8JLtov3Wyc8SmdnFqO+b1Crc+oE0tYD/lOA4j8qRhjSd4pS7ovMUNe8lIeqPjCRnHSEYQQ1v8vZn+mgJyXDXO0KQ0uzkT8/NEqBDwIcnAyMkRfec9DRdN4hm85kNo80al5SOemDumpmB9BpYWhaNAqRjvUe96xm52ZUUzNzLmOnH7gUwfB9f5yIK6nEdHf0Kyd7f329NGwAuWtD1QRcF4ONkVN5yOPc10RFf994B9Zx5cyA+n87Nlofv68YFy6Tm5/SXixQsiUy9JXxoMjCKCnRsWM8lsMDMEIEZVp1C2+7YeWL8n7t2lGfnjY3OvQZS3d01yfjrfap01CimV7KO2mQJ8XQGfpTfSFkyXIi/6ul6AYZrE77v5ORks9NbIsEjWesw8i53MTiHIseHhhldCSTDy/+NdMgu5Jfv66IQjgCMyjjjNLjfh4oPSwacop4lASPMeuIzJKRLd0lozBkxl96sAUrn34LQV2Uls5QU8LGLDHB/Jo9kBp1CWap4kmcDYw24BVb6Zjf36JiuHAepABHQV8WijbRcuyrU5NnNGp0VHp1edKSu6ul00KyhTXkngr3U4KbI0YhAjrAP+X0tfEgy0HnqfE0iDO5bMSIEIyLgPFc1UF2+nUeYjrs0Z/DcgfRa6DxqZzRxbqS8HLkb9U+SG3f9rtB8lAQsAcL6KQ0QAf7mttWPk/NRpEANTBcFeEtyeahwerPTXVVP3yyofTXKL+lqlomUZvo9IgKaliur09NvFR+ODCQikJT3DCEAOk97RABGg0nrkIQuMdPZ9liCfRqol8RMxAPXVfVehyMHM/UeGabkGXfKZklUQdNIxLJrKzff68rrnuHuvMrZ8o9IgdZRy7oSgXnMjpmkLwGNJC0hA8lB6wiBnlNZX0oElpAWzfutRQc+HBmomiMCyfjPeNFLBtFziEDyIDsPc1QfFdg0mPTYndvFcL0UZli9XuuiAXzN6OPy7rxXLldH6Lp21X53CsldNyu3Ll+ODkCmuq1jZ+vSlX0JniuTuxDl94qks9RAO/lKY8T1e8qTSaZORzEBGI0RLpOWcaYNFOogvEVC8KHIgCrJkUGe8WacgkqKdTSIRsZJ03L5zAjbKH9n+Nx3KtvsNa+NjlTp/zPKjY0i7tN7+F7Na1djvESBLclHFxCmBYWcLp4WcG1V9cs75HK79hgR2ufK1JL7D1V+fzdG+lOvUcI4QwRwzukkHHc7ZXa7G44IuvvP1b/Tx3o88/tQ8GHIwCgakIhAGgAu/Y7hdiyaz1fNK3o3GJJAzrQDIxmsjhg4vCVSUDWOtvB1SgQAzIu7jXhmvaGl5e76XQ1rZ2T1PD/u1yk0jgroIkH8P0MCurJwXZ0X1uFQZe9Q0TkMIx3KSNEA/JfyTvnh8cUqHxnAMdJPjk2XfyrTyHngdDvioOkdCj4MGaiaE+SRAU+GE9epot1lII0ExSlm918iA0sYPZ9TwvEeFfCSAY9vNpYcFUhGNxnrdG6URjp23sqI/DowIdDogJOboyM/TbDE+3LQ9pglAiuej11IAL6dU4E0Z/LSVyNX1ZPoE0goyyjL/BJC4MberpG7VIZDxIcgA844P4cIdMI/EvClaSYhmhFMvWYJuWHD1g2oQxfwXaGD37F9Jkf87D0voJtVIkkGND++fhQFGuWBY1a2QLeHgG4OxGkkoI1cKNeVzd2v7a/3J6OTfq/wcHpCf4+cCacvkrw6YuoIgdvUiNOAXHI+M4SgawOHEclPbeHqfUgy+e7JgAoYH+9KBEZGIuXh8unIAKc/q+zxnQbbTJ5831thtb8LXbidFZ6uqHdt3cneDFI59JpOhtWIp3T0rYVdforZ6QBMrzjF7cjPjHyucrsMSU7VMOux3juaCkoEQPOrqq2IgJ4HuvdcLNFfSc5G6OzAkijva+Jdk4HO+Lvr9B4+B8Hn/5ySGpWF00u/FUsEmcs1Qzzc3K4bEEvgBsV7BhSeKg+nSDrS6a7p7ktl0bQ5D0cEVKm7fB4fH7emCJaQloQZQpqMvSMCSVY/ihzuE4lAasi+06vdlGInl04+q7anBlheXdpurYuWcTRVNRMd1HtcG+D/kSy/Nt4tGeiM+si7GV2fGOMoMrCEBKTBhe8lxEPLo6TGlX9XuLxnyNJHgJMDJ6futzuv8pjSSQo9Kd2OGJycnDyRk9nHCDW9LtzaKU+XxqEo1LeMTmey8XdEoNNlIyLA8uYiDTPyCbg1LXxvRyr1f0cKRlMEu+IQ5PfdkoGqPgQ1e78TWGWLem7pbxbyqjnl2s1PabqdIZjNR9Ep83Tte4Crr2tzHKcP/8/Xz4TTXf915IGvd95Vp4hTmlxOJggzsuvWHCg6L6q7JrXhkvniFZlEOlKgcrRk/Yq+y0N1YSIGKU3Wi27ha3o7ZtKnLt1u2mNmPUuXxmvK5rskA51Cdte40KozpOyBqECmkPASYwAkZTlScq5ss0RAQ3pJeSpDdv+58r22oD8XqU31nP7vFGpKA+fdfDmXQfMalXlJJGCWJKbrRoQ2jUFgiYy49t53dOujIMmYIwL6mSG1nV4CQe30U4pmjuqBe92W2I+P/b4Es0Zc858lQx2pcOV5abw7MjCjkGcG++h+nicGEqmYUebumXRXJjfI3H+ujrN1T/N8riwzg/Mtk4AOydjPnEuy2PW9IxwMtwVwIgB8Dte6NBJUibI8pPUFTHL57YVcd/zG+JqZ190XPiIJcFAZS9GAtGZAnYoU3eE0EiEYRYYcnJzxOzGYCPB5xuxc/6iMLq0lmJXJfYyDd0UGdiUCOkcJJMF3XrOmm1iwG0AuJKbRgV1Cn5oe1wvodpTr0p2dIkhte+joyNTMx4U/HSngvEbEzsmNpgGMDL27b2YKCeXScKu2EwhB1fZKbxe67RQu56npuzbR/1fMY6Q/lRQkIjBD4iAbx8fHdXp6uqVncd1o6mmmn0EIYPxPTk42jx/ift4dEXUYpb0PGdunnM6QpBHeFRmoGofmGV04Ng0CdCB/+NlWV5aUZtX4+eyEZKy7tHgQA51Sxz2J8IzKxve/ZQWdiAG+n/PRNEdEoKr38pcad1zn8lC4vQXcy4u0zZTYdoTgOZiVT5fXLmPwvUCJFL6Xyq/q00QKcO/JyUmdnJxs9KvbSIi/R+SA71Mi6sYWdPfR0VG7XbLTgfuaPngJvejKOIN3QwY6o8/XACPWp2ExFlSdbxrlOSIC3aDq4MiMm6rQb80PCnnE5jWvVJZdhfGtYN9EQOfZO1LQzf/Prrp2hrAjGlzOh4eHaePNabB3xv//Lhlx7fle5XOf6GRXdY4a/1kHiaMDKnusa/k+lSVOn/WTRkGRH9Ll692mWI5AODsyIpPdVMFLyeJSPfwuyIB2xAyLTemo0QZ7VTKgL6VRD8kJ/azSXQplsc7Yg4m7tloiiIkEdIKnA/QtopMj/a8jYKlvcFxVlmSOFgHynGsXdUpKVEmFiwxwX/P7B9z6gdHvtEg2ycpMdGk17vvBDIEFXDRAz2uaqlc5OsAyy3qWCQCPAd35E3lxvgDklQkGyyHLnkYJuqjBEiQ5dgRjX5gt45snA8ngLhFgFR4WWBZcDT1pp3XbrOpgmF2o1c2/dXB58jfSHj3iNZNP8rjS8XtAarORPPI1aqyVFGi6IyKgilXlX6e1lLjqGhkuC8+zQmbu7u626uSUo44ZXTioxIDTmPHknfHZRc5Giv09ya6DI6tL2yORASdfOMcyy4S26tcuns54OxKQdGqyAezI8YcjpW7McH6JXKf2mtGDnWP1knizZCB5X53yrcpKwxlrhK9OT0+3yMDj42Pd399bJppe4qJGucrv/of0d93IxQ1mzVvZ8tK8lhh2FuznkI7XhouAzAxaJ59Vyx7n0/5yRAAyqor15ORkc+/9/f1GdlFujiZxWvy76pfCvL+/r7u7u00ad3d30ctXWR89853kl9uYZS95obvivRt8h05f6DHQkTI9Vp2KY+hV1rPqJKm+hfHFfzxlpU+mMLrpMiYBPDaYcChZACFmgpIiCGojDpkUvEkysIQAzBABTpfXCOADwdWBA0UKAdK0U/mUFPA9LuzmQlRaBj7H6cM4MOPuFm2N8kxtN/rvrRGBRF6UFPB5Nq6MpURgpNQ0HfQx5BSKledhoZju7u62lCCnncK2VbVFBLgM3N+antZRSUMi9JyGEuMki0lWV+wXSoJHRFiJAJNW1q8sdyr/7ikAnGcDndCtzVLjf3Z29iQaAMcP3ymK4KIJifjOOhNox6U6dxd9++bIwIgIJCWbvAi+PhGBs7OzjcBW/dvD4nCnIwnscamBHq0X4AiBU3KdwXX5oE5VtflO3py2VQr9jX6/NePfwRn4EWECHBFYCtzjIgSsZE9PT+v8/LzOzs7q5ORk881e1P39/ebDi0ZBHlg5s2IGkbi+vn5CBrT+aZqDj1VJdvLIijSRZsZKDObgdGU6rvLz3R2ZVf2jMsZRVxBXRKNUxtTgqjevnjgw0rWnp6eb+qix5nw4IgZCzeRAy+TWlLko7JII4ygik87P6uI3RQbUcCcioBiFE9VgQyhZYPGp+rcA8buzNS0X+lRDPeqg1PFOCXYEiQ2JW0DIYOOwlAhwOd4LlATMRlGWGKGZdoQicdcpEbi4uKjz8/MNKYCSraoNCbi7u9soNpYhJhBQ0lBC9/f3dXt7W0dHR3V1dbVReEyI3Xyuq6tT2qnuuB7lYKXoZHVJFGvFL6gj1UWuGDxG9H7WpRwVcNEBJgqQRdZd3L9q/FO0S5GmZfGf1oPzw5jhD84zYdCpBM1P9QnLc6drnoPZtN4UGajqiUCKBugxp6WCyyEtF37Vctzd3W2lyeyQowNaZg7f4r7EHEeGedRGiAYkRavtlEjHUgF9b+RAoX3DUy/uwwqCFZMqJUfyIB9O8UJGz87O6uLioi4vLzekAMa9qqxSg6xCaXMUjMuI6QENkWr0gJEUc0cK9kGmVoyRjL2LDCT92jkhrHvU2Os0lIsUuKmqqqceO0e7cDxDDKp+RUndXgdMCDBubm9v6/b2dnN8d3dXNzc3m7F0fHy8VQ5n+EdrtHTs/075fjNkoBO4jgioEXUGynnTzGaVtbqwEoeD2OPi9Gf24K7qn/ufiW44ApK8NJ3nSl7urFC+VwKQwnmj9krtlubBVYmwd4S5U/6PFwyenZ1togOfPn3aEAKQ2IeHh41CgzJjw85kgCMKDw8PdXNzs5Ht29tbK8NJbtXTcgSgI8Gczi7hzxXbcEZ9NjIw0sGQGfeEixIDnSZIHyWmbOxdtMuF7x3JZCfQRcRYnkEAbm5u6ubmZnN8enq6+Q3CzGvIkC+PpSS3GilAGZkgjBzc5+BNkIGOgep8amosJQQzH03bEQ8IExQuBEI7SgcJ182FiRQzHe8GtJtv1jQdIViSdyJYu9Th0KAE0v1WEpDOubT1WOUBRpKJqPaxLnQFIUCEAItf7+/v6+zsbIsMIMQK4osIA5MOVoga5kX+zhMbydGu8oB681jurn2Lcvc7MOMY6Tn9zesC2ItXZ8qRAV1ACNnDB5EtyCP3Oxwu9tIh1yCskEmeRqja9tKPjo628mFSgP9BohEJuL6+ruvr661pOI38Ih+NDDLJYDARcLbsd+BNkIGquScHHJx3MUpzlC6nx4I+ytd5fGCKCDF1cMLhjD9PCySjrGx5pMgdZknAe4Fj7jjfkYCOYKXzjjA62cVxUqZQdKzUoIQTGWDvCMoUj3a5EC9CpCzTKQrH4PLrIsEuAqaEntuj86RWzHn63X/O+I8+iRgwQWAiCrkFmQWh1ejA/f39lpeOY8g45Lvq1yOwLBtcJkyxOQKC+29vb+v6+rouLi7q6uqqrq6unuh9lI0/0PHOtqjxd/L7u+T44MlAZ7A7YzdSKE6JaHpIA08PwDOqqi3DzR6alqPDkg7u2KITNH2k0NVLCQEfd0r1o5GAWbh2dEZ/aaiva1udX3WPbUHhqVLC9Qhjqtdf9WtvAiaZqtCxIlvlRQkmznNZ8FRO157cBupBJVLA9ycC99Gghj79P9K3aujdNABHjfjbySmTUF73cnl5WZ8/f67Ly8uNFw5wVOD6+rp+/vxZZ2dndX19bacVOJrAMsJTFjzNhuk1Hge3t7d1fn5eNzc3W0/qMFin8roajg5o+yfiPBOR3accHzQZeA4JSJ7XKG1OC3NS7P1wurrw6+HhYUtgXdnS4pHRYhdXfnzr4NT5XFcvRwg6wUoGyXkajPegdB175+PUdiPvv4v0JKC/q/IWwskLYQKA34kMsKLhJwZU8eO5bM4XipfHC9cXSpKJNoC8unGLunNUTUmGa+/f5WEdIhwRSIY+fetH5/uZHPJ1KrP8gZFnQwwy8OXLl/r8+XN9/vy5Li4u6uzs7Mk8PojAyclJXV1dbTk+GJe8UybA45h1J5eDpwEQIbu4uKjr6+ut+kKP6uOOOnWQdDKXJ0UHuO9eSoYPkgyMGKpeVzWeq51hvZoWzznB0IMUOHBYia9RAdH5VS1vWvCide4GMjNxzodX22p+qS9mjVZnyEZk461BBy+f7+7Ra1Q+u2M+x0pPPWF9NlpD+ACnoZ7d0dGv9QpaJ5YxKFA10lhH4OrNi22RT/KcuoiUyr56fa7sK/6N5xICXeQHT5qNpHNKcKwLX3l6AAtgP336VH/88Ud9/vy5Pn36tCEDVb8WteKcEgCWf40+OU+c6w651qdx7u7u7NM2vJBRFzSiHZgAc/szOiLwO4jswZGBGaPtFMVMVMB5SilddDDAyobBAs+DQK+BAlShxDnOU+viDGkaxGl6gNPh1baj/GYFMAm35v1e4RReR46qnhKBTta5P7XPq54SgJubm829uk+B9ofzUiAnujKb5Yw3bMF55M9lcnXmrZH1mlF0gNvcEQL2HldiMCaaTrZGEQF84EGzJ61vIEz6C5EBtwCWScGXL182ZACRrPv7+62FsfrIrNs4q+qpU9I5Qygjb8+txBrrFvDRPRR0am6kGzTyiGt/h+weFBmYUYpV/YrukREbEQFOD0pJ91/na3lODILFA6p71lrDSrzqVYU0eUhaHv2t+elzuHrsDLcbyK4PnOLdhVi8BSTjv4TAun5z96hC43u53zCHqsrK7fvO6bDHwtErpMkLDdn75jUHWoeOACLKxlNwOM8elCpB13aOEOg4fU9ytw90baeh/Y4IwHPmx1jZuAMcQmd96Na6uPT5w1NhkFX9JL3OYL3nPHucY5lkmUckA9EJtz9CRwISSVWZHxGBfRKFgyEDMwqVkaIC+t9sHvw/0jg62t5FSg0ez4NxulByHCbVsLxGA5gUjIhAilAksOBXld1jW8vYKWFV1Enpuj56T5gx5uohJVKg1wM6HeD6WSMCSB/neB0Ap6kKn/c4YNnE0wQ6xcCKnOvDJJjrzGlz+bTOvJGXjoE0JpyO2KeifA9QecX3SG7ZCHJUCBEB3ehK103po37okzSnrvlzOav80zudh69gGWLDjycRQEZubm6eECOURUkMt0/SxUkPJGLQ9eMSwjCLgyADs0QgEYLOi+V0Z/LgdCBg+M3KFOcwP1r1S4nxHBV7WboWgEmAGubOs1pCCPj+LhqQ8h2xVm0bzberx1uEMzhJmamyq8prBPQ6VYb6m4F1Lfw4IM5BuXHIVFd2c1k1XXhKeH5btzDm+jL4N9JlbxEyh6gDP0d+fPxrZ89OybvoAZeJy5miW+8dTl7cf84QO29byQDvaXF5eVnn5+cbAwlji22smVR2be8MPC/IY9nmPTPctFane1gP81w/Hk3ktuAnZngKCh9duK1jStu6k0133ejafeBVyYBjfTNEwBn/GYMzQwIYHB1g5aahLl4HwM9tI9zJAqSRAA1HjaICu4DT0/wSAUnKF+WYjQqM0nwLSO0+QzCdoazyUy8jIgAwGWX5ur293ZxHKJ6fo1bvRUPCKAfLinpP2o9KkF0baX4ARx5AWPRFSFW1NUWhbeeIiX5mle1HgNOrMx/1fnWOH2RAN7li3ajTBOoEMVnQhXi3t7dbcolHCq+vr7f2GHA7EXZODk8TgAQ4Ig+nD8eclpKAznZxP6AcSYcu7dfnyvJvJwPKkPA9QwIY2qndgF/ycfkoIWBWCMbqwEpcvXEVqJFXruVxdXTQqYGU32z+EDonzFzGlMd7QKdM0xwmMNsGro+d986P/QFQXFCImLLCnG9HBFBG7kModEcgq7Yf82PvX+eaVdEyicFGLph/ZVLgvLylssRyOyLY70VOGckgOflVOdb/eH4fi/1ACBAZgEzAiKue5L5kQqjb/t7c3NTV1dVWBJbJwM+fP+vq6sqSAnWyOG8ug4sMqE6HrMLBc9GNkXOJa5K3n/ToTDrp3BL8FjKQCAC+Z4mAGpRRY3Xp70oIqrZfJlP1dJ95XkughmAmNN/VbSRsfA1PceC3RimWEAFuCxcl0OveIxFQsJypInXy1A1YlftuaqBquy80rM4ez9nZ2SZSAIWWyuhINssPn2M5cm2hHqRbbQ5lfHNzUz9//qwfP35sPsfHx5s3JN7c3EyTVfdxRCBhH57aIaDTFYkA8Df/X/Xr8VOc0+kCTBlwZKCqtqaBqp4STKSNOXqQx58/f250LQw0E0jIjCMEeIGQiw4gX47c6js3XDvqJkRq1LU9R/0y0qEj7JsQ7IUMzFScjzvPyhEBrVz3e5ZszHReYmwswLiOmWOXLgYB38NlV087lcG1Fw/c1D4pIrErUmRgCcF5K0hKQmXJhcXhOY/awCnkqqfvtOA0dYdMJQJVv/rEbUoFOCKQ4AgC2kKJAC80c7u7VdVGsf/999/17du3DXEACecPt2PyshQzBLa75z3AOTxLCAEfu+kCrPjHAkKWTc7X6T4F6zE8EcO/+T0BIAIgCLqeQKMD6rwxgeYNipiU41roeI2M6ZMEiVQ4W8U6dNeI1z6wiAwkZTj6j8+NCIHeO8PoZwiHU9JubqgjNgonzGm+1w2EpNBS3bgubmAqi3dCr7+T4u/a3BGWpKBd3m8ZiUwmb5vlICk/TUcX+OF+vhZA23MYlhUp1hHgWl3/gvMjWXDffG0i4XgM6+LiYrObnL5R8ejo34vLfvz4Uf/7v/9b//M//7N5rEwVMcqZnIVE+PfpQb0FdLoZ55JT5GQ4pdfd//j4GB0it1ZKAeOMiEHV9sJTRABABPgxWH4Khl/VnaKYKE9HlPh6/o+JEB435EckOV1HwB0p4P9x32x0a1fZniYDTsElw9ulMfO9pEwpfUc0OsU9WwfAeVFHR0cbzwV5uQ7m+7jsKojpGq0HCyULrjNAI8PM+SahcsKbCMB7VbiqKFKfuPbRfmZCx48Bph0ttRwqexwxwDfApEHD/q6/3DgCuEz6H295jHqBEHz9+nWz1SzCyvf39/Xjx4/65z//uSEL/CZQfiOdTtOlvnEf7ouXVKyviVnj37WR9icjRRY1SsR5pzl4hOhTPpgSYJnlhYX8ciJHMnjxKXvy2lbspEHG8Ngrb9ONsabevy561I2Q3CPj2ldKOLR8CfuS0cVkIBnZjj3OVN5h5KmooR2Vz83pdvOyqQ74nbwppMfl45AorldDPWoPNTqsaN17uGEYXB06T2mGECS8NwLQyYXrjxGpdPLKoVYlBI5QdOFV9h6UnHIUAddCGassuzpq/ZA2ruPoBRZ8sQI+Ozvb7Dn/559/1p9//llfvnyp8/Pzqqr6/v37Zqc5lJf3n8cCM12r4NrY6aR0rbbfe4LWbwkhYLC+0zUp+oGsjOSU01UwUeD3A+AcP2WAY5YL5K0RAWd/VJ4xRpCnPgXBjldVPdkmmYmIkgFES3i6i6eddf0NtxWXe3RuF4KwExlICiIpwdlCdcaKy4H/k2fijl00wIV1Z8uo3lQiA0hfV9MmFo37XURB29rteAXSgdXk6kUlAsP5pvLg2LWHa6eUz1vELBnG/9zXjgyzDPLiOt7BzUUDWDGxctY8mQweHx/HiACHafFbpySgpHgawrUD1xFzxSw32O/98vKy/vjjj/rzzz/r69ev9enTpzo+Pq4vX75snucGCfjx40d9+/ZtM6UAWWcisqSvRqHWXZToISER0BnZTfczCWV9xwSAjTLLTEfcXFRB8+Q1B2xk8c0RAadTkyPq2oHv0UXWuJ6fomDSqlNaGr1QssJ6Gce8HoHtXEcM9onFZECN6Syr5G89n653ZeiOZwTezcvOEAFnUN0qVc5blWgK2bs0Ut1TP3CdRuWfgWOaM+giJm8NM8Ymyb56xi5dftEP5hv5Xeo89woFA28Mv9nIpTIzIah6umhKPR/2kFBOlj9HPpAu7lWvSiMEIAVfvnzZkIDz8/N6eHioq6urDQn49OnT5hW2KQIz0z/831uWySUYEYNZQqCGiokAwvgcIofR5MgB0nFt784jD+d1u42wVLcyoU3fHQFCGfCN609OTrY2WcJUFt5kqIQAj0AyGUBdFEwEHClgvIQcLyIDLrQ+Co86Jt6Rgk55dudd/o4EpI+CBcGtYE4fNQjqmXfppPrjvLaDlhv1RN5al0Re9LqE2f/fAxFgjBToiAQrmLwhGqDbuTrFwgqXZVIXPjmoscd9/M315XLyGO7y4etYcWv0AWnz4kI89QCCwJvY6COJ3CcOXR8xaXov8tnB6UL9PZJjBcsSyxA/QjhymAA+z6F0TA+wQXRTEwjBA0yg1dkb1bNbl3N0dLQhsHh5Eta8HB8f1/X19dZjlYhu8QJHXS/QOYOJFOC+VM7nyPTOkYHZqEAqoBrEUd7uOP3XCbwu1nKEwIVhIaBap86z50HhfidhcOm4uldVW34cdyG0lOfod3eNS3NGyRwSXJvPKFBuU+et4HpebQwFg0fv+LE6pMNhRzxGqN6+zmsC7NXhWlbiLB/qUeG4W2fDx50XqQur+BlwpMvTJe6VuCijEvTZfuJyvjdCkPRk0oujSMsM+WMDjY2DQCA1gqA6kvWeTl0xCeXrOToGUsxyr0/iIEKnxMAZftcOKpeXl5ebRbBfv36tz58/1+npad3e3tanT5+2Hoe9vb2tq6urzT4IGh3oyACga35QppeQ353WDKS1Ag7OYDgj5AyHUzaJcHTnVPhBBFjZ6KYYrMggcEdHR1vPoS5FxwpVSLjs6HhVgBrmVYXv8neCt5QIuHKO+nOkWA4JM6SyIwKdl82yx8/ff/78ebOD28XFxcYAQgaxYjqNNzeHntpblZGSFh4rqkj5mXGnODUfnuflLWSvrq42ivLi4qKqamtVOOSFCTzyV28PebGczfbXeyMEDqP2cMQuyRn6Atfq2hheeIff3eY/VU/XsFRtrxXgtOFxOyKLdVK6C6azXSi/ayvcxzJ/cnKyIe1//PFH/fXXX/XXX3/V169f6/z8fEMGsI4AG2n9+PGjvn//Xj9//txaSIg6jcgArlMi+xJ41gJCN/gdRkYoEQEnpHzNbJlxzKFZnp91m6CoN8bbVPJb1XDtEmPnSIBjzloP9oh4LQKnC+Wmg08H4iga4c4lg9+Rg7dKBPj3rHGp8pEu9J2+npX3dAcZQKiRPQx9i5/rz6p+34s0Nlmhoz5QwvDy3EJVTj+1IfLFWAIZgILksOrl5WXd3d1tvCgsSOOoAZcDZR15S66/OmU6IsJvAUlnMslzBtJ9nPPEUzv85AvyYuPO7wlg4+30Ee5BednxYmKZ1rqonlHd79rE3Zvqj3pjmuDPP/+sv/76qy4vL+v+/r7Oz8835ebFr//617/q/Px8s65ASThkMulgjZK8FIl91qOFXOAOo/9TBybmujQf7VwoY14IAuHmOXdWYPBkdPC416125U0GmYXDGRNVsJoWh3mZYLgw3YgIOKPOxzNkgO95CcF9CTg5xPGICCSFBuMKRcq78LH88UY8ur/A4+Pj5ln8keLW8ut4wvoCZ8Q5GuBey6qGpGtHzR+kBosDuZ4PDw91cXFRDw8P9f37940nhXlWlI2n9bA4k4mQKlRXDtdv7wGpPzoDn6Z7WG55XYtuO8xvKuR3EgA6v89rSBypddNcSgb0Or7e1ambGujIo7ahW+cDYvD58+dNva6vrzeLYrH4VYmTe7JH80L5mAg4wrtP3fqsTYcYs4SAK5Ty4fzSgJ7Nl8EsD17Z58+fN513eXm5NdfEzzj/+PFjo4yurq620uV5W66HIwJ83H04HRaKjkhAsWpkQPMfGft0/ZKIgJa/Mx6HBmc4OiLQ1Y0VCBNPKFE+x69/RbvphiwjwqtlYqWjipXLWFWWBOgc7IgIcFk0zMtTBRhPVf/eVAhPElxfX9fff/+9iQ6g3FCk5+fnm7lXKNVRGzki7fAeogJAMv5qNBO5dE+6gARAbiHHvPCV5Y0dEjdVoGubGLqGReUVkVHuWzbYSV6dbuX/Rs6m8+CRjz4V5Kaiee0LG3guE9eHiYC7Xsv3HCx+N0FHBGYL0xmIxOATEZllSWhcfe3mly9f6uvXr/XXX39tvDMYVbwxC4prpAQdy+tIgfPwu3CR8z55vYCybTcFMStIneGfJRPvBSqHiRToPUo+oTzhMUCRsufAYX3uT/040gi4RWF41EvLx0qXCYAqVJ0eUGhZVBFzpO3nz59bUYHb29vN0wT4H49jPT4+bsjUxcVF3dzcbIgD7mXCkeTR9VmnN96qLCedmUiBk2ecd++V4MgWRwZYdnUNAC8yZPnFNTNtzVOkyYiCxGj9ACUY3P/4TrpXF0rymxERHVbny7U18lESq4TF9YvTOfuU02e9m4Ax6lRnxLvrkvGf9TLTQNDHuT5//ryZ+/nzzz83gg1Fg3kfGNs078Xl6+rolM7IW3EMturXKnGc0/kzFuLZQcfpd0TgvShPwMknD7wRAUjyDbnjZ+s/ffq0FULUECvaWcOrI9lTBa9hUY564Zs3qWIi0HlXKCO+0+JFNrogAti3/efPn1VVm4VWvMsctphFOXl6BSRB22NGJ6Q+e+uyq3By20UHtH95SobfSqjTqpBnTK8yia16+g4CdXhcuL+rE+/boX3O6xZGUaw0zYB8VNfyAlh+ORIixrj36upq874ER3x4TKbxpGVweqdzep+DRdMEDp0x5HvZiI8GbjKiM4PXeXHs3fACQqzi/uOPP+of//hH/eMf/9g8HoKQ5efPnzdeS3pHNpdnVsCfY0w7kgFmPjNFoGkmVozvpRGglNZbg1MqaZCqh8XRKI4M4KMv5IHyRHvzAtYkfyzf7hhA2jrfjvJyOFNX7TNUoXOEQa/j60Gw8Vpi9rKw0VJVbQw9ysQkCopWt7/F9Un/6GdEwN8SOscqyWSaJgBYbhH+dpEBftlU1dMp0xF5hVF3MqThdK4rE10l3iMP2jlsGl110QBMGX///n1DiLAGoKo2b93EIlh+jfKMM6b/q17BsTqI+yIHe3mFcZUnBWy8Z5l7Ykxa4ZlIAwsFKzhmu7xX+n/8x3/Uly9f6uzsrB4f//0O9e/fv29CrPxSDKeckWdaCMiC5sqazqdvjQrw62txzglYx0K7SESHXTyzQ8KMjDrlyv/pNS4axQuPWJmiDPpSE3gljhCox5Hm+oGHh4cN0WU51HKyZ8jGk5UkPyLliABIB5Q9IgBIS0OuSoqYCHz69GnrpTT8lA/eV+CMSXIeZgjBW4RzhFJUQIkA7tH/3dNXOi8OEqfRok4XJQOvofxEVFI6iQh0zoySEXaoIGs8ZcyvaUb0+OjoqK6ururvv/+uf/3rX/Xt27f68ePHk90HnW3Qsjk758isyvdzZXovawYYzoh0pCAZf73GGTAVJv6fBwJ7O04p87qBr1+/biIBmJ+s+jWXye/O5hdkQGlrPVIna/skY6R1cQLvlJ7mOxOxcURAsYuwvWWi4AiAU7p6LStefpoAC7F4MRY8dd66lTfq0TlKNeaquFnm1Zizkgb4et3oh+vKCpLnPB8ff718hcukC/uOjo7q+vr6iaLlkD9PmejGS9wWPOXAO9V1pFr/f6+EQI27IwRJh3T3JvlmgsfTAuooOTKgJE7fZ8FlTOVOdoDB8l+1vX5AyQjShMzd3Nw8WfzH618uLy/r6Oho4zx++/at/vnPf9a3b9/q58+fW+8m0HaYcbo6HbRP+d3b0wQOXTjDEYRUMb1Hy5W+Wclx2Ms94/3ly5f6448/NptIVNXmPdp3d3f1/fv3zbvYLy8v6+rqasMQsSuc88RR/pFxToTAEQFmzer5IQ/HyFO+3A+JlMwQF3c9p33IcLLtjL5TQvr/iBC4+Xkoz6pf/eTezKZ7sbNcIF1+t4HKh4Zsca9b+Zw2fcGY4Po7T8cRApZL1IUjFJz/2dnZJvyPKQZsWnR9fb3Z7MV5uCn61Z17T0hyqFEBxYyh4v5jgw7jqbtNuqgAvnl6bKZPnEHkeii5UJKidXFTE1w/zhP3giD8/PlzM9VXVZtHZ//+++8NKeDoADuOSS+nqAXGHUPXTTxXnneeJlCjkLzekfFx16T89FuP9TcLP8/b6iMy/MF5pIPoAM7rNqn4TjsTdiGgUZtq3XQwc3tonlXbe30noqLty/fPXKv5jwjdW0CSrZEicqTVLWZybaZKKz2frV69ltvtD+CULCsS9QA5wsBTUeo53d7ebk1xVNUTQsPnXJ2RPx4bZJLDiyrx+CGPwTQ//JGQHKSZD651ssGRGxBS3pQN1/HjhJBX3Umyi9RU+ccHq55GEjiMn/RfRwTYEcMaATa2Gj1w7czRAn7SDPXH4kLsl4FHZHnqL9XR5Yd6MxFgEr9PUvusHQi1cPw7ofPyNT/3e4YEqPFkw43pASYAOv8FoVelqvOyrGxdPZeGg1IbpMHs8nbRAPYEZwiJpsf/zfafu/+tYVahVm1HVhKhY+UETxtRJZ0W0J3btO80jxTGdeNGy4z/kY6Sg6pfb2HUNGDoNSqF444QIA8X8WCF//j4aJ/XToscl8jcPpXpayKR1FkiW/Wr746OjrZk8fr6essYQnZ18SB71Gmxq3MkUjTVRb9YtjoyyIZd1+AAvGiQIxNqtFWX8quJefMst0kdP1mQHGbtRz7merry7JMQLH60UD/sMXABueBOMWq6KT93XyfoVdueTlorgPUC+pw3FAw3NOfl5tESnALn/2bg6qqepmPWavwTGdA2TZEc/s8NaPzPgvlWlOxIcY5IwOiY25ZJAJ6R14WCGhWYiexoXjhOstHdr/LtFA7n8/DwUGdnZ1veIxt/JQQstzrPrHkkgqNjoMNbkcN9YVaeGdxGCP8fHR1t5BTg/sJTIKwHOXrF5I6hoXxXHjXafC/n5fQw6qILGJ18caQL9+r9kGkep5i2wlQy6gSSgMWuOj2gba195s47OwK7q4TgOcRg5xcVKdAYXEDneSSjnvLU/NNxUhwc9gQR4B208JvfT6DC6sKoLlIwIgb41uNR5yXj2+XnogEuL+2rZOiW5q95vDV0CjTV27WxhvfYc+IIFJQLf9Rbrpp7dNWNT1dWrS8/gaDEUyMerg1Y8fI9ro24PVRWFSqXTg+43w5OcT5HgR4alhDZqjxfjX5hIlC1vbD17Oxs67XFDGd8Z+F0Jf+n/aZhdOSPbybTI2fHyQIiC0wKHh8ft97SiPv56QNeNOjyTPKaxhaXU8fjPrDzK4yVSalAdYYkDe4u73R/RwS6xwndVAG/M529YKSpIUomAd0cPqCeY/d71A7Ib5aEuHPuvlmC8lEwQwi4PRMRAJgMsFLjBXL8+JwLtWr+ThFjVbaG7DkMj2+dBlP55npyeV29HKFkosmfjrA60qz9wu2sUyLaVo70vhdC4GRS+3VEZlVvu/5k8sakAFMFMJZMBJ0Rnp03d9cCPIXFj7Bympq/OnjaflomlgtOC/XH+0J0+3BuGx63qg8cGZhxODiaof36HBmeJgNujpwbillKV6AkuMCSezv2i3JyVICfJNDdtHi6AOnri1G6Dwsnly15Ri46kBTYTBugj9zcLLerEpClylD7eZ/M9DUwkin+j/9XjAiUiwpwm3NkgEOMOl3QlZ/TG5FNvo8XwronHlQh6nhl3cBpq2xrO2pUQMkB8uq8TEdkNC/+rSSIoxhvjRA4HTrSh0ucFUfudAoAx2yQlzgnnfOYZPno6GiTv+tvvl9JAIOdKvx27cDXYuxy2XhM8DSCpstg2XM6PrUh6qzjcB+y+6xpAm28Wc82/U7RhaTERh/3SCFvrYlv3VkL0GeveUcut1sbf9gD6wx/8sSVlXI7sPGfMVTavjPnRp6a1s3hrSlZ13aOHDC0LdSY6bU4jz0p8I05WF6NjflafV4bSItYOW+n4Fh+dE0NyzmnzWV3U2isG3S9gJbbEQF82KvCtfq4Gi8sS2Sgqp60Ae5RhapE6q3Iq8IZf7fOQpGII9qB5dXdi03amBiqPPK35jlq62TQOyKg9wOJ/LsonisvTwngWx/BdXVip5LlM9WBbSynmeR3H9gpMpCEyjX0EnRGyHVoB+5kHgxqxPE8Mz78qJSSAChM9qQ0KsBkYGQMk5Hdpe0UKmTOc+R8HBsewZU33bsvgf0d6Ix/Vd9WKqu6gIkNHTbv0QWE/OEFWQwXpeMysCFUUsn3azQA40CnCVAP9oDSOFfioPdyuXgXQRAB7FQIUoEV7SBJGiVQRavtj7HQGSAu31sisMAoGsDyrGuiErgf0YaOGDg5mJ02dW2s9+hUF9/v8kyY0UFubHP9tRyqRzWNjnwwMUjX8zH3xYgI7CK7z1ozwIVRb5V/AyMBZOFz3yPPVjvEeTIuTVUsUAT8BILuLaBzccou2RiPyq3trL+TgMww4hnWveu9M+m8RaWafs/In8owvF1+VhueMW/jyvOwOjWQFCYrFScLbmEVK2keo44o6ytpeVGWtoGrt55T7xvl50e1+GkEKEuQATyzzRECLru2F3tS2gbOqLwlWVXjov+pM8TOCr41lK2GbRdnTp2gfYFlicGEuLMvI6KgY8WticG3eveQMyXOWkY3lTXbRo7s7dpPCTvvM6DRAY0c4JzzGgCnVNhbYqFy84YqcNxBKPPp6ekmXV7piblZfgwECgbKNa0NcB2C/Lo20wE3YoXP6fBunmzk+exCIFzdu+jDIcENrjRQR1EB/a1Rgdvb2w3R5HA6/oesslHTcijhZkWzRE5cfZUYdGQoGX2tN59z5QOhub6+rqraLM7ibZqvr683u7lhrHI93FSBelKu/rhXy/fWogPJWCSd7Uis0zusz53Ts7SMLt/umhEc4UU6M+B+TwsbdRzCRj0+Pj4h9OwQKJHn9mNSkaZAuI7JDuyTcO30CmMVFvxmI+oIgxprN/+iRgQND3DIiL/5fg1p8bOfvCEEXkPJ7xzQHdWS4cc1nXFY2q76e2ScHBly5Vnq5Xfl7AhEZzhw/yFhhrxxu88afzWGTATQhlBinDYbVPXaoDhUuXMonz0Q/p3aPcmH5oFrtB24jjql4YiBtjWeqOCNbZAWExFMHWCM6itiWf/otEDV021bR/391ogAwxn/mXHH12jfs5xxWzNRWFI+fO8rejBaSDgTrR6NET5WGVEnGNe6KT4uA8676YKEzh7pdUvld6cXFTkigGMlBK6AGmbh65g1IVTITEznbvgb4A7mzTGYCPz48WOzZSQ+nz592lK6GolgOE9otv1U8XbtzO3trmWhdGHlrlwjgVFiNhsxODSjP0JHAmaUhEuHr4OBQ0jckQGXrva9IwPsyeuankQgFc6ApzqzceetkuHBJyKgBB9lw/gE8Jun63BOo3gaHeA2UQPhZDn176ETgSUkVmVIjbDTRypbej6ND9ZFncfPkV/cx+dTnaH/3VQBt4uzTwqWhZn1EwqWT9grJqaQ22Sj3LhWZ9mVV9HZhqV41iuMneAwo1QoW09pJkKABud7HTFI7JD3GsCTBfx++YuLi41woAz6Pmr1dHTP+BklogPInU8D2rWttutSguLKN3NvKvshK1JAB1Gn7JJBTdEjvQd9wi/dgeIYeW86v438eMyxl+aicqy0uNwog65XQPmUeDMJYCKQ3qGQiGlSwGgjjZg8PDxsPV2BY05bpwmY1Lt8HJQ0cNsdIpyhZ9lgOWC9keqo+qfKRwXU+FY9JYqaloss6RhMBlOnjdO0AOfZRQO0zFoXB20vjGWkjfrpuoHOLmi9cN8of63vPohA1QIyMGtg2Ovha7vwvoI9exch4GtSmjrvirdM6fw/7zuAKQKscMZ92E0Kio5Dotrh6g2N2ssNQBx3BobbGe3Bi1yWRCq07Wag188MqkNRqk6BJmXK7d6xe0eM9ZEj3o6XvQiXX1LM+M158CO07M2xUeW1OCyXUGq8Fz0rf1ZS+my5PvngiIDmN/J+WMniPl7v497ZoG3CSlbTcp+3DpU/PeZrujT4u+rpYlNHXB1ZPD4+3uhshvaVetIj4zZz3sl/Km9Vv6lR9z9fx0RbpyB43HTy5sh6Zz8dnktcdyIDjnFrg3AjckX4OoYLmQIgAvrecjaAKpRcps446srpx8fHurq6qvPz801YF2sKEKJMnpRuDjMiPq6+OiBGrI/rr/VMwueExrF2l5ZT7Hr/vpjq74Az4upV8bWonzNC7gVWapxACHSuO+WdIhW4D/fqa4v5OpSZ36zp5vDVC+TziQC4VyunMae/ldA7vYC0QMC7yMMIjqC4NNR4PFfJ7hM6thwRUFkeTUcpRlEAToOjAIjmsveeIl+JEHAZmDwn4zwiLC7KBCB91//O2XS/R04QjwcdE6q7+fqUVueQPBfTZEBDh2DsCN0nKAHQwadKJ3UkrzNQtusamvNxHaJeBYTx9va2/vjjj7q8vNzUDa+k5DdRcbgSH65r8oi43k6Q3LEbTMnoan5qwJxBS+Xq0EUGElk8JHCbOkM7Ct/zfWxEdZMqTgPKR5UgxhXILiIKaWzotIASWjYAjqTzuFAFyfXlsmBs8Idln3/rWgL1GllWktJlHfP4+PgkGufK7YwgK/xEBGa8rUMjuElmEzFNmBmXiRDgXvQRt5UuinOExBEC/Q1HkG2Clk1tBuelJIIJOTutzsAzUiTLtQv/xzKnsqjHasdGZBpwNmMXfbuYDHCFRkI2w8Q7VsuC5TwdnZvifLUMrnE0z6p/Twt8/fq1Li8vN1MFt7e39f379/r777+3CAFWNfMCKre+YEknpt/pHNdbr1VF5jwel04iKq4e2peH5kkpkmfFx9perj1U+WjIPnlkVU/f3odwKqan3DawrBwdGdBNsPRe9UjYWHOd9A11uu+6Gn4mAC5CoEabp7aWjGPc64hA6s9dkEj3IcvzSAY1dK2Y8W5ZH3N/VD3d4Iwft8P/SCPpuWRLkp7S6BfydWOYbRCQtm13deeyaN1defnY3e8i5clOqv4d2ZPnyOliMsDMAwpC2cgMEeCKOiLAnpYqrKSwoVi0o7gsWNV9dXX1ZAAdHf07lHp1dbX1ngK8QObbt2/1/fv3zbSBhkgTCdG6L1FWafDMnFfFyF6Ztk/K2xn7dJ8jJG8FM8RIr2eZdSSgM3CsHFkxgRDgfzaebvpBx4qSkNRHTOxx3t3LxoS3TFbjz+eVDGi7cZ1wThWfO2ZPjo87qL5I12iePFYPjQhwnVQOHSnY9zhUcpAW00GOefMqXKN6yckEzuvaAx4D+NZ01U6pvFdtr6NRaJ+nKWlna/Q4pc/2EfbDRZSXyu6uWLRmwIXc9JqZDyMJ8+Pjrw0d1Huvqo2QdfMrqWy8+RCmABDSvb+/3yIDuPfm5mbzCCJPFfCbqWbrrHgJo+kUrIOLBIyMYEcC9P5DJATPGUCOlDovLBEB9ZKraisUyp4yvpMMaRk6AuKIOZehqjbjAmnd3NxsxgX/z0ZfnyTgp2+c94W0R54iwAuItd00BMz1dehIAcuqHrtyvQZcWyU51P+qfpG7kVfLcseGf0TEmAgcHx9vbTWNKKuLErDhZx3PNoCvq/oVBeAxp9EFnodX4ou20Gtde3Dd1dlMY6lzmtK1MzaDrwWSbC4lsosiA1wgDe0lA5jOcSVYEMBqtUJ6T7dRQyf0KDvIgEYGQAbw6CHyu7293RCHnz9/Ptm1cNT5SZmn8jvFtBSdQee0R8a/K5sru8v/0JRpOq4at39SvuqpcHpVfkUwZI6JrZIC9mBc+g6qyBIh0OucBwWoweffONZFhLhPSQC3B9eNjVenzGa8NG7jUYRgNN6WKNXfDZU9jhKxoXVIHqgSAfzPMqpQkla1HekClhACXD9TRy0HZFDXc6ksIA1HhriNONql8pZIQYduTDrnTLFvnbqYDLBgMDoioMcMNUaqKKFk0HlpMyMnVJ2xhZDAyCN/TBPwC1twPSIJiAywF8RtNGJkXSemwdnBES095nw7Iz5Sei6KwGm4PA6BCCR0MoL/ZwkBn2eMPFdVsqpwQQhUeSF/VUycv85H8rerMxsBXtvAY0ajAhg3vJCWx0XVr0cY2Xt0G7UoedR6pqku19aqF2bIQDdGDgkaEUjk1HnLzpDxN5M29CW3TzJ2LnJb9evNnHotEwLkreOI68dTH7o2Qo05k1PUjWUNeSgRdY6kjp0uQj6jR7WsnJbeqw4bp7FvLCIDzA4TGcCx+9ZjrqRWVD0iJRpAmkfkNNXzZS8IW8Ti2ru7u80UAc91QeG5dxk4BapwxkTbL0EJlTPCKrCzyqwjD66szuBr2zovawm5eUk4OZshZ3yvepqstNy9TvYA9pLV6PNrfHHu9PR0a5HfTPnZY0910mNWnprOaKMhRAu0Dap+hXd13xBGinyoEnehX7Sl3sd9pNMvXE91Tg4dSkqVBMzKtp5no6+evc7hA0rEEBXgtB4eth8/dNEErQ+/JI731ODfKDdPUUEGlQRoPkx2k17mdJUEpLE9C7Ztjpj9LiwiA53ynPFM0z2cR9VTjwgD3yldDdHjvkQ6OG8oMihXkAO8o4Bf1oLrdSU1lGAKdWpdVfnOkACnuFToVJA6AXP5zDBaV/5UTvffa2JEAlKfJRKnabj72bvCbwWHRd2juuxVIR1drY02x/3s5eA8G+vZNkGZuKzpyQGdNmAPCuC5XbQtGxaWcbeeQNsN3x0JdvKq0YXkIR4qIehIqUaNHGZ0TlVZXQOd7MBTQVVlHzuHLkdf6T263gHR2fPz861HdvkpGrQHRwNYp7vIhLYnPq5uSghU3lxkQI+Rj4PT3a6ML43FZKBqWxhdwZPCSXBeLgSEP7syrwRmdlBmmDpAVECnJXgeynkg+HaEJF2rhlgN6Ig1slB280+alvsvwfXjjPE8JHRKdKbc6f5up7Wl8upknL1sVUT8Ww0a38NRLCeX7GElYuOmGvDhsjsPiqczdGoFZdcXDXVl4HZmsuWIF/dVInjJoTg0QjBLBNTx4W9Gd46NIzx6zofLg2uqfj31wrqc00mygPGi0wKYsuVXyYMk6KOvHGlTw97JP87pFIEafCf3fN2oXZOTmEjAc7A0vUVPE/DxSw0SNVToVA0LOmHX4y4PgBXIzc3N1nzT0dHR1ipYXI9vF5VgdG00cz4ZcfYm8Z8qySXGfokg8uDpmO4hwXmHSYGqt49vDcE6L2wXIsRpAB0hYGh/6x7yfJ0+ujQC968jkM4j0nT5Gg0Hw7iwQUCeTBQ0jOvqonXqjF8y/PrpiPwhQeWvmyIYRVF0TKued9M6mlciwBoVUlLA8/+q37iOvMkWPigrZIPLrw4lkwQmPdpGOHYfJQdO3mZ14Mw9qr9cv+1D5+5EBjoj5xSv+39UeCcwHI53UwVLvDDNH/eyF3ZycrL5reHMNKBSHk4B8fkkVHw/PsqgOc3nCoUbIC79jggcovJM0YCOCDjPy31wfVW/rTaQPHB3L3tXHJ1L4PZnw6vGU6/Fb3yrPHbGV9vLlQnXIG94izy+UR6NEGhbuLHCCtxBjfyhefxLMCO/Vdttwn3epav34n51hpCXkjz8pzKrMqdEgPPE9XjKRuWPbQOTTV7Lortj8lQZ8mKy4+S908Pu2LXdjN1M6TjHxBEBd7wLdnprYVL4iQiMrnXpc+OoECT2yfePzneKQT0fRCV0QDgFO5u/nktEQNk5CzHXxYWIR+VhuDZYkk4yAodADDoDz//z9YkEJFIwU09HApxnBaiiZDIwKn8KdyZ54/91rM0qmREhYCKLujMBwJoHJglOBjnk7KYNuDxaLlaqo7odEmFIOnRECIBRVCDBOR9MDpCXkje0HUgfrx9g4sBTRVom6F18jo+Pn6yhYZ0Mo39zc1PX19eb9V1uIyzNT3W52wRIo1x8rzt2bcltluR2FiNisRTPeoVxwogIzCKxtX0YGWdQ3TEjGfyOHWq53f1dOjyonLJTz5INhhuYKpCatxKPVEYuA86rZ7EvOdgHOkLQfWaiAWzYk4HW8H13LQPtrXOvXBf2ktjr0nRYoen/bPhVaScFo1N3M3VgI4980ptJuQxcTq0Ll58jh+rFKhmYwSERgqq5qADaoapaspTGtyNMeo6JKuAitigX6xfuFxhoXWwIWccmWJou7mEygkgAnvZy75CB3DhnEkST5XV2Wo3LnZxOzkePOyOeyDUf70NGp8nASLE7xbYvA6DGNHnAu0CNBCt6VthdVABwIcxEBlI90zn9ViXpypm8oBlS0J1z1yjh6GTkNbCUBIxIAZ+frZcSgSRbDPbIVK54HKgiVgXOSOSVH2vUMjsZXjIt57wqtCUTAd17wHlhjtQoEca3IxhMfJKx78bIa0F1a5JNBevNThexXLg669Rkus7pGSaY3K/4jb7Xx2nVwXh8fNzq00QGECFAtGAJEdA9MpZCx53WIbWXS8PVf8am7FL+RZGBpCjS70ODDnAlAhhY+vyqU8YMxx4TKRghed7pP11ghYHGXhLunfFA3bkZZpvKfAjQgZX6fkQAHBFwylehpDIRCQ3tA2pA1eOFt80fR/I6b8J508kQ49hBSbsjzZq+mxJwdXBz35wuys/vM3HTivhvRARGSvy10cltR/JnHZMRoZ8Z5zql4KIHVdvRId2jAt9YQ+DewcE7YSop4NfOu3RRDm4Xt5kcoOO0kyPAEaSRHnXnO0LwXBldFBmY9faeaww6RV01t0grNUwiALpStWPaVT4KgG/XybNkYAYdkYEy5N3junTUs3Ll5m/9/y2gM/hOvjrl2hnyJeXR7yQz+F/DqXi+WonADLo+VeLBXo6bd9ZjnWt1m7Rw2mysdRGaKzOOE2nmHUMh0/jAA+V0VK8lInAoBLcjrXp+1gudRTd9k/LRvk19rdNE6snjf96BkOvJ1+lCQpZLZ+BVPtNUmoLHxqx84Npd+iERgX3ZlmkyoPOk+0by3pLCVoyMrt7nvD8nbM5b47xYQeo1swxwSZty++hzv5o2L8RyHqN6cDhO5ezOL63H78aMXHVelmtvrq9bHIX83Pxq1bZicIZVoaF05MdzmxwC53zUQx+RPW03Nvb6rW/u5P/wW+us0x9KrJws6RQdX89lRR/hHhca1jHBhsXpikOCIwLQWaO1KJ3xmKmnjqOq/vXDuLYjBGhzfbqECR3XTyNtbMT1040rPafjJEW0nqsDlxpu1s2ufvsiBYvIQBKyWa9xlml1Cjnln+bru/R1EPFvVigQOCcsXK+ufo4csKJ19Urtw785eqHGid+G1/UJz7dioHKZudy7stpDwFISALnTY+03Tj8ZKTaC2s6ADnCXlipeGFrMvau3wmQD0HLz1IDmrWSAP7xCW99ZwJEB3K9yhLZwfcR15et03CnZSlMvagQQQXCEQHEoZEB1oOpG1Qc69QNoP3R5aT5VT6e9RljiOevUEZOC29vbrYhAqlMy8Hwtn9PpJ6fbtW3csfvN511as6TMGf1EAHbVz9NkIHUCZz7rCet/jgQ4IWcDnfKfIQHKqI+Pj7fmopzHxwqQlZzzOjhfrqNTyt0gGRkqrpu2C/YTnzHePOhYwTtmjetTOkt+/y5o+6Xzqa1xLZCMKV+r3g9f4zZv6Ywn0nIRBuTFRIDnzLnM7uOUJBtZhns3gT625bwq9bBU5jVsrPVLBk3HlnMWlFzggzy1PVxeh0aAk6HW6YKqrGMSIRjpYhe1SeRY0+dokLufoZEv5M+v2HZwZUhEIB3ztYkU6Poa/c+VoZOjjoS6MesctediJzLglIw71m9uDCeEyehpvkkxu3Jw+urdoU78DoKOCOie6zNEAGmq4nLXa93cwHSDNL3JsWp7H/aOeHAdZ8JRjNQHjgAdAmYIQIoGAKo0qmrLIPOcOB8j/6SgkkyhPLriX0kLyubkuRsfriyaJhNG3thFycDS3Q7d1EpS+Em/uCgDEzGNBKhyZdLhxlI3dl4aLv+kC5KeXJJHSlevm4kKVI0jEB10LHRGeCY9TjONOSUGqt+UNGj53LhzssXtMqOj+Tqnj5+rZxdNE+h8jStURw7YQKhR7AR7JOCsdJy3oEqe35zmvrVuSgQSi+S6aB2ZFCTDnQjByGipMUhKzQkqtyFW684QAq13EtJEIH4nRsZf5U49LZ0uAlQOQLyYBFRtPwqrUQQXnlRCpfcpqUDfAVwOzovhlBkbTS43lyvJA59LfeDGo8ryEnCbcDlVxtW7dP3O+skp7NckA4xkmLU+LCO7kILnGP+qp0/AqOFzfeTuVXnSfS2SjnP/qT1ysuzy74y/yzvpdz529qGDs6WOCDxHzy6KDLgwetXTjUC6gjtCwJ2XiMCsQCdDinTxAiJHChiJCOj8kt7jyqP1dAKgdXSDPBkoLj/Ocx84hatz36gnr77VN9B1wue8Lff92pglVq6dGU5JqHHisL72+UjhKOFi2VAjrWRADVtSONoffK1e4/rSEb1khNUAqNJ2OoUJk7aHa3ek6wg3/tNPIgldmxwinFHkdkn6s9O13EdLQ/NLwNNrj49Pp2qckdb7E9lmHcey2+0wyHny+a6eSgSU3DiSNgM3HhMReC4WkwENPybvwH3U61EikLyGUcOpJ6yDmQc/Twm41fgaQnJEQDtDPQk+51iwkgOuP/927cLto49Cclto36G+uM+RATyT617RrG/Oq+rn4pCeho9fA6kNneFPUQE1Ck5JzA5wRiKQ7lgBgwn51P6cDR2zLCqhAVh58nVcTlzPC1edMXVtz+c6OIUNI8DGAMecXicHWj4l0rv07WuhK6vq7nRvZ/wBbV8+765Tguzy5fwT4Uv5ucguH+t4hc5K+w+4PPEfl88RgUSKnX5+DvZJVBeRAfaqq/xjHY4U4BiDzHkUSG80UBWOibFy4ygAjGCqB+5Rw687WDm2loQwKeFk+PncyIi5OjnFz+/+dqTu8fFxY/hvbm62XvDhpgxcPZV1a4TBLZr7XZghAm5vCVYuWlc+Ztl2SqGbnuH7UqjUKReXv3qCOg5mCAErbRcN4TKogoOSdy+Y0bqwbDIx57I5sqnlwHmQIo1EJMXrSBKPB+731yYDTEy0HVKbqP7DJ0VxtI6uzirnVct2odT7nUOkdenSSvex/KphVzulbdkRAAU7CmmcqcOrZR7V0cnjq0cG1PjgXNX2SmgmA/igc1LEoMqHstXApgbsGL5GBHQfAb6WH4lCfbpQuZYxKXu0levARBI648WGC+/31mkcRxrOz8837wTnfuS6pj292bN3wufIgPu8BmaJgJs20lA34JQGG1P85vy78vE38nVwxILHGBtAFz5N6bNyZ0LQlRltg7bj/1i5cl7aPjNRAZYtd6zl4igJt9UuSlP7/VCQdKkSNiYznZ5kdN5+kpsRVK4S4ZxB6g9Oz8mvOniqs0b5uAgXf6exD7Kq5Fntm8IRptm22AWL9xlQ7wn/MRN3jLIqK9B03LEg7gCXJnse7D07ha8eL3u0LCwuKpDyTuzX1XX0nxoxlB/RgJOTkzo7O3tCCJgInJ2d1dnZ2RYhYMFEdODm5mbz1i+ODrj6u35O0w23t7d1fX3dtt1LwREBPcdPlrgIi9u3X9PHcdVTj7fDEoWoXojCeUc4z2VUb31UNlZk7I2DBHBkAHKv3pmSHdcfDqw/WA/omEU/4bFa5KP3jz4Os0bvJeHKylNw2qY8ZaJyo1Ek1/5Odzm5cW3jDKf2iZ6bbQMtnyun86a5//m8ppkwIlGj8/x/mi6YaUt3bh+kYKe3FioTUg+AlQAzaz3mSqgy5XvVC9CwqQoyDwpW8jo9oPXpBhsTBhU+LbseJ2Fd0tY8yDkSACMPA68eLkgDrrm4uNiKDiB9GHycPz09rZubm83TBYiOpP7ievGudIgwIK3XgPOKnLfExkz78vh4+w19jt2ntSi4HkiGOLVp1fPXJcwSVCXSfB6EiOvOpBMGiceptpEafvfbtZMqbJ3/dUTAtQMbzxkSgLQPJTrg9BIcF+xMqYYe0H7qZEp1t0LJZiqruyel1dVVnUEtJ5Cmt1heeJoA97i0XTkdOlL0Euja4jnYi3Zmj6Hq6W5oem2VV27JYDoDrYrcKRV0EgwczvO3zh+lzVQcgxwRAmWn+H800HBdIhluigAGn8P/+t/FxUWdn5/X+fn5VptUVZ2dnW1t6MFrC3iqAGV3Cr3q10Izniq4ubnZEJDXgiMEDs6As4fljJ3zchMRUPD9yCOV/yXB5Xd1UFnVRWCqhF0bcT74T9uN4bwnNgxKFqCDdLqEZTNNN3Sk4BCIgOoPjsLxJ+kNds7czqQdAU1gQpB0t0YDmCByNIeJJ+533ryb7tI6pPUCKTowqquTy+7/pfLS2ZXficXaGQ25jwJ3BtGFeThv5+U448RKyykr5y0wAWAGzmXtiEDXNrsoFva++JinCJgY6Hw4yIAjDtzGSq7w4c1l+Do2HJwO701/e3u7ld9rIJGq56ThvGcmoIl0OA8oKdQOnTeyNJ300Too0WVF2nmas0RgVG5W7snYqF5A2/J4duNc67PEWPxOaGRAX8qjZEDbnsmZm9J1xNXJLKebIgQ6jcP38ouJXLSC72Ev3uXhpsL0eiV6s1O+rr78/4xcuGs0GrGrTR1FtZZgmgw4z1ynBtw9I8wazhQdSMLA96mAsOF6eHjYMnb6OJxTFrNEYFZYOqjCVIOO37owUMlAeqKgaztOAyHIERlAO6MtMT1xc3MzPS/4EhgRATYuGrpXBcqeFaCRAM3DKScui3rPHfQ6N9Xgrkuk2RFA3Kv7JDiwx6ffCWq0tC5sqJSE4FuNDWSUvU6OEKj+cFEBRwQODY4QKBGoqk17MLTvR3WcMcKOEHT3IX+NkM7YEOeQzZBpFxVIeaYx1BFvtVUMjWDtKl/7NPwOiyIDbIT17Wn4nxu9Q+q45F130QEWsKqnG5Yw2DtVMuCer1cFkcrMH04/wQmP1lmVJBt0JgH6lAArdyUHGgZ2IWqdKmCixGVjg5HIwN3d3ZOnF343RkoiyZXzsKr+XT9+dM55vIykDPCbjVYKl7v6qDFNhMSNKScDjhCMSBTqd3Jy8qReiRBo5K4zUIhMJWgEMY0/jgrMEH5HDl4bqT5K6vgaF41LUQGXn/Yh6ypHCGag0zhcLqf31Yvm/2bIdDLOjli48jjSrWlBbkfERuujMjcTHXgpudxpEheF0GfHn0MC9P8RKegEj1knfis54G8lBBhkbnpAy9opy8QaO2aoxEKnBEAETk9PNyQARODs7OyJQUgGX/PgcxpV4McrWRmoAQJ4muD09LRub2+3+uC14TxB9LXKTvJecb0zsE7GR3ILo8geraLz7HclAtrnej6VRYE3yjF0rGn7uIWWro25/WbATgKPex7LXXRA8zskQlC1LUtwzLhdHcEdOV9dXum8IwRdOo6osWyoU8f/d+VJxp8NtEYFuv50JMC1oZIlN75V3pbUA9f9LmK6ODLAlXKRAReKqVo+X9spM9fAfJw6k9NRIwBC4IiAGkFXn1QnFwHQ41R/HmRqoPkpAkQHjo+PN4v0RoLsyq6GAUQAbcLl7urLoUu3mc+hwCkG9RZYdjhyMAqDaz6dhwOFDuOoRFb7LxlVHCNN7SNn5B05xG9NZ9f+0/tYFp4rFyO9ovqBx3xSss5oHAoZYBmsqidjUz8g5LtAidls2Wb+d9FbyFrnVQNKHBwxcQS8M9xIL42tUd1TeR0JSMY92TlHTmfJzSympUS9XCgwVZZ8PTof3pYr8IghJWXF96pgOIOVQjwYMEoMZqcIOjgF4zpQhY3r6nYZ5Dl/jhTgfwUb5ATtR4R9Zxk1Kx/IBUK8M4Ppd0OVKoMJEXvMrEBGXqsqGiUCHanqPP/0n0ZouqmF5PWr8uRwst7fkQ5W6hpZc0pWPUFW5K4tkY56k46oc92QVpLnRAoOhQgAzijivDo5mM5SYstwpJENNJ9LhIvHyFJCwAQgOW6uvpwGrndTxtw2mp6DcyK7aAXSVNnqogSalx7zPdqvTk73gcVkgAugbEznT5gEpI6Y6ZjksbiyKLhsqvxVsbPn0LE21xas3DsG5+rNAyR5bOpJpY+GapPid+3E16T+cv+z8tH3jeM/t5jpEKEGljchcmTAeR+Q/a6+yWt3oXoOp6scqJJPfdwZSBB7nOO6ajSB0+LV4AyQwW6jKhfx4HZLZEpJgD6S1hHeke5xxudQofpDd9Dj8Yl+TFFCPY/rEyFwYDsAqKFLRIEJJxtzJexd3loPR5LSeNV2cOV3hp3THEUcUrukc44EdNNa+8Ci+FFSNE4QXGc6NpO+kyeTypEaJXXMDONySKSo8zTUcO6Cjtk7L5bvU+Oi/ztj49Lg9te24+ecq7Z3rFsSUn8JzLY5Eyr9dGSAn9lm70k9V/6PFWMidlXbO2iy8XekoWqbjM7UH33IhIDLqmVBHvh2hIDTUhI4IqWdp875OplKxi4paGes0v+HShDY2CPCifM8PnV9Bn+YWPH4ZSjZcu2JcrBOTMbV3cPXJA8fdVOgHo4MzhABBy0Tn3c2w5FYLWP3m/NMREBJwT6x111gXISAv6u88efjZIQSGXAEg6Edmrz2jm11yivl6/IYXa95sheIc0mZqpEAXERBr8Vv3spYB7+mjTrB+2PvmacJdD7zUKBy5Yyr/lf1dJMTfk4a1zMpcoQA9+KcyjW+lQjo+gtXPoAVlCOrjrwib/bUlJygXNyGSggwNYT68jfXj6GvYB71HdrOnVekunIdnNfqiMghgcus3jOXnds/yTfGaiJUANoqEXz10lM0QO/hcYV8OD2uU5IPJjZqi5YSAc2Tf7s0Ne1EJEbgOjgSM2OvdsXet4SDcnBICspd41hUMoKdMVbjxf/tQgI6NufO7dJxzpi7+qsnz8pZDUs3rcDecApXOzLAHklVWYXD7XFIZABwZLNq+1FOJmbsRemGKc7ocz74z+WvWxlrtIb7Ce3ryJvKHcYHh+udPHJ5lWggXxgBfopICcHx8fFmS2A2tB0R4HS5nM4D0ghLBzUAnUeleqQjBocEVy43ZeVIJPpXZUVJ8XPKNnu/GvGUntYP4IgEG1Tcl4x1VT8F3pVFDbRL25XTQUkcp6+fl9Kli58mcGxPB3rHKvHdMamlnrkrpzvm37s0pqsft0mX10wH8uDTAatl4HPc/mogNB0XAncbETkiwGwfEQAgzS/jv11Y+UtBy+iIwOj+JKP8X0de+fpEwHgLbSVs+gGS1wKwLKaojUYGQAS4PM7Tx282KPjN57UsyDMdL+kHl662S5cep5H+O0RoeZ0XqWNUIwYwqGxYtY9n9WYK2c/cVzW3EyKPM7fWgK9xxlb7VCOcjiS49Fi3pfYZkWH9zcZfX5q31LmcxaIdCLsBkTxX/Ic0lNV3nv1s3riGv7tr+HfyEhwSg0wKqfvu8nJGig0BbyykRsx58XyenzrQpxFGZED70THu1A4Q5teEk1HX/o6BO08Dx+475a9EYPTtvHSWAZYFlkeejuB+Y0XDxw5QrA8PD1uPp8Fg4BpXT5Y9nRrRdlLSXFVP5r/xnby7RB6chzVSpDMK+5Cgegi/td9hNFmeVK4c8X8NIpRk0o0zru+MN69pVW1PSyiJTWUa6b+kaxKxUjlNn32TAGARGQBGwpFC2/itbz9z+TgvQvOfaZDOUCt2EXrXoXo8yi958eoROi9dowf8n+5GyGnpZkX6bgNNS4kA1zGRLP24d4b/DiQ5TMyfywsFwzvsKRHSQapeQypTVTamLtqmSpyJG65xysmVFR5HUmg8LYI3VwJMDrpxOgNub1V0+s55592hPJq/6wdOpyPnOKcyc8hIjglPyaqOwX8dGVBHQL9n4TzjROBS/bp7XPR05l4QXr5vVJ4Z4q9l64iwEnN9+VR6Yd6+CcHOrzBWr9OxoH0MoFlj3jVQMtjdPbORiFF6Ttnob1X0HApmzz29f8ARBF2BjnMaDeCNi/Bf6lM1lom1AjpXe4iRgaptw+E8quPjp1viMrlh73rGi+3Kl0KrM2NJPV5VLNhFEt9cfs0LdcJ21EwI0B46JeUIYConf7spAr4GZXXEpWvv7qOy6tp7iQN0CGCjxu3CMu0cD54qSORA70Fa/M3HGtFKNgLjq6p/N8GIOHTTEt29S6czVCZQfhf96vLgsjiSnojAzHTXrlj8aOFzB4UO3k55sNfRVT4Z30QC0m/ACfeM8e9IAaeTIgFKAni7Yf5wqN8N1NE5jTowKVBv0ynQTmATe+2Mw0vDKUOA63Z0dLQxeKgjzyPyPWnOEOfcMZdHf48UkjNoMObcV/wKae4nfr8EX6NlVGWORZIgBC7q0LXpDNg74zSqtonCTLs7fdKRAv7fYUb/HBrQJyqHGiGo+iV7aEu3jsDpk/RhsK6p8h4yRy40UpyIHv/HeeGamfUGXbt16AiNlp2vdc4Cy7CSAfft7Mo+sXjTIY0KdNAGcczGVcwx3JS++90Z/RkC4M65wYXvGaXilKYzzu69A3zMC/6YECj7Tgpa20BJgb5QyM2zOiOTvP9D8KicskpyCa8X7cKs3g34kccCuKmzLvzaRTD4fn0kTxUK+oe32h5ND7C3yAaE83b1c+PVhW95fKPtOF20f9Wvxxg5pJ08yNkPX8/lcQbmLZEAhurQRA6qtheM8rVMEJyToQ4G4KIHuuOk5snjbzZMv2/M6CrVjXxfpx/4t35chJWJgJPfl8AiMuCIQGrAJID4TkynY7OdUe/SGjUg5zFThxERcPk5EuAiA25aQN9BkBb8OeOvJIQFTsvqPFRW4GxMNHSlYdcUoXhNaDm4v5wC5E+CMyCAIwA4z8ZOCSGuZwXK/ckKQr0P9vqZACgZwPX4VhKA80wC2HPk9tL7UOfT01Pb/xoWhvzwy8Jub283x5BzF9HQqRpHcpyuGBEBxWvL7q5QHZZIgX64b7WP+RomtOr5Iz8lE1W1td05X7tPY8djZ4ZkMNyY17ql6Y2OfLJ86rdGV1O09aWwmAzoOUCZZpVnUTqYZxmP+78z/COi4eqiwu/ud52r//F9SYloVEDn80EELi4u6vz8fPPhaQKODHBeUNa8+U3V9mM3Ll/eLAh1cKxVSYHrP+dBLJmb2yc6QqLlZkP38PBrG+VR2dXYJe+Jr3M7P/KiT02Ly8uEjuuS5h35tdyODOI36guPXAmHEieWJ9fn+hSMI1dMWEAEmAzoNEfyqHQKhOupZNX130sr29eC02euvkoMVB+6YxhaQK/DOf6PwdE3jRClPkl2B+m5fLmcPG6cI+WiWfrbOYpq4BMBSGTAfc/ax31gp+2Iu4Ua6qkwXMg5GeuUphNgfM8QAlcnHSBJCJPxd3l3UOPUTRG4BX5MAlTBovxuRzcoZ1Xkyto55OuMi/YhwxEOlPO1vCvn+ahy5G8mLpgzVwWCdPHtDHraQAhppPArp+3kXccEznNkgBcJzkwRoDzOAGhbapvit+6WyE+t6BMrfC+Tgdvb27q5ubERApY/982RBSURqS11/Lv/3b1vDVrHXUhBIgPJyYI8OScLUJKWjp1jyfmNjDqTfH4yyJETdz6dQ1n0ZXezxr87/l0kANj5RUWdgeZrWMkmxjQy1imfGcM8a5y7waF5pbxT2Z0CVSIARcrTAhwN0CkCnt9X46btzAMOc+I816/elQtPKxng58C5bsz02djBMLwGVEkk78MpK4YL+6OtmKDpsT79gbQcCQC479y8oZND7sOOCMw84qlER0kNl1vXsbAMX1xc1MXFRV1eXtbFxcXmPLcFyoeIAD43Nzeb80oIdM0Krr++vt66H8dMPGbCxZ1T8JYxcq7ctY4YsKF3ODr6taAP9/Jvzlt1lEuLwVErTr+qn5rjvt/FMVGiolEnJqdKDNzvziYij99JCBY/WqhRgWSg+ZhDks6rdJUddZa7NzXmKN0ZDyAxVqTpmGZHApQQuPUCGiHoNghyZICNA76ZcKjCvLu72xAOnf9TwqBt7TxFGAr2El8DLiLA7aV9poaOv6u2PX+3cROiOLrgk73nGRLAhk6fBHDz46xQlygQXR+hkSe3BbJuY436Y1oLBODTp0/1+fPn+vLlS33+/LkuLy83MsZKHcZe5VG/mQBw9OD6+rp+/vxZP3/+rKurq/rx40ddX1/X1dVVXV1d1fX1dVXV5mmRpGhHTsF7gNNVrh00EuBIAdpQDTQDUSrID/JmYuqmrrScnUOqelD1FztDM4Sw63ud8lY96+b+3Zh1Rj85nb8DR4/vVeJXrFixYsWKFVN4nRVdK1asWLFixYqDwUoGVqxYsWLFig+OlQysWLFixYoVHxwrGVixYsWKFSs+OFYysGLFihUrVnxwrGRgxYoVK1as+OBYycCKFStWrFjxwbGSgRUrVqxYseKDYyUDK1asWLFixQfH/wFwpnKB/HnzhAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDrUlEQVR4nO2d25IjOW+EqT7PzO8H8vP7cXzhC+/uTEs9LV/8keqvUgmSpT5I6xUiFCrVgQRBEEiALGqz3+/37UpXutKVrnSlK/1j6ebcDFzpSle60pWudKXz0hUMXOlKV7rSla70D6crGLjSla50pStd6R9OVzBwpStd6UpXutI/nK5g4EpXutKVrnSlfzhdwcCVrnSlK13pSv9wuoKBK13pSle60pX+4XQFA1e60pWudKUr/cPpbvbGm5ubdo79iTabzeG797m5uVn89udHvI/KT3WQN5bhxOfSb51rrbXX19fDOfG83+/b6+vr4rffq/N+T3Wc5NGTUZLjqFwvb7/ft//+7/8u6/gs+s///M/28vJy+H1zc7P43N39exiwPyRLyZ7Pqu/u7u7a7e1tu7+/b/f39+3h4aE9PDy029vbdnd31+7v79vt7W27vb09lO/64XVUdd7e3h7q1rF+67nX19f2+/fvw0e/2Q9qr/jT5/Hx8cC3yla5rf1b1/h5eXlpLy8vbbfbtd1u17bbbdvtdu3l5eVwj54V/16n+FCdqm+327Xfv38fyttut4fy9VE9u93uwA/brfpfXl7afr9vv3//XshXbSLd3NwczrGfJY//+q//mlW5D6MfP34c9eVms2n7/f6o/9faZ7drOse2e5mSBfvz6empPT09tcfHx/bw8NAeHx8PxxoD6l/xqvZIh9R3Pu782PvR+5B8crxpHHIs6VhjmPfoeemE+JUuPj8/Hz4/f/5sz8/PbbvdHtqkb46Zyj5TLol43n2OyhSv3odq4//8z/8MtGEFGFAlXwUIKkfbc8wUBr9n6joFCFQOPfHgxqXi0QeNFJ6yp8GaAQjp24/XUA8EJKOkNlYD97NJA4K8aODrk4AA5ezPqkwZPDlUgQGdv7u7O9If1uMG0I2hD2o3aOKPxpWAQI5EJCN+d3fXHh4e2t3dXXt6elrwm8CAeFJ5DgTu7+8PDpuGj22nrFQX62ytLcAGy//58+eivwRGdMx6yKfK1PnUr9STBAYkt3PQzc3NAtC5rWutLa757+RI+NsDp+oe9mUClNL9b9++LcDA4+Pj4RkHluo/tZFOk+CH44S2ROPD5eVy0jHHjh9LD90uUCekk9J36S11arfbLfgReFG/uH30/kk2eeR3qyBUciIPPVoFBr6CUlSfAAHvqaL0VG7lqNbymIBAz8FXA433tFY7zB7/Hi2wDF4n+bmZrIA/x3pTPV8JHnskA1P1Na+pn2ho3JnSOTNKYqaAUS+j+gp0MPJxo+FgwI0VHaCco4AAI2OVQYfMjAYNXJIVnSzl4KBZ9Yo8E8MP26Z75SQoB7WDGQfJRryJXl5eFn3n/aiyvW9dZ8j7ufSYEabraWv9cUsgx7GYbOyoLBL7TX232WwWzpTnWYdAgIPXKoL2dszwWTlHAgv+TrZhJBf3Ob1gsccPQWpqY7K1FTlwl97O9utqMFAp1UdSDxDwfAIJ1f3v4dnr4TlHok4JufaQHJ056/C0cc/hu/EbtbnnKJ1GQCCBhXOTjA+dkByLp/DVBjoMB3oeacw4OhlL9r2DAfHD3yJPazKjkZyV10MefHqDoIBggG2mIRXouLm5abvd7uhenfNoVu1wOfo9JNV7f39/FOXQ+LlTFxi5u7tbjAM9n+wE+59ZmdbOl9WqjHlylu5Y2Ae9cVkFCyS3sa7n0kfqF52kyiTorYCAt91l77qU+NT1yid4Bk66VfkPls+2s50OkqRD/E795TKvMgfpuR4o9PpGdFJm4CMNfE/oftwzID0Epusfge7V2a3ltQDVM7My8zUDaTBUdeiZChTovvc47B6oGpV7LmCg1N3r6+vBIacUo6hnENwY9ECAZwcYybeWwUA1zziKPFp7mzZiSpsOwnlSRkApXYIBZhwSGFBqPhn6FHW74RyN19QXlK2+CfLEKzMNIp8aqIByGsuXkN1qLfM6ynjNljNTN3VfuuzrPhwgOz90vJwS8DVRnNpRP9P26neiFHARhJIfjsHNZnMAkdXzbD/bLtDpa3/0DAFBcuBuN0d9N+qzU3T2rNMEM0CgOpfAwnspdQ5/V6gzTRH0ytJ1nq/m+hP1wEFSqsoAuvOeoer+KtK4BEOqaFApaB4zM7AGHFTn3CAyik8p+BSZcN6xpxeuQ8wQOECQrnKuXgCAawaYcUh8kn9mCAh0kiOoZMbyPc2ZokeXAeXOTA8NveQgPeiNnwTAK734KqpsUbrmNAMIegFWa8tpHtdnAgEHkuSBYNEXBs60nY6UNi3dX4EAB3q0UcwKcIrL1xNRHpLDw8PD0cJZfhzAVPovnlK2NcmkOneqzT0rGKhQ7Zpodfa+KvVSRbIp9TbqlFmA4p1d8VoNFp8mSOTlE2E7jyPnXSnkCMWmcs5BXGxElO6L5eTcSG4YvY/1jEc4bgC9PBq3BDRdpoxe0pynyiaoubu7W5Rzc3OzAAO+mM/fJnCwqnJVp8qXwZRx5JoCBxGuA7yu3wIBWrClY1+lPRoniRxQeN+kxVbnmiJobZylGo3XNVmAnpNh0JPAAKcGWnvrE8mTb0RwXUxr/XS2O/aeQyUlfauOxQvXqoikmw4KCAg0fhLQ0XggIO/Z/NT2nq/we3kffdcMnQQG1jjrz6AKKadoxikZ2VFbvHxPCVdRpRuRdE8FQvhMSvNXyHjk7KupgxElI74GEJxTX+Q86Kh8gVhr/3aedAZyyoyuRa5vriOuKz7PL6NKEMHBKyPk0bKfZ93VFATrIxDgFIG/SeBlkUed53SBZwVo6FOmgTw6v5429jUU7BdStWraMwSV83FeLoHIU7ITafz5sT+XnEsCD+7APOtFAFktFlQ5BAJpqoCU+mdk90g+Tnt+QG309D2fub+/b60dZ4MFBPb7fXt4eGittQXQUdukr5Rn1V8zNPJrDghm6WxrBmYRaoVsK2Ps986kWHpUZQVGvFaK26s/Kcho+oAGsopgHBSkLMEMf6l+f/a98v4MUjsVxTOaZ5Ttzi4BpqRjKRXJuqlDI/klQJtS5B7xp/FAHfQoJk1f+PQG9YZTLTpHo0dD7zyzLQmkVCDBZSd5crqLhtb7LGUMRilqv5bA81fSjN3R72rsJeefoubUH3R8KRvg+wh432u88Tx/U7fY3jXOrbIx1TPsWwJw2UTVrakDTiEwc6jx1Nrb1AL5Vj2ux5Qx20ZAlsDZqL2kU8DsajDQY3JtObONWtPZLtheuf7sqTRCqx7RVLxUxml0T+88n50pp3ruPedF5wIG7kwVCciBadMhvX5HveK0QmvtsACR/UKw4QvrNpvN4Zzu9zn1airIDYfu1TkZKUY1+mb5jOTk+H1DGAcgkgXlR5mlj0d7HtmxDXTiFbDwslMUyT5S9oNyEjlfDq48C7JmnHwFjWygjpPTT/fN1OMAwccFQXAaDw7ofBpN5HPqFV+nRLtV0FNlaVU+p7b4DDMDGn8ai2qDl5dArbc3gQI/5rnPsKXTYOAUpNGj2cYkhfRO8eisRxUIqDILVfTCMnpKWmUIvpIcaTpPo4xCazllV9WTkO45iXN2zA609obofa7bz4kqHeQ1kjsXUoo2uBuirsswyXj4FBXP+VQEIzutGfCNh+7v79tmsznU3Zvf9wxCSp0mIMBx6vsu6H6PIGecP+WovQio38l4jzJjM2tyzkXV2FvzvL57zr61en8I6hvtSNJ19m/lFHvt7NnWWZvfy9Cm75E/SeNWr74yqyBgW40LUQ8EzRB5fw9Q+PIFhCNGewi2UuAK/a4dNC7ICmWP+ObzrR2/YjUyNM73Z0cpn2X8Uv+dgzhI5RT8+m63W2QBmF4XVZkdkRwaFw152rwChjJAclSeUhyBYvKYjHbaBIlTBl4eHTUjN+ffo3o3+rzP79e9qocGVIsFtYCQ16oyJUfKopL1WqB6SdMEaVzN2LrKTvYAQpo+4rQAgf/IqSVnyPp9SiaBkySDGZ9SZal6/qMHBBwQ8NVCz6RJfznGE/iodGxGB6p2V88n+lIwcIozmEWy/H0Kck6IquKX9XoqaURrgICnlE6lj87q9KgyTOcCAq0dzx1XIFNZgJQNYFSZohv+Tkah6gN3vDQY+/1yz4CKf51LBlu/fb8DLv7ilskeUROUVPP8PGaKuAIDnCagA+G0wMyGNKn9vu7DbURFyRin1Pe5KYGYNeM7OT799qiYwNL3yeB95MMBAW0y5el1S8eqTGrqT7/Wo1Qn201Ka3D8WY6P1tpiXCkbcHd3t9hy2fWzynA5z5RPRbOAsEcng4E16Yg1jmDWKVfAQNe+0gGK0mKjNUakGiyfTadmKtbyeS5A4I6ag4/zfikbIGK0n6Jbnw+tUqNVqtCNK9PdlbwZVbMclcWFgb7yu5f6dWDN6YmRUxVfXKchvtgGyUVtVj3+Ry9pvUBKQzslne2Bax+zylRU938lrbW1s06kCqz0XemHv2bXA9sj0OJAINl+z5D5NeqQ19mr2+9N089VeXye4006fH9/f9gWWzIjCBZPLvsZPtfQGl/46ZmBtY2YQa5JeUkj59WLXHsDyTuRhlKRU0Uf3clr6jk1w9CLxKprl5YVaG1prKoIQ33KCChFE+74tQCRoECRgYwBU9xuzKpNclzPeV3nCF6qSMa3W9a8OjMO3naPfBLo4UI/3wtAf1Ykmd/cvG1bTKPo/PYWJXI9QNJF8kMwwX/E04fPuQPRuoX0iti56T0RsI7XODj+7q0j8TdyWuv/V8uI75Ht5z0V8KimHCryzcccFPRAsO7jBlz+5kX6vw0fZ1X5M7rnNtj92QxdxB8VvQf1fEb9vU6fIRqRU/nxTmTU+FVRygyqHAGBSyBudOLTOhzkdOrVfDOJ4LACnD0AyohL306cskhGJE0LuNHkefLuKcuUJXEZ0cjQ4Xs2wCN5BzVpflkO3R2+QASnarwfPMoir4l8jKbpPl6/BN3uOcw1VDlS/3hmIDlF9SPfxNFv3Vdt5DVqS9WX6X5O8/g6H/GZyNc+pPZXIMgdrr59nY6AAW1LAgWp/FFWaC1Q6NFJf1T00VQpeVLQCqVVUfx7+GFklMpUnRwIyYCk9FWSI5Wr15aRgvv9p2YD/Peaa5dEvvBM+uNpOzow36M86QIdCl/FkyHxiFXOUtd9YSnr83LYFpJPLTBqJ68CFYrMk8G/vb1dpDYJUlRu2g1Qf+uqvzBmer/nWJx/ZlvUBl+MmHTOswL87c+w79J0Huu/lHUCrc1PFVQAPkXWCTx5f/E/CHzxoPiS7juPBFgJ6LojTjx7+3uAKAFYB5bJdro+OlhyIJsWIEvnUxAoMKuxxQwBx4i3LbV5lk555lMzA58BHD6CenxVg4bP+fdMFDkiOodZuaWtM8kvkaquv4dOVcxzkxxDMlju1H1ujx8+I9JAT3PyuuZO0OdgeV3ZC0bq4ik5qM3m+K9j+dE9PTCdwDUpOWbKTOd93YTz2Rs3CSj7Oeo710ukwMD77b3BwSUBgxlaY3uTblBHmf5mPzJr5RkWgm1dd3CQsjGiNTbL1zBQf9wGevkJBHjGTpTGHwG/j1HaBp8mkL0n2P+oYLaSwYhWgYG1zn0WzY7Kn0XEfuwR/loa1av2JYVNBjGV6ymtVNYIvFDhHfGO2r1WLqnMSwcIGqikFCHJAXO7Yl7nBkUso0eVM6qMr+6V8fW58wRKkjNke/nHKypbRJ3hroQJpKRPFWElgOGpz5QZYVksh/em7Iz/5sfXAaTXE/lb7foIIPERtNbuju5PoLAHCBwc6DsRAQD1OdlnUSrLAWOyi1U2LTnCatz0ZJUCLZ1nuVrPUk1ztdYOmYEKmHNcVH6zp4dul1nGp4CByvj0GDyF0nO9iMbPp+iP5c4IJw2SWRp1mijN4/rAmEHGXuZHRjFJZklxeymttaDwoymtRk+DrpJ/L+3Kd/SrT3KwKoPX0muEvvjNnbDaUEVayXCz/UxVpixIZcS9/dVYdEpl+3SEjj0L4M/P1JEojZGq/EsABKPxU/Ge+mtEIzBAuzjDm4ODBDgqIKjyPZL2e1Nqv7XjbGvyXyOZuFNNYJhA0zNj5I9ZR32YzR3Z0YpS28n/LF3EAsK1VHVgDxD4+VGk5uX5oOjxoXpayxu1tFanSPms39cjGsxTMgQjGpUxM6guwaD20LNHuq29bVLERXwVJUPnQIFOtJqXpSx72/LKALnO9pyyOzemd6vpkQQwvF16v1q8ufGtHIuPJaZaN5u39TgEZSlVm469D1VPBXZ6dE7dneUxBUAzZXkf9PTYAfCIt+S8qzHh9tbHY7UQkc+6fWZ/zwRJFTDhuOFUAH+naTQvy9ubxivHzQgczOrGDF3UNMGp5SZjle4bpWG8jB44mHHSXFm9Zl1BDxxUBr6XEagUqTKin9Fnl0xpAMsR+T8LKhUolK93itPzospZuzPlfwfo/rQrn/jgugIHBSSfX/cMiZ/rgQHnm+skuLbBxxkBUALW7AvKWXrtBlhtT1Fa+m6tv7EQwYjz4uf/DuT96teq+1032WeefXJ966Xtvd9Zls/XixI4rXgmiOY3n/XXab2eEbme8bevm/FgzIO/6rMGCIinXl+voWkwcKqDWOOAqyikuodlUxHTPdXzrKdCqBUgOEUmPTkkvtL1dH6kCGuiqcTjjKKle1y5z0EctK4LTCP6PgB0tpvN5rCpiJ5lOZWBTUaAx7rHdwmUgZRheXl5OUTfWs1PI+DpxgoYOH+9e5zfahpE13lfMobuDCRjnVM/8e0cHfOPYDhOCByqBYzsx8SjZ0v8bYJzZrXW2BjXbZ5Ldmxk75J+0GlXQMDPpfo9K1BNF9D5ett0f/qzLeeF5E42AQEHzK4j5Mv/U8Pv5RinLfKpAsppBgg4r++li5omSEqZ7kkIsPr2gezoK5XtxsvP9dJj7GwSo5P0u6KKV7/H01YVL66ofl51jdCoP9MDF9W5ryJG0h4RqG85IH2eUR86ZH+TQ/cnB7rZbBbrAu7v7w//C6Djx8fHxXlOS/AVPq1K1oIkbfCTjLjrrcoTVSCGjtnbx4hRAEa7renvXCVDd8iMNFN06JEW/y+CvCdHVTlsykA64JkClwH1hADlEikFKdU9o3ISCGBfV/avmjqtbCl1oLW2mHbgs5I9s0NeR2+qIVEKTtXXaYpQlDarqoDAaJ0RxxF1033TyGZ+tE09CxiYcXCiHoL172QgZqkyognBVka2N2+vczMK63z1aOSE073nctznBAQVDzQ6PgA9c8Botpcu1T2uT4z+5fgfHh7aw8NDe3p6ag8PD0fTBXKK2+026p47KgetrbUjB+xG0J27/5lRAkyqV1kL7fTn0bWI6yLcwTBCYqS/2Wzadrs9tMv7kRkBGmjvX3durdV/F85yKdtL0F1SL6jRueSY/f6e3UvTOh7BJ5uWdD/ZT93r+upt1NjU9ZmMrpfh305JH6ogijrCc6leypI6KmCq8wTDicfR70Rr/ExrXwgGkiPv3efKmzq9us6y2AEUdqq3p7iu4PxNZe3NLTI6pYGtsgM95W4tI1qf46xSnWtAROJjBlhcmgFNgC1ljlpbzrP7AqGUDpyRoYMCgYGnp6fDh854s9kcNiohX6rTIzTyk8ZPDwwk0Ot7JNCRaq2EXrfkX7iyXPJCQEBQoG9OiYhH31tAGRoCEGVHtKaCACGtN/AxwfI5DZMM/zlprXHvlZFsHV8tTX9m5QsHOY6STea19HH98vspf5Lbceqm6zbt68w45bN+Lo0bz8q5M2dmQ23W1Jd/vCyv2+3U/4vMQKIEFkYAwJ9bU0e6lpx9ldJMPM12jvORAAQNqT9XoVwqoKPaNBCq387fDFqdAQLnAgccqOKDQMzRuu5Jzt/Ps22O/OVE6OhSX1SROXVMzo7b8qax4U7fDb0bmlS/7zeg515fXw/3CARwmoBOWMaNOuUR5/39/QIgMCMgmbK9Oid5sA/o9NMn6R71IvVP2nP/HFTZLT9f2aHKVrq++MfBgZxZCo5IVeBEferZVLdzCbSzP3oZVwZovaBmDbEclc+AjmAlvYnkWxP7WHV7W/E9AwjWtO9iwEBrfefP42oQJIUgwuwJOSkvj3VPQsWubL1OkgLQoc/IJZ1zZ5wWT80CgXTN0emIx5QtuARiZEhy3WhtGQGcAjgrSrJx0JmMr/h3o+Fl9Qwlr1NveY944D1Jd5z/5BB6zksfOobeNIZfd52U3jMr4IsJKWsBmuTgBUZ8T4dzgoGR7s3ayUqnU/DjMpcu8k0X6QqnDbxs3sM+976Ws3R9or12e1cBm5H8mPFzQO5rhUaUfIA/v9lsDpt+EbhWIExtrca51zGjH7P266LAgFNy8pXRqVCljqkE1SDhwGhtiTh9cxVd17cbi14HpKmBSpEdhep5b6OX31p/asBplBobUVX2bP2fSS4HNwYEirNEPUn16bvKBlDXPF2uj0gOzB2i67E7/GrcuFNNIJf8t7b8C2c3fOlDnrytHnkqw6Cy9RwzKwkMSTaVvL2/qn6qsja9tQh/J6r6JgEBOmj1jTI3ft2Bgch1lHUkkEEw4c9xXI5sSTV+CYiZjvdnR1mE5FtoO8gnAYzuFR/KqnEs9aYKeqDgI+liwcAaIFA960rQS5+lwcFyXOkrR1CROxtfPzByRhxgPaV1JeW5Hm+zfM88k3iZfeYzqHIOMxmUnsFMeilKaww84vQ6WjteHa1zXncFJv2ZytFXMtKHf7zEe9xBViBS38kpePSpqQneL3lp+oDPcR3Fzc3NYX4/1V8tFHTQwEWD1edSiI5ydI+O+c3rqV98kWeV3k/ZnGS3K7DB825nktOubJ2OR2CeMqvKps476K3sbjUGPDPVWmu73W4BBAgMKAvy0ANFlWx4biQX0aeDgRlGklPmb782AgLpHkdpqd7WjuefUhTlxEhc35VxYhmzgCA5n81m82GLmjhIZhWnMkY9MHIugypn7AOYmRZH+05uMHupdYIAggHJhOAgOSVPZaZyfB7c5U1D5tMG1Dfxzq1SlYlglKLzSsnvdrvDq478p0JP1ad+IO/UbY6BlEr2c1XkRFlRNpW+uvGtdOASqGf0q+s8nwCBy9V1PE1fbTabRbZAlPrGwQCf0TUHjqkt3idrsrF8nvrcc5hpx8MUBCbbKUDNa9RDB7uSs55ltsHBH+XF+96rs9NgYAZ5nUJVZySlHT3fAwIzdVdAoAcA+NsN/gw5IKiIPHHOqapnrSNe27ejbMIlgQGRD6AKsM1Ggj2ZpTaPwGJ6Pi2Eo1GgDlfGUo7ZAQwNCaNvbvpDJyG9JgDwFfyJVwFX6Sudtaf5OYZTutmvewaEiytnyfu8yiacm0Z2bQQUeC7J0rMCXMzKxZ4+1eOArrX8FoEDDtfdnvN3+fsYroBBFWjpmLa06uPKR/Xsb2vtCFBXQEBy1HXnpcoaVHyO+K7o0zMDPSeXkKAbuJmGpPs9olcnJMWYAQFenrexop5joUK6ge6Ro9qRUn42JUeanOo5eRR5X/ggdQQ/6juVqQHu9yiNrahqt9st5mMVYW+320VkQH14eXk5iqaVWpS+yCmzXufRDSjPsR2M2nwsCAzw4xkBT7e7vJIsmaXZ7/dH0WiKXsmbDC+Nqr+JkPrOqdLlS6UZg18BqpTqJwjgfhgECpza8Q2EZgABr4kSkHWHnu6rzrHtCQhojLnuixIQ9Sxgr35lBmgTCISZidMxXzlMAJllVwDqPXQSGDiFidnIN6HWChxUx1VEn+ahnBIw8PLZJipR+p0odSYjt0o2jNB0vkKLm81myMdH0AwQOHdmoAdGK76r6JXkbffFP3JE0rvkNBlRc/6w4iE5WRkQLkaikfMsA3WI8klAWg7CQZO/SpimO5IOSC5M41eReA9M0EBXDtGjK+dl1L+Jj78TVfZRvx0Q8PVB/U6vvDJzkKYPHKzRoSW77H1DUNda1g/at9b6m0n1ZMNxUmWiWnvbNMuvuW6QZ8lJ5x0AMDugYwUOKpc+i2PBgf1HgIKTwMCaimeQK++tlMaPE0CoQAOvudHk/f4O7Zq2VkAgRaIVERBoQKR6epQQ8KgNXuas4Ztx8pdgSCseEjAcgYJUBp/Tb/UhI2ktfutF1V5P5fgZIbvhSe0nr37sxNcaldngmEhTFr251BminlZOhY6JY4UG1adCBD4EmnvtHoHZvzsl++pgwAEBswTu/Dl9cHd3t7CddJ6sn9/sD+qU7NYIpLHcU/rIA0ie83FG/1CBAbcZmrZS2wQAHAj4NIGAg8r0aeRk0/2aj6cZ+tRpgh4TFQKrro/KT5FCa3Mp9Ao194id7se6/tHEFO6IyP8MgFjLbwUgegb1Uo1q4reilG1hVsAjHOoHHT6/+d8DSsWyvh5fI94TsOg5OmY09JvGnYba5/9T37N8GrzqPX6Xk5eRnJnOy/jyXkZXrS3/d6CSE+X1d6WR7U1ydKfH7/TR9tlcT+BgguTRbMrKzGRpeJyALu/nd0Xkkw6/ag/vcX44JlhmWmshey5QkMYOMwMpcEm+y89fBBgYUQ8AVPevcdyV4+R5IkEHE+n5Cli40a34T8cjSp2e6nFjyLpmDVvl5GfuH6H4SzKulUx1rcdrSolzIxvvZ/WLoljue+8ZAkXhetaNnoNnN+q99jp41Yf6UZXP9iQHzWMvIxknAgsHUCOAk6Jad2xV22YogaVL0t0R9fqj0hsHBYzwCQjSegKBgWp9hzvH1pZTNNT51vL4q4KLkc0ZyUjfzAqLF18jQT3zKVtmODS2RUz/U76e5fKPwECa3nbd7rVxVnc/DQzMZAV07ErK836cfn8Ej15/WnfgUQbP63sEBE7lmwZ1Nt37HloDCqqIcDRgz0E9EKDrdJwe/XpUr3RelaKXDsngVWsF/MPIw6MlRnAyElUGTOe9XVXfVI6jkp07Zj7jTtmnN9L4GukLn0kG1IHBGt3jFE2S1yVRz3ale3iuAgBeljtCBwF3d3eHf9tMmQPqjWdNqfettcMufdKVXv85QPNAzJ/1cpIOaTylCN73WUjg2zPEfk1BgOSo+1h2lRkgQElt5fd79PRTwMAsEPDzLug1Tn/mPleKnmNIdfvzaxar9PibmcpYW+caGjn6tc+cUs8lkQ9IAgEifw3w1t5e3+OgFEAQGNBcYVon4NMGdKbs8xGQ9ujJt+ZNi+ZSmSlSY/t6KXyCgBlZ8zvJPwEWBxNVQMH7q3Rr4umSAW3l5NPvCtwlQNBzihUQeHh4WPztNhcZ0oElHXQgqG8ej3xJ0g0/9nJ07NkAd/rVGy18ljzTNkiuBAL6m28fhwIHJLc/vm6A93nbTtXVDwcDa523D86kqNUAHtXlc+wjpzcLKGbJjZIvUiFP6dqIegj5FPLykqFO9+u4Z0QvyZjOUOUAkrPdbN42gKIjpMOlUektHOQn1duLlDwaSQBglBVgmSNdpON355GmS3qgZY3DTTql8vmKIfc2aG25XsCjMbcVa8bhV1AvaKnu6dlSBwAOAFkGHaNAAYHA4+PjYjEhnWlrb6+jenattbe+54I5Ak/XGTpg8tezfUl2CQg4CLi5uTl6rZLPsHy2jbJUexg8MDNQ2UcPOn28pAxBKmcNfemagR5yT8i+en5EFE5SEjcOPaDBTh8tMprpCLbT6+bz1XqHU2jWqVfOewSi+GzPqJ8TEIwAZ+9a0o80OGWUhPZby/+m5w6a6wVkMGT86MCcRx57ZKLfPh3hhkTEseDzoWprijqSU68WQ9EQ8nnPVKS2Jqe31mH30v2VU10DUj6DZjIZawIlOn7auCpa9ghZf7stIPDt27d2f3/fbm5uDgsK9QxtsKbICAQSUdaaOhCw0/X39EfKPnsGxF+bVEbEZZfAt9qqLbI1lahy0nbk+/3+YC/YRpVF0Ep5MlM3I88RfTgYGDlX/119V5SAg3eKhJcGdZpvF7JThMdFHTPRdronZQXcwZ+S7WB70u/k2NcQEXgPrfr5pODnNqQiOsyRkayipkRJ5ipLOpEi8SSXXmaADpNvHnBbYH/n38EGwYDLQXpOp1DJSvd59D8CTyny7DlmGUHVwcVWMrACXWy3DLDKeXl5WfQH603TBnJal6C3iU4NlEbZATrwFCXr7QFlAh4fH9vT01N7eHhYZAY4TaAxp/Uy3BhLfcW6lSFIetVaO3KABBvcl0DP+e8kh+pNCQICtYsyE3Hs+DSBeHt9fW339/cRjCYeqZ8sg9OOupb0lHaouifRl08T9BD+WqTf2nFEWjkzAgHvABkXPlfNL0oZUhq3tbnthatsA5V+JA8avwRwnK+10Xrl6NJzFQgYlXEu6unbKNNRRdY+AFOdyWEygtebBdJBGaXW2tFUAqcYdrvdwum7Y0xTBMkJuhHmeOBzHEcV6BuBKI9+CMxZhhwFd2dLwQAjNo5lOXf2UdV3vfOXoLvJdo7uqWyYO7a0XoDHWisgIPDt27f29PR0mC7wvQjoDJ0H9r/K17ET18/4tI8oZc8quXhwRkDArADbomNOE7hMOd4IhKrpwFEwxzIFeBMlW3uKH23tTK8WjqKIU4nGqnKoSegCBLxXKR0qtp7rzfWspSpbQKWdjU6TI+vxuJb33v0953lKXR9NzpNHF+TbHSDbkBwhUTvLpDPzKCulK1O5Ip9OYIaA5zw6doAgYr109DJmuoffbrA5FipQkPpBzxHYVMAslefOXwZd/cD+8L4h+GA7K5s0266vpAoU9MBCaqPuSXsE0EFyWuDh4aE9PT21p6en9u3btwM44DQCnaXAbZKrz4XrfufbHSz1dbZ/qr5urcXNlBwcVONWRMdNfaauc5pO/Pq0otrCKTUd87rLUX6P9bqNG9E0GHiP0+5FYqeAAo/CXDkICCh0f97LSsaCithaK6MMR3Tu5ImQxUsCAh6t8VwVQc3IKvE8++wpYOKSjOdn8JKMUmtLXWeExWjDAYI7Ny9fBsN3L/TPbrc7ei4Z3QSQ05jqASbnkc/7eK+iKW9fa8u/HRclmbhRZd3+YRs8wuT03UxU/dXUs51ry9Axy+QagWquXB+BAAEBgQFmBnyKwBfSCaz5wkXOj+t+/qOfykpAmeVX5Kl99m/v7QHKglMqLkeONV7jFAH3F6E8fKwKHOg3j+nT3HclfadtGtGX/YUxv9cOtJ4Rc7TpaK23EM8NHoGEqJoSGKXoU3bC25GiE9VZnXN+TgEFveuzjn8GZIzK/Epag5CdHKD5OZXvi7IcBPD1LN/etXKWPi2QAAAzBL6zn398/DnApGFm/6Vz5M+nIXRP1RfJsY/u8fNVP/Wcn4hR1IjODQhIychXtrQCNwSqdIYOUqmvygBorQA/Dw8Pi7cJaN8YZCUQ4H7B7TXXp3hWTs+lDIPrR8+mJkDuaykcvDsg4Pw+ASbHhnYY9X1KCIQ4jniP1l0QEPnUHsc35TCrv1/+NsGpIKAa4H5vcri9+/RdzckozVhFRzqXnme0I6XtRSG8t3JAlYH1qYvKaHqkdyo5LyNkfm6qdC45rqodbjCqfquiK6Va+a62R1OqnxGGAwH9y6EWD6ZFhO5kU6TtUSHbQYPmxlKkunr/XJhk6NMDSfYOgtxIzvQV+8yJawnS2L0k3U5gJv1O5ytAkByd9DFNC+hbGYFv376179+/HzIDzCoQALS2nOJKbysQZFa2vQK2uk6w4M9SDp4h0HcaywkQEDglMKDIn2t/1PaHh4eDP1GZ3IhI5fhaAWYHOK7dBlVA8csyA4yo0zV9pw+vjeqoyDvbG+4oSd+9SNef5zyqd3qKhDxNQxDQW8+QlHK2/T2abWuSz2ymYG1dl0TqL9clP9ZvBwUc3Cnd2FuY5GlVGlHVrUWCfHvAswPVGwVqH9upDw0KVyp75OjGj7qsuvzPl1g/bYQDAb1OSZ5Utn8IMFK2oOov7zv2u+uB2lNlJi6BevpZ3Z+AAHU26ahAARcMVtMETKW39ra3wH6/P0TEim5TNCw+FfGKp2RbHQz07LDrfJIjz3M6gEA5TRdQnu4XGABqTHCs+6JY//jbMswmqE7PBCQb9qWZgeQAycwpQKA3sCs05Ehe9/SE4QM8ZREoeJ6nwRilqQgIdCzjq+uMxDxl3DNgVZuSEVsjixElxJn6Yg0y/Szq6dsoChFVUUI1z6iMgAwqV17rI4OrRVeeimyt3jzIFxNqvUByZN42GuwkE85jEvQQCLA8Zi2YGSCllLA+WjRGXry9CZxWfefnUt9WYCOBj0sDAxUl4NMDAnS6vj5AIIDO//v37+3Hjx/tx48f7fv37+379+/t6elp8UohHbT6VRGx6mGWQOcZSVNHvV0J+Dn41HWfTk3O3wM3H78VkPdxIZLe0NYLDAkEKO2f+kv1SwaeRdA1zw5QJp5p+fDMwMghnQIEquffQynK47nKYNAISdApvd/aMjtQTUOwbh1756U2JwUj9cBTAiXVvTP9ucapp/tVdtXnX0XuSHqAyPWEz9CYejYgzYX6bwIJAgFFVrzX+U6OKxnBKkpO+sbIKT3DjEUFilOdGiscR67XKcLrlZ1AjjtwAZNKJimVTJmmei8FCLhNqI6r5+j89TutZ2FGgIBWQFYA4fv374dsgQAE9eX379/t+fn5sAWvg1d31IyuW1vqKwOlBHA5Fnjd60iyov67Q6asKMPNZnO0oJB1Up89iEh+MPnCyn4kX8rnfBz3fInTh6wZcEH3wEC6r7U+4h/VyzLc+eu+KkqiwU08KopnpEMQ0DMYPWDCchwFu0EWHyM5SCmTE+9FTOncDLKsZH2p1AOkrjvVcwkIMFogOKAR836oHCn58f7wSLn3GVG6T22UQZNu+jv+Xs4aSmMwlZMAUIri3dn7s0kmla3p8XNOmhlTDg6Sw0lAtnqNLq1xYVZLwIBvE/hUqFLku91uUY+vKZGucbog8Zx0T3rgr9aKD9rNKqDTt49xf7uCGQKXpcogGFDWw69X01+9AISy8H7WsdviNfrT2olgIBWeAED1+z11JlQ0KjMZ+HSPiMq82eQ1A/6M/6bDZ900tHyNRnU6IhaRHxnoiqgQs45hhtimVFcPOPD5S6QKwHpUn6KFHlX9UI2RlIYfAYDEd+X8nCc3lokH6SvvqWTI52lgk1Hz6ZWqTJdFBagSwGcbkw1KfejPn5PWjpkKFHh2ZrSmxdPi7iDTM7RRjIodJOu5FLj4h28peHaJGTKto6Fj9TUmlA2nwlRWGuuuqw4CdMysL4/dV6ku12fPcLlsOLXAtw4qX+zB7Qx96NsEvYgqXa+cZ1VmD4SwTEdJ7hxTpJCUxo1r4nGmDV5uj0fPFFRUydR5TfysNXDuXGacPp2U83wOqgZm736P8Kuov7UacCZnXg1679OE/BOfzrPrPJ15AifMXqS6ezL0++UQmPbVNe6x4BGX67zPJXu9Dt5747uSE9tdTfOozHMD2VNBgQMCX7iaouBqEx7X/QropSkAB39yaG5LxTd59QWKuodAQHXoD5E4BhJoTkC44tfbndL1aneytT7uW3sDMr7OxrNepGqaIPm5yj/06FO2I64Y7lFyHjN1VWX1AAHvcyAgIrrziH0NX2s6xfkdAQNmCDhvVfHUu55Azcy976nzXFTpRNJZGtFkFFJUyYHP6CW9JtfLGMjApAVH/ox/uzGs+oLGNY1d8tIb16yDfDPiSinXBAZUhmRFOafMCX8nUlk02uxXyvYU2/XZlEDZzP3UXwc7Nzc3iwi/ioQZkae6qe90iJUT9myBA1beJ/4eHx8P6xd8kaKAAPnjmgT/Tml29z0pC8DfTgQWVaYqBQM6lwCBT3H0+pLZmNSeWfqwNQM9Q5IMB+mjkXcq6xSn5dmCtXyO7uWUAZ0/6+kBgt46AudjFgjM/P47EgdIAn9OafDxfM9hcNDr1TmttuemI47+vczWjp1wuleGtbetbzpO7fV6Eg+JJ4IAHe/3+4WjT5Gnr85ubTnXSzDhMk7flSxVfopEBQhmMnKXTEk33XH4ehfquJ9PuiC99qhWst3v9yXwJY9cMa9+8DHH/0PQOgXxJyeqPnNg2AO/I/lVGRTXP58yrsA/5ZCyAL1sofPnUxM+JaH7RnJI9C4wkBBrMlqinsN9T72pTBqpmft7vFDgp1BloAkwtP90QoNrnH5rx9sWJwM4I/fZvqkMczLQl0puiGgAUnTg4EBElK4+kOHcbreLwUznmKIvjyDcaJJfPUcgwrY5GOpFSuTF5VA5G9VLp9Dact1AAgE8xzHLDYmYBq4CDO9L7xtmK3ReYOXl5aV8K4RZhHPQe2yOAyHvxwocOMijs+KmVwRYDGh4H3fGTKCAAI3ZH00PPD4+LjY30lsLr6+vi6xAb6zQB1Ce7uB1vRrrkkdaH9BaW7Sdu4P6/hsuj7SGgKT+8UwDF/ayr9y+z+rQKjCQBKfv9EnPVA5mNsXRQz89wzA63wMNvWhqVNeoI1yx9AwzAlUZnCZwo8fBrOtJUSoUWtFMlHlpVA0SEZ0ZjQhBgBsJPUeDw/oYCdzc3BwZhRQ5JQPpfLb25qBpIKhDbCv1iG1MbRg5fXeUOvbFWBUpzZsAAY2u66/klhw2eXMZJn4S/9wQpyrvnDSyb5Xt9eutHS8STfKk7KnHdPDPz8+Lewje9Ns3yEqvw5JH6eXt7e1is6MfP34cNjgSGNCri+JB9STQ5v7IbaPfW02R0D6TCHy57wcXNUp+7vjTOoEE5tN45DRcBX7W0MmZgbVAYNaJrBl8rvQ9Hll35RRIVcrJhe48zwCEqi4ZQW7IMQIEo/Kp+MlpJT6q8tOzHgX2yjoXuQycPHJIDjGtZubz/Pb3qFUundnd3d3ilSumPxld+yIn35aU9aoeN7ZJHmqzO8AEDlR3ko0fp3GjMnxemvWmqJRReeKpAi7u/NKY3e/3R38GI8Ahx1Y52K+kyq6kcwkgVVMAKRsgIghQBK5sAMEwgcLDw8MiS+DZAQECj+DFN/ngRl3a7EgbHD08PBxspECB9jJQXSnip4zIf0U+vqQTfLOMZTDK96yAr2Hw8VtRLxvFLAK/3wMIVm065Io5AwLWlt8rc7auNYKoDPuIUtSwtv0qg05fQCABgjU0A3jEA7+r66NnRoDgXMbUydvT4ys5wuSUeP+s7nlKkFE8FyO5frF+7Wrm2R9vK9cSkMcEBlLGoOdkaFwrGUuG7njcyateORWuJZDzIjjjVAfvY/bDwZTazl3i3FnqXmYoLo2SXfTflc28vb0tn/WoVQ5NQIBATdceHx8PUTkdnZfRS49Th503gWVubsQ3CZ6fn8v/+WBWzMctFzAmqqJ0H7fukCswwLaOAqcKpDEL54tiqd9JV0Y0DQbc+FVKmCg1fIbBkXOdOT8STHIOKWI+FVyIqvRVjxwscCCOaOTkR3XO0CzgODdVEbQfV87PnVUysD7QKRufJ/SFRDIazAy4YaYBYQTmjtn3xEh96eMqOWqXUTJ+FRBPRMfNDJi+dc1lWfWfyB1+6hv2kcshZd5G2bivpF7/pfMVeNMxAVayhe7EGW27DaKzk5P28nwPAP1fQdopUmX74jtOsdEZcjy4rnLs8fwa4liu/IbuocOn7BIImglIXH855tmXnIqs1rbNtntVZoCdnQbbbDnV7xGqrQZ61diRYeudd+qBBi/jvUaEIEBtnc0QJKBQIdJ0H79b64OnNdmEc1OFmN1oMkpMaVVGp16W6mGd6g+mpD1KIEAgr9KxnhEh76NItueoCT5UNo+9zYrOGKGnOpI8FJnq9/39/REIkjxcd1MbnE+Xjc/1rrEXlwQIenyntvOcZ2GYARElfZRjS2CADq6ar6czZ79yFT35Y19pPcnz8/NCx6VzWpzYezXPpyN69rm6L4ENyUDE+jwbwumRHrCt+pAggGAogff36OuqzEAFBpxGzqAadJXyJmPkz87W57/d8XlUVykPz/OZdK8Pkq8wMD3Hnwx2795Zfi8RBPSIxrECBgIAun+mTBoLjyA82uc3nbkiAT3LCKpaGEdyw+5RmJ5x3fQxzm9PAzOSd54qYCmDxlXs+/3bK4iMgGhIU6rVZTySifMzes5t07kp8VAB3N5aAfanky9iY9bKU/DsC38jxEGdO0sCAt3P/hd/mg5TPVpn01o7+itvz7wlMDALlt0xs01+fw9E+RsE1N0KxPJcGnuUlQcDrgtrbPLqNQPVABkhdo+ie40fgYA1lADDyMGvdYD+TPV8BV5SijbxekrK6yMcNHmYVbDU5+eipEvV7zQnnvSchpD97pQi2wQIHAx4v/P+qlyv0w2jO20aGG9f0lHnnXLiAinywLZQxnIcXLjHgGO/X6Zb3XlU8maf98a5yLMGlzRF0KMUETq41bdky7c2PMPl/UVHmtL2Pm5cfyX/BEhTBE/ekwPXc4+Pjwcw8Pr62rbbbdtut/HtHM/C9Wwsvylfl7Pfz3YS/HimYha8JrvEugjg3U6xjFNodWagcmhiONGo8Tye/bAMr8d5S7+dp5Ejr8pK7XRD5Is7RmCkd9yrOyl1+l2dm6UKEKxFol9FKavlVOkYoysOxDUDzg11GsSt1fPxKSIeUbrfMwM+105eXVfdyeuadNsNsO71NDBlwIWySSZMBTvv4pWOj/OpacqkAj6pXKdLAgcVEEjRYrWzoMuO5M7NnTg3vCEwSA63BywIVNUWZobYVp3jK6D6LUCgDAHn6lN2wCmNB9GM3aBeeRZAU38sL9kCjYWUrUkAwe2Q264UiI9oFRgQIiMTM44nOePK+PbOs45Uf28QV8/3zo2IRpF1eFkViGKH0vlU7XbqocwUNa4FCafIw49n2vGVlMAjr7lxrRyKR0F0nJXjT2lbL5tREg1NlRWgE+ZcJaPp9LexreVFwUzTqi62U86/tbaILlNqlrrnRnCz2SymCjyaVdur97BTv1XHNzfLP/Zy/nogy+3QOWhk11xuBAXc0yFNh43alWREnVPf67iyrQmYer9Sl+7u7hbP6/70auN2u23Pz8/t+fm53Ogn2WiW7+daa0d6UzlqL8uzcG5T3d5zLUQCD71pwQQMnJ9PAQM9ZJTOVddmPn6vl5H4qM6l593IMeJpbT5ynnXaBFKt1QDB25uyCaMO/qxrM8qWAMe5gUACVyOH7VGWiE441bHf7xfOkv8Rr7981StSvtmOyu/x74Cj56hmnF1PRryWiK/nudOmUaMO+NSCR/QOhlUeN2xhuWkdhMrqZQrWgADXga+k2bGT9Jn6xaxAb8+M1pYOrQooUvaAfLAs/zCrwMyP9ET839/ft+fn58XfJqfpjV52oMoMeDt4TuTBWgWeXW78eLmVzVG2JfkiTp0xw6zdMyv/tpbetenQTIUuPH2PlLxn6FL06k5n5KT9euXQepF3dZ6ySTz5QEwZglSXI2tH6/6MK3ql9M7fiLzvvb2p/FOU86Oo6s80iJLeMfWnvtPA5DmW4e/Iu1FOaVw3ch6JVUDB28qPz806uTGryvXydZ1rBTw7QGOotjHzobb7O//sAwcZHnWRXzp9B/qpHUzlJtn4/ZdCrmsJ4FLXPCsgfUtl6FzKUM4ATx37NX2n+Xz/62HVs91uD39QpI+PK/UfswH8OBggT5XNZHtba0eO269X8tB3z+4nm1MFUKm/mQHyrCKfm6GTwUBCiL0Bk5yzC2KWaefDhZjq8lQK29Banj9N93md6bfXT4NLhdLvqu1VNEJePX2c6KMM2SUZxDWUnL7IQRt1kTqTsgPUN/ajr5ZXdkDZgPQnKE7JIFRjh4aRRkH1i1dOAZBX8cfzrb2lKFOq0nlmVEejVLWjl6JOzsPtC9ubZOZl+/SHyNdCVBmfU2zTZ1ElU+pC9VpsWp9RgQqWl8peM81ASusHfKve1t523NztdkebClHnW2uLt074qqFnLshT8mGUr9qnMZDeKqocN/vFZer2QoCY425k01m+96Nf/xQwMIr4iMIrQ1YJp4dAK9TEKHymg3qIKRk3b19a1DJShqr9qrPXWVx8lVAs30t3vivydo0AxMhg/x2o0gU/Tt8e9cu4uL4kICDn738V63/lmzIDzh9Tha297VRJQOK6RQOTnGMyJKOIsHK4HvEr2nfQpOtpGqZyLqlt7AefZ6WceFwFLr1MmYOoS6TKjvpUQZI7Ze566GnslN52XUiBU7I1DvhSen2z2Rycu8ZQitJbW65j8AySZ6nSp0rp860XytrHY2pv1U+UNUFt0uNUR0VJD3R+hqbBwBqGeudnnb6X5SBA1xNfleHj7xG/qsczBqovzUFWRAVwnmY6qpfOYvSUFLpq1+w1Hxzp2howckmUAGkFYlur26a+lLEiAEifZFTTNEHSDfLAncd0jfrJcgiae+12AOTjLoFEOkwaS19UlpxSa28LEb1cls8MgNrNPQp6RpjySHLsARDyfylUAVnK3qei/A2CdH+lE8nxV+OF1AseWRYdsjtv6ZFAgU8TuJ6mcpLjr+wmeaZOt9YOr8Hq32Ud7LKMSh+l/xobOpZ+C8BXYy2VR3DC32uC1dZOmCYYRf49pnnsBmhNWYkXKkOv3soJ+zSCR4CKxFVHMnYz1DN6M+TGvnefO+nK0Y+yBH5/71oF0M5JPdBZGTiPmNI1GlpG/5wW8I9nCbxc8ijyKQoe+zwheSZgTVG6R1gJmKT6yN9MX3tdaXfHCmhWZXkUlUASddLBSrI55JPnLgkIiCpAV0X+bvuqbJQf9wKnmTGfAGpqC+/3yF52t7f2obXj7azTFJDsuPipFvttNm9/GMc6uC+GjyfWxfqSrVHQoGe0QyNl0CPvFx9jPi0yQyevGXBKA6Z3rmeQ/dyIRijf609GXr9JVBCmZR21nuoAR7z2kLWOk0PvgYC1AGDE06U5/orYRz3E7YMq/WaKnwub/FsroO/v7w/fPCYoGGUG6JwJVHW+im7Ydjdeagsjwyr921r9Xwe6JqoiIgcD1T757Cd34pz64P2sk39JrOc1VgUkUqqZ7XUwdYmAQOSOm5mBaq0AdVvP6Nv7w4Ef9c/72h0RiQ7SeU+gy8GnLw5N+yVUetSzeyl7wDq9nZyeqzZvcptL/fOPymOd5Cv5R8m6kuMasC5695oBMTI65u9Tv08lR8YpZdbacjrBkaU6SQpJo9Qzkqn9boBIyXGT3OimhTE8Hg2Eqq41WYIRz1XW5quoAp1Vut4HamttoTtuQLkOQN9VVkBAIS0e7I0dN3TuqLhYqgIDrS2nDcQ7HXP12pkAcU+/fK7XDZcDAndM1JNRNCkeVJZSrVzsRSOsunUf5aDnxDt5rZzepRCNfwIBrusJFFB3CQxdF9zhMRCSfEbrN8QzI2PJn+DPbYYDA+qLj03XXb9f5/h89cYB66b9b+1tXY5n0jgOHfiwH15fl/sp8D7nQ68R+j1VJou6O0vTYMCNjxsVMlM1Kl37SMc/yhD4QE9IORlAPauUlbIEKUqp+KJieye50otGqaIEXFhGDwicYtxmnP6lUqUP+k4GU0ZR/8jmkdbt7W17fHxcRP0+RcBr+j92zwq0lhfPSUeYiXJSH9PAeATi01lJFjN9l6IfGT3+EY0bQsrZgRYNue5hZMTMgIMRto+Gme0kMPBMgxvSJF+Wc6nkDjG9yeJ6nXTZn032kCBAlDIsiUeWw3OMjJ0qG5acnjvfigfWl6L4BAx4zQFLWuidMgSuj5xy4D3VGjF/nr6MOi6/tRYQrMoMpOiOHbPGwc/c23O0CW2mOjyFJETqxp1GSuX//v273d3dHQSrDR42m82hE9P0QcUvU7veSTORkJfXc8jJcc8MFB+ofm62jPeAuo+mCrRyIPUW/HFdAHWGUwDaWMgzATrHzYY8O9BavZJe18i7ztEhcv6R9xIkpOscE73oSuOBqUsaQ4LjZAuqtDXHnnijg64ycC4rAggacwclqkfyUnTG8c6x7OsPzk2uu67HyaapXwkW+EnTVe5AHABSJiPbR11xu+XBGR18irb9OX2qDA7vSWODz/UyQQkU0Um3lv+YLD3vfUYZOpitAmoH2D7+PAiYoVV/VDRzPhmCdG86ngUCuu4Orwc+0iDxd1c1YFQeO8Yjbwl/hhwEiMdZxz/TfvHF79lrXq4/k2Sdyq7OXQIw8LZwsDkoqL6Z5icQkKMXKNDvBBAIBBh9JefLb/HO6zServ8CrNJ1buqSAAGNNVPpXm8yquSBEQyfdcef5O+GlAZ6RGqjk9fD+vyjVeI0pmsygJ9BKcNCckfqWQEHsandnq3hNKrzIflUi+MS+T0VQPMMgev7yLG5c3a99eyBBy1pCriSc3LUzkcFDFo7flOhGscOnHw/AmYJmB1wfmZo9b8W9q65kNaCAR73lCs5qR6ComHy1BkNNKMzZgWkIK29OXbOTfq/qZFPokZHsan9FfF+X9H9WeTyHTl9f3bm3CVQcg4ppUqn4RkFbpnKqQCCAk/ZngIG3KBKNz1qFq/KZnEKwZ/n/b6eRuURFBM0VBG4j8uUgUvgwA11L0JLv/2cOzWSG1BlDDjNwWnCSyL2G8Es+7K6N/Uvvyvy7EBrS6dW9Vcq350cwZ//diDSA0esN/HhzlK8a5y43tHRup3o+US2kWMlZTmcX4LRHpilTNhGgoVPmyZw5hMTMwpWIbd03CNXiiQwHdMY0UgzpeuZAa0P0D7XnkLTrlfJUZNHlik+R51EGXiUxWiFkVOFKKtye9QDAb3yK7oEY1rpXYoQGVFxWsmdJ0EBo385/9vb24V+pQxVBQbcwfp9zFCRJ85FCtDyw/ITgOiNZ5GnU/23O+EUhfoYdQBEI+rrEFw+VfbA5UpDKoBEQKAgwIHOJdCsnUtRflXODLnzTHPklS1LfkLlVBkmOjGvg86aOpbGUeV7KoDJ9TbUJ5frCAhQN6VTkpvWnbkMRgCnAgsJ0FKn12SwV4OBCnHNAIGPcv7pfFK4NFDSAi+mdanUBAL6I4ykBAIFo3YQAAgQtNbfBCkh+NaWgED3+UKxXsptRBy0pzj/S6NkSH1wp2kjGlN3mAkQUMcIBBKwYGaA/dza8RoS51ukga/ytCe7AIH/ayGnC5gl8HHs40gREuXJqDnxxzISyPDy3em4EdWx//8B1wtQduSVBpTHBARcM0BH5DI/B/WcBO2b27ykM15eAmGStZ5zB0f9oS1L5PqQ+ttBWmvtoMcq33dcTQDWsyJeP9tMW0me0gLYlDFz0ODgtdJb3ufjscocuIx47NNZai/BzQytXkDox2vAwKicHvkAn3Vo6kjPCmhR19PT02GVt/4VS0IWGHh+fm6/fv1aCNU7Xp3hCjJLSSYJgSaDxs6nYlcAYA34+v8ABETJGTGaTlmBZHAqUCBdS1FwyggkUNHasTFWf/m0gu5N6USVpwWuAgQeRbTW4vM+LsmTR1A0aGyD625F1DPWId6S40/8JEPu/Z8cw2azWby2pbFP4vVLoaSLvgA09Wlrx87d5Uv74iluftzWpGifQQtXzovcjvF52lQutiOPbJtP9zoviRLgdB2ijL3M5MgdtEqnHCy4vle6m9pC/6a2kxdmDWbopAWEyVj4fTNAgJTQfA8AVIM9nZPAaOj5l7Lfvn07gAKtH2itHf5i8/n5uf31118LZVTnavogzePPONIRanNgoGOfK9J5R43+maUZILC2vHOBiiqF6FG9Z43Snwv5ToPpz4fktP0/CJh14CBmlkCy0nkepxSlrquO+/v7o2kB/xc3Rtwsw0EnHSd1XmX4jpzUvyp6au04pa/7U1TFT/oHQ2+rOzX2tctVfcBNiESXBIATkHcgQB1KWS0vT7KjfaRDZT8mmYoHB3KJX/JKkMUghvd7JqGKmN1BV2CPZfk58evjwfvf7TSBNNtE2ep1W9dXB2FpGoFOPfHsOs3+cn80A8hbWwkGPE3YiyT47Y6lx1zlTCuhVJRQJjMDDw8P7enpqX3//r3961//av/617/a9+/f28PDw+HZl5eX9vz83H7+/Nlaa0eGVQaeczfcg8D5dEPuikyE7c7fO5Vo2d+vrrITM+CktWMgwEHj59cYzVml/GiioxIfNIJ01p7Gr4xLLxVJ4+oGO4HlHoD2McBBr/sZNSUjwG9/VY4yYdSWjA2dr9rDdTN8PpXvxpyyo/HrgQECHAIAj7qSHClfARhm2Ty9eimUdEXH5F196BkpEQGdntfCOd4jfUo6xE1ydN2DtAQGGP17Gxhk6R53mAlsqNyeH6JNba3/T7AVoOFzzhf12oFABVQ53cF6uUg9gR8H2GyL+sx9ketAj6bBgBfqgvfBNmPskpM5FZEncEIjLwDA974JBv7jP/6j/fjxoz0+Pi4yA79+/To4/N1u17bbbXt+fo4pX6ZO3SGPgECST6+tVftT1qCn5KKUhWH/sCyvtwfUzgUAElFGCQQwM+B7DPDD9L6Ig9ejLt5bTQ20lneydGPGtrBMGYP9ft/u7+/b6+vrwiBpIWH6q1iXDX+TD3fG2+32wLc7UHcQaps7WdczBwOKknz9g6bwdJyyXyxb356m5oJB9Y0DLvX7OYk2Mjk/zwx4MKEyJB/JTI7XddydkK9PSmPA60hAwPXZ7RSBgIgRcqWzrq8ss2dfR2CVY8z1U7ypnARYPSPH6YHUNv94m8VrArI8JliYtcHvBgMjR59orYPoObBUL5UjGX0HBAIF379/b9++fTug391udzCw2+22/fz5sz0/P7fn5+cDMNAgpLKTjzQX9lFySsAjIWP9rhxLcvx+/HemFD2o33xawKcElE1KeqS0fPVmCgdpAmhOcjiVTvPYjXEV3TGSZ9aKRogyqcCAjJimzlSP5MsxwIjJ2zzS6RQRemaABjVFjgRHCQyQB24ypLarnvv7+y6vX0U9B8oMluxdco50PjpPm+UyVZ3SG5ZH/XL74v2QAACvVfrr7U/kgLhH1ZgTvw6o9UwKqigH59uzA/qkBbzqg2RzfcqiJwMHfTxOAUZFHwYGdG6WXKD8XltGMpCM4tyQa72AMgVcO6DzQsuKiH7+/Nmenp7az58/28PDQ3t+fm739/dHrx0mpae8dG5GVj3jmeSugetZiV75er4HuBJa9TIqvmccwFeQy0uGk1kjvVXib5ckUEDD69MABKQkN7QkOuuKby9HIMMNogNQ3efPev2VI1GZ/kqUHAiBQLILLnc/Rydc2ROPlJI+UucSL+x3z8hw/UMy0OfWYWYEWjt2VMwMUP9S9orkUTvbz7JUj2TLdQXOp8idq8pwYj9VwCc96+De66ddcxtHXfLonPV42/25BJL4ERDY7XYHX0I5OyX72ssSOBGAkf8ZWr3pUKWMp5IDgVlAkIy7gwIHBJ4C5o5ynjVQub9//27Pz89H+8+7IyBPs874M8gHgChF/0nWPRR6Kl2CMW0tTxOkV03T64C+CDDtJOjAwAGBZ2+oIzLIAnOu38kRerm6l9F5NW49aqdM/BkaPjd45LcXHHj9FTCgE6rsTSo/nadT1DnuJ0LwpDcuPJ2r6+fS3zSWKRtfuOrTl+yzVLb0jhkCj4wJUH0qlPe5w3JHRIeaAGvVTj/m9VFmgPWkaayUxUpU+SUHUCmLtdvtFucSsK3qdpl65kAk2+HnWstvcCRanRn4KBDg1HNA3hFevxsPon9P61arwn0wiafb29vF7nEstzJqVRsq/t9LSR7p+igT4Mi5QqWzKPVSyI2GPgkMpH8X1LvOSW8qcECHk/rZjZEG92hqaSZi7emV96ePGwczuo+RMw1gyo4wMiFP6eM8JwdQAYPqXIpq1R/+Rofax36gIee1c1FPHtQxB6HeD+x7Rv/sswQIXA80tSK+ZnS1tbfMTwK7bF+v3S6XBAZ4HwGLt9HLruyaX6OMPEvmiwalR5wqSBmGUQRfBZfuF3tja0Qng4HZCnoOY9aZjIBChZrFMw2+HLsb/4SqW2vt4eGhbbfbo3nlBI4Sbyktt5ZkdHvkyJDR4RoQoN8efa4FAJeSDWjtWCfYz754MC0c3Gze/rmQGSYCyfS81yteElHmPQffk6mnZStHoN8s06fTCHjlBDyNrzLTJkBuQN1wc3yyTGUa1B7KRCDfHZHWQaRI1EFKLzNAMODGV+skzkUV+GFfORAQEdSwzyowwLUrBEzS8/1+f3ibKvkDluvOilMyKbvQA4VO1J00Ptz2sU+ZvXWnrnO6T+1JwRFlKfn667dcuMuMk4Mzl/eIkp12WXzKNAHn2ZJhI0OetvTrayhlBPxYv1P0l1Bzig7YeZ4yo0JV6GvE+3uJPOi3o8vUB7ORfaVY6Zw/+3cgd3hpXwGfQvJI3+/X+hL/oyL+5bGDgR6SdxDLe2Sgk163tvwzLFKKZGS8VJ7q8W+V76lWrb7XGwr6TvpI/WFdyZGIf63BcWCUeNM9aW6a9fj6Ic8M6NmXl5fD2xgpUr4EYvvd8DvASpEr9aC1N9vuY12vHVJ3BQTU5+5w2Mfsd/arHDO/k52nA+Z5US+iroJEtUMk2VR7VBA4+r3UjbRQsMoSOJioeHYwPRPMcSytnapelRngSlw3PERVRIREPol5pzWDrjKkjir1rXSu1gbQePuOc15+lQkYAQK2i2i46liCk1E0WT1b1e/ffuyf2bp67eDxbDs+mtiPvpDU9SD9xXCK/HuvIwpIeP09SkCOz9Bo9hz5qP88I+D8ueElEEk6m8CyDJFHW16u86977+6W//OeIjaWwedpn3y6w4MAz0CkzMK5dNb54LHbJJ+WIvn6Dp/bFlVjWB86PWZi3OZW/kHlCUDoWzs7Sv5eTiJ35qlul53bOs9kKZXvY8fBpsvPo3ueT7JPz5A8o3MqpXE2omkwwPSaiIOJyMXn2Fy4/j3rhNjxpGTUnE93CG4o2GlCxER7XPzhUU/FM41nb5DM0MxUwYjWZAT8vh6ldvJaOv+V5EDRHQXTrK4b1RsDKcPgwNJ5SNma9NuNWfq0dvznQG5g3Bmncaj7FSkycru5eVvQWPFTnWc0KXDg49TLoDNX9mG/f/tDIZXl8lLqWrKrxnp6W0Llq0ytEeI419g/J1UOsuc8PRsk+6Zr7myq/mztTZeYKeqBAWaSN5vNYZrFnbNnvFyHRuCA+s9pLSc6Zzpmt/EeuXM8UG70FV6GZwgSOGAfUebUM/Ghc56l8z5LdvzTwAB3n/L0JA2P/2ZD2FlrsgAkGo21lIwWHYQrf1IgTxH1+HSeq3Ru1baZtor/kcEaZQWq396WHh+93+eiXn8zsvI3BjSlpO9qUyJfXOp6NCLqGiMxGjq1g8cjPar6lk5C47Hik/KiE3B5eYYgRUzelsrIe9pZRlmggDKSoxNVb3a4c6Gc+K1jykgp8UuhKuhp7diByOH5FEECA6mOBAbccSdHTrvFaQXxxMBKeiVgQKfu4NJ5TKA68S6i7fYUftqQi/VzPHHjKwcDrj8pS8ayev1A/XYw0ANJvH+WpsGAtulNneKRBRWNKcNEyWjpPIkdO3IybgDTPI2X78jNO1zfek0kRXlrwM0soGFGIZ1fU5++kyxGYMCPq98VkOk5nK+gXrToWQEHAgkwOHBwINDrH9flZNB5D6NsN3Bu6HSOIDbNWSbnR4fnUR4NIq+lDAt5YYbB63WD7ZkDlbffv0XvnEJwh0F+PKPjDoKApZKHBwLnoB7ATrZYvKuvaMvoWOiEBKwoE9cH1pmAgJ+T3u52uwXPzPaID/av2pQcXpX9EN88TmPKfYKAEqN5OnPyQWBOWQoM+IZYKWhMNtb1ynnkOfWHL+SV/NP4qnx2olWZAQ52Mq+GM53S2vHuSiOqUjyqZ40DdFTGjqrS/X6dqI+rQT31815a2zYS0V8qo3LCM0DA7z+F3tO2jybPEDDK5z4SusbX0Rhd+mK0lBForQZS7wFGfNZThhVV47BKMSa98KyEQJUCAAcDGss+jUFeKr1gJsKdjgMClavnqumeCnTxw4zD/f39gV/Vd25ysJSosnuttQUQ8HS0O1R9e3TpUwR6Ji20U/9Qdg4CeEwdIqhxEMpjB8pVEFPZeab701QBQWZ6Xs9ya2yfIhAPKYBMvErO+q58jE9h8LmeL63oQ8BAQpBuCHh+hkk25pSGqTM498hUkHcYPxKwkGMCBD2gw84ZGT7et9ZpuoxG5aeP8+nPjOr/O5BHMJ7yJxDQIlN3KD594CDAqQe0eo7ZjRadou6j86ra68DHZTHDQ8rwpXooW15LRtjr4H1VOygD8e52KAE1nyIgeV8QWBEIyIa8d73Oe8iBWDpWW2SLPcqnIyIoaG2518Vm87a4z8FBa8s/lWIGgNckd18syL73oExy9jIICJgtSEAzAQFeczvvc/y+F4Cn5OnQ+byAQJouqOxABQzcsXt2gOTZC7aXNGunp8HA/f39AXmzUjHs6cGRA08MO7pLit9rmBvR1toCramztttt2263sRPp8DUtoA8BgRuSinoG29s+IqJUylkDz69RLjNU9QnrXgvKLgEwMMKvXilMmw1xwVl61dAjNA5yGVAagQrlV46GTpCO1M+rfF2fycil/qRDUds8rcxv6oan4ntAtQJJPV49Xez2IE35pDcH2Ga2w8cNZeHrpc5BKTOT5JpAQOozJz37+/fvo7UZrf1bvsrGMCugZxPpGfJPR0+fwekg/fb0t+x6Arg9Uj86GHBAoA/llUC4P58yA2kBoQMBUbLXDjzSvSkz8B5aDQY8PaTjlB1ITPYQnOg9DoRGUu+1ssMEBPTRPxDK2LMD9OdE+oOi7XZ7lCFIlBwyr6ntDgJ4biQDOoR0fwUKKqQ6Q2uBwKWQjAr3BvCPzqesAKcN0kJBj3hE1aD3/kqOkaCC7ehF0bxPxLl28ZDAp09xkB9GjIzk/HUp8eHOyo1qr909J5OyHfxdretwmSQw4H2n3/f394fo71xEObhskx66DqbIMwE1B5TJpjDz4H0qR8+omICA98g+0akqiys7TNDAtxPSOOiBI/6m/iYw4G9deHkECu74uZ5s1q76PQkIVJnmKjMwqqOiVWCAQMA7guQRkc6NaBT1V/e5E/XIRkCAf0Hs75Rry1ku0tjtdod/Kfz169cimzDT4WuzI2xLa/VGMirbU8hMm3kUVYEPP64M8Ww7LiET4CRHyGkBggL/18EeGPDpARooJx8rCQhrUBMkVs6T5SbjpzIIJKQnahP1weuSEfLI0CPnClQmSnpFg+rlecbCnZm329uYHEiSleRFHjiW6DQ0dXRu8nYTCPj11o5l6NMDSQeZHVCfyLm3tvwzNNodls1gkesG9vv90dhRHb6WwLMHSRZuvxxE0x8w86ssb8r8OsBNQIrXOVWgANTL8PudX29HBQRS36rvRvZihlbtQFilTJzBivHqesWspxpnnI4UwA2ipgf83XAqpF6BkQIRDEhh0uIQ58kH7Yi8HPGUUkCcR0uKMguoRjQCMlV5DkYcnZ+DlNXS31Xr8+3bt8MxMwNp8Zm/bpi2pW4tz+MmJyqSUVcKNt3DeVo9wyydiPpAfmhUN5vN4r39xAvJHQqdZOLVqQdAXUZyAuk+b3cCvanOlElgmxLwlrz0OtzDw0OMFL+CenJg25kBqTKy+qYuUS485/d40CF5EcS54+S6AfLBBYLe/w4GpGtax0Fw4I6Q/crfPg1AIODH/kaBA146ao6FaopAn14fJMCRKI3XJHtdW0ur/rXQIw9nNH2fMp+RnKk32p2MhMt5FHf0+mhqwCMHpQV17OsLmEoaAZyKGAVW8vF7Zikhdb9+KiBY++wlkTvx3v9SpPUCcgyMOPk7paB1TORfOeDWln1GUKA6dJwiggTSR46aUb/z6IaEWSi20SMfBz1eF48rffJne07fy/N6yHu1xoNtSYvHRhHqV5O3lW0jmHFdY9/4NIIDAg9CaIPdcaXA0MExga6IwE/EHQCT7KnTfMMj6RfvT2CA08a+cZAHe2lMaaxWUwYJSPTI/UBv3KZrLvtTgrBV2xGLmUQuLE9/zFIv3THTQE9v8uOocLvdLpwBn9f96ZWRmSmCCqH7AOitL/A2+TkvZxS9zPTHrNNPEd65MwAVEQg8Pj62x8fHQ2ZA2QHPDKQ3CTz97KDBZeLRTi/tJz5be3sFzCMfkc57upY639rx9I2nZsWj30t+OZbcWdJopqlBludle5Sk8keRba9cDwDYDjrMxAvlk6YaLgUMODGYcbDjVI1rpvN1n4Mm6iKvU8YeLMqpbzabowBKdfIcnT7XDSRw2FqLPHumTHrFxeLMCDhQUBDo+kO+k5/zaYEEaj0TwvMV9fyD2lz111palRkgg3Q8blgS0zPnUl1+3g3ciGi0tEDFFxQSXVMBX19fj6YHkqEhsfNmHH2PbwdgHgm6XFJGhb97jt4zMNWxnv87ZQrkzPkKoY65iLCXLUj72jM681SlO7sUPbfW76cEBHifyulF2ylaJl9u1DmWOc517EDAX6Py8nufNJ4c0CbQkIgOywFByihW/Lh8lRk6JVP3GcT+dJ56gZpo5FhIzBKkAMvBqoMF1pWCoJRhJRBghkzX0jGfpz6rfK4ZcADg0wMObn2Ov9IZjonq3s8g77dTs8qtnQgG0qCnUHrPzpTv5yoEVFEPMTENJGW4u7tru93uoKCc0zolK0B6LyAgWva2s+wEBDjX5058TebF5ZkAwaVmBVp720pbC8EIBPz1Qv1pUdpu2B1/a3meneRgwI2DjKwbVZbPskT8g5cUFToI8Dlz8qB53ZGhZ+STxgVtQDKaKYpieVVGwDMeSTYEZv68iO2pjDrvp1wvITPgAZlnMxyQ9o4TOThM4NGPE9By5+TAwO0TeWMg1Vo72GPWm/qO2TTd63rqCwm32+3iHPWZYNX1upo+IBDwMUE5Jl1LJNmOfEgCBKfo62owUAEBV5aqDFe4qh4f6O6I/P4ZYie4gihD4ErQW2CyFu1Vi5hICeGmNqosV5QEEDxy7H2PqOqHSyZlBTQdoI+DAX+7wEGBGzo3iL2opRcpyGDyLRg6ZX9G3/xLWJ8r9E9PXxmlJbBCPmnoZsGATyekyCsZzhlKQCjJnUCA8kiZmjRdcO7MQAI+/llLHPN0IL0gJEWeOud2QY5M0z/indkft1+3t7eHNQY+TeD6owWeDoZUt+x3BQqq/WV8PcAIBCRw4vdXQbLa5nJwXeU6kBH1AHGPpsEADdEoQvYUG+cCfQ6oei5dqxxWiooSJSFRUXzLUSlT+ufC2dcL2cGj9q89T5IRq5RL9/iAqWTVAwu9c5dITPV7tJ8yA/z2t07cObuBcKeYHKCuOXHqgWCABpj7YRCgcF7bo+QRSHGjxboduNKJ03iy3W4U/VnnpQI7agvbRFnxnpFjpAx744xAmnI9V2bA25J+J7A/E03q24OzNLYFphjls14PSLyv+IxPM6s+3UOfQT5UD202wVvKZMiuV8cp69vasa6zTH54zbNffIbydWJgJ+r1HcfkR9rcaTBAR5lSKt5QpqgdFfYa0HNO/Pb7kjMaCcqjHEX/ImYG/PXCpBhriJ2dnqUj6L1r29pS1hUocKR5aiThZYyUcgakfTYpM5C2H+YeA8oYMEvArIA7ubRuhr+rqMGJc/E0sL44jJkr7gXQ2ltExedae9uURsQ+Uxt8HHgE4sYwgRxGVMkApntdLv4KlvitZMLraYGzA4OUhUt86nvtmP4s8iAptZltTWCK5ECAbeciwOrZ6prqkwzd9jhgkA6wX+Wsvd+VBfOMTdX/dNZJx/f7/dHbA56l8qA3jeUEHhIQqMj1lfJINoP9xb50+dMGzGbcpsGARw9VdiAtoKOCcT7eG8YGkWac14yjoXAc3cmQehur1aYeEbmCVIZ/Bq3PtMcNIstO1/xZR/5rHDWNSNWHfq+Oz0FaK+Dpf53j1MHT09NiUSH/pIggoNq2dIZojFOE1lo7inYYATE1qo/GmYwIefbIi3xQj307Vt6TIiQ3gFUE5IDZ25/sSKVjvTEyAp5VtOy8eduq8r6KqBuzdsE/fLY3Zj34oGOhLPgmSyqffFMfKWfPtjFzQzDLdvkaiR4YTE6dupamfJP9dufu5SSw3/NrHtylexkYsB8IrshzChjX2ttVYCBFBp4iFKWo1SPYymE6zQKBtMKbK8J1Ps3/yhi2drymwPcY8MiG8pmlHrrjOcrJB08yfgmMsRy/349VdzLAvM/LmgF15yJG/9x+2KcHuJZA35wv5iI39kmlwy6TZEBEPq+qMeXnGBVxPHLv/Mo4E4iLvwrEVt98rnLi+vZItuLLAYzrG9OoNPzuEDju3WmkbYl7Y7bi/dxEflM/8ncidyhVHcnG+HXqJ3mjfVd9tF/inW/n8Bxl7lEx+zYBHrVR5SVgl8774r9k1+nnEiDw8cDnvO/UnnSsNrAs6iOz6w6iUlmztHqagKiqMoLu9Fs7fv/ff4tGqLVqaA+luqFIKNs7tVqFml6ncn4d5PScvdqV2tOjFBX59ACPHZD1ynWjUrUzGe4KFKxFqR9J6nNuPuSRNeeG+WqhnGxlGHWt50gro+OOk2PCx4Y7dNZ7c/O2g6Hu9flWykLPEsxXb834sZ71dlfjwI+rsVA9707Jgb87/965Hh9VWzzyPCdVzv4zxlYqc00E6oDBHbtPXelb2ScHhrrutlxE3ScPlZOmH0vjVe31c9VY9/tH8vHgzfWLvo73eADSs60Opke0agFhZfC8ciJCnXdEmgBDKodUOTJ38m4MdK6ab1JdnvGoXjURzWQ1kpGbea4qa0TJYXGw9Zxar4yKH+8r1pGM+DlIAKDaPIi/0w6Eap+PAf+MAGIyTu500kdtkEwJpiuQpm9uIy4+nCpHmHieHasV0ZjTPnh7+c3x7Xs98FhtZRaQ191wizzIII98w+OSKenA2nFMB87V/HRWrgPMQnp5OqaOuxPTq4MOhN35epvS9vjefuqul5UcuI/NdC7ZgfQ79UsFaB3I7Pf7oyweg7vP0sVVYKBaIJScP89VAED3Vc4xNTqhnKQkdPyMBLmjGMFCa8uNI6pPDxD0nPxaAMABSMPv6TaXUWXsZ4kKOaN0zkcPAJzLoKYdA/XbXx/0LapbO542Sh//a+vKsDiYIPn8qEek7rA4Bp18DHDMcqyOdKNy0E4zGSfV52WmaC/JwPvP08WpDz2CZIZGzzHryYxKavulkutGdU/V3z7eHSBUwF/UmzKgnlY+gHU6H+5QU1CTMgN6ngt9WaaPxd75NH69LM9AJNk4EEj6peOUBRBATW19L2g96dXCxEDlnBIgaK0dKUSqi+RZBFcGOnYBAk/3VvvK+xwTFcHTvFWHJ95dcUZtpEzFDyNCAgFXMK/HQcuozsRDAgRryrgUStMA6S+JPRvQ2jJjJKfPfzrbbreLdLsD5dfX18XCU3/fnmCa/LqDpFNv7dhZujFOhqKns0lf0n3uEEbkQYMfV+V7O1LmRlEVQT/f/iBYYDvVX/xbYi2cpIwZlV06GBBVfLod/gyqwC2dvGe03Ja5jlWZ4AQcvF4HvKxTv31PAX38lcEE4HvAf0Tu+9I0gQMBPqfXL3nNy19LqzcdcgdcOaV0n59rrb8OQOSZh8RH+lTvlnuEQUPZAwEpxUikJh5njGpFM7LQQPAsAa+PyNH2LI89/hhFpOfOZVA9gqwiUyct6qtAgL7TxjsiAgItRE26lXikLpPIO8GhAwzV7/e21hZ16jdBiUeE0jdRaieNvLffx1EVhXmfyPBVWRyOZb4lwhQswbU+3HlU/1ZKB6ApH7bt3OQ6O6KURdV5OuWZ7IfbnNH9reUpBF6jI6wcaMoMuP0lyPDrXo4DgnSt2lcggQu2s2d3X1/f1ltUWQLyQ6Kf9Q2bWH+v7hla/a+FacB6pd65iZlepNJDt+leGk7PCrgB8fRhFQUqevBFVbPp1UQ9o9JDuE49xa+cUY/fmYivut5z/qeAlM8gj7B7fUDH0drbnhrb7bY9Pz8vvn3fiUQEA9W2p3S4ntoXL7qeDJl4ZxvSx+XR2vFK/uRoqnHuRjHpms6lNzEq48x6xSMBAf9Mipk+vjXiYMD5qACwQAGBCA35ucnHoX87uS6l8nqyT797YCTZB9qkag1L1R9JNwhmmD2t9Jd65049BXsp4u/p/CnkQID9mnytvqWT5Ml14tTAaxoMMPVGImKU4BRR6Zz+IKi1Y2flDUs0Qq4OACQwTwH7tAAjAKaB/ZtGxPmkEVf7yG+KwNd01GjQ9RClrrtipQHL76TwOnag5xFkL9I4V3Tluss+4zejAvan/vZaIEAfRfvUfSfJzrc/defoQEC6Kkft854iPZf6lGWy33VOhpQbuhAIizcaRI/kve1VxO8LcV1eKevnUze9nSS5b4S/LaLyyQv7Xhs2cS8Rf2uokv9X0Shqr+wMP1XmkmVXWSivL92THLcHQFwwmMpwe1b5Bm9TFTiRX5blOp3A6SgjID4805KIQYjbHzpvL0NjW9MCnB6YqXcNrf4LY6cUmZJJnyKoHFOVSurx4gaPYMANBg1Lig7dcDkQSAPAFZFtTzJYQ1UE28sukDd+pzRUKoORZ0/JZp36uTIBTmlayAcgZcQ+lx48Pz+3X79+HQEBrgNwI0GDkv4O21N+5FHRqMCA+JJh0DPSWR8TOmb7eI7P3d7eHv6oyx08DSXnV/lKos611o6eSWDAMwjuRGgLGA2586/+UIp7LoiqLAT3a9DH++4SqJJVz1lWVNkkj1KlZx7Nq4yeDUm8634HBD2b5g54s3nb8Cj5ltT+kbOsMlYe9Ix0wflgpryyxVV7da9H/yOq/NoMTYMBRveslJmA3W535PTpVJjuJKOV00upOUex/KS5xPRuuQ90GSvfXIgGzCMDVzbx44q/FrX1EO7s8wQj6RWV1Ab9Tn1W1aFnOJgpVy9/LSD6KEogwDM6rR2vPCYQEBh4fn4++vtTd56u3wkM0JGKR89i0dHt9/ujjYU8hak6Xb9TnySAoAyER0kEDpLRZvO2dazX76Ba2RXKKYEBRur+O4GtyiF5xsHbkSJp1tPaEiSonHNSMvIp0nW7VMnIyYFAZYfozGYCk8S7nhXfPR4TGKD9YZY3ZQgqO+x+JOlwqr9qkwMT8pZsTdVW1pd01XW7x1Piu0erpglay6se3fi1ttxRjR3nAqumCXpKRsWdAQJplbgbJS4S03ECAYkXB0mnZAcqRZlFhLyXSshBR4RfIVRvu5C4nA/5Tc7P6z21LR9JmmN259davbGIHJj+l+LXr1+HzID/J7o/L+L5BAQ40CvwJpL8PXofpUi9jGTElH1I/Uc98H5l5sLHiW9mJIDtmQHWowwA20uePEvgII8yd/2rMhQJFOh+tvm9IP0jKYEpffccdHU+gcKeA0tgv3Ka6Vnqsj/fe86Pq0CyItphBjFJx3plpOPW8sLMEYhgexwI6HgEEEZt/vDMQEqvikE3bM4EHUoCDsnQiFKqRZ3qxqECAnQEXreMRPpLy9SmShmqrIDLcJZmEH1CoaKUgvNXrhzluxzUh+xLBz4edfYAwrnAgEfaartIbU/rR7RgkOsFkp5UKN4dojty3Scn6MhfzxN89cgzHzrnTtOjO88Guf44z95GAgLx6IAggQEHmLQF7rC9bWn6i9Mv7iQdhLlTrXT0nLorSvJgIFPpBsc7wWRrxyBA51xPHDwzGid/flxF49Qp1rlGFl4Wy+wt9nRAQF3yTF3lRCsd4XPkaQ1VQMABbgoWTqmPtDoz0NpxqsgdtS8gTM6h12iSOzkaci4WTPsJ+DQCy0+G2ueAEy8ubCmS2uiDLinVDFp0ciPuDr7Hn+5LYIlyeX19PVotT6fHPqycvhsFGoZzRVf6nwEtLvNMEXWBkbyDgV+/fi2mkjzS9FQjHatHxykyfn19+48BjqMEFGik1ZbKkDtw9raTT37o1OnMXRdoRD0C59jybJyDZ40Xd3zuBP2cZFXZEJ1zHfVzqS7RuXS3JwvJ/v7+Pso02aPKjrQ2P1XgYEJ8Jt7Tb4/GHRCS3Ol7WXS8BAbetlRm+vbA1J1sDwhUztj123+zTT2fyGu9drmvm6VpMKBKPEOQUNpmsznsla6BqpSimKQTbe3tb1IT6mRj3bDpO20qRNBA0iDiZjC+gYynPdlpSWHp7KpBN1JSL7OqTzJg+/mt+3nfzc3N0T/3SV4akC8vL+3nz5/tr7/+OsyPPz8/L5RX8nPFTN/e5nMZVP05EdvPbJH0Qb/ltKUT/lqh/3ulG2KXkztHf49Zcrq7u1tkZJLTY6Tnx/ztWaAEkKljBCmeBfDMhgMB2gJ39my/R+X6sC18TuRtczDD6awqg5EMvo8xytjHb2WAv5IoM89k6eP9yrZwRbrLOAEBl5GTO7NE6XkPGHjfKBhMgZQDuCo7QHvk4Ij3OJBKbSBfBEfSZ4KUqv0OhHidIJtlJN12vlJ/z9AqMFB1fkKhXHCo8wm561x63SSRGzk5Oy4U5D2OJgkEZPAZ7XF6QPyIN3WeDxIHAuoEtVu/Z0CAE1N5NJr+5oQMvmdDNF+uv+qVU9S3ytjv92273bY///yz/e///m/7888/219//dXu7u4ODlArziuj7316KdGVL8ZzHWqtHRlVLhJ8fn4+fCtbQIPsbXcD5fJq7TgqlTOTjjkYoJFKmTD/B0aCnsfHxyNgmHQ28arxorFC0EQDvtvtDjyJf3eqNI403snAe9DB+ihrBxhc/JuAKG1F4id9Rk7xK4l6yr6h7jrgUb/TJrV2nElcAwREM1F91Y4eVdFzKscdr8ZS1T4dewRNO01ZpDayLDlbf9bv8/YQaPKYY0PnRpTe+ND52QzBqr8wlqGq5nikdCQXppCTG4Kq0ymIFBX5dyJmH7jwi1MDTP0yspNicYUzO8/R481N/U74qURj6E5AQIDZEF6jg3h6empPT09HaXP1x69fv9rT01Pc5W273bbb29tFqtvnKqtsga6dCwwkcmdDlC4woKyAMgQ653P/rS3TiUm3narxI3KDoOu+FoZAIPUbF0961oA6yzp9vAoIbDabQ+ZC9zo/btQSsR4aRh/f/klRseTLKQl/3ZP2wTNDtGUO9tc4xc8iz0wksOJTVeyHZBclyyoK9za7DRcfPbn0AFwit636dsfp8tBv2VzvS7aLz7hf8W8HTa21xVhPvNAXCFg4napTDB6qMhP40biYoWkwwMiWCueIrOrAlP53Z5HIO90bTuTrg5tlurEgCPCV3il95pG9OxA/72kkTpOM2lyR2slNVh4eHhYL4zxa1H0CAt+/f29PT0+H1DnBwPPzc3t8fDyaduHn+fn5sEsbo0AZ9gQOxPtHg6RZYjaIeqL+v7u7W/SnnH7KGvlCwOSwaSQcIM3yy+NqzHjU7H3l62d6K/B7oNz/6ZHjTs9IFhpLzDTc3d1FUF8Z5MoR0/mp3tbaIhvA8SyeNpu3fUdYP+XmqV6u0zg3iE3ZJk69cBwyGKOcKcfq7RA9k6JZ54ff1APK6j0gKkXXqbzk4D07UoGelM30LDbrdZ103ayer3hmGeyjFGiyXJex9LsK0tO+G4mmwQAjAilcEioHmg8wNTpRb26IqTp3tilT4JSAAKO9FOnRuUnYjGZ8IHwEpYGpAc7Ijg6e6WF3BMwMCAgIDDw+Ph7AhAz3drs9bOXqkSRTq3KqaYW42uGA4JyZAUW2bIP0he/xK6vj+00w8vTXA0kEvIy+UupP5PfSgNHJ8rdfY1lVHSzfr7XWXygl2VD/mCFMuiIH5bqk8jz7JvmNIknKg/1b9ZvslfrL92rgsYMEXZ+dc/0sSoCQfVrpA9viNtozoDo/wwu/WWZFHjB6Bu09lAJK6Rr9BnlMdiplxRLvPO+O3NtTTTH4816ul9fjobW3aVAPQlXnrJxPAgM0DlWnJlBQ0axi+ABN4MDJDXkCAnyv3hVEkYP+5tTXQogq/mdQ5AzR6N7e3h7S/I+Pj+3u7u4Q0ae5ZE0RfPv27QgQCAy01tp2uz2U44aZcpHTZHSRomCeU8R9DlK92+32wBf7lpmf/X6/AIx+nN42oQPvjYkKMNEheuQn3asifAIUz36w//ScKBkg5zU5ZndAOs9vUhqjbuzS1COBlOritsl8Vu12cJ+yESwzBRmSMxdepazeV1KK1r0flOFKgMCzLp4xdSDIZ9U3HkUnJ8eyqyiafc9zbOssJSdMHlK7quyCj0enBATYtiS/iqr7mAlQeSMfwWzd/f39Udl882dE7wIDMjqtZafHY59vcZph2KM6dgiV3iMyDpi04EZAwKcIVG5rbZEZ0HlPy822Jw2C2TZzKkDTAEr7M9LlPQ4Gfvz40b59+3Z4Tsr08vLSHh4eFgi6WqAkfVDUlZC1y/9cmQGBPUaoNPwy9owg2eakTykKT33OAc7B7fem8dPasdEXf+lYPGnxlKZCxAeNngOFkcF0Xrxv3aA6COC0gQMfd8jkwdsv0MZAw6f+mBXwfnAeNWZae1tA1trbHgk6f04wIKKMJReBP4FYBiuUEwG8z6+7PtKme8CTxngCAEnHP4NGgIBUTWEkkN4L7vipsgLVOZYhnvx8CqwSH8zMye6rTPbJbGZrGgxoAVFiLqU/iLJ6GYLKQSRjmYwGjbvqc3Lj5c7NDao/S0MqSgh3RJX8Rs+IOEVAJ//w8LDIDPhe7Vw8+O3btwMo0DSDUkyvr68L0EOnSMPNXfiS05R86DgFNM5ByaHc3Nwc/sa2WnnsDo3RY1pD4s+pbgfFPuBba0dRP6P7NE/vAJH8+VhwB8L2kKox5kAqPdPam+FhZO0OzPuF35vN29ynt4nt8MjWxzP1MfXpzc3N0dsX4t3BgNp+rqxWa8dZpAQONQVCGTN9LB33dsxEweke70/ZDwIJ6cCMfazuGQURySFXNrl6o8vt+ihL0COXSQIg+vZxrTaI/9EbaATazBa21g59zfEzotVgQGhUc9Qe9aTUub8v6caxJzAdV4aZ10lCwjIcyWlVkZ9HN0yVJeWsFIbZAxpiv0dySNfkDNIqcRmyx8fHw3RBWjegxYK6T4DAwUBrbWFQpJSeZdCrdilt7tkWAYHNZtN2u12U02eTjCUjISJngb37+/vF9eTEkqHk4K7AqXTBp6Kow/66KPuw2kfDjYHK6kX7Dgp0nWOYxskBIcnHJXlkvSq3isASuEkLHj1tzfIqm0GZcTxwqkz1UXd9C+VzkAM6kY83ZQVo81yeXONCHUigUN+UK0FYBRLUP65vLNefn3VWPaoAy+yzDiZOpUp2vMaInmOQ2SvxoeOU1dI39Zz1ye98OBjQfKuMkjpdjoQLGFwRqoHPAU4apZM9LUWio/dXCX0rWf/0DD9BANGbGyfxlbIMo/Y4JSTJ6QECAr0Z0AMDfAdd5/jcZrM5LCDU8zSammL466+/uvLc7XYLg8rV+ecg/oFWa8vXdKizdCz+Cqq30csQ0amprtaWUYCDEX3rnhQxpI/XrXKq6Iegt8qE+LGX685aEScBrwMptlG8qJ4EBrx+Zqo2m81h7QABQcpKqVw9y2kgr5MLSdk/uv+cmQGRR7Dii1NCPk2SAF9rb/8dM4qmK6efeCNoIJhc4+zdMSf/QPJAMunWKPvh2aZUdmqHZ9xaOwZM/PbsnYMCykzlJwCXADxtBsfLGj+0as2AUqtCoVJAnWd0QkH6/EclHF1jlOxIJwktdazQMhcNJqOewMoaBWb07kqljqLh7yl2Va6MFacJGO2njWb4HN9BT5vTOABgNMXXEv/444/2xx9/tJ8/fy7265d8fWEmV3i31g6R91cTjT83DNI5yYpTQgST7lx0D3XU93lQ/xE0uqNpLf9fhE8XcCEoF46q/x3oeSbByyTgSPWRdzpPtdUjF8qSMqKTpTz1LL917MbSpwwS0Z7s98t/d2Q2QJkxgVsdPz09LRwqM5rcX+JcxOjQZaC+lL3zdVGtvemYxiGnFKqMpZ5zByQQQR1ODpzjIwVY7qCSE6+ukzwIq8ro2d3KWZ4apIrIq6fwXccZKKTMgNsOb6Pfp0W0sssztBoMEN27MfG0UwIEFE5KU3lkwLJkSGgY+C3hMT3taNlXGztyWpsi8uiKTsU71gdQRVWK1w227z6nqQI6JM8meOrVAZneVGDdrO/h4aH9+eefC0DAyJ+7FXIHv9fX17OtGWBUt9m8zcUxcyRjT2PF/mP0S+Oc0H6PUqSWnLVH4kkfErnhTRE3dcB1geUn587oz7NwaRV/4kPPu7x5L9vjwQFtAXmoUqlVts9lRkP6/Pzcfv78ediW+1xZLfLn5yh39alns1yHmRViVEnA59G2vlMQ5oFTAit+XAGB0TX/7XqapnB1vlffyOa7XSdoJVVjP9lZ7wPeSzmxnys+0zP7/X7x/zIzNA0GOOgoEBkJMZzSfHreG9DaEjHpN4VGGhlGCo8DhRGqpxSdkvLPGHhvo4MNz47w2Mun0fZ5Ys8MKOJRtMMNiPQRUFAWgfPQvmFRarsAx7dv39rPnz/bjx8/Fv9doGP9zS//4U+y+f3799nAgPSB0RHnzDnX5lExnYxk49mvFNGr/0S9VCSfdWdNHWAWyP9vgfe5k6+MUDrvmQHJjHsLSB9fX5d7YCgiT0ZL8k5ZOMrIDbyO3R64I6oAkup1e6BjbbGtvtH/T/z8+fPw0R9UnYM8W0kg2tobuFWwpjbJTuiYDnMm7e7gK6W/eVxlU3tZVm/LKeRAtgIErNN1blQ/A1fP6o0ojTWdT7wxYHVQ53wyOCE49mz4h2cGVCkjq9aWxsydtTtqkhvf6rfOtbaci6pIhpupMp/rrRYFjQzQqZTSPr05KgckdAye7vfFgdxiWM8ybZzAlLfVlVxggKlVBwA/f/48vKaY6vr9+3f79evXu2V5Cqm//a0BLWxMmZLWlgDYI5IqeuJ1/va0qTthAon06V0bOfleGSOgsN+/vXI5Oxa8TJ9DrmTi8iQRRKRIj4bUy6IjpRz4rHR+u90udFp/2nWJawYYNXqWS0HAdrs92IPW8qZNFVV6zcyneOnZSsrf+zsFSbMk5+wL5QgIPBvrILSXrWVQ0NrSLsoP9oBHsq2J0voUOXFNa3pmgABXfDD7zanbD88McN7bz6tD9C1mnZJBdSTnKyJpTFhulQ4iUvL3sTmP5mngFGn4IBgRjV2i0SCkLBwYEAz4mwSa99TbAb62QoaB53vkmRrNMaoORv+/fv1qf/311wGICHx4hHnOVwtTSlttY2q1tbbYmtgB42azfK2Q+uJTOA6Mq9S5ZM3sDx0zM0PprZKUDUi/vewECPycp9vTs6zPMyFcaExyo5zAKe/t6WsC2lX5XhbtgubQqdOXkBkgJTDg9o7R5K9fvxZ9Q+fG9TCcInA777JPgZ7fM4rMvS6/1kv3J74S2EhO3sfg2oxE8hXVuoLKj1Q8eTabmWyutVE5skHyjwpstE6A/6ky285V/1pI8g5Qo2ho1UgXAB0cBXpzs1yY5UCAz7IOEREWP701Aiw3dSAdKDvaoz/nT05U/FQRjbeJ5bgj4FsEitJ9IVTahcodhteTnBdTv6+vr+3x8fEgy2/fvi3+0vf79+/tzz//XPxDoqcm9Z8G5yCCROoTwYC/cUA5JUDAvtO5zeb4PXkn1yEu5PM1AzqXQCCnCPhHRVwb4sAhgQGvy/VasnN+VD6di3SeclVbBcQ13unICLw8g6Dnq8wN7Ycb2+Qweaz1LPpzrtb+/eYJswJ//fXXxa0ZoLxo5/g2D4OK19fXo+wAM14uP7fJDKAqxyqqQISDshSx81zlwBJY6fkI1pF4raY/qnMOCKrnqmcTWHE/1Zsi0Fji2NPbW5KFpmi5mHuGVlnnnvNz8vSPd3Zy/GuBQOpgOmBX+MRLihocCNAQ0ah6lmIWgTnfKfphZO8L+NwR6PVAd8KqJ6V/nRIYksIrwmutLerd7XaL/Q34nBttRVznIM8KsG1uTDmoOHCpL+mTVuOnLBll7FF8yir4AlB/cyC9RcDMDAGB940DAdeTHu/e1wR6KaMgI6bfkmnPkKbx7dGx+odj3IMB9rvS6JTbz58/D+NG1wUIlAU71zSBj1dvv+uxIkv1ixbvcoe6ZA+9Lh+/zCCMMpzvpZGTbe04SzDKyFY0Wwb5GQGPHh+evZJcfYqAH7ZBAYfa73rJ6QXuyDlD02CgSv97pMOG6zvNCxHhORKV4UiCrq4T5bkhcKPhlAYBf1dRmzu9GfLUs/PBOmVk7+7ujhaP+Stk1T4PKo/RoaeYWRb5SDyrPx8fHw9RiBYWkrc//vhjkZqUgp6DqBfUE/UzI1vdQx3wqJXPymHT4aa1GaKka1X6ns489Vv1qRx80t/q4zynLILkJv1L7WTU59mABMT1rJdVURU1i7fdbrfofwIsfxtHuqCMwa9fvxYR1jmIchS5HZXeJptJ3e6l71s7tn0cv6rXswTuID3F75F8ouQjPDOUAibWlbLL1D/Xr0rfUqDm96TfzlMCWp4BYQAip91bNKj+oT/jNAEzXtLh3lsITtNgYBYEkFyBJQh2WKU8qS6V4yBA4IBGJ2UI9LzXkdrCtQvMEFRpMCcaP8qiV7+O+aHh4sfTw7qXxPqleG6UnZ9ef1IeUkIuxvJ0lxRT0wlPT09dmX0WubzFt4iOOzk+ks631hbOVt9cc5AiCf3mMwQQCbilPQOSnrgxb61erU+iLqRrKdL2trBNjPh5XmW5fCoD7Pwl3dRYTx9tmc2dBKnDCURRb5URWJNq/SxKTlKkMZ36XvLhOKVT4bcHI3pDwetynhzc6h5f/5X075RoXHX5PeIvOWPe62UR9NBe6v5qXPRAit/roJjrNTjF48dqT+oH6SvHQNokbTZYXT1NIAHNVpCccAIAyeh6GeSDUZ3OpU5IZbgiuTL7oGitzox4PZVyM4VZkYMCn09Oq/Q93USlJi9pcygvh869apM7sMoAiQ8a1u/fv5dt/0y6ublZzBe7gxOPbF9aEKu1AmwfDWkV/fiUlIgGS9Eb+WOUK8CrepQKZrnSEY0nlemZI37Y/wnoCtwx5eiv6BFkOghWeQkguUNy2VQAxe/jKmp9p3lXzvtTFhxnBLR89pxgYJQdYGBFXREJDFBHe07WweoMf60dB1B8e6ey08kmzgBY+gzeQzvolABEOqex4IHTDCX7zgw1g1RfxJlAN2Unft2+imfXW75pMEPTYCBFHamSJIwKzVIxHRBUwvd7xU+qlwOIEctMx44GgiNIHTNyqrIDOq7KTwNyFnwldCunJqOeIswqUvOBkCIQOUrugcAd8rS48fn5eaoNn0GpPx2oMqJhnyXwmFLuKf2uMvx5HRN8VP2d+HaDt9/vDwY49a+vZXA+HRxQLimFSUCQAECidL0Cr2nccOzyGV917UCF5+l8PKvD/lI7Wcc5aMZWedDj+iNg64GO29wqEBJV0bhkKNtAPUy2moCAAIUZJa8j8TGyz8lXub7rWgquBKqqoLKq1wFOcvKe2uc37VIakyJ/C8T1X+NyllZlBmYcUorQkxKkKNxpLSAY8cHnU2qscroOUirwwuiIjrjiIf12IOBGu3rOiQZaSq2IUjuWbbfbo4VvlGkFYigHd3QOCAgGzrVmoJc1qgAanaY7DV33fuJH97icUnQ8AnyMELgIj3wLDFTTCTzHDIPkk3hwMOAfRjw9YjsFTJkJ0fVUjoMCHacIK00NePq0mubQsXjyhVfnniZo7RiYJx1wR8TMkjvEFJC4nanAgihlCr1crSfhQmRS5S8+mhxo9Oyq6x0dtJ9Lz/FacvrU29aW9nqNA/dyHbDLLszQu9cMOI2Qk5M7VxdEmiIQP3omKc8MEKhoZJwTIPDOpJGkI6h40nflLGb4qohpY756pGyB/u2MKeYkqwQEqLzi1QHB09NT+/79+9lez0oLoShjEeWdVvZ7FJ/ApDvWKhrWM/qu+pZAgPzRUakP1IdcMKYPX3l0YMNzTjRanFahfjswovMRrxrblB0dM+WVwCd/O+hOAMXTrpwqcD2gnksWel50bjDgcnA7wfuSzUzOz8d2ZYeq+qg/zDTQhigA4W8+u8bxiTwQ+ypyIOm6SsBAPfXIn2Cglz2esfMc+yn7sIbe/eI3DZ6jJ2fYUydSUjrXivweKqD4cGNyiqKNKE1veBtTJFNRhbx90aI7oGqg9vhubfkfE3d3d22327X7+/tomN2BktjnnloTvwIDWkR4rsyAkLG3rwKSvQgivW7KPtJH9VZA0MtMWQcR5ctIj9fcEPtH2QDnv7VjMMC6Gf1XmQC2Q+V5OdrHgSCA5RIw8LyDBpeJl5PGnOtwArH7/X6RqXBAstawfhS5TiRnQX2polkHmyN7kRy/P68yWc/r6+shE6AMZKJZZ57u67XBQY7KcMDK46rsSkZVdmAGBKTvFDT25M36OB7T+JzxDaJ3gQE3GmIwCcnJO6GK1n0A06CoHDroBDp8YKylBAA8i8FpgWTsRsCA8ug5Gh77Bjdu4FPqSWDAswIeCVWAgGVxjovRmernv8Wdc80A/y0xOQZ3RL6Yr7V21B/MEvCND7Wbq7cr3U4GitdEdIpsh54jwEuvExJM+nFrx8bSqXKmzksCET5u+Eoijab0VaCF44l1VhFQ0vXqnpS1I6++Cv6cpPYwcBLPPs3iz5GYWUqgIgE8/+16yrHB4I6gm2lwgsUErnqOeQ05EHD+UxbOeRo5UfoUfktH9VtZKf5OOpt4H9Xvv93X0BbN0DQY0IIQMdlD6g4IUnRZGciKeD+VjgamxwvPp3I5j+p1pfq9/Q4GklKk9qfUmsgNvI71vIynFgYyukmREwcnBwedGVefpkHDKM3nvrjRha9oFZ/notfX18OrYpK13jGnQ+dCSH+DI/3rI+/Ra56KiGb126cxWqvTwm7MGO1vNm87IHr/Sm98uqCKmFpbbqblGSzyyOtu7DiPz3PpTQRPn/JDXaoMarWAUBsJsXy3BQQkNJ6bzeasrxZKfmsyEwR63scp8vVoM5XnOkJQPHOP9LRyxiLPkKXr1TXn38tJi3Qd3KSgzt8ocf/meuj6T19U+UeCupQNoO2n3Ft7s8NcJ8DnOaXYo83+lFD5Sle60pWudKUr/b+hr1+FcaUrXelKV7rSlS6KrmDgSle60pWudKV/OF3BwJWudKUrXelK/3C6goErXelKV7rSlf7hdAUDV7rSla50pSv9w+kKBq50pStd6UpX+ofTFQxc6UpXutKVrvQPpysYuNKVrnSlK13pH05XMHClK13pSle60j+c/g8Jvs4DbdpKGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu50lEQVR4nO19a5Mct44sezQzetha7///gftlY8P32MfSvKS5HxzZys7JBMGaR7eOGxEdVV3FIkESBBIgi7V7fHx8HGc605nOdKYznekfSxfHZuBMZzrTmc50pjMdl85g4ExnOtOZznSmfzidwcCZznSmM53pTP9wOoOBM53pTGc605n+4XQGA2c605nOdKYz/cPpDAbOdKYznelMZ/qH0xkMnOlMZzrTmc70D6czGDjTmc50pjOd6R9Ol92Eu91uOXN+BufuWN2r0qafe5Yp7bNU7b+0sjdTVe/EU7fMxEfVLhcXF/ao52OMcXHh8eH379/35T8+Pk7/6w/3/ud//qdV95ekT58+xXvMGx/1vKJZf3I+qZ8uLi7KfqrKcHXg8+/fv8f+cPXukGun1Tw6Y7mjJ5gP/aHu3AYdXjXv3W43vn79ulS/l6AtevdnoJltWB0fSjP5r3TU7Jzz/1mow28bDDyXHh8fx263s0emdI//u+c6eTAvnWtb0qzwuYVcu/C5U2IVff/+fQ8Adrvd3qg7enx8HN++fdufVyBAr+H/MaijUFlmxhhPzl+7fC6zGhsrpApM7+n5Sj1nivG5vHM+2ifV2E48dMt36f5TDfIxKOmnBAQBAhgAJDDAMqE6iAFBBQ74Gb0O6srfz0avCgZ4IPN/14id63qOPLfy1rm2Nd8VYVlVNjOF1fEmHWl/4RqOW6MBxwYDoNRuTqacAWJ6Tl06/fJSct4pw+XfLW8GCp5jSDtAQNsnKXDmx8l5xesZDDyfZiBgjPEkEsZAwIECHDV/JwsXFxd7EMDn3Z86SS/pLJwKvXpkIAECPlcD6o7uWTyj5a3w1rnWJSeQuJ5AQgWCVsutnqnuITqQjB4PhO/fvz8BAXyeogGVgn5t6oAnUMcAPUcRzPo1GbnKiHG6VX62gIDOuHmuAU3j3t3TY5K1WRuewcDLUwUCcFQAoMd3795ZQFA5Pc8FBBpJuLi4sHKVnIWfkd5kmmDF8+oCgaSMV8KIyt9zKSnEmZei6au8XB56dL8qj1QmgwBFyM7o62A5BSCglECAXktAAJTA3dayncHr5qXk+sEBNS3L9d0qdQ3nDNSsjvtuHaoxl/g6g4E1qtrQHXUNk04JKBjgZ1J5Sf4ZBEAWHCjY7Xb762MMO3060xE/G73ZmoExsmdfeWPuuY5yeA6PiVaVQgIq7pzTJ+GeKa6Ekju8Q9gxWFw9XEQg/Z+dH5OcUa48T63DS8sc513RTPE4A5ny7PYZ/98aeeqSA0TJaUjPKyhIgGB2rQMSznRIVZtVTouLBlS/KiKQylZDzwafDb9zckDsDCn9JwCCNwUDY3ijVt2bAYHkSXQUmJazmmbVK0xAYAUUcH587v67QZPeFgBVwt65VtGxFCpkIimnpMQqQ4p0W6ICM16fk9/WqID+n/X3lr5c8bpnDkLFcwcQJB7OkYF1moEAN9YUDLiIQIoGzIAAE5wbPKOggAGBRgnGOJQdnS5IYPtnBQRvDgbGmA/0LiiYobGt91bq0bnXKasCNi6tHt0gS4BgZTDNIiWzCA+fH3uQaHtq2zivdOYNvBRfzFO3zfHf8TLz/N295A1pWbj+Wt7zlrG+FQhUdAYBc5p5/zhWv9kbA1tAwBg/HB92gNjws+7iKYEEBvheNW3gnvsZ6ChgYIx+6D8Zma6SADlw8dL16dxLBrSKmDCtDjSkm82xrVKnHls86NegbqRFFRueq6ZOtgz+xEdl6FihJbl3UQBVbEnRdYzoDJx26dSMbGfsnRrPx6YZCOg4KC4SoNcTCHDymfqIr797925vzHEdHr9bKKi624GGGUD4WehoYMDRChBI5BSlnr8UryvXZ3zOAIEbXHyuA0xBAOdbTRWoQLv27gA0pOM2OUWF6oBTSuf+dwCPU5xKSbbT9ZW2VBDAfDvFl3jQc6Ut/VsZFVePThmzCIcro9I3Z/pBXRDQ/b0ECEDZ3WgVygAgUCDA66dmgHmWfouzcCw6KhhIg63j9ev1Tjr3zCq/nXsdgX1JAKCDa4ynIIAjAxX/zgtGmdW9CoC5/29Jq4bU9YvWXf+ngV8BgaToUP4sz5mxUgCg1ypF586TYnV1SdTJowOenktVe55BwFNKsrti9Gf3qlcGO7pjKxh1Y12N/BhPIwi4PytX8z9VYHAykYHZQKy8z8pz1XTaKV0B6kQCZp38XCCwOuiq7TorHtXQddq4MvbHBAKOKpkAuXuaLk0fVAbP5TPjL13TttdfhzqRgVVaBQYVGNha/pZxyedd2f4n0CoQSDpoFSgodSJvW+uXHEk+VyDggEFFPG75/6nQ0cFA1/jrtTHqueqXRvhOYCqFk7zRDgDQAdEZRGP8PR/mrruoACNfrt9WxdeNmhyDZn0xAwT6nMurQ10QwGUn2U88dukl+6RjxKu2c88nhdntq+69Kt9zhGANCDgQkDYJ0nx4J8EKCHQju9VUqOq+WV7Ijw1/F8BWoPLUQMHRwQBThcqdMe0AgedEA55Tj+fQCooeY9h3cDtRAV5Mg3Id711Dr+enIuRKCUzqNfyvqOsVMKk8Jh4dX9Xzz2nv1ajAquFP99QwuPRdQKDpO/LsdMMxdMYp0gwI8HkCAW4KIOXhyhyjlk0HMNwWxZyX20wt6atkV7pgQMt2AGAroH9pOgkwUA22GSBYpc5zCbE5ZFeFb12Zet75uQHViQqkQaEDomPQulERHVQvFXp+DUq8OYOw1fjNqGO8wGPHk+iAsEohzRRTJcvV/SqPmSFYBQQr9E819BUlUKb3+JrbRdDtFeDycqCjK8MOCGi+PM4TEOBrjo/kJDhdodS1EcfWkScBBpg63v4KdZV4NQCUN5wjzcx70/xYePW+AwIp5NY5T7Q6zzXG4Q6EOOp5uqd5HYMS8u8onpk3+hx+ZnKj6fm/k1GXlvPeEqqcgQA+n3lLCRArKRDQNpqNtdUoV0XHlt23og4QqJwW/vE2wtrPszGjuj/x09F5CUyu6qsEDrrjv4r2JT7fkk4GDDzH+Hc9lAqJuvMZf9V5xedsUFVAoAsIxni6VgDIuFKUjJ4Toua0fH7qQMAZPv6Es0vbBQud8t1zs6hAMvYrZVXG0xnYrhHn8wR0q7HmnmW+Zga9A2Seq2D/SZGD5wCBGSiYgb4Vnvg6ysC5UtfhSfoqRQ0cL6uy4mT8mIDgZMBAogoYdD2UdG2WtkOrnecUZ3VNjXs3MlDVtSL3/QEXWuP/TJ3Bc0xyA5C3K11B+qCkDFY98I4R1jxWFFCVrpNPZRj4v0ub+KjSMW8qdwqkXpNOUY5fkmZyVwG9DjBgnTTG4at6Vfma3vE0i4Ludrvx7du3Z8mIyh7n7cb4LC+2Z6cECE4KDKx42aCZEa/y6Coql+Y5IWccV8BNGhDVQFVKaNftx52AgDtP5ZwKrQ44Dv+5fup4CO7/Ks0MJNLMIgGcLgHrWRmad2UYNN2sfilNUsLKW1WfreD0pfrw1GkFCPC9mfOigGCMp5HKd+/ejTFqOQO5tQDuDQSNZu52u/Hu3bs9INC3AZDWjaMqKpX4XAHnpwYITgoMKK0qL6YVQz8TfBwrz2QW7q3Kckq0QxV4cv/Z6wcAcNcqINAZIKdIaZrApZn1wUxpdAd2Z1ogXdM8tK8dbZUtfjbJrytni0x3+HJ5dqYVqjw7YOI/iVacpJnhn6Udo/bgneHnPMb4ARwcEGBiEAB50D0BxhhPXg9M+pujUuoszYBBh04JEJwcGNhi+Fepq+Rcmg4geE1iQR/DAwLdOQvPIU1nTUCKCHToGKi2Q9WAT4rK3evUbdYGHSDw3HFQ1Wd1nFVjBuezNF1yYEuVr6tHFQVw9zre4X8idYGAOikJCFT/K9Co5NY8QYdh3QGnU2LD//j4+GR6YLf7e8oAz+N+d2zPnDw3pnBd9W6SvWMCgpMDA2Nkjzd5BbM8upQE1513QUCl9LvK2qHdMcYTpKtoebboL70dMJsaqKIE1fVjkRt8nfQKul6Cjw5VoGBrHrPrK3mmsfESNPO+0jOujWZRAtUnVdThP4FmfVXpPGfME0DQZ9l4p82AWLYYFAAEpA3VxjjUW4gAfP/+fb+PCoiv4RzgoPrIkIsKzNoP/zktl1MZ/GOB0pMEA46ScXfAoQITLo8KDev9rTyvABl+3oEOCNS7d+9sFGCGnCtQ0J0acHlvufdWlEBZN0LQofRc5aWu5rmi0PW6UziVh1Ll3QUEHVCeIgHpf5W3A6wViO0q4lOQ4a20KjPJ49drnR/nl/SSS7Pb7cbl5eU+OoDzND4BANBPDAq4DI4WKGBw3nun350MpnqmLcyRT0dPvRadLBiYGXGH6lmRpfspPyUnzHq/UlCODyimGU9OOFhQgZI55MVoWDcUGuNp2N+BAm3byohVzyU6NYXa5WcmL53owQqw0nzT/5Vn+ZqTr07eFT+VQkwKzlEHBHSe6+a1Jf+fgbqyMgMCfH3l53YgrLYIHuNwWuDy8nK8e/duv1cB/jswAH2GH/Sh1ufbt2/j8vLyyY6r+O++N4Dyto5b1vvp7YljAgCmkwUDY9Th3a5H01V2DtHyc44PZ/SrulT1Sp6aK9PNe/F/RuDutUAGAulcy694qryvLUbwNWkVALAyqAyYUwBaZgJOq55b536lcJS/zv/ZubtWjb0ZcNoqLykycGpy+JK0AhLTM87w87kaemf03QZDaRfCxBPvTcBA4Orq6iAfEPr24eHhIBrgwAHkGukeHx8PpgkcmGBKXyl19agAsNP9fJ7A+mvL7kmDAabU+B0vf0v6mdLTPN3/mVGdGZlUBgurev6KvlNkoAIClTKujJw+dyqAoIriVPdTes63k26l/k5hdMrsAIYuUHNAwPHVHXerY3SFqn59Tj/8DPQSIICvuaiAGv8ECipwwBsPjeEXNus6gXfv3o3Ly8t9RIAjAwwqoLsuLi7Gt2/fDqYB9IiFheylI5IKYIAjgIEuQpzpSC4z6Ytk/Gf02oDg5MHAiiLpGO2VAaSdhvN0VA9kteNWQAF7/rxwUENR3759e/I8h8V0k6Ek6B2le8rRgWogzUBBB4hWafioPLnzlKZzfxa9cP3a7R9nLCra0t/pmVXAtnUc/ixAYRUIzOSrigSsRgZ0agDG3cmN7kGw2/1YKwAAcHV1dZCHRgYuLi7Gw8PDnv+Hh4eDaAC/RsjyoHrw8vJyfPv2bQ8QEG0AIABImDlMsz6oAPYqQHhJOnkwAOoqy6qhV6kLAnBMitV5Wvx/RbnOvNEU4tK0Cgq6/Lsy+fzUgcAMFHC0RuvXAQQpX+WnynOrzCZwkerT6WOX70xeFbCukGv/BGK20NZ8XiuysYXeGgikCEAFBnjO332jQEnBAEcDcO62HobugrGG86OvYCO963/Wg8iD3zYAuIBu1elUzsuVgWsq25WsJz30mkDh5MFAR/BVwLZ6WY6SIsVxZjwTEKh41N/sGY4OJEXMfFbRgG5UoKrrKQKCMdYG0ksh9K6Rdf+Zj/TfPevyrYCK9k/KX2WSj10glHhOabtAbqXMl4xYvDW9BBBwstKJAFRggA0+znXefwy/kyCuayRBAYHygOd0AyEAA05TOWQYAzxN8PDwcBAdQPSB1xZUUSjVp8lJZaPPec369DXk8eTBANPMI0nKdQs4WI0K8HFWRjUA+brLI6FqxzPz49YMJOFNdUnXZ4Dg2GBgZaClgbllAFbGbUWpq5FWHqs83b1OH84AAfOj5y6fShk7XjvRgUTJm0r5Kn+nSisys6LzZiAggYJZRECv8fPKTwIQCgR4SnSMH9MEPD3KIMABAedosZEHGGAgwIAAgAHl44ifrsXiBYtOFqux81JOSYd+KjAASh2Ke3x0z3apUpozAFABgwoM6EDpKl7H82zToQQIqvpX5VVtc0rKdjbInDFM/FcDVa/PgEAyVJpfF1Co96HXE9hJ8pnyTnVw4GVGTlkqr6v5zHjjemg5pyS3Heo6S6mP1eOvAIGLCrjQPoOBMQ6nBHCN07gpBgcEQDC6u91ub8z1DYEU2WDiaYJv376N+/v7cX9/vwcG+OlUga494B+uO10+s1WVjnoNgPBTggGlhK40zewcNDMGlWHolj8DBEl4tAx9ewCUNg+qAMCKBz9Lc0qRgYrUWLhzTce0UqetEQHlI3kYyfg5/qu0mr4DWlP9OgbdgZUZWOvQKhh5Dvh4berw33WAnO5xawB2u8Od/1LEQDcH4vA+7ukCQgcoGDwo0HD6cIxDnYY5fiwA1E2H1MtnPjBFwJGBq6urPSBgUJAMPkcWsO5AF3DrlIarD1+rImMvDQhOGgzMkFNFLgSzCghWeFy5noCAXuN8KiCQDBr+z8CAO2oez6VTUa6VoakMQRccpGdm6TvhwMpourzc8yv8d0FqJ8+ZQe4ovw6/6Xo3AsTXO33yFrTi6MzuJSDQ/SH9GKMM6Sfv3pUL44+3BhQMOAAKQt/AU0/eOfh1QAf5sAF/eHgY9/f3B/UAGEBajgwwCHh4eNinT33jNjga4/D1R63nawOCkwYDTDNFgzQdj8cZ2JliqxT7ClhJRj4BgJR/CpklmkUF8N89181f059ayFUV/HO8QEXw6T6n2QJqqzK1DpXi1zRQOunNkySfri4rMvhaVLVxJzJwagAAtGLoq/tJ76ix57l7nQIYYzyJFHQAQQUEeD+Bq6urJ3ngmOqruozfJuBQvqsv86NTBPpNBBh33oNAAYgDAlUf6U6HM0o666Xk9WTBwMyzAc0QU+UtpAEy46fLW6Kq3A4gqAZHVzBmhno1/N2h5xrD55C2C/+v7s2o44Xz/5mXUwGUCuR2KIFKBYhdIJDGhAPkSNOVs5UIieNBAVB15DwruTgF6vT5DBQ6w6gG2IEBNqBsJFM0QD3xMZ5ODygQuLq6OthXYBYZGCMv4tNXALnezAvSw4gzv7x/wcXFxZO9BnjDIgYRzK9zwsADgABHByqqdBbf30InCwZAlfB3BrjmpUI1U3IVPzOAwHxWz6yUn551Zc1oiyJeSXuKivWleVrtKydvTBU/Lqox40nLqsBLiqIpz1vGgKvbTP46sjUDYk4vuHx+BnouEOBzt0aAgQAb+AoMJE+er43xdNGglsVAgCME4KFTdwUFLjqgbYL0eI3w3bt3B3lw9Aw8uwWEWK+ggEPTgDQtogRVtE7r6WTXgfAunSQYSALNNEP8nCblmZRcErxKyep5Qm0ritSVoYtp0jMu/NQx/i8BEBxPWzzZl6IKMGqa1Xy7aZIRfak2qcZMJWeodwLSK8DZAVOWfS4v0awPHI+JH86v6u9TBwRbQABfU13HQACGXX9uMV83MuDWGVQ/BhCIFAAcIP8t5PYEYMI13poYY4HBEcuJrkVAercNMkcNsM+Clo10quMdKJhFDpVW0o5xomAANBvsFeLXtHxNf3w9Ped4qNJrR3SBQDXwHRAAAh3jh1ArIOC8q3B413PrUMcAnwI5vlYGWidNMqgz6gDKGeDV/ylqVj3j6jA7qhHuKKZZJABptrTfz0qzPp09l4AAwEBaM8DGXY0/P5uiApzG6Vm9pzwwKOA1CyCnV7kc9sh5sZ+G7FVnaluBnzHGwToAnl5zRhvbGwMMuLKVNK9Kf6/o1a7MnBwY6BhaJtc4er9SygkQdHnTPF9KAWlZOqh4XgsEFMtIkwXKGZJEL1EPBwiOTcpTJyStz28tt6vYkxeTZLsy8Gk8rfTLDBBUYMS94roKwKqxrVTluyrTpwQmVkEAztNPowNp/cBut3sSHeDFhF0gUOn1BAiYF9VbHM1CHqojNYTPiwtZT2ItAJcBY88hfH110Y075FuBAU6Lo04VIB/W384JeElH6+TAgKMOMFgxNmnAzMqowAAfFbXOOixFDRKan4EWN0Wgg0Tr9RylWeV1KkCgW8eOd/qaNANolfGHUumADpemU3cHnhPQYSXHeXTD8wpcZpT6twMaZtePSR3dlNLPgIAz8pzOhf2raILm62SDy+FzPboFiB0A7+oPgtHnPNK3BvAsryNAHpBryCaDB55uAChIUxXMg0YCGCC4Nw4coH+O/J4UGJihx+fk6cpwymxWjlOGIO00FboVXhMQ4AU5nI7DXkgPwefFLa6OM97cIOnUYyVE/NpU9cNq3zyHB4fuKx6qZyrqyLUDoR0Fq/k7pdsBhC5NVXYiFw1YAbcvGU14aZrpQm1DPq9+aS5fQ/J6Pa0HqNYJjDFsnqmujjfUNe0jAAMMw61laD7ISzcbUtlJeaS+4rbAdIduToS20GhBFRlAvm5KwrXhFrk9KTDAtIqGXyLvrpHDeRLeMX4IbsfwdvKdoW0oUxYeBgGKZLvC0g1ZO1op5zVJgUACBiu8dvo1efIzEJD4SkbA8ePuJVDheOzkpYZF02ko1nlHK2UzpahbFY6typjJwrHkeKYHkw5bBQFMbLAqfjQ/d93pq8RLqicbR90PQFf6ayQDz6d9AR4fHw9eF+SjI6dDVL5QN0wnYLoA52OM/SuM+ryLDPD4SWO4GlddOlkwcKqkwsvzWRA+7UD8727wgrw4CpCAgAvD8rUUrXBCdCrG+zWoCwgcqSJLaboeaAIIM+oYNb7vlOxWIKzpkrFRXnVMOBA1azsFUemZTkTgZ5TvFceo6p8OEGBS73QGELRcN/3AR9Vrac5/jB9vBmDjHxyxDgDP6/bHLH9s+HknQQADBgn8DLeHA53MJ5fJ6RgIuGdTfygQcGMB6Z4LCE4ODKx4B8cuJwmxIr7dbrefZ1KFhfv8rAMb1RSBKtxZHZ0xGiMbq+dEB06BdBDzkdM46rTnrGwHwCoQ0OGlAgbuf6rHap0cqEhKTMtPxscZd5cuAQEHAhwoeI68HkvWq74D6VicAYEUXWTDxCBAQ9upLZxe0mkHXS+g6wJUxtWAY5tgfEhI5+3d5kmQF9SPDb+CAl4/wOn5v4s+cdtzW3F0gKMOvM9A6l+N3jlwr2mfA3ZPBgw8d7Al5YFjBwkzVWFYHlCcP67hWQwsrEDlweZIowwQKgYEVR1cRIDPdaog1fNn9J4qqjzGjkf6EuVXiH7Gh+azFYg5ReKM+0p+CmKZV5Y/VtguQtat03+ifFbU6ZcKoHV/TBxKVy+3y69bTMi8IY1uTqQ8gBgI8BFGHPm6PRO0DhwBYFAwxnhi7HV7Y+ShgIDLcO2GtxpQLs61vxIgZhvjFhuiHJdHd7ycDBhgWlVMldGvQEK6PwMCXJa+f6tpsOEETxfMIgPV9IAOGgcu1Nik+jgFvBIdWKFjKvBO+FgpyUWSya3GPD0385K7vKXxoHKs511SUKzlQply9KoCBC9FDnBtef4UwMeKPnSG3kUwU1+7CEvlCVc8pEWFYzyNqnIaLhteOQDA/f39uLu7e/IVQa6TfjlRoxNu7YCCAI0CaNSg6h+Wnd1udxAZABDAmgEGBVUfOyDQBQRdOgkw0BH2StnhmBBvdc2VO1OqKsjquYNfFgLkoe+zgmaRAH3XlvniiINbaOLaauaJOQ921UCdCq0oMn5mpixnBn01/7cyOtW4SPO7iT++rwoXcsuKEcoR+akHyLQVtG3J51Sp0lNjPJ0CmQEBBQRu8We1PmCVbwUFrmzM8zsgMMbYrxG4vb0dDw8P4+7ubtzd3R2AAS6Tt0jWNQRcR/5xecyDmypgfZJsDp7Dp5AfH3+8dug+ZoRf0rEJCHQAQVdXnwQYGGMertwCBBIa1mspfy1Dka4ufuEBpJ0LIKDbUoLU+9fB48AAC6sDGg4YuGtJya8KlcvT5fPWhHJT+aleM/Cz4il1+Ovm4+RW216BihtPDghUwAB56Ypn5QnXk7FnUODyrKZQZiHQCjArVfLw3CmZlyJtV3dfj07fVdEBlacEBGY6OD2TIgRuCmGM8cR5+v79+z4aACCAKMH9/f1ezlhX8i6GFxc/vm+ggIMBAV/XNE6WeZzoei7UA2kuLy/3Cx4vLy/j1w2rvsaYAm8oI0XaOF2Hjg4GuPKuQTpGegYEkjDqQEjlVMpXj04YVKkkBZbAxhjjCRgAkuUBxEKxYnyfY+hSHsc0/kozPjoKf+YVJ5rJ8oy3pOxn5WudZnVUhebGhZNxzYNJV0Cz/DMgYB5nwM1Rkr0ZCFB+quOxaKafXDqn82ZTBZWO02s6NdTJg71zx4/b2Ie9awCB29vbAzCAyAD6CnmzB66vHILU2I/hQWk1VVJNhXBeiBKDJwUEaCsH3nHdjQ8eQwl8d+X3qGCgK4iz5xwAcEKXwECnnDHGk/UBbr9uTc+ee1IszMesjDF+AAGegmAUenFx8STktYW6CrECbKegUDveY+d5fW4WOUhAwA10RwkIpP+J78SfK8uBApcnLw5kXpg4OgClhaMq3QoouTaq2rtr1FP0yh2PRVX/qhypHmTD6MCAkupOLV/L4M/1Vvyz3mVetKwxxhPDhrcGEBHQyADAAJwh5KcgIH3jgMvCOV/X+669tY21fzBFoICI1w5grKid4PzYlvCY0vscQViho4EBZ/Q7QCDlxYJeRQRmUwSuE1y4nvNz9eL/SFO9SaCDxfGuZXBkgAEAAwQVihRO2kodI9OdZjgVSgOpMq5qNDrnfC3lPQMAqqBX6jQDMHqN66jeoV5DeifzLA86PhLvaphVplTOOkCgAx60vLcm7dfUPxUQ6IIBUIpQVnrUAQkFFMkRYwPGYOD79+97g5+AAK8ZYKeLFwdikZ7z3lGWkosUcPtUbQ/StxwSOFNbUoFjyKUummRg4KIDHToKGHAGcxUIJKWYogHdwaDXVcj5mJ5J15zS0wHDitXxzYLgIgCKcHXOa4VeUgE6hXxqtMJfF+B05dqNCRyTrKf7js+qLEdpKsDxN8bTaSzmTbfChuw6heb4d0a9A1ocEEjTJ1Uk4JjRAY02Mrk2xdG9Xpd0H+sG1UGVIU8y2SFNq6v5YcgRGYDh530GAARYB7JuhkeOPJP+npECdbwm2Km7A0oKCvR+pYdY/yeDr1PGP800wcyoruSjCM0ZVIdax8hKU40zX2ehUrSo+TDpN7JxVIToykltpB1fRQV0Dkx/SrMw9n8CdaIBY2yr8+ozydDPwIDeS+QMn1PO7KlUfKpyZUXEhr9b7xnfnXxmCjU90wEUb0muf/TaDAjoFwWZ2PiCVN8k0MH/Hbn59+o/8wIjz4af1weog+PC5po/dLiCUK1nxWeXnJfugBYDA24HJpZJrmc11jki19U/bw4GKoS7Nb/OT4FAAiJO4ajRTwI0q0cqYwYemCqPn1+TSWk6EYKXVHwaqfiZKAGjbj93+jUN/CTHfK86XyEFyBV/ri4KBHBUxayRLOZ5JvMvATwVgKdoQyda8FaUdIwCAedxYjV92thnjB86gz1S5O32+XfyqNeZVD85YMVAQD8cpK//pSinK9ctTkVfKqBJ+bgyXGTBgZE0dtCWOnUwxoivnqN8BQQzqqamlY6+ZmDrc5UwakTAIbKqwZlcqAzXt9Zrte7spfE7sTpoIHx8bww/h/QzGuettEWZv1T7zND5KjieAYPZ8y6vREnZOMPRoUp5reTj+pMNuaadpVED5QDAscaLmyZQILDb7Q68fwUDAATOgKEMXtSZ5va36jzkjXZ1rzazoXcAgMtCvVUvapshb/dqq2vbzlhMIAJluXrrPe43B7Y60wSVnDPgWaGjv1q4hRwI4PP0c0CgajAnJE4JJ4Chi0lWyaFAGH8AAl5Ny1/x0ugA58f5p3o75biFf3c8ddrCpzPIlZGeedyVHHPaBI61vM71LrESRl2Qp5uv1GjVS/HT9ehSuS6vFCU4FiXPVR0fnhJgEDDbhY91i4K8zvTkjJweYr3pVsMnzx88wYtGPdTwOUMJHab88CePwdPMWVSbksqEjnZ14r7DVw1x3cmqTjVgYaQDuBqJ6fbdm4KBrR6MPu/+J7RWNUZnIaBLy4LXBRhO8FNddJByhzNqZiDA54yqKyXIgucMVbrfoVMz/KzUU53StIBL26Uk6xXAmpVVyfjMu+mCFSVtB+eV6X+OYHG0agUQOCWe6lPx3gW0W4Hva1HqJwUCGgnQny6sY68VebLBroDASvskzxwGjfPjUD6nZeOv0yGq71KZjnSdxcoCQ6f31SCnyKz2HTt9HCXR8vgev1aextMKEBjjDcFAh6nZPBCuVR5R8qK28ObCSG7aYAYExni6eA/XqugBAwI8q9/g5u9686+q51Zv55SU5BZaCf0m78Llo1SBVr2+NeJSGf1q3PA5y7ALR3N5fES6FKYF6ZQWK39niFL5Fa2ArJ+REnirgMD19fW4vLwcV1dXB9vxjnG4Gn2Mp5EcNrwsF0pswJQ/TaM6rKObtWx2xPiDPwxsNLLA50nmZ29drMhjin6hLEQilD9Op22mAIeBlEYlniv3bwIGVpH8LI90f5Y3BN/xk9CgGvpVIKAgwIXFQBByVrSMGFm5MhDgexVa5HZyQqjpVoUr5YnzLQDkpanDx9ZB5eTK3Z/lPwMtzwEiq32gikY99AoQqEePowMOCWjNQMIsItClKip0bErODoeZFQTgx+sFWAfh072zqUzVqd3oCuep+svp3GQj1JA6w8/TpO4/yxCDABx5y+K0kZySyraLBGgEGfqcAYH2qwMyCt7AH38Gmad4OL8VQPOqYCApx5nS7OSH/1phJ1yqUFThzOaJOmm6QCBFBoD20Mn6NSvko8ZfPa6KN/XGcNQQlQ6grqJUhaHtfSrKVQeNu/5WVLWLa0f3fMpX/ycvc0Ysr0xpmgDE61w601bgxwG2ChSkPnyOzCUQdAzS9mAgoGsEGAhcXV3tPV60BX9Fko0MG13c5+uOVJ6Sk+SMIwPJSnfjefaC2fAyINBPEvPXYkEuKqDfMGBAoE6iAgDe6E0BTzcKwnVGnryoE7aBxxv3Fx9RHkcRjg4GEtJz97vPp7xmefJA5kUjHUrz/1Ujq/fPaFUVqs7RQYB0gQjXI0UZmJxSTYClaxBYuc48V6eUV73St6CXUPLdenXKUkVSRVs4PV+rxtlKH+i4UVIwmyID6uW4/Ll+zohXBv+5pGWdEhBQUgdIDZqCAXygZ4xD5yQZCu5PJ1cuPQOBldX2M8CaSPWgRgMwp85TqMqvRgb0s8futUotUz9Pz04cA5SOLUT7IT2Pc3YSGQQgD7d4ksdStUie6VXAQKp8pZhWBpxDpBUQ0MadGSbXeDOl45SlIsfkHTGSY0SX2iQpVLfmQP9rnvr9hIqcou5GDf6TaAsgTVS1VQIEfM/xlPhy1zWfZBgT6XSWPtcFAom4vnrtpYjb+NQAgII9NrrOoKlhQ1rtp5nsOkPD99xPwYA+n8CA0+OzeXvVe/zDB4AYDCgASq9gKhjofO2Qv0ao0xhsuLkesAvME3/BEPxizHC0gNsP9eSoAU9D6DMVvTgYcIhHz2fPde7PFGEKc7Ph46O+rsKkys6FvJhcKCspReTPAsCC0FnZukIpLwYFWpdEM1Dws1AFvDjN1vurURFOP3s2jbHV8tTLx/UxMvjU8eCAqcq8M7aJ106/aD2q/1vyPxVw4IyvAwEcIVBj1tnQhu+7NVK64FSBCQMC5JvK43pxvlpuh9gTh4EEKHCRgd1ud2D4K0Cgr/BxWbx+i8HBGOOJR+/GqoIpGHbenEvtDewV8uUdbXkc6rie0atOE1RgwA3EzuCdIVGlVIbOz6MTXF5uHo2vaRnVWoEuSquIhUUHb8o/CYSLCDhwo+dOSXYV6ylQVecqnKlKrnvP0Wp7VMDA8dEpm5XFTDYrflNkTIFAN5Lk9ANfS7xwGFefc3KtIPwUSXWeLnrTaIBGBpAHH1M5oCr870LtfO4cGO0P5kfzU+DhdLKOV8gZv2mAqYJqzQCOWF+R9miowEB6owtRCtcHHAVQIODsGj5zzN6+RnUVCIzht6VP9KJgwKEe/Z8AgXpDnB+nd0KS8neNwMovLdjTzsO5zu8jPyVFZh0gsKKIuB04FOXyqJTB4+PjE4FixFlFV7aEVU9B2TplqPXrGFz+r7Lu0q727+x6Jf8dMMdURbq29FmS/5TfDLyoXqiAwMp1BwQSKOgArNckNmApIsALBtmwOt1aUQICun2ulsWL7xzAVL3OhpanNJJBTLyiHMgZjCq/fYByuU746XoBrLXgCEEFBtweLxylgOG/u7sbY/zYcpjbFfloZIXLRD3Z9lTt4yJ7Fb0YGHCKkf87A+tIEbwqOQ0nzUJTqggx2Dk9K0I3/4nrDgA4jzstIEx1rNpF68TevzNAyo/2h4abOA2HlSBoLrKiyt21sdKpAYFu+6c8KuCb8qzaoAtAXBkVEOiWP5PpDq9aVppySjKSnIGK70o+UySC82VAoLytGtHXINZ1aoBTaLtyjGaAagYEdDqADSobdDb4ri+cMXaL9qppUq4j9DZ0u25IBNLNhVJ7apRF9SYbfAcG2LizHr27u3tiz9iz1+ec/FVRaaWZE8r0bDCQPCKnoJLX5PLTaw4AqMDOBgDOGRC4ENMYT9+B1aiBXld6jieU0rNQcVSA55dUufFgccBAwYoKvSub67g1SnBMmslh5UnqsQID6fkOb65MLWdFjpznCznRX6U8GCw7o67ylGSkqreTtapOfL4agZkBgmMTAwE1vM6IMnHbs+esfaI6bQYEFJTMpgkSGNjtduUcvdPlTDomUIY6Tiz7qKuLcjggkKYK1PvXdQOIBowxDmzL1dXVuL+/PwACus7h4uJi3N/fP2k/lQu9npywVwcDzgNyymqmLCtjo3k5ROqAgCoJ12gKCBSJKvpSRZkiCExvZRRZsJhX8Mnth/TMH0cBIMxVv+DZrqLnZ45FFWhlqvq0AgP8P1E3MuDGyHNBQIcH3E+AfIz8Kmw3b85Lz7W8rrw4MJqiApp/AgQu/TEoed8wWBjXTo4ZkLHxqvQsl5mAgHPIFEA4p0L7Xxfw6ZoBPOP0S7ItXEZaqK38uqhEqh+Xj+d0ESHP78Nhw+/x8XFcXl7uFzfiegr5c99xvXEv9SW316uBgQQC9FgplO6A4/QrQICFwhksfoaBAN93oIB5WgmrIo3rlCoM5qgDqjRvbr/0DCsPt7CS2y2BAz46OnbEYAYE0rWURzLSbkDP8p6BAZemKzfJMCY+Ux5cZlqlXEUFUvl6XIkKzMDOawCDtyQ2Omw42ZBpnzw+/pg3x3U2KOotqs6YAQHVx6wv9fzx8XBdEpfhogycJ3gHz6l9VC9x+FwBQuJfx5OzGVweO5GIznKUFvXVkD9+3CYaedjt/l5fAB4YwDmQlEink2fUBgNdEOCOnTzddUaq6ACHHlUYKk8W504AUNYYfkMVRYagLjDogAbmVwXZkQ5kvecEX8vRNwogoPxuq7ZVAgWuHqdEXRmdeU/JMG8BGC5dGm8zEODAsNap6rv0LBtI/GYLYjtRo9SelVF3kQBN26FZO6zk9VqkY3e2at/NJ2OM66fOoRug29RYqdFGGv7wUUfHq4Pl9BKX454HOcOs/9kjd6DH8cyyxW3IrwVCL3JZnB/0LwOBahyP8eNbENwn9/f34+rq6iAvUFownhzNDmgALUUGVox/avjVZ53g8IpVFgBWUE4JOqFyg74LCFz99JlElZFnodNnXMe6qAMLKP/0GVYIIA5jadmKul2dZnV+a5rJ4Moz+vzMgG/lszOWmJyh1+gYp+2AIPeMU8bueXfc2lYKBCqgk/7P0nDd9HrK7y0ohbK5zTQaw8adr7koCQw/yhrDz6c7R4yJoxIpaqSOi/PSmQ+3zkHzA//oNwUCrv8UJCl/uH9/f39QNtrJtRfsAztXOj60HtqGyPfy8nJff9gCPINrClwUVHA5Lz5N4FCYq9AqIHDITu8lFInrXGEWgi4g4OdAPE3ARpGF3tVJgUDHKHTSdECA5sMDTJGoA0L8PEcGxjistw60il8uY4uBfCnqym/1vJ4/J49uGdW5M15Kajzd8+k5d+zUvYpGPBcEJMPgyp7l3X3umNEBjYIqKRBAOh2fbDzceGcdCwPrQIgz2soL66WZ85RkQA2eGlHwy29QIM1ud7jBkhpIdiAZwOAeIgL62jnWNYzx4y0J7Rv9j7x5vYYDBHxEvfAMwAHaxQE7/s/2Dzx2qA0GdE5jRbGl+9WP06iAugGCys+M1BhPFRQPKL6myhb5zhYRdozEVsPo8kbbKOJnAMAI2uWFAcTGH4LP6JTr3K1Dx2i9JSnvW2R5pf+6oGHGk8tn1qbJQ9djesZ54l2Frnl2n6uUXAUEurTy/LFllo2MGuPHx8PtzlU+XAQBaTV/jrZyFCBFJNjAcH5qcB1fMHSss9WTZSPK6x0YiIA/LKRU/c8yx29ccduwF687BfJaBhjmq6urqGfd+GQggCPz4sAE9OzFxcUBEECdFAygbRjQKCjo0KbIgDMEswIrw69zSSmNmyYAuTC5/hQEKO/J+0jrBdziwhTi1wjGKrGAs2cO9Mp15L7RKZVKQXAdOTKgZXCfzOpz7IjAGFl2Xxq0dYDhKvDoAtuVNC5CgLJmY0EVYUUJeCY+HN9VVECf5zEy48uNfz5P949B6tlpdBKr18fwoXi9rnmzfoVOcVMEnH6Mp/2jaw+Yd9XD0EvQK7pXv4IBrp8CAQUD8MBVHnTu3dkx1ybQf1dXV0/m6jkPHTsMBB4eHsbDw8OTHRGZTxedVpvHQAnP6+LQVOcZLUcGUgMyAzPaAgocEEiDv8pDPQtVUk7poBNSyEvXCTglt9IpVRRGBxV77YyKXeTE8Z6uzQxkqucYXskfGxR0AcGKsVstO+W71ePutPMWLzg9o2MnpeO21Hqnum7l0Sn9RFp+xznQa8egagFZJbca0le5nwEBNy3A5SWd5spSnjjczfnhWTV4yq/uBYBnOFLC+lp1uiOVTfbOnd1QoMXghXcn1F8y+Alwo704ssuAg9uXd49Nuj/RUmRAvUpQGlS4lpRw5+cEloUteWOaB/hcCZ1wyIUBgaujhtVniNyRpq3Ccnw9zc9xPlxGUtBMW5WfGiJuv2Mp1ASmtC00rdIq/zPAtZUqg7/Szh3FuPp80gGc/jmgoAKh1TMovwMC+PzYUQEQjAx0jSNtU4S3efwnQ81AwHnzFV/qOKmXzzypV49n8cW/ZGNYl3PUgsEAgwc3d69RJfCv7adtyHVD+fzK4P39/bi4uHjyrQJEAgAC7u7uDkAQ58ftDl4UNHBfoi6pjizbXRneFBlgqgqaGekOCHACpXkyDxxCZ1TFR2ectG4JpblFhk7JpKmFRC4tDyAGP1xHrjPznspTheHQsnoiOogSwta2OAUgwLxVP6ZkILbUQ4GIkitLjWd61tHWCIzzMreAhaoOuN4FBamfOv0wk0+k6QCCqr5vRTzuFAxU4ICnLJND48By5fjxHLUL5TvSuX42nngeBn6Mw4XODE54gyK3BTP44nJYfrjeDB5UrznA9O7du4PvB3A0BfW4v7/f/x4eHvZHAAO8ocDtzftGoI007M/twPbNrcngOq3Q8pqBlfT8XGXoV8BBAiUoy3WmAgFGT7M6Ji9njB9Cp0KIdG5qweXD17SeKdyvAEDrz6TrGFTJ6aAYYxzMbemClS1AYIuBeilyxqQCA6AOkElyVP3nZ2fXEzBwbdttbyfjXaDTBXiJBwc6Kp55/PMzWrbK9KwdqjqcKghwQIDT8D0YqDF+jH8YLo4wsHNUlY/0IBjwh4eHfdkzA8R9CT74Od5QiT1n1nn8PAMCBQOsm1mHusiutrO7jnx5ISC2FWY9eXd3ZwEBfrzXA/Ojb0W4vq/a1FGnT5g2bToESkaBzytj3gUGLnSlxN6yRgNwH0KrDe54nwl1lzoDTtcIaBnd8tSD5+dZoNNzLOz4z+eaf/L60vFY1AGboC1GYgvY6Rgc5aMy+jMAlgxtRQquldeqX6u8XZ4uLwW+CNkmIMCGqwIHmsbVLY2ltyYem2maIIXqoTN1R1EOz7NnqeVxu3Cbqa7gFfKV8eLxxp8XBv+YKuBV/OCfvXDdsVAdHa4v8nx8fNwvtGRjzO2aeFVCnS8uLsbd3d1eLgEQ7u7u9j+ODODH7QP+0ab6xlcFAvk+zp2e1jcpEm3+NkFlFMaYRwS60YE0b55IFYh60DpNMFOIW5TdFnKAyYXqVDj0fAy/IyKDIhU2CBAPznTO6blMrofSFmP5ktQFAx0gkECAM77JGDsgkMpMRrwq26VXHtz96vkEAiojPst75kzwf311VvPgcdEx3tp+Mx6PBQhQJ45qjvF0rtu9OsfEQADPwhg6o4cwvjoyCgY01O/0EYj7EsZa6wSggvTsBHJ4Pr3u+Pj446uFHD3AfdZ1qBc7kEoMSrgNEBXB+gGADUQAbm9vLSDQXSC5X9EeTufzkcecA60MyFbkdhMYqFAzK57KwHWAgl6rQu74sTAmQOC8A60fjiveT5pnq56bRQWUD0V/eq6kIMAtmGHPgwc3zvl+N/TkDNaxyBn+hPqVTx1U7j7yS2Wn/N0g7tQlAYEK5M4AQZdmxj+VmdobfLu8Z33Fz7O35zwkTjuTyVmfH4N4jLuFZlpXbUcYX91ZtCrLRTRxTxfLdZwF9CNABoy0M1wMHPR5F10e43CtAIw4tvWFDVB9yTpO9T6eY/ABgh5lXckLBe/u7sbNzc0eCKAc3tUQ+ljBkDooM4dB127oryu/S2DAoRGm5HUxgptFBFw63VcgKXFGufxePO+x73jWQeQ6Qp/p/q+iGRUAUn7QscyXAwKOZ24PJX5e5wF5kOtA6raLM0xvTU7OxngK9hKyng3ITv0SiOgaHeazAgJV3Tu8vpThS0AgAQNnNFgh6/8xDheAsaeXomYdYJrA4LGIy9a5flyrnAGQThXgWS4DAEB/yg/aGgZQo4dI53jitQupz3FfV/K7Iz/P0yIg1MEBgaTblHTBIOrHelLXB7ipAnasnBMBsIYyQSnSwu2sTtyK4wZqg4GOQnwuEHDIz+2e5wwsh9I4HMaRga5RSp6K1pePbmEj8zlL73hLnn4acB2l4OrKAuoAQDcEeAqG31ECQQkI4OjAAKdB3rPBlgxfylPlz7VtBwg4PlTeKiCceJuBQWf4XdkdnnX8q0LW+V8mHfNdENAFgW9F4IPlIDkGIKTlNtEtxhHixmI+t+2w6jQ2pBodgP5gvsbIO7aiP3Xr3QqMa5uAH9a1qnd1OoLbi41nVZ4bw/oGwd3d3T46wAsIk1PF+aLMFMFNsqiAWAHAij1YAgPKCGhm0GdAgPPgc1UEFSDgRnCKAWlQh4535ZRsZeyVt+pZJjdVoDQz/A4IJAWmg7RCyy78t6oYj6lIx3gaZq5kWQfSzCDMDPGsD5ySew4lmU0GWZ/rgADHuwKWCuxr+ZqPjn+8S66Lq8b4sZhrt9vtvVQ2Ogr4XB3cubbNsWUY5ACOiw6oftztfkwVaOREgYbbcAj3YXQeHx/37e28a9VD0MnQdTNjjzK1rmzAeR8FniIAsIHdUflyeeGINq5kRUP7uqeATg0oUKsMtAIbXOPyOR++rlO6qzK7DAaY3MBfBQGaj0YRKkDAxFEBx3dSQqwseEBUQEB510Usjj8HIirDnwZB9z8fneC5Z3gwuMFdDdxU31NRoqCZcebzZBhXylFZmpWTKI2Z6rybF/PjAEFS3KmOrqwO4OVnkJ53mVNAAJnVT8ViYVeqE9dN6+jqfAoEEKB1SQaYpxQYCOiiQI4SJFDgeGHDw6v0U+QwyQcT60XnJCIfri9+vMiPt05mcKS2R/NQD14Nq6uf5uHC9K49mDiawn2m9WV5TM5uAocdWgIDqnScEXcgwAECzsN5DBymcqFCN5flGlyRIxpa0aI+q8o7AQHleUXh6bkuDOLz7lRAEhgVXnetOiZjwO3UMUTHomSQq/9pIFd1VXmpjFEiN86ccnTjZiUvXKvaRuuWgFIqZ+YIqAHi8Q0A8P79+3F1dXWw2xyehTHC3CzPpetrXFoPV59TMf4g11YuhFxFPVEnjQxwW+m6LBwBHjgf6ATdiyQBAa0H/lf2QqcpKuPI/ejGRMqT204XQ7q3qRh0qv5N8uTq78YqtzPSOP2c8q9kokub3iZIA3wGCPhZnHOeHBXg+3zPzR2iAVD53W63R6u8RbATSNdpChT06MrXPI5JydiDnAJRxF0dOW9H3IYdI/NWlAyZS9P9r/cciHwJIOAAtD7jQEK3zBmPVZs5/p0eUEMzxjgYs7inQAC/6+vr/aY04BlztFdXV+P29nZf5v39/YHcOjmcKfBTJCePbrwraHDGHcaO+4PXD+iUC/JOusERyyH61q1N0E2ENF0CkgoCkh3SvQkUUHKoP/12u91B9BQL/tx4c2OS+YRjyv1ZRXA7+jc936VlMFCBgM4UAfLQ/LQMEAMDLkcVixr7y8vLgzlEDpFpdKBCcXpNj67uFbmwmyOnoKuOdQrBGXxN69Cnmx5IyDR5yacIAtz/xN8q384j43ySXKRyEgBIcsjPzfia9VmHNwXMs19akMZzurgOIHB9fb0HAr/88sv48OHDuLq6OtipDSu5b25u9obk5ubmwBjC6KlB43qegpwmYuPenU8eY+yf0Wc1dM6hdl1gmGQFbY9zLZeJ9bVuFnR5eXkQ9dEpIQYHKj9O9pEvy5wCDbexj35HQNcAaNloL/3x9AAWLvLRtVflpDhd7PJ4Cdr8CWM3DdCZGkBemq9ed//1OiM8tykJGl8XFq3U2fG5Mh2whap6g3+eDwOp8U9zR2rUq6iAnifF6cDLa7TNFkrGf8uAWqnTCijQ/FXWMKZwr8onGfUZEEj9p8/o/w4Y4HTqmXE+UPwAAR8/fhyfPn0av/766/j06dO4vr4e19fXB2uE7u7uxpcvX/ZGRfOG56fUAQFVm70lOW+f7yUDw/2q0wPIE/3hFhhqf3HefK7z8yhbbQEbd/QlIj5XV1dPfgwMNKLgDL5GAHBP8+I6YQqAf1gEiDw0AsB60i0S1PZS3apOqfYRntN1XNzmlU7ZIq/LYKACASlCkJQXX9PwPwY7G3EXttJ8oFDG+LFegF8tQd6z+RRVyg4IVFMFM6oUdIXGndC4dAoKuMwKDCRw4PJRckbo2EoUfPBRz5lW+Z2ld33Lz1XjoguuNe90PYG4WX14/DnQgOec5+Z0BXu3XFf2FgEGAAT+67/+a3z+/Hl8/PhxbzzG+Bvo397ejr/++mu/toCNHbw79to6dApyO8YcsDqZVt5dJADE0wFjPF1XwOfIQ9sQMqE79bmpgIuLi310B0AA/cZrQxggwJirdw/jjmeQxkUfNALB4BoGHa8D8rMzgKtAjGVcxyl0KcYT7/nA/cRyypGGSgcneV2xUZs+YewG9wwMJJqFfsYYB4qI5xghxPwshBWdOcbhStxOdKDipbreIUXPzB/XRw2/8/DHqL0bpygUCKTnKlDA5IyDAzjHVK4zMFAZa5fG0Ur9qrQOhK5ORWk90R88DtyYc/3GxEaW88azKw6Ai3Lo9MCnT5/GL7/8Mj5//jx+++238dtvv41ff/11fPjwYQ8Gvn37Nm5ubsaff/558F17XeTGC8AqQOMopX9L6ozxdB/1UmeK64WwN+fJ9zUPXevBbZciAWzY8UNfX19fP4kGpCkDNu6cT4oiJMDAdWLZcOPMjRkdm+ANgIJ5cH3l2pl1PAMB3iWxA2g1+tOh5U8YJ29lBgTcXLlTeI5xfi2G7wO1JsXGYAW/FB3YEnJ5LihghVh5/BUq7AqHo5mSUyPqwlNO2E4JCIxRe8Z8fdb3r1mPpHgqI6tKJPVnx5A5QMCgdAYmE8CYlalAAGDgw4cP4+PHj+Pjx497QPBf//Vf47fffhufPn0aV1dXY7f7e6Hw169fx9XV1UG4F5vAXF1d7ed8Z06Kk9tKNt6KngtEFBCM8fRNAk7H15R4PQHnx/f557xyNvyIAOG/Gn2OAmh+AAH4oQwHBvTHTtds4Z7z/BU8aLRCpyN0bQc7rFjsjvs4VkBgFu1jW+lsr6NlMOCAwExppVCF3ndpIKAavuJrOmA5OsCKTa/zM4m3ijqGsCINxblOUwFIoGHmtTvFprxWhiR518c29B1KEYEx+kZLz1c8y1maCgh0roO0r1eNiDPkCgj4/5ax4wyOW1AGj/HDhw97MPDf//3f47fffhu//PLLuL6+HmP87Sh8+fJl7Ha7gz3hP3z4MG5ubsbt7e24ubl5EvLlulU8V/39VrQK5lIeW+4xOT2u+pd1sPYnAwA24Dw9AOPN0wousoAjRxbY89fpiRQVAN+QabYz/NM6sqPJQAAg1K1NGGM8MezqzCZydqAbIejK7uYFhMlT4bRgphJUBwQ0xKGhThAEkRXLTIEyQODnk1c1I1ZujDar9Mofr+BNz2jdXcjJCUcyHPhfeXdVWckInSLN+iOBIyfbfO+lKQGFGYDQPkzhyG65SU4YYHA5rv81HU+FuTrhGnuP19fX49OnT0+mC3755Zfx/v37McbYrwd4eHgYX758GX/99df+rQM2LlDeCgS0708Z4K4A0MqxGmOU3r/LqzNFhXtu8R6DAH1dFIY8LRDkdQBIx+BCf2yE3bMMBtCmzC/rcv6xjWGQ8fDwsAcb9/f34+rqav9pY41AOM9fx5X2mf6vbIHmsxI13hwZSEAgUXeAqVHkinLFuIHTgiQOiekaAp52cECDy3bGz9UneffKu9YXSlLXQGgUoIoMMG8qQG6OD8SKnuumvwQIKmOqdKpKVikZKqXngMdVPqpxloCBK3t2fTaek7xo5EBlWEE9H1nZcqgVxgJTBb/++uv4/Pnz+Pz587i+vh673d/RgN1uN25vbw88RAAB1Q1Jrn8mIOB00Rbe0zNOn6K9VL8B3PGzaizZi//w4cP48OHDASBQb57z4+iAC8XrlIFOE7BccdSBjeXj4+MT+6btrICA9fD19fWTbxIwGEU6fptAf2gztzhz1ofJJsDxffFpggQCEoMvPai4wjMgwPxxgyA9PmLESkzz5fwSAVQo4q74d3mAT4ACfWYWFZiRG8TKAytvVtIpv0TJS3SA4q0pKVR3bQZ4Z3WqQFL1vwOyO2NLjTGXVfG6mp/LK11XMO+m7DSsC+OBtwo+f/48fv31131k4O7ubnz79m1vWKD0O3VZqdcxQULVhx0gsGUcoy/cUduP+WGDDiPM0QD0J34M3pKss1zoz60HYCCooXzmT20Kt6/z3J0NZL2PNxIwXaVrE9JPgYK+ZdAhZ3dW15ItRwbGeBo+TV7TlgGkBl5fa5kBARh9NoA8N69pteMRLXCRAkcJmWsItYoMcD5VOSlK4tA6yPGm5fDAUEF14C8ZFM57ZnhPlZyy4yNffy4gcPkmnhIPiZzBcPdZUXUBgeavsu7K41Xou93u4At1WgYMCQAB7zeAKYPr6+s9yL+5uRnX19d7Zc8KlrfM/dnJtdVWIJCcqHTkKIvqZy1D5/u5HwEIPn78eBAZcMZYQaIz8Grs9dVCyBKnd6Bfy1b5AS+cD09twHZg34vb29t9xAPtpEYfR/3aIIBAFdFN5GSkK/9LYICZqjwXptnclK6qx7WUtiqPhZWVDzoO84uqpLlzMMAYFDBVHnMCAGrIOS9d9ZmA1axdKnKDFdcdrzyvy2sscF/bRe93+XhrWlGaM8C7JdrhAFKlzFf51f+qVBNPK4BA6+GuVeBojHHwifExxkHoVZ/F2OWFaPixJ4V5YFaw+vnYrZGp1X5+DaoiOk5H8XELuWhANzKAtC6cr1ECjuY4Q4kydCy6/+6n0YDKeYXcuB+AJ+rGiyL5lVZMFQAMoF76BUP+BgJfx5FBxMXFxR4gvKYsvigY0I7g5yrSUHkiHuwpXy5XgQgrIA27sxFUBemMrbYH57Wy6pPz0TUDyEP55euOh4p0QKOeHEXhiIneSx7xsZXlFnKyXCmMKp/V+nc9ukqxbwUA6fkOXzNgwflW0Qge82yslX9WkO6+glhV4pjL1TK6dercf0tKTkWXWN+wgdcjp1dAoGWrLnLfF3ChfF7wB5ngyFEaVywD7HHr22Wz9nN5JEDAbaGRDkSlYOTv7u72a1oYIGBXw4eHh3F9fb2Xz8vLy305vKgdZWJMatSbnWP9v0VmXxwM8NEhSdBKOMMZXqccnDF1Asx5cl4cTcC8jRp3rWuqkwIBVUJoFwYsOhWj/Lr2eQ4QcHkoEGCPkZ+deYenRB3vadYuKc8KCKx49szDyq/iLRnQGR9q1PV6ujZrP24vBZ0almVjjnnY29vbcXt7u3+tcIxhFS0/q4reAY9Ut1OglTE30wXJgUnlcqSV12KwnmJQ5kL57J0zoNBwPxNHJl19VV4Q8YUHncay9nUFBNwUE3jXBZHv37/fRwdg6BkcQGZ5r4U0tcHGXnW+s68OEHT7WGnTAkLHmNLMy2dig6NljnH4ZTP2TtHxigad0e3wBOMPIXBei6NZ+F6jAytGQg31czq7IgigGn53nY3Fqpd1TEpt6+T6uXmv3NPynwMGXP9UgOA59Z6BoeoZnGMMI2qHa/gs8e3t7fj69ev48uXL+Pe//z0+fPgwLi4uxv39/djtduPr16/7383NzX7x1v39/RPvrjOWE8+nRk5fVsCgO82rcqjP8X4NXKYaexeenxHraZWtFAkAEOiU9/h4uLLeRQHS3L7Wjac98CrrGOPAuwcwSNskVwCJAZGzAXwPfKp+riLojja9WqjXmfh+RwA03Mf5slJDJdWzwLO6RkB50vAL886CrmCDj/o8+OcOcugzeR9pICry1ryfQzOvzykDHgycRgFY1d/HVqgrQCApkuRtpL6Zyf+q4XdAIJVR8TSTQ1dnBygqYDiTBW67McbBN+N53hVA4I8//hgfP37cr/15//792O12+62I//zzz/HXX3+NL1++jNvb2z0ocOsGEkCqZPRY8qsKnnlR2eM257ZNQID1pBocJrd+wMkfrjvDzPyzoeWpAeY5lcNAADzxB4Vmcqd8zMAAytZIBk8XABTsdj8+cfzt2ze7I6Kzn9qubpyzI6jTtnyf27u7jwRoOTKAgmfKqEPOuIKc0UZlOcSoYR4XTmceuYESuNGpAjQuI0UGMSyoro6VJ+Lm7Nxg1Lkil09qP702Q4spQuAGttZ1q2F8S0qKbGteMyCUynCKbxUMrPJUReBcugQcVvvYRZB4PMOT4ojAzc3N+Ouvvw42pvn27dt+++Exxri/vx9//vnn+L//+7/x//7f/9uDgpubm4PpgwoQpPok3k+JFLCNcdhHHaDL5Iy7/k8yyNMCrNOYV/QBT+ewzlOeWRdpPogMsN5U3lxkAaQRBhc5YgeTdbT7YBLK5WhFAgGpTbkdXb+osXdRAbZJK7T5Q0VMbKy3Ule5QDB06gA/8OOedcpf64RIAAsBIgZAoFwW6r3a+Do4GXnO2kAprYlYAVp6vWOI1MOrQMIpkOv/mQHT+s3kaoUPHeAOGOq4mwEBLqMbAejWYRUcVPlqlA+gG2Agzafe3NzsIwRj/A0G/v3vf4/ff/99/O///u/4/fffxx9//LEHBBodYIOwAgSOGRnAsctDR041RI2je8YZJtZbfI29ZzVQvAYEW/cqgEBeGslV0MP63wEPpGOjrmkYmPAaAY1wcaRDdzFUve3sJANPBRsM4PCsLljUiDfbGwcCtgCBMRbAABcMRreCgpnR0HzhpeMcAECBAFZmOkWfUKwTJCgenZ9SHnkb4ZW5fOVLw3jJQDvSZ5lHJg0tgvTjT26guZ8DABV4OzZVQMApEQU8VX5beZkBrgqIzaiKRlX8VPdn4WhOk/LTMC2ff//+fdzd3T1JDyPy9evX8a9//etggdb9/f34+vXr+OOPP8bvv/8+fv/99/Gvf/1r/Pvf/x5//fXXuL29ja8YztrnlECsG2/dMag0iwxWcuBsgAMVbqqTp4B0zhyeLuf1+Pjjc78ciWW54QWDaXxo3rimfPFUAeqLtlIvX+2G8sdTEHquP9e+Lhqsul6j0ywLWxzzJTAAShECMFh5pZxOEXpVnj6riBP8IE/dYEjzS94X86b5j/Gj4REK0n0CZjtHcYfzWwSJDzyDNu20r1Ma1ZQMeED9uGzmGedaRlchHdu74vOZ0nRGbgUUVO3xHDAw41nPFRSwYanItVNV106+yaAx2FZlijcJbm5uxh9//LF/Lx35YG3BX3/9Nf788889CPj69eu4vb09WEiYpgVOGRQ4AM48JTmd9YUb00ydqUTVn2McfpeAQ/+8KNQR+obD7cib9RfLD8sO1g5oXZwO53v61opbL5DshK5feHz88RohFrHqmy4MPNKUlY55RFoUSDtd3J0KdrQJDDyH3MBywuvQp+bDwoGOZVRZAQHOlz9kgryTECGkBCCQDHNSpipcDhBUgxn3uLO1rAQEnCLEM1xPFU5Xzsx77hrdt6QVYz7GHABUdVSw5MqbGfqV6Iv2bWXsOnWapZtRx4BCLgGi2ROEx8YLCXkPex6fWF+AHxYQAgio0q14dGPo2NQFg7M8xniqT50eWeVLgYDymoxxlSfzOsZTB1BJDTNfd1EIthluESHuq84G4T5kFPILeU3y6KIQOjXBbZGixM5W8XWmriwvgQE0jgtZMD1n7QDnmQRXy0SDcgMpchpj2HkeFhRGoshvt/sRBeA1BLwjFPONfBQoJAOiHc4068SZ4ub2QX5qLBy65LTJm1I+nME6JSDA1OWral+uY8pvZkzTc1u81o7Xm8DbDNyofGpY0hnZWRurcmdvC0paowPsbXI6eF/8BkHyvly7aDvg/FQAgQMDFW+pf6v8Z/dV9ypPGuJHGgZ2TLP1SW4RIkdrk1wrIIDB5jUJyEvD+bpmQOuj0WIAAaTFNNft7e3+C5pfvnzZAwKNVFXy6cAaQDCIowEKVJheHAzoPPJqQY6cseR73Bld4WZEx2l1Povf9+TQFufBAvv4+Hjw6iHy5MUePEVQ8Vst2EFZ1f+Vga7GIilu9fSrZ7TcnyUy8FxS2ef/K/V0adM44nlDlesKCLj+6vRTGjdMbiET16NrSDUt8uP1OfzaGMrGuOS1QvyDsk6yOwMCfO3YgMDNHYO3ROmec65ecnw6x22MwzUDrk/UOeNvVmjfO93M5Wmkif8raKiAAPKEzmcZRV1458Qxxn73wZubm/Hly5f93hcAA26agKMD4I0BEZxKlUW1Q5WMd53z5WkCjQ48FxhomN0JbDKa3XkRFraLix+fscQ5AwLUgxcHjnEYfcA9Vc6stHEt1Q/3lWaduHXwzoyFXnOGxtGKV/yz0AxsqReT0q0St3kqwxnbWQRHgUD3mELIyI8NldZDgWVVZwU2/GxqV6fQ2dtLctsFAnr/WKAggQC+pvKCdOpIKZitSL3NilhnO1ngo9YNbxbgh0XgXF/26hUMsK4FLxw9cHPrDE74yI4kysV/XlQO/Y+oAE8R3N3d7ffGYDCQ9r1IbaSAQMdTihJoH3LbzKgNBpw3uSIwIOeFOgNZRQZSGKcqU40/75/Nc5Fj/N2IeKcZ5bIQ6MeOdLDyAJ5FABStujTpHijNK7m8+KjXXToXHegI188ABpKXrP/VMKvSW1GyTDNglhR8FcXR5xM5A1EBn/R8BQiQrgMIqv96neWRAUAKH6/yc0qk7czGznmE/AyT6qAqKqCy02kvdeD4eZ2mZFmFTsYGPmyYkS+cNeYn6SZNw/xrRAmhfl5gyvob2w6zA8g/toGYrsJ6AYABLGTV6au0wRG3J/qcFw/q9EpFHEnp0HJkAMw9hyrPSyMDOtfjnqm8U40IMBjgn0YGvn//vt/ydIzDL62lEI2CAkXvSsiHF3+4QdgBAqzknMJTQ9IBBtVgc56iu5fyPiWqjF3yePReBwxU9df+4L5yvKR+TIDA8ZqAAMsUyzmTjoEkoyt9nkCRKnb9uUiAgqYt/JwKuXZ2be76U/vazf2DKgDJ4KPSty5PnW5VQ39/f78HAvp6H+tqN/XAgFBlwr2hotEknloC6XSF2hHnvD48POyNPgMBjQpoZEB5d04xy34CgK7duY06tLTpEJjjRnNUKYeUHmU4EODKUQOqebg1AixYiAbwl7N0mgCCivIAhHj/adzjqAIvMHTEg4HnhDpefVLaOKqn5jxYNiRqUJxxqYBAdU353+I9vwStlp08ZTWoycBq2cpDFYlRnqEA0KcKCDr1cPzzf5BOCyRPD9c0IqA8Vfw50Kv/KwBQAdXEz+w683UqkQRdnwGdgXuuD1j3weDy/2osaNQh9WdqkypKq4Z7jL/1vJtLR12gs6+vr23EQefdeb3IGOOJ988gwIEBtBNshIIBbj/cg+OIqABPE2DhoEYF3BoFbkPu7wrwg2c+Ig34m73uDloGAypMTrCgwEBpsYfmi3tOEekgVcFQQMAozgEB7ButX5ICv7xWAVEBTB24hYT8HIeOwI8iZK7D7LUbHWDJGCuy5DAT78XgFGmKCOg912eOfhYPbFaXyvCnPFRZ8DEBr+QVQ9nMQEhVrwQAVH5dW7ixygpSvT5XN30+8eqMzQoI6AK+BA6PBVYr0sifjucxnk6bqv7rAgFHDhAkvdDJhw3Ubrcr379H/VlPq11RA6+RWKwJSO/7KwDhKLJeV2PLkQf+qBavFUBkgLfFZvCi+1+McWjL3JqHpH/02mo/LYGBLsJUIdUNExyYcHlW81pOcSmC09CObm+qiwdVKQLU6HuqzDPvjKi7JDqFydQBSZqOeeSIBLcvAxJnjNwcXpq7coLq2p3T49opA4IK0HYUZmVkOU0XbCVAoIZfgWE36uFAwBj1BmL8LJeHo1sAteKxz/juRgFmsrbFyGuexwYKLAMameQxN8bTN6dYt1VRViZua40UoO8ZoOA+6x3OW+UdOko9dbcLIH8lUPPGs7iO3Q3ZUPNrp7wRkG5IhfZBeeCDxwfqiD4Y4/Atgmp/Ad38qmOsGRRwH+v4cdPFK9H5MTZ8tZCVRxUScouKmJL3oeS8KpeXImJn+NWwu7JwdIaTy1Mjz//TPgSct2uH1Hk8kBkAKCBgZa8ImkGD1gtTFTyAktLF0RkW/HeA4lTAgYKAChQwVbLXpZmH22kfFyWY8ZIAywwIOOCBI8sPz3nq3G2iBAhmzz2H1MOqiGX2mLILg8MGmPWL00MOqOo95InrSuwgsKFnXaxAgPsztZfKUPLuWQepXkd5WhbnqYABgADv+nOkAGVxOVdXV08MMJehkRmAAUwLJCCg0xicb6UHtJ/dmE3y3QUFS2CAhckt7AM9Pj4eINcZMEg0q0RCuwoOcNT9qVkY8dwYP14V0aPrLDfg3N4DSUlWnrSia+SZAAEE2il9N20DXiCoaCds66kDS9uWeeT6qBI9NhDoes6JKi9WlZIqjpXfS5EDCMp/isSlOjIpkMQ1yDjLuuOJr1VGo9smLl0aS/o/PXtqsstRAXVGWBcgPXRdFc3t6uQkr9ANbDTVQUnEzzIg0DUAKkPaHukHvmdgAOUiT9gJlj/NE9PGHBng6ANHIRQIzIA/A+1VUgCwqlc2faioWtzn5jiqUDmegTFbIQ7Ngxf3U+DCgoyNMHTuE3NNaetINdAsUJXhSB1UGRzky15hAgTcL7jvdvNipc0LaRByS4tckpfJ9dDjMZWpo2QYHFUGQQ2KpnsuGFgxROppJ3nqRgGUdPwqEGADkeo0k3Gkqf6vPOtoBgpOAQAkYhDg5pRBOt4VCKhjMJMZTqfRAQYn6P+Zvkc5GhWAcXYL/tgxmckqyyJHHGCc+dsBPCWBtqsMqQMDmIrgiACX56Idie+tQMCNz06ZTJunCRzS5IgAo8UOM6uNwPPhjj89V2THITBdwKeCxOEkh+5WeO8o/mpwpgHLhh7KwG2uxCABdWEgoK/BqHJ3nibzriDgtbzfVVoBAEodI+ae0f8zIKCgq1tuR26eUxcFyjy+VwHOjBfXFq5d9HxGq/29mv9rkZszhrF1hlG9Z77O+el/FwEEaT/x6vSk7914c33KuhZGFXPwOr+v66Mc+GT5xE/1m0YGOMKieSgBWECfAtQADGh0oForkKjjeLh7/DzX/1WmCXBMc438P6HDqiFmHhqnqaYeFADgeUayWp4aNAYN+gqKhkNn9XMGUvldUdKV18cLIvXtCfxYiaB+CKHhyB/g4G1EqxAg93capP9JpP2QlF0FDNyzmnfqbx0Ts7R8XSNJndCuAwKpn51Rd/ykNpzJymuAgqo/VwHUSxEbbdZ5/F/lwDlELk/V13w/yRD3m4IAGEaXp8trjPFEv7LzxaH3y8vLfXqNcGoUoXqFkKMEKAvECzOTblcwgOsAGhod0K8hziLkTjfM7IOOGQVYLw4Gxjj8LDAbFBbIykhzJZXBlWmCZAgdCOByGdE6Za2Nyefp/VA98r2ZogTf3NHu6AY5P6+LJhUEvH//flxfX48PHz6M9+/fH6zKBarl92T5oxp3d3d7dN0RaG5nTrsSrnppcspvZmydoU1UGbwZIOq0SQV6u2kTcd0dIEh9reNmVjc9Z7mvALQjHTNdUODkgPlJ5Z5ChGCMGhDg/xh5YSwb0XTU8pRUz6vORNkMHPg5BRFjjL1OVQBwc3Oz11dIh28CcGQYeia9OshGmRcpwkjrWH98fDww9CgD+fCr6LBbHFXVNxfYfjBx21ftw23aAQSsp1HfDrXBwGxBCpjViIAqgaRcOuhFV5F2GgbGiRWPevZq4JxS4/l1NLLLi8vleqmydJ6RtqcidwUGGq3hV3Curq72AODDhw/j06dP4+PHj+OXX345iBCgTthTG+/IcsiLV97qqzipnhqmWkGox6DKoFfGuPImn2NAukY9RegSKOY0bPwTIOjM/87qmYz9SxlZBXWreZ6Ksa9I9av2sfa19qvmxWlSeZr39++Ha7R04bVGBrQM5wjqfgMAAzc3NwevE8IYY78B/vQ7T3fqQj6dDlAdxnqJpwlYr/OzHBVgcOWmIeBIMRBQ4KrT1Fo2+ErRGm5bdcTcmq+K2mDg8vLSggCdc3IFd8PpTEm4eVEc/nNDKpLjBgcvKgj6tkDigctwdXARAfzXNGr0U2TDoX1dH8DrAgACAAQAAH755Zfx+fPn8euvv44PHz6M6+tr+56sAgKAgpubmycrcFVoUT/3Ngb641hUAcdVb9opysoLTt7mjIckG05WEgBwPDM5QKA0AwSVMe1EC2btn9pGjX8n2qDpHY+nSmxAqjTu3E0XIE3V/lqWAkqOCPCUAQwc2wXVnTjHomXsEcBTndBRMPS8cyx75tAzCQzoNC+H0NULx5G/mIloAcpQMAAPPH2DIOmABNp1ytWtDeH+4Olr1rmoa4eWwcAY/n1VDVkBOKAiqUFUuPgISosCedoCxJVngYNguobihtT8EirbqkCSotK6p5Cf1h9tgrAVAMH79+8PwMDnz5/Hb7/9Nj5//jw+ffq0D7+Bn/v7+/1mGbqDFqYPcM5RAh5MCsbcmotj0MzYpL5MHncnr0o+ZgZpBhQ7YCCByy7wUbDCgIDPKyDAz8/uJ0PVeb5DVR5qoE4ZHCQdmUiBXtLh6RnnmDAxEHC6H3mox80ggvUFG1pEOpE/vPLr6+sn3jn0EM/dOyCgi6Kd0VUAo2F36F6dqtBdDXmtVeq7qj9ZDh0g4DSsgzVq3aVNYGAMvwpVjT8oCYmjyhC7KQr9mhU3CtKCNBKg6FC9JC0roesuzZC5DtSqPXDOkQGeJgAY0OjAr7/+On799dfx8ePH/X7fY+RdtAAMEDHAftsKCFSh6pwVBumxaWv/dZ5zQECvsfeK6w504LgCBPj5lFbrogomzSsrIEhldSMEyosDQ51IXYe07RNP1b1jkcqH0wddSnKGvPiapk0RAjWaLg99e0kNFYMB1he3t7dP9NP79+/3nz1GBAHl8Ntf6V1/BSRcF/DIbcvRJEyTsJ3j5xgEcFmuHdUmqveuoBSAh/nSvtA21brNaDMYYCa10s4Iq2eB6wmZsgLj+XEHCBgdMkrU6QEceQqBpwjcHI3zxBOle7zWwQ3uhNA7ZfHzGByYV+M1AwoKPn78ON6/f7/vV0QHMDWggODLly/7n4sQMHF78lzg7e1trM/PTlsG4QwQrwKBJEed8ipDof8Z1FfU8bJdNC6BABeiXqEuL89RqK9BDjB25pETKYjQ/x0gwO2vnrTuueIih5yXcx7wKiHrdp6zx3SBfnqew/UuMjADA+BbbQG3C946UG+cAU2aftByKv2vbc2AgMmBrNnYdLS8gFBRFFcEyImNAzOuwMENaAUBbJRZODQN6Nu3bwfCwbyy8ecj7s/AADpkBgq0HtzhAAbpmS3EefNXvq6vr8f79+/tD2AAgwptAVSNCMDXr1/3awyur68PXlHU7TyZeIBgYGJV8KlQCk8rVWmqKICea35VVADnlcLYIi9bZQzPusie8ugUPh8dLy4yUN1zeaniXI1SdPvvLckZpSpaqWHjVZoBgURsjKDj1D5wOteuHCHALqhsgAES+NPz0Hnob40OsJfOewo4UMB8MJBxU+D6ZlqaduYxXjl86Mv0xhun175VZ3YrLYEBZZDfyWRF4T7zy0CAB7SrQDLGHCGokLELlyh60h8LhQoxC5vueOiIO1XnVx25ejgFqGEih+719ULdZ4C/AIbFhhwdwIC7vr4et7e3exDAc3SIPuhgY17ZS8DAPDUw8FxKCi3dU6q8saRAVLGqLHQBTpcUWPM4n035MaW2cs+uAihO4wABAwOn+Gfnp0A89sf40Q+qO1DXFLmZTS105cdFB5C/OnysJ2eAEM8CDOC6vt/PR9aJrHP4dULd9IflQftdZQ110a/V8jPOpjggN6NZOu2fqj6rMry0z8AYXhm5NQIKFBQ18n9m3KHfMfz0gCNFSciXFxVqNICvKR9cT+TNK0wT2uNB4CImiXcWPm4bRqqMWLlMjp4wINAvMyq4wv0xxpNndF6O+/fq6souDOR6Y2Bjvu9nJFUQVTp3PkZt1JUcSKjkvfKCO+V1SBdWJT75/0sa1C7gmQGCBAy2KtDXJm5rN/ZZX6rTUU3lJOdDwaULSyeqPNMK7KquxSI91rkAAhcXF08AgUZvda2SLhhXUMAGlOuv8o2os/LLoXkXptdpFH2+arMZiHW2bistgwEUqp40SL0Ft6oUz3DIXBWMAwUrQMCBAncPwqfpNV8FAwmc6OISBgJOoTrh4IHIlKICaC817mlqhcvSZ7XNeYAx2mUwoJEBLgdg4FTXDKx4QmPURq47GJMRXQEMiR/3P1FXyXN6DZfqUcd5RasApQLfq3lUQOCUAAFPezpAM8bha9fdUHGlZ5AXOyBaFvJQ4rTQlWxEk37X+9AbMODQa6zf3OfnUS70ui7oY745XVV/bn/XVgwA1KnEcwl06HVHyVZqW7vrbgo30RIYUNSTGFCmHSBw4Uem1QUybMw19J/4ZUFQoKB5Oz4QNuLpEBBHNHhAo+xk1LndND8OzXJ+avQdCKg8KTyjO0yCF959EYMKCF0HmiJnRunX19eWh5+F1IB0ogVj1J5+Os7K12vJY095q2eZ+NW8+XmdKkjlOgNWAZ8k/1V9tCyl1E6nDARAGimEl+qMtXtOqaN3NMTtgANHLh244Ogp6yzVS6yvtHyWLQYNM4eHjaybx1dvmuug/LoorHrmbrpZ+wL5sh1ku6OGm/lMTqqm43sOmFTUBgNsDFBA8qQrckpFKSlGRUh8HXm7BYGOV5fWCYkaNlxTvlXRsqJMdXJKtuo4p3B5MMBAd4BUGowsqPyqInb/ur6+3gv0u3fvxv39/RNloIodYIDXW/xsVHmUiSoAhqM7d2VX+aV89TdG/QqZArmkAB3wSOVxu83aI/3XaxVwSgBEgdts7HWjK69NHInB+bdvf381D2PLfZU1AVc3NYtzF4nEs7peAXlpWuZb81JKuofzcP2gOi9FF1J76HX9KcjitQJsxJlHBgJaHnhz0wwJqDhbpOfazg4csB2cURsM6LuaM9SxOoBW56WSICtvDgRo+qojuT6d+TNXbwgC/18FUUxuly7+rwoZ9WQeefAoMneDjYEBI//Ly8t9+6myYGQOkPIzkgMCiToALJ3PxkxnrFXGuQKJs77RsrkcNhpcFhuyWT4r19I5l5HAS4dWAPprk0YF9LW2FHkcI0eynB5jw8tH7V8FiIlPXFMPGFHUJKdMyeHUZ6rXzVkXVTqX9T7LcprmQDp2KJP9UDlU/YjoqYsudJxuBwJeNTKAOZzENFPyOvQa/3fClBo1hUzUsM/mVFz0QAcEP5+UKCNWLnOmtHBdDbVTmCrgGARu/ozfva3ak9MyGMAgVsTN+xiM8UMRVcgbCuCYWxEzVR4q01ZvUPN3Sq4CAqlcVSLKpzP+apzVAFTRLS3bkU4RsLFgGeIxNgNLFS+pjVy7VPwncLAKGt6C0GZq/JkYHPBzGH/OgFdhZSYGAlxOkh0uj4EA2hVgRp9NoC7pczdlgmu6WDrpwA6Q1KlZft5581wGtxUDY+cs6f4E/FO+XV1cFLwDJJiWIwP69boUDtKKuzATPwOBSN53Cofo/W40wP1PQKBDOuA4GqBgYaackrJjpZ6iArpnNtfPUULmzDOvDwAQwCBMHoWi3q3G9TVIjZIz4ExbeE8AwAEFNegrvLpyFQBo1KfiV729WfpUNgMBBclVdGClH6p2WPHuFUycEijAOEKbwpi6MeWiA3xeefXOeCgQgIfM/cp8JqCB+3gWZShYcDpLPVw1tDxmlDd+SwrPd0gBgQIy5XFmeJ2N1Mg0gwF9FbJrzNkez4CEo6UFhIpkErMMCBQMcIfjGgufa3QtfyXEXnmsnKf+wL+rVyL1hJKy0nRVWhCHwljQdT8BBgM6WLV+M1KjgikBVg4OSPGcFwZm1a+vTa4/Ux8zPRcEOADA1ztlQSnxkevggIQDGWOsb187xvwrhvifwtUJEKS68lGvV9cckFdZfw7YPxZpWzMgwDoc9loV2DCQUCPPZajRHWNYj5t1m+tP5oP1gwNYrF8ceFPjXzlsnNdut9uvqeA24Hz1OR1n2gc6ZtXhcUDB8Yn8uE4MAtTRTvrayb/rx1eJDCBz7uAUInYhkQQGnMfilJYiworY2GrnOmXRMZJcD71WkQMHnNesPtxuDABgnHU/Afd5TdRVBWxWbx5gPEUAvlNevK6E59SOvYBQlQCusSLQPlo1npVBm0UC3LMKALgezvg77zzVKQHlbp1Vjh0g4HHrlL7LT88dJd5xVMPxMwKBMYY1vqozFQg4YjlQncNjWacKqqklp9MVvEDv8LluRoc9BNgoj5HXc6kzh3zG+DFFwPf4mlIai6CO7VBe0pGf42d4a3wHBpDO6QeNMnTX9DlqgwGHJHE9hSOYeUVXKij8jAtrddFNaigmN4Xg6sl5Ku9dPlRh6vxRlReXqWsDOBrgzhUQoK31NUEWQDUcbEwUCOi2mSzkvCUolz/bdOm1aGaAkiJ9DiCoDLVLU+WFOqR0CQjw8zp9h/MtxlHHJcrjXUfVG0UdOgB0lZzyTWCA06X/VRlvTS4cjuv8anOlT7QfnF5NnijG9OXloalIepqJZZaBg5aBKUinrxIQcLIEntx0LNuZFLZnsFoZdOYP59VzLi3Xg3Uwf+lQ66Btibpw+jTl06FNmw45cg1SRQe0c/gaV5TRbwpLcTncCAkJV6TK0hnILrl1A8iT+ZvxoVMEPDWg3yIAINCPeIyRAQELERsNLg/XoOzT4OCNPi4u/v5G+RhjWt/XJAdS3SBz/1cBgfPCKyPdpQQKEnjDeapjlxREpLYCX1BuHD1Koc8EvB11jHkFAmYAoPIAj0kuqqhGFv+TXlGg4Iy9M1rsiPCrwVweQKAj5YO3dWdZANjgSDHKcfw548dlOECjWwk7+eN7msbZEAdI9KhTAhqBURAwWytQOY/dKYZES5EBRoKqTF2hKQ0babeyFKSh7llakJseUGSsg0zJecZO0bqBx8iU/3O5HUDAbcARAY4MuA8Iue8JjPHDO+fvbvOXwMA/h3t5I6LZtMbj4+M+PwfqjgUGlFgOk0KornVA3AwMVPmowU9ld8tIsoprCRilqT1NB92g4WpWdMybGh0+zmjmuSUw4MqontX0xwIFzBsDAXZ80MeqX5mqqQRnPHjM8qJF5N+Jjqbyk7EDGFCD7TxrNa4gOCPQZ5x+VQdp/k4eFAykSBiDAAUD7pV9BhHOIU4OsP5WaOnVQian9NAAyYvhdKgcG1w9Vh3HSsmVwWiVkTF3rgMoTsGqZ+48vMqIpGMKW2n7MD/gQacKAAA4OgAwgGchIAjh894R2i66G6GCAWd4gPDx+dExfgAQnjJ4a6oUufJUKdQOCMB5MtRVPjp2XNouGNgCviogUAGDMQ7f5lEwgOtYkMZgnQ3azKFIBr+6lvJw56msY5K2jwKCMfxUV5p65fvOcPE1nAMI6JqQmYFlGea3H1CWRgF4MaTy4ECeW8CMusHT5msJMGsb4FwBRwKTDtgqgFGPf/ZjUp3LbcTlvFlkAMQIlNEie7pOkamRh1FjAOAMvCJQZ1CTl6LeuObhzjl/5tdtfcmIrWovxw8PjMrjVhSO/7p2AHP6+mVC/dAQwAA8Nt47gr0MlAVeMaB1GkHbngc9hLJawPOW5OSyMv7u+RlIcPLUAQKJHy6zAqwzw+34T4pCn9c5aZc3KyenA1i+GZjO2sFdXwUFnfOZ93cscvwpAHcyUIWYMZY5XzVoIKR1QMDtbzAjlhNeK4BrTj/qUftYpyk04szAw4ECllfnwSdZdby5CAbydXk7oOD6gMtx4C4BgRVAsGkBIXuJGvp2BTMAQDr1sivFw/mA1GtWPmdKj4VOkXUCLfzjMhghzxqe2047WflzCtfx5KYPdO9uLiutGeC24/pzeJBRauIR5QBwuPULb02q5LXPO/3G6TrgIeXRIeVtKxDQNl81bCla50CB82KdEmWj4hSW84Rd++j5awKBYwECZxgUGCTAqccO+Er6m3c+hLFlR7Ar28wDpiexdw3q47ZX5iMbWNf34JdlS/Wuk2nnuSPCwGWm9nPAig282/4+AYFVJ8VFMRLAS7QJDDCTLtStFXCN785ZqJKxr+65wdxFrjP+1Kg6w8YdAOqUz4KayE0ZYOAAEHDEgH8s7CyECghYAGdTGGlAsVDy98cZRL01JWPSVWAKhPmagopZPi5dUsApfRcIuLI7oEc9K76XQAHKgLJ1O82Ncbj3wIzPGb/JyM/SzJ47FSDgqKrnDAzMZLSqJ/oU/c3nrCM6YxzG8PLycm8gAQp0u+LEZzK0zAffZ5nlqVMFMpwfR1FnkSzmK0UHEiBwdmOMpxFyN7YdAFZQ0KWlNQOqFF3oyHkzYxx6/Or9q6e9hVQ4uPOAvrQOGn5X/hwg0Oe4fRwv+J+oq6Adzwqi2Oi6aQ3wgrbpRAYUNSfDpe3H0Qr+HYOqNn6Oou/03db0ahRdXk5mmVxUYAY4mU/OT4GoKxP3sICLV6C76KEDVrO6qw5aac/qmt4/JUBQgVGcc1t0wEDStdrmWm/uRxDryQoYAAg+Pv4dttctynGPnZFEGn5XXlXe2N5wdECdJdWPOM7GjosMaJ7p/1YgwHVVAOBAwoyW1gyoVwwPQr0kV6nKo+A8mZKQO8WiwqHzJ/pevONxjKev8fE1EAt1GixclnY48p9dczwyb2oQXFs7g85AAIv7HChQvpCXDjrlAX2TpldOmWYDhxVLZahTPl3A6xS56+8x6jBtNdepdUBanQtmwzzz2lheVJ5V2bPXxnxpea5dtB6pzWd5VbrrFCkZa1ePChQ4gOHIgQ82+jjnvmV5coCA8wEgAEBQMFCBlmRgmVwUmfWjLmzU8H21ZoDbJZWvY02BgpID9AoEnJ1gPiqQW9Hu8WcYAWc605nOdKYznenV6PRdtTOd6UxnOtOZzvSqdAYDZzrTmc50pjP9w+kMBs50pjOd6Uxn+ofTGQyc6UxnOtOZzvQPpzMYONOZznSmM53pH05nMHCmM53pTGc60z+czmDgTGc605nOdKZ/OJ3BwJnOdKYznelM/3A6g4EznelMZzrTmf7h9P8BnC4HTW3xbegAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDiklEQVR4nO293XIcu85lS9mW7bX76fpN+8VORF/ttSzZ1rn4YsqjhiaYWfKPtHsLERVZlckkQRAEJkBm1s3Dw8PDeqM3eqM3eqM3eqP/Wnr30gy80Ru90Ru90Ru90cvSGxh4ozd6ozd6ozf6L6c3MPBGb/RGb/RGb/RfTm9g4I3e6I3e6I3e6L+c3sDAG73RG73RG73Rfzm9gYE3eqM3eqM3eqP/cnoDA2/0Rm/0Rm/0Rv/l9AYG3uiN3uiN3uiN/svpw9mC7969Wy/xfqKbm5vH9m9ubsZjyt3c3FzwOX1n+RynD6+37zvayezh4eHw/jP1XFNmVy7nG0/tHp/b/c64/H//3/93isdfSf/7f//v9fXr10d94Sfnvn///shzPt+/f3/sw8PDw5N73r9/vz5+/Lhub2/X7e3tev/+/eMx1zPG3759u/h8/fp1PTw8rG/fvq3v378/tk8yr+/fv183Nzfr/fv3j218+PDh8Xr4/Pbt20Xd+Z0+vH//fn348OGR748fP67Pnz+vDx8+rI8fPz7WzznAetiHr1+/rru7u3V/f//4SdmUJ0W3XD/lHHmQf48NiWW/fv16wd+3b98eeWoyti0xn+Tx//yf/3O17v0s/a//9b8udIR9D99rHc/ptS5tY7N/OVImPMcP9fL29nZ9+PDhQifz+fTp0+N36mnGImOX+ZDx35F5Y72cezymfc7PNu7hiTp8f3//eLy7u1tfvnx51Pu7u7v1zz//PM4Fz3OOmz8eo6bbJvoe3svz7Ftk8n//7//d1rvWFWAgDf5JQNAUkIM/Oe1dfXbAZ8DA1EZrs8noZ2V2DWg4am9X1w4MtHqt0JN+HBms303v37+/4CPf41jXempYv3///qS8nXOMXYwhQUEMTiiO6uvXrxeGhkajjQ3r4jEOPceAdTtROuWHh4fH8nH8t7e369OnT+uvv/56BAa5znnHumMY7+/v19evXx+N5N3d3YVRNJii3G2wIiO3w/40Y5lzkSvbf//+/fr69evjkfc3XaB98DhcM/9+JRGoho/GX66t1efxZB/PBEXRY8+BzB/rIXWLH861jGeAwPv37y/A4w4UkB/rkucL+SNYNyAgxYFH9wIGvnz58njv3d3dY/mdXWOw0QDBDsS18WO/XbaN4cPDw7q/vx/5I10FBv4kTZNvmsRNcBToboI8l7+jCTbx8Jy2foUjPVPHEZhiPY40DAheyoCaMrF3kRTBZvrhbFjLDNAgtgxB6Nu3b+vDhw9PItbUaWdnlM/sAI1b2qXDjmElYE69NIr5BNDk2KKn9CFONYAhhjyOwGAgUX1kPoH51J97cj7fAw4oF47vu3fvLu5r87xlKsybDbTl96fJYCg8mdq5KSua8ru+tXtd1uB5rR/62igyNhBw1illUy8BUfS86UF0wMQ5a320I2VGkKCgOfO11sW4WK4GmG0czAvLTP7rKAvEfp3JtISuBgO/ysA3xT5CQ/zeUJDrP+uYdmj7qOx0385hPofO8Oa+XtvW2bE96lMb05cypmutR2TP6DpGZq1LYxGK0aFBciQSx8poO0sHjK7XWhcpxACIm5ub9fXr10cnutalUXB7rU067fBNp5hzMQjk1UsFSek67Zt6nHVIZiCg4N27d48ZA2cl0rdmLENx+pE3DS/Hx/emf9Y7flwfqRlvXltrVSfzJ8g827mkjOf8zv5dY8PtWFingXLq5qdF3+5TvhMIUG8oe4KCAAse6QDtDBsAtTxY3kCgEecf9ZD9b/q0k7d/Xzte/n3W9r5YZmCHbs84/gi6De6kvDu6FjQcgQHXOX2f7nkONUP2u5xw61MDIWfk9Lvp7u7u0SGEvzjgDx8+POHP0cIEBJyKdHqUYOD9+/ePaewPHz6s+/v7J7rMdW2i+RZJe8mMa7EENRmLnIuTZ2YgAMC8EwzE4NLJMw2f/uQ+LonYqbf5mjGg4zZRz6Y5yLaSJXF02erlGKSv5u8lyTaR861dW6vzfdbG+trO9k0fLynwvsnJGSTQkZMnZ/p8L+836LCOTDwwY+HMTOZ+QDA/rp+ZvyObbxt6xma28d/pwEQ/BQaa8f9Z2ikpzzXlbQYm53c8Xou+zJ/vnRzjxM818vsdZa9RPNIRyHluvb+asmaWicpNRYk6zowJwQEBQYva+VnrBxiIAbGec7MRI2O2G75cxrruDAevtcxAQAB/T2Agxm8HwtkO1/7Dj50CIzkaT+vRbkw4LhwPgkDSUaRtB/JS5Llju9d4b/c9p50zjr/pQgMBUz9MdLx01AYFu/4xK5DfLWpnv1iWOsn5Zp4MeBoYSJ8MWCdZnPFF7XrzQdfST4GBPzFJdsKxQW3XJx4nx3XUTn5PSn7ULtv6XfJrqaKjMtO5n3HkZw3A7yY6o0TrHz58eOJ0Q570jmyS0o8x8FMCLboiNUNqY5VyjEjCU857LbPpZJYjct8EWKZliPDIDEMAVRwt+5Dz7Dedvnlk3wg0JoPselm/5Z3zjvIbgGK5FmG+BkBwxgnk3Nm5POnm0X3Tec+VM9Q2h07yZkaATp+/qT8GmzvHm8CAetA2+U66Ni0V8HOUHdiVuYamubGjV7+B8AidtlRRyv6KCdwMj/na3ReeaPyeO9C7e3eZkCaLM/I5Y2j4e1fnSwGBtf5nmaBFnuH148ePF87Kjmutp2v5pMmxZO2eKXxvBmM0wY1/bKu1R+fl+ZBzNE455w2Ebdd3e6Ig/Lf9Dcl6tE2QBDTNiDbQxSM3Yfo6n9h4eHi4yLikvdTBDJCPHiOP+0vtFzhDE/CnLq/V5+kEonyt2Z0JCEzXW/DVQBbB3w7QkMfm6JlZmvaT2Hc04OlNhE2Xk+2LDDJ/J1BAeZyhnb1tdU126oheFAxcgzgnpDU55SMHxXt2yJsTYSrHSdDWoNoAnqGXjEbYfgNbE03Aw/X8ScpjQJmkcVCmGIiQ0byNR8qQHIVyM1+MCZ/R5/JAiz5oyJzFcMrdUfyR4zuaSwZHftTPj0e2yJ9RHPs1Rf4u08bI7QTwZP8HDfF0/24Mc+5MpPq76Wy7dvBHQctuLvrenc4TdLb2CNbYJ+oR9T96ZhBmG9vmYqPIwk8RuA5uXnQ2zkCAmxvT34DWZLeyJNjsofewtGBx5y+O+v1cXX0RMHCmMzshNAP2HCc1tbtDsZ5sR226P5OBew5N9/2M4Wp9OxMR+95mQF4SDNih39zcPL4nIBvdmBbnJylz1uFNhDR6dkaOPhz1kK9EGCHLnmuxXt/MdRoZttGewebLf3JPeDRomqL7UMBKjnnKwGCI1GQ0AS/3ifKwrHa6OrVJ+bUI8CVpcsjuwxnbdBTcHFGzB9P8ptOdgJ43+YWYrXEbTR7UmaY/dPjRR+u955NBa/hjNo91kjKX+fKx1ocJCFgePNd0l793gHqiFwEDRwo7RTT8buWzEJvzPav0R45rd63tWp4ARqtvN3itj7usx1EbzWBeg0Tdzm6iviRlA2EMRr6H70TvMVxeP2/AgI/lZfOdN921tsiHo+S1jt/0aTBCI0sjxvK5x08+sB9+r0DGjIYsTxBYluHbmY+UD18BBgZMzXCxn6Hw4f0O1MPs4aBTsDx4TB+dVVlrXUSCL6XDZ4y57ct0T3MgR+C92d0GmHfAounljkfbUDt2Z++clfCGPt/HwI78NKffMgU577nVKO/l8HVn/JzJaja8yap9d1B2FhD8UTDwnAl1Bn2u9fKbfo6E3hxni6z/BE0T9ncYvB2C/VPEaJsT0K/pjfPiUwABCbzfkbXfM0AjkXuojw3E5uisQYvGJ7DcjAvP2YG26InAIr9JExCn0fW+h4Asbi4MT2y3OZjJ0dB4cwf3tD+BY8H27dwsP/5+KZrAe67twPqkc9P3NrbtY0Aw8df6sdZlNiBzb+KtjRl5YHaOn0le7Rz1hvrTslnhKXYjfLVgwsC36TXlbL4mv7KTtW3KWbt7Ggz8jLO45r6mADsQEN74/Uya5RredmWMUv8kAPmVbR4h0d31l+j3NeQ1vrWeviktTj/LATnHiJfkSW8jdHNzM0YD+TDinMDA9NKeRpyjTl+GT786dgIF5Dn12SkyCmtLE+1305U21+283QYN7LQsYueQsTXw2PX/OenWX0m2ZQZELrOrZwfMz4AA6/cUgU99aHxOzpbOlUsN1O/MMfOxA7vkqUX7/rR1/UmGfMLGgNy/2Zc2r69x5rn3Z23zVZmBHUJtdNbRXluv+Wm/p8xAu+e5IGety5e8XGswfrcTdf1WvtARD82I7Az6awMGSdWtdbkO2YBciyq9W36t/bppi0IJAKgvBgNt/Ztr+JOOu3zAACOXXeTEevhxHxyFtygn8vXae/vjlpaWNQCwQSWfdBhHWQzyzv5wzPy2Oz4y+hroZ+1Vo6PA6wxQWOvpkkz49VybgKPbzNhwKYjAg4DAy1wEBEd+IscJCOx4DE95YoXAm/XYT9CB++g2zoK99v0a+m2vIz4LBK6pcyIbxGYkj+7fOTPXy4FlZLLjaSKDoWsHcip/BITY5s/ysOPj2jK/g+KIjMDj5DOut7e3F7vjmSVY60c6s6UUm0PbRXJ2ehOlTb4JzSla88C06yQPO0+u7efjf5pjdsDAx7LmvgGuvU/ya//y1nhe69KZ8Duf0sgfKOXVyNQBpnMJsnLN/3yYul6arrGTUxR7zfkz51yPl36i596IalBoAO652pYHbm5+vPFyWiZw8HLGaTYgsOt3PnyiwHOEQDTfdxH9RLvyP2tfrwYDLSJ6Dv0KANAEczTYZ/g/w5uV96jMjq5RiDNlr6nL338m8mhZg98RyVxLMe6ZiGtd9p3/F2BH1AxLi4YnQzlFTgZgTXb5TV2nEWEUwvut481hr/Uj8jVwMUhIHWwzsrQs7NCntVj3r/FHWTkr0ByM/wvB40UjPMmamyANUP5fI8uH388Gaq0sI+A27tQLArRcM38tG8AlgQYEOG9Zv39PfWIG8TnE7ACzVztQ8dyA6lfZ2Kv/wvi1EBXwrPObIuP8niLkKaJjXa18a6f1wZHkrj/PuXYtYnwuwjSafy0UMLDWJY/5xNgH0ZPyjoKkARk500nk/rUujReNEMlAgn9DzGsBKK6LZdhW01XeZweao6PtHD9+/PjEuE+ZMDpS/7+7lw2m9jIGqYdgIhmPybmkvfa/8vljJfa76SkzC/xHvdeyTGDa2ZXp++Tsp0zA9JnKci9HA1IBAfm+Wzbgcpb3uDjybh/Ww3nApaXJUR/Z2uYfdrLL/GbWYCL7osbXWd931h6/yvcMnKHmgKfvZ/iYJkebQFM9RyBh17YBQesvy7Z6Gl2LGo+U60x/Xhvx3wIdhdPBef2ZztXOLPfTQHndkpFJyt/c/Egn5v7cyzf+MdImcTzNi51njJ/fLeDNVt5DcDSWfFMiU6BxyM2hPjw8VIdKIxl50EDnN/9wKDJlP29uLjdkRj6WE9s1mf/7+/tHub5WMPCzZPuwc/Rtox7fsdHq9V6XneM3wHVWznPL7/ngfgHeFz3hOn6eHGo2l3M/euW+0ce0bCLvsR+hvpNH80A7NY1d+255ng3uToOBa439zgmddWZWzB2KzblroloLfOeMj+qZfp8xQjl/BjxMmQnWcYbH55CdxcTnr2jrVxLBwFqzAaTBjzHJv/LF6NBRTIaHZRmRmGJE371792SXP9e017pMVxIoMIJu0RgNqYFG7o1MeHT0xLocTXme0knnyBT+NF+cDXB/ucQzgbX8rbI/Ob/TTYIBln+tYOAaO7ULdvyZrvE8v0ffp3acTWo6EKKe+qkAgwF/9xICeXGg2OwU5w8BLskglOca6GS/Uqfb5Lzi+WszAD9Lv+3RwqOyRyDAv5syuuyvdHjPvX7m3p8FG1O9LVvyJ+kMWHgJykSlc2s8+j34ORdDY+e72wRFmtYfY/Dy4qJPnz49+ftgZi1sfOK4Er3YadtY0mi3vRO8l9+PQD2PTT7cjLeTU7tGkDwBDi4vWF5+3TP55XcCDI7rf8KegbPz7az9mXRiF5U3YNzIjnTKSvFJAbbfMgBHj/YSMFJWBLU5l98cc679TyCC36Ov4Y025+hDOU2A4HeBg6sfLfwZZxh6bh2TACe+dpG2+Zh4Ojt4Z9s56p/5d91HE78BgV3m4hq+WkR9TZ0vBQ6ODBMneqKDZBIS3TNibAYw9P37j3cVOGJy1J37379/vz5+/Lg+ffr0CAi8KZA74unY2BfqJJ29wQDl0QBDi7q4Bpu+tGyDZWvH3AAE72+ZCRp23tPG0/sSeG6ty/c2uL3I15sHXzozMNmWNh/PzrEGDPy9fdoyWFsyaNkyOmODUZ7PfVk2a20SALS3fvIcgUfk1gBJA5P8U670JTI2yOfSFu9pfWf2wXOIbU32/misef9ZnXiRDYR2bGfbpuL4d0srpq3d9V1bZ/ibUKENTpt8IaeSmyIcDerk/B1tnVGMZtjPyOy1kiOGUOtnjL+NioEAidEvX0/s1CWNQ/gif/nHwPxrICMbb47juiPf3kYDzHN28pSBnbojNRtkOvKHh4d1f39f66ZD9ofX2/jk6FcFx7jTMLd1aEaDU4aA5QgCKet2z5+knd2Yyhvg7Bx+js227j5+rbUj+dYHO0Vfs675bZlr9acJJoAyZSmYFcj35rRzjA7c3Dzdl+J+cD/N9+/fL/a6hF+2bbkaCDw3gHrO/c96tPCMYp5x+FO6Zec8mwIf8XjE89GE202Wa6jJxI6Ba71nB3KXDTiTKSA1A3INNWP0WmgCRs2hhHeCgQ8fPjw6CRsbG44YgNvb2zrhWXatdWEs+DfCbJtZirV+GB478WlecX5ZLqZmWO3snTGYZO2NjjzaiNMws1+pJ0aWj6RNziW/bQucEeJ5Lmk4q/HfRs3ueVz4imvrQsbTY5RroSkbxXp3+kjQ3exza7uB0zjvEP+LI5Sy1AcuI/A35yyzDxPAMq926NP8PaLfkhkgQ7+aJsSa406ArS5nAo4c4Jn2dmlR0mT42sAyrTT1Y8d/M+yt/TNggO00QDABhbPg8KWAAZE95clUXajpYergGv0EAphavr29fbzfadSbm6fRVZYKcsxf8r579+7xnxcJNCx369GkvzaCoV12yQ6x7QfIpjtH2O3dA04TOxvRnADr4RjG4CYKiwHn64dvb28fN33yXgNCbmBkH19qmcAA8jn3s57ntm89svP1eJKY+fQ6fsbaTp4gw87Sdri1eaavBiTRMfYluhXiOBggem/BWpc6uJt37MdurJ+jB2fH/bc9TfCz1ByzEeHZAT8S4Bkw0MrvaIrI272MeM70Zap7inp32QEjUZ47kyG4RhYvSdNYWk6MGPMkgTfvsTyJ6cG1LkFI7qExDRjI0oLPZc2UjojRqiMyGxWCHxps9oPX/G+GTAEnSxEezIudqjfgORL3vL69vb0wwun7WpfZMzvr8BaQlvs99qYW4bFeLyu8Bh0+Q9fauqlMs7vUt8jdT8DseGlAe3o8kG8WnOxyq/M5oIc+wmn+FqixnaNMwdEbS713YBf8nQnopn6doVf9noEj9Bc6E+k21NUUqbU78WHj2PjaRfSs7wgITP1ynybnP9HO4U8Tzud2db8mI0pnFN5olEgZG7+WNksFOdceBQyQSN9pWOg46dz8Cl/uvP/+/fu6u7urn3/++Wfd3d09eeFRM8ysj/1v86tlwejokwXI0en1XdbBj4wF/OQ3nc7Dw4/NZ+kjU60cqwYCPO8b+DV44fsRXssywZmoMeV2Tnh33yRT6tQEGjme4ZM2rWWt1lpP9ht4LwDnpcFh4/1aMEAHHL6ZzveyR845QGhPLvDtnjn34cOHC1vAfQv8TAEZ9fhIF661vS8CBnZ0LeK7NqUyRQ07MNB4oOIfgYLwMg3wtbTLADQwcAQOmqE0NUAw8UR+zrT/u4n8cowsO0fxOX779q2m+1iOTiP6wIlN50Yw8OHDh3V/f79ub28vgECc5Fo/3orXwAAd183NzcUSgnWVBoS8OfLz+97z2xkBr62nrdTFzEra9mNgyQowM9JeZpMsAN8imDXdyNwOqekAjfmRHrO/rwXUtgDnZ+vz3Pa+AGYC8nF2wHKPU6W+25bGgWbsvQeggdrmGFnnFLCFbKN3wImZKoOGFu2zjfCezbUBAQkgWoaA/F/j9E2U86vODJxFqTnuyh+lTTiAO2Cwc/xNyby+ObU/8WuFPuuEJwXZpZTOKsPPGhY7GvLx0mCg8WHdmGTID1+c4wxDo0mf7KztXAMG2O79/f1FNiC/82c84ScAIo6XffT+CPJpB0295vP5fMQy7RucWE4EP2s9fSNinqDgOxa8K51ZAUZYkVsck5ct+KbEyIOyIJCnYW5LIa+FjoD50X1HAZf1gQBtWko6E6zRfnLfAbNCvrYjzz3b6CYfpvB3tjflQlMETz0JMcuUcgYBzBzsfE0DKzs7+hzwEPqtYOBaB3NN+WkgbeSvAQI7QPAz/J5BedeApCPHtePhd5Mjz9cABppsWtbCUUwzmrt7juoktTqbM6ID5vv+AwL4z4DN2U99YB99zWvnBib+3wHz5rcIpv5Egoz88+RENk4SEFDf7+7ungBOyspp/VxL5oBAwECJ/eYnSzWvDQwcUQMLHuOdE+JyjZcHAgg4VkdgoLXBDAP3o6z1409+yHebZ9Njfm2Ji/ykzG5M6T9aoONgwP+1QN1iWWYPqZPN//wKe3lNPX80M3DW4e0c8FodCJxBTL631WEezoCC5xJ5seFs/J8d1Mn5/KxyHY0Jv78mMEBjzj5MfBkU5NiiDY+fI4ZQe/sdifVw01oMjfcUHL0Zrxl3t8/vzZGyXPj3kwPTnwL5CQJHbXECcSgfP35cnz9/fvIGxvDmpTjLJlmBOH72h0scNtaTTp8BdC9Jns9tfk8AcFdni9CZEcj48PHXM1G8N7tyc6r366QMgznqJB2o5zD7MIGBdj+XsjxX2iZC1sX9LKmL9SVbZ/3c+Rn7uCnQmPoXWfB4RL8NDPxKx2mhnHH8LMfyFlBDZNO5tS6XCMLPWvv9AjvE7O87oqIcRSrsb/ve+GrKc804NhDwGsBAHNNal2PZDH4z/I5aEjVdCxZ3ZRl139xcPuKU/QJfvnx5dMR2tjRMrQ/pv3c3T7ul11pPIpfUHyAQnrhc4YwFX4jEJQg6GkaYjjbD+8PDj1RrDGqLYLkZjcCGewRubn48oUHZ0aBP9uE10Vm7eI1tyXcvExgI8OMsTqvP+1E4zkdgtUXdXg5yu9Fr7t9xHfnNeUC7Gp7aH4iFuGxFvpi1oI+IXnIfEjcUNkDQQF+z3Wf9yESvbgMhycI/cvC+1/dN9R9NeN7PDVo2ujtHSJ4aENg56ZbS8j1Tm881DtfQzqm+BjCQCbeTebsn1AzQ1Gee8/e1esROR5sogwbSf6fbUvA2IjRGXD4wiHj37l39z4Dwk6iNO/p3mQBmNHbzgzw3x8MNlyxL3jwuJte71o+/hM7ygcfjP5EM3pst2dm3BgKYDcieDr7/Iss6bX+HAycDv+wT8cZBBjnN8Tt7xUc+Axi8kdRgwI7XOtmyFH7s0XL0PMjG2WmfC/vWXmDGrMg0dpPtIni/ln4bGPhZlGKagEGLZn1fi5Sme44AgpVrrTkrcDT5rqEjQHDk3Nz22WiBx+ZEd0CATotl/zTRKNhoGb2bf6b1Quwby/pxwBgeGss4IT/H7oii6V3SqxmH1EVe2iNZNLIeE5L7Ez7474vhMRmKtoHQgIHOoW3mm8DBmeg85/lUATdR5prHb631mGVgdMYd7AYMr4Eok2kcHSU2R20bZ8cduWUpIEDg8+fPFxs+/Q4K1u2MjbMLfj+BHT/Hpr24ihk/zosdGPD85NxJXdS98G7gQrvBbF0DAtFJ6xh1kyAgID33E+RP5GvP8b9/dJlgx+CkpEcT0XVeK4AzgII0Of4WCU1Ep+qJ+6fomjZZdgIEUzYg13l8CWrRUjMQvB7ynxU5UlhrPTFit7e3F7JKWb4tzyCAywTkzWXcl3fv3j1JS3KZwcDFTj+8WF7cpc/IzdkJ8hJ+2vpuDJv7YgPtFwG1JQk+1ZBPe1eDsxbN2UxOyPe9FJ21m638UWbA9i/jxycF8gdanz9/fvzOLIHnAwFA23fgRxSjEwSakX8+BKPMatnWGOAwu7TWjwwCx3aty9fA52g5tMcoqZ/RQ2Y6uJ+FQCByyXwnr5wznNuTTw2/PwsIXtUywYRgfS2/JwBBOoqcfU+r50igOyDQnP0RuDnT5o7Y1zP12JA0Xtr3yck3UHAWKP0O4uTK70kujIptfGywGNUYCKz1Y9NUAAQn9/ThWmd45JrpkQzZ15TdrbMyoiPQCEhwliD3mbzkwfsmPdgZclKLCA0G+EQDlw0Y4fFd8Ywe2U74mgDPa6KjuX2NDbGj4h4OLhF8/vz58eNNhMwotHdGGBRQ9ziufCaf88wAjtkl95tjTH3LPZmHdMAGAl4qaRsekxnI+0K+fPnyZNnD9oL8xT6wj5wHLfj6XfRbwMCvinIndDs572ZImjFqfLY6zvRjioJ3/ZjqOWrPa12p047/GgVq8rqWjtp6zQaVRLk1gOOJne8uZ2I0zA1EcTgEC2tdvrSEztnAwRFt02fybjBAfh8eHh4NWtqjkWy7xp3y9CcyInnN1BF4oiBmF+j8/UhjW6Lw/zg0mgCw79kB/T9FU9Tv78+t29Gq0/q3t7ePf62dzECAAf+lk86S+wkMNLgUkXEiSLu5+fE/FM3hM51P/W0ZDpfhvczOhbxckv4FDHBpI3wyuidxznuJwcCD4zH5omZnPecbuD5Lr+LRwiPnPjn5o7JnneFUfzuGWnQ8tXcWDEwT3QZtamcCPTs6A0KOsistE/DaaBo/k8fAjjSTm0aA98bIOQWecl4mCBBgtEEwwLpbZN/G3DztwAB1P477/v6+guaWlmUdDQxQdz0GlivBFTMuBE4EZQRTBAPh3+vBXi6xLJsuXDufXpoYTZ4p6/FKVsCPEwYIeDNhe0eEMwbOwDjrZWfqyH/3AiA78vSLwMNjyKUxZwZybwAwMyN8S6bBAGUfvry0YODc+HVmgCCgjelkm+1Tz9AvBwOt4R0zRj678kcAoKGpo0l8VmgNhZ8xFK1/rJPlaHyOJvXO+V5ruI4ijJ+NPp7L10uSnQg3BjWEz3vynY+3ceITCHAPQu7lo3O55+bm5sIZkqznBgtc93akPoHglCUoaW3sopjGn6MnZge8VGKZTuNDIMF/TvR45ByjwQYaGsj6T9DdM/azlTUYmNb3+ThhHCSXDQwSuOnOMsw4+F8BqXfMCvBR3tyf860/dL6kNqc5J7xUwv76HRiZkwTPbTmLGRfO/7bP4ggQtDFt4Pw59EcyAy1imagpaTM0Z8DAc/hsDrs5wwYIpojriC8P5pHhMR8/a6yO5NWU7T/BOIamaHaKsB3NMhvQdpizHqbvacS4tMC1UWcYck/aCuW7jY7nFvuSjx9LJNFQ8/E7AhDWuxv7HTAKtbS9gVdL0/s3Zex9BNwo6Pva8grrmmQ4LTf8abo24tsBBAOBOCovFcQpcg8Az3/+/Hn99ddfjxsMCQ6iS23vTd4qudblK3yZCaDs4yibXtn+M7rPdc6dOGNmB+yUmRnIkTJInZxDfGtlwOnHjx/Xt2//89bQtpnQT7tc49d2ASPLnKE/ukwwgYJrIv1GO4FNAmxlbMxoYHf17JBZ48tr/83ATnXn3O5zLZ25ZwJF5nXHw3NB2s9S48n9OQPA6HhiOBll0JEHAKQd7xVom4rYDg1ii25CBpzNiU1lXJedHg2r26MDpYE3QOFSAUGG+0t5eL74ZUZt82B74ZH7QwDQXp+c821J4aXA71Fw8hwgn6PXxwkEvFRgIODNdQEEf/311/rXv/61/vrrr8enDW5ubh7/P8PLQRkjRsuNT88F65n7Q0eb+zwnWDbnnB2ZMgMEAwQ7fDqBevr169d1e3t7kaFLZiK//QdGHOOztrP5krP3vuiegeY0W7lr6iTZSe3KWYgcaNa1a8P1mUcafe7U3tXvdtifX2GozOuRnH6GXsqghuyIvLPXtItK17p0Lokykklgfd5jcH9//8Ropf7UlY1KBBOeHzSGDZAx2mIfXEcMYYxyrjOVamCQKKg9ykdHG14iF6Z/2b5TxpSf9zo0gB0Z2NF7jhG4eB9CK8fja6EzIIA0BVYGAvyvAK93T4CAUTOzAgEG0SdmwTIPstdjx/da5166xsyGN0ISUFDfqWsGCOxn2ySZ9lJnHD11jptcv379+pghyLXb29sny3FcGnl4uPw75Z0vOvJTZ+iXgwEbm4mslPw+RfktImoG0fcYaTUem1OcAIL5sdMwkOD5s+BiKtOMfgMkuzYm+hX3T7ys9XKZgRDH1A608dbGyw6Fn6B8AgM7wTyH7LcMpo4YG0f0bQ9B+94cXgxUHCTvY1ST74xScvS6bxvnyenk6CwIx4WyncZhiv48b52xiHxZt5cQWMZ1/Czg/hma5sxOdyeA34CAo+j2HgACAZbjZkKCgQCBZAbW+gEG8pKq6NaHDx8eAcHOPjRA0Mo4uiffkUXASNrj8pnlwc1/Te/Sj0T+Xrq6v79fnz9/vsgIOkMYAOt2CKQjn2uA4LX29kUfLWzO/wgQhFqEM5WZJvVOsHQWZ9rwOdfrVG8DCjsgsItQJ7oWLU6AynU0pTwCSS9pUEPXTA7rTAMAuzZaursBivZUQttAZHAQMkBgG5ND89HGZq31ZB+D+/Xw0P/BkGngKcIJYKJMLWcvnVjGzZkxOjQY8Dh4E1eMP43yEbj9TyWDK0fSzgDQQXmJ4OiTl29RDxxVO0uz1mzjJtA+9cv/fbCTCetgxo6632QYQEAn//Hjx/X169f16dOnJ3tZmk3h/xQwa9zAtW1x5PWz9CJPE9hIHoGA3UA2J+VrO+dJg+iI0XVOUWLjI+dyfwxca/ua6GMCCT9jtKbo4mybZ+55SaI+eYx30V8DBCzn9XUCALbZjCt1wUsN4dHRS5tHbrvx79TlkZziLMNbft/f319sZHSEQ9kwkpuArDdyBSgwSpscl9ezb29vL6IzL0lwrJwyNu3G/LXRkW3cBTuUaUCUo2GDhZZC56N3fuKAwGyty8dmr41c3TeSdaXJhjY+OuC5SNns5JY2Q3HodPafPn16zA4EILd9Q8zEGaC2MWwBxs/IMvRLwcAZhhoI4PmdwWv1t0najP2u/I5XgwXWc8YBczANCLxG6bZdRwMrO57P0hmwdbbOCYy9JJGP3cRq910DCFIfDa0jLp9rewbM1xHfNq506qlzxzPPhZcc7azp9L0U0TbkOcJxViCg4Wh93pkAy9NOzDu0Jzn6Or//J4CBRrs+TlkVrq37OJ2blha8tm5w2/hzFP67ZGA+6HSP7vU8Yn2UBeeH/7eAmUWDAWcImE3jnH6OjT9Dv30DYYvwpyzABBQm8uRuUR+v/Q7n1ByNlYWAohmoIzpyDO73WYP330Q7sNXKnjGoa83/dR6y05+yB46YycvkHHl0WpP8c918crbT3GD/DLANCmzomkMlSGl1tfLNeLeI1bbkCPixTo/Ffxod2crJ3vK79WeyyyzPMfEmQzuw0BGoNrBt919LkxOlDrCc22P6nh/qIXnLPQQBXCpIxoAbDz1/JptxDai9hn4ZGGjMTUq0u/8IBEzXpsGefk8GdnKsRwPAOneK2ybFUd/M326wr1GEBip+hl6zEZ30r2UyrtW/M7q/S+MH/ceB5p4GDKY+ed5wXZZtTXXweWuWsfPNPd593RypAUMDPs5cMCoyIGhr2u1RNz7eyeUKy98R7zROTfZ/kmzX6BSeWx/1hU+Q2BE38LoDaAa+oR1w/BnnHop+Nd2yvHIvs2DUNROzVtRNytNySztx+lnCyrsGsgHT7xzJPGSGYAoe0taR/M7K99lg4BqDaSE1ZWqIdfpMdZ6lXWRknndCn4DFtQ55Z+Qbn9NnR+7H5MBes0P/VdRAKskOyYidj8axngnIMkpYa108Y52x4L+d8T7WP0XLIT8WaB58v3lPezR2Nzc3F06XIIUbv6izEyBgFLjT2RYY0OkQALQ1bv4Ob16ei4zoEKYsz5n59SfoyK5OZZut5T4BHhsgmmzvWuuJ/KxbcYhtk+lOD1o9OTabZ36bE2X038DVjiZAYGBBfpMN4KOJ2dtC4JrvBAUPDw9PXl1Ovq+x1Wd941Vg4BqHO91z5OiP2rAjYyQ/GdKmQDtD1Az9mcxA43VXb2v7CNw09LsDBk15fmYcz8iBZabxeS1kJ8mjQcERHRnl1LfWD0CQMjQqlN2UGbABurm5efLIVO5pzp/vLci5nPdu8LxUhvfQ2PkFSe/evbsw/u7bznnTcHMt2yDo+/fvjzu2k27lv9xxz4A3X3I801/Ljob/NQCBM7QDC22/hVP6BAR8lj7UHLKzOrlOoMi38nF/iZ8kocOdiOVsV8yXZRKwzHoCGO3MKTP3n99Tf5PV9+/fn7y50WPAbEGevMicYfBAPlu2Yxr3a3T3NBg4Y8gnZZzuP+P8z7bRzk8R9wQorqEzkfhRG3bQE/LmwHuyxDBO/LmNa9AkJxzP7+5p9NJA4Ih/ypX9ppFoRtIb2JoBCU2p6rRvIND4J2hhncwItH65DvMXZ+756rXg/DUz+5S6uMTBOliOTsdy3H1SB9/jwPudyqbjOzKcIddhein9PcpK7AIIn2f/fJ9l6fY5R5zi54cgcK0fb+JrG0ypM+3oNi0LbsBuMtgFIgSfbZmryakFCG7bOtc+3mthUJbNhHnUNXpP2bC+nN+BqDP02/YMNCDQBMzzpl303o5H1CLnM201p7ijHV87x0yUmd9NTrmXDsbImuCB38/wbh6fYwgn8PMSxHVjk42QqRm91Gm9dsqUBiOfGEkaz7ZByO27PzZSR7KejP9a69GxMoqZ/qDG9WbZxEYt0TZfdETn7zRpe1wwHxo7G9Lptblsaxpr6jf5t7yaPP8k7WzFkQ2cHFD7sPxku7w8xE1yGes8gsosQN7E9+XLl/XPP/+sL1++rLu7u8dXSBMsuH6Dj5atmeQRwOE5E2fLpYOcDzl7ZhlwycBLZdN9DaBzjCI3LodxQyGByJFPMsA5ol8CBp4DBCZQENqhutZWE/7u/klAz8kaHPX/OYaE97X1zpy3Eua4Ax3XpI4mhTuSqXmY7vmTZH7I75Q9mJC909j5eO21Ra0mRvjmiYaPhmyty02CdvatDzT45MvO1K+Y5XPkzXgSbBosWY9p5Jhx8IdOPXJg+tRLCs3OGAROAKmlgs+C55egneP3b8u/6bFB4WSf3YYDEL6LP3V/+/Zt3d3dPR4DAngkINi9pW8C5uEr480MEp0+QQGBOvtF8Gi9IpEfAg9eM3g6ynSwH20JjQEGx8Z9ONKLif7ofxOEdoBgraeO/KizUxvXRvQmAoFrQcFuEv0M2cDxdwM/1wCBNg7t/O7+NmYvbVSfa9gnw8lJ6pS2J/HkrMhbznvsdnJ3pGOeaTTWWk9ACvvUnDNfIpOdz7nOrFQMWzY/EQw46ty1l1fX+q9vQ9x7QLk1mbh/dAzTOLfIeWej/jQ9N6DI0f1r498cj5cNSARpBgJrrcc0d3bT393dPX7aH0+1DYYGA1yCCA/sI8ebjwISxFKv+L0BaBN1KHtRCDICVt2vllExwNmNXcs2hp/J3l+rM38EDJydVM9NSe8Q0VH6/4iOUuat7TMGvTna1O+16iNj9hzatX/E+1F9k9F+aYP6XKLuOqXdDCm/83WoziKwfrZDonGjzjbH5zqartLAt/V5/zOblwxoVJnR4C5ob3o0IGnLEAEDbD/3canETsGGlI4ocmNU6H0hzjBYtmnzpXT3Z4MKA9oGZh2Jeg276ayXvuIA+VQMz+VDQGBQYDDQgAEdKPmgTtNe+rqzV1P2kv1lRE87nE3A1CGCowZ4Gkhgv0jWYYIdj0uz578VDDQHumvwT0+gaxDS2azBJNwjEDCVmfggzwYEaz39Y5W2xuV6nXJuEXJL7Td+foZeAwiYgBz7eKTLdrgtQ8CyzA7ksbyzkSbL0Sg7RciNi2fAdsgGpmU37CRtfKxLNMh8zj8UGbQlgmQekhVgOzHq3J0+RV5eFggPdOhtfXcCBGfG6k/RxEfjcde/Bg52Wa6WKVnr6SY/goKUCwDg0fsFmnMkOPA/UDoNH2oAMJ/Mzfxx0rW+zPbWAGGtH8CdeyQMehrwacsGHKP2SVmOiX3BbwUDk5DOAAIr5U6Bf7aelJuWGX52GeIs32cda0upc3CJYEO7lCf7dQQApvt3111H+/7SSwOmndz9fTrHyWkD6/SrdZNoPnXZuXstnHwz3c42+Xsy1uYxET6BTAMdNGwxoinDiDCGLHWEUjczCGk/Dof/eBdg4OyD11/bprVmCNPvOAPPM6abm75Ybi9FR3Nyd1+O/N4yAy3jZWBgW8vMAMeEGZWvX7+uf/7550l2IBsJpyiZb+1rr/FtzpPLAxl3P58fvi0XLofYVjSb5ug897UNkwQEBLFHSwQeH/PQ+tN04KzuXA0GdujU3yfH3YzdEdmBn+HLgmip7LMZgqPlgh0fUz3TNdf33OWB1v9rnLXB065u1vlaAUHoCMCu9XSdtaXMGeEaKOzatuO2M2+Gt0VrLB+e2Q51LWUIBMg3gQDryMavtdbjo4UEOFNUQ4ARw9n2WTgzwOUB62ucAzebNWPKMYhT8EavXSBBHfhV2bHn0mQnnxO4WL+8fNWAQHu5U5ObMwMZO0bF2SwY5xiHOe0LaI7THxLT6DnSiTo44pxl4JXyLfDhb8+VtdaT/RNfvny5yIS0/RHcYMi+RK7cpxOw3frzs/b2t/1rYVPes2CgXZsAxZHxzYSePmvtnYOvHYGSX0F24NcCp52jzveGRnlu6uNRFmACBC9lTNd6+qjmpF8u0/R1rct3/TeHFZ2MUWxRpXXXYIIb6Ly2yyUJ8x4+pqwG627OnxFzHhuME2ablMU0p5iVMMghH16uCDE1zHXYlkbOJ+WPDOS1wPU1Adumt+277aTBbSJObhD1o6TtkU3PJ8qcju379+9P9gj4CYK7u7sn6+Z8KdEEBtob+azj1snQpJfMwDZHn+9TnZk71McAgWmjpDNfrjvzL3UTrHiuEdS4r2fop8DAZEx93BnXM2BgWuc6U9dal+s7+e222rldnWdkYR52v13XdH3iZwIsv5JavTujOn1/CWqTO32JEdhF7Cmfc2s9/ROfCWDmXOoywPM6vVO4Nzc3NUJjOwS9pCkScnuO/BjpxBCxP9b3Nh8t7waK7Lx3RIM77cqesmjcx7ALEH7lJt1fRUc26CgYot42ndr96yB1rYFHOrA46bV+rJ/nvQNeMw8QmDYJ7nbkT+PMebwj61qb92fAAOc65wkzA1wWIShofW76xzmbLEeWYiJj26ej/k501RsId46b3+2gGzDwva2+VmczPLynoSOCCgpvrXkNZjJ8R3TGWV9Du4Gm0qdfu0inOQteew6PZ0HHc/v/K6nJcAdWJ51zWj11ekKnHMeEQIJ6SQOd31k/p1FuYCBkAxWeWv89Z9raeHOSzWAZxFBWzBBYT6izjPhyLo6EBtSRlaPGlhHZ6aj3IzjaemkQ26iBLdth664zA21fQFuKcjseK38Idr9//16fIuAmuunxu3y84W6tpy/iSr8aQLBNbOCzZeh2PqIBSIOBZLDIvzMg7EfTWy55ONOR+470u+nLRD8NBthYO07Rwhlgcfaz1uWAcl1lrb57OHTGOe4ibZ7nRDhLz3GSbY24gaAdr8/h42dQ52shjtWkp21NPs7OBrOtcdP4cN0y3zkObKe9ic8AwIbabfkcj+SRyxnUm0nH3T/qObMJMVpTtJW2KfsYzciIYMCPaNmYTpkFGlOOo4OB1ufXpNMNvOU3dXm61zrd9m0YLLhO2tGkqu3M7+/vH3WJevXPP/882U3PT8beQIBLBA0skLj3xf2Pbvue5jvsG7hubzoCAw3sNN1tmQbyGF9GPWZAknnIcWM9R0CB9FN/VDT9noysBb6rrwEDl22DudbTdWo7yrMCspPn9zYZeX7nXM8Ao+meNmE9+Du0eBaw7Poy1X0ENJ4DfH4FXTsWnnRNf5tDXuup4eAYvX///vGxKzpUrt0SEOQxO2YLJl3nOn/ON2dpQJHUKp04KeccVTH7YVkQJDETknvbPI3RY3SZyJLGtBlP63+OBgMTQDiyNS9N19iHZns5RtwUSFBg28yxbpmb6DLfNrjWuhh7v2NgeslQyzIYDCQD5LEPv4ycTQbA7IdtHGUwRe3OIBkMeC/L7jHCiWeDEvfv4eHh4hHO3PMzQPanMgM75817mjIfAYldGZKNo8u1gbajOxLglCW4xuGe+X5EE3I/cnZn+7mjMwDCbTy3n7+aJrmFmrNvRpTpeZIjbx4tgzhWOiRmA7hpq72737ptg73W5Yt5YqC8dMGUce7lefaB0ZjT6bsMCZ08I372m7Ljo5W5hynX5gQ4fl4zDsjhxivK3fdybHc25bXQzoayX9Qvjr+fhLFurXX5xEgcaDID+bx///7xiZNseFtrXewXmJZ5pr0CU2bAzrMBcsvG/TK4sY+gDF23HbizFc3xt+WAaY9A2m5+i3Pm5ubm8Y2fnBv0cdfS1f9aeNZZt2tHoGACFI3S8Rix5qxa5OBrz6EWNe8AA+lXGJWzdTTgY/qTzvulDKqNv8mpNt7jzICdKct6AlvmNCJc6rHB9tq7v4emLAANEg3fWj+MF5/FXutHZNX2DeQ+3m+Amblop8+jnbn5Tf85j+IY6Aw8RhybRH8sE1m5fNOTXbr8P4GOQO301kxTnEzqzDm2k0fnKE/vZ5keo/MyjyPmKVvgvQLXggBuhCXAbQAx3xsYcJ3uyxT1W1ftu7yURVnmz79iL1LO2a5pzI7oNBhoE2Q3UaYyk2E+U6ede4RI5L+jo5TMTnCOSJoxdJmmXK3dUNsL0IzfNbQDAub7iM5kB6Y2XpKImpuDbjKYZGJjsNbTt0M2fYrRyP6BtS6BQJ615/P2jOBa+t5RQYuanTXIuRgiOmo+z8zz6SPrasaTERJ5osFyH1JXZJPUJ41giwgpPwI2ZxvMC8+ttapjYv3s30sQZdioOX8D18il7Rmg/OiE1/rhbDnulqMzScw0MLMzrZs75e4M0ORUJzn4e+rIMXrqcrS9O4fa5hN5Nhggfx6v5sTJS8oze+fAgEuPpOfY6meBATJ6Bpk1NL4DBNNvk6OSFhE0/iYHcI1jPEu7SGStp49bsWxzXC6b8zu+jwDWGVC3IzvHqZ6XMqiO7hvAchQ+LRGwLA2Jnaev+Rnujx8/rs+fP69Pnz6tz58/P34IBhIlM8VNgxNyVmBKxYaf79+/P6YYbZzYF9bt6MfLDGv1jXhcp2V2gTJKPXxkKh+2T4fE+qfoi2PQMhvt2OrgGLwGag5rAgMBAj5ahw0EqBuMYp0Z8uOo3N/y8PDwBAQ0YGGdbufWerofxza/EaNvjzHl2exg+uXNhwYozoixTGuLR8qq8cfyWXJLgMDMwORfr6Grlgl+5YSwQ/b3M/celQk1BXCbP0vkqU3MRg28TAPa+tz6eAYUtH7/ahDk9l6SWkTI39MknCLR5jwnoNzOZzIHHPCvgvOHPQQDAbs22Gx3MrTsJ3liRBKjaiPXdIJO1RvPDLoIvuzQKfsJkHEMuGt9WkdukRjbadHmUeT50mCgOf5Wxr8JBNq+k5YRaI6XywiWEYEyebDznfRy56DbOWeX2EcCdwauU7bVzptzwjxM+sNyR4CUoMr8tDG2PyHodqBiOzTZniN61gZCT7rnOJIj5/ccR9KQYktNmo+z/Wm8NADQfu+MyVFfzzrunRGf+kXFORpHj4+B3BGgeylQcK1BtbP3i1mcvk+ZtfrTBHb+fOtbAEA+06t5vWbqyc6xi+EwcKFOMl3MvjWjmbb8HHkzQjsQzLngZQvKjhEPwYD3DbitthTRdCBtHAUMUz/+NBnIkewwrLfT8sA0H5xCZxbI7Xpdn+vY4TtldkAs7bZ9Ie4n7ahT5tbFBtQpw/DX9Ia2bMpmsFyrp/mCzD0CcJdr48I+NaBA/Z986hFdvYHQ369xnNfW345Hk5OIdmqnAYK11pMBvpbf6fcR7Sa7y4UayNlFOORtcv5H/fZE2tV/9vyfpgZWpkmbiWsgYIe9AwNrrSdOl4CAywb5K988Usg6aZg8/xjZtejY66HT8gcNiyM2zz2Xb2Vyrhlgp+ZZB4FM+jNtJnNdXFbws+ltjdrZk/9EsgM0CGivE7adYcYodfLIVHmcThsHbtA7k42hkyUvU/8MehvQtf7lPts9OmT21XLxx8sGKbcDogYrXAbLOGXv2y6AtW3i0toRID6iqzMD1xr6naOcnP7RtTN0zdqQ6SjKbfcf8UmE/bNGZwcEGiAwAJiOLMu6fwWwe0006Vszqjc3NxdgII6aRpc7qOPATZywNNAEA1kqCFiIoXI2YDJ6rY9s34Zot+Rh550yboOymjIFpOYEGFUxJW0wQGfesmUGBO03y56l16LDEx8NxEbPnDonMGygYK3LgIryp7PZPTPfQNY0ZtP9IeqFbZEzHnaKk3On3Fo2udlAAwGDpl1/aW+c4l9rPf6nRuRMuZMnn88Ypw+Wlfk6omf9a+EECKZzzVDtnOcEBCalJ7WMQEvdkBy57HhqPF4DWH4lENgZtx0gYJkz4GTKCPynRFI757/WZYRhJ++lgd1nGv/Iz0sLEyAIGIixssFsRs8RTsbVqfdpLtmRW27v3r27MFS8j47HsmCk0uYr+ePR9+6iRfafkanbOCL3l/PrpQDBZOfafGb5SZcJchtQ4znbTUeuR0GI6zYIJFhzpsj1NeDrLEjLFLD9qZ+pq8l3AgLMNLQ6G/8eG2YFWKYtB/p+P1poO9D8xBH9dGbgCBw04+My/t7a3dUTmpYGct7rKbzenOkZUHANNRT6XGrIz5PyVzprK/Z/EijIJNldn4yo0/ntz128kY5Eo+F0PYkAgWDA7wpgpN7ATNpsOs22Wp+d8ie4yJqwAYejsvYOhpDXkx1l2fkyfZwyTv3bubCeNs4eb8pwRy8JBvi9OUiDGH78oiGDuAkQsB1Gmy3bciaY8L3TC4fsyMKrs1Oeq01/6dDDByl1GqxSLuQ799BZW0b53vrOsSIIaJQ5R9BngE15pL6z4KzRL/8L47XmqLn99j3t/nYvj1SQiWIgJ0Cwu6/VfdTHyeA3aoaz0bQ84O/ke0cNyJ257yzYeCkDaoqhMFF/Mpno5LMvIBv9GMH7fwNcpw1AM1yObAxAbm5+rAvmGXzXPfUndCbCINBxRBzDlzVNGsa2CbEZ5t2aMHWaUb0N8jSuXmKw06Izmeay62wO6CUBb5ODgxU6eI6JMwJc0pqCKrY5nZvA4BEonvYZEAy4f7Hdk/6ezc6F2nLUERn8eF4RlLK9liGYQECASeSR386W+Wkivh/EYOAaf3caDOwcwKQ4Zxy/f+8cYwMEVoB2HwdsBwgaKt5NiiPw4fK7dOUO0Jj35vivAQU/mznY1XlkRF6CGJ2THFHFcGYj34cPHx7fBZD0fc57M2DTCesAQUbqyx4Ev4Y4Bjy6msi8RUBpa1ofz5FGdDcHCSbevXt38VITZh3sAGwoaXBtLEOOAi2/pueub6fHjqjCe96zkOg5ssvrdQO8Juf2p+ioXdtBp4wNDNqTMM1+NgfG+qhLKWPdMqj0K4fv7+8vrjU7xjoNBNi3Bvitc9Q1gsg43bNBpeuj0222d8p2RP+mcQ3vBLuRCZcJLBMuFVyjuz+1Z2DnOJvjngDC5MytAL5vSnU1nsnvBAimCKCh8N2R97X7W1+P6GjCnvl9bTse2yOju/v9mslRebIAfCkQN/dxt//Hjx8vUnWTDgQMtDVOGmhvSkwUMe38D01Oy+ecRj6K6sI3QUA+jX87orX6c9isn8Y1wCc0ZcP44bUdQHBq9vv37+v29vYx85HxTwTL9l8yMxCabMAEatunAYKd3Wo8NNAx6R+zSdMTIW15gG3Z/lNn2+O94d0OP99d/6691JXMWLsWsp7vgj+2M2UK6KssewJZzh+CgdTx28DAFHXuHDo7wu87B+vv7fdziG03BSTtol2XmxRkd468nEWmVujUPWUGzvCRNn3tTL9bPa+NdulDT0q/AyDOn58YoBxvb2+f6LTHiU6erx5mG8w0xOBxgvtDQ7zWsd5ljB1d2+CwvOXE340f87QLCpg58HkaOEZvNrYGKDGszU75teWpO5mBgAAeU+6l9JoRcrO31DtHy85eNaDZIlNHug667DRt+wzUCNCYvUp59sk2l0A7x/ZxX8J3Hr1LvZxTlp2BTcg6xn66z82fuK+UqzMgKWf5tuwA+5768nnO/rRfsmegTXYfJyCwAwHt/muoCcNGj4awOcNrHOSZ6OGaLIENl2XkiTP9djs7QHDE92uIkK4lgr9dGRrSBgCaIfWGOUbE1F9OXH9stLn0EJ5vb28v9g58+PDhIsKyAzU1wNqMWdN3z0MaI/atlW1yiOEiL41HLjfweWpmJmw4KQfz8O7du4t9CdwPEUCQY9KwltWfpjbnG0hr4Iwp9IBdZ6bW+vHGwBCBwNRWs8kGEd4bcJQhYhuhtiE1feF8auByrfVkzA1uLDfWk/baBsOd32hA5yiIbv5vojYmkUVswZTJ2NFPg4HnAIHp3uncRGejadbN1KUBQVPus457R1aEVm+Uzikjokinu3ZOn/dO5z3hj5zlNWDnmvTUn6ImcxoUvh7YfxzE5QGnJv00QYyKjVIDAg0UcAMhHbzfwue11vv7+4trdvg7w8DIxuV2EekEBFg+/Yix8rz1ZqzG2xnjxoiIc4XZAsojdYYvgz3/6dJL0GQzec3ArF2jw2SdDph2mdLGUxsPLrFML3sKEdC1DFHLDExOnDw1B0757c5bzgSgJOukAdURSPCGv528p/PuAzMDLUu2o58CA5PD3x3PfjfZoaZNRg+ToTCfjEy8U/PMZLiWX/6eBmbnPCfQYqd+htdd9mPnKKZ7/pPIuubd8HH4/POgfPdegSk7QENFYllmG7yWy0/k/PDw8Mhf2zEcin7ECK/1NOpv822XGVjrMlKcrjnSb8Ar5fgnK9RfzssWqbKe1o+25kxeeC+dpDMEdGDMSLwkGZzZWVEmdPzWy4kouwYiw4Prs333eNIpNiDJ37TrLetE2mWlzHPKG4Qe+SoHjvE3PLYxccatyZjXKStT0+Hwlrq5VODMgLM+O3oWGPBEvBYMHP2+xsmmvNdIfK7xzIh7yg48l2g8JyCwc8ITuGn82jg0GT0HeeY+A4b2/ejeXyXX55AND88HFPApguz258bBtvmPQIDGiccQy++MWOM5UWycqJ/P5ngkUxAjcGRspl3i5GsyoG05JPzu5h5l5AwXvyfFm6MzF21+NEDDttq8onz8mep8SXL/KVNmmRqIoc14eHj6kqYdKGzjP907Rb3kiXaYbdjRNyBG4LADO5FJe7NfAzfMQDgbkTnHpQfb9pxnho48U078fk0WqvFLUM7MQHsJ10TPeprAx+k7j9O9jc5Gz0ZMEyCYdms2Y8fBnJzdGSd4RDZ8P+M4j/j5lWRFnsqcMdJ/iviMfujm5sfufv6l8F9//bX+9a9/rX/961/rr7/+ejw3/UHRu3f/s4FwSsUy2m2ZCK+J0hE14xt+v3//n53w7E8mPx3bZIB4XzO8DaxzXA1mmMnw/VNGgv3K3DNAiAGf9kHkmv/B0G1FzryHRt0GnPW1/4t/aWrj5qxVW0uPnCPrNi6UIUGGgQf5aMDTOkhdSd0h1892c290oEXYRzRlgk0NkJIvLilFhvf392utH09OWF/aPMxv9skydN+iryTqd3TamYGz2e5n/WvhBAiOnP1ZMGA6ikSJErls4Hs4MUIUVK57Q1YjG7tfRQ1YtTat3E2Wk1M+0z7vn+r5kyDkZyjj2hxF23nNjXyO5G1s45xbpO8ogwaO4GKtnjWKjPkcvA3tWpcb7fxSl9ThSIX1RxZNp5uDSJucIwbiJhs612+jm2iJWYHJWFp2DRSwjy2oCLji3oEY0g8ffsu72U5RswNrPQ2E7LC8SZDROoHn1BZt6o6XACfX6b0ruZ/zZ62nc4O/DaqdtZmyEBz3pmfuM8v5msEQ22SA0Zw955rl4XlocLDjiWOdc1zOaufP0Gktn1BkMybN2e8c21mncgQKWN+ZjED6ZaQX9OzJsWuvlTnDp4FUo/CYexw9nWlr4vlsmalvu3qeC/5+NVk3g/gZpXOfAD98QRCNGdf625v3aMQcSdFAMxLl0wINfJFfG/Y4zd0f+tiJMhJnZOayfONZyAZmAjOUfzPWLM9sHPc+5BgZ5cgPy3nsOe52dm2t3JmBs5HV7yQDczsF6iZBQRvPqT8Gs1xqavxQVry/6U4DFwTX2TCbflAfPSbWc/NkADDZSV9vYDd8NmDleZ5r1MHwQ0BrID/JmPd7nEj2dWcBuulqMGAHcA0IOAsO1to73zNOb3JWzfG2NRZuyGj8NX4mg+Pv5IVHTmST14bMO43Fjsf2+6hv14CM10hNPxlBcb9APgECWUKg0fK67KdPny4MWwORNkIczzi0+/v7J8Ai4+p6Uw8/fq1ri6BpfDin17oE/Ly/GUtHIA3UGgy0VG3KNR08C5ZZfponvM7zfLNjeAkoew1goIFwfieozW8+TjhFoc6IrnUJBrjxzKCDvNmxeYzteNkOgbT3rhjIBLgyGs/19pfCLrOzw7t7vQwT4v6T/I48uCm1+TXLzMD+iB/Kuc05ju1vzQzswEB+t+8+14zG2d9H1IQzvW2LE6FtumiCbOm1tDUNaHPUlMVZBZ3qnIDIlE05096R3Hfgw2PwnP79amrGrWUFslcgTxHQ2bfMQN5C2MAAdcVp/Rg5Rrr39/dPZOfNgHSQMVT8YyMCRDuCAAwaswkMmO8JDEz3GkyQ5x1oTn3h0Y5rChwmx03DyezNWuvx6YGU+fbt2/r48eMjsPIYvhZyEHZzc3MBJJ3podMhWGQdBqGO5h2Fe7mKepcyqTtkIMDlOYJ0Zxkm+xEdISAw6G/gnLp8FJVb70mZm3xZFbPMDPDyV8Ve4rAMLbM2F1mGPBEwuNwRPXuZoDU0OdrdPfl9zSCRmqJYyT2ANlxEcDRAjf8Y1NAkdPN1JjNwBKSOaOecr6WfBWTTuLwWouHhGweZGfj06dOFs+cfvnCJwBsIJwNKB7PWDzAQ9O70KKmt9ecegxwaGUZqrCMGn/KYQGkDA55XTqM2x9yABjMU+T3NPYMg/uZ5tktjHIdpQMBHsAjMYrS5UfM1UAvGuM/Bae21LjemtuUU28jUaWfoOhp4WKsDAQNYAlnz7cyGgWHTg9aeM2t2xiH/JhDxNcsn8zDBZD5Z7muO3UAg5627OyDqPidwiKzCnzdPT/TTYIDMTOevjUh9z1H0ebb+yfna+dOoHDn4KfXZop4dT0Z3oQl4HPW3AYMmr6ls6Fpw9hrJBoIOgpN3evOgwQD/SKg9FUD9aY7UBoZ7BpIZmAAujWyMsFP2jJYMVulsqZt2ruS5RchMrfvovuUc/3WR/SJvTU52EgQQTN/S8KdOjgejUaah8+dEkc39/f34+OZLE22U+8bvBlh0Pl5vb8CQ99hxTXtIGpDlfJv4Nv928K0tZi0MAnk/dSVz4+bm8qmxEPXNdVFetu3WT+rm5Dc9Jgb0a51/ARRlQh7S12nvnOk0GODk2VGbNNcAgKMMQUNZO4c90RR5WBFa5G8D1sryHhty1nVWNqZdexOP5mm63sbhOZmbFim8BBncZYLQsftJAp/jHoE8QcBHE5sxTKTpSZ/za60LA8ssQfhu+uEoz1G4DYSdrIGuDRjrSD8aeDAIYPnmTG5vbx8fw0o580xjzP4nCnU0xixH01Eax+mRzmzaDJ/JCrw2IBBy0DJF2CGOR3SMkTydXGSf4wQEWPda68mYhUfuwjffLGvda5mK6UM9NLh1fekH++0xph4FNPC9Ap6T5KMBAcukjQvbnHzTzmewTWYpfktmwGCgOZCJjiLUFhFMdTYAcERGle1ayw7wvO95LiA4y2eIqd6JOHFNZxy2f/8KIGB6Luj5FRTZcLLEiWeDIF8uxI2D+c1lAYMEgwG2613ujlo4F5x+9RvEHCnFADw8PDw+/uY1yJYJ4Ni1iIxtGVg0w9fmc9r3q2lz3XPeSxrmvUWJkyPJvTnPzE/GktmBAIDIhk8nUJYvQZZTyA7Gus3osKWjOUbMuFBXck8A6s6ppC3r08S/bUnaIx8tY0GdZ1+a82+ZuoxvHDx5ObJ3Dw8PF3OcvPJIftv3JosjMMD+T+CCIIv+7Mh/hE6DAb8rPUeiymZseO2IJsWZyra689sKFcFFYV0PqUVO7OuuT63sWbL8PNjmy3ycdbh/MmKfdOJPEuXDyL598uQA05csbxDBJQNOPEeZ0TkaVOtI7uHOaYNNz8HmVP1JNLijKZLJ/An/dj451wxnM+RxvnT4bIeb+ZgBiDMn2dBzY1yucxmI/zuRzE5kFofXdDU8vBYyIOOSFXWXc5y6RWCQ8SAA4LpzrmUpxfXlExnx8WyOGcee37muTicf3tujonZw+Rtf6i/nJMF32jP4bTqb85ynzn7kHv9vCPk1KPEfJ7V2JqKdMSjwvOXnDF310iGuq0UQU+QcOsogcBCOItCGhNr5XXutXw1MuI3W1wkANSPfeOH9O2LURB4aODjqn89NjvoIJT+HXgoQUL84YfxoEyMqG4wGIric0AxPDFkc8VHacEr/81WqrD/kc65/N5+ofzQkNro0nClLchQX4ia0BjLCU5yDeWT9HAuuWxOgWAZc4vnw4cPjEyJ0VEypfvv2bd3d3a1Pnz5dvNPgtWwitP5wuctjwmj1OYGWnb7L0HlTP7mfpIGAfAyM7cC4x4R88Dd1lACeR9vwd+/erbu7u8dz7ZXMa/3Y8Js6uIRn4EhdaZkYEu12s79tXrAPnLfkh/dS9r8lM5AG1jr3r3+mI2Dgc628B80GrTlXp9qP+GC0wXPTZMr5huyaU228UunIr683fhq/E+0MwmQwJjBzps6zgOd3E517S/e3DAE/efEQI8ssD/CFKSEbK0a5Sf+zPKPPCUwTYDgyI/BgBHgUsVivbFz8yBbH0yDiDNnReIzSdps3+U5QkIiVmYHURbDHP6HiEyA3NzcXLzPKa6n9YhvudXgNZGCVcwZtax1nKZuzoMNd61IP6FT5m0dmUuz83A+CRUe+7kezRdQbLufd3NxcZJMoB9psgl/3m/JpQJ71RGf8vo+JWgDpJTKXpT0JvwRlDQycpav3DHhZwCCgZQnOCOQMUOD5hpTY3hFQsIPiIHggJn6uRdr8fa1zbBOWBr1NMrdlmRzJuAGzs33mfRyTl6DmBGMoso6cPQPT0wQGAvlOJ84lIveXkU97vS1Tqxwv6yW/5zqdlg0SwYHl4Lb8STkbwAms+Ny14DE8NSDlTVHcSxF5E0QQ+PH10szo2PFETvf39+vu7u7iZVSvkTgm7R0Xa+3HYrJBkT8DjMmxcPkg97Kt1OEovtlZ2ia+L4Pzyv0iEOD84mZf+qrc2zJL7Dv7YR6bHNLHbM70Gwct852jbvOe2WCOT757CYd01tdctUxAhMTX9TKN6Uma8nZK7vy1dNbJs3wUkoIknz9Du6zAryQDgGngDY74/Qig8f6fHZv2+6WIkVQMPR19PnQYXg7wXw4zM0BH5DRhftOppWx443IFU52hCQz46E/7Ex9HO9ysaDBgA9P0if33fJzSpW1sco+jSeoPzyXT0jIcLQtkGbO+GHNuKiWwem1ER0iZ2JkcER2/szLWtWv545/lOHAxvwaeKTf1hZEx53aOXFpigMiypDavKIuWsTUg9Zwz77vxsJzbb4KCEJfNJjmdoaszAzYcbZDJpAHBjkk6qgk4TPeaKEimVULPUexJGY/4OENtTZaTPecaX9O1lyAr/Wvhi87D0X5eNOTNZXbKObbzaYP99ppqficz4PnR6rdhpF5PQKC9jtgO2ZEG66bhbHPx2rnDSMx8pe8cI/JI454y3ATmCIl1Wp4GcowamUmJXtzf3z++++Hs41m/mgzMTLQbUxDUnNtE1MdQgFIjOlqX4VMxLQJnv5oO7Oye+74rx/Ymh+95xTlFubRHKyOfCYw32bdxmIBAAxKpN6/NdtDQQMMRXZUZyLGtp9uwhXb7CVrEaONz5Ex8/Xc4RxrFaW1+Om/AMDl819Xq4ZHt0SjuDPU1Uf4EdM6AtGva+ROUieLoPing3TKBo0kCAH7oQNe6jNZaOTuyluJlJsuRdwMCjmQ4Dg14TJ/2rLrXhx3x0CkwArNRm/hkFNc++d+Gab6nDp73UgH7RTBA+QQIBATc39+vjx8/vrrMgOXTbEYDhDtihO7n63d88Djx6TacmQlRB6YlCn9va+Z2vM25tuv5tL05OzlSrw0A7NBbpuOszTRI53j9LF2VGQgza12mgPgMdVsfaYCAnWJ5R1cW2Jno2Mcm9COwMPXF146c40vThED9/Vfx3ybaS8soRr9lAbJhjNecHWhPDtD42pDwXCj3BAAwKl3rqYO2kXM7R79bNOLoq4EVg5K2H6L9Zv38bpB05DTcPmWW1wSn3PTHTOxbAABBHceW7d/e3j5mBrjHIP9V8FrIsmpAcq2nSzRHwQLvo8OxXvFckwsdvkHht2/fHh8FbOPVbLznm89TV5gyp0wc7Tv1Tj1qmbaUnea4nXy7Ntm/CbS3MrzGjPf06Os1IPbqzAAZ5nOlXPOhYFok+5zI/6jsdI1G60zKxJHGFO23aw1A7PhuUWTO+1rouQ7VTv+ongm17u577rXfTX5XADMC3CfQnkX39+nPYBjJhGyoW8qPhrplBlIPjTHvy/e2Tpl7Uz8N727pg9fYv9RHHpqOO2BYa11sYPT9rY0GLFzObbE8gQD71P5umlGWlxSSJXjJZQLSBOT8PWXpHEnOLJJaJoqOm3roqJy65/NJa/M3QcO0LOB3T1AHsuTm+ZBP9ivkwz8Ey0bRLAPxLaApm/bt4Jvjt7yYrWWf/d2yTx1tnrksx7vpygSkGl2VGSAyJDN0nIwojCTDoL978Jvz3DmxZgjOAIcmJIMab4hsoMjnUnbqyxFRPgQxHHROOq9rTfWdOe4cf5P9kZOfDPyfpBiMgID8M+G//vWvxz8korP3hsIzO9HXevpnQImEOJ4xztaZHZidDJCNiaP5lOW9bI9goK2nO3JOfU6ZHukJ+xsZWNemKDf2Iff4kbUYe7ZjEDP1MefZJy4f2Tm8BB3NSQM765Gdi+tjGdoZ23qfp+10tiD3eEe9l4pIbpt9bc6QAVkABZ2+lyK4JyTO/+7ubt3d3a0vX748PkWSo+tqQIfjY/3w/JjKcV5EDpGng2xep+wN+OzXztrd02AgldoB0nGy3LWR4FEUfVS3hdr4nuoLEdSYp3ZtrXlPhCdLI04AZwKe4zjbWi77dubY7p3O/adQnLcdux28HSGjREdfzgo4Qm3yd2Thc20enYlAUvbm5uYx8rIRp966H+/e/Xi6wuvpLWpk/2go2fdcZ4qVfJA3O+4JcJv3zMnUbxDgaNkftk8DPG04fA1kUMU+EuStdbmBz3QUODDQs741HW+Obq3+ZM3Ozrvuycm2oNNOl+PGaN+ZAQIEP5pL3ienf2QbHQxEtlNmvWWYj+pnmRZAnqGfWibgkWQ0Y6Rzpo2WLbAiTHU0w+Jj27yyc/rsO/tEeUy87dI0Dcl7IDkx8zu0c+Y75zHda/p/ARgw5ZusALMDzBDwFcPTi4m83rzWHK3bQE1vKKPjbcZ2iupCjrgNMF3OoMb7IfidgLiBGvPG347yzTPllHsNKh4eHqpxnupsnwko5J44FYIjAoL2boiXotaHnOemSJY1HdnitZ7qX7NjDeQ5C0XbxXvMXwMJHmuD3wlYRGcaGLi7u3vMAPDjTBA/5oXtTH7prCPOuDGDlvHhnrzmbya5GfCeoav+wnitp6nyMJMyzZk2dOooiOenDkxGxWU8GZoxPGrjKN3vjMBU/my2oxHvbRP3Gqc8ZQp+F+2A3Z8mgoFsFPz8+fMFCCAY8H4C7ivwP96t1ZdtWhQa2mVtWtn2aQa/GUvrez7e9zC9lplzp4HRlkqNc7AcwkNz4K1vBFEtSjMgsINhHxg5T2ORewwIAgpeG5FfZ6rWevr+gdisNvetI0ey4jkDAjvvZkOZ1XCK2/OK9XlJw0A1xPQ5wSSzAgQEyRi0rICzc6m/0VFE3kCQx8fl7VuOaBd87ugqMEBHP3WEkfekCDQI/t6OpiMgEX4bj/ydciSDnebkd20fgYizdAZEuH3L8bkOfxofXief07X2+yWIET7BQDIF+b4DAnmNLf/tbq2nm6uOnHk7fwYsOPpu7RmAMG0c40gjTCfitfTmPAn685tp4LSRHf9nqNVvZ9LkN9Vl3t3PkKPXlqVh9uSllwk8tm3c2ee1nmZoWX6yYUe2d6KWPeJ56kTTmfba64xJe6EOo+j274PO/BIMcKkgR76Smk8VfP/+/Un7k80jIPIyViOOVeREQMDM+84eT3WHzoKDq/cMmElnANbqE81HGlMrtjuz48VENMzfzcA19NvADge1LQ8053kmDTdRU4CdHBrP7b5JiXbgrH3f1TP9bkbpT9H79+8vnHo+zgb4fwkIDPg2wugNDUaIBiTHGJoWebS0pycvDaznDgEuAYIdWcq2+cBIeBdFG2TuovnWb8rL/ea9/r4jg/yWDZiAzRTJTjJ8DUTevJ+lgYRG1wQJu4CM9RkIcPxiy5w1yvzgGLKPnD+sn+0bYOfoPh6BAbZ1NhNlHab8aRN2PobLAQQTXJZxWYMG103/ZBnt6OrcV1M2r3fQUHrQ3BE7HLfBTp3lb+fsd/cRna3Vo3s7XtNzo3ETlWHKEpjnKNVO9q5vQpwTEGA9E+1AwUsQ3xfQIv44/YAD/uZTBnSclE0ib24GWutyc920IYlj1cBTuyfX17o0xM0huL5muFKPPy26MOjkb4MfHu/v7y8yHGkzdRNEeL7TntiOkE87cDrNnS3geDm4STboNbxnYBo/983ztdmkawOVa2xpA3UZ25ubm4sxTibJT4mER6fpHWhyDtH2uX/cGOgsgIFAA64GBOaDOsgP7bgpZbiRkNdybgJCBsGsM/PAvO7opxfCpiwBI50w1FIgKT85PN6b77n/iCwYRwnNyZMfG8BrHP1zswKuwwpi2jlqg6sj/jkOu7K7sZoA3XTuTxD3CzRAkEfJ/F8F7Zn05kDzfa1Lh2iH35w65Uyjx3YIKgzkPN4EqzYiBrcpYxDD+3agl0DHj2wZDPAvY23U+HhgnAb7xDbZzwZcJtnw/nakw3JkSGP7p6k5GdqxvJWRoMflzwQutDW7ud3sy0QtUqfO3Nz8z/IB3xVAJ8aydsYEiJHB9H7+jCudPZcHGiiITDjvbNNbBsJZmjOBUwAB+5a2IqeWEWi2NmWeY2ufDQbClCOkkKNTXpsAQWvjzLnQTgDkpyl+c96To22gxsDnDE0O147gyBBR6XZK09o0UGh9nu7Z8f2aiH8+NP1Vcft74oCIZBVojDnGLdMScvTGseRy0JHTNaimcbVRaMaBPOS8Iww6REbtaXfiqQEDgwEadMqJ+jVlJM4AS/bL4G0Cce3DLI5By0vQDpRzXK1fnvvOZr179/R9F5bRBKamMnaObWwtZ/LHT/pAZ9yAXzILlEfja8oCOBMw6XTrYwO2fteFwTnJYxO+8xRE7iFQnnRymvPX0Gkw4IGm4MKAB8Ev7Emn7Ux5ndQm4ZEDtYHj9ckYXkNGiG2gztazuzYBgh3PZ/uzc/BtIu3uu7btl6BEUI78GyjgK4mdHUhdjBpjSLgjmR9Hmc4MrNWzORkHG9G1+itJaXx49PcGGFqGLu3R0YQv24EJBFAG0xv8dlFNy8Y03fz69evFMtkkA97DvhAA+PjSZPBksk3L0TaWTsqPqpEaAHgu+Les6RTJK/VsygxMlKyA/ZH5iE7yO5cTGvBwHQ3Y5F7rKOcR++y5xHtY3ll2yoPLIfYLlB/nxBm6Cgy0yUFnSLLjcATkiLo5u0lorb2z/FPorrPx74k1OcpQSyU9h3aTcK357Ylef6KiHtV5dH1HDam+hshqraebSNvTAJOh4uN2UyREh9iiDoIARzmpx9SiqraMQL1kH5gFiyNoRngaG2+aa/rWjP20LhvQ1HjYzUWXbyB+WrM1KCDPzXlwLB2FvdQyQfg6cshHdqk5qzNEeU4gzcc273mNGYHsF6Bzc3bDPob8cG7Ex9jmef7xO7NAzdlPAMB62xy755izBBOAoIw9d/neAdoxAoBcy++zY30aDOzWSyyUaxTXv4/Q6pGi/w46g4AbWHouEJjatKLwXABVJgV5saIRtbb6p8m868/RuDUj/qeI66nteeyQwWvjN2PN6Pf79+8XLy/JuaO3mTVjYuPb1ivJ17RG7IiCwNZzdAeODeqaDjSDaePrubGzEQZvR+uwzcB6acSp5/TlNUT/19LRPOJ8n2xtA1S7cjv9cn1Me5sc+YaSGveYtLlCsEfnzyVS6uRRds462/S4nW/k+dWAQcvUpaznppfwHh4uX5HvNtZaFzbuGh2/as9AiwR8bTIYDR216PVnaFeHjYwHwmu5rI+O9iztUGPOne3zUeo09Z4BH7to1ErcAITr2QG5VuYliO8Z4LP0O2fv33yWObvjuVEu7zknGHDGIGnKae6s9RTwtbIT8KJeTEa/OW7rDudCnHFbxmtGshlQlt0td5HntMv3OnDukjI2DTQ0x8GMJH+/tJ42akHXESgnkFzr8i2ADBY4ngZSNzc/3mZ4tOTk9s0/9WvS/2Znco/tbusP22lteVnPmaEm2zZXdn5v4jXXOacnWdruckwoD7c76T7n3BE969FCdsbrja181qnscNsegnTMNK1rNoVsypt7cyQY4WA05MVJxck0GY8jh8vvZyaUr1EByKP5mupuE47lJxnv5H5tP/4ktT+oIW8tavBv7nj3+835pyd3d3dPlgcICGxYmjxjyD1GnmM0+M2o2DiazIONn9tu97uvbTc+DfBal4Ztx58Nm5/sCPEFM7vPWj/+PCcgjmBnItqKlyKDq4nspLlsSJk7fZx7mHomKDOw2s1t8mkgsNalreLSwNQ/zw+COdY7lZ+AKUHrlBXw/S1r0XhI31tGrAEvl+F3L/3SZkzzfqpvR1e9gdARM9HQ5NgoQN5vxzWlqVLHREcOlYbk5ubmyUs63PYRuHHbvo8KMqHE1sdpwBqwMcAhoDoybA35Npqc1NF9u7pfChxw3b8h55ZGjBOjs6AjySfvOWdmYHpmOZmBtZ5GG21CT5O69YFOnYY1v50up347lU/jzOt0upaT3/MeZ9tAFo0keTeRR2YK7JxsGHdLC8zSvHv3bt3d3V1cNwh76dcQ22GfmUN07AYCa1320WOe783mEEyn/ilSNj8+z8wE9avpgsd3aid1OZhz+Xav/RFt6lFQN9XJvtzc/Hj0MTKk3BqID1/WAfoYgwln3q55P8ZVYMAOmul+Cm1ykhMdKTjbyO/JgLSUOtNeXIdsaJ+GNH1i/84oxq8iT8qJ72YkaAj83PYu2nO9DeHvgNKZ6OVPk8EfI3V/GN06IjAQyFLB3d3d+ueff548u+z7rUN0wCFHuTQGNhjUdRtBttsiFK5FxlAxW8cxjA6Rt9RNIOC3LBoQcM5ycyINsAOEZvg8xy0/luPY2y7FuTlCJV+Z/9PTEH+KpsDBY0XAF97bU12RM8fUgJEA2q+qtm62iJky3zl56mCLlP2oXVvmYJveQO1s35QlmOZ8yh1lj1Ju10ePmf3oVDfHlHzYXvCeHdBudBoMWKEcWeV8yELhIHIi7wS8I0/uNlloEKjMVHCWpxKQqEz+bcTZJkf62ni9llqaNG2zbkZyOU9Fn6g5eoM8TySWs6F6DWQnGmpj1zIENDJeIqATbBGx6246Yt0inzRqzgj5d8b8+/cfL2JphshGmhkMPoJmx+r5kmxHMiTODgQYGVjzjaXfvn17/Nvlh4fLfw2kTsdWOLtDnjiv7bQcAVseIWeFwvNLLRMc2QrqKClyIdhhXRkD6hUzA7SbDkRa8BE6isBdlmPcQGvKMap2v0ish/OOethAwVEfKB/K0r7jrG2fwBH74OvO+OUc72l0Vnev+gtjCoAGzKmMa4gAYRdtnjlnpZ3+hIVv7WJ/1nqKnPkM89S+sx9NoY1kj2jKCoRfD3zOMYIjH854ULF31Bx+m0R2Mq+NponiVF0DWqHIjs/St/9BNxhYaz2JkP0xH+Yl8vWHOhGjF+BO45e5kHocOfm5+mQDmFVLdEwwkMyA91D4yYrw4uUaPioVMMDAg0bfzsNgiOc4R9qShOfVtLYeWbykXtvxhJoNogOPPB28sK+UocFfO2eZN74m/sm3QTnHxRRAFvtG0EDfMWULPJ6tfn/fgYUzfTxDR3XbFqXvDQzwnpADiyO6KjPANH0aJtJqa0gT0cidoYYASRMAMBggsmyRIhUu9e54tKKd6bujeLa9o3bdg//hw4cLIMPosE2YBlAcvbaJ20BBm3yvARz4nwZNu2iGOu8lgjjQlhVoBqhlHwgwQo5qTQYDNvB0oO/fv7/Qiay5h5/wYABjhzml9QOK+CSFAZKzJEz7OsqyoUsdtjW5l5Ft03PO8Qa6KC+/T4Jz/6UzA2d0l/cY7DDqzz0Eey5P2RhgTaBkx4v70IKHKSLPuKWuvMKY+hN+M+60X86csCx/7wIa8p65MNmKHTWwSnk0sr896yfOlg9dlRmwEOhYiPBT/owj4MC0e87UYSVumYDpOXNHXgY8pjOOY6JrswMTEcnzN418DG6Ojo4ab6EJODiKbY7fgIByPDNZfgf5LYIe2xZxr/W0v+0te21/AdtgND610TJLkT2BqXlnPYz0GA1yrFNfyGCA2QH2I4DCRp1AxrKZ3q8QPhy1ZGwCXNb6YVOow3Y8nLP8TcfQHBgdSGROMMDUMtv709Ta9ZybskrRO85/OkqOJ22jAcEkQ7a/m/uT/Kc+tT4aALc+u/5m66i7vre1Yf/Auqc21+r/odPaadfOUrOxjdezdBUYyDFCZjTiCUhhTE6gOf+zICJ105jQ8RMIHP3hjNttCJPECXhtOsn1XDNYNF6cuOGZdHt7e2GIw2vaNR/sCze/2fEbtPl6MwqMtF6C/GhheDmajIziHx4uNw82pzdNwkk3aOhyD88dgScbmui3jYTno8eVeuKNj7nXGwhDBAO7xynpWFv2geAgfW8ga5Ljzc3lH9XYmXne0wGutR4BT5Y1CJxeCgiQ2tyinNvcZv9sjwkWbEOdSZhAMtubxukapzQBLwclU5Y4+urH2Fud1gPz3gBNa89t0De6fL43PXSg0AKXaT7Qhuz81hE9CwyQQU7k+/v7i3J+rMEOgcjLaRsORgZ5ipAIBGL0afz5P+0pzzpoHCfhM6XblNYK2gaDBp5RfEOfiVRaHZGFkbyXPmKEzZeViWDBL8jxy3Y4cah4U4RAg/PSYMCAoPGUfnB9Lsa2PTpnMGADy2P0PUsCzbg3EDFFUR5brrXbyLN91kmHwpclUUeiW1l2Mi/MCngZhXpEnSNveXyPex08Hm6zOQye40ZIzg87u/CQehNFe//ANaD9V9IEArhE5eyLxy72M0dHvbYfXFJrtpIfg0fT5NxaMMGjv9Nu2kabtwkI7EAy+0reGUy1vrkdA6WWAbDvoowmIMA2qOuuuwXkZ+lZD9GayShakPWUKWgOfgcIpvZSloNHg2/DTwdgsvIRcUfZ/ciZJ58jiGlS2NlTdkfleZ6Kk/Tt9FIdKidBVjOmfkyM4GCtH/tGKKcmt2aUXhIMfPr0qeoFJ6IjHEbJHP/paQJnB3Zgg+1MEYnLtnuZSVhrPZlr5CeOLuVC4ZvvSGgGx0bYfeKjlnFSfF2zlxBzDACgAWQ2ovV5Jx+DMoIAtu/xid7ySQe2c61h/ZU06Yz10vtVSO5zC6banMiR/bd+2WE2B+WI2I6+2aYmczs6Z3AYRDXbSZqyDdN9du6Wszf4NSCQdhtAaAFEqNlY96X50aYLE1393wRk3NHH9+/fHwHBVAc7GgNFZePk5O8W6TgqZkYgr551JOCJ5UdOiLgZ+SXC8USwsKeJeJYmg+f6mAFhVoTOrslvh2a/fv26vnz5sr58+fL4qt3IgbLyMkI+GQ/K9Lly+JXUgGFD5Gv9AEX5nkj+27f/ebHQly9f6kY5zg+2Qb0LYI5Oxfne398/yvDoeXYbUUci3JjXIhWDB36c6m8OmHxYd7xcwKiVBttyd9RHJ96MKY1x6wP1jq+gTr+9bBC5ffv27XF5LX+gw+zXS5LnG+2S92x4kyiJdiB9Y0RKmTuIaLbPzmkX1e7Itmknb46J7QzBQbN3k8NtwOBIho3H8DP1n/Ll0XxYFm3/DcfHMnEdZ+g0GGB0GGpI6yyCPppcDck3EEAwQIcYB+kMgpWZUSBTpZ5sjpI5AaYIrk0qU5OXjY+VJc4tf7Gb9+7f3t4+2SPByW8HRZnEKf3zzz/r77//fgIIYvANCmyMqZTOmDit/aeIm0fbZ63Lie8Jxx3zBAMGiUb3jLZSX0tTO4XenDgjDhpARoJTdE1dTVsxIPyLYS8VOMq0rtpB3N/fP3EQjF5J4TXp+N0Y0bmlXbZvAM/+xqnf3t5e/DeE32SYeZWlEDpIvjnyT9MExHaggPOQ9dCuEJTRNjhbkmNz/i2CnyLzBuSmMiHz0eTAuUAbmT0uu2h+N6bOWjeZuZ4WmZOmzes5eh+Yg03PN9oc8ut+nc3IXvUXxmv9eBsUz+0ap6CmZYDccwZRTetbcYTeI8D6JiNlI2jnvwMCRzLbKc1EdKh2Lu/evVu3t7fr8+fP69OnT+vjx4+PQCAySDQUudIx+TG7KE8i37///nt9/Phx/fPPPxeAgNGsARTlRrBAxUz09RJEo+UxpTO8v79fa62LcWbU21457NRsdNHOnOTol2vlTFOz3gksUA9b1qBda7/JF9uwoed5Hjk/2r2mNtcb6HfmhnK1Q/SYrHX5b3h8EdNaq76a3PxYLn+aOP4tO9D2anz8+HFc1ml9ak8RrPXDqTbA3yLU3LPT+4kmXgOgp/K0kQSc3Ny+u5e6NM0Jzm078dbHnT9sYCAyn5Y3HBwYjLXyz9HXq8GADfxO4Xz/2awBiZM1Sut3COTo9eDcb4NJANCWAtrGJ6fGKZMdwmwDNsmNZQMIrIxx9p8/f3783N7ePoICZkY8sdv1UMBAAMbff//9CAiYznb0waxBAwj+vATZgPpIQ8qIivfc399XcESDGOceUBEiCLI8vC5OIEKda33xtbV+6A6X3xxFsK4W8TVjT97MA/vS6m7ELFXLYqUvO8PoMfV8zjyjLBh5cWwsT9qctPtSRHvh/hsQ5Nzt7e1jP2IDnf1y/TnfdMfAi9fNq4MYHhtdk1GeZJL+cYnAewtynoGt+W7z7Sw/U/nwQGdvINB0nUC7BTKkKVtxjd+9GgxQ8EatdpLXkCepBcZsgN8bwGPLBtCYGUm3ZQGDgNTTorAzEVfORxEbenSdMersC6PJ29vb9enTp8ePswMET/nOLAI3Vaaf9/f36/Pnz082YgYQpG06+zwXnjQsnZhBw0uBAU6q7IpP+jebAO/u7tZal2t66UfKeInAk5KRfubI7e3tk/XpzJVkWSbkbxDF6wYRrH+tSyPsfQgGH47y7Qia89+BA7cxRTGTs09/OS/ZD8sh8/jLly8X4CDlorN87XEcZnScQYIdwktlBXbEsWvvvYgMOf8TKVN+OdqRUOcMBnYAn8A47Ye8h6bRczKpLE9QwzobnxPvR8uZkw23Hzy638tUkzPnHHKQYD4MLK7xxc/eQOiGjgb3mhRRQ02M+P3egBZdkCjEBgh2EW0b4CMg0GRhINB4zPEIRXOT5MePH9fHjx8fAYEj/3w+fPjwGPUHFDQwEOdleTKVGGXMZqUWIbbo+6UoY5cxDhBgRiD9I5902lwicGbAoDUyISiYJntoitipu+TJjjdtpH82HumzM3s2LhNINciLXA1gWJ79pGH3PG367kg05Vx3dIsZm8xpggHyz3qzYTAOo41Lsyl/iqbMCEF2NqU6cl/r6T4SO7qWIWhBnUGBbWTaSDlu2HRmzKl76/Kki/Y707hwPNu9R057Z8dbmVZns/V04ORrp1/0Qe3DOdT2HFxDV4GBoEoOODs8rfvbSE00oci2G9xgwGnvUJs8PO6yApPCtEHm+UZWjmsHKjLJoHPjIJ2890xETtxnkPIcvzg9r6tmXO/u7tb79+8fHx0zWrWcbZycOn8Jag6WoICZlLXWhc74YzDAMW3P4zcjuNZlRsyPbtpI2DBMddHA8OM1yRZRcM41YBQ+PZ9zL/nmPQRMDdhPj32m7bb+S93zbzq95txM3hgdPnnupYnAK87OAU5bIsm4TOO5a89gj3OH5xzAkd9852baqW8TGLAD3fHMDFx4b/1q8+xau2y7x3MTGQRTdlPQSdm7rjbnn0OnwUBSqzFYQaMUPo2VGWaHc86dZtkW2TZA0NIsFp4ny9mswI6OMh0Tqm33NqXnkZOaeyS4NEAwYIP77t27iwzCX3/99Zgd4MRJhMz2k4H4559/LjbPrfV0nZWGmADj27dv68uXL1t5/k7ihI0e39zcPPbXmaa1fqQWcw/XoqkjSWGvdfm+DS8B2FEa+HIcWIZRHvvD+lJHxiqOtW0u9TyhISMYcR+TQfG15nx3Bt1Le9Fjgtv0g3t/1up/CEb+mDZn24z6aVsMgDj2L50RmIg6kmUv2rS7u7v1119/PQKGyNnBy5m+Rceo43RIdn7OKhgMtLbthI+csXmeHGtzqtbt1t9d3eSfv93P1pepjt2egcmvtmCb/pB0Dbg5DQbu7u6epEGd/rSi2Dnwepvk3jPAjlKxW2agdZ6Ggine9qFBuxaV+ron3lS2XSdZHg0YGRQ02cS4EjR8/vz5ETyEvn379ng+wOHf//73+ve//73u7u7WP//8c/FiGsor8uZki/PMUwrXou5fRclKZMIlu7HW0/0odMxxLN4vwHcvsJ6bmx9PEuStejSOKcM5w2xa7glRxkdG0H0xUJw2jobHtGVHn/42h5oxtoE07zxH/bSeNiMbGXNeMYJq2RunynOv5Z+MpdPa5pnZh5cgO/F8j4wJBD5+/Lju7u4e+7XWD930fgKSI+UzvKz1dC9V2nJGKDIk8KIDNE+Ts55sMYNSn29BisEq656ccwtk11pP/MZOhg04UKbODhwFzbZbJNrgM3QaDORVw9mAZSYcDdNQNsNgBWInc6TwvUGQSkTDwGyAoxo/H871Rad5Gj/kd0LWjpR3E6spbmuTE6h9HGF5bAii4hyyXOAXlGQDYZYfPn/+vP71r389ebrARsDjTUDw5cuXxwjmJSjtvnv37mK5grK5u7u7mFzph5F++6z19O1/jrppdPidiD6p8KToc567u0PUFfaD2YDsI8nRQLEZ9vxuQPrLly8X2TRG4Y4W3e+QQYCXtfKdSwW0A22pYHLYHDfy5Yg68o1+PDw8XAC/2I6XIjqNZi/evXv3hNcvX748Lgvyvma7rFcNMJ4Bo6mLOp467fCcUWupfNffgkbKZYraHZjyN2UYcpDZAEuuHfkMB6cEnZTVkS9xG+SzZQSyNBu9OEOnwcCXL18ujFTSrS3FRsantBEFZiRkIbZ7GvCgAyIqInJ22pfGbMoGkDxRWpTFSGRabpgiDU9UG0TzxuuM/gwGWiTW1mfbeBhUOPJoRiqfr1+/rn/++efR2b0ENbCYflIPGKVnDNsubX8iAxtsRkLMwKT8Wk8jkhgHyrwBL7bF8WfGyP/V4TX5MxF55s2XL1/W7e3tk0crs7Tg7EGTD/vo9ptTaUYyciSfXsJpjsS/o5vv3v3YDxMnFUNqQPBS5AwHz7XMiAEB91tYbgZtti2klPNr5wn0W4TKfnD+pb2mJ46apyxCs4sG7y1j6eDPDjX9au3bRnpsLEeT577nIcES7S+XxXmNS2r2f9HhM3TVnoEMItdd2ZnQzgmSpoGMYImcmhKlPI26oxZGOC0TMEUVacMDskPYuYe88rfLhaz0a12+CMT7ALxUwnVv76WIEtkZ+PFBphJbxiERZnbVB0S18aOx+fr16+Mzzy/1RAEdC41i+I5c1loXmRWWm8BbxjZOkRvrOP6ToXCEz++OUFKe0Qw/XhrwfoEsF0z7bqYxzCuquW8k84kvYOK9nmPsu/tmg+fAIvVO0VMbD2duaCjZ7t3d3WM/E2HTiOaYR0//NNEpOsqMPPiobEBbNgx/+fJlffz4cRyXfHfAsdYlOI3D59g1u3ZNvxq4YZ9djuWjR2mfING+wcDHmYGWwaUtZPuUS77zHpPPGWxTjsw2WH9DzpJx/nI8nQ0/Q1e9jtiRoAGBneVEHEgDAkZtExBg9M0Ipm0IbN+jHDYcO35JExBoZRu1tnhuhxgdSRqwxMD7+oTYHSVS5uTn/fv3j2AgCuZyNjYZlxiSlzSoNPZrXT4qm3ckxKFTbs25eEKz/hgRj03T6fCWo783RxfyXGuOleVaRsjv67DzZfRsQ/j+/fvHd08E9EWujjzdD8vFm1abbNJPZxo9BlMaOPezf0zbpl/eZBxdf6kNsDswSv00z8kMfPr0aX358uWx7wyMmBlN/5lFSBu2L2v9GIvMbe938f2uy33Y2c0je2mQQJk14GMgsNa6mPfJeOV8iPOggZMj/unfHCgQ2EwU2zGBYmYDnNk6Q1c/TZBO5UiURIOyQ068FgHwnIXjASCCWqsr+JTStTLY8O4GdQJAIYKWKTvSDHxDpZGJDWZL705pVxtMGk0+i220n5ewhOI4qGgEh6yfKVtOqru7u/X58+dRtr+T7CAIUGIAqRvNQdmBpd9tPAkO6PypHzTkBr0TOCUvOTKDxCySweQEGrmXxPpMMEej9e7djyUpOk/yT33YRZBT1qP1fQeYbOD5yXU7sPSNexYyL/jWTb6U6iVpAocGBAECf//995M/LmPUyOUvRv5ez5900WOX8yxDO2ldZLnWv9b/yT47sHR9O1A1tUVy8Or+TvXuzvvDYJcgegoCWFfG0S9I+y2ZATqOMJUjDZodGcvmPL87akpbJO9PMF8GAc4ArPVDYA0AmJrht1NomzbSJ2YxiB6ntnh0upSTKI8V0sjbGdABpd+OHPycvPvsDWsxmIz2CSbiYGmMcj3ONqnLl6A4qkT+4YlObjdGvI+fGNG1ZsNH2hmAXOdxrR9ZGRMder7zET0vC3kDIZeK+BIq8s3xJAi4vb198vIlZgFonAy0Jmc+GXmDGBrjCWQ0QOA6CIT4xk72h8b0pcHALjo2EL+7u3t8HDggL320LWCAYDDnexxEMZBr4+jAKWPnQJEg+QgIt/7TiabNpht2quRll8kmMZtk/tpcbry34MDX25xp/Q5wY5CXZVxu+D1Dz3odMR2cHSade4gGhgpEADABAkZPLQq34XEUyE1rvMd9mqgZeDpg0lEm4BpFp2POZN7tDTgiR2tN2ZxpYOqPbRBsMdpOBJV7g0gDBj5+/HjI5++g6ECi9YeHH5s7jzY1NmdEh+JyNIA7oiFg9NrASQMXLd3v/QF8pNBAgHrFPQbRqcydAAFGkdQXOlD2i7rGp0/obAyK2vzxnG8OkOv7zlJMgNfyy5hyv5FTri9B1KXJKeR7xiz7PN6/f7/+/e9/P9pPgvz0kY7/4eFHVpBLZinTnrwin1PmOPOkbcjzmJ61Z5aD/cskS4OFCbhPfDTQ0Mq2zEeIvm0KCqjfuWfqW2xxdJaPgefcGToNBsIkj1TSGNgGDggAKAxGV1SIXHOmIWRhGgRQcFS2ZmQ9EDYY7Ccj8gZOpuNk5Fl3yEbKm8H8khYaezqqyCn9I++OGLnpjJEAMy7cI8D0Lw0F30UR45nxecnMAPWEOvf16+XrlFmOemwH2LJUXrahseMkniLV6Dt58Xfrn3XFgNGRV4wCdTwyaJHdFOnwOsExjTsdTtLvnKPRM85TjlXqd7sETm1eTbLjtQa0I1Nnv2JcX/JpAtupBgIMjt69e7f+/e9/r7V+gGDrA4OlpkfMFFmHLMu2HGU5N0CbsSFQdx9Nu2uT/FrGgGDe2VDyRn5b+0fghfXYz9HOpE3qNOXT2s7vzK1kBaaN3jt61r8W+lyIRo6Kx4lmpWwTPp2bhOwJP20KbDwaDJCsxGv1R/tYFxXMRxusM6jVfNBg8Q1tnmCe6JRTxsYpJ05kPlFguVA5A/p4je0ZmHHt/KXAANPccU4ZO0aTiWC9qaxlUOxsm8yiw5kXWZrwBsOj9Lfrd3RvcMi6MifofBkxh5eMfXhd6/KlXQSGrJNRNu/LJ9F25Mi6DCCcxbP+OiBooNVBgbNYjj75mFzGKLwQDLzUkzCOntd6mqWNrpjHlAtIZ5C21iWwog0wGCC1jEACDM8L6pWzqrxuIMc+WQ6Nh7XmiJ02K/d72Y18UNYOXptsXZbXHWC0+9q9tDW2A802rPUUDBDMHoGV0GkwYEWaDOBEjAZIHCTWvyMLpTneMwiz9c1gwO1O/XBWgvw0vqYIzGloI2unexvi5yTgBPDeisYreZlQavg0/w8PD4+RNvl5//5/XobzkqlWfjeg5bp43iC4Vo8EaDgMckk0bHScjM5Z35HeE7QRKJo/A9JQXqoUvSF4yGODyd5wPJMi//vvvy/+zpqOO323Lk76znFwMMB5y0iU7ax1Od+8fDG1YZ7YjuslqH3p9ww0R9WIMkt2LvPPwY1t2M3Nj0fGbWM4piwf4p6aHL2ExjnQxmWty5eDNUr5liVuvx1c7fyMHT/lfQREmoN2Pd67tqM2zlOAR9tssM19W2foKjAwAYEGFHitORkqpCPNHVkoBAQTEJgM0kQsT+fP6MEKySiMg7MzQk1elFsDKTue2/4It3d7e3sRTXmPhWXQQENrmw7UGYtdduVPEHlq2Q870Bg1GxCWd/287xq+1vqxltrGPN/bsoABIfXOfXO9BAN///33xZ9X0TDGqPB1zNaVCZyS9+hI+pqXFNEOWGe9fNicNsFAm282nJFJsxHkgXVe83jWr6ad/jWQExnlGpcImiMOteh92huV8hlnv+o6y0503AbOBCe2t9RXy+DIpptXtkNfw341wGib2MAmQUwDwQ5WaaOpzztwwzobIHDWy/PC4GlHzwIDk5FsnWjl41Dbs5xn6myO7oj36dzZTASRNL97UGhUJiBwxN/Er52CnVz4MUDihHBatYGACZzsiG0kUmgZjZcgtm85Opp1f/i7GYQYs/SNmy7bJG5RRnOg/G4ZeuMg+9H0jlFJ6sv4Z+9E1hlbut9PiFAGdDTp65SG5e/YADsn98Hjwj7R8HEznDNyzSh7PJyFYPbMQPtP0w7EUF60ibFHaz19L8rk4AnaaVPoNEOc79l3En2M3Pgyr1CuczmL/Tiyyy6Xvlt/WN4bGP1xnww6TZ5X0/VdkGib4HtJUwC81o+loabz+X7W7j4LDJwhD1irz5tGjsgD48lx5HR3dNQ3A4KG5gwEfoYHTjZ+J3q3I3CGxTIxcqTSuN1rshJpj+XtuOK8XoJ2QGCKmhgpTWPZDJejLmYYnD1wZDK1z9S+QUCLxm0UaIzSrvUgRotPEzDCaLuSGfGnH61P3sBmAMBlB/LTsgXT3ArASf2Zr3aCqSNtNXnlGs+95J6BnWMMsU/+3salRdCT7jU+WDYOnqCAgMBgjhmxFp2bN9t9jyPH14Bgx3dbnmu61cBp+06ZnwEDlgvn3cSDg9Apg9EClyN6tnW2kXTDOyPKMtdmBfjdKHnnhBsCs/I01BkeuU5svj347dP63ib69JvOy68VJjBoMiGPLaXKtpzSzeRs4I79o/LlPvP4UmAg6+whg4JrwA7ryLE5ntxDXWmPWK21RlDSlgYMBNq+EbZvI+Tzvt4AJTfhkWfLIeebATYYoc6kL1mXN2gNMR3r+hsImfqbNkJsxylqyuKlqYEv6t5al04iMuCx2a8G0po+sjzLRUfa/LY+BiDYxk6gw/20452cue2951vrW2RrHWO2i+CefeL9BgTOMOU4ySjtNFk28DFtvLUMjuiqzEAbEDJwBgCk/OQMd/f4+wQCdoAgfSEfOyBggz45xmtAzREAMHlJoL1fnmDAyjAp6cRb7vFzyZwckzOhjOPAvn379qIbCLmpca11wS+XTGwU6ByNtKm7u3TqkaxpDGlg11pPnH4bb6ZzzVczRmv92Hk8jR3Jhqu1QSdPEBOiXtJ5EDTyyQtH4S3ymTYNmk/WQeeV7zbkfPKBdZxdd/1dxFQvI/61nmajMqYEASxn29uus/62zEBZMuPVMii0QdQXPrXTnHBz5u2cnSOvTUscE3jPde4xYNap0VkQEP6O7PCRr9uVbTb4l+8ZmJxeQysmK5G/T+XP8HNGSLv6j743lNgUyHLw91bvEXKzg4hjYNt0aPxtpUt7vM614vYGurSbSesJYYXn266+f/9+8W7sPPf6UvT9+/fHP6VZ68dESb/5eB7PeRmLciTRiec3256MDg0jDRiXAJwVaICAdbfHATlONIQtyzDxT6dv/vIuDG4kCz8GpTae7XE+6nV7XLUZPl43aMieAtYVfWb5gEKO+Uvqbh5tPCpzLTUwO9lnZq5yzcuTtlHRDT6u2L67HO2dQWejdp5zk06dfW9EOTLdzrc1WpeoY1MWwKn76UMgNl2nvtMnue+c42eXuG4edl7zjd7ojd7ojd7ojf6fp5fNfb3RG73RG73RG73Ri9MbGHijN3qjN3qjN/ovpzcw8EZv9EZv9EZv9F9Ob2Dgjd7ojd7ojd7ov5zewMAbvdEbvdEbvdF/Ob2BgTd6ozd6ozd6o/9yegMDb/RGb/RGb/RG/+X0Bgbe6I3e6I3e6I3+y+kNDLzRG73RG73RG/2X0/8PLoZ3cz15b6YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGvUlEQVR4nO2d53IjyZKsA9Sie2bP+z/j2j3bgprE/THmxQ8Oj6wCWxDsQZjBoKpSRkZ4eIpardfrdR3kIAc5yEEOcpB/rRy9dwEOcpCDHOQgBznI+8oBDBzkIAc5yEEO8i+XAxg4yEEOcpCDHORfLgcwcJCDHOQgBznIv1wOYOAgBznIQQ5ykH+5HMDAQQ5ykIMc5CD/cjmAgYMc5CAHOchB/uVyAAMHOchBDnKQg/zL5WTphavV6leW403CMq1Wq/g6Ojqa3vXid/8sWa/XtV6v6+XlZXrXS+c0dec1KZ2uPKks3r6eP19z+XneR0f/YL6Tk5Mp36qq4+PjrTxZT9bX373+/pnX8PP//u//xjb7lXJ6errouq792Ef+Wdeme+Z08uTkpI6Pj+v09LTOzs7q7OysTk5O6vT0dHodHx9v9NN6va7n5+d6enqq5+fnenx8rMfHx3p6eqqnp6cNvdH13q9PT0/18vJSz8/P9fz8PH32Pu/6O+myynl8fDz9xvqdnJzU+fn5VC/9x+vZplU16WlVTWVVXfVZ9Xl4eKinp6eN/5MOp7rN6bg+Pzw87K58Pyj7aHffKj4G1P/U//Pz8zo/P6+Li4u6vLycXhcXF5P+aJwcHx9P7aNxoZfreFVFey/9c91znVdaHH+Pj4/18PBQd3d3dXd3V/f399P7w8PD9C7dVJncpv8OWZLPYjCwj7Jer4eDJRlp/s7PNHSjhvPrd5GRg0gycvxLyqX20fvT09OG4r+8vGzkn4wk0+ycfyoX25FleG8ZAbhRn6a6e/t6el0+o+/uWPXSde7kj4+PJwNzfHw8GSxKcnJd3brysi+XiuvT8/PzBjhl+U5OTrbGg+qaQIz/x/Kmce8GeAR03VAfDmn9cXEgfHx8PAFfAgC9CAIEBM7OzjYAJPWEuiEwqN/Ul25zT05O6uXlZdJHppnG6fHx8UY6Xi+N0xHIFTChzu6Lfn1oMFDVA4I5IDDngB21dU575FzmXl05dkGMS+qh/GTwyAyMGAl+79plrkz7AASWtKU7dr+H3x1EUbrfvM/dIfp/Mihic1gm9eEuOtXJCIyO6uafR+VwZyuDKDk6Oqqnp6dJH6mvenlURUDgIiOcwOwcEEhMyL4Y648qdJhkjRTlEwRcXV1tAIHLy8uJEXAQoP6S4xcI4MvBYlVN6WisS+8SGOh+6+rJ9D3Ictk3QPDhwUASBwLp9x9JN0VJdHgJVc6BAhePULpIfA4MMC0a2TknnQDALszAkjK+t3g/OvjrAMBcP/K35LQ7SVNXnNbpJKVLZzi6Z1ed1L0pDdbVp6BklMUOUHitR1IezZP58Gk7r5+X3V8jZoD13QdD/VHFgYBPDRAEEAhwakDTAuxTgkKfHnIwkMY1y8Sx7eOVNtKnc4+OjjamILvrqnpd2idA8EeCgaocufjvnbjyuAhVdkbIo7xdjG4yWsnxen0cmHh6+jyK4NwBdmVJ9Z6L/ucc4a+UuUE2AgVLZM45pujCjUr6TjAgo5GA5pzo/vS+Xq+3DOIozU4Xu7U4ySg6SJFOkYZN+erl0wRe15RGYgU6IJAM93sb6o8oaTwICGh6oAMD+v3s7KxOT08nQExmyVmBx8fHjekB/U+hrvs6oGSrR4Bc/5+cnEzflYfbYwea+l316BjJ3yl/HBhwJ7c0KvM0lkTPfo+XoVOqXcGAfk+OIKU1iuSdJfCy71Ier3vXVru2/3sJQUEanA6maKAkI+MiccfJ39P8ZSpjJzJ2ib0aMQxpMSkdZqr/SMe9LkzToyGWS98ZmVXVFivAtnBd74BAYgXm9PsAAt4mHhBxjYCAgJiB6+vrCQRcXV1trBPQYlMJF/ERDGgxHxcNsk+TjRoFahyjnP9Pi4cJCM7OzqL++bRWsu3vDQj+ODAg6SLgpeDAo2W9L4mSPT9XupGhT2l20ZinJaPKqMmNuec1AjxubDsDmRzPR5YREPDrKB3wq3rtmwQa6TgJMjqnJvGpAEXFTEdRkKJupjuqD/XGr+9AAI2n632a66U8PT1V1fZiwk66KRAHPyMadm68HYDA2yTZv7RgUEzA1dXVBAi4fkDTA7RrtGUOBHzFvi8sZZlWq9cF1Py/anu6TmCACwSTfhO0ME2yGfo+sq3vBQj+KDAwF7UsiU6TcqSOG4GBVJaEKimdgiSH4+lXbS4G9MVTUvxReZcyIJ2hdAVOjuYjgQVnCbprCBIlc8Av6SONDo1IVcW+Yx7aUaDyOO0v58vvfKfRJAWbrmXeyRiOVlL7dzfW2hGxRFeOjo42DCzrrbw7kNoBgCWA9yBjoY5wncDJycnG1kFNC3z69GkCAtfX11vrBGTX2DecAuB6Aa4b4PVucxPYTvrtdSAokC77LhifMlA5pKsjO5+Ctt8pHx4MdNHK3Iv3Mq10jXdeWnEs6ZTK003SOf855SCKTfd2OwP82lSP5OCXoFe2w3vTXz8iI1Aw50Bcur534+TGgcZwDnQwLS7Wk5PlfKk+d+sR5hgpN4z8zl0QSTfn2qRrp6SP6T2tg+jy+oh6uY+SgAB3DTgQuL6+nl5iCcgISJecEdBWQp2xob38Dw8PG4sGZXc8YPJ1BCObKLBNQMCXwCeDMU25aXGhl9/zdaDD/3+nfHgwUNXP1ztdS0OZDEgXsbGDGDEtcQJduhQCjDnGgfcwwmJUlNqF9UhlSCjZDe8uytnVc19krs/S9XTWeh+9RmmmPNKKexkj5Zfoceoq86VDlDAtXpPKRAOl/k9jy+dVGdGRUlVanYyctdfdx6e/87q5IOAgPy4JCHRTAwQC+qy1AlowyOkBOnhfMEhAoEOofM2MyvP8/LzF1FGv0jbEqlcQIRaAh4GdnJxsnFfga4DEiHi55liB9wigPjQYSCDAP/v/c0BAnem0e0fv6DvF6clRZJLSHYkjy5EhlPD/JayA19EpN6LuVN8u/X0wwksGV4o++Z9H8EvTlfjCOq7t0Ny50ky0ead/I0frdZG+617Rm14PAROPtBLYVp1IofpZFhxLybl7HfWZNGuqU9KxOfA/114H2U1cNwgE/DAhggL9xukB6RCdqE8P8D3tChkFPSMWzPVTZ2Do/fn5eQICylvfqe9sh7OzswgAWC/+TvD9uwDBhwYDVbtPD3SgwI1b1Sv97hFSMpBV2Sl6XmlRk4OA0WeWJzmBOYfr/3fzZ1RIL6cb6n1w8kvkLYPK+3dXxsNBYLc40Pff0zD4WgL+PwdMO3peovR1rfSTuwvoOBMY8AOS0voB5qe0vGwquyI4Xc/6dqBA6TFtAuQuQNgntuqjiusE9YFggACAiwedFfB1AhwLfsw0o20vT1Vt6Kj/XvVq06mXXQSv656fnyc2II079yF+rfIg28GdMsmn/A75sGCgc7idw19yrUc6BAvr9XrDUKbDU9y4OELsAEHV8vnnTlF8VblLWk+QnBTnlBNS7crZsSP/VvEIpJu+qdp0/M4OpAN5dm3bETMjcEujSZCZwIuPFZ9HFRDwZ2EovQSo9b/00g2tL8Dy8cN2ke5y3I1swi5teJBNSQGVAwFtIZTjd1ZArAFPGayqjT53AMAFs8zXbZr6v3sGQdXm9Jy/cysj0/QAjm0hlo2A4OzsbOMaAg9nNjTmWcffYU8/LBioyo7dB3+6Ll3DuU0aMHUE51494ujKJvG5JBdHoXPSXeMLwpS3l4kOKoGCZKA7UOCKSnZk3wDCzxpUiQFiHnppUHuU7WnJ2MhJVtUGICA420W6/mbezgwQDOr3BHJVPy4YlAPQZ64jIJiWfhJQU5cSyE0gYDRefPz7dMZI3ltPP5okVoCLBnmgUFozcHl5ufHcgaoMBLhTQPlK91arf6al+B9tvR91rWs8D38I2Gq12tj22q3ZYZpPT0/T4kHlz3JQmK8vfvydQKDqg4OBqryiepcX7/FFT54HjVe3IMr/Zz66Xt87wzbX+Z2jVR5EzGlRoYMAByp0+k6zJlDAMoyUdx+MLA3Az04z6Vd6/kO6V8L2TUBslF+XrtOWEk578bp0ABHpdwcDPEyGgIAAO9G5rksqE/9n3ml8+H+se2L6uvaaA+L7oLv7Jq6HzgqIEeBZAgQB3EHAUwbZpzxa2Kl4ReBisxwI6D931j6OJAQDehImFyeqDN0C1aOjo8lH0M6zbXg9AwE/H8EZWLXHr5QPCQZGTt0NwAggpMMj0kMrGEFp8QhXps7NWbnx8Wgn0e+7iJxwmhtNgEC/s3wUZz3StMaoLOndP7+3LAUFyZF3v1EXkw56fjRK3VoC3TOKFNhPBHD6zcsj4XWk2F2oP9Tn7hHF/oAlz8vTTA7dQUCaGuA93f/sjw4IzMk+6e2+yFIgoOkBAgECAp0rQGpczjCdHVBVG1NRibFaKj4+pUM8yIiPJb6/v99ap0AHTp9AEEzGw6czCHh8MSTBwu+QDwkGXJIR9k6ZAw9VtbU32tMnEOC6geRMHRBU1YaD9dWj/O7iCk+nQJTZgR4CAiphclCdAe6+J+kAwUczqiPD0v3nuphYpqrX9k966tGMZDQtxbwT4CBl36VH3aTe+LQTX1oprZfAQZqSUNpqF99CSZ3y6JDpJH1N/3sUyDJ17ZjYi4NsyggI8HChbp2AA4HT09NJ1wgC/DCh9Xo96bGO/fXFqxTS7+mhRSy30pWNExi4ubmp29vb+v79+wQKCE5Ubq67UdtwiqzqdbqQeklmwJ/Mqc9pHP0K+dBgoHN8KRJwo+uRmHeUGzOtIOX2Es1RdfNUyeB0B14sZQc8L4IA/d+1CennbprDnb6/s3x874xoun5fZNfyLHHEfh2j/qrXdvRrXW/deatf00r7JMxTn7mISgyC3gmOnfWiznLPtUeCfliMRGmk9qNu6rv3C6cZEgPQMQq8PzEDu0SRB/lHEhAYsQK+nZBPIxQQUP86Ra+XgMBqtZquJwjVTgSVRWn5gUSi+iUqs8oiQCF9fXh4qNvb2/r27Vudn5/X9+/f6/v37xNj4EBZ+WqcEiiReaOtJhNBFsQDxN/BDnxoMEBJEX/HBjBid4PQOXNtD9G7nGrV9vPl/X6neTsZgQGCAP625LsGCA09JdG1HQswov1H3z8aEFjqKFxPRoyBU/gS9keKYB3oLV1ExzR5ipqDXP0ukPv09LShNzxpzVkBrRXww2Lc4C0RlsunqtiGqe6jPLqg4SA/JokZkB6QHZCzlfP2NSV0inK0fFcUfnR0tJE21yJwqkGO/P7+vm5uburm5majzNIrsVha5OiA4PHxse7u7uri4mJjLczNzU0dHx9PLAHttgCB8np6eopgVACB9RFg8Ucxu77+Klv64cGAI/0ECPw6ilPu6lDO8XT5Shh5JVaBlM+czEXRqbxeJr9XhpzvvN5p2LSmoSvTUlo1RXy/S96SrwOrLuofSTf/7vmkNR3d/SyX7vX+YVsnQEz9lFEipSrDrijNdYzRv8CAXs4+pIWDLokdIPPF9TpshyVAg6DC634ABbuJtxuBAKcJ5PwJAHxhKQMQ0vKam7+7u5tYAU4tyXlruuHz58/TMw3kxO/v76epBwEMH0sMzpS2MwTPz891f38/fU/bE5XHnC76mNO9DqjPzs62wAAXLia7/7Pkw4MByYgFmGMDqraPXPW0qzY7MV3HqInXSeH1O+ksys+g0x0sdGmPFDeBgLeU6T0BwK+UxAb4b8n4eESvKEVGjA6OUbmu9/SWlFPvNNqKTAgqNO3FhUxkCyRkGLid0BcOso5VtTEGRgv9KFwEme5JCw+ZnvdHxwwQePypOvujkoCAswJkiHzqyIFi1Wv/yWHf3d1NL1H7XL8i5oHTDgIFWkMgx6ntgGQdRMeT2RXrpboJzKisYgU6YE777p8JyB8eHmK7JoZNwIjT0qNptJ8lHxYMjAxyYgaqtoEAHbQUSWnIOOo/idYJdHS7/0Yg0UXmu9Q51d8/UzonMpqyWMIIpHuW/PYnSeqDDmhS3FB0EbHe56Zf0hRSArQ0qq6rmv5iFO6GqGpz/l0GXu+ct1W9+Znjy/VV9eX3DgSwDdICR28Hsnx8HZiBtwuZFgJDzuVzqynZANlPOU9ftX93d7exaJDnCHCKQEcYK305Yelu2g1AMKAy3d/f1/n5+cRCrFarCcRIp6lndPrcFsixyMWAEl1DdkTlICAQ+yFArnb+1ezAhwUDks4gExCkayWMPmh85PQ5V+qGy2W0VmBORte44UzvHRhI+bgyJQDxIyzFnwICRoBJkliojn1SmtQrBwUjoJj6eJe2pgEn7cm0fIEsV2GzfkxDQCCBDJ406HOgCRh7vTsGjZEYxQF+qnfHEhxYgSxzrEBiiXj4lANEbhN0VkDrBDg9UFVbQIOsg4K3p6enaZ2AFvt9+/atvn//Xjc3N3V3dzelW7UZoHl0vl6vN3bGOAtAwKGFiWQFpOechlO63jYCOmQGdHCRGA2lz2DhZ8uHAwPJoSdDnIzyyLDTqDBaEzvA+7kndq6sTv/ylcCCd/Io+uzeO/F8CFrmrl+SbgIRf6pxTYZxLur0eW46Qj+sJE0pSEZgo7uH/SAj5TsWyApwDYGPDY4tT8cPGtL1nh7bYgR8XLgGwY8oZl5kAzhuvZ9+B/36J4nru7MCvi5A7S+bx50B6/XrIj0CAUXvVTU5YzlmTkWoj+WMCQS+fv1aX758qS9fvtTXr1/r9vZ2A2RId3nglnRZeWmr7NnZWV1dXW3M4WvKgWX2rYGr1WrjgUpPT091fn6+ocPUUwcDyiOB8l/BDnw4MCDpjDHZgKU0IClHGmYiQs+javOYWXeEPoeU5pQcEHRAIL30P69dKp2jHkWz6b+Ork7pv6eh7RiQpfdy8DGdBASSnuySl08ZcL5+btrLRTSjg1Cl74uiqjYBgf7vQK/XMwEF7r/mb7rW1ySQVXD639tK735/YgNVDxnW0TkhB3mVFIg4K0Qw0IFMLRIU+1T1uuqf0wMEjDzj3xkHATmeRSAG4Nu3b/X169fppTMCBAYkmpOnfVD9uNtBdbu4uNjYrqgyK+3Hx8eN+hIQKC+BYv3PKRQ+z4FggOxAYnZ/lnwoMDAXjblB3gUI8LtH9K4siV5NUT8RITuUCu9zTUvrr+9831W6uo+udSUcsQJdPu8lHh3/iLjj88hY6ctoOSsgcSfHssppSbjmpLuP1zIdGaHT09MtnU4O3euZ+pDjRHk6WPG6sq10r6hU7xPWdb1+PQ/BWROvN8EbWYqRvTgAgl6S3U1AQJS9xOl0AQH1D+f1NZ/vzIGcJNceKG2eSaCDgTQ1IBDw9evXyWEzcj86OtpgvdJYFqNxeXk5/X56erpxdoLOUri7u5vGPqcSlLb7hdTGSp/sw8PDQ52enm4dh8x2/ln29cOAgQ4IkNrxAU4ZNRj/o/FJTo95+H80UnT2UlwHASMgsNQ47QIIlkwHdIBAv3XR/2haYB8p2BHwWSodM+AGUfktmVZK5aSQAndwKONJY0MAoe8OisimkdpnuruWXayGs2SMbPw+/paA20jXHaz62gEBDrIhByAwFu8bB1HcPZLYAB38w/3/+t/BgA7dISNV9branpF6VW1E2Xd3dxMQEBjQ+QICAqTxVT6uF6Mf8Z02Ly8vE4im0+baBT9109dGEBAoT44ztqMAwfn5+dQunCpI/ulnyN6DgURTcXuTFJKd6AOcjmoXp5mi/VQ2v1evxALsAgK6evC6zrAuraO/J8edflsCAjyNfZOl0wdJb9jmXbTJ++ec6Zx0bJgDD4+GU32XGJKO7ep0QxG+7iWjwL3SzrYxHb6P2mFX8b7ywGKODfs3SrK7zgrQ/hIIqM8FBOQIecjQer2eHDS3EUrYT2TcqmpDlx4fH7dYgdvb27q9vZ0OBeIr2bk5tujl5aUuLi42prTkh7hGIk0bd0dpe0Cbgls/w4O7e7pg9Udkb8FAcoqOSgkEiKxGkUPnAPx7QmAyiiMnre8OCjpAkfL23+cioS6tkRPvZAkQ4HVdeini21fZZfpgxFDNsVKpbRnpj9pSaXp+zIvpKAreRUhjkqr0B8VQ9wg8dD+NqUCFP4TF18sovaWy9Fq2wQgI7LuOvod0ep6mB9wRkhmo2jyllTqheXGullcaVZv9x/uqXtcciAW4vb3dWojoW/wSC8wTN1NQqXEqdsAjfmeKlQ/tPvNerVb1+Pi45fzJEsj5i3ngrgW21c8ErHsJBpaiUl/BmozfkijIDYIiGzpzIbK02CkBBl+wNcq3+55kZDiTcfPBldIbOavRfd093n9defdRRiyASwdMpatV24/knUvT0++MMYEvdU9pM/0OpKhMdM6+WlrHwdKRex00DjkFQGDCuWO9O2BOeupMxohZSG3HOWC1U9LNg2yKA3m13xwjK53ndADZIfbxer3eiNidPmc5FJQRVOr++/v7CQTwsCI/478T6ebR0dG0O8DXDij/s7OzqqqtJykmXUzTEQ4g9K4pAI7pdPbAr2YH9goMJEeWGAHfyiIwQGXzRRo+h+h5JpECrlabBxLpP0ZFymPOUCXn+CMRfJdel2+X/ij6H+XfSYrAPrrxZVsnfaSjrlrWfu6kmJdeiUaks5Oe0nBRLzuARiBQVRtMAJ/jzsjNI3lFMlzg5TsEZLj9aFWyBD42CQSSYZ3rJw8i2G9kD71tfmak9ZGlC8KcEXBAIFE/+SmCVZsAkUCT+XgELyCgsSLWgWCAixATeFW9KFxMKL1P0wYCA7rW1zkwrxQYpjEuVkKLBMkOCCQ4GPAzDX6mzu4FGOhAwJwyEgj4Sk6JGxOyB8k50ZCnOVcyBUSuHlnNzbPyc1IU5efvo8jGjR/FKTjmO4ryd5HUbx8NDHRlTLrpYICLiOjk3jpYUzTmUxJV24sE5yQxAVW18fQ0f9obo3lSvgQD2kLl5WNU17FmPjb1W/fZgYy3mwcS6j9RwtTPg7xKF4h1bCwPztG9BJdy+gmA6j9dz4WG1BE5fpWHrALPKHDn7GsQWDYKwcnDw0PUn/V6Xefn59M408JHZyBYJ58S87bVmoqTk5ON9RVkYnjQ0uPj47S4sPMvPwIM3g0MuEMcAQEaXR5xqYaSQjpdmowFIyiJGwWPSmg4/f40V8aVrk4ldU6cnxMIcMDQOd3OwEmJdd0SpelAypx0oGDXOex9kxFAJSit2jx5b0m6TN+jkrR/2/uxW4/iQqMlx6jy+h5qGVfOVVZt6oW3AdkB9nliA7r2lUhnO3A7Gh+6n6+q2ggm/Ily/3ZZAgTc/vqaAUba+i5JLA/7Tu90qjzch5GwAKq2JUpfGYxJaPsSaCZAIfDgSwBAFD3zTmsTUj2VF8slp89AgruF9J/WDTgYoG/6UfntYGCOBdBvPm+TTrny4y69k0eOmDR/ctBdVE6Hmu4laPAOY3pzbcL0WAdHmO5ouzRGA8G/J8OY0kvXjIzqRza43uZJL/WwFLUpIyKJ2r8DRiMwnBYNLm3TFI2pfDJuCQjw1DYHHD4+Fb34drOuPCx7qhvbbAQk09hg27Ac7sAOYGBTEuB1FtYfQ+zt1zE3dFruwNwB+rqVqldWR/pKHb2/v58ceZrSUtpV20dcy6brnSCZ/kLRO1mE0dQEbbcHqqvVanqaIqcJOM2nd2dkfJu6t/Vb2YHfAgaWsgCdIaQxdLrKo3yPQBJNT5rTy+fXJXEQwPy9c4gW54BAB0r4Su2n/B0QLJXURiPhAPHfPrqM2JBkKAkICEq9z90wUgfnwBXHASMHpUmg1+kR2QAZGa3K5uEtCQikB7FQ92UgX15eJmPlu3tGIGZuJ4ZH9/6/6qd0U/RFJo87kNLK8R+hWj+qzIFQnp3fPXegansawCNXBwE+VblarSbWxlkBnUjICF4vP9RtjilzQMDxSUDANQQE92IK0rMJPAh1+131Giio3Pf39xtT3VoDp3scEKQt67z+LTr8S8HAHAvgypeuodFNKNSpp26+RmmPaHSlwcZMCFfXd5GwK7+/p0i/M+Iqd0K5vL7bUuntlNAqr9lF/hQA4NJFmMk5k8LnlJHSkS7QQCgdRiSk0ynudKm/LCfnNvXyhVg+HqpeT3LjFEEysMm4sh58nZz88wREgQR35mwnjiOP3LrxwLLznW3O+nqZHaT4WP5Ro/rRxHV9ND0wt6VQep7Y0S4wYrsfHx9vLWKVXgu8Kv3udFcHIl1QR5GeKh85auoHx6lvu/WpCZWzs/8+DXJycjLVVeKfve29fD8KZn8JGJgDAV74NBi7qIgipVCjpQVKo/khNjbzJAJ0YCAhuk3l6qLtt0bh/hsN58hoJgopKanf8xZHn9rhTzGsSR9HA5HtTlAg0X3Pz8/TtjwaJO8nz1t5pH51A8hoxIGADJJAAA9q0X/JiHudHXTQ4NFpqH4JYOn/XcRBtf/OzwRUMq5z4+ffIh0z0AEA7ycHAr5uynWIeiQAQFZN9ykyF0NE8MltsN3C7V1sDgGofADLULUZNKZnBszZVd2rujsoYLt6gOcMuQCBfOBoDCyRnwoGEggYOf4OCOh9FDFz7tUjMFcKls/pGmcLpJzaMeDzvkuUzBXiZxqanw0Elg6YX1GXjyAeNVFv06p5OkHOzSdHXFVTFK30CWLlSJm307Iqn1gA5sG5T8+XRojrBbpIK+mJA6AEBmWweL1kNN3m7Tk33abfU0ToNsD77t8MCJJ+J2bApwWoh66z1CtOT1VtAwHaXV2nfffaU+/6wX7uQMBIB1TmJK5z8gPUYabR2dA5faLPUltxykrXyL+p/gRpumevmIERCPD3BAhSw7nDk3hHu0J2BowRald+GVRRnAQEmjPyCGypI+0Ugx0/59TTdW5c3fHz+9w0QUpzDm2mfvM+/ROMrIOALjryeVLqjEfr7C+CWoLYFOFrTLBvZDiUpsrp+bKMTscmIJCingQwFEV17easRQI0TC+BqhR58Xc31F7fZItYRn1+qzH9qJIYAQcBjEhpc6s2F01Td3gEcBeccXqYOxJoz4+OjqaV/JI01tzGORBY0q8cj14G6o6P087WLQEEare0A8fBPxkBB7UMKjQedtHlN4OBuUh+jk71e5YIOzjdo44bRTJ+r/L3Ax/UmDSkMnq7AILOcXf1S9/T7139eQ2jwAQGRmXdVf5kUNBFTPpc9WoQSVt2zkzt4IwA8xIQVdp60Xj6ff6e2pvGx0+AcxDQ6YsDU5/j93Il1iJJcuAJGHRpJeDa5en9+G9lBiQdI0BQ4JFr1fb8vdPnHUurPKs2Txj0d04De2BHPdH/bwEC7tCly84O0P57PdgunPYY+bgODFDEDKqdNJ64boCAQP3xFlC7ExhYAgA6IOARfvo812FdZ+h/d3gpL4lHdQQESi9FX24Uk7FMjnFpx3RG19OSsiZF6yizORCzqzGcAwAs265zwfsiHRBwJ+IOzFfgp6jWjRrZgartftRvo7Yc6RnBMstJJ7tUV1R+5cnxSXZC+VIS25faw8EU6zFXV/2f2Bgaz7SbYIk9+hOkYwScFeAUAW2kM0wOLrv1At7WBAp8T449gb3ROEs2dDRFoHbx9FQH1w+Wh1G7L57t8mUeaVpP6RJovLy8RNaGZWT5lurxYjCQBow7/yVAIDk75tEVfA7hLTVcc3X09QPMV4groeOuPvqdaXlZ/L6kzKkenE9i+gkpp/YhsOiAmktXnqQXHzXactCrzzSYmrfzge7RbKePSUb93v3f3eP/Ewj4FMAco6b6zwHsTpKdSGmMAH03FkiPduLldlbg384McNw6EOChbh4sdUBgbu2WbI7bL3/3vPg/f6ezTp9HkspVtTn1dXR0tOGoHcyqzcQgaEGwvo98HnWe69M0Ld1Nsztz4wsJ38IO7AQGOkefHL+/s+J6eWFHjn7ECPj7W41W1WYES5RHqohR0BxIocyVZVQXKqojVg4qptWBAC9TGohd+RzUJTDQ1XcXxdwnYR0dEFBfEs05Z4x0n1OhLp1j9L716zxqcjCQtkSx3l0U5O3C61M7+YK95IC9nEvA/UhnUxpeVpYnpbOrQf0oMmoHP8clbWkdbR10Rmtkk1MQQdDh/yn/qu3+7YDAkv7z8SMgQEDgi8k7B81dFZ5/0mf6EzJiDqKVp/wQAcFoIeFSH7gYDPig5nsqiDuHkSPv/u+u7f4bRa3+20gY7QnZsWOcLkoGw/8fRR7p9yVoUgY6UbIjkDIy6qmtqFRL0mM5ibQ/srjR1GeJR9ij+rpuLJlC6YBVmot16aLtrlwJIM5d3zGDMlhiUubm6Ttgw7I4G8Dv3pbuIPyaDgz/iQBA0oG4NA2mw2+Sjo4AQFWe3vRyJCAiQJCecyFJDrabGlVZvd87ob2jkxYwqNrWOZ9i6cBAAqgJzJBV0G++rs3ZLQWtaTpjiewEBrrXHP2XGnrutyXS3Zcc2lIDxzTp+InIVF+BBM7TePpu9DwS6mSE7DwNKaunO5c+P4/ahkqlci1Fm4lN+EjSAVyubK7q15N4Wp5ml1/3nel35e1kBAikzzT80vU0D+nlS0Y97U/XqwMCXf0IBOjUR/O/NKR6pXsSCPpTJdmS1Hcd+1U1ZqY8bbcZ7McEHAkeHTgyf7d3LA8DorTWhLruZU1tpHt1X9JNj9YJBhywL9FZBhdcRJjaLh1C5Mz1EtkJDHTbTEhhzFX4V8rIuM5FPI7OEhL2QcPonEaKCt/l3znJOYe7BNB4mql9UnSwVEZKtuvvH0VSP5Lad1YgGYxkgNK7PneRzJxTS8auExldpktJuullljH0KIX2wlkB5a18U/3T5669OnYlRYy8p9P/XQ3pR5NOnz1Cd4C0hGWas7fMiwyEP3/GdSrR/k7ds5xL20HXj3TO06TdFwjgAWICA+v1euMsEaVN9pC+h7ZEzADT9ekC98nJ5/x0ZoDHUXaMACkZb8Q5itIpJcoukWVnbEdOzztCnSVJrECKDGnUfJB557gSzjkPIuu5SGYUYXXtkcowx+KMAMfcdR9JksGkEACkA1A8HX2u2j473/vU73EmaG5cdXVJIEDRBevLCCONUW8Xj+wSncl667OPHf+cyuugyA06x7WMq4/b1DZs54+uu5QuuEhRugBeZ2Oqss1OYFnX8prRrgX5GPkc9zGcU9dvtL9O4bstZzm7tqHN9nZhu7GeiuCpcyyzDi7q2tC/M6jgVmPmnZh6tU0C2SPZCQw4WkuIkY3hFVxquEZR8Qg0+G9JQSke2XFeyOvnSuEyRz2OUPIIYafflgxQp866crEMNPpLnXnHcHx0Q5r6LkVOVZsGSnuuPQpVmkw7GZdkeCTJcCxZCyChA3VR+fWZZR6tS3AgQCMvY+VTZV0anOvk2CQIUD2chVtq8NgWDsh2TeOjSmeb5vSvKgd8uo7OSuOffaX/SG/r4Ud8MuLp6Wmdn59vgAHqgyLlxApo7KmMndPv+pzfu2kMbyPlp0jebajej45edyWo7Gl9kQen+p9jd7VaTWyBHxNNkLJLsLAYDKjDSPOp4GmPcifurFKj0TmlzppznqN3N8IUNTpZAAqjE0d5HAD+G8uQplKWGKEuHeXZUU4jIODtO7p3JAm8db99JKG+OPpm263X662n+/nJfa6DzMOZo3SdM1feT6OFXMyrKi+gS/qsOlCvExhPTsTZM5bTIzdKR/czjarMDuzi3N0WdO3+p0gXiNA5E4SN+iHdT5rc15h4GTR+tHXx7OysLi4u6vz8fPrOxyW74+UY41MF9Zn/J0lUurcR28M/u84ssXVsKz6KudsC6GO78yvr9Xp6UujDw8MEktJCwjnZeZrAnRn3Lo/AQIcyk5HxxnWjOAIEfk83CFJZJNxG6GkmQ9fVyX+XAnDAERB43XZBtMx7rh9GYIDpdGDiLfLRgEBVbfS1z3vrs+t9d4Rvl3767oaUK4yZHiMGshN+PfVJ0UvV9kIqGg9OlxF8pDoo3TR1qHowbQL9tLaITindn8ZfB7A64O/lTzTwR9TZJEnP3LmR7VLbdiyo/vOASW2m3wj4aDsSGCAQcEDA0w8lPP5YD9niyZ9z60QSEPTV+mqLTo+YfmIpmNbj42MdHx9PW9VlO3hkM8fFHLjg1MTz8/PUVulJhktlMRhgh3jkM1o8NXLKXsmEsDwdXjfKJ93bGV9+HoENz49K7wNgJB1V63k4KFhCbY0cOT//iGP39DzdVKaPJm4wudDJDacGM511F5knPXbxqEBGo6q2nCRBSNXmdq+5enkZEzugdzeqlGREWUbfr50AaRqLSk8LtFRWMTCkpck6EKDMCfP6GeNinyW1ues39XoORFVtP2a3Y6OYXgIDPjXAhYQ+PS0RGPAnbRKgV+Vp0rnIf8QCeBAs/dZDlhy0Jucv8KI8yK53dp4gXu2nMqgt/XhisjRzstNuAk+0O3jCoxF2AjtlqSTnNwIOS9Kbo36qthdz+G8+IDp6LN0zAg1LmJUEPro8uzRGMopq58DVnwIEOKB5CAvnw/1wkDT1MwKqlET5K/1E36apIbIE7MMEPhn9M9qWoxVDxpM3O4BDQ+2GU3lw3DotndqHzkPffapOIMEZN/Yf66t7WY9kA7r6fjRJujfn+LqdBJ4e2QECAd7j4MKZCDl7AQKBAa4fIEvAsgloPj4+tsxAVQYDKhvrzfUJaTpQ6dKh66W0NV41bhS185klj4+PdXJyMrEFekgYQfwosuf4Wa1W0zQBQZ3r8hLZ6QRCCZHXHBjgvSyYf07Xdcr41gFK4+Co2P8jRStx2ilF7s6MjFgMylza+m+0DYzppDS6vHntXNvOAQFPb+63fRNvK+qJ76ZJ+pqAYZI5+rpqm4ZUuukav340TSF9pDEnuPYVyQ4Iurok56u03cj5/Swb3/XZwYr6QzbH69DlRXDC9NnPyTZ9BN11SWPUXx0Q6NKo2j5/JeVR9Xo2jTspvhwApC2GZA3IElS9rtcRGHA/VLU5ZpL99wg+7X4hQ6fHfd/f32/pG32Ag3syA5rauL+/r6Ojow0wsyTQpW6v16+LCAnMl9gYys5PLexAAH+bAwOsxJKoKTVOF6V0+dFhs7N9tWqXPlGb59sZig6Zen2SEed/TpUSqXo+yQkQkPD+rh4jw7dEUZe2zz4LjWVaQcz/+IQyRqcdIOpAsF/HKQAaMddNN3ojIMDrl7SBhKzH6Dp3zFzX4OtwRI/qc+e8eL0MH8+KH4Ft9om3JcFyxw58RN2t6qcFExBIO0Cckl+SR9X2aXxcX5MclZy73n1boYAAXwIFKh938SQf1AFivVJZ07S4nPfd3V3d3d1tgVjZgWT/CAgeHx/r9PR0eiyz653b6a4faWvIYCaGa4ksBgMyBj5fkhiB5IxGlfEKe0PSgSbHmiQZBDa6R3r6jcZLhi0tjkzAIBnLFOGna9JL96kcHs2k+7u850DAkjT8dy9DuuYjSjKYHYX48vIyOSdGqm6I0vRB1eY5A8zTB3GKbjp9c5bJhbqUrktGdG5aizqWrl2tNtcMEAQkPWEddQ2v5TTGqK4sI8vn7cl2J0j5iJKAAD+7PeTL57yd6Rnl5UEWo/20LS9F5LxX0wPabXB5eVmXl5d1cXGxsbstTVe7Dqd3BwPprAPpy+Pj4wQCbm5uNoCC0iQr4D5OOiowIGaBdkXXC9Qoza7NCQZ8oaMDgiWyEzPg0cpoimDOEdCRd4UdAQGm031PrACVret4zQuxDPrs0RfBg7dRF6F7nUbMQGp7Ksou+TpaZpuOAIn+93ZeCnQ+irjhTJGTTylpr6+2QKVttnRoDmZTPomB6IABpQMC3k80lnyoSmL99B/T4Zhw55/AgK4nY8CpB5/yYn2l47pX9LSnkeyDp8upG7ZBiliVrwPpfZcOCLBeI0fM35ne3DhmGmm+n1Grt3PKm2cQnJ+f1+XlZV1fX9f19XVdXV3V5eVlnZ+fTwf9UGeTviY7q/rJJ5CNIFOidQHfv3+fgIDS5e4hLiCmg9b1ulZggE+EdMDGrYE+/qmvanu241tYgaodwIAaeQkISJEFZTTAEgDoHP4ofX8l9OcLU1jPqtpAaPpP7wkUuBNIbZE6aOSE0zUSP+FqlGcCVP55DkykNu9A3RLgtq9CJ5z0RsbC2Rqh+qrth7jIWCRmoGMekuFMbezO13VzdD2BQDe+CQiSePTC73T+cs5Lxjd/Y6ROlkBTDx0g0JhWmmwDpp2iZQeGHwHU/ggQ4AJZ2szUN10bCghwu6ADAm9fj2ZJd4sRuLi4qKurq7q+vq7Pnz/X58+f6/r6ui4vL+v09HQqU8dWz01lO/jg2oTV6h/6/+7ubvqtqqZpCc31r9frjR0/bFP6Fq4ZuLu729quz3ZWej4W3LdpPKT1Gb+MGajanP94CxDQf52DGhmK7jMlDQg1ChWfFBQjPs37eH3TdwcFqS28HUaO09uBdeiMWZdfyof3eHqjsnp6CWSkslF2Ram/W7y93TA57amIhGich654xMCV7xQfvNTF0Sl+HqVT/whSRlMArsdkNZYyfsxbDl9to/q9JbpmPgmQext20zBeDk87RafJ2O67JLvnDjcBAV8U202d+mcJ9TbN7xMQsAyp/Gp7jTHdf3V1VVdXV/Xp06f6/Plz/fXXX/Xp06e6urqqs7OzqY/S1j0tyuPJhFWb9oxgIJ1+yEOClPb9/f1GMMk1DJ4eAwcuQiS44Fjr+ld94gBKebJ/f+k0wS5G4kcGzwgI0GDzPRkov8YRr1Csn3J1fHxcj4+PU32lCGp0Rlcjij61R3KoSdJgnuvY1AapPdL1c6yE38N2nzP0+wwAXNJA48D2aSVGqQIDeuk3bvnpThtzgy0gQKTvURqduQwVaW0X9q0716VMF+nVVHaCIZZrqQ6k4ID/eb58J9Dy+VbXf37mtIM7zV2N6XtJsoudLstxdy/qmhyVgwD+R2dKRkARvc/vdzqsfDxKJzNweXk5AQO9BAZEvytCf35+nubludOAbKraRfmpPu5o+buPSb7YHs4yqN4MDJQ+QQwBOctJcMbglvpPRjEFEHOyGAz4nOJSB8LGXOLQ3Ll0zjA5pCVlYEP6wNA1BALHx8dbh7F0jnQkHVhKRmoODIzYl9S2I2VYYni7/3cBAB/BqFb1UwR856Cr2nYoEndQPq3QgVmWI+WnezySIOCg0JnP/bZkPYLrr+sm5/i9LD5+U/odm1G1yQKofQk+1uvXZxl4PuwvfaYDmls3sI8yBwQ8WkysAA/SIhBI49WBQXLgDgg0t+8gjHrCtFg2pskji9P0rmz2/f193dzc1Pfv3+v29rbu7u42HC2BgPI6Pz+ftgzSMXNNAsvpeq92YR3oXxjB01GL0dA6ApaT02NkBTxflcn7kLq8RHZiBmgIRpSyD56lziEptH9PKH9JNOtRDRtLCqHfeXAEAQSlM5qpXCOj7+2ROrtrp7k0ee2POGNnNDz/j+DkR5LavDOi/M/pTo0POqk5IEbdoIFkuZR/1fYBV7xfhtUNScrXwalHft39c+O/AwCedgID3f1Mh0aUDEDHfOh/3V+1CdI6+py/76uOd+3sts11uGMFSPl72nJ2DsxoP51q10vMAPtN6Ts4TmVPrEXV5pgRC3Bzc1Nfv36tr1+/1pcvX+rbt291e3tbj4+PG3v4BXjEaBC8PDw81OXlZT0+PtbZ2dk0/cVgOPUD9Zq6mpw26yAAo7MHOO7UZvRHbtPT9MAvZQbmmIARAOgaqHPyo//nKudGbrVabSDQ1JHsIM19Ol1YNd5rneqd2qW73p2/5+sO2KOhuTL8DPlRILCv0ZWkM6Kjl0QD1p1oN17IaCma9/RYrqrNU0AJWmlgu3FC2rGrt7MXHShIY2wJO+bgadQmbj+o5w66nFFgtJnqyvSVhvcrWZZ9BAKUDswmNossV/eSM6l6XWDKvAiuEsDwuXTOjSfA5uxuxzzpP9H9Dw8P07Tc3d1dff/+vb58+VL/93//V//973/rv//9b3379q1ubm7q4eFhA2wL9KTpCDpmTXNUbS8oH4nKyboQ0I/AAO/TOPe2cEefmMxfxgx0aEifPXrkf0lZR0CA9zltl4QN6/nzt7Si1MspI5DKuFRYh65d/PrUNrsiO9aZ5fgR6RyZpz8X0e27JCCQ1ggkfej6KEXfzq5Rdzuw3ekCKdsugp1z5m+VJXq9S1qk41NbprHvax98jCfn4pGt8mVfc50H12Lsk4zspVPUfqCP3nn6X9Jz9nGqfwc+mD7TrKotoMwxQfaBi3D95D4BFqX1+Pg4MQICAv/v//2/+u9//1tfvnyZwACd6tHR0QaLofML7u7u6vr6emO64OLiYmNhsI9VB6MKKlkHjU8fxwIDYiK07sH1VPd2uuB+kt9/OhjwzPXuStmh+lRIp1VS+gkIeKNwsCYDwDnG0QEVHcLuyjUCSPyto1b9PgcCXueESpNS8r8u0nJj7mXvytpdO+rHfRc3pDRkTqEmfegA04hJS+JAIYGCNM5G7Zx0hv1PhziX1pKy+zzwkvtGeXJhltsbbysZX9WHi8VG5RE74AvCPCjYV0n6y6jcn/6X2AFnwqrGa0jcFiZmxcGzB2PccVO1ufDT9+Tf399PK/ZfXl6mc/1fXl42WAExAgIDX79+re/fv2+BAS7yExggK0Am4eXlZWOhoh9C5+Nci847x+zftdZB6wXU9pKHh4eN8dr5marNXQW/jBlgpu6cR8hZ1/sqR3fyI+Qp6ZDRiL53UMCG54Mt6By9nBooPAJ1JAkgpfKkunZGmTSvG7k5xzNSnk6WRH4dA/GRAAGBmPqaB6Zo8VM6SS1FZ53M9Uvq/1F6Xb/MAc+5+118l0HKb1TO0fjW7wT9/r37nWmqbHywkih+jdk5xyYb1QGCpfTw7xDXEbdTrr++4E6sAT8nsCu7mOqfAgy+6xoCNQIAPmGQjo6LtTkeuVBQpwHqemcF9Pq///u/+vr1a93e3g7BAKcH+IwA1UH5Kj9/IBLrpvRH9lg6rGk/3euLHHmvr3dwP0wf+9vAgDJOBUqVoLI6FeXKR/E00u/+mxs4/+ydl9gBH1TqJNGH3fnTqY3YVirDXDSZ/qdyEZF6+R3UjMo1uob/7cIQpPv3GQy4MeUcIvdIc3uUb5FSO8hgpoHI/5OT76LfpdIBgPQ7x0gCBDR+S4DFnJOv2gYE/L1zbHOfU740qryGIF5jJwUa1AN/7nxnp95bCGTSAj6d1MftfQSzrqdqE+lqAgFc5Mrfq153nZHiV7oJDNCJqiz0ISqjwJ4W9WnB98PDw8ZaAb2+fPmysYBQkb7S9F0Evh6AbaOxe3JyMq1V4JMS+SIL3THPbHv5mfPz8+n+BFy1lqCzET5+Up/OyZuZAYIAX3jk1/pqU18ZmtCkL3jSb3PAoJMEBojuVN6q1yNmpYDqaNVDnaY6j6L99J30PeuhAZMGocTBQGIFlrTLHChIvyUAkEBb975PwrJpUKbtUekZ61Xb29T0zvQ8YpBjoWgMCBB4+ZaKR/DJsLmeS3zsOv0+xzwpTRoj5jt699/8PjdwusZpaNVZQODx8XGjnoz2WE/XA18zwL7cB3HwJN1x2pt783VSH5/4l+wuPzPK1W/UK67xcHuqg3nUfmxnXcM0mWcK0JSfHDGZAgcDBAHaWnhzczPZ8KpX0HF2djbVwxkVPZBIY3+9Xk/rBnR64AgMcDoh9VsHCHwaglMnPJHQdT/pyS8FAx0I4Gd32E6/arUp97ZS4aSEVAg/bpQNvBQQeMRDR+pl5bVnZ2cbp1ql+3RtyrNztMlxz9Wlm6dKQGBpu4wiu7m6ENSk91H6+yDUZ59rZZRF8Fr16sDX69ctfB7t0nlpTpoRZoquflTmQCkBB3U8tYmnm/Q0OSZSoCmyd4ff5dmlr3qk1dJqX04ReB26qT6WUXrAaYd90mNvbzoyAgGd2sdz/LmYr2pzEZ874S744jhP9P/Dw8NG36zXmzs/PA+3YR606TcxA9y3LzDw9evXaeeAzhbQ/L9sN8EgQb3+E2CUk9dJgwIDAoVaw8BpBQcDKrP6S/3Es2tUB/bh2dnZBihylsQZE++bTleWyM5PLeS7F0K/e4E5wBR1kW6lgWRERWUY7Xnuvu8qqYFfXl7q9PR0UkJSW15XN5juGEflTHVJjMkoUktMw67syVwE2NXPDUVXj30QN6bUT26P6g6imauPjxG/ngaOBpOg2Gl6XruLJICuMgnMMProziZQOVxSW6a29ajewdMSo5VYAjIEyXHT0cm5e8S1Wm0+RZHG20HMewrrxTIKuCYgoGN7CQaUDqN5p/cZmOnaqk1g6IwAT9cjm5rsIHUkrdBfrVYbYyCBgfV6XQ8PD3Vzc1M3NzfTUwXlpFUellF5yxl7cKg6aRpAjxmmb9OzCnguwIgJUHtwylkAo6omRur5+XliBxxkqU24xmIEapXvLwEDysQdfnJiHRhIq7QVrTjKZHrMO+Xn0U1yZl2DpOtoKBkVikJ8fn6O0wWe3lJA0AEBv2buleq2K3syKtdcuenM/Ld9FI+uut0Do75LTBP1MYFLSvddjk3Oy/Oe61OOl+TISPPq+l2Am0ftbK/RKvXEInRMRNLfjiFwMOLpcApAQYe3FyO3Dsi8tyRWwA/O0RP+BAacGah61UVOg3L3hOwa6+1TSeobAQeu12BbOhvRMT7OTNDBykFziqCqpsWEAgN+giDHHMsvyt+ZCc/v4eFhcsKqr1gDgQFfUMg6Kk23EbqGOsZ21n1caKl7UqDg+uFjYonsBAb0IvoegYGqfMSklJeNIOXjo4NTlOkI1b8vMZJUwM74dZGNvqu8XOXKcvLzUiDi/yWjtkukvyS/FNkzz+63Lv3UZ5J9AgZuUKmjfB9F49RBN2T83fsugdeXl9cFShpjctAONLux19Uz6WBiDPiZgH+UNt+9LekIPEpJQKDT+cQ4ckz66Xa8X45fxp+MZmqXESDYF+mAgLbH6TG/euQv1wzQ2dN5y/bqvzndr9ruI7UbI1qODVHzVbXRDx786XqNA71UX94rpyxWgEf6divzda/nqes4LSy90xoUlZdTCczH+6nrP+9D100yIQJB+q0b/wko6vMSWQwGRGt4tOIF8qgogQE+0pKokCv1R/RGUqCRs3S0xN9SGul+Ui8cQE6x/qjDZp5vub7Le+Sk/fMcMOgcfGpDOqOf0S4/Kj5gXD/5nag6tV0Coh4h+G8Eu0yXi9RUPl+RnNrxV+ibO16OGdcjj24SqGKU4v2QhM4/OWz2IfOtyofaCFiNWB4PYBxwOJPwXkLd5bQrGQE96lfTBQIDAk1VtdEuFAelzK8TBwVpvrsLwtTXTo3rfgIC1yM6TAcCiQ3oys5rmabyYTuxjr4dkH3k003JUZMpX61WG7ZBtkKLGannyUYzX2ezl+ruzmsGOOfGCCaJBhSBAE/DSg616zyPutK7JDkrd+huHDyy8+/ewaltUv76noxq12Zzv6X6zUXgc+BiCSOwhBnQ+744/07oTJLzcgeXmCQZMYm3V6dPNEDSKV8kq3s6HWc9krgxTqA99aeDcek2dZz/J8fMiGdEsy/RSS9/YiFIHTvdSiDA+5m22xy3FfvADCRnoq1xYgE0LfDp06cNVkA7Yjz44tNZGb1zisDZnLSmpGPAVG6yqgR5CegRwHlgmQIPTfv4QkGfW3dd9nwJAtTnZEkSY8XF7qoL24xO2e0M13roiYlqG+2acHbN2ym1c2Lhlf6c7AQGnIpTQ3WAgErLVdrcTUADOHJ6nXQIiZ/dgLsR0+9zebohSkqdnOpb6tVF8f6//5ecsAORJayDD+zkmJSXo+ZEQaf+fS9JRtVfPjWU6GLWV+nRqfO6qs31BRLe7xG//k/lZ3vS0Ll04NpBSTKc0nECBG9D/UZKspvH7wBiB16T3jJNGlOBAZ969N0DbshZHjo6AQHOge+DMPrj1MCnT5/q8+fPG2CA0wO0txLVz/U1AT0HBrquqrb6OPWVnJTuS3PrBAJO81MIYPwej9Q5XlnGxIhwekC/MRjodNfTpANfYk+orwn0sK5kTZzN4rQRAdUcOyJZDAacEVBDcPsNK0J0RCDgjeNRsxqgQ5neEbqeBtKdcEKnVPBU7g7dirpNgCKVn78xjyRehzTwUnpzv4/KqntG4vVJgzNd5+V5b6YgGSpH6GnxW5o2qNqks505c0fGMvyMOkiUv3SS0Y87PLZ/Fw1z7pL1SWMxGda5ersu+Lhzg53GJ8cwIyE6mcQKKN/E0PB/1o3rg95LvI1o9C8vL7fYAO0ekE53Osc2SEEM82SfkNVy59a93OkpL7ISdGB07CwvAQD7umMU1F7MV2WnkycQ0G8EA94fbA9nE33KjPpKYbnl6HmYkR9s5FsOJW5zUj5LZCcwwArQYWnhCBc3qKFpaNOebQkNTkIzNG5UyjknmRwhDRiNj9PBCe0yKmF5/boU5aXvyXE7qHEZOZQEZLwdunJ4mTvnzs+8zwch26IDIu8hBAKJVkur4H1A++DT/w6W3XGPtu4x7cTKMHLQtXTgjOQTM6O0ury9f0i9+1SB67uDAuVJwNSBos75jwBsGsP8niJZdzojloLAXwHPPojqppMxfcHg5eXlxvbtkU6xLXx7HK9lm/A7wdgcCEgOyrczdt8dvDmgI6ij73BQRz3unCbn7dXvnf+gH/C26HTQQQunanR+gRZD8sWdCxzDZOE09lN+S2SnBYRsNHce2j/JQmo+r3voi9Jiuv69G7DJkXkjLHVAnUPmf270PYLxgcJyjKSL5J1JYH0SA8KBkdJjWkvKRyMyKrf/3zmL95YEisgMjKYIuvKPnEnXB8rXgZOLGz2P0h0Q6HeWm8Cg60fqres865kAYde3HTs00s3E1nn5PI/Ebvi1bnzp7PxsAd3HwEcGf6lB/dmS9JbrBbiNUE/e0zZCtZ1H/1W1saWQUbFT7brHgaB+4xjiWOrWZSlv9QNX/qcdCHTQaUxIEvulMnIboQNG9rWv1GfU7/rB8cbxwPUGHjwQfGltQtXr6ZjaFaGDk3R4koMBjaPEnKWg5ZeAAWUg+s2jHG8UHoZBVoBOzRGfKy47nobUjao7yS6aSJ9dUjl0D50/p074PaFBvnuZRk6lKzvr6p+Vl9+TyjTn9Ef/jwCBU8ejPH6XOEAhuu/2xFO8H+eYk5S3Pnv7uOGWbvvWKl3Pd2cCyFLwPxkv5uvvvF5RCNvLxwPfXbydOn2kUXPD1qXlVLOYSRpdORKnnblvu+p1OoRlY2Cja95b2A8KsrRmQMcO+2LB1PYCQgIAOjVQTkr/JftHverYNf6uMkiP1CfplYBAYgLSeg8fdxxTCYBXbS9KpF9br9cbzFhy7lXbTATz1zVMlzvR9LwEjbWHh4fp+GS99FyFu7u7rWcfUCc0HaT24fgasZGUncCAGpdTAskBaTBx64sfQayGVOGJmtLcDzuA0gECSTJYXeRDZOg0VGcEPbJJRrMrO9usE3cint7IMXk6Kc8uGhyVcYnzY7pL8vid4oBORiut2q3Kq9rpdOZAAdN059yJR0CMXBxsMd0ESDlG2JeMdDwiSkA/Ad1EiXb9nHSZ9yajm9rl+fl5ivbk2JW2nI3mWxVxORBwBktlYaDCvntvICthoHVxcTFtKeQDibw/XX9Vfz2q9/7+PjpmOR9nbNlODgTEBhNcUffS6n/9lubF5+xwBwI4HUCA7eK6lkBfGjP6nMY/wY/u1aJEBx+aZtCphnd3dxuAQOwAWQGV2RfNuh6zv5fITmsGlDmBAHcSEDESCPiKVhVS9zggcEUgEnwLQndjTPHO5HnmPodWtW3EaMCcPnIq+K0GJUVKKrsPen2ekzSoRka8uyelx+9zYOd3SAJv/qIBpY5S5xwQUU9Jq/Ll+iLxSD4BVAfHo8h5aTswH5aJUVxatMV24lhIEb3n5W3NOvN+p2OVPz8nMMbyPj8/T2fS8/x4nkxH55bKQZDEAOG9hWUU6ypAwEcVM6Cp2mY6GZ2TGSBg8mhd6bAsvlCumwYmze/TE2QkCO58TFHSlIUHHbRZBAIJPFDSmCdAdN10PVQg6GNBvpPXcx2DnoMgMMCXwID0XGmJvWIAznKqDL+UGVitXs921iIbL5QvHCRSdIVMSFSKkIAAFSTNG7ETOuG1bmz1G4GJp+mOxA0m80lOeonD7oyn7ncFc6e9hJ1ISi7Em+o8SsvZAJbnvQ2qOyQ6oBQdcNCqPagbVdtzsclwMe8UsfD/TqSb1DPdxzKrDCl/SucAVT8yA8xb45HpuUPoFl6mqYDUH65jaidvY9kPlVn24unpaWMRloABAcEI2Puiybm++R3iwEpl5ZM1OT1Qtc3+0a7K+RI0ORigfaZzrtpex6F2S32oiFi6w4cBkQ3wxYMdAJG4ja3aXsDMa0fB0tI+TvaP7SrQk4Cx1tQRDOk6tQfXCPBF9oRjlPUlw6n/3V7Nyc5PLeycmJSPgyoZW288nvNMcCDlcaTm3/Ub33cZvI7u+DtBDg2iz9f4/95eTiOlMvMeH/z8ndd5u6t9E9pdKp0jHwEJl+7+fTCqnZOS7Mqu+Gs0dVA1djIdQ8DPjD7IyjFvB7DM1yled4LMywGI7lHajFJ9IaZ+7wBBArkOdl2/WEcZUy6oopNzQECDmihjByXeV7uMoV8lLCPb2NdjVW0/6tyDL28jbmGTbrmTowOUDnbsFPMnAEkAIL2S3Ux2kde4/U1looyudbubWCu1g7dRGtsaRxpTfMQ2Fw9SZ/VSvygdvae2IcPnQcecLAYDjIIYyfuDFDSXl4yk0iE65Jye03hzQMAN95KoyOvCzzR6HuEn4X3KKzlxvbOcdJBdZyUn9VaHOhe9/gpZWs/fIQ7aGMEmkOX3Jkct6fQ9AYIujRHl7+lQTxNbxvz53RmBFKnLiLhOJ2aAq6b9LJGOHVBd58BuqhPbVtGW2qOqJtqZjo5TBYxuRdMyby+Tyspr90mov+6kHBySliclTfbEHXQKxqpqAmHSPzp8ggmVJa1HSFMBHYD2vvHx2t2n//0zdWh0T9e+FLavvvtYlg5pETDHr/yhgzPpcdpOKODrAaxsG4G26rtEFoMBOnyiyFTYqs0HfujdwYQ/C9oXrCSnn35LTpbiFG8yMHS27EyPqCQ0jCMDnyL1UVndMKX70mfVben1IwC1yzUUbx8HQO8pHvmNqOyq7QNVkk5UbUZLaTW7R+pvbYc5g8nr0meVMU2JsG7UvUTpc181mQGfEnTaOBnVORbE66k2TzsB1uvXh9bIqGqBXNpFwCiyc0CSuYjzd4uPM+qcHDTrKyet9mAUSrDki/c4RZvaR07Qd4ip35UG1wb4Ik6C5lRP6lkCkalco7T0n9PsXRvP2eEEMNN44po7jR+2oXRXYM19I+uksif74uzALsHjYjBAtOlAoAMDXjBHkAkI0KCq4djw7AgHAnwfRRlUdldGKh/rzk7WvY4AO+OVhIq5NGpe4vy7a3dJe9SuLiOlGzmm3ynJqJAhYH9TZ/3FejD6TpRstyr6LeIggDTtXGTkUZ1HGLyfnwlk3XHqXgEBXyzsQIt5sVx89zKnsqe2EE3LCIsnuHlEqrS5M8NtgNuQETj/neI6yLl9Mja0swy6CJb8pWuT7fU+IGtEMKAykZ7uwIAzCC5Jf5Y4tw4ILL2HY0v/JfCldNN/ziwlP9H1VfKNDIyps8m20NaN2iTJYjDAzvO5fhVM9BFpJCkK0ZNXeFQ5BwLe8KPKurPtnJyjLi7GoFKzI3zBIdNyJV/SGW545gzQCAh4unOgIwGBJe3rZU/C/htR4b9DukjD2YKuD2gc/bPPf/K3jm6VdA7TJbFaSeb6OJVBuu2GjGDAdUnTAQIC5+fn09ayblrF9SrVg+Vzo+zOmwCdjGMCAtwpxDlXB3YeRaot3lOcZVM7KKLXNAijRgcEHRjQvQ6KUj9IuFiOZ/nTbrKMaaG4gw+ll6JptsFbot7UjqoXv7uvcHtOhpnTXiqP2w8HF8yHLM6cPyTrk1gBB/kezC6RHwID3qlErDKucqI8oIf3srIdpTpSyiXCdNLgJ5iRkePJUwQDrEOiXHc12EtYgbcYIiJPjyg6ii0Ngq5sc+VO9VuqlL9CHAikdQOJGhzpi8/b6f8uyvL6EwTwPdGhLA/Lxd9H7APzd32i0dJ3fT49PZ10nwCXCwYFBLTHvTsGVwYtGdkRgPF3pk0w0IGA1DYc0xrzCQx5e7yXeL/TiegJdzx4xsGR1gU4Fe2AtWr8cCuK7KDaTOl41KvAkSwG2QF3xvIX6jP9phX5uy6MWyJ02q7vLENi2TiV7GO3Y8eotx4EO5ijf6Ld8fV1ruNk75bID4EBp0LTQglfiUpqnhVzWdLRb0GIBASO/I+OjraOT6aCqH4CAt3iki6P5ITTQHCloXLp+tE8pqNEl87w/qzBRfS+D+LtyuglbYWT0GERCHpU04EnB7mSERPgkZGuo7hz9M9+rQMR1w86Weob7+W8pcqmtQJkBhwI0NkwTf5HI7ZEX+nwCLbSfDRtjK7nFIj3MdMnS7BPIkfPhYAO6FR3TpcQCHAthTuRtLOE7czfODb02ddnddPBaRGc8pfj538nJydbgGAk/J99rbJJ9FnvAh7Ul1Feo/Ux/jsZcmdxUoCRyke7M7f+Yhcg+yYwwMiHqElGIiE3GgMvdEd16H8u9vB0PYrz3ztn7cKFUNqze3Z2NoEBAQAHRFxL0E0ZdNLVw4GAo0m2hadTtQkU5qJxv3dJuZcIjcZ7G1MOTPVXOjrV29udBB2Qs0xvKU9VZgHcmLgOM0/9nlZl83/dp9/oOPRbmiKr2twOrPI5K+D73AmaFRWy7O64R2CA4vSnR6UOBBIz43aGbc0AZgTI3ktof3hITepTtYmzAWRQaGP1nnTNI2XXeQWDVa9ggkCSUayzA7q2anMdQrJDDghcfCx1/Uaf4m2runL9A9vI8+N1bkfSuiSlxQg/TQ+w/rTnvsbAXz4NulQWgwEO6DSYqio+rIKixk6AwB3jXHSZoiX/baQI/EzDxrO+Nfe5Xv9DQYpuoSJrYElJ1Qld3boyE1R527rDcBCQlNrbjsqVotlU3hEoWBKVdnX93UKE7vvhRW3zhEwHXZTUXqQJlzgzXcOteSpnAgTJmKTydf2VmCWnwNkG3BHAqI+0qK4nGFD7yWA9Pj7W3d3dBpDwRVLODHg7uN7T4VHPU4Tk0SzvUTrOVCg/OSTV972nCao21woo0r+9va3z8/Oqqi0nyX7gVjXa8qpNPWQUq2vUtnLUEqZBMOBBoINolYtTxQwsWfa0wJBTOl3QlwC0t6Wu0/cRsE9jm+OY0+IEBhxvvN/b1lkBHxP+me2ottS7T00sDex2Yga881VhvRMMqHFcsdQAdEpJHBCM2AH91qWj9xQJ0bCdn5/X1dVVff78ua6uriZm4OXln7O0GTlogHVbqfRiOTvnkox1qk8ykOv162Eb3j8evXZAQNe7M0n/zYGcH2UUfoV41EsgQCbIzx1wsOUOS+9sD8510uFwcFZtP/ykAwVcqS1htCZhng7WlQ5p3NQeOu+eR4i7Y1Gaul5rBbR4UA5Dc8m8j06A89mJyehYEgIvtkWKqubEQYA7EMo+MAMsr5iB29vbjSCFerxev04nuNNwlifZbd2vNFQGOmi1OQ/V8TJ3rJX+T1MFSlNlTGOF/of9kxx3CkCVD6N0Z5M6vWReakOlxfaXfWfZHfT4AsukywTimoZ3YO3bPNWGPx0MPDw8bDQAG0KNoYcRpQiLNFPV2wDBUhlFoa4oGgRiBa6vr+vz5891fX09gYHn5+cpwtEg5J7q7pGdlORQWE+PelhnDoyl9Xfnn+injg3wtLo85q7h/+9pTDvnx/UhNIYsN/vAB3ICDRz4dF4uHtGkKaHkoEb91AFAtoPn7eP37OxsOu+eDxeTI2cQ4A8ik+HRGBGIVrs5TcyDgBIIVr7Kz3+XeJSU1iEt1T+2nQO9fRCVjWCADObz8/Nkt6ry9Anr4ttCeZIh2R1nTtQH0geuEyNL1tm7rm7J+XrES73VNXSCrufsU73ojHndnCNmHXSfzt4g+Bdg1n1pbLMv0xo8lS9J0nlOW4sl2kV2OnQoOS0ZEs6z+7oBoR8XDrSu0iOFGkWmKYrjdzpxRYcXFxd1dXU1AYLz8/M6OjqaWIEEBHzxWVL0kfNNzIWn4fRTSl/t5zRp97lrqw4MdCAiyajt30McCHg0TGpc17M9JR6NU+jQu/9HoGgOCDAS9shGwr7pwKfSdL3VS2Ph8vJyegCOnDzBABk1vVTH+/v7Wq9fp9ZSFD9aMMV+66J15aU0ufZgpM9L9JFGPUW7v1t8DJKdFCBw3dNCTjo3RuhVtWX7+Kj5qn/YYAVBbONUPjltZ29GoKwDyl5X+R4tLNR96m+CfWdnOSa66N+ZAGeaOjDAd+oZFz+yD7jmgnmLGUjr8VwIUpluYga8zHPyJjBAo8lVxU63qsJ+cAIrtgRxOxrl77tEqExLdeGKaDIDnz9/nhC2gMz9/f3GFqp0YI3KSeScojYvEweJfybqlqSBlBiBDu3ORTzeriNAs+/i2wjT4kHOkVf1U1GdI+Y1VdvrUjog4QChYwS6PDsAkL6nsrK8nD65uLio6+vruri4qNPT0ylvpcOxz/VBnB7wdUOuiwQEKQIj8OBcNdvM01vCOLokg+n3dk7rdwsdpKJ2ZyYlboN0f1VtjAWBPz0GWX0mu6f1CYy8E9hUvzNo5H8EkdQjRsHJ7uh30uNcZKh0OMY5lv1eMiUOoqijXNyo3x0EUDc5br0dCAbULtJVTsUk/e2C3gQIpAvy17vo7c5ggB3ACJu0K+dM2JEjVD5CicorXTcCBF00RkPm0dDV1VV9+vSpPn36VBcXF7Varerh4aHW6/W0YEe0mjuVzoB7ZM7BmQy/f9ZUhcougJDy0OcuzxTZz0X5bwUC+8AKVGXH5WfoV+WdJ93vikicOWC7yDh3g9mNkANVpuMMgN4ZbbgO6N1BpOsXDajGsKYKPn36VOfn5xtRlht26b6inPV6vUE3k7J2sOrvVbVhK9h+Wv3uUzkOdvmZMmdj9l3YxwIDDghoh7izw21OVW0APzGiFxcXEzOgkwm1NkoP1+nGg9L2fPSZesAdB0xD/U39dWcuvSNTofpyqkO6TqD4+Pi4xVSxnD5+5lgrZ47YR/SBvmuCaftiWgfHSQ9c1x0UqE67TC/vBAYcCKiDaVhlaOmIicASclUFqSxJOkDQiRtcllmsAPdI+zTBxcVFHR0d1f39fVXVNPC0nUdMiObs0lSBO9KEfkfG3x2E1zs5CjeCc447RcGj+3YFAo6mf7f4lAB11fvN+05CfU7t6yDJHRT/Y+SQGAPX29S/1KUOCHodlJazDw6WBASur68nB0GjonvYbopw7u7u6vn5ue7v7zeAFsWp0MSYqQ1SECGHwDpyt4LXeYneuV3qgOF7C8GAIvaTk5MNQEA7SxCn7wkMXF9f16dPn6ZdVAJ0erRut6MlSYq4q17bWDuvunuTLqiP6UcUyJFR4sJgTpUICBwfH0/r39yRexnmxP3ZqD1Wq9VWnVUnnr2QDmIapevsAFlkn5aYk52eWigh8qRB8M9qbH/5Ckc1lhphCUuwBBBQ8Wn4pDS+PYpgQAPj+Ph4mvtU5MOHSmjLzvn5ed3f328Z2uRcRk6W0RcdS0qzo4EcnSdn3AGAVKZR+v5799t7GlaxVm4oGEWpfKM+8nrTGSXWh9f573J03AlC4Mw+Vx4jxz8HCqq2owRGU9R/MWQaCxoHiRGQMdR6mvV6PZ2IN9euDpS6CKzq1cl3xpeAoNNrB9yUkQNbavR/h7BfuatJgIBTXlWbUwUS2kCBAU2RXl9fT2Dg6Oio7u7uJrZ317EsO8Ygj22cgLDGQAIEBIZaP/D4+FhnZ2dTvVgnBWlqK639YlmYL9um8y207/RnnR9k2VMfCkTrmjkw70JAwGk3b+clshgMEACQjkoN0gEC3efKKSO7pAGSIxpRU1RGlo8OIp2kJrQsEKAVo76dw5+froGpTnEn3kWXSwbYEgdMpdY9jEDdYSUjvRRJjiT1w3szAwQCfCWHlRxrEl7rq7ad+qZwuqdzUslhjco3AgJMk0ZTuk5nIABwdXU1LSzjDiGfEhQA+P79ez09PW0saJsDSnOSpjg6PXIj+9YpAbKHjLDfWxw4yQ7JBp2cnGwxMlxRzrYjG8RpUjIDT09PG0AgBRa0ZckGM29ODTgrprSd9k5jUs6dUb+uI7jV+oeXl81dLQLh9AepvHp3veM9GhecLvY0E2jn+oEE5tmec8L7fMqgm+ZIshgMdIuwnG5Nht9Bg5CL/iN9MhexLqVv+M7O8nKz/KnMdBaKfnjyl941baBjPrnAxZFuihK7yH8U2XdOhFElo04a5BEg8HKm11JmYR+MaJomoHPrBq6+uzjbQyNFUEDgyPYmoyPgyN+dHdB93XTQEgNC50Zw5GBAzIDmjj0iPD4+3jp1sKrq7u5uy3mwbB316kZ3VBeec+B1k3i/zQUWTIM2SbZKdd4HPZZwTIv+JhCgbtMOVG1PO/oYYGTsTnIXMPfysr0d2vP233Qf+zmxR7qGCwIdNBLsqNzcepciZ7fBHIOJEWA+q9Vqq90dEBO4OBhQ/d4izlDKv8pOd1MyLjuBgZFRTUjLI35GFlWvT77SHBIb38UHd0eP8907zfeTu0KIcpODlzM/OtpcwKc0uGbA24LsgNLpwIDK3AGC9L/KkiIlKcIcEFji4HnvHMLs2I73NqTs8wReJV7+rp+Sk3J2gEAgoXPl74adjIFLp/sjAMBys/7OiPGwIRlxORq2odqLoEC/ad6aRpDl83LS6dBGOCAYTR8QWKV73JmkdDxYcUPvevLeQj1wplLMJPtrtN+cDAP7W/bQn1+QKPxUPgexKdiSMydo4Mp8HgHP/Bx4OxhPZe0CncT+dfbVwaGDgRQUM22yAgQEu4CsUZszHU45/FYwwNWbpKikFGooGT2uGVBBqRBuIHYBAhIHAjSEnOZQeloc+O3bt2kOSotnhC5vbm6mqQAOEuVPNKjfaPBSxM3yex1GQIDlT06NoMoBwVLayB0fB6YP+F3Ygt8tdITUh9Tmfl/V9oI+ihvm9FAWggHP09NmRNY5/a6N3dj6Z49YnBlTnloIWPW6cFigoarq7OxsAsk6X4DbmpZElImaTYCgi5p4LevZGX7PW+2g+zyi8+/7ItQXjmfqnACBgpTUhrxPtu/s7KxWq9X0pMrb29vpmQY8gTa1MW0cg0DaJtd16aALV8M7ayxxap2giFsPla/v43d63uvjrEBiity/OIPg9tCnCXa1x3Pi6Sk/LYCfk52nCUaAgFGBxKNcAQEaaBXcB50ipF2cTKJzHLCw89QxDw8PdXNzU1++fKmqf4DAzc3N1labr1+/1tevXzeAARG0l9/rz7q81XlSGTsQkSLNuUjdkTHT46BJTkrXpLRHzvR3yBzrws/JGFA69sCjJ58ykNDpdhFnat85o+FOsfs/OTiVX8xYVW04FS7KWq1WdX5+vuGMZRcYRc/1t/cB39OYSL+JFeBY9mivKk9RMEihXfCFpfvGCkg0pqhnDkRlk7oxybMKdHbKy8vLtEL/5uambm9vN44z9ui7avupes7asJ/0uwvbm0yxPie9YH9zrGkBa9XmXn5O4Tog6Ng7vafdR1UVdSXpf9LFpKtd+ywVBzkKdJfITmDAB76/09CM5v5ojKQkaX7JV1tLOqSeOsXXNaQ9qFoLcHNzU0dHR9MiKD6Apaqmcwa+fftWX758mUDB/f39BvLsGACPkNJnOtXOOXf1ZVqas+P0BqPTrl9SHimySnXpDPl7G9PkAOfaVJEvWRWKD2jpkUcfvtVN/ZLKp88+dtxoJEZJ6bJerK9Pi+hdZdR8syIJjhstyFK0dXl5Oa2DIKh3xqVrY6+jytPZDXc6ZNlc7/nZQUDK0wOHFO3tm3CsuTNMgMD1ggBW06ICAtw5dXd3N9k3AYLOmVHcVnO7WxqDZE8lHCOyYwnEe925k2W9fn1WyMvLy1RXPrWx2+bK8lO/nRVgHVzv58BpN0UxChBH+pjAmdpkiew8TSA03aEljzhUcTeKbEQVXGmp8xi563OK1iSJFXBGg0hOokFwc3MzDQLfglZVG6Dh5uamvn//Xt++favv379vDJhuD3V6uXCKRG2TDF+ipbo2SZGRp6d8ugif7f/RZJco1QcyWRUHdYxGZChpYHy9QHIuzJORCNvZjYYbWweEiZ3zd40r0cTScW2/4vg5PT2tq6urWq/XdXp6WtfX11Pd1EZLdHHUJ8kQd+KOI02tOJAYpZuc/z6CAJekhw4EqMe8p2pzfl428O7ubmrLx8fH+v79+8bUqPTb9TDZdgYfXDRetQno/D7qk9Iho+zAXvWX7kq/OVWgsstOi9HtQHtXnjk9d0Da6WGyJWqXTpYAAfe52vq+RBaDAdJoBAROuROVuFF0R8kKcuueFEXX0nhRiajkCaGlxVJ67+ZJ04pTlodnC9ze3k7TBVIy1tXpmm6eSkIFS+/8P9FujGQdBLgjSEIg4M5kjqVI1+6L+EDurvH2V7+xLdmPcxFZolPp8Cl0RKn9EhBQOfnerXzvDNh6vZ5oRJ3OxrS0UFDR3cXFxYZzGFHwSXeXgIWloMDvYZ1Sf6V+cNlXMOAAPbEDDghk1/jcCInrsIAAF5DKJmqqgP3NxW9897I6UCNj2emp35Oulx6p7gS0Kp/0t6o2gK+/0toeSqcLXk+VP0Xo6p+URgL+SUZAQWlRH/jo6iWy8zQBKRPvECqGFFPoS8eUssHdIa5Wq42tIHROHbrlvXSKiRUgECANWvUKCPw8ar440Hj4kIwjDVBnkLz+qQ7r9euxnHT4/L9zugQEuq/7z/NOjEAqY4eg0/d9AQZLHFECQVUZxZMFSPOQ3tepjToqmmBuJFzQRHCbgMXIoMlIpTUvR0dH08LB09PTury8nLbUCgSvVquNc9V5f6JVGWl1dUz9MGcMWR++Oxgg+5hsl4+xfdHhND71+xwgoD64c/JpITpiRtGJVpekfnS2Rv3PqcuqPG0p/RAQkF/g9XTEPP2S4MCvoZ3vxq2E4ELttlqtturDMnMM8b5kQwgE5nRM+abpFuZHsKbzJ7QYeE52OnQoRReK1ulE0/YqNjgLz3dvWA1azWHRESWUz7KNWAE9V8DXO/iA8rL7XDDBTucgHa25YfJ7EjtQtenIyVao/k4TM6Kl0WU6Dnbc+LkCp1eq876J078+lfUWY89BR+OaVisrXwn7kI6SZRrVhWnQgCdWgN/ntkAl1kr5KULU9NjXr1/r8vKyTk5OpjGgtTPSNTILZ2dn0yOLXWTwpZtcJ8TgIBlO/8x+8f5J9oYOp2OF9kk8KNK79O/o6GgLEGh3gNtPtg9P56PTdrtHHZkDq+40EyhwoOfgWfrK/NwJy8GzLTge3P6qbeir0pijTfS6kgFYwnR1wJN9wfp7XsqnA4S8V+1xf38/BatLZGdmwKO+9fqVZlRBiMLS3Kk3hqSL3NQAdGpdtMCpCwIBPlVRLz5sSIhLdVD0n1agpqif5T8+fn3UZgIFSxxQ54j9f32WEfX2TO8OLFIeIwDQ1SEpasdg/E7pIlMJ20LX817/3duAIC9FTQSo1E+ybF7eOaDlYIJnZ0i8DKvVaoMZ83U0Xie2jabFvn37tvG426qaaEjRyev1espDi3AvLi62wOyIoZJB96jMDbM7RLZ9xwyoDKKSu4VxnKfeJ/Eyeb+laatkW3l9Aj8EVvo+AgBJ51O56dR1bUpXtlSgQfrgaUs36OATME7jlfl6oJD0jcFV569YN/o8Zw2WAivlOdJDgglnsH/6OQMpgvEKJOfPDlKhOxSUmIfk7LvyJVaAe6R5QJAfS6u60ZBw3+7Dw0M09G5gxGLo3evUOXSvC1Fp56R98I4MlwMpKivLlsCBK+0IzHXynoAgAYCqzUWCbM/O8SYAlgyLGxi+HAw4q0PHJ0nTOw4mmE5Hz2pMKFLnQ7Z0PXWIYP/o6GhaXf7ly5dp7dDLy8u0Gl3Gp+r1UCId6+26xzbRamell4AAqX05cu8LfvbxksCAomi+OzgbGfz3FOqtvjtDxe2hsk28x3VuvV5vMDv6z9t6l/JVbTqz9DvL4v5F5Z4LoGi3ee8IECTw0gUv1EuOxeSrnPVw+538JuuQ7KqP/1R/gjeBAE1nL5HFYECF8sxZEc7JOBDwzuyQEBFdomKc8pXQwPj0gAwfDaBHR6nBVQeyA4nGYtmlMMnYLzUqHOijCIAGM4ENSTIA+i2xBMwvUVxJab28o/Lsk6TI0+uR+s6ZoU6f50AAr/G2Ut90ferlk+4TFCsdGVWCAY2P5FRYx/V6Pa0N8HllTQ/oJEKNdbECV1dXreGl4dfZ8ayzAwGViW3D3xLQ7vR1Dth6/+0jIKC4bXB2QG3N3VQEZkojAf9R23QyCug6cWDAOXsPWjwf2kN3xkw7jVMvn4Mh5iew4XVPrEViWTp9Y5un8nnAkoSAztdELJGddhNUbVOl+sz5dW5rcSAwokOUFpUhfaYx4TwXoyUxAnwqIY9b5RSBwAAHjcrCBhYFqjJ4JKbPnMNN9DTT8GiF9WM50oB0R+aGk8Jyqh9oENxg07i4YUjlSWCDv7+ndOX1uvj3xBDounR9F2lUVdSDLn19Xtp2btiZD8cDwYBvm2VUQZDDSEv1YDsoCrm6uqqzs7NJxwQGUpTTGUlFtDR8bthdV9/iqHhfB7ZY130FAilYYL+R2aStlL2jvXQ99ikCl46y79pqLoDrgjx9Z+BTNfYjrIfSnwPr/hsdc+ekWQcfHynPlE4C4W5HOlaAfToCgj99moCFp6EaoZFEoY6ERoKLiqh4XZTlZx84GPA1An4qoRspd4Q+OFQm3/8qdkDTBN02RbYlZYkRcwVi+6Spl0SZeV09/VSOzoGy7Pvg/DsZAQAOOq+/A2AfeF5npxIZSbMfmI+3Jw2yGwmW0cFLGg++dsYf4azxy3xJN4sh87ljXygsQKBy8LkFTDexTdTbkb3o7uvA6Jwz9yiLAIpjep/F9YL9o0OEFOjw8cT+oi1hugnkJknRsn7vQMDoe6qjM7M/Ym9SmQhClV8X+LA8HShIMgIXKXDpgAD/U5qaHvilzIAXmIPQV6/64RRLKugNSQNNRyoj5w7dn4/g2wnTw4RcCd1IueGi4WcUTnbCBxrBCacR6Hi6NlH7dhFpas+k1DR4KdqhYe+MZypHumYfwYCvhCa9TCpyjpkhAFCaSsf70Q1hApuMfFN++qw8qGs+rUGHkHbSaAEtt9eqnr71zMG96ulnJ6Qxsl6vJ4bg6Ohoeo6BAAUXNfGlsdE5AS7y404BXiNRIOFbw9jP6eWRKkHBvoqPS718EZnvOqn6R1f8IUZpzYADLUk3XhII6H5Lbe/pVG3v43enrbKmdvG0PD3mq7JwbKc8fLzTT+m+0fSD0nBw60CB9jy1L9PWi+sFZKuWyGIwwEKnCDpFChzACbm7oiRxCt4jnBTt0AkLDacIPdXNpzvc8DsqdLqsi858ICotdnQ3uCids6UTSP8lRoVpcveEG2suskpOyA1tGjCjsv8OGUU7VX3bJ73wLaejNGjoJIm9cYTPccVIWe9ipJgP+zntotE7nyEiQ0HHSjbAaUZuN1O5CNSVBg+vSQwF97WnnUqcruDOJN+i3IFpMotJR90WsA4sm9p0CbP5nuKMknSUQIC7pmgr3Nl5wML0XZLDXRL1jwBACkgSHT4CBollYF287n4mgcS3vcq+jaL+BAiW6s/cdWwftpPGrew3X7+EGUjRMA2DD143ZBI3XCkq4zuVmWsATk9Pp21OXA/Awd0pl5Rbhu7l5WU6rUm7B9JJcjTGLg4IVHYCAjr+ZNBSG82J6ukPY0pRjhyB5g2Vv+YWdUgFV6ISFHjfcjAmgNDV73eKR/aUFLnTsNL5Eyylx7uKFeoiXP3ulLhHn85G6TeWt6tDGisaJxwj1FUHuHS8XCujsrMdmSfXH2hKToCDwMnbnPrKulLfur3ubIOq7ePN9Zl96+PSAXuyG++twyNJ7IADAk0VaJqgaswS+u9zdig53c7xMxjp7LP+o2j80G84EOgYvrmA0yPwLsJ3RrcDPW+RpGNkHPzlQQTXiPjzcpbIm9cMuCNzY5scRtXmKnam14kbOkY92r/Mfc8ydIli6hyWBoAOaNDJaunkLW+HEWJ2UCJU7oBglM6cMA8/apmOn2souGhSddEhFaq7XgkUJLCXKGNv748gKcLiaZMJIKXInULHRJ2rqslZegTh0axLim59esAjcY94E2gjGPDjWgkGqjYjfuVR9Y8T15SEwJGnlVgNbx8fn65T3h58Z9DSAXdnBvyzXh9Rdzu29unpaWNqIFHb2ibqgHGJo5sDArTPtNEjZ81rEhPH3z1//tal6ayU50P997y9rp72SNQOyVmTwdK1bE8PIJzN69jLkbwZDOiz04ZdlOiD3xWXznWkfGxg73in9pgvy8kyyvgJUREIOBigwjldrrokoVIK0VZtTzO8xeh4ROjTJqSLub+cbSVjLTBAQCAnmCJi73uP3hI42Gdhf7hTZP0Ta1S1PWdZtUlNqq3p+BONmNgWpcW+TrQ2QUH6rzOSPpbduDBal+4rr9PT0+lce7WfnI4Mq7YgEhB0kmyDty/FWQE32l5fDxa69H4kyvvd4naZ4I1AwG101fbUJndVdUzXrpKCI6XveijZxV64X0igQP/5Z4+wNS6ZP8Gl/+5AIOlWl94uQibL8+T4TQv5l8ibFxDynQqWFg2OjKQLlZiGWfe6E1flj4+Pp+NOyTo47ZkclQaK6BU6Ql8MqbJrLollVdmcFq3ajOC9PZZGzksiRW4d0/QJqWKfN1a5xQzo3PkEBrxNnMJNvxEs7CsYcNCo30izJlaE+rUE7MwBAl6X0kpRrM+7e+SVol2vt/qf9XUGROVRWY+Pj6cDbagfmgrTAj6CAwIpZwdc2K6pHdL3ZJS5+8ejyiXRaJfnvoozsLRxzhSQ4RFb2wUuPyIJjCnfxL44ME5p+W8OmDudl4zGhMrAKSOWg8Ag6VzKT+3LIHKuTnrn9G4a5/Q7HqjNjTPKzmDADZkrmyo+QvHdwHJWgJE4Hb53ghrCn0aocvhASINEYICvboqABpGAhPmyTqn+c+3A69k23laO6sUEyPHzpXljUbi+tez+/n46NW4EBtI6AneW/J+v9xCPhBJQTZH5aM66o6sl3rccNwkQVG07rKQHZAZ8jpuvFN2mMon54LRANy2kMla9nvJJsPTw8DAdUUznorbkKmed6OnGykHjUkCQIkCOmbnITWV2PZkbq/skzg64nUu7vdIUSkd7/8py6919iIPiOUbHgWHq93SdlyWlqe8OnJh+utY/d/V3ceDPaV+yKwkIpMW2c/ImZkCJ05mOItxE2zl68+uUvlCZHJauoROWESKCUuP7oKAhZ2N5RMQIho7M2QqWm9Elo5+Rw+joZKZHScyKg4K0pkLg4OLiYuMURtXn+fl5YhHo/BNI8uc10NC4EyGg4qr09xA3NKq3GxhS4kv0W7KU+ksMAcGvrpF00U56+f2JhdJn6raD4PTMd9WxahMMeOQp1oBgx0GH60Zq52SYE92q/7yNl0ZFPk5V3n0AAB4ELL1H797PXFDIx/5S3FG+hdJ+edl+VoqXz1kx+hWOVUrqFx+/SSe6KSQvF/Wms98pjTkArn4ctaX/rut9HZBP8XbMzy9nBiTeaE49dU4+GTY2ZKJMqQACBdw2c3R0tDEPnuahHBg4RUpA4E6O1zL6onMTWhwBkCWSAIL/7+3KduQ8sa8VEEPgOy+qamJWBAb8bGuyAorqNC3jFLPAgkeZOoP+dwsHBIEgQWO6JzFdrqcyetSP5IhHZduFru4k6VuaruL1Pi0wmiZTXQgGTk5Otlgfd6qJFUhg0dkmTjd20WFn2BPz0/Ux9Z9ghpTuKKr7HTKyB+naxA6wr8ksSXcdjHJOf9eyugPke9X2mQHO8PrnJAlEc/cI6+V5elk5zh0IjBzqHBDwazsdHAXRDgZk0709R0Dgp4OB5KRZEFaAzsnBQXolesXzZIetVq9HB49o0jSQ3cCQGRhRwjT0RL0EBIlq9jbsor/OeKV2cerIF4oJCPD3dPIid1/QaJ+fn28Ya6eQ07SAswMCFIw29XS73y1kgdS3mk8eUcbsQ86/+x5l16nkxDzSlywxtsnAuKFPDAHnE5WOj6nROoG0Xobt6TS/M1RVm042nWMxt0tlNB5Sm+jdjfpI9L+mIjWmNebfGwxIOh0aXae2Pzo6qsfHx2h3Fch4X/rWzLe2gUAVHfJqtf38AF07GkekxqnnGs+0Z0lSntQbB6ECwilqZ3n4G4VBQ5ev+oj1SlO/CtbYBgrIaH/fMkVQteNTC+fEF1Z4REVjRIOh7ylPR/wdTZQMUWdoqWzqfLIAHbIiM8DyKT1t2UlRZEcPudPplNjT8tXkftIiGRKfWxYQ4ImMqt/Z2dnWYsDkHLoXmQFSz4o230O4LkTRLOss6aYL1PakPRnxVI0BQdIhprMrDezlYlpM0+l9PotADkCf6YA7UMx0uV6GY576pzrL0Dko6KYMOPa6ulJ8DLEPKD5uvf7r9XoDCKitfgZz87NlKTgaAUa2gW99dbbR2dm5vFkGZztHDiqNI6YjXUrOmIAgMQFVeYdCytNBwQgIpTGcpi48b0+beTgY4MJwpSVd9fUC7rt+OjMwJx5xJMVJUwNd1OPRk4MCihv0JQaWNBQjEp8WGEV0I3rHr0uo0F9et8QE0MGnM+fTnvIuLV+IprZMTj7NDVP5CAZIO/MgIy0u+93ig0URYIqUk/h1+m3Ur6TIqWvd/KZLosZJedKo+piSI1b5XF8YCTNdZ8ySMaHDTWWkXqlsDr70EuvkDIQbxSXRzYiJUTn8M3+jw6yqjShznyXpIH9PgEB9JMCedLsq0+4pwt2lrHynpL5LEblEept0kFOAHVvroF2/daCeQiDiviZNYSUZsYYeMHesN4PYtNNpVyZnMRgYUTByeKyEF6YDAckYJyDQKbyLR17pWp8i6KYGunp2eVNUVw5WjyKT4qV6OpLnqtIlh8skKotGwRddknbS59PT06328rZzutmnLroFRb9aHNiIHXCA1LW/rpHIQbFfqjYXkPKaDhyPhNe7/jj1mAY/waPria4nEFhS7/TdwUFixbyNPPJPYzPVlzIy1nN1SEGJp9uB+H2UTqfcqUpX3IEowiT4ERtAZmBJOXbRl66cXR2YJoGNC0FAYgAdsCcg2QGRDjg5CEj1dmDb0fiul86i895ueiAFmnOyGAwIhbBxUxQ7miNxCj/9vyQK8Dw9DZWX0nW2AwFFJ05TJRC0pHwj5UiMgA8oBwIEBL5GgECA96Q2YrqKHGmw1Vfqcw6eBKIYZXbgbYlB+RWSwA0j5LekV5X7qmr7uQH6r4swHCQyj5Ej0//dOCMb4AyQ938SL1+KgJJR1fcECJhGMlbUObcho/4aGVX/LZUrOQ2v677LiCVI9o5ggNMFbBOlqf7obHQKwjq9ciDXAQNe6zLqL9ajy4uOeAQIWBel50HNEjZ6if9Idp/9ISGL7dO2b5kekOzMDKSOSxFWZxCr8uB6q2FeIp3yJkPmv+0ic5FEAgB8dSCAUZ6fJOd0vx9Kkcrg9XOwkX73tpHipahPuqKXotGzs7Od2vNnCR0UaXu2YxLvH3fWMoC7OFT/XLXNNAiMeTrujOnYXT+STiRH7BF9oih1PfPxtNzB6LoUMLi9mIsm3ZCOjLjfk9o9sZNdBEuH8hHEbbLaYBQAcdqMbZaCmZF9WyLuP5b0ZbLDHvlTVqvXtQUELx0jMGImJIn+7wB5x2Sl8etjJIF9tgHtmLMCI1Z7iSwGA1w1n1AZG33OMLrMocAfkUQ7JdagM/qdOFJzWrGL/FmOLl0HAD5fRMOfor0l9G/nDHRPYlgYGbC+XV6pDu8haZ3D3PoF1wU3ovy9AwNJj9wgOJvgoGDOgSl6cPDFxaHdFJBHFSyX6xz7mnqoer68vGxMD0k/q7apf6bhdXLD6ON3ifNIbT3Xhvr+p4jbIr27LnNRrQcgErE1P1KGZIdTlM7/+e5pqO/SfdQvZ3qdEeAqfs+7aswIqBzpu4Nlv6bTW44rps1ya6ylhd1vnSKo2vERxkL8SdFYeIKCDtX5wHdaXvc7/TSHTEfGwRsnfR456ZG4YWJ9ljAOHRPgL2cGknGdKzsNAl++Wt7T6+7z6QN3opL3MrY+TcBoyBF7VW2Vn/fyndIxDAS6naHoxon3K9meDhg6ABDI4G4Z7vTQwVLOFCkNsTr6neCDQIELSPUQLB+7ib3QNb5YLTmfDgh4NMz8vD0JvkbMwJ8oBJvUay4i5HQBZWn7dMyEXzMKkjoAQCEzoHpxjZSnS6fPz3OAsmMEUsCVruX1DKaSvU/fvc4qvz8jxYHAW2SnaYKqTeTFirPznSXYtXApcne6cpRmUj6mpd88It4lWvd8nN1Qp3VOMpV3DgjQASxhAOZAVIp+3Qi4U/T1FTQqTlWpDN5uv1ucEmW5Ewrv6kwUTqOi+zswlq5xUD26ns6T5XXnnB5KJOevlfv6rh0e3NKnscspPo6RBD7IYnh7yQ4oXYELRaOJruXCNRrP1Df6ntpN5ZV0jMySfvuokmwl++no6GgCxY+Pj1X1CpI4NlxGka3no+spo6mC7hr/3+vooDMFMfqcvrskRmDk91KZOkkMjNvqVAffSsgF22nNwK6y0wJCOmXvaDaOAwKXhHrS9YlmIup7y7TCnDIkVOdozSN01seNm0ekrthqryVAIDECahOWvUOdvkiwo5MSmHOHSKfvOzHo7BgBvtduAoEADiA6Vka/VZsGM23dYX0p7lTYLx6RJieUrnd9Y0TO/u0WGqn8Sl9twWdNcH5Vi1HZh9RVZw14kmXnVKV73PWSgMBICLzS2F3i3N3ujK4d2YSPJA4IEuPlTFLV9pjYNU9KSifZmxTksY9H/kT/0z8wPWcDRukxTbex3lbJmbN+nT/xvFQW9yusm+oz9wRVt+lLgcHOhw4tMereqUsGoDv9rgJLFLRDkJ6+U0SjSEKGMj0utmMiXPFGzMDcq6OR6Fw88uxYBJbTDao7FTl0fSYAcENOY8J6OYD83cIya+D4/mqVmwsM/R5+Tk4sgTGJ+sfPOHBQpzKRQtd/PkWk3xMAoKGvenUKPu3ByEo7LAjgEsujfj46OpoOQvHDrty56H4eYSxbojzSomOWPYlHaN6eozHtvzG/t0RWH0Gkt6vVaosd8PGfwNMS4Ma8+N4BRQaPbwFeDFw6G5PsfccIUJYEgJ19IzBJwvHu4D+BAZWZwY0HYj+iuzuDgY464jUSj/aTs5L4vu+RjFgHp8Sqlu1p9WiMBohggBFOirZZD3XOCAgw7wQAXGGSsvDFKM0BgreTAwHez/rTOT49PW21lQMVGnhGpu+9tdCnN2QEVT9dy8GWBl4afCOn5DrPOUMfEw4IEnvDPkvjYLVabRw9q3vUr+7gj47+ebaH0hVVnxZXUU/EIvAx2QQFZF+0w6RjuugM2B4+Dn3bof+fQJb+Yx34TklOY2TzPoI4O1D1GmkSEOhd7cLTSau2fcCSaQBKcnx6d0AgHaT+dsL8HTh29j5Fza4PPi6T7R2Vj2De83DdZtod6KjaPDOlO1uAsgsw2OnZBMmpqCKpIUfIy+/xucLu/tHAHAGBOXqIxkfXu4Pzldo0dkx3RGl6h41AwAgtUmkczbsi+eCQQ+QKdrWt6qnvBDZkBNhGTNepXw3o95wmcGqUg0flY1v4tECHwn3aJ0WhqW/5uWp79b5edPqedgde3chR19T+MrwqixgBpaFxyHl95utgwE++9OOwd41URsGAp+eA3dtrZLckHly4fUhG/aMLQaGzSQRnVZtOnPZ51zZhO3aOV/qXAEHHHKVxpzryfRdJtpeLc6lXo/Q7YOS+hXklO161yVqO7NFb2YE3PagoocWuwqMovrunS9vLsEu6jgxTnm5M3ajICKbDfUZAo6PW3GG4kklROjDggMAdjTsNBySMEFVH1Y91Vh08okwOkQrJaPs9janXm+XkNayjMwTOLHgaiQpNgMCjX+8v9Xc6FIkUb3Jwipyfnp6mSN+dHFftOwhi/7Kszh7JMOrFp2HyNEtvV18/Q/1JbblUmF/6zHaaCya6iPG9prh+liR2gACZrAsDMwJWjmNvjyV95v3hUa/KQ530gGXkb1zS+Bil4+XqmCy2y64iIM51OioTx777GAYvyU7tMn3TyWIwIAehCkl26Zylsqujr9pWxhQlLREacMnI4aZyuLN1YzdCxe74pRzOSqST5YgqPU2JBv9qtdrYXich00AD4uBBCupoVNez3l0f/S7pwAD7hOVlpNRNDTgtl0CBR9QODvhZfSaDS0OtfNg3SfcIEFlu3a+Fe8o7GZA09hzgcDz4A6+cKVuvX7cyjh5XrLryvaM+VU6WKY3bpUL2ztkttuufJj4WEiiQPiZWgO1G8Dey34nJ4X9kBqpeQeuu/cpxncYdgTUlRf7Jts7lm+qcfkv5JObZAUE3XdkB2iWyGAz4dqNO5hy5U5HsnJH8rMHYUYz6zjom2rETp258C5t3lBvYFPFLGTwK0zytVnL7Nq+kxCqj14OHjiTAwp0AvI7puRGlkVFbaPXre0k3WBzEsNwjGm4k3rfJWXme6fvz8/MEwqWPjNRSvtKZx8fHOj093Sg/5+1VBv2etiixvtIn12EfG4kd0lZGf6S1PzK5i3o6NmfU1w6syMwkGUVZH50VkCR2QG3kYMAXkBKEjsCixCl96kl3xoP6mDsZXOc8P/cf7qOo68yD+ux16Rx/BzhTcLBECK6SvdfvGkdV289Zcbv9IwHXTgsIpUiO/lWxVEl+Z2HTwHREvoukDqLMpZkQYlc2vbRIy53e6Mxoz9MdN527P5VQAICLtXzxFgGCDzRFaVWvW4dkIJgPI89khB1pu3NlW/Dxxe/1COPECHgkKuNHsONCtqT7rYv43XF2g9bBwsvL65M0l0Qm6kvt5+cWJNL4EupuovGZrtL2iFl6q/QIELmdU4BgdHqaO2TOk6pdvH8I2km/epTp1zMdz9uFzOifJD4mCIS9/yWy507h+3Wp3dO44PW0JyMg0I0BXu8+JwWzKX1nL5Iv8PYb+S6/X9fI2as9NDZ9u6502scMzwfxerwFFOy0ZsBpFQKD9LsDAv7vRlW/7+K0u/krXbe0QcgCdOk5mmZUTAe45KzoNCAIBPwphJqP1dysfte7AMHZ2dnG9kc6Di/H4+PjpHi+KPD+/n56bjaNuiLHEQuQgMDd3V3d39/Xw8PDov74VeKAgPo20hVGRDRQqU87YOfTL8qziyiS0ZOOcoEq66T+FtsjXVBkLiNDoyvdJRBKZZLhEuOg6wh6yTooDYIB7onudmfQGafPqa1kZ1JbdW2Z2s9BB22Xnzj5USWxAxwTzgp0esnPS1jb5GT12QEyAWWXRso3Of/Rb/re5ePTA8rD/Y7rjac1Ci7YHrLHnHJjm9AO87AwHxdvZQd+CO7OobQOQKTPnVEeIU0yFYllmBMOeFcQf2e049GZnGkHAjqn4UqXAMH5+XldXFxMLzn9tH6AzECi3+iwq17XB8hRy2ALcJDOYwTp9XNknCK8ZFh+l8wxAynS9Ig3pVW1bThI9amvCOCcqWE5UnRBQ+Pt6g7K72O0f3JyUg8PD1sGtYu+O/Aqx8iFigIbSec0BcH3DgD4mOmMbccOzNkjXde1l+up0nmvXTC/SmjPCApTXzw/bz/Hg/R1F4h1koBAYhDcb6TrEwihzowc/y6AILF1zK8bu5yiGrVLWifAujHQ/FVAoOqNYGDU2f6/RwpEfJ0D52B0BsENWUKQncFgmp6G39spSKJpRwbNjap/7kCBR/wXFxd1eXk5sQSMOOW4u21ddOSM7iVnZ2d1d3dXDw8PdXd3N4GOLpL0Acc6JedIFuM9JfUtAV7VpiFiXZiG3vl/WtdxeXlZFxcXdX19XZeXl9P/ut+3CiUdcsYpUezq3xQJ8X+yeD4GEyii8FAaXfvw8LB1CiHbyQEoGQgHOGyPpGMsp/eD6sR3/5y+ezoJ6CXm808Sti+ZQOqDrvEIuWp7Cnjk8KrG7Uh7747eQUACEcwn6ZHeOd79v1QmivuODghUbT9YaaSrXkelrzGjRbgd+/wz5Ietc0fzVG0v7nA0+paI3gFA55w6h9WlyWs7QLBabc9B8roOBHSSHI4cSxdhXlxcxNPe0kJClUEOxY+gVVve3d3V2dnZNK9/cXExObRuDYK/q/zdXmBGd+8hXd+ODID6RbqqdHgdwY5A2/n5eV1dXdXV1VV9+vSp/vrrr7q6uqqLi4uJAuRAV9RMR6n/FQmIvdE7mRxfp8Jy0rh3bTJnTBjhsIzHx8cTQHED7iDDnb7n331WGrv23eizvrthT+Pd7cmfInTcSVe8z6o2bb12rFBSJO//jwDZKK0EBJI9Sk7f/UICAvw819e8rgMdXu7EZKV6SpR2t07gZy4clOz01EIKK+POkcJOVMTFawgIvEP5GyUBgWTwdsnHjYzTL7om1ZXXLTFSnZAZ4PwRnY1epKR9bsuNss/hC2GqzZSHnIwiWubnAIT97gyOsxzcK7sPkvrZHQ/FdVifHaxdXV3V5eXlBAI+ffpUf//9d/3P//xP/fXXXxM7wLUDjPzTSmEBgdvb27q7u9t6aU2G+i4xDKyz6qjfRgCNAIhtoKkCsgXdOJ0D6xRel4BAx7p19qJj4lI5vXys/z7p7s8WBlfezgkQsP20HiUBg13y93RdRgyP+x9npV0HGaF7Gfyaues6IJAAhpfx5eVlg03jWCNoTrtu0lSt5/sW+eE1A2+lz+iQnSHo0mRlU4fs2ijdFEMXiaRy+PfOkfj1nq7TYL7NxOl239dNQOB1eXl52VrZzwfUVNU098vXxcXFRqSqfFhe5iewJ/Ttixn3QRxIatBRHzvDz2hktXpdtS8gcH19PYGAv/76q/7666/6z3/+U//5z3/q77//rqurqzo/P99wnkL/iUoXiLu7u6ubm5u6ubmp29vbur29nT7f3NzU9+/fJ3AgpoA7BGg0uug8OVQHv6SRq16jLK1dcAp5JB4Z0SnJHnSgZTQ2vb9G70yP6eoaBg8/I/LaN0lAoANe7FOCewICd7qjPKu2aXTKEr/iupkYamejJcnfJPDg6fG3DuimPLyM/ntKVwCAjO6SI4jfKm8CAyPDnhpxJIk5GAnTp8EYzZ04+nJFcGPgAKOLQkb1TEbO/0v3cOW5rwsgKPCoLEXqMqJqGzIEvnZgtBiFjk/1IS1MI67/9TltkXlv6Yxf1Wsk6nPwkgQELi4uNsDA33//PTECBAPX19fTNA/ZAZ8eUH8pMri7u6vv379Pzl+v79+/17dv3+rbt2/19evXDVDAaILAz8dPB36oU53xHgEnilO7/nIgxpfaxfXHGZxkFDkenL1K+qDPSf5EMEBxEODtr0WE6i+Na257q+qnCZUHxQMJiS+8837jdwfo+k22hzpKO8xFoQ4eWD73KwkEeN26MSHw7GV2/VeAICBwd3e3sV6Ia2u6tn2LvAkMcN7FIy0vmKMqXu8Nn5x1modMzjrl3dFLSyKY5DB+pPGXMihqB+4q4Lx9d+pgysOBUqKiNQA07+u7GbSVTNRUB4a8T9hGDh7eS5LzkMHjgOScvUeLdGg6ge/09HRaKPj58+eJFfj777/rr7/+qs+fP9fnz5+ndQPaDUJAkECnontNE5AVEBj4+vVrffnypf773//Wly9f6tu3b3Vzc7PBFKh/BdiSU031dGfKz4wARxS8O4+0A8bbwRdN+nkJ0mX1XReAjJyPS4r+2Q7vrbu/UmSLyew5DU3d8JPxJLreA6wUITNfiYNODzZUtrS7w1nKuQDM/0t6kyL/BAxY/znpQAwDA+m3gIAzA9102Y/Kav2nQ96DHOQgBznIQQ4ylD8X7h7kIAc5yEEOcpBFcgADBznIQQ5ykIP8y+UABg5ykIMc5CAH+ZfLAQwc5CAHOchBDvIvlwMYOMhBDnKQgxzkXy4HMHCQgxzkIAc5yL9cDmDgIAc5yEEOcpB/uRzAwEEOcpCDHOQg/3I5gIGDHOQgBznIQf7l8v8BL6MQtwCxJYQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACB7ElEQVR4nO2dy3bruJK0IdvyZe+q08/Q7/9KPe1JD7tPVW1btvwPzgr5UygSAOULff5SrqVFigRxSSQyIxMguHl9fX1tF7rQhS50oQtd6G9LV2tX4EIXutCFLnShC61LFzBwoQtd6EIXutDfnC5g4EIXutCFLnShvzldwMCFLnShC13oQn9zuoCBC13oQhe60IX+5nQBAxe60IUudKEL/c3pAgYudKELXehCF/qb0wUMXOhCF7rQhS70N6eb2YRXV1ftO+9PtNls2mazOTpPP91Pz/t57zibfvRsr/wq/6oNIvWTH6sye/WdpdfX16Ny/H9rre33+/bf//3fi/L9CPrP//zPttvt2n6/P6nXTJv5TJKxq6uro9/19XXbbDbt5ubm5J5+rbWjdDq/vr4+5HFzc9Nubm7adrs9nF9fXx/S8Jfkar/ft/1+356fn9vLy0vb7Xbt+fn5cORvt9u1l5eX9vz8fNTm/X5f8lXtYNmsG/mjc/GEz+i/eKx6q79Ur+fn57bf7w//df7y8nLUR15ntiX9VEYlG9fX1+329rb913/9V8mLz6J//OMfB9l9eXlp+/3+wCvJTI9eX1+P0lRyTFKfiZKcsZ8ll5LR+/v7dn9/337+/Nl+++239vvvv7fff/+9/fbbb+23335rP3/+bA8PD+3u7q5tt9tDWTpynKr+1GWpL8Ub9h/7lrKin2SKfKW8kh+ttaOxstvt2uPjY/v161f8PT09tcfHx6NxpXK8L3ysJf3d01FKd3193V5fX090w83NTfuf//mfrpy0tgAMfCeqjKkbfQrvR4MBP56TJtWlquNSIz0DCCqFQEVQlZnyc0FPynUtUpu83tXAd3IlSgXmA68CAFLeKlPX/OhAQD8pXaZn/Xku5ULFt91u29PTU7u5uTlSbM/Pz+3m5uaQVs8pnwTsxIsKEFXgx+tMXrb2psCp5MXT6+vr9vz8fNSXup4UKeWxAgL6kW+pneLHV5P4pTq6TmutnYyx3phzI+9pPG+l876m/FZAQADg999/b//xH//R/vGPf7Tff/+9/fz5s93d3bXb29tD33q/EajxWs9oitzIOnlbXl5eTvQz7+ua2qr2+nirdN5utzvSHwQ5PbA9Y680Brzeur/f79vT01NZBunfAgyMjMjIuC9J+1GGP6VdAgZG91o7NdqtvRlkVwrvoY/IpxqYX0Wp/MTrxNOKknFP+ffk19F/5ZlUhjcZCPV9iho4YKOCdR5JSXpdvV46J+hh2eKTt82NkdK8vLwc8VZeu+ogr/jl5eUESCSQsd/vjwwq76X+SLKyluwKsNHrrYAA/9Oj7uk8Hj2y52UkT5agWIDg9va23d7etvv7+/bw8NB+/PjRHh4e2v39/SEaIGPK8lweJasOBJKX7+DBQQTTKFrGMlgHB/4kj0axPyjvjNroHvNO5+mej7+q3wksOP5T2ooWgYH3eHY9Bn9EHRzN+nW/PztAlhj+dJw9X5IuIXreo1C0dhoq9DKTAl0KJnoIV7SWQlWorrWxnLR2aijSFBnTVj8HCjPyyfTuRXsapktlUCHov3tbMvhqo4dL3cAmXnn0g8dU58RHHhnupEFQBICRAN3jc2yD6rjf79vNzc3hno8Rybvf170Z+f4MSiCN9UxRgCoqONK9s7o5lSkwcHt72+7u7o6AgMAAQQANtQAfPX431GlawA28g8YKCKQpIQcRFQhmXtQpkvntdnsU0VJZPu5cTxO8nUPeFgcfM/RlkYGeoL0HIFSKqqf0e8+ecxw9z3rN1iHdS54USQJVAQKnHt9HQrSWcjyHOCfY2jH/ZgzW9fV1zJfGWOlklNIxhVuXTieka8ov1ZP9KCUkY5oAB9s2km+Wz5BxAkU0GqPxwXonA6fIgP4rSkD5J9GD9XYoCsEoSAJAa1PSCx9Zx17+FQBVnzMacHd3dwQCBAR0X7JN47jZbA5rVUTuKdOocs1IZeQJBtIakfSjgVe5rb3Jg6dRXpR/AU4HLA6gCHJdZysNxwAjh73+q6INM7QYDFSVSWjRr8/mdU5dRqCgMsb+/GigjQBGulfVc+ZcVCnRqh4JEIyeae1YcS41+Alp8/pakQEPsRL5V0Cgx2+/x/BgBQxYFhWqn3t9SEmOPa2MpNqpUHplnEeUlFTFA58CIFDyctPR9QY9HAJhlefTGHqutSy71bhyTy3ltxY4WKovel7tbBneNy43Pneu+X8HAfr5QsG0HoWGVbKr/8noc0Gee+ppuiFNh/n9NN1A3eHggcBBfLm5uTncu729PTHIAqA+lt1ZSZHISta9z87Vt58SGZitxHsHmgv+RyBmhms+SwEsBQG8xwHq5MY/haJmaAQCUj5+7TuCAecd60gQJAVUhfZ75VCZaeALEOicaVl2MvQ6V32dqFTS6vI0xTFLLjMj8J2IfK/khjxbSskbrCjl70YipV/qYX00Jb02C+goi5Ujk+SuB2AZBdput0fTAvpxncB2uz0Cp5VhZhtdbnxxK8GAG3E+o/NUFq/R269+uq883UaIL6+vr2273cZogxP7Jo2T3tjxfmS6c8bUYjDwGYNitqEzNEo7e/9cYJEGURpgvfr0pgMqj/X19fVkzlTpZyIEM1QZ9XTdFeiaClWDnvNoS3nRA2VujN1D1rlHDnyePf2/ubk5ypOK2YFAAi+cl03edfLw9Zxf83anKQu1LdWVZbtM8+j9pr7jWgIpWMn3jOLrARYdk9FYGwwkotPi1/1+D9QxbUWuuwQEtEiweo1Q0wOSjf3+Xwv33CNv7ThC484YjSrfjuF/99ST7nEg4GkJUhx8eORBRzoWasdmszmAAUUImMYBzwjYzThTVZolzsC7IwPVIBwp23Oe6dVBx96v96zn0zuO6jrbjnOBQIXwq0hJFQJdQjPRAF5LynTtdQY0XG5QabDERyonKi3ylfm6HKa0vbr1iDxUf3o7OEWgZ1prR2sEFMbUK3rkCfuI9XZD4oa+Aj+iKsrC/x7VkKL18KmXrZAr6+5y2Su3x2u/tgb5OHIejcgNuQO/5Kg4aCS/fY3A/f39YTpAQODnz5+H6YGbm3+ZmLRAkHXsAS4P43N/gLTPhHvHLEP5pXy1F4e/qeCRB0YRBXRo2NVmLSasAEgy4AmMkhwkjQDuEno3GKgKPacy1TNLDDn/u+HsGdIqv3MByjk0AgJL8vkow+sCW0UB/PjdPKnWThfVJIWfAEFSqDTEo/lxes3677Lo3qnuPz8/RxnkYkF6KKoj2+tzq1SG7g1XvGK+Ou9FqXh0niZjnV4TZB0JhpLHlrzDRErDI/ngbSAv1qCeR98j748ZA8LnEgDjOgFND2iK4MePH4dXB7lQsLXTvSPETwca51BPTzN/B1S+t4DuUc7SegIRQbPbGoFupaMskydcBKujdPdMFIDtmUk7on+LfQYSVd5CQryuzEf5eboR6Fh6PdXB0fjoetWGyivy8K/nn+6NgEClMCtjsDbN8LBHbnDpWbvcKT0VXUrPeiXQUXnUno8DDqWj4nXgwl9SzD1Z8ueqNQ+9cep8Yn09KpDI6yMFmxSgT3soLd8mSM+uLcPsv3RvCY36g+k8DaettGiQ6wQ0XeBgQJ68AwHlTxDd44GODg4TWNKRgIRGXvK12+2OomIiXxeQ1iN4vs5fTvlxUSHz1POcvnTnw3kwIo2hc+T124OBCvFVaXu/3rO8NzLwS/+POsYjAul6AgjJeLuHU5U1Sz2vfwYMEKCs6V1VoTf9TzyTkZKhIJoXzYDR6o0ClkFDqHpJMfhRXo17+kmBUAEmqoxDii6lzYPED5+i0HkFiBIlRVl5Z+RVNf/LfvQ2c46aR5fp70IVMOspfu8L7+seufwyInB/f3+0qRABAXcVVP18kZ/yT/1StT31t4PXCkhzbFGWlJcMNQ34CIBxTPo0gYj5PT8/H3SI9iCo9FKvbF73/w4EKCMz9K3BwAgIjIz/UiCQ0PFsPXppe9erqYEREND5aDpgVhAqYDE6r9IvLf8zyQddMrhJTjg3SM+RAEfpaRyZl+8FwPx7deWGJpwqoCFzjyWFMXWeQKIrTV5r7TQS4grW9xlwqqIFvO/XXc7co0yAztvEyMKIZgH72kB2VL8ezcpe9Zxvj63XCBUN4M6C2+32CPz6lE6vHJe7JK+6z2hXBQI86kBZ4iJEBxpJJ7AOySj7uY9X7T9AIJDWICQd5WV/Fk2DgfcK5BKaQa1+9POk4EdgwMteYtjfAwjOAQKJXOH3PPKeokzGfwYMVGUuRagfTTT6NBIyGr2BL+LGNBqU7hWksHnPWFZ1VH4szxfKbTabI+U2C+bYNldYbItTina4sXcSf3r5kc9UkMmjlBL3tqjenhfrMaJzjOVXkI+nnozOXPd7vefl1abvZWgBoX66x37l2gzfVCgBTV3nuY8JjiUaRwffBOcO/iVXV1dXR6DbI1GSX8kXIxIjXab7rhMIBHwPEG9jJbeVLLjOXap3p8HAdwAClXF3BbwkT95f4iWkjjiHR5XCrIAABbFa8MT/fn1GMTKPjwADaxPbkIxmAgM0+lIaCvf5faclkQAqOypI1YtK1EFuDwj4MS0WrCI47vU4oEkRgUp5cd6fSsy9IX+GCwN91bjuVeMg8SSVo7r4VEF6bm15HjkzTOfnPZ3p5268uFZAOwze3t4eFhByWsD7Wf3ID/WoPEa0EhDwNslYev1EHg1Ia2hYJxlijmfKlxtrjUeCcRHvVcBXUwR0SvgGTyVflOUe4P0I+nbTBDNGtRLe9EvPVHny6NdHz7A+fq1nGNxwVP/1LAXPlZcLTVKW76EKCMw8N4OmP4t8QNGAuQdPkmchQ+FzfYm8z0cIXUrIPZgKaKV7PXDGcqgstdqZaWkYCRocbCdl7Pz29iXFTUDQWv3VS9Yl0ciYO59YVgXmyNOvcoSWkI+n9D8ddZ7k1O9L/v3rmVovoFcHFTlwELbf5w8CUc4oGz1eU3YplzoSqPq+HSJFKfTz+4pC6XmF9rlRmIMC8j7JqI8Xjw6oTtpPxJ/1NTL83+PVOfTtwECFDHVMv6TQewY4lTVKu6TuPsCW5N0DBikPKkAPq51DHg1IP6XjM55H1bY1iGh+JspB4pa3NDo9fvQAaeJV5XF4ee7dU5mwXObNdlZghJ6K11WylTYSYh2VrjLcXg7bxfqmaEDacW7WWycPRqDY5XPtaECPqr4keOP1JI+JqKtovAQEGBkQEGitHda1OPBnf7le09ii/LK+Xq/kKPFea6dgwHmm+nAdjuqadjIkAEj3mW/ibQU2Cf4Fmnr9QeChYw8MnkPfZs3AyGDPAoFzDHBr2XvtPVuBlgQEUtoUQeDCG56Ppggqj0jpKw+ueqa19ynCSjDXUq40nkTbIjdKrR0r1taOgYPPK/IZHd1gsi6Jegqc9Uyg19OnOnu9JBdUTO45s/0pf2+fezEkGim+neFeeNoTgd5lej0r8Z9jIqVNIMENAK+tBWR7ejHVrec4tPbWDy63+lFfbDbHiwcdBNBjVh/tdruT8mkovd7qU68Lo3b87+sBWsv7evg+BzoqIsD06m9uEuSRqQROCGQoxz3Q6dMdCRjQ2VDZHHM9UN+LDo1olcjATOV6yLYHBGYbnjq3V7fe9WT8q/xoGFzR85yd77yQMI2iAK7cvSxX4t6ujwIEaylSkSuc5DE42OXg4nXynMaK+T4/Px/CflJ4vRB2kolK1qkYNVfri/lcCaqNpApk8D7nOBO47fVrzxOn/LFevomQrxPwNjByIsWsEKzqx8iOG8CefL9X/j+SKl3F88pYpTSV4XCdKoMqMEBgoHQEcD6uuKkOPfU0HthnzIcGX3Vyz9/tAO9Jjn0c81Vh5stV/zTIlCO1IZ17xKDiM9uqa2mfC6Z1oOI6lteW2ELRp4EBr8isYaiEuqccew1PzKrKXIqkRnUlVd65D+w0d810SyIYTFeV7/do7Ho8rYz9bGTlK8lD147gU78TjHm4nnmQKuNBJZWiEkkpuOGnMqTy4i/JXFKE3rbX19cjJdgzJF5nbz8VUWqve+TJKLhXliIArvz2+/3R52N9QyGvK709Amv9H+1kuBb1dAP/j/qQ6fw/vW8Zf00VCBQoLflGg1npBwICN3StHe9X4XWTsfY3BpRvpX9pSBMRXHsEykP4buxHUScvR8CIhp+7FZJf5IvIx4r3beXUzNCnfJtgRmCrvEb/02+mDEdN/kwaPDM0AiOtZUM8amtV/1FdPGIw2z8qwxXjTH0qADBb7ldQqiv/J89G9/nTNYaxeZ8bAs0MRBkuUVJqbvzdS0uv+aku7o2pnjqvxtQIvKS2+fOVl0Re+9QCowD+vMqn0qScp/bqGmWacv7vRD2dUclZBQiStzojc9yGW+Qf8FEZBA0jHZGArO4l792nESpeuFx5pMkjEiqHi/xub2/b09PT0bhxHvu6h5Gd8TpzykV1cF54nrORq9l0HxYZSIZ2KaXnnXEVmtXzvfpV15YgqRnGJiSc6rCUVz2vNCk3BwRV+R49SfecZtKuafxJXo8KyKT5f51TobgyJDAQEPBnK4VIA+lekUcDEgigcmS+qgM9/eqX2ss6OC97YCApSwdTIuVNufbz6rlkyHtjwGkJEJhVpp9JI2PfO2+tdia8r6uokyIDOme+7iG7QfT5dP/PerR2um+EAwGCAT5bee3pg0O67qCAPPBoU5LFBFh9+jY9R2LkkaCAUyTUPUlfsz9TnWbowz5UxOO5RmCEdNN9V7Cp8clwpTQzSLtHvWd6QKAXwnfyQXRu3Xptde+rqkcycEsB2VeQe/SOrqu+dwDq0QM3WIlnM/JGBSkl0FPQ1X/WiyFJb6Of03NO54kXDhZYb28jeZPKd754OR7tqkCnh/ZTGbNgPhnTNagnP9RpSWb9+UrGe3LGKYI0X08jmaZWXCd4ROjq6urwBU15+gnQ+dssBBkOBhIQ0AJHrkvhGypVhEDt8u2DRZR53dPU1CylccnpLV9s62Dro+hT1gyMDO8sLfFmWG4yUDNKOXXKknqmOrFuS/JU+srou4Hz81F9R/eWhlF7aFXX1wIDrZ3KJMNuFSBwY59+nJdWHlpA6FMATr4+xD1lKr20C5xPE4jck2HbqFDc8PeiR8lI+xsvDrSS0hqNYwIMKl7vD+atcn0BFtck3NzcnGzrzPFC7yzJ/Zqy61TpqRlg1VqWL/8lEOCbC1HOeK68ZeTVZzT4lFfJMIGnDGFyNmciSaqPDD4/eewggYsF3dgTFPAep0Yc6FZrYHxKMdkrlelTaf7Gj0/7fQRA+NQdCJOBmMmnBwLONSoVk5aUkbxhtsmf8dBtj5YCBR1HBtvrm8pxQ0Ie+Da4VX0+C61+JI2MUFKyfMbnKaUoZIiUXvx0Y0/q3WOd/NirZ2t5UVHKz9tVeb7en1TmqQ1UtDxPckEPU2Wld86rTw0viUIxrStn1VtHX2y2tjzPyEmSlepZ3iMAcLCp7w1wl0H37HtgQNf1DN+wkcHTrp4JzLV2uj6H8/7UrwkIcHpgt9sdTRP41EGl38gj7iI4ctLIG8m11y21lf2j9okvPePfGwuz9KmvFrqynalwUmDqkEqR9/IdRQVSWSPAMWNgWzudH+ul9Q6uyIW2AgazwuFrGjjYOUAdiabBMBLMjxDYcyh5D6pnrz+cN5TF0XXmk8qgR8q07jH4vKiecS/L8xExMpE8d5d35lmFTyUXPp2h9JXS9bolg60yJG9cAChPj1Mq3rcOFNzwMJIgoKF2uzc2Mx6/miqAyGuzzxPQ8q0B7Segn8/T94AWr6W5c8oRn5PTQVCdyKfU/J4bXHn+u93uBFD4GgLPR/VwMODAQ+kcjLA+ft3r6232SBVBOwEs9ZjzeSmI/VQw4IpwqVF2ADBTXsrbmVWh5VkwMNMGUZpndkPEcDKNhKNMEoWC95coLo9cJGGsAF3P6FdKdG0Pq6KRZ5V+nDvt8XHU5l7osBeNScaA96g49HODR28jGVjKoIMAf72LeTIaUIVinQcOPlJbW2vlK5DOS557Ph5+9VfiSFWdv4oqXaXjCAhQz3h69iennvxDRAQCBNM+HVXNkzPETV3oOi6BXO9flZscD8qYDH2aHiCwTOOMoEX1on726KmeccNPAJCu6TkS9a7ax4iJOzSua9+jY7/VdsTJGFcGukKjaTDPDJTZ+s0AClLyFp08TXqGc5k9kNCjJZ6Dl1nNpX5k2Z9FbmR1JCirAGAyBgkcuAKbmQZwSkY9Xfd2VAa0qicNPL0OPZf62ueU04Iy8TPNy0rx+lbCMhCsW9qmdrN5+2hTUoSMSrTWjhTuEvqOADYB7yWAM+UnfsvQOShQ/7qB7pVV6YgKJKQpGaceOHa+pMiATwdI/ggEEm8TUNZ54odHCzwK4e3tAV8HBIxqpTVIKSJMMDFLXzZNMEpTKa+eAFaAIJU/MvyeV5W+l8fS9iZyLzPVTddStOA9devV1UGQ83ktz2mWVL8q2sF2jbwxXnPFeo6SrqICrWVgWHm+qc6MBjgY4Hv5PKcCZD4ppOybHqluXLglo0LPrjfVVbXZjY0rYN81Lsko5cDL9vp4X3x3WqJ/HNxdXV0d9auiAwIFIyBQEUE3w9pJ1pMO1rEyeMljrqYDePRnKj6xvgkMsE4OApJMelSgAqyUdS1+5fj0Or/HURN9i8jADBBIHn86Z9oZz98NAfNYEjlYGmEQEWFSwFJ+VKi9gZPKOTcKkqYLeN+BwndVnJXBVxsTeV/0FGl6xnneq0Nrp3OIXpfeGKjSEwAkr4J5+Apu5pW8RwcE9Oxvbm4Oc7WSa3pIVLA0FF43emX0lkQOihJQokIfKU2CiO8iyzNjN41P/58crwTwHOwtWSswqtdMWjd27DfxIqWlPPm6lWSckzwkvtEIExi73mDZXofW2jQQUB00Xjl2CQp0T1S1ZSY63drKYKDywHoRgR4I6OU/ExVIStA94pn8nPm9KIADgVE0wkO7CTHz/zlofpZ6xr8CK2uSG4cZbyfJYhUJUBmjaxUvqqkGlxMp8FQHzoenKIbO+VogP96SvA6l9z3quQkNP8GqaACjDZvN26tmVJKMBvRkidENtkP59cijAbqWvDl/puc9fhX1HISeXqrSU678DQJ+jIgLB0WuK8UbymcFZtl/PacvAT4PnbM+3kferwSIvO+AUfeqeu33b5sQ+Th0YO8AX+esc49G/Vh95ZAgoyc3ib50ASEpdX5POc+CgMqbY1mj+rJDl4CA1uqw7kz5PSRXhbc9Ta8evTJnBWYGAHwHw++UBnfvXrqmwc9zbvqT+m8WCFR1qYx/Agl6nhEdn+/khih81j/EQh4RhLhCd4WoH6MABAYjw0/qefHKqweGlUfy4Pw8GZDvKsfVtZ6udd1TTRHwLQLvb9ePFSVAwGeSXFGeWef0fGX8/V4Ce37fx6ePK7WH6atxMNLv3n7nU3q2p8d93UPqo1m93toKkYFKCSeGpob0BuloMPSI6I1M9Xyc6aQ035/+M50PgkqoVCYXk6TrasusEFQD3JFt5RF4f3xHBep19PZWiqr60fglZTbqfy+vAsRJietcfa5yk+F0r03Pe3Sp4gtlUhEBLhzk6nNGFlprR/n3FDvr5aCZK/0JJHzXOIZ/Ka8MzzpPdN29xspgrCXXSw0Mz5MsEQAoKsC3BnwdyMw8tff9qH56hiDagXWakyd5H6f+8imCXp8m/cupLwIKRQd850QeyRuPXM3KEvmqehCAs528zzG/RG4/BQz0jLKOrpySInSabVilUJNyVb5UsrNljCIHPaSXANBoqkDXKWjpvKpvRZVHlf5XivE7ggBRCjFWsiBy8JOAm6iSJzfGS2QrlTNDPk3ghp8yWwEQ5iWl6EYifSQpKVlfyEce8f7r6+vRwq4Z/lDJzkYbKvIw8ncEuCO547WeDmRUK0UE+HXC1k43JXOiI6Ly6Jh4WN3fQtEUUwLV1HkecevN9zsI5nWmrYA5Pw/uoIOggG3SbqQ03hxvHIuixFu3ERpbac+Q6neOzH4oGDgHwaaOd3LF7Ocj8FGV3QMeqZxe2pkwUQo/pUHLe6wHB0QPEMwakZkVqLNKmuAopRvx5jNpVHZvUHk4lR4Vt2f1ffmdKhBFI+rXq/9JwbkX7B4wjZ3q63P6yXh4e6nM/S0Clevlp/FNOVdal18CGN1PAGYWCFRRgcSzKsqwJiUD1+Ot89FBgAMAbjZEYy1KUzLJqHo90tRa+nl57vX2+thtg/cf/1cA1QE/60ODrMWxiqr0piG43qFHo/vep66TKBvn6tkP/Wrh7H1neq8RMyg9eehe1ozhnyUfCD3qzflU6Srv0728NN80I3iz5MqxF2br0VogYLYO7M+RLHleDBNW+dIAOXjrhSyVRvLLsC0VgXsDVV+N+s5BgMpMkQEqcNXXDezsHHzlzSSQ7HpEu8KdQ8lonutVfRb1eKb7PaDIazTI8sj9zZDqDYLUN0lmR31VgUm+vkiA7F75iA+eZqnct3ZqaAlK9cEifX+EP9/amM/x6Av8VGZa3zKi5MCcS+8GA+eAgBkgkDyNj6LR4PkISp16TmelQe9C7wDAy16iLJMB0/80mEbRgu9ACViN0rpyo0FurR0UmT/r/PABnhZWcS6cX0dTev1XGNKfcxDgHkoql3X2kCYNRgIDrii9Lf6FOI9MKC2P3laCip4S9z7SWHDFy/SVbqlAky9UXIt6hr46J1/YZ/4JbAcCNM492Wnt+BsTlT5P0wQEJQlAjAy40vT6tQIHzKeyS+SXogKS69vb28OY5M/HYGvtxPhXDhv1RLKHo7o775fazHeBgVkg4Mg0MV7k3iiPTDNTvtfFUWs1eHpUeY6OLFNejgRnwEHPU1WeiR89sFCVwyPTp0WE/w4gQFR53fpf/dwz8CmBJMMVIGBdlJZAgbx1r1pGVc/ot9lsjubNKzCQ6qR2pG19UxTA1we40nGjn14f7AHKpSBzNF5Tm3vkdfS6fZdoQc/gV46X/nOOnobYQZ7SMp/Wsh4hyGA5FVDzsjiF4FMEPDpJrpPRdB5U/Et8YvsT/7RwVlGC7XZ7AgZ8vPMax1tK2zsfrQnjdIEfZ+jTFxBWStaFprXxQr6kMGaVe0qT6tqjirEe4p/Jq0c0ElRq1QCpwElKSxoJXPKSqnrMKMvvBhKSIqlAY1JerdURoEp+e8BkRJUR9cVN3meuHFi+v4Gy2WxODISHjr0+BC3+JTj3sHuenoMTV6DkWdU/5xrtGYCyJlVy6f+Z3p91z1xrXtJ6EObBvFI0zPV5Aowp2pRel+0Z98QT18l+7vPpVRrJn7cj2SgBAck8Iyuq79PT05EMaUxQxntULQyv9EeyeUuAQGtf/NVCZ3Dq/BRG5THl3xsoPXAwAgTpvAcy0nPVNTf47Hz+d0oGQM/54sHKK+RzFQhgWck7+k6KcoYSgBqBKioyKgsqUaYRcaVvFapmWiksD4vTyO52u8Ozuja7XiHJOcmVXwUEnGeqJ0EAPwyjL8X5F+L4+dZexKCnyMhbyr7zXP3S86pGAHhNWU8AJ+nVRAkEqE8JAjwakPJJckQ96NMQ1TUCAv8ssusuHlOdXN8lsOt1TLxMAIbXSaq7DLtv4ezAl9MFr6+vRxtyiR+9TbOq9RIOsgiiKROfEhkYZVgJqDO7AgLueSZPtFefJYCAz/eAQWqXU5r2mOGXh4f1DI1DpeQrwDRL5G3Ka7YvlpS7BKF+NXlEqqdQ+LqVA4FkVEjOg2R8K6Xkz1Lp6H7PqLpcev2pqLnLYG8xGQ17Wk2t8tRGlq/0XAD4+pq3H05TKf6Od1Levo6mAgQ0Es7zpd7VR1PSZ/zPdJWR9vUBPLpOTnmNHDF6/Q4C1B8+HeBrEyog0tp8JLQaB6+vr6XRTfVN441gwtvsU2pa2+NTZzT+NODV9Iuv12rtFBy4o0FZ9jVFI/qwNQOVIFVAgDRC4xTIqkxemwUuVZ1T+6ry6OHTG0n15f/U+RKYmTBSz7OfeS49U/H8/ydy5S4D1FoNIDngN5vNkUdDBaQBTOPYI/dsenWW4dVzaUxVXqwbEo8iUYl4lMK9N1dMWiyoiEBaOOjeEcusvDu1kVEEelof4bm7F+fXHRCvQSNHaAQK3MilhaG8nyJNbqw5Ljxf/tI6hPRzvZr6wttd8cLHt4/j3poHH/deF5cTPZ/W1+jZFBnYbE6nwNz4K2+uFSJPWH6KjnFMfwoYGBnHhF4rJrNhlcC7cZot16+l8ntAYCkgcEqgILWvemaU9r2KyaMLydtfUwF+BrlC6Xl8PSDgHq7y8i+hJaXD/FlOig4kL8UNoJQKDXhqtyt5GX3Wgwbe5YHP+4LFtFAweSvOXz3v0yIsU3k5WEv95Hk7D3xdRUUu82uPgZ6hH+k7GuXRB4iSAUz6Wv+Tp+/yS6DhYMNfS/XxNOLBSK+LCHL5n3n1wArz82cT+FFEQGXy7SA96x8b8ohFAiIVKa2Pbx0/BQwsMcbOZL+XKjdb8Z4x9/+zYKB3TO13osJi+qR0KsXoeVHoKp6MrqfQ0kxeM+BsKa2pVHtRpR653KSQJvkyI8OVsqbCJvgYhS9bq99K0FF1dMXmsk4vhWF41cXz5Y+Ri4oPylvy6CBH9eR9ej6eV++/8k0gjdfTNsYpMrAWJcCTiP2bQGZ6PbQCASy7tdONzSoZdgDgmxcxPe1DFQmYtQW9+wSzPT553Ub59tqvNmy325My9bwvipVX78DYoxkj3VJF22ZoMRiYBQKVESalgafrS+rEctO9qp6jtlX5VDQTBRitCXCl5+lSGT1hSYBkVrhY/xlwUuVZKZs1aHZgVIC28hpaq6MCrb3xvPKo/IuAeoXJPY9qPHmIsQIFapvPpzMtDTBBENvIMv166n/9tE5AfGIok+XTe1I6Ku30hoErTgcfNPipnl5nr/8alHQo+6LSx26guFiQ/5e0LY0FGnt+t4IyXUUH6PR4ZKoHrCtb42nEH4KBlJfXK9kB748UFeD0gOsB6k3JroNipZEx9+2207Qi28Y1NuRb1XanRdME7hHNAgE2tPIseK2iylj3gEfq3BlAUF2ryMP8bjwTIHCqOo1eUyqzesb/u4COlKKXybZUdaqiPmspU1FPaYxk2F+FqvJqrQZayXClEC4//iNAoGOv3B6NQGpaO0LF4mtYktxQ8Xr+au/r6/EHVyg/zjcpQylNAgLOkVKR96bnWOdqhbbqvLas9igB0MpAyPC7jPkc96jNBIRpXKRyrq6uDh8/SosLU/8zQlMBt2qcUne6ke0ZQwcB1TOpHIFajuNeZIlgV2/YtPY2baDommSfiw1T2xwgpKibn/doGgx4WLFSon4/VWZpNKAy0CMBnnmuymMJECBVoGCUlwOtcyihbK9DlXYECNwYJEDQ68M1owKVLFZAsvfjszo6Cq88Aq47oPeU9oZ35c3XGJ3ocSRvq3qmkgvfiGgkj1SmkmMfbyMlyTL4zQTmz/yqn/O/Z2Q4ZeD1m3VQvopmQEoFZD0C5ca5epbGW2l07iBAgJXgVef8oI8bXvZF+iVZdl545ErGk8BPdXdZIxhoLX8vxp8naZGt15nnLudaROhAlosLlU6AgH2Qog4kRgrS/YoWTRP4QHdB4j03Hjr2QMBo0FXljJR2BV48bz9PTHRlU1EVhh0BmPdS8rR0fabeVb0cmSdA4IYxPbMG9fpT8pjuUeZFyctg/umjTj7wqZjlPd3f358AAs650jvoRdcqL97b69d0rGSk8pTY90rT45HOXW5YDyrE1t6+iqf938nPamyn8dwDxeTNUmflM2kGBKT0AgIOCHx6itNP/nyaEmOEgIZecuwfP+LUAetC2ZHh9E2rfMogtVH/eeQzlDGXbeaR5MnLUp6yAdU0WaqX9gmhx88IFw2/r78hpfUA1bhdak8WgYGKSV5wT+n2wiepTD+OztPzo+uzTJude0nUAwKORtOzrZ16oSlNa/WX65juvYqOdZntz7WoBxTTfU872+/ktS+4UjlUxre3t+3u7q5tt9t2d3fX7u7uDt+Wr74exzFEJeqKSUqD/eSejY9J98bYph4/+blbttP5R0XmICyBAqZ3AyVlmfqVVIVOva7kF/NlujWI9Uh6IOky8t/XC/ji1Ion/kthfn9DQbLr54xu+XiQHOjVVG5a1TOKvX53G9Nzggi0R3qA+WusuMz42oirq6uDod/tdkft8qkAXlceHrXyqQGXUY7xlKZHi6YJeqHskbffMxREbyn/HgjwYw+0VODF6+L3K+/wXE87lZUMT1p17fdIleCnKEE6n6lrigCMaBQRWZuSrLhXJKMsYt9wgI9CeMqbUwUCBff39wclKkDgXlQFBOixuffSM2o9cMmy0hx9GqMVkJrxXCgn4vnr69uGMT4dwXUI7I8kawIQvraA4CeN/crofiU5X6qj94175P76n2jUDxwLjDD49JbkVgBX/9P0hBtrGUoZTY0r1SHJsYMK5ZfAZGqn8qjAAK+RXz4uHJxxjHskxqMfz8/PRwDIIzFqhwNq8Ur10DmjdL1p4kSLIwN+zQvrheJmKlV1GM9TB1edmNKkcj6CKqPnCwYrRO5UTUlUiwBT2CpFBLwflnry7+3jtWgkOymNyL0B92RT+6uogJSDwqoEAx4doMfd2ul3AJQ/jaF7ESlC5JTm0lOYVrLsnn1qowPqBJKUh/PcPSDtAe9fhnOA4vx3wzDyrpP+SWPmK6nSY26AyH8P5xMkeFrmzXMHFT614NNajG5Rjn1vA/a9ZPnm5qY9Pz+33W53FP3hRls9nig/HSX/LKeaJvDpLdcHDp5Yhub5vS90Xc/rPwGBZPf6+voACnzcUPaen58PvKhsw3voXTsQznj95wKA6thT6Cm/0f30n1Qh6CrCsZSqELQErNfps0DAr6c8/HxESxXkmsqUfOr1vXsGs8AxGcTW6rdvKlDg4ECRAe9nD7e70XQD5mHG1k5fQ2LoXfdH5G0hL8i/ShYTpfptNpsDEPAQrJSr95napf++EMu9Ld4nv9aODFS6UOfutZMP1Vx9a6dz5E4ehaF3zzdfGBUQGPApr/Qqo3jLcHkCkNSDrZ0u0Had7NEA95YTf9nWxJsk38qXEUOPAqTFmz4FQtB7dXV19A0SB+buGIgfkl2OqXPk9d3fJqi8onPzTUrYr1UDI4GG6voMJYHz++egM3oz3sn0vPTfnyXNePmu2M4FbSntd44EkKiEZox75TWQqrxcseiaK2z9p2LlT8qXxpSfSqURkEJx46h6JuPGUCc9dPeoXEGzHSl8TAU5kjUa62TMCVCen58PK7c9MkBvUjxjXvSmVG8/92iE83ANqsplHdkX/taAZCIZtqoMBxQEFnxbQEBAhp+RLU15EeR62R7hcv3k8lvxgO1IusnlyKmKDLiMe5kag94X3LBL/+X9+wJJXd9s3qIJT09PR+1xWRfvvFzKvMv4DJ0dGUhGqDdgKqXp5zMAoELLldFPwGBEvfAZ2/yecI06z4W/Wg8wq5BoPEZAYAZMVGX4+awH/tVUlZ3AZPo58ncaIXL3Pvg/vWZIMMDBT7kgoOTPZbLydB0IsF0EojSU5IF7QA4EVB+fn088Sq+6qXy1id+O5+djk+IehZS935Px+S6UdJaDJgea7A9640l/8TzpTPapAAanBhwAOBjwV2TJY59zF8hT/4p0PY3X1J505IZAicd+dHl3QJycNPLQwZeiAIwKyPh7G1RHyrn6QWUxkuV1SaB2hs4CA8m4JGPlKGpGKev/yLDzuR4YqMJhSalX9eoBmfcCgtZO1xQ433j060vovZGBXh16eVLhrkU92UtgMSnFClRWIDM9kzxohl79J7nw8P9MmNcX1TkgEBCQ4qAx5XmKZjiI4X+vF/PTf5EDgdQHWmmt/D0akPhMY0lFLOpF0L4TjXQQ+8TBmIyHA7TW3trKqRddFzFf7opJIKCfL4AVKOCuhw70VB7HBRfRKZ2PNdWN9awcKALSkQ6twJCOzhv+14ZDzEtRAebjbUyAQMCfMk8ZTsC60l1LbNNiMLDEkHjYQpTOq3RLwcDovLVx+J80SjNr6GjwKaASEvfkqjzOoVmjXd0/J/13U6qURT936vX5bHsrA1XJcwIN9Jp6ZfuzNPZJZlLbvc3Kh8pX9fK5Y3mLyaAn/qRwLFdep1AyX7N8eno6MWytvX1nIHlSKi+BncTHimdfTRXwTPLi/JTxSe0ahd75jEeuGBEQGHh4eDhZJ0AwQMBB8MkyWzued5cMuq709nq7ePTzKp1Hh8gD6mjVyR1igVQ953X1XQY5PeJROUUZNOVFEFxFBwR0CeCX2ouz3iaYVfSjQVUJOs8rBVode8+3lj/QQhqFfL0tRLatjQ225+9RgaUd2AMjLrBLIwO9fq4G23cDAU7J6FGBUvH5R4MqZepTMupXhkWpEN2L8zJ9P3fmXy0KpRIhVbLFseyL6zab41eXdK2qq9dZ6R10kT86+lRDWnGuqQHyMvFAYVWus6DHmfq/IsrFR6/aXkKV3qMc0XvnfgLpw0SjiJKXy/5UXvT+7+/v28+fPw9ggGsEuP8E9aMcHm9bFeHwxaQeEXJ5qMaI2y836oncgeOzCRxQZgQCxDetGeAbBZvNv9YKuA5ldMD7TvXyvTa8/6p7FS2ODLhCpDGqDNOMEfeKJ0PuadIzvWcpNBWD0nUXNlFaudpTHj4QaDiqMnr1dEVN4eSzPWO9NNJzDnEgrkUpJMjzSmZae/NOpRCXtsUVsJSd79DGwe71psKpAGsP5Oq6e1ppiiqFVRNw4dbJSek7L9PcJo1Yb25ZgODm5qY9Pj4eRRLYNqfn5+ejaQV6TWn8VHxbk5J+c8OZQBp5NAKzvlKd8sq+594CAgMPDw8HMOBRo6Qf/UuS3jY9J6Cq51J7VT89m8ZJbw2WwGYyxonc8JOvkkW10QG3rhN4Ky8BhDTOuGhY9dRrhq21k0iY2kybMEOLwEBlaNJ1nlcoZQYMMG1CPxWw6LVhhmaAQ5q7GQECUQIEXnbFV6+XG9uZNi41+D0gMAKECZR8Nc3IBZWsBmJlnEf5kKSMk7KWQvNQqnvRXr4rvRQVSGNC8ukKjVMS/o0DgqAqcuKvjUmJUzbT+K2iMWmqgO3WNYZdqTzTwqseqGdfJSCzNvUcJfafe9UpqqU8qv/UP8rH+zq9WshvEVAmXE57bWTZlH2PpDnYofxqLKgs9+hFul99m8JBBd8C0PM+dl2naxxxSiCBfl8n4KBH0wQEbgK6nDoYRUl6dNaHisjUSlmOjPQsEBgBiF6eiUZeagUCUjtHHkWiXhTA03hoq6q3BJB16dUrDYx0f5Zm06+pXN2bdmOo6z5Y6X0mZTaK6FApuxfsewpwu1YHBTR+Um5JYSXjW/HdAZzLkcu/Kz2vp+ebvKiUXwUGGGVI31zgLm4vLy9tt9sdgQOtIFd6BzjeXx6+Jv/WmipIdUmgQLLl/KzC6S4v/M+2+rhheUmmvR+ZJ/Ol8XPQSQ/bxyHLYBvJF+XLHUEdLFMHOHjgM6mOifSM10HX1S5uLMS8KMsEtORxyrO1tygB5VvEcTSid+1AKCbofvJQZ416JeyevqrbzDUa4mRcExAYGeBU5qxx9OjAZ1NS2L00/79Rz7typVl56npW5AtDdXRFRkXnvzSnS6LCcuPPtlVAoJKtFNIfyaHLUAIjFd+9Tm64fJ5b6Xz9hfghELDdbttutzvxHFk3ThMwJEveORAgL2YV6kfTSB+6vFKWqj71Pky6zMtJdaG8prGT5KvXTo8KqD0j8FFFkuQ5a06+Mug0sA6+HYAnXrLuHi12EOrk0YDtdtv2++MvIW632yPwq7wk/+JNFYX7FDCQzj1NQpLpPOXZAwvp2iwIcBoZ4REQ6OUrSp65d8pISc+CoSV1GynujyL3NnoK5ysoyZqDgUqZiRixYT5ejgMLAYG0UM5/s0bZy0vRpFFeFThM8uH7xLu3TuDjPEv8Su32PvBrqpPK3m63hwVaNBD88EsCLDJODBMTaHDhZAJea1AFZBMIIKiq+p7yknRCFRFgn1TAs6fXe22r2uQRJPa3wIGeldFUHdW33Na4inITFHCdyW63a62d7mqZ6i3jz7IJSDl9pv806Dz39qa1Da+vrwfQw7HlU30ztHjNgCoxo6wqIZlBu9W1HhDp1U3Xq0V8rWUvr7WMrHyxHsvRfVKKOvTak9o2SpM6vvLk0v1zyq3K+w4KlNQDfskAuRzM9Cs9TQIAnxrQQiyGxNNiL1dY3nde9ypSlRSfh0g9NOrlScGIXMlSGSfee70TOWhgf8h7cu9fPFV49ebm5nCeaLPZnLzbzXqrLCp38eY7UDLK1TqOFGVq7U2GHRBw0VkF4ipAwPq1dup0VKDK83Lg7MCAUwOehm3TudqlejHi5HUnX/iMDC6nPSgnFeCRcSfvfIxXkUIZc0YIuJeB+Ok7K7JeHrUY0dnTBK5cUwimMuQJHPgzXnY6pvQzBix5Ua1lo1+FbVleFRri/P1MO6u0S8mV8ggkVFSF1Ubpl977bErKzAdiNVBJSebZx37fy2GY0xWgG79U995UQU8xp2ssw+fj1TaXIckVFZHaXQFpPcujiOPQF3npGsPE9KYq70k/RQ8UISBgorJVPcgXeW/ii6+f+EpyGXGZSq94kiekBGjcACZA6LLJcSJyuaQRZqidK+PZPubvixUdLPs5Zb+ySxUQ8R+vU64Jmqjzk01i2Qk0UMaUf4occtdE9gevMQLmUxlexxG9e81AYoDS+3MV41nGTD1m0pMpvShAr74J/SYPMy246XkSqd7viRw49Yy/C9RMHWcjQVVd2A9rkfcvlYl77tWq9ipP/vdQre/Ilj7kkr5H4KCAyqFXlwTg2OcEipUCT4Cj6v/dbndI52CqKt9J5Wqe171U5kFjQiCW+jRFSlg/lUniuCWv1gIDFWiswuZ8XZUG26Mb1FMO8kgcN254Ux9zi2gHA5zzZiRGRwc3DgYSYGf7XI70FUTNravO3hZek74iGHBZZD9I7mljKJd81vW6gytfJEjecmqstbeveCpt+uiR13tEi94mWEIVABgBgtk8e9fS/8qIc17NUWqqlzrcPX8PT43aMEPnKiAqMb/mCq4y0EsBQC8S8R4w8RGUZCMh9fS6X2vH37135UOlR74qH70xcH9/3378+NF+/PhxtI2rrv/8+fPwMRfWl16V/0gpMuE00+9sWwIR9Pj0kwHvgQH2A8eYlJwDdXrurJMU/G63O9rJLYW1k8LWucuCwrDcKY7Gge91fzVVurS1dgJm/bW+1t747+BKedLYcL0Ex0YVlieAlFxQHlo7lWHxlJELjwakqQLKjcrmK6dqg+Tj6enpICc05JzO82gW5VxUjZUK2JInXr+kl1UnyZwvfuXzLKO1dpBXPaM8qvr16OyvFo4USmVIExCYVWDnEJGeE5UChYzpXfhaayedyk46Z25xKdD6TEoRlaXPfzei4RZR0blnVUUFvG9pcFo79W7SBi2+hSv3dt9ut0fKyL03KmF5XFRuHvFxxeTKxO+l963JQx0dGFxdvW2y0gOXPCYPnB4O9QSflbJ/eno6/LSAimWTX1SQIq0bqOqhOurnz38VubNDvvgiOo9qqX3sq9bGi0VZhsYGZdk3myKgEOgSSGvt+DU7/tw7TmDD65n2m1AZlA8CAkaAPHL0+vr2ESOW5cbb+ePkRtvbnPIQ8FJduHjQn1ed2U62g99AkLzyjZkZOhsMzBiKCtEmQLC0/PTsKA3vuwdDpE0E6vkTYS6lHiD5LM/ZFaquzaDdmTqNEDSNx1pUyZ4rIV98JRlIXhTBohtpD1fz4y6cJqBSreZgfX7VvVpX8A4EVF95EG7UWd4s9Qx+kgc36LxGJZjy4LMeAiYISB4X+8GjGVzclf77FI1PJ6xB1FUeXk4y3FrfGUp5kh+VDPPTxD4d4VMRNI6jclNkKYXME5DlmgRODwgMkA+cZ0+GWuUyz55R79WNcuOAKPGBawkcyPGnVxCvr69PPu2tcnVt1rZ8WmQgNbQHCM6px1LDJXLUmUJQrJvSC/ny3OeEqjmaHhCoaKln3kubQIGup2uz+f47UAIAad7V781EbCgjHq6VwuRaAa4h4JfdBAioLGTsPMzKcon8k/etc4bAlYaenI40mhUPZ8ZwBRJZN44f1q3Kix6nfxveAZN4mKYJEgmQSCZIHPdrkzswaeEZo1ozkUqODT7vxl+ym74/4IDADSJ1mQMu77PKK3fDqLxptAV8BQa0poXlOhiQ5016fX095MF1LAl8sl6+NwEjGR7VSIDAdZQvgFX/6BqjAwQTDqJn6Ox9BlSglAeVlDOfjewpkVkPcsZYjQxYD4hQsP2cSMuPVV5Lri8FAClfR4PJu53l9XtphkefTe5x+Ll7QQQCDvgSz1yp0ZtSBICLBAkKPDLgHoDmPAUMWmsn48tJikb5uWFMY7A6F1XpfZz4s5Xn1drp67n8z/Q+DTdaK8A+8ykUb5PzjM+K1poiaK1e7+JePA2y5NeNDR0V1wkeaeB0gMsvF7v6fgbJW6dnrnow6qb0IoIBjwBQBtz4Ui4YPRK5ge1NA8l4JzBQrePxujgYoKxSptOYpBxTryj0L8+fb8xousPH1ayeX7yA0FEaFYzIzym8VXjenz0HFFT58VoywpVxT1MFVBYfHTokb8mHcw2pG7AKCPj/Xpkz/fNeQPPRlACpRwB8G1wCAgeAHqrv5eeAwIEAvTgqHF8JLYWUxo3LdGVUZ/gjReOetI9fKnRu+tIDKLP/K88wGQM3aFwAR0OQFL7ydoNEQ5rAwVdT4qd78d4nCQAwP5clGkoZef86IX8e0VKeyTASDJCf7HN6u6IUXXCj7waYESNd97HvIfWqfxPodICT6lJFBnrRDh8PlW1zQMVIAdc+cIzM6uJFYICGhMqmUjgJ6YyURmvtpBy/xvwrmr3nir0CLf5c8kKoTGbrIvpsL915V10b5eHPuoeRgEAF/L6KKjnUsZoicIVKpF4pUw7Q3jSBf7Fws3mLCtCr4ar51BbWsRqLqf2tncqct4+KMoEBRlG8Pg5GejJA5cr/HglxT5EGPPUtowJufMRvPsv66JqU7JpvE7R2Cmj9GkGBt0Vpk+6k7DOilUAAv054e3t7sraGBptrOjhNwLIciLFdbnjpnbvBd0CgqQGV62DJjTu/F9Da6XodX1hLWa0AQA8MJODLMZB+SttafpXWxxA31vrwyICELBnlygC4ALuC9Wc8hFIZsFE9q/9u+HlOQWRaFxI3/EnJLTWypApQpLbNUg8IVAZ8admVbJA/3wUM+ECi8aCnzn6m4VGeozKkpKsFihxTnO/kh3d01EBPkQu2iYav8r61UM69XoUcacipgJISSt4oeVIZ3ERJ4aZz7xPvG/KBawGcD6qPDA33JvBIwlqRgUqPUF4ZpieP05j3dhAQC8ByWoCvv/748ePkU8Usi/Lr01vSDZIZ71O1gbJHo0pgkX7qQzfMbDejdowyuHywPcpT13xcVHVifTw/75eUh0ciKLPi436/P+w74PZH4KwnQ05n7TPgTBkZAAqcG1tnip5LwIDlj8gVD416AiTuVfC+G0yiagmTg4RRPZPR57NU0kuM9oiWokVRr+wRsFgLBLD8WWPkz/F5hqDVP0nBVuXTgNL7oWLSu9EeFegpJF13ZerKxz3L19fXIyXs4Kd6tvolflYAnLrDn0lzsuJ5r26tHYf4xQttJcv+dFBB0CO+cLpkTRlm36afp50F95RJnqdXYwkMNEUg3kg+K0Ag2SUvGbXhuGLfMuzvi2l5j3LiUxNqK6NYrKeuOw9ZF8mByHW8G3HVtRcZ4Nit1j8wH2+P+iqtGXC99eFgwBfipIGZ0ImepQA4IHAQwFAlX7Vg3k6O9klJIdHQu2eTFBzvyRAwdJvKHg3ISsCcqvydzo1GnEtJ0D4KtHw0pYhAepNgBDp1n/NzM/nIKO12uyMZcuX09PR0UAT8JC+NleboK89f9UzTAcmI6D/HYVJANBo+NeAg08djBcb8fiXraXx4Wm+D+JWMDcvziIf0T6/eX0k9vqX7Dhgrj1TPelRMMsbpAr4KSzCgKJNHa9zAsV6u95QH03iUzN8eGc3lU3Zld9i/MvAajwlc8zwBBtqrXqhf7UyRBvKgFwGhDaTcemSAcq+prdm1bYvAgA8SGm5RCl32QokpL/73fFvrK4ZziG1K0wWV4qU35ccZRNYDAC58s0Cgl+dS6imc2ee+A7kHOeNhzUzT0OinaJJkgAqSO9xR3pLyc29IHo5CkPR2KwBWRQW8HfTIPWJBWfcxXUUFHByka8kAJCcjefCJOB5Tv1bPCugwZKzzWUX6VcQ+TAaKRkrpK53res8BcvW9A05NuHGjR0wDzvq5oaW+rPJIr9lym2E+x3xcDjQloXrzek++GEFTeQnwJzAwAgwOBlK0IYFsgn2mae1f24RroWRvG3PSommCBAD4XiMVoypKb8LRiw/2VKaDDaK09xq+apBQ6bliVxrdHymnr/bWRT2+LsnjHMOeogXfgZLxr47+HCNUbvgZ+XJZpZHXT56UK5cUGqTyoDwlheP9ldpGw+71dIXDo3vRDi7SWCX5+KfiTf2S6lB5tszTKSlkN0rpuVF7vorYvsR3EZ2BCnR5vhWwY5SAhj8Bq+QkOc8TCPB8RB7u94hAmhLQc1V5DgyUH+1IZYv0jMa989Jtmf/YzgoQMNrhbfN6+fjmNI+PYW5GNENnfcI4hdJ03UFAAgNJcN2rZjqV4QqRc5w9ogJPbeHgSgOE+aS5RJ+nZL1SW5bQRyijjwAkCRgkhVAN+DWBkSvSZMh4TM+LuGjKFTWJiJ9zqBq0VLD0sDwUWnnL/t/Hired8kngwHHF+wQsldGekc0ETpxPPE8K1NvaA26ed1LCSSHP1verydvbq99onCW5cN3sQDn1NQ3rCFxJrlvL+jr1txtFAmQHdQQDyqMHPMhPht8dvDgPuLjU+c529QBPAqVsp7eb91M/8sjpMP9Ves1p8QJCCoIPIhrSBAb4vJ5hqKYql4b1vYCgQnaqqyNkMpJgRQLKdrEus/WaoVmlVAmkK3w3DJUCWaoYKfQVcFiLeoDAPR7+rzxEB5NUmBrE/KjO09PTUTjeF9Oq79wDcsXGNQbsNxp3r5uIIe9kJAlK/HWlNNaX8r9HM57kDCBwb5B94Qq2AlPfkSog5hGe1k7fhEiy2+NfCmMnWVFZ4muPjzTcfp0A1Q2hLwh0OWG7K74pjeu6ZJxdxjSGZKcSWOrp3cRjtt1/3q5KlzNfnxojKHh5efn4aYKqYJIUHHel8tApFaKYnUIgonMNajJI1XUqdC6gYf1dCaWV5TpPxrUSiDTl4esWZto6UmYJvHFw9DwKleFGc+a4pB2fRd63XMNCg5nAnefjfcN8qXgUPdKiQCnn/X5/ssEReZ/CnWxDahfr0Nrpa4BUWlRcScH3QK0rodl+TcDYgemS/PRcArmuVF3RJ8XvZScA+F1kuPqva9Wz6X+aanAAlX4yjuITvdkemGvtVJ+7fHGNQQVG9RwBcPLok05iPpVM+H3+T/qykmWvT2/cVOA3OQwVaby/vuZXkEe0GAyoUclTSHNNXhExvhcyqgQpMbu1U0a5EPQMMevOV2pS/T1k4+UIkft8VCq3d+2zlBAFa6knlAQ+CW+iGbDxmUQjyTlQj/pUkSMCAB8HNMYiKUblqzQKefpeA8qvV38O9B55+/hz+XUlzjRplXjPE0veEUEWKXmdo/wTOYASz9M73ync7PmozsnQrk2s40i5V9FMJ+9z/TyixZ9k0PcLYHTAQUEqV/rAwUMVZXDjWzl7SXfO9KWnqQzzjGy6o6C28G066YMEzByI820I78sEOJKemqFFawbYWC+ACihtrpIEowqv+H2mWdIZKT+Gz7w9MhbcZlOdxHIVFWDn6FkiZhoJdnCvjjPtOIeqaEXysGbzqaINidYCAq2drvTnFFC1QIpUDTZdH3118OXlXxsHidLGQyzHy9IzvOZTWmwL8/b7DgaovBXJoGfhnl/ibYqisA0klSegkbz6yog4JQDh13juRo9t0JHeZnqteS0ajc1elCAZmnSd0QABgcfHx/b4+HjYNVNjnIvWWmtHW2eniEuqT6XTmdbfmHEQSfkbyU6KhEjWK/lLY7oCIX7d2ymZEp9lL/ScXgVUXkrD8h1EjejTwUAKn0oB8VUUKSAJTQ8ttpZXdc4akV6kQXX0OjsA4Du0t7e3R0pCAudrHFQG1xCk8FHl+Vc024GzApGEuAcAevk6uKuOTD9b188gR+ppiiCR+pOykgy0h+IYcue2oAIFBMspwpDCexUgSYCA4ETTXbrvhpKARc+qnvJeRMkw6n8Cu66IKDMEGP4KlSvk2dCz6ud5MvqRIgOp7gQG4usa5O0eyWxrNQjT895n3hcOBn79+nXQ6xr7Pg/NCMyMrqdhZT/rntqQ0vC++senwCodlHiX5DKBSup1BzfM350ldwAJYnwMS2dQh4g4hcN6pHoucZ5Fi8CAN0pHNcS/q03FS4PAwTca3EsbJOoJYepIghcBAiprGgbVkd4Dla2u9xZHzhr7cykBlioNeTKKEIw8/3R/zahAa2+RHN9UhWCVMpo8dsqJG2Q+p/S8nrxqKR3l3drxRkYJwKQf7/c2UqKHRTBHgzcDkCpgV/GECstly5W6rtEh8POel06j75u4uJPBersyT1GOtWU4GaBeZEn/3TA5ebQkgQLuiEnnjvqbUQUHBK2d6hUHYDpntMijqkxD2eE4qvqZzydKBjZ536k9VWSM+XmU2SMbSiebIX1BR2IG0IxAWI/OigywQlwoyPArfynk4p78yMh8FHGw69y33+S6Ae8MTTVw8CRvzTuabfkKICCAwvm5XvrRtZn+GUUG1iJGeCifvnYgKVM9RxnnM24804DlQE2gWMZb7wV7fy0BBKkNlaF2j6iiZNj1vNexAgRUVD2lNit3TkkBzsp84ovn8x2mClqbX9PgPHYP26/1wIC2yFZUi/pNlCIDKQrT2um264koywQFCXyrLQ5wK8DqPGrtzWFwjzz1fU/OUv94nWlDaAd9HLt9dF56mwmYNV2T6lvRIjDgAuDehCuo3qB3qtKMDNkov8owJeDC6QL/TvfV1dVhMDAS4ArQy/LOJn00OPCylgKAFBVY6umfe+8ziREbN1rs+9be9hFIAC8ZX6Xlkc/zug/a5E1Q4Y0iOsnwkqpwoadXPapQuOTet1GtAIvXj3VxkMR7Kczp5SyhxCcn3weFSljpe57fZ9N7dF/KK02/cp2Tb/bjX9AUWJVBUz6+UFNrT9iXSbdUQNzb4rLGa0nvprLTmORYo45gHV3eqwhLpQdc3zBffpr86urqaFpR/dAbNwRco+mNEU2DgWQovMGVYRx5jJ6ve7TnAgLPuwrjEghwmsMjA+zAhFx1TgGcUWo93i5pZ+KvRyd6dTmXz2sZ+VlSn7gBdw/bF/UloLvZ5M/FVv3n6WhYKOOMPFFh6FgZ9oro8TN86sCIMlwpQsm85816OFji9daON3gZGauk2EZtZXtJBMjqYzcQLhc9g7AGJQXf2qnRaS2HwZMnS9kTj8RzfxtDUQEHAwSH/uZGeisgATLd81fQCTZ6ThSBQQUceuDZwUBVTrrn8s/x5eVVrxIrQuA65vX19SgC7aDaHQuOl6UgQLQoMqBC6T3p2POYeuSKI4WVelSFmSrUqGuqq4y+TxVwmoCCtt/vj6IDOlfHEeX1FB/r2OPJkudaOw2pLaWEulN5S/roI8DOe8kHpr9NQPBXTQU4eBBVHnVSPgkwj/iTAEc18F0JUPGnvlT7Vbdq3YHWwMhTUd6iNHXBMrko0Z8VYKHh9vYqHSl5SErnekRtdOPk0U3lRaWepl/WIO/XnqPhTpQbjhStVB87ANBeGdKJrb31N8EipxhSmDrZBnekdG+zedvLgHlUcu56OpGPR9bBx5CPFxrfaurDbZnLmb9OrHQu17Kxad2Z9yPrpmv+PYNZ2V0UGfCMiXjUMFekfIZGmB1HwVK62ehAYqbX20GLnnMFnZQhy01zVpWApQ73NrxXwbiQJEXL8pfmPaNweJ6MRJXXVxL5z5/LQIoM6H717r7Lusj7Ni1UTLLEZz28mDwcV1KbzXGY2/MgH3wabLPZHCIANIp8jrLkhoTjx5WelBrDx62dfgqaekDP0JgkQJDkLUVD/LnEZ5ZDb292F7ePpmSM3Ci5MVAbdM038SEYaO0NKClELdnQ3gKPj49Hn/rlDposw8EA669ykkzqvxtUXfPxVXm+Pua839MY8ud4XcS1FBwfPBK0ePSpqgNJzmQy/uxv738afz9n3Wfo3RJO4eE1EgWGApvy8rBeMqKjaMCIKIyuxLhuQG1SeUKqybtju6+ujr925vN0vXqyrUloqnvJ+DivZ/Menc8ChO9CVDr+tgsXjboRS8bY82L+rlwIZDk+3PgkOeTrgQ7yPPTPgU+QwLQcUyS25fX19fBhEy1m3G63B89w9B45AZWHfX0ulDqBUbUErPjMkj5358MVNdOJFw742Y/fhTim3Ut0ohwkELHZHK9cv7q6Orw1IBBAh2+/3x8++8tr9Ep9isB1rTtfSkODyv5jfR0AObmx97w4ltwpZR5JrxOkOghjZOnl5eXo08LaEpj8SH3qnn3aOMv/Mx031fJXgmforA8VsWPJPF4jJa9xhOqq8sX4EdpxTzkBlKoMFxx6Ch5WpHFgWgKbFP6svOeZOo7I83KvcCbvJQpwlK4aAF9FriDYryJOf/E5/6WoQDLuqXyVmfJNaVm39MqRFGVrmccEs+pPN+RqA5WVjCYNevJCHQg4qFa9aIR1T22iMfB+qvoxXa8MPGWfQMDT+7nzaE35nSUa/tRvKTKQ+L7ZbA7rA56eno6iAgID/taLe6aUM8l8mnoSEazSiKtdHv3o2Q/q4goMkGe98ZfKdg9d9Vd519fXh03G1O5kB5hfWoDJKRu+3UHjXwEIyvmHgwEqDv73162c4SNP0tEZB6/ue3QgAYE0yHtGaHZw06BXCou88VCX17fqmI/2PBzIsK4zZSVgsiRCkPJb07tiH9HzloLiFtRJeTgQoPfrYFDpaVAIPBxc+NG96tbakeIhKV9/RulZN3koKid5bqL9fn+0oFY8o/fBOjggIFiR4qRBEBAQyNFzBD6sJ/npiq7nNfrYZB8kQ0BPTzzz/luLqvGWdB55RIPjfKI3Tj7S+Dw+Ph76VGDA11MlQ6k6KK1kaLM5/gpga8cgoLUMqHv6w8eTg36/Rlsi2XDgRJlxvjE968f/nBojj1gH8ZrbP3O9htZs8OfrMjyK4GDpU8CAGOuhQA9rJpqpkJjvAjGKBCQgkOreQ4jnkOczyrcHZjxEtpRcWVHoPELhRoP1Twa/dy0JXQ+1r0GUH/YR5ZdynWSkNzXk+elXgQHm5/mmqYFeyE/GUuW4J05AcHV1dbLFKQ04gYPKTWDFN1AiHxgpcY8/1Z/XUyg7GfgEBnz6oqpbpSgTKHAw8h3oHCVPvrhBa+10wZ6AGjcaenx8PIrmEHxS7hwItHYsYx6BY79UUeUlQKCK2PkYJD98vAkkpfGe5JN10LlPvTCyQmDw+vp64LOm4xIQqKYI+GN0gDSKooumwYCvOFYDfa6VimC2Ek4JyVc0AgIij2jomgtBQogz9XVlUlGVHyMhS5UP28ZrbvgprK3VAy3xsgIGnn5WQX01uSdfvU1ADz8Z/Rkj7krEFVF6zst0XlfGzj1g7wuCBZWRDKsrUM+T19K8u7eLbXBZrgy9K9n0eloCAumX6uagKfGxojXlugdyePRzAp/Ea113Z0GAQMBRb4EQXPo0Mevp9VXaCigoQuTyx/bz6DzwH0F+GpvMy4F2igJX/eD2Ielh1pGAh3LOnR49OpC+GunrAwSGCQpYn1k6CwwIBPgHiYiAllASat6bHajJI60MayV07CAKRBLkJTT7HOeelgCCxEMCAh/wStvz1Cpaavy/i2flioGy69GuCuBVijcBBy/b7zswbe2Yn65oKBv6cRGjG2V/lh4cjTHlgXVU3lpJr7pxz4FEDuTdM6UX4+C7Apzkh6dNz/eMJ4kAwctLvPxqqnjhADKBSgeC7AP9l5HSUc/LOLseVGSgZ7idhykaQJ3k/cr2kZI+J4hNID+B7oqvGk8qo+r7Ssacj15vOsoEvP4qp0cGPELgr3GqTs5Lns/QNBiQsnIQ4ECgQt0enuvRDAA4h7yeyVNmKIyveXBRxohmjGVSOueQe5x+7hGCakBU/2eU9HenylC7okhef085VfxwhUVwV/WzKxB6EA7qUp8kD0nXq35N1zw9lS0VpbeXY5yG3r0aft0urYiuDPss6Oy1S3ytonPvAfufRaP6eJ9XXm3Kl33JdRr0LH2zKTmCPccvASy2Q8+mKaDUPubr7XIgkD6Sl4AL7RH5wGkD15mV08p6eaRBP/KXgJhgwA3/09PT0QJCXxego8pSX1G+l9jSaTAg74BggIuwqhBJQk9ELRUROfYUGwWud7/nNXn9UqjFF4xUda6MTZpnrYgeIOveS/te4sAYgQCm7R1Hdf8qUh3SGpcU3k/PilIYPREVBD0uz9vnLEWuKNmG1D56WRVgYHoaRwL7tO5hu92ezFe6vPh9KlcquRQKTQourUpXeSNyr2hG36Q8xCvxaQ2aMZaVHKfxmMay5MsNId+pp/z5WhLVg16vj6cEMJVXpVvTWEz9QoDirw0nMEAvmuCn5yhUzhV56Y4jDT9JY4JgmW8MVIsF9/t/Ld5k/SvwQX59KhhI4dUeCEhCqf/JI0pz3SnkTVLDefT7SYlXhmAWkVdIfCkASHV+L83kVxn6lK4HBL47qZ9S6JADnQrODb/IZUdyzFC/g1SR30tpdC0pUHoYak8PsPl/f5aK2cE92yPlI6XlXo88GRryZPwfHx9PwqBpUZQb8Spi4OsPPGzKOoqS4emBhaTf1iLWw4FbMtCi3vglL103St5ohHogOo0Tlz1FHPRGQRUh8LFSgVqfuqbD6lN/youG1Ovg5S2xF6oz5c2BmS8GTONAYIARNj3rY0Rl+PTPUpuyeM0AlQa9q/cYh94zCQS4Eq6UbSLec4FmGxytsiNGaL0q15W7/68oDQK206MDzJsCr/+uUHU/KYsejTyP70RUYG7wPLzoQCEBvdaO+yH9lCZFE/ifgzcZO5XpgEPXpXxYZ41Jzdd6nlKGlfIj4Cd5OJ9GnyvMX1/fXltTGl8YlV6H8nHnHplHPZS/K8PeOE1gTJTGZJKBNSmF6HtGuRrbHk6m8d9s3l6Jow7hmgHVxcG018cjrSw/9XvqM6+7gyCOaUauudbNbUbq1zROfC6ePEuOaUqr9vu0mIMB/3EvAY5Z8or2K8nvrE5evGYgKUtnZFXp9wAGVwr6z1eovGP5DP+zHRXS83omRT1SOlVeM9QL/1fIj9dZJuu5pG5Lr7d2/qLEryAqDv4q483rvSiBy4nLEef9PazqeSQgwDx0nedK71EDV/BS5K7cNF4FALwM5wcNMqcEfCtjKjtta6udDD0M6oqXEQEq3EqGfPz25DA92wMBBDZfTT29Qnnu6TH+r/jIPqfz5WForhvxtC773JuAILb6+X2vZ8UL8sGBgPY18PazzTTOSR5dNlSe8iCfKjDvIIBRAK4TYBqOI4+WcYwI8CTeLNG573610NFRKnzpfB3JhU51cONfzeUwD6YV9QRS3pbakOY2K6GupjH82kcRlfdIEVZ1XkIJcFTplijmzyQaeh6r89aOIwopP1eAVZ/SuClfB3WuQHhOr0ZbBrtXRYCgn7x8VyRusLWhEA0hPSiNeZdxjRF6jKxrUoAjIFCNocRfH8utvXlhM57RjLH5DrJb6Y4qGuDPer951NMp5cX0bvwTYJRs9ACA9Cz1bRpXiVIUwqNj7jU7DxS16smiy0UPeJHf/A5H8vqraQIfOxy7yVFIsjGSiURnRQZcac4UmJB39Z/XEwplfTzkQ0YlAU0RDdXPlShBTkKLHnJnZ1XtSWGlipZGB2gQ9F9peazoXKX3HZRljyiz+u8DJg0gzjf2+iGdV/fZVyrDvd806CnDNMIJkKqs6r/LOvNT5EDPCQgw5Kr8pEhba3GFuSu19EZBUrqu7MQn8o1j3acQXFew/3pjj6C1p+y/kkZgPcmX9zn1QM+oeCRARD6Iv65LqafdafM2ePnSpXyDqwIDVZ+ksez1drn3OXoek9OXeO6OTmqXgMF+/681NwTIFTgegQDK6X5/+iVhP5+hs3YgpGGlglVHJqa1dmqcqNyoDHlOZnOQ67qDAqXTsz0h6YECGtWkPKm4/f9H0Sg0OYOee8+6sfgoek+9PoNG4NV54fItg5jIDbbz0xUheaOB3Fo7kadKWSsNFa0bUykHv0YvLXntjABIOas8ghG2Q/l6GJhel2+q4mAgGX+SGxvWyfUHx61HXZhf6sekExgZWYtcPnlN536ttePXoV1PuWGh7uW0EmWU+lZ5VuOKvHeZ9jYlmUz9Rf3OfhYlvV+BgOSh++K9al3LTD9RrgkqPBKR1gokpzP1r/NHac7VvYvBQDKwPB8Zler+OUbUQQGVFikJyYjUkcp/NoSkZ4kKK+Xeo/fOUTrw8rrNkHtKTq50+dx3oqr/feCSaBhGb8zQS13KbwcQFbikUmb4lWF6jgF6eFLW2lHOQ/v08MkrThs4CHD+8Zd2TeMbBT4/Wik4lsOj6sOx5HqIvCAgqKYTkyPB45pggER++7nrrNYyuOQ1EgEBDXlrp6vVyUt3nBIoVv4vLy9HbxFUTlYajyJOWVdjq2eUq8V6DgrciPd0flV2AiFVu6uf9yWJ34hwfqU+6NHirxZysKX5HQcIs1SFz2eMl4elPF8PX/YooW3OaaUOToK3tCOcEi/eCxBa6wOinuGfpXPb+5mk8HfPoNN7FlGOqYBaOwVb7K/kwfV47t4SgQDvsz6cX628Mz4vHrB+HtLvGWVGSDTmNSaS8ffXClM4NoFjBwA0QjQ+Xj/VkYsoeZ99kKKJFam9o10XP4sqeW3tNNzOyAnTuk5yuWJZBBPsn6Q3aPj3+/3RGOF6KzeglcxziqCSC4K15GiRF6xvz+gnL70CBN6eqi28V4EBjwb4FAHbo35z8n4Sjyjbaeon0eLIQE/ZsxKc/6FQ+MB24FB5mUmBtdZOhDUBEQ3otHOip6XRZxlc+cn/3DzCOzsJq9MSA1wZK9FSsEDeJk/JvcDePb9WlbUGpXUiFYBzUOBzoA48Xe4SVeDYgQSBpysCltlaO5rbp0eufKScX19fDxEBfqZYsrrdbtvj42Pbbrft5uambbfbw+/29vbk3MGAPP3Hx8f2559/tj///LP99ddf7c8//2y/fv06vEFAQKAxRAVLvUC+UX+I374rHnkw4zyQmHf65oLXYQ1KcuOGPQEbGhZ/LukjOU2cHtBiVYIqRpU05j0aJfmU9z4ykLQRzmuWIdvCtjw9PZ1Ekhxc0MgzQuDRqhQtcOduqcPjOr4CEjx636SICcEb86f+WlLfRZGBRBQSVogVqYRVadLR71dUhQt5n4PZBzg3pKAyduTpHhAFKqE+5uUDL7VpFhR4RycjTr7wvgtNMuipXul6DxAkWjqAPpL4RU3/uVcto8nf1dXbnhpqiw9a5eFyPOrPnrfkckPvSyH8BEakUCWXAubPz89tu90evT2g891u17bb7eHI85ubm3Z7e3sA0+zzl5eXg7EXEPj169fh9/j4eAQIpHgr45080QTavQ4O7nitB8ZFFcieAXufTUku3MMk0OvVdWQc9Lz0jI5cQ6I0BAQc/27omJfqq2krggga8KRL1Efb7faoTOpxkcpUW1xPpyiBR3178tLrJyd3qBzsp3P2lUcklCf7Qf1PQEBezNA0GHDFT9SXGOGKiqi7ZzScRh5na61E9K29oV1GA/z7Cj7Y6a1QkDwaUM0BVQpuhP588ZPzgfmNPBUNEgECX2iV0qc+caCntnExGu+lSEJqw1cSZYBTRgk4ph89YhF5yVeIxO+e0nXD7wCykqXZfNUPaq/qSi+YP0UOGEHQj5GBNF40HfD4+HiICPzxxx9HYCB9kpUKkbzgfLXaLGORHA/PxyM9rmBF7kU5mGO67xIZcOPg3nXyEJ0XI3ID7vcog278CSJoIzwPN4BcIMfoG+WC/eBjgkaf5XIamyF4/vzLgLznoKbqFz+mNM5fb18lw0zr4X7qsZ6z/SlgoLV2FPofMSp5qZUx6lFlRBwA+DkVusqmd5O2q3RPIs0pVSjSO5R1dKSciNfdU3FA5AMthcL1n2E4Ps98E+BKHonypQfnyoHXvwtV3l0FjFprJ7KRoigV6KI8VQDJB7/LVlIA2hbc66r85CU4CNBP0QVuPqT/jCKkhVbcxEVt43fYBQB07tMDbgRoGJwSKK6UHY1JytcVIvtlpMC/U2SA5y475EMCDzNjkYac49dluMeLBJqoP1y3ircOWPkc89aYTLaHfKDeb+1450wefXp35OD4eKMecMDSAwkVb3hdfcL/JNqAykHs2WinaTCgkI48CBXkHhMFqLX8yuEMzYAGV7Isw5Wg71ntv2QsqwUn3Ceag5CInfXyfKt7bEMPGCwhN1DVtSX5UZE673vCt5Z3lb5HwDUBOvKcUQQqldZquWMZBEscsCQf/G7IaDypNB3kURFpfDpo8Lp7uQIRbvypNBkZEPFNAU4PpLcHqjU1XpceJb2QAIYrWPaH80F9pPame2sD28pJobxIJvhKaKp3BdTT+BRY9HOld7CUwBMNtB9FzvtkIOnQpYgP+eLOkUfcqkiB55l0nK4xOkgAUDm/FajsRQh4P5HSiCfJjn0aGKCS4Fyqe06iJCy9RpEq4+Fp6cmxrLRw0LerdOPgiorK0MFA1XkVpWhBRR4FID9mDHgySBTelEZUIWO/x7qmAZSur0HJsDswIGj0aw4I1NezHhLlkXKSPLieQWvt+P16f073ND4TJWXrSu3q6upo6oARNX/FTqFWrQvg9AC/RUAFrHPVg/Xp8VT6hzzxdjjvWAbzIXjy6SP24dpRAVHyrmVkxVOGxRPw139eb62/Sr1quxv/Ub1VDp3D3W53SOfRtEqfMnJFQydecJ0P+eEAm3KoZ5Wn8uMxtdGBAM85PsVrj/JVfKqcSHce2Aeu2/3ZGZoGA7vd7sg7cVDg4dQZg8eBy7SjwZf2YqZQuhLnPCiBgCsBR2gOBAgGWsvvfXq9qo6Y4U/iBXnkSN1BEQd75c0mAUpljvqkAgS9fL+KyA8aet3zc5eNZChIPaOjfD0tlZ8/mwydl6fneZyN9BCoSYY2m7d9BWgkOZXGca58BAYECB4fHw+RAV8r4Ao4GfXZ+jsvHBiJx04eJXI94SAuebpfSQkAVJEByoLLa+UQzHqNI+rpDAfAAnWttcPXED36VoFhn+IiT7TGhZEBtTUB55RHGm+9drrNUVs4vpc4xF4X8Y9HyrVHrXpO2ogWRwakNHzePW1HKkqDfiZ8MWOARO7xUXGNPm3JelJIuHWqb0bhnZW8aNXLPXEOEu8wz4t5Ev0rP+cF+4DCx/k5vvbpdSRV/UPAx/oT1ac++ijFs5S4Vad7hQkA8Jimkcgr9mca9P7fn9V1p8pTcA9ExjwZ15RfLxLEMUTA7+OJ9Rc4ZnSA0wM+flwBu+c4IpdVf74C6N6+BALSQmQ+9x3I+9jD360dv3bKsVlFCyqinPlYJyB1mfT6ka+6JpI9SZE39quMLJ1QRoIEBjRF5vuKuPEnkKLeGjmkFWBNYJ40owdT9IBjNpHbFnc8ZuysaBoMPD09HQ0mX4GsTmInJK+ntf4KyypNQrp8Ng1yAQGfDvBIRmunK3PT1pS65oo11S+1J7VziYFMSil5vAQDNBhcIOYha/+/pB1V2xworEWOyMmzCkBWPNXzPdnmNT7HfnFAt5Q/rpQ9VOl1qhQYPZi0oEtHhnf5bFpTU3l1CQRQ+VWK1vnoPPDzitx4sa99CsT7pxfi/UxKutJ/6gfJLGXA+ZJAQMVb8sodkl5f0YjTwPmYIQglSHUv3fVsWuAqEKA3f7w/mafnnbzr3ngkeHBAkvonjQXSSOfSiUx5VI4K2z5D02DAEbcAQWvtxKuS1+XGlvMzs6glKVBS8oirBYLb7fYEObE+3IQivQ4lwdOzzh/Vw0M1jtpSOPccr7kCBm64OHh5rAYGecO2cRC7p5Dq5QpjBJg+i2jwPTLki0rpKTqorYBQr1yRhy0ZUtQ7wr5KWopd5TpA8UhHAjkuiyL2ZYpkeCg5AUVGBnh0LyydOwjokQMmjiNSAgdqXxqTDvZc13y3yIADQIIx6meOc/Yn8/AIUa8PnP/OZ8qsyvUIpi8i17l0rzswBIoeCfKoh3Q399DgYtek66jH0zj1Mc+j1yXJtq9r8KmxEUBwPvX6iH2ZdNRMxK21BWBAjfGKChT4Yj1eY2N6CLsacOl6CoX7wPZQYPLo1Fm+hSqBwNPT0xGYSch6ZBSI7qrpgtTmGSXkyry1FlGxjI2MjIf2KuVPtM7/aZD0BHwthSpZcUPpxHY70mcap2RAU/nntN8Ve8rHlayDghSdSG2hInePiREEKlR6ZuRb8pIqnnv5XtfEP6ZNbyul6RCCqBQZ0pipePcdiPx0IM8V+kknpP/vqUdrp9/OqIAk33LZbN7WDPiYoa7xdvrYZR24mj5NE7jzyfp5volHaey5fPvri3R+OS58ESzrl8okWNJ5Ly3bNQIbpEVgoEdUHr4SOaEpVjxRLyLAPIk+fYrA0T7LJOqUMuN8p96PTnOdJA6CSoDc+3LyThulJX8Sv3rRid6A1X8HCgwfKx3/O28Tiub9r6bkkfA8eVz6KfqV2kLkX8lHa8cKk2V5HZMBYrRmszle55C82UTsi5mQJJUPrzkYSD8PxVI5JmVYARJvu9rIcxoaGUIHNGwD+av/HkFkWpbtb1F8NVVylVbVE3yxzyqwmoi89qkB9rX0X2tvfFNZvCdeU/+oz1K9kvesc6bXUTZHaeiMun4jP5Os93R5VUfKvct8WteR9EVyGL1sOntuM5INWUKLtyN2ZUZBIYLjQK4GUhJwH/y9RiWDx0HO80rxq6M4PVABAUeTLNv5ke6zg9nxyXD2AJCnqa47Mta1NDiUxhV5a28LklI0QW12PiRjtyYYoIJaYkRbO135r2vvaQ8NE/vRDa/LjHsxFbkhdU/BDXECrl5fPueeVqJk6Hv/K5lPIIl1UVtdeXp65kW9QD3B59L4WZOqvpMe84WklY5K+bq88B4dHpXHfF12HJR5OgcpdCJSe5k3zymDbLPGtxa9u05y3tE+VOMr8c/Binv/jAxUmxulPqHBb+0t8jVa15VkdQkomAYD7kmyQlRWIr52WCmYVEZry0Lkes6VRopI6EglwlejfLGgA4Gq88SDc70HClpqcxqkrvASGGKaarBXbZFX7N5dWkBJIUxoVnVYS6ESeFH5V15AMjDKR5S8jNbGfcl0rA8HOpUox04CD0sGu3tbbjRYn+SZ9ciVPWVuZvGdK2EHbgkM0ECxjQmcehn+88iB83YJnz+TkuFxIySeEVS29v42uBFt7XQLdTo31E3Jwx/JlkBIVX6ySd6v/lwqz+Wo0sHJCHu7GPlin/h1n3bv9ZODAOqzHvUAYKJFXy1UJZy5zgwPu8yEYVJ555I/y7k0D+fw1SiPCvhAGwnuLOhJnZSMp99LHo8bt6urq5NNN1o7js44WvfB47wRMEiLxAgMUttdwa9BybBUMkgAS8/CvSMOTo8aiVweKvlhH9IbSAsKE5hJUSMnH6M+bv15Rq165EpMdXZeV8+mfOix00t3T92jARX4nyFvx0cZ0I+gFBHguEuRS9JSo5DKl/xXgFjlUEa9bzzKlerKvFh39jsBkdIkQ02d35siSRGk1H6n5KUnm5H2g0hgiDzqARKCLi/b679EfheBgZ5AUVAYTuY9dtpIUSRFSmM1UoDOaHaMjF2KBChCkFZFOy8qhTHjhfvgIHmEhOeVB5Penki7Q4p8xTzfpZchVNSE0RPyh5GDSj5mwd9nEucqHQiw3gnUMhLi3gbBQDI+M4CXXrjek9Y9yR7zmZ0qSOODQNgVGQ1vUn5J1slXUfLeFPlg1MNDzd42PdeLDLBPBPiraIFT5alKHnhe5fEV1Cs3AQKvL3XVSF5EnjYZZJHrL8odo0PuMFBHsq6JKt3Sc0JaO17nVjlzDiSS7LtcpHp4me508rzS+QK4qXzlR32RwFgFEGZo0TSBEzuiMn4JVVaopzKuScBTyMTDkcqTSJId0ttLIKE40oznUA0g5tGbAvC8k7IkAOCX5nyDJc+neo7RH0ZLtLMc952XseRA0bNuwHj8ahLY4UeqkudKo1C1xeWJRy8zgY/WThcKpQHs3oPn40DQ2+hgz+vsxs7rmqZSPOzLtjg5D5U+LabyNjkQULlpGs6BmwOs6lVg7/MKeIln32GfAfeKVS+tpPc051JydJIRX5Kfk4+9mfHR08O9sqpn+Xy6z4iCR8Ur3e5guwJsqbwEZgnEkn1zUO2AYElfvQsMqIJLvL4ROEh5JVSmPMgAHVNYiMisF/7urXQ+h3oo+iOJClvfnxcocGMsMCAAoLR3d3cHhSswoF3l9K3629vb9tdff7Xr6+v2+Ph4eF2ISjeh6zUprRJPnhIHrmQpyZGO7lnPRKw8fQKEVDxUAJ53Mtq858q2J88OAhhdIrAgqf2+ZwD5qD0UUnQtGRyWnaZDSFV+iZfOL1fSfNXNo5ittUPEZm0iGCDg4at7Dmr5XJVfoqTzR32w3++PdEjVL14v6owUNZqpv6ch0E2eNCMWqV7ibQ+MeH2Zjnm7fmR7CTr5lgDbTrmVzU1g5T307shAWuE4OwWQphJEVF7u1agTBUacmY6i2LG+GE6gwDfvSANqCY0Q9Eg5957TkUpSxv3u7u7wk5H3PRYYDVA6PqO6CQz8+vWrPTw8tD/++OMAMJSHphGSx7eEH59NPkB95TXDme6BtXYKSBk1oPz3AIHzgIBA/ZgArqhnPCkH/voh6+iRELaN15g/o1C8Ln6kcL6Pf7VF6eg90SlI0QEHNsmjYh+zf1xRegTE+4meGfv3IxyDc8jbxHpTVzEyIGL7PGTPND1vO0VKWI7LpOtwpvepgQQEWJZHjpjXEv2ZgEBreRFwirCke1U5fNYBgfOdbX19fT0CAm4bmY5ANfEu8XKGFi8gdGJFq8owba9iVKSVB5bK5H+CA94TGHDj7yvme4Nrhhzheh2ZLrWf7RIlpUpFzR0W5eHf39+3+/v7IzDAcKsiAgQC9/f37e7u7lDe8/Nze3x8bH/99dcJCLi5uTl8nc6/e59Cqp8ZFRmRew+u4JN34UbKBzbTu2JkOczTvc00ZjxUmJS3l+X3SFWULLUz1Zl5p5+HNZW31gj4W0XMT+nIDwJWynjVPr+eABPz9ohEz2lhe9YCA6pDa7n9lRx7uxIASmHp5F3PytrS9lTECGYCBDNlJ8A40kHJmLeWAQLrMSsbFcD3clVf1j2l8br12jRDi8CAD356M7PkgMCVbpVXUk5KK4XD60wv4zQLBHxw9QbjTHvfSy5A7knJuMvTFxC4v79vt7e3R4pVniOBgEDAw8NDu7+/PyhoRQbu7+8PUwpJmT4+Ph55cuwP8mEtQECQ5UCtN1jcUPbm+5RG8tfLm3XgNXrPrqSrspZSUiqucFW+jwfWlYaaxt8jBJSJGcVEo11FGNN/RnWcf1W0oxchcJ6tGRmozum4uCeq8wQIWjtesNbzMp0+Ehh4tEBUOY090ML7qR1L+o8GekZnjWRnNi3vu83Rf9mykcyeQ4s3HarmKJZUzEOpaYqgtVNjnMIlMx1Hg79kz+iRAL2nM6j8ExoclUklq6gApwgcDDD99fV1TPvjx48jMPDy8tIeHx8PawlubrK4bDabw1sGV1dXh92/SGuCgUrJzXrcHhGgfFTKllQZnBTZYn1VbmXU9AyNW1o8WNWlAjQ94JO8dd331wr9R5nQcynvWSOdPPxUL/LOQUrVJj7nzsVXUqWHqIPdodF9UfKwZ0BWj9J4SQDLHZeqjTomoOzlJt3PvBJomHFcHUxUgIPlj2i23JkITFVe4oFoid5dDAZcCGYaO0MJDVZG3j0vjy7482mzhypsOgIBSUmNhKKaKvDnk7LnuQMBRgUY9r+/v28PDw/t7u7uaBEh3x5wIEAwoPTPz8+HdQc+Z+zgQvsz7Ha7wyIm8reaPvgqGnm4bJOMKvuF3ia9UM/HjTNDnqlsnUsme7vIVYbTXytNC/5UZ40BTam5Akz1TTwi0NhsTiN6BBVUSJvNplyk6zzxelROiBselk/eesSC/dwDSM77r6YKtKUpTU/LNkt+ucCvN5VJvnK9Au97OSOQ0TNoPT06O2XgDqRfZ36iKgrntq0y2s4/8cCn+2aASPWf9Ul61G3YEmAnOns74tbyiugZUJA8lqqMWZDhYMKBhDPLy0n/SckLceHneQInvkDEFX1PIJJx8TcCGPJX2J9z/VdXV4f5foEG/ZReiwgV9n14eGi/fv06RB749gF/euXw8fGx7Xa7kxBzJcRfQQ70xPsqHMmtrJUueevsM9/a1s8d8KVrVBiugJiOzxOQ+auFLl8CZTLIOjJPz68CGjQqAhc9Q7DZbA7TdJIt1UfkY8bzo+z3gF3V9843/zkQSZGFtcjrIrmgTDPqKRK/K7CU1sakSG3qX+dZ77waG5XcJErR48Qnjk8HSCmPCmi4nCXQUIEg7y85FAnke3onArGejHu7ltK7IgOunOhBOXkIKAGCpWsPWjtWIFW5KSqQfkl4RnQu4yui0qoAghSylLMvBqSBl7EmGCB48LcJNLWgKYH9fn8CFpSGYOKPP/44gAZFCcjb7wAGOKgYYq3SO4jwN1SoTHywehhaVBk6UQpzV+HK1toJAOCPebiCVPs9yqG07j1WHqfqwR0TK34qb443lV/xiFTpB7aFz7FdHjZPebsBod5Ya4qLlAwTozw+ZZAijQRU+/3b1/6cP3rGp1J03+V31qA7KCHfva6sT1VecugIapQ2RT2Ynm/F0QlIvPN8/H4C7ZTFHp88rVN1j06vg7lqesZpGgyMvGpSAgSJAR+BaKjQKsSUlFlCrhU50nXl74jX82d9EhpVOgpyeoZ1oWF3MKBzevMyGjL0noYbD/kriS8vL+3h4aE9Pj62Hz9+tB8/frSHh4f28+fP9uPHj/a///u/7f/+7//aP//5z/bPf/7zECXgBk5PT09x05ivIPa/+CkwJUUq8ONGXWlluETKh3lV3pHqIBrJuSuNCjT4VI0Dg0T+ei15QxDDt0b4k9zRm359fVtA6DwgL66vr6c29EpEgEIesR/cY+b9KgTu45PGiWH4tcAAjZpfb+00QsTN0zyaqPStvUUW/dVs8iPpOQcH3tcVSE6AObXH81DfyVin8enP0fvm/hGVQXZZcTnw+jl/yA+lpdw50Kz6MtXLdZc7rZQP33ExnfdoERhQ47wSs8+LODiTgp2hpGgdAc1MEYyU0Tnol5SQ6zmU0J4rbe48SKDAewQDVPDuDdDA8cgB4CFWCfzV1dXhlUP93LP+SuIKXNWb888+yBKp/a2dyrKHYV1RVTLQ84ZECVin0GSlGFMelQLT0RUNz92wUnmm6FqqAw0E83I+9YygE8tJz7qR8Dw9gkC5WHO9i4M1Eet2dfW2aHe32528lunn9GA3m80BOKg8p8q4iwgK9bxPm5F6OtEdIuWhyBPTEwDy/1Ly8tQmD8+n5/w+ZZpRh9byTpYz9XV76+NtRB8eGVAlZsmFq1KMSdH1KOWja6NpAkdaejYJA8+T0k2DzctN1ANQSbhFXBTmXrwvBPRXCzlVoPUAXEtArzLNGbfWjjxCCTijEl6G9iDQp6HTPO9XkWTA5+xG9XFlltJ7mp7HwWsuL0nuev8J2pLCFfl4qjwr9zSXgN40Jvhmwc3NzYnC9uhAa6ebwLBuaU7X65BC3cq3Gp/udXlkYL/fHxbGrkE9gErdxteltVW4xh0NEkk8YYSg0kEJCLju64FT1tmJ0V2WyfPNZnNSxypfB6QV72ZlnECSbXOZ1z0CiWTPKO+UccoiF9lW09s9J5e8m6XFawaWUIX6ex0xijYk5VYhZx2JqLwcZ16vbj2FPVt/0sgY+aCkouVCwAQIfLqAEQN/1bAXzqM34R6HLyhTnf2enlsz1NpaO1H0rb3tUSGF6qv5k4Hxa8nYtJbnrityBZcASFKA9NiptCQ7Pgb9p+uMlLB8KeFKyXv4NbXLf8nYVMq8p0OcFz1+jtou4lavlIu1wUACbW4gBAYcCCitxqOT94XruQR2HYRWYDflyXQp2kTiFN2scXOdz752/qVn6TRWwGJkJ5JeYF9UZTIy5Yaf/ezXPIK3hF+iDwEDFWNTiHPGK+s1whVxAhmV0U8AoNeGanAsZXJV5gjFceDpP8GA7yDoiwd9AaG/VVAJjA+GFP2Qt+FAQEqH4OPx8bFtNpvV9ndn33Kw8D8/+FJ5KklhVVNUKc2IOH1BWV4qb2zrCFRQ0bFszkPSkFPBVeOYgJH8oaeksqrwewICvXHrdar0DJUo89V17iFPj3stMCByz4/gzYGAT93puf1+HwFB5RCNdLR7vpWcpunbSu/4dX4IjUeBVOVfjbFKbkZAgP99PKV6+jTuiJL8JaMvmVS6tEFesnEcd7P6ZxoMeGN9sOtaz0NISkr/R5SEJ00xcLCQfDDNlJPQLQdYNUVwTrlVPaq1Ab3thP3bBD4dQIXhxtw9DY8QaKGdRxVIXKMgINLaeh97GRnTngdZDf4ZoJDyH9WJwK86sk88CsN+8VC5nu8praqdqZ7u7YtPz8/PR+NCIELKzMcR68Z8qF8qA+J1riIAvJeUKevnRy2EXZtSe1prR0Zxt9uVfNL+H5SBnhMk6hk6pnXZ5RhxPZkARw/w+XPUSdX0cO9/Sp+AQHo+jZHEs3Q/Ge/0o/ylKQMCWOZFnvfGTKKzIgNUkAyHzCBKUS+NM3e2QT2h4L0qQtDzzs8FAixjFApzxe9hON9XwKMC+s/3/31qIIEBhvJ77dB9ThdQYKU0aaBUdq/9X0E0PO6BJ0pegd9n3iPepfTsWwdVVB6Uh/Q854W9X5mfKzcHFl62n4+uqQx+Ulf3uAjPn3dHIfF+xuuiHtJzScmm75DoyHtSvGuCAZ8j9/bpSKAlMKb0nMp5fT3+IE7PKfM0rgdYxwRi2YdJZmaAAPNy4OEynGjGqKd2V4DSn63aVtWD9sjD/uko+VMe/vXDNI3msjIbsTh7mqDHAApsmocU9Trf0y1BOJ6/l9Ob563q8h4gMDKCHhpWGfoxIqD3/fnjGgEZ3zRIeM1/yaukkXIvMD2/2WyOdjfkq47nzGF9JKm/hZi5oGqmHyuwS15USkXle78QXLnxJnnefD6BPKZhXaq8qzTugfBHw5vAO+WCRkj5VqFqz9f52APwAh18XnXlx7R8ntV3KK2Oa1DVjzyq3SQ3xDQ81BHV3hBODrS8jmn9QEW9aYrkPLm+VXt0bzRVUdU7PeO2geeS26RbPcLK9iQA4NM7lEt+Q4fymeyJj73Uzg+fJnAU4g39TlQJV/o/ElwX8CVTA63ViyhT/jrn635cKHh3d3d4t//nz5+H84eHh6O9ATgvSKXo288KhPB9e3/3PBk+1l2KQCCAIFB5t9ZW3bjFQ81SnldXV4dvwKv9PvDdM5vhC0nPJpCVojN6hnm31k6UveeTFHGqV/KU0tjmPd2nB00DlABS2nLYZZ1GhMo9AQ7KZKqn9xGfqaICvkpbXlgCDWuCAbYz6VxGu/QMf09PTxHMVfPJyetVvyQQnZwKkpfpssp+S/XhtWpqMulk5l95zamt/E957Ol8TqVQnlh/GvkEBvQKNjds41giP5033DSptWM7Nbu/y+J9BrxSHnJfAg6WeIo9Q1rd985IyGpUr4T+Zurtgp34k/LxuX0ZWe74x2gANwdyQ588Oc0pUrj1mqCEUTzis3zFUGVwkOmVQg0gfhNhycKazyAZG1daInqP5F3P03ZK3ku6r9fsOJWS3soQEciwblTSaoMbaionHd1Aer6qO6dQkvGhMUnKPZXh+TMt+8bbkeSafcc6Ja+fClfnCQy4V8aQ7JrrXZLc9fSsj3vWXTzh2PQQv85dziQT7AMBahodjR2nXjQuAYHkuFE2mM6jEyyjB3i9nj2Ht2eDxFe2xWXfQSZlzfdjcRkeEXnAevl5jxYtIEznXqHec+fQqANG6WfLr0JJjgjdy/G0FQDpDV56eZxr59z//f39IRrw8PBwiAhwiiCt7qdhYz3oRQh0SBhfX1/b/f394fntdnuoZ0LIui5DR6WuAaA9B9YgN26tnSL5BN4cALmx5znzY3+Kqi2DdT293cH+Y8jQjaunV90og55PZTzZNhnj9LqlrleengOC1t4+GJbqzufZZ8wvleHt87YlL4zG3p9h+1jXJU7ORxLHmzsSyTPnc2wXp08op73Ikkigj0fe8zcUPMI10p+UWeqnkRFLEaZUrhtKz8Pb6nVivRKvSUkGOfYcCDgYT0CAgLmqt19f4miLFq0ZcAPH8yVG16k30NJAmB2YS4FIqluv09PgY7kJCCRj6uhbnjWBACMCvo+ALxL0eqpOrswp4Nvt9ggg8NkR6k4DUmUK8a4JBjwcqjong+gkRZC8HUZkqAAJsAjy2E++Y6TvYpiUgwxYer2ICiPJZaWg3BCy3T4XS8UocNWTCwctlXFN40HPM/rggJ31p1yTVzx3IJCUbnqHW2WtQandqo+PU10jX5xcjvl2UM/ItfYm73orQeVKzr08n19Puk/pvF97YzbtBJpodD+1V/XURkxe7woMsA+SDDoAHY3rNEY9mtkz/JSFT4sMvNfTT9QzuEwzMyBn6ueClvI+B1ml8qt8HdlzIRijAtXOglwwSK+SxsjrISH0tQHyAKV0fT5aG/OkOe3kLYien5/b3d1d2+12h0WFa5Da4+E29gGVJ9NSkdHYUmbIp+Txp0gPt4Tm65esi8AUw9y73e5wlHIksEtjxD1EN8pVpMGjgXre867AQOJrSkf+er7kuStH9kEFeCqFXEVGKiP6GXpvhhiedw+VlIBAlT4Z2Rkw4NEBB3YCFl7/WW/VAYWvg0jpeT7y2JPhZ93IKwICL68qw0Epf5yC9MWpDg4qeXTe9OhTIwM9hJwM3rnG1PPpKTmv29I80/Wq3j4X8572uTHVNQcDvpEQ3x5IewikOWcRBVHeOo0It4+lQeNrYgQIzNP7W2l8X4S1wMDNzc1ReJx1dCUphXR19bYhjk8TJODFrZ65IZRvG63r3B2SYMA9WW3nrC9BXl9fH4CAFoYlr6y1U4NMHiSPnbxJ5ABC15I8k1LoNaV3I+XKVc95utTenuJ10OBAJPX9WqRxzfq5gexFg5RevG/tbZ5fxk5g38thWXourTOg85EMLp9PaRwwsh8JOrw8nbsz5Hm7rDMf1+eJz+TjiHyMODB1uUxROSfyzevvaZxmnejWFi4grFCzE5HsR4CCit6D1j060Fpt4JMQO4OdN5UA6n+vLH+DwCMC3FCIbxD4ivWkJNzYsI4aWPrioMKqrizpqVUDm4bF9xv4aqLHwiiI5FSL7TxK4O10pcd+dO/f933wNR78bbfbo7oIBDw/Px++8fDXX38dtpht7e1VRSoslzcHAyOPg8AiKZfkdSaFmigZEJ7Tq2UZ3r5qDFYKOF3z6+I7I0Iu72vJrurCaJ2/xeGGsIrOOJ8FBLjYtEcpmiq+6ed8VFrnn48jyj/r78ac4zD9ks5jXVKkRM8lp9Z1ROJFBQD8WrVeZ8a2uj73tlIv8L4coRmaBgMcJMmLcAQ5qyASOVM+OjpQKU1SUjqpLe6NjPJnp3pHukdND/L+/v4oEkABlrBqy1T1jwuv0ujDKxJODgSBAabb7XYHg8V2uKD7itinp6eDZ6t1A2uQeKR6qM4CKjTy/E8Z5lSABpl+d3d3J2+AiK/X19eHvSG0+JNrP9SvUvLqo6enp/br16/WWjtsM7vf7w/3/vrrryP+7na7E3njmCAI5BjmOQ2Ot9k3NEpy3Fo99+weHdOlCI1kSH3FaJZ7/B6OZVqdi098hgpa+s0BkuRiVqF+NGkcsX9nibz26GFlRJMx9XsewUxfTaWDIoeFZVVRTNqWBFjVLo5Ff53a9Z6DRudRIhr4ao2O+kflpHUqkjl3rih3blN5nQ6XH7nWSG1RHozuztrGzetSCbvQhS50oQtd6EL/X9G6E2IXutCFLnShC11odbqAgQtd6EIXutCF/uZ0AQMXutCFLnShC/3N6QIGLnShC13oQhf6m9MFDFzoQhe60IUu9DenCxi40IUudKELXehvThcwcKELXehCF7rQ35wuYOBCF7rQhS50ob85XcDAhS50oQtd6EJ/c/p/UBHPpcaPPewAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZl0lEQVR4nO19eXPjOO80ncmdOTLX7tbv+3/A95mdI+f4/WOrPe1OAwRlO3ESdZXLtkSRFAUCDfDQYrlcLtuMGTNmzJgx49Xi4KkrMGPGjBkzZsx4WsxkYMaMGTNmzHjlmMnAjBkzZsyY8coxk4EZM2bMmDHjlWMmAzNmzJgxY8Yrx0wGZsyYMWPGjFeOmQzMmDFjxowZrxwzGZgxY8aMGTNeOQ6rCReLxS7rMaMA9wwqz4XTaProP39nx3p1wJ5W+P7+/Xu3vtvGmzdvbJ16mPfjmsF4CnmY9e6MbaAiu2UyMGM/ET3knhKpEgvOf7lctsVisfrWa7Iycd1To1eHfajjjBkzZjw25mGCZ4QRQ6VGPMOop48P/4/K2RfPhus55fyMGTNmvGTMZOCZYcRoVaIGvWGDkfxdtGAfMJOAGTNmzMgxk4FnilEjVokUOGKQDSeMntsXaHRjxowZM1475jkDzxxs0KIxfz6u/yP05hREkwn3FbPhnzFjxowYc2TgBSEyeG5MPzum0BUF2UqDfcRMBGbMmDEjxxwZeGVw4/xZtGB01UC13BkzZsx4bPRWTL1mzGTgBaG3CgDneYlgdn2PCGTDEhHpmDFjxozHQNVpmQnCf5iHCV4IKoJfGSYYWZIYpX2NHWnGjBn7gWzic/Sp5vGSMZOBF4BtCG1v+R3/7hn+aN+C19a5ZsyY8biYath7K6deA2Yy8MyxK2FVI1/19keGFGbMmDFjWxgx5rPxf4iZDDxjjApuNf2U8P9r7kQzZsyY8dwxTyB8ROh6/23kMzXN6E6DvdUGo3nOmDFjxq4R6a7eMuzXiJkMPAIq4agpYfjK8V7abMWA60jVTYsUr7mTzZgxY/fIDP/oBOvs2EvFTAZ2iN6+/73dAzfNv3p9NMGvulQxS8PfM543phLYGTMeC6ORgF5erwkzGdgRpsymrwhfdZvgKiJCMDK/INtD4LV1qKfAtoz0ruagVDDLyYxtAbI0VT5fqyzOZGCL6G3ak70jYDT8Pjprv/J64dEIAROBeVOh/UHvWUyVswjbeO48NDVjxjbQ21QtS/saMZOBLSDz1nsGllnsqAIfiQhk5zeZh6BEYFuTJGdsF1Oef3Z+0yEulw/ymuVmxi4wy1WOmQxMQNV49iID1Xx7ZWWkYLQDTJ0cOHt2+4VRA19Jvy0C0NrDUK7Le5alGTMeDzMZKGCK57yrkNQmHl7lGhj2XiRDMXWVwYzHRUYct7kcNYMjjxEpmAnBjBmPg5kMBKjuTjW6Xj/6X/G6qmP3UXkjiIz76AqDWZnvByqRpE1keUoeLj8XgZhlaMaM3WMmA4TMU6p65NFa1ShNJX2UdhtLaNzbDEeu6dVnxm4x4s33VriMrHbZRoQqmoAaDUnMpGDGjN1hJgNtcyWpeVU2r3D/R42pU57bMMi9uowQgW3XbcYfjESQenK9rWfTy9MRgIgQIL3mN5OCGRm2EeF6jXjVZCAiAdEKgAhTX+U7lRBEkYapk7ymGP+RMmYSsF2MkrGR3xG2pTR7RKA6l2CbdZrxvDGqgyo68jXK1qskAxUSsKsJgJvm4Xb1i8L8VY981Fj3jNFr7EiPgakkwP3PDC+nyVCRwRFEUaRotco8n+B1YkpELDoWRWxfoz57dWRAiYASgCwq0Av/j0QFpiiyykz+aBLf6FCHtsMmIeV5mGAzTFFyFWxzwqnLN8uvSiQi2a7uzzHjZaAn71OiXj05fW3E4NWRAWCUCPQwQgS4Dpx+k/K1LtU8InKk/ysdrKegX3JH2hV6Hn50rHp+k70DWH4dsdhGxMmhN+FwxstAlQBUv1vzepq/nSy9lmjUqyID2ZBAzxDvUgC24TH3lG9lXkClXbL26XWkGWPYNRFQTCUG2+gzU4jATAheJjI5d9+R7nJ5OQKgv3vOjBuyegl4NWQg8nAzjzd62JXQ0lOj4plt2rG0rH2595eAHhGoGM99H5aJ6hcNC+jvWd5eDnqyEOmjg4ODB3or0lkZAdAP5KtHCl6SDL4aMsDoRQM2ecCjCnibwrRJdKDSoaa0k3pvM3JUQ6NT8tmkDtnxKTI8EvXIjP8cHXie6EUp9Xekn0AIIlLAUIOPY79//y4RBJx7qTL3KshA1fOdmve2yMMmM7EdesYf39qxqkSgeu8zCahhG9GAXjrnKWXX9Yw0/m8iB6Py8ZIU8GtANUKp/zMiAD0FIsD/I51eiQJEn9+/f6/qovMOtD88V7x4MuAEis/1BHVkMmDkuVTz7Xn10f+phCIiAVFbZXWYScFmyAz/Ntqtaugr9dFjoyR2loOXj1Fiyb/12+kmJQAuOsDIDH2PDPz+/XuVhn9HpAD/nxteNBnIPJFtKaRRo95LU52nMKX+vZCb63RRHaPxtxnjGCECmzz3qWmjOlQmVI2SkCifqK4vOWz73FA19vo/igTgN+sl/R1FBDLd70L/FbKgRMDlo/f2nGTxRZOBHjYlBL0w67YJxyaKrkcEXEeM6jKFCMze4EP05GXT6MDoNVOVeW9OSC+q4M5VSfHUNDO2h1GP3x1zOigiAJHjknnmTlcrmYwIAs4fHBys5hfwt+K5koJXQQYyD9eFkyKMPNARxZhBx6R6wlXpcD1CMKWeUeTiOXSCp0DV8EeKtvL8s2NT6rjJ9ZX+oPKjJJi/kd5FBzjfWf52h1ESUPmOiEBGAqK6uGefOXAsQ0wMmCwsFotVhABEoEoK9l0WXwUZyPAYE0BGjKwKpFN8vXyiDpl1NkcIsrxdtMIRqzkisI4R77vilY+UswmmkMPKuUxhVggB5+MU7kwKdoMKme1947caddVLI8MB1XlMGTmNhp5AAjiNkoKMgOw7IXg1ZCBTTtEDqgpWpdyMwfYQKcEey9XvjAC4Dhax7Yph0vDbjDEDHj2D6vOvlNd7LlFUqoJtEcFe+dXI2UwKtoNtkgB3zDkrUVQA1+hQZaS3qwRVj+lwAQiAIyIaIYiIxT7i1ZCB1tbHpR6rPC13tPxsKKPSMbl8x7hHOi5+R4Kthuo5dIDHQEUJVRRlNd8eKZjyXDYhse53lH4b5UdRAs7nNcvjVERyVZHhXprMKXFpXX1a84RgFNF9MinA/IHFYtHu7+9XBIHTcZ1Ub25ax13gxZOBqmLdRZn4PUIGorFRXBt5SJnx1nooKciucWU4Nu7So1O48bTXgFFPhI+PyusUspAZzWq5PVSJYwYnhxmhiPqPy3PfFPI+IpOt6neUT6VszcvJLXRNRAZGZCL7r/Ll9Ovv37+7EQLOb1/wYskAP8hs/Skw+lCq3p5jvFnZTkAcq3T16DH36uQbJRyRMuB07v54nO01DBdsarRHSF61jEzmemRhpEzkmZ0bIQBcdq+vaV4jEYl9U8j7hKo8at+vEoHePI8o3SgRcHlF57J75LIdGdB7UFIQEYJenR8LL5YMtNbWPOBoZyodD9LrIyPMafR31eC6PFwUoBoNyOpYISWKHilw5bNw8/jaS4wQjHo6vWe4aVnRsxopt2KAW1sPx6qsbgNOCWf10Ou0bjg3E4IcFSeHf/ccECCbw5EZ/ygKoOkjQjBCbCN95vQ6103vGzqP6/ccVhu8SDKgD/LNmzdr4+NAJmCcV6ZwnKHNjG5GPjjvqUQgSxvVrRIm7illzZuHCDC+dnBwYK99btgGCZhyvJrWPavsd08+AKdwM69sU+UWEYKMoDsFWyEErxmjRlJ/O3nLPHCcz8pTQhBdF8lkpf5Z+fxRvaX9g8+7/KH7tJ4qiyrfj40XSQZa+xMVwOfNmzcPvFag1/iRwmVhcbNeOX82jplCct54FEXg/5ECd4o+Kje736wMlz9/b9trfEpsiwhsmm8vj8hj4d9Ofl0EjWWXX+rCv5UMOKXtfrtjFRKayVNE4F+C/G0bmdxFuia6TnXXFL3q8lMDynn3CGml3lG9WI9nhIDPLZdL6/REkYFIVjXdY+DFkQGn6DQyoMpsxGCpoCB/fKBQGVCi9/f3q/KRV6S01Jvp3a/+ztqF66C/K/de8dBeO0a8rW2UERlQRwCc7B4eHraDg4PVNz/j379/t7u7uzU5VmLgPDKVsQppiOAMQ7WNZmLgkTkP2bHMuFbalWWrQgii/xUioOVmThinWyweLh/MIptRFAF5IzrqzvXk8bEiBi+GDKjSU2/nzZs3q7RQYkjfC8kroCxZkeKDCARvXXl/f78iAiinohgrLLvi+Tvvyglg1g5RHhleq8LdBTmqymZGBFhuYfgPDw/b8fHx2rd6Ond3d+3u7q7d3t62u7u7lTwrIcjqHkUTetdqPpX7f0mRqF1h1OhH11TlsnJN5sxEwwP82z3vil53+hfX6HW9IQF1RtkWZPdWdUR3KdMvggxkRICjAiwY/D/Ls7V1DxgfEIGjo6N2dHTUjo+P2/Hx8RrxuL+/XynT29vbtlgsVko0EuYsdJTVVclAr7NnjDu7rgpHdGblvBkyJeq+8Vv7BJPXk5OTdnp62k5OTtrx8XE7OjpaEVoQ2Zubm3Z9fd0ODw/b9fV1u7u7W51nWY7kj4kAkwj+cNop2MR7ek1yuS0SwBiNLPJ/58To/0hX9SICPb3ojL/TwSy/yANzACK97EiBlh39nxrd2BTPngzwQ3bRgOz91ppHpQyUg4jA0dFROz09bcfHx+309LQdHv5pUig/EAGNGLCQ6Yz7TDA0pMW/MzLQu0cmPVVohIWPj4Z0nwMqbTSlHUfKrxICJQKOwJ6fn68+IAQgs79//263t7crInB1ddUWi0W7vb1tb968WTPs3M84OoZ8QCwQZeAIw2KxWIvWcRtW4GRXo1wvSQanokcERknAtuqhshrpsCyS6u6D83M2oBqhgl7midDZ3C89ruWrTI6Sgl3J87MmA8q6mAC4yVDZg68IPpcBpYqIwMXFRTs5OWmHh4drEQB4UVoOEwIoxfv7+wezTqc8+KyDox1c3lEbVOoShfFeqhKuhEezNFPCqz1UicDx8XE7OTlpZ2dn7ezsrL17965dXFy0s7OzVcSAowIqk1wGywYPmaEfAjzUcHt7225ubla/MYTGO7hVZDE6nyndlyqPPYwQgSlyWY0sOsfKGe3Mg4/yd6SiMilWHbKejuN3FPScTGf0HSlxxDVqA5zbtiw/WzLgFJ6uHHCTBrUBWdH1Gt9FBRARODk5WZGB5fK/CSMgBIeHh2seFJQejnEdIw8p8rIzxemEzzHPalTAeV9RGvzmz648jadCtc1G7rvqqTkFqP8jmWW5vbi4aOfn5+3i4qKdnp62o6OjlTzc3t625XLZjo6OVgYeH5VHjjicnJyshhtACEAsrq6u2tXV1ZqSvrm5WVO0U9ua02Yyrv9fMkno6YbsN//P2meKsxIZ68jAumcF2XI2QD+cXvUvD1+pDq7ct9oYd79KUF1eTAiy++Z8tym3z5IMREQgGhZwD1ZJQM+L1agARyDwm5cvKjBWywwUhKG19oAouHqPhk6j714+WYd012ek4CVHB4Cewe8pAIfIi1DF7f5nJJknDcLIY9Ige/KY78IKE/+VfEC2j46O2tnZ2YP5B8jv+vr6QcRAPTIXhRhtV3euQoJfmpxuSgSAbRCBzGvPvPes/kp2nX52Q1bIGwQAEVn8d0O5VUKvHr775vub4qhFpHZTPDsyoEooIgLu4alBZBLAv93Dd2wTQoe0MOwsZKrYUEdWtHwcnyoR6N1vdC6DdjY9HiGr80tTtIptRD4yAtdL1/uownRDaFg+CEWJ+QI3NzerMD8bb0AnJiI6gN+ttdXcAAyHIb/Dw8O1IbLqLpWR4ozSZNe8RELwGERgpB49opqF8qN81UHj4Sld3cWADGPeC9eLo7Vu2KBHxp2hjuQqSs/ljEa5NsGzIwOtecHSY0jnvgENYyvwICIhRn4aauJvfKKHh7zU49J6cH04n17bOEKg9+2Evdd2ETi/l6JYK9iUCGg+To5dGk6bEQGXH4z+3d1du76+XvOaYKyvr6/b1dVVu76+Xi0tBCkAVH5QHkcBlsvlA4WtETZEBZBPFnGqKFKkf02EIJPDbcnoKFjuoknerE9b689B4LzY8OucFUzodsOzd3d33bIcOY3sjEKJgMqd5jkim7sgBM+KDGRK0EUFMoPY2vokkugtU5lShTLFeKgLQW26fCoyrBVDkBkBvV9HMjLiofVRYlEN9b4GRMoiO+5IgbuuRwTcs8TzZ4OPlQOttZVMY4Lf1dVVu7m5WUUIIN+ttbX5A5w3yDDqoDLnCDxkNnvjm1OI0TG+ntvgpRj+EWQytI18IwOHb33GbnjVOSwsC5ofDwlERIBJBjtd+L9c/tkQiMko63/+z+Xrb3f/nM+IIY9IxC4JwbMiA631CYE7xt+AE7YeC4wEFgzTTUxBOgbKZcXpvPORIQK9z8rsXBcdcMZjFK8tOjBq7F06lzYy5vy/QgT1Wg7VY/Ke7h2AWf4gAPhmuV4s1t/lzgSDx2hxnjctcmSU6x7JTSXs6hQpruVjPZLx3LCpHO6ybCYBUWSAATlUA8556fAAzw+I8mN9F+l7fLu+o/XokYFIriK5zOxARVY3kd1nQwaih5ApQzcm1RMGXeev5QHsXcFTcpNUXP2RprqDm2sLRwL4PjMywAo6ul8HNfDO4LvfrgO8FGTKYuQ6HMsUkHtGkfFnmWClgmeOKAATASheyLXbF0A9tTdv3rS7u7v25s2bdnNzsyoLRAJLbZGnDjewbLDydAYb6ap9pad8XxJG+pZLO9KmI+VEekon+qnh1HX9/ByjPJgEQMfxFvDOWXNR4UhvZvfF7YiyNJ+pcufkfxeE4NmQgdbicFNk+HXCVGt/QvhqtNQr0cZ1RIAVH2937EI+KlRcj4gQRA816lzu/l25OkehR0a0rXqkoEcOXgIqJKCiODOvIrvG9YXot85v4RUsMOQsy5BNRAJ4+2EG+srh4eGKXCAPbEzE/Y6JBSINbpJt1fhnclfBJgp6xh84Y6TnK/qa81JSqPm4FV0A6sJzApQI4LiShZ4udH1PSSwIDPLVe5iiEx053rb8PgsywIIShZrUGLpPNFMZ+bYWh7gd+4OCZAYa5c+EQMPzLIh8jfOQtGMpO+YZtEoGmIBA2UN4e0aePy6N/tb7eCnIjP6I19S7TpUIXxMR4owUsPwxGdCJVOox6TsIuB4su5y+J39MCnSFwggx5f96XSbDLw094lhNO1qOGjmXPiKnjgj0ynbDC5gn0Fpb0+Fs8NXQa+SWj1XvX/sgjjlnK4oOTCGzjiw5YjBF7z4LMtDaw8bXySMcbnKhG14yxQrMGfwK8xp5qKyIOc9Ikek1fEw7hM6ixaenjJEXEwJuj4gARGTJtYu263NXxJEynEoGRsuOiICTfe4DOobK0S9ViM7AR0uscAxyBO9fN/1S4sARB3z3jDkjk83o+mreen8zPCoExMmq+89wjpLmhevdHhkqE9ELtZzx7+m27P5cmujcKFR/bpMAMPaeDGjDu6hAxDKV8bHCy0Lz1bq4aIETqBFjocTBndOoANZz65vndFkNOgdCuCAC7BlGZMB5Vj3B26VxfGo4ItC734woVdsq87C0DzAZjDww9ZQ4auBkWe9BPXoQS9cejoyzos4m3PLvEZJakdcK+X/tyKIAkTHEt/s4KBFVMtBaC+cKOOgwbBa9rYBlJLqHqgxlMq759fIePR5h78lAa55h9kJNznBlJMCVqQ+9J9TOS3F5aDlZ2Xx9xLRBCPCeBF1ig+t5jBgvT9L2cR5ilQj0DNpzJgfuGToikCk6be+R9sgiA9WhggjZEBqXnz1/yAmTAYXKlH67fLnsXpSAr68Qgp6ynMlBHxUiwMedEwVE5LCiB3G9ykpFd/VkW89xGUyCRzBCGhwh2AWBfRZkAHDKsGeQe94t8uVvPc7/NdwFsCByXZTdKtN1RsIprKjT8SRJ3gEOW8HyJC43YQxl6gSxrN20ftr2FcLznFAhAhkZcJ02y9Plz79VBnvGnr0qfV5suN1Srh5RcIozIwLVPsl1d/0nq0slGhCV457TTAj+oNqXndwqVFdHw1K4vuc9O1nliYNcZlYPPa6/eYWDk90pjtK2sIm8PhsyMEW41NvlNJyvY18O6oGxQYdwsOA64XIkQH+PtgV7hLrvvJvRrSQG47YYLuBz6rn16usIz0uDIwLOoG9qRNwzdh8uC565ekuONOA/L4vFcd4/wCnZ7Bk7JaoRJme4o/zc+apX1cNrN/bbvn/nCDhZVZ3MukaX+0Hnaj2j4YGMvI7ebySnKs9cF+cE4pvtwzbbfht57TUZyLwtIDK6LHCR55F5ZO6/CjYrXD7P6VmYXORA0/FxpyhdXTUywHMIeBeu5XK5FhVApIAnFHL7Re0b1S27p+dIDEZkIUo/2kF78uYUKxt8/IYRxzPlbzX82KOd5dm9mdDJQtZHHSGP5KlHqvg+3Xkcc3XrHVO4fF4yYejdn7Z19l+vi+SCDXY0WZXzdnqcPXROgzJGjb77aF5cJ3b6dGisV35GCKptvG253Gsy0FpNyWRkIMovIwLROeddRXm7hx09uCkGAx/d512HCfjNcajP79+/H7yS1oWQXbvqveq5jBQ8J0IQEcTMy1ZEbVcp23kTSgKifJVA4INnDiXKdebhAY4E6LCBU0yuT+i9R/MDXDtq/1MvSz1KniAbkQR3LCIRDvssu5lBzhA5LpuWH/WNyMnIVq6ww+PSREsIe/NQtP6Rs5PZGSbdkW1gUsMftg2OoI480+zZjTzXvScDGUYar+LJcVo97zwxFUTn7UQKin9npEXroysJdL0tTx48Pj5epW2trc2mzeqRCVYPGavdZ4UKOEOn35niU0RKhvN0CqHXVpkXw/VieYHicq8sdtiGkXRKX5U96sn9RfspE1mAiYASgh4xcF7Ztj2tfcO2+l9VRjPj2CMCKANygciVThjXvhMtj+V6R7pvtG58j9U5PBEhiNo5I+Hbxt6SgW14Y5pOH5y7rme4mOnptS6U5VhgjxD0iAB7evyt7/HW9bc8N0C3mGWBd3CKs4fIgO4ronaPvqskoGpgqp1fFZgzsqijkgEmBfqud4AnXTkl2JNxXKsKlfcT4Ou5fJ57g7wZ3IdRjvOwInL1ko29oqcrR/NQZPIa6WaWIWds2XCD/OEbMsRlRtvAKzGIHB3nCEWkgo9rG7mVPM5eKQkeIaUVYt4jGBn2lgy0VguXMhzL4+NRHlMEmb9dGr2PKQ/J3TvPD9B5Am5iIyv2m5ubdnV1tXol7c3NzWqfeJ10k7VzVbFEhnQfMUoEMkTyUbm2ki9+q0JVuWeZQZrDw8MHpCAix5pnNv9G79sRgSgyoB4Zt5VTqK4fVfrWayUC1fNKqrZRB+c0jXjeSM9EgPWbi265uQMV46py6EiAG+biuuDbkWxuF1zriCzSVDDV8DvsJRlwnT/7MPSBOgWq5TjvQ/Pk6yvjUVMfUOQJucgADwGwMIExs7BhP3h8bm9v18gAv6/BGcaetzZyT88BUQQgIwQqa6Nl9Y5xvpnS0nwipQf5cQYA16gS7Mm9XqNEIIueafu5oYyRdt1ESW5TyT41RvrfNiIITj84PRx9OJ2SRY0w6ZCB5s/HIzgnL4paON3vyAnPtXHRgX2Ur70kA62tK2ENvbh1/k4Q+KNC5ZR61BEWiz/hqgrjHL1PVcYV8sPfuqwFHh/vLIg3xuFzdXW19vY4KGwW8Kw99HdkTLI0+4JIBlx7OzhjG+VfrQeXHxEPNdKR192rd+RhRYra3a+SUVWmI2TAtV9PFrNn0Hs+XId9VNKj6Om0bRj86LyS6J6zFoXynYGHDma4Y45UVBDZjl70wjlRrf0Z/srajR02/N+2/FWf996SgdZir7inIDNPxjW2Ix2ar/52ZKOHHluNvFE9p8Zf64OoANJhC2KNBjAZyJQ0l8/nImNZbY/HQvQ8K2QnS+fyHK2LO5+RQC4rkkVO5zyrjOQo4XX3FrVPpEzVq9K6Zv25tXg9ORtwF13Quo8q2edCDKpynKWdkv/U9M74O5lzcs/yhLIq+rpXV70mIiuun7XmNyLi/qcETYnnVFmLrp+S396RAVWA0daqqiT14UXjm/rAlGBkuwvCaDrlowYmUkoZCeD717bQdIxIYNFh8ApafDgagBfMZF6bu7+KsYru96mxDaLi7qtH8KLyWVmMkAH+PdrOjkg4IuDuZeSYU/rOGLj2WSz+rB7QeQ2ZsnP3EKWNnIN9kdtIn0zNZxfXRc+OP04fOjnolZsZZE03ip6s9spmvcv2IeojVblz6aI0m8ju3pEBQAmBexNaa/0xVG0kPCieZY/z0dvWDg4O1t57zflo42eKOlNIfM96/46cIK/7+/t2dHT04F75nh2Wy+WDsdzIc+M8uW7R+toRZfwcEHVoPl9Bz4NzzzxaSlVRJBmp6Cl5La9Xd6TlfhHJhiMC2n9BBLRcJ4fuvkbkDeXvMzGo1qNCPqeW3zsfOTE4NtqOm9Q7k4OecXYy2iMvnE7lWfWylqtt0yPlu5LHvSIDThHqcjk25NpobsIHP4joIUX10N+t/VluxTNHNa9McCKD7ZScq5fWQ38DPPkKZWAFArdvVN8IkYHJOn7PmO4buL6RkaggInlZeiYAbl01y55r90p++qbPbOgtuidXXqS4lCBo+owQOJnsEWZ9fhUoIeBn/twIgV6zSXnue6S86Jn3ru3pGORVJbVZOU4n9+qbRQYq9sWV/dQytnUy4Bq/YmDwrcqr8rrKKDoQGWmX1ikDraPWD9fifI8xVoQjYtiuXd3a3NbaWtstFv9t2MGbEek7C6L21PpF0E701EK9LTijUIFTopU2zIgw18N5365sfHTvCe5LKGtE0VcISKS8Uf9ICTqFyh5X1G6c11QlO0V3PTV2RbJHiUCmt/R59Iy8q4ditG9GfQTfUX7bbt+oLaYQWCCzKyN5bY0MTHmgmsYRAacUW4snfFSUiF6Lb7csS8vQ+kZsNapftV2qnQaGnpfc8H1EbYq8MkPgGHKkMJUMjUQb9gkZIdTnr4hIwFT51+Wj6km7svm/I9XRkFt0r1E5fFxJJYiyrgtvra29DAukIFP4KkPblqWs/7Ku2ZXR3Qf07m/EMEZEMTN0eq7af6r6NCI2PSK7zWcetYUjTBF2rUe3QgYyT6G1WmiIlZNGBPRVvMjTKYlIgbhO76ID7GXrNbwWH3WuGMcKMlbdE1COhDAh0PSch4aHex135Lk+FyLgDN5UjyB7fi4/p8gyQoxrVIFEdeG8XHStRwQi+e156FxX7tMM3Ra7KifOe+pdOyp/TASmRBd2iV3UITPOTn4jo65ppxjcjHjyuUo7aHp3H1qeyu42SEHP9qmOzSJmu8bGZMA99IjpRdfzx4U0lQyw96sPPVMO2XFufJ7BDETbUUaKccrDqxICrjfqpLu98badSNvbQS57bpFhwHdEtqL89gVT6tRTWtGnpxhcVICHxnoET48xudaho15EqGJg3fWcL96GmLWxRrEyQ7ILRFEWRzxeK5xBzPqAuz4jv1GZUX5ApscyGY0IiCMBGSnoOUN6rCLPTylzG5GBiDXq+cr10TwB/uh1GtZXJtUzatrg2KYVD46jBGp0ew+LDUDEUvV++Dr96PJHvW8mAnd3dyulj3pG7yKoImKqUViVv/cVI/JZSZM9M07rPO/sek2T1cnlEU0WVDnK5CHzYNBvlLy0lg9Dcd6cn7Zdz3D06hvJY9QPo+fzVNhVP+qR01Fy5vpClG7EWEdGeBPDmZGWjAxE/cAhc5aisp8Sk8mA60jVDuNIRBQN0MlOra0/fJ08F3m+EVGoPEyENaNdqNQYqlA5peI6WvRflbczFFw/kILFYrGqO4gAyIIOK/TawrUjH9sHYd4UTulViQAfm2LENjF8rp4RKYiIRmt/tlDlPHp9idNhpQPXP5qkytAJhdHKB+1Pzvty3y4tjmnf1fvexOBsA49RbkXeKzI5agOycnv/W2sP9O8oVE9zvbIPl18luiPDBT2MkNSRvLcyTODYo6uENjj/zuYJsCHkfPRBRp2fO71+GM4T0+V7UHpchiop/h91kBGDw3nw0kBtSyYDmKiFevAOhBwl4OEDbTdty14aJwN6H0+BaoiutVhGK9dViAN+j4ZNW3tIdPkabf/s45YSRgY+A+rDhp+Poc8eHh6upXdl6eZCOumRIw6Q2Wqb9e4hM4D7THArBnM0DxzrGcIor2paLju6j56jtunz4WW6Wn61DbIIh3M6uc5TIqiOALv2m9Iuk8hA9hAjJeoUFf/PyACGCNzYaU9hZ0TAefiuHM1P78n957rB49KHNNJpWInjm4dOGEoIfv/+vfaCIn6FcW/HRr3vSIAjIzpqVHeFHiGIyNk2SExGCKvKBP8r+VeUeCS7GCZzsq910L6lW8RylAH9GKtf+N54XkG0mkgnD7vfVQLj7v81okImIjlyuozTM9wzUZ2QyVqV0E0hCLp5HH9nZMDJEf9mfVPpw5tgRLdl2GpkIFI+WZqIDGRjjRzOzMhH5MFG0QE2tK39mQAF9pgZBtc5uJ6cR88AsEBqGXqdjs9CKWNuQGtt9R4CfNzcgYrhqXbOXkfaN0TyU6nzyD2pMnHKB2ADq6sJXB0rBEbvk4ed2JjjnBICVXB6TlfkcF/iY7gnjSTgvCMCrLB7uxzqPWcEfsY6sr7r5Mxdz3A6xcm8k398Z06KwsklywCX64awnA7nOjhdkTlQUSTM6dJRIpNhSl5b3WfAGWbu5JmAVZY8sbIaMUx8jSpZF8rBdcvln7e58TbGLpqA9C6/iHy4+vWUlUYHWKh5d0TePhlRAB0iqE6G1LZRREbUPfPniEq9M2Okz0mVQU+Z6ETWyNPKCKv2Q53op7LNkayMFGj+SioY0coBJspurkA2kdLBKeptKtp9QPX+p+ZXIQMj5fciiS7vyHEbfY5R5ICJdnYfTs9GpDgqn/PM7qPSdlWMyvxGEwijhxg96IwQZETAedKZEXcPnqEKj40oZkZreZF35uoVTWp0uxVW27cyKxtQRc5DAtmKCK4XC3sVqrD5PioTyXaNSsetIDP80W+VbUcUncFVz6pKyqL/SrzdigKeJ9OajxL0ytalv9wH+H4jMqBEQCc3ZvVwkYBMHwDbko+nwLbkmnVvxWBncFEBLUudG71eJ2xrPqMRgx4h4HuGM8iyyvWOhn5d/Z6KjI6Uu9PIgGPzvQhBJHAqWJU185lC1SgBPovFYjU04BS6U4osTKwEmRRoJMIJUaVNep1RoyeIAPBbCjMiUDFICu1oChx7akJQUWQjBs8dc33AEbqeEmntocxHnlJWV1c/eN6LxZ+Xc3F5fC1vEJTVtbWHE3CdLCqJZ7lxZCUikr3oCKdTQuDutZf3S0Ym1z3d3CNX+juyCa5v4HnpxG0937sXVx/uf2qwVY7cJMNo8mFUh6qOnCJ72yKwO3lRkXvgIx8FN7wLmapgRMqAj3FkAEoP6d68ebPGGJkE9Ayae6jOC4yYck8punt07YPjmD8AZaztgLwiIc2YrTsXebr7imodVaaj63skTq+teD38XZ3wqXXi8Lvbmhj5Q/kuFv+9spvH+FvzG3L1iCrX09XbGZ4oPyUTvfvm++Jrsrq6388RI+R3qm7O9IL+xv8obyWTqu/xHeUZISIBep7vMRtCdvVT9AhBlKZ3H67+28LWtyPOjuE4P/iq4KmXEYW7q0yfCYGDTszj8d7s/njoAffBxyLlrwTA7SOvQynuflAHvj/sL8DpHBnJ0OvgWo+IqD0VeuVnBt6ly8iBPp+IELhn4AgAwM9UCUHmebFsgQgcHR09ePkXhsgQRWpt/V0Cy+XSbv7Vmo/6OGKq9c3kkMkJ339073p9hlGDsk+oyOdIPo7Q4ntEL/D/yvPF/2huCBOHig6tIOpzESHVOvD7NlQuFe5enJy541F+U+S0mn6rkQHH7DMGmBECB1UGERmoMsWMDCANRwfwrQwSQF0QmodC5To5tsttxQrbjZ1GCtjdC+rS6zxVAlU5n5VVGfPdBTJiOnJNpCR7xCBSjO5/RFz5/IhCZJnCmyuPj4/X3mLJZABDZHd3d6t74b6meWs78di+ynt0X64NcB3nn5EglFfBFA9rn4nCqIfpzmd6ONPH/O2OZ/pGbYLq2mipaiZTWp+ojsiXjb2uXtGJ2XCq8OGo61Ryom2CukY6uSK3PVIRYSfDBK3FY6f47wgBzjk4EjCqFJxxQuPqucPDwzUhdF56a+vjpKgfL0nEkEPmGWmHYELA5zLwJEg+BkLA0YGobSIPIRMo9Ugjz2/fPC9nwCMFGR2Lzru8KkY+8pijdE6OuF4qUyAC+CgZgIyAOPB+FIgQRP3M9YPW2prC7LUD0uO+1ENTMtQbcmDl6QyWKtZIzkeJw1Oh0r+qJMDJcWb0s+OqI1ydcI6HraJ2j5w5Lid6rvrcuZ8cHh62o6OjdnR01A4PD1cyDR2KJdr8fXBwsCIGUf+N7lnbBHXLJsv2CIF7vlXZfZQ5A/w7OseIPCZWAqoQNE81Phnbau2h18ppeZMUFh78ZgFmww/lCmHi++CytSOwIDqj4urMqx04rbaPmzyYdeoRFuqO90jeU6NSz0hJRkozy1OfT5UIaProPlydoeg4MnB8fLxSeiy7UHp4vwU+eE229hOWfSWi+OhQA/clJTpMwDPZ17aInltEAvj3czD0I4gIqkuXkYCefo5ksUewovauLiFl2dCxfeQfPXtXPnTu6enp6oP+gWGx29vbdn193W5ubtrV1dXqt9u3xcl2RU9oW0wlBFOxFTLgbtYJmF6jHbP3nZEAlOny1P+uLlzGYuFnUSMvjBvxEkQIMqICra0rRPbStS5KBtySL77WjVVpSI3L0FcvZ23QO8Z11nvguith2idUCEzvo+myfBRRW/c8rajO6uVo+Rxt4uEB/OZwaDZ0x2TAkWGeTwCZg/fE98j9rHfvjkhFxobvO/OcXprxb80blqzfZeTRkTD9X/GAq96rA8tkZlMiMjjShw4ODtrR0VE7Oztr7969axcXF+38/Lydnp62o6Oj1tp/ZODnz5/t58+f7cePH+3Hjx/t169f4ZJIRwTc/evviDgoRghBVf9OJgOuE1augSLQsUWXt/MConBMpeF6dXP1cd4IQqit/dm+la/Tvdh1Qh/XG4iMpxIIZaDOIEf3VxGcHqtHOU5ouf5qVHB+3+Har0IM9PoeYWjNe/qV58TtH8l275jORwGYEPC3bgneWlsbZsBvzuf+/r7d3t6uEQmeWOvaAr+je8jaJGoj9rB6RqOa/75gtF5qfKpy3ZrXx9X6TG0/Xs2iDo+TfecMZgCJPT4+XpGBT58+tffv37eLi4t2dHTUDg4O2vX1dfv333/bt2/f1iK3KEf7cG9+lJJ2dw8uOjByf6PEd+vDBJnhVSLAD1RvUAWPf0feQ09Bal2yOmo6JSRs8LUTqdHT/Nibj1YpKHngNw6CFHBekWF298Tt5ox/xqojIsDGw01+5LT7hp6XFD3frENrPpom8rZGDSI/w0iJuzkrblKg63u4nuurkQaMs/Jrs3///r1GBECgI8Ib3b/eq/vf86Sc45H1/32V0xH0yGDP8DMy50zzzmSxV1ZEFDUPtRko19XB/db7f/PmTTs5OWlv375tl5eX7fPnzytCcHZ21lpr7erqqv2///f/2vHx8VrUgocIuG9FfV3rzbIb3YPeo9PHvfaqYBIZ0A7DwpERAYAfujOCmr6qIKqdOGJXrPz0vngdP7/MhUlBa+t7FKCM6IVC0QPnyVc69spzEbT+bJCd8R9hiVHbcH35G2W7DzP554KIBFSUqLYLH6tgJDrj8naKCHIFQsmhe5YZJp3RWCiA8CpPSESevG8H5h9kIVX3cfes95fde3atq8dzR8+I8u/eB8icMj7fq0OvjB4J0z7l0ju71Osn0FFMBr5+/dq+fv3aPn782M7Pz1trrf38+bOdnp6uiCUmEeoW7xpl692P3lvUDo4IZJhiFzeKDFS9F74R9SojMlBF5UajRowamNkdsz1WqJhYpR4XQkg8/l8xCloO7xyoH07HAGFBGS46oEw5aveeQYoMpS7NmWoQHxtOUbn74zat3o92dsUmJK2XjmX29vZ2jQSwLLfWHpBOJQOt/RkmYDnHvgUaLdOdPFn+nPF3Q18qo67NK4SAo5GcpmrM9hkjda6SAKBHBjhd9mxGygMxZcOKvteLHkS6Sm0VE4Hj4+N2enq6IgNfvnxp//zzT/v8+XN7+/Zta62179+/t6Ojo1XE6/r6uv369atdXV21q6urNXvQi1xo27i6RqRmlyR2axMIe6ye0zqW2kPmFeyiA7tIBn5zlECVGZQrEwIlBlxnlMObvDgPTT01bWfX6TJmGinBjBRwWjWUHDre14mDQM8Lac23Z0RuKh2y0haZxzUCJ5Mcomejz/MBkJ6HonQoASSAlTIPC6kO0PXY+rZMnRDsdEj2vFRJZh6RGhRN8xKiA631h1Pwu2ecHXHT4648V4Yr05WF32q08cyYILCMZ+2gxpn7M4a6Tk5O2sXFRbu8vGyfPn1aRQfevXvXFotF+/btW2uttevr6/bz58/2/fv39v379/bjx492fHy8ihD0CEvV1qlur0YGMuLQw0YTCLWSGRmIPM3MoKtHVSUCmj7yhjV9dJ+ARguYFMB4Q1k6MsDLsBTRUAC/ZKhHBHT4JWP6eq2e6wleRAQc8UHevUk1+4KKN5O1ba/d3e8ega7UV69h2WQZwfg9yypf55bBtvbHu+ZhNN3DgqMQWIJ1fX299vpskFodgtDIQQ8VIuDO4zmOKMx9IQoZ2aleXyECgNPrvahAVkZWLmSAV2mxnuEJqPrfTdJG3m5eFuQec15OTk7a6elpOz8/b+/evWvv379vHz9+XJGBw8PD1STC//3vf+3i4qKdnZ2tLdFlXQj7wHUZkSFtl9Hrp2CrSwtHWb3m0Vp/zG9TZPlXGhtpXFQAxtxFBHT8nMEKUScJOi+qYrRHSY+2TZQuY9i6cyLu7anh2mLEELh25Hym1mlXnZtl1J2L5JTr5a49PDxc26EQz/nm5mbVnjqeijAq1mU7IqB9ie8hAstyRnA5nf6OnIWovH1Gr37OCEf6SAnAyHPR8qKlqlGdebgxk00mrSC7TCY5gsuRAf7w8loe9tLhLx5K4M/JyUk7OTlZpeH+gXpqHaq6OmvXXemNjecMKANHI3CjR4YJ1+n/rGH0fKTo+TtCr05ZWlW4/MAhnDCIbByZpWoeWfjUzRFwbRsJ3qgnpNe540p00LnY01Rv8qmQ3fs2ZK61mtdWMTb6/EYUgF7L/ZHnm8Cg410Erfm3bwKcjuvKxKK1P8MCIAMYX726ugo3aHEORO++tN16JDfqC6POynNHzztnuAiAHo/yi0iHEgF1LDg9lqvimEakYHxBBCBXyM85Tjz3BxNgeeOtu7u7NRJ7enq62nAL3r6uouG9O3SpeZXoOjvI9X4M+dt6ZCA6B+yCYWcNVVG+ETGplssPHAKAfCpsOGLijplznXvt7u4zI2Z8nUPWyd0KgtbaiinrhKCnQMWI965H+pHOWSl3E7KSpXdRAiWMnLd7RiC4IBAgFBhqwBJClMPDW27GdbR96xSFpyRiKtmdSpafGiP1jQwvY+QZRDKtOoF1hbtWf8PLZiOrBJRJKOSS5VTlS/UV76wJInt3d9eurq7ajx8/2r///tvOz89Xyw6vrq7WXuDFpEDJgDpu6C/azpFO3xZG5Xlr+wxUbmIbHW1UcetvziP6dtdUjvHYrBP2iAjod89L4nxZkUVREkcIevel+eO/6+TuAzAReCneVQ/Zc+Y0qqh6zyFD75mqQoKXg+fbI8Q6aZbJAc7rShhdohhFBKry7sjvlLZRVIjAcyEJEdF3RIA/mfxEhkvzczpBjTCucXLG0VM1tFipgvqwbGk5PLeLy9BhW92Bk8nAt2/fVksJT09PV+cwfwv58pACfuuOr9B/HNlwqMhg5gBW84mw1U2Hqsq+0ukyA7oN9MrJGrzXcaqo5q/1G6lb1H6aR88zG+n8lfKfGqP1Um97G/cZeVaOIPaeeUWh45uVkyrpqF/w0sJeFENXDmREYFNkEbSszTJSUe1rj42KZ51dpwTAzRmY4tRF0QD9j7RZ/2Gjiln+x8fH9v0vHHniPNywpDorPCcAWw7f39+36+vrVWTg5OSkHRz8t/vgcrlsv379ajc3N2vGXodIeciMwQRFibdGHHt6YVfYmAy4EJt2suw6RqSIeum0zAyuE2UGU+s7onizelUMbwZnNKJ03DGzOkZKWpWJ61Q6Y1fzdnMeHhuZAed26qXt5cvoEQcnU71vztuVl9UjIhoR0VG559dya/4cOcDvaAKsylwVeh/4zWVmoe/I6Ot9q8w/texWUCWkSgr02bNMaDtrWVGE0BEDvjZyePg6kIGTk5O1yEBrbbViRd8PA8+cCYHWjWf+84ZZy+V/79Lg5YNv3rxpt7e3bblctp8/f67mvmh0gPWhyrm2ddSm2fNyhGHbMrnT7YijB555Fj0DHaFSpqZ1dR4pL1LOU5Q416tSH6e0ozryzH7t/L368vNwJCB7uRIbAfzfB0QkIPtU8uqdc8ZGf7tnERG3jBBmRGFEkWgZ7H1xvtEnGhKI7qsCp2NY8WdeGO4pK1OJwHPFiJwDztC4/+pkuE9WRgYYbOxuiUl80DW8fPX6+npVh8VisZo7wPK1WPzZC4PH9hEZANnguQM3Nzft169fq0mKy+VytckQ5sBw/o4E8fBohQxFz1DJ2a4IwU5eYdxaHFaNfm8LlYZy5zOy4NJkRCDzeqY+PNduvbwhQLw2V+vqvnGt5uOIgDJtIPIK9wWRUtQQ5ygpywgA/3ffERGIyAC+dSwyktPoOWees3rRvTpGhl/bbFO4PHXirv5WZE6BXrePpKBaP5dOjXRFb7pr3XtIlAhw/oqoTA7hIzrA7764vb1dvQ+DjTCiBbyyIJqDoHsMIEJwcHCwIhu/fv1a5XV1ddV+/vy52jeDywB0vlTFxjldG6Vz/RXtuCl2RgaATMCUvTv0OnJmuF1DVRjVaMP2FGMl70gJu2unMkKQgqjuWhduYyYC/O2IAOcNIsAb0+wL1Og7b6bnOUUyHBl9PeaOQ27Yw4mefY8YOiXvSKO7hs9n8hj9712/KThPNw8iczr0meqx5w4nf9Hv1mp6ka91OiEiAnxtRE6drtQIAdbzL5fLdnx8/GB77QhMBkAw8EHkgV9bjLJa+284AhMHr66u2q9fv9qvX78e7JtRjXo6fcHyF+kcletd9KmNyYDrQCxYUYcc7YAunVO0EQnIlKHWKSs3Ix/6v+epaXqnlLOyKiRqKulRwXOTglQJtLa+ZwLaQNcAPwUyjygjAM5AumhA5FVGSjE6l6FioN01FaLprlG4/qvnokgCl+3q4PTFKCqGLDvu+vAm9XkMVPVThIrn6sp0E/KYVLty9L/qRdYZvPy0tT+RAkQH+J0a8OIxRBD1K9RNhyDOz8/b+fl5u7i4WCMFPGyAdxHw+wiwj0a0Y6fbJC5qT66fIwN4Tk7vbAtbX03QIwdAZMD5XMRus7RZ3aYcGyEtzHAjMhCVG+WXlRu1mzvfIwWRcXRjYW7GMK5HiK01v0vjPqHXdu5/z6D0PDBNq+dGnpl6Vvo7ui4z6lHaTPEo2eB8IwLgCIrLR+uj5WZ113QjirPqKT83ZO3ac5KcbtBdRyMiEDljKre88gS/uXwuC6QAXj5HCtQQ4z/qzvMFlBBgm2Hosvv7+7WNiPgDQoAIQdT/ItvHx5QMoM107gGfi+Ac8h52PmfAVabnFeg5/tbjUXpXn+y/Hut5YY65bUoERhVYpFC1zaYoNu34Tlid4CrQqfeRDLTWj2zxf/2teajBj4hrdA2XHyHzsEZIJtdD5T7qjz2lMkXGemVqvdz1md6Irq/Us0rMnho9h8jJIsuNM9SqxzQ/FxlghwDQNf8REeC5RTCs+i4LpAchWC6X9tXYyI/1Dgw7zyvB0AEiBGdnZ6sPVhcgn5ubm1V0AKsKbm5u1qIDuoxW79cRYveMWK86HRRhxPA77HQ1wej53rUjN5p5W72OnXmFzrA6EjCCjASMtGWlfVy+rEwyEsDLB/k4I1pHvo8TCB0y72iEkDpSNlJ2JlMV0llFRIozuYoMbUawK32j1/ejPhG19yaKEdgnmR2FEgAFP7eqLHHbuqWEVcLlyuLhROwfgE/keUckgF/3jrphW2F2ShAhOD4+Xk1URFQA6UYjA7gXRwS4/fS8EixuHzcXJmrXzHHJsLV9BkbTRp52xQhyXs6rcA2d/e+Vw9doWZkCdHDXZUYlQ+aR9uAUvlOq+tEwXWT0NiVIj42p8tEzQD2yFnlKLp37ROm5TPfJ6qHXa9/i74gIaP2cx+k806ozENWn8hxGCdSIPOw7ItkZaZPIUajoHudIAWzIb25u2tHR0eqtl9fX12vL/xaLhR1SwPWIMDAZ0N0w0Q7Qa/xuFewXgI2IsJLg58+fa3MHsLJAXzGv94Y6ONnn844MVBxs/T+FCG/13QT6P2IprrKRMnDXOQWk5XFevXROKVXumX9PUW6bwCm/yDBvkr8rQ0ODOnmwkudjY5S0uuucUWSMPotNPWkHZwQjohfVIzKkTtlHRIDvISIxnL5KoiqEYAS9dt5Wf9o1svYDnBPT2y+C83MfjRaO1NfJ+mKxWG0xfH19vfLasQtha62dnJys0sFQw0Pn92AwGWjtz+ZDGBpwL83iaABICU8e/PHjx4oQuLdxumXUKrNR+2qkxV0fOQHbIKtbfTdBRRgiT6I1r1imeGlR3lrPqSQgU6RaXs8QTH2IGRmoGJ9Mwbty3B4DvPMgwOE1Zb377l1F9VM5UUW2zTLcd8+YcjtHhDiTjYr8V0hApf6cLiJdFaIbpY2IifvtzmX1eC7o1TeTwchQ4dvpGZ1AXHEKXB1Yb/DbAzkigLkEmsZ56UoGsAcBSMbR0VE7PT19EH0AEA348eNH+/79+4oI4OOGCbh9tV9qG2ta17YRWe3pnynRgZ3vM9BaHNKPOq4a24rxZUwhBRlByf5X0kZCoXUcMSwVMjDabllZMOi8eYeSAX7HPa/5BhFwM40fC5ERzNAjrNphex5u9qwjw9RDRgRwPCJ+zgAqIuMwSgT0f5V8sOxFClPrExn66Jxr730kAhUFPyrTmdz1nAeVp6h/Zw4Tnh3rYH7hGy9bbO0/HXN0dNQWi8XaWD6MMzz1m5sb+44ClKk7EGIXwuVyuXrXwdXVVfv27Vv79u1b+/fff9cIgZKPaE4Ut0mvH0TLCrNrtolHIQMMJQQ9RN6ME2oeZ+l5OxUiMAJnJJzi4vqOEIKMqDglmbXtSNtz/rzRkL7xi+8Fs3fRkfcNmyh4JZFT5CYy9pFizpSp82T5PL4jMlQhHs6AqsLKDEmWP/cZzVeJgNscqldPvc9e2ugenyN6elNl2X1H+VXapqd/I+ePCcHt7W27urpa8+6xIdByuVydx3ABG2e3t8nNzc2DTdOwfwGIAPK/urpq379/b9++fVsRATdXQN9SiHtiQgPwxm+Rcde+z0MYuyQFj7oDYWaAK54u5+nK4BmXmTfAcIqiSg7cdfw7M9BZ54vuL+qgGSngPEYFCIqXhwd4G09m7MgXnRAdDfXAhiBPCSdLPeK0bfSed9WjBSIjn31zHZxMuv86m7lnXCuopI8iBDxW3ctr6rmXAH1ekfEHKuRwpOxK3VzZPJkQwwKtrUcfMUmQl/i5SYJRuezgINKAYYnW2uoNhiADOjSA6ANk3+leXnLZ2p8tinGPfO/u2biXfO0Kj/JuguyYAzcoj0dFnpMz/u4Y8o7KzK7XfHr1d/fCHTNj5L26uHYcIVFOOWib84cjAdiqk3cDc/eBdb14ftgv/CkQGcwpJMA92ygdt23PM45+Vz1s57Xpt0ub1Ssy+qNtFxEI7QsRgdZPdeZ67x65Du4ee9fuM7K26UVM+LuXF8O9MdKV42SV5Y1/YyiAyQCijTgPwpBNCOTyQC7Uvtzd3bWfP3+2o6OjtlwuV/+/ffuWDkNEdo0nWPN9cnRACQH/jqIBTAq2KZ+PsgNhFb1O74QF5fJ5PubOO+XomHNVITiiocrKEYKoDbIyRwhV5d60blkkgImADhOwgCMf3kQEneupoAYnOl8xttF/l3ek+EbgPIKI3DoiEJHCSrn8m/OKyD7XQ/up+53JcoUkVOpfMYzRuU302a4x0pZ8TUTg9beDe+ZMAkYnD6qeYh0PnYJJg/f39yudw2SBlxPy8ACP4/MqAQXS3tzcrK1a4NcZ8+uLuSy+X9V/rE85De7J6Wg29o/9ordHnzPg0DOcGoqOFEzVi8J17ljmPU+NFETlZwqVjzsl6+7DGQJXf3eNRgIwuQZE4PT0dG1TDn6lKPIGgdCOCcF+SjLQWm5cOE2kZDV91Si5vBSqpB1hjJR3jxBMQVYf/t8jBPjW9FG9Rz64JqpH1tZarh53RGZfMUpaKnrMOQz6uyeHrT1cXRTptyhP3SBIX7bG+iUKpyshcPe+XC5XqwwwTICIA1Yr3N7ePiADej9MAKAf+W2LTJ54Z0QlAdE9VaMCU+T1UclAxWvpKTYVuihKEHXsXnk4FilkRuVcpKScsFbITIV8ZNdFpEujARwF0N250GHc7oNHR0cPGDNHCJ4aESForT6MkpEAJ2uRcdaO7X67/KPjmaEdRSa3vX7h8qqQpilkANdFBl7RIzARdu2VPQYiuYgiA9uMjDiS7c5p2UwIOALBsu6MqDOcEUFYLv+LMPArjJEGcwNABDjq4JZQqy7lfQPYwOMa3qBI6x+Rgahd+Zj77mFnZCCq0FSvRZVzxCbx35GDXpk9QqHI8ou8qizf7HfVCFTAQsssFiQAH97wAx0F7xUH243aAMc5fPhU7yZw3qSTw1Ejx1CZY8PJocJoH3X81pc8qeKpGOOpCjzKN/IQUZ9q3llbq2flZHRkpztFZIiqdd83ZIY9InLZdaNlT9GvrflITiTT/B9hdY0MaJ16elJ3B8Q3hhrcMAQiBLzjYdRPeA8Wfr076q3RgNYevuFV+767ryr5HXnWWyUDkdftFEEEfqjcCBmbzEiBO56Vrem3oTgyTz2rZ5amUo5LywpWIwEuAnBycrI2XMCzbx0j1nzZED4VGWA4IuCIm5MvRUQe8c2TL9GGHDpEWh5S0e1VdZkU6uWUcER4XBv0jIamj9ohU75RPln+/In2FojubSqR69VpnxA9N6BS320QAuTDRqxX/hQi5nSaezbOZri8lFDoPWCCIpMB7n9ZOSq7uksrVkJoPm5uQDRxkMty7aPnR7CTyEDFC9P/7sbRKFiOEXkTmYD1DLE7lpGIqpfk6jti7Ct1dnXI6g2hZGPNO3HhzV1KCDB/QL1agOca8NCCGsBtKut9gD5j/Ec783wLfNAu3JZs+DEmiW9sdeo8E/VyIpLTq3eGLM+ejFcJQUQGnHJ1ZMD1K6dEM0Ph6ravhIBRNeyaTo1q5HRpem1L1tGQx4j8u2dRcdgcSe/Jb/Ss+ZirH3vxOKYTEntyzToWssttFBl/LSMbHnBl6zMeldutkQHXcTIW7xB14ig0pGVHD6lKFnrCGXlUmp/zNCtlZ8iUqCvf1ZPJABvt4+Pjdn5+3s7Oztr5+flqsiBm1mrojNuJ80Rkga/n+QX7TAaqdVMy6rwDJgJ4T/q7d+/a27dvV2QLJAnKhtdLY/kSb6Sim5xghcbo+uMRIsD3xN96XNuF/7v2cvKZGWKnUyJkxCBLp6gSq6dEpouqJGFquZA992x4przKgSNmPf1Y1bvOdmTpW4sJC9c/moPA9w1o1FQ3HGICrySgt4zQQYmcq1MVWx8miFh+Br0ZZZzbqFf2n8vk+lQ9G5cX0laF0l2blV0lB+pZ8XJBEAFEBM7Pz9vFxUU7OztbiwrwLoIswADIhb4TXFce7AsZcF6S+63pVUkA6sGibc/Pz9vbt2/bhw8f2uXlZfvw4cOKEKBdWvuz3zr2R8fsZbwchTc7ub6+Xtt73S1ziuR3G+0/QgAq3oweqxp7TRORAHesV799JwKZ/AKZo+BQiQ4gD/6wzPHkvl7/6hG0EVntGc9evm6Iw9miKtHoyW9ltYCTUed4OHI/lRRshQxk4T2tUNaQzMoyD8axzorwjBhyzdM1eGQcNK8RRA+yp5gyz8qN5SMqwAYc0QEOZy8WfnybFcfBwcEqInB2drYyeMjnqSMD+pyisNqU/AC0E4jA6elpOz8/b+/fv2+fPn1afT58+NAuLi7a6enpaofG379/r8gAtjsFCcBLUvS1qbzrGkcM+GUpFcM3pf16aTXdps+d78VF3TISMqLA94WsjmCqDDtEXqaW5cgA68Oe3nfPq0rQXL4VEuCgdXJ7BlRtTHSvvBKC5x5EqwSy+8lkdBsysDEZcGGiXlRAH4Jj+RkR2KTTVghKZNj1mpG6ZJ3M1U/rWvVSXGSGiYBOFMRYtv7m8L4LmcHowADi+ouLi1V04fT0dC268FQ7EKLulQ4z8kxdxOX4+HhFiD58+NA+fvzYvnz50v7666/2+fPnB9EBkCQsYfr169dqoxMQAeyPzu9SBzHAB+QA9ee2dvLd86Zcu6kMR4oyU+yj/df1Oz0flbkNErKvJGEbRDYitT2HDd88Dt5zAvV6zWuUEETp1GHL0up1THAc4ajk465prT0w/r2hhx56zugU2diIDKj3ycpRBaLCzhkRSYjS9hTbaOjEEZZI0KYi8ubx2xn2Xj7aKZ2x4gmCTArgxfPEPyUDMF6IFiAszpEBHSbg14/uE5yM6vlIYbK8c7teXFy0t2/ftnfv3q2IwNevX0MygElGGCrgV7KCDPz777+rN6fx61TxOTw8bL9+/WoHBwerCYettbUowSbokeURDw/tx9dmct1T6FHZm9wzk54qiX9qRMZgCmmoEKCIKHF5WbkRias8N9XNTi/3+nKk3yMZqxIUdpb4nL4zQef6ZLal0iZPGhlwhkqXnWWhxdFOFgn1tlh7lndUx9GOpp0kigLotyMD0bVKyjgqwCsHOBLAwwK8fFBXD+gzRTk6GVH3JsA1+0YGFKww3LNXgqVE4O3bt6uIwKdPn9qXL1/a33//3f7+++/25cuX9unTp/bu3bt2cXGxugZtDW8BKwcwZPDz5881MsDf//vf/9YIhYNO5qoo6Oq5ajQggpNpbmP3G+miMqfqg56O2ufoQOY4RXqtJxMVfdhrH1eHamTH6Uitq5bvdCLnm/XrqD6u3s450CjAYrFYW0qYTRTM7tMRGKenMlRldxIZUEOlhscRgRF247zgzDPO8ouEVIUhY9bVsqppRr4dKdBzrCx5KR9+66RBRAM4KsBevEYEUAYDIULeZMNdy0K/D+8mqB536VjWedgFROD9+/ft8vJybWjg77//bn/99Vf79OlTe//+fTs/P7fDMFAaJycn7f7+fm1CJ1Yk6JwOXO+8DSgdXuaVKY9IYff6by9qUCXAjsjid2t/ZBz5685t+D1iuF3ayKN8LoiIQXZs1KlxRpnbKTLaLp/o/Kjz5+xDTx6qJNKRoIhAsDyC5GODIbdXQUQssjIrkZAp2MqcASUEmWJxlXasX70EPVdlRJHyie6lhyqLjs5Hhl6PuePuo15q7wMjBIPC5AAevu6Y5+6DSZ+SPxgizHRv7T/lfXNz023fXSDyAnrXcId0ZACbMmFo4PLychURwNDAX3/91b58+dI+fPjQzs/Pw/c68OQlPEtXX74Gb3TDCoTj4+MHEwlBwJbLP0M8Wh7OK1TJ9dK7NtT2y2SY12brhlVMapyC5R3qXJs6VO4JOmTUEdkWerrOebyZF+uuzcrVvhPpKJd3howI9OrMaSLdibRRu2T3XiW4rizIHcuiTh6MohOOVPCcDH2u0XOeSgyGyUC1g3OlVJm4m4iURJS35ssPoxKNcMyWzzlm5uoc5ZmV1yMCWWfjtoEXrksFebUAv12QNxDijYH0bYS9rYa5Lm6CIca/2QDBcD01el5Q1Mn4XjnScnJy0s7Oztq7d+/WogJfv35tX758aZ8/f26fPn1qb9++XRs24Q7vvASWPzwzJW9M4k5OTlbvYj88PFx7+Ulr7YGC4k1iXPu4PjTicUdtx+S1R2Ldi17Y+GMc1r3HvkcKRu/luWLU628tj+Lw/00MUKSjHQmJ8s9sA65Rm5DlWSEwjnip/lssFg+GRJ0Mos7aFo4IaNoM1XSKjScQ9gy1+/D1+q0kgJWIpo+IQEY+ovvQtNF3dN0uiYAjSUwE2EjA44+2Eeb5A0wMWAm7vR1cp9Vn1FpbU9TcefaFDCh63hG+te1BBBAZwBABLyP8/Plz+/jxY3v//n07OztbW0qo2w5HBgvRFY1SqDetm0Ph7ZFc5/v7+zUSEJGPzAOJkMmtGn83dMXvw8CmTDqJlWWLN2JCdAR7MGgbt/bwvfHOcET3WiHGu8RU5R7l1Zo3hCP9YCpG9WoPmW1Q0q110P+OiET102v4g36mJIHtki617hEBbZttyQNj8pyByBBmBlrz4LyyDw8/VBlgFiGoMECXx6hSzM5lRCBqW20T3TiIZ/Pzhj8ccmVlrF4Zh2m1Hdy9aEds7Q8ZwG8mA/vw1sIesmfs9mrg/QQwcfDjx4/t48eP7fLysr1//341YRBGipUGZv+zwee6YA8C7CngZiQDbPjx0hWODIAQRIqT798pnSiNno/IKxMAtB/klOdD8JAVExzIEEgA9lzAUsvDw8PVudvb29U1ANorurdIRz0nuOflUL03p6eq5WdpnG4ZqVP04TS9vCNClN1DdI5Jh4u6uT6jdpOJgiMCu8YQGXCdn4VF2Zgz0O76iACoV8F7PWu5yF+3e8wMGhAxtF50Y4SdRUa/QgS0bVipQqHCKEGp6rsFuM04SqDeJcrQe1Q27EgaPwMV9OdCBhROHrndz87OVnMG3r9/vyIF79+/X9t+GO9ih7cPzxZGXqMD7E3c3d2tbUSEvQiwtwATA64v6t+LDESKMlJE7niVCMDA8zDH27dvV/tTYDts7FGBOSyt/dmpkfdXwH4MkHN+Vre3t+E99RR/1jZPgayufC/a7yLjUy1Tr4sMlOrQqCxNFxHLav3cPDWtQ0QAo/8urx6cfXDkJGs/JhSO3PSICmMkLbDR0kLHyFihOW8H12b5AayAoUzYgCkxcGQgCw8x2IPS63XnqIwYZBEQd58ZGdD0TAZ6OwliqEAnq2k+bhWI67D4uPq6SaOuHUeFc1/gSBgTMBCBDx8+tA8fPqyWD8KgtdZWEyp5y2F+D4GOc6PNMBYOMoC9BbDXAPJxwwm8BbRu7c2ELeqPPc9Zr3VkXiMC8Pohr7wvA3Zn5PdjKBnAPgwgRt+/f1/JOerg5JGVbCaHGdF5CkxR6ozMMEflZd+aZ6T3erqWdecInD7kc5GMVnR/tZ34niFvGglwcljJ3zmmlWu2IaMbLS2MUGF/0QPVczxzmyfI8UcfCBtxrY+rv0YWdDY8T1ZCmDZbMxq1VyTIPaXMbYGwqXvtsNs3AAafoSs/HKHiD4daHRN3gu/u3c1F2Gc4AqaRmIuLi/bu3bvVi4iw+yKMGLxZjgbAqwUxuLm5sTuUQd44FP7z58+VN4zPz58/1wiB1h19yAEkISK47rdrJ1emRgUgk44IXF5etsvLyzUixTtYLhaL1cucOCIAIqAKX4djpoRdRxX5rlElBkriqnlHxyJPNvvvrpsSUdV8Iv0Z1TGK5FYjQhx1ia5xQwPoU8gnimajDHWWnJM5pd1GrtnaagJgRHlkx1gJ89is2z+fN7ZhY6YeqnswXG+eCc9KnD04HrtlYoDZ284DdiTAkYGsrd3saxCkUSLglBy3E8akNRrChoUJACt+nnvAcMeeAj3liA6kbc+ElN/BACKg0QAmAjDUSgTwRkJ+PTETASYPuhUxXl7E2xHj+tbaGgFgQ4gJdnxvjtBmxABQj4SJABMoJu68goVll/dS4O2seT8FLE+9urpaRQ34Hl1/xPvpdegK9d9UXh4DFaXORsvd57buY4rnGiGqb5QW35ndieoVGdpKtCu61ukKvob7ouphtlecN9sQnXQYYVvPdqurCbJ0VWFGeh6bPT09Xa3j5jAsb+CCxsYsdvXeW3voEePDHgSUsL5FThUwiAEUPRtQ9wDVa+oRgaiN2eiifXT3P12jnbU5K0kmAvpGPNSFvTA2kvCY4alptGGfUGlzfOsKDCYD8Gzfvn1rZZGNO8sTyw3IgrY7b03McwU4ooDJcojcoM8sFouVtwJDCKOIuQNYftjan+eO30qiMw9L200jA/qf56owmdQ8lIBhyEP3wVgul2s7NippzyYeA1F/1To9BUa9O0XV2GbpNim/qt9c2p7TxAYZ53tRgIphzZxb/c/OFKIBrC+5PB2m499MALLh6Oo9uPbpYePVBGpUNxVeFxG4uLhol5eXq7XbHz9+XI0vYqIcHgQUqiMDqpTUWLInB2Wrb4/7/v37SkErMVADqu3gFFPEbqO2cROyqssDI7Ag6utxedIfDA2UM4fMeRWDi9TsA0YUukY+dBlcb1fA1tajTdrBcR4fJgEsgypnMP5MxvA8dHiH+4Mu+eRNe1pr9lpHCirPkvsWz/MBmHxzn9PIG5N4tCtHl3CtW4WAqAHKnzJ59SlJgGJUr1ZIAOenBiTKo1oHra+LRkbnRtrdEQFXF6StpIvKcP+dZ68fOFxuhQGncaTA6QtXJ3cPI5GX1rb0oiItvAonLCAC/Aa49+/ft8+fP7e///67/fPPP+3r16/t8vJytZHL8fFxa62tGTNVgq21B0SAvRMoJ1bEPGkLL4wBIcDYrXu1rIZ8+R4zpqvt4s7rcIHuGeCUpuapBISJAL8SlyelsXJfLBZrQzf8pkLMnFcBf2pCUO0QSnKVfGESHIe4o7c8ar5u62b2LJQI6GoDPAfeRMp59Grs0R9ub29X/UHD6bqjH+ej+VehpJs9J9SL+xp2UeShBCU+2lej92Fo9GEEmbF6bGh0bSTKOmII+DrNo3dNVndXl4wYjNQ1KlPLRvoqEXARzSg6ptEINf7QI/f39w90MtuI3iT1il3dVE433o54CiIhZS8MxgaTi758+dL++eef9n//93/tr7/+apeXl6v121AyOsnPbegSEYLW/ihkeCgcosXksH///bedn5+vzehmBfTmzZu19eDRHALXJvzNv5GelSrvE8CEgCdVaj6cl3ruPESiUQ4uUyMCGDdHqBzPg8kFb4/7FHAdPZI//s2EgCdtRpGYjAS09metP0L0TER5vgp7yJAhGH/Mmo/uhRUSe95ulz4lBTrmHkUJenAKk0kokxQmAz9//lxr2+Pj47U24BUvOkyWRcjQbyJl6ZS/kuZ9iRBMhepcfkYuqpvpqGp5Lh+VWa1T1s4Vg56Rjh6hcs/cpVMdzfKDc0oIMIdI81Fy7qJzo3DyXMFWycAIk9EHz14Y9s7HG+A+f/68eunLP//8s9rr/ezsbOWF8rakrnFVOHWtPR48FNTd3d0q/M3hYPz//v376r++4OfNmzerGeLZPILov+tIPClLIwP6XRmvZ6Flww0jxKFaGCI8Mx6+4fX1IAOttVU78hDKFMF+LESKX2fFRzv+teZXYvBQg+7lgGsqoXIeDuDyWe4cweNog05+ZXIQbenrlFJEqLjc1v5sQIXr+b51kiQbd2foHeHiaIvbyliXzmLypHqP2X09NQkYibZWjWl0XA1blk+vzprWEW0+Xo1iVAw6/3aEVOsUkcDRyApfo+RZ5V9Ju5uEHn0cMtmtys9GZMB5se58RXjQsXnC4IcPH9b2ev/69Wv79OnTKiqANdzYB1+NPiti98A1OsAPjD1vnqSHjWbwOT09faCAfv361Y6OjlZKGJO2OOQatVsm4FxvLo8/OvSRlYc24+EB3uaVh1dYWaBNMImOZ9PjmeC+uR77MlSg7Rml0Y8jkK2tb8GMNuTziJSwfLpoDO8/wEMDbtteTNbkSIVGudjY6uRFJn2OBPImUVGf0vZj8usIhxIkJUIYJnCePqIr3JaokyMDbqjAEYEsWhCRhsfGtsuP9ILznh3hq+RfMaIV0lW9714EIstHZUOvcySiQpYcGdB0OkRQIQE9QjAVG0cGXEX5WIUIcAgWW7teXl6uRQTwGth37961k5OTVdiFdyS7vr62TF+9Jhb85XL5QLHjoUDRIPTNwxeIGrBChgd9fHy8qo8jBY41cp011MXExc3EdkbNCROHqfiYG6vG+DK3Hy9d0xn2/NIcpIFRQFj8KcmAIwJ6LrtGN7tynv319fXqPDo4L4vjsDjvGcDzT5SIgXxplIojVTqBUQ0tQvDcT379+rVGQJgwcGQAshhFSHAcad0kSF35wIYcbYu25L0EOBqwXP63agDDJGhPDsM6AsFDBY7gVeXlqTHq5QGs7/j6SD9PMXpcP/3dQ4VsRHXMyumdzyILmUPQy1vz5D7k0jIhyCYMRv8jEuPq0sNi+ZSUd8aMGTNmzJjx5HheW8LNmDFjxowZM7aOmQzMmDFjxowZrxwzGZgxY8aMGTNeOWYyMGPGjBkzZrxyzGRgxowZM2bMeOWYycCMGTNmzJjxyjGTgRkzZsyYMeOVYyYDM2bMmDFjxivHTAZmzJgxY8aMV47/D2Jdc58Agyn+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/VklEQVR4nO2d6XIjOZKtQWVSUi413T097/+AY2M2bdNdqYVK8f5oO8yPh8cBBEmJqlt0M1oEYwEcgMP9uGOJ1Xa73bYrXelKV7rSla70p6WbSzNwpStd6UpXutKVLktXMHClK13pSle60p+crmDgSle60pWudKU/OV3BwJWudKUrXelKf3K6goErXelKV7rSlf7kdAUDV7rSla50pSv9yekKBq50pStd6UpX+pPTFQxc6UpXutKVrvQnp8+zD97c3LSPuD/RarXaO9d/na9Wq3Zzc7M76jw96+mm8vo1psG0mJfO+Wut7Y4p/4qUv46vr6+7o85135/tlSNdT+/37vs9/VfZtttt+5//+Z9xIc9Mf/nLX9rT09OOJ+fN5cFlRG326dOn3e/z58+7o85Xq9Xu6O3M9PkM03R5FUkWk4w472yL19fX9vPnz73z19fXvTrQ/58/f+7S9HZk/uSB5fr06dOuvCyLeOQxyY3kV3yJH+eTz7f2S+6rn9LiNf/PZ5Uu6/XTp09tvV63//7v/56UuPPRb7/91l5eXvb4THqrp5vZZnwu6c7UHyjXlG32gdvb27Zer9v9/X37/v17+8tf/tL++te/tr///e/tv/7rv9rf/va39ttvv7WvX7+229vb9unTp9Zaaz9//mybzaY9PT21zWbTNptN+/nzZ/v582d7eXk5aPvUByg/bMf0rvdFlp39XM85n8/Pz+3h4aH961//av/85z/bP/7xj/aPf/yj/d///V97eHhoT09P7fHxcfcs2478VHo02RdvM7a5fuJ/u93u2RmV4X//939L+RBNg4HE2HtSpQj9PAm0G+ZK6FM+Xt5U/gQEHAS4oUiKtSqnE4EABaBSmD3eq/sVmBiBARdcGrFLgknVk3cg8Vn9EhAgIOAvAYIEMlzpKD2Xk54CTLy3tq8g3PBJMSVlKaXnMuN1qDwT2CUoSMpW5IDMwUAyzhWA8aPKrHx//vzZPn/+3F5eXg7qz3/qR6meCZbekyQf5CfVZ9JbMzpzBAjEg+sz8fX58+d2d3fX7u7u2u3tbfv69Wv7/v17++2339pf//rX9re//a39/e9/b//5n//Zvn371r58+dI+f/632ZGBFcBh+0pW1bYO3p1cpgmCkzH1NFar1a4fq7z8L/3x8vLSHh4e2t3dXVuv17u8JTupzl5eXnb8rFarA56S49RrM54zHe+fenaz2RykmWgRGEgMnItmjOCpz47Q70xeVflHPHmH0rUqj9Zq49lrA94TQEg8VmWojDmFtYde/Z0lbfUelNr7WB490uOdMCnUZMQ9OkCDNFLqTF9KNbURDT7BJPlOz6T8eJ6AgIMBN7AewUplS+Xy53Xv5uZmz1iLL90jaO4R682fvRQYcBAn6umAFNmZoRlHpwLJ6/W63d7etru7u3Z/f9/u7+/b169f27dv39rXr1/bly9f2t3dXfv8+XNbrVbt5eVl50U/PDy0Hz9+7DxqRgcIBhPAplz0ACVlTml4xEDRiPV6vQeiP3/+3Nbr9Q4g3N7ets1msyvrly9f2sPDwy4aIPDpgJn9s6rvqi34TqUP3ClTv5uV3aMiA2+p4E8BBRXqTYY//T+Vqjy8A7XWDozGTPmWgDC1lQOClHYPAPQAwQg8jMDHe5ErUhmGCij6/6otSQ7wZNh1zd/1c+VJGelR8r5p8H7+/LlLJ3nhDjjonSk9pk3yoZAUeXP+lA5lcrVa7QESHhnJaa3tKVKPgqX305HtpvbndfGW0r2U/HoURdRrL76r4yn6LdWht7mMJMEAf+v1ei/k/vT0tAMBDw8P7ffff29PT0/t6elpDwhQd6WhtCTHKXrEOkzGUWl9+vSp/fz5s63X673ImoCAjnd3dztAo2EOH9rwoQvKW9KfPWIbzoDA1vpRvkRHRQYuRb28k2F3BZ7S6N1LVDXK6F3mk4YJTqGRUWaH6QGDJZ7TMTxdilIYrjIWPO8BgfRjSDF5yK21A++Z7/owQ6LEL8vJ48+fP0v5d8Xk6TuNhggo0+TfASH7gI9/Kw+XUQKASga97DOy7HVTvZeM8XsT+3S6d0x61Xkl82xvHyrzyIDONT9AwE+RjsfHx/bjx4+93+PjY3t+ft4ZYRrtCnBS7jjM4EMGjDCIkk5QmZT/58+f9wAr+6iGRX7+/NkeHx937zgfBAPKtxepOlbW2DeOAYCLwcAfhZIyqgS9el40E56brfxzAIEZYUnKYwQMkuJOnaeXX+/+pSiFzFs7rKOZNuR9HzulonAwQCPoAELv+kTCHi/ejowAebgwGbvK4xyVPfWbZDS83Cm6pKO3RyKWrZr3UHmGVbmrujiljt6CUl9OdVxRBfZGILECwQQCt7e3u8mDOhcQkFy/vr625+fnnaHUJLwfP36033//fXcuL7sHBhx0+mRVtplPmvV5KHqedaI0N5vNrlziu7W2Gy7Qs3d3d+3nz5/t+/fve/NVWmsH/ZHpJF5m2m9EpwCCPxQYmC2cP3Oq8R0ZOtISg9IbS+3xkfih9+T5VKHEUcRgJl/RqH4uqVB9FvYSWmoQUjRA5MqX3rYb0pQG28sVmO4znN5Ly5XmTJk8vV5Zex52BTDJS89o8720WsI9Mj7D68lAVHl9BEAwe31GX804S/6cAwNGBTSJ8P7+fi8isN1ud+F01bPAwO+//74bJlBUIM0XaK2OqPlk3db2ASPb31fTpOECgh1NcFyv17t3Xl5edhMgV6vVbgXF169f9yYKMl8NHYg3EUH8EkeqavPq2qzsLgIDFcI8hZail8qw6doMwnUFmQS/4nG2k5GHJMTOw3b7a/JWysfHVlvbnyDoAKOaOOi8Kp+UFgHAEkCU+D+XvBxD3hF77euU5KUKWfqKADeW1dBCiiz05NTL5eVwI0alk/pHj6r5DrPzBFKdU1YdpHmEg/MbnH8975MHe+QgwM8rwHJpMFCRy24yOul/a3NRmdSPJaOMDGgineYI3N3d7eR4s9nsJkG+vLy05+fn9vj42P71r3+1x8fH9vj42J6enkowkPqYziUfBNfi28GgjHUvUtBa25VNhv/+/n73nFYRaP6ADxcQlKrcGmrgRFbvq0sM94zj1dMbFV18zsA50qsU3MhDSs/2eOp1nAQC/Lzy7GbydK9fVF2fJVfEre0r3SS0MwKbBP1SxM7Xo2R8k0dUgQAHAvT8WzsEA709BpIsszy8NvIqqvSYp4jGl3zz+TQMQiDrPEkWqohA9V5VnuoagYHLdfICXaZ78nEpMJDqbaQrKkqyNJJ3lxlGBAQGBAC+fPnSvn79ujOYqncBARlHTR7Uunz9dF/vtHYIBDQxVkCgAgOttT0wwKWKab8NygINuvhgWho+EIC/ubnZRQiYtsqz2Wwi6CQluU3tOqtLlziwosVg4KMoeKeeUM9e93R43yvXK9qvVWEhCVsCJ/68zn2Mq3d9JuTrRH622/3Z3m78Uz1UEQQvX8r7PWjk2fW8Iu+8/r8X4kuK2/8zPbWdFFyac5DkjulIqUhRurdCb8jHOEXukTnv3od8MlQVfiXQcGJ6vbZKUQ/+PCTsE8ncM0zDBMkAnwK4T6Ge0zHzzqy+rhwoAsEKyK7X691QgYykZOLl5WVn4OX9c0mhluNVqwjYhzx66Xrb9Y/akUCAmwD5xlZKRxMHde/x8XGXf6o31cPt7e3ehklPT0+7SIjn7Q5K0gujtvW2m3m2R0fNGXgrIDDjvfWoQrXJ26q8JP0nTxWv/qzzke4nBOv3ndJcgEooUqTAPT0nri13EJDG2pNH5cc/KlUG3BUivZUqKkDZa60dPMdn0wSpNJxEnshza7+MuFYRqN232+1u/NblVuA0pU8efDkhz9n2VX8h0FFdHEMJCHt9+LUZ0D2S3UvJ9DERiQqQjxygXhl5T+0uAKAJg5pEqKiA9AcNvuYGKBpAo6nJgzKWqf9QVzlId72o9yT7qS9VQI9gYbVa7Yy6g9DtdrsbBlitVntzKO7v79vz83O7vb3d7T+gyAb5dzCdnKr30KtHgYG3YuyYNJcAgJn3nQ9Hmj0El4wI83AFOBPKScLq18hfBQQqHp18HLcahqgASaIZZfOeNFL6SWb8vxvqJHP+nstmIoY9e7LlPFPZVWHxnnyqXlIdJCDks7gTVfJRARAq2uS5839r+5MHExCpojk9/o4xvm9NleORogb+rMu6y2L6n0ACwS+3H9YwgSYQMjLQ2q9dBgUIdNQ5hwU8KkCgmaJUVT9zcvmdkQXvPxxC9SgTowittb1NmG5vb3dDKuSBTpeup3lh7ymPR68muKQHWBltHSvBHikvPlfRqHFm6iQp/JFHpWc8pMl7vVDmqW3lxqmn6GeN2HtRAnOV/Doa5/WlHbM3R8TzVPtRKVRhyRmq+kEaVx0Bux54YRmUHsuU6tP7pXt4/r4bey7RYr69vlQBg17e/u4l6C3yrkBhukYD5ltxcxUBDR91m8bdBQj4054CmjRIICBK0TJu481oQTUEyvk7NMQ6T/3cDbbmDlAmOSSntAlefLty35nQZY95zuiqc9M0GLik8SclQe6h3fROlW56N4WfZtMaEdMcjUkmZetpzPBFItrV/V6EorqW7vXa6RLEdnRPOJHP/HUjkgyUG83X19eDiXXkxw0elUEanhmVr2oHKvPq3UTeZlTIfK8ypimi5elXRreKEjjYoDLnsw4iZv4zXQcxlwQEIzpFN/ecqDQkxOgAlxZqh0FuOMVZ9YwKMCLgy0FZFgcA6dsgXLWjnxtYzej33Qgr+UyRK8q8+BYYUN/nM6vVag80sb6STnHdVOmqkS3q6ekRTYOByotaqrCqtJaml4S3+s28y+uJx6WAwhWnU2X8Z4yxK6fZyU3HtNcsSPH/o7a+JLEDznjsbox8Upo6visZHwtUmg40HAg4Xz6RsAIzPSNXhUdFPqmJsktDQB687noySrnwPtIz0AkUOAhwY95a21P8VZoJ5CW+PzoY6FECc+k671egQN5uAgT8aiUNprbq5XwBzRlQZED9iLomLdNV3p6vL8VNIDuBdQeRulbJxs+fP3e8cMWDQL+GAggGuDOj5kSMZJBtkq454PFrx9LZNh1yQ7MUvSyhyuvsGfNReqlz6HzWiPY6Uw8A8ejp8V410aUinzjoBsbP3RvtKftEH11hJuNEYn27UtF1ggABAN3zyZdURkyfPKTn0rNLqeoP8nqksAl00jhpmtyY5Dn1ESoo9iNPw58TwPJ7zKtXbvHuIeCKv8rR+cjk9TLidyRPCTQ4EKi+1sk5AuLFIwIcGuA1GkeG73WUwdeOhlzSp4mKMsLMm+fsl7ou+W9tf+5Ja/ufg1c/V//khkSaK6B7t7e3B9FWrrZYr9d7Kxu4PLIC+W5Te3akchJmdcnZwMAsEDjlvUpgKUAjb8/Tc68noUeGbpek55PMvIw8T+PEpyik0cRBH59WfpW31QMtI+D3kaIDybA4COB5D8GnTi2vYRZEKj3JVxq6YRuxXatJeExXafBd8kYF7GFO/nynN5dpAppqiGOmr/c89Zn+sKTPLEn3j0hLHJkKzKnNU3ieG2XpXQJLN/xaZsjlhmncnXnro0Dc9jiBAZJHjzROr8l+BDS6xyWBLg8vLy+78vmmR3pH5x4h0TsEA/zmwcx8HLbHzDWnWfk+CxhY2pmqAvQKRk9h5IGnH9Op7iVFp+tUcK5kU7qpPI7+1Fmp1N1DHJEbdF3zOvN7vfedkheytM2PeedcVIXfenLo8sZ3PU0nn/BEY+vXmG56Lxly5pPmkPCcvFPxUFlybX4qSwWYCZYSAOi1eQIUrJPes4lSv6mGXZxHPya+LyW7xxgKgrlRGq7LKr3qHyWiUaYx5mY9nB/gAMCjNhwS8J0NuVpBgEAGVu8QoHMoj5G81tqOD0YrNK9gs9nslZteu9KvvoIoHnwCpcqmettsNnEyIfsTz1M703awvUdyMaKzgIGUYTKY586nMsAVgkqKkYqayk5EJecTXFL6rvDpUTmlxu6FlKn8qdSrKEACNU7VhCwPtyUleUkDv4QqPnuhNZG3vysahiLdQ9Y7PnGvBzZGhi+ByMp7rsAt3xF/OnpdJVn2NFVHUop6h+HWVOfikdEJRkp8+IpzMFzGVcdVVCKVfXTPle5HpaQXe88lees5Umm4SEabho8bXPlyQq4YqPQewYCv1yco8HkK7A+pj7a2v8+FAIG2Rb65uWnPz89lX0lpETAQEOm/6xXWWYpMsB+MbKcDgpG9m6U3W03wViCgElgv/AgUVEKe0uEYpjda1bGSJ1gJmmg2IjArMKRZIKD/ydCMePnIdErnmQknV4rVlazPC6BcpTQrfnpAwAEGQ5dMw8EMf6Ikw8n4cIzVjbYrUa8DN/oucwrBsg45JEGQrJCvnzu/SW4d6Pq1S9Ixyn2Unp/PggB3cCRD8qwJBvhjZIDLQ5UfdzTk55D1IaAvX77s7WXgm6UJiGhcXvccBDFycXt72x4eHkqnjbKt9Oi9c1iBACBFBzjMoqEFbli01L6OdBrrdoY+/FcLe2iW/9O9Kq1eHknRudLpGRMHAokqAzsaIvCQcEUjIJCGBWbT9nxmvKeP4mGlTuPRAUf01TEZzNZq+ZwBqrrHo6fPa+5JpPy402FVJ1KiHvFI6TmwlUfI6AfBM3nsDV95mXiu/0ojRcM8GqPnUn/+o9G5eE6y3gMCOvo4uY4uA/S+fRmhDDDD7CJ6zdzI6MuXL+3Lly/tP/7jP9rXr193kQHNFZCM+PyD1lr5bQPxrDkN+qCSl0vvydjr6OBbZfc+kYAFAQF/PWdR1NO11btL5eZkMOAeQFJO56CkAHrGtkJMLvS6RoVLpcJ8ePS0PQ3vVOKLVBllelbnphS2rfii8M8CkEsb/BlKSF7/U8Sl8iATMDgHzSqF2bQoh14u95xoyEkpjKw0VqtfKxSYNqmSoVTP5DmN+yeF6H2mB8iqcvxRaGmUdiaK6ECAxn+1Wh0s5aNek4FXu8jQyksnCGDkiXn6RkaKBnz//r19//69ffv2rd3f3+9tbNRa20UjVE6CSU+bQwvb7XYHWBzk0JkTyJWM+/cMVG5OMpStcsfR65ZAJQ0Pu02t7E+lz3ptnujskYG36lSzCH8mdKL3id4IBHg+o+h7+XDGKOsmeeJKZxQhSMqwol46DBPzf+955znd1/kf0Qtzmqnn0fCOG92ldePywDbz8UxST/lX10Yy70ZVxOiZ83wMSOjxnyiBkVHbVfKc3v1IYGFpv0rtxXsOBHTk+v7kyba2H6LXf4KAatIgefKIAL+A+O3bt/bt27f2/fv33QRCyhgNtKiKOnDyoYaQNFeAIIBpCwSwrry8nDOj/270+b4v0RSQcPCrdyinDhBSu/bau0dnBwNLDNVMWulahfhFSz0nHWfG7KuhAh8nJvm4JvlMBpQC6DRScg6EUp489uYNjKICKVw18kI+Ajn6ru5V/4nmHe23th+aTGm0djxYqgxr6hNpnNf7i7yYzWaz9z+1be+o9/hxl8o4V4a2kvlee1XPzVDlYfm9GWBxKRp5+/6cywnPXW58nNs3+Wnt1/i7gwFNGEzfHFCeykMrBxQREBD47bff2vfv33dHRQVa+7UqgGCEAKS1w68caj6ChgYUHah2M2yt7T4/zHwUPfNtsXWf+xKoDpWG1yvrlhMflaZ497obAYJj6GQwkBg6lyFwhVkJsufZAweuEJPSTgZAgjUyxM5fa4felgsQn0vl9vdayxMPR/U+AgL/v1IlL1V7zaTHTt1a2/ufPK0q/WOiBBVPPcWQeKIXIw/FAaG/m8pCY8pJXeJXeY7kLA0LVGP/rI8EMkZOQwLiqS4/MiWdl+pqVlf2gKSvHmht/8t+biy1oRCX8ek5ks8VICD48uXLbnhABpxyxGWC2tOAkxMZ2ZAh5geEZNBZLpbBNyXiroO6rnc8+tfa4VcWCYiUn7ZJVj0kAODD1ckJ0PkpcnvSdsTnNv5VfkkZVQqqx2dr+wbRFaKjrUrJeCiU+bOziFy5Mqw1MvBOvcl/pBSdcKpASYoK9Dy7VJYl9y5BS41wJWsJTDIPLzeVAdOuJiQ6UfYqgONRKo5/8r94pAHmhkkeHmVeCVCwvHpXCq4K5SYZpOz5MIiPPStt/R9NhPV2rADKSNb/KNQDBsn4EwRwTwHN4FeYXekw/E9DOpo0qDy5eoDLB7V64MuXL+3+/n5vq1+l759GFjiQDMjQv7y87Iy/wIHARWttr0yp/4j8Y0WfPn3aAwecLEtgQX5YB4ogKDLA/QoonySCBbdlp9KHXE1QIVf+73kos2k70bine07JYI946AENCkFv3DYpqAqAzPBQAYFefol6yPQtAOOp5B3LjxUtkbuet+559ohGjkYsReUUqqx4d+PuEQA+OwJ4lQH39DiEMJuOA9Ekt+k8/e/RHyUSQKrkpidHI+fNjSEjAlzOxwgm65/LBulNpyECggEHBAIAmiMgQ02goT0CHh4e2sPDw97mRpIzH1LQ0IVI5by9vT2Y56DnFYHgTomcT+B9kW3Scw68DvxDSiKfQ8C293Zl3sfI89Fg4K2Ue+XZ9wDCTDoJPJCI5qqwPtNKSn5mIpmn60Z7FPKvPBnnr3qXx9YOgUCV1yme0kgJXZKSd61j5UW1drj+3icJ+Xsz5JMEq77glJ510JDSYFiekbGZIbFqLgrTTQBBz6brfIdK1yMEfp2eF3lL5U5tk5ToRwEI5+ozSYem/26kfaiA0SW2H+cOJDDg+TBt//KhJvrRY2dEQB8+0seOnp+fD1Yt0DN3kCI+t9vtLlIgIKK0OEyg4QfxoL00REmWRRUoV76qO4EByjadw+SwKG/WbXLkZuV4ERi4tDKvDPwoejADAqgEKgN5ikFM3k/Pe6/S6N1LCNHfrYBAL49Tyv1HoZ7xdXlyIHBqvpQHKYgEMl2pJl71/Ln6ampzpj0rE73IgNIZyVnl+ffmDejYM4SkBPT/iHJfOVAVwKVsp5UEPsFORCBGQOAhdfeIPfLAGf/8r/bg/ANFBRwMcA4D21HhfN8EiXN8BELu7+/3IgMvLy/t7u5uBxA489/rIckJ9yBIdc9NiLgZESnp9kpPJ3s1Sx9ymEDUU3g9AHAMKbSavOOR96w8FVVwPlLIcykQUJpVA1eeIXkeAYFj8v0jEFG2G/0KBDj1IgijvFNalJWeB0ulk1akzJJkTmnQe3dvxL1yeihVmSpvfwl/xzw3C1STY+BeF68zzUs6QbP1cqwM9wCBxrJloOWpc85Aa/tL/GS0Haixn/n8BE3s808TEwi8vr7uTRTUXIGnp6e9jY24+6T616dPn9rz83Nbr9ft6elplxejIHrOPzm82Wza3d3dLjqgbwuoD+lXzQOjt17NRVBd0xlIlCJeSTd7dOtNIgOXpIRyz0U9tDXjzfsM2zQZ0ZVtolmPbrb8CSVWeZ+CKP8odCog0LOj+55P9Q4nEyYelnr4bGO+S++EAEDk4V2CAT7n/Hgd+lIrBwjpGvk+ppy9/lUBsV40sQcK/sjUA7E0UIwIcK6Ae+tOqZ15Xfn4JEWPDDD6QICx3W53AMC/hKiVC3qWfU4GXIDg6elpD2zc3Px7aSP7Ivck0MoDzStYr9d7XypUvtoym/XB8lMfEBTpGfW129vbWKfitTc8x/ZcAgJEi8FA6iznoiqs1fPCqvuVF+DEyVYUiDTGOTuJkO8x3WO9JtJ7eenH5vFHiCJUctvzBKsQXELllBefvT+KbI14Tgoh9YEqPUbAem2VZJXRDD3De8coIC+H80VD5ZOp2G8Z6eCznn51/KiRgWNoNnqaogFunN1j5yoSGtw0x4OUVip41CFFBLgNsM8V4MePyINHOgRUfaiAyyVZR9wJUZGBp6enXSifE/4EtAXoW2sHgKRqI8oxowM+T4bzM0ZOTBUlmKEPN4FwKXlIpFdZ/E/Exr3VhUiZds+Ip8kxs2PxFc0ahlPyOOa9keDNvHMJGhnI1vKwSoWwOWnK0TvT8yWong/lZbVaxWGqYyIWlGmlLaVKMMFolkcGuISPvFbbFbvXr2tp+9bUnxwIjMrtoVmCJZaTdUrF6tGYBAwoD5eS42PyrcrlRxmxkcfuESF6sh5NYhunPDlGL0Psu/+11vYm8CkfgQANDaRIlufdWtuN8+sTwvq5QU/1oDq4vb3d+/wwowOSMZ83kECmO6VcKeGTMulQpHKlPjPbfxItAgPuGb1VB6k8fT965Z7CT+UpueJ6q8gIx5OOJTdmS97rvVN5wSM+Zq+/B83KSAIFfs7/Vfi78jZ78ttaO1DO7OB8ZibCVBlm54XG39/x8iZjyetev1SUqQ08P/0cRFQTtJZQavue7J+a37npFPDtetKjAT5PwIcH3ImiN67ryTHSOScjMgrA7YFFamsafG0d7CsH0nyX1va/VcG+6ksIFSFQ+fk+JzVqeIFbCBM0kXdGNlIfV/qk9Xq9O6os4kFlTGUa6e6eTDidNGdgCZIf0dL3l+bpSt6VmodAW8vr7yve/X1XeCIXuJRvRbNGYCkoGBn7JW380RQoKYHL3jOJeuVj53cPiUcHflTK5CEpkhQ5SO0nmVT6KWzOyIUMcCpfDyh7+ROAcMDkPKU8R8Mho2f9vZSGp1WBv17ff2takq+XZ+RUERQwdO/DAvTaGcL2cHbiV3n0lilSX2logPIrI66NhTSRkJsM+fwW96g9miEvX2DAdzcU7+TZoybcKMhXDST5YTRK/CmP7Xa726BLwxGM0vk8tCoKcIpD+eEmECaBrgpXhWRc+fL5WQBTAYEqDwcaI1LnmgECPvN0xK9oBjWOFPxSqvL8CFGBt3q+tbrdU+dPnrXnXSlyAgiX0aqvsD0IChhmd+9qJBdeBjf2SjNR8iJ7nk4PpJKWrLa4pDwuoR5oTfU0igz4z42bn3MyX2v7YCANEVT5+sTEFPmi597ar4mvXKXgKwdo4N3pSiDOwQGHI1z+q/L4qgCBhPT8rPPGdDV3IO0YOurfVfozdLZPGPcU3Knpu2fUU7o8T886IBBR4Hu8eH7MoxobdkoGfQaYzEYQjqFTogLJG+il+RFoBrT1jHUvXSkUH+urJgBRQXl/clmltz1DKfKUQDT5TmXuec0sN6kyzlJ8VRlS30zPVFTx21Oo6b3Z/D4KjSIAHhXpee0erWrtMCrgP+bNn4w/P3TkgKO1/ciA69XX19e9XQarYQLl7/Lo5z7nQde32+0eyHGA4fMJtOVxiool2+P3CO5ba3vLFr0tRtG0U+lDRAZGHftc5IBhlFel6GYVRjKSM576pb1oN0Aj4+4GLl3/o1EvQuUTqlrbn9GuZ32cXF4OP16iowMIN+J8luO0POrc245g0g1Gla7LfDI0nqfzojxZJ16f1YRErzeOl3LyIK/PUNWufwQgkHjvPdc7ujfKpXacR+B9O/1aO/xCoChFGzzsTtnhpEGCAUUMqmgEQfeIPDKgpYnse9xkqAcINKavo8rA+vW8K3ln2pyX4JGIyvE+xt6QzvLVwnO921M4vevJS+8JRi+6kK4lpVvly3DwLM2U+1Q6Bk3OeGitZQDwkaMCrc3Vc/KqEqKnIpGBI223v+YJyJD58r6k1KqogKfNY9XOBAUkKvEEAqp6SXxURtXriHlwgqG/01p/B7dZ6hnD/x9opiwVEKBB9k8U+3i+jlUEifm4weQvDRW01g6AgGSJQwLVygXmzXL6UATT446CHJfXPX6GmdEP8q35AgQDBPvef3tOqPhNwwScSMjy9JyWWdkQnQQGLtGZkhfiinMWHSbDVRmzKgRUeWIVIBjx1uOf3uKSsVFHth7SS/lX6HNEI6N0KXKDcI60evM+6N27lyNAMFNHuu9jtsk7E2/uzfXak96Vz0Hw8nqafr8HVqq0RO5ZEjwoHSlajwq4xzRK3/lJsjELhN+DenlXjkQCTjSQ7qH7xj/cU0C/kc5RP2D/qECArjmlLavpcTO8TwOd+lICQOqX+nHJbWv7QxVawcAvITI9AoERaK3sh//36ACHIQRYHBB4+gkgzNDFvk3QY3ikuGcM1QgR9fLzhqvOTzHsx743CwKW5sfjKfTRQMC5yD0NH8ujN8XnRfSc03PuHVARt3a4fr6q41G41PvObFtV/aUHmklu7Omp6T2f9JWGXrw+vJwOvio9kzyoytH4KFSBlVQWXne540+ynNb9uxFtLYM7d4yYj+9Z4EBDxGiD50cD7d79TDSL/FG2GIlgv2LkgHsaUPcy0qf/DoZmiHWmdxOIenl52cszlbkC/m8CBt6KKnQ787xfSx0jKdxEI+M9Y+iUhns2H0GpVPy7IlxCVYTlo5F3lNb2lURVdipNP+q+0krK4Jj66YUSq2hY770UramuVTKS6mimbHyH9cPn0zCF91VOKks7hs7Kr+uBpQ7DR6IeCOB9B7I0OD6O70CgogS6PK8EMjyf1g6BgF/TOY8OFir59GcYGaBMSSYZefA5CuwzDN1z0p+WB/q8IPJEPlgHXr+SdQK0tG+Hp3+srL47GOh1sJ5g63y2oMdWSEK+o3Ch3ycgaO1wktMMb+cAEbNe2ymk8n5kINDafKjVKbWDOrBHA/hcD3CyM2+3270hA7/vXk0aK6W3Qx5nAIN7S05uaKv+6/yT0mqYVJ9pprRCo1KC3pfcKPGaK06PMogP/yVQdGn5rgy/36vkj0baI1o+uc+jAnq/AtQEx3rH9y3Q5kJcQcCImsjl1EFBqpdUH6kOmJ5PXJW+Vn/kUIJHYNxBYFk4XNDar8murD+SAwKXbdavwIfyoz7wMld9tkcfIjIwouR9jApYIaRj0dTIA/K0mKYrw1PQ2xJKHVcK1RW/Pzub5izg+CiAYUah8n/ydjjGyv+VjFChiapQn/NVyUoPCPi7CQhUBrtnyJOiSTxV/LBsPeVNb43pJWdgZtgszZNJP973unuP/proFAeoJ8PVJkM+iTClT0OXhnDSpMFPn/6926BHCPxdl9Ekl6k/JaoiAiky0FrbM/4cKtDPQQGNc5pIKGAxms9CEJz0stLXUAHBgNcNZbcCIBW9KxjoMVUp6RlKHbbX2fnOTH6uFHoGr9cAjgIvAQjeiz6aV8VjdV/n7uXwvPKuKvmdBUtMW4rGPa4lkw99mEppjMBDD5zMGMaRok4ei6fvsnOuvpLaMl33fnxp+RVvves9/ZlkVgA2ee1pWWGPH46bU3bVL3z8u1qxIOpFftQm1US6RBUYSOTP6F3l58OCqkdFojjMwAmSI2eoFwGpIgNpZUECtrP0bmBghDLTc7PGfSlyduVSgQm/NwMISCMl9tEAQeUJVYa9B4pGz1yakgyl9k+eVWuHCpBheVc0o3auxgcrRTkCN29JyZCOlJyeozLVNaZZgYHehMAU5fL09Zy8tDTze1Tmj0Aun95XR/rShwYYHRAgcNnjEI7nTaPs+xRwoyFOrmPaCZCl8pIHn4fl39sQVX2HwMDfm1mpo7T1PQKCBUUHdN8nPCZSPVb3FRFIkQGfc1FFBGbldxoMnNIhega/uu6KYvb5HnnnqTydChRUYGKUpwscFWJK65zK5xzGOCn8ZPBnveD3piV8JCVaAQJ6UOyYPQPleaUoQw8M6D0pBuWj8XF/jkedb7fbvednea0UeAUIevWe+rcf3duhEWktTxzs9Z0ecKkM7Uem1Ca8np4R6ExDAz5M0NrhKhbmobp3IJAmvdF4MY2qTEm/EGzLgOraSJapoxwUMA0OE6T5Ag5a9Sy/U6B3ORRI4OJ8VLzqfQEBTU5UnpR/tY+DgCVyvHhpYUJKXogeykv3q3s9oZ5JN/Ewej7xdooHP8PTsTRrdETHKrgZz8//z4CFS1Fq41kQ4IBAxLK50iR5FIDfdV+v13seGuWVCpl7tlNBej0n4+0KiKHwNF5JnlP/W0oJVLmhcGWb8k3jsOwPKbzs5Upg6aPREgCWnnEjTY+dv9vb2z1Q4MaPxpY6UecExelHma+iAyIaOF7TkW1befreX3u/Xt2TPELBCar678ML4lnnjGTwftWeBHCKwCj6QBDA5x0QzMr30Z8wTv95PRndXucbPZ8asOokVeFTZKB6dhZkjAzcOfJwYidJYbxZ3maeT0ad571rH8X4kyo568mSK1Sfce3AwNtE6fksan3KVSBgvV63u7u7cnc2AQGOW2oiFI2jy/mMIXHvS9eUx4zi9GcqZcr65Dnz9/JLoXJtOfny8HHir3es3rs0LTFWvFbJrYMAyR0/W5y8eAFPB1nMyyfUplUKPmlw1iaICBDFSwX6Ukg9PdcjGleXUXntigxUgFPPc9OgahvuxJv3E+WVViR5H3y3yED1jJ9XjT4j6Mn4H9uxR8pqlmbARJWHd7KlfKT3z0XeUWaNv84/KgjwzrFE7tQJ/R2WVYi9RwQPPqGKQIDfeu8pQ65jTiFcL7fLDScruZfnwDLN+maabpRZP6Rk+N3oy9tiXlS6fmRaNBDirzefoNIRH1V+XXd51MR/aQiKUQCCUMqdDDe9WbY1ZY8T2iQnnJCofCog7VRFO1JdJLnl9dZazCtFnlLeVf0TsLJO0pwDPS/eHFTxI0mJN72fhlhSVID1wesztHgCoWeU7vM8KZHq3ZRWhRxnAMZsHm9FCQicAkYc3YqSQXCqwtjp/lIQUKXzEWkkTwlwOihI8swwapUvgQCV8e3tbbu/v98NFUgpM23mx1UFo3LOUo9/Bz4qC59NXpGTR1OS4fL28Y1dGCatQqUOCFQuXad3O9JPl5bnSl6ra7rOOvX5APIuJWvpI0IO+jhDPukEeq0pMpCiAjRwaUIf066MOa85kPOoQIoOVA6Mp5VAItNVvTgQ0LspEsB+lOY/uA7y1QSpbph2Ou/RogmEjrr8P5/jeY+ZVMkJifWUNY8zPCxBSz1KvFeUkN0s8d23BC+tjVcCzIKCUdrvTcfUWyVzSQnNzN2g8SIguLu7a7e3t3tgQM9ut9u22Wx2CmBmglRVZsqrh3t1r8pjtv5GusE9VSk59+BY1x4mlVJ0o5KiAiyX11WlV1hPS/r4W9EIEPRArOrOw/c9IJAMDA1QMrxsS09PkQG2o/enHvj18LyuMfTOoSPWFctf1WFFjI54O3jZfZ6At4/Au4NVPkf+VQcCvw7wdE+ynSJ8zveIjooMpP+VAU6CPAoFpXTPBQZG735k8jK2tt8xU7jY63rk+fm1Y+5fWnkupVlZI3k4PbWNyD1iKl1GBxS+FRhQPiJ5EPQQ0gzlVD6G1N2jH7VXFYqs+k/Vv2gI3MDTqDMdN2oOJsi/nqHyTDvNKR0qUp+dXZXpvamXb0/nsp58tQAnqxIUjPYY6IXR2SaUcQ55eTtTh6V8RjaEQNwjQc6blycBmqps1XWv67SiR3nr64iVTLIMupaiHCn/kYzM0uLIQC/DkdGu0HYvMjD6+TvV+16GEZhYUi+VQBHh+pLCYykpqVnBnqU/mjGfpdm2rhSrGyxf95zy4n8qDU4g9IlcAgMyUjp6eJx8ODip+Fmy+oRE+XWDyTroGVHy7n0yeffpmQQiCLIYyhZworHnbO5Z3ZLK9d7U48fPk2FOkwY9GuCz/Wfy1nM0+GlpYWUTWuvrm6pNBAa8n7hD4vJVtWM1TDALxhjZSG1zc3OzBwheXl529x2cp+iGolyU54oXL8MsnQQGkkGtfslgHTs8kASqd17d6wGCJXROQ9zLYyb/Xph3KY89kOPnHxlAVCCwAgK8n5Srj0G21veaErggIODwAEOqlbcj8uWEM6DEwcyMQubzyfNyxev5Ual5PTio0HUqPx/f9+GW7Xa7+8ysAIHSc2+L6fNaAiiz9fLWNOr7OiaZTasH/DwBgqrNvK5SxEbtxmOlY11+ErmctHY4j4Vj9bw36udVnfLdmfqnoU9y7rP9V6vVbptjAQKC6t7cFpd91UHid8Q/aRoMcFIJEdOM4dY7CbX1PIpZIDBj6JlmdT/9X0peHkeXBEUzefUQOon5Je9K+aVQca8cs+e9ax+FRvVXAQEeSVUdusdKMMHwLIcF+N+9GPLGdcytLZvAORMVSJMCvc1ZDx6pcCOhc5e/5NlX7ePtkKIA5F/9y7dt9i1iuXKBwwZpVvqpeuEcVOmqZChkiNO3BxwE+K+SX/+1tr/SxN/T/Zny9Oo3gYHW2p4hpBF1UEAZ6A1BVHbNHVmde1SQwxYupwQLSab4mWJRZeC976i+fcnnTN2SFoGBlMmMsU4KqzKIs4xXlVoBg1kQ0aPK69b7PaXZ2vFDBUkYmOZsGqz3qiyVcZkxPqnDfQQ6VcbcsOleMmB+Tc/53AD/6b6/TzmiURMo4IdU2J4OImfbxOXCIw7uMaU9CJKiYt4JPKhvpLZSGtzURSsMtFUr62e1Wu2t6WY7+AqMng7rDX+8F3ndVgDADXeaMOhAVHKXhgsceDE9rjiowAB/lY5gWZJM9CJOHgngUJkvm62iZ1Xdev1XpPQoK5RRyZ9AqOsRDhWI0jU9T+CruvdhhVRXszQNBpKSqwSzR2m4gGnyuJR6neZU8tDwLChwotIbRQcScPB2ID/sRD3gkvj3Dtsz8n+0iEBrfTlIck307aHPHqDjOmxXpr650N3dXbu/v9+d+5cPK8XFGcajss2U3++7lyFZ7YE9V+5uHCpiiJMySaOf6oKGT/fVLlwXr7RSdILXU7g1le29KenEHnihvHnUSbJG8OnL/1IEprcCIUULnPfKGPMZvu91r2v0/kUuJ9W5nk3AeNQvqmfEB8P1kieCgc1msyuL3tlsNnurEAh4lbbqQ+m6PnKgTPklzTqgiyIDVWPrPKE3nlcGozLi6Tm/7s8f02lH71ZGubX6Ax4VLY0MuJJO5T+XIU5tNAME0vM6v5QSJc3w4J2LncyXS9F7EiUPXsCgSispVfFCheLKnoqBoW6P3iVjwXuuXGkYV6u8NpqRgaV17N6fOxB0FGicq/KoTFKADPUnhe/9nADB68jDzJekpONcVn3Mn0Zbm1l5RCDJHz1+ymvaoMj3EGDdkdyL9zp38M1y08tnWjKiiojxegIIHFJyYDlT962NdbfLrTtk5CFFrRysimjgPQJBncH+UJWhRyeBAWWU0FsPDTqTVaerwEVVuGMU1BJKiHXkgetZveteSkXJ8C+hiidXsB5K4zX+59HTS+e8dk7AcgyRf1eoyVNxY+eGmEDAQSGBBI1+FRG4vb3dKWuGu6UwfOIRowJUoF6WVA5d93MaVMpG8jaSQeW1mWiAt4tfc5lMMloBgnSdwwOuhJ13v3dpQFCBmQoYOSCQ4eeQwGh/Ac1bqSIMSuf29nYP3FZR0yps7x6urzrQuw4Maeg5ZMahM6Wh5zza5fXboxSx8OsJWHNyoIa1nL8kc97OlOMk5+ynHu2aLWNrC8EAxyx66I/3U0f2CkwKqtcJnN6yo1aCQCDjDarr56BR2ZIRr4YAKiDQ+5/SWEqnvPvWlLwsKkKPBvia6SQXVMjuXaUJXEnGk4JgnnqXk+K8T1VGOoHw1erXOHvy4lprB+PtHrWojFSPKlDckxXmSeBEnivDRBDD8vQMbDUx6z2oqssEAigbaeIgwUEFBHy4wAGB3tOwloOK1rLxT7qJfYkbbTkY8O9RvL6+7j4PLLlNci3i/6otkzfO696fmC77neRQ/VJ9mcuCZx29ni10GaAcUHeMnE7SUWAgoXbSSPn3mEyF7V3vEb3SUcX0BCTxkJ5NQwaj95YSy+Bo1M/dmFdAoNemM57/iGbq7z1p1KHYsagMqWxdeVBW2OldYboSJj89vhykSNl8/jzuwj4EwfzYfgT7PlbvEZ7EH40K66cC1NW1RG4keka7UpopPZWb0RYHQUuH9s5NVZn8XgIBo+8PpGEob0/vCynCwC20HQxQlig/qY85yObkWBlVj/aQGMmatRNe1wSTySB7u/h1yU5aQeDtN8OPH9kmrR1uSDQTrU60aAJh8hqODQPPGOWREUnPVrQEIbU2v30wQUYPEKT3ZvN2cqSraz1PfgYIVADvI3v2M1R12vQcn3clSSXaWl7VwYiAj6lSGRMseOdWeowwJG+Nk6N03RWuZDPVgQPL9G4FLpmO83cO0FeBaRpsBwFJCfoQQYpucOyVYVaV+RjFei4ayWuSUR8iSB58D5j10nVQ6nNf0qRM/99a20uTQw7eDwQGXl5edt512nWTtsjbj8eZuma/YX1UbVK1EeXUn3HQPUMJiPicoaS3Z/vjIjBASqBgSQMcAwZmUX+V1hKgMeIzDQ349fT+0hBRj3pjczweCwRmowMj/pcCsbeiqhO78vPz1g7XOvtkvRTi9HutHda5G3SXpe12ewAwttttW6/Xe+8QHKQ2SvVPQ0f+yGdSrKn+vH4qMF0p1R5wHsmcAx3xTGU8IvLtClxpXoIqmfJnaLRpnFNEIMl3a7l9mbaDU48uMEzNcLw7LAS04ldggEMH2+2/N5PabDYHdcBZ+KQUiUh6kMR6qGyEA2uvp6pd0vMp6pb6borC+f/0q8oxoqN2IOxFA0ae8FJDWCmxGWPjXk46T1SFiKrQsI/RVGGaSuhSmol6kwKTAU9zByogMIoK+PmIUhtdikbKVM/o6MrPJ1Q5SGAaPkTAjYVceba2v5WwT3JjnblX5l48358B4/TQ/NlKefZAhg95+DsjY9a7PqN82R4pTFz1yWTwvT9cEsiOwIADAcmdz01Jm1mJXJZ64MLnGVAuHTiTvP7TXAb2ERpf8kk5T2VYGhFwEFuBgVRv1TXPN/FVPUu+XAcQJOkZn8encw1RLJnvchQYcCCwxBuZZax6d6mHsRR8jAx2ukZBpzdX8XFO5UIPk9fSc/5OMvyV0M52LtEM6HovGhmipADTmCgVrqedQqi+1XACE639mh0t0oQpjpW6AtDsZOXJtfUj5dObV8JzGfhReqlfprav+sMIzFey6EZS9TDy1NRfOfei1w8uDWR5nrxFyl2aK0Cvm0MEBE29dvV+QcDrQ0TOJ8tAMMK5B/xIFyMXXCEg40aiDmM/qRydpXXtx56j6zLck+dRvl53BAH6z/kZkl/JcwIJM7QIDCTUzV+KGPSMttPIeMwgtdmyJMRdjXlWiLqXfqXgZtNgXaZOwHMfHuilOQIKPaFfQpf2qEizgNCVW5pp7fJB5cqIQG/yFtOQ0df7Iio4311wtVrtdt+jIWCUQWkkw5aGuJIyS3LR688pLfbpGb3gCl7nPqOcXuLIGamiAuk58e5Rv49Cqc5TVMCjUWwP6nCRlr15PTrArSYVuu502av0bBp2qPQ725/zCNLyQgcHKZrQ2uGusJWucJ2bQK73sx4gSQDabanzQ1CgfixQwDokf4wkjGjxJ4x75AqjZ7xnKr333JK0vbITJSBQDRckXl3hJKM6Y5RcOJVPSu9cHkvF62z6FYhzQHMpD8s7WHVfnY2Gn3KRQKI/46sGqJQJOFxpyqiRfD4B5dHBBMOKVILVPIJKXhMgqEDpDNCfBZqeRwVaZz12lc89KipH/Wcotac7LkWVU+Hy5DKXDGxr+2P3Squa8a++UMl0WpXg+XheCXgnmXF5VoSAW3BXPwKCavhMvNC71vWRM9PTad73vN16Q8H+nE+OlfwS0KkOvX71zCygXQwGeii8UhhJmaaKXupNHttRnZ8KCIzSpzC8hQdRKUeen5qvo9BKec8Y9crz+4jkcqkO5MMD9OSTzDA9TvTT0ZVpAheVDCWPhvnrGXV8Kj0qUHpJVRTJFWW6x/8zClP8jp5nP3P9kgBAdS2BoN6ksWoVghSuD/9dgipHxmWSMufyx/dkUOh0+Pi0zxeolhH6PILkDPDofccjYQLEkgN5/5vNpm02m92XKXXt5eUlggNGjNgnKhmfAaJeplk9OAKtiSob6sMATJ9RAedxVnYXgYGqYyVD4ULsCrBSIlWDVd5nTxkl8FEZ/aVAYEQ9pTpKkx3VFehIsM7hffcAQro26hgfBRhUhsg9FBpxKtoqTcqKh1DTxEFPy9ub13UtAS2GDGnUKuPb84BHIOAUQFCln57pgRKnNBxSvee6IBkojyTw/keRYVEFZquQe2uHoFPy4J5ya23PyDPSkLbl7nn3q9XqQO68D1TG++fPn+35+XkPEAgEEChwyMAjAgk8prpU26d2H/UNfybJYQXCKXcpUudD8wSqBL6sW+qCpG8qOnmYoEL+CQz0Qq6tHYaVlniaM6AggQOnJUBgxoviNUeeswpmiUHtGeaZ9ypgV12b5fkcIOUUSvJEmaQSXa1We0ovyauDAB/7rMZWq/SSQmitBgIqDxW86lxKgDsK6pnUbpUh7YGBCggcYzRnZaOX9igCoHNPL004dGX60ch1q8/yHxlonafyU5bd+/ehB+87Fa/eV5wnjwjot9ls2vPzc9tsNu3p6Wn3X9dSdEDG0YcYWP6km0b2o9Lh6Tz9eu3Ic6bv95NNVf0zKqD8PAI0okX7DPiko5FnkFBrD6k4ghspqHR9ibeSykjeef2YcPwoutEDBd6IqdyJpyVGNxnIBOxGIKGi6r33pgoMujJL3rx3PJdfpp2GBhwIVBOxlI7Sdi+hAqjs+FJ+AgSt7X/Bj2FGeh2els5nZL7q0z1APSMHlfFwcmVPneF9WM/T2EuJpnHjUTnem9zZGskb664HbCpQ7H2hJ7cpTR0rGWCEgrLIFQSPj4+7CAGjA4oYpEmEBAFuQ5bKHq9VujKl632HY/oz9bNEX7p+SkMIM7QoMsAGU0WMEBWFTEym8aXW9j9A4bTEAFW8zJCXieNq4tHz8xDQqBGXItNE55yjkAx8qufRvdY+5ryBJKcOUl0ZJo/Hw3KUDZbbwUUCxK6oXb7cmycPCRxU3i8jbckToSeVdnbztPiuQId70SMD6uVJz+o/l/69vLzsVk2oLkf9wHkRIGrtMGqQJmsx4nIJSm3tHiF3sUzbXac+S/DJtBy8+j4F5IHGtueYpHwpkz7XQ7L48vJyMEyga7rvUYEEBFJEhHXYk2FvC5bH63RW/3ubOi8ONBIPej5FJUSqy7ODATcYM5XmytZ/JHoqBAVViGcpaqp49evsJH4veVNOVOIVeSNWvFR0KhBY6qEvBQaez5L2eityGUhKT2ud/ROt3LCF5F44vUwP17mMUS4JGKTAW9s35Mlosk5l4BJ4qIYe6EVxNYMr+KrtVC4aZ/V5r/dZcmPhSpo8JiOiH591hU9AoDw9wqLrKsul5VdEw5FAQZor4OPhTCsNYzECoOda2zc2yeAm73hGdgkA+POJgpwrkKICDk4ST16HfKfiddQeKk9lxJPjoTpX21AHiH/xJ3l10MD8HVTIVmkJ8gwtigykzlkh+l4FSOm5kLnScpQ0MjoVzSL7XlnIQwIEPYTsxGd6qG0Jqksd0XmrPL0ZRTfTDkt5fC+qOqfk03ds6+3jTsXRWosfuHFKbSHZ9rArKSmmJMfuUXHOANtLsuveBMdaPT3ykcrlfNPwOr/VEAjPva86CPC6SXxXPLuTUnmErnCdz49EDgwcaKo+XZd4XVBX+3kPXPaGC2jQnKpIgO8fkCYIVnsMVEDFy+w8JOrZjJ5M9tLUu8lZZlTKHcrkSPCcskxn4k0jAyqw/jsaSkxK4flyFwoQhcIFlsKn/z2j1ENmLIeXyxWad4KEak8xjKIljUX+HHQ4Lwk9tnbanIIRfRTvySlFNehReTiU8upy4Gk6oHXv2v87Dw5MUj9L6N95kZK8uckf46FnkeTBPTwfi3eaqZMEBFTO1sbba3ud9TzRnsEhz2780/CAl6EXyXtrcvApnqhXl8htIg4R+FAAdTCBFuskAVnyWpVJPxn2zWZzYOx5jWAgbTSU0q8crxmd6LLTszfVPa+L1NdTn0j15vl4f2baIs6DGdHiCYTeoRwQsHAVEEjeFvNgYf16T8ArIOCUAACvs4L9GR9jfEtaChJI3jlmqPK+es8mg+Ht0EPZ70nJ+DJipSiBe0iVJ1AZZffS+V/IvQLObkjZuStvjUA6GXuVT+ecQb7E2FXgmOVI9wkE/HpPibM+KxBA6oEX8uXDBQzDttb2ridjfClKxiTJcuX4qMxVuk7Je9d/GibvJ8ybOiwBTxp/XzJIoEA5SMPIKY8UaU46daZtZ3RhytdBvTsiHslKgHrEH3UE66RyHio6aWlhpbwcufaAAKkyro6cKhDS45PHY8pZoUSmfYz3UKHVEQ+j5xxAJf57afY6We/ZSqgvHTVInVHyKCWalk45VfLmCu7l5WVnePVT56fxTt6rn/tQmxv97Xa7yyOBAUUM2C9dRqo6G3n7PRDQAw9Umsnj5xyIFA4egQNenwXtCeB8BCDg9egGxb1673Nsw5H8VvMwuPyvtcPJlymioHtVXuwrPk+AUQCPAFSOyAgspjpMgOlYJyzpwdR27oRst7++A0Kd7Q542lI56Xa+u4QWDxO4MFChsXLpYXHttt71gjPNlG/ih8JZCcAICKRypfNjjX2Plgid590bKkiAQPdTWiNwUAGBpfVxKUBQeVAEAWlzIFesVT2ow0pZORDQLPhPnz7tfU+AytT7jwOBtM7bwQDT9nuj8KOOVfTD36O37/fdGPTSdwPkUYE0TpwMQ496ilHtRH2W5hJcmpIB82sVr9STdKbcO6fh93pv7fDLlEo3gULp/B5QY3/phf+9vasfKbW39+uZukv1mBydnt70/pB+kjl9I4Lvq81m+SRv0hczdNTSQjfeo8LKG9F9Ty8VJN2rjFhFPcXXM/rOZ+LrFCVRDU+ckxJi7P1vbRz6T+fp/Y9GFRCo1v+3Vn+0qrX+sAfrTspNMuPKjPlUQxMEAr7mW/xJkVJhULEzXd+nPdVViiyJF/5nvXqd+TOePuvLvdDRj7PH3ZP1NCtATF6SguexihK9N7Fu0/4CekbkEQGeq044fCXDL/nabDZ74WevR4IB5s97re3Ljee93W73thlOKwNGjt6IXD4TKPBnvQ7Tf49IqEwVr0qbw098V6CLjoH3W6Y1A4aX2JaTVhOkju7RgCXzBJJBHkUPKkXjleANnhQ9lXBKY6ZORl5IxdMxgGAmkpLqsLV9g5aURvo/oqXPvxd5x3Iw4FEBrqnugT+vTxqszWbTVqvVzltXdCAZzNbanqLwa+LDJ4rR8FfDbwQlUvgp+uGAnqFLr0eWnfWaZM/fTx5c5flLOfI/6zlFCRwYiA/vJ96uSenSY7skGEjyK1nw6y5XjNqKGNH1pXxML0WgWF/6n+yB9x++4xGg1I6zUR+Wk+Vl27mMVqAgpec6ssrXgaifMy3Wbw9c6D83CkuOSJWf5zuixcMEre2vp3aFRiXrnhjJQyEennNKnXyG1yVlc0GulKuoZ/hneat4nVU+Mzz0AAGvHRMp+IjG38k7fKUYfDZ2MobVf51Loa1Wv7YD5lwBnztA4+YdvjIAvp6c6d7c3LTn5+c9Xhw8zHhaCTgm7zNFBdxL9P6lNEVVeLoXOuZ7lS5aQjRu3IfA9yR4b3LQ5caa3w1w8ChKEVXW42az2T1Hg0Lj/fr6erDxkIiyxTzdIPOeg2c3ZOoL5EN9yq8xbxpLrlzrAQHmSUr6rgcye5EM5VVN4PRzXvv8+fOejCfblKLoS+3T4gmELpy8zrkBHr5iRatQqdJGnn1VQApHoupeEu63oF5UIJHKOFJqvcZ2Qa8iKqnOZ418z7gonfeo3xFVxjVt1pLkurV6NYErG5I6sZZJ3dzc7HlgSoNer9IjUGZoUXm7Z8O5CWn+Q+qLM/Wmd1KevC9KytfrIymz5Km65+jh1eSJueLulVc8pigB3/8okQEHW8nI8b3kNfJ6iqhQ7rwNPR+C3hndW0UGnEeWz+WFnjLrxSMX3t+d9wRue+S6tgcEEiggSOF7Aux6h0OVDgBY7lTPbL+ljurRqwlc6Cow0EOMfJ/n3hFPKeAMzRosb1x6JTOUUN+IRgrNQVbKk55dAmLsqOld3ktouUcfBQjoWEUC3HgSHLDsCcVTuVRRJcovf/R0JE8EA+KFxpD5e9lmePA2dMPA9FOZU3g1gQTViys/nrsH62Fir6+kdGeG5VJ0jP3BI5PeXy4NBnR0A+fGzdultRzxoxFKfZR9gHkpHzfwng93tEwAmW2bPGrXlS4r1fJYAh7aJQfFVR25bpylnl70fsH76huaq8Fy6D/l9i316aJ9BkTeUO5p3dzsj7uyQasNUUY0aqRjGrAiKQXlO+LLwc3IE1lKs4rIn/Oxugppn7PuPiK5MqUSTb+0AUtrh2AgeRhJydDwV8Y6RQJ07iFz7nqYQHkCKam8CoFXnrbXXS8qUIEBL6sPiaTohXtcBCmudNNYbUUJEPCcPLkzcklKgKwCXv5cqhfWmRtV/bTu/9OnT229Xu/tu5Ao1ZGueWicbepgLqUvnugl83olr+lH8LNUFydZSEArkfd3BzDsl66fvV+ktJj3EgeVdNScgeQN+NCAJrdISL1z0eP3xvHCz3TOHliokG91PxnfUw3mWyK6ilyAemVwgToH9er4vckNlE8Y9BUFPSXr/x0M6NosMGCEwPNwEOArFJaCumREXMkqrdRmUl6pPjxdBxAi3+QnKTevX9aPG5EEFAjoma73CfJSGV3xfAmix+rHZPj4jN6vDLXKq4maqh/KmeQvgcWkM6r7PPdIVAUAqjxaO4xO9OSR0T6vq5R2IslHBQhmdGvilcOCqR17bUwH4hy0eDWBiMz72Kt7Vmz8qmIcJHieDgiUXsVfpczc2+P1ESWBTGVKYaJTKCm2Ho0M/7H0R40guBfqnjIBgHvPrjgSJVmu3pdyXq1+jbXq3e12e7AJifcxggGmX03EIl8Vz5Uh8fcUVh6l5UAgRVhopKo8nS/16SSHDgQqHhOlfvye4dlTqJKxqo6qISGCVAEEB6AKZaehGj93b911o4OLVMdVW/eAY5JrAoEq2ueAsrIfqU6XXKcc06A7vzN59/ruMXT0agIiZv8JFOgZdapqfI7pV/fPRWkIQIqJu0Al40uh8fPkqaX3j6GlQID8LYkOLKGRQub/twIns8SO5wDAN8dKwwYj8lB9BSKk+HzNsK5z6Z94E1W8OeAmD4p6bDab3dfLlIevdXYevQ94HYqndC2BLeoCnmuTlV4kwZW3Uy90PRMdcE+Wz1XpvCcdozdUzz7EwhC9O11uWDabzU4OBQQYRWCa/M/5AnzW36kAQ+Knqhc3qOle5XUncNnTVbM6dXbogOmOaJSG28rKYe7R4gmElVclALBerw/Wp4qo7KgUFJri0EFrhx1X12YKXFXwSNksoeq9Sxu/Y2gJv0uFvefRvQdJThIY4Hptn1Coa60dtnVSPjz3PPWOy7JmzBOQMk+9X+28p3dGnd69EQLzBGQ9AsB+r/uuC1JEhGDLjQbnD6gdPIKjuuH7rEcaOq8DB/00ANQdyQFxPXMp2a3ACu+TKEfuffOnuk9pqT40b0CgwHU624cAj21ROV+6p3TYJrNeMXlNwILPEGg6ORj29NPzPUeVbZaiJ/4/6dPee+k5pzedMyDyRqg8ADVAKvAsUkoKVh2ViqFqmNSJKuH0Ru8BBlemfu7PH6tIet5IMq6pDAnJzlLPC1vanj3BfWtSW3Jdtm/tWy0t9HTSeWv7Y5gEuW78eE5DSCNKcH17e9vdNXC9Xu/VbQIM7nE7KOqBO5ZFx2T0GSVorcV6Zfl17+fPn7voQPJU+a4MFPuawtopkpj6evIIWUZGaPjOpSYRpjZnW/A5N/at7Q8HMCpVgQHm5+3H9xjNSSAvARBPP4EC5u0AwdPTdR557tEmp8R70qHpHZeTyv4kPe3tlI4OCHxY5xTnraJFqwlSx688hApRJdSTKiLRUkAwa/iSYk+U+HJhPIWPJXSsYe29dy5j7Z3qUiBA5IYwrXgRn668OK7vxl7kAFh5UpFRmTpfCt+rb8nI3d7e7p7TMy8vL3vGk+kRZHjfcmCgetB7uuflJ//89fq9n6d0yAvPHQT0+GS5aQArckCgunUQkvTJpSYQzuomEUG/t33lbXJIgTLv37vQs3rf25bpEfjNOALU525c2T95raqLJK/eb5fopJR/ohmPnrI62lgr9WVO5vToWKqbNxkmIOJfrVYHM7AVahURmfrs1OS9jPKuhgIq9HUKcf5AlR9BibwrR7jHehMu5EvBhCPdU+omIXxd5zPpvZlr70EyTjL+3MXPJxa54mBbVO2QOmNrhx+FcaL3SUXM+QJSujTgKZLg+dCo+vvOM4GP/ju/9EYJBpLhT86AAxWvLxp+KjkZI0+H11iPx1LqJ2z7S+5C2No+oOzJq2jU911HOCB+fX3dA6nPz88HnmoFeF1XqM0rIE2dyuc8/O+8JyDS679OXkeJN/08gpDAKAEYKQ2dyKgnUKBvNSRAwPSU97loGgxIiTD8lyYMsvKTh+LHimhs+d/PXZiYd0pT77ggeYiqIgqM81jdX0KnAIGqoyVKBv4YmhXKcwO2JURDmOYHVKtgehGu1g7DjLonpSBlllC8G23JUVIo7G+cCCh+9UxSkgQEMrTb7XYPwHLJVeVl94YZnAevD6ZJ5ebgoCcfSfGnNpmlytvUsQJ4701urEa/RDQiFRFkbbe/PnvtX8KkjPhQUeV5V0bbr7kudeeqMtZV3aR3nDeCD+/LLHcy/g6O9I7Ls+taAgH96DB73+hF+mbadpYWrSagh5WWErIRPEzklSNy1DTDR2s1IFDabohH4TXPw406y1RRGsI4BhAspXMoqhQBqIBCrz0rQ3kq6DiF3Ium3HKCGz3nZNicUvlZ7irUWQFV94aUvyZxCQjwy3I+T6eqZ/e2pMyVpp6hF5f4o4J08MR8VFYHAvSC9N16LWNLyi7ROQ1z1UeTcbgUJeNGPeie8Gyf8/6pMgvIqp0ICvSsQCTlVvl7XaZJuKzf9HPHziN0CfD2wECvX9CO8L0qwpUiA15ul/3tdrv3VUL1A/Vnj5wzOpCAAM9nHbIRTYMBhS05ASstIxRT3ggV0jknzaSXjLyuuxA6gHAAwmvp/6gjJr5c8CuFdIyScg91FgBUHWCUF4+XVKqMCviKgXSeZKG1XKZUJ1RyreWPiHj9eSSB73MeAWd3M4xLfnwvfycvHwEIeaDsUemn4QGvD+/zVG4Mh3pIdIl+OLdM9TzPj0Bsi9baARhz49XzGl2vUE/TQHKSHMGm2tFBYQLAGmJxfVuBAaWTjg4oKJMJDHh+LKuDeKZZpaP6pB6l/nc96iDYrxEMExSwjr1vOHD2Iaxj7epJYMA//ZqiAao8XUsTII6lZJyZbxVyT15Mes7PPc9jqGoodk4HBD3+3op6fDqNgM+liUNaCRj05g+IKu9/RA4WZlG8G1L+fKhA6VF+qHySYa2U3tJ2dCBC3vlz7yftcudK1tPT9WpHvKXkjgENj99bElk8NyU5S5GaJLM9IOoera7T+Pt8DOrx1erfc8f4xczKa9e7o7K4U8VnqBcTKGBejEa4vRHYqQBAAhYVyE1tVAEByS0/wMV+rWgZ7+m8GkbgPJ80VOG89WgxGFiv1+3z58+7/QT4TW0iFQKE1MEuTR4BcGTt0Q5/N0UDqvuiniHwZzleNmuIPLTG5ys+epGBSuHOnDtdEiyobX1pIZcXppA3h4eSp0FKbTIDqHjOzVoUUhT1hi2kGAgMPMRYKWnd6/VRV9TujenoYUyPZjD8mSYU88uNySOiAmY+PccieZQ9Yl2o3nX9UuSy5UazArAjquSVkQHeo5wpT+l6AYM0bJGMK/NmXROUpsgtI2heFuruFCXxCJjr7Cri5YCJ8ikSIGJUWLbQ5d13ddRwGScPUv75rvetkU1ZAmKnwcB6vW6r1aqt1+sdIKACVYWw0irEmgwUlZHuUxn7M8zjGE+dylNpuUIVr6Qe6qq8q4S+nedK6bjASjG4gnDhP0cEowIR/n/03KVBoM98T4aM58nDaa1uO1c0Tglc+T3mIbQv70tKV/MGuMRQ8wdSHyMIYt7sZ8qz51H22s/rhsrKIxryflzZ9X5JifI+867IvcAldOx7b0Vsay5HpUxXnn9r9VCIR2IoA5JJ7hZJQKD/usd+xGu9CIsDkMrZ4XPJUUp9Ozk7bpdYDqahclLeKIvuEFYRAhp6Hl9eXtrz83M3WjZaiddzLpcAgqMiAwIDUkyqoNXq1/KkpFxV2Vy73TNYFOyq0pNh7inlqlP3jIGnkaiKFqQypDSIeCvvrAIGRMxMz/Nyo8TzUXQgpbGULhUdSBGBaqigantXJFSc7HhVWyelxLR5VLok8fX8/HyghLkuvPKC2f9S+TiJkF4Oy8K+4bzrnIqPv81mczBU4J49vZ3034cHqBCdF5Z7RMlAfoSIQGv9PkMgkOaOEBC21g7as8qPjpiGo+hRu+PGOS3JmLK93GvvOVsV6E5Ojxs8d0Rdp/XqkT+CGpdvXfc+lXQpAbL3EQ4P+GTaCjiPgMAxenrRPgOsLIZZq/CiGxQvBBvbGz5FD5zc8Pr13vsJLb1Fx3dl5eUm9UJgbmTYAdTxdc3Tr/Ib1e9IEbmh472Z9N+LUlQgRa34v1JSrlS87KzrHujiM9UxybQDgWTce4BX70uxupdE5ZcU9owhcQPvXv7MpChXfAS3rENvv0Q9z4iySqXvaS0Jt56TXC5cJtyJ0TOVZ01AwHJ6X/XoEa+7900AwciB7nGFjtqSRtq9V9dtbG/qSMkHeVDZdEz2ycFEay06CAkMKBqg/Mm3G3969r5qIA0TuOEXQE/LDV0uzmG7Fu0zIARVjbGyMhg2ciUk5imcyYhV0QAX6vSMC3rybqhYKdxs4JkIRo9mQA0p5VMBF9Zver+Hhmco8b60PB+B2MaU27RxjntTKQqgevVozaiu0v1Ejuy5vIsggHvGU0aoaKk8XJHwf+VxO8jzd/0aZ0b78AA9IPf8VU4afgcDziP5S/oj1auociBYTuqWS8l8ZbApnx6x8RUATKvKQ0ePUPr7NLwOkNmvdJ8f23LdT/51TlDhlGxGAtlVn0v9TWkmJ3e9Xu9FQiSv4pPDBA5g3fA7GObqAQcOPCqfCgSQEtiryp1o8XbEyXAmZVJ5V5Xn0ets6Z3UmRNISEKdvAk/epiwEtCRkjiHEnHhp7IiOl2KDnv17sKUjELvmWP4eStKEQE/OhDoKSn3alxJ9+SkBw7SdeXHoQB5Ew5oKKtUWK5MpLCUlxvapfzpv3s6nBi12Wz2/ruRd6/HeU1gxo3YUhoBAj3j996TKuXv+ornvbpIOlLpE4Txea9nGnu/pv8yqFxbr7qkHtN/8eNODpfNMfJAAMl+mSIFvbpzR0GT4zmkqHQlt/yv8X6PgKkeHAAwUpCiZT4k0APCrJdR+87Q4k2Hegqzei9FBZz5GS+J1/zdykPwvBL/jHro2CuTk3sq3mAjRTVCr54OlX0VIfD0KsNd5Vc96+cprR7AuBQlIFARgUFKZ9bwuHHl9ZRneld80NNzBcZ3Gd5MnkVSVq7MqHi8fR2Y0oDI6KeJgz5ngMpc7ycPrwIIvbpcQsnJED+pXS5BS8o4A+aWpOHAQIDUwSeXuHEPDKUlncq9MZID5zbFAUFyMOmASoaZzkx/I7AWILi9vd0bCpcR325/LfeVvLisJoDg/W3JZNoZwFs5d7NysOirhUuMY4XKiO7oVfCep7WEN3pwTFfPUJm21vaGPDhG5JSMuyun6n+6V5VvRnAr40+0rffco2U99PLk+37ee478nqqoz0VUPv4j9eQ7ec29jtorewXavM/Q8Ipubm7aZrM5KIP4IxhI3nVSVK+v+8v6vKzMw/Njmm74e2CgSoPl5jMpKnCsfHnfkdGiV+kRo48iy6KkV2gYK0pyWtUv6ygZZOpZDU1weJiTyROlSCfbhvpaaSXdznZzMJBsCu/5dUYEbm9v2+3t7S4NThrUEJ3rOpfn1B5VNCzNmyFgZj7kmZGZU2gRGNDyEu84iUE/rzytkQLWcdYbowH06x7FcITqQEF5J7SdOhFBAPmuFNds43nHrO716tdBWGqjXtrOAzuxpzEDIN6TUttXwM0jHm5U9SzRPd/XuSjJbVUnlQxRjrxOqUjUP11JUdE47wkwUPGyzhKI0rtpnkD6pehDD0yNQFXvfhXir3QRx9o9jY9ASR9S7pLR6IGmpNsSICAgogzSCOm6h/VT5IfDyw7AEjho7VfbKF2XWwIAByEpUuxtzPkC6/W63d/f737KWwBAYIBzdmbaLrVbAsLsg6l9nP9RvrO2cxEYaO1wdzFmWpEbHlYeDdQsjQxM1eASFh8W8P3pyZsrnNRYqZFdqY/K1zP4M+94aCzVh857Qyn+3qxh570KQCwt37nI5ws4VUBNqNsVWoXsk+JdItfK13/eZyhT+snzpizzeSrpmXLoOcqU1x+BgMDA8/NznDyoTYeoN1IEIBnunjHr1bF0i9Jx8siKGz2VuZfHW1MPFLnB9zJWoNTly+eUVHlRH3q9uZ5w8Mrr7nilOT3J2SS4EOlZ12er1epgqIL3vI7Ez6dPn9p6vW53d3ft69ev7f7+fqcvn5+fdzw8PT0dpOPA3dsg6YneO+pbqb+oPrzOPS+mO6LFYMDRGNEcvezZOQWedipMeiYVvkcJCPjaUio7It2qk1EIXYlW5Zrl91RKoMbRNTtsotTpee5H3RN9lMgAlU9rWRbZaSjXre1HeHqhPdFsmd3wVN6CSF6J8/H6+rrbEIaRAdY/03K59bS83vRL4U79qiGB9CEWLy/rrdIZCSTonSXOhJfJ64n/0/33pko2dI3tWPXjkaPCvPjMjMebdKPS53g6DXyav+MTYR0gqJ2ZpvInYPfoRCXTAgncT6O1dhAh0GRCju+7bq36JK/1lgd6/SVKbcY26gGBs4MBN4BUAmRuKRpp7XB2pzeeV0RKu4oC6H+adOUgwCtW+fgEDx/bSYq74tOvp/NK8S0lvccxUQKC1pZPiDuWl0uDAlcyfs7QuiNutrHLuGShtcMwq6450cjwGQcYTCsZpNQWGrdNQ10Vn8krdJCXNrVRPXCZlC+pSh8iSmDAAUAV5VL7COAqnSTHrANP19vA21586f+lhwtSe1Eveb36O24gWvs1rDACoQ7K6PT12imlw8gA+50DBdfXLBfTI2j3aAI9agckAgKc58A0PXrMMqX6dltA8FsZ8qWUDPssaJuhk8CAe80uVJVxEyUQ4O+wo7s3moCD3nUl5nsjqMHZ8MmTSuV2Y9Crr4S+0/VzUuqk+i/h1zF5GXyHfC71kNhWx4KIcxAVOhUZqYfSGYYjCK4Q+KijMwLlhlXve5oOHlyx6x3KOSlFqxI4UFu58UxtSMVHBehzAzwaQEoggEfnoVKoqc6TokxAgHrDx5svPUzQWnYY/FrSM6x7j2alZ10HSJ6qPj8TcWN+rFPq/AoE6CfeZbS5dwHT8eWNyt/tCqMNSjPpPp97Q7vXWzLYW6HjbcgoSmVLKqeTsinAdApNgwEy4R9RUYWlwievpApTMS2eJ4NEQMB7DgIoVPwwDY9UzgngJCBQIb4ZqgzPqQazSoNgikDAZwgnZe91wTbpGfp0/1KAICH9FK50WUjGUkAgdXa+k6iSsZRHAmfJsDFsKc/H+4WXxfns5VV50uTVPSEHCameevVTGWnP3yMELE/SIz5E4P9TfVXg8b2pMu4pqtMDl0lnOZhg2RM5UPRnnQ9/V22m/pgAge55ZEDLFkneb50Pjruzr+teirB4HXIITL+0qVYPDHs7VXVb6VPvo4yyJJnvAYxEi8CAI0UxmNBTDxDo2YpGoetUWT0QIIESGOC4KtFf8vD8lwSHHsgSg7cURJCU56jjipYMB4gYCXAQkM75jh8vSdxdjO3P6w4M3WgmQOjL8fi8U/J0de7Kh0pcaaZ6dKOmjs+PF4lYDifvm1LYohRpIr/JS0rAuVKEybh4njQIBAJ6z//36t1BYWoP5++SYKAnW0mn8prqvbfqpQKfosrB6FGSYablder6Wu8wMqAfvWAHxIlv9VNeVxrq/2kTIC4lfH5+bo+Pj+3x8bE9PT3t/RwguMOgephxHBKoS/cls25/dZ3ns7QIDEioXBGksXYazp63MyL3Evg+C5rGobhaQMpen17memxWnvNHxa8fOxfrh3we4wU7uhuR5ynBIGLU9VHnHRmxHm8z95aW7ZxEg+8fKuJnV10eqnZmp5bSECVDIkoont689x8qg9Sxe16t17croOqY0q7aTnzy88QOCmY9oaove3v4O4wO9IYNqxA0jVKqr+T5viel9nHnqle/7tyk91z2Esh3GahC0y67lc7n2D7fcy/fIwMpPQKIRBzSoxEV2BAY2Gw27fn5uT09Pe22Ita7z8/P7eHhYfcTMHh+ft77VYAggWN3KL2N/b6o0gO8VwHiHk2DAYEAohEiLHZYoiECCAcSKnQqrCP9Xqf0qIAvGaTx98gAlQl5qXZSq7wcCpkPXfhzKnd17xRKE2IIcmYVB6+xHCPD3rt3STBA4+9ggGCRCk5A9/X1dbe/BuuWCs9/Isou+42Icu6KwYGIh+7peRC89GQuGZJKWVMhp0jDrEGabXePELihroAFvSPve4wM+rl0hddryuccY7JvSd4W/CWnrLXDZd1JfnXPDbLrgQQwXM+TktMlgMCoZ4oMfP78uW02m927aY4M82P5KVcJDOj3+PjYVqvVLh+BAUYHHh8fDzbT8hU0jCjr56CgqjOS2ynavNb6fexNwICHw1erw2UcflRh3aN2xMr3REuGC4jy2cnTcIF7BBpbUaP5MimunU4dxnlJfM6E6StjO8rL24Wg7ZiIwAxAcV57xqCXzntQJQcECavVqq3X6wPlJkDg15OXVcmGiPVEgODvupHX81SS7kVQSZ+DPLpESuVzYO3GfBSCdkCfhiboiKgeen0reUv8JQCYwMA563Uped9KupUGlFTJZ4pApeeVfwKxre1v2cz+kYBH1Sd8IyG2raIPKQ0t91ut/r2fgOtLRuF8+S9lRmBAwwCSBXn2AgovLy+7qMDvv//efvz4sQMEPlzgS2lTdLzqQ6oL9vUUCdBzlOOko5bQYjDAyRgUvsqgJ08nCfcsJQBAReIegO8n4OFz8UBk+PT0FLdVdcVNfiqFkSIajvCS8e0ZYc9baVKpVYAgGRkdR3k7D26ERsDgUgqVnYayoHXEGjqibNDDVjRARwEEynNvGMyVtBulBASSnFFJMjJAeRI/fC+1F/nWuZ5nnc3INMdf+YwUamv73nuSPdYT60bXe1FCl2H3nHpgUOd0brxOLgkGElHGvD2dzx44TfLiwyxMU8+pb1RgIMnVSM/TphAU+LtJRzno5BCwgwGXDfKvn/q4dhiU/ldU4Pfff28PDw/t6elpNzTQW0mQhgVm7J7Luvcv1RfBs9fXyBkkTYMBnxDhjczrlUAuRSpLiMprBgiIVCaCAT9PjUmqkFu67oLdQ34jSoBEZUqgZ4Z6yl95VAZmBhBcgnph4jSGLACgd2dAUuXBUWmmNLwOe8NnnpfLYqrzqj1S2q5g2Z+ocEUeqaBxqMo7IgcgnjcjA15mAiW962XxNmdkSM+696ZhoktRMqgMP1cgj8ckTwkUkhgRSP2c76UIkPPkZUp6JTmarR1GnghIVA+Vvk0bg7FP+DCYgMDT09MO9GvXwcfHx/bw8LCLDDAq4NEA/7FOEjCodCbLzWtqG9k5tpvKuKT/LV5NMCpY7/0e+VhfRaPCzXjU3gnU+BIAXzrCsZ4eynaDWPHmno7en2m4JYa2SrN6P6VdeWE9bzMBhtYut3GLG4P0Y9nS+ym91vJHR0QO1iqq6pDpuQKWQpSyokejNJxPHlOerA8fHukNczloqJTQyCvyCIfKNIqsML80Z4Dt6yDQJxJ7pGW2Dd+KkhF1Q0wZrPpYJV8+Z4DkMse0eY1GfKkTQB3l7e5gIQFB9r00x6byxpk++8jr67/niyliqL7w+vq6m1woUKAhAm64JT5Gy7YT/wSfJBl81k+SZdIx7XE0GGBmaR5Ael+UDH8PLCRloHeqcc2KWOFVVCCtH03KWekRPSde3KvRtZ7HeAwpRKZzekY98rHexLt7TqzHETDQ+SXBQK/jiFL7JW/Z003zZkb8uMw4iEgAW21Epeh90nl0jy21F70xKppUB0yTPKkeCE5GnkkCzwmgkH+vx2pcNfHN65QFDhWoDJwf1Evrrcn7UupjavsKsLmR8f7r+bS27xgkcM/8ZsDu0vsuD9RnzocmTfO9Xt2l8uqcYEDRIIIEAQJfQcBvb6S0vVxVHYze0TkBLCdQVn1hhhbtQJjC5TpfohBdYL1De2ESkEiNnvJOgk+eZfD9AyujXaRIqaOMZh9TmSeqkB7z83rgOz2Q5B6gK3/nIyl1b38/T4BgFB16K/I9BNxjFG8MeY9kuFe31bvVmHgvPSev158/f31J1H/02FTGyhvRffKpc6bn/NIgyHvRpCvxp7r3ELKOSbZ4ryc3Hh3wfpLam7wTCHDGvOrD6+gSlAxW9XOD6WmksiR5Z92nnf0EmLhPC2kkzzPy3uOVwJcyqEl/zMP1k8sh61Q24fn5ec+x2m63u+sEAAQCaThipowVMGktR5F9Hgx1SQKKs/K7CAwk488Os2S3Ixaiihq0loWGhlDCSmWu88SP7nMtqH4M+aTxH73vxnjGeHiZ2NiinjfvHl6674qPSs8FhmVxcqPFNFiHanMdCS48H/L+3pQ6j4iGLnWiql2r65XBdKPlhqkHIlKI1o/uQXnb+rMO3OihS7HOyDTLqPdlYLfb7e44C3ZmgPQsH17P7BveJpw3QE9TPF0qquVt6zKaorWjtkvyk8qY5ILGidEg0jmAgPOqc5dx1kNrbTfhr7dnCOtSIFB6n3PNCAYcKHDSIG1G4rsqczL+I/IIZ89Z86jPiBYNE1S779Eo9DJnx/TQJK+74eG77r3IAPnaeglEa21PYL1h09fWUmQgGYbKW2YHIiWUxzKmkLzuU9lV9UAhaa0doPYUbXAvUP974ELtrXpU/fsadwcBl1KoMk70mlyJenSkApOk5G0kL7q1PIlNROXGY0L14nVkNCt5EY88169S6pQr97KVB9P3YUP1v+SVLSF6gDQGzDP1PdcxCYyxzGr7GVD4XsR2coDgcsznK1oCzJmuG5hK17nuWQIAZkhlZ2SAeRPQsS4SeOISRRpZyQ33KdD8MgKAzWYT63pWZhLg43+R90HX13q2AokjOusU2UowZt9tbX72tkj5MVKha9yWVbzRk+WSwfSpVUfiid+k5FmGpDjFZ1W+pKCc0jIT33SJHdLrIaWvTZq8MzjK9s/T6r+eoVAy/SWRo3PS7e1tu7n59W2K1nJEpvIAe52adcQ6EHlbsDMzDRp5ybOu0+sRsOGOmr55Eu9TidPDc+PBshA8pS28qYSUtsCJ9zml//z8vCuXe7mtHfZ/70OprvguJ1h5hC3x7PyxrZNCvpTsVsafQ5ybzeYAvB8DXnoR2ip65HXK5/1aRd6WyfN1efa8yDsBHeWC77lDW+WvZ/W82wjOKVtitxI5UK6MeIoeu/H3DZBmaPFXC0eUBOIY6lVoJaj0UPWce0FVZS2NAuia/2b4r4gdbiaNyuj4XvtJmfK/ePfd+GgASIyicOKljEGKHCXP871IRlNGjkbG0XZrh5EZUgUCk4fihs3DevTikvz4NwY8b0/flai/m8AAjTLTI8CgXLihbm1/DxIvh4C35hG0driyQZQ2HPK89Bw9Q6WlMnokK9U/+eP7dBb4m1Wob0V0SlTXrFvqtQT6k+wQIKa+mYBSujZ6ryrLzHszetTBEtvdQ/eUedahk4Ndpp90HCPaCWT2aFSnHq2lHmP0g3btGNmdBgMuMI6meiHLhHIcuetaVZGVIXGBJxBgnjrnxCZGCDzk1guzJUOQlE1SZL064tE7M/N2omBwVz3/SmNF9Dbv7u4OvE2VQ3WkWbWcWfv09LTjTULoivpYxHwqERSyXWkIfAMSXffnU6SIitbTcc8mebwcRhEI0PvuQafoQPrugq4TcKTwIdN3QPn58+edLPjGTJXXpI1aGE1i36BXxfpMfabSBwQvVMLeZ90Aklgv1E/JWeAQ6CXI5Y/GTCCc8sDICPVgiqow/SpfyaFHAXxuBYl9qiqL0klOkNuFKh2PPkrGEs8u975ixG2UAzA3/smTryIlPUqOpwN0/dgHdU4wRF6Wyu6iYYLkoVQC5lQhT/eGKgGojKPIlYoayisohVIcMSaln/jsKZseuRBVwlh1Am8HepZSulTkacMlpiPlv16v2/39fbu9vd396BFKAQkIaK3t4+Nj+/z5c3t6emqfPn3azcR1BH6pjVsYgk/GQlSFkb2+E6W0vANXhk6K1b025u3tzmcTv54++2jqd+SbPwIDDiMpDbXvyDNyRe9AJPFR9Ste4/BMem4GWLjTQCDA/5ci6iTqJUZkdKx2qeuFnUm9oQLniYactEQXVumMDFjPgHMSIYl1RftAPeXpe93z+cSngyCX6aS/vd/rmgNvdwBcnj06IH5nZfdo7UyF5V64U2rkJDCsKEdZibwhkjfPRlfFMCrgqI/v9zxzV76Vcp3lP9Vfb8yop8zp1QkQVGBgtfo1PHB3d9e+fPnS7u/v2/39/S5KQDCgqMDDw8PeGLyjZtav3r1UqJX80KPlkimFWmlcXSaSAXMj5+cOBDx0T4Xt/Ym89oy//jMfB4A0hhp+IPF9gkP/ORgQn2rfWTDAyab0XMnPLMh28OSGpRqaSf1LxoI7yl1ymCAZJeor8SvjJxlPBjrpatZHa/3Npbx/6Jrroh5QqMpY2QPlkQy76x72b9WF61gazKSrKtBFnpKd8fKzjniP7UAd7H1Z9xycc4jAZdmB4VIQuzgywLEmFrgy3EQ6M8IxEowq/VGaFaKrIgEVzwkEsIFTfVBAEm8zZeiR8vYQ8nq9bre3t3tK3Mu3Wq12z93d3bVv3761L1++7ECBwIQUv77oJZDAMkgIW/s1Q7e1Xx3zUpEB8UJFxzan4dd/HRPQqwChiIafxrkCDEk2BE6cn9YOhwo4cfDmZv8z3cxDik1t6R61RwJ8uCB9w4EGqTLe7FsJACVgwqPXEY0+69ufrdqJ+ble8Il5AjmXjgzoSF1Gha//asPW9udg6H1vb9fPft0phcJnHbxUntQHVL6kf5mXePF+knhjuq4DyI8PB6jMTMPBgBtxOhqpTioAQB3l7eQ/rxOWzaPcs/blaO3syrUy8u7dzKR7LkqN7EfvaBU/PcWSGtTL0gMES4lImWODMjoCAjLyDPGqrOJVCv/u7q7d39+379+/t2/fvrWvX7/uogMEA5ofcHt7e2DgRDc3NwfzMC6pUJUvvQsqf25Sojphp+S4LBVuGjN12UhDBKLk+bvMEMARYHj4XsZbBlv/9R77qcrgwJ5pO8ggOPBhAvFYRayolFhOgscZSgpY9Vc9x2dTvyR/NPzcSOaSsuv6SXUo2fNhDV1zg91a22unpI8dEFTk6TM6xLSop7xN3Pmi4eex0s/inYCA7ySgkIym2tWvpyhB4tvLVBl/P/Kc7cI6bW1/hZfPw9FzjHJ42d4FDKTCik4xeqzQFD48Jr0lnndCo7quI5Uhw1IJHLw1VR4plbiiA2649Nx6vd4NEXz//r399ttv7fv37+3r16/ty5cvuz26FRl4eHhod3d3u3R9SZtmjtNjueRsbAd+kgcBAffe3ctN4WtdZyf2jkpvPYEBvSOePD0qI6btda22JRAgGBCvlA1XGHqGaXLuiH6MDNATYniadUAlq7I5mBrpCzcKFahieycifyld97ZpZPVd+0uQAwG2nfhTe+u/D+ekKAyBgefXWj0Xytu5ku0Zotz3IgGpTlLfIUBNUSc9n9q+BwbcmfM6Yz3e3NzsdIv3Xd3zKIDrGtqVNCFXfNOpIXCl0ztLJ0UGvBL8XqrEHqUxKV2fJUduDAlxXCi94+ciR3LeKC5wVbnZOCmEM4M2U91WwMWVu4y6e64EA9++fWvfvn3bgYIvX77s1unLc/rx40e7u7vbm1NAo6fvgyvMypDrJYidvLXDSIE6rQyay1saWmitnkhKw5u8Ab7vRze0yp/KwFeMuOdOg+1eFn8pqudDHCkvAifVmysoRt+onJiPFGOvfzuI8zrXM6wvByLKT23PiAzTENhNkYFTh/JOpcpwaZ4GAQDBnteV669UFz1nxgHVLN9+jfnxPA0ZVffZ3urT1H18lzJBHmg0KyDgUYZEBCQOSliWVP8O9lwfqA+mPHub5hEYzNDifQZ6xsyf1XnP4LlQeeedEbokcJ4nBScp9IqfCgS44hbPid+ZuhuFn5ynhHqTEqexp2dHb1hgQc/I0N/f3++GCxju80mGek8G4/b2drfkUEL59PR0UTDg4UAefWmWfiJ6sVIYvC9FQYPt0YbWskKSseR/N2qMOnnb+s+NudIhD1y5wLx8rolkIQ03eflpVPTTvAcdGYFgNKEC566QvR4rr49pelqKRLAvMtSaNh9bsnHLucnBUGu/+j/3odDGQwLjAgmttYNPNFcANg0dtDYfmXXPudJTrHuR8vVwf9KVyfnydLwPJaKD4DYrOY3KO0UFlFcP9OtZl0mdJ9tEfaR0GP5n5Mo/tPdmwwSV9+yVUwGBythV4OBcSNyFaYlB6gGBJfm3NgYCsyCgAjXOM/9L0ftkwjScQKXv49IMYdGrYOdt7d/K5+HhYe9z0BW/70G+rt29YnagNAQkYvv7BKEeEGDZkyLwPNI503TQkmTSPT2PilR5VpQMtPKhF+I/jwg4mE79PEUZVIfJyyVvAm6eBs8dDHIJoc49MnDpTYdErAsByU+ffi2lu7m52RvSYNt7WJpDNEzXHTKlo2MlLxXgaK1eHZbaNnnlzttIZh04pucpmz50oHfk3au+Wjuce5TKnYYGXe4JDORoME3qII/gOAjQcu/0pd2zg4FqXKnKaMa4efrJS2jtuLH3nqc9m34FBlobb4jSWo5O9EBAj9eE5Nmp07i9e3ny9DyUTI/e5wJwNnkCAf7/06dPu2iBvvf9/Py8551cmpYAQ+/c7hVTMXvb8NlKrqVsUkjXhxkI4AjkPHSavAH9T2FQNwQygpzrkVYm6LxKk+UUvwSzKncFjKrhGb1fPU++3FMkEODEKw+t+pyBS4KB5EB5W6nvuRFyGWJdJuDpMtgDp7w+MrrpPJVP4MVBXtKro9A9+UzlYJ/gPQcoqb78eZ1X9eB9VENkybaw7XSk/HJYQECAO8L6sslZJ+yoOQM9Q59AQqWgnEZjQ63Vhrsq8DF8kBLKragCTCkysQSsOC+ttb1O74aCnj7nC1Tj/L4CwTeX8UgCOwDLR5TLNJ+enqY67lsR683bxI2DogP0oBn67lEl+zqmCEGVZgJcftR9Eb0Br+8qMuXtSJDI9J+fn3fvEYB43aXIgP/IR69PJmDBe27cUtl4zflJa7J7/F+KPALCshEMpP0jPI0kg70hgsqoJY83PV+Rl4X9k+1KWXa5r3RqAq2pHFWbJkBQgSLv129B5JMg4OnpqT0+Pu7OBQio18TjDC0GA5Xnq3vp2owBpkCktJ1641jn6LhLhLqKDvQiAVVEwNNKiF1hKo0P8mMyMvpcWshznztAj8JBAHkQEODsewckusYtbLU7YWvtYt6VxlCrdnEUzUlmUjq9dqs8V5+QmBRQ6qjKk0sDHZRRMZI81OigI3nvLsOUOYWc6U0xdKtrlQH1IRo97/+r+kzDDF5/VdmYDvlKPDLsKhnw5bEfhRzkEIxVuogALoX/SZXuSyBxJrogqmwD+aRMMVrFMHkF7hMlfgkkKiIQ8HL2nqvy92s9B7PnONDwKyKQvrZb2ZceLZoz0GN+1uMedexZI7y0c1ZKt0KOPWHvpV15h24wRg1UdTp55r4GXEZfwwGa3McJgZwQ5iFFRgg8dCXAIODRWotr3PVjXr///vvOCF5qeZaMqhsd75A0UjTgJNUVPamezDLP0fAE0/HIQJocmICb58u8e574aHzYxyy328MlkJWn5nm5J0WQlLzflEYqq3vxVIoymG5Aafj1PIEAgcMlqNKRKgcNW5IFlYlgnwZ1NmLnQMDl4lRy4+7et3jkROZ0rNLtGd/0TgWQR++pTkd9x8mBkfcDySqBgPZ84ZwnB9pLohaLIgNLQyHJY/L7sw10DnJeqhDPDE9Eq36d6c9EA6o83di4J08DzYiAG39GB7iTnHv0o0lp4kE88RmVe7Va7X0hUM9fcq8BlU/tnX6iFM72ELhHElLnq9B9xR+POq+8Gj8XVXJGA1jJpORKz2l8n0aH7/ryxV79qF4TKHb+/ZeGXLytHOwkUJdAgK75NwgICvjeJUj9sVdn4o1j0Lqn99S2HOpjur1ogO6nPnOq/q4iCywf7QT3s5gBij2w0gMIzoP/n6FKhkc/DlG63CoaIDCgqAAnDbr+mW2jaTBQrc+tKoHH9Hzlic/QMagnESsrVdoocpHKVSG8nlFIfLBjpMmCDgLu7+93+wRoO+GvX7/uwAA3HkoRAJ9z4BMIfa8CCanfZ/SBkw4vvfGQFB9lR/WZlhRWHVX3Wsuh954cu/Jx78GVrQO0BNaSjNIg8iiFwmedP9aHFMx6vd4pKf8yojxTGlUqJ3orysPzrPSJD8+kdiB4S+DAowapbhgFSBGBHoB5a+q1c2v7S/gEBlQ2Dt2w3bhJkfJwvVPx4JMTE1BJoK0qW+9/SlNlPWUOUq+f9pyyiif+J3gmKCOYbu0wCplkmO2ofsWhAZ179MrldVZ2Fw0T9Iyfd9y3oJHQHUs9FOjXkwL1il8CBhyIeOd3I0BDzRUCWvv/9evX3U8AQZECzi/wju9t6OWpQIwUhIYHvBNIiB8eHtr9/X2vGd6ckkfDDsjNiNgmMhjJU2S9jJSbh3F9/wCfEJqAWkpXJCPmfPp5UhT0FLfb7d7yqeRde2SASsvHLVkeB2VKX0sCmY+8WZUrGXdvvypaQAOvPJiujrzXi0q8FxFwkSSfAm0uV96GIkY0VU7OJehFoVw2+XySKR2T4U4y7ENVFQjy+ui1DYdQ+H7FQ+KHdcYoWbIbqhddS2CW8ur7AiQ55nUfFkgRAZatGkZMdPI+A965emjtLTvUyCtzby7dG4GZlEf17ilpekPKGHDtf9oqlh45t6nlsj4JtisQ5eHLrTSpip/M5Bg8Ozz3+Ken9fT01L58+dIeHx9jHbwnqT4dvLpX5YrODWxlXJMS03mKxqRNoHwugOqeS/NEBAC8lgykIjMVqJYS406DWseufPyjSA78XOF52qL0LpUaFSDLqDKwTK6bRmAo6azUrnzmkiR5SXw4aJWx0nsilUsyp3O2dQKjTIdHB3fJC9b/Y6kCrckQz6ZTASGS6oC2IoGPZFN4nva8oJdPgy4Pn6sBPOLGSa4+YZe8O83O61i0z0AVmpkBAm9JSfBm0ZCerRTksflXnWHEoxsR9w49ZM8hAAIBD+W6QDo/RLTr9bo9Pz8f7G7X2uGaV1eubuh8qOGS1PM2aES8zqoQtH7Jc/JQvv7LsLN+OLkrDQdwsxN6z1IEmphJmfMwMT0IPuv1o/aVZ67y68gQM8uV+j9lK02A9L0LfCy/UoT6r82slAcNoaeZwqge8SB5lGyJPnkr6gECHVP/3m63B/1Xcr7dbg+2MmYbiaoogPiqSP3DgayDB16rnKPeMz2ic8VrrM+kF/SO2z4CEgcmKS/lkSaw0uHyoTX2Ab+XhgZcPip9V9Ei7VyFkXVvRKnyllBPGE9J16kHBHoevt/vpdPj1ZG3GxhfSujRAH48yL1M8sZfa786vPYFcMNOr5ppsKyOUvl+Clu+J3mZ2UklQ+qs7MwpEsByMsyavH2W31eB+GqMBCZoNMkLlxV5+ao1/ksAuysa5sHoSVLsre23f/qGAoFRMtTuCam8+v/p06fd/gcyaOIrLSUlqNF1Hj0qwHuXJK/7imis9DwNmQCe6lbnlDM9z/kAKSJF4Kj/s9EAN1A08CMHSZRAxAxIGQEXf2a2v3i6PR3iIf4U9vdJrZzLsmRi65uAAQkNUSep8jRmrjl5WMMLnBDybIFHE096yHtJPhX1UG/1PDungAAjAOlzxTQ4NEoqD4XJDXkav/YZyDSeTNM9PJbh0mCgR6wDR/7uYSaiwdO8Dq76IFjTc77To9qHHdg7M5WHvGFNCusBvgoMJIXKiIee5+RPBwPOt0c3OKzlES2Wm23AqIcmTmkplc417CQZduOmNL3tHCQojQok+Pl7UmUIee5Gx40j+56eVz8WKKCsOxjwPJh3pb8qpzGVb+TBJmO/1LY4cD1npKdKy4cPGKHjjpcVGEhRAJ+PkwDMUhsjWrwd8cgzJgOzAIGUhC4Z8FHI7Fiq0tW9c9IoOqCjK1n3LFM43sPOzMuNg4+HMSIhj8G9e++gDKFT2OmtXAoMeL40HCmcx/9uUKv0ZfBl3DV/Q21xf3+/ZxDdOLpCdp5Uv5xJrOsMmbtS9SGNJcA2lV8eCg0vhzEI/Ah69GErTWjlR67S8JHyUnkfHx/b4+Nj+/HjR3t6emo/fvw4+Cw35xl4PThoVR6p3ZPBOHffn6WRoWwth4h9yKTynhnV4rtqX71TjTv3AMGoPHwv8eGU+l+KejIvzzfdq95L81w8+kKqIjc04pwf4MsCKyBAAJCi8843j736cVq8z0BV2ET0GJjGEuGp0j4Wtaf0ZsJaSynxlzy3Kn0Pg3kD8+fhV18e6JO9mEcyFJvNZm+ugCYQPj8/H7Rp8jy5HpaCfCnvyjcqaa3tPCJer8Kc3gmpLNQ2BGEydAQAX79+3a34SPtB0DtWHdKrlYJ4enpqT09PrbW2u8b9HGZk1Y1HJRetHYaePQ1GURglkFxytYs+j62lrzq/u7s7iDxxiGCz2bSHh4f248eP9q9//av9/vvv7Z///Odu6SrrTIasBwhYrgQMktd1KTCgsrGuJYusez7vNKvzVqtfE0Z1lHwpHfLCYYKK99b2l6WnPKnTepGQ5KiltklGkccRJT6YBmXGQZbrffVdD/lLtj0q4ECAwwN0SEZlU50u+SbM4shANW+gEsLZkIWExd/xzur59v5X5B1+SVhwJixWGZVeeqlzeQfibPQ00cy9XAmU0mIdphnX5JmfRPW9CeQZ6nnmRdSrUK5Cu5daTcDvDfjnPSuPfzSc1FrbC3GrDhkaX6/XO2/4+/fv7du3b7sln9wbQttDsz2oLOQZa/cxggPWMzck4fj66+tre35+PogCUZG6HNF7G6140P+Xl5fdngSt/VripnNFCL5+/dq+f//efvvtt/b9+/cdIODad7WVhgYIAFar1W4I4fHxcSeTPqTA+QX82JAPCVAGKpmYHTs+N6ltfdXELFX6gtE+n+dStW8176PnaHBY2fUU/zMNj1IwTZ4nQ+igeAbIOTBeAv6SM0Te2Z85F0BySsDrQwmMCjh4dT5Zf4zOtXYYGS3rYXspd+1KV7rSla50pSt9CDrPxtJXutKVrnSlK13pD0tXMHClK13pSle60p+crmDgSle60pWudKU/OV3BwJWudKUrXelKf3K6goErXelKV7rSlf7kdAUDV7rSla50pSv9yekKBq50pStd6UpX+pPTFQxc6UpXutKVrvQnpysYuNKVrnSlK13pT07/D5tu1VhUjwCjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5CElEQVR4nO2d6ZIbObKswdoXSdN95rz/E513uTPdkmpTFe+PNqc+enkASEoqUhLDjJbJXLAGIjwCAeRqvV6v25GOdKQjHelIR/pt6WTfBTjSkY50pCMd6Uj7pSMYONKRjnSkIx3pN6cjGDjSkY50pCMd6TenIxg40pGOdKQjHek3pyMYONKRjnSkIx3pN6cjGDjSkY50pCMd6TenIxg40pGOdKQjHek3pyMYONKRjnSkIx3pN6ez2QdXq9WPLMdvQavVqq1Wq3ZyctJOT0/b6elpOz8/bxcXF+3i4qKdn5+3s7OvXbJer9vz83Nbr9ft5eWlrdfrtl6vt9LR8eQk4zq9I3p5eYn3lYfup72olK/nzzL0fqvVqv3f//3f92jKRXTk3Z+Xen331vul7WN/tp+Fd1M5dS0dq/NEanfKKr/OY+/8d6WZNpgGA0f6NnKleXp62s7Ozl79pNSptH0QJBJI8Hc8HT9n2mlQjepDUEB6eXlpq9VqC1z8LILtSIdD4sUj7xwujYCAn6efvyNy+VQBA5JkDXnnCAjG9EuCgSWCY5ZJvlUYEQg4ADg9Pd0aCLPKuPefQGCEptMgG+Xl4Ka19goUKB33Rhzpbel7K9KjYD2SqJJDIwBAr2ICBqIEBuglXWooHXm3pl8KDJCRZgXgjPL9HkCA0wMCAZoW0JSBu/pZrl3L0EPWveOoLmlqQKRzDsDjIPxx1OON7wUERrx47N8jVQDApxOrI9MQJQCg83TNvQJHL8E8/fRgwAFAcjXNoMKl7sgqzeQOT14BAQH3DJCxR3mP8vX7o+mAKk5AxzSgVXYOeKZF78BxEH4bVf3bA8E9Fy6p6hsfFxXPJI/Q96LjFMFhUk/2JmXv8UP+3z0DyRvAI8+l5H1qlHQEBH36KcFAxYSJqWYE31K3fBJ8jkS9fPQKnJ+fb8AArWp3688q0JeXl3Z6ejqsz9LYAAcCHLgq+2q12gIEKk8CN8/Pz8O6HGmbesp86bFKr7Vx8FXiGbe6eC2ltQsdgcBhUpJxySMguVcFFbvsSDFTrvgJBtJvtVq9mkogJb490k8GBqr5qCpync8tdYePykBKVncaGAQDmhpgeimav3LP+vWR12PkGagsyqoeHMyqB99xxX+cKlhGlQL3du79/Jke9aaNnGd658lFy/SO9PPTCAi4sk9Hv99ajjlyQ8KBwcvLS3t+fh4CgrSK6sib2/TTgIERw0nRktn0bE+wJaquOxhJbqxUZpbVy9ha22LqpUqTbvjW/hlQ1UqEqv5so0qRJBcfQUClbBzRH6mmWUCW+sVdsj2A4JTGx9JfCuoSX32Lt4B8ma4f6W1pBFKTXGZMlI70KNIoYuwR3f86Sr4RDOhaAgVuYB29BDX9FGAgWaUeiEfXuwfjJYHVi3AfgYGULpnOy+0DpbUWgYCYOb3P/N3yosBMQCCVObl2mX5P4aQB3WtHByy/M40sdD7jfVB5wTgmvL9a254+q8jHRaXoq0Au/6Xnle4uiv0orPdPCQgk3iQ/VkAgLUdurZYRUvg08CR/HBTwlwBCMoqOgODAwYALw6T8tWGPfpzLbu2rq+nLly9b7qbKAl+isCjwvnz5srmmspN8pQDdXwQDFJZ8p0LkLEt1recd8OfV1vyvPH0wu8KpNixK9fkdqaeMHfAlS6sStBUYaO01EEh9kGJVRv8TCCCgpSBOngOl5+3yuwvkQ6UKCPT41KcEmIZ4arXanlJ0z0BVFge3ysN58uTkZMOXeoc8KaKs+1158GDBgDPZ2dnZltK/vLxs5+fn7fLysl1eXm6AgEfmPz8/ty9fvmyYoid4llqwSr9Kc8aT4AKUVnkFLKr2mqVKICsNDaKUh8/7tfZawfggrdL7najqnx4IYHv3fhofVPxq7wQEEr8mV2qaZ3VwIAArPq5+yTLzMqhsv6swPlQaAYHkFajit9i3s3LW+daPZ2dn3SkE/QgKyMNHUPAPHSQY8GkBAYGrq6t2eXnZrq6utoABI/Op0DhPLcXbWh1E6EzhZfJ7nl5FfJ7egOTG8nzoEvNypHarrleuWXeVqd01kFLdXMEk74Cfj8r+K5PXuydcK5cr96NI19wTkPKq+tSnpkRcoZKIgvTLly8bfv7y5Uv78uXL5pxH8TNBga45+P3dhPHPQgkIVFNYaTrAPZZVHny+ArTuSRB/Pz8/l7Ez4lMHBWnq9HfiwYMDA+owBgUKCFxdXbXr6+stT8D5+fmm05PVLcFUWSWi3ly7K+KROzURn+HUQJrHops+zbHOKlUHEl63NAAcCFTtRSGQPAE8J0D73ajquxEIcHdrCpD1pankm97ca0X+TvIu+HXld3Z29mrMffnypZ2enm48cwQMdOlWHrrfTRgfIjmw9P89IOBKWNSTP55vUuQEGDxSZlH2pTQSKPjdvQQHBQbcI6CYAIEAAQJNEdCKpaKlsqVl0tp4BUGa966UL5l6pOh8iiDNpyqvBAAqSnEFrEslUKnomXcCAj1AUFmh7i2oAoZ+ZeoBgcqy8mWb9I4xLiBZ7R6411rfwzUiB3vK++XlZWs6TkFcrbUNAFCZv3z50p6enjbXBAySIK6mr34HQXyI1Bvbzr8EAH7sAYHU5718qMwdEPg7kqMOUsR3PHrZSL+Ll+CgwEBrXwPV5BG4vr5uNzc37ebmZjM9QLcoLZGnp6fN/2o+nvmQZhRfooqBqmd9TqvnKqvap7UW0TGfoZWfBmSvvgzu6bWJSH2hvNwjwPu/C6U+cSvGBVUFBHhN74jER60tXzXjVM3NEgS4J0LnvumVPAECAY+Pj1uAQN4B95KRjoBgf5SAQAUAetMD5PukZJN8SZa9DBQaK8lwclmUPHAODEQ+jhyoJFDzK9HBgAFaRgQCt7e37fb2tt3c3Gx94lcK/+HhoT09PbWHh4ct96RHlToQSMq9Z52k8s4yBAfDrLXds+Accbvr12MPelS56ahM6Ck40phGgrQCAWkZlgvW1jKoWq+3N2ZxUNArWyoryyxrPk1fuLfi9PR0IzhPT083Sp/gQB4Deu1koRHcsG5HQPB2NAMEeqDAed2pkiWV7HVln/hfz6UpSk1huVfBwULSGT2Ayv+/Ah0EGCBTeYzA7e1te/fuXbu+vt50sITIw8NDe3h4aI+PjxtQQG+AC8TE2CRnxF0s9pn71ZRAYtBKeLuHwO8lFD2qr9/jNIOUjYQ929Tn2ZbEUvxqVLksXZCmmABfjtXatgeIwjK1eTpWlk3Pq+RHlldK/suXL5sYBuczPfvy8rJ5hgDAQYGAggCBeCqV/1cSvodIs0BgiWegtf70bM9IUhq8R+OEU1YcKy5zdN/TZb3opSKY4HgiD3JM/Qp8eVBgQAGBWjHAGAF6BOQJeHh4aPf39+3x8bE9PT1twMDIMko/UQUIkhuLaVbMMBLASRgnULCEkkJK/1O5yfAccB6YqWeouHog4HfwLFRAoCdAq70CWvsKBAgAKuHJNp/xcCWlz2f9HqcIqPzFD1reRc+AC196/ggKXHkQEKSArl+dj/ZFS4FA5b2qjA4n8id5198hICAfEhiwfBw/VT0rYKD0PaaFADXV41fgy72DATKa7yVwdXW1CZxq7Wt8gDwB9/f3GxAgb4G7eSow4IyShGOySpKArSxvz5Ppj9ojPUdLvHqGiJYutQQwHOCkeistDQwFYiovgoHWXgdgJkv2V6QeEKh+1Zpskm+SNQMI+Dyp8g44VUKNvJSu613VjS5b93Q4CPI2k6cgpf8rCN5Do+/lERgZVzp3Pq14mOVg3xMUKF+Xi6k8Tg4KCAIISJOXgPQreAn2DgZECQzIxdjaP0Lx6elpywvAeccKCFA5kSnETK29Zn4+nwCFU0/Zp7R7yLkCAbrnwpCR+hS4RLiy1ggUKmJZHEhwgyVZgcyT74zS/lWpAgIpOJDPJKGltpyZAqgsKvcKjPjRx4mTA8XWvq4mkKVPEOBehda+bhLDtuLv6emptdZicBfL+Dvw01vQCAikX+JfT0s0o/wTyNXznncCBamMCRykulfXe2kmr3MyqH4mOggwoA7RNAHBQGtfhaFAgAOBylqq5h3V+clScsvZAUHyNKR3vX69wTJLrqiTJan/Ct7SsTewkweEeXJQuaXqYOB3pMqS8qmABARSP4gI+NQPvWmAUdm8jH69sm4qAa93fBdOWfbJc8Q0e5sa9cCR53+k3WkJEHBL3EFsZeQsAQAjQMDykQdG4MX5O7VDL6agBwh+lYDXgwMD8g5wg5X1er0VfJRWDPQYyTvFI+QTKNBR92gle3qVgE3pVVQxTo+hyJTu5WjtKyBIc3pVWZJCqrwJAgNqy0TfAn5+RnLhmYIDkyAVuYJPHoHe3KqXxY8jUFABjOo9UQpoZHBh8oAkQJD4r1IOP6vQPRSaBQKV5V3JPDcmer+eJzfxQgIBlN89IDMj//Ssy9QKWLC8HmT4s/Hm3sGAC04BAW4vLOs/TQvMgoAZIaPy+FFKryeAncGqcy9Dj3oMldJMyoABNkvBCNsmzRdzAFfp+4D61SgJoeQV0I+CiZR4NVlQFRCoyuRl8/8zgKRSGqQ0HUeByuWHPCZAUBF57WcUtodEs0DAeboHCFrry9kkr3tTX56OjgSuFRjgOZX7DCDwtqB8Y3pMww1ML9/PQHsHA6299gxoukDTBK193VzFgzcS87gw7Sm6ZIklpTrq1EpI+rUEVqoyJqHXU7j8T0ttdgCoLClfR+4ckNWcoYCcrv1qUwlJ6FQgwAPlnBIfVkB3piw8nxH2qSxVHlXZ3V1KIMh4Agpneko43keKhsCgV+YjvaYlQMBBQBXo2loNBHrTAaNpL09TMikBgao+znOJ952PmCYNqgQE9LyvflF6Pwsg2CsYSExHUKDAt9aylbpLA7OzZ4CAl7f3v3dvJOxH6VSIN5UhMWQP/MxQen80eL28v9KKggoI9L4s6GCoAoMzILEqC8vE8xEw6KU/IgeKIv80rQDBarV69ZEljn2WIwld7lboiuFIfaqMlREQ6E01joytmdiAWQDak9/+Do2QESBIxoynxXLyPRo8knMcDz8Lfx6MZ4DWgX+BUDTLNAkxVu8lNJveT/n0KKXLOlTKtMrDByif61lso6mU2fqNBkuVv45J6fyslIBABQLoERDN9oXnORIoFShIwm5pfziQcWVMXuN1L7/aQ0KZ3kACAg+29HS42yLH66EL3H1SGrsVCPDjyMXuYHYWCPi7qZxMd6lMd97gccm0AdNLMVJ6l3Fc3hajcu+b9gYGknBKSJTR6z5FUDH3Egs/PTd6f0QVENB5ZWGn8iSk3lrbmn/2fBzFpukVJxekPSHBsrjru/I8HOoAWEoVEOBOe5U3YCQUE196hHOi9H4qq18fAV/RaHqnJ/y9PL7k1fPwtqvK7uTBW0faph6IXwoEnCr51gME/u6sTE5925MxbohUesepB3b8PS97Cqadqce+aS9goKfwKqpczBW6XVKOamAk6gnOEfrreTU83QQCHAhUlCw1v+d5e3lckaSyeLk8/Z8BDe9C3h5SYOfn56+CBQnMZhXm6Ecaga7RWBgBgiTwKt7uAR2lkd4V6E/R2ynPdM7joQrbfdEIJPaAwIgPq74gn6egVwcBFXAlefrs5xlZwxgTgm03okagI7Ulxzt/3CuE6Rwij+49ZiBdk1Cook976VTM5I3vTJ2Y38kFjl+v/lflTQK4p4hb296rvheQNpN/apNUFgcC7v7WQEhCQPU8NMbfhbxf2B7uGag8AvTSpCBPnbvnpQKAPi5mhGNS0AkQJCDA8lUA3YGA588gVAKBJFgVN6SPzVRTEakNjvSaKtmy5JeoAoKjVQK9suhe1d9JJyRFW/E/0+gB4tH4EVUetJTuIQKCg4gZaG27Ub1zK2WSFKen1cvPhToBwYiqTux1bhKqjpC9bKRe2dLc6kwZeI1lSe3jP3fnamCuVqutj330BMHPRq6wuZlQAgIiAoG0exkBHtNVmgkQOMDgj+CsJ3RGgtDH1Kwnw9P3PFVubohF4hSC2lqAYMYLkcr6O1KSCT1FX3kFKkqK1UHASH73PBGeV8pntVq9yo9lq849rZl6jtq4126HvtLgYMCAdyAbKjWWL/HQb9Spop7C66HDXsdV92YUsCsGF8J+dK9ABR56SwzZZp5Hr33Sh3U8Yre1tgEEh8b0u5CDgKo9OG1CD4D/KIASwGBgHQPqXNFyD46Uj57j0es1M2bSMz4GK29I1ZYU6PzmRcqP7dKbZuEKhqrOvwstAQK9KQG+J3Ll2gMB7CdPLxkZiZ88Hx9XAgRJ4TrtKo98HKW2qdLVtZny7YsOBgy01raYidaNSNaRmEGKphI6Ti5cKMjdyvVyqUz6z3szeVZIl8I4eQl4L4Gf1raDCR1k6H71PtNJgCQpPiot/z6Bgw9tS/srkAvP3tJBzhXKAq72yvA0tc+G9trgj6R0+flfKdURaGWfz1hEaSxqDCoYkPzVs9K8DrwvPnVeU57yEHh/eJruXfzdqAcEeF4BAn+mogoIJO8Xy0PZ4lt1V4CAvMKxxE8PCxRQXlflJp9W7ef3nKcr+Z6mcJnmIYKCgwEDrmy9cRKD0jLxtHoAgW6pytJlOioXld0s+OiBgRE6dXdWGpTuQk5tov9U6g4MUrm9nWYBlNLn8i/fv/5nosqa8XYQURhVH9Hy9H1qQL/Ly8sNKHDeJBDQNXpiSJXnLT2jMrnAYh3JN/QKuZAdgQLVg2ONW2hzyWFrbctLIqDZAwWpbr86pXFWKfldAICo8gBUQMDz9THkMjjFybhXQOOL05IabwQGvfLzfFTvHrj1NhwB4EMDBAcDBkRkKm9cegXoHaBiS+mRmBatMJ/vJdPJ6tL7I2tHz3mevJasrCpNrzPrsFqtXglMCWVR5YJjWqmNXFi4d4DXRPoiHfPTf3cF/0zkbULBxfZorbZcXEhWwpEeAvKoniEfJI+P0wy/uncq1Z+g2McnvU/V+y54vWwVaBV/yyPgisQtSI7X3xUQiJwvfEz7LxF5I1nMCfRV5VDeFZ+7PHNDg2CDHgEBY4EC3kvgZARaWWbW10Fyz2ht7XVQobfzIQGCgwMDImfSioEr8s51oetzs1oWRgZJwXAsn/JJZecxlc2PI0HNenCQ+IYtIpbVgcCoHf3ZNKfnFoXvL6/2oxv5Z5wucECaPCRs+2S59IIG0y+1NxWeA81ES4VKssB6z1Tjz8cJ00teAp3Tm8W66/75+Xlbr9evADufrcr1OwGCHm/Mjn+SW8sJBPC8p1RpxLj89QBcgjyXGwIC5+fnm1gZeYn4tUwZH1LgCRC0tr1xFeVsalcHEVUfsN0cqDrRe9ED5D+a9r600AXgDIOmdEgjdOoggHOzel9ubQbBMY0qv4qJ+NzoWJXb24ruZHchM08XlD1hsOQZonxnfLqN6bb7GcnbPbk2SQQESUj22lvXRlTxyqwgcZAzepagL4FB1rm1vEOh/++NgwSABTh92kDXk9KnwB95P352SkCgN55HIMDT7D07atMKSNNDy2myBIaZn2JU5AWYqVs1xUvDz3kkyT5PowLOFSCo5P2+efTNwYAzaZovSqBgFAyiY2Vte34EAvpSIhVZa6+j4SvLu1dPltER5WgQJQCQIs31c/TKOdVkOSXlUw2qBHL8WpqGUFl+djCQ3PjuFehFUnu/JwEzIn+vKmuVZg+oVulSmKUfiXEi+i9+mGmTqly+OkLlqeqaxhjL8btQDwBUSrMCAZWHoPIUpDJUYGAWCLj8lReq4t0eCE9egh5g93MHwTp3L4CDChqWLg9cfr81r+5tB0IqNlfKae6+tVa6W/VcOld+nufp6enGI6AjO8ADotw7ULlDnchYPYuoUra0wjiIBAAuLi42/9VmvoVzGvRkahcAIyCQ6ubppnR+NvI+cOHFWIFKsKRlcJUA9v8JXCQhUfWbC8ukcEd9RIFMDxTn71lWPe+rGpaAAaWn8nHc+1QdQcHz83O7uLjYPOfyQm33K4KCnvKqAEF6XlSBs/RM1ZY9GUbvZgICnrdPkYm3OQ1ZlZHlc++RG2k+1lwGVmPKjZ7elB51m5fD2/Yt6U3BABmDyuzq6qpdXV21i4uLzdy9aL1ev4rGZvTxjKXtQIBR2jpKyLkryUHB6enpRtk6IKg6MF3vAYKEptPnndVejLAmc88u66usyEpJUCivVv9Mpchtx3dJBFM/E7EPepHPohlFR0q8SyvY01KZKKwofEQOXqu6JXIvkvNgNT3ClQ36n8DoqH0qAPH8/LzZZ0Dl1JhsrbWLi4ut9uOPY/hn5MNZchnC8xEocMC0hCqAyvzdM0Dlrz6sgDL7XORAQOc9MF4ZkgQETmxH8ZLyc0NP5EG9VXsIQHs9q3b9kfRmYMCBgBTx1dVVu7m5abe3t+3q6moraprLsjwQqwcKUp7yBJyfn2+AhzwRnHds7XUwE70DRKPKo7Xs2kmDqoeiWWa3Rn3lA4EALTa1jd51QNBrq3Tu5Sazco5LeaY5vp+Rel6BFKchmrV80zvO3z1PmLexypg8Wr25SPck+DV6AtJGSBSMCSRQkVd171EF+NU2XIYmoMCti/33K3sHRMkidy+KgzOXYylNHWfbrwIBLtd8KlPk00K98vEZz48ym9OXrH+lR9iWrri9HWb5ycEAy9CTvT+a3gQMqPIasBcXF+3y8rJdX1+36+vr9u7du3Z7e9suLy83zMElI/y5cKw6UEcCAXkhLi8vt9Zvu/AiM1GoVqgxWflMr2oT7/zkEagUkQOByvVEdFyVg+/1rAYGh6ns/EZ9a3WA2c9Ezj/uVSIQoLKdVeQi7yN6vuSB8rRYRo0pRVOzvA5WK+Ht3oMEBByQetS30iEPOmj3MjHfEdBhG/l3DFTO1trG0Li4uHglP9iGvxoQmPEApPGYZJeP12QkJEBQgYRKplVWM8fLTIxI4nXny+Qdcrk3Mib5fLLeE7hI/eBt6XK7l8ePph8OBii0pJAFBN69e9fevXvXrq+v29XV1WYeUutFn56eNucUhmnehx3iFp1PR8gzoHtKx60Xdl5SqImBesK/N9BY7jSQ6abVtIYDAQpAtZu8J2nuOpUlMS/bnZ4A3df8MD0RPSF0yMRB6jw0AgIOAEZAQIIzKTtfL83nUl+p7Ul6vyIHoxKYPb7kNfatyi8QI+ucU0gSxr2gr15ZlV56163Cs7OzV4aEz/cq3V+BklFBHq5A/kyaPQPBn0/8SRBA70DlCUiAIMmRykCjF0D86NMHo7Hp9XIPGGWjy0f3HPQAQQIDNLp65fre9CaeAVrnBAK3t7ft+vq63dzctPPz89ZaDQRae+3aSiBARwlIeiI0LUEXuxiYm5S4Jead3bO0SY6QKzdQJXx5j+40d6+pbAIBajvN2fp0SpVvdY316QEdCWpH/2ngHzJ5uWkZ857IwUACBSQCASpSesQoyNSv3ucsq7dzUnyzddf7Xk+vg8+LSuBS+RMg0kWb3LUVsX3TNwyUp0Cqyu8xHozF+FW8BBUvJDC+CyCvFJnfG1nVySMgSsrfeYO81trrja+cT3WfUwWpfdLY9HqkceXvVLzUM7yYvl9nvZXOj+bVN/MMeJyAlLMs9NbaljIjGGA6rX3tkMq1Q2tOeRIIKE+iMreeW2uvFKmeFf1oIUJlxHr5wFL56BGgZ4AxF2ynBE4qayC5wZwqi+RnAQMuRH1ek+7H1uY+RDQi9wxIoRHcqQy0ilO/+PhI46UnUFIfJWvQx0NlDQoIyEtAAOACNdXFFYbe4UoFliMpBMkBjQUG2f7sQECUlFz1E43q3Xu/GvsuTypZwnutvQYA/O95tPYaCDB42cuvc4ICBwa9tmA5yV9sC/I1rycPQVL8Drp9zL1VrMsPBQNusWiagKsGXPg9PT29mhag20fnyfKihZKAAFcO+PxmmmN0UJAEfWVpL+m4Sim7chqha9ZDVpSDAKU9AgIsA/NIHhlXBqw7XcPV8p9DIm/rXbwCiT/ce5XAFcEAN1JJnqDkXuwJf92vvFN8hkfm5XX26y6cZQT42KXLtUdsu2QxOi+6BZf60OeOPa+fiUYyo8cLo3Rn0pjloyTHRJQVbpA5f5DnaWzwWxbMX31PfnUPVeJ35ZHqonKQjwi+XeY7X5H/vU29XbyNUnrfk94sgNADkFRxWt60aMUI6syzs7ONRVC5kjhfyPgExgn45jyuNGntJVCQAEhS/DOClzQjpHuMywGU5pkTyu6BAs/L30+AoLXsntbA7M1f75uSwEqeAZF7BXoAgJQGtvdTDwx4OqlvVZ/qvLLAKewobB0AVe3X2tfxSkvMlTQtpVSf1Gat5V0N+bx/1VGy4OXlZeMd8CnA2Sm/QyVX1OyvSpHPWsIJDFTvjtqwB0ocCHCfFBI9Y+QjnwZIeXJM9+RiVbbKQCJ/89kkL9P5qG1pUFXpfS/6YWAgMRIRkQSeaL3+Z108mSEpv4qpxfwEAvrJK+C7DCovt+6oTN3FPjuQlgCBXnoc2E4sS1JI6eflTOVPyqMnTLwc7nVxi/DQKFkxdDE7GEhKaYY/RN4PfD/xOr0SIvJEr3/Z9skSdwDg7cF28bRH7UchTEE8o1y8rShkCYJY56QQOU1A7wAF91tYXd+bKgBf/Zak2UsjtVVP0aU8Ei/5+PFx1do2AKCxqIBVl1MCCixbUt5p7HkZkheMPM30HBBU8pL8zHFYtSuB68zYWUo/BAwkRJaEF2MCiNTdjUKrU+RCQB1PICCPgKYK1HECAHSnM+CODZ8siBkU3KM0eCrkmdKtFL2ja3dfV2VMgqVXj5EArQbDIQtbVyD+q1zlPb5gG42sBaapd2UJPT09vQIOyVMhvhbRolDd3GvjlFytfi8JzaXAN1llPeHpgjMBAZc53mZpqq/qm5+BRgBgBARGhk1KpzIwvD1HRF5iGgQFLrMcGGiMMGbAFSvHinsFvC2ct1L9mAff8amCBHZdxyXwwrbhe962P4JvvysYqJA551zVaKmzW/tqBbW2vdUp09U5XY8eJ5B2NlRaHiNQTQU4IGitbxWrXL0BMdOJCUSleWqRz1f79+F7ytgVfw8kePnI1D5QRmkcCiWeda9Aav/ehlepzlV/83pvDp08IwHobe3gRO/RKzDyEPAdv59AAOMcVIZKqPdArAveqp1cORE0sf9EPlXgU4FJyB46JfCuuicFvqRu1buJRv1X5beLseRGU/JAcowwD8pSjW0nHxOUn8m7WYGONF2h9Bz4uJJPbc5yJM/k96TvBgacCWVNyVLnJjncvcyFkAu5VGHui07kx6kBxQsoXxEVpkfbExD06unCtrIIK3JLp2pDH+AkBy1cUuhAp1pa6OWtFDnLqiOVgIOBVJdqquMQKAGBagUB65rAYgX0evzsws/BL+dK1+uv8/GpXRPIdiHjgKA3feNpOy9oLInEb/K0iffEl26Zpzicqp1GYMSFN/tNS4yZp+f9I6ytH0kjeZHkaE9Bj4DALJjjuzP8nsrWi8MhIEjllB4hjycA4HXl885b5HGCkFH7OQBgu/QAAfNYr9dbmyilfvke9M1ggBV39KUB6Fb6xcXFlkBjOu765FGd7JUX+ufniHX0nag4JcCARQm1kbIkJRQ6Sy54KkZiO7m7WgOmWk7I6YElQCDVp1IoPleW0qwAzaGQ8657ZXpAbEZptTa2dv0ahZEAga7Txehz/ZXQJwDQezNEPqVw1DG5crk3Aqff0o/gpWrPRMnK4tJBPicZ4FMFmmdmOx86EPBxmABBJae8vWbySWn0gMAsoEqWrufF/+ma+FjLV0X0GLuXyJcGi/zDWszX3f/0sjn1QFXVDw4ImI7LVzdEvid9ExjwinNKgF8iZEQ/rfWegmClHWSsVl+/mkZBnr7iRwtASxe5Kc/MksHW6ij5HuJeovyqdiSwSt4Ut3K8Tsl6HZVD9eV/V1iO0CvLgIrn0JYWukWltnZAIOrxh9KboSTYPJ0kKMh/DgZm81baCYj26uDv8GNdrX0VrAoCdoCa5uorZTIqd2o7F5IqD1cPSUakHRKdfw8ZFPSAAK+3NuY1T3dGJus8KbcRUXYkS5zHxB9O0g/aj+Pl5fUSZm8X3ddmWASQrmQdCLT2dSp75EHWsSp7VUeXnRz/NASSEfEttDMYSIKU2+VyeoDbAOueOiTNYbrgYz78apne99gECiiBAIIB9w6wsZU/66njTACWC6wZIV0N7gQIxIg+GFnPJQLW81WbOrN5QBbbl32Y2u6QPQNUqGzrBLxaq70CM3Ujb/QsKH+O40H5U1B4O6f0vM5uheh9f68SeMrLXf7JM5C8AYk3K36tgADfc9DP8qlv9Uy1VfKPsLa+J7lc6VmhTj15kMZmUjaj365UAYsZOUYFym96tLb98SzyuK4zXY99Imjxsvj3MUbTcj3+HYEBKn4HAj2gsQvtBAYqJU0AwA1/NE1AIOAdxMYgAtIxKUFX1N457Ng0l0mLRc+xDKnO7qb3AZOAQGKCJJAJqOQJ8A8TcdqDZahQu+eV2i5RT5H7wPLpAnejkU8OhRLwciBAkhDQ+QgIqK0duHo/JXSfBFBqV/53S2XU1iPw0nPjMi8CQQIBKtbKO7VEkI0sVgpqV47kYY2ptLMjBez3FrTfi5KicUBASkqWxwpgVFSBgAQwmKZfd1riFWCeBHwuo927yTGReISgMNWV+XB8pPozn8RPSV7zuaRjvTwJsH0LfbNnQAKUUfw6crdB/0LgTMEpjAgeSM7UFEwujAQGKksleSh6Qj95NVI7+X9nkKSQ0hcK9Xlnr+doACvfCp1WZXYh6u+qbcSo/DaBU2W17pNYt94UgYPExLuO5tmv7romVdYOhUeyWJivgwIHBkuI46kHCNxVyrGk/z2B3qMEWnmvkgMU5vypvATS7h2QtXfIQECUAIGOOk+Kp9cPDioSMEhKOqWZ0uB4quTIbPpOrhjFC/zwXdqymOPcXfAJqDsgT0Yn22CWHHC4/Kza83vz6mIwkCwq/+6AR/J7EB/RnKft50Ly6/U6Kl+l6Vabo7s0ZZCeZ7pV/SmovExLFa4rXnoDBKQIqKh4W/tqjfWEZoUe06DkQOjNvzEPDr4egDoUMFAJKgICL2vPYnEgQKHk1ksFPpP1k6yJZGk4EN51Wobvs9y6xvZzV2mPqrJ4/SoQ4Iqpp6jYzvRa6T2CbXoHpCySt+8QKNW9GuMkB5JV2qm9UzojhV31W8+oUPqVRb6kD9R/iiPwwEICfBpSnAIejR0vU1VGplWNZ68/vYfelu4d8GlCT3MpfZNngLECmgq4vr4ugwRlmffSoiCjolQl3R2t48jarwRwajwOnp7Abi1vjTwLCFQf1ZXegLST4vn5+VabKH8qMn3XnumzDmTIinEqpVAtz2nt6za0CeQdElVAoNp2uLWvW2a79VulTeLAdUDA+ymt6lplWREUuPJeQqPpBk5LuHD3MVspcAdOqkdV756Q9vG6Wq02csanZtjf9A5Q/ixVQG9FPUDQ4z2d85h4icraFVkv3Z4idJnu46vyxjoQGPWHeIdlFiCoVhDwPdaf97yNdI1ybga8pHb0OuucgIbvsw0dEHwPft05ZsBRtm/0wyhe/3Je5a5J8QTs3ISqqOS5nfGM9eVlmH22KkPvnSTEOEh8aoAAgFMFbIsEnJaUOV2v0lqtamtwNJhSfvsm8q8DAdYj9bHXJVloLkAkdOjGlkKt4lNG6fb6PCnqRIkf+E4VL+B8wrpxKZ/aOAlrp3R9pAD5TOofTgUQqCTvgMcOeBvti1IbuPHkNGu5Mt0EBPzZKg8+lwA3xxj7q7VvWyaX5FgFjFJ7Me+kcGfqP5L/FfBNafnUnPO5ykUQ8L34dedpAkfYHjDoa3t9vt4rwqVzInUc0VLFOLqWdt+bteRovTFNPp+uu6Jg5ydhnoSoBovAANuVIEltmpg9KaxqnjqBKxfWakPuc+Bu48To3l7MY59UCdNqFQF5yPmWaab02d8Ebz3LxMvaS3MG/LmL3CkBZlHlWXD+9jJz/tX5NdWJgphpexuktknt5PVKQpY84N8tGG3QtS8agaJe/46MlJk0Kz7tlbHy9s7wLtOsFOeIfGqPsqzKi0ZAJf+9DG7ZpzJ6PXqysfIMsIw0LryfU5vN0CIwkJQYFZmUlpSZCuRuIW7wwApJKEnxODBYYrlXc7NMb4bBkwCvGLQCBHpHR/18jkqgyFcPEFWT2dL0SG/DoerH9nRkrD7gUWXn/15b9vrhrUl1IwhLQIC0y8BSGkT5PRDLvqqUYLrW49/k4meevT5JgUwpHZ8+6gGW6lpP6DqlcdQrm+8j4EI1eYaS52NfwCCBTZ6nNhiVdaT4E/9VoNefT0CA46vXpklZLlFwKT3Kb+adPBQcsxWQSm1dydJU7lE9HGQwT8pZBwUOhnehb5omkNLmQJKFT4XHylH4UeA8Pz9v5sQ5UPmuV1gDfoSyEjFYYwYQ+Lspv8Q8qUOpkEQEQJWSYjpsRy6ZdGvWmTVd83KK6XxQEFknUJDIld0+yRVBElSsP2nJAKNQ0Tkj1pme2pZArxLO30JJyBCAjPIaARPyJQWwe/uqtAmgR3lU5ajAgcaI+t3fdcVFQHAI3oHEDxWPOF/Nlr9S8DPl4P/UlhxbIsqi1nbfb78HIJSuK1PnTx2TLunxQGUQVtTjc73Pez3ZXAG6b/EOfNNqgiRQveKpwq6wnFKaHNBM5+TkZHOdjFUhNZZvpMj4LMvfq58/x/8jS4MgyNtW99zj4e7r6nsEFRBwBiajkTnV1t5eDgp6bcH9vd+aEhhzYZW8Aq3V00VMbyZvChyf+/MgzyTwl1BveqC1MTijAGf7eLpJuaq9XOi6hZaE1xIlNFJeqqd7yryeleKqgOG+KNV5KY+kd2fer95zEJvaMxFlQuXBHNESwF7Nvycd4HJ6BAh65V2qnF3mpjKk9vf67cKz32U1QeVaTYqGikrKQVG9fJ6KsbWv64Q5xVCBDebVe06NV0W0en1FaeoglaEi7zBaLA4CKvc1wQA/uuRMNPtjm1Aok9nobnU3cjXolwZl/khKALY3PdBaPffnSmgWFLCdkgWQBnwltKv8euB2VoBWoIkC3oPyWnsdz5IUuY5sRz8f1dHL6s8mwCx547ydALgruX1TxQu7lG3mnQTMkhJKCrbiF5fNHo/jxoq/w2NV5qoeHHuSXUmGpSmFnp5J1yvdN0suh5VWMmh0nedLAYho52kCWgvuFVCDeicnC7a1r3tEc2dAVkJR9I5+pKDc4vS8eoqbloAzHKcSRu2xhFJ6q9XraQK6r3X0/RFmFPwMQOA9bwu2jwvL0XSLC4B9ULJm3PuUwEAVK5KAAEnPVPPpboXoWY8bYHmXWHKj+f6qH5QuPVH0TPkUYLL8xKMpeLAHbiohNmprL7uIvMk4JdWP7x26Z8AVbgIEM2VM6Ti5DEiAgCCKz1Ef+NRba9t8V8U49ZTozHnvGsdFJa+WGHp+/i184gC4Z6DpGR2rcbW0PN80TcBlgFQQCZHzoyX+8RINTjIPI9hdUbKyAhaVd6KyTMmgrvCdaVW2dN/bxZVp1YZ8p2rXk5OTrdUFrbVXewlUiHmmLAmB+3UXOP5zdMp3mN6+YwZcgTHQNSk1B0hMJ5079QYxBWpa/ZLKPQsEREuALMvoUwLkxeRJYb+r/AI34o+qHpQXyapJZZ2h0VhmmVXn5B0gkNkXIEi8swsgqPjWZamfpzQol9lfDgZS5D5lti85d+Mkkd8bgQIvfwUCZqgCHSP56jK2attR+skQSdMEu/LrTqsJKqHqjMWO1rLC9OlgnjuRsZQHO1OM9fT0FAVUa9tCIDVsUlSuAKqgQT4zAwhSZ1LYclnhxcXF1ncK3DOS8vc8WM9UZrZFBQxElUJ395unr2f27RlIPKtzEhVzNai8rfVepdBGvMkxo/+JRv0x4uteXZJ7V+Vle1UeFY55WeIvL9ufCk5KpwIEqU4VpWeUjsaNYovULvRo9rwDbKN9UCpLVdf0rqdTEfsleZdcAXnaiW/oPWitbU0R01AkEK7kVFXPHiCY6beeF01p9kCIP1c9PwtWPI9KrjiwdkDQK2uiaTBQFaAaPCoEG0GeAAIC3nNKiF0W8vn5eWutbT5Hen5+vuVqpfWshkzRok499ObPJZDRSz8ppQQGtLcANxySEEt1cOBSIf+RMEhApmLqJMRT/tW1tyRvc4IAD1Jt7fV8s7dvogQyKVRlTdHtTnc1n2f+1bnK4gCC422JIqNST6CffKolxByPEkbpi25uGOgdlp318TZZwjvVuGWbqV581hWYewd2sbS+B1GuVmNb1FNGFShI9fI59TS2k8zRz73Foh4QSF4x1mtEs/0zasv1+vV+IF7nkdFUycj0bJKVqW6VfnF9TDm/lGe/aZogVaCnmEjqfDFIQmcJYZLBXl5e2vn5+VYAnU8LqFH4IRIXQl72CgX2BlBqh17H6b/q459+Ths4CUAxjWogiaFHSLmHRr2uSTA5M3oZRDNA7EeRyuZryll2B6xpIM8M3FEZfMvpZFlzXFSCk8BX76a+6ykPkc/t8nlXBA5gWQeVl0Cc9ak+HNMTmEuAtj/vbeG/FEDW4+99048sj8sJn2aqwKLIg0mraTff2juNN9bXaSSDKxrxTtJhM3n5uKv4rUpnFuxSl43GKa8vAdM7bzqU/veEkLsUVVD9PNKX79B6u7y83HLz8SfvQGv/MCSXHDI/on13y1IpkNySSMFl/j8paCp//wkEaEvn6+vrjRW2Xq/b09NTjBdQeXpMmxijYpKKwUeCkucJ3O1LoCb3NwUWlXASUk5L6uFTE9q627eYJsBNHjT/9Dbd8AR+IyCbypf+p+kejkmfOhB/ObCoBKEDmdFUHcsyUooJEPhP4MQtQNXxkIDA9ypDb7xX111mkD9Se/EZkY+lCnAn/vXy98o6qmtlwCSZWE3LVgp9BAj47JK+TO/qWIEzGji9NnPaeWkhC1p1Ji0yt+6TwODe4E9PT+3h4eGVINU5LRWfJjg5OdmyoNkoyoN7FrgrMAmmav41MXBCaa1tKwbWiZ6A6+vrdnNz025vb9v19XW7uLjY1Ofk5KQ9PT29sihnqcdIvM96uTCvBOYhkysxB6bqW1otXv8REE6Dzgen9zm/PeHARAr/6empPT4+bsr89PS0SV9xOA6wE6V6KE/vw9n+JC/4VEsyFDiGBGZ8LFbl75XJeZkC1/mZMiIJ5kpG7YvHnYfSeBsp017fki8SkExjwKcBKs8S00/lHAEB1yWzSs1pZMCI0ry7fxG2Jx97dfJ28LxnyMGZt0/6LWmzRTEDiRmTVeWoMblonYkokCX0XIAyUJFzlfrgiOIIHh8ftwa0GlAd7Xm19vpLbTPBVzMd3FMIVAryBNze3rb379+329vbdnt7uxUb8fnz5/b09NTu7+9fLefs9Zszjfcn/6suFdplG/GdmbLsOpi/lZwXE5AiD/PI92fAT+p/8mLvY1TqK4KBx8fHdnZ21h4eHtrj4+NW2rRymd/3aGe60BOfex3dYvQ2pseO11h2Ahu3apKVUym5BApIlfKpBOq+wW4ao70yzfS/t83I4hWpXymHU2B3a189AFX5krKs+GvG8k/v9Z4jj3K1lsqh+BYfX6kOIyCQ+NYt/Ypct6TnK35dIg92AgNeMBeeRDCOsrl5kO753KGUtIShFL6i6z3Nk5N/gprY6EyfUcTesR5oqHIkVxepQn2eFpUlvRz8sNPV1VW7ublp7969ax8+fGh//PFH+/DhwxYYkJdEYIDfgRih8xHjpHfZr6wjGZF1S4IgAa19UOUREFXeAFJPOfhgTeOEHrLKQ8B0tUKm5wViedN+G17+WaKQSgCpmpIgEPCVB2nMcu1/kh3JUqwUWBrDleDWOYMZmU4VO7APSsq/xwujdPwdf8aBH9NNwNaXgHtZJAc4leV594AAr4/6vve/159pCaSeER/Rk1UBgRTwm+o1Uv4V+dhIusbPl+S1ExhIViAbwefXW9sWhmIe7hfujUoPwdnZ2cZdKiXIjU2UthSnCxzlSReQOpefMVXeaVAk0KLzqq2Sh4TzxgIC19fXW0Dg3//+d/vjjz/a7e1tu7i4aC8vL+3z589ttVq1x8fHdn9/3z5//rwV1U1XrVtfKqczCgcx36/6taqv0nRyQbBPgZqmCURpcOs9HWcUg7cxAWC6RmCoQFG1lYJjOWYoYAma9Q7bueLLmWskpstxqZgGjnWCLSpbAtY0Xdjrg5GiUB1c6FVtkNIigCHP9gD2W9IIiCbFugslpZXOyccCBd6X9ASlyHyvXwUAvTwzil/H0XglD1YGkQA29ZUTYyCSUVGBriXK2gH6DOBhXjM0DQbSQK4sFgcE7i7yNFxREBBo3vTh4WHrc76ehu8qRiXMOAGSAwKiKWdgAgIXYHxOSsYRs3+WmB6B9+/ft/fv37d//etf7c8//2z//ve/259//rnxDDw/P7eLi4vNVMHHjx/b5eXl1hJE7bOgunib+jnLltC9EweGM3ll+bsb7lsE1bdQAmcjIeHWUDpvLQf16F7yiDkQU5+dnp5u4kNaa1vKVkDWvzvhu1Gy7D1vjPLwNqiUX/IQ+Oocve+rC15eXtrT09Or5cEnJyebaQ895/O1yaJnmdhWCcjOEPuKU5zeFvsGBCPaZWxVgLGyfB0QkIfZ/j42vA2TspoBBD0gUOVR/ZKhxmtUur4FPutXeQYSGPB2maUEHGYMliVAoLUdwUDalcwVtIjukrSxUDX4KXAUSS1QQIFDq4NpqmwCFO6yXq/XWwBCkcUeQUpvgdrBg7Y836qNeqsGNE3w/v37zfH29nbjFfny5ctmmiTFX+i/W+Punuv1b4WQ2V7uHXHL0dOrAMlbkguBdJ/PzVggvJ6ep8JNoMBd5/6/ta88KZ4RyKNngGOF1stM+ZlXDxSMFLPecXnQWtuUi+3R2naMBoGOrzLgkecu6GaFXu85B0mHAAQq0Jr6g8eqzD1vSVI4ruzEXwL3s+2eyuPtPCp7Sq939HFfGbPiWx9/9ARIhyTDNbVVBWCrui7xEPSedb6t+CfRNBhIyt/dfw4KXLn7uXeYV9q9A/o9Pj5uCZjz8/Mh0mNDsmNdOajcXkaCgoS4KOwFUtgeAgLcR0BgQFMG2leASt/dbwltpnZ0obuEqDSdeX1ejG3h5wRQ+6TEY2lA896SNvN66+hjo+JJKnPnyQQmz87OtpbG8bwquyt7LyvJlaKXOwnZJBd4X+BF5eXOpD0rPPG7W6i8X11L9UzkAGmfQOB70Kj8I0Dl3hr1pYBbMqBSHpW86pUx9an/r0BAa3kjKclm/ffAdBqN8rImHVHJj8oroPcq0LWUz1I6lS6YpWkwoAasouG5dS4VkQpOS2BUSZ5TeDw+PraLi4sttyPdzz7tkICAmJdTC3re33UA0FMSuk/momBUxDgBge80SA8H3cECQIool6fA9/T2dqwGemJCuki9TiS1UXXuDJpAxVtTEjyjAZgGbHWP6bb2evMaL4PSk4Ikf3P8OCjl+Ht+ft4EzeoZWtZevuSp6fWNX3NvlMrB6+71UB7rdf4yYBLcS/ikUhA961c0mloYjYNDpSUgdqadXAbSO6C+dWXvRkOi0XgceedGYMDBKvkvGWk+RSp5xlUG1B9enkoG+/8eEBjJJH+/kkEzQCvRYjCQNstRY2o+n0qT85rVF/d0jZVubXtPcU4V0DrizmY+VZCAgAddtfY1OERpzAAAb2wynO8w53skcMMZejjktdB0iNK/v79vnz59ap8/f2739/ft4eHhFSBwiz1Fs1ZMtAsyZb0TIND/QxCiFVImny0VouSLXVA9Nw9S/7ubnzzb2utNqwgGT05OtqYN9DyFYlK+VflIei/xL8+p5D29JCwdMI6oEnY94ZdAMIHADCg8BOrxbwKqTmnMp3NPw72A3MiNwMDlgXsPenWqFP9Sz4CfJyDgcpgGW2rb1rb3v6lkSfVuj3aRuxWNwMEMTYMBBTcxCI4/Wbq0thP6dibjNb/PdOhWJDBgx6rivtrAgQAZhc8mQeyMrjySgK1AUmVVuQUoEPD58+fW2j/7JazX63Z/f9/++uuv9tdff7WPHz9uQMHj4+PWR558O+YqoIV5jgRxesevq01a2/48LO8tUbbfm9JgqATm6L1EM6DAAenp6elWYBLn1l2hujVydna2Ba7Fi1yq11peUkkLqLJs2M9MSzyscc5lkc7TTCdto8z8RsoiXfPxtwvw9DHRU1yHSj1DZeadHnAgzyrd1eq1d0BymUaVx4dVgLunWGeuJ1DoYIAK373a8trSI6vjarV6tXX2ElDg7enn6Zml3oHULrPlcpoGA5eXl1tWCTdL4RSChA0VVBI6SVFV4ICAgEDAv0tAYSfGpMInc8iaEnHeldMGJBeurW2vGhBjUWC6+9/TkDdASwY/ffrUVqvVxmUsMPDf//53CxDc3d21x8fHLUDgwra19krwzqJRBwoe2JUE+RIh9JZUDVwPhuy9P5OHU1KwDIrV+JDAodJObnPxLIO3yNNaWtva9uYwGrPOh6kdfFyyfs7jmhrkpklMj+Bdnqynp6cun47a15W/H739e5byCBAfgldgJNipZGaoZ3gloqdPZSEQqJbb0TgZgQBX7rOgvPIOOBAQ/3NK1nf/JBgQ36os8t6559nrQiU96o8eQJiV0T1AUP3v0TQYuLq6eiV46OaWUnTmTYVxIZy8BX6fsQPuGaDV3dprt6MzR5rPYgdKSVfvyzqjgExBXgRHRNqqGy07PqPYCJX1/v6+/f333+0///lP++uvv9rnz5/b3d1du7+/3whZRpoz3sDbNfVHAj7sJ09jZD05yk7pvSUlZZHqlkBBEjS8XlHybHkwkrwBrvzJbw4+JZzlgeF4ZB87T3pwL4lu3TSVxzSdtwk0xL8JvCvWhdeqeWVvBwecCRD0pic4tp0HZOlWtMQCfGuaUTqkGW9YlR5BgfJmm7txpWsJ8LnSpOxT2l7Pinw8JpAoD5aWYytQW+BAz1LHOGBX/WSgEYh724yoAgJ+PvNO1Sa78Ow0GLi9vd0k7hHzKmAlYEmVgkmIlQqUwkVr6pOw9GAQCg4CAd1TZ6rDU2dI+CbhWq2y8EAqBzSc1+XUx8PDw+ZDNiqbpg58moCxA0KzHivg9XBhOiK2v/ePD15ahhwo+yYqQda7Z40mEDA7uFR/zrNSOInU9w4y9EsBTy7s6CVQmgSu9FIlMEC+pPBO0wT0DHr0tepdefF47l4stnlqb4Lz9Iw/q7LsosD1/i79vm9ycJCMssobUP2XTORYFk97+yRvogMCAoDWXhteo/r17iUgze3e+RMgEC+rnFy5pt1vU75uqLLuLiurciegutQrwOcrXp3l32kwcH19vfXfUSGDnHSNX1lLVr+OCTSQHAxUrsGXl5dNBxMg0KpxICAmd4SXwIDHA7hgrCwwtY+2mE2A4OzsrN3d3W3iL1g2bUH86dOndnd3twEBDCJU+1OwJ8GQBIQrB293/u95B6hwDwEEiBJodEpWSU/ZcBCnuiYlJ+X/8vKyZU1XlpDHmCT+oofAQUCy5JmfC7M0n+/Awz1wep4uYQfuBLsSuOT/nmdA90cCL7X7EuL4Z/yQ98m+aVSOJcqgMhoSJX6mJ6m1r4q9ys9lLI29mfJWcsp5g0aZPAHay+Xm5qZdX1+3q6urjXdA5Xp5edlMu2oK9v7+fjOmHh4e2mq12nwsjOV38MTzyiPjyjxdmyUHFbsA2UUxA63lwUbXYlKAydKYITYwBUxr9fSDnvXoZp/voeBkAKEYegYMEBD4NALRMoGAmM2t+NVq9SrOgAPu4eFh81MaTNvn5xIDJgZhu1T95P1QEdHxoQjP1vLmOgmYknxAVYq7lw7nzqUEW/u64yXTTAKRAbJKQ4CWPJK8VR49XXkF6AZNnhLytQMqWlMcew4CyPO+HDZ5NCRHKBh7HkTl6/3TGwvKk31LZXWonoFKUVRKZ1T20TjwZ9nWkj+r1T+BdgriZhCxg+ye0TVb5ooYvyWPGPdz0cffBAg0bSCec6/Aw8PDxrNwf3+/GUsCBT4O3FhK/Fu1q+q9BBCkZ76FVxctLWxte190UhU9ymj3kaKqGoxMKObjp1x5n5YOlTU7j+jfgYDOqfgoDFNcQAIcbCcBAbfoaYk5QOFgkXdATEoQMBLmqq+OrtyYx8hq7gEFpc82q5D8W1NPoH8LEPB03KLWeXKpEqhWZZGQJdhjHyhgUDzD6QD3WHkdvLwaBy68HWBQSbNM9AT4z8EBAWzPK+BAqQIGrsB7lPqT79IV/rPTbB1GstmfS6BAR/cOSNby+WRwLS1zeo78zj1wBAT0aXidOxiQnJacFSBgjAGNQE4xO8AluHQjme3p438ECHx8epsQSC9t00XbEYvoVmcBPfjI5xCTsvJB2UNEBAQqh1sHnq8Epgf8qQ6KI1BEN3cnZMcmq4sCnWiYdaZHgGBAwpPAqmd96nl36TK/ZLk7U7iFTEqAYOTRGSnIQwEEXoZknbaWXWw9JePpuOKicqFAqMAA25sCxy0PpenTBClgMPEVy+JWMdPzaQeNUXoVZP3Tc0UwoDHgUwQcq0v6T2XoWfGVsPSj94F7EH8FUDBLCRA4fzoQoGInKKBBo3QYH9AzMCqjJJWJoFVAgFME19fXWz+BAU0VCEDT6KJHS1MFnFZwz61PsYmSnnSjtwIAIw/BjOdgKf9Og4EqExeCrLhbrEn4enpkGN5XmkyfebpClDJer9evAAEteZXz5GT7g0YupKqAQQlkt5Y8kroCA7PC0BWCv5MUReo3tbGTK69EvUFavdcb9G9JXr/Ej6nNXFkwvQRE9V/p0eLkvgIe05L6VPkTELg1zWkEL3NPGMxagyKmT/5+eHho9/f3m9UtAgM+NeDeDcoHT19t4uXluQvVdC8pf7YRr1Fop/z3RQlgziqC2bR7vJD++6/nVaymwkbvVcR+S0CAG2HJK6B4AYEAAYHr6+vNqq3Wtr25DHjVV2IZdKhy6Nlq+ouAwJU822IGAPSoB4JnaRoMeOETJUuVjcWgodZeu63ZYE5kKKbhHgFXyK4kfcpAglmd5vnoXbeSekAgfUtBVhMjqt0z0BPKlbLokTPGrDcgPT9ylSfU7zSjdH4EueWSBBpp5GJjeg7SUh1pcfsmJu5xS6Tn3Ruk9zUVxnvkb5bb6+D8R9AkC09jhMqcrlQuda0Ar0+9sQ1n+SL1U/VuT7hS5vhxFwX1FpQUxszz1b0KSPG4C6BYr9ev5u6T3HCjZlSfShZxWkxeAS4bvLq6au/evdsKHFQcAb/8Wnm9FK/1+fPn9vfff78CAwyOTfqmtddf8Z0BBLy2lGa8ZImmwYCs5kro9YCAuzjdimElZgWDAwDvxPV6vWV5Pz8/b9Ciz/V749ESo9D1eAFajXqWLlJ6BHSethF2F9OICXbtbBIHfFJMybqi4KyUJPlE16opjLciupNZ1goIzAjS5I1iWmlgqxycFnLlznzIW8m6FjFQ0Hki9Zcr4kopizdYB8YGCODe3d1tVrnQK+D8rTS8np5ndZ7eZdn4zhLh6vns24u1hEYAfOZ9joOkoKrnq/da25aXaUqMU709/aC0Wtv2BnAqjHJdCp57C2h6QEGDdPe7TkgB4AK88iSoTtIxNOxSnySQVYGxxKtJDvfGCWmJbpgGA4x+rgQ7K52WGrmL0wWWp+ECTEdnWHc3EhTQ3XN5ebkBBQy2oqJj5DbzEgolAnVhLWXPudPKK+BgoKcsEyOknz9fKScum3JAI+J1DUbOI/Ma251W5a4C6nsTFTGvef/qeuI7ptPa6ziNVFdPR22vtnWPUE8JKZ4ljaMkbJUu+8rrnUBNGp/sU24gJN6+v7/feAVoKWkMejuOBBSD0PRL1tQsJRDRSyd5BnYB3N+LEnDt8egsL4+AWUqzKpd+Lkspa9mXlM8OGntTxfSESflrtYCmBRIg4NdhKfsl09MH92j9Cwxwbx3Gg/lOsA6UOF2wBBR4X3ubOPhnHyylaTAwi5bd2ugteatcyy6gda1Cpcx7tVptRdxrGRcBAd1I3EqZDZsCqjwgS3kqbQpHggB6ChIQGLmZk+KvvBozTJCELPtEwp/1ZL7eXnrPeYR9nyLH34oqwdcrD4GNBwFRiY4EdeqXEZDmcWTVtvba+qcnzF3gSoseM9apKheDYRkH454v37UtpZssPW+r9Ou1QSJXjDqy/gQeTgloHwpVSkTH5CHR/xEocBrVPyluBvFdXV29MqDITwourTxfJHocNO/PFQLcUIjR/wQmvg3xycnJ1jJEjw14fn5u19fXW0HiDJrl9FiSCwT7FTgb0S58uPT5RdMEKRNHQK293g+/ckFWBe4h0ZHi1HUFa0lZ68jvGpAx3O3vZaXg8BUHEoa0kLRVMPcWcK8A69OzpBMQcMtp5BnwNncA4QJX89QODAhEfL67UnhUKPukkXVZDZ4EBHqgdJS/X6uAAM/V9v4xIt5TWZ+enl5Nh7EuVIYuvCpAwNgfXzroe2f0pgbET62NP2+d+HTGkvJ7JPGpR8HTcu2B7bcm54XZeiYgNEp7abl6xpnaUNY4N/hp7WvgHadPn56eNjy+Wr32nJEPuFrg3bt37f379+3Dhw8bQKDAQMoqj/vymBF5CAQKNIZkVGpsPT4+bqbGPn/+vLXSQF/VFbihUUk+Sv0zY9CN+NGvL+HbnTwD7kZzAeMCk88k6gXsOPBgAyZBzOf5gQkKNG2QIYZJcQQsG4UHp0uIbgUE7u7uNlMF/oGWanrA65KYo6fAZ4AA7/csMLUX1517+v6/UmYMGjuEeVhXKqlevcFWCUBX2J6f3k3KbAYMeHkdELDPn5+f28XFxeZDV/RkpTHKudtUBipM8TrHEUGCvAIVqGB9lOfIJZ+AANu7pyBT3umXBKiD3n2BgUQzir56L51/a1nSWKArn+57d7FXm2F5UKuXW8r78vKy3dzctA8fPrR//etf7d27d5u5fQ8KFBEUOEBgHIG2hde7Mvju7u62ViXQk+Aeh2S8pTHtVMmmXWj2vUWegcqtps5zEJDmIVt7Hag2W2BaoxQMPUVD4ccgLE0fnJ2dbTwFaRogRRwz7cpdxDkkHisQkNqpYhYXoksHdqX4aC1x7W0PrLH9k9fmEABBasMREBhZYL0274EJF+KudFM+CUgQENzf32+BXQIB38CqAu3eNwkM0JXL6YCed6FqLwcEXj8BUj7ba88RJZnFqQLlw/Ffjfu3JueBXevMtPi/ogokVeVLfCQXvJSmVnN9+fJly1PANBhgm1agcbMtAQJNF7x//77d3NxsDD3K/cSDvmcMpyEEDAiy5enw6QiuSuAOo8kzUBm4qf17lv63ggSnRQGEaryKIUaCwckrkkCCn3ueOroA0j1dl6UrISZFrk4nSnUXocrG/6ov51AZKEjgUXkEvKyJWSshOgIA1X0KFPcSrNfrLcFIJJusKba5e4c4+KolN29Fo0Hjgn+XwTXiUT3jgjj1fQUU1Ob+HttZPO3WiYO2makBHdN7brnNAD0aE+TBFJfhbTrbvrrWE6IOcr08zguH5hnYhdLYWwJseyDAz0WuXP1bAI+Pj6217dUy4t9kNJGPmZdvPaxVA+pfpu/lTJvIVfLfAw45zcyAxNR2lLOzhm9loMyksQu/LgIDrCgHiFsYSeGxkBx4TMsrkOYUK6b0cnDAOwPQNbperzd1SwohlY0IVu5Sj6ROQYLJck5KoCfURpbB7ACv7ifF7+2XAmFS7AMBwaGDgdTvIrdMKJh0jUdPW+T1nwUC6f1kyZOPE2inEndPTVU2z6vqx177OqAQVW2s/zPgOJW5sqB7siPVxRXDIdJsm/TOq3RnKckKjxshKKBcl1HG6VutdqJhwXLR20q5qj5jsGBrr78NQt7SWEkeNJdrej5NLXC6o1q23pMTqf1H8mTXNCpaNE0gyzFNFSTF5wzBQqZCz4KCqoLMi+cuwPi+z5mO8nBm5xSAB1ElcKI0eEx59BSXjl5WV1Iz5Hn1yuYIfWRxerkPUaCOyuV95u/qXkLuSwZ/SnskvN1CX61WG/dkVQcHwp72DO+wXjQKZCy4UE2gQ8K+te2lhD3lzDYdlTkZECkNtYmuJ1lxqLxLmh33S0B5zzr19NjXlIeuA6Qs9a4Hcfs6f/aRSB7e3j4uqqMUtvJymdza9tJc3ZcnXM8qfRo4rrP0X/dSe/qxkpVs/3S+hGaf38kzQAXCqHo1VLI+KHhYOI/25LVUiWoqgWVRPi6IRCxLmu8mJauIiJUuKHdF9azrHlWdPjM4q7omRmSaVd5+L91nu3s6rb3+Utm+KAFCbx/RjNub7yUA0OufBKqqcvXAoZ6lF8ytcPdMjTxUM3VM43UERj0/pTuaSiTYSsB1hqr+YLv5apck5N+aZsHZTNvPUsXHlVxKBpKOvlogfTSOwXypj6mABXbPzs42OwN++vSp/f3331vfGpAi56oCnxaiR2G9Xm9tH9/a15U5mtLgdzfcKzHTntSZHAtJzvv1SheoPul8KS1eTcAKrVarV4GDaX3xEoFDdz2vj94TpS9kJXIGpkBK5aYgJSOMVgjM1H+kjB2BJheU50MrPuVVKa80b+b/q7iR1rYBmYOEfYGByqpu7WuZxC+VAp8dvLPC0wV3T5B7XokPOIXH+jlwTTxaAdUeCOhZNEtpJMAceFZlTmmM+rS1r+Odke4pjUMjVwCzYGxGDvu5XxsBgsfHx3Z+fr71oR9+IVCyYaRQ1TcMKtS07NnZWfv06dNmIyF9WVexXIr21/y+L7NNOkp5aspC7cnlhPwGR/IEV+2V5EZv3FV9kCiNhR7vJ1oEBtSBLuQdaaVGYWGrwe+BOjOWQCWgmVYlCLgTn+qYniPDkIFnNg/qAYFZRe3ekwQIlAcFgg/8Edr3IBoPjPH9GJSP1tNybwKn5D14K1piFen5pSBU11Lb+tw429wt5RFASKCNFrry0H8fd2msVoqVZfLxlMBIBXpGnqHZ6w4EqjE1ArwiyrLV6uvukEzL2/gQyOsx4pue3NTzKf0RuHXZ7PJRS6ylSNV/8hC01raWX/vufUmGchpCgODvv//eAA1Z9p8/f94sMxQg8L0HWtseK6enp1seDD2ruuiDRQIEnJboAZqklKuxXfVJ6sfK2KNO/CFgQEQPgSPrBASWCGINTlJqACcXqrrGI12Zyuv09PSVANB1ehdYRy9HsrBGngCWK5U1DcKepe7twDYYIUbPQ+nyU6D8ebCNVmmojXr12hdVgJH3lhAVpV+vgJxIvNXaa2Cg8oz4xsGhKysptqpMrLvzK8tBIOBpMV/35ok4ZnadKiLo7CmJ0Xjike+oTEyDRo/qt+8Ns0Spnt5vurcrb4/AgJdDRPkvhS0lKiv75eVla78BeREICHwpYOr71eqfnWYZwMepCU0f+AeKCAhIDHCk7FM9VY9Pnz69AgQEMmyfyoPr7d37z7b1Pvbr5ONdZO8iMMAB5Nd1/Fbrr6q0yNN36yeRWzV8PiF+d3Nzrmkp2hKNGGEGCLjwnxXwnmcvD36imcqfA8QVD9e8Mz33Ih2SdVVR5RVIiiQ9UwGB9DxjcFobb1fqg5z58EigW+WdqFdv50HySRKu6/X6FajmWF2qqNg2FX/PCFsvYyWM2aaq5yGRy44RCJhp76TwnadHyiuBAVnwKptc8Hqeu1mm3Vm9DlL6rW2PMU0P3N3dtU+fPm32HiAgqKYMXOb5M1++fNlsOCQwoD1lfA+Dniyf6QMeU/2XjufZ5xeDASbuAzIBAaIVd19UeSTAUVFP0VTo1cvGZ6nIdG00n9yzPCpPRnVegYAeGHAh2ROWvR8FX+UZIBhYr9dbOxXSmmK7qj13sVR+NM0g8Vn0Pnu9es7d/BXxfQcCKc2lAN2F2QwQoLJ0cOPyYgR6ElUelSW01GhgHvua4mptHGtUAYFK/qQ0eF7JB38+ldPBgDbAoieAQX6SIfwAVtogyNuCXgARd4PVh4U+f/682aJYmxHxuwNJ7iVZ9/z8vPlC5+fPnzc7zirA0Mub5PPIoKj0Qqr/6N5SENLaAjBAYc9MZwZJrzBkaIKASlhUDZamGLz8XmZP161YWjSjQLhqIM7UvRK+ZFSdp/0QHAz4OfNLTOJzv2kjDg4UgiRvP/3cOq3a7S1o6aDYJf10vsv7FeDWtRH/O29TUI2Uil+rwGICBV4uegZUDvIb+XNW0XKcLJVB6b2UdmuvPTacKjkEqpRIzzswAgqutHou7hlA4EqeSpVgoLW2BR6qL/+lPFprm4/SERzc39+3y8vLjeKWZ+Djx4+bYEPfcZZbEafP1AtoCBDc399vyio5f3LyNc4qGWxJjyVjdKaN/X8af6N0nBbtM6B5mRFVc4desGqAVdMQySKqBFlFCQiM3hsFh/CcHoFqUPp5GoSOWqtrKb1qEFUAQP/9l2IFXNkrPwl+ByQCeKtV/sjOW1ASaEu8FGmwVfmIaGUuKafeTWPGFTNd8GpnWmf+P3mOKiGVgMDoKEqWezUlIkU7kiv0mrhw9bx3JdaHbbFerzdu7X3RLL8m2VMBgYq3vN91n8eRhap+opImQJAc0fMMxuYnsL18DiIpa6Sw+dG4i4uLzceE0tcMBQR0rfp43Xq9fvX5bnkFWmtbRpR7zNxDxvbr6YPUd9W1UX/O0CLPAJd39Crg93ruz56AFlOR1Dm04CkMJSSZrltNVX4kR6ZJkHo9EhDotUsSvCMwkIBAEsQpXw7AJPSIkqsf1wmzjegq5sBVv+zTzTpDPV7wvhyBg9S2s1QBAuU5An/qE+75MVo54OVMSmGXuvTeoeet1/aujDwOgWNtyfh2qtqFY27fxP5jn+ziEfB+qcDfTP8zffYHlX9rXz0A6QuxBKz+PZOUL9tBzzJO4ezsbLO88e7ubssj4AYOP6jEI7f1VvlZJwGWNMWgfXn4hdtRX/XI22rm/R8GBiqXeQIGrpSTBZAsJ1bOVyjwmaQEE0jwMqV8ekQGdYFK6g24ZHXpnINsZP0nTwDbikqe9WU7pHT8P1cLrFarV0zOuT4CsBRgxWcOIRo7gc1Z6gnR1uZ3yXRKVm0FCHTN+cB52/f+oJegqls6d/Jx6BbgLjTTBwkEUQlU/Zqsr6oMaqNqunEXIPSW5IpG5Dzb4+EEAkYKJaWXAAHvcdtsXtdRvNTz4uq6e5q0OoybE52dnW1WNPhyaf0EFOg5oIXPtvFyJjBAo0q7GbKtl8ieESUdw+MPAQNEOEnxsxAzEeR8h4PQhVvPO+DAg/fSVIILiiTEesLF3yexo0fKIw22akqgGpBM3wFaUk49cOH3qoHDKODWvrp/PdZCHxtZrVZbg2Ff5JY9j/5Mz/LSMYEA1nE0BZZAtLvCUzojwZw8WU6jvhgBAgcClQcsvasjBX0FJCpPFt+TAtAzvfFcCWLKCqWbDI19UK8fE7kM0jnvpXdmfv6Og0PPn30kOUADoSLe8+mu9GOZEihI05xU1pJ3AgNU6O5B0DXnCZ8akHdABtWMF2x0L90fjb0fBgZGVk9CKFWnjwL+PD1/t7XX3gDGNPDcEV0ql6PMyiuQiJaK/ledVIGBNB3QG4zJO8H2Scom5a+20nlyn/m58lA+2rxJ5wSNSt83eHpLSl6aBAjYb5VHh/8rQJXeUV7uQUkAssq3ujZDLGdlzVWUAAZBeG9qKqUxsvha2wYCvo+Bxw1IBpD3qrxTuZQOvTBLhOhbkSvBxC8zMojUM068HRyM9fjJy50MuhG5d3gWEIgfxEM892kfV/ApTur09HTrK4VcjaC6iD8dcCQ57n20xEswMmSUbro+okUxAz2L1wsr6hXErfekxFyAV0pPaFCCg+dutaZ6KT0XVFXje+dWwjahch9gDgpmkLm3Sa9tekQFVi0n5Dwb86gsMU9/xkv0oykNnupea/059NZee1JSH7mna4Tg+Z7HC8xSUmip7KM0E4AUuWL39FKZHYQTVDiRJ5OHTPml9+li9nHRE6QEtJQJLMehEeXOyPqvKCn8xMu8X8mcyjvgAHAJT88AgTSWHRAkVz/n9N1TwPOLi4v29PTULi8vtz4MpvuJh10xp/FUyaAZcOX/U38sBbWLwYBn7IPEBX+FWHrkwtAtTc+PgIDMIEuBaNEFQuWSquYiEwpNHd8bnOn5GUBQ0cia9GcTY/ogIBBg4I2EpQYR+4ftODrfJ82g60RJaCbvgO6LRhvWJF4cPTtzL/FVEqJJYXp9q/zE6wl8Mi2f+nMFofycvL1T3dK7LJeXNZVNPOxy5xCoUoAVYHPLc4kMSveqd5RXLx83tpYop1H9K0DggIX8yTIQALb21QOlo4wj3y5ZZeK3FnxL4tQeCVSn8o/aws+r/h3JM6edwMBMJj6H7QXlc8k74AAgxRN4+fi+p7dEMBH9+RSBNzKFLNProd8KhVegwNtslnFmiUqdc2cEAr5RiNqmUojexr8SVfyc4jRmqAceXZj2yqFrVcxBBQTSkWUbKV6OvR6luiyxiLw+5L/kJVRaPl+b6ip+TvIi1fmQaQRo/Xwpv3p6Sd715NWMPKgMscS/rkydj5KXKMldfspaoEDBhanM5DmtMOCH62aBe8WPswZgRUsBwU5gIGXaK6AH+c1SCqjahWF7c4jJbVlZLiKWgdYWFWVP8Myg8epYWTgzFtzLy0ucs+ZcmYAAf2kDDh+YDpqSJ2dfoGAXIEVedeuH7UhLw2NUduH3xKsJWCXlyzlML5vzZuLPiqdSLAspjc/UzqkuaWwlPmVeTg7M9T4tvzT95waC8iZPc2XNodOSMi4FAi6/enqg977z1gxQqHi0ArBVut6PFTASz/T21nl52d5Jkcsa5SUQMKjKm8ZjKnOvvXit8hB8dzBAhU7lV5EXsJrD9mtJ2KQNS2aox2jV3GUPCLBjvHMpRGYZ1q2uERCYrbM/n6xEIV9NDRAIcIMOgQF6BVwpcACdnJxsomjVhvvabEjkA6kSZiIHXA6+NPhVX05HtdZfMTBDPbDq4ypZOCIHBSMwwCPLzf7181RmUc+L5/VTeZ1/2d7V8tXeVFTlEUgC2J/z2IV9kIPSinpKrpLVlXypFKmPC8+jSn9WWc+e92Tqkny8nDqX7EoeIin5p6enV95S7T2gTYl8ie/ot5R6/TrDM06LtyN2RVg96+fOeCOX6gzzuiBguqk8s25MF8CpTGyHyvKqgIHXpUJvVRv3BNlI6RAESKjLFXZ5edmurq42P34nXIJYLjAJZy2hOT8/30LGOn96etqU72cABWmAuYJT23F+2ZWaewqYf0UjD5aPK6aXtqnWc5wPr3g7/XeL2z0FzH8pQE9jlx4BV4ICBCm9HphnHNBIAPM91m8m4PKtaBdAsOQ5KvzZvEb5Me3R9Z7y76UxKt9M/gQ8lTKV/Ht6etp4VDW+1uvtDYmqzzJXPFiBLAd0PTkw0w4VLf5Qkf9o8VfzxFWBkiUz49Zg46TgtV6MwIiSsPS6uOIddcgIwbkl5O7dGcae6XQHIL5qQJ6Ay8vLDTBg4ODLy9f9A7THOMGBg4DHx8f2+PjYHh4eWmttbxsP7YKSe+3L/vepgda+8hBXs/QAgfOaB7Emr5PScgvdlViarknX9G4C757myJJM5Bb67JisAhNHcT/+vwIFLB/P9eOumvumShaMFHNP+c+ODZdhPZlXpbkrGEjnM8Bn1GepPORTBh3KkBHfKICay7IFBhwU9HivAqZeh5F+8bR24ddFngHPUJmO5gETeWGTkJkpUzWfM/t+dX3USQ4UZqyOJeVwhDojBGaISslXD8hDIFDANbVUdFL+Xm8NGu3h/fDw0B4eHjbutEMj78MlgM7fcaUlSzYBAk/Xg1crYZH42kE5y1nFvKS6j55TnViPEeBOq3yWAjKXL7znPFjFBfC+t+3ICt43CJgxjHrH2fSSlyxRUjTfCgpGfNfj0RnjsZd2uu6AQKRNk7ilsn58VjJSz4+mkBONZP+PoJ1XE6iSu3SGaNdO9I6qEJ6/x3szDOgdVjHxCO2ljh+VIQ1uZ5CREvNALL0vEMB4AS4j9OWF/EiLFM75+XkspwaBwIA+J7rPD73MAjEqhyXWlsgVZQIErb1eGZOUlVsTPk3AMifBxfLRWtFzs4C1qmcqh7+TYieq95lOBZ5YzwQAeuOuAuqprxMdyjLDHiXlMStjR6Bwl7xmQehMXknWJZmY8p6R4T0PiStzgu60rTLHL39Jh/bATdKtPQBbybJZ2mmagLEDPmhHlfP0KsvKnxNVXggXPL1B7o3mabp7tnrPy9A755EKp6eA9Gz68X5FbE/3CLhnwLcc9k98+mBJoIJ9qc996othFxcXe7eyqoExUghLrCzGFBAQcApsyfx2xYMUCImHk+vSAccIDPSAKI8OBJR/GttVXITereIwUnulOnmavfHIOogOIWhwRD2Z8C1AoGq3Ks0ZL8RIKVUANMkb77dKJvL5Xv4VKPR3BAAchPq+BXo2jd/Ep6nOMwCnp+BHde7RN3kGKqEiYkUSyvcOnHHvs0Fmpgh6exwkUFAJzaTYZxR/TwCNBi6fowLvvdNLg0RF79sNJxDgZeFyRO5SqPLJO3B3d7f5jvghTBVUvFuBsqQQk/AhJWDrAYYe50JAsGSMuXJkPEASSj2BlKiqP+/x2TSuK8XOI6mSAyP500tzRpD2aEnc0femWUPgewCBCjSN8unltwQIVHmlcTk7HkdAwK8lRUqlL3DAMrlemdWXriMp6x1kcAyzvN53lW4a0c5gwL0DPQHhgYFpznGUd2tzHxVivnynQvnJzdhz66S24DUvk1/rDaQKELDdkqJJadJS585a/Axx9SlPd32p/CoLgYCCDfXT+wqgeXh4aJ8+fWp//fXXZmrhrSkpqBFVlvBI8IgqULparbbmuis3dyU0qrwdBDDNCgj42BnxX896Wdq+Xr+RLBgp/lFdRlbq0vLvk6o+WUJLjJeUTzU+Uh5Mg9eXWK+pP3uAoMdb1b3Z8okPe8CYvFrFDHhd0ncNmBZ3QNQeGpWn/E3BAAWZBwqxcyogwHTVYKP80znfTQq/GiSeXhKYPSutAgSjsrJMiZGqczIglRuPzkRcbkYvAAMGGSuga8mqlVVPT4IAwPX1dbu+vm43Nzft+vp6Azaen583YOD29nZvcQNLBGVP+Y2oJ2R6H2pKA9atgpl8qymGkUXBPNP/SvD6OOc7PYE6o9R3EWqj8VS9U4EaAqxDoZ5s7VHFmyMjpgcQRwC1Bw5mgUAv7R4YYJ7KqwcKeuXjOWWvGxkJjPT0BHWiG2T0zAoEaKkiAxlH9fghYMATT5Uk+QCrhEVPQC11zbkrlmVhtDWfV6NKWPaCPnpRoZWATQLXlbozXWXVOLFtXeELafqRyt+3HPYPFSUPBPcl0AZF19fX7fb2tr1//77d3t62i4uLzc5dj4+Pm7iBfQrWkdXiz84KG6ZV8UDKvxoPrS1bDUO+9f+8nqYHXPil8qZxXI1pf5/vVgqnB6yr8ySAq/J6mXzM+bOeF4Mu9029ejules4Cr17+FRCoFHFV/h5YHJUhlcX7sOrr2bompe/AogIMTKOnG1r7+nVOyWXu7SLjiSu0Hh8fN2nRO1+Bnh8KBpJQ7QmV3nUCAa5Bn+2wlLbOXfkLEFRl700NjDwEqR0q8rZKyl/3KvTtA4BAwOf90xQBlw9yp0G6+h2d0iNAMKH9CG5ubtrt7W179+5du7q6aqenp229Xrenp6dN8KA2IHprSkopPTP6MS1Rr/+J/Ft77anRvRHISK5Axhhw7FRbRTMQMbUBx4n+J/7059h25Bfe9xgJr4OXycvqY83704H/DHjrAVOWjZttHQL1AGpliFSgKh09Lz9fAkj8XtITSWGP0km857RE6ad0Z5736wnYO+8yH5VdxpXk6PX19cZQW6//2dPg7u6u3d/fb00dMNaoymsJ0JoGAymYrELZpGRBeGEdfc8q1h7yV3rV6gIXlLSgRktBdgUCVbl5LQ12KuTkBUguJs7965qYjmBAOw1yC2KuJGAZ+OEOfruAOxfe3NxsAMV6vW6Pj48bUHBzczPdRt+TZiwGf7YndEf58OhfQPNzxmf0lKaPE7kN0yoC1rcSDhVwcUtnVO+0MsXBT68+tHBUL0ZuJ6oAdW9cpbqldDn+T05ONm1+KGCANKu8ZsCAn6f+97HxLeVOfMYyjdJPZVgCdLwsSZek85Rf77+XwfOTDDg7O2tXV1ft3bt37fb2tt3c3LSLi4u2Xq/bw8PDxtva2vZeLz2PX9K3PVoMBkYCsrIk+J/IW/erJU9VRVKjJvKAO+an41IAkDp5ltKAStanK+IEAnwlAKP6qyWD2mlQzCdAoJ/AgPe38k1fM3Qvg1YOqD31zPX19aK2+lHkvOODx/tilBaPbLf0OWgP2KS3QOTAVB880U8g4OTkZLMzGqOdRzRrhSUBmXjCebBakdLa9p4HOnodq+k6lxmpXrsqqZQmvYtLx/n3ol1lTVKIIzDg73+LwvdyiBIQ6OXvx1GZdjHSKiDQ8zhU788AkjSOJI9vb2/bv/71r/bu3bt2eXnZXl5e2v39/Uaeavw/Pj5Gr6LLtSW8Ow0GHOVXqEwdx0K5he5LoWaRK/OuQEe6V61CUP5JAC1tyFlLqmd5JiZJgjct7ZOS58ZB8gjwP7cdTtsPC4H6emspN0+L81v8+QBWefdBI4Dasyr9XrWSw/tIbcidHB1IOSAgT0rhc75QH0jR9x84vigsemBdZXXhlOrjbVCBU64s4a6VDEhVnhpb/LKb7+Xu27g6SFiqFL2+I4HOZ3bJ80fQEkDQAwKzYIAKZUYBV+1X0QwocCAwk1fPcKvy57V0PqLEW+no4Eb5aAxJBr979669f/++3dzctJeXl3Z3d9fW6/Vmi/f7+/t2dnbWnp6eNmPye/DnIjAwQ6wsO6I3X6//u5BbdYmB0jtpWmDWO1BRpVD8/0j5OwhwASwBWyn3pKA5RVBZ9R4vwPILDDgAoEIjgCDQkiD/HpbGrrQE1FWUVsZ4v7iXhkBL5wze5FbPrbUt6//x8XEjALS188PDQzs9Pd36AJSeTyCgEhYja8jBQDU9RSCgYFJ6iFRHEutIsOMfueJ9/a9co4lc8PrzLiN6yuAQAghnaAQEUltUwHCUTw9gp7LsQiMg4M+O5HQvrSXGbpU/y8FrzJN568ipgpubm/b+/fuNJ/X09LQ9PDy0u7u7+En5VN5daCcwMOpk3tcgckXRWr196oxCd2Hl+Tv60nX+lgIBr19FPUHbs/pHgGC1Wm0pYAYDcq0/VwekH+8nyzXtM6A+THsTsPyy+tbr9UaJPT4+bq7tg2b7rjew3P2vvkieGY+l0LJLKkv2AdtN1j+3c767u2t3d3ebdn94eGir1faSo9PT083HU3pTBj1gkMaU8x/5Vf2vqabb29vNT/XVx64kP+gV4Eet+GEr/8iVzu/v7zdtpB/H5rfKEPWtByTum3oKPZVvBgj0ZHeSndWzJJfvXpbZdFLdenV147NSxqN69eo6sr57QMCBRAJR9BBINlxeXrbW/llN4KsMqsDjpAtn5e40GFBAWGtf5zTZCV55BgF5YBQLymOqTKIktGeQXAUE9J/gJTXi6H/PyuhZ+v7T/dbGc9D89DCtMglgd+snbwG9C2lJoTOsu8JVVwl4KSlZsoqE3dcnjHsWYLrmvO2Kwt3i19fXrwIxGVCplRaKFGYfqa1fXr5u4Xx/f79pt0+fPrVPnz69EgD6aqSm4FQ+AgH/pbbotUNKI00RKBL69va2ffjwof3rX//aLDNlQKnkgE8PpK9cEgx9+vRpA4jUNvQUCBRU9Uh1JE8n8O2BnYdECRAk2TRSkElJuMKasbY9397/0XsVcK+UcQICvbwdJC8BPaltRmX3a1V5R7qwB+57oHcJmF0UQOiFTq5/ke6tVqtXlkoPqbNSI0Tv76VyePkcCCRAwGfTeS8Pls8tjxT858cknFprr6xRTgtQ8TAIMLny/aeYgvSFQgdPvaDG1v5RUFoHS8V2f3+/8Q7sm5xXKh5LAOLk5GQDAKjoGQF8e3u72YSpBwakRBWgpt0a5Qn4/PnzZhvn1CdUqupn/deyTv6SAPR26Z0nUEBwKj589+7dBhAoEEo8qbqmoEiBg+QV+fjxY/vrr7/a33//vQFH4inxlS+prOrm190r4AB335QMGe/XnkzqKZ4qv8qCHin2Kn9PZ8n7M/nO5jlrSffI26YCY6lM3pYcywTH8o7JA8jpMr5TlXdX3l3kGZAAGiFRL5RbJ9X5qCIVSOh1iIOEmR/fG6G9EVXK0xWyR5azXfge5/vTDoASvB7E5flRoBNg0CIiWGJdUp30/NPT05ZXgJbcPudde0p/9B53XKSCf//+/UbxffjwoX348GHLRS5AoP5xrwCnCJ6enjbA6fPnz+3Tp0+vlhNRafrRv5vukfC7WmyjtqESFSAQQHr//n179+7dZpkU+cR/KhPjJbR75cePH9t///vf9p///Kf997//bR8/fmwfP37ceAoICnqWbPKO+HjzcXdIsQKuQJK1ODKKevdT+yRAuQvv9PSF91XSIT0ZP1LGI0OUcn3GsJxR/pXR4UBCfSkgLACsZYWttY1XTGOCn0b2Ono9HYT0aLFnwBFJr1NTQdOg43Pp3epeem+E1EYgwOvGo5/3ylnVN00L+HKs1ranBwggBATojhYQkOXpEd3Mo0pXlqrAAAP+nKFSPfSOlJbPAe8zZmBXpExl54ruw4cP7Y8//mh//vln+5//+Z/2xx9/tA8fPrR3795tlH7a0MlXE9AzkKZq2J4eRCcQoP72lTGuOFrrC4fZdnKh4zwk/vQlq1SuLJ/LA9VNcQJ///33VgyCfgIEnD5IW7X6+KVFxzp40KzoEABBJbO4UmtpeulaDzR/z/HbM8CqMrlsr8BJMi6TsnQd5mn1dMgs9YxUBwP0hJ2cnGyChAWKP3/+vCVPq5UuP9wzkFwcVdCdnuG7VEA8rypQeQsS49NyVd4VYp7xBiQaIU8/evlH4IBClZYJFZJ7BCrrk5anewXY7sk7wHtVOybEy/u0Vg9lNcFS8nbXPgkOBP7973+3//3f/92Agdvb21crM1KshntVWtseV2o3LieiIOBRv7Ozs817ih9QHgQFCTD3eLi6xikuxg9wCSV5keUgMHCvVWtfAcHDw8PWhliMxxAg4JSY2kv1p+eBbex18lgdlYHv7YvYX9VvydiarYsDp13aoCeHqzJ5fdyaTlZ2lV/PAHVA4OXZtc+XtJn4U2P57u5us/Pg/f19W61W7eHhoX38+LF9/vx5a8q1FytTye8eLVr4TQAwisB34jycBl2lVJI3oELt6/V2gKI6fAbhOfU6L3VwD4HyfPRL9aOicFe+AwG5pmU9ebxAFfBHMML76me1HS0teQDS3gx+bwQc3ppmBRoVhMCA2ltg4MOHD+3PP/9sf/75Z/vjjz/aH3/8sVkOpE2XGAPS2lcFp/ZkUCDbioqVwO/q6moz/XJ1dbXZ6vnx8XGTlvL1GI8kDFO9Wf+Kl326iyspfL8LglLxh/M801H5W/uH9zwGxvfFEEhQe2kNNqcNuMGRywcHxyybxxDtg5JCJmickVmz10f5z1JS5J7mrFXuaVUgtioDgZ7zf5Vvz6j1enies+3t/aip1c+fP7eTk392vry4uGittc2n4Bkr43EylS5a0m+Lvlrou4X1PAN6hyiOg5/PekUqENATZD6NkZ6dGTQs78iKSmWeUfyjOlBh02qigpByIBDgsjXfBa4CA/q5ENaRKwTUZ3JhyQrT3LdWnBAMKB9fsvWW5JbE6FkHAlw6p7lwxgkocj4BAbWhXH7uBWK7rNfrrbZWu/nyUQIBTu+cnZ1tlhk+Pz9vKW32HQWI8/1I+dMbkJa3SnlTSRNkigg4OcbJ7621ciktwbDy0meytQxTQnO1Wm3ahUqUfe4eOhLLuk9yEOAgMsmXpQqBeS0ZNxWlNEZAoCoH/yf+TXqEPDzSCUmPLW0HL1sFBNh3HjPQ2j/LCbU/h4IJGSOjGKzvyZfTYMCDlhIYUEV5JNJOHoQKCHgQnciDehwF+X4IHPg9Be0AheTlJM1aUxUoYH6c/yMDe7wAA9n46WBNEfiUQJrf93Z296hvfCMrS+3EASIldn5+vrnGb28T5OyLZga0Kz8qH8UKCAwQBMgbQ6XOffd9rDjgoBdI7z49PW28MVS8nJdPOxl6PzsYqCyfWTDAYEGuZuEKCrfmnbcY6Nda2yhs5qF6+7JYTdcQBCtAUffPzs42H3XR6hblo3TJm15Hjo3kin1rqhSWLyOtyJXm0vpUBh7vzQCRSkeMrHC/7so25ZuAQJVmGhOp3FU9va4VWKl0i2TE4+NjW61WG+NB44BfLJQ8doOrV7ZZmgYDHsBEYZc60zuMFrs3tis+t5ATIPA805w00XO1/roSlI64Zywp92L0gICXtQoEcnesu40JBOgVcKE+IgoYzlNrzbeQ6Gq12lhdXDFABcA2p9D1negOgRyMEghIufCLjPIGKEpebS4+0thobXs+sNokh4CAgMVXCeh5DzZNQaGtfVWkLy8vG6GicViBXraHjxHl6TtXMnhVvMipKnrs0sqH1Wq1Vb40jpSOgLDAgICZANnV1VX7f//v/7Wzs7P26dOnLVnCdk2yR+TPHxo5EEgGD48ur3rKKcmJZN0uNZj8vR4IGKVXeQpYhxkDrPpV4yMZE0nfzIIub0+Njdb+GSv69kBrbWvZLccPP56V2sT12IgWgwF6BSorwwvFwvaAAHezq4AA01bntTYHEBwlcn68Yogew44QqB8JeCpEr/zdQknCmBHrHqHuaao91CcESq6EBAT0k9IX86kcvrSRiiBN73wrct2VUl1FbA8HXnRJ0zMgIMA9A5Q+ByhXV/QAQeIdWgsa/GnseBoCMgIBqh/nwHt8PQMGUr/TZS/AQnAkkEkPY2vboIV9orIKQHKqTHlzX4f07QcCEYGyigis9I4L2H0T+8yNG/cqjpT+rPIeKbVvqQOP35MqEKD8KOfFZ72xkYxA3e8BgllSXzLGhfLfZYivInDFv2ufLZomIKKvpgdEVSfoXhJgbvFQSCoND2zzchAxc46QgnG93p47deZIgtOZwYX4DIDxuvco5ed7EqQlid4XqV+8DGxf3/zGl20pUp2KgYJZ0fQSxrRc9yVQl/SJewYYPOhTMlJ+tII5MNUn4j3nVypAn9N0BerTc8nCpeIWQDk52f6yYRUh3wMFqU38+xb0SEmgyZskvvKlkaq3VkH4ONTPAQGDFrkUs5rrFxDgLqqJB3iuKYJDIQftrW1/qTKNr8qAcSU2Oy5Hbde73+O1Kr2lNDIedSQAqACBv8s6VsYe78+0KZ+hXnNZQKOCZfW6pzKk+lS0CAwkIFBlxAJVHcTOoxAjGKDLW+m6G5ZChEqeg0XvujBMzKGo4woMuOJwq8LnSJUX663nKkuV77gCV95eD0b8817V7s7MnCLg7oF3d3eb6QKVT25bWq4O3jgt4G6tt6QZ8MVnCLrSJk9ySfs3BrxP6Aon0UIVf/jgVnslFyE3HaG3x61sjimViYqE1LPUyOe+mZUrYvIQZQDrQKtGwY7O9/xxzwCPjaisp7TdsVtUytMFL2MKDo1cqTqwrLyCreXpTl2v8hkZeXzGFWbKK6XX0xEp755Bk4h1SaB8icKcKePStJIecp708V71X+KPWZoGAz0g0GOYHhDQ0QOf3OKlxfXy8rLZk11lcXDgDdETfBTGEiKyClJdHQSovAQwVdslUNFro4qcceh2nR1YFKS05qqPxzBwpbWvO1IqrbOzs3Z9fR0HGcu5T5oBBHS1pumZ6quPera1r/0jRUeFJS+BnkuKx/u1+rl3QGUQD7j73SmNEVcuSlfp+a6WVADcHEnTSqvVamOZM/BJbez7ISRwnKaduOLg5eWl3dzcbPFp+qnNWmtbY93zrLyP+yYf20lxtDYPfj3tdN+vu+KvypeAwGxZes+kus0AAZ0n468CBTOy1GX4LkCA7eQAtQIwvbT8vdkyLQIDKYPZjHqdSEvZ523T8iu3FpKHgGXzMrp3wHd0kxAmAGKZHQhQQCbBorRZbhGnGUbkCFfl5NItF6rVUQLYPSBuXfmPzJsYzT0lIy/FW1DivVQWV4L+PutGd7W8JByIVPJqM3c9J2FJfnZw5p/5dXc7AQljaJRXRUnYpHZgvX36zr8t0FrbWl2SAAx51r+86LE9us4pF4ECfiuC4NU3aXIg4kaLC1Mf+4dCScGx3wicRKl+5L9Kme1i6bJsSw2dRAkIuGcg5e3/e7+Z90eG7a7Uy59gPZXX+9Pf/aFgYIZGDVd5DpLQZWCc7qfOdDTvDeLlc4+AuxQlmNy16Baj7y7nrmIJICmC0eDqIWCmyTJzbtq9KW7ttpa9At52qd60On2pmwdwERzNWCo/mnygeL396MoxDUJaqY7mRalNHSCmfEceGo8hUJnSVJWup77w8lXg2vnJvXUEArTY6XXiSguWzb2O3k5eFqWr6Q+u+vDYBB8relcfgakAU+rDQyAqcba/yEFgRW4cMG2d+7Pfi3ZJrwICPQ9FNa4rHbHPPnZ+W2rhV6Dgh4ABJp4q8K3k7lnf2lSbuSS3npfNBwjv80ePgAtczYUTEKh8UgCuEKUARQq2cwGYBjAZ3V2iJAlGlZmR7G65+bIzldsDHVWe5LlhXd0jwgBC7sfPaO4RuHkLSuCzshxolXPqKP2qKTO9Jx7TOmECTk+DZXArW6s5+HnfNP+ePEyuvL3vla9PtSUXKsFA5RUQkBZPMpYgyYvKY5OUEfmY9SEwSVHXLy8vW+2ltPybGcmyOmSqlFzlHXDqAeRqnFRpzNL3AgIVpXHtRx+vvTSoXH809QyVVLZROkveaW3hDoSzVCmVyiPAa1zW5dvuckezWavTB4kLaQkxBsxxlycGyCWXLIEAwQC9Aa21zfwk02A7qO66R4XuqwWopOSS1Xw0p1dEEpa+RbHyppUqdy0jtler1cYNThDEJY5c4kXgwL5hmQ6FHJitVqtN5HnlpucctO8F0NrrJYUONH11gMrBd7WqQ1uR8uuPvt441UFHKs4EDpU3V95Ukf2ttVf9WoEBBgBXQMRjb1zo+7ShA3DGDQh4uPeCZXQvio5pKvCQgUDyDjgQSEqskpOVVenvpGuzNFuWlEcCApVBmM75/1v61ds9Xf8eVBkqXodem+7i7VitD5nrj3SkIx3pSEc60g+n/e0Pe6QjHelIRzrSkQ6CjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35yOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35yOYOBIRzrSkY50pN+cjmDgSEc60pGOdKTfnI5g4EhHOtKRjnSk35z+P4M9Q/sgg91NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6V0lEQVR4nO2d63Icua6sKVst2Z55/1fcv89eM7buOj9WZPvrVAJktS6t2dOI6Oi6sEiQBIEEyGJdPD8/P48znelMZzrTmc70r6Uvp2bgTGc605nOdKYznZbOYOBMZzrTmc50pn85ncHAmc50pjOd6Uz/cjqDgTOd6UxnOtOZ/uV0BgNnOtOZznSmM/3L6QwGznSmM53pTGf6l9MZDJzpTGc605nO9C+nMxg405nOdKYznelfTperCb98+TL+SfsTXVxc7H9fvnzZ/+vH6/rpOf5X10RsEx3zGp+d8cJnnp+fx9PTUyzH8xYpD7/OZ2d5dtfFV5X++fn5RRs8Pz/v+Xl6ehr/8z//E/N+T9rtduPx8fGAr45SP1fy0fVrJ298VpTakbTaXx2vqY4cA7xOmRzjUHYqPr0O/FXXO/nxPKuyPO/qvMrbiW2mPvz161dM+5709evXsv6Sp07vpGukTrcpb8q4fl+/fh273W5cXV2Nq6urcX19Pa6vr8fV1dX49u3b+P79+/7348eP8ccff4zv37/v7+nan3/+uT///v37uLq6GpeXl+Pi4mI8PT2Nh4eHcXd3N+7v7/c/9qnz9PXr1xfXLi8v9/8u44+Pj+P+/v5FGel3d3c3bm9vx+3t7fj169f4+++/x3/+85/x//7f/xt//fXX+Ouvv8bPnz/Hzc3NuL293ef58PAwHh8fx9PT03h8fNzrdsqnzkXVuEj9q3FZ9eXFxcW4u7t70b9Oy2BADV8pqo8kN0qV4d4CBFxIVo41UKqO4nkaUOQnPcP2dkXshj8N5o5/8ez5bslrVQ5Uv1PKTVenLl3Vlzxmvx4DCEiVQXSapZmB2QQGRJ1MevlJfliPFePfgQKvYwIE+knG/PmkL3Tux1V9q3q+NwkMsE4uPyuOwoy6uqs8GVoZVhn+6icDT2Mv0PDt27dxfX09drvdPt8x/tufj4+P4+LiYm+oZYjv7u7Gw8PDgfEjP1++fDnoJ+WhfJ+fnw/GIq8n/Xx5ebnPh3UW6BHvMwdBP/EiHqnbk211XV2N9coJTE5lR5vAgBeyVeDeklYMVlLa3fWujLeo6yyP5Ik5j97uyZNL5Ugo/J6e6QTGFedWw75i3D6KtvTjDBhUzyTAsCW/1XIqI9kBgSpvl6vOmPKaK+DVunSejp9Xxjs9m3RT9+yMx1PquDHGgQdJ8vZyIu/HgAU+TyPpRlGevow/wcAff/zxAhgQCAgofPv2bW9cCQqenp4O6u8GVpGA3W43drvduLy83OchgMFnkgP49PQ0Li8vx9PT096Lv7+/30clBEbEiwDKzc3NuL6+3kcbHBw/Pz+Ph4eH8fXr1/Hw8PDCzqTxW0Ww+D+T4ZTnu4EBKoHPSDOl58Iw85pmec6M4xaD4gqMirbjjyCgy19ehkABBzz704WHHpd447+OP4Ox72jVyM7uJTCZnquM8kzWZsYrpe3kbzYmunt8tgMEoiSvHbls+fnq86Q0penpVgHtqcGAU+UUJOrSVNEQJwcBMrg05gr5V1EBXdMxpxMEBOTZi7fHx8d9eF3/4pn8iBcCCk0LuD71/tf93W63L5PlKSKh6wIEDw8P+wiH+KbhVVpFMfSfnLGqX6romF9LoHe1b52OjgwcU9gWWjWuVZqVn6f3MqpryXvp6tENyKenp/H169cXaWmkPfQlSiCAITCWM8ZvRU1QkChFCxKSTcfpfHb9I6gzwCvP+LVkZGdgbJa339vimVbGOv2LKiCrsOUKD/68A9jZ80mhVXymY69XFSH5p1Jqwy31moHJ7p5+NLxaIyDDrjn/P//880VkgMZf13xtgQy4eKEHnjxzRgg4VSHwoSgBdary8jyoMyW3KltgYLfb7SMGkuvHx8eDci4uLvYAQqDl+fl53N/fH4ALtqlPFSTHqhqfq3p0q749Cgycit4KCKR0XkZ3rfMqOmWUvOsVhenGuVovMJvrvbj4PW+ldIwUMP1KCJj1SN7cZ48UJFox0scoZg9hbzH0XdoZcJgBdw9BiggIqmdWaMUDP0a5dWB0lZ8VMK/7pwQWiefX8lPlw+sKtcvo6ifj+8cff+x/P3782IMBggWd03vXT168e9bJM3cjruiA8laEQt66Qv+Pj4/7xXNafOjTrwQ9yvfx8fFAz1IX6h4Bs9YzPDw8HNRD0w8CCg5ck00gzSJ/s2jXFtl9FRj4aGX/loOy8qKOUdarZaT8KZxSwFvK7YCAh28l8A4AVox+qlclyFW9Pws46MJoMzDnfcd03h5UcAxdp3BhKiv9V+m7yAB5T3nNZL7yUBKlNw70n36eLj1bHaf/5GGltFWZFZ1Kdr1fEmjfmt/serc+gG8K/Pnnn/s3AgQE5PVzsaCuacEgQ/nSWwzB80dv2/mV0efbDFyU+Pj4OG5ubsYYv6Owyk95SCe6o8g28PHLtrm+vh5PT0/jzz//3EcQFI0QCLi5uYkRAvJQ9eOsj5ODMQMIFf2jIgNj9IthfKCoU1eiBR1Cfi1/zNPDP7Ny2ZkKffE+wQPr63k68KjOxxgvgAKvVUBgxdifSqGuouoZuZyk81TGFhmaeQJezhbj0BnCJJOMRDG9R6hI1bTWLDIxu/bW1HlQHVj8aEp8dueiWXtX9x0I7Ha7F+sAPCqg9QJ6NZBvDGhOX5EAGWoBAXn8adEeDSjr5Xo0vbmjusoz1yuBijQ8Px++WXB1dbXPS3nrtUYCE/ErYKE22+124/v37y8WGz49Pe0jE4oU0ElY6d+VMb2iN2b05mDgGLS6Je/uevefDP6WvBJ1ns5WkiAeQzOD0ymMNMfraWYeJ699pgjAjJKnvOI56dzly4+7/JxmXjDz6xR6F+2oFE8VARFtfa0uLSjcMuVURV+q+1061icBnhXD/5467ViayVXnaFT5yUvWj1MCAgCKACgq8P379/0/X7tTlODy8nIPCvgaIY06IwHyrj0qkJw6lzMZYN3XfgD68d3/MX57+FrxTyAxxngBTBwM8J/txfUODw8P4/b2dh8pIJ8CHiv6IslsStP1/4zeHAy856CplLaH0Vw5r9IWIODPrYQfFW5yj+u1ymZLfVW+t5eHzsYY5fqCypv7bApzlWZKckbdwGP/dl5wN9BdEVTgtntNNHkQyViu0sXFxSaQsJJ3FXVK/1Wefj/luZLPKs+noi3t2YFG/ler9GXwuUDQpwD0jBYZ+ut+/uogjSkNpwwv9YyDANaHhvf29vZgrcv9/f34+fPn+Pvvv8fNzc1+rwLqNd+ngJFVGXB59OTr+fl5n4/+v379Oq6vrw+eU3RB9XQdygjH1v5NfZrkejWvTzdN0CmlmVDPfnxmlq5Caw5I1JnJ8zm2Q0VuuElpjYC/TlPlzbCvhFMbbDCEdXl5eXDuPG3x9D4jrUQEVqiSyxQxqOSx47GS3TFeThPpmp5V31WeMZ97i36qIgAryi557YnvraCliy54uVUU7FTAYKYLvS+TTFdtloAAdxbkfgH+poC/wseIAnf945SAiAvxZMwJCNI0E6cAlKfqK+N7cXEx7u/v9+uiHh4eDkCAogIEA1oToLe6NJ40bsQjXy1MmwYpvwSkfvz4sV8MyefVFszD+3SmQ7u+3SqzHwoGZsqm85JmRo6/FFJK5aS8E2KeUeowLyN5OCudtbq4z9cKeAQi7R2gfwo/26taZNiBlK7PTgkKqrCpR5X8/oxWjTp5SAaJaWa8OxBIwED5EAhUcrTaL924IaXprvTGymo5vDaLBiRK4CJd17XPFhHYEvJNYC+l4TGNLL17AQEZNL4ZcHV1dbD63lfe88fyaPy4YJDb9nr0S0abfCqvx8fHfUTg/v7+QPa0OZAAgcryyCzBs4MWvpZIr57jy6MYKbpye3s7vn///mLtAV9F9Ly9T1P/pfNj6V3WDLzVszPBTt5WtWDQqQq9Mt9ZfTqlPitrRhTKZMwZDtuilBPpeX/ToDP6W+mUQKArP/XzLO1rKHmgq8YsGX6X+fQMFzod259vHeXqgGQHqt+aPpvhdyII2gIIqmsuS2lTobTNMF8JVEg9OW3Ot47pTTPk7gsF09SA+KOs05AKEDAyqnK0cJAefmojGmU9r7wdwHjdEtAW7/62g0CJf6vAwXvVlqt0zDPvtmbgrZT/TLBXfonHCmj4c8cMwAQS/Bp/szyrNFteReyAgQtgF1VY8ZxObfhfS5XiTdcrGerO+SzTpLGTZN2BAD0wl8PHx8f9O9f+RkhFVZh/NVJX3Scg6Npxa9jT2y5FW1YMVqIuInFKWtGzlW7TcQICigzwVcIKBPBd+mQwafjZjjTMXFTnb6mkaQHVgWWzfuwnrkdQ2ZI/vpnFtvLn+dZAJUMJRIwxXuzTcH19fbCJEqMBydljGSvjNo3PLXL7btMEqyHFVVpVkGkO1XnaYuBXjIKf8/WUSsnrOQoCvb60/sA7W4Mi8cvIQVU35euvDzoPOta7uytA6bMpz63kxmVFljqQuVoe80lyznPO11K5J/51nDY+ccWR5nc9r1Vie1TgR+dVmxxTbkXJuCfwUPH0WSi1Sec46ZjjW7LjOwxyYSBBAOXi+fl5vwJf4XfOv/tCOwIFvoOvjYCUJ/nTv3/ISHnTsDrgUPs8PDzseWaeqX047qibk6HnOevmoX61mwCWAxiPCNBueF2qfn+rsfHuawaOHVCdd5WEmv/Hlpd+FV+VIksKb9VopkGRyKcI3ONLwKmiFBHw57cKW+fBfSaqDGZK0xl6v5ZktZKpTqE72B3jcCGV/zxM6jy7whkjG3sHimlBl5Mr2A68S3kSNCfwW40176tKUb4WRBwD6t6TqjapqNKZBJP+KWK+FshNguhJq6/kHMj7vry8PPieAHf803P+2p2vEeAbVr6A2QGFXtvzeXjKN+vMNQ5aIC055FoEtm8XGfAoh+rFTxdTrhklUL3ZXl6GeFO93AmrHBKXgdUx8OneJhhjHt5yJenrBMbIC/ZmBjMpXief93RF5p8cTR2RDIIES/dcMKswkurO11uq+jE//s8o9Uc3/1wJ4GdSrIleC1wrQ57yr9qNeTkAGGMcRAPSt9s9X66U9r3TCSqTUVY/JiXZ1Z3kUQbW0UFsBTqqMhMo6J5LOsHpvbyut6IKoHSym3QnFwz6NsN8Y0DfDXCDzDeSZOQICNTvOnbDx68DkjdNVyhfkgyz8ri7uxu/fv06+LQxZdjrqvHC1x45dtKUa9K9DmpZH61R0KLF29vbg50JNXZ3u93BeJTud3mr1m8lYNjJ/gq9Kxh4rfKfgQD+V15X5c3NeKbnnZSV8uczvFZdn/EhXrk39iq5IaEHwHpIiBN/FDouKNT12SK05F2u1PsUNDPOKW0CRv5f/arn6RmN8TLaxT50w6//tKjLgavS+4JC8rUSCZi1VRWGdXmiQnUgn4CVg+sKdHYhVU/jx7z2WuX61uRtsmVsuW5gVMDXB3DHQE4hMiLAyFN6RXCMsQeS4tPfv5cBJ7gVSc5lKN0Ll6HV2wJpMV6qK1+hFkjmuCKx7jpnOwrgMCJAvlKUgFGPq6urg0gHARadyaRjRDNwuEVuTxIZ6IQ4AQA3+H7uQKBrgApgMMLgi7HU8Ul5emdRGF15pY71e2ybtJBLlICCe3uV4UntVAGejmbAICn1/yuUwGcHBCrAmp4bY7ww9q60HBQ4GBjjUOHRC6ecMoRLo5w8FPFaGftUr6quCZCqHClFlpmUXgL7PE6y3Ml/Gh8doPgI6pT6bGwlIKj+kweevj3gewh4X3B+nsZMXjKjTZwK8m8OCDSMMQ7WLngfEhRwIx964Jxy4PNcIPnw8DB2u93+X/Wnzqfu9Pb17wqMMfbrFmT4ue2x72/gEYIvX77spwx8SoCRGK+T+HH53xq1c3oVGDhWua8Irht+GmjvsA4IHDuQV+vmQICKlh2UlJkrsJkxJ6UFgp5PZXx8kUulNFOIbNYOW6Iw/xSa1acy+hW4TPl6uhkYGOMQMDgfY2TwSRmRN+JG18P3KmtLm4zx8uuaIsq5OwZufDh+/L9ThJ1n3+mIDjCfkqr2Zn/PACoBpH+SWKFzXyOQQuS+XkmkfuM8u+SL8/ycLqAOSv0gWfTnaXi1boDRC9ZdWwWTD+q3NNXsYymdczGkgwL+bm5uXuxxoLbRtIWIiy3JZyeTb6VvX/3VwtcyUoGASqFWyE38pMaryl3lPRnNDqk7CCBvszIkZCveFxWqKz4qSk45OPJ8a0qK+Z9MbrCr+0nhupKp8hjj8DUqKbAqjwSMU6SI6el5aKqAIdwxXn5HYMvYTvLaGTB6jJJ5/RPI8voYhwsjeV7VfUUW/y+A1yRjrkfTmwN6W0D/vgiVHwkaI0+fut5lH9IAczqBm/koDydGGhwM0OhyMWKa9vIohuj5+fkgolaNM29Ltg+jHD5VwDUDfIWS9dNYf35+HldXVwffZHCZ5zTDDNAmuZjRq6cJHNlvoaRIExBIHZVQfwIDyfOoEF9Xh5m3kBD5Ssf5uSs/GvvEn4dVkwJNypRIvMtf9x25q2yvg///E2ir7FbeVwKuaVGSyJWNL2iqwEAiGfk0HlmGA4OURrwp38R3aoeqfao2oMw6DwIrlOdubFcKcys4/SfIbScHyZhJhjg1wEV02k0wbdqTyq3alECA/cApBIICTjc8PDzs8+dCQPHk6xL4ESEuRkzR1couMG2yP8k2EICrTikyoMWEnCKgDvXxqemRb9++vZBlj+S63PM4XVulV4OBmWB2172B+T/GeNE5pMrz7jzwDjk7vUWokB1U5VUNKvFFUEDeK3KB8HCsgwJP48+SxySYfj/9fwbyfngLSsC0Aq+d506F7UCg2u2Nc/3Km6HZZNyT8ed5WhPj0YP0bHWti+LxeooOuFLz+VPKqntFWxXjZ5LTGSVZq36SA75S5x8UUkRAc+c0yPpPusflieQgj7vtpVB9eob7BzAPTRH4YkR/tTBNk6byCDo7Z5T151gUP/z51xe5gJD63PWD3jDQx47SLoWukytA4P21Qm+6ZmCmJCpj3C3c8zwqQ9OBgIr3VNYY9SI6lpHqJUrzsF52ZVArXmdrCZJCHeP3u8DkIwlV2oyG6Yj4HVCsAJxT04qsbsknyXD1q4yhKC3sIiDgfL0UA70Tlw2PKimd18OnDRwQMG2S+44SEEiAyJU2eXBwMMZL0M+fT20wb+ffowckBxd+7aMp8bkCChxcEgQoIsDPCjPC6M6C56t7lXyzvQgEPPztawJ4nTqUXw5Mnzv2LwJSnuhh61jGltG4FBlQHb3NlZ+DAb3d4IsIBVhInE7ka49qs6SD2R/iI8m0y88KvdnbBJ2g6t8HfEJgneGfGZ2ViECHoB35jlGvE0hKhB6Z7/Pf8ef5p/SzDvV2Iyrvyuq8JR+0fv+fAgScqrbs+snltwIA6f3/MV4aQlc2AgKuHPy10IpPj+44KCBxTUACBMxz1mZOFQioAJEbaoIAgoKkHMUjIwU+neWGYUU+XX+9R1RplZKzsqLPfI2AFtHpVUL+KyqQIoEsx/dQGeOlfpSBVJ/zWupLL8+/T8DrT0+/v2WgyAEjA745EOVPeWijocvLyz2w8Om4BApcpggotDZAmyBpnYCvZ+CCSco312r412PZJqwf5bLSVy43MzoaDFQDu/pPwloBgeQ1z4xXxZNfr5SS8tY9F3LnyZVEpfCoeCtjU4EAR3z0AHk/RQ3cS/KyquiH19kjA+6NVfk7j+neqahS7lV93GA5VaCy8iyYB5UAFbfAAZWGnqXXRErGn0reeWJ6AYIk4zNZeQ0lJ4FGSQowRaQ8HcF3inR1ET+VX43NzyK7FVH+OCWgaYHLy8u98ecbBLN1AiIZKZXlsi2q+saBgIM2pR3j0IFROoEJN/4MpzswVJ6+TkbAV+2k/RQEeNJYJr+MLigykBYQ+qJJggG1I1+l5GZL6jefLmAb69iBgduhVUCwDAY6ZO/33bi7skxgQJRAQAIHs4p2DfBeSN/zTIp35bnXEr3EdE/URQWU1sHDDAwoTQV8PgO9VXtXMp+USiqXY8DzeA3/FWg81rDN5Lcr23lQfkzvaRiVk7LUda8Dp8NkLNSG/mpWMj5pzH5GmXXqdC0jA5wO8GiA7yOQDMkYo9QlqZ/HeGmsOuenc/oIBv1NBAcYHRhgfinNGL/3OWB9HQwQmPpOiL6OgVMiqf4aJ9qGmNN96kP1naZEuF+It507px8OBmbG33+zqYEkQCuGp6t8pYg97wQwKn5eY0y8vFSvSkHJy2MILvFSDdIEBFh+NRXQAYFZv7A+n0XJuszMwOWsz1M0wO+TfBxwWqDyUBhhSsqlU7guD5Vhd/CaDPgMFKQpCa8/vbTEA/mg4qY8ehrmp9Cv2sGf+SxyuEJb9I3r2rRgUMdcI6By3Eh2suyOnfIgGHQDvBJddJ1DrzhFAhLgq+RK//LQnU9d8+k9n6Li2gWfDvBFjeSX4IZ8Pjw87KOA4lFgQIBYmyURZHBMVH21RdZfDQbe4ucdkn5Kk/jqzlfvkbw8HygJgCgdryU0mspZ4WXFyFTnK+WkaZF0LfFWlfEa0PTeNONtBQDov1OeTgzLdrsLOmAe46WHPlOAeibVhf3pYK+jLVGCjro8PHKgNvAd4Gjkk35iGip1juF/AjCYeXzJ6eJ6AZ8u4D78SYZSNMvz53oWT5v0ZgIBXibPlV67FM6mBQg4vO0o35UBJRjQdBnlxMEHFy76zop888HHmLeL2k0RAoJ3ggItdFS/pqnCrcbf6Sgw4AKSFlx4+nSuhhnj5epJV0x+zOfVCFuAgVPViB2KJaXwqAtiB3CSsl6tg3tflXGid9cJToXWqzpU1PXNKek1vLhS7AyRE+XDIwBS0Lw349U9rkSztqccVpEhlbVCPg40R7uVHACpvV1203ww5VLXOHX2TwAAiToA6obaIwN8hdCjJr4wjVMvXg7z97J8HLjBd0BAcJbWg/gvAQG3G8qDeYkvL+PLly8vFljzWY5tAgF65773QdowSO3mZUmW9XojpyJEMv7qS611qPROOl/Vd8tggKETXqMQsvAkuKSEHmcGsxvEWz00V4IptO48Og8SmC6EWiHjKi8/TsSpAicO4DHyx2joZSU+OgCz0hefzfg7sOr4SwC0q0slc67kaKyqfChLiZIM+Xxp4k3le17ObzpeAQHenhxPNNxJ3hJV44hGxdPwPBmupJcqPl7rYb01VfK3AgT4Y1swbJ081QScXMczrbev6wkadF2nsRbR2Io/nypIAKDSr27UOSbHGDHa9Pz8/GKaLtmClWkPd9IYofL24ZqENG3gbymltRxprK3K8jIYoOeiwqoogDPnDFYhE2e8a9jq2gwJMU/v5Cqto8V0nPiZGUz+bzWeVHjuqbpnyYEtNJpeJVulmXB9JiAwxrappJV8VmSf4Wseu/JzAMC0Y+S29sjZbBpK4E/Hnawrv+peokr+mV8Htqvr5NVBDw1Bep5rCRIg+KfIsMtW5WxRB9BL9/0qKFdVZIkOBAGAl8fpBte77CMCAffombfzlNYHpJX1Y7wcA5QPD7ur/+mZ8xlOrVGXentVCwRZVnLE+M+olsgdCE4VKDrg0yJp7G+V4c1goKpUp7ySUeW9zuOsFI0fz0CA8nIF46Hzqj4zj5gINAGaBHhmqK6iyntMi198oEnAGFLVcbfxTEcrAOjUnlYCbyuDpVLGDsJ8fr8rv6MU8XEl6f9Mk8oV31UbdADcjURFHFsCQFTCKZqVjDIVYVU/1t+VPhW9ymAfVftu/BMoAVA6APwxGkC9lHb0Y5uo3akbxuj1mMjT+Bx/egsgyZ+epcHl885XBQ6p53nN5UHPq01dF1IfEqg4f26r2EfUvS6Hng/BCKe4NOXjfdC9tbCFNoEBfh0tFVoJSWKsMphOlVdXKWleW2mM1xgp8l2V6W1DekuPNaHfBJjSAHE+Z0CA+aQ6eN9+Fi+LVAHLKp0rYiqKt+QpgQ16EalfnbqxleRzFfildFRwM0q8VjK5Ip/Ouz9DT5kGyOvU6atTy27Sb9U9jwLwfIzDhaJa3EYjRMMjWdNzNHjuIdOwK/8EAPixHo/y6Dk3cF1kQc/w34/ZVgKlXhbrqzRsU2938pLK8MiKy5KnI0gj+PC9HfSarYNh8vUaQHAUGEiFzTzCFY/xWE9N/yvPJ0PFzlFenRFLeXTKY9YGXr+Vunj9q+seghb53BWfc2WQ6nNqJbmVjuHXAaZ7X11kwI1jklcHcH4/lT/GYRg8AXM3kivgfIw6ClDJmj/jaVJ7dP2QvoPgYVby79GBDgT7CuzkjXp04zNSBUh9vYDLD3UQd8Pja2panCaijqBHLM+WP/egkxFnJIL3RCxLvLGf+U6+gwhScrr85+PD9aBAVCULKRqQyPVoFZ0iIBYwU3o64Xrd0EEBAYyDhFVAsGkHQlYqoTmPDBzD0ErZCQBUXkdVthtxT+f3/P5r61PxOrvGUKsrbFe4KeRctdcWwOLPdYrzsyrVRKmtKuWr45kMijpDw7zpjSTFXPFaecscj1umfla9/W7KapUcTHcymHQMDRDLVl4MfUt5UtF/lihAoll7VCA1RQR0nH5j/N64Se3AKAE9WIXRtREOxwPLoeF38CAwkkBd4tPTuZzPiFE8H4M+Ljl9oPuVfubYpXPJvmE7Ko1HDNyA+3ou9qcAgU9XVHb3XcBAhaZT2KIypMd6aH68YjxnCsaFojJsCQRV+VR5zAZ04v896K1AWdefn1GpOq16fxUISBGCKiqgfPi/Ui7/qUTSdEGK5syUZpKFY/uuUphbnhdPCcQ7oEnhYhqxMTJYpves9qnWyLw14D+WZoaIddNbBN4fNObudYu8DWWwUlRA3x+QcSeYVXoarOq1QEYHHBT4VEKK7FR95DYjRTpZ/7QVtyiNcRLXt+i4Au/uyHo68qDNiHwNwfPz88GGRAQDqucxsnsUGEiRAA+ZVMxsBQUJCHRpujKr8h00pI5LBr/Kd0tHdN5oOu+IgqABkKID5Hcrj59FQb4npQErRZvCsvQ66JV2fca8V9In/kT0MnTeeU2zaJgbhIqq0H8K169SB36Ud7UI0Me2y7+DAC6So+FL4/1URF4q3eDAlFMFYxwCKBpg6nPqC6+7P6cyGB0Y4zASmaYI/FftGeBgwUEfnU6X85n3r2Ol0Tnn7OnJe75sdxlngSQei7ek31lGZyfVJxyHBAQEA9qdkHluiQqMsQEMJABQRQQq47PihavC3bXkZVXPuOFO6HBFaSfjnwx/hS5nNEP/Y/RKlvwkz3FVKFjWa1DmZ6dZ3yRPsgMDryFfO9DJv3ssW2gG1pMh9PK9TJezxP8x7eNyNxvrs3FOBayfPLgx1r7Z8ZnIwYEDVjfmHhVIUyvUH/R2ZZQchKlM7RKYyvUtdB0cVFEARiOUH6870Xg6j2qvDtw6gEwy4ECMMuU86j6jBA5s2Xd0pr0OahstKNQzemPk6enwbbBuHHS0DAYSMquAwLGDaYVxV4rHeB+z/NlJFAB2VkJd6XwGNKqyZ0CAQl0NkDEONyGiQnAUniiFnlmvyqCkup2SKtDmXqjS6j95XulzpyLvE+ZHXnyelZ5c1f9uGKVouHVqCk1WffsW4zQZXL+3CgQcRHCsqV7yQKn8WGfqoYo/AoLkAf6TKIEAyqeIAMA9bSeObXq5SY7v7++jjhIJDCQvn3ooRQeoq9Sf3W6B5N15YLRjFu2qnM4E+pPDRTDlTpkDCO79of9KpxJkSIc8P+fpAnfiVnXxJjBQRQfEsP47g1019gq5ou7y9kZNDZ0UvxsAV8jJwFcocrUuHS9jrIVdfYCnkJ/S+SBbJe/vDgxUz38m6gx2AgIejvXnqrBiUj6uYBx8zuTHlQ3LSF5IVXfnif8JgKZxV011uHGonvF7ft29LQIB9mGqE5U/28v7uBsPnwnYisg/P3mdolXuALCeCUCOcehpX1xc7L8G6Tx8/fp1v8pffSOicXTP3+8nwMA0Trzu485tkHvjHnbv2tbTuXOlshjBWN3QrQIHIu+Xi4uLF68bJhDobbAKyF89TcD7qwbQj2e08lwFBGYIKSmHGdjwspIich5WKIGdKiJAgWQ9JUASUH+Og8w9qteSy4PX67NTBQj5znbagz0Rw69jHK4G9vz58Zhq2qEDzlVYk/erKR/ns1IgFQCaAQTnP1ECG6LkxbqBp/KtAEEq0wFV9fwxwPm9KMkojZa3O6cGxnjZnjIoqX/okauNyYMWEbLtPOJGA888dZyci5le4vUkGySNJ77+KEDAqFrSt97GaQrG7R4BjwN9H2uJJI9cVMm2VZuLxBd/3ZRDR5siA2rEMXJoxpWCK4903++JKnCx8mwylMy3e6YiKh8p3zS/1HnLlUJPIERlJiCQyvGFK55H2r6z4tfbj9dXBmiKRlRlnZKSnNJIp+mBCgisRIeotGc8pfxTJG5LPumZ5NUnuUuRjg6g+PWkND3PDmQ5P6qLTxdQRrsoHhW9R9Fm4/lU5PLKOozx22t1z5BjftU4uPcsfUce6PHTq3VwoPxWqHOqtjxHHsd4ucWy+KvGqI99Rl283CQvAgMK34u2Rut0XWBXxj7VlQ4FQe5qGx79NgGZ8H9XrhUIWPEWtt47Jo/V/I7hIxnJlSjKFnLhYP5pjsyBgHjykKFTJ1QUugrEvWWdt1IFcHjfFYD/XBl0ocxuXCSvuWuf5D35GHQwk+bDqz7qQAB5rnjsIhkdiUcp7RQZqGgFzKd+Se0m/unR+VqaU8puIvHtn8F2WZIRn43dilx+ZJTSHH8XQUnTVn7sAE3XV52SFBEWr8o7zePr2HdwpB7owACBkLeB2odylnQy0/jYdUdc7cm6aromTRWsyu4mMMDCK0BQodYVQLAVkR8zQDslsqJgqutuWGeUvBDPl4umVqhSqFtCRTNA0NEMEJyKqBgroOLnlN8qdK88KyXYAT8P684AwQq5EUsAocp/CxBwRdRRNx5SZGCljsqPitMVMv873lQ/KmNOOayO5/ekzmjK+0wg0410CqH7OWXHjZG3R9fOleyzvd0Aql6VDtmim6roZCf/VUSgmiJkHbRQ0vevYF1VRx+LbivTOCUISxFiysOxumQzGEid7EqnUiJ+7JTCe68ZiKuNUTVc52G7oK3y62lnAjvz8klbPKvKk61AzcqAf+uIx1tTx2cCsj6ouqhA8kpmskBA4DLoiq+KCqT6VSCgUqarQGAWyq8oGVR3Erbm5896PrP2Z12luKnc0/8pqNK3yXDRoNAAdUCg08Ne/5n+IX/+rzz5+huBgdLxejKKfr0DCKv6yMtNUUECLuoRlc13/11v+LEbcJ9u9uiARzg0NcP9HfyXyp7RpgWEnSF35dkxlgau/lcG37Ehr47cqLkyGKP2sNOArcJYKW1Kx7rMAEEKO78FVflU0YwZKDgVUEhAx+93xm8lKuAKtHomKQrnKXl4otliOP/3/F15JllKbcFFZg46Z8DRlbpHQypaAUCpbm7Euugb+5egSecq+1SyKx71X8mqy1UHBDzfMfJUT6XDujxT3rxWgS+PDognys6KDGyxDT4OE8Dyn9ImwJR+6dXfdMw0Y/QLI8Wfv/rpNnerzC6DAWVeeYgVEEihCzea6edG8y3Bgad3AOJKpGpUN36d9zyjqixf9aprKwi9K8ePU7rOA63q+k8iV7I0/gnMilJUIEUGqvFQAeYV4OFUeUau6DsA4Eox8TzG4WtVzMflwflJ8uJKf1V5zea/SVvABJUy+455fSaisUnrWUSs/5bx6fLc6RwHht297sd0rqdmOnj1eqLksFaAgOQRDZbrgLdK42sKKgDGNRT+VkIHDrfQZjBABnmcOp0NygZ39OMIlsrUDbSTp5t5pZXhdmXmHde1Qac0XIl3fHp9vY6kNDhdwTpVC3hmAGFm+Lt6VM9/FkpANinY5C3OAFP1c8VNA5TmBJNMrRrFqp+SnLlS5D+BQPqUuedDOfdV/luUlC9Uq+rINnM5X5HFTol2/fze5G2cPNcEWMc4lJOu7WeORRVlqXhNep59pDyo7728xEMqT1GGbnGi8+SGvwLAnCJwMEC5lpee+K1sUQLQrr9pH5lvBc4qx3vVcTwaDHRpUgNX72enFdnJy+JxMuYdABBVglzlmcKtM+p4dL4S0PA2Sl4TOzcNgKTUNWhUr8Sz87ZVAW5Foh9FlbzMlMFsmkD5pDy7qJh+NKoViEuKg/f4PnJHKYTudXDDL955TnCU5JUgiQoubcLiQIt8Juq8/ArEpOcqo5H66NRANvHnESzeG+PQk9T5FvL2T3KazqtrqU9nupF8bIlqVDLG9qJMs035ZkaKDDiYIZ8uY55GAJn7NSR+mVbt5h9RSo4y1w+I327vjUSbwID+Vz2SSuGO8dL71r2q49nIq8gx8VSBDgcgvL4CgpiHt5GfV1GB7pzkId/q2XR91k6rYdUEHtgO3iafgTrF71GsNEVA5ZQAlR/TwFcArus/GnC2r/idrRHophC8/yrvckaVMaD3N+PFiXXhc562ki0+s0UWWV4FGE5FlbyOMQ6iA7Monucn6sDkSjSV15Q+6UGvi4fGXf94ZGO2ZkaUQJKDKR4zH7avn1dtIJ2gX+fYOjAXv+TfdUDV1nyDzPWXg4gZbQYDVfijMv7e4MfSzMCu0Gr6LjLB656+qqMrpHRMWm2rFDWodhNzA5QGlRu5ajX7jM+36Kv3ogQIOi9+a96VN+0KPBl4529LfRIIcCWZgLiuJ1AwS8NzUlqIx3Pn3cvoIngVdZ7mbPzyXMp6ZoA+ihII9FC210t18L3vx5jvNDkj6Qh5opVzRX5UjofCt46xDthSvlx+k4H3cZk+QsZ7Dm4cBPiWz1V7JP4dZJDvLXqTuid9u2NGm14tTAYwpakUqoepK9RYEUOQlVe/hVaM1JYQVVVGyiuhZG+zZOxFaRB312bI39uza98Udk3Hs9DZR1IyBAmwVn2QgFDlXXNQepiS11n2GNuAHA19ig44CKAnMjPKeqa773XyZ6n4V6ICCWD4K2SpD1JEZCt5Ga5jPoPcsq1T5CoBAslaiuJRLumtivwZtQfnqnmtAnwsQ8fkK9kJ52H1zYUKXLJMtlu1qZgDrcTfTE5WwCnbb4uMdWm1+VBlgzvaHBnwY+9QKoDKI1oZwJVwzIzaal2SsK82mqerDL7zNDNIMyCwFcWvpJ95QKuhwS3HH00zw52Ot8hCAni856G7pNDThibic7ZmxZV8F27sDDv/t1IFCMhPlXcCFA52KiDNfk1113Od/Pm4pA5LhvIjyWUpea48du87RYH4LzomypoMoa6lvkr9WXnzx5KPX/1XQMCNfwW0XJfJgOsrgZWjSkpyONORzgPBWBobaoNjdNlRkQEOsGTUyEy1jWPyZrycjgenNOi9kVx5VIb6NbQl34Tc1H4ODLaUn2im0HwhZ5oimIUDZ4J+SkAwRm2sfeDwepdPutZ5/274XeGkfFMULVEyhMm75nlSIl6n18heFanwNO9BHg1xYt19vBIIpDH60USe3NAlh4ERoUqvMmKg9L5xTkeuD2ZG0PmT8X1+ft7vt78CfBMlQEEQ4DbJ7RPHaoq2sF5cE0AQwKkC15+qV9U+Sd9W7eh1VfpU962y+6pXC5MRUycn5EUPwRH9GP378454yYfn6fdnnsGMEviZUaVwUxods6MdCCTB7Hj1dkxrAVxwq3OWWwGCTtBnad6bvJ3d4Pu11yh+VyQOhB00rBrcpPRTRIeGl+PKAQF5mZFkotoae9Zuszb15xOgJv/+GlfKLz3vBqsam0mZvhdomZGDSfdiXbYVyUg6L+kVAibKicuU96HOKwfD5Zt6w3Wj2wiWN4vMVIDajXsCAmzDNE1AIuARIHh4eBiPj4/7n4f8q/Y/Buw4mKBNcoCvZ6q6VLQMBlyh+WBT415eXh78OA/qzDt6p7Jx4JGQfuV5Om/HGPF0babQWN4MpPgzLsQ8rhCq0iiPTmFXNAMCyQMgrRr4zxAZILmi6DZvceSe8qpAqhRHAmddqHbW7iyb9eHqYioGzutWhsLbxe+tEtPzFae0urlSkAm88N4WL3JV7rwN+OyppgncmLkXS751zIhGysvTc4tg39VO/14mqepTlsev7SXeJJ9cmOifYPc+cCDv7UV+u2kC7iOQ8uQ4FJ+aHvCfAwK2n6+3qBxcb3fakopmfbBCR60ZSOFFKtQEBthYzG9lUHcGVfx092bPd3WdAYHkaTlg6cqm4NEQpcVkFM5kSFhuNf9PvvhZ4w4IpJ/nW9XtM1Jq86QoV/JJ5F6RI/Q0SL3/qFS8fX3M0MhKeeh5KhO/t1K3mZKtlA7LoGeTgK3XbYwcCWRdtpA7BLPoAMutwMpHUZIjboCTjLO3mRtL/UsWqJ8TYHPv2+XbxxOPq816BDr0gZ8UtfF35at+qqJ7aXx7BMA/RJR0AWWZkYAEBlynel9UAGAmA1V0xPV9ioi9ORggonHPl0hLjSswkJCJOtc9lUpBuZD4tSrta8gVQiIOrOS9zPirjP0MzTm4odB1Uy3JwKwAgY5WQNpnAQWVsvBrq3lV5KFX/WbE9k7pXbF4WRUQINCgF+iRpmQ4HKSm+6kt0vihcq3ar3ISVJc0Jn38+RhLXlMaP5V3dUqqjBsB2RgvpxP9mvdVkoGLi9+bWHkkuMvDefMP/NCxkWzS0CfQ6zqqchi9PSgvCZjwOm2U7nl0gORGn9MEaXogyZTTTMdWdiXZRKU/1ga+CRjwMCsjAyk86gM+kQuCnvVFGyuGqzPAXXpXXkkRihKidhRIpeNKrRJoH0T+fKpzZ3hWPcPUHt31pEh575RKtTJgybA4sNpCSdZ5jQZ65iHM5JoAgLxWwIByk2TA2yItcuQbDwlE6VoCGRyvql9Vp7RmhaFZgRql8fBslQfbdgudEhQkEDDGYV+QfKxVQC2dX1xclN54igz5GOI9dwwJPjhlNUa/SFZgIUWFXP4Sf9U0gU8NyG4lQEz+urcHZgB+RmlsEBQn0Juib8cCgqPBgMgRIVdn6udC5XP/Y7wUiJm32qFIUhosTm810D0frs71+47gHW072KAwVIhzZnRXPP2qXseizdeW/RZUeTKpnY8lBwLeFzPZ9bROlVcs4lzrGC8jBlTAHh1wr6uSR5ad2pFpHKi4p5/aSGm93klP6F5nSFwvVHrCDV+q36kotXH3/ntyJDyfVEYyOhWArvqeQMBX8VM+nQ8uvku8VVtuJyBSHVdAwNcNeJ1dfnTsPK/oti7N7PmZDt7CR0XLYICebwUGeFwp2Q61Jo+FgzghsrcwMMqjGvR+3UNoM+pAgc7dMM2UEBVY5aFX99KgS8o65Tnjp+Lj1JSUV4oSHEPVtMwYvw2WQLEMMT0dyl9SPrqX6pSuPT8/v5A51fXx8fHFPd+YxhViCsVW7Ug+WLbKqT7oomPlwTFfhWHdcUj6g3lVDgPHUWVcTyXDVVsTfDEdz/XPdDOHgc/41JFHLb1clkUD69slf/ny37UC4me3240x8oeLOFYYIVYZHUBJbcc25NQAAUzVPikSsOqFV86r3+voWN28Ske9TeBKSmgrTQt0VA1qHa/8nGYI6q2oEpoUtmX6FLlwheNAqgoVuQJzcFB5VKKqnbo29LKYD59zpX5KQNB5Nf7bSu4Ni9wLl+Lw8H31fFcXkbe7y5EUL0GIrrti9bzTdFVSvnougX8p3PQqYOUJehp6YNWirW56YFUXJGC9Cszfkzpj5oZ5lTo9QUpTAerTZHDTsV9THylSoLcMnp6exuXlb3MkHh04JF5Zfy87OakEKlwz4GsbvM0oY5Q7B6qJx0reV6YiqfO76DB5oY1Yld1lMHB5ebkvxDNP72jOwq+ukDrP31H9DOX7+daBnNKvNKoLZRX2mikoV8p+LwECkee9ImxUKlX0osrfeaja7pTkymwFACSQ5VQpYfc0KzlO/Pm9VI+uXokX8ZE8K53PxupqHyYQ61OFnreXQ89LgMB1xDHzolsdBY6Lj3AwElWb5iTDK16d/0QzoORtlWTd5bb7TzwySibQKJDAujGSRb45xqoxrjb0iID/kiMr2dNxB0S7KIHu6djlt9LRrg8SWN3qQHS0DAY8lEOFIqTlYaEZM5XBrFD9FqTvzznNGqjj2RVvZRSqKEEqgwjWr+nY5/FShGAmYLM6zqYLOOiSQUvKXfdPCQqoPKufp/djevGexsk9gQRCUlt3Hsaq7HubexRCRGVMXqvQcPL6PG3iY4zDjxUxUpA8JrZB5Sj4fc9z1j6exuXTAe5W7/utiG3sIW3n2/vKr3XyVEWI0nEay2lMdKBWNuPh4eFgPUEK5bvBnVECSPxV++Gojz2SpmtdRKoi3p9FFBKYIKChPPIjVEnna5xt0bnLYODq6upFOI6NnlZnijzEkYj5dqGXzgveQsdEDMYYByGuMeZIXAKuZ6t0M3Klnc5ZZkUrHnwVinLQkcqk4unAz0dSMsIdEEiUFK2ui6pI0BhZvh3cudKeeW5VHcmbTy/xf4zxIoSfwG4CAWzH9OaB6lj1eTLy1Vx/pUQ5JcBnUtt1sttRatePJLVt2hAnhevHyPP5pDRWXUfxvufvetkNnvYQ0HPp64kiRV2en59f1IdAwL302RjpxrvAwG63O7Bb4k9tMIsKeETAgYHLL3cq1P4KvhDRjT/HEPnzdT9qS0+/RXY3rRlI4TJ1GhdjEEkTCOhZoZYqVFIZ/JXjLbSiFPy+e+5MUxlH1jsZjGpKxb256tlqAPszW0JKXYSA6ZJicVI7nxIMUBHQw1qZ0lIeIu/3jtQeXMGvOdAxxn6uNHnuFXDmWHLwxZ8/L1lMMiPl0nmaHNfJgyP/HNd6rlo86KDA696FZ9Oznr/Xn2Oy8oK9vV7jeLyGHGQ5VVMGVfpUD6alB+oOH8vzZ71vuJNhlZdHXnyKwKM+Gic0vF2kIIGAFBnwBY7eTm7QHx4e9scJ1KbnlF5AwNvL+0NyyqgJdUTlYBMkSG5Xo1qb1gxUxsg9BH/NSZQGOvOhwvTn3NC6ElwxSqTOs/IBVR2nc16vAMEWSkaC+SnPBAjeQoF5WRUIIKX+OSV5n1IppZ0eK0ogwL0rR+pO6k/KOj32FfJ0lbFYqVcH+gii3CBU0ZXKe6wiAfxPYKGKDOh+F2nkP+vkMtkBArbTKahrc4IzXwnP/nBglohtQhA0AxVumCnXLJtg0w2v+KUuZ9/qWffEafBcH7Gc2a6DBLIuTwmE8rrLseeReE7PVP1O8qheAhFMqzRvDgZ8+0s2ur8+IvLKUlCFHNmhzNOJguKClGgGKFK6YxVqx0MCBFvL6ARmJergIait5H16bF6nAgUJ5FWh1S6PdOzXunyoGMYYB6ukU4QiGa6Kh9l4cKU9k0WCJIKCBA6qcZu8OBl9XdNxtTW28nHPy0HBSmSgarvu+oqueU9yWXUZHiNvBqVnWYcUWmY5HQ8kggv1nUL6FxcXL5w6598NlNsBlaE0CRSqrGRjWLZHAD0yoGPWi4CWXj3/k1FPUdgEZI+RJ9aJURYuunTQ5206o01gIHWuo1R2kK5Vwrd1sK4CgZU8q3MfcLx2jHdAwXLeVzySLfmnCMHWtkrpk6Kd8bP13ntSklX259Zpglm6ZJRo2NlHWkD19PR0ECYlUe6S3FK5smyP0KwCaAL+ZPg7UOVlyVgkpUggkECAgwg/ZppjnIN0feXZj6YODHS7QlbENU9jvBzz0t0JjKa+1jN8jsZRxpih7VTHKnKhPk/6mKBA91Qmx7zeFiAgSFEB8ukRD87vd9EqB6wOgqsphVR3AiW3qZV91TX182rEcdOagQoA8B47pVs4UkUNZgPPFRwF9hiD5QLWpSWtGJCVfGb3umccWLyVB+PCzesdPzM6NRioFOpMeTpV4f+ZLPqgZBqPjpEvn3pISpreQopGudGcgciqPVbGpwMAnkup+gIqRgb0n5TySnRjldfuuVW5f29ywy0iYEtAYLX/khFi6J1As8uf/UUwINlyo015Zd5OruMuLi4OALSIQMPt0m63O5gyqNYLcUwkg+8y3QFU/TvIreS7IzotBFhcl0EgpXZK35noaPM+A9V8oXe0N2zyaFwJJXSofFMI5hiqgACvucB3ApsGUkUV8k3PVkhR91avraLCqpxjvK7q3mcCA+Rnla/Ut5JPl90ZIGD/SjFy0FfAwOtEvip57mTJ+ZwpDgcalZLj193u7+/Hw8PD/sMuXEDlkQG2kfLrphBcCa/2ZTJm6bqunVJ2+S68b5RDw9fRqm7Rff1WdCDTV4a066cEMDpQK0PYAaEqAuDXdU7ZS3VI1x0IpHp65CC1Nf9n47QCBD6OFRnYYis3TRNIaVXIKoU+eN2RVIfumScbg/d0f6bwuvzfKt3K85VHWZHX6a09FKJKluEemQusKPXRZySPXklZjNHz7P0187a8PV2J6Zp7ND73y2OfyvAIAPOjF+mgx8FFJXfusVWUxhv3kNeviggwjfJLgH+LzK96w15Gd20VEL8XuTHbssFbBcRnfSt5SfWugECaIqAMOKD1qTHmrXRJ97NcD5+PcRgZcBDl0QGmnU1Pzfo/gQGCBvK8xUlTHWnn2F4OjFSOTxWs0DIY8AZOmwuJ+YuL/4Zyunmg1LjeMRQunfuzruj8XlUXP3ZBTEhTVIWWfVD6/TSQ2FlJwSZwVdFrogBOXm6lOD8rACBVHsSMqGxWQm0JFMzKoWxTafqiLJEr/yo87MpBx6yLjzOl83xI7n044OEnXT0aoJ97+2mKgPzpWgKqzttszK3K66mMvxO9XH8dLn0inn1IqtajuJGhYU/kzhfT822QBAiSvuSeBOLPZTA5mZQRjk0ZSAcDFZBK44V8rkxHJR0908UVIE+OFQGBntV11ZfP6/qXL18OXmOe0aY1A0IcaV8B9yArtDprWBpeBwFVfo4iU57VuR8nYazyESUvM6Wt6rVKDngSAPL0SejcsHWCOYsMrACCU4MGD6fSI5iR2iUpnYrULsnj4DHBLmUjgcqktLh4LIFa57XyLihPFVDyKEQa3zLsUv4EAAQFyfNiW7Otkhc1k8vE9z+VZPyvrq72m+TwOzDUPd5WBLKVsUtgQIa90qWV05KMqIfXmZ486jjllfQwAT7zrYBAWkBIENw5XZWerZ7p1gKI3xT1qPSD8kygJ5Xj5a8Cgk2RgcqbT53lCL4LCVZlrc7DzviuzpMCnQGCKipQlcfnxlj/YFClsFOapCy9bApTas/KcHWCmv4rqqILH0FSGp23WwEtUooQvMbQsCyG9Dw0KGIdqt3nmJZ8O60AXa9rFWHQuca1jD7XDaS1ApWh5/+KnpiB4u75RCsRho8iBwO73W58/fp1vyhujEOgRg9yjJdy4nWp9MrMc2WZNKgMWetY/w8PDwcfIxK5jCsv9msCf0nPucEXEEhT2x3gSPrKARXtUwJJM+BdtbGDo8oxUJrk7HkbrtAyGOiQk5jkdYWAxIw6gSGMyvNfMS5erjd0SufHMzDAusyMfAUQVr3wjirkt0IEVhVw684rPrb2zeoz70Gse+rLVOdqIFVTBt6vNNoM3XV5d21FGfX5TtbRn3FQzbHSTeNtiZqI37RWgD+PBrgHswIAqugU2+gYSvmwP04JBgQEHBBQ6Y8xXizEJNCnHhZVjtbM+eA5gYCfe/8nQCAZ5hhJhjjJhjszHvWrprWpBypAWnnp5LezCbRtM8d2i61jP5IfbyfXOSu0CQwQBWl+SGsDeM0H/SwyUA3whJ4qr24VBbnhT9e2KoAuXZqj/WhK9UlKQQBOabcY76SQKwT/0eQKgtecEoDxdAy98n7ljc/kaFZeRUkxrNKx/VvlQc+QUysOBhIQ6EDAilGqaKsBdyCWHIiPJoGBq6urcX19vZ8qkKFjW2oxmevXNO3E/2QQt1AXHVDeClV//fr14ONEybveQjTs+qW1AVVkgH3tebGMykYkw594VHrpjuQUr5IDHye1+da8l8GAz/l4wRcXF/sB3+29/Bqh88Ze9Ti7gZw6ms8kr9LvzcpY9XRm9ajy2VL/FHryAennW8rq7p8KFHR92qV/q7LpGZBmHi2B5Na2cw/Brx3TF5W3RgNPQEAQoPokINBNc1URknRtxTFYiSIcY5Tei/RBHQECjwx4pMXXZIh8+kC0Aj69PSrnLUUHfNvtMX6DFjmQ9LY9/wS43WEhwE+/KjpAnjRN528+8Jhz9A5sE5+uQ92L53QA615F5ejQdGBAbcy6rdAyGOBHGdz7I8pKSoikzpyhlio6kMruqENqCf3NDCfvbY0gVHx5GyZa9ZpIztcqz94uFQBbbftV0Pae5OHB1M+imVefBqvP83VU9XOKODjKZ2g49cEMjK30gdchGQLvU0b/eExjtZVWowLeDlvGYwIPqV1PGRlQdOD6+npcXV3t58DdCNOgyRB71CnpndS/HrldcVQSPzK4ySi6vCsflz/vI+pK6u1kLAkG+IohQTbHmd7i4U977Hh0S88TJDgAc0qAgUZ7Zmu8Xsluib8VXUQ6apqAc1NJcbDhXBkcM9/NcwcejkS7vDyPdG2Meh1A5U0mZeL3Z1QZh5Sua8s0kJwqgdNAdOSdjPnM80rXTgUGNGjSu/uJWN/Uxn6Ng5WvV3k/dX2nPKQcfIc18qv7PkeaiHXwKF3Vn8ljUfokC2780xdJq753sK9rndwlz9TrsIWS4a/K+GhSJIBTBTRqHFtcuFn1g+tjgoZ0L+nVysGqvOUqykigkHR5ZfT1LOtf9Y/reBpT1UUf4bu8vNy34W63exF1Se/sE5x7aL6SK4L6KoKeyhEAcDBQgY6tUfjNCwgV1qHS8jTuHaSB5QO8ihQ4inIF5V6U85w6pAIDKicJ7gxlOQ/HgJ+VMkRVvpWH2oXGE+BhmIt5rIKuUxn+RIwI+Dc2kieS0H3XjymPlJd42dI2/jznW6lYmL+IypnKIfVhFynRM/xPPK54kBUlQKA8j/HSXyt/PiZeM735GtKbA7vdbh8Z4CtzIk0RKDLA3R91n2m9P11WeI3U9bH3n3+FkiQ9Qwcz6SGXLQehHVXOHEG05Gu3271om6reDpwd5KcpGcoz03I/ka69EhhI0wXKX9H3LRGCza8WsgNVuMiVDr/7nBYW8blqsFUo1HlKEQIq3g45OhBwqgxpFRFI9Zl51T4lwU7s2qoSOhoJ9Zkj226qxtu44r2LBHTHH0lavcxNWjwKRCKCX/GKxpiDvi4qwGviz78H7+koHymKkMquypfSoOxsIQJ/rhdI33t/L6NayakbvQ5IrIyHjyYB2PRzUCsgoBX73PhNOlhEXexGNkUIEiXd41MDK/XTP4Gu1j6wH7nDJWXaI0nkL4EbyoKe4WLMru7i09vR22/mTKq/OAXRRQfozDgISGBAfDIKMqNNYMANH42vIzhXAp6XL7CgAva0ej6FYI6JDCTqPOdEFQJMVBmUjrcVD7sT2BkxVK5+qKYKUr/7cVdPHZ8KDKRpgqqvpXS6elXXOjoGxFXTQPxQi899Vgqxyo/X1TYV/xXvVGbpOMmpX+vAc0crY8bLrYxHV/9TRgZc4Y9xGO2SwledNH4lDw8PD+UY1rkbSpWxBcxXusGNa5pCmHnFDl7cCCeDzx+fc9vjjhivu0y4IXa+qEeVPpUhcgfZ68G+SBGBMX7LCMGE0m/RU5u3I2ZjibwCKXSSDH1C4p0i7FC7D/IkxJUSUN5b9nHu+GGZVWd0vLhSS+2UlKnPoXl0wO95flU/rYCLSgGfCgCQBAQuLy9LMCA+Hx8f93OIYxy+dukKKE0nJFoxdJSFBAjUL5wiUL2UfmbIV/iuZNL59jqlyIDrgyq/rn0SaPLxrOOO35kOqJT1qeXXQYA7X5wueH7+/daKh5TpzRLwusHodFpyuNyA+nVSBQSYh5dFxyTZFs8/gQDKpoBHMvzUt5yTdx5TtCLpXYIDBxjkWe3uIEc/pXdg4WsGVAb7tgNZTpu+WlhR1/Ezo5DmpinUKW2610UIVikpFirLVUU588Sq0LSXPYsOuOEmGtXzbljS/HI1uBJ1Svc1bf+elPYmH+Pl/PrT09MBEBjj92tQTskYzqgycrNIi/qNSpS8CRB4/1a8VcrfQWI33pgXla4rYPcI+cyMtw5AdO3F4wRSqzGc8qIiPgW5/kngyg2UZJx6lV6xxkIC/k6ugxKYYvlJv/B51oOgxGVPIW4v18GQyuR15icQoHpzzRuvk3++UUAvPNkH/6ImeWXbdGF98ZMcMm9rByje9+TF789o01cLOzQm4as8xA41UnBnBp3hbZIDCpY/M+CrjZWe6byuVaq8kmPJIwIdIBjjpaLmP6lSDH7MfHl8KqDAAe1zrSKGK5MXsAICu3RV+tQf3mfkj8pOefHd6CR/3vZdZIBeDKMjiX+XGylYV2pMl/Ks8vZr3fheka1OFzi91Vh8LVUKvfPQx3gZTfRITTIoKc+k73x8JGBQ8UwZHuP3ehedK/rlRt/r4/LMfB2Q8kfDS5750T3JsRZuMvpycXEx7u7u9jy4vI8xXkwzpvC+g6YEAhyos32VL/uOwIogZJWOBgNEamR2jMPQKq+lrVlFKUKQ0K2XpesuLBUq3Uoe8klKqhJSUlIuqYNXntvCt/JgiJl1Iv/JU6hAQTL8/que/2giMq/ezaWscVX2GIfRgZnh2XKPhpGhXpXDCEAy/iJu4jIj54GLsijnokqZuMxzgbC/5+6fNu54OqZtk5FfzXOMfrvxU1M39eMgLxkHEWWNuphyrTxWHJoEkjunhsadnrxkRGl0z9fEJB3rXjEBBfUbwcEYh7ZMQED7OTAPLbr0XR/pUDjYqHik/vFpSvGQdKjLtuuuBOTcLq8Cgk1gwMPQagw/lkCxo0mV4eb1Sjgro1p57N0g74wwea1oxXCm/BK6S+XNBmUlfLzvISml6fJeqUdlFDswcCpgkLwg73cNGilKGVwCgRVFycFbGf9Elbeudk6ATmkdHFRAeAZUHUD6tcQr+5oK0fvfgWbHV3XejdUuj+q4y6+r80eS5JL9McZhaNzr5EZSBoyyTQNFuU79lyIGbqCo1/x+cj4SMGAo3XWXr+fy8iteOqKB1sZO7rU/PDzsN3pyY/78/HzwQS6dsx3JE/lihNunObz9k65yUp5sV2/DGW2ODHjmQndSSGwc3mf4hhVipMA9fAcEM8OeGlVlVEoghVx0ntKLuvwTb6lTOyCwhZKy8z461vNJvHcemv9/BjAgcm9GCoaeFIHAGHkDHgKHFC16bT19ELvh5+phXU9AXTQDJYwIMB+Nh8oQcqwlRc//FeNclbGatiJ3FjpDUXm3x47N1xJ3GxSpXbmTq3uK4lkyTjDAdTHJgFdgnuTlVIaO6T0CMMZvAMk89M8onusgGm3dc36SrfI66TlFBvQ1SIKkb9++vfiEtMr2BbOdg+bt4wsAVY9kJ0kEIym9xrP0xZuDAS0gZAN7B7uSZIMk1ENixVZDVVuoQ1eOBjs0VXnE1fWULqFXV0JVXlUbrnhPTh6FSP1a1WFFiVehq4+mWV0cHNCwjbEeEaioM6aJHz3j0zxUjEy7CvYqPpL3Tx5X8k4GxMd+Z2Bm0YEVWnmmcwpWPcqPJH5+1x2oMUY0eqwD9Q0jXe4EjfESyM2iDjTe7sW7rOp5UQKojBQQoPKYANX5IS9bfjLuah/+FFmpwNj9/f3BJk9yKlId+XxyIlbJpxVpE/jbakM3RQbGOERdIgoDIwRCJo6eWAl1JvfRJiCYIXknV+SdEUqCPStHebmB8HKVZiutKMpEW8BIx1uKwlQAZYa6V3n/CFqRA1eADOG9xti+B7jdQqsgmyAjTRl42ioC4NdSGdX5MbQlj6RPqjHhYPkURF2b9FOKvug49RvrX0WRkkFxw1/9UqRB+XbgINUpRef4bAIqyain82T4/RsGKXL48PAw7u/v9/93d3fj/v5+DwrIk7+F5PolTTN3DjPJ1zD52GOeq7RpnwFug0kkSIGl4FI4+KoIgQA7PoUvRbPB6EaMyKlCSQkA+ACh0LmRdJ69DB9I4kfKlvNg7p0loZghSSJk5uNbRrsirAyFX/M6bBG0U0YG0vvFrmA5qNTPLh8pcrJSry2GhP2T1ny47OiYz7mSXPESXOESEMzAEMdHktGk9Ga0Kl+r4CJ5zuxjOjue/pREw+XGkESDwGmu1XHnoGL2fnoyvN6mVR+mayk6RT3jujflUQGCzvh3IIbhfC4y1HQBpw30466bPu5UB67ZkG1UnTpDrrZwfaBjfjPoGECwKTLARVW6psKenp72+ztTIbCDKyBA8nC1aMXL7pCu8k7PrEYECDhSR1dUGWR6Yl0eM0We8hIlcOPH6ZrTitLtFMCpyUOfyUOhMvH2pIJI/XGM57jqKSWqDLQr1TTGqr5Lz6cIwczAVAA2PZeAy4wqWU+UQICOaSQICGZG5yPJjau3kRsdpacz4XPafCaNi7Twm8CUkYD0Pn4aR67zvA6sW4osMF3VTvx3Xqs9/RMAqcYH8+mAhTum5Jsgy4G+2nkLMXri/bvVAVsGAyx4jJebH7DRJTjcZ1qeRmdMXZBTuTNhSDSLDqTnu85hIycUVnnfyk9C4Io3KSH+d4KS6l95thUAUtvrfyZIq4J2aoXqU0aO0E9JVflbPdQqXZrK8mPPx6MECWAwb8oKr1X5v0YeKm+J51W51FW6xshAevbU4Na9V/Lk8iyi/lHf8GuG1ZSt6zWSA+YECmiAxbvzlPQq67LilHVjhn3KduumNJwPRsQqvet5stzEcxUNmaUh8PXIgMsmIwPHOCebP2HMRkqo20EBw5lKQyWsyhAEJAM583jJg/PtArjqWTBd18DVAg7m722hfFOdWbbzvNrZs0hKpfhmdIxiPLVCJcAhGBWtKiHllbym9+LZZVW8cjx5mioSMPM+OCVAsJqAa5LLjpKXtNLurMOxwC0B4hTW3jIt+VFEAE9wRp305cuXg81vCHb4ypt/4pi6xHWXOy+Jr2RkCax07n3nukzOohvESvez/Oq6g5bEL+VQERHx7jbKwVICRc531aaso9sOPV9FJ/zY61GB/xVaBgNSpP7FJoIDZ0BC6oORK1p1zjwrL1fPz5Bhosq4VmmS8Oq4QtIpSlAhdqc06DzUt5XYVklYV5Vf6tvOCCRA1vXbR5APSs61b8lD5P3/EeSKvlLYlbfjVIEIlsFrCWQw/xWA4ODl2Pav8u/IZTB5h+LJQ+2fgdhelD1+ndB1LVe6Vz/qM/6LEjCtDK5//6PS25QbyRlfQWedEyUDm6Y9vP0cHDA/1VVEIJyiKd4elQOmuiVbIRBS1bFrgwRsUhut0iYwIKYFCCQgbCQ1SmKEQuYhaT6bKBm2hJR4n7y7l14ZeyqA6gMZ6dgFxfP3erId6Ik5JYBRob9KIN7CCHeCNRO4U0cGOnKl1RlP0UfVJSlhjzDRWxzjUPYrAOzXHUi4bLqRUR6pnWYy0rVdB9C3kss8+WdUQPdSGP4t+HgrSvomTa26TqTRp0Pn0wZb+HCiU8e2TNGXVB/mUfGTDLhHSPTvW4qn/fx98yW3H8qPQEVvEaToCuvC8/Q2nX/PoNM3nX73KRp3utwuzWgZDNzd3e0r4usCiC4dnaVKsWIcoCtzuFXISvc8X113JJeMqs6943wgemc6ENC/yuG/e3d+Tn6otJPAdcQQr859Fy8vcytomHl+PD91ZEC8VCg+yY3IZbkzGm9NBAQc5Crf+7UDlJXhTnupUzbdm+9oS5tU4Jn3qvMt1PE8m05bATHvSW4wqGfdo0xRo4eHhz0AoIHS9fTa9ypP6TrJgYEDVcqdHMykJ6g/Kj1CoEPg4ICP9ov6laBE7cTjp6enPRhwA+8Axq8TFLgzya26ve86IqiRszlGXpT45mCAuwyqInyboDKKZNyVqEcHUiiS5EYzKTCPHogYDUhlbAUCjgqrhmfHrAAC5pGQZirjNVQBtlWBrAAB8/nMkQEqLDd4M0PxUUR5pefO+c0uVJgiSZSx2VqBSkZn8rgVaKY+2AoK3ioKlpT7KYjGiOdpxX96r92NPv+TdyuiTq6iQpQllyuPuKV5ehlnkQDLTK/Mog3pY2M817dH/MuIOhavzO/5+Xnc3d3t9xVIEQK3HandHTwkUOf18TqyXnpe0zOe/l0iA9pUgQuxWBGPCKRznzfZOsCY3r0lV5CuvDinRmJnp7qkXaWqn+6PUYcaO2XF9DMgkECHK1KPDiSi4fP+cB46fj87pTaoogOiUxmAVfKtias1J2O8jDRV6aQINVZcwSSZ3tpOq6DTZT09R75SJI5pUkSIYCeV/xlk3Mf/qjefjJJ7qe7Eiao+dQBAJ47ywohV5amn9l0FXh1IITjm2jQCZwEBAQPyxCgCbVcFBpKhFxDzKIzvBZAiC6m9nSjLLr/HRmE3g4Ex+i0yK0NJ9DRGv5CvIqatQpsUhBWhcuH2QeKgZgUIiI71UlYGYnUvocMZCOnKnynuz6Ast5J7rFRiKzTrh7fwThN5RIk8dPLugJLPJU9jjMPvILjBrBYTbvFCXkOrYGKMfvqHeSQn4SPrVJG3vXubHTkY0LlP626pqwMA/ehJJ8BQTVFyzYtPc/g/nxsjv4FFwEsw4GXKSDNvgQMdq05qQ4GBGRBguzoAY78lJ5M0s1/8eKC3C3XaqvwugwE1gBpIiMrDKaKE6pN36+GvRCm9iAu/1NE8HuNl2Jr/HuUgIKiiHnq+MwpOPoXBcx8ormwrDy+V0Rmj6t5MEczq6kpgC0+nokr563h2XTQzsO9BDgB8B0JP63y70hwjv1kipXl5eRlBx6qicXnuvHlSd+8tiG2W2mhFN30EubEmIGCa9BzXCrghYp4VwKJ88ZeMH8P3BA00StWYYIieEdwVMEdefTGlAAHPfYqBMkbwRTDABYS+dsBBQQIIDsq87bvIVJJR1Ut9wzZTe+qZVdndBAaIkthpK8gyMeUNUQl0p3wohGO83Bo5haXEp6+wrZCdD4QZCKg8Twmh+Ks2Oqnab7VsV9xpbq1SgjMe0jOVIkm8fQbyduSgcmV3zIprljPG29c7DfqqjKqfk4F1Ze1K0l/FnI3dih+2i5eZvMAO6HT8z+65152eoSyciqhXaVBmnjxlnGkrY1SBO5ZNeUhgwKcM+AaaL3bz8lYch44/9aUbds9PEQDxSyeX6ZWPogj6BgG/RyAn2SMFDgiUj/5TP6T6dXLni+69nlv1zuZ9BkSOrCphSl6556t7VUPMQAOBABHpTDmwXo68V4FApfBdqLzDCASInhNg4nElNK5kEzEUdyzNlL4PaBqUU1FVZw5CD91tQdR67iPpNQCj6o9ZnlSWOp4t+hWl199WAG26nmQs8cl7HF8EUJxW7HTVKeVX5btuWgEp6fXoZMi9DJ27l+w6iM84EOiikOlaBUa6NvF+TlEF55V0cXExdrvdHhCkqYf7+/vx9PR0AAASGOAHi9IUAvmsbFrXnw6c6MRIjkmrY1O0GQx0YUX/n3kt3gAV6uP9bp4sRQW60KkiAsp3JSpAPlcUKgcG90BnqCo9kzrSDWwqe4uRWBW81TSdst7K23uThz8djKW2SXJBmoGx96Kt5VWgfLbY1MFkUuwEuDQM9Ag9jNsZ82MoReacvIxO92w1Uu9B4oFGRrqL98c4bFfKc9JpfLYy1Gwn9qn6mAvLU3tTz3dvvXg7r8hA6hefrla5mvbyttBUGLdUJs9q89vb2/Hw8HCwkJAAIEWcOweTdm3VaHv7qDyu7XEbuZr35mkCNlKFKJ06w6zn+U9KkYPKCFPJuOKiYSI69mtu/KuBk/iYCS8BQEKhY7zP526poFN5Y7wUmC50u1LWGKf3plbI+9MHMM+Vhml5bYxtr9PNojQVqPaI0kr90jjyPtc59xEZ4+VbCyo7KbMVkJRAwVYA4JGwNBYrneORw7eImL0n+fyvgICmNkUdGE2LBqtV8MxLlAy9ADXTp/EkI1xFa9V/CQysgDalJUjh3LxHjD0vtYNP2+qZ+/v78fz8/AIAOChIr2qu6I6qTtU44jEBAKefuU5iVQ9v+lDRLLxXUYomVGkSzcCG0nBgu+JyBchBpYGRjEECA/z38hMAIaUQlreDI8kqj+qY1wg+KsXIOsyAzgpyT0rpswEDVwqUsRTiS4PbqerbFUOT2jfJ0muBgHtN3p+uWMY4/GKp0rgy84Vf1TWVw/te/2QsyLOnq45nY43UAYJOYX8kJd3gxoZt7B6uy7FWzvs9XRtjfa+NTte5HHqeHsU4lvw7OIkfr6vGBAGvSPcEutJagdvb2/JVQ7cdSadXTgXvi3eRg1naPo1fRj3fPDLgVHkVnaLc2tkzL2z2rBow8ZoiAwnRJTDQ1bFD5xV5NKCr40r0gfnOwALLJA9MWwGABBhcMc/K/QhKip4Daox6TpHpE83kMSm+iqrw6lu0n9etq28C0t7vK3LYAUoCgjEOowQsp8q3igystlGKHPo1Og6nJAdUBAK+vqUC4sljdXCRpmDp/W8llcU+o9FKfPI4yVDVzwSxBEKu1758+XIwzy5QxM8Qk3fdV4TA1wlUCwhThJH8O+ia6RG/7/rrLehoMOCovvICdP81lPKveFJ6N4pj1IPaw50JHMzAwLFAwMsnzTq686A4KAgKZh6lC+uKsFWRCuZZhWxPRbOpq1XqwNKsrbcAuy3kILoCuEzbla1xx6hbSpfGKN9AcIPPtuvWyCTeOkCwkscKiSeFnT8D0Zt1MMB+TR4un69kg8/QqFbty/R+3gFK8Vjpiy5fr5/yIa+c+0/rXLh+QADBwcAYv9cMyNgTEHAjovS9h9S+3k/skxVKNqyLam2hTZ8wdnJAUL3zeCy5J+EKw5G9l+lvPCRKRr7yFisl6h7xMZQEpkONM1DE9kigIJW/lbYaulOBgS3e+TGU8vPXWrfmlfqjkrFkEF1+PArG4xl/M0XjcpaM//PzcwsMxhgvXl10xZemFVK0IfGWKIGbfwKxDf3nxtLT6prLRAI7s7ZZNUCzyEqK2lWUwAD1XQIFSSZoT7R+Sz+XYUYQuGZAUwcEC2mLYrWt7zGg+viYqNpo1i6vlePNYKBiKHnipDSwq3spb3ZuKpOer9/T+crivMpjWvGmPG2FALvw1xaPrbsmcqPUGRMKacr7GMDAPD6T0q3aYcUrmdGxQGDGn5MrgJnsVHVbUSQEkzMQmAx1AgYs3++PMQ4Wpymv7jkvcwupjBX9dgpyncJpAl/vlCiFqtMmca9xFlyPODis8kk8r0QjkrPooKAjRrIIBDwqJuPO1wpl+P1XgbMEzGdtsIUo/8cC3E2vFm5hyslXnW6lZNxJW8K+yTh66LISxBX+E0jx8jyvlajArA06XnxxTDd1sgWIKH3Hy1ug1teQo/8xXhq3rdGXFXrPOndzhrP1J6ugNo0Ngu4EeDzvZBSSzHVRxaodq/G0Gpn8J0QFVseOvPtkbJI3yv9UnhvEat2A88b+ZtnpeCu5LmXbMD8f1xVAFJCqdKSeSZEBnXN3QgKHtPlQ1QcrtrUDqdJp3QLYFTp6mmDmHVTPu+JdBRmdUXQgUEUmuujAsSBlhTyikXjjYO72q3bl1ylKf5PAFfjz88sV3UTLSqPzbjB3HtlnULj0nLrQodIm+gz1mNFq5CsRPSrJiu+NwY+6iFKUz+WMBtqBQZXXap3Iv2S6y+Mzv0boJHl1YyLSmGSEIDkZ1bNjzKO61bRjRUlPJB5mkbcENhOAm41Lj9JS9ugcaFdCf5brBnw6QD/fryZFbHy9wAy0z+q1oo98LUhHR4GBz6wUK7Tvi5toBD30yLmkKmzuA8k9TZ+DSgiaZXJQ85qTA4DOKLuidUXPdAyTJiF1VJvOnU+nU8mNK4MuXaXokkwk+fgIQzNbxDdGDtky4tWBIS6m0s9BActyeXT54Tvmzg8jVJV8JACSjJ6nYTscuyJedCrZ5TvwKzqY41nPj9G/GTGLqrpRrow9xwcNbaXr+DyPvTyXs1Vg4vLh+sp1H/PzenEBIY29bwBFh86jNTNQNmsPP+6cQdWZ/zPaNE1QKbqZ10tKqIjXSTNPTWXPkOqsHC+zG3RVByWvyv+rbxH4AO6Ml4e+Vkh9l3gQf24oZoPZ58acf6/fKQGkQoHcqWuMw22gV9o+0co6lIqSLG15tgKmOtZ15zGVRyDggDaBA5Er6mSMOAWQyj3G0VjRDZ5fpXQ/M0l2Z4ZaxCijzhO453PUDx1VOsLzF79Jb/hxN3Yki0l/pKjBGC+Bsht9GuVq0SSJ7Vl9nIiRgRQJSAsHxRv/U3tUUcwZHaNzj3q10AWqQpup4rPG6MpTmbOKen5EhC4UiarB54pL18Y43Nwn/dyj6gbBFi82nXOOjzzpvAIlnXEhERkrdKbrfD7xfCrygerKaoxaMXFAqj2Td1sh+BXeZum3vDmjND6+JBepnzyydXl5GcFA+qYG6+He4eXl5YFBopfLMTgbE0lJ04vz6J7SkGYAogIlx4K9tyDtmT/GyzaYzRHT+LgxosyuAg0v4/n5v19FvLx8aUY8+jhG7QBWxp5AsosKzNqBhjnp/84YK62DAAIAN/oOxBLwSGMzkTvh1ENVNI36f4tjswkMuCB1SqwDAqsNwbLUKCuhkTSH6ciU/4lWB8gKGEih1TQPuGV+R/xXCNl5lIKnkvd28kWeHHhUtgQB9/f348uXLweoeRVUfBTR26dhem3oeIzey+74SdeObacUHavm8Sl3Xq5HAxwU6JhRMCcpcaWjEmQ5lI3UHg5+qvtUiJ5nimwlcr3m7cK8P5o0vuiRz3ih9ztGnq/vIr2VgWU+MkYa+5zGSIYq9Td5TEC6kg3dWxl7Hp6vXu/Tvz/PMH/aQ6CaHkj5e1usEvutWg/DNu/araOjIgMMK62GMJJRTigsdaYfE9VSqKtIRYXWKg+J12ZGVv8aQPwIEdcMJKTsPCbqjER1nWUm/jzsK6KhdHDDDTmenp72e3Pf3Ny8MA7edq8xdG9BBAEeGeg8i0RVdOct6rcqcw4s2b9V1MAVucrz/mbkKAGBJFvMS88nEOD14DHlf6U/Kt2zElGrKDk7pyZ+TU98zd4a0LEbwtcSZSf1r66lSFk6F2/eb5SvVSeQeZJfjv30kaLktHp+TJsAgb8x4Lali4anfulsqts7tp+n45bEK7RpAWFiylFLQtRVqIpp/LgynFLiKk88VEg2lZ3AgdNM8BwIUImufJ2w66AqgrGFJ/3LkCsqsNvt9secH/Y2YlhYz3MOT0BA13/9+nXgvTDacWoiL09Pv/dk9z4cY1tYTdSBssRLBwpTHt6vus4ok8tgIvdcxI/n4dEBAkcv41gDfEw0YDVPNwhVui40u1LeR5BWuKvdxcsqPx0QYDRQlGSN+odRH93zSAA/kqN/l12Vz2vU4+5wKn+PjrhNSnWnEU97MnTtSX3meXl+CQgk29aV1d1Xfb2dku5SX6V2qehoMJAKIYpLz8+AwOp1F1RvIPLmIKDquC1Gi8LtXlmKBCRvzetJIV8Vig4tkw8Z891uN66ursZutxu73e7gk51qA7UJPUI9J8OvyMD19fUBSGD703NgmPoU5EphjLEHBCIOLg+zVrKRwDApeUJ8ZmZIq/C/RwcqMMpy9a+xkvqEQMDlmHLOvNRO6TWq9KvGXYrwzcBzN2Zn43nmEbJ88X0Kuru72x+zX6v32F3HVfVc8dpZ/0q3yhilsZ1kh84cKckB0/ETvckgev18zLtH705hR5Rxnw7w+/7MKlUAPTm6rD/Bkqfn+FyhTdMEnTCJKlRdLaBIlJRkpwySkCWlU0UokvGtwpgpIuDCnurv5xyszJtKdmbwvc3GOHwtjNGAq6urcX19Pb59+/YCEHBBF9vJwYAAwRj/NaY3Nzfj+vp67Ha7F6HV+/v7cXFxsTe6p1KmLJu8+ADz9RIzY6K+qUKi6RqfmQGkzuj7OQ04DbkbU+9jVxRVfiQqG74Gy6iLG6RuG1a2cwJWHAfJkZj1VzIQvJ6U5coY/ii6v7/fHzvI6z6OM8Yc5Hjfuv5Kjheve5t7ZId6TTqmmsoiUcaSs8S3gphXMs4ul2mRX2qnBI68XVcc3CSXK9G06lm/z6hM6g86QDNaBgOp0Y+h9CyFzv9n6at8twKBRAkEdES0RmVfKTH3lBzN++AjX4lSNIDG/Nu3b+Pbt2/j+vp6b9gvLy/39eQqWeXHPHa73bi+vh5fvvz3Ix+65n2lwc/FhU9Px3/97LVU9QvbXfXtlKnur4C06h4VcRdx8PNZNMBD+x7KZVkcY7yXPDJdlxLlmHDZ9Y1vqmhcKsPb0w3CFiBQ6YzuWjpm+50KDCgy8PT0tB+r4k3tkjYbSm3mlIxy6ofKm6dnenGRF4uO8RtoO9hYAQQq38vVfxVJYNv4v8tjGsupXWYyzGeVJgF/H0de5izCmIh1YJ9tkdujv1rIwt274DX3fivmVj3g9EynzCpQoHurKDpdY1Rgha/k4aTzrq5M48DJ5/gvLy/3AOD79+/j+/fv+3OG/cWrPA2+zkMwoed3u90Y47+e4a9fv/Z5kQ9fWEiQcQqqPFAOWp8qcBDpgDKRD/iOKkCQQoPHEMtPUxpSGokPNwIpDT0s7svO65X3xDx47IbI07oiTuN3ZgRpBGY6gED5FEQwQFArvsQzw9bi2/usijKldSbs96pdZu0sEOAgIUVQKxkUUY4Y/fL82ZcpMkDgyvTeRokc2Hp5zkNFPi69rkxX6ZGkH9g+W/gRHQUGZg1WMdEphUromE8KI5KfTnkkXhKaTlQBgqT4EwDg63YsZ2ZgEnrsQAH5ury8HNfX1/upgR8/fux/Mug04Fqo5Gj/8vLyYIpBgEArxrVugEiUgOTu7m7/gY9TeVcuPxcXF3HNAKcKGKWp+Kb3ojy2gNpOmXo0g/LEKMtKeUmBuddOflQudw6seHXglACBykzyqnu6nuTdy0v1q+6ltKk/t+iJj6Qkp+6ApIhAxW8VZarIjcsWsKv+v7y8LAFY0t1+j4Z7Jo/Mg4Y/nVc6l/+8nuxJSl9FMkgC212EgMcr0QI6oT7NskKvigykY6fkWXXpfA52y0Cf8dsZXkfViboO74R7jPzeN5/dqnB8MDJ0pqgADfn379/HH3/8cQAGaFCkdLTeQAIlUKF8/vjjj/Ht27f92gHlpUFKMLDb7cbt7e24vb09mPv8aPIw3RhjP30hnhOaTmFu3mPePE5Alfn6WOiUgQ9wnctQ+3O+yyL58rGU6uXRAF1Lawd4TO/L247pHDBVeqQz+uS9up/aUf9+7OOvAgSnoAQGfC0HZbFrwxQRqO6RUpQgtS0NW4rweDQhrbdJ8uByXfHpzwqQdsCgo0rm3ZYwfYrEJFlnRODi4veaikQOGlacDToqq7J7NBjoGNCxqEPiVcVWK7Clgapnu7ISQkxpUl5dyFNp/blOofE8IVK+DiggoLUC379/Hz9+/Bh//PHHwVsAY4wDD9CNjNYJKA+BAa0VSGCAQOTXr19jt9vtpw1OQa4gpZSkZLrnkmGbKZEuzE+kTyWZZDBFBPQs66B/GVk36myDzuDx38tLbTPG4d73kh/dX/HgkiFI4WG/XvFeGRY/T0CgAwSvdUaOJZVLsK7I0GpdSSkisLKoL+VRnat8Okb0rHmenquIuqmruwPVDsyzz6upEuev0xndWiB3JuWEqD269JU+YQRRdXGHdFV2Ny0grBZDOHNvQSuhFqVbEeJjDFEXCVgJzXYo2s8rEFHx5P8SCL5GKK9e6wR+/Pgxvn//vl8EqP7kugGGyzndwLUHP3782IMBLSSk16CogKYpfv78uV9seErytpe3wWkc76suslUpkZlypWdG5eiU8unCug4OVpRbuk/vnaCgitZxakD3VwB2VY/Z/HGXrxsZ8lyFZGdg4JSRAbVrAmfc92PGnxt/zrtv0Y2zvuvy8tC4Gy+Rj6su8pAiCTxOUTBPl6IVusf2Se3sdnGM8WIKrwL67hhUNm9Fl8z6ZYVeHRlgQ1VhlWoQOnXCuVLJqnyGvb3RkzCyvA4QMI+tHr4/36VLPLCd0gZBvmaA8/18A0Dhcgk1PcsvX768eBOBbyPIaGgBoXjQYsO///57/Pr1a/z48WPc3NyMm5ubsg3ek1z+eJzC6k4dEOAxEflsqsDz6Mqu8hYYE6DhVJHII3Vptb/P7afwcvK6mZaAoPLkuzZJ5XsZW9qrOp+lZ7miLaHWtya1K/ufbwAdQ0mHdNNAySglUNpFgmgYOwDc9V8F2CtKsjgz5l5vH6udnkjgZQZ4HRD4GKFe9rrN+OmiFIleDQa6wc801bTBzMhXiy9SGheSag6n4pHpqPxWn3PPaAYItkQA0jWCJxlivgJIT15rBa6url58KKYaIAz3cx0C9ygYY+yBgIjTFOLh5uZm3N7elvX9SKJHwvatwuKVIplFBtI9XpOcJRnvnk+AgEZf4MaVGfu7CusnPjyvZKzdcDsd44UmqsC7eJ09m65VP09zCvJd5LQY7y2oAgJOKrvarXCM3/1SGSBGrfzZqvyV8dbpWMnjMYvpxLP4WwEBq+ddWdVzKU/qDo5JAscttBkMJAO70shpioH33NPtGjCFclxJsLGkIJlWoeGVgV4p/U6JeL4JYKR8q7CPDx6CABpuAQG9SqipAYIBGZDKUDCMmMKJrCujAX/88ce4uLgY19fX48ePH+PXr1/j9vZ2HxU4FRioBhJJHvYYa++tp3xFnMdLtOptJI9c5fozDgAkG85XAgBJkSRePK+UR/VcilpQnlKbO5/ebp6PHzslI9JFjfjcqcAAZaQDjU6VcZFcsj9Su3QGMMn2TNYdtPK5LoLUUSUH1LXccp1yxvMKcKfjitJauW6evwJOrjukfz0/8l3Zp620aTtiMZGuz2jWoCn85B6/l8UG6TywtKoydUSFPKtwVoVcVwEGDewqCNC16r5vPay3ALTroN4CSIPAowz+LQMOIConTSfoeU4tCATc3t4ebK36kdR5EowSJGVV5VPRLCqwSh0fSQn6dIcDiZkXT4ObjGs1Viog0AH8pNQcoFZ1deraOgEYB+Wr+uu1ivZY6vhbcZjcuKT2Ylt07aL7cq5m/Cbw5rpDvEoGEjjwelWATf+UO96nM0i+KBc67+gtgOEMgDpxHdfz8/NBdHeMHryt8rsJDHRAYNaAiVk39rOFLSsenvNSKaAuD482uBApjf5TRKDzMCojnM6rRSS+85wMv79BoHUCWj+w2+1egB7yTjCg6QB+2MgH7sXFxR4oCDzouwXfvn0bd3d34+7u7tOAgZXrq/dJVT9VBon5zzyhSnY7YpTAvZwEAlLeVLzVOFgBAjp3QEAeHag/PDyMy8vLozy0Sk/4PC0BeVU/b6OPJvJU8eHzzT4XTZDPa95WCQhURibpsQpApKgGPXQatMrR4XMpuuRggPcdEBP8ezSQcpLqUtWzmhrpqFqLUkUWWcdKHnldbfvmYKAqtAsROnOJKu94plCZ3svaMpXhHTwLEyZkqeMtCqMzUDOwkLag5XQBvz3AOX79Zm3ByACjA/71OvKgsp+fnw/Kur+/H/f39yffayBFB7qoz4rXlcqYAYgthn01XCpKioD3OFY7eXf+0tqDVaKMJkDgfPn44lhOXmGKksyoMvwVEEjlfBRVBtav+5qRtDWwe80r8prKlmytgAFRCp+zX72fZ46g32OdPOpAHtwhS1GyVGev34oXXvHs/bcyTZfycKCcbJmD/46WwYB3fuVNdOiQVIURE2p1xJrWH/jgrtBd19hV6MY7qQMQFZiYHSeqPCwHAjTc9OL5Y3rx6fxzMCoPXzjo5fgHj8YY+62Hr66uxt3d3d7LOxUYmL3CN8ZhH3ua1bnaCsB2oHWM9dfmEi/ss4pmBm5LtKHL22Xbx7BkxL21MX6/5SAjpimPBGLId+fRO1V9xshAqtupIwNj/LeuWudEjy/JqkcJxuj1qxOvu8FhBCxNqznYTOT5UJfrnNNcbsCdT/ah182BgcuT2pT2orJhqU38fmc3eJ+y3VHlrCReto5np82RgS0ggNe70I57Dd38op6TgLhH4YBAz7milsB5GCUphErhHKsgEjr3NtkKBPhPpcvBz2MhRv3k0csb87UHmmrQIkSuQfD1CI+Pj+P+/n7c3d3tAYH35UcS29i3hmaaqs09XUec21ulpFArMOH5diu8ea0ydCuKY0vINLWXR7AkJxyfu93uQBY1tgUQCBT8fleX5EH7HHGiU0cERB7yV31Vf5cdP3ePOQHeCpQmh6oy5KTVqJPnk/L1qeRULwcCaSpT/CR973ako27tTEqTdF415rpx7jxTd/NaSr9Km9YMbAUCHc2AQFo34J06xssogYeA+GyaPtB/52Gww6tOSiiv8pSS8ffByTSpTaqIgF7z8ygABcfbIPHEweU7GmpBot4i4JSE8nfg8ZavRL0ViZ/UB6TqunthVETp2cojd3mtFGDiaSUsufLsKnkIklR5mwIAApcEBuKHipoKjp+e9c/QKq125+PYrRTjaiSzuvfR5HpXYNa3r+VYSw6UZFPHIj9eBQS61xmwjlYiWZUsrQAB/otnbyNd4/PJrsz47MBolwdB3gqAYDoHA2maYCu9agGhrq8WnlBqAgLVq4XHoPmVsFVVn5nX4+VWaStDm9C5p/f1ATT0igTIe5dR1jEVgJQotx5OkQNGBnx7Y76qyGgANxyiB0fl1bXfqSjx5VEB59mVkdrXp2OS4iVtnc9Pxq0ak11dqQSPoW4Mers4CFCEiftWSG4SyNZX5x4eHg4+eKWf7vHY5U95+TmjCv5zPrbouLcmdzb00zgWAB/j91QMeU2RAxo/B6suH6vefZeWBrkDAU9P9VsKlf70urhOYxpGU1gWgQLPdaxyO+A4o8rAJ1tA3e/pqSs8kkZ+j+Fx85oBb5RKIVWdvgoEUug0hQ/FQ9cYq7QKNlafnwnwGD26dkNNgyNP/evXr3tP3T9RzIV/rEOl/DqjzXJdkVceIdvslAp1Rini40Qv1vsuvYbJNRSpfThuNKjl4SYPmQaO8k+w19VPz4qfLR6Q5zMDIRzb3LhK38bgLpaUUVeKT09P+zUn3KtCU1BanKqftwN5ZFt2v89GXocvX74crIJPXrS3I+WbslvpaAcElBFvo1Xdn3R64s/ro6ii8q30aDKqM6qcOK8/9XoXKVmhygH0NKkeHg1zG+h12tomm9cMrDaEzwH5f0JwKbwlSuFBhkmUxskVoStTD0+uKIbKeKfzVF8OsurZ5IH6Cn9GAhS+v76+PgANDLHe3d3thVxeuwSLYVj3ML5+/bpXvnwXnP0rftk/ikQo/1N9E36Ml2Ak9a+UrNrHjXmKGigyo8gJ11OwHxxIu2FV+9Aj9kGvdPKE07xhVXd6RH5MvirvzaMJHsnSv69b4bctBAb++OOPPXBlRMsNFGX35uZm/Pr1a/z69Wvc3d2Nm5ub/Surv379Gjc3N/u3V25vb/cyqXa9uLiIitPH+2cDCC4n3ne8NkaO/FQ6qSrPgZOfJ/44PioZSs6W9I3+0xQEZbOqS5LfBHjddtB+JP5WwPIqoHbeuyiJ14H2yvUE01X5rNDmNQNbUFASikqJrJTrv1WePJ0/n4CAC0Vn5GfUpeueT+BJ3jm3HSYQUGRABoqDyr1PKUqFXyVcAh5qk69fv45v377t07EPpGQ5mAU8uMeAnv1MlCICVG6uoOi90vAp/K1dHrmnA9dwVH1NQ+9AQP3DfuJPz/iOkiT1qddNx7OpHAIZRgidfFpJQJVg4M8//zwABFyUKgDlhoBg4OfPn/udLf/+++9xc3Mz/vrrr/HXX3+Nnz9/jru7u3FxcTEeHh7G/f39nteHh4cDQ9k5Djqu2vMjibqNIIA6a4xDWU5RVV6v+s8jAdV5BRzTeEqOIPPgNdYzAe8Z/4kvjd8ZwOuiISzz+flwC2Bd80hNyr86Z306QD/GONAPDtT8eR/bM9oUGaiMbtex6To9yY46IMAGcR46vt2TSoKyMvhTmIp8V2lnwMfzc++bHpdvNOSL+XzNAH/Ja5eh5wD68uXLgWGXEdJGQ2xXCZ/Cttxs6Pb2dhOQfGtyr7waPFIkOvY+49RA+gYDQQENXBcRojwTEPCtDLZpCpEzKqM8ybPuqV7sL19o6kRFWSlzySeBqkcF+J0Mfi+Da1BSROXx8XEfDfj58+e4ubkZf//99/j58+f466+/Dj6U9fPnzzHGeLH1NXWFUzf+P0NkgP3GqJ72E2BbpYhsFaFNcrhqOPiM51XxQarK8ShcBS78mOURtCqdj3lGmWeUgAGvVzwRcCu9zqsoAcuR/p3Zv5lDXK3DcNq8HfF7UkKajoL9fzVakaIDbhw6I8Hj9CPNUJ7z5WV4XjLq7nXR83JA4DsGqs4qM4EBDztJGK+urvZeKb1T1pNlJKMloPFPJRp07wdGZP7888+DCIFHaJIidnDK/iCo0ncedHx7e7vPV+2rPHwc+TiRkdUuf5XH7wrVeWb7+NoJvo6q3TAdEBBEsb0ov2P81yNS/RUh+M9//jP+93//dz/F4O1KI+DTVB4VnHmPpwIF5FGyJ14JGpNzovp3UZ+KkqHrKEWBWWY3BcwyVxzEKg2BidLx3w3tFufP60OeKz5SdKN6Vvd8T5Rqalxl+NSrA9kqCpZo0wJCpzTn3XXWMeW4N+uojoPYKYW1eL514PtA83n92fOzuhI5eju6EfJ1AwpNCwzIW/KNXhKgcm+UZXtkQD8iWSqNh4eHg28RCAwQaHwGWvU4eI1rWzwy8+3bt334W16w+sOnCmi4XG7YJwJfd3d3+3lxzZvf3NwcGEwBLuahPCtPSR4cr41Rb2Tk0QYSp7B8GoufvyZA4Fc12V58I0Zt9/z8PO7v7/cLCf/+++/x559/ju/fv7+IUnH8EQRQH1TRgM8UFSAPlePCKIH6NHnW3Rx+MhgEHoqEUY7kKIxRTwe7MRR1nmqKwnHsrdiWpGeqdlzRSWwLv574qebpqwhNlXbG20qka7XNxnjlJ4wrYzbGHIXSEyHjelYV7VZLbmksAoFq8M/IDULyRhxNb8lfPGq+nu3gXqXvMOhvGvDVQ/LqlJSMBjejBwIBNzc34+rqaoxxuOCOYICerKYWTrmA0L2cGVqmLLqyVNvrn0DM120o/J1AGZWciGU+PT3twcDt7e24vr4ev379avMi2PM5RfeWfJ2Ap63akW3Ef8kd24Vh//SdC98ng4th1a4EBE9PT3vZEniQkUprKRSlUnlpzUoy/u4gvNbBeQ2xfTnOHLipzysjnPjvgEC6pjxdx6Xw9zFGnPn5GHEAvRJB0H8H9iob4lGEis9V2gIcHHR3etNBg9eXgH9Gm18t9FAjK+iLFaiAeC6h1b00t8SOonLzV6yYfkZu8NKxKwJH2mNkZOsDKAngLALhBt/bhNedGD5SCF/o3T1SKU+fo5YSZZswMiDPVKFlvdqo/KmUFQ3gVMSvX7+a3nk/YkjNw2ykpHz4RgEBbJom4JQNp24IzlzR+dsGVPZqy1+/fsV1ICKCae4lQUDJ/tT4e3p6uY99R1Q8HklxQEoAoAWtaTtrbxu2KRfIyuinV2YVjdL0wfX19X4KhTLPKBgBQ5om8PY9FRgQn97GBFLa6dNf+x3jUFc5kKiMobdBMjbuXLGMVQPetSunRhOwqMBNqgcjZane4oP2ZtYO4tEp8dXV0e+TX67jokPl0fBk1zoeK7p43uK6nulMZzrTmc50pv9zdJrN4s90pjOd6UxnOtOnoTMYONOZznSmM53pX05nMHCmM53pTGc607+czmDgTGc605nOdKZ/OZ3BwJnOdKYznelM/3I6g4EznelMZzrTmf7ldAYDZzrTmc50pjP9y+kMBs50pjOd6Uxn+pfTGQyc6UxnOtOZzvQvp/8PAieyQ7MKnp0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5m0lEQVR4nO2da3MbSY61QUnWzW53z+xsxP7/n7cb8c6027Yk6sL3Q8cpPTw6yCrKskVbREQFi3XJKxI4QCKzVpvNZlMHOtCBDnSgAx3ozdLRaxfgQAc60IEOdKADvS4dwMCBDnSgAx3oQG+cDmDgQAc60IEOdKA3TgcwcKADHehABzrQG6cDGDjQgQ50oAMd6I3TAQwc6EAHOtCBDvTG6QAGDnSgAx3oQAd643QAAwc60IEOdKADvXE6WfrgarX6nuX4rrRarer4+LhOT0/r7OysLi4upuPDhw/1/v37uri4qLOzszo+Pq7NZlN3d3d1d3dXNzc39fXr17q+vp5+1+v1dP/+/r7u7+/r4eGhtH/T0dFRrVarOjo6quPj4zo+Pq6Tk5M6OTmpd+/e1bt376ZyfPjwoX7//ff65z//WX/88Ue9f/++jo+Pq6rq/v5+yv/z58/1119/1V9//TWV4ebmZirH3d1dPTw8TOXYbDb18PCwVR6V6ejobwx4fHw8tc1qtaqTk5Pp+aqa3md6OpQf689zlkNpVFX9v//3/35Qrz/SvvOu+sb7SHwjnjk5OZl4Q79V9aRv/PB+GB2JluxL5m2s//xl3VQ//pLvyE/kcecvlu9775/2Gvuz7TvvHujnoCW8uxgM/AqUBC2F7fn5+aQQHx4e6vb2dgscnJycTO8+PDzU0dFRFKIEAcqHvxR6d3d3tV6v6/r6um5ubur09HQCLlVVp6enkyKQUmcaIpVBClzloEJfrVb18PAwCWZd07NVjwBB7aV39R6vCxCoHdS+IuZ9oExJiVJx8j+JbUrFmNJaUoa5PuL9Lq/RNZbFwSqvp7I4WPK0DnSgA307vRkwQEUmQCAwcHJyUmdnZ5PildIkEFiv17Ver+vk5GSyWggGqFQdBJyenm4BCVrjSv/29rZub2+nfPVOVW15LVR2F6x3d3dT/lIOErausAkMdF3nXZvxvbu7u6kuVTXlnWiJ5Xmg7B0gr1IBJsBVta0YHex1efo76Tf1oYODXS3YJV6JEQg40NulxAMH2fLt9CbAgCu1zhUrMCCFql+BAB13d3cTUKBwlJKXp0EHwQCJgEAu0c1mU8fHx9M0gsDHxcXFVDa9I89CKo8PGNXHvQOcSphrQ6WpNhCNLDm6qQ8DdpuWuNIJCkaKcKRMvf0TCEhAhGlzKmJOie/azw6oU5kOnoG3S3NepwRGD3yxO70JMODkQtenC+heX6/XW256Wf0SjHSrC1jIy3B2drblcZDCluKvqifKXemcnZ3V+/fv6/z8vFar1TSFoLw0lyqPguZTRwqjmyKoqqgwEnE6QWmqDe7u7mq1Wk3lYF6dK/ut0mh6oAMErqi79iS4SECNfe/AmFNRzEc8yzn7Li7kOYo6Wf4q22azmcrY8fCBt349cl7wa7w38lQdeGMZvUkwUPXIVCnATxbtw8PD1jy/zo+Pj+v+/n5SiBSg5+fn03FxcTGdn52dTekyAFGCTgJX/9+9e1cXFxf1/v37Ojk5qfv7+wkMKJ7h5uZmOtbr9aSoj46OJrBRVU+EJr0DHvvA6QIOKPccCARUPU4TyIvB9tORFNOB5kFABwpEBK6ebrK2OyBAz5f43MGAA88ECtxTpvNU31FbaBxUbYNYP9LUyIF+bkoeIj93Sl6qbwGnb5HeLBio2o76pxAU6V7VI2igFUXm0vTA5eVlXV5e1vv37+vy8rI+fPgwgYKjo6O6u7ur6+vrKWCQgKDqkWEVN6BVD1U1AQqucri6uqqrq6sn0xcqOwP/vO5OnBphOmwPlo/eDVJyf3dK6y3SUq+A81xq5871z2spv6qa0tRUlg6CggQ+HRRwNc3IU5DaIR3Otw6IHBwchPyvQZ0nwEEwz7t4FvcUMM0Dv2T65cHAyBVe9TTyX0rQI+FdULsr9eTkZAICv/32W338+LE+fvxYHz58qN9++22a/7+9vZ2WCmqp4u3t7VQWWuir1WryEGi1w2q1qvV6XV+/fq0vX75MgIDehjmXGs/dC+BBhqQlbukEJugdONAjdW7xziMgIrAatelcUJ48Yqenp1veLA+mvb+/nwDs1dVVXV9f1/Hx8cRzAqhpzIziSdI1ji2NhRQ/Id5yxXAABz8nJQPCx0PnVWLAdBeYevAgzdMvDwZIDILiuvyqbcE8WqddVZMngVH1UtofPnyojx8/1h9//DEdv//+e3348KFOT0/r9va2vnz5Mu0Z8Ndff9XV1dW0dJHKU5a3ph/Ozs5qs9nU1dVVff78eTq+fv06TRWcnJxM5dVUhrv/VV/+Ovl0gUet0xrU9AZBFOngGRjT0ukBggLvV2/bkSD06YGzs7Mtb9bl5WWdnZ1N8TP39/cTz41WtHgg4JzAdY8Ar6W2ca/BYbrg1yDvex8PMtJ8DFRty3TJIcrtNC6Y54FPHunNgAEqKykyd3P6vdvb2ycbCrkg1S9d+hKoAgbaUOji4qIeHh7q69ev9enTp/r06VP9+eef9enTp7q6utqyqBkgKIF/fHw8xRFos6TLy8u6uLioq6uradqBSx9V9hQH4O3jbudupYHah6DAQROtxA4kvEXqLKBOAHJjnm56oepxXn1kFXlevgmWvFqXl5d1fn5ep6endXR0VLe3t9MyV+9zbjhFz1ZX93ToHhW+6sS4HB4EHu4dUHoHQf/zUBoHjOUagVDxoICr0uHSaj1/AI49vRkwUFVbYEAudc196twBAwVfVW0J0qpHL4EHC8rVen5+XpeXl/Xx48f67bff6ujoqG5ubuq3336rDx8+TMr806dPdXNzszVV4Tuvcd8Cgo/z8/NJqBNBu2B0RM2BkAIK9bwGGBU7PSsKIExggPkdBt02uVLsYgW44ZT3oZQwp2Xm3PMUtJp+0hSBwKzAwGr191TVZrOZVrScnZ1NG3KxnLTYl9Sd5fJrVU+nQ7q4gQP9vDQ3BjyoNRkmDgI8eJp8dJhK6unNggEBAv2u1+s6OzurqsfdB5NXQEKXc5tS+gIAVMhi7NPT07q8vKzT09O6v79/Ah5OT0/r8+fP9fDwMFlkAgQCLJoCWK1WW6sfBA6UbxKSSWj69IGmFUZWfJpmkZcgBe10/w/0NNbCPQIe2S8r2efIucyV13lOEKCgQXm0BAgIYnVdxE20eO5KugODrPNoasA9WAQ6Pm/cTS0ceO3nIJ8OmgMElG9VWcYkr5jHKyUv6IFn3iAY4JwSvQRaOsW5Jk4hiKSIdS4Xq4QoNxeiZ2GzedxM6OjoaEvoitHfvXtX6/V6GgASrirb0dHRpISlHIicKew5sJJgJghwQODom+/QLZfWnaudD9STK7/u8KkCHSIHA+INCU3nW3kZBCLpvSIAYJ5eZp+/Z+wMwYDKR8HcWYGdZ4Aerbmja+cDL+4nOZBznkhBg3ymqp4AYE4f6XAvp+jgIXhKbwYMECmOpgt0n2up9a5HOHOTIXoFqv5mVH1M6Obmpq6vryd3Oj88498cuL6+rs1ms+XyFxhYrVZb2xZXPV0N4YqG8QJOHCAODro2dCCQ1pvzeUf/b5mSt6bzCvh0gfjE+/L4+Hgrkr/qccrHlblvv+2egPTtDP2yXwkqNAZSMK7HkbgnJAn4UZuNgMBBsP88lEBf4gleW5JmAgOUf10wod5/6/zzS4OBThF10wWKGZDSU3SqSEKQVhE9A4q+FphYr9dTFPaHDx/q8+fPdXZ2tjVXSyF4dHRUV1dXk3UuwLBarSYgcXt7Oy3pkrJN1qQsto7JR1MBCTWrzfzXA8lS0Jq3/1umztJx65/Azve3oMeHwk7PMKpaRO8Td8nU9AD32GBktniZ4NNjDjhO5gBiBwhIyZLzeeGRZ+Ag2H8eGnkGOr7wlU0pLQcGzic+lab33zLf/JJgIFkTfl0koSnPAK/R2pGgdKvNLStZ8uv1egs0cF6/qur9+/eTh+D9+/dT2lpm6N6Hqtr6VLGYls9IOPuOgE602DphrfNucHBKgOkl17D3w1ukkVdgTgjqeXoK9L+qtvap4NSSKO2yKX7UFIF4l+NBJLCsPJSG86FAqzakIijphHZn/XkMinsdnJ/4/y0L9H2nuemBrn8JbtnPLt8IBAgIREwjgYC3DAh+OTAwckElgUsvgJRw1bZ1VFVPhLYEKz8xTGFKj4PK4bEECig8OTmZth2+vLzcUvish9JkGRTdrShweRXo5fBBlZZW+qBROfluF39A8nTe6sDqKCnBkSXUASwuNeTcPQGsiNMP6SNa9GhxmVbVY8Co+Il8x/qoDgSs5C2CE5F7BpQnxyD/ezsy/wPtPyUg0MXLdF4f8maXB2VtJ9coy9wT+lZB5S8FBuZQp0dEk2EcDNA7oDSTFc65UwbYyaXpgIL5ERAcHx9PS7roXvVpi6q/LbXLy8spfoC7Dx4fH9fNzc1WvhxQ3L9AW8tSgFORMCCM7UEL9CCMl9NIGLrwc+8UD669p8dAq03Yh/Rk+Ty/R2kTuKoMBLecKmAQLdP35bDiNy1P7KYMlB/rrnOfrkvWY8eDb9nS2ydK/TQHCNK4GMWWdOMr0dwKAy/rW+ChXwYMJE8ABZUrcX6JsGp7Ix39r3q6YYsLVd8Mxi3uNN9K99XDw0O9f/9+ijmQxeVlUFpp8xnGDpyfn0/LIkVqC83/+tayNzc3U356z11rypPLvIiwkzJj3xxAw9/kiiwpNvHFarWa+EnEdld64vGq2uI1/dKTJP7xpVrqLwbROiCmp4l58r82KPKlu513QMT8WE9/xtvSf9+C0P7ZyMf9Es8A5TeBgKdFPiEfOAhwb6We8fiDjofeAjD4JcBANyWQNq5wN6kEYrJAEhBwJlXeXN7FZYqykqpqqyyuHAk00npaKWoKYK+r4g/k0qUCr6oplkHfRiAY2mw2tV6vnwwsnRMkERD43FxS+G8dDMwBgK5dCArcSqfXxnnRfz0A0YWqB356gGgn/BIgkYeMQIBeJ3oHfAVEWr3gv2xP1vFA+09zY2DkGXAeT2n7OWVbOqeRQyAwByp/VdD504OBERDweX3O7/M6rWZHlI5ORRTOBBNcpuhR3ZyzTfsBeES5KwtNPVRtR3XrOD8/n1YjpLLf3d1Nqxv4HQT/8pxbcCyDryuXldoJeb7/1gV3570aeQX4rgCjxxDoPr0BXV4UgORdkfKXNc/YFS8r0+3AAD0EnOri+EnTWenaqD3TvV9RYP8qtMQzkGRhInon+V/5dKBAaSYg8Bb556cGA3NAQACAa6p9nl9HVT1RhGQ+ggR3oYr55BHw7xqIMa+urqb801IyloOAgQJXy8JUPnoFLi4u6ubmZmten9MS+mLif/7zn+maAxh+BpntwP9JIfG/D1r2z1ujZP34byK1o4MteogYR8B0kpJMVlDVtnVPnvbAUoKRzjvGPQc4VcBYAgbm8vsZVbUFYjseStf9960J8X0ml9HdWBgZQUs8Ah0gcLnt5y6vHBD4e8z3V+OznxYMsNM7ICAAwE+zMlbALf7O2qKio0AW81HIMaCP7tbNZrMV0e2BjLTc7u7utqK8uTGR0K22inWQoCkJAgzV8fb2tj5//jy9q/Lqi4cCMJyjTgOSUwU6vJ28r96iZ4D1dSHYWTwEAbRcOh4kEFU+Hi+SVoAQBHj+vrGUnvfd3rw+IvGHfulJ0t4XHDssw9HR0Vae3eqVOY/BryaofyXqgEECBb5qhuRTmh0gcGPEpziZlu6Th94KP/2UYMCZiBY+4wK0978+FqQP+shFXvXULerWrTOBu04pnH2KgIq5qqYPEX39+nXLO0CUrHl9bQTjO8NRCB4fH08fk9G50DCjxiXEb25u6uLiYhLCCiLUFw+5mREFMq1GpUUBT++DL9thfx08A+N5UVHnXdE9WvBSpnzP303z7qlseoZgl1M/BLV6n33KaQpfmeK8sQswJEDwOnl93ooV9zNQ8tp04yH9d3lHSlORVRkQOLk30/mfnoERIPjV+OqnAwPONL7Mjzus0StAMEAL5+HhoV2TnxhU5C5VBgtyK+OqR8Zdr9d1cnJSV1dXrTLgR5PkHVCZuW88B5SWeckaY5tw06Lz8/Oq+hsUfPnyZdoV8eLior58+TK13cjVT5DgB13a3o6jgf0rUsdHSSB2it/fd++MhJ6CVTsgkMBAEsp8x4MHyZ8EJOKtJWUncXwQeKSARQcVB9pvSuPcAcEIBDiIEHVeIs9nCSCoyhtbSX7p/lvyEPx0YKBqO/JeMQHcBZA7/gkQMIiQYIBAwIWmvA6cgnBvAIEAvxvg6/zFWAIEKj+nNsTEd3d3T8AAD37TgOVVmV3Ic3B5fbgOXb9pCZgPRLf8lL5+Oai6wf2rU6f4546qbSub6ZG45C8JSl53IKC06Y4lP5HHPU15jrivgQQpy+jxB+JtKn4GKvo2xuQxAgWuSviVhfPPSHNAdo7vndKc/hKaAwTOO8kA4vUOENCj8LPTTwMG2KkEAvwOu5S9PAa+n4Arys1mMwk0riRg9L8rS5XFl0VR4HngoNLiZj/Jq6H0NVXAL8lxxzhOHbAMdOPys8dKd71e15cvX+rr16/T/gIMdKzKTE0LzpeJUWgnN5p+3xoQ6CgJv84a6oSThBw9TxRSbkm7UnePDvmoIwEAxSnQE5RiX6i0uZKA/zvPQHek2IkD7Q99KxDwceHK+lvL5d4vntMQ7DwQbtz8aqDgpwADycVEr8Dl5eXWXv9pTrbqcUMgMp06TwFxdJnqfV8KmOIK3GJx5ahlgZxKWK/XdX19vbW6Qc8KDHBJpIIiOSWiMlDYrlaPm8qwzOv1uv7666/6z3/+U3/++Wd9/vy5vn79urUTYbLIaMXpGS4XY70PNHaTipa0FefZ/T9XFPB59wYk4UYQwCAs7mMxSseDsggGXKAn7wBBC887z0ACAWnq40CvRwkI8JxTAT49MGcsJJBL6qYBaNw5ICD/kJ84VTCalnD5n+r9s/HmTwEGquqJ8KFngKsFuoARd30zYI/pOyhgcGISynpX5CDA3Utce71er+vdu3fT1w0JBugBSJ4BD4R0aysBoZubm/r8+XP95z//qX//+99bgOD6+noKIGQUud71mAgK+DTHzH7zNnrr5G1EcKlfut0pmBjTkdKhNc60mZ6Eo1z9eo75e7q+MyWFq0CEe95Ypi4mwBX8EjDg7fizCd1fjTogMPIEJE9tmiYTLYkX6Mg9vh4X4MqcPJqMHAcCHQD42YDBTwMGqrbX1XMfAX2GVVMEc4IlbSNc9bhTn6NW7gpY9dix/ELbnLJzgSfFraWIJycndX19PaUroJB2T2RsBMEAtz7mwFJ+AgOfPn2qP//8s/7888/69OlTffnypa6urqblhUxHZZbi5/JDCveDd2BMSXF1yq3qUSgRDJC3E7/5VE+y6AkQUzwCfzUVwPQ7LwPTJkhOXoCuHdK47YBAKrNTAkwH+r7UAYHkrXU5S4+sK9Kk0JeWRUR+9vgYUTeGeJCvRjyWgME+8+PegwFnmrSMkAqzqrYUFAWYFBqVOyPz3X3FeAGCAbpJpSj5jltPJDIVFex6vZ6Eveb6uTSQOyr6xkWqq3/emMJVsQpfvnyZAMGXL1/qr7/+2lpe6B8sUjkFKLrtZUdAoLM43zIlYeMCowMCnVdKwHQkOCmMyeMcC15GnZMv3J1KQc/xwfcTfzC90ZTAiLeW0AEYfB/y6QD9zh0ODBwIdLIz8f0uZSVwVZrpOQfiSwFBx2euE/aRF/ceDIjIQIymlwBLbiWfq5TAk1tTm+8w+Cl9zCWBAQUD6n+XT1KE9A5wykBp3d7eTmVxRO27JzJN3zWObbBer+vm5qa+fv06eQK+fv06AQGthPApggQGOLdLQe1I+AACMnl7ucIbtZcLTlpRnZAiKBBvktcdFCgtCkyWKXkaxPee10hZ6Dn3PnTKPymbdG8OlB7o28l5NHlpkkdgND2ge11eo3Gxa78yTwcZDgR0Lcm69Eu5l8CD8tk3XvwpwEACAg4IRO4RkOVNdyWtZwpHX8/PdfoEA0pT+VMRK+1uCsEVNVcx0CvQBdukgC3Wy4OwpLwFBvSlQm40xE8gk+HpHUhpuxLrBPjo/q9GLrg6Ada5IVM6FFT6794tkYBc2q5Y7xPgejwMyZU+p9G8nCO3bee9cCAwIgc5fnTP/wxC+Geirq31u8QL0PWf85Jb0SNeWWJxExgnw4VeA1fivNaBeZ77++5lW1rmH0l7DQacoXz+nFZyFziYAqpEHo2tXfz8q4aaoxfRta//vuEQhZ5bPrrO3eMktF3RJxevDy6VwT0UPg2h1QsCAZoW8KmB1I7eJ16vJHiXWLq/MiVLmJRc4c7zifed7/UchVby3DiY5Ps+flzxsk4sK+upPFzIM23yjM8NM4/k4ZgTnh0AONC3UTd+E/BNvOvTAd148LT9GU7BVo3BQQcgqLSTF8o9THOKn9e6g3FcnXzcB379bmCgE367vEvGkvDyyHouJeyC+RzRSekSJdL1SmGpwER6AWjN393dPdnLQB9m8bLQ5cR7FN502bqw9AHmaXPagUsANQUgAEBvgMdVpEGo/76vAQeMB4h1af3KNOcN2CWdzhPmYMCBMD1EDtjIWz79lcYM+X21Wm3FpMy58ZWfTz2IfBUPlQbvJeHZ0S7yZR+E777TyAvA884b4Mp/BIh1PspzKdCjAmYeS5S35zvSY56ee0tT/FZX3n3gyRcFA4lRRN7RI2Gic7dkfHmdb9dLq8hJ16nAvIPonnKBqTwYfHJ/f1/v3r2r29vb6RkJTIKTZEU7IKj6W5Drq28EJwkc0WvAqQn/NoIOBRD6FwrTksvUF4y10DUyvUAO2/QtAgH+H4Ghjgc7T5h/pyJNJblnQf0iInjgNMPIxS9eFB8zJqWz0nxqy8GAg3G2E8vfeZuSUD/Qy1FnDHTnIxDQTQ9U5VUk4tskh/ROVfYKOB+MFH53LdU7gfyUjnjVQUBXFi/rnOfre9OLgQEf0On+UgTo1sJorT0VdlV2PboL3BnArWNXZgQGtJI90l+/zEsWlYCKKwgCg6rH5YocGN6uEuic0+VGRgQBBAO8rzyVv9pNgjr1jQCB6iim13tsW/bxW/IQdHw9V3/yBpU899QQj6XPWzMN5ktQ6fEmWpralY2AT4CXAaZJuHreSXn4Xh5so5H1OMpvFwF6AA+ZOhCQ5PpzvAIu9xwUEAASEDi5LCfRGOws9k5Rd3XveJPAJMnBlMc+g4IXAQOJIUYoakk6LgzTdrx0lzpjed5Ly5I6Klk5abnfu3fvnlg7tNqSwE8DTVZYGnz0SvBcip6fUKb17+DAAykJCEZgzZdOJu+G12ck6H8FSkIzjYVO0aV3nf91TgCcwEA3j+rg1QNQvSxuwQkIKHDWhaxPE5FfdS5eSePc3xl5BUbWXNc/BwAwpk7R67cDBiMwkAAhKYE7GT8JEHQggOcdEFi6GsDbwuvo1zeb7TgdemtlsOn+koNl+dGg4JvBQFJuCQyMEBEZS2n4XgL84JCvtaeyZUS/b5VLxUcm2bWuEo4OVM7OzrYsHsUOyJJmJ4tpumBBtZuXj1Yj66y4gOvr661pgG77YPeWJNTbAQKVQ14ECnmfEmG7/apggDQHBJJASe/6/D753WMF1OZulTkvEhCkqSaR39tsNhMvcZUCBa6DS1cWuk7w6HE6FKBOS4TngXanJSDA+XgJIHAg4Pqg0w8yMOipJHV9vkuMgKczZ6CyvCMZ5nqsAwJephS87frxR/D4N4GBTni5tcIKd2CAgMI9AvoGAQ9+gIfKn1Yw18X79rr87eqUGIBlVfnSdwEUP+AK2NOpylMbBALORG7Fa+mgPAMeE+CBgklwO7JVXksUOJWR/qf+/RXBQBKSfj/VfwQKCKrp9eL4IJjkr3t6fCwlr4KDTgf2m81mi6fmwECy1FhHgWn9+vdCeD4SoqmtlwjRHyVc9506IDB3+POj9zwfJ1eUyaJONIoZSPySzv1aV77EL6NrDiD8eZflaqsRKPgRPPtsMOAoKFkdVU+D5SgwkpBLFjc/RawP9dAjIEUsxcfoeRdgstJlsbOBfamVyiNKnc853c1mM70jEMBlfnNeCLWVezF43Qcb4wVUb+4kSKAiQOQuXWdcgoKE4vUMy5x4g/9/RTAwAotLBar/dxerKM2f8lkvF8FEWorL9EfeJ/EYpwmSgiaPu7Wjc+1jMaqnKAnp7j9Bi/+yTQ4A4G/aFQQ4n414rrvv5B4kl3niu6U08gKM3uk8DXyGXrfEW52BmwCBv5P4MqXXPfuS9Cww4J1OMCCLXc8wOE7kg9jfl8DiagFNEXRAwJWiR9aLse7u7qrqb4Hn9yg801f/9K57OvSedjQ8OjqKQCApTqZFwDRnyfN91ZXfFkjegDRQukG7BLi49yLxyFuhkRBNgVR+za1xJ/JPsphSWjr8U96+nJCA198nGFAQoQu9qprGIgEozzV29GwSanPWXGrzOct/yTNvhZIC12/Hm4l3U1pdHlXzsmGkFDtlmmiOT8ir/t7IA+Fgs6tjkq9prLBMykPXNN4oX0cg9yXpmzwDFBycy0wuSz7PgepuTP4SDDgQULr0CMhdnubJveFVbj3DDkxuUkZQU3kTULi3g3VMyljpsk14j9ZUZympHClOIEV+p3RYZh+A7EfvU0/3LdESi2rufidwSeQFgsVRWjw6bx1/E7hPY4BTcw5gnBf91+ui91lPj2VJfMf2n7vmArS7/6tTUl5LebIDA04uN0bGhivm0TPd/a6e3fOpbClPz380rv3dJMNTnbxMqY1p/P0oQPBNYIBAgICA7sdRQ1JgJRCQPsqTgACnB3yunIpceWqp39HR0eRa59f62BG0eBwIMG93ybsrXvWm4BQ5AGC6TCsxV4oJ8Py9Pl1/OvGdrryjNH9F8sG85EjP+rXkKnePUScUKSRcoXO86Nk0rcMyMB8CxNXqcetjjz1QHtqLQmOM0wqsi9fTeWkEXF2hc1y50H+rAEDkbd3xY/JUzQHVqjFgG5VpBBa68jox2HRpOjx3XhONQEFXppRWx7spncTTHKc/AhDsDAY6FJncnB0j6txjBHwZlQsbKiW3ztMaelr8ek/CTMJK72l3PgERRU7znaSsHRik6QBnLpaJaSYg40CAabk7yYVqig3Q79zg8XZLnoWRl+FXpAQEljy/FECQ10XqA05RJdKeAUmpcsx42iob967QtIDHzKhs7gkkGEjWfgoSTDQnnF0QjgQiBb4Lf3/uLYADBwFV2SJdMkVQlUHAknZMoK17Lo0fB6zkNxmfo/qP+Kaz5AkIvDye1tK2SLqR03KJvjcgeBHPgAOBJYPU3yUSdYHonSxhkdbPdy5ykXsJ1ut1HR8fT0Dg5uZmS8Bx7wAHA75aoVvK6B2fPAxMZ+QRUNt2c/XezmwvPj8akA4EuimOOeSbhPjPSMmqcOGQjl3TT3zCoE9dc6AnAeL5u2Xh74vooSOoTJsDeXAtp+2qHve/GMU/JOpA5y6Wp/N8BwjeIgDQ70j5zx0jSvJA10dGIa+N8qSXK9WN/Orz/NQfrtwTAEjlTxb9qC1S/bu28GvJIFBfJY/zS9GzAwjdmnErvutwvk/BUvXYCHR5c/c+UadMU+CcK2WWS3OZI0tH1g4Zjcrf804WOfPWdaWTQE0HBJiWGKMb8EuJzE7LzoFAas/OK5CU2s8OBEaClf8TzQmE7h21rxQsvw2Qyim+oCLlHHzVU2Cnd7XOX2Pg4eHhyaeyuQrBhbbzhY9BXSclfuqsIrZLotSmc8DUr/1KlJTOnNW/qwyZMw743Jw+8DKK+D+lkeSgzn2TqxEI8PKm8nfG3dL3R9SVk5SM4pfk3ReNGfAgpY65EjNWPSrf1Wq1tQxJbkYRBZ2e8zX1nfVMwcXrBATMQ3OgdMP6FEVS5smiJxFYEBCMwATfTeSIkgNlhNrdwhQ5EEiKJJUxIfifkUYAIPF26uPRefp1QEblLmWte/qSJsdTN8fLNJzH1O+pj10AKg/f9VNjMW2JnTa76gACy9opmjQ20lhLfP/SAnQfycef80fn/h+Bga7dyFf6n8rjCjGVkfmOQIADBl/+zSnhBAhSvnOgZiTLlxDbj33C9Ob4VvS9vAPfvLTQ3fx8ZiQ8O4FFEEBg4OSWj4TRnNLqOv36+vrJfKcUND+GJErz9e6tUDqp7PpNljcpBZZ5umxL9kcCQV2ZdJ0C3svlSqRL35n6ZwQEI34dAQCRD/4ODPCg8hcIdXe+nqU3TXzqy/687b0PdYyEj+oq3k/WisYtl7dyA6y0ERbBgSuU1JbeZiyj91cHFlxh/YqgoAMCaTp2KWhP7e18mwBbMgw9TdclVdXyGpVnV14qd4FnD1pNwKCrcyr/rjzTtQPHO58jIErlYv1fEtw+K4BQv+lwN/McIFCFJAAZvSxKUw+qvBiRwYKu7FNDqXy+la6I1v75+fmW25Rl9nbxQeJeCpKXzwVwqvMI3JCc+Ze2idejyzuVPQ3Qn1Hgdjz+nICqkaLtgED3ngs1gs937961ANGv6bwTTuJVTU04yFDZExDQJ7IdAKSDK28SJX5NvK76+H9vR9ZNaXWA7WekkTHWxXdV9QbLqE06YJnGQeob/+8KcAQEnLxflwCFVB/WayT7ltBSA8jHu8sef47lmIsb25Ve9BPGI0qVFTkzJUZIKHak2FKezKvqKWC5vb0dRnTruwgjwONzWHquGzCsTxLg/pxb5kzbrS2W3+vT3XvOQEppdUpo3yn1RediFXEwJyHq7eLPU7CyDInIm1LWvpOm1yXVJ1kl3Iyos0pcCQg039zcTId7BVKcTbIm57xgHZhN4zy1tYMdT+dnplFfd8HaVWOlPyc3nBfSO572c0EXp8/SPS/nS/TrkjZJxDr6eUqv03tVj2Mi6cgun+fSi4EBV7CizkJJ76WGkwKs2m6YDtUuyYv/JdCUvt4n6vJB4Du4EdVqAI4QZifIXPl4WQkyOAA9SMzvp7w7Bk2ArUOrXbt29DMBgiRM2TcdwNT/jgf9mQQS3crxtAka0oeDEs0BUcb9+LnXlSsc5BW4vr6u6+vrCQz4VuD0AhAcLAFAyjdRBwRS+xEEJQXyK9BSIOBAqWo8fejnzrdLQdqor1KeI/n0HGL7uAxfUv9ReV0njXgztUvSfXqORia9550efA7tDAY6BTNCN89N2wWqBrJfT40/h8LIvIxNSMzn/33VwWbz+BlLuVSZruZ1O3LrcymTpjrNgYBUJy+L58trCehQqXlaaeDtK6XyOkBb4mIdpZ3I+697RukQAHhgnmINvD9GU1ZeNwbTJktSaWh3wfV6vQgMsC7cFZRtRKHXjXP/7+3aCWUCAQICf+5nIwfrHRBI43CkzP2/P5Pkafeul7V7J8n4XahLlwCI/1mmLr10PvesA4GOR/Weg7NkiHnMkIO5b6VnewY6hkgNu4siGFkA6X9CTl2D0jJh2asel/p5J3kdNpvNND+rfPU+n/PO86kDT3ekKEZtxcPdr7u6z7ryzd3vQADPOxffvlAHADqvwK7Cagkw6kCBBxHy3DeqYsAUhYbzPstFF6zXN+38yYBdxQnouL6+nsCAr+5hPZXWiHe6duxAQHqW+XFahIDgJa2r16IRiE3erEQJECSg0IGCrlxzNCeXqp7GDFC+d7zVlYf6ISndpcBmV5qT8x1vdzolxdd9Szm/aZpgDhCMhF93b8Q8iamTxcDfND9WNd6EJZEDivv7+62PMo0Qspc1MaBTh9BdYfAQ+RzekoG6ZND6gGF/e/27gbaPlAbeUsuq47+UxxJed4CqayKfQhAg0EeEnE8dDHhZVTcCgk7Z0rOg4EABAMYLMGaAnouqp3EBCRCkdktW01Lqxqd7IF7a0voR9FzedZk9p/SXAIKuXK64U57+HNNIwYPeT6M+c9CnNloStJvSXgp8Ut/w3J/nuPMxSCDgZfbnn8u/zwIDSTHxOikhGl7XPU/b3+f/qu0NiniNQsfTd+Hq86xdYBHT2Gw2ExDg52D5HhX0kvYhzUVWc/51NKD5Tpe3p58YydNMA3JOmOt3X8FA1VN+dLDalT8h804odACJ7cg+SMKOaYsX+LVOgl0GwybAq3qm1QKr1WryMPhyX04PuGeAYIDTBGwXCneOlyW8tgsPeb+oXVJf0pvyMwKCpUAgyW6XE90zuiYatZGDtw5geh5+n8ZcGled/OYzfu5AII3zJaCgq7Pnn2RIV6e5dBwQuDf8W+ibpwn8PyuSKpzQkSNW/qYGHLmc3XtAZU1B2eXrlpe/SzDgsQM+D5nmdX1QJEQ3UuDcpGgECtIKhtRnSWD6/yUgJt0fpb0v1PHjyL06UhipXToA0AmCuWviMU5t+ee1tUw3lZ1l0bSCftMhHiffyfInGCAQ8O+EeFu4x84BdKJR2476gs8I0Hib+Nj9GQDBHAh4LhCYe0735sqWlFonqziFo/eXTm9UPQUCbix60GjyDLhe2LX/O303BwgSJT3qnjtvt28Fs999aSE7whlE96q2O0/3SM+Zc6bAYedzrwAvE5mUMQTr9Xoqn5ZzEQywLnqOTJbma71e7rlIaFrlosvWjw4YME2l2zFNAiZz4C7Vb98FalXvXvU+dT7hdaUzyqN7Zm4AdwBBvKipAtHDw8PWlz67dFarR+tfdRZPa5Mter8INLjToECAAwHfBIx1p6BPSqird+I9naf6sd2TgeFWafrdR+oUTgcGRCPlnv4n2TFqkyWKO5WD+uFbyeNqHBB4Pryvft8VEHSAn+eUJyNgO8qD5fQ4OdFzefebtiPulEL3vN93xKPzufn7UWDcUiTJZx2VKk2mLWuIQlgxA3S3urKg9c4ljMrfpybSVIXXRwI57eKWAEIa/EsEXhIQCfHrmk8FpbbcJ0qD1QfuEl5KAMHvibo2H7XNCAxovLCvCTwZCzA3rvilQsUg6L/qQW+XYgJ8g6FUFo8ZcB7S+Ei86m3ZyRpv12SNUdgzbwcEPwONQIB7XvQ7x3dLwcIcdcDZ5U46pOAeHh63354j6pBkSHI62RWon5Oeww9z8mSkK0flYD3VVh3AeU7Zv2k7Yp0vBQLddQqsjvhMGsgdifEonJh/Ah8uPPx78uwECku5Zr3cXexAahcOCBIFuspEQesbunRxC8q3U+wsR0dz/Z3e31cBm3h5NEXg71Qt8wyk55leai8XpqP0kwJOIMAFPe/RS+CfMPa0yHMCAun7A87L7qr168mz5W2lX5534MGPpOR8Kea+Txd4G9CL1fGsy5+lddoVBKT3R1brS7TtkjFKeV2VPdDJOFjCA4knPZ10dGXv3l2Srug57fri0wSjynWKp2ocOKf33brwd9N1Wv1pzkjnyaIYlVFpk8kYsMXySyB6/bs53dQWFFC+gYsL0O6jMKrbCAiMBm73XPqv9/m7r7Rk0M697zQHhpYIxNRvXX4iCrwkiJ0fnd/Ew/QMuJLhe2k6LI23VH/n886L5bSrQE1TEiIBgZd2uX5vGgEB7yv97lqH71XnBAi83+eMFVHqm042uYcgKf/n5pWUtZ/vmld3Xf3tMQ4uI3bl3W8GAx2TdRb30jT9XBVLQiS9r7ySQEqKf66TJexWq0cPgK7x868OTGjxeD08P93r3LoJ3S/xDDj5INtF+S0BAV5m1ntfqKs7j1EAntNSZZ8GaAccklLaZXCLR6gE6YpPgIBKhcLGd91k+l2+qe5Lyrv0+aqnVlx3r3vOgfy+Kn9R4lsHAk5dfyzNa9f3OloCZr8X7ZKnK3PXF13aiddSmkvK1YGMObntIHAXevbSwpEgeG5ndyCgS3+uIUfpVG0DlpRWCh7zr8kpCpvP6hrfpVL2eTDlzc/TKn8Kawp1AQBX/KMpAmcs//V5xq6P07u8x/ruKtx/JI0Q+xJwlITEErDg6N0RPu+l9B1opMOnwwgcOdXENMTfysstaoKCUV2XkPNkArp+TuqEYHrGz/m/CzBLQGxfaAQEvG9G4/g5+TLtXcjbsANuS971e7s8r7yWkCvfOVnY8Zjnt4R3U9qpTCOZsWt9v3nTIQoZR9wdpblCT9d/2Qj+O0dpK2BfxTBHFBJctpW8BB4o2LWF0vOob/8yotJmxLjaZgkY6PL2cixRfksAmP7vq5W1FAR07bFLfXa1yjorhMpK/2XV+jfb9V6aIx3N55N8+qtqG/juqhy9DUZKa4kCS0bBnNDt7nG6j9f3lW+9rz1gUETvz9K052ikHJ+Thr/3XNDl42bkhRi1RyfHRmXrQADfmQOXc//nypr4dlce/qZ9BshsOh+5VlOFKaxY+A4Q+PuiLnhml47350f1cOuddVFZkqCVZaWVCJyX7SxzfTPBBaRbe10AF5VyN588BwZG/ZDaawnyfU1yYTqnOKqWea54f/R8GqgjVE/lTG8Cx40Ao3jGrXgfr1V9QJ/6uZv+IqXpKca1JMXu7ZDK14GCUR8tEd4j2kdeJbGeo+WDVU83VfM0urR1PgKLu1jfnazhOcfhqIxdWRIf+xibU4ypTEsMzq4+o/cSj47qznE8J7c7sDZH3zxN4J4BKp8RecVTjMHISloCBPSsp73UG+AeCApj5eWgQMIzMTeXIAoEpP0KKCC5jpwu3M1mO1BQ52m5oddF/5cyS1Jso4HCwc022wdLywdtF4C1hFJ9EohNwMHbbgQqnPc47lwJss3pSUplcwXfjTeWNQUTchdEX17YKSSWOcmTERhw/uuEYff/Z6ROAbgicr5bqgD9mt5znnMaAdhRHl4P8pXLzV37z/l6DrSMjtHSPaY9V94l4GlO/nR878dz5ex3CSDsGkP36EHYpaNTYyVrJpEvLRmV0a/xWQcsbmm7u1/vyrqi8uGWxvQQMJ/VajVtM6uBOdp0KAlTpZOAWgcOkjBO/dz1vYO8b2HSl6YOEDhvJSU01ya8ttQqYZ/MPdcdnAYYeecSKE5WSiofxw/5NAECNxJE3bhzXu4UUOJj5+lOwXkaozrvI3XAx5XAUuCdlDbbNPHXc8fxnNJ1UFM1b7TNlYMA2svi00IJEPP/UiCQfrvyjuRQqusSIKD0XO4voRf5UBFpNLjSAOwU+NIKdBZ/6pDRBhZzQtjT1fUEDjqA0AUO6h3fOjkFIcr9ynXdo+kBvj8n+BIYSJbdHLN1g/q1wUAnRH0wjSxRv57O+b+r85zyGinBlC+FtcfIdGVwz0Ii94Slb3EknuxiVjowOgp8TXVhW7iQZJulc382Kdl9p+eWN/V3d40yYOTdG43rDnDw4HSH89e3UoqbYbkon1MZ9U5X9278LKkDx4KDkpQPZS4BjQOb58rZF/EMJEpuf75DC6YTcB16TwKFHZc6d1RWvz6ynkYKgXVjuTwIq7N69A4Vv47khk3Ct/MKJOoUYGd96p1dmG2kZF+DOiXQofjEa7uAgu5aohGAGJWD/J8E3xJAUpUtMQoZ/mfa9A74Z7SpsJWn15Np8JfPOA916XvdEu//bCAggVinpX08Ul7pGpXNc2lkyXbTA0s9x0vG1pIg2TmaAwPfQsl4SvIojb0U+Mq0dpG5L7LpkAumqrzrmROVtw/+UV4jAOGgIFkNnfBOTOMAY+mg8MBCggF5ASj4XEhK2etrdL7lqwOCJISdRsqP7dEBAd1fwmgjC2QfaAmSH9UvKbRd3p97dgQU03gTpbibxA8O6larpx4FXRdR8JD03ij4j+PW+Wc0zZXaILWF18XJg3NdgC4ZG69No3IlkD4CQt35LuBhCc92eVD5u+JfAgRe0rAYWeW0tjueXFquBFpTGTpg5qBM5fF3djXYRC/61cKE1Ocakco7CbiRkO6EnI5u/tTTWaLg0zMjRUBhw3gBrQxw4aQlWz4HKwDAj8Gs1+vpfveNAqdkXTjTLRW0SxltZJ3tA43agM909R31f/cs00zW7ijdDqh11vFo3HFaYVSH1DZdPmlaIFHHZ3PxAiq3B7Xp3c4jmAQswfq+g4Cqsbud17o+mgMS6TcBOM9nadk7AJB+lwZ4fytRwaaYMta940nn5a5tUlt2POd863n5NbVZAuq70IvsM+DCgIVaiqj4rKhTJgkMsKGI8jo30C5AIL3n5fB7LMtm8/f+5wICqg+nAlhHWvz0DPBrcCMg0IGpkSXkDL8rEhaTL4ngfQ3qLCKRC7xOeb+ERdKlNcdPPuc5F5g5AtLd/+75kaIZpTMC4kuOlB7ljWgUINwpTbem/Pel+/0lqLMa0/noXpJV6f3uGu8lRZiUnh8OABIQGHlknyvDnXzVE8vvYID5Jj4dAYE54rs+fVJVW6BltVpNK80Yc+HyvGq5LN4ZDLhwcFQvl6Ez3nPAAGlUocSMPn/KKQNd24XmOjw92wkctZd/+VDl6uIECAC6WAHmS5oDAs9ph7m6s877QknojYAAaQQEd6VOaOjX8xpZETpSgCzrOwc++PyovIm/OuXSvc/zpfIhlZmgwIX6nBLTr4+DBBz2gUbAvns+yR79n+uzJWVIynKurK78HcAl482nkh0MjmjUfyo7lSzjxHTP+VT5sywvwScOaNk+vjJC8Wdpyus59E3TBGpIV0oq+Og9nfs9v85nlwzulI6sqBQIswR8zAn+kQXBd7kRi7wBHj2rNlRMgE8H+LLCzpJagsw7i8mp649ECWF7e74WjayfqjEIeInyLwFSc7zWRUTvohxeQmjN8YnyG42HjndH73s6Pq5dcHNsduXwPPeJnGeXgPn0rCgZDLsAUxEBVwIELjNSfIADhFHbfy8g4HViXmwfbw8pYMnrNLZ2kX0j3UJD9uHhYWvbegIGB39zstrpxacJ2Egdk+rdpESdWTsk68w2AhD6TRHWuwqhkaAdNTqVN9vp9vb2yTP0svDXvQCjwddRYpZOaKf0lzCW6uFIdh8Ebap/1ZgP5trTB33Hsx0lwTt6zwWhf09gTrDu0g+79vvo3OvnMS5pTKeydmM/AQwKbr4/suSopPYBzCY52gECljfdSzLX3039kcZxWmlFEObl9WmBDrjOKfqlweYdpfZkmyRQkIDBSMd9K+BOAEnXJFu76YHn8uo3BxB2gy9VZGlavL5UoHYDpstvVyXK+0sb2+vCQZLWgjtYGEVZLxWiqQ9G7eK/uyiDlE4Xs/EjyQfJ0kGzRBkpvfQ/PTdSmKO27sCaBJLvSbFEOMyBnTT+5gDv6LxT1j7uk8LycruCG5XJ2yeVxdPdR/LypT7u7uu/AwLRqK+7PvAyOQ8zj05ppTIkIr+PyrZUhos4PeBtQHc9AQDr7ccu+mQpjcbvS4AA0bO3I3YGSIN66UDVebrXMW96RzQnwL2cu1DHTH7PGatTsAlIJeXvMQFp0M4J945S23R9ukt6zwES35s64TknVF6CX+aU5RIiXzkg0P1drAVXHksBSRqvc/eew1dJuaX/qa4jQDFXhjn+eE2aU6r+jP7PydIREEjvpP4YKelkyYrmAr31THeP15bIP+bVAQKvmz+b8knjPaWzC7FM3gYdLzwnnxfdZ8CPhFbTu37uDDgaiB0Sm0OYzyGmSc+HB3KksjHvBADSbxKcc8J6FyZwEDE6ujxHwsb776WQ8nNpBASScPzWss/xrue3lEaAgMCUAq8bj0nAk0au/F3OR0B2KShI/ad6dkLQZdGSceQ8vU/kfbgLGBgZC4mX+E5XFs97DgzMKSu9N5oqeK4M73h9Lq2R0l+qgBNwSsQx60se6RXx2KFUhl3598W2Ix4BAmfA5wi+9N5oIM+V19OeAy68rgAOfzat9ewU/wgEdF6ATuDO1XuOUeeAwC4CewQE9kWwjoSY7uvaUhCQlFD3XAK5u7ZVBwhceIyUxa404sNOCXT3O57qFNbIAkqKplP+qQxs93TsA98mEOsKyZ8f/SbyYLiU3tz/Tlazj7p4gdHywaW0hK9pyHXAaJe8yIME4yPe6shXw+jXAyhTWZbm0dE3ryZgAZPi2EWg6vkl10cdNhLMSyyC0XWP/ncA4CsWXGAvAQHejiMQMGqD0aB2hTRXRuY9BzwSCNyVD16avD3mwFHioZGFkK53AGNpebvr3b2OZ7q0ybOkOavM0x8BgjkAmwCRt9Wc0p8DA0vKzDK8hGD9UTRS0nNggdecv/XfAZG/t7SddmnXOR7u3n1OP40MnSTHqp5ODbM8vpIqyYC58krurlaraTM69oGPzxRMyLItlTkvMk3ASvgx1+EjGqG2TkE5447yHCmGdI2I0qcJfOOg1AlLAEEHBJa2V1J43eAjs6sM3YqFOYA3NxD3RaB2gqRTSh0vJaHbpcVrCYwlgTMHVkd9ORIAKa8u3wQUR8847QJMWId0r4tE30XBdOVJCmFuLL82zcmsrl1Sm1Y9dT0vkeGed5I76ZkE2EheFpZ3VH9/RtR5HNIYSmXx/ncg4PsSpHPSSAZxfN7f30+71yZi3iyLjiXGG+lFpgkSCNiVmZxG78wNbL4/Eorp/xy6req3N+Va544Bd1H0SwVQEgLd7l5pIDpIGXkFuvzZzx0IeW1AkNqpU2JJaXo6c8ongQmmmfLZZQCPgEQHUPx6ipjehZYAkO69lAbLyudGfLwE4PFaJzOUnx/7BgSq5j2co/bpdrdzYDAHsJhfypf30rOpPilIMI1b1iOl53kSYPiyZ5+6depWQ3lZOiAw10esK8sgQDBamcdpQRqlz+HfFw8g3IWJ+H7V7soiWaudYPJrSaDP5Z8Unqc3yrOj7jlXJiNrkW3uQrMTos6wKZ4htbGfd3XqQMGPplQW3nPBOgICXZqiuTYa9WlS6ilfEvm9y3tUF6/HSFF25OMu/Xb1SG2R2kz8qw996VpXryUgtivTnDJ9TVqimNORFGf3yXQ9v0SppXxHewgkek6sgMo+AgSuXAl8khek279gNG1GWZqMvM5w7cCQgyL3DPhujXpms3n8vo3eGa16SPRi0wRuYXpDqAIjYbNEMMyVwdNcSrvkM7e0ZC7/BFpSWkue0fU0+NMxYsKu3/y5XdpqnwRqEva78koCE0sEdFUvJJyW8n7KuwMgI0Dk+abrS5TBCBCwPt5+nn96nkDAFQHblwaJp9/V10HTXDvtG7mR0gEBPZOUNQFC1fbudvqvvJiPE/PsyprOlxLrk+SajzV+AE4Gjkfm0/jhuwnQprHF88Tz3dhJ7UfdcnR0tOUZ8Od1Xd6AJO/nNnAivahnwCsyQkJdOqkhO+ru76KMWTZf1uFEhOnumyVAJCkgf5/XdH3umREAkAD1QUMkTFqKZOfq2Amb1yLva/4+Vyj5sRTgzYFmf35Uj7n6pXKLRvOrXfm68ujc2yA9k/ii8yQ4bx8fH2/xtI8Vrhf3JVmkNK5Sn47a8kdRl38ytnjuQCCBApG3FT0DI1CUgIfSZeBbF2WvenTAQuTxWuQH1o1pKg32f1qp5fFRfN95YwQMUvmXypb0HJcLq34PDw9bq9lWq9XW0nZNFaQp4Tn6ZjDAQbxUeHQNnp7XO+n/yEpdAgiWEtMiU3eoawkaGwnMVK8kJPWbBqMLTl8FQeQ8Guij/hgJ+X2irq2q5qeXmEZqa1cac+kozzRPOffeqP/9flf29JyPw26fi9FY7oR5svI7/umARAK34md+nEm8zN0G5/jSQUHila5+r0FLlMsIKFKhds+lgLiq2gJaTM/HQ1W/6srrkpRu+tW5+ptgkHm5JyP1m9dpTneRNzt+6PLpxlp6biR73Bvt3hAfJ50neEQvupqg6qlFseR5/vq9UWU4iPnf0/Z3RgIslaEDKz5/48/NtcEuHTUnWBMISGBA6TDQZJRfJ+R5vrQdX1OgpoGc+m1pfUfz1iOLjdZWt5+E9/VSIJgU2JzQ6gRjt6okURJkXbk7ZdsBAf2Sv09OTp6AAbZpVU2R2AS7nrbn2Qn9pTz+I6kDa3MKXues32bz6Dr3gEJ5CPxc73rfUDkrzW58dDw1GoMOCMgHzmu0lkmqp2/h3YGBbvwlSvy0hOaMhy5/9ZfiBFK82FLe/e5LC5e+x99ES5DY6HoHNvRLQcL7qS5uTaZ0R8eIUj1HqDkNSAcDHJxVTze2SAJ7pLy7cszRUn74nuRl5/U5/vO5Sl6jwumsHZGElHiOwMCFugtf/x0Bg3Sd5PzuK0lGy0tdmbpySed8N5WzU8ojkEtXtIR72nyps75GymhfgICPxVSHOVBQNfYYiNReBFnJU+Cyx5Wy3hcgS3VaaiwRZOg6A0kdCLB8VfUEEDioSTQCKt24HlGSC7y3VJ+5AcrfzjPwQ8FAapxU8ZHAXQIIPA9e65Syp8mGTzu1pXc7MNDlzXdG+wgkayr99zZMx2h6QOeergdadYoylW8k3NNz+yBUO0p82SnTJa64OSFH8JkAgZ7hr5eJZRuV1/PtaG4jrBF1YCVZNCMFO+IbHeTnk5OTJ27hzWYzzaGy3mkMu4B242AfeTfJpe5woDandKS4Oe/sbcbnHah1ipnATJ9x7wBmVzaWkfnPkcpIQOCxEZ2HwOvM/962qY06ed/ppdQG7EvnSY+j0O9z4gWqvqNnQP/5WzVGU3NAwTugU056h0I+WStVT1cG+P2OMeby9mNuUyFSp5Q7xZSUlIMAIv25pTKj60sEdirnvglT0Uhgev0SEOAgHAVJJaKwJb/OgdgRf8zVt7vWLStdyp8jINAJzRFPUMg5PxMIsP3v7u6GrunRGOzG4xxA/pHkPLLkINB0d7kTFad7EROocyCQvGSjmCS2O+Vu4muf5ujahv9T/fS+ACMVrfNsN3Y6IOD1eq7sZ33TM+4d8Ouv6hlwGiFVkivedM2VeuqIbsDOdSb/jzp27nxp/UeC3ttAv0sVElF5QukUkg4GXHkn6hSknydwsg+AIAn/kTJ1IONAK9XLAYHyckq8OweklwJq1nf03+89B6im81SvERDoxvUIWCYraLPZtABtidJkWVwR/AxAYGkaVdtfCOz6Tb+MVKdykWxxUMa85F3g9I2XxeuX5N1cfdI0xOj5xFOi0fhNuiPlkYDAaMWCiHzMqdyufzt59Vz6Lp4BnfNX544cEyCYyyMNztG1ufQ75cD7c+f870JliZBNAKdTSGneNAlCF9Kr1dPvuqc8O5oT1MzXy7YvNFKunTIagS89q3cJCOaIg78Dzvy/hI+XXk987ILH26gDAnzG81gyphI4571k6VCZpT7rtnGdU6a7yKIfTR0g0L25/p+z+D0NGhBpDCiQk0aHFN/d3d0EJBJfOHU8lWiXtfOqR3c9eUuSZ0nEsjuocj7qAAHTSWOM3updwB5pNC47+i6eAZEzaipUp1D92q7onJ3TCfu5sqR7nRCd+12C4lM9KfxSYGDnMiUtXeqo35Hy6YDASHHSentN6hSOqEPa7hWgZcTnl/BPytP51NNKgmYuXa/nkvdHFsuIuvtzYHwunwRmu3Tc0OD7S2THHG/uKn++FyWguMu4SisGqHRcVnTeAAGBk5OTLRD88PAwGRx3d3dD3ujkS/oVcb9+r0tHCfQobQLL1FZ8vnumA1QJEIz6jDxMIMY0WNY5A2Qp74u+2zQBzzuFv1RZJmXu9/x8CaONaCTcExr3cz7b3VtSBp5TOREIeASvW1pe7lSXpXX35+aAQAoo+tHUDdCqsZu0m/Lw1RlVeU/1ZHUusZJSudLzS3jqW0CAyuHAZI4cBHT8yHv8ZblG1pZc0D4d8KsS22kk35zcgqVXQO2n55SPK0x6AQQGeK3qb0UtIOBBeV5O72v3DKTxpeupzCMwMJJBXfzBCGSk8dDpOJ2no0uL+bq3wEEQaVfl7/RDPAPpf4eenJLllJ4ZgYT0fFfWBC5Gyn/UuXNAYY46kKRydYjW25P/uWTM81hSHubP8iRQsA9AgLQUdI4ADt2iep586/OiuyjsXZRxAtTd892zc0BR13cBAKOyd+mP0qiqLb7VsVqtJle0+FnKaDRmlgLdfaMEmEZ8PAKTUipV23EuLjcEGOgF0PHu3bvpunskFax4d3e3lW+iNOa6snNnPQcbIzCgOo/ilrwcOifQ7NLm+wkE+P+RXGBZCXo9hmDEw17PpTL4u4IBUmJiBwKjAUxyxtnF4ve054BGV5elaG8XwZvyoauIbjiiRS4HYvk6MCCh2QnOJeVKfUJLOu1tsE9CuFOwLgiSl8MFVrL2u4j8OaHSpdlZIH5tJJz4f04gpTIsoaXKNuXR1Y0Wkeajq7bXiwsMdKCXZUtt4+VI1uu+0Gi8Jr6cc4P7uZN4nyCAYIDeihRIOOJPlnUODKRyuqzTtdSf3VSqlG1aWjmKH5ijVJc5MMDn0tJjlU9pLNWNS+hFwUBSyp2g0bkDgrn0ndk7QDASmnMNlBipS9PrkerYXevIldLoOSFGLqsSSSDyeReYo3W/S8j7oIu0V3lei1Idqbg6C8WPZF0oDW/bUZt2Fn4CJiz/S5Pn73xKpbiLoEkyYG4spHFGhS6wSxDAeBR6CFLQ1pK26Pr2ZyL2DacH+Cvqplf4PsEwgYBilWSQdH2e+iDxD40HjjMvX/K+ufxlffWfu/SJeK5nfPdK956M2pNp+bhxGulGegT0Pq9xuoAGGJ9nvMcSenHPQFLWIgoXBwFzg7azlDrhxHw61y3Jlb4zU3o+pdUJvlHHd9QFp0jgUfF25fO82Cb83UXodYOYsQweYbyP5H3uEeoOAtJ7tFbJyyOeTjyVBFkCot8KCuby5i/LMAIE6UiAqxsLozHGcU2+1xRBUt4CZaMlZ7u0Qfr/IymBFKc54JraibLRQRnjj6rqySZmXC3kir9qexMrL2dXdlEK+HMvp/JcArpZToKCtOKEyt9XXvhYSHXifXfv+9hg/VLbsI8EBjq5wj5nfNMPBwNJOXRK2oGAd2ISIiMgwPxEHok5Ejb+/yUsg6SId7VOHCU6eFLwlLdxBwKq+hiIJc97WycXuiyFtDPcLm3wPWiJMNVvx7tV24JB/90iTXEZHc/OtUkaG36+pF6jccD0duHXEUBQ3kvKnMrmY1/tTsFKK4jvJaWU0u5kkKe1r2DWKQGBkaGQvCd6l/8ZoJy8fgTBHcCgHEgAZWTUuPzrrnVggLyjuvkHj0juLWCbLQVmTIvgwN8f8b7n29W9y38XIFD1gp6BDpV2FkNSRB3a6fLjr4huJgKCLo9d67jL+0mwjjpvlEbV02jfNJ+V8hwJaX9O1/zc+9Y9ATpOT0+fDKalm4L8aPI26UCAK540FTOKEUjjIrlBO6XFdDqwPKdoO3C9VOl36aY6Mr+58dtdc/5UeuT7JQovyZju2LUNfjSl/puTu91KgcS3bixwbNDaZDqbzWYrBsk9Y07eV6MgY+d/L28ac0mHeOCdnnl4eKiTk79VYAcIGEtAHuzySsT8OyNpidL2srMczhOv4hlwYUqmcXeFV2oO2XR5PIeWDOYEMHYFAKN8lzBPB3L0PpnBn5sDAqn9Uv28/p6OAwHNH56enm55BVRODYLn9t1LUaoXz1NbUal5O82h9FGbcVx0wq1TWF6WrnxdGyQAqHT4y7T9me5+l6cDr5R/ytvPCcochDiNxp4DhPTuUqCwD8R28KXGVdurBmjBOxhIykrpk8ivd3d3Tw73yHg8E/m/mxbg2GB+aYpzpKAlf/xZxVpprwSvP+NR9EtQwPKOeNoBif6nYEjvyxGxHRzMjGR+Ry82TUCB54dbJk4d4k2/3bWqp0Enu9YhpclrzxEKrPeoU5YIylSGJPBcaaQBl/KeK5crNYKB09PTKbDI24u88NrkSmmXQeMCokvXPSNsL4ElrrbgNEP6XQISOt58CQBGYdj9JnIvSLJWXAnMCfkkhLv0mCbPu7R+Vkp83FncBFVp/tl5yces7nPlkgAAVyiNYpEcCHSKLH1AyKcj5niEuifJn9Vqe98FEbdhZnl4XXmNdJXqm8BWAihLiM/OBUTuQt8EBpwBR0BAtFSIKf3umgv09BzRVyfAR2mrvP7MSwmOJfl352TCNBgorJ9bpk7IuHJThLHAgBiSKDqh1x9FIz7y/x04UFuOUHi6zngKPxIYkFUlwarARBeyKY5kjjeX8u4ccE+AIKXB+hMA+Tczqp5+KCkJ/Y6W3OtA9K6CeN+ok79q56pHS1u0iwwmqU84NsSjd3d3dXt7u+UZcLChvu7Ky/JpnKXAQR8Hus9fpsXyep11j0F6XEIshX1/f18nJydb0x9z3hOmzTgMr2eiOSPF01rqdRnRs8BAUsgdEGDhk4WzND9H/17R0dxT16hLlcRzhcUShZyU/dJrXRlH9ezQqz/vQsYFuys29wwIieucu4btCyW+IiXB4ZTqxMGY2iit0aZQTS7Xbk6WQCABgm9VdM8Bk+498h3rCAxIHQgaxWMsqWenKFi/XY2SfaAE3Nn2Xbk7MJBknZQMtwHmvYeHhyf8SlCbypz0RtV2nJfK6TqkA8S631Eaw6vV426GSof3CVQFBJzSNZ8m7YwFB6RuzHX16Iw/1YkyuwMTiXYGA8mCmgMCc3NVSwZiYnZWuBMuTrsKx9TwqRM7D0LH2F4/r+vSe3Ntl5hjRAkA6Hy0E9m7d++m4EENam0Oo8HEHcleizpgmYCAfkeDTuTzjjroNXn37l2dnZ1trdMWn0iIyrq6vb3dOqcb1hWlA4HEjyNLf1dg7vX3OndeI8WU+FRJVa9YEhDycs8ZGKPx2dXPFeS+AIIE9JMsZttK4fk8NduM7eG/9Fzpv+4nIOCg1ctaVU+sbwcEysfH2Uj2jnicY8TLIx5zhc3ydQbBnCGm+iSvIcdsCuRM9ejqTuCS5PcS2gkM7AIEOMhZgc47kARtYnBaF74vvwMQbl+ZmNMbuLs2eialNWo7P/d2nftdqrj8eTJIei8NEgdeycKVkPd4AQ4A9fvp6WnbPj+CRu3OdnVF0LVP98loxlOwrU5PT7faygW2A4H1el23t7fTuvr1ej2ly10ofTqmG1vOv0sBg7cV28C9Rhyjqq+O8/PzLSDkYECKhO5mnruS8TlquqTnxirrkgTwErD9o2hkHOg8yWIRvx64xCAQ0Xgjj5HXEnjrZC2X8/k46YIdBTh8fHYAcEl/EUBTWbtyJX9rmkD7W6jdfbMlJ5Xb23+zefxUMdt0DswToKW81JY0wL4LGGDlXFmwY0edlpCcK7BOwLg16q5HNlzndmW5OpSs/x1aHgnREUp9CRAwAgSdBeRHB2RS+dQPamtZtufn55Nik8Xnbm/vk30QrKKuLTuwpHMPnOTHWghQ56ZS+KVJ8aKUfprzU7nEw7rG/xSgS+aIlwjUES+6UPe6np6e1tnZWZ2dndX5+fnEM15/5ZnGrEAR73XnVU+XXHl9WBcHfT8LzRlNPNSuid+d110hVW1PD1CxeJxLAgMsrytEXdc4IS+4B4gesA7MzPWf8zTr6dMNLJvKpGkCThcwoDD1D/OmV4LAI3nLU3mUDq+nNqZxkYDhiBaDAReYcx6BJSBA52wkdzcmK8OtUj2j9OhylTBZr9db7lWW0edgRwito65+/syuAIDnrhxcqHEAzaXvZVL5Uz+rH9T25+fnk5CngnNXFcvmCuo1KSn/OYvJ+4D1dmuXoICHP+NjRoLl5ORk6g8JHO6XTsvJXZhuvTnN8XUCAl0b+DglWBR/EAiIXziuySe0+BMo8GkTeU5c2HF8e52SUpijEV/sAyUFSz7xCHg9p98OHFLhC2zOgQFXZuQX5p3GBNuZhpvycNnHsj8X0Ll8YnqcbuF11d/3H2D5WV96IFw/Ohig14J9kYCQ8tB1AhPf/2UJ7TxNMEKijjS9wrzXpUdBQQUkQSLrQv91X2BACFYg4ObmZvq9vb2NQVjucvS5Mc7tOBOqHnNAYGn7sl1SGzkoYJumAdGBgCVlYT7sjwTMxHw+L7cvlMrUtXf3PvmTMQBqC9+BMR0e6/K9KFnHPgZ3Abui0ZjlWHUgQE+SppPobqWsUPs6MPDpk5OTk7q5uWkFbGqHpXXfd0+BKweOVSoJKiy6kEf858CMfe3KMwEBb396v7xsPvUr0r2qmlz0/vEgN4jcAOnaKynWUTsTVKkMPPd5ek+383gQoAnssL0JDrxMXVkTKFwqZ569msABgXfMyAXDChHVHB8fPwlIEwDgQatUlgjBAL0B19fXdXNzU9fX15N3wIOwPFCJbjHvXHaW6pqoY0hHkGyDdD5qs3S/a2eejxSFg7wUCJamaRgQpDbsyvGa5G2b2rvrHwcDUnbiRZ8yUDrJoql6apV02xn7h3d4zwVv8lAlRUjqgGziVbYHeYVjlmO3W0HhU0hK15fDCRRI4azX6zo9Pa2bm5utdmYb0nOS6r+UXgLgfyvNKYLEV2pH/ecqgO75zjvgSksk2enu7WTRpvZL8oVjRnJWQEDjyvNwgyi1Uao3+bcj6jYpf+oZAhv+dta4T5+wbQkE0kefXNf6VKJ7XtwIWUIvEjPATuyAQOooAgEHAG5ZXFxc1MXFxRYYoJs6gYGbm5s6Pz+vq6urSYDIO8CpBAobRmyrg/hlPyJBMnvH9HNtmdqW99LAHaWRrnfvinzwdmAgAQJXfMwzWcmvSaN26MBVp/jSvLi3xxwA4vhg8Bx5UEDVI7UTQBhNc40s4RHvdoCA7TMCjmlaRHVX+p6mnmNA6rt37+r+/r5OT09rvV4/sSbVJppi4bxsymdE++gVSAZDkhUE5bSsO69A1/fkH58moMd0Kd8xD1dU4hf9V/8pT+0S6OCDgHhJ23V6q1OwSclzek7Ea24c+7SKAyuCqq5PVU+Wsyuz8kryf452ihnwBvVrbuk4c1BxkmHlEXC3ogDA5eXlFhigR4BuajWEXIryCEhoCwyM5iN1KBJT3gESlSaBwdJ2HLXrrp3I9uQ53+e1pKicSem+o6dmBAKS0OXgVnqvQXMga9TuPHfPAAGB82ESFsna6ubJxZPOm8mTNeeJG3mL0v1EHL+dAtehdmCkOEGA0lEdSHxPCoJjWwo/BZ2lKcDngPXnAPvXIlcEriyqqgUBHZ+7HKecYzxGAgId8R5lkQfZitjnGm8OBjz9jjeVl/OpT935NIu3i4g85/KU/Mt7Uvosq+qh+8yfxigN0VTupINZ1hcHA2qYhLCSYmFldd3TUIUEBC4uLur9+/d1eXm5dTgQkBD2IC3l4wwmQa25RgYg3d/fT9c1jeDA4Pb2NrZFF6WbBoUPvASo/Ln03wVbBwKcQdNAcCJoE6N5wOZoBYcj9G4w/Gjy9k7tzmf9PAnb5DHhdImIQICKn8qwC5hj7Eu39n7OM+B1Ull43XnJyYE83yFRcbuA2mw2k4CjR0MCXqR2PD09neZpfXzf3d1tgVK1s69x7wDRyNuxjyAgyY4ki9n2BGFqd61W0e9IibgcF9E6dhnvZR61JRWaTxVUbQeBnp6eTgaau9pFnAbpdA3bJQEBlWGpLGfAnt7xlUXKs5tKYSyCnpUnx8eLy3D/z757Dr2YZ0CF6NxFKS1aWRcXF/Xhw4f67bff6sOHD/Xhw4cJDMhTwKh1ByJcyrZarbY6VXmJqdLSJQIFuWo53bBarWq9Xk/pU7G5da5nuvZLXhVXTAlJp3u8n/KgdeaR7lRy7rZl/7gFTKXnoIJMS+RKIfKjKQEhR+56bkQjQULhSwVIAMBD18hrbv07SOB7bmV4ffXrij6NTRc4o/R2Ia+/8vE2UeS47tNlrHP3/qXtrwm0WG9OqewqKPcFHHRgn4pAY9ava+qEEfkdIE7X6FVIsRgOFJmWl93zdWCtMrNPNX1MhZraZ4nXiuM2yUYH9IwN8Hy9XpStNFTZjs7/Ole7uIdAnm6RA5dkkLNvfMpgRM8CA0mZJfdnsk6onNXJl5eX9f79+/r999/r999/r48fP04eAkYhu+KhQu4UqgRJVU0IzN2yjFCm8GUQ4snJSV1fX0+I7fb2ts3PmdIH7mgwKp05ZJ36Jykm95IkK9aVF8ENvTcugMmE3s8cWBporyVYO0EwB8Ao4PibkLmnozHg4DPFqfh9rtdmoCsFoQQFhQYtFbeE0+FjlJ6hbtx2PFu1rYyl6Cnk+I4DoyQE2RcCpOKjs7OzKXZA6buXQQA+AYIOJPm46+r6o2ipUeHAm+NQfOLglYCBlrUfSdnoWaVPuTdSyCN+cmCjPn337t3WmEgeHwGVkdx1L0CaykpGjhtK4lXVm0cKrlbZ3BBg/1KOKn+OIfK1e8TdKHaPzVK5+6xpAj9XhnNeAVcuWilweXlZv/32W338+HELDHBaQMzhLlEf/M64HvAhphXilPBl1LKuySvApXNHR0d1c3PzxKpkfi5sXLGmQZvaMLV/ukZmFyoleuTUCue2HQywbZk+GU9p+7tqW3ftsu1eCwwk68CBrFOydCioXBjzPSpDrod36z8Fr6a9MAh6KdzZbw6UvTwOADgXTGFHAcJ6JaHdAVm6opmuC9jEb0mAufWo92nB0Zsy8kA5bydQIOHt9X4tSooz9YMrFgcFLnM8LV5LoCEBXl1jfIbue/lZhrn66pf9rniRzthMY9kNAfeO8v+Ip2lpM222VTedWrVtuFLhi7RSgSsWVBbW1+WOp+PAYRfaedOhUWON3HBUhlyaJa+ApgY4RSAlpjySeyXNU7NxKAR1v+oxqIarGLhWVsL75uZmi1FGglD1TGWiUk1puKBm+T39NGA9sM2Vv28b7O4wWlaOsF0Y+7w4yYED3VmvNU2QBk9S4nPvu3XhAtIVuK+L5xSUrxbwYECR+IZlTJYKn3dyoJcOD0RkWj72O+tS9eacNEl845aLg46uHq5QNpvH+eTz8/Mt7557PpifKy6dExA46HpNMCBKPJwMDD07SkPyj30nIm8T+DuYI8CnZyC5pl3uiZw3/T2WQTJFYJP9SzDgAGEEBNy4UV0cICfZJf2xWq2eBFnLCKJ8lbU/6l8aVL5Em9MJrueSfP1ungFHpcxwdDgDJ6+AYgUUL3BxcbG1iYvPMY4EZwIISbipLKyDOkp53d7ePunUOaEgt04aXGRKDq4RwnZB6YKAHgDO7XOO30FBAgJkVm/DLsiHbet19ZUICST9KPJ207VEiWc12F2ocCyo38inBAA3Nzdb3gB6ATrXf1c+/XagM73jUw4E1XRFdmDAjwQGRExTPOVWKvumKz8FMV2mbsW6TPHASk69UGn4ueepcfyaYGBJ27N8blx436i9FD/QgQHxPPld95gu5ZW3G/P08vJ98ovy6NpAY9B5TOSeLQf/DpwIBKh4qVyT58zbnGXzIOvk/XKwmvrd29rzS23lNDLQnZ4FBpgRM+wq50BASwi1esC9AR4slKyoBARYJi9f1WMHM8ozKQeCAbq4U6MqDc1Nps7vwADzdsTo9UmCgEiXAIB7MCQgwHqz7zrGS2AgWVwqo4MTendeg9LATZQEmHs4koBkOxAIcKWKAwG2GYUQ8+/KOAICHRjw4EPuX0CeXQIGVG+PS3H+ZJvSOEh17JSZyqoYnc1msyUbCKTkJaDBoHdlaXkZPE+2pwOC16IETl0OiI9G/M2x3XkG9G6ynpUGeY98o4h4588OODrQ43X9jvgxgQfns84QcEDKtkk6JMl0Pqv/9IDQE+blS1Z70pvpNxGBCz3M3w0MUOAQDbpCca+AewQ0PUCPwPv37+vi4qLOzs6eoEYGWLHRRozPcrAxOB/ToWu97wEg7kKnQtbBeUsXLu4RYD0dTbPdWVda3mpTWd/akMm3bHYgoDacA3A8fM5Wgz95gXzK4vT0dGrD1yDnXVISOB3S77446O72tETQBYn4S/8TXzjwdgsllZnvi9yrxvKpLC6QSRTi3o7dlJBPibGOBM2dgGZbCmiL59x1qnILEDjo4fRBckWTTzgufAy8BiUjIBkW3dQdFYOny34lqPL+krzRfT5POcA+cqDnQICeKZ9SoqJl0F2SH5Sb5CkHECSXdcmjwXZzue/t5eR84wDXdSVlcAL5Kls3VdEBb+azhF5smmBkVYiZpLDoESAY0C5uVbVlyXhgkAsjghNWfoTCfJC5xaxGVroSJA4EPKqT355PVnNCs0uJA5PKNu0Dn4CAKy/23ai8bg37INF7uu9xIcr/tcCAK9sECEgOBOaAFUGrg1dvV1rV5D26FV3hOvDyvnOQnkCEeyzSKgYHA16O9J/jwJdVrVarrXNXWA4IqIC1twdBlr5H4IpFxOBCvqPvk+i9Th543fXMawGBqhwj5FNVNDJSu1DBOZhwvtQ55Uxaiqz0qh5XaRHwd55O5029JznLcVVVT5bacjwleeKWOMvqOoLlVR1YNpdxDuiVrit2novfkh7q6rCEmL7q4t6/EYhK9M3TBN4ApCRQz8/PJxDw8ePHKU7g8vJymlt2FyGBQHLHUGiybB1jjCxhVxgqy8XFxVRH5e8W0fHx8bTL4Xq9ju3yHMHigt4VrX+7QWAgWbEMcktMzjamMCcwYv/c3t4+AYAJECRX+I+izjPgA9QFL4NLuVV2AgNcIeCDserphjwUuL6RlvM1wZovTUptr/8EDt2mRgQDiU/dK6B7BONHR4/7ALjy79qdPEfPksohISohrWWE9Dy4Z84VifpDS4MViT4Swm7R7oNnIHkD+J+AgLxe9dQgYpoPD9srMgh83NBJ8raqtvprtXr8pLbSo+XKPGjY6Trro2v0HiTgSvk6UrpHR9vBe/QyOyh170CaluYz9EIlozIF53paSU+NvBoOZnQt7VXywz0DXiEHAgIBAgD0CChWgIEhvuaaZUjM2bn2fHC7MhNphys+p3PGOhBJ+1yyW3VUDGwv78TUzm6RuHKWUtLOjCMgQGvePQEJ7SaXJNNwhcLgH+3p4IBAQO81yC3nqvEKGLfY5X2hV4DzqGmAV22DkKptL5Z4WHzFjx15kCbBBvsteXKWeAVkYXfeCwdFnrbfV120D4ALRJaF1qALcQo4KRYqfY57H3uSHyqfABDblgBdCsDBlPffPoABBwRsDwcCqbwua9hv3g5+370+5IfNZjMt+WN+9KK6p8LLwiDaTrd4nAv/u6fMFa4DAj/vvCksQwe8BV6Pjo6mqSyXL5KbbJPOEBX41fuu6FkWejL0nIN96tEltDMYYCONgICYybcafv/+/RMgoOkBWqvuEuKA6FBqKjPdgkRrXhd1QkLVSkd7ETDtxADsOAoe5e3tmSwVCkteY/t6cKADAKbtLiQCAQoUDg5369IboA2ZNCDVFi5g3Y382pSsiJESpCCkYnLlWLUtWBxQepu65yF5HQhyZdlwTHT8QdArPpRiVSAex1KagmMbcEyw3smdzGW4DrwlPN0C45hhXShsCYQlK0TucVmtVk++qaGyCfSnpY9sQ6/ra1EHBsifPm69zJI/koUONNkfqX8JjF15Uq6NlCrT1zsuKxMlV73GgVvtI53kY8I9zV0/Mx1vQ/duJJkr3mSZ9U6nvwiO2C58X/yrNuU4dw/Kd/EMLH2Ogk5TA4oR8KkBupCT1eqCunM7JkCiBk0uGDKRnlVnuwJ0V69AjlvbQmQUOmn6JLnO5trULUoP1Epz2Dp3C9HL5IOeyov9wt0a+dGnqnoipF2ASZC/JnHguFBw6pRgpxTV1w6IUloU5G5Fs0wEA95fnr6ukwik2QZuiVOodECgszypoNPa6i7CnOVhvRPAoWfK5YHmvROgc8tWZaVQZxk6ek1AQMXP8aR7SfF3gMZ5VteqcjyVxya591MW78i6ds+j+CyBQspq8gvBggMD8o3rgREgODo6mi37XH1EnBqhnOWUGQ1db2e1jcsAn7qrehqLwbqmAOHvAgYSdQJJSkXWjr4xoCWEXDlAlyinCNxydSuMZXCGcErvVNVWQzEIpgMbSishdPdYdChd1AnGpcDA0yazMbqX95I7mOWk6zFZdtyVUUFZLK97TdK842uRC35XPhRErvRGwkJAUmBgpJxIvPbw8LAVMJesL+fvZMHpupeN6ZJ/VVbmxfvpPLWNe09Ybra1zp3H5wCB10/1In+6YmAbcWx6+efGG9vlNagDYgkIeN9XPVr+km8u5wgK+a6P325J7ZxVP/rPdES0wplHAgYdEEigwNuH+S1Rlm6EpukOLy89A12ari9EBD/Hx8eTB9bbmx4EgTMHAt8FDLhQ88FERJ42FhIQ0DcHZEm45Zo6yBVX1djlW5UtJT93pOp1dKHcCSyWp2uzBJ74bodoEyXLnRG9qdzJTaW0kpDUO+4REBBQ8KD6XOlSeKSpix9N3p4dv3TvdopHpLp3Az8BS5820jW1kc9/O1+PrHalp/cTGOEzOu8AiwPgBERcuUow+RSVt6UotTHry2k8V/6UHZ6Wl12CtVPuS8HBj6LUtyLyxcirQs8mAasUSRqX7lFJK4rcunfFrHKpLE4JRHTAkfwwUv4dIBB5Og6qkox2mZoAAcezvAJqH3pbEz+mqV3GYRFocHqk6umqBsYJvMo0ARuNLkN6Bfhp4u6bA2lO1BtxTony18tNQUJhUpVRq6NwCjRHX2lqY0Qj64jX2Lau4PVMAgIOFjhY1U8doHEgoNiAm5ubur6+nkCB0pPrVWX0DYcECF6TEo+Qd0bK0vmT1lVSzKLObZ/QvMh5bnQoD76zhDgGUryAkwMC1o3KgPsWkH9GgY/e3skLonyUtoStu4yTxaiySvB27ZTA0D5QAgJdO+kaQSnbjYqjqqIMcG/KKB6kant1kn5TXNIScpA4kuud4TQCA1L+I4DixPZwI0vyVtc57UA5TN6jHCTgYgBsVU1pbTabadMslZdT3OQB6qbn9ME3eQZ0zRE4VxDw2wP+8SGfHmAllbY3ZofiOlLZOIBcEPIguRtHaXCbWX7+2HdI9LSWAoWllICAABaFNQeOe3b4620kj4DiA9wrQPSqPNyi8GV4r0HkgSQoOoBJvpRic2Hgh7ujmabaVLyk6/SGJVe+Tz8xitxd4CIJ6c4rwT4m8KYiSGA0uTQ7gENLxa3GZP15Od0qpPJK49jnbl0miS/5nPLjr4+RDiT9CEp85ICd/aVn+L6nNVKI5L+0175bosrPgZ4DskS85/zQKfNd+6EzujTW5hSl2kJ508tCfiEocPAsbxSBgLezpswVdyUAUFVbO3CyvZI3zY3qXXTOsz0DBAG0Uoh0uMGQPAIeJ+AoV2m7YEouyhGlTmZDuSslRdi7wFUa6hweKViDzDBXtq6du2tUVlQEVDYOCvRMioyvelQgWjHAffUFAgQMGJegweBCyAXpSwKhXYj5jwQNyb0CmtP3e+RZLk11hcm2p1eBQIUCQlMso09H+zgRyTqk29zbIEVkO78wnwTskoKnQOL2y8mCTO2uvJfwSvLwuWHi7cjAW1doScbtAxgQOZDSfQeh/BXNKT7nKYInGW8MhlPeVPqujMRbSyiNzTRO3YBJ7TXiLQcgo371MaPnCQpE1GfUh6vV6gkQqKotsK34uvPz8+k5vrNer7emW93odIOW/ZDAdkfP3nSIQswVt68k0Fp4uUIkBL0iyofzgzyUjzMjKVkdzMc3ZOBnZN074NaZ0uQ8etqwxa07lVVpp0GpdKlYEzjisykgSO+zzfy8s2ApxOXxYJwAVxBokItBdd03syFTvxYYSNQJCloObGffTMW9SomSN4SCwvlYQtg36eLeEZ2VyP8q8+3t7VQGgkbyQVduj/vR+H337t2Wl8zXfhOAuALqyut8ntpnZAiksZd4WjzMPRa8PTsw/lpgQOTWtnsxOL7d88E0EjkQ4Iop/9iY0nGrlDKVfDhSzEvqmMCAAwKOH/8d5b1UHqlMSeGLEjggePB7nA7XuFfAvQDEavW3p03Ts75SpwMBDpJfHAx0xA6h4qZA4/ppdZQzkgqsBk9AgNRV0FFqEup+3kVeOhggEqY1JStDA8jfT5aR10PvJ3dbZ2G7K0jXafW7K5kAxa1JCff1er0VG0BAICFKEiAReLi+vq6rq6utD0752vAfSR3vuEBN9wnSeJ8Ap1Oum812pD55XP3NvqBAuLy83NqbQ1/yFNgT3xLEUiEz4LOqpucV2CQgSeCsMjgYUVkuLi6e7BLqwM83pFI5fBy4MhGpHV3hJSDjSsw9cQRC2nxIuxHOeRmTwnktooxQWVxJpukb8RjTScC1a0NfSSCARlnGKRr3Cjjw8/oob1533TAnM+YAQXpWee3igXLl3skOglCRAzS1MafPeJ0yk4GbnZdI7e4AwPXCHL1IVJejSg868WhJFpIKzS3ZNDXgTOWunKraEopJSNJDICHpzOcuMAp2KgBvB7YHO52CN5FbdQkQcMCzrrSilD8HND9b7PP33gcpHsKBAPuL7Xt3d1fX19cTktWOdFSer0E+iJY8V1VPBpMPPu9fXaPQlgDprBz1x8nJyeRFY5yN9uXQdt1VtaXsFdxJJax7BLApmI/gsepvYcRNkLQ/CAEJwQABSQIC4hkCSoJJF/YUtB0/pykSjjcKTvH52dnZ9DlyeTb0HDdv6XhjH4AAzxNYYjwLfzvjQ+91xhy9vDoXPysdytfkLfA2nfMS+FhLfDDXRmyfzsuT0urS8HM9y/dHAKRqe+tgB/L0pHZTK6msDga83d27soSeFTOQEndUmcBA8grQGn942A6A67wC3jBsIComNjL/U4E5M4s0kFxx0u1Pa5tCSO5Z1sO9Dm6VpPKzo72NRxYNn/Pti93VRK8MXapUKipLmkoREXAJPMi1VVVbHpMfTaxvh+wdyFU9dTmPLMlEFBA+MMkfXHmjDbk+fvxYHz9+rN9//70+fvxY79+/n3bA9Dbm9zB00Cq+u7ubFCEtNwop8bN7BAQEPnz4MC0H1tggXzi49niTq6ururq6mjxO2qPChar3l/4nw8D7xT0HVfUEBFOxsZ9cUblgfy1A0ClQlo+gVCRZqr71d/Wetz9lGb1EacpL5aJl6p6BJfXrlJ0/s0t/fGt/uaE5Kq/yG9XXDQkBUY89U9tTL6X2cMWfpgaWggDRzuZaYkr9unvJXUxsXDYMmVpp+dHlzWtUZm4xpc0YaCHRAqdXIC2/cWGjvFOgo6JAWc+kbDow48rX3f1pkLqnxgPR3N1H120HnNKcmE850FpUH8gj4HEVr0EJBPDc2039Q8FIS9553a0qenE4gKu2dyHUNya0F8fvv/8+HX/88Ud9/PixLi8vJ+EuD8zV1dWU9/X19ZSXnuH4S+OSCp2gRECAHgpNFXDu2EE1FQN54Orqqj5//vxEDqzX660yp/5iW81Zc96H3scjMMfxz7Rfm2c7ob6kbqoP25xtql83vjhdpXgVjW8FDyt9V0LMO5V5rj2T0vsWeglQsCTtDtRwrCTvAKfzNA0oneP6yo2K7lhafqdn+245WByVJ1DgwlENlFDPc8rABuZyP0b7e+MmJubgUKf4agAqDFceLI+/Q0XE9/09By9uUXosgFs6XhcJfwahaR6cLilOn7jXhmmqvFQsFDhKR4xe9fhBkn0g9cWcZclgWAW/csrFvy2QvtyXPGAsh9JMn/bm1t0XFxeTh0lWNV2NDrZdULPtXfCLx/nRJA9e9CXBBK9Mt+pxXGssfv36ddp23K1R1SXxGdspWfLpUJ0peL0dOkvLZRrvvxZ1spHyhMGhfFYgr+opoCJ/6r57hrgKTJ4Htas+zDOnjFJ5EyhYogPmAB2fY1pLQIg/n6572nPp+HtuBK9Wq2mM3NzcTN5T6RtOA9Lzmtqbv929OXoWGEiZUKl1QWvJ5U43OOeh1ek8HwkABwKMfueRXFnsMLfuGNSXGlXTGlXbilpC1qdB+ByVDgXpCAyoLZQvFY9bNe5RULnYVw5E/BBJcaT0unXICirU+8n6ey0iIPB+V101j6+Dy3vcjcqldwRn4pvk3VLfSwArXkCHtuyWN0dl9ikuCpTr6+vpSPtCJF5O88TuUXCgIdI9LkXjs7e3txMYSBb+EkXSPUvBSm+I0u/mZpNHg8e3WpMvSZ2xlDwf/p7c0Z2HxQ0SXw4uQHp+fl6r1arW63V9+fKlqqqur6+fGACpvO6RYB38/3NBF/nNgf4ceZ7fo+/Jr9JpmtLRVJqMjfv7++m7N/IAcg+bpOgTEOjqN6KdwEBCIVXbDZgGvFtcqfOSMBBg8HdcIKixCAQkDD3IigiL6bGcyfKW5aSIbP/oCZVgsnJc+FKpc0BquoFR3x5rQOHtFm3XV8rXn6EV58qCilFl8DZy65gWB4Oa1DavRYm/3CNAb4A8KbKQ+C2NBAi8H6tqS1HRgmZ/+Z4cOmhJyxLTr+bgv3z5Mh2fP3+e5uU1N09w4N4yAmJai1SUnHITD1O5sB4cI+SD+/v7reDHrm+qtqeSOoFGoUrrX0BAQlPt7/KAgjV5Dhwkev4/mpLr3ctHTx/fc8Oqqp6AA6Uvflfcyu+//17/+Mc/6h//+EddXFzUZrOpq6urOj09rc1mU9fX1/Xly5ehkvcyOqV27ZRzGqtLPQWj/ObI8597LuXpXhwCKAFVTfPRgGJsED0EoymDb6nrs2IGUsZUzp2bgoDArSUpDqaTlJ5XXg3kHgEHA50Q6MCAFDXnh30e1ueO2cHddATryLZheql8yYJNAKkqf81MZdPg5/SJT6VIcTE/UYoH4W6DtF7lAtaGPR4l+6NobmC4QiMQuLi4mD63LcBDz47HC7BPqJRoOYm3lJ68AtyPQ217f39f19fXE+iVcv/69Wt9/fp1Cwx8/fp1CwhwLNA6dpApnvfxQOv79vZ2S8lTuUjRK+5gtXr8hPBqtaqzs7OJLxxUsg/kuRt5Cnz8y/qll8R50OWAe0k8z33zDHS/VDJV2wpJU5wOBhz8VT322/n5eX348KH+8Y9/1H/913/Vf//3f9e//vWvev/+fd3f39enT5/q+PjvPUUYA8L8Rx6LESDowHpKuwMDDt5GRuYcebqj/3PkfUS5IMDNJcA0Jm5vb+vq6upJDFkHBpJuWUqLwcCogf0aB1rnmnQUq0NoVeedoNVgp/JlBLyfu9udngGf99RBa4OK35WA79mtMrGMBATeBhq4VL7eVu6lIDjyttaz3HHN25quZXcl6zkCo6rtz9VKgPhUkPqf3hh6Cl6L0sBwrwo9HfQKMJre16h3FgpBnlud9AgoH83T+8ZcUpDcv+Hq6moCAwQE9AoQEDjY82kg1d2f4woFTpOo/uQzpcU2FOhxZd31iyzcLora+4zGBa0tCdwUOMwjCdXEI69JHRjQOa1/B9s0IthG4i16hjQl9uHDh/rjjz/qX//6V/3P//xP/etf/6oPHz5MSzNvb2/r06dPW9+WUT+Q2G5UbsnbsqTt01jzcejt5EZqalsapgkIzgGPOYCT7jmPHh0dTZ4/bhRGOd15BkbttyvtPE3gnZisdSqoOSRDRaYGEGL1CjrD6XkJGR/s3bLCVC4KRrfCpYA5J8lfghavG+vI9EUaxA4A6HJ265vxBgQfdJFy3pub/+gZLkMjYOqmJegG7uaTqx6XGCYB8ZrTBMmK8j4mEODyOh0+DVKV3dkuCAkYdY3TK9zpjXwkxXl3dzdZ/fxN5wQD7h3jFICXV/XnxlGKlRBo1DQJAaBiHqpqiz/kTtZzFxcXT5bMumKuqkkYUiYkYOxjs/OGVc1vOztHrwkI5pSme1pcMSaFWVVbc9MCA5wm+OOPP+qf//xn/etf/6rLy8sJVP75559b8R/dmCIRhPi0Rxo/fMfT7oBA55Xz86WelaVeiFT29N+JoICBmZxadUDrq3aSJ+C5XoGqbwwg1Llb7N15BwIooLyTnWESstT/Tsh0hyvtqu0PvNBK59rQBBjSfDzLJXLLX+nIeuJgciDguzm6O8nb0ee1KWS5tMW/r+DLIDmYOwHsXpDEM68JBkgc0Gp7Tg9wDp9b8bINq7b3xmd6LlQ49VO1bT17W7pnabPZTMrZAYB7ADgtIC8CN4zSJ6cTGKDnS9MXaSopgcHN5nE1grwdBKZK8+LiIq6tpkdKHjm6/ykDHJyy7TgG+b9bXpmUZ2chviZ1wNOVn/OeKMklP6d3gEtK5RFbrVZb3gC9nwDKrm03smx9rLpCpmHmHlBP1+UPeSqBmiVgYAkISO/rWXpzfFWI5LC8A+5lXqr8lwKDncHAcxohoTafQnCFmQSso38PAkzWRPJSJCCQlDbvC7m5ckxIdUQScLLUlQ4ZQXmxHTyQkRHmagufB6by1nNSMsmNmvY2kLD3vqarS0yt+a/OjfVaYICDncI+gS3N33NZHQMEVRe3cpW2hBP7xq/xP0EAQVrV9jbPKQbGQZxvAcxtpeVmdAEkouL0qTZaJgSjjAvQe8nDpPsCCpeXl1uBkOfn5xPf6HmNCR+vztfsQ7a5xhe9Y/TCaIMXBnSRNxwQvBY4cGHfKXOOyap6Uidec6NM5B6ytESWcoYR7vRIdsbAUkoWOs+TTnAPJY040mi6wPMc6R4+2ynlEc9Ivlc9Kv0OLLiRO/K0exl2oZ0/Yby0srSWR4BAlUzoMlkBLIMGs9JMA8evzQEBPqd6UAh1AiIxI59h3SWoKPRo1egZuo9cuErAskzJve/gSQKD9XaPAJmTnhICFm9behqo0F4bCCRy3iIQ4Pp6fpynahupeyBa1aMw1UD3/umsC051af222lpeH4974bjxaTYBA+4C6CsIXIATpJycnGwFHLLvNGa1dJa86sGJBNIEBAIFjJdQGV2++Phm3yX54jKC4y6BHE5rJdD7WiCAZejOWWbv08RzyVKmHCQfcsOou7u7+vLly+SZEjBN04rPqd/IK5DGjP/3qVvWb7VaPYlToTdPaSTjc4mh1/WP/s8Bgqrtjxr5+xpHcysJXoJ22o7YK9cBAx+wLhQdDHCg630f6AIDej8NguQ+8Tkq0ZI5Jf2qDKnRVWafPhC594DvEQy5lULQoHRub28nC4yWEduq6hGYUAhwKsH7ge1HhdFZElJ2vE8hkqJe9wEMeL9w7t6/0MepgarHtqKgVF3VVlKkm81mazlmZ1U4CLi5uZn4wqd1HHh4uvRk0XJjIK0DCCcpdfGA6p7APIVnNx1H/mI56Y3x9mfZtAqlantJltfb43d4jx4s37JZAIZTd0mg7wMlpUNA4H3qbaBzvadD/Kfppa9fv9bnz5+n2ADJps+fP9f//d//1b///e/69OlTffnyZWup5pxSSmBr7voICLiSJg906dOz63psSR5JWTuNQEZ3L3nq2Mcc027EpufnytjRN3kGdnnPBUmqkHeIK7yknNhYCSlRATulhuvQ3RIrwcGAexVYx64d3QpLKJACW5YrhatPDbC9uVudDwhOHXgbiBkFWhK4Y7AmvQxd2/4o8nzpZpYy4rQAo/qlSDRnR4UiBb3ZbLa8AsyPGzVVPe1/Al0pVn2/PMWEJAvG54Qp5NP0TwfQODWlw13y5GMJXwcDHsjrwo7jw+f7V6vV1q6IbCu2GXk8CXCRB2QmLwutLu+fufH6vWlOuFM+VW0HFFZtx0Cpz8XTBAJXV1f16dOnaRWIlg++f/++VqtVXV1d1b///e/63//93/rf//3f+vPPP+vLly/TstURyEzlJiVFmZ4Zyd/kGRAgJy+rvUZ5JDDwHHJlzXq6MevP8x6NsAQIXoo3V5t9gb4HOtCBDnSgAx3oVag3mw90oAMd6EAHOtCboAMYONCBDnSgAx3ojdMBDBzoQAc60IEO9MbpAAYOdKADHehAB3rjdAADBzrQgQ50oAO9cTqAgQMd6EAHOtCB3jgdwMCBDnSgAx3oQG+cDmDgQAc60IEOdKA3TgcwcKADHehABzrQG6f/D5sNXQPDNNocAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7sklEQVR4nO2d3XIbOZCsQVmSZc/s5b7/g+0zbOzFzo8tyea52Ej6YyqrgKYoUXOGFcHoZjcaP4VCVVYBjd7t9/v9uNKVrnSlK13pSv9aurl0Ba50pStd6UpXutJl6QoGrnSlK13pSlf6l9MVDFzpSle60pWu9C+nKxi40pWudKUrXelfTlcwcKUrXelKV7rSv5yuYOBKV7rSla50pX85XcHAla50pStd6Ur/crqCgStd6UpXutKV/uV0u5rw5uZmXGp/ot1uVx7Tr3pulmc6T89Xz9zc3Byu6ZzHm5v/w146kn7+/Hk4J58Tz3e73YvrfL4iPbPf75fOU/np+qy+vPff//3f03qem/7zP/9zPD09HbVPpL7RuctR1b/6/+nTp3FzczNub2+Pjjr/9OnT+PTp01GezIdliCgflWw7df213+8PMtPJierlddztdod2el2Up8r58eNHLP/nz5+HH//zfhoXY/ySbaZVWVX+bCuvV7yqdATH7n/913+VvHsr+u2338bz8/P4+fPnob0i9UeS644kD2PUutRlkOV9+vRp3N7ejru7u3F/fz++fv06Hh4extevX8eXL1/G169fx++//z5+++238fvvv4+Hh4fx+fPnwzgQPT09jaenp/Ht27fD+ePj4/jx48fh9/z8fDiqH70t3iaSrmkc3tzcjLu7u0Mbbm9vx/39/aE9SqM8f/z4cajb9+/fx99//x1/agPrqza4TFZjteuv1CbPh/aFv9vb2/E///M/03KWwYAq8R6AoDO+OnZAoFKyq0Z9NR9/JgGAMcZhELgRGOO4IyXo5DM7vgMoKkt5uGL9+fPnUX1XAMCq4a8GpLdhBbC8FQnMuvwmw+x8dqOQgICUC6/xP59Vvqk81cnL9mfGOOYvDSaJbU6A0/uIypNtFchhvZQ3fytgwH8r5CDi58+f4/b29mAgeVR6PaOx5SAhtd+JfXYJcpnx88oIdpT0SGdIHRR++vRp3N3dHcDAw8PD+O2338bXr18PAEC///iP/xhfvnwZ9/f349OnT4e8f/78OR4fH8e3b9/Gp0+fxvfv3w9j5unp6WCECURPBXXSv8rff58/fx6fP38+gAKNbeX9+Ph4qOvDw8N4eHg4pGWbNMafn5+PeEZAoDwJ0EWV49f1YwfsWP8V2gQGWIFz0qzBq2l5vzOcXbpucKTnKlCSgEAVGZChFm9puFfbLaq8KwcLLkgUznR0OkUJXZKS0k88rsBAivqwn/nfAQD/M28+m47Mt6qviEppFiWoFFCSYbaBbdez9L5dnjxNNQ4rz6drj5Tsp0+fxo8fP8bt7e14fn4enz59Oko3AxszGVbE4j2coET0it0D3OphkmZ6LhlYlwsCYHnYMqyfP38+RATu7+/H3d3dIR8ZR/30n9d1rrqw/ZWe8vonoO3glW3l+JW8s+zn5+cXQCKNb/LJwTidvq7u3f+qPx30qx6rgHszGFAhb0UrhrsywJ1SneVX1aFD0RUIcCCQAAFJQvPjx48XqE60otSSMl55xp9PQCCl0/WPDhbogbqsJGOu/349HdW/7NvKoFIWRJ2spnQpfDvGy/52QFkpHi+P5fgvgSU3lK5oGf5PUwEpWlO1TW2SQtVRgEBH5uFpxhgHwOBjygGzeHbJiBYjGmPkMetU9XEHxmZjNck0Q+2cNvDf3d3duL29PbRHR4bRPbTOaM8YvyKnSf9U9U92IdkL8i2B49TW9CMYlc5hvXnufdVFO7aSyq+ioRVtniZ4L6oMdAcEVoz7KXWolHcaILrvQCDNHYs8bOTRgf1+fxS2ErmSWlEUVTu7yADbfer1S1KlMLxfK7BXrf9gf/rUUAIC8iRW5DN5Zl0kofKuXV68rARgKrl22aWxlLFN953H5BMVfMcTPpOAjwMETg14Pm5gyAefbjmHcj4HzWRVtKWeLueiJGeU+WQYZfQVHSAIUPTAp2cIBGT4CRZYT8lg6nvlV0UzxhhHIDzxjiD2x48fRyCXMuvAR+e6Tv3tkRxGgBN5/WegruvrLSBAdFJk4FLUMZJpeJyl21o+6+GGQD8HACncSqIAElG6h6Wyk5C9lhIQ8Dp6Ot7rrjv/3ptmCr1q81ZyAKBrkoUqMlTltXrdFYfKrPifjADPBTxdvkmzMG3XLq/Ta3i/Ot4pAykq4IbKIxyXomr8rPLLwbnOK8Poum2MX+tHHAgwEuBRAS3Go74j7+n9OyhwECcZTH1BnVmBSo/iEViKVL5A+9PT0yGaobrqOV98+PT0NO7v719Ma3gf6Hyl75SObeqciE7vrtImMDBD7+ekrkGVF7OqGDx/P095VIPFr3s42FF1Uq6uUJOAM/zkz1aUBge9IbYrGfTuWip7i1F4T6qmCahkGMJzg0VAlsKVyXjIW64oKSMnV4gqv1PmpNRP/izrQZmt8nXFloxm+u/1cp4nuam8wETukaUFh5QDB4husLxdl5Trqi8qvqWx6vd03oEB/0+g62sFEgiQbMnAc2GgFuVppT7XRZDvM52e1luR3FFLbSYQUB6MZHDhonQ7wcDz8/PR2w6UM3fsKgcuOVszW+SRi6rPV2X3VZGBzjBspdTZKwgndXKV32vrlYTKQ8c0+howPK+mCtz4M8xJEECBVR408K4gkmA4IFjlVwcUZv2f2vxeRN6me139HQzxOs/9x9X4Y4wjOXFlJLCn82rBHRWblMpKpCF5WS6/LKtbl1CBFjeyOqdHxWelIMn72bQXAXFah1BNF1RKNRl7AomPAAQq6pR+BcTSeE2AP+VPeWGEQBEBHhU2l2xp/PH1Qb2qp3NGBWhMq6kxb6/Kcer6XGNf5T0/P78AkC6b+p+iA3wmgdFkq1y2KlnrbC3HWeq7VXoVGDiX8d062Dr0WtVP5WwBF+la9VO6NHdMIKDBVIWpbm5uDgNDiszPExJ2QDCjBAj4bDL2rpxX0nwE6gx96md/tmpHZZS79NV1gr5Ubyktzp1u5a+PF1/TkIABicaVnhSp8qpTNCrVK6X3OlTtSnlTofO1Q9Y1pfc2nGMq7hRKdRzjWGY6Oeh4XelQ12fu6OjIqQFfJyA54Xv3DgK+fft2uE4woHYnvZra7pG/5Az5kbLMaQvmKXnRNQJ7tf/z589jjHG05sFlyKc9Kr3p/b7FvlbAcIuOOFtkYDX9KeQCy/NqcVOXz9ZyWR5/aS7KBcYXlN3e3h6lF0k4ZfgVpiKP6cVKUH0R1CzcvKLcun5KBsDvOYL1gfjexIHpi9AcWFWAgO1yIMf/DtBkNF2x8NkUMqwMAM+r+jig4HNcu0CAupIXlbDuUQGy7hW48XZVSszJwQXzdvl2BexhW68jn0+h6qo/3otWx003NpnPKQCB/x0c8BVDvpInA6lpgO/fvx9FBh4fH1+E2Fknl1XWm33sY5b9lXSSflr973kKJHDtjI7U+dQLvr/GGL9kiUAjyZs7UKkPT3Wwtsjuh1lAuIpwk1GuwMCqoqnS65oDjm7BIIWYAIC/9N65I0v/7z+CBS7GoTB5pIBItAIOSp8GU3WtEuYKlV+SqkHXAZwOCKaQu+eZgEYHCDyPpIRltD3KlMCYFFxS4gSoSamy/omkBGeGyNs1o8QT77tZdGuFZjKQFPh7kgNRp5nOrMBXMvSertJ5lRwxP+mpm5ubw/oArhHgbn0OBMYYR/knMCDeMKLKqVWS8na96w6cz+/7tJaP2U+fPo37+/ux2+1eTDFUupzy1Nkub6c7Am8hj+8KBjrjXBli/z8DAlU+VSjGy+ryT3O2vigwpUn1dzCgOup9aRl7/mj0fS5KKJeAoDP4p4Q9OyFMIGAG8N6LkkL1dnQe68ybVRrOQXbTOowW8X+ijn9VWN9Bmu9zwa2TuX0y5ZFAQDJ5c3Mznp6eju5XiiwBiMTHDnTyuRQJ8PlZXkvluafv6Xg9RTo+IqUxdur/Tu/R8KdXC3VNeQkkcjtfggCtE/C5+VSezseoo5+SUcmP6/ZOl5O6qJrra61h2e/3LxYTampE0yAqM03ldmNI9xMgYJpz0EUjAyuGYgYAZug2nW8JuaSBUgGBU9vERU6cx3LPX8IkI0KvbIwRAYGX+55K7SMAAZJHM/yap/VjMjI0Huo79c8Yx6F1DwnqfuXdpr5yxUE5Sm2hXNLTcq/LwQDbpjoKWOhetfXwCmD0+nVtTnQOOU6goLt2SToHsK70YXXPnZxq4x1fGO3ATMZfP357oAICXWSA3rue4ziqxnIFnJ00Tj0vN+TKT+sHfv78eVhUKV0s0M0tiqknKrvhY7nq+3Pq9GUwUAnjzLs/lbq8HASk9LPnVxiYOooC6UJxCiigEnbD4aEm7cWuOTY9R+ElIBBo2RoFeCvFdylwQKOWDGZqb2UgkvH3c/VJig5wrccYcznd+r/yIFzR+v4XVPpjvPyWReW9JB5xfcSM3PupFPns+SrdDORVbfD+v+QCwtfQzOh3jhX1WjW9xGlP9aF4JV3lkQFGNVN9ExDw+fsKoDkY8TZz3M1kmucEG9Tzig50OxTqnnSCxlYaaykaMJMBB/AVP2a0DAbeU5EnAZ4J7NY6bkVUFfioQrwrHejemv5zkKSpAg0ohqKen5+PnhljRECwVWmm/5WHPGvvpcgVhxtMhuoZgaGBHyOjdzf63Bo39QnlxeU41Tt56lQSqW18lnlUYyeV73LoBtLBqv+8rh25suXz1SKsVKbmbX2Pe+bTnTuPE8C5FK3ouM4QdI5TKqsCA5xq8g18OFYUEfBpAuot99iriADXyLCOdIh4TeUz4pra57yrdILuE+x7fs4XHhUZYPs4Nqr6MP+3ctBIH2YBYaIOuSVih87CK115SWnyvJvjJbmRUR4UeM7f+uBy5ahBpDCUogBeJxoheaVEpDNE7bTF6H9EcsOktvpgH+OYD5Wxnc3zK53yIiijEa8UPPtK/3WsZNPzqSICVLApjwQA3Gi68SRftsqH89e9RfKgyr9aJ3AuWf0IMu9e4ingeiY7la6joUter+rHCBiNPjcV8ukBlllFILheYIyXH+LRPY9mdZ41ASh1QjL0CWAnnaD0asPd3d14eno6WmeRgKb35wqAZtrX3Cd9aDBAmnkySpPO/f/WAbW1c1wQU4cQDOjdXH5P2xW0kDY37tB/LuwSafDJU3WlTT44X9L/mVA5CPvIlLzm1+ajcxp+EXcz6wBA97+KHDgwqcYFlbuPn+TBEwRIeTMK5fO+7oFXYeDUBtWxAhvMj3sF+EY1jAykY6WIE6Cp0nwkWqnTKXoyRQXc0/WpAXm+jErq52sFXDb2+1+LXBN4FfkzSca8bd5/1FMrAIvRADplJI4PBzk+Hcf2+bqiVO9z0GpeZwUDr1WuY9Tz9J3Qevqubh1jqjyq8v1eqk9Vb507KLi7u3uxmEuCq/2yJWDfv38/SqN1BVRkvsjQowR6Vve2KL/Ez9eArreiZOxm9Jo6V0qlAoZKz0VSlbxJObryZHr3+itvi15Xqm86prptUWSvAZxql3/dk7xJ4Xyf8ujkfrUu70VvNXYqXZWAgMAAnRZGMsf4P0P9+Ph4yN+/N+A79Kk8Ag1uZcxzEo2znufY5nScR0I7XUV+pKgfx66DkvTFReYp/c6vGq46tpUcrsrnFvn5MJGBzqOp/m+lrUh6pSwKoisXoUnOEXloiD+fNvAwNu/LADw9PUWPjj8uKDx17pNt7NB0ZzQuBQqSd5A84eqZrZ6i5+3h0zSX6Qv4OgVRRQL8WUYBKm/Loxu6Rm+fip3X2Qb3dNiWMepvL6yAAQLYRIwepH6aTV90kYKuXh+NVpydbgxW4IBvDPhPZXL3QMpKmhoY41je6RCxLOrACkizvg6KZXhVp0pveb4uZy5bPi2l9nWAQG3kWwUOyJLDWvXp1usr9GHAAKnypqsf0231/JPHuDpoOqLnTUSsxWW+2IrkoSWRrz/w8lxhp3DUqkHuhC3xYDbIPkJ0YAtwmUWSVnmZwCKVinvxyUOht1ONgWo9AdcbsCxXnKyvG8aZQZ2B9v3+5UeJViMCCWhvAbUEEqpXAoWv9cDeirbqM7apMn5Jdl1uHETSWfFpgjF+7StAIJkWeY4xXsihIgH8GiJ1IEGGxkxl3NM4dvlzvq6MZeUjY5+u+bSFg3DxUG1g+9hfWw16V/ct+VwcDMw6ofOQ0v+qs1fyXylrK1Hhy0AnxMw6u4ATBOj1QqJpbgrDcLALHRVo52mx7St8rLzsSwOAiipgsNVQiLaArO55KgzmlyIBybNwhUj5Sedsu46dl820FfDgnKnSVzxcNXTKowIBBCo0HFUZqW4r9b0EzRT9a3VW6kc3Yt3iQZbFtRtcO+J9xjIYZeBHjrgrpmRQXjXLm62XoQwrr/RGQBWRq8YCo2O+eZKPGR97BAf6/1oQcA6ZffU+A6emOwfNjPwpdXFk7NcSJWPoxoRKViElGWxHlhSq3e7lZhpV3SRYnuY1VOVReR3Ol38SJS+e91ZJeWgBZ5XGFe5utzv62ttKGWP82oRF15ORm5EDAj9nGtaBU1Cz6FD631EFWlbawGMFek/1xP5p1I1hP0+AwNea+EZANPz+1sAYx2t2EhDQ7n368JHAAEkG3IHFqkPDX5qmc53ayRB1uS+YdUCQwJXK8GheVfdVSs7bxSMDW5XQKUar8oK25psGRHW/en6WRujRB4OQrg8yF5RKua6ClUQrK70TVfyqPLCPpGRP8fo9tOiGsvIwdO4ATUf2Mb2vtKtlZdTcK9oCXlfI85ES9U2tPF8q7MTj1YhAl4fnM1sXsIXcEPj5JWgVHCYjp2OSCXcmKpBKD96nL8cYR0BAc+cOJr28tLWxpgju7u4O6QQuqvrzPBlD7sia+razIX6e1g6k6RDqGuennEDd4zTBOQDqzKZV9CE3HdpKpxjxKr0PDM+rmsOX0FKJu/LW+/8zJcMIAkNxXJnLV7yqtQcdrUwTOG3l6aUV6IwqwOgernsWHp50qpSLG/nKCyMQJA9ljGdeTUceraiiV+SDyuZ8rSsx1o3TBa44Uxi146G3sVPYFXldPV/KwbkU8rnpFOemurYCCnxhnxs01UnAT68O+iuEYxzvk+FeOcsREPj8+fPROJAu9MXSujfjjYMC8rTjG6mKmFXy7eU7EODaMY6f19rZJLOreb7ZmoEUMkxU3U8KLqHYShFu8X5SuVXeyQMTVWEfCctutzvaEIj3SFxT4O/zarDxs59VW08VikSvFdIVA/ARyKMHlSfh/eyGnh6+vH799x3KuoVZrJfzcBYlcgXu3l4qg4bc83bPx8PBBBpufAk+K0NbydjWSEJ1j/VJHuRHltHOyHc6lOdJZpM+8+kBvvrMDasc7BEQ0EgzXO5AwMeArxkgkHNjyQhUZ0gFGhzcV0T5roDszPgnfjIS6Gu6WD/yqQOkMxu7VWe/6QLClcqsoDo/JsW3Wl5XtypvdqrIPUP+Z5scHeu+h5h4XV+6ur+/P/IWXQHz61j++hfBwgw0rHhAyTj4M2443XB9FEXL/kl1Ij9cCegnL8PnNjvyqICu+ZSQy9oYL1+NcoPqYyEZ/QQAqnYrD1dSrqBd4aUdL53PCYRU11I/bIkyEJwpnZTw7BsKWzzHt6K3KDfpTTf+vvcJ3/tP0QH2ia53/PMog09HMBohkCpnymVcZSVe+b2qfpUsVXJGWae8S87ID+pw7QPj2xMne1PxTvWa6e2t+vbibxM4JYZU1/y57n9Vlp93Zep65Vnxvwunvz7CVbbeLoIEX1DGZ4nG07u8DgJ4PMeaAVIFBBIw+AjkqHqGskWuiNxoUz6SR0DF4OsDKiVAjz15SEpLw+f5cpOipJgpD4knFWhSOfT+0jj1Y6W8U7s871Sel9FNg6U8PypwHaOfA96i5yqdlWS22ltAxLc23PmogEA1LlgWy6fXzDJF2nW1myqgQSaYdF3tec9AcxpLKkMRXfKKQOH5+fnw4SLyQyDVwUsFqGeO9Fb6UGCgUg4rQGArU6oBVoGQqn5j1B8rckqLrpjvbrcb3759Oxh7fgozCS9BgP/S4FwBAKegzWT4q+jApSh50qyT8zelEbk8qE8rw5dAQaVQUp29TyrZrTyMBF4rQEDlS6Pqde3m4VfI+6ICAVtoBnarcb4l70vSqXzWMek1lxNGCJLMjnG8mC5FNlO5nArwKISX4aBBsqAoHD11RQrcwJNcL8lQMx+Vofr7gm/nGyMjbK/qQfkTONDCW37B0KcLOOa9/m9NbwIGXoNWtg7YU5Ay0yUFme75PG5lCEjJiKSBk+ouo06ErDSMHPiiQu6A5WHVVKfXUDL0HlL7KGBA5c/ko0LiTpXB9aN76b6WwOWqKmuMl6CT8uNAIAEP1pvP6bqH9h0g8NkEoiq+VXIya+8pgMDrxGuMsKzme2mZJVE2Z7ypdGcFCCiPMlL02Csj6JEAyozK8V0FNeWQxoHXQwZSXnX1W9H7ldMi2fZXZP2c7SKAoE727YbHePmZY8mhdiTspgm6iMe56exgYCsQqAQ2gYLXGv70vwMDXf2cvNO6zqJQaUEh26fpARl2jwwofwICfkQmgYIOhHi+K5QGlo4pzHrJ0OuWNvkgTICu8hb0n8cxao+9q4O/sZDSU/GkctKzHmFgaNLl4lTPnOdJHlK+FT9Wx59fT9MEp4KLjwQIRFt5WOk5B47VngIeGfBx78BCpJA/Xx3UfgLaW4CLBn33VeUpA6p6bQED5JVHEDgFQdDL12cJbMhLTfNyCoLgQukU0eA6MUUHGCVw/VDpIPbjKqheoQ8zTbBl0Is6IegMesWk6hkOhMo7I4r0eyQ9r3sKE/EtAwqMQmHVbl+cs/NXDas1Ax2tKMwKAPD8oylQN4KVMqVyO0cbZHB98yEqDg/P87kx+i8YdsDEy+KzlYfpi/N8bni///U6GcEoj0n20pqELTxc9f5W8urq8NHklnRK+2d6kAbcowL+nRTKYYoMMaSvfJkXDf/nz5/H58+fx/39/eHowIBz6fSmWQcHA2mc8xo9+yqC5TyjzuZibl8s6A6Xr/FhOo4dj4J4m2aOQ0pzihx/GDAwxsvQFa8xTfd8OlbnHRjYSqsL8jyERiRJUEAl6uFb3U+RgWpPcFfupE5wKuOYAIYDgWqwXYpOAZxbKK0HSRGjxAeXA8qI//djpzQ8wuDeho8vyhX/Ky+XJSo4HX2ayoHiqTzfKj9s98r4/OiAditVetB/9MI9KpDeIkg6OcmU0ioPGnwCAJ1z98GuPJHLaDe20rVubOrI17s9LwfNPi58XwM5d8zTIzF6ngAkGfrZGDpljJ0dDCR0VdHMsM9AQHftVEDglBT8VnKepM6mt6VyubAkCQSjAjr6q4a+yIf1EbmhT15xBQSSAv2oYGCMjKCriEDlSRHJr+bLcDwN/273a+8J5ceFROp7Xx/QET0zKqpUT+XnUSfmpSOVrytB/1BLUsyVUu/apPwqA8TnPcKyahi66x+JOiMwu97JMj143xEwrfRP/ZhC6Q4oOEXAqYJquoB1VN6MkFI2GQWo+t3rrDF4c3NzeDOBvHJvPfFyv98fxm/y+FkvjRGun9ACSF9I6ESZTvr5HPQhFhC6l0OBq+ZbX+PRVQOkUkiuKFM6F9BEVMjMR0hRx+odVFI1TSBBrNYLeD1SnVfakMDBah7vTYl/W2VoBh4TouezvgjP89HrRsqLStCjAlX56f+sH6RYEpjRMYE+n04gDxwYrnjlScE5sEhlnkozcPsRycHQ1rpWetQX76VXCl0XuV72uX5fK5CmCqqpAd+Fk/P4Iq6Xkc4bow//J37peebNcmWkVabrgZ8/f477+/ujV7v51phAgPPbp2So8/m2QwVA3oLO/qEipR1jGyhIHr0rztX8UrqU/ynPV4BhZhyZD4VYQk9AQIMyAwMStg4InOqpzwbVamTgNcDtrcgjIby+4mW517K1zC4NFQ2VIUGFz53qWBngqr3yfFL0KaVlXZxXW/rZAQ4XhTE/yvBK/t7u1ek7UgWALk2r4ykB35TGAQANOM+rVw11ntYXMBqQog2+2yDfWlB96KzQQ+c1tofz9M6zxEuOZ8/LwYeDcz0rXctF24zmUYenI6MErkNV9xTpOsW2zuhiawa2GP9TIwHneiZdmymHpIQY/vW8iPQZGuW0geftawLc8Ps8WlXnlfYlIFClre5fSqGulLsVcIpc+XDwcwER+0zl6B7540Z21Qh6v+s8GTS2VemrTYkcYCS54LUEGJyoTNOYr7w7jg+X7zRF0QGixJ9/Cp1S16RL3fDSI682HSIQqLYR9vMEEvzVRY80eN2T7PpaGKZN46wi6WWl55gmAEh1VFnki67LuaucCI/EMKrAcZd0k9uMlb6f0YdYQLjiyet8VTEmzyWlmV1PHrl7g6veR/UsjYeHmRk5oABSAUqIfOrAEWZF3f3OqPu9VN6qMftotNXjTR49FZOMZFo74G8aeH6VR5jqRdDhfeIypfObm5ujXdO87NSnLKsiKr503Q1Tkm+Wy/8u4867CghUdf6nyWhlCDq5rYySgAA9Yt7nArc0BcC1AHpTQIBAYIB5EHh0U6GVXqJTpTo66HXDmSIG/hNPk7xWgIUgVPP/ys8jAGkrZY+2cKqQIMPr3/GH9d4CHC8KBpKh736e9j3rd25KAuuAYIyXG8vwmi8OTB7TChjoAFM65/8VIPGRAMFKXSovqpM790R8t0kHAVsGqZddhfRdIfpcqtd1xYv3ZxMg5H0H8ckgpXGtaQLWz/mv+pIYDagiF1XdvX4fRUZn1PG2SpOOnp7GzqcGfBpBPy4CfHh4eLGHAD845GV046nSPS4Pup/k0fWPy0YKv1cAS0ZagJnAldvK81oCVgkA+DQBFxISFKwY99dEuN7sE8Zd+hkI6ARn9izzn9X5FCO1ZY64e7ZS5gkQEIUyLY2/7vlCms5oU3g71DkbLAl4vEYo34Jmfd3dnylS9tsYv4w1+0sD2vctT2VVspzGhMpP7aFx9eiC6kcjvMKnjipj5Pl5ZEJKU/Vwo8+2pLw6gMA8SBXPPjqlvkl6MT2TgC2NaqVbxzjePIiRAO0X8PDwcPSKoH58La+iVcfF5X0GBmZ5J/2X5J9giHxRnr5+5+fPnwdecR8B8lJ5EjRwmoBgwCMhyZF0fp5CF3ubIAlmZfwrEFDl2yFmVypkLL23xHSlGeOll75CzJ91S8Y/rRVgnZPRrQzxinCsKMfVfL0eHDiXpKpfXRmMsRaSf009RNX8eQqhukfBulFeuHpZ95OcOA/SNJZoVc5VN0/v9UltY1287pxqIe9m9doqczPge0mayeDMUUo6lobJ+0H5MLQvMEAg8PXr1/Hw8HAECLR/gCIDvr7DI1dj1Iab6ZWO9asiPYl87OlaAq/kk38wjvoiTUEIEGjDOI8ASJ51TbzwaQKCgFmbXyuvZwMDWwGAjpXRrxDwljLfQqG/JjLgVNUnARQKAAVFdOqq6a4O1f8VhXkub/OtqFIgHRhNg7IK2SdKRlDX0opqKucOCBDkpPJ885NkgBN/Up6614FRL58KjW3wUCnzpJGoPCtOJ3RU8abSQ8lhuBRt1XHpXuK389Svez5c9CdD//DwML58+XIAA1++fDnaWVCLBaWvZPC0vmmMX33tQKDy7sd4+cop6+m6ho5ISs8yEugmGEhAQPWXkdd1tVWvDDNKIH764m+f8hKfkv5JMvlaeT0bGNiq8NNgTOer+SRFfUrdPdTr7UqL/LYQ86cAprUBDgiq/D6CB9MNZA7IfwJ1YHWMNUC4Mh6S3Pu8YvKeHRyO8XJTEl8PkNqX6uzy6YrXvbuKb6l8X43uv8Q7jQ3uw+EK0stk2V43BxGV7mFdLk3nAAT877Lm8+Au8/RgFRV4eHgYX79+Pfy+fPkyvnz5Mh4eHl6sF5Ch07v0YxwbX9bNdUj6z+MqP5IOSryp5vXlsTtVulkgQYDg/v7+yOA/Pj4e1UeggUCAGxH5WEptdBBbgfmKXg0GksGs0unogpaU7qox31L2OYgd34Upq05IoCPd6wDB1jIvRSsD9yNQpTw6Sgog9SWNUFLEjApU0QEHIslD0X/VwRcw0tNO9U+g1+k1gI5zrj4H65EBhlD3+/0RAGC7K1pxCio9kyIdHw3IdgAv8SjpVvJ+t3v5Nc0KnFbrBQQGGBWQAdU7+OIjZZjA0hc+67573KTKwCcZcH3ktovgiFMnHJNMz8hAApQEQUpXOW93d3eHZ7j5XAVWuzFQgfQZvRoMkMGnAoJVAOAdobx4vqIIvO4VoHmL8LajNwcFLK9Kq3urxrZCiK9pWxce/ifRTF5cplIItfK+SPJuq/ypiGgoWWbnDTAv5Ze8luQ9+P3OQKb/iQhMEghKxiaF55NBqvSG99PWyN0/Qaa7MVvJYQcEaPSqqBS3FebOgYoQcL2AIgMKjcv40xNmhCBFnvSf11Pajg/8repJAgF+KIlggPmzXk9PTwcDTuBAAJMW8qpeAgoqL33aWM/N7JLr+1VZfpc1AxVKdXTagQIHAp1iXDFyVSibhnclHLyidFJnpFDoGL9CqSy/au+KslsRnregU9HpW5IbjQQEqnrOgCuNN6/5eQLElRJOeZK66JOXQ2O70l7PL42Rrk4JdJAHnBqo+KmoQAX2E2k8vsaYfyQgsAJW07UVORvj+G0O3vPNhvy7BdxHwL85oHuK6Oz3+6MvsDoY9KjVlimBxAvmXfGoco6cT77hUhr/GhMOGhjy15GgR/flKBAIpC2gq/FXOcZb6WzTBN19HVd+b0HecYkqZZe88xlISKjMDbcrZ5XB8rh4cKUsJ2/PFiU369eqLh1/L0Uzhdo9txUApPI8tO/KUEcqEyqfKnQ9Rv6oEOun8HpSIj42mU8aA5XXln5VXmy789D55oas0xEOAvTM7C2EVQP7T6RO96ZwuEemPE3aaEgRA/64PfEYL6fItvB3q95wg87yXC6TTk5gvDLMbqBp1GkvuHaAUwWKCKSxX32fJrWF15LOWKWzThOwYqQtIKBCcasCdE5wsRodqKgCAn6NCDatFziFKKQp/HpuWsnzowCC16Z32UoGza+5gXcgwEHvrzGlEGo3p59AZtUel4lKcbo3M6O0Jsbr6mVtASyr4zJN66SoRcWjiqfvRSvlrvRvBwzc4HlEwI09Db52G+Q1/VSmv83SRbSSzvL06o/K6CXgPXveF5zyeYKiNMU1xjhEQfj5ZeXP3WE5hhQB4CuI/jpiAiCdPaymIVboLJGB7nql/JLRrkDBFiCwkoaCUHnnXV7J23gN+f4GW2gFBXqaU5HjGLWRqNJ4PS5J5/RIOiVEcmVUAYmkdDivWkUAZrynd3wKYEtRgERV2ys6ZXwzXw8tV2Wovlum8y4JWp2SMedx9VkHnd0UgEcB6P2nrw/6NW1BTF2aDLLXjYZZ/5PRTyDSeZKm3ZIsy0ATqCfe+RglgFJ5Y/z6Ai3H7tPT01FkQL+7u7sjUEBngJEB54/yrXhT8WtGm3cg7JRPh+qrEIsjGJZTKdEOxb/W4Hgelad+LiBQ0WvasYqwO3qNQkxlXRIIVIDT763k4TKd8pw93ylmKeLKo6EH4546jXUln2kcd329YiDTuKzWAyTgm6YY0jWWxTKqOnXeI9vnZXR8vQRtBQCVTLtT5t8cqKYEuCCwAgUODFjnin+prjR86gMHCh1/0rRbFWWjU1e9rpqAQHWu+nlU4Pv37+Pp6Sl+/IkGnxsQebSA6w1Yr8rJq+x1R5sjA9Xg6hCVC2EFBlT5zmvoOqzKlyita0NXj+raKZSU22y1+Rgv21F5O5UC79q9YhD4/yN5T6tUgdUtz7nXPgMEnLNP/VIpmgQGqLB8jpz57ff7F7LCe6J0Xsm919ffe64iWz4eacBpcFk3Xte9U6kzIkmG/2lyXTlM/O8ephv+FB3g7+bmpo0a+DkX0bmnzPJpmGXsdrtfuxV6BNYBBs8pZ6n+NI7Mv3vFW+md3+Sj2qtIFd8c8MWUvkbD+cGtiJXeX7OtAIFfZ31XZfpV0wSVcq28oBkQ6MpRPvyf6rBisCuvo1Jmr107UFECLLz+mjI7zy8ZpRWB6aJC/yTqvKbqnIM4TXeRUr8leUvl+zjx+lTkeaf3sVNa98R13pVHQODh3C3TZy7nPh6qjYPIH65Y9zwqh6Dj6znA/ntQV+/KOfJoFOe33WOl8aIxc6Pv0wS+ot5BSFWvMX7theGRgCQXIva7gxuCFIIBgQ9u211NOyXjmkCU2qY8tXDQgYDzI/WXrjlA4Fhj+z3K5mBpVaZPAgOVMvWGudKsQodVGRV4SGCgAhhbDaojTp2/Zl7/kjTzBP18JZ+taf9J/OqUKu+vym8y7rNnKgPINCLndQcC0v9VSnV3ry0BhOpZNxbe5uQNprHu+kbKcxYFVFrP+6NSJ3fpXgcEHBD4Zlf+XIoi8PXCatMsGUYfA24HJC9u6NkvBAdp6oht9OkOlu9RJ1KK2KbrLocOZhUN8ekXj/b5okJRmjrQGgKPAlRAwK+t0Fk/VDQDAjOB9vBHyq9SyqsKt6IKBDggGGP+9UFvUxJyEttWeZ0uSJWSm7WP51sBQUpXTRl91KjBKg87pTu7lu5XY2OMl/KUZJ9y5OPgVDDnUQHK98zTFhEAiDg1wud8CsTPK5L3n8aF8negnsLLVWjZ27eVt29Nnd5MaSsZciDgRt6jAJ4mTSFwvwEavTHyK4XePz4+nCq9Vekdly0PyyevuooIe7ru+apeK3YpAQI+qzb49Al1QgIC3o4ZnQUMVIa7MmxVx3gjEhCYDWA/X1n5n+rhioz18w2BvEznTQIEIleCqR2ObFdDsSkUnNrr16r2VGk/OiDYChKTAXeDxnSiahqLytGVFVcmu8yzPhr8CQyk8dTRLJ2DghkI4lhQ+xxcjFF/myAZCc8z8dbDp8o7ramZGSHv548ivzO5TXLgspeiATT+7lFXHnZ61TCtH2DfVfVK7WD/0dASrNKbTjxKbU461svboh8cAKRpi9Uxxv/eJu8L7lLozoHzIoHdGZ1lzUAFBDojvpKv570CBrY0viIHBCnfLesIqIj0LP8n3qygu+p6h1ZXowKVMG8BBLx3jn55DVXI2amTaRozXz+QiP1beUmehxu7MV4uHFx5rW5VKXX3k5zqmPjoxtfHZOKj0tF7Y/4EA1KIiQ+VHkiAQOdUqglo+TOXpA6QdTKVgJcD0WQ8U/oUGUjTBTRSM7nveD/GL2ObAILzouLHjH88T0a00pWpLl0ddU1yO2tLAgSu12f2cNVxHGMjGHCGdRWnIPmzPKZGuEB3YIDPVlS9o+3EdiVl59dmYdWK3OtzZZnSuqIkVfzwsOhKhMCpGhTd/4/gUZG21ifJYnoPOXkdosrAJ5mid0Elylfb6BV19a4Gf+p7nbMc54HuSxFR/lzmyS/PqxvT1etf5CP5rXOuth5jHL2O5QaG/6lU/ZUy76st4/otqJKdSrYqg0sPX+f8X0VqqoWF6fW4SuZTfZN3W/FYfefAQPn564cu45UztEUvpEgFZUrEDYZ4zvqzHqQ0LsYYByDWgRLxobLRK7R5n4FU6Q6FJuWQPG8vJx07pVpdSzQTks4ApnJWwqpb6pcMzBbv2tvXef5dmtRvVT7/VKrApitRDU5fodxFh/x+NYZESdk4kGO69IzPP1bKj4qJ9zsw3JGUOseAG1I35gQCDoQ5pvSeNZ/RfTfsfM3Lw6gprFoZI9W/0lPvRZ2RrGS3A1viZ/W+PP+nNAkEpNXyNJTMe4x+LYEDQhlVedQ0rDM9ne6lMeY81dHHtgMAt20658ZCvv2w16HqV8q1gEA1fcKx+xq7eFJkQOcVCEiDe4y8gIfURQJmg+JUOmWgb1WUFblSSnlKwancU2kLMNiS32vr9Z5UKfdqALnRoqzznvKuyJWdP0dPgmPDjWM1Z8o0qc1evwQE/DwpuRm5sXW+Vs4Dr6sdnjb9Z7RCRkkrufnamCtw/afntd/vj3SXL4L8SJR0ocuXG2mf208GPulwGv9qt0F/fozjcHuSfe/TZNxpMNMiu2RcfSx5HZSOhjp568pLdauAAGVKcuORgM7wrwAS7jGgOunHsVzZyFUZXgYDHj5iR3YRgdUKeb4davTz11AFTE4tpxqk7iVtIffYulBTera6tsXrn/Hpn0JVGyrl5YDAowWiChRwmsc9pKSkaKRpHJlG16ikZvOQTpxO8HYkHvl4TkBeCpF11r2kEyrQkDz4Tj/QmDBC0UUF2H7eI1DhmL2U3Hc8T3zo9LJPEaRpg0qfVzq+qusY6+uLaDTdkLpxZdoxXu5JQDCQ6sXxkrxtpmcEivKRgIGXn35bowMetUrAwMF3Gr+rsrsJDDBsskVIUoNngp2U8iVo1QB6SMnzOEc9Xpv/zOB3HnMXPZh5UJXSf09yQNUZuxUASqMyxst1KUzrkQSCCQ5gR/lu4FWOK4OZgkn9Sk/G29R5FzMe6p6PB+dp5fF7fStj5/VN1zoPP4GEpHc+QmQg9Uc1llwn+9RWWiOQ5v3ZHw5Y3VP2/2O8BKtV+gQEfL6dnwBOnvZu92vdAKMCiaq6pHQcG9yTQu27vb190Rcqn5GHCnisOMgJAAjMsL9W9O+MNoEBhdX0n4KXkP8qfUQQcApVynHWBnqKidyDGeP1AGMWFeD1bmCdoy5vTaznrC8qUKo+IiheGYhdOV4/GSX3it2jcCWW5v5Xyk+AoCIp21R/5ufnnja16xQ58ggAr1X1q8DBP0XvVKAgASafBqD379MFHqlyIJeMt3vw2hRHddSHefhxHo9wVUAg/ZSHG2nVm9EABy9dW1JEwEFpyuPTp//7zLADXxnqVOcKCCSg6qDWdyPUNww8/WtoGQxwEUpC6qlCKxEBXquURqKZoerIFVLnOaQ2rZS5tV4V7xx16p4PJB6dVgx/R6tt/qjU1b0y/p33WoG+6n9SXhUleXSvKymVTsHMxkqKbnh9qvp1Hmoli1LevvjP01XK0/WEj9UOIPiUgLcv5X1J2a/Kd+DiQIBGI/18wV8l22PkOXkau+fn58ObHOp33RcYcG+/0l9VdIDGPskDgQCnCFxe03ipwADlKYFYOce+YDUtIHx+fo5TBl4Hj1QJbOz3+0MkQrwSSOB0AZ/bSpsjAyvKURVOCHw2qLvBdw6jVNVpa77nMpBpeoFeWKVQuwhBUqCJOuOxCnhWAd+laVYnlzvKeJJz9wZI5J/OZ4Ckog4IjJFfC6z6PV13j79Lr7SpfStl8R7HHeug6w543SNM3hPrp+tj1O9aV32eAMZHkulKTnVMC/4cCHCNwArgSUDAAQENkQygf7bXAUBybLzPXd4pW+xzpZ85ewk4ux1gvj7GHKTymf1+f9RunSdZ7vS06xrVh1ECRSd0fcu4T7QpMsBFUz6nVDF7RUldCn1TALxuncfT3d9KM2Xs5VRAYIvhX0mXPMIxcnh7hS7tXVX/XfGvgNIxamVB1J68ie6caXnuCjGNrap9XRp5HbNpgs7gExTM6tLl7QpeSpXGIZWTjLZHAJzSPY8gvMbDOietgEgHrpwaSCCAgCFFd5P8JP0u2VwBA1VUs8o36Rv+T4CAfar7Cq13xCiSnnUd4enTG14Ctj9+/BhPT08v2l9FbhPRNqlv2VYBAU0XeEThFDoZDHQRgYoSg1cVcVIa/H+OiMGp1M2lbqEKmeq/p+Wg4vWUjve2gIgV6kCV7vN4SaoGeSd7K/WuED7z8IVb1aKtVF4aD2Nkw8b7K+TKspp397o4zzoZ6CgBAc61duFVbwcV+253/LEcXy+Qyu3aeylK8shfAgGMDOgVwPv7+xgZ0LEi9gkjA8/Pz+Pp6elgF9j/Svf09DSenp5ehPzHWFvfssWJcZAyxi+ZqABtyqcC8fovvSzv3J8XGFC7fTGh6uaRLh55TjvADbUIBM7hUG8GAx2tdC5pBgQ68JDK3sIMCq/nk+pY1WG2+G9GHZCoPDYX+C6t8t2CSF9DFV8vTav1oYLl0XcgrPKXsqCSvr29PeSRdm+r5L+LtvHezLufgbRUfxG9jqqufHYGCjsnwgGuGx+X+YrSmoFZ/6d0lS56T+rAq44OCPTGQLVlMNP47o9uCFNUyvtKUQHyjx7y09PTkSH0PLyc5OSwTlXkgPJBmXSdVPGUssXpMD2v/2on05A/nB7oAKzbDvalAwWl9WkCRgnS+NqiizftQDgbxAlF8fkqv66yVcfNnuuI5Xp9V7yht6JZx1HgErqeGfzkvflA6cDQKn00IJCok8cqTZWPG5J05AY3lSfnUwuiKgTKvk+er2hmpJmnaBVoOi9m9+jteNkpEpDmmT1KsFKPKiqm/97GTu+8N3WAgD8C1/T9AAECnyrQ8w54U7t9ncDT09PhHjfNYmSAi+h8s58EBKq2J2K/0mjzGtN2us/b6VMBDMOnspSGbeU0QQeQ2VYafy9XAEQLBxUd0C6FzsPOgXHatANhUigrQIAV83NHMxVzThmc1eI8r5OjzC3RjdeQ128VCFSUlH1nACpwsJW6fvfBeAlaBXjuYdFg8x4Vp4jhO0YG+F63K2IqcKVZqX8FXNxDWTWUiXyO0p91IySiZ5acgeQNiVyOZlMEq+DXyztFDi8NCJwSEKCMpZ0CuVugZJgeZydXY2SDp/IeHx+PpgsUyaGHTCCRVtyvgINEeoZjYFWXr/YrATX54uu31HYC2ao9HokgmFIZPE99nqIDHhlblffNYKDyOlYjArzWGfnuuUSzRSJ6lq8zjfELdc1oi9CcqjhWn+2mDypyw5+OszxWqEPbH4U678q9LBp/9+Y9P7WbnhbTp8VdPCZFTGPMiJC3YeZRzYC6t0NE493xSXXots7uxnsXsaCR0DUHBH6/y7Oj1wCot6CZA+V9QFDQfVWQci1amfIkIJDh08ehGJlKhp/XK5CX+nm1H7f0N2UxtTfZEx9DlPsElBKYZT7dtBvrxKifRwbUhwJmBEZs6wotg4HEiGrQrRjyqjOqdCsdNmt0l0dazLGF3KCeExCcqtxWvaAKjc7q2eW35fp7kPPVZa9Tru5J0ZsS0TPRvQQAqIi9PF+Tw53UmO9ssKdpBe/XBCi78VQpq0qBVTrhVBkQn2bg/Rxg1tt2qYgWKelAlyEP/ytC8OnTp6MpAoIGgnddH+OlLCSDLSMv0Ep5I1CgwU9goIr6VFEgXk+6kgb6NTYhUQWquQdC96GiFF0Q37nY1WXOAQFBH6cL2IcVjyraDAa2GqZKaSUvwZmU0iWPjP/PIQCrc6ROWwBB1Y7XGMzKqJMvyTCseI3VveraJQ1/og54JkPnHntSonpWSJ38JgjwBYP+4wAm+UIiv16BZBpO1nGMYw96C79SWR41SM/7eaKktFiut7cCJd5WP09rOwiyPLJTAZ33pFmExeuYPizEyIAWs/JHHqW20pDRyHHhoDbEEfm0AMFAWiDqwMDPWY9UNwei1MNq2wp10REfR97WMcbRFEGaJmA5BHH7/f7Fxk1qB0P+fF7RAQeCSl+tU6joZDAg5jhtVQppMFfUzTd2ZXSUlIhPJZxKpwKT15Ibe6dzhE/T/64tHw0ciBII8PB+elfb5cbHhRSzTzf43Gw3XnhNxsoNXTVtUBGBQDWWk6FNoNzb9BZUGWYab51XURP3qrQ4TO+gKyLj6z0+EqitAJPzhEDWwYDWDIxxvE8Md9DzfvYogNYA8HmX/xQFqMAAQUFlQPXczIFJ0QnxyZ2hiiQDKZ3rPAcp1bqIKvqRxhfXHlX1dSDg0QHxdavsbgIDnRGplFilpCoQkFD7GC83OXoLmuU7M6KvqVf17FbD7UDAB0K6tgU8dKDgHADqraiSL1em1UKs9Dog8yaSZxk+zeALB/3nlLzZpNi6KYXqmvOm4ktSRl2dUxucVqIT7q2rb6gsq3pWURW2k1OE9NCqSMSlKCl254kDV00N3N/fv9hjwI190rOcDmNU4OfP/3tDQM/I0PmYoAGvNh2azal3kYBEK2seuufIW/LY76n8JGMJwDgAYN9J5irdTHDifOGzt7e3R+A2RUxmtAwGkrKpzl0hrtIMCCSldG5KntYs1PSWHgSRbqfk34NmoOCSCrOjSi4rIKABVS3C0jMcnDTYaQrAlTBJCtPTVAbcwVvyypIySs+w3zogkADQyhivxqi3KUVWkiFOoM7JgS/LU3/4fc1tO1Dztn4ESjzY7XalvPpCVRJlw9vJML2iAjS4NOqKOFBfeSTAjVkCBN2Cwhk/KpqBqVX5cgBOma3a4kBHlCKGrC+PruudjwRrjLKsrLEhbYoMJMPkjK4UhlMl0LxWzUmeigBXiN6C1zXRexlB57cr08rjOyWyIKrQKskNTCUXl6TKyPm8vpSovCme+2rsMV4qUpbHtQYJHJwCbL2Mqv/VT7qWvL8UMZgBgTRGV/s4ydUKdfKWyI3+GC8XdyofV+6852Pp1HVE56QEUNLaFL5KSHDAKREHsBVfCQb0u7m5GU9PTy8MUQITOrqeqKYBHLh6vVwHJSN/Ch8ruU6yoTa5rfAIiv8Uvve60POX/PLIMnwKQ3UnGNCbBYzgrNDmVwudKmSeUH16rkLf1bTAa6IBWxBkAgVdnt1gOqdRTEp9i9F/TVofoCmfjwQCZkSFSkDgc67uYSXZSKHA2eJBbvLi48U9+ar+fl7178zTcpA0Rg8C/Lwihjn9utfLPR5+fa4q0+tMkCNecB6Wz1VTCe6hUim/N1U6twO0BK6c4lJUa4y8dsTBP713GRk+w8iBy7Lnm6JXvnZgBvwcvHl0p6JKZt0rr+ScZatc/ffpDZ8a4c/blCJ+ycgnYJt4pX7S2gGuK1ihTWBgZkgqDyyl83M3wgkcVHlUdRlj22pSPqO2Voys5l2TAK+Wu4XObXBXQMIWIOHPXZoq2XQDzfUCyZhX4X4Px/n73KoDjzz3yEsHuFYphScTJaOflHtSkKfWS0QjkOZYk5Eg2HKPVNeZJ5/RuXuX7Acu0KK3dklyI1HJLaNXDl5pYERJzuiF+mK4m5ubAyggj7luoCvHy6zSzPiQ/juP0jW/lyJinm8VPeI5jbEDqGoahPV2W+fRLNrHNCZk/CvHY4U2gYGOZkzv0osqIJDoFFToVHn/RGSpHIKEbjHWucg7M4WHk6fjSN/bM2vjlmdX6FKgoAICrlj9Pe10nkL8qTyPAHTgQDTzjFI5KzSLMiR+rIzhVaJxqTxSek4Mqc6AAevvkTJGBVQPjqWfP3+twGb+3CBHY/1SkQHvg9RPHrVihCvNSZOcx7wuXnKaIOkIEde9zGR7S9uruW/nha5V+SQQ4Pe97tR17t07GGJUgECg2pEwgV/Xsymq5ulVB0aDfJOnFToJDDizEhM9bXdvjB4IdAOxUg6OvLr8OuRf1Vv5n+I1ePkJeaZ0RIdjvFSyVVSChntFqc/SvcZbvRTNgIArVr6K1RnzBKQqgLHb7V78X+kP9rNfS5QMqHvKIh93BAJsT1WO84Hkz6WIAL0qX2xFD8sVKMtnecmrYj1d5yRFy1e0tnpXb0EdkE3TWu4ZjnE8XeOAR+3WUTySEfGIgMjXnThvZ7LN8mftTa/cEaglO5TGV7Jd6X46slyXWwIAHv3cXzf0aEEVBWO/OFhgf2ivApfhFdoMBjrBdGWyolDG6F8b7LziKq/OmCUEmTz9SsGJZvdfS2x3EtgKSfK44lk6r6r/VfTgrflwDloBAj49QEPugMHn78Z4uRp+jF9vFaSwLceK19X7Ng3mc4auq7G6AlTGyHPO+r9iEBy4uJeVFGUKs1YAne1J+mS3O/b6pEC5veslwUAiyu9sfYBIbSUQULtdlhwUVFEt7qcvvne86gCtgwldc+OveruhXv35uKsAgPODYJSG3A299mLQR5p0FChwEOHrCiqA5LwTQFJ9PTLgfTajk75a6J2QkFlCXU6zaYFVT4hEBOz5Jq9H5SdFUtU/KestijkNGFecnIOr6pLCZ5UiXKWZcXclvAUQXAo0bAUCvlGLLyBMHoLzJeWb1iCMkV/bG6N/U8c9fZXpody3pNVIU/c8Q5nJc+IHb8Z4+QoXiXXxrZ1FPu60NoChVNVBdVxde/EelGSXkQF+kIi7AtILJ799Dlvjg3qF2+QmfaRz6axKdxF0zdo4xsu5cwIC6p4tP7YxlSlecQwmsFoBAAIBBwW+fkA882tVhDeBWoFX5XV3dxd3iVyhk8FAhbac8RQOD3fODJ0oodaqjkqfpgK8Xsy/M6hV2VXodUYrXkYXGeA152/lnW2dKiCtTBt0g6u79h7UAVMqV0YCKuNN2a1C8RXw6BQqeZj6ydtARSgvwJWj0xZFvALmU71TXumZ9HNvy4/uzabpggo8iRx4JRAuQyoQssW7OjdVOlcyent7e9hQiN8f4E/tklw5GPA5ZepKGl9OE7g9UDrXM56u4mXF3wS+xzhe01CNNRpN3zU02SpSirxK9rgWwAGAfs/Pz+Px8fEQGVAagkuPNrBc8oUymhxatTHtkLplimsZDFRzM+xgFspOl0A6Wk8NmlEyxm74Enld+RwHiRvZWdlvRecKTXZAIPHLUXHH2xVg0QG+9yJXAu5V0dBXOw7yKKLMeHQghVWryBTrmP5XPFyRwVW+J9A4e35meEUJ2FdhV48O+NENQion8dgdELZb9+ltpWmKS1ElL7vdrzUo/gosDQL1GLcApnEiSfdIXj3kXMmqgJSDAUbAqNdcF6U8d7vdizHGPqvAgIOAVCbbonwrYOAgNQEA/zkQcPBFkFEBWueFAxiCJUUGnp6eXux2ukKbwAB3mXLms2KrCmjm/Y7xaz6fAps88pW8WHe/pjwoeFXIfUto/FQ6FQjM2p6ELoX+u2cToPgoYdSKKhBbKVNu2qINW/xTw1RMaUAzwuCKy4HCDDR1BoEemdNqvySAvGrsE1WGmcZF9Usg1SMFBA1V/d0ArAIqjXURlT4XYl2avG98bwFfN5DADYEAgcEYL/U311PQGErn87rqwyiVyzgjmFV/eJ+xb1YicWkKpYrGpbwS0BTvUkRA5zL6Dgh8+iBFAnSti5gTDDkQcIfGdc0qbQIDSZlJCLyCFVVKa8UIkSo029XdIxhU6hRQrjtIEQIi3yrNexN56qDG061c68pJ4OGfAAjGyNGBCgQkJUv5oZfLwapy3EuZDc4VBanyUpscGHQgYcajquxEFRBPCkl15zy0ZHWmxCr9kPqUeXSOgivnMcZhAdbz83OMCF2SEqBNWxCLDwlUcT55jJdyLH6pj/TKII05gQINmq6prspXdIqOWBkzWwxjMvwuAw4QyLvqTQFFA6q1BNV6Fx8TIrbJQYvaTp3B9Kc4k5vWDCSj6micVBnSrgynU5RZla8rHN73uvqUga7xmXMbQbb1XNMEY9QRAZWZ0pyLztF/5yYqUt+1zRcLurflA9CVoHtvotSXPg2j53hknVMfehnuZXBe1WU8Gc0KCHSymJ5xoyWi4WfeDpgSH11uPW3lEabxzogO+bLf7488boW+LwX2K++3k1vKKg01PVv9UtidZTMiI68/RQdcV/p4cO/eaUVHUOfynHVPbwB5NM+PHjnxNSnOAxp4/hePfaqr2ngo1YeymmxnZ3fcNnuEaEab1wy48fdrqhQrmML6q/QaI5UADAdUMookCvMYL0EB67YaHTjFwL/GoM5Ay1uBAKdLRg0q79EVqn+DIC3Icg9jFhlyQ6S+kJFJUy98tgJxfo0hWo1DD7GyzMpoJ+PZgYSuvZ6P8hJxHPlY9bo6jxPAZ7/ymOohnvBdetGPHz9eRAcuNU2QQGEFCqr9MBjidq9W9yVr3j+SVfGhig6oTjwf4yVA3aIHZjLncla9EuxGlIbfIycODPirPP5k/B1wpaiAAxK2heeSvcoB8LGQbN0KnQQGvECfJhBRMIS4O2F4LfqWAhkjz4ESPVYKzRnngEBpPBTm11fyXqEKCFQo9lxUIdfXlHNpQOBAgCHWNEWQ3iaoFJQjft2vDKzXrUrbKUGeq30+RcB+0zh0MOBjWnLqhnQGAui1MT29RYVCNQ5ZN/WLjJJ0htKIzyR3SthXvh0v66J8WJ7uCQjI0MoQXopcLhzwiJcJCNAgeWib8ppABw2/IgIqX8CTfcq6JhCq/26sVoAwr/t/B4MOBJMTR6DENSIEBEqva92rhAQAHoVxIJDAgK5xrLCurn/52qhH1RIgXqFXgYEUhiGTNdCSQWXDOkrzOFtAA4XFBYckgaVgKy3bkDwVdpYL3kr7yJs0VdB5j1uoGmBenw4IvAVIeGvyQeILr3y3QU9XRQZE8rzcALNs/h8jr27vAAOfGeM43E4DnzwLv+ZggAbVx8sqGOB9Hz98zheZKX3ycDju3MiwfdJB3TclKv0jhU2lK2UuUMAti9+bvO3Ut1zPknSx+JuMmINX14cy8jT8NJS6r2cFOFwmVSfdd8BaAYJuLKQxVdkkb5dHA3zeP0UJxhgxPRcMOihI0QDm6+CWfaU2kRwk61rFH5edFdq8ZoBIlMcxjg0hK1AZTp53g+0UQ9OFxiuikU/AYNYulr0lCuDGIwGCS1Fl7FnPjtcumJcgvtpKAHB/fz/u7+/H58+fD+dpakByz13d3DArhJoAE8eJK0ESjboDwN0ub9jC+riy8DQOzN2jSsCAz3dUAVavSwceGRlwj5JtZLtUZz1LUMeteRP5PDjH3P39/ZFC/yhgV3V0ueQCV/a3vwpHUJDa5ACNiwgrUEUdwKkEhtgJtDwym4xWAqGp7ARcfZyxXaxTWuznkQHKYlo0mCIEDi78tVgHGayf9wVlUsCUeRBwsYwtIF60DAboGfnRvRxOB6wYeU/j0YAt5J52R8mwu3fiytONfwWAqvacs/7noEo5d1GA7jnSpYy/E8PePj3godUKtHSGXMrSASGfIzEkSGWVjFbKx8up+iABMZ9Gq7ypBHqc0hy+yEOXqW70IjnWdF0helG32prG348VXyt+cn93rRK/9NsEych5ONxBX+XxutdLoEkdp3zpFTtI4NoBRhESIFae8n4JCly+/X+KpHnaavx6JMCNuo5PT08vIgfkFY27P5vAFkGATxFUR5JPHUgunbcOBpzOPk3QAQEfVFUIhOcrQEA0C9E5gpKQEo1WqDZRigIkckXuQMEjICm/yovbSt4HVTRmK60AAj/3ayr/Ut5VCqtqfcDd3d0hIuDrBXy6gJGxZPh1zt8YfVQkyUilSJNXPBtPSltFDFzhJuCQ6jsj1oOyqHuuICmrDCUTvPjUAn/Vq6DsM9a/AgM/f/48RI3kPd7d3V1smkDkfT/GMZCr5LGat3aPnVEjyhINvp4jEODCSkamlI9HrOi1sg8cPCbj7oCgMnLufY9xPFXiHj1fCayAQBVJSAsH09sDKb9Uz+SEETAoMsD7jKapDaItdm/TmoE0NzUrqDMS1QBzYV7J6708aldsY/SLXVyhpzRj1MqpEng3+lKWXSTDjY1TMmS8rvP0nP9/j75YJfHGw6rdFq4JALjiZd+JB1KU5GNS1O6N+X3+5/PJk/I6pPuVRzXG8SY9SfGmvp+NS5ZDp4AK0F9tS/UXIEjrDLz+/lzlrJDUTtZBzgOnG56enso2vgel/kmyQOPinmmSkUSuB9yg7XbH0wZViFrP0ljxPn+MCql9Hq1LRjKtCeBR6apIgO8OmABTiiqkNwoo00xfgYFqXHh72E+KlCWZZtsFwFZstGgZDHBOKkUFHE16Z/hgS+RKJSmcFYROo0eBWfVqSG5gt+Yx88rd6G4xoh0gWC3Pr3nalL7K76MSASzBgO8y6K9nVSvTO6PinhaNV+KlgwLP2wFFJSNVP6Tpr6repGrcpDE5kyMHR64QE690JADopgnSNEcFopSfeEODwv6mEbm7u4tte29KYIfketYNUUXUma47vd9cz7gdYL0cMLuRcrnkNQEJBwkuJw40PKorr91D+gIDbrT3++NtqHU97dPgAIMyQxDhIJh8Z2SMOteja2oz8/B2Mi+/P6PNawY87EZlo45OxnNmzGcK5bX0VvnOjP0pRIWf0K+Xn+qSjEp33hn9mef30QFBigikkLLvMeBRgQSCx/jVXxqo1YBOzzglXkoGqJxnkQGVR8XthpRpUr1Ybqony5wBx+QFucHyPF22uRbJPWSCgtQm5pPyFj8YivVpoktTpdiTUeT0QNVHIu9z98LTT33maz28nwkoGSVIYMABm9YXaFEi20vA4mBT5elYLfQjGOhC+Q4A9N8/Ucz7DnAdkCVgrHP2i0jt1FcIPaLCdKfS5shAGnC73a8FVJ1hqBpaGTSn5Pn+E4xRRSv1TkCAiovXKtTOAbpCFU9XryeltSVcdW7ykG96pTCtQk/fJEgL0jjAZawJ4iq5d8PWDWQPLapdKU1nVPVcUsKsl9epAo2ugFOYk0dXfJ1C9PxFyZus5s1nYNr1CfUbXy3kQsb3JO/D6qi0aksycAkU+LUUxXHQRkNUea8cAxw7qluyIfw5mEj1SmDYHdGfP3+WHw2iEe9C+cyH4IKAy6MGKSojb95BAu95/3iEjoCL5/7sKTZxGQxIMXpkYIxxtEuXRwScKmSaiMp0BhK6/66sxMQUlu28a9brFASW6u+DiQOS9ezq4WAqtcXr0B23CNPM0/gIJLmtIgP8/rtPFfhCtGR0Ol6t8KGTt6r/XDaoIFIeLrOUMz3XtcPb6YbC69fJlYOWBHRmcujGI/HIlecYeSpGvOG73IoO0AG6JK2MS4/kuDHSta4MepvUlwS5Yxw7gCI38g4KxFuWkSI8NPxsm8pl/Si3yUuu9gNgtIB8klF2uUyGntEAGXR/hj/2o/9P97ztfq4ogUh9wvK30MmRAVZOyJmC6AOu8o7YkHQ+xkujlzyuGc2MGz3qzrt2pTnL15UiKXU6AcEKsc4EZAkoVHWqgEAyACv0kYDAGMevxdKoEwjw7YL0jYK7u7vD82Mc86IKw6t/ZWQSqFVfbwUNHVhMALcDlTNAl2Q4GaYkNx0I0I8KOOXjSjJFRHQ98ZbPOIBwnvo+B4oevSb8ei5SvdWWBGzI4+69+TFe8ptyxes6l26hQWbfObh0fepRZf4IDrhOQeRz5Gm8uF2Soa6+IujGnPxxUMAoAP+n7YjTfzfQbB+vJ0BMgOQRkmQXda7pldUprk2Rgcoz4nu4Ktw7rzOoiWaAQNdElaIguUJMSribhkj1XmlLqsfsXmobeey0WodOGVQgrcp7a7svRepn33DIpwhS1ICRMCpJH5CubP18jH66oPNw/dzbluQhhVu7PHis7rMeyWCsjIUEBrrymK87DPylqZv0HJ/1dqivHBDQY7wErYwzlxXKnMskr7HPXM+lfqIBcrlwvrqBdzBQnSdivql+HAdurJ+ensbj4+MBEFSvBibgmsBUigzwnkcPKj1AYJB0g657hJwRGQdo7CsHvjPaFBlI4TJ6s2McbyrBhm1B1mnwKu/k7UrZKa0PdFcYSXl4uV2kgHVJ6TuaGXLVQXxNitjrqv/iA3nEeq0ab0ehfvynEaMBrpR8OsAjAuktAioeGhsHjrpPSgZ+Brgqg5k8Ai/XoxFd/60oDSriqq4JcM7kPuU5a3cCBMnrrK6zzSrftx6WUv8obxPMKIHUah6bJB2RnDY3/gmAOuhyXau8+dMzPoXgxPJo/FLZNMgy+I+Pj+Px8TF+bTAZ88TH/X7/wsN3QFAtHtSzOh9jvo4ogQc52VxQSX1fAfRV2rzpkDqMqIWdzY6hJ8tKn6KQHBBUaVm2A4D0X3mqnjMQcKpHlCh5hzQQztOV6AcpgRNX5itGgs95Hf8J4MDBQPVhIr5myFXklBvnnQa6RwbcG0g8F3VAy41kJ/P8r/w4RaF7VZ91iuM1YDC12/PZkrcbnlSOe4wMlboxqaKOAodU5h+NXN66nwMB8pEREQdIXlYCAg6KaaAoO3o+RZn1rOfh8suvLSpv5r/f71+8NaApAl/5L1AgHiSeJf4RdDjIStGEin8zIJB0LSMDbpuSQ7JqLzaBAXaeOoEVcwObjOhWckPt11LerCejGe4pqF1so8+5b1V+yQB3aLBTkHyGbUjXnJJQdAanet7725/7JwACBwG+sVD1miFlnvOYyXtw5TFGfp1O/1fIlTHJlawbOKWpnvVyZrT6zKyd3qYElrbWrUrvRioRI0Q+XlQ/BxOXptQXLpdulDpwqjx9vDN/TvumKA/D2R5FcD2h6PF+f7xDIRcgOjhzG6PtohN4kZEmACAQeHp6mkZM3DA72GdkoDpWgCLxjrz2PqLhJ3/4bGUbV4HAGCd8tZBEgemMv08d6P5soM9C+T6vzoU1Yxzvw14BglQG67oVxFTTBB0QSM946NcHm57zaIye9chGiqgk1Enywdj110cGBD4NUO026FMGBAOdEkzKd4wcRXCFwIiD87iTC/YdZUPXRLN+qe6n6UDmXRkNP3dlSF4xbQLe1f/ZmHSvtHrWgZ6PK0UHZKQ+MpG/1Tx1AqkiN6gpMqn8aKwpFy6vjCJ7X9BoUU+no87d3mjROusu2VJUQNMDXDxIIJCMdwXwKzn2n08nJCDGfiPfu/51vjv/Ux8kJ6GiTV8t1DFVuvKG+Xw158/8RT74ZtMDLlBpt0RX7j4X7ArstbRiPGfgoQI8Y/SGoAJnVeTC+3UmQP5MMg4r+bwHVV4/FwhW2xNToY0xjub+HAhUCoXpnWZyVnkHPFaKuApHzihFnPiOuHt+Xd1TdKSLrKzUM6Xh8+qvCjy4M1ApTI8ofUQiT9luN0R+jc/rWEVAqKscHPj1MY6dlTFe7muho4MM5ZF219Pr62oLdXeKDKS1Aelrgul1QB+rDgYIsNz4p/GegADHtGg1yup8E7k98/6b0bKEuwB1BVAw/HyMYy8jMUXkHs7q1IOvb+giDF14NUU0Uts7w+4dxudXAIdHBBgqIu907tdTdMCf8XPnA/9zwCc+fATj7+RrBsQnNwYCj5w+6KYHkofhRq3aTKTiU6Wo9Qz7V4uJkqJNyqciHwsVwOQYTFGMygtyr8p5kf5XdWQ9+XNyOXdDR2fA28rxn9J8VHKDJcPqQFXk/aw8HFTxmECn8hJ5XyVyHesRG0VjXGa4F4T3G2VNUwLp2wEOBPzn+rmLDKRFhbquZ9NYUDtThCz1K9uZogM8+rNnjwx4Qd0AT6EKGiSimi4i4MphxXgSCMgI7Ha7GB5OyDKVO8aIoTe22WmWdiWSwnYTkZOPTO9GgfOgqSwCNV5fGcxVnqfef0tyDy99vpiywnM3elQG6ZeUiQMEXSO57LnSHuPlB4WoNMfoAUYaO2mOV/9lPBPA7HiRoiNqgytT55vzovLWExAlQNG580ZGJ/XHCr8uSaeMn+oZ93pFDvQSn1xWUjSh6pvk8TNPAmeCBPYpdZ/rQPabA4HK+FeRgTSmq0iL2pjsYeJJByxT5JY80ziUI6Cj8ue6C9VrVXY2gQEnZ2BCjRzY7plWxmqlbJWvvFWeyD1jnbtHUAkmy2DnuoL3+nUKZmt6tsMjBCvkaFu8X3l+BghSvZOS/giUpgYcMPpWxPwwV6UgfMC5YUtAuQNnyqu658pS7UivW7EvknJyT0JREf53xaI6cNxzRXalDyo+JNDUkYebEzhRm+ixuofbgQ1d92nJ1TF3bkrGJQGsRASMpGRwXtPGJF8p72QE9/vjzx7rmsum+p5gwPN0vjgQ8Pf/XVb9x7p047sDtuRBorQhmb8B1PGdYMl5tJXOBgbSgO4aU3kbzLui7h4FJ71OlgwC65q8mbRDVRfOSUqu8n5mbel45GnHeLnGQHwgkqzQZ5XnuehSQEE88KhQFSJ273uM45W8HoURPytFkf4rT5Kn9esexXKA6PWq8nPe8Dnl1ymWymPyEGnigT/veVYy17Uz8ZCggGCJ9z0MTbDgQOBSYECUHBK/7zq4Myg+dcjrDrg4FpK8OG+qKJTLIHnNiI/LAR0ZjlmeezTDAYHLqOpZAQG3A9XYTlEDbxspyRFl0+VuBRQwavIaWT0JDDjjk/CtKP4OCFDp+b1Zfi7Maa6Ywj1G3izJFfJ+/3LziFSnpOTStao9bHsHCLy9bKMQNwcRFSCfq+g1CpDtqhT3e5FHAnTNabWeSeYJGtNvjDXjXwEBr58bNzfmbvhmpAiJ2sO52UqekyKtpgkqA1WBJfaBFJ2Hozsj5GObirIaewmwfSSq6jWLNFbtdeA3xjYd6ou2t9Rxv98fNs9hZMBBrtKzL32qWdfdm/dpgWqNgDt8bvw5/5/GPdu0Mtac/5RNtsvHdAUsqmkTTzejTQsIfaAmZMTrOt9KHLCrdfMGJ0+C3qB7hUkpJQTINFs6nuVUCt8BkAOBpBCTZ8u8fGqGvOD1inygd+mT4foI5NNCvr3wGGtAoDLSCRxUMlKBzMpYpraoH7y/ZTS7ulfg05WPv15LGXTviUDZ2z8DQs4D538CupXSS21mP8xCpx8lCtBRBRqrdKdQ6oPkSFX8dMPMfHwhowMAHbnew4Gcp3WA5yC1Wyzo0SwHBSo/2QOWl65VERLns08VkIe0CeRrNSWue+l8RpvAQBWeciXgr1+dQgkQVAqtEl4CAp8fJpMclVIYVrbynFESnNQOHzisl19TegcIncGmkndAMFMenTEhpbw+gnJNQDBNG7gxqMChg8S0C2HnAXvenbEkJWWQyIFldUwypfwlK1VZiQ/kAetbAamu7qIusuNptwDSZPypRMmXU+Zgz0GrRp8AcYzsGIgcGLm+JHk+Dqyr+njdWb8UCq+OrL9HEHhkxDONR9ff/rVC1/msP+2bt5OAYdZfLrPOvwQK3GHzKI6/Qu+OzhZb9eqXZ5Ni43VSJXCiVHEaLeZbISSPCKS5Yh2rclPHJo/I68mjP+88qYTGlbLfk3CkKEEHBHzgUGHzvlOqv/d1KqNr23vT7e1tlIUEBlRP78dKqaT3lvWMjumc+TJ9SieijKVQqivLlF/Vb6lvujl1kctRBYQq2WKenSH3UOgMoLBdCQgm4OeGdGsk4i0pyU5ldNguj/LoWkVu+DtvU/m4wfd6UcYJAJhXMvBeH8lVBQq8LB+nHKPpPg2/j81kE7xM8lDjseJtxXfxRHo+RXaZjnrN+4jpVmjzpkNuRGeDxOccldfMO+jSMT83imKORwHSf9a9CucmA1CFf5ISTuesq5eZ7vvg3qKYOoHyex0QqfJ2Q5HuXZqqbYgdHPq5eO1y3imaZNhclkjVtQ5osV4zeXDFlcob43jBoP6PMV6UkTxF5kcDWkUSq6Mr9mSc0xRfxzvvV3/12AGBRwRY7kekboy5XHB8dyCIfPH/5F963uuTnEOCApZbyQ11K+WSb78kZ5EAXvdc3pKDR/DveXfjKLXV77usiRgt0b00FvksZZjAwO3a2cGAZ8gBy4q7R1CFKZLgVApkS71caVRb0LryU31VZ9+kQqEltl3ldcROrrwj/18N2hlVnk4iFzYibq/X1vOPRm7406uE1VSBKw2PBKRQYwIEK4bRyyMxPO5eAz0096y8vBSJ6ICFK/1kKCtQ6SC0ky33Llk+DRHHtQO0MY4/4sJ6U2F6P7tS1v/b29vDmL80GPCxncLbLrNd5MDzdflPUbOURuWx71M9KqfOAW6KCjBvB4MCCLqfnLhqvYC/aki+0umrAOyWvnO++5QBDX7qn/1+/2LBZtpDx8fEFrk9GQzomjpU5/oEKDuwAwWklTQUHP0fY7zYUMY/PuOAwJ9PQIDbWCawwzolZUpF48aWaVR+yncLUbCYr1A0B5oLO/uoAnYJWc88kzS435uovFw+9OXC+/v7w7l7HPv9/mgTE34FjdckN2Mce7r6zyOJfHSei9wr0P3EU/e6mI4GuvLiPB+OGcqTDO/Nzc14eno6hKT5Ktdud7zZj5fl7aaSrIy4doZ0A8D2sg00IO5N6VfxUgrYp+QuSQk8zox/5Wg5f+ldOo9Sn8wMI9O4l+o2wg1jpUudPDpMUM5j+niQRwY8mpB4PqOZE8Y0CXw72Pf2sw88uulgYItzvWmaoIoOqJPdE6jy0bMrwsRnKq83TQUkxc9v0yeqhMiFhnWgElptY/Jo/JmUls9wAPlAcmMgZeeeYfWfYI6o3+tc1c/TXJr8mwP6LwBwf39/+DmQoiLx/c3TDmeVYq5AwBgvQ5wOusY4NvBUfh4d6Ch5zLO07kHTwGu8JbDZGX+Xva58ByQEJu5NJfDl5115Pm7c8F2aXK4cCCR9k9pFSkCgAkzUnR3AT7xPDoY7dQQGKW/JGAGp0vm6CJVVGX//JVBVAUTWn+1Z1ZHdGEmRO5VFPqV+IWBX+zsQ5bTpE8ZpsJEZKvzHjx/TCIEzaL9/+U6z0umekzMmfYAmrRFwhSTPL33UgpGCpOTdcFeGfAUobaUKJBHdizqhcz4QRSdQkAaNKyNXzrtd/drbW1MHEBUNEFjogIAiAo+Pj0efRdV5WnXcUQID5GmnOH03wk62EsjgvU4mkyF1YOBTBKk+roi9XspXwCZFLzqjngwjnRQv36N0Dp4rPfURqGqrdPRWctCTdAh1W+UUJhDbEaNBkiXXaclO7Pf7Q2RKaVjXpN/9ut+vQOpM53ukI6VJ1Ml2KjM9T9tHo98Bqo5OBgOqNI2DFCd3uhvjeN48XVtF7t5AMsMXfjEKUIEB1Td9zYrKo/NkVpjNQdQpmZli7oiCQM/JAUoq0xUlP/WZFGgCEzPvhHV8b0rrA6qpI5dPASROCei/Po/q/HKqZDyBgcozcEXjvFSI3hW6K8I0DeFyVwFvtiV5KHw1KrW1khunKtKxOjZYDsebwIY7KTMv1yOC701dvaSv7u7uWv3hIMevkxc+LZD6gvxwg1p52hUlULBizFQvB8oJkLjTuoVSffifoDjlT/4lfUw90PGLIM1tHh2ZlPcKvWrNAK9LaY4xpoBgv89fIOyYwCPLTiGtatV4Ai5p/2pGBXy6INWj44sb/+r6a4CAC8lutzsCQx0wcDAgD1iLpxwcpQFfDX6PWFw6MtDJB3lEZUI54foAP2f0iNTJtZejcwdWykfkXi2vr04ZpDxpEMiPNPXE8ul9M2rQtbvyIreMgeTBJePtUYrk7fpiOK/jpWTXqQJ03uYZTz3c72ldV3S8cP3h/VABXKdkRP0Z5q3PSlPfpOjAFoNI0JT45uPR+Szb5s8QQM/azvFVTQ+kt5687SnvjjZFBli5VJA6KYX52LFMRxChcrrO86iAmOALBhMQUNlcIMhQLxeBVUBAeSSPwg2+o0VXvimsNANEfu7CIhCghXCd0Hi/yejd3t6Op6enA6DzCAF5w28dOLL1gXKpyIB7rzN+jHH8sRPJyOPj4/j+/fvRVMHj4+NRRIlljjGfW3UvtjKU9PQ5xlJbCQgq2SQRTLq3X3mIrmw0bhmSTwaF7d6ipN3Yc0xznPpUjdLo+m73a0Ejw8yUYzdul44MJEpgXE6YyHUU+9CBn6dPlGTSyyfvXLa7fJPB7CKxNzc34/n5+Ui/O3iYGcFKp5IcGCT7VwF+B/NbgEACaRqP/p/XE3hapU0LCGmARa4g9CqOniGzqCRoQLrwotdBZTpSkhHUsVorUCl5/ej1+e6Dqc1+rULc3oYxjoGPKy/SSoeyzT4PXvGDxKjA4+PjuLu7O/DCQYC+UKe1Ias7NF4KDGzxNl1GXD4ECHQuWXEDxNDnGHk1ehVVqQxlFXHRPQdfCYgkZcNxXYElV2Yslwozpe3a6vmRZsq6Ahc03oxWuIwSFFCZEhjrPC1Qew+SLCX5cP2UpnI9rzGOnZlKr5Mo16lffe9+BylMm85n7Wc9CIJvbm4OAITt8vr5uNFzOk+RDupxB1hev/Q6axUJcHBcGe+qHzlGaf8ISAiKyZ8Zbd50qEIsjlzG+DVd4B4NG81BynROCQCMcfyuJReFdVEBDfS0IKz6/rULlNfFEVriW/JYdL3y9BLPyQ8aerX98+fPh9XxBASaV3KFzWhJ4kcKlVNJSmElMEC+XSrUSs/FfzT+TEcQ8P379/Ht27fx/fv3AxDwVwu9rfq515Ooup7yS0ogpemAHynlx/GTXsdV3RxkKw8ZV/9x6jApQgckbBf51LVpRfG5UUrRTRo0yf6lKAEs94ClaytnxIGAX2ek1nVVZTDdyeO50vC86hsaX6+z15f1JDhgVKCyUfTwOxmqgG96zgFKZ/zHeLmZ14pOrOwMgbvI5ZZgbUabvk3AzmGjNIDVGfKU9Byf37IKmuk6IOCLv0Q+eKTwCQKk2L9//34EBjzk3RER51bqBkhVjt8jKBAY0O/+/v4oOlCBAXnCiijIICYg4IZQ6wuIRBOouyQYUL25+Ibz/Z8+fTq0QbLx7du38e3bt/H3338fzhkV8HfqxzieDpnJ9bmI48P/+z0R/9MIM7rUvcNMJZ+8zC19zWd9bQd56TpFlIyQG3wZnOfn57Hb7Q59rev6uddNfXAJSjJE40sQq/+aSxcP6TG6MXRQx7xp7L0uDkYS7xNAcKoM6cxoO0jwPqe8pDp3+pXPprHjz0huadtS+bQPtH3+ZgTzIEhPC6E5Phih9OjWCm36hDEZQy/fGUOU5h3NKQHmla4zXz2bUNJut3th8MZ4uaqYawMIBLqpgSRk3lZ1lOooSoOQIEr5dEKbiGVTQAgEvnz5Mh4eHo7AgHtbziefCnCFKD4xRO7AQO+dpwjBpaYJnp+fS2T9+Ph4UJ4alGojjb9PF1RvELg3Iz5rvCRPwWWeSrjy/N0A+z2ODS83AQcafn/rwqMM9DzcYDAqwEV5zosq+pfGNkGsiMaKZfDoUzU+Hsl76gkdaXBXQ61vSeIzed3pKR/nrpsdEFD/6ueG3PWXnk/1SyDNKcmB13vGDz9P6dhenjsASNe78isHrQMCpKT/dZ36ndFfjksHLiq7itR2tAkMMCSja6kRnacwQ2dsFMmVnIdJkqL1xW0OBnieXqerBKwCBO7FVB3tA8kVjvOoGhhEpQQDDw8PR2CAfJJRdjDggzYBAwdSWkyna0ybPJZLzbuqXgkMaGpJfFFaBzucGnCPMXkRLo9JPmdUpfewaKcIXVa9PhxT3R4dSfEkECIwmEK5HCNsi+rjIMfrv3IUPxLRWNHwuWPi8t95tm9NlQy49+2AhbzWdU51JJlhXziA0DnHcAUCvH78z3O2TQ5hRTNHwp1VL3OFXF9XdmirLLDuPgZpT12WGe1Nb8eR1C/UtXRsV2gZDHB+1cPNq8jZBWSVXDh5rMqRcDB8zbUC6f1wKgEX8ARynFyJyZBTGa6CA2+Ptzkpcq0ReHh4OPwEBpKhokC5J+pGXGBAnvL379/H7e3tARjc3PyaK6aR5LyVPPD3JslAAnEaXAkMpMgRtx7mQKsG/IzSWOiMmedNWef4JFUgwPngINtl3cGd/1ZAic4FFqrV72yf/xJfKsPmvCNAkVyyfsqLMvxRIgNODAfryDHGvhWvGc1RHmPktT0EnMyT6cn7Spa38G517LizpfOZh57KqqYqdM+fmelzpyqKPsZxJFnnBNdcA6eoAO0hnSzqap/yXqFNYMAVjb+bmwbNaueyY9I998BdsVNIifQ5sCvPrlJqnWJjPSqAkoSFwpTQ9JaBI+V9e3s77u/vD1GBBAacVw4IkndLxS/hEhD4+++/x+3t7fj27dshL3nfzlfNyV/KuxLgU9uenp7GGOMoMqD/HFCubJWPR1LGeOnZOFhLXgtlgc8l6saRe/lpbMhrT6DW1wakaJt71N148TFBPnheqR0JsHS04sFVIINj1A0//19Kdp0I0CWT/kaP2pX0EY0m9aTyVrox5k6bOzGprjomIMt6zaiKQrMsbw/Ldtvk8jfz+FMdZ23msx4BcNnm+NCY1HjUVG9aEK86eyTXfyu0DAa08Ebo0412QopkRkeOzFwo07HK00OUuuYgwJWaK6jU0UmR6rr4Qb5QOGfCNgMBXlZ6g+Dh4WH89ttv4+vXr+Pr16/j4eHhqK8ccNE4yDN2xa12yEAKDHz+/Hn89ddfh7cV9CqiFmK6wdiykOXcJOSs/hfv6PXLkK94uYkSMKSnTT6L3CBV3klVjk95pDA/QUAVISII8C+g+fTAbJyzbr5mwGUqtc3BU7qWHICKr+RnAhsVOfC5ZGTAgZj6Q2NKCv/u7u5IhhKwk2GaebZuvFOkhXXz61UbKsepyqvrJ0UiKQ++1wLHVQLxqW1V/bs6r+iMCqTTdlA+00f3KPMeEfBoQLcraqJlMPD4+DjG+OU9UcklpnjYXRV21E2m8pgGMtNWSlQCwTISWkpRgQoIJCVERao0NLoyrgmtvobcoyMY+PLly9Hv8+fPcZtKKgrPz42K2kSB0wr7P//8c/z555/jr7/+Gn///ff4/v370f4EDF9eMjIguUt9x7cM1O+Uh+QZOsBzpUsE74hflJQL6+DkisQNOQ2wgwKPArmxJVjw5yXLMiJOlYJNyk683e/3sa0pwkE5dXmlbPobRTSgFXjn0dvijsGlZDeBHI4pReM8SnB3d/ci2qP2MrJAmSdRNjvHi/WatYOy1BlXHycVSSbpaCky6UA0OXtVvWmDqn53gJb4wHYm2U1ALQF6vtmjcmhP0/SAvwK+Qstg4Pv374cKe8jCB5MzicLnAKASRioQdQq9N5XJjvC6kFlcFFYBA74Wl0CJKxVd99CsjpUgs84uSBUQIU8IArhG4MuXL+Pr168v3iRQXdgmCqLn6V/5Y6Tlx48fBzCgsv7444/x559/HqYONNfu6zQutYBQn9d10Ki3CTTYdN+nlRxtuyw74EvezOz/jJIczqYHxni54poK1OvgCkvPpHwqozmrv2TJjUJqkwNVB0GeJ8cv58Yro5N0Dh0Xyu+lwECnW1W3m5ubw7odfaOg4qvWDchoKm/xKrXTFw36T9dnlAwl/9Owz8YH25b60evsDin5WEVJvH7OAwdT/to8Za8CAt3H9fhGj/LxaEBa1J02RFuhTZEBDUB6Q5XxI5N8oFYhJxLTCAQwLOSGxZUbO4uIqYoEJCOso6M49wDdsHq9Ko/Kz/1YKUuVzbUCigYQDMg7UJ+xnakNyk/Pfv78+WAoydvHx8fx119/jT///HP87//+76G8P/7447COwDfm2e12F9u4RR6TlATlQYNJnqp4Xs3B0piJpGQTyk/gsVIys/+VTNKjIEhPEQqXJY8GdHOTCeRoiiV5XCpD111xV8DXnYxZO9yYUU9VTkbyVF03eFTzErTifaqvtY24vi3C19CoU9xxUd8mI9w5LH6spn50z6O7rq9pW9wZS2OGMsY2sNyq3tW1VDfnB9OzzYwUOq/13/Wuvy2QAAF5qCMXdev37du3o7fj5ICdHQz4imxH5mwwmcYGUKhESZA8P4GALl01D+RTAd27ud4GnadfSrdCLK8Ls1VlEAjc3d0ddhrkJkP06vkxDwqvg5rdbneINDBPRhf0I8hgu5Q/831+fh7fv38f+/3+YmBAHv0Yv6a5XCZ038FAUrydHIjc+2Deur9CVTrm6eWtUKWYKkXmnmTyUv11JgJyV+7Oj46XTgQGHZ9SXlTWNH56nm8f+f4al6JkgKQXBcYIABwMSG/7QmJ6mQLsydCnqAGvi1xvu70gdf28GoWhDuL0QLIFrvMpm4wMVOOns1mpnQ5mK0PvawLcwSTgdQDA/U/4mnfaPG+FNu0zwEZXnkLyjtkJ3RwM0zM/9ygSMEj/WabPq1AYRMkrS165D6yqPa4Mk3L08snjVLavE/C3B3znQc6dsfzkGRJUOLgY4xcAZN7ute12v6aRFK5Sey7lXSWlp/YQMPn0U7WXwBi/5JK8TF5rotTnzNvPSSw/hfo9f1fmyeN3z9Dn830Nzgx4VONIz3SGwI085V9143+Wx7xVtxSZ63QQpwy56Fhrpt6bPIKZpqQ4/tyg+NofPeP6TGV1OlQAwvWx0jF/ltMZoySrs3TKm3WgjvEQvYCc24IqQjCjynFL/z06mM5T1Jly7NOWfL1bUVhtkJamv98EDJDSYNT17vlUsU6pMGxEofXnPQ+PDLi3l9YHeNk6UkF5W135sE4OgnxQV7QKBvg6oYMALjqhMUgGTKEq5cl1A/pRCTsQImrlHJUbxUuCARoH1UnTAwIsbkwoL2yTDIwrL/cwGNHSs0lOthINd/IaNV7oKVUAerfbHQBSBWIcVPPcPa4EFipvs6IqtO+RAMq2K/oUmegUPvuM60MICC5FFR9lnLVuQKCF0378T9l2sERQkRwzglCXPd5PtEXuV4CD6zDqNoI/nrs8kA+VPDhQn41VdxR4TiDrgFf1Y1tYf77JpR9BQNoLRc9s0S+bpgkcRZJ8Ls6JA3ZGiVEr9x1l8joXE3YMcoDjBtm9Em8j66Ry9Z8/pXdhTOV6WImhfD+n8fYVqF5PR6UMWwkQJGCRFAtDWJ63lJYiDO9N4rdPB9CT0n0NWDcMVR+RyGuNg+S9JEoGeMt1T+PKrAMEWlTmQICGlvlW0YHK2DLPmbJ3QKbjz5/H+zjQQaAMJjDAc5aV2vf09HTIi0pVcn1JSvpNY0t1TG+RjDFeRFRcP4pSX61666SkR1cM00w+PB/yYYyXcp5k1gHsKXUZ4/gLtZRbB9bke+Kl6uxRH1/fxAWCOn779u0QLfDN0LZEBcbYAAZYaZJ3QoUAZyCAgpemBNwD82cT0PDrs853RVhFBao6EYkmILBaF5ZJA0xvXcZfi/z4yWIP33ubvByfN/YvQPLLh1I+VShrv98fTT0ozSVDrarbGL/WDOgNA3lObId7m0TYlAki+DT4da+ipDD9XvXfX6VbVTq89/Pnr4/aqF9TmQ4GPA3rn/QDdYAbm85rdCNFAJI8KQfc8u5nesDHLL0xAoJLkvPIQaacNb71Rb6nb7ek/Cu+JKNKqmQ3gctZG7cYMH+W9ea9mRNGSvzpriUQQKqcR9aNzirrSCCgfVz4vRRNDfB1bu+nznEgbf5qoYftWVgCBI7GVzybrnz+19ERrgMQF+QOFVboztcKpA6eAQFfgMW6snxH826YOaefjHUluC6snDP3aEC1sIUGQm8f/PjxYzw8PBwE0pG7hPpSYIC8pgdMhV+FovUMp5XGGEeykDwBzysBXD3LPHgtEfuYMpmuJxl1w8x305mGIU0faw5u01s6aWz5/L2P5+q5BBaki/gM36tOdWMZPgYZPWJ0gVMPl6DUfxyDrJ+me3ycCQx4tHCMtQ/oJG866fLKOHr90/8EDF3nd2CZjqrzqAKCDja9/WxHVZekr51/iQduF1NEQ06LjD2jArxG0JBAW+eQkE7eLN472r3lLahrC7mwJIPvacmcWZ28k2kkXLkmgMKyEiCYgZAUtlckQDsM/vbbb+P3338fv//++/jtt98OewrMIgMKB4tk7KutjAU2fPcr8lS7nlVhKQr1t2/fIv/fmjTQPBTufUxPn/+TgatAI59n+byewMPKuHAQkWSG+XTROAIGl1l6kFSEuk9vpgMCzqNkyEgrHqFHF/Scz/Wzfg7mKKdeD7aPhnYW2XxLSkaSpDp63zPCIX3AseyAMenzypvunJjKNrBufI75s40dyKgogYqq79IYTu1RGxzQ+3jvpo/5Uz7Of65FovzyNW3fQ8DHn5en/yu0KTKgBvz8mb8w5cysUH5CYYlciKoB7IxIaRJY6OruQKAiMt3DlQQEXfkURvfWaay/fv16AAA6auth7TbIX2UcOuGggHJA+EDlfxkPgRYKKl9zur+/L8t9SxLfJbuMXrDvGCFICN+v85emjpS/BnmKnJEqMNGVnQBqB4r1PIHRbrc7RAcog8k7cmXlnnOSjc5DZH077zvJZPIOU3i/AixJYabFh7p+CfK+5fmMH2OMI7kjEPA1BA4uExCs9FeaJuM9r1uKmHUGvjLWpGSPWJ6Xw3Gd5JNgWZQ+tJb45p55Ct1XpPTqN1/EqsWC6TVePZ/qtUJn+YxcNyfShQZntDrtkEJAq0g+1Sd1cKqb0ywakLzLCghwbQC/O6Bf+kRxakMCVOSZL6jzKYf9fv9iCsKRKJ/VtIEWNKnuCm9dgtwbdWOoRWMebuezOnqEpPIukifXGXkfuMxnNmYo/2pb5dl5eWoTvUdGBnyRlEdLXBElxe3rRyrw4gC/okrpKvrDvKlU3et3MOBgnnTJNQNJpkgrwEp7fiQQ4DIvGRC58aZsSb97ZEr5Mr33O8vziI/LfGewnS8pcuJ5pchDtfZnZQx6OXQGqwWtriOok/UsgSydLAKN1Ga2sQNKpLN+U3YmtBUlz0tUKYUtQKBCY0mQnBgFocCyrake7PAUtXCBVJ5C8A4EtN2wQACnBrhgj4PS5/hdWXBnQCpUPaN08uwlWN4+GhnWhRsf8euAlybxnaBGPCD/HBQQmFbeT/I8mIbpkheVPKAVxZgiHTom40aq3kt3XrCsauwloyIZqKYzVE/lk9rm/FRaD5eyXnrG5d4V6UqbLkkrekrEdmhsj/HLcCv65cY+AYPUT5VB5uZG1COVs6WjdCv3tqiiD/4sedPxiHutKP8OAFSOlFPlEPr0EgGBT1fpGerUtF5Fz/mUl9sU5/NKO0Sb9hnwDleBZER6zpnlz20lZ2ZXnqgTlqo9VdlUMixzZd6mAiUiDdQECBgN4BoBKlp1vitdFz7WlUpU6bUokK8scncv9wrVDin/6q2ES5ArEkfwHrmiN8Pn1ObkLSSvd5X4bAUmKmIYOI3FFKHyeup57kkgRe1TZayXG2ePBhAIuKz6NERnfN3zdUCrFfRSkpJ9ek2unMkbL0P3RKvK9C2o4kV1z8ex0lfGeRYhqOSai2fFay54TuH/LoKs+/v9/oUnK9nqxtuWccf8k/GvADCPvO5y6bLG11X9yDwSGGB65l8BZKcKkCXa5KpxwFNpeCgoVSoxUemrMqrnHQh04KAiR5Qzb0zkYbJUJxeQagAnEEBjyqkCbiykbwc4CHDBdi9f9VZdOXcuz4rpiUp//Pgx7u/vXyiaBAhYPkHBpdYMpL5M/FC4MoXVKrn0crx/KxlgWhrGSj5W2pPqTCCQQt3VNBIBD8O4Vf1Yfy5iFYh0YOmfSk5jhPwjYPWFVdRDkmuFxR1suCKuoibUT7PIyltS510n3elGmP3Z6TW/n15BpI5nhEE/jhGlpWyrbhXIqOqXbMWqvmaaLp8EhshDPp+cKsmTz+Vz/Upn4JW3A4YENpIt7XjwJmAgzf+oIvSYutD+yrXZswnNVxGIrhwHBGyXKIWGu2mIDggkqowAlal/eyAp1Src5fN95BdDTlL4vE/hFem7BGwrFbV7VA5sLkHuJTlRBggKUnSgyr8KqzP64vm5J/JacsCcvAk3utVY4nTBjBc0IN7fBLP+lgqnudI4YFukTLkv+/fv38fff/99qCsNPtdNeP8nRVw5BqJLgwH9qIsqr5htcz3t3i4NNe93+jABfhp6va7K+tHYsm2sQyVXle72dqR76T/bwjQdEKCO87HlC/4ICDjHXwFRjstUTtWWGSCSXl+lzZO47hknY8PK+PlsUNH4prKZX4oQVOXPyj5FmFhGqhsVbJWfK2efc/dtgf0Tw9UHLrp5QZVLg8/QUwIUyWuggPtWmGqXTxtcghS27Lzn3W53CHXyS3zqE6WtvIoECMY43pWwek7pXPnNxooD0HSNSsXzo4FhnbSgMBmEajES20+5FYj9+vXr4e0Xf4VVi2DdYJAPnBLQzmt//vnn+Ouvvw6yT69L6W9vb4+2EnbQQ+UschDhY+k9yT37MY5fVdW9rn5paquTxwQAWB93Msb4tUBRY5w853giACZY8bp4uak9/M9nfZyyP5OxT3zw8tJYIgCgjKb/ycFKc/+qU7IdVT8RyDG9xuLZFxAmz5+IcEaVYVTeIh+I/vzK9EAqY3bNFV8lWCmP7ufluEB65EE/X4RHY688JXC73e4QLtUgk3dHgfnx48fRl64YvqJRSKBCyojeMwWcYMDff1W6S206pPazTmOMo1etCHiq16/YDzwXP+TljlFvOCSinDMqM8bLseIGjOkqeUseTAKlDvr8Rx6k6Id+jFApb64XeHh4OLwaS2AgcFB9WEs/yezff/89vn37Nv74448DvwUSNG3G/uYrrtqsxaNilGlOE9HoXSoyoHp7/7GvXWdSdseoF6b6ueum6hmOh+6YXmVMY0v5Jblaoc7pqoA3ada3DgY4NUBHqAIDvpFVAup0xNSW1B7aCupkB/aU3cq5dtrtV1Ne6UpXutKVrnSl/y/pcstkr3SlK13pSle60oegKxi40pWudKUrXelfTlcwcKUrXelKV7rSv5yuYOBKV7rSla50pX85XcHAla50pStd6Ur/crqCgStd6UpXutKV/uV0BQNXutKVrnSlK/3L6QoGrnSlK13pSlf6l9MVDFzpSle60pWu9C+n/wcKlBAdCVaK6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABoOElEQVR4nO19aZNbOa4s5XIt3nqZmTsTMf///913u21XuTa9Dx0pp7ISC4+kkuwWIhQ6KwmSIJAAl7Nar9frcaYznelMZzrTmf629ObYDJzpTGc605nOdKbj0hkMnOlMZzrTmc70N6czGDjTmc50pjOd6W9OZzBwpjOd6UxnOtPfnM5g4ExnOtOZznSmvzmdwcCZznSmM53pTH9zOoOBM53pTGc605n+5nQGA2c605nOdKYz/c3pbffB1Wp1SD4ORqvVavO7uLgYb968efH/5s2bref0PTz79u3bcXl5Od6+fTsuLi42748xxnq9Hk9PT+Ph4WF8+/ZtPDw8jPv7+/H4+DgeHx/H09PTWK/X4/n5ueQT53of/+CXecc/aL1eb34uH01D64HTeH5+3pTv+fl58+M8+Dm8y/84/t///d9lDbkDXVxc2OsdmXbywPXn6sv9luY/yyefM69ZO7u0XDnRxs/PzxtZeHp62vxYJqL6U14reXHkrru0tXwuLz3O9mB7fHwM7x2KfkS9q20Q/VgeoUtVN0VymvWxjvzpz6XNuo5l3v0qPo5NHV7aYOBHpK5C7AgswID+kA6MZcbL09PT5tlIYN0/Hyv/fBwR8ooAh+swOK+EKOsEp9oxxnhdJcv1mBmrpWm780iG8XMght/n/oHnGRCuVqvx+Pi4UZodcBHxu16vX/zvq35c3ShpXzw1Wf1RyMm2A5WssyKHzAFsnOt1OFhO7zheMmDP5HhScIB32Mlj+f2RZOmnBQPa2FU0IBIOfdeBAhYIvON4wTORB5KBgAjYOHRbeVQOCTslXBnzTNBPuRN0jUwFsFw9uff5Wb3n2sKdO166QABKF/KKSAnklCM6nBZAAIMBBgFv3rzZAgL7MuiVEs3qXdslq+dOnzlTj1RnKah0/86x4bSc559F36o2zPqHi7A6e5DpW436al84dfopwYADAgwCupEB9Y5UsWLIANehGMcYL0Lm+OE5Z2gdCHDlifjtdpLn5+eNImeFjnN+3vEaKeEqJH7sTrHEMGXvZeBJDaKLBFVUyYjj0ckN5B1AAP/gC0NY8LJYxiDfkAtVgixDXNaqzmZpn8Y8ai+XzqGiFD8Tqew5PRpFMzWyyX2lMvxR1ECPHZ/4sc7jf/csn0fEkQqcn4Lu69BPCQbG+D62zqFRKMAKCOB9TgvnnIYCDQgBe/86rgTS0KxTTFHncvy6tJ2Bdt7SmzdvxtPTU6jwUY7KW2PBdx3gWAr1mIq8Mo5MlTLDdU3Lpa2y46JanB5klN/TMV1V0goclhrnJc+r3KsRyepkH/mf6S/KdFUVBXCGdQkQ6IIBlpXIiWJAoJEK1pecJvPgHKofBRD8dGDAIVIowayBlSLPwxk4FvLn5+cXAAQ8RNGCTMFnAMDx3IkOQDAhtGrEq7RdPXC6UVqn3hky6rRDBxApRZ6oO++CGscX5JSHCpQ/DXOy8mNP6uLiYgMe+cfyrWnPtP2+5aQCBtpWrt1+ZNk9FEVAIAIBOvzK74BmwEDFWwao8Q9eWPadI+jKqsPBnP6POGTwU4GBCAiwUWY0yO+BVDlyOJ09ZJ1FyumotxRNjqnKomVyQsl8q7GuogPsFWZoPcqjw/+pk3qYer37fpf2bRRVcek9/al3xtEAzfPp6enF/AKcA9xGc1eOrfQUjGq/ceA4u3embYqMo8oZdLDTg3hPdVNHhykvznnLZNHd56EuXNf5DJwnrqm8cISY8zp1QPDTgAEVShVGXgbIpJ4xriEdNvxPT0/j7du3GyXJM0pZgBQkqJDNlKkbGYg6gpZT73OaGiZ2PGedtSrjKQEEZzg7z3XSjZSPO3Z5RFEX99/l0wFJF6nCtdVqtZFx/HQs1Xl+Tml3vLgl1Ik8ZJEV7rPOQThVpX1syoCAkwn+8XtMTq/osfIQRSHV0EcgT6+N8X0SOIAA/6vuZeATkc7LOmVA8NOAgTFGCgIiAcS/M2Y6KWqM794SwqSPj49bgoU9BXhNquah+fOxKm316pwH7zqGAyW45oAPlz0yOFHdaVk67x+Dlhh2/HdAjmvfWYMVpa38uH99z3nrALDw8J+enl7IrLYlg+Ix8uWtWlcdpee8+BlAsatijQzKmV5SFwhEE7aZnOcfAQL+12PHI+vTjqOiaTtA4PpUFDXgZ34UQPBTgAE1mBkIyIStIvb0GRTgGsAAlKubOJjxoWWKyqcCyMcuNJWtw3URg6rzzHi5p6Bgl4IAd30JwOnIWuXpdwGWKixnnHk8022sooaRFTveQV4aGlalrvUQldEpb0ddQNUx8F15PEXFfQxyQIDbXkGAyk2lCzqAIHs/ux7dV+OskYQZQBD1uTF+DEDww4MBbZAIjVZIE6ReUSZ0DATY+GPnwWhXtiptfc5FCMbYnpug6eqs1tVq9SJKUSHtbj1FfHeuHYu6vFRet17fhwc7W09q9CI+VWbx73YR5HSx8x5POtTJgqocO/LtQGdH1majDRnQiIDLmbYpAgJRNED3c2FyzkgnQqDvRjSjr5wDpKBAhw4ywB0NRWs6pwYExvjBwUAHCKhC0OMOqXDq8AFPJEHYVaMDzLMKghOMSOBY6CpPNerArnxdA5QBhCrtUxH+TlkVYHUo83Y673I9ZVEZ9xwfu3bWiACIwYCLZPEua5qfez6qt6UKMOu3nShLJX+nIpOnTA70OgeF9bDTWc7Id354vkszgNwBAX0+Arsa8VDd7PJGdCDL81j0w4KBCAi4IYJIIS/xwFg5Pj4+vsgHivXx8dHu1e/yd4qcO5geZ/xlVL0fpZcJrPPu+N4pCXuHZutHDY1TZHxfzztGv5NvJReQTQYFbNB5iCBqLwyNsfcUKe990wyYZ7lzwNuld2j+f1RScKf6KXLAnCOmdaz7sexTprrvRDou0lu88orLpWABkVktt1u9cyo68ocFA2N4IJAtc1KjW3nEGg3gnfpYqQLtjbHtabECdry7/BVdRxOzlD/kzfd2AUDO6+woYVfGn5EiILCvNKt7lezycxyedDLC8oxrkHMmnlXNaWdzY5QOIROR3EX/+t7PKqO7UgYEOlEBpszQZ6AA7/J/xauj6F0HDjsyyrpf7QquR2XPIlXHpB8SDLAQug1+GJHhPwIEFTkPgqMD+iyDgDGGVbRcDuWnCwbcphaurK4cSk74uxGIzHh1rp0adYxs1qFnvZkZADBDqoCczGZemMtbPRsHBjIQyl6YIwU7/N4SEJEBAc2n6itL2+FnoAgAZFEBUAYCIkAQyWPEW3a/IqfLusDA8am6nKMI/Jz2o1NwnH5YMMBAQL8gOMbL0Ay/y/8dcmm5GfxOKTqB0bJouRwYcDwxb3pc0a6hqqqT8P+PRhlgq5B9pMBcGDLKuyObKjdRWrxvgLvv/pk0kuAUPQ8xZKAgkhnHW6d+MvlzQCaKrEV0Cgr6WOSMWgYEsqWDfFyBALf3RUad9pmJhup7WfoMjl3fRl3hWf450HRsefvhwIAKJD4YhLHMMV5646zQNGqANJWcokTDawh1vX75sReHbCOlG3U0F27jtLro2ZE+2znvpF8BhFOgGcCknbSjIKr0qjyr6y58q8fMi1M0s7KiY518Hf/RnhqzUQHNQwFZdD0CZx3woLxU/eFnJSdbrJtUR3WGZju/7vDAviM0Ubt2+jyusYPo+qmLEIAc2D6WrP0wYAAVy4LI+6wDDCA87wQMRhxj/AwMVMicB4Rj3MdxNiSQCTbn4xA4I0ukz/wsBQKuXBmPFe+zwOJHocygqXGrQACeWRrWrGS08jSitu4YZ+4/ei2S9yi9TP4rUgDggFr2Xid99/93ocqQMRiIPgXP5PSUUnQvAwCzgCBz9ipD74CoPhOVUyME6/X3PQvwnuqGYwKCHwIMKBBwcwS0klVRcVpVZ8+UCoMITkM9pKgTRErdRQV02KNTR8pXhypgMZO3M0JLeHpNqgx5ZPirTuvqxR275yM+VTmpEnaRgerYve+e0WvuN0P78vI6yrNS6NW7PztlQIB/nZ0Fx3ipU/RadI950H43AxyjsnF+7r+iqL9qmVQmHSCAHYmGGl5b7n4IMDDGSyDAEQEdl1GDzKSNFSlDfj5LR711HZqYFXINyWXIlNPLOsgSYBCl0UHpx0S3M5SBHme49dyVr2qn7Ni1owMis0AiU3wRLxlVHlFGs3LRfb4DhrN0lhqHn4EqIOCclGwvl1lnInPKNOqQRSE0rQw8qOzqLq38XOYc8jOuH2SOX5THsWTv5MEAVx6DAP4M6xgvjTE3TKVkI0MXXVNygqX5R2lGQq7HQJJu45iI70ghVj/Hs+O7Y/g4rX15grtSR1lFMtMBXxF1DG+UtgMB1XP8bKaoI3ARKSUFA7O0VA5mgEQG2GboZwcF3YhAtZcAKJKNSpYcT5FzFOUbpaV6lJ/XuS4Vrxmw0Hedtx/V7RjHnz9wsmCAG1DnCAAIcIhKtwSOPJZZbw7/DuG5tCPjqu9EhpUFf4zvexhkxiMrg+NvCUUgRfOOvMZd8t6Vso5VeYudCEFEGZio+M3ej56L0l+i5Dp1VqW7hCIPaalijJS3o6xcfxdQsCQioBTVW6WLFWhrnvxjnjMd43hlIMBLbt1y7S5w7fZtjQrwu0v1xb7oJMEAG8LVarW1fPDy8nJrGSGjO/0t8U6dh549++bNm80Ewooq4dI8ITQuIuA8+Q5qzc6VF03ToVrm1/HmIhnHoAoIqOE5BaqMtIsURIBhaf6crru3D8rAuFOI0fXZ/Cog6I5/JnKg3nniDgBkfR7njirHQPWL20eG72dOB5fDbQLEX57F82w7ZvVAViY+ZuOvvHGU4m8fGWBDyHMELi8vNz+3Jar72Eqm4N091yncu4rinJGcbcQsOqCKyf0iA5EBAffPvGf1ktWRy+tUQMEYtYfiFMGu50toxivhd2ZkbwmfhwICjpd9AxyXdkY/OxDgcwUC0bBApkv5fEnkSAGIDg3r5Gp2BiMw4CY6YmttAAEl50zuSwbV2eP0WZ9mYPwQdHJgYIzvQICHBQAEeOUAh3r4P0KeHe8v8q4zpak7TO0iOBpCcpShYfesvlPx5BR0BAAcGADCRnncGvXXpK4HWJEDR9lzLp+OooyMYjeP7jtZmygg1PdcX1oCgPU44smVrSvDFTkQ/TNT5siose2AgBmHo/Lk+ec2lXNRYW47lUtEE3h+2Rhj8/n5TE7cFttZv+D7OK5kXFcWIN9DgN+KTgYMaERAQQCAAEcE+DsACgSct6QVzELkjvlZ9cCRLqetm0os8Yh16WJGS8AAX0MZ3HF2LbuO9J3BOCVF2zEkEeiZBTYzQCDiJTp3eUWyXLU181Tl45TVjEF1BqmTr+bZSVuPK0dhNr8fiWaAQDQ/wBnITM+4+5ne0sgADLpOGsd/pGO1XDrhXO0Jl4fLzLzvAnz5fQUEmnc0NHxIOgkwoECAEaEbGlAQkAEBJVZceuyUNBrHfbTFlYP3O8gQHhtMBzbUs+4AC01fj6N66SjiCqlqR+m0xWvTEl6WGK3M2CwFAhVQcyBWn+t435Gym3lnBvhVntOuChj/mg/3N87rZ6YMCEQ/fi/SXzjPQG8ECByPbsKgThhHOtHOl87Iu3xgZ5AOR56dHFfA19kVvRc5G+BpjOPsPXASYGCM7YgA5gjoqgEHBPCp4Gp4wEUHovtRhTtjzKDANe5MR8IP41nIMwIqmbBmx45XvqakQMXlp/c6HsBr0UzeURtqe87klSlJzXeWz+qZbjtXsh/1nUz5dSnic4Y/l6ZLW8sS9adDK97XpghYshHif6e/XB+v/h0I0Geitsr6HfQk2wQFA3Ck2LBGZddf1/GaBZMRH7xXTlTu2T4wS0cHA9wgCgTc+JCLCGRAYBeKOgB4Wa1efqPACXFmlHGNowjRCoUZw1ohVvw7L8AZKz2vEPIsv69JETBy55mnpGl16iur21lAkFFUhowi3ioenYLKlFYEShyfSEfnnnTqrwMy+H3m6dRkdhdyQCADu7NGqAMGHCDQ9DN+oSNB0PlqB1wauJ71gwgIuXJX9VEZ7Kh8WTu8hjweFQwwEOBVAw4IoOEfHx9DMJDlw/+Oh46yHOO7UEbj+pE3XKFifU55dop6VkA0zcrQRXlEPDgjmSmB16Qs764h6RpCzm9Ju7GyUWWR8Qx+tAwVkOkAGpXDCBA50OlkpGOUOH1OIxp+y+rEAQx9xrVLpdhPnWaBgL4DqvQAnzvj7/Sf45GvOXnXL8TqMLFLE47V4+PjJh0efu3UDfPPfTOS/S5xvpkzqXrgEDJ5FDCAgvHEDl4+yB8eGmNsNTqGBRwQ6HhXXMkzM2eVMpScgQDl1XUa/joi8115blrO6l5U3srA6bUIvc7we0hamr9TkJER7Bj/LgiIrmWAIAMBTp4rsBa1JdKfqVMHtKLrbl34GC8BAK7tU7Yy5V7pg1OkWSDg5H1GD/BxBgb4eScDDgi6qADbBc7DGXB+j+UrciYzG6BgfRf9ovKWtckhgcAYRwADaowVCPCMUW1wnh8QjaWrwow6QbWW1vGt5BQmCy/z6PjVRkbEQTtlpDyj+u1QBAJcuRxpx47q7NhAYIYipZjV/ywgqPJ35ABXVN+d9s+AQAYCdqWsX7pxW1bqPPbLXybVesn4ne0/6gn+SDSrAzPdN0YvesTHDgRUbRMBVuhF/TosO4SRl8/69+LiYktmGBAwn84YO+dtX4DA1UOV/yFk8mhgQNeQZkDg8fFxMzzAhjVKn/85zwgIdMCApq/kjL6CgmwPbOTLUYEIIWZgZV9Gx92r0nKdeYavY1FU5kwOnCe0BATMAM8lQE/leR9AwHlRHZ702PVL3m1O+X58fLRlwXrxWfCl/ETlOmXZragCApWc6HklI0vAQNXPYPj53O026/SpPs+6n+VG33d15sp6CKPMbcR06G8XvBoY4EpVEMBbDI8xXgCBaGdBbXz+12PlYYnBjfJRwXc7YlUdI+q0rvNG5cv4dnnimiJPx6+m4eqW/52wdo3ZMSiTA2cUnNKLnuE83LE7nzVmmWJ3PDPvUX6HMIZOzt2SYoABXWrFPMHT0/HfWRAayfSPIrtK2hcjPdKNCGQyvRQMRLrLgRI1guxcRWF+lYHV6mXk1eWlslABJX5+l37C+THvWZ/eNyB4FTCgQED3EMA8gTG2J4ZkQADpaj7RefUsX8uAQAfFMijoggEnvNxpddKiE4JMMFSAFQBU72YCFwGxH9Wj6ihI/HcNKh9noHNGuURgN7rveI/4zvLp3svecUCANxsDGIDB17Xk6Fu8rwfXmSp1Z/C78vkjyXIkE874zwJH/tfn3Htdfcd8R8aZzxUMuHxYrzGQVN0agX2tO5YBJw+zADQiVy9qB/T5fdHBwYACAd5imDv+GP2IwAwIcHxEpMaxk0eGhPW+XuPjSOE4BZeVU8vjziMgwGVyZXFUAaiMn1OgyAPI0Dj+u0CgStu1sQK0TPYdCNB2cUpVjyMg0WnbKJ/seQcI9KM0AMA8RBh5eC6/CBR06UcFApHRd8BAKQOMWR1Hz3XkQPmPeFFA0AUdru9pHURggM85zUy/Zs/NEPgcw6+i2QcAAb1aZECBgA4NjLG9asCtH82QZKawMiU8xks0Fr2vlDXAbONEQEQbvNP4GfCIAECX566R+FEU6Bh5SJBpBghw2pECckAjUsSR7Ee/jH+Xn+OZ83LPRNcjJen4d5MGOUqg6eBLc7pBjFPqrr90gE3G+49ADhR0V0x1ZTw7z8CE8pdd4/QcEMh2nY1AAR+v19+3JM7ezZyCiF+8N2OwM93K7cj2sHImZ+hgYACFYdTPIED3mXaTBbNZog7tdXjKFLHynh1H7/KzkdGN3ulQp/EzMKA84noEChz/M4Ag6qynRpGBVYqUZGWw3b7vTia6y+U6IMApoaotnCHR69Hzldfo+izXD3+ZjvcZAeGZx8fH1ni3I9cXK0V66rI7hneOloLFTMajd9xxBZardnPpzQy9Rmlyvm4Zt/LogCbuVXLjdKzTw87+aF/UjbeqvjdLBwEDUSePlg/y0sFqM6FMuCvhqsBDll6F2tDY3Gj6P0aMGrPyOdoVCET8R/fdsZ5XAnlqSrWjMFE3DtRknjWnr56vM2Sq1KrtUDMZ5v+uZ1fVC6fZoRlPXPNxnj/mDjw+Pm6+OMdgQWU0k+efnSq5drKTAYGO7MwYZPDIvEakfcIBgSV6R/V1JS9OprplZaeQ0+rkw32C54253TgrcFLRXsGAChsDgaurq3F1dbX1GWJeL/r4+DgeHh7sFsPa0WfQLt7RYxXGyChH6eg5N5Z2DAYEUSecoY4X04kI8H0nSFm9ZbxEnfVUlXMFBJScAorkKlrGql4vlN1SYKvy2vHSZ/tW1fZaXzPKCWnDSeA64s/NIjIQyWYla536reru1CiShRkgsCQqoNfd8Uy9ZfKbRQSyfDRNlnvWz5lcVDLTiQ7MAgJ3rkNi1Rbds7QXMMDMMgiIVg1wYZ+fn7eAgO4m5fLB8SwYcI3aSbMCBdrAKgCr1Wpr9jPvhMVpRIJYlW9JNKBLEWiayWfGKLwWdZUk/p0SygCBAgHOI5q8hWuZ4ohAR0YdpZPJfpU+57MvmVM+dM11xJcDJPwfXeMy7Eu5viZFsuTkjymLBGQGPYsWZPWWyVyWXrcPVqS62eXX1fsRv528ldz1SGaz5ba76NqdwICCAP3uNIYE3GRBDAl0lw9WBrzLa1TBzuhFaaMckTGPIgHw/hQQaFgoyrtbzsw7qsCFAyURTx0l4TresWnG8HWUUGVUM+CRdV7t5Hp9BgRk/CrfVR5dbzDzgrJ6dc5AtmGXK1MlcxmYQPo/AiiYlT2mrO5xrlRdmwGeEalRy8BARh396XSl6mMQor667wGei3hSWWL5jPql4yuzU1m6XVoEBhSl8HCAThIECOD1wg4I4F4EBJxAR8qyKyiRBxYJAvPC18YYL4YI9H3wpY1cNV4FTCLjjXt6LTN8WZoVZWj3lJRqVFeurfDfUZIVwHBAShXeDP9dYx29r2l05ULTzzzEKF8uO/o97y/i5gJAb2QzyCN94HioSPXCKVNk+N0kVZDWXyXjS/uu628dkOJ4reS6coKy85ky6Ix+8LgPQFDxF+mVWfvnaAoMOBDAG4VgToBOEmRPGJ0eqwb4ewNZfnyNC+8q1AlThKDcc0oa1nVhXgABpKGbpHAHzdaLVgYlqiNHFRhwz7OS3kUhRmDrFMjVLyhSkB2P1OXDlCmBrsJz/9FxBEwjYBillym46JlKISnYckCA+wkih7zSaBZAOR6ckTgF0NqhSB9UBndWxrP62AXERiAg0+ddoBtdr0CBykTHKHd4c2nrtQ6Q5mv60/4+K8dtMKCIkzcHuby8HFdXV+P6+norIsCkSwd1+aAreMeAjdETXmdw9Tp3ikhoeM4DKy4oNNfYrPAyw868VR3avdehSjF2FH+VvnbqU1Gwrk27MtVNN2qrTj0sUXRdvvRaRzkfkhg0r1arzQRB1BEibTw+6vaiZ1mb4b/THpWSPgWqdEVULwoC9hURcHXaBbFRnspbxOuuFDmDY/Qjil2+NK8KFHQBgaY3U0dtMMCRAJ0cCCCAY10t8PDwsAUCdJ5AVOBKYbkKdf+cnoIAfV9//AxHOvRdh87GGC8AQAVsKjBwCEDA9aXASI27vvOjkavHDBB0DXQFLFQ2MtnVfKt27ZQleqaqCxfN2BfIw7sMCHD96enJTjaOdiTNjJ67lvGuSvk1QVKXKqBXgQA9drRP4Op4m2kvPa5AS2ZoI6M50+6qx7teeRYdiCIjVf5an0v75hQY0B0E8cOyQY0I8I6CWDGgUYFI8TkF5e5V4SQnNF1BZMOvS8RQJ0wO2Lgd0iohq4BA1dl2oQgQ4FyfnfEkjgkgtP6yOt23h65pRp11tn5UsWT9RJ+pnnPPVEBgCf9jvPwaG6ICGDbQe7oRWWRcMk9vRuGfOvDt6okZXZkZsyX8KZ8zaWdy1nmnMvaVMY7AsgMSLr2IIvnM3tfntd13AeltMMBGn0GA7ig4xvfJPgAA3759G/f391vLB6PvDVT/jrpKKTNskaCwUde14ioAbpOhivfO/erZmbrK0nVeKagy8ks67DFIO3amnPS9SGa6aXSUQ6euIuWjvERKzCmUjBxQYl7dx1O6ConTg16IlmSq0VJFyPN2InmMPLgugDoFyto6+td203qaaatdeI3OnUxneXd1ftZv1fh3AYErm0tvhjp9JuIpA8TMV0VtMHBzczPevXs3rq+vN6BA9w/XyYH39/ebf0QFsi2GuWDunitcBz05ip5xihIgh8EAiMc0XRrZ7OcuZYKO+yrQu9RBlnfkUXSfOwY5z2kJCIiMaNQpZ1G/1lMFwDpt7UDAkuddH8RvtVq9APcdr9ylx2VCRK3al8H1QdzP+l3VrtH5KdGMXB9CB1W8KY98XuXRMfgdgI08I1vh9Cfzr/k4+YgiDxHPDgS5Y9WjWT9AX4hW5VXUBgMfPnwYHz58GDc3NxsgANL5ADwUABCQzQDOEI5TQlnDRtcq8OGE1Rl9zkPv6woC9pyij2tkiirr6A7FdgCBq1e+5tbQZueVATsWAGCq6rHzfuc8k6XoXVCmqHYhVSAdQ8fPug/cIF3IM4/lZ/KT5an92vGtw3KO1478uuhAZkQ13WOSk6sKEGT9tkOHAgLdvtDNvxMdcIa7ozddmvx+B9zsUgbly9kxNyQ9w0cbDLx//358+PBhs2JgtVpthgEwFMCG3315UIUwMszRfQcEtAGjhqwUePTcEoJyZGXpAAHKpKSCGXVyV39ahu41ULSGtlKsx/b+O5Qpzcpr4Gv6jP47hVfJlVNY/F6E9LvyGim7CCS7bZR5rgxkBJHA1er7BMCu4awUn/b3ztarlYFxctwBBPvQC/sibf8M6HG5s74Z6dVd+HP6qtsfQPvQJ5nxn6Go31QOaic6oOnz9YgHvhbpnygdR20wwEME6PhPT0/j/v5+3N3dbYGBahmQo30a5O771XP8YQhQJEQu6hHVgfOoNW13vIvRr4AEUybgMyBgSajqEJSBACUtxxLA5ZThTPk7isLlk5XJtakqDE2P9xHBzH7+wNh6/f2Twg8PD1t56o6Bjjp1knmJMwBUZTmrV72+xHAcgpxhzWSu6pNR+q4PdA1K1D8y/bWLwY9AtFLHs1a+NZ/oXMFFhx/HU6QvXdqOB/yj77pt7zNqgwFEBMb47g0wEAAYUA+YC1B1QFCkvDiN6JwpQ1qzytkBAybMfsbz2U/5iZRU5cVEz0YKAkKiwusE3eWzNBpwbEXaNf4RMKuUWfeau8d16JRKVndZuq6ckcxEipuBACYJAxCgTzw/P4/7+/sXeY3xcpWA463r/eizTgY7chjpj6g+ovdemyr5ymS8k66LCsyWO9M7GTBeAjaYZ+0vmUy5OlrCt9aXk59OmTr9ItLvURnccYemVhOsVqutyYFYJYD/x8fHFAQ46iovvu6Ou+nquxFg6HYGp9Tx3wEFkQGq8o/QovKlyh15RwKDexEgiOqgo9SPCQoqhdmV1Y6Bj951z1Ty3+FJeYvSjQwftzmu8X4iWDHEe4iMsT1EgPSdbGegpnu9AgLuuShd90wEwhSgnQLNKvzI0PM9d/4aQGA2/eiaA9NdHt1xlX8ESg4BGrVMFRDRMnV5aoOBt2/fbi0VvLu720QGeK5AZOg6FAkqKEvPVVhUgVHjzYAX3RCF70WAwPHcKRuXp1sH2jlUuVXlc4DApetAVQQMjqVQI8MYtb97P1Mas+Vyhk7r1Bnsqkyde8iP01UQwR8e48+PX11dbT5GNsZfYODh4WELZGLYAOfRcMEsOOA0MjCg55Vc8r2ovg+l5LuUGdgZUMDpRf02KvtMHVR8MnXS7AIBJScHnb7s6tvlqfxEtmtf8uPaTMvnytKVi6ntiB8fHzdAAGAAEQH99HDUUbXSqkbMrnGajiow4YQlyodXE/BOhGP4CVNuwmQGNlxjRudRefSaA0Tup3kzgJgRpkxYj0md+suAAP61nqK6mfE8Na8IEETpzXitmYfI5eENxrCfCOYMXV5ebn297f7+flxcXGytKkBemPCXldcdZ3wr0HbPRBQZosgIZu8em7r9s5Jrfq4CBhkvjqcOj5pHBRorOeq8uxQYRLy7/toFod2yMEVyimNdVbB3MICQ4N3d3bi9vX0xYdAZGWUc5xXCUppFVU75ZOAE1zOPFkqSvSYWFCjBMbYnT1X14XjpKMmlSLMLCPAPwOPK0smrKsdr04x3E113HUwVgba3AoEZwBsBvEiBV2noOb/DkwYvLy/Hzc3N+PDhw3j//v149+7dBgyMMTb64OLi4sWXR1knRIY2AlpRuatjpcqYdQ1R1ygegipD66gLAPh5J1Mqz64eukBgH3o90osdI9wx9F0w4ABAVkfKY6dMXdJyR+3RoTYYeHh42GwepJsIZUosUopRYdwz+uyhqDIA/G0GNpTVUqrIiDqDEgkm0tF3qzrJ6rIDBiI+naJXI3hKAIA7q1LW7i4td79qhxnZzYA0/0dGtsuDU/qQ67dv347r6+vx7t278fHjx/Hp06fx/v37rT1GHh4ext3d3fj8+fNGD2ApMYYLsk25OsaiAkgdQx0Bpghk6bvHluWOod2Fvw5Q1WcdfxXPTDORB5d/paNm3p/Rfbim/a7SMRHI0nw7lEUGtC8fBAxgSKCziVDmDUeViHP3DW5Np0JYjqKGYgXI/2z8QRwZ4J0XkTbvmDbDX1c5OuNTGaRI6JkcINB39flICF3ap0QR8NFjvTarILO891EnM0owaxvtezxPAFGBjx8/jl9//XWz6RiGBTBnCGFJ3leEJxNnYFP7vAJKpOHKUSlfTa86jxyWUwG1M0Bg1gvNIjiVx+v4c+e7kMvHHc+mE12LzsfwspXJor6b5RHZvuj9Sp8dBAzwR4Z0S2ElJziR8WKGo33/8WwGMjoUKXv3MSL+x6xqDqGyAsMX1tgb0t96/f3bBRFfroNHwuGMVNToh+icSK/bBqcGCsbIIx8dWlKmyOB0KGvfSEFEQNopDawcuL6+3mw//uHDh/HLL79sfgAD6/V63N/fjy9fvowxtiOHDw8P4+rqKtxsDHk6AK688rc+MlBaRT1mqFLYr0mZgY30pB4for9HRifiy8lnt22yslc6Myv7TL1kQHRf9RzZp8jh5mP33MHBgG45yhkzk53O6IAAjK4KT/bDM1FlzuTv+HDP8KxqNfJu3JQpUo6RUKtwZ55OVc4O4FBeHd9RtIfPOxGd1yZVLHytegeUeZ3uOUeR8eq82yHXPhl450+SAwR8+vRp/PLLL+PXX38dv//++/j06dO4ubkZb9++Hc/Pz+Pbt2+bY0wq5j1HFNxrCJOPXZ9XIBC1UxYdqOpV9UfmIR+LKkPrKDIW+zZYFT/d/Kq6j/QXy5jq627+lb6qwEsnjxnwU70byfWs/VNqgwHeZtgZM868CifhnBsUyog9cBAbV93QaIw4VJIhRJxH265GIAG8Xl5ebj5gBB51y9bVajXu7+9fCGe0NfNsGbqkde3+I2UaHWf39JlTAQNLgEBGmQFZktYsqfGsvAgF6tz3Li4uxvX19WZYACDgt99+2/wABhAF+/bt20bGv3z5Mr58+bLZpfT+/n6zHFnBAPOvsjnG2Bpuc7OiFYx1wVp0LarDY4MA5iED86DIiC2lypFjviIeO6R9KLMVqsfYXvCxypSSOm9u0rduG9/p45FBzmTS0cwzEXCdBYDTYKBCzBlKxzsO2bldzvAeGgvv8L7omr7yFin9CF06o6kgAGuuebhgvV5vll6+fft2M5aqAAPK0Qma8hldU4HqoFZXpqyzaNtlERltgwwQHIMiQLUPZb8ECBzKyGRAIOIDw14YFvj06dP47bffxu+//z7+8Y9/bH6///77+Pjx42Y78sfHx/H27dvx9PQ0bm9vx83NzWaXUqw4cFG+iA/+5x0OMcTGcs+gIDL4fL+qCyfDu4K7fZIaVz2u+qAztlqP+O+UuQICTB2vuopcRDaDgSzbD906m2WQHcn1er2xafwNHbY3ChSy+ojKxuWL6qMCra6dnZw7x/hgYMDNFXBoOuqgzCCDgMvLy81OZ7xsjz+LzIXlQkbC5ITWXY9AARtKnljF32mAAKKOEC69vb3d/BA+RZo674KFJKIM3FRK0XUilI2jG0hLQRYrC/eRpS4gOCZFynQpdY1GBox3ebbDW/S+9r+rq6vx/v378euvv45//OMf45///Of417/+tQUEPn36NN69ezfevn071uv1Zgvib9++bW1KhI2JAOqdcQAP3bJlxu9QlOmv16RMbiOg4wxNJVsd4O50uPKnz1Vl0/NKXllu2XZAN+MYP9bpKJt+aZO/ssv/sDljjK2l447nqCwZIAA/SjN9RHX/Lv2jDQYUCLjCK4PKNJ5Dg/KmJpi4BCWCECE32qzB5Pwcv5VAA11CsAAEPn78OD58+DDevXs3bm5uNp4QwMCXL1/G58+fx+fPnzdl02EDnnmt3na302ldVx2JOwYDLrf8S6kTGeDzU4sOgDL5ieovk7t9RgT2XT8OiLEMIdJ1c3MzPn36NP75z3+O//znP+Pf//73+Pe//z3++c9/bgGBy8vLMcZf84dWq7+iAwDxrITZW1PQrnxF3lK0pXm3jjT9mfdPBQgg70hXjVEDP6bMS4/quaOTKjAQ2QxOzx0z6bAA6+Sbm5vNP/QxNsjS6C3bFN5an3883+X+/r4V3XDnmbzjWNOdMe6VE1jVqdLUpkOZculmrsMCUCRoUICBMcamwXgns8goOR4yIJARjKMCAijN3377bfz666+btdfv3r0bFxcX4/HxcXz9+nX88ccf4//+7//G//3f/22ViQ0yFCqHp9TwRIog6mx6zGk4IOAmd81QpYhOwfhHFIEoPtb2yMrTUXjVMzOkMsJ8uPZUuWIg8PHjx/H777+P//mf/xn//e9/x3//+98NGPjll1/G+/fvN9EvzBVAdIDBAIAvZJ5X4XAdMn9Q0I6qPh69497fBZSeghw7mckAdyRrCmwzsJU5F5lOygBHBRyy5zUaAADw8ePHjYMGfQx7wnO71uv1xqZg9cv9/f34+vXrVkQXG2l9+/bNziXQcjKP0f0KGLhyO10eOV+OZvVMGwxoxhkKdMqTn3fIDrOUoXTw7sxHjxw/UTm6FQVFxorzt99+23hNUJaXl5fj4eFh/Pnnn5tzHmaIgBQAgZbNAZgoOpCRdlRWzPv0eLTNI+V/bOqAgOha5VXx8WzdzrQn/p08ODlThYX+h74HgPvPf/5z/Pvf/x7/+c9/xn/+858X8wTwyfL1er0VFbi6uhrX19ebH4drOTrgZCQC9hnoj+qKZS37RfXk0qvyPDQ58M/kZG+mXNF7HV3fcbiydKJ3lQd2aAAIMLSFPTDYQYOThigBwACAAEDA3d3d+Pr161YkF88jMg1nLZNhrQ93H/LG8unK6/RmpT8j0Dari6bAgMskEgI9RqHYS2VAAAWCd9AQEYqdQUSVUo+8BuYToacPHz5sxlb/9a9/jd9++218/PhxAwbev3+/ESSsueYfRwI478xDUr4qo6TKluuEBZs/KuPSipRxxocKsx6fIlWgYOZ9vqadOaqPTsfNFKkqocwIamTu5uZmS6nih30FeJ7Aw8PDBgiwd4Z9CRQMMCDgUG1kACLDFnlbrn4z3dABABEdC8xqezuK9FeHKiDg+FEQmrWnyr5Lx72v73BUlYdsP3z4MH7//ffNPJfff/99/Prrr+Pjx4+boS1skvX09LT1ob2vX7+Oz58/jz/++ONFVFqHEnhlS1Y3fNx1JrTc3WfdexE/HZoCAxlC1GNFNNzobgIIfnh3vV7bmchZZVUKJiJVmJjFDOKVBNiV7Zdffhm//fbb+Mc//jE+ffo0Li8vN5MEv337Nm5vb8eXL1/G169ft5Qk9mu4urraAIBZr0UNS1RWfg5A482bN1ubI0WTBZW0vqNOzvmeCiCoFA1fdzTraWk+mVJUPh1Q0GPuRxUY0G2AV6vv465syN+/f7/58VwYKFOWGe63eB+rERCe5TFbXvLlPMXZenVKl4GA9g2V613B32tT5tzsUhYFAjMOlruW6QJ+Rm1BBAb4n5/XqNavv/46/vWvf9l5Ltg+GxMF7+/vt/Szfm8DjhqcNzisAAQdmdwHde1Wlveszm2DATe+7FAdKyzXMRUQ8MxPDudoIaDUIkWZUWYkcc7K002oUyEEKsXmLPCS7u/vNyEqBgFQkLx5EyYRsmF2vKo31fWq+HkFN26veAUnjiKwFz27FOm+FkVePZOTYX1uadkykOCiAfiPVr2wUXTGEO9hYhUvleWxfl5xovKggECHCXTyli5lZXnOPN6oviJyMrkU4J0KdepmiYGaAQIVOd2UybQCgcjp4zSczeChgl9++WUTIYCDxsO1DAYQFcCE9THGJmoAsHB3d7clw4gucIRg1thmz3edsCzdKBLR5XHqE8aR8c+8F2bWCYFOZnPG0PHS6QBdQVdvSpWfAzAaHr28vBzr9XorRKoTq/iH8BN2cGNFqYpcy+XKqOfaDlo23V+AAcI+FATTko6zb+oCqIg60ZhdAIHmkf3rsetrDGwV+HG4lZWr7pkBb4iVKZcxiu7p8i4GBVrGqAyz9acKMQLVPwoI6NCpRThUR7k+7yIDGRhwjic7ZtfX1+P9+/ebuQL8g9cPXjDnhee0jPH9g1u3t7cbkMDLxhXIKqBVynRyx8mq6til5xzcKk+lNhjgSRWVN6OM8L96M6vV9w2GxvC7DVaAICtwRwFEBpjvIx8OlarXo8Kt3hODAoSgVOFmfFVl0PrBv3qP+txqtXqRd4dmlNGMUB6aOh5TdK8Cmwoiu5GTii+9ryDBve/GOZ0iBrH3dH9/P25vb7c2/uFlWZyHi/JpxI/BQOQcKGlko2qbKCLScTBcekvByT4pMjigDm+HBuGq47N8VfbY0GqakU5yQ1WqX3UDIpW5McZmOOD29nazdwxHtTSyxfIblbGyJdl71fWOY6zpHCQyAMOloWwnrOyN6jUHCFB5vAkEbwCRVag2TseDi9LAz22so6TrVdmb4q2JIVQcJcBWrQ5MqLGJBCsrm/O8ojJXgE7zcEo3qyfH12tTpaCWkCtv5RGowqw6amUEorbTcwYFkUxAMX779m18/fp1E+m6v7+3YJ03IeO8kB8AAO85EIEBBgRsBDI51HPtuzoXpwuqu/X82hQZiX3Q0rQyWc6AQNT2qrd56DRKz0UWMPyKCa8OwOuuhTw/Rj9MF+lox7eTwWoHQ66vrh6tnIiOo6zUBgOXl5db3yXgzuUq2zGaKSJ4yLwOVHc97CJ8NVIZmlOBxnNu/B7XeYkKth/GutT7+/utvRF4NYIiVvWaXEdRZafHWl5neDSio2l1lV2kXCvBPEXqAsXsPErP3esAAafwIyURATpNA23PkbgMCHz58mWzlBBfH9SPdvE7WCHDvHBkTCMHWi4eJkS6q9VqM29I+2YERB2Y7wCBTFlyux2Lqv7k5Krz3ixFesLVjfKEawoA+Kfva1qcF8+3YnuBsX7eMlv16xjfwYLTW65/8DOQYQUJ4I+dxMh2ufpxZY+cCX4uckqWyG0bDFxfX28ZZ+6sHVQToUDeCxpGlD1sHGcGSM8rfty7kVBr+cAThO/29naM8ZdSQ2j14eFha/a+myjJCjYDA9qolRGL6iESDka5Y2wvPVytVqFijersUMpoH1Tx1EHufN6Rr049OAVUdWjtByqraDvlQfPiJVfYPRPfHMBWw+otsVJ14BfrwHl4jPsEkxoDAAE3c9vJIuogA6qVUqz6xrFpho9dee7036yunAHT5/Q3xtiSAXZcOE/oXwUAWBnAQBayyRMAORLNw2FIiwGG23ofETKAAu4TSJeXIwKQMIjheuA+rn3VOQ4R6OvagYqmIgNXV1dbQwVgrkJVDhEyGMAYJIMCBwIiIKDU8fr0+cqDwHO8VvX29nZcXl6O5+fncXFxsbnuwEA0z4DrIgIDOp+gEoSInAep19zchVk6FSXKFPHUkamZ8nTbQ5VhNy1VEE52QBoR0rKwF4NZ1re3t5uZ0w8PD1vLAzWSxR4Q+NHJtYiWoY/rR4gUbDMQUC8p8/z1mZm2QL1k0YNjUealdvSAe39p/WTU6T9O51SkbctgADoYGwZhTwyAAcivM9p4/+vXr+P29nbz6W3ob/5KLxtqHv7lj9XxJFuAi6g8EWBi0OCcA1enXaehQ1NzBvDTDsuFcqgPzLvxFzAMhcJAgBVNZ9yF88KznYrqCqcuT7m9vd2sBsB2xFB86ilFEw7Z4OOfgRaHeWc2JYq8wQiVL1F4rm5/JCDwGuS8o+rZCAS4KIDKkHuP/12evKwKX9tEX4QydRMCx9gG89iLg/cuYGAMT4k33VI+OCLgjHw2J4Df0WNXJzOye4pyzaTASa91aEl0ZCmI1nuq4xzIc1EB7CD4559/bj6vjb7y9PQUfvwOYAB7wQAU4KNyGAKDvIIYCPCExdVqtTV0VtWXk1OtSzc/T5/TCEN0v0NTYEC9W1Z0ESAA6bvaOCgEozHera/y2nfprFFkgI85nApEen19vdmQBROuXMhUQ6xqnPHPnhwrWwYEnShG5C06kOCu67tRm84YulOmGfR8LHJ1rUByDP/RqQoQo48BEKCvQ551CaLuQ8BRMOzD4SYbYyiNQT5HBcGP8qc/Bwjcu1lddumU5TsDjl2KDEv33QhYRbyqo8akQMDpOjdMiyECbDKkywl1B0zW4wASAAUAAxwh0EmM/LEkgALMd2O7xvWiwIbvI23OJ9K3qMtOnXefAU1tOsT7jGehPNxjlM9G0VUYIz/+QJF6AEydUApXoDZC9L4+x6sceAcrjKeCdzQo6keVp+YHZcogIRorZSAQjT25uomiNM6Q4B4j9AwMaN05wY3OX5MivvbBU0cJumOXTke5ZyDNRQaytMb47n1wv4OyBT+IfOG+mz8wxtjaJpaBAPcHfBVOx2jZA2M5Z8Ov5x1g3Kn7H5lmDEPnuSXREZZdJ8NOz2Z8u/ZWo8l6GJ79169fN4AAgPb5+XkzdMByjijYly9fxh9//LEBBPjsPOSUV7SxvuRVCAyWXR/U1TGqw/Xc1RNf43rN9KyCh4qmNx0CKODGiZQYP8PGUUON8A544qBD/sqPGvpZoePritxYcOAh8eYUWI/KwAbbKb9582azsZDbiY1J5wy4YQLmy0UIog7oAEEmGByZwLkiVQUKzENExwQCFVUAsfPeDLn0VZlG9zvRGgd6K9nX/uYMLdocgJ0jfSwv+N4BztkBuLy83HheDAru7++3gAAbAmcQZlcLcB1GpEr2R6MMiDvqPMP6I8qL0+vIMP9nNoPbmD1mHioAIOAQ/93d3Xj37t3WktjHx8fNP0+WZTDw//7f/xt//vnn+Pz589ZwAd5BudURg8zDJjobhHJCd2qfgq2JIgFuSK2iJU5PGwzwRiOqhHjZEv7VM9AwIxtR9r55eEArzBUsEryMMiFU5QLeMMYEAeJdrLRc+LALECiei5QM6seBAB1Lc0MFCggiEKDX+Vmes8CeoIIX5kfBWLeuT5G4vWeNQSSboG5EoBMZ4GsuKpAZ9YwPHRfVHytwBsqQXeSPpVcuHQAC9Je7u7sxxvetYBkIsD5wgKACAw4EdJwDvpcZt1OmzDmbSSM7d+Rk2NUhGznWRdyPIhkeY2z0Erx7/vHyQnZuOLKLVV+YfIhPzgMMIEIAwMq2D7pdeeJy6Dd2wIOLdqPfceTNUaVvI+M/I79tMMCMj7ENANSwYDYyiBWGTuZgIMBLFztzBVx0QI8jA+/Kp94Ho1D+BjaiA/oJVyxrgWFHGEknXDH/znBzXS5RSA7RZ/lwxAL3MP6ldVQZrkwoT4WyjoTzTr1XZXL1r8eaX5YGX1PlqmHHCDC6MnC+PFuaQ6BjvIwgAAwAIDJwVKXJygzXeDiC+5ou7+rOG3J16q53rmn7n5L87kqHBgVOhyFfV5+RrlYwADmBfnLG/evXr1tAAE6Y7kWAZ7ES4Y8//tjMPdCJhOwA6fJD3bYb+hTAF2VDpIL35NDIAJYjav/O6k6fcefd9p6KDKBTjvFy4htIGWaAwEYRz7jJgtVcAc1fQUAH9eNYlSq/zzzwrlYIM11fX2+NLek4u1s1EZUj4nNpx42iAPxzKxzGGBsgwJEB1BV+UWfWa6dEyt9SHpd6XfsCFhlFQIDv8TH3aeSj3xwAuGUZZ+POH9tS+UB6usMb6wF2BljhLgUC3fqq9ISW40eiqI8yZU7W0jz1WK9lujrSvfqcDhXw54jxYSJEcvlDRPwRIp5rgGgAzu/u7rZWEzAYAajQOXBjfN9AC7wCFIAHTMblMuIf8o+0eUWC68daX/ws/89QGwzoEgsmbnAoDlxnMODQDhSSWzngKqCL1J3iyyqq0+mZV0WG7NGwp6PKDcCi01hZo88QgxMO2fL+BwzqwD9Iw3kZr5znqQCCXUFA5GVm5MCYXq941QiXey5SqJUCYSDAXgry1fF+lx7LsQJgBtFqzJEf7utmZg4IdOp7F3nTese1U44MOH26zzSdrEZ9IXI4Mk9Xj52MOhnW6ADvNwBZvbu7Gzc3N1uGmCO7+GFpIs85YCDAnjw7UfhcPcuH7mUAfnmzIiXuJ5ici7T5GZQ5sl37aPspMKAd23WaMV4qQAcE3PyASvG5vKLnouddp1eBVQDjvHwtA6IGeI4nuLiZqQ7xuk7QMWQqJK5cGsLCMU9ujOrNrXBwPGgdq3wcW6EeMn/nRTrFmpGT+0h2Z9NS4j6nG4kxvzpBkNvUAQI8B3DB0TQebuOfAurZaADqPjNSM3Xl6v0UIgNLeXCG9xC0BAjweQUGmDQ68PXr1y3Dj3kDPMSF3Qahk2H8eVgAz+imd2OMjaOHoa37+/utMvDyey4PR2G1nvAc+gl08/39/RZg571rMlCwCy0GA8i8ElBGSiBeW8xeQtb5M/CRUWQo+ViNJhtMt2GQhkPRmE9Pf23hivriSS0KCLiRURe8eiEDBq6eVCG6Dsn863px9eicYnd1y+3D+VYK9tg023EyuQRVxqiKCmi6uwCo7F1Wbrypl3rk/GwG9iPvHWlC/vGvv+hbJMzDEu9nF3nj+j+23C7Vdbvkk+WZ1UkEAiKvOPuP8sY/5Is3y3p+/v4lQl7thTA8zx3AcC9kUyMCDpBGjuMYf/Un3pRP60V1rQ7Nus2R0Efd0vR9RQRAbTDgQorwGDHBQgmNkKXFxm8XcoJUdebIcKLiOUwafZIVeUAIIUQ8lqUTUpzS0wlg1XCJllHLw/dVEFUg3V4DMxTlG3kAx6QlICBTZBFF9RnVrfPeFAC79DW9DvhVYi8rGrJzESbmQY033oeCxVitzvxmQKBDBK7cXXLljtLqGNFjye4+gUhWhll51Xed8Y8iA46nKDoQvaORJ4TWoXsRFcAEQjasAAWQO8igDlkxyOX8ImIbwdEAdTJ1IzoGMbwnAgMYF5nWOoyoK0PTEwijjNmY6Vp5kBq52VCgO0a6/K/vsTJTnjqes37mEisIGMmh4cYYW7tjRZNSdFZqNHlSlWJURneeRQZwru9rG0dKWdt1qaC+NrEMZMZh1zw0nW6aSyIqXPcaHarS0L7oVvZoeJMV2xhjE05FP2BwwWu6OSTLP17CtXTCoNZHdHxq8jhDHSCZXeuku6tTEOmBCpBV96LnEbr/9u3bWK+/f4CIl3qP8V2PMeDl4QC3kk0dtIoXfg8GnqPMAAiwJ7w50nq93gwTcNk4mvHmzZsUjDAt0WGLVxMgQzUqTpmxQUFhnMfrQpL7oEwhZAaTQYECAd6bGo0NpahAAAqQvSCdNKVC6JRiFgHQsmq5Ouic0a+i4kw5O34yr/bUqDISDtTOpL0rzdS7O+Y5HyoL3A/dEIHKHE8Qjnhlr4Z3iuPlX24PeA3NztazA0LRc9mxK9O+ddIMdcBgxns33V2BgLvm8uhGDB1wdxE0tik8dyvb6VYnqyoQdY4vrkcyxunqjoQcOb+4uNiyIZjrcH9/v7UEnVcXZJGBfVEbDDDxhDOdiT7Gyz2mca0b+maq0HD0H72fRQac58OhH/4IC/YWwP4CaFB4OBx+YqUXGfwMCKhSdmXQsmZAwEUdkG4VtZlR0BHYe23aNRow0wEzA+2uzdZnh7csPxcVcgCSz9Ef0Ibq9YA3likoRR0iwBfieA94HSLIyun6dwaSo/7/I4AAJcfLvvpUBaKiZzuORqf/Ib1uedSBYQCq87oUTKiOi+auqdPonCbmB/nzB/1gF+DV47sJcDRhR1ar1WZZJA91ZNvZu/rjutHrFU1tOjTGd+OPf6AfrnRn3JhRNURRXmr4osbJQEXHm9br/KyO8yAy8O7du3FzczNubm7G9fX11q6DzG8kaG44wAmjq6euoXGk6YJ4oiALfQTeKqDQARanTh3vMnu+8tg5ra7C1PaYAdJs3LkPQ8Z1SAzHPK7ZUSxocx2f5TkC7jOxUZmcwee8uuWP0syuddrkNUj7eQfMLE17BhBkpGBK9UOVvtZ9pOd5Eqxz7pQn/Y/0m3sPx6o/x/hLX8IO8DH6GnYmHOP71t2INqOPATBgzkMXCGjdLaGpbxPgn5nUGZBjfA/XQCHgXGlGOJgH93z1fmZMXSfg6AcjOVaWHB3Ap4yB6nS5XgQEUE9ZnUT15KIEVR04QV6tVi+AwCxCd/nMGK5D0kyZZjtSFqlx6S1JvwMQupEN9Zh4rwkAAB4S4x0IkZcLs0bKlZ9jcMATFrtgMQNhEVjYB830sX1TpJ+0LnYFBRUgcPWbGV19b/Ze9Iwz5qvVauOEzQKbDGhENoOfVV2qyxHH+G74efUOp4v+9/z8/AIAvKbcTQ0TOCDgwAAQGn/Odww/sXDWu8E7mYcQNeIsOaPpJhQinAMFxwoU+bshAB7rcgrVlU+FMlIKLhLDRh/P6gSxbr0pknb3TgUMRBSBqSqywu9Wz3fTdXxF+auxdV5jZDTxz6FUneGs3xHhfqseP3tlGuJXpRnNg3GypPy/hne+q+E6JLk23mdUAMdZNEzPs35T9ZPIiYiOnczw/Sifjk6bcSw1X+hTjdhwnjxJ0dmBjL9MD1TlmqU2GOCQos62h0JRJnUyHhpNBVrf03MndF1lkSnsTDh47NMpMZSDhxFWq9VWWFXHU3WnQowx6d4CFXUVgHYSBQKY6AJEuitF3uGxFWlGHcWxLw8s8jAZlGTyGgEBALpMmUb58hwCBgHcb5GGAgGV3WqeCe5FQwMREIiuOYrKOkNOt5waqazs0sfUsHfKO+t5Ox4zedVrfM/dj/KZLVdGKlsKdh2hX3E0zC1hRD+OJjK+hi6dBgNs8BgcKEWVM8a2IDlA0ClwhjJnO4fm7yb1ubAmv89gh8d4WInC+DtFWjU0yhR5BM6YcFRC65yf5/+lisUBAXf/FKlSbBFgBVUG3EVzdiEFAvwf8VnVP9qeQa7yzSF/lWF+xilsvqdpRn2gK0PZ9UhPzMjjPtpsKe2S92yfyyIDuO/OK4+7inS588qxiGxF1t8yUOx4jsjl6aLI+OdhAt5gC8eYWwD7oitrdC+eqC4rPVVRGwxgMwREATgawAxEM+SV6ahhnLE7ZGfUdJEvz3lgb97tEYAdotRD4hCqrmnldJywR3xpHTkwpcadOzn/s1fJ6c7UW6W8TwUEKHjTsmaKLTOuUbtk3n5Wz5Xi5B8AgNvxzKXLaXAf5esuT8iJiwxEQwOahtMJSyIDHeDs+kRFlaI9Jh1K/80Yfnd9SXSAz/VYrzkgEPW7KP2Kov6W6WHnPPIEbCbuMw8PD+Py8nKzsgyft+dNh3jpOVamOZDtyqHHs7LcBgO8blMnN7BC4TAHK4tsfKTD9K4dYuZ9bmQYbN5LHUuivn37tvVVNzSo7ubGwEIBAPLr1EEluFpWBQRIA8p9jLE1+5XXkHMdzAhVVJZjeVZjePnKlNqMJ+PuZ4BA03d5VtEZBwgi+XbKTNuWgSnkV7dBZUPOeasCVIOv+sBt7jIDBNz1qsxOOUZt4ur+mLILyuSpqz8dqX7ANX2mOs6uOR46bVoBgUoeKqPoZCDjPXO6uE9xeuhDvKoGw3G8KRL6m26PHO2/0bEZlR5RWjxngAmMOcOnngA/H5G77woWpZMpclWczmDiOgMZXTN9e3u7tdXl9fX1WK+/bzjkvkfAM01nGpXLP+O58juIXMB4qKcYCbTLo+Phdg3ba1Km5CtA0FFkfD8CBJH8aZ5RdIz/XXtqmbSN1DCzkoK8fvv2bbNCBrLjZEKVowIBlnsXEZsBBI6yPqE8ujp16XRB1WtRZngq+cyoW8ZIrqLnI/6j67uAAT6u9GJkyPVeJxJQAXcXCX/z5s3WKjNdjg8QDtviluBG0YGOjHdoap+BTPGzF6CdHdv0ZgiPlRvfq3iaJW3cKrzKZYPSvLu722wegWgA1pACLOD72PwlLACmqjzdcs0CoejHYS4eMnDU9WBPUaEeI50uIJhNY4zxor0yoMFpcUSAP+v69evX8e7du3F9fb0JX47xPXo0xnfFphsRsSypLtBhhUy5zRqPiCJZ6xqBbnqvRdr2fN0dL6UKIOszfJ7xFvGa8Z8BgSjtjnOC8+o4oqgtmDRCgM2Q+EuHIGxO9PT0tHEmeZvuaK6aUuTIdGlqO2KXMchlzsyroXdAQBu+QxlSirwAPebIgIsSMKjB0AAUIb5OyFtKfvv2bQMGgPKA/LQutP46Sq9SmHyuEYAszcrDcgYJ9zI6tiJdQrPGx70feRnOcLu8M75cZEfziYwHjPRqtdoAAWwTfHNzswUE1uv1ZgMUgA+EOcf4vrOa6+s6r4aBSKTkszLvi5ynh/NTk9UOUHT/GXU8+woAuGsVKKjAQPRM9c5S6ra303UzgCDaAwHpYFXX09NfX2DU7evd3LJD0DQYwNgyPASQGtYxviuKMXwUIAMEEVWGvmOkIuOfCQbAAL6dPcbYAgcYb8c1VrD4SBEjPKSZ1YPWW1Tu7DruzRpsbkN+3xkxVaq7hKoOQZFMRAZ7HxTl01EiyktW53w/OmdiBTXG949qff36dfOtDTcMeHV1tenzOnwAZcXpQsnpT8GAq7dKxqu66xr0CBS4PI4NEjpgaQYI8Lnqvg4AcM+7/LWdZ/VZZg8yI30oivpk1t9Wq5ebInF6DAbwYS9ElCMgcAj92gYDCPXzNwk4TIlrmDDBX4vicOIY85GByCN11DV6CgJ4bwCnDHmCFa7Bq9IvTyH0ikmGQHlu9jXnkQGBpUJQdQ6+Fw2ZOCDQAV3Kx7EpAjxj5PWUeStLyIGDKD9+Zkne+p6m8fDwMFarv5YLf/ny5cUGYpwOhsYw+Yl3VeNhMK3X9Trf/33G0O27LVA2Te/Yxh+kxqd6LjrvUOY8dd6ZBXIVzxmIcOlXgCDr/7OkfbIDwF0/R5/hFQU8ebA7RLAPaoMBeMa8nJABAQrjNq9BgRApQMVVigBUKcNOozoky3slKEhwEyUfHx83KA9ojsHDev19YyFefYBhAtQhlCLeyUAAP8P1saTcep3rgYknjDnwVAEM58UeU7kuzXtGcS1Ne8bIZ8910kE76GqWMca4vb21YJCHBbBlsa4wQHgToIDTidZLd/u9+6/qQqkb/TlUlGgfFPX5jlwuqatd+2tHr2W8dWR5hmYAzRJyNkr1HnQ/7qH/wK7gGQYEbvVZh5clNAUGoEiYHCDAPv0aFoGiwL2I+SWep1IW9uJ/ngzFWwgz76z01uv1uLi42HhUrPiyWdQKBCIPSTtPhoirOoo6ttaNPod0FRREIcXKY1nq1R6CuiCm8kT2RV2gFD0X9Z2ozlW28HMhzDHGBgjw57r5s90AwGOMTeQM6ehqHM43K2f278qs5c/Oca3TrpmOek1ycumembne1akOfHQcgoiPWUA3U++d6ACoEzno5uf+mdxwMA+vYf7NGCPdhwbvZvzMXFea+jYBEuX5A2OMF5OLMiMFxYH02EteQpXBU89Wr+lSD/1IBCs2HSrgcuAZfo69If3n8kfo2R1H5e9c0x9/k4DDw6p4MPzD7zj+uDMs9eIOQTMd3/G9D2AwqzyrtEAuVJkpKH6Wh/A4be6PiH4BDADoI1KAd+HdsLfjwHA2Z2BXIKB0zGjUvsnJz67KPwP4XV46QMXxtcSo7YuczdhnRMDdZ73Iy7zRL+B4sf2IPuTVrZ/ZepwCA1ASPKkMhcLEIhgLnUvAjEFxoJB8rEZltmARCIhAgUYG+BqXG1ERGHRc53C/XucG1OecQqyAgNaBQ+hRRIQBAJeRwQ/KzFEdngcCHtTgK6iJAN6xQMGSjp51vCXliHiY9dCc8u0AAuU9azt+nr9oqDuOYiIhhzYxRwY/XMOcmWgiYQd4VfW+D+V+ynRoA9qJPOG5XYHxkntLKdKJem8pVYDIAQJezq1OJy/NjfYWiPLfhaZ2IOT1yWOMjSJgL8F5mbi2Xq+3JhYymEChnCGpChshW+cN63UXGUB59RsDDAZ4wxRuMLd8kilaXsll7VCEbiMwxIZfv1DHQAjv8KQWjiDwBLHMoHDbRp7ga1InEqDn+/JIO5GJWVDA5Dy1CBC48mZl0z0FYPSxBHGMsdks5c8//xyfP38ef/zxx+b48+fPmxU1bkJUVcf7BF4z7x1TVmdphtelhmM2Dz6e7Tv8/FLgkfW5SHfuA+BEoEABARxgBQPQmdFQcpb/rvI7NWeAfyAGBJhU5wo4xndAwWPzeIcrR0OXSpE3nEUFHCBgY+8AAefBS7I4lJOBASaui6jBNc8OCIrKydc1+pEBgSh9/GuUh+sGPDPqZRB57MiA6yyRoVwKCjIj3wUAS42ZUwiufK4MiGplfQTLZr9+/Tqur6838vP09DRub2/H7e3tBgB8/vx5fPnyZXz58mVrA5Wo30Tkoh77IE03u3/KVPG4D68xA5IZyF5af67uOyBhBgAcAhCMUUc9VE+7OsycKD3eJ4CdHibgjjzGd+XBhpy/aqjMMiBghKT5MDlB0PvRf2Qomb8oGuDKj4bS5VQon/P4tQ4YEESozwlpVu4K8HBkIBoacXUPcisMQBo+Vo+UAcExaFbZ7wMIZGC1y+PS5zRSoPfc9TH8xmKcDjbY+vPPPzfbFeM97L8BUAAQoLup6QZFmp/zsKLjTvkzqp45BUDQldPsXmRwOA9+LpIZHC8BGLP1GJXbgcNuv8uAgPIY8dstd9ZmkdPG71XRAH4u42mm3qe2I2ZDyB2awQC+3czfRB9jew6BGytxDeM85shoqhBEhlJBin6BkcGC5ufGcnT8v2pErcsMPHS8F1dGV+YoKsB1kvHsQELE02r1PeKDcp6CYgV/Tpk43maAgOahxx1A0EkvIgfCsmejc575z30OE53u7u42UQGAgefn5xf7avD+GhoVyPqIAufIUB1CnpyXFQHxn4kyHaO6Keon2btLqdPG+wICTEuA5ixgY1AQefiRTXH9dx/yuQgM8DI79u5hADhEHHmg7IlihjII6TlBrIwi/iMPOQMEOmlQz8GHG8/pjO9UjezKlZVXn6vAgHvWpRcpAMdrxB8DAd106hikimKGl8h4djxL/He8kVlyaWnZIhBdgZ8x/tpaG+2GSNjt7e1mVQFkir/boXtruM8d78PQKlDQazMUyfApgNcxPC8zYM/dV5CVvZcZoorX7PmorZyOUZl2Ms7HmfHvykik6zpy0a0DBfH8fKePajqdZyOanjPAgIANOM+4d5PV1uv1VjieDRXeZw9Vly9WRhP/2vg8Hs7HCgjcsIaOhWtUIPrP0HR1n8vUQbMR4HE/t7ui22gmK5dGCFy9RTyeIs14mxkiz/6r9pvttB2vpqNY3HsO1PKw2Nu3b7eGAcfYnkeTfZ0wUuBZObXvsOJc4sFl+WuddfN6bdoFCOhzTv6d7HSNm8vDvbsUtEXvd4x/p99Uhrjiewnorp7tOlJdPRbR1JwBZU4ZZYPEoAAhxfV6vQktAhgwQAAg4BnrunyP/5En/2dePwyfmyDoysnHCoScwozqpfpncl57ZlAy469AwRFP6Mzqgcuo7zPx3AJ9/5gKddeOsuSdSiFVisJ5b12aUUKOFADy7oJuKaqC5ejDRFwuPe7w6ABBt0274EDrfUn9H4qWAoGoDJ30XN+NdFf2XFf+svaMAME+IwGZnXF5d/qankdlzNKN6nLXiABoetOhyAiCKUQIeEdCNSJugiFWIQAQ8Ll63GxsNPyNa2z4V6uVncOgkQ2NQkSRAQYFEThQMNAFAnpeRQj4GbdZEspaee9M2WTByKgzeJsp82tTV8l0O2+U1j54U36WpNtR4u4dyMt6/X0CKAC+ylgFjEFLAI0ruwMAOOdnqzqLvMvOu6dG3XYdw4OdLK0KyHeiNLtSBgIi/dgFP87IZn2xk85Mnhlp3UdpdR3bjKbmDFT3VXlFywRZmfDYPBt2/DOggKFxXm42MRDhcQ1vjjG2dgQcYztEjnLxkIWGPrMhAmcMXcN2Qk8OMTpFqaBIr2mUQOucj3nDoa6CmAVAr0EZeKnAWWSQXFpVh9yXl9lNw5UtA0PuWTayPOk3inRUbd2pI83bGQJ9FvecnLo8K89xX97WrsRlmjE2Gc0CXZd/p+73TRF4y2QSFPHZrdvZyEDnXsWbPnPo+p2eQFg9kwmvehMZqeeuM94VGKgRZE+Zhyv4OvjlLZI5bV01wCHQKDKgZauMjTt2lCFCp/AY9Gi9RFEEgCeuFzeEoBETBQD6i/g/JnX50fqNAFwHEFR5R8qgC0gqcBbl31HkGRDoKMZOvVR8KCiIjjv5VMegfYC3Q9Ku/WrGWOm1yEHZlRR0OHnlf3UEI3l0QLHzz8dd+5X1RSWXZgcEatq71v3UBEJW7hWaZgUGRaJGF8/xxxqiMeeML/Zcu56Hkq6FB9/8c1GBDAh0ywBiZev41PF5PMMhfS2jO1ZAoPsEoL1wvlqttoxBNjyCdyJQcAyKgNhSw8PPVMcdivLK0ouUsTvPlFzGTwVOOjRTF7sAtEN5phUIOxbts6zd+nMGsQuWu3w4imyN/lyUU3VPFwBEvHTtTLdsUZpdvmbBb0Y7RQbUaGWVwKsNOD0sLYRA6XI+zV8Noj6HuQZMvH1y9K7ObeAJUAwE3BDBLsZODXSk+KNjfg91DL51h0UYfo2YRPWOXSXx//z8vPXRGQA5vAMecD5rhF6TZjts5pFXz3D6Hc/+EIYnUooZH/ugXcuiwMQBlQq8/GxUGapZymSvCwYjcNpt/xneIyCgOrRr2DM9pd56xm8GnjvU5VPv7Utf7DxMwB0xQtHswTohYuMVLXWr+EA+PMbNM+VhvGD8WGBg6JCXDg24r0hFXjGXtyIX1squa16ob97EST147SDoOFgipkMnyIfrHnWxXq+3Ps/s6gjH/D7zd6o0q4yy8+xeBQgyXmbrz8nnPqIDnagJ87Ck3buGPQMJHXIRhh+NdgVAzrNf+u4+IgKZPLm+p4DAvVOVqwICFV/u+demXeV3Ggw4o6dh+iqEop470tXNcfj+GC9BgRLzwzsIYjMkjIE7T5gNHs8LYCAQRQVcGSODrtdcZCBSqqrUkQ8PE/A52kXrhXch5FUWChq4k6NeGAwAHPE5L0Hj+mK+XpuqaMvSdGaiApr3DICY4SMrVwQEIg/bgXsHAqJzfqdTP5HSrq5n/DpyZaoM2rEUfdRW0fmu+cx48vsAf1l5NK1IV1a6kx3VLP8MCOg7S41uB4TP8rMvWrSawFW6Xut4ROwtorEyIVNDqMSNznMJVqvvk+FgqJRfNXgMCtwQgfO2lir4TJD53Qy9gl+XBq/WABhAZADRAR1GcPMJeKgAhp93mcPOc7rrnH7P4hRI6zTzgPcFApiqdCu+s/tLAEHXEKvRVG/c1avLLypTFHXg825bReAk4i86PjY5fbfEg1daAnr2AQCifDoykoEDvj5TP4cCWJpWJ91jylsbDLDBcojNNUzmsThjnDWi84z5n/lSJIh8OGwO0vC4myMQTRp05VJeso6SoVgtuz7vBBj8Mw+cru4M6QCBXud5Bev1elMf2Gtet5/FHvUMCBg8HIsyJVYBgpnjpZ25AhgVcMjkUSlSxF1Fn8l0FknI+HHljwAHnsk8+q6B6oCAUwAEY9SRnVOhXTznDmWOE/KP3svsi3t3NmIyy9Oh352haTDA4XdlMtr0BqTvID23ja6+N+s1cZQBeWokgnnGO271QPezq055OVCiPLuyLxE+B5ZAvNcCjL8a/cvLy3FxcTGurq7G1dXVePv27eafl2NqVADfuAcQ4I/TaLTglChqow4gqADejIeVeT2d+8gv87ai+/psB8jO1IfykaWV3auMfQQWXN7dqAA/e2oGF3QIvjL5z8DTLlGDzEhXTlX0fkfmozRm69XpjdeSmX2BrzYYYBCAf+18MO7OqKtn795xm+GMsb10TnmYJX53tVptbX2sYCCbLNiNCETGpooKOE8w8/zd++zps/G/vLwcl5eXW5ECPHN5eTmurq7G9fX1uLy8HNfX1xtAwDzxXAqOCPBX63Cdf8eiqsN0QJvei7xzTS9Kq0qX/901LVtnSa5TeC6tStFn4D3KL7pf1WllcPhd7d/a/6LyR1EBnB8LDGjexwAnGRDrGKIMXCzlJzvn60vabgbI83nU51+7rTJeMloEBpARV7Qa9QwM8DsMCJCPVjbGrV3hqnHoDO1px4rAQAcIaN10jYG7pnXHafFkzawuecyfIwAaGdDPGvPEQkQIAAw4QsDREwYEAALudyww0PUuIsoMsT43o0gqOXD3FBhExpupUlAznrLKWQROsvxmaJd207w7/fZUqTJqHd53rcMIELhrWZs5EBrVf5aHpud46OjtXWgfHvkhaElZp4YJYIgywx5FBhyA4PfG8LvmKQ9KuhRROz6DBVWW7tkKCLi8XNoVRQo28ra0/pwCYyDgQMDV1dXGqOs8AY4kMCBAJIHf5SEDBQQaHcAxvm1/LKoUfgXcKiAQvetkJEsnU6IODHAe0fUuVQqf04+G9lw9Z3XfqRNHnWc7xrMyXsfwxCvKHJzqvY4cZx7uTBtFsr8rzYC6TOaWtGm3HFXauwLcQ9AUGKiuOyDAXzZzBs6l3amkagki558BBPWyuygyAgYqaJFBgDBkoEApAwQMxtSY89AAfmz0eZiAryk4ACDg1QccTXl6enoxXHB7e7sBAnd3d2mdHopOSZGDnOEdI5YX10f4Hm841cl7hjIZ1UheZUhmjVfGc+V5ztIsUHwNUn20FAhEFEV0OoBA9U9GLhoQgc1OGk7/Ol72AeY6tm/XPKr89y3Tjqa+WsjKJzKaDgjgWAGBAomqABpBqMCFpqPj7TjvKgH1wqLO4njIPJAoKuDKEwGCCAjAq4chx/h/ZPQVAOC+ggrdvAn1+/j4uAEEt7e34/379+P29nYDDo5BURSloshTzDzI6trMfeaD29kBRrR/9Fw3L/Ue9dgBAY0MuPJxGVwkI6qXXYBLVL7Oc/r8qQHKTtRjjN0jWbtGl2bvz+TBbROBmuj9MXYzsrvSbB1UvO6jHFNgYIx8DK9bQH2uAwSqPPibBpk3xSCAAUoEbFRwnGGueIzqKlLqURmyOmejDYPNAABj/wwGeG4BG3sdQsBzDAo0DRAAwbdv38b19fXm/5iRgTF6Xg/uzaQ188wMkFDjWXknkGWd2+MAwWz5HRCo5DcrY+eZyghX9RLREqNxKrSE3wz8ZNc6Xvgsn5lDlNESILsL7RskdNObkc1D0PSmQ6xYIg83IrfVcERuYiAPOegwQWdDG+bPPR8Zf1a02Wx+TifK2ylQ5Y0pA14MGGC4AQQw6e/m5mZcX1+Pm5ubcXNzM66uruwXHLG0kOcU8O6E/HOTD3Fvvf5rLwIAEAYFNzc3WfMcjCogoJ1wVmnNdNwZhV4Bb5UZBgIRKOBrUT10jH9m0PWXUQaOIkDQBUpVHp28uUzHIJf3kihURs4IZeBxqcFdYqy7UduKtAwd52+ftMRegM9OGhHNPD8FBrpeana90wHddsWr1Wrr4zsOEGh6M14YH7O3xULj/vfhYWW8dXhdrVZbQAARAQUCiAzAeKOMGlVQr58BQ3TO3zlYr9cvJi+Cr2OTk42OkpoNRS7hSfnq8KHvoV3wrA4dZKQAk8FiBgTYMM8YqiVAQPNztMQz3ZfRORRV9TFDmT6OAOO+jGMlv4doBwcEus9mpI5Dh49ZckDsUBGtxdsRu+OMsucU6VfvKjiI3nU8r9d+rgCUXCSsms8Sb0GVqTMurhNmxoqVNjx2HhrQH4y9gh6dN1AZDwdKdMiACYDhGBQBAL7WiQgsUcSd/tF5BvLmjG4EECGz/B9F0BQEKBiIZCIDyA5Iz5Q5o6h/VNEEl7dGGTqe+M9OlU6eoQh8LQHXzjBWXnen3zqdO8vPrhQBi0MCAKaDa2cVAjUW0XBAdx/7pfvdR0iRlSIbffdz70d5dO47wVYlzdc5KqDbCbsVBQAKOgOcwQB7+5x/lxhggIfLy8stj/VYVEUF3HEGJLp57gqeHQjgyBg/FxndDFRGQMBFBzivqLyVd98FSB1jNGOwIiAT5dX1Jl+LDmF49DxyxjInTeV7l/4xQwricI15WqqbMxAxI78dcm0xW4f7oJ3AQMewzzY2KoLnB3BeVVqRx+4UmfKbed8OCGQeRFdJRREBzjfquHyuSlvH8tnY60oA9urVEGgemk+kYEHI7xSUKagbFXBKxqXjaBfPN4tK8Pc1uJ+w7Oj+GC5dLpsDA93hAcdn1D+WUhcQKF9LFf4pUaTP+P6uFBnzzFuuQGX1LHjPQGqnbBFo776b0a7yUfWXTEd0Ixr7jBgcJ25bEFcSfzXP3WdCx8kmH4KyZYWZgEb3K+M/CxwqT46VtjP4kTJXw4/0oiWFUfq6Y2Hk9XOep6Z4O0B1Kc+dtDuAQcGi/lw+DghUee8LCLh/zbPTt7JjR0vayfXJWWV7TNoXbxXoBS1x6mZ4WEpd/pfQPgFjZfzHmHM69gkExtgzGODwPnssUSVU45czlAEB5OUM1owRzvLeBRi4NBw5T10NtY75O2OOyABHCNTQuy2Moy2NdWjBeaSZHByTKu9En60okoNdyu4AAfKK6tVFsjq8zwIUveaOOyBgnzSrJLWO3Pmxad8gJYqmzJJGl9y9LErQiSB0qJKtCuQcKsrXoSgyo3RocLXzDoRKbHCzd6KlfUuoU3AFArpMkNNS5eXAgst7JjTVQZxRB1PDzsab9wJwHr7OKXCAgtPg1Qm6bJHz4DpDmJrrF/kci6oQXabU9P0sLReuZEDQMY6dvBQUaJ74nwEFmULtynzm2cwAjSqf6Fr3vktb60mPT4X2DQT2nY/TmV2+qnf2ZSz38d4+6BA2b2l5dooMZMv73LVoYuCuIaIsjShCsV5/n13dCYHyPackuv+ahwMiUQjXAQAY5evr680vWkGg2xLrkIDmoR8r0iWKCgYAAB4fH7fKcGqfLo5oqYJ0SkxBn/7zvSy9Sm46IKYysMwHz0lwgKMDfl19uHJn/a7qN1W+3Wfdf9V3j0n75qUDSJe839WpEdjNAGRnSKDDfyeScOxoppPBQ8njou2Io+vuPnuDbv8APZ8NzzMPMPAdvljZ8WeMNW02/tGHizrejGtAVYrRMABC+hoFYI8dhhobC7ndBxko8EeHeKkh8oShxzsAAZwOgwGU8fn5eVxcXIzHx8etaAPOj0FZ54mMXuf9DATgWqWwOgYxIwUaEY+Zl5v1w12V4dI+PRt9iK53wVanP58yVQbSyYmC012oaufukIQa4arv6jP7KsuxqSvjM/VV0fQwATdqNCTgogWuEA4VVpXQFTg+j/iBF3RxcbEFCCJeM0Dg3ouucVkdIGAQoEMCCgLYY3///v3GaLP3r8CAdxrUMP8YI/x4EQ8xuEmKqGsdcnh6ehpv3rw5mQiB86oj46fKM6KZ6AA/N+PNVhTx2vG49X0uR4cq77ADCrK66Cr8qv6yiID776Z7KOoYa9dmnXroeMZZXhVFQLdTplkQuS/a1UGN0uqmkdmQJQB5hvYSGWCaBQIcLXCeo0YT9JkIAPDzWegdBt7NIVAQwGPhXTDQIRcRiIAAh/oBAt69ezfev3+/+cHo89wBnRToxvpVeFFmJq6Pp6enzbkCGC4LQMApIO4svO5C4pkBj5TaEgXSrZuMX32uI5uZpzHDUwSGomiFi2Z0wYA73wedgny+NnXBLj8/xrKIUcfZ47RfGxDss/0rD56vR2Xs9tl90d4nEEa7AvJSPgcE3HmUPojzcTxGQMCVidNwUYssMjDbOM5T7AACjgpwyB5g4NOnT+P9+/fj+vo6nUTIdYL6ZKBzcXGxOQcP2DwI4f71er3x+BFd0T0MmH+NPhyDKuCo11z7ZO0WpZUBEE6TzzOeomvR+0r78DQyr786r2gpKOjkkRmkDOgdU3YrnrvvdEGYeye73nmmw1/nvSqtGRB7DHJ641SiUHuZQKgF1OtLdwncN7m9BmCwNDowxnZkQH8O3DC5a5nxcR2AjaqbL4Cx/Hfv3o0PHz6MDx8+jI8fP27AgBsC4GMGAE9PTxtPf7X66yuGj4+PL0ABIga6EoF5428U7CNyckjKDHPUhh1lxUabf5oO56v5Z7xWwMJFNaL83P1dKIum8HlHcVf8V3xEaUV5RwDwWDRTV7PU9Uq70QAHNjSPbjk6wKUD3COaBdD7pgxARc8fmnbeZyDaIbCzaqAzLBBRdzKaCgg3QLSaQN9nxenOOR89niFOjz1rXe7H0QEeJvj48eMGDETDAGr8Mfv/4eFhPDw8bPLHcMTDw8MWKHh+ft7MReBhAf1IEueL95+enhbVyyHJKa4Zr1ivRSDAAQLkif9InrL8nQdeeXrVcZa/U7Rdwxq9M+t1L2mfiE9nbE8pKrBvcmBxaZSgAhNV5GCM/vyBDj9Ru7k2n6HZSEVX/3f66WtGDXb+UBGoWmYYFU6f1a1rKwSXNZIOWfBXD6Pn1WiqkgYPTnFnyrUS+sjAKCiAkcYQQTRnACsEkCfG/+H9g0eAgPv7+3F/f78Z32cDD0Dw9PQ0Hh8fN18+5IgFeEK62DkS+eL9Y1KmzDqGNGsjPuY2c//KE8sZH+M+/2fynvHfNfxdxewMiKvLyOjjnpaniipk1zSPWTq1qAD4yMDWPmgfZayiAl2g7dKceSYCq1Ua++BlX7RPmZtJaxEYiBogYoANEijbnGgfCg+keTJowT02kDBe0dyAqGyVR9dRstEzCMXzJkAMBLCSAKsJrq6uXkQE+JzL//z8PB4eHsbd3d24v78fDw8PmzrCSgQAhsfHx3F/f78BAxgSAE/c4RmMIApxbDAwRh5Gj8jJemX03Q/3mCBniNK4iarR1tmdcwUWMwA2o12Vo4Io99/1CDnNiuclfB4bEDBVwODQbTgDqB04mKWlctbNs/LOu5GQijIwv9Rm7JKno9X6lCT9TGc605nOdKYzvTod95uyZzrTmc50pjOd6eh0BgNnOtOZznSmM/3N6QwGznSmM53pTGf6m9MZDJzpTGc605nO9DenMxg405nOdKYznelvTmcwcKYznelMZzrT35zOYOBMZzrTmc50pr85ncHAmc50pjOd6Ux/czqDgTOd6UxnOtOZ/ub0/wGbJPglwk1OUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxF0lEQVR4nO19W3MiSZNsIgGSunvO/v9/uI+7s9MtbhLnYcxpx/GIjCyQQF/jZhhQlZXXyAiPyKyq2X6/37c77rjjjjvuuOOPxcO1K3DHHXfccccdd1wXdzJwxx133HHHHX847mTgjjvuuOOOO/5w3MnAHXfccccdd/zhuJOBO+6444477vjDcScDd9xxxx133PGH404G7rjjjjvuuOMPx50M3HHHHXfccccfjnk14cPDQ/vKzyeazWaHb/48PDzYb3z4etd+Pqbn+fqobHweHx+PfuPah4c+X3t/fz+Uv9/vT/7jE9VRPwwtH3lzXlE5Wtb7+3v77//+7257Lo3FYtHe3t7Okl+WH3xHfVc5rv9V7jQNl93av/2rY8Xg8Xh/fz/5jTRRG7P68LUq/xVZ0Gujbz3m8nRlROM8ZfzR9sfHx7Zer4evPxePj49pu3Q8RuFky/3n4/x5fHxsj4+PbT6fH30Wi0Wbz+cn+kzlEPMS9Wf9wundbz42It8KThfpZ8wHrdfb21vb7Xbt7e3t8Hl/fz/6ZLKZ2Q/X91n9nY7C93a7TfNubYAMINOvSAh6ylcHPFLArv18jAXeDVxWPtdDz/cAoobJoP95smQEBXllZbJywsRFH6iC1r6otOUj4MYnQzR2+l39uPR8LBrziKD16sqK5/39vc1msxMliXHhvlEZyIjiiMHWNO6a6BzqqDKGOmtbtF3nAm1WI/VZcDKbyec5ZYzkBXllIgACgO/5fH4gAjw+kMm3t7f2+PjY3t7eDufhfLBu0fZnhtXp4Egfu3yivkW9Hh8fD9egHRHQHnbOtD1RHfV8hl6a6lwYIgNfDWrIo99OAWu6XjnnTFZ3rTMCLFgRkIYVO/6rodZymAhUBIzrEylgPn4rRPKzSUnFmEckbSQvl4YjeiCKTjll+U+ZEw7OuKsy1LmQeXeRco0IQWYQbhU9gl3NQxH1I6fXMeJr+QNSAGKA34h2Mlj23HfWfkc2OY3+jvog886hK9Wh4mPcbuhBTq+kNOvbqM38e3TOTSXEw2Tgkoq0Wtlzy4wMrCMCvTIj76iqfCp1ZaOMyaT/AWXQSBMRgoi4jEQiWAFXCAFwK4p36rhk10eedE/2zq33CGF1cp55IK7O+jvzujIvzUUmnOLUvCtpeugRd8Vnk0fF6Ly55DyL9CUTADX+WVi9tXYUPnfLjtEyZ48M9NpdJSBcB7SbiQGiA+gLXcrR+qCtEXFV6PFReZ2KyZGBcybg1DxGkSmyyidDpJSqE1Gvd79dyD4rQwlBa7+FWo02Q4mAEg4VYiYaPQJ0KwQAyMa1ahjUwGf/3TWj5UYGr3edk/nICFeu1eORN+/qnRECdywz+pVzTvlW++2zlO9XApMA3eukewZgLAE2pNE6+ggRyCIDCk2rkQn9jTZqvXlus2xBr/I1ruxMpnu2w13bwxSS/GmRgRFD2St3aj4VT61KBhjRYEZKKBoojgLwpptKWa4c5MmEoLVj1uuIQGS4UG5vKcLV59ZIwRSMEInM+FcRGbQsT7fminxYmWWI8o/kIVJoWVmVOkR5VcqpEJ5K2ZzHtZARrig90CNClbF2RMARAEQGkJaNaWvHEYG3t7dD/ThNZPTdcT5XQUQeIr2tc0j1Js6x88REiPOBjoxIryPpjKqjgnKnyOswGYgqW1UCUzElv0x58O8RJY98nScyUh/+z9BNhAxncFn58++IEPA12r7KUsGogr8FIvAZ5Wdtj5h9pABGDRfA4zqyfOMIshJjd1dLT/Yrijvy9EYQ5et+Z3lk/X9tGb6EE1bNYwoRwDfLCRt4GH8QAhzPiIC7M6Bi/J1udgTPET6Uy55+tlGQnTaNiKD+6jxNJdCVNuvvEUxeJsgE7NoTx6HnqfUiA9rZPYUR9YEbtGjCubpGGwiVnTIrZY8wEuzeUgGX3xO2UUX8mZjKmivemJMfZ2g1Tz6n9Rut76jC13mcEYIsj0xJuzZpPlE7HZmKiH025zKy0Lv+K6PXpoyk9ogA7hpYLpeH2wgj0tjacWRAvW9HAlyEwCHT6c7QZvpbCUG0tMo6dTY73jfg2t2bA7eAs+4mGGUj1Q6Y4nVndeNj2SfLJ2uf8+yq9XaTDsdhoJWtuk03Wkc26i6kz3C3OToFoRGJ7M6GWyUE5xKBqaw7q4Mbwyj6xN+cjy7vsEcSla8KKiIBGUF05HDqfFUPjX/rsaisqsdVmc/uuq+GCol1/1Un6d6AxWLRlsvlgRDAIAJswNnD76ESwYraFcmh6i7Vnz1ywO1gYD6o/uRy0HdKflwZvfpkbXftHtVVZ5GBaNJppSrIBtd5BKP5ZB6PftggZ2TACbzzknqDEx1nAsDlaL5ZfsxgI6++RwQU2l5l97363SKqE2dqZKEK7T9nuPWYGzclfyzTunaJ4yoH+vwLV1e9T5zLjtqFNK4OPULg8joXGUn4SjI8igoRgJHnj0YG+FkCrXnDGZWrzoqTI6eDI73sZIR1Hz6V56/gWk6T6Teec5gbahMcQY+iF1E5VVLrrs1wkcjAJZRjpmQvOSErRCAjCFonFhS+XQaD6rwv3ZEL9qh7BfQWQw5dRcKr1zEjzRgnK3y9vndt1M+3iGzifxQiJaYk1dXRRQFULnncGKwA8YAXlc0eGeCP1hGyMZ/PjzaJVZAR2ZFIWyWNy9vlUT3+1RE5BPh28uWeMsgkQI2n/nblMZnVW/lwfVSvyGmJjC2WKEBcUb4uW7j+4HxaO75DC3noLeAgUXw+0t2afwWZbI7qauBDHzqUsZssrTt3iahAZOgrpMDd5scKUY1vpHTcRGPBjoyD3pebGXUnyO6uAq1XFBnQCcZ16NVHy/lqOIc4OANezSPykKMy3B4TjJsabBe9Ql6OqCoZYLnnXdJZ26YqOjbyLu9eVMHlfY4u+k+G008uIoCP7m3SSGGlPFyH/26dXgmq6qsoagagTrvd7hDJwmODmRRUwfOH5wAvB4Ao6ByqkNZKn1XrOYKLLBPob4feBO2hpwh616gBzkKrETFw989CoDQqoOkyhht5X1wGt1e/e0w/Yr38320g1IgAK323K1i9glvEVGP+kVAFUZ0PqiBb8+v6s9ns4BG5cdU8o4/KAuerijwiw1FI9BzjPYJqXj199lm49DzqkVvVeRwV0CcMRgTR/Ufe6pToUqgaVVynGxRBQjS/yJFqrbXdbnf4MCnQZS43L1yonueRIyVOv2u0uDIfPksOz44MKAObUvGp1/XIB77P+TARcIZSFaISDA3zar7KaBnqjbt1etRH84iUrAotrtd6cTsZWn7P21T5+EoYkUuX1k167f/oOpcWxyI4ZcheiwuRatpoCcvJKecLRaf1PHfMryEzbBQuTUam1ucSBiEjAk7nRUuZbjnK7Rvq3fnExlyXungO6K2LznlyoXr8Rp1ABDabzeE363A21D2Hi89rlEB1K3+yW8AvJWeVCJnDxZcJziEEjHOEv0IEKumUCKhSZAHQNqhhZAOr3pYSAxVKNrxugqmAufq4/uH6tHYaanaGXKMDLhpwbeWZ4VzFml0fnauU6ZSOixi4vCpK/u3t7bBUwERWr1MCAC+QSQSPL4d0q23U/xmBPAdTDbn28y0QgkujpwOrJABwTkqvfC7LAXoRmxU5IoFv54Q4xwv7BUAG8Nlut22z2bTZbHbkcEVjrsfUKWNCwP+xX4dfdKQ6H3W+Fgn9kD0Dl2hExZBlyIhA5pHzRGACMJ//21URq8OgO69b6+MmmquLht1cCBbXRLceVvoJ9VRDxEsfWGPDf92Nq/X6Shg18M5IZxglD1ma6Df+83jqOdSXlagqM54XTFJZuakCe3h4ODxURsvSurqwqGJEEWra/0TDfQlkcub0EnQTh+PZcCMa1Fp8q3MUDnfIlqf4WQZMBlCPiBAoacCrhjebTVutVm2xWLTX19fWWmvb7fYQOWOHp0cIuGw3V9kx07sL+HruJyWjo/LsHIgKvsRbCyOPKErLv52QO0Kg0QAQABcq5Tq1dhouZQ+KB0XL0Jd7ABnjdkRAEXlaGkrL+hPXMAnQ93XrBOyhSuQ+GlUjrun5GjeBs+srfd2buJHiUKhR57z5WlbofI5fxMKyinO6T4CvdUtLXPceqlGCqA96HlZVOTqidS1couwoopQ5KKyb0G+Y+5AD1i0jiJYisDlxuVy2x8fHtlgsjp5pAJ2JNiHcD93EcwTLC4vF4tB2kIH1et1Wq9VBx89ms6N8HCFw81T3RLCuZp3OfavjMqpHe5jqnJ1NBj6DiVeIgCMB+lEikB3jNSz1mnv1cMZGyxvJk/vBKTtNU60nC2tPmbv2OMU9QtyuhUsrejW8vfI+GqqMovrpWJ8zbqwce8qoQqJ0Dv2p3v8loie9/FnnKRGAE8RGDoaTnZ4s/+wYE4D5fN6enp4OH0QDQAhABoDdbte2221br9eH+rD8of54HgLk/fn5uW02m7ZcLltr7RDVWq1WR/V0UTAHddig293mSY0kcP+xw3fJ8f2PiwyMpK0SAZdvT7g5VMpCx7eYYNBdvaI1+qwuFeMcrbvptbp7FwxayQHKxzXaL73ft0wIMm8yS8c4x2iq16oKJzOQ/ImWplo7fbw0e/24Fseye5+1zft9/GRDrSvX2Z2rYtTY6DX/6eShYrBcpMg5KLw84J4jMBoBaC1+WRrrwfl83p6fn9vLy0t7fn5u3759a8vlsj09PR0iA6w74eEzAdjtdkf9wP3x8PBwiBDs9/tD2zTaqajKb0QIAO1vTs/nzolmKUZ11NUeOjQlVNdLE5GAiAhU8tcBq0wG1y9cB408uLqMKEAXZYiuj0LIvUhFtEfgKyrZnreSHePjzthWru+h4lH3EMk3jjGpVWUdyUNGAM8x+hopUIXoflcN4FeUzxGo/mstJpXuv+ok99E+Z1RIv94VxcsP8PxBAn78+NG+f//evn//3p6fn4+WB5iQYI3fbXrmCAYMPf7j0clo8263a+v1um02m+Hbpd0c4Do4QsDLciDW+M2EAOkvFR2o4GqRgUiwsvO96/ncVMOvjA2DBMHjtLyhzkUCAPa8lQRkbWHB1gnOSj1rn3r76g3wkw+d8EXCGLHjqQbwK6BKTqvyBlSMP8YmMpicjvNkOWmtHgXIbnvSW1x5DwnSRqHQkfafg3MV6VeRZVfPiu6MnCa3t4rLiupQqZ8zjFgaeH5+bn/99dfh8+PHj/by8nLYOwBHDHcEwLtvrR1tcN5ut0cRzYeHhyPvv7V/5wKWCLAkATLg9J9G4aJ+V9IQEQK0naNsTm9kcz3DVLm9qWUCVmSVkCmfd8KdkYLI6KkCYwHiHdNaTwcXDegZb863GoXgvFi4cF5Jlm6KZIISLXO0FocIM4N0iwo1m8gKNzmnljGaxnnDzlvBeEe3DLbmN6U6aB6ct6aLCGGUf0WZRV5Yhp6ijCIavXKqEYhroyJrmZ7MIgJaTi9/l071Dz7YKPj09HSIBvy///f/2n/913+1v/7660AGWvsdDdhsNieyzw8TAjFo7V99tt1uD06POj5YOlgsFu3p6elk46Aujzr953SdEufMIcNHiX7Wxx8lixd7AuElMOptKuNUg+8UY2/QHBFwZarXruk/kgiot8e/IfgswEoWuC48QXC+pyB7Ht8Ub+VW0SOlfE49gCxtFRWy4MD3NEfnkcfoOnBmXD8C55Z3iSjBrWJEnpxudIQg8lIzI9Ujf1pPGGcY4m/fvrUfP34cfb59+3Z4NsZ2uz0ipvzMAGwkxMdFxdbr9ZGe41vFeYMiCAVIBhvrCrnvHdf+R/5RdCDK4yNk8tMiAxWleg56kQFXF1ynUQFeY9IdnppHRZk6csKGfGQfAqBkQ9vpytHrsneQZ0x/BOrR/qchIqR8vkoMRuaGhiLVq9DffJ2TXXcdlsZ0iQy3cOkymXpSjjCq5+8iARXjP4UgTJG/ry6zTif0iIBGBTLi3wPrTeTND7QCGXh5eWnfvn07fLCH4PHxsW2324ORBgHArYGr1eqw5o99BLpZUSOhqFdrv0kz9i7gen5Ily4P9PqhEn1yY6DOqfbfR8viRR9H7AxIzxDj2CjD5d/OC+8RAq4P18N5vS7Ug/TOkDtD7Z5iyG0Y8dAiItDbBMj9pZMS1+EWHaSN+q7HTp1xuRVcwjt3/VLp+0vWAVDjzmupKreOAFQQKTiVWfU+Ob3Od/et0OPuuqgMvd4p1Z58fpYi/mhERMDpkB5cf1Z0f2vtSB/yngHsG8DdA3BUAH164Hq9buv1+igigKgAlgkwD7BUwPpRxxP6EMSAowJsqKM7DlxfaHTW6QveOwCbo2k/S/Yu8pyBDJdoSEQWWLCVCGQkRPNQxcERAt541dq4R19B5NGP5p+RHuSJNEwEdLkhihZEdW2tWYU+avA+A+cY4YwYuYleJQxZnaJzepxJgJsvqsyUFPD48cYnpwQ5CpBhpK8rxMDlPxo+rXhtXwHV/sG305PRHgE1ZhrtmVJHlgU2urhtEM8V4DsHIGdKABANcBEBfhCSGlfWaS5iqQ+BQ2TARbeyCEF2PNITbnk2Ih647tKye5FbC8+91nkSvesyIsDr504p9jyWLP0oRq7NCAALASvrbG042riiRIAJj/ap5qebKLluWtZXQyQX1Wvwv0IY3HWjRCrykF06B5Y3nlcaYYryzgh2FZFycyTdncvwEQrzs3HJNqjO1KhAzxut1EPTaFm8aZmfZ8B6aL/fHz1ECBsHeUmA9wrwkwNVP81mv18kx44PvPHWjt+vgXohOvD4+Hj45jZWNlNHfZZFCDhKgPlZmRdK4Fz6Hj5sz4AqqUsIdEQE9MNps8HpKVBlwxDOHtSzct8VOGVdBRMigCe/8wR0o4wjBDheVdy3hnOMPP9WWXPG3pHcHiGolFkhz2ini25x5ItlHPkpwdR5HCk4R2YhD5knhXw5vf7+CNyynAKXIFycvkcCUCb3/aXIvpaluggyyUTg/f39EA1AdADRAEQE9HHEXB7ya+33Ld6z2axtNpujWxa5nawPQSJa+63XdbO566OqPDtyxkTAkTRHAqL+HsGHbiCseBejebnOc1EBhYZ5IsOsIdOqAXdCqOSBj1cGMfPosuudoXfHs/6aqmymXHsr6I1zhQS4a7Lj1WsrxBdQY+5uK4zCn8gPv3XfQeYVuXpHSivqa1V2Dpcw4l+BCIzC9Wckr5EsAawH8f9S9dNlSCYBWN/nZwRgo6BuGOTIAOSZIwPsEOEct1UJMMsqP44Z+wf4vRzaV5HMOuOtsq9EwI3NFII8OmaTycA1FH5PmNUb7rG1iKlFhIDzroAV6mw2O9qd7XbsTtnYlUGJAI5VNhqy0QAutUfiluGMVKRkz82vRwh6Sry1+DHULgLmxrS1eD+MRhQ0/5G7YEYiYtHcuwauTRqqxrgnoz0SEBnJkfZXoxhaFow6Hi+sjxperVbt9fX1KDrgSIBGBhBZ0DKVlKAcddyiyAB+c1rXZ86ZjOZBz7Zp3h8xL27qoUNVVLwkDd9UIwMMt0yQ1Uk9LQgM357Fb4qrlPkR4OiEKnT2GiMjUGXALs1XxWeQX1Xe/Dvz5CJFM8WY8vhF+1Gy8GivTny+Uq+pyq+X/tok4xyMyGLPeVJZchgZpwhuo2Jr7RARWK1Wh0jAdrs9Mrrr9bq9vr6219fXkzsI3BsL9XZbXirg+urmadVt6jjxJr9o/vX6KJsXPC4uQlAZh3PkeogMfIZCjMrsMSYgIgGugy7ZnkhBguk6IqACNXUQe6TG7R9wYUAwbGbJOM5t0w/nqeUwriE/U+D6kydnNY/WfFiwR0YjIqCIbndlkqdpsgdl6TWQ3UokKQK3MzPs0TyO8tA0Ckdaq9feIkb7v0ImIxnH7ylQHRA5a0j79vbW1ut1m8/nbb/ft+12e2SkERngDYS8TMDPFeAlAvXccQykALLk3m3A12F5gKO8ujcmcnzcnHfn9Hg0Pr38zpXpm4wMuI5SJqsbYNxEjyZ/ZWI5xVWJELAS4rpjwB4fH482GF7CQPa8MH1whhIA/AYJ4E9m+KN+ifr6VhRwRp6iCagKLTPSrqyIjDrSEPWnluX2o+gmUF3jdCRA4TwrgBUh5xUZ3pEIgmtj79oR77+qMCvz/Jbg9CV+u090G2HUP9GxcwgK5AavIEZUAMQAdeG7CXjzIMgAPzEQ+eqY890AuEsAv1vr78HSup8jFz1SkH0iWVY749JUcFNkICIBKsiKniKaUj7n5SaMKjFnNHmw1HAoI402/VUwEhlglqzrX7hPl6MDETHgst3vS7PWr4RoPDLPWI9HpEC9h9ZOl6NUrrgs3UzowARAo0qR0nXtrBCBiPhk8ynDnyZro0RglMhG/yv9rPnzeEKnYH8ASCY/Hh3psKeA9wpgmcDpKQW/thtLpPivOlf3HSj49upKH4ySpsju6Xj1nIwpGCIDo971VLgOUU/aeRRVReeOZe3JlLgqL+clKbuDQDEBYOXLAqT10n4YJRGcd/QgGZ44qozdp1Imf18bVdntTcyp3sIUgqRKRWVkNpsdvaAFx3vPhVDlqeuVejdB1k5310JUrpLqqK0Zseh5sefK2xTv9yMwKisVAtAjq71yq8Qs+8/OB15AxLoeegj7CHifAC8RZHucUFe9uysjRJHjw+3QW/+y/oicyEi2euOkabOyR2TnZiID2viICESdk3msWsZU9EhBVRHhXLSLW4+dW28XPs7qlC0TVAXLEaJbIQMRpvazk90ISgRcv7DiGPW+WjtdFnLlRIrTLSnxspbWp3JHQYWYR3WN+mCKLI0Q10uU95nInJyeQ6Vwslcl9JmB47w0OqDODZMBGH/3gCG8zphJb+S0Ij9+8BATBS5zRO9xn47KSUaYXRv4WJR2qqxelQw45lj5AJnXwP+nKPlsUCLlpIJTUSyR96XHqnWO2qqTwE0S14YsQpDVgwEBvQWFemlPL/J+9LjzdkfLyYy7pq3eBuoUp1siyOTRyUYlMjDavqpBisr8E+AiANl/QHXlaNRFPd7qPHNkwJ1nEsB7Bbgu0VjzcgDSMRFQclCBRk+c58/oRQV6JCCyfVyHc3HRuwkiAcnyyoRWIwJTBbUXkqmiZwArSrC108f+svKOFHClnqzMo+sy1o/1Mr5Np0e4Kjjn2kuh139Vo+7kMVKwgGt/jxhE0YHMa3ZKKatPhEiOlBC4OxGqhDgrN7ruUkov0h+uz65NJnpGRtPq/55DpeiV1XNwnAFze5bUIMOzZ8O93+8Pnj8IAD9bQCOYWV2QNxt+XTrgx/9G+w84T14q0LlakVXnlGXlZbjE3LhoZGBE4Toy4Iy/Kl2nIBkjzK5CVkbynFKPqEyHaL/ACAvX5QKOCiANvs9R7Jx+hHDdMlw7HGmotLdisCvk2ymgqiJiRB6OIos4RMRR84uIl7ZL+7aqPEe8psyJuEVkMojfvY+i0l89B6enSzNCoJ47gyMDfOcAv0Y7qpODRgR47mgEFOVHbXL91pO/igy7srIyq9f3UCYDEVt0Fap4WSqcERHoNabaGVG+vclSYeVRVKDKEvf745dmqFfv2l+991uFz60nR21wSwRTcO3IQK//e8apKjMVI+f+Vw161bBNIV8REeA7FSJDwuMb/XaI6umISc/wjxCGr4Qpzk2PCKhBdv3l+rw6j6Oy3T4oEIFooyvf3aQeu5O1ClgHOn2o0Qa3yRb15mjCCCp2pTW/HKF5XErGhyMDbgJmbNUJ4IjQtpZ7HPztyo/K0WcWRO3pKdYRIxNdU1Xe0YRuzZODTMG72wqZDEQCrhMvM1qXFNSPRMULb60vty5t7xifc/NjCrL2ZIbZRRr0ul4bIm+Jr42+1Wvj74xYnSNnPcJ2bUwlsj3dynDykjk+WV0iAqB61+WphABkgKMBevcAy4xC302g35Gxj/Jz7a1GBxwih2wqqiQ6wqRlgp7iqxh9d1zzUi+7wkwrdYsISjRR+NqMLbvogGNyrhzesY37bfW6yJPE9dwOx2aVEHC9ccytw0VtigzEOQJ5DUTk7xwDfY6XXsnTyWE0d1weDKdE9LzKpMtrlKxnXql+s8zp73Pl69bls4fM8Ec6V5HprKzcqA7sbPGzA9w8yu6qgi7C3gHoJRCHnuGOHCGNCrBMaeTBtVlJKn/3vP7eXHXOlc4BLStyMEfmx8VeVJQZ2MjgR8LRmlcoSg6q9euRED2v0LpoB2dKb8SDQRt5kJ0SzhAJhS4/cJ2jzTLVvDXNVyICU1GVnex6lx+fq+RZiWr0xiAbs55hcMq4Ou7a5uh2SKTLSHEF/2lyGY17ZqQrGHG2tAx+/wC/MpiP6/sAWEdx+aqbeGNzr57IjyOgLEdu86DWoRr+n7JUENky51AqHNGoEIMezrqbwAkd/84UZqbwqp4Fp1dGpvWaqrS1DK1P1RuKBmu//71fgMmAaxcTA7e3wG2K0cnGTJgVudsf4AS8p0i/ksKdKguXKjMjrHy+GmWoGP1e3XreeuX6EWh5KvuqU5zi/AzcqixnDld0LILTnxnZ1Hzd4+L5PQNO50deseolZ6QrXrySgIhU6kbE6ng78jyFsEZ2wxHzEQdzBMMbCCvKzAlHhMybrpACV8fovytnikFwA9ZjrJkgunpEEYFenZnpZiTJEZroDoKIxf4pUNmvGsaR/FRpXwqRcsnkIapvdIzfVzBiTDS9zgv9dsrwT0VmoKuOWGu1+e0MUkQ62Pvn34gS6FIAOy/OIOuypZICrl9ECDh/JghumSDKu7XTpQHXJyq/FYLu7JyOi8sbaS/lgA2RAdcJPaHQ69zAZWyoSgSmokoIoo4eqVfPOPMnU6pOeB2ZcILOm7JcG9x9u1PglMwtKfGegRu5biSNM26R0nbokUiX1v13Cj6rb++/ypSrS0Z+VKFCIetjX10dMiX6JyHq3+hYBTpuWp7T9zD4IATuWsDpIWf0I2fLXYOymQTAsVIdnO1X6MmRyjz3R897nyKjUR9+emRAvdSIIUYPCmqt7vGPdtxUxV6FY358rnIMiBicqy8LM28u1PUtfZ484JYN+DqUMWL8M4Yatfcr4pLyo3lm3ltk6PB7ar0ir6lXNxzTDajRI7QdIVDZdEZK6xV5VuyZTZFZd+xSntU10TPYvWtH2h05fjD+iAS0dkwI3BMs1QZE4XolBZEzA7glURyHHuW+ieQ2Irgqw44YRDKVObuRXcgiADofpsrxRSIDPaWWdUiVEER1qiq5LI/sf4Rs0CrXZuVEnj76VfcLOHbLQu4IAcrBcd2ck7FxzafS3lvDqGFVYxYZTb3G5VGdNzzx3ThkBLJ3jI9n/ZCRfU4DxTmbzQ6Pl42iXdpWJRpRVIA/kVLMyPYtyuFHoEo0R/PUbyUE/JnNfu8XiN6zovoGx/DtlgQiuPPqOEV3w1TnUWunhNfdVcC/z5G5jLBqP3I7ppZZJgM8YSPB0N9c2eijla8YnRFj79CbHK6jo/LcAOnvLH/Oh5UmK0Rcw286VALAx6LjvZBdVNeobVEekUG6JWV8jmKcWp5ToPxb68Xzw80bTtMru1o3/q+7wnndV/MEAXh7e2vz+fyw3KTzgK+L9hSxwWdwhKFHCLL/nJfW6yuQhohUuX6sIGtvpn8dCeDIQI/wqcGPPH6+jbB3TdS+njHVcddyor7hc+7xxK4u0bFzHa8sWlDBEBnQME8kfK5xEQGoCuKooGdMltP0mHNGGJyQ8blq3RjcRzDkkWF3ht6l07y4bqP7AxwZcm2OjNc1UJlM0dg7mXHpo/8ZYVaj25p/UYsSvdbifo/GJ6unqxfq8fj4ePDwlAzwfH98fDyKCKAtqrD1ITQ4xgaeowzcDl0Om2rAp8jjZ5PHCJk+wndGEIApc97JbEQIMvLI0QBn8PEdbSjk/yP1V/Dyq9qjaL61drphVm8tVJ0ROYzVup8bXajiLDIA9Dz8kWiA68RLI1PMrh5ZPhEROGcQWSAdAchIQZYOQuvuqcX/qufpvLasvdcmBefKUk/BVvN3u61ZcbpyKxECnNfrKuTFkWL28EAG5vO5XQOG3LBiRf4cIeAylVDoQ7ZUufI5JgRcf5x3hkfPX5ugjqKqj5ycTpX7SEZYhnuEwEWRWjvWNb3ogBpod2wUmWEeuc1QdX90PHMY9Xwmn062L4VJywTO0PN/hioylwZwxjgy0NXJge/ok9VhpKwqegYzAgy7ekds3Hvp+DyXORodyIxQz2BdA6N1cEowOte7nvOI5JGJgIsM4Hi0ySkrN6uf1oejAagXE4H5fG69Pew34TpHik/LdUslul9Ab3l1ZUUKV/uponhvjSz0dNKozqqQfc0rIgIucpRFkFqLN+tlx6YY/ch55f0Dqj8dnDxodADf7rhDL0oQzRlH+C+F4Q2Emfevx/hcdn4qCYhYUsRoKx+XR3aMz7HXwt/c9qrCZrAicxsCNdzFBr+6TMBvAXMGPRtD57neEnp9HMmfM96jebv0mXLV/KBcdHMeK5weyc7ayHWK1n/n83lbLpdH0QGuK5YIkNf7+/sRQVBvD+3SPmBCpAqVo1oaHeB8ervMtU9GlfJnIys/I5hujEfLjfJ1ywCOCLhlZZUD55gwXKTAXdtrh/7WOmi0VOvg8mTCmm0kdPmMyNVnyeDkxxGrcahGBzJkBrkn1JGRjQS5N3lG8ncekDOQo4MahZQcm3WEgI/ztVE5qGd2J0F1bG+NEFQQyUx0bmr+ekxDq5yOx5035+Fc1bNzbeRvVeK8JLBcLttisTjyArmeu93uKL/dbtdaO36KXDSvXaRB28xLFpBt581pOQ7ZPIzm8q0h0kW9dAp1UtRZ0d9uPwCiRfykwWjJKyq/iqodac2/7p3PKaqRB9cn7q4FkPZeWypl9Ui+czKnyO4QGVBjwcd6hWfsNjrWIwYRNG2FCFTyr9RH+wWD5foo6zP1WLROauTddS4tp+ewnY4rtyGqa0R8vgoqZLNCHHmMo8np8tP9A7oW39qxcmElEy0b9Nqq327fAiv4+XzeFotFWywWh+PO4+NbU92TM0ciA0xk+X519sJcZMCRNOfVueidnte+ugW57unKrB8UThdF+esnIgK63MV6xoXOWY75ukiuK+PAOtHJOOel12Tlut98vUYIsnZoX2fyGNWnEmUYldsyGeit341OlkywR64bnSC9SdMjApHRcAKl/aSfqKweEUB5Uf2juqmw8SRlYpAtFXAd9Xf0zXW7JUSeUFVWGL18IuOnBIAV6n6/P1EuqmRG5owqQFXubo8AyMByuTzaM8AECHmNeFesqN2GxEhB94hAr3+cEuX+5uO3hKqe0jTVOafyq7LJ0RlHBNzyEYPHJTKUSggcQXBGXK/XNBoVcPOA51qlj7SvWjuWVZZfnRs9Y54Z99b6+w047Ygsl8mAGpDIG6wqTHfMDeaU8/itSjnyQKqTRpVYZnhb+7dvsJYaGVhOi+/eAJ5jVF3+UVQA3470VciA/r41RPKk8uIiSpqHy9MZqsjwRkbRGSqAlaaOa1RHJSKq4HmjIEcFsEwwn8+PiACUKOrL3xkcOXLtwn98MiLgjLubS5myvUV5jeZ7JmuZjOJYJCuqIzMiANmdz/81JTqW7HBE5WL5h8dcj+G6bCkokvPKf76utWbJB5/XNuIYInh6LCNDjoSOEgTOa6ocTyIDeixCpCijdE45R8czkuCIgBNybV9GVhyhyJgwe/+qJCNvpAfXrta8YOuknAIXSuzJwVchAq2dhuciOckULdLot5IAXm9l489PacuMIvLhZQNNw3VgZIpQFTuTAV4ewLcqQY4oPT4+2p3aKgeOlDul6zbLcp9nYxOFXntK1l0T9etnICIz+rvXH1HerR3ro0jfsew6IlDZJ6Dh9NaOiSMTAHeNpolk3dXf/dY+4PpE/Z7ZCLdfgI+hLVFEskpedQ5maTV9hklkIDIKmVGvEgGXtmf4K+ei/NAGVRj6rcIU3T7DeeomkgoDrMCFvVTRZ+3vlafjm415FiH4KogMfKZce3KXKVMYfiUFkXLLbmFCOarMcK22j4kHyuXlAP7m46z8WzveP4RyQQag8Hob/lAf1/eRQstkm/si+s7KcPmhrbcCR6Cqeq6SJ+fNBJWNPhNYJo+4VqPIbukG6XqkAGlVlzp5cnqQ24G8NQ3LMf/vkQ1gJDKguqYSAe6RV5fPFNkdIgOZUdBKjBrmKF1EEkZJQcTqeoiIgHp0rNQgTPP5/CDEu93Ohp5cH6oSi+rF9WvtVNAj6D6BKG+HaOx7RGBK3380MoPCvx0Z4Ouz9BoBYC+Kf+teAfWQ1LtQQsDpXBuVvOregOVyebhrAMaf7yLgunL9eBmMP6pQK8a3MjatnUZMlAT0CIH7BqYSh2shktFIj2beZ/RhXcfEgIkA6xvVgywDSm4jUsDnQDQjI63GHcey2x2dvma5zvooGgMmAkySuW/cnTWRXLpyMv06eo1i8jLBSOhKz7t0Ls1UYhCVl3U0XxcZYRUsVupMFhAV4HwgaPrIVq5bVG9Xj9aOBdrdoqV5oQy3fvXw8HBQ7NwPDqNE4CvAGfGqko3IQM+z0luynHHHtXwfvxu/SG6ch6ReHZMAkAI+rmQAivPt7e2IDOx2u0N0gG8JVNlSuPkWRemyMVNCEF3/leV0CqK+0+UBJ7ssvyqzGmFinaFRgWyJgMeOvWoXGWCC0Fq+BBbVVaNRTGwht46Qu/JwPfoSZNhB9S/LeJUQZDhXxic/Z8BVwilG/e2ucd9ZOe5/j1BESwFVsIFwO2k1zMvruixsELRosJ3HkpGT1o4fcev6WtPjGhXaTGlEqArdrSrgnjF3REDlTq/P1lndpkEtx90+mJGAaIy4buolubsFnp+fD2SACQJ7f6zw3t7ejp4pAAKM5yHA4+N6Z9Eurbv7HfV/NEaRch09fouIZNed52NqhPi3Gn8lAOplc9RL828t3tMC2XB3fujYcWSgtVNvm6Ndjgj07ngAkUVajnBBX3O9UCajt28HMsV7CnTuXlLmerbDYSgyoIKWhSx6Qpp9u/xco6oKw7UhIwWaL08Q3WzFXlNrx6yPH8bCISTtk56xRft7ywecZ7RM4DxP/may8pUU4yicvKjM8u+KDGdEQEOqegcB5xspUEcIWssftsPKT/crKBF4fn5uT09Phw/OaQQDyhORAI4SgBTwHgLUI7vlrwqNkqghj8ZFy4xIN+OW5X5U9+l5128ZEdB9AjjG1wJswHlpS+Walwcc3J0ErR3rqNbaEcFVgsLzTqNwwG63a5vN5iDDkF+OgPE1EcniZ4Hwch3q6vphhBR8tCwOPY44OhYpzmhyclp3rlL+6AQAsjVCHRBVwo4MuHUzXdvCxGBywOVPRdQWlJlNtNbaiXBOKZ9xy8qT0ZNF99td746zUtXlAN6E55Z1Wvv9KmBAx0hJrOtvVVrR8sBisWhPT09tuVy2p6enAyEAKUB0QOUbEYHtdtvW6/VRpADndHki2qWtcsrEtwpHXHtkwPXdrZPfqB0ZWe1FFXtEgI9FES63+dVFsZS89nQ2e+UgFS6NM/qZjmZ52e/3bbPZtPl83rbbbdtutyeEICPa3B4mAlzf6K4aHQfgnOUBzWNEloeXCXqKsPfhPCIBzjA1zJ/lEa2dcb1Y6Pjea7fTGp4TM1oWMOd9u/qhbF6HY6LhDH4UQckMN9JrvZyS5Wt7+d4SIvJYldfIqETXOW8KsoL/0SSOdmC7UGxG+ljxqQJnIvD8/NxeXl7at2/f2svLy4EMPD8/nzyGGBEveFMs80wGOEqghKc3d6O0LJ8uepKNDx93JLpSl1uDM6ij9WWZVdI4m/lnTyixZdmMNgzqDnvVcVn99/v9UZQJQD1ZFysB0OMsi/D6V6tV22w2bb1eHww5SEG0mZDBmwYzIoD+qOhR10/R+E29VjFEBrKC8a3Cpb85ncujh0iI3PleZ2SeNfJ3a2NKCNjba+343dzMRls7fpWwGpkoNMTnXSSDyYHuJs/ydYjGUuvRIwRRn94SKvLqZLW3TMMKUpUQEwFVTGzYoz6NlhBcXVo7fQMhlDk2CerGQRAD7B94eno6CbEiKqAEGEp0sVgckQHdA6FzGO1WWWKPkpfYuH0sh5HRV1nlcpys3iKZ7SEiQ71r9FoXQVIS4DbmRXqAiapbKkCZURvYEXLthewuFosDeeX9LropFuXB69/tdu3Xr19ttVq1xWLR1ut12263h0gu9sTwMgUjazPrY90s6eZx5AR+Fs5aJgCcEXWMU487I3huB2Sd6IiEUzD8m5W4hp6iZ7argmQy4da9ojpHHjkTgEzJReu1Wb9kky8jBC4v7dNrIosoRYTAEYEeVOZ57LNbCV0+bo2xtWa9rIhc6/LW4+PjSWSL9w08PT0dyACUKxsFeFPb7bZtNpujOwx4v4AuHczn85MXGAHqKGR9gvS8byAjpi4NI5s/PcfjmnCGnI8regSWjRjLi1secGQAyCI2rPO0DTgftYvHhfUxIlxuzwtIAH7z0zMRwcISAbcREa/tdnuky5nIsg4GeHMg9wX3Dcstj0E1WvWRBOEsMqADxOkipaiKFsaN83OohPJ6IetIYTrywpMjUu7qbUHY9/t92F7k5cLxaIOb3NEk56gAvtWLUuXLhKKCTFmOMNprKdRKndw4ZWQgIkOcr5MnlYspbeFv/NalAp1/kE8O++vDhqA44WVBuTKJaK0dyABHBniJAB8QAA2dtuZlMjJqrq+YLLk+qsimzjlHdvH7FlEhAdH5rE/5PGS1FxVguHHRaCgf53KUPDg5wHGQWCxx8TIX73sBOWDiCiLw+vp6Ur6Wy8SWdacujUDvuz0CSoRuEZPIQORlqQJUw+mYZGu/Oxt5V8hBr669kLv77/JRgef/SgqYDEAgNL0qsZ7RmYLMUGm/oK49cpApS1e2q8s14ZSKTv5IGUQYmdws825MMk8YytiVqYrVXcdhXxACtxaMD5QnlCrOLxaLNpvNDmQAebNyhTeGfQMgBqgDFKfqgEug5zBE3ldGdm8Nqiv4vxJbPtbLk69zES0llY7URqF8nNclTEeWs3moS16ICnz79q39+PGjff/+/YQU8OZYXsbd7XZttVq1p6cnS4K4PbzfS/sss1VsM5QYuAjBtXHRyIAbXPWced2mteMnlyF8EzH7HtvPJvCUia3t4okQhc10EwnvKFclGLHlUajx1zVY149MvqK2Z9EAVzan4Xz4+9rIFKlTtIxsqSEro/c7g3pZavy1zhrNaq2d3FLoNoLhPy8bsBLFccgXyEBr7WjZgL95b8FutzuQHn4AUUYq3fKVgyO4FSix/QrRgAgV+XXHNU2kx1X/qeHuLdPoby1Hy2rt9EFqTAQQyXp+fm4/fvw4+jAh4CiXyuvr62ubz+dHzhDkDnLKt4RDr+tSQQZ1/KI+uST5nJrXRfYM4LwbYFU4OAboGiOUzcitbm5SV+pfVcgZc9bIB8rHMe0Xvv6zwuuRUh1VmnydIwZ8brSMz4COIx9XYpAhWxrQPKv1yggUKxQXxsVxRxTUo2NZVTLL0QEOr/L+GNQFcxkKEbuxn56e2nq9PhACJh0cFajuYXH/AV3DjfoW5zNylzkal1TUl4LqFD1+ibxbO32gT1T2FCIQRU31Wz+6zwXG3xECRA+wTNDavzYH+11aa0fEVZe5WK9rv2o0OyIHEUnjCEHWh1WcS2QvRgaQRhUQKxcmBABCjPAc+ClmrZ2ub0fLCJkXm0ULtAMrLBdtVEXKDE8fx6rXcz5o07mTOIK2pbIr1l2nxx0Jc/3Jaa6ByPBHylSvGS2jel7lFUZyvz99Ohsbe1YmUYiVP0oA3BKBbibk37x8AHnl9dftdnvyXAJWpOpROpkaXb6K8uhFutyYVIjAtWTXQeUgk+NLlMWypXIGZH3v6uiMvMtfl5iVrGI5AEsE+P7rr7/ay8vLUVpEpbGPZTb7d8lrvV4ffXgugDREL51zRCDrByUArp9GnLRKVLyKyWRAJ4jzRDi8iI1JGBAAO4wfHh4O9+bzk82iHfHOw4283hHWqlAhjxQtM2e3nsakoMLmneKK6uiMhFMYvckaHe95S5Gidd7urUEVaoZsuSRLr7/d/9aOPV2tn/7nqBMrS07PYVYlr7ps4CIFbh6zh9/av/OXd267OxX4nQX4QMFmfZYd75GrDBWCqkTgWpGBnu6aSl4Vbg9Htq9DdS50deS0uTmTERgmBlyfKOLMS1sgCFgm0FsL2b5sNpujuw/c47e5zWgnbybUZa/K8oH2gepT7bfPQJkMQDAiz1wHiG/r4HtA+fYObCxq7be3qm9BA3tDB/HOzSgy4Bgcd7C7Bmmcd6uDoeFWVsTw6pznCQHnfJA37x9wbVCjlU1UB9df7H25yR2xfddPrn/ddbeEniLVNp2jgKFAIM+qaFrztyLhWvxnmWK5Q8jTyZ7zzt1Sl3pmTDjc8f1+fzTP+bNer9tyuTw81Q1rs/yENu0fhZNZ9zs65uQ3mu+OGNxCZIDrGhHWqlMz2gZdQ2cj5/rKpdf6862y0H9Od+g+GaePdB5w5MvdNjuf//u+DJACLBeAKPAccW3T/W16u+G5mOp4XQoXJQM6GHyPJ0I2vG7z8PBwuM+TiQGEBksIUCRAxLqcQXPn9ZhjYkibrQGpQkU/qDJ2ypknAm84rHgBfJwjMpreIerHCpONjH9Eoq7pUfXQG6OsD5WccZ494Fq+NcnVzdUT/7O11kzestvDHCFQIA2AiAE8Kn7J0dPT0+EOAzgBIAJQoLohi/sI36x4kVb3CkQf9Ff22ylcHoNrEgHUI5pDKqdT69m7LiIEmkbJgFvmYiKgkV7UA2l1jvB7DvRpl/wfBBQ2hR981dqprtN+5PqzzDkyoPWv6LtId4zkUcEokZ20TKCFYJDdA3mYELBHgc5UhagdpUQA4HCUDqTrBPdf2+XSRX2hyyJqjKFsOT3/1knBkYFq2e6ctiESrIgYRaRAFSmXk7HXXj2uAadA+TsiX5HM8DVVUpYZXL3DhOWnQgJcO1TRRtECRyQ4ZKp3xeieAV4y4PVXkAF8MqOCbzUuOB6dU0TGH/k4xRuRgFuT388kKDxW6BfuJ0cAtL+iO2KwZMR56mZZJYA4x4/FXq1WJ3tWkAbXIiKw3++PCAMTCqRXo6/t1LsKXJsdeB5ylCWyW9zn1TJcnhUMkYGowqqU3L3LvHEQHcwd4wykbtyIviNvOmL6WV6qVJWsqLJ37Pzx8fHolZisyF09+Vt/uzpH10XXO1RIh6uDpokiA5dkuJdCZiz5OzumJNgZ4nPr6AgFG2f91vbwdWy8dQ+BGn1XF64T741hMqDLBM/Pz4e7CXCrIe8dQHSgteMNVUoE+HcWqeNroz6tEFbkkynjW0ZEVt0xRx6dDMAoqvHiMnubu7k8jDVkgKOhnC/L537/+90ELAuosz7ym0kFnnmx2+0Ot8aCDGw2myM51bsJ+B0b+uE2agQkklGWdSUFTody37n+dLJ8DoYjA25isELRR1c6IdNJr51X2ZWZ1XPU668aCVW8Tpny7VMsnC6cz8LB+bswloMzGlGkpdqXTphd+c7j6h27FYWaGfNs/CMioHlH4X/k0drxC4ZUuUZ1dMsDGSnU/F0eESlwcsubCpE/vCRs2MIthny7Ft5uqA8gwiauyLiwbtClAXxnkYHMMEWKVGV3dP7cCi5NYCIy5qICeo3Tn1w/jZI5AgzHUF8vrGOEesDLf35+PsggyEBrv/cLvL6+ttVqdXQ7LD8ng6MGGilw/REtK/Nv1fvcVrRD5e4z5HGYDETGVEONGj7XEAt3bmvxs5/xm9HriNFJ4IgA/3dKMstHSYAjBlCk+O82jgEaNnMTJ6tPBC03IlKZN9UjApdireegR/Qio17t2yrRgUzzmmhrMYFzREDnVUY8MnLjiGpEgrhMXVpAu/Q+bVbITAb4bXC6LJYRAZx3IWM+l5ED1z+OjLjj10R1vgNZ3bPr2VPXj9v0GkUFnEHMIgDR0/ggk0wEnMeuJIDlDgQVe9NQxvv7+2F54efPn+3Xr18HYsDRAn0DJ8tWb59VREa5rTq2WYR1qi6tyvFFnjPgiADg1l3cQDrWj28ncFEdq6EynTCOjbrjPeiab6R0I+XrlJNbmuDrshCv/uf68Tl3XK+PFCfDEYBbUK7a79E4uOOch8t3FBVl7YiArt278rXfVfZcNMDVT+vEH13jdWRAlfJqtTrZ2JX1T1SXrJ4RMiWrx24ZWf103HGsKrM6b1lXY8yjqEAlklvZoMxgsstvveS9J2ysmSjwEsBqtTo8dpiXbEEGtttt++eff9rff//dfv78eSAETApQBvpjhHBm7dZl8dbiKGRUnjvHsj1CHobIQCRYTmHxI1DRiQBvJOKP27HpSEEmfJECdwYq+q0MWKETRvOJvCgXIQDrdQ+24DyjkNso1PA7EtATTv3fIwnXVrSZsa8QhF7eGVGE3KI/eQd9ZWzd0hTvv3FkgPNjA54tEQC6QzpqL9cRzxGJFDOeTMhrtHyXkK4daz2i3dvc3sypcHOqEtGKrr8GnL7K6hi1uwKW2Shq6aI1HwF+fguIAGSHiQGTADw86PX19egdBUoGQCh+/frV/vnnn/bPP/8cIgSQ0ygq0IMjDDpu7tvpnZ5+0TKmRmaHby3kQvmc3q7U2vF7B1BxDufwTk+k1ygCfusmox6yyZOl5WPMTlXpqwKK1tmZXDABwHVskDWiktVRBWSqwtJ6umWDqH+y8JVTrNdSqjrZdN1d0+h1+lvzjtJp6HQ2mx3dXgeoweelBJYRJZi4trfU424Z5LmlBNwt2UXKDcSfCQFHAOCdPT8/t/V6HT7QBeXotx7TXdw9faDOgCOpjhDcKkZIau+/ygLaz+Qs2hznogKR8YvAcyMCR1lRLxBqJpy8WXW9Xh+iASACfDcbACKxWq0OJOD19fVo/wAILte3h4pcalRAnbIqGXBlT8UkMqAV44cNuQc3qEFnplVlXar0UA/nYWkaV+esbZHyVSPCg8TKm/NlAuC8PF1Lw++MGLioQMUbV+MC4ePnHKA8fQKkM/hZv3MdzhHQS4H7PBrDUdKi6dS7BVi5ghCwMeSIEOTMRWYUvGSgpIPPa3uRr1u2Ynl1Hxfpen9/b4vF4uQ+781mc3iVLN9i6OaUgxIW7gNHFHRsMnlVZRsR21sgCCqnI9dl362dRvggP2qgnMHO9gsomXD6O7oWUCeJ5Y2jqSwj/NIsPPwKcqd6E+lBWJkEIA++FVb7NdPR2j/aJs7L5YN0GJ+ermWwzI7IbpkM6O1AXEFWFpjsbOg05KfrL9xI/ubO7IUK0QnaKXo8Wl/XNKqoXJjffTgPp3DVq3PGWZVetiTgQr2uL9zxbLkgU6Zct6+AbLwqijY7r+cq3pAqV5YDVQaRvGrZGC9+KFBUd11iYDmtPHvAEWF90Bg/5hVvjfv169fJbWCOlFU3ZvXQG4uMBEwt89KozEPAGayM4GYGA9EhPp8Zcz0X/Xf6XesOgCS7SAXsES8vgwhwhAobB2GftE5MHjabzclthVlUIDLQarsiRMRAScCoYXdktoKhPQP6/H02cPxyEt1ghAoyAXAvIoo8gOy3HpvCnvma6Hnu2l416szwMAAaTdD/XF9nUCLP2vXtFM+lZ8RYOKPrXdlVBftZmEoAKvlm4JCrGn++ls8x6dbn+XNefFtelcioAcec5lsGnXHm9mgIFHKMp4jqmw/1fQWsI5To9Lx9bpNTwBnU8Cuu7f1XkRl3TTNyDUcFomjBlP5xOltJgCMTAOTRLatBx7JtwTzhJQR2UhmcVje/OqKRtSn6HyHSt053KiGo5j+qe4fvJoiMIjN+KBY1WLoTMxOCrA74rR3kjBsfc0sdvXaxYoyOIR9VukoWtH5ctjMaU4QAqCo3Z+wzAqCo1O3apEDHJRqHaIJWjik05MplRVGB2Wx2tFyDchwhcEraeSqq2NVrYFlVGWfjrxt8nbxzhFDfXqgbGCt9OKobIhmrGlB3/S2QhIicVf5nzkYElTFdymREOrxCArLrXV10PkCenIzyxkK3T4VJCJMHnWsZEeA6uv89ogNkTpfKpdrUaCyn2I2hZQIU7LxnffsZBFG9Cfb+Iy8gaoR22gg7VgXLv916KpfH7RllyOr9RAbJtQ/HVKH32trDVDKW5eX+V7y8z4Ib22jMs2NRvgx47q0dkwJn6PUOErcs4BQUjC/KUPAxJR86/9x1rCQxB7bb7Un9OELG88VtKO4Rr1E4PdFzDnq4BeOv0DqN6L3qOVcmG5RoyUqvcf9Vx7DsZeF0Nv6AW1LD9RwxwH4CfvKlznk21hoNYKLA9ct0WTSntE2s40ccL5dXFIVVu1HBEBlo7fQBJLPZ7OT95QruWH0uOZMDXjrosU1Gr+GOCETQtcwozO/yYoHhNjMhUoF5eDh+GlVGCKpt6DFG/tbjrdU9Mm1vzyhdixQ4AuA824igjRgwVqBQWOxZZX2r3ph6ZBEZ1WUHHUu+e4UjUCyf/M2KERuseA7wePMryd3Sms6jEUxVlNE4juJWiMEUUqPXZ9epQWEC4GSZ84rGpxcN4HORXnD974gBZJzze3t7O7ylUGVRy2C5Z9lW0uyWKrI2VIjBuTqRiY2LGnxIZICNIS8N8DsIXBiGNwmi4zSMgt9aHoSR/7fWTnZPc6doHu6cS+u8weganlysRFVRRuEdlzd7bPjv2tdTUMzgs0nGeffS9f47stO79rNR8exHowIZMuYfeVg8tqzc2JgqQXVeW+SJ6ccRAhdmxdg5ZeoIlrsDwXll56KaR8WY3orhz5C1I9I1GZwB4aWtaDmq55hkxDfSPVH/R0aO8+C7oSCvGtFw+9i0HI0ERE6pts0RhqgP1BHunYucrNYuv/xaJgPwAPiugYeHh6NNQWrU3GMmnfc8AmWvvdBVTxGwglMvxi17cN2Z8Mxmv1/C8f7+frQzVW9PyQawN8AVZcaGKEK2zsXfjrhpOiV1jhBkQv3RUMOuUR63F4QR9aPrQw1jspev+UWkVNdIM2AOMHGIlAxvoEI5vOt6uVwe3VaF9OxhsZLlcWaCrvIAchGty/Zkg/UKH9O28v+pkR2Xx7WJbGtxe3ptimQ6ky+WX+Shz8eAjFajN9yHzkBqGq6/0yPcByACLJe4DnXEclclSlJ1lvicIweVfmEirtfrPIrKRj9E6arkcHjPALP9xWJx4gGgcH6EJNiaKhGOFGjHsQLQ6MAIg8/SZnsFousjzwrt5eP6SszMc+b8tY49oYomdrTOF7FaLTuL4LhrorZVSNBHI1KKPeWahbfZACoi5cdK1oGJgLubgJWHi2pESgPLUUzWVX5BXPn2Kr27wckTlxtFGqJ26FxyeY6gEgFydWdlWvWAPwNOF1VIQJRXT1657UpuOY3TLeqoVevkyu+By9H68DMI2GF0ZCCLqKGcXlt6RECJsebrvqPzFWIyFZPIAO8Q5v0C7JlmzEg7hY+73639FpLqBsIMzjNTgcnyV6PO7YRS0xe2cOgV/YP0nIebUCPsW+s8GnnJ2LAKaEV4+dprgYlA9NEIEV/XyzuLEPAxBishljdd5lGDDaPu6pVFgpgQzGazttvtDvOZb6vSW6ywG5sfG+6IFYgRnjqIB7jo/dtMOnj3N9eTv10bef5w/7ljo5EBrsc1SYAiIrNZer1WjwNoK+tvtwGWZbNHal19WJ+hHFffKnqEgMvRaBvmO8+lSF9VdW8UJcC30xPsIDuHMXMe1VZMJdDA0DIBRwZ0v4ATvt4AszEd8R6rxjFTji4awHXGZIjaol4Ot4fXW1np6fW9to4QAsfee3BkBsddusz498jANaFj6Macxz2LDjgloZ4xf+N6HRc3ligHygtpdrvd4TwTAs4vkg9WlDDqID9MUNVY8+uGkT8iBVwuxh3p8FIiPBKWSQGWILjMLGJQCdNWZX7EiCoRuDaR1e9Int21LrIQGQ4XIckM7tToBPKPIr3V8Xbg+kGeECXguaLEQOecouKRZ6S2F43VzYuOBGSRhEtgmAzo8oBGBSIWU2FaI2yst1cAyCYK5+X+uzJg7PklKzyQekxvVRnxoCv9gePqiVb6oIKMGPTIQC+vz0JEVDkq0NoxEYjWF50yw/GofertO4Oj6ZzXpEtS8PB5R7/Wg70+kAptMxt/jRKw4scygRt3lAsyACKgZEBfY6yEICKoLtrYMwy9ue9IhDOU14wQOGOepXNpHCmI2sdGX4kp8sGxiDBleoj7vKevIlIWefI8T1h3gzgz2QZYnp0x77VJr0NalyefU5vA5zJSkOnWqM5VvTu0TMB7A/RhIhhc/agHrBVj9h95NtG1ESIF7uA2EEZQ46zeC45xVEAVnRKHyAMaNZxMCnB9T+lFiCZqJqA9gb2mQkX5SgBcRECPqxekk9yFrXsYNThMMh0h6EWMkD/qqksOGh3gR7hqW/Ff64R6gACsVqvDi1/wOlh8dH7wC8vcA156itkZs6hfI085G4NrkVjAEVhn/KPoQUaKsrYxMdDoFpNgh0gm1dBn3viozlBC0Nrx/OVjSmz0etcvPQdV5TUjAi49p8nyj6516UZQJgPL5fLIO1AigEqoouDf2RvHegM/SgQqgtTbXdojFW6JgJUbez28VOCWRbLBrSyJODhmzf2jEzKbnBUB7eFahCBSpmgv3z3iSIDWe+pkU4+ll4aNrH7UW4vyAjR0yjKp74HnR4o770VJLiIOeCbB6+vr4ZWwP3/+PLwaFnsHODLg5gT3ceQkaBr+HoXzmtVoXYsQZMZ/FCpXzrN23rdGCXC+Is9Zu1j/oF6jiKIFGiWIiEKPTI/Ww8mrixSofcwcLLWVmdyfMyeGnzOg9w1zxd0znTOmg3zVy+KGRSzLXY//jGjy9KIACo128AOSOB/uAw67ZrdWZXCClbUvCoF9pCH+alEBJQKQaxcZGEFvLCsbE93cYqPMxpfhiJ9+axieiax7fDjkeLlcnlzLcx5zcLfbtdVqdSAAf//9d/v777/bz58/269fvw4RAl2OwN1Gqi8iXcDtcv+1L0ahRvHc/M6Bevv6m9Pob/4fGe2M6PBygLu18FxDqnXt7Ysajaap8UcZHPHAMeRXHWclT5HM4luPu+hAxYBnTuS5hHV4z4AjARzig1LgtfKsoj1hQofrzlBGlQBouREh4EnHniO3HWyZsd/vD4pNNxDqw5dUILR/Mu9cPZeo3T3mzul1M49GCa7pHV0CESFo7XiPiJOtTEZ1Ulfr4cBlO+POUQE+1lP4XD++BjL68PBweKGLRvp4HqPuPKd59/Z6vW6vr6/t//7v/w5k4H/+53/a//7v/x6iA9hLkBHjang1Aytr9+3gSMC1UTVOGVkYBfcBR59A/HjD3Ugds7pzlKBHCLie1bKzuaHLIBWozo5IAJ9zcqwEuEcEemQgixL0MBQZ4O/WjjtAQ4/62GF3LSsXDRMyeGI6w19li649/J89Q378Mj9kicGvuGztt/LEN++Y5nMZspCo9qfWnydHFiZz4IkYrYNnClIVLh/H9y14VxwNYKLHRMBtKFVZb60+2Vy0oUdgnVcD5ewiA6iHI6hq4FzETkkAlwn551sL+T7u9/f3wzvhEQXAN/YMYB+BexhXFiWrKDIXEeH+cHLZu1bT3AoxcFGAioccOQbOwCgpAglgb1o960pdkJahzkaFEADnEgElPVnaCJUlAT6eOYDRfzX0vWiAIwQVlMlAa/lmkYjhs/LJDD7yV2+0tT4D7E2GXhrORwlB9H53LQNt45AnK8uKAemtjWZQoz/CmjW9epogblFEwuV3S8iiAny+tXz5SCe6hs6n1CsC9zV78oAjBJls4rxeD3nHXQn8YiK+YwihfWwsZJnGOd08iLsK+FkD+hyDSKFxH6mRqBhw7Uc1dE639MjutZDJKx/roSqjzglgMqFRAY6yRo5ZFEVQHeOO61Ky1q2Hjxi7aPnW6YKICFQiXRlBqKQbwRAZiApg5hIZfWdoVAD0HB+/JDNXJqvrxRoNUELAioTb7N54pUsl2jeORTIyIVNkUYDMM2Vjr9GBCiIFq/W4ZmTARQQeHh5OHqXtFC2Pl5PtrJ+cgY48KTVcjnxBDtjLj8rVuvF1LKO8nwXyzrcWLhaLoyVArf9utzsiAridkG8tdCSA+7MXGlYj40h+FAHoyWYWObglVMism2O9iBH+98quEAKug5v/Ti+x3tE2IEKrj9J2cFGHKJKt1/WWVDVfB5Vjp7urxr0CN4bnyPDFyIBb+9BOUwLA/9X4RIQg89oqUIXPT1aczU7fwIhnKujzFLTtummSowK9QZoqCK2d9suIUAMZMePvnhLW35mC+kxwxIc/vEbu7iRwygkYWb+O8qh4d2w0eZzcUwihVKGcNQ8mAkpY2dBzZABEQG9BZBlDVACRAH7GAB40BHKBuaLEGfWsyoqSJG7fFEJQLeNayOSnQgSiqN6IXqoSAu3XLNrG9Y4IgYJlzxEMl26/3x8RCpWbUZ2p+VSIAJ+bEknUvKNjSjCq8lsmA1l4Qr3fCqqEoLVcKWt+WkcnlBVPUYlAFoLV5QC3PKIeZUUYeoKmaZQQ9CYJKwcXCXBRAlUo0X9FNmk/Ghr1YWPHv50HPzJpR4xZdL37jTYwEeCd3Qo1DmwQ9Bo8lhhGHnsBeNnAPYSotd+PIMbthLw/wD150G0ajDwlrn+GEY++YvxdXtcks86z1uiAI/EMR5DUceNvzisjBC4i0ItO9pDNORdRi5YftD2aZ6a3InmKwv98TvtS9fYIEfjsaNUwGcgqWPWEAccII6Ok6IUVFUwEXDRAf0dPWOTymQjw6145MuCeL8ACM8oSexO3N+Hc5NExxRhkysFFAnq4llJ1EQF9eNZI3RxJc6RM07vjvXFT5Yq8XGTg/f09bUtEEOGpPzz8e1cB5gb2CDARQB34xVxKBnipQIlAtGmw6u04RB5/lKemuaUIgIMjAREZ4P8Vrz/zHqN+1P6G3J2DzDFhncU2o+dgcJ7utfecBukcnH52RMORAz4ekYmqbPOxCnHL2uRwVmSAvQ1VjBETc2uZEbKJXVkLcvlpWJjfsZAZCggTG3QmBE7Jabqobxja3kt6Pfw7IkxMAlTZuOjNZ7PXKUC9eVlAIwIaQoxCfg7Ou9UojbvGjbNTMkwIAKzrI0Kgxi0rk28Rc68e5gjKfD63TyREv+FBQxwR4CWCkduMpxJLNeiZkXcyzeduTZYzIhCRgdZiQ87n3W93vctfo489me+Nq8pFtBQQLfNG7eO5jPZExMAhIgIuIuD0hkun3/pxiEjLJWV2iAxoSCgTKA7/syFlAebO0+hAa6c7TCOvS4mBE6QsPKx3DUDAuCw19O5lRLo7ukoAXF+7PtXzXEYUmlP02DTS4NstFaCsHqvVOl8rMsDKk0mevnqb8fDw+2VADCaE/OApLS9SjvCkUAbDeQ7uHOqGkL5+R7LAx6PlLPfgMPzebrdtsVgcLZuBDOAZA6+vr+3nz59H0QGOCvAc0kiZ8wZdv6Bv+Fr97cYFxyI5dOlvJWqgMhwRAdXJUf2j/0pQM6KR/c6uGYG22f12YALAtiZzMFFPvt6dU8fXHcuIQUVOe33C+bq29MieQ5kMuM6JBheV620K1PScp7velafCHoWUYOR5TwBvFmQFxxON88cAu7e7RcZhZFBGhYL7xq3VnWOAdVNh5oU4OAN5LTgiqASRDTcrEvXIgZEJDePL48OkoJc3fvM17OGjjfjmcddNVDwOuvygBEEBQsD99fb2dvRyIr2tEFECnisucubKOhdOSTqPeoQgXwNKzjUyADjDoIZ9RAdFRMKRXCW8U6D1i4w/ysmiAuqARt50ZV+QzsdoWSByBKuEtapLdB5npG8EQ3cTtFZ/WhMrIx4QNTL6n69nr783YM4LggD17hTgqADg2B9HAZQQcB11kjioIowEoRd20rQayo3Kjvpbf6MvOTqQTfYoj4rC/Siw8oRC4THnekWGIiJHDKdwefJGEQHNozU/vqp4kSeTDR13lsVIth4eHg6Eluu9Wq1O6qR7LEAQ+G4CdycBP3yLIwOu7T3PXZWrU7LcDvc/IgURrhUZ0PqqR6xGICKu3EdZOZVzPE4qi05GL4GICPA+FpRbIT0ZKjqX83fENpJLHYcqKVAHzxECh964M4YiA+zRsIKJDBsaUTEiDtGg9gytCylpWJiJABsGJwgcLsXtUUwG2NNBvSNFl5GaSyicSjQgi+jwWLnITI+8TSn3M+DqywbBtVuXCjite7se/4680taOjbAikw9HMjX0zxGDXgSClbimQV03m83hP8gAK2UmA9mrinkORbqi6r3qdVVERIB/R/leW3YjUhAhMjoub5x3pNjlq46Dsw2OqGb5ZnXUOukyCT7O2eyV0wvtcxo9rnLsiMBoVKAHJgJO1/Dv0TlSJgPYPawsUMMjqJBC15wzpaeNa61ZL5c3giAtCwx/sBSADxMC9hChTFv7PcAuGsDHVJB0uSHqhx6mhEpdmdwnGXQy8PVu/BwzdYJ5TUWKegBsyLRezvuveI0OyuDd/OgtE7g2qOePMXOKGG2K2sDlY0Mijx0T6u12e7hGyQD2BejdA+5V3vv98XKatjVqe+Q5RQo1Mm5qSKvRgWtFBnpwMtYzPLgOx3uy7WQ5M0ZMDnr5TzFcVX2WoVdeVK9RIhARgqgO2XxwY4A0VRKdYYgMtNZOXmbCyFiZGloc4wawwakqX1X0rMBms+NXLvNzA0AI8AImDaWyJ8PrndELVnQyqMGJDMIIOXD5RBidKBERwDkuv1c3R+Z6nswtA5GAEU8sQ6Ygszx48rd2TAw0OsDkIVom4Dx5/4GOlRp/Js/6dk4XFdDXFaMuVc81IgJT8sqiAhmuLbvcbkdgIsMS9cVUwu6MUWunewZYRlUnRnVh+dC9LxHc+FV1ahYVwHEXKXDGn3/3CIHmF6GnC3pzZpQglMkA7jNGIfDK2QtpzYfwuXLR+rOGeTI4oeJ8XFRAj+E4KwQeOCi5zWZz9Js3CzohYs9MoxlKAJzRjMgR95E7V0Vl0keTg+GIm2OxtwYYJd33ospKlwKqcN5p5kmNQmXLkQAdh6qc6IOMOCqAfPUODCyZISLAt9jyPoHMA3TekJMpTV8hTvitcq/EoIdrkoFLzKORyEDvvzM0bPAzGWVHUucfw5GHiBxUxsYZ7whO//F1jkT0iMAUMqBtdNGAKJ8pOmaIDIAE9JjeCJggaPhHJ3QGt2GQowK8VMDRDe5Q9nL0w96OC3OqJ6ZMFWClzd6Yi4iAHPF5pHHndDw4QsJ10vqcgx6huQU49s79zTLN6EVBouOZJ+v6y9W3V0YGJ4Oat8uTn2wIjx7EWfdIsLy7yIDemph5X73fDhEhUA9adYjOe54LOnY6566JyMCgzpl3iuPAaDQgqo8jBO6cRqt0zDIdBJlhm6MEWPtI96NEc5+P9/YO9I6NEIGKnFciIpFzoXapqo+HyQAedIJvnlTZ7tFMcBgRy3HQiazGT4mA3lamEQEoM94IxW9b03CnKm2NBPCEc1GBzPOvQomAto2/VRmCULj6RCRNIxpOCPXYtRUp6gFlgpA/K9Ke4VfjAc9Hlw+cktR6RJEUPTbSdxrVcN6c+81AvXUJDAZ9Npud3FoIMhA9WKhHNjMPVevv+tXpFc1LowA8lm6eoP6OiF8DztDrOT4fXc//K8bG5aOyrqhEB1qrRTY5Lx7/KAqmv53HPmL0kZ/bLPyRRID7i1GxDxV5iFAmA9hVDCKg6/Mcdm/NP/++F6rhAXaetTJ9d45JCe981r0OqAtvasKuaCYEbp+AAmVEk0wVUTSobukgm9zZZGKPl795aYSFH3miHVqGpoVRdc9WmEJqPgMYP1ZKzkiwrLJXzEsLvNyFvBUVQtBLG0Hz0GUpZzz5t1ufxXElBXx3gqsHk4ZRBVSFGuuIBHDaLB+NEOCYMzRTl+QuCWfQuR/U8Dji4PIcIeqO9HLdWLeqLtfoQLU/eb7OZr+jVxzFcnNQjXZGBCIS0DvG12Z9nhEC9z/q16mozscyGeB76Z2XyQMTGcbIyGiH828IgobAHavP9gaoMtOXC2FPAJ6mpiFPvmuAwYKqYatoEF2a0QGvrLG19ruf+BvH+brI4+ex4afbMVt23vGtobqsFZFUfLsoCf9HHs7T13Ic8++hkkbDqVoPJztoA2QAY4ox5+gAyCDydd6XEmen/KsGvILMOGlkgMtHuwG3F+aa0HZVDT0QRVP4252r5OvqqmVGXnx2vaZhncQEw72wS52WHhHQ74gocBo+7ghY9N+10Y3hKEm7FIbIAHsQyrChLNQbdYhYliJi8Y7Vc3k6+d0gaQiUyYDeHuUeNcxlwXucz+eHvNWDqQyuM8pToP0AUsQPjFE2rcsfznho+0AQW/tNCFiRcruvqVhd/zM5QJscWXDGnh/7q2RqKirerILHgpUjj0MEJ1+OJPAYAyqn7sVDVfRkneewm0u9/xEByIjYLUQCGOokOcMyYmxG0CO1EXSJAMda83ubMqPIc4yhm4BxjfPmUf5IdCAjAfw7IgJ8zSh6DkWU5zm2Y+gJhG4wNHyjypENTy8/RlWxMjFgD1ihnguUGHv+0VvWXAhUQ17MUCGkanAicqL9cWnPmgmBRkn4iYU9coa6YUkFb7ZDXyjL1jrcCiJy5gyCGg+3PID+dWHKS7dbFaR61/rAIa0P/9alAj3GkQCQZq4D2lz1UjMF1oOOg86ncwk08ta2Vev30UAfRwbCGaVzkZGqkfHm+cJ6gu2Cy4/HQ6OvkS0CmJwqUVU70Fo7We7MSEXP8EfpRjEaITh3Dgy/tZCBDmSj6KIDTjk59M5PDZ+okualAX1fe0QEWHCiunF4VtmsrsvyNSOoDna0l0I3UnKemncUYcGrbTebTZvNZocH0mT1rIz/Z8F5hY5EqufvImOIEkR5VxEp+l5khWWN56EScEcAGJnXpnKAdKpce7LpjItraxWuz6YoRG7bLUcIWov7OjNKo/mfM095HJQ089JVFr1iBwpgYqDLA5yXGnr9rkQDessB+u0iBS6t9lG1PzXK/FEYJgPZ5OAlA1ag+Gi61voKwHnWrPwi1hmFFGHY+bHC7uPesOb6hL0IPHsBSwZRX0VCeC64T5kAgAQsFoujxzA7A6156HIP+m69Xh/db470u93uMGGdcb0VOKMXQY2YIwnnLhdUy8/g5gjgohaqbCMPzC0VsFKvyG+04XIkAqjXOeWoyjPLS38rdKxvBc7w8/GqLnEGRvXliCy79G7MW6s/GRNp+TiWZTUay2mgh/l7hBTwcfc7+s6IwFQdXyECGiGcUtbktxa6hiNE6aID8/m/RelEVAHKhElZp/7WTlPBhmAwCXAvHdJoAAtQL3SGND2PImOjnJ+m5f8M3RjIZGA+nx+IwHK5PNo7oF5RFElAGvTTarU6ultjvV6fhM61T6Y8xOcjwSQ1IkXuWPZ9if0DPbCMRaQ4u5a/XcSD55EaQhyrRHqYjFYUVbZnQ9NkZCIyYlF9cVyXBrietxAhcJEQPpcZo8jInxsJ0DwdsVAZYv1YGfOIRPKSmC5X4T8TAtSzEh0YJQGa1p0/B26cXL5uflXHt0wGXFhQf3MF3S0gKgQaOooQGT8+nhlprieIAJY0+GVD/PQ0FgptX1TWaBscEagIji4/oGx9NfN8Pm9PT09tsVi0p6en9vz83J6enk5ezsT15uPu9c7v7/8+i/7Xr1+HMn79+nU4//DwcPImx1Ev8NJwht5NrF79srFxY9IzIFEYWhW3HuMy+JvbpctAjqTgeISR/nAkEvXgyBk/42FKmUy8mJhk6ZX0RuW48PC1SYBGOiIZzHQy58P/W8v3AmQRliwq4/LR5VKOROF4VqYjBJHs8tixU3cOCah4/O7YteDGuoehDYSqUBzbdwLBLzlqraWEIGNAXF701jiHKHTk3jGgRIDb5zxo/h8h8opUGF1bVBkhD2Xa+MDQz+fztlwu23K5PBABkAH26DVSwx8sKSyXy0N0YL//d88AIg2LxeKg/OfzeVutVuH7G1y4+RpwynJKmtZOSQDmR8/QuusdeoYOeTgioIZT3/EeeXJcZqZw3f+oLdEyQQZXthJL9eYVOleV/KLuqjx5bkInXAuRbowMUsUjjfJxEYQKUY7qq2XqUoEed8vCAKfBNdFyGI8h9D23NSICkeGfSgIuKTcur4i8RWOaoUwGeFKxQlGlGRWMa1y4RwUkM4gjSkgHy4WOIgaJ65yCBLFxXkfEaLWd53ohWh6TACwHMAn4/v17e3l5OSwTqIJEXvyKZ84LBGK///dJjS8vL+3l5aU9PT215XLZfv782f75558TQsDvcsBS0VeDyhjLYM+QVwlFJT9OH3m6juBpvkoKXN5chltOUX3A5et/98ZR50Hy8aztaA/3b2S0MqLuyEY21tdEpOTVEFWIgOaXEYNR4+LSu7IcAWgtXwLl61jO+K4XlFeJBvAxRwQcKdA+yogA96E77voty2sEHxoZUOOThelRATaEeushDypfHynDyGA6pqfn+DyzxCga4ASZ2+kUIkc+9Npem7J2u7RRvdhDBxH49u3b0We5XKZr5fxWRxCB5XJ5iABgLBFlwDmQB1zH77XnDZnXBssRexZqVFhe2DOsTqxIkQKX7IvM643q5VC5PmoT9x8TVKRXhT/iaTqjz+c0IuNIErfPlZ2N7y1FBnrp+DvKJ7s2IhwjxiXyYHVOqM5Xow+4JYZs/qD8aJ8Ap/lIIuAQ9b8jsVNkLorIVHDWMkEW4qwqFQ3zuHStNauQHcPT45zeKfhM4UdehosM8Pkesnb00iI995m+phnRACUC379/b8vl0hIX5KnRBSYDWCp4e3s7HMO+At6HsFgs2mq1sg9wukVg/GG81LNAGk6r5CwDT9DPJERs3N3mTj7mIgEq40oW3G/VDU7W0B8jpCCKJFSu0b7oQT3JW4UjCVPqy4ZZf7eW7x2o5h/Vu2f0AY0kRPXRecbOH593xj8z/L02ZagQgHPk7NzxB8pkgDcEVQmBU0atnT5H3RECZ9DVmERRgcjY8qArCehNfI0CuKiAemi9cJq2szLhNJrCYV0YcV4eeHl5OSIE8PBdfWaz33sO4PVrZAC3TGLfAO8/4L4AMcFTHfEq6FtG5hXydwa3hs3KTw0wfk8Fy50jqgCXr3sGMBfVoDvS60iBqxPa5ZYI3J6Fah84suH+u/ro9fz/1uEM/ygRqDpo0W9noKOoReU/X88yp7KQRY+jJQaNBvS8/UoEIOrfUQPsxmEK2dU6nktcJy8TOA+DhYIHWAcz2xikiEI8U6ID7lNpd6QMpxKBXpu1fGdMeDzYm2cygHV9RAleXl4OnnzUT/w8gqenp8OHowD7/b/7BkAUsDzAEYLlcnmIDqxWq7ZYLK7mZfVIFo9hpgQqypYNrh7n/N26viJTiip30QO+HDlxUQIcx7V86+lUw+k2DXI/c2iflxQUGhXrEQKtg4ta6DEtJ4oQXRPaP5FxdhgZu4gUVPONCEqlD7k8tjUuuoRzrmxHBKaSgXPbxPWNjrHd7OV5qUiAYujWwtbiCQ2ocsGxUWHkb8fuImOv57KBz9CLAKBtvP6uD+jpRTt6+y6y46yweZ0fa/mIDIAU4Dg8fO0PfEAGNA9EB5bLZWutHZ7YuF6vj/YP6AbG1WrVnp6e2nq9vroXVhl7Nxk1KuDyqExixUcsGagBb+3Ue1Jiyde11o6WfPDRd1q0Nq6Uet58ZFic11QhBFlEYBTXJLIj+Kw5VimnYtQgixoh0HI0Ipp56ar/oz0/GRmI6j8i81FborSXkDHn6FZlYpgMYLLpemCPQTqPVhvB31nIp3INX8e/s08GJQVoU0XJVNrSQzS4rKT1LgJEBkAGnp+f22KxOKkHez9qzPlaHEMoD2SANxK6fQfr9fpAIq4BHmOWXf7f2umzNJwS6UUJKtEBXD9qmFT2lIRmLwdrzd+mqr/1yZSZoUY7kLfKk268c8oxW2Z010SRDl56qDgnWn/85rlQXRq6Fnpj05rXGy6iEF3rZDRyTka958gAOlsCncOOjIMS9l5UgNP06nsJIpD19WhUoIrqNcN7Bjic0SusInC43nleFU9fz4/USY8zO40iAvq7tXhpICMno3BKEWXqHQDu1kKQA9zeh939/ARGrh/y5UgByAEm5Ha7PYoIoE64m+Hl5eVoqeCahKC146ftcVthSHTTkZIIvYahY5ste2mdKmAlGCl1/q+hVUcEND+OerkoWFRfJVVKMHuh9h4h4Dl/CcPs6qHRx0gX3RoqhCC6JvsNsJGK5K4KJ7/R/4hEuiUDPqfl9Qy4Hqsa/MhwR0QpixJcSrZcW0bynrRngDtiZEewg5t855AAlzZjgYyMKDCyDZDRhMK3a1OlDi6d27gHz1y/+WmC2i+qEPjD+wBAOHQ3736/P3rREwwpruc7Ea4BjLkqFXzU21AZqxhwndzOgOrcaa0etnYKhctjMsOEQNuUeWJMity3uw7f6Kfsdi6nrHvGPSMC2o/a/grU6PMmVyYxt0AGIhnI2utIXzTvR+CIKH9nx9XQV0gun9cNhBUSEBGDc8her89Gx6paZtR/QIUEOZTJADxKneS6/gxUGLwafadANO+KB9FD1qFRZEAjAXq9W6dU9IhABl3/dNEA/vD6PX/4HRGqXGAYmVQoEdCXE6EtT09PR7cPIkKwXC7bZrM5LDNcA5ApHid+8E7k7UZ3P0SeLBPmyOBne2wqiPbhKCHIEHl2eFwwLwlq/V1e6v27ZbGsPdVlAr37Qvtbz+sGRkZv6Y4NiCOEn4mMCHIah2isL0nMewQg67soGhChEn3l31M8/0uMddbnUTQvIyvV8Tqn7kN7BjBgGm5t7VjJ7ff7k2WFCnuL7gd112telWOVcxWo4ecBrXg6jjS5zU4KFiY12jD8/F4C/s9pXJ2QLxt8JgK6oQzKV8t/eno6KM+Hh4fDkgHecnhNMCmAvMGAcrSHDUNm6Fz+vWM949cDGzcmAG4ZwdXDlY25zURAr+21O3vcq6uHlt/rEyUFEbF2kYhKBFEdEv1ca9/AFKOtzo32eRaydlCD5YyX+987NzVUXqlv9NGyRtowFZUxHK1ndp07V8HwBkK3TAAoY4fgRIxH12i1EZq/5lE5fonB1SgAoHXrbW5x1/DxaDOm3gql4X81+O5BQGzMW2uH5QI26CiLX06kyw18TzrGdrFYHHlPICvz+fywdID8rgHnqbABBUFwz7FgI5d5Ie4/oxI5qkK93WpEoLXTOkZRLbTX3UXA9eD00XNAesccHEGICEHVq+TynX6JSMCIQr021Pt0OngqOC81cG6O8XeU3zkYIRM9A5vJ6kcvb1bq1lum0/RT+naYDLR2Gup0a4oZ646UyKhXURUAhWPOvXU3zjNKe6nNTY6545iG7XkpQEkAkwFd6uB8mei563ndn5cJUFd9Qx3fRYA7Dq69ZwDfbED4txo7TstLCdEk7cki5z9CCCJPnuuANmSIFARfr2XxsoHKpSPsU5UQ+l/b4CJJTN44UglEa8j8HS1jRN5ktJT02eiNdU+HubHpLS9EBGBE9ntQXVype5TWecOXrN/INVnf6n9n2CtEKiMBlXwYQ48j5jXz1n6TgIeHh4PSyEJyjgi4TugRgSkeR1XIomt1YvTSZOhN2igqwF6aiwzoOwKUELg6KBnQSAM8fPfa4/f39zafz9tut2uLxeJQd1422Gw2hxcjXQtO2fOrdCsyG02sTMFmSi7rj2weuOPV26164EgJy0tE5Hrk3eXfmt+45vJXmWUSgPHjfKJ56aKOmTKNyME1kekeF8J3cNdX9FWUPpoLVZ1aOcYYjXCcYxwvMd4VQhXVd3ScIvs40o5Jr5Fj48Q7x3USqeGPIgQufa9RPWEaERyNFGT5ZsfRDpdHb52ud7siG2NszNP3B+g+ASYSagTVK0Yf6O2J/IRBfmUx8kQoWd+aCILATy289uOIWcaUuPKeAU3fMwaRQVPynKXlMrVsPu6Mbm9NPPqvddVNwbyU0lNEjkSo/EayDbg5gHx0LOCtY9xUtqJIDucREQJu062QAYbquQyqByuG30V5M6N2LpzudeQ5IkR6bJQw9DAl4uLKieoZkZZKHpp+hPAoymSAJ7oyQ56YmaGPSIKmd42s/K+eG4GbCK6cqN6RgeAJ1SMC7JnrQ4H4AUPfvn07etKg7v5X48djxuXq8kIFHBXQsPt+v2+bzeaqdxMw3D6XKBSOb+eNt3a81MK7751R02+WBTdfeHxAurPNc3psNLStyz8ZEYiigG7/gRJZ7SuWM96kqoSB+wTPx+DffExD+0qsIkM/1ah8FFwdnLF2xzl91JZqVIHLyvIb7b9z+7tnYKtEvkcwsmuj8cDvSiQliz5GJMnJcURyKyiTAacQW2tHEzK6xzgy+BEJ6P0fIQWuHT0DzscqywNVuPCoMxyqKHndHh8YfX2wkD4EqLV2GB+Uq8YGx/HBa4ex3s+3JLZ2epspyuBbufDN+V5rqYDHG0aOjdZutzvxXBmcVhUAj9FsNjuKyDApwrc+4Y/rAoXw/v5+mFf4xrjxu9t5r05EXDIZ1/HQtXc1ENm+IaTl/mFiuVwuT/aeIBKjy09MGDhqBTlGv0BG8RKszWZzOM56ievrjIX2X6/froVM/1xibmWEQI1aZgD1f0VfRw5URIYupZNHSE2VLGXHVAbx7Uipzu3etREpqmKIDGhlWHlhkvYMPhuPasV7rG0kVNM7PnXiR8Ls/uu5zCvSiACMPRMAfl0xv0cAhgdGhEkZxowFjUO6/Ihbvi1Q+9qROc5fy7kW3ORCXyDMjDZHm/aUCDABiPZp4Dpn6JBva8deL7xcfv0zHuaUkYLM89Bj2RziPuAohq7Tc9+4vtJ9LZBfkEt+EyaTXt2jwuMG75/JKl6Vjd/4v9vt2mazOVzPshop1qjfbgk9pe/GqGfIzjmfGWz93YMjmK48zb+XZ1R+dK4XMcmiMFxPLcPN0cj+jJAI9xnF0DJBFN7n0Fxm8NVrYWSVd2GWKPQSYWTijwhvVJYjBOoh6w7zyKvSdXwYf30REUcGdHkACl7JG8YFBooVLRMB9miRPmLBUNqsuFHeteEmG6+NA9lkZ9L28PBw8oAn3YDJxECNHD/bQA3dZrM5GLiHh4e22WwO9UUE59y2Z96HI0a6xIE0Ksssu5BZRLH4tdjaVyCxjhCwXMHgo4/W63V7fX1t6/W6rVaro37bbrettd9RTI56qGJ1fXVtZM5QZGQuHYVTndbrn6nOWWbgVUYrNmAqKbkkMmPvDHjPzqmNvQoZgHfAx9TLjDx+ZwhGKzyF4U0pZ0R4zpl0GjpnD1LXWaFUeVmAX0LECpf3CyB/XsLhKI5GbWCI2NjpA4e4ntpPGGteOtK9CbcAtJcnGy9tMDRSAw/fRWx0M6d71oNGDlA+yAC83NVqdTSOIAT8pMfdbheu32t7o+MVJa/eNRtolgOWGZZZyClkll9uxfLKURYmB7pUACIAw79ardrPnz/barVqv379OhCDx8fHtlqtToy+tjkiA5c2qqOIFDv6IyIDSNPDiFMVecmjuJSzNbU+UyMVvTRZnk62phCmkajAqAyXyYB7+Ip6gSq4qqAyJvgRyDqyer3znFye7ngWytLQqipUfCsRiN5IiONPT08nGwdbO32rXEQGZrPZ4XXD+KAeeHgQ7g5gg8DlaLTo2mSgNxl6SkUjNTou2v9s6NjLZRKRkQEYORg25LNarVprv/c54LrWTtfEL4HIE0N52R4KGHLsb8EG1+/fv7dv374dCAH3FRMBJgfoq4gMrFar9vr62r59+9Z+/vx5yPfXr1+HOqrjokQ80g06j68NDV9nekbHrCfjuKaXRo9lZCVLVwnFX4p8cDmuz0bGN4saViMmU2yRfmeRgA+NDLh7ddWQuAiAY0TnVnoKppbjvIheCMul1YnBodWeh6VeltswqKFXXM+Comv3Klit/d5sCI8TZW82m6NbCxeLxUn7VFnzRi4nG58FHQNWBqogdFwAJWjc53wnh45LFB3gCBDKZTLw/PzcVqvVYTxZJtbr9aEd+ETRgcx7HA2z6nVMCFgWmCwxef3x40f766+/DvtbQGT13Rl69wzkGXIEucJSwK9fv07IhS6V8cbDx8fHA3mqhr6vHSHI6lAhs/o7ausUrznSh5EjFRnjHjlw7amkdeX0nLUq9Lqs/3pEwNUL6UZJBPJQpzPD8K2FujfAeX8RAeh10uiAjBAN14mVujEy4c+OqZfNypvX9dkIQfEzCeBwtL4vAG0AaeNjusFTowIAEz63CUzfPsjhc5Stu715I9yvX7+6ffxRcAyayRIMshICbC7UMcH+DRCBHz9+HN3aiU+0d4DzUzLAL5pC3XkzJu8tUK9X5+aI8nDpnCGJ5oGSKJDG5XJ56CN8dMMrP8/CbSrEWHH78c4L7i+NiOEabCx8fHw89JvzrtRYII9rEVk3T1uLdQt/80evay3Xf85rrkYZqnln9sDJWPWY5lExplOdxYygRWX26uC+VXdl6TTvql2d7af2wh133HHHHXfc8R+B67w55o477rjjjjvuuBncycAdd9xxxx13/OG4k4E77rjjjjvu+MNxJwN33HHHHXfc8YfjTgbuuOOOO+644w/HnQzccccdd9xxxx+OOxm444477rjjjj8cdzJwxx133HHHHX847mTgjjvuuOOOO/5w/H83ByAMg5Or7gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrvUlEQVR4nO1d2XYbyY5MWbvs7tvz/584L9NtWwslmfNwT9DBUGDJIiXSbeKcOrXmjgQCyKXO1uv1epzoRCc60YlOdKLflj4dOgMnOtGJTnSiE53osHQCAyc60YlOdKIT/eZ0AgMnOtGJTnSiE/3mdAIDJzrRiU50ohP95nQCAyc60YlOdKIT/eZ0AgMnOtGJTnSiE/3mdAIDJzrRiU50ohP95nQCAyc60YlOdKIT/eZ00f3w7OzsPfPxIaRl4Puzs7PNvbvWg8NrPHrOwnbCa55A6/U6PFzZO2VBWMTz48ePrTj1HFGUh//93/9Nw70HXV9fv3nG+Yvq39U5h9V6mdm/q8MfGrfGn/HzzLOM57rniLe5DMxLEW9pGfle26ziaQ4X9ZGKt/n66enpTV2+N/0b5O57UlY/+6g716d/xX36Onlug4HfkWaAwFIg4dLU9DUuUAYGnOLolofDfvr0afz48WOTXkZ47wRypFg/mrLOjbJrHUTKrQuMKkLdfPr0aaueEC/qPwrbTSP7PuLf7FmUB6dMuY5BjrcUBLk4o3QqAKf9otOG2hYnOjxVILgLijNy/IjnTh78G+gEBhZQx0LKQIGLK4q/a8Wr1dXxDmR50HAR02edIVMgH0ndDstAICqzsyJnBYJr30+fPlkwsF6vt5RmFJfmL0qnm6fs2qWrabvnXLcgLZu2AT9zaURtVAGUWW/XMQDZ35G6PJs9i+LJeAT3lSz4NwGD3woMuMab6eQdQVmBAY4rSsPFw+E/ffrvVA8IUbxTQIAyVml2BGzE9JEV3QFCx0gVIOi6lMeYt1Ac33AbV3E5fq7qPxKkGeCNqCMMuU4dOOByOOssAiEZYOXvlgCBE70fzcpfd9/l1xkw64aSZoCBxvcr0G8FBpaSU+SRwsc1fwuqwEcXCOD6/Px84xWAdVl5BzQvHevX5TErUwWODk3dTrsEELjwUbpZnvh5xDddcBeFyYRrds7S6QAiPI8sfgfGurzjPAt4XrWjPj8Wfv23UbdeI/7k68zoct9E8UQeP3cof2Z8zHTs4OAEBhJyjMau3BkAEFmcEeNWQIDTgqu1qxxmrKFdBOOvAASiZ6DIFZgpwk5ZnaColGsmHKP8VulXCt+VXa8zivIzG1dVplkvH+LU/qj5Oha+/TfQUjCs7zNjowIHEZ+PEXsD3BCsAoPMIIjKeGzg4LcDAx3rPEKSEePx+66Qi5RSFHeU/xmh3HmW5VHrpCpfBpgOQUsBDchZr44qN7j7nj08ldDo1GdXwWZWUxZfBIqqvEWu2CytTv4cwI6+mRHKJ0CwnKp6q4B5ZCjxdefAsGomjzIQoOfsYIo8BlH5Dw0Ofjsw0KUZZnNKUpnLCaKusgBls8o5vWzuQCTUXfk5b1XHPWaBujTtCAw5Zb/UrQ3i9snq2gnG2XSqtnTEZXN8FYXJ4omEYQS0dgGVri0j4X1oofwr0WxbdAEArmcU/sy9pqVKnQFAdJ0BhIo64CD67r3otwMDEfKMGMcxUUaRoIwETdQ5svQc2ODrCAjodfbMKR/Nb8WolXA/BHU7YQQEcL2kbGopqIJFm6uydMAs4g8HTDSuSOjMKluXjgNFLm5XbzznRfOkcXf7YlZ2pwBO9JZ2BfJLAACuu0pez7h2z8d4O+Sqih2Kn4/oeQQMItkw453K5G3VLrMy97cDA6AICOjB3ziKLG0n0Jxwc3mKhF7mnqpAQEYZw0aWbzeeY6Iof05pRgqMv9Nws+WfqduI/zKB4HjI8V8EBBwgqvjdlScDlpUy7rRZ53lWJl6x8St7B2aAejeefYbNAADOekQKvaP0z8/Pt84OEIAqIOCO19fXrXvl546nQPsIP5up2318/9uCgTG8YKisr461H6XRQXIRcMAzRqDZGNZMPjIEq+VcajUeWsBquylVyraybiqgNxv3EooUcRZ/V/BE4FTfz/IKf5Ptp9ChDCBE7efyGwGeY6Ou4j1UHtz7DBg6EOAUvQMFfI4OByRAbOG/vr6GZ1b+nz59Gq+vr+P19XUT34xcjngu4sP3pt8KDETWT6X0NQ4HCDReTTN6z2llQtQxkoKDDAgg3koBVQLVIdkOzQCJfVMFBBxV4EDjU75w93pdAbRdKOPFDPhFcanHqQIR3f6k77ROOp6uGaEZ9aNfgQ7Vf2bTzngvAwFOsZ+fn1uFrgdb//rtxcXFFBhwIBGWv3oGEI/zEKi3ITO6dgUFs4aIo98KDDDNMPds5WZKd2mHVsG4JHwHDDDNurc0vV+BloAahMuAl4s7EohRPrpt1BEaS8GfK6cDng7szQizCBDgfgmgi+LXZxmQroDIe9OvAAC6HorICxBZ9gACOOM9KFLwDhi4HT5xz/319fV1nJ+fvzlr/nGGkmdgoCCiw0MqM7qgYKnccPTbgoExPFM6hKWNESkC/pavZ6zMWaHt4tR4XPkqhulY8r+KwmdaCl6WDAO4+KtzFe49iYUW85HjU72ugM0Y8WoYDRtZZ5w3l3bVJpFQroDGr+I52Bd1eG2mHzlejwAAAwEc/FypCwg4XQ6H5xiiwtkBgtfX13FxcbHlJWC5qnMK+DkDA/V2RTpH+e69ZcBvAwYyVBopykwxawPuU5hX1l7FJJnC2Qfa75AT4McgVHdB0jOubgfI3LmTJ+XNCNRldVzxUdZG2VDYLmnOgGyXXgQKojQdGOi26THSrEzZJZ7sm06fcrI28wIwGMCzjBwo4HxU4bN8M0BQXmMQoXMKeCghAgQOGMyC3JnyZPRbgIEMCKjrqCPAP9JKY3LIkvOUuWqrdDpCeDbPxyRMl7ThrHvbpbc0bQ7rAEAF7JYo6KosnK4KrspboHG5Z05pd/iT66LiwSw+B7KPHci+Z9gqTCVrHN9HwwHRgfF+dem7v12OsW3x62oB9hBEK1c6oAkA4OLiYqzX6xQQIC08Z0BQTZadAckun7P0rwYDkUB2QCACBBo2I6eMM2Hi4s2EuDKrAgBm9igOPUfC0XVkF29mdWk+D0Wubas6wjf7QOWOD12aHWsq41NHXbDnwmnbs3B1dVPdV/WAMM5iUsqAuobbB/99hAFwDGl30urIR73OgMDFxYUFABcXF5t3HJ/O/Ae5iYHc7qx8o30GcI14Ix7GPAKEY0Dw8vKytUW8Tj5kua3AgPUF821HR+h3s/SvBAORUOVrd9+1ZBxFSn9J42TWlot/RtHNKIeu8lEQ5JTCoYVpV4FW1m4UZtf86XUGAlwYVXzRWanjEVLg7MJVdaXAVa9xjlyoWVzR+4gyD4irxyzMe9NH9ZtOv8ieZ8YDA4Czs7NwKICVP84ABUzR2n7No1rebCzBfc+EeFgxOwveAR1V2gAU8BYAHLDnAGE1Pe4Pjv9meGLm238VGMgQq2tAxwzv0fk68aqQ7FpZkSLhZ5Ugc/lzSiirr8w1fEyUtUUHfGXhumAJ5HiSn0cAVeOMFHGmNDNgEPUPFnyzStLxtePxGc9AVO9ZvBU5QODSOAbK8jQDXipFX4VzxhWuo0mCDgSoN4ABgZaL88bKOuP1CBxoPA4UZPXC/SWaZKh7E/CcAlcOzX/F4/ugfw0YyJRixzJUK0qf47qTfhRv5ztcd1yj7lkEiDrEeegAgaXpfDTNdiRVQllbRPcIVwHOSqDyN5mFH5GGjeKJ+FP5QK14fqbXSp16nwFf+4jLUQQIjolmjIvZeDp9OeNbPhwIYDDAil/BAH+LNKBc4Yp3fOv4kecM4HtWvhEAcHIuA/fZJEO3WZGSAoKoz8+C8Q79K8BApBA7gnYMP06zVLlVzOPckB2rSeOpFEcUdonbNSpj5m49Rnovod4pb1a/GfDKgEwXnKoyX6LglG+jo8pXJ40KaFT8rHGBOuEcHRsgmOlfWd6XGA4Rb0LxV0CAlXw0JKDfcDpQ6Biz5/H6MbbbXRWrDg3oBEOEc2FdmAxI6SRDfqYggPtPpic0DKe3D/785cFApfAjyxZUKcHZDuLid9/PAIEoHUXh+g13jBnBWQm/JXk9JGkeZzpO5RWogJjG1bXosvQ7lKW1FAjwNQSmAwMz8XXfaR5cn+nUnROunXwfCz8vyUdmWXbizZQeK/6uNyBT/Lw/gP5TADzH8o69AyC18J13oOMZUCCJOJBuVT/wEigo4DDr9XpTBk5TwTuuXXjcOz6eMfJ+WTDgLJ8OCJhR7ku+dUKmo1wz4eQEmJa54xGo8pAxUyWknVI8FgEKikDMrKWl11F5lyjyDuKv4nWCpIojAjUREMCZAUGVn+g+AmuZp6HbtzRN19f2aV29J+3Sn5Yq++x7BQI6P8DtFZCBAf6xkKbTJVbocMvjOZ6BIs+Ac99zGAYSDhQwTzpQ8PLyMsYYm+cMRHgVgpar0i0ZIOjQLwcGImFcWcnduF3YCllX6TlXpcbVFfBZnh1zI30WrNnB+a2UnZZxRlF+JFWeAQdoQFm94+zKvUTJdDtyFV+m8JQq4OAUcsRLLt4oPY6nq9AddeKIgI6L53ejTt3oez53JghG1j/vIaBeAJ002JEfCk71GoQ0eNigG4ZBAC8nrAhlwuZFY/z0VDCoQl506CPzBHQAQYd+KTDgBPA+QEBFlZCJLPMorkgAV9eZF4DJjX9V1hvnr0uRwo8U5LGQ61izYSuwU7Wx1lHlEag8MzN5z/LbScOBSxdXVkeuH6hAy8BJ9jyzqlweOoL00GDhPfpQt4/qd3x0hgR4tYB6ABgAMLmld2NsA1B8h3v+uyDe6b8BFARAAUcggtNFmPPz802eNH9KGVBgMMFDBfxcy97h11kjBPTLgIEMAERAwFkz+o0SV3jHuukAkQxMdEFNdM2M4darZrNjK6bRunBC1ZUhqodjo9k8doFAlkYVdrYDd8rQ4SOlJcovAq0z6XCYpe7PLshTnlZhW6XzK1MEUKvvIyCg7n63SkBBwBhvN/8ZY1tpK+nvhFV54z2e81ABE1v6Kisj4wllxr4BIFj6jqL9DDhOxKtpMiBwshjhI76dlW9HDwYqAKCCpyM0IoUfVbjmJcqPfsPfRghOO0UVXySo3FlRdJSnpUgyAjPHSPtSujNAYDaOXRRwld4MUOtY5Y5/OvyQ8aIDTs46i0DCEt5zgMDl95CAYN99agYIOJlXzQ2I9g/A92O8/VEQiN3wDhC4vf/5OvIMKK/qmL8DAm6zIVju/IzBQQQ8tAwab6bTHFiN9NMufHrUYCACApHiBEUegYgilDXbCTNlGDVeVjZ8w/nkeCJBpc875cgEYhamG/8hQcIxAJQOmJjpzE5xRucszQgou3edPLh0K8rSyZT/bF11+tSx0T55t+KZKD3+bgYI4JsMCIzhvZVugp5ODGTPgCp9fcYykcsTDUFkINBNQnQbFLGHw+koBwoccHDzBypPwRI6WjDggIDOWlWBkwmKygvgvqnyo/cVyo7idPFEwrRyjUbxZ+QYKoqnQqd4PlsXH0X7FvpLQGNGs4AsUvoVX0YAclawOEVS8e1Sa3vm+26+jhkI7IuWyiO+Vjlc7SHAzzg+niTXAWXR/CcdLlBgkFn4rtyRBxVpu2eIW5c3VjsdapyR7O8ahVyGXegowUAEBBwYUMqETia4o3cdSyv7vlvOKA33vZapit+FdYzUVUQZAMgEyqFoppMrdfJdeUiyOCq+y0BepvwrYOmspawcznqrytlxuWdtEAnhKlzWrzpp/Fso47sM8Gf8FQEBls18j2cgtvgj/tBnDhBUR8fCR9mydxGpFyKjzMvh0tT6rpYaav6XAoOjBANjxAwYCbh9CXaXfnYfveN4MiGbhVVybix+VwGXTLhm9ZDlx+VBkfAhgYBSJYCqvDqPkr6L4nPonvNQAUD3XPtJBwxEfDDTTjPfd5V/lrcun2agvQt28W0HAB0jzco5d6/1mC0h5OEAXiHALnQdZ68UKJPzCowxxsvLy9a97isQyUqONypzh+dmvXeuzJwHlisKBHRlAcIyT6uumQUERwcGnHBzYICpgwIzIa3pdg6OIxL4lSJ2nTYSQF0rKVMCnI/KslriwnXCdkYAvxd1LBB+F7VLR/kzRXzh8pGBxg5/dfg1owiMMr9wH6vKEz1zSnbGOxABMVcWl88OMHFpHKMHYSlAqcI5/nGy2G0kdHZ2tjW7HvWYTayreE+VPVv/unqAw2VUeeQYEETGVxSPk7lZf3HyUvcwcEsNOSynk/XRjI4GDDgkqoznLJxIWGWoPlPm/I3rCB3hGsVXMQ6XC2enwJU5M2DTpUgoV51Gv9E4dPvQQ9Esiq/iUkQexdMtt+vUTtnPptGxtKv+EPUtVayOhyoAFYVTquo7Kou2lQMDEVDnvB2af5l2yUtVdxEQiAwzVugadzWznutVgQEDAVb62dLBjqGj6Wb1onzj9A2nF/FoJOM7cpzrhucnRF6Cbn9ydBRgIGI+NybFiG0MDwiqtKKzE7rV+9lyZvcog2vMrkXvBLpDlJ38dd9Hz4/Rmsqoah8HejIkXlk8eh3xWof3NKyjTJlXeeZ+1xE6mdXtvo3i1PtsE5eIKgDQ8RAcCy+/BxCIjAkFAPxM3zNFsmuMt8YBDyfgW+1j4DsHDPh9VrZu+zEoQRjkOQMEnAb3odn+wflmxY97nn+wb0BwUDDAlZa5oZgZx9geQ3IKcLYyuh1spnIzpBk9zyyQGUslQ+gO5XIYjT9Drhynu5/tiO9JVV4yJaXPOEwECpxg4DgrCzoSuFE5FCxEoMCl3+kvWrZM4C3pJxUgcNcVaRlngMAx0r6BgNarOyIgwGF1Rn3kytZ0sZPf2dnZZptel89ol8EIBDg+6ugD3ftAeTxaPhjxaiWnXf6dLmAg8J6A4GBgIGI6BQCRV0ALqTMulwCCSHjqORNO2X3VmWfi4jzp+8hSVSAQhe+Ak8x60286AOajaDYPUV3yu32kgzCZIJ4Jq/zM/SGzlLPyZmXLQEGn7btgV3nUUSaso/IfO+2776jSc+CzO3Ebyhyka++VEGfH+GGAoYCA3ytfVLKSn3XlLk/oi3gIZYrqyaVfAQIt0ywg6NJBwIBjQN3OsjNp0MX7Xp2bvRBqOSuCjJip0zAZUzum6ZY3AgKZ5Z8p+Qx4HYPSZ+oAmooqxV9ZtLOg1AnoTAhp2Gpt88w7LYt7F4XvgIyu4KoEPqdTPXf3x8a3H0kRmKwAJlvMbs296w+svDptr4CA01b5W7VhJs/gnYjqh68VrGR85/RGFobT4TCs+DU/UbpH7RnIgIDuXKVAoFPxs3mpnqkQqxjXMY1ez+Qrs7aUFKTouwwIdPIyS7+ScI3qolOGCInPKt/IWlNB7CwRvlYezPhCv6soqo8qfs6vi6vTp5yV5OLt5MN92/FIHILeK+2Ix9xeAi4fAAIODEd5Zle8y09EDDycHMvi3MWgYS8H6sZZ4pV3IIq/6o8uj8iXAoNIV3X7woeCgQwI6I8tqgmDkaXL9B7KThu5OrtyR1Qpj0qJK7Mpg2pHmhGYnG834SdivBkk/F40o6Dcu4pHugoqet7hwS7foJ3RRq7fRPFWyjmyQDh+F6aymjT+WUAdKQWWHdUa738zafky2eRAgda7U8SV/Btj282uw7rRMFhkxPC9lo/jUrc+X0fANKMlfZ31mCrqGYraUc9L0/kwMBAhT/2pBQ8RgHRryWrHqUr4u0rNkCXn2yn2iEFUiFVgwCnwqANoR8gUcgak3HdaFo5by61xzyDRj6KoXN3yz5BD5Vl9aLt109V2ZKslsioiZd0BtBwPx1cBQBeOv8mUSXS4OtC925WiJVmcpyz/x0pL+5sDWdk8AUeZUnXt2OVztb7dZkJRmbLyal5dWRhIK1ipVmQ5eeLkwVJAoLyf9VdNp0PvDgY4o27JoAIBgAEQM1y2/3QHCDhEHOVVn7tlNk6Icb61Q4wRu8mYGTV8prSUyZyAdnXkgAWX14ENLosDBC6uY6NKGETvMrCIs+OBDnEdup+XgOcduND+4RRnBgIisDtG/Lc1VcIZTy0B6S5P0YoiBQIMUtx3KtRnBfKx0Wx/c7Ktc2h6rr2drNClep265jkICgoimaV50DIqYMlkH88dcLsn8uTHTp93wLySJ1l8+h33V+VtF2dE7woGlKF0xyp3RMg/QqFRxWaM4fJY5T1DziA3i5Y7Q4Vc1+v1OD8/3xJwrAAyBa5l1/sKEER5WkqRAjpW6lgV0fOMzzrCWr9xY5JOESIdJ2xw7vA2g3P0U1bEHK/7UYwqZM6jgoZIoDvBxUJOx6+5njLjwIEpBbtL2uhXIVefXQCQgcpMJmmYrJ+AVOk6GRa9q+LStKu4z87++6dB1Uc6Tp+VpwtWOkChkvlRHrO8OHo3MBAJG54foH+5wvdq7XAn5/iXoHrXIfg+yruucoiE5hKFx2XTvRNYkOm3EZNEHScCAlm9VugyEvpKXaF7bNQBlLPhHTkF7hRblp8K0LByZf7WybvOQwdixfv6+vrmr3EMDPR7VshuiRbXA9eF8mdkCbk6UwUV8XdGvyLfRqTgoAMClCLA5+Kv8uDa26Xh4sj6ROXSV75ygAbxO+8AXytfRTw8Azw7gKBTvzP0LmAgAgI8SVDBgJIDAo75XNoZSJhFxwpk3H7cY4wtFJmtCVeXplo3LOB0OaNb3qhMFjFk1oG13jm865x85raq2uZXo0ywVR3O8eBMJ2VwCIrWZlfxKi8DyHK/1IP39wABAKzX//UIvLy8lKAA3+I7CFfwWMYvHV5CuTiPrh5dfangj77Pnn8ELTF6lGZBgFNGkSHilKrj0agMvCSR+T6SKRUQ6NRBpPw5HZa3Dly4OqsAAael7yvKdF5236W9g4FKker8AHzHCm+Mt2N91TyBqjNr3iLFr3l3cxs+ffr0Zo5Dd18E/ekG/3kL1/ieJ4SNEa8z5TQyRugIugrFus2dcI68Ar86MYDUZxlxe2RxZEAL9wwGo/AuT8zPzK+s+K+ursbl5eW4urqy/RNpgF9xBs/iYGAwxrAAAPcKhjNwqiC4W/9RPSDNmUmFh6YlgMDx3gwA4LTdfQcE6DM3DyXy8LDM1/QcuMkokmecnn7DsjCK09VfBgi0HLuSK1ekeyp6V8+AU6TqFdBKxFmBAKwLVToVEIg6Ak9M0rMCAc775eXlm3I4YOAYlAEAysTC9Pn5eby8vGyE5+vrazmLVVFypvDdN1FHj8KqgHFtdmy0VIEwZUqd08C1EwzKixx3JajYVRl5B/Q5p8e8fHl5uVH+V1dX4/r6eut8fn4+Li8vtzwDrOgdz+KsHgPE8fLysskLg3rwd9SPVRYwMEa+9LuIFx2o5ueZkjsG2oWPu8o/AwRdo8vFlxkvTr4xj+De5TGLP8pLR+bhuQ7bgthQcx67ChC4tDifs3yXlb/LL3sFA6psnUKNgIBS1zOAb6P8uPyxwlbl74YEYDlBgJ6fn29ZUQwUdBdFtawgLJ+fn8fz8/NYrVabg0EEBGq33vk6QrlcB8gTf5cBAQYEmqYDZpq/YxCqu4KCCBBwHUV16UAp7juW1xh+PgkDPAc6mK/hBcBxe3s7bm5uxs3Nzbi7uxtXV1fj5uZmw8fsGQCIxbFarTZ8/PT0tHm2Wq3eAAakr8MJ6Mtcd9q3uawsnOF90HcVKGBAwPFpnXcVxiEoM3qq55FRpLLYlb8C/JFijvKGuneWP8tL135ZvNFcFw5XAT8nRyPwhHrUdCJAMENdkFPlsUPvPkwQrRhwzKeWv4KAaOZylA+8V/e/ggKdB8BDAQwEICj5GR/8nMddQa+vrxsQ8PT0NJ6ensbj4+N4fHwcDw8Pm+9Xq9UmzMvLyzg/P98Iv2w+whjbbnxVUNGcA0ezTFtZtockp1gqcpZ2J40ZyoCV3ld5V7DhwDh49ObmZtze3o67u7vN8eXLlw04YB52YAA8DDALPgZPr1arzTv+jr1eOqmQ+3wEZCNlFAGATHG5uqtA7TGT8qpeO9mnwMDFydeVvNWzi5M9XAB1alkjHf0ZkbPO3XNXjszDyvE7UKgTCF0etIwad5Y3JlXsMwZM9H2lM0B7AwNq7ThLm63xMbYR/RhjS+nzma2IzKWoStB1CL5WQOCGA+A6vbm5GdfX15t7BQrX19cbK+vm5mbzDuVer/87L2C1Wm0AwP39/fj+/fv4/v37G08J502FaEZuIg6eo74Q9wzTalvzOaJjE6gzHasCSy5eFZ6VgNXnmSVbCQgV8srXPC8AQODLly+b488//xxfvnzZ4l8AWqTpvFpPT0/j4eHhzcHg4OnpacPHOpygdQ3+dbO3tT5VeUdAILLMqvdZe/0KFHkA3NCoUlY3Wr+ODzOQwRMGAQhc27JuYHLDsNVwaqbw+Rvub6xHHCDgoQKtazZYnRyJ0tZ8an46NAsiQB8ygZAPkAMB7uC5Alknz/KR5YnfsQV1fX1tlTwregUCd3d34/Pnz+Pu7m4DHgAI1uv1eHl52QjP79+/j2/fvm2+idAb8sbAiOtQr9X610mH7M7KFA3u9Rx1cg3rkP6hSDuSQ+NZOOa3LJ7oWfWN8nRH8fN11t90oiAPC3z+/Hl8+fJl/PXXX+M///nP+OOPP8bd3d24vb3dAr3MM/BuweqHVwv8/PXr1809zuhnT09PW2V2Y/cMBByfOcst8wZ0v3dy5dB8u5Qy/mA+0b6c9dcMMHHYSD4oH3eHQJVYjygoYIMH52gCdoe036thBVJAxd4tPUdpcDp8PQMCkJelIGIvYCCyuJXxxng78UeVfjY/wAlxZbIIBGTAQL0CUPYQiCxEAQbY0rq+vh63t7fjy5cv448//tgAgtvb2w0YGGOM5+fn8fDwMO7v7zfPUQZYW7Ca3MQoJp1ZDlLlr23k6i9jnKz+QBXKPXbqdBgu02wH5TjG8MCJz/gG5xneVo+cGyYAP8M78Mcff2yOz58/b4YL2DvAE/1g4cPLdX9/v+kP6EPIMy9FfH5+DifXOh6P6s+Bpw7AygAB1zm++ZV4WKkCiZHSHqNW/JxGlKZ7342Xw3IcuvqMrzlOVvgZAOi2bwRkUJcsb52MjLwCETiIZHWHdgGyex0mwDkTUmppAb3hHE0C0rQiEIBrNzcgEpR85mECFp58zQeGDuB6hbX1+fPnjUCFZ+D5+Xlrm0sISHgLHh8fx/X19QYUYPKVdlq3DIfP/Dx6VyHWrD653qM4fjXrKgJC7hrfK2UdVkFXRg4AuDFex99Ru/FwHXgWgADH7e3t5oDHKvIOYMIge74UKKAfPT4+tuoPzzuWlOOvyDOQeQCydjwmQFDxW1f+Kq9w/J26ydKP8oP4GEzPlGmMbSDgeF3ThD7hdwq2qz4PcrJzjHhSoitTVpeqy2YAQWZUzPLtzmDAMYRjQP0WlHVgXGtaWllRR3Djp24uA2+GVB3OytKhBFhW7BlYr3+6RXkWNltqbF1FnVbrTutIPQozky2ztowsiWMRlvsgroPIuqnCuzBOqUSAlt/PHEzgeRBP3s14lkEATyJkfgRg17kEHI4BtgKgaLmY1lcGcKv65zhmgICTL8cACJam7eQgz93SttG6yZRbdO/4MQMCrs9oeJXjbqgAcanHFOGc4u4AAm3/KIyGxzFjJFXxVnmL4u/yz96GCarDKbUIACDOqCO6xquAQOYV0LFVBwzcjm08TADhimu2rFiIZp4HFr4QwNr4OoFyDO8pUCDghKHWYYTUI6Xj4l4qyI+RojKPEY/18X2kVKJ3SJPTVn527zkcE4NJ7B3APMtgAENirNB1kyLEw5sKKcDWvDgFw8NgXNeZMq/aSdPKKAICUZv8KnxbyV+nTMfYBmhj5GCgo0CZVIZnYEzjivLtysDlx4TEzhwBB8qj8mSAQN+5+B1V7yrgH4GKJTy7ExhwiDBrQEcRAOD4I5TuBCODAM1LBQJ0JYHbXdCNwSoQUKGKvETpKOjgfEeCtbKqZoCAa9dMEWpavwJ1UDfIdT6nGJwQ0fScAImskggIdARvpLyUX3VSLDwCDAh0Ey1eEow2dyCVVwGx0tfhv6qumV9ZUUVC25U9AqmVgvtVQYDeV7IY8pgVDu5xrpT1LKkMyoy8DBC4f8IgTgBUt0KhKkMFBpBGFQ+eZwYBf7eUzzKed3mtaC/DBF0QECE1rqRPn35uBoLvKwGq6Ud5cf8ViDYOcsAg8gqohaVhkF8dmoh2NYQVFgEBV398HU0+dNfKmBk5RZjFd2xUAYJIQMzUi3sedfiKnyNA4ITKGNuzmBEXeJz3GACf8qZDCmLd/0MQN+/3ocsNeb6L22SI+yaEtlqpLEi5zA4UuDZdwocqY46Funlx4DWTjRlPu36OOPW7DjDoygqNi71hCgQYEIyxPaGadYeLV6kDArQ8GZ8wL0VAIAof6TmEcTohus6MFUd7HybQsW5uMKVMGaExAQ6qyu+iYWaiyFJ3e7Trd7rKgGdgq0fAMbTbytiN5zHxCgzUH5/1nbOIOoLSdfrsOjofI82An66lwLyZlX1W+bs0OR0VOtxnEDf4jcHA1dXVZvkrAwJsOKQ8yRMIMUQAMJABAbbqnUxwa7e5PBEocHUatc0sLx4z7zpyPOPkXsRTTkFXwN4pGeXryPqNQEAGYpiP3XyUMbyhCf7i3Spd/WX3rjwVKX8rOEF8EQB1ddmRVZFXoJv3xWCAGw/nKsOZonKFqFB6xkSRYAWqdB4DBw50h0FdQcACVddmO6GvwxSdDsvkOlU0Z6B6xnUcKb6MuSqQcCwUIWR93rV0qnQyioS3AudMcLv8M3/rdwwIeCMt9WypV0t5k9u9s/zXKafz8/NNGF5ZE8kRBwhc+fmcKSa9z+L9lSjiJSdTqnbkbzrkFFplvEWWryuTW/GlXmflBTUkXfwuX53vmLL4kb7mx8nrCvRy27h66vSPit7lR0VMKDx31EyIOKQ6Qx2Fyt/xeL5z47MLH+OtPGFQXa0sSF0eVEB28jrGtlcA9RINuWR1GAGCijoegSj+Y6FZZZ91MFfPGWUWXMUPVRuu1+stwcPkPGM4FOjyj4p0R8yOwndbj+vEWwwtsKWk1hsLsY4x4AAEt3VH4R8z3zrKjJ5sSEDbr7OfC9Jz1xxv1V5RfHwfgUHlXwYJyPPZ2fZPj/j/LsxjDhhF6TtS/o/K5RQ8g4LMmHJh35tH3w0MsMLSzh5NJlIBmwEGrizH7CoMMsSrk/bcJkQMAnjCIAtRnYmtHVGRukPsETBSqvYa0HrL6iBi/lmlv8Sq+GjKAEHHI4PrrhWlQiYCAfwsSpfvKyvMWYbO5aqrDLD6RZcFRq5WJ6h1bJeBBZd1jLfu3aguOyAuqjuun267HTMPK2WgwAE6kBpmkVzmdJRUzjq5rH0uM5JAOnykw7w82XqMsZkwCADA37M+cMMJWb70XSQ/Mmud5zW49DNDi59z/VYybBacjbHnHQj1GhlBJSBz1YEwmSJzyt4JbEVi/B13GAUAOgO7OtyqgDG2GYHrgWlGcYMypu7WMX/fFbZOwP5qVHWmCKwhbNZ5XV9wQCAaJuJw3KEjL5CmFZWB+VwPt7KFhbHOVdG0tawMOvjZDLHQywRx1E6OKjDr0uf7YyHHVxGwdPJYZYHK2ii96JnKYvettmUnXpACZ13tgrjVKwAZyfUDingZ6Su/usmIldxEuhy/AoJIaUdgIFPyu8rnvS8tVHIK2sUTCdgMqTpSAFDFowIyW/anyt5NAHQrAhTRuQ6qZciUNzOsMnX3cPUfodsKFVd0zKAhEqzcTk7QuevM4ukAAU5PO30XrGk86gVQfmVPlu6pwWVjoQrSnUPdwe8RRu9dGbTPRLxXtZO779SjKohj4+GKb7tAgIGmyoausub4I9lWyRDXjto/3FAUG1s8udUR/xirUybOszO+IuDCxP0GZdA5MtrXVbbgnWsfVf7aB2bk9V6HCSpmjFB9pBD5rNcar1aWggKtRDQMC2kHCNTyj2b+u/BcPiyz0jphYVkp7THGG2aK3E4zyF+p6hx8nyFVbp9jpq5AVcrqMouva8FxXLNlcPMEMlCreYmAvip//q2x/pUQAloP5vcx3m7r6hRDxZMVEFBliOuqbo8RCIAqvnV8FcmETLYirSwfrt7d8y7A0HTdpG8GA+yFcuVFPgAIxhhvhr5Ypir/R4AA5NLHc15Sq6A60oGq5Lk8+lzz70BBh/a6tJCvHRNlqKbT6TSMiz/r/C6+jsBUi6lSEjouyugbgtAJR7WaOJ+IN2PKCgR0BKG2w4wi17CaxjEJ1cpCUT7OQI8DSY66gKMCwC4dBwKYb3mnS8fPY7wdmsMz5lcof/y+GH8txIFfFq9Wq82fDfl/BW4PAldOBppZnUZ1pryucsD1AxWgxwgEHEjSto94SmUCA7IZAOraxH1f9Rl+n/XFzGjTPPAkwUhOZ4DAlbPiAQUCKjNYXnO+OrylvBjJZgcENI6K9v5vgugd7p2FjgKosncFc/cRANEOw9fMYDjrGKrbmx3EHSraYAUEYQohCiGJM6/PVuGI/GIiTMRE2sGjSUFOWbt4nWB05MK7Z8cmVJUqgBfVk/uOz1XcziKI2so9Y35m/uU/b+rumLz8FTzCyp77He8lwL/ffnh42Pyy+OvXr+Pbt2+b3xgDGDw+PlpQwP2F+Taqc67PiPddPXVAAdfjsfMoKAICGZDNDAVHzrp0sr5SmDN9xpVNvWhumADx83cvLy9W7uOeAQHqw83bqSgLkwGh6MhkO66jutP7SnYr7XWYwHUyJc1sBAL02yieqFJV2fO1xs1MEo3n6uQT/uPg+fn5eHx83Bq/4kmE6/V68+93/Pb18fFxy4p6enraCEkFAhnad9a/AwK7WLQZZcI5Y+Jjo8g64fegJfwaCWSe2+K+07RdWgpodXMs3WUQs7Ch6MF/Y/zXUsL79Xq9AQjg2fv7+/Ht27fN+evXr+Off/4Zf//99/j+/fv4/v37uL+/H/f391t8zgAYoFeBr+PVTEBG1xUgiNpzCf8fijKF4hSC47+OXMjqxSlxTlPjqGQAy2CcGRAoOAAgALFC52/47ACD7oIZkQJWDtPhHdZ1lfExxluvQMWnUbt1Ze/OYCCybJQJu8zQLSzfR+g4GgPlfEModyZD8darLj4Wnrz0hcHA/f39BgSwkNR5AyiXjl9xejrxJxKQXLdab9k5qvulwvqYAEEXCEWKmjtaxpdRnG6ZUSa4Xf4jy0eHCdykwJeXl42bH16n5+fncXl5uQkPngSAvb+/31j/OMMzAO8AewUQP0AwAC+8D26IIFPanbZx9ZjFrYI2iv8YKJOLlYyr+EnDdQFSZIl26jKL28lyXgLudiKE/D0//7nNNf+0yOkEVtAujxjjj+qso9RdmI4BoaR8WhnLs/y712ECJmcFZegx65RZuhEyzoDAGD/HR+Hah5CCsnfzA7gsPH7K27GuVqutbV1h+UH4Qijq+CmP32X1iry7euygTofmnVKJ8qBtlDFoJhyOid7TIuzUIZ7hXAlvreNM6TG/gkcfHx+3lg+C/3nTLOTv9fV1rFarzfAAjm/fvm0OAIFv3769Uf4YJmB+d8BX8875d8+jMC5sFiZTfF2F+JEU9dWIsjrs9sluHWSGQWZM6NnJcbX0nddgvV5vdriE1wBLDFWW6zX3Fc6nTtieoQgAdeu9+nYJoMjoXXcgzJBopMQyxtPCK+PwM73W/DCKfH5+HhcXFxu3Pyt/9QrA6l+tVuPi4mI8Pj5uXLGs7Pn/BmP8V+CqNwCCMRP2OsknsphmrfusvjJAoHUYKTUOu2+m3RdVZc/CRUAnqjdXj3qv/cX1n8wycLwKgAq+e3h4eAMCwPf8X40IDGB4QAEBvAI8/MVzZBzwrWRDpsy5LhScunpdSscKZDsgAGfHUxWpPF4KihR0ZWWIZJIz7M7OzkLvAPiLPQkaXl384HX2nunkwmw1QVbuXWipzKz6jqMP2Y44YwgQN5JbKsffRJQhZsQBtxEjz0+fPm0BAbamICwx8erp6cn+w+D6+npjFWGLYvYOQPBCUPJEKi5fVkbu2BFTOmXkBFqkBCul6NCzxhm9OxahWgml6NmSdDptinMFBDRejoP5gpU8gMDDw8MGmMJLAPf/zc3NeHh42AIDIIABDBNgqIA9BHiG1QQKABQIZJPX9iFEo7C78OOhgeyMByD7Zp/5makTlUfuHvIYFFnzmXdgjO0hW54bwHE8Pz9v0uDhBITX4QZntO1CkcHlAG5F/L3ywUyeF4EBZ4VWCoS/d/FEwlD3CugAg0iAwn3kLP7VarUFBBgE8Hat0SZD+HER/x9ehSsLYQUEGbPpfAYuZ6Q0VFlUKDwDA2p5qcXfyc+xAAHQLA9zOPUK7GIxRe8iHq7CKE/rjoJQ7k9PT3ZrbTdMgKEFzAcAKODr79+/v+Hr6FfG2s+zuulasRmY6tRnt81/BXLekkPlP6u7SOa4vS/cmefFuNVe4DkFGy5NeBjAo9AXiAv57VAFaCt+0veVbnXxLWnzvfy1sFIk0fMxtv/shAKwUkaj8L3mI2okFSos4M7Ozt5sAsSC9PLycjw9PYUbD+kyF/yjAGAAglbnDrC3QecOdBswE3hOIC4lRZxVmu+Vj32SUwBLlHkHwTuAFgGJLgDIQAuDAVg/POyFyYAAqvxLY+VV7is82TA6dEWMLh1E3jLwqnWj165+I77UZ1mdRs8qof4RVPFrBXiydxUtBbpKHV2h4/r8jOcLACzoUlr+BwbyDqPu06dPG2PP6SF4hnWy+Bg/JxDCewAvQWf1AagztIA8KQjISNvHtfVM20+DgcqSjFBcBAq0cOv19qQNFLgzq9Mpf37HYEMt7NfX13FxcbGZE6D/KHC7DzJD8jIu/qER/7yIx2rVSxCNqTpyG4dEQqEjCB2qdIoG5yjNYwYCXStwadxZJ8Y7FSIz/OzixTMnEHhYCvy9Wq3G9fX1eHh42Poxkf5kC32Whxzg+nfzAXj+y6w7lfOuyyxRHlef/F3GjxwmSjdqr+rZISjjXVd3eq98uqRcru5m44kUvv4fg2WsAgBePst/nUV+2MPLaUbp81wbrjPwFxuwWg9LyYH9zndMClqXAsApMJAhuuhQMDDG240anKLBO965yS1FcuQQk95Hs0ZfXl7eMN/Z2dmWR8AhVmz0AsHKwwTKsGN4QAAXqw4fuDJ3LS5uO3fN8UV1GzFZdq/PD0mZJRjVRUdBqAXrCHFFgEDjqeLvCAUAZ17Cx96o6Adcal2NMTYWvrr+2QOgvIrwEMxqXWk5OmXj8vG98p5OuHXk0ovaYKlg3TdV7d4BAtG7JfmIDLosXGVAVv+BcSCAjS7dhAh8G1nxkRE7xs/JuAyMufxaH/qM+2K3Lqv6dDrN6TamGd5tg4HM+lcE55SmggEmt/kInzVcxfgcRq/VooBwRty6HIXzzlYTf6/eAUwodNYXttAEs7KQVkDw/Py8+WYXi0uFX1QfmTXlLP2O5aXK8JioK8yqOumEzzpsJ+6s80dKEffs+sTKGef9Yv4GcVj+3wD4l89jbAMBKH6e88PXTM44UKqEX8SvmkaHjgUEVJT1L33ekZsRqVWtaahRp2HdfQUC2JhiAAt5qrtrMhgAAFblHrWrKmP0E+5L0TJD7S/6zgECrjfWqQw6uD47RkD3eUSLPAOocDd2ngECkKsg11jakVnBVIWuUFcECrji2UpygIYBARh4tVqNy8vLsVqttoAAbwPLDMqzvnW3ts66bFe2SPl3rAun9Lm+qrrPLO1jEKxLAIB7VgHQmXi77109qtDQA/0MfMTWPARx9NMXEOKIJrAiHzyeqkCga/1U9ZOVv4pLARX39areD0lV/62AwK5eAVX+2pZL+rbKUpahbDip/ORJrzc3N1uTtXWLbQwP8L4DAKmYSI733F94MiH4mlfYROUA2GXA0OFnrYsuCM1AwpJ2XuwZ0G0eM0CgSpUVLyY7OcsmQvXOXaJ51WvXOGrNcFw8fsnx8XiRAiPMOdDNiDBWi82MeHUBj8m6H7xEf3pDHlRBKAjSayanXBwYiIBARC4/Fbo9dsrqYImwxvNIkEYgK7LCIiDAY/8QcOh38IK59dgZKVhQAZhZkRUgrRTLEiHHvBj1n1+RXN67PNWpRydDHBjoxsVnEHQEgADPs8I9T3ZVIMBgAHGxXgEogMwFn3NenJebvd0MCjpljLwB7nu0lwszC7Iir0eXpsFANCzgQAFbHlyZLJDYiqgK5Biwsoo5XnetceHQlQZKKjgvLi62ZlEzGLi+vt7appjLAGZ1G7QAKPCkwmxM1OW3Y4lFXoEOGPhVBekMdcBQR4niO8Q109nVinXxuLYEIABPq0vz7Oxs4yXQMujcHnbB4j2/Y/CB91U/4jpxZePnfN0VfBH4j+THsVFm6DBFgGdfedDDKcaOFezi5PkAPAyA4VYeEuCDV24BPCAfkJ/QPZxnzqfyLfM8gwQYeo43Uec6hNABB65Pc3/O6rfLu11+2CsYUG8Bj0kqGODK0Up0hVY06lB+BQScguPw2iAuLpdnhGVLHmXnGdkYh1KBjHA6eZDHYhUEREqc8xwJv6gOsjgz61bradYC+RUoKkdkLXE4J6BnlZD7PuMHbW+EVze/xq2erzF+Dpe5OTP8HXvTKusoA/EqCDtekAgscDhXH5oHfXeM/OvyVxlJ/G5pmhGv82z7WS+Bm4DNq7GcR0APbKMNnoTcZIDLhhTzBRtZnD/wLw8nIIx+D2IPWdc74OrE8euStpsNt3jOgDv4XTR/gJXoTGUh/eg+EsZMGSjgxpi1HFSIgFkUCOAnMLoelocLeHY2r9Meo15SqOXke4douS52FXpRvPzuGAXrGDnvZHlWnnFxMG8sLX/Fg5FyjABt1e9YiELBw83KblOOWwW8Gzd1QAVn7XcqTLtg2PEhzhUQwFmFMcdzKOrIoayfL0nPHSrvkWbF55E8RZwAA1D6cP9Hyl/3x2CvVSaLWb7qfCw2Uhmo8D3HhfgZHCwFBJHccMCA69PRUnm+eM6AE4Bs8SoDsbsG7ko3uRBhUahIoM1Sx5rgfGteMtKOAKbjCVs4uB5AyqxuWCBCsxlzuI4ZWT2z9RsxWwQADi1MmZaW1Qk0dz0TfwbiMqXl8ub4mvugCkgXBgIV4XSp4Rhj638bPOnQTcLlfCpQYUWSldVZZt1D6yhrGwfqj5WickR5nuFJBwCcEajKKQIErt45Xl4pcHNzM+7u7t4cvJEbPAa8HHaMsTUkxfLXLYnlCdrr9U+DTPPH9YHvcB5j28utgEDjyoYKVNdpPWbel0ynzQCDKc9A1elYOLgC8xnXDCTYzaiVWRWIBYs+R3yVsOB01FLJOpNLW5EjDx+gvPwdI1RdsuU8AloeJRW2Wga9dghUO7jWFd/rtcvHocnxnoIjvXdgRjulgleNRzu5I/c8qv+qLp0V5zxzyl8cHt/zHu3cJzgfrs9HSj7qcxmPal/MZNC+yAnVQ1EHZFZ8oe2bpcXpZUBAAWCkrLJ0eAUBPAJfvnx5c8AroCCAlbT+gdb9OTOaoB0BY/Zqj/FzfxheOus8ZRw+mzeT8T/ajesV/ZXv3fdL+kUbDLhE1B2SzbbMGEWRKOKMkM4SUsHuBL1TBpEC5XBMjA55J6sxxta9c4NGwwAcb1Y+zaN2bGW4DgjQ+COl6BRWB0h9FHUE6hixUnbPOhaks4iidDNLK8pPFj8ra/XMqWJn9+gY23wMEKt9n8E7p5mVkc9R+Tjf7KXoWEVORnT5L+LxQ9Kufcf1wahfRmDZzbBnjxAmoHJdsTHk0sGB+QLX19fj7u5ufP78efzxxx/jzz//HP/5z3/GH3/8Mf74449xe3u7AQLs5WIrH5OxsXU2/qLJf9LkpdvqhY3yOMbYzB1Yr9dvJsYCjOjkWSezVS6ifpyc5vbS1WQREHDvujw8BQY4Y8woFRBgYkUfgYAx3k50ygqf5Xf2HX8z0xEdaGHUivKh4ygQ4HDR5BRedREpW2WqDAxEpEJarx0g4Dpw4Q9JDgRlSgs0k28HqjIgqWEVCLjnHctvRgi49DS/rh9wf1crUn/7inedOnfveAa4KrQKBETxV/XYje/YKDO4IlCQKWoFAjr/C2lhpn2UJsfL97ycEMMDAAJ//fXX+OuvvzaAAF4BtdBZsUc/1MJPtRgQ4PvIKzbG2Jowy8AZxHqQ67ajNxQIcH1rXfEQMnuSI5mB8ywPLxom6Cams45Bymg8Y5OZyo2JO8HF+XP3mWXl3s82bmS9MShgBe82sHDlUUWgYMlZZq4MM0yq4TUfjpwijOI6FHVAElPGZxyfIwekInBZAaYMVDkrwykzvXZxufsIBLo5Pspj0VygSPlofWTfZECg0x+iOI+Zun2oAwC7gECBAJ7xPBKcI5mmOkLjxRDB7e3txivwn//8Z/z111/jf/7nf7bAANLln2etVquNR4BBwPfv3zdAQH+oxbu78pg/D1XrKgIuK3+jHrTOpEEHBNwcOsQFg1LbDMds345o0V8LI8WFAqhbEoyiigzPeLhB9zPXwmaWT/SusqwiMMDXXStSBT/KwW5YblgHlsCIqCeE0QmaTgh2ysLfuzIoZcpSv9F6OCZyFuq+gYoDAi4feN+NU8O6tPhQvuOwPGF1xnrgtB3QV2GJvq/AVYEGwrp7Ho/luqiAgOsPnTaPQMaxUYfPsrBjxMBrDL8RDy8TZ0CA9fdnZ2cbYw5t58AAx4u9BBgMsGfgr7/+Gl++fNl4BX78+O+fN8cYY7VajfV6vTU0ACDw7du38f379w0oeHh4ePOLbVWy4FXM60I9aP0oTzG/VwpZjTukqxv06XwI18+je34+Q3v9a6HbyYwb33VM9gwwU7vxQlAGCiIlp8rJWQqurNG7yhJx3zr3Kq6dEteJObzpBeKdbXCnrDMhyudM6GQWx6EFasSveMdU5TUCV0qzArqKQ3m4o9DgWnS0FAi4fj2GX02ggl8nm2l8WboolzvrtYar6ND8WdE+AKvjxwhkartlu8qu1/EYuv6B1YELgIGbm5vx+fPn8eXLl/Hnn39uPAR//vnn+Pz587i8vBxjjM0WwwAdmCgIj8C3b982BwMB3eYd3gWtD+zKic3h2FBVA6wLLh0pEOA/NeoP7WAgo09HnodOv8hoamlhNLOUx5CyTs3MEwmOMbY9CJmw6HoG+H5WSDgBnAGByhrUcrIwdeVkwa55YpDRKcvsvQIoLQuuMysqi+ejKQIEY/Q6jev8EV/uQ4BrXJ14nYfAxYN3EbCOeNiBAZYLY2xPPlRXs24/rmlpHI4vHa/ti8feK96ltC8+GqMPmLhtWVHxn1t1rxQGDWhjTC7k4V41AnUlAU8i/PLly/j8+fO4u7vbWO08Vh4BgX/++WcLCGACIS8vBGBxRgzPgXCGA8v/qA511ZdO0B1jGwjwz5jYqMbqCKQHD3EE7Hbh1TYYcB2bjwgkaGY76eBbnZyoAo7j7aIhVk56zr53z6tvQIwCz868ByUDU8wELExRF+rKcvljZszKmt076wHfRYeL5xAUWbZjzAEfdw1igRcpO/22Y53PAEwVbCyQNM4uCMj6vU4mAz/C28dhYeVoH+Z0xng7oTYDm8izgp2sHiOQn9E+lfIu5JSAlr9Lrn8rEGALXn8pzHJZ1/XDwj47O9vyEHC8bhti3UuAf+4GvsDEwaenp/Hw8LAZFgAQwDWAAJYTIn86V2CMn6siGORAEbMRmwFphFG55/hRt+znP97CM4AyPz8/b+oYYEblV5TODLXBgAoB959pRSxs/bPSUrSkxFaGdl4WFJH1kNGsh2FWaERpom4yQDDG9p8SOT9gDHzLACHKPwMArr+oHE45qJCJrGNniWbxH4Kc8sR9lbes3ErO2pj1QszkKwOUmaCoQLP2Azf8p+mpt4+f89psN0FrDA8EorFnzqsCu075IoAVgbp/C0X1yHyE9tJfsrOXQEEgFC3+r4Kx/LOzsy2XvOMdx7dQxpgj8Pz8vJkUCADw9evX8fXr1/HPP/9sgMDXr1/H9+/fN/ME9O+vuoRbZaj2dd6PA8Qz/GeNH/ak6S+b8cOly8vLjcyHEQiw4jwDXG8dA8NRGwyo8ldAoGPhKAQqkGdeuorjyYPcGNwIPH7D7iLt/EuRvlOGnXCR1amgxhFPEmRia5/HjbheuR4437iPhluiTTAipOksCK33Y/MEZDQL7iIggHNVbqeoqu+zPEbCNHpXlSujzApy7R5Z/Cg7ywSXlqaraXfAUdW+rh05rJMnh+TpJUZItwyurmCs8Jg+Dv6jIMtsWNv4Qyss97Ozs/H4+DjG8P+ggULVSYDX19cb8Hh1dTXW6/VmSODr16/j77//Hn///ff4559/xtevX7fmCvDwgAIB5EMVO8tSHiLAmeW08qYDGHxmch42gAH1DiDdMcZmBQR74vZNU54BBQQ6Xqju6mosmyuKlSYrep0AhQrvCrwlpEIpUrYZCNB8sXdjjLE19uNc+Fp3LBAjt292z+RABJcnCst1775XxeGOQ1JkDVb54rbr8psDll1LX3mF30VhovfRO8fTGQ+p4HNjoPhGt3atyqqkyt/xT/TMlc+lG33n2vkYgYCTQS5MxnOOn1mWKxjQXQD1D6zwBqxWq/H4+PjGmIOSZSOF9wf49u3buL293VjFr6+v4+HhYQM4sHwQwwH/93//N/7+++8NGOD5Ac4jgHw6gjzEBls8Vo864X4CPo/+KKv1z3PD2MMGPcpeF95hEWnws2p+Hqc7ox+nwICbMMggQBN2Ln1UCBNbumw9KFJT64IbaReFs4syUC9ABAaQX55cxeVhgKP1qWhTn2n+O5aXeleQXiQIK6HN98cMBDLB+J5pgzodOHrnwmdAgL/JlEamVBUQ8IG+yWvM2aWaCUkllRGaNj+bAb5czgwQuXSOlbpAh59FdeaUF2SQTvC7u7uzPwga4+f4OjwCqvDVu4u0X15etpYEXl1dbZTy4+PjuLm52ex+CdBwf3+/NTTAwwI6WbADBLhO1DhDuXT4lkEvDxe4tJT/2DOgcyhgcAMQnZ2dbU3cVP0ya9BlNL2agIEA7x/ArgtWKtrBWfHhfoyfm1agQqGs4BngMSe1qndRPJWS0O+4PhwQ4HpQd06E1BgIOdDkrDK10Fx++azpReXvWM4uzciSO2ahqlQBnxmUHX2bWZ0zngB918lfBFTZ2uF4IuuDhR7PAxjjLWBAnB1A0CHkKQMELH+ismTtc6xUAcGofAr2qzTYYtXZ/vibIMAADxMADLCLm59p2vAKrFarcX9/vwECGG7AM4TFRkNYPQBAgI2FeA8BN87PdaKTVbmu2EvgwiCc43Oub+eB5aFw1RvuOuvXHUNghqbAgCO1YrnCuIJ4oga+5Q1JuGA8oYM7Mc+iBDLDtYICpO/yz+871mIllNX1g3pw9xE50MAoU1EoBHDXM6BlyZRQlLeobqM4OFxHEL0nqVKolEHGO1En1ecKGF1cmlZWRxlQc/UbWYmcN45H+09WTywwNT8KXNW70C1rdETl5XiXCNBjBQJVO+o30ffdfg5ZxZPa+NfCAASY7DbGT8UOIADljTkEsNLx7Rg/PQNPT0/j/v5+s9nP6+vreHp62ngKMNmUJyViFQEOBwaiPTZYh+gcFtQRfkaEPQf4Ha6VxxV4cPysD5x3Xdux4mHX/i7sDE9P/5tAr1FQzih/p9YBV8gY2/9HV4Z2M45VGDMoUECQCetKqVUWWyTw3XiOMkIHJHCa6nrlGayRa1VBQtdydLRESDqFuS8EuyQv2bkCNhEAiHgMZ6fElFx7ORCaKTGXZxX+Gpfrbw4MsBtTh/d0V0wFr3jmhrOq/sWWvTscwIyAkWsjB8qOkTIgoPf76F+oG54bxhsDYS8AeAcYDKxWq62JzqvVajO/4OrqasML7AXGcAAmJP748XNrYR2KYO8DAAFAAQ8PRBP3UD42UPmd3oO/o2EC1m+uPUA6MT4aTnYAg/+qyN9xfFm/mOGJnf5aqMLQTSBEgbRz8uoCuBq1wrmwzGRjjK2JHgACqIRsjChCyEsVnkN4M0BAy8oMqcKV0bUyojtHgCezKvh+pk4yBuxYJe9N2vm484zhLWMOG1HEY1G6LkyULitEjlfz0+HnCNBovrUdHU+rMcB1yPzpjAEOn/FEBxDwd3qtec3a8Bj4s0MZOHS80QFcLg0GBDrLHZMI7+7utsAAfsA2xk8vASYePj4+jsvLy61fDI/xc54B5g0gLEAE0mZljX8KABDwXwl5noBu+e54RmUsiA0s6Kmo37h+q23EFM2vQ/9gw/bs7GxTl7yFsgJ2lWlLadGPirhzs0tfUR+H0d2e1uufWz/ieoy3CI6VP9+reweCC3mIhALyoBa1diLOp0Ng2gjRDE/2nKgXxbnz8Z7nSHD9OZdUBAQiRq0s2qWCMbLIMgX0EVR1GAeg9pXuEoraJ2qzKA79LgIEypNqwfC7KH/Kg8qfFRDQ77M2USso4rOoH2tdcDoVuDsEZX01Aoh4NgvocdYlcPi7oG4MxLPk0c7Pz8+bJYj4nn8ZPMa2xwhbDEPOPT09bcAAL1vnIVIoSGwohNUDupLFGWPIJxtgGb9x/8iGe93E76iO+Zo9vqgnvGPg48rndNFSWvQL4+g5Mx8rLfd3KIQBE7FnQN02DD7cxCQQh+XweJdZR252fQQEdFVFRQpgZhpOrS6U201O4e81/l2UnArKKK4MIR/S8tIOA+qUSeOZoSzOqg4jANXlmSVCAdagSwv5ivaoyPJSPXNAwB0uvzNlzfKSCe5DgtkKCESyJOM9rbeOx4G9n7p7HhuGPCueZ8azZ2CMn8YOZD8rv4uLi/H8/Lw1PIVwCgh4i2FdPcD1xF5nBpNOn3F4Llc0+d3VF9cz4mX9oaQeAa4b/a+C5psNYa6rWbm78wTCjDjTjL7AFNzQfHbxKKLkdzirwFcvhSJGbXhtbITTDsGAIPMKaB6jCS2zhEaOAAEzuoKgLnWEyT7i+gjKBGXlDdhVCVSAoAtGZtF/5F2Iwmf8O0buxarCRvyp8ary1zlADugulUsqqPns8n5oHh4jH9bLvB4zcXMcfFbDjN+zscdy/uzsbGt3PTUKeXwfSg5DB7qmHmkhPA8HsMXsvAJqZKI82keU51AG5X3Ep8Zt5p1x79TI5R/RsSEND4gbAnFADnpslmcX/7XQZWaM3rIzhFNEGSlV9QI4RtUVCJrnSHlyxWUWCIMAd424sjpwz2fICV9OkxGvCrtIQETCtBImro2OSXBGpPxXtX1Fu1ilnXdZelXamUXrAC7umTKerfodP+Mf2HQAUtYuHYtd81R95/J9THzsLHbnHegCgeob9uyyssKMfuyGh+FLPONNeMYYG+8Bxv95QpzKJx5KdpP28C2+4/8hOEOL64W9uI5fq6ECVvy8tB2gYBdAwN5zTo/rXIcIFBgvleNMU2BAGbCyDFwFqyJnUDCG35sfxGFVSHFjZVZRZE3rd67MDrDospD1em1/xhIh6yoPnJbznESggN+5NHexGpQUCESg4JDCVQXAUuXPlCm/mTxF9520O22jIJx5hsd8XVwZwMVz5UkHKNB/1A2q+XTXWubonr93oMnVGQvLYwMAoEwmubJVsiUDSlz3ULKYwQ8LlWf+87I/jN0DFIyx/XdCAAL1+OjqKJQLkxLVWlaLmvWMlov5ewk5ueEAgPYDrdMobpRXwYwDA+xJcQBZ9V4GQhxNDxMoMo0qOasAbTgWFpp5F39lrSBc1PkZgKiFqGVWIMBxV8pAJzk6a6fTqBpv9H69XoeCmKnLIF1rKhPKUTk/kjJraR/56igpl+ZM3XCbzSoAjsMJzQiAc5rRXJyo/7t+0AUuLq9VGp3vHECYsaQPTTMGzBhvgVSX11nR6hbD4BUAAJ7zBVc2u7SRNgMBp9CdgZflzw0bs3J21y4e5jMFFUoZAMA98jGjhBUUIx/sZenkMQMEHZr2DPB5F3IeAkaFrLSz9DLLIQqr8evEQY1Pf9E8xjxI4Txl3oGsvMpwHYqssSWCImuPLPwxAIJdaFbp6LXzyLwHIMjCqaKdAYMZQI+GCpySVUWv3jLNawbSNc5uWRRA6TkKeyy8q/Ixsu6jZ/w8eoa24U1+MLt/jJ9L/K6urrbmXgEAqEubVyToXv5O2WVy1PEO8h95ThnQatwdHsv6igMimoZ6DCCPo3ICCDAwmAXHS3h2es6AkhMGVeWCHCDAWY9sTCYiZQTXOTj/+ozjyFYOOAarqFICKoBxjyOb0OXy5YRrp41cHjScU2zKA8ciTJW4PEtAbkcpV0qRn2kcTslGaWfEQhT5wcztqvycf+4jIBWIuuKA02arjt9F/Jldz/IUywMtr8ovfn+svAuaAasV/7Bi5w1+eHdA7AsAMMDh1MoHvwEMqNLXiXOOR5QUEIwx3sjnjs5wwCPysiCNiCfc1sVcJjxDnK4fcb5mKALtszQ9TMAdkTf+GWN7yWAUhxOMkUBkRbxer1P3S/bMKXLtCMxcmVtJG9jlvQIHTsC5dBQA8L0rc5RuJmwzyygSjKocIiGdAY+PJFdfEQiIAFJX6XcpqxttF/5mSWd3ggf9iSdqZcIzisOdXXgWvBGfLAEGS2jWs7CLgN0XOQPJyQKVjwpyOvyE+oVnAH8ghOJerVZbvzF25OZW8TJE7EioOmSM8WYOgSPVFWxta55QbgYazEMs93U4a6ZPcLpc17pqTsNUSlzbOvuO8zXLtzt7BtjacMqoQjkdMKBAIBLIncJH1rMCFZdvzacTjO57RsuRoMuIy82M07Hk9ayC1CmeKD4Xbya8O2X7CMr4JVL+1TP3vurUTokpMNuFqrTHGCEPdoQS53XWeunwCL937tEZ3nLvZizoX4kikMvvFMRrGDX2oKix3n+MnzsGPj09bf1S1wEU/t09AwN4CH78+DEuLi7CVQO8a23UZ0Bu8ivKwF5rDquAAPUQ7bOh5HRA5q3FZEud0waPgpuHhvyw10H1YAT8XD1VtPNqArYomLii3W9Now7P4R36zSw1/V6RsEOObha+Ptd8Ofd7hmC7Qq6iDPXrMw1XpZMBjCg+vnfC/phoHwI+4j3lM00vqy/3ntNzfD1DDvjpclrwJAscpczb1QVBWbkjYOm+ZfDa4TUHIroCMwPKH0GZ8lZ52KkLBwgiRYrVBKvVavNNtCkQ+Io9AA6U8HcKJtSz3JEnygtaD042q3Hm6sCtEuP4XJ1pPqFvAAR4hYX2N9y7LflRXw6wR8aa1mGHpoYJGACgEPxOM6NjSLtYyNwAFRBwLplsGQjKwuOpOON5NPHEAQO+128zYVgp9ajDZ8qk89yBrYi0w7mOG+X9UKQAEdRpB46Dz0oqVBwAmMnvkndRei5vyrssaNx47Sxw1bAR8K8Agct/J71dnrv+cYwAF6RKy/GgAwEaVvljvV5vWa7r9XrzFz+1+jFkAHnJaTmDUeW1c+07RZ6VnwmynHe2VTnsKJskzjoo0gf6DGXkvQkiSx8gytUX1y3KHAGBLE8ZTYMBHOr+0QzwBJEMCLhCRAVDWg7ZOiDgAAE3ZrYsKqtEZVQnvCIlmQnVSugpAo7i0TJEiiwSClHa7ll0uDQORVmnqQDBbP4rvunmL7IE+b4Tf6Z4cQYvO76v+mjGUxlgjOJ3AqyyhFxczkKM3nXiPhZyMk/fc79XmZEBAiaV4VgpABc/LHsoMShdTDRUmYw4tR0yA0T5ocsHUTxjeK/AGPkP5ThNDsN6htPiM5eR5QrXCfSpm2joKFrmy+lWzxxNgQF17yiC4hmkzEx6HXXEDLlHgoormQEANz6PA3GDaNpu6YnLSwQEIqXvQECk+PXedeZM0HF5ND5VcB2BkNVBBHiy/B8TZcBsJrwj146dtBwI6OQjSo+vI0UNIFABwYjPKgWdgcUq3grQavlmANevSh0Axu8ycK5GnsaF4YIx3rqz4SWAzOXVAogbk1ShYFUPRPyQAUfmj4gfuNyZ9xblYiDAQx9sdLHcj+rbpcF55fhwzfMCdEUE8se6l+tBdRaXO6rfiNpgQCuJr12lqLCJEH9HSSiDRvfMBO55FnfUabRRtTxdMODqSPNWWYgRKOpQ1ukdRaCjI9yzOA9BWpZd8tEFNV2+djwX8UHXKs6e6z0DgUy4aju7vhsB9qhfONJ4I+CuQKHTply+GfB7LBQp8l3ii9rdKT+eW8JG19nZ2cYjwPFiySArOcSp/xNgkDCTd1zzOSIHDjgu1nFuqEDnCiifRrI/4mkuA5Q817sCAz4YBLjhA6d/KmqDAV5+xONDSlzhnclyVadUYRORVroCgqXEHgAg5C4g4LK4BnFl6zJ0Zh1ofMpEY+QzcBEum+y5D8X6keQUWXbP5Oopex8947QiIBy1W1YuFVDVt9x2DiRGikGBIeJSl2cUNhNMFajQbyNgXcWNe5fPyLA5JurKCRcukh0aN0jBACv/aEKbxod3kDcMBtyfBlnWdPK45BueH6Z8F3kGNBzyjW+hGxwPOVnp+ho/4/kD/A75AOk8hl1A7hQY4N9SouK4gZEh17CqQLIGq4TxvsJkKwD0zCBHy5WBnggEOKGv+a46hGOUTLlETM7khkq0Hjod9dgEqnbSCOG7MBVp+CwuB1r1mwoAaJozda19MAIEyEemyPEtC1b9pgMGHDCKyp/Fn33H+c3iPDa+dRT1cebtyvjAfQcAsjyHHGG5hyEDR+v1emv5IIyqHz9+bP2WF5sZOas9uuaDPdZRP3KKHcSrGjgsz+4H8OUJthgCiebcIFz0TGWB1rmbSKj148D9EmqDAQCBzCsAUrfPLhalCgoVqu77SDHqfIIo70zcONlkyGylAOfFMbROGKmsouqIqAICETO77zjOCiQcmpyCAzmlvGta7ppJFXGW1wzcuXS65dD2ykApxxv1O32uddzp95WRoPFlh4s3SvtY+RaU9Vf3rMPTnTgh19SSZlDA5AABwAKHBRjgXQ7ZQ+AAe9UP9MxK3FnSDigooNAzK2nExZ5Wx7+VcYjvMWegAqxaJpRHh22WAIIpzwCvK+UKjpYidTurkgpuJ2QylKjvOZzmtQMMHCBgAFBNiOFyqKDPkDlfRyCCOyVPlHS0FDG6/Lv3fChiPSRVnSNTEp06i+oketeJy7V3J+0MgPC1a5tIsGaUgYPs3r1jnqnKUcmWqk1nQe+vTFrejgzi7928kqhuAAhYXrplg/AE6O95o/F8zXtWVk5Ph0P5j7Ld9nXl5iECxIm0ncc5403VLQyqXP3xRPmzs5/LJxVQzPLvoqWFM2GYOp3VMW4lIFx6LKSy4YBKKLCQiVZGZMMEqkgzqzBK35VR2yP79fMMRR1PV2pEyt896wrf96IMXIIi5djlvSg9F7aqj30o4+x7VaguHnfdARrunilSOHzfbadMuGZ5rOoM72br9qOJ8+fKvLQckQGmxPOL1HXOslEnmkNeMiDQ4WXOfxcM64S7zBPKs/I1jxnhGzaI2TjLlhviWuuTrXv+GyPy6QASe2t4Q6NZ8MQ0vR0xGMUVGsQKwyGVTEE4RsyYOgMp2YSKTJhoB4sAgQMDVXwOEHSFWbdhsyEc5EeRv4Z3dRcBgcha42eHFqoKCDoUCVsHcithtRRER2mp4pxNI2orl+9MMTulESmmrM9Heaz6rwraLA5XZy6flZL9aMpkIu7ddUYzhkhWX1DqrJBY2et/L3RCtjOwNJ+VEdpV5Bzn0vCaP+cpZ9mZ1aHKYC4r//VR84hwKqfZQ8F11i3bFBhAo3FGtFA641RBwVKKgED0bXTtFFeVLn9frSLQvKqAzToyM0wEKLQsjuncshS95rR0/GkM706Lyp/VbQaSPpIyha35izpwBgy0LSor28XP1AEELq8zQi3jW81LVCcdRTTb7yslVCly931l6UaA/dhoSf4iPp7hFZVNagkzIGDZU/U7NaRcHpe2w48fP9KhU61H5RHIPt49UOsRhypmzX8EBPisBhgmZroNiUDaBkuMD1AbDDDSU0symgHKgIDjYUXWURAZQykKcorHVXylpKLwFRDQPM+gtExIubBgIGYIfJcBAn2GdnAMzcvGuM2iOpypo48ix2tRXvQbFhispPSb6D56VnXWrL2WUgTgOmAtAjocLuJfp4ii/FXhOjwUtVVGDlQdErwqaf/rlDFrM/2G09E0ojpR2QOlyXJJ01YLGt92SMPiWaTEO6Cp4g+n86KJjgyGnJcjIu6HzkvL5YxAQVfHZDQFBpgZMkDgUB4Dg0iJuLCOnJJ1aUeKqnqWxdMRpJEg16V9URmyONxzbpMMEIxRd55siIEZ1jGvKn43pHIoipRYBgqcQuhaZU6xddp5FjR0vnVA1fG0y/cMZRbobFwqaF0ZOnmcBSLHCASYsvyp4dDh013TVOOB09Qx+2pfAiUNy+TkFHsCkA7LNg2bgRDmr2iCvLrxWd66dLM0IlCE59jUCcMuEShgmm37qQmEjljwYwJE9HtInFlhMJMxo8wKpQpcqMDLFLxez8SvHYJBQLShxUzncGemzDXmJtQwSNN03JJHMKHO/FUAAB6A68rNFP4omhXwWZvqeUl6Wv/ZdZdHukBWDxcms+aj6+yZ5lPBaJSuvo/ScLLFUbe9jg0IRPnLrHq8j2RqFb4Ky9/zt3woMMB9NkafpTejB1hZaj5Auk29i4ufq/zi99pPo/l0WZ45De6jPFzAQxYMCvZBi8EAMyaWQ+jSOwcIMmGQPXMUCQ4nEKo4nZCs4ok6F1vZDAbc/787+esojAhBV99FglU3lnLt78AB+ACgEMh6HxbKUnKKbUbgZ4q/UtaOR1hwuji0vaL3DuBmwDZTlBlp+TtAJUun4vVOHpfwU8dK0+tjoQiYglz7qDLvKtMojSg/7tB3iC8b/0a8FehR4ve8MoBn6bt8RXFwPlQ5I40ZiuLmMjK5ydsAAqg/t1xTaZaPp1cTcCKsCFBxCgZcuEwoZQjUvXeouYvwK4FVCQhF4e5wHgHnqu8KQU7boVFV+O7abcjB4XhPCT3rrFYGg9hN7Pn5eXP96dOnzfKhY6BdhH5HoEZCpgPoou/HePt/dc2XCi9+182rvsuEexXeUbe+l1iHTjlG6WUgvCs7DkXOao8oAwJRuWflkPMIIB4nC2HZ6gT0Ks1o+V8Gwt07zkvHyMEz3oo+Si97n4WJwnE+tP5APCyx63DsNBhwlYSzggF8w5RZK1FBHIMqQOgADUezFZcxY9QBHPO58mSMpghb08/W1DIBCDAg0Gsc2Hr64uJiXF5ebm1HzROFXl9fx/Pz83h6ehqPj4/j8fFxXFxcjKenp0UW3L6pA/oqvsmEb6bw3TmzUCJhr0KX42QBlilSzQenVSneDsjRvGo+om8j2oV3OnLgWBV+RRGPuGvHR/pe48b7paAA4VUOqhHJeYi8yVV5HDFw4O/VUzvG243aWAG7eXHVPIPKa5AZu5mudKv4zs7OtgBVVYcVLdpnIEo8UvB8xrVT3rPoSisxSitjnixNjjtCmXqOwICmp52x24CZQuJ3bl4CnvGW0toxPn36tLX19MXFxbi6uhpXV1fj+vp6XF5ejqurqy1E+vLyMp6ensbDw8O4vLwc5+fn4/Hx8U1eDzVnYIyedeTCjBGPrUaUWdIdq7qyPjS8xh8JFxWOeq99IeNrfa/hKqXjytGth9lvVXnOgISs/x8DOV6MAEIE0vg9wsz0DY03An06wU7fR4oM8UUrFGZJAYFbpcDpweCtLG+nmCviPhfJJ64XXsHh4trFOzC9z4BL1CGSrrJ371262pkrZOs6dLd8Y8SCMhPClfB06SwFQqr4mRQI6B8n+WdT7P5njwC8AVD+Nzc3m+P6+nqDqH/8+DGen5/H4+PjuLy8tMMOoGOcQKgdpyMEM3DQVaC4jvhX49bZyi5fHYoUR9bHMp7P4uJ8zQIxF6YKmwnBTHbMCO1joS4gdd+7/rCrvMzyFBlsnJ8ICHAYWMIMCCKAjHDaZ1g2umFPjoN3KdQ4ozx2eakqK5fHAQHtf64OZ4Hs1NJCnBU9aUYycJBdRwK7g3wjgLBLJ3YWDl93wAATx1XlcbYh8V00b0CtfQACnhOAA9b99fX1xitwe3u7Oa6vrzdLXX78+O/fxxgIaDlQFrdE55CUtcE+hH8FBnAfCRK+hwBYr9d2SCjrb1n+HCkQiPg7iiMDXlXa7tvqeVXWLhg/NoW/hDJZOUYOjPmbLs0CKd0DAO9d/Tt57gABp8NehGrDIRy8HJEtep3Ip7qtGjKY7ZOuPMir5kn7n9O9GraiRZ4Bd6+FXyKcxsiFRCSQcB8h1dlOHoEAl0+Xj6wMTiBqesoUVQeP8lZZ/DwvgI+rq6vNN9fX1+P6+nrc3NyMu7u7cXt7O66ursbFxcU4O/vvSgHEhY6q7b5e/3dOCQDEIUjbMwOps8LQCaRISUb5qtLmeFVZa/iOYotASaf/VQCH+x3Ori92wEhWL5HhEAnVKPy+jIdjIcd/2h4RLXmXxZ3JZY5zpt4hZ8bwy58z8KfxuEmJzg2vPFINA2gfXFLOKP9RP61AVUVTnoHO5IgIDOC9ZrCbUXwbWSeVEF0CCDTPWd4rAcl5ydKLwjpBHOVjjO09sxkMwNqHAldQgImC7BVgQHBzczOurq62hgl4HBBLChVBd8fQ3oOc8NH37tpRZIm4dDJlp9cdYVGBRJdGBmozHuVwnSNKu1ufkdLIypbFqYBEw3XrPeObY6GI1zLwORt/J/1IEav1yso8SqNr8ESgwKUNOZQtv8YcgaicDAQq/o6+rXhN44juK76e0a1jTIABXUXgKLN0+X0V1pGzhlx+OgIuir9DERipFHVWvm69aNzZ7lMgBgXsGWDrHwCA5wjgPV/f3NxswAO74C4uLsaPHz/G9fX1m7+QMRA41JyBGaW8lDoWSZReR9i6dJYCXL6u+oXynY65RmCgMgxcPirrdR/9t/p2FsR/BHVkIn/rQNqMfNtnv3BxOKVY1bHyPL5nUMArFhSA8Hs+dAVONjFPFTtPGIzyyIAgKntWb1qOWZrh20VgQJ85ZbwElWbK3jF29lzj7QCCTt5wrUKs2ma4AgFR2R34iNacZ+CAvQM8BMBKn5U/gwUMC2BeALv74VLj+QYABfASwFNwqDkDmZLuIHYN2+lglaCbBZ9LwnL4CKTytVPajqfdclkXhxOc2gcrkKz56bZR9GzGKsP3u8iNj6BKiboyZHwfGXNL0uf09NqBhIwPonjBf2r1Qy7x5kOw/Jlv+X8CCOd4F+9cGSI+rcAwl5HPWsao7C6eLK6MdgIDmqEsI91OVTFDZm1lz5aQIj53nVlOri6cIOTr6DxGfy8BhOOlM5w/nT+AoQA+q9cAcwR4so12FPU+ABjwsMEhqGMh7TNvkfDtUMZrWXpVnI4nu5ZjBASi7a2dII2WQznwW8kK9849W2KNRWnNCtZ9UaXo3b1r69myd8N0eNS1i7ZJFDZqV9cuCgiUl2Dd6z14Uy359Xp7syGn4LV8EQjIAEEFBBhou3Q0nqw+M5peTeCeZwXMEGZk2bvwHTDQFW6OIgHj7jPGxTnqkN2woGznOaZoe2EV3jqPwE0sVCDAyxDH8GNnSBuAgIHAsYCBqGMtIY1Lr2csyggA67uqg2fAeFZQ6Pe6g6YCTBALW46nq1AzxV21Y1XvXRDRzc9HUlV3HRkBWgJSl5JrK6dIHX84QN2pB53HhGf8jrdK17X7PLzJ+a3qqgsEZg3iDARk/WSW9gYGXGV1LbKoE1dIaCaP+6YOUzpA4PLjOnIGAqLhAHwXDVnooQDBHZx/tvTU+kP7ATSw1wGbdhyKIj7sdHJtg31biC5+p7i76Xb7wKzFmfFQB2BFVo9ezwi7Ctw5uZLJmCieQwMBkOMRJ1+UZhTRPvLm0te8dNu3Q2hjNojcLoSQVQwMxvj5MyOWbzzviXfXjfRcBQRcXbh6y/plBqbcd1V8SnsBA466VlEURwUKXHpVvEs7QseqQgNVln8Wxxj+XwH6rhu/ExqRoFflrww+ht9TgoUsgACDgZeXlzed9aPJgYEOL2QdtGupVd9G7ROl7cpSKTimjlXC8WreonzuQpXFWOXPGRTurN+6PLg0Dw0GIl6K+GXfbbJLHMqvERiI2sTxnIt7jO01+Lw5j3oFdA6A/r1QQcBSMJWBAkeddnPAKvvG3Ue0eOF3B8E72hWla1yz+e3mzcXfRXGqJPGsym8GBMZ4O29DlSuHiXbdGmP7/wPOi8BlgFWv+XFCWocRcABoXF5epuU/JsraOgJU7jqKw6Xj2r9rKWTv+doJ3YzP+XDbV1f56wpCFbjZ911DQwFB9EzzwWe9/mjqgMII6DtrtUPvUd6ormfT6sjRMba3Er64uNiE44msmDioYJH/t4OJ0JEBFJWzU/czgDoDAcrPS3l3yjPQ7YRKEaJzcXYBQFSRXCGVBeDyVwns6Bzlw+24NSPos+/UzcXfuvW0GM/XvQd4bgDCACHjHFmHfKzX6zcAg+cQHPLPhZngmWlzd63COLqP4ue6isBEJAxw3V22mQnTCOS4ISPe4hoEK0tXjWSWVQaaO3IhM0qWAgZ+rteHpIrPHDnrdKlF6ZRgpZwd37o8VPoF77m9sm/wnj0BAAMREOA86rBAtee/46MZnonkSxaHqz9+3gVOoL3tQOjuxxhvGq/T4BWKioRs1Ri7AJkqfZcXPmcKRBW4CncWuK7zZ3vWI4xOHowmDDIg4DwgXfYoIC4eN4ZCcIDjUEsLZyYCVcAvelcd/J2G0cl5LMjwLfOECitXvi7wyYBpVBYGAsqPLHijPKmQ0mtVwpnRkIEB/daVj+POZMkhaUagj5FbpxWoiu53pdn4MkUXtROfdZiAFf/r6+tmyWGUNnsHdM7AGG/7TcQvlbzp1oG7z75fwr87zxlwmQA5IMDfuI4eoZkIDeu3XcSbdTAnMCOBrt9z43cErK4CyPZzGMOvGnAbwbBCVjDAWxC7fxVwWTht7C+A+Bg8cP5duaOlZR9BXaFYAYHs7A4dgtF20oP/JjnG9iRStAXmYMCFyfs3ZBbgDACvlI/rP5ly1sMpX9QLv9drLUcFBPap0GYV8qFI68fV3dJ6OUQdzCg15imeH8CKH3wGz4DKboRFH4t2G6x0SEUZCM/4eAYQzNLUPgMRgkcmHLNFCtF1dKYIgUVAoFtJ+p2Ly113Gi/Lg+af3fFRvHjvhOYY8d8J3ZJB/j2xrhbQe6SrSBh54bh1aEHBH77PyvjepLtn7ioUmSIgoCCAvSjsNeG9GdwfJUEQTNjhcbVaba6fn583FpDb7THqa5Fi1vvMgtJwOr66pD5xrmTDUoqUSwZojpWyeq4AYSWvOuWO5GaHOI0sbAQIIv7l9zh4eID/o6LDXDhzP3J1yHKSrzu8P1NPS9poKb9OeQYqi0ArgRuKlVaF9pwC5LOmrXmsGiUDGJrOriAAYVVJKiNHDM3PWFnz5C1WHmdnZxuF4oYC2JKvNo1R0mEGKDRG41m9HAoMVNak48tuXiNhxkDA7enA/4HgHR8VEIAABFar1VitVuPp6Wlz/enTp7FarTZeAuRfBRrn2eXbgU6UwQEq1x85Pbe3RAauM8NB0+d3etb4OoaCE/jHCgayMvM3M8DXxdOtP8f7Fbl+VgGCKJ9ZGPAOfkesAERXGDDfRhMHXX66Snu2vNF9FH83jKNpz4BjwIzpKgUXkVZeVyl3URkrQb2O8tkpt8t3BARmyM3izkCAUzbYVhhHtJIgqztVaoij46o+RjDA146/M+Dm2lGVKG/TzBs58U+grq6uNj+A4smcaFcIpufn5/H09DSenp7G4+PjeHh4GI+PjxuAx/+FwKYqbovVqB6Qfy0HP2egUVljHdDh7t1zTd/lndsro0xBdurokKT8GeUtAgNL+mBU30v7c6cPufSiZxovf8uHziFwRoxre6dXXB6d7qnKWJXLyakOubxWNA0GKgFQ0VK0GT2rOkVHaEdAI7NUHJNow1VAIOsQoGyc2YEAPlgBQeFA6ThQENXfGD+XI6pbm8vCFiErn0OBAFCGsrP26AACJgcCdGtmVv56XF9f2+2fFQw8PDyM+/v7cXNzM+7v7zfxPz4+bgABlkRhBYdTopGw5fI53s36TKYwunyQ9btK2WdtHd13+/OhKeJL9x3OfK1hlaq6zdovM9Y4bk1jxvhiyvoqf8NAgL0DHAd/74YHuqCko4u6VPEtx1kBxC7vLppAGCXGFeeEh4IJh74cVUzYUaoaJgMDSzq+Q+CO2TqKZ4y3ew5EY81O6bD1qT8l4l8T63bDVT0zEFDLVd1sWtc8/n1IcnxcCVdHKsS0fRic8e+fb29vx+3t7bi7u9tc397eboE01y4ODNzf349v376N6+vr8e3bt3FxcbEZQsDQwRhjM+lwjG0riIFtRm5pqauDrH7cdQQcHMBAuh0h3BGGS62sQ1CkwDJFmQGaDBTM9AEXfjZcV2Y7XlFQEX2joODs7K13IJILDiRG+YvqvQLEFTh3NAMKuzQNBqIMuA4ZWRid+Gdon0DAla2Tv5k8OCAQIXVWNDoMwIrZKX79GyHe6X8H2MuADuOW0XTrj7/VLUGPhbLOk1mhTnhy+/AQDY6bm5txd3c3Pn/+PD5//jy+fPmyuQYoYK8AAwrEjzkDGCK4v78f379/H3d3dxuvwrdv38b9/f2WN+np6elNGXipVVYn2r+jNnf8wdcd8BA9R7pu/kEkgDPDJSsvp39oAKA0A1idceZoVvHvizIw0qXM0Kq+UWAM4n8SuN1WEUeUnwg0ZCC3us6oA4hm6Gx9bFx/ohOd6EQnOtGJPpQOs1n8iU50ohOd6EQnOho6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+czqBgROd6EQnOtGJfnM6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+czqBgROd6EQnOtGJfnM6gYETnehEJzrRiX5zOoGBE53oRCc60Yl+c/p/spFj/PEy+LcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9gElEQVR4nO2d6XIbudK0QWqX7Zn3/u/w+3fizNhaqOX7MZH0w1QWgKYkkz7DimB0sxeshaqsBLp79fr6+tpOcpKTnOQkJznJv1bWhy7ASU5ykpOc5CQnOaycwMBJTnKSk5zkJP9yOYGBk5zkJCc5yUn+5XICAyc5yUlOcpKT/MvlBAZOcpKTnOQkJ/mXywkMnOQkJznJSU7yL5cTGDjJSU5ykpOc5F8uJzBwkpOc5CQnOcm/XM5nL1yv1+13fT/RarVqrf1Th9Vq1Var1XZ/vV639Xrdzs7Otvv86frVavWm/q+vr90fr1MZVB6WI+XF66t0JLy3J16u1EZVGrr35eVlWHed51b7/+///b9uGT9DLi4u2svLS7f++0pqr6qv0y/1e7qf6Y7SbO1t+3u9/fqkQ+v1bqygvld63t8zOuD//T72U/rfS9/TdVna92yb9XrdHh4eFt3/EXJ+fr4tN9tf5ZsZ87yGbeB6NhK/hrbz/Py8nZ+ft4uLi3Z1ddWurq7azc3N9nd9fd2ur6/b5eXl9qdrdZ9+5+fnW32UDjw/P7enp6f2+PjYnp6e2tPTU3t+fm6bzaY9Pj62zWbTNpvN9tjz8/P2PtXZdZt2nTZY+a/X65199oPyub+/bw8PD+3u7q7d39+3Hz9+tMfHx+2PZa10Oem092Gvf71+bjPW63W7u7sb9u80GFDCvwMgcKXtGWL+EiDoGdn3ggEHJDK+Os78Uv2Scvtxlvfl5aU76JmG3697OUC9TKw7dUVp+j2/WmYM3nvSSsZ1BggkPUsD2//37p0BA16+1vrAUvrpwJDHRsYtOeykNzKcq9WqNKK61rfeBql/Zu0Y9foQIifEsTsDAiTJFvb+u/SCBwKBi4uLrZO/urpq19fXO0Dg9vZ2e04OX4727Oxsx7bIgavf6Xyfnp62WwEEHaPzVzpeF+pUqhPb+OzsbFs/+QaJynN2dtYuLi7ejCG2neu88qauU4f9ntRHI7/Qs9WVLAIDv4PMKHt1zSjiqpxca9nYpusqY18Z49FgleJVBsLzSVEG0+DW61vJ6Joe6v3VUoGsBIL82qovevpUXT+6Z2Zb6ZCO9Rxl2s6yAwQzBAYOCD1fb9NkAKtjM7J0fFbn/JqZMfBZQqdYtYXXtwJEs+04EvU9wYCAwPX19Q4YICPgQEDOloGQgwA5eDp+AQH9yFayjGdnZ+35+fmNXtL28dzz8/OWiVFb6+fl9LILhLBcKmelR5VOzR6v+nYmjySLwcBHKdSvkF5ZR0bWf56eRwxLnEnlLHwaw8URXmID3LF7ZM97WZcZ0FSVoyfuDI5FZkDjvtf5ftIlP8f79gUAvfKNyloBAU/v7OystfaWaVqv113mqefgq/HBdA8lx2Dvek6gd226b1SfBMhae6vHiRGQ43cgIIAgIEAmQHkSTEoEBgQAuK//pN+9nLJxDgiULuXl5WWHhXEA+/z8HBlcCcGAtgIDPs3QA+o8Pys9gLhEFk8T7Csf4QhmDE11TzLK1XxtdR3zkzJRgUZlmzHqKT+JO3BuK3rXUSkpqip9KqMGKY2yG+hjdPYuS3W3cu69tCrQuM/P76/2K1Cga5JR933XnZk1KDrvoMABQXL8ydjxWDKOPemN/x5Yn03/0OL96GO6OrZU0jh2feNcOtcIaCpAIODy8nI7NXB5eblDtRME0CY5kKkibWcFaNM8iFK56eDTuifprdLT9Zpq4HjglMH5+T8u9Onp6Q0YIKuhNCsA8N6++wj5ZdMEnzng9gEC7uy5RoD7QrGt7UY/NISJel9a1nSuZ1S5nxgFDjiWLUVaaapB9WOdtZ8UdobaOmawMCuV0/X9GWBQpdfL6z3l9fRGIKACpT1WIDEE++qG67Cfq8BDdd17jh+L9PTLr2ltbsz1plCSrRQQEPV/dXXVbm9vt2BA4ODq6qpdXl7u2FPmJztE2+THxQbQsZIN4NoSOloGaWQQdI4Omnqka8/OztrLy8vW2avcOsa1Duv1ertImesduK7BFzAnADSSkZ5X/Tkr/xNrBpag/KTc1X+iTAKF1nYjIFFM2lc+o05JZR1F+J6ml7cyEgQBZ2dnJfqvyjdrJH8HluBQkqLUGerW06iiip4sYZUIgHk/dXu1Wu3Mh+r4DIVNo8j90bmUlu/3rtv3+mOQfYFhYg/2TYcL6jg1oIWCt7e3WxDAaQEPnigV6+qO3P/rWor0ltE+GQbPQ/nynMojB07AoPu0toB2X+1zcXGxBSxa1LjZbOL0g/dJb+qA/cBrq77Sdok+LwIDSw3XZ6TVU+zqWGIA+PRAeoqA9/oxbVkWzQ2pjL1OqMrkUaMDDK8jjbYzGBJfKOhghenN3EchzcafznHr+7+b7KOr1JXECPR+fn9Kk+m4VItC0/kEglO6rt/SIRpHpenUq4Q61zN2lVT6NKtvv7MOLpH31J19JH1wIMBFgl++fGlfv35tt7e3Wzbg4uJixzm3NhcN03HTGfsTJbR1YisSA0G6X3XYbDZtvV63p6enbb7adzvnNu35+XnLAqg9OJb4GLNADIEFhWDa2+SjAOsSQPDL1gx8VFozICAZXAcACQzwXIq23VmSGeDKVRePwivD73mpI3vUPq8laGF+ROQOCKq2JN271IBWhvl3M8RLnJY77FmnP0L3+5R3Bgg46OSiKNctik8BSO94vNc2rY2f5EhSBQE+VeAgPeU1olp9vP5uettankbpOZ6kv6vVTzZAUa8WDAoICASIFeD6AObHXwKHBAw+BZDqJr0U6FC+Dgp0/9PTU3t4eGgPDw/t/v6+3d/fb489Pj5ur2GZRPUrT6+LnjxgeVar1RYYX11d7UxzVHpULbztsYA9He4FZD35n5gmoIyAQAUAkgHvRUs+2IQ8W8sLUxxte/mSY6g6cQRW0lRGtQCw5zjS/K/STVTuKFI7Nhk5jp5UzJYbVe4nADALDjzfEbPmzj4dm9FzF83FSt/JiIk2lc4kgLyvPlSOrAfYqvO/s4Nfer2D8B6wTXbJXyhEIPDly5edBYMXFxeR9qctSIv3WK6KBfDxIcDh7zfgS4sIDJ6ennZeDMT99Xrd7u/vd/LXPkGB1hr4dKxPwSnvq6urN+CnN8YcMKRxMwNm95WDTRN8plRK7VsCgcQIqJO5UMQ7iAtYfEVqD9kloNJTlPSf11LxJTLcDko419VrQ993YOHRRnKulXP8lVINnpFDmHUY3j4JWHI/Od4ZIDCTh08XzQKAihlIbZL03csoEODPeqc69nQmXZOOj8THoY/jnp4eEjx8RL4+LlParksEAmQEND2QHhuUTU2AN7GEDg58QWFrP3XWGV39tD4hvcuA0xXPz8/t7u6u/fjxo33//r39/fff7cePH9sArrXWHh4edhYpEuRqQWFaJ6M1WA4QxFj4kwkE5wRDzgAvYQQ+Qv6nmAHvJBo6oTV/WYQ7eDfsUu60qEp5kBXg/TSCqZwOAHqGOA1o5Z/qQ6TdWs0M6D8lzZtx26O8fichkOH/Jff2jrujT44//XdJoCsJddlBgQNb7jsYqIBJonmTyHgSeM5MOfUinsqJfYQcCqT+Skl1rECsO10yAnyPgJ4c4EuEKiDQA1spetZWdptTAOlpBoIBf++BHLKYgL///rv997//bX/99dcbu77ZbHbq4KwG7bp+r6+vO4Gl6qsxoPy5RsGBjwJIz7fqq8+QxWDgEOzAyIhUBpgOsvrRYO5bNiHPapvaK1FNS9rVqSk36mozd/y9+iYE71IhfKcjj016ertUn0fXz5yvgEElM4CFfUudSvsV6+X7zLvSZQkf3aqMezJ2DnS9r0ZgKN37Xl38XVjQkczqqttNLhjkuwT4QiFF4XodryQFLUv6g6CCET7fXqg1Av70gsCAHnf88uVLu729bavVqm02my0Y+Pr1a/vPf/6z1VUt9vMy+yuNVT+Bg8SKScgOVCDaX1aU9J9tuo/M3rsXM7DvQKnumZkDmcmvF4U5AHAEqwimZ4goNHg0gNXW73XDPapjNdfXAzHMw8uypP+o/M4SzJTzf1mqvqv+J8eYrpeM5rp7EV/KrwICiRlIdesBRIFf5u26N+vs3aH05kyraGpWUnlSWf7XhH1MOt6BwMXFRXyzIJ8YkFSgddSOrndypMqbHzcSU8GPG6ksPq1xc3PTvn371i4uLtrr62vbbDbt+/fv24WPrbXttw6oB3rLIfXVgQLZAl+fpeudLaGucnEhp3RH460n79HVvacJlgKCUUQzikKXRGMVCEgRz5J0JTSc7lypEJ6GK1Vag5DyY9T9EdHKTBp0/hUt3GMDjtGA9gbabLu+BwQn51oZCt9WEYOEbIDnm6ahZoAA0+qBSV3rz2tXj6NqS/2pGKkKBC/Rr9G1S0H47yrJQSdbyUWDWgjnLxLi+wMk/ni1O0+KOz4HAWQA+MiiswS6nvP7T09P2zl+UfjX19fbFwiJLbi+vm7Pz8/bpwz4nYPHx8e2Xq+3zronfEshwS+np8macZzz8UOCix74HfXxvvf+sjUDyfAuHdDVoHWFomK5wfM02XDqxJ7h9XSqyD9RpkyvR8uyfNz2hIrE9u058yXi7ECaLvBya/8jAMxHSQ9wJXFdSPcnJ6//vWs9Aq/K28vX0+jpfgVCeczLw3tcpxXNeL5pTYk7hgSCq6kC3/e2nhkfPcN4bDpKGenlPpJ0ME0N8MkB0vF8jE9l9MWk2ndb1FrbsSFqe+lpWqyotQkCAyon20eUPd/4t16v2+XlZbu7u9uZYtD6htZa+/79e/vPf/7T/vvf/24/hUxbx7HjY4P15hQafYTaVftsDwEXvqDI2emPYKdmdXtvMLBk8IyceGv9R15m0k4Il6jRO7Nq3PQonUddVRp0/L7vZU6GOaHn3hSDysv0R3NcS8VBQCrn7yaV8a/6ITlH3+exyjmnufwqehoBKgcgDgD8fI8JSOn6mhoa3VS3pHfeRj5VQJnVqV6/MS0HF9outTMje/ErZSbiG7Fdqb8JBPxdAv6aYb5kh3Pmrt9eDtkQPmnlZRAI0eJEPbooZoBvNJQjFcX/9PS0fV+AQMXDw8M2r81m0/7444/25cuXbTqaQtDv4eFh65RZRo/8XWSDxUgQ+HCs8YuIBC78BHMCTWzDkT4mGzKru5/61cLZa5fSINUxj5RS1JUaSw1NVsAfxZMCuqLTwToDUBm/BAR4DZVhVP/emoGUXy8tomHWJTme9xjvY5d9yryPXhIUVNFxStv7w0Hqe+vgIKECHimSSdektQRu1LwN3Pgl2ZcO/Z2kAk7vHVeuh4kR4MuE+Pig8uajdrIdcnh8okRl1pb1Ud6K+vlGQ77QiEBAzl1OW05czr+1f95D8PDwsM2L3wm4ubnZOu/W2k7+AkOPj487b9X0Nqf+0kfwmO7hfXxl8Waz2eb7+PhYfi+h6r8qeNhXfqtHC2cQvBtgHquQUq9RlY6/ctXvH3VMcuK9+qR80nzwyChUdZ6JGnRfGtApTaZz7MY5GdRZRoD/0/EeGPXjVTqVHiaAsVRUd06L0ZjxuJehWgvQWtthCGZ1oBqbS+9N7TdjMGfGxbHp8sgOVo7L9ccZVH9ygNMDoucrJ5j0iH3gUa/OcaEgwcAff/zR/vjjj/b169ftYkUCAemZGIH7+/v28PCw4+A3m822rsx/s9m08/PzbUSuQNAXHwrspKcGWLekuwJG/o4NMgbM6/LycuerjDOP4n60fAoYWGqgeoN6SV4p4uoZTI/WU1SsfS1I4WDyzmeavU4crV/o0fms3whQzBpWN8gzkoxoogZ/J5mJRqv7fOuRVwIJrpuzeVfApCeeNgEBAa8bfE8jrQfwspARq8pZ6Yf3QWLU0j0sY5X+bJ7HLqOyJoBZAUmCgerJAU0PsE+kB/zCn0RskU9hel/66n89CvjHH3+0P//8s/35559bMKA+krPXeoWXl38+BCRAwBf7aEGjvwPm6elpG9jd399vdZVtcHFxseOclZf3g++zzgITre0+LqmyEBCI+eDixwSsXAecQXiPzf0wMPARA2lGwatzs8Y2RQw6R+cv40hDqeOcKqCCOENQOfXRdIOXydvAtwkU9IBAMhbp/IyMHMMs5XtMsm9ZXd8qA5yu1bHKgc3c7040tXtaJOsOtDLkI3DgQOEjwWAyfFWd035PfifdrGR2LCegSqdcAQE5VF/811qf1WGQxP6jM7y+vm5fvnxpX758ad++fWt//PFH+7//+7/2559/btcLyLEq+pc+pLUD0l1/dbDk6elp+6jh3d3ddiU/QZEWGso5q9zK08eRn6/GqbO7/uSG2AR/A2IFZFN/z7BdSQ72oaLPkuTokhHriYMGf5HQzFTBaLFe77GrJFI8fyNi9SRCMvY6zq3f01sM1pOq7CPgcUySHJk7lNl69EDcknuToxqBgET/kwFwQzaaLmC63K8cf6X7nwEUqshpJo+Z8vxu7BYlAdPECPgnifmaYU0PtLY7NUDqnMENf+wbHz/ORIgV+Pr16w4zcHt7u6X8tTZAaQoICAzoRzCQbKPm6l9fX7esAtkBfo1QbUT9r6bK3N6SGfAAUFvloT4gG8F27Pmzj5IPYwZGaGTkLGbTr4ysR02j8lXiCqy1AuqUCm0uAQKJ8kn7PYfNAd1a/vxwigzf45R93i+V+d8iVVSd2AFueX86TqmiOi+DRIu2qvMUXxdAsMCy9ahRprWvuD5VjNZHAIl/k54mPaxYgfS6YX6BsLWfztefCEh230Gl7pcwXwEBggCt7v/y5Uu7urra0cOKDeB/2W0HA9o+Pz+3y8vL7T5fOOSPWIodqAIlZ9G8PXz6JAEkZwY4jZEeNZzp+9TuI/m0BYSzhRg5v5E4IPBIeV8QQFRGBFwxAy4j47XUMKlu3FeZZ54omBFGfE79fkQdjkk+iqlwA5vySIa4Ag2t1fODlSRHTgOVvjBIvZYu+fymgxtGhnQOOudbP+fiYyQBgXSvs13VMT/Xu+ZYZV8n4MfcNrrD40d++C4BOUD/pVX27hSrAI75Xl1d7TACDgS08l4LBfkJYi0a1GeIxQxIeo906yuE0nuWy199zDl8AQ3VV+I+gRS/2sMBEoM2MjSa6vApmc/W3YM/TZCi19613HfKq6LMZ9NN97ITyQx4eZIsYQskKW3WyxejVR9QSsqX8llavpH0DPVHOeD3yEwkvmTQVWB2Bggk1iCBgOp8igB8AZPPaxIASBIokAFkZDLj4N359HRwJBVLkPKrnL0fc+Zj1Nf76MSvlgqIuo7RhlTfHeDniAUYExDora6nk6P+uNPT2gRNEejNgHyfwevrP4sG5fTv7++3nx9+fHzcAQF6yqCi8+knXl9/flxI58RWaE3B5eXl9hFAlWOJPhM898Zda+0NMFO7a7vvGFpy38HBQGvLo7QKCLijlFTRxag8FT1TocAkS50sjXlyFi696RNHp17WyhgmdsDzW2KoR3X4ldKj5/cx+CNnXRlpSU93qv5xnZTRTiCAawYqVkCSjqWnC5wdWNpuveuXsFD7RPr79PGxA4G0n65LQEBOWWzAxcXFm9XwXJjntsGnTCuGx8GAQIgeJeSLjQhENpvNzqeH//rrr/bjx48tICAroHImsEdfobop6teTEt4uSlPshO7XWHK7WjEFBEh07N5OWjugMggMVKA6BVjvYdoPAgaWFLKHeHvRVhJ37lV0lsTnWD9LRpS/R2s+TyxhPanAlH2N3Gw05f+PBRAkeW/ZekY56Wb6XxkxRl29tlyyZqC1ueklz9ONjXSLx13f3Hh6nZhXyn9GvH2W3l/JMQIB14GR7nrg5J8m1pZPDfCd+QICjLpb+/kIYWv9qSDZTTpfUfFkJQgERMVvNpstGyAA8OPHjx0gwHUDKre3D9cVnJ+fb6cTnHVlhH5xcbG9ni/OqtqbL1lyMJAWZbtNFlPBdQOjr98mJsxl1rZ9OhhIUfZ70nJWgEo+wwqkcvTAxK+mt5PTdvGpi6qMDgh4zNPTNikzr1kiFSj4X5WP0O+KuegZ/sRg+RTBjMPopTmKwivAMCMpmuyBhJn0j9GJf6bMsAKKftNaAX98sLW2nRaQk23t7RoBPmlAJsr1wQGJgIB/dEjpKm9ODfz48WMLBAQGfHqAK/j5TYDNZrPzRUafHhA74IBJ7aJ7GKVXdtoZgt6CSx9bZLlTvj3nX52bHQvTYOA9iGPptdX9DgJ8v3Lms+VZyjTsI0vK8xGSnMqMcW+tXum9NN9jAwH7lmdJnfbVn944m0nLGaylLI6OjZxLerzqvWsEevlV8/6z9yy59xhlCTisrqeD8QiYYECRrL8Rj0CVgYhEusdV/NQHlYEO1p0zV/e/vr7usAL8ac2A3jvgj+QpLW3X6/WWGeD3ahR9c8wklkDROh27O2ff9zUDnC6gOGhX3lWwOwpw9w1gf8mHit6bfsUGpIaSzDixj3BYjLhTpySjyfMefVXpp/sqNO6SjGk6rrQTOzBaOPa/LrNgOPXDRwCCJKO+4NMv0sP0BTXm11uBnQBGpUsVMODxigVJYNXzTqD2d3X0+4r3Sw8weLSr9wrwC4SM+AUI6Jwlvs4k/adNoo2kzeZiPgIQ9evz8/N2WoBAQP/JDHA6w6eABQTk0PU7OzvbHl+tVjtvmaVDJmihY29t1+mr/jxOtqKaLvBF4GwnMgO+mFf5pG11rCd7g4E0UN8ro2idjt+36V5vmBTxj6KgZLDccS+J3Kr6UnFH9eGiMN1TGdaUl4vScUVO+35sVg5ppD8671lg8BHpzl5fRQe+7YnrXkWDut464F3ilNO1Xt4KFCRAsCSfpWU9FlmiJ7Sb6RPFAgKMTuXEuHhQQlsj8adRlK/yrnyF8nt5edk+OkgAqfUC379/3/58qoCLB7mmgXqpyJ+PKLJNOD3BiF8AgUyGg4FqcbUzAwICPKY2a233cV7996mCBJo/Uha/gfAjQcAognLnPQsAKkQ0cpgzZVwiai9fPOVl2yePBAx66wKWpMf5rR4VlmQfMPIr5b1ReqWj1X4PKLo+zrJDiWnqRYU9SYCUefbu9+i/SqvK19uqAhSVw05TBzPXzh4/Fp2leFtX/ZyicAIBPkPvrxp2ICBboD6qbC8XN3ugkn50znd3d1tbqXwEBv7+++/2999/xzUDoycJ3IeoTTabzc66AW2VN9Ph1AbBhTNcaVzSlpIZcLCg/H2BJn/e7j1gXIHpnnzoAsJq8PQcXy/CHoEBXjOKXpcO7NSA+z5RMFqMVzENPdDDsvC58PRkQSVLIvx07YzRTX3zq2UU/aX2fQ9oqBz/aHx4RCypppl6UjEDNFx0+Mn5J3DgTwT08qdUbcz6uq5Tb2YMW9V+VZlGZd/HoH6m9IB2sqvOCPTWCahfOS/u0bbS48eAWnu7qJAi56kV8VxQp2f4Hx4e3jjXl5eXLUjQI4V//fXXdqpA7x3QVIG//4DAZaYtVUbqubMM/kp6sh7cpoDKpxY4XZCmkiswRztMBkP3zNjoShaDgSXov3f9CARom8CA55vYgJ7DHRnfnrgR7QGEJRHKrLDsjr4JDHTNknRZtooK26e8xxhhjWRUbo9seaz67Zt3outn+4TMkeur7/eAZA/QJp328qe5ZZ2rxsko2k/XJzDBMs0cS3U4lIx0UJICCjoxrtpPq/dJZVePEkrcKSl/5SsHyLlwlUUR/OPjY7u8vGwPDw/bjwZdXFxsy6MnCfiOAe07ECBoYXmrF7JJlI9+AkwMMNUWPSGD6msEEsvq7ca2Tk8NODtAe8+2fw8QaO0dTxMsAQVLHH86NjKsIyCwVHoGiEY0/adU80kpzWo/tbuOjUBIcmhLI7p0fuaafdI+hPR0dwbIJF3lf7/G0x61CUFfTxwkUj/T64i5uLC1n598TQa0EhpAliEBS69TbyFhSofUZ28M9dJbKscAZFmHZPdS+RwIOBvgawS0JoCOzFfm6zwXGvb6wnWec/ZKW6yAdFPfQeD0AR8r5OuH+RQB3y/Avq8+uMYgh07bH+XTta7PqpMzAM586BrX47RGS23kwEFCIMCpmgSaZ+xKknd9tXD0v7q/5/j9GM9VIED7vWilcppswHQsNW4FCCr5KJDSa18qiM879crlBp3ldGprFA1Wxz+q/h8tlSFdWk7XzQRclwCBpH/71MWjtdZyRJ6MS08SIOy1WbW2IE09MK1kiGfazNPptfWx6WQlVZ848JHD8DUCAgL6CmFiBejI3Km11rYfbKPz4+OILrpf/c+1CJweEFBgmZ6enrYLBO/u7raPEWqNANc08NFH6rfahAsgWX53uP61Qjr9Kgiq2o1rA7wd2V6V3/C6qG+TrfkoHZ4GA1UUWkW1vWt6Tt/vq4yp7886qplBNQsIlkjV+TNPAlBGkaxfl/KTVIroaL66ZilDcOyGdxTxzNzf+1FcF5P+7Stp/t+nBAho35NnxQBU+xKCD39xjQyh9t2AV+X4qAipV8djk0rXnBUgI6AIvLVddsenC1p7q5fsmwQyW2vRkXpejP4VxbPv9cig2AABA3+nAN/fz/KyPKvVagcQsO6Ui4uLHYZAdfR3HxAc8JhPEbTWduyn61E1Rtiu3qeVPXFxQDwj7wIDI2c+uq5KL6HdJPtEcCmNKmobAQBnBz5CnKXwtJPR1jGWJ13nrMEScQVM5fQy+bljNqpJZvSZAzWt/K0AbSUVSzV7f48J8jSXgHt/ImZJmarykS3w9BNlyiizKncasxUz9bvpY0+SLiYwwGfqW/v52mF/Dp77tCnqgxE40/W+72CAi6B1nusKnBFIL0JyJkn70gm+U4BydnbWHh8ft+3X2u47FgQIdIyLK3mdgxJvG04HVGXu2WYCgQQIPgoAT4MBX1yUHHvPuPQAQK/wM0DgsxzOPtGSU5+Sj4pSRuVJCkUDvLQ+PYfoUYPv/24yAoaUKiLbB8UrPW59P5XPxYGAO0VFPVX+NDjpcSZGbjTictB8hzr30zxna20nQvXyexSqfCqGjf3khpLnl8qhdXlpual/mg7gWgE+QdDaT6fvka/Otbb7IiEHbT19TLrMKFr5trZrNwkGNJ3A1w47EHBnS1G6AhsOCFar1RaUMNLXIkm1P50911U4I8ApAQIqX1/g+yMbncan0qhsVpVWJR/GDPSc/SgySoiuQvN+bGagjBpkJkpKQmPp7UPlriKsJeKGnvnNAoR9QYHP+VZyaMP5EdKLHpPxmwEEuq7Kw9Oe7dfW8hsDU9p+LfNwPfaVy7yH49ONmDsL6k2K/L3uHIc+3ywww7FD4+9pJIDqjvV3AK5L7Bv7L32DQEBAjo+MC9kBz1dtz/u439NXB5SsF+n91nYXMIoFEDvw+Pi4Pe7ROdPzdtMxfmgoTRmojgQrnEIjAHBgUAGBVDYvJ9mDHqvXszNKN+0vkUXMQOVMKiPp+8nJu2NnI1ZSna8awEFL1aC98leG3vd7daZi+mCryp0A1xIgQIOYEKgr7Uhc4Srj+jsY2n1lVhdmdIvOi+eqfk0GY6T3Xu5EOXIltb8Clekkyr76IpvKS71PZXN9fn39+aIu1yEyDJ5OAgFJD5fo6bHrcQ8IEAwkcJfmuas1QuzH8/PzboDhoNL1rbWfUbPsksrDhYFiA7hWgE65R7tLpEt8oma1eruGgLawAgOcplBZ+CRDxVb4eoaqXVnmqq/Ztm5fEhuwRHenwYDTS6mg1X8vXBX9L434XSo6N5WvksqA9oy/BkRqHyqJUztVHRPV06tbut/3dT8HsYMUXddTxlGZvA6pTL+7JGdf7ev/TFqSKpp6jyQAyXnltF2tVts5ZhpFGj+PmDgXrPOVQ67ArVOpNN56vzwfi3QaW0LgsK8uHqve9hyvAwGCPUmKoqvFbrzWGR4HBQ4wWSYHA6+vPx9rpG7JwQoI+LsP/DHCyhGzrVar3ZezOdtJJpdglzbbmQEHMb2yJFarYgkS4Gf/akxUU9IzgWaSaTBwcXGxg5RS5tWgT4VMjbYkQvW0q+Mp4toXGPC4lN0BwdK0Wtt1nC8vy94i2BN39iojBzGvnZm+mK0H8/+dxfXGQaFHPtVagdRuDgCYz0eKA1YaatbFX06j+WYHA06NMpKjHkuScVa5EhDSPTTgrbUdQECgQAPJNvRfxWK5OOht7bh02fWKupc+rsP33nv0myJrbpWHTwGxb1J5UrDk44L5Msr2xwY1NeBAIFHzyYaxnLyGZSF7JbDJ9lJ+vWDJJZXLAUx1X5r+o647MPgI/dybGegpT5IEIPYdaDMg4KPEDYwMGI0qtxQpkBSLA+ojO7EnFWp0p81B2UPYCXVWfennP6N/DiXJAFbn0n5r+cNADl4ps8yZ30u9ZZS4Xq93XkjDr9hdXl7uvLJWxl86TcOdyv309LRTDo8ufTyltuFagdfX1zcgOTECzgb4b6b9XI4JCEhGgMCBgKQHCHgNhbZKbc1jPX1r7ScDleyjtoz8/dFBRuXumFn2xHaoPGQFvA11XqLphBFIkpBBSMJ7vaxV8MwAjmPB+1ppOoDdx78uXkDo9AoL02uI6v9SGUVbvev2dUZVJMgXVFTKLmPGzndA8F5J1KjamUpKo+kKlOZndV1qD55LoCYp5zHLjKPoORl3OD3w45ESo6fkWJMR8TZNIC+VnWwWgcDV1VW7urpql5eX7erqanvs4uJiJ6pi1KafXh7j+VeGl+2Q6p3qk5w+54Bn+ySxA779XYRO14EA7ZTEg5EZIVPpoEC2rYpiVa4k7iDp8BMd70CAaVT7VV8T0LAMHFuVc3fwrkDP6+lMip9jvikPv1b5kRmo9HxfHV70BkIOXBV0BAJSAWcjHJcZIJBQavq/xAn7PTKkHmG5U6by8RETpturv08ZVOAhDcieuOHzMsxMF7T2ezh5yj5AUv8rvUnOf0a33DkTTCbH6CDAQV9P753N4toAAoGbm5t2dXXVrq+vt8eurq4iGNB87maz2Zly0EtkFG1pv5rHba3/DnnO3fKjOgQHHBc9QODjJ0W36bpj0nPXMQIBAgD/PgltkUfUldBppXbrlc/3qyjb5+M5/cRfSmNEwydJoM/ZEupmmmJl+yo9t9MEG6mtHIBIaMfTfQ60WPaePZiRvb9amOjnagAlmiQph+9TZitXKW7v/tSQ/iMbwOd1ufUFMullF1L8Ea3kIIrAgM7flVb3eCTZq3s12CS9NJLxrOpwaPEyzTpt33ck3qs7r2/t7QIr6ZRHyRQ6PxorNyapTiliTIzAzc1Nu7m5abe3t9v9y8vLdnNzs/M+egIBvQyGb2tTfdfrnx+lkRNKho91TQxXam83tKk/qp/LsehmJZVD8HMEBWR/KKrr7Nw3bRQd5Ww5XZLzExjgC310Hacs6TwrO+X1VPoacx5cVaBS+TgoVz3pE5SfP53g79iYZWSqfJl/a3n6gOdHoCjJNBio0Bc7pud0Z9mAhMIrtDkjo+tTdMDjTIeOnz+fW23t50c9fE7VB+EMIKiOMZ2l7eJgwQeaD7qPkH3Q6kdK5bxbG0c7DgrTf16bxCM4/RIY4DigI3UQQIM9chwVELi9vW23t7ft69evO4Dg+vq63dzc7KxEf35+3gIBvSbWxwVfEsPFhWpnglmCWtoVN6IOBFQfzvW67ajAwD46fWjddaH+kRFwvZRQlxSQ6Lg76aodJbNMJO0ImSzfZxkSK8A0mG7an+1bt/uJHfA28KhdbeKPirs4sB1JCva472PAA4R9ZRoMeAMlIKDjXglHd9WP90t6QMA7M12zr7gRlUHUQiutuuZ/j6C0Elb1EjDosQISDl5Oy/A86+pR1Uz9lirOexTt0Ma0B/R43K/l/f5zIMA0Ur485hE73+NBMKD+98f1Wts1MinqVtkSeL2+vt7+vn371r59+9a+fv26BQY6d3V1tQNUpNNXV1ft/v5+58M3rM/Dw0M7Pz/fgoIKDCfAm8AN52cdeNE48hiNZIqeXI6dJWitZj2SLrkDl9DWVu8VoOORcH0Cj/H6qg2Zl8rM6VN/fDCxAkrHg9Ik+0ydVlIBVx/7q9Vqy4Q5U8DxO8MS9MrvOp4YAtVpiZ1fBAZSx1RIXP9ZMDZAZRB6TmMU+cxcPyPJ2DCq4uprLboSIJBhktHk3JKU3OnRkfNOgMBR6iiNCmm6Ys6uF5hRsGM2rj0mQNIzvLOMgDsvGlR/OYyn61Fbak8ZATccLGtrbQfMihG4vr5uX79+bV++fNkCArIC0m3q6+vr69bBX11dtbu7uzj1ofe+cwohrdBOQYOurRy96uPOhT9nK3m8MpA87+U7pC77mO2B0qSHLDvtMB2xX1flz/+evwOQ1Ha+70zkDCswIw6seayqE/UvtQHbltfptdr6r+nh1nbt9VIdGgGayj55UDPrB6fBAN8WVUXySRnZeBWr4I2UIrTK2Kb7+N87b8QkUHFosAUCZCCvr6+3YEA/sQOttZ2V1v4OduVBY0aF5xyWzvu8Fp12cvS9/2mQVm27ZGHOMTv/90g16Cp9T/8dBPA/dY1GjH3Ml+24JABHx8zP2Cri17TAt2/f2h9//NH+/PPP9u3bty0QkH7rPQMq4+vr684naK+urnYW02qf353Xfzkg6rqEzknn/EkBCdvGpwq8DRIoSAa/AgeHlh6w8emmCgj4GiW29WjM0h5Sj12HdY0Dk7Q4VPlW6wPe217pGMtFgDDbxxWoXK3+YQE0Jazy61sPHDcEtyxXa3UQlo4n9rGyRzNBj+TdYMDFC9QbdBVS93tnOq5C9NU1PUnGPK2+VnRF40lEuNlstlMHjnRZXw3MFN2x3I4yVbaKLZip2xKpQJsfO0ZQ4H1fGQ3fuhFJBq8HCjwt7vvz4DrGe9ieioZpQCpjQiDA99MnMPDnn3++AQMObhMYkOOXQWfkz3aSvLy8vFkoxnPqJ221z/FBY5qMbGr3Xj8lHZnR818tlb6meqVoMk0TLMnPQYg7ezJb/AYC9SAB2Y8EXFVaaQy39nOMjJgN1yVvj9Z+vhDLg6ZqkaKDM8qof3x9h5dn3zZdNE3Q2tuo3mVUqIoy4v2+P+vAq2i/d09V9sQKcGqAQIAGVMZTYIALr/wTnL05pASidCwxBzz+K2RWgY/BkLY2BkHVwHcQQONW0bN+LLECfq+MKA3SCFhx4ZLrvwMBgdjr6+v25cuXHVaAWz5WqHcM0IC11nbAgPTQ9dcNa2s/9TO9Oc6BLeljvg0utTP7kD8HB2zr5Bx5TwpaDiFV/RKzREdX2YFE0/fyVFqu79Rlf311Ark9JzWy1yNWshKC7wQEKmCfdDeBLU7Ryc7rxUbSWf9P4Kp0R/WqQDP7r+d3Z9tt0dMEKkxy6JXz2tc5VQO+V7ZRw/bSqUCIEC2ZAa0RcGbg+vp6OyheXl62rICAwP39/c6z2ZVTnxE6/hmgMCtOu9JwusPptfWxgACXpUAgGd8EBFJa3HdWQHrFx1TdoM8sMmK/01gRzCrCdzDA35cvX9qXL1921goIDDgj5W+2E/Dls+I0VvppcdV6/XNBJJ281011SBE/9ZT6XvVrAmx+3bHqrIvrpDu7GZtZpetCfUwgxPXXQQAXVdNmiD2aXezcO+7smIMA1sPL7+3I+9K5atxTpOvM058oICjtAVSJn3Mg4OXWdUt04V1PE3gDuLPg8SRLDHMlaXpgZBiq9NPASuyAKFf+ZECl/DKarbXtpzivrq62c6ikfIUcq7nPniyZE+pJMo5+fqmx3BfRf7QsKbu3A3VhxAikNEasgK6nvvG4dERRMu/jG/jIEiTd5VoXPT745cuXnfcK6JxYAS0epCHyx5heXl621242m+3aBH+lbPpsrE8XsI/8pS4e9VbTPj2DSKPrIJdyaH3tideZ+sTj77UJiVp3AJDWiqQFsS7JmXmfVuPK+8YdtdeBWy5m9THtQMfH9xKwRVYrMTZL7PwILLHulfP/cDDQ2twishkQUMnIUXs5dDzRfEvyY14JDGgA8FFCPk7oW3bM6+vr9tns6+vr7eNYbgj56MlIiHy57R2vFNhRKe8ZRaYuHgnq2DHISCcqXUg07Cwr4E6ZYMANamVo3OFTCNCdovc1LgQB/rQA18AQ2OrpmGpVdzU2xBLoeq0V8Haj0fQpBB/viiS1kJLMgdoiRVrpWBUYKC/asEMLbVoCPNQ16lFr9eeue6yhR9UJCFCfZfPSi9gcDHA6ifbGH7tLOk/n6qCgcn7OaOhYBQJ6oMDbpLInDl6ZxtKpgrTINvUly5XuTXqQZO83EI6kcjxJHBFqm44tcfap8bwcaWBJfACQBeC6ATIEGiRkBl5eXtrDw8N2KkFf4fJBqUHBslcGKdUlHU8OxpWG1zpqTUY0TROl+cdjMKZLZAQC0vxnBQYqo+OvsU761zPSSaf5GJ7u59SAIn9NBZAR4JoXvluALJdWRqfvEnBqINWd9LEcOhkz1lcMGfd5DyMtBwH8n+zFjF3x/WORkb2qgGSlSz6maQ94D50iAaxAgL9jxYGC7vNI2cEe05euUbxv/H6lQbBQ1YP1TWMw1dun8BwMVMEWQa73F0FBmgIYAQH2o1/HPJJdrmQaDFSDpJdRckA8ViHUysCO8qmmKtK1lRFmJMcIS0qfpgb8C28yTOrop6enNy8p0mJCrsb2CJ31SW3i7ZoGSA8I9NoytV0CAWn/GI3pkjnlGTagp6OiI33uNLEBPWZgtfr5ClU+ReBOjPSn8uUagdvb2+0CwQQEXKd98aAofumy1r3wDYOJ9u21HwGCgwCJxofTrR5F8j61VQIB7OvqWAo2Pmoq7j3Ss1euix6Rz6TNbWtvPyKVXlzlU6Vp0aD6igwQ38rKPq5snMaBfpwS47XKV2Wu2qq37z/6gaTHrf1c/8BjXlf+6LB1rfeBg4Renyl/btO1I1n01cJEA3umPYVNDqu1+ZddVMfSNMES4+9l83ITITodlubPHHUTYLjDqQaA1yedT0CgQvkzUl1bKWUCAcc2PVBJpVsVKKj014+pj6k7aXX1iCVobXe+O0U+XJHv+cmxy+nf3t7ufIRIkX/1am0aqpeXl/b4+Nju7++37w4QEOCrh3tvjmN7ueFarVY7YKdaVOXOyp30CEz37MTIdhxKEmDhfzpCOsPR2B/ZBZ33dQEeGPk7Vnx6QO3JTxG7fRRD5B+2ki5rWojTDG4X034FCHTOmYJ0H+03/0tYF5VLYIUAiCyBL/Jer9dv2oVpj/qL7eXTXEt8wCJmQJlKUsQ6Y1C9crN0xswgdQdalbG61//7QEhzZYz6WWehXl5zdXXVHh8ftxSrlFv7vpCwKmsV9ffAxRI5JoP4mdLT1woIjPqEBiSBAV9wxby8bEpX/2kw3aBIX8kKaHrA1wvw3Rj8sVwak1rzwo8T+TTBRy2KYr1kGBU5qp5u9HhM/2mg3elrS2OZgMAxAAQve2VjR2Pd65Eiawl1yfXYp0xdd5IuuxNkhO/67MwPtwQDCQR7G3l9em2XAAUBUQIIupb66W0uNk3X0Nd5fhVwnl1HRoCdwMFIFjMD7mxcqWYNKyVFEhUNPSNp8Kd9/6meFXjxQZIMPdtKCpBoNdKsutfRY68vvMy9ulaS5qVmANnvDBRSu/R01g3G0rxmxoIbc4+QWW5SpOw/Aov0+CuntLhAsGK2Wts1Zk9PT1tmgGBWW4/aKuH4rujMnuFO88W8J6XjEVKaQkhpV9N0v1qSo+J+Okdxm9rrn6T7YrGcPVKAI7bAqXSJR8eMmJOTVV8ILJyfn7+5j+UdtQmv9WvStSw/6+OsX88XCkSrnTRloDpxXRnfROtAVmUg+Enizp+6PiuLwYAyqAYzG8sVqmdUSat4HhyQnudsZZNyVNf4fkUbpUdrdK/KRYWgkX58fNw+gsXnryuKdLZ+I0lgY8Z4V/u/EzDwNqrAXg/AzuiP0mAeCVzQ6Diw0770gY6NRkL3Ug/5BIGAAB8f5JMD/OgWp7JaazvGl18fFIjVcTf2utd/1RRCpWOpv1xcl9fr+Ue33NEn23QMQEDb3q+6T8J2rdhd18fECHBLm5bWSykvsgFkQhlhr9c/3z2hwEi203XI+9vBx+x49Tqne6vAgOVW2+qFc67jXB+k6/wJCnf4Pt3FNu2Ngx4YGsk0GCAVQqdNcRSfDKvSYkHZ0TR4PaPBPNO5JY3QAwF+nCiRA4IDgXVyatinFfQCIqHfSikqqZBiz6hWQIDHq9WsqT+qfumV4VdKZSwrfXX03zO6nibv83UC1fqABAR6dUjGSzoo48ypAL5LgKCAYEG6qbJpPPq7AhwMaHqLTxRUUWCKEHV9GvP7Av8k1b3U016gcmip9LW1n4+SuqNqbbw63RnUng77Ympfb8JyKC32s+wZWVPZPM6ZJ6Yp2Z/e2KzAkOtVdR/b1m2CL9jV9fpGgfIRK6zjOsaA0h19b42MHxvZtaV6u4gZUCYJ/fOaRImq8gmFEgjwGwg655VdAgqSjJC0G+ikIBUCqwyaO5o0VzzjcKry9sQHvAsHrA+8UTRXDTLl55HXMQjLUwGBGTartTpyTHmkPKt01XZE/Cl9ji2CTFK5XPDlj4HRccgQa19rBO7v73d+Dw8PbxYLctqgooUTU8B2TPclvWL92aaz0gOqyY4cC5BNgCA5Jom3s4/Zal6ZaXsgU00V6J0UiUmTHlcskXTp/Px8R69mmFH6FNaZwrzc1vGaKvhzu5BAiLa+PoCAIAHiFAhUU8U9m6/yvYfJWsQMOCJjw7JADgAqw+rUBueHWqsp7SWOnzLjQN0ApQ5xxOzAhlEVaS1RRWlBmVbNslxVvUkhpbmkahA5JaZ0KdVg4f/qfAJqxwIAXJKz9ug9UZBJ53qAII2FBAgIClMZq7wTjZsYKF/97QsGW/sJBuTctWhQPz4xwI8SOehlu7KcM2POqeQKPPRkdmz7PerH9xjUjxZvz+qnazx4cTvmbUgnmABx9RQBv9zKJ1BSeVIQobyTvaz0vAeIPT3lJX3yl2AlMFq1va+FcECQdJPt/vz83C4uLt4A3uRrvO382EiSXszKImZAQgeuyrhR089XmCYjocYh4GBeCRCo4vy/RHzAV4iytbZjAEmZ8oUretY6UaPODvRWlKtNOO/pAyl18oyhdPSrY0kpPaKoBvSStj8GA5uMq0dBFQhI9U+Gl/2YDGwFjJmelzlFb7qPc5L876DG81Yfi/5/fX3dvhBLjw3e3d21Hz9+tLu7u51vaxDkMrojAPZ9j47c0dP5M+3KQVQyc623JVkY2psEcA8hPRDg7GKSZB9ot5mHswHpUcKKZfK03K5WwQhtpteXwCS1ie6nHlKnqHvU05SvywwzUPmS19fXN3aF6yGqxYRcVFgxg58hezMD7ijcsK5WP79gJQWj8rojX61W5ad8e4BA9y41Ft55jLoTbe5zppvNpj0+Pm7rxTI6EvW5Vho9CRUudb7SUtvwrXNqg6ptuGUabE9H1Z7WiBU4ZqnKmgCsO+9RWlUUmaJ+N94pkuuV0/OrogCPspNT9oWC/pz/ZrPZThHc3d1FMECjRyNLJoE672Xx+x1EO+BI7V/p7VJxo57a+1CSImI6buqZX++Ormond3QCl+lJKGecuPDUddFtvl9DNkb972OSwCS1BevJAI1vzExBnOtuBQjSUwRVPRnUap91ULm0hkBTCGx393dpyoD9ls65jZiRRe8Z4L4jSj9OpOiNuVSSs68AQO942qdUCM9ZAQICKSiRnRsz/3yxA45ULgcjTvMlh16JGwlnCFJ7peh/BgiMQMkhxHUiRR3878ZK2xTl9Ay1AwufJkpjKJXdt7zWDRTFQUECCWobGSTqK9cL/PjxYwsG/OuErbWdVxYLKPMNhT1WIAFvP8+yv8f595y8MwLelocQgpRKt3qgsLW3n72V0C44APBpp+o7LLzWJQHgxLqpHAwsGVFrOkvrElykM3T+HoSl8/rxDZqui5WtYLtp/Og+Ph2WGDqxA54mp+uYx0j3HBAkfzwji6YJhHQYRVTMgFOXqROTsPK9Si0dnGnwu8NzRJ0iKhk6fX2wtbY1gGQGHKn6c9o0lglAUDiYK4fe63Bey/u9DWaAxT5y6MhKkkBsNdBby0AgAbhUv55zr4z3TPkpadqttbbj0PmyID0LrmtoqCQEvLqXCwf5JEECA26E/Z0ECZioPPzvLIEAAq91Z1eJG3lvU9qbBM6OgR2QLNGdVG+Ci9baTuTqU5i+7oTvqXBWINl3Tpe5Y3Sg7PdpQaxeoMVXHrN+0gXpJW2qgjVS89RFD/Qq8FlND7hw8SD9ZAICYgda+0d/+bgh7x1NESQQ4PuzsogZcArDB05FM1WMABu7SrdHkfTK2gMLFTBIRl/GjQZWUdN6vd4iQU4XSEG5nkD0qaKtZFhn6DwHBK3lF0KpHZbKKOonrfe7SOX8HQRUOloBgSofP+Z5+nEHvz3GqLX88hQvL6lSOeX7+/sdnfXpOuq6T4f5y4b4KCGjeQfOHp3pvJeXYMABgIOyJAkYVNdX7csxdCzOn1KxAyOWr0rHxwDZK2cBfIogvaiqYs4S2PCImDbMH2HkI7Cys65rXPCq/wQ21TQBGd+kh6nteUx15tRAAjvu5H0qQdvW3gZ6BAZJelMFn8IMeCYqhDMD6X39RH/J4fkAnAUBPohdESksJ+9JkmhJUv0ykMpT7wrQvRU7IBCRXuf6Hucq5fH2XHL/0vwrx+nXHAtoqAxp5VC5X0VYvXxaq9941ptfdR3lOaXpeXh0Rd11RotggEY1RU7uzB0IMB8HwdRvThewfF7WHmPAsVjJrK5VejljGw4hle7yXGtv7WDVXm5nfV6+90QKH1EllU/HKKGzJ1OcntiR/SQroMWKfFkWp2UZnEm3z87Otmu5mL47fp8mcJvtAVqlE9RN9oUHGs4MaLzpPwNiny5QfZMPdXaYjP2ngQGPYHzlP8EAP4JC5MpKE0ER+VSsQ6pURX1VA6AXJVCZvbNoJH3RoK5R3ryX/z3acgq1WsQyihKTzBqzXuTkqNjbKUnPiR1SGHVU0VAPEPSO9SRNxVB6UeiIoal+noaMnQMBRia6hkDAXzdMatUdM5kIpc90/d4KDCQgTdbB65XaJLVvr+1nzx0K1Lr9Yz193YnKybZxQJBAJJ22g4D02XZOEXDsJH0neEmPU/O4rpMPEQDQS7MIBqSTXFRYAXf5lGrxKp+OIXvlTyak4HQ2kGI7kIFRGkpbY4dMgu5Pei9xv+k2b0b2YgZYQe47AhQY4DW+avlXiBuSFAFUDpSKw4iJzt/BgCNPGkstwBJtSsPL6yvapxJOGXyWOOhyORYWIEnlPJ0qT2Cn0lO2Q9XulQNkfn6M25SX1yfVz8vAKQPWkzoogEpwQN2lsff6uO76OEht4RFsus/vTcxiT9gmVf+me45RKr2VuDPu1TPNZfs2sQGjN64mPa+EAYYDBjEI/iQDwYB0lfaXZfG0GfCxjFzlT+Drxxh1Uxcd2CaGxNu6Ggs+LnS/xsiM72RgvUQWgQGiDKcqCAD4SUt2klCOAwLuO83ibEFCubODXJKiXCqKrkm0p4CADBWnQmh0U7QjY+wREyMplk/lchZm1EfcJjpxHxkBAZdjAgbuMCtWYMQMMD0HwqP8l7SHGxMdq5gAH/QEr9Kxx8fH1tru2NN5AtQ0fdWbxiIIphHz+f7qPtkEltnHDre6tpL1uv9tgt8ZCHB/1Pet9VkBbdN48KcJ/AkCnxpgvlU/uV2SE5fd45MCimoTxc5F29Rxf1qAEX5qB29Dgl4xZ5xK87ol2+7TZxXYSUBA6dDWp3S070G2jlVTCDOy+GkCN6w6t16v36BHMQM+yEV/qIFUQX/pgitQz2DPotFKPEpTOj5V4JGkjuk/6+lGsTdn5com2cc4VVHk6DoeT2s2RoxAAlfHIkuAgEsyakxziaifkxHX1p1oL480xUHROFJ/aLqAuufTVzRuLJPn42OhtbcvsapoVHdazixovOg8007ULcddTyq9dN09JqnYn8QOSNQOft7XmPjcutP56RsEPj2RHJvyks8gQOMxAQKWjSChipoZeBEEMGjzha6pDZWv9Nu/L8ApbNcdd+Suxz6GlU5y+A40lB/7OrFiHNtVHrOy+A2EKhAVgoqjhR+cImCFHbnP0n4ORnhPjyHopemRbkJqypdPDLBeNOyVYvDnQICGbyaSUltQKgM4gwyXREq9sh2T43dx45lAQZLkHJYCq6QDYpYcDLsxddHYYXu7/umYyqlFe63tsgLSOa7ETqyAG3caKObDNqNx830CY7aPP+rl4MDHiYNu1j85jxlxO3JMkgIid2h0WIl5dd3nGyvTz4FAAs/sA18XorzZ577OgHPjivp1/PLy8k2Er353AMt3W/i7BagDDAL0320rgS+nF5ItTwGejxu2merIJwj8vvSTVAGa1yH5ypEsniZgh6lSaeUpwQAHK5WELIHS9KkBR0Spgj1A0HNUKYJOabtxIWvBwZaoIx536tXTZ3mTg0od73Wk4da5jzBso8j5mFmB1vqL7tyZ9erqfVBdm4ClA8yE9j2SVlvqx//MPwFbpS0j7UY8rfb317Z6ndyIjpiJ1B4VEEhrbfy/0uI2MQY+btmWrp/VeDo2QEBJDq1ib/261Wq1Q/dXi/oIlNkWBB0pwEm6KiBKpkplIhhQv6zX6/b4+NjOz8+3WwEY6YyDAT9GdivpqPdzZbPSWCY4Se+KSWlVbCDTdMDl4I9l97SdTVhqgxdPE/A/aSX/tjXXC6xWqx0lYKPQeSWnz22iriWjAe9SDZikNFQEAgE5bWcGfGpA9axopArtuUGqjBM7P80lUXpt+BGS2v3QwMD7NkU4qdy9fkjgkwaShk9GjrqTWIkUCSTH5QaVgFTpJEfO9BjZ+MtaHMyqvMonGVUHIhwzDgQqo+rnKjBVAYQE3P1/6tsks47iV0pyDEmX3aYmRiyt5k9TaDovGTlGd4Sc8k3gW+NDLwhiJE+GQvpNZsCZAP+xPJyC0H9G7klfXap6J9Dq97uz1jH+9IpisgU8nwIIpcOtswKzoHavDxWpQk4ncesLTDg3NIN06PwT4q3kIwetgwB2kujXHjPgCubAwMvsxqqqbzVXm9qFx2amDXptMXO8Gki9ND5bEtLuIe8KFFRCAMD+l/7L4fq1GkMpLYmMNMvii5Cq8pGR8/RZLrEDTsW6sSTgZL7VtJU7jjRF5hSrT0/0AIGDi2TM36OPtF+zBvUzpBr/7uQdrDHwIvAkC8DHvzkN6kGbhM6eLKc7x5lAR0J2mf3vY+Tl5Z+Fhq21Ny8ZIrvlC2HZZi8vLztjqrLfrjeVPlbrwNLYU/1ZpwqApV/qCwfnDAgZlMzIXmCAytObIiDi4j0qNDsqRSGJFRjNh6RILUVX3PJ4b9B7xKTFgxwgbqRoVJOSpEHjxpbHewCBDihd02MEZhx175oECmbTPYSMkHNiCtJ9PhDVB3SkziTIIOk6T4PpM1Ki4ed1PareQWeK5qrHW70sBDs+vnvjsRdNpijLp9DcSPsYc0DAX0+qPvZrjkEq8ErnrcjS9aW1XTBANoCsQAIAal9R2LSnDIwSmFNeqY3d3hEMMJpXPZT+xcXF9v/Dw8Ob92D4a4kJzL3eHIeqq4ObCsCq3mm9gINh1cH7UXV3xkZ15wuJ3METLFFHKr2ZkUVggBVydFl9jtcLOSqYO7M0fZAAAe8ZGXH+rwZZokOVj0dv6bg7/kpJkoNmh3sZErhJ5eG1SyWVdWRcUyTmZTwkMPD+5rGZe6u25HFGTBIuqtJKZY8EqgFbRQVJlyt9UbmSE6Yxo0HVPe5UCAS83ilCodNOUZQzEYk5cxBRMQPvAQTpmAOhQ+mu2ydGyx5Fsj+Sw2EadD4JTKotXS+oixW7w7Z3R8t7GSjKf7gDZ4Dz8vLSLi8vt/qXniDwfZWLETl9lKazCWxdr5LO0vGnqbUKTLsz97HjrI/bAK2ZqAJiHktTCj2ZBgMqhDcqXxCRgEAqpP5Xhivd58AggQTev3QAzzgIKQev8cgrOVK/prqX+ZO+WiLugCUzbV3VZ9SOh3TyM5KAAMXbnsc8Db+vFxHTkCmyEpvEcVLpHud0KbpXkQ3LmMCjG3Z3/jxHh5rS9TH4/Pzzc6wp37TQik8OuHN3h86xlCKv1FeVpLbRce9L14VDMQTuxFur3w+gc7rPr0+AwKehWtvtO/30sipd69dUkbGnqX0CvtbazgeFCCQ0hqQ3Yp6pW09PT9vXvPNDcAQDbAc+RcEXyHlZe6CZPx8zld30QDb1icqagFtrP6eDk6OvfOKsH5kGAz7HISXS4g7/lCULlqLF1FjJ2VcVr2QGFFSsQOUsWF4pqKela1KdlwjL7YDAqbWKnfBjvcg2AZJU7l59qkGfzh9CEvOTwOl7y8n+8r6R49Y17mBTeXWtO0fdJ4CuCCP1cYpe6Jz53/su9SPzY51YnwqAOK3KdTduTF0vGXH5PYkNGIE5b6uRwTyUDleRvAMAZwcS+6Tjni6BAxkXfXNFuihAK3Hmx9s+AQDeq3tc15megKMifn65UGlq/QC/CuvMANtE9SDD4pIAQXorYaV7lc9j+uzjBAqSD+TTd0lnHVBwO5JFYMARpX7qIDZwryH2lVS5Cu3rXDKQCQzweDVF4NTVbPTuHaQyVQ6d19B5sC7pvkoSIOgN1BmpHH7PmRxSRgPjo/S0AgSk1hMty+u01Y9lks4k4zuSylBV91dtRefvddR5BwP+6GLFCHhZmR6NM4/16uHBwahulRyKGXDamDZY51U+XudTALRTbv9cH6kjfE+FM1GttTeRcQ/QOZAjAFTETlAr3Zc/eXl52QEouvb5+XnLBqTPwyu9FG2L6a18hetcmg6pQOm+4mWlXyJIqITttSSQ3gsMcGrAnyAgjdRaf9HcjCTnMjJgdH6VOKBIgMFBAQcUnXUvD5XBaZ5UttQ+lcF1RkJSlYeAojpfrTodRYu98h8DOJhhgmb1hulRHKg5IOD5ERhQn/sTODRe2tc1nL5iHZLhmolmUn0TmHTgqnMeQVVTElwnwC3btbW2c10yxKnMPo5+V3EblIIWd3LOIlT15zl35HSUetbfp0l5rUsFPBO1vl6v37wPg85P1+vlbxxfAgkEA1o34IBD9zlQGgWYZM8czPbAudtEZ8B6fsz7nfVI5XTxQGIki6cJqvdWc2EUUaE3QjUvqWt0j1NKLlVkrXNsuMoouDNw1J3Q2axRSUjz9fXn862O9pLQ4CrNpRG8hAxDr8zcqgwsi5dv5rpDizv+dF7bFB3sIw4IyAx4H1Lf6Oxb+4ny3ZH3Imt32Mn5p/t6YJ3tl/SIwMDL5++KTyu0PV/ajaoufs7LnQDebN+msXsISVHiaJ/MrU8pjOrBvtO7+XmvswzeB0zHgQAB3wyzozHjYIBPq7Gs/gIi6pqDJk4VuH13HyG/RXbAFxT2APWMLnt/a5/t4GUfBaKs74wsAgNkBfg4IRWPlfYBz2jADVtliHoGihXvRQdu5KtIkecSAFjqJBIQmTEqzgT0orWl8hFGrddHyaAfQ1SWylAdcwdSXVOlQXFDwIEtScwPGSRGaLqfBoWGzcvkfeMGuCejuiVAwPGcwEsCAixTMnAzAGZUxtn+T/3aA5KfLcnhe5kIApwhICAY9b/aVaC0tZ/fthBTVU1tVoFBAmyuG6pDKhcBNJkBThVIrwgI/LXa3p6tvV0Hx/MerNFvJSBQgSLJPuw4A97U72nqh2kzIJmRxe8Z4PsEnBVIxqCiCt0YJOrPG9lBA5WycrxVtOeDXXVMoOA9wihtH0mOYpReqpvSem990qDXfs/IzAKhz5Ae+Kuu75U5GSs/3lr+rHRydj1mgOVJzp/RgpeHeSYqszJcvbFStYP++7j3x7/46uGeY0/gIF0/qsuobscurrNO+zsIqNgBpVUFX2pTLs5je3OxqsSDPxfvl2TL9WPZfM0ZHbHeVOjTG9XaFIIBln+1Wu0wHwQIyU7w8crqMUP3SVV7ePu73joIcGBCQDYLcmdk0aOFq9UqvnpYDczGqb4iRVSY0FIVGSTxRuH/ERBIg6wCBT1jONvwLAs7eomDrBTNHbyj7ZkIT/fMrB2oogBtk3IfCgjsK1WZ38PIVP2xhBnwyE9GqYoak8OkMarK2qtrApVM31dbOxjx9QK839ujclo9EOBBwe8s7gyqyFDnfC6cYEF9T91I7UkbxWBNAENlcPudQDF1raLJeS91vrX2xmdoitrBgOud657E19a0tgsAnGXTvj9G6AyBhProNiSNwcqmzjBflW4TNCyRRWCgtdaurq7a5eXldiuQkAqfKMAKTTk48AbxtJSey8zgd8PKY6SMXCneI6nTla+DmKUyAxJUDypJD8XyvqpMCQhU1x2aGdjXKST6rQd2/HqNDU4P9NrB2YTX19d2fn6+s6rbdZF5uqFUmmn8ML9UJneqrCP1KI1jvlPAn9P28V5RqD06ugcA/Pg+fT8CRL9KnO734KWaHvCXW6kuHoSQBicYcHC/Wq12FhC6Dib7mICG/6/Ys/X654eKWmtb3XG2g7aTjBR9huuZ5+dMm86znq+vP5+s8Hx6eumSxqCLB4w87udZH7cDS+3t4qcJ/BsE/gpMNb4vGPL5FaK/hFCTkXLk6Q3iDZeMb4r+/bFJP9+7d0ZmO8XpoI+QXjmrfKhsldHdxygfShITNHtfdXxmQM9KAhcyBHKaXDtCqpBRSppXdt33crnRSc6zx5KxTB71ePnSeabTAwGpnbyMI93rgTY/tiTvzxQHAPyegOwW1wWk1wzToTnzlyhr9rPOE8z6+zJ0XRI6y57TdMcmneQbMXWd6zpBt7MZFRggo8y6kPVwfa+eJhg5+J4t6LFvvEb9RpvtwV4at0vs0KI1A1TGy8vLHTDQ2s95lZ4RTcKOTgbCgUJP3Ki5cXOKKEXPFUqcrQ/r5PWbSSMhv6XyXiajJxUg6EXO6fivkgQE/L+3V9VX+wx6Rmb7iMZABQCkn3Tq6a2FdALJqY+AXXIUXsa0NojjmAGA5z0CAT32omIxKqnS8nIdktFqbfe9/WQI0ttf/VFCXef1qfo+OWvXGzql1n6Oo6qtUpo9e6jjAh/UC6XPOnpeFSj1slSBo+ro9uH1dZcZcH3uSTX+R4Eay+T9Vu17nkumCxZ/m4DUk5RRg75CImnAOpOQIoWURmIHJFSaSpKTV724rYDBjKT69pCzl69iPj5CKsVYUr+ZKOyYZAkz4ODA278yeNouBcK9856eA4HVarUDCLh2gAZb986AadanKocbfhpfj8zICjBCc6Ptefdsxkx5e9fN6PoMEPkVUlH/zga4feY8uNdDP2drqncF8K13rb11RAQE6f6qD0f2zfWD75rwNwcqf9XL867ADoEtWQGWUeddZ51VqdonRfKUKiCsbFWaQliafpJpMFBlMmNk0/mZqDpFCz2hciVWgPkmSpVlTdfMIKxZ9Juu9XIKBY/SOQapBnzVD79SEjIfMT0jULCvzIKF3lQUDZtTljISbmgrY9jb9zyrCNAjSxpNjoMUqVVTBfs64VFdekD2kDpaCcEAA7DEAlSBS9U3OufTgdonoPSpBnfqDjy4P9OHFTBguekE5fATo1eBANc3rwfzJEjwtkvT2z1hWj2H7b4otU2lv54u7dcMe9HaAjCQDLoP+AoQOGCYiXg/AolXg7u3WGSGEegZaW17LMfouDvQBAoqWjtNeyQwQ7Bx7EDjveJAL7VLGoh0fN5OvUhoKTtQAYGKLSAI4NSBjnt9UzTjxrEXwc1G0nQqns/Iyfeu8ShuRqqIrZfWrOP6lZLWCfj6gERrS6o+8LqmtQM928D8ku1JwVA1Jav/6XyqC0Xlpp5XAZnXhdMRXrfUVpzGTqCjx+6xb9yOLBX3oer/nu2ZkWkwoMrzcUE9SdDabqWdfp+tmNMfvYE5QkhJiX2eS8c8ckzG2CO1HiDo0Z4uFRruSWrTChlWzIj200DoiRtUBy29NA4VeSUwsATkpXaq+jVFR0kqPa3GCw0XIww3VN6/KUKr6lL970nlaFRmN5qJFZjJr9eWlU5W9RqBAl5/aLaAgQoBgT8P39pbIOuOLC3iTqwA7+kFVGShCAoqSZFxz075OK3AWqV/DnZSHaq8mLa2CQgkQFDp1qiNEgBxf5LKz/TfI9NgYLPZ7PxXIS8vL7fHfNEQkZSEFdB6A8pq9fPFK7peStdzXH7OUW0FBCp2wIGAS+rwnsOYib5njfLsHNRHG7IKgI2uObRBdTDAYwSD1X2SBFZngI/rHM/7Qr8qb+XHfVKHFR1I0EHjX0WKlbFluyXnwTKlqJPlHxn0dE2vrT3dlI+D1hGAHYH4XynUUZ8acMDntLYzR+ndD8m5pbbUXD1lxtZ4VOxjIKVRgRxJD9j6uSVUvqep9NLTMCO77gGk63Bq86pvfGwvYQJm7e80GKjewfzy8rLDEJAR0CMoRJCVo3Dn6428jxMaUebOZHj5+X8kVfkqhUkGaaZOlAoUjJRklO9MOWaAwbFIAgOtZTDodRrN1fXahXq0VJLzYrRGY08D5S9V6Rmraq44AXiPfni9PyHgUajnxTGRQMjM/hKZsR0zxw4h1B+fDtBPfcJ5dC4mpTMhKOSx1rJz8nL44jzmnyLh19fXN85f+z1WoJJRX/acdAX8qnSdCWB7JdDrdeA7Gdx56z6+kTP9qjHq9VD6yX7NTgMvYga8EfgiCBkMfVvaPxThHaRGEtpUOryOzm4puqskgYDV6ud3rXsLt1pbPv/fu3bG0FX1pmJVFFg1SGcRZWtvadcquhpFy7Og6jPEF0G5Dvj51t6CAALaHn2qe2bAWAIYNFhVWzoQYEThi416kUjKN+kS82KZmUYPACRA4OUZtVVPZsdezxmk/I4V7NL+piDLV/6nAK61t3PpCawpDep/9WRBWpOU9LgCBSPxaYaPsCdV/gmwaj+J19HHhsSnBzVuOP2u/xzXlR9Igd2s83eZBgP8NrQPYs1hsfB8J3RyeimCorHoGcx9JC0aVMfw5R0jBauMoWTUET0AsOTe9J9lT/Nz6Tq2vTsSXuOOIO0n0OFpHUIS+GstMwOS3vTUKK9KEoNT/XewR4OcgEACzB59jRxvT5inH3dDlADAr3KsPjaXsALe14fWW4r6mdvW3i6g47V+P8/3HFyPlZUeCBBULFQVVPWmY5fI6L5qPHg5qmCpSqO1+cfEeYxOmz85fQcCZG68P2mvKxCwDzhYBAYYfRDNaEpAheCLR2bYgSRkDCoKN0mlJA4CEivgYMCNWnVsVBZ3sm4cZ0HAqP50IHQa/D/zmkof7LPMQI8hOCQz4AxAaxkM+j2t/XTELpWDq6J5pfXeaQNuCQQ07lR2smqVo6giRuap9FT+VC6f3+wxAikfzy/JZ0fsHDfMJ0Vev1KcjSXw60W0ut6dENOl9BZeu97SB/BthJJke3jO931MLIlsq7H2+pqfhnB2cJQG9xOg4nWzNsGBnb+2m1MHXhaO7Wo8JnA+I4vBQGs/nZsKnxZKqKKkO1zkINRxfi5NHfSkQqK+786fW4qjcMpHKOwoncQijPL1+SkNyspJV+UkYzADCEZyyCiLzr6aJkoGiW3QWp/W1/mReH94Gi7e3nT+DgQ4V6zy9ByvO/JUllHZkmFzB6Z6J33eR97DFvb6qMcMHJolYBszapSwndNbHv06r1sCgsmOsDzSN19fVd3DdD9DejrRWz82AnwzY6C18fy8gwb11fPz8/ZDfv7NgwrM9IDgkvJTFj1ayAUU+q509eEKFUKGqkJNreV5J6c+Z9YNVKtUdc6ZAP+YR0JvXhZvcK9TijArlFrJPiBAkpyN0lnquB0QLEkrGexDMgOtvQUFzhC5JGoupd0bbClCqgxrylPps18JTrSvJ3P8PH9ujOhc0vgcGRECAYEA1YFOq4pIZ+xBpWusT9qvtkyf21nHcAhxZ5NYAWcEZgOoRJeniFf5857W8vx/assUHRM0LG0PL2vVbz5uUxmTjqQ82aZs53Su2vq4Ixjgf17Pss+wyD4WPnyaIKFRgQJlTEmLsVTYyinQ8aT7E+BwQ14pKmnh6rWeuj7VU2WvOtzLlP67Y+1FSiMDWiF8XjeKgii+bsAH0RIww/yPwaj22IAKCEoYfbeWo4lZkMNrvS179GyVvvSRRsL1nwv/dI8bJf5P5SGYSdf4B1yYrvJM0ovEe8f83GwfpLGSjh2T7krYlj16uBdVUggse1NXqQ3cuVL8Wwg9diDZsBmpbF6VTnp1sfuYmf5OQIAAOAEEXe/3EgxoioDgmeOn8m8uPd2YkcUvHZrJkNG3xA3KyGH68ZGhSBFeWjAmAJA+7EGFIN3K+mu/Gmg9Gocy23Ej8LHPgKranvtkBbh2IzkO3puitSrfXyXq24oZqIxhZWhmgJE7fp+736ct6Pi5dVCQxpIzAw5we/VJYLyaVqjYE0maepKMjFYV/VWGvMcKjPLpgfNfLew3//5EClzI1rSWX06jfqrm/JlnNZa5ZkD58FsZyc7LnuxjG5ast6mYA2cGKqmAco8NcDDM/D29Cgzw53UfMQMjmzySxWCAhU0Nokb2+fjkmFOUxUrQGSXn6XNVVQSoax0MaJ/lIQhIho515zXKK9HCPK90WD9Jz7CmqKw3OCqHXw0C9ZUGuBsd9oHK4gMklfMYhPrQYwZYv17fVACtF6l6pN0DxC4e2buTU5nZd1U5vEzJcKUyVewAy+jtMePcvT5V/dN9qZw95+X7ozFR5X8I0Xg8OzvbsrGt7QI+AgDtp2k+2mhfBOhAQFvXX9oGBgkJgDr4m23PUb94nVL6qa89XW9DD3aq/x4c0ok7kPAnA3yawBcNuk1NgNzHTeqnKuhMsujbBKyECp8ii9VqtV1TICWjI+5FXFQod9BJORxc9ECBAIA+9LFa/Vw3wHpWKLC1ty+goPSizFTu9xiZRL0pXQGodE/PuJMF4NcoExBIA7wCBEuiss8SOv/WxmsGCPiSJIfn9VfbpLQ59aB7XCpQqTTU1xoj+pz4yFlqm6IV5st7U5nTuGCaPFZJMuIjZ+7/Z9LvnU/pz9z7K6Si2N15tbbrlHQuOQLa1QQIJJUT6QFb2e/WdgMk7Sf7VIHQCjDzx+Mj8Xuqaeek44kl8GOu9w4OHKhpW33umzLDDLiMAkaXRWCAFdWxFC3L8KqyjMTVweklP2xkSkK3PJccf2ttJw+fHvBpAjae5+8GNC2I9I5yBMf2SvsJ1blUgCi1ibcPy+HtpAHgTAzPUal1r5f5GIznjHibVPqX5u9S/ao6V1EK81B5EmDiYO45THcQqa5u4BzU8ryno3E0Gh+pnWZBAeteXTcDzkaSnL8fY1uPyvTZ4uC9cgYpqqyiST/ugKBKn1tPqwoyZtot2bTUB6N7U99yvIyAAK/nfgIH7hPY5g4G0nhzv9kDArp+NJ2ZAPQS8LDXJ4wrJMTzKoR/C7u13Wc9R53Ne0bOlvvJ4AsQkBnoMRWsi4OAnvPWuWSIec2SOkqWdK7XKQEmjwRS5E8g5scSKKj69JDMAMXBI4/3xPusMnZuyJIjpySnn8rsIuDmLAH7JhkRglDWw6+t8vxoceOdjNtSZ9xrbxfvH+Z3aHBblb2yt84MJIegACixe56vgzqXZMOpg9Rr/ZKNdWc9AxxngiM/37OpybanoC05b/7SgtoE1JwNSHbU27QX6VeBx6wOL14zoP2RuIIREcmApee/ZyTRp5Vhd1ZAQMC//OWG3TuHW1cQHWdkXbXJbN28HhK+3KkSj/p5n87xv9JzBoZOxacOeD6V1xXz0EZ1Jv+eM1ii8738qmjHwWMV3XheM8AjRfTJULEcLG9PPBCoZLYdZyNx1m/U1u+VQ+tuazVjpP/aJseVHHVrPxf8JYdZ9Veyk7InSktbj6Jn6jY65j8GNwmssw7V1Ki3lztzXVdF8T0g4A4/7buP6bVXAgSzAfVI9mIGJJzbr4wCC88XVHiFqqcPRpIaIRkzZwf4HfDW5uiepAypHB/ROYnyqurt7e4Ay7eprR0EkJbkYE9RptJ2ypDlm0HxhxQfnK4HvEb7fj+31KuRU0rtruPJ8C8BzlVdq/2U54w+07imttS5JdIz8NX/pQDAQRTTPAYQ0LOD7sjcLrkTlDggYL8kJsHzcPFpBq4/6IEBD1p6Ns3HhWxOWvNTjcWeOHChc+85dp5PQIDHmK7ynH1BFPUzMT0foauLwUAPkSeqTcqlSFTOwx0H32TYU1bmVYlHWTN1Yieqg/mKSP+SFMs0iuZTtJccKK+ZAUaV89U9npaAEIGBzhPRpzIKEFSAj4Dh2IR9mxY8+XaE4EcOicc8Sq+cTwUI3iPsd217DtlBZNIfiTuQz5SlDj61uctSwH4oYFAFBQRZSV/9Won0v6cLvXVczJN2wxcZe7l6jGkKFGaCIGcHXLw9qj5MDrxy7gnoylekdKp1HAQeozLO6moF/mZlMRhwB8FjLJCkh9yqqIeKVimsG1W/142VvqGQHh0UQttsNjs/fklKoMCBgNJnOzh9xWtIp/H+KnpO7ef5qg5sTx8oZEIcEHCw8nEkloH93Zt3S0ZmxHJ8tmiKo7W3A4+6ID1IaD8N6iURpAOB6prW8lsL/TpvU9dBLg7z9QhJ//hMOtNPjwbTmehRt5m+TbrRAxif6YAr55H2Dyk+5rz9XJ95nnVIUWWyryOb63lIL/xRZLfJLA91qbJtvN4DymRvpafJwaYglZG6O3ECgtfX1+2jnAQEtAtMIwGA5OwrlsWBLI9XQnuRbPOsLr9rmsCBwevra0R/HuVSASon3jOGKcLTcd6rcnEuiyjS6Zqnp6c3IKDHCDCv5Pw5kJNzTeeWRCyVwfRyEKDoUUrvJ7YP2zP1K50jxQEir+f2EMLB549RUR9mHYIDynT9R4EfGkL2jxuAypHrHPvHv2HghpZpcW2NX8OIVGkIeKuNeyxaT1Ibp2PVvRU7k/LwtJMDOYSwXwjCfAw6/Syp7AP1P4HjHuBnms7Cuv1iBLxE/D6mr/JRP9N3Zdbr9U4QqOPOoqRoPrEBOq96O3Bg8EBwkOqU/AjBi7fzSAhulN5SmQYDRHgEAT06vjfwKI5WEyjg/Y5enSby6N+VU7SWH9tsNu3x8bE9Pj5ugUF6DtTrkqJwblVGDtg0V+dO0wdt1aaqIweIokP9zs/P2/n5ebu4uIiLJ1VPDYaKRlRZ+LIMvkrTX3SSDPkhhMyJM1NVpLBUqvpVUXzvnpl8Ul9zcWxrbYcRYhtIt7SlXro+M30fS0pDhlfnnS2YMXRV9JuA5ajdnPXptWPad0BwKN2d0ZXK+fu+20QHx63ll6+lvJgexzr301tL/RqvF9P3fvPx6ouik25WQCA5ed/6vspQAYXeu3ccQCVJPmFfSWBvJNNggCiMlBA7l+LIZLZA7jx6UQWV0aM8DuZUTh8c/glJ/7Z0YgVSZ/k0wUxbUAk8mnFAkJiDWQTpT1Q4yKDhT3XlgJPyK53Hx8edwZqQ7qEMaqII6RApNB5+fJ+B2qu7GzDm1fuvY+qvlF8CwZLUtz695Oec2vX8lAeNuKKylG8VQCTpMUs9AJYiy6ofevlWef8q6Rl1Op+qnTyg0DWqNxnTivlM6bmtqoAAHa70h2DD83RAQN10G67jKUhK+uptliL8aqowsQOcLvC+qJjGni1Z6sC9XgmAz+ruIjDgc8pVY/cG3AxCqoRK6MiyUmI/rjSo5GQGfJqASqJraeDTQGP+nMtywyjH47SVp7GkrRLdK1aA+wkMcN+f/CDD4O3Fe/mpa917SEM6I2lwOs3tUcwMKKsYgR4I6EWrzvb4zyMlAkhtuT8yFmlcu65Xi8Ikmm+l/jtI1HmOk56+z0TLLqm/qv+JVTgUkJX0AEsVgbbWynPJftK28niSyu7xnDtG9qvWmhBkJsep+9NYoM30seNtxLQcDCQWgNG+gwZnBPTf1wrM9Enqj9bmniJJdeyxLSPZa80AjUJiBVqbYwZGKCgNYNJZqVy8rkqf7IY6joxAAgKJtqIBSw1OBU1tlICK/+9NEYyE98qRixkQOKAhWK1W23qfn59v89P1+rX2j5F/fHxsDw8P0SlqKsbnpo9NCHgqXW7t7fqY1t7OLfdAcAUEqmkwnu+BCt/yetcfj2i0X42pKpJmHjSuiT1I4N1lxlh6u6T6p7JXdejJqE9/pfgYrp7WScEExfs4AdcE4nvAy20s25tMAVkBliX1T9KRyncoYPEn0ZSOR/UOAJYAAX9agM6fY4j7VX0q6ekaddL9Wo85q9ovySIwUBmrFM16xXrGVo+l7IP4e5IAgRwelUYKwycGenSPpDJy3gYsg0fKsx3p9822lUeOdOpkLTRYnd7XPRcXF+3i4qJdXl621Wq1XV9xd3f3BoTp/uqRo18tjB56ESLZADoDtkkFCLSfhEaqcvR+zu/36SffOiug9NkG2jJS4tgdRVgOaBII5K+1XaYojZVeBNWTEcBcGhn1WIJjEXcysyBqdE0CpMmmO2vgwnHOfV9Ed3Z2tmUUE0tLSbqmNLV1QMCyyLY5CBgBAdp+AgEHF2m/qktqb++PGUDQA9ajvHuymBlIFN4oupH4c+pOzVb5UWYGf3VvRa8kMEDFSAOvxwgob4/UUjmTQU1SDXQ6OM/H6X069YuLi52yaXDx9bYED9fX1+3q6qpdXV1tAdX9/f2bDz05refzhIeUnrP2/6o/H7lTu7ixkx6kQZqMmUcxFB9L3o/V9EB6dHSpUB88ymfaytfBgcQdPIFBFR0ukZ6NSVM+SXqgMJ0/FJDtMaE835MRO9Kj/J0xYFl0ztkBH+fergoSqFspX88zPQHF8eh6SCefngrrAQEeIxBIawMIrlXHWRmx47zO2Rfqeo8V+tRpgtbqBTk9Z+1RVA8h9UDALHCQpOjDaR2CAZ8ncqef6j6i+Ku6jNBlr34cqDLOQt68h9MDAgL6LzDBj9Gobufn5+3y8rJdXV216+vrdnNz066vr7fMwM3NzTYtbwcO1JFB+2xhtO8MRQJQuv7l5aUEBOl/NR56QGAGSPM4AYCcswMBj5CY9ywgSyDEP+7F/mV+ZIRID6dAwpmxpPsEDKmNXK8SG+htkXQg2age8PiVkhxNcpizlHCVfm+MEsglQCAgQDawtZ/rRjSeHFgnNsqBZgLZrf20nwQYOs7FfWnuPwV+iT3gPqcHlrABVXv6+KzavLW309uz8ulgoJdZGjijayp6ctbxV4M2NQTpI9/2mABtaSi1T6TrEZTEHUtFW1flT4/7KB0OSOXPRYOi+OXcadiVtlgBATXdc3193W5vb9vt7W27ubnZ1uPh4aFdXl7usAxErZvNZrtQyB/nPDZhG1ISINBxGip3iJIREBhFuexP9Zfvq491nafNyEYGOzlAHaPu8lFFzzMZc4+UtOCUesV8nSEge+iRUNWmFBpKOkcH4JV4Psc0TTCaYtkXCFDS9MCoTA6eUlm0WJD2oQIDlY1LQZN+fPmVykC9T07ff+ktgh4UpnUCqntqk5GorLPBb3ppnffHKFCt5N1gIA2WJY0h2QcIjKIEjwKppIxICAhGczh0+FLkdDxFf9U0BcsipfMyVsjZz3vZOC0gmv/y8nLHeUgZ5ShUZoEBMgO3t7dbh3N1dbVlHTj4lPf5+fnOExofYaz2lV5UyKi6Ao9O03kUVjkenq8kGT8dd8PJMhMI+LsteH1vPLrOV/R/Koufr+ru1/K6nsN25sXF7YCnnfqpKuNI9rnnIyQ5/CXRaM+GLMnfQZkDZ5WH7yxQOdM3C9ivyY5yn+kQKDJi9zHC/FPQpzT8scHEEAgkJCDgtpp5j9rb2bAR+EpBqtqpyn8JmH33Gwhnjnsleo20BFH59Y4wKyfsgyp1aIqc9J/RmrZOqY5k5BgTIEhtoEFCkYMgI3B9fb39XV5evnlNLR2i0iAQIBjQIsKnp6d2fX3dLi4u3hjg8/Pz9vDwsH3a4D0U5keI+loRhkvlUBJTkJxa5Xh4H/PmfSn/ShIlTn0kY1XVrzpHh0+2i1/69CkCl8r4UAd8USnbwhmW1KajqZWPiubdER9CmK+zlp9dJjp8OhcCgtZ2QRkZRp5jnyWGzJ0n00zMk/Jg8JH8jrPAvWNkAPhfaTFNP/aeNvb9ijFOALonS9mivb5NMFMIN3YflXZ1fWWg0oB2ViChbc/Ho5teJJaEoIPHvBxVOVmHnmFntEhnLppfYIC0vke8qhefIBCrcHNzs51meH5+3gIDDiBGrirPZrMp2+azxdtvBAw4ZUCdSBG809w9qaIpd25+PE1fJHE99PtVd/WztwOBgPSAj6COwO5o/LrjdrYlXZso1Cq/NNarMV0FJz0wcwipApkl8tFldxtE/RQg4PSlX8f7XQ+lv06Fe37U4V4AmJy9jhNc9R67TdMEyTZ7O2i7FCz0bNNs/zuQm5FFryOmkZoxgqNC+CCcZQ9So+8jvUZ1w0XlTcxADxBQkRzd9+aeKvF2oiGXAXdWQFG9InkOGr5gSGkJTOh6Bwa6XkyCFulwmkFlOD8/b4+Pj1MO7TPEAY/2E2VJqdinRDurT0aoPekuDaFHXmpfGjUvOx19qkOiZXVc+bizJyBQXxIIVEZX+y4OsJYAAkmKlnjO8/ZxtcROHYoJqCQFDDNOYV/7uGRai2XUefqHtO/2JjEHusej8vV6vRPVMz3XR3f0PM42dKY4sQUjnfhI++bjm8dnZJ+yLGIGVLhZJ18Bhd6g5jW99N2ozkZPs+mniITGUADA6XWnPSWcr/JnVUflGYmXQ1G9AwEtANSLg1pr2zmxCgzI+ftjiUpDjoiLdDjABUzu7+8PFl2pXnSmijxStJLEdT85M+XTAwRLB6mDA2dheuyG50XdJCAgCBmBgqoOLFMqC9vNQQjtBPcdpFXgwMdQiqZ748yDkkPqqYsHDu6U3mM3krOhUKdHbeK66DaZIICgoLXddQYOGBzwKi1dV4HhigFwQJVAge+n+5aI+8FZtorlUHvw2p4u0wbPAohFryPmvrMDvft6iHyfgVfdxwhL1yWlWIqoyQb4fjKWXh4yA9VCRc+Xhs7b0FkI5U0gcH5+/mbh35cvX9r19fXOCm9vM/3X/QQEDgZYZzEDm81mW7ezs7Pt/Vq0eEhJjp8Dne0gURQi8fMp8tZ9lTiD5NMEfq3KmXS+YtS8LnyVOEGRl8nBAvW8qlcymj12wIMFBwU0fpWRZ13dmfcMYBpLfj5ddyhJzsudUlVOZ3Ora3qs2OgYJYFTH3MOCgTMXb90rQNhCcGrP27nTIIDAp7TfvXfzzH/WRkBgaofvb1nmGz+X+pb32WdZ1FHhbxHdFNrdQOkL21VaNTTrOrhq8nd2c4AAs9LjoRTBP5CoyQjgMX8WQ9F4pzjFxAQGKBDcFZA6ftaAf0ICMREOGIVMLm6umr39/ft4eGh3d/ft+vr67JOnynu/J1qT+d9P0VlNEBOd7suuHPxiN+NqN9PRkOi57ddJ/niKOXLn+fB/w5umS7FoyfpUvUWt2RQlWZaUOj/1RacNmE5UtmS+HijUzlGqRyWhMFCYoJ8SsrPzwRkS9rGx5SDO6XXYwp4nO8PSLayOpYcur8J0duzBwr8GtU1ScXWJanS6wUIlaSgRPZgRhYzAw4AltAQPSQ7i55UFj5OwkjU70+DvyfekK31mYHUUan8fDyFxpI/5utOpFIIsgICAxcXF28Yga9fv7avX79u5/sVyTsQkFHxRxH1PgFtHQyQaVBammp4fHzcpnMoUZlkXDhNoD6ho6FB8FXHLr1ok/2X+tAHfW/gu4H1dtfPgWJV7hlRPmwvpim2K33ki203YsJaa2/a35mBNEYSQ/keZkDC8eAg6leLOzYe51aSbJjv9469V5JTcwCgLW03+1H75+fnb16U5VNbycY7iK+ifNoFP+Z2gNveeEpsTOXTqrHh7NgsYKuYuxl59xsIXWYK441VFTYpvvYTuiTd5OmkqMRptEqJZ0GBdxg7m4aTKNWBAMvH/WTAuG6BbxjUo4BaJ/Dly5ftPl8nvNlsdhyGysonCRwA6D/fXsjFZSrH5eVlu7+/b4+Pj9tvGNzf38d+PqSo3h51t1bPGeq+pflI2LdkslgWnm/t7apr/ncDpWMOVismypk6RucaZ86cJDDgn/6mnvcclv7zmt7UyxLn7zLbb+5sDs0cJLZKkqLIUXl701hV3kvFGcPEhCUGjLa3avsEBHwcpP/Juadxna6VzLbHEobKj7OtJGkampLG1BL5lEcLKRUQ8P3K8Y+oGNK9vH6k7D2jMAICLsxfaafIMn3vYFaxPF+ncvXjUwSk9+XANddPkCIHzkeCmH7Kn22o6wQCVE8eU5mOSbwPnCXpGeBRlM/7qzGz1CCPwHNr/zBQirD9GwUjlsMpeeYnnUlgYLPZbEGBTxXQuO7rUCug0Ls+MQa+7/dIEit3aGaA20pmgUDvXq97a+OgrZLk9P2c8tJ/32f7J3vPMidJbVcBgVF6H60DidHgfq/NWus/2bSPDnzIiq7e4OydWwoAKIld6FFSPSHlyGOj/FN+EjecTpfOAoEK9adInC8W0ncE9F4ALuRjGnIARKKr1eqNE+fCQS1UZHlIp6ovtYBws9ls0ziUeBRCQJT6b2k/JX0ZzdXNDtgKkEmvxPRIyEQlgMJ+8nHiTp/HGeU728XfiEUZOWQC8Iqe1TnVn85LfeoOjvf3JN13LFJRykuApUsVUXo7LGFgdD1lFOWnaYKUZgIES+SzwF2VZsUYt5Yfze3dnwABz/F6D25G8uHLu6tOqiga3ldJj9qsEGVK97MQX6K7HAi01rpRWRJ3AuxkBwN8FJA/nef75VPdZdj1n5861v3OGrCcfCWxfuv1uj09PW3XDbzHYH2EuLPQlqvs0/W+T3lPFNaTFI2l8aJ3snO9zPn5+c50gke9lUOhVDSsQADBgHRcgIRjYDS2ZnUigX+xWgR10jufYqgc2oh6na3Hr5JRcDWrj+8FEEtlJtJNLC/HqYO8VId9pzRUxlE6vbZPfqDKw8d1Gpc+dveVTwMDKeEUVVXUUkJFM/nwf6JCUuT3XplJw2ms1nbRHtcG6FhleClpqkLH/ecO3523ixwfnYXuk0FPeWira51SdrCghXpcqHgISe2rvvLXp1b3V9HtUidR9XM65+dZHl3vL4xKawt6aaSycXGuG0hOEfhvBuh61FJNvfXagQ5fP7UF00/TBM4AslypTVLg8qvFpz2WCHVldA3/+9TKR9R/VBYyBD5N8Pz8vH0kmuUbgZqRbrmeLA0YKz8101ej8eLMXCXObO8LiKbBQE8ZkqIu/d9Lf4kiJuPCSIEK6cpZKWulbIxWeqDHgYxf784+1YOUPtcHMHLnB2s4WKRwmsv1MqVIn3mRfeBbBTlgyYLoa4VcYc72OoR439Lg0PlV96Z5Sp8mocwYodTHLolNc31llMx+8LcGjoRtUEXIdPzpfe8u7lRS3WfbwtvDP0CTpjgIFrwuo/9s30OBgfV6vQNy3H6MwCKPjSLzKh1e/xGSnLmXL7EBZIBaq8FzKqePUQ9k3lu3EQj2a1Pg6OVzpiTVt2eDlPZsud4FBthJvcE7Q7f2JDnuZEi8DCMj6I1bGXAqbLpuCbDxyCidrxxzaz8XhTmNLwctQODl4yNfopFdWdi2/PFlRlw74M7RnSZZAs0nH1rYhzNzlJRkgHuGSeLX95yi50cj6HXgf2cJ1uufn5AmIOjpPOvnRsYBH1kv7ldps37cOsD146ldCUqkz3zxjNqBbebtN8ME+e8Q4jZWOlE5sAQW0zlJSiNNmen4vk4zgcIkieGttl6HUfmqQOy9da3Y3lSv6loe7/maETB4j55OgwE38jxOhZUkFMZ7KDMVGEVafl3P2VJmO90BQSVOq3qZfN7LxQ2xjqk+/PgPP0bEdwHwqQGVQ3Q953VVVhpfOXlnA87Pz3cWKPaYAdZBx2b77zMlGZrKAfp9fjxFse7MeF1y/E7j+7hS28npkRZXuWaiN7IglXFhvSonk5x/KkNit1yHBTIJBqTXOkcw6WWRTvMJBn/Pga7xNu2JAwBOfxxC6MCctfEXMEl67Oe+ZaCt6NnL3rRXFcnzXFVOsgIVO1CVa5YtYHpVf/dYXZaV2wqsJIZA+2lccr+Xrx+b1d13vWegtbdvD3NRAzi1NTunUuW7pJz7UkEVAt1HaPRcWXi+tZoNIBDgSn89PuhfJry4uNh5exef/2adZPCSYeaUBBch0nAzHf7XGoRDAwE3joll8r4dGTW1Ex2XOzl3gHRu3KdTpCPiK57p6BwUsI6t/ewL0q8VC+Ft4ZRtojOdBVD6bBvVmXrruuPtpQ9occ0LQafyJzhi++idFmwvbzfX/zQWj4ERcEmsQHL6Lr2IPDFRSWba4LNBAIHParU7tVeBd0mvXu/tX0+jcvD8X4EFl1FAMSpXKl9P3vWeAY+OUmWltNxWhWaaVQUS1dUTNjgbJkU3iQZOjmNWqgGSEKOuSR3vUwP+uB8j9h4IeHx8fDOwPMpimRhl8YUyDiBYFzoqUrnuvA4hvQiKbe+MgY4RHBEEpCcvCJaqqFfsC0GDRJHu4+Nje3h4aA8PD1tH544tjatk6OnoeX113Nuq53ASAJDOkq3SfwcF6/V6ezy1p48fvuxIIECvvr67u9see3h4aJvNpj08PGxZMT19wakFB2JuKw4FClLkWoFbjyiXsgIVm0qp9IN5z9rofe249K3H1o6o+MppV+OpV4eZ/Hv16V0z20aJyfJp4JG8mxlYIgmR+76n/9GDMIEC7/xqHm0kDo4SsmP07Gn6HKr2ZRD5BkB+QEjbm5ubdnNz8wYQqE6+4IoRKClVUoJyPrxGRtRp7dbazhvoFJn5540PKRWV5mCABodfpOR5OnS+2IkveJKj96cx1J/cUtR2P378aHd3d+3vv//eOjz1yXq93umPyojR0Y8M9lKw7VR/YpH0TQu2k+rN6J+PwvLjVq7L0lkxAPr2xd3d3bat7u/vd36r1aptNpud9hUg6OnFoZmBGXbU2c9kq9w2+XFnKatyVAxrSnPECOwLGAhyZhnmqh2r46xnYlR8qqCy7b2on33m6bsf0D0jBsX3lwRgH/JoYUJc/t+PVektNUYz0mMsuC9J+SfWoMeSVFF+Qu5Mo2IEOCVQbbl2IM3pM/JnO+iXVi2fnZ3tUK+bzWb7iE9qJwcCBBOHAgM+6GcNfDK6alM+waG2v76+fvNBJ38Uk//T651b+0fX5ORubm7a9+/f2/n5efv+/Xtbr9dbloCgRdMxqU9cD6tjlIpFSekQBPjPv3pJ0CQwQHDk78vg9TS6r6+vW7ZLDv/79+/t+/fv7ebmpv348aN9//69/fjxY+drmb1Fj8lmHVqqCNeP8dpkqyQz9muJLJl+XQIEKr2ULGU9emn0yuCAQHYvnXNA8Kv0x51/YgdmZBEYSAimcrTad2frW6a7lGbSvYyqKrqT5UgIqkeBen69xR3J8fs21UHn008OQ87GnY4MpvZJy/q8PhU1UfoVGLi/v29XV1ft8fFxu07EB6wMrE8p8O10h5IeIOjpWupDMjUCA/oolE/ZONVNGpwsj4611rbt9/Dw0P7+++92dXUV590JBlSnygBUawaSYZ6ZDnDQKj3lFBadOXVWOuqLYQkGdN/t7e32vzNdBANiBP7+++92e3u7bTd9UIuMlUdwzpSxDY4JGCwtw4glmLGxKc/EaHralcyAgNGxfaYkdN9IZCfcwft5lov65Gn1wFJiB5aCIIJaAoEe41XJokcLk2PUOUenPcNUFdA7eXTOERivqQxcBVqquo6UrQcEqn3WSfcxDaeTZQzpaGRc0xcFHQgkNsJBQHoHge49Pz/fzr+KypUSk31ore3Qt2QEnH35lcLyzRh2d5BsB49i+VGor1+/ttvb2+10zfX19ZtXOHNqwd8WqbZ8fn7etrf6Oc2lr9fr7XWcMkjzqD3mKtW/OuZAVSxJYq+op9rq9dgEA2RKyLSwHa+uriJ7QjDw119/bQGZ8pChlT4+Pj5upwg8ipIQABwaBLwnf7eFvvYiOVmXijVyp9m7XnklENILrBJN7mmxPEslOeNUBtoPrlnwqRMBYwaetL9p2sHrlsZpaifVOwXX7otn5V1ggOd6IKAadKmwvQrQedJhCQRwX+dYvhkmYFTfCmzoGDuVFGoywKqHU7DJSHIqgFEWFxISDPhqf3eIHlFS+L57vTxIRlcGVuccaHCxoq834Pvzf6UkYOiAj9f2dJ1OmQ5On4nmFyLpxLhYkICCYI5gYLPZtPv7+533RvRW5Ku9Vf4ExCs2IAFUl8QEcHrAP4zFb2Nw64yJ7iezQOArcHV9fb1TXzl4tZMDL9WJbXl/f98uLy+3zIszK64LxyCK8LggeEac0SIQqOyCHBmFDsyDsB7DkNiCytFRErjoAdl9gUCvvJLkvNP0AI+7oydwqlgCHfc2SywcpQJq+wZe02CAi5QoiZboTRXsi1pcEu3JAeAK47R4KifFG5pgg8d4vV5tmxxKYgbUDknZPRLkYjMZRYIMpcV+qJRFWwIk/VRWpSXHzsittbZlCHxhly8g1NoBgYlDiM+ncbBUfaTB6chbfSOnJUbg27dv7du3b1swkBZzpsczGSWzHz0K9ikXpwT52ufKGFS0sa8jYXuktiHI9fUPnDJJWzlt1Zm6rHScWRCooq4T0EqHOR1Fvbu7u3vDLCgNb8/EdlYM568QjRln4NL0LIX27+zs5/crUqTZY2+X2usRCOA1I+eWbHxyiiOpwPGMw/T7Kh/m6zXoEz2v1FepLIkR4X+Jr4Ohf1sCIFevxwaFT3KSk5zkJCc5yS+Vw3095iQnOclJTnKSkxyFnMDASU5ykpOc5CT/cjmBgZOc5CQnOclJ/uVyAgMnOclJTnKSk/zL5QQGTnKSk5zkJCf5l8sJDJzkJCc5yUlO8i+XExg4yUlOcpKTnORfLicwcJKTnOQkJznJv1xOYOAkJznJSU5ykn+5/H/FJvczFUv17QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSUUlEQVR4nO296XIbybKl6yBFgpOkqr3P2YP1+79Tv0D3Mes9lUoiCYIicX/oruSHxeWRgEolsqrgZjAAmZExeHi4L/cYcrHZbDZ1oAMd6EAHOtCB/rB09NIVONCBDnSgAx3oQC9LBzBwoAMd6EAHOtAfnA5g4EAHOtCBDnSgPzgdwMCBDnSgAx3oQH9wOoCBAx3oQAc60IH+4HQAAwc60IEOdKAD/cHpAAYOdKADHehAB/qD0wEMHOhABzrQgQ70B6c3uyZcLBZfVYCe+y2ebbRYLGqxWNTR0dHWR9f9o3tVX9r7+Pg4fdT+4+PjOjk52fooX9Hj42NV1XRN+Stf5i968+bN9Dk6OqrHx8f6/Pnz9NlsNsM+WCwWdXJyUhcXF3V1dVWXl5d1eXlZZ2dndXJyUsvlsk5PT+vk5KQeHx9rvV7Xp0+f6ueff66ffvqpbm5u6u7ubipHdeP/zWZT//t//+9v1T07k8su/ztPvE9V/5SO9LXy7fKV6soPy/Iy9bzkhrwX/zebTS0Wizo+Pp7KZBrd02exWNTDw0N9/vx5677Kenx8nO4r71Rffrrx8vDwsMXrxGO1g+0hH35NPfMSOuxr9e7vjTo+aIwm+i3anF+LduHFzmDg16zEa6YEBnR9ZBDmDO/R0VEdHx9vGXApXwcGUsRUhImUn8qgouRvghTlpfas1+tar9d1enpa6/V6MgpKq7oo3f39/ZSvylYZDw8P0+c1ycGuddmnznNKO+WVDGeXtxtOBwQOXJmukwEq0g70KC0BrWTQZayre0qXAEPiQQJHCZiRD99C1g5G+HXQSCb8u6pm5fFAPf3qYOC3Sq5c5Q2RXIElJSUlzsgAgcDR0dHWtz6iz58/13q9rru7u8nAJqWq8qWkR+mq6plnxWjCarXa8hhl0O/v7+vNmzcTGBAQUFTh5ORkq96fP3+e6vXw8PDVffG96WuUych4iEfeH/ruvOku6sSoi9fB+zkBgVQ/fjP/BColY/w/yncEeDqezPWB0vDb6/y15EbmYFy+Pc3pTX3PgYEEBHaNFn2r6N7vhQ5goCEHAm/evGnDxh7WHEUNlBdBAUOzb968maYOpGRlVGWYSW4kdF9ggOmPj4+3QrWsl5T658+f6/7+vlar1eQRKgy8XC4nQCSAUFVTfdX2h4eH6b+eZ3teM3UGhsS+7X6n/DydgwAHm0xPmUrGqgMj3RTHXHqXE1IXVdBvluOAwMvyOs3l6e1w/qZr+1DyNr9VtOFAmZJcj8ZEBy5ddlNkjGlTvn/kfj6AgUAURPfWaWCTwiSIoDBLyJQn512ZF/PZhxjC13/WVUAgtdWvy/gfHR1N6wB0jYa/qiaQpHLoVRJMvWT4bmT4RtTxay5fT9+BRQecCXw4YHDFNjKeac3KXJ1HINfTdcaa10cAhmm8jfr42pOOdlXkc9GJRH9kA/FrkcuGjwdfn+Wy6OtrOuPvH4+IvqReem10AANGrqC14E9gwD3vqufhUC7AouGUgeQUga4rX3r5m81mMvCMLDjpeXreFHIa6zSw+AxJAEO/5eUvl8utNr5582ZrKqEDNq9t0HUGZORpj/JKlHhNxecRoqrtKZxkPF2xsS0+l8+8vPxdQrBzHn3XpylNF/lQeQ6I0pTXXLRgRF0fJTn4Ghk40P7k+pZ6N03N8pk0XlK/ERRzHRPXTPk4fW266nvQAQyAXEkzKnBycrIVfnTPRSTB9vUATOeCTi9eHw+z6zmSyk8LvNQefaf1DkxD4kpz1eHz58+1WCymSIDaxbUGnFLQYEu7JL43jQx1MgQjozGXhnl3z9PzoSwwxJ2MeOfhVNXE67SLQ2nn6uzy4kq386JGilMG3XfI8DmOuTT1kTy6rg4dWEjhf69DB8Dm2nig5zTnaLiudX3LhdXMQ/lKVqQ33fmhzuPi5/v7++mboGAUIfij9P0BDPz/lMK2FFAaYm7DcmPCsCe3Z1GoHQxoW5YM6efPn7eEnVu6OMg4XaF6UaH5lsUk1FooKB7QCPjuCYGbk5OTOj09naIlLJcDjWW8pJfl3m3qrxE42oXmFEYXBk1ggFM9ytuBAMGfKEWGRsbTow2qJ+tFGZ8zyKP8eS0Z5u5a+rAMAqivjRakqADr8kcxBt+K0hiiHqKeSU4Xv6V3PQrGbbH08tPOL6XRAuj7+/s6Pj6edK07VP75o8jBHxoMdKHb9EnpkudGL5qgID3vuwY4NfDw8LBl/B0I0INMoVUNNqJrXyXu192L1+DS4Ly4uKiLi4s6Pz+v09PTiQeaGhAQWK/XUz6MlLC935O6kLho15CwK4Y578fLZ8QlfWiY/JuKqvNkkic78qIdPFTVVlSMgNWVLp+hQe7KSjzhb88zgRn2Iz35VM6uAG8XPs3lcaBtSoAvTQW4rKUIgaJdmi5SXsxfeY3AgEe9Tk5OtuRZOpdnajBqwLYoz98b/eHAgCsU//Y5q6TwEyCgR+fpGS7n9AF3EjBK4GV5yIy7DDabzdbg4JQCFXpS5hyoHDBMc3x8XMvlss7PzycwkHYV+EBSvsqjqmq5XO7XWd+IEhjYZTB34eJ9PIUUDvXFUcnr9bomUMD67Kqc/DmSRyv0Ubmkh4eHaHC7NrCNjDaxPpL9xF8C3BQpSbzYFZzsEtU50NcTnQF5/Iy4unGnEVffciqAUVk6ML6OgDJLfZamW9fr9bSNW78FQDwK90siUa+Z/lBgwEPgDIGKkqBW5UUqyovC4kpT6bl+gMqQK+09PKxnTk9Pp7A8Q7YKfXE/vwaD6s9nSF5PKjwHA6enp3V2drYVEVC6+/v76cOpAUYs2JbfCn1LA6B+5sLRDpwkbz8pnZE37umcvCwHyJTtdN3L7+rn/5kn8/EQbcpjBJS8Ll8Djg70bcjlReBS55BIlwkUUIdWbcsm9QlPUZVzxYibO2dVz6fZWC86Y1VVp6en0/kqlNOjo6PZdQW/Fxn67WjnX0BUZO4xUxlVPXnUJycnW171yPt3Ujp+0lwxBZrGUsZddTk9Pa3z8/NpFX/VF6Ssw4h0IBGNA4EAQ23iBwdgIg/bcUshFwre3d3VarWq9Xq9tWOBaT1C8BKUQuhz6Tujso8RJvhkhGdkBOemAdwgz7Uj1asDBHNRin3IjbmDcJXP3wTbBN0E7m44vMxdAMHvRYF/TxpFxBIIoL4lEJBjQ+dAXrjyT+tffKqMcqRTUvlMt7CQp7SyDqenp1vOm9YV+KJo6tp9I4WvmX73YCABAaFUGlYhT48M6H5atJUUFYkC3IEAUdqLz/oul8u6uLio09PTWiwW00mBGkQSXA8/M4zm1AECDmRf7MjpAIXU7u7utiIUbJcj+Zegzqjua0h3pc7LZmQgeTAqcxQN8N+dN53a6M87qPF+82hVAha78iiBgQREdqURyEmA4LeuqF8DEZwluaLe4HQTda707sgxoMyliAG/VRcH+2mXlWSQU7F8purp3TH6ptNDHcepVgJY5uX8ee0y+LsFA26oGa5SmEoCyQ52A5gEsyvH5949nec9CqWmZwQKjo+P6/7+vqpqWhnrhj8tGtT15Fmx3kT2usZowP39/TQ4tGDw/v5+a3ojbX17qWmCDgx8LY2MFnnG/vSFgrpPwJjq54qEz+r6Ph5yV/cOCHRe+z5eUeKBnuGCVy+HPEzldIBnl8jArvSt8vm9EPtf5DqWIMB3ZKW+TBHXNC5UFr9FjEDqOX57Oi0aTGuxFFFVPdbr9VD+/P/cGHut8vS7BAOdEu72sDKk5Mpc9zsF5cKRBCIZfQ0cPeeHC9EgK40Aie9OEDF85YsEPV8qel+roLK41XG9Xk/lEwwoOsDpkNdG3xoMiBJvExBwBeggICm9VI6Xof/umXidOrDA9C5rHA/Mr3s+pXE+MDJWldetcKyN+o2GxAHAnAHfxcAnHh/oOTkQ8IWC7gAx2trld3x8HI8w5wLSqifDznHWySkBrha/LhaLKZrKtL7eSu9cSRGIXXUL6/Za5el3CwZ8RbSv5ha58mF4ifc9f/eiPSzlHg0PuKiqrTkzedXr9Xp6lqu4hUylpDWlcHd3N6189fouFotJ6FPdfVARQTsI0CIaDQ6Fy3zNQlVtDXiW95Ig4VsOvOSZ+DXy2BUVZaRbmNQByc4rckWjNtPr9vz9I1K9BCiT0Vceyne09sSBANfhOI98HCZQkHi1LxBwPnVpDjQm9V2aDuC6Kx//BJmMFBEk6lRTOjUup5QhPivdJz0kcEEwoHw5tSqHkTpY9eMpmAIR7sDpnuo3x7vXBgh+d2CACJXo1I0gDSAPnhBR0NzL1m9+iDj1LAW9qraMthCoogL0vrm/VoK7Xq/r9va2bm5uthYaykOnsDqaTt+dAhc/+F+7Fk5PTycgwoU1fEOh2kSed6j9JWgulLeLceiMsq65N0yjyT5K61BG5Y7ud1EBTtnoHpW4A5VkbH0dyqgeHXD2CAkBCmXDwYDzqQPnXfnOj1T3Dogd6AuN5DytCZDedcfAI1gepXUgW/V83UACn3xW+pJ1prPmWwZVhvJn27j76+zsbLp3dPTlnS1VXxw5508CpZ1eeQ06UfS7AQNUvi6YaS6JguBnVeuTPNoUFWDZjAz4HDHrUPUk3H5YjwaQFCZfHCRPnfNeWvyYvCwHBj7ICE5Yf+Xp6bS1MIW/la/y6aYzXormgADv7eMxdiBRytBBqPIfhQ0Tb78WNKQyCJqlHBMgoKwnMLCrF06vjGHZ1Fb39FOf7APqEphL0YUDPacOCHPqNe0S8PVB7uHzOZ5b0oHCpJ+rnh/GJseM932huHRtigLTqdO6LLXn7OwsrvlihMDl6LckV78LMEDFKyHjkbkSEAkVPYwUOqLS8jmpEUp24OBoV99+QA/PzJbgeuir6knoNADYHg0wF3w970LPbTxuwJwvqhejD75YiGsG2ObXAAKqeuPRGbfOQMxFBfRNeUmLRUdl654bSDfSDkw9TdcWX0OjPLpIhRvhXQAA6+ievoPo0XPJW2RdnAe7rr/o+vc1yexrIsqb+k0RgbOzs1oul88isdRPzId6+uzsbOs00yTDMs7Sfz61oDopqsoTYP2sFemyo6OjyZHyKQCRyuV4IS+kAzVV2+06+60Agt8VGCDa5DYW93A9MsD7HmJ1weuMShLQqu25W/4nmpQwMW8iWgmxfvsrlFUmEXmHWh0UsSyCD/dgfcC4QlDenCN0Hr3kOQNV80BA1/YZvMlzJn86EElj50Yu1Yv9zvJG619G9SSYo+LuAG8CGV3+3gbW3cvfbDZxXBEQMFrQGepUPiMM+9ABEGyTy7Tvbjo7O6uzs7MtZ8SjYMqHiwz9cDefCkqfXUh50UGUw0L9JM/fn3XZ5a4DTn/I1uisFTl0ftIreUB6bSDhNw0GXEB9zoqKjp6uH0ZBQMAOokBRQBzFqi6+WCbNy0tI1uv15G3rwB4aZ863bTabCfFykPkUgD+TIgFVT/NqXt7p6el031eTs+5srwabyvB1EkTVHjn5XkQjNvLQ3ZN2b9XzHAEB91hp3JiHjCH70tNTNh2Q8bcb7GSYHaT4NBflZ05ZdYAj/XejrjEkQODt8foKUHf958+MAEtKl/rmj04uX9ITMuIK8SsyQA/cX6mufLrt3R6qpwOSDv2R3Oq3629f58KpVepojr8E3Kk72XYBIbWjk80UzeL3a6LfJBgg40dAoGp7f3z3HusOgXIwJG9c5bvQKX3yqKuezjWQcVfd+DwjA/QeGdaikDKyoXK6eazETx6I46BJA9zLYD1ZLkERP6/V29pnYCZAkSICyVN1JURDnwway3Rll8BAaksCJiliwetVzxdVdTxK9xNwSp4i76dx5NSBBYKhER8ONE+JtwSKXDDI6Vg/xK1qu99TRMDXCUi/SEfrO4XzCSppcPU7efjJsWOb3ZFT/VWunB46N1qTxoizA1/WgXK6C2D9nqDhNwcGEtpzIRNDkzCl+XN9p3CUK7KRNyGiMNOgctGfnuPcvtJwfy7DZ1VPwu5rHwQYBCp8QLnHzkWHBFS+5oBRBL6QKPWJpijYLwIMHa++N6W++yWGwgGAfxJwVD0IrFKoPMmkK0MaUq+Xvh2cdOs6qCxZ9wQoHcwk45uiK54n5Zh16wz7CBCwbvydQNbcGP6jE8G+h9u5bZAr7qWDJBPqWz7vBxB5FID6mWur+G4CEadlVWd9C2DL2ap6bow9Ykm5V3247kprEbhl8ejoy7bD09PTKcLLNvxS4/495fM3BQaSt+lCxnAQV4+mBR67hmw6z0aCwXwYfVCZSsu9swQkEjgHAtznqvJ5SIbPIRNUEIiQVwmp+v5gPc/FMeKB5s+Yj3jg4TTuM2Y7XwPNGYO5QeiA1MFAKkvP+e8ESkaG1vOk0vFoQQcGlEfaDsv2EwSnOrgnxGcT4OI1KmyGexO4YT6s/wgIeLl+/Y8OCJIu0HWPBPDb1xhJjtyIKy/pGG73Vl/TwXD97NMEPg/PMee/ZaSrasswO/Cl/qZ+J1BhPdkmEkGS0hLgO3XRgRRN+F70mwEDMrzJUHIhVNX2+fkEAnNKtfOumM6VHleu0tv3QeHhLOZFo0xAoLZxLp7zdlX1DLlKqVKJczB6+YvFYmvB5cnJydaaBD1Dg0PQ0QGjxOfXqHBH0YHuWlI+bkiTESIPPHLEtB4RcBl1z9fv6TsZaeaf9mR3xrTj24g6r5x1YFiX15KRV5k+hdC1l/dTGw8g4Pk1AgF/jwt1rtI/Pj5uvbGURlz5+dZDGlqdZur6UkQwQIeDJN3vRwsnnUvwToBSVVtlyPun/uOarc+fP2+9wVXly1nyyG1aPzYCBC9BvzkwQOH08BBDTQwvpe0tCQQkBd4BAgkE781t06JwMPxe9SR0vmbA66JVrCROHTjPGC2RsfaFidris1wutzw1Kl9+qrZP7krGRkqii2T8FolehwOC5JG7N0xFySmc5H13xjx52l00wo2t6kwAyjz8Wf3mdf52+WY+SdH5/RRZcG8/KUuNgxGvUl90bWH63zs4GDk8HRBwfStyB4TXNU54loAba+33X61Wz6YBXFaqtvW71//4+HjaNsgok57nM2qffpPcuRGgUP7U23KWJDdcTM02cFq4A+9+7yXou4KBOSM7ek6M1n5Wzjn5nDZRJle1epgoeU2dAvMOc0Cg6zS03lYaWtbN5/NZN5YjwWFkoGr7ZEN6VcyXUw0iH/QSZPJys9k8AwIk1YlbOAl2PO1vgTqF6VMCHs6mrHTzmFXPF0p1ofjOYPm9BAZUjtfPQUD3POW8Ayk05Kn8NL48jy6vNOaqaov/HE+JXwmYJZ4mRf17ozkQQCCQFmRTpqvymwUdHNPR8IV2OnFVrz+nDquqLSemqo/MiiQ3Hp538MnfBBkpisB28KwVPaPyWA9u7fb6+7RuFxno+uzXls9fFQwk45+87w7R87+fdKX7vvDEPe+R95IUmOoz1w6l46I9IcnUiR0gSB388PAw7YHdbJ5OKExzZlxT4OXRyCRUzSgEvfzkqXl4MPUTB6TqreuvWdF2cpC872Rg/JorRQ54ehW7GFSvj6frjHCSU8mJ12kEeD2/5M2n8vnNPFzG/JluiiD1R/d7pGucl38EGskLxzbXBfj27AQEUh9KV+ub6wRofPXGUz8NUGV5tKGzJV29eN9lW7pJZaYpEOlFOnmKcuoZlqVvRUN8kWSakiM5MJjTBb8G/WpgYG6w8nrnFfCjLSya31anUInQ+Lvh9Lp1CmcOpXXKz5EnrydeeLn8z/Ozq7ZX9jOde5XkhajjA8Nk3hccVFzklUCBDzI969snX6Pi3WXAJQMv2myeb4nrQAE9g5G8zNWzM2IuZ4k649zdp2JKXtUuQMDzGI2jVLbnQTDBuksfeJuS8Zsr//dKCchLTrlIkAsFqRdEyWGo2j54Tf/d0ZAu02vPaZR3lf8k50nHqS5+EJvr1W7bo9JzCmKuXN9WLX3OMrsxtItD8GvSNwcDI8PfrbqmIU9p1VkCAuosGU33tDthpfJ2waUx+xqvwYWUAEf5635nQKqeUDNDV25I9E2+kffKx1fTVj2d1Z3m3ZIC1m8tqmEoUW1hyNDPJtCzHTB7KZobdJ1R77xMv99dGxF57kZ65DW4rI7q0KWdqxf7k/m4AktpUhtGbU1t09hNUx/69nniXccwgcrvFST8EiAw0qcOEqqevxJdfaY1XAIB7uCMxhrXPKU1Cl436lp9d06Sv9uF6whcB5DcAXKbpSgBdSLBjzteo377HvL5TcFA5xkxnO3hGBkLGgym0zdPfOJ8rBvFXT0W72B2auchpfby23/zeaJnhZnUwVycw22GqX0pby+bPPUtMeQx8/F1DP7RClmt1+CZBMqDC2VSfr8FSp6kZIXkfO/CkTSinUc9N8hdzpJxpkEb1YnPp/zn5D0BxjReklymOdlEHeAgWE95sJ+SvI0Albfj90KdPEvvcPsgdzGR352DleSvavsQNL3VL0UEqJcIPkaLpwkEWAfqf7ZxDvwqP9dRlCVfM0W+EMz4GR2LxWJ6wZF+a2pE/FAdOrDeXfs16JuAAfdEaPjdm0wCJ7QoxqYthIoMKOTjhsa3pXRMTYrKhYaItlPeym8XIOBKVvyQcWYdxI9uQV4XDqPS1wIdvnNbfE2LALlYkCtm08JEDR6uMlYeXAzEsl8bEOiMUOdRu7Fk+gQWXEnpWgJaI+OZ6ppkj3KmNL7IsZPjDghQyXt9Egjwts/x2tvgz3rePj7Z5sQjjxKwPCrrOefh90T7AIFubQvD+d7PjBbq7ap0QB4fH7f0QwIDaTrO6171FOp3p0NpGaZP0QtRty6BZfrUqHQjI9EO+h8eHrZOKdSZLScnJ7Ver2u9Xrd2hHX9nnL4i8BAp3z8oAoKWzqBSswRipTx95P40oKM7sUQJGdqp4C5wIoKJ4XU/bfzxdEpvRoJoO/L10JEeeGqa7dFknXgIOK2SnnrPti4AEZlHB0dPXuWkYGjo6NpIeNi8bSOQ9dVx/V6XXd3d3EP/WugNPjcMM5Rkv2qembkVR5lIHlWKd9RXRyYOJ+TYuUzCex0QNmBjrfJDXrXFr+f8ktp3Dj4OpYEWBy0UGGzTh1w4/3fKiVw61HabkogOSGdzFZtnwKoKU55vjTcPBZefPYFfKIE+qjvaIx9ulQ63O0CwQw9f98Wrnw9Sq31AyqTO65YDzmtPN+FPBGRnyPQwj79tWTyF0cGXLC4epRbUzg3xY6X4Civqnp24hWFwL3ebtdA1e7h+5RupAw6Y6JvDjr3DDlNoOuOthkK4wFKae7dlb945AOOAMuPbJaASVhZlvLQ7obT09MpiqNntFKYQM2ROvv3NVCHxr0fu/tMk0Af9yMnDzXlmwBJBwYcUHSGcVQOPR4aWKYjoEiGP42hER/dSHs+c/z2sr1NI5DT5U+gnnTIbx0QzE3XVj3pJ/12I+uy3OlJHw+aKvC8GNLnc6IUhneg4O3kGGTUoaqe6VsRo6XUxaqjePfmzZutKHTiURqTLEdt4BZuT8f6dbL3awHVrwYD7HQdhKPDJTS/n7anuFcsJMm1AGKYe1w0jJx7oSLcRaG4ovB5SKZluDHl2aFuF0x9i19OaaDxOoVQ17s+Eb/EZy1k4QJM5cFVrpyaYH6sg6I4q9Vq6xXRHgXwNr4WIDBn4LtnUv1dgSUFSqDXGTY3unP1IY0MnctKJ6tV26999fa5Ue3qsQsfPf3IA/JnOto3jzkl+lsHAFXPAZKvwXLnoQOsyWglOe0iDlUVPXgaXh9bCcS5bDKtdHRnYEV+Pa0Dkp5lvmqTTmc9Ozvbsk2M2jpI2Wyepn3pFMnZdR1B5/F7T6/+IjDARi2Xyzo/P6/z8/PpkAkZeApFIgmRv+iG6NJD1+4p7+sRiVxoCCwSEEieA3nhi0h8ECjElNooSvPMnbB39XG+Mkojoifgnp8bdA4UvX6ZRyLrnoCh8mAdX7OC7WSn8zRF7N/UR50CdTBJeeiMV2dwR7IxBwRcoadykmFQns4L8ij9TvmS154m/e9oDiB7XdPvBAR+S+AgyZUDAXeyXH75fNVz/iQ92skXn3XQwXLZx9I77oV3ur4Drcp3bs1A0r2qh7dRXj0NuU9HuP72viBAUz7uMAj8jMDNt5bLrwIDbJwW9i2Xy7q4uKiLi4s6OzvbOoe66qlxvoiqM+hkKLekcIW8M7FTNKxv530RBFRVCwRc0Dx/CRCFPnmJrlDZ4eRJp+A7UEBBo8BxgZALrdpbVc88B7WJadUXt7e3tdlsts59kEx4/bvoy/ekUfmpP9MnPeegz5Uq86QiTkCAc6+pzzuj6mWnelARJWWqvJivl5946m3teN0Z+y7d16Txcc/fSXmOQHWX12sll1Ua5QQ0CfB9mjXJ/dxYYBr+9/sJ1I7kzhfq+TgagXDpXW+32yXaINomPpemopkn68hv/faISdX2lsmq7ZMNOY6pT38t2hsM0OjJ49SRk2dnZ3V+fj6Fo13B0DumN9mFv7lIsHvzoOqkeiWkOVLqFDAqjMT00VwXw63qXAmyjCk7tlP2uk8vrUPTfp394/85N1z1/A2CTJOmMdQfos+fP9dqtdpqo8rzqAHr8JKUlFBHCUCmvDhQ3UNgPik/AoCRfDqY6pS6+p3ypY/LRNdelqnfXdpdDX6XnvKYDHUCKB0Y6qgDAbyfDFFX/msnBwFJhilT3ZqrNGaT3Ok6r3WyI/1MY0m96WsCfN1SqgPTJlDT8ciNvMui7A7bQXtEG9Y5Zspb/7mujmCG0XMBAdWB9RpFOL4F7QUGqMQ0h0IgoOkBzj2zQxniT6tKSTIyZDyZrzSqFwWN97zuLrjuBeu6AwIHDcnTdQTOEBAX6iXF70DBeTFCvwkU+FSI+kB80oeKQ0LKNR6MFDw8PEygbLN52oFQ9XSWOPmg34+Pj1ME6TWSgzv3qJyXyQuoer6TIHkxc/m7sUv97Irdn0uKP8kyr6VpqzlvcQSqWafULpXDUGjqD88n/fd7XT07AMP6dPdeO1HWfNx2suRRAZclzum7DI+AGw2p39fvFH6nUVRerJ8bcKbpIsVJHhOQrnrakeX1pxPLKWou7O70cucsuJ71PnTbqfz4/a1pZzDgQIAvodBH0wLJo6dHmvag+/YWBxFJaLs6dtc7pbJYLLbCN472Rh5VUpYUaM0xsf5cX6DyCDB80PlASwo+1SvNaek5bvdRnflSEg1QLjp8eHiom5ubur29rfV6XVVPYS3vQ4Kbo6MvCxgvLi7a+n4vSp4f/yeFymfTYBclpZrm5iknnFtNxp5ykUAz69EBCa8vFVRSRol03aM7KQrC/FIe/O/16dq4i0HmOHdD2OmAlP9ovL9motz6WS7+cb3glMBd1fNpzWR0Ja98s6ny9Pr6eFM6r5/3BfWLR5ddnkdjnu3gmNBzPFbdo9keWUl2g+OP0w+KFnOdmTtQmlYnz7t1d9+C9gIDFDStEzg/P6/Ly8taLpd1fHw8Meru7m7rXdUioixGBRjm9E5OqE+UBCx5Ul2410NqupYGyBzKZLqq2oqQcDsJUSHLY10IKCgAIyDggzKBGR+03Mbpbyg7OTmZXm18cnKyFRFg3zh/GQ1h2Vy8+JrIjYiiJOojN55Vz+c4O++K+Sdk70Cv6vkhUi7vnlfnvfOZru7OBxLr1PErtXPO8HpeVJZs46he/N2130E185rjRarnayWOvxRxok6dAwIEnQlE8r+IDqIbfzoLqa/4nc4jcAPtcp2icczTx+5obCwW26ccMpLq0WwHAAkIUJ7Ju+TUOoBOW+p9PO4qu7vSztqZRkor05fL5WQsZOy09YzvqXaP19GcBE8MoTFJIKAzdrrHQaBrHSDw9AnRJYDhxoH3XCgJpIimO/4y5M5QvPIbeU/eVl3n65/FWwk7DZ88iu4Vpp632ktDRt5x66KHDl8DOQgg4CUYqNo+7KbquTJyxUqlwOcYBiQYTnLjeXndu/YkAzpnpN2DcWPhz6WxxLJSGpbT5ZWAkLffDdMIAKffu5Dn+xrJZdf7mDLosto5WHqOvztdS3vge/aTkdRz1Il0dtzb9vQpb9bH2835d0/j8uY2inpX/HVbRl6NZM/TuoNM8Ka807Sd8+tbyuVekQFfNLhcLicDs1gsptdR6lja9Xq9dTiNG3s2yJFUFw730JfS654bKj7XRQdUJ9ZFbdZ3UlaeToIsweWA07VOEWpFPo2QjLULqw8K5eFtpHFTmH65XE6gjcaZbfPDojSoeK4DKQ06krYj3t7ePrv3UuT8dBDgc/keHq96/kIWJ8pxMuwEwJ3MeXr9T0Y4GWvPP/GAdVV75sAAFVYXZmYZDhR8/Kcxpm+mda/Kv9kWyW6qd3rW6/naKekF6qYREJhrn/M/eddyJPxocpZJp4/9zAVz0htdFDg5H8nw8juB8xHfaFecGL7nVLjXx3nH+07sB4/qeJulmyj7u/ThvrRXZEAoUC8M0vZBhlIYGeBagapxqC2hKx/0qdNSmMvnef2+C7qDEW836y4FQ8POdrkinUPgXGEqXhKBst0pgpHQswu58tYZEJvNl+OJuRiQvFZfqzwdQawjox3JE9n6AVOUjdVq1fb/SxE9lAQEKGsJENDYJGXingSBY5K5NEWQwoq7to3AdPQ8FUwnt25YWYbyIE86ReuAwPnWgZvOy0o8Z4Sq4+eIb12Zr4U6Y5bAUzIiSZ46vovcmHOdEac9ldYNvPJOoEVpaTMSmHX5TNG40W+2UXzrDLkDkjdv3ky7oxLocNBJHndRQ91znUmQwDpwG2In/19Le4EBAQFND+hQIXmG/opKnwbwcKka6cQOd/Tnxp7M8chAYpoUhSunpMg6pZAUIgWaUQZHxXxeRlo81Wp7Gc+qp2kCGmjyR+mVbwIDR0dPJxCenZ1t1Y/nbCfQwhMfBQZoNBj5oUFNg/bu7q6Vr5ckBwSUr2Q4CAzJezeWrox2AcN+TcYrGeZUp9Q2N75d+QmEj8rwNqc6ESBSZufqksbnqG7Ms+NPMlY+rh2Iv3ZKUwNV/fRA4mGSHeoqN3J0DP2EWepAX/Plulv1rMrRKJXt4C5NJbDOo7GhejAd+ee8UGiegMCjyF5nfdPmuTy5bWI7afTplOgap5u/pYzuBQa0ulwe5unp6RS+kLHoVv67EKYOS4O+C6WQ3Nj6dZbLwd61U/XZRbhIMuIUBCocghXx8vT0tC4vL6cQvsLxq9VqWnUq3rNNfnog69wBAoEPR7eqJw8XYjl68dB6vX6G9gUW/IUcftQmQdJLkys3KjiPwFCOk7LwfBMg2AcIkEdJcel3pwg6bzopH/dMWF8HhXNeo+eZvFbmz/olJeltSNGRDuj4NVf0i8XTXu7Et8Tb1wQM0jh3feWGKoGfLm8vR0RDxTVFjAD69IDrwA7MdXLg4NHBQNeeTl7T/+RkSmfR8KbpChrwBAhYd2+Ht9ttIIG07ntkurOnX0N7gQFuJby4uJgYxWhACjt7ozsm6HpCiUzrodSq5+FYDgaW6emUJ4UheXdJEXk6GjxH4px30hy++Pj27dt69+5dLZfLur+/r5ubm6qqrRWsEkjniQObpCRcIZNnzMMRvcCNwIBeOEIee3vVxsViMZ3lnfriNZGDJvI5gQF6LLsCRd7vFLhI+SYjJtql3A6Ip+dHoIH19mdGBpXGw8scKa9UV/LE2z1nEFgf5k8e+9ieq+NLUZKfbk49RVd1n/nxuyuDgFnAn4uL3TnwF555GaSOz3RI3FDOTXek8dPxMelGAQE5XVzj4Lpca7tU51E7OzBAACuAwUgAnWHZE0awRuNgV9oZDAgNXlxcTFsJq2oKHXONgCuSjhkpnQOBjrmO5BII6LxypfO8kgfjAjfq6O7wCRHfby0g8P79+/rhhx/q3bt3dXZ2Vuv1Op5NoLI9NO/KOg1epeEiQPWb+ky8ZHSjqqYXQvH94wRNDswILtRW9u1L04hfIgem3v80IKmfu/I4oN3Ie15UEElZpTISjRStvncBMF2bCFLn8klle35Mk8YSlfyofeleZ/D8/msEAaQEXqt6ud1VhyXDybL8HSfc9VSV3yjrU8XUzz5fn8idOX6ndConRU1c53t7KcOSaXrgHpXmWQHJMUgGfwQGHJwKCLDO3ifK51tMbe0FBjjvfHp6OkUBtGBQ88mqsFduNMB53+eCyIgk2JyTTPlTkJXO53l8K5mMrtehMwYcgG7Audjm7OysLi8v6/Lyst69e1fv37+vP/3pT/Xjjz/Wcrmsu7u7Z8cBq+O5Q4N1IlKlgqCiEADQgL29vZ28fT0r/nLXAPngA0HRItZFQIL3udbhNVFnfPi/qp7Jir6935OydXCW5ng7vnRgZS6NK72q51s+U5u97iOeeXn67XwSf3Sv45Xymwtpz9VvZDA8nzln5TVSB/SrnuvXkffseaYyWBaBAF9Cd3R09Cyi6GsFVDfPf7RFLv3vALkDhm76JI1LlzUvl0DI1xSxH3xqnHYsyX3SM/yf+tWdP9epvxQQ7B0Z0EI3ea+qBMPZqiwbw0aNkGtSTslzS8qkuy8go/ktechK64NLYSkKjA8O5e1KywVW3rEWXQoIvH37dpoeeP/+ff344491fn5e6/V62qbDA4HEZ5385wLCejk/qp7eJSCDzTMgKPACAxxkBBkceKqnyuICUsmMn5nwGigpCFcqIpfXREkGvAzysAvrev5Jtj1/5u35eVs5XjsQ44qIz3mdEihmepVBoNApdeafDIiXP6JOp1BZdvxJ/fBagIH3t+SIhmdOnyqfLu/0SVEB6gM/hGc0PcF+6Hif9CmNJB0dl+nUntR2H/epfD3vpwUyKqK1UV1fJJDgbUuUxqfrFZ/WngN9c/RV7yYgQ9l4VSjRSDhTh3g5SfH4wPa6VvWH+aQFKAk5dh4E01ER+3Ue23x5eTm95lnnNOjlTgIIVVUXFxfTIk0d6KS5+6rtM8NZV5H6gnO1AkCLxWJrfUdVbYX9BIZ8+sDfQMl2+v5iXaPCei1AgJQMshsMNyZK69TJfQcIkjzPgVzPkyAuGVwHDaqnxquud1E4bxvz9PQ+Zvms8y2Na+UhbyeBBH53fUC9kIxOpzhZh8Tv1wAIkqGu6sFPlwe/U96jch14qnyPBsxFy0SUjTmjmUAK+zjlv0u/jXjnbXWHK41ptm2XPhnVS/nofzfV6NN0XyOve4EBoj6ushRi4gp3VyBp8PH3aCB2/6mY+NuVTWKgDyQhXO9sPTdCjsxbhlFKWmBABl67Bhg+V5qrq6vpW8Dh9PR0eifAx48fpzqrDL7jgEY8KW1Hq1Xb5xzodEKCO6Je8nazeTq3m8pb0ReCC84lviSNjEvV9gDqPIYR2GXelH9eT4rDeZ7q7UaQYFMRJPfMqvJaGaZJO3/mDPouii3xNRnfzgB5Hl2aUT0cEDCfUV1eg+F3Su1PBjPpXs9jBDRH5ECSEWHpniRPKisZT+bbgQA+7wawA6jOB+WR0jrtyhfVRXrcDwbaF6D4dcoidQNtjMoSMPolsrszGKAgaKWlKsS5lNH8i65RGJnWPYwOpbpnxby4EE7XRTJsrtA6ZUz0OUKNjpbpsSkqICCg9RYKsVOQlstlXV1d1WKxqIuLi+nlQJ8+fap//vOfU10JwuTVV9Wzg54IdFyhs41cGSywwFWyHpKsejpm+PPnz1trInzvsRSGFpm+NCXD4DQHAL4W4bN8KkMaLB8PfMbHB8O3AudctFVVWxEalUVASCXeeUQpXDniScffpIxdSaZ8GAHzOiSQxP+Ue/IytSE5Cq+BkiFMxq4zpMqDeaV7HbnuJ7kMjUCt2wo9P5ri0HM+ZvRsB2IJBHVv5MSNeDMHXKWL2Q6V7fbI7dzIVrItysPBKtvgawj2ld+9wIAjODGB+9d9cZs3mpSUXfLMPV2aI02GLhl7Vw5+n/VK9fBB6EJFJc2zBDgt4Ec5U2HzdMfHx8e6vr6e3gjJNpH38uh5gBDTukAyKsBtQipTBoXlcD2F8uBKYUUEtJ6Eho7bjV6KfECnRUauaDuPRWmY977fCZR0iqFTWuw/j0gJGOu/ZEBAgKu+2VYvj4qIfCCwJk+6Njqv/LcbAH+2M4IOMJx3PtbdI3VnwkFXyvOlyHmZwFkCCSNw5uRgTdc0jsUfHYaWgEACddTb+nidOxBRte1wzY1N1jvJCEly7EDD5aEDAqqbt89PCux4na6NwNmItwks7EN7TROwA1QReoTr9Xpigj7s9GSEvVEjxUlkyYVr7unoWgIDfo9lOZokOSDo2kGBkKImKFCUQFsLz87Opu13aoOMKsGCD5jRXFXXd4vFIvYfFwc9PDxMwE7l6L76ULtG+PKhzWYzLaZhWe6pviQ5iuYATgpwVGdXMAm0zoGPVF7yYr2eHAsEAwJlonSfJ0re3d1Nh1s5iHd5d8Nd9XwrVhq/He+87cnLS7xyz6vLT9+qv/PV0+q6A4Kuzt+L5viZjD9/zwHTLk9PQ0BQVVsr6Lu1Ap1+J3/dsHubkhz4c6mu+xBBw5wN6sijxJvN07ZAt39zemX03+vM/FI99+HFV71TlspNHiU9y6RIfQ9+l2+nUKgAta2F3rIfh+wLUxTy5iB3oyBKCJVpqDQolPTOiBBpcM/OzqY1AVoXoCOCV6tV3d7ebq0B8Pk4z59omTxMQMG9fq5z4MtG7u/vpzqo7jwq2RG66sqpAKXhtAV5/L0pGVb/sD+r5ufHO8CqayPA4YaKnw4A67f6TGOAO094TVM2nEp6fHycXhq1WCymhalzHiUV8YgPPkY64E0+eLqR/Oq7AyrM13+PwP5rJteDfi/xcJTPHL+68mh8+a0x3kVeR+CXZY+M20j+RtedurYTEHT5MxqmdssjJygZfUY01wfkQcdjnw7ch776BfMCAlVVZ2dnzw6mSVGAUUcoz455NKoKRUvBVT1ta/Otd75fPk1DJGNAD9eVsw88F6ajo6MtkCQPX9cuLi7q3bt3dXV1VcvlcvL8b25uJuE6Ojqqm5ub6Q2QCucSdTI05Od/O1hIqJTepeonICDeqy3q6/v7+6ioN5vNdH6Bn8ilur+kd0W++E4H/h4Zi4S4mbf/7sAAy5CM+gEtPA+doIDG3hegSr44LcWtwFW1tRh1s9lMbxllm+aMyhyfnU8jRduNf5df5/su/eKUogmdcU3teC1EPu0KXDvaJ33y4NOcP/P1MZHqOjeu3PnwNCmv1L/sUwcX1Pud08KpEtaXiyZHUx1zlGTR6+4OBNtEPu0CoJx2BgPe6R6yl9KX4uecs3s7bCAFTB8KDkPumnNn+FzpVLYfCqG6J0pzPS7sIjLYmat7qqPC//rmOgCPFEhJC0ip7sfHx3Vzc1N3d3cTAuXBSeSlh+EdQRKk6D4NDI2Lg4bk2fF5zU+zH/hfsuDrSb43JaPtfU+eOh/Y790gTZ8u6iAiGNgl5ElAI5Amo8/xoQWr2sWidSXr9bo+fvw4HRW9Wq3q5uZmCvtyHHbTaqle3u5kpFwu+O0AKo21BMBpvL2fEnVggjwnyO6e+V60C4DetX67AHLvRy/DgYA7T8kxop1Ixp26ydeteDQ36aNOT/s4ZfsSbzjn3qXjWinpa9lFP28hgaMR30dp3LgnPvE/x8autDMYYBhYp+DRa3x4eJhOtGPYJDWKA57IyhWwjL08Hyo9PwpThkmL146OjiaPhy/m8Q7250bTGS7sYrgMqqYA3r17V2/fvq2rq6u6uLjY2rKnMjSdoTbooB/y5vb2dgICWm+gswKcEsLtdgVMnY/DM9gvNFDin+rq4MKRaepThRFfCgwkI121rVjcYKc0ymtOqab7yZC54U3lehoqAb2WWlNOem+IgOjV1dUkh5LBm5ubOj8/r8ViMb0H4/b2djp1MkX2urHsStjBDL2lBKqc95JF54nz0AF7B9BZl136iGWz7fsq1W9NCciKXEZ0Lclf145kKDuHIpWZPsrDHR+Os246lnVJbdXvEa/m8ktAj2N/xG/yoztwyadNEn+8f0bXEhhzENw5KbvS3mCAn4eHhyk8SY9dR+r6oiQhQzJaAqGFaArTaA7ew6DcukZGMZqwXC63DJorHdVH11JIvUN2rtgk7PLGLi8vpxMF379/X5eXl9M8vBZrPT4+PttqJzCgei8Wi7q7u6u7u7t6fHycwMbd3d0khGw/+axrnBrh28WmzsdJYn60qdqqvufqYfJT/ZXCuZIZzim+JkrKq7vvA43PzA04ylBaYOV5ESi78pAM83jrt2/f1vv377cWpuoQKwHT5XJZj49fdqdobc9qtapPnz7V9fX1dCJl1fNdJ14HN+xeV46Vbhw53+nhuKfFvnGlyfHcKdTk4Xoe/Hj4leW8BI2AbCdLohEwSHl3Y2A0Nro+ZVSXUU3pirTYO7W9A3pM0/GqAzouN6kOsitVz7e38jMCACP57yjd80hVAjGJBxpPu9DeYODu7q5ub2+n0DdD3TSOXFwhgXBPXo3kPI13GNcJKMzu3oUL4Egg3Gil+aHRwOBzCQjIG/vhhx/qxx9/rKurqylKcXR0NO24IE83m820LmC1Wk1RCnluimxI+VfVVkhfdda5BCl8p7Q+BZOUntpGryh5eXxGdVosnk4b5KLOlwQCSZGK1EY3fD6I96U0YJNxTPVL8qv+5XSRpqTevXtXP/74Y719+3ZraoARqrOzs9psNnV9fT0B9Zubm/rw4UN9+PChTk9Pp4WEoyNUvY0OCNjPIy/I0/kz5Bd5MuL3vpR0yC5lfU9y50WUnJOvyTPpTOdLBwY8jf67vqWzIRmm3k96meUkMJeAfMeruXspb+oK1s2BfQcEuulmb9sIyKUyR/mwPfsCgao91wzIuyUI0GE5PochQOCGwvMUaHADRGPL8iSsCVUqzNeFJ5UnmchOpwJMxoNGVG1kWFZHDWu+VsBAXhyjHTyUh+Fa5b9YfPH+V6tVrVar6Vlu8XMPTjz3KRcPZamM5PnR2PAaeeT81XZE8ielJ++/J7ly90EvACP58aOqvf/5e1cj5d4Ey3aFmJS1jwW+68LBp6anFCHQqZeLxZfDrARKP3z4MAEFTUE5UGLdR5QUVuJb5yVJTjQm+EmANQG7OeCSfnvf7Nre70lzXnmqbzLgyit9PGq6i6Eald/1edXzaadkqCk7DtS6cTkaix0/vB5JBjp5mZse+CUytM+zziO/tiuw3QsMfP78ue7u7qZV734QTdX2AicqPd/r/Pj4ZYvTKD1XRivMrboojOhlq56cA5UhdcaQYQQXPkdGIhDQPL6AABcKUmHT09fAU3s2my8LL7XCW2lUN75UqKqm6AjrK9Cluqs9bIP4ImJ0gvxcLBZboMPz8JPrxBMuckxKPk0lfC+iolN7aOh4XXXuAEFVHly7eJPJk5Hss46eJ0OtkjmeaqmpKb398u3bt1vvwNB6m+Pj4zo7O6uHh4f6+PHjtM5Aa3C09odt3Wedx4hXrpzcOFP+9HtkYBzM7lKv7r9HH5KBe0lw4E6LvufqyOeS4U8fz4v80P99SOPfjy7nvbn+6YA8yYF0Agz+uzOiXv/uOvtgBAYc7IwMd7o/Ryq/cyZ2pb1OIBQY8NDPZvN04IwbBHmNWk+geWfNhadpBK085YKos7OzCUjw9DQXps3mi2fnR/OSXJH4/Lvn6QOJ87V+vLAzn5726enpJISaP9Orn29vb+vDhw/TokcutBGwEUgSr6tqK9qgtsjT5XkCGpAq//Pnz9NrqLUGRGcJMILiJw566F/l06PzASJevmRkgJS8QPGNdU9AIXmoHHRp8HWek69XSWCA9zn3KqDJNQI//vhj/fnPf673799PC1clG9zJcnt7Ox12xXMLFH3wPuzakZSc86zjifNH8pmMcWesRl4ir6X/Xk/Jr5f/kiCA1Hmn+9SR8uQy66CNwEjX5/L23+pXvgWVZbuO6OQr1cvrxjZ0suHUtc3leV9ZTtcS8OhAQUq7S3lfC9hEe7+bQICAW5u43U2GX8RrZ2dnkxfpwsCFGr5P+uzsbJpC0E4GIs4EBrq5NCp6/k7zPAkEUCH7Gfw81U27LrgKX/xQPmpv1Zf3CmghV9UTIFJdVB9f6EhjrYVhPl3AtgqhKxIjYLJarSbDwbMZCALUPgItV55M71MTL7WbwA2tAwEHjHNKpOo5QEykvEdKNQ1cXeuiKQQHXDtweXk5vRJb77ZQPSgzOo+DsspxlMDJHBDwdvPb80gKzPk057GNyuEzDlD8WZF7gOwvB4EvQcnod23raFeZ9We6dF0kgdfodCl6mMBH18YEMrwNu4JFyoMDhyTPHSBNdUq86/jm7XNno5M3l83utz+/q+zuDQb8VDw3cgm1MbwpMCDhoEd2dHQU90xLqQlhckse66bfylN1ojGS0lFaGoQ01yOlq3b4jgZFIbQ7QNv5FKZV6FUgSvelcHm2AL0jlc0IQRJEtnOz2UynGboX72fRM3LAMLX4xdcc87dAziRA2JFQVc+eYcj9paYJXCarsmc1Mirddfd03Jvo2qw8CUR8cSf/SzY8KqO03MvNT9XTQs71el0//fRT/etf/6p//vOf9a9//av+85//1MePH6epqDQGuvn7UX/uAwh4z/noBp316QCK12H0m3VK6xOU766e2veiUXu+5hnql65/Os+b99xgK30CxT52Ul3dKfPIQKcXUz1H8qD6JBlMPEiGOfErld3Jl3+ncj3fxKuvldW9302QlJ2iBFRAnz9/now4w+RcN+BH1Z6cnExGVCFQRR1kuLQav/MUnOm+mE2/+QzvM50rbEekAh6cO398fKyTk5P68OFDLZfLOjo62gIxyoMnKOqEOBoAHgTkg0jl6ptrHDhdQx5xWsH3kqtNnOLR1IS8Rq7D4NQOP1VPhietSL+/v99V1H4VSoPNwcAIRXdKqQMbVfXMwMzJrQDZCAwIePLUT9/tU1XTug+tO/n48WP961//qv/zf/5P/c///E/9v//3/+qnn36aIlKUKR9LyUsiT5PyHClh5jUi8lHKOpXnynI01kflMI+v8a5eC3X1pWFO6bs+T/fS8xwPvjZhVL8E5NzOuGOUjPXI6PJ+kgUHLN4ub8+IVx0lPZCAwC5gI7XtlwCCvY8jdmRHbzktJJOR57x61RejIa9ZgEJH9QoM8KheRgPmBJ3UeW2dgnJhUZ5SuIoGSDlR6Ygnt7e3dX19XR8+fKjFYjEd8avIh6IkAkcCPsvlcjKY4itPVJRxpTFX/bppkdR3fE7GZ71eT1sTq2rLC+W5EupTrgMRkOHpk8pHPNmlfr8WuRFLA6YzUp2sdYbCZWwUyuTz7tF36wgYoVG/KOR/fX1dJycn9fnz52nsVH2JqH369Kl++umn+sc//lH/8z//U//3//7f+te//lXX19fTKZcuV87DOWM6UrRzRsWf9/J8Ci8Bf37rmV/q1bty/t6UZGbE513AVWeIUtrE49FYkcxSfjkGunLcyHbGnvxIOj2N726sex28HJa3LxBIaTqdkmRsTmZHeuxr5XXvyAC/CQb4ngAxTF4tDwwSulc0gWFzLhaUoVksnk4FpHf7tYqpEyAnFzh5Zlzb4HR8fDwp6tvb2/r48WMtFl8W62n1t0APox7ciaAtfVzQJaWu8L3qxSkbHtCiex5WZtvEQ3qavvBTzzJvAgGvc1XV3d3dMwXyUtMDIu/j0WDeJzKQjLXn56t8kyLgWhRGgzq+qb81ZbNarer6+rqWy2U9PDzUp0+ftvZz6wjif//73/WPf/xj+vz888/TtlXKeafcvH2jqMDo2TnjkwB5B6SYPxU1o3e7AoIOCP5SQPEtiPqoMxpzAFb3yEu2bVdnIvULx4Qvik3TAS5r3odVzw/a8fb7vZFc7dM+5xXb4+l3kfs50MY2db9H9K2A6i96ayGNFb1KNYJpOI2w2Wzq9PR0a5GZjCTfvlb1FNZmONS9f3q6San5gGEa1rdTODKuFFIqbH9OL+yR0VXdZfy5gltC5qu53VMUKFJ+bLMv1pORpzHXVIYja/KX6xXSIszF4ml6Q9EerelQPuSDR3JeSqFS4cx5eh2C7xRe5y114MIVMcGAwHI3DaZ81V+cFvj06VMtFovpPQOU1dVqVT///HP9+9//rn/+85/1008/1c8//zxtZeU4SMa9MzJzSrZT2um59HtXzyrx1a/NUQKMX5PPr02dwUttr3qu21y+Un+P+in9H4GAtHuB+pl6mgY3AZ7O0I/0y8gxTORyRv08V3/yw8tLY6frqxG4Gd1Pz+9De4EBHxz68MAZMoiKTt+KDHBPsxCgL6STceMcqc93kxGiXcLnPgBG3hvBg6/I9/l5GWK+J1511sEu+mw2m6ldyieFlZW/r/JPH/GNQIB7tpkv26X0zkPVnes/+FFUSP1EXri8vDQY2BUQkNxAUDnQU6A8dkZOeSTlrPwYYePzXlf1mc79+Pnnn7dePU3QIDDwn//8pz58+FDX19fTS7B8HcccmJ6rV2prChMn4NHJRwJYlK2R0h1RMjjp/ksCgc5JGbU5pU+yVvX8BXQj49n1A/P2aEACzlX1TI+7rtP4dOdvJIvkhbcnjUN+j8apr1dIMszn0tjonISuXzsg0N37FrQzGHDGuFBRgSSiUNCT3Gw2kzFU6FMGterp/et8QZJQpCghNAk40yfvgem7NQkjLy11Jr1xLfJaLBZb2yS1EFInwenYYTckapvqSICRBquMQJo+SGCOz63X62ehOwE67hTxcJkPGP33rYQO4F6Suj51peQk+XXZJ792Ld+BhYCy8iS/PFogORMY0PkBVU9yIhCtyMHHjx+nxYJ+KBfbzjGRFOmcN9a1z+ufwCzbn7xXGooRr0cAY66PfHzs06/fizpj0YGHpLvdk6zK89+pbObpEczu444CDTfHleqkSKNPgXZAKBlrl+F9+3LE01SPXcaGp0vOSQcE5urKOu9Le0cGCALYmQxVdwqkqp4pUT1Po6mTCau2t6opfwqhDKivJ6BR1H8KK5nnddQ9F/o55eaHF8lTk7BrmuD29rZOT0+ntmp9gZQ0IwGLxdPKaEUU/AwBLtAboWEOCI9AiIcCBOorTe+o7oxAiL98N0USQir7l6aRl6n/vvBJadn/XMtB2VcezM/LdbnSf26z9Sm3qtqKwOmeFgeqH/QsFxbe3t7Wzc3NdLQ1o0AOOJk3x/VIlrzNHa881Oqg1XfGsP3UFQ4IOmXaGY407j2P1w4GqvpwdAcGEsjxfEY8898JzJI6PcQpUe144dSpZI/nEqTp4cQHdwaTbPM5B0L+u/segQSl60BBAmEpXbq3rxzuk34vMJDmT6Qw1IlOLhASosfHL4fjKFyuqIA3gNvbhB5diFUHlumRAdWfgsz0qd4qw4WfAiAPjUpJ9a56OnWPx71qYSHbrTbyGbVNRpj7/bmwjyDJgQvzES0Wiy0DzrScBqmqaR5b6Xn//v5+6zXI4rGH1IjQX4J8wCYFpfse3mT6BAirtrcPjgYfwYJ7MAQC7glTHjj+Hh8f6+7urqpq+q7a3nEgAKApAclNBxaTxz6niJxP5Lnq6yd0ip8C9CND7mNr5O0zTedBdvQaDX4iNyQdyPFrDvwS4HO+69tBsn+UH/Pl85TlNM0o4jSnplBVZgdMWXbVtkPItjKtj9duLDAP5wfHpduffYy9p98FFHSU2rWrXP+iaQJWkJ3tiys6hUJhlKLyymuRFMP4rnxSiDEJuIMC96j1LOvn10Sc85KwaPojtVFzt4vFolar1XSdR3WqbgQy7kn5okDfKeDhZN6nx+8DWeXqPvnM9tKrZPksMymnl/SukufgBlfpfM6TzztoEiVg0SkCKkqCVech60MF6pEEbQtkOb4t1IEAFWSSVQfRc7ylsXbQmTxR/Zac0RscAcdOce8C7jvZS4qbesWB22sgBwJu3NwI8zmPoM5FdZPe9+iw61g+7/Lrb3m9vLycTqz1E1z1W9OpCRB0Y3pOp/N/N14J8skL/e6mqr0uoz7syk9p2Sdz9DW6du9pgoQ83MgSEDi6IkkQiQarasvz4Qp6rjmoqq3QYirPlUoXFeDAmPNgqSBYP93zw4P4HM9K0LMeuZBRFhBgegECX4/ARX5+IqAPfuXJrWyqp8rV3LUGPHnjCxQZlXFeu+wQQH5P6rxOr68DgTT4ySs93ynRRMnbcGVOOT86Oto6lIrbTGX4lS9lhCdNuqy4wRa5MU4Ans+xru7ZJAWaAA/TjPqpe86jNF7/EWjrjIUbgtcABjoeVI1lzf9TD3Bcpz73zygi4M8xIqQjs7UD6fz8fOtNmxcXF/X4+Didz6IFrppO1YvxGDnuDG83tp0fnWwn8OrykJzSufHe3eP4H/Xd6N6o/H1o78hAGrQUMAEBv888Uid6mKVq25DpNxcWSuFxALswJGTrYECIk2VTQbtxlwH33QL07hk6V924cpvel4MBAgHntZ8fwJcY0aMfCZMjdUZIxCNFYpQXoxFsLw2P1nV0hvalqVMYrvBcxtPUEL93CaV39aCBpJLlsdcO2tQfPj480uDAOG3NdVA/B2p8XPDbx05aW9TRCBDwfhov8lT1DB0EyW8y/KlfvIyXBgGkUV2cb3MAwWVjZLRGer9qWz8TBPANmzxs7erqqn744Yf6r//6r/rLX/5SV1dX9fnz5/r48WN9+PChPnz4UJ8+fapPnz7V6elpBHqdNz/HoxEI8LamMa/2qk4jB/l7yo73+dcAhK8CAyrMDaJ3UELnrKB7XXqmQ/PuidM7TQOYSpahrTTX42hQzzHM5V46lTDbpBcF6ewF9474nYTMBx4pAQKG9xVyFZ88rMaFOjQyAgSu1NleRjIYKRAg4eJG9YfyfmmlOvIeUt/rf6ckmK/TSOl4XsyD/KI3lRYq8rRHjzK5PDogcHDu/En1oxJOXiLHGsFAF6lKitz7YqSwVRbBEvMfARDXUXP1eUnZTZ7jyGjPpSElg5XkPeXNfiQQkOyenp7W5eVlXV1d1dXVVV1cXEzA4N27d/WnP/2p/va3v9Vf//rXevv2ba3X6/rPf/4zHcDG000Ffv2Y86SrEt8SuO3Gs+4lPZzkhs/sohsSJV3gOqTLK9nbBGp3oZ3BQMccKiR67a6UPC8aZp97qnoKBXnD6cF3W+wccKSzDlRPRgW8jlI2ek7kISryQnzwcK7uqc37ojZ61irDp1C4EMvDw5vNZgsIJCCWyqER8a2P7HOV3514uG97vyXNDQhXFqm+rpDJP4YQed+92u7DOkjmdKCTXistPjsQTKDPDbrq6JEz3vdrNPA+Lh0MUIaYZ9pB4Pl1oIz1coPEOvBAM/KJspoAyAgQpPJeChDMgZWqDDj9/i6e4hz4pb6nzCTZUATgxx9/rB9//LGurq6mNQJv376tP/3pT/X3v/+9/va3v9XV1VWtVqs6OzvbWhdDXaa1MXS+kpx7G0ZGu9NLo7ZvNpvo3PgzNMgjYLKLvknPeh877dLfTntFBpInQIMkr9Q7zfOpeu6tixIAYNTAF+4RDCSER6XEF+qkECvzYf34HBdrsQzWT4Zf8+9S4GmuPrV9F+Tv0RBNQ/hCP/WPytFuDHprytsPvHGjzjookkClq50R5KUbiZegTqHOUQK+bixH6Dsp12REXe78hEfKKBVj2lHieakcBwKpzl5H1Z1TGV06/k8LVDU2OCWV6kOe+G8vm+PTFzQz0uXGnenSb6bd1ZD+2tQZhF/ybAJa/J3aTB2VnDfx/s2bN3V+fl4//PBD/e1vf6s///nPW5GCH3/8sf7617/WX/7ylzo/P6/r6+vabDbTwkG+CXa1WtXl5eWkWxeLRd3d3dVisdjaySWdu1gstgAL20V5dZ2U7EgCrSmylsZyiliP+jABia4PdwECI92U6KvAQAq5a+D5nmuvZBrYuiejWfVkRFJeycvxuvLji+QY9nYl6s/vwhN2vPJjHuQZ6+1bCLv5di/L6+B8SvPD4gMjE96n3hc+z++GXeBB7ebWR6abm/p4KeLAc5l02dS3e0H6vWt5ndJl/3DblYwaozMeGRhND7hicOXkdesUZSIfz4ykpek4jmmvk+pA4+/KbwSsRsa/M+i7KsqXlttdDECnF/zZTt53zUe/ve/Ub9RDJycn9f79+/r73/9ef//73+v9+/fTi+g0VfDjjz9O7zbx6QFO0V5cXGwBjePj42mXDOXfz9DwtiSH1sdE4rePJdfx1HPkA8cu+Z/6z+VWZc45iSTW0cfQHO19zoAvDOFK5yQkXNxDb5kGyxUcFUIykGI6V74nxeYhzDSNkRSSmKoOd+83KS/eo1KmoqK3w873KAfrz3J87pXluPCxbW7UZXh8+kT85ny0iNM5BFiMBnm9/PXGL0VpQOiae+kOuqgY3CPwQZs8L/4eKRQqvqRUkuH38ZbkmG1N01tM4895vqpvF2WgfHdTf2ont82yDkpD2fb8E58djHc6wevMcent92dfgpJciVK9vP+8zbzv+tHLTb9Zp6Qzqc+rqi4vL+u///u/63/9r/9VP/zwQ52fn0/24+LiYjp0yOWMn+PjL++t0Xj1kw75nM4nYJ6SJY9c+bPeZo+IJb4kO8PnOb2aHGTvO+8/1sEN/a5GflfZ3UtLa5Wo3sCnVw0z9J6Yz1Ah57c5p61Dd9xoEjSoDmRIWkBIpUOD2x1a0Q121sWnB/isGww+l5RzKoNtpHC55y5eEmkSOboydGBEpad8Beiq6pnH6ZEF5eEr3BeLxXSUtMr1/fEvRd3ASZ7CyNAToDqY64wyv92opjpQvtM2ThE9MU1FdQDGjXJS9C6vnUyx7SqbdXYd4NEKHwdzxjgZdfKRO280jhIgUL7km/InoHe+8LmXJOcByfk6MhipXTSMTJMAxKh8l305jxcXF/X27dt6+/ZtLZfLraiRphV1+qpPfQn8esTs9PR0ax2NiFvQVS9Gmz1q5TI94msaQ7pP/Uy9kPSF98WuvE3fo7xSfiPaa5pAhkNbRfTGOg8RuVHzCnGfPBe4KQ9ffCcioztGuGfC1fU0bqNQEfNNAu6oNHnlet4VDeuXSPd4hKuDKtZPXpZv6Uy8GJXHsx2YlvwisFD+4i8XixE4uLF4LeSGPw18fbP/OcBTNCwZWubj/E39InnVPV+DQ+Mn/lNBdEqsAwT6n5RWApjkH8eFInXq/xQho/xQoSU+JiCQ+EmQz3Huz7ru0PhMDgKpcxZegjpj0cnR6PkO/Orbn09lu8PhjgwNI+f3deqqTmXVOzN8Mbf6lLbCnRRGHn3q6Pj4eGv7tdcrgSjnj4+bBDLJR/JAMpYAZ2fUuz7q0sz93xXI7gwG5OWdnp5OH1+ZT6Wha1QWVAL0+ClQ3Up7P7CmUxrs8FFe3CGw2Wzv2/bBkQy8309KqEPUNJLKw+tOz5vtYMcyLb0kLyeBAfYR60feCWWr/exr9mV6Pg22lyI3ymngOgCiEug8pM5opfI7Y6v/bswYiXIFSBnwKEMyeJ0yo9y5XKe6pza6UWbkyqNZkisHRRxfXQQvGS5vewIu7DcqdyprPp/oJcHASJckQzQCpNQhIxDh5aeyOt5KH6mMh4eHWq1WdX19Pd0TSQdvNpu6vb2dogPu1AgM3N3dTYsLfWeTdCmdJ04HMMLggNQjI+SVxiad3ASqKU8JCHS8Zrlz8uf85jMJ3O/ax6KdwYC/upa7AGgMXWk5GJAycAVDwdA9NZoKRA1NYWwaI3Y6lbDK0SKVxeJpqsGBCYUoed3umYw8DDc+ukZFqfokEEAif8Ub/abAOkL20BjPQhDvCVT07ggvV14feZKAFI2W+uwlqDPoPliSEp0z9J5/Bw46Bc3oApUO65m8IcpNag8NZgcEyJME3rr2JMDAeiu6t9k8nWLJ9SmSt3R6okfYKJNeN7VPdWI+qc6dAe2AQMeXl6Ykwylq6ICP6TvQp99duR3woN7waYBPnz7VTz/9NOkblc1dIHd3d1N0QMaeO9W0s0C7DHj4meosHqRpSR37nsb8nGx38sF7u8hdJ0MOCFxPebourwTwU5s62hkMaJ6mOw3N53pYCVcG3ilai1BVW53sBkbGOZEbWwqk7ktAOJedkFlSAq58dM0jAt756SPqIhju+ZESKFksFlN0wKMIXoa3RwNU31371a/qP13z/Fw5iUe7hqp+DZozDErTDfqvIUfyLEf3/TqjAkdHR1uLaauetnMmo9a1LSk9B9z7eByJlJeANacwmC+nvqq236ORptqSTHm9Urvm+tr53wHClPalqTMSCSh16ToQtG/bO7mjN35zc1MfPnyo5XJZ6/W6Tk9Pt3bNqE/1Ku5Pnz5Nb9j0N7RqbKQzNZKtkNPiC5gZCfCpLPIlRahGzgHrxLG1Cy+Z/678Hj3XAYoR7QwGTk9Pt7Z8VG0vGExnC9AQ+cpyHbeqOSMKkZRKMnzyLDgPQ6HgdASNog8WD03u6v1JIes5ggFX0B6lSJ0jIKSDUySEDIMlAUx1T2E48WxECulyR4C3vetXDUSvI5U607wE7arkOs8hzfftQsko87eXQ+9afenKhNGdDmwkTyN9nDe+noH5dfVmurSuQL85Nae0/uIlKtKujgm8jzypbtx1oCz118gAfE9KdU1t3MWAJz6KqE/4TAJZqS5VNS0Kv7m5qf/85z/T3L3Wm/FthQ8PD9Nr3D99+jR9X19fb71SndOXBJEi1/NcdE4d7BFSPauP5E/RCKV1PiXep6nyxK9EHLsjQMdvPfctaG8wQEYqhM5vkQa/n7FOb1xM055Rdqbmpb2zq7bnOCUYnWeqayIBF0U01BYPNybFRA9IeY08EQ/RE5EyL624PTk5qcfHL6+llTA6wCLvVQem4fGvaU2H84hzvI7AxSseXKQ+1JnhjpoZIWGZjCi8FHXGwQ0eARyNNNN3inROYafBzCiKTxUkQMd0zDcZ0STDo/qOFN4IQKXfaVzIWyM4oBLehcepbul/osQH9flrMfqkEdDR9y6GJj1blY9rTn0+MoZeX+mN29vb+vDhw9Ypmm/fvn0mj3d3d/Xzzz/XTz/9NL2X4ObmZpoSkI3QeQT6JLvDerCePsXtNkhpJIeaHuXidgfgHZ9YH48Yd33BsZrakPrO65DS7yPTe00TcL6HYRDOZ1Y9heEJBFhphqNlWJiOjGG+fF6ehZSKzyGJ1Lka7OpcKYCEetU+N7Sezr0LN7I0nmofBVHPiwdnZ2fT/FhVbRllj8akdQou9JyW4f5bV8JVTyvW09kPRM8nJyd1fn4+TeswMkKZIDJeLPrpne9FuyhL9h9D2FI6bmT9dyrLwcVoukT96krGPehut44rLb82x490zaNbnp+eYfsIgP0axx2vp+gd25CMlsqnMU9Kt+OPt6Hrk9cAEhxEdiCT91IeicfuSHn+3hfOb9aLuubTp09bO8N8G7jG1fX1dX348KH+/e9/108//VQfP36MEQHWj2sJOmAg+ZJ90bk4lE0vo+qLLtTOhru7uy1eOS/TGEz6gjxK/er/R896H3a0r+zuvYDQ1wu4wSQQUCeI6Xd3d1tegV5KcX9/X6vVanpVpTOEHq3uCxAkARelKQMKzJxn4cbWiQOCisinRvjSGXpArLd4orpxQSaFVvX3aRkqWAIseu8aQCT1IQEAjTv36PLMfC08THNjozUPL0EjBToyBHwu9dsuhsXzGC30Uv4EBEovmZKccZsWPWvKbOdZUF67NrPOXCxMb2qzeVq4yugXvX7pgRT98LqOPJs0ZaiPyuXz9MgSzQGAVM5LUDLy/BCoeTqGvLs8k5Ejzcm4T4NKP9GIuuMiPbNcLmuz2dTNzU19/Phx+tze3tb9/f2k58n/BDa9HPa7HFIekse1b27MVffNZlOr1epZmg4QiFyuXfd8DXX2Se0e0QhIO+0FBrhtgwYzbQ/08N/t7e20gERnFCyXyzo+Pp5eyEIUqUZqKiDNvVBAZEjdKKujUseTYfruPIs55M36ynBKEcrrPz09rcXi6chmF2QewqSPD8AEBHSf/eIKgQIrAWEIzA9+cqDRgQxf1EMPUn2ZAMNLkA/OBDzFG5cxH/TM0xVuh+J5rfPiPZ1kWv8JDCnjlG0a++T1ef39vhscX+jH52j0Oe49QsX5YcmarxrvwDd5zDHvPFBaPp8AgYP3rg93BY2/NnUg1vtcxCmPzpDw2/Ue5bMqR786gEDPmJFGPic9d35+XovFYtp6KBvhr2XXGjGPgkrOPJSv+x6V5To12Ry+GVFrBLSGynfOjcaI88RtmPOWfTvSi3NgYjSm96W9zhkQg9U472Q3whJKvkBH8+PKi+cVSHg8dOPKgvOlAhDudVFp+ABKApwUMduUjEhnMDS/9ebNm2nBjMBA1dMLfVQ/7aOtqq2tMxIqN1pJOfp9bd8iYOBUg/PUj4T2QcfdIA7afDqBSlbpHLx8T2Jdkpy6t+sgS98ceG7MXabmAIETeaVnGB3StExqG/tI13wOPBmNdC8pPAf/VHQeBeRKcY8WSC55gIwfs9x5qt5/3jYPW3fk95OR6/j7UrQLCHB5S/3v+TGtX6/qDT7v6TevEwSoXxldkgycn59Pxvz29nZ614B0iUdKk30YRUYYoaJzKnmUk6a1WtLFbkdS9GNEc/ddH/m9uWfnytolTaK9IgPyCDlAqeg771Ohl8fHxy3GE63p/3K5nIyR/jOMLWNJgWMnK2+GNwUcGEon4yj0PvA4FeGCwW+fGlDdFaLSb4Ejra4VCTBJUSaAwjbTYNE4ix8cDBz4GmAO5HydgOdNr488k2FIYVmm8TJfkpLxcxDgQMzb5UphzgvzPEaD3seV94kbSwIBGgGXISr9Lo/UTueR+ppjVlNHkjF+M4ok78tPkxsZHZFH05g28XrO4/J+7BSz9933pBEwI6X+TACzAxF+veOJ1ytFDzjuNYaur6+3dOrnz5/r4uJicpC0lVB6kHJBx4iRh8QP51OySSnqSSdKkQumSzLgY8zBNfvC+TXiqRN1yy4y7c/uSnstIEzrBdwwVdWWEqt6WpAhI8g50aqqs7OzrXC+BITe0OPj4/Q6Sx1MwddYMpRd9XybiYiKolPSnob3OF9FEMB1Afr28BT3vepZoWBFCtKBGlTALszKU/Vzg8sQrQ92emOukAmC6N1RsaseRO3iPQduF/59KfJB60ad34mSMXVZc8WbokksK/GHvPW1HgyNso/YjgRyU/27Vf2uNHlNYIBg18EE26E2cGrAF1p1Rjf1T/c/kbff8+sUOuv0UpGBZMBZP8lOAri75OWOUZLtDuh24IEyV1WTcV2tVpP3zamCo6OjLYCoUP1isYiHnolGcuP/Hx8fp3UIGi/r9XrSjaof7cvofTnkPcsbAZQOpHf2pqMkv97urwGvXwUGpOSp6IX4aBSU9v7+fmtRCFd+cu+p0h8fH9fZ2dnUaQIFWqF6fX1dNzc3U4euVqspksB92k5EzBwMncKmd6g2KvzJMKimAy4vL+vy8nLrnQ1VT1MsajsFQ/zi1AD5p3qkMBmJAiplqzd9iafcFurvhEhCpN80FlVP875eF9Zd/11YX4qS1zmiXdIlpej8SyvldY8ySiPr3jBBNY2yyMOYTJM8bq+L5FeKUTKUjoZlH2tscvz6VB5Bpy9SZb00Lqlsvdyu/lTKI1lzDyt9mHYOpHwPSsbXgWQHOh0cJkAxMlqMxKS6eJRQ5aQ+eHh4mPS0Tw+dnJxMxw3zlMEktylSx/p5PTh+NG1KIKpo9efPn6dDj2RjeBoi+ZcAQQeSEmhLPPJnWH/2Yfr2fJx21b97rxlgyJ6LzTjnr3RVT4hMnV319Ga8u7u7ur29nd6AyNOpNA+pNyPK8PvhR75diR4UlTAPPCHD6N0n70qKT89pjQMXSi2Xy7q4uKj379/X1dXVFrBx0CSFx7oJDKTwve53hzp5uoQuZZTEK56vQG+e6y7EU+czAV8HBhwte31fA3WGoDPseobXk8JNaTulTCPo9RJJmUlu0mBnVIzjgcZY6bxtkl/t7KmqaWyuVqtJ7mgoHAwI/Kr+nNpw+af8JB7RsUgKke11RZv453x3XrOc1wBanajbfPy43PpaArWXzozn7fKYrpP/I8fJowJ+n+e7MCq0XC4nsCC54zozEXW05M1lIzlzBNPHx1/OtNFbD+/u7rbWLcjR5DkHPi0hnlN2vJ+cP7SHDuRY99T/Stt9d2B/X3neGQywE/Xp9vYTAfl8scCBQuO3t7eTMuLbEDV1wK1t8kKojLRaX4KkzvMQp+YzBQhc+bsiZUdS2fK8AG4bvLy8rHfv3tXFxcW0HkAhJwkk1z3wpRt3d3dbC/CSl58W9blnSfRJg0zAo7YqSiOishGC9ueIWH2uV2U7YBkZ1+9FHLB+PXmhvO8GhDKh/1Sa7iW5Ie1AAhVNykNKnXVgHuwrhvvnwO/p6WldXFzU5eXlNOYE0k9OTur29nZLlsgLKj3JhECAPCo/Upb9kRSp+Eh+6hny28FAB+6SB+aG3/8nL++lZDe1typH3VL7dZ3ffp3luKzyv4hGz+8xP5L6UjJBMKBpYepFlxmdJSNHjA4o9Tz1Fm2Q9Od6va7F4ssOBtkO2RnJvdsSle+AtWr7VfLOdwdnBGYJEHTOxPeincGAH4TDznQhZUdV1ZYRrnqa/1fnKzyjvaDn5+d1cXGxNX8ub1vbPuTFcO+7VqRKEdED5voD1qObJvAIBef9uY2KntXFxcWEcsWb9Xpd19fXW0BKQkfBJ9HYejieHrwPRhoeKXxfs6A81EZXsqKEbpPhp4fHfF6Tl9WFnTmoOUB1PxkJfbOd5BGVA38zT+Xh/dghe5WRvCB+pzYnY0hge35+XpeXl/X+/fs6Pz+vqprmUpUvX/JS9fwcCck5F6AqGsg1AgmQpbqxrZ2hSdGBESiY85YcGCfA8VLkhnoOwDroomynsengkhHHVKbXh+kTIPapUeb3+Pg4nTfA6VKvsxZG654DXqVzh05l+EeAQI7dw8PDZJN8R5fneXR09Gz3i+vGVJ8EDlx+U7+nvnKdkp5nul1oZzCwXq+30L8KUoPVQd7ZqoyMEyvNEM7R0VGtVqs6OzvbmjtarVZ1e3u7heJE2oVARsvjcY/EF8F1DKMh5TkB2pfKCIJ+c0pDgiKkeXNzM4EBGU8uVFH7OafPtQP0wN3QJ2PgadL0h8rTwTXiv4hhxaS83SMlgFK/7jKH+1KUvMfOS/LnusHpylpp5Q14Od5PDu4S0O7y4CJSj0Q4sZ48WloyLrq/v5/k2ttOD6nqaTusPCmCgbT2wPnrvwnSGWX0Zx2ocirO+6ejTuG64n4p8rGt7zTmq7YdnWQoRuCKebn8JB514IH9kMCJ8lbUVIunvc7eTk5JdzrcQTaf5dQ2bZfqzEhWcnIIQNge/ncwlOTc9XbnLIz6g+1Ocv81endnMCAmptWVHpJRh5GcmWlO0wVI6wxWq9WzQyJSiFVb96qejB1DrD7XT+To80I8sEJlppOr2CH39/d1dHS05RXxs9lspp0VXKlKxFlVWwKXlIHIjYeASErbhdX8GoU7EQ0CAZaAXlIGHWp9CaIyYmSAyqczNvwe5a9vlpWeTQM8eQrsSyoc1o/jQdEzXXeglwCGvLLFYvEsEsW1NlT8Kkvfvj11bttg+u/XvDzed94mUJf45/c53tJzr0l+SR2gqnoeGXJZ64yV599FR8g7N1YOYlMfcVqTC9NFrhO97pRPr5OXzShrirRSH/gOl0QjQ53amkA965ccAD6zC6Blfl9LX71moGrbQ5AS0XUqWlZSxoPPV9VWh+lMAm5J0VoCGWSGvZW/kJ4WImpuSYby6OjoWch/sVg821/vB6YkoENhfnx8nMCCwAAP0PB1Fn6wj8rUohi1J82ZJprzlLiok6FrKkAfpKOy1HcyFJ8/f56OnRavfNsiAcdLU6e0yENGXzqPhe1172tOMXo/dQPen2UfKRLnilJ1Yhto8HyL6N3d3VZ0QXP+rjDdOLpH4muJ3GlwHndGnel28XZc8TIPDxd7nyRA4Xx/SXIDz/q6seiAVeIjn/EpFy+bfafnuzp2ZbJs8lt6Po2pkffPdCqf9kD8qqotEJCirakNDhAp813bncfdx9MnuZsDyanMX0o7g4Fua5uUpciBQKcIaUhkxJWPDImU0ps3b+ru7m4rOiBjnkLgnDJg3bgViiFQARCfaqABlWFX2VXboSdFJrS9USti9TzDp+6d+0uDpMQfHh6m/ByAEVWzL0QqQytoJfi+uDLNp7GcjsQn1ZE8Zr05pfRSNBpENO5Ky2gH0yek70Y9AYG5tvNZByedx5GmYVJETqCYgFYkuRYw0OIqAvOq2pJLRvMcJFXVsx0EakfyYr1fEljchR/OQ6XtwsVJ8dKZYb8kJf4SlJwC5ynvJwOdZNOnqNJzCSykvnc+eV7JWHJai+BtZHyZ1tvn4823s1Ju3W4xGqE8mFbrFnjd2+Y8ZDnMq5Opjmcje9rJaerPEe0VGfCOkVKQ0eyAQIc6ZQg9PwGBqi9zl1r97lsL+fH1AI5q9ZurqLmokIdbqC4EJDL4erHSYrHYmhvdbDZbQIGLp9g2GnYOxqrnytANvSs+KbBkuIm6NX0gUODldNM/Kc9ksBglqKpp325SQC9BI6XENFQyrgB9sPk0TlIwTiOv08dNGsg+6AngfAssFat75SRu6WIkjGkpn9wG61MCXBfDabd0GJF7dwQ3CaCNZGekCNWPCcCxDPI0yew+SvVb0sgb7+RE6b19/CZv0rSniDJEORDod5lMYNn7xvvLZYEy4e1LBluk9ByDLqM+dlJbO9CZAIC3g7x12e4AdOrPDmj8mrRXZEDkhoIehCsRAgUnKgoZKhlfehYeZicIIDBwoe46h0jv8fFxWpegcxA0QFgfnZ74+fPnrRcOCQwoH87DM1zqCNX5QwXqCsnn9nVPBj5FZqq2owPkf1KsnC8jCPFIBMEfF+RUPU2vbDZPIWxNh7ykZ0UlQxoZD5fjZCC8r0bKIQ3u9Dsh/0S653P9Arvqc0bekuHwqJCiZ9xCW/UUPfMXablsu0yQn27ok8L0UH4yJokX3pf8TuTeJQ2Pe1yvgTq5EqW27mI8HFB0BlZ9NHI8EmDR9xwfyXOO185Idn3D9TLUWbQnafx1INRthl9LfeLjzIFmancH7jq+dYDil9BekYGqehY6pafrWzBceDqBpZeu9QIMU4r5PLRCSkvG2Q2eylZ9NC0gZhNF6pCJ1WpVVdvrGghEhIYZemdI1YXM1wlIkZIX6lDfV+vTBmwXyReLpfTqH+cRy1B92Y+uJOh9uuIXn3kYCJVIGgjfkzoPSvdSSNm9BqX1No0G+8hD8jJcuc/VWX2ixamaEuDUjfrf18HQECsPjhlOw3EPth/TyrHKHQUChIkc9HQKlu30tIkX6VoC14m/c0r41/bK9iE3nKQEeF1G0/3khTN/9SedwjQGvC77GC0H2wmg83nng+SNddwX0DFC18nALkDA9Ug3NZDarO99ZJAOy9fq2b3AABuawqGO5qqeQkpVT43hmQMK2escAVe2aqjK9b3bU0NwmBCflVekw4GktGTwFCa9vr7een1lCm1yvpT3VRdfiEhD74sv1XbVl0bVV4KzHh3vk/Fg/cQThk27/mNZBHdVNUVBuMhMfcx3IBBkdIbye1JnWB0IUG7dUyDIrdrmVwcEOsUyUgKuADuQQL4+Pj5OC2Y1FtRPPqXGqTVGyBhN8AiUpr18JwynKRgJS4Yg8ciVmCuzzoh3kUbnL8cK+9TTOymd989LE+ulPvapUaalfDgfPaLYAWEChVEZ/lzq12RE+Zw/71NcyePmGPQxRzvA/kx18Kk/ByVO3pZONueMtPNmBJY6HZbG277AYGcwwIa6YRbJM6TXoWd5j3lyn7MaIKWiPBgm9w7loKdR5T5Refo6hlI7EpSX7y+VUvTP4+PjlI7rD1S+tg16lMAjBCL9JngRj7yODoy8b3SP/0VqI/tJSpgKIeXr84oEAqk9Ckv7QtPXRJ3hTWieg5zP+dRBl7/y4lhwhefPJBDm+ROU0/Az381mMy3SJbFtVdsHiVU9TQkImKYoANcI+IfjkzykMWa9VYeRJ5TAVPKePL0bz5TGr7nB+CXe1q9B1HmSgS4C685Rd5/3Rp6xjwOvVzJGCeB1z+t7Dqh5PqlOqfyuTp43044AkAMsr/9c+em6l8/8R2PE08yBEKe9wAArSRQlReoeh6NPeY8SXC7mk1cjD94bwBC9ynVUp4YTDHB+XudQcxFiQv96Tl4WwY0MvRSlDj56fHx6qyLBgJ6jsuPgpPIUP/TWQ3l4blh9C40oRRLIAxoFLtzUs4zg0OBw7lj5eRRE9dJCNJ/2cFl4CeIgZRt94ZwPIhrm5KXzP7+dlHeXLgGCDlA4OHbZpwHWN6NPLMN3mAjsbTabaU2K9x0jAp1X43oiKXHPbxc+Mv/0PUcpXWrja6PUTgKC5Dl7ejfoykPkgNj1WHre60gAMuqTDiD7GO14kMBAJws04OzrEVj0Mlku80ttGD2bplZSHbwt3sfe17yu//vI9M5ggAvY0j2edqcKSykxTZq7JECgARLjXEDTFqARMiQgkAHzFw5xvpvbBR1k0AByflbzrjpjICFK357pSlR84ZkFKcqRwlDuxROEUPC56JCgjIPC+4eREQcDbmz02wHMPgj11yC2z41uAlF8Th/32F1pJTl0w9ddF43qkPIRuTw5r0djN5UncEtwr/Q+BaT6MB0VGI0I77E8fSdj44pyF6/R+6NL5/UkH1nuSwGFEeBh3UfrM6q2QQDllenUzgQolEfKV9+sz66RwdRPqa6sI+vgz7uRZh0JBEYR0dR2H1cJ6KRIYpJ1B0vJAUnlO9+87gkQpAh+RzuDgUQ0UB1i9AFO4KD/Yg6NHhW1KAkqB64Mqsi3C+p5huerajK8XDld9bQQRWX6WQE6d0BhU+1I0Fx6EmZX2j6nlX6TaIxcSTE6Q95vNputaIUDC4IRRUMIlMQrBzI+qMjDBHheEgxU9YBgH2+HXlhHo7yYhnXyZ5Ji9mdplH0MSk6UXiCOMpjS67fAMMG7K7GkfFh3toXf3bUk/3PUyVfH11QvXffQL79fSnZTHRzwVD3pNneckl7pDGwH0vRsV3bS+a6bR+3r6jeyKQ4ged09dlGayvL6jspy6oB8J+8JCCR+pH5wsOTld+NoTleRvgoMsGApED/8p0OaqeOqtt9qRWPlngbJQ6JcwMb7qhc9QAcgVHjHx8dbrxRmOi2kUl25n14vHhJY6ASanetgRyAjLWB0j5SeuowwwQCVPoGVT+noOfGK9/0wqAQG1Dc+9aC6+dael6CRoiMlRen7k2mER+SDNimLpHxcmbmh9jIc0DGy49usfL81ZSMBCgJDB7MiRlWkgMi/jv+dAvNryQB15Hzz/qx6viPHjYiX9xqArGhkgKueRwm83h3Qcl3t/TDqgyTn+wC6VL85ufe2JVlK5P3Z8dHTpvHoa+M6YKp7Djh9/HfgwPnDenTPpWfmaGcwQAXljPTC6EWK+CyNq8/fdKjJlaS+6b3ziGHWg1sR9azn46FiRQFYJ04T6Dl/myNfkKR6uQCl+Wm1TSfCVT1t8fO5ItaJ0RStX0inEtJr4BkNXACp53mIk8pX212ReqiL5SQD9BLkg5WL/3xguiIjEHKAOxr8Vb1SZHk+lgiQdZ3ywLR+36frKM+SFT8HICk3XmPfVz2dMMjnGWEikU9st//uPMFfIi8jIO79lWTB2/DSQDYZr45PI29w1O4OvCZe+hhx50Y86/qclPqpAwSsr0eovH5sZ4rAqr4cJyPZ0POMmDFy6o4jnxtFSZOMpt/JEUjPfy3tHRnYBamkwSeiYU1H83YKOQ1G5s15cP/4eobNZnsdgQuCnx1A5UdvnAJJoOCAhgKkdvFFScxLkYaq2jLKvnWSoGSz2Tw7yVF1pYCqvTQUNCQqc7lcTmWrrTplUVEIR8bexyyf281eiqg0ElBLBjYBG+blAJVE5ZgGOsGT19Flh+tw6PXpHtvSKTf2hUcGHHAyH9VF5fr22G79hNfVlXfiUVq34aB9JEPOT/LJDVJSuB2w6/TPSxF57XXteKB7/n8XA5V0u8uJrvmaEg/Np3K8TJaR1kFRf1MWNR5cN3FaOAFPj/T5GPWxIl2ud+BUbW8rT/YhjeuOt11/7Upz4KujvQ8dSoJGYdCqf3WIRwc4HeCH8DAkqY6Q4fNQKM8bUBoenKLOoLKToaVwyeipHnqnAFdY861tqXNd4BMYoPLn1IrSLxbbL3oSD50ffC2srw7n4kbyhPvCk9L16QOd+6ByBdy0G2O1Wm21U23ktAzPVmC/vQS54vdB3hmBqnomL97/HRjQsxzsIyDQyQ7z2my2363uilJlOIDVf5+qSd4TZZU8ocJMuiDx0dvONnNsuhHx/DreOg9HRnDUv6xPBxJ2XYT1a1NnOKp2BwLdGEh5kSdupKuegD9BIeVR0SiOnbn2+YeRLskp65giaRyv0qcJ0KRQP8nL5HMq5/HxcfqmPM1FA9K3fu9ixFMa7+d9AMFXbS1koWo0FxrJMOkZGksZCp5WJqPM3Qb0SvWcmC4hYBjf0V/VNmrkDgE/xpgGTzsCWG5qf+LNKE3Hx8RPV8Lijww6wQABBiMTAg5qT7clk88rusCDoIh8V6vVNLDc2JPP+k5nPbwUJSVP48dB7wowzcGOQF/6JCDA8aE8OxBAZUQwx+26nMpJ0zkJCDhQIW9SWhqckeIjP1jvzrAk0NTltUt9HISM6kUed3XYVaH+WjTSv0yTACiBmIMe1wWpDP4f8Zh14FoVyWYH3DqZcMDLNJ4fxyN50Mn9qD8doKaIoEfIqA87EDDHa+qKrp67yOPXyu5XLyAcoZzuGYa3yTw3El0+DFt63vTk3cuo2l5sqLz4oiI/QW1XBKvyyQM3AF6PEYJ05e+DXvcY7iXqloCmKQIats1msxUt4PwXpybEo8ViMW2jFIBKSlwf8tBD7t+b5gYODQE9DbaP6wxSuNs/Hn1xA8R6jdK5AukAA9Ooz5m/13kXfrG94gfLdIXXKT62i3ycK3dfckXqeaZ6pTp+q/p8CxoZL9ZvVx28a7r0e+6ZEXDzPOZ0ZwI2cgS7PvapXQKHTqd7HxPM8KC1qop5c/qMp8x2Ebiu/G7Mp2uur7p8XQ/P0VeDAfdUkjfiSGq9Xm95lmKcBrGAAaMKNCjsdIZV9S3vOC20qnqKFAgsKG13+hmV38hT6pQFAQGVtP7T8Kc5SQoe0ahPSxAkpXpoEKX5ZO7GUJ04PdHxXeRzhq48fD7xNVECAkmJceCntLrXrXlRHn7NowpubBOoTAZLUzO+c4MyRjmj0tuXX6n85H11CigBoqTYdjVCSjsy9nP8m6vrvnz6Ncj14Vy9R33A/PSbeoz/96nfrkCqM3YdCGCe7iSl+3PylOqY6uK6TaCa6wEccLh+ZD3IY6Zz2U2gNlHXPyObNKKvWkCYjH7V9sIxD1fypDp6tnpeQGC9Xj8z5m70aVjZYIZ4NaWgTnUD6NMGKk8esXvajmC5LsE7t1M4Poc7GhRVtZWGUwTkvyt6z8u9W06/UGASQtd1TUtwCiUZMQ4ehvZUr9egVKuyt+1G3geTGwYHDpyn9AVJVU+84b3F4ulgLlc6aREgjTHlvKq2QGJSBMyjy4ttTTLs113huww5D5i3jwcq1sRjb0tql/etp011Zx5ez9H/70WpXiMlvw+46QyV8ybl43mkMTXK09uRjJ+PTV1LkbnOAHbAwtvn5XfAhLqWOqMrl/zu2pP4MtfPqR2Jz/uAgr1OIKyqLeNYtT2Hw1P7XDHRiKWwuAwU81H+jr7SnvXkdbrAKuogBcyFcFoZqnowPMSy0ry3CyYX17jC7OaYZUwYrk9886OOO8NFkCM++/kDvhKX7VPZXOPBb049KF8eW6w1Dr6O4SWoA12iBAhcntywKxIl3voqZj1DIMRdHOxTBwApnw6cpChZZxhTWxJfHES6MtVvRo1GRjcBCaXrvKm0VseVv/PY68fn5oxWl78r9JegVC//34GbkSy4nFOGUqTS60RZocxSt1D+RwAsGT9Pn/Sqt20ETDuwQV5x7RDBatLf0gE+VpzHzl8RndcEBOb05ag9X6Nr9wYDYoB7p2KegwEXipQv01HRdIOX1HWA6isDn7bmcaAwLK4DeBy8KBrg7We9fYAmBO1tYFje94c7IEhAQiQ+coBz4SXTOf8UEVH9uAKYA9r5ygWOPPBI00L8zCmY70GdgnAwkMKN5L3PJ7oRrXq+z75qe+eG7qcdAmmg8zdlOYEAl7fkqTBtakNa9+BKXzIgPvh6HR8LXdmsP0FWoqSknZLxmVOenQF9DUDAf3dtqao26si0CejRyHUgLIFClxWXT6ZNfB61WzbFgQunu5R/Bwz5LNOk8qkHPPKbnnNnIPHZ2z0qu7uXxk3id2cjd6GdwcDp6emWceS8CRtAL5CN6xro0wh+8l7nnROciMh8V6r0kvnq3c3m6T3wboglRETLCY0nb5BIVr+5S0J1FRDQ2xRd4JMB1XPOX54H4ILpUzJ6Vm1fLpe1XC6n9q7X64lvx8fHdX5+PvWX8tIhRScnJ1tvg9xsvuxkWK1WdXt7W7e3t7VYLOru7u5ZW74XucHjNRIHvwNU/fbplk4GmR/zpQwRXPk0ApVwUrZcG+AyRzDt8prAYJpO8ucJVgQGlZ/y9MgWy+vAwMhIO/87wz1SvHzW+9j55+lfEgioDqTk+DCNG9/EX3/ewUCXLv3vZJN2IZU/up/6qZMVrxtBtv4nUOtpO2DBKKrLFevkIDnxc64vR/z38tLYTmDA5WNEO4OBk5OTSTn6Nr4kABxgCbFVbUcb9O0RAUYZqp7e7Kf73bRFMupUZMpToW9tNWReTq5EvR1M4wZfJyBSYHTv5ORkelsj2+0H9ri3qmtUuuv1elp/0Sla1V+e/NnZWZ2fn9fZ2dkESAiitMXw9PR0qvP5+XkdHX151fLZ2dn07GLxZcvn3d1d3d7e1vX19RRxeOm92mkwiTioqEwSwEyDfi5UzWgUx4zydSNKmRdgZLnuGbF9KcJAb4dAUvlTqXfRCdaDZ2Tw3I9ULne9kDcEtfzsaoCTYt7lmaSbOo9qV0X6a1FX/gjI6ncCvclopz4YGRcHkC7/DuRouBKQG6WjTIwAActNQCXxQPf9GvPysci8OiA0Aqwpksf+Sv09am/V89MNd33eaS8wMIe858g7n4JYlcNbNIp+2lrVNrrzECXz6MI8vM8XFKU2dkJOJZ4Q9GKx2Io+EMzoP1+prDpJ0Lj4MhkwtotIVuWkb5W5XC7r4uKiLi8v6/z8fKsOAgt8w2NVTaDl7OysLi8v6+rqarq2Xq/r9vZ2igqcn59Pr2R+aUpgIA1A9wQ8bTKUVc/B4kgxeJ14nVNsm83m2bbPUZsILDyC5gB7lI+IyjStaena5MAi8cDHT4pYeJ1oeMS3ZPSU1hXuPjRS0N+LkpfndZrzBDuA5UCI/1N0l4YzTRd1xt1lnG1IU5AOeCkvHX+6cZXAg9sPBw0a/36WQAcqlJ688EgT6+n3d5GvpPeZ38gm7yq/O4MBeQI0TKyohMVDNN5oH7yMCug+DVmHpJQfPSR5LiICCe4gSChP96u2z19P0Q4969GH1DEcOKqfQEGHXMU7XuMLkbzuqp+/Vlj9tlgspjC+PH9FI2TQ3759W5eXl5N3n1Dtmzdv6uLiot6+fVsXFxf1/v37+uGHH+rt27d1enpa6/W6fv755/r48WNdX1/X3d3dFHGg9/jS1CkKbzP7mmHxNIj9GT1HSmA0GbKkiJIB1u+kpHkYkZ/YOWfkXPkuFttratQWGg6PElK5c2GuK8lkBLxs9hMV9sgAcLx66NzLmqOXBAOkXcFJMpqJPAI2Z1g6Y09Z6AC3Azo9R4CTIqwsa5e2uZFP5TIvgmaf1iVfEghIde2AVOLlLmMxtd3zTlNciSdztPcCQlEaiAkQ8B6VYVIAMsLa2ieSl6xnuYhPH0UN1Kn0rvyQo2RQqXj1jCvvbpB0CDTd99cDkzdqF3nDgzYYOXEvjWFg/Vc6hfPp/etAIYGB9+/f17t37ybD/fj4dCKjXstcVVP6P//5z/Xf//3f9V//9V/1/v37evPmTV1fX9c///nPKdqwWq3q8vKyzs7OqqqmPF6KHIi6ovBv8toHn3svfLaT/w4sijgd5CeZUWl6nd2gEhQQeFLGEiBhnqqP8tDx1FXb2xjTISvMn+B8sXg6NdTb79ED3nMj72CAxiSFrlN5bqS6cT1S6N+D3BDx+i/N17/9mvOmq0dyyjwPN8hVz0+k7Iy2UxpbCTD68+l+AgNqi/RgMtgd/9IY36WvUlu9nZ4mAY/07K6y8lXHEScB4n0P3btXwjx9YB8dHdX9/f0zBUfDz4iDKyFHlwr/p1e3sow0h9ghrmRUJNhse0qjevpCSdWBbeGzAjtS5vL8+G4Fn7/V8wIDFxcXdXFxMW2j1HqBt2/f1tXVVb17967evn07DYLValWfPn3aOjPi5OSk3r59W3/+85/rr3/9a/3lL3+pH374od68eVOfPn2aph+ur6/r5uambm9vp22GNzc3Wbh+ZUqDaITIfdCnAe9gYAQS9ayHZF3RuyGj/PnR011ZLJNyxuiUG15XNH6dx3ez7g5aqrZ3tCSPK0WHkh7oDNDIQLBMldWN45GxcT68FBBwmqvvnEGpytGFJL8eNk/9kcZF+j+qr+vI0XjsjGP33T1PfexywLEjearK8/Kd8WdeI4DL8d+BPh/TzHNU7uh/R3u/wpiKiuSG2RvDdG6QXcFSKbJzaKTnBIdAgEf3Ki99K3/38Lr5S28bpyZSXrzu9aQgdGVW1ZZAct0EvT8BAvKU9dOK/7Ozs+nVxYoMnJ2d1cXFRV1dXdXbt2+nxaJHR0fTIVBqz/Hx8bP07969m95lcHR0VMvlsn7++ee6vr6un3/+uR4fH+v29raurq6e8eF7kxvyNLjSM6mP3GhzwNJLFZj1/JiHfnveVdtjT4YuGX/Pn0aZkaJdgRCBqNaNcDotGW+CduXBMrs6d33E/JOy9/qqvazPrsqwMyL++3tSZ+C8/0ZAYNd2eR/57qc0reB5OCU9l8raxYA5gHaQm9Imee7KdftFMJ0O9ZoDmgQhSX49Qufk4KUb5x3fdpV70c5gwA2qKAGAVLlk+Drj2gmrvA6l82d1f7PZTG/sYwizQ4NJ0TNfGnm/7i+KYZ0pBC50fuQyFb+IBkWAw9dsaLqA6Vk/ggW2Xb/5DgKtKVgul9MuCz+oSM8w9CwjdXl5WcfHx7VcLuv8/Lz+85//TEBAAOIlyOWMkZuR0SElmXVgTGPk21QVIeN4GAHQVCdeYz+nevI/x4rkwRW5KzjKDj+dQWD9tOaH7RsZNa+/12eUB/nhBsb/z+U/V4/XSrsY0kRdmyjHPg05ArEjY9v1J3WRy+TIAPJZ6kDWLYHsrl4d/3ztAH8np6/LO6VjWZ2MdcB5Tmd9DSjYGQzwTX4keuxeOBcQUYn4XKjSkjGOfB2VyUt2IeCxvVwIqDLcKEp5eUd4fdyou7L0RVpVT3OrDig0DZLKk5HgfS4EYwSgI/E9LfrSmgwBjPRxcOGDQ4r3/v6+bm9v69OnT1VVdX5+vnUewWq1mhYsakripakbQG7UvN2dweiUE9eEVPWgmUCC5Y/q656FK1Jd0wmSGicetmcdPOpG0MfnGIJ3Y8+xqfd+8DTRjo+JqGyTARmBCNIuynQOkLxm6kAWadc2pDyYfzLsTOcggkY+gYER0FJeVc8jrZ4Xx0OK3LkdYbs6IOCOAgFGB1B3Bby78tTTprYnu/u1tDMYkKfonnbV807QNSoBegvO1OStdyFzCoArdBl1V1T0ohhaF/GYYjf6XgeuDXBwwekHKmo9L2OsdpBX9Lb1Wx67tnVuNl8WtWghHtcRiKdeD/Hy8fHLGQTy/hnuv7i4qPPz82dbCDmoVZbqI1Byc3NTm82Xg5wuLy+nqAKnZ9R+8vylaaTouwE+kgt+KBcelne5puxTxpPi4T0SvRdfa6A6qM8I9ny67/Fx+5XdPKtCQHu9Xj/rXwfpev7+/n5LFrn2pANlCQw56Eh94Upb17xPnWf+7JxMfG9KXp+uizqPtDPY+u35eP4eBWI+TpIXbp+WXXAZYRlejog61aeeXM58TZrS+sF4I3Ie+lh0Wfdn5ni/S5mJRxx/nmaUP+VmVzC4FxhI76+nAlQneHi0qqYQo0Kl7m36/JQDheSlUnklJZDQ5ePj4ySw8pDlvej0PlcyaUGeRyVUBsmVXNXTrgWfDqiqZyBAq7g1x6+6a06fAkKj62Bgs/nixeu9AkdHR9OugHfv3tW7d+/q6upq69ChBEiOj4+3gEPVl4jR4+PjdMjQyclJPT4+1s3NTX369Knu7u62Fr+9FO2qVPmt327oOcg6wODGtJu7dlBZtd2fyYvqprOoNDntJBDJNrD9I5Ci6Q31s3aXuHPg+fj6lWQYnMeJh3PGiM95O+g4pDll9o0DlOT5vSS5ct8HHCldIvGNBsd1aTKSTgS/Ap4CgFy4zfy8vqxT+q56rmMdGBAMUOfPAaQOlNO5TA5qiiA7gGXdyFNd9wgfv8mbfYAGn9tVdvcCA84UhpPdK6Uy5H02Xg3m/Co7U+RhJ5IPfn6zLmkAzZ36liIg+u/RgNRRruBYT7ZfpHTyzpfLZZ2enk6GeLPZTPf40iAaD04LiPSeABnqo6Mvi/x0vsC7d++mLYAehVB4/+rqqo6Pj6d0Ag0KCa9Wq1qtVls7EW5uburu7q49xOl7USq3G3jJKLGvvS/5P8mnqBsDkkOfn1W9k4FjGm+PK0IP1ZLoPaV77F+lubu7m4Cl6wMqQD3HvFj/rk+c9/zvhiSNK9XB2+x9lwxeqtdrAQOibgx525Kcpt/6n3jGSKkbS8/Ppwd8+jYZYZ+uZdoOIPIZtwlJx3MMuV2p2o7iOo/TeOrq4vq/swOu80d96mnmAE16hrydo53BgBhDAdH8s6epehp8MmKuKL1Dk7dCSp3P9CTmJXTqz3j0gvc9RMX60WBzeyBRJOvjdanaXuHsdWDUwudq6bHf3d1F1OqHLvGjuh0dPR0jfHl5WZeXl1tbDlV/LQa8vLysxWIxbSu8uLiYIhcaJJwSeHx8OqPAvYLXSEnpjIyOPzuXnpEaLjalonWl5P/JvwQIXPHxt/KRHHA3gPJxZahxo/8CnZomSCFNPl+1fVT4CCil5zuFtwsY8Aijnk+Ay4FXolH//9o0AiNJbh3gzoGAqmw0KBsErp0e9jpQF7jzQ/Dgh8uN5Ipl81nVl33tY6Uz0l43tt/rktqfgEyXZ+rPNK4TYO50qI+DlMeusrs3GOCAUyfSEGptgKOiqm2lk8L/rpS8wf47pVPeLJNzpHpexlFhUH9VMKMaUmYiFwY9000TONhx4tsSfaD5HJXSqB/u7u6mshWiU395NIcRnZOTkzo/P5/C/jpsqGp7T/tyuazNZlPn5+cTGFAEwUGSh+ZeO6WBOgcC0gDl853RU/8KQKUpLc+H20ipDFLkQGk8X/2WvGuaSIAkhdX1e7FYTNEnUXeKpxsUBywcQ97WTnEzTddHXVv5X/zn1B7XPrni9z55DWCA/6ng50Aq0yQjwzxFfp/ypfQdIOgAaBon0kPSHYxAJSOp5ziNqvvd9JPq78CZPJozpnyGwJ3PzAEZL1vPJb6Pnh+1QXLRTfHM0V7nDLASruzpeVbVVphI99kpFAgXRjZy5MF7+hTGVdnJGEsA9c03JwooMG9RCoWluozawQiKPPU0bbFYLKbIBkNxvkpb9VY+9M4JghaLp33jy+VyOmdguVxW1dNbJ/WMpimOjo6mcwl0Gp3K1/SD5pbX6/U0lcEpoJdSqE6pHuSPgz1XFG5s/Dmuwvf+Z15c8Kp8xXfKD40+FfPI+3GSjLOeut55hIlffoKnh//9WeZLwODykICAe2RVz19ANlLeyQCxvjRenSJ/aZndp/xkCF3mOiOX8vDrDpS6EDv5OVpjJnBMR4JRM5cJlcd3pkg/Ur683enUTaZJgMZBl6enAXag3o3BxOtdDH/3vLczjYd9aK/l3eooP9SDHa9KpRB12uaXFAIFhoq1Ix/onh/TOFokEKCBZWhsVwVBj8uRZFdfImSu9O4GEiMWqWwZ76ovhv309HRaGKky9IIibQWU1y9jLl7oGaVnNEDggHXW2gHV7eHhYSvNqA+/F+0CBDoQoN/uPVNWpaSktKpqS4kxtElv3bfCJgPFqIvfT94sSWVJhiijzouUr7ffPSNXnOSNjz1XqEqfFKkru9QvqU9S3dUHLMudFCdv1/emEWjitdRPX1Nvf8b7mPzySI/LKevBKJePMToOnFryKBdlnI6Ty6w7cdzR00Wfvc1z/HPZ2zUywOd3HbusV9JJc23ZVQ72fjcB0TQNlh8zqmtiklYjO3pT3hQufUu5EkF2aN89nTmUxikB/7AeqUxNhfiaieQBpsMwWGe+J4BRkgQGtAVSdXDvjQv+eEiRFhsuFostIKA3DmpNgKYcmF5AhdMIm81mii7orYR6XnX7/PnzZPwEKF7yzYVzA2wOBIg675F8Ev87MEDvVCB5vV5v7fjwFxV5+QTY3Za95F15lCh5Ou7x+FRV4qU7A/pOoJ/3CIz0PfLGun7oDKYbgcQfbx/zSc7A9yQCf+reBBQTSEpebFfOyCg5n3g9AUNR6vvOCVSZqVzWX7JPJ4SH4rlspXUJqS2dMU5y4yA2yVc3ThKIdcBLviS9lORyLr852uvdBDQGMhpHR0fPQuqqqAAAwUBqlEcLpsqF0884X+lz7Tx9MO3nd+HgPXoKPCnOeSBBk0EUovXBxDMDqmpLuQsQcNuewADboLTK8/7+fqqLVnOrPVVPZwAw9L9YfAmj3d7e1nq9ntYH6Djhq6ururi4mPpI/aayZNyTl6WyLi4uJgSu44tl9FQnTUu8JvIB40pN364kKBvqR7774eLiYuvFPkrnH8nMw8PD9DIordZnpCBNs+g5PuOLNanARwbVwRCBddX26aMpL89HPPLpNFdWDga4MJF9lOZnOyDgbeOH4eLOIKR8XpISWFO93PCm3/sYgwTCWBY9dfHPX7qmZykPlHXWX3qWoNiNmbdX4Jf5+WJl6V1Oq8rhZKTaI0ICNmyD87oDjd42fSc+ej5pbHoZtIupbizXn//mYMAZpQp2XkM3PeBp/JorTB2E4wxQeili5UdvKRHXA5BZCp0qHx9o7DC1W5EBR2odsuQAYp7+WmOBLNaHA4e8YxhehlkeP18dfHNzU6vVakojsKBDiHgyoUdyGPpmOJzrAcgnXfNpkJcCA1ROjtjTYEwD1qNF+mjHxfn5+fSuBvHXj6kW+VbCzWYzgYHVarW1fc+BMsElp2UkNx7xUpuplL2d+s16UYEzGuV8S7xOMsI6sT0i3yqbPJwunO9KLylHTgmqTV1EINFLgYLO03NjlJ5xY7SLcUjjIXnmXqbrAupKdyL9+W7KK/FCgKCqthwnOoCqq8r1tTsaD3N6m2W6TUg6fo46vcKpQ8/L+5D3OxBCYvvmaK8FhESnHnKpev7iH1+l33k3jiAZVk0CJsETUDg5OZmEomMKy+sUOxU3kTDLTgbDF/NR0OhdMfrQgQ2iWK+7eEk+0PPW7gABAnmnCtkvl8vJcHHXQdXTDgMNIIar6eGrLK0CVjRBz9CosG0ymi9JHSCoGocGvW8on4qO8K2PV1dXW5EBN2KSX4Kv09PT6ZyGN2/eTJ6OFJyXLcCm+VA/2IlAnV4a5Zf14hhNc7pJGfq45CFZkhHJSVVtyYrSq/06tEoHGqmOrGvyhrwu3tdMwzZwfYbn9ZqIesjBjiv6ZBQ8rcs/f3t/ihIAYd2oMzlWRun528FiAhwOTqr6E2eVxtvo/ErXWFevb+d5j0DFCDT41CFtCsdtVy9PO6rbLrT3bgJ6Mx3SU3pH3h4uYgiTRknGg4iSDZMikdKh8XVKawlUHwmi0JkLN8tm3kTKnFLgQOD0gfPQBT5FV9Qm1oMCwikBggD9V8TAwZPAwGKxmBYM3t/fT0BAfLi/v6+7u7vp2fPz89psNpOHL0MnJc620XCqzir/JSgNlqr9wmhE8VzNfHp6OgEBneR4eXm5dWaDKyuCCckhx4Du0Xt1MPL4+PS6aikUgVKmn1N0DK26okqelINUjkedWyE55Bsy5ZXTexPY17HWGtOc8hDv3JMfgZwEBKq2x183JeG/d/Wqfi1iX6U67QNeXN4TOHAeuF4a8VVywrwoM4wWU9ZplDsj52UzXRfhoX5VWYln/K986Oi67k28GOmXlMb1iU9fkad83j8pUua0qwzvHRlgJTVQ00KnzpPwQeueCZVkyouKlCFNelAygKlOW423xX/uFfGe00hgCS70X+WnBWRSTklIvcMJlnRWgIyRpgY4raJ+kxHXZ7H44tWvVqutUwdVJ91TOfLW5P3pec5Zc9Gc2qu+e0kwQKXWGYrRs+xXng4p4/f27dt6//79FBXgOQwaHwkYVz29zZBTTkojY6/+l+JQnY+Ojia+K0/3IkkO4JPiYT5UnrrmBknPCAxcXFxMsqjFpQQD3L6r/LXrRde1kNWn/HyqjP1D4EMD5zqH+aa1MN0YfCniGHbjswtgcR6MZD+BhXQ/1Y+AkXLT8Z5Gl2BA19wAe73cfrC/mTaNu9H8O/P38dHxNAERb78T6+ILx50fqV60OyNwuI/s7r2bQAW4l+sMccTm5B1KD8M9OXZImtP0KEQKs5Ok6PQs28Y28HsEZtxL4bNShOx0D6Gl9Q0cGPqvZ7g90NcJyOvnK5wZ6hdY2Gye3jqo/1rIpqOF7+7uJg+VSp9Ai9EF1pnb5Tab51MHr4FczkQ0Lhy06kOd3nh+fl5v376tH374od6/fz+d5sh1Lq4AO6Rf9fT+Dm7dZXrfZrvZbLYiOslwdeMkgQHVV/3nU18qN8mkgJLk8e3bt9PR1b6zRWXp2fV6XYvFYktOKT86K4PTVp2XNlJ+3u6kt14jdUA2panq2zIyTnPldsDA06RoFG1Ft4bMgc5cP7IvR22kjnaDy/ozX9ftqd2/hBy0uPFnvVxHeB2/JVDdCwzQw+2oE6AOyTjzOVA18D08yHBTVU3GjyFq1tPLpiBIAaZOH3V8Qtr+rBsRGnNX0qq/AxPyRs8pPC2jI2PAFfvij94NoHUVnJ+S979YLCbg8PPPP9enT5+m3QdU9j5tI++VHq0Wgul5GUEtcHwpGnl4jsg7hC8eCIhpweD79+8nMOAHMkmO1YeMpvHAK5ZF+SUQIzghMPPpNwem3s7R9JSnY9tJVMSUcU7fCTSdnZ1tASN3JBThuLy8rKqapgoEBLoIyy6GvFOivPfayY0bqWtDigB0Do1+p3udwSHv3dBKvwjUcrqQq/i9zBGIYZkObHWdQCRNs1Y9X7TeyUdnE+ZkJhn15FzyPqPuPj69HnN9wbZ5WXO0Mxjgymg12EPbIwTDiiUBczCgkGAK1VCZsFN9tbMohQO9njTII8Tlg8zRppQi55Y9IuDRAQIBBw5sZ1VNSpaHALmSVZ4y9vf399POAYZe1+v1BAqOjo5qvV7XP/7xj/rpp5/q06dPtdlstnY+PD4+Pnt98ps3b+ri4mLKb7Va1e3t7fTRFkUZ0Zcgl9uqHrQSxLEPCAQ4PfDDDz/Ujz/+OEVlFBGgXCg6pDpolwC9XtaJ9zR/znnFNOiT8qBcKt8k3w5c9SxD+kozcgRcF3AsCIxyPEtGGbWqqq3XYK/X67q9vd3ij/qD49r1zcgQsL7OB9JrAg0jT9bTdQ4K79P40Jh73qPobsq3ans6x2XKHT5/ds5gsm5ePwcCDmL5DMv1vNL4IPm46sjTpHx8BwTt3yh6xf4agah9wMBi8xok/UAHOtCBDnSgA70Y9W/POdCBDnSgAx3oQH8IOoCBAx3oQAc60IH+4HQAAwc60IEOdKAD/cHpAAYOdKADHehAB/qD0wEMHOhABzrQgQ70B6cDGDjQgQ50oAMd6A9OBzBwoAMd6EAHOtAfnA5g4EAHOtCBDnSgPzgdwMCBDnSgAx3oQH9w+v8Az2bai7atkGQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABx6klEQVR4nO2963bjuq40CueeTnqttff7v+H3b83ZnYvTyfmxT7nLlQIIyk7szDbG8JAsUSRIgkABpKjV29vbW5zoRCc60YlOdKI/ls4OzcCJTnSiE53oRCc6LJ3AwIlOdKITnehEfzidwMCJTnSiE53oRH84ncDAiU50ohOd6ER/OJ3AwIlOdKITnehEfzidwMCJTnSiE53oRH84ncDAiU50ohOd6ER/OJ3AwIlOdKITnehEfzhddBOuVquP5OMoCXXm49nZWaxWq9YPz+j/pTycnZ1tla+8nJ2dbdJiL6nX19fN8fX1Nd7e3jbHiEiPeu54mqW3t7f4f//v/y16dhe6vLyMX79+bXg4FHG76XkmM1lfO9lk6vRjxlvGa1YWy1v1nKblI8sny6ie4z+ew2+mrpqWeXK8r1arOD8/j6enp3be+6Lz83M7NpnHfRHnt+9x4uQdMg29xr/z8/M4OzuLi4sL+8O98/PzTf+ojoyIrXPUi3Xir1+/4u3tLX79+rX5/+vXr3h5edn6rdfreHl52dxDWpVb13aj/7uQy8uNz5eXl2FebTCATP+EDQud8hsp5i4QyAbwSBm5AcT5YRC4552y5OPb29smXaePu0qIle1qtdoMws8mrs9nyLBrnw4QqEBnJnOuvK7yqQw4n2dGfUSj51iBoo5QrOin19fXjezg/9nZ2TtD7upS9TPKYL6qOh1Kdkey5Mi1xT7KHZVX5aP6jPUYDD8fR2DAAQEFFq5PFVRC5iBHDqBwXXD/169fW0eWz5EMzvaLyqq77nS3jo0RTYGBP50yQz+jGLv3XTnOIGRCz/mo4mQB0jQzlAmouz8jlPumrG0r6rRNd1CPjK2mrfIdgQFVHK6/O/wvvecIPGT1ZR6hnPVYAZ8uAKjqMnruULLrxk1mHD6LsjGekQO5OMLwKxBgMHB1dbUVDWAwAGOtkYGI2NKN3I4uMgqDDl5xrk5MpfMZVGg7uTYc6d1M5l3ebszPyuz0NMFHCWEH/XwmOWPM/136EVjoKPqMBxcRcNEBVW5QqHyuXo5r46rdR3XYBxreN82WPzLau+bljq7/KzlyYzJr/5lx1OFXz1HG7POVrLi2cfK7hLRsNhqOl2OjSl9+NDk5zaIRKr9uOsD9YOzPz8/j8vJyy/jzOYMAlMGRAgUDaDd49Ozp47mIbTAQEZvyME3gQEEFvJk6YIHz29Vp69L0NMFSWhp6nilznwPXKd7uegF9jv87Pqv/biBFxJbgMgjQvJxnlSkRCNsSo6H5dNN/Jh2y/MqYjuTJAUEnX7NKo1Lg7ry6Vl2vqMqfZXfEU4QPm2bpRmWPrn0WdYyLpj9EFCOToQoEMBhg469rAhAJWK1WW0BAHSO+pmsFFBAwvb6+bq3N4GdYJ65Wqy0g4NYjID++1u2TkZx181ja/582TaAVXRLO+yyPs6ukHTrU5/i/8psZBr2m81gOnGR1wPNZVMA9l0UKNN/seX3u0CAg4jgUegUE3DMZEHD9zooro2pdirs+utYpo/usghnOS+tWyWZ3eifjc9eoymdRxc9n81rJrxpqNw2g6wPcfQYAvFBajw4gRPyebuHFfrweAHqRr3G/r1arDTDhhYU6Dl9eXrY8/32As9k8lvb/IjCwJKT/UWjVLZjIaJdB4hSv3s+ud/Jzx+yeQ91KEG7XJnpN0e2MQVfF3annZ9Oh5nsjenUeGZsR8NT/S7yRUfndEChots05vXpv2fnS8qvxUAGCQ9OxARJHapgdCBgZfF4ciCiBW9Cna00yAIK07LlnbanrAyJ+TxG8vr5uAAvAgPKk+fDURCZjo379LNmbAgNuUKqCyCo5Uihd76HDW0WzKF+Nr3plqqiz61qHDhjQPHT1bMT2dAHXkdcJVIDC1XcEHrLnuPzq/p9AM56b9nP2ylUlaxHvx+eozTtAbQbMubGf8arPOWU547130x2roc+o4vfYxpSTYzb+FxcXW/P/GvIHEHAyryH5iHi34M+9TcWkkQF+A0BfEVRZZqeLAQEvYmQ5x6vMvKiwkt1ZsJ21/y6yvHiaYOShjJ7ZtyB3PJyZ+5lh17QzYGCmzTIQwgLPi2eYGJWOyAmqE8pOfx2zUv0scu1UGdrslxn/0dsjnPcu0wKde520HTAQkQNIXctSOREjD4zTV7LN5VX8fTbNjsd9ldnRU0ijrwwCAAAE4OheDcyAgJavRh958BsK/Kz2HRt7BgYMDpQ0AsBgZjTmu9MG2tYuj+x5Hl9LZXUxGDjGebSPoMy4Vwo5Aw7V/1E6FRK3QCYi9xqyV7Uy+ghleEh5cfX5CH46yhNHJ1u6CKqKDLhyXYTOld/5PxNqr8qa8WRdRGBUJ1duBWw1TcbfvuZ8/4mkukflV4HA1dXVFihQ2daFhS4SgLK4vzR6oECAeXX5cSSAgYAbx/yfIwIR268ruryrfF17HoJO+wwQqXLOFu45YRvd4/yzsrP8MuPg5quQjueqgHo5DV6t6c7/zoKHqn6Hoo9S6t16ZcBO+zkDApmCRD5VH8yC0Rmw5EKqmmc2Djqe+2dQ1T6HBgSHLHskAw4IwGMGALi+vt7aLwBgIGLb49YpAwfOlKfMMcr45kXUvIZADbbKNBwp52Th9Ufe0dBNN2RRB63baJo1a5dd6QQGhDJDXBn7Tl4dggIeIVs9umkC5x0xH1WEQOevsnOt60goj83DWhIdcO06Sp8dXR9X8pbJUtWu2i9dD0QNNueTHTV9h3aViV2ePzQ4/arkZJgXCSIicHV1FVdXV3F9fb01PcBGVeWer+HcGVW+x+sF2AizrnIeuk4XRMQ7x4l540XZ2h6o99XV1SY/3ab4169fG0eNy3R1xv2OXh05CF06gYH/nyrl6zyzSrk7xa0do4KQKVC3UnWWOqFjFrxMGI/JW9oHLTUG+zYiI+OvoJRpJlzf/a95q3zwPaeoRyAjC6dW1K3nV5dJpc+qz0iunMx0gMDNzc0mQgCjORo/Tk+yjOhrgDCwzutmXQZDj28KsMHmRYTKg3vDwJXDb0Mo8EDEYBQZcLyP5HoUEezK0B8PBtTAsYC71awZGOjkDxp5Uq5zM+Qc8X6XQeRRLYhxfDrj30WnjjSff5qiXkoKIPk6y162ToAVXFVGpdA7yqPyUJYqKPfMrFxk6U/yNU9ZP1bygSPLKkLlvEbg5uZmExWYAQFdg4l0WLnv5JXrx2AAP/cBNwUCGIcoJ+I3ENHxcnFxseGB3yjo1K+qazXe9uWc7AQGloRZj4ky7z4DAc7j57yyexHeO+8oU+yO5e5x++uuV86DU6Dg6pAZ/47yz/4fq5y4iMdn0SiilIHSJWVk10YKv8o3M+oVSHZyoJ7fCDQ6T3GfIKADtP4p1HVoNE0WEUCYHOsEcM5rBCL8Dn0a6uf77rmIbYO8Wq02r/rhv8qH+0IhgwM24EwaiQAwcO2muhpRC22/0ZcOHX20bO4EBo5Rwc+SU76qhPW1vpl6VwrQXVOlr4tWRtMGHOrqfF7TXRsBl1H6f7IiVe+4k16Bmz4/AgQVAHXlZNQBAtlzzH8GFDNw7aIaM2Wzch/VUXly/3cBtv8kGoWX3X8cdW8AAIDLy8vN1AAWDMJAqkPCRxhIx2NGnbeikIdOBfBUgUYIuNwMpHA7IB2uMyDgeuF5fE5Y3zDoytlM2hnZ3ds+A1+JMmWVrd7W826+fC2iFxWA4HbKiXi/WFCBAPLMogKOp1kQMLpWXT8GmolcLJX7kedfvWIVkX+EKgMJFWjpypZS5cU7gMD1zvLmOmkUy8lM9YlYbR8HljjtRyjffwJ1QKtODVxfX2+iAbxgkPf813n5iO1+UcM6ovPz83eePOtDjjqwU6RRAOc0MQ8ZP/xmgso5A4Lr6+tNXUH8CWRuh33K5KxzNg0GDg0Cdgk5qzKoft3pAZevO8d/VVQaEdBynLelVBn4ijrC4njGMx3D8RXoI4HATN4OCLjXR0HZGyGdvsnkqQMUHCjg65releVkifPiui2JJig/qjw7oHUXXfMZ5MblDFXgzJ0rEOAV9FgnoEAgIrYMrZ6DdJW93lOeYEgBCCrHRMtWEMBpcL3KCzy4aQuOHvNiQh0rnK/bpVCPn0HTYODQA2QfZXc8tCoiUCnQSvF1QpMQGB4A2XvmmdC6cFx2vksUwN2vhPdQAOEQ5Y7kdAQ8uxuvzJTbMfw6FaZKyUUlRqCyGjt8jfNW5aue10xUqsPjKP0xgdvKMdhHvq4MllN9c4DfHtA1AmwEuyv2ta2rtQIABLriXw17BggcMMn4UJlUW5i9egjAAmCg7cL5uEjXZwGCP+5tgiwCUE0R8LOal17PrlURgSz/zn2QE+pK0N3zFWVlV/U6JgW6lGbqkbWRGrKO/HHabB8J9lBGIGAE4nUxFl/TsnEvAwezpOFhjgrwAqwOIBjRV5fLj3LEKt3jQKqCAY4GQIahezJPnI8gNeIuKqDU9ehd2SNQWelp1nk8FnXcIEKAtgB44ahAVa9ZctGFDv0xYCCLBlRRgdn89dyBh5GxXFI2I138xzEDArsoxQrc/FOp0ycO1bs8nCzqb4Yvnrscle1IZb4aA7qYCjKWbaZSAVFV9AwKuBxtG74G6oDZTuTg2MCCG2ufUSafZ0BAf7quRSM8LiIAqgw68zSzoLob1Rm9yqj6PHMKR/m5aQMsXlS568hgR1Zn5HmvnzA+VnKdN/LIlDJFr95KVqaWr6GhTPnOhj5nogFafjV4qgGgz4/K+2q0hG9nXLI2HIGASll1+9pRFg1w/13Z6r3zNdSZF5BxXdybOW5ccd48TroyN0vHBASYDjl2WF+6TxFfXFxs8eeikxyW56Omr8jJJvgb8V/9Z9L+z2yCvio5khuAKJ4uwTX831WedwWO/8gPFWWeEQu1nmcK2QmHU0QdgdTQTWeqYJSvIu6OcXCepOOt42F+lFL+LOp6/LvKemb4KyCQDeyOt7WPsVlFCNgoc6hTFzVm8sHRBKdoXfjURQhGVAHdryKzH61nq/7lHy9sZUAAXRrxvn15moCvo4yuB6x6m3ns1ouNMb+JoG8FMH8Z8GD55uec/nURMIAAbFG8tI/3qXv/Ua8WVsaLBUrXBlRKr/LwHIjIkGRmbLUj9T4LKQQn4j36VuSdtYsDMZ1n9PxYw6qOOnX86PKz65VCc/OmfH0XGkUF9LVGrgcDAAUFSK/KdamcjNpIgWsVgp4p/7ND859Jo7HN/1UeAAJwjmcgD+5Vv6x8NbScXnWyk8uKsrUGPH0B/cqvY7t2cPZBp7R4DQDKYblz8s/1YQC8ZLxwOy11DPYSGegU/pGRhBEIUKHWc8eruzbi34ECvqfCkRHfVwGpFgiyAFZtEvFeYWd8jf5/9chAh5bIrQOHTrm6tSpO6ezCr8vDyWkmv84Ys5fVoX3Ih/LhFGcX7P6TSI0dX+9GLyt5ZRnlaQKVK/ZyUW4VQldd9fb2lk5T8c6CnTGhY8mF9aFPOULAOpTzyaaRVU/jfLQOwY1/jpSNAK7Wtfrflf+dtyPex3WlGeWbGb1MqEcgYBdkpelH3oyWrf+BOnWPa01XhaYqUOAAgUvn8nWen6vHV6eZqaAsnQIB/WkaULWaP+MR/zmfLMKQlcXjIwMSmdGpjK/yrgsPq/HiwMlI1rIpgVkZ/UoyreOxI7MVENDthjMgwJEBBSfZGKqMmEam+MeURfyQF09t6Ji4uLjYbEX88vJi90DIppVRNgDQ+fn5ZmfBrO4oFzwywHJfNJyV2WxMdPXWUb5N0I0iZMKUeWPOw3FlL+WnQzNKLPN8OE3mnblXXDq8OdKQGxB8te7gmGmGx330u/OwRlGBTt9l4W81CNXzWRr2nBhYujK7SktlJiLf7hXljcZyBUL3JYtfQaaZdpFZJ6scDWAwwP3mNglyoNGdq34BCFEHDmmRb7boTp9zPMN7f3l5iZeXl41suq8L8nQIgwqMEQAJB4JU3nX8cBszANC1QJnzmt1bQkcJBiJ6Fa2UmfMmRmW5PGZJldcuxHypd5d5iFWZ/KwaHZdftmhGAUF2XwfqMSnUbt+MIgOzMjj6uTyWeLIOECwBiODBEcvMLusYRm9LjHjLQOjofyfffyo5R0p/Dgw4WdVFcNUeAQoC9DrKuLy8fLeuC+kYCLgPBinQxmuP/Poj8ri4uIj1er3xzvXzxiCuO2g0TTbaUwH1qaYKuM7uWXctcxxHdLRgoKOsnbFXYa2M8ggEVI2adURVphrLzGCqwPHzumYgIzf3xvcUyWYh5MrQcV5fifYZ6VFywIg9FT13YCCbn8S9mSmamSibS+cAIfL8yL53QMC11y4G20XgtLxjpSV1r3QS/9eoAB/dfgKsl3Runq+pfPN/pMn2LmCgoW8oZHKigAD58YeT8KXD9Xod6/V6K0LAr8UulYUsQlDxyraB2/ijwenOYMAxWTXcPhRxNmidYnVItmrUTDE4I92pRxYycwsDKyCAex2hGBlw59VXz7v5wa9EHzn1kwFSHNn4j6YJVPG5MiL6iz+7vC+JFmg+lTy5smZkKANOCgqysbFEiX4kYPxMmgGC+nORAeelczk61658KChW4IFvHeCLhyybb29vm/l91ZNsQJE3yuUyOOIQ8XtNAdK9vLxsffOAFxeCqs2TcD+bxnVy5SID+vxSIDDz3BQYyDyQmUGzdIBlAz0DAgoIQJXScEAgAxZVPTIErPmyoLAQVOHNJVMabmAyIKieVy8go39qSJVlpWMgMllRg58dVZGh3IjtbYiZr8oIVzwupQ4gHQEWp1w/gpYCgaXPfiZ1+nE2MgT544iAGsyIeGekGRRkANUBAeR9eXkZ5+fncX19HTc3N5svICI95vfhvUf47Y2reqN8XgCpUxn48WJAN12b6eqMnExxWzkw4KISlf7fNYqx6ENFzMC+qCuw7n8FBBx1QIXmW/Hgyq3C9BHvX0XRfJcoIse7S8OAqAr1ZiAC/DFqdYPj2JVpR1FWwMyBR1x3P50ecHOiLjqAcvS78Cxb2vbV2yWZgtb/jheOACgoUYCrn6/NZEnT4b62edauGR+cTzXm3fXO81+ZnI5znrpuNBSxvSV1JmfY2IfLwrkDAvjI0c3NTdzd3cW3b9/i6upqI9svLy/x/PwcT09PERFb3rvO8euHi3iXP6TjscfpuZ9fXl420QjUCeMM17IvJjrKnArmQ3Upj5vMkeW+3CUytugTxvscGJUy7tyrgIDjtasUXF6OKjSmQCBTqs4gz7SzAyJcjtahAwh4wGcK0aHkKrpxbAp1FsxWfVwBgiw0yv3ljDDyUa9CFwKy4sB//p4696HKoCNXDgPXDqkxd2W5t1F4/wKVZwUh2bh3oIB5mgEGX5mcTOp/B1h1aoAjAxH+C4N8j2UP9xTwMhDA7+bmJu7v7+P+/j7u7u7i+vp684Gf5+fneHh4iNVqtZkq4OkCDqXz5mz4j+dQD32tFeeQP94hkPMHqMh+TkdWUQQF9Lp9t7bxR+rQRWsGdh04FSLvPtP1EkAzjZgpGeajcz9i/NEXjRAwv1oPBzw65c30V8dA8P/K6B+L8a8Q8z6MQCYTuh7ArRFQj91FCdTjZ6DGhhNpncHWejqAymm1Tvoce/Asv8oH/9e66Nyz5umuKQjKxiHuc51m5fGYAcKuIWHtXxcRyN4eYB6ySDGH5HEvizxcXl5upgfwu7u7i9vb2zg7O9sY8V+/fsXz8/NmC2QFd+CHZYfrsF6vU1l20ScQAwGsI+Cxp2CAI6bMl/PoFaijnXj8qJ3gOuu5+9+lo3mbYCTUmXfDDVgJrVMGGTJ2CmZGmahnlylcpK0iBBW59nCkRo+FVMurXjFkIOCiAjwYuBwt91io6peI/BW9UZ4ZKNBfxHZUgK/zu82qwLiNeSGqGl++z8+PqPKsq1XRqrR0WkPr4sax1mO12t6GmwGAu1bVp0vHJqeOOvook9sREND/M+SmFlU3s+7jTyFj4eDt7e0GFKxWqw0A0OgZ6siGmuvMnr8SAwWNrGW62y0M5J9Lw32h48oBKac/MsrA7xLgG/FBYGBGcc6mqxpN02UgwOVf5ZcdR/xqKJhJw6C8kFAV7lLl5ADSEq8944eBgF5zvH8FJetAZ0dOK9CX/XRONZMblWGWHRhL/O8Y/8wgZ+sKlDcmVaDOi9G8I7wsZBEOt07BAYmlSlDJ5dPVVZ9JHZ4qQKBgQF8j5PtZZK3DG8tqFimr3lR4e3t7tzZAf5g6YOL8lCdMP2jdspX7Vdl8nZ0iN0WQjWPXNxoh4Dap+j4DISPaOxjYNxDInh0Z7ipEOAIUI3DRrc+udXQdr9dGZWTeuZv3G3kS+qwKeBYOy3j5J5AzmtnPrQtwx1F0gGUDHo7uC+/6l/PpyI1Lo+sVFLyiDnpN8+JFW0jPUQ8oQH6ffGacMvHYnXEQjoH2BXBcvpVxVkMa0Vs8roYfpEY56z/0PXYFfHt7i/V6Hc/Pz/H8/Bzr9XqzXgAAgYGCayusLXAA1dUxy4/HHBt73rUQz/CH4yoHqaJK1j9CJtpgYDQ4OoNn1wE2UgauoTQ8k+WV5Z/x78rt1K+aBqgUWcZDVW6GfEEa8gKN1g3gvBsR+Eo0I6NObvR/Zvy17zJl7PjR/mJAwPk5z6M7jnGcWUTIxlbDyxrKV+OgyhSe1mq12touttIBTg/sw5h+lEE+BDk5dSBVgWknT5ZxXHdp9cj99evXr1iv1/H09LQxslg8+Pj4GE9PT+8AAYMC5LNarbamAgAwmKesfjptoPfcf34mc47csxWo5fbh/x8lix+y6RDfGz2rlIXnKgWryNLlM+LBDZKKT1ZqjifeW5vJLcDCdbdgRD20KjLgBBvKvAMC+BnO04EJJ/CjyMCx0xIgoNdUFtioZ/mr8lRFzP2ahQz5VSs1uNrHWejU/Xe8Z3KWtUvE++1cdV0N8lBvCwoeitwBzre3ty055XGzDyDwlSlzGDJZVdljQ72krAzQqk5jIPD4+Bivr6+bUD6uPTw8xNPT0xYgWK/XWx8aYlnn8YAfR5qwcl8BSabDsjHsgOwSvTiyox8NSncGA1WIOTPs2f2MMgAwAgKqHJgHl5fyODp3iNh5dDqgRtGBiPeeXQUCHHF/OAOehZE17wwdV4jX8ftPIu1bBySdnDp50bzU+GaRBA2lQ3FC1rmPdaFdRQ4oVEBAgUf2LNej+vALgwFsFYsxxe92O964Tfa59kbL+So0AgAOtDpAMMq/65ggjUYQImJrzh+gALL98vIST09Pm30GcM4RAl5AiHIwdQaQ4L4q6OqqhtvJEqj7BkEFBhiQaBTY2TkH0PYBEj7tbYJqMDnEo8pV0WuWX4XqNL/RT/nOjEA2KJwihxcTMV58xUJYtZ+b93IACPdm1gtklAGsLO2oDl+FRnJcyat71sn9KLrE0QG3hzp7QyhD5SqrV1a/LPSrsq0GgaMbzuAon+AV9Vqv15s6s6HntuPnWKk6vVKRKtljkdcuH8y/01sdIFCBAAWXnDf388x45/5+e3vbTAkhPxh7RAH454CARgZ4geFq9f7bLpCRLEKqRj5rlywqgHK4zKot+Nzphkymq+td2gsYGBmBmbTO4GbKA+QaTRGW5lkBgA6vzFvE7zCoHiN8mFf5VAWvzzphrZC7i4pkQj8CAhkPDqHyva82XbAEEFVKVeWXz7PnXboOHwCZmCflvnaAwlHHExyBoYjthY8MaHQ3O20bDhfDOwSx7PHcrwJdJhdZY16rsOxXk11n/N39rswyjcLXblrBpc2iZShDw/zw5t1PwYAu+IMePTs7e7e1MKaUwDemUlVW1CA7Y+2iAg4QZFRFC7T9Mjs1I9sV7QUMZIaXqYMWKyDgFKRWuAIAeuz8Mv41jXpyDhBwPgoAQPivu7BxNKFqu4435EJerm8y9J9NXaghnTWsx0Ajfp188vWOPHVAgZMtJpYPVmYMCBgAVPJQ1bmaPnKkvPM4AADQ19cY6LP3z+CAgQ14whQCrlWLC6tprCXtcmw00qnuNzLMq1W+p0RWvotQsg7TN0YcANDrz8/PG2AIcMA7EOqWwUq61TCDAQZEPF6YwAcDDlyvAEEXDCBtdc3pD07X1f0j2us0gVOOODqD44R4JLggrbwzPjOAQPlUyvJXVM0KL+L3xiucD3tsPEj4f0RufLP2G7UtaDT94IBA9WwGBDTcekgF2xkoFYDJ2rYCAqpwq/Cqk8VM7qs6Rmzv9d+hrG0yY+AiRapIeTzA+F9cXNgv4CEtFK56aaxoNUIAxa51Rl9qu/K9XdrmK5LKpbY/k47djKopBdVp6Cvuy9VqtXkbAOVyaJ8jADwloIsGs7A6RwcAGniPAZ3K4vHnAAuXo0BG77v21/bN/ru8nNHP5DOzGRXtdZrAGdbM6LrnNa9svpUBAD/nBHgEUFz+HUXh8tNBpkZAvR73P8JvQlTxpB0/MmjsQTJVIADXtAxWrFX5FdD6LPoIxe4Mf3aO9Pq8/td+0LZWuXcAzSmMjgyhnIj3HxDS6a5RuzB/HCVQQBCRb5AFxX1+fr71iiH4Ay8OiCkg6CjQTpTzq5DqNG2fbFqA+1rlBqCN257BHINb9AsDAZ67VxmBDuRXBQEG2Pjz64T8c+RAKq9L4F82RjIwOkNqyDNj3YlYZTq3A0Iq2gkMVIaVDSMruEwpar6ZAs0qzA20FAx0FPWojryrHJQf8tFQKIfMGCUj/QwgmCEIjkP1VRtwaK0bHajyPgTtyoPKD5+r8a/kmEn7wZWxC684H83rshyOeFQwybKqCovHglPCTg7h7WMhIX4wLLjHvFRAgOudgaqsbSpF+xUo03VO77kpAiefbIRYF7AcnJ2dbXniEf+385+G9Rnk4R6Mvk4L8H0HBFTvZMYbsg6Zcmu8sn7vhv+Rh+OLrznn1v1XQJGVt1RWF321kEm9IPz0G9jOy1d00wnjjtBZBQRw3gEkruwMWGi4Dftoq7JTj9wBAQ13snLuoFIdqKO6uOc7eWdlOaR6DCCgQ10+1cgpKORzR1l6VkLV8yMaAe9sblQBKq5rHrjnpgsqyoCUS5eFsjNv1gEBBQWjabYO78dGo3HsdF8GVJ3nGuHfInBRAG5vBxBWq9W71/s4PwUCDAgcEGBboFNEXGcFrbx4VeucRQhmAIAjB0SzY/Z81j+a71KaAgNOsHiwVnOCLEiqrLRTueH5f1XRzFB37mUgBeeZ8UT9USduAwUFXFcFNRwt4FAa8uXBWLVDtQ5A+V6qGB0gQL1G+RyrQo3o8Z3JvzNeTq5G5bM8ZZT1P48pLm80TQGCh8TgNJtOUgPippcU0IzKz+qYzQc7+a3GvKb9Kp7+El5dm7t+cbKpRpXTdAFARL6WAGF65A99x1FT3nAKUwMOCOiWvyA3zYHneOtu3ONrzKcCYB4fTkar/lAnqdOvDvCCNy5TdfBSmt6OWIUKhh9fnrq4uNgYQTaGFWXGUQ1nZpgzJTBCzUsI+WI6APXkn1s1rR3G9Xp7+/1+rc6pKaqtBu9nkCqLCpwcs/HvkpO1md+SMrJrfF337Nc+UG9ap+uUWBHz/G7E9tsLGU9OBnTRGId0Xf2QTheIIVTM4yWjrB+yKEbmZX1VquTVRa5YL6nxw5FBQQcAOOMb8dsr1ykl8MNGXqMEbv9/5k/71a2HWq1W74AAO3N4LosOcLs4cgA1i5Q65ykrk/PjcwcCnHPWlecpMKBhTBi7y8vLzScocc4eMphzEQA1cNrh1S9roBkjNELRrgwcdTGUAwT8XXCuI9cTAIDfq86I24uFJ/PiRvWeoVF05thpNNgqyuQsU7azfI14VeWX8Qe5ZCCq564sGF0AUsgRg47RtEDmkbFx4O2FeTtYHQ+673wGAqC4UfcRMFPl2AViX03uVZ91wGolV9zGGqnU6yA1tLwGRBfxMVDU9QAs+6DZhXwsm3qu9dUICMoeRQdGhrcLAhyo0GcyPbMEBICmwQArPgABfIf6+vr6XXQg4vfmEUB32pgu7OMAgfKjDesGPjfQCNWpkdWjehl8jaMjHBnA/yrsxFuvYn5stVq9+7BGZvBZIKv6jWikBLmcUd/os0uM5L5ptvzKy8pAgBu4KkdsIJ2y0Xucz4hHNv4XFxexWq3eRauUWBHr+9oOsLMM8jjUOWWtK49v5IE24/GA+WF+pUwXjTnKQLzrk6w99d6hZXaGnLzimMnqqH6ZcXHGP+J9dEDz4nHA4FSNswMEbn1AxbO2A99DXhypALnohSt/FpBkNswdkV7tDz/r9KzLv0ttMKDz/2z8rq6u4ubmZgMKAARWq1WqXHTupxMFGCGmTMi1sWcoU8DaFtwmUL58VK+MlS+vEcA95If2Y6XpiAVzqRejgqj5aVSn6hvw/E+gzMOs5C2jbNBHvH99b7YfIYejaSvOX8cgk3pQGSBAnSt+dcrAAR6dL+YwcUfewEcG2BS4dvXBV4sKgLK2cDLb9Wg5vQMfbEQj3htMnZ9nuUC+rGe6AKBDWhbsExt/XIP9coBmNFXFabu8OxvFukbbm+3BCBR0aQoMqNHDlMD19fVmikDD4mj8LDypQpAZGtewFRhQcg3qGs8JuZaXESsenTrQr7ahTix0PGerCwezHbZ4wHCduoIx8pZmUfASwHVoyuTF3ZtRsEqYM90HvzqecA3yhrGIowJSyA0WdLn68hoWZ/zZu3eetCo3yLxeY34ABDQKwKBA25R5yvSOniswyGT22GU5M8oODI3A64yB64C/iLCGlr8Z4DxzlON0WaafuqSAm/PAPehjjeZW5WXRsi6vzq5Vabkf9yWj09MEOjfOUwJq6CJ+D2JdAMJHjRSMQEDGn3puTA5BdTy4JcQDkIGBCpciZEakoGoxi+OZjx3KhJCvK9hQRaqUtfOhIgXdAVPxN4oKdDwuB0hB2Xx7Bzw4AMpreTA+AUhhcFmB6ZhTcJ5NTbn2G40rzo95YD2QrRdQ/ZG1B/J2/Gbh66xeX5G4DRQQuGmtWeroY07HxhWAQL1wBYkdB8SN7W5furHIU1dZmg7ty0hnUYFq/C0td3qaIFssByYwiPk/1gzw9pEZGMBzI9SujZQBgQ4o+AhSQMCACbzD82LlvFptv+riBKEiN4jUq3NRGjyrglYBgRH4OJTxn6ERANCjAwV6Pso34n3IEsRtWik6/p9N3+Gn6wWQNy/iWtJXbppgNPZYfgB4kFc2Twxw4IALiKMUuh5hBNY6ivvYQUIlk1lUwMnSEuOnbVjl49LyPT5m9XRjwq2l+kj9U5XZjZ5E1GsyqrL155yOWWqDAZ0D1/B3RJQLBHUfaR3sivarMIsTtgowdMgp/hHpYiYnpPzjxTJsDGZQunpwlffGfFb/wZPWwXlQHTCwLyVzDJQBgtFCrKq+eo9lAf2o4UrliflhkK5v9vAY1VcEefpJZWnkoTllyHVinl3b6NEZfjctUHlEKJf1RDauuJ1HAOzYgYAjBwoqeeXnOjRqo1E+Ix7gLOm6Etx3U1TOOCtljhAT5IDHXmVLnMxpfp0yQSP9qTbDAYIl1AYD/JYAn+vrg1gZH7G9MhQrhNV4sfJR5aANo+dOmJwxrxBqRq5z+BkN67rnXOeo9485M25bnkvLhLsCAq7tKhoNENcvfN6hYwQClWxpOigg9qT1fwfQcehfDRL+QxEhPwYHWgav48G4dFGBrF4g9CXP22dyped8TccHlBTnxWNUdYGLEirPLN+6toajA8qvAl0e15r3V6YuCFha30wOVJ4guxcXFzYNKJufH0U4mRRAZKROGK7pdFzHeXEOQiVX3N6z7a5y/xFyOr2AkFcsMyKBAgEYYIWiykUBgAMETM47i+iF/LURu0apAhpKozop7zjn6YBuqJaVZkS8O+djt16KgJGHQ9+4V7V3VtYxAoKKMmWKgV95Aa7N2Egp2u+QplcggGgAv9Wje1y4aZ8KlGu9FCDoPW47lcuszlyuyrfjw8k+8leFrH3G7ej0Cef1FUBC5iCpnFZTBQ5wKWkaJ9vctziizXVRud53uiIz7MqzM7YzpJ69owqA8htfupCQn830c5dn19f6q8DziKamCRgQKPrWXcPcHtLZ4p/KiFWo1hlYfZaPem9WcColrooMq7Bh8PHfCR0P3AoUjIRKrznU7njPBmSHRoNoab6HJmdM3I/TMmX9PEPO01YeeUxydED3+mCecJ6t3eEx7DxqV8/sP/hm5ZmNHZxXwAN5VN6fRgiYLwYCmQ7QMX6sQAA0ktFMh/LzXVJ5GLUNA5GI32vPcO7GUKe9neFlwB0x3hwL6XVscaRAoxYZCAEv6nhWgDKrp4KqyvFyIEqBUbd/dwIDEdvvyzvF4q5l3gdXKCMVnirtEg9sqeGqDLh6Pvoxom65Lk2mRJ3Cnakb2q3zykyX168ACpzxVrCmUwOgUUQG93kqgI2VC2Fm5F7zRUQAv8vLyy3FqCHMbkRqFAkYGeZR3XhscL68noHLUWdC+VJ+OgayY9S+Ci0Br1k+3fGuBoxBgAKBDAQgHz7OkPJbgcYKEKghdUCcy9SjW8yqtmimXUd1VTleUk7EggWE3JE6OLNBmlEFBCrPjK9zWs0DZcwAghkjrWkrr4eVsX4Uw+XVKa9SiA4VVm2hbenQ5dIBeuzUkbnRb0Ta5ty+zmOHEnIyz6Ff/S4IrxdgMIC9BAACGNxk/EZsG+SR8Xeyh7T6Prl6b1k0QPVKFaXgvJ3HuAsgOMbowBIZ7chqlqaKCGRl8RopBxAqqkDmiP9Of7m1CizjDA46kSjeJM5NF2gZS3VqRQ4QdGk6MuAaz4EAVlys1EbMdRSySztLzrC6fDRcyMqa88lCmrvytY/8qvbJVn3vIqi79MuhSWVNowFuwaBTJvq/GpzsOTt+Ira9Kv04GKIC19fXmw3Arq6uNmOWDbnOIWfEi/j4vKpjZZz5HIBY66/5sW6pPlTj8nBtiHP2CF0/Hpvhd2Mx67tMfrsGGJT1cTeCwmW6dQsalp/lpyqfjeFoSgl5s8FXoKrrblx5ONc1KxyBGE2xLSEHaPXYpcXbEUf4TlRhcGncNRdm2hXhujL02QrtVnlAQQH1qocDUp75fFYYltTZPaPXKkXh0h6bstwHOaCZKdQMCHTIRQiq+xE5EIDRv7m5iZubm7i+vt5sC877f7BBBalRddc4ogXeKsOv92enQJxhZ74dSMhAgI5rZyTdvSqfQ1GHh5HOnJHZTCfOAALWczp+FIiqwc7A4ZL1I6M0CsJhszgqoJvBOZ2IMhjs8nX3nNKsJ6+62DkmM/lNRQb49QtVEBoC5DkTJ4wZunfGU/PAPaYMyfK5Iv/uQHfeHQuMKqZRuBH5OKSoCtrd0zJc+iXAweWxL/R6LDQCQs5osEJzsgjq9DvO1Xtg4MxyxnwpIOB9BXRvAf1QmOOzs7anGuean96vPC2up+OLy9S2VR3gjIk+w89Wv64H/pk0GoddJ8rJ+khmu/xx+TjXxYIR773sXaOPzvvn8dPJn+XURQlU33P5fM52D1MGOsYzmjXcTJVdRN4dmtqOGJXEOSqL687r0VAjG7XM+FXCnVGmOGaFrfLUFLToNQYNakDcdsRankZemNRAOeHHuaNdlNoIfWfKYNdy90mOjwwEaFizAgIsByoTHWKPOeMVPPCGX+5VQvfJbF3P40Bl1+OvDK6b+wfvqlirNTNVqF/HygiYuOgAtyenxznnq07AISmTrUxXdqa08FzmfOixcjq07IjtPVUcMIjYNsSZwWRjy89w2upeVj8tSx1all39kqGW4XjUjzJpGQxYlsoYt7+r0wzImI4M6ICCMss6klfOs9LLlAtXEM9UQIAVFQ8Y/Fwjd8GCU2xaJurOe6nzNq8QBg4bQSGqJ+bCsg5EZVMSu5IqaLSpi4yg/JHw7YJ490XdgeaUqa6VyebaqzIqOcJz6Gc1nkoaGcB0AK5r2yNv3vsD8orr6/U61uv15lPBOLpvA7jowAhMRPxWpqq0XR0zUsWnlDkEVT7sDfI41XyPhZwBckDAOVKj9ovwIICPGU+qs9lgMkDQTeqgPyud3B27VbrKgXJ5sXyy3XJjn2Wa2/jXr19xcXGx5RBn0wZdQFA5e50pk4qmIwPZ4K0GNZQQ/3fnWpbmzWhelY8aTZ3/nBHuWc+O52RZ2fIugqpUUY56bq4d3GAfhZ3wfHUtM2yo1y50DCCgS1kbq3dVAdMRymcl4crPlGdEvOPBvTWgYJ3HB2RL9wBRg6/GvwLsjlxaBT7wmFAvJacs+VpH9jMvFsT9pIAgAwLHJssZEBj99PldjHA2ZiLeg1ZdMxDxPnTuHA8QOya8rbY+44x+py4uigR5xZGjBe4DYlovnSrgSAFHBFV3dPjluvH5LnLaBgMZoYGyQaOdqwqGB7wDAVl+OjfpUG+mlEcorGpQHVgu3MnGH52PLZr5Wfb23TfbNd99eygs4Py/og56RbqvSBUAc0qVqYPus2hKhy9VqKxo9RPZnC/L5Mj4j6gzNz8jp5mnxYCgM55nyuM+gELmowPmx06VnHbGohrDkcNW8aHAln/u8/ZIy9POGqFBv2koXwEBX3d8VU6OkzOVFyVnoxis8LbzfFSQ7HhwvPE9ftbZP/e/osVgAB3LCC3i/XyQAwqMqpzxV6GOeD9v6ZCjklNWnYZxnZ8ZARhQhFd1KkXrmdXJhWMdOOA2+AiFtUtEQJHtDMo9FGm/OIU6UrCVEtmVFJzpOgYHUDgcyYYfUwLPz8/x/Py8+c/HTBY1speNPTfmMsU3qrdGCDKQPBO94Py4LPYG3Vg/lAxnAAjHmV+HdokO8H/dpE6n21QmMt3BfLBXXUWKAOoitm2QAoJ96qcK1LqIQMZDxpPWz9knHEdpM1oEBlznK8MRvweZQ0RKCgR0aoA7XA1WNqfJSmsGEHSRNHiC139+fr7Z3CV7RpGkAgL3pTbH82cppyXluAG+NK99k+ubzPC7uVeXx1KlonPoHDbUKA3zo6FX553o1JUCAfyenp621gzw9AHyceMpA998nz0/Dq1CLriOFbh319140LGeeVl6DW3Iz2V9fGjqOBpLQEBEbypVy+Wfmw7g6/iejVs38Pb2FhcXFxvZx3nEb1lWsK2r9ZU/jvQoIMie6ZCOy0q+nOHXNnSOE1+vgIFe2wXI7jxNAAbYgDMTqBC8ZhfqQR6jTlFD7xSVCpDzrpF+6QDnZ3mRSAUEcD3bwCKrS6aM8YxeHyHsTp1G6arnMwGunj0UVUo087oroOfyz9qB+4jbzAEB5pHXMWABId9XUMyGHucMBvi++8CYylgnAoc07L0xb1DOAARIAxp5+hmwr8B/NS65bdWr5HSHJgdQKhkeEbdVx9lQY+bGi0YD8Iorr2vhaS0nb7gGPqAD2aHkuXwmNfwKCMD329vbu6+Hjtpb7+m6HscH3+foGvPh9ETV/g7kZmDgUyIDEe93FmMPJWvgLD/OU8+5Q13HMnXm+2aNkmtMRXDs2WeDMVP0fC8DLx0eOx2vaXTdwOjZ6toIkBwSDIxAWqbYRgo2M0ycfwUI0O/s6WRTA6xkOeyqSg1HjgjwD4Zf3xqAElYAynmPyKVxi7BUoTEocN6Uy7MCBe6aGgOQAwR83llLcyhyIGAWFCgwnS2X5ZDBAL8GCzBwdXW1iRKgTVleI97vfwEZhTxDltS4VobfTV9r/TP5diCI7zn9OVq3MFq/wHXi88zYqx5T+9ShKTCgyr4zSPAML8zRMIvSLKqN2FYOo6gA5+HQtiNn3JQXRAdwjede8Z/36GZCOihoVsi4X3lMzhCP+NV0Vf1xr2pLl47Pjyky0FGiOsj4OBpso2usgKoxxN6WKl3mj423Kk8GAogGMCBwrxIiL/X2Mx41iuDuIx/VHQpOZygDBd0+YR7ZuDEvMwr1I8jpqCWyuw8eHAjQxaww9gACvEU274/B0QE2/HrU6FY2HatRJu4/Z/wj/Jh0QFEdBAcAMkDAU1CuXTOd7caR++/SL5HZNhiAkUNBaAxGc0psDDUUlE0PqJJzCEqRI4clZ0NfTFkDusHE6TRigXCrAgKAAQwazZsHgYtwjNCkKsIKwMyCIP4/E3k5lshARqrcnCLNlEdmhEaeacRvo8jrBNC2WR6cF4NHln8AAFzH+dPT07v1AdWeAh0QoKTzs8qvrhlwzzO56ATrEv2IUjX2O6SGlJX5oagabzOAQGkf7RMR74CAboqFLbJxxI+3zObIAMskjP/T09NmWuv8/DzW67XtE9gjtBnLW0Ussxo1iIgtB45/qH9HPjKnAuddu1Ppbe6bDFBU1AYDbHQ5lBbhvVRWUOodg7qAoOKHDa4rz/GXUcc7RjptaK0XlBUWwuC/28SG82VAwPlnQCAzHsxfhhrVO63q7UK3mcBlCPVYwIAOSB3k3D+VMlXjo/XsIHUeFwoGIMsvLy9xcXGxMezr9XrDFza4UiCggCCbJuB0bpzOhjW1/iOFNuO1juRfQYDz+ipeIvzbUMdCWbstAQOVAXIeqfvxtAADAQcIbm9v4+7uLr59+xbfvn3bAAIYWgYC+AEAPD4+xs+fP98tnNVxBv2qQDYDnirjzovHs+Az+/piZxpCx1I1pkbgQOuEsca6rWvPQG0wwAs3qp3O9L+Gtx2xIVJQwNfU+Gbe98gz6Bh7TuuEowIEuHd2draJEuA6AEKEX0zooh7algqqHN8KBEaGvqIsOqB5u3bPlPNnk7aBev6M/J0idfWqogFVX2g+UB4YY7x2AAtv+cjjhUEEK1GeKkCo1YEAyGc2Vh14V3LKT5WTtrmuDeL7rr2VXHvvAjp1XDsv61jIya4agl35rcAC959OEygYwDQBwMD9/X3c399vAAF77yyTmNJ6eHjYfIpbt3TnqDN4c06rthuI1yywYVY9ljkJCgjwDEfInBPljjMyq8+xnGp+M3lPgwHdb9l55LoQJGMGlciQVEStgCLeewacxywyclQpAlcvDiuyIuU8oNAZNIDfDAxUHZoZHuZ/pNC6CkSBwIinY1KiSqzMVLllnlXH6GftosBJvRv8V3nm+VMGBdwXSIP9Azj8r2sDOBqA8cpKtOq7rsHOFK+uF6oiMEsXWWU8VJ4VX9c8Di3DIxCb1WsfgCAry40dXEP4nz+zfXNzE7e3t3F/fx/fv3/fAIKrq6tNm/O6AEQF/v77760PW4EYPCBqxnxrdCBzOJGXcyQ5YsqbeunGSSA1+mzXsqgAAwfwonXI+iS7t5TaYIC9UUVcPIfnDJoLO+GoAsZpABTcs+oRjMIq3TrOXM8IPGM7Yq0HR1d0moCFshvtmEF/2tYZ2HKARueEtS+4HnyepftMqrwph/RVyY5AQMcwzsijkwH29OEpseLh7w2w8V+v1+8WFXJ+FegcAUj1qroGXPsjy/sjaNQPIyN7KBoZgo/kkfN340RD+AoGrq6u4vb2Nr59+7aJDnz//n0THYD9wFTW4+NjPD4+bmRcxwHkXOUWwNjptwwQdMAAg4AMwLJDh3Ru6kGfcXnM9EvX4RvR1JqBrCD1LnjOO4sMOBDgwAD/1zQZLWkQ5+0qSnMd5Z7hxZWIpDCxgPLXsPA8txsDLOXL0ajuTmB0oCuvDuE6dF2VeYw0AghKrChmgaNr8+x59hh0mkjHFoc62bgrENBIgY5ZjvBFvF8XxGUpKdDtECtVlMegkWVsFwXnxnDF0+wzH02qX0YgqqKZdR/KQ3Z0gFpfMdTFhIgQIDpweXm50ZeY5np4eIiHh4cNEOB1Lex8QobBj/OymefMkGtkzEWHFAwwqY6u+g1Ht3ZADbtztKr72m8zuncRGODGzICAehuZEdL8OsdMSXQVLsiFaLkBnaF3QpA9o3miTfgLbrivA3Xkbe6TFAhoHR0AyBTnMRL3g1NelUxFvO+LmSjUqE06Cl0BNY8p9mI0egAggKkDBpcMMjkPx796URllbQQlrWAC+bq1M6woFUyPync8aoRqJMvO4B2SMhl1/O2TXy3TLXwG8bSBLiLEWwS3t7eb37dv3+Lu7m7zZgGM/tPT0+b1Q8gxr4Nxsg4edfG19qmbAuSxpFNlWvdsoXUV+ldHSnX9DMDr9OusHQQt3mfAXVMvRpWNNnA2+LQCmaDPgIhO3ZxBq56v7rGChTIEEECYl5WSm3vKogSzVLU77o/aLVsU4xbIaJnHQE65s4LAT0mNbgYEHIKv+NBzR2rsebdL/Ec+6vnzOgPkwa/3VjyiPI46qEFX4KCeUbeOTrk6wM0885jI+scp85HH7/rmGMBAZvyVtxGfGdjryLfTD7qwTtfdVK8YXl9fb/3w1hXWU4Ff7FFwfX29tWvmzc3N1pTX8/Pzli5V4678aVtpem4LBUL6HL/OqP2l7eja0AEI5F05WZWDssQ5mwIDldA5oRyF2FzjdIy4Q/ZucLgy8DyucYN3vNyuUmBD44gVKxSt1jFDqu6aPuv4yYS1izZZcJkPbeOREB+KOjKTKYlupGYk7yPQqqum0e78iWL1bsCbRuXYc2KZyabunOeu9akMStUOLOv6XQUFYqgLlDoDTnUu2OnANccfys7GPveD/j8kGGB+nJxmIHdEHXnWvLLIjtO56FNeN4Ajyzin4fq+vLxs3kZwryrymhiWidVqtRX1YrlzCx5du7j2cToO911Utzq6Z1i/Kj9d/dx1VDJqgwFFVVxYNRflFKmrnDLNjaDPjpBXdT6iUeN1O8fxlQEDV4YqOG7fbCEf8+c81YzvJXVicorVHY+FHBBwsr0k38o7GJXLq6ZZeamS5zGlYX/2/vmnawOcJ68yhnSuPhq16LSN1iWblsK9kcw6xd0xcFWEQOVVjcAhyLVPBmazZyrqtl2HXLSgmmNHe/Nq/dfX1w0QAADgHQwZWOCnhlXD8Tqe3Ce/wVdHtlFGBkyzI6cdkbN/jkbArisLi8CALvZh9M4rJ0eGu0KWGWWgYjQ4tGw+Hxn/7FqHZ8djxHtly6Q7q7lpA8c/94kKUsYfpi5wrqFhzmMUkWB+VNEeUplWlMmNDjCnMDODn5Wj9/mazsVmoMFtRezkKitT68DkPJxKpkakdVH+VTmDEHbN+NYpgl3I6R4FCCN98tmk/Z7JcIfnmfZjXdF5VuWZZdNFrVgm1NgzEMB/vGZ7cXHx7vVYGGvwqbLmQDbXi+2au+dC+qhXBtK77T07zqp8ZvJog4HVarV5fzRDoR0j6zxFHYAjA5wZGxY453VwvorMOmW7tBUgcXNULrJSldUlBQUzgIXTugiEpnUAZVf+P4tGCjTi/Vycq9MSIOvKUw/FAQIltD/PVarnP0sVmOBy+ViV5YBA9p/Hx9vbm30DR8vWyIdLMwJmFR0bGHCGvgsEqsgtaOm4zaacRulZhvE85AD7BjAg4M2MdIqBZVejAdk45Wvq3HLUtRN14jpFvAcEKrMdpwr8MXWdMB5LM4CgDQZ4IwkuDHN7HLquEBeOI6Xpnsue1QGQfSaYO3gfA0TLdUCAr2eL1JR0jhS8dMJLGbDqegmcLpsHc8Lc8aSPhbqAIOM9A7/dMkGdxXOOnPGbAQGsPNXDqcrX9nBjSEE4y72bBnFjRctRw9+VqUrPjNpdnZVDgwFQJbtOLvdNbGA4FJ/1iRp+vDGAzYV4ESCDAo4Q6EeQFEDiGW4jJ9tIV7VX9qxzJFkeuX4R8S4ioFN0OFbTEM4BVl70Pj+jz42oDQb0W9TKFDqKG4gb1lVWj12lVBnf7F1QDe04hTNDFUJngcv2tHZlMyLdF3WMDQZ1VbZ6g05Bd5H0och5CqOBkkWFXJ5ZGscHk5siUFIQyVM6VRlOWfI46K5jcYo1Irb2gs/ADuRf3z+Hsue66xhlZasKddeIVLefDgkGnE7sAAKQRko7xmcX4n7ihay6syC8frwdgI8PsQFjEKnTS9weauA7Y5ptlN7TdPoM11M37eJzjgxo9MA5Wko8DtTQ63MqGxwl2HtkAJ3A36FWpKNggCtSVbZzXQeFGl8VGvADYhTLEQzerWqmLZQPlFV94Up3HeRwVhat6EQw9kGVccmmClTIZz23zyInO3yuoLEDakbgVfOslJS2vRszbp581O7qkWt+M0YOMupAAStlHntufDIwcJHG1Wq19Rlw9raytujIW2YoDmXkZ0nBXQcQdIBeZnBmyS2m0y8PPj09xePj4+bzxfyJY7xSyJuwQXayyAC3A9dFz0HgCwAW/Lrt9Z1sqb5TAKB7IPAzGunlPPno9H0GWHjMKCBXQNChqWkC/JRJdI4LrTllq8+OyAlpJgD4r1MFmgeUGoeERuGXCpBwmQoEXKQgwr8P220T1xYRc4Na69SdNukq4ZkQ1UfSSJHyvep5vVY969om80QqQ6uUGXHuDyhQAMxunTJi3rK2cLIe4b/2xoqdlbozKFy3JQCgUzenVHHvGKkCs6Cs3zN953Sd0ytK3B/6DQ14/PzlQXYmI2ILFLy+vm72G+Dpg8wD1/Jd3+l1rjfusQHO5MwZf+aHPX42/C6ipe2X9ZHy6yizcQoIOjT1NgEP9ojfq97VqKoguoGeGXH3n9PzAGCPQ+eWeH6SDa4aYpxnc/RZR3A9nfGvogKMxpknjl4oQmS+ndFeqsQ6wqLoNVPOOniUDgkMWGb4OELOGRB0x1H5VVoHClSZrNfrrfQsXyzLWq5OAyn45PL1Gp87uXMRAJV79ei0DzhvNigo143FzJhpG88AOSe7M+DjIyiriwLaSpa1jqM58VH7sYxq//CHsJ6fn+Pp6WlrESD0LvcxysHmQxGxWVvw8+fPeHx83EQWADDcBlvOWDuQMJJ9ro+G8xmccD0ULOiR81XC/Qq4O7CakQK6ruxOTxOwwKHjUGEXklTvRBlTYRsJM/474VeFH7E9V7ZarTYhoU5koGqLzPOBwKtS5HPNR3nSOo+mCmb45mcYlPD9DL2qsR+h8qycz6bMeI+MuAKB0XGX+jEAgEzwEbIDxYNwarVYlgHv29vb1u6FbkxWhjGbRqrAAMaFRgIUELtXaVnRqnJ3PFegVh0Jvc6UeZSHJucMuf+grL8UNFUAq0tsICGX/J0BfHAI8sjXeR3Bzc3NZg0J0v38+TP++9//xl9//RU/fvyIHz9+xM+fP+Ph4WHzPL52qK8r8g9yp1PEIJ1SjvDOj4IOdx0y7fQl51/RZ00PM02BARwZ0XPnZ8YOnTHytCO8YnJ5slLhV054YRITymePKyLedSILQvZ60wwQUABV0dnZmY22dAfoKJ1DwCPPyF3PvKVjUp4Zdb2piPfeUmZUsmczY4Pr7BGg79mj5lAhl62eBIfa8Z/HHNcB9zPAVrUBGxg3DnXNjlsoyHXB2INi5jHIO8tlSpXJybFzFPR8VOdsTHwmOcOv9QG5vuwApSpd1VYKOtB36/U6zs/PN+sF+OuD/L0Bnk4AGID8/vr1Kx4eHuKvv/6Kv//+O/7+++/4+fPnFhjAAkT9UicbaPDl2hDXWNdX+k6jD2r01YArsFhq4B1Q6+rfju2JmNyOmDNXcMDhHdyHQYUQdAZWx1vjnwtDQqCYR3QYgwFELRQYcD2YX/US1ei7hS7s1WmHslJnYc2mCLrURfgdg6bnLgqQRQWOiTIQoMrQGZ+RN6nt7dogM75q3DlK5by7SmHzuGNAUPGq97I6qOHRd71V/ln2AQQ4bwbbPM4UkLvjR1El14emqs+VWM9FvAd/VRkOPFbnXKYaSxh6yAaDQPboYcAxTQB+AQZ+/vy5AQL4muHT09PWtwqQjxprbQ92Ch2Y0vrgnPPiiAPqo+n5+BH0EXkvAgPMiE4NvLy8bBqahVG3SdV8usRKT+ch3cIklB/xftGgIjoVaN01ij0OVoqr1faGTNVrhCgL+ekA0uOonZYKxQzAcP11TIpyRJk3oL9OO4+UiHumQ6q4edpAlQ+uV56vM+YuOoe0VV04b44CMADgCIBbM4D2cHOuWdstVbBal6ydqnJHeR6CMhA7os6cdMT2upWRjDuQqlNb2CGQ5UEXF3J4X8HA6+trPD4+bgABrx/AeoSnp6d33ynQaSeuG8ubRtS0Ps7Ld3qa29jRPnSlc8b2rYPbYEBRknreHB3ghucQjAv74fmRItay1Ovmexw+VUWmc6YVIOBQreNZgQi/JqVAQI07/+dIRQZAQCx0mXHueH56fV+Ctc+89k0OCHwkddqBZVujQew584+jb6q0dZxoWZnHn/GcAW8GwPxzoBg886Yzbh0AAx4mvTajELM+d/WuIiOHJgdoKjkeAbxuWa5sVxafM+hj5xD6jaMGAATr9Tqurq42chQRGzCAVxLxQzSApxnwiW6NCCgQysZbRWyzsqhV1Y5dnQi75ORdy5pxELuy3AYD/D6+87p1URCQYYehLrMq+GqQ1SPJ+K0a2y0KcYCAedG1Ak7ROGPvAELEe6XoIgSzQEDbkY98nnlF7DXotWOnLCKg9zqU1Vnbz0WT+D8/x9cYQGNb3krx4xrSc1k418gYyAFWVy8F4BoJAABw28VyuRoZgFHgeV6k0b3mGTQovyqb2gZdmnVSPosyWa3ATcR7WXXTRlrOqL6cpxpWNvgcIXBOkYKBp6enuLq62prifX193UwFABDw64pYe6BfL3T6UveT0ahAJS8sl3ru5LJq29HCwE6kzIF6TreUpqcJ1HvR+U6sWEbj8gYiEb87ZVQpJVWIGhFgoWMlx2FKkNuEBcQKqzLeXA57QZoXC3/m+avhdwBB03EZVZtldVRjrtEXTjPTR04xV7x8FjlvqssTBjHy4ePoucyDUFCJdlMAe3Z29g5Uw1jinWyMO6R3dVQgN1N/XQcDhc2RAWwko4sIIfPr9XrDNy8gU+/ObTLUpQpwjQyno2MCAvx/pj6zgKAiBY+uXJ6X1+jA8/PzFhjkbYkBBHjNCYMG3qmQFwvylsZORyv/3C5ah6xdWB9nUxBM3C+6HqwrU86pUF28b2esDQbQMfpKE4cCYWQV/WB3KRcG6XomfK5euIIETqM8dtC0zms6I87PMx8qkAos1NjzMYsSOB6Vl6XGdyaqkN1XQ+PSHVKxZkCgYxCd8hs9owO3AkhIpwobR52qwgdccJ0BuItQ6ZgA6RRaVX9dJ8D/eXqM+Ue9MCUAww8vD0dW6jx9MKs0lWc+zuYxA4A/i1THqe5jGvFega0Zg6WkDgT6crVaxXq93rrOcnpxcRHPz8/vZAnyw+sMOJLEIFO9drUzvDgX9WTiRZaVU4f2c1MR3G6uvK5eVJ2suqTS2bNONtMUGOCVmM671COvIUCjuVCJKsOsw1hQsq1NEa7UBYU6iBjlspIEX7wYhXl3htrVB3mwJ6f5Kbm8VRC7nT2KGDhU2VEEGRrWfGaufzR1QKSjzMMEOblBOs3DIfqqDXm6ANEBfk5D6QAE7LHDiwdPWd0rgxrx/rskGHc8zjQawMaAQQCvAsf75rr4Cz/wxVMOXW/I6aQM/DPPmQd2KBoBWefNap/OeJD7qCv6frXanirmeX3Ww3Ay2WlDPmz0WTYAHPEf6TMnKjP0HIXAf22DkS7WdlPnaDQ1kMmaAwCZ/q10ebfvp6YJMiMGcvPlzIxTPlo5HcQcLsWR1wW4HxSips2AgSpGeGSYh2XlC15VafCzXB/3sQonTBG5APP/fXgtDsiBFOjxtew+rrv8j4F2iQzw8ziPeC/rPOA7HkDVNmg/nnPncpBGw55vb29b6wYguwqEdExVYzrbYtu9Rou8+IttMPxY+KXvlrOSZ+WfKXbVIZXSy5wKNjbHJKcVzcruknqN0kMvdvPiqSx9jx9tz6BBo1XqRPF0gNtYqEs85ccgAODbRQYi4l0dmFgvoE7unNO4Mtz5CAhk18BXVw6m3ibQjYVcIaxgMqbZy3ZUKVw27uzhs8JyO565ew4UqFfDwoj9s9Wwc3p3jxWc1n00DZBFBHZRYBkQ0PudfJRnzX8WnX4UOY+qMhIz+Y5Q+qyX6fiAUlHDiOk7fg5KDYQpBa4zK3WnnHhMaGTAjaO3t+0pARwx34uIgM756tQAgwLXXtx/uwDj7DkdY0tkYp+kQNSBgSxCtQuNxi8DAzXseo8Xw/LzbtpKy9Doqm49PHr7CsRtqOC6igy48a1l6ZQA/9exWOnWzPmr6tWhvUcGgPLYODGC6yJG7hQ36LL0zvjrq01q4J3icj9WMKgPBBAdy1u5svFnVMpCpvNYaEMGG0oOBOD/jGBU952h6ngY6k1pOVlkgK8fChBUytQp0l2iBVV0oEMdhM9TCOBDQQEDZ/DGxl09bBdu5rpl17i+vNgLUQGsCwAYUACAc+Sl87FqjLjdXXRAeXT8O89LgcU+lPA+KYsMMBhzz4zGd0S/jpmMZHk6pwA6UHl2nrKCQz6qY9UBQW5dAJ7j1xlH9eIj580AAPXTKDPGbDV1kEUCZmVxJioQsWCaIGK7ATVawIgviwBww3WAgBr5LFTJ7znrPRciVSDgkB2Hj3hLTdcu/J/bSg15d/6I8+p6QRmKdca6on0Z7mNQppkixb2IOY89m6fV8pCvnnfbRJ/NvDEuk5WjKksF7MqHekz8rNstkI326+vru1Xf/P/x8XEDBJxyd3mOiOubtV0l69VYOxbKZFfld+Rx7gsQVM87x4GjBdm0F3vlfN/JMF+L2A7dcz3c+HPTbUirdqwCkQ54vr29bfHP/YS82bnM9HQXCGTgN+OtQ4vAAAqBgXRKBKSLgap8uQNcx6jXj//6brPOY3I5LLSZgKoBrpCZKkxe6arTBSOaMUzKQ/W/U+bIA+RrlUemBu9Q0QAllSGNClRKlZWv/lcFkIUMQZliHl3T+6xkHShgkLter2O1+r2im5UVeHJjm/NlGdfpAVzHV+UYEOhCQY2kZR4h1xPX+biEKgU8AhTHQA4MVLQvvmfHMOtWbj81+pAztDPbCTcNwJvX6ZjioztXPed4cVMF6kRlxOmwVgfluKn1Xfovk9VdaeoTxs67hHJg72PUgJUB0nQoVxcyrVarEgSox6+DKBvolYJgvivkCGIQMAo/jYzIDFVGmuvB6VEm/1feGfnPeLdazmdT1m8qD7PkokkOXDpQuitVIVsGsapUeaGW5lF5FaibPosyYPCrd8Kdp6ekbaXjQmWv8oi0btm46AD/Q8pux/iPHIJOdCB71pFGgznMzvPwbGRdZNXpOZVdd65pMwI/VX+qgc4iCI6yvnHRAi1XqQN4PxKYTn21UAcTBIyVIJSOzp+6VcJZGTh3pOUzCHGCoju4gbcKJHDeqiB0zYDba9u9KpUpQJ3X5ekT1w4Z+q2ucT6uztwW7hkNGfO9GY/tkFEC5zHPKscqPU8nOQWQ5eH+j9I4/iA3/CoXv4rl1tVksu/6VkGAiwzw9IB7JzyLBODoFHQWGciMuIL9qs2qfFy6YyIFN6MISgaiNE+lJWOEI088vYqxwXlmIXNn/PW862ipx89OjUYItN6Vvu44s/wc+N3F0VPqAOMuTe9AmHmFDAi4kdkr6ebJAtNVjGz4+Zo+o0ZhpDBUQeA/DLyujJ4BAqM2ya5zvUbgIMvTAQGNDDCBf/YIFRxk3tehydWHFVblETpSQ6ODnj1ZTeOMlMq6A27IeySvAATcF+zVc6RNAUHlPWdgmseDA8MYBzrXqzQCAi4snD0/yr/K56tR5iWrkcjAlp5XNNKXyEt1FE8tqfEd6cXRGpIZncpla5uo/crAu+rAfTg4szo8SzPjHDqaigxkiq5iYKRkuVPUY3Nf/2MviEEGwp/Iy01raLmqdLu8M3LNXpPS7TGdB8SgSfOvOjEzLBky1HpCmN0mThE+NKbhNl4VOwI7x6x0RwOL2zgb/Jx2FvFnAEDPKyCgRpPHATZ0QV9pVEw3eqnILbpF+Wz0WR503UxHFioDN2O4+JhRFhHQNMdEzDPLZgVqO5EBva7yVxFPD/B/5KMRxY6u6LR75WWPDHp2fWTkdR1ARVn0YmQPu+dZeZ2ylKbXDGSNP/Ja9B7n4wTQhWPcQgxeVBKxDSCYMoGpvGEtS/PiaQLeFYt/VWQkC88rZaBmZPz5v3qZaiD0Gp5zXhqjfwZn7ImO6vHZpG048oRHeYxoSR5ZtEHzhXJVZctTdTxmWLlpf7vNXpgwTnkaDnkoCGIAAL54PLs1NNU4HYFMbien+LuAQMvL7h2SKnnA0YEBJ9+ZMcnKUB05iiDiXiWj+6DKKCpPI15nya1FcHpaHUFc65I6IrOg9UMiA25um/+7gaed4J5j0ugAey6sxFR58VwUG163mKs7CNyzTGzw3e5Yqsic0Ojg0M7W9soEuhsRGLWti8Rwvm5BDy8g7W6ucShyXjiOHeOt8px5GJr3CMxl6at8mRggRGwDAJVf/dYBK3gHCHTcQyYBEJzM8mIyjSCANzUoyKOS+U60jM+zdpyVy5mIxEfRSNFnEY7MeeiA0gqcdg2oixhE5HP0I550XVXloC4hjQ5UbaVTBnzUaXIFylkEZ4mcjfL4kMhAxPu51oh8Lkk7UK9nRjgLZVYejENq7MFH+EGt6FV5VHLGEEcs3tJO1wHJAsaDxXms1dSMAgE3YLm9XBSA97DXtteynICDT95Uw/F8SGWqBlYBTwaiOAqya/mje5UBc/1RzVs6wM3AGeTAuspLJVfoc72O9sV3ETAueNOVqm1U4TNlHrDy4M5nvP5DG/+MuP4qp1Wb4PqsLKvsjSLAzOcISCM/x3OHug7HiN9dxng1RaF2wkWN9VfVYYnR/9DIAJhyBioL+akwaQNy3uyp6g9pM6/VRQDUiPH/UT01L62Xdm4GAjpeJ/9XBeamVBwQYHCGowKB7KegwIEubr+Li4uNYkf5vG7jmMgBgA7wm0nnyMl6BZozz7wCz6As4lBNj3XAAINHJo4KcPsqLxopcIBA65Gto8muqdzjXMEw+FWdMCrrkJGBylCN2kTBrnM4Msp001KeXR9FjF/jy+xF51oXLChl0YFKjzt7g7wUADggcAzUBgP44EQGBCL8ugA1ivpspoxYESGN7mHA9xikgPh/BhaUKqDgFInbHjPLv1Lq2WBThVa1vyvHRViyr9Dp56gdv6grLyCE58fATOeID0nqsXKdI363qe6fjnsZKTBF/pWMj3jU/F0ertxZUs8Mnj4DAbSLKmke126qROWPy+LIUUazYd9M3hmguHq7KKcbv8cgwxVlkYGRwc+iPp1nZ8hFbbksThcx3hrbAd+uw5XlPaIRaKyczm5EoCtnWV93+Kxo8TSBQ/Bu4I08Mef58DWcu2tsfPgIY4Vz5wlkxtoh2CzKoB/eGOXl2sKF4TSP7hyZa0f27PiLjhkgYDDAbc+8Qah5D/r1er3VVg5AHFKpqoc4CndmnjYTAATSaP+gHXmvi24ZGi3T6yPeuqRekCNutwzIKohQEMBpK4OrgD3z0kdgW4GB1rkTafhKgACkQEAjBKqXVAZVDhzY6wIFTpcBAi6by6zqllGmFzNQXV3TMrWtsuhVZiPYYcrAgJY3S7vK6E7TBCOUxcYjIg9dMbFydff5GoTLfW44m2vXTmXKOr5CfdqZMx6bRkIy4OTAl5s6cHlHvAcC/Bt94dF9qhZCvl6v4+npaZPm6elpw6cOln16GrOkICDivYJQReIUZSd/EMufjoMsT6e0RsC5otH4zLxCpdm+U3AwMgRZmVneo3LR5jrFoWOa0+P5zIgeA300H67uEe+jKdyXI5kZGVCeWhrJWFV/lJUZ/lnd05mGcDYiiwqMogEO9Lr6dQBqZsdG1AYDGFDs5TiBcB5hxHaUQI10pbQgJBrS06NT5pyH46cix9MICHQp8/qU7+paNeWR5ckGnsEARwEccLi8vNw8w4YNYODx8TF+/PixBeQ0UnBIMACeQJ1QoRt4Xf4zQ5iFrJWnXYFAVb8lfcCAZhQlUHIKlJVjlqYap5V8MxDIIgMjGinqzyRnPEZ6x0UHIt57/k5/u2f0XscRdPm7McRAo9POmTy4vPepbzIgwHLK9iGzFVU0oNLjDkDo89V5h6Y2HYqIMuwJ0vk4fY4/5KCkht7NN3I5Fal3xh1TzUtWSnuGHH8OOKnSYsUPgdI6jKYKcM6eMMCAiwzo1x/Pz8/j8vIyrq6u4urqKq6vrzfXUDb2of/582dcXl7GX3/9FavVKh4eHra8LrxpsXS+bt+UKTMnkw5lq0y6tSx4JpubxvOano+cxo23Wc+/e0+9ava2cZ9ltUNZaH7J2gB3HT+d8uJo1ij8vIsiPRTNen+OMqPN13nM8H+NIFTjKgMZeHYXqmyRpus6hI5cNED/d4FAZeBH1yoAwddm5GN6O+KIeoEPK4yZuR/1kjJA4EJWTklWId8s3ayx4sGTPTvy9NXj0vqoQZkl9pQqjx/pkIaBwM3NzeZ3dXW1AXP4Tv3t7e3munpnvLHNrgN+V1KjBuJBjP+VB+YiVXxPn8mmdNyz+twIIFR1nSXNt/NKL8h5SKDZfudy9JsjzgtUft3eJBnPzkvrKubPoJEsjvjSSEDmRXNeToYzQKByUelTF5XQMvZBTodm6WZk00UD+B7/7wABzXdUbsaHoyVtuQgMdKlq7KoTWOgUEDhwoMpWva8uD93wV6bcK8WeXXPXR4NG0+oznKcaZgYC+Ok0AdJcX1/H7e1t3N7ext3dXXz79i1ubm7i8vJyCwz8+PFjEzFAmYguIHoAL/oQlCk+bWM1ZG7AsjLl57pRqg5vSO/SuHD9PkgNfraFsZbJdWcFyHOlnLZLWRQkA8UsvyMg4KbYstDtsVAFCJbmB+p6jy4ikHn6EeO3AyqetNyMHDB248XxhfsjuXT6IFvo6vpoxph3rlXtlAG9Di0CA91BvQR1RWwbfBDmlNize3193dpRTfNZwtsS7zXrhCWd4hZbsZLVa65sVowKBODxX19fx+Xl5eaagoHLy8u4ubmJb9++xf39fXz//j3u7u7i7u5ukx5g4O+//97kh/J5UeHZ2dnmIzbHQJCbiPdRAZAaBgfOWDF2FF/XE8mmBvYNBBRwaHSKgYDOwWfe4Ovr69aOa7NGNhtHrs5IW0UGMD5Gi7+OzfiDnKHBjyNTlUF3QNbdz/4zOcesE6nqUBYtcDxXYyEDrihDo00KZkeUAQG9nzkWGY10kEvfiQ52+2VvkQH14Pl6FU7BNdc5Ln8FAvpZzCWIt0ujEFeFkjNyg8kJJbePExIWDBcVgIG/vr7ehP+vrq62ogMRsYkKYHoAQODf//735vz6+npj2B4fH+P29nYDEDDYsL7g4eEhLi4uNm8aHIJUmXJfuQHYNV6qGDugoKt4VIZ005+OjC1ZU+AUKctRVi5HA/SH3dc6NPLqQBwhYJDiIgNqtBRsaz2OiVx4Wcd8BQgUyGqamQgkytIpWnZgsuhRhPfid2lvB5YzAA0+Moft7a1eRzai6rkqatB5ho9ZuqxfZ2gaDFQhD8cwGom9BX2O0+k5EwROw7LZAi4OVWYLOzJyiHLUkUuRsRtMyM8JheNfFaO+NQAgoPP/V1dXm4WEGOjn5+ebKYJv377F3d1d3N/fx3/+85/4/v173N7ebvjFmgFeWAg+ADSQ/6Eokw3w+/a2vXmUKmCQA5qjPp9VfM4YV56XKrtseqG6xnlVP+XHTQu4H9KqI1Ap0Cw6wvcVfFdTBCybrAtmohaHoEoena4YGXeV2Q4IyPLgNQMuoqk8Oho5bFlUoAIBWWSAo0QMaqo2y7z+ihRUzDqlFRAYyYC792mRgczTd/8dcMhC/NpBiu7Z6GRK2Rl0F8LJ6qW0FDWO8ncRFUesXB3/LuyLqAAMMqYJ9IhnOTLA4OH29nYzbXB7e7tRvFhDgDrwzoRuTcKhyc3vq2JQZcmDKjNOHRopha5S4/R8rzs3WxErS/b+sjIYCGQf6srA98gTq8qN6C9W0zKryMCxkQOoOvaryMCMrHYBBI8TRGa1L0egNKNsetjlo+NyJKvKN4975JPJ5KHlpds3oAokZDQFBpwxZbQNYkOt3kMHCLj/nLcLtTolr16fM6Qj7+QjAEBWduYBKuCqvAT27vkVQoT92chjnh9vAuB5RAwAAJAWz93e3m7eQPj169fmHAYB7c0eJfg5BI2MCihTuE7RfgawyUKes4if85uhkQGO+C2bCgT4iOcy3THiV6cB+bqOC3UamG/mAfm7Njm04lcaRQcyxa8epfOAVa5d3SsQy44M85JFO6s6OnlwUwwMUjMHSMcI9JFGBTp1HJE6EwpesmiM0yndSE3Vpkt10yLt7IBA1ZGsFDpGOCsz4r0wsCBmaxH4ecdfRhlCnDUMzENVpkPWo6iLggA+8mJAnSK4vb3drB+A986RBH6lkNMhP2xABCPw8vISd3d38fj4GOv1euurhgAn+/BcdyVnKEY0igx0+x/lH4pmwQwrN51vVc8fY1z/I21nas7xmxl3xyvXzTkku9CholoaTa2iAzjOtrErq5sP91HEdnSrAwgqj5frxTKgUQrnZGRjVKcG+FpVxxn6DFlxbTqrl5TaYKDqtNFAH3nEEcuQmSoLRb8alcC5+xjNjIfgohjV81rvDInzgB6Fqpx3CADgogL8g5fPbxXwVwth+PFaISIK/EVDHPH1QgAOrDPAdwuY50OuG2BySH3WYLAXgv9ZWRF5FIx5YYV6dvZ7Q6Mq/4wy0Kj3OcTMIJsNgpsP1qib+0QryulG/bg91Lhk/aN5uefUeGqEckSHAgIRHgxU4MiB1Y53rrrKyWjmULEnrkb79fX3mzs4r8Zf5rwpKOSQ/6h+DgDw9a4cfBSQzyIES6MVnxoZcFSFmrqNOBuy02hBlkYHlMujU07FcwcsOR6qkFFWlpIuGtSFgwwCMMfPawb49UIYdbxayJEBXqjJwopBeX5+voko3N7exsvLy2awLfHIP4s0zJe1vYYhR6uXQQ4IVICwo+iqa04WM3Cg3iDOed3ACJyykVLF7oAW6lXNzzqA1Kkn7qu8zQAAF+o9FI0iAzz+kE4N7S5AgKkCBDw+FBCobHE+Og4UPGu/Z4C1AkBLjXgmv59Nmc6t0up5h3aODLAi7aKYzChkEYPs+Uxx75NGdao6JgMCHXCRkZsjw3WE+GHgFQTw3D+v8ucj0vOaAU6P8lE39v4ZTNzc3GzAANJhH4JDkhpy9RqcTHEbMyBAW4wWR+oiJYf6tS/1uq6Q13n0iO29J/j6DLEn15FtPmp9uT7KGwMCx7vji/PXa3zd8VqR8uSuH5oyIMCkoADXOnLQdYo6+anRZrDgQBrXT/tU+z0DqKvVahNJ0zIy8OGmYEf8aB7uP3jNQISCTTXy7qjPj2iJzLbBgEP3TpE6BeLCNIpeI3wYuQIhFWlnus7NPPSsbOfdVsrS8TOiTAFni8c4KsAr+GHQeZ2ArhGo1hjo1AKDB/WE0S4MJr59+7ZR9lgzgI8XfTY5Q8+eTMT2q4adyIACASf7XWOclZdtoqOgwYEAnu+fJfXkqkgDA5FszI3q3lGuSIuyHGkY2hmWzOhlnuahAQHzy9M1Wdsqvx1nJrteGahRXlkkwPVLJTdcH9a/bPgZCODthoxPFwXpRLScrQCNIgdZdETbp+J3KcCfkds2GHAfmumuFVDKPK8srXagKlyngNVjcesEHI+jjtbwVdVZ2RqBTLlmRoHPNRIQ8fsTxRrix/w9/3j+n79NgOf5p8CB25X5xnwx6sCLFjkycHV19a5+n0Fq+DPS+eVRn6hxdnI9OzbQr7wmQ6+5sirjP1IgOu+LZ2Bcda6Wn9P1Ac5piPi/V1YdgOB6a/Qkq0fWj9X6DeQNfrmP3bqCyuh9NimvFSDIDEum55yRc8dRfq5slRvtH6ernQyB2MgzGNejpmF5cvILHQZeKkA7MvyjOig5oJCl0XP8r/KeoSkwoJ67NhofmXadc3EKsBLiDk8jlAty30JXXly+1bVK2WnH8zPsleoP3xLgaQGE+TnczwaeP1fsogO8CFHD1MwXPH98swDXee2C8wg+k1iG1PBVfcnnztiP5IeBCMunRleQhhdyav9o+7OigjHV9QYOJKjsufZgZQqe+Xl9ZbDyUpk/XM9Ad0eZZlEyBeoaKZkN23b696OJdRi3jQKYTJ4rI9L1Mrtt0NGnTg6zqJLykIFSxwMveHXgQ8vFdQcEunprFvhz3br0kSB1CgxkjHTQkzY4D+QlFcwUXDUP5PLQ57Pr++4AhwS5TZyxcABAPzfsthvmdLw+QD1OtyCOiT1BBi6IDMBAKKg4ZFRAKQNh1YDViIwCimphJBvALL1O9XA/4b9GolRRwei7ucoKCChVdeFycT6at3cyjed4j/hqjlXzd85BFhVwHvGsV+3y/WxSvnksurA412Wm//VZvqbtnoHjTGcyr/jPdRtNL40AAQMBBsWOkP+SfTC6IErTdtue66LnmlfWF0toGgwsKdg1rvNyOvlWjZuFKDuKphNu6SLfrNwqFJSVWwEAGHT+sBBHB/gVQhf6Z88TbwIweMg8Rq4r14UjR+hvpDmWjxR1owB6z/VFxO866zO8loKvcX64pv3LPwUC/Aofpu5eXl5itfq9q1rEdvSBPfdMWSsYrIChG0sOwGbXWem6VxP5uiuH85r13tnjrwwXRwcOTWoYWJ9y9Mc5WAoIuhGBzPDP6L8I/6qhps+AgNbb5cnPcUTA8elAhLalAyrKr5LqxNH0efac3svG7EdFB6bAQKXcQE7YXANpSI+fz8iFeSqaQXAZ7bPxO4JV8aGeo74+mIEBXQug2wTjiLUE6sWxJ6KRHeUPdHFxsdXnh1o82KWsLzoGQT1+NqigzNAyINOpGf6AFHjE1x8xbceejSpbnY7I6sygobsXRBVNcd8I4GsoS8EAdAxATeahVWsnqnpm5JSyk+9jIBch4DUEHWPtzh11AEEXMHFZTrdkvDkjGZGvR3AOJ55x68aqaICTcZf/Pu0Mn3ejBHjGnc/wN71mgI24MsYhIFAW+sGzVecxOdSG6xXhfhUdGEUO9hGKcQjXASc38NSQcDQAP35rgF/v46mDLDoAo+Q8UShnlMveJx95FTcbQdRxvV7vZdAsoZFB1OjNaMCp8Y/Y/liWeqzq/TMI07dA+ONODAZgMNfrdTw9PcXLy8sGGCAq4KIvo0V5rj0wLt0aoSoPN92Bc5Ut8IYIB4McyJx+42CWlshbFi04lOyCDzb2Cgj4h/QVZYZWy9TjDEBiXthmjOSwq8+Rr4IAjtR1ZUbXk2S2xj0XsR0F3GVdVDca8FGy2AYDvL1sxPZqdnRyNceSIXyQdi6uuedHCiKb96zmQ/Xe0k7VAaILp3DsDET9kqDbTIinAvQVQt1lkPcdcNMBKIfbAIoZXiiMfmX4397etgzB29vb5psFhyDX1pUXpYOPAZmu34j43U/YFjUz/rxOQ6cDAOB4B0hEacDvr1+/4unpKZ6enuL5+TkeHx83UwXr9XqjsAEKUG/0XVVf8K0GMBuDSm6qA1NPZ2dn7/aq4BD3er3egBwGBbxPRbYAcKS4Z4GEc1iOiTQqgF/XQ+d8RuSAQOWBdsutjBqPvSVGL8uzSp9NG8zSLkAgI22PThRrKU2DATX8asRdiMKFghQxury4YzlErXlpo3QXNVWUvUWgNIoo8EBygufQthodvZ5NEfCrg7r1MCIG/KVCtzaAvVoekNoOavC0nmrEsMPhMRF4wzmOfJ55QwzY2BOGZwxwwK9tMihw20XrlA5v8gSjiT5/enqK8/PzeH5+3vCjXiLkRUGYk38XzVDF0wHjqB/kjIEq72SJfGD0Hx8f4/HxcQMIMlCgZfN17VvlWYGFtpfLp2qzQ5LyrWtUtO+yKAJTFQ3rnjs+WS+76HFGFSDgCJZbk9DVNW7czxr1CqRqeyvYrCgDAN3oZZXO0TQYQOZckNv1iSmbKsiYrBrXKQSmaqrBXXfpMh5d57HnP6o/px/xx96n8yI5EoDPCuvrg/pGAb9JwGFo9e41GsEGX8GCGkEVdoSbdw2h7UKjPlZZUkWndVcAwAYfIX9uZ12YmfWngjRut7e3/5tqOT8/j8fHx61+0fn32bUCSgoEXJtEbIdkeeqKAShk8/v373F3dxffvn3bAoavr6/x/PwcP3/+jJ8/f24AwfPz81akAB+/QoSJz3Fko6Mh3IqWeKCHJHWSWKeo0cnAfJavizDMRAZGhqfSlS4q0IkQQMc44MH10royPw4IdGyVowrAuPtV3s7BGtFS4DoFBpgpIDze9SnCexQZzVRQkT3nnUUbIMSVYFTen1ImmApA9HkuewRodH2ATg+4LYb5g0L87QFOz2CAowHMM4M95jfzlplPnWKI+L1LGH6HAgMR24NKB7xuOKLP4FyBARt0fqWTvXu+rmDAATNdy4F+wXoBfV4XGEa83zwpa4sIHxFw6SoFBj70M9c3Nzfxr3/9K+7v7+N//ud/4t///nd8//49bm5utoDO8/Nz/PjxI378+LEBBQAD/Ht5eYnn5+d4fn7eAAT8cI3XIXDfVlN12bjOxvOhyI1NPnfjV58fyUUFFDvRAC0/804zXaDpuzbClaXr25S6QMD9B68VPy69uz4C5/ysa58ZHiqa+jYB0KcumGBkmiFyJ4BqVEC6KIQNqIsydJHWEiQ7Sp+h6Sxcx6EyrQ/SOy9cDQcbG15wpgvQ9PsDqvyZNxxdO2v/MUgBKGTihWBsnA5BasiZMg+hig5oiJ+/5cBhcZ6m4bA/94fu/8BrEcAPjzsABm5L3ucBR2cg1GPWtuH/rg3ddNtqtdoCRLzr5d3dXXz//j3+9a9/xf/+7//Gf/7zn7i/v98AVsjM09PTBgQ8PDxsogMcIQAIeHx8jOfn5w0AeH5+joeHh809nV5AvfmtBZ06Udn8KpGCChBoOn0mq+MIEHA+uwKCjCqgNgMMQJ3I0MhWufIzo6x9otczHrJy+Bq35ygvdvA6NAUGWHGyQVMGGRRklQGxglFlU4X49mVcPmLgZwaXPT0O5bqwLntqGp7WzYMYCLCR0nC044sFNwMmvJAQ58wLe7PoQ7dC/FBKNusPkCrVrN84UoO2R2gfRhBRGo7UwPgxGHD7PLDB5SgYQuEMFhjYIGpwdXW1FTYf1Rt103pWxAAefDAwxdTA3d1d3N/fx7/+9a+t3/fv3+P29nbrNdaXl5d4eHiIh4eHLRAAg8/RAYABnD8+PsaPHz/i8fFxK6IAoAAZ5H5+e3vb6C+us1OixxIViKi9cRwzvkcgoVNOJ82+2msUGdhXOR1QpOmriFnmoI5oFii59N3+zWjxJ4xZ8HROHORCWvjPhlC9Sjc4texdaOb5rnIEuVfMOB23GZQSe84uFKf58VoCnddnw+J+zIP2He7xmyOr1WprjhbGiY0ZL2xD/8NAwTBlq8EPSc4j4KOLDigQ4Lc6AAju7++3vgfBC+d04SUDBCa0N0CVAyjgH0AAawnwwzy6GnCc47rO/Su51eoKBl1UAD+0B4MktAf4RGSBDTi3AQMAAIOHh4f4+fNn/Pe//42Hh4etaQZeVwEZ5jUW2r/Oez42qow8rxkY1cVFB5zH6zzfkZGeoWqRn/ZRFR2o1gZkZTkZqGg2usE8d2TJgYwR4HLRhCxC0aEpMOCEKgt7u3ma2ZWe+6LOwr5OepDrJJ3rZ+XJoIDbDAaSFTuIPUVEBTjErLvUZT/OA+SUAUd99B4bL8zH6lqGi4uLLe8V6ThkfSjKUHQ1WNB/rt0VBPBHoe7v7+P+/n5rwRyHxRnM6SJN7gOeH894hxFlHhUwYmEV0mtUTtf6ZLKtxoAjU7yY1X0cC0BAt8pGHm9vb5u9Mhg8Mt9oD4ABAIEfP37E3d1d/PjxI/773//GX3/9tbWpFtqTN8HKpjCrcXEspAaagYAugh2Fk13eeNZFe135SwFBtjaF72eLeh05J8qVleXPEbnPiHo4Q97975yVDuAb0dQ0QXZNQYAKppK+DgKhYmBRVdSRer96rmmrPLM3I2ZAQDVVoN4JD2hOpyFkXYHORolXo+vXCDWsrEpEr/GReUbfwMvSaQKeLlBwmBmaz6RRSJCP6k0rGOAFnOwNAwh8//497u/v4+7uLm5vb7fAgAMaaFtEXp6fnzd9xm3JfZnJm5tOwHUeW7jGEQLneTIpiFFQxD+eKtGPZPGaloiI6+vr1GN9e3uzYODHjx/x999/x83NTfz1119b4Bj1ALDgXRsrI5ZFhw4FClRXZZEB/akhH0UB9Ho1Vl37LRnbmX4Goa8iasetyqdy7KCHuY+zyFFGlXdeyVgn76WgxAGDDu0cGYjYXkPAIcVdlH8FPkakHvEodJSt6I+oBSxTxC4iwEKCo0YHsKgpiwZwaHm0ZkA9Rmf0uX58nRdbgR8OZWPQwDOF54X9BHSFu65F+GzKIgPuvMqD58gBwBQQ8A/gQOfIOT9eZ8FeMNKhP3jjJxAvLIzYjuAgXxhb5M+KinnA8xUY0IgDy122yyWDIM6PDZe2C/94jD4/P8f19XU8PT2925gJ44fXWfBU1dPT0yZ6xXmzvlJAyLJzSCDrACrfw9FFu5yBz+5lfZAZ/m7bZMavMop6nY16tY5Mn1syNalRg4wqveHAmMrWDFXt5CKcs1GBiAWRASeY7L2oADlBWq3ebyXJ17Vcfn+aj05RzTS4hgpZAYPY8OOokQPwzgabn3XlKlrntROqdFX5cqRAvT826MiX50t14RobIvx0Ix717rl9GAjyf84XdKjvE3DkSa+jvSBTLLvqJQAI8Op5Do1nn4p2cqCRmIjtHR/VoGGHPn0HH//dIs3z89/7fwC0aQSPwaJT/G6M8b4KFxcXNhqgUwHIF/XhNuC8s8gHwDHqgbZBFMW9daCLaLM+cH2h3vWhgCz3GU8vcl/xmANIVx2kdcU1JtVxmS6v9HtG+uxMxDAzdqi75r+EnPGc/d/NK4smOJCn6bLycGRdNiu7q7dDSfmJTnSiE53oRCc6Cjqu/WFPdKITnehEJzrRp9MJDJzoRCc60YlO9IfTCQyc6EQnOtGJTvSH0wkMnOhEJzrRiU70h9MJDJzoRCc60YlO9IfTCQyc6EQnOtGJTvSH0wkMnOhEJzrRiU70h9MJDJzoRCc60YlO9IfTCQyc6EQnOtGJTvSH0/8HNodZD23L3s0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+M0lEQVR4nO1daXMjOa6EbFm++pzptxvv//+6tzvTly/5kt6HiSyn0gmQJR+Su4UIhaQqFk8QSIAga7JcLpexox3taEc72tGOflva23QFdrSjHe1oRzva0WZpBwZ2tKMd7WhHO/rNaQcGdrSjHe1oRzv6zWkHBna0ox3taEc7+s1pBwZ2tKMd7WhHO/rNaQcGdrSjHe1oRzv6zWkHBna0ox3taEc7+s1pBwZ2tKMd7WhHO/rNadqbcDKZvGQ9toImk0lMJpPY29tbaS/OZcJ9vo4Pntvf30/7Cvf39/djOp3G/v7+o7L0/2KxiMViEff390M9+HuxWKzUb29vb8h7Op3G3t7eo3z4GW4D56Pfrm+QD55D23Dv7u4u7u7u4v7+fij37Oxs5Kg8nVAnJj5ri38/hc+rZ7kPkc6Np+bF6fU5LVPHksdTn8n4HLycjbnmHfHAs65drj6ub1rjgTRZfq7vXXlcluv3ihaLRVe656TfQe6uQ9ov1f+sD5VP+dqvRj3t6gYDvzqpwHXEgtI9XzGdCrPFYmEFvf6GMsczrICdUITC5+e5bK0r14efYQGvdeO6oD6qQDLhvu2kgGidZ5WckswAAefF/ah9WuWv1x1vZsAkU6rueb7ugLKrp7vueEXLW4eHXHlviRd39ECZzMV3S446cqDVgcXfhX5rMNBClxFegFfpW88rIIh4UNhQ/HyNFe3d3d0jJewsPi4bip3rokoAwEQ9HPws0mr9HRjY29t75K1AXd4CPbc1Vin0lxQ4FRjg8nuBsMvfAcaeOjlrrFd4a1695bm8fjeB/9bIeSn1vuPDDJg6b1LLe/W78MhvCQbGuJD095jnqvTOSxDx4AmoGBzPqLUP4vyQXhWD9gErcv6wix0eBwcK+HmAnJYb97WopWzUyn3pevTQ2Lq0vAJjFH0LHDjeWZecAO6pa+Up6SlzR9tPPTwMmZOBAlXymcFXeVs53a9Mvx0YGOtO6mEAdS05aytjaAUdsKDZU8AufMe0LQZ3bXcAQ0GBxj/s7e3F/f19CYQWi8XgCdBJuOnJVCn8Xqt0HcVXeZz4fosPK89UZgHjngpI/XY8UYHRqj2OnKWW8ajra8dHvTyVAfsx/Lhp3v3dSHmQjSRNx0aMylj2wFZlZYDAeYZ/VV74rcBAy+Wk15wrsXLLu/ucTq3uTDhHPKzbqwWeKfisnJYbjRWBm0xZu7hubvL1IO1NUKbIegHhGA9CBZoqxd5K38O/lYdKhR8T82VmaTnwm5WFb8fjrp2aXuvs0vfSOkBgW/j2d6FMnmXGVAUGKgCvMovnRER0ybBfjTd+eTCQMY+710MqsJzA03TO2q7Wz5Whl8vlEJGv+fIz7FHIggDdc9oO/L6/v3/kneC2OOFdWX3bSA75Pwc5Hsusdvfbpc88Tlne+pwTlFqX6sP5uR0prl4tYFmBM/2uAEEFvFplZp6JHb0eORAwFgw4WadLplqWm1P4nRk2/NyvxCu/LBjIhGymFNexXHqUhwMFmfXthLXbDqhAgtvEgKAqT5lZQQ0mEe9M0DIw2fBxbX9OBbsubUs9QJVwctdblve6Hhgd/+rDQagKAnTss/mhzzrKgIDmnXnHNC8tq2Xd/UrC/S1QBQJ65Fj2XMTj5S8tL8snIobYJ8g45yXo0RlviX5JMNCyTjKmyqwUdy1jSkcQmGAwZjRV5EgPJczeAAYBleWV1VuVS8bMYHSdRG55w4EBVhKc5leZNOtSryUxBmTidw8YGGNVZ2kzQdgqN/tk1n4LcOt9B+w1Ladr/d/Ry5MaZgoCeDdTNncyo47v624qR26Jgeuj8ozL+1U8BL8UGMhAQGuCr2NVqWWilrXLn6PsmflUyTrFOplMhu1+rr0VclWEzfVvuUxd+5AfAxu1DrnN8Gxs4tAWrk8G4FxfVDzz3J4Gl5+zqrWOmYLWPFRYOt5loaf3M4FcWfdZ/bK+7p172Rj1elGQRsvcgYDXowoEgN90a3Nrh1IFFNSrpbIxM3S4TuwlwH3ekv0r0C8DBjLFVaXNhOm6gqEFCIAssd7OSprroq75iFhZo3f1ZPTKbeLfGRhw+fC33kfcg7rUtL3YeTCZPF5u2ASNUeKtCd7Kq9e6rfLUsXDpKq9ABij4Nws8l7Zqh7veA1aeMs9aSt/Vr1XWryLM3wI5IOAMI7ebyXkXM95z5bAM5nRVUDenYxkHIJBtpX6L9EuAARVomQXIpIJK7/XkkdUF35nVzUoSaTk6P2tbphw4LfLRdS7OS9vv+s5dz2IVIlaXMDBR9vf3n92Kfio954Rdp23rpO+ps7PoewAJp1eAwXmDHCh1wCHzCjAvVvUa27eZp8F5DxR87+jlScfBWeQaAM0yT/Nxsj4DmxUfqXytZJoL+mbvqNbjrdGbBwPVYIJ6hWmrnN566DOct0bl4zcsZ8fATlG7Ojsvg7PI3LMZoOplbEbejpz3YEfP4552Y9Sy7Cuw6wAng0HHh87qyoBAVkbWBlXiGWjR9mWAuSprRy9LDghUx5/r+KrF79I5+Tdm3B1w4WVRJT1bpcp7m+nNggHnBsoYpPIKjCnL5dVzzVlLXBc+yEf3ebt8M3dvRKxY4y0g4PqHr7lzDnDwkHvJjbrLHFj51ahlwY691+PW1nuVUq0UZpany9+BRV5HVQupF4BnfaC85az61nPqIXDGwlsT2G+RKlntAgVBui2wMvpYRilYVHCglF3nMrUdKsvUEOoBu9tGbw4MuIEZ4xkYOziZpV4xJVswPQyhjKRWmLPitS36DCZYFeRSCcYsbw2k0QCfTQcKvjb1WvaVEs7Gt5WuReodaKV1cyvi8YurQLxkELEqvLm+GShVZd2qc8vj9Vz9tqPnI2fNV16BCM8veMbJXpafbAThd3aCa2UwaRv4m+Wq7lRQo+gt8d+bAQPrgABWyg79tQYqQ4X8zdQrfMFAui7GClYZablcPvIawAvAdWXlzKcY9jKlegKQN7+XgCemBtUwGHgrk2BdyqzQKl3rWb2ulFkxDiDqcz35ZtZb1Qa1knjbbAXEeZ606q0WX5anI677uoBqR/1UyWp3DgpTBhr1eX3Ozb8MnHJZCihah8Hxc8z/zKdvNahw68FApYwzlKjPO+HhlHpmYWgZ2XdWtgr4qt5aV67Tcrkcttw44cxAgIV7r3seE4Kfz156xO3ict/ymQItxaTpqt/VM620fD9TZJU3occT1eL/lsWm5NymGVDvnY/6jBPmoFZ/anpX9lM8iDt6LJv5twsO5GcqkFsZfGy8OM9Rj7XPQMCd/8JGTzbv+Ju9pFrXbaatBgMZc/G1HiGIAe+x3Ho8BRkIyARalacTUFpX/M6ibfk5VsislDPwoXVeLBZxd3c3MDX3ndsaqcyvbrm3Qk6pVxb4mOsZeAT18EcGEnvL5jxaAtY9r3zp2uKEqCtDAXqWH1NrXlbPVvm5uri8tl2Qb5IqEMBgQJcFnKzLDCeQzgdV/D1AwJWlnlCNY1Cg4Iyi/f39dFcBp99W2lowUCn9zFLNBIwbFE5TCVYn/DJLu7KCMqXP5PJVxnaHDuE33l/gDvnJEDnfQ3nIy0WHRzwO7AEp+ODvbQYJlTJdZ/JWAq1XyTjlnwm5ykvAaZy1pgeyZPlmL8mqQAWXo5ab1qtH8DvKQEnruSyfHoNhRw+UKX/3cWAg8yJmPMzf+L0OAGClrvm32gTSOC9Humy6zYBg68CAs6IqQVoBgZbbz+WbAQdnVTllzvdYeWq9s/oqU7cQL4Q5ji2+v7+Pu7u7FSZUEMCIFp/pdPoI/SJP56nIELrrV/Ys/IrkeFa/XZ9kxH2aWVDVc1ovVxcHBrJAK/dfy9HxR3m6IyV7PgPZTxGcleDlceB02yyst4kywItxzAw4nQsqjzTvCD8f9LoDChVQdPnrNSdnM12B63wgG7f1LQCCVwUDvei6BwiAMiZwitzl02IOVXD6rArAbO3UMTDfz9rWEqR64iCEOr/TQPuE6wmFwGCAn2FA0FO3TOn96rsMHK9WvNYSCBm/VGmzctxvl74HQLvrjofd/wwQOqurVW5Pu7jcHlK54crdURv09oynk52OMrnD9yqA6eqpeTv5xderNvH5MFwOtmArUEa+2wgIXg0M9Ex2Tuu+8bslsFqd3cOwjglbxMxT5emUuwKGloDV6GoXuMeKmJEto9f9/f1H7zzgXQhO4bt2ZMheAcqvRE4I8nVNx1T163PVKStb68BlV6A3s4qqdHzd5ZHVl+dwT39qu8YAryzPnbcgJ+X37FMpczyL6xV/OYXqQHAvMGG55MjJNj1907XFKX8+FZbzV4Np0/QqYKAX+SMtfyu1rJWqgzNGwbXWdhDHAJmC1DL1+d4yFD1zfrzdLwsWdAADngCAAnw7JJyBgmwi6vneDFR+Bc+AUzT47uXdSqBoWpdfxuNZHVqCsGXBOcGeAaHspEkH0Cslz0CAedJRZRBo3r2gYFutt02TG7Psw9TDcwoO3XzhvHrq4AKtI2JlCVW3IPI3yy++zsZTBgjwrVsPtX0un03Qi4OBHibR9Pp7TCe1LBxXJzynlogbrJYA5dMEx1BmbWvdXRoFAo75mPb2/nkJCAMC5FMJaK6nS+MC0hCIiO9tJGd9grTfM76qgEALPFbptVwWIsqvPYAE+fFOkUqYap7KmxqYyu2q1kkrsMKkMsPNA/7dM158v6rDpoXztlEmPzN5qsQyqQJ2jocrIMC7rLR+2e4FLqOKVYEMWy6X9gVtXCfHT+xlxXUn47cBfL4IGNDJqygN1GMtVFR1XMZUKlzGdj4L0mwCuPb01FXRMz+vdeZtfLzlj8FAS8llisOBNpRbeQVcHQEEthkMRLQVQ3Udz2fAqfXdkz/fV0DA9/V/r/XRWzaXqwKXecMdC6ttyNrk2qt11LmS8fpzCNcdKMg9tr1AgOVbJl9cOS3ZqgpfAUu2e8GlRf7MW5z+7u5uyA9Lq9hO6I5ix3N6mizXowWaX5OeFQxUyjeLMO3pgDFCTcvV+uBZzdOhtUy4a1udkMryyCybbJuK/mYh6078c4iXryP93d1dRDzeG8sEF5r7ZP3PDK7bHH8loZoBSu7rXjDA6cFPvYCyAgOuftkzTqhXeYBYOKqwzcrUEziRfwUyM2HdK0NapOPmLLfflZyCdnxSGR+arpKxGrnPc4K/9eN2TVUgRfWSKuqIeCS7EGPl+iEzlrgMzVv7wMmP16JnAwNO+VYDw9TTaCcgKyvHlZdNbEVzLr+qHHfyH+dZ1YX/gxF53dWBJ8d0DoRkEwJAgOsHBo94WEZAm5COzx5wCF8nkNub/haoV6hxevd8CwQoORDIfV2ldcC3BbAdUO99nvNQV6gezuLKzASp5l8droX/lSxwoIr/jzUyfjdSGc7XmNw4VOn5OU2fjanLz/GrAxiVfHSBgSy/nCGjz1bpePv3ZDJZeYV9Jms2AQqe3TOQDVgLpa1bHvKqEKMqUVd+S0Ar87BF5JCdCjfOJ1Meri64xyAhO45YFQczq0OvEKj7+/srkf4OtDmGZxQP0gmUTdC3TC3FWymnnrwcuX5sgezs+QykqwJX0Mf3XB74rydUZmW2+iUDA7pM10sVyKvm5+9KFRBwvK+yJ8tPyfV3lmcmP3XHFN9zxpPjH2fEqL4A7+n2bXf6KusK166sTxQMvRZPPgsYcAIF1/U+U2YNaJrsHu63gEBvG3osQh5gfk+As5R7hG6PRcPXsmccyMomLqx81AOvJNa07PrlZ9lrgUnoJkVLOLxFqgST8uLYvJh6Jr8qzOrZCkS4PHqWdbTOLs/svgIOzq81j6t57SwqJ1QdX2Zj9zuCgwwIuP7KnnXz3/Uty0L9jWcqRQ9Sg0nnpmub5qXLAo7/VCbyNQXQnIdeb+k2TfPS9GQwoMLEDVpLMFYTlO9zeXzdoUdnPbtBcPddvZAn78vn6FJFhE54qZVetdnVg8FA76TM7oEABLitADtAwdnaLjwD3Ha3NOB44i2TTvSIttWZgd5M2FTjpgrXgYHMU1Hxm5sfyMtFautcdMKbn1U+0lgVl6/rH/U8aJsrgK1tdMqqBaZ+dcqAUg8IqxSc4xn+zn6r3NRyHHjQunH5ru6Z9wDla93cMpXzJmiePQawq19Ljj8HPQkM6OR1QYKcFlQ1qtUx1YD21qGa8K26sUegsnz4ntYr237olALX21lTWfkZWFBmBZDhsqbTx2yR1U23CTmPQDUmb4mcoop4DARaQM0pukyAZfXgpSq3tc894+pW/Xa84vpBrXu3dBTxAAacpc7PVv0DEOHOM9D5wvm6dvD9HoH8O5ADRzouIO0TB7Y4X5WNlTuen2P+UdL0HFTK7XDtdMDDzROWk65sxxvgU263etsyHeBAxGvQ2mAgAwGVss7yya4rInL5O4vW3WdGckzohA6X7baUIF0mDHlyKDjgNrq2ZOT26DoPhusDLYvjBNQC5IBCpkogOGTd4ou3SpkizdK08sKH+S6znDVmRS2XFm874rFXoc4Cij2AWb4OEHB/ZMo+2x7G95hve0BQRb8SPz4Hab/jtwPzY61bTqd80KP8OE025pX8UX5UmejmigLQ7Gj2qs5sHOl/LVefdYDkJQHCs3kGqohk1+ER9aENOqjoDM1ff7NQzawOPgQnQ2pcJj/PywMog7f3ZUynebslA37GCVnuJ12zQnqOY+BnWLEwao1Y3T7DIEfRLI+1xhHomOl4vGUwoMLL3XtK3vphAOqApgKBzNKqrPmIthDOxsyBzmxuVsqa657xiAIepM3mCKfhdrbGKfMY8P1fmTIQxoq0GksnkzPw58jxIY8zy6xKbmr92HDTsrhePOfcfOSdABnY5rwhH1XuumerPnxNvlsLDFSMk00oVbxVRLy77sCGpnWue6RRphgjLFvtVGGtjFGBHGbElmegp36IaUA6F/Hq6sTMqxapHr6h9da6t/pp26lHsD1HGZnirNIrCGBg2ppPmSWt81k9BJnwV3CiFiRAN4Qo85V6GLhODvxg6Uo9FD0gRNtQKSROo/LhV6RKjmdLA87Q4jz0OR0PzYvz0N8ZVfzOeWp9K6tc65AFLeqOKm6zylLl6ZbxpL8VEGXz8TnoWWMGWgItywPkOskxZyb8tDOzznb1dWuvzEwV2GEr320jwW9XH1jZrQFWZcCMB+GIe9PpdKWPnFdA6+iEc0Q88qLoBHKWqyoX7Yttpx5Lcp20FU+2nnOKtzc+JuNbzZu9Qu7bCUsOqMWbLzEf8DptlAFgiv8cgAu+ZI9VJU8yueOAQYv3KsXWAuhvmVpAwAV8ZspM+bMHALiga6cPKv7G72we9uiXLD3/Zy+d8hO3W+8pIKjAgJbLc+U15OezbS2s/uOadoo2Mms0M1qWv5btrH53TSOdFZG5fLVeOnBcPtqqbv1Wf2Vtc9YgwIC6jZ1g1NdqqjJQl3MWX1EpCGXgHuZ/a9QLAipAmqV1/e0ErRtfB8QyL5yOfQYGNBBK59B0Oo2Dg4OYTqcDEMVzd3d3cXNzE7e3t3F3d7cCPplX+SAsrV/WR6q4dA5yX1b9rdecnPkVwUBEbtDxh/nReQUciFCDpbKSHc9quqr/WxZ2xkNufFVu8z3XL44HXbu0ng5UZHXSPF4KHDxLACH/5/sgHkxncTtyitspdU2ndeT8+BsDqP81vcuXB1rro89q2T35ZqRKQcGAKgxMRD4+E9/s9merjkkPIkKZGrHL95UnsqWJt0jPrRyySe76SoVOpuBdPSswwECAT53MhKGCEQDIg4ODmM1mcXBwsJLP3d1dHBwcxPX1ddze3q54B5hPNQ5F66uuV1VAOBOD6+vAq7bfyQXub/DwrwYGHLjTe0wZEHD5MX9ma+ZZXfC/JSt6DDXNOxvjLB5F+ZBloAPqlb7ivLO+zOrPc0Pb+Zz07C8qqpCNNrhSmpyHCjTXwT2kaE2VnwMYWh83iC7AhvfvO0bUcnosTc7DgREXVwFGmk6nQzqNAVAwcHd3t3KwEAQ+2hXxeFeDq1NlUbwlqkBmNWZjBFp1TeeAE+TKG/qc5q+CW89cdxaOghHUB8/OZrM4PDyMg4ODoQ739/dxe3sb19fXMZ/P4+bm5lFMim61dXPPBcwyCFABrVZlNf+ycXIK4a2T8gZfd/yUzWEHECuQWilBVzd+zoE2zVufi/BxZnpfjadW3irvdV6qjuFnK3mgAET5TgFBK791aDQYyJio5zn+HtMQxySgVge7Ce+Ynn9XjFEJSeTp0DCUcFamlp8Rr6s6Ie3ayszLb9nio42RjgMOIx62GOLI4vv7+7i5ubGomft0uVx1D74lMOD4zQHbiirhVaXX304Bq5BzCkv5osqXPQNIA+HDy2hw/WaAYDqdxmw2i6Ojo5jNZgOAvL29jcvLyzg8PIyrq6thyYC9BFwvN2e1H5E3gwEVllV+uJeNgXv+VyEHGB0A4+/q3H2Vf5kcaO3e6qXWnFK5qIHjSMN8rwCYx1yVssr81jJcVueKx3V82PhaxxDuoScHEPLvXkEJch3hLJxe0o7JkKxjfqesejpbkWFErETz82Cyi6mKIcB1rSMmlO6zVsvPRW0r0/ISAPcBv2kQz2A9GEBAt2X+SkAApOOn1/ibqWXtcz/pb5cu8waoAMqETTaPFCzoaZoKIuE5Un7XNEdHR/H+/fs4Pj6Og4ODiPjH03R1dRU/f/6Mg4ODuLy8jJubm7i5uVmJFXB1Vd7RuebS9ACxDAioInBp3yppv2WykBUjrjkDSHnIKb+WHOhRcG48s7F1QIDlMZeDWBf2ZLH8ymR11pZeGcdtdGAhM7Qc2HpOQPCkmAF8Z0KnUq7VhNWO4LTKcLivddDOVWCATwsIuPxUIOOj+1knk4eAPQ7I4/XPjPkzRQMlDqsIwti9ipiXKTjSG/8VtUPJw2JTN/Bk8vBO74w5efK7LTjbTj2TsJcqEJTllc0rB05cWa35BMqse7W2mbcZECBffv7g4CBOTk7iw4cP8f79+zg6Oho8DOfn5zGbzR4FGPJyFPJziojbyUAJfMreD/CeU35V37s+fQs8O5YqmR2RL4tqXyr/OICqn6wslYPZ+Gv9srYBCMCQUTmOpdGjo6M4OjqK6XS6EkALowhxLgh+ZfnrQIObv9mcrNrhdI/qJE73HIBgFBioBFUPY2nnuHvuedcJeMahVa1v1lGOWXUQnWsLjMYuKH17IdzqSKfbpqp6adsd0GG0yi5/jV/ga/yby0CgF2IFuD8wESJWt8mw4Oa+VEtAx+ItUA9fR/jTIHvzxf/sOyvfKcdM6Cpfc97Mw1kAFEABfrtliogHwXp4eBjv3r2Ljx8/xufPn+P09HTwKJ2cnMTe3t7AZ/jc3t4ObcE8YRmRWWXar+BrBRfV+HEfumuox3NZXttCWb+4fnWKx33c0pUrt5LF+j8bawfqlK8BBPBR/gC/Hh8fx7t37+Lk5CRms9nA87e3t3FzcxPz+Tyur68HLxZAAmQlfzLqAZWub3qB/XMBgrViBvh3NelUGbhK93RUxhT6rQqKhYsqU83bgQGHzHidid2rrp8ACHRCscVe1a3VJ+zO10nJfYIDW5wrD3mwAtf6YiIo42udXV8i3VsQqJXi4LZqe5UXs0nsxkfzV2Gn5arVm4Ew7nPlNV4acEAAyl3jSpjfme+xi+Do6GjwDHz69Cnev38fs9ks7u/vYzqdxs3NTVxdXcV8Ph+ELHu3UAaDLA6ccoCA56Y+3xqXCmBwv/0K1AJGyiv8nMsny9vNeebVqnzl2cygyAAJ8yi2ucIzwF7byWQSs9ksjo+P4/379wOvHh8fD+lubm7i8vIyLi4u4vLycgh+xTbZvb29uLm5sf3s2tVD2kcVOMjKeYqcffZXGHPlXLpWZStU6a6x8ldmUUHtlGHGdLoOv1wuVxAnGCwDQBBIDAi0j7JJ1Go3l6MgxoEBBkcODECZqNLg60jvAoFafan12EaqBKAj186sfaqEM4HKaV09nNJyY1IJSgcElI+Z/3kZip/jZSe4W4+Pj+Pk5CROTk7i9PQ03r17F4eHh0P9Li4u4uzsbAgwhMWGj55SmI1HpTAcH7IsqABASxH+6lQBAmfAVfO5kuG9Mo7llPKx8rN+2GDT9Bzb8scff8Qff/wRHz9+jOPj4wEEz+fzOD8/H+T8dDqN+Xy+srNqsVgMni2U4XhRDbas3xTg8m83Htm8WJdGg4EM6YxBP65DehVihW71+UzxantcPZCO1yIZabLrKWLVPQnrnwOxWge3MKgZQ2A2LtvVHy5avobnleG4LpUrrIVcW0Bn26iqX2tsVPFonmPAAH9XCouBgAsaVcGo3iz2GIGYT/k6W1v48JbC09PTYf0Vn+Pj4zg6OhrWXk9OToZr2ILIcQgtjwv3gX40Yt15D/RaBQy2nVfXpUwO9hIDAf0oz6psyeSy5q9luTnEHgCn+NUwiohHQODTp0/x5cuX+PLlS3z69CmOjo5iMvknLury8jImk8nK3EK+vKyq80R3kmVxBJymBQ6YOK91De6MRoGBDBG2Jqsjp7iydO7j8mo9p3XUdO45ZnKOPoUQU0UcsbqWnDFDr7KsLG4n8BR0oH5g3MVisfKKYm0DAguz3QZV/bhubhzeAlV8wv8zyiaoWi5ZuSoossmdKTJn/TuhydsEIx7iQdSdynli6yDPARw2dHp6GicnJ4PVz/eWy3+WmhggcDquA29tdfPSKXgFrBrU5eaQs8KyMdHfb41ac7DiL/c/kzXKixkozurS0isKbpkPnafWzY3ZbBYnJyeDV+DLly/xr3/9Kz5+/DjwKpavYPnzuSu4hqUCrSfzsnolnL5r9T3LANdnvXKph9ZeJnATq5eqxmk6fKsg5Tyyeqg1xmkYtVUThe9DcHF0PcpXpc91AWPwdwUGuK7qpndtbCkLJg4KY6Wk6BbLG8rElbWl/ehA2zZSBRgrpN3bHs5fwUDWd1oHl8ZZ0iiDvQFq1TtAMplMVgCgc7tC+EKRQ5kfHR0NywJ6D5HcEMJYSri4uIjDw8M4PDyM+Xy+Mo8YnOqcd+3W3TDOau0xULQ/+PtXoV5FrNeyPoNMUxmockH50/Eyf5xBwcAWQBM8xNsDIx4OTkPAH545PDyM09PT+Pjx4wAG/ud//ic+fPgwBLvCK4CjtDmwGtd4jqnhFLG6k0u9xOg3tE37S/uc+0PlgTNWKplV0VrLBFx5rXClrFyDOJ0jtx7k8nZCU91GXEdFrU4R8/VWwKAK12rtEwpZ3U+uH1QJu7rpEoP2iVpKmMBAv/AUsNLCTgiuh54vkFnBWvcW4NomcgKqF7z25J31Q4/F4MjxsYIBde+r+xR8wR4jXkoAEIDghZsfQhgC9v3793F6ehrHx8fDPZw1gOcQT4DArMvLyxU+cwGqOj/4v/K1WybgdraAXTU+b5Fa7WqBo9a9yqhSqxzfDAg4rcpMleMMAnRJCnwW8XAMNnYEYO4eHx/Hhw8f4uPHj/Hp06f4/Pnz8Hn//v2g2AFkofx5B8Ht7e3A11gqiIiVLYdMrLfQRgYEqh8z2eqAlaN1gUDEEwMIlRm4MhX6bE02VnYq4HgN3wGBCP+qVvUIVEgUaRXNRTwcnerayEABaDCLwGcvgfaBE2YMCrjO3B/IV/sGzzsPBQQxR9xOJqvbypbL5QAO+FAijfIGw7esjG0kJyz1v45HCww9d/20Lj1gLAPSzC8Rq8GlDAQggDkOAK5+eACwTPDx48f48OHDsFXr8PBwcL0ievvdu3dxcXExfPh9Bqrkq3Zm/FRZ/5p3RdvOr2NIeQLfzsBgUnmdzQ8FBK7MSnnxby4zAwHgIyxNHR4eDkAW3gB+QRY8A0dHR/Hu3bv4448/4vPnz/Hx48cBwJ6ensbBwUEsl8uBb1m2Ir/r6+vBI8HGEctEjeFRHZJ5hnuseuc1ycZsLA8/eZmA3UQZ0/SQdgiuQTi5k6Q0qj3rYBUsqjD5WU6HQeTncPgEDt/hDwtSLS8iHqFC7jvtV1X6DkXzui+UPb4dKACDMBhQ9K59j/pl2yR5vLiuTphvo4DVvh1jneuEc/yfja2jXnChebp2uPwUvOmzAIQQwBDCsOY5LgACE0L6+Pg4Pn78OAACBBQCVCIN5wVAoQFg6jHL2pX1V2YkuDTaxxlgeKueAVCmqCujqud5JzPZWKrKza7h+t7e3srS1PHx8eCBYuB5eHi4Ilf1HAvISniweOsrvFj4TCaTga8jYjh1lbfDXl9fD2AA95EWMS/cryxHddnVyXY842R3pieVeoCF0rN6BtT1gzSgngnFDXRLBIoe9TvrYK6rAxGube5ZVqaMXHldU5U0nsE2FKzF63KBDlw2YZgR2GOCvNzZAapAUCbcW5PJw+mCWZS5eje0ThVtIxBoUTaZKj52SB+/ud9dH/bMDwcEqjqxpTKZrMYFoEy2ynlZAOv8Hz58GFypOGYYabCbAEFZ7969GzwHWMfFEgQAAQQwBxDqpxKY3PYMDDnA4MaFKQMCVf9uM1XysWc+Vsq/ArxuvJxyY0PIGT8ctAogADf/58+fB4UO0Il8OFYA6/2TyWTlLAzwKZazIEMxB3AoEXvDTk5O4vr6elg6uLm5sacWZnPU/de+rJ7LdF/Gz2Nl7pM8A6hIhaIV6fRWOgMDWb6OWpaSpm1ZBc7K5bUwDbbC74hYAQIQwGzdR6y+hKilHHjCwLJCvfhYYQd+tE3s8cBaGMcROMZkYOXAlZsQ2wYInJDrTb9OHgqeNR8VpMqPLbDoLDF2dWaBTiAGAhCc79+/jz///DP+/e9/x6dPnx5tqd3be4jQVmufy2eAwQGGPK95/qhS0MAr1x96fQy/VXLJKbe3Qo7P9Nspc302s/D5uRZVMlv1CGQkL1Hx+RXv3r2L9+/fD14ofnV2RAxKmRU0FD34lZcYAEyg6PENEAEggKUH3nHA5THg53Y546zVZ9XY6LUKZPTOg2fxDHDDdOIomtEGZY1QQaABepq+us6gxVluDjFnk4gHWoNiuL687WW5/Mc9xPv8kRaWE3sHWsCEy2JAgGfApNX6PpOWjbUzXU5Q1O3AQDbRt5UqIZfxQpZPiyoBoPMim0NcLy3f8QZIdwpwGay0wUt8QtuXL1/if//3f+Pz58/DchHcr5PJw2luOOPdeQg5Cpy35upc0GUzKIWePsj6lds69jl+9i2Rk18ZyKyezxR/y9CqPDu455SmGjlqpeuHQSjHniBPVuwob39/f+XgK4AIDjrEssDt7e0Kj+NV3BcXFwNPQq47fegMJ7eM6/q/MrKrMdMx6eXftcBAptDHNCy7rwDA7QhQ8MH10OtsUbD7sULA3MZKMfMzzMRgYDAb6qX7vFEv7Vc3ebRN7pANjgaHtb+393Cym44T9yUjXI5/4AAZBwKqgEWlbQIFmeJ9al4R9Xoz91MFmvV6Dw+6+eKeYe+UCl+2xhAU+Oeff8a//vWv+Pz5c0wmk0EgwtsFQQlrP+IhSIrnnR4Ry+5ZBgN4Xtvh+jADRmMAaWv8XJq3QE4ZO77P5HOmxN1vJpeXgisnh/m+LsPyewb0fAHeXcCAAHIL5wLc3t6uGDwMSCEvwdtXV1dxdXUV19fXA+8CkMxms5X82bPqPr1AwMmJjFRWZH3ZkxfoWY4jduQqWU1cZVynFCO8AGCQwOn4vpsUmWDWZ7Qc1wZW0Cr0GAhwWpCLLtWyWGiz4FaPiQpjfNQ74BiWLX8lPK+gQMEZ938PkNokKT+MqWuluHue7Zm8ToBrGq67CtEIv8WVlawG7yHQCjEAnz59Go5s/fTpUywWi2E74Hw+H5YJOKKbt1nhGnsGspMMMVdQR9fm6sPUkjstysbmLZDyZCVLx/YP82YLBDjjRp/rkf0q8zJDiYEDlppw2BrLOZ4nEQ+yDe5/DhbEoUMR8UjmwuugQAD1Yrnaw69Vf7t+VXqqrH22dxOAnMXDEcJIo8/rRy2cHjDBeXOnt5R6NjhVh3M98R9WldvPzSgXFjusHzBuq395QrAAV8HJTK5nBWQMy32BCcPvmmcUrEDA5f0UhPrS5MbQCUr+3YPax1qUquyzOugc0CUfBphOYEY8PuREwSsvD2ALFoDA58+fh7VZ5gn0G84aAI/ALYt8+RtWHeIG8BvzhkGp1j9bd1UBy22s5nlL2W8Lv44h5W3mb8fDOn97lZKTuS6d5p09F5GfQaDLlOAzVt68E4bzx5ZAHB4UESteWQ7sxjZEfn0xn0CoPKhLEJmXNONRx4ssR90psK7vVD6sCwqeBAac8MomHFeQK10xLwMCpHEuFmU2h9K0DAcesvq4PFzdWNhpYOByuVzxGoA42tV9tFxYUFy2BqRBkPKyCMAH55kpc9RXBUjrDYecRwvEbZqycQYpX2RUgZ916oM8edy4jhzHwc8qT6rV4/gXLlbmWz2h7Y8//ogPHz4Mr3gFSJzNZhERgydhf39/ZW83ysYJhOB5d2AM3LsAytoX/DIt55VybczGqYe2kV97SNvt5JRaq+75ai5wWgcCMrCVzbEKmMP9jrV8fK6vr+Pq6mpFxnIa9lIhLQ4fYvmJvCCbNRAaYAKAANsK+XXGKjOdDnRA1clOHSMnPzN5pLrLga8WrQUGtBFcUW2INkCt2AwMqGuI07cUjDKels2C1QlJp8hUYfMkA4PBsoKAxfNcDoRwxTSqUF1f8zMRD+vA3E5tX+Y6dp4b17+820EFh6snj79uudkUVf2p4GsMZYLVpdNyqn5xOw8y68sJVJeGA7N4DRaKmvdi42AWKHx4m8Df4Hl28XP0NqwbzI/7+/thrziiwhFvoLJBrTD2So1dg231G5fJabcVzCo5xeKAbqawNB8H8lt90eLLjCdZ1oN3Mea3t7cxn89XtgBGPAAFWP1w6d/e3g78FPEPGLi8vIybm5sBlOIeaLFYDNtgwdMc3M1BhQwGVI5mferIyZ5qDB0gUKPLyf8x/Lu2Z6AHPapgZYWkKAa/kcYF27lDb1y9HKjg+4wCFbUpknaWMHc6u2bZ3YkyszIU4Gj9mXhQAS6U9vYev5VQBRv3Pa/rOsHnhIa2Qa0AF7zG/efqvQlyYCai383fg9Z1wmYTsge5M8DOAKNrj7YXwlA/Cgb4VcTYfgW+xhzkoEAOBIx4OAVuMpk82ucd8Y+ABhDg/JEn3K/Ii63/CghoH/cYDNx3Lr2Ta9tGDpg7OeLmcitfnR/Mgz2KpgID6gF2HgxY5ldXV0N5sNKvrq5iPp8P3ihdCoMyVxnkZBvmBn47DwUvGyyXqwHhe3t79kjizEOgfeTStPhT573TIyqnKxoNBrRA/lZmyyrnGskKS4EAK1+HxvjbAQEGIbw3FM+p5a5ojN3mIG2HBg+yYNMBU6XJDJURAwFWMnwfgMDl0wrI4j7UfuHJj7yyCaVnHvCE2jQ5NA7qBQIKcDPhqkCgF6G7Oj3FAuHYFOZPXmPFPONzBtwLjTIAgjryOi6/IObm5maoA6Ky8dE3F7p2ZoBAeXCMVaafbVb2FTlloDzklgdbeVaAggEBX6/yyGQSy3jHaxExWPUR//DZ9fV1HB0dDdH+AI7MW7xtEMtP7Npnmc4yS8GOAlxeguVjkpE30joQoH2WgTWdZ6z3WnKKZTTS98retZcJKkvEAQIFAzzwuv6pTOLSIf/MamWFy2vsbgB0L766Wbi+2STBc0jLQYE415+ZDgMMcKLI2PUnfjvXsU52BS78rV4BZ1GpIOZy+FvvqYCtmH8TlAnM3rqp4sgUiQMCrgzHj65+2YRWQeCexzxyQICf5TmHsYMQvbm5GQL8WBHjJLb7+/s4Pz8fPnxwFbYe8smWyuuZglKDIQOv1bOTSR1roX2nNAZobIKcPNa+7e0zl2/rmWrsnOGHe7o0AGKZw0ox4p/YgIODg5jP53F0dDTEmEyn0zg+Ph54MeJBHs9ms5VlJn4LIeskVrhVDArqjRgbLB3Ag8Bt4HY4PsrGSe9nsqMycDhOrIdGgQGHqCsUGVErC9zXBrh8MkvAMQ0DAhZ+QIGK+CDwNBAJdWah6UAFWy2unapYMUhs8bhtgpx3S4G7PnRj0rKoqj7mcloCcqy19pq0DihhwdAjIPFMBgR0fLI6tQSt/nbpIiJ9ayHzJa/Psyv28vJysLrYMud019fX8ePHj/j27VucnZ0N67D8khjMQ30THK+/Yo5GrC43rAMEnGCEV2uMcN0GEOso4yEH1EFj52Mrj8xSbekFrqtbUnVyCbIafAx3PfgLZ1+wUTeZTAYedJH/nLduSWSe5DkDbwPiww4PD1d22aBeXHdt0xjjA99jDCuWOy8CBrgg7qBs0LOG9wpI5MFHS2YuQp347Pp0HwYDcG1iPQjlsQBRkAFyAUxAqhA87OGYTCYryBTPuyhq5O8ODVIBycySMQCYO1s3Q96KjN2YZoCMkWgrwOstkNZ5HWGqE5N5KWJ1vLL8q7mk/x0wZM8UL+PoGPGLWS4vL+Pi4mI4+x2Kmd8Kd3d3F/P5PM7Pz+Pr16/x/fv3uLi4iMViMQhJWG2ITQB40IAszDmOp9E+1HlWKSMFPai7yzvrz20lHecMVLb4l9tfPdsDLBSc9hqJfC2TF2wUgafAL7xkAM8A2qVxXXo6K2IB8PIhPZo4YlWf8Ps4EGPDOoPr615apG2vlHVl8HEapwOQPgO+jtaOGVDlmLn9HMNmFdeO4TWYDAiwa8et4+vJURzpjzLgAkWQChR2xOO19syq4oHX2IHFYrGyBqsIFUIWfcLXtTz0Vaa0eT0fxAiXQYZj1J6gLAcI8KyWwZ/flVTgOiANcnNIqUfYRjz2EDkgErE6v1g4Xl1dDa8ZBhiA5YQ0l5eX8fPnz/j27Vv89ddf8ePHj7i6uoqIiOPj48Gti62Jh4eHw+luOOltPp+vuHZZ+HIAYg+pXOJ5hT5l/s4AhRuPbSEd98oQqygDUnq/BQq0Di3jkOeDynLnnWUZz/Jmb29vJcqfDTq16qELuAwEBEbEYOnzrgXUkeU5lgawhRHl6ZksLNf5uusD7jMnj3sNENevY2g0GGALh9d81NUT4YNbMqqsWV7nyRhDO5KBAF6ZitddshsSzMTr/be3t4PwQ0BeC9yA0CdgLJR1e3s7uEkR/Ypzr7P2VoyEtLq2xf3Dk5IZRb0SnCf3a2ZFVGBAx2JbPAOVhdJC5gpa9f6Y8h0QUEFaWXMt/sN1d1KbmzNIywGvbDFBYc9ms2E5C2AAQODvv/+O//73v/H333/Hz58/4/b2Nvb29uL09DQmk0mcnJzEx48f4/T0NJbL5WDB8X5t9sax1Rfx4L1rCTqnjNDXajxo3zrreJP8mlHGM0xjgEAmo3vma6b89b9TfFwGG33Oy5rVn72qfAYAvAO8/AqrHs+C73jb4eHh4fCODQQhukBBAAF+VTKDadYbld7j+aiyWj3BVX/oWDm51UNPPnTIBR3hHqepOqVCkOzSydwuyIMF6WQyGdaSTk9P488//4xPnz7F8fHxoOgh7C4vL1esEd6zure3N5QNYmHOzAam4e1ZOKjl5uZmiNK+vLyM+XweETGcl4326jIErjulqwJuMlndMujGifvV9WXGWEqqXJwCcyh/01RZ4j3Uq6h7ysbzbIHwd1W+Whj4zrx07H0C3/IZAbp7gJ9fLP6J4IaFjv/n5+fx7du3+M9//hP/93//F1+/fo2Li4tYLv95++VisRhcuNgCpmu3GW+gntjOqB6yCtwwEGAw0AICfF37dyyfvAQ5S/I58nLXVREp8GCeRV9X+bo8Ih5vmwbxXOCx1OVfHl/e/ocdLUgDIBDx8P4VGIPn5+cREStLDHgGZaGuDJRvb29XDpkDcADwyJZJnbyteLHqV03XI7sz6gYDjhF50rnCdUJWlow2gFGjuptdI9V6x8DMZrN49+7d8MKV09PTAQzAzcmvG2aG0zprgKADAXiL1vv37x+d2pa9mIVjFRwQyP4rI2XWD/dPNgZ8LROOrHQccdk6CbZFoILG1MVZ6xH9k63VdhWUmtYJ6KwMFpoRq8tBvO0Uwg5uUXiy2FXK66c4qhX5zOfzODs7i+/fv8e3b9/i27dv8ePHjwHkYv1VT2xj3uS69hgMqkQqIar92RqrbHyr+fKalPHHc9Qv409V0FoHHT99TgFVRNi0Kq9cjJau+7PLng9447MAbm9vV5aFUS68TLwshrpCZ8Co4uO9FQwA3Gr/M9hmUMBtdcZdpkd1rBw5g6xK72it3QSuIm4yuomuAo0ZTJUawED2UhxWMs4S5nWgk5OTePfuXXz48GFYO+KTrZhBdcmDD1phy4rL4ZPbcGobgqYiYnD7K7LFehevmzpBp2DHTVQdH8cgCja0/ypLjfNVUsAAxh9jOb82aZscH2mf6/OtCVhNbJ03WV5uXoCYn5xXifNhAApBheOAAQRwIiDPC7jpUQdePkBcweXl5XDsK8pQNyosLpStrzN2vMseQb3n+NvNAX6mRRnA3gZSI+yl5lNLGamy1p1QmPu8DKlpwdc6tsyjrFQ1GBx8wwe9sYcAS7HwDsArynVFPaFfXDwXngEY4GUJPQ1RYxWgZ+DdUr7ib36Or7sxzrwHmXzq5ZNRnoGMEZ3w18HPJrDmyWlaUe/8raiVLXAwEAIJDw8PYzKZDIIQa5S8fslrQAhkQhl8KBKf2oYz3T9+/PgoPgERsPqiFkRsL5fLYa+qtpdRrQIhBkTZ2ESsAgyXlvs8ox6hmC0/bBsQcNRSxhkgGPM/m5zK287ic0BAwWUmPBSIAiQDxGKtVN8PDyHI/KGnsfFSHoSq8h3qgfnALyrSHT7YWeC2gWmfOVni+jUDDi4/nXs6Dq9NPQrB3RtTZwXDmYxWIODktz7jdIIaNChfwYB6X3lLH3tkWeErj/I9bTPLe14SZiALjy621mLJl70LCnpB7NVggOv62MmGXrmZgdYX8QxkCocViCob5xVgJY/rbNFoGhUmmaB0deXywYBgnv39/cECmkwmwzoTB/fx80B5PLjqefjw4cPwOT09XbGslsvlynYUfkFLxIPrihmUFTPag/5Bvuz+d2BAgRieycaxsoBbqNWBNy5jGwCBttsJQDchK6TeQ9wfmaLhPq7qF+GBgDtDA3mwQGU+RGwLjgYGKABvgn/Y0tOXtKAMgGrMM64Xnw53f3//6BRCtr4YmLPl1ur/DGSpYVEBLSdUM0H7mpTN74haDvbUW/kS11RZObnhyuRvrT8biBhTROI70MHyF3zLb7uEVxb8CqWLmDCAAR1f8IR6nvnFSFD6DFphtAFc8LKBAwQ8TyF7nZx1xp0bp56xXJfW2lroLE8VDDqwVdAb5833NaKS07SEsubBW5ew1hQRg5LH4SoI7lNBBgXMngYwIqwp7FiAqxXokduArYxXV1dxeHg4uKYuLi4GYcgCUPuJ+4iFp04g19dujFhxOAXkgEAlCDKBWgmQl6ZMgGX1ydqo11ugtIcUCGgZjv8zi4ldtbwOqWnhEWCPFoMBjhlgngRfcl34JDZ4vwC0+f0GKOv4+Dju7+8fRW3rdl+3g8jJEx2LrG/VCu0dvx5Zsy1UAdYWmHUACFQZgirLVXbofGF+1KUFVw7kLXtUObYF3+AnAEsodihuBh4az8RHFEfEyrHaODgLfD6ZTFZiBcCn+o02Qa7yOR1uDFrXKhDbGsteetJugnUKdghcFY8ieaYMFbPyZ2GCgVW0xuuUUOgsBCHU+KAKPAukCKGqQg8WD1trHIx1c3MznOq2WCzi/Px8YGAGAs5NqsreCUudsCzQuR/Za5NZoEoubx1PFQAta+K1aB3rSu855F4plQpYqMDtARsQLLp2yuuwOs4cHwCFjA+ALPMv+Fvd9m79F/liG+Fy+c9OguPj4+E1yJ8/f45Pnz7Fhw8f4t27d8OLZzBXOHYApAHDrEjcGDojhfkzkyet8eP8NkGZItZ6jeXfihSgaj04nfIap3G/eRxxnZeVcC1iNR6GPUsc58JeVgACjXWB+38ymQz6oPI4q0E2mUxWjtS+ubkZth2yzAYAcbJW5a3rsx5AkI1TNY691A0GFJnwZGNyaXQiOjDALu9WI1lxcToeGLiI+EAKPZSClT27T52Lc+gwWhrgwES2qHgJgdPzazUPDw9juVyueAjc+pPuwdYAHAUE6h3ANV6nUoGajVVm3euY6/jqGi+XtwmqBGqmIJTcRKzaM3aCquDV+uMbvMrWEsflMKmLFRaUggAIU3XDssDGh4Ex8sOWrOPj40FwIn7my5cv8e9//zu+fPkyLJ/hRTO8VADPgFvb5TGDhaXegQoI8LWKVK5o32+atC49QCDLA78rj4AjlbuqC1oKj4kDzNXTw15YVv4ArQpqlYd5yQDGYMRDPAHKw9xAoB/PL46pgYzHOQYMPNjoQxm8FT2TP+vwViU/ngpYR4GBDABEPEaBET5Ccgz6zianm+goT4+YnM/ncXFxsfLhd7NzvrD28WGljTbw2hUjUmwjZIDBAhhCd7lcxnw+j+VyOXgHJpPVQBQGAXzGAQtEHgO1oJTp3KTVe5wHLytw/0SsvmSG81Or0T27SYHq6uCAZ2Z54bdaEY56gQOX32MZAGRyzIq6W5mn2cWqQEDd9Lw2ygIuIoZoaAamOJgL/IL5tL+/PwCNjx8/xufPn+PPP/8chCnOGXC7CiDA9SAz7gf1DvD9SklWHgE3TmOV5EtRZVVGrFcv7TfOi+Wq9qmudatljXmvIJLLYX6JeAjGVi8DL2uBX8FXx8fH8f79+wHMIuCVQSzLVY4LYI/x/v7+IJMBBiDP3717F58+fYo//vgjvnz5Ep8/f47ZbDbElb1//z7ev38fHz58iJ8/f8bFxUVcX18/WqJF29VAGis/1EBjQ86NSTbeFT15mYArxgOPCup6tWM0VTBI70jvK/LnAcfpgldXV3F2dhY/fvyIo6OjAYkeHx8PVjNiCcAM/N5qLkNPtNLXZaItuAcke3p6OiBQMGLE6rYU/lRuTe4zTD5F1tkYcT+qJe+Uo1r4HA2MZzVQzQnh50CuTyWdPK5OqrgdIHX58vP6m8vLnm1NWJ5jGpjrytb4Fg3YY4XP3jFVxjrm4FcEV4EgfMHzHD8Dlyq2J8JDB75xoAAAmI95dRZnBtaUVBBnSr96bhPkwH1E7TVt5VWlawHXqt8YLDivEufDgcwaVAc5wvJYY7KgjNm7xXJ4MpmsnKKJVx0zoJ1Op3FychIHBwdDncG/nz59ij///DO+fPkyeLUwn+bz+VCHd+/exenpaZydnQ2H12mf4bcuTeiYVXzr5HsFXDNvTEXPAgZQMVe4WyLQ9Iz0WbFUyN6hpQwQXF1dxfn5eXz//n1wycO6QSAh0Cosfj4IiJkIxMJWXUV8j5cIptPpcMAFR6ziw0sYvcoTE4f7m/uIvQoKtpBWUWtPeZlQyTwS6jp7TeL6OGXRi9hblnsFCjKPQiZ4ndXrhDkHfmq+GnylVj/nBdAA7xYLaghaxLjc398PR3jjPwADBDdicLA0hnnIAB1zgZfVZrPZClBAf+juhazPMiCq/ajPVrRJQODGfiwQUJ5x1rqmzWRvNle0TqzsM0NEwatb9gEogLX+4cOHAQgg6BXeAo75ioghMBt8pttfARyOjo4GuabnxaA8xMRExMqyBMe9cGC5GlhOprcMXu0v7hv+uABxphfzDKgSdta+Wl78ySwc9hKwAsvQUkswMCDASYMXFxfx48ePgQmQljuU4wf0UBRdB9JYA94/y4RrHKXKh7bgqFYO1KomHSNr138RDxa79qcqav3NgkKFKefhIoFRvpYBQT4GpT4nZQpA+6AlTFtCOBt3zl/niubB9csAAfdxtkTA1IrZUJc9AwH2LMxmswHIRsRwiieW0uDSZSAwmUwG8BDxz/zit8vhGsfhYI2XI8C1b9x31pd6rxpnHp8ewf3S1LLueudUDxCoyM2PCuRq2RkgUNCH+sB7isC/w8PDAQwg9oSBp+6EiYjhCO3Ly8uVssHf0AFsuPFW2+Pj40fHdTtQzYGO7FXT+eh0po5Bpu+4v51hUPH0i4CBHoHeyxTsglQAwf/Hklq++hY2vIuAtzNh62C14wDEgXoAAkCKfHgRvxYTp7JFxPC617Ozszg7O4vz8/PhZRlsPbeAzmQyGbZyqXIACMh2GagS1PHBtSx2QBkRnhZVVOjTMQz5ktRTB6es1+V7fm4dga7PO9c9r1G6dkQ8fjGVi9JnD4Lyk/IPymYByFYR/oOXcGDXcrkclgvA7zyPOPiL92srqOV+Ux7NlFMv0BurJF+anCLle44yQyLjxaqt6/B+1v/aDo26d7/hWZrNZnFycrLiEdCdBAAEAAPT6XQ4KVAVJ/Myxwpwvlg+YG8Ctzczopxec/3K+q5FDvC2ZMtYmfssngGurAowxxROwPQ0rGeCsrIDs2G5QN+hfnNzMyhNbEPROAFFsywMAQTw4UMpgEaRPwABvBPfv3+PHz9+DGtNEI7a167/+cwEnJCI//jm3Rk8FtyPilDV2o947IZ2TKlgwKWtPDkvTS1hWlk9nM7d4/vrKHwlJ8h57AAA2FoBT7DC5FgUngO8HKBnb8A6R57cTni18JsPamHKYoRwDyAW8wzziJfTDg4OhsNi+O1vmbzQeZONR/XfCe51DZLnJJ5PEY9Bj6Ne5dBqW4/XrFWOKl71UrF3wHkL4BWCC5+VPsfB8LZZgAF4q9xyBctxeL7UuwBZfnV1NYBlt6zLu71crITrd/309m+lKzMg3EtrxQxUQEBJJ1nFGFrGGNJ8UD8+cwCDiG2G8/l8EE5Q2LBaWGAxaYAgv5SIBR3HBMzn8wHhXlxcxN9//x1//fVX/P333/H9+/c4Pz8fXFpVP+jE4SDC5XK5sgUy658MrSrjVoo88yYwGOA1sjExCS9BTqDqxKnqx2lbYJef4W/9rfVppeE5w1Y4AzF+AQvyxTIZA0UIwKOjo0FBc0As0vI5F5gbmFM8T9jTwHOO+4fBA8ffAJhwABgHMmKXgioVFYqVYuwdYydDNg0IeH65Obiu4MezL9W2DAQ4MMCGh+oW8BfzKJ/zwru6eGu382o64IF6sMcN5cK7ywGz19fX8f3798GIm8/n9n0GzgirwFjPeFbPq7ypDLiM1gIDWYGZd0DTshsyYwzXiIx5sw5ki38+nw9LBBA8sKTwza56CD6Up65RPnkQEdMoB25RfhEM3l51eXkZX79+jf/85z/x3//+N75+/RpnZ2fDc9wPrj/B0CwglJGgIJzFlDGm69MWY7HiRxoNSty0ZRVRr+kzKaquvAM95VXPjs2PhapG+4NUmEIh4+AVzg+R08qv2PMPIAGFj1fC8rntALrMt/wNAY666Y4Z3sXjduRkAIDb7vg8GwelFm8qCNwEOU+bysiWIshkpuN3/m7NjyytGyfmWx5PBgK6tZnHlwO54VGaTqcrrn2cEMiB4zCyMB/YAws+R2D31dXVkDcbMXz64PX1dZydncXXr1/j+/fvQxn8rg4XBN4je3uBQGaM94xNRWsfR+xcL67xWYMqGjPxmKldXaDYJ5NJnJ2drSiw29vbIZKUrRVeOphMHiKtITB53yuCpabT6cqRxgiA4Qjt+/v7uLi4iO/fv8fXr1+H177yUgEzUk8fgbHZEuNJ5s6Q5z7gvtLJnoEJvabeAJ3UzDObpgpMOgGZPcPP6bVqDrgyW2XwfMvuIw8GY/h20dQQcoeHh3F5eTnMEfAr+gHeMfaoQfBVB3gBWAAMwCs3n89XAgSXy+WK8udvvh4RjxQL2s95tQRqplBVaW4DEEA9IvrX9XWe8XzM8s7ycuVWBpoaeDqeChKQNouGR34Ao5CviNECv2KpYH9/f3i99sXFRfz8+XPwusKTpbtY+JyBm5ubuLi4WJFnACIAs6jH+fl5/Pz5M378+DHEovGhdnywkfaJk9MKpqpxyQBwNm7P7hlwSE8nKyuUTEFnAncMZSDDoS8MomNqbC2EQImIFRcstweoltemWNgBWZ6dncXPnz+H9VUIyIh/mPry8nJgJBxWAXdTz9bClrUTESvrxpmHwLnzXXmOWZ1AAOhwa8kob1NCVQX6GIvfCTrNu5W24tesvtkH5fC48dzEOnvEgzBjj5cqzoODg/jw4cOjuBUuD7sGLi4uBsHHR3xDqLKVr28EXS7/OW0TVpseuc1KWpVJRDwCCbwbiJ9146zjrem3FQiA1qmDgginZPk/93slB9x1le/IUwFBBrqr+QA5fXl5GWdnZyvLSUdHRytBpcynP378GMAAb2m9uLgYXhePo4XxHBt9qCO8CeB7fAAKEASOHWGYF7yDShW9zmc3btn1ajydnh1Do99a6EAAKFMoWmkFDfw8p8uQPKfR+inz6aCyIOHXU7JwhBCbTCYre57xLG9NvLu7i6urq7i/vx+Q4vfv3+P6+npFUKMOvM2RX4yENSp2l7l2V4oMSgJt1ryUAXm92Vny3LdOgMIiBLFw1zFhwb5JUqUDGgNSVTHzt8ubn+PvrNxMWKAMtx4a8fh4V56P4H32FEF54xS1nz9/Dq9p5aUzWELwYGHJAOkYPAM4s+t/uVyu7HxBGwDUXUAi8wz2bTtwxDEz3E8KBNyYODDQEsavTRVQz+Sj6wvNk/PQb82zpVS071p6gD2weAZ8oc9iWyosfd7SB1l9cnIyyCEsBV9cXMTZ2dkgZ7GNGzIXgamw5vksDd4iDk/D+fn5ACwABnjpmT27PMeY/6qx5L7MeK0ajwwQjKFuMODW8VQoZoJWG5MJuYxJM1TL9xSoZGCFA6oWi8UQOxDxcO75crlcOc4SaI/Pa4fFBca6ubmJ79+/D7sEgD65zsxcfCoWhKIGYlVAgPtALUb+rYLOPe/Gh/tf88SHYy5wnwFJVs5rU69Qa9UxQ/WO77kvMwDneDybN87bovXgsdElGyh/zgPLBD9//oxv377Fu3fvBgGJGJf5fB4/f/6M79+/x8+fPwfgykB3sVgM664c7IUI7Ih/QDOfI8CeCo3MRvt4Dze+Ed+AftF+1n7j/lJAq2kyWsfKei6qlvKUBxksKh8qOSBZAYKqf3tAgKs/G1kYb+ZZjvfiY+SZH7ALBfW4uroajp2HkuYPrmNZDDKY35eB/CGX4ZU4Pz8fvGP8vhsAA13+Un5zc9j11xhAUOlDvt5Do8GAggKuGBeeWTcZKbNgMNjK4fz5Nz9T1VHRHn6zixVl6dnWEKb4DyAA63g+nw8xABCaEHpqsblgE+2D1uR3fRGRB/A55sjABa/pKbJF+/GcvuNB6z2GB16S1FrqUfzuWbZIIx6f3pgJzwwc6fg4hO+AHdeF8+H+d8CA67u/vx+Xl5fx48eP+Ouvv4bthh8+fBiWzxA9/fXr15XlL3bXY77w0gHqxscU40UvbvcOLDRuIwMAfO/t7a1s/9U+cX1UjXnmNWh5FV6LMuCSyd8KEGXXuG0878ecGKpA2H10DZ2/WeawBwuGFp8NA8sdAGJ/f3/YNosAP1jyDAKgyLFsEBErgbGQbfzqeZTNecCbq9sMKyCgvKr8VfWnjlkLmCooeHEwkFWCK9ALGByiZECglio/5/JrARZWZgj0U6UGCwQCFH0Adz6AwOXlZSyXy8GC+vHjx7AuxRHTvB7F0dQOMWb9xd/uXjX5nDs1ywt9iPazxeHAhXoGWsy67VT1td53vBjxeL3agbpqjB0YgNCCsNLyOA1vddL4AvAFwMDZ2Vn89ddfg/I/Pz+Pk5OT2Nv754CgHz9+xN9//x3n5+cD+OXjVxkMcMwLywvEEXAg4XL5sB6sa64KClQwVstpjv8yoVulawns1yAXKMbkFMaY9rfkgUvn7rlnmXcdv7oyWeYwsMRef15yZVA4n88HHkRcFpa1sDygJ76Cb5mfsHQ8mUxWjD7kBV7FB/pAz6dxfVDFgvX0+5jn1gGva4EBZUBndWaIhBUNKxyHwCtlxeVX5BAWBp3/q0tfAQOAANZQ7+/vh60ocDMxaoT7CX0Ht2vEwxKDegYU9LCFpe1215jZMosV9cny1bxZKY2NYOX66/1NUsW/Ls0YcooE/11fq1B0aZy3R+MG3NKA8wpomfxB/MvZ2Vmcnp4OLwzCVqqrq6uIiJVDgpA/77XmgF1Yb5PJJI6OjuL6+nrYXcNHhau1xcsGXHddRnNWGH73jqHjf85jTF7PTRlgdMQKP7MM3X38d/M3U169c5nBQMbb7D1FGzgID/v9AQbAY+CRm5ub+Pnz56DYEdzHQX8ABBz1z4ADdb25uRniDzhmBmAC+bFnV8+kcXIzA689AGwMD+jzY4DsWmBAK+aEi1aK00NAsLvHAQFYF1qey5sZt1JaYKaIWEFz6k3QA3x4/QrgAEJQXZ2IytY1MdQBz7AVpP3D6bMYCJ3kFQpFf/KrQ7Py3Lg5wVABs8pKeQukEylTOK3nI7yCd8I3m+QMWGER8a4BTcNLW44n+DcrWyjmnz9/Dq/khtV1cXExnKLJQX/YRaDlM8jlmBwVtFiHxTcCFFnIIj9dHuB+7OEzBaXZf06/aT52xgxTr7zN8nb/M7A1FlypLHa7z9gIY1nPPDyZTAYlDYXN73Y5Pz8fznqJeDgtE6ASJ87y6bO84wZtxGu5GZDwWw956yAvoSjYZkPX9SWPaTbve/iO5cs6zyuN3k1QWetOOTjGdGv7GfpBZ2nkuxPKQKDV+ioUIu7zoGJNEksGun4G5Y/nlenUvcntYE8Dn2ylAhNtZdcaM5freyYwJn+j39QDwSCFQRK3QYGFWyrgcRnrvn0NeqqVr/2BPBW88nPOI6DA1/WHWhX8ARDY398fAqAi4tFro6v2MAhAflC2AAPn5+fDIS4IqgV/Y+lAD4BhEMAnfXKALgQ8B4XxNlveBsaAA88qb2Xj1SIFAe7eNlEGXkAZIKg8HvyfrymAZPmRKS4n/x0gUJ7HeDIg4PxZniPOCyASUfzgH+wA4yBEBtDubAwQlhdYDrJ859M2uW+0v1mWZ8DK9Z2jzFDIxrQX8FX0pBMI9ZqiPq4QM4sCAfU4MFMwQ3B+3Nktptb66RoWMw9/QGyZgDgISu/xizH4OFUwk7pAUQdd19eB1smkCkYnsiplMLq2342BumOZkD+DnwwMuDHbFFVKQNOAXB+g/5Rnkb41QR0gaCkh7nPEs6jXzHnEmKcYJHLb+Hnkf3V1tfI6WKTnOYT8cCInu2P5LZ6oL2/74kNbcPDW+fn5I6ChQL8ySrSPXR+639WzzNebJjen2Ijg74pc/BDn3zNXtY+qsVH+Y9nOgC9rAy89AQwjDgtLTDj4TYG0esB4+QFlqecWvK3eKZXNnK/2S6aHVH4rad+79M4IcTJlrLztBgOZ8kVFKkZQIABi61sHRK0JroNrMNcrY+qKyZl5eK0/YvXFLMpcrNTRPldPtnA4cJAFswMiipS1z9VjwH3lgAWXxdd1N4Vjfg0UdJ4QBQI6OTdBTlHjv6ZpkY6t8nxm8WvZGaDWeuE/8yeCXuHJcnOS83N1RV5Q7GrZcznKYwC4GGvExOBcAZ43Nzc3cXx8HBH/nHUA5Y9dNwwEeNuijg14E94JBcLap9VYt65VQve1KRtbFvzZ2DvZ6Hh1nbnpDJVWWjZCVFlrHXVesRHDWxGxXIYAQs2b+8vJNS6PiYGDyjmtF64zMNN51gMme3RV1e+Z7OmlUWCgR6DpdVaOznOgCg7WBLvKM2TOna9CWgeuQq+LxWLl3dlKzBgKCFpWg3MnaZyAY1JFeZoPt11f5uImuAIHVgYK1LJdDip8NY2CjE0J0IwUPTtQC8qQvfJvlQfn5ZSWm9AKah2fsIuf91wz6dzoBfHgT/wHIFD+YHeq7pbhZYeLi4s4Pj6Ovb29uLm5ibOzs/j27dtwHge2gCF4UK1HLdvN0xaftQSk9lGLNzZFOhcrvsrAkKZplcPPKCnvKEhzS5vqcXQyD3mrvGLDajKZrMhkAGNXhrbNGQEqO3mZoTIaWLdVIJ7T6ryvQEAL5Gf5uPQtGg0G8LtVgJuszDisiPieIj8MvJucCgC0rlzn1tZItra4fsoYGpjF9XGTj3+rexbPZOuhzKDaXu03t98f3xoboPVD//DYZJNJAYH2N4MBdWFuklw/9qR3lPF/Nv76DP92vKhzjT+sbLEfm4/m1bpUghzfWm8AgojVg2F4jLG7Rq21xWL1oJjj4+OYzWYxmUyGA1zwkhd+8xviDJj4VEPXxzo/cC0Twm+RKkFfzSsF7Xytes71mXveAUnwgS4D65g4QwPPZ2DCzQP+z0uzKouqfs34RpdBuS4ZqHb1zOrdo7OyMnpoHZ4fHTPQYiZljgqZcToezOxZvgdyyo2ZjYUVn17lJhm72B2idS4jh4a1Hvyf8+ey2VXL/egYUFFoxqSahoEQMx7yyxSTUjb+KkhaCHeTVIGrnonkAFo2JgqgnCJ2yisDAgDI8AxExIqLlMvg+qqgcYI7YtULBaWP+ckuT95FgDIYCPA58qgvDoX59u1bnJ2dDS+O4TgB9Au3T/uISfnfKZyW3OIytp2cItb7IJWLGX+P4XlXlspAyFtca7nK9Xl+e2XE6vZa1EXnjM4z5U3tM/VcMAhQ44zBSdbvDKSVB53s75WJT5WdvTy91lsLtaCMIVXhZhOUn2eGces7WRlcN14LBTEYcCiO6+O8ERhkZmrcVyCjbXHK0fVRFi/gQAFbaj2D7ZA2t03zyQQK18cpMt1ys43Uo/Bdfzhgm93LhEYLIDlhp/zDPMrgLhNQ7mQ0FdxogxPYKA/14znMAWBYu728vBzeXMgnxi0Wi2HfNoII+T0HOrd0KQLludgZbTPql8WwuPGorm+Kl1lx6Bg7EOTu4x5/Z9f0etVulU8MLNnw0jpWc0Xz4JgyXh6IWH1jK3hEFTzvkuLy9FXZqsCZz3RJNgMDGt/mvB+4pzIj6xf32+XjQFqvbgCN3lrormdplRkdYtc8IDT0nOoMBbrymPGYmRwSdABF68Ugg4MFGYm6AdG4B0e9SpknC9ebGbAVpMLPK4JuMa/mkYE4RePajk2Q8kuFynuFn8uf0+nH8a8r2334GVWEODwFB7I4Hse3Pus8AiiDvzVGgAUlr6nCK6Dnx6MPwKtIx4dzOR5kQOB2MWRjgnyqMdG+0fmg47JJUoGvwL7nWVD2W6+NabMqc36ddTYuTnk5QMBAFekiVrdqax4apI6ytX6IdeF+yvrU1Y/bpbLUzWGmHlDm6uDyqfTLGFp7a2HFiE7B6bq4G1wQozlGaqpcdIAydJTVsQIbnAfIgQZmbj3IB22BAEV6Lr9iGNenil6ZidkCVMoEo7anqhfa6JZaVPg6gbpJQACq2s3tcTyq+XB+lXDjtFoOyM2PSpAgboD/87hkwiqrM+7f398PgYAazKtLZXge9YBnIMLvDkLbsCTA+77VNct9z0GMPGddn+tY8nhn46H9o3NBx+o1qeI9Jq2f64ueNnBfuTzdR+9ldeR0bNS4/ByxIcP87ZYVuO0ZUMH/5XL5CIBw21vAC/JdPVxVfzv5U/VXBmI5HX+7slo0emvhmPS8bl+tGbEgwsCoonEudMdY7hkWIiCum2P6lkDQ+uEa6q4nGE4mD1acQ5KuXa6PGAyA2FXcspoqaoE2TB5YociX+1iXL7J2boIyYZMBop5nW/daY8Hj6fo9AwP4qFuSLRcWjirkVLgAWIJvYTWxwuR1fSWuf7bWyu3Ebgg+XMgBUv6vYC3ra9dvLYXD7XR12BRlQDID3hm41fwyUiDgjAgNDszkFfcf87UDEVoWG00aF+YUvHs9NstJBwQ45oVlOIw6BQVqoKKfeAuiAwIOWLm+UspAbPZML3DM6Nk9A8oAmWLJGscdzdedkFHmVAXlYg6cZc7t4t9ukrl6q1scTMlrpVl6rYdOMCcQFRAo4HHgQseG26t9r+PG/YwtZDpBlWm5PZView2qxs4pGr5fIfNMGGbtzXhHgWlPf+mYRTz2UrFlz1aQ1r3ic6zV8qEtEY8DZ1G+nhyoHgK0l9NlHhGWI8ir6l+dK9zv2RgoCGj1+6aoF8i28tD/reccP+hvTc+8rCDQyTqtG7dJ5Rk/z0BAD8fSOmjdIx4ACntUkY7v64fnmfOYaX9nfex4XSnTSfqt6dahtQMIdfC04apYVOhyHtnk5YmqwjITZqosVUBUAsW1zd1TAeKEvkOpvUImAwQOTWs9WsyVtU/BgMuDXdAa5at1cde2UciC3BjiuxLEFShWyoBA1t88xtl842uOT/gaAwLHY/yBax6/GXRoHVlp8xkIIPUMIE9nST1VKOrvTEhWirVK89rkZGYGgvQZ1x6Vcb1zk3nFAUHOj61sXFP5rXlm9dQ6uuc1EFCfy+Yv86ubg8pnLj+ex720rhxsjXt2vZePn3QcsRNI+NbBdxXPBpnLUXChoEKjVRX1Oas8YzQVkFoXJzyVCVjoIV93BCaXzx+n8F09tB97lG4GpLhfM1evU47Z2LhxHwOGnptUUaiQcuPi/mtenEd2jfub86zmRzZ5q0mt/QyrxQneCuhAQPL8wjVdpuN2RMRg7SMgENc5tgVlcJ46Pq4/IPR7eKpX+GVyAPd07DZNDuRlVPGT8gCDhyxv7YcWSGZAwGPqeKglb1VG9shJ126uH+Qx8yvf12+W55lc5vby85ovfle6sSIn67Ve68jatcBARO5yjagPrWFqKXqXXhlCUWgmbHEtU6baLrcmhuvaD9ofjBRZ8Dml06v0WTg7QTyWqVzeLQZVRKzPuLW6bQADIBZ2TnlG1IDAKQz+r2ncRNW+dss6Sj3Cn9ulApTTcBBWNs/gxue82OJicn2J9No2TdPymHE9+eMABNrHbdW8sn5z6XGtuv8a5NqG/73zaYwCaz3nAKU+k/G7ynhuWwtoKD9zHrqsHLG6pKRzDrysxw279meGjfYfl1fJ0AwoaB+7PnW/q7wrXepobTCQkRMMoApFqquwdzKzYImIR4OSLS1kQIYHlhUvAwQmFq4RD0e1Rjw+SEj7wYEQBzx00mRBelpGhd4VdXM/jBEyrp8dU24L9YKTnkmUTXbXbhWS7vnM2snSZeP+FGJFzke8qnDn7YYMGDSi2gEClMMfB0i5L1QBVXzdw28VGBqT5qXJKU5cXycfUNY2lUnV2FXP6/hVYMyBC5Z/6t3ldLjmZKwGAIJHGUS4vLmNKifcXFRZ7ZanK7lYGSBabktGP0XmPjsYcOSUvDZOgz30+QpUuPUaVVRcpjKgQ1hOUDG5a+wNyNrl2o/8OBCS92e7eiPvCrk7QTpWgbQAVAuUbAO1ANG6Ar9S2Dr5MWbOonIgQO87ocTXM+uK6+b4OuNvEL8YyEVX89xjAFBFVmd95ijjr0zY9+adCeJto5bgd8Lf9bEDFEy9IMMBt0ymuTJU2bszS8bMSQUCWTuzfuR4FlXkVZlcXlanMQaSm/cuX1d2NnY9eTKNOnTIVc6lUzTbUkDaYdwIvaduclX47jlXvgrB3o7TtvF1jqLOJh73CS9x6HYwniSuXziiNZtk6tnQOuC6Tkw+56GatDpmGWjYtMB19cJv9b6AXL17lKeSEwI6JlX99BlVeKrceTwZNEasKmvOl9MrcZt1ScotBfEyURV7ov1T9V+2zuzOUnBCuCqjkmE99XsN6ukjp/Q1jcpNpNdrrb5jLyzLoUrRMY+5jwO6juczedYzXtpu3nGzXC7T8y4ykOD0jwPC7jlH1fzIFH1GPDeeHQwgU1dZrai6D5HOUcZwrpxMYVeDlDGm/neCVAVk1RYdfFWyrfrp0oQqeK5vpsyXy4czGnhbmXtGCfnwwUmqYBhkaTvwjLrLtIxNUNXeiLZLsOr/rDynPF1dMhDF5Ws7OD+eZ26snAJ31roDfK7fMoWr/aj3qz6sZEPEw/kjzN+8fKFt5Xq6/tP8MznRU8eXpjFAQNMreK0Ag86BloLVZVlHzIt8yI9a464crasCBMfr1dxUhY56HBwcPHohHi8laP86AMzxNAqCs3mf9ZPTN5yuRTp3e+QVaPRxxJkQ5TSZYMIz+M4UW4b6qoZngovTOktZQUBr24wjMFq2XzWinjSc92KxeGSZu3Zzn2MLGAMLBTWtcvEc14Ovcx+45RDUBeWhHdX4vRYprzkeyNYO3X93TfkFisstYfHz2QTvESQOEHD5uOcsZc1fAV02t9ycduT6W8FGpoydcsDc4sNiGGi3FFnWHvcMt0HrsUkaW48WyHLXK97PAAQoU9TueOreOmb6wQHWChgpGHAyNPO2ZoGPWiZ+O48Ag7Iepa6UPev6z+nRHnoSGEBlGCW20Js2wClOTtMzATTIydVd1+F7wADKb6Fk9AHvGnB1ynYiOGbKBjOrf4SPnVBBrPXGN/cBnlNB6pg9Q8BZ3TdFmaDn/lFA0OK9DBAov2eAgPPIhFoP/zOPZsBbvzOw4YJnlRgwVDsCkM7xV1YX1zcqwDMFrvxYATYuu7WroQV8XpoyBQbqURDunlPKFThydeGxVbnE8U9qUER4Y0LLcnKF5XRrDPm+xm/xeRjL5erbBp181XutHVPZePVQL//ydwZ4e2ktMJBV2jGHRts75NZqpEvD1zVNxUD61imtqw4+1ylbN4p4vB6bKQDXjxCqlTLX51vr+KoguH0M4DRvnWTaVueKzRh3W8gJQO4Xd68nL76WCeeMn/g/+rsF1piqeajPVkLS1StTfm6NmAGB8hR7hpS3sjmfkYIdFvIun5a80X5RxaN5boqfVXa6366uPeBF+2ZdwKNgAB939K9T3hmI1jo6WR2x+up5bYNz26vsB9/qdli3m6ziG6Rbp/+4rU7Jq97olUNjxvVJAYSuMlwhCA99F3o2wMiDvzVNJkQcQ6kgygL0uH0VENAtI3pfO965+qulCn6GKVMu2h97e3uPzqp35XBZjpGViZxicZ+szttAPfXLhGvrN/dXBt6qulRgIhP6rXpzndgiUmIwi+egYDUeAW56ED+T5d8DjJzwc+T4sJrD/NxYgKf5rKson4tYyTteGTPfqrkwRnkob6uiZgMMpMupeE69tk7WVvzRAr1OievL41ygKn4DCGTgU/tlXRrT/9qm1rxp0ZO2FuqEdkJRt//wczyZs8AzzqcSqk4wZGBA32XNeSh61Y8OlqZ3bVShqW2r2uWQsip3vcZ11PVktu6UXH6uT/hb6+vydO3aNGUKJSIfDx0Lvc//ewVCBQT4v1P0/N8FvTphWgl+xxcOsOr9nusVCGiBCCZ+noO+uO2qUHScXRudgoRMqpZ5XoMyIAByvFH1n2uvk2uOsv7T366vnRyJeOxByurl1vQzmZTJWs3XAeUKdKv85HKYx939lvzL0jkZ2gK3qgd6aLRnwHWc62gdMDdJdRJrY5lZuByH9LgObruYMpEGs6hFzeexZ0FYWX21LzJLi+s9Fk1mddGP9rkKNsd4bgJz3TNgVE2iTQMBNzkyAaS8qLw/RqA6YJcpnwrMttqmHq9MIHHd3G/1Fi2Xy8GyQ5CVbkF1/KfzTe9XfNNqr/K8zmsOMOR0rEyqIEk1FMbOzU2Tq29L0Y8ZGze2nA+PN8sblRmq5LP66M4FnRcsjzJDUstUntG2OgXs+kDb6yhT5hVgYL52eWfjpfJlDCBYK2ZAhaRa/w4d6kTkPNiVxIoTDdOoYSewXNmu/kxYwtBr2bupneLV8rk8bmM2ATkvJ+S0r1sASpczuP950mVv2HL95uqUxU+4fDYNBFCHbEJV8R2cthKynJfzhnGemlfW55mw1bTqFeDnWlatKnCuj1MMvPVU6+uEMcsM98n6oGqvXs8Anc4L7VOWKzxmLhZnU4CA55zWp6pTi1fxrYqypdAcCFBZxYF1yhMK3jSNyhiVvZhffNIr3+M2gF+dB1jlaDbPlFedDqt0QSvvbAwzcOTy0Wss518EDGiHVqimVWE8x0CAwQDv22QwsFyuRnzqAOmAZ8IG+bjgRnQmn1ndEmSubdVAK/Mr+NC+U+HlYh7wrIuIzSalAw1O2PI1N5G13VmbNwUKXNSvaxOTm9Q6Hpo2E9z6TIX2M3ICxymHDLC7uqpCjciXCgAo+fwK3MOxxVV0NfOgix1yMqSlmFxZyuNZHyvfcixEpji2lTI5V409SBWHIwcEnLxlUm9o1X88bk626LfzsOJZvsY6Ro0nvadLQg6MuBirjO9d/2V9pWm1DS7vXvD8ImBAJwxfdyhEG6X3OE/2DKgVwYOliJPLdwPeUoq85sjrVhongGcjVt2omdDPrru+YODBilz7ids4nU4fBXJxYA5P8Bby5XFoTSztV9cfGW0KCKBsV74KoB5B6iahm/yZgK3KyPLjNmRluTb0UqaI3fIWeEK3oDqhrwI9i71pARRH2bzLQEYGxljGqCLiem4LGOhRNBkYdGA9+5/Jr1Y/ONmYyZ9svDPF53hd5xnOXHHlqkxUIMA6hmVoBgg4P43NcoArk0OunVxnHVPtX73W4pGMnryboKcgBQj4zUqOJyIrZ72vZbtBZUZTNKnKPWLVXehetMLtcEysArAS8ioEHQLVCQWBxXVlJKv5aLv00A/uE+5HPKN9rL/xPMCUlqv96/6/JlWTkHkuE3bZJNRv56bn591kz8pBOuWVCihmIMQJCFeOa2fG8xGxctjV/f39AOidAtV8sjHh+o9VwBmo4Xyr51x93XLYtlNLGSiwW7d9Wd862Vgp/YqYp5nPHXhryWWe55mXVZewuY+qJVie9z0AR2WPqzNfy+aDk7NV+opG7yZwQqYl/Pi3drYjfU4ZQoGEnjGtHgSe2Iz2QFiHiohHLnsdWF3bcnV2dec6cH6ZUOQ0GQhixspcWPv7+zGdTmM6ncbBwcHwnGujKhTnLeAJdHd39+hVt1xv93sT5IRESzm6PPhZN/bcPwp8e/uA83ZC05XF/J9ZBlUcQzUfM0GrApRBZounM3JgKROi/JvLy2SPpuM8tH0s+LcdDDj5oAqhJV8i+q1HfU5/u7zcePK9FkhWwOu8wG55C/d4bLPlIP3NRxRzGWxAaf2cvB9DWX3GjGcr34q6wUCG5jJLZExlMoshU4JOEPJZBqzwcY0HUSc+0uAZBgSuzdlgKFOrcGbmcv1W9Z+CIrVcVFCjT6bTaezv78fBwUEcHBysuLS4rVwWexKYptPpEGvhPDHanjEWwEtShp71d28+FRBQpZwJqTH1VXJAmK3yrL4qYLR+Dtj31I3BAPhKgYETltombhvXAflpX1YANGu3a4uCdPUMbpp/M8qAgH738N+YdNmzqqxUiWfGTwX+OB8FAtkc5t9u6bWnb5x8HSPPVE5rvSplr3XTvq0Agcu3l0aBgYwRuBI9heuAjI1+5PVKVni4hvzd1qKqXZlFUAkcLjMTaM4qUYHnBKUqGgUQzLDcN6ok4BVAP6FvcBQn8kJ/cloVyovFP++5v729XamDAybZ5N8E6cTQiQdqKQ5HKqQy6yN7trc85Qcea142cuuaTmlg3vFaaUU8luxNc+1XIYr+xpzkGB3koUKf280vj+ntL863Ss+8i/98MM628PAYckrjKW3gMXT3HFCLWF3WrABBS9nqODo54wwmrp/Liw0aXOMYLI7l0jwzGgv+mRxoYb2gurMqc2w9RnsG3PVeBO6Eryq0DHC4AVcLNeJhGUKVMSa21lUZVD+tPlAAwL95ELmNiphdXppPFhOhQAAKna1U3ifu+o4nMsDD4eHhCiBAWVgaUKAQsXqcpwrvbRSmLeScWR58L3umlWeWnxMGmk7HzwlJFRSahq9r+5wCdXNWn1PXqi6psUWXKdoKKCtl81TnH/eva0uWpwO420xjFNY6+fLvrD9B3O/qaXTGDL5dkLiOs74mHqSeTJc/nmc+xLNcB7y34Pb2dsVLzPPSLfm69rcAmZvrrMN6nufvdcf9SWDAoZcMvfF/ve46mp/RTnflsACqEFMFCFgpVorMKWu+xwI6G0x9xglEFfhunUz7X9eQeYLAxa99xGDh4OAgDg8P4/DwMGazWUyn0yGfxWIRt7e3MZ/PrWXHSBr/MSabpgqoZqjaKRIH9DgvDibS/nHfWT3VCnD14nJZkKkCUz7VerbqpEIZwYLMT5zOPcuglPPJgmc1AtvNoQosubnJZWeUyaBNUg+Ptp53lAHOnrIrBeXkmVtCU55VBe28S8wfDEjZS+VkpAMgrDPYswYggI/zEld86YB+puz1Wk8eGQBu/W7R2gGEalE4ZcXPZIMKYmbgRmTpOW9d31cA4eoOUqG+XP7jwnRuSQcCKuGj6d2zjiA42QWsk8ghUd05gPy5LQqi1KuCYEMAg9lsthJrcHNzszKJuL53d3crE4knd0sIvxZVQFEJ9zXoVcdOlaHyLufXUrxaV+ZBx08s8BQMcF1dUKNra1UXLkutM31ZjCp5Jx8wz9y2Wgfw9b72sbZVeV1lUjZ3e4T5JkjlrbaPv/X6WAWhsiIrzz2H9Mozi8UiptOprQ/kFtI5vuA2shcB13hMe+rJ80RPnIUcY93i2unKcDqsqktWv+xaC8yuS096NwEoQyotQJCRCjs34VnR8XOuLFffFtLOBEALAGg5+qxrA6fT9X4Xne6EohOEUMRQ5G5Zgv+rGw9psHTA/cJpFBRwrIIT9NtMTqD0Phfx+NAeFlKgjPfcNQcm+MPAlwUcP1NtO6wsDG0DC3deDkAaBQQKBNgy1Dgh9QS4+VfNSdfWSim4eTBWYW6KtJ6V4uA+ds9lAFGVa2aQZIT77JKfTqfDEiOnQdm8JAkXvfI3f/NvB4A1f11WUwNSgawDtNVYKFjTumbPZeNRjSuX58ZvHRoNBrRA7cRs3aZS0JnAw39lTBUiqhAdInUKzK1hrUutwec0bmsM7vN2wGy7mLvG1zNBmE1qdssBEXM9eF1tOp3GbDZbSQugAFosFnFwcDC42Bh1b4KyvuLv6tmI3OJq8XMP8HW/s7ROsWd1UUHeqlerfJ1vrMAzd38GnBmg4uPqjnK1PPedlcX3szLGCu9NUcUvlbKswKabC66v2BXfms8KHHFtOp0OZTIvaXxTRKzIjpZsznSE1l/jVlwZqj8U2Lr8e/uxIpc2e5brmgGSsbS2Z0AroMFC+O0Y09G6jQD6RJ00qlqDR5gyK66H+UAZY/B9/a3oleudufpd3sjLCV4lVu683s9AAN8AA7e3tyvLBgAD6PPZbDakYRcgiN19PE6bpGw8lDJ+7J2suNcDNHsENa5l/FYp4Fa9nCBz7eRndD4pINB66E4LAAEnYDNh7hS8q3vVdk6n9XcAelspa9u6MjYDmdUzLUWX8Ql7AJC/viOGlbdbDujRKww8OT9+jreRO7Cc6QLtK32e+0dltMtPdcY6/NcrszJ60gmEDhC0hA+eq5Rw78RsPZMJKB10HdTeto8RNq7umhaTwm3H0bqCuTUQLBOkvMUQeWISaPsBCODWw28ACQYVupTBuww4P13je21ylg5/Z9Sr0Ft5uGst/qksN61fS3A74dYSSlqnSlE44ZzVJZtjDA74eRfsiHLGGBAMwB05eVG147WpNf4VqVLSfHnuTiaTR3NW5XsGip0CzNb2uXz2HqB83HNBz1U7tV0MRpmnUBcHBjgvBbduuaHFIw7EZuX0kDMItIyxea7lGdCBRKG9E8ih/CwAUDvKdaZjvAyttQaD26Edmilb5OksFH5ey+P6855xnpRZfvgNRJ1tNeN8sTsA/bRcrp434NqFpQBeJ2bhoRYfQAJP4G3ZVTBGqFfKtWWJVNcqC4F5Myu3AtGaxs0l5e+e9ilvOT5UMKp149gVPOuUrgM+FfDWNE42VM86+dKrYDdJY4Bc6z4rOZYnOm9bfOnkmvImH07FH5xkqqf+VTzlxsjJTLcFnfmy0hWalwIMbb8DOhlVoNS1ift0TJ69fPykAMLMWnDonp9xyIqFljKETlRlTkWPLYbJmDcDM2MEtDIM0rgobxauejZA1m+MQjOk6p7DQUKHh4exWCyGQ4NYQaNseAGY4d16sJaxt7cXs9ls5TRILB/wuG2SegBBBjhxrzfPFt/ob1WG7jmNy9E5p2DBLc04wKvX8c1gz51KyW1lV68CAfADC1CeF1oX109Vm1WBuLFTsNACApk8eG1aR6H0pFU5zXJEZbKOUQZy+R5f43gP3SqN8ngHEsszV1Y2Pj2yWIFADwB0gIDv6Xx2gEDBEfdRxWvZ/2o81wGyo5YJHOLmilZrhvpflZcyXUbuSN8ei2MMaq4mnxPS2t4qyEvLQv01ToDbBuK+4cmL5xQsIS9+N4EG6CC9puX0HP3L1gIrDF6GODg4iIjVlz61+vWlKZu8Tinies8krPghIh4pbv3OgFVFzi2pc8IpuExgajrtE/VYcXuWy+UK/+E5F42tbcjKrJSz8jieyeaaa6vrH/fbPbeNNFbwt0DQU8tSYKryEfzrtoBGPH5Ve6awW8BZ68S842IFHB+4eaV8ol5sR04H9fJVpW8cIBibP2itQ4cyAdpLlVDSslw9mNkY7WdAIGtDVj6nRd5jGM+lA/OzAtU1d3VnMQOqcEX+7FHgYzNBLhDRCWmO7ObdDPruB60P2jKZTGI2m8XR0dFKkCFiDlCXTdIYfnUWRgbolAfds3jGCR4lx7+cvgLZWheeE27euTK1Hxzwz8CSgs2IeMSXaiFpfZ3AdZ9sTrp5zvO4VZ62KeuzbaHK2GH+4T7QPoJlzvc1zqenD9wccfysYEDlk8rCLJZDn88UtbZJ5amrv7ZBl9u4vm7uZ/3i5k2L/zgfTd8CGb28uxYYcIgP37pFKMur6lylTNk74afP8X038G6yuw7X/LRPMsHC1pUKL7eWxfc1b0aymfWoYEHre3t7uzIJVFHw5HcBgrolbH9/f3gGpxfifAEVOi2L9zWpR4BmilDT9twHteaGq4cSCx4WqG6pKONXzS9rE+fZAi7MGzqHeLnCzQXkpSA1m2Ourpxe559SNf6cpjftpqi3bo4Htd8jVt35Lm0vL7R4TcGZglutl8pUByYqeYy2KY9Ves3Vm5e8XD9xPhVlgCCjrG+druHfY0DsqJgBRZXagKpgRW4uMrVVcQURlXJWJnOIWNNqWdxGl2bMRMyAQI+igFtLo3vRFwj2ybwiqCcO/EBAoC7JMGOrQuDgIuSJa0iPJQJ9gyQDom0nnUQ6di3QCtI+dGmYMh5z6Vw+mcvV8X9m/Tg+5fxUAOI+C8iqzs617+ZwVUd+PqOnKG4dhzHC9LVpnXZmck6NAk2f8fHYOmQyxgFPldnOeMtABOfBvxVgjCV+Rvl9HV5xz/TUK5snbk710pMCCCuh4ihT3E6JV+Vk5VWCjAWiq1MGTFrCIcvX5Z0BAWXSiFhRqHyfBTJ+41wA9ZqoAoeFxkdscrwF15vz0Dag/jhfAPdxbLFrN8raBPVOCsdHfG8sEHCUrYFmQkGByDptYUDAeWv6StCyxc/k4hdc/rjGANaV7/hR+4GfdcGUrsye+jl6CrB4CRprgVYKvsq7IjcvesCaU+6aT6XQW/XXvPB85W1y/zUP/Nc53msIuvyyue2M1gzUVGVmuraiUWDAIbCWkNQKMmmjWkCABYYDAlyXSjlnIMK1Ta9rGs7XfSplyoJW4wGY3PIGC0xFu7oNjCO4mVS4OxDAxGkBNGaz2bAkoG84dAGPmyLHu+56BvrGTP5s4jvBoKDAlV2Vo2VonTm9Usa//IxaVNoGdS/rM1l7FUQw/zBg0j5S5cNlumBFFbB6PxOu2p/bAAoq0Oj+Z7IM93rkt/ZdJm81b/7O8tXvrG2uPS2l6Hi3Z365PquU65g8tT1Z/7u+0XZn5ajM1/pW9KRDh7SgLI0TNPosp9NrbMXiOTdYWf1QDq9lZnWpgIJrl2ujBgNmYEDL1Qj9CtkpAHAgJNuhoH3Be4vdoUcR8WgMJpPJcKYAzi7gYB9dtqjG6KWpBfqqdGPL0Xx7wK5TZNlc0O9MSGX1q+4pWGNhxda8KnddDnIKm0lBBfMrp9F+cYI9u6dCPROsVR9tAwCoKFOgrv9VXnK/VHzf6qcKELR4s7qmbdD0CiqV/1ptcPzBbeFrTn9lvNHiKZeuAhkKAJxc4TzGygSmbjDgBEVVKb2WKYMK5eA+ByZlgqYStK4ze9qCfLNnnLB2HxaiWk9uj0ONmlateZ4QrMR5lwGfHsiEPuWAQD56mMfACVoGElof9WYg/SbICYlqMuHbKXYVLDzGqlA1fSZYHHjSOmR1rdpUKWRO4wSptpn5xOXh8skANgPZiHj0ciuk4XdaMA+6aHAHEpw8cG3L+mVbKFP6oKyd+rwqPM2DPyqLWnXI8tM6ZvzoxsLxD7ch40fkDVnJS6tOZjtgxPnoHKv0hbvey3fufg8Q4PpmMqOHngQGnOBqCSgndFx0pwoWXWvVPFuo0H3cfa1na9B60XRP/+h1Faiujcz4/OGzAvDN67EQ8PwsnzGgXgGnLJGGlwf4lMKs316bnjJBQI5HFHyxVwXUsyUK/ctb8Lh/uXzOQ9vIdc3uZcpAn9XyGDgqUGqBgSxv/EefYScK85IqesS84PWymdJnAK593kOtfnpt4nZyv1Vjq7+zMWFAq97XbOmyUkjVfa5nq75ZHyhf8tjquLPHqVXn7D+X74Ant9m1n8FINif4dwUEsvq7+T9W5j0ZDODjXMuVouV0fOStggHOt8pPJ4UKpcyacHlmKNIRM6h+dNcDK1+NaFVGzgSXc/lzelboCgi43Pv7+5Xy9vf3V3YDuJ0OuiwBSw7jz+POQY2bpsyr5SgTfBUQ4D5m6xbEuzdU+AIMYEeIKsgMNHM7FDQyVTzcEr6alj1QrTJa85QBBNp7cHAQs9lsmOt8Xn3Eg5y4vb1dAaoOiHD/unnlFEsFxreFHH9ym5CmSu/apACVx9sZIZxPprgryoAA19eV69rGY+z0B/5nwLyqI8jpDW2v6g3l8YyqXV3aZtQr698xc1pprQBCd10VNyqjnahp+boqUB5IXo/WwDR8a+N5WQH1YXKD6tqoaC9Dvxm44GewFY/bwm3memt9FFA4oaBHCWeCWtvDFq4KBibd3ojnVUmwIH7KVp6XojGoWceT2wYgMJvNVpSZurtx+JLyELvfXcwI8zD63r0SOhNSmdXghJb2TSWEOe8MPLl6cKwKrgNI4fXY6IuDg4OV+i4WD8doZ/V2dXMggeWOA6xj+GOT5MYgUxZOXiG9yysDAS4vRxno0LIrpVcBEX5WlzxdPgx0HOhw9WQFz3XvBdn6vwJmGTgaS1X5FT3p0CGmTDDws8p0+N2y/lWItJTzclmvcTrKJkA2ybQurh58XRUEhFt2OhsLrslkNdK66gM+P36xeDhVjLeGQTHxq58jHr/qk/PEb1ZYqD/KQ368dRGUAZPXpEyh9YBEB3zgBZjNZnF4eBiz2Wx4GRSDYnZtK5hF3vCwKC9g7JGOx477mS05/HcKkXkhU4LumYynmVeYrx2Acu82gEcASwQc28JtU/Dj6pu5tF1/sKzRNJr/tlClhNZRGhmIywBjbx2rsqp8WMFnXlI3XiyPVH7q/K7G2429ykYuo9Wenv5Y51k8nwG+7F6LusGAuoxcJbSDeiwVXGMwoO71bGA5HxUYYChG/y5iW+uh5fJ1niyV0MiADgs51JWVAwtK1L8KAOS+5vJQPpTP3t7ecOBQxKpyAuEkQc2PBXg2DiykARD0LINNggHHh0wVgNXfSI++Yc/A0dHRAAbQb7wsw+BM18PxPgflY45FABi4vr4eXurCXgIeG1V8PGYti8gtRak7ngGRbillxYw8+YhrFbJ4gRZecgV+gxeN5wh4mAEy11FlgnqyHNjhew7kbyupLMvkrfutaZjvXqLtmcx181LlMMs9rmuWl46h9g0/nwEs7Tfm1wz0ZrqJ69SjrDOjpaqjK8PlV9FoMNCytJmZdI0mm2QsXB0qdem1w9zEZ6bgwdNydVJVAkMHvmoPMzMLZJ18uuyhyyO8Jq3PurqjrnwELAAF32NEnS1ZOGCkfcIKybmxszcxvha1xqt6TknHNPMMsFLj8eLXQWscAdIyUEAZUIJYL5/P50P9NGjTgVFtg+sLx6/cD9yHvKyEb+U5TsuglpU4wAQCXJGWx0AFs26ZxXUFRAy+3LzPAIHrq22lluVZKVullsHH+fX0i1N6vaBc+TBToKovHK9mfeHS8j0Fhyx7WXZW9XLluPa65zWPdWXXs4OBrEFVGp2AzuJAOkWBvQhdB4WVmYKBSnFmwqIVxIX0TJmwyX5zG4A8uc/gSuXANKfAGXBAoWgQFoS2Cu67u7vhRMGMwSGItc+Wy+Wg5HhdnNu5aTDAv3UcegWW8gUrOFZ0+jpq5Hl/fz+8UIpBAQieBLzbAXUFGGQ+4WWFDEBXv50VkS0TVWAAYEWXHRSQwPpX7wDn4YJXtX64xvnwePEcgPdE+8iNazbe1f1NUa9wj8jdyVmePXLX9Uum6HrL12ecDFV+1d9j2smkywuc1slwBZ6tNup9N/eq+inQeSl+HP1uAu0Eve8Ea6Vc+TsbfOe6UhTIitqVjTSO0fCsrklqnfE8l+MEcNU/Lg3y5PxY2FbKhV39SKNrycul32oFgpJiQKB9y+1DGdwXbO1qO8cIr5egMZO1AgL45nHhsWElyt+cL2Is2N3NZUCpMr+xsuX9+Lxjg3lVlXImPHScNAbAtZ/Taxp154Lca7FZwbP3w8UVZHNJDQfOb7lcDl4UBr+ZoaL5uH7aVsoAzti5l8lOzZe/+XqmyKr/mp8Do+5ZJ9dd3q16qhzXMvC/N/asl6pxceBVgQ/XsWeO99Ba7ybIrOJqorkBVoWjyhqkrmuti7NmeXAdk7D7VNM4Ba/r5i5YiRmay0b91K3JVrpaXQoAUB6vRUMgsmdAg/2gtCFwNVANz0KxILbAWWc6NrBqeWlA+xH5jwnmfG5yfNNC146HFdSyd4ABowOVUEYaNJrVzfFbxGp8hnqKsvq7eaZzgtujc7QlZLXNXH/On3mb82CPoesPt9TB85t5i4ETltW07c6Dob+1D7eRepRflra670BRNYdavDwGaDs+qPRKVocsD33GGTtZOscfvTwyBiy1+qsqw+XbXcfltnP8jna0ox3taEc7elHa/nfK7mhHO9rRjna0oxelHRjY0Y52tKMd7eg3px0Y2NGOdrSjHe3oN6cdGNjRjna0ox3t6DenHRjY0Y52tKMd7eg3px0Y2NGOdrSjHe3oN6cdGNjRjna0ox3t6DenHRjY0Y52tKMd7eg3px0Y2NGOdrSjHe3oN6f/B0qHnIn8KrePAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqFElEQVR4nO1dW3fbOJOEbNmOk8y3//8f7tvuTia2JV+0D3NKKZWrGw2SsuREdY6OeAFxY6O7ugGSq91ut2sXXHDBBRdccMEfi6tTV+CCCy644IILLjgtLmTgggsuuOCCC/5wXMjABRdccMEFF/zhuJCBCy644IILLvjDcSEDF1xwwQUXXPCH40IGLrjgggsuuOAPx4UMXHDBBRdccMEfjgsZuOCCCy644II/HOtqwqurq/YZ30+0Wq3eba9Wq3e/q6urdnV1td/Gcb6O2+/6Auk4H/1dX1/vt1tr7fr6uq1Wq/0/A2Xg/+3t7V2Z0T3RvFAeg/Pb7XZtt9vtj729vdnzrl563u3j2H//93/b+h4Td3d37fX11dbbQftOj6ts8D7Ljvtp/tGxKH8Gt8fJZu+8ti0bH712cN78e3t7O/jX49Exl1fUvqxdc8DtvL6+btvtdtH8K1iv17YPuH5zkcmjk0vVmdBp+q+/1to73YpjCuie3W7XXl9f99uso+YiGicqk/zTY1qnip5cGrvdrnsPn5+fu/mUycBnxCgRYEKQkQHufBzT/J1RiMphIqAD4+3t7eCcEzAdHMjDDWice3t7228jr9fX14MytDwlB/qvx1ar1cE2BvVHIxuAPYXaG2Q9A+rkwOVVyde1qfKfKaeo7KmEQJXparXay3DF2EeGz9U7GoNRG0egeS1lgJZCJA+VtNVzyNelcYQgIgFKlHuI9IzTQS4/Ry5c/izDyMvJL/9UDiDT7hzXX7eXQmSTWPdW8duRARWOirLvKTx3jVNADBUuHGPjzsaitX+jBJqnKjwV5N1udyD8mdLidEwKuHzUkbeza6J2c511+6MxKhPVNL20kVelxzS9IwN8PlKCWf2i/ue8snb0iMDV1ZWVC6SvKKuonqqsNV2UF8rqQevnzp8KETmKxlmUR2vz2jFKFgF2OqBL2MnIjKh63JkzomUCPd1YIcpVTDHAS8GRw5Ex0NogGZgqTMcK342kyTwxd21EBlT4VClp2kjZK9Sbj67hcqF8mXT0WLGW4Qw8K/bV6l+PnsvBeeSVKWbeP9VAmaMMK3KUXRfJUSYXPVl1RrXyr9dE7XMGP1L2SjCVEEQkiNMDkUEeJT9TwHV0Y/qUZDYjch+JHiFw9WNjD8cH+gSoTGFGREDvj9Yjco56ETXX9uyXXXfM++RsjpZbHTsfEhn4CGadlREpPN6ecqNHlFTVQ2nNh9NcZAB1iwyz1o9ZuisTaZQEcJQgUuQVpXlKhYryq0Y8Ox4RgsiQuuui7eh/6hga9cJdfSMoge0pUq5Pb9uV78iNXqv1WIIAnhrRvXIKP7sHlXLcsRFdGemt1vx0piMHfK2LiOj/yP3qkYBsTIy2W+/bsYnB3DImk4Fo8H0m6M10iwiRThlXpGRbe8/OVHCjgd2aX2Cj53e73cEAgmGukhY3gDQvJQF6Tvc/qwx8FDLj3zvv0ve86MjQYh/5jZBUrpuSyrn3f8SwLVnuZ4cbx9X76+QvS5vpS9VZPb24Wq3stIEimxpwcESSx4Qz/upAufyyfsjILq4ZHXNzMJXMTiYD5zYIM4Y46hE64VZh4nyrfaEsOQrpRwoX1zlDrW2I2pbtoz2R0c/axb9zgxvsmawAPeNbIVlZWTjnjH0PvbrosZ6S7JWT1U2jVioLPSXuxlVFlnqK+3fAFOMxYuSz652xYyKQecX87/Ln/KqLM5XkZnCy4QiAk9NK+REZyJy9c5fP32oBYaboVYiiGxqxXVzfM4oub4424DwWC0bRCJ0qgDC5kD0W/HG0wA2aKOrAZXBa19YeMUDZI+G3c0NGnnoyFB3vpdP8HUnI7ptGq9wxF6Vy7dR6uUfDOH3PcDslzvsZocoIRLbfQ+S1RXlNMapLYMq4mVL/zMg6PRYRgohgukgV0kXrpaK6jCCLBETblfKzMR3VIWrDuejG34YMZEKSKd/ofHSDEdLin1N2EYNmwXePAOo1WT3xKCC2lSj0HjE81uNSERE4pdBnymkK3L3JDD+ncdfzsYgc9OqjRADHe55KJrfuUdio3iMypYbBbfeu1yjOiHy5PnZ5VetzjqjoRN3PdKGTh2x9U7Tt5NPVNVrfFN2L6mLB6naUD+qiv4gIZef4/Knx25CBCJGCzYRcn49luJeluBudEYsRJgzoIzKr1eogGsCKmNNq+93q7xFw+kqURPvk3BExe6fwMuN9jHowsikkXM/eDu9HJM2RUffSGFcu/4+2s0dczgGfQXaBCnGs7vfIQVTeKDFT/RTl7fScrj1A2e5R1xFZq0YKev0xh7QugWp5vwUZiIQ/896c8Y/CYAAbfUcKdBCpd4WXC/E2Xtah9WrNh2RxnMtUAx2xbUdwEE3Q67kdkTDp2oLeNM2p0As1jypPHFNPWRVnlC4qI7oe6ClKvVcsC04hqZw4MpC9IbO1wz7MyGXvWt7Pjmm9e9csgblRpGNgan0qhh/bERHQY8DUMDvgok/RMQbrQ0eIKyQ1m3Zy55zc6XiKSIDTqedAhH8LMuDgBFsVHRtfPe8IAQsWjLASgqg8/POLhdTYR9GI7BgPDMy/OUbsogUqfO6VmhlG0p+bMq0iMvZRuki5jpSheTEJyPLk8yoLTAp6U1sREXBjoUcCKu3OPKfI8Efpj4HPKruKSjscWch+7tqMZEcEw+lglv9M9pkIKDHA9Y4kROgRAQcnp6NEqYKIVC8xDn5bMgA44XPzoC4yoN4QK1VABU/Lihiw1k3hiIGbKtC2ZvNpuL46RxalrZIFxWdXqj0PcYQIqAcRKdZefioTmp5Dqb06ZSQ28tCyeVqVEyczVW/yI72mkfHxEfiIOmSksEcCuJ4ZSeDtChFwUVJnYPWlaNkL0ypTm73jESlVfZ55/06mo2PIK+r3pfTqb0kG9KZkQu0iBfzfWl/hZqEhVZ5zbxwERhVxNV8nVNkHi3hKxL0aVCMjU4nCucL1VzQwMwPfUwxLYNRDd3Vw/6yU+Vq33Vo/rBqly66do6g/M47ZnhG5y8hAJveZXOk2yxlHo9y0qZat0wTY1kXVShg02qt5V/vGRduyuvL5LDL2kfL8W5KB1voRgd6agUgAoXB1IYuLDLj66HZrv4QE+fI2X1N5t/YInCJ1XwhjZZwRgQsOoYMcx1RpqLeg8qZ58HGVpSgS4KaPIsXlpgfc+hkdB5yXazvqpX3j9qNjU47/LliKNEb5qt6KjBojkmclDtG/6ly3XiVbwAqZ5seqe5EB3VedXpGvaMy6/nNpMwKg+9rXx0L/RfafDHozsp8LgbIAR8e1nB5YcbvIQ5avIxbAqPJzc/zRG76UCDhSUCEBmUdxLtBBrm2LBqZTDq5PsvyisKAei47rNSzb0bWRklfy4PKJlLzKc3TPXZqsTozfPQrwkcj62d0XB5Xnii7gf6cDlQjwlxD1q4isR/m9Lboui/N1+5F9cG3V9rrxm42DKXL+Ufi0kYGeclSjrz/3uU011spCW3v/CeAoxMT1cHXmAcFgFskLYjgv9dLxU69dy1QvUwXcTQ1wpECjBpFB1PZUBsCx4eo2Up/IaEcegnpMWZRgFJES1fqhXI44aYhUr+cnW3DchWdxnCNY/PKrypSF9p0i6uPq+d8B2sa5+Yxe44xj5On25H1qPbgueozLcdFallPWudFTUzxunI7k/6ieTg9oHsfAXPn/7SIDjAopiBZIseAoMXAKOGOXzEizMjUcG4WCWzs03nyM/7M+0XrxdgQ3b5yRsqjup4AjisdGdh8icqHyoPVUTyYDyz2Xoec5by7DySdINPZVXrW8yKBE9en105+IjyAC1fGRRdEy/ZPJsSKaGsvqksHpaS7D6f6IZLvIaC86kNWnV19FLyI7R6992shABGeIMyPtmCD/97yb3jxTpb7IR28kRwYADe+7qEBUz4jhR8imDfi45nWOClzr6QZ5dZCODrjMW4oURzSNFMHNpbpr2VPSukTbETHg+VeWU1eGyz/yJqPtCkbT6z2Jrj2lTI+2aeS6KcQ9MvbR/cM1Uf5OdhHqZ9lw5epUJh/P6hvVe2pfZ3lHhGLJspbAUGQgYySnRuT1sLLKvBSHUSXkflyuemhKBFydVKhh/LV+PTYeeWbKkiNomZkn0PNAT40pbL2SX4VMRMY/ykMJgkM2neX23T1X8hF5+XzeRRCibTfuqv0QXRdhjlE7V0yVzzmyPtKPTi+MQmWO8+PpUJ0aZSIwpS5RH0XtH/HKj6X3KvmO6t1J0wTnOogqBMCxNP6xl+2EqSdgUTlaJxcJiBA9RcD1zNAzDG5by9L/LCRYPfanIZpHPTYiAsLTXyqfWs9RAxKVqftZ+qpyXaov3Vi/wCPSjSMYIXhR+Y4IqL6sRAnc9NscJyaTf3dsSvuXRpkMnPPAcF5EdEPZiDnDv9v9u1AuOz/6LHelzj1wRICPVcrlPtD5XpyvkBMlTqNE4JxlKMLc6Y+ISJ26LyoRh9bGV4prftl6hUp+xyJN1SmyPxWZYzBC9qd65oDTvVlEICMG1bq4SNSI0+Ta1osIngMmrxnI5oBOgQr7corNPY+9Wv2ay+HVqbwflYV+Gemb0b4cMSZO0XNdeV/PR2W77c+CKTKr92fkfjlvd47H4aDvpIjA8/zchrn3kYmmrkXQaIgec3m5aaeROs4xTL8LRuQrM3YVB8GlycaIWyTtykIelbcGVolAbzqVj0X9MifyOSrLczBazmQycEoi0BPcXogGwgKPGMf0rVTs1biV+y5KoF44l6HXc97RI4baBiUpXHe9Dumc15+F+NyUiTJ0l0cPp1TGS8rr1DB6JQ0rQPWq3YJSPtda7OU7w8wyqHVzLyjK6lyBk50qMXAENro2OlclP78DaYiMcSaDEUmdEsJWwlnJxzlgGanQ9BEx0GM9ZGMlO+bqNlLOSP7HwCQycE4RAYabIuB/BxVcJgq8qtWV1dqhN6QRBvcIY1SXiqCq59UTxsibzQaRyyfadgNE052rrIwgCu9lXn+PkGoec+oFuLUh6qln78ZwjwlORfSc96iiXVopjijpzya7o/Xtpa/mp7ol8vCjvOfoROSPf9WPIyQAdXEkuRIVyAx7Vm+1P9V6Lo0yGTiXAVKNBLgwD1AN+1ZCr0jHbLZKSLJwpkvvFgtGwl4dYBoFyLZ539XfeQQRmTg3VAlMZtiz4xFR6JWnmBIdcC9dieoK490bN6NKdhRqXKIIgUM2rv5kjHj9kd6KZLhXhiOZ/CG4nrOk6OnBKfdaibIjpCp/x5QptVHu+JIYigycighUyx2JBCwFCErl8S6GU+o4HuVTUYg9Fsp1xnG3UFKNvv5c+ZpvVodzxBTPKvN4loDe89bqawRa8y+KijC37lEEJZLTEe8/ijodS6aOfV9PjYyM9gjASHpXLhPO0fdpHEuvOHlUp25OOXp9ZOgr+RwLn/alQ1MiAKN5ab66iNBFS3QbAu9Q9awi5e88Pc4zWpzjiEAlKuC8/GrY9Rwwhwi6+6r7PTnqydcSiOQkmx7Q63sRgggjIc5qxKhCJip1OHciOhdLELlIrrP0WraT9R4BmBINqDhRo9A6VcP4mXwyiZ1KADg/LVf7bg5ZOjsyMGq8s+tHBogKQjZ/qp/FdHACX/HmIvYYLQTUdCOv8uQ1A9GbvFw0IJsmcPX6iJDaEnBeeIaKIsuU6dJwj/E5uVXoYsWRMVQxvppfpGRVXrI6nLssfSRGdCZvVww970ekVvPMyC+nGSGbo9ONLGfR2zAreXCdM0IwF1PzXzLSfVZkYFSoeb+qxCpCzul4XgvADXBCpgq5Gs5VYVcFmbUjQ4+N8rFsPUB0LMOocT02ptQjkxc+NrdePQXdq18v3KpKjcGLZCMCzJgaDaoquhEPSvM8lrL+XeD0Z6ZDK0ae843SaVSA33MSvUobmONMjMqDPn47JY+oHg7nMkXQ2pmRgQoqTKhyPhNe/Z67u54JgSubBb9nOEaFPWtf75zz/vmFRr3XfmaRgagex2TUx8Do9JJuV/OqEljNx30nIMrDKdpe21z+Ws8oNKr5RItbl/a0PpN8LYkpDlQvTeQY9UimXqt5RE9YKUY9+alTBKPlLC2zyLO1eZGupaIDJycDUz2hqhLVa7OfeyOfCqybHlAP2Bn/KEKQhdxZ+Ny5HqK1BJwPylVC4NYIjIavgHNR1JXwM6eN+j/zilweDpEHBmiEaYTgRm/943NLPQmg9zbyrNwLj9z2VIxGED47RnRe9XhEAJxD4yJRLk1rh5/F7q0XiKKu0b2rynGkf3k8RIRoCnmdI2unktWTk4ElQ8lOuOaWpYv33Hz6HKjBiQxWdS0AwAYhm9flqYHqEwQRceF9rueS81pzMcdLckrREYXW+m1295zT89MmESnpIZL3pR8JVGPg3jGg6R0hyPKOEPWjk9HPiDmGIZJNly4it5VfdA1HmJgQKCmIHulzmOPJZ7Kkj4fzezG4XUtOHUT1nZJ/NUqb4eRkYASZ4FWVfE/QnVflnt9Wrxrn1SiOKPBIga1Wv96AGL0ESRE9uohzfBzfYkCZvV9W16j+SxCnJbAUMdHIhx7PDL1TvkuSJSWwXNfeq10ha/r2zd68bjXkGo3h6L6MePyZMj2Vt3UMLCUrEZntkd8KKeApVp121fcL4F9fkKWYuggwyk+RTWuxXDl57enFirFeyvhPxdmQgVEl7dL2iIEqCk2nYXEtRz1nFRz3CtlqW6rtz6IbqvzcQpzX19eD+qqw6hSBIwA9QXQDZUljNwe9elTORyQ0a3dP9hyi6ICTM5WL0be3aR49QhApbyU50fnIyCyp5BwhAD4rMZg6jkbkmvf52goZ0IWB+vZV96Kh1nIj6nTtMQGnkKMDU+RzVG+i7MihODbOhgxMQaSU+VwPUUe7VxE7wXQGGEKuoaZeW1x+I/XOyIyecwLqBmRPoCPv65wIwFSMyg8b7Cntn9pfWRSI881kRt9PERECnFcisNvtDhQoP357fX3dXl9fD45FyrZHprRdvbDq0gTjsyCTJacr3T+29b44cuDeTxFtt9Z/ykoXOI8ii1RFi2qZSLu+YEyVq3OWxU9NBhgZKZgKZ/j42fxI+eh72HGsEuLv1Td6AdGIJ4h26P8oelMFvwMhmAImBAAbtWP0SUYIqtMEmpduZ1EHVvL66mM2/pzekYCKgXftOmclOxcj5LISAajs9xysjAhoZADbERGI9Krq2KqjFD2y6AgNtpmktta6hLUSHXX/inMiq5+GDPRCVS5ttJ+Bb74KB5CFrjAA2ONydZxj0KN0FYHTgaf//MvyrQrwZyIEc+upnqx6uVzGMSIHFfnpRXbwrxEuJrLR+gFHCLTOkZLF9Y5IzYXLr0I0zklu59TFXRt5+3ou0rc9IqBrBqJ69Bwu1VV6XaZXI+8+iww4mYgIwbHk9FQE4aRkoCrgvZANzkXCnZXpOp4VQY8EuGkCAANFb7ASDU6vGFHwFS9KBxq3x60xqJQTDcwsr8+CikwxnBFxxyLFWFHc+h6ArC68XZElnRZgpRfVjeWcnyKIiAb+X19f9+nc2gg35RJNS40q0F7acyICVfTq3NOJToc63evIglsfEL0PQ0myM/hz9IXWmct1xID1n3sPhy7GdY5oVveKk6byO0e2p+IoZGDJgeSUqPtl6HlsESFAeewpj0wTuP/eJ5EV+grZ6NHGkTC/q/sSg29ummMhM2aMqiHvwZG/Slk9D6ZaX92uPK+N8nVaIBs7Wu/VamXldb1evxsLLy8v+7UEkcflxqWO3R6mhmddJOecUXV+9JgjAqpXo+M4li0UzB6JVllVwjo6denIh+7rIlguZ7f7d4E1yyo/acV11rGwlMH+KMPvcHbTBD1lM/f6LA/cYA6ROkPMxjQzFvziIuzruYypuvrxdhal0LZHadx+xHIzJd0r9zMgU5Ij7ekp1QqmPJXC6BEBva89j1C9vaxuSngRgYKiRZ1eXl72EQHncc01yBUZzchCtv9ZkRl/3db0+u9ejKVEQMlda/01LJkOcm3JjL6ri5IClPH6+trW6/VeThG5QlkvLy/7unEkS+uocnVKAz+CsyMDPTgvYgpJqFyTEYEsNI+br1MGOg+rg4kFGHlz2IrLxCOCfIxXe/fa1ZsS4LZEx6sCPsUYLokKcXPXcL+76yppFJFyraRtLf8GgcpkFEVi6HSVM8JaJ5XXnjeGcl5eXvZK9vr6ul1fX7eXl5ewD6B0QSacktW2jyreavpzVubZGJ2aJiOEbFBxv7N3Cbi8exEqt+/kMntygX9cL607xsnr6+ueCEBWX15ebJ2YvOr5pWRFx+KxCcbiZGCqwu8Jay/fjM1qOif0U+pdMTIccoJizNJr3V2kgMt1ip9JgZsWcdtT8FkYr/NMRu73iCKNZE/L1n9GFlrV+keRnuqCV6RlkqH15giXKl3UV1eQczrU4ebmpj0/P78jAEywWbbdQsRIlqP+dWmzY38CVOdF2+4abAMZIdDoqnsvRVZHfhTVletk0JEA/eG4yifIwOvra3t5eWmvr69tu92GYxD/bp0BzrmxrnI3VY9GzsBUnEVkoKJssV9R4qwIWPCzY1qee5JAFVav/k4huehAZDiUEESGZnRuTYlDFhWI2jrVEzsHjBI/55Fk3jOXE8lYj+S64xpJiohdJSIQ1ZW3eRV4pGxRLyYAbv4Ysr9er9vz83PbbrcHdeRHIzUMGxkixtJTCL8jMiMf9XN0XO9/FhmAjlB9imvdo6hcv4gcY5vJB//W63W7vr5u6/V6/wMhwLbq/JeXl/3v+fl5TxoYbAfYweN/bnd0L6acyzBXFy9GBkYVbHZNZBx5v6eEo+OZYl4aKsiMOZ7qUogMCAtVxD6nCN6pFPASrLu3z8eqnpXzxtw0wMj6gSnvi2Co4mUjD+W5Xq9DApCRBihb3odHhkWGkaLNPCtGRS7/RCIAREY+S8v7rNPUw3aRgdYOX+JT6fue84M0XH/2+vG7ubnZk4Cbm5t3+7gGMoOIwHa73ZOBzWazbwPAkTaWUY0QZBG8Y2EOIThJZGBUAPE/RUG7ayt5tTauWHuDi/OF19VbR3AsTA2bKlGoKOhTkZ2lMFJ3p2ydDDtF5xaVukVarY1P91RlWaMCrPDZo9Jwq4ZmNXzc2q85WfXI2PhrhED7sSJvij/R+Dunp7fvZNLJMRM8JoOOEOh0D66P9nGNPpXi6qfRJ5VTJgE3Nzft9vb2YB/kwJEB/NbrQxOJpwv4jZqtxe+TmTvP7/TtsbAYGVhC4feENEvjrumRgKrxrtS3Qi6wOvXq6upgWwVJQ07RS4L4XKWOmj56vtfNxTqMeGynVMijg6giE5m8qwJlD1u33bHW3n/0qkoytY5urUCv7qzYOazKnhV+HI51SlkjAwi9Khngx7iYBFTbznn9TljKAPT6sOegOZKI+67z8xEB7hECwK0R4DScp0arHBG4vb3d/+7u7trNzc3+/+bm5qB+iAbgt16vD/Qw5BOyimOu/opzl80hMsDGqjJAq2k0P7cdCZgrxylj93P5VqBsTfOJFmMB/BY2pAfTzASJXxLERjsz3s5Q67WOFGTtVkUeKSzto880TbAEqqRA518rJLXXp71QOoONv1t4tV6v914Ve1c6D8tztW4eGXOxuAZ1QV2xcpvb4CIEI+HXc1fAPSxZ/0wPchpNi33ICZMA/PPUkeo/vEtCCQCvJeH76d7Foro1Iq3X19fvogF3d3ft9va2ffnypd3d3e338c9lb7fbttls2tPTU3t6etpHBvBILBMBp4M5EgI4/XyOclkmA5GRqabPjo96QFG+kXA745+Ri6yMqJ4srJli5zDoarU6YMH6XGtrh9EBCCKO87V6PyqEhPNn4XZCzmWMKuDPME0wp35V8hkpMkcIOF8lcm5VtgupVudnlZiwcQcRgDKFQgUpcIbBRQda++V53d3dHSzuQn2xepvbiv9I2br7NjU0O5L2s2CJcccy66I+SghdmSAErR1GCFo7fPzUEVWuA47ptBTIiEYD7u7u9nKr8ottrhciA09PT+3h4eFgGgGA7LFzxgSGz6PuQI+kLy1/I3lOmiYYJQGjhpb33X9k2Of+Wsuf0Y8eIQHc5zldel0b4J5ccNewAc+mB7gNmSBGUQadKqgY/yhSoenOFaOEJSKffN6lzYiAmyoAWLFggLtV144oONlipa0kQL0rKNFv3761+/v7g1Crhoo1ssARAhj729vbg2kGrjsvyMLPzSlX7o/Ksbs3I3L+p4Hl1a0H0VX6Lirg7qEaf9wrRAqc06XrA1jGuB4cDcDv/v5+/2NCgJ+SVZCBr1+/tp8/f9qoh+rYzWazr59+Jj4i7LjWkVc+Hm1X7t8IJk8TVAqeQwJ4u0cEKmWoZ6bHWuuHaFkAXOgnuj4iGHyDOWKgqDwqpnXgYxVE+SKfqd5WNZpwTpgbyajIcPQoViRDTAD4XispjAhBa4dvBuQ8oFh1TQC8qvv7+/b9+/f2/fv39u3bt/bly5e958VG3YVtYTRWq1V7fn5uz8/P7fHxcU8qEGHgeoP48tQZR9NUD1SmRLJprArmyMNHw8nc6PUqr2wMdd0IkwGVXdxLJQBRhMfpTiUBjgiAoGoUC/J7f3/fvn79uicEkO3b29uDur28vBxME2AawTmOjN1ut5/mcs5UdWprhOj2MKpzJ00TZMKVGfdqGdl/jxhkP5cWiMJbasiV9UYs1rU985hBCCL0vG6t61TlNddoO0/rMxCCucbfyZSTXzWabDz5epU7Xl+iESr1JjJCwMjWB0ChQol+//69/fXXX+379+8hGdD28ALDq6ur/UptXI9rUT+87hUGhKfG3HhmctBa/thr9dhnxxIkVp0lF/HR5/XdFAHuz/X19cEUKEcE9N6xnHMd8K8kgKNXHP5XMgAi4MgA1+Hl5eUgagD5jIhAbwG3k1HtI70HlSjAMWT3KO8ZcAJZEdKeInXCqvs9EuDS63k3TwU4Lz9itREiLyW6XolAJoARc83yO4ZCdFMSvxuivq7ImpsqaO1wqglQA++2VTlEUQOtnz4twCFWVqR//fVX+6//+q/9VAHS4Tq0JSIYq9W/4dPNZrMnAugDPHL49PR08NIX/GBMeOpACYHzvH5HY6/o6V0+N6KD1QjrNBYTWCYCkcHXaSBOw3CRzQoRcJEAPoaIFn78ZAHLEt55wREPBpNVyC1IBEdBuL08PlVGuZ1Ly+1oPsPTBFzhKI3bzvJ0+0uSgSyP1g4F0M3bRkShAjbgKhAurTMEmo8iIy+nwGdTwJEMRmmzfs5kVBUqtjnM3locFUA+VQ/YRYpYjjnsiykCXnTFUYGvX7+2b9++tb/++muvaDk6wJEB50GuVv8+TYD0qCfP097f3+9Xc9/e3u5fXcyfOlYjo4TA9UOEzyanU+Bku6IX1ZDjnmokiEkdG05+Bp/1GvIbmSZw0QnILGSVPX/+3d7evosI8KOGSgawGJDbBuA8f8MA7ybYbDYH0axsaiuKDhyDvI7Yg+FpglESMEoIeiSAj1UIgeah5SkRYIWsSlu3HSLjzcKmaaO+GiECFVRCWhX8CUq0tfEpr2xsqIyx0XSeF8BKM5oiqLYD/y6cD8WqRODbt2/t27dv+/UC8LB4zl/njFVpQ0bhdfH+y8vLfrHWw8NDe3p6and3d/sXvnCejgg4QtAjTJ8JWf0zOajKSKR7nXy6p0U0whURVKThpwq0Xi6SpSRCI05MCCCzvDaAya0+BcPvx+C68CJafhoGdeRvGGAdzPPz87uoAZOeSD57iNL21slMkfnJkQHs6/nedpZ39F8hBL307ho2/tlCrugc58+Gm1fo6zb3YeWFQZU1Aj2iFtWv+nKMqYuvNIp0bkrZ9dcoAUCaTKk6xcqGLiOZUxSHq4uTZw6HuoVWWCfw119/tf/85z/tP//5T/v27Vv7+vXrXrkiVKsLyNRorFb/LiDk0CuTASzW0kcWdT2Fjm/X9rmK9jNgRKf20qucOj2pxl+9ddW5uBdqSPndAq390mFuKszVyUUpNJrFkQB+NwYbf21na4cLbLXNAH/ECAsO8a0NPs56H2SA+8HdjxHCcAzZLZOByAONlKCe60EVaLQdkYEsvRN2F37SUKeGUnUwcPvYwPPb1Pgfwq6hMRUUzVOPZySAB5TLJzL0U6ICn1WRRojk1RmfXh6qvFi5uBf18Phy95DRUxIKJ+MoGwbYEQEYfhzXZ7ZBBnSagw2IhpGRBmPk+fl5Twa+fv26jwz0FDj38Wc26sfAqKzyfiSzjuDx/XZjRB1HNfat+WgA143/VR/3iMCXL18OCC/Xj/U08oYRRgSDZRfp1fDjtcWYJmDHj50uXesS3aOICIzI+NSxMLyAMPOmppIBd90IOeidZ2Fu7f0rLCOjrx6UDg6Uo1EAnk/i0JhOGbT2/jlUZs6cTg1ERAQiZATB3Y8lBe9cFXW2/qUiuzqoHRFwSsw9g68LlVQONH9VrNEUkvOosO/mXTElADLA0wNYO8DzrzpFwGVreZAreFSsyHn9gYZxkY+bJuD+5nGk2xUl+1lJxYie7TlVkd7UKRvVgY5YZP8AZJdJHRtNpNEpiejJF8jm169f948NuqcdXHSCxyH+cQ5PGSBvJgEgszx9wBECjGXXtoo8RvIb5TEVw5EBV/BUMhApUv13ApydiwhBay0kAPpcNCshDVmiP7j+uriEIwGoA77jzoKoxID7W4lCFhGIAAHkOlamAUaUpJYR5XluqCpRTq/ypsdVcbEy4p8Sz9b6EQFXb1aYLo2rk3t3u865ghjo89n846gAK3IGlBjkTvuEPTx9Z7xG4yIdEClP7Y9ThV+XxojcZmkzIqCGWLcjuXNgXQYPnGXFOTqcP48t1sX8jgH+MbnUcak6G/8sQ9q2q6ur/fQAFrlicet2u22Pj4/t6enpYMErPx7LiwmZEHA/qmxGcliRz1G9BgwtINQBHxnzEWPllKrml53LCIESAffoE4ecoCDdOefNMfRxEwgFPtmKf/7ARWu/BJEjAUwCovmlKhFAHryvoavoOt3XwTN3yuGcMFWWXVrssyLThU/qbbECYplAZAkKkxVrFEXiekTEN4oKIAKAdwrwcawV4CkCjAUNjbb2/j0TqA/6gRU4rxeICFNvnDuFCkyVyXMgBz2D3ksb9Zmed6Q2MsqaR1Y/580qKkRY68ZyDPLovkiY1d+1lyMQ+IdsY40ArxV4fHxsDw8P++P8wzUusqX94ojAVPnTiEIFZTIAj9gNcCBSjHo+O94jBK6cTEHguHvsSeeerq+v371IhZWTIwPoD37eFBGAaOCpMWYl7xQ7phmysHbE0CseOxt3Pu+2K1GFCKdWqhU4458pzt55nlqKpqOYsLpFpiAIyF+jRroPqDJXIpytyOYogb7ClT9WxGW79S6ovxIUJSW80IvHoFu5nv10ikDvbRZuzfY/g+z2EMkpn+sRg4hIzKmLHnd9zREJNdgsy6qrXT1d+7StPG5bawdkgB09vFHz8fHxHVFAuvV6vY/sRlNdmdxW+rIXua1g0gLCKPOlyMDof48MsODwTdYQZfZFNlVM3Be44fzYDLeHjSxeWakeIPepzgVHyn4UyFejEoqewXf7WT5z6z0XvcFSrV8m05FxYmOvRFRX4HNdda0Ak4DW3s+1qiLhYxrmdUZYXzbEz23z0wNuYR8TVtQByk1JAuCmCpiE61SdkiktwxkqYAlDfmoZrmBUjjOjqMf42ikEgGV3hFxlul0XN+p0WFRWb4yqjWAZ5mlgniZ4eHjYryPgaQSkQ2TYyW5Wz+pUwRKEdYgMVApUY+3OZccqxECP9YiA3uCICKjXo2+iYuFozb+NyoGjAGCJPFUAZYroC/azfmNEUYEMLuTPRr0SIZgTJThHRESTj3HaChFwSgqKTB+Za833q37NUldAsxfO9cymKSDTHFZ1X3jTj7u4jwy5xalap2jsaqQCdVIPrxoZUFLEZX52+ZyLisxG8oP+52szvaN6pLIWpld3bYcjBdoG1WtRPjqFzFFhjDOMPX4SZrPZtO/fv7eHh4e22WzaZrM5eHEWpgjW63X4nowolB9NI4z2VxVD0wRcoYixaEV4cGaG3x3rpe8JN1+jXpEqRPaO3KpmXTUNAVMSgLmhaI5KmSH3Y0QmlkRm2CvTBLqd4RwV8JRB4hSI7jsS4MioypJ6XjxtxMcAXkegddOwKP6jMKiG6nndjEYLNCqgxoHrrvKkddQpDyUlLlqgXmD2ZIHTNVymG3u/OyK92pNfJz+RfldMmULsORjZ+FVCHRlZpNXx4NrJY6W11u7u7vZkAB4/CMF2u21PT09ts9m0L1++7F+ctV6v91PHLsrbk0Uns+6auTJdJgPwiDODkRlydywTpCy97jtS0Nr7RwhVyehb13glKismZog6h4R9De26tjgB0L6EoueFY7yAzKHCuqNBFvV9b3BOGbxTDPE5IVKiWZrW3r910Bkxlwdfz3h7e9tHmFrLva8oOuGUn04hOEKgTxC09ovEakRA+4PPKwnQaYrsBUS6OpvbwNNqjEq49bPLJyMz/viPfpG86pRWa+9Jlh53Do6mi3SIKyczdhxxjdJF0SWFW2C9Wq324+Pu7m6/gPDbt2/t8fFx/5ghSAGeMHh6egqnYFxbs/7qEYI5GCYDbrUwV5T/9fjSiMhAa+1AmHmfQ5H6YwXkFBErQEQFsM3EwNXHsUJVZq0den4cnqqAiUrUVxWMTBVwO84ZPXLq7hf+HZHL0qjHoTLJ+fD9VY9aIwKcd7RgEGnVa68qfhe210iAU+ZcX91WvcHHEY7V787f39+3x8fHdnd31zabTbu5ubHeFY8R/Jznz32sCvWzolf3TG4rBjHLgxE5iPoUE2+rrKjx5TyiiJNO0SKEz+dUJ7s2s2zwmhy8YhhRAJSFa/GRJKyrwULCx8fHvXPJ0QH3RIGzmc74R4bfyXm2n2F4moAz55vnGtUTIuTB/xkygW3t/UIpVW68OMlNA+giJqcM1eBG0YBKu1gI3f/oPJuu5mbh7vVvj3Hr9rkb/xFUSWxE8io/gPsv856ze8cGUeuy2+3eKUCtp55zeUREMDvGBANpXL6cjl8co8+L6/odpHfkQ6ERAvWmRpTkOSKT1Yz4RuccIeCIVLQ+wBFWPl5xKLIFzSCSeIyWDT2Mc0QIuG1KcnmKzK03gF7nR8P1vQHIU+VXnUn3wia0JZo24H5SmT2W7A6/Z6AihNF/hKpnmeWDc/wIId+w1Wp1cPPdvKQ+PcCLSdz8rmtHa78eM+RjFYVayfsUcMJXZao4xv+fEZmcY7vnZTGczEeetdaDverW6qTRee/8bgD3U0/LESJWklGboLDdWggej/xpWZ0qwPjkCAGTi6ifmJRM9Zo+M3oEltO5+XMFR3vcuZ7uy4gA58lGk2VMIwL8sSB+6Q+PE412sW7ndjJhRRRA3yjIhECn1PjFWc65BLmoPGKo/R3Jrsq2S1vBYl8txDkVIDagWknc5F5lq43h5/9ZsEEEmBCwQLhnmXVAqLBomIqFhNuWeXpO8bbWDpRqNJDOzbBOFcCPwKjSr5DOyjGWGxfCz7wn52Vx3tX2RJ6EGnr2sFz4lRfKOkKgbY76MIpysFKFQtUFizyGlZzoL/OkVJG6MXUuJGGu7FYcsyqBba3v3FTIQGvvH29WIoA0IB0qk3iW3/1ACPDIN7fR6XjXBxp1e3l5ORgzOBctQOeIFj85lK154fIq8ro0hr9NwFDWrcrPKcPWDjsaecx99ERDWnzzse0IgHukhN8loEQA/yyYb29vB2Ek9fp025EBN2emCpuxBCmYIlROMCMvjK+ZW9elMbcumbelcOFWfWIAcFM9SyOKALiQK1ZMg0RDOWNsKXjcZYaB9YK+98C964OVKryriAgoIeDyUIeIBHwGRONLj2XjsEfaFGzAVHYjfRbB6Tje5zryd12UDPBbAPn5fszTs+HVfuFp76hefAz6XftTo1puzRnbnCwykMnrR2AWGXAsv7XDd1iztw5o+McxMk7rwAs9UDYbfyUBzMz4JrpnmTWawG1FvTUa4ASo13eRQlYGOpLvCDIPKfIoe2kjQnBOqNTNEdweAVDvo7X3q5eRTuXakb0l7rdTLqpoNELAyhbbUGSuT1T5R3ITtUen7dyHilzYOtrX/nbGP5Pvc0O1npFcOxnl9BFZdzIIfR0RPRf91Dw5Lz6mTx7gvqNMTDNBHpkI4Ln+7Xa7f74f8gt7o/3h+ss5Z7vdbh8Z4DxQR16Qjm33Bk3YlCyihTpEZNXpWge1WxXMjgzotpuz14aigixYLk93DGnxgh5Oo4pX99nLUMaWvdwE+ev8qftCFaeJPHpHArhflBC4kHHVoPEiqihNJjCR4PUIgeZRrfM5oWdoIgXLisJdz8d6RrPnZY1C5Q4yBjlmL4s9LLSH7y9H0EbKRF7cF7rYV8k5p9cyo3sTGTsnq5+BFFThZFH3R8Yk3z8lf04/qY7v5cvpHFlAPZkMQFZACPifowN4TNs5rmqXtF46PjRqoYQA010aZeZt90SMk9elZHOE8JbJgN5k7RhXidbigbvb7ayh6glndt6RAF1EyMf0KQG+ltvNTBgs0c2nMingPsq8PLd4S6/t5RH1RcXIj2DkGkcITkkGorKnKEdN3yMHPURTAxkRUEOqipOhpITz1ikBno/lx6IwXlprB54OR0C4LU6RubbwmIwWdzkdwhHBCI6kVj2rz4JIfiMi6/Zdfs44K6Hj49H5jOw6udeIry4o5Ldvspzi8VNECG5ubvbEgNeYOMfTOWdusSLLNmSTnTbtW41aRzrDkQAlrtp/TobnynOZDPRucGvvn+VnI8zXogPRaP6YQ5a/1sOV3drhgGAyoE8NuKcIHHlg4cWP56yixSts6HU6QaMIbgGXuwZtzTxxh0hJ9ISN0/H1ylwzxXLOqPRfNJDdvLVbazKlH+YMar1XHIHjF1nhFamqVPHyFP4SHL98SxdmsdFmWeWydrvdgYfG/RNN07X2Xqfw29yQn1OuTsEiP9Yzev6cycEIUc36IyMKDDaEnEbXC0TefY8I8vVqX9w0MGQVNoPlVtcO3N7e7nUyZEanC/S+KyFwzhlfi3axvoesa5tc3/XkNSKsmdGfQwiGpwmiztHBy0qCQ/pMBLANBaPK0zUqCktq+ZXwJV8XQb0050mxAdfnUdWjV0FhwXOMFAqcoaHWKiHQdvcMeiRY7rpIHqL9j0TUjqiOkTJ100jRMc5nyTpXrtNtN9/e2qECZHl+fn5+t0jr5ubm3TPcPNaYCECW2ZNjmXbtdAbLTTlyuZw262enT3rye26otC8i5I4IRPnxvYvOMZyT6Dx/zSeLDnDdeb0A6q/rWPDBII0M8PoTJrKQQ8isRmejvtM2YtwwMWF7oNDxotMEXGaPECBthchWddAQGdDOwjFtCDdaIwN8Q3EchECZZCTcKFePqcKI1gAoWVBlooKh3rwyQQ0juWu5znpOiYBjpnOBNmMQcP9GUYZK1OAzQz1oB0cYMrLg5KtX/ug5V7fe2pBIDlX2ope46DQCzjHRd4qT+wK6wBFHp0N06gDt7Bk0nFNZVdnO8NlkvEdknWGrGAkljAi563lg6hSBpud7xvcReotlkiO0vG4AP7y9EuSBp6A0IoCyVUfyvhs//FSZe/kR36fonqhNy/RyhqmyO2kBoau0VoaNsIsMIEQJaEfjGs1b5yQBVhK84CnyGrJ5Wo1etNbC57Cj0L7OUUUCH0UPtJ6O/OB4NKhVkCO4/JwideciwYvq+5mQKdhokemSZUMptfb+UUQNQToFlkGVoK590c+v8j6HXSOl5nSCls/bPIZY5ipky92fnoxWZV7rek5wRDXan0IIVCeuVr8W8bFxdtdE+1F6RxJY9rk8yLk++cKRLZ625bUD+GeC6tqhfQiZ0z7RyADXQ+U5y1v/qwbf6WjOa0R2hxYQRscrSpOBcI0OaHdTtFG6sGQkJMss7ubmZr/NC0wiZcrrBPiGu8WDOm+kYSglAFEUYNQ7rKadYrwqBKB3/TnCKVBVmhEB4HTVaSm+50rSsj7S/N2iQSYEvTqwMuP3rrN8s3Jjhere3IY1BFxGNH8aKVTnUbl7gW0Ot3I/cH9Est5zaBhTPa1TIJNf3sd2BNVXHNLOCIDrp4o89tIxEVAiqzKLCMHNzc1+Eezz8/OBzCBPTMFGBBRw8oM6ZevHIt3u7k/PAePrjiGPw2RAG+Y6zh1Xr4XXCfCAzrwfrks1DOuEmhWQhkRZUHReX5UlM0BmiFxWFC3QOVQWmoxNjsINeO5zFq4qOXBMtJf+nBVqJrvRT9Mp1JPne6syj/P836uvRg1GlISOCyYFjhBst9t3XpWSASc/Sny5bjwOWJFGC3DR7tZ8xC9SqL1+5D6bQ3bPEU5e+ZxCDW5rhy8b4qgA+qjn+UeoXqdypbpcp7HYGOvjsRh3yMdNczFhiBYD83hT+UWZ6iyqzXTbGdz4zgjEFEyKDGSNcR3J0wWsEHXhoIbmNQrgyusdd8ZYPREOO6FMFnzcTFWWvO0MfRQhcNuo6xJKKPMOo1ByRSjdwNTz7vi5KldnTKb8XH4AK0zuP+1L9WSztFwWRwOUeGs9OBqB/4zocmQA+4gMYBvTBSjXyYcj5Dym9EmGzWbzLuTK+Wk/ZDrBKcljelcfBUdIe8TVgY2J9ot64jCErfWnHjNoJCHKRwk1p+fFf0oE+JFYEFleuwYZ5HdooE1urQrLjkYEWHafnp728stvRNQpgxG5c7ozIwaV6yMMLyDUCjGb0tW/+ulTQCMBapxUOJUU9AyXCjgLDQRHFxdqREK9Hg6lKiFQgpFFBaDYIkLAqAw2ZyhcCJqVvx7LjI4rb/T8OXtbmRLtLUJ1RMDJE7wQXKMeFiMiWFpnnHP9qnLD44Zlw8mtC7fqF964jaiLel/O+Gp7NSrhpt5GIiYOFXJ1zvI5BY4I6DFHklRfqrxwXhw1nYKR61x9lFiyYXYfCVLygKiAPiILO+au5b7B+AAJ4M8XM6FlUquOQYaqPC4pt0NkIPOkIuXmjAvSVzzh0Ya6NQoqOIhIuBWmfOMZUJSqrKJ1AxERgPJDvXCMiQG3hQdh5iFqH2gap5i5DFUUo0K2RJjqWIiUYJau4nGx7EdQT4Y9LI6ecR34WneuR9h6dUEeHGZl2daIALwr/eKnhvK5vtwv6g0xCWACwtEBXhXORJzRuy+alre5Tjq2IrJwbsh0cNYXDG23I5ZKLqvrY+bAlRFFJ3QRH0cD+AkWToP3ZuiiVP4OBh5HdMQeROCff/5pP378aD9+/Gj//PNP+/nzZ/v58+eeFGDKgMfalAiX9gOOVwlDBcNkQBUmh1Tc54BZKeg0AOfhGKgaJReaygTTeUgQiMizQ5lMKjgspIut9FErt5BQSQGHmpB/tf8/AhHxALL6qtLn/M4BGaFlpRD9Kgq2tcMvrrEywjn3ERUHZ7CcYdVtvtbVifvArcLebDbv3tCpL+Vy0QKtq/Y9e5ZRJIKJiAutRkRO96NrIkLoojLnSgJ0PyOxPWh/QE5eX1/fPfWl8tNDT76zKYLe9axHOUKLFw2BFHC78DQMf/cC5Thbxmkgi0xc//777/bjx4/2P//zP+1///d/299//91+/vzZHh4e2tPT08E6GPRz1n+4Z0rSXLqlderQJ4xVGWpYRd/zr0Y1mttkYVRCoKiyUmWRrbWDUC3/sNIUHewWR6nA6TxQFAXQNI4IRKRA+yPqB+6npVh7ZHz4XIZzMf4RVHmyvGZEoEIIuN+YCPAb8/gpltbi+5n1dU+W3H3jcvnxXZZRjXbpugF+AZEaa+0bF2IGoJx1vQDmXjU60AuxctmRIXdefwQlN+cErhv+s+0e8UEbney6EL1zpBx6Rn3UweNIG/ZZbt36FqRzRKBKBjia9fLyspfTHz9+tL///rv93//93z5CACLw9PT0bjGh6vro390b7mslukvI5xAZ4B8YF4dU3Kt9ubKqCDhv/lcB0c4YMUTOE3IDhDtZ532h8NyTA2z8MyLgHrNSr077m6MU2mdc5x4yb/EYiDysc1GokSLtrQ9wytbtR2DFyoaZZRSKJ8o7Iwa8zXLGYGWu6wb4BS2qULEG6Pr6+uBxLYx7rIPQ+itZ1nCum3OFImVlqmQ7az/6zSlQlcOpZPcc4Ax+pN+AKknS4+pc9ZwOzSu6zt1LnSrl42zcnbMF+dput3t5xHH9pDATAYx/dmh1zdtut9sTUyYDIAT//PPPXm55EaxzCN10QU/mji2Xk8iAfntAF2xoR7fmF/+x56sEwBGC1rzQ9hSksloOUaIOvCpav9vO4SG+1m07IsAGX4mAixbMgevLqG96ZUYe1rkZ9yqcAY9+GTFgOKXoFCGnYxLAjzc5ZasGjaH3L9rmY1oGh4LVWIMMMAlQz4nHPkfeuA2cNz9+xSTg4eGhPTw8HCzC0scNmQhAfiuefeZVub6NvLNzRERKK4TAkSLWC6oDOd/IYPfquISO43a4iBbWgD0/P+/L1IXj/O0ZHfca4WY5VjLw8+fP9s8//+zXC+haAZZdFwXoyTD34bH1bZkMQCkqEdB1ArxWwClF9f6dl9ZaHgrMmLwKqUYUoLDYaMKrwTl+uxrqol4UbzuGqqHbiAgsgSzqwseWLPOzISIClfUBPUIAsMwoNCrAcsmPtOL6yJPqEV+nXFxUDTKKKQP3NAF7V66v1Hti2de5WiYZrEhZmYIMsHcF4qAhVhdVq3pao8b/nEivk69KREChOoMJgkYDWGZ0mkCJQWvvo1tZ3StQ+cW/yi87ddwW1Fs9ffeqfJZ3pGc5ZjKw2Wz26wMyIuAWls+NAjj51P4ZJRBDkQEXMmQSwGEYJ2hQfK0deg38RkJHGKZC55bYC3p5eXnXPgg2r3nAtcw+3bRAFBHgaQLNy+1zn/UQhfY0zVRl5hjsHMV4KqWqEY5eJECNH7ZxLaBrSxgRMVDSyqFMt26AFfAU6HXIjxUqTxOwZ6TyrzLNeb69ve3Hv3pUPJfL6wIeHh72RACrsUEIeM2APvro1iv0iEGG7D7h/DkRAkAjAXp8JDKA4/hXneSmKqN1Lo4cKAGuQscFRyqYgOrjuuz8ROvYov7RR+S57GiK6+HhYS/b/I6OiAhEcstwka2qkWe5qMpumQxwB2kkgL8SxQoUDUEH6LFsCgFwhCBroKZn5adlqyAxcWChceGojAhoZGCUCIxAmWD1mp6HGaV1pKBKXE6JjAhk5IDlAGBiwMTVRRI4fWuHyg1KixVYFl3gdoz2JysUlIlIGMYMe/CbzeadsdE2qbLEAi3+Nkhr7eBJBShQkAFEBn78+LH3srAAK3tWW0nVaD9l0QF37VSv9lhQ44//ER2gepQNE0dO2ftXgxsRAoami9oRQccM6g7jzO2GbCBiwOTUjVVHUpysY3zoWw4hp4+Pj+GbNJVEV4iA66Mp3v4IhsiAEoHb29t9RADPZDqPQiMCGnZC/rzimg0mG/g5HhLqsV6vD26QvhkRZar3E5EB/I8Y/qwdFUObDbCloAIb/bLrWzu9Is28JjbeUXRACUEWHejtO6ihdlEI1w7kD7nlcaJRNlemRgf4qRq+jmVX37zJc//8XLaSb/Wmttvt3uiDFOAf+SGtvmvArcyuEtSIJGh7s7SnRm88ZV4vQx0I1sssX+wsOTKLdFk9o4hC5sTo9eo8or7Pz89ttzt8Qyx/TEuj1To2o3KZLHD+iFaxTGNqYLvdHsgpO4ZRJKtHRD8KQ2sGomgALyJyjBudoVMBvB0pM+QBOGakRluhc12s3HAcP370SkmNev/M+rQ+FSLgogKRQqu0axRR2e6/Z/gzHJvRToV6vu58dMxFBxyccdf7pl6XU7hTiJ9GyXqEhA0+SP12uw3Tt/ZrCgDPdutHjDCmEBXgxwg5QvD4+LgnAvpoofteAfoxM/qOjPYIKo8lTntushthVA/0yDxHCJA/tnXhq8r5XGdAr+dxwjpFxxLWDsAeKUHVMZtN0wHs9DHpgIyCBDgiEBn+OTr1GCiTgdvb2z0hABFQMuA8AgDGXlcc8zmNAkTbCh6syh5VaWdzuWq0eJ9fGKPMLjrG+Toi4OrgtuegZ9D0HkXEZvSXte1UcFGBXmSAj7fW3ikVIJoaqHhoVVS9KOdd9IgAR75ACDSNRgdg4FkfuC8aamRAyQD/eL0A5l/dq7+dgo3aPSJ7jkRMJdtLIxrLWSRgpP2Rk8Xki+VaF74yyY3qWynfOZR83EUJWjucloLOxhoxFxXg/eweQ+713RsYC/r4K08bZ/ox0pmn0pVlMgBjf3d3944IQAmwN8DzkhoBaO2XIeKPFalCGx3EAEgFH3f/6m1pxICP8/mMADjmF3ng1bUCvXQqxNFAUZbPxxVTDH4P50AIgIgYOKKgREBJAOfH6XDcwSlOXjNQjQ5EEbWI8Ckgn/wZb/dyLk7Pi/nwuKFOE/J1u91u70Gxoa++bMhFBTJZcpGA6Dj0TC9ScE6yC2TEcISERmTK9bWTS/7YT+S9c10i/Rrtu0gDRyfY0eLIANfBjVOVh0huNBqMtSv6rhmMCZyrEAFt9ynlrEwGMNhvbm4OPAEmAmqEcGPgVSscC58CvZHRtn5IJYsUsLJ2DA/lOkMfKV++dgki4MJafIwNQ2+Acf2qRCASaLd9arAC0G2NCEAmnLy09r7flQTM9SIhzxkhyLz/HiFwpEKJMBSbjhGNHlxdvf/Cm7YfkQFEB0AK9O2D+vlZ9sZUySoZ17ZUwIbKjY/ImJ0z5upRzsORASeHTof3pjBHpr60fM6ToxOttQOdzUSeCYuTUScH2OZIAxt+jAGW0x4RcERrCRIQEdaRfIciA4gEaFgQUQPtSGVaPQZYQeQZOIGMiICGgTmtY59R/fkch1k5ve635g38koaT26KGYYqy6BGBUzPaHlSBsIHTKQJ9LI4XxPamCNzxuVClWSWRlTxZafL91fOYMmAiAAPtyJLKhYZT+dEr/h6BRgOYAPD8Ky/S5XLmyqHzFCOy8NFQ+VJCm5HQSv15fGS6lYkqDKwjqVn+gE7lVmRbx5TT0zxeNe+KHnTOnnr+OhaiBeQVMlBBVcbnyOrQmoHr6+s9EeAFhByq5I5S4YrmUBRqwBR6jWOZTllryFejAplXq8oyu7ERETgGCXCeKZ+bk390f9wxpzj1/p3Su1KlyT8miFzPKDLQWhwd0HNVsJJlj4qVnR53eVTljqckdMyuVquDNQM4j8W1/CY3BkcglCDr3D//86OD7G0xAXBEoGr8WQ85g8/7Lr0zZB+JaBxV65Q5MZqna3M0rqN9HKt6/yMEVwkEjxuGI7sMFxnQfSUCkD+1A0oEKmsFon9Nl+ngquxXbcDwNMHt7W378uWLjQqsVquDKQFVCNwIdxxwxyLwDQNc+FyVnaLCnPnGa7hIf9pWzUfrr4NmigeYeQdRm7SuVSU7ynDPQZlmJACGMXtLmSNbjIp3lMEpNp0miMpiwo39aHxxfjpmkRaP22JVtk6t6dQBX+vGh/uyp4ZYo28QRCQgk9lRRZmRhGp+x0CkzOdE+lqrtSfqT55KUs+bCSYTgqVJlY4FvY9KoBm98aljKSMDer4in05nTpHfkXQVlMnA3d1dW6/X7xYQMkNzA4sRGZrI+CwV9orOc/RBhTm6hq+NSAG3R8lKZOSXCP8eC+6+TYk6nIoQRGRACQETgSwqADjSORImZXmK+hNGUAlJJi/RfXFKkd/twQYXYWBV+tpuJRscOuXxkYX8HYHIiHSFrLr+7MlsFCU8F2QRggoBzYg7626VR9dv0J06RaDOzTEJAdeFwQRgtLxId0eRKU6TGX9HBng7SqvHjimXQ9MEeKwQ2/xeAQ4d6vyMwg10PqeAEOlCqNb8amkNtTphxL97jWVWZ10k4uaKNDrCbe3d0ChqkXmkEbKyMmFzwuq8QBzXPj03sNJk48/f2OC1AiACGhXI0OsDVai8XSWCuiArIq6REXVjhyMDTIz5c8s9gsyK0I2LXvQsUrDcT5GS5XMOmWfNfVlJcw7IDL+ey4wPb7uoSK9vGG5qyyEjvRVU74OT89FrnN7maYAsouqIAOdb+XfXah4VjKQdXkCoX3RiA8qKQSsShSu503tGkgkBC0Z0s53wMKPFtUwWHDIlpP8Zc+T/EWgYjEkOr5JVzBl4I3lEhICvy5TER8BFBPDP5/V4a97oRoO0ly4jAW7cIJ0SAX6kKptiyoi3kuTWfn1RkUmytkvHgnr0GRHIyLHqiMiITcHoWHAe8jmhEhVQZKSgMoYzRA4Y6hjJqmvT0qjqXJW7iLBOIQJV+6Fpe3VdEsOfMM6MZjWfSBlEx/VaPQZkChokgPNQQoBtlwezQvfOaWaLvO32e+xc+1fnx1ybp9yTXqg5EsqqgjwXj8pFBnjbPRZXDb2OnO8RAZVLhk5jsbGOImyOjDLctUwEMjB5QP7Zj0kCrs/6YAlEBj3SI2oENVR+bqhEC+cQqwq55fI5IuwIQWv1R6U535H0U6bP+JyTSXXweHuECETG36WPjk1pW1V2h8jAXCLQmu8kjQpkBoi9Njcd0WO8uI4VKSt+V3ZEBFQRRl5PRHCicJYbhDyYooVqGbHo3beIfLm8tX7Oo3D1ObfIABOALCrQWj2sz/fGyVJmuPl8dD8caeXoUJRPVGdd98Cv43YRs0i+2dhn6wDcYkX+123UawRqxFUO3fjisl26Y3hix4AjP5W6O10ZRfhcni69EgLNQ6FOj+bLcDpwt/NTyVrfyriMDPNIVIDTZflm/9GxKkbGztC3CThj52lnDcK+NlI9aD6nYKOy2/1a8dwjBZy/htV7BIeVK8iAU3g9IlCZJnCDgdvLhICf8c2mCpBXVK4zOlwmtjm9UxpOCSkpORUZcEQgIgVa16zfXDmj00AZEXB5aTTg6sq/1IvHoJu6i9qnUwS9qEPP6LtjPT0RtWXkXCaLuC4zfp+NBEQYJQXu+kokMiIAjhC4PFw0NIpORc4Q7qPqOydnvXGtY5K3I4PtCEDvWJTfKVAmAwAGtd4o92hQxJY0EsDnAL6xuEbPA5zGeagV6OuUtU7RnGhEArjO2TQB9tV7dlMDEfuutjcyHFoXV0cgIwI9nJoMKAnoRQUYalwjOHLZI6lajpahRDCLjGkdM2LR2vu1BxwZwHmU4QiGEgEXJVMi4HRChMwT7aXrkdRMbiOjdyoooeXjEeYSAZdfhSRFhMAhmxrQqbGoLFfP6NgUEuAMvTPyLq3Wp0IETkUOymSAPWN4ozzQ9FEi7jT9ARVFgDTRIik24Lq4sCewyBc/Licy7tFTBJxW2WQkWIyeYZ1qcLN9ZtAVctGLBOh1TgGfAqpIo19UT0f4+BxfqwqsYvxby5WU9qMjBCjTyZqrN/KKXueK8+4+c34Y6/yv55wirSg813+j5MHJc29/pLyPQDQWncw63TfahmiMV0gUozJF0HN6Iigp0vyjp8wUGQnAcUeme/YtIwXHIAQVXdPDEBmA5w8Pgm8eEwV9uQh/ZCQKqatAOwFk6M1mIXCA8OhjY/qZS9QNbeT6s5ejpAd9xHCKLBqk1UGANJFBiAYJK3n0nSvf9VsFXHe9d6N5LY3I+DMJ1KgAD8aql91a/h4AfnIF6BlvrgfLiHpempciIqHIS+vMsuXqG0XK9JyO+REyELVDt3u6omrEzpUUVI3jR5TtxnlWJybHeo3qfJW1pdqkY7ZCANy1kcHP5Dois0vLU5ZftawyGWDPn5UpkwH+OYPpOq1aYScYbs1AJEAcAeAV5PyiGShr1J/zyhRcpoQjjAgDBkmVkSuUaLh/NTZa1ywc55TFKZWng8qskgJO01pM5KJ5Q1zrQptqrDMPJUN0b7gMrivKiuRUFzsqMXBkU+W/soZmhAhwe7LzvF2VtZ6ca17OKTkHqBGNIgS9/q3m75DJIpefEdVI/vQcZLFyD6JxquddnSKSEBn/rA7uP0t7DhgiA60dGhAYTHR+tuqeP3biFBOUcjQPGiEjAHycIwJMBvTDNKgj/zNUuUVzuxkqQuLCaRrCdYMkqgNHTty6gUhRjhCQnqI9l8iAWy/glI0aPRxzyoTJmio11x96z7g8PubAitN5XK5+ThmrwUfdp5JOLkfbogq0NwZ6x11eirkyOKcfPgIVo804luHpETicU7gpNSYPSgh4bEVPE3C+jhg42+PGH59TApv9NM8eeo6TEtJKX09FmQywQgRYkbDi1CgBG9Do0aKlwMKhHh+mBPDyJGyzMEZMUtunXs+o8ZzSblX+GrnoPRve2qGHjGsyAtZrSyaU5+JVKRngaACniaCKIDOsU+9/zwuOkE07cJ2z67FIUOU4Urpav8wTyjyzqW2O8uftHqkZJQXnhmysVvpV+yaKLkRluXzcNv9neUX3KjKEel0kexkR0GumEgFX32gfGDXmxzD+iiEyoNC3MrHhj4hBD9HTA3oeAGPk8xwt4FXi/OZE/SANTxFwm0FgeP2AEgGk1ShFJvj8P+KNaTRAPboI6IPe0wR6jda7d2wpBXwMOEKQESgO6zsvQ/N2hEAjOnoN51WJCmT1jKBRN4a2H23sPa6qiJQwH3NEYIQw9khAZCRGPWjFqeU2QxYZba0WYVoCERHQuo6U6Yiu+2wyysRx7PeIQEYCNE2PAJwjYRzF0ALCiHm6CIDb52t7rBPrAVwaNf6aTh8T03fQ6xQB6hXNjfI+yIGez4yKW7Wvymx0UEZ9w+TAQft9xHBH0Y8KSTgluD+cYXD3zt2nbM4f+TlvOjLCkTLScqtwBp+VcrQoEJhCAvR6RcV7io65c1leOiZ6RKBKQD7CKzsmPrLuLhLgogRRVLOnNzjfaBw6Ix7p3yyS5oiAS6d1c7ojakcFI/I3514PkYFoX42/elT4R9qIIVYHa2Z42ePjbSYC+LFHHREc1J+fkAAh0PRZSBVtXwIRK876lpFFCCoemwpn5gWcC6KoTY8URQNcx4Nb8IT74PKuKDKexqkoyyxCoPdDSWxE8EAQuP2ZLhjBXPmICHWmW0ajBKPe7DlDx+ycfDIjH0UJMkIQwa0diPRs5MBViEBEALJttz8VxyIHI5hMBpgtwVjqcXddhN58d+TdKXhB4Gq1OtjniACHTpllMgngb7C/vb0dvFRpysBywhuhN1h4ugAKW6dMWnvvDXLkwK0bqNY9q+s5kYDWxhWfY/wu/MhwSqu1eAFhr+woCuHy6d0/VR7ZWKtGeRzJ5+N8DNvO69LtDL1rXSQg2tfjrg4ZmTtXROQ16uMR45yl4XwYkePgIpq8dgtp+RyOZdHYjAhENsnJpRr/jCy461z/jBzP4PTTEpj0BkL98Tx6a/1FTCoMPY+aEYV2MWhh5Far1bvv0ytJQD68HuDl5aU9Pz+35+fnd9u69oHb4byq0ZsUedsVQ+wGGK8tUMOvq8jdVMaS+EwKNUKvX3pTBJUFnpFRd+sRGL21NlEZWZ49b9stPlWS7WRYx8dU2Yjq56IC/NP6cn1Yj3E7PgNGiEDP+FeMvt5Ddz/0vNsGdPxwGr4nuI/ZXH825avHXV85o98jBaMEd46eje7pHAxHBpQIwDjqF8nctQxVmvwfCSIbczew2eOPfqqUmABst9v9b7PZtJeXl3fRAY0KIB8XfnSsmPunorRGoFMjbHw0GoCf7qN+TrAyQ+PaieOViM5HAX2A7ahObooLx1vzA4/DmM6rnBpO5+t7hCJ7sgDy2CMOaDevH3DGnsusRpi4DLfNZbn0maGrerk9XaMGbQqxPxV6HqqmjaJAo5GCivGvEoLWDuWY70MlKsDXOWIw+t8jA+4/Qy9N1fPP8qncP8Xw0wSqJGFQ8R9VVo2ChrnVUDOUALBC5/Ns8PVlQu4pBF4LwFEARAL4x2RAwV4gv6bZ9WGkBKcYyqzfmCBxeezpKBHoza1hAFe8pble35LICNYIw64O/CgakN2nXvnZ2IhQMc5KMJgEVBWKI/QuOlDNp3cuq1d2PIoQOGPlptXOBapDIuMRkfqlyj8GSWJdqnBTBa5e2J5CAvTY0kSghymG32GKvA6RAWZaTARaazYyULmhzPiy6QImAfzPhs39onZEJAARAhznyEA0uFSZVG+EiyZE7XdgIqAkabX69cplAOsKdrvdwbau99BBpK+ZZRLh4PpgtVoNPdb40VBjMHJdhEhptdZ/PetUOarUq7X4cSqWYU0zMhWh9XPe/6hRGUmv4yIiA5qerzmHaMCocYgMU5Wcj0TxVEYr9ye779G+EgR+Esdh6nSAtqNKCnR7tN0ZppZRvYYxTAZcKDljZIpsXojzcIOTDV4ULXDTAjz4UT8sCFQSwFGB3vQA51n1oDKBcErKRTQ0zK2kAOsjHCHAQOL7dHNzY4WOyQL+X15eDtqgb6HM2n5O3lUEvUeseLiPI+UREUNtexQOZVQVuKJnKPQ+uegAk3TeVvAUAb+ldAlPpmcspuap4wHgtvbIw7mhZ8z43BR5iq7JSJ7bnwLNb2QqyhlxzjMjTz1S4K4bQa9vPpqMDpGBaL6UO8aFZhi4me7lEW5OFB2mirVHEBx4WoAXCCoJ4B8TgciLi/prrgJxkQ033+36hZ+a4McoUTf+1/wYvLCSf2woNGLg2n9qhTpSNvqPjUN1XrwygLku2Rwo5zla/4icjSjSHtl1il8X3VW9RHeO/13kgv/dNdiODLpOsek9P7XM9qAkNDrnroucL0dko3xc3/SIQEWuNC9Xj8p9GSED0fFK5MC1zWEJYnTMfGctIHTeMpCFN+BRwkgpIQB0sDIxqChIXRXM3i1HA0AGmBDw2gglA1UFoR541icZtDxVYBwN4Kcn+AVLGkFgoO/5/QuoIyIoLy8v+4WVz8/P7fr6uj0/Px+E/jMjcErFqmRJoYvlsjwcet5RdE5JgY6BaNoM+478crkjC/ocqoTA/Wv5amAy+c/KUQKg6d29dsY9chzcOoFTE4JM71SMtmKp9ixl2OaQAiCSq543H5Gl6L8SUaj0b8+AT7UVo+UwJj9ayEqGDSfS8D/StHao4PgzyHweAzFSZJnH6VgtwtwI/fPUAJ4a4G1dMKisUuux5ODKDL9TXBwRwTa+vXBzc7M38K21/bcZkBd+TBpwDfcdSNJms2mPj4/t8fGxPT8/t9VqdRAl4LUH/M/lnSN6K/QjMDHV4z1POiIlvbr0jFmkMPm6HnoRtgq0raNGKvJ0ozL0uPPsR/pOj52D7GaGZsR4VA1WtTwHR9i0ju4eV0l3RT5GvPzKtT0ioPWKIhq96EmGrJ1zMUQGnKebdQygxCF7ciAiDVqWLhDURwf1Rmi42y0YzIgACyorGlYsOj/P9dCV1U4IKsxf28uRgPV6vf/d3t62m5ubvXHnaQOuO0cRbm9v2+3t7f5JDNQbUYGHh4f9+cfHx7Zardp2uz1oH5O4aAHaKZAZGhcZQP/M8awVSgT03qJ/NCKgcua2OX9uF9/HylMgPK7cIl3UB2Wh7xDp438uG3WNoig9wxwpUUewlAxkEYFoUeQ5GP+56Hme2vfRsdZiz9uVlxk4d98yVAxqrz5zSAC2K0QAx934HjX6czHSx8DQNIEjAtFxXNOrLBSWCl30eBbO6aB2A5/rweFu/umCwd5iwUjR8DsOVFm6geS8SS2P+0aNhpIelM1RAfz0o0xKBEAgvnz50r58+dLu7u727UFE5enpqd3d3R1EG/ja7Xa772PuP+6HjxwMiswriaaj+DyHuxXOUOn57LjLT89nRCAiwHjMVQl45k1zf0T7XAau1T5yaweiPov6NCorkyNXjqs7oGucKs7NR6LigeO/5zWOEJxq9CC6Vsvr3TNHRKLrpnjSfG97+fQiCi6fjyKPFQM/VYYnLyDUfYfIs9IV8dnjV6vVam+kI48I+bg6M2GBwdcFgvh3ZMB5HfhXIsCRAdw0XXgWEQJ3k7lvsvlj/fgSogJ3d3cHnr4uPmSDfnt72+7v79vXr1/b/f19u7m52RORt7e3ttls2s+fP/eE4O7urv38+bM9PDwcvKQJ6wjQj3offndEMtmT1ej+4pzKnW5zWjXCkK2M0HA5jmg4Qo7zeKKktbaPCjAh4Dq5SFvPYFWVbUbYtR8jaDTw3MgBIyNYkRGN2p9FCqL8+Nrecc0ziupU0ZOJXhSgRwwqkYDIwXB1G5Uf7ZuRSMhUTF5AyPsuKsDXRIg8FL3eLazqsU+tF39fgN8x4EhATwGwktHFeRoaVc/YKZmKt6Mh3yisvV6v283NzT7kD2Kg9QMZuLq62qcDGfj69Wu7vb09eOJju90eRBo4/6enp/b09HQw5eI+6nTq9wyofDpvoZKHQxYNOIbXoFNk7pybpnFjshcJcEaUDbwafS6H61aZpmgtNwzOmIyQrui4jkk3Vk8F18ZKm51zMVreiNHt5Yk6RIRAz/fyGjGQmVcf7WfXVsnWkiSgSgqmYngBYWvviYFuVzzA6JEqxyZ1yqAiLI4MsPHnZ+arRMB5HFCGumZBFe/V1fsvBfaEWgcNR0e4D7hMDv3zVAFHLlBnXSvAZODu7m6/4HC327XtdrsnFjw9cHNz0x4fH9vNzU3bbDZtvV4fvKyJp2hubm7Ce3ZscF87ouYUbDb4e6RA/7Nt1KEi2z2wEtcoAY5p+owEuLr2yuZ/VmxaH9QpIlJ8vmJMHAGrkDHWF44InJoMoI6un7TPqwQg6mPNZ4oBivJxZUXynh2vHHPnj0kEXJkj4zgiARFpcuXNxaSnCXhbjWhvnUBr3vuPwAoSBhHHFW7+D/XjjxFh2xGB3uB3UYFM8fQ8lZGbGA341lpIAnjNgD5myGsL7u7u2v39/cE/rtvtdgeLEXl6gY8jArFerw+mZN7e3tp6vT7ZNEE2mCor+HUBbKZwMzLg0kcYTROV5wywQyUaADDRjurlIgeuPs770bwyLyzymnUsRuseAHVwVA+cAyFw4LYu4ZlGxrtyTXZMCUJm5EaMaJUIVOqn2xUikPWX9p1rZ+T5V0lY1UmpYFJkICq0p+yneDy6wBD5uLLU+8P1bPizKYHM24t+OF+Zj3R1nQItB0aejTM/VQAPX99FwFMKd3d3B0SAFwu+vb3t08Ho63TEzc1Ne3h4aOv1ev8uApABfjzxVIj6W71ft1hQozrRQB31SJ2Xzv9IowbaHctIqM7ZR+l6ebbWVz49EtBaO1jYqHXQvuGoTcVLd2O0RwS4LdnvFKiUW71XlXIyh4PLG81fy8giA72ogeZXOV/Z5v3RCMQcrz6LCoyUPReTyQCDlUiEuV5h5mkxWMnodpUlOsUKpaJTAuxtK5xhqQiIEwZuD/c3ysZTBLwgUD15JgMw6jDmIABMCphIIKLy7du3ttls2tevX9v379/bz58/28+fP9uPHz/az58/2z///NMeHx8P3tmARzjP1buC3PK/iwZEBIC3I4+0AufVq0GLyuX6c72V5Li68MJX3tb5fpSVkWaV3YgQoKzW/NQgp1G517K4zF4fKZxDcE5kAPXSugJKQPWc5uHSaVlTIgFZuqzvI4LaIwQjUZtRIuCOVT3wUSIAZNGEKvmaK6OLkIGeV91a/yMnPWHVjtUOcoYfEQCdKtDjWn++AU7BR3VU6FMJFQXjbn5WFvcve+06XQCSAMOCfX0SgdcScDSA67fdbtu3b9/aw8PDngDgsURc8/T0dPCa581mc/Jpggg6VeCeknFPmDBUTvQJgFE4b9blF8nlbvdrzQCPDQfXP25RYu9phIo36UhJpX8q0x2ZYXSKGf3i9AX326nJgKJHSvVYxcBH+Uee6kjdovy0npzWEYK592CJ6EB2XNNUohuR4dc8evVYQj4XjQxkx1gZOAPOcB1YFWYe2DqYed/ljXIdEWDvzL3zv6ogK4OF61JJj7l9t16AXySEhYRKCHA9K8HW2j7P29vbA5Lw+vraNptNe3p6ag8PD+3bt2/7SML19XW7u7trDw8PbbPZ7KcM1uv1WSlUQJ/SACJZcVAZAHly3nEFvTUMTmH26peRcUdg+PjU+xZdlz3VoHCLO/laHSNKBqLIjDoP0eLBrB0fAa1H9Kvo4KWMaRRxyK7LiElP/zkSVy2/pz8rqBAHRqTDK+OU860QgQpRrbZ3mAxUjDKn6UUEWosb5DrHkYQKc9Lye+U5UlCFIx/Zo4Xu+qi8yKNS0qIr/kEKNPTM3yNwyljzwxcO9bsH7FnxmgSsIVitzvMTxmhz1OfZYHPyocZHpyBay8cCr2GIvFsGG8vKYkgH5JvllT1BpN41zul12s4KQdJpht1u906nRAo3elJJ6+na4dp6KlTIAMtGJMdLkYMp1/UIgUubEYKsTi6tu49ziUJmd6ZGZeaUOxdlMqCDNwv74bgL2/FAdPlmLDczkKMd1AvdcL1ZweubBrXeqlha+/VthAqrzOrJfR4ZfF0HgAWBX7582ZMBBreHiYGWxa865uNIx09q4LyuVTjVNAGgyh3kxXkeWVQguicZKWBEpMttZ+TAYUofs7F13wsBnMGvrs9xde99HApQUsJjE+VWyHNUZ0cARrzPY0LrwfcgWhgKWekZyKXrV0kbef4ur8yoZ+VXiMAUVIiEtsWRmmPVwRHiEUyKDPQUezbfifPHNAyVKEAEFxFwCr5HBPiHNE7R8PW9OrH3roRAFw7yokC8ROjLly8HnrCWwQsMmfBoWQyQgO122+7v7999yZDrfKrIQOTNwtNEvfSe9khBpdwoZDgH7LU7pZ9dx3Xja9jL5r5R5aZP6Whe3NdzxuEScJGSytSAG6unJAQon3WMEoLW4umlcyACfE00JqIoQFT/XvmR4Vy6L1zeUWRgCiGoyKXWYQohGCIDvegAttWAthbPVVY8CCBqZFVQqp5eL/zLg46Nq1M02SJFV34ErpMu9HMLB0EM8EpiRAh4UZkKEof9lYAwUWit7V8gdHt7297eDr/7gPuEusIDPOU0gQ4kNoD6YZ3WvNEYIbBsULkOWf163j/Lv651yKYHVDZdXZgEIM8sP95WOXfXn8qYRtGNivE/FyIARISAUdWPes2IHs7q1ysH6aLtqeiNrbn5R2VFeSrBAXp9HRFrt521awohWGQBYWuelaoB5XCe7itDjBB1frQCnOG8eoUawtbeP27llDaXz6/hrXoYUTSCPXR94Q9PE+iLgEACMEWAKAH6Wb8fgLbxL3osUQX69vb24I2DWlcYxefn57Dfj4lMia5Wq3dEgO9Vtpp8ZLCpF9fa4ZhxMuXGlCMETGw4YsBtwHZkrDkfrZeW3yNGSxMBlrcsqlgpxxn/aD3PEnVfGiqben8iQlk11KP1qOTN6XokIIoORPWskICROo4g0+kjkQG93hl9J5tR2VNRJgNqrKO1ApnRjAhB9thQZUFUlflFN41vkBIYFx3IiIDWJbuRKN9tY5+9cw3Z8z/P6es6AhCB29vbfZ2g+Llemk9EBrh+qAPKur+/P5gaQJswlXAqqPLnKQK8WCkyYohouIFYDctH+5l868I5BZMAt6/tyIx4FBWIwuzIj40pR34qY7JHyt31Wn4UeYsQKdhoyuDcoHrFrbfqRZhcni59Riqy0H01ulUxjGp3qsa/sq9wHnr139UlIzuubCUvThZH5XNEhoe+WsgVb+3wC2UjhVa8CyCbD8sUU1UZ8U3LDH81IoBjTknpvytXjX9r7cAY8+JArAP4+vXrfoEg1gxgqsB9WlmVINeFIwK4XgkI2ohjb29v7fb2dt+XungO0wibzSa8F8dG1G4smmvt1wtugGxBXGs5kXPlR2l6JFiVSmQgHWlw6wQqxAL3UNdTOGJRIQJVY8Pla/0ZWn401qJrK79zgxoY7QMde5VIKM6rTqqkRbm63RsrvbbxvjOqzmi7/KI00Vjs5dUjAnNkJurHiKhWMWKbh75amD2qowP/7e3tQLlWjX9WfoQqucgiGoyRleFaNhOBjBBgWw0Klx09NYAX/PDv/v5+Px0AQsCfLobC3u3+/ZTzdrs9WByHcpAmUiSOofITB7xwEq8jfn5+bpvNpt3d3aX351hgxYL7gn0OtWeDOyNwmXwAGiHr5ZHJm7YLmBoVcPWqjFVnkLSOTo56T0hEazdeX18PZCxaTR8pTCe72bFzhfYz+oCNpzoYgIs+RsZb9QCPAbddQVaXCiFw6TQPt+32R1AlBO4abkMlPbYzgjq1zzMMrRlQJq6LrAD1KqJrnCIZAQ8GzlOPjZIQJj5QjBERiiIDlfbxoGUi4L4hsF6v9+F+JgE8BYCX/vAaB9RLP92MTw3zIjr+0BBHBQCQCvxzVAHXof1vb2/t+fn53cuPToGeJ6HRkSwfVUR8n3oESs9FU2muvkxgIy/CIRpvDF4Eq3XPIhScP8Mp/EqkTaeWUBbGU+TBanRy5D8i6ueCzIDw/XIk0UUINK8eUeA8R+oWITPk7nxGCNy1up31HdoQnYvkI8o7GucREegRVq1DRAqqxr6HSV8t5AHK24AL7fcMth6bUy8+ptvZeRY6Rwh65UY3LRpIuq/EQIkAIgCIAnAkgPf5rYJoMww/iABeFaxkANv6dsXVatVubm72kQNuuyofbRNHOM4F3IbIiLtjbp/XUjhS4BSPRoCiOrAXDGKnhi8y8r0xASBP1IvrMTIeIy8f7eQpKyZQWYSFxxaI7Hq93tcZJImJeJUYVA3ZUsp2KpyXDjgDoxGCjEjxsWwcfxQichLVSQ3wsQhdhTD2SE7leI+wRnkscY+G1wxE8+JudTILYWTsM2U2Ui+n9KqC4W40E4BMwY/WXQWcf1wWEwGE/TUqwOsE+JXDIAIaHcAiPiYDOl+OPNyrltFm9xIhJYTcPl6HcCo45THlemyzEc8MnMIZQCYSgE474VdZp+NkMxqD6vnrucjbcftRO7lvWBZcVEXJCNrA004vLy/76/lLmGoA+XiVFER9eg6EAFDln8lBJTqA40oIcO84TdRXkZfL99ERvczgfwSyvoucuhHDrGQrKzuT2V4dKv3bQ5kM8IrqiBAAYOquctqQuSQA25H30/OKNB+9aUoK9LpoEZNTopFi5YGqxpO/N8BPBiAKoJ8T5vC+enf8LgB8SRCePsgAyo6EKDKqEYPlCAciDx+NaJC4+x1dw8fZcLFh4zUaOO/usxpBtziWjSCiOtjWTwBHi/cqUwQcAVPl4Qg+t8V5mq35ryDyo7DZI6tKpFB3kFnI7cvLy7v+hc5xBJbz0n7SdIy5JHIuet6uGlx3LCMOmi7S2a7cynlX16U82dbGowG9sqe0t2fkcaxn/KOyKoQ1atNIXw9FBqBQeBs/V7jzdLL8pyAiApHyi8rTgeQElxXnFBLjPCvH3HntQPRmQY0I8KJBFxnQBX1KBmBwuHyuDy9kzOZ29dXLTG707YUfhYiVjyomvl9MuK6urvb3gckUG8XoOvWMeVzB+F1fX+/XfLT2662PCu73Hgl2185V1NHiV5Yb/oomf02zFyFBX/CC1Ofn53ekF5GCTPmOEoFzgspTa97AZx4pH3Nkge8hL05UZHLl0meRpSxC0IseKKHJyH6VCDj5iVAhbCPbvD9Sj6hui5OBSmQgCzFm6KVzXkim9BxB6JGDaodNjWSMQhcT8hQAL/DLjvMLf1pr7z7hDG8Lz9qvVqu9onWRCXx9kKcQ1HODsubFiS7k+JHoeXcV+eNtNub6pAd/QVLnyJXoKRFAXbD4EtMCLy8vB4MafQtlfXV1tSdhbhqutWXkNosiaP+4qAl/TRPrYHDcESOUA/nCepfn5+d2e3u7l1MXAcN1qqgzQpDpgFMRA2f8e3VxkQEXQeD0Dm7hdFTeCHpRR7cfyVql7CnRA7fdK8OlzwhG7z70iIDrL7WTI3JbJgMIT7q367kIQWu1FwZFqAhMz/i35t9FoNdW65CxY2VylbAOBiivr+DzOKer+zOmDqW5Wv1aXIXjz8/PB2sG8HghkwOUCeO/3W7bZrM5qAPnreWCCLjfqd4zwPXUqEWWHv3M98h5WRlhW61WB56vkgCkQf1g6NH/Wndn7DlSkI0J/ud2uim91vyTBNEYzwiTfjkThABrXjiaFZEjyO96vW7b7XafjokoHjvU/on+o3GaKdmPhtNjzpPntJHe6hkGJ/ccGeh51dX8XVlZvbNtLh//GfnT6yseeUWfV/KL6pM5KVX75EjvKCFY7U4l5RdccMEFF1xwwVngNHHbCy644IILLrjgbHAhAxdccMEFF1zwh+NCBi644IILLrjgD8eFDFxwwQUXXHDBH44LGbjgggsuuOCCPxwXMnDBBRdccMEFfzguZOCCCy644IIL/nBcyMAFF1xwwQUX/OG4kIELLrjgggsu+MPx/0j853pnWH/8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACam0lEQVR4nO2d6W4jSZKtjZQoUnsutXR1YzDv/yT3KQYYDNDATHdlplLiTom8PxLH+cWheZDKRaQqaQDBLcJXc7Nji3t0VqvVKo50pCMd6UhHOtJPS919N+BIRzrSkY50pCPtl45g4EhHOtKRjnSkn5yOYOBIRzrSkY50pJ+cjmDgSEc60pGOdKSfnI5g4EhHOtKRjnSkn5yOYOBIRzrSkY50pJ+cjmDgSEc60pGOdKSfnI5g4EhHOtKRjnSkn5xOd72w0+n8yHa8KtJYdDqd6Ha70e124/T0tLxOTk6i0+mU61arVSyXy/JarVblxd+Xy2WjDtbDsrwtJycncXp6Gv1+P/r9fpydnZU26J2kNg8Gg7i6uoq3b9/Gb7/9Fn/729/ijz/+iHfv3sX19XX0+/3odDrx+PgYDw8P8c9//jP+67/+K/77v/87/vzzzxiPxzGfz0u56sPp6WkMBoMYDAbR6/Wi2+3GfD6PyWQS/+///b/vPyFbqNvtbozb19K2dfCcenZdU7yu9rnter263W6DZ/137wP7Qv7L/neezq5pu5blPmdMtrU7o2wN7XLtPs5nO8rddnIZSZ7mSyR+q8njiP3M84+mXfq0Mxh4LdTpdFo7vsviqt2veyU8T05OiiLu9XrR6/Xi9PS0KJ/VahVPT0/x9PTUYLjnMBuFttqmF5le7Tg7OyuKWOAkIuLx8TEWi0XMZrN4fHws5Z2ensZ8Po/FYhHL5bK09/HxsfSFQIXg4/T0tDGe6mcGQtTG10rPUdzb5tfL2lZ2DRhmwCAri4BVc3dyclLmhGCACppKnWW3KXgKWBe2vM7r8euy8mtjVhu/beu49nvW5yMdDmXrx2Uh38XfmlcCAck78iCv/SsCgxr95cBARPsC3sUKaBMWRJtSiL1er1jkUr5SqC7k2gSqmDBDuW1ggKBEYODq6qpY5qvVKmazWTw8PMRsNitKOyJiPp/HdDqNyWQS4/E4RqNRnJ2dlf8iIhaLRQyHwxgOhzGfz2O1WpX+c6xOTk5iuVyW9i6Xy3h8fIyI2FAsL0nfWu/3UAi7WvHZ/7VXdj//4+8ErAKtAnvi2YhoCEiBWRKtLJLAou4hEKag1TXuEdN12RrU9fpcAz4OxHYBZhl97X1H+nFUWxt6pxx0wJt5vsRzj4+P8fj42OB557WfhRf+cmAgEya7WBHbSELWGU7C9ezsrIABtYGClIybWV3ZddnLhV3WpsFgEOfn53F5eVnAQLfbjclkUtolRp/P5zGbzWIymcRwOIzBYBAREdPptPRlNpvFeDyOu7u7GI/HsVwuS33ZePpia+vvodO3AIFdLP626zK3ZwYIeC0FH9/Fq+JTAgKWIwArIEd+3tZe9w5IwFLRZx6Bp6en6HQ6DZDKMlVnGxDIruV1X+OteY38+tppl/WWyUjKP762gQFfU5LZPyMg+MuBAafMimoTJDXKcgMypmtrg+pdLpeppc/r+U5vAevR/1kMWCBlMBjEcrmM2WxW7pPVdnJyEqvVKh4fH2M2m8VwOCxhg7Ozs2LdLxaL4jkYj8dlEfV6vcaiUpsk3BeLRQNxvwaX64/0Ajznmszq8XnmtdtAQ41vCQYE8vRZIaJtbeV1vt7UJg890Cvggtrj9L5etlEbyN5VqP8Mwv/Q6GuAAEMDBAMCuzJYJJ+k5OnBrFHmjdL3vyL9JcHANpeqC9NtsXwxE5mMbigKUzIbrZNakpZ/9jazXQQjVOzsG8vRAtG9dNd6u+fzeYxGo1itVjEcDkvew9PTUywWi1gsFsWdpvupoFSH6p3P59Htdhtu4hpYOhT6EWDFy3TBktXpfErPDwWbl8P58GRBglnOg4BcWwzV1wUTXXVvre/yLHj+DEECeT5L6KJXrM0rsQvVrLy/qoD/K5EDZAJlhgaycIHmfZuH0sOw/h/b8VfjmVcPBjLBWrOQsnh8RNO9WStXlrBcrJ4MJ/cqmU7lUXizrsxTkYEGMp12Dah+ulYzhs8Sr9zLIWt+MpnEYrGIiChuYioHjYEUCj0Dapva1ev1YrFYlOREeQn2Td/L5fcc4OAeHv5WAwMOBDwG6mXoWingLJvaQYDulaJmiMD5jmsjU9SibJeC6pDgFk+pXAp0hhS4hnbxLGVhgtp8/NUE+V+BaoYNf3MvWA0IcE1oDbhXgOWpfgeibeGCvxofvWowoEmkRUoGoSB0AeaCipmkmTeBYEAKVC52Wsy8h20TeT1uLbe5oyTo+/1+9Hq9co1bWyxT9TO/QWU5sFFfBATkDdCCOD09LSCGyFx98dwJgYz5fB7j8TgeHh6eP8nfgTKvSUS7V0XU5nLm55q1UPMCZDzG/3yXCEEYlbs++1ZS5nO0xUyzRKoacZ34Wso8RNzBoLUiTwRzEcRfyi9hrsHj42MjIbXNanOrriaoef8uwvxHeIyOtDtlQMDXCN/J93qvrWn3GvgWb12f7TRg2/z610ivEgxkFpEUkRQlESItH3dxkxEimrkBpNVqVQSzmEzl0YJWGQ5IXJDRfZ+FKdxTwTK1e4GghNa5+s+QwtPTU1xfXxflzP5k7n7VJyXhAtTzBE5OTuLs7Cxubm7i7du38fbt27i5uYlerxez2Sw+fPgQ//M///N9GeEbqQ0EtP3G/7IYvntlMhBQA50ZEPAzLDLQmyVzZha8eJHKX9tNNc/eTpXle7PdIxHRDGUJfKrObrfbSEp0QMxQhYCovEoOTH1+6HHLQg0cE62ZbaChzXtzpJehGhCorZ+I9bpT7pL+d5lKD0IGdEW75qy8VhAgenVgIEOGSpS7vLyM8/PzsseervT5fB7z+bwIJQpcMom253GPvSt6WbxZWEAMISHNcrS/n0qEQsszrgUUJHCpEAgI2E5a/AQGy+Uyrq+vY7lcxnQ6LVv+5DVQmaonYh0qmM/njf66u031DAaDuL29jT/++CP+8z//M/72t7/F5eVlzOfz+Oc//7nXcwbaEPzXCHvnQRdGbsFmQsyBhIMAB2u1BED9T94R+KXXiFZ6RPMAFr+WStoVLcGA6mX7s3M3PMzAsSPApldK52Io+VVhBJ83rsFs94LXm/1Wm2PO3ZF+PG0bZwcBEZtJpiQZa/yvLcy2XC4bhmAGGjMe+ivQqwIDFFJuJV9cXMTV1VVjf70mXUDAlSA9B/IY0M0ti1qxb13HBCsKpzYLg8BDvzkQoCuUDKd7pazpDZHAjYhGXJ7uVt2vMwh0Da/VNcpHEODRODCEkC2+k5OTGAwGcX19Hb/88kv87W9/i3/84x9xc3NTxu5///d/vys/7ErbhH32fVf3caY4s/8dOHg+S0TTqpaHS3OrewX09B/bTH50/vS+ujWeWUQZuTte/SQQdpAhJS7PA8GA72qQMHZPR00Q02LjmlI72oS498s9OJxDD+cd6eWozStA+UnKvGKSmyxX14okB7nbwL0PzkNtfNV236HRqwMDVIxSbhcXF3F5eRnX19dxcXFRLOaILxNAYKCT9jLhoTp88dOtqjL9UCHdK6JAjmjG7mXBuzeB9Wd9zpLJJEiJgFerVSwWi5hOpxER0e/3NyxVgRwSBbAfwOHtY1lqh8DA1dVVnJ+fx9nZWSP0oMOMXjtllmImIBwE0J2fCRqNUb/fj8Fg0DjESopN4FfAUHMtNzpfTO4kYBWveMJslmtSA1IZIHD+V7xfxPXgYbhMUHs4hB6pbNxrQjoDDNk1meDnXB3px1E2vi4H/SVyOZUBBHqx6GUS1eSce5/4/67Kvc37dEj0asAABassJx2sI4/AxcXFRohAQtQPQImIxul4EWul5slV9Cq4y5RC1RmHwjgiSps6nc5G3Vk/iWZltUtB1A79Ubtms1lENOP7bD+Ts9h3WnHcTsj20c2m+87OzuLy8rKEaiIiJpNJeSbBw8ND6fNrIEfztQWdhQR0fwbkmKtCYBXRTFJluItA1GPxmp/pdFp4lO58WTjkZ86/hKNbvlSAAq4Uju4h4DjpDAuCRc9/8ZDDarXa8NQREGhd8n7WWfNwZKDNFYkL/cwr8BqE+Wuk2rj6HNReIgcA2Xp0QJzxshtn3hbW59e0gYND9wpEvCIwELG2FmQdXV5exu3tbdze3sbV1VWxRKV0KWS1oJUUR2HI5LvFYlGEZ0SUuKVCDSzXLfssdlzLvo+IoozpcqcAZExVlrdeDGWoLvaFtFwuyzZABzNqt8az0+mULYZS5lo4DKHQwj07Oyvemaurq+j1evH4+BifP3+Ox8fHGA6H8eHDh3IC4iHQLsLdLcqMOMeZYslyADTHLowIdDnWEc1TI8lHy+WyeIGm02m6hVNWtax1kSfNkggSmb+SWWAcG+bk+Diz7QTnCkdpbNgWhbfUFq5Zz+dRm3z+/Pfs/8wSPIKBH0u7jmk2J1kZbeswuy4DEw4sWc82he4GxGujVwEG3Mrq9Xpxfn4e19fXJXP98vJyI+GPAoOIUe8e86cnQK53z2TeFl7wFy1DCXbez7r1n4cApBgEBOgmphciYtMKoxtXgICC+vT0NC4uLuLt27fx7t27Mh6j0ahY9RFri1QegF6v1wADNzc3cXNzE1dXVwVUjUajGI/HcX9/H58/fz4YMJAh/Yj6OQBu/btQypSihwY8AdSVre73HQOaW1rxisMTDHB3AHmBRCCQARaOARU6eUr80+aWzYQt1wPv4xbCLDlSdSnXxUMhyuehF8TnrGbp1T47CPC+HOnbqW0827wC2f0eKuK1HqaiPCS518CvrfFADWS+RkBw8GCAC5MuaYGBN2/eFDBAdymzkmezWePgGwcIqieiGVONWAs2uXBJLIPXuRLIMqZlBUkBcLeCJ5LpWQNyHTMWz1CFLEDV6wBCbZKXo9vtxvn5ebx79y7++OOP+PXXX0vewWg0is+fP5fyNUbn5+fx5s2bOD8/b1i9movLy8vo9/vx+PgY0+k0Hh4e4v7+PobDYQld7JNqVoYDAb0oHGqWhqjmGchAgeZYpPI1h8z/mEwmMZ1ONzw/8nJFRKM89oVKnt4gtk/1c3yY38D/VUbmfasp0NrvKtPzeBwEO/DRmtZaZ93ZoUWZEqgpA+eT2v9H+n6UraVtIKxmlPE/8YxA9S6ALgsZ/Cxzf9BgwK1r7l+Wkru4uIjr6+sYDAZFQCyXy/IAHp6Al1lOFPJ0ufM3Zm1L8DCuThJo8CfDRawFKZMJldxHQa3/1M+rq6u4vLwsORHMh1gsFoXpaZExr0JjpXGUO7nX68XV1VW8e/cufv/99/j73/9enkHw559/Fk+CFkW3242Li4u4vb2N6+vrhnfg4uIiLi4uiseCiWsUyodAbvlRsGSWCN2PLENUszZ4rYd9eHa66mD54luBKiWD8sFPeghVRJS58MQ8Eb0LahP3WdPid88RFb6SFtWnbMwcGGQ7A9wjpvoIqgWCyfN6jsZ0Oi3PyuCZHX7mx3Piv6895vtaKYvvZ+sw8wDwO+8lZet323w6CPgZ5v+gwUDEZtw1c7UqM17Kfzqdlv3J2iPPcEDE5hHBZLjMayBrnNaXLF0HGLRq9MAfCTFek+2vZjn0CDA5UvV7f9gnWaHZWEoZKVeAJxEyX4GWIwGKPA6ueOhxUdnn5+cNpbYPalP0bf8TABI0ZsT5cBc150l8zF0BWXhLYFOgVqCTc8IjffVfBgaYk6BruUVVCaauwD3uz3AC8xB0DV8qPwPDHrJTXwiy9b/q7Pf75X9fM3qwFoEr66iF9LJx4mfKhJ9BGRwCtXkDIvJ9/1kZvJ7v2X+1elhfW3v/KqDhoMGAAwHfV6+wgB6sM51OYzQaxWQyKQKUilpCKmJzJ0HEGgiw/ogoAo3KnQxJi6tNYTIjnEpYfWFuAsthfoBnhdO9ynMMVB6Vh9zKErIiPaRIjygejUaxWCzKdQ7CeJiTXovFoiQ56syBi4uLBoDaZ85Am7vxW+7PyqopIPds9fv9cq6D+EghnCxBjp4r8hxDObouAzwRze2j4mtex7XiFhmBgq6lS5XlE1jSU+Qg2wGrylIuwGw2a7Q3285L8ErX8ba53VUx7PL/kb6e6K3JPovalO42EFG7r3ZNG/8437QBk9dEBwsG6HLkuQJSohKg8/k8hsNhdDqdmM1mJb7K7VgqT9uTaCW5MItookjVIzAgBS9LRoJZRMVJ4LJarYpSZyxfYEChDSVDRUTjfAR6LNjuzA3LnRC6Txnb6hvvmc/ncXd314jzC0gIAEhx+XMH5H1RGz3ZUTkO2l2wT2oT/rsqhjYBlXkWxL88E0N5IJ7/od0l4inOgebadxfQ/e/Aj+1ypUulvVqtivImGKYFzm2xBBDOkw4EmAQo70YGuPmdFj/bzfM0CGp52ibDUhrLzA1dm9vnWpBHej5l498GBHZdj7uEF3ht9rsDjowf2u5pq/PQ6WDBQMR6cgUGJEx5sBDd61JM2Xn6En588EnEWqjSyqJg1bWqX4fpaC+1lC2tF1l9tKIV0+10OsV9LuUqAcjQBt3SshCZ3a0+Me6t3Ahalh4n9lCHvAX39/clTq1kNW3pWq1W5UwHnSPQ7/djNpvFcrls7G/XFkXlFAg8TKfT6Pf7P5xnnkO7WIO7WBsuxJgoyLyPm5ubMn48qpdtUVY93fb6nu0O4DHC9OLQKqe1LCWp/xhy8HAaFasAKssnGOZ5FO7JE8iQpZ95MQjIxZ8CRBpPrlHdq/UjoKSEQvWP5y7Uwjg+l65MjvT9KAN/mULn9108PLXXc9pSCw3s2h6/57UBgoMFA7SsuINACYNSSDyhrUZM3tK1UuI8iIfl8B5Zu9rBIDDAJwdK6XtymBhJAEAhAlrZsni0lW88HsdsNmscDCSBKG+C503I8prNZnF6etoIk9DNKwXvApLelKenp3KdYrWDwaA8hOjdu3dxenoao9GoAQi0Bez29rZ4CzRGfNLivuk5i5SAQAs8EzKcIylDebKurq7i7du38f79+7i5uSk7O7hFTmCPgI/bUeWNId/KembSHeuuAQ5ey10B3I7L/A+9CxST/3SfQlwaH10n74eDXbe46GGjh0HfXdDS86DnkjBMqCRZJhR6f/SZ5daUyaEkv75myoAAP7f9XyvPjbZs/nbxCO4iEzIF/9oBAOlgwUBEU2jJzar97BcXF8XFKquDrnR99vJkhctqpkXjzEMgogN1BAaUzS2Si5IKWiQ3uzKjudOAoMG9DW71ybUsMEQgJMUwnU5jMpmUsZOr2fMYGI+WEJcCF+g4OzsrzH1+fl6AwPv378sCHI1G0e12i0fm4eEhHh4eCqDRbolDsLK+daHW+kHvFR/j3Ov1yu6LX3/9NX7//fd48+ZNGf/RaBT39/cN4OaeKobJImJj3phjIpe5PFjyTnlSIb0XtPBdYVLJC6wo8dHDRfRIid+Y+BoRJYxHz5X6lPF8RNMTwVwF7sxQO2azWQyHwxgOhxvhQnkZuLNI8+l5Eny9ZuF+SFRT9Lta8DUPDj1cnvCa1bstPCgPVZv3iNf/lcJJBwkGskXJmL1Ou2Omvt55AEtE0+0fsY5xUjjofnoD6JXgXn8qSQlCCUq6mTzx6/T0tGwPpHCmNae8gfF4XNqq9kkQ9vv98gwGbf1jfNXDHxoDKRR5U1zYu8CnJarQBl8R6wQ0AqterxefP3+Ou7u7OD8/L20YjUZ7201Qi/t5fJD9bQMw+i/zXvFcBwHA29vbAqTevHlTkl2lrJTwKmVIcMB2c+uc5tw9P/RIiFfJF3qnghXvqiwCDXmbxBsqO9sJofZERPGk6ZhwKWta7cppcYBDj5bGV0qbnhN5BQSMdVgYwxQ8lyALSWReB1dQr13I75vagMDXlOFAgKBWlM2p/87/qPg9nywDBTWeeM0A8iDBAIlxy2zrlUAA3YEUZDwwR7FLHt0qwUPmciFPZmMMle5ZeShcmKpu3iPXLncXMONeykBlSAkopi+hpz7TKmOfiXIJGDhW3Iqpuvyo44gv4OLu7i7+9a9/FQ+CjhnWoUISsLIcn56eStLg58+f4//+7/9egGPqtGuOQPYeEel/nU6nAQRkCes7Q1k64jkiyu4NASeCAfdYkT+U5Mktsy5Uad3zUCLPOYloHpYlPpVAzCwsrkW66rVGGE5Q/7kDx70P5EW67cm7XOt6yVuo+t3Cd0uRoRLfgpgJeY8fH8MEP56yOH3mOeCuFgG/LDeGZdWARwb8WIa/vJ1t9NqAwUGDAU2IrKXRaFRi2Do0R9a5FDzPGKDrlWXSK+AIkAzFe5Q53+l0ijJXsh3djxRwEoyr1aocjqIYO92vEp4qm2CFTDmdTuPu7q70PSI/n4Bb1BwkjMfjRna3xlZu/oi11ejC9O7uLj5+/Bjn5+fR6XTKwS/D4TCm02kRyFIKDw8PxTswHA739gjjmpWfCZ82zwD/o0DiuQHcTSHLebFYxN3dXQFxy+WyPLzp7u6unM6oeXSepWLTNZxzjTfPchC/MBxFl7qDXk8IFD+IhzRWJycnhf/4Urm01rQ2Z7NZrFarcliQvANaq/QEuCBmfF/zpPUi78dkMineLsoBgme9q18ekqFFSF44goHvS7V1uE1ZZ55iegXc60NPrXt7WJ+Xq//dYyXy0LO3tWZAvAY6WDBAgcBTx4bDYUR82Q5HMCDFrAVPZcskwQzpqT6+e1vkaqSC515otY87GSKaDCImpZVPJa5EQrp+JbhXq1XZAqitlOyP8hI0JsyiZrKZFgl/9+cvZJnrEesscf5H4CTviLwfnz9/Lm2fTCbx6dOn78EaX0Vtbr1t97lbMxNKrnDpfhdP3t3dlbHhw4X4gCHPGXByS5ZZ9ppj1ekJhdyWyzkUjzFc4ACXa8WTJPnyxFkJz6enp5Icq7MsBAoErjOlQB6lp4R18nHOHir0F8GFg8E2r8BrEeiviTjf2wABQ7jZS2XsMk9Z2IKh4Yj1OnMPGY3GNq/ha6SDBQMiWgh+EImsaoIBKu1aBnHE5vGVWSxJJAbglih995ey6qlU3QUr68QFHN3B3AcuBmXiE5my2+02Hl7Ee9h23ZsloTEZrWYFUYi6VcxdEbIGGVPWeRCHRDXh0+YdcCDgcxzRPPRH/CmPD61TKigqqqw9fInonWAIimEvgUzPP/DyuA4EFLl+OC78nbxEUMgzNQQyBKAFgCaTSUko1Noi30c0Txel50rAJwtpubL3vBz+xzWdjTc9h0d6PmWhpm3Xb/MA+HoT1daJ/qu1S98JYsWz2Xpx2etGJe9R2a+Bfw4aDLg175NBdxCt4My9o/JEzqQZ09JNzjqp2GlF0IXLsghamPDHjGa6tdz1pXa4VeNAQNsu9QhhuYm73W4BUEysrI1p5hqlxahxV3Ilx45JZ1rIGpt9JRB+DbVZLVS0+p0Khi5tkeZ8PB4XwJgJrjaA4tdmc+ftlbDigVMUtlorbDv5gIqZ9erdvWACAnpXcp+2u0asFbxb8CqPhyxlY+CAWLkuLswj1iEUntVAS1DrkmObxYZfgzA/FMp4eNtvDgC4xuh5o1yM2MzpcJlca18N6JOHGDKqtbnGK68REBwsGMgEsN714qloEc2z8V3A0v2j35xxalaf18s6nVQ+wwlSpPpdoMFdTmR6Lgq1j/1T2/wJjm/evClZ1Np3LXDBPAIKPu93m1vUkbsrPFl/PPQmIlJwtk/K5o8Ll7/VhJb3361ld8d7whzLY8wza1eNt9nuiPW2O/9NdTHhioqV1r57H2quUvLQYrFoeCE6nfX2QiVRKrbPdhF8uFdE12ZrIUuc9MQyrl8BAioTB0UZIDjS7tSmONu+14CA5pGeR+a6RESDbzzfQ5StKdbtcj4iNr7rM3eecR07v9QAQa09h0AHCQbagIDeMzeRk8dFKSRriz7bs5oxccZstIQdYYo8X8GFF5Ov3COhe3StEqiurq7i9vY23r9/H+/evYuzs7NYLBYxHA4bwMJj/R7K8KQbusD0nVab4s/c/80dFcwu5zgdOql//h5RBwO0UmWpaj49DECl40Iwa4vGkwLIwWvbWtC8u8tV9Uc0rWHyMxWsh54IfjKwwu2sq9WqccgWQQm9VeR593BoLDMPjBQ6lYnnbrhVqTLY5sxL81r4dp+Uyeva5xq4phyiYZQ9AVbksrTT6TR2pJB8HbuniOskYp2PQ1motaN1zvLaQqxsz6F6CQ4SDIiyyZTA5aODs0lwIS7hl1lRZKC2xBQqNoYiuMUrq4duLHfP63/mNrhwp/VEj4D2sV9eXpbTAd+/fx9nZ2clwTKiedQsx071efyaiymzMAmYNHZaLBlSVl8OyTPgVBMcmTtR5MKN2zXlAeJ2Vj8Rj/Psbm6R87YrSt3H+XBLRHxZE8ZuKas+8SQVajYWNRCjcEC32y0eCE+2JJDMBKna42BKdWQWmYhjKiDl5ytQ4WdhsyNtp8xY47v/Vnsxx4UeAX9iLEl8o/kVsNT6clDJNrA+D/lxTbh3iUmtus71kRPlyaHSQYMBkRaqdhVIgMgCo+s9u5dCl/FPxkX5PxlBZbAuCToxBB8u5OCCCpLf3cKhYtaOACFTlq1Fwn3tAgQ6//7s7KyxnWs8HsfZ2VlMJpOGkPYzBphAmFlIGh+1hzkPHG/dw/FlqOS1UKb8XFm4VS+lReXLPAoeFETvE5WWexu8XgrQ2qErKrcWanLey6xlzZd4LvMOuFdM/2sbqwSodhOsVqti7bHNmTL20BrXOAU1gZe2PurhWNxhQ97OEiDp5cjac6Q1Zbym9wwUZIrfvQFUzu4ViNg8H0O/ufzJ1mjWDvIs+VC8wnVJGeZeVt3nCebbDIxD46mDBQMcMC1YKbCI2IjJZsqG4ICTSubwCXELjYJDbiEqVCpS3S9rKhMwTFai0pUwUwKVo9VOZ/1seD6nQQ8F4gOEdDQyT4vjiYJUTr4lkoqCY6LFI+tO7adw5jstSfb3UKi2EN2qrv1fA0viQe6dpyVB5euhomx83PuksaTwdODKPmSAgO5ND1vR+yZ+kDIXD4ncrUrwM5lMGudaqEzmq6g+DzHQC0dDgLzpfXPhLlDN9cQ20EPDVwYADk1o75ue4wHQ50z5E8j6TgF6CESa/zY54gq/9r8DC8lt8areJct9vbunQv8TwGayJPM4Hgp/HSwYiNjc4qOFrMFkPJxueAIDTpJnVIvIHDXXoRChiMKDcWLWV7M8vG+00qhks5itPAIKDeh1eXm5kdmv+/wQoawubnV0gau26DcuGo67K4esvkOmtvZxTGpKgrxKT4/e3cXN0Iq8LO6u5P8OvFivWyU1C8jbye2mBAEODt3KovBkG7RTYrFYFPDKJFJdw1M2PSxVAws13mRfZSSwLy4nWK+vg2xdHmlNmZXN33ldzQvAcyqYP5K55mlA+a4P1sNrvR3OM66cI9ZhBa4x8VYtbMqQcI1X2oCL66J989tBg4GITWEgpav/MneNK9eIaAAGv0e/+WQQCGiPMkMFVKS0+FwhUJiTOVyx6HoKXC4ggQFtIby5uYnb29u4vb2Nq6urRo4A+0p3G8vjQnVvBdGrI3yNjY+TFJJbo7zuEGiXRcgxENVce24VOM/WEgdpAYs/6JIkH3FeWCeFFxU2XZlufbnHzYErrWYH1g6a5bFSW7Rl0A9h0vjwhE0Pm/h46nM2XzUPCO9jbobvYsjmxOs70hdyAyN7Zde7J4ByzPMC3CMbERvy1XNGWEebZ6w2n+5l4JrROiK4yECI+pL95wCD5WSApK2tL0EHDQYo8Fy4auCy+E3m6pOgFTkK1f9eFoEArXq39P2z3jM3r+rP+quy3SrvdNZHsDoYkGeARxSL4XTwi05q45G5tJwUa43I3X9uMTno8ZBBBgj2CQbalPhzyshcj7UxqVmYPq7kFwoEL8PnheCtZi3xEB/uIlD5dMG78PX2Exxy/QgI0pPFJziqf37gkEJsruw5pvpd5XJsea2PJcGOwgZubXKdZPO6b+F8CJR5ArYBgswrRSDKnVMMCZBctrSBag+VZX1w+UV9ULvX9YeIXlLKcfZZ/FYLP/maOgQ+O2gwELEJCLjAXWHqumzQWZbIEWwNsVFQZkxFweMC2gGBC3VnQm+jFo2sez2lTbkCevkjjQkEuOtAWe30ejAzlh6SrG1uvRKxu3A9FDDwtQvNF2pmAblwyQCSC7CMzyicMv7NhDLvZZt8/N0t2+l0ynyTB3jmAN8jNhO2aPWRJyLWSaZ+73w+bxxBTD7Mxtf7xLHNXMYZ8JeF5uClBtI4rmzTIQjrfRFBnucx1UCBAwH3RHY6nY2tn7q3tn5EmULNcmcyqgEBgmSCRtatepbLZbmewIBlcdeBJ2dnbRLtExgcPBgQZUgxU+C7kLvKWYczHZVmxHqypNx1XURsCFEHCmSEbMJdyOozH4SjHQRKHtRrMBgURpW7nnUrYVDWPz0qcu8q6ZFt4bjQ6soUH8fP5yYTvq+RMqEX0RRQmusMRNYsUJWhd1eS5IttblFPxuK9Aoyy5vnZ15cD26wtEU3vA8dFvKZxUIiAT9mkN0k848Le8yjofnVh7aQxdxCb9Yn/H6k519kuK11DPnMw6oeo6R6Sy8U2vvM55P3eNsopv4fXe4Kgt8uBoQMjnr0iLzKNLN1HvnWZ6vXsgwdfDRgQ1RRPW7KaM6iY1O+j0mddHvtxq5qIz70ANVdvDQzoXW3U7gB5BM7PzzcAwcXFRUkedHctGZFxabpddUxubT85F13GwJmlte37a6E2BZ5Z51loKAuhsBz+Tp6mAvPDqDKB4R6A7Ahezjt5gwA3c8+SMu+ABKLeBUoJlP3oYY6B56L4eDEJUXXysKIaIMj4uE3J8B5v489C26x7JxpWDiD8sCC3jD0m77zGNjkIpoJ375Tfm3kTHNTuOh619UugnRmbnU7zTBbndY5Dm574UfSqwAAnvuZyydyWEiae1OQJI5woWhQSbJzE2osJWBko2UZEm9oWeH5+HldXVw1PgLYWChzolDeOk1ua7s3QFjAm8WQC0RfdrnOVzdtrJRd0DgYi8twW5wMvw8tmmVTi2el5nGddw9PaNKdsk7YVcveI/0+e53oTL3gf6GL1bad+dgU9TxHN9arP7JuuoVVJj4YoAwTZequB8DYl8rOQ8yMVunukIvJxdj4WLZfLhtL1ucpCAtl6Iw96OTUl7dfVZJP40OVUtuapN7I6FSZgLoRyCNxr6AauG48vxYMHDwZqCzWiGTogo1HAqAy6rPwxqyRODtGshBCVPYWb/5cpAUfPzryqj5m2/X6/5Afc3t4WMCAgIA9Br9cre7ipiCK+CGglHuqpj/IAkDFr1lXGpFx8bSCn5jl4LeSgMps7CpTMus7ck9l4ZBaq+CYLDZC3Mv6mwFosFmXvf0SULX5K5OMjlDOQm1nTAiERTRBAfmLeQWZxRjSPf1W5nhPA8XbAzzyXNh6uKfw2+lkAQZs3gHIroh5OpbLOrPCMyMsZGKiFG3eRR5Sp3k+S2s6cLg99Zd6Dmouf5EDZDQWCA41BJjNfggcPHgyIdhHEHpMiiiPKzXIFaBW5IKK1QouK12UWoVs33hdvIwW/2qozBa6urkqyoACAAMH5+Xlxm2r7FpOz3MJSP7jNi8+U98XFNtcYNLMYOD+vXaBmVgoVBYWZe65cifpnjo279OkViNg8S19l1TxeEV9csbPZLJ6emnvw+eAqt+ApmLyN2W8Mp+l3AmZmlKufy+U6EUv8TjDgIRZfjz4vfl0GYDIA22Zw/AzkynObrPT5d8OL5dCr2mY8MATJOZMc4nojn2ZANSIa68Xry/ojXuXayR4Yp3vo4q+BZbXDw9LOhwxDs4+sh+P9o+hVgQEKSA2qD1gNyXvSR0QTSEgYcluVM6/+rx3I4paUl8Oy+NkVjfrHpEF5AxgaUB7BYDCIiCgHvkjAUzgqiZDbu8bjcYzH44YyyIT+15AL5NcMBjgnDggiNoFAJjAzEFAjAgBXojXradtebQEAtYn84Hkv2XzR+mZ/nF94OJKPiStkT7yiZ4Drm6CCgLY2ljWwSiDCPuxCr5l/26gGBChnI3KLnL+zPMpll7lu1FG2ZmX7dS5rMwDhOsBlrvOsK+NsZ0FGNfDPdnhSLb0dfPe2qz1qowPdH0GvAgxwEP3oSlqrjqKygeM1PpHuXuckETRwq0im9J6j/Gp9YzKYtgcqN0Cf+WK+g6w+ghUdDTsajWI8HsdwOIzxeFy2esmTwHaRfHF5/xz0ZGPy2siFVgYIIvLtrFmf2wBBdq2DgozXHSBn5EDAwa/vdMnGIGungyG1pwaOCQJ0rcrn4UTsvwR1RJTjutkW57uaQtHnDAg4uPvZyPnbZWtEc4dLG9B3hUYl2/bKymd5zmvOX94fn/cMEGTtd9DL8ykyUjtquUGr1aqxdtvmIGIdbmOuz/c00trooMFAJohr7qvMClcZIme4DNll1n5ENBRt7Qz/mgJwZq79n3kIeMaADgvyV6/X27CkaPEpdDAcDuPh4SEeHh5iNBrFaDQqIQL2KUPtbYKyttg4Jq8dELig3CYs2d9tIKBmcYkYQsrap2v0Xfcybi8ir7cBgTbl6G1UHXL7kw8zAR8RxZPBpwgy70AJWOq3r2+FBd16qlmYHqZzi9cV01+ZMhnpXgG3xNv41Hndx7fmFSAIc3nrlK2zzEtW62NNVtf6w+tqIQ7xn+sLtkdtdDCT8Sl5NAO5XAM/gkcPGgyI6HLxpJZsUrOJo6LnbxJaFF5kSMXiI9YWlu+PziaHwrQNDJAR3N3rcWMCoex4Wfbz8fGxxIm1a+D+/j4+f/4c9/f3MRqNYjKZlPwCjo27B1l+bZFliq8mMF4bZaDUrYWacGEZu1I2TrUQhf4TSfBkcXa67zOLg31ta3MmPGnJsy1uvRHUEOwyxsx8AnkGtH+bViS/tyks75/HgGuWam0u/kpEvq55XNvAaqY8+bvLRtZHRburjKDSpULNZK3L3DYZ7HqBnzMwQw9CBgYoS92YyoCMt93H1MfzRwCCgwcDbZaZ/t/mXvJ4q8hj6tkkSTjxuswL4QI6YyCVsUsfPdbkxHBAxDo7XMpdngEdNqTQgLwC4/G4XM8+UemovT62dAXX+iTaJpwPlTIF4V6BiOclS9as7ZrQ3SUW6cDNlbzHVQl8a0DAvQ2imgeB7XXrJvPEPT2tj/jOyt8WH83WxTYwUJMNus5B1l/ZQyDZJT6iEeK8XfO0sCySr4saj2nMa/fssk6cfL1m92b3eGhA12deMwdO2Vg5z9fak4EZjofnFvia/t500GCgTQj7dXQZEv1TqWbCzJncEZ5bWbsotTaBysl3JnRXHQ8BoiCV4h8Oh8WlOp/P4+7urrj+BQj00qOK+ZAYzyD38Y6IjbBJtgBcsWQg6TUJ1m1Woy/uTGi2If5dvARejoSKMvOlULvdL4mm+o3hIW+f73JpE47ex0xB00phXWx/No4R60eQy+smbwFBiwMh/e67fraNnbdb7cna9hr59WtIspGeRgdIbn2TKC8yqo1fdl+bIZWVldVbW6PZmnSA79exTl/X1DWe2FsD9OxLNj5txiL1BP/bBpi/hg4WDHCysr2uIrphKJw6nU7jIB0K7Bq1WReZMK+1h23gfW11u1WilzwAVOiTyaSEL4bDYXQ6X45+leVPD4HOFdC93FPuQEDtz0CXgxb2iYspu75NaBwq+XxQQfqctlkstb47X7WVKR7gvUw02nbKWy1HoAZwCL6pmLP10NY3XptZnVTqDtp9a6GPRRYvzpS586cLdp/jzOv1VwIGlKvKReLY13i6Brra+HvbuIkP6SHYVU48B7DX2kGDS9dl1r3WQMZL7gl7zvhpHnh/1l6/TvS9PQQHCQYyIMCDVCi0pPQ1Yfov2x7DUEBEM/60q2DPJkVEINDWN5ZFhn16eipPHmT75AkYj8fR7/dLQtV0Oi2flSPAR8MKCEwmk0ZYgGCA483Pu1hHuzA75+o1CNUM3HmORkR7nLBWFoVJZgnxOpbNOHqns96XnLkxeQ93vfhjidU3rjUPUbmgyk4PJP+6tZIpWi+P/eNxru4B8PAGx73TWZ8vTwXl80HvmtrlsoYC2b0Sr5m8r34uRURsgK4sRMDy/LsDqBowdmXtZboSz4yMDIzW5BiNwdp4sGzmonh/vE9cyzUd0hbGjmjfvqhrMw/zrnJ6Vzo4MJAtUAEBxrUoXDzxiOV47J2CNKIZU3VmqbWL/7kA4gS1WSEOBuT2dcaXkh+NRmVHgfqpQzF4ipXyCAgCtKWQIQRammpLBmTYZjI3x64GBISc2wDDIVMGSj3/ZNvpjU4c45pQ1HVtQpiCi6cKam4JBNyyZxu0jmprS3VoLbEN7nXj+mJffU27YFb9/phh1e1HuPq46B4CAraTY6p2su/sG/uchRVfI1EWZonIETkA3QXsi/y6GhBwD5uvgTZgXKu/tp4yeVwLFXubtwGADFjUQMA2MBCxeShd1ldfQ6LvFTI4KDCQWRIOCNzKyLZbsTwCAgkn7g6ghdImSFieC2SR2qr/MlcmBZAvJj/GWDHg6XQanU6nAQboWqXg0j0CAsPhMIbDYQEDk8kkfXRsbWHXFoIzvI9RbQwPmTIg5J6BiDyunS12Ue33jChofOHXlJvmUycNKjzkTyJ0oExFmJ0QqL5qDHSWhVtUBAICqg4sve0ElAwB1hQw+5ApGgezXO/Z2DrvZ1662jp/jUQ5qtCA+pyt5+wlymSFPvN3Xcsx3gUM1JQyKVP42W81mUzrf5unuI2y/zNA4GXJUKqBikxO1EIKvOdbePWgwEDEZtJg2xnZmRUhyhS7AwkXMG2Tv03BZWXXlIsLHr38+dd6/KXapAOIlC/gyknX6imEyiEQGNABQ0oe5DYwp5rLN1s87J8DC/73WoRqJqg80ah27PTX1CNqs0z4n8c46aXwZ6fr99o81YR1Zv0QjLvwFRCIaPK+C7bM9S7F2+msn/zmBgEpU0y7KhaOhc+tA6DXBmYzcqXY6/UKGIjIgW0NEKi8mgKs1e1zmfFPBnR3ASMud2v9FlHmedk1EJTpEfaZY9JWho+R6wjmTtQMLA9TeojnW+TsQYIBBwI1a5qChZZGltSh+2gh7TJhLEf3++Sr3d4P/54JfqLHiChufgcsEV+8IAQDdLn6CYQKDcgzQCBAV7JbWiqPim8X5s6EscrbBqQOgbyN3hfOE4FAzTNQI44HeZOf2QYv3/mfMXAPC2RtqwlnXzNt3p9s7Khc6B1oGwcKZoaTKPgYxnAgmpXJNmVjnbVd19Erksmb10TkIYYGmHtFYOthmBrg9zHl76qvDWgSeNWMB/cO1eaNesLBOtsS0QwhUZa7HM/qqxk3Pia7yAD/379noMblgocJRN8KCA4KDLQBAf1PcmFVExSuKPlM9Tah4orehbH+y5R8piDY3tp39ne1ap713uv1YjqdRrfbjfl8XpQFj1DWPdPptHgDCAT4YJpaDJaLxpVKTci7Zdk2jodKmRCL2Ex2IxCo7dcX1firzSMgXtX8ch70myczZnXRde4gw4UyXf3kSYJRlcnPLryyMc36yXroWZB3QOUyqVAnErK8mnJS3eRtrs3sf/cUHDq/bqNamJWGkQNbX+PbjCN+zpR/DRjUAIEbXSrX+VivtkPovL1ZmMwBuf7XO9fiLmNB4v3Z9c6PvM/LYLszWZ2N4XPpYMBAbYJ924sL6Igmwqsx37aYo8oU1T57PJeMz7aQ+UhZKINtl8BzJX16elryByKi7DqQa5iLWpa/thTqlQEBdwWzbc8JoXCsfcwOnWoWjF7itcySqlkiLLtWl2ibRetzkCn3iOaxxV6m5x7oOoI3Asoa8BNPOCjg2O1qHXHslAPDMvm+XC6Ld4Brv2bpZUIzq9tlQk2RvTZ+pkeFuwYoWyg7MtlYA/3Z/75+CFbJp/45MyAIVvz6bJ2qf5onynqVk60H9oH8rjHy/8kH2e8ZvxDAt42v15+t7ey7zwv1znN59mDAQMSmS8uFlV9L1Mb7s8e5yiugz5lbVJ8za8JRI70XnsjX5jrmpGWKhIKOQpbKXl6NiDUY8FwDvbSVsPaAJY5DttAzFOr9yRRcbX4PlRyEan4zAeNAr8af/jkbq+y6zJ2q/yX8xOdufVDR01Iif2egxwFAFl4gUcjVeKhtrH08sv6zXZoP8m7WVhfO6rMTr88UBRVaDdgfGrmy9NCA83IW6oqoW/3+m9ft49Ymu7M2Z7+1vbwu1wdqawZaatc4z5Of2pRsTQZKdpOo9H1M+TvL5DrLPH70sLGO59BBgIEMVXp8i+RWCSePQIBPQpNA0T0CB1K+jugyC4JtdcASEY3Qg9/De/W5xqRExiIHGtkC8us8FuheDd7niz5bBLV5y1Apx47lHhpRqGRAMiIaAKzWJ1/EeidvbwMDbA/BCYGB8zYtZ7UjIn/aGpUl15v+y4QW25dZIxkQcB7P+F/eC33nVrdMuOu0Qo2BBGAtgTPj42zOeB8tZwLD1+AVyGRo5l2lV8C3xbryy6jNGNiVx/23zOAgaJXszsAA+6zPLnfZzoiorpmM191TsC1MyjXhQJXtrhmd2dg78GYd6jt1mO+W25X2DgZcUPi5Aq64KMB8wiKiCEk9zU8LgYMl4U5hUwshZBNKwOJhDPcwsJ819Jj9x61sEZuLmGPC0+gkNP0+t2RdkNfiVu4y3cZcmVXhZR4a+Zz2er0yt/TA+D16z6xRF86Z6zkDc9l94mm1azAYNHhbwFZKbLVaNR4TLOHjfeBacv6gUG0j9ovb8bxPtBK57lS/gxw/+EhhgogooTSGCjIFkM2Lt03X+dgTHL4GMBCxycdZmLUWLt0FCGT1ZSBA5OOe8XxmfGWyKqun5n3w+Yyo57dk8pr3ucXeJr9rslJ9yoBAlk/gdbvV7/Lbx4G6iuVso72DgYi6ZyBLkuLkZsjTwwsZs3CQ6FZxq1bvmVBkDE57sNuUnTM02+GMHhGNMRAJxGiBMyFILlQHCiIqllr7SM5Q/G3X+/WezdMhkAsW9wzUFInu3VauAwG3YBzo1u4nGBgMBgUMuHIUr/IhQOJT/Z4BAnqaCIBqXh7eWxOyWhPkUQcELEf9U79o/RPouucjE6bPIfcAqp0aQ7fgDpFqPNwGBNryK7zs2vc2xezy2kFwTeFm450pWi9DVnMmqykvRZlVXuszFTgVOv/3te1lZSBC97aBbgcEGRBQ+QQYNQOgjfYKBpyxiMgzV6HIvQPZIIvhuR8/IrYKu7a4UIZas2s5aZl3wAWhGNWRnsZDvyvmr4lmTgTLVxksn2VyIdQsqjbKLC4i56ycQwMCIgehLnBcIdT61OYVoEL03zPAy7Lp6To7O4t+v1/AgJJIF4tFuZ/CnvVIMKhP20I/7jUi4PBx0xr177VzCXzMCAb6/X4DBKudvvPF3fcu3GuCPqNszNQmjukhk8sM5ysHAjUPZuYt0Ge+67MrwkxROxjM5ET24r3byohoynPnQQdGJJdlNT51IFADOm30XMNC9TsYoE50udI2Rm10kJ4BMrT+yxBOZpVI6LmV5GgtQ2+8N3Md0h1LK7zmSspQoYMaAgEKT1fm6s9isWgsbk8OysiFG5WCE0FCtji9r23CYhvi3hdli9gXEcEhx6KtPH53EJYJUVrAJAomuqt1AmW/3y9hMFnN3l7xpoeanDLw6xY/nwvAdnk/M15wAZV52rQGBHo8X0N1Cwh3u82krBpYy8CBUzbPao/+17o/RPI5yAwpzyGqjVUGoDJZlv2Xgb5sffka22YV18qIiI36nDzUxL5lYbG2MVZ9Dgx87Pjd+crL4/ea8UnKDFG1S7+5vmrTC04vAgbaGuSM5AyTkSt3/u7uL+YfUDBygsmcnU6nsfCpqCWAaIllx5bugsqyPjoQcLeW6vdDZdg+3yfu4yvXrQtTfmaeAcezZkH499p8HwIYqCnuTEitVutTITXmXkZNSLqFRv7SNXoxdOPj6AKeIQMqLP0WEQ2lqfpq7kIKLffuiA8lVJibEhENEOoCL/Nytc1Jp9MpIYJer9cYJ1l4ng+TAVV/OZBzsJoBKAE0elTa2r8vqilKjrf656dl1tZvBuApP2ptqHkHIja9Fi4vyZs1GcF7WUbbuDhp/VKpuoepFhrzvtDzUhvfXYAAZULNY8G2ZO1zY5Dj3QaEnb4ZDOwq4H0R+n8ZOnPrUwtT8XHeu1wuYz6fpwifyVfZoq71wQGDI0xuAeQ9QmXsK+M4aq8LWzIrY65iAilzvbNcfab3wsc220fuc1KzJFgWGTijNivsUMiFFgWI5lZjye2YmWWUleseLpVbU1wZqMi8CjxTwq/lUb6MeXuc2C0MVwTiO+5IYPa/97ntBLtsbAhGHXjUqI13OG8ZCOAYZ+9qu/eXbT4EIJuReMy3UnM9+86BbeswA6y0Ph30+WtXMMCkbtbr4JJ99N1lbf1xvsg8UlxfvIYg0L0BWmuUu853tfHkb265t+lI/pbxtufmEOS8CBjIOtlGWaezxeYxOipeJutRKUpoCxDIgul2u9Hr9eLp6Wnj8A1vW1avC9KM+aSQNRGq2xcfBTiVv+4R8+leLmpdl8VSOWbZYSwqTwIvWxRuIdXAQBvaJGjJLI9DAgMRuVUTsRagOp+hdsqgv1xo+NYu97JwuyIFZeY1Uojo5OQkJpNJPD09FQuaQox18VAZHlXsRPDqIDOzhNgmlUsgrv6pPFr26hez9J0/1Q+3amshPAdytdCOGxfezkzpZ8L9UEi8woRBygfNTxYeqMnuzOXs1zkI9Twvnxf95hY9ZWU2J6rr5OSkkVzqxg/lGdsf0TxIy/uZeVHIP1zT4j0an+yjr/EMiLN/2xR1TYbqnWvWx5j9Ulh5F/pqMODo8TlUW8wujH0ANSn0DIgEBObzecNi16BxcXimrcqvMQ73bbJdVNq+cGpluyVEUCDyBCAyID0BHk8l07ly81eNtnkFOBc+h/rPFzPLPgRyQVUDA7SodF92f+13WjScP1dYUpZC+BHN3SoqXzyuOV8sFhv1sx0iB5Q+Dqxf/eee/l6vVz5TSetpifSe1IiKn8KX7VZZ/M8tWwdmGSDzV1ubCJxYngP6QyMHnQyDan5qR45n/Jopf+chL8N5nHObKUoSAWxWF+/nThqeG0NvDmUSx6HTWYd9uZ5qYQsZZJSTGdAkUGBZbr27LNUrMzC8Lo6H/mM/s3vZd/X3h4KBmiJoI6LyGjPqOg1iJuh0jQZYE8fYrgba4ybyDug+ZwQyobe9zSrxMZFL3vslxiAg8MnXGNEzkLl5dZ36y+ctcFFQQO46pxwP73M2fzW3XZtS2jdRkGaWuPe/DfxmQtQtYY1Rt7t+yJTPq4jXkkdpQVNhs3wKA5aXJZnys3hKn8Vbnc46lt/v90sZeqImr8+AKNtOF6sTQQaFMMdGv/t4tc2NU2Zt8R4HhgQxh0bkYfEx5UwG6H1t1tz7HJOMRx2MkN8jNhUv5Zorw5qMV7u0g0Y7TSKaXlYaSZlMpjeZgIWeOPE/Fbp7LHhUPHk9IloNzNqjxKlv2pR8Nu+13ykLdN2uya/f5BnYFQzUOsr73TJzpnLXkP6jJcuX6qVrRf9p4mhli6gcIpoPVHHLJxMQLhBrSkb951joPoYD2Ge3YGrM5uOeeSayuaDryf9zJeLCxOvxfum+Q6BMENZQdCZc+LvzrwtIP0BnufyyA4Rb9ah4O511QiG9CiIKLresPISmefJkp4ho1Kt14KCOfWViH9eYX59ZXxHrx2/X8nZYDtf/Nsu+Nh9twCcj1clQ3XNAxksR25Qpcsq7zAjI7vdEV84P50Ll1u73UAHry4yazGhwz5VCBNo9oyRZym4pOzcgVZ7WHH9jnVwTvIZl0svMa8n3WShN4yRD1XUc17Oup77M+Nb1KceWXpJMl7TRs8FAtug4sM8R+LUyVA4H2hmUioeD4QBA72IAd98QzXnSkOr2BLLMknTKXK8qm3VkcTRf4LqfCM9dmBny9IWsejP35zZwV+srrU4x+2vwDGRAwOeGC7U2Pg4A+C4r2IGG7q8dXx2xDhUxs54KPGITGNfaIL52QE3hxLBABgT8aO+MrzgedBv7jp5McbEM9dH51GVATam0yaQ2HvQ1ROW4q0D9keSKvCYzsz7WeNaVuXtLMwNEn92rxrn2ufQdUJnHLQOSOnFTW2qZEyF5LtlIcMs2ZDxdW3ciByVsV218HQAT+LfJEl1f8+Bk5O2n/PX7dvVqPQsM1BjKf8/QqE9+VoYLPV2ToTIKCbqdXMB4fIeDyAxpffZ2uiXFSczcQtk4dbvdRuiCAttdyZo4d60RCZOBffFnHgIqPW+fL8iawmP/fP7alGQbYNoHZUo/a3tmJdXuZTa3n7Gf1S1F5wqG8+MZ4qtVM+FQHiEHzbxP2w/1TiElAe3rl3ze7XYbJwJyvWTjKl6mV4T31kA9yyOApVcu43n+VxPWfh9/V7sza9rlwK4C9UdTDexQzmVgPFvnlEFMzlNfuWvFy1Y5BBT+zAyCTgKLrBz9r3vJw/1+f6N96q/Co2oviR45kesQPvQt0zU+7uQvrhMfb32PaMpflpuV5/Mnctmb8bUbv/55G30XzwArI9PVULgrVQcEmRLxgSG6pML0AfWF4QJBi0FML4aldU2rXu3MErxUHl1AEriePU2FQSancPZF3jYfHIPMk6F6OJa6xxVCNuYqJ3Mb+sL2OSQY2ye18Rev0bv6W7MSdA1PCMxc4eRNeaP0OwGB4vJ8rga9LgQBzJFxa02u1G63WwSpexjE59l2LfGwylLiVqYQVA/HjGBALl4Pe7E/LEd9VTvdOiWQ4biy/kzpZ+GzjFyeZDJuH5QpchoMLvd4rZfjSlz8wSOuI5oxco2r1+HWPJMJ6c3MZLTaRhnkQJT8Sy+krmV7Vb7H/X3uKCeZ+Kry3bMgIg+zrWyP5L3qYb/dk6VyeD0pA0z+O/UD825cl+xCX51AyMknCnHUxEbz94ypMyXixAF1l3iGnlSfEBIVLEkDSaSoMni9u2D1G8uTwHfXWDZ+RMHOgBR8Pv41BnK3WdbmDFhkAtTbq7J4TQZYasp2n2DA+crbSD4hZWg+AwLn5+dxfn5ehJfK9sdHCyBGrHmOoFCAQoJZbeLW2fl83iiTa02gU8JU9Xi2OS2jGi9lXgHf5ifS/wS16o8Eue6ngidvZwm9BFGeG1Pb8UJ5wj45INA9fNd1BAOZl2cf5HLDDQe9Z27vDEwwHu/Wt3jDt9c6IGAbXE4QSHBOHKA5yFQb3DsmcuuZss3rogeOgNIf6U5ecY+x6nE5QM+aG6bsX6azMhDbNn8ZENB3jrvq8fW4C+0MBlxZO7pkQ7IGa1BqZWagQKTfnSF8kL1OByZ+baYUO53mCYRU+G7teTtdIBMtZuPhC5sZwb4bgdeyLq+bfef4ZFYu++KALkOwGgcXPA78MmB3CJTxcMTmeHkIivfr3YHA5eVlXF5elucGSOnP5/OYTCYb4JXt0bw6CJAA0jZCAQGCgWyrqz7rfI2sTvaH1ozeKYgFbKWQ1RbfzuoygYpZY6kxIZAhUPdr+Zler5rCU51cnxkvOnjlO+fK190+KOtHGx8TdDn/OhBQpj6z9cV38/k8Tk5OYjabld/cuqX84rhJhnY66wOw9N3BRcTaSyYlSz5m/9zTIJ5hoq2+e+Ku6qkBG+cJ5sl4cq4/80ZlZzrGQbSDWNXnsjXTVWyj6y+OMQ20TM9l9NVggIteg54NghqZKYa2xcoBIhCQG0fkSp/3urWbITi3NKhsdT0FMxGh/nNUqvvFQAIHqtOBib/UXi4KF1AOMGiN1UAZx6ZG3i6V7daXjz3b4cJ13+QK0Pm4Nh8UGn6/xrrf7xcwcH19vbH9SaCAlm02Zn4Y1mq1Ksde614pUX1nmWobrdnFYhGz2SzOzs4KOPD587bRetJ4iKdVZ+aZkEL38WaZi8WivKjU1W6uJ18HfPd5cH738XWQ0EYuH1yOvDRlMrfNcCIP+1gRCDAePxgM4vLysoS4NB+np6cxnU4j4guPzufziNhMTCZQ4KO0dY3429unsnx9OSh3YEg9I3BA74HnYrE8335O3eLjTlBLXlWfOMZMePV2ulxxIOLykuVQB6lcJwe1Xv53BwMcILdkKcR8cbrVyN8yIFADDC5oskWQtbcNUXGS5dp3F9NqtSpKXe/qJ9tANyx/zwSQT1C2DzRTyhHNrYveVy44XzScu5pAzBhVv9fmyJE127NvQepUE6oRTSHlQIDkLnAJ0uvr67i8vGxkPCvmKmuaCjIbM9VH178EYeYNyBSX6hV46PV6MZ1OC6/T+0Svg+chdLvr8xA0Rtn1Dm6cLxkqm8/n6amOXN8ZX6scrydTHD6WXg7lk65z4nhqvex7N0EGYB08ZkqH93HHAMMD8gwoREWDh2VJmboxonrILwKRrhscjPo7+VK87zxRU3QOkLR+VJ57NSgbs/axbZnMdB1X88Blye3bFHVNd/l3Bwq1enahr/IMOCCgZyBrTM2SzwbfO6jriPp8qwYFp9pao0zJiXFXq1VjobE8AQH9z20c8lZQcGR9d3KrqwacCAC4L9zHTvOhReQ5CLVxYR0Zozo6zcppA3Q+7vugTJB6hj2FBkGYCwu3rJQvIFcrY5Tir8fHx5jNZoV/fa4j1lYwec/d41w7tTJUDuvUHGq96lqCC0/M47iJCAJc4RBMsz+6T54KB78EJ74Nkp/p9dD1WhO7CMBsrPx7plz3ybsZeN0VCHgZTBZknoBAgACBFPtqtdrw4kREcZH7FlcPz1BH6Dq2ifIikx3i4Yj6A4XYb82fg4fM01AD+byXstbHlJ4N3S/eJIj069hf10O1+c/0AikDwdSN3x0MsHHOnO5q9cZpwUbEhgCpoUXW59dS+brS2kaO9LKBdmDB+t0yd4bOXE41K8WtDXf9O7Futpt1qh2+tzazbHwRPUf4+Vi3jeE+QUBEPcTFRenCNBOoEc2dIJl1JTAgwCi3qxSh3OSZtygTHAIC3EfNPrmQpKeDHgLNvx57nK0VrSvW423klkbex1CHW4QOUCgkycu+dggC+J1jw7J3AQBt/7kFtosF96NpG++qnW79Oml+qPx5kA8z92nw9Hq9wq/kSz82mgpI7XZPpINM8mrEmo84z16vk/5nIiCVssp3kJuND19aP04OPNkOjRu9xN4uN85qgIAytM2I8+/Za1f6qjBBBgj8Or5T+WfuwV2UuFtn7hLSfxwEKvyMtiEq77dPjJiOL3c7U7ASJTsoydpZGxdnaPcAOCJnu13hUXhQqHo/2+a0bVwPgShIPfPYQUttEbmlIxCgrYB8yXMQsT7MZ7FYxHQ6jclkkvK86nP3K8GAt0cHmjBByxWx7le814Vlt/sllyADgVmcljkCKkdJj551T0XgYCcD454PRM8Z287y5bauzTmFam19tcmHQwIDLnvVRl/LNa+AEuLkBfBtrJ65Lw+A+IsWtsi/e9vZ5ojmyXsRzXwkylD32Pl4kAgGVKbzTm098zqXCdzt4uCW5IaZe998vZM3WV4NxLk+c+J6pA7LdFkbPRsMZECgbTE6uuHCbLOms87qfk6eu6d88bYxavaZbRO5+0u/0ULUQiIjqTyW40zlgGGbdeOLgyCF1r8vKPbPF3Ym9NwiyawofvYyavftgxwIuDs7IhcW3g+NMQ9XYca93nnWgMZ+NpvFcDgsvELrurbQ3eqRG91BtPMEBbr+YyjAwasDVJafKRm/TtamW4K6JttN4+uM64phFJZH0KByMtnha5d1unVaIzcq2qzTH00ZINDvbGMGBDIQS6+AeNXPtXAAQcCR7aWvyS0qf8o/hnpE+p/826YbvO8EmwLj7n3YhVQWvQltHuwaQFNbfEyyF9cUr9U6oJ7ztmafXyRMwA456qspE3bSkynaFI7K1MR4h1muo0BaHj5xuj6bAEdZujbzRPiioXvYBWPNkyJm63TWWxqznQK6lvfwf11D64xHYbr1y/HIxpTAggugNp4+fl5edu1LEYEblWCtPZmCygSx82ymtE5PT+Pp6amxbdAFVC08JJBI/mfoodPpbFhtLni9LFoOBAOsi31Q3TWBovGka5SCnuVl64xr0IU7ZQsFMserze3rwta9DrX55/rfZpX9aKrJx9pYOlAjEGA4h+EBAQGWpzIEBpgvFZEfB+1EmcO1RF7JPMW6xj0VLsO4LkSZ98THK7te5XqfXKnz+qwOgXeOkZ6kW5sn5pixrT7fmZdNOiYb60xet9GzwEAN/Xnj3bJWo4lyMgSb1eOL0RVhDXy4u7t2nfePLw00F4IrSkeM3icyjBZlbVEzKYf9dncrr9H9BCNa9D5mzmxqlwu+tjHZJuAzJMy69kEUhn7kaiZAXVFw3lxw+P5hbQdkbD47HChiM4aa8STriGi60r1NGQ+SP2mVeX8zYuJXVs+2Oa2t6ZqC1m+UFRk5mKZCYBupAH3deLtYXzbH++RftcllVxswp6yqAWF6tVQex8hBhH6nJe78m8252qGtuAQfHst3MECwSi8qwetqtWp4NGgYEbyQtzhe1BlOvi2cY+N1qJ7FYtHYvujjRVnsfCU+9Hn275yLTO9mPL6NdgYDNctS1BYLF3GRZ4ys37PFKCIDOCOKEVS2LxoKsTYrJesz3UUkb4sjRR5ARIbl/Vm2LRk+ayfb6uiQjFPLwtXvNRTpACD7XXXp3ceZVFN2L0GZdeQAyAGBt9utACXD8RAeWtiLxaJcP5/PYzqdlq11dP8TtHrdosxN3el0WpVU1id303Lu/eyC2jrP3PYSfC6wfGdG2/pyuZApPQcOXhblh+abiodjnxkUbeN4KJ6B2jpS33mP873/XgPzLEvEEAEVXQZGaGToXUCAYIAeUQdxDthFlIv+XAGGBrL15HJ/mzyiVyq71sG1+F1Jwu71cFnKdmRAzkEGdyfpnf871fRajb7KM5BV4kohszgyxeH/ZddTKWaL2S2frM1+rQsbt35qbWK5evHgC95LK5NWOxebhxJI2X7yrF+1dvq9WSZsxvAuADPA4OU4ys5oX2CAyoFux22hJ95LAap7KBwFCiI2Qd10Oo2Hh4eYTCaNrXnMrnceJjim+15tUuxfANU9Qb57pKZMKOR5/Cx5wIFmlrfAXQ4s2499dSKPukFAOZEBCh8v1k/r8uzsrNzLZMxMSGZKtXbtS5DzX1t4S9fr3e9lXlPEWq6Kl7I+ks9r51zwWvIYZR5DE2yD3ytSnTTA6BlgHo0DdZenNXCve3cBBbrWDSuOd81Q5LzUaBvo4xqnp7BmfOm/GpDJ6Nk5AzXL1KmGpLcpW1+MqlPvbS5vV1pebm2wM8Z0xs7ABs8aaBNMIlpjNfTN+mtCkGX7AvJyqKy2bV3MyIVvTUAKAHr/yaz7AgOqmxaS2syxyu5xQewCxi0mIXYpHu0gGI1GMR6PYzqdbgACz1j2cayB34ioAgLel4E49VntzY4Z1jUueDLF5GEQgpjayYvkcV9vfp33hfPjuxg410qW033z+Txdg9m63Se/ijKlLmozDniPZ+nrf/Kfy1QHATwwyufT5ySi+TwUgjICAXrIRMpPODk5aRxp7IBAnzMi7y6XzWRCeo/dg8E6fFw9fCh+FZ9ndfh6rIEtlpcZBOxXZrTVjG+OwS70VWAg+8zfdkHRbWgmW4wUGtsUlAs+TnabJcFF4gLHF6Pa6a4qd0F7n/l/DV1nr0wZsG0UynRX8/jNDEQ5w9Wsf9YX0VxwLKeGtDMh/5LEMWMcsK1dPkbqH2OZ3e76ICiBAY33bDaL0WhUgMBsNmsoW7pcI5rbrjKeFm+yPW4ZMGSk3zn/BC90b1Loe5iAlpaPgf4X+NF4uQWXJSFSyfO3zAhw4MD5qQEBfxKf1gYFdW0dZHO/D3KZRRnVRplicRmmeVksFsV697HW/+7hyTyW/K4625J2af2rr1SyNY8px0Z9ZZlUmgzTchx8/BzoZwDcd0DoMz0Guo5eDK7Hmv50nZaFcSRrfKwJCDKwvyt9U5hARFfONiSSTSDvqTU+K9MVuguMTGj44s6sBJXl6DpDahL+Yjxa51wYRJgZcfH5YvOydH3WH15LIc9Fov5m48A55jvHvLagHAxkQGFf5G1w4erzn/EHBZwvVglUKsHJZBIPDw/x8PDQ8Ahkc0KBlSl8tYFKjO5LEfmPwJa8oKQxxWrdDZy59NVPbjdjna7sxbcecnDytU8gnfFipnAoDLVW1UZtn5OFyOz4GqD1fu/iSv5R5Iq8Btz9eld+9J5kylPzH7FOZGbYSJ89XyAzvGr/aa4JmB0M6F3rjO0l73uSNMvP5Jz4leORJZ7WvmftcL524OU7NNqAAIEF250lQdITSADAftd0dRt9s2egpjRErgBcyLZRTXlkwruNOVXWLmDAy868CRFNcMJYDhWOC/msTRmCJENnbl6Wx/pUjj474vYy2uYjm0/W6agzE1gcQwnofVCN19zj07ZoONYSLn6uxHQ6Leh9NpvFeDyOh4eHGA6Hje1F7p51PlGbM8ugbc25IKCngoKFyb6dTqfhAna3repl392CIvh0wc/2ZsI741P1JVvHmVCVcFTfuGWOu0d0yh7byfBZDQzsE8hmfNAm6zIg0AYoKH+4tXm5XD9Lgs+TyIwVfymx1ceS7nR9FxHI0fPEeXfg68ZSWxiUPCi+d0Dg4+7eI/2efdZYqg7P2ck8YHzXf1yrDGs6cMkAh5edtbGNvko6b0Mbjm54n37PrBkqmEypsMya0HHhw/t8Mfi7o1tfUG2UCVEqkEwRs+6IaFiONe8Ax8CRvjO2C7CaECHVwJIjTZ8TKlW/f99gQG2SEla7JFyYPOXjnIEoX6gSnLpfRw+Px+MYj8clcZDlcH5FrMMBG9uia3lfzVIRT3a73ZLgGLHeDaFr/JhgkfpIq5qWioPZTOA5oFGdzksSvOxPzWOYgQMpfJ0O6acinp6exmAwSHnEwZjLqkzovgTVPAJuLKit2VqkCzwD/1oXChHpt/l8HrPZrDxPog0MsF0sl14GnXviSdQeb+dBSGq3+MX5U21R+2qgnvNLIKB3l2dehsZSbfDj3p2ox3xdex2Z3qLu0Pfs+STsUxZCyABujb6bdM4EWIbsvBM+oD5p2aREbB7A45MpAV9zC2eKMmJzy53u1TX+H/vo7lUynixGt348ycrdZ95/upD5H600jr+PlyPRbOxcoTvT1uqhdcZyJJT3JVB9H7UvEgp7V7qimvW1Wq0fNSwLSmBAWwq5hbAGxnz9qE4XGrze20cl4eVS2VM46975fF7u41j4+QxZAiZ5ydvpbc12yGSAyK/xcc/KlkXJA54oj3RKoo+x6ssMDZa9D/L+utcwC+fQys5i9RGbuRkeNlH+iLbE8vHZNdmk9mlMJe/EP1SibpyR1wjqmO+R7aoR+BbwIGDPxjIiGm0QIOaYcK17qMJ1hwNwl4+cQ+c7nw/VX5P7vh6oSzLZ0gZWMnr2OQNtxM76YQx+nTpTY2ZHsLsuxkxocMBYNy0cZwC3xrwMtckn2d05Yni3SlWvJ+hkLmPVlcWUvD+qwxVwxmAZkqx5dTIrxNtBAeTuPgKTlyafa7Y/Io8Zu8LxjGzdR0uKCXjcolcjzlvtumyctyF97xsTFNXOjD8imudSEMhqLjWe7j7V3MvNyf44cK+FwWoGQEY1MO98yDERMM1At4c4nitIfxRliqcGyrN1SABHUEwApHnQvErBTqfTGI/HG2CgZoCpbM0hZUkWMmoDdqyDCtjHQ795OKTWPg+RReSPkM/mIWsD+Tgrh4DZxyAjzo28KG5IZPotW5M+Ttvo2QmEbejDJ9gHjczhLixZzvo/onmsaVunHLW5slf9VHgeQuBnP5jGEanaVrPOvFwyiwtG379LJlX/yQQq3xe7uwFpnet3FyIcV0e4zmzsmytMt0b44Brf9rUPyhTpLkhen2tWFsGUW7y8T+SWHEGFW6PZonahl80D+8bfuH1RFoX4T210LxL7L9K14k0PsfjxyA5EnN8z69bb7oDIx8D5VPVI+XuZzqtqo89hbUxfkmrrsE0WOiggEFA59NLqXfKHXoHpdBqz2WzDI5AZBvqc8XI2ZzX5SaUqHqt5OR0w0Fr28ikTpThdvmZ9UFs5luQL8TN1GHkxA7+8xon3KcnXPZoEzmxvNqa70jedM+BClIzVZnl5DMtBRMY8WWKco0bVnVmiVMSOEiOayR+ygrxeAgmvl6iMk030TSbPwgKO/NRWBwNiSM9q90XmlhHBFRkum2O++xz6uwsff4CPj8s+KLNE3NWaKR0CAR7dqvnMFr0LXxF5ifXot0w4cM69XQQbVMru9mSdPufOU7qfbSGQ93Gie5a7aXRfRNPFy10NNXdzBnT8v+wl8KHyOSZ6J7DXWNJbkM3BNmvuR9I2IEBF4PeRX1gWiR4Bfdd5E8oXUPIr20ElvGsfaLg4X6ofao+DuohIAY17dWogQ6S66cXKQGZm6NbAgNa8y5ZMNmTA32Wr951rNOtjJq+/RuZ+9dbCDCFG1MMDdHMTNLggzqxITp53vGZ1UmBmli3bSVe+g4lOZx1XYp3OOGQutY8CKGLzMKDM7ZaBI7WZSqHmemefsjEVU/sRoBnqFPmid0HtY0ZA4AtnH+Qgsw3Q+oIjCPDdA344j99fi1u6xRSxGRP09vB6BykOrNm3bBwy5UC+U//UL1c4vM5zbBwgqwyBJ7cwa8LKgRLf/Rpeq3nhGlffMg+d15WNV1b3IZDPn7fXedx51JWrxk5hAb0Wi8WGYcCXK3f/TD7P+LLWtwzQsA30pjrIdcOHipX9JqB2vaB6fMy8P/xcowzMZaCTY6SXA/HaPLfVvQt9F89A5lZ0lFNDYBHrU9SI5EUUPG2MTWDBtujdF3uns3YhEt0RvRK0qPzsP9WbWd4cNwol9wyoT+prBgjcI0Em8fHIyL0amTD138mgWR1eBsMDzLjfN7GP3ucaGKAVkR2yw3kTbzj/R2zG4UXufnc3orefIICCi2uEHioH25xbWmiyjnmP+kePWU0Zb6PMOsosS5cPXgY/c51wPUpJeDmaA26f9N03zhcZMD4U8na5gqBsEW+RBwVsNd86Q0Begel0Wn5zOebKpyYbSLTipeAy4Exjwh8Nr3L0Lh4ViHEDkddGNHMDMk+Xg2svp0bkad+Z4HVwzPyd8qjNMMiMcqdaGW30zWAgi/tlSqz2nyuTzKoh4/IalcNtHnp3huOg0KrqdJrPbK8JBFeSKoeMTOHiLmj3ijiwYUyI1/r4OKrPQiZUAvR4tDE1+8m6fb45xg7waHG2tXmfRICj7w56MkBAPnKXtyibN9bj+RM1MJd5K1Qmn+aWecVq81wDEg7aMqHuLk4Cd+ffbZZfpjgy5btNeKoNvE+/u9dL93HnTnbAEnmZY+/j8ZLkliHbornOgECns/Zo6sX8Cc45k5hns1njoVqZ0tpF+Xt7ut31dtJMfjow1fbQs7Oz0kYqXYKL2nMKyBMOajJFr/qZ/Kz16Ftv9U5ZUJOPnKead4A6jTzoa4H83wYGsrnaRs/eTUALhJOhuJsrat2TfSbxd21JiWg/sS8r1yeX12eWjQSK9sC6y8d3B7SRC2JHwsxwzpA1Eyjdgnfm4P0SflIWWVtYxzYLNIvrkdFrSJRoXaEItUXjsS/aVVHxvXa/P1vAF7Fbq6IMSIrE8xTuDghquRgOxkXZbw4EHNBlPKPPFLhMutN4ZDztv7EdfOf4ZMKPn+URyMpvE/o1IEBDwMvdFwgQeVu8PZnHhrKEgEByutfrlXulaFerVdkSO5vNynY91aty26g2Vlx3DrxokOl7r9eLwWAQ5+fncXZ2FhFRchgIBCiTnNfJyxwPfXfw6yCdoJuhCM6HgxJvF/tZA7i+xijf2+RQBsro1cvK30Zf7RnQAKgRi8ViA6E7iXFdCNYG2CfILRDeo7I81pnVI8HrTE4GIpJzkEPGcivQXUYSOGJ4zyvImFv1cpE4AMiADY/c1P/ZDgbP5s6Efsa8ag/5gEJdFob+FyCoAbqXIlfaah/H3QWuzyN5zUM8utZDTD6GtZBJ26Kvfc8s9wywZRaTxsHXiPJeKNwIUDNhRgUiogJ28FnrQ+Yl2DY+4lO2kX3jGHjftm2RYz3k+5cm9pPKIuNjb7PzOI8VprGldcstzp6Up3L13V+ZV5Dr3q1m1R2RJzqfnJwU74DkqBNDPxlxHYq4dlUG1zzBkxt2vI+6xBOJawrb57RNUbP8TP67UeF8QaNiV0D7TScQanDEXHqRaUm1WGCGrDIl7APuws/BgN410bRc9Z8mn3U5imUdEbkQY9+8L7Si3GJ0geTvrIf9JoNoAXk73IJ14FFD2T52GYL1z95fbnvkGO6D2uYzswyJsjudzsZWJ74IFlROlsXOdaEYLtvnPJ8BFMZ/2afa6YGu1NUXhgxYHgG3W/tUKCIpFrmVBYjI39wtUxOArvgzEFoDxA7eKXc6nU5xdfs64Nx4+c7b++JbttGBt7fXDQfyssZJyYERX+ZFhzDpd99pkQGyrHwSf69d44ZHBsgIqrPxp0eXPMpyReJ1rVN6UrVedZ8DWa0P8i/1h4MD71MbQMjAMYEXy64pfdZdC1vuCmS/+tkEHHAtOjVYjXCl2QYGXKEQDev+iKaF74PtLkJHSj5BWTvblB7fnYhCM0XrC1btyxhjl3cXepmgVD95tng2dhkY0CKpjY1/V9+YtEQG9gX/kpQtBu8/f+cc6n7nQ46TxpX9dQEloZblTWwTGhQAUupc6B4zdaswc51LQCo8xgRJ9smT7Cicn56eytYzgQHPP8iAqGib9U/KjAuOWaakNFYOaFyx+Tz4etxVmP4ocoWhd/YtUyq8xpWEHt4kMKBkwWxsnPdp+DmA4hy4Ze5znClEV3pqL0k8KK+G5E3Gr96XzOPB9hH0MqxbAwKZrHfgW1P+2+aMMplrVuOrscjqIrjf1TP71ccROyjQAKojmZuUjOGMnFlH/I8ZsQ5EnCHZRgp0L5eD7Pe1AQLvv9rhgjibIFfiXp6X7f3iYuN3KmL1l1YZrTPvZxuz+vhkC5tKy+91MLYPypSI9zfjRQ8tsKyMZyOaCZvOB6zf+T+b82yM6RLX7x7GEGWAVL+rnVxbzr8cFxeyqpfxdxK9DNna43jWxiezOnlN9tnBGscms3w9Ryhbs5lseWnKwP+26yOaQJNzrvkSaPJkSpaR1Z3JTf7vHgLRtnF0EOGyzkNdEVHCkb5GSOQ/hgjI61k7dF02nqrLw08EA7v0mWNHcl3oBh+9wQw/61qN1w/zDLQhdCb+OYIhUnfiAGcWZE2YZ23bpWwpT17D+zMh3KasRbT6M4uTSrO2mNuUQgaE2B8tciYPOShpqyNTKKrH27xNGGVl7hMM1NrrC8yBW0T+LA23ALL7SSyTgsz5OJsPByB+f00xZoC0BlalLLI4r8bAf+fDY2o8mvGvt5Xv29aFqCb43Lpi+8iDNa8Av2fGyT7IFazap/dMHmZ8KODH73pnqMsBkK//mlHHazMLX/+z/byHia2ef0NLmG1nX9SP2rHANWOI69LLzixyBwI8fly/uazPxtLHju3Kfst4VLI/41PnmW301Z6BbDFpMkQEAm2L2RdtrZ6aAOR1NeBQs9Ao9L1dvL9NGNQEtzOAl1NbUDUlrf/4TuGeZe/zuppLyfuSeV2ysI8ThUCbe/ClyZPnXAjIinVlmfFeRN3iZvl+H0Fi9jvvF2Vj7PxaIxfstbr0vwtdn2sXkO4RaeuLj61fUwMzDg4yPsp4LltXzu9sD9emv2oGykuS+lYLadbalvU5oml9s39ZOIcKhcqNdbCdfo97B5mLw2ukbLMHYuk6xf3Vh0wp00tVA3dsq/+vdpKv/YRN1cmEzCwUq3aqPo6fA4K2Nd2m0/R9l1DcNvpuTy10AUty5smUuyupNuXOd5aTdbymgLOyvmVi2hal96X22ctrY16/j0AsQ501RFprd61PNWDHhe2WdDZnL0me+6AFQ9C0jXcc2GSKNptnv5fKJwtPkZxHduX9Np7MriMAyiw6B3YSNhnwz1zDLvRq/FBbWzUZwHY637UpTQcEbfJq38Q15TH6jD+d1/Sbgzz3AmXxb+e/Gq/5Nf5yPiewoPLXvv4aH5DoCW3bLpqNE18EKKqLCl+/sS8EwlndNX3igIDjsG1N1NYA546eyq8BBN8EBjIFQ0Dgk5ihcn3fplAjmm7PrC1kumxQM3eJt6+mFLy/ak+m9HitPnsdtbHT/zVPRqZ0+H+m2HSfx9syd6Df5+2qgSst6OzUQS2afYEB9wzoXZ8zazj7LqrxVia4Re42z4S3t9mFCK93QV1rW1vbawrTBbn/5pQp5ayOtna2AcjauszakM1l25jU1mwWm94HOU+RfI74+zZyK5iy2+W0l1lTUGoL2+XygGBafdKuBraNFr4sbiY6Svn5lkj32GXeah6Y5SBV7fMQoNrPA+ayfKxtYbwaQCBlOlNtz9ZsbQ6fK2+/KUygd05+TWDwnm3luuDJBLiuZWypJgBWq1WDAVhWG7jIfiM6d0FJQeTjQERZU+hS5LTw6a7b5Zjf2hhkY9oGWEiOWl0waA54fCjvreWKvBTx5D9frBHrsc0sLx8vku5zPuTeZd1LYUGlyWxlto3Cn0AiU7hOajvdwLV4Yk1o6Zput3kAC4Vht9vdCE15u7NQTAYyffzdwmkDIu4RyACSlM+29Z4J5+y3lyLnJbUnonlUe0TuNdV1BDcMKS6Xy41thaRsrdSAoX6jjOITTLP5U9skM7grbbX64pp/enoqT0+cTqcNBaxzLnx7L/uarXmOo9qREctwtzwBQ21MMoPO65acd/1EcNzG2xx7trlm5NXomzwDbg1m1pEjfpILXv+PCpa/UXiI0ejqYftYN4WLIykKnZpLLptoCiOPdemaWi4E33Wtt4n36pjOXq/XiPnxfpbjriIKkW63mwoAtteZL/vMRa/jQ3mqmBbsfD7f23HEvV6vEW9UHznX2al+Gk+30t0lToWZWUKyapjZTv7ldSxX/MekJLlTdX821ypD5O5fn9ts7aiNOrFuMBgUQEA3qoSxe36ybX219jiY0nh4vzKvC9dMZkE7ENAcirJyPFzSBrx+NHEPfAbmRBnI0nUcLxoaBAa+00Jl8p3jkSkn/q91cHp6Gv1+v8gslu+fI6IcWrZcftkSrTi9DrYSr/kZKlxb2Xjpt6yPy+VyY836u7vhWSd5hDqjrS3ed65BXyss23mf4+59Ujm78u9XgQGf9Oz59X4SG4WCexDYcJJbCuooBbCUY6fTabiJKDRdqJJ8Mfh9qlMCnQKDTKATs9SWiPWhP7ye4yfyhZsJcimCs7OzDevbF4QfhMF50+8eU+Pvfl47Fzfnlgt9MBg0wMBqtSr91150nlL3knRxcRER0XA9qm8R63PaHaxki8mtBB+HjOfkyqTAcgAR0RRWIp6zHxEbRxI7XzMRy49UFSgjuBWgy6wHgjwdDaux0HrQvOqsgexBQPSgqZ90/ZL//XwK8mfmfZJlq8OFXOZ43LcGKLzNmgdu39oXZQpe79m8cazbLEYqDU98Y1lZXQ4MOJ5uIDgYINF7JV6Qp2KxWESv1ytznIEBzjHHytvv/Ef5l7UrGwc/qyEzGAiWa+OZzY30gxt0+i8DE15uDRBuu1f0TWECKQZ/wlTtWfbOWHQ5arCzUIP+m8/nZbDFbFJCnU6nCKSITcGRPZREdUuoLZfLOD09jcFg0BB8sn6YMUpS3Ovi4iIGg0Fpo8rlkcS0ziM2t7H0er1iycq61kv16OEdGptaAo3+5zvnj0Sl4pYCreder1faMBgMSp/Pz8+L9RgRpe86nW46nZZzxl+aLi4uYrVaxWw2ayxEd/FngjUiNpQLLQIBUvGM+KbT6TR4S+5O8YHWDRV2RNMiZrZypuTl7ZAwV7kUwoPBoJwjIFergIn6RiAvEq9qjV1cXES/32+sWQG96XRaXpPJpIAfeYMcVKlvOsJcbXcvCwFvxJc1LT7T+fqLxSLG43GMx+PGnESswR/XnMbaQ1mySNl/Nzz2QeSHzEL367L17t5DAi0qNVdEVFwiyh2OK706BAPiRRlJrpz1G3kh4gt/yStAXvMjkzNFuYtSdEVLYy27NjOaMp2mfvGethCA6wPen/Ula5N7/WqAbht989ZCKgpZxgQHtCQ00S58iAq1mF0Az2azEqOk0tZrtVo16qNQ1H1iJAIO/a5BGwwGcXl5Gefn58Wimc1mMRqNYjqdFoHrVt5gMIirq6u4uLgoTMxngpNpiKI1Nt7m7JG59D4QcNDyzg6A0Ri6NeveBS4yxrjZNo3PxcVFXF9fx+XlZVxfX8f5+XljrKfTaYxGoxiPxzGZTMr9+6CLi4uNxU5Xf81iyUCpz52AgCxngkiNqcab8+IgmmDE9y4TrPg9tLL1v9pzcXERFxcXcXZ2Fk9PTzEajWIymTRirASgnshFr4fml2BASl8gYDQaxdnZWQEdvV6vtM1d1e6hUVvE4z6Wagv7FBGlnl6vF09PT41xFBDT+ut0OsWzxjBbxhu+XvcFZKmsMivd+TNTXHRBU+lk92SKh4orq88BtXhTOkFjzv5QIep3enEiomHYEARkRo9TphQzZc8xbXt3QJWVz/HVdbrPDUgfWxqLBBZeH0NeGRhgOzMeaaPvAncdIUqw0AWq+A+tF1q/UshSUnx0pSwrClQKvX6/X5SlFDWRqdoW0UzIITqUgLi6uorb29u4vLws9Q2Hw4Z17i4iWSyXl5dxdXUVvV6vCGm5MKVc2+KeWlQEA4wX+cISSJpMJjEejxtz4IwvSy0iSjkS7mwrQY57bM7OzuLq6irevHkTb9++jTdv3sSbN2/i+vo6Li4uikAejUYxHA4b8fDMyngpGgwGGx4YdwOz3/QauMufrkDyOueGQFbzITc2w0viaYE7WmtaL5oz8YLq0/phiEhzJMAm0Nbv98uRw6pP603KV6CaIFTrRH1jCEzjMZ/Pi+WntvX7/cbT7+hJiWiGa05OThrPNaA1KQ8ALU33DGitDAaDsu7VPnn0ptNpOV6W+RYRm4dH0TqNiIZi2we59R4RDR6seQcyQKB7s/esDL/OwYDf754rhQ0VOoxYA0HdJ/nDUB1DFvRWZof61Kze2n81ZZv1sQa0vHy39DMr3z0YrvjdM8j2RTSTcdkmhnlchj2Xvuk4Ym8EFRrjzOyQXI8e69d1Ekpy/T89PcVkMillqg4KDD2sQnVS0FDpKv5ExCaiq18KrtfrxXQ6Ld4BCVQfh06nE+fn50VQMVRAlyjRuSeaOarjNXRFq7/L5bJ4LCKiIGcJCCoyxuJUdr/fL14M9U9tlkLgYlytVtHv9+Pdu3fx22+/xa+//hq//fZbvH//Pm5vb0tcfjqdxqdPn+LPP/8sHoLpdLpXgSow4AKC7nyNU0TTamdc3q0EKnQqFwqTs7OzWK1WxToXMQeD+6vFm+Jj8b2yrKVsCQb0kmKXV+Dq6irOz8+j1+uVcJV4QetNivTi4qJ4N2r7vd0rUvMOMtlLipjZ66enpw0wwlCC5ILWNsMvahs9Bpqny8vLhlAlUJ5Op6U+H2d6I1WertP3mvfoJcjdv5nyVn/arHv+xrllmTUFy3l2vnBDkOEv8arAAK3fLHREGUFDpOYJ4Hyr/U6ZonePRE2Z+zW18dFvNPLcu5SNt7crmyf+loEBB4u1Oneh7wIGFNNkXDRDKFJQWsACA1Reg8Egrq+vS6xTQnC1Wp8ARcEjAUEm8f2mrL/bXT+L3WNPEoyXl5dxc3NTmHs6nZb2SgjTVROxzlinpZi5VFWPJ4/RFSYrUkJKwp3hCwET3SfgIoXOdkqZqM9SBkLvZKZOp1MWcMQaZKxWqzg/P49ffvkl/v73v8c//vGP+Pvf/x6//vprvHnzJgaDQTw+Psbnz5+LtTccDquJQy9JtDi0oAhclS8iIp9qjOlJoFCUsmBIgDxKZa81Q4HhSYsUKnypDApYeqDUNsb4ZUFrXWaJkm6J0xqPWIc6BCZcmbBtJycn0e/3i2teylhhLCYXapwlC+jxc0+DQI3CUBonXS/wrfGkV0BhKu540JphPFpluSHjAOilya1JvVNuZtdnYIDleFlt1zkv+vy7JSzQKh4lcBXIpbxZrVbF00PlqDlyOa16a+NFBUnFvCuYIUBRO7MES1e27rkR1UIE2bWZB0Jt8WRYvz5r23Pomx5h7JZOLXnQ3Y78zIGnNaaXGEXMQqFGIasyZemKxDwcXAqBLCGQfRRJ2En4sXzWsVgsijWo9jBHgole6oOYVAqdYRO1gde6ksiEPOvQHDiAcxBA4czwiubo8vIy3rx5E7/++mv88ccf8ccff8Svv/4at7e30ev1ym6B0WhU3NNy48oC3ydpwWsMuAgJYOk5chefxolhBF1Ly4cWpq4l77hAzYQ6vUfiPbriNUf0DIjfZH1RmKqdLhCp8OlG1zXy8HjGPnmX4TcPg7EugXuNgz6zD8yJoMtZSl/jozmhAle/2Tb9p5CdwB9DY+R9env2DWRdvrE/DGFR+WWWK8tzOexlU+HyJb6gwhS5LHGjjx42GWT00oq32WbfmeL6RvWIuBPEM/8zAOXrlfOueumGd89KBgKoqAlCKH85F9kc8OUyye/JvDgsK/Nk1OirwYC7LOQdyKwdF3ayVOhKEXMpIUn/uyUhRiJj0aVN1OltzhLj+P9isYjJZBJ3d3fF8tZvEhhEiQQVUvR6zefzhstVzO1bqSiApDA9RjibzYrSUS4Fy6Ng9jCIC+flcr1NZzwelzEkCpcVx3GjZcpthHTr0fvR7XYLGFBugic2vhQpTOHJkeIV5nWIOp1OuY/Wo1vCnAsKFkfybmm654wgOGLtJlWWteoiuKSy07xzy56AKftAgBAR5TrF/ieTyYZrdzqdxng8Lm0RzzKZNWIthDmeDsy5W0Xj6S5V90qIr+QF8DrJu14PrVWNq3a3KNGR4IFZ7Fov+/QMROQKm7xCWeaK313gtb5QUdKCVl0OznSNJ4NyvJ3ns7p9zTGcQCDOPjoA1ThwXbXNWwbCCQZ0DT1JmU5h+a50xdce/sjatA2sZfrWwYLf49fuQs8GA3TtRKwHnVme3E8uZETLgYrG4+ZSRs6UGhC3cjihbQkUvNe9GmrLbDaL+/v7eHx8jIeHh+JloAeBzMG2dDqdYh1rG517SRzlSggpzss9tYzzS3nzsCEqFV+MUkwEIhSIsvQi1iBOYxQRZfyJ2vX8cyJlhQI0luPxOD59+hQPDw8xm802rNt9ggElg/pDRcgTvtjJp+JjKQqOLRUbeVnvApYM3VAgyb3ObH21lUI5onmaIgU971HdVNj6X4qavEv+IIATPzpAFyAUf8jq41ZSAkOCEylfhl1coHOtiE81N1ovWgvc0cBdElQknGu1UUm38nYoD0FjK4OF87QPcjmWKVXvL2U0ZWhmVdKS5xywPnprPAHTDSQnV2Rsq3jD3fEEjM6fLFfAjf9TrrMejp1kGnWMe1Zd1mdAIAP1TgQB9Ih4G/mZdWWeAbbf28S2eRnb6FlgwIGAiBMrS5WTz1i/mIGChBaWM4C7bpgI1UYuNAlWsgFS+4fDYcxms4a7la4zXUdFwpijtlapzfSWSCFKkaqP3Kff7XY33GIsh6ibsV0X8hoDnzuOo96J9F2oqH7WoVjwcDiMiCiKYjgcxsePH+PTp09xf38fo9GoCGgHiS9JVErcA58lJYnI6xwHuvu4FgicdK+7BKls9F05IVdXV3F5eVksIyktrSPOZeYql9Iej8elXwIZUnS6JtumxfVGMCCe5TkcWqNPT09FKVPR+i4CKnZ6s9zC49hrXhy46HrdrzmV98LDIRwbgWp5BXhYkcZYwIZyzBXRS1Imb0n0UGaKj+3PgIT65aEWlR3RPC3TjRtXqmwTX/qdXrnMyCJwox6g8iXfyyvbVrfzg+Y4M6y8Hbw387JwfjIeodfWAQHlLOWIGyaql3Pin78HfZVnIKLJpGo8wYC7DsVIvJbxbpUjJpAVIoHGWC+VpSMzegk4gO5RYH/IAFJ2EoyeVKI+kZHVDhd0EU3LhxYcBTCtG7l06WYm0W3HzGq69+lh0TjKW8DQC/vN+dK7Fru2olHoDofD4i04OfmS6Pn58+f497//HZ8+fSpnDIxGo7K/XbsZXproDcqUoFvYEWvBpc+0KpS3kpF7nVwgu5XV7/fj+vo6bm9v4+rqqoQztIMmIjZirKyL60kKT+Cs0+nEbDZruPyzMfAkOt3j51nof3qGZPlI2Su3gGvNPWkiCmPVwzaqr56voPq0lZUnIIrnNfYMP9JzQfCs8njwjSvPfYEB9SObd7rQqVzYZipq9xKIh+kil+KKaObRUAa6Z4phHraPIVTxguSlg1KCGsp4Klr3MDDvh2EgvggGHMg7QHfPZ02/kGfZZwILzh3HmeMjeUI96vPuMomvmjfia+mbdhNkDeVi9uulXAgMxCwRze0kpYGnzS0/BAuc7BryJRolUxA0UPmybgKBbJFkiNwVK9tF0ENQogXBBJoM2dKSYq6BmJxgQL8JhGhspZC4YFS26iVlFthoNCphFCnG2WwWHz58iH/961/x4cOH4hUQeBiPx3vzDFAw0StABL5N6JO/CdTc0ld5ElQCUzyJTdvl+v1+Scp89+5d2R43n8/j/v6+0SbyKAU/3au0fqXY9JuEqQtKfo5Y8yLP9qDgpWeL61a/aWx9LWUelizHyMGKBDctxaenpxKK039Z2IcKkMqHD+ahZ0WAWetHlLlkX4pokWYWZJtXgMqJ7wSl5Evt1uC8qnwHIBngVR1uWUtGZN45AsdMGbNPklsER+IPgg0vKxs/tl3EsVSfaUD5uLpHK6L+CG96DPl/ZvHz94zv2rwJ2fW78u532fjNxriwdBAgFw1/99gslaj+02T4hJI5aQmIIckQGpjMrZTFqFwIOhqk5cOFwn6IfHGSsdROuYW52LjII6LhqnNhykWrsXP3HeulxeeKkeBF/8v6IxhYLr+4jpV4+eeff8aff/4Zo9GoEVaQC3cflHkFHGS1kcaPvE1FzTCX6tJvUv48g0KZ8TrF8f379/H+/fu4vLyMiIjJZNI4iOjs7KyhpPmsA3ql2EduYxUwyISuxkf8KqH9+Pi4ET4SXyinRPeqPveU+RpgvNnXAQWbymNSJ8ufzWZlqyG9F3RBOxiozb1bmhHNE0F5zT6I48O2ukeAcitTWG5IKE9Jh1MxaZQyVOuXIJOeNnoOMp5gcrTuESBQeeLVDHC4kqNiJhBXezNPiY8n3ynr2QaOvYg8pXFkO3zOfK6oX9gnv9aVu+uVDAx4G73cXeibwUA2mBSWuoYuGl3jwkZEpNftdotlQ2VMhnd3ugSCx/R5f+Ya8gWltut+LaYaIKihUmciDz34ZHPcWI766oI6E1aZmzPzmkSsnxeudjqjq63L5ZdY9mg0KgmPEV+EPEGC8gUkzN09/NKkMWQoheCRqN89I1lZEesFz10Abg13u90SBtBeeYECCeKbm5v45Zdf4pdffinHJo/H40ZcU23WzpbRaLQRLiMA4Mtd4c6X3i/xMUE6+Z08JH6npyUi3+suxeoCnPOTeSzcI/L4+FhyVrizhZYnlT3j21QOmWWne8UXbmDsg2qASe2kwuT1lDUEBgpNXVxcxO3tbbx9+zZubm4a50toTOTteXh4iOFwGMPhsAE8NaaUMWwfARx1BMGePyuDVAPsNS9mJns5ju4lYRluMDrPE5AxTJvlu3h7CIIoI2qGqRuUmmfWQaCdeQb4/iKegRpa1eJzpcrFKvejD6ZPBGOPQrRSVBFNxnCF5yixthXHgQAFhdpMD4Vb2zXh5YuU/dPvZBYfM/2vspz5a+5LBwBcAFyUPm/qm8ZU481DYFarL+EIbUHrdr9kl/uxy1SaumZflFnVFPpSvD6WmRKk8NA1sn7kZu501s8IuLq6Kkc3Z4Dg6uoq3r9/X8IEy+Uy+v1+RHyZG51cuFqtYjqdxv39fUSst+AScLHdrsDIby4s23grA5AO6l3A8d3bQ0Xj1h75xsuSElL9rpDkpaLlqvsJROQe1+8EInpXnR7O2Cc5GIjYfIKmrmO7qbj0jAmdsvru3bv45Zdf4s2bNwXcU6Erd+Xu7i4+fPgQEZvPzRD5rjBdN5/Py3ivVqtGeIC5Htn6y8AqZZ7WLfm55hHQ2PDlZdcUZ6Yf3AOTKXQBSgJ2lsO5oefEQW3miZGs5jh5+wlgdqHvGiYgUlRjM5eGu07ISEw2cQQkoaGOMo/A0bPHyFQe25gxhsp1i0LojJPA/jsYcK+AIzUHLRwjtZlj5jE6rz9DwnQR+n/87K+Tk5MCAqS0+FRCCV09gIhWqqxlnRWvfj09PcVgMNjKSz+CtoGBGj/w9wx4KfSl09a4cE9PT8tzHH755Zd4//593NzclMOYtO2P43t+fl7mUYJDwKDT6RSPwXw+L59JUnTiFQprril+J9DMwCuJAje7R2OS8VQmNDUv7mnTGpRCoxDk/CjfSKcLEpTzWt4v8NbpdDaErOcRMAS3b8qAgN59bFxh9Xq94gkQCHj37l0BoTc3NxuPqJYH5v7+Pj0dkF7FTIlKFkjpa36YL0Ag4zLOSf3JdAE9ZBkQoB6pgbo28OueiMyzkIUKaopY86M8jeyx7/Se1JQ5dYvLdP9/F/ohOQMEAfrfr9N3XeseAS+bk89J1WJl7FvEhUw3ZsR6QiR8atah/mtDnv57TfF63QQpLjTpxSCQ8JirrnFXEZmxzaPgdcmKpytbT4rjOfEaUz2yVswr1zjnS31sW+w/khgrJmgjUHIlFrF5uAnnh6er+fMopJSvr6/j3bt38euvv8b79+/L0x2ZD0BAy3MF9JwMJpV2u92YTqflOQI6DOvp6alxAqSEMC3pLHRHb5d7skQULBkQ4HUZ4CWvsSzmFHFcua7pfeAYaPwdsBOMqUwBBrVV5brcUFsI/l1e7YN8bWcvUQbCBFavr6/LyaF/+9vfyjHietIqn0oppT0ajRo7wCI2vZE6MTVz3dO7oLXhuRtt/eU6dEWc5ctkPEm+dSPVFSjXud/nSa5cP9mOMZWp/1erphdc8kNylom68pioLo1ljbYp/BcFAxGxMeCunGqM7GAgG0wxGkEGlaT+c4agsI3YjDFxkt1t6pa4Wy/bFibbz89tlpL6IfeRfncw4C45XedWXYZy/T8f99PT9WNir66uyv53gQGBEVlWROdC+zz/IEPRL00ZkKsBUwpSKg3xksZfW+8EnK6ursrRy/Kq6AmYChNcX18XoERLVIJXXjKNEy01xfHl7r28vCyn8jFZi2CSuSCy4NRXggNX9OqvyAESBSr/r708bOHxT40t214TYEyalVxRQhotfbWP811zH7MtbXJrH7QNCBD8Z+MuXr25uYlff/01/vGPf8R//Md/xO+//x7X19eNJ5hqfa9Wq3JWirx+bvzQG8j/qbjFdzTiCMjdyucaFbncZNkMRzDnKZN/9AT6fGaGgOY+IhoyV78xP0frNtNjNBBYl9YxH3+ucglUWaf3Sd9dj3wtr/6wx8jtYmHwuytcTYyjLipq/V5zqTu4yLwDEdFQvm4hqU1yj7Nv2xC699+Fo3sH2BYetMTyxJgRdSBABiFidwCg13K5LP1nXFHvfIY8EawSjLQYeRSx73hwT8FLEi3fiM0FQ0uwTQnJ4vf4qxIBCZr43/X1dXnMMx/NzZjpcrl5AJTqpRXU6XTKo3yfnp4a+Rqaa80vczgY96ZizHaTiFy56Dr3aPm1XgaJ97gFKCClNUBQIMVGMKpx0WmXmmfNKYFUpmi8XT4ODgj2Qds8A6KabFGIQLkrv/32W/zxxx/x+++/l62s4mt6BiTvxFtUvNpV5Kc+Zm50AgLJDdcBLsdqhg15iWW0eWRrhpHKUP2udNmu7D4PSakdBKqZPvPxZhJsRBRAL9nqxqKX1Wb46b0m05y+224Cfq8JFZ9ookFXFuwoEwYzwU1k6QhRKIyMw0lyZehtiogGENHvNfdN2yT5QqXXQuiSx62qTmbzu5VVQ8P+TgvXtyXyGika5Qj408do1YphmTxIIMA9zG3W3o+mNmDK91r7iOYd0UvQKh4rT4rGT6BBv8ntrwdRLZfLkh2vLYVyIVKZMddByYmr1ao8nlgHDVHhyZJiWESk6wQ2uEY5TgSV2fjUxiwDqNm9GldZp3wiY7aNludqKImSXoDa/BLcZzLL++O8sU/PgBshJDcy+FnrT4mqNzc3hU/fvn0bFxcXZWwkeziW2nXA3SzT6TQuLy9jOByWUFWWtMlxVHggYvPBblTqNaDjBpHfy7Hg/z5GBLF+r+sN/0/lqC+eOOtEDx9/I78TEPT7/eh01t5WhhLZZvaxDeiQduXd7+4ZyJShW8BEczVGZyzbiUqZaCtbyN4OfSbRhSO3K4GABBLdW7TaM4XsApSCj6+IKFsFxQRkjogosWQKOwIqt9QyAU60WrPcmTjIPdxU/hxbJrrIulU9/lx6urz3SZyPNuHqvzEzW2ieQODt27clL+Dq6qr0mdcTDDCWzS2P8g74+ft6DK94Tk/G1Jg+Pj4WwCaBIuuZrkwXMJ54la1b56fsc8TmzpgM3Pta1ToguOJjmjNgELHe9uaJlLRi1UfKGbUz4wknCuB9h7jUHpJbiJwP30ao8wTkvWLCqodt1Fd6wAQ4BXL5iOzMeo1ohgzUF8p78kkt+Y9AoGb9unfVP1O+ux4ivxMwsz56nj3bn3LYyeWdzw0f080Qn9aybx9v83y0gda9gAEKEH72mIvHeTLUo/J0vaz7iKYClHDRZ5Fb9yzTgYGUdMQahFDB02UpoKAynKGyMSBjORhg/7vddfKe4neyBDudTjmSlXVySxtdVhwLtZ/v6ieBARmUh7nwka8MXziil2LR4lF/JHiYDPeStG0x+Ly1/U/lfnl5Gbe3tyVJ8N27d41wAMfXQZGS/jRvPNBFOwYIBnjmf0TzeRXqI4WjeMYT8cjLDvIo9FzB0KqpeZYEDqU8KSwpC3j4kBQ/k1U1TvKsEJyKNCYaZ7WRp3B6kpn667yhNtcEr8ZjH5R5PPg5AwIMEdCLpXGl4omIDaCvuXMrljtn+KJXVW2qeZLYrwyMZtfUvJ/8LN6lTMqAq653b0M237rP8xSct72tmYHrOod6kTK50+kU+ct14vOscjIQ4Dz84mDAGZEdVWe9gVkM3hGgX58xmX9n7IrWMpU8LWIqL3ezEmzInUavhU+wv3QNy3KBTGIyj8ACz/Sn4udYqM2e+CjQQVe/z43nKehd5fHF5ECNWaZEKUhk8e1rayFRe23xeD+oFEUSsOqTtg5qm9abN2/KaW6cXwItPidAAI8eoul0Wu4Rr3FbpPpDi0rbwASw2SfnX4bc2E+BSh8bHx/yE5P+1H4eMUvXawY6Zf3LYlVmO8EAT23k2MlS5SONz87Oyjgwj4X74jW2kidqj8YyA/jOBy9J7s5mWzJAoO+cLyptKk2NUXY8sxQ1jQ+CLg/haF5qlr/Le1rXBCK1MWDfd73W5RMVtohyKwMjVKwONigjaADWyoponlngQFlywNdJbW3WZJne2e5d6LuAAUemZBBX3jW0knkG+J8Y0q19MnWGLiM2Y/XurVA5HgNyS4ExcQqMzOLJ+sVJp7KgF8Fdo2QifZZ3ogZ6tGClfPgi4sxe2Ry4p4f9Y981Vn7srqzofYKBbBFzbsi7IudJjavAwPX1dYnD3tzclPAAc1Sy7U8Cc3ycLl9MgI1oPj+DbRMIkALkAUSZhc8yCWIVWlBbVQaFu/iDoQ8H+QTKKoPjSDAh3hQIuL29LV4V7crg2fniI9X79PRUwABDUwQjOkJ3MpmU8cq8FVrP7iHYVYj+SKrJyxpIyfjZvUjL5bJ4GflY6YjmIW4OMl25cj6180D3qr3kKfXDkwhr4+wK1/WIKzr/zXlf13hIzOU8ZW7bWIs4vplnUcTcCSl49p9zxvCB1qfG08dGVPOetLWJ9M1gwBVdzTomUnTFnTF05hYR0V0jxcikDrZHjKoyMle57uMZ2WyXQIjKEpMImEiJS9Gyv1QAspY9bELU7YkjjsQ9HusLikCALlYyFhcw0b6XR8+C3LR0CfqJexLg7vLlg1D2QZ7xm6FzKgEKRPKw5kfgRlsveZCQC1NZ8xojzaseRvTx48f48OFD3N3dlYc7cTsWed3BicILDDFwB4HqzWKm7A89DloHtLBVL3koSwrVZ60p51NdQ57WeCr/4uLiouEyVT81h7q+2+2WcIzKl4AVEJhOpzEcDosnwQEarTHJEVqQoudYV9+bHLw6ZbKSAF0eFp7cqvHgaYDkk4g1b00mk3LSZUQ0ZCqBoQ67yk4hpeLX9zZvAJW6A3Yvz6/hddQdXEceRqhdy3EnYND48D7JdJ+zrE8RsfFQL2+fyqacVk5DBqAyIKDfsnyGjL4JDNQYkS81TMKRoCArLys7IjYEtcqMaHoOtLilECVwiJDFxFocFIBZPCgiSrxVwkftyFzAskKEvmmJZONGy94Foa7PxrSNgQQCtIdV1pa/3JPB5DP1TcKa2+L0vAjOz8nJSSMRjDFKhhdemjIrokYe3tG75l4JWdw1wJ0fBIEStgR8mrPxeByfPn2KP//8Mz58+BDD4bDx+F/GcWvWE0MEBAT0DDjYEy+JV3u9Xplv8a0sapVJdzrDSZ57oDCKgDM9MswnERE80BJSW2k4CLjogBbuphD1+/0iZPU4cFnBXqbmVb9z3Wk9inYVpj+SakCAnx0E8PkX4lV5rcQjygfyPCaNm3JVNAcsdzwex8XFRQEMCmdyvrM+tFm3WX9dF1BJc25cCdaud4CVGX9UojQUeJ8DglofXF5HrPNr+NLYcO3vOj5ttO1/0XcNExA9eQNoTWfunDZBnSUref1SbFJYQmqMkUtY0UKOiOIuc3cpESgVGYWFlytlqQWn8tV3ekrUdr27S0/KYxuC5oIgMBEYUFy1Fh6QAmQ56jNP2NORu+wP76EwopuXHoh9kdedeZs0lu7VoneE27T0gBeNHT0l7gXjjovHx8d4eHiIu7u7+PTpU3z+/DnG43GxFBjzzsAp1xJBhwCoWz6u3DjnUqbqK3c0cGcCw2sUjM6fBD2ql+CfYRK3iLw8/hcRpT0qWx4vtfX+/r48LltzIoVGg6CNRzLZtU0+vRRpTjNLmKFPhVV0AqaOHdbBWN1utzH24gPJCQ8jaMwFwmQM6KFZw+GwES4i3zu5t4B9I2X99LFwciOL17qc5H/03GZlZGGErA6vi+13b4f4WoCeTyHl+SOZPmJdbTKV1+1CXw0G2rwBbr1GxIZAy8ojqaOMgUuhcJJktXmOgic3MVGOSkpCQzF1HpXpLy0aucwiolE3lYBPuvookKDr6S3QO4UuEWiNoUWMN8mCVSY/s65pkakeASP9JyuOVtvp6Wnj5C2OFRcK20JLcl9ggJ6X2oKndUvekxUtj8f19XXJEdDxwgpT0ZXKuVLZsrRns1k8PDyU13A4bOzXpruVQjUTKLqGGfSZsMqUBxNF9S4PmOY6K4/11EJ+VAwkfVebNW4CNLJMeb/c2jzTIiKKctLr4uIiPn78WMpfLBaNRER5DrLwBcfluUL0JSkDApQZ8ghqp8v79+/Lcdi3t7eFX6kEBXQFBrS1TdaxDAMaDY+PX44Zfnh4aGwbdpnZ1g+918aZgIDKmLzousCvdeXMstVeH0e+q2yXiy7zWIeHLzJvmOqmV1r6Q3lE7il00OxjlYET/9xG3xwmoMWQJQ3SGq5RhnA4EXRh+eRT+bn73xE9y6LHQO10IcwJeHr6ctobH7fJRRjRPL2QAlN9VMyH40Fh7H0jgneQ4URLz0/H40NIyLxUCq6wBVg4ploEciPz0bVuEct6Y2LlvsAA3fMEiBHNrFvNGb00zHzniYK3t7fF0lK/qaQorPS/3K2KZT88PMRoNIrxeByTyaRxvGuWDEjlyBcBY0TzmQru/aGgc8Ac0QyHee4B14g/RKVmsWr8mbehenhGhQRgp9PZ2I2hvktocoulFNj19XUMBoNi1c5ms+LSVpt5Yh4BP3mV8iDzyhwicR0zp+Xm5qbhGdBx2PQ4UoZqnUc0jRz3WEoGeC6CG0CZ8o1ot1gzGeHKvwZ2XYmLyMMsI/MYuFFG+Sz5QU+CAwEv00EL20Re1Vgo7KewC8N/bfKf5P//UDDgXgGPJ7rgzzrBhd6GdN2ap6CT1SZUy/3drJvWjSsotlVWO2O2BAMSgF4elYGEdw2Z0V0a0QQDYjS3AOkKZps0VhLqPAyHCW7n5+dlvCQICVQEIuhGlXBhHJdu18lkUqwszQcXBe/niYr7oAz163f3YvnCYQyWgIAPd8msdcboNYdyr45Go7i/v4/7+/sCCGQFyOryecpcjG6R19YMgV62vth/WeY+fuqDBJQDfPKSe1s0jhSu6ofCEpPJpBG241Y4tWG5XJ/WOBqNSsjm4uKiXDcajYq1qrlR+3m0rs+11kCns37IU8T+8wVqylHvVFpac8xrUTjr+vo6Li8vGwmTEZvgTJ8jooApySX9l4V1KCe/xiplf2q/k+dqHpJsnGgEObH9VPjOG/QaZVa4jIisntoYMPdK4JbJrwIEDlwzkFXzCjyHng0GMhDAk5QoeDLB5ajQJzQrl3Fw/043oMAAmcaZNFtAEZvPVGdMLSIagpDZ3nQfRUQ5I56KxoFRdp+YUMyg+4QUs+QwAgG5TOUedOtV1pkS2tQ3CmlatFSC3M7FWKFbwmoPARrDFIdiYblHK7Nm264nf8ozIFBEdztjglJi4/E4Hh4e4vPnzyVfQGPJ8AtDACKuHfKAwJivRe4ioUCPiA0edY8R+6z+qR8E0p6jQB7iPSqLMX9dq2voVWT9uk73j0ajhkdQPKZ26fflclkUWq/XK7yr9UQPn8aL61yenH3ybY03M0Dga49HgdMjGvFl/gXmNRY6Dlv80O/3482bN4Vv9RoOhwXMMvG1Fs7K2p/1pw0M0FAh2KReoYHEl4C5W/FONL5Ey+X6qPqsrTUAwGv9P60L1amdLPqPYTPffpi1OavD27ALPQsM1ICAGFCKmpYErSJ3x/jka+IcXDCBizFC38/uYESDlQESH6CMgdk+WiUOCHStxkPvNTdum7UhplAymhhDC87dwZk1wLi2ABIto1q/tZhoTWrfvNo0nU5L0hAfWSxB7MefyoJW8uE+KHNdkofJC1yUmjfyD13kAnASsFTg3FGgMfv8+XPc39/H58+f4+7uLj5//hzD4bC4rlm3v1xJ0nXra8bXh5Jq1T6VqbFxVymBAsGCQkcat36/XxLNxP+05uny7Pf7jXVDICrePD09Lc8a4PyIx1WmwBNDVDc3NzEej8tvmpOLi4si0MfjcVFgk8kkIta7LSS/tM7VLo7VPogKJ2LzbAy9M0yQbXOmvKLlKze1LFsBCh701Ol0CiD4+PFjAbEfP36Mjx8/xsPDw8bcqt7My+Tv2WeSG1Vqv4c9Hcg6iMg8F66H2HZ6CQj03ZDNQA//47uIwF/5Avxv29k5NcrG+4eAARWeWUhcuGoUBY1b07TKnak97EDhwMQ438deS1RzBJm5XTO3EK1mMZ/ayUQkMQ2VcxanbRPAIlnu8g7IsiRKjNh86AUtArr2a4jTgVG2SHWfUOxkMonhcFji3XKHU/hKSbhVuitD/giSwqIgyCwHEa17eUQY4+ZBQdzapv8ZlxaAkvD89OlTEaYPDw8xnU43DruJ2ORZtZMvAgDu+qCnTEBMFrh4gMmfnjip8WF7uDblaer1eg1wRTBOQTeZTEryHhOipLgZfnKvgLuGda8sW82pgMD9/X1Mp9MCAOj6Zy4Cibtm1BeG5rZZXi9BNSXq40W5LL5mbob4iHOjg640Ds4L8hrc39/Hhw8f4s8//yw8LFCr3TBMds7GrObp0D38XFOkmfVP2eryzD3FrCMzSmUUsW4CqEyGuJFJi73mIaFh5wAiA6JsYxs/tnlj2mhnMJAxHXME6Ipxj4DHmTg5juTa6vf4bU3pqR0ZYiS1eQ2cSWj56KwBuu1rCFhES5OeAjIWryGA8B0O6ivj0hJyjMNOp9OIiOJelRKjS0/9ksAgeJHQkHB8eHgoltVoNIrHx+YDlqR02X9aozxW+SWJc1QTMKIsxOSgVu7mh4eHWK1WMRqNikLjdiDdP51O4+7uLj58+FAOGHp4eChepojNmLrqdWtO4+ouYX/xMdQ67ElARYl0LJ/jos90o/MaAhN9ZkhPfKijlvU/D7mRG94BgofRNH/MWdH6IKjVHIxGo2L1M8+IHkvf263/2B8Po+ybvA0uN92QygwBnjS4WCxiPB6XdcxdQwSPArICsXp9/PixeLkYKsg8T1n7+ZuDACpR/cYwr48BFfK2ccuUc41UH8Ng/I9tyH6v1cW2btMdbePH+mvAate+RnxFmMDRJ61xd60ya9ctcZFbH1nHacFlXgi6f9QOrzu7x4GAW+pss+6jNaS6nPEz0rhIMTExjH2kpSam8baybpZPEED3K8GArCaNlf6j2zkDaAIDSnijNRHxJatbCS+0pHnym8DJS5Msb19Y5EfyBV3E2T3aGcC8CSo68qLm4PPnz8WSuru7ayRgqm73HhHEaC5k6WqnB/My+ECaDAyIF9gPPxhL9XtYxYExZQAPtZKnSLzBkAI9K7ouUyDk/aen9QOdOCbiW5Ge6SBPi/iS99I4oZeN+UH0/rnnch9EPnKvAIEA20ivinhZPCtDYDablV0snU6nHBeuI7Ujvozpp0+f4t///nc5HOvu7q4kvmpbrCe6ZXLQjUD+nslB/RfRNPBqusG/Zwoy8w7XQIqXQf3g9endQY3XmfXP//f6M6r1NxvP54S4vipnwMGAYlOuhN0jQPJGO6qVcmKilj/BjNuP2Glm/ktgSCjwembQauGQ8bL4EpPlKFi5+LLM6WxcnCl5Pb+7gC6Td7r57AJmqK5Wa/f909NTWbQ+5gQf9DaQwebzefEIyLLkeQkSLPqPx53KMhkOh89ht+9Gcvtl6Fn/UTAsl8sN65Au1Ih1PFx95DMCXKlp7BSrJmgQT8nLpXbJKmfCqNrBxFkBAYEA/nZxcVGOSlY73IPEcyJUh37zsBT5miEKf5yt7tXYKDFPfKCdAwID4hHuuBD/6vRAWlrMIZC80DoWuNF4as34rgzNM3mBwNtB4L4AQZvV2EbO75oTjel0Oo3xeByz2azIUp5YKu/Xx48f49///nd8+PCh5LxwS6wMjAwIuNLKrGs3EB106jqtFV6TXesgKavHlfYuSjfrW1Y3+Yv8JPKwV3ZN1oda2/wa1r2tf05fHSbwrYRC7dya54uP5bA8uqgkZKj4mRinpDSP/6ksnwiCASr8DIjIFelWuK6j603ZyUxioeDJhFjGjJxE1qcx5f30YHjyDMtQv5kcR6WlvnjbfK4i1gBPloSfkidFcnZ2loIBXSPhsi9qWzyO3AkCtEtDVjYTVSPWwJNub3peOp1OUYDcGiorn/vCB4NBdDqdhodHAENjrLCA1gHbxTXj3gEpTFnwbkmKJHTdGiMw9xMu+UwBlaE+CJSrnMfHxxiPx43zGeg1Ut0aR+6sEViVh49rXGceENhwfjm33FOv/zgvrpxoJLw0ZUC2Bmpp5GRbACkbeMKdZKPmVnJwMpnE3d1dSRRUeIvAn/kfrtC45tQPH+OaTKz1MWIzoZD11SxlAkIn8gfXLY1HNzi9jtq7e3MdiLTJXRqELDdrg9dLI3NX3n0WGMiSVAQGuEWOTNiG3piAyMxn3y6o7XI6Y5uPLfWBpALlJEhAsq26j5YZFbqYR4JQbZNwkILLvAICRxJmnKRsEt1TQJdlGzmDcmuVP2vcFQAFq9fFeXSAp3pcuMhK8PghrcV9EEMfomwROX9yu6aeUCgeFCBdrVaNMZQFznwSgSJ5AZjh3+/34+bmJt6+fRuXl5fR7X7Zc6wdG8PhsORasC08Q8KBtOZfbt+rq6uym0NP+uNTBwUQqazpATk5OWkADtXlIF2eDSZSaizIM6PRqFyvNnAngF7qN+cjIhrKi8mzzKvQGGhuZPlq7lQ2Q2Q1waz790EEAzR4KFPo5RTo9zMVIprKQ32inBGwlRdROQXKFVJYQEaBgw3KN7bR62XftrnJ3WBRO7NcDjdYM0OK15IcELiRVTNseS8/ZzKdxmqbtc7yaorcx9gBX42X2+jZYYIsRKBF6hPA+5wx6A2QFSNFT1fn9fV1EcQ6Zcy3MFJxPT09FYCi5LaTk/UDdLrdbkPIrFZfXOkSdhFrYSYFGBENwKJytefa3bf0lGjLFPtNptWEu3u55ibKmEj3KTbLnRayfiTodW22HVRlSYlz6xbb3Ov1igXJ+Kxnq0uQkWf2QbQkM0DGMfVdGuLBt2/fxrt37+Ldu3dxe3tbeJVWlHZZKJzC0EFEFAUqENHtfnny3vv37+P333+PN2/elO11eqKh8gtWq1VRZloLPGSLVjO34l5cXMTNzU2cn59HRGycHCcPl8ZAR/gSDJydnTXWH70CXJsEAwSHyqsQAJpOp3F7e9vYFaQQChMc+YAcWvOUGQIkAkWaTyYurlar8rjkN2/eNLxj0+m08DIVWcT64C3N1T7IwYDIDR6FrbhDQG58Hg7GtS7gKnnGnB6GBFUeT8tUmWwP2+y/yyDIcqG4Jnkfc9FEBAQ+Lg4EdL1v0XNZUPMW0IuRvUiulHcpf9eynMirNPLcmPQx20ad1XOgw5GOdKQjHelIR/rL0X7g7pGOdKQjHelIRzoYOoKBIx3pSEc60pF+cjqCgSMd6UhHOtKRfnI6goEjHelIRzrSkX5yOoKBIx3pSEc60pF+cjqCgSMd6UhHOtKRfnI6goEjHelIRzrSkX5yOoKBIx3pSEc60pF+cjqCgSMd6UhHOtKRfnL6/+TL6Ngi7l4qAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2pElEQVR4nO1d23IjuY6kbMuXvrlnzu7//90+nz3TbVuSbe3DRFan0gkQLMmWekeIUKguLBIkQSABsliL7Xa7bWc605nOdKYznekfSxfHZuBMZzrTmc50pjMdl85g4ExnOtOZznSmfzidwcCZznSmM53pTP9wOoOBM53pTGc605n+4XQGA2c605nOdKYz/cPpDAbOdKYznelMZ/qH0xkMnOlMZzrTmc70D6czGDjTmc50pjOd6R9OV9WEi8XiPfn4EHJ10GuH3oNJ88c5//Pv4uLizTX96XM4rzzLaRz16o/nNN12u22vr6/TMf9ALy8v7X/+539K7XZIWi6X7fn5+cPLHaV9x9h7jdHtdjs770ONp2PujXZxcdEuLy/ber3+8LJvbm7a6+vrNL64HXgcv76+zuqjik4c1RWa/uLiwvINXXRxcWF/l5eX7erqql1eXrbLy8u2WCym88ViMf1zOdBBTK+vr+3l5aW9vLy07XbbXl5e2uvr6/Tje9zWyAvHqAP0Gus7bRP8Z23pdGiUzo1B5ePi4mJ6FsettXZ5edkeHx/ftItSGQycOi0Wi67Sqgr5e1AEAnDMRjoz6vzsiNHHAMOx8gVBdIOJiZ/ltCjr5eUlVDDHUui9On0E9WRt3/vvRRhTo+VHynAfHirlHZJ4bBxLhi4vL1trf8swjKr2x3a7ncZ7laq6sJKnM2LcZ/qvIECNPl/Tn6ZhncY6ho03DP7z8/MEBAAAnp+fpx+DAKTjazhn48wgDNe4j5gn7jcnrwokuE0z+WYQwOWAv6oj9NuDARbWChA4BgDIeNCBXTEKVRCQgQyXL5RKa7EBja5rFGD0/nuSa/dD8jIqUyOA9b34UAVe9fKiNE6BzeFlhIfIk6rkOUrHkl14sjp+esacDVDkVUbjQa9n7d/LN9NTavRh6HF+fX3drq6u2nK5bMvlcicdnmVAoATjzYb/5eWlbTabHRDAPwABODbO63ftG5GC4p4cjYCEKK3yVgWyQ2BAKz7HW4gUxz6hyIgiI3ssQJCBgOh+FB1waRhxt9beAAEeNDqAFOEeio4ZEVA+3P97l7dv+vfis2pMqvyMepAjz/aec/cPFUn4SF3RI2ekM+PBxyP6dWS8Zn2jOstNBcDAs7G/urpqNzc307Xlcrlz7iIJrm7w5uH1MwjYbDbTb71et/V6PaVVcABgwHlGTtMoeHLtNldfRsCl2u/DkYFDeC6RZ/oeZUfeuJILax4y1NkDJnOiA3rOQIDn03BciQzw/NOc0Cieew9gsS+NeOT79v2pgwFHIwqE+/fQPO4TZajme0pGfg5l46oSqTlU5CbK1zkpGt6/vLycvH4Y+uvr650fgAHAwHK5nJ7jKMHV1dUODxryR2RgvV5P0YHNZtOenp7aer1uq9VqAgnr9Xq6D1CAuiBqwLpRp1groDcbN6OAIIrwuPsZ/TbTBPuAhYo3WBlAp0Zs2PnYGf9ozQDIgYDelMEIn8cGBR/Vl/sA1lMm7sNjRdnm0rFl7z0oMsJueqACHLJ0nAZlZE6MAgGeElCvHkYe/9fX1zvGH8c3Nzft+vp6J4IAsMALDFkP8pw/jPp6vZ6M/mq1ak9PT9MP1/iHaxcXF+35+bldXFzsrDsAMMAU64iu1PGUAexKH+1Lvw0YqHogcz2VLNz2ngpPF53wtSplIIhBQWtt55iFSwWZeemBAp6ncml+B2Uc8TiKtOcM1o+Qs2NTRQbmyMnvIFv7Us+DVIMcGZnMi8/K0XvqhOg/6xp47TwlwMb8+vq63d7ettvb2x0gcHt7OwEAPtZIAv8YeIAABjgywGDg58+f7fHxsT0+Prb1ej0dPz09tYeHh7Zer6c3SRBVwNoDjhRwVDWa488oMvSj8u1kokpHAQNzQxmZ0qwKPI6j+ZXofB9FnXlSimZdGk3HBl7/ES7T12/c2wXudSSk1XsVUOAGAwOF/w+Ke64cvKfBr7TrPpG1kTw+kioLt6r5RJ7YsanipFQWlqnOG4nWVQ2M6jBdGwDPH/8w9J8/f263t7ft7u5uAgb4cWRAgQBPFyyXyzeLCrmO8OYR+scUwcPDQ3t4eGg/f/6czn/+/Nl+/vzZ7u7u2uPj43Tv8vKybTabNw4Wt7nTddp2vYV/7vlKH+9LRwEDhw6lVqcHMgR9yPnEDKzMLaM3x9Tar7B+tKDGpauEtbht3IKZTLh/NyBw6OjM6LP7jo33mhffN9rmnq9Oy/WiLRXjl1FlvB6LIiOROTe9SEKPeu2hkQE9Z8eE3wbQSACAwKdPn6Z/AIK7u7spQsDrB/TNA0w73NzcpAsLsX6AwcBqtWo/fvyYogMAAj9+/Gh3d3ftr7/+atfX1xOYQYTg6upqihhg+oBfqeY9Cub0Q9aXkc3ia3Nl97ffdKjndUf3cC1r3H356fExooTmeG3RKzejpGEwR27DoR5/H0VzFOBH8HuMMquUGdpq2t6Y6nlLVV7mlv87UuTgjLYln49ErZz339qug8GLA/nNAAAAGPzPnz+3L1++tK9fv7bPnz9PEQKAAp4agFF23j/u68JC7NGwWCx23ixAqH+1WrWbm5v26dOn9vDw0B4fH3eiEwAjXAdecIi1BFhHoO/z9xYUVvorixYcmspg4KPCZpVwVuTpuzR6nimMQ9evwh8ja4e+o+uaRvPk9G7NAKeFob+8vGwvLy9TGt1A6PLysgsKIg9Q6/HR9F7yu2/0YN+oAGiuQh9JOwJII34OuaaiYvxHQM0pUhWMZVOvPdnv6Up3P/rx3gGICMCwfvr0aTL0iAZ8/fq1ff/+fQIDHBmAgYeRV/54ChQ/5gFgQBdFv7y87Cw4hOfvpiKWy+UEOC4uLtrNzU17enqa0gAcrNfrnfJ5V0Pty8zA9xza3vjZBwCfxALCniLoGTv8R6jXGXwXijlklKAy+OZGAZCmFw2oKNjo2iGV56l4vJFSnMvfvvUafb6iDFp7n6mCObyO8DMngjAnelEtM3vuFIhluReFU31TmXLM8sEx56teO7x1GHYY/y9fvkz/X758ad+/f98BA/zmQOTdcxu01t7ssqcODD/DWyPz64gw/LoJEtLgHEBA019cXEzrCfAqInhjXtUeZf2k96J+O5SuPjoYqCrnyAPOwACuawdUFOohG706wKJyIxTO9/QtgWxXLl1T4NYBOHKLWDRS8Lt6YKO0jwfeU7LVPOd42S7tISJjPaDSk4sqII/A/BwgP5L2mHLtHJl9+s15mz09HEUHGATwQkFEBO7u7trXr1/bp0+fpikB/L59+9a+f//e/vjjj2nNAL8+yAZ1u/170yCc83bDnO7q6mrSSfjHfX4tkCMFKMtFTRENBTDh1xnxHOfv+gnHDAwiuxQ5tC5fvn4IB3YWGJgbct3nmcwQRojKhWD2abCKJ1JV9A5lV+vq7kflt/YLAGgd5rRHZvhHwNYx6KPKHwUBFTCQGcbo/ly+RonrcciIWmW8cdr3AATHBrfvPU/sqCeXbDh1W2EAgZubmwkIYE0AAMC3b9/a/f39NEUAMHB3dzd52/DgeZ5fP9iEfzbGutEQry1gMMDP41kGEqznMHXKr0ki+sFASHUsnm3tl97srSOo2FYFcPusSWCaBQb2QaLR/Qyd9n5ahhtAc5XFnPq4dO64h8ZHy2ttN3SGAbVYLHaQcPZcj/QNBLd+IPJajg0G3puy+mX9v28bvdd6iIz21QEj48+N7UMAj9+NRsAR0o+AROegQLbUKeFdBXnhHr8tgEjAt2/f2pcvX9q3b98mAAAwcH9/3+7v76fFg/C6W2uTQcfeANEXBdX75jS6/THAALcjp8PagdZ2P+7G9eS3I9AGDIx4/QKiGQAFjmft056z6Ry5zBF7VzAwQvsYTjX6Ggp3YCBqlBFv3tGo4ul5YSNRAL7m8oiIIwI9vjLCdADyxDVN06NTBQOZgck89UPItl6rlFXhcUTee/mPUJWXOQAXz7mw6T50qLq/N70nb5njEummaLEgFgoiAnB/fz+Bgfv7+yk6wG8SfPr0aXo9EH3MhhjnWAPAawT4a4LgE2AAxprBANJyeq4PSMGAfjQJYICnGXTjo2hsV6PWo6B3H5A8GwyMeiPV+S3n+TPSyhToXG+jylcPdWUeXoa++bjCxwjpFEHE776k/eDqcsqK9j2ASiUaEIFaJgW4FZkfrc97ArVK3lXDns2rZoowC6ueslz2aN9+i3SCy9cBAQYBWCOABYL39/dTFABRAfywgBARAazk543N3JQAogW8qyDSq71gjx3H+iliPKOvJMLI4xp/L0E3OtJF2248g8/FYrHzuWQe204OUa+qjHJ+eO5dIgNuEPFAzCgSLr3HHapoKzOWcwf0yGByyqQHKnoGIULhbMC57to+fKx5ch76jKtbxbDwYEVeEOyoDXo7F743jfbxIYxD1O89EOAA1D4KfwSE99Jm8jGnzTKdwGWO1t8Z/n2N5rEAQ+Zg9KgH/DM95O6rodX1AfzGAEcCMCWARYRYH3BzczN51TDuMF78cSH+6Zy/7m/S2i8HCDqKj5FO1wswuXA/b3LEbcH8RlOmi8Wirddr2y/MewTyP0r2DvLVwkhIM+F1RjMDAs67ZQGYM482ahQr9XJpsoGG457xcM9qut4mQ27aAKQGfZSifB2Q+Ghyg61Co/KbHSuYi0BBVk5V1ivRn4j/fQx7pNBG2nEOOackm/rRZ7Nrh+BvH5oDwHqyHgFPXHP6hXUy7yyIjXl4EyH+8TQApgLgYbMTAzDAOwXyegF8SZA/LawL/XhdFMY8H7PjAgPODg2IFwnytu4MDlAOr2vIAIG2r46TEQ8+IqcfRuT3aNsRR0oyAgLOY9BjbtSscXuA5hAKoAoGMmPhfurdc3vpdSYMhggQKMKuvi7o+uXQbfnRNApuI4CH/woQ6LWTGrws1D0H9ChfowbUldszOnMoAhtZu0T1OXSk41QpG49RHzmdw9v/wqDf3d1Nbw2w8cc/7mNbYYTY2cGDYUZfaUSApwY0xK/GmXnX6CnbBQcmmDA9sFgsJn6ZV/CjmxDd3NzsABuVo0gXtBavx2J5zIDevnL74WAgUoZs9BUEsPGKDD9fYxoxZIegEUMYAYJKvtxOeg3nkQD1vj6YAQHky28VcFmRctG3EI5B+4Tcq0Ag6tNo8Wul7yuRAPfsSIjcGQMF3Gx0Xdk9RZWdO6p4uFkEIAMC/18IdazUs6KbNA1PC/AiOo4GwPgDEHCEANEAGEt+1Y89dPy39msTIRhd3slPp095PwKth44ptRMMLNbr9Rt7wmCC6359fd02m439ciLS8JQGl69TvtqP+0Zo97FpQ2BgpKCeN+CQmwIA12DciboAg9PwtTn871NPd30UJFQMBiNidz1S6I5GIgJO8bhBB8IAPtY0wSHItV0FIPT6MgMDasydccvavWdIe+TKzcofHQsZgMH9HqDpGcER5+CUaVR3zQG+kdzqSnr+2iCDgG/fvk3TAbyJEH9oCN42iPcEYN7VmIIPvFmgRtu1E2QDP/7cMK9jUg+e6w0gxG9O6I+nEhg0XV1d7bwCmUVNOVrB6V1apI/ymUvvEhnIBj//NBKgHlRrb427AgFn+F2D9JTWSCOOKNmeIoz+Xb5Z27XW3gy0Xshe2ywCApFCHvH2/797aErOyOuxpnV5HEou5z6XRQJwXs1vBDhEMueUvYKGLPKVHe8D4N+LKo5Da944KP+ufpFsckQAhg1hfv3IEL8miG8PYIEgFgnytr3KB4AA63KeNkB6fu1PHSGNvIE4ZI+vFaIMvKbIjhCACQw5Aw5dyB61p7bfdrtty+XSjhWtcwTAe5sVKR9zomKzvlpYGTx6LTJivQZ2QEB/Ln2vDtVnqvUbSTN6n9O5ttNFliC3Lzb/cxpcxz1VqJhzc/kznbLB30ehVwyFAjYn8xUFDXKGrmecD1E3RxEIqBh+d28OzxFwZpmF1xcB2whA9Mo6plxHvGT6TI1KlCeOnXHlxYIMBPgjQ9gzgL86eHt7O00JuPHgKJtfR3+6qWRe5KdTpjCwiDJgEeJqtZraBrsLsmeury9iZ0LkDR40Us3PqcxxlCDqV6yR4H7Usa/HzuHjayNjbfirhXM8FWfEeHUmK0ln7J3xj/gYRfM9T6dq3B0qjWjU+DvEye24WCxsVACDSIVHhTK7B3ILD11kQOvmpnuOQYcsvwoE3JRXJp/uvGrse+NyDmhVo+KMaqWs6P5on3D7OQXISj1a0zJa3u9IztA72XNGQ4EATwvgBzAQvSXAc+mICLiQu3NgWvulu1prFgAwCNDPGWufbTab6cdrFQASeLpA7z0/P7/50JG2MYMIRB90oSNHF9yXXxHxQF3AK79qCR5d/0XyPSr3H7IDITqSBUE70Rn7DAwgTVQm/+M4a5ge2o7y1XtZHpFiV6Vb4YkHiQu/IfTGSpGFUNsyW8ma0ehUwbGo4k0xjYC6CAQ4IBDJJng4VBtF+VTBLa5HY6bH69xx1PPWozbEsxxWxb+77yKKev2Q/fHepLz3ZI2PVVb5ozz4AQRgPwGdDsCaADbcqu95sx5+oyCKXDrboSAD19xi89fX1x1bg2vPz887AAXXUTb6nfPCJ5SdsefyWms7Cx81SgB+ccz6AeDk4uJiBxDwK5CgSF/tE8EaniaoDg6nIB0Q4NAOzx3przpnkim7noIayXsEEEQKLhqsbiBrW7b2S7A4VIbyGOWOGOxROvYbAoemqlfrrruf3nNUAbhcDhsu95/x2ztXvnhcONBSAdHKdyU985A9z/8aylXZVB3ixryr76lRRY9U82DdzDqaDTdHBbAOgA06ZNu1pZvKZNnR8Dyu43nkwQaawQF2AeR7yAM6EHlr9JR5wDFHBtRGbbfbaaoB+yDwQkden8DXGBCoPQQwYMAS9bPTDVFEIDuP6N0XEEYCwSFu57GyoPQiAhkCdveq4U5Xn955DySMKBo1JjhmhKyrWtFmQLAMsjR8imtKkQLmqYLec78rVb1BZ+irAOC92ieSwznyGaWtlh/dc7y4MquROh0XONaQKkh1jQNRv7P8gpyOctc0cqUr4nkffn490L0Z0NrbvuQyOAqs0Ur9tLDyx+e8hoBX6bN+gs2A0dZXFDOHk3lXO4RFiPoGBNefy+N0Gt3GOgLUC2BApzwiHrWvI/BepXebJlAFqZEBDWur4Xfn1XKVhyjNSGi459lUlEnPc3O8c/vpqy38/i6DAYTBNpvN9DyDg4iy0CkDgt6zv1N4VSmTF/fvfm5qIFLGre2/OC1SABkgntM/6Fctbw6ActdRBl8bAQVI4+aPkU80BqLpA372WOTGYU8f9a5F+sW9PgcgoJsGcf7RAkD8c8gdBrO1NoGAzWZjQ+oqs7qG4Pn5eaffEUVgkOE+W8wRicjp1D4A37wbojqxGh3g46hf0e5IG9lFgB3mU9tnH1k9GBiIBI87UJUkD1D9zQEBFeV3CM8nM+DuOApL6sDkY9d2PEARsuNFO1jsgjCWM0L8wYzW3n8zIMzbcTucKo3IQ2TsM6CQ5TWnbUZBQAYGqka3Epas8F2hEZDh2jiaj9Z1NCM8nSKNGgTVLWyQdD8Bt2sge99u/hz56UJBp/ORx2q12vF8FUA4sNHa202IUAbywUeBOLSvOxqq3dGyOL+Xl5cJCLhoA9JxXuAB1x3vCmaZNP8M0Dqq6paDRwYyJamChP8ICFTKisrP7nP5fD0qs4K6q2VmXpEDABEQwBafDAqALlerVVutVjvt3dqvMD/SOZpjlFThunqfCmUGpmJ8qt5WlZcqORly3mzVeFauaXmHpB4YcfWM+NT6cxoNGwMIKJCKAHt07SMpqntPB4FvJ586z8675ykY4MV23CdukRzydJvysKFVowxDrWAA8/KIdPIOgLwAMAIDKG+z2UwePXv20WI/jVBzJIOnCrjeCmC4nqojF4vFtDCQN1NyTgXzgTycbnXyMDJ+9wYDkbcRKUhtbAYB+q1pUGRkonJ6CjlqoFFFWhmc2lmRJ+eAE++NzR8F0RW92PcbYbOnpye7TSe3Nc+3ZTwf0hicAijI6lKtZwZ4D2lUncHMgKU+F/27vDOe95GBzPOu1KV3LyNWzhxixb2KY3BsINBa3g+q//Se3lcQwNMCvGgwAgGqr3XLXTZuvKYAHnJrv7xr9tTX6/WODQCP+slg/nH++jYBe/JYnQ8jvl6v22q1mj6CxN9AQNngFwsP+W0E8M8AgttUIyLoQ43A4h72MmBwg2dwn4EU/7jP943aDW9HHCGRDH2qoHJl3KrLbPBFSmVUKY96UxU+XFnuOVe2tpsOVHwmlPcCx3u+d3d3U2Rgs9m0h4eH9vj42G5vb6djnefjuTZGqRrOYgXq6h1FBViZ8sKe340ysKnK1aF6porM9cBK5kFHfM+lEeAUKaZKHpnBregcZ8w1HStzjQ64fHpA/5Qok7nI6XBAgNcf6doA6OrFYrHzzj724Uc76vv/PEXIUQAYZBhp/uofRwcUCGANA79FBeJNjhRAYU0C7zvAPOiiQJ4+cYvd+euJ4JXbE9EM3auAZYx1LO8+qNOqHOUAsZ2sgOIKHeQTxnrPKU0X6tBftVwV/CoYiBTnIbzfSCFnaC0DAhy+4/d8P3/+3O7v79u3b992vgzGYOD29rb9/Pkz/NoWBB7vtWavH7JHdcoKcR+q1msfIFA1Lj05UsPVM6SHIjWcUVkVEDDyfOYN67kDAdovrq1U7l2aU5omUDnryZzTK/xGgNskiPOCN8z5wZttre3k56YXWvvl3cLwr1ar9vj42Far1c4ninVO3H0ECFEB9qR1LHL9oePwgyEHIEDZLsqh6ypQFwALBQTaxgxQQLCDyJejJpguQN232227vr6e+gHPu+kMJzcfOk3gGNBz1xgZEMi8AVdeFQxw+U7BRmVVFIHLK1PY2cBWlMmAgCMD+DDIly9fdsAABjcrwNfX1yksptMxmUFp7W2ItdI+rh3fc6Fij0aMr95zshUBAaeYM/mKjP8on1UZjYxitR16afY1murtVOqWjefWdhdkRWmcbO4bPTwEjQBVPXdOBnvsMKpsXDW87bzRxWJ3e112WrAPAW9CBEeEDfDj42N7fHxsT09P0zXejpdD7wxSGLgwn+y9OzDAkQkGBryOgKPT3I6aN/SpTpOwA7dcLtvr6+tOpECnZnUxocog199NMwBIcDQFbTcqP63N/DZB73rFILf29nW0kfIy4edFJZx/VWm6MvdVcr08IkODeTONDuDDIPg4CAbfer3emYvikBgvvME0Acrp1c/NuR7TWxqhiNdRIKDnPfCpoUq+1uOjB0qdbPcoAt5Z3j2+ovN9ZMO1VxWIIr3rNyh15Xu73b5R1Ieqy77EBgjk+puvqay6aIB63Kx3WotD0nBUcK5RATbU4BtGl78NADDw+PhowQCIAYxGMNhr5+No7HJ0mqMEGhlwYIDzR16ICnDbaAQG5QMQRA4RL1Jk8IroS2u/dpVl48/rHCI5qNLBXy3sKQtF/iMDLRJ2PdfjuaRCMep9uWt8LzMqijKBurFuAN8L52+GX1xcTNtmAghgEPJCHAyuaAogE9je3P9cQTwFygCogjT+78l+L9+MB5a7Sps6A5bJbU9eI96i47nUG2tqvDVtZZqRHQXkwwaiV8YpUU8m1Llgo8o6AB4vz71zOBpjnj3wzHtmDxpGi/XQ09PT9Ht4eGhPT09vVvcz8Zz98/Pzjg7j8eemCfC89ivqxXP/vJOggh+0j+at3rqCEm5vlKftrFECB+TwDHS8e/UReei4/LBpgp7yi5gYAQQVBRQZVdcwfBwNch1oh/CGtVMi/nklqu78xW8SMCDA64V4hgfg09PTTh6sCOZuVZz1r7umK31/F3LgMlsnwM8dqnzNz8liZpgPAWCjMg4FCLQsjahUohman0uPY/QfgwFQb7rgWNRrX5VTlVdd1Oc82NZ2DQuH6jnaCt2hBpN1F+4hKoDXnQECODrAr+rx206t7YIBfi1RQUw0LqN9/TlCoFMH3A6oH6JH2lYcIeE2gB7W9o6mXCF3WHC4WCymqAAfI211MaHTTxENv02AAqvCqcc9L6WShyppvqYCoflzo2l4JeLJAYk55BRs9NOVvpiLw6uE/OUw/mQo5peen5+nAXd3d7cDCvDOrhpnLLSZQxEI+F0p65tonUBETrFExrzClzt26UbC7Vk5eq0HBjJw4YC2K0sBAV/XOrp7mpfy7X4uz+jaRxF4y8BZa163cHSR9QmuRTsJujx5D30FUAw2eGxADyEUz6v38WofT2PCQKPcxWIxGVQuD2AA+sqNzegf9eLoQPZqO0CA9gkfg9+rq6udVxH1zQLOl99q4bcFAGAQCeFFmsjj5eWl3dzc7NSF+XVrCyo0a81ApAyyQQZG+Z+fzQBGDxT0+ODyFQwoLz2luY9SyACMDl4GAlgvgK+EffnyZXqtEG8T8CDfbv/eZOPp6al9+vSpPT09tcfHR/vu8KjBrhojzdcJ6UfSXIXO/eJAAMtYJVSt/24sufPevah+FcOWGeMKDxnv6j1m+fT4VP6i6/ose5pqxBwQcP05Atjeg3rlOz0SzefDcPH6CTVUre0u4uM3j9xCOxDywfw4v8IHAIB/t5JfX+1zZbCHrY6fRjwyMAA9qdMD+hpgTw657Vw/8KZC+CnA4UgKzhkQoL4cIeC+13w476qO33sB4Rxyxp9DJ9Eg7CH7HiCJAICSeiXuP6tb5bwHCBhZYgGhbjoEQHB7ezuBAYTTVqvVtBkRb1esgsMGOpqL0mdGQMApUM9Quj6Kftn0QJZ39B+VH93LrvfGqPPKK3mrwazy7vKtAG2nH9w9B+SjekURhExXVEHee9IIWHIGSN/Rhw6IPGU+x3Frbz+F7tJhQR52P8Ux1gjgmMEAjPFms9nJm8Pp/FMe4U1nYICvM/Bx3jRfU5CENla7xfyynuA+WSx+Ta+gLRUg4LdYLHYitAAEyEP5RPmoh/Jbld+DLCDsKYee4sqUgMs/UtAOEUZgIPoxT5HiqaB0d60HIrgOGMTYcpinBfinYADIkRH509NT+/Hjxw4gqPSL3o+mX3DvVKkCAEEOpEVypWXwP1/vyYvjV/vBAZceGInus4J3VAEVI3XqAQYHUtyYG40U6HiOQITqkwg4HIsyQBDJaAQE9PU7t9mbRvDUUXOGlEPtiCAgOolFgjo1oPv7V5y0aBqDeUX9uL7RuNX5d21bbv9o7KG93bhlIMBpW/u1z0tru7sMIp3y6RZN6noOBQcjY3X2moFeOoe2owHNqHM0X847CuPq84oyI1JAwNcdb9k5X8uEi6cJMJD5g0S8GFB3DWPUiMWDWGNwc3PzZp7Q8egAUY9OGQhUKQKZCjSjdmtt3jRBJZ1LWwUFWf6t+T6eK7u9sqIxFBn+TN+MGmnOj/PX6QNcV0dgtI0PRSpvjj+VV52zZiAQjdWePoxklnUpFgKiLbE2IIoI6LcBtAxdHc9l4r5eR3pESHn/fzacUR35PpfttmaG3WKji/ZXUAJeeSEkgwiuDwMs5c1FCLCfAfqA1yCM0Ow1A70BEhniCBBknc5C4hS2Q8YsFJonoy8nUK6eFcVwKIWhCN+9EqR15fnA7XY7rTPAL/r06Ahpn7qFNT0lfgyK+HFGUOXKAYGR+s011CrzFaPNfFWNWA+YZOlGAYnTIY7fuXJTeU5BAf7h/eJf2/IUSNsLlEUE3G59yEO9+t74YA9UCYaXv9DHiwP1OwD8Op9GBnj8cb2Zb+YDMsMRL86TAR8DKCadw9f89VVMvs4h+mzNAu6jLFxjPaPTFfzKIdYQcJQBixavr6/bdru798G7RgaUotB5BAKqHkR0bwQI9ELa3MgZAJjDZ4W0TuBL7/Eg18Hs5oegDDSSwPOFvb6oUISg3QA+5sJBpgzEuTpkQIApCnFmBnRE3h2PWd2cDO8rtxHfo4CgVy7z645HySn4KJzLxuNUpgoYDLp72RoBXTTIpEAgCpVXiPNiMKDv7+ung9240XFWHQOcl4souHHAetfZMubFgQEQ6hUBAS5H7Za+nRGBAV5c2dqv/RMuLy/b9fX1dB9vLzCPVfmdBQaqmUdAwHWo6zyH4NXQR0AAxoqNVhR2mqtsKvXg+lTyU74Z4UHoGG2v1+udkCCede8V9wxaa7uGm9ONzi/vo8A/kiKg2TO+7KWpUhuRiyjNKIBweVW9gl6aDACM8hXlr8raRZj2AQhVx4UjBKcEYh2Awb9GBHSnQdYr7MVGYIDHOusjzocJ+fF7+q21nSmACAA4Y88GuOfccX4KgDUKHJXN7avGG/XVaQKk55C/RqU5P5Svm71pZID3cOA+AdhgeeC2wTTBarWaIgij43IYDGQDsILoFLFweCUKg2XISkNkaDB+bYbzwRwSh2icF9ULmbm6R+kqXppeU0SoCwIfHx/bzc1NWy6Xb9qEIwbaTnwNbcp8OiUYIdysvr8DRWBT20yVkAIBHKshi+RKlbu71uN1JPwX8VJpmwpPEUUAkokjdFpeJkcRCHPPRHVQ3aD9egqAQKcvWvNyqgCApwTdCnSOLEZRAWeI3Vjg/BgMcBlRZCMCA3yu+kuJ9R3LuUYK2Na4se8cSp6GZU+ey3ZvNPCbA/jpNAIWBbL9U76cc4Y+xflyuZzqdn19PU0loC+qeuLg2xHjmDvSCRI3aG/QOeF3HaZC46ICUVmjYcGKQefrDuC4wcWCzfNw+oEPvDbIu1S19mvui8NzbtAz2HBhqoiy6ZfWdhVOth7jo0kNRdYX+tPpm9a8MXJGn6kCEpRn5dMdZ3XW+lcVg+Yx8rxT2hFo1Ck7XB8BmSxzek37zOXLBhfp2GvLyv4oimTDTRPwm0UwGmr8dZ7etZfqcB37CgL0uwLs4UbgjcthY5rpeTXGbly68aXOpyuX3z7gqCq/icX10CkQt7sjDD50MwMKvFGgfPR2h0V+AHpYO4D+503l3g0MjKJvPOMECZXSDtWOdAiRhYO3b2TUl5FbMBMNjl6UQNFchSLDw4hPBxoW5OgmQlw2hAJfBMNqXnwqdORVHuU1qr+mjeTjWAo1M2TO8OsP6VrzBocVEM6jduBnq/KSpcu8b1Uko0BghI85z7HyUw8oazs3/ioAS+/rf/Q7BSDg6gJD49YIXF9fv4n64V8Bu8ov8meK9KrqJzVo1bfEtBwHRBQMOGOv9eV6svft+pTtCUdbePqFI68MZuGNMxjA8xyN1n948Ci3tbbzRkAvuoZ8ttvtBAaYD36ToUcHnSZwjGpHKqpkNK7P8rGbDuBzgIGMZwiFe4XDIddK/fRYB4wDFZHScXyjk7Gl59PTU7u5uWkPDw8TGOA2XS6XO2AAwAHAAK/06MIeB46YD0XfI4aBEfkxqafwMoPAaSIPR8+jflV+5njskffNfLk07k2aueFwzl+BkPJVyYvDuRXKytRydexF+UGxHhO8Kk/8j2PoQP36YLRgkKMCka5lQwVSQOzGBHQURwdYr+iP21blkHlQ25FR1F9OBqJz1xb6iibkk3cKjAAMn7MHz9EBBQVoB9zPQIGOdd1qGu1f1S1lMNBTWCqsDnFzp/KAQ4MqamWU6Qy/RggcsfHnsFUkoIo6R9okUkguBOfazrUPI2/d5/vp6WlHQIF+X19f28PDQ/vrr7/af/7zn/bjx4/28+fPN18I009wjhiESB7U8PP5sZVr1D8VEADKPBC+NmrUNE+Ml6gO6GutVyRjrHxBerwvWHNj9yMoGmMZYNPn3bVMDj6KHBhlI+n2FIBubC0e02qMOU9cz+SK9SX0Ezt2i8Xfi+vcdr8sHyznrq25DA6v63hhHcZ8sDHlvQy0Ld14VbsD28O6LZINF73GMzxtAJ7RfvwqvDPkzoFFeXizQHW7Tt9ENBQZiJSbM/wsXDr/wxVVA8zComBAwx8OyTKvGgZr7S0g0LKzekb1zu5lhkGFXwcMr8bldQO8kBDREBao5+fn9vj42H78+DH98KUwAAH1FJyBG1WCkWHkwXMqVPVeI+OS1SUzSNq27lzvVfnLqAJOMkCg91xUoOedZ7ztS736VQAK8uBwchS5/EhSAwZ9GEUFcF/1WQb6WY/ysTPQ0J08damb4LAH3fueQeQ8Kjn+WYfxOijUI8qDzzPdp9EJ/jm7pXWC48pOLxt9gBe8EsgggesS6VYuT6c1ehFfpYMtIGSmIiDACzB4roQHHDeqIjftGAUC2qls6HR6gNNFSv6QHk4lQgDigaNRAX6rYLlc7sxZXV9ft8ViMU0TAAg8Pj7ubAWq0wMKihwx2o+QNA9WjRCcAjkAsE9kIJKVLGqSpRmRN1V0DkDMMWDOo+zNW0Y0OnYcGHGKVsvgcVWpc9bO6sx8dJQjI9Z7rPR1p0EnV+6Y822t31/cF9A5iFSy8ccbTq293WtA9TuoAgYy2VCjB12lm85VAGEFCKjd4bK1n9ziQfwQJUB6fguB661OI35IyzLL8sB2r0cHf5vARQcYCHBaBgQqGNohyINDWa15zzsKUavn3fMkOH+t5z6kRsENVu5sjgzoQkIGA1jAAzDw8PCws1aAB2TFW3deKgMCJdfunNexvKvIYx0FAo5GjcUc45IZruz+e1EPHET8RM/pWoHIqPcAqz6r+WT5R0CRPexjkOpVjpACCPDXSHvOEefLurMKBFQvrdfrKTq53W6nuWro7GxdErdtpGMjYKN6PAIZTJH8uTGv1yLdoM6UOq0cCUA6tmn8j/aN2iUiBgssI4g2KCCK6KCRAW1MV2GtAM9ZuTzw493zWns7v+5QIy/y6AlRZcBXBRblVAaYpmFj7UAAg4HlcrnzHXBsNPHy8rKzFzg/x2E7bpMsnOSMfzYX6cDGMcFARhkQyNC/y2e03Dm8tpa/3hkZ0grxmhN3HWU7nnr1yabzVAdwPSJjoMdVqvThXGD4HuR4cWsFeNq0tbf73KsRRntr/dTLdIaPpwmwBwr6CyvaWbc7Y6197qadXF87Pe6mOpHPXIdP21vbSct1UQ88y2AJ7RjJvZL2jfLv7Bfkg0FIhfZeQOgazv0UtSqCj4gjAWhURjqR4YmiA1XjXxWkHsKu5KM/LJbRNQP45xAdf/oT4AdggD8dqkCA0X0lOhAtWMvanO/r8bGoB+LcPa2Dyo+T4x4YrIDFCJj0DJTKZI9YWUSKw10fBQJRul4UwI3bnlGPxmfvWc6Dddqxprsi/aqLBtnoaETOEeqkRjjqI7cw7/X1dWe9AEcB3HSFlqNrE5R0jEQykZGCmQxcanoGXizDzJcCJMcX0vLCQbQR2pX7g6MHDNB5ihZ9rAAWxOtKqnp31gLCSifroj/tfAhUpLgcWm0tBgK6JsAZp95vhCJg5O6NGB3mnXeS4sgArx1Au3E46Pn5eXqlED99k0CnDKI20MHkwqZuOiBT8KdAOoh0blB5zUAAn0cgYo536QADK9lozUzmbbg+qEZ9RojzjKIKPa8oox7QqYJ59xwfn1J0QIEA7y2A65DRCMBwu6j8RDqXiYEAdAgcEugR3QK9tV25RV20TKVMr6iOd3VAOvyz7YHzpCCRbZxGBZw8MB/RQkleCwAAACOtthJ5ZVNxbDvRTrzOgJ1n3KvQXtMEEWLVVf+8TbA+6zqU73PltBNAatAyDzVTAj2UqNeidFXFEeXJ9eHIAL9WyBtg8LaX2+12Wk/w8PDQfv78OS0g1M+G4tmeAef2d9Mx+B/xvE6BIq9br0WKiIkBbbX/FQRHINJNtzk5Q14cKs5ANnhQqq4JUOMR3Y/4ZY+HF045vpnXqnz1AMFoXsck9lLd64RoY9Yd3ObqaSpF+pmJDShPYzrDiD5dLBY779RH3jY/P6K3o2lm/q+OyQj4RTyyM8VTJwyWlPcIYHA93JqBaDxohABp0OYcWe/R3msGtEJRh4NUUfF17bReGAnkOoivK78uv57ARAjatcMIGNC0LuTk5ugYYHFbYlEPpggeHh7spkMaSVE0mwkhSAGZG7jHVqKOnIxpX1TlwRnyav25jSMFxAZVoxe4DuJ5YPYOq3Lt+K88p16e3ssiAzrH3eNVPTy+PvqcI6cvKqDiPQn6VB0uXi/A7eiiAiwvbnrApWUCEFBvk6cOnLeu/a8Oor6SqGCAgY375zr1+Fc+Mz2u0Q0FVi4/3X6Z77PT5aasI2dMeeM0rMOzerwLGFCDqKgzAgF8H8QhEZ3XcMpahUORmTZya7EHV1EGUV177VEBL9EzSoo8OVLAC3cwMBGywzcMMFWADYdcZMCFtVz7RMhU/0cU7UeS8xgyY9xa3ysZqY8aLteeEUB1cua8beTJAECNbYVGAJyL2vF1/nf88kYwOkfaM8S41+ufqB8jOdd7IwD/0KQyqtvdOofLPc95cLtW6qVACjqDdQ8T9sbX59nI8ra5mi/rci7DAQI8q3Vt7e2niR1g6DmM/NP8FACx0xbZJ/e9mB4gwHjQOut4d30Bvit0kGkCCCOHsNxKV0e8+KS1WLk4VKQIsrXxUKLmn6HkDBDMBQNR3lwvjgpgvQAvJAGwenl5mTYjcj+dKtAIhJYfKUbXxgrCHB0LDGjf6iDX30h+712nCHA7XtWoOuNcpUOAB+Yn4penBzKj31rdeDs6VZDaI25D3n2VIwLsnfNzeJadLfbc1VBkfY7nOToAviKeOQLBYID5R534FXPO20U4nPHO1kiAf+coRkY40utKGg3QDxehHXixNjt0CiiQnuuvjgT3ie7MqOPh3acJuHF6awX0lRfnvbT2600BkKLdaBGEhmQcr6Ceh+GONY/ofAQMOMOU1Q3/vPkQnuOdq56fn3c+cQwAgMWDvE2lAoEoMqNIPAIClboek1z/qGHNjJrWPwKPH2VY3Jhq7a0icYAzUi5MVSOheeuzuOc8FPXUdOzgmvP8MvnryWYk67h3CvIKAkiCnuXPFPO0UdaPOqfuwAOnVWKZYmOt3ijyhmHntwrAO/4ZECBvGEi2Lag7ryOJ+sfJHRMbXdTDySU/n+lpHnMaHWBjrxEBBgP8jOsTbtdoLY1u3qftV6WDRQaiiEA0Z6FzVmogXfrI+x8J90Xp+b4rX4UhOnZpI4rSOQTLQoRthzebzdQmmDbQyED0caIIGavhi/5/J3IoPwICPfDojNOc9qgYnZ68Kd+qOCPgncmuo2iqIfM4nGzrOU8LZCueo7EcRbQyiiJgkTPQM0DvTSyrakh14WD0vL6BhesKIFvrf6OC5Un3+mdPlsth3rFBEt6C4OlipIcRhTFTPqP+6I1H1nXuTQJtc/3xPZevRnHZ2PMW8PyKuJumjeqVAQJuQ52if7dNhzJlylECRq1ZBSMD7DyTUaXrGiwCB66BHW/ZsQpORNF9KEaHMqN9wNFOuM9gAEAA6wii6QH1pLQtMiDwOwCDqG+rQCCSC9xTOdLnsjSj9eApOacksvOeond13BcAOh2QKfIqzZXDXl1cXx0TAGN869sD6mg5415ZSMjPZs8hXwYf/BwbddxjWeVtk29ubnamOWAgebzAfnCZ4CEaz1EEyV1XiuxQZENUdzLIwNotBQes192W8CBufwVLLuLHfC4Wb3eIrY6t4QWEzvCroLo5ITCsFXHrCRwQ4MbS8LlSpsjnUqTQFDFG6VTJuDzU02KB4zrz6zz41w8ZcTSAUWkkzFpuZeCMUAUkvScpgGX5rSp8NwAzo3loI+KACyvcTGlwuohfkIbvQdn8cEbcTj0goMCFFaMaKefVVSMuvwOIbW1Xbh0QQF3ceOb+djqWPVV+pkesx1mONKKiUeLlctmur693gAGMF/LlvDMQ6e73ZJnTqd7mY81boxMa/VAjDwPP0VheVKg/3MucDh3fUb34OdZzFSqDAW0wFMKRAPVYXGcqYtFnHDnjrh0RGbcIRWq+jl+95gBAVM85pHNZvKhmsVi0zWazs7UlD2KODGAbYvwABqJFgz0F6jzeDJ2fmrLNZDca/M7T6PVr5q1WvBPmNxrQrOAjIB15g5U6cbQJ5DwRlz/Kdwo2ihDwAkLUS+e4M8DVI5ZJ5KFtwfm6NtLjjyToVgUBrp2ZtN4aOuY00KGVyJFGB5xsKNhmEMBAQG2FM/Y67eVAL/PmKJL5noyq8UYZUWSVwRUAwHq9tusDdJ2A2i6emsv0TyXSV5Xd2ZEBNF70zit3koaUWnv7ylHUEU6Rtba7cNBRFjHIvOJD0ChfINdmQI64D5DAO05BADk6oPsJRLtjOX56iDxK16NjKVQuX+U3mspyXj/y4Pyi/oye52c1P5d/RCwrI+H/HjlwwPciUMNghQ1QlG9G2bRGJbqlPDu+sz7Jjj+adEH2YrHY2fsfxLpVKQK90C8aRWIjHFGkNxS08oJHBQLgSyNRVcCn8uWAAa5n+bH90WPUVcEAyx7rVFzjtVluG3h9PqoXvymgkT4Ad+aNI0GjcjsUGXA/VqgccmUvt5efU8poAF1Y5MIzmq/zZPkejnGvJ3wOgUfoMjIsVYqMBBv81t5uMAPDz2sDskhAxVOtCJO2M7d/ZEg+mlwf6Q+UGQ3XHlE9M8Pp8lAZi8aa1sfVE1QFCT3+dH7Z3VeenHLFdVDP62GqyI5r7+g5128uzTGBQGttR6dy9CSKCukujq3tGsqo/Zl6DosDFVxOBgLc9HHUxqq3OZ0Dn8qT03fMpxtTnCfrAM7HgdCoHVn/MhDIwv0uTwZobgowo6oMzwIDHGblzu8pViZVshVl4Dxbl86d95RJVTlk/ygnU0Y9Ba758JQBSBeI4BrPU+lc1Wg0pMKnS6OA4FQoAwIRoMFzmg9T1t+qTNzzPT71miqv6nyg8pHVwVEELJxxyICAplPllnlx1XHf67seSDs1uW2t7XjS2eJRJW5zXb8F8IB0qmOqvOFY+5wjGvrTqAb+Ix3V088REIDuVLnTaEmkC9R71/Vqzr64+kTTCkiXyRz44jpxv+P6iC5wtBcY0Dks7WQMdK2sU6ijxB20j8eZKf7oWoU3Fd6obJALVyMf/opha21niqC13UWWPF+lc1JadsVIzbl+rAhARFUggLSZN8n/UT9H1yo8Krk1Nhk53vftD9RHF/PhnvKrRoF1hpIz/g5kO+pF86LzU5TRjDQ6oMAQFIFGfU6fGZ1mcoaVjxUQRL/W3oIOdVyc86c6W9si0ukYr8pfBALAH2Q0M+z8rDtXe6W2i21kz26OyO+I/RpaM6DRAD12CjaaD1FUwxXXRt7X2Gs+KFf/o+e4TtXG7RkUpmjemol3aXNpOWrS210w42Vfr+gUlWwPBPT6X6NY7jknZxW+XBnKNytPVmA94rE3Ck6idNlUhSpWVbycjsc/7vXmdh1vOqYdz/vK9DHJGa05IMnpsEpbV71WnqvmCIZGA/jHxpkp8rqd86Ly5SKm2i54hvdpcHwwIFCQEv34Wees6vVoXHL019XfEa8ZqET7lIYjAwoIeIepTElpaIRXhaq34VChWxvgQiVc1iiNGMeRhs7SZqEdtAOe13CXpmMwgOsOEPSMX4WyNo6E91hAIQIDkWLV9smAYKRYR42TGlBVdgrAW6uBSMcbXxsFBRmY5XvRSvFM3rPQK/M9Am4jGvGujkmqb12bgiptU3VqetECF2Z3zqLaBgfEM+pFL3XqxIFXtjG4plMYypvaJjc9oPo5q0vUL8oX5+MAAbeF9pFGR9z1jMpgwIEAfpMgCgNGqA4Nq8dIq6s3OQ/uGFyPwjYRsVeSdWjkEbrjUdJQXkQO6OhAjV5VidqkyncUOek90zv+SHLeas+wO0AQATEFBL32ilC7Klb1pnC9tbbjifEY23fqrGesXXo19nyu89uOMkXZG9fcjnO8oYifDMx9JLn+x3HPY8z0ijMubGBcngw+VQdG8/CRgYp4Yv3Gq+6j+jn++d52+/aT3gqwdd8GlSnwgjycTPacDDXO6gBHEQw35lzZuO5AQFUXDIOBaMth3QSDVx8zMzrfjTT4mEYmMKxUeNWspukJjyrtnnEfAQqOKkpF+XDCwfWK5trcseO5R1EbVgTrVMGAU1ZMo4BSn3XHeu5kKFIk6m3xu9k8hhAedGPCgUd+NgMmWgc3bhUE8LOR8de5U2737M2XLMLRq48j1QcRzZWJQ5ADhSzHqG8kP85AjpB7RoEpl9UzhEqurxUURMAF1ItOOw/eRdqQjr+toHLPMup44ra5urramd7lOvE4jRw8N6Yqjp0+V+33Mhhw22HqJhJggpWSC+Pza4fcEVEjOep5XyBVDj3jOAIGomtV0oUizrN0guIU5Hsa3bkeUmYUP5IyZVl93h1nUZORaIzzpngxLissVjgggOMqubdRenw670OBgPKk1zRyFYVee+c9mT+ER3+oKMO+BEPnPFeVSwVh1fHn8oSc9RYWRhFhlOfWLo04KBU937vPwMmVx3w5GwT+8ZxGpqOoOc4z/ZC1bzROK8/OoVmRAbf1MMBAa287kEP+IHwKkzsAAKG1cS/NeRJ6z1HVwPcAwVxDx4AAxIKGc/xnIMCdK//RuT7r6sQDomcAqwbyIyjzvsGXMzaaB9Jm4HIOP3qdj9nryTYUccp8lBRk9MaGTnOpBxrJGMs3n7PRcGtdKkBAy4r4iOrknjkmKNBNh9ymbkxsyFSWnJPBugfPZlMFkbwyOdCG/mVdH+XnxmeVeHxqCD4Cq9ouqn8dP9EaNvyzvdQ3EsBTJleoBwMObjOOWLj6zaFZawZQSVZSOjeIL+spiuHBxpXg+RxQD/nsW/megRw538dARPVUAe0BgYgqQADXI0DQE9ze8TEpUjIj5KI2ek/L1Lbs8Zfdx78Lg4JchIAVh85TRka70kY9ha6EtuDFrfyqrEYJouez4ypFnuEpkoazMzl211w0oeqZV8dKBrAV5LkxEU2FQJ735U8pa0c19Oyds0MQOQ6cr9ZFbVzPIcuiU64fo3yqNPQ2gc5ZaeiKkUo0J+IUkoZckLa1XUWRVbjXOK4+vePq/Sz9HHJGPwuz9YQmOncDgQXepRnh+1RIwQAPyMyQj8hU1JbaN73+4HHUa3tWMJyHenjqSThl5ML6fM/xzMq8ArRYPnRBVhQViCI1nN++NKo7PpJ0fj6SDQWMet3Js47XEeOfEfchRwSiN5uc4eRf1UCO1iEzxuyoQlbxDORX02Zl8Lh0Y3SEnOM5Jx+locgAdxx2HGTSeRaswuy99458sBCK88A/8uByKtQT9CoQ2NfAVygbqNX0rb0VlgrAUWVRVZA9L9kBjI+miqFyz4ykdTLt2pT50fMRvtg46FRTpICisaDGPDL+jgd+DmMXFClLDR9zOgeAHTCYK0sfMY4PSRyF5WisAjn2YDXEDXLt56YjI3JykLVnBATwYznSH9fTrYFwwF7bxFEWWePxymNlsdgN1+sUV9QmOObX6DFOnUHX86pjyusSuN5sTys0BAb0NUKeu+KGdMafhUKJP8SjFIWVFGE5qnp3VUDQIzcYj0EZAIjqWvGGR8NSrHiOqYQzIwz++FyvZYBwFAgcktjjR3mZxxF5/QoERjwvVkiZp9WafyWYr1dpJDKW8a73RjzQj6RIbh3oQ/9Vxmq0ULtXbzbQPXI2gI2oOpk87bzdbsNPbkdg2uk0jZS4n7YNH6NsBgWufbU/tAxMeyhwVzs2Atbd+hDmYYSG1wwwc2BmsVi05+fnqbFeX193PpvrvpiHcyywQIOrUuGQDIdmMlJlHAlKdC06R90rbaVUAQgq7K4O7hrIGZ4RhZaVqXlFfGp+p0C9vq60rcsvqm+WT6VNdMGRelUYZxn45DpHn33VdomAQAYi3DF4yuo6YvydHDonYW5775P+vUkXjTqlzz+VF24rZ+h6pIbU7TSo+k4NvkYI1GPNDDT/O56rBi8CqhEQ0PsazYiiHS5aoPzy9yAiR0J5VoABnhREuHaqttEQGMC/NqwuCtJ/BQJIu1gsdt4qcA3hBNlRBc3ucw5iJVwpNwrfZHxmhrZqfCPg4wxjj39n/KLBGV0/JrHx60WfHFXAVdQfkYFy/aDjQ70pLKbi51E/lUtdM9Da2zC+5qH5RqTeXAQKnJzzeHYRAWfknE4YBZ/R+K7Iak/BvyehjZ3OUQCmAMCt3RqJWkbtOeJxgie1AyyXrn1ZvrCHhpN7ByCcLEcgCuUrz9GYV6OfLXzlvoPhR70xFt241Trq1Annr/0d1bFCQ/sM8IJBMM6VwL/+9LONXNHF4u+oAiIEfB3Ei4168zW4p4iyYrSrilDLc+cRqNE8UK8oH70+qpQyIBCVk0UkRuhUQIEzVno/8uazekdgrfKskpbPyry13b05Wms74wXPO/4UECgxUHJpnOJXWVJQoGW7EOgoKHXUM+hRX+t5FHE4BXJh9NZyYK8eKstTBQQ5uXHyzeVxuTjmKDE+nnZ1dTVNCyOd22mQ6+scEgUB7vs40bhU3kf6XUG6ixBwedx3HPHDsUYHlBcFA63tbuXfGz/vDga0EEWe+s9plDhCgArr6yTcAUxouGy+JbqWUUUpZkBAzzOjAP5by8O9cylSvpmBq1BUp1NTpq3tRrVaG1f6EUjI0kURFSVV2CzrrDjYqLpFSMoHj4nIS3eG3o1vzRvpFAioAo4AUvXf/aL2c1QFY6cIAjJiIMCLx1jeuL8zQMi6VuVGyxyJiIIPlmdMGXOZKuP6DMuUA6EKlCIwwHw7uazIQAQE1OY5YOPakeuUAXftb62fTv/x2pERmv1tAi6cGwrH7j8iNEoWwtI8+LzqWWf5Rc/2BsBcZbOP8nHGKUurx1UhyZB1b/CMIu73JAUDrf2qTzVsGtW/9++ejfJsbTfUywAXynSx2I2kRQv3tIwotOtkogd03bOqqKvyHhn4ivF3ZfRk26U5BRmdS2r8WvvlYLAccRqNKMER6+1iGemPHthjYwkwwHy21mx0gMGvAmsGodwO0XRXJt8VGcyAgAKZiLhPmF/lg/tHdyJ1dVMQoUC9quPKYIC/Q8CNvu9AcpUD6cDX+ZXW5q/cd8KlFHlJo4iLybXXyOLCEa9zHz6rvIAiBH4KgIBDcRqFcYt4QL2Izj51U8XqIgQ8NcDAAHOo/D0CrhPXu7c+pcqn5puBDFWK7jyaa62O5wgUOC95ZMxwPu81fkZIF9spOTAAYjDAU7bcDuxZRvKsa25GnApnRBl0sAFkoxoZSu5fpOH5dLfILuLLHYO0jbQdUQ/mOcqD+VUgoKDJTbe19nYhqauLPjcaHZi9z0BmxFVY3MIm3I+8I/53axOUt+j+3Pn5qFPmkCrDuQDGUSb0zmDrgB/1kpz3V+nDY5MODp2Lb+1t+1TAjh5HafR6RC66AIXDXh0DgmjtQE/OegbPeSA8ZjUsq3mzwXfG33mPFaoac9TBAQKX/hSMf0SZ0cc1OGrqXbPRWiwW1hj36p7pSeVD81YDGnnDLAPqObtp4Mpnkp0e6gF5V9cMCCBP1avqnTuAw9fQN9G4i3jlMlzkoTquhsCA+2oakCuv9oSSYkSlzDvKQEAmtJHSc2HhbH4e90eQb0ZZfQ5NmXBXaGRgaJkaSuuFy45FTvZ6C+wiuesBAU7jrlfyY6+NF12BODKQgcKel+RIDb67loEAKCZWmq+vfy8mw3X84zkOFascOZmKzh0AnkvHBgkKwJgXvqeLu/UZBgMsDzztq+sHHDm5YMpkXiMDKB+kofaoLDaiuKcRa65jJkNcTiRPeE7flFOAwPkx71pPbTcHkEZshTqt2n5V+Z09TaAeIgsclFRrb732KmMKBJxnllE2R6qdo/d1wEXljXhh+wKBCOFWn2utNs+fUc+jdbyO8vseVJ03y7zH9+LdRW/0GNE0tCd7ePwhlB6x0lMF0loe/XOLMPnctS/zy4pe54cVFGQKfAQUgE8HtKqe8LGjBS4KGxl8dtL4OZ0iYDmA7Lh1AwyUWSZc2W79GEd8oikCtQnOkLkxoTwxMADvrb2N/Kmc9oCCi24oEHC6mb1y9s7VOWZ7qQsAOS/HE9/XsrmNqjTrbQJFahAyCI/OdSpKcqQdxQpcK+QqODK/nzXQSGSAO6EXcWCaa1hU6CqGtofwq7w49OmUsBtcjt9TokzWmHrt3gNbWb7uWQ4tcmSA1zvgnw08X3f1isYPK1jOwylZjgygbKfoVXFqRIC9Kp1KcCAgkqXI43NtG/UT8s9A4UcTe/3siHE/6Ed+HJjj/FrblS3W3Th2zhwoAp7aX9yfbCMWi1+LYJVXB0CdHGh6fY6PeQxU9KErT6MAiHK5/RMcYOExwvVy/KluZll0csll8DXNr0dDYIAFUu+5XZX2GUwsoBVi78khqR4vEQhQhMZIUdMiPd8b9WIi6nlL2XNOkCpt4trDgYKMTiEyoMR89OTLDcwov5H6OTnQvuExwGsDLi8vp3e2QWwc2LOoTIvhOfX+1Li49DhmpcmkCtQBATb0WftGADZzMJxhn2PojwUM3Nf8wA+3P+tmBXMK1CAfPL2LZ9jYtlaLFmbOkxpS7FTL9ePyIiDj5uadzCpPPUCZOS1834EBfV7bAX2ga3t4S2KkcRsrKe+urZ2xR9osqu1oeM0ACxoIiJIHOpQS/sFkFE5UdMrlogzHE8rif6XMuOtxL09VgFp/5JGFTflc70d1iAR5LjlvaZSigdRT7h9NPDAiwx15O5ERzfqSDVAvDY45jTvH2IFirwCCiNwYUOXi5qojxe8UZvR9Em5/VfAjsuPaT9P3wHWU1inhY8mxAoHFYvFm4VzURwrsWIaQvjcNwVRJ01p708dsDHWqAHmwDXDRZwYqzgC78lvzIILPK2BAI1yRHQOfun5AHURn5/S6k7usn139XWQlo+E1Aw4MgDFUQNGfohqQ86Cj0GbPiDNFil351WcyAXedrPeqaDoySJEXEz0fXYuQYu/aXKoI2zGBQWaUW4t32YuMd4+q7cHHkQJobXdagF8pvLq62hkrHBGo9G3kySi566pwYfyx0xyO+aeAAc9mAGDUGLt67yPnPUfjvUmnZlUHO0MeGXlOExHLgk7xar5uygikOk69ajyPPuc8ELVguWOZUWCppNNo7hk+d/pYgUAEHjJgwG2D40j3O340H21rjdqx/XF90qPhTYd0AaEy0VoLF0SowaxMA1QGYzVCED0bPdcDFa15D8ed97yezBggL3deBQZqcLRsd8znlTbVQZLxeGzSRTqt+bo7cJoBi48g7kuOFnB9Mu/fKUsGE3yMMtwUnCp6AAEFAziPQqzOa9P6OtL+qMixuxelOwXi0D8is2pg2DA4AojU9spkN5J9NT46HcG8cd/2poSQF2yM7nar6w/Am+oc5pUXpWZyx964glyth9PnWj6Tu875apqoT3jsKRBQmWAwkOWpVAYDjhElnfNgVMkdtY8CdZ5PL4KgHZyBh2q4ODP8eu6OM4oG9Zx2UwWuSkSv9XiI7mdC/DvQR3iAVdnP+r/ifTnD3drbV7RYphkE4Fwjd67Pt9vdV64cEGBlrB5eBBzdOOmBguxaRZ6z/I8lxzCKy+VyZ+fXKAKQ1bPiZCgIUMPPOj2aqlDSaWSeP+fydUqE68sRhdZ2Db3mw7KqY8M5LKq7OR/W2zpN4ABGBngi8MDPKW/giTcd4v5gB12p4swyzQIDGhnQxRDR9paVSIDej7y3TNE5RYCGngMElOYAgUhAXN0imqOUXL85z8JRBqw0yoN8IqNxbFL+2KPhNEo9ENvrk9E+c+Ux3+zJcMQNdVGDznVX48/9xiBZpx4y0nUCPF3gvlwaKT2uu1OgPc+JqQIEomuc/ylECdhT1n3pcd85ZxrZyQxWa7tyFzkFCkD4WjR2Xl9/7aCIY+bN5c2/1na/tukAsepdR2pwuc7ueWeoFQjo1Bfny3llkYQousEUOd8RIFRb1xvDoCEwkBnLLCTBjcjpo4pHeavhrkYHuOzRAe46uQICcD4yRcDHkQfYU57aHs44R4Auah9tZwA/GCXm2fXrKShVUK+tXfoKiI2oasR6fGgaVWQKApwh5z7mhb64x/ln4NopSjX4CgZ0LHBekTzPAZGRTsiuZfePLbuYGmAwkPHFY1Lf2mCgphGa1vrropxXqusZHDCIgEg0VRcBAoxX6B/er0K9dNcuDug5A63HGtXisrhNOa3aAR0fLo8eKHCASeWC+zOzyY6G1wxEQqgFauNzOlVkGanwRwtjegtmFBQ4cvfUwLtr0bkbBLjPvKmSz4xUpYO1zdj4O8+ip2B0IQ8/r4DA8TJHqR+aRo1ANY0Ci+zZue3gylBPXvuotbcAL5J9ncZzzzIvnI8qNfzrPecdIb8eGIiUo1Imx1WjruOvAtLek6Do3eJt9LvTHThHuggAMIjn9uPXxXFNDVF0DuLy8Tx4gTHnry6iHPxz3liUrhFnBTqRnmUZ0rpmYIDlVte+ODDgZN09q/noD3XjfnZ9Afm4urqanuPX/Ef0zvA0QYS60CCotKI1h9p6HlcEBJg0FNrLqxI6Uc8Hx7pLmjP+eu46WctSz9oZ10gxVvLkNnBAQNsmaj8gcrRfBjZ6vJwC9QYJD8peP84pKwOFlTwUEIDQr+4VroicsnH3I1DMYMApxCgq4P6ja+6c66XGcK68qaE8JrFR7H2hkonbniMz7IVWdInz3PGLvg3AxJGrxWL3TTPIqPPqnQcMHjHVgDSZgVV5Rd6ubi4tyy7nj03AMjCAc25/XUOjW3A7XrRvdHwqIMymwjMqgwEwqw2ojYSKuM5gxlC5KiBwnn90jZ9TPtWogV9X3x4QiIx9dq1KThFlitEpQGegXXtmER9+RgXu9fXtdymcITkFpeqAEa73nhu5fgjSvsyMm/MaNDKg+TIhT/UCQQr+nMJihee2Fe4BoR450JSlVXCwL80FgIciBd0sDxlvUehcvW8ev6yPea5eQ/e84l+nB5w+YR4gs86jz4we5+OAJq9ZYVvEz3Ld2aHBfT1Ww80GPIq48DO4xiDMRTAie5mR8q51xtitym4ZDDCT2kH6PjEaSecMHVPVyrPSQ/mRItT5zwiURMZVGzY6roABzVeJPcJRpeeOM1JQ4I6r+bT2C8i5uUZXl2MCgqjskbpXwFi1Xyp9FoECJpZ5vtba/t/D4HUhER8KjHEt+7k6umtVEHFqsnZo0vZ2+oKvVequgI8BfpROvXUAAfbcddW71sMZ8SjUzyCF02laBQFqeB1l08pqB5zhdz+uI5+7yIKCAuXVybSOL37FsrW3ryw6QJRRGQxwxdw1TBEoANDwySg54dZrOhAUGUXhH76XAQEVXj2OwADn6/jMrjG5gd9rL5eHo15UICLnZfPArXreH0WjBiIDik456zNzwNoccjIfjRmlTFHyM5V2y8ZEBI4dbxkQAC+HaM9K+5waqQy6/sum+nCf9xyAvAD0aXSA07l1Am6RH2iuodV7re1ORbu3U/Qee+9KqqN60wUKQpxhd/aD5V6nAzgy4NpI77GTy/c5Ysc/BjoHBwPKBFd8u92++WiDoqWMoepARINkhh/E95h/5OPqxvciIFBReJkhmKN0Rp8ZMXz7elC8oIdBARuSUUP8kZTx5fpOFXIEElweo/0YTbtkxErD3cv4A7GxaC1/00TzdmOAy9kHCIAyI8PnmeypfJ46OR2V9TEbdO0PNvr8bQIFf2rYkY6Pe28SKGVhfza4HG1gQx+BAc5D76Nc1I9BjdoJbleXJ/MZ6XyX1xxS2WV+uP9QJwVQ/GnqCg2DAW04F7ZxYZMsX/xz3uzhsJBGHpAqsF5d+NiBBgUClajAHGXmBh7yGDHoOtizelejAaocsvJZsTDvPaX8kaT9kvGTRTZGAF8FDCofji8GBhnfkWeYRcf0mPuLpyEiGdsX4O4DmNzzI1GpKlg/JmBQJR85NaxLIsDgDDyX4Z7RkLoDBZq3o0yG2ehikSGXw7tb9gCBtl3Ei+NZZWm73abG1Ok2jaxE7RrpRWdLnPePcemi8JU2UBoCA9G8iHttwqVzeVbKbe2tt9kLcVYoAgF6rh2QIcKs40fpkApIgVVrb9sqWswZGXIHQnignwoQ0NeRKsAJVI1oVYGgkrbVR1MEdtx4c6uUkVbXFyCfqD0ij9xd1zyd3PXavQpsT5VYDp2hVwA34hjN1TMsBxGgzdKgfEQC8Apha7+iAYg4wMYoIODzHjAAQZZ5asSBAKTlaxmYrzgOei+7xh4+bA8DdC7fgYFRnVQGAzoHw4XrXIprTGXKVZrJRQn0WSdc1ZCI5hUBmMr0AD+ndVNyg0TvRXVTnl2+leedYncgqqJQ3Pwy58ntNALU3otGFJ/rW5dmxOhFoErvVcOtUbrIc6/Iaw/AOYOc8dlrG1WmvWdcmgo/vyMQ0KlWdUq0ThoCd3WOppEcuelX/nf3Rojrw0CAv2/Dxs79GAQgT/1X+VD74q67fCq6V++hP6Jxxnn0wBnbJi2fwQDnffDIgL5DjELdGwPZ3KRWNAIL3MDVyuxLERDo/Zj3imFwno7jBc+465W6VAcnD4beq55Ig7owWuUBzAoL9TimMu4pL7fYVCnq+9GyXd9qGJavRfLhlIkL6bspu6wOTnY0OnAIipwDlNejzCObm8epAgYFATz2WvMRJvZ69XnnwGlkt7VfhtnJZ0Y6ttgoavSQeYEt0T0MOJ17cyB7RdEBTr6mQKInl3BsuP1xjPSRHuV2iO6j3GysOVvrpmldHSKa/TZB5Fm4imoDR2Bhn0HN+VQaIgIlTuGPRAVc3qq0I2NQqc9IW0Rpe1EAZxg5kqDKBoOXX3VxiPdYpO3neJlr6Hr92uOHrzlw4BRwJF+smByfqijdGHZAxCkwlode36p+cLKRAWKtv6aZ297RudZnBPgdmlTpq/F28sFyzCFmfl5fAdf5d82zBwSy6+4HUoPKoXEGDgxWXBQ6AgLajnquYAn39Fmnx1hPcoRUbZ2r/wj4VCDFfOk/10vT9WjvNQOu4fYBAs6zqfCWnWdl6zOR0c9++nyPnBKcq9SUf/dM5F1mCrG13U1H+L6G1TQiwOXq+e9MTiFUBnZmMJ2S1YHsno/yjIxqJt+aFvk4IKAKkMdtRhEgZp61rlVFOQpG9HlNW8nzo0j7iY2evsUD4nf9NWLLP7cYT2UiA2GOInnmNw80T91eGHwr4NQ6MGVAIOLdgQMnzz3nSef09b7mn5Xr8o/4z+o1R9cOgQH8q8GvhPGrof73mFeOytZOwf8+YCAqJ1I6oFHEHaUbUaT8bI8XFxkAsWFgw3EqAKDKQyajkZHKAF0lIhEpD72uz0eGM1IEGSBwdXF11wgEk1tA6NrBXZsjsxVyvLp2zZ5HmmOBA9a34IPXaoG0PXksZkBgu91OW+RyWZU3jnqAQNcvVAEByL3/rw4oy30FDETOWwQEcO429dI6uNA/t722sQIc5ofLymS2Mn6rNLQDoQKBKhKbSxVjmVHPQEf/kbHvAYFM2ev9Hjh4D3KDkAe9IvGo/XmfcL3HA4rL+4j6ZVRZC8FUlWutX2ZksvpnHmvFO6saVKf8egql13eQl+iNgh5PDsj2xpLLX/VR1geRYlXZPxYIcOT0kQNg3B8OCCDUvtlsWmu/9tdnisA8lwuP2MkeG30AAc0nqiPzoLKpfPL6pYzc/SxvrVMGCDRvZ/BdP7g0rmyuZ0ZRVKZKe60ZaM0vTjokVSrTS1NZHJaRCo1TwplwZx5VtWwndBHQ4HL1Wq+PeACDFM1rqBiK4/n5eTrnbxaooTwGOcTOlLVldC16vuJ19vLIrjneKooiMv78r3KmhjbztDMDPspjFVA4fnvgJuqfXhsdg6BzdU46CpeD8DEfjEf3gRzdVx+EseqAI86VFwAPjSBWdBDrSM2T16iwrdE+zPqI83ZpHRBwY0D7IQPpXBZHYxQA6Lc8sjrwfyWd9mOPhqcJ+LhSSFUhukGtBinKM+ODw2tuMwj3H9Uh8hiqnRj9NJ3mW/EMq5R5+2zsGdErEOA2YOWCayzkyGMuGDoERWAuA1qt9TcsiSgbuFGfVdD86HW+z4AsGz/aTyP9hr6Opgt6/EZl6XVn8F09euX39MgpAAKdC9cIrTOkzC/u6SJBvKOvaUEKJjgaqD+97nQp62EuE/c0cqcgRQ026xXcr+jJ0X7U9AxO1B7oeg7Vj3ydp3q0bsi/Rw7MOj1dHb+zFhDi/JA0AiwipO/yZA+1Nb/Yo1IuC3l0v8KT43FEKVV4deUr8ICwYdvPxeLXlqIMAPgaFAJHBrbbX9/qXq/Xb3iFwnE8fRRhALb2Vo4dUIn6OLrXo8jjRX49IFBpt8jQax6Rt6A89MCrrvRm6gGCuXLg2mkUZGZAQI2VM3rHIBgPdYh49zn1ONnpURDARgn5c764pnoP+WLM8Fa4lXbSjb90TGrbOwA4V6aUNwVYUVoHPBeLxZsdb7l9kJ8DbgoEdKMg5MkALCM3DniMjkTDZ321MGMqYqLHmHa25qeKroKcUJ6+XsPXOB03rBNuHgj6ywCKKmI1zNmzc5BslB8behh3/WcAcHV19ebe1dXVTqgMHsZ6vX6zQIgFW+f/PpJ4ACox0q+QymlkVKP/nhEepchIa37qacFI4F6UJ/qUfyD3qpMbS1WF5IyT1gPnqjxHAJ0+lz1zbEK/ob+cAcVxZODZSLnpBbQdh/j5Hv6RTqOrvL5Apw45f86H+XeRASaNRrL+4bULLBc8peDWHnAapp4jxnKXgQFXRiRrCoyQL17Z1vQZkHWA4ODfJnCMOyXCglUFBHOAQEVxqlDyOTeg8uWUD/OQKStXDwcG+NzloeU4pBq1QU9RstHGMQw/jD2u4R/3AQ5AiAgsl8u2Wq0sX1hLcEww4P657eeuJ4nK6t1XWcr6NfKIomtZWtx3CkTTOSAQrQbXvDX6Mqd9nQLk/15b93SEGjr9qYd3DMJcM7et6mCA3e12+yb0z/VgUBw5MY5cu2DMQE6QNztZLGPMg/OQ1fECMcDAeU//Oc/cGURXnnMC9Z7yp32h8uP0OPeZA8yoL9q0t17BgYlRGgYDGWlDqfGtUNXo71NplKOAAKQhTkbNToFEdYjAQJSO68X/GaKsGAkHRhaLxWTk9QeDn91Hnq+vr22z2bT1ej099/T01BaLRdtsNm9Q/DFIPSr+B/VkSfstUhaVa+66AwVZeU6mdJqHn4WssBenMqxAIAIEERhgxcYRND53dc7W8ThygKAHyF2bZ/0YyclHE6bgOCyNNuUfgIAaPu4DZ3hcNMCdc16Lxa8wOUcu4IUyAHBGyxlC7XPVzRzlZfljva0AjoES7isvro7Rcaa/HJjkSM0ocX0VyLgoZqa/qnZyNhg4tGLfx7DPoUonRUbdzZGp8ooiAJyPHleE1fEX5esiD3wd4X9EBK6urtpyubRA4Pr6eicNh682m01brVYTGFDDcXFxMSmqY5FT7lVAqUYnQ+ajeWs52bm7zjLJRjySReVR5ZdlI5oiiMLJCjT0vDX/brymZ0PQa4/qNS4H/Lr20P8M9H8EYeGf60PmUyME0fy86m0GapV5agYEasxb+7XwkMGBRgt00Zy2N1PmHGaOogMdWR+qbCi/nDf/R+VGdVLA7dYrcFre3RXXeGqT5SLSOVXZnTVNsA8QmBsyZGIBzgRCQ1NO+FzeEVXRVwQEPgrwRKCAlTpv98mAgI+Xy+X0f319vfPDFALCmOv1erqmoADrCY5N2u89D/RQ5fWoN5h7z/Gxek041gVorb2NgIF07Yj+Z7xE03KcN7dLZRoPdIi+yqIB7h/HxwYDDK6Vv9Z2PxaXhZ8rAAvpYHjUAIEft4BQ14wgHet9FxFg3pz+0rVITqe6qQg9jwxz1O89wOKcAG13HZu9BbZ4HnXmscvtwFMHys8ceR16myAbiK6B3JzJCLnKtlaf481AQO/5rFF76NR54ZWyovPsOef5a9kRGGAA4P4BBAAGbm5u2u3tbbu5uWk3Nzc781qr1WqKGHAojyMDx6IMqeNaa3FolP+r5SmpEVKvWtNknjEbyshzUsOtRjjiKYsKuGk7NQDZOh3mHcfRVGIEBLK+qlBkINhb1UVgxwYDGDu8eBd8Ka8OEDCxUedr6FvtH40AtOYNvepEni7gcrXd2fApqSziGsup1sv1qbMBGWVAqgcaXR2UV81TIw881dHar2gLE9rERQmU/6rzPbzPwIhXHw30kehANN/YWk15R9EB90yWj6MqEHAKlI8jb8XxkQ3YqOxoOgC/m5ubKQqg0QGODNzc3LS7u7t2d3fXbm5u2tXV1TTwERlgFM/AY71eh+343uSUem8QR8/3nuldz4Bk1cCpXKkydkZb77fmIwM9IOBADJ9n460CRrI6c92VZyY1Li40HgEBNVTHJqwZQAROPUPwDdDg1hKAnBetssKRACcnzihFa6wYPPRkB3lnEd9ovYqOywj8O/2va8G0fSLHIQNaShrJcIBObSLnzZEBTOWgf6FzVeZH9Bto1quFmfHM0vcWYIC0s+dMK2QCEHVw7xrzFimuyFN3fOm/E+SsXs7bUl4YDGDuH7+bm5vpGF49v03AgIDXDtze3ra7u7t2fX09CTG/WqhggJH9Mch5mRVEz1QdUBmw65EDDNUy3X9rbw3/1dXVG+9Qy832nch4H52WUx1RAVgO9Dr9EHl1zuirB+mMybGAAQw8+gP1x7hTg6/ARkP5mf6K9EiPuH0iENEj9mJVV0RgdJRHZ+CrNonPo+cjwL/d/lqgznP/rJ97NomBFdYRMAhwAA5UjcoOTxP0BkY0CEcMugpl1TtXpRGBgF7DV8BBz6Ph9sp4yBSPM1iVweAiAxcXF2+8fPwQFegZ7cvLyymScHd3125vbycFtdlspoiC8lHl+70o8va4j/i/2sbax5W6jrSH48096+pRLcOR5uOiczy22ChF26v2lG4GyLIIXKUuKN8BgQoY4P+PJgYDqAd/E8DVR79CyIDJRQLcvDOeid5zj3Qk7iFfne/mtEw8DYBzBQFZ9CsDkj17EunvLO/Mpo3KivYHy2xrb7d/Z0Cg/TrHcQYNf5ugath5EPWiCtn1ynNOOOcCgYhGQppZ3hEI4GuZILKi12MXGmYgADDAxpyjApqvLgSEsUcet7e3bblcttbaTggTfc5oFuWfArGC4IEX9WlmEFz/qGfA5AwcR3hc2iifigz2omLIy9Uj8jRwn8c2Gx9VZlG5fH0fJRZRZPQzYBAB8lMBA7wLKNdjhKLIEfJGeaxX+D6I25UjD3qd9QA/i2ts2DXq44CA45f50T5zRrJqB1QXR8C1orfVfnBUgEGQggA8j3po37jyABi4fXp0sAWEypAO8t6gYoajNQK9cntIrScAhxjwWR6RgnEAYQ4/3Ef8r5EBRAQYDLAQsjDqj6cMsOYAxh5eyfPzc9tsNjuvNwFMHIN6in6EdPBF3jvuRV69U3DZ+Ip4Zn7cfK8qYAfOOW9WnOp5gNzz6l33+GZ6DyCgtI9xjwzARxBeyc3C5PDAmbQP3jsyx+2qBqu1X8ZJwWUWSXRrX1yZ7lpVpnrywPyP5IfjLHKoQEftnov2OeCUlTciu8Oummtk16CRwphbxqHp0ECggiz1PBPEHj+VAa6Cxq8MAgTgmI0AI3neddCtBwAQeH19bTc3N9PX0DBPhXIvLi6mKMJHU+T5ZZGAXpQgOtaB6K5lCsLlHZUB4vChKkO3uE7zUiAOfnileGTgOT99t53/e2O6OhYY/ESREwXXClh6EQEFSMcCAq3tbkd8cfH3WzlYNMZpMv0TtRMblmiqICMFJ/yMggL8qpEqB5qVRxfRUg87AukZOOyNvWw9ihubLt+ov9DPPMXjQKCCc13/w3U+eGTAhYm08AgoVIHARyDYfcgJX2t5J/eMR3QelcX3+T871oWA/CaB7hnAc5IMBnhfAia+fnV1tQMIwAfuH+v1wkzRH5p6nkyknLJ8HMDg/Frzq8Cd8uX83Lh0z7OicYBDleAIEOgZ3WofqSHiPKu/uWW/JzFw4V3/WvMGvEqjC/I0ffQs9zmHwPWHPBjIuvv8nxGnjfqyZ6NwPOqMRnLEx24qI5M9rhOoFynhcpA+A4pKZTDAi0Aq6G7O9Ur5SpWOizyyQw/2TCFG1zJSHp0BcWG16G0ALBxkMIDFgxiYLJwAA1hT4BQCh//ZaHB0Ab/qBzM+gkb7oGe83XP8vF5TjydSrGzkXf6OomkCzbv6vPM8NMLgxmFljGn7RsoU6TRt5JniGT7OIjOnYPgdMQjoedmONBLA11X+nDyqzEY6gPkFqWFSUKn8OTAw4hy6uvK6Bfa6WZ4UAKiBrvLAz2WgQ8t1jqBbOxD1QUR4/t0+VKQ0Opgq3m5rb1eXRsrSrXbNFJMqElUKPb4z5Dnyr7xFFHmNzrAwEOAFf+4VQfX23YBeLBZvnnHKANfRH/ylQ36FcbPZZE38rpQhcTcYVT4iOYmUWpZW25A3CFKFonlUx5kDBJnHrvlGa3iUzywPnEeLEEEV0DDX4XD9roBD01by/yjC5kE8xYEIm24spfpT5Yd1BKeLgAGOeZpQ9QznrWOG7+kiwoqXC1LwoPmrfCmoYLnTYze+VF4yG4RndDFn5ATysRppLYcXdXNdHRDIgGHkSCsdZJoga4TqAkIQd2CvEk4wRhYR7jvQo04eBQIVFOoGNR/zAOUPDenugfjxHgNQKloHBRU8L60DhiNHXFce9B+xFsRRD7w5haDg0Rl2VTqK4HENsqxtxP9Iz6/m8W5y/BnungHU9o4W/+GZKD83FhVIRLLtjJRbjc58ZcCnUufeeNOxFtVdr2dt9N7EawYQIXB60clptDJd00XkogMKCKKyI0DAcqRjj89dFMHli7yhr1xaXmDpymN50fUkCnIq4DxzOpy97NkHkANu0VoepFPAntFB3vUaMfiZNx55TnwNFHk30YIpFdgIxTqqoLweIODjyNt3x9F999NIAO8a+OnTp2n3QAUDmCbgNuGBxN8pcB4CphKWy+UkfAxAHh8fdza7OTY5Zc/HkQLQuqtnzwafr/Gzel+9u9fX151FmM/Pz+3y8nJ6xQxpHDkAzV4Z1zUaP072ODKg7aW8uPbBdfDD5PjAdVVk0Th0+SlxX2q/Zgam6r2+F/UWqzm9wf2lIX8+V89TASvLp0YH8FwEBHQMIY2T0YrjF6VzwIT7FR/5Ae887QaAhbQ8fcB10fbnshVIOIrAQUZqC/UazjNAMEpDawYiRBJRb21BZhxd2U6RaDhMy+jxmikETeP4jtCfy9MN3Og/48EBAV0n4DYXwquE/CYBTwE4hKyDC54KDBY2OEG9edAh/cvLS9tsNkdTrBG4cn0XGQHX/lCUAEn8r/fc7o48ndJam9pzs9lMH39arVbTVyERIub2dvOKWid3XlnljLyqIC4D8WqIFJQ72m7fbmKkHpUDM5HidY5ILx2nPSY5Xen0MYBAz7lAnhrq1+Po2cx4O2AQkfPOW/NOnOpyBjNqn5CnGn2UoWBQIwJunl0jbC7ipnlxmW6xLv57xlvrpv2jQIZBb5WGpgm4gUFVZA4GM+TeWj6H5dI7g+sAAerg0vUaLPNC3K+XZ1SXbAArGtcfg4DlcjlNByAq8Pnz5/bp06cpQqBvE3B7wIBnYE3rCx54Dcfr62tbLpft+fl52o/gWKTGJ/MMdbDxugr3mWZ8pwGbMAFsuS8/6hoO5Ndaa5vNpm02mwkEPD09tYeHh+kf99we9I5GgEBFaYz0n45bBULszWl74hn96A6/ssqAlNOgLg40cJlqbDI6doSA6+W8TPDGm/A4nRcBM6VoGoLT67SxGnXlX8Gq6g6WTS0Lz3M/IPSvH+Di6Ibmwb+eFw9euP6RMefzrBwFByqnWZTNAWltb+ccjNBe0wRZ5Vy6EZRyaIqiFHMAQeR5jJJDeJEXmz0PYXGbCgEQYHoAUwQaGWBvnneuqtaTeWnt1/4C+mriMYhRsv47irwwrhsvrESbfvr0ya7J4E9A8zcg+C2N7XY7RQOenp7a09NTe3x8bD9//mw/f/5sP378aKvVagIFmEJ4fn7ufrJWlW2V1AhWvGXIok6HuAWsDA64TdlgIPLEURNESPgagAKeUc8QpMYmArq4d0ydxbxEfDCgUkOgRrgKaKL1YRFvEa881hiMAazgH/3k1gngWdzXcYi0LHca7QAfKg/aHjxGnGcfOWi4z1EBN3UegXF+jvPlOnOfaDu79XpunU+Phrcjdoi7h7ZGGMqejxRTr5zqosKMR5dmTp3Uw9drLq17Tr0pfX0wWzDIRokXEGLQOaFWZKxAhI1/a7++tKWbFh2DIkStEYIIiCngwg+g6suXL+3z58/t69ev7cuXLztbPSsoiIwijNhqtZp+Dw8P7cePH+3Hjx/tP//5T3t4eGg3Nzft6elpSoNoAS80c0YQpKHWuQbPAQP95+kStBWiJwxCIYu8LoXlEYYeX8cECOJICkdNME+sn9FVYqMU1TGKHn0UqYHivQbQz7zuRLcUBlUjIEjL+o6NKeen7eeiEXxd68PP6m6XzAt+kder0wVuXQH4R95ctrMrzuHLbBA/pzZSr4M4qufKYxAVOTGZzXUgIaOh7Yij+bosHAJyg2o09OYaP2tMUGWNQw8QuCiIXq/UR0FANSKgRmmxWLzxumB0EA2IvFQGAqywXahVBwzXV71/KPLtdnfhDvN9DOJ2dgifvQt9hnnXLz+ine/v79vXr1/b9+/f2/39/TQlE7W7thcbcBi41WrVHh8fJzDw73//u/3111/t5uam/fz5sz08PLTLy8u2Wq3aYrHYiRKwZ1GJhBza4EE2eTqEP3/t1q7oBljcJqiXGv7VavUmksJgAQYGgILrClKjeexIgBJ0DRsG1r/RmNK1VEra52zcW/tlrBlQRcYKFOlY9WrV81XwGjkdDAqcPPMYVi+aHSf2uDPb4Ood2TYFbUibee+cZy8Kwe0V5afXRu3r3t8mmOMpZx5wpWwHPnqRiSxvPXaIMLvuqOdlcpqs/i4i4JQtfzyIFw3CIOneAm4FPHtk2qYYtG5wqfffA4bHIKc8erypEuLwPqYFPn/+3L5//96+f//e/vzzzwkYYG2GLtbU9QeslNkLBijANMHnz5/bv//973Z9fd3+93//d2cOHu2NOVS3WKq1/V/tdKAii7IAqC6Xy2ntypcvX6a2YVnVtRZsGAAIYPgZBKxWqwkcLZfLKWLCoADrDACaNLzcA0PHlGGMRTa8kEUmNmxuYZtS5PU6QKARQv0xDxVSQIBnVc/zq5TqUECuWb5VRzJPTtfysa5JGNUXmUPsDDfSO9ulkREFbJxHRTar/TK8gJArwvfUYPYQqbvvUG5v6sF1QgVcqHcfeftZxGC0IxwY0PZw7cdCrtMC7KnC84Ky1U8UR2DOoVpWwiB+PZANGg8+bVN+42AUqb4H6eDCv/sx0IGx4kWZ9/f37f7+vv3Xf/1X+/PPP9u//vWv9scff7SvX79O7c/TAa5Pte35t9ls2ufPn9vT09MOuOBpHlYQABKsTJB3RpHicW3nzvHP0RNEAxAR+PbtW/v27Vv7/v17+/bt2zS1wnLK9XIRE3j/+H98fGwPDw/tr7/+an/99VdbLpft4eFhSrNer9t6vW4XFxdtvV5PPDogEMnKaKj10MTyoMZZ+ypa+Id8Ktdbe/utC56a0Pl45JG1IxvzqM1Zb/QMNiI+kc5x+SpYYgdIIwa8HTtHRzm/DGQpDxylcTbLTR9wu2URIKR3/TJKw2sGUDjORyIDEZOjFdEGzQz2CDDQfHp1UyXqBD0y/A4IRPyyNwkgoB8a4oWCPEXAWxC7CIECPJ2PBRjAIMR1/mY6/9gQOSR8bIo8IlVCHPXgRZkwyt++fWv39/ft+/fv7Y8//pjAwPfv39vXr1+ntkcerkw+5rlB9AuA1Gq1ap8/f56MJ34M8jCGYAA5zPse7ab10CgRIgKQyy9fvrRv377ttBEiKDxtwPLJ3iPAAIw9L66EfF9cXOwACsg4gACAQQRMRyNHH0Fs9HXR3cvLy5uPf/GYRvredIHqPvVAsc8FyzHkLdJ3yo8D2vqM07cuP+fEsU3QZ5yeYvCt/EdRgaoOU32+3b59BR4RPG0LV2clB/T1vwd0Hc1aM4BzDXVo+p6Ray1+BUKFITIsPTSofDgBmgsIMmTswlMRCFD+XB6s3BgIZIsFdQU/2o3nlbmemKvmBWq89SnWAKBcXQjG3oSGaY8NBCLF7vqNDRuA1+3tbfv06dNkxGDY/vzzz/bf//3f7c8//2x//vnn5PHe3t6+CXe7V+FYjgH02FvhCEBrbWddB0cEnKLi8Lh6OK4NMjnm+5xOI1YMViGXAAJooz/++GMnOoAIik438WJUfK2PwQYvWGUwynzgmHWVM5CnYPgdqaHjNRCI1KE/2ODomp3MkEXOlIaukYZlWkP4kVMEqjp7fOz41nHF4IR5YJ3H62r4bRQ4Nq4Nenw6++L41P7pjUUtJ5t6VXCgkcFqnWatGXAGmAsdCR9Feei5AyK9iAArL81TB1kl3witarmjFHWWA1RQlhEQYDDA77lH0QAYEgwUBgMw6K39ek+cV7uvVqs3i74QYuOBxxsTHYMq5brIDQyKrhGAYfvXv/618/v+/Xv78uXL5OleXV1Nbcxz1yxfkaJjo4j2xTM8PcOrsF09AcRYGWVt4MConkf/DKAQicKUCgAUplbu7+8nMKBTA2zQW/sFBpTQtgCxeO3QTVuyEUDeUdRE9cAxiY09A4LW2s5rl1dXf6tyjL/X19ed48hAw5BGRszxo2F0tzhQ82IPmPuWZUgNWKS3+Vh1+MXFxdTH4Bf1xKunOiWnfDhdgDJd3dy/S6P2qDce+Xl+Vp1dJnX+uA16NLzPgKIQvVal0fUBrnyc98p3XrAz/JESqOZfiYRE1BuMLKS8aJBfF9QthtmrVO/NDUL1PFgJLxaLHaOG1dzquUIpMRjIvNKPIqds+B4fo710wSCHu2HQ8AaBhrzRLipj6o08Pz9PZWpfcWSHIxS6XTFW0SOSw22O8mH4okgchxej9nPEINCtseC3CNA+vM+F24NCFZ72Bbfhzc1NW6/X7fb2dgIE3AaY1speb9WxP8erei9iQwc54b7lPnZzyz2d5KZNVMezJ6vAwRkkvqfGVacxIr6YFzWEOlWiRpUBkLaTAoGR/lVAnY0Jfgakay8cSHcAwYEeTqv/c2loAaE7dl50LyLQy79H2aCNUJjymv20Po4cIqzWOeMNebk2dHOy+uYAfvwOu4ZfNaTv+OOB09pumJtf7dJvFkDA3VbFx6JMYXEaBgLwyGGEeSfHL1++TJ4u7y3AUyfaHq29jQhw+6ri5D6Csb28vGw3Nzdv+uDLly/t4eGhPTw8TK/eISIAsMG8OLBbVSSq6JC3azdez8LREo4kofwI5CPf7Xb7BgwAlOqmTjjfbDbTWgIdSyrjLqJwCqCADYDOeXNkAE4CE/pavWQmN43QM84MOjQ6UCEHErjcSls7wALeeN8BBU56nvHG8/pMrj1dpENJ13xwHjyu3FhUm8sAzdUjcnYymr1mANfmKnoWqJ4SygZldK6hFcfzXCAAGgUCPeXC/EbhJg3D8jvvWKwFhajGn+daM+WoXiUQuG70wpEBnpvl97sVpJ0C6UDRaAC3Exs0AAH9cURAp2Ra89vtqiF1wE3lS/se6xh4m2mevnl9fd2J1LTmvw6INokAgfN0VIlrNMPJKYASP89enANDDDRUPp+fn3fy5TcZFPyCIo9ax/6xIwKgXsTCOWYMRLm/eaqJn9FpBM47izQon9l9Bbj8j/tcLkcCXPlaDnvZ7tVa1JPX3LBRZuMP3pxB5vyycaH/SM+gxQExTuuiAJxnr29GZXnW2wSugMizzQxcBAIiQ+koM57VPFyaSLgdqnUC6tonuu+OWSk648WKT3cW5MgA86mGpgfkFEEzIFitVm+8PPUSACIyBPsRpH3WixSoceNvPeBdeQYB/Aqn83hdn7ISZOWI53jgc1icFRlkAEAEvGAqAYvuQAryVLn0vEimbMwpsHJrVeDVs4HiCIgqaUQG0A761gEDEQVRbHRQFvdPj6r65T0IfeaiG3zf1QNtx+RAhEawMD7Ywz4EOcDnHCk3dcF8qF7juimw0agAp9W82QhHssNjRse28olyMn2jhl3BGwMjnU6oOKHQHxWa9aEiZ+h6CC7qWM7DHUdURT08kKtRAeUlqkNWv6gukQei6VxnMxBQ70l5gCHmOsBAsIBjkPDubjzfv9lsJsWg0QGAAt1wCEaR899ut221Wtk2em/iNlaDyHxqqC56kwBAAAAAIIiNmzN82ras6BFNQb8xYOPFnfwRIyzwZK8DfDNY1NCkKhvlV4kVEGSJ82BjrB9n0p0F4dFvNpuprVBf5V37y32TQT19DQMzIHXh4ih0HOmAjyb0+2Kxu1aI9xnhNtYpKvUenUHUL0NqOtZFqpcUMGjaaKpSATCTA9H4V6Cuxlp1JoMABsGu37kdInlyeY0S62bmE/+cN/eR9qn2bWu/IoDcdtXIwGJbTXmmM53pTGc605n+X9JxNos/05nOdKYznelMJ0NnMHCmM53pTGc60z+czmDgTGc605nOdKZ/OJ3BwJnOdKYznelM/3A6g4EznelMZzrTmf7hdAYDZzrTmc50pjP9w+kMBs50pjOd6Uxn+ofTGQyc6UxnOtOZzvQPpzMYONOZznSmM53pH07/B8CBCwBeBbGVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import nibabel as nib\n", + "\n", + "# --------- Generate Samples -------------------\n", + "steps = 250\n", + "use_ddim = True \n", + "images = {}\n", + "n_samples = 1\n", + "\n", + "for i,batch in enumerate(dl):\n", + " # batch = next(iter(dl))\n", + " torch.manual_seed(0)\n", + " x_0 = batch['target']\n", + " condition = batch['input'].cuda()\n", + " print(x_0.max())\n", + " print(x_0.min())\n", + "\n", + " x_0 = (x_0 + 1) / 2\n", + " target_img1 = x_0.squeeze(0).squeeze(0).detach().cpu().numpy()\n", + " condition_img1 = condition.squeeze(0).squeeze(0).detach().cpu().numpy()\n", + " nifti_img_t = nib.Nifti1Image(target_img1, affine = np.eye(4))\n", + " nib.save(nifti_img_t, path_out/f'target_{i}.nii.gz') \n", + " \n", + " nifti_img_c = nib.Nifti1Image(condition_img1, affine = np.eye(4))\n", + " nib.save(nifti_img_c, path_out/f'mask_{i}.nii.gz') \n", + "\n", + " # --------- Conditioning ---------\n", + " # un_cond = torch.tensor([1-cond]*n_samples, device=device)\n", + " un_cond = None \n", + "\n", + " # ----------- Run --------\n", + " results = pipeline.sample(n_samples, (4, 16, 16, 16), condition=condition, un_cond = un_cond, guidance_scale=1, steps=steps, use_ddim=use_ddim )\n", + " # results = pipeline.sample(n_samples, (4, 64, 64), guidance_scale=1, condition=condition, un_cond=un_cond, steps=steps, use_ddim=use_ddim )\n", + "\n", + " # --------- Save result ---------------\n", + " \n", + " results = (results+1)/2 # Transform from [-1, 1] to [0, 1]\n", + " results = results.clamp(0, 1)\n", + " path_out = Path(path_out)\n", + " path_out.mkdir(parents=True, exist_ok=True)\n", + " # for 3D images use depth as batch :[D, C, H, W], never show more than 32 images \n", + " sample_img1 = results.squeeze(0).squeeze(0).detach().cpu().numpy()\n", + " \n", + " nifti_img_s = nib.Nifti1Image(sample_img1, affine = np.eye(4))\n", + "\n", + " nib.save(nifti_img_s, path_out/f'sample_{i}.nii.gz') \n", + "\n", + "\n", + "\n", + " img = x_0[0, 0,:,:,:]\n", + " fake = results[0, 0,:,:,:]\n", + "\n", + " img = img.cpu().numpy()\n", + " fake = fake.cpu().numpy()\n", + " fig, axs = plt.subplots(nrows=1, ncols=3)\n", + " for ax in axs:\n", + " ax.axis(\"off\")\n", + " ax = axs[0]\n", + " ax.imshow(img[..., img.shape[2] // 2], cmap=\"gray\")\n", + " ax = axs[1]\n", + " ax.imshow(img[:, img.shape[1] // 2, ...], cmap=\"gray\")\n", + " ax = axs[2]\n", + " ax.imshow(img[img.shape[0] // 2, ...], cmap=\"gray\")\n", + "\n", + " fig, axs = plt.subplots(nrows=1, ncols=3)\n", + " for ax in axs:\n", + " ax.axis(\"off\")\n", + " ax = axs[0]\n", + " ax.imshow(fake[..., fake.shape[2] // 2], cmap=\"gray\")\n", + " ax = axs[1]\n", + " ax.imshow(fake[:, fake.shape[1] // 2, ...], cmap=\"gray\")\n", + " ax = axs[2]\n", + " ax.imshow(fake[fake.shape[0] // 2, ...], cmap=\"gray\")\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0., device='cuda:0')\n" + ] + } + ], + "source": [ + "print(results.min())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "n2n", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scripts/sample.py b/scripts/sample.py new file mode 100644 index 0000000..ecd838b --- /dev/null +++ b/scripts/sample.py @@ -0,0 +1,60 @@ + +from pathlib import Path +import torch +from torchvision import utils +import math +from medical_diffusion.models.pipelines import DiffusionPipeline + +def rgb2gray(img): + # img [B, C, H, W] + return ((0.3 * img[:,0]) + (0.59 * img[:,1]) + (0.11 * img[:,2]))[:, None] + # return ((0.33 * img[:,0]) + (0.33 * img[:,1]) + (0.33 * img[:,2]))[:, None] + +def normalize(img): + # img = torch.stack([b.clamp(torch.quantile(b, 0.001), torch.quantile(b, 0.999)) for b in img]) + return torch.stack([(b-b.min())/(b.max()-b.min()) for b in img]) + +if __name__ == "__main__": + path_out = Path.cwd()/'results/CheXpert/samples' + path_out.mkdir(parents=True, exist_ok=True) + + torch.manual_seed(0) + device = torch.device('cuda') + + # ------------ Load Model ------------ + # pipeline = DiffusionPipeline.load_best_checkpoint(path_run_dir) + pipeline = DiffusionPipeline.load_from_checkpoint('runs/2022_12_12_171357_chest_diffusion/last.ckpt') + pipeline.to(device) + + + # --------- Generate Samples ------------------- + steps = 150 + use_ddim = True + images = {} + n_samples = 16 + + for cond in [0,1,None]: + torch.manual_seed(0) + + # --------- Conditioning --------- + condition = torch.tensor([cond]*n_samples, device=device) if cond is not None else None + # un_cond = torch.tensor([1-cond]*n_samples, device=device) + un_cond = None + + # ----------- Run -------- + results = pipeline.sample(n_samples, (8, 32, 32), guidance_scale=8, condition=condition, un_cond=un_cond, steps=steps, use_ddim=use_ddim ) + # results = pipeline.sample(n_samples, (4, 64, 64), guidance_scale=1, condition=condition, un_cond=un_cond, steps=steps, use_ddim=use_ddim ) + + # --------- Save result --------------- + results = (results+1)/2 # Transform from [-1, 1] to [0, 1] + results = results.clamp(0, 1) + utils.save_image(results, path_out/f'test_{cond}.png', nrow=int(math.sqrt(results.shape[0])), normalize=True, scale_each=True) # For 2D images: [B, C, H, W] + images[cond] = results + + + diff = torch.abs(normalize(rgb2gray(images[1]))-normalize(rgb2gray(images[0]))) # [0,1] -> [0, 1] + # diff = torch.abs(images[1]-images[0]) + utils.save_image(diff, path_out/'diff.png', nrow=int(math.sqrt(results.shape[0])), normalize=True, scale_each=True) # For 2D images: [B, C, H, W] + + + \ No newline at end of file diff --git a/scripts/sample2.py b/scripts/sample2.py new file mode 100644 index 0000000..3a2056d --- /dev/null +++ b/scripts/sample2.py @@ -0,0 +1,247 @@ + +import sys +import os +sys.path.append("./medfusion_3d") +import torch.nn.functional as F + +from pathlib import Path +import torch +from torchvision import utils +import math +from medical_diffusion.models.pipelines import DiffusionPipeline +import logging +from torch.utils.data.dataloader import DataLoader +from torchvision.transforms import RandomCrop, Compose, ToPILImage, Resize, ToTensor, Lambda +from medical_diffusion.data.datasets import NiftiPairImageGenerator +import matplotlib.pyplot as plt +from datetime import datetime +import numpy as np +import nibabel as nib + +from medical_diffusion.models.estimators import UNet +from medical_diffusion.models.embedders import Latent_Embedder, TimeEmbbeding +from medical_diffusion.models.embedders.latent_embedders import VAE, VAEGAN, VQVAE, VQGAN +from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler +from tqdm import tqdm +torch.manual_seed(0) +masked_condition = True + +device = torch.device('cuda') +# ----------------------define the model---------------------- + +# cond_embedder = None +cond_embedder = Latent_Embedder +time_embedder = TimeEmbbeding +time_embedder_kwargs ={ + 'emb_dim': 1024 # stable diffusion uses 4*model_channels (model_channels is about 256) +} +noise_estimator = UNet +if masked_condition: + noise_estimator_kwargs = { + 'in_ch':8, + 'out_ch':4, + 'spatial_dims':3, + 'hid_chs': [ 256, 256, 512, 1024], + 'kernel_sizes':[3, 3, 3, 3], + 'strides': [1, 2, 2, 2], + 'time_embedder':time_embedder, + 'time_embedder_kwargs': time_embedder_kwargs, + 'cond_embedder':cond_embedder, + 'cond_embedder_kwargs': { + 'in_channels': 5, + 'emb_channels': 5, + 'strides' : [ 1, 1, 1, 1], + 'hid_chs' : [32, 64, 128, 256], + }, + 'deep_supervision': False, + 'use_res_block':True, + 'use_attention':'none', + 'masked_condition': True + } +else: + noise_estimator_kwargs = { + 'in_ch':8, + 'out_ch':4, + 'spatial_dims':3, + 'hid_chs': [ 256, 256, 512, 1024], + 'kernel_sizes':[3, 3, 3, 3], + 'strides': [1, 2, 2, 2], + 'time_embedder':time_embedder, + 'time_embedder_kwargs': time_embedder_kwargs, + 'cond_embedder':cond_embedder, + 'deep_supervision': False, + 'use_res_block':True, + 'use_attention':'none', + } + + +# ------------ Initialize Noise ------------ +noise_scheduler = GaussianNoiseScheduler +noise_scheduler_kwargs = { + 'timesteps': 1000, + 'beta_start': 0.002, # 0.0001, 0.0015 + 'beta_end': 0.02, # 0.01, 0.0195 + 'schedule_strategy': 'scaled_linear' +} + +# ------------ Initialize Latent Space ------------ +latent_embedder = VQGAN +latent_embedder_checkpoint = "./pretrained/VQGAN/2024_01_07_090227/epoch=284-step=114000.ckpt" + + +# ------------ Initialize Pipeline ------------ +pipeline = DiffusionPipeline( + noise_estimator=noise_estimator, + noise_estimator_kwargs=noise_estimator_kwargs, + noise_scheduler=noise_scheduler, + noise_scheduler_kwargs = noise_scheduler_kwargs, + latent_embedder=latent_embedder, + latent_embedder_checkpoint = latent_embedder_checkpoint, + estimator_objective='x_T', + estimate_variance=False, + use_self_conditioning=False, + num_samples = 1, + use_ema=False, + classifier_free_guidance_dropout=0.5, # Disable during training by setting to 0 + do_input_centering=False, + clip_x0=False, + # sample_every_n_steps=save_and_sample_every, + masked_condition=masked_condition +) + +# ------------ Load Model ------------ +# pipeline = DiffusionPipeline.load_best_checkpoint(path_run_dir) +# pipeline = DiffusionPipeline.load_from_checkpoint("./medfusion_3d/runs/LDM_VQGAN/2024_06_07_115628/epoch=199-step=9999.ckpt") #/home/local/PARTNERS/rh384/runs/LDM/epoch=119-step=24000.ckpt") + +ckpt_path = './runs/LDM_VQGAN/2024_06_07_175241/epoch=2759-step=137999.ckpt' +#'./medfusion_3d/runs/LDM_VQGAN/2024_06_07_175241/epoch=1079-step=53999.ckpt' +pipeline.load_pretrained(Path(ckpt_path)) + +pipeline.to(device) + +inputfolder = "data/Task107_hecktor2021/labelsVal/" +targetfolder = "data/Task107_hecktor2021/imagesVal/" +input_size = 128 +depth_size = 128 +with_condition = True + +transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + Lambda(lambda t: (t * 2) - 1), + Lambda(lambda t: t.transpose(3, 1)), +]) + +input_transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + # Lambda(lambda t: (t * 2) - 1), + Lambda(lambda t: t.transpose(3, 1)), +]) + +# ----------------Settings -------------- +batch_size = 1 +max_samples = None # set to None for all +target_class = None # None for no specific class +# path_out = Path.cwd()/'results'/'MSIvsMSS_2'/'metrics' +# path_out = Path.cwd()/'results'/'AIROGS'/'metrics' +path_out = Path.cwd()/'results_new'/'metrics'/ 'nocrop' +path_out.mkdir(parents=True, exist_ok=True) +device = 'cuda' if torch.cuda.is_available() else 'cpu' + +# ----------------- Logging ----------- +current_time = datetime.now().strftime("%Y_%m_%d_%H%M%S") +logger = logging.getLogger() +logging.basicConfig(level=logging.INFO) +logger.addHandler(logging.FileHandler(path_out/f'metrics_{current_time}.log', 'w')) + +# ---------------- Dataset/Dataloader ---------------- +dataset = NiftiPairImageGenerator( + inputfolder, + targetfolder, + input_size=input_size, + depth_size=depth_size, + transform=input_transform if with_condition else transform, + target_transform=transform, + full_channel_mask=True +) + + +dl = DataLoader(dataset, batch_size = 1, shuffle=False, num_workers=1, pin_memory=True) + +# --------- Generate Samples ------------------- +steps = 250 +use_ddim = True +images = {} +n_samples = 1 + +for i,batch in enumerate(tqdm(dl, total=len(dl))): +# batch = next(iter(dl)) + torch.manual_seed(0) + x_0 = batch['target'] + condition = batch['input'].cuda() + + condition_save = condition.squeeze(0).squeeze(0).detach().cpu().numpy() + nifti_img_cond = nib.Nifti1Image(condition_save, affine = np.eye(4)) + nib.save(nifti_img_cond, path_out/f'cond_{i}.nii.gz') + + print(x_0.max()) + print(x_0.min()) + x_0 = (x_0 + 1) / 2 + target_img1 = x_0.squeeze(0).squeeze(0).detach().cpu().numpy() + nifti_img_t = nib.Nifti1Image(target_img1, affine = np.eye(4)) + nib.save(nifti_img_t, path_out/f'target_{i}.nii.gz') + # --------- Conditioning --------- + # un_cond = torch.tensor([1-cond]*n_samples, device=device) + un_cond = None + + # ----------- Run -------- + if masked_condition: + masked_x_0 = x_0.cuda() * condition + pipeline.latent_embedder.eval() + with torch.no_grad(): + masked_x_0 = pipeline.latent_embedder.encode(masked_x_0) + # downscale condition to 16x16x16 + condition = F.interpolate(condition, (16,16,16)) + condition = torch.cat([masked_x_0, condition], dim=1) + + results = pipeline.sample(n_samples, (4, 16, 16, 16), condition=condition, guidance_scale=1, steps=steps, use_ddim=use_ddim ) + # results = pipeline.sample(n_samples, (4, 64, 64), guidance_scale=1, condition=condition, un_cond=un_cond, steps=steps, use_ddim=use_ddim ) + + # --------- Save result --------------- + results = (results+1)/2 # Transform from [-1, 1] to [0, 1] + results = results.clamp(0, 1) + + + path_out = Path(path_out) + path_out.mkdir(parents=True, exist_ok=True) + + sample_img1 = results.squeeze(0).squeeze(0).detach().cpu().numpy() + + nifti_img_s = nib.Nifti1Image(sample_img1, affine = np.eye(4)) + + nib.save(nifti_img_s, path_out/f'sample_{i}.nii.gz') + + + img = x_0[0, 0,:,:,:] + fake = results[0, 0,:,:,:] + + img = img.cpu().numpy() + fake = fake.cpu().numpy() + fig, axs = plt.subplots(nrows=1, ncols=3) + for ax in axs: + ax.axis("off") + ax = axs[0] + ax.imshow(img[..., img.shape[2] // 2], cmap="gray") + ax = axs[1] + ax.imshow(img[:, img.shape[1] // 2, ...], cmap="gray") + ax = axs[2] + ax.imshow(img[img.shape[0] // 2, ...], cmap="gray") + + fig, axs = plt.subplots(nrows=1, ncols=3) + for ax in axs: + ax.axis("off") + ax = axs[0] + ax.imshow(fake[..., fake.shape[2] // 2], cmap="gray") + ax = axs[1] + ax.imshow(fake[:, fake.shape[1] // 2, ...], cmap="gray") + ax = axs[2] + ax.imshow(fake[fake.shape[0] // 2, ...], cmap="gray") \ No newline at end of file diff --git a/scripts/train_diffusion.py b/scripts/train_diffusion.py new file mode 100644 index 0000000..e240a9f --- /dev/null +++ b/scripts/train_diffusion.py @@ -0,0 +1,273 @@ + +from email.mime import audio +from pathlib import Path +from datetime import datetime +import torch +import torch.nn as nn +from pytorch_lightning.trainer import Trainer +from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint +import numpy as np +import torchio as tio + +import sys +import os +sys.path.append("./medfusion_3d") # This should be the absolute path to this folder + +print(os.getcwd()) +import medical_diffusion +from medical_diffusion.data.datamodules import SimpleDataModule +from medical_diffusion.data.datasets import NiftiPairImageGenerator +from medical_diffusion.models.pipelines import DiffusionPipeline +from medical_diffusion.models.estimators import UNet +from medical_diffusion.external.stable_diffusion.unet_openai import UNetModel +from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler +from medical_diffusion.models.embedders import Latent_Embedder, TimeEmbbeding +from medical_diffusion.models.embedders.latent_embedders import VAE, VAEGAN, VQVAE, VQGAN +from torchvision.transforms import RandomCrop, Compose, ToPILImage, Resize, ToTensor, Lambda +import torch.multiprocessing +torch.multiprocessing.set_sharing_strategy('file_system') +import argparse + + + +parser = argparse.ArgumentParser() +parser.add_argument('-i', '--inputfolder', type=str, default="data/Task107_hecktor2021/labelsTrain/") +parser.add_argument('-t', '--targetfolder', type=str, default="data/Task107_hecktor2021/imagesTrain/") + +parser.add_argument('-i_val', '--inputfolder_val', type=str, default="data/Task107_hecktor2021/labelsTest/") +parser.add_argument('-t_val', '--targetfolder_val', type=str, default="data/Task107_hecktor2021/imagesTest/") + +parser.add_argument('--savefolder', type=str, default="./results") +parser.add_argument('--input_size', type=int, default=128) +parser.add_argument('--depth_size', type=int, default=128) +parser.add_argument('--num_res_blocks', type=int, default=1) +parser.add_argument('--num_class_labels', type=int, default=2) +parser.add_argument('--train_lr', type=float, default=1e-4) +parser.add_argument('--batchsize', type=int, default=4) +parser.add_argument('--epochs', type=int, default=500000) +parser.add_argument('--timesteps', type=int, default=250) +parser.add_argument('--save_and_sample_every', type=int, default=1000) +parser.add_argument('--with_condition', default='True', action='store_true') +parser.add_argument('-r', '--resume_weight', type=str, default="") +parser.add_argument('--masked_condition', type=bool, default=False) +parser.add_argument('--gpu_num', type=int, default=1) + +parser.add_argument('--resume_from_checkpoint', type=str, default=None) + + + +args = parser.parse_args() + + +inputfolder = args.inputfolder +targetfolder = args.targetfolder + +inputfolder_val = args.inputfolder_val +targetfolder_val = args.targetfolder_val + +input_size = args.input_size +depth_size = args.depth_size +num_res_blocks = args.num_res_blocks +num_class_labels = args.num_class_labels +save_and_sample_every = args.save_and_sample_every +with_condition = args.with_condition +resume_weight = args.resume_weight +train_lr = args.train_lr +batchsize = args.batchsize +epochs = args.epochs +masked_condition = args.masked_condition +gpu_list = [i for i in range(args.gpu_num)] +resume_from_checkpoint = args.resume_from_checkpoint + +transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + Lambda(lambda t: (t * 2) - 1), + Lambda(lambda t: t.transpose(3, 1)), +]) + +input_transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + Lambda(lambda t: t.transpose(3, 1)), +]) + + +if __name__ == "__main__": + + dataset = NiftiPairImageGenerator( + inputfolder, + targetfolder, + input_size=input_size, + depth_size=depth_size, + transform=input_transform if with_condition else transform, + target_transform=transform, + full_channel_mask=True + ) + + dataset_val = NiftiPairImageGenerator( + inputfolder_val, + targetfolder_val, + input_size=input_size, + depth_size=depth_size, + transform=input_transform if with_condition else transform, + target_transform=transform, + full_channel_mask=True + ) + + + + dm = SimpleDataModule( + ds_train = dataset, + batch_size=batchsize, + ds_val = dataset_val, + # num_workers=40, + pin_memory=True + ) + + current_time = datetime.now().strftime("%Y_%m_%d_%H%M%S") + path_run_dir = Path.cwd() / 'runs' / 'LDM_VQGAN'/ str(current_time) + path_run_dir.mkdir(parents=True, exist_ok=True) + accelerator = 'gpu' if torch.cuda.is_available() else 'cpu' + + + + # ------------ Initialize Model ------------ + # cond_embedder = None + cond_embedder = Latent_Embedder + + + time_embedder = TimeEmbbeding + time_embedder_kwargs ={ + 'emb_dim': 1024 # stable diffusion uses 4*model_channels (model_channels is about 256) + } + + + noise_estimator = UNet + if masked_condition: + noise_estimator_kwargs = { + 'in_ch':8, + 'out_ch':4, + 'spatial_dims':3, + 'hid_chs': [ 256, 256, 512, 1024], + 'kernel_sizes':[3, 3, 3, 3], + 'strides': [1, 2, 2, 2], + 'time_embedder':time_embedder, + 'time_embedder_kwargs': time_embedder_kwargs, + 'cond_embedder':cond_embedder, + 'cond_embedder_kwargs': { + 'in_channels': 5, + 'emb_channels': 5, + 'strides' : [ 1, 1, 1, 1], + 'hid_chs' : [32, 64, 128, 256], + }, + 'deep_supervision': False, + 'use_res_block':True, + 'use_attention':'none', + 'masked_condition': True + } + else: + noise_estimator_kwargs = { + 'in_ch':8, + 'out_ch':4, + 'spatial_dims':3, + 'hid_chs': [ 256, 256, 512, 1024], + 'kernel_sizes':[3, 3, 3, 3], + 'strides': [1, 2, 2, 2], + 'time_embedder':time_embedder, + 'time_embedder_kwargs': time_embedder_kwargs, + 'cond_embedder':cond_embedder, + 'deep_supervision': False, + 'use_res_block':True, + 'use_attention':'none', + } + + + # ------------ Initialize Noise ------------ + noise_scheduler = GaussianNoiseScheduler + noise_scheduler_kwargs = { + 'timesteps': 1000, + 'beta_start': 0.002, # 0.0001, 0.0015 + 'beta_end': 0.02, # 0.01, 0.0195 + 'schedule_strategy': 'scaled_linear' + } + + # ------------ Initialize Latent Space ------------ + # latent_embedder = None + # latent_embedder = VQVAE + latent_embedder = VQGAN # VQVAE: "/home/local/PARTNERS/rh384/runs/VAE/epoch=114-step=23000.ckpt" + latent_embedder_checkpoint = "./pretrained_models/VQGAN/2024_01_07_090227/epoch=284-step=114000.ckpt" + # "./runs/VQGAN/2024_01_07_090227/epoch=284-step=114000.ckpt" + + + # latent_embedder = VQVAE # VQVAE: "/home/local/PARTNERS/rh384/runs/VAE/epoch=114-step=23000.ckpt" + # latent_embedder_checkpoint = "./medfusion_3d/runs/VQVAE/2024_01_05_200333/epoch=114-step=23000.ckpt" + + # ------------ Initialize Pipeline ------------ + pipeline = DiffusionPipeline( + noise_estimator=noise_estimator, + noise_estimator_kwargs=noise_estimator_kwargs, + noise_scheduler=noise_scheduler, + noise_scheduler_kwargs = noise_scheduler_kwargs, + latent_embedder=latent_embedder, + latent_embedder_checkpoint = latent_embedder_checkpoint, + estimator_objective='x_T', + estimate_variance=False, + use_self_conditioning=False, + num_samples = 1, + use_ema=False, + classifier_free_guidance_dropout=0.5, # Disable during training by setting to 0 + do_input_centering=False, + clip_x0=False, + sample_every_n_steps=save_and_sample_every, + masked_condition=masked_condition + ) + + # pipeline_old = pipeline.load_from_checkpoint('runs/2022_11_27_085654_chest_diffusion/last.ckpt') + # pipeline.noise_estimator.load_state_dict(pipeline_old.noise_estimator.state_dict(), strict=True) + + # -------------- Training Initialization --------------- + to_monitor = "train/loss" # "pl/val_loss" + min_max = "min" + + early_stopping = EarlyStopping( + monitor=to_monitor, + min_delta=0.0, # minimum change in the monitored quantity to qualify as an improvement + patience=30, # number of checks with no improvement + mode=min_max + ) + checkpointing = ModelCheckpoint( + dirpath=str(path_run_dir), # dirpath + monitor=to_monitor, + every_n_train_steps=save_and_sample_every, + save_last=False, + save_top_k=2, + mode=min_max, + ) + trainer = Trainer( + accelerator=accelerator, + devices=gpu_list, #[0], + # precision=16, + # amp_backend='apex', + # amp_level='O2', + # gradient_clip_val=0.5, + default_root_dir=str(path_run_dir), + callbacks=[checkpointing], + # callbacks=[checkpointing, early_stopping], + enable_checkpointing=True, + check_val_every_n_epoch=1, + log_every_n_steps=save_and_sample_every, + auto_lr_find=False, + # limit_train_batches=1000, + limit_val_batches=0, # 0 = disable validation - Note: Early Stopping no longer available + min_epochs=100, + max_epochs=epochs, + num_sanity_val_steps=2, + resume_from_checkpoint=resume_from_checkpoint + ) + + # ---------------- Execute Training ---------------- + trainer.fit(pipeline, datamodule=dm) + + # ------------- Save path to best model ------------- + pipeline.save_best_checkpoint(trainer.logger.log_dir, checkpointing.best_model_path) + + diff --git a/scripts/train_latent_embedder_3d.py b/scripts/train_latent_embedder_3d.py new file mode 100644 index 0000000..524a232 --- /dev/null +++ b/scripts/train_latent_embedder_3d.py @@ -0,0 +1,206 @@ + + + + + +from pathlib import Path +from datetime import datetime + +import torch +from torch.utils.data import ConcatDataset +from pytorch_lightning.trainer import Trainer +from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint + + +from medical_diffusion.data.datamodules import SimpleDataModule +from medical_diffusion.data.datasets import NiftiPairImageGenerator +from medical_diffusion.models.embedders.latent_embedders import VQVAE, VQGAN, VAE, VAEGAN +from torchvision.transforms import RandomCrop, Compose, ToPILImage, Resize, ToTensor, Lambda +import torch.multiprocessing +torch.multiprocessing.set_sharing_strategy('file_system') +import argparse + +parser = argparse.ArgumentParser() +parser.add_argument('-i', '--inputfolder', type=str, default="data/Task107_hecktor2021/labelsTrain/") +parser.add_argument('-t', '--targetfolder', type=str, default="data/Task107_hecktor2021/imagesTrain/") +parser.add_argument('--savefolder', type=str, default="./medfusion_3d/results") +parser.add_argument('--input_size', type=int, default=128) +parser.add_argument('--depth_size', type=int, default=128) +parser.add_argument('--num_channels', type=int, default=64) +parser.add_argument('--num_res_blocks', type=int, default=1) +parser.add_argument('--num_class_labels', type=int, default=2) +parser.add_argument('--train_lr', type=float, default=1e-4) +parser.add_argument('--batchsize', type=int, default=1) +parser.add_argument('--epochs', type=int, default=500000) +parser.add_argument('--timesteps', type=int, default=250) +parser.add_argument('--save_and_sample_every', type=int, default=1000) +parser.add_argument('--with_condition', default='True', action='store_true') +parser.add_argument('-r', '--resume_weight', type=str, default="") +args = parser.parse_args() + +inputfolder = args.inputfolder +targetfolder = args.targetfolder +input_size = args.input_size +depth_size = args.depth_size +num_channels = args.num_channels +num_res_blocks = args.num_res_blocks +num_class_labels = args.num_class_labels +save_and_sample_every = args.save_and_sample_every +with_condition = args.with_condition +resume_weight = args.resume_weight +train_lr = args.train_lr + + +transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + Lambda(lambda t: (t * 2) - 1), + Lambda(lambda t: t.transpose(3, 1)), +]) + +input_transform = Compose([ + Lambda(lambda t: torch.tensor(t).float()), + Lambda(lambda t: t.transpose(3, 1)), +]) + +if __name__ == "__main__": + + # --------------- Settings -------------------- + current_time = datetime.now().strftime("%Y_%m_%d_%H%M%S") + path_run_dir = Path.cwd() / 'runs' / 'VQGAN'/ str(current_time) + path_run_dir.mkdir(parents=True, exist_ok=True) + gpus = [0] if torch.cuda.is_available() else None + + dataset = NiftiPairImageGenerator( + inputfolder, + targetfolder, + input_size=input_size, + depth_size=depth_size, + transform=input_transform if with_condition else transform, + target_transform=transform, + full_channel_mask=True + ) + + + dm = SimpleDataModule( + ds_train = dataset, + batch_size=1, + # num_workers=0, + pin_memory=True + ) + + + # ------------ Initialize Model ------------ + # model = VAE( + # in_channels=3, + # out_channels=3, + # emb_channels=8, + # spatial_dims=2, + # hid_chs = [ 64, 128, 256, 512], + # kernel_sizes=[ 3, 3, 3, 3], + # strides = [ 1, 2, 2, 2], + # deep_supervision=1, + # use_attention= 'none', + # loss = torch.nn.MSELoss, + # # optimizer_kwargs={'lr':1e-6}, + # embedding_loss_weight=1e-6, + # sample_every_n_steps = 1000 + # ) + + # model.load_pretrained(Path.cwd()/'runs/2022_12_01_183752_patho_vae/last.ckpt', strict=True) + + # model = VAEGAN( + # in_channels=1, + # out_channels=1, + # emb_channels=8, + # spatial_dims=3, + # hid_chs = [ 64, 128, 256, 512], + # deep_supervision=1, + # use_attention= 'none', + # start_gan_train_step=-1, + # embedding_loss_weight=1e-6, + # sample_every_n_steps = 1000 + # ) + + # model.vqvae.load_pretrained(Path.cwd()/'runs/2022_11_25_082209_chest_vae/last.ckpt') + # model.load_pretrained(Path.cwd()/'runs/2022_11_25_232957_patho_vaegan/last.ckpt') + + + # model = VQVAE( + # in_channels=1, + # out_channels=1, + # emb_channels=4, + # num_embeddings = 8192, + # spatial_dims=3, + # hid_chs = [64, 128, 256, 512], + # embedding_loss_weight=1, + # beta=1, + # loss = torch.nn.L1Loss, + # deep_supervision=1, + # use_attention = 'none', + # sample_every_n_steps = save_and_sample_every + # ) + + + model = VQGAN( + in_channels=1, + out_channels=1, + emb_channels=4, + num_embeddings = 8192, + spatial_dims=3, + hid_chs = [64, 128, 256, 512], + embedding_loss_weight=1, + beta=1, + start_gan_train_step=-1, + pixel_loss = torch.nn.L1Loss, + deep_supervision=1, + use_attention='none', + ) + + # model.vqvae.load_pretrained(Path.cwd()/'runs/2022_12_13_093727_patho_vqvae/last.ckpt') + + + # -------------- Training Initialization --------------- + to_monitor = "train/L1" # "val/loss" + min_max = "min" + + early_stopping = EarlyStopping( + monitor=to_monitor, + min_delta=0.0, # minimum change in the monitored quantity to qualify as an improvement + patience=30, # number of checks with no improvement + mode=min_max + ) + checkpointing = ModelCheckpoint( + dirpath=str(path_run_dir), # dirpath + monitor=to_monitor, + every_n_train_steps=save_and_sample_every, + save_last=True, + save_top_k=5, + mode=min_max, + ) + trainer = Trainer( + accelerator='gpu', + devices=[0], + # precision=16, + # amp_backend='apex', + # amp_level='O2', + # gradient_clip_val=0.5, + default_root_dir=str(path_run_dir), + callbacks=[checkpointing], + # callbacks=[checkpointing, early_stopping], + enable_checkpointing=True, + check_val_every_n_epoch=None, + log_every_n_steps=save_and_sample_every, + # limit_train_batches=1000, + limit_val_batches=0, # 0 = disable validation - Note: Early Stopping no longer available + min_epochs=100, + max_epochs=1001, + num_sanity_val_steps=2, + ) + + # ---------------- Execute Training ---------------- + trainer.fit(model, datamodule=dm) + + # ------------- Save path to best model ------------- + model.save_best_checkpoint(trainer.logger.log_dir, checkpointing.best_model_path) + + diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..2d65928 --- /dev/null +++ b/setup.py @@ -0,0 +1,20 @@ +from setuptools import setup, find_packages + +with open('README.md', encoding='utf-8') as f: + long_description = f.read() + +with open('requirements.txt', encoding='utf-8') as f: + install_requires = f.read() + + + +setup( + name='Medical Diffusion', + author="", + version="1.0", + description="Diffusion model for medical images", + long_description=long_description, + long_description_content_type="text/markdown", + packages=find_packages(exclude=['contrib', 'docs', 'tests']), + install_requires=install_requires, +) \ No newline at end of file diff --git a/streamlit/pages/chest.py b/streamlit/pages/chest.py new file mode 100644 index 0000000..524b38d --- /dev/null +++ b/streamlit/pages/chest.py @@ -0,0 +1,41 @@ +import streamlit as st +import torch +import numpy as np + +from medical_diffusion.models.pipelines import DiffusionPipeline + +st.title("Chest X-ray images", anchor=None) +st.sidebar.markdown("Medfusion for chest X-ray image generation") +st.header('Information') +st.markdown('Medfusion was trained on the [CheXpert](https://stanfordmlgroup.github.io/competitions/chexpert/) dataset') + +st.header('Settings') +n_samples = st.number_input("Samples", min_value=1, max_value=25, value=4) +steps = st.number_input("Sampling steps", min_value=1, max_value=999, value=50) +guidance_scale = st.number_input("Guidance scale", min_value=1, max_value=10, value=1) +seed = st.number_input("Seed", min_value=0, max_value=None, value=1) +cond_str = st.radio("Cardiomegaly", ('Yes', 'No'), index=1, help="Conditioned on 'cardiomegaly' or 'no cardiomegaly'", horizontal=True) +torch.manual_seed(seed) + +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + +@st.cache(allow_output_mutation = True) +def init_pipeline(): + pipeline = DiffusionPipeline.load_from_checkpoint('runs/2022_11_27_085654_chest_diffusion/last.ckpt') + return pipeline + +if st.button('Sample'): + cond = {'Yes':1, 'No':0}[cond_str] + condition = torch.tensor([cond]*n_samples, device=device) + un_cond = torch.tensor([1-cond]*n_samples, device=device) + + pipeline = init_pipeline() + pipeline.to(device) + images = pipeline.sample(n_samples, (8, 32, 32), guidance_scale=guidance_scale, condition=condition, un_cond=un_cond, steps=steps, use_ddim=True ) + + images = images.clamp(-1, 1) + images = images.cpu().numpy() # [B, C, H, W] + images = (images+1)/2 # Transform from [-1, 1] to [0, 1] + + images = [np.moveaxis(img, 0, -1) for img in images] + st.image(images, channels="RGB", output_format='png') # expects (w,h,3) \ No newline at end of file diff --git a/streamlit/pages/colon.py b/streamlit/pages/colon.py new file mode 100644 index 0000000..b0e0953 --- /dev/null +++ b/streamlit/pages/colon.py @@ -0,0 +1,43 @@ +import streamlit as st +import torch +import numpy as np + +from medical_diffusion.models.pipelines import DiffusionPipeline + +st.title("Colon histology images", anchor=None) +st.sidebar.markdown("Medfusion for colon histology image generation") +st.header('Information') +st.markdown('Medfusion was trained on the [CRC-DX](https://zenodo.org/record/3832231#.Y29uInbMKbg) dataset') + + + +st.header('Settings') +n_samples = st.number_input("Samples", min_value=1, max_value=25, value=4) +steps = st.number_input("Sampling steps", min_value=1, max_value=999, value=50) +guidance_scale = st.number_input("Guidance scale", min_value=1, max_value=10, value=1) +seed = st.number_input("Seed", min_value=0, max_value=None, value=1) +cond_str = st.radio("Microsatellite stable", ('Yes', 'No'), index=1, help="Conditioned on 'microsatellite stable (MSS)' or 'microsatellite instable (MSI)'", horizontal=True) +torch.manual_seed(seed) +device_str = 'cuda' if torch.cuda.is_available() else 'cpu' +device = torch.device(device_str) + +@st.cache(allow_output_mutation = True) +def init_pipeline(): + pipeline = DiffusionPipeline.load_from_checkpoint('runs/2022_12_02_174623_patho_diffusion/last.ckpt') + return pipeline + +if st.button(f'Sample (using {device_str})'): + cond = {'Yes':1, 'No':0}[cond_str] + condition = torch.tensor([cond]*n_samples, device=device) + un_cond = torch.tensor([1-cond]*n_samples, device=device) + + pipeline = init_pipeline() + pipeline.to(device) + images = pipeline.sample(n_samples, (4, 64, 64), guidance_scale=guidance_scale, condition=condition, un_cond=un_cond, steps=steps, use_ddim=True ) + + images = images.clamp(-1, 1) + images = images.cpu().numpy() # [B, C, H, W] + images = (images+1)/2 # Transform from [-1, 1] to [0, 1] + + images = [np.moveaxis(img, 0, -1) for img in images] + st.image(images, channels="RGB", output_format='png') # expects (w,h,3) \ No newline at end of file diff --git a/streamlit/pages/eye.py b/streamlit/pages/eye.py new file mode 100644 index 0000000..ccb7c08 --- /dev/null +++ b/streamlit/pages/eye.py @@ -0,0 +1,41 @@ +import streamlit as st +import torch +import numpy as np + +from medical_diffusion.models.pipelines import DiffusionPipeline + +st.title("Eye fundus images", anchor=None) +st.sidebar.markdown("Medfusion for eye fundus image generation") +st.header('Information') +st.markdown('Medfusion was trained on the [AIROGS](https://airogs.grand-challenge.org/data-and-challenge/) dataset') + + +st.header('Settings') +n_samples = st.number_input("Samples", min_value=1, max_value=25, value=4) +steps = st.number_input("Sampling steps", min_value=1, max_value=999, value=50) +guidance_scale = st.number_input("Guidance scale", min_value=1, max_value=10, value=1) +seed = st.number_input("Seed", min_value=0, max_value=None, value=1) +cond_str = st.radio("Glaucoma", ('Yes', 'No'), index=1, help="Conditioned on 'referable glaucoma' or 'no referable glaucoma'", horizontal=True) +torch.manual_seed(seed) +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + +@st.cache(allow_output_mutation = True) +def init_pipeline(): + pipeline = DiffusionPipeline.load_from_checkpoint('runs/2022_11_11_175610_eye_diffusion/last.ckpt') + return pipeline + +if st.button('Sample'): + cond = {'Yes':1, 'No':0}[cond_str] + condition = torch.tensor([cond]*n_samples, device=device) + un_cond = torch.tensor([1-cond]*n_samples, device=device) + + pipeline = init_pipeline() + pipeline.to(device) + images = pipeline.sample(n_samples, (4, 32, 32), guidance_scale=guidance_scale, condition=condition, un_cond=un_cond, steps=steps, use_ddim=True ) + + images = images.clamp(-1, 1) + images = images.cpu().numpy() # [B, C, H, W] + images = (images+1)/2 # Transform from [-1, 1] to [0, 1] + + images = [np.moveaxis(img, 0, -1) for img in images] + st.image(images, channels="RGB", output_format='png') # expects (w,h,3) \ No newline at end of file diff --git a/streamlit/welcome.py b/streamlit/welcome.py new file mode 100644 index 0000000..1cc615d --- /dev/null +++ b/streamlit/welcome.py @@ -0,0 +1,5 @@ +import streamlit as st + +st.title('Welcome to Medfusion') +st.text("A latent Denoising Diffusion Probabilistic Model (DDPM) for Medial Image Synthesis") +st.image('media/Medfusion.png', channels="RGB", output_format='png') \ No newline at end of file diff --git a/tests/dataset/test_dataset.py b/tests/dataset/test_dataset.py new file mode 100644 index 0000000..a1d677b --- /dev/null +++ b/tests/dataset/test_dataset.py @@ -0,0 +1,27 @@ +from medical_diffusion.data.datasets import SimpleDataset2D + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image + +path_out = Path().cwd()/'results'/'test' +path_out.mkdir(parents=True, exist_ok=True) + +# ds = SimpleDataset2D( +# crawler_ext='jpg', +# image_resize=(352, 528), +# image_crop=(192, 288), +# path_root='/home/gustav/Documents/datasets/AIROGS/dataset', +# ) + +ds = SimpleDataset2D( + crawler_ext='tif', + image_resize=None, + image_crop=None, + path_root='/home/gustav/Documents/datasets/BREAST-DIAGNOSIS/dataset_lr2d/' +) + +images = [ds[n]['source'] for n in range(4)] + + +save_image(images, path_out/'test.png') \ No newline at end of file diff --git a/tests/dataset/test_dataset_3d.py b/tests/dataset/test_dataset_3d.py new file mode 100644 index 0000000..5416650 --- /dev/null +++ b/tests/dataset/test_dataset_3d.py @@ -0,0 +1,25 @@ +from medical_diffusion.data.datasets import SimpleDataset3D + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image +import torch + +path_out = Path().cwd()/'results'/'test' +path_out.mkdir(parents=True, exist_ok=True) + + +ds = SimpleDataset3D( + crawler_ext='nii.gz', + image_resize=None, + image_crop=None, + path_root='/mnt/hdd/datasets/breast/DUKE/dataset_lr_256_256_32', + use_znorm=False +) + +image = ds[0]['source'] # [C, D, H, W] + +image = image.swapaxes(0, 1) # [D, C, H, W] -> treat D as Batch Dimension +image = image/2+0.5 + +save_image(image, path_out/'test.png') \ No newline at end of file diff --git a/tests/dataset/test_dataset_airogs.py b/tests/dataset/test_dataset_airogs.py new file mode 100644 index 0000000..0f0a1c4 --- /dev/null +++ b/tests/dataset/test_dataset_airogs.py @@ -0,0 +1,27 @@ +from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset + +import torch.nn.functional as F + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image + +path_out = Path().cwd()/'results'/'test' +path_out.mkdir(parents=True, exist_ok=True) + +ds = AIROGSDataset( + crawler_ext='jpg', + image_resize=(256, 256), + image_crop=(256, 256), + path_root='/mnt/hdd/datasets/eye/AIROGS/data/', # '/home/gustav/Documents/datasets/AIROGS/dataset', '/mnt/hdd/datasets/eye/AIROGS/data/' +) + +weights = ds.get_weights() +images = [ds[n]['source'] for n in range(4)] + +interpolation_mode = 'bilinear' +images = [F.interpolate(img[None], size=[128, 128], mode=interpolation_mode, align_corners=None)[0] for img in images] + +images = [img/2+0.5 for img in images] + +save_image(images, path_out/'test.png') \ No newline at end of file diff --git a/tests/dataset/test_dataset_airogs_prep.py b/tests/dataset/test_dataset_airogs_prep.py new file mode 100644 index 0000000..b0ef97e --- /dev/null +++ b/tests/dataset/test_dataset_airogs_prep.py @@ -0,0 +1,23 @@ +from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset + +import torch.nn.functional as F + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image + + +path_out = Path('/mnt/hdd/datasets/eye/AIROGS/data_256x256/') +path_out.mkdir(parents=True, exist_ok=True) + +ds = AIROGSDataset( + crawler_ext='jpg', + image_resize=256, + image_crop=(256, 256), + path_root='/mnt/hdd/datasets/eye/AIROGS/data/', # '/home/gustav/Documents/datasets/AIROGS/dataset', '/mnt/hdd/datasets/eye/AIROGS/data/' +) + +weights = ds.get_weights() + +for img in ds: + img['source'].save(path_out/f"{img['uid']}.jpg") \ No newline at end of file diff --git a/tests/dataset/test_dataset_chexpert.py b/tests/dataset/test_dataset_chexpert.py new file mode 100644 index 0000000..73019ae --- /dev/null +++ b/tests/dataset/test_dataset_chexpert.py @@ -0,0 +1,51 @@ + + +from pathlib import Path +from torchvision.utils import save_image +import pandas as pd +import torch +import torch.nn.functional as F +from medical_diffusion.data.datasets import CheXpert_Dataset +import math + +path_out = Path().cwd()/'results'/'test'/'CheXpert' +path_out.mkdir(parents=True, exist_ok=True) + +# path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/train') +path_root = Path('/media/NAS/Chexpert_dataset/CheXpert-v1.0/train') +mode = path_root.name +labels = pd.read_csv(path_root.parent/f'{mode}.csv', index_col='Path') +labels = labels[labels['Frontal/Lateral'] == 'Frontal'] +labels.loc[labels['Sex'] == 'Unknown', 'Sex'] = 'Female' # Must be "female" to match paper data +labels.fillna(3, inplace=True) +str_2_int = {'Sex': {'Male':0, 'Female':1}, 'Frontal/Lateral':{'Frontal':0, 'Lateral':1}, 'AP/PA':{'AP':0, 'PA':1, 'LL':2, 'RL':3}} +labels.replace(str_2_int, inplace=True) + +# Get patients +labels['patient'] = labels.index.str.split('/').str[2] +labels.set_index('patient',drop=True, append=True, inplace=True) + +for c in labels.columns: + print(labels[c].value_counts(dropna=False)) + +ds = CheXpert_Dataset( + crawler_ext='jpg', + image_resize=(256, 256), + # image_crop=(256, 256), + path_root=path_root, +) + + + + +x = torch.stack([ds[n]['source'] for n in range(4)]) +b = x.shape[0] +save_image(x, path_out/'samples_down_0.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True ) + +size_0 = torch.tensor(x.shape[2:]) + +for i in range(3): + new_size = torch.div(size_0, 2**(i+1), rounding_mode='floor' ) + x_i = F.interpolate(x, size=tuple(new_size), mode='nearest', align_corners=None) + print(x_i.shape) + save_image(x_i, path_out/f'samples_down_{i+1}.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True) \ No newline at end of file diff --git a/tests/dataset/test_dataset_chexpert_2.py b/tests/dataset/test_dataset_chexpert_2.py new file mode 100644 index 0000000..889348b --- /dev/null +++ b/tests/dataset/test_dataset_chexpert_2.py @@ -0,0 +1,42 @@ + + +from pathlib import Path +from torchvision.utils import save_image +import pandas as pd +import torch +import torch.nn.functional as F +from medical_diffusion.data.datasets import CheXpert_Dataset, CheXpert_2_Dataset +import math + +path_out = Path().cwd()/'results'/'test'/'CheXpert_2' +path_out.mkdir(parents=True, exist_ok=True) + +path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/preprocessed_tianyu') +labels = pd.read_csv(path_root/'labels/cheXPert_label.csv', index_col='Path') + + +# Get patients +# labels['patient'] = labels.index.str.split('/').str[2] +# labels.set_index('patient',drop=True, append=True, inplace=True) + +# for c in labels.columns: +# print(labels[c].value_counts(dropna=False)) + +ds = CheXpert_2_Dataset( + path_root=path_root, +) + + +weights = ds.get_weights() + +x = torch.stack([ds[n]['source'] for n in range(4)]) +b = x.shape[0] +save_image(x, path_out/'samples_down_0.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True ) + +size_0 = torch.tensor(x.shape[2:]) + +for i in range(3): + new_size = torch.div(size_0, 2**(i+1), rounding_mode='floor' ) + x_i = F.interpolate(x, size=tuple(new_size), mode='nearest', align_corners=None) + print(x_i.shape) + save_image(x_i, path_out/f'samples_down_{i+1}.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True) \ No newline at end of file diff --git a/tests/dataset/test_dataset_duke.py b/tests/dataset/test_dataset_duke.py new file mode 100644 index 0000000..188dd70 --- /dev/null +++ b/tests/dataset/test_dataset_duke.py @@ -0,0 +1,27 @@ +from medical_diffusion.data.datasets import DUKEDataset + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image +from pathlib import Path + +path_out = Path().cwd()/'results'/'test' +path_out.mkdir(parents=True, exist_ok=True) + +ids = [int(path_file.stem.split('_')[-1]) for path_file in Path('/mnt/hdd/datasets/breast/Diffusion2D/images').glob('*.png')] +print(min(ids), max(ids)) # [0, 53] + +ds = DUKEDataset( + crawler_ext='png', + image_resize=None, + image_crop=None, + path_root='/mnt/hdd/datasets/breast/Diffusion2D/images', +) + +print(ds[0]) +images = [ds[n]['source'] for n in range(4)] + + + + +save_image(images, path_out/'test.png') \ No newline at end of file diff --git a/tests/dataset/test_dataset_pathology.py b/tests/dataset/test_dataset_pathology.py new file mode 100644 index 0000000..3d5360e --- /dev/null +++ b/tests/dataset/test_dataset_pathology.py @@ -0,0 +1,25 @@ +from medical_diffusion.data.datasets import MSIvsMSS_Dataset + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image +from pathlib import Path + +path_out = Path().cwd()/'results'/'test' +path_out.mkdir(parents=True, exist_ok=True) + + +ds = MSIvsMSS_Dataset( + crawler_ext='png', + image_resize=None, + image_crop=None, + path_root='/home/gustav/Documents/datasets/Kather/data/CRC/train', +) + +print(ds[0]) +images = [ds[n]['source']/2+0.5 for n in range(4)] + + + + +save_image(images, path_out/'test.png') \ No newline at end of file diff --git a/tests/dataset/test_dataset_pathology_2.py b/tests/dataset/test_dataset_pathology_2.py new file mode 100644 index 0000000..e96ee34 --- /dev/null +++ b/tests/dataset/test_dataset_pathology_2.py @@ -0,0 +1,26 @@ +from medical_diffusion.data.datasets import MSIvsMSS_2_Dataset + +import matplotlib.pyplot as plt +from pathlib import Path +from torchvision.utils import save_image +from pathlib import Path + +path_out = Path().cwd()/'results'/'test'/'patho2' +path_out.mkdir(parents=True, exist_ok=True) + + +ds = MSIvsMSS_2_Dataset( + crawler_ext='jpg', + image_resize=None, + image_crop=None, + # path_root='/home/gustav/Documents/datasets/Kather_2/train', + path_root='/mnt/hdd/datasets/pathology/kather_msi_mss_2/train/' +) + +print(ds[0]) +images = [ds[n]['source']/2+0.5 for n in range(4)] + + + + +save_image(images, path_out/'test.png') \ No newline at end of file diff --git a/tests/losses/test_ffl.py b/tests/losses/test_ffl.py new file mode 100644 index 0000000..0dcdc88 --- /dev/null +++ b/tests/losses/test_ffl.py @@ -0,0 +1,9 @@ +from medical_diffusion.loss.ffl_loss import FocalFrequencyLoss as FFL +ffl = FFL(loss_weight=1.0, alpha=1.0) # initialize nn.Module class + +import torch +fake = torch.randn(4, 3, 64, 64) # replace it with the predicted tensor of shape (N, C, H, W) +real = torch.randn(4, 3, 64, 64) # replace it with the target tensor of shape (N, C, H, W) + +loss = ffl(fake, real) # calculate focal frequency loss +print(loss) diff --git a/tests/losses/test_lpips.py b/tests/losses/test_lpips.py new file mode 100644 index 0000000..606fbac --- /dev/null +++ b/tests/losses/test_lpips.py @@ -0,0 +1,37 @@ + + +import torch +from medical_diffusion.loss.perceivers import LPIPS +from medical_diffusion.data.datasets import AIROGSDataset, SimpleDataset3D + +loss = LPIPS(normalize=False) +torch.manual_seed(0) + +# input = torch.randn((1, 3, 16, 128, 128)) # 3D - 1 channel +# input = torch.randn((1, 1, 128, 128)) # 2D - 1 channel +# input = torch.randn((1, 3, 128, 128)) # 2D - 3 channel + +# target = input/2 + +# print(loss(input, target)) + + +# ds = AIROGSDataset( +# crawler_ext='jpg', +# image_resize=(256, 256), +# image_crop=(256, 256), +# path_root='/mnt/hdd/datasets/eye/AIROGS/data/', # '/home/gustav/Documents/datasets/AIROGS/dataset', '/mnt/hdd/datasets/eye/AIROGS/data/' +# ) +ds = SimpleDataset3D( + crawler_ext='nii.gz', + image_resize=None, + image_crop=None, + flip=True, + path_root='/mnt/hdd/datasets/breast/DUKE/dataset_lr_256_256_32', + use_znorm=True + ) + +input = ds[0]['source'][None] + +target = torch.randn_like(input) +print(loss(input, target)) \ No newline at end of file diff --git a/tests/models/latent_embedders/test_vae.py b/tests/models/latent_embedders/test_vae.py new file mode 100644 index 0000000..6e4f0a3 --- /dev/null +++ b/tests/models/latent_embedders/test_vae.py @@ -0,0 +1,45 @@ +from pathlib import Path +import math + +import torch +from torchvision.utils import save_image + +from medical_diffusion.data.datamodules import SimpleDataModule +from medical_diffusion.data.datasets import AIROGSDataset, SimpleDataset2D +from medical_diffusion.models.embedders.latent_embedders import VQVAE, VQGAN + + +path_out = Path.cwd()/'results/test' +path_out.mkdir(parents=True, exist_ok=True) +device = torch.device('cuda') +torch.manual_seed(0) + +ds = AIROGSDataset( + crawler_ext='jpg', + image_resize=(256, 256), + image_crop=(256, 256), + path_root='/home/gustav/Documents/datasets/AIROGS/dataset', # '/home/gustav/Documents/datasets/AIROGS/dataset', '/mnt/hdd/datasets/eye/AIROGS/data/' +) + +x = ds[0]['source'][None].to(device) # [B, C, H, W] + +# v_min = x.min() +# v_max = x.max() +# x = (x-v_min)/(v_max-v_min) +# x = x*2-1 + +# x = (x+1)/2 +# x = x*(v_max-v_min)+v_min + +embedder = VQVAE.load_from_checkpoint('runs/2022_10_06_233542_vqvae_eye/last.ckpt') +embedder.to(device) + + +with torch.no_grad(): + z = embedder.encode(x) + +x_pred = embedder.decode(z) + + +images = torch.cat([x, x_pred]) +save_image(images, path_out/'test_latent_embedder.png', nrwos=int(math.sqrt(images.shape[0])), normalize=True, scale_each=True) \ No newline at end of file diff --git a/tests/models/latent_embedders/test_vae_simple.py b/tests/models/latent_embedders/test_vae_simple.py new file mode 100644 index 0000000..e2c8d6f --- /dev/null +++ b/tests/models/latent_embedders/test_vae_simple.py @@ -0,0 +1,12 @@ +import torch +from medical_diffusion.models.embedders.latent_embedders import VAE + + +input = torch.randn((1, 3, 128, 128)) # [B, C, H, W] + + +model = VAE(in_channels=3, out_channels=3, spatial_dims = 2, deep_supervision=True) +output = model(input) +print(output) + + diff --git a/tests/models/test_unet.py b/tests/models/test_unet.py new file mode 100644 index 0000000..915b5f3 --- /dev/null +++ b/tests/models/test_unet.py @@ -0,0 +1,38 @@ + +from medical_diffusion.models.estimators import UNet +from medical_diffusion.models.embedders import LabelEmbedder + +import torch + +cond_embedder = LabelEmbedder +cond_embedder_kwargs = { + 'emb_dim': 64, + 'num_classes':2 +} + +noise_estimator = UNet +noise_estimator_kwargs = { + 'in_ch':3, + 'out_ch':3, + 'spatial_dims':2, + 'hid_chs': [32, 64, 128, 256], + 'kernel_sizes': [ 1, 3, 3, 3], + 'strides': [ 1, 2, 2, 2], + # 'kernel_sizes':[(1,3,3), (1,3,3), (1,3,3), 3, 3], + # 'strides':[ 1, (1,2,2), (1,2,2), 2, 2], + # 'kernel_sizes':[3, 3, 3, 3, 3], + # 'strides': [1, 2, 2, 2, 2], + 'cond_embedder':cond_embedder, + 'cond_embedder_kwargs': cond_embedder_kwargs, + 'use_attention': 'linear', #['none', 'spatial', 'spatial', 'spatial', 'linear'], + } + + +model = UNet(**noise_estimator_kwargs) +# print(model) + +input = torch.randn((1,3,256,256)) +time = torch.randn([1,]) +cond = torch.tensor([0,]) +out_hor, out_ver = model(input, time, cond) +# print(out_hor) \ No newline at end of file diff --git a/tests/models/test_unet_openai.py b/tests/models/test_unet_openai.py new file mode 100644 index 0000000..c2a1a27 --- /dev/null +++ b/tests/models/test_unet_openai.py @@ -0,0 +1,19 @@ + +from medical_diffusion.external.stable_diffusion.unet_openai import UNetModel +from medical_diffusion.models.embedders import LabelEmbedder + +import torch + + +noise_estimator = UNetModel +noise_estimator_kwargs = {} + + +model = noise_estimator(**noise_estimator_kwargs) +print(model) + +input = torch.randn((1,4,32,32)) +time = torch.randn([1,]) +cond = None #torch.tensor([0,]) +out_hor, out_ver = model(input, time, cond) +print(out_hor) \ No newline at end of file diff --git a/tests/models/test_vae3d.py b/tests/models/test_vae3d.py new file mode 100644 index 0000000..c2105dd --- /dev/null +++ b/tests/models/test_vae3d.py @@ -0,0 +1,19 @@ +import torch +from medical_diffusion.models.embedders.latent_embedders import VQVAE, VQGAN + + +input = torch.randn((1, 3, 16, 128, 128)) # [B, C, H, W] + + +model = VQVAE(in_channels=3, out_channels=3, spatial_dims = 3, emb_channels=1, deep_supervision=True) +# output = model(input) +# print(output) +loss = model._step({'source':input}, 1, 'train', 1, 1) +print(loss) + + +# model = VQGAN(in_channels=3, out_channels=3, spatial_dims = 3, emb_channels=1, deep_supervision=True) +# # output = model(input) +# # print(output) +# loss = model._step({'source':input}, 1, 'train', 1, 1) +# print(loss) diff --git a/tests/models/test_vae_diffusers.py b/tests/models/test_vae_diffusers.py new file mode 100644 index 0000000..5597f1f --- /dev/null +++ b/tests/models/test_vae_diffusers.py @@ -0,0 +1,23 @@ + +import torch +from medical_diffusion.external.diffusers.vae import VQModel, VQVAEWrapper, VAEWrapper + + +# model = AutoencoderKL(in_channels=3, out_channels=3) + +input = torch.randn((1, 3, 128, 128)) # [B, C, H, W] + +# model = VQModel(in_channels=3, out_channels=3) +# output = model(input, sample_posterior=True) +# print(output) + +model = VQVAEWrapper(in_ch=3, out_ch=3) +output = model(input) +print(output) + + + + +# model = VAEWrapper(in_ch=3, out_ch=3) +# output = model(input) +# print(output) \ No newline at end of file diff --git a/tests/models/time_embedders/test.py b/tests/models/time_embedders/test.py new file mode 100644 index 0000000..c4eb521 --- /dev/null +++ b/tests/models/time_embedders/test.py @@ -0,0 +1,18 @@ +import torch +from medical_diffusion.models.embedders import TimeEmbbeding, SinusoidalPosEmb, LabelEmbedder + +cond_emb = LabelEmbedder(10, num_classes=2) +c = torch.tensor([[0,], [1,]]) +v = cond_emb(c) +print(v) + + +tim_emb = SinusoidalPosEmb(20, max_period=10) +t = torch.tensor([1,2,3, 1000]) +v = tim_emb(t) +print(v) + +tim_emb = TimeEmbbeding(4*4, SinusoidalPosEmb, {'max_period':10}) +t = torch.tensor([1,2,3, 1000]) +v = tim_emb(t) +print(v) \ No newline at end of file diff --git a/tests/noise_schedulers/test.py b/tests/noise_schedulers/test.py new file mode 100644 index 0000000..7373130 --- /dev/null +++ b/tests/noise_schedulers/test.py @@ -0,0 +1,43 @@ + + +from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler +import torch +from pathlib import Path + +from torchvision.utils import save_image + + +device = torch.device('cuda') + +scheduler = GaussianNoiseScheduler() +# scheduler.to(device) +path_out = Path.cwd()/'results/test' + + +# print(scheduler.posterior_mean_coef1) +torch.manual_seed(0) +# x_0 = torch.ones((2, 3, 64, 64)) +x_0 = torch.rand((2, 3, 64, 64)) +noise = torch.randn_like(x_0) +t = torch.tensor([0, 999]) + +x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) + +# x_0_pred = scheduler.estimate_x_t(x_0=x_0, t=torch.full_like(t, 0) , noise=noise) +# assert (x_0_pred == x_0).all(), "For t=0, function should return x_0" +# x_t, noise, t = scheduler.sample(x_0) +# print(x_t) + + +# x_0 = scheduler.estimate_x_0(x_t, noise, t) +# print(x_0) +# print(x_0.shape) + + + +pred = torch.randn_like(x_t) +x_t_prior, _ = scheduler.estimate_x_t_prior_from_x_T(x_t, t, pred, clip_x0=False) +print(x_t_prior) + +# save_image(x_t_prior, path_out/'test2.png') + diff --git a/tests/noise_schedulers/test_data.py b/tests/noise_schedulers/test_data.py new file mode 100644 index 0000000..5ed5457 --- /dev/null +++ b/tests/noise_schedulers/test_data.py @@ -0,0 +1,120 @@ + + +from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler +from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset, CheXpert_Dataset, MSIvsMSS_2_Dataset +from medical_diffusion.models.embedders.latent_embedders import VAE, VAEGAN +import torch +from pathlib import Path +import matplotlib.pyplot as plt +import seaborn as sns +from math import ceil + + +from torchvision.utils import save_image + +# ds = SimpleDataset2D( +# crawler_ext='jpg', +# image_resize=(352, 528), +# image_crop=(192, 288), +# path_root='/home/gustav/Documents/datasets/AIROGS/dataset', +# ) + +# ds = AIROGSDataset( +# crawler_ext='jpg', +# image_resize=(256, 256), +# image_crop=(256, 256), +# path_root='/home/gustav/Documents/datasets/AIROGS/dataset', # '/home/gustav/Documents/datasets/AIROGS/dataset', /mnt/hdd/datasets/eye/AIROGS/data/ +# ) +# ds = CheXpert_Dataset( +# crawler_ext='jpg', +# augment_horizontal_flip=False, +# augment_vertical_flip=False, +# path_root='/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/preprocessed/valid', +# ) + +ds = MSIvsMSS_2_Dataset( + crawler_ext='jpg', + image_resize=None, + image_crop=None, + augment_horizontal_flip=False, + augment_vertical_flip=False, + # path_root='/home/gustav/Documents/datasets/Kather_2/train', + path_root='/mnt/hdd/datasets/pathology/kather_msi_mss_2/train/', + ) + +device = torch.device('cuda') + +scheduler = GaussianNoiseScheduler(timesteps=1000, beta_start=1e-4, schedule_strategy='scaled_linear') +# scheduler.to(device) +path_out = Path.cwd()/'results/test/scheduler' +path_out.mkdir(parents=True, exist_ok=True) + + +# print(scheduler.posterior_mean_coef1) +torch.manual_seed(0) +x_0 = ds[0]['source'][None] # [B, C, H, W] + + + +embedder = VAE.load_from_checkpoint('runs/2022_11_25_232957_patho_vaegan/last_vae.ckpt') +with torch.no_grad(): + x_0 = embedder.encode(x_0) + +# x_0 = (x_0-x_0.min())/(x_0.max()-x_0.min()) +# x_0 = x_0*2-1 +# x*2-1 = (x-0.5)*2 + +noise = torch.randn_like(x_0) + +x_ts = [] +step=100 + + +for t in range(0, scheduler.T+step, step): + t = torch.tensor([t]) + x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) # [B, C, H, W] + print(t, x_t.mean(), x_t.std()) + x_ts.append(x_t) + +x_ts = torch.cat(x_ts) +# save_image(x_ts, path_out/'scheduler_nosing.png', normalize=True, scale_each=True) + + + + +binrange=(-2.5,2.5) +bins = 50 + +ncols=8 +nelem = (scheduler.T+step)//step+2 +nrows = ceil(nelem/8) +fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*3, nrows*3)) +ax_iter = iter(ax.flatten()) + + + +for axis in ax_iter: + axis.spines['top'].set_visible(False) + axis.spines['right'].set_visible(False) + axis.spines['left'].set_visible(False) + axis.axes.get_yaxis().set_visible(False) +ax_iter = iter(ax.flatten()) + +axis = next(ax_iter) +sns.histplot(x=x_0.flatten(), bins=bins, binrange=binrange, ax=axis) + +for t in range(0, scheduler.T+step, step): + print(t) + t = torch.tensor([t]) + x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) # [B, C, H, W] + axis = next(ax_iter) + sns.histplot(x=x_t.flatten(), bins=bins, binrange=binrange, ax=axis) + +axis = next(ax_iter) +sns.histplot(x=noise.flatten(), bins=bins, binrange=binrange, ax=axis) + +fig.tight_layout() +fig.savefig(path_out/'scheduler_nosing_histo.png') + + + diff --git a/tests/noise_schedulers/test_data_qq.py b/tests/noise_schedulers/test_data_qq.py new file mode 100644 index 0000000..b049b61 --- /dev/null +++ b/tests/noise_schedulers/test_data_qq.py @@ -0,0 +1,76 @@ + + +from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler +from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset +from medical_diffusion.models.embedders.latent_embedders import VQVAE +import torch +from pathlib import Path +import matplotlib.pyplot as plt +import seaborn as sns +from math import ceil + + +import statsmodels.api as sm + + + + + +device = torch.device('cuda') +path_out = Path.cwd()/'results/test' +torch.manual_seed(0) + +ds = AIROGSDataset( + crawler_ext='jpg', + image_resize=(256, 256), + image_crop=(256, 256), + path_root='/home/gustav/Documents/datasets/AIROGS/dataset', # '/home/gustav/Documents/datasets/AIROGS/dataset', /mnt/hdd/datasets/eye/AIROGS/data/ + ) +x_0 = ds[0]['source'][None] # [B, C, H, W] + + +scheduler = GaussianNoiseScheduler(timesteps=500, schedule_strategy='scaled_linear') + + +# embedder = VQVAE.load_from_checkpoint('runs/2022_10_06_233542_vqvae_eye/last.ckpt') +# with torch.no_grad(): +# x_0 = embedder.encode(x_0) + +noise = torch.randn_like(x_0) + +step=100 +binrange=(-2.5,2.5) +bins = 50 + +ncols=8 +nelem = (scheduler.T+step)//step+2 +nrows = ceil(nelem/8) +fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*3, nrows*3)) +ax_iter = iter(ax.flatten()) +for axis in ax_iter: + axis.spines['top'].set_visible(False) + axis.spines['right'].set_visible(False) + axis.spines['left'].set_visible(False) + axis.axes.get_yaxis().set_visible(False) +ax_iter = iter(ax.flatten()) + + + +axis = next(ax_iter) +sm.qqplot(x_0.flatten(), line='45', ax=axis) + +for t in range(0, scheduler.T+step, step): + print(t) + t = torch.tensor([t]) + x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) # [B, C, H, W] + axis = next(ax_iter) + sm.qqplot(x_t.flatten(), line='45', ax=axis) + +axis = next(ax_iter) +sm.qqplot(noise.flatten(), line='45', ax=axis) + +fig.tight_layout() +fig.savefig(path_out/'scheduler_nosing_qq.png') + + + diff --git a/tests/noise_schedulers/test_data_reverse.py b/tests/noise_schedulers/test_data_reverse.py new file mode 100644 index 0000000..3a1c42c --- /dev/null +++ b/tests/noise_schedulers/test_data_reverse.py @@ -0,0 +1,59 @@ + + +from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler +from medical_diffusion.data.datasets import SimpleDataset2D +from medical_diffusion.models.pipelines import DiffusionPipeline +import torch +from pathlib import Path + +from torchvision.utils import save_image + +ds = SimpleDataset2D( + crawler_ext='jpg', + image_resize=(352, 528), + image_crop=(192, 288), + path_root='/home/gustav/Documents/datasets/AIROGS/dataset', +) + +device = torch.device('cuda') + +pipeline = DiffusionPipeline.load_from_checkpoint('runs/2022_09_22_153738/last.ckpt') +pipeline.to(device) + +scheduler = GaussianNoiseScheduler() +scheduler.to(device) + + +path_out = Path.cwd()/'results/test' +torch.manual_seed(0) + + +x_0 = ds[0]['source'][None] # [B, C, H, W] +x_0 = x_0.to(device) +x_0 = x_0*2-1 +noise = torch.rand_like(x_0) + +x_ts = [] +x_0_preds = [] +for t in range(0, 1000, 100): + time = torch.tensor([t], device=device) + x_t = scheduler.estimate_x_t(x_0=x_0, t=time, noise=noise) # [B, C, H, W] + x_0_pred = pipeline.denoise(x_t, i=t) + x_t = x_t/2+0.5 + x_0_pred = x_0_pred/2+0.5 + x_ts.append(x_t) + x_0_preds.append(x_0_pred) +# print(x_t) +x_ts = torch.cat(x_ts) +save_image(x_ts, path_out/'test2.png') + +x_0_preds = torch.cat(x_0_preds) +save_image(x_0_preds, path_out/'test3.png') + +# x_0 = scheduler.estimate_x_0(x_t, noise, t) +# # print(x_0) + +# x_t_prior = scheduler.estimate_x_t_prior_from_noise(x_t, t, noise, noise=noise) + + + diff --git a/tests/utils/test_attention.py b/tests/utils/test_attention.py new file mode 100644 index 0000000..f13374e --- /dev/null +++ b/tests/utils/test_attention.py @@ -0,0 +1,21 @@ + +import torch + +from medical_diffusion.models.utils.attention_blocks import LinearTransformer, SpatialTransformer + + +input = torch.randn((1, 32, 16, 64, 64)) # 3D +input = torch.randn((1, 32, 64, 64)) # 2D + +b, ch, *_ = input.shape +dim = input.ndim +# attention = SpatialTransformer(dim-2, in_channels=ch, out_channels=ch, num_heads=8) +# attention(input) + +embedding = input +embedding = None +emb_dim = embedding.shape[1] if embedding is not None else None +attention = LinearTransformer(input.ndim-2, in_channels=ch, out_channels=ch, num_heads=3, emb_dim=emb_dim) +attention = SpatialTransformer(input.ndim-2, in_channels=ch, out_channels=ch, num_heads=3, emb_dim=emb_dim) + +print(attention(input, embedding)) \ No newline at end of file diff --git a/tests/utils/test_attention_vs_sd.py b/tests/utils/test_attention_vs_sd.py new file mode 100644 index 0000000..762af10 --- /dev/null +++ b/tests/utils/test_attention_vs_sd.py @@ -0,0 +1,35 @@ + +import torch + +from medical_diffusion.models.utils.attention_blocks import LinearTransformer,LinearTransformerNd, SpatialTransformer + +from medical_diffusion.external.stable_diffusion.unet_openai import AttentionBlock +from medical_diffusion.external.stable_diffusion.attention import SpatialSelfAttention # similar/equal to Attention used SD-UNet implementation + + + +torch.manual_seed(0) +input = torch.randn((1, 32, 64, 64)) # 2D + +b, ch, *_ = input.shape +dim = input.ndim +# attention = SpatialTransformer(dim-2, in_channels=ch, out_channels=ch, num_heads=8) +# attention(input) + +embedding = input + +torch.manual_seed(0) +attention_a = LinearTransformer(input.ndim-2, in_channels=ch, out_channels=ch, num_heads=1, ch_per_head=ch, emb_dim=None) +torch.manual_seed(0) +attention_a2 = LinearTransformerNd(input.ndim-2, in_channels=ch, out_channels=ch, num_heads=1, ch_per_head=ch, emb_dim=None) +torch.manual_seed(0) +attention_b = SpatialSelfAttention(in_channels=ch) +torch.manual_seed(0) +attention_c = AttentionBlock(ch, num_heads=1, num_head_channels=ch) + +a = attention_a(input) +a2 = attention_a2(input) +b = attention_b(input) +c = attention_c(input) + +print(torch.abs(a-b).max(), torch.abs(a-a2).max(), torch.abs(a-c).max()) \ No newline at end of file