-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_latent_embedder_3d.py
206 lines (171 loc) · 6.58 KB
/
train_latent_embedder_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from pathlib import Path
from datetime import datetime
import torch
from torch.utils.data import ConcatDataset
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from medical_diffusion.data.datamodules import SimpleDataModule
from medical_diffusion.data.datasets import NiftiPairImageGenerator
from medical_diffusion.models.embedders.latent_embedders import VQVAE, VQGAN, VAE, VAEGAN
from torchvision.transforms import RandomCrop, Compose, ToPILImage, Resize, ToTensor, Lambda
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--inputfolder', type=str, default="data/Task107_hecktor2021/labelsTrain/")
parser.add_argument('-t', '--targetfolder', type=str, default="data/Task107_hecktor2021/imagesTrain/")
parser.add_argument('--savefolder', type=str, default="./medfusion_3d/results")
parser.add_argument('--input_size', type=int, default=128)
parser.add_argument('--depth_size', type=int, default=128)
parser.add_argument('--num_channels', type=int, default=64)
parser.add_argument('--num_res_blocks', type=int, default=1)
parser.add_argument('--num_class_labels', type=int, default=2)
parser.add_argument('--train_lr', type=float, default=1e-4)
parser.add_argument('--batchsize', type=int, default=1)
parser.add_argument('--epochs', type=int, default=500000)
parser.add_argument('--timesteps', type=int, default=250)
parser.add_argument('--save_and_sample_every', type=int, default=1000)
parser.add_argument('--with_condition', default='True', action='store_true')
parser.add_argument('-r', '--resume_weight', type=str, default="")
args = parser.parse_args()
inputfolder = args.inputfolder
targetfolder = args.targetfolder
input_size = args.input_size
depth_size = args.depth_size
num_channels = args.num_channels
num_res_blocks = args.num_res_blocks
num_class_labels = args.num_class_labels
save_and_sample_every = args.save_and_sample_every
with_condition = args.with_condition
resume_weight = args.resume_weight
train_lr = args.train_lr
transform = Compose([
Lambda(lambda t: torch.tensor(t).float()),
Lambda(lambda t: (t * 2) - 1),
Lambda(lambda t: t.transpose(3, 1)),
])
input_transform = Compose([
Lambda(lambda t: torch.tensor(t).float()),
Lambda(lambda t: t.transpose(3, 1)),
])
if __name__ == "__main__":
# --------------- Settings --------------------
current_time = datetime.now().strftime("%Y_%m_%d_%H%M%S")
path_run_dir = Path.cwd() / 'runs' / 'VQGAN'/ str(current_time)
path_run_dir.mkdir(parents=True, exist_ok=True)
gpus = [0] if torch.cuda.is_available() else None
dataset = NiftiPairImageGenerator(
inputfolder,
targetfolder,
input_size=input_size,
depth_size=depth_size,
transform=input_transform if with_condition else transform,
target_transform=transform,
full_channel_mask=True
)
dm = SimpleDataModule(
ds_train = dataset,
batch_size=1,
# num_workers=0,
pin_memory=True
)
# ------------ Initialize Model ------------
# model = VAE(
# in_channels=3,
# out_channels=3,
# emb_channels=8,
# spatial_dims=2,
# hid_chs = [ 64, 128, 256, 512],
# kernel_sizes=[ 3, 3, 3, 3],
# strides = [ 1, 2, 2, 2],
# deep_supervision=1,
# use_attention= 'none',
# loss = torch.nn.MSELoss,
# # optimizer_kwargs={'lr':1e-6},
# embedding_loss_weight=1e-6,
# sample_every_n_steps = 1000
# )
# model.load_pretrained(Path.cwd()/'runs/2022_12_01_183752_patho_vae/last.ckpt', strict=True)
# model = VAEGAN(
# in_channels=1,
# out_channels=1,
# emb_channels=8,
# spatial_dims=3,
# hid_chs = [ 64, 128, 256, 512],
# deep_supervision=1,
# use_attention= 'none',
# start_gan_train_step=-1,
# embedding_loss_weight=1e-6,
# sample_every_n_steps = 1000
# )
# model.vqvae.load_pretrained(Path.cwd()/'runs/2022_11_25_082209_chest_vae/last.ckpt')
# model.load_pretrained(Path.cwd()/'runs/2022_11_25_232957_patho_vaegan/last.ckpt')
# model = VQVAE(
# in_channels=1,
# out_channels=1,
# emb_channels=4,
# num_embeddings = 8192,
# spatial_dims=3,
# hid_chs = [64, 128, 256, 512],
# embedding_loss_weight=1,
# beta=1,
# loss = torch.nn.L1Loss,
# deep_supervision=1,
# use_attention = 'none',
# sample_every_n_steps = save_and_sample_every
# )
model = VQGAN(
in_channels=1,
out_channels=1,
emb_channels=4,
num_embeddings = 8192,
spatial_dims=3,
hid_chs = [64, 128, 256, 512],
embedding_loss_weight=1,
beta=1,
start_gan_train_step=-1,
pixel_loss = torch.nn.L1Loss,
deep_supervision=1,
use_attention='none',
)
# model.vqvae.load_pretrained(Path.cwd()/'runs/2022_12_13_093727_patho_vqvae/last.ckpt')
# -------------- Training Initialization ---------------
to_monitor = "train/L1" # "val/loss"
min_max = "min"
early_stopping = EarlyStopping(
monitor=to_monitor,
min_delta=0.0, # minimum change in the monitored quantity to qualify as an improvement
patience=30, # number of checks with no improvement
mode=min_max
)
checkpointing = ModelCheckpoint(
dirpath=str(path_run_dir), # dirpath
monitor=to_monitor,
every_n_train_steps=save_and_sample_every,
save_last=True,
save_top_k=5,
mode=min_max,
)
trainer = Trainer(
accelerator='gpu',
devices=[0],
# precision=16,
# amp_backend='apex',
# amp_level='O2',
# gradient_clip_val=0.5,
default_root_dir=str(path_run_dir),
callbacks=[checkpointing],
# callbacks=[checkpointing, early_stopping],
enable_checkpointing=True,
check_val_every_n_epoch=None,
log_every_n_steps=save_and_sample_every,
# limit_train_batches=1000,
limit_val_batches=0, # 0 = disable validation - Note: Early Stopping no longer available
min_epochs=100,
max_epochs=1001,
num_sanity_val_steps=2,
)
# ---------------- Execute Training ----------------
trainer.fit(model, datamodule=dm)
# ------------- Save path to best model -------------
model.save_best_checkpoint(trainer.logger.log_dir, checkpointing.best_model_path)