-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample_airbnb.py
146 lines (128 loc) · 4.77 KB
/
example_airbnb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import division
import os
import csv
import zipfile
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import roc_auc_score
from scipy.sparse import csr_matrix
from defs import Model
from lime import LIME
class AirbnbModel(Model):
def __init__(self):
rng = np.random.RandomState(0)
train_ratio = 0.9
labels = []
features = None
if not os.path.exists("example/airbnb/airbnb.csr"):
with zipfile.ZipFile("example/airbnb/airbnb.zip", 'r') as zf:
print("extracting airbnb.csr")
zf.extractall("example/airbnb/")
data = []
indices = []
indptr = [ 0 ]
print("loading airbnb.csr")
with open("example/airbnb/airbnb.csr", "r") as f_in:
for row in csv.reader(f_in):
if features is None:
features = row[1:]
continue
labels.append(int(row[0]) > 0)
for fix in row[1:]:
data.append(True)
indices.append(fix)
indptr.append(len(data))
features = [ "\"{0}\"".format(f) for f in features ]
labels = np.array(labels, dtype=np.bool)
rows = csr_matrix((data, indices, indptr),
shape=(len(indptr) - 1, len(features)), dtype=np.bool).todense()
print("loading done")
ixs = list(range(rows.shape[0]))
rng.shuffle(ixs)
split = int(np.floor(train_ratio * rows.shape[0]))
train_ixs = ixs[:split]
test_ixs = ixs[split:]
print("training model")
model = MLPClassifier(activation='relu', random_state=rng, shuffle=True,
hidden_layer_sizes=tuple([ 1000 for _ in range(4) ]),
max_iter=1000, early_stopping=True, learning_rate='adaptive')
model.fit(rows[train_ixs, :], labels[train_ixs])
print("training done")
self._cix = model.classes_.tolist().index(True)
train_pred = model.predict_proba(rows[train_ixs, :])[:, self._cix]
self._train_auc = roc_auc_score(labels[train_ixs], train_pred)
test_pred = model.predict_proba(rows[test_ixs, :])[:, self._cix]
self._test_auc = roc_auc_score(labels[test_ixs], test_pred)
self._x = rows[test_ixs, :]
self._y = labels[test_ixs]
self._features = features
self._threshold = self._get_threshold(labels[train_ixs], train_pred)
self._model = model
def _get_threshold(self, labels, preds):
th_pos = {}
th_neg = {}
total_neg = 0
# count labels
for (ix, p) in enumerate(preds.tolist()):
p = np.float64(p)
if p not in th_pos:
th_pos[p] = 0
if p not in th_neg:
th_neg[p] = 0
if labels[ix]:
th_pos[p] += 1
else:
total_neg += 1
th_neg[p] += 1
ths = sorted(th_pos.keys())
# first threshold == 0
fp = total_neg
fn = 0
best_t = None
best_v = None
for (ix, th) in enumerate(ths):
v = fp + fn
if best_v is None or v < best_v:
best_v = v
best_t = th
fp -= th_neg[th]
fn += th_pos[th]
return best_t
def test_auc(self):
"""Returns the area under ROC curve for the test data."""
return self._test_auc
def train_auc(self):
"""Returns the area under ROC curve for the training data."""
return self._train_auc
def shape(self):
"""Returns the shape of the test data."""
return self._x.shape
def features(self):
"""Returns the feature names as list."""
return self._features
def threshold(self):
"""The threshold for prediction scores."""
return self._threshold
def get_label(self, rix):
"""Returns the binary (True or False) label of the test data row with the given index."""
return self._y[rix]
def get_row(self, rix):
"""Returns the given row of the test data."""
return self._x[rix, :]
def predict_proba(self, X):
"""Returns the prediction scores for X. For each row one prediction
score must be returned (output shape is (X.shape[0],)).
Parameters:
-----------
X : np.matrix or np.array
The data to predict.
"""
return self._model.predict_proba(X)[:, self._cix]
def use_csr(self):
"""Whether to use CSR instead of CSV to store the matrix."""
return True
def create_explainer(self):
return LIME(batch_size=1000, step=3, weight_th=1.0, max_radius=0.5, max_length=10)