You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First 5 differences for allclose:
Numpy cuNumeric
index (0, 0): 0.07916259765625 0.0791015625
index (0, 1): 0.373291015625 0.373046875
index (0, 2): 0.93408203125 0.93359375
index (0, 3): 0.4189453125 0.418701171875
index (0, 4): 0.234375 0.2342529296875
Software versions
Python : 3.10.9 | packaged by conda-forge
Platform : Linux 5.15.0-83-generic #92-Ubuntu
Cunumeric : 24.01
Numpy : 1.23.5
CTK package : cuda-version-12.4
GPU driver : 550.00
GPU devices :
GPU 0: NVIDIA H100
GPU 1: NVIDIA H100
Jupyter notebook / Jupyter Lab version
No response
Expected behavior
For tests
https://github.com/nv-legate/cunumeric/blob/branch-24.01/tests/integration/test_binary_ufunc.py
for op = 'nextafter'
When the type of input data is float16, the results between Numpy and cuNumeric are different.
It failed on allclose(out_np, out_num).
Observed behavior
First 5 differences for allclose:
Numpy cuNumeric
index (0, 0): 0.07916259765625 0.0791015625
index (0, 1): 0.373291015625 0.373046875
index (0, 2): 0.93408203125 0.93359375
index (0, 3): 0.4189453125 0.418701171875
index (0, 4): 0.234375 0.2342529296875
With diff_limit=5
cunumeric.nextafter failed the test
Inputs:
[[0.0791 0.373 0.9336 0.4187 0.2343 ]
[0.5723 0.5723 0.417 0.626 0.2203 ]
[0.622 0.4778 0.974 0.773 0.02715]
[0.2211 0.1203 0.1753 0.4294 0.6577 ]]
dtype: float16
2
dtype: uint64
NumPy output:
[[0.07916 0.3733 0.934 0.419 0.2344 ]
[0.5728 0.5728 0.4172 0.6265 0.2205 ]
[0.6226 0.478 0.9746 0.7734 0.02716]
[0.2212 0.12036 0.1754 0.4297 0.658 ]]
dtype: float16
cuNumeric output:
[[0.0791 0.373 0.9336 0.4187 0.2343 ]
[0.5723 0.5723 0.417 0.626 0.2203 ]
[0.622 0.4778 0.974 0.773 0.02715]
[0.2211 0.1203 0.1753 0.4294 0.6577 ]]
dtype: float16
Example code or instructions
Stack traceback or browser console output
No response
The text was updated successfully, but these errors were encountered: