-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathSimpleRNN.py
118 lines (94 loc) · 4.09 KB
/
SimpleRNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
'''
Created by Victor Delvigne
ISIA Lab, Faculty of Engineering University of Mons, Mons (Belgium)
Source: Delvigne, et al."PhyDAA: Physiological Dataset Assessing Attention" IEEE Transaction on Circuits and Systems for Video Technology (TCSVT) (2016).
Copyright (C) 2021 - UMons
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
'''
from utils import *
from models import *
import torch
import torch.optim as optim
import time
from tqdm import tqdm
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, random_split, Subset
import warnings
device = torch.device('cuda')
warnings.simplefilter("ignore")
""" Load Files """
Images = np.load('Dataset/... .npy')
Label = np.load('Dataset/ ...npy')
participant = np.load('Dataset/ ...npy')
""" Model Training """
# Introduction: training a simple CNN with the mean of the images.
batch_size = 64
n_epoch = 200
n_rep = 10
EEG = EEGImagesDataset(label=Label, image=Images)
t = time.time()
for patient in range(29):
idx = np.argwhere(participant == patient)[:, 0]
np.random.shuffle(idx)
Test = Subset(EEG, idx)
idx = np.argwhere(participant != patient)[:, 0]
np.random.shuffle(idx)
Train = Subset(EEG, idx)
Trainloader = DataLoader(Train, batch_size=batch_size, shuffle=False)
Testloader = DataLoader(Test, batch_size=batch_size, shuffle=False)
net = RegionRNN(64, 4, 3).cuda()
optimizer = optim.Adam(net.parameters())
score = []
for epoch in range(n_epoch):
running_loss = 0.0
evaluation = []
for i, data in enumerate(Trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
del data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs.to(torch.float32).cuda())
loss = torch.nn.functional.cross_entropy(outputs, labels.to(torch.long).cuda())
loss.backward()
optimizer.step()
_, predicted = torch.max(outputs, 1)
num_of_true = torch.sum(predicted.detach().cpu()==labels).numpy()
mean = num_of_true/labels.shape[0]
running_loss += loss.item()
evaluation.append(mean)
running_loss = running_loss / (i + 1)
running_acc = sum(evaluation) / len(evaluation)
validation_loss = 0.0
validation_acc = 0.0
evaluation = []
for i, data in enumerate(Testloader, 0):
input_img, labels = data
del data
input_img = input_img.to(torch.float32)
if True:
input_img = input_img.cuda()
outputs = net(input_img)
loss = torch.nn.functional.cross_entropy(outputs, labels.cuda())
validation_loss += loss.item()
_, predicted = torch.max(outputs.cpu().data, 1)
num_of_true = torch.sum(predicted == labels).numpy()
evaluation.append(num_of_true/labels.shape[0])
validation_loss = validation_loss / (i + 1)
validation_acc = sum(evaluation) / len(evaluation)
score.append((running_loss, running_acc, validation_loss, validation_acc))
print("Epoch {} \t---\tLoss {:.4f}, Accuracy {:.4f}\t---\tVal-Loss {:.4f}, Val-Accuracy {:.4f}" .format(epoch+1, running_loss, running_acc, validation_loss, validation_acc))
score = np.asarray(score)
np.save('res_freq_array_sub_'+str(patient), score)