-
Notifications
You must be signed in to change notification settings - Fork 0
/
crawler-concurrency.py
198 lines (150 loc) · 6.25 KB
/
crawler-concurrency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import csv
import json
import logging
from urllib.parse import urlencode
import concurrent.futures
from selenium import webdriver
from time import sleep
from dataclasses import dataclass, field, fields, asdict
API_KEY = ""
with open("config.json", "r") as config_file:
config = json.load(config_file)
API_KEY = config["api_key"]
## Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class SearchData:
name: str = ""
url: str = ""
listing_id: int = 0
price_currency: str = ""
price: float = 0.0
def __post_init__(self):
self.check_string_fields()
def check_string_fields(self):
for field in fields(self):
# Check string fields
if isinstance(getattr(self, field.name), str):
# If empty set default text
if getattr(self, field.name) == "":
setattr(self, field.name, f"No {field.name}")
continue
# Strip any trailing spaces, etc.
value = getattr(self, field.name)
setattr(self, field.name, value.strip())
class DataPipeline:
def __init__(self, csv_filename="", storage_queue_limit=50):
self.names_seen = []
self.storage_queue = []
self.storage_queue_limit = storage_queue_limit
self.csv_filename = csv_filename
self.csv_file_open = False
def save_to_csv(self):
self.csv_file_open = True
data_to_save = []
data_to_save.extend(self.storage_queue)
self.storage_queue.clear()
if not data_to_save:
return
keys = [field.name for field in fields(data_to_save[0])]
file_exists = os.path.isfile(self.csv_filename) and os.path.getsize(self.csv_filename) > 0
with open(self.csv_filename, mode="a", newline="", encoding="utf-8") as output_file:
writer = csv.DictWriter(output_file, fieldnames=keys)
if not file_exists:
writer.writeheader()
for item in data_to_save:
writer.writerow(asdict(item))
self.csv_file_open = False
def is_duplicate(self, input_data):
if input_data.name in self.names_seen:
logger.warning(f"Duplicate item found: {input_data.name}. Item dropped.")
return True
self.names_seen.append(input_data.name)
return False
def add_data(self, scraped_data):
if self.is_duplicate(scraped_data) == False:
self.storage_queue.append(scraped_data)
if len(self.storage_queue) >= self.storage_queue_limit and self.csv_file_open == False:
self.save_to_csv()
def close_pipeline(self):
if self.csv_file_open:
time.sleep(3)
if len(self.storage_queue) > 0:
self.save_to_csv()
def scrape_search_results(keyword, location, page_number, data_pipeline=None, retries=3):
formatted_keyword = keyword.replace(" ", "+")
url = f"https://www.etsy.com/search?q={formatted_keyword}&ref=pagination&page={page_number+1}"
tries = 0
success = False
while tries <= retries and not success:
options = webdriver.ChromeOptions()
options.add_argument("--headless")
options.add_argument("user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36")
prefs = {
"profile.managed_default_content_settings.javascript": 2,
"profile.managed_default_content_settings.stylesheets": 2
}
options.add_experimental_option("prefs", prefs)
driver = webdriver.Chrome(options=options)
try:
driver.get(url)
logger.info(f"Successfully pinged {url}")
content = driver.page_source
script_tag_begin_index = content.find('"itemListElement"')
script_tag_end_index = content.find('"numberOfItems"')
json_string = "{"+ content[script_tag_begin_index:script_tag_end_index-1] + "}"
json_data = json.loads(json_string)
list_elements = json_data["itemListElement"]
for element in list_elements:
name = element["name"]
link = element["url"]
listing_id = link.split("/")[-2]
currency = element["offers"]["priceCurrency"]
price = element["offers"]["price"]
search_data = SearchData(
name=name,
url=link,
listing_id=listing_id,
price_currency=currency,
price=float(price)
)
data_pipeline.add_data(search_data)
logger.info(f"Successfully parsed data from: {url}")
success = True
except Exception as e:
logger.error(f"An error occurred while processing page {url}: {e}")
logger.info(f"Retrying request for page: {url}, retries left {retries-tries}")
tries+=1
finally:
driver.quit()
if not success:
raise Exception(f"Max Retries exceeded: {retries}")
def start_scrape(keyword, pages, location, data_pipeline=None, max_threads=5, retries=3):
with concurrent.futures.ThreadPoolExecutor(max_workers=max_threads) as executor:
executor.map(
scrape_search_results,
[keyword] * pages,
[location] * pages,
range(pages),
[data_pipeline] * pages,
[retries] * pages
)
if __name__ == "__main__":
MAX_RETRIES = 3
MAX_THREADS = 5
PAGES = 1
LOCATION = "us"
logger.info(f"Crawl starting...")
## INPUT ---> List of keywords to scrape
keyword_list = ["coffee mug"]
aggregate_files = []
## Job Processes
for keyword in keyword_list:
filename = keyword.replace(" ", "-")
crawl_pipeline = DataPipeline(csv_filename=f"{filename}.csv")
start_scrape(keyword, PAGES, LOCATION, data_pipeline=crawl_pipeline, max_threads=MAX_THREADS, retries=MAX_RETRIES)
crawl_pipeline.close_pipeline()
aggregate_files.append(f"{filename}.csv")
logger.info(f"Crawl complete.")