-
Notifications
You must be signed in to change notification settings - Fork 24
/
fpconst.py
178 lines (144 loc) · 5.62 KB
/
fpconst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""Utilities for handling IEEE 754 floating point special values
This python module implements constants and functions for working with
IEEE754 double-precision special values. It provides constants for
Not-a-Number (NaN), Positive Infinity (PosInf), and Negative Infinity
(NegInf), as well as functions to test for these values.
The code is implemented in pure python by taking advantage of the
'struct' standard module. Care has been taken to generate proper
results on both big-endian and little-endian machines. Some efficiency
could be gained by translating the core routines into C.
See <http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html>
for reference material on the IEEE 754 floating point standard.
Further information on this package is available at
<http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/>.
------------------------------------------------------------------
Author: Gregory R. Warnes <[email protected]>
Date: 2005-02-24
Version: 0.7.2
Copyright: (c) 2003-2005 Pfizer, Licensed to PSF under a Contributor Agreement
License: Licensed under the Apache License, Version 2.0 (the"License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in
writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing
permissions and limitations under the License.
------------------------------------------------------------------
"""
__version__ = "0.7.2"
ident = "$Id: fpconst.py,v 1.16 2005/02/24 17:42:03 warnes Exp $"
import struct, operator
# check endianess
_big_endian = struct.pack('i',1)[0] != '\x01'
# and define appropriate constants
if(_big_endian):
NaN = struct.unpack('d', '\x7F\xF8\x00\x00\x00\x00\x00\x00')[0]
PosInf = struct.unpack('d', '\x7F\xF0\x00\x00\x00\x00\x00\x00')[0]
NegInf = -PosInf
else:
NaN = struct.unpack('d', '\x00\x00\x00\x00\x00\x00\xf8\xff')[0]
PosInf = struct.unpack('d', '\x00\x00\x00\x00\x00\x00\xf0\x7f')[0]
NegInf = -PosInf
def _double_as_bytes(dval):
"Use struct.unpack to decode a double precision float into eight bytes"
tmp = list(struct.unpack('8B',struct.pack('d', dval)))
if not _big_endian:
tmp.reverse()
return tmp
##
## Functions to extract components of the IEEE 754 floating point format
##
def _sign(dval):
"Extract the sign bit from a double-precision floating point value"
bb = _double_as_bytes(dval)
return bb[0] >> 7 & 0x01
def _exponent(dval):
"""Extract the exponentent bits from a double-precision floating
point value.
Note that for normalized values, the exponent bits have an offset
of 1023. As a consequence, the actual exponentent is obtained
by subtracting 1023 from the value returned by this function
"""
bb = _double_as_bytes(dval)
return (bb[0] << 4 | bb[1] >> 4) & 0x7ff
def _mantissa(dval):
"""Extract the _mantissa bits from a double-precision floating
point value."""
bb = _double_as_bytes(dval)
mantissa = bb[1] & 0x0f << 48
mantissa += bb[2] << 40
mantissa += bb[3] << 32
mantissa += bb[4]
return mantissa
def _zero_mantissa(dval):
"""Determine whether the mantissa bits of the given double are all
zero."""
bb = _double_as_bytes(dval)
return ((bb[1] & 0x0f) | reduce(operator.or_, bb[2:])) == 0
##
## Functions to test for IEEE 754 special values
##
def isNaN(value):
"Determine if the argument is a IEEE 754 NaN (Not a Number) value."
return (_exponent(value)==0x7ff and not _zero_mantissa(value))
def isInf(value):
"""Determine if the argument is an infinite IEEE 754 value (positive
or negative inifinity)"""
return (_exponent(value)==0x7ff and _zero_mantissa(value))
def isFinite(value):
"""Determine if the argument is an finite IEEE 754 value (i.e., is
not NaN, positive or negative inifinity)"""
return (_exponent(value)!=0x7ff)
def isPosInf(value):
"Determine if the argument is a IEEE 754 positive infinity value"
return (_sign(value)==0 and _exponent(value)==0x7ff and \
_zero_mantissa(value))
def isNegInf(value):
"Determine if the argument is a IEEE 754 negative infinity value"
return (_sign(value)==1 and _exponent(value)==0x7ff and \
_zero_mantissa(value))
##
## Functions to test public functions.
##
def test_isNaN():
assert( not isNaN(PosInf) )
assert( not isNaN(NegInf) )
assert( isNaN(NaN ) )
assert( not isNaN( 1.0) )
assert( not isNaN( -1.0) )
def test_isInf():
assert( isInf(PosInf) )
assert( isInf(NegInf) )
assert( not isInf(NaN ) )
assert( not isInf( 1.0) )
assert( not isInf( -1.0) )
def test_isFinite():
assert( not isFinite(PosInf) )
assert( not isFinite(NegInf) )
assert( not isFinite(NaN ) )
assert( isFinite( 1.0) )
assert( isFinite( -1.0) )
def test_isPosInf():
assert( isPosInf(PosInf) )
assert( not isPosInf(NegInf) )
assert( not isPosInf(NaN ) )
assert( not isPosInf( 1.0) )
assert( not isPosInf( -1.0) )
def test_isNegInf():
assert( not isNegInf(PosInf) )
assert( isNegInf(NegInf) )
assert( not isNegInf(NaN ) )
assert( not isNegInf( 1.0) )
assert( not isNegInf( -1.0) )
# overall test
def test():
test_isNaN()
test_isInf()
test_isFinite()
test_isPosInf()
test_isNegInf()
if __name__ == "__main__":
test()