This is a collection of rich examples supported by Hydrogen. Please share your favorite snippets with us and add them to this page.
Interactive plots using Plotly
{% codetabs name="Python", type="py" -%} from plotly import offline offline.init_notebook_mode()
offline.iplot([{"y": [1, 2, 1]}]) {%- language name="Python using matplotlib", type="py" -%} import numpy as np import matplotlib.pyplot as plt from plotly import offline as py py.init_notebook_mode()
t = np.linspace(0, 20, 500) plt.plot(t, np.sin(t))
py.iplot_mpl(plt.gcf()) {%- language name="R", type="r" -%} library(IRdisplay)
data <- list(list(x=c(1999, 2000, 2001, 2002), y=c(10, 15, 13, 17), type='scatter')) figure <- list(data=data)
mimebundle <- list('application/vnd.plotly.v1+json'=figure) IRdisplay::publish_mimebundle(mimebundle) {%- endcodetabs %}
Interactive plots via PyQt/Pyside (creates separate window).
{% codetabs name="Python", type="py" -%} import matplotlib matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt import numpy as np
t = np.linspace(0, 20, 500) plt.plot(t, np.sin(t)) plt.show() {%- endcodetabs %}
{% codetabs name="Python", type="py" -%} from IPython.display import JSON
data = {"foo": {"bar": "baz"}, "a": 1} JSON(data) {%- endcodetabs %}
With support for svg
, png
, jpeg
and gif
{% codetabs name="Python using matplotlib", type="py" -%} import matplotlib.pyplot as plt import numpy as np
%matplotlib inline %config InlineBackend.figure_format = 'svg' t = np.linspace(0, 20, 500)
plt.plot(t, np.sin(t)) plt.show() {%- language name="Python using altair >= 2.0", type="py" -%} import altair as alt from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode( x='petalLength', y='petalWidth', color='species' ) {%- language name="Python using altair >= v1.3 < 2.0", type="py" -%} from altair import Chart, load_dataset, enable_mime_rendering enable_mime_rendering()
cars = load_dataset('cars') spec = Chart(cars).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', ) spec {%- language name="Python using altair < v1.3", type="py" -%} from IPython.display import display from altair import Chart, load_dataset def vegify(spec): display({ 'application/vnd.vegalite.v1+json': spec.to_dict() }, raw=True)
cars = load_dataset('cars') spec = Chart(cars).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', ) vegify(spec) {%- endcodetabs %}
{% codetabs name="Python using sympy", type="py" -%} import sympy as sp sp.init_printing(use_latex='mathjax')
x, y, z = sp.symbols('x y z') f = sp.sin(x _ y) + sp.cos(y _ z) sp.integrate(f, x) {%- language name="Python using Math", type="py" -%} from IPython.display import Math
Math(r'i\hbar \frac{dA}{dt}=[A(t),H(t)]+i\hbar \frac{\partial A}{\partial t}.')
{%- language name="Python using Latex", type="py" -%}
from IPython.display import Latex
Latex('''The mass-energy equivalence is described by the famous equation
discovered in 1905 by Albert Einstein.
In natural units (
\begin{equation} E=m \end{equation}''') {%- endcodetabs %}
{% codetabs name="Python using pandas", type="py" -%} import numpy as np import pandas as pd
df = pd.DataFrame({'A': 1., 'B': pd.Timestamp('20130102'), 'C': pd.Series(1, index=list(range(4)), dtype='float32'), 'D': np.array([3] * 4, dtype='int32'), 'E': pd.Categorical(["test", "train", "test", "train"]), 'F': 'foo'})
df {%- language name="Python using numpy", type="py" -%} import numpy as np
t = np.linspace(0, 20, 500) t {%- endcodetabs %}
{% codetabs name="Python", type="py" -%} from IPython.display import Image Image('https://cloud.githubusercontent.com/assets/836375/15271096/98e4c102-19fe-11e6-999a-a74ffe6e2000.gif') {%- endcodetabs %}
{% codetabs name="Python", type="py" -%} from IPython.display import IFrame IFrame('https://nteract.io/', width='900', height='490') {%- endcodetabs %}
{% codetabs name="Python", type="py" -%} print("Hello World!") {%- language name="JavaScript", type="js" -%} console.log("Hello World!"); {%- endcodetabs %}
Automatic visualization with the nteract Data Explorer
{% codetabs name="Python", type="py" -%} import pandas as pd
pd.options.display.html.table_schema = True pd.options.display.max_rows = None
iris_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
df1 = pd.read_csv(iris_url)
df1 {%- endcodetabs %} (https://blog.nteract.io/designing-the-nteract-data-explorer-f4476d53f897)