-
Notifications
You must be signed in to change notification settings - Fork 1
/
3.PCA_Cluster.R
244 lines (211 loc) · 11.1 KB
/
3.PCA_Cluster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
source('functions.R')
###############
## all samples
###############
# read hap01 file
hap01 <- fread("data/hap01.filtered.txt", header = T, check.names = F, data.table = F)
lininfo = read.table(file="data/lininfo.txt", header=T)
geno = t( as.matrix( hap01[, 12:ncol(hap01)] ) ) # only genotypes
geno[1:15,1:5]
####################
## CLUSTER ANALYSIS
####################
# compute genetic distance
ifelse(test = file.exists('data/distMat.RData'),
yes = load('data/distMat.RData'), no = distMat <- dist(geno))
# saving distance matrix because it's a computationally intensive step
if (!file.exists('data/distMat.RData')) save(distMat, file = "data/distMat.RData")
# cluster accessions and convert to phylo object for ape
hc2 <- as.phylo(hclust(distMat))
# cluster coloring
edgecols <- cbind('TA'=NA, 1:nrow(hc2$edge), color='black') # create data frame
edgecols[, 1] <- hc2$tip.label[hc2$edge[, 2]] # get labels
edgecols <- as.matrix(merge(edgecols, lininfo, by = 'TA', all.x = T)) # get samples info
edgecols <- edgecols[order(as.numeric(edgecols[, 2])), ] # get samples in original order
edgecols[,4] <- as.numeric(edgecols[,4])
# coloring diff lineages with different colors
edgecols[, 3][edgecols[, 4] == 1] = "red"
edgecols[, 3][edgecols[, 4] == 2] = "blue"
edgecols[, 3][edgecols[, 4] == 3] = "gold"
edgecols[, 3][edgecols[, 4] == 4] = "green"
# tips coloring
tipcols <- as.matrix(merge(hc2$tip.label, edgecols, by = 1, sort = F))
# plotting tree
pdf("output/Fig.3_Cluster.pdf", width = 8.5, height = 8.5)
plotnj(unrooted.tree = hc2, type = 'u',
show.tip.label = T, lab4ut = "axial", label.offset = 1, cex = 0.25,
edge.color = edgecols[, 3], edge.width = 1, tip.color = tipcols[, 3], rotate.tree = -50)
legend(5, 110, lty = 1, lwd = 2, cex = 0.75,
legend = c('Lineage 1 (L1)', 'Lineage 2 (L2)', 'Possible L1 & L2 Hybrids', 'Wheat'),
text.col = 'black', col = c("red", "blue", "gold", "green"))
dev.off()
#######
## PCA
#######
# compute A matrix for eigen values
A = A.mat(geno, impute.method="mean", return.imputed = T)
# PCA label names
names = as.data.frame(rownames(A$A)); colnames(names)=c("TA")
names = merge(names, edgecols, by='TA', sort = F, all.x = T)
# give shapes to points
names$color = as.character(names$color)
names$Lineage = as.numeric(names$Lineage)
# eigenvectors
e = eigen(A$A)
## PCA plot
pdf(file = 'output/S4_PCA.pdf', width = 8.25, height = 11)
par(mfrow=c(2,1))
plot(e$vectors[,1], e$vectors[,2], pch=names$Lineage, cex=1.25, col=names$color, lwd =1.5,
xlab=paste("PC 1 (", round(e$values[1]/sum(e$values), digits=2)*100, "%)", sep = ''),
ylab=paste("PC 2 (", round(e$values[2]/sum(e$values), digits=2)*100, "%)", sep = ''),
main = substitute(paste("PCA of WGRC ", italic("Ae. tauschii")," Collection and Wheat")),
font.main=1, cex.main=1.5, cex.lab=1.25)
legend("topleft", pch=c(1,2,3,4), cex=1.25, pt.cex = 2, pt.lwd = 2,
col=c("red", "blue", "gold", "green"),
legend=c("Lineage1 (L1)","Lineage2 (L2)","Possible L1 & L2 hybrids", "Wheat"))
#################
## tauschii only
#################
geno = geno[rownames(geno) %in% tauschii.lines, ]
geno[1:15,1:5]
# compute A mat
A = A.mat(geno, impute.method="mean", return.imputed = T)
# PCA label names
names = as.data.frame(rownames(A$A)); colnames(names)=c("TA")
names = merge(names, edgecols, by='TA', sort = F, all.x = T)
# give shapes to points
names$color = as.character(names$color)
names$Lineage = as.numeric(names$Lineage)
# eigenvectors
e = eigen(A$A)
## PCA plot
plot(e$vectors[,1], e$vectors[,2], pch=names$Lineage, cex=1.25, col=names$color, lwd =1.5,
xlab=paste("PC 1 (", round(e$values[1]/sum(e$values), digits=2)*100, "%)", sep = ''),
ylab=paste("PC 2 (", round(e$values[2]/sum(e$values), digits=2)*100, "%)", sep = ''),
main = substitute(paste("PCA of WGRC ", italic("Ae. tauschii")," Collection")),
font.main=1, cex.main=1.5, cex.lab=1.25)
legend("topright", pch=c(1,2,3), cex=1.25, pt.cex = 2, pt.lwd = 2,
col=c("red", "blue", "gold"),
legend=c("Lineage1 (L1)","Lineage2 (L2)","Possible L1 & L2 hybrids"))
dev.off()
##########################
### 3D PCA, tauschii only
##########################
passport <- read.csv("data/long_lat_alt.csv", header = T, as.is = T, fill = T)
passport <- merge(lininfo, passport, by = 'TA', all.x = T)
## color vector for PCA
passport <- merge(data.frame('TA'=rownames(A$A), 'col'="black", 'ord'=1:nrow(A$A), stringsAsFactors = F),
passport, by = 'TA', sort = F, all.x = T)
## function for creating lin1 long gradient colors
gradient.lin1.long <- colorRampPalette(colors = c("yellow", "orange", "red"))
lin1.long <- sort(unique(passport$longitude[passport$Lineage == 1]))
cols.lin1.long <- data.frame('longitude'=lin1.long, 'cols.long'=gradient.lin1.long(length(lin1.long)), stringsAsFactors = F)
## function for creating lin2 altitude gradient colors
gradient.lin2.alt <- colorRampPalette(colors = c("blue", "lightgreen", "green"))
lin2.alt <- sort(unique(passport$altitude[passport$Lineage == 2]))
cols.lin2.alt <- data.frame('altitude'=lin2.alt, 'cols.alt'=gradient.lin2.alt(length(lin2.alt)), stringsAsFactors = F)
# merge colors with labels
passport <- merge(passport, cols.lin1.long, by = 'longitude', all.x=T)
passport <- merge(passport, cols.lin2.alt, by = 'altitude', all.x=T)
## fill color column with gradient colors
passport$col[passport$Lineage == 1] <- passport$cols.long[passport$Lineage == 1]
passport$col[passport$Lineage == 2] <- passport$cols.alt[passport$Lineage == 2]
passport$col[passport$Lineage == 3]="gold"
passport <- passport[order(passport$ord),]
# ## plot and color PCA plot
pca1v <- paste("PC 1 (", round(e$values[1]/sum(e$values), digits=2)*100, "%)", sep = '')
pca2v <- paste("PC 2 (", round(e$values[2]/sum(e$values), digits=2)*100, "%)", sep = '')
pca3v <- paste("PC 3 (", round(e$values[3]/sum(e$values), digits=2)*100, "%)", sep = '')
pdf('output/Fig.4_PCA.pdf', width = 11, height = 6.38)
layout(matrix(1:2, ncol=2), width = c(3, 1), height = c(1, 1))
scatterplot3d(e$vectors[,1], e$vectors[,3], e$vectors[,2],
pch = passport$Lineage, color = passport$col, cex.symbols = 1.5, lwd = 1.5,
xlab = pca1v, ylab = pca3v, zlab = pca2v,
zlim = c(-0.1, 0.1), ylim = c(-0.1, 0.1))
legend(x = 0.3, y = 3.77, pch=c(1,2,3), pt.cex = 1, pt.lwd = 1.5,
box.lwd = 1, cex = 0.7, bg = 'white', bty = 'n',
legend = c("Lineage1 (L1)", "Lineage2 (L2)", "Possible L1 & L2 hybrids"),
col = c(1, 1, 'gold'))
x.for.legend <- c(rep(1, nrow(cols.lin1.long)), rep(1.7, nrow(cols.lin1.long)))
y.for.legend <- c(1:nrow(cols.lin1.long), 1:nrow(cols.lin1.long))
plot(x = x.for.legend, y = y.for.legend,
pch = 15, cex = 2.5,
col = c(gradient.lin1.long(length(x.for.legend)/2), gradient.lin2.alt(length(x.for.legend)/2)),
ann = F, axes = F, xlim = c(1, 2))
axis(side = 2, at = c(1, 44, 87, 130, 173, 216),
labels = c(26, 43, 60, 77, 94, 111),
line = 0.15)
axis(side = 2, at = seq(1, 216, length.out = 9),
labels = round(seq(-30, 2250, length.out = 9), 0),
line = -4.55)
mtext(text = 'Longitude gradient', side = 2, line = -1.7)
mtext(text = 'Altitude gradient (m)', side = 2, line = -6.5)
mtext(text = "L1", side = 3, adj = 0)
mtext(text = "L2", side = 3, adj = 0.7)
dev.off()
par(mfrow=c(1,1))
##############
## BiPlots ##
#############
passport <- merge(data.frame('TA'=rownames(A$A), 'PC2'=e$vectors[, 2], 'PC3'=e$vectors[, 3], stringsAsFactors = F),
passport, by = 'TA', sort = F, all.x = T)
non.outliers.l1 <- passport$Lineage==1 & passport$longitude < 100 & passport$longitude > 38 # removing extreme values of longitude
pdf('output/S5_PC_correlations.pdf', width = 11, height = 6)
par(mfrow=c(1,2))
corrplot(cor(passport[non.outliers.l1, c(2,4,5,9)], use = "complete.obs"),
type = 'upper', order = 'original', diag = T, addCoef.col = 1, tl.srt = 45)
corrplot(cor(passport[passport$Lineage==2, c(3,4,5,9)], use = "complete.obs"),
type = 'upper', order = 'original', diag = T, addCoef.col = 1, tl.srt = 45)
dev.off()
# pc2-long
pdf(file = 'output/Fig.5_pc2_longitude.pdf', height = 8.5, width = 11)
plot(passport$longitude[non.outliers.l1], passport$PC2[non.outliers.l1], pch = 1,
cex = 1.25, cex.axis = 1.5, cex.lab = 1.5, xlab = 'Longitude', ylab = 'PC2', main = 'Longitudinal distribution along PC2')
segments(51.38, 0, 51.38, -0.08, col = 'red', lty = 3, lwd = 2)
text(52.5, -0.02, labels = 'Tehran', srt = 90, cex=1.5)
legend('topright', cex = 1.5, bg = 'azure',
legend = paste('r =',
round(cor(passport$longitude[non.outliers.l1], passport$PC2[non.outliers.l1], use = "complete.obs"),2)))
dev.off()
# pc3-alt
pdf(file = 'output/S6_pc3_altitude.pdf', height = 8.5, width = 11)
plot(passport$altitude[passport$Lineage==2], passport$PC3[passport$Lineage==2], pch = 2,
cex = 1.25, cex.axis = 1.5, cex.lab = 1.5,
xlab = 'Altitude', ylab = 'PC3', main = 'Altitudinal distribution along PC3')
segments(150, -0.15, 150, -0.06, col = 'red', lty = 3, lwd = 2)
legend('topright', cex = 1.5, bg = 'azure',
legend = paste('r =',
round(cor(passport$altitude[passport$Lineage==2], passport$PC3[passport$Lineage==2], use = "complete.obs"),2)))
dev.off()
#################
### violin plots
#################
passport$Lineage = as.factor(passport$Lineage)
pdf(file = 'output/violin_altitude.pdf')
ggplot(data=subset(passport[passport$Lineage != 3, ], !is.na(altitude)), aes(x=Lineage, y=altitude)) +
geom_violin(trim = F) + coord_flip() + ylab('Altitude (m)') + xlab(NULL) +
stat_summary(fun.y=median, geom="point", size=2, color="red") +
scale_x_discrete(labels=c("1" = "L1", "2" = "L2")) + labs(title = "(A)") +
theme(axis.text=element_text(size=17),
axis.title=element_text(size=20,face="bold"),
plot.title=element_text(size=22))
dev.off()
pdf(file = 'output/violin_longitude.pdf')
ggplot(data=subset(passport[passport$Lineage != 3 & passport$longitude < 100 & passport$longitude > 38, ], !is.na(longitude)), aes(x=Lineage, y=longitude)) +
geom_violin(trim = F) + coord_flip() + ylab('Longitude') + xlab(NULL) +
stat_summary(fun.y=median, geom="point", size=2, color="red") +
scale_x_discrete(labels=c("1" = "", "2" = "")) + labs(title = "(B)") +
theme(axis.text=element_text(size=17),
axis.title=element_text(size=20,face="bold"),
plot.title=element_text(size=22))
dev.off()
pdf(file = 'output/violin_latitude.pdf')
ggplot(data=subset(passport[passport$Lineage != 3, ], !is.na(latitude)), aes(x=Lineage, y=latitude)) +
geom_violin(trim = F) + coord_flip() + ylab('Latitude') + xlab(NULL) +
stat_summary(fun.y=median, geom="point", size=2, color="red") +
scale_x_discrete(labels=c("1" = "", "2" = "")) + labs(title = "(C)") +
theme(axis.text=element_text(size=17),
axis.title=element_text(size=20,face="bold"),
plot.title=element_text(size=22))
dev.off()
###