forked from mikedewar/EDHMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
edhmm.py
710 lines (609 loc) · 24.1 KB
/
edhmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
"""
So this is the main file in this project. If you're reading this to get a sense of what's going on
then you should start from the beam() method and work out from there. You'll find a lot of unecessary
bits and bobs we've baked into the code in order to test out the algorithm.
"""
import numpy as np
import logging
import time
import cPickle
import pprint
pp = pprint.PrettyPrinter(indent=4)
from log_space import elnsum
np.seterr(all='warn')
log = logging.getLogger('edhmm')
class Categorical:
"""
Defines a Categorical Distribution
"""
def __init__(self,p):
assert all(p>=0), p
assert not any(np.isinf(p))
p += 0.000000001
assert p.sum()
self.p = p/p.sum()
assert self.p.sum().round(5) == 1, (p, self.p, self.p.sum())
self.p = np.squeeze(self.p)
def sample(self):
if self.p.shape == ():
return 0
try:
x = np.random.multinomial(1,self.p)
except ValueError:
#print self.p
#print self.p.sum()
raise
except TypeError:
print self.p
print type(self.p)
print self.p.shape
raise
return np.where(x==1)[0][0]
class EDHMM:
"""
Defines an Explicit Duration Hidden Markov Model
Parameters
----------
A : Transition Object
The transition distribution
O : Emission Object
The emission distribution
D : Duration object
The duration distribution
pi : Initial object
The initial distribution
Attributes
----------
K : int
The number of states in the system
states : list
list of states
durations : list
list of possible durations
"""
def __init__(self,A,O,D,pi):
self.A = A
self.O = O
self.D = D
self.pi = pi
self.K = len(pi)
self.states = range(self.K)
def gen(self,T):
"""
generator that yields state/observation tuples
See Also
--------
see EDHMM.sim for more details
"""
# draw initial state and duration
x,d = self.pi.sample()
d = self.D.sample_d(x)
for t in range(T):
yield x, self.O.sample_obs(x), d
if d > 1:
d -= 1
else:
xold = x
x = self.A.sample_x(x)
assert x in self.states, (xold,x)
d = self.D.sample_d(x)
def sim(self,T):
"""
Draws a sequence of length T from the EDHMM
Parameters
----------
T : int
number of time points
"""
X, Y, D = [], [], []
for x,y,d in self.gen(T):
X.append(x)
Y.append(y)
D.append(d)
return X, Y, D
def loglikelihood(self,Zs,Ys):
"""
Calculates the log likelihood of the model given state
and observation sequences
Parameters
----------
Zs : list
list of state sequences
Ys : list
list of observation sequences
"""
l = 0
for Z,Y in zip(Zs,Ys):
for t in range(1,len(Z)):
i = Z[t-1][0]
j = Z[t][0]
di = Z[t-1][1]
y = Y[t]
if i==j:
l += self.O.likelihood(j,y)
else:
l += (
self.A.likelihood(i,j) +
self.D.likelihood(i,di) +
self.O.likelihood(j,y)
)
return l
def set_transition_likelihood(self):
"""
builds a dictionary of possible transitions and their likelihoods
"""
if hasattr(self,'l'):
old_l = self.l
old_durations = np.array([k[2:] for k in old_l]).flatten()
right = max(old_durations.max(), max(self.right))
else:
right = max(self.right)
log.info('forming transition likelihoods from d = 1 to %s'%right)
self.l = {}
for i in self.states:
for j in self.states:
for di in range(1,right+1):
for dj in range(1,right+1):
if di == 1:
self.l[(i,j,di,dj)] = np.exp(
self.A.likelihood(i,j) + self.D.likelihood(j,dj)
)
elif i == j and dj==di-1:
self.l[(i,j,di,dj)] = 1
else:
self.l[(i,j,di,dj)] = 0
def set_duration_support(self, min_d, max_d):
if (max_d == None) and (min_d == None):
self.left,self.right = zip(*[self.D.support(i) for i in self.states])
else:
self.right = max_d
self.left = min_d
def slice_sample(self,Z, min_u=0):
log.info('forming slice')
u = [min_u]
for t in range(1,len(Z)):
i = Z[t-1][0]
j = Z[t][0]
di = Z[t-1][1]
dj = Z[t][1]
try:
u.append(
np.random.uniform(
low=min_u,
high=self.l[(i,j,di,dj)])
)
except KeyError:
raise
return np.array(u)
def get_worthy(self,u,old_worthy):
"""
decides which transitions are valid given the auxilliary variable
"""
worthy = {}
# we only consider those transitions that are possible from
# t-1
for i,di in old_worthy:
# which transitions are worthy?
if di == 1:
for j in self.states:
for dj in range(1, self.right[i]+1):
# if the probability is worthy..
if self.l[(i,j,di,dj)] > u:
# add it to the list!
try:
worthy[(j,dj)].append((i,di))
except KeyError:
# (or start a new list)
worthy[(j,dj)] = [(i,di)]
else:
j=i
dj = di-1
try:
worthy[(j,dj)].append((i,di))
except KeyError:
worthy[(j,dj)] = [(i,di)]
assert worthy, (u, old_worthy)
return worthy
def get_initial_worthy(self,u):
"""
gets the intial set of worthy states
"""
worthy = {}
for i in self.states:
for di in range(self.left[i],self.right[i]+1):
for j in self.states:
for dj in range(self.left[j],self.right[j]+1):
if self.l[(i,j,di,dj)] > u:
try:
worthy[(j,dj)].append((i,di))
except KeyError:
worthy[(j,dj)] = [(i,di)]
return worthy
def beam_forward(self, Y, U, W=None):
"""
runs the forwrd algorithm, sampling only from valid transitions
"""
log.info('running forward algorithm')
# initialise alphahat
alphahat = [{} for y in Y]
log.debug('calculating observation likelihoods')
ol = np.zeros((self.K,len(Y)))
for i in self.states:
for t,y in enumerate(Y):
ol[i,t] = self.O.likelihood(i,y)
log.debug('starting iteration')
worthy_time = 0
alpha_time = 0
for t,y in enumerate(Y):
start = time.time()
if W is None:
if t == 0:
worthy = self.get_initial_worthy(U[t])
else:
worthy = self.get_worthy(U[t],worthy)
else:
worthy = W[t]
worthy_time += time.time() - start
start = time.time()
if t == 0:
for i in self.states:
alphahat[t][i] = {}
for d in [1]+range(self.left[i],self.right[i]+1):
alphahat[t][i][d] = self.pi.likelihood((i,d))
else:
for i,J in worthy.items():
# initialise alpahat[t] if necessary
if i[0] not in alphahat[t]:
alphahat[t][i[0]] = {i[1]:-1000000000000}
else:
if i[1] not in alphahat[t][i[0]]:
alphahat[t][i[0]][i[1]] = -1000000000000
# here i is those (state,duration)s worth figuring out for
# alpha hat. Then J is a list of those indices into the
# previous alpha hat we should sum over to find the next
# alpha hat.
# so you can read this indexing as
# alphahat[time][state][duration]
for j in J:
try:
alphahat[t][i[0]][i[1]] = elnsum(
alphahat[t][i[0]][i[1]],
alphahat[t-1][j[0]][j[1]]
)
except KeyError:
# if a KeyError occurred, then we already decided
# that alphahat[t-1][state][duration] was zero, so
# we can just ignore it
#print "skipping over a key error"
pass
alphahat[t][i[0]][i[1]] += ol[i[0],t]
#print "alpha[%s][%s][%s] = %s"%(t,i[0],i[1], alphahat[t][i[0]][i[1]])
assert not np.isinf(alphahat[t][i[0]][i[1]])
try:
assert alphahat[t], "alpha[%s]:%s"%(t,alphahat[t])
except AssertionError:
print "alpha[%s]:%s"%(t-1,alphahat[t-1])
print worthy
raise
if hasattr(self,'W_fh'):
num_transitions = sum([len(worthy[key]) for key in worthy])
cPickle.dump(num_transitions, self.W_fh)
alpha_time += time.time() - start
log.debug('time spent building alpha: %s'%alpha_time)
log.debug('time spent finding worthy: %s'%worthy_time)
return alphahat
def beam_backward_sample(self, alphahat, U, W=None):
"""
perfomrs the backwards sweep given the forwards sweep and the auxilliary variables
"""
log.info('backward sampling state sequence')
def sample_z(a):
vals = []
for i in a:
vals.extend(a[i].values())
try:
m = np.array(vals).max()
except ValueError:
print a
print vals
raise
p = [np.exp(np.array(a[i].values()) - m).sum() for i in a.keys()]
xi = Categorical(np.array(p)).sample()
x = a.keys()[xi]
try:
p = np.exp(np.array(a[x].values()) - max(a[x].values()))
di = Categorical(p).sample()
except AssertionError:
print p
raise
d = a[x].keys()[di]
return x,d
T = len(alphahat)
try:
Z = [sample_z(alphahat[-1])]
except ValueError:
print alphahat[-1]
raise
for t in reversed(xrange(T-1)):
# pick the subset of alphahats
# here w[t+1][Z[-1]] is a list of the possible zs you can sample
# from in alphahat[t] given that the next state is Z[-1], i.e.
# w[t+1][Z[t+1]] is the next state
#a = dict([(i,{}) for i in self.states])
#for j in worthy[Z[-1]]:
# try:
# a[j[0]][j[1]] = alphahat[t][j[0]][j[1]]
# except KeyError:
# a[j[0]][j[1]] = 0
# we need to build up a pair of worthys
# first, the get_worthy method uses old_worthy to make sure that
# the transitions are consistent. So we need just the keys in
# alphahat as we know that this is 'old worthy' for the worthy
# variables at t+1
old_worthy = {}
for state in alphahat[t]:
for duration in alphahat[t][state]:
key = (state, duration)
old_worthy[key] = 0
worthy = self.get_worthy(U[t+1],old_worthy)
a = dict([(i,{}) for i in self.states])
try:
worthy[Z[-1]]
except KeyError:
print worthy
raise
for j in worthy[Z[-1]]:
try:
a[j[0]][j[1]] = alphahat[t][j[0]][j[1]]
except KeyError:
a[j[0]][j[1]] = -10000000
z = sample_z(a)
Z.append(z)
Z.reverse()
return Z
def beam(self, Y, min_u=0, its=100, burnin=50, name='beamer', online=True, sample_U=True, update_D=True,
force_U = None, min_d = None, max_d = None ):
"""
Runs the beam sampling approach for the EDHMM
Parameters
----------
Y : list
list of observation sequences
Optional Parameters
-------------------
min_u : scalar (0)
the minimum auxilliary variable to consider. You can use this to tune
the algorithm. See the paper for details.
its : integer (100)
number of iterations to perform
burning : integer (50)
allow this many iterations before writing samples to disk
name : string (beamer)
name of the experiment. This will be prepended to all output files
online : boolean (True)
whether or not to run the algo online. Currently this has to be True
sample_U : boolean (True)
whether or not to update the auxilliary variable. You probably should leave
this to True, unless you're poking at the algorithm to see what it does
updated_D : boolean (True)
whether or not to update the duration distribution. Again, you should leave
this to True.
force_U : None or list of lists (None)
you can force U to start off from a specific starting place if you like. If
you set this and set sample_U to False then this auxilliary variable won't
change throughout the algo.
min_d : None or list of ints
You can force a minimum duration per state, if you'd like. You must also set
max_d if you set min_d.
max_d : None or list of ints
maximum duration per state
"""
bored = False
# get support of duration distributions
self.set_duration_support(min_d, max_d)
self.set_transition_likelihood()
# sample auxillary variables from some small value
if force_U:
U = force_U
else:
U = [[np.random.uniform(min_u, 0.000000000001) for y in Yi] for Yi in Y]
# get worthy samples given the relaxed U
alphas = []
Z_samples = []
log.debug('perfomring inference')
if online:
for i, Yi in enumerate(Y):
alphas.append(self.beam_forward(Yi,U[i]))
Z_samples.append(self.beam_backward_sample(alphas[i],U[i]))
else:
raise NotImplementedError
# count how many iterations we've done so far
count = 0
# storage for reporting
A_fh = open('A_%s.dat'%name,'w')
O_m_fh = open('O_m_%s.dat'%name,'w')
O_p_fh = open('O_p_%s.dat'%name,'w')
D_m_fh = open('D_m_%s.dat'%name,'w')
Z_fh = open('Z_%s.dat'%name,'w')
L_fh = open('L_%s.dat'%name,'w')
self.W_fh = open('W_%s.dat'%name,'w')
L = []
# block gibbs
while not bored:
log.info('\n\nrunning sample %s'%count)
log.debug('getting support')
self.set_duration_support(min_d, max_d)
self.set_transition_likelihood()
# slice
start = time.time()
if sample_U:
U = []
for Z in Z_samples:
U.append(self.slice_sample(Z,min_u))
log.debug('slice sample took %ss'%(time.time() - start))
# states
start = time.time()
alphas = []
Z_samples = []
if online:
for i, Yi in enumerate(Y):
alphas.append(self.beam_forward(Yi,U[i]))
Z_samples.append(self.beam_backward_sample(alphas[i],U[i]))
log.debug('inference took %ss'%(time.time() - start))
else:
raise NotImplementedError
#for i, Yi in enumerate(Y):
# W = self.worthy_transitions(U[i])
# get an initial state sequence
# alphas.append(self.beam_forward(Yi, U[i], W=W))
# Z_samples.append(self.beam_backward_sample(alphas[i],U[i],W))
#log.debug('inference took %ss'%(time.time() - start))
# parameters
if update_D:
self.D.update(Z_samples)
self.O.update(Z_samples, Y)
self.A.update(Z_samples)
# loglikelihood
l = self.loglikelihood(Z_samples, Y)
L.append(l)
log.info("log likelihood at iteration %s: %s"%(count,l))
if count > burnin:
if count % 5 == 0:
log.debug('writing iteration %s to disk'%count)
# start writing to disk
cPickle.dump(self.A.A, A_fh )
cPickle.dump(self.O.mu, O_m_fh )
cPickle.dump(self.O.tau, O_p_fh )
cPickle.dump(self.D.mu, D_m_fh )
cPickle.dump(Z_samples, Z_fh)
cPickle.dump(l, L_fh)
# stop
if count > its:
bored = True
count += 1
return L
def forward(self, Y):
"""
runs the forwrd algorithm, sampling only from valid transitions
"""
log.info('running forward algorithm')
# initialise alphahat
alphahat = [{} for y in Y]
log.debug('calculating observation likelihoods')
ol = np.zeros((self.K,len(Y)))
for i in self.states:
for t,y in enumerate(Y):
ol[i,t] = self.O.likelihood(i,y)
log.debug('starting iteration')
max_d, min_d = max(self.right), max(self.left)
# build transition log likelihoods
l = {}
for i in self.states:
for di in range(min_d, max_d):
for j in self.states:
for dj in range(min_d, max_d):
if di == 1:
l[(i,j,di,dj)] = self.A.likelihood(i,j) + self.D.likelihood(j,dj)
elif i == j and dj==di-1:
l[(i,j,di,dj)] = 0
else:
l[(i,j,di,dj)] = -1000000000000
# alphahat[time][state][duration]
for t,y in enumerate(Y):
start = time.time()
if t == 0:
for i in self.states:
alphahat[t][i] = {}
for d in range(min_d, max_d):
alphahat[t][i][d] = self.pi.likelihood((i,d))
else:
for i in self.states:
for di in range(min_d, max_d):
# initialise alpahat[t] if necessary
if i not in alphahat[t]:
alphahat[t][i] = {i:-1000000000000}
if di not in alphahat[t][i]:
alphahat[t][i][di] = -1000000000000
for j in self.states:
for dj in range(min_d, max_d):
alphahat[t][i][di] = elnsum(
alphahat[t][i][di],
alphahat[t-1][j][dj]
)
alphahat[t][i][di] = elnsum(
alphahat[t][i][di],
l[(i,j,di,dj)]
)
alphahat[t][i][di] += ol[i,t]
assert not np.isinf(alphahat[t][i][di])
return alphahat
def backward_sample(self, alphahat):
"""
This is a quick edit to make the normal backward sampler
"""
log.info('backward sampling state sequence')
U = [0 for a in alphahat]
def sample_z(a):
vals = []
for i in a:
vals.extend(a[i].values())
try:
m = np.array(vals).max()
except ValueError:
print a
print vals
raise
p = [np.exp(np.array(a[i].values()) - m).sum() for i in a.keys()]
xi = Categorical(np.array(p)).sample()
x = a.keys()[xi]
try:
p = np.exp(np.array(a[x].values()) - max(a[x].values()))
di = Categorical(p).sample()
except AssertionError:
print p
raise
d = a[x].keys()[di]
return x,d
T = len(alphahat)
try:
Z = [sample_z(alphahat[-1])]
except ValueError:
print alphahat[-1]
raise
for t in reversed(xrange(T-1)):
# pick the subset of alphahats
# here w[t+1][Z[-1]] is a list of the possible zs you can sample
# from in alphahat[t] given that the next state is Z[-1], i.e.
# w[t+1][Z[t+1]] is the next state
#a = dict([(i,{}) for i in self.states])
#for j in worthy[Z[-1]]:
# try:
# a[j[0]][j[1]] = alphahat[t][j[0]][j[1]]
# except KeyError:
# a[j[0]][j[1]] = 0
# we need to build up a pair of worthys
# first, the get_worthy method uses old_worthy to make sure that
# the transitions are consistent. So we need just the keys in
# alphahat as we know that this is 'old worthy' for the worthy
# variables at t+1
old_worthy = {}
for state in alphahat[t]:
for duration in alphahat[t][state]:
key = (state, duration)
old_worthy[key] = 0
worthy = self.get_worthy(U[t+1],old_worthy)
a = dict([(i,{}) for i in self.states])
try:
worthy[Z[-1]]
except KeyError:
print worthy
raise
for j in worthy[Z[-1]]:
try:
a[j[0]][j[1]] = alphahat[t][j[0]][j[1]] + np.log(self.l[(j[0],Z[-1][0],j[1],Z[-1][1])])
except KeyError:
a[j[0]][j[1]] = -10000000
z = sample_z(a)
Z.append(z)
Z.reverse()
return Z