-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathrev.py
93 lines (70 loc) · 3.33 KB
/
rev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
from regress import *
from loaddata import *
from util import *
def calc_rev_daily(daily_df, horizon, lag):
print "Caculating daily rev..."
result_df = filter_expandable(daily_df)
print "Calculating rev0..."
result_df['rev0'] = pd.rolling_sum(result_df['log_ret'], lag)
demean = lambda x: (x - x.mean())
indgroups = result_df[['rev0', 'gdate', 'ind1']].groupby(['gdate', 'ind1'], sort=True).transform(demean)
result_df['rev0_ma'] = indgroups['rev0']
shift_df = result_df.unstack().shift(1).stack()
result_df['rev1_ma'] = shift_df['rev0_ma']
return result_df
def rev_fits(daily_df, horizon, name, middate=None):
insample_daily_df = daily_df
if middate is not None:
insample_daily_df = daily_df[ daily_df.index.get_level_values('date') < middate ]
outsample_daily_df = daily_df[ daily_df.index.get_level_values('date') >= middate ]
outsample_daily_df['rev'] = np.nan
fits_df = pd.DataFrame(columns=['horizon', 'coef', 'indep', 'tstat', 'nobs', 'stderr'])
fitresults_df = regress_alpha(insample_daily_df, 'rev1_ma', horizon, True, 'daily')
fits_df = fits_df.append(fitresults_df, ignore_index=True)
plot_fit(fits_df, "rev_daily_"+name+"_" + df_dates(insample_daily_df))
fits_df.set_index(keys=['indep', 'horizon'], inplace=True)
coef0 = fits_df.ix['rev1_ma'].ix[horizon].ix['coef']
print "Coef{}: {}".format(0, coef0)
outsample_daily_df[ 'rev1_ma_coef' ] = coef0
outsample_daily_df[ 'rev_' + name ] = outsample_daily_df['rev1_ma'] * outsample_daily_df['rev1_ma_coef']
return outsample_daily_df
def calc_rev_forecast(daily_df, horizon, middate, lag):
daily_results_df = calc_rev_daily(daily_df, horizon, lag)
forwards_df = calc_forward_returns(daily_df, horizon)
daily_results_df = pd.concat( [daily_results_df, forwards_df], axis=1)
result_df = rev_fits(daily_results_df, horizon, str(lag), middate)
return result_df
if __name__=="__main__":
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--mid",action="store",dest="mid",default=None)
parser.add_argument("--lag",action="store",dest="lag",default=21)
# parser.add_argument("--horizon",action="store",dest="horizon",default=20)
args = parser.parse_args()
start = args.start
end = args.end
lookback = 30
horizon = int(args.lag)
pname = "./rev" + start + "." + end
start = dateparser.parse(start)
end = dateparser.parse(end)
middate = dateparser.parse(args.mid)
lag = int(args.lag)
loaded = False
try:
daily_df = pd.read_hdf(pname+"_daily.h5", 'table')
loaded = True
except:
print "Did not load cached data..."
if not loaded:
uni_df = get_uni(start, end, lookback)
BARRA_COLS = ['ind1']
barra_df = load_barra(uni_df, start, end, BARRA_COLS)
PRICE_COLS = ['close']
price_df = load_prices(uni_df, start, end, PRICE_COLS)
daily_df = merge_barra_data(price_df, barra_df)
daily_df.to_hdf(pname+"_daily.h5", 'table', complib='zlib')
result_df = calc_rev_forecast(daily_df, horizon, middate, lag)
dump_daily_alpha(result_df, 'rev_' + str(lag))