-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathpca.py
267 lines (209 loc) · 10.4 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python
from regress import *
from loaddata import *
from util import *
from calc import *
from sklearn.decomposition import PCA
COMPONENTS = 5
WINDOW = 30
cache = dict()
def calc_pca_daily(daily_df, horizon):
print "Caculating daily pca..."
result_df = filter_expandable(daily_df)
print "Calculating pca0..."
result_df['log_ret_B'] = winsorize_by_date(result_df['log_ret'])
unstacked_rets_df = result_df[['log_ret']].unstack()
unstacked_rets_df.columns = unstacked_rets_df.columns.droplevel(0)
unstacked_rets_df = unstacked_rets_df.fillna(0)
result_df['pca0'] = 0
pca = PCA(n_components=COMPONENTS)
last_sigma = 99999.0
for ii in xrange(WINDOW, len(unstacked_rets_df)):
window_df = unstacked_rets_df[ii-WINDOW:ii]
dt = window_df.index.max()
sids = result_df.xs(dt, level=0).index
window_df = window_df.replace([np.inf, -np.inf], np.nan)
window_df = window_df.fillna(0)
cache[dt] = window_df
std_df = window_df.copy()
for col in std_df.columns:
if col in sids:
rets = winsorize(std_df[col])
std_df[col] = (rets - rets.mean())
else:
del std_df[col]
del window_df[col]
std_df = std_df.replace([np.inf, -np.inf], np.nan)
std_df = std_df.fillna(0)
window_df = window_df.T
pcafit = pca.fit(np.asarray(std_df.T))
actual = window_df.ix[:,WINDOW-1]
pcarets = pca.transform(window_df)
pr = np.dot(pcarets, pcafit.components_)
pr = pr[:,[WINDOW-1]].reshape(-1)
predicted = pd.Series(pr, index=actual.index)
predicted_sigma = predicted.std()
resids = actual - predicted
# if predicted_sigma > .01:
# resids = resids * 0.0
print "PCA explained variance {}: {} {}".format(dt, predicted_sigma, pcafit.explained_variance_ratio_)
resids.index = result_df[ result_df['gdate'] == dt].index
result_df.ix[ result_df[ result_df['gdate'] == dt].index , 'pca0'] = resids
last_sigma = predicted_sigma
print result_df['pca0'].describe()
result_df['pca0_B'] = winsorize_by_date(result_df['pca0'])
# dategroups = result_df[['pca0_B', 'gdate']].groupby(['gdate'], sort=False).transform(demean)
# result_df['pca0_B_ma'] = dategroups['pca0_B']
result_df['pca0_B_ma'] = result_df['pca0_B']
print "Calculated {} values".format(len(result_df))
print "Calulating lags..."
for lag in range(1,horizon):
shift_df = result_df.unstack().shift(lag).stack()
result_df['pca'+str(lag)+'_B_ma'] = shift_df['pca0_B_ma']
return result_df
def calc_pca_intra(intra_df):
print "Calculating pca intra..."
result_df = filter_expandable(intra_df)
print "Calulating pcaC..."
result_df['dret'] = result_df['overnight_log_ret'] + (np.log(result_df['iclose']/result_df['dopen']))
unstacked_rets_df = result_df[['dret']].unstack()
unstacked_rets_df = unstacked_rets_df.replace([np.inf, -np.inf], np.nan)
unstacked_rets_df = unstacked_rets_df.fillna(0)
result_df['pcaC'] = 0
pca = PCA(n_components=COMPONENTS)
last_sigma = 99999.0
for dt in cache.keys():
window_df = cache[dt].T
for ts in result_df[ result_df['gdate'] == dt ]['giclose_ts'].unique():
today = unstacked_rets_df.ix[ts]
today.index = today.index.droplevel(0)
orig = result_df[ result_df['giclose_ts'] == ts ]
today = today.ix[ orig.index.droplevel(0) ]
del window_df[window_df.columns.max()]
window_df.index.name = 'sid'
window_df = window_df.join(today, how='right')
window_df = window_df.fillna(0)
std_df = window_df.copy()
for col in std_df.columns:
rets = winsorize(std_df[col])
std_df[col] = (rets - rets.mean())
pcafit = pca.fit(np.asarray(std_df))
# print "PCA explained variance {}: {}".format(ts, pcafit.explained_variance_ratio_)
actual = window_df.ix[:,WINDOW-1]
pcarets = pca.transform(window_df)
pr = np.dot(pcarets, pcafit.components_)
pr = pr[:,[WINDOW-1]].reshape(-1)
predicted = pd.Series(pr, index=actual.index)
predicted_sigma = predicted.std()
resids = actual - predicted
# if predicted_sigma > .01:
# resids = resids * 0.0
resids.index = result_df[ result_df['giclose_ts'] == ts].index
result_df.ix[ result_df[ result_df['giclose_ts'] == ts].index , 'pcaC'] = resids
last_sigma = predicted_sigma
print "Calulating pcaC_ma..."
result_df['pcaC_B'] = winsorize_by_ts(result_df['pcaC'])
# demean = lambda x: (x - x.mean())
# dategroups = result_df[['pcaC_B', 'giclose_ts']].groupby(['giclose_ts'], sort=False).transform(demean)
result_df['pcaC_B_ma'] = result_df['pcaC_B']
return result_df
def pca_fits(daily_df, intra_df, horizon, name, middate):
insample_intra_df = intra_df
insample_daily_df = daily_df
outsample_intra_df = intra_df
if middate is not None:
insample_intra_df = intra_df[ intra_df['date'] < middate ]
insample_daily_df = daily_df[ daily_df.index.get_level_values('date') < middate ]
outsample_intra_df = intra_df[ intra_df['date'] >= middate ]
outsample_intra_df['pca'] = np.nan
outsample_intra_df[ 'pcaC_B_ma_coef' ] = np.nan
for lag in range(1, horizon+1):
outsample_intra_df[ 'pca' + str(lag) + '_B_ma_coef' ] = np.nan
fits_df = pd.DataFrame(columns=['horizon', 'coef', 'indep', 'tstat', 'nobs', 'stderr'], dtype=float)
fitresults_df = regress_alpha(insample_intra_df, 'pcaC_B_ma', horizon, True, 'intra')
fits_df = fits_df.append(fitresults_df, ignore_index=True)
plot_fit(fits_df, "pca_intra_"+name+"_" + df_dates(insample_intra_df))
fits_df.set_index(keys=['indep', 'horizon'], inplace=True)
unstacked = outsample_intra_df[ ['ticker'] ].unstack()
coefs = dict()
coefs[1] = unstacked.between_time('09:30', '10:31').stack().index
coefs[2] = unstacked.between_time('10:30', '11:31').stack().index
coefs[3] = unstacked.between_time('11:30', '12:31').stack().index
coefs[4] = unstacked.between_time('12:30', '13:31').stack().index
coefs[5] = unstacked.between_time('13:30', '14:31').stack().index
coefs[6] = unstacked.between_time('14:30', '15:59').stack().index
print fits_df.head()
for ii in range(1,7):
outsample_intra_df.ix[ coefs[ii], 'pcaC_B_ma_coef' ] = fits_df.ix['pcaC_B_ma'].ix[ii].ix['coef']
fits_df = pd.DataFrame(columns=['horizon', 'coef', 'indep', 'tstat', 'nobs', 'stderr'], dtype=float)
for lag in range(1,horizon+1):
fitresults_df = regress_alpha(insample_daily_df, 'pca0_B_ma', lag, True, 'daily')
fits_df = fits_df.append(fitresults_df, ignore_index=True)
plot_fit(fits_df, "pca_daily_"+name+"_" + df_dates(insample_daily_df))
fits_df.set_index(keys=['indep', 'horizon'], inplace=True)
coef0 = fits_df.ix['pca0_B_ma'].ix[horizon].ix['coef']
# outsample_intra_df[ 'pcaC_B_ma_coef' ] = coef0
for lag in range(1,horizon):
coef = coef0 - fits_df.ix['pca0_B_ma'].ix[lag].ix['coef']
print "Coef{}: {}".format(lag, coef)
outsample_intra_df[ 'pca'+str(lag)+'_B_ma_coef' ] = coef
outsample_intra_df[ 'pca'] = outsample_intra_df['pcaC_B_ma'] * outsample_intra_df['pcaC_B_ma_coef']
for lag in range(1,horizon):
outsample_intra_df[ 'pca'] += outsample_intra_df['pca'+str(lag)+'_B_ma'] * outsample_intra_df['pca'+str(lag)+'_B_ma_coef']
return outsample_intra_df
def calc_pca_forecast(daily_df, intra_df, horizon, middate):
daily_results_df = daily_df
intra_results_df = intra_df
# results = list()
# for sector_name in daily_results_df['sector_name'].unique():
# print "Running pca for sector {}".format(sector_name)
# sector_df = daily_results_df[ daily_results_df['sector_name'] == sector_name ]
# sector_intra_results_df = intra_results_df[ intra_results_df['sector_name'] == sector_name ]
# result_df = pca_fits(sector_df, sector_intra_results_df, horizon, sector_name, middate)
# results.append(result_df)
# result_df = pd.concat(results)
result_df = pca_fits(daily_results_df, intra_results_df, horizon, "", middate)
return result_df
if __name__=="__main__":
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--mid",action="store",dest="mid",default=None)
parser.add_argument("--freq",action="store",dest="freq",default='30Min')
parser.add_argument("--horizon",action="store",dest="horizon",default=3)
args = parser.parse_args()
start = args.start
end = args.end
lookback = 30
freq = args.freq
horizon = int(args.horizon)
pname = "./pca" + start + "." + end
start = dateparser.parse(start)
end = dateparser.parse(end)
middate = dateparser.parse(args.mid)
loaded = False
try:
daily_df = pd.read_hdf(pname+"_daily.h5", 'table')
intra_df = pd.read_hdf(pname+"_intra.h5", 'table')
loaded = True
except:
print "Could not load cached data..."
if not loaded:
uni_df = get_uni(start, end, lookback, 1200)
barra_df = load_barra(uni_df, start, end)
barra_df = transform_barra(barra_df)
PRICE_COLS = ['close', 'overnight_log_ret']
price_df = load_prices(uni_df, start, end, PRICE_COLS)
daily_df = merge_barra_data(price_df, barra_df)
DBAR_COLS = ['close', 'dvolume', 'dopen']
daybar_df = load_daybars(price_df[ ['ticker'] ], start, end, DBAR_COLS, freq)
intra_df = merge_intra_data(daily_df, daybar_df)
daily_df.to_hdf(pname+"_daily.h5", 'table', complib='zlib')
intra_df.to_hdf(pname+"_intra.h5", 'table', complib='zlib')
daily_df = calc_pca_daily(daily_df, horizon)
forwards_df = calc_forward_returns(daily_df, horizon)
daily_df = pd.concat( [daily_df, forwards_df], axis=1)
intra_df = calc_pca_intra(intra_df)
intra_df = merge_intra_data(daily_df, intra_df)
full_df = calc_pca_forecast(daily_df, intra_df, horizon, middate)
dump_alpha(full_df, 'pca')