-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathbadj_dow_multi.py
165 lines (132 loc) · 6.73 KB
/
badj_dow_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
from alphacalc import *
from dateutil import parser as dateparser
import argparse
def calc_o2c(daily_df, horizon):
print "Caculating daily o2c..."
result_df = daily_df.reset_index()
result_df = filter_expandable(result_df)
result_df = result_df[ ['log_ret', 'pbeta', 'date', 'ind1', 'sid' ]]
print "Calculating o2c0..."
result_df['o2c0'] = result_df['log_ret'] / result_df['pbeta']
result_df['o2c0_B'] = winsorize_by_group(result_df[ ['date', 'o2c0'] ], 'date')
demean = lambda x: (x - x.mean())
indgroups = result_df[['o2c0_B', 'date', 'ind1']].groupby(['date', 'ind1'], sort=False).transform(demean)
result_df['o2c0_B_ma'] = indgroups['o2c0_B']
result_df.set_index(keys=['date', 'sid'], inplace=True)
print "Calulating lags..."
for lag in range(1,horizon+1):
shift_df = result_df.unstack().shift(lag).stack()
result_df['o2c' + str(lag) + '_B_ma'] = shift_df['o2c0_B_ma']
result_df = merge_daily_calcs(daily_df, result_df)
return result_df
def calc_o2c_intra(intra_df, daily_df):
print "Calculating o2c intra..."
result_df = filter_expandable_intra(intra_df, daily_df)
result_df = result_df[ ['iclose', 'dopen', 'overnight_log_ret', 'pbeta', 'date', 'ind1' ] ]
result_df = result_df.dropna(how='any')
print "Calulating o2cC..."
result_df['o2cC'] = (result_df['overnight_log_ret'] + (np.log(result_df['iclose']/result_df['dopen']))) / result_df['pbeta']
result_df['o2cC_B'] = winsorize_by_ts(result_df[ ['o2cC'] ])
print "Calulating o2cC_ma..."
result_df.reset_index(inplace=True)
demean = lambda x: (x - x.mean())
indgroups = result_df[['o2cC_B', 'iclose_ts', 'ind1']].groupby(['iclose_ts', 'ind1'], sort=False).transform(demean)
result_df['o2cC_B_ma'] = indgroups['o2cC_B']
result_df.set_index(['iclose_ts', 'sid'], inplace=True)
result_df = merge_intra_calcs(intra_df, result_df)
return result_df
def o2c_fits(daily_df, intra_df, full_df, horizon, name, middate=None):
if 'badj_m' not in full_df.columns:
print "Creating forecast columns..."
full_df['badj_m'] = np.nan
full_df[ 'o2cC_B_ma_coef' ] = np.nan
for lag in range(1, horizon+1):
full_df[ 'o2c' + str(lag) + '_B_ma_coef' ] = np.nan
insample_intra_df = intra_df
insample_daily_df = daily_df
outsample_intra_df = intra_df
outsample = False
if middate is not None:
outsample = True
insample_intra_df = intra_df[ intra_df['date'] < middate ]
insample_daily_df = daily_df[ daily_df.index.get_level_values('date') < middate ]
outsample_intra_df = intra_df[ intra_df['date'] >= middate ]
insample_daily_df = insample_daily_df.reset_index()
insample_daily_df['dow'] = insample_daily_df['date'].apply(lambda x: x.weekday())
insample_daily_df.set_index(['date', 'sid'], inplace=True)
outsample_intra_df['dow'] = outsample_intra_df['date'].apply(lambda x: x.weekday())
fits_df = pd.DataFrame(columns=['horizon', 'coef', 'indep', 'tstat', 'nobs', 'stderr'])
for lag in range(1,horizon+1):
fitresults_df = regress_alpha(insample_daily_df, 'o2c0_B_ma', lag, True, 'dow')
fits_df = fits_df.append(fitresults_df, ignore_index=True)
plot_fit(fits_df, "badj_daily_"+name+"_" + df_dates(insample_daily_df))
fits_df.set_index(keys=['indep', 'horizon'], inplace=True)
for day, daygroup in insample_daily_df.groupby('dow'):
idx = outsample_intra_df[ outsample_intra_df['dow'] == day ].index
day = int(day)
coef0 = fits_df.ix['o2c0_B_ma'].ix[horizon * 10 + day].ix['coef']
full_df.ix[ idx, 'o2cC_B_ma_coef' ] = 0#coef0
print "{} {} Coef0: {}".format(name, day, coef0)
for lag in range(1,horizon):
coef = coef0 - fits_df.ix['o2c0_B_ma'].ix[lag * 10 + day].ix['coef']
print "{} {} Coef{}: {}".format(name, day, lag, coef)
full_df.ix[ idx, 'o2c'+str(lag)+'_B_ma_coef' ] = coef
full_df.ix[ outsample_intra_df.index, 'badj_m'] = full_df['o2cC_B_ma'] * full_df['o2cC_B_ma_coef']
for lag in range(1,horizon):
full_df.ix[ outsample_intra_df.index, 'badj_m'] += full_df['o2c'+str(lag)+'_B_ma'] * full_df['o2c'+str(lag)+'_B_ma_coef']
return full_df
def calc_o2c_forecast(daily_df, intra_df, horizon, outsample):
daily_df = calc_o2c(daily_df, horizon)
daily_df = calc_forward_returns(daily_df, horizon)
intra_df = calc_o2c_intra(intra_df, daily_df)
full_df = merge_intra_data(daily_df, intra_df)
middate = None
if outsample:
middate = daily_df.index[0][0] + (daily_df.index[len(daily_df)-1][0] - daily_df.index[0][0]) / 2
print "Setting fit period before {}".format(middate)
sector_name = 'Energy'
print "Running o2c for sector {}".format(sector_name)
sector_df = daily_df[ daily_df['sector_name'] == sector_name ]
sector_intra_df = intra_df[ intra_df['sector_name'] == sector_name ]
full_df = o2c_fits(sector_df, sector_intra_df, full_df, horizon, "in", middate)
print "Running o2c for sector {}".format(sector_name)
sector_df = daily_df[ daily_df['sector_name'] != sector_name ]
sector_intra_df = intra_df[ intra_df['sector_name'] != sector_name ]
full_df = o2c_fits(sector_df, sector_intra_df, full_df, horizon, "ex", middate)
if outsample:
full_df = full_df[ full_df['date'] > middate ]
return full_df
if __name__=="__main__":
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--os",action="store",dest="outsample",default=False)
args = parser.parse_args()
start = args.start
end = args.end
outsample = args.outsample
lookback = 30
horizon = 3
pname = "./badj_m" + start + "." + end
start = dateparser.parse(start)
end = dateparser.parse(end)
loaded = False
try:
daily_df = pd.read_hdf(pname+"_daily.h5", 'table')
intra_df = pd.read_hdf(pname+"_intra.h5", 'table')
loaded = True
except:
print "Did not load cached data..."
if not loaded:
uni_df = get_uni(start, end, lookback)
barra_df = load_barra(uni_df, start, end)
price_df = load_prices(uni_df, start, end)
daily_df = merge_barra_data(price_df, barra_df)
daybar_df = load_daybars(uni_df, start, end)
intra_df = merge_intra_data(daily_df, daybar_df)
daily_df.to_hdf(pname+"_daily.h5", 'table', complib='zlib')
intra_df.to_hdf(pname+"_intra.h5", 'table', complib='zlib')
outsample_df = calc_o2c_forecast(daily_df, intra_df, horizon, outsample)
dump_alpha(outsample_df, 'badj_m')
dump_all(outsample_df)