forked from shawntan/neural-turing-machines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller.py
49 lines (39 loc) · 1.5 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import theano
import theano.tensor as T
import numpy as np
from theano_toolkit import utils as U
import controller
import model
import head
from collections import namedtuple
#from theano_toolkit.parameters import Parameters
def build(P,input_size,output_size,mem_size,mem_width,layer_sizes):
"""
Create controller function for use during scan op
"""
P.W_input_hidden = U.initial_weights(input_size,layer_sizes[0])
P.W_read_hidden = U.initial_weights(mem_width, layer_sizes[0])
P.b_hidden_0 = 0. * U.initial_weights(layer_sizes[0])
hidden_weights = []
for i in xrange(len(layer_sizes)-1):
P["W_hidden_%d"%(i+1)] = U.initial_weights(layer_sizes[i],layer_sizes[i+1])
P["b_hidden_%d"%(i+1)] = 0. * U.initial_weights(layer_sizes[i+1])
hidden_weights.append((P["W_hidden_%d"%(i+1)],P["b_hidden_%d"%(i+1)]))
P.W_hidden_output = 0. * U.initial_weights(layer_sizes[-1],output_size)
P.b_output = 0. * U.initial_weights(output_size)
def controller(input_t,read_t):
# print "input_t",input_t.type
prev_layer = hidden_0 = T.tanh(
T.dot(input_t,P.W_input_hidden) +\
T.dot(read_t,P.W_read_hidden) +\
P.b_hidden_0
)
# print "input",read_t.type,input_t.type
# print "weights",P.W_input_hidden.type,P.W_read_hidden.type,P.b_hidden_0.type
# print "layer", hidden_0.type
for W,b in hidden_weights:
prev_layer = T.tanh(T.dot(prev_layer,W) + b)
fin_hidden = prev_layer
output_t = T.nnet.sigmoid(T.dot(fin_hidden,P.W_hidden_output) + P.b_output)
return output_t,fin_hidden
return controller