From 7ec64e913ffaa533cca77d932dd672c0f1057d53 Mon Sep 17 00:00:00 2001 From: moritzleucke Date: Mon, 28 Oct 2024 16:22:31 +0100 Subject: [PATCH] refs in same style + ordering of refs --- JOSS/analyticcontinuation/paper.md | 6 +- JOSS/analyticcontinuation/refs.bib | 108 +++++++++++++---------------- 2 files changed, 50 insertions(+), 64 deletions(-) diff --git a/JOSS/analyticcontinuation/paper.md b/JOSS/analyticcontinuation/paper.md index 83f4b69..373d889 100644 --- a/JOSS/analyticcontinuation/paper.md +++ b/JOSS/analyticcontinuation/paper.md @@ -36,9 +36,9 @@ In this work, we present the analytic continuation component of the GreenX libra Analytic continuation (AC) is used in various scientific fields where complex analysis is relevant, like mathematical function theory, engineering and theoretical physics/chemistry in e.g. quantum mechanics [@golze2019gw], quantum field theory [@nekrasov2024analytic], numerical methods for solving differential equations [@lope2002analytic] and real-time propagation methods [@li2020real]. In the following, we discuss the four examples depicted in Figure 1. The first example, shown in the top left of Figure 1, involves the application of AC to model functions, which may include Gamma functions [@luke1975error], Zeta functions [@iriguchi2007estimation], and others. -In quantum field theory, AC can be applied to the frequently arising, complex-valued Green's functions, like the Green's function of the Hubbard model [@schott2016analytic]. However, Green's functions also appear in ab-initio many-body perturbation theory methods like the $GW$ approximation. The $GW$ method [@hedin1965new] is considered the method of choice for predicting band structures of solids as well as electron removal and addition energies of molecules, as measured in direct and indirect photoemission experiments [@golze2019gw]. The complex-valued self energy is a central quantity in the $GW$ method, computed as the convolution of the Green's function $G$ and the screened interaction $W$. AC is a frequently used tool for continuing the self energy from the imaginary to the real frequency axis in conventional scaling $GW$ implementations [@van2015gw; @ren2012resolution; @gonze2009abinit; @wilhelm2017periodic] and low-scaling implementations [@liu2016cubic; @wilhelm2018toward; @wilhelm2021low; @graml2024low; @forster2020low; @forster2021low; @forster2021gw100; @forster2023two]. More recently, AC has also been applied to the screened interaction [@cdwac; @duchemin2020robust; @friedrich2019tetrahedron; @voora2020molecular; @samal2022modeling; @springer1998first; @kehry2023robust; @duchemin2021cubic] to e.g. reduce the computational scaling associated with core-level excitations [@cdwac]. The AC of a self energy $\Sigma$ and a screened Coulomb interaction $W$ are depicted as the second and third example in the bottom panel of Figure 1. +In quantum field theory, AC can be applied to the frequently arising, complex-valued Green's functions, like the Green's function of the Hubbard model [@schott2016analytic]. However, Green's functions also appear in ab-initio many-body perturbation theory methods like the $GW$ approximation. The $GW$ method [@hedin1965new] is considered the method of choice for predicting band structures of solids as well as electron removal and addition energies of molecules, as measured in direct and indirect photoemission experiments [@golze2019gw]. The complex-valued self energy is a central quantity in the $GW$ method, computed as the convolution of the Green's function $G$ and the screened interaction $W$. AC is a frequently used tool for continuing the self energy from the imaginary to the real frequency axis in conventional scaling $GW$ implementations [@gonze2009abinit; @ren2012resolution; @van2015gw; @wilhelm2017periodic] and low-scaling implementations [@liu2016cubic; @wilhelm2018toward; @forster2020low;@wilhelm2021low; @forster2021low; @forster2021gw100; @forster2023two; @graml2024low]. More recently, AC has also been applied to the screened interaction [@springer1998first; @friedrich2019tetrahedron; @duchemin2020robust; @voora2020molecular; @duchemin2021cubic; @samal2022modeling; @cdwac; @kehry2023robust] to e.g. reduce the computational scaling associated with core-level excitations [@cdwac]. The AC of a self energy $\Sigma$ and a screened Coulomb interaction $W$ are depicted as the second and third example in the bottom panel of Figure 1. -![Application of the GX-AnalyticContinuation component to a model function with two poles (top left), an RT-TDDFT UV-vis Absorption spectrum (top right), the $GW$ self energy (bottom left) and the $GW$ screened coulomb interaction (bottom right). More information about the functions that are presented here can be found on the [website of the GX-AC component](https://nomad-coe.github.io/greenX/gx_ac.html).](ac_overview.pdf) +![Application of the GX-AnalyticContinuation component to a model function with two poles (top left), an RT-TDDFT UV-vis Absorption spectrum (top right), the $GW$ self energy (bottom left) and the $GW$ screened coulomb interaction (bottom right). More information about the functions that are presented here can be found on the [website of the GX-AC component](https://nomad-coe.github.io/greenX/gx_ac.html).](ac_overview.pdf){label="overview"} Our fourth and final example is the usage of AC in real-time propagation algorithms, such as real-time time-dependent density functional theory (RT-TDDFT) [@li2020real]. RT-TDDFT yields, for example, access to the absorption spectra of molecules and solids via the complex-valued dynamic polarizability tensor. The resolution of the RT-TDDFT absorption spectrum depends on the simulation length. It has been shown that applying Padé approximants to the dynamic polarizability tensor is an effective strategy for achieving higher spectral resolution with much shorter simulation times [@bruner2016accelerated; @mattiat2018efficient]. An illustrative UV-vis absorption spectrum, with and without the use of AC, is shown in the top right of Figure 1. @@ -48,7 +48,7 @@ Padé approximants are an established choice for rational functions. Their flexi The GreenX library aims to provide a suite of common tools, such as AC, for electronic structure codes based on the $GW$ method. The previously published first component of the GreenX library is the TimeFrequency component [@azizi2023time]. It provides minimax time and frequency grids for Random Phase Approximation (RPA) and $GW$ methods that were validated in a comprehensive benchmark study [@azizi2024validation]. In this work we present the second component of the GreenX library, the GX-AnalyticContinuation (GX-AC) component, which has the Apache-2.0 license. It provides a Fortran API for analytic continuation using Padé rational functions that can be easily integrated into other Fortran projects. The component uses the Thiele reciprocal difference method [@ThielePade_original; @ThielePade_Milne; @ThielePade_Baker] to obtain the Padé coefficients. Although the primary focus of the GreenX library are $GW$-based methods, the GX-AC component is suitable for any application where AC with Padé approximants can be used. Extensive benchmarks and the full documentation of GX-AC component can be found on the [component's website](https://nomad-coe.github.io/greenX/gx_ac.html). -Generating Padé approximants is prone to numerical instabilities caused by rounding errors that are amplified in the numerous differences in the Thiele-Padé algorithm [@PadeInstable; @cuyt1988instability; @jones1974numerical; @Beach2000], we employ two strategies to address these numerical instabilities. The first approach is to use multiple precision floating point arithmetic for the implementation of the Thiele algorithm, minimizing the numerical noise caused by rounding errors. We use the GNU Multiple Precision (GMP) library [@GMPlib] to handle the multiple-precision floats. The advantage of this library is that it provides highly optimized assembly code for most of the processors available. This approach allows us to exceed the 128-bit precision limit typically supported by standard Fortran compilers. The second strategy involves using a greedy algorithm for Thiele Padé approximants, that has been validated in previous work [@greedy_pade1; @greedy_pade2; @cdwac]. The greedy algorithm is used to rearrange the function arguments of the reference function in order to make the model numerically more stable. +Generating Padé approximants is prone to numerical instabilities caused by rounding errors that are amplified in the numerous differences in the Thiele-Padé algorithm [@PadeInstable; @jones1974numerical; @cuyt1988instability; @Beach2000], we employ two strategies to address these numerical instabilities. The first approach is to use multiple precision floating point arithmetic for the implementation of the Thiele algorithm, minimizing the numerical noise caused by rounding errors. We use the GNU Multiple Precision (GMP) library [@GMPlib] to handle the multiple-precision floats. The advantage of this library is that it provides highly optimized assembly code for most of the processors available. This approach allows us to exceed the 128-bit precision limit typically supported by standard Fortran compilers. The second strategy involves using a greedy algorithm for Thiele Padé approximants, that has been validated in previous work [@greedy_pade1; @greedy_pade2; @cdwac]. The greedy algorithm is used to rearrange the function arguments of the reference function in order to make the model numerically more stable. Another feature of the GX-AC component is to force the Padé model to exhibit a certain symmetry. This ensures that the approximant has the same symmetry as the reference function in the case that the symmetry of the reference function is known in advance, e.g. the screened interaction in the $GW$ is an even function [@duchemin2020robust]. Additionally, the enforced symmetry helps to increase the quality of the Padé approximant because every point of a given reference function also accounts for symmetrical equivalent points. Even, odd, conjugate and anti-conjugate function symmetry is supported by the component at this point. diff --git a/JOSS/analyticcontinuation/refs.bib b/JOSS/analyticcontinuation/refs.bib index bb33d13..c158db6 100644 --- a/JOSS/analyticcontinuation/refs.bib +++ b/JOSS/analyticcontinuation/refs.bib @@ -1,6 +1,6 @@ @article{van2015gw, - title={GW 100: Benchmarking G 0 W 0 for molecular systems}, - author={Van Setten, Michiel J and Caruso, Fabio and Sharifzadeh, Sahar and Ren, Xinguo and Scheffler, Matthias and Liu, Fang and Lischner, Johannes and Lin, Lin and Deslippe, Jack R and Louie, Steven G and others}, + title={GW 100: Benchmarking G0W0 for molecular systems}, + author={Van Setten, M. J. and Caruso, F. and Sharifzadeh, S. and Ren, X. and Scheffler, M. and Liu, F. and Lischner, J. and Lin, L. and Deslippe, J. R. and Louie, S. G. and others}, journal={Journal of chemical theory and computation}, volume={11}, number={12}, @@ -11,7 +11,7 @@ @article{van2015gw @article{liu2016cubic, title={Cubic scaling GW: Towards fast quasiparticle calculations}, - author={Liu, Peitao and Kaltak, Merzuk and Klime{\v{s}}, Ji{\v{r}}{\'\i} and Kresse, Georg}, + author={Liu, P. and Kaltak, M. and Klime{\v{s}}, J. and Kresse, G.}, journal={Physical Review B}, volume={94}, number={16}, @@ -21,7 +21,7 @@ @article{liu2016cubic } @article{wilhelm2018toward, title={Toward GW calculations on thousands of atoms}, - author={Wilhelm, Jan and Golze, Dorothea and Talirz, Leopold and Hutter, Jurg and Pignedoli, Carlo A}, + author={Wilhelm, J. and Golze, D. and Talirz, L. and Hutter, J. and Pignedoli, C. A.}, journal={The journal of physical chemistry letters}, volume={9}, number={2}, @@ -31,7 +31,7 @@ @article{wilhelm2018toward } @article{duchemin2020robust, title={Robust analytic-continuation approach to many-body GW calculations}, - author={Duchemin, Ivan and Blase, Xavier}, + author={Duchemin, I. and Blase, X.}, journal={Journal of Chemical Theory and Computation}, volume={16}, number={3}, @@ -41,7 +41,7 @@ @article{duchemin2020robust } @article{friedrich2019tetrahedron, title={Tetrahedron integration method for strongly varying functions: Application to the GT self-energy}, - author={Friedrich, Christoph}, + author={Friedrich, C.}, journal={Physical Review B}, volume={100}, number={7}, @@ -51,7 +51,7 @@ @article{friedrich2019tetrahedron } @article{voora2020molecular, title={Molecular electron affinities using the generalized Kohn--Sham semicanonical projected random phase approximation}, - author={Voora, Vamsee K}, + author={Voora, V. K.}, journal={The Journal of Physical Chemistry Letters}, volume={12}, number={1}, @@ -61,7 +61,7 @@ @article{voora2020molecular } @article{samal2022modeling, title={Modeling nonresonant X-ray emission of second-and third-period elements without core-hole reference states and empirical parameters}, - author={Samal, Bibek and Voora, Vamsee K}, + author={Samal, B. and Voora, V. K.}, journal={Journal of Chemical Theory and Computation}, volume={18}, number={12}, @@ -71,7 +71,7 @@ @article{samal2022modeling } @article{springer1998first, title={First-principles T-matrix theory with application to the 6 eV satellite in Ni}, - author={Springer, M and Aryasetiawan, F and Karlsson, Krister}, + author={Springer, M. and Aryasetiawan, F. and Karlsson, K.}, journal={Physical review letters}, volume={80}, number={11}, @@ -81,7 +81,7 @@ @article{springer1998first } @article{ren2012resolution, title={Resolution-of-identity approach to Hartree--Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions}, - author={Ren, Xinguo and Rinke, Patrick and Blum, Volker and Wieferink, J{\"u}rgen and Tkatchenko, Alexandre and Sanfilippo, Andrea and Reuter, Karsten and Scheffler, Matthias}, + author={Ren, X. and Rinke, P. and Blum, V. and Wieferink, J. and Tkatchenko, A. and Sanfilippo, A. and Reuter, K. and Scheffler, M.}, journal={New Journal of Physics}, volume={14}, number={5}, @@ -91,7 +91,7 @@ @article{ren2012resolution } @article{gonze2009abinit, title={ABINIT: First-principles approach to material and nanosystem properties}, - author={Gonze, Xavier and Amadon, Bernard and Anglade, P-M and Beuken, J-M and Bottin, Fran{\c{c}}ois and Boulanger, Paul and Bruneval, Fabien and Caliste, Damien and Caracas, Razvan and C{\^o}t{\'e}, Michel and others}, + author={Gonze, X. and Amadon, B. and Anglade, P. M. and Beuken, J. M. and Bottin, F. and Boulanger, P. and Bruneval, F. and Caliste, D. and Caracas, R. and C{\^o}t{\'e}, M. and others}, journal={Computer Physics Communications}, volume={180}, number={12}, @@ -101,7 +101,7 @@ @article{gonze2009abinit } @article{wilhelm2016gw, title={GW in the Gaussian and plane waves scheme with application to linear acenes}, - author={Wilhelm, Jan and Del Ben, Mauro and Hutter, Jürg}, + author={Wilhelm, J. and Del Ben, M. and Hutter, J.}, journal={Journal of chemical theory and computation}, volume={12}, number={8}, @@ -111,7 +111,7 @@ @article{wilhelm2016gw } @article{wilhelm2017periodic, title={Periodic GW calculations in the Gaussian and plane-waves scheme}, - author={Wilhelm, Jan and Hutter, J{\"u}rg}, + author={Wilhelm, J. and Hutter, J.}, journal={Physical Review B}, volume={95}, number={23}, @@ -121,7 +121,7 @@ @article{wilhelm2017periodic } @article{wilhelm2021low, title={Low-scaling GW with benchmark accuracy and application to phosphorene nanosheets}, - author={Wilhelm, Jan and Seewald, Patrick and Golze, Dorothea}, + author={Wilhelm, J. and Seewald, P. and Golze, D.}, journal={Journal of Chemical Theory and Computation}, volume={17}, number={3}, @@ -131,7 +131,7 @@ @article{wilhelm2021low } @article{forster2020low, title={Low-order scaling g 0 w 0 by pair atomic density fitting}, - author={Förster, Arno and Visscher, Lucas}, + author={Förster, A. and Visscher, L.}, journal={Journal of chemical theory and computation}, volume={16}, number={12}, @@ -141,7 +141,7 @@ @article{forster2020low } @article{forster2021low, title={Low-order scaling quasiparticle self-consistent GW for molecules}, - author={F{\"o}rster, Arno and Visscher, Lucas}, + author={F{\"o}rster, A. and Visscher, L.}, journal={Frontiers in Chemistry}, volume={9}, pages={736591}, @@ -150,7 +150,7 @@ @article{forster2021low } @article{havu2009efficient, title={Efficient O (N) integration for all-electron electronic structure calculation using numeric basis functions}, - author={Havu, Ville and Blum, Volker and Havu, Paula and Scheffler, Matthias}, + author={Havu, V. and Blum, V. and Havu, P. and Scheffler, M.}, journal={Journal of Computational Physics}, volume={228}, number={22}, @@ -160,7 +160,7 @@ @article{havu2009efficient } @article{kuhne2020cp2k, title={CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations}, - author={K{\"u}hne, Thomas D and Iannuzzi, Marcella and Del Ben, Mauro and Rybkin, Vladimir V and Seewald, Patrick and Stein, Frederick and Laino, Teodoro and Khaliullin, Rustam Z and Sch{\"u}tt, Ole and Schiffmann, Florian and others}, + author={K{\"u}hne, T. D. and Iannuzzi, M. and Del Ben, M. and Rybkin, V. V. and Seewald, P. and Stein, F. and Laino, T. and Khaliullin, R. Z. and Sch{\"u}tt, O. and Schiffmann, F. and others}, journal={The Journal of Chemical Physics}, volume={152}, number={19}, @@ -169,7 +169,7 @@ @article{kuhne2020cp2k } @article{hedin1965new, title={New method for calculating the one-particle Green's function with application to the electron-gas problem}, - author={Hedin, Lars}, + author={Hedin, L.}, journal={Physical Review}, volume={139}, number={3A}, @@ -179,7 +179,7 @@ @article{hedin1965new } @article{golze2019gw, title={The GW compendium: A practical guide to theoretical photoemission spectroscopy}, - author={Golze, Dorothea and Dvorak, Marc and Rinke, Patrick}, + author={Golze, D. and Dvorak, M. and Rinke, P.}, journal={Frontiers in chemistry}, volume={7}, pages={377}, @@ -188,7 +188,7 @@ @article{golze2019gw } @article{rojas1995space, title={Space-time method for ab initio calculations of self-energies and dielectric response functions of solids}, - author={Rojas, HN and Godby, Rex William and Needs, RJ}, + author={Rojas, H. N. and Godby, R. W. and Needs, R. J.}, journal={Physical review letters}, volume={74}, number={10}, @@ -198,7 +198,7 @@ @article{rojas1995space } @article{azizi2023time, title={Time-frequency component of the GreenX library: minimax grids for efficient RPA and GW calculations}, - author={Azizi, Maryam and Wilhelm, Jan and Golze, Dorothea and Giantomassi, Matteo and Panad{\'e}s-Barrueta, Ram{\'o}n L and Delesma, Francisco A and Buccheri, Alexander and Gulans, Andris and Rinke, Patrick and Draxl, Claudia and others}, + author={Azizi, M. and Wilhelm, J. and Golze, D. and Giantomassi, M. and Panad{\'e}s-Barrueta, R. L. and Delesma, F. A. and Buccheri, A. and Gulans, A. and Rinke, P. and Draxl, C. and others}, journal={Journal of Open Source Software}, volume={8}, number={90}, @@ -208,7 +208,7 @@ @article{azizi2023time } @article{duchemin2021cubic, title={Cubic-scaling all-electron GW calculations with a separable density-fitting space--time approach}, - author={Duchemin, Ivan and Blase, Xavier}, + author={Duchemin, I. and Blase, X.}, journal={Journal of Chemical Theory and Computation}, volume={17}, number={4}, @@ -218,7 +218,7 @@ @article{duchemin2021cubic } @article{graml2024low, title={Low-scaling GW algorithm applied to twisted transition-metal dichalcogenide heterobilayers}, - author={Graml, Maximilian and Zollner, Klaus and Hernang{\'o}mez-P{\'e}rez, Daniel and Faria Junior, Paulo E and Wilhelm, Jan}, + author={Graml, M. and Zollner, K. and Hernang{\'o}mez-P{\'e}rez, D. and Faria Junior, P. E. and Wilhelm, J.}, journal={Journal of Chemical Theory and Computation}, volume={20}, number={5}, @@ -228,7 +228,7 @@ @article{graml2024low } @article{forster2023two, title={Two-component GW calculations: Cubic scaling implementation and comparison of vertex-corrected and partially self-consistent GW variants}, - author={Förster, Arno and van Lenthe, Erik and Spadetto, Edoardo and Visscher, Lucas}, + author={Förster, A. and van Lenthe, E. and Spadetto, E. and Visscher, L.}, journal={Journal of chemical theory and computation}, volume={19}, number={17}, @@ -238,7 +238,7 @@ @article{forster2023two } @article{forster2021gw100, title={GW100: A slater-type orbital perspective}, - author={Förster, Arno and Visscher, Lucas}, + author={Förster, A. and Visscher, L.}, journal={Journal of chemical theory and computation}, volume={17}, number={8}, @@ -249,7 +249,7 @@ @article{forster2021gw100 @article{mattiat2018efficient, title={Efficient calculation of (resonance) Raman spectra and excitation profiles with real-time propagation}, - author={Mattiat, Johann and Luber, Sandra}, + author={Mattiat, J. and Luber, S.}, journal={The Journal of chemical physics}, volume={149}, number={17}, @@ -258,22 +258,8 @@ @article{mattiat2018efficient } - - - - - - - - - - - - - - @article{cdwac, -author = {Panadés-Barrueta, Ramón L. and Golze, Dorothea}, +author = {Panadés-Barrueta, R. L. and Golze, D.}, title = {Accelerating Core-Level GW Calculations by Combining the Contour Deformation Approach with the Analytic Continuation of W}, journal = {Journal of Chemical Theory and Computation}, volume = {19}, @@ -286,21 +272,21 @@ @article{cdwac @book{GMPlib, title={GNU MP 6.0 Multiple precision arithmetic library}, - author={Granlund, Torbjrn}, + author={Granlund, T.}, year={2015}, publisher={Samurai Media Limited} } @book{ThielePade_original, title={Interpolationsrechnung}, - author={T.N. Thiele}, + author={Thiele, T. N.}, year={1909}, publisher={Leipzig B.G. Teubner} } @book{ThielePade_Milne, title={The Calculus Of Finite Differences}, - author={L.M. Milne-Thomson}, + author={Milne-Thomson, L. M.}, year={1933}, publisher={Macmillan And Company.} } @@ -308,7 +294,7 @@ @book{ThielePade_Milne @book{ThielePade_Baker, title={Essentials of Pad{\'e} approximants}, - author={G.A. Baker}, + author={Baker, G. A.}, year={1975}, publisher={Elsevier} } @@ -330,7 +316,7 @@ @article{PadeInstable @article{Pade_Greensf_1977, title={Solving the Eliashberg equations by means of N-point Pad{\'e} approximants}, - author={Vidberg, HJ and Serene, JW}, + author={Vidberg, H. J. and Serene, J. W.}, journal={Journal of Low Temperature Physics}, volume={29}, pages={179--192}, @@ -348,7 +334,7 @@ @book{NumericalRecipes @article{Beach2000, title = {Reliable Pad\'e analytical continuation method based on a high-accuracy symbolic computation algorithm}, author = {Beach, K. S. D. and Gooding, R. J. and Marsiglio, F.}, - journal = {Phys. Rev. B}, + journal = {Physical Review B}, volume = {61}, issue = {8}, pages = {5147--5157}, @@ -362,13 +348,13 @@ @article{Beach2000 @article{greedy_pade1, title={Numerical continued fraction interpolation}, - author={Celis, Oliver Salazar}, + author={Celis, O. S.}, journal={arXiv preprint arXiv:2109.10529}, year={2021} } @article{greedy_pade2, -author = {Celis, Oliver Salazar}, +author = {Celis, O. S.}, title = {Adaptive Thiele interpolation}, year = {2023}, issue_date = {September 2022}, @@ -386,7 +372,7 @@ @article{greedy_pade2 } @article{kehry2023robust, title={Robust relativistic many-body Green’s function based approaches for assessing core ionized and excited states}, - author={Kehry, Max and Klopper, Wim and Holzer, Christof}, + author={Kehry, M. and Klopper, W. and Holzer, C.}, journal={The Journal of Chemical Physics}, volume={159}, number={4}, @@ -395,7 +381,7 @@ @article{kehry2023robust } @article{cuyt1988instability, title={Instability and modification of Thiele interpolating continued fractions}, - author={Cuyt, Annie AM and Jacobsen, Lisa and Verdonk, Brigitte M}, + author={Cuyt, A. A. M. and Jacobsen, L. and Verdonk, B. M.}, journal={Applied numerical mathematics}, volume={4}, number={2-4}, @@ -405,7 +391,7 @@ @article{cuyt1988instability } @article{jones1974numerical, title={Numerical stability in evaluating continued fractions}, - author={Jones, William B and Thron, WJ}, + author={Jones, W. B. and Thron, W. J.}, journal={Mathematics of Computation}, volume={28}, number={127}, @@ -414,7 +400,7 @@ @article{jones1974numerical } @article{azizi2024validation, title={Validation of the GreenX library time-frequency component for efficient GW and RPA calculations}, - author={Azizi, Maryam and Wilhelm, Jan and Golze, Dorothea and Delesma, Francisco A and Panad{\'e}s-Barrueta, Ram{\'o}n L and Rinke, Patrick and Giantomassi, Matteo and Gonze, Xavier}, + author={Azizi, M. and Wilhelm, J. and Golze, D. and Delesma, F. A. and Panad{\'e}s-Barrueta, R. L. and Rinke, P. and Giantomassi, M. and Gonze, X.}, journal={Physical Review B}, volume={109}, number={24}, @@ -425,7 +411,7 @@ @article{azizi2024validation @article{schott2016analytic, title={Analytic continuation by averaging Pad{\'e} approximants}, - author={Sch{\"o}tt, Johan and Locht, Inka LM and Lundin, Elin and Gr{\aa}n{\"a}s, Oscar and Eriksson, Olle and Di Marco, Igor}, + author={Sch{\"o}tt, J. and Locht, I. L. M. and Lundin, E. and Gr{\aa}n{\"a}s, O. and Eriksson, O. and Di Marco, I.}, journal={Physical Review B}, volume={93}, number={7}, @@ -435,7 +421,7 @@ @article{schott2016analytic } @article{luke1975error, title={On the error in the Pad{\'e} approximants for a form of the incomplete gamma function including the exponential function}, - author={Luke, Yudell L}, + author={Luke, Y. L.}, journal={SIAM Journal on Mathematical Analysis}, volume={6}, number={5}, @@ -445,7 +431,7 @@ @article{luke1975error } @inproceedings{iriguchi2007estimation, title={Estimation of poles of zeta function in learning theory using Pad{\'e} approximation}, - author={Iriguchi, Ryosuke and Watanabe, Sumio}, + author={Iriguchi, R. and Watanabe, S.}, booktitle={Artificial Neural Networks--ICANN 2007: 17th International Conference, Porto, Portugal, September 9-13, 2007, Proceedings, Part I 17}, pages={88--97}, year={2007}, @@ -453,7 +439,7 @@ @inproceedings{iriguchi2007estimation } @inproceedings{nekrasov2024analytic, title={Analytic continuation and supersymmetry}, - author={Nekrasov, Nikita}, + author={Nekrasov, N.}, booktitle={Proc. Symp. Pure Math}, volume={107}, pages={167}, @@ -461,7 +447,7 @@ @inproceedings{nekrasov2024analytic } @article{li2020real, title={Real-time time-dependent electronic structure theory}, - author={Li, Xiaosong and Govind, Niranjan and Isborn, Christine and DePrince III, A Eugene and Lopata, Kenneth}, + author={Li, X. and Govind, N. and Isborn, C. and DePrince III, A. E. and Lopata, K.}, journal={Chemical Reviews}, volume={120}, number={18}, @@ -471,7 +457,7 @@ @article{li2020real } @article{lope2002analytic, title={On the analytic continuation of solutions to nonlinear partial differential equations}, - author={Lope, Jose Ernie C and Tahara, Hidetoshi}, + author={Lope, J. E. C. and Tahara, H.}, journal={Journal de math{\'e}matiques pures et appliqu{\'e}es}, volume={81}, number={9}, @@ -481,7 +467,7 @@ @article{lope2002analytic } @article{bruner2016accelerated, title={Accelerated broadband spectra using transition dipole decomposition and Pad{\'e} approximants}, - author={Bruner, Adam and LaMaster, Daniel and Lopata, Kenneth}, + author={Bruner, A. and LaMaster, D. and Lopata, K.}, journal={Journal of chemical theory and computation}, volume={12}, number={8},