Skip to content

Latest commit

 

History

History
692 lines (641 loc) · 14.8 KB

MongoDB-compound-index.md

File metadata and controls

692 lines (641 loc) · 14.8 KB

根据典型碰到的场景,来做几个实验: 这里创建了个loans collection。简化只有100条数据。这个是借贷的表有 _id, userId, status(借贷状态), amount(金额).

看完 这个实验后, 你会明白了 {userId:1, status:1}, vs {status:1,userId:1} 的差别

PS:这个case 里面其实status 区分度不高,不应该建立的,这里只是作为实例展示。

总结:

  • 注意使用上 使用频率上 区分高的/常用的在前面
  • 如果需要减少索引以节省memory/提高修改数据的性能的话,可以保留区分度高,常用的,去除区分度不高,不常用的索引。

实验如下:

db.loans.count() 100

db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "ok" : 1 }

注意上面 COLLSCAN 全表扫描了。因为没有索引。 next 我们分别建立几个索引

step 1 先建立 {userId:1, status:1}

db.loans.createIndex({userId:1, status:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 }

db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "["repayed", "repayed"]" ] } } }, "rejectedPlans" : [ ] }, "ok" : 1 }

如愿命中 {userId:1, status:1} 作为 winning plan

step2 再建立个典型的索引 userId

db.loans.createIndex({userId:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 2, "numIndexesAfter" : 3, "ok" : 1 }

db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "["repayed", "repayed"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "multiKeyPaths" : { "userId" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } ] }, "ok" : 1 }

留意到 DB 检测到 {userId:1, status:1} 为更优执行的方案

db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "multiKeyPaths" : { "userId" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } } ] }, "ok" : 1 }

留意到 DB 检测到 {userId:1} 为更优执行的方案,嗯~,如我们所料

db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "status" : { "$eq" : "repayed" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "ok" : 1 }

***有趣的部分: status 不命中索引, 全表扫描 *** 接下来,我加了个sort

db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).sort({status:1}).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ { "stage" : "SORT", "sortPattern" : { "status" : 1 }, "inputStage" : { "stage" : "SORT_KEY_GENERATOR", "inputStage" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "multiKeyPaths" : { "userId" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } } } ] }, "ok" : 1 }

***有趣的部分: status 不命中索引 ***

db.loans.find({ "status" : "repayed","userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "["repayed", "repayed"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "multiKeyPaths" : { "userId" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } ] }, "ok" : 1 }

命中索引, 跟 query 的各个字段顺序不相关,如我们猜测

有趣部分再来, 我们删掉索引{userId:1}

db.loans.dropIndex({"userId":1}) { "nIndexesWas" : 3, "ok" : 1 }

db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "ok" : 1 }

DB 执行分析器觉得索引{userId:1, status:1} 能更优

没有命中复合索引 ,这个是因为status 不是 leading field

db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "status" : { "$eq" : "repayed" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "ok" : 1 }

再换个角度sort 一遍, 与前面query & sort 互换 ,之前是

db.loans.find({userId:1}).sort({ "status" : "repayed" }) 看看有啥不一样?

db.loans.find({ "status" : "repayed" }).sort({userId:1}).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "winningPlan" : { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "direction" : "forward", "indexBounds" : { "userId" : [ "[MinKey, MaxKey]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "ok" : 1 }

如猜测,命中索引

再来玩1玩,确认下leading filed试验:

db.loans.dropIndex("userId_1_status_1") { "nIndexesWas" : 2, "ok" : 1 }

db.loans.getIndexes() [ { "v" : 2, "key" : { "_id" : 1 }, "name" : "id", "ns" : "cashLoan.loans" } ]

db.loans.createIndex({status:1, userId:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 }

db.loans.getIndexes() [ { "v" : 2, "key" : { "_id" : 1 }, "name" : "id", "ns" : "cashLoan.loans" }, { "v" : 2, "key" : { "status" : 1, "userId" : 1 }, "name" : "status_1_userId_1", "ns" : "cashLoan.loans" } ]

db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "status" : 1, "userId" : 1 }, "indexName" : "status_1_userId_1", "multiKeyPaths" : { "status" : [ ], "userId" : [ ] }, "direction" : "forward", "indexBounds" : { "status" : [ "["repayed", "repayed"]" ], "userId" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "ok" : 1 }

status_1_userId_1 有这个索引的前提,去查 leading fields -- status: xx 会中

db.loans.getIndexes() [ { "v" : 2, "key" : { "_id" : 1 }, "name" : "id", "ns" : "cashLoan.loans" }, { "v" : 2, "key" : { "status" : 1, "userId" : 1 }, "name" : "status_1_userId_1", "ns" : "cashLoan.loans" } ]

db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "namespace" : "cashLoan.loans", "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "ok" : 1 }

status_1_userId_1 有这个索引的前提,去查 非leading fields -- user_id: xx 没中,全表扫描

所以 注意使用上 使用频率上 区分高的/常用的, 应该使用于混合索引,在前面作为leading fields,