This repository has been archived by the owner on Oct 15, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuboid.py
71 lines (54 loc) · 1.57 KB
/
cuboid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import division
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from numpy import linalg as LA
from numpy import *
from numpy import max as mx
import scipy as sp
import sympy as sy
from sympy.abc import alpha, beta, gamma, L, B, T
from area import A
# Dimensions of cuboid should be L>B>T
L = 7
B = 6
T = 4
Dxyz = sy.Matrix([ L/2, B/2, T/2])
D = sy.Matrix([ L/2, B/2,-T/2])
N = Dxyz.cross(D)
N = N/N.norm()
alpha = rad2deg(math.acos(N[0]))
beta = rad2deg(math.acos(N[1]))
gamma = rad2deg(math.acos(N[2]))
print(A(alpha,beta,gamma,L,B,T))
Area = load("area.npy")
alpha = list(xrange(0,91,5))
beta = list(xrange(0,91,5))
gamma = list(xrange(0,91,5))
alpha, beta = meshgrid(alpha, beta)
# ax = Axes3D(plt.gcf())
# ax.plot_surface(alpha, beta, Area[:,:,0])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(alpha, beta, Area[:,0,:], rstride=1, cstride=1)
cset = ax.contour(alpha, beta, Area[:,0,:], zdir='x', offset=0)
cset = ax.contour(alpha, beta, Area[:,0,:], zdir='y', offset=90)
cset = ax.contour(alpha, beta, Area[:,0,:], zdir='z', offset=0)
ax.set_xlabel('alpha $[\degree]$')
ax.set_xlim(0, 90)
ax.set_ylabel('gamma $[\degree]$')
ax.set_ylim(0, 90)
ax.set_zlabel('area $[m^2]$')
ax.set_zlim(0, 60)
plt.show()
plt.plot(gamma, Area[0,:,0])
plt.plot(gamma, Area[:,-1,0])
plt.plot(gamma, Area[0,0,:])
plt.plot([rad2deg(arctan(6/7)),rad2deg(arctan(6/7))],[24,38])
plt.show()
mxA = mx(Area)
A = where(Area==mxA)
# print(Area[7,5,5])
# alpha = 90
# beta = 0
# gamma = rad2deg(arctan(4/7))
# print(A(alpha,beta,gamma))