From aab491806a5cd81c0c647b42067c368634eb24db Mon Sep 17 00:00:00 2001 From: Nathan Muncy Date: Mon, 8 Mar 2021 16:00:25 -0500 Subject: [PATCH] regression working --- afq_step3_stats.R | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/afq_step3_stats.R b/afq_step3_stats.R index f3dd13b..e80089e 100644 --- a/afq_step3_stats.R +++ b/afq_step3_stats.R @@ -410,37 +410,37 @@ p12 <- plot_diff(fit_cov_pds, par(mfrow=c(1,1)) -# get location of maximum difference -max_node_01 <- as.numeric(which(abs(p01$est) == max(abs(p01$est)))) - 1 -max_node_02 <- as.numeric(which(abs(p02$est) == max(abs(p02$est)))) - 1 -max_node_12 <- as.numeric(which(abs(p12$est) == max(abs(p12$est)))) - 1 - ### --- Step 6: Regress # # regress node FA value on behavior +# find biggest difference +df_est <- as.data.frame(matrix(NA, nrow=3*dim(p01)[1], ncol=dim(p01)[2])) +colnames(df_est) <- colnames(p01) +df_est[,1:5] <- rbind(p01, p02, p12) + +ind_max <- which(abs(df_est$est) == max(abs(df_est$est))) +node_max <- df_est[ind_max,]$nodeID +h_groups <- df_est[ind_max,]$comp +groups <- stringr::str_extract_all(h_groups, "\\d+") +gA <- as.numeric(groups[[1]][1]) +gB <- as.numeric(groups[[1]][2]) + +# make df df_max <- as.data.frame(df_tract[which( - df_tract$nodeID == max_node_01 | - df_tract$nodeID == max_node_02 | - df_tract$nodeID == max_node_12 + df_tract$nodeID == node_max & + (df_tract$Group == gA | df_tract$Group == gB) ),]) -df_reduce <- as.data.frame(df_max[,-c(1:2, 5, 7:10, 14:16)]) -df_reduce$nodeID <- factor(df_reduce$nodeID) - -ind_pos02 <- which(df_reduce$nodeID == max_node_02 & - (df_reduce$Group == 0 | df_reduce$Group == 2)) -df_pos02 <- as.data.frame(df_reduce[ind_pos02,]) # negLGI x group -ggplot(df_pos02, aes(x=dti_fa, y=NegLGI)) + +ggplot(df_max, aes(x=dti_fa, y=NegLGI)) + geom_point() + geom_smooth(method = "lm") + facet_wrap(~ Group) -# xyplot(NegLGI ~ dti_fa, groups=Group, data=df_pos02, type='l') -fit <- lmList(NegLGI ~ dti_fa | Group, data = df_pos02) +fit <- lmList(NegLGI ~ dti_fa | Group, data = df_max) summary(fit)