forked from MPUmri/ERRM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe01_2_quickSimSingleCurve.m
150 lines (124 loc) · 3.96 KB
/
e01_2_quickSimSingleCurve.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
% Quick simulation - shows the fits on noisy data
% Simulates curves for tissue of interest and reference region with noise
% then shows the fits by the ERRM.
% This figure was adapted into Supplementary Figure S1 in the manuscript.
% Estimated runtime: < 1 second
%% Pre-setup
clearvars
addpath('./mfiles')
tic
%% Settings
% Noise - manuscript version uses sigmaCt=0.02, sigmaCrr=0.002
sigmaCt = 0.02;
sigmaCrr = 0.1*sigmaCt;
% Parameters for tissue of interest
kt = 0.25;
kep = 0.625;
ve = kt/kep;
vpList = [0, 0.025, 0.05, 0.10];
% Parameters for reference tissue
ktRR = 0.07;
kepRR = 0.5;
veRR = ktRR/kepRR;
% Properties of the simulation
sSize= .1; % Temporal resolution for generating simulated curves (in seconds)
tRes = 1; % Desired temporal resolution (in seconds), obtained by downsampling simulated data
t=sSize:sSize:600; % Time, in seconds
t=t'/60; % Convert time into minutes
% Generate the arterial input function using literature-based model, bolus arrival at 60s
Cp = ParkerAif(t,t(60/sSize));
%% Simulate concentration in Tissue of Interest
for i=1:length(vpList)
Ct(:,i) = ToftsKety(Cp,[kt kep vpList(i)],t,1);
end
%% Simulate concentration in Reference Region
Crr = ToftsKety(Cp,[ktRR kepRR],t,0);
trueCrr = Crr;
%% Add noise
noiselessCt = Ct;
noiselessCrr = Crr;
noiselessT = t;
Ct = Ct + sigmaCt * randn(size(Ct));
Crr = Crr + sigmaCrr * randn(size(Crr));
%% Downsample
dFactor = tRes/sSize;
t=downsample(t,dFactor);
Ct=downsample(Ct,dFactor);
Crr=downsample(Crr,dFactor);
Cp = downsample(Cp,dFactor);
%% Fit models to simulated data
[pkRRM, fittedRRM] = LRRM(Ct,Crr,t); % RRM
[pkERRM, fittedERRM] = ERRM(Ct,Crr,t); % ERRM
[pkERRMn, fittedERRMn] = ERRM(Ct,Crr,t,true); % ERRM - using lsqnonneg
[pkCERRM, fittedCERRM] = CERRM(Ct,Crr,t); % CERRM
% Doing the Reference Tissue Method
% Results are not shown
[pkRTM, estCpRTM] = doRTM(Ct,Crr,t,[ktRR veRR],0);
[pkERTM, estCpERTM] = doRTM(Ct,Crr,t,[ktRR veRR],1);
fittedRTM = ToftsKety(estCpRTM,pkRTM,t,0);
fittedERTM = ToftsKety(estCpERTM,pkERTM,t,1);
%% Plot results
% Define colours for tissue curve plots
listColours{5} = [55,200,113]./255; % Ct vp=0
listColours{4} = [0,102,128]./255; % Ct vp=0.025
listColours{3} = [0,136,170]./255; % Ct vp=0.05
listColours{2} = [0,204,255]./255; % Ct vp=0.10
listColours{1} = [181,238,252]./255; % Crr
% Show the early part where most of interesting things happen
opt_xlim = [0.5 4.0];
% Figure might be too wide for users with smaller screen?
figure('Position',[300 300 1200 700])
% Plot Cp
subplot(2,3,1)
plot(t,Cp,'r', 'LineWidth',2)
xlabel('Time [min]')
ylabel('Concentration [mM]')
title('Blood plasma (C_p)')
legend('C_p(t) - Blood Plasma')
xlim(opt_xlim)
% Plot noiseless curves
subplot(2,3,2)
iterPlot(noiselessT,[noiselessCt noiselessCrr],listColours)
xlabel('Time [min]')
ylabel('Concentration [mM]')
title('Simulated tissue curves (C_t and C_{RR})')
legend('vp=0','vp=0.025','vp=0.05','vp=0.10','C_{RR}(t)')
xlim(opt_xlim)
ylim([-0.01 1.4])
% Plot noisy curves
subplot(2,3,3)
iterPlot(t,[Ct Crr],listColours)
xlabel('Time [min]')
ylabel('Concentration [mM]')
title('Simulated tissue curves with noise')
legend('vp=0','vp=0.025','vp=0.05','vp=0.10','C_{RR}(t)')
xlim(opt_xlim)
ylim([-0.01 1.4])
% Plot ERRM fits on noisy data
subplot(2,3,4)
iterPlot(t,fittedERRM,listColours)
iterScatter(t,cumtrapz(t,Ct),5,listColours)
xlabel('Time [min]')
ylabel('Integral of Concentration [mM*min]')
title('ERRM fit on noisy curves')
xlim(opt_xlim)
ylim([-0.01 1.8])
% Plot ERRM fits on noisy data - zoomed in
subplot(2,3,5)
iterPlot(t,fittedERRM,listColours)
iterScatter(t,cumtrapz(t,Ct),40,listColours)
xlabel('Time [min]')
ylabel('Integral of Concentration [mM*min]')
title('ERRM fit on noisy curves - zoomed in')
xlim([1 1.5])
ylim([-0.01 0.3])
% Plot residuals of ERRM fit
subplot(2,3,6)
iterPlot(t,cumtrapz(t,Ct)-fittedERRM,listColours)
xlabel('Time [min]')
ylabel('Residuals [mM*min]')
title('Residuals of ERRM fit on noisy curves')
xlim(opt_xlim)
%%
toc
disp('Finished quick simulation showing ERRM fit on noisy data')