Skip to content

Latest commit

 

History

History
59 lines (51 loc) · 1.32 KB

README.md

File metadata and controls

59 lines (51 loc) · 1.32 KB

Walk through full run of WMDA analysis

Imputation

Pre-requisites

Make sure you've generated the graph db. See Graph Generation

  • Make sure the virtual environment is active.

     cd grimm
     source venv/bin/activate
    
  • Prepare data The don.gl.txt.gz file is generated by g2gl method. See WMDA g2gl

     cd validation/wmda/data
     gunzip -c don.gl.txt.gz > don.gl.txt
     gunzip -c pat.gl.txt.gz > pat.gl.txt
    

    If you need to reproduce consensus results for WMDA MVT 3 exactly, the donor D004016 needs to be updated with 33:03 typings. Apply the change:

     git apply don.gl.txt_mvt-3-discrepancy.diff
    
  • Install gl-impute module.

     cd ../../..
     cd gl_impute
     make install
    
  • Update neo4j.json file with the username/password for your Neo4J instance if different.

     cd ../multi_race_impute
     edit neo4j.json
    
  • Start the imputation generation process. This process currently takes 2+ hours.

     time python RunFile.py
    

    .... wait ....

     	175.96s user 6.40s system 2% cpu 2:25:50.00 total
    
  • Finally.. The imputation results are produced in output directory.

     output
     ├── don.gl.txt_miss
     ├── don.gl.txt_out
     ├── don.gl.txt_val
     ├── pat.gl.txt_miss
     ├── pat.gl.txt_out
     └── pat.gl.txt_val