-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_generator.py
77 lines (63 loc) · 2.36 KB
/
graph_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from __future__ import annotations
import networkx as nx
from networkx.drawing.nx_pydot import graphviz_layout
import matplotlib.pyplot as plt
from dataclasses import dataclass
from pathlib import Path
import random
import sys
import hashlib
import os
OUTPUT_DIR = "tester_files/generated"
MIN_NODE = 1
MAX_NODE = 50
@dataclass()
class Graph:
graph: nx.Graph
def to_exercise_format(self) -> str:
n = len(self.graph.nodes)
lines = [str(n)]
for node in sorted(self.graph.nodes):
neighs = ' '.join(str(key) for key in self.graph.neighbors(node))
if len(neighs) == 0:
lines.append('-')
else:
lines.append(neighs)
return "\n".join(lines)+"\n"
def draw(self, path: str):
plt.title(f'Graph of {Path(path).stem}')
pos = graphviz_layout(self.graph, prog='dot')
nx.draw(self.graph, pos, with_labels=True, arrows=True)
plt.savefig(path)
plt.clf()
def gen_valid_trees(nodes: int, rand: random.Random):
""" Generates a tree, saves it as an input file as well as image"""
print(f"Generating a tree with {nodes} nodes")
tree = nx.generators.random_tree(n=nodes, seed=rand)
# 'tree' is undirected, use 'BFS' to get directed representation
tree = nx.bfs_tree(tree, 0)
tree = randomize_nodes(tree)
graph = Graph(tree)
# writing input file and image
exercise_str = graph.to_exercise_format()
# hash to avoid duplicate tests
hasher = hashlib.md5()
hasher.update(exercise_str.rstrip("\r\n").encode('utf-8'))
ex_hash = hasher.hexdigest()
name = f"valid-{nodes}-{ex_hash}"
with open(Path(OUTPUT_DIR) / f"{name}.txt", 'w') as file:
file.write(exercise_str)
graph.draw(Path(OUTPUT_DIR) / f"{name}.png")
def randomize_nodes(graph: nx.Graph) -> nx.Graph:
""" Randomizes keys in given graph, returning the updated graph """
nodes = [i for i in range(len(graph.nodes))]
random.shuffle(nodes)
mapping = {orig:new for orig, new in zip(graph.nodes, nodes)}
return nx.relabel_nodes(graph, mapping, True)
if __name__ == '__main__':
seed = os.urandom(2500)
random = random.Random(seed)
os.makedirs(OUTPUT_DIR, exist_ok=True)
for node_count in range(1, MAX_NODE + 1):
gen_valid_trees(node_count, random)
print(f"Finished generating {MAX_NODE+1 - MIN_NODE} trees")