diff --git a/README.Rmd b/README.Rmd index 9b7ec5b..1d38d1e 100644 --- a/README.Rmd +++ b/README.Rmd @@ -77,6 +77,7 @@ mat <- lotri(a+b ~ c(1, print(mat) # You can also specify line by line: + mat <- lotri({a ~ 1 b ~ c(0.5, 1)}) print(mat) diff --git a/README.md b/README.md index 0ffc270..ab4cf2d 100644 --- a/README.md +++ b/README.md @@ -9,317 +9,317 @@ output: --> - - - + [![R-CMD-check](https://github.com/nlmixr2/lotri/workflows/R-CMD-check/badge.svg)](https://github.com/nlmixr2/lotri/actions) [![codecov](https://codecov.io/gh/nlmixr2/lotri/branch/main/graph/badge.svg?token=4G0TI1NKEG)](https://app.codecov.io/gh/nlmixr2/lotri) -[![CRAN status](https://www.r-pkg.org/badges/version/lotri)](https://cran.r-project.org/package=lotri) -[![CRAN downloads](https://cranlogs.r-pkg.org/badges/lotri)](https://cran.r-project.org/package=lotri) +[![CRAN +status](https://www.r-pkg.org/badges/version/lotri)](https://cran.r-project.org/package=lotri) +[![CRAN +downloads](https://cranlogs.r-pkg.org/badges/lotri)](https://cran.r-project.org/package=lotri) [![CodeFactor](https://www.codefactor.io/repository/github/nlmixr2/lotri/badge)](https://www.codefactor.io/repository/github/nlmixr2/lotri) +[![R-CMD-check](https://github.com/nlmixr2/lotri/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/nlmixr2/lotri/actions/workflows/R-CMD-check.yaml) -# lotri +lotri +=================================================================== The goal of lotri is to easily specify block-diagonal matrices with -(lo)wer (tri)angular matrices. Its as if you have won the (badly +(lo)wer (tri)angular matrices. Its as if you have won the (badly spelled) lotri (or lottery). This was made to allow people (like me) to specify lower triangular matrices similar to the domain specific language implemented in -`nlmixr2`. Originally I had it included in `RxODE`, but thought it may -have more general applicability, so I separated it into a new -package. +`nlmixr2`. Originally I had it included in `RxODE`, but thought it may +have more general applicability, so I separated it into a new package. -## Installation +Installation +------------ You can install the released version of lotri from [CRAN](https://CRAN.R-project.org) with: -``` r -install.packages("lotri") -``` + install.packages("lotri") And the development version from [GitHub](https://github.com/) with: -``` r -# install.packages("devtools") -devtools::install_github("nlmixr2/lotri") -``` -## Example + # install.packages("devtools") + devtools::install_github("nlmixr2/lotri") -This is a basic example for an easier way to specify matrices in R. -For instance to fully specify a simple `2x2` matrix, in R you specify: +Example +------- +This is a basic example for an easier way to specify matrices in R. For +instance to fully specify a simple `2x2` matrix, in R you specify: -```r -mat <- matrix(c(1, 0.5, 0.5, 1),nrow=2,ncol=2,dimnames=list(c("a", "b"), c("a", "b"))) -``` + mat <- matrix(c(1, 0.5, 0.5, 1),nrow=2,ncol=2,dimnames=list(c("a", "b"), c("a", "b"))) With `lotri`, you simply specify: + library(lotri) + library(microbenchmark) + library(ggplot2) -```r -library(lotri) -library(microbenchmark) -library(ggplot2) + mat <- lotri(a+b ~ c(1, + 0.5, 1)) + print(mat) + #> a b + #> a 1.0 0.5 + #> b 0.5 1.0 -mat <- lotri(a+b ~ c(1, - 0.5, 1)) -print(mat) -#> a b -#> a 1.0 0.5 -#> b 0.5 1.0 -``` + # You can also specify line by line: + + mat <- lotri({a ~ 1 + b ~ c(0.5, 1)}) + print(mat) + #> a b + #> a 1.0 0.5 + #> b 0.5 1.0 I find it more legible and easier to specify, especially if you have a -more complex matrix. For instance with the more complex matrix: - - -```r -mat <- lotri({ - a+b ~ c(1, - 0.5, 1) - c ~ 1 - d +e ~ c(1, - 0.5, 1) -}) -print(mat) -#> a b c d e -#> a 1.0 0.5 0 0.0 0.0 -#> b 0.5 1.0 0 0.0 0.0 -#> c 0.0 0.0 1 0.0 0.0 -#> d 0.0 0.0 0 1.0 0.5 -#> e 0.0 0.0 0 0.5 1.0 -``` +more complex matrix. For instance with the more complex matrix: + + mat <- lotri({ + a+b ~ c(1, + 0.5, 1) + c ~ 1 + d +e ~ c(1, + 0.5, 1) + }) + print(mat) + #> a b c d e + #> a 1.0 0.5 0 0.0 0.0 + #> b 0.5 1.0 0 0.0 0.0 + #> c 0.0 0.0 1 0.0 0.0 + #> d 0.0 0.0 0 1.0 0.5 + #> e 0.0 0.0 0 0.5 1.0 + + # or + mat <- lotri({ + a ~ 1 + b ~ c(0.5, 1) + c ~ 1 + d ~ 1 + e ~ c(0.5, 1) + }) + + print(mat) + #> a b c d e + #> a 1.0 0.5 0 0.0 0.0 + #> b 0.5 1.0 0 0.0 0.0 + #> c 0.0 0.0 1 0.0 0.0 + #> d 0.0 0.0 0 1.0 0.5 + #> e 0.0 0.0 0 0.5 1.0 To fully specify this in base R you would need to use: - -```r -mat <- matrix(c(1, 0.5, 0, 0, 0, - 0.5, 1, 0, 0, 0, - 0, 0, 1, 0, 0, - 0, 0, 0, 1, 0.5, - 0, 0, 0, 0.5, 1), - nrow=5, ncol=5, - dimnames= list(c("a", "b", "c", "d", "e"), - c("a", "b", "c", "d", "e"))) -print(mat) -#> a b c d e -#> a 1.0 0.5 0 0.0 0.0 -#> b 0.5 1.0 0 0.0 0.0 -#> c 0.0 0.0 1 0.0 0.0 -#> d 0.0 0.0 0 1.0 0.5 -#> e 0.0 0.0 0 0.5 1.0 -``` + mat <- matrix(c(1, 0.5, 0, 0, 0, + 0.5, 1, 0, 0, 0, + 0, 0, 1, 0, 0, + 0, 0, 0, 1, 0.5, + 0, 0, 0, 0.5, 1), + nrow=5, ncol=5, + dimnames= list(c("a", "b", "c", "d", "e"), + c("a", "b", "c", "d", "e"))) + print(mat) + #> a b c d e + #> a 1.0 0.5 0 0.0 0.0 + #> b 0.5 1.0 0 0.0 0.0 + #> c 0.0 0.0 1 0.0 0.0 + #> d 0.0 0.0 0 1.0 0.5 + #> e 0.0 0.0 0 0.5 1.0 Of course with the excellent `Matrix` package this is a bit easier: - -```r -library(Matrix) -mat <- matrix(c(1, 0.5, 0.5, 1), - nrow=2, - ncol=2, - dimnames=list(c("a", "b"), c("a", "b"))) - -mat <- bdiag(list(mat, matrix(1), mat)) - -## Convert back to standard matrix -mat <- as.matrix(mat) -## -dimnames(mat) <- list(c("a", "b", "c", "d", "e"), - c("a", "b", "c", "d", "e")) -print(mat) -#> a b c d e -#> a 1.0 0.5 0 0.0 0.0 -#> b 0.5 1.0 0 0.0 0.0 -#> c 0.0 0.0 1 0.0 0.0 -#> d 0.0 0.0 0 1.0 0.5 -#> e 0.0 0.0 0 0.5 1.0 -``` + library(Matrix) + mat <- matrix(c(1, 0.5, 0.5, 1), + nrow=2, + ncol=2, + dimnames=list(c("a", "b"), c("a", "b"))) + + mat <- bdiag(list(mat, matrix(1), mat)) + + ## Convert back to standard matrix + mat <- as.matrix(mat) + ## + dimnames(mat) <- list(c("a", "b", "c", "d", "e"), + c("a", "b", "c", "d", "e")) + print(mat) + #> a b c d e + #> a 1.0 0.5 0 0.0 0.0 + #> b 0.5 1.0 0 0.0 0.0 + #> c 0.0 0.0 1 0.0 0.0 + #> d 0.0 0.0 0 1.0 0.5 + #> e 0.0 0.0 0 0.5 1.0 Regardless, I think `lotri` is a bit easier to use. -# Creating lists of matrices with attached properties +Creating lists of matrices with attached properties +=================================================== `lotri` also allows lists of matrices to be created by conditioning on an `id` with the `|` syntax. For example: - - -```r -mat <- lotri({ - a+b ~ c(1, - 0.5, 1) | id - c ~ 1 | occ - d + e ~ c(1, - 0.5, 1) | id(lower=3, upper=2, omegaIsChol=FALSE) -}) - -print(mat) -#> $id -#> d e -#> d 1.0 0.5 -#> e 0.5 1.0 -#> -#> $occ -#> c -#> c 1 -#> -#> Properties: lower, upper, omegaIsChol - -print(mat$lower) -#> $id -#> d e -#> 3 3 -#> -#> $occ -#> c -#> -Inf -print(mat$upper) -#> $id -#> d e -#> 2 2 -#> -#> $occ -#> c -#> Inf -print(mat$omegaIsChol) -#> $id -#> [1] FALSE -``` + mat <- lotri({ + a+b ~ c(1, + 0.5, 1) | id + c ~ 1 | occ + d + e ~ c(1, + 0.5, 1) | id(lower=3, upper=2, omegaIsChol=FALSE) + }) + + print(mat) + #> $id + #> d e + #> d 1.0 0.5 + #> e 0.5 1.0 + #> + #> $occ + #> c + #> c 1 + #> + #> Properties: lower, upper, omegaIsChol + + print(mat$lower) + #> $id + #> d e + #> 3 3 + #> + #> $occ + #> c + #> -Inf + print(mat$upper) + #> $id + #> d e + #> 2 2 + #> + #> $occ + #> c + #> Inf + print(mat$omegaIsChol) + #> $id + #> [1] FALSE This gives a list of matrix(es) conditioned on the variable after the -`|`. It also can add properties to each list that can be accessible +`|`. It also can add properties to each list that can be accessible after the list of matrices is returned, as shown in the above example. To do this, you simply have to enclose the properties after the -conditional variable. That is `et1 ~ id(lower=3)`. - +conditional variable. That is `et1 ~ id(lower=3)`. -## Combining symmetric (named) matrices +Combining symmetric (named) matrices +------------------------------------ Now there is even a faster way to do a similar banded matrix concatenation with `lotriMat` - -```r -testList <- list(lotri({et2 + et3 + et4 ~ c(40, - 0.1, 20, - 0.1, 0.1, 30)}), - lotri(et5 ~ 6), - lotri(et1+et6 ~c(0.1, 0.01, 1)), - matrix(c(1L, 0L, 0L, 1L), 2, 2, - dimnames=list(c("et7", "et8"), - c("et7", "et8")))) - -matf <- function(.mats){ - .omega <- as.matrix(Matrix::bdiag(.mats)) - .d <- unlist(lapply(seq_along(.mats), - function(x) { - dimnames(.mats[[x]])[2] - })) - dimnames(.omega) <- list(.d, .d) - return(.omega) -} - -print(matf(testList)) -#> et2 et3 et4 et5 et1 et6 et7 et8 -#> et2 40.0 0.1 0.1 0 0.00 0.00 0 0 -#> et3 0.1 20.0 0.1 0 0.00 0.00 0 0 -#> et4 0.1 0.1 30.0 0 0.00 0.00 0 0 -#> et5 0.0 0.0 0.0 6 0.00 0.00 0 0 -#> et1 0.0 0.0 0.0 0 0.10 0.01 0 0 -#> et6 0.0 0.0 0.0 0 0.01 1.00 0 0 -#> et7 0.0 0.0 0.0 0 0.00 0.00 1 0 -#> et8 0.0 0.0 0.0 0 0.00 0.00 0 1 - -print(lotriMat(testList)) -#> et2 et3 et4 et5 et1 et6 et7 et8 -#> et2 40.0 0.1 0.1 0 0.00 0.00 0 0 -#> et3 0.1 20.0 0.1 0 0.00 0.00 0 0 -#> et4 0.1 0.1 30.0 0 0.00 0.00 0 0 -#> et5 0.0 0.0 0.0 6 0.00 0.00 0 0 -#> et1 0.0 0.0 0.0 0 0.10 0.01 0 0 -#> et6 0.0 0.0 0.0 0 0.01 1.00 0 0 -#> et7 0.0 0.0 0.0 0 0.00 0.00 1 0 -#> et8 0.0 0.0 0.0 0 0.00 0.00 0 1 - -mb <- microbenchmark(matf(testList),lotriMat(testList)) - -print(mb) -#> Unit: microseconds -#> expr min lq mean median uq max neval -#> matf(testList) 497.401 504.1625 580.13382 507.6385 542.7125 4434.403 100 -#> lotriMat(testList) 2.574 2.9750 4.54131 4.1585 4.6635 40.652 100 - -autoplot(mb) -#> Coordinate system already present. Adding new coordinate system, which will replace the existing one. -``` - -plot of chunk unnamed-chunk-8 + testList <- list(lotri({et2 + et3 + et4 ~ c(40, + 0.1, 20, + 0.1, 0.1, 30)}), + lotri(et5 ~ 6), + lotri(et1+et6 ~c(0.1, 0.01, 1)), + matrix(c(1L, 0L, 0L, 1L), 2, 2, + dimnames=list(c("et7", "et8"), + c("et7", "et8")))) + + matf <- function(.mats){ + .omega <- as.matrix(Matrix::bdiag(.mats)) + .d <- unlist(lapply(seq_along(.mats), + function(x) { + dimnames(.mats[[x]])[2] + })) + dimnames(.omega) <- list(.d, .d) + return(.omega) + } + + print(matf(testList)) + #> et2 et3 et4 et5 et1 et6 et7 et8 + #> et2 40.0 0.1 0.1 0 0.00 0.00 0 0 + #> et3 0.1 20.0 0.1 0 0.00 0.00 0 0 + #> et4 0.1 0.1 30.0 0 0.00 0.00 0 0 + #> et5 0.0 0.0 0.0 6 0.00 0.00 0 0 + #> et1 0.0 0.0 0.0 0 0.10 0.01 0 0 + #> et6 0.0 0.0 0.0 0 0.01 1.00 0 0 + #> et7 0.0 0.0 0.0 0 0.00 0.00 1 0 + #> et8 0.0 0.0 0.0 0 0.00 0.00 0 1 + + print(lotriMat(testList)) + #> et2 et3 et4 et5 et1 et6 et7 et8 + #> et2 40.0 0.1 0.1 0 0.00 0.00 0 0 + #> et3 0.1 20.0 0.1 0 0.00 0.00 0 0 + #> et4 0.1 0.1 30.0 0 0.00 0.00 0 0 + #> et5 0.0 0.0 0.0 6 0.00 0.00 0 0 + #> et1 0.0 0.0 0.0 0 0.10 0.01 0 0 + #> et6 0.0 0.0 0.0 0 0.01 1.00 0 0 + #> et7 0.0 0.0 0.0 0 0.00 0.00 1 0 + #> et8 0.0 0.0 0.0 0 0.00 0.00 0 1 + + mb <- microbenchmark(matf(testList),lotriMat(testList)) + + print(mb) + #> Unit: microseconds + #> expr min lq mean median uq max neval + #> matf(testList) 974.141 995.431 1095.86074 1010.043 1029.2245 5398.306 100 + #> lotriMat(testList) 2.525 3.126 4.93906 5.015 5.5655 26.170 100 + + autoplot(mb) + + You may also combine named and unnamed matrices, but the resulting matrix will be unnamed, and still be faster than `Matrix`: - -```r -testList <- list(lotri({et2 + et3 + et4 ~ c(40, - 0.1, 20, - 0.1, 0.1, 30)}), - lotri(et5 ~ 6), - lotri(et1+et6 ~c(0.1, 0.01, 1)), - matrix(c(1L, 0L, 0L, 1L), 2, 2)) - -matf <- function(.mats){ - .omega <- as.matrix(Matrix::bdiag(.mats)) - return(.omega) -} - -print(matf(testList)) -#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] -#> [1,] 40.0 0.1 0.1 0 0.00 0.00 0 0 -#> [2,] 0.1 20.0 0.1 0 0.00 0.00 0 0 -#> [3,] 0.1 0.1 30.0 0 0.00 0.00 0 0 -#> [4,] 0.0 0.0 0.0 6 0.00 0.00 0 0 -#> [5,] 0.0 0.0 0.0 0 0.10 0.01 0 0 -#> [6,] 0.0 0.0 0.0 0 0.01 1.00 0 0 -#> [7,] 0.0 0.0 0.0 0 0.00 0.00 1 0 -#> [8,] 0.0 0.0 0.0 0 0.00 0.00 0 1 - -print(lotriMat(testList)) -#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] -#> [1,] 40.0 0.1 0.1 0 0.00 0.00 0 0 -#> [2,] 0.1 20.0 0.1 0 0.00 0.00 0 0 -#> [3,] 0.1 0.1 30.0 0 0.00 0.00 0 0 -#> [4,] 0.0 0.0 0.0 6 0.00 0.00 0 0 -#> [5,] 0.0 0.0 0.0 0 0.10 0.01 0 0 -#> [6,] 0.0 0.0 0.0 0 0.01 1.00 0 0 -#> [7,] 0.0 0.0 0.0 0 0.00 0.00 1 0 -#> [8,] 0.0 0.0 0.0 0 0.00 0.00 0 1 - -mb <- microbenchmark(matf(testList),lotriMat(testList)) - -print(mb) -#> Unit: microseconds -#> expr min lq mean median uq max neval -#> matf(testList) 490.549 496.1515 539.12199 500.1220 519.4200 2044.815 100 -#> lotriMat(testList) 2.416 2.7915 4.16718 3.3725 4.5615 22.020 100 - -autoplot(mb) -#> Coordinate system already present. Adding new coordinate system, which will replace the existing one. -``` - -plot of chunk unnamed-chunk-9 - -## New features - -A new feature is the ability to condition on variables by `|`. This -will be useful when simulating nested random effects using the -upcoming `RxODE2` - + testList <- list(lotri({et2 + et3 + et4 ~ c(40, + 0.1, 20, + 0.1, 0.1, 30)}), + lotri(et5 ~ 6), + lotri(et1+et6 ~c(0.1, 0.01, 1)), + matrix(c(1L, 0L, 0L, 1L), 2, 2)) + + matf <- function(.mats){ + .omega <- as.matrix(Matrix::bdiag(.mats)) + return(.omega) + } + + print(matf(testList)) + #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] + #> [1,] 40.0 0.1 0.1 0 0.00 0.00 0 0 + #> [2,] 0.1 20.0 0.1 0 0.00 0.00 0 0 + #> [3,] 0.1 0.1 30.0 0 0.00 0.00 0 0 + #> [4,] 0.0 0.0 0.0 6 0.00 0.00 0 0 + #> [5,] 0.0 0.0 0.0 0 0.10 0.01 0 0 + #> [6,] 0.0 0.0 0.0 0 0.01 1.00 0 0 + #> [7,] 0.0 0.0 0.0 0 0.00 0.00 1 0 + #> [8,] 0.0 0.0 0.0 0 0.00 0.00 0 1 + + print(lotriMat(testList)) + #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] + #> [1,] 40.0 0.1 0.1 0 0.00 0.00 0 0 + #> [2,] 0.1 20.0 0.1 0 0.00 0.00 0 0 + #> [3,] 0.1 0.1 30.0 0 0.00 0.00 0 0 + #> [4,] 0.0 0.0 0.0 6 0.00 0.00 0 0 + #> [5,] 0.0 0.0 0.0 0 0.10 0.01 0 0 + #> [6,] 0.0 0.0 0.0 0 0.01 1.00 0 0 + #> [7,] 0.0 0.0 0.0 0 0.00 0.00 1 0 + #> [8,] 0.0 0.0 0.0 0 0.00 0.00 0 1 + + mb <- microbenchmark(matf(testList),lotriMat(testList)) + + print(mb) + #> Unit: microseconds + #> expr min lq mean median uq max neval + #> matf(testList) 930.859 946.7345 1030.87673 959.0675 990.947 4007.812 100 + #> lotriMat(testList) 2.174 2.9610 4.61355 4.7390 5.526 13.916 100 + + autoplot(mb) + + + +New features +------------ + +A new feature is the ability to condition on variables by `|`. This will +be useful when simulating nested random effects using the upcoming +`RxODE2` diff --git a/man/figures/README-unnamed-chunk-8-1.png b/man/figures/README-unnamed-chunk-8-1.png index 9c12e53..18b3272 100644 Binary files a/man/figures/README-unnamed-chunk-8-1.png and b/man/figures/README-unnamed-chunk-8-1.png differ diff --git a/man/figures/README-unnamed-chunk-9-1.png b/man/figures/README-unnamed-chunk-9-1.png index f752218..022d924 100644 Binary files a/man/figures/README-unnamed-chunk-9-1.png and b/man/figures/README-unnamed-chunk-9-1.png differ