-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimal binary.cpp
66 lines (58 loc) · 2 KB
/
optimal binary.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Dynamic Programming code for Optimal Binary Search Tree Problem
#include <stdio.h>
#include <limits.h>
// A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j);
/* A Dynamic Programming based function that calculates minimum cost of
a Binary Search Tree. */
int optimalSearchTree(int keys[], int freq[], int n)
{
/* Create an auxiliary 2D matrix to store results of subproblems */
int cost[n][n];
/* cost[i][j] = Optimal cost of binary search tree that can be
formed from keys[i] to keys[j].
cost[0][n-1] will store the resultant cost */
// For a single key, cost is equal to frequency of the key
for (int i = 0; i < n; i++)
cost[i][i] = freq[i];
// Now we need to consider chains of length 2, 3, ... .
// L is chain length.
for (int L=2; L<=n; L++)
{
// i is row number in cost[][]
for (int i=0; i<=n-L+1; i++)
{
// Get column number j from row number i and chain length L
int j = i+L-1;
cost[i][j] = INT_MAX;
// Try making all keys in interval keys[i..j] as root
for (int r=i; r<=j; r++)
{
// c = cost when keys[r] becomes root of this subtree
int c = ((r > i)? cost[i][r-1]:0) +
((r < j)? cost[r+1][j]:0) +
sum(freq, i, j);
if (c < cost[i][j])
cost[i][j] = c;
}
}
}
return cost[0][n-1];
}
// A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j)
{
int s = 0;
for (int k = i; k <=j; k++)
s += freq[k];
return s;
}
// Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20};
int freq[] = {34, 8, 50};
int n = sizeof(keys)/sizeof(keys[0]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));
return 0;
}