diff --git a/smriprep/cli/run.py b/smriprep/cli/run.py index 5510bcbb65..0fca6f6139 100644 --- a/smriprep/cli/run.py +++ b/smriprep/cli/run.py @@ -173,6 +173,12 @@ def get_parser(): action='store_true', help='treat dataset as longitudinal - may increase runtime', ) + g_conf.add_argument( + '--gradunwarp-file', + metavar='PATH', + type=Path, + help='Path to vendor file for gradunwarp gradient distortion ' 'correction.', + ) # ANTs options g_ants = parser.add_argument_group('Specific options for ANTs registrations') diff --git a/smriprep/workflows/anatomical.py b/smriprep/workflows/anatomical.py index f879b2ea7e..5a5de9f0f7 100644 --- a/smriprep/workflows/anatomical.py +++ b/smriprep/workflows/anatomical.py @@ -24,6 +24,7 @@ import typing as ty +import bids from nipype import logging from nipype.interfaces import ( freesurfer as fs, @@ -47,12 +48,14 @@ from niworkflows.interfaces.freesurfer import ( StructuralReference, ) +from niworkflows.interfaces.gradunwarp import GradUnwarp from niworkflows.interfaces.header import ValidateImage from niworkflows.interfaces.images import Conform, TemplateDimensions from niworkflows.interfaces.nibabel import ApplyMask, Binarize from niworkflows.interfaces.nitransforms import ConcatenateXFMs from niworkflows.utils.misc import add_suffix from niworkflows.utils.spaces import Reference, SpatialReferences +from niworkflows.workflows.gradunwarp import init_gradunwarp_wf from ..data import load_resource from ..interfaces import DerivativesDataSink @@ -94,6 +97,7 @@ def init_anat_preproc_wf( *, bids_root: str, + layout: bids.BIDSLayout, output_dir: str, freesurfer: bool, hires: bool, @@ -113,6 +117,7 @@ def init_anat_preproc_wf( name: str = 'anat_preproc_wf', skull_strip_fixed_seed: bool = False, fs_no_resume: bool = False, + gradunwarp_file: str | None = None, ): """ Stage the anatomical preprocessing steps of *sMRIPrep*. @@ -150,6 +155,8 @@ def init_anat_preproc_wf( ---------- bids_root : :obj:`str` Path of the input BIDS dataset root + layout : BIDSLayout object + BIDS dataset layout output_dir : :obj:`str` Directory in which to save derivatives freesurfer : :obj:`bool` @@ -189,6 +196,8 @@ def init_anat_preproc_wf( EXPERT: Import pre-computed FreeSurfer reconstruction without resuming. The user is responsible for ensuring that all necessary files are present. (default: ``False``). + gradunwarp_file : :obj:`str`, optional + Gradient unwarping filename (default: None) Inputs ------ @@ -265,6 +274,7 @@ def init_anat_preproc_wf( anat_fit_wf = init_anat_fit_wf( bids_root=bids_root, + layout=layout, output_dir=output_dir, freesurfer=freesurfer, hires=hires, @@ -282,6 +292,7 @@ def init_anat_preproc_wf( omp_nthreads=omp_nthreads, skull_strip_fixed_seed=skull_strip_fixed_seed, fs_no_resume=fs_no_resume, + gradunwarp_file=gradunwarp_file, ) template_iterator_wf = init_template_iterator_wf(spaces=spaces, sloppy=sloppy) ds_std_volumes_wf = init_ds_anat_volumes_wf( @@ -448,6 +459,7 @@ def init_anat_preproc_wf( def init_anat_fit_wf( *, bids_root: str, + layout: bids.BIDSLayout, output_dir: str, freesurfer: bool, hires: bool, @@ -466,6 +478,7 @@ def init_anat_fit_wf( name='anat_fit_wf', skull_strip_fixed_seed: bool = False, fs_no_resume: bool = False, + gradunwarp_file: str | None = None, ): """ Stage the anatomical preprocessing steps of *sMRIPrep*. @@ -511,6 +524,8 @@ def init_anat_fit_wf( ---------- bids_root : :obj:`str` Path of the input BIDS dataset root + layout : BIDSLayout object + BIDS dataset layout output_dir : :obj:`str` Directory in which to save derivatives freesurfer : :obj:`bool` @@ -546,6 +561,12 @@ def init_anat_fit_wf( Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 (default: ``False``). + fs_no_resume : bool + EXPERT: Import pre-computed FreeSurfer reconstruction without resuming. + The user is responsible for ensuring that all necessary files are present. + (default: ``False``). + gradunwarp_file : :obj:`str`, optional + Gradient unwarping filename (default: None) Inputs ------ @@ -760,12 +781,14 @@ def init_anat_fit_wf( non-uniformity (INU) with `N4BiasFieldCorrection` [@n4], distributed with ANTs {ants_ver} [@ants, RRID:SCR_004757]""" desc += '.\n' if num_t1w > 1 else ', and used as T1w-reference throughout the workflow.\n' - + t1w_metas = [layout.get_file(t).get_metadata() for t in t1w] anat_template_wf = init_anat_template_wf( longitudinal=longitudinal, omp_nthreads=omp_nthreads, num_files=num_t1w, contrast='T1w', + gradunwarp_file=gradunwarp_file, + metadata=t1w_metas, name='anat_template_wf', ) ds_template_wf = init_ds_template_wf(output_dir=output_dir, num_t1w=num_t1w) @@ -1131,11 +1154,14 @@ def init_anat_fit_wf( if t2w and not have_t2w: LOGGER.info('ANAT Stage 7: Creating T2w template') + t2w_metas = [layout.get_file(t).get_metadata() for t in t1w] t2w_template_wf = init_anat_template_wf( longitudinal=longitudinal, omp_nthreads=omp_nthreads, num_files=len(t2w), contrast='T2w', + metadata=t2w_metas, + gradunwarp_file=gradunwarp_file, name='t2w_template_wf', ) bbreg = pe.Node( @@ -1376,6 +1402,8 @@ def init_anat_template_wf( omp_nthreads: int, num_files: int, contrast: str, + metadata: dict, + gradunwarp_file: str | None = None, name: str = 'anat_template_wf', ): """ @@ -1388,7 +1416,8 @@ def init_anat_template_wf( from smriprep.workflows.anatomical import init_anat_template_wf wf = init_anat_template_wf( - longitudinal=False, omp_nthreads=1, num_files=1, contrast="T1w" + longitudinal=False, omp_nthreads=1, num_files=1, contrast="T1w", + gradunwarp_file=None, ) Parameters @@ -1402,6 +1431,8 @@ def init_anat_template_wf( Number of images contrast : :obj:`str` Name of contrast, for reporting purposes, e.g., T1w, T2w, PDw + gradunwarp_file : :obj:`str`, optional + Gradient unwarping filename (default: None) name : :obj:`str`, optional Workflow name (default: anat_template_wf) @@ -1449,9 +1480,39 @@ def init_anat_template_wf( ) anat_conform = pe.MapNode(Conform(), iterfield='in_file', name='anat_conform') + + # -1 Gradient unwarping (optional) + if gradunwarp_file: + nds = [ + (meta.get('NonlinearGradientCorrection', None) or + 'ND' in meta.get('ImageType', []) or False) + for meta in metadata] + if any(nds) and not all(nds): + raise RuntimeError(f"Inconsistent distortion correction metadata across {contrast} images.") + if not any(nds): + gradunwarp_file = None + if gradunwarp_file: + gradunwarp_ver = GradUnwarp.version() + workflow.__desc__ += f"""\ + {"Each" if num_files > 1 else "The"} {contrast} image was corrected for gradient + non-linearity with `gradunwarp` [@gradunwarp] {gradunwarp_ver} [@gradunwarp]\n""" + gradunwarp_wf = init_gradunwarp_wf('gradunward_T1w') + gradunwarp_wf.inputs.inputnode.grad_file = gradunwarp_file + # fmt:off + workflow.connect([ + (inputnode, gradunwarp_wf, [('anat_files', 'inputnode.input_file')]), + (gradunwarp_wf, anat_ref_dimensions, [('outputnode.corrected_file', 't1w_list')]), + ]) + else: + workflow.connect( + [ + (inputnode, anat_ref_dimensions, [('anat_files', 't1w_list')]), + ] + ) + # fmt:on + # fmt:off workflow.connect([ - (inputnode, anat_ref_dimensions, [('anat_files', 't1w_list')]), (anat_ref_dimensions, denoise, [('t1w_valid_list', 'input_image')]), (anat_ref_dimensions, anat_conform, [ ('target_zooms', 'target_zooms'), diff --git a/smriprep/workflows/base.py b/smriprep/workflows/base.py index 730fe1f656..33ac25f8c3 100644 --- a/smriprep/workflows/base.py +++ b/smriprep/workflows/base.py @@ -422,6 +422,7 @@ def init_single_subject_wf( # Preprocessing of T1w (includes registration to MNI) anat_preproc_wf = init_anat_preproc_wf( bids_root=layout.root, + layout=layout, sloppy=sloppy, debug=debug, precomputed=deriv_cache, diff --git a/smriprep/workflows/tests/test_anatomical.py b/smriprep/workflows/tests/test_anatomical.py index d34cd5de7e..9295e1f672 100644 --- a/smriprep/workflows/tests/test_anatomical.py +++ b/smriprep/workflows/tests/test_anatomical.py @@ -2,13 +2,20 @@ import nibabel as nb import numpy as np +import bids import pytest from nipype.pipeline.engine.utils import generate_expanded_graph from niworkflows.utils.spaces import Reference, SpatialReferences from niworkflows.utils.testing import generate_bids_skeleton +from niworkflows.interfaces import gradunwarp from ..anatomical import init_anat_fit_wf, init_anat_preproc_wf +gradunwarp_file_params = [None] +if gradunwarp.GradUnwarp.version(): + from gradunwarp.core.tests.test_regression import siemens_gradfile + gradunwarp_file_params.append(siemens_gradfile) + BASE_LAYOUT = { '01': { 'anat': [ @@ -73,14 +80,17 @@ def test_init_anat_preproc_wf( output_dir = tmp_path / 'output' output_dir.mkdir() + bids_layout = bids.BIDSLayout(bids_root) + init_anat_preproc_wf( bids_root=str(bids_root), + layout=bids_layout, output_dir=str(output_dir), freesurfer=freesurfer, hires=False, longitudinal=False, msm_sulc=False, - t1w=[str(bids_root / 'sub-01' / 'anat' / 'sub-01_T1w.nii.gz')], + t1w=[str(bids_root / 'sub-01' / 'anat' / 'sub-01_run-1_T1w.nii.gz')], t2w=[str(bids_root / 'sub-01' / 'anat' / 'sub-01_T2w.nii.gz')], skull_strip_mode='force', skull_strip_template=Reference('OASIS30ANTs'), @@ -96,23 +106,28 @@ def test_init_anat_preproc_wf( @pytest.mark.parametrize('msm_sulc', [True, False]) @pytest.mark.parametrize('skull_strip_mode', ['skip', 'force']) +@pytest.mark.parametrize('gradunwarp_file', gradunwarp_file_params) def test_anat_fit_wf( bids_root: Path, tmp_path: Path, msm_sulc: bool, skull_strip_mode: str, + gradunwarp_file: str, ): output_dir = tmp_path / 'output' output_dir.mkdir() + bids_layout = bids.BIDSLayout(bids_root) + init_anat_fit_wf( bids_root=str(bids_root), + layout=bids_layout, output_dir=str(output_dir), freesurfer=True, hires=False, longitudinal=False, msm_sulc=msm_sulc, - t1w=[str(bids_root / 'sub-01' / 'anat' / 'sub-01_T1w.nii.gz')], + t1w=[str(bids_root / 'sub-01' / 'anat' / 'sub-01_run-1_T1w.nii.gz')], t2w=[str(bids_root / 'sub-01' / 'anat' / 'sub-01_T2w.nii.gz')], skull_strip_mode=skull_strip_mode, skull_strip_template=Reference('OASIS30ANTs'), @@ -122,6 +137,7 @@ def test_anat_fit_wf( ), precomputed={}, omp_nthreads=1, + gradunwarp_file=gradunwarp_file, ) @@ -200,9 +216,13 @@ def test_anat_fit_precomputes( for path in xfm.values(): Path(path).touch() + + bids_layout = bids.BIDSLayout(bids_root) + # Create workflow wf = init_anat_fit_wf( bids_root=str(bids_root), + layout=bids_layout, output_dir=str(output_dir), freesurfer=True, hires=False,