diff --git a/src/smriprep/workflows/anatomical.py b/src/smriprep/workflows/anatomical.py index 974d2c57a4..ceab9ecf92 100644 --- a/src/smriprep/workflows/anatomical.py +++ b/src/smriprep/workflows/anatomical.py @@ -84,7 +84,7 @@ init_morph_grayords_wf, init_msm_sulc_wf, init_refinement_wf, - init_resample_midthickness_wf, + init_resample_surfaces_wf, init_surface_derivatives_wf, init_surface_recon_wf, ) @@ -379,11 +379,23 @@ def init_anat_preproc_wf( if cifti_output: hcp_morphometrics_wf = init_hcp_morphometrics_wf(omp_nthreads=omp_nthreads) - resample_midthickness_wf = init_resample_midthickness_wf(grayord_density=cifti_output) + resample_surfaces_wf = init_resample_surfaces_wf( + surfaces=['white', 'pial', 'midthickness'], + grayord_density=cifti_output, + ) morph_grayords_wf = init_morph_grayords_wf( grayord_density=cifti_output, omp_nthreads=omp_nthreads ) + ds_fsLR_surfaces_wf = init_ds_surfaces_wf( + output_dir=output_dir, + surfaces=['white', 'pial', 'midthickness'], + entities={ + 'space': 'fsLR', + 'density': '32k' if cifti_output == '91k' else '59k', + }, + name='ds_fsLR_surfaces_wf', + ) ds_grayord_metrics_wf = init_ds_grayord_metrics_wf( bids_root=bids_root, output_dir=output_dir, @@ -401,7 +413,9 @@ def init_anat_preproc_wf( (surface_derivatives_wf, hcp_morphometrics_wf, [ ('outputnode.curv', 'inputnode.curv'), ]), - (anat_fit_wf, resample_midthickness_wf, [ + (anat_fit_wf, resample_surfaces_wf, [ + ('outputnode.white', 'inputnode.white'), + ('outputnode.pial', 'inputnode.pial'), ('outputnode.midthickness', 'inputnode.midthickness'), ( f"outputnode.sphere_reg_{'msm' if msm_sulc else 'fsLR'}", @@ -421,12 +435,17 @@ def init_anat_preproc_wf( ('outputnode.thickness', 'inputnode.thickness'), ('outputnode.roi', 'inputnode.roi'), ]), - (resample_midthickness_wf, morph_grayords_wf, [ + (resample_surfaces_wf, morph_grayords_wf, [ ('outputnode.midthickness_fsLR', 'inputnode.midthickness_fsLR'), ]), (anat_fit_wf, ds_grayord_metrics_wf, [ ('outputnode.t1w_valid_list', 'inputnode.source_files'), ]), + (resample_surfaces_wf, ds_fsLR_surfaces_wf, [ + ('outputnode.white_fsLR', 'inputnode.white'), + ('outputnode.pial_fsLR', 'inputnode.pial'), + ('outputnode.midthickness_fsLR', 'inputnode.midthickness'), + ]), (morph_grayords_wf, ds_grayord_metrics_wf, [ ('outputnode.curv_fsLR', 'inputnode.curv'), ('outputnode.curv_metadata', 'inputnode.curv_metadata'), diff --git a/src/smriprep/workflows/outputs.py b/src/smriprep/workflows/outputs.py index 1bb50f5ade..b0b0ad248d 100644 --- a/src/smriprep/workflows/outputs.py +++ b/src/smriprep/workflows/outputs.py @@ -708,6 +708,7 @@ def init_ds_surfaces_wf( *, output_dir: str, surfaces: list[str], + entities: dict[str, str] | None = None, name='ds_surfaces_wf', ) -> Workflow: """ @@ -721,6 +722,8 @@ def init_ds_surfaces_wf( Directory in which to save derivatives surfaces : :class:`str` List of surfaces to generate DataSinks for + entities : :class:`dict` of :class:`str` + Entities to include in outputs name : :class:`str` Workflow name (default: ds_surfaces_wf) @@ -739,6 +742,9 @@ def init_ds_surfaces_wf( """ workflow = Workflow(name=name) + if entities is None: + entities = {} + inputnode = pe.Node( niu.IdentityInterface(fields=['source_files'] + surfaces), name='inputnode', @@ -766,6 +772,8 @@ def init_ds_surfaces_wf( elif surf == 'sphere_reg_msm': ds_surf.inputs.space, ds_surf.inputs.desc = 'fsLR', 'msmsulc' + ds_surf.inputs.trait_set(**entities) + # fmt:off workflow.connect([ (inputnode, ds_surf, [(surf, 'in_file'), ('source_files', 'source_file')]), diff --git a/src/smriprep/workflows/surfaces.py b/src/smriprep/workflows/surfaces.py index 48895377a3..9698cae6a0 100644 --- a/src/smriprep/workflows/surfaces.py +++ b/src/smriprep/workflows/surfaces.py @@ -1316,39 +1316,45 @@ def init_anat_ribbon_wf(name='anat_ribbon_wf'): return workflow -def init_resample_midthickness_wf( +def init_resample_surfaces_wf( + surfaces: list[str], grayord_density: ty.Literal['91k', '170k'], - name: str = 'resample_midthickness_wf', + name: str = 'resample_surfaces_wf', ): """ - Resample subject midthickness surface to specified density. + Resample subject surfaces surface to specified density. Workflow Graph .. workflow:: :graph2use: colored :simple_form: yes - from smriprep.workflows.surfaces import init_resample_midthickness_wf - wf = init_resample_midthickness_wf(grayord_density="91k") + from smriprep.workflows.surfaces import init_resample_surfaces_wf + wf = init_resample_surfaces_wf( + surfaces=['white', 'pial', 'midthickness'], + grayord_density='91k', + ) Parameters ---------- - grayord_density : :obj:`str` + surfaces : :class:`list` of :class:`str` + Names of surfaces (e.g., ``'white'``) to resample. Both hemispheres will be resampled. + grayord_density : :class:`str` Either `91k` or `170k`, representing the total of vertices or *grayordinates*. - name : :obj:`str` - Unique name for the subworkflow (default: ``"resample_midthickness_wf"``) + name : :class:`str` + Unique name for the subworkflow (default: ``"resample_surfaces_wf"``) Inputs ------ - midthickness - GIFTI surface mesh corresponding to the midthickness surface + ```` + Left and right GIFTIs for each surface name passed to ``surfaces`` sphere_reg_fsLR GIFTI surface mesh corresponding to the subject's fsLR registration sphere Outputs ------- - midthickness - GIFTI surface mesh corresponding to the midthickness surface, resampled to fsLR + ```` + Left and right GIFTI surface mesh corresponding to the input surface, resampled to fsLR """ import templateflow.api as tf from niworkflows.engine.workflows import LiterateWorkflow as Workflow @@ -1358,11 +1364,19 @@ def init_resample_midthickness_wf( fslr_density = '32k' if grayord_density == '91k' else '59k' inputnode = pe.Node( - niu.IdentityInterface(fields=['midthickness', 'sphere_reg_fsLR']), + niu.IdentityInterface(fields=[*surfaces, 'sphere_reg_fsLR']), name='inputnode', ) - outputnode = pe.Node(niu.IdentityInterface(fields=['midthickness_fsLR']), name='outputnode') + outputnode = pe.Node( + niu.IdentityInterface(fields=[f'{surf}_fsLR' for surf in surfaces]), name='outputnode' + ) + + surface_list = pe.Node( + niu.Merge(len(surfaces), ravel_inputs=True), + name='surface_list', + run_without_submitting=True, + ) resampler = pe.MapNode( SurfaceResample(method='BARYCENTRIC'), @@ -1380,15 +1394,28 @@ def init_resample_midthickness_wf( extension='.surf.gii', ) ) + # Order matters. Iterate over surfaces, then hemis to get L R L R L R + for _surf in surfaces for hemi in ['L', 'R'] ] + surface_groups = pe.Node( + niu.Split(splits=[2] * len(surfaces)), + name='surface_groups', + run_without_submitting=True, + ) + workflow.connect([ - (inputnode, resampler, [ - ('midthickness', 'surface_in'), - ('sphere_reg_fsLR', 'current_sphere'), + (inputnode, surface_list, [ + ((surf, _sorted_by_basename), f'in{i}') + for i, surf in enumerate(surfaces, start=1) + ]), + (inputnode, resampler, [('sphere_reg_fsLR', 'current_sphere')]), + (surface_list, resampler, [('out', 'surface_in')]), + (resampler, surface_groups, [('surface_out', 'inlist')]), + (surface_groups, outputnode, [ + (f'out{i}', f'{surf}_fsLR') for i, surf in enumerate(surfaces, start=1) ]), - (resampler, outputnode, [('surface_out', 'midthickness_fsLR')]), ]) # fmt:skip return workflow