diff --git a/sdcflows/interfaces/bspline.py b/sdcflows/interfaces/bspline.py index 3ff628a9d8..1bf3b4d427 100644 --- a/sdcflows/interfaces/bspline.py +++ b/sdcflows/interfaces/bspline.py @@ -328,6 +328,11 @@ class _ApplyCoeffsFieldInputSpec(BaseInterfaceInputSpec): mandatory=True, desc="the phase-encoding direction corresponding to in_data", ) + jacobian = traits.Bool( + False, + usedefault=True, + desc="apply Jacobian determinant correction after unwarping", + ) num_threads = traits.Int(nohash=True, desc="number of threads") approx = traits.Bool( True, @@ -421,6 +426,7 @@ def _run_interface(self, runtime): self.inputs.in_data, self.inputs.pe_dir, self.inputs.ro_time, + jacobian=self.inputs.jacobian or False, xfms=self.inputs.in_xfms or None, xfm_data2fmap=data2fmap_xfm, approx=self.inputs.approx, diff --git a/sdcflows/transform.py b/sdcflows/transform.py index fff9627e10..793dd18d72 100644 --- a/sdcflows/transform.py +++ b/sdcflows/transform.py @@ -72,6 +72,7 @@ def _sdc_unwarp( data: np.ndarray, coordinates: np.ndarray, pe_info: Tuple[int, float], + jacobian: bool, hmc_xfm: np.ndarray | None, fmap_hz: np.ndarray, output_dtype: str | np.dtype | None = None, @@ -95,13 +96,6 @@ def _sdc_unwarp( vsm = fmap_hz * pe_info[1] coordinates[pe_info[0], ...] += vsm - # The Jacobian determinant image is the amount of stretching in the PE direction. - # Using central differences accounts for the shift in neighboring voxels. - # The full Jacobian at each voxel would be a 3x3 matrix, but because there is - # only warping in one direction, we end up with a diagonal matrix with two 1s. - # The following is the other entry at each voxel, and hence the determinant. - jacobian = 1 + np.gradient(vsm, axis=pe_info[0]) - resampled = ndi.map_coordinates( data, coordinates, @@ -110,7 +104,15 @@ def _sdc_unwarp( mode=mode, cval=cval, prefilter=prefilter, - ) * jacobian + ) + + # The Jacobian determinant image is the amount of stretching in the PE direction. + # Using central differences accounts for the shift in neighboring voxels. + # The full Jacobian at each voxel would be a 3x3 matrix, but because there is + # only warping in one direction, we end up with a diagonal matrix with two 1s. + # The following is the other entry at each voxel, and hence the determinant. + if jacobian: + resampled *= 1 + np.gradient(vsm, axis=pe_info[0]) return resampled @@ -137,6 +139,7 @@ async def unwarp_parallel( coordinates: np.ndarray, fmap_hz: np.ndarray, pe_info: Sequence[Tuple[int, float]], + jacobian: bool, xfms: Sequence[np.ndarray], order: int = 3, mode: str = "constant", @@ -162,6 +165,8 @@ async def unwarp_parallel( pe_info : :obj:`tuple` of (:obj:`int`, :obj:`float`) A tuple containing the index of the phase-encoding axis in the data array and the readout time (including sign, if displacements must be reversed) + jacobian : :class:`bool` + If :obj:`True`, apply Jacobian determinant correction after unwarping. xfms : :obj:`list` of obj:`~numpy.ndarray` A list of 4×4 matrices, each one formalizing the estimated head motion alignment to the scan's reference. @@ -200,6 +205,7 @@ async def unwarp_parallel( func = partial( _sdc_unwarp, + jacobian=jacobian, fmap_hz=fmap_hz, output_dtype=output_dtype, order=order, @@ -369,6 +375,7 @@ def apply( moving: nb.spatialimages.SpatialImage, pe_dir: str | Sequence[str], ro_time: float | Sequence[float], + jacobian: bool = True, xfms: Sequence[np.ndarray] | None = None, xfm_data2fmap: np.ndarray | None = None, approx: bool = True, @@ -394,6 +401,8 @@ def apply( A valid ``PhaseEncodingDirection`` metadata value. ro_time : :obj:`float` or :obj:`list` of :obj:`float` The total readout time in seconds. + jacobian : :class:`bool` + If :obj:`True`, apply Jacobian determinant correction after unwarping. xfms : :obj:`None` or :obj:`list` A list of 4×4 matrices, each one formalizing the estimated head motion alignment to the scan's reference. diff --git a/sdcflows/workflows/apply/correction.py b/sdcflows/workflows/apply/correction.py index 1c5b53db1f..fb20e6765c 100644 --- a/sdcflows/workflows/apply/correction.py +++ b/sdcflows/workflows/apply/correction.py @@ -26,7 +26,14 @@ from niworkflows.engine.workflows import LiterateWorkflow as Workflow -def init_unwarp_wf(*, free_mem=None, omp_nthreads=1, debug=False, name="unwarp_wf"): +def init_unwarp_wf( + *, + jacobian=True, + free_mem=None, + omp_nthreads=1, + debug=False, + name="unwarp_wf", +): r""" Set up a workflow that unwarps the input :abbr:`EPI (echo-planar imaging)` dataset. @@ -40,11 +47,13 @@ def init_unwarp_wf(*, free_mem=None, omp_nthreads=1, debug=False, name="unwarp_w Parameters ---------- - omp_nthreads : :obj:`int` + jacobian : :class:`bool` + If :obj:`True`, apply Jacobian determinant correction after unwarping. + omp_nthreads : :class:`int` Maximum number of threads an individual process may use. - name : :obj:`str` + name : :class:`str` Unique name of this workflow. - debug : :obj:`bool` + debug : :class:`bool` Whether to run in *sloppy* mode. Inputs @@ -123,7 +132,7 @@ def init_unwarp_wf(*, free_mem=None, omp_nthreads=1, debug=False, name="unwarp_w num_threads = omp_nthreads resample = pe.Node( - ApplyCoeffsField(num_threads=num_threads), + ApplyCoeffsField(jacobian=jacobian, num_threads=num_threads), mem_gb=mem_per_thread * num_threads, name="resample", ) diff --git a/sdcflows/workflows/fit/pepolar.py b/sdcflows/workflows/fit/pepolar.py index 9bda683a41..1d6ed518a8 100644 --- a/sdcflows/workflows/fit/pepolar.py +++ b/sdcflows/workflows/fit/pepolar.py @@ -219,7 +219,7 @@ def init_topup_wf( from sdcflows.interfaces.bspline import ApplyCoeffsField # Separate the runs again, as our ApplyCoeffsField corrects them separately - unwarp = pe.Node(ApplyCoeffsField(), name="unwarp") + unwarp = pe.Node(ApplyCoeffsField(jacobian=True), name="unwarp") unwarp.interface._always_run = True concat_corrected = pe.Node(MergeSeries(), name="concat_corrected") diff --git a/sdcflows/workflows/fit/syn.py b/sdcflows/workflows/fit/syn.py index 4529beb24f..db00592fbb 100644 --- a/sdcflows/workflows/fit/syn.py +++ b/sdcflows/workflows/fit/syn.py @@ -237,7 +237,7 @@ def init_syn_sdc_wf( DisplacementsField2Fieldmap(), name="extract_field" ) - unwarp = pe.Node(ApplyCoeffsField(), name="unwarp") + unwarp = pe.Node(ApplyCoeffsField(jacobian=False), name="unwarp") # Check zooms (avoid very expensive B-Splines fitting) zooms_field = pe.Node(