diff --git a/sdcflows/transform.py b/sdcflows/transform.py index 140c0bffb6..ebf23c7f6f 100644 --- a/sdcflows/transform.py +++ b/sdcflows/transform.py @@ -50,7 +50,7 @@ from functools import partial import asyncio from pathlib import Path -from typing import Callable, List, Optional, Sequence, Tuple, Union +from typing import Callable, Sequence, Tuple import attr import numpy as np @@ -118,7 +118,9 @@ async def worker( """Create one worker and attach it to the execution loop.""" async with semaphore: loop = asyncio.get_running_loop() - result = await loop.run_in_executor(None, func, data, coordinates, pe_info, hmc_xfm) + result = await loop.run_in_executor( + None, func, data, coordinates, pe_info, hmc_xfm + ) return result @@ -204,14 +206,16 @@ async def unwarp_parallel( xfm = None if xfms is None else xfms[volid] # IMPORTANT - the coordinates array must be copied every time anew per thread - task = asyncio.create_task(worker( - volume, - coordinates.copy(), - pe_info[volid], - xfm, - func, - semaphore, - )) + task = asyncio.create_task( + worker( + volume, + coordinates.copy(), + pe_info[volid], + xfm, + func, + semaphore, + ) + ) tasks.append(task) # Wait for all tasks to complete @@ -295,15 +299,16 @@ def fit( finest_coeffs = listify(self.coeffs)[-1] approx &= not np.allclose( np.linalg.norm( - np.cross(finest_coeffs.affine[:-1, :-1].T, target_reference.affine[:-1, :-1].T), + np.cross( + finest_coeffs.affine[:-1, :-1].T, + target_reference.affine[:-1, :-1].T, + ), axis=1, ), 0, atol=1e-3, ) - - weights = [] coeffs = [] if approx: @@ -342,7 +347,9 @@ def fit( from nitransforms.linear import Affine _tmp_reference = nb.Nifti1Image( - np.zeros(target_reference.shape[:3], dtype=target_reference.get_data_dtype()), + np.zeros( + target_reference.shape[:3], dtype=target_reference.get_data_dtype() + ), target_reference.affine, target_reference.header, ) @@ -364,7 +371,7 @@ def apply( mode: str = "constant", cval: float = 0.0, prefilter: bool = True, - output_dtype: str, np.dtype | None = None, + output_dtype: str | np.dtype | None = None, num_threads: int = None, allow_negative: bool = False, ): @@ -481,13 +488,15 @@ def apply( pe_info.append(( pe_axis, # Displacements are reversed if either is true (after ensuring positive cosines) - -ro_time[volid] if (axis_flip ^ pe_flip) else ro_time[volid] + -ro_time[volid] if (axis_flip ^ pe_flip) else ro_time[volid], )) # Reference image's voxel coordinates (in voxel units) - voxcoords = nt.linear.Affine( - reference=moving - ).reference.ndindex.reshape((ndim, *data.shape[:ndim])).astype("float32") + voxcoords = ( + nt.linear.Affine(reference=moving) + .reference.ndindex.reshape((ndim, *data.shape[:ndim])) + .astype("float32") + ) # Convert head-motion transforms to voxel-to-voxel: if xfms is not None: @@ -507,19 +516,21 @@ def apply( ) # Resample - resampled = asyncio.run(unwarp_parallel( - data, - voxcoords, - self.mapped.get_fdata(dtype="float32"), # fieldmap in Hz - pe_info, - xfms, - output_dtype=output_dtype, - order=order, - mode=mode, - cval=cval, - prefilter=prefilter, - max_concurrent=num_threads or min(os.cpu_count(), 12), - )) + resampled = asyncio.run( + unwarp_parallel( + data, + voxcoords, + self.mapped.get_fdata(dtype="float32"), # fieldmap in Hz + pe_info, + xfms, + output_dtype=output_dtype, + order=order, + mode=mode, + cval=cval, + prefilter=prefilter, + max_concurrent=num_threads or min(os.cpu_count(), 12), + ) + ) if not allow_negative: resampled[resampled < 0] = cval diff --git a/sdcflows/workflows/apply/registration.py b/sdcflows/workflows/apply/registration.py index 7bb8ee4fcf..a82f8c23a5 100644 --- a/sdcflows/workflows/apply/registration.py +++ b/sdcflows/workflows/apply/registration.py @@ -147,7 +147,7 @@ def init_coeff2epi_wf( if write_coeff: warn( - "SDCFlows does not tinker with the coefficients file anymore, " + "SDCFlows does not tinker with the coefficients file anymore, " "the `write_coeff` parameter will be removed in a future release." )