From 2b6e33e455d90ff4681d6b55a6b6e7cd48a862c1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jon=20Haitz=20Legarreta=20Gorro=C3=B1o?= Date: Thu, 19 Dec 2024 22:48:42 -0500 Subject: [PATCH] ENH: Remove `math.utils` module Remove the `math.utils` module: - The positive semidefinite check for the kernels is built-in in `scikit-learn` `GaussianProcessRegressor` class: https://github.com/dalmia/scikit-learn/blob/598c651afd987a540e404ccdb3491d530e0b0abb/sklearn/gaussian_process/gpr.py#L245 - The `math.utils.compute_angle` function, as it was superseded by `model.gpr.compute_pairwise_angles`. --- docs/developers.rst | 1 - src/nifreeze/math/__init__.py | 0 src/nifreeze/math/tests/__init__.py | 0 src/nifreeze/math/tests/test_utils.py | 48 --------------- src/nifreeze/math/utils.py | 89 --------------------------- 5 files changed, 138 deletions(-) delete mode 100644 src/nifreeze/math/__init__.py delete mode 100644 src/nifreeze/math/tests/__init__.py delete mode 100644 src/nifreeze/math/tests/test_utils.py delete mode 100644 src/nifreeze/math/utils.py diff --git a/docs/developers.rst b/docs/developers.rst index 50dc52d..5893418 100644 --- a/docs/developers.rst +++ b/docs/developers.rst @@ -33,7 +33,6 @@ Information on specific functions, classes, and methods. api/nifreeze.data.dmri api/nifreeze.estimator api/nifreeze.exceptions - api/nifreeze.math api/nifreeze.model api/nifreeze.registration api/nifreeze.testing diff --git a/src/nifreeze/math/__init__.py b/src/nifreeze/math/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/src/nifreeze/math/tests/__init__.py b/src/nifreeze/math/tests/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/src/nifreeze/math/tests/test_utils.py b/src/nifreeze/math/tests/test_utils.py deleted file mode 100644 index 8461810..0000000 --- a/src/nifreeze/math/tests/test_utils.py +++ /dev/null @@ -1,48 +0,0 @@ -# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- -# vi: set ft=python sts=4 ts=4 sw=4 et: -# -# Copyright The NiPreps Developers -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# We support and encourage derived works from this project, please read -# about our expectations at -# -# https://www.nipreps.org/community/licensing/ -# -import numpy as np -import pytest - -from nifreeze.math.utils import compute_angle, is_positive_definite - - -def test_is_positive_definite(): - matrix = np.array([[4, 1, 2], [1, 3, 1], [2, 1, 5]]) - assert is_positive_definite(matrix) - - matrix = np.array([[4, 1, 2], [1, -3, 1], [2, 1, 5]]) - assert not is_positive_definite(matrix) - - -@pytest.mark.parametrize( - ("v1", "v2", "closest_polarity", "expected"), - [ - ([1, 0, 0], [1, 0, 0], False, 0), - ([1, 0, 0], [0, 1, 0], False, np.pi / 2), - ([1, 0, 0], [-1 / np.sqrt(2), 0, 1 / np.sqrt(2)], False, np.pi * 3 / 4), - ([1, 0, 0], [-1 / np.sqrt(2), 0, 1 / np.sqrt(2)], True, np.pi / 4), - ], -) -def test_compute_angle(v1, v2, closest_polarity, expected): - obtained = compute_angle(v1, v2, closest_polarity=closest_polarity) - assert np.isclose(obtained, expected) diff --git a/src/nifreeze/math/utils.py b/src/nifreeze/math/utils.py deleted file mode 100644 index f6bfc3a..0000000 --- a/src/nifreeze/math/utils.py +++ /dev/null @@ -1,89 +0,0 @@ -# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- -# vi: set ft=python sts=4 ts=4 sw=4 et: -# -# Copyright The NiPreps Developers -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY kIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# We support and encourage derived works from this project, please read -# about our expectations at -# -# https://www.nipreps.org/community/licensing/ -# -import numpy as np - - -def is_positive_definite(matrix): - """Check whether the given matrix is positive definite. Any positive - definite matrix can be decomposed as the product of a lower triangular - matrix and its conjugate transpose by performing the Cholesky decomposition. - Parameters - ---------- - matrix : :obj:`~numpy.ndarray` - The matrix to check. - Returns - ------- - True is the matrix is positive definite; False otherwise - """ - - try: - # Attempt Cholesky decomposition - np.linalg.cholesky(matrix) - return True - except np.linalg.LinAlgError: - # Matrix is not positive definite - return False - - -def compute_angle(v1, v2, closest_polarity=False): - """Compute the angle between two vectors. - - Parameters - ---------- - v1 : :obj:`~numpy.ndarray` - First vector. - v2 : :obj:`~numpy.ndarray` - Second vector. - closest_polarity : :obj:`bool` - ``True`` to consider the smallest of the two angles between the crossing - lines resulting from reversing both vectors. - - Returns - ------- - :obj:`float` - The angle between the two vectors in radians. - - Examples - -------- - >>> compute_angle( - ... np.array((1.0, 0.0, 0.0)), - ... np.array((-1.0, 0.0, 0.0)), - ... ) # doctest: +ELLIPSIS - 3.1415... - >>> compute_angle( - ... np.array((1.0, 0.0, 0.0)), - ... np.array((-1.0, 0.0, 0.0)), - ... closest_polarity=True, - ... ) - 0.0 - - """ - - cosine_angle = (v1 / np.linalg.norm(v1)) @ (v2 / np.linalg.norm(v2)) - # Clip values to handle numerical errors - cosine_angle = np.clip( - np.abs(cosine_angle) if closest_polarity else cosine_angle, - -1.0, - 1.0, - ) - return np.arccos(cosine_angle)