diff --git a/fmriprep/interfaces/resampling.py b/fmriprep/interfaces/resampling.py index 8cfcd2348..d3febb00c 100644 --- a/fmriprep/interfaces/resampling.py +++ b/fmriprep/interfaces/resampling.py @@ -28,7 +28,9 @@ class ResampleSeriesInputSpec(TraitedSpec): in_file = File(exists=True, mandatory=True, desc="3D or 4D image file to resample") ref_file = File(exists=True, mandatory=True, desc="File to resample in_file to") transforms = InputMultiObject( - File(exists=True), mandatory=True, desc="Transform files, from in_file to ref_file (image mode)" + File(exists=True), + mandatory=True, + desc="Transform files, from in_file to ref_file (image mode)", ) inverse = InputMultiObject( traits.Bool, @@ -48,6 +50,16 @@ class ResampleSeriesInputSpec(TraitedSpec): desc="the phase-encoding direction corresponding to in_data", ) num_threads = traits.Int(1, usedefault=True, desc="Number of threads to use for resampling") + output_data_type = traits.Str("float32", usedefault=True, desc="Data type of output image") + order = traits.Int(3, usedefault=True, desc="Order of interpolation (0=nearest, 3=cubic)") + mode = traits.Str( + 'constant', + usedefault=True, + desc="How data is extended beyond its boundaries. " + "See scipy.ndimage.map_coordinates for more details.", + ) + cval = traits.Float(0.0, usedefault=True, desc="Value to fill past edges of data") + prefilter = traits.Bool(True, usedefault=True, desc="Spline-prefilter data if order > 1") class ResampleSeriesOutputSpec(TraitedSpec): @@ -87,13 +99,18 @@ def _run_interface(self, runtime): pe_info = [(pe_axis, -ro_time if (axis_flip ^ pe_flip) else ro_time)] * nvols - resampled = resample_bold( + resampled = resample_image( source=source, target=target, transforms=transforms, fieldmap=fieldmap, pe_info=pe_info, nthreads=self.inputs.num_threads, + output_dtype=self.inputs.output_data_type, + order=self.inputs.order, + mode=self.inputs.mode, + cval=self.inputs.cval, + prefilter=self.inputs.prefilter, ) resampled.to_filename(out_path) @@ -105,10 +122,16 @@ class ReconstructFieldmapInputSpec(TraitedSpec): in_coeffs = InputMultiObject( File(exists=True), mandatory=True, desc="SDCflows-style spline coefficient files" ) - target_ref_file = File(exists=True, mandatory=True, desc="Image to reconstruct the field in alignment with") - fmap_ref_file = File(exists=True, mandatory=True, desc="Reference file aligned with coefficients") + target_ref_file = File( + exists=True, mandatory=True, desc="Image to reconstruct the field in alignment with" + ) + fmap_ref_file = File( + exists=True, mandatory=True, desc="Reference file aligned with coefficients" + ) transforms = InputMultiObject( - File(exists=True), mandatory=True, desc="Transform files, from in_file to ref_file (image mode)" + File(exists=True), + mandatory=True, + desc="Transform files, from in_file to ref_file (image mode)", ) inverse = InputMultiObject( traits.Bool, @@ -252,6 +275,9 @@ def resample_vol( coordinates = nb.affines.apply_affine( hmc_xfm, coordinates.reshape(coords_shape[0], -1).T ).T.reshape(coords_shape) + else: + # Copy coordinates to avoid interfering with other calls + coordinates = coordinates.copy() vsm = fmap_hz * pe_info[1] coordinates[pe_info[0], ...] += vsm @@ -346,7 +372,9 @@ async def resample_series_async( semaphore = asyncio.Semaphore(max_concurrent) - out_array = np.zeros(coordinates.shape[1:] + data.shape[-1:], dtype=output_dtype) + # Order F ensures individual volumes are contiguous in memory + # Also matches NIfTI, making final save more efficient + out_array = np.zeros(coordinates.shape[1:] + data.shape[-1:], dtype=output_dtype, order='F') tasks = [ asyncio.create_task( @@ -354,7 +382,7 @@ async def resample_series_async( partial( resample_vol, data=volume, - coordinates=coordinates.copy(), + coordinates=coordinates, pe_info=pe_info[volid], hmc_xfm=hmc_xfms[volid] if hmc_xfms else None, fmap_hz=fmap_hz, @@ -451,21 +479,26 @@ def resample_series( ) -def resample_bold( +def resample_image( source: nb.Nifti1Image, target: nb.Nifti1Image, transforms: nt.TransformChain, fieldmap: nb.Nifti1Image | None, pe_info: list[tuple[int, float]] | None, nthreads: int = 1, + output_dtype: np.dtype | str | None = 'f4', + order: int = 3, + mode: str = 'constant', + cval: float = 0.0, + prefilter: bool = True, ) -> nb.Nifti1Image: - """Resample a 4D bold series into a target space, applying head-motion + """Resample a 3- or 4D image into a target space, applying head-motion and susceptibility-distortion correction simultaneously. Parameters ---------- source - The 4D bold series to resample. + The 3D bold image or 4D bold series to resample. target An image sampled in the target space. transforms @@ -480,6 +513,17 @@ def resample_bold( of the data array in the second dimension. nthreads Number of threads to use for parallel resampling + output_dtype + The dtype of the output array. + order + Order of interpolation (default: 3 = cubic) + mode + How ``data`` is extended beyond its boundaries. See + :func:`scipy.ndimage.map_coordinates` for more details. + cval + Value to fill past edges of ``data`` if ``mode`` is ``'constant'``. + prefilter + Determines if ``data`` is pre-filtered before interpolation. Returns ------- @@ -527,8 +571,12 @@ def resample_bold( pe_info=pe_info, hmc_xfms=hmc_xfms, fmap_hz=fieldmap.get_fdata(dtype='f4'), - output_dtype='f4', + output_dtype=output_dtype, nthreads=nthreads, + order=order, + mode=mode, + cval=cval, + prefilter=prefilter, ) resampled_img = nb.Nifti1Image(resampled_data, target.affine, target.header) resampled_img.set_data_dtype('f4') diff --git a/fmriprep/workflows/base.py b/fmriprep/workflows/base.py index 2c2ad6aa4..ec901e407 100644 --- a/fmriprep/workflows/base.py +++ b/fmriprep/workflows/base.py @@ -483,6 +483,9 @@ def init_single_subject_wf(subject_id: str): precomputed=functional_cache, fieldmap_id=fieldmap_id, ) + if bold_wf is None: + continue + bold_wf.__desc__ = func_pre_desc + (bold_wf.__desc__ or "") workflow.connect([ diff --git a/fmriprep/workflows/bold/apply.py b/fmriprep/workflows/bold/apply.py index 449f81ae1..6024a73d0 100644 --- a/fmriprep/workflows/bold/apply.py +++ b/fmriprep/workflows/bold/apply.py @@ -7,6 +7,7 @@ import nipype.interfaces.utility as niu import nipype.pipeline.engine as pe from niworkflows.interfaces.header import ValidateImage +from niworkflows.interfaces.nibabel import GenerateSamplingReference from niworkflows.interfaces.utility import KeySelect from niworkflows.utils.connections import listify @@ -25,6 +26,110 @@ from niworkflows.utils.spaces import SpatialReferences +def init_bold_volumetric_resample_wf( + *, + metadata: dict, + fieldmap_id: str | None = None, + omp_nthreads: int = 1, + name: str = 'bold_volumetric_resample_wf', +) -> pe.Workflow: + workflow = pe.Workflow(name=name) + + inputnode = pe.Node( + niu.IdentityInterface( + fields=[ + "bold_file", + "bold_ref_file", + "target_ref_file", + "target_mask", + # HMC + "motion_xfm", + # SDC + "boldref2fmap_xfm", + "fmap_ref", + "fmap_coeff", + "fmap_id", + # Anatomical + "boldref2anat_xfm", + # Template + "anat2std_xfm", + ], + ), + name='inputnode', + ) + + outputnode = pe.Node(niu.IdentityInterface(fields=["bold_file"]), name='outputnode') + + gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref', mem_gb=0.3) + + boldref2target = pe.Node(niu.Merge(2), name='boldref2target') + bold2target = pe.Node(niu.Merge(2), name='bold2target') + resample = pe.Node(ResampleSeries(), name="resample", n_procs=omp_nthreads) + + workflow.connect([ + (inputnode, gen_ref, [ + ('bold_ref_file', 'moving_image'), + ('target_ref_file', 'fixed_image'), + ('target_mask', 'fov_mask'), + ]), + (inputnode, boldref2target, [ + ('boldref2anat_xfm', 'in1'), + ('anat2std_xfm', 'in2'), + ]), + (inputnode, bold2target, [('motion_xfm', 'in1')]), + (inputnode, resample, [('bold_file', 'in_file')]), + (gen_ref, resample, [('out_file', 'ref_file')]), + (boldref2target, bold2target, [('out', 'in2')]), + (bold2target, resample, [('out', 'transforms')]), + (resample, outputnode, [('out_file', 'bold_file')]), + ]) # fmt:skip + + if not fieldmap_id: + return workflow + + fmap_select = pe.Node( + KeySelect(fields=["fmap_ref", "fmap_coeff"], key=fieldmap_id), + name="fmap_select", + run_without_submitting=True, + ) + distortion_params = pe.Node( + DistortionParameters(metadata=metadata), + name="distortion_params", + run_without_submitting=True, + ) + fmap2target = pe.Node(niu.Merge(2), name='fmap2target') + inverses = pe.Node(niu.Function(function=_gen_inverses), name='inverses') + + fmap_recon = pe.Node(ReconstructFieldmap(), name="fmap_recon") + + workflow.connect([ + (inputnode, fmap_select, [ + ("fmap_ref", "fmap_ref"), + ("fmap_coeff", "fmap_coeff"), + ("fmap_id", "keys"), + ]), + (inputnode, distortion_params, [('bold_file', 'in_file')]), + (inputnode, fmap2target, [('boldref2fmap_xfm', 'in1')]), + (gen_ref, fmap_recon, [('out_file', 'target_ref_file')]), + (boldref2target, fmap2target, [('out', 'in2')]), + (boldref2target, inverses, [('out', 'inlist')]), + (fmap_select, fmap_recon, [ + ("fmap_coeff", "in_coeffs"), + ("fmap_ref", "fmap_ref_file"), + ]), + (fmap2target, fmap_recon, [('out', 'transforms')]), + (inverses, fmap_recon, [('out', 'inverse')]), + # Inject fieldmap correction into resample node + (distortion_params, resample, [ + ("readout_time", "ro_time"), + ("pe_direction", "pe_dir"), + ]), + (fmap_recon, resample, [('out_file', 'fieldmap')]), + ]) # fmt:skip + + return workflow + + def init_bold_apply_wf( *, spaces: SpatialReferences, @@ -49,3 +154,16 @@ def init_bold_apply_wf( # ) return workflow + + +def _gen_inverses(inlist: list) -> list[bool]: + """Create a list indicating the first transform should be inverted. + + The input list is the collection of transforms that follow the + inverted one. + """ + from niworkflows.utils.connections import listify + + if not inlist: + return [True] + return [True] + [False] * len(listify(inlist)) diff --git a/fmriprep/workflows/bold/base.py b/fmriprep/workflows/bold/base.py index 4e4ad6e4d..da6052cd6 100644 --- a/fmriprep/workflows/bold/base.py +++ b/fmriprep/workflows/bold/base.py @@ -45,10 +45,16 @@ from ...utils.meepi import combine_meepi_source # BOLD workflows +from .apply import init_bold_volumetric_resample_wf from .confounds import init_bold_confs_wf, init_carpetplot_wf from .fit import init_bold_fit_wf, init_bold_native_wf from .hmc import init_bold_hmc_wf -from .outputs import init_ds_bold_native_wf, init_func_derivatives_wf +from .outputs import ( + init_ds_bold_native_wf, + init_ds_registration_wf, + init_ds_volumes_wf, + init_func_derivatives_wf, +) from .registration import init_bold_reg_wf, init_bold_t1_trans_wf from .resampling import ( init_bold_preproc_trans_wf, @@ -139,6 +145,24 @@ def init_bold_wf( fmriprep_dir = config.execution.fmriprep_dir omp_nthreads = config.nipype.omp_nthreads + all_metadata = [config.execution.layout.get_metadata(file) for file in bold_series] + + nvols, mem_gb = _create_mem_gb(bold_file) + if nvols <= 5 - config.execution.sloppy: + config.loggers.workflow.warning( + f"Too short BOLD series (<= 5 timepoints). Skipping processing of <{bold_file}>." + ) + return + + config.loggers.workflow.debug( + "Creating bold processing workflow for <%s> (%.2f GB / %d TRs). " + "Memory resampled/largemem=%.2f/%.2f GB.", + bold_file, + mem_gb["filesize"], + nvols, + mem_gb["resampled"], + mem_gb["largemem"], + ) functional_cache = {} if config.execution.derivatives: @@ -224,28 +248,51 @@ def init_bold_wf( # - Save native outputs/echos only if requested # - bold_native_wf = init_bold_native_wf(bold_series=bold_series, fieldmap_id=fieldmap_id) + bold_native_wf = init_bold_native_wf( + bold_series=bold_series, + fieldmap_id=fieldmap_id, + omp_nthreads=omp_nthreads, + ) + bold_anat_wf = init_bold_volumetric_resample_wf( + metadata=all_metadata[0], + fieldmap_id=fieldmap_id if not multiecho else None, + omp_nthreads=omp_nthreads, + name='bold_anat_wf', + ) workflow.connect([ + (inputnode, bold_native_wf, [ + ("fmap_ref", "inputnode.fmap_ref"), + ("fmap_coeff", "inputnode.fmap_coeff"), + ("fmap_id", "inputnode.fmap_id"), + ]), + (inputnode, bold_anat_wf, [ + ("t1w_preproc", "inputnode.target_ref_file"), + ("t1w_mask", "inputnode.target_mask"), + ("fmap_ref", "inputnode.fmap_ref"), + ("fmap_coeff", "inputnode.fmap_coeff"), + ("fmap_id", "inputnode.fmap_id"), + ]), (bold_fit_wf, bold_native_wf, [ ("outputnode.coreg_boldref", "inputnode.boldref"), ("outputnode.bold_mask", "inputnode.bold_mask"), ("outputnode.motion_xfm", "inputnode.motion_xfm"), - ("outputnode.boldref2fmap_xfm", "inputnode.fmapreg_xfm"), + ("outputnode.boldref2fmap_xfm", "inputnode.boldref2fmap_xfm"), ("outputnode.dummy_scans", "inputnode.dummy_scans"), ]), + (bold_fit_wf, bold_anat_wf, [ + ("outputnode.coreg_boldref", "inputnode.bold_ref_file"), + ("outputnode.boldref2fmap_xfm", "inputnode.boldref2fmap_xfm"), + ("outputnode.boldref2anat_xfm", "inputnode.boldref2anat_xfm"), + ]), + (bold_native_wf, bold_anat_wf, [ + ("outputnode.bold_minimal", "inputnode.bold_file"), + ("outputnode.motion_xfm", "inputnode.motion_xfm"), + ]), ]) # fmt:skip - if fieldmap_id: - workflow.connect([ - (inputnode, bold_native_wf, [ - ("fmap_ref", "inputnode.fmap_ref"), - ("fmap_coeff", "inputnode.fmap_coeff"), - ("fmap_id", "inputnode.fmap_id"), - ]), - ]) # fmt:skip - boldref_out = bool(nonstd_spaces.intersection(('func', 'run', 'bold', 'boldref', 'sbref'))) + boldref_out |= config.workflow.level == 'full' echos_out = multiecho and config.execution.me_output_echos if boldref_out or echos_out: @@ -255,7 +302,7 @@ def init_bold_wf( bold_output=boldref_out, echo_output=echos_out, multiecho=multiecho, - all_metadata=[config.execution.layout.get_metadata(file) for file in bold_series], + all_metadata=all_metadata, ) ds_bold_native_wf.inputs.inputnode.source_files = bold_series @@ -309,6 +356,31 @@ def init_bold_wf( if config.workflow.level == "resampling": return workflow + # Full derivatives, including resampled BOLD series + if nonstd_spaces.intersection(('anat', 'T1w')): + ds_bold_t1_wf = init_ds_volumes_wf( + bids_root=str(config.execution.bids_dir), + output_dir=fmriprep_dir, + multiecho=multiecho, + metadata=all_metadata[0], + name='ds_bold_t1_wf', + ) + ds_bold_t1_wf.inputs.inputnode.source_files = bold_series + ds_bold_t1_wf.inputs.inputnode.space = 'T1w' + + workflow.connect([ + (inputnode, ds_bold_t1_wf, [ + ('t1w_preproc', 'inputnode.ref_file'), + ]), + (bold_fit_wf, ds_bold_t1_wf, [ + ('outputnode.bold_mask', 'inputnode.bold_mask'), + ('outputnode.coreg_boldref', 'inputnode.bold_ref'), + ('outputnode.boldref2anat_xfm', 'inputnode.boldref2anat_xfm'), + ]), + (bold_native_wf, ds_bold_t1_wf, [('outputnode.t2star_map', 'inputnode.t2star')]), + (bold_anat_wf, ds_bold_t1_wf, [('outputnode.bold_file', 'inputnode.bold')]), + ]) # fmt:skip + # Fill-in datasinks of reportlets seen so far for node in workflow.list_node_names(): if node.split(".")[-1].startswith("ds_report"): @@ -454,17 +526,6 @@ def init_func_preproc_wf(bold_file, has_fieldmap=False): ) from niworkflows.interfaces.utility import KeySelect - img = nb.load(bold_file[0] if isinstance(bold_file, (list, tuple)) else bold_file) - nvols = 1 if img.ndim < 4 else img.shape[3] - if nvols <= 5 - config.execution.sloppy: - config.loggers.workflow.warning( - f"Too short BOLD series (<= 5 timepoints). Skipping processing of <{bold_file}>." - ) - return - - mem_gb = {"filesize": 1, "resampled": 1, "largemem": 1} - bold_tlen = 10 - # Have some options handy omp_nthreads = config.nipype.omp_nthreads freesurfer = config.workflow.run_reconall @@ -473,104 +534,8 @@ def init_func_preproc_wf(bold_file, has_fieldmap=False): freesurfer_spaces = spaces.get_fs_spaces() project_goodvoxels = config.workflow.project_goodvoxels and config.workflow.cifti_output - # Extract BIDS entities and metadata from BOLD file(s) - entities = extract_entities(bold_file) - layout = config.execution.layout - - # Extract metadata - all_metadata = [layout.get_metadata(fname) for fname in listify(bold_file)] - - # Take first file as reference - ref_file = pop_file(bold_file) - metadata = all_metadata[0] - # get original image orientation - ref_orientation = get_img_orientation(ref_file) - - echo_idxs = listify(entities.get("echo", [])) - multiecho = len(echo_idxs) > 2 - if len(echo_idxs) == 1: - config.loggers.workflow.warning( - f"Running a single echo <{ref_file}> from a seemingly multi-echo dataset." - ) - bold_file = ref_file # Just in case - drop the list - - if len(echo_idxs) == 2: - raise RuntimeError( - "Multi-echo processing requires at least three different echos (found two)." - ) - - if multiecho: - # Drop echo entity for future queries, have a boolean shorthand - entities.pop("echo", None) - # reorder echoes from shortest to largest - tes, bold_file = zip( - *sorted([(layout.get_metadata(bf)["EchoTime"], bf) for bf in bold_file]) - ) - ref_file = bold_file[0] # Reset reference to be the shortest TE - shapes = [nb.load(echo).shape for echo in bold_file] - if len(set(shapes)) != 1: - diagnostic = "\n".join( - f"{os.path.basename(echo)}: {shape}" for echo, shape in zip(bold_file, shapes) - ) - raise RuntimeError(f"Multi-echo images found with mismatching shapes\n{diagnostic}") - - if os.path.isfile(ref_file): - bold_tlen, mem_gb = _create_mem_gb(ref_file) - + ref_file = bold_file wf_name = _get_wf_name(ref_file, "func_preproc") - config.loggers.workflow.debug( - "Creating bold processing workflow for <%s> (%.2f GB / %d TRs). " - "Memory resampled/largemem=%.2f/%.2f GB.", - ref_file, - mem_gb["filesize"], - bold_tlen, - mem_gb["resampled"], - mem_gb["largemem"], - ) - - # Find associated sbref, if possible - overrides = { - "suffix": "sbref", - "extension": [".nii", ".nii.gz"], - } - if config.execution.bids_filters: - overrides.update(config.execution.bids_filters.get('sbref', {})) - sb_ents = {**entities, **overrides} - sbref_files = layout.get(return_type="file", **sb_ents) - - sbref_msg = f"No single-band-reference found for {os.path.basename(ref_file)}." - if sbref_files and "sbref" in config.workflow.ignore: - sbref_msg = "Single-band reference file(s) found and ignored." - sbref_files = [] - elif sbref_files: - sbref_msg = "Using single-band reference file(s) {}.".format( - ",".join([os.path.basename(sbf) for sbf in sbref_files]) - ) - config.loggers.workflow.info(sbref_msg) - - if has_fieldmap: - from sdcflows import fieldmaps as fm - - # We may have pruned the estimator collection due to `--ignore fieldmaps` - estimator_key = [ - key - for key in get_estimator(layout, bold_file if not multiecho else bold_file[0]) - if key in fm._estimators - ] - - if not estimator_key: - has_fieldmap = False - config.loggers.workflow.critical( - f"None of the available B0 fieldmaps are associated to <{bold_file}>" - ) - else: - config.loggers.workflow.info( - f"Found usable B0-map (fieldmap) estimator(s) <{', '.join(estimator_key)}> " - f"to correct <{bold_file}> for susceptibility-derived distortions." - ) - - # Check whether STC must/can be run - run_stc = bool(metadata.get("SliceTiming")) and "slicetiming" not in config.workflow.ignore # Build workflow workflow = Workflow(name=wf_name) @@ -652,137 +617,6 @@ def init_func_preproc_wf(bold_file, has_fieldmap=False): name="outputnode", ) - # Outline - # 1) Find/create reference - # 2) HMC - # 3) Apply SDC - # 4) BOLD-T1w coregistration - # 5) T2* map - # - # Notes - # - STC only used for bold_split (apply) - - # Generate a brain-masked conversion of the t1w - t1w_brain = pe.Node(ApplyMask(), name="t1w_brain") - - # Track echo index - this allows us to treat multi- and single-echo workflows - # almost identically - echo_index = pe.Node(niu.IdentityInterface(fields=["echoidx"]), name="echo_index") - if multiecho: - echo_index.iterables = [("echoidx", range(len(bold_file)))] - else: - echo_index.inputs.echoidx = 0 - - # BOLD source: track original BOLD file(s) - bold_source = pe.Node(niu.Select(inlist=bold_file), name="bold_source") - - # BOLD buffer: an identity used as a pointer to either the original BOLD - # or the STC'ed one for further use. - boldbuffer = pe.Node(niu.IdentityInterface(fields=["bold_file"]), name="boldbuffer") - - summary = pe.Node( - FunctionalSummary( - # slice_timing=run_stc, - registration=("FSL", "FreeSurfer")[freesurfer], - registration_dof=config.workflow.bold2t1w_dof, - registration_init=config.workflow.bold2t1w_init, - pe_direction=metadata.get("PhaseEncodingDirection"), - echo_idx=echo_idxs, - tr=metadata["RepetitionTime"], - orientation=ref_orientation, - ), - name="summary", - mem_gb=config.DEFAULT_MEMORY_MIN_GB, - run_without_submitting=True, - ) - summary.inputs.dummy_scans = config.workflow.dummy_scans - - func_derivatives_wf = init_func_derivatives_wf( - bids_root=layout.root, - cifti_output=config.workflow.cifti_output, - freesurfer=freesurfer, - project_goodvoxels=project_goodvoxels, - all_metadata=all_metadata, - multiecho=multiecho, - output_dir=fmriprep_dir, - spaces=spaces, - ) - func_derivatives_wf.inputs.inputnode.all_source_files = bold_file - func_derivatives_wf.inputs.inputnode.cifti_density = config.workflow.cifti_output - - # fmt:off - workflow.connect([ - (outputnode, func_derivatives_wf, [ - ("bold_t1", "inputnode.bold_t1"), - ("bold_t1_ref", "inputnode.bold_t1_ref"), - ("bold2anat_xfm", "inputnode.bold2anat_xfm"), - ("anat2bold_xfm", "inputnode.anat2bold_xfm"), - ("hmc_xforms", "inputnode.hmc_xforms"), - ("bold_aseg_t1", "inputnode.bold_aseg_t1"), - ("bold_aparc_t1", "inputnode.bold_aparc_t1"), - ("bold_mask_t1", "inputnode.bold_mask_t1"), - ("bold_native", "inputnode.bold_native"), - ("bold_native_ref", "inputnode.bold_native_ref"), - ("bold_mask_native", "inputnode.bold_mask_native"), - ("bold_echos_native", "inputnode.bold_echos_native"), - ("confounds", "inputnode.confounds"), - ("surfaces", "inputnode.surf_files"), - ("bold_cifti", "inputnode.bold_cifti"), - ("cifti_metadata", "inputnode.cifti_metadata"), - ("t2star_bold", "inputnode.t2star_bold"), - ("t2star_t1", "inputnode.t2star_t1"), - ("t2star_std", "inputnode.t2star_std"), - ("confounds_metadata", "inputnode.confounds_metadata"), - ("acompcor_masks", "inputnode.acompcor_masks"), - ("tcompcor_mask", "inputnode.tcompcor_mask"), - ]), - ]) - # fmt:on - - # Generate a tentative boldref - initial_boldref_wf = init_bold_reference_wf( - name="initial_boldref_wf", - omp_nthreads=omp_nthreads, - bold_file=bold_file, - sbref_files=sbref_files, - multiecho=multiecho, - ) - initial_boldref_wf.inputs.inputnode.dummy_scans = config.workflow.dummy_scans - - # Select validated BOLD files (orientations checked or corrected) - select_bold = pe.Node(niu.Select(), name="select_bold") - - # Top-level BOLD splitter - bold_split = pe.Node(FSLSplit(dimension="t"), name="bold_split", mem_gb=mem_gb["filesize"] * 3) - - # HMC on the BOLD - bold_hmc_wf = init_bold_hmc_wf( - name="bold_hmc_wf", mem_gb=mem_gb["filesize"], omp_nthreads=omp_nthreads - ) - - # calculate BOLD registration to T1w - bold_reg_wf = init_bold_reg_wf( - bold2t1w_dof=config.workflow.bold2t1w_dof, - bold2t1w_init=config.workflow.bold2t1w_init, - freesurfer=freesurfer, - mem_gb=mem_gb["resampled"], - name="bold_reg_wf", - omp_nthreads=omp_nthreads, - sloppy=config.execution.sloppy, - use_bbr=config.workflow.use_bbr, - use_compression=False, - ) - - # apply BOLD registration to T1w - bold_t1_trans_wf = init_bold_t1_trans_wf( - name="bold_t1_trans_wf", - freesurfer=freesurfer, - mem_gb=mem_gb["resampled"], - omp_nthreads=omp_nthreads, - use_compression=False, - ) - bold_t1_trans_wf.inputs.inputnode.fieldwarp = "identity" - # get confounds bold_confounds_wf = init_bold_confs_wf( mem_gb=mem_gb["largemem"], @@ -795,152 +629,6 @@ def init_func_preproc_wf(bold_file, has_fieldmap=False): ) bold_confounds_wf.get_node("inputnode").inputs.t1_transform_flags = [False] - # SLICE-TIME CORRECTION (or bypass) ############################################# - if run_stc: - bold_stc_wf = init_bold_stc_wf(name="bold_stc_wf", metadata=metadata) - # fmt:off - workflow.connect([ - (initial_boldref_wf, bold_stc_wf, [("outputnode.skip_vols", "inputnode.skip_vols")]), - (select_bold, bold_stc_wf, [("out", "inputnode.bold_file")]), - (bold_stc_wf, boldbuffer, [("outputnode.stc_file", "bold_file")]), - ]) - # fmt:on - - # bypass STC from original BOLD in both SE and ME cases - else: - workflow.connect([(select_bold, boldbuffer, [("out", "bold_file")])]) - - # MULTI-ECHO EPI DATA ############################################# - if multiecho: # instantiate relevant interfaces, imports - split_opt_comb = bold_split.clone(name="split_opt_comb") - - inputnode.inputs.bold_file = ref_file # Replace reference w first echo - - join_echos = pe.JoinNode( - niu.IdentityInterface(fields=["bold_files"]), - joinsource="echo_index", - joinfield=["bold_files"], - name="join_echos", - ) - - # create optimal combination, adaptive T2* map - bold_t2s_wf = init_bold_t2s_wf( - echo_times=tes, - mem_gb=mem_gb["filesize"], - omp_nthreads=omp_nthreads, - name="bold_t2smap_wf", - ) - - t2s_reporting_wf = init_t2s_reporting_wf() - - ds_report_t2scomp = pe.Node( - DerivativesDataSink( - desc="t2scomp", - datatype="figures", - dismiss_entities=("echo",), - ), - name="ds_report_t2scomp", - run_without_submitting=True, - ) - - ds_report_t2star_hist = pe.Node( - DerivativesDataSink( - desc="t2starhist", - datatype="figures", - dismiss_entities=("echo",), - ), - name="ds_report_t2star_hist", - run_without_submitting=True, - ) - - bold_final = pe.Node( - niu.IdentityInterface(fields=["bold", "boldref", "mask", "bold_echos", "t2star"]), - name="bold_final", - ) - - # Generate a final BOLD reference - # This BOLD references *does not use* single-band reference images. - final_boldref_wf = init_bold_reference_wf( - name="final_boldref_wf", - omp_nthreads=omp_nthreads, - multiecho=multiecho, - ) - final_boldref_wf.__desc__ = None # Unset description to avoid second appearance - - # for standard EPI data, pass along correct file - if not multiecho: - # fmt:off - workflow.connect([ - (inputnode, func_derivatives_wf, [("bold_file", "inputnode.source_file")]), - (bold_split, bold_t1_trans_wf, [("out_files", "inputnode.bold_split")]), - (bold_hmc_wf, bold_t1_trans_wf, [("outputnode.xforms", "inputnode.hmc_xforms")]), - ]) - # fmt:on - else: # for meepi, use optimal combination - # fmt:off - workflow.connect([ - # update name source for optimal combination - (inputnode, func_derivatives_wf, [ - (("bold_file", combine_meepi_source), "inputnode.source_file"), - ]), - (join_echos, bold_t2s_wf, [("bold_files", "inputnode.bold_file")]), - (join_echos, bold_final, [("bold_files", "bold_echos")]), - (bold_t2s_wf, split_opt_comb, [("outputnode.bold", "in_file")]), - (split_opt_comb, bold_t1_trans_wf, [("out_files", "inputnode.bold_split")]), - (bold_t2s_wf, bold_final, [("outputnode.bold", "bold"), - ("outputnode.t2star_map", "t2star")]), - (inputnode, t2s_reporting_wf, [("t1w_dseg", "inputnode.label_file")]), - (bold_reg_wf, t2s_reporting_wf, [ - ("outputnode.itk_t1_to_bold", "inputnode.label_bold_xform") - ]), - (bold_final, t2s_reporting_wf, [("t2star", "inputnode.t2star_file"), - ("boldref", "inputnode.boldref")]), - (t2s_reporting_wf, ds_report_t2scomp, [('outputnode.t2s_comp_report', 'in_file')]), - (t2s_reporting_wf, ds_report_t2star_hist, [("outputnode.t2star_hist", "in_file")]), - ]) - # fmt:on - - # Already applied in bold_bold_trans_wf, which inputs to bold_t2s_wf - bold_t1_trans_wf.inputs.inputnode.hmc_xforms = "identity" - - # Map final BOLD mask into T1w space (if required) - nonstd_spaces = set(spaces.get_nonstandard()) - if nonstd_spaces.intersection(("T1w", "anat")): - from niworkflows.interfaces.fixes import ( - FixHeaderApplyTransforms as ApplyTransforms, - ) - - boldmask_to_t1w = pe.Node( - ApplyTransforms(interpolation="MultiLabel"), - name="boldmask_to_t1w", - mem_gb=0.1, - ) - # fmt:off - workflow.connect([ - (bold_reg_wf, boldmask_to_t1w, [("outputnode.itk_bold_to_t1", "transforms")]), - (bold_t1_trans_wf, boldmask_to_t1w, [("outputnode.bold_mask_t1", "reference_image")]), - (bold_final, boldmask_to_t1w, [("mask", "input_image")]), - (boldmask_to_t1w, outputnode, [("output_image", "bold_mask_t1")]), - ]) - # fmt:on - - if multiecho: - t2star_to_t1w = pe.Node( - ApplyTransforms(interpolation="LanczosWindowedSinc", float=True), - name="t2star_to_t1w", - mem_gb=0.1, - ) - # fmt:off - workflow.connect([ - (bold_reg_wf, t2star_to_t1w, [("outputnode.itk_bold_to_t1", "transforms")]), - (bold_t1_trans_wf, t2star_to_t1w, [ - ("outputnode.bold_mask_t1", "reference_image") - ]), - (bold_final, t2star_to_t1w, [("t2star", "input_image")]), - (t2star_to_t1w, outputnode, [("output_image", "t2star_t1")]), - ]) - # fmt:on - if spaces.get_spaces(nonstandard=False, dim=(3,)): # Apply transforms in 1 shot bold_std_trans_wf = init_bold_std_trans_wf( @@ -1168,269 +856,6 @@ def _last(inlist): ]) # fmt:on - if not has_fieldmap: - # Finalize workflow without SDC connections - summary.inputs.distortion_correction = "None" - - # Resample in native space in just one shot - bold_bold_trans_wf = init_bold_preproc_trans_wf( - mem_gb=mem_gb["resampled"], - omp_nthreads=omp_nthreads, - use_compression=not config.execution.low_mem, - use_fieldwarp=False, - name="bold_bold_trans_wf", - ) - bold_bold_trans_wf.inputs.inputnode.fieldwarp = "identity" - - # fmt:off - workflow.connect([ - # Connect bold_bold_trans_wf - (bold_source, bold_bold_trans_wf, [("out", "inputnode.name_source")]), - (bold_split, bold_bold_trans_wf, [("out_files", "inputnode.bold_file")]), - (bold_hmc_wf, bold_bold_trans_wf, [ - ("outputnode.xforms", "inputnode.hmc_xforms"), - ]), - ]) - - workflow.connect([ - (bold_bold_trans_wf, bold_final, [("outputnode.bold", "bold")]), - (bold_bold_trans_wf, final_boldref_wf, [ - ("outputnode.bold", "inputnode.bold_file"), - ]), - ] if not multiecho else [ - (initial_boldref_wf, bold_t2s_wf, [ - ("outputnode.bold_mask", "inputnode.bold_mask"), - ]), - (bold_bold_trans_wf, join_echos, [ - ("outputnode.bold", "bold_files"), - ]), - (join_echos, final_boldref_wf, [ - ("bold_files", "inputnode.bold_file"), - ]), - ]) - # fmt:on - return workflow - - from niworkflows.interfaces.utility import KeySelect - from sdcflows.workflows.apply.correction import init_unwarp_wf - from sdcflows.workflows.apply.registration import init_coeff2epi_wf - - coeff2epi_wf = init_coeff2epi_wf( - debug="fieldmaps" in config.execution.debug, - omp_nthreads=config.nipype.omp_nthreads, - sloppy=config.execution.sloppy, - write_coeff=True, - ) - unwarp_wf = init_unwarp_wf( - free_mem=config.environment.free_mem, - debug="fieldmaps" in config.execution.debug, - omp_nthreads=config.nipype.omp_nthreads, - ) - unwarp_wf.inputs.inputnode.metadata = metadata - - output_select = pe.Node( - KeySelect(fields=["fmap", "fmap_ref", "fmap_coeff", "fmap_mask", "sdc_method"]), - name="output_select", - run_without_submitting=True, - ) - output_select.inputs.key = estimator_key[0] - if len(estimator_key) > 1: - config.loggers.workflow.warning( - f"Several fieldmaps <{', '.join(estimator_key)}> are " - f"'IntendedFor' <{bold_file}>, using {estimator_key[0]}" - ) - - sdc_report = pe.Node( - SimpleBeforeAfter( - before_label="Distorted", - after_label="Corrected", - dismiss_affine=True, - ), - name="sdc_report", - mem_gb=0.1, - ) - - ds_report_sdc = pe.Node( - DerivativesDataSink( - base_directory=fmriprep_dir, - desc="sdc", - suffix="bold", - datatype="figures", - dismiss_entities=("echo",), - ), - name="ds_report_sdc", - run_without_submitting=True, - ) - - # fmt:off - workflow.connect([ - (inputnode, output_select, [("fmap", "fmap"), - ("fmap_ref", "fmap_ref"), - ("fmap_coeff", "fmap_coeff"), - ("fmap_mask", "fmap_mask"), - ("sdc_method", "sdc_method"), - ("fmap_id", "keys")]), - (output_select, coeff2epi_wf, [ - ("fmap_ref", "inputnode.fmap_ref"), - ("fmap_coeff", "inputnode.fmap_coeff"), - ("fmap_mask", "inputnode.fmap_mask")]), - (output_select, summary, [("sdc_method", "distortion_correction")]), - (initial_boldref_wf, coeff2epi_wf, [ - ("outputnode.ref_image", "inputnode.target_ref"), - ("outputnode.bold_mask", "inputnode.target_mask")]), - (initial_boldref_wf, unwarp_wf, [ - ("outputnode.ref_image", "inputnode.distorted_ref"), - ]), - (coeff2epi_wf, unwarp_wf, [ - ("outputnode.fmap_coeff", "inputnode.fmap_coeff")]), - (bold_hmc_wf, unwarp_wf, [ - ("outputnode.xforms", "inputnode.hmc_xforms")]), - (initial_boldref_wf, sdc_report, [ - ("outputnode.ref_image", "before")]), - (bold_split, unwarp_wf, [ - ("out_files", "inputnode.distorted")]), - (final_boldref_wf, sdc_report, [ - ("outputnode.ref_image", "after"), - ("outputnode.bold_mask", "wm_seg")]), - (inputnode, ds_report_sdc, [("bold_file", "source_file")]), - (sdc_report, ds_report_sdc, [("out_report", "in_file")]), - - ]) - # fmt:on - - if "fieldmaps" in config.execution.debug: - # Generate additional reportlets to assess SDC - from sdcflows.interfaces.reportlets import FieldmapReportlet - - # First, one for checking the co-registration between fieldmap and EPI - sdc_coreg_report = pe.Node( - SimpleBeforeAfter( - before_label="Distorted target", - after_label="Fieldmap ref.", - ), - name="sdc_coreg_report", - mem_gb=0.1, - ) - ds_report_sdc_coreg = pe.Node( - DerivativesDataSink( - base_directory=fmriprep_dir, - datatype="figures", - desc="fmapCoreg", - dismiss_entities=("echo",), - suffix="bold", - ), - name="ds_report_sdc_coreg", - run_without_submitting=True, - ) - - # Second, showing the fieldmap reconstructed from coefficients in the EPI space - fmap_report = pe.Node(FieldmapReportlet(), "fmap_report") - - ds_fmap_report = pe.Node( - DerivativesDataSink( - base_directory=fmriprep_dir, - datatype="figures", - desc="fieldmap", - dismiss_entities=("echo",), - suffix="bold", - ), - name="ds_fmap_report", - run_without_submitting=True, - ) - - # fmt:off - workflow.connect([ - (initial_boldref_wf, sdc_coreg_report, [ - ("outputnode.ref_image", "before"), - ]), - (coeff2epi_wf, sdc_coreg_report, [ - ("coregister.inverse_warped_image", "after"), - ]), - (final_boldref_wf, sdc_coreg_report, [ - ("outputnode.bold_mask", "wm_seg"), - ]), - (inputnode, ds_report_sdc_coreg, [("bold_file", "source_file")]), - (sdc_coreg_report, ds_report_sdc_coreg, [("out_report", "in_file")]), - (unwarp_wf, fmap_report, [(("outputnode.fieldmap", pop_file), "fieldmap")]), - (coeff2epi_wf, fmap_report, [ - ("coregister.inverse_warped_image", "reference"), - ]), - (final_boldref_wf, fmap_report, [ - ("outputnode.bold_mask", "mask"), - ]), - - (fmap_report, ds_fmap_report, [("out_report", "in_file")]), - (inputnode, ds_fmap_report, [("bold_file", "source_file")]), - ]) - # fmt:on - - if not multiecho: - # fmt:off - workflow.connect([ - (unwarp_wf, bold_final, [("outputnode.corrected", "bold")]), - # remaining workflow connections - (unwarp_wf, final_boldref_wf, [ - ("outputnode.corrected", "inputnode.bold_file"), - ]), - (unwarp_wf, bold_t1_trans_wf, [ - # TEMPORARY: For the moment we can't use frame-wise fieldmaps - (("outputnode.fieldwarp_ref", pop_file), "inputnode.fieldwarp"), - ]), - (unwarp_wf, bold_std_trans_wf, [ - # TEMPORARY: For the moment we can't use frame-wise fieldmaps - (("outputnode.fieldwarp_ref", pop_file), "inputnode.fieldwarp"), - ]), - ]) - # fmt:on - return workflow - - # Finalize connections if ME-EPI - join_sdc_echos = pe.JoinNode( - niu.IdentityInterface( - fields=[ - "fieldmap", - "fieldwarp", - "corrected", - "corrected_ref", - "corrected_mask", - ] - ), - joinsource="echo_index", - joinfield=[ - "fieldmap", - "fieldwarp", - "corrected", - "corrected_ref", - "corrected_mask", - ], - name="join_sdc_echos", - ) - - def _dpop(list_of_lists): - return list_of_lists[0][0] - - # fmt:off - workflow.connect([ - (unwarp_wf, join_echos, [ - ("outputnode.corrected", "bold_files"), - ]), - (unwarp_wf, join_sdc_echos, [ - ("outputnode.fieldmap", "fieldmap"), - ("outputnode.fieldwarp", "fieldwarp"), - ("outputnode.corrected", "corrected"), - ("outputnode.corrected_ref", "corrected_ref"), - ("outputnode.corrected_mask", "corrected_mask"), - ]), - # remaining workflow connections - (join_sdc_echos, final_boldref_wf, [ - ("corrected", "inputnode.bold_file"), - ]), - (join_sdc_echos, bold_t2s_wf, [ - (("corrected_mask", pop_file), "inputnode.bold_mask"), - ]), - ]) - # fmt:on - return workflow @@ -1439,7 +864,7 @@ def _create_mem_gb(bold_fname): nvox = int(np.prod(img.shape, dtype='u8')) # Assume tools will coerce to 8-byte floats to be safe bold_size_gb = 8 * nvox / (1024**3) - bold_tlen = img.shape[-1] + bold_tlen = 1 if img.ndim < 4 else img.shape[3] mem_gb = { "filesize": bold_size_gb, "resampled": bold_size_gb * 4, diff --git a/fmriprep/workflows/bold/fit.py b/fmriprep/workflows/bold/fit.py index 36ec19861..3855d4256 100644 --- a/fmriprep/workflows/bold/fit.py +++ b/fmriprep/workflows/bold/fit.py @@ -593,6 +593,7 @@ def init_bold_native_wf( *, bold_series: ty.List[str], fieldmap_id: ty.Optional[str] = None, + omp_nthreads: int = 1, name: str = "bold_native_wf", ) -> pe.Workflow: r""" @@ -633,7 +634,7 @@ def init_bold_native_wf( motion_xfm Affine transforms from each BOLD volume to ``hmc_boldref``, written as concatenated ITK affine transforms. - fmapreg_xfm + boldref2fmap_xfm Affine transform mapping from BOLD reference space to the fieldmap space, if applicable. fmap_id @@ -654,14 +655,12 @@ def init_bold_native_wf( head motion and susceptibility distortion correction (STC, HMC, SDC) will all be applied to each file. For multi-echo data, the echos are combined to form an `optimal combination`_. + metadata + Metadata dictionary of BOLD series with the shortest echo motion_xfm Motion correction transforms for further correcting bold_minimal. For multi-echo data, motion correction has already been applied, so this will be undefined. - fieldmap_id - Fieldmap ID for further correcting bold_minimal. For multi-echo data, - susceptibility distortion correction has already been applied, so - this will be undefined. bold_echos The individual, corrected echos, suitable for use in Tedana. (Multi-echo only.) @@ -721,7 +720,7 @@ def init_bold_native_wf( "boldref", "bold_mask", "motion_xfm", - "fmapreg_xfm", + "boldref2fmap_xfm", "dummy_scans", # Fieldmap fit "fmap_ref", @@ -735,10 +734,11 @@ def init_bold_native_wf( outputnode = pe.Node( niu.IdentityInterface( fields=[ - "bold_minimal", # Single echo: STC; Multi-echo: optimal combination - "bold_native", # STC + HMC + SDC; Multi-echo: optimal combination - "motion_xfm", # motion_xfms to apply to bold_minimal (none for ME) - "fieldmap_id", # fieldmap to apply to bold_minimal (none for ME) + "bold_minimal", + "bold_native", + "metadata", + # Transforms + "motion_xfm", # Multiecho outputs "bold_echos", # Individual corrected echos "t2star_map", # T2* map @@ -746,6 +746,7 @@ def init_bold_native_wf( ), name="outputnode", ) + outputnode.inputs.metadata = metadata boldbuffer = pe.Node( niu.IdentityInterface(fields=["bold_file", "ro_time", "pe_dir"]), name="boldbuffer" @@ -804,9 +805,7 @@ def init_bold_native_wf( ]) # fmt:skip # Resample to boldref - boldref_bold = pe.Node( - ResampleSeries(), name="boldref_bold", n_procs=config.nipype.omp_nthreads - ) + boldref_bold = pe.Node(ResampleSeries(), name="boldref_bold", n_procs=omp_nthreads) workflow.connect([ (inputnode, boldref_bold, [ @@ -825,7 +824,7 @@ def init_bold_native_wf( workflow.connect([ (inputnode, boldref_fmap, [ ("boldref", "target_ref_file"), - ("fmapreg_xfm", "transforms"), + ("boldref2fmap_xfm", "transforms"), ]), (fmap_select, boldref_fmap, [ ("fmap_coeff", "in_coeffs"), @@ -850,7 +849,7 @@ def init_bold_native_wf( name="bold_t2smap_wf", ) - # Do NOT set motion_xfm or fieldmap_id on outputnode + # Do NOT set motion_xfm on outputnode # This prevents downstream resamplers from double-dipping workflow.connect([ (inputnode, bold_t2s_wf, [("bold_mask", "inputnode.bold_mask")]), @@ -870,9 +869,6 @@ def init_bold_native_wf( (boldref_bold, outputnode, [("out_file", "bold_native")]), ]) # fmt:skip - if fieldmap_id: - outputnode.inputs.fieldmap_id = fieldmap_id - return workflow diff --git a/fmriprep/workflows/bold/outputs.py b/fmriprep/workflows/bold/outputs.py index b893abf50..9f141f17c 100644 --- a/fmriprep/workflows/bold/outputs.py +++ b/fmriprep/workflows/bold/outputs.py @@ -587,6 +587,27 @@ def init_ds_bold_native_wf( raw_sources.inputs.bids_root = bids_root workflow.connect(inputnode, 'source_files', raw_sources, 'in_files') + # Masks should be output if any other derivatives are output + ds_bold_mask = pe.Node( + DerivativesDataSink( + base_directory=output_dir, + desc='brain', + suffix='mask', + compress=True, + dismiss_entities=("echo",), + ), + name='ds_bold_mask', + run_without_submitting=True, + mem_gb=DEFAULT_MEMORY_MIN_GB, + ) + workflow.connect([ + (inputnode, ds_bold_mask, [ + ('source_files', 'source_file'), + ('bold_mask', 'in_file'), + ]), + (raw_sources, ds_bold_mask, [('out', 'RawSources')]), + ]) # fmt:skip + if bold_output: ds_bold = pe.Node( DerivativesDataSink( @@ -609,27 +630,6 @@ def init_ds_bold_native_wf( ]), ]) # fmt:skip - if bold_output or echo_output: - ds_bold_mask = pe.Node( - DerivativesDataSink( - base_directory=output_dir, - desc='brain', - suffix='mask', - compress=True, - dismiss_entities=("echo",), - ), - name='ds_bold_mask', - run_without_submitting=True, - mem_gb=DEFAULT_MEMORY_MIN_GB, - ) - workflow.connect([ - (inputnode, ds_bold_mask, [ - ('source_files', 'source_file'), - ('bold_mask', 'in_file'), - ]), - (raw_sources, ds_bold_mask, [('out', 'RawSources')]), - ]) # fmt:skip - if bold_output and multiecho: t2star_meta = { 'Units': 's', @@ -683,6 +683,174 @@ def init_ds_bold_native_wf( return workflow +def init_ds_volumes_wf( + *, + bids_root: str, + output_dir: str, + multiecho: bool, + metadata: ty.List[dict], + name="ds_volumes_wf", +) -> pe.Workflow: + timing_parameters = prepare_timing_parameters(metadata) + + workflow = pe.Workflow(name=name) + inputnode = pe.Node( + niu.IdentityInterface( + fields=[ + 'source_files', + 'ref_file', + 'bold', # Resampled into target space + 'bold_mask', # boldref space + 'bold_ref', # boldref space + 't2star', # boldref space + # Anatomical + 'boldref2anat_xfm', + # Template + 'anat2std_xfm', + # Entities + 'space', + 'cohort', + 'resolution', + ] + ), + name='inputnode', + ) + + raw_sources = pe.Node(niu.Function(function=_bids_relative), name='raw_sources') + raw_sources.inputs.bids_root = bids_root + boldref2target = pe.Node(niu.Merge(2), name='boldref2target') + + # BOLD is pre-resampled + ds_bold = pe.Node( + DerivativesDataSink( + base_directory=output_dir, + desc='preproc', + compress=True, + SkullStripped=multiecho, + TaskName=metadata.get('TaskName'), + dismiss_entities=("echo",), + **timing_parameters, + ), + name='ds_bold', + run_without_submitting=True, + mem_gb=DEFAULT_MEMORY_MIN_GB, + ) + workflow.connect([ + (inputnode, raw_sources, [('source_files', 'in_files')]), + (inputnode, boldref2target, [ + ('boldref2anat_xfm', 'in1'), + ('anat2std_xfm', 'in2'), + ]), + (inputnode, ds_bold, [ + ('source_files', 'source_file'), + ('bold', 'in_file'), + ('space', 'space'), + ('cohort', 'cohort'), + ('resolution', 'resolution'), + ]), + ]) # fmt:skip + + resample_ref = pe.Node( + ApplyTransforms( + dimension=3, + default_value=0, + float=True, + interpolation="LanczosWindowedSinc", + ), + name="resample_ref", + ) + resample_mask = pe.Node(ApplyTransforms(interpolation="MultiLabel"), name="resample_mask") + resamplers = [resample_ref, resample_mask] + + workflow.connect([ + (inputnode, resample_ref, [('bold_ref', 'input_image')]), + (inputnode, resample_mask, [('bold_mask', 'input_image')]), + ]) # fmt:skip + + ds_ref = pe.Node( + DerivativesDataSink( + base_directory=output_dir, + suffix='boldref', + compress=True, + dismiss_entities=("echo",), + ), + name='ds_ref', + run_without_submitting=True, + mem_gb=DEFAULT_MEMORY_MIN_GB, + ) + ds_mask = pe.Node( + DerivativesDataSink( + base_directory=output_dir, + desc='brain', + suffix='mask', + compress=True, + dismiss_entities=("echo",), + ), + name='ds_mask', + run_without_submitting=True, + mem_gb=DEFAULT_MEMORY_MIN_GB, + ) + datasinks = [ds_ref, ds_mask] + + if multiecho: + t2star_meta = { + 'Units': 's', + 'EstimationReference': 'doi:10.1002/mrm.20900', + 'EstimationAlgorithm': 'monoexponential decay model', + } + resample_t2star = pe.Node( + ApplyTransforms( + dimension=3, + default_value=0, + float=True, + interpolation="LanczosWindowedSinc", + ), + name="resample_t2star", + ) + ds_t2star = pe.Node( + DerivativesDataSink( + base_directory=output_dir, + suffix='T2starmap', + compress=True, + dismiss_entities=("echo",), + **t2star_meta, + ), + name='ds_t2star_std', + run_without_submitting=True, + mem_gb=DEFAULT_MEMORY_MIN_GB, + ) + resamplers.append(resample_t2star) + datasinks.append(ds_t2star) + + workflow.connect([(inputnode, resample_t2star, [('t2star', 'input_image')])]) + + workflow.connect( + [ + (inputnode, resampler, [('ref_file', 'reference_image')]) + for resampler in resamplers + ] + + [ + (boldref2target, resampler, [('out', 'transforms')]) + for resampler in resamplers + ] + + [ + (inputnode, datasink, [ + ('source_files', 'source_file'), + ('space', 'space'), + ('cohort', 'cohort'), + ('resolution', 'resolution'), + ]) + for datasink in datasinks + ] + + [ + (resampler, datasink, [("output_image", "in_file")]) + for resampler, datasink in zip(resamplers, datasinks) + ] + ) # fmt:skip + + return workflow + + def init_func_derivatives_wf( bids_root: str, cifti_output: bool,