diff --git a/scripts/dwi_estimation_plot.py b/scripts/dwi_estimation_plot.py new file mode 100644 index 00000000..c7a56942 --- /dev/null +++ b/scripts/dwi_estimation_plot.py @@ -0,0 +1,335 @@ +# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- +# vi: set ft=python sts=4 ts=4 sw=4 et: +# +# Copyright 2024 The NiPreps Developers +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# We support and encourage derived works from this project, please read +# about our expectations at +# +# https://www.nipreps.org/community/licensing/ +# + +""" " +Simulate the DWI signal from a single fiber and plot the predicted signal using a Gaussian process +estimator. +""" + +import argparse + +import numpy as np +from dipy.core.geometry import sphere2cart +from dipy.core.gradients import gradient_table +from dipy.core.sphere import HemiSphere, Sphere, disperse_charges +from dipy.sims.voxel import all_tensor_evecs, single_tensor +from matplotlib import pyplot as plt +from scipy.spatial import ConvexHull, KDTree + +from eddymotion.model._dipy import GaussianProcessModel + +SAMPLING_DIRECTIONS = 200 + + +def add_b0(bvals, bvecs): + """Add a b0 signal to the diffusion-encoding gradient values and vectors.""" + + _bvals = np.insert(bvals, 0, 0) + _bvecs = np.insert(bvecs, 0, np.array([0, 0, 0]), axis=0) + + return _bvals, _bvecs + + +def create_single_fiber_evecs(): + """Create eigenvalues for a simulated single fiber.""" + + # Polar coordinates (theta, phi) of the principal axis of the tensor + angles = np.array([0, 0]) + sticks = np.array(sphere2cart(1, np.deg2rad(angles[0]), np.deg2rad(angles[1]))) + evecs = all_tensor_evecs(sticks) + + return evecs + + +def create_random_polar_coordinates(hsph_dirs, seed=1234): + """Create random polar coordinate values""" + + rng = np.random.default_rng(seed) + theta = np.pi * rng.random(hsph_dirs) + phi = 2 * np.pi * rng.random(hsph_dirs) + + return theta, phi + + +def create_diffusion_encoding_gradient_dirs(hsph_dirs, iterations=5000, seed=1234): + """Create the dMRI gradient-encoding directions.""" + + # Create the gradient-encoding directions placing random points on a hemisphere + theta, phi = create_random_polar_coordinates(hsph_dirs, seed=seed) + hsph_initial = HemiSphere(theta=theta, phi=phi) + + # Move the points so that the electrostatic potential energy is minimized + hsph_updated, potential = disperse_charges(hsph_initial, iterations) + + # Create a sphere + return Sphere(xyz=np.vstack((hsph_updated.vertices, -hsph_updated.vertices))) + + +def create_single_shell_gradient_table(hsph_dirs, bval_shell, iterations=5000): + """Create a single-shell gradient table.""" + + # Create diffusion-encoding gradient directions + sph = create_diffusion_encoding_gradient_dirs(hsph_dirs, iterations=iterations) + + # Create the gradient bvals and bvecs + vertices = sph.vertices + values = np.ones(vertices.shape[0]) + bvecs = vertices + bvals = bval_shell * values + + # Add a b0 value to the gradient table + bvals, bvecs = add_b0(bvals, bvecs) + return gradient_table(bvals, bvecs) + + +def get_query_vectors(gtab, train_mask): + """Get the diffusion-encoding gradient vectors where the signal is to be estimated from the + gradient table and the training mask: the vectors of interest are those that are masked in + the training mask. b0 values are excluded.""" + + idx = np.logical_and(~train_mask, ~gtab.b0s_mask) + return gtab.bvecs[idx], np.where(idx)[0] + + +def create_random_train_mask(gtab, size, seed=1234): + """Create a mask for the gradient table where a ``size`` number of indices will be + excluded. b0 values are excluded.""" + + rng = np.random.default_rng(seed) + + # Get the indices of the non-zero diffusion-encoding gradient vector indices + nnzero_degv_idx = np.where(~gtab.b0s_mask)[0] + + if nnzero_degv_idx.size < size: + raise ValueError( + f"Requested {size} values for masking; gradient table has {nnzero_degv_idx.size} " + "non-zero diffusion-encoding gradient vectors. Reduce the number of masked values." + ) + + lo = rng.choice(nnzero_degv_idx, size=size, replace=False) + + # Exclude the b0s + zero_degv_idx = np.asarray(list(set(range(len(gtab.bvals))).difference(nnzero_degv_idx))) + lo = np.hstack([zero_degv_idx, lo]) + + train_mask = np.ones(len(gtab.bvals), dtype=bool) + train_mask[lo] = False + + return train_mask + + +def perform_experiment(gtab, S0, evals1, evecs, snr): + """Perform experiment: estimate the dMRI signal on a set of directions fitting a + Gaussian process to the rest of the data.""" + + # Fix the random number generator for reproducibility when generating the + # signal + seed = 1234 + rng = np.random.default_rng(seed) + + # Define the Gaussian process model parameters + kernel_model = "spherical" + lambda_s = 2.0 + a = 1.0 + sigma_sq = 0.5 + + # Define the Gaussian process model instance + gp_model = GaussianProcessModel( + kernel_model=kernel_model, lambda_s=lambda_s, a=a, sigma_sq=sigma_sq + ) + + # Create the DWI signal using a single tensor + signal = single_tensor(gtab, S0=S0, evals=evals1, evecs=evecs, snr=snr, rng=rng) + + # Use all available data for training + gpfit = gp_model.fit(signal[~gtab.b0s_mask], gtab[~gtab.b0s_mask]) + + # Predict on an oversampled set of random directions over the unit sphere + # theta, phi = create_random_polar_coordinates(SAMPLING_DIRECTIONS, seed=seed) + # sph = Sphere(theta=theta, phi=phi) + + # ToDo + # Not sure why all predictions are zero in gpfit.predict(sph.vertices) + # Also, when creating the convex hull, the gtab required is the one that + # would correspond to the new directions, so a new gtab would need to be + # generated + # return signal, gpfit.predict(sph.vertices), sph.vertices + # For now, predict on the same data + return signal, gpfit.predict(gtab[~gtab.b0s_mask].bvecs), gtab[~gtab.b0s_mask].bvecs + + +def calculate_sphere_pts(points, center): + """Calculate the location of each point when it is expanded out to the sphere.""" + + kdtree = KDTree(points) # tree of nearest points + # d is an array of distances, i is an array of indices + d, i = kdtree.query(center, points.shape[0]) + sphere_pts = np.zeros(points.shape, dtype=float) + + radius = np.amax(d) + for p in range(points.shape[0]): + sphere_pts[p] = points[i[p]] * radius / d[p] + # points and the indices for where they were in the original lists + return sphere_pts, i + + +def compute_dmri_convex_hull(s, dirs, mask=None): + """Compute the convex hull of the dMRI signal s.""" + + if mask is None: + mask = np.ones(len(dirs), dtype=bool) + + # Scale the original sampling directions by the corresponding signal values + scaled_bvecs = dirs[mask] * np.asarray(s)[:, np.newaxis] + + # Create the data for the convex hull: project the scaled vectors to a + # sphere + sphere_pts, sphere_idx = calculate_sphere_pts(scaled_bvecs, [0, 0, 0]) + + # Create the convex hull: find the right ordering of vertices for the + # triangles: ConvexHull finds the simplices of the points on the outside of + # the data set + hull = ConvexHull(sphere_pts) + triang_idx = hull.simplices # returns the list of indices for each triangle + + return scaled_bvecs, sphere_idx, triang_idx + + +def plot_surface(scaled_vecs, sphere_idx, triang_idx, title, cmap): + """Plot a surface.""" + + fig = plt.figure() + ax = fig.add_subplot(111, projection="3d") + + ax.scatter3D( + scaled_vecs[:, 0], scaled_vecs[:, 1], scaled_vecs[:, 2], s=2, c="black", alpha=1.0 + ) + + surface = ax.plot_trisurf( + scaled_vecs[sphere_idx, 0], + scaled_vecs[sphere_idx, 1], + scaled_vecs[sphere_idx, 2], + triangles=triang_idx, + cmap=cmap, + alpha=0.6, + ) + + ax.view_init(10, 45) + ax.set_aspect("equal", adjustable="box") + ax.set_title(title) + + return fig, ax, surface + + +def plot_signal_data(y, ax): + """Plot the data provided as a scatter plot""" + + ax.scatter( + y[:, 0], y[:, 1], y[:, 2], color="red", marker="*", alpha=0.8, s=5, label="Original points" + ) + + +def plot_prediction_surface(y, y_pred, S0, y_dirs, y_pred_dirs, title, cmap): + """Plot the prediction surface obtained by computing the convex hull of the + predicted signal data, and plot the true data as a scatter plot.""" + + # Scale the original sampling directions by the corresponding signal values + y_bvecs = y_dirs * np.asarray(y)[:, np.newaxis] + + # Compute the convex hull + y_pred_bvecs, sphere_idx, triang_idx = compute_dmri_convex_hull(y_pred, y_pred_dirs) + + # Plot the surface + fig, ax, surface = plot_surface(y_pred_bvecs, sphere_idx, triang_idx, title, cmap) + + # Add the underlying signal to the plot + # plot_signal_data(y_bvecs/S0, ax) + plot_signal_data(y_bvecs, ax) + + fig.tight_layout() + + return fig, ax, surface + + +def _build_arg_parser(): + parser = argparse.ArgumentParser( + description=__doc__, formatter_class=argparse.RawTextHelpFormatter + ) + parser.add_argument( + "hsph_dirs", + help="Number of diffusion gradient-encoding directions in the half sphere", + type=int, + ) + parser.add_argument( + "bval_shell", + help="Shell b-value", + type=float, + ) + parser.add_argument( + "S0", + help="S0 value", + type=float, + ) + parser.add_argument( + "--evals1", + help="Eigenvalues of the tensor", + nargs="+", + type=float, + ) + parser.add_argument( + "--snr", + help="Signal to noise ratio", + type=float, + ) + return parser + + +def _parse_args(parser): + args = parser.parse_args() + + return args + + +def main(): + parser = _build_arg_parser() + args = _parse_args(parser) + + # create eigenvectors for a single fiber + evecs = create_single_fiber_evecs() + + # Create a gradient table for a single-shell + gtab = create_single_shell_gradient_table(args.hsph_dirs, args.bval_shell) + + # Estimate the dMRI signal using a Gaussian process estimator + y, y_pred, y_pred_dirs = perform_experiment(gtab, args.S0, args.evals1, evecs, args.snr) + + # Plot the predicted signal + title = "GP model signal prediction\n(single-fiber)" + fig, _, _ = plot_prediction_surface( + y[~gtab.b0s_mask], y_pred, args.S0, gtab.bvecs[~gtab.b0s_mask], y_pred_dirs, title, "gray" + ) + fig.savefig(args.gp_pred_plot_fname, format="svg") + + +if __name__ == "__main__": + main()