diff --git a/src/eddymotion/model/gpr.py b/src/eddymotion/model/gpr.py index 6798d4bd..14e9205f 100644 --- a/src/eddymotion/model/gpr.py +++ b/src/eddymotion/model/gpr.py @@ -111,7 +111,7 @@ class EddyMotionGPR(GaussianProcessRegressor): frequently better at avoiding local maxima. Hence, that was the method we used for all optimisations in the present paper. - + **Multi-shell regression (TODO).** For multi-shell modeling, the kernel :math:`k(\textbf{x}, \textbf{x'})` is updated following Eq. (14) in [Andersson15]_. @@ -137,8 +137,10 @@ class EddyMotionGPR(GaussianProcessRegressor): \mathbf{K} = \left[ \begin{matrix} \lambda C_{\theta}(\theta (\mathbf{G}_{1}); a) + \sigma_{1}^{2} \mathbf{I} & - \lambda C_{\theta}(\theta (\mathbf{G}_{2}, \mathbf{G}_{1}); a) C_{b}(b_{2}, b_{1}; \ell) \\ - \lambda C_{\theta}(\theta (\mathbf{G}_{1}, \mathbf{G}_{2}); a) C_{b}(b_{1}, b_{2}; \ell) & + \lambda C_{\theta}(\theta (\mathbf{G}_{2}, + \mathbf{G}_{1}); a) C_{b}(b_{2}, b_{1}; \ell) \\ + \lambda C_{\theta}(\theta (\mathbf{G}_{1}, \mathbf{G}_{2}); + a) C_{b}(b_{1}, b_{2}; \ell) & \lambda C_{\theta}(\theta (\mathbf{G}_{2}); a) + \sigma_{2}^{2} \mathbf{I} \\ \end{matrix} \right]