forked from EgOrlukha/MuJoCo-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
trpo.py
171 lines (135 loc) · 5.72 KB
/
trpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
from utils import *
from hparams import HyperParams as hp
from model import Actor
def get_gae(rewards, masks, values):
rewards = torch.Tensor(rewards)
masks = torch.Tensor(masks)
returns = torch.zeros_like(rewards)
advants = torch.zeros_like(rewards)
running_returns = 0
previous_value = 0
running_advants = 0
for t in reversed(range(0, len(rewards))):
running_returns = rewards[t] + hp.gamma * running_returns * masks[t]
running_tderror = rewards[t] + hp.gamma * previous_value * masks[t] - \
values.data[t]
running_advants = running_tderror + hp.gamma * hp.lamda * \
running_advants * masks[t]
returns[t] = running_returns
previous_value = values.data[t]
advants[t] = running_advants
advants = (advants - advants.mean()) / advants.std()
return returns, advants
def surrogate_loss(actor, advants, states, old_policy, actions):
mu, std, logstd = actor(torch.Tensor(states))
new_policy = log_density(torch.Tensor(actions), mu, std, logstd)
advants = advants.unsqueeze(1)
surrogate = advants * torch.exp(new_policy - old_policy)
surrogate = surrogate.mean()
return surrogate
def train_critic(critic, states, returns, advants, critic_optim):
criterion = torch.nn.MSELoss()
n = len(states)
arr = np.arange(n)
for epoch in range(5):
np.random.shuffle(arr)
for i in range(n // hp.batch_size):
batch_index = arr[hp.batch_size * i: hp.batch_size * (i + 1)]
batch_index = torch.LongTensor(batch_index)
inputs = torch.Tensor(states)[batch_index]
target1 = returns.unsqueeze(1)[batch_index]
target2 = advants.unsqueeze(1)[batch_index]
values = critic(inputs)
loss = criterion(values, target1 + target2)
critic_optim.zero_grad()
loss.backward()
critic_optim.step()
def fisher_vector_product(actor, states, p):
p.detach()
kl = kl_divergence(new_actor=actor, old_actor=actor, states=states)
kl = kl.mean()
kl_grad = torch.autograd.grad(kl, actor.parameters(), create_graph=True)
kl_grad = flat_grad(kl_grad) # check kl_grad == 0
kl_grad_p = (kl_grad * p).sum()
kl_hessian_p = torch.autograd.grad(kl_grad_p, actor.parameters())
kl_hessian_p = flat_hessian(kl_hessian_p)
return kl_hessian_p + 0.1 * p
# from openai baseline code
# https://github.com/openai/baselines/blob/master/baselines/common/cg.py
def conjugate_gradient(actor, states, b, nsteps, residual_tol=1e-10):
x = torch.zeros(b.size())
r = b.clone()
p = b.clone()
rdotr = torch.dot(r, r)
for i in range(nsteps):
_Avp = fisher_vector_product(actor, states, p)
alpha = rdotr / torch.dot(p, _Avp)
x += alpha * p
r -= alpha * _Avp
new_rdotr = torch.dot(r, r)
betta = new_rdotr / rdotr
p = r + betta * p
rdotr = new_rdotr
if rdotr < residual_tol:
break
return x
def train_model(actor, critic, memory, actor_optim, critic_optim):
memory = np.array(memory)
states = np.vstack(memory[:, 0])
actions = list(memory[:, 1])
rewards = list(memory[:, 2])
masks = list(memory[:, 3])
values = critic(torch.Tensor(states))
# ----------------------------
# step 1: get returns and GAEs
returns, advants = get_gae(rewards, masks, values)
# ----------------------------
# step 2: train critic several steps with respect to returns
train_critic(critic, states, returns, advants, critic_optim)
# ----------------------------
# step 3: get gradient of loss and hessian of kl
mu, std, logstd = actor(torch.Tensor(states))
old_policy = log_density(torch.Tensor(actions), mu, std, logstd)
loss = surrogate_loss(actor, advants, states, old_policy.detach(), actions)
loss_grad = torch.autograd.grad(loss, actor.parameters())
loss_grad = flat_grad(loss_grad)
step_dir = conjugate_gradient(actor, states, loss_grad.data, nsteps=10)
loss = loss.data.numpy()
# ----------------------------
# step 4: get step direction and step size and full step
params = flat_params(actor)
shs = 0.5 * (step_dir * fisher_vector_product(actor, states, step_dir)
).sum(0, keepdim=True)
step_size = 1 / torch.sqrt(shs / hp.max_kl)[0]
full_step = step_size * step_dir
# ----------------------------
# step 5: do backtracking line search for n times
old_actor = Actor(actor.num_inputs, actor.num_outputs)
update_model(old_actor, params)
expected_improve = (loss_grad * full_step).sum(0, keepdim=True)
expected_improve = expected_improve.data.numpy()
flag = False
fraction = 1.0
for i in range(10):
new_params = params + fraction * full_step
update_model(actor, new_params)
new_loss = surrogate_loss(actor, advants, states, old_policy.detach(),
actions)
new_loss = new_loss.data.numpy()
loss_improve = new_loss - loss
expected_improve *= fraction
kl = kl_divergence(new_actor=actor, old_actor=old_actor, states=states)
kl = kl.mean()
print('kl: {:.4f} loss improve: {:.4f} expected improve: {:.4f} '
'number of line search: {}'
.format(kl.data.numpy(), loss_improve, expected_improve[0], i))
# see https: // en.wikipedia.org / wiki / Backtracking_line_search
if kl < hp.max_kl and (loss_improve / expected_improve) > 0.5:
flag = True
break
fraction *= 0.5
if not flag:
params = flat_params(old_actor)
update_model(actor, params)
print('policy update does not impove the surrogate')