http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html
迴歸函數採用遞增函數。
- y[] are inputs (real numbers)
- y_[] are fitted
這個範例的主要目的:
比較
- Isotonic Fit
- Linear Fit
「迴歸」就是找一個函數,盡量符合手邊的一堆數據。此函數稱作「迴歸函數」。
迴歸函數採用線性函數。誤差採用平方誤差。
class sklearn.linear_model.LinearRegression
二維數據,迴歸函數是直線。
![](images/Isotonic Regression_figure_1.png)
具有分段迴歸的效果。迴歸函數採用遞增函數。
class sklearn.isotonic.IsotonicRegression
採用平方誤差,時間複雜度 O(N) 。
![](images/Isotonic Regression_figure_2.png)
Python source code: plot_isotonic_regression.py
http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html
print(__doc__)
# Author: Nelle Varoquaux <[email protected]>
# Alexandre Gramfort <[email protected]>
# Licence: BSD
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from sklearn.linear_model import LinearRegression
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state
n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n))
###############################################################################
# Fit IsotonicRegression and LinearRegression models
ir = IsotonicRegression()
y_ = ir.fit_transform(x, y)
lr = LinearRegression()
lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression
###############################################################################
# plot result
segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(0.5 * np.ones(n))
fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()
![](images/Isotonic Regression_figure_3.png)