Skip to content

Latest commit

 

History

History
204 lines (165 loc) · 8.76 KB

plot_mlp_training_curves.md

File metadata and controls

204 lines (165 loc) · 8.76 KB

Compare Stochastic learning strategies for MLPClassifier

http://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_training_curves.html#sphx-glr-auto-examples-neural-networks-plot-mlp-training-curves-py <br>

此範例將畫出圖表,展現不同的訓練策略(optimizer)下loss curves的變化,訓練策略包括SGD與Adam。

###1.Stochastic Gradient Descent(SGD): .Stochastic Gradient Descent(SGD)為Gradient Descent(GD)的改良,在GD裡是輸入全部的training dataset,根據累積的loss才更新一次權重,因此收歛速度很慢,SGD隨機抽一筆 training sample,依照其 loss 更新權重。

###2.Momentum: Momentum是為了以防GD類的方法陷入局部最小值而衍生的方法,可以利用momentum降低陷入local minimum的機率,此方法是參考物理學動量的觀念。

看圖1藍色點的位置,當GD類的方法陷入局部最小值時,因為gd=0將會使電腦認為此處為最小值,於是為了減少此現象,每次更新時會將上次更新權重的一部分拿來加入此次更新。如紅色箭頭所示,將有機會翻過local minimum。

圖1:momentum觀念示意圖

###3.Nesterov Momentum: Nesterov Momentum為另外一種Momentum的變形體,目的也是降低陷入local minimum機率的方法,而兩種方法的差異在於下圖:

圖2:左圖為momentum,1.先計算 gradient、2.加上 momentum、3.更新權重 <br> 右圖為Nesterov Momentum,1.先加上momentum、2.計算gradient、3.更新權重。

圖2圖片來源:http://cs231n.github.io/neural-networks-3/ <br>

###4.Adaptive Moment Estimation (Adam): Adam為一種自己更新學習速率的方法,會根據GD計算出來的值調整每個參數的學習率(因材施教)。 <br> 以上所有的最佳化方法都將需要設定learning_rate_init值,此範例結果將呈現四種不同資料的比較:iris資料集、digits資料集、與使用sklearn.datasets產生資料集circlesmoon

(一)引入函式庫

print(__doc__)
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets

(二)設定模型參數

# different learning rate schedules and momentum parameters
params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0,
           'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
           'nesterovs_momentum': False, 'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
           'nesterovs_momentum': True, 'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0,
           'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
           'nesterovs_momentum': True, 'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
           'nesterovs_momentum': False, 'learning_rate_init': 0.2},
          {'solver': 'adam', 'learning_rate_init': 0.01}]

labels = ["constant learning-rate", "constant with momentum",
          "constant with Nesterov's momentum",
          "inv-scaling learning-rate", "inv-scaling with momentum",
          "inv-scaling with Nesterov's momentum", "adam"]

plot_args = [{'c': 'red', 'linestyle': '-'},
             {'c': 'green', 'linestyle': '-'},
             {'c': 'blue', 'linestyle': '-'},
             {'c': 'red', 'linestyle': '--'},
             {'c': 'green', 'linestyle': '--'},
             {'c': 'blue', 'linestyle': '--'},
             {'c': 'black', 'linestyle': '-'}]

(三)畫出loss curves

def plot_on_dataset(X, y, ax, name):
    # for each dataset, plot learning for each learning strategy
    print("\nlearning on dataset %s" % name)
    ax.set_title(name)
    X = MinMaxScaler().fit_transform(X)
    mlps = []
    if name == "digits":
        # digits is larger but converges fairly quickly
        max_iter = 15
    else:
        max_iter = 400

    for label, param in zip(labels, params):
        print("training: %s" % label)
        mlp = MLPClassifier(verbose=0, random_state=0,
                            max_iter=max_iter, **param)
        mlp.fit(X, y)
        mlps.append(mlp)
        print("Training set score: %f" % mlp.score(X, y))
        print("Training set loss: %f" % mlp.loss_)
    for mlp, label, args in zip(mlps, labels, plot_args):
            ax.plot(mlp.loss_curve_, label=label, **args)


fig, axes = plt.subplots(2, 2, figsize=(15, 10))

# load / generate some toy datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
data_sets = [(iris.data, iris.target),
             (digits.data, digits.target),
             datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
             datasets.make_moons(noise=0.3, random_state=0)]

for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits',
                                                    'circles', 'moons']):
    plot_on_dataset(*data, ax=ax, name=name)

fig.legend(ax.get_lines(), labels=labels, ncol=3, loc="upper center")
plt.show()

圖3:四種資料對於不同學習方法的loss curves下降比較圖

(四)完整程式碼

print(__doc__)
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets

# different learning rate schedules and momentum parameters
params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0,
           'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
           'nesterovs_momentum': False, 'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
           'nesterovs_momentum': True, 'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0,
           'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
           'nesterovs_momentum': True, 'learning_rate_init': 0.2},
          {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
           'nesterovs_momentum': False, 'learning_rate_init': 0.2},
          {'solver': 'adam', 'learning_rate_init': 0.01}]

labels = ["constant learning-rate", "constant with momentum",
          "constant with Nesterov's momentum",
          "inv-scaling learning-rate", "inv-scaling with momentum",
          "inv-scaling with Nesterov's momentum", "adam"]

plot_args = [{'c': 'red', 'linestyle': '-'},
             {'c': 'green', 'linestyle': '-'},
             {'c': 'blue', 'linestyle': '-'},
             {'c': 'red', 'linestyle': '--'},
             {'c': 'green', 'linestyle': '--'},
             {'c': 'blue', 'linestyle': '--'},
             {'c': 'black', 'linestyle': '-'}]


def plot_on_dataset(X, y, ax, name):
    # for each dataset, plot learning for each learning strategy
    print("\nlearning on dataset %s" % name)
    ax.set_title(name)
    X = MinMaxScaler().fit_transform(X)
    mlps = []
    if name == "digits":
        # digits is larger but converges fairly quickly
        max_iter = 15
    else:
        max_iter = 400

    for label, param in zip(labels, params):
        print("training: %s" % label)
        mlp = MLPClassifier(verbose=0, random_state=0,
                            max_iter=max_iter, **param)
        mlp.fit(X, y)
        mlps.append(mlp)
        print("Training set score: %f" % mlp.score(X, y))
        print("Training set loss: %f" % mlp.loss_)
    for mlp, label, args in zip(mlps, labels, plot_args):
            ax.plot(mlp.loss_curve_, label=label, **args)


fig, axes = plt.subplots(2, 2, figsize=(15, 10))
# load / generate some toy datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
data_sets = [(iris.data, iris.target),
             (digits.data, digits.target),
             datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
             datasets.make_moons(noise=0.3, random_state=0)]

for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits',
                                                    'circles', 'moons']):
    plot_on_dataset(*data, ax=ax, name=name)

fig.legend(ax.get_lines(), labels=labels, ncol=3, loc="upper center")
plt.show()