forked from pipitone/mlsp-challange-2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph-metrics.m
204 lines (162 loc) · 5.96 KB
/
graph-metrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Methods taken from :
% Functional Connectivity and Brain Networks in Schizophrenia
% Lynall et al 2010 Journal of Neuroscience
%
% Depends on the Brain Connectivity Toolbox (BCT)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%filename prefix -- train or test
filetype = 'test';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Import Data and Format to a Set of Correlation Matricies
FNC = dlmread([ filetype '_FNC.csv'], ',', 1, 1);
%SBM = dlmread('train_SBM.csv', ',', 1, 1);
% import mappings
FNC_map = dlmread('rs_fMRI_FNC_mapping.csv', ',', 1, 1);
dims = size(FNC);
n_subj = dims(1);
% linear map values
count = 1;
for label = unique(FNC_map)';
idx = find(FNC_map == label);
FNC_map(idx) = count;
count = count+1;
end
% create subject wise graphs
cmat = zeros(28, 28, n_subj);
for subj = 1:n_subj;
for c = 1:378;
% get index
x = FNC_map(c, 1);
y = FNC_map(c, 2);
cmat(x, y, subj) = FNC(subj, c);
cmat(y, x, subj) = FNC(subj, c);
end
end
% clear RAM
clearvars FNC FNC_map
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generate Graph Metrics
for subj = 1:n_subj;
% grab the test matrix
test = cmat(:, :, subj);
dims = size(test);
% -- connectivity strength / regional connectivity
% this is the sum of all correlations
reg_conn = sum(test) ./ (dims(1)-1);
% -- regional diversity
% this is the sum of correlation(i) - sum of all correlations
var_conn = sum(test - repmat(reg_conn, [dims(1), 1]).^2) ./ (dims(1)-1);
% -- global integration:
% ratio of 1st eigenvalue to the sum of all other eigenvalues
[pca_coff, pca_lat] = pcacov(test);
glo_int = pca_lat(1) / sum(pca_lat(2:end));
% init output arrays
n_deg = zeros(14, dims(1));
n_eff = zeros(14, dims(1));
n_cls = zeros(14, dims(1));
n_rnk = zeros(14, dims(1));
n_par = zeros(14, dims(1));
n_div = zeros(14, dims(1));
% not working yet... need to align CI membership...
n_cid = zeros(14, dims(1));
g_smw = zeros(14, 1);
g_eff = zeros(14, 1);
g_rob = zeros(14, 1);
g_mod = zeros(14, 1);
% graphs thresholded at: 37-50% -- average output across 1% increments
x = 1;
for t = 37:50;
% threshold the graph
tmp_w = threshold_proportional(test, t/100);
% binarize the graph
tmp_b = tmp_w;
tmp_b(tmp_b > 0) = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NODE STATS
%
% node degree
n_deg(x, :) = degrees_und(tmp_b);
% node efficiency
n_eff(x, :) = efficiency_wei(tmp_w, 1);
% node clustering coefficient
n_cls(x, :) = clustering_coef_wu(tmp_w);
% pagerank centrality
n_rnk(x, :) = pagerank_centrality(tmp_b, 0.85);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WHOLE-GRAPH STATS
%
% graph efficiency
g_eff(x) = efficiency_wei(tmp_w, 0);
% graph small-worldness (NB: 1/efficiency is ~ characteristic path len).
rand_g = randmio_und(tmp_w, 100);
rand_e = efficiency_wei(rand_g, 0);
rand_c = mean(clustering_coef_wu(rand_g));
g_smw(x) = (mean(n_cls(x, :)) / rand_c) / (rand_e / g_eff(x));
% graph robustness
% CALCULATED AS THE SIZE OF THE LARGEST CONNECTED COMPONENT
% AFTER REMOVAL OF THE LARGEST DEGREE-NODE k
% APPROXIMATE INTEGRAL of SIZE / # REMOVED CURVE
n_nodes = length(find(tmp_b) > 0);
s_curve = zeros(length(n_nodes), 1);
tmp_r = tmp_b;
for n = 1:n_nodes;
% find the maximum connected component
[comps, comp_sizes] = get_components(tmp_r);
s_curve(n) = max(comp_sizes);
% find the node with maximum degree
tmp_k = degrees_und(tmp_r);
idx_k = find(tmp_k == max(tmp_k));
% if we have a tie, use the first one
if length(idx_k) > 1;
idx_k = idx_k(1);
end
% destroy the identisfied node (assumes symmetric)
tmp_r(idx_k, :) = 0;
tmp_r(:, idx_k) = 0;
end
% take integral of the s/n curve to approximate network robustness.
g_rob(x) = trapz(s_curve);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLIQUES
%
% graph modularity
% CALCULATED USING THE LOUVAIN ALGO
[Ci, Q] = modularity_louvain_und_sign(tmp_w);
g_mod(x) = Q;
% participation coefficient
% measures each node's intermodular communication
n_par(x, :) = participation_coef(tmp_w, Ci);
% diversity coefficient
% entropy-based measure of intramodular communication
[div_pos, div_neg] = diversity_coef_sign(tmp_w, Ci);
n_div(x, :) = div_pos; % disregard negative vibes yo
% iterate the counter
x = x + 1;
end
% take mean values across all thresholds
n_deg = mean(n_deg);
n_eff = mean(n_eff);
n_cls = mean(n_cls);
n_rnk = mean(n_rnk);
n_par = mean(n_par);
n_div = mean(n_div);
g_smw = mean(g_smw);
g_eff = mean(g_eff);
g_rob = mean(g_rob);
g_mod = mean(g_mod);
% generate output array
output = [n_deg, n_eff, n_cls, n_rnk, n_par, n_div, ...
g_smw, g_eff, g_rob, g_mod];
% append results to the output matrix
if exist('OUT') == 0;
OUT = output;
else;
OUT = [OUT; output];
end
end
% get subject IDs
IDs = dlmread([ filetype '_FNC.csv'], ',', [1, 0, -1, 0]);
OUT = [IDs, OUT];
% write the output for all subjects
dlmwrite([ filetype '_FNC_graph.csv'], OUT, 'delimiter', ',', 'precision', 25);