forked from pipitone/mlsp-challange-2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
func-struct.py
87 lines (68 loc) · 2.48 KB
/
func-struct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
import nibabel as nib
import matplotlib.pyplot as plt
# import data
AAL = nib.load('aal_labels.nii')
FNC = nib.load('rs_fMRI_ica_maps.nii').get_data()
SBM = nib.load('gm_sMRI_ica_maps.nii').get_data()
dims = AAL.shape
AAL = AAL.get_data()
AAL = AAL.reshape(dims[0]*dims[1]*dims[2], )
FNC = FNC.reshape(dims[0]*dims[1]*dims[2], 28)
SBM = SBM.reshape(dims[0]*dims[1]*dims[2], 32)
# scale data to [-1, 1]
FNC = FNC / np.max((np.abs(np.min(FNC)), np.abs(np.max(FNC))))
SBM = SBM / np.max((np.abs(np.min(SBM)), np.abs(np.max(SBM))))
# init output array
OUT = np.ones((28, 32, 116))
# loop through atlas regions
for R in [ROI for ROI in np.unique(AAL) if ROI > 0]:
# record ROI indicies
idx = np.where(AAL == R)[0]
# loop through functional data
for F in np.arange(FNC.shape[1]):
# grab the loadings from component F
F_data = FNC[idx, F]
F_sum = np.sum(F_data)
# loop through structural data
for S in np.arange(SBM.shape[1]):
# grab the loadings from component S
S_data = SBM[idx, S]
S_sum = np.sum(S_data)
# subtract sum F from sum S, normalized by total sum.
OUT[F, S, R-1] = (S_sum - F_sum) / (S_sum + F_sum)
# plot jam
for x in np.arange(116):
plt.subplot(9, 13, x+1)
plt.imshow(OUT[:, :, x], cmap=plt.cm.RdBu_r,
interpolation='nearest',
vmin=-1,
vmax=1)
plt.axis('off')
plt.show()
MAP = np.zeros((28, 32))
VAL = np.zeros((28, 32))
# create mappings per ROI
for R in [ROI for ROI in np.unique(AAL) if ROI > 0]:
# find value closest to zero
zeroest_value = np.min(np.min(np.abs(OUT[:, :, R-1])))
idx = np.where(np.abs(OUT[:, :, R-1]) == zeroest_value)
# insert the value closest to zero if there isn't anything there
if MAP[idx] == 0:
MAP[idx] = R
VAL[idx] = zeroest_value
# if there is, overwrite if this value is more zeroer
elif VAL[idx] > zeroest_value:
print('*** Overwriting ' + str(MAP[idx]) + ' with ' + str(R) + '.')
print('--- ' + str(zeroest_value) + ' < ' + str(VAL[idx]) + '.')
print(' ')
MAP[idx] = R
VAL[idx] = zeroest_value
# plot bedlam
plt.subplot(1,2,1)
plt.imshow(MAP, cmap=plt.cm.Greys, interpolation='nearest')
plt.title('ROI assigned')
plt.subplot(1,2,2)
plt.imshow(VAL, cmap=plt.cm.Blues, interpolation='nearest')
plt.colorbar()
plt.title('Deviations from zero')