Skip to content

nikhil-dce/adversarial-network-for-conditioned-feature-generation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial Feature Generation for Zero-Shot Learning

We try to generate synthetic data for unseen classes conditioned on class attributes. Training is done using wasserstein generative adversarial network.

Architecture Diagram

Loss Function

Train

python train.py --logdir run_dir --train-dir /data/CUBNew

Parameters:

  • iterations
  • batch_size
  • dropout
  • train_dir
  • logdir
  • z_dim
  • g_steps
  • d_steps
  • lr
  • wgan
  • log_interval

Results

Data

Link - (https://drive.google.com/file/d/1XIFik0Cv1MTWtQEQQUZygOwL-X-ZajKY/view?usp=sharing)

About

Zero-Shot Learning using GAN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages