English | 简体中文
We developed a series of lightweight models, named PP-PicoDet
. Because of the excellent performance, our models are very suitable for deployment on mobile or CPU. For more details, please refer to our report on arXiv.
- 🌟 Higher mAP: the first object detectors that surpass mAP(0.5:0.95) 30+ within 1M parameters when the input size is 416.
- 🚀 Faster latency: 150FPS on mobile ARM CPU.
- 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation.
- 😍 Advanced algorithm: use the most advanced algorithms and offer innovation, such as ESNet, CSP-PAN, SimOTA with VFL, etc.
- More series of model, such as smaller or larger model.
- Pretrained models for more scenarios.
- More features in need.
Model | Input size | mAPval 0.5:0.95 |
mAPval 0.5 |
Params (M) |
FLOPS (G) |
LatencyNCNN (ms) |
LatencyLite (ms) |
Download | Config |
---|---|---|---|---|---|---|---|---|---|
PicoDet-S | 320*320 | 27.1 | 41.4 | 0.99 | 0.73 | 8.13 | 6.65 | model | log | config |
PicoDet-S | 416*416 | 30.7 | 45.8 | 0.99 | 1.24 | 12.37 | 9.82 | model | log | config |
PicoDet-M | 320*320 | 30.9 | 45.7 | 2.15 | 1.48 | 11.27 | 9.61 | model | log | config |
PicoDet-M | 416*416 | 34.8 | 50.5 | 2.15 | 2.50 | 17.39 | 15.88 | model | log | config |
PicoDet-L | 320*320 | 32.9 | 48.2 | 3.30 | 2.23 | 15.26 | 13.42 | model | log | config |
PicoDet-L | 416*416 | 36.6 | 52.5 | 3.30 | 3.76 | 23.36 | 21.85 | model | log | config |
PicoDet-L | 640*640 | 40.9 | 57.6 | 3.30 | 8.91 | 54.11 | 50.55 | model | log | config |
Model | Input size | mAPval 0.5:0.95 |
mAPval 0.5 |
Params (M) |
FLOPS (G) |
LatencyNCNN (ms) |
LatencyLite (ms) |
Download | Config |
---|---|---|---|---|---|---|---|---|---|
PicoDet-Shufflenetv2 1x | 416*416 | 30.0 | 44.6 | 1.17 | 1.53 | 15.06 | 10.63 | model | log | config |
PicoDet-MobileNetv3-large 1x | 416*416 | 35.6 | 52.0 | 3.55 | 2.80 | 20.71 | 17.88 | model | log | config |
PicoDet-LCNet 1.5x | 416*416 | 36.3 | 52.2 | 3.10 | 3.85 | 21.29 | 20.8 | model | log | config |
PicoDet-LCNet 1.5x | 640*640 | 40.6 | 57.4 | 3.10 | - | - | - | model | log | config |
PicoDet-R18 | 640*640 | 40.7 | 57.2 | 11.10 | - | - | - | model | log | config |
Table Notes:
- Latency: All our models test on
Qualcomm Snapdragon 865(4xA77+4xA55)
with 4 threads by arm8 and with FP16. In the above table, test latency on NCNN andLite
->Paddle-Lite. And testing latency with code: MobileDetBenchmark. - PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017.
- PicoDet used 4 or 8 GPUs for training and all checkpoints are trained with default settings and hyperparameters.
Model | Input size | mAPval 0.5:0.95 |
mAPval 0.5 |
Params (M) |
FLOPS (G) |
LatencyNCNN (ms) |
---|---|---|---|---|---|---|
YOLOv3-Tiny | 416*416 | 16.6 | 33.1 | 8.86 | 5.62 | 25.42 |
YOLOv4-Tiny | 416*416 | 21.7 | 40.2 | 6.06 | 6.96 | 23.69 |
PP-YOLO-Tiny | 320*320 | 20.6 | - | 1.08 | 0.58 | 6.75 |
PP-YOLO-Tiny | 416*416 | 22.7 | - | 1.08 | 1.02 | 10.48 |
Nanodet-M | 320*320 | 20.6 | - | 0.95 | 0.72 | 8.71 |
Nanodet-M | 416*416 | 23.5 | - | 0.95 | 1.2 | 13.35 |
Nanodet-M 1.5x | 416*416 | 26.8 | - | 2.08 | 2.42 | 15.83 |
YOLOX-Nano | 416*416 | 25.8 | - | 0.91 | 1.08 | 19.23 |
YOLOX-Tiny | 416*416 | 32.8 | - | 5.06 | 6.45 | 32.77 |
YOLOv5n | 640*640 | 28.4 | 46.0 | 1.9 | 4.5 | 40.35 |
YOLOv5s | 640*640 | 37.2 | 56.0 | 7.2 | 16.5 | 78.05 |
Requirements:
- PaddlePaddle >= 2.1.2
Installation
Training and Evaluation
- Training model on single-GPU:
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
- Training model on multi-GPU:
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
- Evaluation:
python tools/eval.py -c configs/picodet/picodet_s_320_coco.yml \
-o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams
- Infer:
python tools/infer.py -c configs/picodet/picodet_s_320_coco.yml \
-o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams
Detail also can refer to Quick start guide.
1. Export model (click to expand)
cd PaddleDetection
python tools/export_model.py -c configs/picodet/picodet_s_320_coco.yml \
-o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams --output_dir=inference_model
2. Convert to PaddleLite (click to expand)
- Install Paddlelite>=2.10.rc:
pip install paddlelite
- Convert model:
# FP32
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
3. Convert to ONNX (click to expand)
- Install Paddle2ONNX >= 0.7 and ONNX > 1.10.1, for details, please refer to Tutorials of Export ONNX Model
pip install onnx
pip install paddle2onnx
- Convert model:
paddle2onnx --model_dir output_inference/picodet_s_320_coco/ \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--opset_version 11 \
--save_file picodet_s_320_coco.onnx
-
Simplify ONNX model: use onnx-simplifier to simplify onnx model.
- Install onnx-simplifier >= 0.3.6:
pip install onnx-simplifier
- simplify onnx model:
python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
- Deploy models
Model | Input size | ONNX | Paddle Lite(fp32) | Paddle Lite(fp16) |
---|---|---|---|---|
PicoDet-S | 320*320 | model | model | model |
PicoDet-S | 416*416 | model | model | model |
PicoDet-M | 320*320 | model | model | model |
PicoDet-M | 416*416 | model | model | model |
PicoDet-L | 320*320 | model | model | model |
PicoDet-L | 416*416 | model | model | model |
PicoDet-L | 640*640 | model | model | model |
PicoDet-Shufflenetv2 1x | 416*416 | model | model | model |
PicoDet-MobileNetv3-large 1x | 416*416 | model | model | model |
PicoDet-LCNet 1.5x | 416*416 | model | model | model |
- PaddleInference demo Python & C++
- PaddleLite C++ demo
- NCNN C++/Python demo
- MNN C++/Python demo
- OpenVINO C++ demo
- Android demo(NCNN)
- Android demo(Paddle Lite)
Android demo visualization:
Requirements:
- PaddlePaddle >= 2.2.0rc0
- PaddleSlim >= 2.2.0rc0
Install:
pip install paddleslim==2.2.0rc0
Quant aware (click to expand)
Configure the quant config and start training:
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml \
--slim_config configs/slim/quant/picodet_s_quant.yml --eval
- More detail can refer to slim document
Post quant (click to expand)
Configure the post quant config and start calibrate model:
python tools/post_quant.py -c configs/picodet/picodet_s_320_coco.yml \
--slim_config configs/slim/post_quant/picodet_s_ptq.yml
- Notes: Now the accuracy of post quant is abnormal and this problem is being solved.
Toturial:
Please refer this documentation for details such as requirements, training and deployment.
-
Pedestrian detection: model zoo of
PicoDet-S-Pedestrian
please refer to PP-TinyPose -
Mainbody detection: model zoo of
PicoDet-L-Mainbody
please refer to mainbody detection
Out of memory error.
Please reduce the batch_size
of TrainReader
in config.
How to transfer learning.
Please reset pretrain_weights
in config, which trained on coco. Such as:
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco.pdparams
The transpose operator is time-consuming on some hardware.
Please use PicoDet-LCNet
model, which has fewer transpose
operators.
How to count model parameters.
You can insert below code at here to count learnable parameters.
params = sum([
p.numel() for n, p in self.model. named_parameters()
if all([x not in n for x in ['_mean', '_variance']])
]) # exclude BatchNorm running status
print('params: ', params)
If you use PicoDet in your research, please cite our work by using the following BibTeX entry:
@misc{yu2021pppicodet,
title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
year={2021},
eprint={2111.00902},
archivePrefix={arXiv},
primaryClass={cs.CV}
}