-
Notifications
You must be signed in to change notification settings - Fork 6
/
global.json
1662 lines (1662 loc) · 92.5 KB
/
global.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"VERSION": "1.0.1",
"CONFIG_KEYS": ["Contact Network", "Transmission Network", "Sample Times", "Viral Phylogeny (Transmissions)", "Viral Phylogeny (Seeds)", "Mutation Rates", "Ancestral Sequence", "Sequence Evolution"],
"DESC": {
"Contact Network": "The <b style='color:red;'>Contact Network</b> graph model describes all social interactions:<ul><li>Nodes represent individuals in the population</li><li>Edges represent all interactions across which the pathogen can transmit</li><li>Currently, FAVITES-Lite only supports static (i.e., unchanging) contact networks</li></ul>",
"Transmission Network": "The <b style='color:red;'>Transmission Network</b> compartmental model describes how the pathogen propagates along the contact network. State transition rates are in unit of Poisson process arrivals per time (reciprocal of expected time to next arrival). The user will specify the number of individuals in each compartment, and individuals will be placed into each compartment uniformly.",
"Sample Times": "The <b style='color:red;'>Sample Times</b> model describes the time(s) at which individuals in the transmission network are sampled (i.e., sequenced).",
"Viral Phylogeny (Transmissions)": "The <b style='color:red;'>Viral Phylogeny (Transmissions)</b> coalescent model describes the topology and branch lengths (in unit of time) of the viral phylogeny throughout the epidemic, which is constrained by the transmission network.",
"Viral Phylogeny (Seeds)": "The <b style='color:red;'>Viral Phylogeny (Seeds)</b> phylogenetic model describes the topology and branch lengths (in unit of time) of the viral phylogeny prior to the epidemic (i.e., the viral phylogeny of the seed individuals).",
"Mutation Rates": "The <b style='color:red;'>Mutation Rates</b> model describes how mutation rates (i.e., mutations/time) are sampled along each branch of the viral time phylogeny.",
"Ancestral Sequence": "The <b style='color:red;'>Ancestral Sequence</b> model describes how the ancestral (i.e., root) sequence is generated/selected.",
"Sequence Evolution": "The <b style='color:red;'>Sequence Evolution</b> model describes how sequences evolve down the phylogeny."
},
"MODELS": {
"Contact Network": {
"Barabasi-Albert (BA)": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
},
"m": {
"TYPE": "positive integer",
"DESC": "Number of edges attached from new nodes to existing nodes"
}
},
"DESC": "The <b><a href='https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model' target='_blank'>Barabasi-Albert (BA)</a></b> model is an algorithm for generating undirected random scale-free networks using a preferential attachment mechanism.",
"CITE": "<ul><li>Albert R, Barabasi AL (2002). \"Statistical mechanics of complex networks.\" <i>Rev Mod Phys</i>. 74(1):47-97. <a href='https://doi.org/10.1103/RevModPhys.74.47' target='_blank'>doi:10.1103/RevModPhys.74.47</a></li><ul>",
"PROP": [
"The total number of edges is: <b style='color:red;'>m</b>(<b style='color:red;'>n</b>-<b style='color:red;'>m</b>)",
"The expected degree is approximately: 2<b style='color:red;'>m</b>"
]
},
"Barbell": {
"PARAM": {
"m1": {
"TYPE": "positive integer",
"DESC": "Number of nodes in each of the two complete subgraphs"
},
"m2": {
"TYPE": "non-negative integer",
"DESC": "Number of nodes in the path connecting the two complete subgraphs"
}
},
"DESC": "A <b><a href='https://en.wikipedia.org/wiki/Barbell_graph' target='_blank'>barbell</a></b> graph is an undirected graph composed of two complete graphs, each with <b style='color:red;'>m1</b> nodes, connected by a path of <b style='color:red;'>m2</b> nodes.",
"CITE": "<ul><li>Ghosh A, Boyd S, Saberi A (2006). \"Minimizing Effective Resistance of a Graph.\" <i>Proc 17th Internat Sympos Math Th Network and Systems</i>. 1185-1196. <a href='https://doi.org/10.1137/050645452' target='_blank'>doi:10.1137/050645452</a></li></ul>",
"PROP": [
"The total number of nodes is: 2<b style='color:red;'>m1</b> + <b style='color:red;'>m2</b>",
"The total number of edges is: <b style='color:red;'>m1</b>(<b style='color:red;'>m1</b>-1) + <b style='color:red;'>m2</b> + 1"
]
},
"Complete": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
}
},
"DESC": "A <b><a href='https://en.wikipedia.org/wiki/Complete_graph' target='_blank'>complete</a></b> graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge.",
"PROP": [
"The total number of edges is: <b style='color:red;'>n</b> choose 2 = <b style='color:red;'>n</b>(<b style='color:red;'>n</b>-1)/2",
"The degree of every node (and thus also the average degree) is: <b style='color:red;'>n</b>-1"
]
},
"Cycle": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
}
},
"DESC": "A <b><a href='https://en.wikipedia.org/wiki/Cycle_graph' target='_blank'>cycle</a></b> graph is an undirected graph that consists of a single cycle. In other words, the vertices are connected in a closed chain.",
"PROP": [
"When <b style='color:red;'>n</b> > 2, the number of edges is: <b style='color:red;'>n</b>"
]
},
"Erdos-Renyi (ER)": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
},
"p": {
"TYPE": "probability",
"DESC": "Probability of existence of an edge"
}
},
"DESC": "The <b><a href='https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model' target='_blank'>Erdos-Renyi (ER)</a></b> model is an undirected graph model in which each of the <b style='color:red;'>n</b> choose 2 possible edges have probability <b style='color:red;'>p</b> of existing.",
"CITE": "<ul><li>Erdos P, Renyi A (1959). \"On Random Graphs. I.\" <i>Publ Math</i>. 6:290-297.</li><li>Gilbert EN (1959). \"Random Graphs.\" <i>Ann Math Stat</i>. 30(4):1141-1144. <a href='https://doi.org/10.1214/aoms/1177706098' target='_blank'>doi:10.1214/aoms/1177706098</a></li></ul>",
"PROP": [
"The expected degree is: <b style='color:red;'>p</b>(<b style='color:red;'>n</b> choose 2) = <b style='color:red;'>pn</b>(<b style='color:red;'>n</b>-1)/2",
"The degree distribution is: Binomial(<b style='color:red;'>n</b>-1, k)"
]
},
"Newman-Watts-Strogatz (NWS)": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
},
"k": {
"TYPE": "even positive integer",
"DESC": "Number of nearest neighbors to connect to"
},
"p": {
"TYPE": "probability",
"DESC": "Probability of adding a new edge"
}
},
"DESC": "The <b><a href='https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.newman_watts_strogatz_graph.html' target='_blank'>Newman-Watts-Strogatz (NWS)</a></b> model is an undirected graph model as follows:<ol><li>Start with a ring of <b style='color:red;'>n</b> nodes</li><li>Connect each node with its <b style='color:red;'>k</b> nearest neighbors</li><li>For each edge (u,v) in the ring, add a new random edge (u,w) with probability <b style='color:red;'>p</b></li></ol>",
"CITE": "<ul><li>Newman MEJ, Watts DJ (1999). \"Renormalization group analysis of the small-world network model.\" <i>Phys Lett A</i>. 263(4-6):341-346. <a href='https://doi.org/10.1016/S0375-9601(99)00757-4' target='_blank'>doi:10.1016/S0375-9601(99)00757-4</a></li></ul>",
"PROP": [
"The number of edges in the connected ring is: <b style='color:red;'>nk</b>/2",
"The number of newly added edges is: Binomial(<b style='color:red;'>nk</b>/2, <b style='color:red;'>p</b>)"
]
},
"Path": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
}
},
"DESC": "A <b><a href='https://en.wikipedia.org/wiki/Path_graph' target='_blank'>path</a></b> graph (or linear graph) is an undirected graph whose nodes can be ordered in a line, and there exists an edge between every adjacent pair of nodes.",
"PROP": [
"The number of edges is: <b style='color:red;'>n</b>-1"
]
},
"Ring Lattice": {
"PARAM": {
"n": {
"TYPE": "positive integer",
"DESC": "Number of nodes"
},
"k": {
"TYPE": "even positive integer",
"DESC": "Number of nearest neighbors to connect to"
}
},
"DESC": "A <b><a href='https://runestone.academy/ns/books/published/complex/SmallWorldGraphs/RingLattice.html' target='_blank'>ring lattice</a></b> graph is an undirected graph in which every node has an edge to each of its <b style='color:red;'>k</b> nearest neighbors.",
"PROP": [
"The number of edges is: <b style='color:red;'>nk</b>/2"
]
}
},
"Transmission Network": {
"Granich et al. (2008)": {
"INF_STATES": ["I1", "I2", "I3", "I4", "A1", "A2", "A3", "A4"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_NS": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state NS at the start of the simulation"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_I1": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I1 at the start of the simulation"
},
"N_I2": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I2 at the start of the simulation"
},
"N_I3": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I3 at the start of the simulation"
},
"N_I4": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I4 at the start of the simulation"
},
"N_A1": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A1 at the start of the simulation"
},
"N_A2": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A2 at the start of the simulation"
},
"N_A3": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A3 at the start of the simulation"
},
"N_A4": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A4 at the start of the simulation"
},
"N_D": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state D at the start of the simulation"
},
"R_NS-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate NS → D (nodal)"
},
"R_NS-S": {
"TYPE": "non-negative float",
"DESC": "The transition rate NS → S (nodal)"
},
"R_S-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → D (nodal)"
},
"R_S-I1": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 (nodal, e.g. outside infection)"
},
"R_S-I1_I1": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in I1"
},
"R_S-I1_I2": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in I2"
},
"R_S-I1_I3": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in I3"
},
"R_S-I1_I4": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in I4"
},
"R_S-I1_A1": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in A1"
},
"R_S-I1_A2": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in A2"
},
"R_S-I1_A3": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in A3"
},
"R_S-I1_A4": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I1 induced by neighbors in A4"
},
"R_I1-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate I1 → D (nodal)"
},
"R_I1-I2": {
"TYPE": "non-negative float",
"DESC": "The transition rate I1 → I2 (nodal)"
},
"R_I1-A1": {
"TYPE": "non-negative float",
"DESC": "The transition rate I1 → A1 (nodal)"
},
"R_A1-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate A1 → D (nodal)"
},
"R_A1-A2": {
"TYPE": "non-negative float",
"DESC": "The transition rate A1 → A2 (nodal)"
},
"R_A1-I1": {
"TYPE": "non-negative float",
"DESC": "The transition rate A1 → I1 (nodal)"
},
"R_I2-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate I2 → D (nodal)"
},
"R_I2-I3": {
"TYPE": "non-negative float",
"DESC": "The transition rate I2 → I3 (nodal)"
},
"R_I2-A2": {
"TYPE": "non-negative float",
"DESC": "The transition rate I2 → A2 (nodal)"
},
"R_A2-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate A2 → D (nodal)"
},
"R_A2-A3": {
"TYPE": "non-negative float",
"DESC": "The transition rate A2 → A3 (nodal)"
},
"R_A2-I2": {
"TYPE": "non-negative float",
"DESC": "The transition rate A1 → I2 (nodal)"
},
"R_I3-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate I3 → D (nodal)"
},
"R_I3-I4": {
"TYPE": "non-negative float",
"DESC": "The transition rate I3 → I4 (nodal)"
},
"R_I3-A3": {
"TYPE": "non-negative float",
"DESC": "The transition rate I3 → A3 (nodal)"
},
"R_A3-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate A3 → D (nodal)"
},
"R_A3-A4": {
"TYPE": "non-negative float",
"DESC": "The transition rate A3 → A4 (nodal)"
},
"R_A3-I3": {
"TYPE": "non-negative float",
"DESC": "The transition rate A3 → I3 (nodal)"
},
"R_I4-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate I4 → D (nodal)"
},
"R_I4-A4": {
"TYPE": "non-negative float",
"DESC": "The transition rate I4 → A4 (nodal)"
},
"R_A4-D": {
"TYPE": "non-negative float",
"DESC": "The transition rate A4 → D (nodal)"
},
"R_A4-I4": {
"TYPE": "non-negative float",
"DESC": "The transition rate A4 → I4 (nodal)"
}
},
"DESC": "The <b><a href='https://doi.org/10.1016/S0140-6736(08)61697-9' target='_blank'>Granich <i>et al</i>. (2008)</a></b> model for HIV has 11 states:<ul><li><b>NS:</b> Non-Susceptible</li><li><b>S:</b> Susceptible</li><li><b>I1, I2, I3, and I4:</b> Untreated HIV stage 1, 2, 3, and 4</li><li><b>A1, A2, A3, and A4:</b> ART-treated HIV stage 1, 2, 3, and 4</li><li><b>D:</b> Deceased</li></ul>The following transitions are possible:<ul><li>NS → S (nodal)</li><li>S → I1 (induced by I1-I4/A1-A4 or outside)</li><li>I1 → A1, I2 → A2, I3 → A3, and I4 → A4 (nodal)</li><li>A1 → I1, A2 → I2, A3 → I3, and A4 → I4 (nodal)</li><li>I1 → I2 → I3 → I4 (nodal)</li><li>A1 → A2 → A3 → A4 (nodal)</li><li>All non-D states → D (nodal)</li></ul>",
"CITE": "<ul><li>Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG (2008). \"Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model.\" <i>The Lancet</i>. 373(9657):48-57. <a href='https://doi.org/10.1016/S0140-6736(08)61697-9' target='_blank'>doi:10.1016/S0140-6736(08)61697-9</a></li></ul>"
},
"Hethcote and Yorke (1984)": {
"INF_STATES": ["MIS", "MIA", "FIS", "FIA"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_MA": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state MA at the start of the simulation"
},
"N_FA": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state FA at the start of the simulation"
},
"N_MS": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state MS at the start of the simulation"
},
"N_FS": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state FS at the start of the simulation"
},
"N_MIS": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state MIS at the start of the simulation"
},
"N_FIS": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state FIS at the start of the simulation"
},
"N_MIA": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state MIA at the start of the simulation"
},
"N_FIA": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state FIA at the start of the simulation"
},
"R_MA-MS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MA → MS (nodal)"
},
"R_MS-MA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MA (nodal)"
},
"R_MS-MIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIS (nodal, e.g. outside infection)"
},
"R_MS-MIS_MIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIS induced by neighbors in MIS"
},
"R_MS-MIS_MIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIS induced by neighbors in MIA"
},
"R_MS-MIS_FIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIS induced by neighbors in FIS"
},
"R_MS-MIS_FIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIS induced by neighbors in FIA"
},
"R_MS-MIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIA (nodal, e.g. outside infection)"
},
"R_MS-MIA_MIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIA induced by neighbors in MIS"
},
"R_MS-MIA_MIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIA induced by neighbors in MIA"
},
"R_MS-MIA_FIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIA induced by neighbors in FIS"
},
"R_MS-MIA_FIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MS → MIA induced by neighbors in FIA"
},
"R_MIS-MA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MIS → MA"
},
"R_MIS-MS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MIS → MS"
},
"R_MIA-MA": {
"TYPE": "non-negative float",
"DESC": "The transition rate MIA → MA"
},
"R_MIA-MS": {
"TYPE": "non-negative float",
"DESC": "The transition rate MIA → MS"
},
"R_FA-FS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FA → FS (nodal)"
},
"R_FS-FA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FA (nodal)"
},
"R_FS-FIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIS (nodal, e.g. outside infection)"
},
"R_FS-FIS_MIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIS induced by neighbors in MIS"
},
"R_FS-FIS_MIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIS induced by neighbors in MIA"
},
"R_FS-FIS_FIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIS induced by neighbors in FIS"
},
"R_FS-FIS_FIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIS induced by neighbors in FIA"
},
"R_FS-FIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIA (nodal, e.g. outside infection)"
},
"R_FS-FIA_MIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIA induced by neighbors in MIS"
},
"R_FS-FIA_MIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIA induced by neighbors in MIA"
},
"R_FS-FIA_FIS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIA induced by neighbors in FIS"
},
"R_FS-FIA_FIA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FS → FIA induced by neighbors in FIA"
},
"R_FIS-FA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FIS → FA"
},
"R_FIS-FS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FIS → FS"
},
"R_FIA-FA": {
"TYPE": "non-negative float",
"DESC": "The transition rate FIA → FA"
},
"R_FIA-FS": {
"TYPE": "non-negative float",
"DESC": "The transition rate FIA → FS"
}
},
"REQS": {
"Sample Times": "None",
"Viral Phylogeny (Transmissions)": "None",
"Viral Phylogeny (Seeds)": "None",
"Mutation Rates": "None",
"Ancestral Sequence": "None",
"Sequence Evolution": "None"
},
"DESC": "The <b><a href='https://doi.org/10.1007/978-3-662-07544-9' target='_blank'>Hethcote and Yorke (1984)</a></b> model for gonorrhea has 8 states:<ul><li><b>MA and FA:</b> Male/Female Abstinent</li><li><b>MS and FS:</b> Male/Female Susceptible</li><li><b>MIS and FIS:</b> Male/Female Symptomatic Infected</li><li><b>MIA and FIA:</b> Male/Female Asymptomatic Infected</li></ul>The following transitions are possible:<ul><li>MA → MS and FA → FS (nodal)</li><li>MS → MA and FS → FA (nodal)</li><li>MS → MIA and FS → FIA (induced by MIA/MIS/FIA/FIS or outside)</li><li>MS → MIS and FS → FIS (induced by MIA/MIS/FIA/FIS or outside)</li><li>MIA → MS and FIA → FS (nodal)</li><li>MIS → MS and FIS → FS (nodal)</li></ul>Must select \"None\" for all downstream steps.",
"CITE": "<ul><li>Hethcote HW, Yorke JA (1984). \"Gonorrhea transmission dynamics and control.\" <i>Lect Notes Math</i>. 56. <a href='https://doi.org/10.1007/978-3-662-07544-9' target='_blank'>doi:10.1007/978-3-662-07544-9</a></li></ul>"
},
"None": {
"INF_STATES": [],
"PARAM": {},
"REQS": {
"Sample Times": "None",
"Viral Phylogeny (Transmissions)": "None",
"Viral Phylogeny (Seeds)": "None",
"Mutation Rates": "None",
"Ancestral Sequence": "None",
"Sequence Evolution": "None"
},
"DESC": "No transmission network is simulated. Must select \"None\" for all downstream steps."
},
"SAPHIRE": {
"INF_STATES": ["E", "P", "I", "A"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_A": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A at the start of the simulation"
},
"N_P": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state P at the start of the simulation"
},
"N_H": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state H at the start of the simulation"
},
"N_I": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I at the start of the simulation"
},
"N_R": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state R at the start of the simulation"
},
"N_E": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state E at the start of the simulation"
},
"R_S-E": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E (nodal, e.g. outside infection)"
},
"R_S-E_E": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in E"
},
"R_S-E_P": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in P"
},
"R_S-E_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in I"
},
"R_S-E_A": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in A"
},
"R_E-P": {
"TYPE": "non-negative float",
"DESC": "The transition rate E → P (nodal)"
},
"R_P-A": {
"TYPE": "non-negative float",
"DESC": "The transition rate P → A (nodal)"
},
"R_P-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate P → I (nodal)"
},
"R_A-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate A → R (nodal)"
},
"R_I-H": {
"TYPE": "non-negative float",
"DESC": "The transition rate I → H (nodal)"
},
"R_I-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate I → R (nodal)"
},
"R_H-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate H → R (nodal)"
}
},
"DESC": "The <b><a href='https://doi.org/10.1038/s41586-020-2554-8' target='_blank'>SAPHIRE</a></b> model (<a href='https://doi.org/10.1038/s41586-020-2554-8' target='_blank'>Hao <i>et al</i>., Nature 2020</a>) has 7 states:<ul><li><b>S:</b> Susceptible</li><li><b>A:</b> Unascertained Case</li><li><b>P:</b> Presymptomatic Infectious Case</li><li><b>H:</b> Hospitalized Case</li><li><b>I:</b> Ascertained Infectious Case</li><li><b>R:</b> Removed</li><li><b>E:</b> Exposed</li></ul>The following transitions are possible:<ul><li>S → E (induced by E/P/I/A or outside)</li><li>E → P (nodal)</li><li>P → A and P → I (nodal)</li><li>I → H and I → R (nodal)</li><li>A → R (nodal)</li><li>H → R (nodal)</li></ul>",
"CITE": "<ul><li>Hao X, Cheng S, Wu D, Wu T, Lin X, Wang C (2020). \"Reconstruction of the full transmission dynamics of COVID-19 in Wuhan.\" <i>Nature</i>. 584:420-424. <a href='https://doi.org/10.1038/s41586-020-2554-8' target='_blank'>doi:10.1038/s41586-020-2554-8</a></li></ul>"
},
"SAAPPHIIRE": {
"INF_STATES": ["E", "P1", "P2", "I1", "I2", "A1", "A2"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_A1": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A1 at the start of the simulation"
},
"N_A2": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A2 at the start of the simulation"
},
"N_P1": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state P1 at the start of the simulation"
},
"N_P2": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state P2 at the start of the simulation"
},
"N_H": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state H at the start of the simulation"
},
"N_I1": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I1 at the start of the simulation"
},
"N_I2": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I2 at the start of the simulation"
},
"N_R": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state R at the start of the simulation"
},
"N_E": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state E at the start of the simulation"
},
"R_S-E": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E (nodal, e.g. outside infection)"
},
"R_S-E_E": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in E"
},
"R_S-E_P1": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in P1"
},
"R_S-E_P2": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in P2"
},
"R_S-E_I1": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in I1"
},
"R_S-E_I2": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in I2"
},
"R_S-E_A1": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in A1"
},
"R_S-E_A2": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in A2"
},
"R_E-P1": {
"TYPE": "non-negative float",
"DESC": "The transition rate E → P1 (nodal)"
},
"R_P1-P2": {
"TYPE": "non-negative float",
"DESC": "The transition rate P1 → P2 (nodal)"
},
"R_P2-I1": {
"TYPE": "non-negative float",
"DESC": "The transition rate P2 → I1 (nodal)"
},
"R_P2-A1": {
"TYPE": "non-negative float",
"DESC": "The transition rate P2 → A1 (nodal)"
},
"R_I1-I2": {
"TYPE": "non-negative float",
"DESC": "The transition rate I1 → I2 (nodal)"
},
"R_I1-H": {
"TYPE": "non-negative float",
"DESC": "The transition rate I1 → H (nodal)"
},
"R_I2-H": {
"TYPE": "non-negative float",
"DESC": "The transition rate I2 → H (nodal)"
},
"R_I2-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate I2 → R (nodal)"
},
"R_A1-A2": {
"TYPE": "non-negative float",
"DESC": "The transition rate A1 → A2 (nodal)"
},
"R_A2-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate A2 → R (nodal)"
},
"R_H-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate H → R (nodal)"
}
},
"DESC": "The <b><a href='https://doi.org/10.1126/science.abp8337' target='_blank'>SAAPPHIIRE</a></b> model (<a href='https://doi.org/10.1126/science.abp8337' target='_blank'>Pekar <i>et al</i>., Science 2022</a>) has 10 states:<ul><li><b>S:</b> Susceptible</li><li><b>A1 and A2:</b> Unascertained Case (Stage 1 and Stage 2)</li><li><b>P1 and P2:</b> Presymptomatic Infectious Case (Stage 1 and Stage 2)</li><li><b>H:</b> Hospitalized Case</li><li><b>I1 and I2:</b> Ascertained Infectious Case (Stage 1 and Stage 2)</li><li><b>R:</b> Removed</li><li><b>E:</b> Exposed</li></ul>The following transitions are possible:<ul><li>S → E (induced by E/P1/P2/I1/I2/A1/A2 or outside)</li><li>E → P1 (nodal)</li><li>P1 → P2 (nodal)</li><li>P2 → A1 and P2 → I1 (nodal)</li><li>I1 → I2 and I1 → H(nodal)</li><li>I2 → H and I2 → R (nodal)</li><li>A1 → A2 (nodal)</li><li>A2 → R (nodal)</li><li>H → R (nodal)</li></ul>",
"CITE": "<ul><li>Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, Gangavarapu K, Malpica Serrano LM, Crits-Christoph A, Matteson NL, Zeller M, Levy JI, Wang JC, Hughes S, Lee J, Park H, Park MS, Ching Zi Yan K, Tzer Pin Lin R, Mat Isa MN, Muhammad Noor Y, Vasylyeva TI, Garry RF, Holmes EC, Rambaut A, Suchard MA, Andersen KG, Worobey M, Wertheim JO (2022). \"The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2.\" <i>Science</i>. 377(6609):960-966. <a href='https://doi.org/10.1126/science.abp8337' target='_blank'>doi:10.1126/science.abp8337</a></li></ul>"
},
"Susceptible-Alert-Infected-Susceptible (SAIS)": {
"INF_STATES": ["I"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_A": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state A at the start of the simulation"
},
"N_I": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I at the start of the simulation"
},
"R_S-A": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → A (nodal)"
},
"R_S-A_A": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → A induced by neighbors in A"
},
"R_S-A_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → A induced by neighbors in I"
},
"R_S-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I (nodal, e.g. outside infection)"
},
"R_S-I_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I induced by neighbors in I"
},
"R_A-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate A → I (nodal, e.g. outside infection)"
},
"R_A-I_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate A → I induced by neighbors in I"
},
"R_I-S": {
"TYPE": "non-negative float",
"DESC": "The transition rate I → S (nodal)"
}
},
"DESC": "The <b><a href='https://doi.org/10.1080/17513758.2011.621452' target='_blank'>Susceptible-Alert-Infected-Susceptible (SAIS)</a></b> model has three states:<ul><li><b>S:</b> Susceptible</li><li><b>A:</b> Alert</li><li><b>I:</b> Infected</li></ul>The following transitions are possible:<ul><li>S → A (nodal or induced by A or I)</li><li>S → I (induced by I or outside)</li><li>A → I (induced by I or outside)</li><li>I → S (nodal)</li></ul>"
},
"Susceptible-Exposed-Infected-Removed (SEIR)": {
"INF_STATES": ["E", "I"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_E": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state E at the start of the simulation"
},
"N_I": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I at the start of the simulation"
},
"N_R": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state R at the start of the simulation"
},
"R_S-E": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E (nodal, e.g. outside infection)"
},
"R_S-E_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → E induced by neighbors in I"
},
"R_E-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate E → I (nodal)"
},
"R_I-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate I → R (nodal)"
}
},
"DESC": "The <b><a href='https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology#The_SEIR_model' target='_blank'>Susceptible-Exposed-Infected-Removed (SEIR)</a></b> model has four states:<ul><li><b>S:</b> Susceptible</li><li><b>E:</b> Exposed</li><li><b>I:</b> Infected</li><li><b>R:</b> Removed</li></ul>The following transitions are possible:<ul><li>S → E (induced by I or outside)</li><li>E → I (nodal)</li><li>I → R (nodal)</li></ul>"
},
"Susceptible-Infected (SI)": {
"INF_STATES": ["I"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_I": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I at the start of the simulation"
},
"R_S-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I (nodal, e.g. outside infection)"
},
"R_S-I_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I induced by neighbors in I"
}
},
"DESC": "The <b><a href='https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/04%3A_Infectious_Disease_Modeling/4.01%3A_The_SI_Model' target='_blank'>Susceptible-Infected (SI)</a></b> model has two states:<ul><li><b>S:</b> Susceptible</li><li><b>I:</b> Infected</li></ul>The following transition is possible:<ul><li>S → I (induced by I or outside)</li></ul>"
},
"Susceptible-Infected-Removed (SIR)": {
"INF_STATES": ["I"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_I": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I at the start of the simulation"
},
"N_R": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state R at the start of the simulation"
},
"R_S-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I (nodal, e.g. outside infection)"
},
"R_S-I_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I induced by neighbors in I"
},
"R_I-R": {
"TYPE": "non-negative float",
"DESC": "The transition rate I → R (nodal)"
}
},
"DESC": "The <b><a href='https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology#The_SIR_model' target='_blank'>Susceptible-Infected-Removed (SIR)</a></b> model has three states:<ul><li><b>S:</b> Susceptible</li><li><b>I:</b> Infected</li><li><b>R:</b> Removed</li></ul>The following transitions are possible:<ul><li>S → I (induced by I or outside)</li><li>I → R (nodal)</li></ul>"
},
"Susceptible-Infected-Susceptible (SIS)": {
"INF_STATES": ["I"],
"PARAM": {
"duration": {
"TYPE": "positive float",
"DESC": "The duration of the epidemic"
},
"N_S": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state S at the start of the simulation"
},
"N_I": {
"TYPE": "non-negative integer",
"DESC": "The number of individuals in state I at the start of the simulation"
},
"R_S-I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I (nodal, e.g. outside infection)"
},
"R_S-I_I": {
"TYPE": "non-negative float",
"DESC": "The transition rate S → I induced by neighbors in I"
},
"R_I-S": {
"TYPE": "non-negative float",
"DESC": "The transition rate I → S (nodal)"
}
},
"DESC": "The <b><a href='https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology#The_SIS_model' target='_blank'>Susceptible-Infected-Susceptible (SIS)</a></b> model has two states:<ul><li><b>S:</b> Susceptible</li><li><b>I:</b> Infected</li></ul>The following transitions are possible:<ul><li>S → I (induced by I or outside)</li><li>I → S (nodal)</li></ul>"
}
},
"Sample Times": {
"End": {
"PARAM": {
"sampled_states": {
"TYPE": "comma-separated list",
"DESC": "Comma-separated list of states in which individuals are sampled"
},
"num_samples": {
"TYPE": "positive integer",
"DESC": "The number of times every individual is sampled"
}
},
"DESC": "All individuals who are in any of the specified states at the end time of the simulation will be sampled the specified number of times."
},
"None": {
"PARAM": {},
"REQS": {
"Viral Phylogeny (Transmissions)": "None",
"Viral Phylogeny (Seeds)": "None",
"Mutation Rates": "None",
"Ancestral Sequence": "None",
"Sequence Evolution": "None"
},
"DESC": "No individuals are sampled. Must select \"None\" for all downstream steps."
},
"Specific Time": {
"PARAM": {
"sampled_states": {
"TYPE": "comma-separated list",
"DESC": "Comma-separated list of states in which individuals are sampled"
},
"sample_time": {
"TYPE": "positive float",
"DESC": "The time at which individuals are sampled"
},
"num_samples": {
"TYPE": "positive integer",
"DESC": "The number of times every individual is sampled"
}
},
"DESC": "All individuals who are in any of the specified states at a specified time will be sampled the specified number of times."
},
"State Entry (All)": {
"PARAM": {
"sampled_states": {
"TYPE": "comma-separated list",
"DESC": "Comma-separated list of states in which individuals are sampled"
}
},
"DESC": "Individuals are sampled every time they enter any of the specified states. Individuals who never enter any of the specified states are never sampled."
},
"State Entry (Initial)": {
"PARAM": {
"sampled_states": {
"TYPE": "comma-separated list",
"DESC": "Comma-separated list of states in which individuals are sampled"
}
},
"DESC": "Individuals are sampled the first time they enter any of the specified states. Individuals who never enter any of the specified states are never sampled."
},
"Truncated Exponential": {
"PARAM": {
"sampled_states": {
"TYPE": "comma-separated list",
"DESC": "Comma-separated list of states in which individuals are sampled"
},
"num_samples": {
"TYPE": "positive integer",
"DESC": "The number of times every individual is sampled"
}