forked from guangmingw/DOPlearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
76 lines (58 loc) · 3.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from __future__ import division
import shutil
import numpy as np
import torch
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
def high_res_colormap(low_res_cmap, resolution=1000, max_value=1):
# Construct the list colormap, with interpolated values for higer resolution
# For a linear segmented colormap, you can just specify the number of point in
# cm.get_cmap(name, lutsize) with the parameter lutsize
x = np.linspace(0,1,low_res_cmap.N)
low_res = low_res_cmap(x)
new_x = np.linspace(0,max_value,resolution)
high_res = np.stack([np.interp(new_x, x, low_res[:,i]) for i in range(low_res.shape[1])], axis=1)
return ListedColormap(high_res)
def opencv_rainbow(resolution=1000):
# Construct the opencv equivalent of Rainbow
opencv_rainbow_data = (
(0.000, (1.00, 0.00, 0.00)),
(0.400, (1.00, 1.00, 0.00)),
(0.600, (0.00, 1.00, 0.00)),
(0.800, (0.00, 0.00, 1.00)),
(1.000, (0.60, 0.00, 1.00))
)
return LinearSegmentedColormap.from_list('opencv_rainbow', opencv_rainbow_data, resolution)
COLORMAPS = {'rainbow': opencv_rainbow(),
'magma': high_res_colormap(cm.get_cmap('magma')),
'bone': cm.get_cmap('bone', 10000)}
def tensor2array(tensor, max_value=None, colormap='rainbow'):
tensor = tensor.detach().cpu()
if max_value is None:
max_value = tensor.max().item()
if tensor.ndimension() == 2 or tensor.size(0) == 1:
norm_array = tensor.squeeze().numpy()/max_value
array = COLORMAPS[colormap](norm_array).astype(np.float32)
array = array[:,:,:3]
array = array.transpose(2, 0, 1)
elif tensor.ndimension() == 3:
if (tensor.size(0) == 3):
array = 0.5 + tensor.numpy()*0.5
elif (tensor.size(0) == 2):
array = tensor.numpy()
return array
def save_checkpoint(save_path, dispnet_state, posenet_state, masknet_state, flownet_state, optimizer_state, is_best, filename='checkpoint.pth.tar'):
file_prefixes = ['dispnet', 'posenet', 'masknet', 'flownet', 'optimizer']
states = [dispnet_state, posenet_state, masknet_state, flownet_state, optimizer_state]
for (prefix, state) in zip(file_prefixes, states):
torch.save(state, save_path/'{}_{}'.format(prefix,filename))
if is_best:
for prefix in file_prefixes:
shutil.copyfile(save_path/'{}_{}'.format(prefix,filename), save_path/'{}_model_best.pth.tar'.format(prefix))
def save_checkpoint_per_print_freq(save_path, dispnet_state, posenet_state, masknet_state, flownet_state, optimizer_state, n_iter, filename='checkpoint.pth.tar'):
file_prefixes = ['dispnet', 'posenet', 'masknet', 'flownet', 'optimizer']
states = [dispnet_state, posenet_state, masknet_state, flownet_state, optimizer_state]
path_for_save = save_path/'{}'.format(n_iter)
path_for_save.makedirs_p()
for (prefix, state) in zip(file_prefixes, states):
torch.save(state, path_for_save/'{}_{}_{}'.format(n_iter,prefix,filename))