forked from guangmingw/DOPlearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
976 lines (805 loc) · 52.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
import argparse
import time
import csv
import datetime
import os
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.utils.data
import custom_transforms
import models
from utils import tensor2array, save_checkpoint, save_checkpoint_per_print_freq
from inverse_warp_summary import inverse_warp, pose2flow, flow2oob, flow_warp
from loss_functions_summary import compute_joint_mask_for_depth
from loss_functions_summary import consensus_exp_masks, consensus_depth_flow_mask, explainability_loss, gaussian_explainability_loss, smooth_loss, edge_aware_smoothness_loss
from loss_functions_summary import photometric_reconstruction_loss, photometric_flow_loss
from loss_functions_summary import compute_errors, compute_epe, compute_all_epes, flow_diff, spatial_normalize_max, spatial_normalize_mean, new_static_mask, build_flow_not_intersect
from loss_functions_summary import less_than_mean_flow_mask, less_than_mean_depth_mask, mask_p01_tensorboard, maskp01_mask, a1_a2_rigid_mask, depth_supervise_flow, spatial_normalize_min
from logger import TermLogger, AverageMeter
from path import Path
from itertools import chain
from tensorboardX import SummaryWriter
from flowutils.flowlib import flow_to_image
epsilon = 1e-8
parser = argparse.ArgumentParser(description='Unsupervised Learning of Depth, Optical Flow and Pose with Occlusion from 3D Geometry',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--kitti-dir', dest='kitti_dir', type=str, default='/home',
help='Path to kitti2015 scene flow dataset for optical flow validation')
parser.add_argument('--DEBUG', action='store_true', help='DEBUG Mode')
parser.add_argument('--name', dest='name', type=str, default='demo', required=True,
help='name of the experiment, checpoints are stored in checpoints/name')
parser.add_argument('--dataset-format', default='sequential', metavar='STR',
help='dataset format, stacked: stacked frames (from original TensorFlow code) \
sequential: sequential folders (easier to convert to with a non KITTI/Cityscape dataset')
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for training', default=3)
parser.add_argument('--rotation-mode', type=str, choices=['euler', 'quat'], default='euler',
help='rotation mode for PoseExpnet : euler (yaw,pitch,roll) or quaternion (last 3 coefficients)')
parser.add_argument('--padding-mode', type=str, choices=['zeros', 'border'], default='zeros',
help='padding mode for image warping : this is important for photometric differenciation when going outside target image.'
' zeros will null gradients outside target image.'
' border will only null gradients of the coordinate outside (x or y)')
parser.add_argument('--with-depth-gt', action='store_true', help='use ground truth for depth validation. \
You need to store it in npy 2D arrays see data/kitti_raw_loader.py for an example')
parser.add_argument('--with-flow-gt', action='store_true', help='use ground truth for flow validation. \
see data/validation_flow for an example')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--smoothness-type', dest='smoothness_type', type=str, default='regular', choices=['edgeaware', 'regular'],
help='Compute mean-std locally or globally')
parser.add_argument('--data-normalization', dest='data_normalization', type=str, default='global', choices=['local', 'global'],
help='Compute mean-std locally or globally')
parser.add_argument('--nlevels', dest='nlevels', type=int, default=6,
help='number of levels in multiscale. Options: 6')
parser.add_argument('--dispnet', dest='dispnet', type=str, default='DispNetS', choices=['DispNetS', 'DispNetS6', 'DispResNetS6', 'DispResNet6'],
help='depth network architecture.')
parser.add_argument('--posenet', dest='posenet', type=str, default='PoseNet', choices=['PoseNet6','PoseNetB6', 'PoseExpNet'],
help='pose and explainabity mask network architecture. ')
parser.add_argument('--masknet', dest='masknet', type=str, default='MaskNet6', choices=['MaskResNet6', 'MaskNet6'],
help='pose and explainabity mask network architecture. ')
parser.add_argument('--flownet', dest='flownet', type=str, default='FlowNetS', choices=['Back2Future', 'FlowNetC6'],
help='flow network architecture. Options: FlowNetC6 | Back2Future')
parser.add_argument('--pretrained-disp', dest='pretrained_disp', default=None, metavar='PATH',
help='path to pre-trained dispnet model')
parser.add_argument('--pretrained-mask', dest='pretrained_mask', default=None, metavar='PATH',
help='path to pre-trained Exp Pose net model')
parser.add_argument('--pretrained-pose', dest='pretrained_pose', default=None, metavar='PATH',
help='path to pre-trained Exp Pose net model')
parser.add_argument('--pretrained-flow', dest='pretrained_flow', default=None, metavar='PATH',
help='path to pre-trained Flow net model')
parser.add_argument('--spatial-normalize-max', dest='spatial_normalize_max', action='store_true', help='spatially normalize depth maps')
parser.add_argument('--spatial-normalize-mean', dest='spatial_normalize_mean', action='store_true', help='spatially normalize depth maps')
parser.add_argument('--spatial-normalize-min', dest='spatial_normalize_min', action='store_true', help='spatially normalize flow maps')
parser.add_argument('--robust', dest='robust', action='store_true', help='train using robust losses')
parser.add_argument('--no-non-rigid-mask', dest='no_non_rigid_mask', action='store_true', help='will not use mask on loss of non-rigid flow')
parser.add_argument('--joint-mask-for-depth', dest='joint_mask_for_depth', action='store_true', help='use joint mask from masknet and consensus mask for depth training')
parser.add_argument('--fix-masknet', dest='fix_masknet', action='store_true', help='do not train posenet')
parser.add_argument('--fix-posenet', dest='fix_posenet', action='store_true', help='do not train posenet')
parser.add_argument('--fix-flownet', dest='fix_flownet', action='store_true', help='do not train flownet')
parser.add_argument('--fix-dispnet', dest='fix_dispnet', action='store_true', help='do not train dispnet')
parser.add_argument('--alternating', dest='alternating', action='store_true', help='minimize only one network at a time')
parser.add_argument('--clamp-masks', dest='clamp_masks', action='store_true', help='threshold masks for training')
parser.add_argument('--fix-posemasknet', dest='fix_posemasknet', action='store_true', help='fix pose and masknet')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH',
help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH',
help='csv where to save per-gradient descent train stats')
parser.add_argument('--flows-parameters', default='flows_parameters.csv', metavar='PATH',
help='csv where to save flows parammeters')
parser.add_argument('--depth-parameters', default='depth_parameters.csv', metavar='PATH',
help='csv where to save depth parammeters')
parser.add_argument('-qch', '--qch', type=float, help='q value for charbonneir', metavar='W', default=0.5)
parser.add_argument('-wrig', '--wrig', type=float, help='consensus imbalance weight', metavar='W', default=1.0)
parser.add_argument('-wbce', '--wbce', type=float, help='weight for binary cross entropy loss', metavar='W', default=0.5)
parser.add_argument('-wssim', '--wssim', type=float, help='weight for ssim loss', metavar='W', default=0.0)
parser.add_argument('-pc', '--cam-photo-loss-weight', type=float, help='weight for camera photometric loss for rigid pixels', metavar='W', default=1)
parser.add_argument('-pf', '--flow-photo-loss-weight', type=float, help='weight for photometric loss for non rigid optical flow', metavar='W', default=1)
parser.add_argument('-m', '--mask-loss-weight', type=float, help='weight for explainabilty mask loss', metavar='W', default=0)
parser.add_argument('-s', '--smooth-loss-weight', type=float, help='weight for disparity smoothness loss', metavar='W', default=0.1)
parser.add_argument('-c', '--consensus-loss-weight', type=float, help='weight for mask consistancy', metavar='W', default=0.1)
parser.add_argument('-w6', '--loss6-weight', type=float, help='weight for flow not intersect', metavar='W', default=0)
parser.add_argument('-w7', '--loss7-weight', type=float, help='weight for static consensus loss', metavar='W', default=0)
parser.add_argument('--THRESH', '--THRESH', type=float, help='threshold for masks', metavar='W', default=0.01)
parser.add_argument('--lambda-oob', type=float, help='weight on the out of bound pixels', default=0)
parser.add_argument('--log-output', action='store_true', help='will log dispnet outputs and warped imgs at validation step')
parser.add_argument('--log-terminal', action='store_true', help='will display progressbar at terminal')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('-f', '--training-output-freq', type=int, help='frequence for outputting dispnet outputs and warped imgs at training for all scales if 0 will not output',
metavar='N', default=0)
parser.add_argument('--using-none-mask', dest='using_none_mask', action='store_true', default=True, help='if using none as mask')
parser.add_argument('--add-maskp01', dest='add_maskp01', action='store_true', help='add-maskp01')
parser.add_argument('--add-occ-mask', dest='add_occ_mask', action='store_true', help='add-occ-mask')
parser.add_argument('--add-less-than-mean-mask', dest='add_less_than_mean_mask', action='store_true', help='add-less-than-mean-mask')
parser.add_argument('--use-disp', dest='use_disp', action='store_true', help='use-disp-in-smooth')
best_error = -1
n_iter = 0
def main():
global args, best_error, n_iter
args = parser.parse_args()
if args.dataset_format == 'stacked':
from datasets.stacked_sequence_folders import SequenceFolder
elif args.dataset_format == 'sequential':
from datasets.sequence_folders import SequenceFolder
save_path = Path(args.name)
args.save_path = './../checkpoints'/save_path #/timestamp
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
torch.manual_seed(args.seed)
if args.alternating:
args.alternating_flags = np.array([False,False,True])
training_writer = SummaryWriter(args.save_path)
output_writers = []
if args.log_output:
for i in range(3):
output_writers.append(SummaryWriter(args.save_path/'valid'/str(i)))
# Data loading code
flow_loader_h, flow_loader_w = 256, 832
if args.data_normalization =='global':
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
elif args.data_normalization =='local':
normalize = custom_transforms.NormalizeLocally()
if args.fix_flownet:
train_transform = custom_transforms.Compose([
custom_transforms.RandomHorizontalFlip(),
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
else:
train_transform = custom_transforms.Compose([
custom_transforms.RandomRotate(),
custom_transforms.RandomHorizontalFlip(),
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize])
valid_flow_transform = custom_transforms.Compose([custom_transforms.Scale(h=flow_loader_h, w=flow_loader_w),
custom_transforms.ArrayToTensor(), normalize])
print("=> fetching scenes in '{}'".format(args.data))
train_set = SequenceFolder(
args.data,
transform=train_transform,
seed=args.seed,
train=True,
sequence_length=args.sequence_length
)
# if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping
if args.with_depth_gt:
from datasets.validation_folders import ValidationSet
val_set = ValidationSet(
args.data.replace('prepared_data_cs', 'prepared_data_completed'),
transform=valid_transform
)
else:
val_set = SequenceFolder(
args.data,
transform=valid_transform,
seed=args.seed,
train=False,
sequence_length=args.sequence_length,
)
if args.with_flow_gt:
from datasets.validation_flow import ValidationFlow
val_flow_set = ValidationFlow(root=args.kitti_dir,
sequence_length=args.sequence_length, transform=valid_flow_transform)
if args.DEBUG:
train_set.__len__ = 32
train_set.samples = train_set.samples[:32]
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=True)
if args.with_flow_gt:
val_flow_loader = torch.utils.data.DataLoader(val_flow_set, batch_size=1, # batch size is 1 since images in kitti have different sizes
shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
print("=> creating model")
disp_net = getattr(models, args.dispnet)().cuda()
output_exp = True #args.mask_loss_weight > 0
if not output_exp:
print("=> no mask loss, PoseExpnet will only output pose")
pose_net = getattr(models, args.posenet)(nb_ref_imgs=args.sequence_length - 1).cuda()
mask_net = getattr(models, args.masknet)(nb_ref_imgs=args.sequence_length - 1, output_exp=True).cuda()
if args.flownet=='SpyNet':
flow_net = getattr(models, args.flownet)(nlevels=args.nlevels, pre_normalization=normalize).cuda()
else:
flow_net = getattr(models, args.flownet)(nlevels=args.nlevels).cuda()
if args.pretrained_pose:
print("=> using pre-trained weights for explainabilty and pose net")
weights = torch.load(args.pretrained_pose)
pose_net.load_state_dict(weights['state_dict'])
else:
pose_net.init_weights()
if args.pretrained_mask:
print("=> using pre-trained weights for explainabilty and pose net")
weights = torch.load(args.pretrained_mask)
mask_net.load_state_dict(weights['state_dict'])
else:
mask_net.init_weights()
# import ipdb; ipdb.set_trace()
if args.pretrained_disp:
print("=> using pre-trained weights from {}".format(args.pretrained_disp))
weights = torch.load(args.pretrained_disp)
disp_net.load_state_dict(weights['state_dict'])
else:
disp_net.init_weights()
if args.pretrained_flow:
print("=> using pre-trained weights for FlowNet")
weights = torch.load(args.pretrained_flow)
flow_net.load_state_dict(weights['state_dict'])
else:
flow_net.init_weights()
if args.resume:
print("=> resuming from checkpoint")
dispnet_weights = torch.load(args.save_path/'dispnet_checkpoint.pth.tar')
posenet_weights = torch.load(args.save_path/'posenet_checkpoint.pth.tar')
masknet_weights = torch.load(args.save_path/'masknet_checkpoint.pth.tar')
flownet_weights = torch.load(args.save_path/'flownet_checkpoint.pth.tar')
disp_net.load_state_dict(dispnet_weights['state_dict'])
pose_net.load_state_dict(posenet_weights['state_dict'])
flow_net.load_state_dict(flownet_weights['state_dict'])
mask_net.load_state_dict(masknet_weights['state_dict'])
# import ipdb; ipdb.set_trace()
cudnn.benchmark = True
disp_net = torch.nn.DataParallel(disp_net)
pose_net = torch.nn.DataParallel(pose_net)
mask_net = torch.nn.DataParallel(mask_net)
flow_net = torch.nn.DataParallel(flow_net)
print('=> setting adam solver')
parameters = chain(disp_net.parameters(), pose_net.parameters(), mask_net.parameters(), flow_net.parameters())
optimizer = torch.optim.Adam(parameters, args.lr,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
if args.resume and (args.save_path/'optimizer_checkpoint.pth.tar').exists():
print("=> loading optimizer from checkpoint")
optimizer_weights = torch.load(args.save_path/'optimizer_checkpoint.pth.tar')
optimizer.load_state_dict(optimizer_weights['state_dict'])
with open(args.save_path/args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_loss'])
with open(args.save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'photo_cam_loss', 'photo_flow_loss', 'explainability_loss', 'smooth_loss'])
with open(args.save_path/args.flows_parameters,'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3'])
with open(args.save_path/args.depth_parameters,'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['epe_total', 'epe_rigid', 'epe_non_rigid', 'outliers', 'epe_total_with_gt_mask', 'epe_rigid_with_gt_mask', 'epe_non_rigid_with_gt_mask', 'outliers_gt_mask'])
if args.log_terminal:
logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader))
logger.epoch_bar.start()
else:
logger=None
for epoch in range(args.epochs):
if args.fix_flownet:
for fparams in flow_net.parameters():
fparams.requires_grad = False
if args.fix_masknet:
for fparams in mask_net.parameters():
fparams.requires_grad = False
if args.fix_posenet:
for fparams in pose_net.parameters():
fparams.requires_grad = False
if args.fix_dispnet:
for fparams in disp_net.parameters():
fparams.requires_grad = False
if args.log_terminal:
logger.epoch_bar.update(epoch)
logger.reset_train_bar()
# train for one epoch
train_loss = train(train_loader, disp_net, pose_net, mask_net, flow_net, optimizer, args.epoch_size, logger, training_writer)
if args.log_terminal:
logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))
logger.reset_valid_bar()
# evaluate on validation set
if args.with_depth_gt:
errors, error_names = validate_depth_with_gt(val_loader, disp_net, epoch, logger, output_writers)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors))
if args.log_terminal:
logger.valid_writer.write(' * Avg {}'.format(error_string))
else:
print('Epoch {} completed'.format(epoch))
out2csv = []
for error, name in zip(errors, error_names):
training_writer.add_scalar(name, error, epoch)
out2csv.append(error.item())
with open (args.save_path/args.flows_parameters,'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(out2csv)
del out2csv
if args.with_flow_gt:
flow_errors, flow_error_names = validate_flow_with_gt(val_flow_loader, disp_net, pose_net, mask_net, flow_net, epoch, logger, output_writers)
out2csv = []
for error, name in zip(flow_errors, flow_error_names):
training_writer.add_scalar(name, error, epoch)
out2csv.append(error)
with open (args.save_path/args.depth_parameters,'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(out2csv)
del out2csv
# Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
"""
if not args.fix_posenet:
decisive_error = flow_errors[-3] # epe_rigid_with_gt_mask
el
"""
if not args.fix_dispnet:
decisive_error = errors[1] #depth abs_rel
elif not args.fix_flownet:
decisive_error = flow_errors[14] #epe_non_rigid_with_gt_mask
elif not args.fix_masknet:
decisive_error = flow_errors[3] # percent outliers
if best_error < 0:
best_error = decisive_error
# remember lowest error and save checkpoint
is_best = decisive_error <= best_error
best_error = min(best_error, decisive_error)
save_checkpoint(
args.save_path, {
'epoch': epoch + 1,
'state_dict': disp_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': pose_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': mask_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': flow_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': optimizer.state_dict()
},
is_best)
if epoch % 10 == 0:
save_checkpoint_per_print_freq(
args.save_path, {
'epoch': epoch + 1,
'state_dict': disp_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': pose_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': mask_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': flow_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': optimizer.state_dict()
},
n_iter)
with open(args.save_path/args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error])
if args.log_terminal:
logger.epoch_bar.finish()
def train(train_loader, disp_net, pose_net, mask_net, flow_net, optimizer, epoch_size, logger=None, train_writer=None):
global args, n_iter
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4)
w1, w2, w3, w4 = args.cam_photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight, args.flow_photo_loss_weight
w5 = args.consensus_loss_weight
w6 = args.loss6_weight
w7 = args.loss7_weight
if args.robust:
loss_camera = photometric_reconstruction_loss_robust
loss_flow = photometric_flow_loss_robust
else:
loss_camera = photometric_reconstruction_loss
loss_flow = photometric_flow_loss
# switch to train mode
disp_net.train()
pose_net.train()
mask_net.train()
flow_net.train()
end = time.time()
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
tgt_img_var = Variable(tgt_img.cuda())
ref_imgs_var = [Variable(img.cuda()) for img in ref_imgs]
intrinsics_var = Variable(intrinsics.cuda())
intrinsics_inv_var = Variable(intrinsics_inv.cuda())
############################################################
for j in range(args.sequence_length - 1):
if j == 0:
dispnet_ref_imgs = ref_imgs_var[0]
else:
dispnet_ref_imgs = torch.cat([dispnet_ref_imgs, ref_imgs_var[j]], dim=0)
# compute output
disparities = disp_net(tgt_img_var)
disparities_ref_imgs = disp_net(dispnet_ref_imgs)
if args.spatial_normalize_max:
disparities = [spatial_normalize_max(disp) for disp in disparities]
disparities_ref_imgs = [spatial_normalize_max(disp) for disp in disparities_ref_imgs]
if args.spatial_normalize_mean:
disparities = [spatial_normalize_mean(disp) for disp in disparities]
disparities_ref_imgs = [spatial_normalize_mean(disp) for disp in disparities_ref_imgs]
depth = [1/disp for disp in disparities]
depth_ref_imgs = [1/disp for disp in disparities_ref_imgs]
pose = pose_net(tgt_img_var, ref_imgs_var)
# explainability_mask = mask_net(tgt_img_var, ref_imgs_var)
if args.flownet == 'Back2Future':
flow_fwd, flow_bwd, _ = flow_net(tgt_img_var, ref_imgs_var)
else:
flow_fwd = flow_net(tgt_img_var, ref_imgs_var[2])
flow_bwd = flow_net(tgt_img_var, ref_imgs_var[1])
flow_cam = pose2flow(depth[0].squeeze(), pose[:,1], intrinsics_var, intrinsics_inv_var) # pose[:,1] belongs to forward frame
flows_cam_fwd = [pose2flow(depth_.squeeze(1), pose[:,1], intrinsics_var, intrinsics_inv_var) for depth_ in depth]
flows_cam_bwd = [pose2flow(depth_.squeeze(1), pose[:,0], intrinsics_var, intrinsics_inv_var) for depth_ in depth]
exp_masks_target_fwd, exp_masks_target_bwd = consensus_exp_masks(flows_cam_fwd, flows_cam_bwd, flow_fwd, flow_bwd, tgt_img_var, ref_imgs_var[1], ref_imgs_var[0], wssim=args.wssim, wrig=args.wrig, ws=args.smooth_loss_weight )
rigidity_mask_fwd = [(flows_cam_fwd_ - flow_fwd_).abs() for flows_cam_fwd_, flow_fwd_ in zip(flows_cam_fwd, flow_fwd) ]#.normalize()
rigidity_mask_bwd = [(flows_cam_bwd_ - flow_bwd_).abs() for flows_cam_bwd_, flow_bwd_ in zip(flows_cam_bwd, flow_bwd) ]#.normalize()
explainability_mask = a1_a2_rigid_mask(flows_cam_fwd, flow_fwd, flows_cam_bwd, flow_bwd)
if args.joint_mask_for_depth:
explainability_mask_for_depth = compute_joint_mask_for_depth(explainability_mask, rigidity_mask_bwd, rigidity_mask_fwd)
else:
explainability_mask_for_depth = explainability_mask
if args.no_non_rigid_mask:
flow_exp_mask = [None for exp_mask in explainability_mask]
if args.DEBUG:
print('Using no masks for flow')
else:
flow_exp_mask = [1 - exp_mask for exp_mask in explainability_mask]
if w1 >0:
if args.using_none_mask:
loss_1 = loss_camera(tgt_img_var, ref_imgs_var, intrinsics_var, intrinsics_inv_var,
depth, depth_ref_imgs, None, pose, lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim,
add_maskp01=args.add_maskp01, add_occ_mask=args.add_occ_mask, add_less_than_mean_mask = args.add_less_than_mean_mask)
else :
loss_1 = loss_camera(tgt_img_var, ref_imgs_var, intrinsics_var, intrinsics_inv_var,
depth, depth_ref_imgs, explainability_mask_for_depth, pose, lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim,
add_maskp01=args.add_maskp01, add_occ_mask=args.add_occ_mask, add_less_than_mean_mask = args.add_less_than_mean_mask)
else :
loss_1 = 0
if w2 > 0:
loss_2 = explainability_loss(explainability_mask)
else:
loss_2 = 0
if w3 >0 :
if args.use_disp :
loss_3 = edge_aware_smoothness_loss(tgt_img_var, disparities)
else :
loss_3 = edge_aware_smoothness_loss(tgt_img_var, depth)
if args.spatial_normalize_min:
loss_3 += edge_aware_smoothness_loss(tgt_img_var, [spatial_normalize_min(flow) for flow in flow_fwd])
loss_3 += edge_aware_smoothness_loss(tgt_img_var, [spatial_normalize_min(flow) for flow in flow_bwd])
else:
loss_3 += edge_aware_smoothness_loss(tgt_img_var, flow_fwd)
loss_3 += edge_aware_smoothness_loss(tgt_img_var, flow_bwd)
else :
loss_3 = 0
if w4 > 0:
maskp01_for_flow, maskp01_for_visual = maskp01_mask(flows_cam_fwd, flow_fwd, flows_cam_bwd, flow_bwd, tgt_img_var, ref_imgs_var, intrinsics_var, intrinsics_inv_var, depth, depth_ref_imgs, pose)
if args.using_none_mask :
loss_4 = loss_flow(maskp01_for_flow, tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd], intrinsics_var, intrinsics_inv_var, depth, depth_ref_imgs, None, pose,
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim,
add_maskp01=args.add_maskp01, add_occ_mask=args.add_occ_mask, add_less_than_mean_mask = args.add_less_than_mean_mask)
else :
loss_4 = loss_flow(maskp01_for_flow, tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd], intrinsics_var, intrinsics_inv_var, depth, depth_ref_imgs, flow_exp_mask, pose,
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim,
add_maskp01=args.add_maskp01, add_occ_mask=args.add_occ_mask, add_less_than_mean_mask = args.add_less_than_mean_mask)
else :
loss_4 = 0
loss_5 = consensus_depth_flow_mask(explainability_mask, rigidity_mask_bwd, rigidity_mask_fwd,
exp_masks_target_bwd, exp_masks_target_fwd, THRESH=args.THRESH, wbce=args.wbce)
if w6>0:
loss_6, flow_numda_mu_p01_mask_fwd, flow_intersect_fwd, flow_numda_mu_p01_mask_bwd, flow_intersect_bwd = build_flow_not_intersect(maskp01_for_flow, [flow_bwd, flow_fwd], tgt_img_var, ref_imgs_var,intrinsics_var, intrinsics_inv_var, depth, depth_ref_imgs,pose)
else :
loss_6 = 0
if w7>0:
loss_7 = depth_supervise_flow(flows_cam_fwd, flow_fwd, flows_cam_bwd, flow_bwd, maskp01 = maskp01_for_flow, add_a1_a2_mask = False)
else :
loss_7 = 0
loss = w1*loss_1 + w2*loss_2 + w3*loss_3 + w4*loss_4 + w5*loss_5 + w6*loss_6 + w7*loss_7
if i > 0 and n_iter % args.print_freq == 0:
if w1 > 0:
train_writer.add_scalar('cam_photometric_error', loss_1.item(), n_iter)
if w2 > 0:
train_writer.add_scalar('explanability_loss', loss_2.item(), n_iter)
if w3 > 0:
train_writer.add_scalar('disparity_smoothness_loss', loss_3.item(), n_iter)
if w4 > 0:
train_writer.add_scalar('flow_photometric_error', loss_4.item(), n_iter)
if w5 > 0:
train_writer.add_scalar('consensus_error', loss_5.item(), n_iter)
train_writer.add_scalar('total_loss', loss.item(), n_iter)
if args.training_output_freq > 0 and n_iter % args.training_output_freq == 0:
train_writer.add_image('train Input', tensor2array(tgt_img[0]), n_iter)
#-------------------------------------------------------------------------------------------------------------------------------------
mean_depth_mask = less_than_mean_depth_mask(tgt_img_var, ref_imgs_var, intrinsics_var, intrinsics_inv_var,
depth, explainability_mask_for_depth, pose, lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim)
# print(mean_depth_mask.size())
mean_depth_mask = mean_depth_mask[:,0,:,:].unsqueeze(1)
mean_flow_mask = less_than_mean_flow_mask(tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd], flow_exp_mask,
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim)
mean_flow_mask = mean_flow_mask[:,0,:,:].unsqueeze(1)
train_writer.add_image('less than mean mask for flow', tensor2array(mean_flow_mask.data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('less than mean mask for depth', tensor2array(mean_depth_mask.data[0].cpu(), max_value=1, colormap='bone'), n_iter)
if w4 >0:
mask_p01 = maskp01_for_visual[0]
train_writer.add_image('mask_p01-bwd', tensor2array(mask_p01[:,0,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_p01-fwd', tensor2array(mask_p01[:,1,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_p1-bwd', tensor2array(mask_p01[:,2,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_p1-fwd', tensor2array(mask_p01[:,3,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_p-bwd', tensor2array(mask_p01[:,4,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_p-fwd', tensor2array(mask_p01[:,5,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_0-bwd', tensor2array(mask_p01[:,6,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_0-fwd', tensor2array(mask_p01[:,7,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_1-bwd', tensor2array(mask_p01[:,8,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('mask_1-fwd', tensor2array(mask_p01[:,9,:,:].unsqueeze(1).data[0].cpu(), max_value=1, colormap='bone'), n_iter)
del mask_p01
del maskp01_for_visual
if w6>0:
train_writer.add_image('flow_numda_mu_p01_mask_fwd', tensor2array(flow_numda_mu_p01_mask_fwd.data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('flow_intersect_fwd', tensor2array(flow_intersect_fwd.data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('flow_numda_mu_p01_mask_bwd', tensor2array(flow_numda_mu_p01_mask_bwd.data[0].cpu(), max_value=1, colormap='bone'), n_iter)
train_writer.add_image('flow_intersect_bwd', tensor2array(flow_intersect_bwd.data[0].cpu(), max_value=1, colormap='bone'), n_iter)
del mean_depth_mask
del mean_flow_mask
#----------------------------------------------------------------------------------------------------------------------
train_writer.add_image('train Cam Flow Output',
flow_to_image(tensor2array(flow_cam.data[0].cpu())) , n_iter )
for k,scaled_depth in enumerate(depth):
train_writer.add_image('train Dispnet Output Normalized {}'.format(k),
tensor2array(disparities[k].data[0].cpu(), max_value=None, colormap='bone'),
n_iter)
train_writer.add_image('train Depth Output {}'.format(k),
tensor2array(1/disparities[k].data[0].cpu(), max_value=10),
n_iter)
train_writer.add_image('train Non Rigid Flow Output {}'.format(k),
flow_to_image(tensor2array(flow_fwd[k].data[0].cpu())) , n_iter )
train_writer.add_image('train Target Rigidity {}'.format(k),
tensor2array((rigidity_mask_fwd[k]>args.THRESH).type_as(rigidity_mask_fwd[k]).data[0].cpu(), max_value=1, colormap='bone') , n_iter )
b, _, h, w = scaled_depth.size()
downscale = tgt_img_var.size(2)/h
tgt_img_scaled = nn.functional.adaptive_avg_pool2d(tgt_img_var, (h, w))
ref_imgs_scaled = [nn.functional.adaptive_avg_pool2d(ref_img, (h, w)) for ref_img in ref_imgs_var]
intrinsics_scaled = torch.cat((intrinsics_var[:, 0:2]/downscale, intrinsics_var[:, 2:]), dim=1)
intrinsics_scaled_inv = torch.cat((intrinsics_inv_var[:, :, 0:2]*downscale, intrinsics_inv_var[:, :, 2:]), dim=2)
train_writer.add_image('train Non Rigid Warped Image {}'.format(k),
tensor2array(flow_warp(ref_imgs_scaled[1],flow_fwd[k]).data[0].cpu()) , n_iter )
# log warped images along with explainability mask
for j,ref in enumerate(ref_imgs_scaled):
ref_warped = inverse_warp(ref, scaled_depth[:,0], pose[:,j],
intrinsics_scaled, intrinsics_scaled_inv,
rotation_mode=args.rotation_mode,
padding_mode=args.padding_mode)[0]
train_writer.add_image('train Warped Outputs {} {}'.format(k,j), tensor2array(ref_warped.data.cpu()), n_iter)
train_writer.add_image('train Diff Outputs {} {}'.format(k,j), tensor2array(0.5*(tgt_img_scaled[0] - ref_warped).abs().data.cpu()), n_iter)
if explainability_mask[k] is not None:
train_writer.add_image('train Exp mask Outputs {} {}'.format(k,j), tensor2array(explainability_mask[k][0,j].data.cpu(), max_value=1, colormap='bone'), n_iter)
# record loss and EPE
losses.update(loss.item(), args.batch_size)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
with open(args.save_path/args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
# writer.writerow([loss.item(), loss_1.item(), loss_2.item() if w2 > 0 else 0, loss_3.item(), loss_4.item()])
if args.log_terminal:
logger.train_bar.update(i+1)
if i % args.print_freq == 0:
logger.train_writer.write('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0]
def validate_depth_with_gt(val_loader, disp_net, epoch, logger, output_writers=[]):
global args
batch_time = AverageMeter()
error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
errors = AverageMeter(i=len(error_names))
log_outputs = len(output_writers) > 0
# switch to evaluate mode
disp_net.eval()
end = time.time()
for i, (tgt_img, depth) in enumerate(val_loader):
with torch.no_grad():
tgt_img_var = tgt_img.cuda()
output_disp = disp_net(tgt_img_var)
if args.spatial_normalize_max:
output_disp = spatial_normalize_max(output_disp)
if args.spatial_normalize_mean:
output_disp = spatial_normalize_mean(output_disp)
output_depth = 1/output_disp
depth = depth.cuda()
# compute output
if log_outputs and i % 100 == 0 and i/100 < len(output_writers):
index = int(i//100)
if epoch == 0:
output_writers[index].add_image('val Input', tensor2array(tgt_img[0]), 0)
depth_to_show = depth[0].cpu()
output_writers[index].add_image('val target Depth', tensor2array(depth_to_show, max_value=10), epoch)
depth_to_show[depth_to_show == 0] = 1000
disp_to_show = (1/depth_to_show).clamp(0,10)
output_writers[index].add_image('val target Disparity Normalized', tensor2array(disp_to_show, max_value=None, colormap='bone'), epoch)
output_writers[index].add_image('val Dispnet Output Normalized', tensor2array(output_disp.data[0].cpu(), max_value=None, colormap='bone'), epoch)
output_writers[index].add_image('val Depth Output', tensor2array(output_depth.data[0].cpu(), max_value=10), epoch)
errors.update(compute_errors(depth, output_depth.data.squeeze(1)))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.log_terminal:
logger.valid_bar.update(i)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
if args.log_terminal:
logger.valid_bar.update(len(val_loader))
return errors.avg, error_names
def validate_flow_with_gt(val_loader, disp_net, pose_net, mask_net, flow_net, epoch, logger, output_writers=[]):
global args
batch_time = AverageMeter()
error_names = ['epe_total', 'epe_rigid', 'epe_non_rigid', 'outliers', 'epe_total_with_gt_mask', 'epe_rigid_with_gt_mask', 'epe_non_rigid_with_gt_mask', 'outliers_gt_mask',
'epe_total_all_1', 'epe_rigid_all_1', 'epe_non_rigid_all_1', 'outliers_all_1', 'epe_total_all_0', 'epe_rigid_all_0', 'epe_non_rigid_all_0', 'outliers_all_0']
errors = AverageMeter(i=len(error_names))
log_outputs = len(output_writers) > 0
# switch to evaluate mode
disp_net.eval()
pose_net.eval()
mask_net.eval()
flow_net.eval()
end = time.time()
poses = np.zeros(((len(val_loader)-1) * 1 * (args.sequence_length-1),6))
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv, flow_gt, obj_map_gt) in enumerate(val_loader):
with torch.no_grad():
tgt_img_var = tgt_img.cuda()
ref_imgs_var = [img.cuda() for img in ref_imgs]
intrinsics_var = intrinsics.cuda()
intrinsics_inv_var = intrinsics_inv.cuda()
flow_gt_var = flow_gt.cuda()
obj_map_gt_var = obj_map_gt.cuda()
# compute output
disp = disp_net(tgt_img_var)
if args.spatial_normalize_max:
disp = spatial_normalize_max(disp)
if args.spatial_normalize_mean:
disp = spatial_normalize_mean(disp)
depth = 1/disp
pose = pose_net(tgt_img_var, ref_imgs_var)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#explainability_mask = mask_net(tgt_img_var, ref_imgs_var)
if args.flownet == 'Back2Future':
flow_fwd, flow_bwd, _ = flow_net(tgt_img_var, ref_imgs_var)
else:
flow_fwd = flow_net(tgt_img_var, ref_imgs_var[1])
flow_bwd = flow_net(tgt_img_var, ref_imgs_var[0])
if args.DEBUG:
flow_fwd_x = flow_fwd[:,0].view(-1).abs().data
print("Flow Fwd Median: ", flow_fwd_x.median())
flow_gt_var_x = flow_gt_var[:,0].view(-1).abs().data
print("Flow GT Median: ", flow_gt_var_x.index_select(0, flow_gt_var_x.nonzero().view(-1)).median())
flow_cam = pose2flow(depth.squeeze(1), pose[:,1], intrinsics_var, intrinsics_inv_var)
oob_rigid = flow2oob(flow_cam)
oob_non_rigid = flow2oob(flow_fwd)
#---------------------------------------------------------------
flows_cam_fwd = [pose2flow(depth_.squeeze(1), pose[:,1], intrinsics_var, intrinsics_inv_var) for depth_ in depth]
flows_cam_bwd = [pose2flow(depth_.squeeze(1), pose[:,0], intrinsics_var, intrinsics_inv_var) for depth_ in depth]
flow_fwd_list = []
flow_fwd_list.append(flow_fwd)
flow_bwd_list = []
flow_bwd_list.append(flow_bwd)
rigidity_mask_fwd = consensus_exp_masks(flows_cam_fwd, flows_cam_bwd, flow_fwd_list, flow_bwd_list, tgt_img_var, ref_imgs_var[1], ref_imgs_var[0], wssim=args.wssim, wrig=args.wrig, ws=args.smooth_loss_weight )[0]
del flow_fwd_list
del flow_bwd_list
#--------------------------------------------------------------
rigidity_mask_census_soft = (flow_cam - flow_fwd).abs()#.normalize()
rigidity_mask_census_u = rigidity_mask_census_soft[:,0] < args.THRESH
rigidity_mask_census_v = rigidity_mask_census_soft[:,1] < args.THRESH
rigidity_mask_census = (rigidity_mask_census_u).type_as(flow_fwd) * (rigidity_mask_census_v).type_as(flow_fwd)
rigidity_mask_combined = 1 - (1-rigidity_mask_fwd[0])*(1-rigidity_mask_census)
flow_fwd_non_rigid = (rigidity_mask_combined<=args.THRESH).type_as(flow_fwd).expand_as(flow_fwd) * flow_fwd
flow_fwd_rigid = (rigidity_mask_combined>args.THRESH).type_as(flow_fwd).expand_as(flow_fwd) * flow_cam
total_flow = flow_fwd_rigid + flow_fwd_non_rigid
obj_map_gt_var_expanded = obj_map_gt_var.unsqueeze(1).type_as(flow_fwd)
if log_outputs and i % 10 == 0 and i/10 < len(output_writers):
index = int(i//10)
if epoch == 0:
output_writers[index].add_image('val flow Input', tensor2array(tgt_img[0]), 0)
flow_to_show = flow_gt[0][:2,:,:].cpu()
output_writers[index].add_image('val target Flow', flow_to_image(tensor2array(flow_to_show)), epoch)
output_writers[index].add_image('(14) Total Output', flow_to_image(tensor2array(total_flow.data[0].cpu())), epoch)
output_writers[index].add_image('(14) Rigid Output', flow_to_image(tensor2array(flow_fwd_rigid.data[0].cpu())), epoch)
output_writers[index].add_image('(14) Non-rigid Output', flow_to_image(tensor2array(flow_fwd_non_rigid.data[0].cpu())), epoch)
output_writers[index].add_image('val Out of Bound (Rigid)', tensor2array(oob_rigid.type(torch.FloatTensor).data[0].cpu(), max_value=1, colormap='bone'), epoch)
output_writers[index].add_scalar('val Mean oob (Rigid)', oob_rigid.type(torch.FloatTensor).sum(), epoch)
output_writers[index].add_image('val Out of Bound (Non-Rigid)', tensor2array(oob_non_rigid.type(torch.FloatTensor).data[0].cpu(), max_value=1, colormap='bone'), epoch)
output_writers[index].add_scalar('val Mean oob (Non-Rigid)', oob_non_rigid.type(torch.FloatTensor).sum(), epoch)
output_writers[index].add_image('val Cam Flow Errors', tensor2array(flow_diff(flow_gt_var, flow_cam).data[0].cpu()), epoch)
output_writers[index].add_image('(12) Rigidity Mask_left', tensor2array(rigidity_mask_fwd[0].data[0].cpu(), max_value=1, colormap='bone'), epoch)
output_writers[index].add_image('(12) Rigidity Mask_right', tensor2array(rigidity_mask_census.data[0].cpu(), max_value=1, colormap='bone'), epoch)
for j,ref in enumerate(ref_imgs_var):
ref_warped = inverse_warp(ref[:1], depth[:1,0], pose[:1,j],
intrinsics_var[:1], intrinsics_inv_var[:1],
rotation_mode=args.rotation_mode,
padding_mode=args.padding_mode)[0]
output_writers[index].add_image('val Warped Outputs {}'.format(j), tensor2array(ref_warped.data.cpu()), epoch)
output_writers[index].add_image('val Diff Outputs {}'.format(j), tensor2array(0.5*(tgt_img_var[0] - ref_warped).abs().data.cpu()), epoch)
if rigidity_mask_fwd is not None:
output_writers[index].add_image('val Exp mask Outputs {}'.format(j), tensor2array(rigidity_mask_fwd[0].data.cpu(), max_value=1, colormap='bone'), epoch)
if args.DEBUG:
# Check if pose2flow is consistant with inverse warp
ref_warped_from_depth = inverse_warp(ref_imgs_var[2][:1], depth[:1,0], pose[:1,2],
intrinsics_var[:1], intrinsics_inv_var[:1], rotation_mode=args.rotation_mode,
padding_mode=args.padding_mode)[0]
ref_warped_from_cam_flow = flow_warp(ref_imgs_var[2][:1], flow_cam)[0]
print("DEBUG_INFO: Inverse_warp vs pose2flow",torch.mean(torch.abs(ref_warped_from_depth-ref_warped_from_cam_flow)).item())
output_writers[index].add_image('val Warped Outputs from Cam Flow', tensor2array(ref_warped_from_cam_flow.data.cpu()), epoch)
output_writers[index].add_image('val Warped Outputs from inverse warp', tensor2array(ref_warped_from_depth.data.cpu()), epoch)
if log_outputs and i < len(val_loader)-1:
step = args.sequence_length-1
poses[i * step:(i+1) * step] = pose.data.cpu().view(-1,6).numpy()
if np.isnan(flow_gt.sum().item()) or np.isnan(total_flow.data.sum().item()):
print('NaN encountered')
_epe_errors = compute_all_epes(flow_gt_var, flow_cam, flow_fwd, rigidity_mask_combined) + compute_all_epes(flow_gt_var, flow_cam, flow_fwd, (1-obj_map_gt_var_expanded) ) \
+ compute_all_epes(flow_gt_var, flow_cam, flow_fwd, torch.ones_like(rigidity_mask_combined)) + compute_all_epes(flow_gt_var, flow_cam, flow_fwd, torch.zeros_like(rigidity_mask_combined))
errors.update(_epe_errors)
if args.DEBUG:
print("DEBUG_INFO: EPE errors: ", _epe_errors )
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if log_outputs:
output_writers[0].add_histogram('val poses_tx', poses[:,0], epoch)
output_writers[0].add_histogram('val poses_ty', poses[:,1], epoch)
output_writers[0].add_histogram('val poses_tz', poses[:,2], epoch)
if args.rotation_mode == 'euler':
rot_coeffs = ['rx', 'ry', 'rz']
elif args.rotation_mode == 'quat':
rot_coeffs = ['qx', 'qy', 'qz']
output_writers[0].add_histogram('val poses_{}'.format(rot_coeffs[0]), poses[:,3], epoch)
output_writers[0].add_histogram('val poses_{}'.format(rot_coeffs[1]), poses[:,4], epoch)
output_writers[0].add_histogram('val poses_{}'.format(rot_coeffs[2]), poses[:,5], epoch)
if args.DEBUG:
print("DEBUG_INFO =================>")
print("DEBUG_INFO: Average EPE : ", errors.avg )
print("DEBUG_INFO =================>")
print("DEBUG_INFO =================>")
print("DEBUG_INFO =================>")
return errors.avg, error_names
if __name__ == '__main__':
import sys
with open("experiment_recorder.md", "a") as f:
f.write('\n python3 ' + ' '.join(sys.argv))
main()