Skip to content

Latest commit

 

History

History
166 lines (126 loc) · 4.59 KB

README.md

File metadata and controls

166 lines (126 loc) · 4.59 KB

capture

AI Interview Simulator

AI Interview Simulator is an web application designed to improve your interview preparation. Using AI technology, it analyzes your answers and provides constructive feedback on how to improve. Using your device's camera and microphone, this tool provides a comprehensive, real-time assessment to help you excel in your next interview.

🚀 Services

🧱 Stack

  • Frontend
  • Backend:
  • Infrastructure:
    • Cloudflare Pages
    • Clodflare Workers
    • Workers AI Models
      • @cf/openai/whisper
      • @cf/meta/llama-2-7b-chat-fp16
      • openai-tts
    • Storage: R2
    • Database: D1 to chat memory

🚀 Quickstart

1. Fork and Clone repo

Fork the repo to your Github account, then run the following command to clone the repo:

git clone [email protected]/nicobytes/interview-cloudflare-ai

2. Install dependencies

cd apps/website
npm i

cd apps/api
npm i

3. Run app locally

cd apps/website
ng serve
# check the app in http://localhost:4200

cd apps/api
npm run dev:remote
# check the app in http://localhost:3100/docs

🚀 Backend

The backend is built with HonoJS and Cloudfare Workers, a platform for building serverless applications that run on Cloudflare's global network.

capture

Folder structure

The backend app is organized in the following folder structure:

.src/
├── bindings.ts
├── db
│   └── schema.ts
├── dtos
│   ├── feedback.dto.ts
│   ├── message.dto.ts
│   └── simulation.dto.ts
├── index.ts
├── middlewares
│   └── db.middleware.ts
├── routes
│   ├── createFeedback.ts
│   ├── createQuestion.ts
│   ├── createSimulation.ts
│   └── createTranscript.ts
├── services
│   ├── llm.service.ts
│   ├── openai.service.ts
│   ├── simulation.service.ts
│   └── whisper.service.ts
└── types.ts

🚀 Frontend

The frontend is built with Angular, a platform and framework for building web applications using HTML, CSS and TypeScript.

Responsive design

capture capture capture

Using Angular Signals

The application uses Angular signals like a reactive pattern to communicate between components, services, and directives.

Folder structure

The frontend app is organized in the following folder structure:

.
├── app
│   ├── app.component.ts
│   ├── app.config.ts
│   ├── app.routes.ts
│   ├── components
│   │   ├── header
│   │   │   ├── header.component.html
│   │   │   └── header.component.ts
│   │   └── modal-recording
│   │       ├── modal-recording.component.html
│   │       └── modal-recording.component.ts
│   ├── models
│   │   └── message.model.ts
│   ├── pages
│   │   ├── create
│   │   │   ├── create.component.html
│   │   │   └── create.component.ts
│   │   ├── home
│   │   │   ├── home.component.html
│   │   │   └── home.component.ts
│   │   └── simulator
│   │       ├── simulator.component.html
│   │       └── simulator.component.ts
│   └── services
│       └── api.service.ts
├── assets
│   └── images
│       ├── background.png
│       └── interview.jpg
├── environments
│   ├── environment.development.ts
│   └── environment.ts
├── favicon.ico
├── index.html
├── main.ts
└── styles.scss

🚀 Deployment

This project was structured as a monorepo, with the frontend and backend in the same repository, and with Github actions to detect changes in the code and deploy the app to the cloud. As part of CI/CD, the project has a linter and build step before deploying the app. The project has automatic deployment to Cloudflare Workers for the API, the frontend in Cloudflare pages.

capture