-
Notifications
You must be signed in to change notification settings - Fork 2
/
seggpt_app.py
146 lines (118 loc) · 4.74 KB
/
seggpt_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import torch
import gradio as gr
import sys
import requests
import argparse
import torch
import torch.nn.functional as F
import numpy as np
import glob
import tqdm
import models_seggpt
from PIL import Image
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
#command = f'python \
# util/painter_inference_demo2.py'
#os.system(command)
def prepare_model(chkpt_dir, arch='seggpt_vit_large_patch16_input896x448', seg_type='instance'):
# build model
model = getattr(models_seggpt, arch)()
model.seg_type = seg_type
# load model
checkpoint = torch.load(chkpt_dir, map_location='cpu')
msg = model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
return model
'semantic'
device = torch.device('cuda')
model = prepare_model('seggpt_vit_large.pth', 'seggpt_vit_large_patch16_input896x448','instance' ).to(device)
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
class Cache(list):
def __init__(self, max_size=0):
super().__init__()
self.max_size = max_size
def append(self, x):
if self.max_size <= 0:
return
super().append(x)
if len(self) > self.max_size:
self.pop(0)
@torch.no_grad()
def run_one_image(img, tgt, model, device):
x = torch.tensor(img)
# make it a batch-like
x = torch.einsum('nhwc->nchw', x)
tgt = torch.tensor(tgt)
# make it a batch-like
tgt = torch.einsum('nhwc->nchw', tgt)
bool_masked_pos = torch.zeros(model.patch_embed.num_patches)
bool_masked_pos[model.patch_embed.num_patches//2:] = 1
bool_masked_pos = bool_masked_pos.unsqueeze(dim=0)
valid = torch.ones_like(tgt)
if model.seg_type == 'instance':
seg_type = torch.ones([valid.shape[0], 1])
else:
seg_type = torch.zeros([valid.shape[0], 1])
feat_ensemble = 0 if len(x) > 1 else -1
_, y, mask = model(x.float().to(device), tgt.float().to(device), bool_masked_pos.to(device), valid.float().to(device), seg_type.to(device), feat_ensemble)
y = model.unpatchify(y)
y = torch.einsum('nchw->nhwc', y).detach().cpu()
output = y[0, y.shape[1]//2:, :, :]
output = torch.clip((output * imagenet_std + imagenet_mean) * 255, 0, 255)
return output
def inference_image(model, device, img_path, img2_paths, tgt2_paths):
res, hres = 448, 448
image = img_path#Image.open(img_path).convert("RGB")
input_image = np.array(image)
size = image.size
image = np.array(image.resize((res, hres))) / 255.
image_batch, target_batch = [], []
for img2_path, tgt2_path in zip(img2_paths, tgt2_paths):
img2 = img2_path#Image.open(img2_path).convert("RGB")
img2 = img2.resize((res, hres))
img2 = np.array(img2) / 255.
tgt2 = tgt2_path#Image.open(tgt2_path).convert("RGB")
tgt2 = tgt2.resize((res, hres), Image.NEAREST)
tgt2 = np.array(tgt2) / 255.
tgt = tgt2 # tgt is not available
tgt = np.concatenate((tgt2, tgt), axis=0)
img = np.concatenate((img2, image), axis=0)
assert img.shape == (2*res, res, 3), f'{img.shape}'
# normalize by ImageNet mean and std
img = img - imagenet_mean
img = img / imagenet_std
assert tgt.shape == (2*res, res, 3), f'{img.shape}'
# normalize by ImageNet mean and std
tgt = tgt - imagenet_mean
tgt = tgt / imagenet_std
image_batch.append(img)
target_batch.append(tgt)
img = np.stack(image_batch, axis=0)
tgt = np.stack(target_batch, axis=0)
"""### Run SegGPT on the image"""
# make random mask reproducible (comment out to make it change)
torch.manual_seed(2)
output = run_one_image(img, tgt, model, device)
output = F.interpolate(
output[None, ...].permute(0, 3, 1, 2),
size=[size[1], size[0]],
mode='nearest',
).permute(0, 2, 3, 1)[0].numpy()
output = Image.fromarray((input_image * (0.6 * output / 255 + 0.4)).astype(np.uint8))
return output
def predict(imagemask,image2):
img2 = imagemask["image"].convert("RGB")
tgt2 = imagemask["mask"].convert("RGB")
img = image2
return inference_image(model, device, img, [img2], [tgt2])
with gr.Blocks(css='.fixed-height.svelte-rlgzoo {height: 100%;}') as demo:
with gr.Column():
with gr.Row():
inp = [gr.ImageMask(type="pil").style(height=400),gr.Image(type="pil").style(height=400)]
out = gr.Image(type="pil")
btn = gr.Button("Run")
btn.click(fn=predict, inputs=inp, outputs=out)
demo.launch(server_name="192.168.0.100",server_port=27871)