-
Notifications
You must be signed in to change notification settings - Fork 54
/
regularization.py
51 lines (40 loc) · 1.75 KB
/
regularization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# import the packages
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from pyimagesearch.preprocessing import SimplePreprocessor
from pyimagesearch.datasets import SimpleDatasetLoader
from imutils import paths
import argparse
# parse script arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True, help="path to input dataset")
args = vars(ap.parse_args())
# grab the list of image paths
print("[INFO] loading images...")
imagePaths = list(paths.list_images(args["dataset"]))
# initialize the image preprocessor, load the dataset from disk,
# and reshape the data matrix
sp = SimplePreprocessor(32, 32)
sdl = SimpleDatasetLoader(preprocessors=[sp])
(data, labels) = sdl.load(imagePaths, verbose=500)
# 3072 = 32 * 32 * 3
data = data.reshape((data.shape[0], 3072))
# encode the labels as integers
le = LabelEncoder()
labels = le.fit_transform(labels)
# partition the data into training and testing splits using 75% of the
# data for training and the remaining 25% for testing.
(trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, random_state=5)
# try a few different regularization techniques
for r in (None, "l1", "l2"):
# train a SGD classifier using softmax loss function and the
# specified regularization function for 10 epochs
print("[INFO] training model with '{}' penalty".format(r))
model = SGDClassifier(loss="log", penalty=r, max_iter=10,
learning_rate="constant", eta0=0.01, random_state=42)
model.fit(trainX, trainY)
# evaluate the classifier
acc = model.score(testX, testY)
print("acc", acc)
print("[INFO] '{}' penalty accuracy: {:.2f}%".format(r, acc*100))