-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmemoize.py
44 lines (41 loc) · 1.44 KB
/
memoize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python
# Author: Ni Huang <nihuang at genetics dot wustl dot edu>
import collections
import functools
from numpy import ndarray
class memoized(object):
'''Decorator. Caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned
(not reevaluated).
'''
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, *args):
if not isinstance(args, collections.Hashable):
# uncacheable. a list, for instance.
# better to not cache than blow up.
return self.func(*args)
#------------------------------------
# special treatment for numpy.ndarray
if type(args[0]) == ndarray:
key = tuple(args[0])
if key in self.cache:
return self.cache[key]
else:
value = self.func(*args)
self.cache[key] = value
return value
#------------------------------------
if args in self.cache:
return self.cache[args]
else:
value = self.func(*args)
self.cache[args] = value
return value
def __repr__(self):
'''Return the function's docstring.'''
return self.func.__doc__
def __get__(self, obj, objtype):
'''Support instance methods.'''
return functools.partial(self.__call__, obj)