forked from sccn/roiconnect
-
Notifications
You must be signed in to change notification settings - Fork 1
/
roi_connect.m
167 lines (154 loc) · 7.89 KB
/
roi_connect.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
% roi_connect() - compute connectivity between ROIs
%
% Usage:
% EEG = roi_connect(EEG, 'key', 'val', ...);
%
% Inputs:
% EEG - EEGLAB dataset with ROI activity computed
%
% Optional inputs (choose at least one):
% 'morder' - [integer] order of autoregressive model. Default is 20.
% 'naccu' - [integer] number of accumulation for stats. Default is 0.
% 'methods' - [cell] Cell of strings corresponding to methods.
% 'CS' : Cross spectrum
% 'aCOH' : Coherence
% 'cCOH' : (complex-valued) coherency
% 'iCOH' : absolute value of the imaginary part of coherency
% 'GC' : Granger Causality
% 'TRGC' : Time-reversed Granger Causality
% 'wPLI' : Weighted Phase Lag Index
% 'PDC' : Partial directed coherence
% 'TRPDC' : Time-reversed partial directed coherence
% 'DTF' : Directed transfer entropy
% 'TRDTF' : Time-reversed directed transfer entropy
% 'MIM' : Multivariate Interaction Measure for each ROI
% 'MIC' : Maximized Imaginary Coherency for each ROI
% 'freqresolution' - [integer] Desired frequency resolution (in number of frequencies). If
% specified, the signal is zero padded accordingly.
% Default is 0 (means no padding).
% 'roi_selection' - [cell array of integers] Cell array of ROI indices {1, 2, 3, ...} indicating for which regions (ROIs) connectivity should be computed.
% Default is empty (in this case, connectivity will be computed for all ROIs).
%
% Output:
% EEG - EEG structure with EEG.roi field updated and now containing
% connectivity information.
% Copyright (C) Arnaud Delorme, [email protected]
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function EEG = roi_connect(EEG, varargin)
if nargin < 2
help roi_connect;
return
end
if ~isfield(EEG, 'roi') || ~isfield(EEG.roi, 'source_roi_data')
error('Cannot find ROI data - compute ROI data first');
else
source_roi_data = EEG.roi.source_roi_data;
end
% decode input parameters
% -----------------------
g = finputcheck(varargin, { ...
'morder' 'integer' { } 20;
'naccu' 'integer' { } 0;
'methods' 'cell' { } { };
'freqresolution' 'integer' { } 0;
'roi_selection' 'cell' { } { } }, 'roi_connect');
if ischar(g), error(g); end
if isempty(g.naccu), g.naccu = 0; end
% tmpMethods = setdiff(g.methods, { 'CS' 'COH' 'cCOH' 'aCOH' 'iCOH' 'GC' 'TRGC' 'wPLI' 'PDC' 'TRPDC' 'DTF' 'TRDTF' 'MIM' 'MIC' 'PAC'});
% if ~isempty(tmpMethods)
% error('Unknown methods %s', vararg2str(tmpMethods))
% end
inds = {}; ninds = 0;
if isempty(g.roi_selection)
nROI = EEG.roi.nROI;
else
nROI = length(g.roi_selection);
end
nPCA = EEG.roi.nPCA;
for iroi = 1:nROI
for jroi = (iroi+1):nROI
inds{ninds+1} = {(iroi-1)*nPCA + [1:nPCA], (jroi-1)*nPCA + [1:nPCA]};
ninds = ninds + 1;
end
end
if ~isempty(intersect(g.methods, {'COH'}))
warning("'COH' is not supported anymore and will be replaced with 'aCOH' (coherence). " + ...
"Please double-check with the documentation if this is what you really want.")
coh_idx = strcmpi(g.methods, 'COH');
g.methods{coh_idx} = 'aCOH';
end
% wPLI, MIC, MIM, GC and TRGC use data2strcgmim, remaining metrics use data2spwctrgc
methodset1 = { 'wPLI' 'MIM' 'MIC' 'GC' 'TRGC' };
methodset2 = { 'CS' 'aCOH' 'iCOH' 'cCOH' 'PSD' 'PSDROI' 'PDC' 'TRPDC' 'DTF' 'TRDTF' };
tmpMethods1 = intersect(g.methods, methodset1);
if ~isempty(tmpMethods1)
if isempty(g.roi_selection)
conn_mult = data2sctrgcmim(source_roi_data, EEG.roi.pnts, g.morder, 0, g.naccu, [], inds, tmpMethods1, [], 'freqresolution', g.freqresolution);
elseif ~isempty(g.roi_selection)
conn_mult = data2sctrgcmim(source_roi_data, EEG.roi.pnts, g.morder, 0, g.naccu, [], inds, tmpMethods1, [], 'freqresolution', g.freqresolution, 'roi_selection', g.roi_selection, 'nPCA', nPCA);
EEG.roi.roi_selection = g.roi_selection;
end
fields = fieldnames(conn_mult);
for iField = 1:length(fields)
EEG.roi.(fields{iField}) = conn_mult.(fields{iField});
end
% rearrange matrices
if isempty(g.roi_selection)
nROI = EEG.roi.nROI;
else
nROI = length(g.roi_selection);
end
for iMethods = 1:length(tmpMethods1)
if strcmpi(tmpMethods1{iMethods}, 'MIM') || strcmpi(tmpMethods1{iMethods}, 'MIC')
MI = EEG.roi.(tmpMethods1{iMethods})(:, :);
EEG.roi.(tmpMethods1{iMethods}) = get_connect_mat( MI, nROI, +1);
elseif strcmpi(tmpMethods1{iMethods}, 'GC') || strcmpi(tmpMethods1{iMethods}, 'TRGC')
TRGCnet = EEG.roi.(tmpMethods1{iMethods})(:, :, 1) - EEG.roi.(tmpMethods1{iMethods})(:, :, 2);
EEG.roi.(tmpMethods1{iMethods}) = get_connect_mat( TRGCnet, nROI, -1);
else % wPLI
warning(strcat("Only the first principal component will be used to determine ", tmpMethods1{iMethods}))
measure = rm_components(EEG.roi.(tmpMethods1{iMethods}), EEG.roi.nPCA); % only keep the first principal component
EEG.roi.(tmpMethods1{iMethods}) = measure;
end
end
end
tmpMethods2 = intersect(g.methods, methodset2);
if ~isempty(tmpMethods2)
if isempty(g.roi_selection)
conn_mult = data2spwctrgc(source_roi_data, EEG.roi.pnts, g.morder, 0, g.naccu, [], tmpMethods2, [], 'freqresolution', g.freqresolution);
else
conn_mult = data2spwctrgc(source_roi_data, EEG.roi.pnts, g.morder, 0, g.naccu, [], tmpMethods2, [], 'freqresolution', g.freqresolution, 'roi_selection', g.roi_selection, 'nPCA', nPCA);
end
fields = fieldnames(conn_mult);
for iField = 1:length(fields)
EEG.roi.(fields{iField}) = conn_mult.(fields{iField});
end
% only keep the first principal component
for iMethods = 1:length(tmpMethods2)
warning(strcat("Only the first principal component will be used to determine ", tmpMethods2{iMethods}))
measure = rm_components(EEG.roi.(tmpMethods2{iMethods}), EEG.roi.nPCA); % only keep the first principal component
EEG.roi.(tmpMethods2{iMethods}) = measure;
end
end
end