-
Notifications
You must be signed in to change notification settings - Fork 0
/
cs8850_01_intro.html
753 lines (680 loc) · 33.4 KB
/
cs8850_01_intro.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css">
<!-- <link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet"/> -->
<script src="lib/colorbrewer.v1.min.js" charset="utf-8"></script>
<script src="lib/colorStringStandalone.js" charset="utf-8"></script>
<script type="text/javascript" src="lib/jquery-2.2.4.min.js"></script>
<title>Advanced Machine Learning</title>
<meta name="description" content="CS8850 GSU class">
<meta name="author" content="Sergey M Plis">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<link rel="stylesheet" href="dist/reset.css">
<link rel="stylesheet" href="dist/reveal.css">
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="plugin/highlight/monokai.css" id="highlight-theme">
<!-- <link rel="stylesheet" href="lib/css/zenburn.css"> -->
<link rel="stylesheet" href="css/custom.css">
<link rel="stylesheet" href="dist/theme/aml.css" id="theme">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'css/print/pdf.css' : 'css/print/paper.scss';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
</head>
<body>
<div class="reveal">
<!-- In between the <div="reveal"> and the <div class="slides">-->
<!-- <header style="position: absolute; top: 10px; left: 100px; z-index: 500; font-size:100px;background-color: rgba(0,0,0,0); text-align: center !important"></header> -->
<!-- In between the <div="reveal"> and the <div class="slides">-->
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section>
<section>
<p>
<h2>Advanced Machine Learning</h2>
<h3>01: Introduction</h3>
<p>
</section>
<section>
<h3>Outline of the lecture</h3>
<ul>
<li class="fragment roll-in">Introductions
<li class="fragment roll-in">Why Machine Learning?
<li class="fragment roll-in">What is machine learning?
<li class="fragment roll-in">History of ML
<li class="fragment roll-in">Reinforcement Learning
<li class="fragment roll-in">Course Overview
</ul>
</section>
</section>
<section>
<section>
<h1>Introductions</h1>
</section>
<section>
<h2>Instructor</h2>
<row>
<col70>
<h3>Sergey Plis, Ph.D.</h3>
<ul style="list-style-type: none; ">
<li>Department of Computer Science,
<li>Georgia State University
<li>55 Park Place, office 1821
<li>Office hours: MW 13:15-14:15 <em>but ask anything in slack</em> and by appointment
<li>Email: <a href="mailto:[email protected]">[email protected]</a>
</ul>
</col70>
<col30>
<img src="figures/SergeyPlis.jpg" alt="Sergey Plis" style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1);" width="100%">
</col30>
</row>
</section>
<section>
<h2>Teaching Assistant</h2>
<row>
<col70>
<h3>Tharun Kumar Bandaru</h3>
<ul style="list-style-type: none; ">
<li>Department of Computer Science,
<li>Georgia State University
<li>
<li>Office hours: by appointment
<li>Email: <a href="mailto: [email protected]">[email protected]</a>
</ul>
</col70>
<col30>
<img src="figures/TharunKumarBandaru.png" alt="" style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1);" width="100%">
</col30>
</row>
</section>
</section>
<section>
<section>
<h1>Why Machine Learning?</h1>
</section>
<section data-vertical-align-top data-background-iframe="https://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html"
data-background-interactive>
<h3>Philosophical reason</h3>
<div class='slide-footer'>
<a href="https://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html">Source</a>
</div>
</section>
<section data-vertical-align-top>
<h3>Pragmatic reason</h3>
<img class="stretch" style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255,
0.8);" width="700" src="figures/lesion.jpg"
alt="loop"><br>
brain imaging for brain
disorder understanding
</section>
<section>
<img class="stretch" style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255,
0.8);" width="700" src="figures/moredata.jpg"
alt="loop"><br>
lets collect more data at the finest resolution
</section>
<section>
<h3>Problem</h3>
<img class="stretch" style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255,
0.8);" width="700" src="figures/overload.jpg"
alt="loop"><br>
high dimensional data is not
easy to see through
</section>
<section>
<h3>Desired Solution</h3>
<img class="stretch" style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255,
0.8);" width="700" src="figures/rreading.png"
alt="loop"><br>
automatically extract
meaning from data
</section>
<section data-state="brightside" data-background="figures/robotLearning.png">
<!-- <h3>Desired Solution</h3> -->
<!-- <img class="stretch" style="border:0; box-shadow: 0px 0px 0px -->
<!-- rgba(150, 150, 255, 0.8); margin-top:-20pt;" -->
<!-- width="80%" -->
<!-- src="figures/robotLearning.png" -->
<!-- alt="loop"><br> -->
<!-- <h3> -->
<!-- automatically extract meaning from data -->
<!-- </h3> -->
<div class="slide-footer" style="font-size:9pt;">
The image is generated by Midjourney from the prompt "the robot is holding a huge book and is happily reading it looking at the pages" and a seed image
</div>
</section>
<section data-background="figures/jobnews.png"
data-background-transition="zoom"
data-background-size="contain">
</section>
<section data-background="figures/automation.jpg"
data-background-transition="zoom"
data-background-size="cover">
</section>
<section data-background="figures/job.jpg"
data-background-transition="zoom"
data-background-size="cover">
</section>
<section data-background="figures/threat.png"
data-background-transition="zoom"
data-background-size="contain">
</section>
<section data-background="figures/skynet.gif"
data-background-transition="zoom"
data-background-size="cover">
</section>
<section data-background="figures/threat.png"
data-background-transition="zoom"
data-background-size="contain">
</section>
<section data-background="figures/paperclip.jpg"
data-background-transition="zoom"
data-background-size="cover">
</section>
</section>
<section>
<section>
<h1>What is machine learning?</h1>
</section>
<section>
<h3>What is learning?</h3>
<blockquote style="text-align: left; width: 100%;" class="fragment" data-fragment-index="1">
Learning is acquiring new, or modifying
existing, knowledge, behaviors, skills, values,
or preferences and may involve synthesizing
different types of information. The ability to
learn is possessed by humans and animals.
</blockquote>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="50%" src="figures/thinking-robot_t.gif" alt="loop">
<div class='slide-footer' style="text-align: left;">
<ul>
<li><a href="http://en.wikipedia.org/wiki/Learning">http://en.wikipedia.org/wiki/Learning</a><br>
<li><a href="https://digilite.ca/guide-to-building-your-own-ai-chatbot/">gif source</a>
</ul>
</div>
</section>
<section>
<h2>Machine Learning</h2>
<blockquote style="text-align: left; width: 100%;">
Arthur Samuel (1959). Machine
Learning: Field of study that gives
computers the ability to learn without
being clearly programmed
</blockquote>
<div class='slide-footer' style="text-align: left;">
<ul>
<li><a href="https://en.wikipedia.org/wiki/Arthur_Samuel">https://en.wikipedia.org/wiki/Arthur_Samuel</a><br>
</ul>
</div>
</section>
<section>
<h2>Machine Learning</h2>
<blockquote style="text-align: left; width: 100%;" width="100%">
Tom Mitchell (1998) Well-posed
Learning Problem: A computer program
is said to learn from experience E
with respect to some task T and some
performance measure P, if its
performance on T, as measured by P,
improves with experience E.
</blockquote>
</section>
<section>
<h3>ML as a Scientific Discipline</h3>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="500"
src="figures/venn_ml.png" alt="Venn
diagramm">
</section>
<section>
<h3>ML combines</h3>
<ul>
<li class="fragment roll-in">Discrete Mathematics
<li class="fragment roll-in">Linear Algebra
<li class="fragment roll-in">Statistics
<li class="fragment roll-in">Calculus
<li class="fragment roll-in">Optimization Theory
</ul>
<p>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="50%" src="figures/bot_build.gif" alt="loop">
</section>
<section>
<h3>ML draws from</h3>
<ul>
<li class="fragment roll-in">Artificial Intelligence
<li class="fragment roll-in">Bayesian Methods
<li class="fragment roll-in">Computational Complexity
<li class="fragment roll-in">Optimization Theory
<li class="fragment roll-in">Information theory
<li class="fragment roll-in">Philosophy
<li class="fragment roll-in">Psychology and neurobiology
</ul>
<p>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="50%" src="figures/bot_build.gif" alt="loop">
</section>
<section>
<h3>Learning tasks</h3>
<ul>
<li class="fragment roll-in">Classification
<li class="fragment roll-in">Regression
<li class="fragment roll-in">Ranking
<li class="fragment roll-in">Clustering
<li class="fragment roll-in">Dimensionality reduction
<li class="fragment roll-in">Manifold learning
<li class="fragment roll-in">Causal Learning
</ul>
<p>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8); bottom: 0 !important" width="60%" src="figures/bot_dog.gif" alt="loop">
</section>
<section>
<h3>Learning Scenarios</h3>
<ul>
<li class="fragment roll-in">Supervised learning
<li class="fragment roll-in">Semi-supervised learning
<li class="fragment roll-in">Active learning
<li class="fragment roll-in">Online learning
<li class="fragment roll-in">Unsupervised learning
<li class="fragment roll-in">Reinforcement learning!
</ul>
</section>
</section>
<section>
<section>
<h1>history of ML</h1>
<h2>extremely brief and biased</h2>
</section>
<section
data-state="darkside">How did we get to this point?</section>
<section>
<h2>1966</h2>
<blockquote style="width: 100%;">
Marvin Minsky (MIT, Turing Award 1969) hired a
first year undergraduate student and assigned
him a problem to solve over the summer: connect
a camera to a computer and get the machine to
describe what it sees.
</blockquote>
<div class="slide-footer">
<a href=http://www.lyndonhill.com/opinion-cvlegends.html>Urban legends in Computer Science</a>
</div>
</section>
<section data-background="figures/impossible.png"
data-background-transition="zoom"
data-background-size="contain">
</section>
<section>
<h2>ImageNet Challenge</h2>
<ul style="list-style-type: square;
list-style-position: inside;
font-size:40px;">
<!-- font-variant: small-caps; -->
<!-- font-weight: bold;"> -->
<li>14,192,122 million images, 21841 thousand categories</li>
<li>Image found via web searches for WordNet noun synsets</li>
<li>Hand verified using Mechanical Turk </li>
<li>Bounding boxes for query object labeled</li>
<li>New data for validation and testing each year</li>
</section>
<section data-background="figures/imagenet.png"
data-background-transition="zoom"
data-vertical-align-top
data-background-size="contain">
<h2>50 years later</h2>
</section>
<section data-background="figures/perceptron.png"
data-background-transition="zoom"
data-vertical-align-top
data-background-size="contain">
<h2>Perceptron 1958</h2>
</section>
<section data-background="figures/perceptron-pla-14-steps.gif"
data-background-transition="zoom"
data-background-size="contain">
</section>
<section data-background="figures/FF.png"
data-background-transition="zoom"
data-vertical-align-top
data-background-size="contain">
<h3>Stacked perceptrons</h3>
</section>
<section data-background="figures/deepff.png"
data-background-transition="zoom"
data-vertical-align-top
data-background-size="contain">
<h3>Deep Neural Net</h3>
</section>
<section data-background="figures/vgg.png"
data-background-transition="zoom"
data-vertical-align-top
data-background-size="contain">
<h3>Convolutional Neural Network</h3>
</section>
<section data-background="figures/seq2seq.png"
data-background-transition="zoom"
data-vertical-align-top
data-background-size="contain">
<h3>Recurrent Neural Network</h3>
</section>
<section>
<h3>Supervised learning</h3>
$(x_i, y_i)$
</section>
</section>
<section>
<section data-state="brightside">
<h1>Reinforcement learning</h1>
</section>
<section>
<h4>Reinforcement Learning on Atari</h4>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="500"
class="reveal" src="figures/joystik.png" alt="david">
</section>
<section>
<h3>DQN on Atari</h3>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="500"
class="reveal" src="figures/net.png" alt="david">
</section>
<section>
<h3>Results DQN on Atari (2015)</h3>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="500"
class="reveal" src="figures/histgrm.png" alt="david">
</section>
<section data-background-iframe="https://www.youtube.com/embed/V1eYniJ0Rnk?autoplay=1&controls=0&rel=0&modestbranding=1&showinfo=0">
</section>
<section data-background-iframe="https://www.youtube.com/embed/v7T5El42QGE?autoplay=1&controls=0&rel=0&modestbranding=1&showinfo=0">
</section>
<section data-background-iframe="https://www.youtube.com/embed/aKRve2r2C9I?autoplay=1&controls=0&rel=0&modestbranding=1&showinfo=0">
</section>
</section>
<section>
<section>
<h1>Course Overview</h1>
</section>
<section>
<h2>What we'll cover</h2>
<ul>
<li class="fragment roll-in">Basics of Learning Theory
<li class="fragment roll-in">Most important (or more advanced) algorithms
<li class="fragment roll-in">Sprinkled with what the field recently learned on top of the "classical"
ML
<ul>
<li class="fragment roll-in">SGD is too powerful to ignore
<li class="fragment roll-in">Local minima are not as bad
<li class="fragment roll-in">Bias-variance trade off is an
incomplete story
<li class="fragment roll-in">Reinforcement learning is not dead
</ul>
</li>
</ul>
<div class='slide-footer'>
Subject to change
</div>
</section>
<section data-background="figures/Foundationsan_overview.png" data-background-size="contain">
</section>
<section data-background="figures/schedule_fall_2022_aml.png" data-background-size="contain">
</section>
<section>
<h2>Grade Split</h2>
<ul>
<li> 25% - Homework
<li> 25% - Midterm exam
<li> 25% - Final exam
<li> 25% - Project
</ul>
</section>
<section>
<h2>Relative Ranking</h2>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="100"
class="reveal" src="figures/competition_time.gif" alt="competition">
Send me your private nicknames ASAP if you have not done so
</section>
<section>
<h2>prerequisites</h2>
<ul>
<li class="fragment roll-in">Ability to program in your
favorite language
<li class="fragment roll-in">Ability to program in python
<li class="fragment roll-in">Basic knowledge of calculus,
linear algebra, optimization theory,
probability, and statistics
</ul>
</section>
<section>
<h2>Textbooks</h2>
"Understanding Machine Learning" Shai
Shalev-Shwartz and Shai Ben-David
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="100"
class="reveal" src="figures/understanding_cover.jpg" alt="UML">
</section>
<section>
<h2>Textbooks</h2>
"Pattern Recognition and ML" C. M. Bishop
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="100%"
class="contain" src="figures/bishop_cover.png" alt="BISH">
</section>
<section>
<h2>Textbooks</h2>
"Deep Learning" I. Goodfellow,
Y. Bengio, A. Courville
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="100"
class="reveal" src="figures/dl_cover.jpg" alt="DL">
</section>
<section>
<h2>Textbooks</h2>
"Information Theory, Inference and
Learning Algorithms" David MacKay
<br>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="300"
class="reveal"
src="figures/mackay_cover.jpg"
alt="Information Theory">
</section>
<section>
<h2>Textbooks</h2>
"Data Science for Business"
<br>
<img style="border:0; box-shadow: 0px 0px 0px
rgba(150, 150, 255, 0.8);" width="300"
class="reveal" src="figures/dsbusiness_cover.jpg" alt="DS">
</section>
</section>
<section>
<section>
<h1>The Project!</h1>
</section>
<section data-background="figures/lean_startup.png">
<h2>Lean startup</h2>
</section>
<section data-vertical-align-top data-background-iframe="https://hpmor.com/">
</section>
<section data-background="figures/ml-development-cycle.png">
<!--
<img style="border:0; box-shadow: 0px 0px 0px rgba(255, 255, 255, 255);" width="900"
src="figures/ml-development-cycle.png" alt="ML cycle">
-->
</section>
<section>
<h3>Anatomy of the project</h3>
<object id="mlproject" data="figures/project_components.svg#0" width="730"></object>
</section>
<section>
<h3>Milestones</h3>
<ul>
<li class="fragment roll-in"> Submit project ideas each (<em>deadline September 11th</em>)
<li class="fragment roll-in"> Form teams (4-6 people each team) (<em>deadline September 25th</em>)
<li class="fragment roll-in"> Present your team, your problem, and your idea how to solve it (<em>October 9th</em>)
<li class="fragment roll-in"> Submit a report (a paper NeurIPS style) (<em>deadline December 5th</em>)
<li class="fragment roll-in"> Present the project to the class (<em>either 27th or 29th of November</em>)
</ul>
</section>
<section style="width: 120%;"">
<h3>Deliverables</h3>
The project is complete if by <em>December 5th deadline</em> you submit:
<ul>
<li class="fragment roll-in"> NeurIPS style formatted report
<li class="fragment roll-in"> Link to github with the code
<li class="fragment roll-in"> Slides of the final presentation
<li class="fragment roll-in"> Bonus points:
<ul>
<li> A link to a kanban board with all tasks and people who completed them
<li> Kaggle leaderboard of a competition you were a part of for this project
<li> State of the art result possibly fit for NeurIPS (prize: help with the paper submission)
</ul>
</ul>
<div class="slide-footer" style="text-align: left;">
have you missed learning how to use your tools? check this out: <a href="https://missing.csail.mit.edu/" target="_blank">https://missing.csail.mit.edu/</a>
</div>
</section>
</section>
<section>
<h2>Pre test!</h2>
</section>
</div>
</div>
<script src="dist/reveal.js"></script>
<link rel="stylesheet" href="lib/css/monokai.css">
<script src="plugin/highlight/highlight.js"></script>
<script src="plugin/math/math.js"></script>
<script src="plugin/chalkboard/plugin.js"></script>
<script src="plugin/notes/notes.js"></script>
<script src="plugin/zoom/zoom.js"></script>
<script src="plugin/menu/menu.js"></script>
<script>
// Full list of configuration options available at:
// https://github.com/hakimel/reveal.js#configuration
Reveal.initialize({
// history: true,
hash: true,
margin: 0.01,
minScale: 0.01,
maxScale: 1.23,
center: true,
controls: false,
keyboard: true,
// hash: true,
// margin: 0.01,
// minScale: 0.01,
// maxScale: 0.93,
chalkboard: {
boardmarkerWidth: 1,
chalkWidth: 2,
chalkEffect: 1,
slideWidth: Reveal.width,
slideHeight: Reveal.height,
// src: "chalkboards/chalkboard_em2.json",
readOnly: false,
theme: "blackboard",
eraser: { src: "plugin/chalkboard/img/sponge.png", radius: 30},
},
math: {
mathjax: 'https://cdn.jsdelivr.net/gh/mathjax/[email protected]/MathJax.js',
config: 'TeX-AMS_SVG-full',
// pass other options into `MathJax.Hub.Config()`
TeX: {
Macros: {
RR: '\\mathbb{R}',
PP: '\\mathbb{P}',
EE: '\\mathbb{E}',
NN: '\\mathbb{N}',
vth: '\\vec{\\theta}',
loss: '{\\cal l}',
hclass: '{\\cal H}',
CD: '{\\cal D}',
def: '\\stackrel{\\text{def}}{=}',
pag: ['\\text{pa}_{{\cal G}^{#1}}(#2)}', 2],
vec: ['\\boldsymbol{\\mathbf #1}', 1],
set: [ '\\left\\{#1 \\; : \\; #2\\right\\}', 2 ],
bm: ['\\boldsymbol{\\mathbf #1}', 1],
argmin: ['\\operatorname\{arg\\,min\\,\}'],
argmax: ['\\operatorname\{arg\\,max\\,\}'],
prob: ["\\mbox{#1$\\left(#2\\right)$}", 2],
},
loader: {load: ['[tex]/color']},
extensions: ["color.js"],
tex: {packages: {'[+]': ['color']}},
svg: {
fontCache: 'global'
}
}
},
plugins: [ RevealMath, RevealChalkboard, RevealHighlight, RevealNotes, RevealZoom, RevealMenu ],
});
Reveal.configure({ fragments: true }); // set false when developing to see everything at once
Reveal.configure({ slideNumber: true });
//Reveal.configure({ history: true });
Reveal.configure({ slideNumber: 'c / t' });
Reveal.addEventListener( 'darkside', function() {
document.getElementById('theme').setAttribute('href','dist/theme/aml_dark.css');
}, false );
Reveal.addEventListener( 'brightside', function() {
document.getElementById('theme').setAttribute('href','dist/theme/aml.css');
}, false );
</script>
<style type="text/css">
/* 1. Style header/footer <div> so they are positioned as desired. */
#header-left {
position: absolute;
top: 0%;
left: 0%;
}
#header-right {
position: absolute;
top: 0%;
right: 0%;
}
#footer-left {
position: absolute;
bottom: 0%;
left: 0%;
}
</style>
<!-- // 2. Create hidden header/footer -->
<div id="hidden" style="display:none;">
<div id="header">
<div id="header-left"><h4>CS8850</h4></div>
<div id="header-right"><h4>Advanced Machine Learning</h4></div>
<div id="footer-left">
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1);" width="200"
src="figures/valentino.png" alt="robot learning">
</div>
</div>
</div>
<script type="text/javascript">
// 3. On Reveal.js ready event, copy header/footer <div> into each `.slide-background` <div>
var header = $('#header').html();
if ( window.location.search.match( /print-pdf/gi ) ) {
Reveal.addEventListener( 'ready', function( event ) {
$('.slide-background').append(header);
});
}
else {
$('div.reveal').append(header);
}
</script>
</body>
</html>