-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_single.py
148 lines (121 loc) · 5.38 KB
/
run_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import json
import os
import torch
from torch.utils.data import DataLoader
from util.datasets import load_dataset
from lib.models import get_model_class
from time import gmtime, strftime
from train import start_training
import numpy as np
from feature_extraction import extract_features
# Script starts here.
parser = argparse.ArgumentParser()
parser.add_argument('--config_dir', type=str,
required=False, default='',
help='path to all config files for experiments')
parser.add_argument('--save_dir', type=str,
required=False, default='saved',
help='save directory for experiments from project directory')
parser.add_argument('--exp_name', type=str,
required=False, default='',
help='experiment name (default will be config folder name)')
parser.add_argument('-d', '--device', type=int,
required=False, default=-1,
help='device to run the experiment on')
parser.add_argument('-i', '--index', type=int,
required=False, default=-1,
help='run a single experiment in the folder, specified by index')
parser.add_argument('--test_code', action='store_true',
required=False, default=False,
help='whether or not to test code')
parser.add_argument('--feature_extraction', type=str,
required=False, default=None,
help='paths to trajectory data for feature extraction')
parser.add_argument('--feature_names', type=str,
required=False, default=None,
help='paths to save extracted features')
args = parser.parse_args()
# Get JSON files
config_dir = os.path.join(os.getcwd(), 'configs', args.config_dir)
config_files = sorted([str(f) for f in os.listdir(config_dir) if os.path.isfile(os.path.join(config_dir, f))])
assert len(config_files) > 0
# Get experiment name
exp_name = args.exp_name if len(args.exp_name) > 0 else args.config_dir
print('Config folder:\t {}'.format(exp_name))
# Get save directory
save_dir = os.path.join(os.getcwd(), args.save_dir, exp_name)
if not os.path.exists(save_dir):
os.makedirs(os.path.join(save_dir, 'configs'))
print('Save directory:\t {}'.format(save_dir))
# Get device ID
if torch.cuda.is_available() and args.device >= 0:
assert args.device < torch.cuda.device_count()
device = 'cuda:{:d}'.format(args.device)
else:
device = 'cpu'
print('Device:\t {}'.format(device))
# Make sure feature extraction and feature names have the same length.
if args.feature_extraction is not None:
input_feature_files = args.feature_extraction.split(',')
assert args.feature_names is not None
output_feature_names = args.feature_names.split(',')
assert len(input_feature_files) == len(output_feature_names)
# Create master file
master = {
'start_time' : strftime("%Y-%m-%dT%H-%M-%S", gmtime()),
'experiment_name' : exp_name,
'device' : device,
'summaries' : {}
}
# Run a single experiment
if args.index >= 0:
if args.index < len(config_files):
config_files = [config_files[args.index]]
else:
print("WARNING: Index out of range, will run all experiments in folder.")
for config_file in config_files:
# Load JSON config file
with open(os.path.join(config_dir, config_file), 'r') as f:
config = json.load(f)
trial_id = config_file[:-5] # remove .json at the end
print('########## Trial {}:{} ##########'.format(exp_name, trial_id))
# Create save folder
save_path = os.path.join(save_dir, trial_id)
if not os.path.exists(save_path):
os.makedirs(save_path)
os.makedirs(os.path.join(save_path, 'checkpoints')) # for model checkpoints
os.makedirs(os.path.join(save_path, 'results')) # for saving various results afterwards (e.g. plots, samples, etc.)
# Start training
summary, log, data_config, model_config, train_config = start_training(
save_path=save_path,
data_config=config['data_config'],
model_config=config['model_config'],
train_config=config['train_config'],
device=device,
test_code=args.test_code
)
# Save config file (for reproducability)
config['data_config'] = data_config
config['model_config'] = model_config
config['train_config'] = train_config
with open(os.path.join(save_dir, 'configs', config_file), 'w') as f:
json.dump(config, f, indent=4)
# Save summary file
with open(os.path.join(save_path, 'summary.json'), 'w') as f:
json.dump(summary, f, indent=4)
# Save log file
with open(os.path.join(save_path, 'log.json'), 'w') as f:
json.dump(log, f, indent=4)
# Save entry in master file
summary['log_path'] = os.path.join(args.save_dir, exp_name, trial_id, 'log.json')
master['summaries'][trial_id] = summary
# Save master file
with open(os.path.join(save_dir, 'master.json'), 'w') as f:
json.dump(master, f, indent=4)
if args.feature_extraction is not None:
# Get exp_directory
exp_dir = os.path.join(os.getcwd(), args.save_dir, exp_name)
for index, input_features in enumerate(input_feature_files):
extract_features(exp_dir, trial_id, input_features,
output_feature_names[index] + "_" + config_file[:-5])