-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfeature_extraction.py
120 lines (90 loc) · 4.24 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import json
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
from util.datasets import load_dataset
from lib.models import get_model_class
def extract_features(exp_dir,
trial_id,
test_name,
save_name):
'''Saves features after training. '''
print('#################### Feature Extraction {} ####################'.format(trial_id))
# Get trial folder
trial_dir = os.path.join(exp_dir, trial_id)
assert os.path.isfile(os.path.join(trial_dir, 'summary.json'))
# Load config
with open(os.path.join(exp_dir, 'configs', '{}.json'.format(trial_id)), 'r') as f:
config = json.load(f)
data_config = config['data_config']
model_config = config['model_config']
# No need to load training data for feature extraction.
data_config["label_train_set"] = False
# Load dataset
if test_name is not None:
data_config["test_name"] = test_name
dataset = load_dataset(data_config)
dataset.eval()
# Load best model
state_dict = torch.load(os.path.join(
trial_dir, 'best.pth'), map_location=lambda storage, loc: storage)
model_class = get_model_class(model_config['name'].lower())
model_config['label_functions'] = dataset.active_label_functions
model_config['augmentations'] = dataset.active_augmentations
model = model_class(model_config)
model.load_state_dict(state_dict)
num_samples = 128
loader = DataLoader(dataset, batch_size=num_samples, shuffle=False)
save_array = np.array([])
for batch_idx, (states, actions, labels_dict) in enumerate(loader):
labels_dict = {key: value for key, value in labels_dict.items()}
states = states.transpose(0, 1)
actions = actions.transpose(0, 1)
with torch.no_grad():
if len(dataset.active_label_functions) > 0:
label_list = []
for lf_idx, lf_name in enumerate(labels_dict):
label_list.append(labels_dict[lf_name])
label_input = torch.cat(label_list, -1)
encodings_mean, _ = model.encode_mean(states[:-1], actions,
labels=label_input)
else:
encodings_mean, _ = model.encode_mean(states[:-1], actions)
if save_array.shape[0] == 0:
save_array = encodings_mean
else:
save_array = np.concatenate([save_array, encodings_mean], axis=0)
np.savez(os.path.join(trial_dir, save_name), save_array)
print("Saved Features: " + os.path.join(trial_dir, save_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--exp_folder', type=str,
required=True, default=None,
help='folder of experiments from which to load models')
parser.add_argument('--save_dir', type=str,
required=False, default='saved',
help='save directory for experiments from project directory')
parser.add_argument('--feature_extraction', type=str,
required=False, default=None,
help='paths to trajectory data for feature extraction')
parser.add_argument('--feature_names', type=str,
required=False, default=None,
help='paths to save extracted features')
args = parser.parse_args()
# Get exp_directory
exp_dir = os.path.join(os.getcwd(), args.save_dir, args.exp_folder)
# Load master file
print(exp_dir)
assert os.path.isfile(os.path.join(exp_dir, 'master.json'))
with open(os.path.join(exp_dir, 'master.json'), 'r') as f:
master = json.load(f)
input_feature_files = args.feature_extraction.split(',')
assert args.feature_names is not None
output_feature_names = args.feature_names.split(',')
assert len(input_feature_files) == len(output_feature_names)
for trial_id in master['summaries']:
for index, input_features in enumerate(input_feature_files):
extract_features(exp_dir, trial_id, input_features,
output_feature_names[index] + "_" + trial_id)