-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_inputs.py
151 lines (125 loc) · 7.39 KB
/
eval_inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import tensorflow as tf
from hourglass_pose.inputs import reshape_bboxes, extract_resized_crop_bboxes
def input_nodes(
tfrecords,
num_parts,
num_epochs=1, # number of times to read the tfrecords
batch_size=8, # Data queue feeding the model
num_threads=2,
shuffle_batch=True,
capacity=1000,
cfg=None): # Global configuration
with tf.name_scope('inputs'):
# A producer to generate tfrecord file paths
filename_queue = tf.train.string_input_producer(
tfrecords,
num_epochs=num_epochs,
shuffle=shuffle_batch
)
# Construct a Reader to read examples from the tfrecords file
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# Parse an Example to access the features
features = tf.io.parse_single_example(
serialized_example,
features={
'image/id': tf.io.FixedLenFeature([], tf.string),
'image/encoded': tf.io.FixedLenFeature([], tf.string),
'image/height': tf.io.FixedLenFeature([], tf.int64),
'image/width': tf.io.FixedLenFeature([], tf.int64),
'image/object/bbox/xmin': tf.io.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.io.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.io.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.io.VarLenFeature(dtype=tf.float32),
'image/object/bbox/count': tf.io.FixedLenFeature([], tf.int64),
'image/object/parts/x': tf.io.VarLenFeature(dtype=tf.float32), # x coord for all parts and all objects
'image/object/parts/y': tf.io.VarLenFeature(dtype=tf.float32), # y coord for all parts and all objects
'image/object/parts/v': tf.io.VarLenFeature(dtype=tf.int64),
'image/object/area': tf.io.VarLenFeature(dtype=tf.float32),
}
)
# Read in a jpeg image
image = tf.image.decode_jpeg(features['image/encoded'], channels=3)
image_height = tf.cast(features['image/height'], tf.float32)
image_width = tf.cast(features['image/width'], tf.float32)
image_id = features['image/id']
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)
num_bboxes = tf.cast(features['image/object/bbox/count'], tf.int32)
no_bboxes = tf.equal(num_bboxes, 0)
# Get the X and Y coordinates of the parts.
parts_x = tf.expand_dims(features['image/object/parts/x'].values, 0)
parts_y = tf.expand_dims(features['image/object/parts/y'].values, 0)
# Put the parts into the proper format.
parts = tf.concat(axis=0, values=[parts_x, parts_y])
parts = tf.transpose(parts, [1, 0])
parts = tf.reshape(parts, [-1, num_parts * 2])
# Assign the part visibilities.
part_visibilities = tf.cast(features['image/object/parts/v'], tf.int32)
part_visibilities = tf.reshape(tf.sparse.to_dense(part_visibilities), tf.stack([num_bboxes, num_parts]))
areas = features['image/object/area'].values
areas = tf.reshape(areas, [num_bboxes])
# Resize the bbox according to our specs, then extract of the image that that bbox contains.
if not cfg.LOOSE_BBOX_CROP:
crop_bboxes = tf.concat(axis=0, values=[xmin, ymin, xmax, ymax])
crop_bboxes = tf.transpose(crop_bboxes, [1, 0])
params = [image, crop_bboxes, cfg.INPUT_SIZE]
cropped_images = tf.py_func(extract_resized_crop_bboxes, params, [tf.uint8])[0]
else:
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
crop_x1, crop_y1, crop_x2, crop_y2 = tf.py_func(reshape_bboxes, [xmin, ymin, xmax, ymax, cfg.LOOSE_BBOX_PAD_FACTOR],
[tf.float32, tf.float32, tf.float32, tf.float32])
crop_bboxes = tf.transpose(tf.concat(axis=0, values=[
tf.expand_dims(crop_y1, 0),
tf.expand_dims(crop_x1, 0),
tf.expand_dims(crop_y2, 0),
tf.expand_dims(crop_x2, 0)]), [1, 0])
cropped_images = tf.image.crop_and_resize(tf.expand_dims(image, 0), crop_bboxes,
tf.zeros([num_bboxes], dtype=tf.int32),
crop_size=[cfg.INPUT_SIZE, cfg.INPUT_SIZE], method="bilinear",
extrapolation_value=0, name=None)
crop_bboxes = tf.concat(axis=0, values=[tf.expand_dims(crop_x1, 0), tf.expand_dims(crop_y1, 0),
tf.expand_dims(crop_x2, 0), tf.expand_dims(crop_y2, 0)])
crop_bboxes = tf.transpose(crop_bboxes, [1, 0])
# Convert the pixel values to be in the range [0,1]
if cropped_images.dtype != tf.float32:
cropped_images = tf.image.convert_image_dtype(cropped_images, dtype=tf.float32)
# Get the images in the range [-1, 1]
cropped_images = tf.subtract(cropped_images, 0.5)
cropped_images = tf.multiply(cropped_images, 2.0)
# Set the shape of everything for the queue
cropped_images.set_shape([None, cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3])
image_ids = tf.tile([[image_id]], [num_bboxes, 1])
image_ids.set_shape([None, 1])
bboxes = tf.concat(axis=0, values=[xmin, ymin, xmax, ymax])
bboxes = tf.transpose(bboxes, [1, 0])
bboxes.set_shape([None, 4])
parts.set_shape([None, num_parts * 2])
part_visibilities.set_shape([None, num_parts])
# We need some book keeping data in order to map the detected keypoints back to image space
image_height_widths = tf.tile([[image_height, image_width]], [num_bboxes, 1])
image_height_widths.set_shape([None, 2])
crop_bboxes.set_shape([None, 4])
if shuffle_batch:
batched_images, batched_bboxes, batched_parts, batched_part_visibilities, batched_image_ids, batched_image_height_widths, batched_crop_bboxes = tf.train.shuffle_batch(
[cropped_images, bboxes, parts, part_visibilities, image_ids, image_height_widths, crop_bboxes],
batch_size=batch_size,
num_threads=num_threads,
capacity=capacity,
min_after_dequeue=0,
enqueue_many=True
)
else:
batched_images, batched_bboxes, batched_parts, batched_part_visibilities, batched_image_ids, batched_image_height_widths, batched_crop_bboxes = tf.train.batch(
[cropped_images, bboxes, parts, part_visibilities, image_ids, image_height_widths, crop_bboxes],
batch_size=batch_size,
num_threads=num_threads,
capacity=capacity,
enqueue_many=True
)
# return a batch of images and their labels
return batched_images, batched_bboxes, batched_parts, batched_part_visibilities, batched_image_ids, batched_image_height_widths, batched_crop_bboxes